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Preface

The main purpose of control engineering is to steer the regulated plant in such a way 
that it operates in a required manner. The desirable performance of the plant should 
be obtained despite the unpredictable in uence of the environment on all parts of the 
control system, including the plant itself, and no matt er if the system designer knows 
precisely all the parameters of the plant. Even though the parameters may change with 
time, load and external circumstances, still the system should preserve its nominal 
properties and ensure the required behaviour of the plant. In other words, the princi-
pal objective of control engineering is to design control (or regulation) systems which 
are robust with respect to external disturbances and modelling uncertainty. This ob-
jective may very well be obtained in a number of ways which are discussed in this 
monograph.

The monograph is divided into  ve sections. In section 1 some principal issues of the 
 eld are presented. That section begins with a general introduction presenting well 
developed robust control techniques, then discusses the problem of robust hybrid con-
trol and concludes with some new insights into stability and control of linear interval 
parameter plants. These insights are made both from an engineering (quantitative) 
perspective and from the population (community) ecology point of view. The next two 
sections, i.e. section 2 and section 3 are devoted to new results in the framework of two 
important robust control techniques, namely: H-in nity and sliding mode control. The 
two control concepts are quite diff erent from each other, however both are nowadays 
very well grounded theoretically, veri ed experimentally, and both are regarded as 
fundamental design techniques in modern control theory. Section 4 presents various 
other signi cant developments in the theory of robust control. It begins with three 
contributions related to the design of continuous and discrete time robust proportional 
integral derivative controllers. Next, the section discusses selected problems in pas-
sive and active fault tolerant control, and presents some important issues of robust 
model predictive and fuzzy control. Recent developments in quantitative feedback 
theory, stabilizability and detectability of variational control systems, control of multi 
agent systems and control of  at systems are also the topics considered in the same 
section. The monograph is concerned not only with a wide spectrum of theoretical 
issues in robust control domain, but it also demonstrates a number of successful, re-
cent engineering and non-engineering applications of the theory. These are described 
in section 5 and include internet based switching control, and applications of robust 



XIV Preface

control techniques in electric drives, power electronics, bilateral teleoperation systems, 
automotive industry, wastewater treatment, thermostatic baths, multi-channel sound 
reproduction systems, inventory management and biological processes.

In conclusion, the main objective of this monograph is to present a broad range of well 
worked out, recent theoretical and application studies in the  eld of robust control 
system analysis and design. We believe, that thanks to the authors and to the Intech 
Open Access Publisher, this ambitious objective has been successfully accomplished. 
The editor and authors truly hope that the result of this joint eff ort will be of signi -
cant interest to the control community and that the contributions presented here will 
advance the progress in the  eld, and motivate and encourage new ideas and solutions 
in the robust control area.

Andrzej Bartoszewicz
Institute of Automatic Control, 

Technical University of Łódź
Poland
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Introduction to Robust Control Techniques 
Khaled Halbaoui1,2, Djamel Boukhetala2 and Fares Boudjema2 

1Power Electronics Laboratory, Nuclear Research Centre of Brine CRNB,  
BP 180 Ainoussera 17200, Djelfa 

2Laboratoire de Commande des Processus, ENSP,  
10 avenue Pasteur, Hassan Badi, BP 182 El-Harrach 

Algeria 

1. Introduction  
The theory of "Robust" Linear Control Systems has grown remarkably over the past ten 
years. Its popularity is now spreading over the industrial environment where it is an 
invaluable tool for analysis and design of servo systems. This rapid penetration is due to 
two major advantages: its applied nature and its relevance to practical problems of 
automation engineer. 
To appreciate the originality and interest of robust control tools, let us recall that a control 
has two essential functions:  
• shaping the response of the servo system to give it the desired behaviour, 
• maintaining this behaviour from the fluctuations that affect the system during 

operation (wind gusts for aircraft, wear for a mechanical system, configuration change 
to a robot.). 

This second requirement is termed "robustness to uncertainty". It is critical to the reliability 
of the servo system. Indeed, control is typically designed from an idealized and simplified 
model of the real system. 
To function properly, it must be robust to the imperfections of the model, i.e.   the 
discrepancies between the model and the real system, the excesses of physical parameters 
and the external disturbances. 
The main advantage of robust control techniques is to generate control laws that satisfy the 
two requirements mentioned above. More specifically, given a specification of desired 
behaviour and frequency estimates of the magnitude of uncertainty, the theory evaluates the 
feasibility, produces a suitable control law, and provides a guaranty on the range of validity 
of this control law (strength). This combined approach is systematic and very general. In 
particular, it is directly applicable to Multiple-Input Multiple Output systems. 
To some extent, the theory of Robust Automatic Control reconciles dominant frequency 
(Bode, Nyquist, PID) and the Automatic Modern dominated state variables (Linear 
Quadratic Control, Kalman). 
It indeed combines the best of both. From Automatic Classic, it borrows the richness of the 
frequency analysis systems. This framework is particularly conducive to the specification of 
performance objectives (quality of monitoring or regulation), of band-width and of 
robustness. From Automatic Modern, it inherits the simplicity and power of synthesis 
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methods by the state variables of enslavement. Through these systematic synthesis tools, the 
engineer can now impose complex frequency specifications and direct access to a diagnostic 
feasibility and appropriate control law. He can concentrate on finding the best compromise 
and analyze the limitations of his system. 
This chapter is an introduction to the techniques of Robust Control. Since this area is still 
evolving, we will mainly seek to provide a state of the art with emphasis on methods 
already proven and the underlying philosophy. For simplicity, we restrict to linear time 
invariant systems (linear time-invariant, LTI) continuous time. Finally, to remain true to the 
practice of this theory, we will focus on implementation rather than on mathematical and 
historical aspects of the theory. 

2. Basic concepts 
The control theory is concerned with influencing systems to realize that certain output 
quantities take a desired course. These can be technical systems, like heating a room with 
output temperature, a boat with the output quantities heading and speed, or a power plant 
with the output electrical power. These systems may well be social, chemical or biological, as, 
for example, the system of national economy with the output rate of inflation. The nature of the 
system does not matter. Only the dynamic behaviour is of great importance to the control 
engineer. We can describe this behaviour by differential equations, difference equations or 
other functional equations. In classical control theory, which focuses on technical systems, 
the system that will be influenced is called the (controlled) plant. 
In which kinds in manners can we influence the system? Each system is composed not only 
of output quantities, but as well of input quantities. For the heating of a room, this, for 
example, will be the position of the valve, for the boat the power of the engine and angle of 
the rudder. These input variables have to be adjusted in a manner that the output variables 
take the desired course, and they are called actuating variables. In addition to the actuating 
variables, the disturbance variables affect the system, too. For instance, a heating system, 
where the temperature will be influenced by the number of people in the room or an open 
window, or a boat, whose course will be affected by water currents. 
The desired course of output variables is defined by the reference variables. They can be 
defined by operator, but they can also be defined by another system. For example, the 
autopilot of an aircraft calculates the reference values for altitude, the course, and the speed 
of the plane. But we do not discuss the generation of reference variables here. In the 
following, we take for them for granted. Just take into account that the reference variables 
do not necessarily have to be constant; they can also be time-varying. 
Of which information do have we need to calculate the actuating variables to make the 
output variables of the system follow the variables of reference? Clearly the reference values 
for the output quantities, the behavior of the plant and the time-dependent behavior of the 
disturbance variables must be known. With this information, one can theoretically calculate 
the values of the actuating variables, which will then affect the system in a way that the 
output quantities will follow the desired course. This is the principle of a steering mechanism 
(Fig. 1). The input variable of the steering mechanism is the reference variableω , its output 
quantity actuating variable u  , which again - with disturbance variable w  forms the input 
value of the plant. y represents the output value of the system. 
The disadvantage of this method is obvious. If the behavior of the plant is not in accordance 
with the assumptions which we made about it, or if unforeseen disruptions, then the 
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quantities of output will not continue to follow the desired course. A steering mechanism 
cannot react to this deviation, because it does not know the output quantity of the plant. 
 

Plant u  y  
Steering 

iw  ow  

ω  + +  
+ +  

 
Fig. 1. Principle of a steering mechanism 

A improvement which can immediately be made is the principle of an (automatic) control 
(Fig. 2). Inside the automatic check, the reference variable ω  is compared with the 
measured output variable of the plant y  (control variable), and a suitable output quantity of 
the controller u (actuating variable) are calculated inside the control unit of the difference yΔ  
(control error).  
During old time the control unit itself was called the controller, but the modern controllers, 
including, between others, the adaptive controllers (Boukhetala et al., 2006), show a 
structure where the calculation of the difference between the actual and wished output 
value and the calculations of the control algorithm cannot be distinguished in the way just 
described. For this reason, the tendency today is towards giving the name controller to the 
section in which the variable of release is obtained starting from the reference variable and 
the measured control variable. 
 

+
 + 

+
 + 

 Process Actuator 
ω  u   y  

Controller 

Metering Element 

e  
-

iw ow  

 
Fig. 2. Elements of a control loop 

The quantity u is usually given as low-power signal, for example as a digital signal. But with 
low power, it is not possible to tack against a physical process. How, for example, could be a 
boat to change its course by a rudder angle calculated numerically, which means a sequence 
of zeroes and ones at a voltage of 5 V? Because it's not possible directly, a static inverter and 
an electric rudder drive are necessary, which may affect the rudder angle and the boat's 
route. If the position of the rudder is seen as actuating variable of the system, the static 
inverter, the electric rudder drive and the rudder itself from the actuator of the system. The 
actuator converts the controller output, a signal of low power, into the actuating variable, a 
signal of high power that can directly affect the plant. 
Alternatively, the output of the static inverter, that means the armature voltage of the 
rudder drive, could be seen as actuating variable. In this case, the actuator would consist 
only of static converter, whereas the rudder drive and the rudder should be added to the 
plant. These various views already show that a strict separation between the actuator and 
the process is not possible.  But it is not necessary either, as for the design of the controller; 
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quantities of output will not continue to follow the desired course. A steering mechanism 
cannot react to this deviation, because it does not know the output quantity of the plant. 
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Fig. 1. Principle of a steering mechanism 

A improvement which can immediately be made is the principle of an (automatic) control 
(Fig. 2). Inside the automatic check, the reference variable ω  is compared with the 
measured output variable of the plant y  (control variable), and a suitable output quantity of 
the controller u (actuating variable) are calculated inside the control unit of the difference yΔ  
(control error).  
During old time the control unit itself was called the controller, but the modern controllers, 
including, between others, the adaptive controllers (Boukhetala et al., 2006), show a 
structure where the calculation of the difference between the actual and wished output 
value and the calculations of the control algorithm cannot be distinguished in the way just 
described. For this reason, the tendency today is towards giving the name controller to the 
section in which the variable of release is obtained starting from the reference variable and 
the measured control variable. 
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Fig. 2. Elements of a control loop 

The quantity u is usually given as low-power signal, for example as a digital signal. But with 
low power, it is not possible to tack against a physical process. How, for example, could be a 
boat to change its course by a rudder angle calculated numerically, which means a sequence 
of zeroes and ones at a voltage of 5 V? Because it's not possible directly, a static inverter and 
an electric rudder drive are necessary, which may affect the rudder angle and the boat's 
route. If the position of the rudder is seen as actuating variable of the system, the static 
inverter, the electric rudder drive and the rudder itself from the actuator of the system. The 
actuator converts the controller output, a signal of low power, into the actuating variable, a 
signal of high power that can directly affect the plant. 
Alternatively, the output of the static inverter, that means the armature voltage of the 
rudder drive, could be seen as actuating variable. In this case, the actuator would consist 
only of static converter, whereas the rudder drive and the rudder should be added to the 
plant. These various views already show that a strict separation between the actuator and 
the process is not possible.  But it is not necessary either, as for the design of the controller; 
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we will have to take every transfer characteristic from the controller output to the control 
variable into account anyway.  Thus, we will treat the actuator as an element of the plant, 
and henceforth we will employ the actuating variable to refer to the output quantity of the 
controller. 
For the feedback of the control variable to the controller the same problem is held, this time 
only in the opposite direction: a signal of high power must be transformed into a signal of 
low power. This happens in the measuring element, which again shows dynamic properties 
that should not be overlooked. 
Caused by this feedback, a crucial problem emerges, that we will illustrate by the following 
example represented in (Fig. 3). We could formulate strategy of a boat’s automatic control 
like this: the larger the deviation from the course is, the more the rudder should be steered 
in the opposite direction. At a glance, this strategy seems to be reasonable. If for some 
reason a deviation occurs, the rudder is adjusted. By steering into the opposite direction, the 
boat receives a rotatory acceleration in the direction of the desired course. 
The deviation is reduced until it disappears finally, but the rotating speed does not 
disappear with the deviation, it could only be reduced to zero by steering in the other 
direction. In this example, because of the rotating speed of the boat will receive a deviation 
in the other direction after getting back to the desired course.  This is what happened after 
the rotating speed will be reduced by counter-steering caused by the new deviation. But as 
we already have a new deviation, the whole procedure starts again, only the other way 
round. The new deviation could be even greater than the first. 
The boat will begin zigzagging its way, if worst comes to worst, with always increasing 
deviations. This last case is called instability. If the amplitude of vibration remains the same, 
it is called borderline of stability. 
Only if the amplitudes decrease the system is stable. To receive an acceptable control 
algorithm for the example given, we should have taken the dynamics of the plant into 
account when designing the control strategy. 
A suitable controller would produce a counter-steering with the rudder right in time to 
reduce the rotating speed to zero at the same time the boat gets back on course. 
 

 Desired Course 
 

Fig. 3. Automatic cruise control of a boat  

This example illustrates the requirements with respect to the controlling devices. A 
requirement is accuracy, i.e. the control error should be also small as possible once all the 
initial transients are finished and a stationary state is reached. Another requirement is the 
speed, i.e. in the case of a changing reference value or a disturbance; the control error should 
be eliminated as soon as possible. This is called the response behavior. The requirement of the 
third and most important is the stability of the whole system. We will see that these 
conditions are contradicted, of this fact of forcing each kind of controller (and therefore 
fuzzy controllers, too) to be a compromise between the three. 
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3. Frequency response 
If we know a plant’s transfer function, it is easy to construct a suitable controller using this 
information. If we cannot develop the transfer function by theoretical considerations, we 
could as well employ statistical methods on the basis of a sufficient quantity of values 
measured to determine it. This method requires the use of a computer, a plea which was not 
available during old time. Consequently, in these days a different method frequently 
employed in order to describe a plant's dynamic behavior, frequency response (Franklin  et al., 
2002). As we shall see later, the frequency response can easily be measured. Its good 
graphical representation leads to a clear method in the design process for simple PID 
controllers. Not to mention only several criteria for the stability, which as well are employed 
in connection with fuzzy controllers, root in frequency response based characterization of a 
plant's behavior. 
The easiest way would be to define the frequency response to be the transfer function of a 
linear transfer element with purely imaginary values for s. 
Consequently, we only have to replace the complex variable s of the transfer function by a 
variable purely imaginary. jω : ( ) ( ) s jG j G s == ωω . The frequency response is thus a complex 
function of the parameterω . Due to the restriction of s to purely imaginary values; the 
frequency response is only part of the transfer function, but a part with the special 
properties, as the following theorem shows: 
Theorem 1 If a linear transfer element has the frequency response ( )G jω , then its response to the 
input signal ( ) sinx t a t= ω  will be-after all initial transients have settled down-the output signal 

 ( ) ( ) sin( ( ( )))y t a G j t G j= +ω ω ϕ ω  (1) 

If the following equation holds: 

 
0

( )g t dt
∞

∞∫ ≺  (2) 

( )G jω  is obviously the ratio of the output sine amplitude to the input sine amplitude 
((transmission) gain or amplification). ( ( )G jφ ω is the phase of the complex quantity ( )G jω and 
shows the delay of the output sine in relation to the input sine (phase lag). ( )g t  is the impulse 
response of the plant. In case the integral given in (2) does not converge, we have to add the term  

( )r t  to the right hand side of (1), which will, even for t →∞ , not vanish. 
The examination of this theorem shows clearly what kind of information about the plant the 
frequency response gives: Frequency response characterizes the system's behavior for any 
frequency of the input signal.  Due to the linearity of the transfer element, the effects caused 
by single frequencies of the input signal do not interfere with each other. In this way, we are 
now able to predict the resulting effects at the system output for each single signal 
component separately, and we can finally superimpose these effects to predict the overall 
system output. 
Unlike the coefficients of a transfer function, we can measure the amplitude and phase shift 
of the frequency response directly: The plant is excited by a sinusoidal input signal of a 
certain frequency and amplitude. After all initial transients are installed we obtain a 
sinusoidal signal at the output plant, whose phase position and amplitude differ from the 
input signal. The quantities can be measured, and depending to (1), this will also instantly 
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provide the amplitude and phase lag of the frequency response ( )G jω . In this way, we can 
construct a table for different input frequencies that give the principle curve of the 
frequency response. Take of measurements for negative values of ω , i.e. for negative 
frequencies, which is obviously not possible, but it is not necessary either, delay elements 
for the transfer functions rational with real coefficients and for ( )G jω will be conjugate 
complex to ( )G j− ω . Now, knowing that the function ( )G jω for 0≥ω  already contains all 
the information needed, we can omit an examination of negative values ofω . 

4. Tools for analysis of controls 
4.1 Nyquist plot 
A Nyquist plot is used in automatic control and signal processing for assessing the stability 
of a system with feedback. It is represented by a graph in polar coordinates in which the 
gain and phase of a frequency response are plotted. The plot of these phasor quantities 
shows the phase as the angle and the magnitude as the distance from the origin (see. Fig.4). 
The Nyquist plot is named after Harry Nyquist, a former engineer at Bell Laboratories. 
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                             First-order system                                            Second-order systems  
Fig. 4. Nyquist plots of linear transfer elements 

Assessment of the stability of a closed-loop negative feedback system is done by applying 
the Nyquist stability criterion to the Nyquist plot of the open-loop system (i.e. the same 
system without its feedback loop). This method is easily applicable even for systems with 
delays which may appear difficult to analyze by means of other methods. 
Nyquist Criterion: We consider a system whose open loop transfer function (OLTF) is ( )G s ; 
when placed in a closed loop with feedback ( )H s , the closed loop transfer function (CLTF) 

then becomes
1 .

G
G H+

. The case where 1H = is usually taken, when investigating stability, 

and then the characteristic equation, used to predict stability, becomes 1 0G + = . 
We first construct The Nyquist Contour, a contour that encompasses the right-half of the 
complex plane: 
• a path traveling up the jω axis, from 0  -j∞  to 0  j+ ∞ .  
• a semicircular arc, with radius r →∞  , that starts at 0  j+ ∞ and travels clock-wise to 

0  -j∞  
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The Nyquist Contour mapped through the function 1 ( )G s+ yields a plot of 1 ( )G s+ in the 
complex plane. By the Argument Principle, the number of clock-wise encirclements of the 
origin must be the number of zeros of 1 ( )G s+ in the right-half complex plane minus the 
poles of 1 ( )G s+ in the right-half complex plane. If instead, the contour is mapped through 
the open-loop transfer function ( )G s , the result is the Nyquist plot of ( )G s . By counting the 
resulting contour's encirclements of 1− , we find the difference between the number of poles 
and zeros in the right-half complex plane of 1 ( )G s+ . Recalling that the zeros of 1 ( )G s+ are 
the poles of the closed-loop system, and noting that the poles of 1 ( )G s+ are same as the 
poles of ( )G s , we now state The Nyquist Criterion: 
Given a Nyquist contour sΓ , let P be the number of poles of ( )G s encircled by sΓ  and Z be 
the number of zeros of 1 ( )G s+ encircled by sΓ . Alternatively, and more importantly, Z  is 
the number of poles of the closed loop system in the right half plane. The resultant contour 
in the ( )G s -plane, ( )G sΓ shall encircle (clock-wise) the point ( )1 0j− +  N  times such 
that N Z P= − . For stability of a system, we must have 0Z = , i.e. the number of closed loop 
poles in the right half of the s-plane must be zero. Hence, the number of counterclockwise 
encirclements about ( )1 0j− + must be equal to P , the number of open loop poles in the right 
half plane (Faulkner, 1969), ( Franklin, 2002). 

4.2 Bode diagram 
A Bode plot is a plot of either the magnitude or the phase of a transfer function ( )T jω as a 
function of ω . The magnitude plot is the more common plot because it represents the gain 
of the system. Therefore, the term “Bode plot” usually refers to the magnitude plot (Thomas, 
2004),( William, 1996),( Willy, 2006). The rules for making Bode plots can be derived from 
the following transfer function: 

0
( )

n
sT s K

±
⎛ ⎞

= ⎜ ⎟
⎝ ⎠ω  

where n  is a positive integer. For n+  as the exponent, the function has n zeros at 0s = . For 
n− , it has n  poles at 0s = . With s j= ω , it follows that 0( ) ( / )n nT j Kj± ±=ω ω ω , 

0( ) ( / ) nT j Kj ±=ω ω ω  and ( ) 90T j n∠ = ± ×ω . If ω is increased by a factor of 10 , ( )T jω  
changes by a factor of 10 n± . Thus a plot of ( )T jω versus ω  on log log−  scales has a slope 
of ( )log 10  /n n decades decade± = ± . There are 20dBs  in a decade , so the slope can also be 
expressed as 20  /n dB decade± . 
In order to give an example, (Fig. 5) shows the Bode diagrams of the first order and second 
order lag. Initial and final values of the phase lag courses can be seen clearly. The same 
holds for the initial values of the gain courses. Zero, the final value of these courses, lies at 
negative infinity, because of the logarithmic representation. Furthermore, for the second 
order lag the resonance magnification for smaller dampings can be see at the resonance 
frequency 0ω . 
Even with a transfer function being given, a graphical analysis using these two diagrams 
might be clearer, and of course it can be tested more easily than, for example, a numerical 
analysis done by a computer. It will almost always be easier to estimate the effects of 
changes in the values of the parameters of the system, if we use a graphical approach 
instead of a numerical one. For this reason, today every control design software tool 
provides the possibility of computing the Nyquist plot or the Bode diagram for a given 
transfer function by merely clicking on a button. 
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Fig. 5. Bode diagram of first and second-order systems 

4.3 Evans root locus 
In addition to determining the stability of the system, the root locus can be used to design 
for the damping ratio and natural frequency of a feedback system (Franklin  et al., 2002). 
Lines of constant damping ratio can be drawn radially from the origin and lines of constant 
natural frequency can be drawn as arcs whose center points coincide with the origin (see. 
Fig. 6). By selecting a point along the root locus that coincides with a desired damping ratio 
and natural frequency a gain, K, can be calculated and implemented in the controller. More 
elaborate techniques of controller design using the root locus are available in most control 
textbooks: for instance, lag, lead, PI, PD and PID controllers can be designed approximately 
with this technique. 
The definition of the damping ratio and natural frequency presumes that the overall 
feedback system is well approximated by a second order system, that is, the system has a 
dominant pair of poles. This often doesn't happen and so it's good practice to simulate the 
final design to check if the project goals are satisfied. 
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Fig. 6. Evans root locus of a second-order system 

Suppose there is a plant (process) with a transfer function expression ( )P s , and a forward 
controller with both an adjustable gain K and a transfer function expression ( )C s . A unity 
feedback loop is constructed to complete this feedback system. For this system, the overall 
transfer function is given by: 

 . ( ). ( )( )
1 . ( ). ( )

K C s P sT s
K C s P s

=
+

 (3) 

Thus the closed-loop poles of the transfer function are the solutions to the equation 
1 . ( ). ( ) 0K C s P s+ = . The principal feature of this equation is that roots may be found 
wherever . . 1K C P = − . The variability of K , the gain for the controller, removes amplitude 
from the equation, meaning the complex valued evaluation of the polynomial in s  

( ). ( )C s P s needs to have net phase of 180 deg, wherever there is a closed loop pole. The 
geometrical construction adds angle contributions from the vectors extending from each of 
the poles of KC to a prospective closed loop root (pole) and subtracts the angle 
contributions from similar vectors extending from the zeros, requiring the sum be 180. The 
vector formulation arises from the fact that each polynomial term in the factored CP , ( )s a−   
for example, represents the vector from a  which is one of the roots, to s which is the 
prospective closed loop pole we are seeking. Thus the entire polynomial is the product of 
these terms, and according to vector mathematics the angles add (or subtract, for terms in 
the denominator) and lengths multiply (or divide). So to test a point for inclusion on the root 
locus, all you do is add the angles to all the open loop poles and zeros. Indeed a form of 
protractor, the "spirule" was once used to draw exact root loci. 
From the function ( )T s , we can also see that the zeros of the open loop system ( CP ) are also 
the zeros of the closed loop system. It is important to note that the root locus only gives the 
location of closed loop poles as the gain K  is varied, given the open loop transfer function. 
The zeros of a system cannot be moved. 
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Using a few basic rules, the root locus method can plot the overall shape of the path (locus) 
traversed by the roots as the value of K varies. The plot of the root locus then gives an idea 
of the stability and dynamics of this feedback system for different values of K. 

5. Ingredients for a robust control 
The design of a control consists in adjusting the transfer function of the compensator so as to 
obtain the properties and the behavior wished in closed loop. In addition to the constraint of 
stability, we look typically the best possible performance. This task is complicated by two 
principal difficulties. On the one hand, the design is carried out on a idealized model of the 
system. We must therefore ensure the robustness to imperfections in the model, i.e. to 
ensure that the desired properties for a family of systems around the reference model. On 
the other hand, it faces inherent limitations like the compromise between performances and 
robustness. 
This section shows how these objectives and constraints can be formulated and quantified in 
a consistent framework favorable to their taking into systematic account. 

5.1 Robustness to uncertainty 
The design of a control is carried out starting from a model of the real system often called 
nominal model or reference model. This model may come from the equations of physics or 
a process identification. In any case, this model is only one approximation of reality. Its 
deficiencies can be multiple: dynamic nonlinearities neglected, uncertainty on certain 
physical parameters, assumptions simplifying, errors of measurement to the identification, 
etc..  In addition, some system parameters can vary significantly with time or operating 
conditions. Finally, from the unforeseeable external factors can come to disturb the 
operation of the control system. 
It is thus insufficient to optimize control compared to the nominal model: it is also necessary 
to be guarded against the uncertainty of modeling and external risks. Although these factors 
are poorly known, one has information in general on their maximum amplitude or their 
statistical nature. For example, the frequency of the oscillation, maximum intensity of the 
wind, or the terminals min and max on the parameter value. It is from this basic knowledge 
that one will try to carry out a robust control. 
There are two classes of uncertain factors. A first class includes the uncertainty and external 
disturbances. These are signals or actions randomness that disrupt the controlled system. 
They are identified according to their point of entry into the loop. Referring again to (Fig. 2) 
there are basically: 
• the disruption of the control  iw   which can come from errors of discretization or 

quantification of the control or parasitic actions on the actuators. 
• Disturbances at exit ow  corresponding to external effects on the output or 

unpredictable on the system, e.g. the wind for a airplane, an air pressure change for a 
chemical reactor, etc.. 

It should be noted that these external actions do not modify the dynamic behavior interns 
system, but only the “trajectory” of its outputs. 
A second class of uncertain factors joins together imperfections and variations of the 
dynamic model of the system. Recall that the robust control techniques applied to finite 
dimensional linear models, while real systems are generally non-linear and infinite 
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dimensional. Typically, the model used thus neglects non-linear ties and is valid only in one 
limited frequency band. It depends of more than physical parameters whose value can 
fluctuate and is often known only roughly. For practical reasons, one will distinguish: 
• the dynamic uncertainty which gathers the dynamic ones neglected in the model. 

There is usually only an upper bound on the amplitude of these dynamics. One must 
thus assume and guard oneself against worst case in the limit of this marker. 

• the parametric uncertainty or structured  which is related to the variations or errors in 
estimation on certain physical parameters of the system, or with uncertainties of 
dynamic nature, but entering the loop at different points. Parametric uncertainty 
intervenes mainly when the model is obtained starting from the equations of physics. 
The way in which the parameters influential on the behavior of the system determines 
the “structure” of the uncertainty. 

5.2 Representation of the modeling uncertainty 
The dynamic uncertainty (unstructured) can encompass of physical phenomena very 
diverse (linear or nonlinear, static or time-variant, frictions, hysteresis, etc.). The techniques 
discussed in this chapter are particularly relevant when one does not have any specific 
information if not an estimate of the maximum amplitude of dynamic uncertainty, In other 
words, when uncertainty is reasonably modeled by a ball in the space of bounded operators 
of 2 in 2 . 
Such a model is of course very rough and tends to include configurations with physical 
sense. If the real system does not comprise important nonlinearities, it is often preferable to 
be restricted with a stationary purely linear model of dynamic uncertainty. We can then 
balance the degree of uncertainty according to the frequency and translate the fact that the 
system is better known into low than in high frequency. Uncertainty is then represented as a 
disturbing system LTI ( )G sΔ  which is added to the nominal model ( )G s of the real system: 

 ( ) ( ) ( )trueG s G s G s= + Δ  (4) 

This system must be BIBO-stable (bounded 2 in 2 ), and it usually has an estimate of the 
maximum amplitude of ( )G jΔ ω in each frequency band. Typically, this amplitude is small at 
lower frequencies and grows rapidly in the high frequencies where the dynamics neglected 
become important. This profile is illustrated in (Fig. 7). It defines a family of systems whose 
envelope on the Nyquist diagram is shown in (Fig. 8) (case SISO). The radius of the disk of 
the frequency uncertainty ω  is ( )G jΔ ω . 
 

 
Fig. 7. Standard profile for ( )G jΔ ω . 
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Fig. 8. Family of systems 

The information on the amplitude ( )G jΔ ω  of the uncertainty can be quantified in several 
ways: 
• additive uncertainty: the real system is of the form: 

 ( ) ( ) ( )trueG s G s s= + Δ  (5) 

Where ( )sΔ  is a stable transfer function satisfying: 

 ( ) ( ) ( ) 1l rW j W
∞

ω Δ ω ω ≺  (6) 

for certain models ( )lW s and ( )rW s . These weighting matrices make it possible to 
incorporate information on the frequential dependence and directional of the maximum 
amplitude of ( )sΔ  (see singular values). 
• multiplicative uncertainty at the input: the real system is of the form: 

 ( ) ( ).( ( ))trueG s G s I s= + Δ  (7) 

where ( )sΔ is like above. This representation models errors or fluctuations on the behavior 
in input. 
• multiplicative uncertainty at output: the real system is of the form: 

 ( ) ( ( )). ( )trueG s I s G s= + Δ  (8) 

This representation is adapted to modeling of the errors or fluctuations in the output behavior. 
According to the data on the imperfections of the model, one will choose one or the other of 
these representations. Let us note that multiplicative uncertainty has a relative character. 

5.3 Robust stability 
Let the linear system be given by the transfer function 
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with the gain 
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0

bV
a

=  (10) 

First we must explain what we mean by stability of a system. Several possibilities exist to 
define the term, two of which we will discuss now. A third definition by the Russian 
mathematician Lyapunov will be presented later. The first definition is based on the step 
response of the system: 
Definition 1 A system is said to be stable if, for t →∞ , its step response converges to a finite value. 
Otherwise, it is said to be instable.  
This unit step function has been chosen to stimulate the system does not cause any 
restrictions, because if the height of the step is modified by the factor k, the values to the 
system output will change by the same factor k, too, according to the linearity of the system. 
Convergence towards a finite value is therefore preserved. 
A motivation for this definition can be the idea of following illustration: If a system 
converges towards a finished value after strong stimulation that a step in the input signal 
represents, it can suppose that it will not be wedged in permanent oscillations for other 
kinds of stimulations. 
It is obvious to note that according to this definition the first order and second order lag is 
stable, and that the integrator is instable. 
Another definition is attentive to the possibility that the input quantity may be subject to 
permanent changes: 
Definition 2 A linear system is called stable if for an input signal with limited amplitude, its output 
signal will also show a limited amplitude. This is the BIBO-Stability (bounded input - bounded 
output). 
Immediately, the question on the connection between the two definitions arises, that we will 
now examine briefly. The starting point of discussion is the convolution integral, which 
gives the relationship between the system's input and the output quantity (the impulse 
response): 
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τ τ τ τ τ τ  (11) 

( )x t is bounded if and only if ( )x t k≤ holds (with 0k > ) for all t . This implies: 
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Now, with absolute convergence of the integral of the impulse response, 
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( )g d c
∞

=

= < ∞∫
τ

τ τ  (13) 

( )y s will be limited by kc , also, and thus the whole system will be BIBO-stable. Similarly it 
can be shown that the integral (13) converges absolutely for all BIBO-stable systems. BIBO 
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stability and the absolute convergence of the impulse response integral are the equivalent 
properties of system. 
Now we must find the conditions under which the system will be stable in the sense of a 
finite step response (Definition 2): Regarding the step response of a system in the frequency 
domain, 
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in the time domain for (0) 0. ( )y y t= converge to a finite value only if the integral converges: 
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Convergence is obviously a weaker criterion than absolute convergence. Therefore, each 
BIBO-stable system will have a finite step response. To treat the stability always in the sense 
of the BIBO-stability is tempting because this stronger definition makes other 
differentiations useless. On the other hand, we can simplify the following considerations 
much if we use the finite-step-response-based definition of stability (Christopher, 
2005),(Arnold, 2006). In addition to this, the two definitions are equivalent as regards the 
transfer functions anyway. Consequently, henceforth we will think of stability as 
characterized in (Definition 2). 
Sometimes stability is also defined while requiring that the impulse response to converge 
towards zero for t →∞ . A glance at the integral (16) shows that this criterion is necessary 
but not sufficient condition for stability as defined by (Definition 2), while (Definition 2) is the 
stronger definition. If we can prove a finite step response, then the impulse response will 
certainly converge to zero. 

5.3.1 Stability of a transfer function 
If we want to avoid having to explicitly calculate the step response of a system in order to 
prove its stability, then a direct examination of the transfer function of the system's, trying to 
determine criteria for the stability, seems to suggest itself ( Levine, 1996). This is relatively 
easy concerning all ideas that we developed up to now about the step response of a rational 
transfer function. The following theorem is valid: 
Theorem 2 A transfer element with a rational transfer function is stable in the sense of (Definition 2) 
if and only if all poles of the transfer function have a negative real part. 
According to equation (17), the step response of a rational transfer element is given by: 
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For each pole sλ of multiplicity nλ , we obtain a corresponding operand ( ) ts
h t e λ
λ , which 

( )h tλ is a polynomial of degree 1n −λ . For a pole with a negative real part, this summand 
disappears to increase t , as the exponential function converges more quickly towards 
zero than the polynomial ( )h tλ can increase. If all the poles of the transfer function have a 
negative real part, then all corresponding terms disappear. Only the summand ( ) ti

s
ih t e for 

the simple pole 0is =  remains, due to the step function. The polynomial ( )ih t is of degree 
1 0in − = , i.e. a constant, and the exponential function is also reduced to a constant. In this 

way, this summand form the finite final value of the step function, and the system is 
stable. 
We omit the proof in the opposite direction, i.e. a system is instable if at least one pole has a 
positive real part because it would not lead to further insights. It is interesting that (Theorem 
2) holds as well for systems with delay according to (9). The proof of this last statement will 
be also omitted. 
Generally, the form of the initial transients as reaction to the excitations of outside will also 
be of interest besides that the fact of stability. If a plant has, among others, a complex 

conjugate pair of poles sλ , sλ , the ratio 2 2Re( ) Re( ) Im( )s s s+λ λ λ  is equal to the damping 
ratio D and therefore responsible for the form of the initial transient corresponding to this 
pair of poles. In practical applications one will therefore pay attention not only to that the 
system’s poles have a negative real part, but also to the damping ratio D having a 
sufficiently high value, i.e. that a complex conjugate pair of poles lies at a reasonable 
distance to the axis of imaginaries. 

5.3.2 Stability of a control loop 
The system whose stability must be determined will in the majority of the cases be a closed 
control loop (Goodwin, 2001), as shown in (Fig. 2). A simplified structure is given in (Fig. 9). 
Let the transfer function of the control unit is ( )K s , the plant will be given by ( )G s and the 
metering element by ( )M s . To keep further derivations simple, we set ( )M s  to 1, i.e. we 
neglect the dynamic behavior of the metering element, for simple cases, but it should 
normally be no problem to take the metering element also into consideration. 
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Fig. 9. Closed-loop system 
 We summarize the disturbances that could affect the closed loop system to virtually any 
point, into a single disturbance load that we impressed at the plant input. This step 
simplifies the theory without the situation for the controller easier than it would be in 
practical applications. Choose the plant input as the point where the disturbance affects the 
plant is most unfavorable: The disturbance can affect plants and no countermeasure can be 
applied, as the controller can only counteract after the changes at the system output. 
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To be able to apply the criteria of stability to this system we must first calculate the transfer 
function that describes the transfer characteristic of the entire system between the input 
quantity ω  and the output quantity y . This is the transfer function of the closed loop, which 
is sometimes called the reference (signal) transfer function. To calculate it, we first set d to 
zero. In the frequency domain we get 

  ( ) ( ) ( ) ( ) ( )( ( ) ( ))y s G s u s G s K s s y s= = −ω  (18) 

 
( ) ( ) ( )( )
( ) ( ) ( ) 1

y s G s K sT s
s G s K s

= =
+ω  (19) 

In a similar way, we can calculate a disturbance transfer function, which describes the transfer 
characteristic between the disturbance d and the output quantity y: 

 
( ) ( ) ( )( )
( ) ( ) ( ) 1

y s G s K sS s
d s G s K s

= =
+

 (20) 

The term ( ) ( )G s K s has a special meaning: if we remove the feedback loop, so this term 
represents the transfer function of the resulting open circuit. Consequently, ( ) ( )G s K s is 
sometimes called the open-loop transfer function. The gain of this function (see (9)) is called 
open-loop gain. 
We can see that the reference transfer function and the disturbance transfer function have 
the same denominator ( ) ( ) 1G s K s + . On the other hand, by (Theorem 2), it is the denominator 
of the transfer function that determines the stability. It follows that only the open-loop 
transfer function affects the stability of a system, but not the point of application of an input 
quantity. We can therefore restrict an analysis of the stability to a consideration of the 
term ( ) ( ) 1G s K s + . 
However, since both the numerator and denominator of the two transfer functions ( )T s and 

( )S s  are obviously relatively prime to each other, the zeros of ( ) ( ) 1G s K s +  are the poles of 
these functions, and as a direct consequence of (Theorem 2) we can state: 
Theorem 3 A closed-loop system with the open-loop transfer function ( ) ( )G s K s is stable if and only if 
all solutions of the characteristic equation have a negative real part. 

 ( ) ( ) 1 0G s K s + =  (21) 

Computing these zeros in an analytic way will no longer be possible if the degree of the 
plant is greater than two, or if an exponential function forms a part of the open-loop transfer 
function. Exact positions of the zeros, though, are not necessary in the analysis of stability. 
Only the fact whether the solutions have a positive or negative real part is of importance. 
For this reason, in the history of the control theory criteria of stability have been developed 
that could be used to determine precisely without having to make complicated calculations 
(Christopher, 2005), ( Franklin, 2002). 

5.3.3 Lyapunov’s stability theorem 
We state below a variant of Lyapunov’s direct method that establishes global asymptotic 
stability. 
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Theorem 4 Consider the dynamical system ( ) ( ( ))x t f x t=�  and let 0x = be its unique 
equilibrium point. If there exists a continuously differentiable function : nV ℜ →ℜ  such that 

 (0) 0V =  (22) 

 ( ) 0  0V x x∀ ≠�  (23) 

 ( )x V x→∞⇒ →∞  (24) 

 ( ) 0  0,V x x∀ ≠� ≺  (25) 

then 0x = is globally asymptotically stable. 
Condition (25) is what we refer to as the monotonicity requirement of Lyapunov’s theorem. In 
the condition, ( )V x� denotes the derivation of ( )V x  along the trajectories of ( )x t�  and is given 
by 

( )( )( ) , ,V xV x f x
x

∂
=< >

∂
�  

where <.,.> denotes the standard inner product in nℜ and ( ) nV x
x

∂
∈ℜ

∂
 is the gradient of 

( )V x . As far as the first two conditions are concerned, it is only needed to assume that ( )V x  
is lower bounded and achieves its global minimum at 0x = .There is no conservatism, 
however, in requiring (22) and (23). A function satisfying condition (24) is called radially 
unbounded. We refer the reader to (Khalil, 1992) for a formal proof of this theorem and for an 
example that shows condition (24) cannot be removed. Here, we give the geometric intuition 
of Lyapunov’s theorem, which essentially carries all of the ideas behind the proof. 
 

 
Fig. 10. Geometric interpretation of Lyapunov’s theorem. 

(Fig. 10) shows a hypothetical dynamical system in 2ℜ . The trajectory is moving in the 
1 2( , )x x  plane but we have no knowledge of where the trajectory is as a function of time. On 

the other hand, we have a scalar valued function ( )V x , plotted on the z-axis, which has the 
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guaranteed property that as the trajectory moves the value of this function along the 
trajectories strictly decreases. Since ( ( ))V x t  is lower bounded by zero and is strictly 
decreasing, it must converge to a nonnegative limit as time goes to infinity. It takes a 
relatively straightforward argument appealing to continuity of ( )V x  and ( )V x ) to show that 
the limit of ( ( ))V x t  cannot be strictly positive and indeed conditions (22)-(25) imply 

( ( )) 0 as tV x t → →∞  

Since 0x = is the only point in space where ( )V x  vanishes, we can conclude that ( )x t  goes to 
the origin as time goes to infinity. 
It is also insightful to think about the geometry in the 1 2( , )x x plane. The level sets of ( )V x are 
plotted in (Fig. 10) with dashed lines. Since ( ( ))V x t  decreases monotonically along trajectories, 
we can conclude that once a trajectory enters one of the level sets, say given by ( )V x c= , it 
can never leave the set { }: n

c xx V c= ∈ℜ ≤Ω .This property is known as invariance of sub-level 

sets.  
Once again we emphasize that the significance of Lyapunov’s theorem is that it allows 
stability of the system to be verified without explicitly solving the differential equation. 
Lyapunov’s theorem, in effect, turns the question of determining stability into a search for a 
so-called Lyapunov function, a positive definite function of the state that decreases 
monotonically along trajectories. There are two natural questions that immediately arise. 
First, do we even know that Lyapunov functions always exist? 
Second, if they do in fact exist, how would one go about finding one? In many situations, the 
answer to the first question is positive. The type of theorems that prove existence of Lyapunov 
functions for every stable system are called converse theorems. One of the well known 
converse theorems is a theorem due to Kurzweil that states if f in (Theorem 4) is continuous 
and the origin is globally asymptotically stable, then there exists an infinitely differentiable 
Lyapunov function satisfying conditions of (Theorem 4). We refer the reader to (Khalil, 1992) 
and (Bacciotti & Rosier,2005) for more details on converse theorems. Unfortunately, converse 
theorems are often proven by assuming knowledge of the solutions of (Theorem 4) and are 
therefore useless in practice. By this we mean that they offer no systematic way of finding 
the Lyapunov function. Moreover, little is known about the connection of the dynamics f to 
the Lyapunov function V. Among the few results in this direction, the case of linear systems 
is well settled since a stable linear system always admits a quadratic Lyapunov function. It 
is also known that stable and smooth homogeneous systems always have a homogeneous 
Lyapunov function (Rosier, 1992). 

5.3.4 Criterion of Cremer, Leonhard and Michailow 
Initially let us discuss a criterion which was developed independently by Cremer , Leonhard  
and Michailov during the years 1938-1947. The focus of interest is the phase shift of the 
Nyquist plot of a polynomial with respect to the zeros of the polynomial (Mansour, 1992). 
Consider a polynomial of the form 
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( ) ... ( )
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be given. Setting s j= ω  and substituting we obtain 
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 (27) 

We can see, that the frequency response ( )P jω is the product of the vectors ( )j s− νω , where 
the phase ( )ϕ ω  is given by the sum of the angles ( )νϕ ω  of those vectors. (Fig.11) shows the 
situation corresponding to a pair of complex conjugated zeros with negative real part and 
one zero with a positive real part. 
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Fig. 11. Illustration to the Cremer-Leonhard-Michailow criterion 

If the parameter ω  traverses the interval ( , )−∞ ∞ , it causes the end point of the vectors 
( )j s− νω to move along the axis of imaginaries in positive direction. For zeros with negative 

real part, the corresponding angle νϕ  traverses the interval from 
2

−
π  to 

2
+
π  , for zeros with 

positive real part the interval from 3
2

+
π  to 

2
+
π . For zeros lying on the axis of imaginaries 

the corresponding angle νϕ  initially has the value 
2

−
π  and switches to the value 

2
+
π  

at j s= νω . 
We will now analyze the phase of frequency response, i.e. the entire course which the angle 

( )ϕ ω  takes. This angle is just the sum of the angles ( )uνϕ ω . Consequently, each zero with a  
negative real part contributes an angle of +π  to the phase shift of the frequency response, 
and each zero with a positive real part of the angle −π . Nothing can be said about zeros 
located on the imaginary axis because of the discontinuous course where the values of the 
phase to take. But we can immediately decide zeros or not there watching the Nyquist plot 
of the polynomial ( )P s . If she got a zero purely imaginary s s= ν , the corresponding Nyquist 
plot should pass through the origin to the frequency s= νω . This leads to the following 
theorem: 
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We can see, that the frequency response ( )P jω is the product of the vectors ( )j s− νω , where 
the phase ( )ϕ ω  is given by the sum of the angles ( )νϕ ω  of those vectors. (Fig.11) shows the 
situation corresponding to a pair of complex conjugated zeros with negative real part and 
one zero with a positive real part. 
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Fig. 11. Illustration to the Cremer-Leonhard-Michailow criterion 

If the parameter ω  traverses the interval ( , )−∞ ∞ , it causes the end point of the vectors 
( )j s− νω to move along the axis of imaginaries in positive direction. For zeros with negative 

real part, the corresponding angle νϕ  traverses the interval from 
2

−
π  to 

2
+
π  , for zeros with 

positive real part the interval from 3
2

+
π  to 

2
+
π . For zeros lying on the axis of imaginaries 

the corresponding angle νϕ  initially has the value 
2

−
π  and switches to the value 

2
+
π  

at j s= νω . 
We will now analyze the phase of frequency response, i.e. the entire course which the angle 

( )ϕ ω  takes. This angle is just the sum of the angles ( )uνϕ ω . Consequently, each zero with a  
negative real part contributes an angle of +π  to the phase shift of the frequency response, 
and each zero with a positive real part of the angle −π . Nothing can be said about zeros 
located on the imaginary axis because of the discontinuous course where the values of the 
phase to take. But we can immediately decide zeros or not there watching the Nyquist plot 
of the polynomial ( )P s . If she got a zero purely imaginary s s= ν , the corresponding Nyquist 
plot should pass through the origin to the frequency s= νω . This leads to the following 
theorem: 
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Theorem 5 A polynomial P(s) of degree n with real coefficients will have only zeros with negative 
real part if and only if the corresponding Nyquist plot does not pass through the origin of the complex 
plane and the phase shift ∆ϕ  of the frequency response is equal to nπ  for −∞ < < +∞ω . If ω 

traverses the interval 0 ≤ < +∞ω  only, then the phase shift needed will be equal to 
2
nπ . 

We can easily prove the fact that for 0 ≤ < +∞ω  the phase shift needed is only 
2
nπ —only 

half the value: 
For zeros lying on the axis of reals, it is obvious that their contribution to the phase shift will 
be only half as much if ω  traverses only half of the axis of imaginaries (from 0  to ∞ ). The 
zeros with an imaginary part different from zero are more interesting. Because of the 
polynomial’s real-valued coefficients, they can only appear as a pair of complex conjugated 
zeros. (Fig. 12) shows such a pair with 1 2s s=  and 1 2= −α α . For −∞ < < +∞ω the 
contribution to the phase shift by this pair is 2π . For 0 ≤ < +∞ω , the contribution of 1s  
is 12

+
π α  and the one for 2s  is 12

−
π α . Therefore, the overall contribution of this pair of 

poles isπ , so also for this case the phase shift is reduced by one half if only the half axis of 
imaginaries is taken into consideration. 
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Fig. 12. Illustration to the phase shift for a complex conjugated pair of poles 

6. Beyond this introduction 
There are many good textbooks on Classical Robust Control. Two popular examples are 
(Dorf & Bishop, 2004) and (Franklin  et al., 2002). A less typical and interesting alternative is 
the recent textbook (Goodwin et al., 2000). All three of these books have at least one chapter 
devoted to the Fundamentals of Control Theory. Textbooks devoted to Robust and Optimal 
Control are less common, but there are some available. The best known is probably (Zhou et 
al.1995). Other possibilities are (Aström & Wittenmark, 1996),(Robert, 1994)( Joseph et al, 
2004). An excellent book about the Theory and Design of Classical Control is the one by 
Aström and Hägglund (Aström & Hägglund, 1995). Good references on the limitations of 
control are (Looze & Freudenberg, 1988). Bode’s book (Bode, 1975) is still interesting, 
although the emphasis is on vacuum tube circuits. 
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1. Introduction 
The term "hybrid systems" was first used in 1966 Witsenhausen introduced a hybrid model 
consisting of continuous dynamics with a few sets of transition. These systems provide both 
continuous and discrete dynamics have proven to be a useful mathematical model for 
various physical phenomena and engineering systems. A typical example is a chemical 
batch plant where a computer is used to monitor complex sequences of chemical reactions, 
each of which is modeled as a continuous process. In addition to the discontinuities 
introduced by the computer, most physical processes admit components (eg switches) and 
phenomena (eg collision), the most useful models are discrete. The hybrid system models 
arise in many applications, such as chemical process control, avionics, robotics, automobiles, 
manufacturing, and more recently molecular biology. 
The control design for hybrid systems is generally complex and difficult. In literature, 
different design approaches are presented for different classes of hybrid systems, and 
different control objectives. For example, when the control objective is concerned with issues 
such as safety specification, verification and access, the ideas in discrete event control and 
automaton framework are used for the synthesis of control. 
One of the most important control objectives is the problem of stabilization. Stability in the 
continuous systems or not-hybrid can be concluded starting from the characteristics from 
their fields from vectors. However, in the hybrid systems the properties of stability also 
depend on the rules of commutation. For example, in a hybrid system by commutation 
between two dynamic stable it is possible to obtain instabilities while the change between 
two unstable subsystems could have like consequence stability. The majority of the results 
of stability for the hybrid systems are extensions of the theories of Lyapunov developed for 
the continuous systems. They require the Lyapunov function at consecutive switching times 
to be a decreasing sequence. Such a requirement in general is difficult to check without 
calculating the solution of the hybrid dynamics, and thus losing the advantage of the 
approach of Lyapunov. 
In this chapter, we develop tools for the systematic analysis and robust design of hybrid 
systems, with emphasis on systems that require control algorithms, that is, hybrid control 
systems. To this end, we identify mild conditions that hybrid equations need to satisfy so 
that their behavior captures the effect of arbitrarily small perturbations. This leads to new 
concepts of global solutions that provide a deep understanding not only on the robustness 
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properties of hybrid systems, but also on the structural properties of their solutions. 
Alternatively, these conditions allow us to produce various tools for hybrid systems that 
resemble those in the stability theory of classical dynamical systems. These include general 
versions of theorems of Lyapunov stability and the principles of invariance of LaSalle.  

2. Hybrid systems: Definition and examples 
Different models of hybrid systems have been proposed in the literature. They mainly differ 
in the way either the continuous part or the discrete part of the dynamics is emphasized, 
which depends on the type of systems and problems we consider. A general and commonly 
used model of hybrid systems is the hybrid automaton (see e.g. (Dang, 2000) and (Girard, 
2006)). It is basically a finite state machine where each state is associated to a continuous 
system. In this model, the continuous evolutions and the discrete behaviors can be 
considered of equal complexity and importance. By combining the definition of the 
continuous system, and discrete event systems hybrid dynamical systems can be defined: 
Definition 1 A hybrid system H is a collection : ( , , , , , )H Q X U F R= Σ , where 
• Q is a finite set, called the set of discrete states; 
• nX ⊆ℜ is the set of continuous states; 
• Σ is a set of discrete input events or symbols; 
• mX ⊆ ℜ is the set of continuous inputs; 
• : nF Q X U× × →ℜ is a vector field describing the continuous dynamics; 
• :R Q X U Q X× × × → ×Σ describes the discrete dynamics. 
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Fig. 1. A trajectory of the room temperature. 

Example 1 (Thermostat). The thermostat consists of a heater and a thermometer which 
maintain the temperature of the room in some desired temperature range (Rajeev, 1993). The 
lower and upper thresholds of the thermostat system are set at mx  and Mx  such that 

m Mx x≺ . The heater is maintained on as long as the room temperature is below Mx , and it 
is turned off whenever the thermometer detects that the temperature reaches Mx . Similarly, 
the heater remains off if the temperature is above mx  and is switched on whenever the 
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temperature falls to mx  (Fig. 1). In practical situations, exact threshold detection is 
impossible due to sensor imprecision. Also, the reaction time of the on/off switch is usually 
non-zero. The effect of these inaccuracies is that we cannot guarantee switching exactly at 
the nominal values mx  and Mx . As we will see, this causes non-determinism in the discrete 
evolution of the temperature. 
Formally we can model the thermostat as a hybrid automaton shown in (Fig. 2). The two 
operation modes of the thermostat are represented by two locations 'on' and 'off'. The on/off 
switch is modeled by two discrete transitions between the locations. The continuous 
variable x models the temperature, which evolves according to the following equations. 
 

[ ]εε +−∈ MM xxx ,  

[ ]εε +−∈ mm xxx ,

Off 
),(2 uxfx =�

On 
),(1 uxfx =�
 ε+≤ Mxx ε−≥ mxx

 
Fig. 2. Model of the thermostat. 

• If the thermostat is on, the evolution of the temperature is described by: 

 1( , ) 4x f x u x u= = − + +  (1) 

• When the thermostat is off, the temperature evolves according to the following 
differential equation: 

2( , )x f x u x u= = − +  
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Fig. 3. Two different behaviors of the temperature starting at 0x . 

The second source of non-determinism comes from the continuous dynamics. The input 
signal u  of the thermostat models the fluctuations in the outside temperature which we 
cannot control. (Fig. 3 left) shows this continuous non-determinism. Starting from the initial 
temperature 0x , the system can generate a “tube” of infinite number of possible trajectories, 
each of which corresponds to a different input signal u . To capture uncertainty of sensors, 
we define the first guard condition of the transition from 'on' to 'off' as an interval 
[ ],M Mx x− ε + ε  with 0ε . This means that when the temperature enters this interval, the 
thermostat can either turn the heater off immediately or keep it on for some time provided 
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temperature 0x , the system can generate a “tube” of infinite number of possible trajectories, 
each of which corresponds to a different input signal u . To capture uncertainty of sensors, 
we define the first guard condition of the transition from 'on' to 'off' as an interval 
[ ],M Mx x− ε + ε  with 0ε . This means that when the temperature enters this interval, the 
thermostat can either turn the heater off immediately or keep it on for some time provided 
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that Mx x≤ + ε . (Fig. 3 right) illustrates this kind of non-determinism. Likewise, we define 
the second guard condition of the transition from 'off' to 'on' as the interval [ ],m mx x− ε + ε . 
Notice that in the thermostat model, the temperature does not change at the switching 
points, and the reset maps are thus the identity functions. 
Finally we define the two staying conditions of the 'on' and 'off' locations as Mx x≤ + ε and 

Mx x≥ − ε respectively, meaning that the system can stay at a location while the 
corresponding staying conditions are satisfied. 
Example 2 (Bouncing Ball). Here, the ball (thought of as a point-mass) is dropped from an 
initial height and bounces off the ground, dissipating its energy with each bounce. The ball 
exhibits continuous dynamics between each bounce; however, as the ball impacts the 
ground, its velocity undergoes a discrete change modeled after an inelastic collision. A 
mathematical description of the bouncing ball follows. Let 1 :x h= be the height of the ball 
and 2 :x h= � (Fig. 4). A hybrid system describing the ball is as follows: 
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, { }1: : 0 \C x x D= ≥ . (2) 

This model generates the sequence of hybrid arcs shown in (Fig. 5). However, it does not 
generate the hybrid arc to which this sequence of solutions converges since the origin does 
not belong to the jump set D . This situation can be remedied by including the origin in the 
jump set D . This amounts to replacing the jump set D  by its closure. One can also replace 
the flow set C by its closure, although this has no effect on the solutions. 
It turns out that whenever the flow set and jump set are closed, the solutions of the corresponding 
hybrid system enjoy a useful compactness property: every locally eventually bounded sequence of 
solutions has a subsequence converging to a solution. 
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Fig. 5. Solutions to the bouncing ball system 

Consider the sequence of hybrid arcs depicted in (Fig. 5). They are solutions of a hybrid 
“bouncing ball” model showing the position of the ball when dropped for successively 
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lower heights, each time with zero velocity. The sequence of graphs created by these hybrid 
arcs converges to a graph of a hybrid arc with hybrid time domain given by 
{ }0 × {nonnegative integers} where the value of the arc is zero everywhere on its domain. If 
this hybrid arc is a solution then the hybrid system is said to have a “compactness” 
property. This attribute for the solutions of hybrid systems is critical for robustness 
properties. It is the hybrid generalization of a property that automatically holds for 
continuous differential equations and difference equations, where nominal robustness of 
asymptotic stability is guaranteed.  
Solutions of hybrid systems are hybrid arcs that are generated in the following way: Let C  
and D be subsets of nℜ and let f , respectively g , be mappings from C , respectively D , 
to nℜ . The hybrid system : ( , , , )H f g C D= can be written in the form 

 
( )       

( )     

x f x x C

x g x x D+

= ∈

= ∈

�
 (3) 

The map f is called the “flow map”, the map g is called the “jump map”, the set C is called 
the “flow set”, and the set D is called the “jump set”. The state x  may contain variables 
taking values in a discrete set (logic variables), timers, etc. Consistent with such a situation is 
the possibility that C D∪ is a strict subset of nℜ . For simplicity, assume that f and g are 
continuous functions. At times it is useful to allow these functions to be set-valued 
mappings, which will denote by F and G , in which case F  and G should have a closed 
graph and be locally bounded, and F should have convex values.  
In this case, we will write 

 
       

    

x F x C

x G x D+

∈ ∈

∈ ∈

�
 (4) 

A solution to the hybrid system (4) starting at a point 0x C D∈ ∪ is a hybrid arc x with the 
following properties: 
1. 0(0,0)x x= ; 
2. given ( , )  s j dom x∈ , if there exists sτ � such that ( , )  j dom xτ ∈  , then, for all [ ],t s∈ τ , 

( , )x t j C∈ and, for almost all [ ],t s∈ τ , ( , ) ( ( , ))x t j F x t j∈� ; 
3. given ( , )  t j dom x∈ , if ( , 1)  t j dom x+ ∈ then ( , )x t j D∈ and ( , 1) ( ( , ))x t j G x t j+ ∈ . 
Solutions from a given initial condition are not necessarily unique, even if the flow map is a 
smooth function.  

3. Approaches to analysis and design of hybrid control systems 
The analysis and design tools for hybrid systems in this section are in the form of Lyapunov 
stability theorems and LaSalle-like invariance principles. Systematic tools of this type are the 
base of the theory of systems for purely of the continuous-time and discrete-time systems. 
Some similar tools available for hybrid systems in (Michel, 1999) and (DeCarlo, 2000), the 
tools presented in this section generalize their conventional versions of continuous-time and 
discrete-time hybrid systems development by defining an equivalent concept of stability 
and provide extensions intuitive sufficient conditions of stability asymptotically. 



 Robust Control, Theory and Applications 

 

28 

that Mx x≤ + ε . (Fig. 3 right) illustrates this kind of non-determinism. Likewise, we define 
the second guard condition of the transition from 'off' to 'on' as the interval [ ],m mx x− ε + ε . 
Notice that in the thermostat model, the temperature does not change at the switching 
points, and the reset maps are thus the identity functions. 
Finally we define the two staying conditions of the 'on' and 'off' locations as Mx x≤ + ε and 

Mx x≥ − ε respectively, meaning that the system can stay at a location while the 
corresponding staying conditions are satisfied. 
Example 2 (Bouncing Ball). Here, the ball (thought of as a point-mass) is dropped from an 
initial height and bounces off the ground, dissipating its energy with each bounce. The ball 
exhibits continuous dynamics between each bounce; however, as the ball impacts the 
ground, its velocity undergoes a discrete change modeled after an inelastic collision. A 
mathematical description of the bouncing ball follows. Let 1 :x h= be the height of the ball 
and 2 :x h= � (Fig. 4). A hybrid system describing the ball is as follows: 

 
2

0
( ) :

.
g x

x
⎡ ⎤

= ⎢ ⎥−γ⎣ ⎦
, { }1 2: : 0,  0D x x x= = ≺ 2( ) :

x
f x

g
⎡ ⎤

= ⎢ ⎥−⎣ ⎦
, { }1: : 0 \C x x D= ≥ . (2) 

This model generates the sequence of hybrid arcs shown in (Fig. 5). However, it does not 
generate the hybrid arc to which this sequence of solutions converges since the origin does 
not belong to the jump set D . This situation can be remedied by including the origin in the 
jump set D . This amounts to replacing the jump set D  by its closure. One can also replace 
the flow set C by its closure, although this has no effect on the solutions. 
It turns out that whenever the flow set and jump set are closed, the solutions of the corresponding 
hybrid system enjoy a useful compactness property: every locally eventually bounded sequence of 
solutions has a subsequence converging to a solution. 
 

 
gy −=��  

?0 & 0 ≺hh =

)1,0(
.

∈
−=+

γ
γ hh ��

 g 
h 

 
Fig. 4. Diagram for the bouncing ball system 
 

0

0

Time

h
h

 
Fig. 5. Solutions to the bouncing ball system 

Consider the sequence of hybrid arcs depicted in (Fig. 5). They are solutions of a hybrid 
“bouncing ball” model showing the position of the ball when dropped for successively 

Robust Control of Hybrid Systems   

 

29 

lower heights, each time with zero velocity. The sequence of graphs created by these hybrid 
arcs converges to a graph of a hybrid arc with hybrid time domain given by 
{ }0 × {nonnegative integers} where the value of the arc is zero everywhere on its domain. If 
this hybrid arc is a solution then the hybrid system is said to have a “compactness” 
property. This attribute for the solutions of hybrid systems is critical for robustness 
properties. It is the hybrid generalization of a property that automatically holds for 
continuous differential equations and difference equations, where nominal robustness of 
asymptotic stability is guaranteed.  
Solutions of hybrid systems are hybrid arcs that are generated in the following way: Let C  
and D be subsets of nℜ and let f , respectively g , be mappings from C , respectively D , 
to nℜ . The hybrid system : ( , , , )H f g C D= can be written in the form 
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The map f is called the “flow map”, the map g is called the “jump map”, the set C is called 
the “flow set”, and the set D is called the “jump set”. The state x  may contain variables 
taking values in a discrete set (logic variables), timers, etc. Consistent with such a situation is 
the possibility that C D∪ is a strict subset of nℜ . For simplicity, assume that f and g are 
continuous functions. At times it is useful to allow these functions to be set-valued 
mappings, which will denote by F and G , in which case F  and G should have a closed 
graph and be locally bounded, and F should have convex values.  
In this case, we will write 
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A solution to the hybrid system (4) starting at a point 0x C D∈ ∪ is a hybrid arc x with the 
following properties: 
1. 0(0,0)x x= ; 
2. given ( , )  s j dom x∈ , if there exists sτ � such that ( , )  j dom xτ ∈  , then, for all [ ],t s∈ τ , 

( , )x t j C∈ and, for almost all [ ],t s∈ τ , ( , ) ( ( , ))x t j F x t j∈� ; 
3. given ( , )  t j dom x∈ , if ( , 1)  t j dom x+ ∈ then ( , )x t j D∈ and ( , 1) ( ( , ))x t j G x t j+ ∈ . 
Solutions from a given initial condition are not necessarily unique, even if the flow map is a 
smooth function.  

3. Approaches to analysis and design of hybrid control systems 
The analysis and design tools for hybrid systems in this section are in the form of Lyapunov 
stability theorems and LaSalle-like invariance principles. Systematic tools of this type are the 
base of the theory of systems for purely of the continuous-time and discrete-time systems. 
Some similar tools available for hybrid systems in (Michel, 1999) and (DeCarlo, 2000), the 
tools presented in this section generalize their conventional versions of continuous-time and 
discrete-time hybrid systems development by defining an equivalent concept of stability 
and provide extensions intuitive sufficient conditions of stability asymptotically. 
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3.1 LaSalle-like invariance principles 
Certain principles of invariance for the hybrid systems have been published in (Lygeros et 
al., 2003) and (Chellaboina et al., 2002). Both results require, among other things, unique 
solutions which is not generic for hybrid control systems. In (Sanfelice et al., 2005), the 
general invariance principles were established that do not require uniqueness. The work in 
(Sanfelice et al., 2005) contains several invariance results, some involving integrals of 
functions, as for systems of continuous-time in (Byrnes & Martin, 1995) or (Ryan, 1998), and 
some involving nonincreasing energy functions, as in work of LaSalle (LaSalle, 1967) or 
(LaSalle, 1976). Such a result will be described here. 
Suppose we can find a continuously differentiable function : nV ℜ →ℜ such that 

 ( ) : ( ), ( ) 0               

( ) : ( ( )) ( ) 0             
c

d

u x V x f x x C

u x V g x V x x D

= ∇ ≤ ∀ ∈

= − ≤ ∀ ∈
 (5) 

Consider ( , )x ⋅ ⋅  a bounded solution with an unbounded hybrid time. Then there exists a value r  in the 
range V  so that x  tends to the largest weakly invariant set inside the set 

 ( )( )1 1 1 1: ( ) (0) (0) ( (0))r c d dM V r u u g u− − − −= ∩ ∪  (6) 

where 1(0)du− : the set of points x  satisfying ( ) 0du x = and 1( (0))dg u− corresponds to the set of 
points ( )g y where 1(0)dy u−∈ . 
The naive combination of continuous-time and discrete-time results would omit the 
intersection with 1( (0))dg u− . This term, however, can be very useful for zeroing in set to 
which trajectories converge. 

3.2 Lyapunov stability theorems 
Some preliminary results on the existence of the non-smooth Lyapunov function for the hybrid 
systems published in (DeCarlo, 2000). The first results on the existence of smooth Lyapunov 
functions, which are closely related to the robustness, published in (Cai et al., 2005). These 
results required open basins of attraction, but this requirement has since been relaxed in (Cai et 
al. 2007). The simplified discussion here is borrowed from this posterior work. 
Let O be an open subset of the state space containing a given compact set A  and let 

0: ≥ω →ℜO  be a continuous function which is zero for all x A∈ , is positive otherwise, 
which grows without limit as its argument grows without limit or near the limitO . Such a 
function is called a suitable indicator for the compact set A in the open setO . An example of 
such a function is the standard function on nℜ which is an appropriate indicator of origin. 
More generally, the distance to a compact set A is an appropriate indicator for all A on nℜ . 
Given an open setO , an appropriate indicator ω and hybrid data ( , , , )f g C D , a function 

0:V ≥→ℜO is called a smooth Lyapunov function for ( , , , , , )f g C D ω O  if it is smooth and 
there exist functions 1 2,α α belonging to the class- ∞K , such as 
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 (7) 

Suppose that such a function exists, it is easy to verify that all solutions for the hybrid 
system ( , , , )f g C D from ( )C D∩ ∪O satisfied 
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 ( )1
1 2( ( , )) ( ( (0,0)))                     ( , )  t jx t j e x t j dom x− −−ω ≤ α α ω ∀ ∈  (8) 

In particular, 
• (pre-stability of A ) for each  0ε �  there exists  0δ � such that (0,0)x A B∈ + δ  implies, 

for each generalized solution, that ( , )x t j A B∈ + ε  for all ( , )  t j dom x∈ , and 
• (before attractive A onO ) any generalized solution from ( )C D∩ ∪O  is bounded and if 

its time domain is unbounded, so it converges to A . 
According to one of the principal results in (Cai et al., 2006) there exists a smooth Lyapunov 
function for ( , , , , , )f g C D ω O if and only if the set A is pre-stable and pre-attractive on O and O  is 
forward invariant (i.e., ( )(0,0)x C D∈ ∩ ∪O implies ( , )x t j ∈O for all ( , )  t j dom x∈ ). 
One of the primary interests in inverse Lyapunov theorems is that they can be employed to 
establish the robustness of the asymptotic stability of various types of perturbations. 

4. Hybrid control application 
In system theory in the 60s researchers were discussing mathematical frameworks so to 
study systems with continuous and discrete dynamics. Current approaches to hybrid 
systems differ with respect to the emphasis on or the complexity of the continuous and 
discrete dynamics, and on whether they emphasize analysis and synthesis results or 
analysis only or simulation only. On one end of the spectrum there are approaches to hybrid 
systems that represent extensions of system theoretic ideas for systems (with continuous-
valued variables and continuous time) that are described by ordinary differential equations 
to include discrete time and variables that exhibit jumps, or extend results to switching 
systems. Typically these approaches are able to deal with complex continuous dynamics. 
Their main emphasis has been on the stability of systems with discontinuities. On the other 
end of the spectrum there are approaches to hybrid systems embedded in computer science 
models and methods that represent extensions of verification methodologies from discrete 
systems to hybrid systems.  Several approaches to robustness of asymptotic stability and 
synthesis of hybrid control systems are represented in this section. 

4.1 Hybrid stabilization implies input-to-state stabilization  
In the paper (Sontag, 1989) it has been shown, for continuous-time control systems, that 
smooth stabilization involves smooth input-to-stat stabilization with respect to input 
additive disturbances. The proof was based on converse Lyapunov theorems  for 
continuous-time systems. According to the indications of (Cai et al., 2006), and (Cai et al. 
2007), the result generalizes to hybrid control systems via the converse Lyapunov theorem. 
In particular, if we can find a hybrid controller, with the type of regularity used in sections 
4.2 and 4.3, to achieve asymptotic stability, then the input-to-state stability with respect to 
input additive disturbance can also be achieved.  
Here, consider the special case where the hybrid controller is a logic-based controller where 
the variable takes values in the logic of a finite set. Consider the hybrid control system 
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where Q  is a finite index set, for each q Q∈ , qf , : n
q qCη →ℜ  are continuous functions, 

qC and qD are closed and qG has a closed graph and is locally bounded. The signal qu is the 
control, and d is the disturbance, while qυ is vector that is independent of the state, input, 
and disturbance. Suppose H is stabilizable by logic-based continuous feedback; that is, for 
the case where 0d = , there exist continuous functions qk defined on qC such that, with 
 : ( )q qu k= ξ , the nonempty and compact set { }q Q qA A q∈= ×∪ is pre-stable and globally pre-
attractive. Converse Lyapunov theorems can then be used to establish the existence of a 
logic-based continuous feedback that renders the closed-loop system input-to-state stable 
with respect to d . The feedback has the form 

 : ( ) . ( ) ( )T
q q q qu k V= ξ − ε η ξ ∇ ξ  (10) 

where 0ε � and ( )qV ξ is a smooth Lyapunov function that follows from the assumed 
asymptotic stability when 0d ≡ . There exist class- ∞K functions 1α and 2α such that, with 
this feedback control, the following estimate holds:                                               

 ( ) ( )( )( )
2

21 1
1 2 1( , ) (0,0)

max
( , ) max 2.exp . 0,0 ,

2.
q Q q

A t j Aq
t j t j d∈− −

∞

⎧ ⎫⎛ ⎞υ⎪ ⎪⎜ ⎟ξ ≤ α − − α ξ α⎨ ⎬⎜ ⎟ε⎜ ⎟⎪ ⎪⎝ ⎠⎩ ⎭

 (11) 

where ( , ) dom : sup ( , )s i dd d s i∈∞ = . 

4.2 Control Lyapunov functions  
Although the control design using a continuously differentiable control-Lyapunov function 
is well established for input-affine nonlinear control systems,  it is well known that not all 
controllable input-affine nonlinear control system function admits a continuously 
differentiable control-Lyapunov function. A well known example in the absence of this 
control-Lyapunov function is the so-called "Brockett", or "nonholonomic integrator". 
Although this system does not allow continuously differentiable control Lyapunov function, 
it has been established recently that admits a good "patchy" control-Lyapunov function. 
The concept of control-Lyapunov function, which was presented in (Goebel et al., 2009), is 
inspired not only by the classical control-Lyapunov function idea, but also by the approach 
to feedback stabilization based on patchy vector fields proposed in (Ancona & Bressan, 
1999). The idea of control-Lyapunov function was designed to overcome a limitation of 
discontinuous feedbacks, such as those from patchy feedback, which is a lack of robustness 
to measurement noise. In (Goebel et al., 2009) it has been demonstrated that any 
asymptotically controllable nonlinear system admits a smooth patchy control-Lyapunov 
function if we admit the possibility that the number of patches may need to be infinite. In 
addition, it was shown how to construct a robust stabilizing hybrid feedback from a patchy 
control-Lyapunov function. Here the idea when the number of patches is finite is outlined 
and then specialized to the nonholonomic integrator. 
Generally , a global patchy smooth control-Lyapunov function for the origin for the control 
system ( , )x f x u=� in the case of a finite number of patches is a collection of functions qV and 
sets qΩ and q′Ω where { }:  1, ,  q Q m∈ = … , such as 

a. for each q Q∈ , qΩ and q′Ω are open and 
• { }: \ 0n

q Q q q Q q∈ ∈ ′= ℜ = =Ω Ω∪ ∪O  
• for each q Q∈ , the outward unit normal to q∂Ω is continuous on ( )r q\q r′∂Ω Ω�∪ ∩O , 

Robust Control of Hybrid Systems   

 

33 

• for each q Q∈ , q q′ ⊂Ω Ω∩O ; 
b. for each q Q∈ , qV is a smooth function defined on a neighborhood (relative to O ) 

of qΩ . 
c. there exist a continuous positive definite functionα and class- ∞K functions γ and 

γ such that 
• ( ) ( )( )qx V x xγ ≤ ≤ γ          qV q Q∀ ∈ , ( )\q r q rx ′∈ Ω Ω�∪ ∩O ; 

• for each q Q∈ and ( )\q r q rx ′∈ Ω Ω�∪ there exists ,x qu such that 

( ), ( , , ) ( )q xV x f x u q x∇ ≤ −α
 

• for each q Q∈ and ( )\q r q rx ′∈ Ω Ω�∪ ∩O there exists ,x qu such that 

( ), ( , , ) ( )

( ), ( , , ) ( )

q x

q x

V x f x u q x

n x f x u q x

∇ ≤ −α

≤ −α
 

where ( )qx n x� denotes the outward unit normal to q∂Ω . 
From this patchy control-Lyapunov function one can construct a robust hybrid feedback 
stabilizer, at least when the set { }, . ( , )  u f x u cυ ≤ is convex for each real number c and every 
real vector υ , with the following data 
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With this control, the index increases with each jump except probably the first one. Thus, the 
number of jumps is finite, and the state converges to the origin, which is also stable. 

4.3 Throw-and-catch control 
In ( Prieur, 2001), it was shown how to combine local and global state feedback to achieve 
global stabilization and local performance. The idea, which exploits hysteresis switching 
(Halbaoui et al., 2009b), is completely simple. Two continuous functions, globalk  and localk  
are shown when the feedback ( )globalu k x=  render the origin of the control system 

( , )x f x u=�  globally asymptotically stable whereas the feedback ( )localu k x=  makes the 
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where Q  is a finite index set, for each q Q∈ , qf , : n
q qCη →ℜ  are continuous functions, 
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origin of the control system locally asymptotically stable with basin of attraction containing 
the open set O , which contains the origin. Then we took localC  a compact subset of the O  
that contains the origin in its interior and one takes globalD  to be a compact subset of localC , 
again containing the origin in its interior and such that, when using the controller localk , 
trajectories starting in globalD  never reach the boundary of localC  (Fig. 6). Finally, the hybrid 
control which achieves global asymptotic stabilization while using the controller qk  for 
small signals is as follows  

 
{ }
{ }

: ( )                      :  :

( , ) : toggle ( )     D :  :

q q

q

u k x C (x,q) x C

g q x q (x,q) x D

= = ∈

= = ∈
 (16) 

In the problem of uniting of local and global controllers, one can view the global controller 
as a type of "bootstrap" controller that is guaranteed to bring the system to a region where 
another controller can control the system adequately. 
A prolongation of the idea of combine local and global controllers is to assume the existence 
of continuous bootstrap controller that is guaranteed to introduce the system, in finite time, 
in a vicinity of a set of points, not simply a vicinity of the desired final destination (the 
controller doesn’t need to be able to maintain the state in this vicinity); moreover, these sets 
of points form chains that terminate at the desired final destination and along which 
controls are known to steer (or “throw”) form one point in the chain at the next point in the 
chain. Moreover, in order to minimize error propagation along a chain, a local stabilizer is 
known for each point, except perhaps those points at the start of a chain. Those can be 
employed “to catch” each jet.  
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controller

 

 
Fig. 6. Combining local and global controllers 

4.4 Supervisory control  
In this section, we review the supervisory control framework for hybrid systems. One of the 
main characteristics of this approach is that the plant is approximated by a discrete-event 
system and the design is carried out in the discrete domain. The hybrid control systems in 
the supervisory control framework consist of a continuous (state, variable) system to be 
controlled, also called the plant, and a discrete event controller connected to the plant via an 
interface in a feedback configuration as shown in (Fig. 7). It is generally assumed that the 
dynamic behavior of the plant is governed by a set of known nonlinear ordinary differential 
equations 

 ( ) ( ( ), ( ))x t f x t r t=  (17) 
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where    nx ∈ ℜ is the continuous state of the system and   mr ∈ ℜ  is the continuous control 
input. In the model shown in (Fig. 7), the plant contains all continuous components of the 
hybrid control system, such as any conventional continuous controllers that may have been 
developed, a clock if time and synchronous operations are to be modeled, and so on. The 
controller is an event driven, asynchronous discrete event system (DES), described by a 
finite state automaton. The hybrid control system also contains an interface that provides 
the means for communication between the continuous plant and the DES controller. 
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Fig. 7. Hybrid system model in the supervisory control framework. 
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Fig. 8. Partition of the continuous state space. 
The interface consists of the generator and the actuator as shown in (Fig. 7). The generator 
has been chosen to be a partitioning of the state space (see Fig. 8). The piecewise continuous 
command signal issued by the actuator is a staircase signal as shown in (Fig. 9), not unlike 
the output of a zero-order hold in a digital control system. The interface plays a key role in 
determining the dynamic behavior of the hybrid control system. Many times the partition of 
the state space is determined by physical constraints and it is fixed and given. 
Methodologies for the computation of the partition based on the specifications have also 
been developed. 
In such a hybrid control system, the plant taken together with the actuator and generator, 
behaves like a discrete event system; it accepts symbolic inputs via the actuator and 
produces symbolic outputs via the generator. This situation is somewhat analogous to the 
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where    nx ∈ ℜ is the continuous state of the system and   mr ∈ ℜ  is the continuous control 
input. In the model shown in (Fig. 7), the plant contains all continuous components of the 
hybrid control system, such as any conventional continuous controllers that may have been 
developed, a clock if time and synchronous operations are to be modeled, and so on. The 
controller is an event driven, asynchronous discrete event system (DES), described by a 
finite state automaton. The hybrid control system also contains an interface that provides 
the means for communication between the continuous plant and the DES controller. 
 

Discrete  
Envent system 

DES Supervisor 

Event 
recognizer 

Control 
Switch 

 
 
 
 

Controlled system 

Continuous variable 
system 

Interface 

 

 
Fig. 7. Hybrid system model in the supervisory control framework. 

 

)(1 xh  )(4 xh  

)(2 xh  )(3 xh  

X

 
Fig. 8. Partition of the continuous state space. 
The interface consists of the generator and the actuator as shown in (Fig. 7). The generator 
has been chosen to be a partitioning of the state space (see Fig. 8). The piecewise continuous 
command signal issued by the actuator is a staircase signal as shown in (Fig. 9), not unlike 
the output of a zero-order hold in a digital control system. The interface plays a key role in 
determining the dynamic behavior of the hybrid control system. Many times the partition of 
the state space is determined by physical constraints and it is fixed and given. 
Methodologies for the computation of the partition based on the specifications have also 
been developed. 
In such a hybrid control system, the plant taken together with the actuator and generator, 
behaves like a discrete event system; it accepts symbolic inputs via the actuator and 
produces symbolic outputs via the generator. This situation is somewhat analogous to the 
 



 Robust Control, Theory and Applications 

 

36 

 

time  ]1[ct  ]2[ct  ]3[ct  
 

Fig. 9. Command signal issued by the interface. 
way a continuous time plant, equipped with a zero-order hold and a sampler, “looks” like a 
discrete-time plant. The DES which models the plant, actuator, and generator is called the 
DES plant model. From the DES controller's point of view, it is the DES plant model which 
is controlled. 
The DES plant model is an approximation of the actual system and its behavior is an 
abstraction of the system's behavior. As a result, the future behavior of the actual continuous 
system cannot be determined uniquely, in general, from knowledge of the DES plant state 
and input. The approach taken in the supervisory control framework is to incorporate all the 
possible future behaviors of the continuous plant into the DES plant model. A conservative 
approximation of the behavior of the continuous plant is constructed and realized by a finite 
state machine. From a control point of view this means that if undesirable behaviors can be 
eliminated from the DES plant (through appropriate control policies) then these behaviors 
will be eliminated from the actual system. On the other hand, just because a control policy 
permits a given behavior in the DES plant, is no guarantee that that behavior will occur in 
the actual system. 
We briefly discuss the issues related to the approximation of the plant by a DES plant model. 
A dynamical system ∑  can be described as a triple ; ;T W B with T ⊆ℜ the time axis, W the 
signal space, and TB W⊂ (the set of all functions :f T W→ ) the behavior. The behavior of the 
DES plant model consists of all the pairs of plant and control symbols that it can generate. 
The time axis T represents here the occurrences of events. A necessary condition for the 
DES plant model to be a valid approximation of the continuous plant is that the behavior of 
the continuous plant model cB is contained in the behavior of the DES plant model, i.e. 

c dB B⊆ . 
The main objective of the controller is to restrict the behavior of the DES plant model in 
order to specify the control specifications. The specifications can be described by a 
behavior specB . Supervisory control of hybrid systems is based on the fact that if undesirable 
behaviors can be eliminated from the DES plant then these behaviors can likewise be eliminated from 
the actual system. This is described formally by the relation 

 d s spec c s specB B B B B B⊆ ⇒ ⊆∩ ∩  (18) 

and is depicted in (Fig. 10). The challenge is to find a discrete abstraction with behavior Bd 
which is a approximation of the behavior Bc of the continuous plant and for which is 
possible to design a supervisor in order to guarantee that the behavior of the closed loop 
system satisfies the specifications Bspec. A more accurate approximation of the plant's 
behavior can be obtained by considering a finer partitioning of the state space for the 
extraction of the DES plant. 
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Fig. 10. The DES plant model as an approximation. 

An interesting aspect of the DES plant's behavior is that it is distinctly nondeterministic. 
This fact is illustrated in (Fig.11). The figure shows two different trajectories generated by 
the same control symbol. Both trajectories originate in the same DES plant state 1p . (Fig.11) 
shows that for a given control symbol, there are at least two possible DES plant states that 
can be reached from 1p . Transitions within a DES plant will usually be nondeterministic 
unless the boundaries of the partition sets are invariant manifolds with respect to the vector 
fields that describe the continuous plant. 
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Fig. 11. Nondeterminism of the DES plant model. 
There is an advantage to having a hybrid control system in which the DES plant model is 
deterministic. It allows the controller to drive the plant state through any desired sequence 
of regions provided, of course, that the corresponding state transitions exist in the DES plant 
model. If the DES plant model is not deterministic, this will not always be possible. This is 
because even if the desired sequence of state transitions exists, the sequence of inputs which 
achieves it may also permit other sequences of state transitions. Unfortunately, given a 
continuous-time plant, it may be difficult or even impossible to design an interface that 
leads to a DES plant model which is deterministic. Fortunately, it is not generally necessary 
to have a deterministic DES plant model in order to control it. The supervisory control 
problem for hybrid systems can be formulated and solved when the DES plant model is 
nondeterministic. This work builds upon the frame work of supervisory control theory used 
in (Halbaoui et al., 2008) and (Halbaoui et al., 2009a). 

5. Robustness to perturbations 
In control systems, several perturbations can occur and potentially destroy the good 
behavior for which the controller was designed for. For example, noise in the measurements 
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of the state taken by controller arises in all implemented systems. It is also common that 
when a controller is designed, only a simplified model of the system to control exhibiting 
the most important dynamics is considered. This simplifies the control design in general. 
However, sensors/actuators that are dynamics unmodelled can substantially affect the 
behavior of the system when in the loop. In this section, it is desired that the hybrid 
controller provides a certain degree of robustness to such disturbances. In the following 
sections, general statements are made in this regard. 

5.1 Robustness via filtered measurements 
In this section, the case of noise in the measurements of the state of the nonlinear system is 
considered. Measurement noise in hybrid systems can lead to nonexistence of solutions. 
This situation can be corrected, at least for the small measurement noise, if under global 
existence of solutions, cC  and cD always “overlap” while ensuring that the stability 
properties still hold. The "overlap" means that for every Oξ∈ , either ce Cξ + ∈ or ce Dξ + ∈  
all or small e . There exist generally always inflations of C and D that preserve the 
semiglobal practices asymptotic stability, but they do not guarantee the existence of 
solutions for small measurement noise. 
Moreover, the solutions are guaranteed to exist for any locally bounded measurement noise 
if the measurement noise does not appear in the flow and jump sets. This can be carried out 
by filtering measures. (Fig. 12) illustrates this scenario. The state x is corrupted by the noise 
e and the hybrid controller cH measures a filtered version of x e+ . 
 

Filter 

Hybrid system  
e  

+  
x  u  +

Controller k  fx  

 
Fig. 12. Closed-loop system with noise and filtered measurements. 

The filter used for the noisy output y x e= +  is considered to be linear and defined by the 
matrices fA , fB , and fL , and an additional parameter 0fε > . It is designed to be 
asymptotically stable. Its state is denoted by fx  which takes value in fnR . At the jumps, fx  
is given to the current value of y . Then, the filter has flows given by 

 ,f f f f fx A x B yε = +   (19) 
and jumps given by 

 1 .f f f f fx A B x B y+ −= +  (20) 

The output of the filter replaces the state x  in the feedback law. The resulting closed-loop 
system can be interpreted as family of hybrid systems which depends on the parameter fε . 
It is denoted by  f

clHε  and is given by 
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5.2 Robustness to sensor and actuator dynamics 
This section reviews the robustness of the closed-loop clH when additional dynamics, 
coming from sensors and actuators, are incorporated. (Fig. 13) shows the closed loop clH  
with two additional blocks: a model for the sensor and a model for the actuator. Generally, 
to simplify the controller design procedure, these dynamics are not included in the model of 
the system ( , )px f x u=  when the hybrid controller cH is conceived. Consequently, it is 
important to know whether the stability properties of the closed-loop system are preserved, 
at least semiglobally and practically, when those dynamics are incorporated in the closed 
loop. 
The sensor and actuator dynamics are modeled as stable filters. The state of the filter which 
models the sensor dynamics is given by sn

sx R∈  with matrices ( , , )s s sA B L  , the state of the 
filter that models the actuator dynamics is given by an

ax R∈ with matrices ( , , )a a aA B L , and 
0dε >  is common to both filters. 

Augmenting clH  by adding filters and temporal regularization leads to a family d
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where *τ  is a constant satisfying *τ > τ .  
The following result states that for fast enough sensors and actuators, and small enough 
temporal regularization parameter, the compact set A  is semiglobally practically 
asymptotically stable. 
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where *τ  is a constant satisfying *τ > τ .  
The following result states that for fast enough sensors and actuators, and small enough 
temporal regularization parameter, the compact set A  is semiglobally practically 
asymptotically stable. 
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Fig. 13. Closed-loop system with sensor and actuator dynamics. 

5.3 Robustness to sensor dynamics and smoothing 
In many hybrid control applications, the state of the controller is explicitly given as a 
continuous state ξ  and a discrete state { }: 1,...,q Q n∈ = , that is, : [  ]Tcx q= ξ . Where this is the 
case and the discrete state q chooses a different control law to be applied to the system for 
for various values of q , then the control law generated by the hybrid controller cH  can 
have jumps when q  changes. In many scenarios, it is not possible for the actuator to switch 
between control laws instantly. In addition, particularly when the control law (·,·, )qκ  is 
continuous for each q Q∈ , it is desired to have a smooth transition between them when q  
changes. 
 

Sensor Smoothing 

Hybrid system u  

Controller 
nk  

sx  
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Fig. 14. Closed-loop system with sensor dynamics and control smoothing. 

(Fig. 14) shows the closed-loop system, noted that d
clH ε , resulting from adding a block that 

makes the smooth transition between control laws indexed by q and indicated by qκ . The 
smoothing control block is modeled as a linear filter for the variable q . It is defined by the 
parameter uε  and the matrices ( , , )u u uA B L . 
The output of the control smoothing block is given by 

 ( , , ) ( ) ( , , )c u u q u u c
q Q

x x L x L x x x q
∈

α = λ κ∑  (23) 

where for each , : [0,1]qq Q R∈ λ → , is continuous and ( ) 1q qλ = . Note that the output is 
such that the control laws are smoothly “blended” by the function qλ . 
In addition to this block, a filter modeling the sensor dynamics is also incorporated as in 
section 5.2. The closed loop f

clHε can be written as 
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6. Conclusion 
In this chapter, a dynamic systems approach to analysis and design of hybrid systems has 
been continued from a robust control point of view. Stability and convergence tools for 
hybrid systems presented include hybrid versions of the traditional Lyapunov stability 
theorem and of LaSalle’s invariance principle.  
The robustness of asymptotic stability for classes of closed-loop systems resulting from 
hybrid control was presented. Results for perturbations arising from the presence of 
measurement noise, unmodeled sensor and actuator dynamics, control smoothing. 
It is very important to have good software tools for the simulation, analysis and design of 
hybrid systems, which by their nature are complex systems. Researchers have recognized 
this need and several software packages have been developed. 
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1. Introduction 
The problem of maintaining the stability of a nominally stable linear time invariant system 
subject to linear perturbation has been an active topic of research for quite some time. The 
recent published literature on this `robust stability’ problem can be viewed mainly from two 
perspectives, namely i) transfer function (input/output) viewpoint and ii) state space 
viewpoint. In the transfer function approach, the analysis and synthesis is essentially carried 
out in frequency domain, whereas in the state space approach it is basically carried out in 
time domain. Another perspective that is especially germane to this viewpoint is that the 
frequency domain treatment involves the extensive use of `polynomial’ theory while that of 
time domain involves the use of ‘matrix’ theory. Recent advances in this field are surveyed 
in [1]-[2]. 
Even though in typical control problems, these two theories are intimately related and 
qualitatively similar, it is also important to keep in mind that there are noteworthy 
differences between these two approaches (‘polynomial’ vs ‘matrix’) and this chapter (both 
in parts I and II) highlights the use of the direct matrix approach in the solution to the robust 
stability and control design problems. 

2. Uncertainty characterization and robustness  
It was shown in [3] that modeling errors can be broadly categorized as i) parameter 
variations, ii) unmodeled dynamics iii) neglected nonlinearities and finally iv) external 
disturbances. Characterization of these modeling errors in turn depends on the 
representation of dynamic system, namely whether it is a frequency domain, transfer 
function framework or time domain state space framework. In fact, some of these can be 
better captured in one framework than in another. For example, it can be argued 
convincingly that real parameter variations are better captured in time domain state space 
framework than in frequency domain transfer function framework. Similarly, it is intuitively 
clear that unmodeled dynamics errors can be better captured in the transfer function 
framework. By similar lines of thought, it can be safely agreed that while neglected 
nonlinearities can be better captured in state space framework, neglected disturbances can 
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1. Introduction 
The problem of maintaining the stability of a nominally stable linear time invariant system 
subject to linear perturbation has been an active topic of research for quite some time. The 
recent published literature on this `robust stability’ problem can be viewed mainly from two 
perspectives, namely i) transfer function (input/output) viewpoint and ii) state space 
viewpoint. In the transfer function approach, the analysis and synthesis is essentially carried 
out in frequency domain, whereas in the state space approach it is basically carried out in 
time domain. Another perspective that is especially germane to this viewpoint is that the 
frequency domain treatment involves the extensive use of `polynomial’ theory while that of 
time domain involves the use of ‘matrix’ theory. Recent advances in this field are surveyed 
in [1]-[2]. 
Even though in typical control problems, these two theories are intimately related and 
qualitatively similar, it is also important to keep in mind that there are noteworthy 
differences between these two approaches (‘polynomial’ vs ‘matrix’) and this chapter (both 
in parts I and II) highlights the use of the direct matrix approach in the solution to the robust 
stability and control design problems. 

2. Uncertainty characterization and robustness  
It was shown in [3] that modeling errors can be broadly categorized as i) parameter 
variations, ii) unmodeled dynamics iii) neglected nonlinearities and finally iv) external 
disturbances. Characterization of these modeling errors in turn depends on the 
representation of dynamic system, namely whether it is a frequency domain, transfer 
function framework or time domain state space framework. In fact, some of these can be 
better captured in one framework than in another. For example, it can be argued 
convincingly that real parameter variations are better captured in time domain state space 
framework than in frequency domain transfer function framework. Similarly, it is intuitively 
clear that unmodeled dynamics errors can be better captured in the transfer function 
framework. By similar lines of thought, it can be safely agreed that while neglected 
nonlinearities can be better captured in state space framework, neglected disturbances can 



 Robust Control, Theory and Applications 

 

44 

be captured with equal ease in both frameworks. Thus it is not surprising that most of the 
robustness studies of uncertain dynamical systems with real parameter variations are being 
carried out in time domain state space framework and hence in this chapter, we emphasize 
the aspect of robust stabilization and control of linear dynamical systems with real 
parameter uncertainty. 
Stability and performance are two fundamental characteristics of any feedback control 
system. Accordingly, stability robustness and performance robustness are two desirable 
(sometimes necessary) features of a robust control system. Since stability robustness is a 
prerequisite for performance robustness, it is natural to address the issue of stability 
robustness first and then the issue of performance robustness.  
Since stability tests are different for time varying systems and time invariant systems, it is 
important to pay special attention to the nature of perturbations, namely time varying 
perturbations versus time invariant perturbations, where it is assumed that the nominal 
system is a linear time invariant system. Typically, stability of linear time varying systems is 
assessed using Lyapunov stability theory using the concept of quadratic stability whereas 
that of a linear time invariant system is determined by the Hurwitz stability, i.e. by the 
negative real part eigenvalue criterion. This distinction about the nature of perturbation 
profoundly affects the methodologies used for stability robustness analysis.  
Let us consider the following linear, homogeneous, time invariant asymptotically stable 
system in state space form subject to a linear perturbation E: 

 ( )0 0(0)x A E x x x= + =  (1)  

where A0 is an n×n asymptotically stable matrix and E is the error (or perturbation) matrix. 
The two aspects of characterization of the perturbation matrix E which have significant 
influence on the scope and methodology of any proposed analysis and design scheme are i) 
the temporal nature and ii) the boundedness nature of E. Specifically, we can have the 
following scenario: 
i. Temporal Nature: 

Time invariant error
E = constant vs Time varying error 

E = E(t) 
ii. Boundedness Nature: 

Unstructured
(Norm bounded) vs Structured 

(Elemental bounds) 
The stability robustness problem for linear time invariant systems in the presence of linear 
time invariant perturbations (i.e. robust Hurwitz invariance problem) is basically addressed 
by testing for the negativity of the real parts of the eigenvalues (either in frequency domain 
or in time domain treatments), whereas the time varying perturbation case is known to be 
best handled by the time domain Lyapunov stability analysis. The robust Hurwitz 
invariance problem has been widely discussed in the literature essentially using the 
polynomial approach [4]-[5]. In this section, we address the time varying perturbation case, 
mainly motivated by the fact that any methodology which treats the time varying case can 
always be specialized to the time invariant case but not vice versa. However, we pay a price 
for the same, namely conservatism associated with the results when applied to the time 
invariant perturbation case. A methodology specifically tailored to time invariant 
perturbations is discussed and included by the author in a separate publication [6]. 
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It is also appropriate to discuss, at this point, the characterization with regard to the 
boundedness of the perturbation. In the so called ‘unstructured’ perturbation, it is assumed 
that one cannot clearly identify the location of the perturbation within the nominal matrix 
and thus one has simply a bound on the norm of the perturbation matrix. In the ‘structured’ 
perturbation, one has information about the location(s) of the perturbation and thus one can 
think of having bounds on the individual elements of the perturbation matrix. This 
approach can be labeled as ‘Elemental Perturbation Bound Analysis (EPBA)’. Whether 
‘unstructured’ norm bounded perturbation or ‘structured’ elemental perturbation is 
appropriate to consider depends very much on the application at hand. However, it can be 
safely argued that ‘structured’ real parameter perturbation situation has extensive 
applications in many engineering disciplines as the elements of the matrices of a linear state 
space description contain parameters of interest in the evolution of the state variables and it 
is natural to look for bounds on these real parameters that can maintain the stability of the 
state space system.  

3. Robust stability and control of linear interval parameter systems under 
state space framework 
In this section, we first give a brief account of the robust stability analysis techniques in 3.1 
and then in subsection 3.2 we discuss the robust control design aspect. 

3.1 Robust stability analysis 
The starting point for the problem at hand is to consider a linear state space system 
described by 

[ ]0( ) ( )x t A E x t= +  

where x is an n dimensional state vector, asymptotically stable matrix and E is the 
‘perturbation’ matrix. The issue of ‘stability robustness measures’ involves the 
determination of bounds on E which guarantee the preservation of stability of (1). Evidently, 
the characterization of the perturbation matrix E has considerable influence on the derived 
result. In what follows, we summarize a few of the available results, based on the 
characterization of E. 
1. Time varying (real) unstructured perturbation with spectral norm: Sufficient bound 
For this case, the perturbation matrix E is allowed to be time varying, i.e. E(t) and a bound 
on the spectral norm ( ( )max ( )E tσ  where σ(·) is the singular value of (·)) is derived. When a 
bound on the norm of E is given, we refer to it as ‘unstructured’ perturbation. This norm 
produces a spherical region in parameter space. The following result is available for this 
case [7]-[8]: 

 ( )max
max

1( )
( )

E t
P

σ
σ

<  (2) 

where P is the solution to the Lyapunov matrix 

 0 0 2 0TPA A P I+ + =  (3) 

See Refs [9],[10],[11] for results related to this case. 
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( )

E t
P

σ
σ
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where P is the solution to the Lyapunov matrix 
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See Refs [9],[10],[11] for results related to this case. 
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2. Time varying (real) structured variation 
Case 1: Independent variations (sufficient bound) [12]-[13] 

 
max

( ) ( )ij t ij ijE t E t ε≤ ∀ =  (4) 

ij ijMaxε ε=  

 
( )max

1
ij eij

m e s

U
P U

ε
σ

<  (5) 

where P satisfies equation (3) and Uoij = εij / ε. For cases when εij are not known, one can take 
Ueij = |Aoij|/|Aoij|max. (·)m denotes the matrix with all modulus elements and (·)s denotes the 
symmetric part of (·). 
3. Time invariant, (real) structured perturbation Eij = Constant 
Case i: Independent Variations [13]-[15]: (Sufficient Bounds). For this case, E can be 
characterized as 

 1 2E S DS=  (6) 

where S1 and S2 are constant, known matrices and |Dij| ≤ dijd with dij ≥ 0 are given and d > 0 
is the unknown. Let U be the matrix elements Uij = dij. Then the bound on d is given by [13] 

 
( ) 1

2 0 1
0

1
J QSup

m

d
S j I A S U

ω

μ μ
ω −

>

< = =
⎛ ⎞⎡ ⎤−⎜ ⎟⎢ ⎥⎣ ⎦⎝ ⎠

 (7) 

Notice that the characterization of E (with time invariant) in (4) is accommodated by the 
characterization in [15]. ρ(·) is the spectral radius of (·). 
Case ii: Linear Dependent Variation: For this case, E is characterized (as in (6) before), by 

 1
r

i iiE Eβ
=

=∑  (8) 

and bounds on |βi| are sought. Improved bounds on |βi| are presented in [6]. 
This type of representation represents a ‘polytope of matrices’ as discussed in [4]. In this 
notation, the interval matrix case (i.e. the independent variation case) is a special case of the 
above representation where Ei contains a single nonzero element, at a different place in the 
matrix for different i. 
For the time invariant, real structured perturbation case, there are no computationally 
tractable necessary and sufficient bounds either for polytope of matrices or for interval 
matrices (even for a 2 x 2 case). Even though some derivable necessary and sufficient 
conditions are presented in [16] for any general variation in E (not necessarily linear 
dependent and independent case), there are no easily computable methods available to 
determine the necessary and sufficient bounds at this stage of research. So most of the 
research, at this point of time, seems to aim at getting better (less conservative) sufficient 
bounds. The following example compares the sufficient bounds given in [13]-[15] for the 
linear dependent variation case. 
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Let us consider the example given in [15] in which the perturbed system matrix is given by 

( )
1 1

0 2

1 2 1

2 0 1
0 3 0

1 1 4

k k
A BKC k

k k k

− + − +⎡ ⎤
⎢ ⎥+ = − +⎢ ⎥
⎢ ⎥− + − + − +⎣ ⎦

 

Taking the nominally stable matrix to be 

0

2 0 1
0 3 0
1 1 4

A
− −⎡ ⎤
⎢ ⎥= −⎢ ⎥
⎢ ⎥− − −⎣ ⎦

 

the error matrix with k1 and k2 as the uncertain parameters is given by 

1 1 2 2E k E k E= +  

where 

1

1 0 1
0 0 0
1 0 1

E
⎡ ⎤
⎢ ⎥= ⎢ ⎥
⎢ ⎥⎣ ⎦

 and 2

0 0 0
0 1 0
0 1 0

E
⎡ ⎤
⎢ ⎥= ⎢ ⎥
⎢ ⎥⎣ ⎦

 

The following are the bounds on |k1| and |k2| obtained by [15] and the proposed method. 
 

µy µQ ZK [14] µd [6] 
0.815 0.875 1.55 1.75 

3.2 Robust control design for linear systems with structured uncertainty 
Having discussed the robustness analysis issue above, we now switch our attention to the 
robust control design issue. Towards this direction, we now present a linear robust control 
design algorithm for linear deterministic uncertain systems whose parameters vary within 
given bounded sets. The algorithm explicitly incorporates the structure of the uncertainty 
into the design procedure and utilizes the elemental perturbation bounds developed above. 
A linear state feedback controller is designed by parameter optimization techniques to 
maximize (in a given sense) the elemental perturbation bounds for robust stabilization.  
There is a considerable amount of literature on the aspect of designing linear controllers for 
linear tine invariant systems with small parameter uncertainty. However, for uncertain 
systems whose dynamics are described by interval matrices (i.e., matrices whose elements 
are known to vary within a given bounded interval), linear control design schemes that 
guarantee stability have been relatively scarce. Reference [17] compares several techniques 
for designing linear controllers for robust stability for a class of uncertain linear systems. 
Among the methods considered are the standard linear quadratic regulator (LQR) design, 
Guaranteed Cost Control (GCC) method of [18], Multistep Guaranteed Cost Control 
(MGCC) of [17]. In these methods, the weighting on state in a quadratic cost function and 
the Riccati equation are modified in the search for an appropriate controller. Also, the 
parameter uncertainty is assumed to enter linearly and restrictive conditions are imposed on 
the bounding sets. In [18], norm inequalities on the bounding sets are given for stability but 



 Robust Control, Theory and Applications 

 

46 

2. Time varying (real) structured variation 
Case 1: Independent variations (sufficient bound) [12]-[13] 
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they are conservative since they do not take advantage of the system structure. There is no 
guarantee that a linear state feedback controller exists. Reference [19] utilizes the concept of 
‘Matching conditions (MC)’ which in essence constrain the manner in which the uncertainty 
is permitted to enter into the dynamics and show that a linear state feedback control that 
guarantees stability exists provided the uncertainty satisfies matching conditions. By this 
method large bounding sets produce large feedback gains but the existence of a linear 
controller is guaranteed. But no such guarantee can be given for general ‘mismatched’ 
uncertain systems. References [20] and [21] present methods which need the testing of 
definiteness of a Lyapunov matrix obtained as a function of the uncertain parameters. In the 
multimodel theory approach, [22] considers a discrete set of points in the parameter 
uncertainty range to establish the stability. This paper addresses the stabilization problem 
for a continuous range of parameters in the uncertain parameter set (i.e. in the context of 
interval matrices). The proposed approach attacks the stability of interval matrix problem 
directly in the matrix domain rather than converting the interval matrix to interval 
polynomials and then testing the Kharitonov polynomials.  
Robust control design using perturbation bound analysis [23],[24] 
Consider a linear, time invariant system described by 

x Ax Bu= +         0(0)x x=  

Where x  is 1n×  state vector, the control u is 1m× . The matrix pair ( , )A B  is assumed to 
be completely controllable. 
U=Gx 
For this case, the nominal closed loop system matrix is given by 

A A BG= + , 
1

0
T

c

R B KG ρ
−−=  

and 

1
0 0T T

c

RKA A K KB B K Q
ρ

−

+ − + =  

and A  is asymptotically stable. 
Here G is the Riccati based control gain where Q,and R0 are any given weighting matrices 
which are symmetric, positive definite and ρc is the design variable. 
The main interest in determining G is to keep the nominal closed loop system stable. The 
reason Riccati approach is used to determine G is that it readily renders (A+BG) 
asymptotically stable with the above assumption on Q and R0.  
Now consider the perturbed system with linear time varying perturbations EA(t) and EB(t) 
respectively in matrices A and B 
i.e., [ ] [ ]( ) ( ) ( ) ( )A Bx A E t x t B E t u t= + + +  
Let ΔA and ΔB be the perturbation matrices formed by the maximum modulus deviations 
expected in the individual elements of matrices A and B respectively. Then one can write 

a ea

b eb

A U
B U

Δ ε
Δ ε

=
=

 (Absolute variation) 
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where εa is the maximum of all the elements in ΔA and εb is the maximum of all elements in 
ΔB. Then the total perturbation in the linear closed loop system matrix of (10) with nominal 
control u = Gx is given by 

m a ea b eb mA BG U U GΔ Δ Δ ε ε= + = +  

Assuming the ratio is b aε ε ε=  known, we can extend the main result of equation (3) to the 
linear state feedback control system of (9) and (10) and obtain the following design 
observation. 
Design observation 1: 
The perturbed linear system is stable for all perturbations bounded by aε  and bε  if 
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and bε ε μ<  where 
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Remark: If we suppose ΔA = 0, ΔB = 0 and expect some control gain perturbations ΔG, 
where we can write 

 g gG UeεΔ =  (10) 

then stability is assured if 
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In this context gμ  can be regarded as a “gain margin”. 
For a given aijε  and bijε , one method of designing the linear controller would be to 
determine G of (3.10) by varying cρ  of (3.10) such that μ is maximum. For an aircraft control 
example which utilizes this method, see Reference [9].  

4. Robust stability and control of linear interval parameter systems using 
ecological perspective 
It is well recognized that natural systems such as ecological and biological systems are 
highly robust under various perturbations. On the other hand, engineered systems can be 
made highly optimal for good performance but they tend to be non-robust under 
perturbations. Thus, it is natural and essential for engineers to delve into the question of as 
to what the underlying features of natural systems are, which make them so robust and then 
try to apply these principles to make the engineered systems more robust. Towards this 
objective, the interesting aspect of qualitative stability in ecological systems is considered in 
particular. The fields of population biology and ecology deal with the analysis of growth 
and decline of populations in nature and the struggle of species to predominate over one 
another. The existence or extinction of a species, apart from its own effect, depends on its 
interactions with various other species in the ecosystem it belongs to. Hence the type of 
interaction is very critical to the sustenance of species. In the following sections these 
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they are conservative since they do not take advantage of the system structure. There is no 
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interactions and their nature are thoroughly investigated and the effect of these qualitative 
interactions on the quantitative properties of matrices, specifically on three matrix 
properties, namely, eigenvalue distribution, normality/condition number and robust 
stability are presented. This type of study is important for researchers in both fields since 
qualitative properties do have significant impact on the quantitative aspects. In the 
following sections, this interrelationship is established in a sound mathematical framework. 
In addition, these properties are exploited in the design of controllers for engineering 
systems to make them more robust to uncertainties such as described in the previous 
sections. 

4.1 Robust stability analysis using principles of ecology 
4.1.1 Brief review of ecological principles 
In this section a few ecological system principles that are of relevance to this chapter are 
briefly reviewed. Thorough understanding of these principles is essential to appreciate their 
influence on various mathematical results presented in the rest of the chapter.  
In a complex community composed of many species, numerous interactions take place. 
These interactions in ecosystems can be broadly classified as i) Mutualism, ii) Competition, 
iii) Commensalism/Ammensalism and iv) Predation (Parasitism). Mutualism occurs when 
both species benefit from the interaction. When one species benefits/suffers and the other 
one remains unaffected, the interaction is classified as Commensalism/Ammensalism. 
When species compete with each other, that interaction is known as Competition. Finally, if 
one species is benefited and the other suffers, the interaction is known as Predation 
(Parasitism). In ecology, the magnitudes of the mutual effects of species on each other are 
seldom precisely known, but one can establish with certainty, the types of interactions that 
are present. Many mathematical population models were proposed over the last few 
decades to study the dynamics of eco/bio systems, which are discussed in textbooks [25]-
[26]. The most significant contributions in this area come from the works of Lotka and 
Volterra. The following is a model of a predator-prey interaction where x is the prey and y is 
the predator. 

 
( , )
( , )

x xf x y
y yg x y
=
=

 (12) 

where it is assumed that ( , ) / 0f x y y∂ ∂ <  and ( , ) / 0g x y x∂ ∂ >                     
This means that the effect of y on the rate of change of x ( x ) is negative while the effect of x 
on the rate of change of y ( y ) is positive.  
The stability of the equilibrium solutions of these models has been a subject of intense study 
in life sciences [27]. These models and the stability of such systems give deep insight into the 
balance in nature. If a state of equilibrium can be determined for an ecosystem, it becomes 
inevitable to study the effect of perturbation of any kind in the population of the species on 
the equilibrium. These small perturbations from equilibrium can be modeled as linear state 
space systems where the state space plant matrix is the ‘Jacobian’. This means that 
technically in the Jacobian matrix, one does not know the actual magnitudes of the partial 
derivatives but their signs are known with certainty. That is, the nature of the interaction is 
known but not the strengths of those interactions. As mentioned previously, there are four 
classes of interactions and after linearization they can be represented in the following 
manner.  
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Interaction type 

 
Digraph 

representation 
 

Matrix 
representation 

Mutualism 
 

*
*
+⎡ ⎤

⎢ ⎥+⎣ ⎦
 

Competition 
 

*
*
−⎡ ⎤

⎢ ⎥−⎣ ⎦
 

Commensalism 
 

*
0 *

+⎡ ⎤
⎢ ⎥
⎣ ⎦

 

Ammensalism 
 

*
0 *

−⎡ ⎤
⎢ ⎥
⎣ ⎦

 

Predation 
(Parasitism) 

 

*
*
+⎡ ⎤

⎢ ⎥−⎣ ⎦
 

Table 1. Types of interactions between two species in an ecosystem 
In Table 1, column 2 is a visual representation of such interactions and is known as a 
directed graph or ‘digraph’ [28] while column 3 is the matrix representation of the 
interaction between two species. ‘*’ represents the effect of a species on itself. 
In other words, in the Jacobian matrix, the ‘qualitative’ information about the species is 
represented by the signs +, – or 0. Thus, the (i,j)th entry of the state space (Jacobian) matrix 
simply consists of signs +, –, or 0, with the + sign indicating species j having a positive 
influence on species i, - sign indicating negative influence and 0 indicating no influence. The 
diagonal elements give information regarding the effect of a species on itself. Negative sign 
means the species is ‘self-regulatory’, positive means it aids the growth of its own 
population and zero means that it has no effect on itself. For example, in the Figure 1 below, 
sign pattern matrices A1 and A2 are the Jacobian form while D1 and D2 are their 
corresponding digraphs.  
 

 

 
Fig. 1. Various sign patterns and their corresponding digraphs representing ecological 
systems; a) three species system b) five species system 
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4.1.2 Qualitative or sign stability 
Since traditional mathematical tests for stability fail to analyze the stability of such 
ecological models, an extremely important question then, is whether it can be concluded, 
just from this sign pattern, whether the system is stable or not. If so, the system is said to be 
‘qualitatively stable’ [29-31]. In some literature, this concept is also labeled as ‘sign stability’. 
In what follows, these two terms are used interchangeably. It is important to keep in mind 
that the systems (matrices) that are qualitatively (sign stable) stable are also stable in the 
ordinary sense. That is, qualitative stability implies Hurwitz stability (eigenvalues with 
negative real part) in the ordinary sense of engineering sciences. In other words, once a 
particular sign matrix is shown to be qualitatively (sign) stable, any magnitude can be inserted in 
those entries and for all those magnitudes the matrix is automatically Hurwitz stable. This is the 
most attractive feature of a sign stable matrix. However, the converse is not true. Systems 
that are not qualitatively stable can still be stable in the ordinary sense for certain 
appropriate magnitudes in the entries. From now on, to distinguish from the concept of 
‘qualitative stability’ of life sciences literature, the label of ‘quantitative stability’ for the 
standard Hurwitz stability in engineering sciences is used. 
These conditions in matrix theory notation are given below 
i. 0iia i≤ ∀   
ii. and 0iia <  for at least one i 
iii. 0 ,ij jia a i j i j≤ ∀ ≠  

iv. ... 0ij jk kl mia a a a =  for any sequence of three or more distinct indices i,j,k,…m.  

v. Det( ) 0A ≠  
vi. Color test (Elaborated in [32],[33]) 
Note: In graph theory ij jia a  are referred to as l-cycles and ...ij jk kl mia a a a  are referred to as  
k-cycles. In [34], [35], l-cycles are termed ‘interactions’ while k-cycles are termed 
‘interconnections’ (which essentially are all zero in the case of sign stable matrices). 
With this algorithm, all matrices that are sign stable can be stored apriori as discussed in 
[36]. If a sign pattern in a given matrix satisfies the conditions given in the above papers 
(thus in the algorithm), it is an ecological stable sign pattern and hence that matrix is 
Hurwitz stable for any magnitudes in its entries. A subtle distinction between ‘sign stable’ 
matrices and ‘ecological sign stable’ matrices is now made, emphasizing the role of nature of 
interactions. Though the property of Hurwitz stability is held in both cases, ecosystems 
sustain solely because of interactions between various species. In matrix notation this means 
that the nature of off-diagonal elements is essential for an ecosystem. Consider a strictly 
upper triangular 3×3 matrix 
 

 
From quantitative viewpoint, it is seen that the matrix is Hurwitz stable for any magnitudes 
in the entries of the matrix. This means that it is indeed (qualitatively) sign stable. But since 
there is no predator-prey link and in fact no link at all between species 1&2 and 3&2, such a 
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digraph cannot represent an ecosystem. Therefore, though a matrix is sign stable, it need not 
belong to the class of ecological sign stable matrices. In Figure 2 below, these various classes 
of sign patterns and the corresponding relationship between these classes is depicted. So, 
every ecological sign stable sign pattern is sign stable but the converse is not true.  
With this brief review of ecological system principles, the implications of these ecological 
qualitative principles on three quantitative matrix theory properties, namely eigenvalues, 
normality/condition number and robust stability are investigated. In particular, in the next 
section, new results that clearly establish these implications are presented. As mentioned in 
the previous section, the motivation for this study and analysis is to exploit some of these 
desirable features of ecological system principles to design controllers for engineering 
systems to make them more robust.  
 

 
Fig. 2. Classification of sign patterns 

4.2 Ecological sign stability and its implications in quantitative matrix theory 
In this major section of this chapter, focusing on the ecological sign stability aspect discussed 
above, its implications in the quantitative matrix theory are established. In particular, the 
section offers three explicit contributions to expand the current knowledge base, namely i) 
Eigenvalue distribution of ecological sign stable matrices ii) Normality/Condition number 
properties of sign stable matrices and iii) Robustness properties of sign stable matrices. 
These three contributions in turn help in determining the role of magnitudes in quantitative 
ecological sign stable matrices. This type of information is clearly helpful in designing 
robust controllers as shown in later sections. With this motivation, a 3-species ecosystem is 
thoroughly analyzed and the ecological principles in terms of matrix properties that are of 
interest in engineering systems are interpreted. This section is organized as follows: First, 
new results on the eigenvalue distribution of ecological sign stable matrices are presented. 
Then considering ecological systems with only predation-prey type interactions, it is shown 
how selection of appropriate magnitudes in these interactions imparts the property of 
normality (and thus highly desirable condition numbers) in matrices. In what follows, for 
each of these cases, concepts are first discussed from an ecological perspective and then later 
the resulting matrix theory implications from a quantitative perspective are presented  
Stability and eigenvalue distribution 
Stability is the most fundamental property of interest to all dynamic systems. Clearly, in 
time invariant matrix theory, stability of matrices is governed by the negative real part 
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nature of its eigenvalues. It is always useful to get bounds on the eigenvalue distribution of 
a matrix with as little computation as possible, hopefully as directly as possible from the 
elements of that matrix. It turns out that sign stable matrices have interesting eigenvalue 
distribution bounds. A few new results are now presented in this aspect.  
In what follows, the quantitative matrix theory properties for an n-species ecological system 
is established, i.e., an n×n sign stable matrix with predator-prey and commensal/ammensal 
interactions is considered and its eigenvalue distribution is analyzed. In particular, various 
cases of diagonal elements’ nature, which are shown to possess some interesting eigenvalue 
distribution properties, are considered. 
Bounds on real part of eigenvalues 
Based on several observations the following theorem for eigenvalue distribution along the 
real axis is stated. 
Theorem 1 [37] 
(Case of all negative diagonal elements): 
For all n×n sign stable matrices, with all negative diagonal elements, the bounds on the real parts of 
the eigenvalues are given as follows: 
The lower bound on the magnitude of the real part is given by the minimum magnitude diagonal 
element and the upper bound is given by the maximum magnitude diagonal element in the matrix. 
That is, for an n×n ecological sign stable matrix [ ]ijA a= , 

 ( ) ( )min maxmin max
Re Reii iia aλ λ≤ ≤ ≤  (13) 

Corollary 
(Case of some diagonal elements being zero): 
If the ecological sign stable matrix has zeros on the diagonal, the bounds are given by 

 ( ) ( ) ( )min maxmin max
0 Re Reii iia aλ λ= < ≤ ≤  (14) 

The sign pattern in Example 1 has all negative diagonal elements. In this example, the case 
discussed in the corollary where one of the diagonal elements is zero, is considered. This 
sign pattern is as shown in the matrix below. 

0 0
0

A
− − −⎡ ⎤
⎢ ⎥= −⎢ ⎥
⎢ ⎥+ +⎣ ⎦

 

Bounds on imaginary part of eigenvalues [38] 
Similarly, the following theorem can be stated for bounds on the imaginary parts of the 
eigenvalues of an n×n matrix. Before stating the theorem, we present the following lemma. 
Theorem 2 
For all n×n ecologically sign stable matrices, bound on the imaginary part of the eigenvalues 
is given by 

 ( )Imag i max
, 1

n

ij jiimagss
i j

a a i jμ λ
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Above results are illustrated in figure 3. 
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Fig. 3. Eigenvalue distribution for sign stable matrices 

Theorem 3 
For all n×n matrices, with all k-cycles being zero and with only commensal or ammensal interactions, 
the eigenvalues are simply the diagonal elements. 
It is clear that these theorems offer significant insight into the eigenvalue distribution of n×n 
ecological sign stable matrices. Note that the bounds can be simply read off from the 
magnitudes of the elements of the matrices. This is quite in contrast to the general 
quantitative Hurwitz stable matrices where the lower and upper bounds on the eigenvalues 
of a matrix are given in terms of the singular values of the matrix and/or the eigenvalues of 
the symmetric part and skew-symmetric parts of the matrices (using the concept of field of 
values), which obviously require much computation, and are complicated functions of the 
elements of the matrices.  
Now label the ecological sign stable matrices with magnitudes inserted in the elements as 
‘quantitative ecological sign stable matrices’. Note that these magnitudes can be arbitrary in 
each non zero entry of the matrix! It is interesting and important to realize that these 
bounds, based solely on sign stability, do not reflect diagonal dominance, which is the 
typical case with general Hurwitz stable matrices. Taking theorems 4, 5, 6 and their 
respective corollaries into consideration, we can say that it is the ‘diagonal connectance’ that 
is important in these quantitative ecological sign stable matrices and not the ‘diagonal 
dominance’ which is typical in the case of general Hurwitz stable matrices. This means that 
interactions are critical to system stability even in the case of general n×n matrices. 
Now the effect on the quantitative property of normality is presented. 
Normality and condition number  
Based on this new insight on the eigenvalue distribution of sign stable matrices, other matrix 
theory properties of sign stable matrices are investigated. The first quantitative matrix 
theory property is that of normality/condition number. But this time, the focus is only on 
ecological sign stable matrices with pure predator-prey links with no other types of 
interactions.  
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nature of its eigenvalues. It is always useful to get bounds on the eigenvalue distribution of 
a matrix with as little computation as possible, hopefully as directly as possible from the 
elements of that matrix. It turns out that sign stable matrices have interesting eigenvalue 
distribution bounds. A few new results are now presented in this aspect.  
In what follows, the quantitative matrix theory properties for an n-species ecological system 
is established, i.e., an n×n sign stable matrix with predator-prey and commensal/ammensal 
interactions is considered and its eigenvalue distribution is analyzed. In particular, various 
cases of diagonal elements’ nature, which are shown to possess some interesting eigenvalue 
distribution properties, are considered. 
Bounds on real part of eigenvalues 
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real axis is stated. 
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The lower bound on the magnitude of the real part is given by the minimum magnitude diagonal 
element and the upper bound is given by the maximum magnitude diagonal element in the matrix. 
That is, for an n×n ecological sign stable matrix [ ]ijA a= , 

 ( ) ( )min maxmin max
Re Reii iia aλ λ≤ ≤ ≤  (13) 

Corollary 
(Case of some diagonal elements being zero): 
If the ecological sign stable matrix has zeros on the diagonal, the bounds are given by 

 ( ) ( ) ( )min maxmin max
0 Re Reii iia aλ λ= < ≤ ≤  (14) 

The sign pattern in Example 1 has all negative diagonal elements. In this example, the case 
discussed in the corollary where one of the diagonal elements is zero, is considered. This 
sign pattern is as shown in the matrix below. 
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Theorem 3 
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magnitudes of the elements of the matrices. This is quite in contrast to the general 
quantitative Hurwitz stable matrices where the lower and upper bounds on the eigenvalues 
of a matrix are given in terms of the singular values of the matrix and/or the eigenvalues of 
the symmetric part and skew-symmetric parts of the matrices (using the concept of field of 
values), which obviously require much computation, and are complicated functions of the 
elements of the matrices.  
Now label the ecological sign stable matrices with magnitudes inserted in the elements as 
‘quantitative ecological sign stable matrices’. Note that these magnitudes can be arbitrary in 
each non zero entry of the matrix! It is interesting and important to realize that these 
bounds, based solely on sign stability, do not reflect diagonal dominance, which is the 
typical case with general Hurwitz stable matrices. Taking theorems 4, 5, 6 and their 
respective corollaries into consideration, we can say that it is the ‘diagonal connectance’ that 
is important in these quantitative ecological sign stable matrices and not the ‘diagonal 
dominance’ which is typical in the case of general Hurwitz stable matrices. This means that 
interactions are critical to system stability even in the case of general n×n matrices. 
Now the effect on the quantitative property of normality is presented. 
Normality and condition number  
Based on this new insight on the eigenvalue distribution of sign stable matrices, other matrix 
theory properties of sign stable matrices are investigated. The first quantitative matrix 
theory property is that of normality/condition number. But this time, the focus is only on 
ecological sign stable matrices with pure predator-prey links with no other types of 
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A zero diagonal element implies that a species has no control over its growth/decay rate. So 
in order to regulate the population of such a species, it is essential that, in a sign stable 
ecosystem model, this species be connected to at least one predator-prey link. In the case 
where all diagonal elements are negative, the matrix represents an ecosystem with all self-
regulating species. If every species has control over its regulation, a limiting case for stability 
is a system with no interspeciel interactions. This means that there need not be any 
predator-prey interactions. This is a trivial ecosystem and such matrices actually belong to 
the only ‘sign-stable’ set, not to ecological sign stable set.  
Apart from the self-regulatory characteristics of species, the phenomena that contribute to 
the stability of a system are the type of interactions. Since a predator-prey interaction has a 
regulating effect on both the species, predator-prey interactions are of interest in this 
stability analysis. In order to study the role played by these interactions, henceforth focus is 
on systems with n-1 pure predator-prey links in specific places. This number of links and 
the specific location of the links are critical as they connect all species at the same time 
preserving the property of ecological sign stability. For a matrix A, pure predator-prey link 
structure implies that 
1. 0 ,ij jiA A i j≤ ∀  
2. 0ij jiA A =  iff 0ij jiA A= =  
Hence, in what follows, matrices with all negative diagonal elements and with pure 
predator-prey links are considered.  
Consider sign stable matrices with identical diagonal elements (negative) and pure 
predator-prey links of equal strengths.  
Normality in turn implies that the modal matrix of the matrix is orthogonal resulting in it 
having a condition number of one, which is an extremely desirable property for all matrices 
occurring in engineering applications.  
The property of normality is observed in higher order systems too. An ecologically sign 
stable matrix with purely predator-prey link interactions is represented by the following 
digraph for a 5-species system. The sign pattern matrix A represents this digraph.  
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Theorem 4 
An n×n matrix A with equal diagonal elements and equal predation prey interaction strengths for 
each predation-prey link is a normal matrix. 
The property of κ≡1 is of great significance in the study of robustness of stable matrices. This 
significance will be explained in the next section eventually leading to a robust control 
design algorithm 
Robustness 
The third contribution of this section is related to the connection between ecological sign 
stability and robust stability in engineering systems.  
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As mentioned earlier, the most interesting feature of ecological sign stable matrices is that the 
stability property is independent of the magnitude information in the entries of the matrix. 
Thus the nature of interactions, which in turn decide the signs of the matrix entries and their 
locations in the matrix, are sufficient to establish the stability of the given sign matrix. Clearly, 
it is this independence (or non-dependence) from magnitude information that imparts the 
property of robust stability to engineering systems. This aspect of robust stability in 
engineering systems is elaborated next from quantitative matrix theory point of view. 
Robustness as a result of independence from magnitude information 
In mathematical sciences, the aspect of ‘robust stability’ of families of matrices has been an 
active topic of research for many decades. This aspect essentially arises in many applications 
of system and control theory. When the system is described by linear state space 
representation, the plant matrix elements typically depend on some uncertain parameters 
which vary within a given bounded interval. 
Robust stability analysis of a class of interval matrices [39]: 
Consider the ‘interval matrix family’ in which each individual element varies independently 
within a given interval. Thus the interval matrix family is denoted by  

[ , ]L UA A A∈  as the set of all matrices A  that satisfy 

( ) ( ) ,L U
ijij ij

A A A for every i j≤ ≤  

Now, consider a special ‘class of interval matrix family' in which for each element that is 
varying, the lower bound i.e. (AL)ij and the upper bound i.e. (AU )ij are of the same sign.  
For example, consider the interval matrix given by 
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31 33

0
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a a
A a

a a

⎡ ⎤
⎢ ⎥= ⎢ ⎥
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with the elements a12, a13, a21, a31 and a33 being uncertain varying in some given intervals as 
follows: 
Qualitative stability as a ‘sufficient condition' for robust stability of a class of interval 
matrices: A link between life sciences and engineering sciences 
It is clear that ecological sign stable matrices have the interesting feature that once the sign 
pattern is a sign stable pattern, the stability of the matrix is independent of the magnitudes 
of the elements of the matrix. That this property has direct link to stability robustness of 
matrices with structured uncertainty was recognized in earlier papers on this topic [32] and 
[33]. In these papers, a viewpoint was put forth that advocates using the ‘qualitative 
stability' concept as a means of achieving ‘robust stability' in the standard uncertain matrix 
theory and offer it as a ‘sufficient condition' for checking the robust stability of a class of 
interval matrices. This argument is illustrated with the following examples. 
Consider the above given ‘interval matrix’. 
Once it is recognized that the signs of the interval entries in the matrix are not changing 
(within the given intervals), the sign matrix can be formed. The `sign' matrix for this interval 
matrix is given by 
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A zero diagonal element implies that a species has no control over its growth/decay rate. So 
in order to regulate the population of such a species, it is essential that, in a sign stable 
ecosystem model, this species be connected to at least one predator-prey link. In the case 
where all diagonal elements are negative, the matrix represents an ecosystem with all self-
regulating species. If every species has control over its regulation, a limiting case for stability 
is a system with no interspeciel interactions. This means that there need not be any 
predator-prey interactions. This is a trivial ecosystem and such matrices actually belong to 
the only ‘sign-stable’ set, not to ecological sign stable set.  
Apart from the self-regulatory characteristics of species, the phenomena that contribute to 
the stability of a system are the type of interactions. Since a predator-prey interaction has a 
regulating effect on both the species, predator-prey interactions are of interest in this 
stability analysis. In order to study the role played by these interactions, henceforth focus is 
on systems with n-1 pure predator-prey links in specific places. This number of links and 
the specific location of the links are critical as they connect all species at the same time 
preserving the property of ecological sign stability. For a matrix A, pure predator-prey link 
structure implies that 
1. 0 ,ij jiA A i j≤ ∀  
2. 0ij jiA A =  iff 0ij jiA A= =  
Hence, in what follows, matrices with all negative diagonal elements and with pure 
predator-prey links are considered.  
Consider sign stable matrices with identical diagonal elements (negative) and pure 
predator-prey links of equal strengths.  
Normality in turn implies that the modal matrix of the matrix is orthogonal resulting in it 
having a condition number of one, which is an extremely desirable property for all matrices 
occurring in engineering applications.  
The property of normality is observed in higher order systems too. An ecologically sign 
stable matrix with purely predator-prey link interactions is represented by the following 
digraph for a 5-species system. The sign pattern matrix A represents this digraph.  
 

1 2 5 3 4 
 
+

 
+

 
+

 
+

_ _ _ _ 
       

0 0 0
0 0

0 0
0 0
0 0 0

A

− +⎡ ⎤
⎢ ⎥− − +⎢ ⎥
⎢ ⎥− − +=
⎢ ⎥

− − +⎢ ⎥
⎢ ⎥− −⎣ ⎦

 

 
Theorem 4 
An n×n matrix A with equal diagonal elements and equal predation prey interaction strengths for 
each predation-prey link is a normal matrix. 
The property of κ≡1 is of great significance in the study of robustness of stable matrices. This 
significance will be explained in the next section eventually leading to a robust control 
design algorithm 
Robustness 
The third contribution of this section is related to the connection between ecological sign 
stability and robust stability in engineering systems.  
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As mentioned earlier, the most interesting feature of ecological sign stable matrices is that the 
stability property is independent of the magnitude information in the entries of the matrix. 
Thus the nature of interactions, which in turn decide the signs of the matrix entries and their 
locations in the matrix, are sufficient to establish the stability of the given sign matrix. Clearly, 
it is this independence (or non-dependence) from magnitude information that imparts the 
property of robust stability to engineering systems. This aspect of robust stability in 
engineering systems is elaborated next from quantitative matrix theory point of view. 
Robustness as a result of independence from magnitude information 
In mathematical sciences, the aspect of ‘robust stability’ of families of matrices has been an 
active topic of research for many decades. This aspect essentially arises in many applications 
of system and control theory. When the system is described by linear state space 
representation, the plant matrix elements typically depend on some uncertain parameters 
which vary within a given bounded interval. 
Robust stability analysis of a class of interval matrices [39]: 
Consider the ‘interval matrix family’ in which each individual element varies independently 
within a given interval. Thus the interval matrix family is denoted by  

[ , ]L UA A A∈  as the set of all matrices A  that satisfy 

( ) ( ) ,L U
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A A A for every i j≤ ≤  

Now, consider a special ‘class of interval matrix family' in which for each element that is 
varying, the lower bound i.e. (AL)ij and the upper bound i.e. (AU )ij are of the same sign.  
For example, consider the interval matrix given by 
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with the elements a12, a13, a21, a31 and a33 being uncertain varying in some given intervals as 
follows: 
Qualitative stability as a ‘sufficient condition' for robust stability of a class of interval 
matrices: A link between life sciences and engineering sciences 
It is clear that ecological sign stable matrices have the interesting feature that once the sign 
pattern is a sign stable pattern, the stability of the matrix is independent of the magnitudes 
of the elements of the matrix. That this property has direct link to stability robustness of 
matrices with structured uncertainty was recognized in earlier papers on this topic [32] and 
[33]. In these papers, a viewpoint was put forth that advocates using the ‘qualitative 
stability' concept as a means of achieving ‘robust stability' in the standard uncertain matrix 
theory and offer it as a ‘sufficient condition' for checking the robust stability of a class of 
interval matrices. This argument is illustrated with the following examples. 
Consider the above given ‘interval matrix’. 
Once it is recognized that the signs of the interval entries in the matrix are not changing 
(within the given intervals), the sign matrix can be formed. The `sign' matrix for this interval 
matrix is given by 
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⎢ ⎥− −⎣ ⎦

 

The above ‘sign’ matrix is known to be ‘qualitative (sign) stable’. Since sign stability is 
independent of magnitudes of the entries of the matrix, it can be concluded that the above 
interval matrix is robustly stable in the given interval ranges. Incidentally, if the ‘vertex 
algorithm’ of [40] is applied for this problem, it can be also concluded that this ‘interval 
matrix family’ is indeed Hurwitz stable in the given interval ranges. 
In fact, more can be said about the ‘robust stability’ of this matrix family using the ‘sign stability’ 
application. This matrix family is indeed robustly stable, not only for those given interval 
ranges above, but it is also robustly stable for any large ‘interval ranges’ in those elements as 
long as those interval ranges are such that the elements do not change signs in those interval ranges.  
In the above discussion, the emphasis was on exploiting the sign pattern of a matrix in 
robust stability analysis of matrices. Thus, the tolerable perturbations are direction sensitive. 
Also, no perturbation is allowed in the structural zeroes of the ecological sign stable 
matrices. In what follows, it is shown that ecological sign stable matrices can still possess 
superior robustness properties even under norm bounded perturbations, in which 
perturbations in structural zeroes are also allowed in ecological sign stable matrices.   
Towards this objective, the stability robustness measures of linear state space systems as 
discussed in [39] and [2] are considered. In other words, a linear state space plant matrix A, 
which is assumed to be Hurwitz stable, is considered. Then assuming a perturbation matrix 
E in the A matrix, the question as to how much of norm of the perturbation matrix E can be 
tolerated to maintain stability is asked. Note that in this norm bounded perturbation 
discussion, the elements of the perturbation matrix can vary in various directions without 
any restrictions on the signs of the elements of that matrix. When bounds on the norm of E 
are given to maintain stability, it is labeled as robust stability for unstructured, norm 
bounded uncertainty. We now briefly recall two measures of robustness available in the 
literature [2] for robust stability of time varying real parameter perturbations. 
Norm bounded robustness measures 
Consider a given Hurwitz stable matrix A0 with perturbation E such that 

 0A A E= +  (16) 

where A is any one of the perturbed matrices. 
A sufficient bound μ for the stability of the perturbed system is given on the spectral norm 
of the perturbation matrix as 

 ( )0 min
Re ( )

s
d

A
E

λα
μ

κ κ
< − = =  (17) 

where αs is the real part of the dominant eigenvalue, also known as stability degree and κ is 
the condition number of the modal matrix of A0.  
Theorem 5[38] 
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In other words, a unit norm, normal ecological sign stable matrix is more robust that a unit 
norm, normal non-ecological sign stable Hurwitz stable matrix. 
The second norm bound based on the solution of the Lyapunov matrix equation [7] is given 
as 

 
( )max

1
pE

P
μ

σ
< =  (19) 

where 
P is the solution of the Lyapunov equation of the nominal stable matrix A0 given by 

 0 0 2 0TA P PA I+ + =  

Based on this bound, the following Lemma is proposed: 
Theorem 6 
The norm bound pμ  on a target SS matrix S is d, where d is the magnitude of diagonal element of S 
i.e.,  

 
max

1
( )p d
P

μ
σ

= =  (20) 

This means that for any given value of μp, we can, by mere observation, determine a corresponding 
stable matrix A! 
This gives impetus to design controllers that drive the closed loop system to a target matrix. 
Towards this objective, an algorithm for the design of a controller based on concepts from 
ecological sign stability is now presented. 

4.3 Robust control design based on ecological sign stability  
Extensive research in the field of robust control design has lead to popular control design 
methods in frequency domain such as H∞ and μ-synthesis., Though these methods perform 
well in frequency domain, they become very conservative when applied to the problem of 
accommodating real parameter uncertainty. On the other hand, there are very limited robust 
control design methods in time domain methods that explicitly address real parameter 
uncertainty [41-47]. Even these very few methods tend to be complex and demand some 
specific structure to the real parameter uncertainty (such as matching conditions). Therefore, 
as an alternative to existing methods, the distinct feature of this control design method 
inspired by ecological principles is its problem formulation in which the robustness measure 
appears explicitly in the design methodology. 

4.3.1 Problem formulation 
The problem formulation for this novel control design method is as follows: 
For a given linear system 

 ( ) ( ) ( )x t Ax t Bu t= +  (21) 

design a full-state feedback controller  

 u Gx=  (22) 
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In fact, more can be said about the ‘robust stability’ of this matrix family using the ‘sign stability’ 
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matrices. In what follows, it is shown that ecological sign stable matrices can still possess 
superior robustness properties even under norm bounded perturbations, in which 
perturbations in structural zeroes are also allowed in ecological sign stable matrices.   
Towards this objective, the stability robustness measures of linear state space systems as 
discussed in [39] and [2] are considered. In other words, a linear state space plant matrix A, 
which is assumed to be Hurwitz stable, is considered. Then assuming a perturbation matrix 
E in the A matrix, the question as to how much of norm of the perturbation matrix E can be 
tolerated to maintain stability is asked. Note that in this norm bounded perturbation 
discussion, the elements of the perturbation matrix can vary in various directions without 
any restrictions on the signs of the elements of that matrix. When bounds on the norm of E 
are given to maintain stability, it is labeled as robust stability for unstructured, norm 
bounded uncertainty. We now briefly recall two measures of robustness available in the 
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In other words, a unit norm, normal ecological sign stable matrix is more robust that a unit 
norm, normal non-ecological sign stable Hurwitz stable matrix. 
The second norm bound based on the solution of the Lyapunov matrix equation [7] is given 
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This means that for any given value of μp, we can, by mere observation, determine a corresponding 
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This gives impetus to design controllers that drive the closed loop system to a target matrix. 
Towards this objective, an algorithm for the design of a controller based on concepts from 
ecological sign stability is now presented. 
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methods in frequency domain such as H∞ and μ-synthesis., Though these methods perform 
well in frequency domain, they become very conservative when applied to the problem of 
accommodating real parameter uncertainty. On the other hand, there are very limited robust 
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uncertainty [41-47]. Even these very few methods tend to be complex and demand some 
specific structure to the real parameter uncertainty (such as matching conditions). Therefore, 
as an alternative to existing methods, the distinct feature of this control design method 
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where the closed loop system 

 n n n m m n cln nA B G A× × × ×+ =  (23) 

possesses a desired robustness bound μ (there is no restriction on the value this bound can 
assume).  
Since eigenvalue distribution, condition number (normality) and robust stability properties 
have established the superiority of target matrices, they become an obvious choice for the 
closed loop system matrix Acl . Note that the desired bound μ= μd = μp. Therefore, the robust 
control design method proposed in the next section addresses the three viewpoints of robust 
stability simultaneously!  

4.3.2 Robust control design algorithm 
Consider the LTI system 

 x Ax Bu= +                                                                 

Then, for a full-state feedback controller, the closed loop system matrix is given by  

 
( )

                                        Let    
nxn nxm mxn clnxn t

cl a

A B G A A
A A A

+ = =

− =
 (24) 

The control design method is classified as follows: 
1. Determination of Existence of the Controller[38] 
2. Determination of Appropriate Closed loop System[38] 
3. Determination of Control Gain Matrix[48] 
Following example illustrates this simple and straightforward control design method. 
Application: Satellite formation flying control problem 
 The above control algorithm is now illustrated for the application discussed in [32],[33] and 
[49].  
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where , ,x x y and y are the state variables, Tx and Ty are the control variables. 
For example, when ω = 1, the system becomes  
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Clearly, the first two rows of Acl cannot be altered and hence a target matrix with all non-
zero elements cannot be achieved. Therefore, a controller such that the closed loop system 
has as many features of a target SS matrix as possible is designed as given below. 
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Accordingly, an ecological sign stable closed loop system is chosen such that 
i The closed loop matrix has as many pure predator-prey links as possible. 
ii It also has as many negative diagonal elements as possible. 
Taking the above points into consideration, the following sign pattern is chosen which is 
appropriate for the given A and B matrices: 
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The magnitudes of the entries of the above sign matrix are decided by the stability 
robustness analysis theorem discussed previously i.e., 
i All non-zero aii are identical. 
ii aij = – aji for all non-zero aij else aij = aji = 0 
Hence, all the pure predator-prey links are of equal interaction strengths and the non-zero 
diagonal elements have identical self-regulatory intensities. Using the algorithm given 
above, the gain matrix is computed as shown below.  
From the algorithm, 

1.0 0 1.0 0
0 4.0 0 1.0esG
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The closed loop matrix Acl (= A+BGes) is sign-stable and hence can tolerate any amount of 
variation in the magnitudes of the elements with the sign pattern kept constant.  
In this application, it is clear that all non-zero elements in the open loop matrix (excluding 
elements A13 and A24 since they are dummy states used to transform the system into a set of 
first order differential equations) are functions of the angular velocity ω. Hence, real life 
perturbations in this system occur only due to variation in angular velocity ω. Therefore, a 
perturbed satellite system is simply an A matrix generated by a different ω. This means that 
not every randomly chosen matrix represents a physically perturbed system and that for 
practical purposes, stability of the matrices generated as mentioned above (by varying ω) is 
sufficient to establish the robustness of the closed loop system. It is only because of the 
ecological perspective that these structural features of the system are brought to light. Also, 
it is the application of these ecological principles that makes the control design for satellite 
formation flying this simple and insightful.  
Ideally, we would like At to be the eventual closed loop system matrix. However, it may be 
difficult to achieve this objective for any given controllable pair (A,B). Therefore, we propose 
to achieve a closed loop system matrix that is close to At. Thus the closed loop system is 
expressed as 

 cl tA A BG A AΔ= + = +  (26) 

Noting that ideally we like to aim for ∆A = 0, we impose this condition. Then, Acl = At = 
A+BG. 
i. When B is square and invertible: As given previously,  

cl tA A=  and ( )1
tG B A A−= −  
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where the closed loop system 

 n n n m m n cln nA B G A× × × ×+ =  (23) 

possesses a desired robustness bound μ (there is no restriction on the value this bound can 
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The control design method is classified as follows: 
1. Determination of Existence of the Controller[38] 
2. Determination of Appropriate Closed loop System[38] 
3. Determination of Control Gain Matrix[48] 
Following example illustrates this simple and straightforward control design method. 
Application: Satellite formation flying control problem 
 The above control algorithm is now illustrated for the application discussed in [32],[33] and 
[49].  
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ii. When B is not square, but has full rank: 
Consider B†, the pseudo inverse of B 

where, for n m , if n m,B × > B† = ( ) 1T TB B B
−

 

Then G =  B† ( )tA A−  
Because of errors associated with pseudo inverse operation, the expression for the closed 
loop system is as follows [34]: 

tA E A BGΔ+ = +  

 ( ) ( )
1T T

t tA E A B B B B A AΔ
−

+ = + −  (27) 

Let ( ) 1T T
augB B B B B

−
=  

Then ( ) ( ) ( ) ( ) ( )( )t aug t t aug t aug tE A A B A A A A B A A B I A AΔ = − + − = − − + − = − −  

 ( )( )aug tE B I A AΔ∴ = − −  (28) 

which should be as small as possible. Therefore, the aim is to minimize the norm of ∆E. 
Thus, for a given controllable pair (A,B), we use the elements of the desired closed loop 
matrix At as design variables to minimize the norm of ∆E. 
We now apply this control design method to aircraft longitudinal dynamics problem.  
Application: Aircraft flight control 
Consider the following short period mode of the longitudinal dynamics of an aircraft [50]. 
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Norm bound 0.2079 0.3181 0.3181426 
The open loop matrix properties are as follows: 
Note that the open loop system matrix is stable and has a Lyapunov based robustness 
bound μop = 0.2079.  
Now for the above controllable pair (A,B), we proceed with the proposed control design 
procedure discussed before, with the target PS matrix At elements as design variables, which 
very quickly yields the following results: 
At is calculated by minimizing the norm of σmax (∆E). 

Robust Stability and Control of Linear Interval Parameter Systems  
Using Quantitative (State Space) and Qualitative (Ecological) Perspectives  

 

63 

Here ( ) 4
max 1.2381 10Eσ Δ −= ×  

For this value, following are the properties of the target matrix.  
From the expression for G, we get     

[ ]0.5843 0.0265G = − −  

With this controller, the closed loop matrix Acl is determined. 
It is easy to observe that the eventual closed loop system matrix is extremely close to the 
target PS matrix (since σmax (∆E) ≈0) and hence the resulting robustness bounds can be 
simply read off from the diagonal elements of the target SS matrix, which in this example is 
also equal to the eventual closed loop system matrix. As expected, this robustness measure 
of the closed loop system is appreciably greater than the robustness measure of the open 
loop system.  
This robust controller methodology thus promises to be a desirable alternative to the other 
robustness based controllers encompassing many fields of application. 

5. Conclusions and future directions 
In this book chapter, robust control theory is presented essentially from a state space 
perspective. We presented the material in two distinct parts. In the first part of the chapter, 
robust control theory is presented from a quantitative (engineering) perspective, making 
extensive use of state space models of dynamic systems. Both robust stability analysis as 
well as control design were addressed and elaborated. Robust stability analysis involved 
studying and quantifying the tolerable bounds for maintaining the stability of a nominally 
stable dynamic system. Robust control design dealt with the issue of synthesizing a 
controller to keep the closed loop systems stable under the presence of a given set of 
perturbations. This chapter focused on characterizing the perturbations essentially as `real 
parameter’ perturbations and all the techniques presented accommodate this particular 
modeling error. In the second part of the chapter, robustness is treated from a completely 
new perspective, namely from concepts of Population (Community) Ecology, thereby 
emphasizing the `qualitative’ nature of the stability robustness problem. In this connection, 
the analysis and design aspects were directed towards studying the role of `signs’ of the 
elements of the state space matrices in maintaining the stability of the dynamic system. Thus 
the concept of ‘sign stability’ from the field of ecology was brought out to the engineering 
community. This concept is relatively new to the engineering community. The analysis and 
control design for engineering systems using ecological principles as presented in this 
chapter is deemed to spur exciting new research in this area and provide new directions for 
future research. In particular, the role of `interactions and interconnections’ in engineering 
dynamic systems is shown to be of paramount importance in imparting robustness to the 
system and more research is clearly needed to take full advantage of these promising ideas. 
This research is deemed to pave the way for fruitful collaboration between population 
(community) ecologists and control systems engineers.  
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Robust H∞ PID Controller Design Via  
LMI Solution of Dissipative Integral 

Backstepping with State Feedback Synthesis 
Endra Joelianto 

Bandung Institute of Technology 
Indonesia 

1. Introduction    
PID controller has been extensively used in industries since 1940s and still the most often 
implemented controller today. The PID controller can be found in many application areas: 
petroleum processing, steam generation, polymer processing, chemical industries, robotics, 
unmanned aerial vehicles (UAVs) and many more. The algorithm of PID controller is a 
simple, single equation relating proportional, integral and derivative parameters. 
Nonetheless, these provide good control performance for many different processes. This 
flexibility is achieved through three adjustable parameters of which values can be selected to 
modify the behaviour of the closed loop system. A convenient feature of the PID controller 
is its compatibility with enhancement that provides higher capabilities with the same basic 
algorithm. Therefore the performance of a basic PID controller can be improved through 
judicious selection of these three values.  
Many tuning methods are available in the literature, among with the most popular 
method the Ziegler-Nichols (Z-N) method proposed in 1942 (Ziegler & Nichols, 1942). A 
drawback of many of those tuning rules is that such rules do not consider load 
disturbance, model uncertainty, measurement noise, and set-point response 
simultaneously. In general, a tuning for high performance control is always accompanied 
by low robustness (Shinskey, 1996). Difficulties arise when the plant dynamics are 
complex and poorly modeled or, specifications are particularly stringent. Even if a 
solution is eventually found, the process is likely to be expensive in terms of design time. 
Varieties of new methods have been proposed to improve the PID controller design, such 
as analytical tuning (Boyd & Barrat, 1991; Hwang & Chang, 1987), optimization based 
(Wong & Seborg, 1988; Boyd & Barrat, 1991; Astrom & Hagglund, 1995), gain and phase 
margin (Astrom & Hagglund, 1995; Fung et al., 1998). Further improvement of the PID 
controller is sought by applying advanced control designs (Ge et al., 2002; Hara et al., 
2006; Wang et al., 2007; Goncalves et al., 2008).  
In order to design with robust control theory, the PID controller is expressed as a state 
feedback control law problem that can then be solved by using any full state feedback 
robust control synthesis, such as Guaranteed Cost Design using Quadratic Bound (Petersen 
et al., 2000), H∞ synthesis (Green & Limebeer, 1995; Zhou & Doyle, 1998), Quadratic 
Dissipative Linear Systems (Yuliar et al., 1997) and so forth. The PID parameters selection by 
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transforming into state feedback using linear quadratic method was first proposed by 
Williamson and Moore in (Williamson & Moore, 1971). Preliminary applications were 
investigated in (Joelianto & Tomy, 2003) followed the work in (Joelianto et al., 2008) by 
extending the method in (Williamson & Moore, 1971) to H∞ synthesis with dissipative 
integral backstepping. Results showed that the robust H∞ PID controllers produce good 
tracking responses without overshoot, good load disturbance responses, and minimize the 
effect of plant uncertainties caused by non-linearity of the controlled systems.  
Although any robust control designs can be implemented, in this paper, the investigation is 
focused on the theory of parameter selection of the PID controller based on the solution of 
robust H∞ which is extended with full state dissipative control synthesis and integral 
backstepping method using an algebraic Riccati inequality (ARI). This paper also provides 
detailed derivations and improved conditions stated in the previous paper (Joelianto & 
Tomy, 2003)  and (Joelianto et al., 2008). In this case, the selection is made via control system 
optimization in robust control design by using linear matrix inequality (LMI) (Boyd et al., 
1994; Gahinet & Apkarian, 1994). LMI is a convex optimization problem which offers a 
numerically tractable solution to deal with control problems that may have no analytical 
solution. Hence, reducing a control design problem to an LMI can be considered as a 
practical solution to this problem (Boyd et al., 1994). Solving robust control problems by 
reducing to LMI problems has become a widely accepted technique (Balakrishnan & Wang, 
2000). General multi objectives control problems, such as H2 and H∞ performance, peak to 
peak gain, passivity, regional pole placement and robust regulation are notoriously difficult, 
but these can be solved by formulating the problems into linear matrix inequalities (LMIs) 
(Boyd et al., 1994; Scherer et al., 1997)).  
The objective of this paper is to propose a parameter selection technique of PID controller 
within the framework of robust control theory with linear matrix inequalities. This is an 
alternative method to optimize the adjustment of a PID controller to achieve the 
performance limits and to determine the existence of satisfactory controllers by only using 
two design parameters instead of three well known parameters in the PID controller. By 
using optimization method, an absolute scale of merits subject to any designs can be 
measured.  The advantage of the proposed technique is implementing an output feedback 
control (PID controller) by taking the simplicity in the full state feedback design. The 
proposed technique can be applied either to a single-input-single-output (SISO) or to a 
multi-inputs-multi-outputs (MIMO) PID controller.  
The paper is organised as follows. Section 2 describes the formulation of the PID controller 
in the full state feedback representation. In section 3, the synthesis of H∞ dissipative integral 
backstepping is applied to the PID controller using two design parameters. This section also 
provides a derivation of the algebraic Riccati inequality (ARI) formulation for the robust 
control from the dissipative integral backstepping synthesis. Section 4 illustrates an 
application of the robust PID controller for time delay uncertainties compensation in a 
network control system problem.  Section 5 provides some conclusions. 

2. State feedback representation of PID controller 
In order to design with robust control theory, the PID controller is expressed as a full state 
feedback control law. Consider a single input single output linear time invariant plant 
described by the linear differential equation 
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with some uncertainties in the plant which will be explained later. Here, the states nx R∈  
are the solution of (1), the control signal 1u R∈  is assumed to be the output of a PID 
controller with input 1y R∈ . The PID controller for regulator problem is of the form 
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( ) ( ) ( ) ( ) ( )
t du t K y t d t K y t K y t

dt
= + +∫  (2) 

which is an output feedback control system and 1 /p iK K T= , 2 pK K= , 3 p dK K T=  of which 
pK , iT  and dT  denote proportional gain, time integral and time derivative of the well 

known PID controller respectively. The structure in equation (2) is known as the standard 
PID controller (Astrom & Hagglund, 1995).  
The control law (2) is expressed as a state feedback law using (1) by differentiating the plant 
output y as follows 
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This means that the derivative of the control signal (2) may be written as 

 3 2 2(1 )K C B u− − 2
3 2 2 2 1 2( )K C A K C A K C x+ + − 3 2 2 2 2 2( ) 0K C AB K C B u+ =  (3) 

Using the notation K̂  as a normalization of K , this can be written in more compact form 

 1 2 3
ˆ ˆ ˆ ˆ[ ]K K K K= 1

3 2 2 1 2 3(1 ) [ ]K C B K K K−= −  (4)                       

or K̂ cK=  where c  is a scalar. This control law is then given by 

 2
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Denote 2
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uK K B C B A C= , the block diagram 

of the control law (5) is shown in Fig. 1. In the state feedback representation, it can be seen 
that the PID controller has interesting features. It has state feedback in the upper loop and 
pure integrator backstepping in the lower loop. By means of the internal model principle 
(IMP) (Francis & Wonham, 1976; Joelianto & Williamson, 2009), the integrator also 
guarantees that the PID controller will give zero tracking error for a step reference signal. 
Equation (5) represents an output feedback law with constrained state feedback. That is, the 
control signal (2) may be written as 

 a a au K x=  (6) 
where 

au u= , a
x

x
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3 2 2 2 1 2( )K C A K C A K C x+ + − 3 2 2 2 2 2( ) 0K C AB K C B u+ =  (3) 

Using the notation K̂  as a normalization of K , this can be written in more compact form 
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3 2 2 1 2 3(1 ) [ ]K C B K K K−= −  (4)                       

or K̂ cK=  where c  is a scalar. This control law is then given by 

 2
2 2 2

ˆ[ ( ) ]T T T T T Tu K C A C A C x= + 2 2 2 2
ˆ[0 ]T T T T T TK B C B A C u   (5) 

Denote 2
2 2 2

ˆ[ ( ) ]T T T T T T
xK K C A C A C=  and 2 2 2 2

ˆ[0 ]T T T T T T
uK K B C B A C= , the block diagram 

of the control law (5) is shown in Fig. 1. In the state feedback representation, it can be seen 
that the PID controller has interesting features. It has state feedback in the upper loop and 
pure integrator backstepping in the lower loop. By means of the internal model principle 
(IMP) (Francis & Wonham, 1976; Joelianto & Williamson, 2009), the integrator also 
guarantees that the PID controller will give zero tracking error for a step reference signal. 
Equation (5) represents an output feedback law with constrained state feedback. That is, the 
control signal (2) may be written as 
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x
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Arranging the equation and eliminating the transpose lead to  
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K̂= Γ  (7) 

The augmented system equation is obtained from (1) and (7) as follows 
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Fig. 1. Block diagram of state space representation of PID controller 

Equation (6), (7) and (8) show that the PID controller can be viewed as a state variable 
feedback law for the original system augmented with an integrator at its input. The 
augmented formulation also shows the same structure known as the integral backstepping 
method (Krstic et al., 1995) with one pure integrator. Hence, the selection of the parameters 
of the PID controller (6) via full state feedback gain is inherently an integral backstepping 
control problems. The problem of the parameters selection of the PID controller becomes an 
optimal problem once a performance index of the augmented system (8) is defined. The 
parameters of the PID controller are then obtained by solving equation (7) that requires the 
inversion of the matrix Γ . Since Γ  is, in general, not a square matrix, a numerical method 
should be used to obtain the inverse. 
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For the sake of simplicity, the problem has been set-up in a single-input-single-output 
(SISO) case. The extension of the method to a multi-inputs-multi-outputs (MIMO) case is 
straighforward. In MIMO PID controller, the control signal has dimension m , mu R∈  is 
assumed to be the output of a PID controller with input has dimension p ,  py R∈ . The 
parameters of the PID controller 1K , 2K , and 3K will be square matrices with appropriate 
dimension. 

3. H∞ dissipative integral backstepping synthesis 
The backstepping method developed by (Krstic et al., 1995) has received considerable 
attention and has become a well known method for control system designs in the last 
decade. The backstepping design is a recursive algorithm that steps back toward the control 
input by means of integrations. In nonlinear control system designs, backstepping can be 
used to force a nonlinear system to behave like a linear system in a new set of coordinates 
with flexibility to avoid cancellation of useful nonlinearities and to focus on the objectives of 
stabilization and tracking. Here, the paper combines the advantage of the backstepping 
method, dissipative control and H∞ optimal control for the case of parameters selection of 
the PID controller to develop a new robust PID controller design.  
Consider the single input single output linear time invariant plant in standard form used in  
H∞ performance by the state space equation 
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( ) ( ) ( ) ( )

x t Ax t B w t B u t x x
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 (9) 

where nx R∈  denotes the state vector, 1u R∈  is the control input, pw R∈  is an external 
input and represents driving signals that generate reference signals, disturbances, and 
measurement noise, 1y R∈  is the plant output, and mz R∈  is a vector of output signals 
related to the performance of the control system. 
Definition 1. 
A system is dissipative (Yuliar et al., 1998) with respect to supply rate ( ( ), ( ))r z t w t  for each 
initial condition 0x  if there exists a storage function V , : nV R R+→  satisfies the inequality 

 
1

0

0 1( ( )) ( ( ), ( )) ( ( ))
t

t

V x t r z t w t dt V x t+ ≥∫ , 1 0( , )t t R+∀ ∈ , 0
nx R∈  (10) 

and 0 1t t≤  and all trajectories ( , ,x y z ) which satisfies (9). 
The supply rate function ( ( ), ( ))r z t w t  should be interpreted as the supply delivered to the 

system. If in the interval 0 1[ , ]t t  the integral 
1

0

( ( ), ( ))
t

t

r z t w t dt∫  is positive then work has been 

done to the system. Otherwise work is done by the system. The supply rate determines not 
only the dissipativity of the system but also the required performance index of the control 
system. The storage function V generalizes the notion of an energy function for a dissipative 
system. The function characterizes the change of internal storage 1 0( ( )) ( ( ))V x t V x t−  in any 
interval 0 1[ , ]t t , and ensures that the change will never exceed the amount of the supply into 
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the system. The dissipative method provides a unifying tool as index performances of 
control systems can be expressed in a general supply rate by selecting values of the supply 
rate parameters. 
The general quadratic supply rate function (Hill & Moylan, 1977) is given by the following 
equation 

 1( , ) ( 2 )
2

T T Tr z w w Qw w Sz z Rz= + +  (11) 

where Q  and R are symmetric matrices and 

 11 11 11 11( ) ( ) ( ) ( ) ( )T T TQ x Q SD x D x S D x RD x= + + +   

such that ( ) 0Q x >  for nx R∈  and 0R ≤  and mininf { ( ( ))} 0nx R Q x k∈ σ = > . This general 
supply rate represents general problems in control system designs by proper selection of 
matrices Q , R  and S  (Hill & Moylan, 1977; Yuliar et al., 1997): finite gain (H∞) 
performance ( 2Q I= γ , 0S =  and R I= − ); passivity ( 0Q R= =  and S I= );  and mixed H∞-
positive real performance ( 2Q I= θγ , R I= −θ  and (1 )S I= − θ  for [0,1]θ∈ ). 
For the PID control problem in the robust control framework, the plant ( Σ ) is given by the 
state space equation 

 
1 2 0

1

12

( ) ( ) ( ) ( ), (0)
( )

( )
( )

x t Ax t B w t B u t x x
C x t

z t
D u t

= + + =⎧
⎪= ⎛ ⎞⎨ = ⎜ ⎟⎪

⎝ ⎠⎩

Σ  (12) 

with 11 0D =  and 0γ >  with the quadratic supply rate function for H∞ performance  

 21( , ) ( )
2

T Tr z w w w z z= γ −  (13) 

Next the plant ( Σ ) is added with integral backstepping on the control input as follows 

 
1 2

1

12

( ) ( ) ( ) ( )
( ) ( )

( )
( ) ( )

( )

a

a

x t Ax t B w t B u t
u t u t

C x t
z t D u t

u t

= + +
=

⎛ ⎞
⎜ ⎟= ⎜ ⎟
⎜ ⎟ρ⎝ ⎠

 (14) 

where ρ  is the parameter of the integral backstepping which act on the derivative of the 
control signal ( )u t . In equation (14), the parameter 0ρ >  is a tuning parameter of the PID 
controller in the state space representation to determine the rate of the control signal. Note 
that the standard PID controller in the state feedback representation in the equations (6), (7) 
and (8) corresponds to the integral backstepping parameter 1ρ = . Note that, in this design 
the gains of the PID controller are replaced by two new design parameters namely γ  and ρ  
which correspond to the robustness of the closed loop system and the control effort. 
The state space representation of the plant with an integrator backstepping in equation (14) 
can then be written in the augmented form as follows 
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⎡ ⎤ ⎡ ⎤

⎡ ⎤⎢ ⎥ ⎢ ⎥= +⎢ ⎥⎢ ⎥ ⎢ ⎥⎣ ⎦⎢ ⎥ ⎢ ⎥ρ⎣ ⎦ ⎣ ⎦

 (15) 

The compact form of the augmented plant ( aΣ ) is given by 
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0aD
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Now consider the full state gain feedback of the form 

 ( ) ( )a a au t K x t=  (17) 

The objective is then to find the gain feedback aK  which stabilizes the augmented plant 
( aΣ ) with respect to the dissipative function V  in (10) by a parameter selection of the 
quadratic supply rate (11) for a particular control performance. Fig. 2. shows the system 
description of the augmented system of the plant and the integral backstepping with the 
state feedback control law. 
 

aaa xKu =

aΣ
ax

y

z
w

au

 
Fig. 2. System description of the augmented system 
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The following theorem gives the existence condition and the formula of the stabilizing gain 
feedback aK . 
Theorem 2. 
Given 0γ >  and 0ρ > . If there exists 0TX X= >  of the following Algebraic Riccati 
Inequality 

 2 2 2 1 1

2

0 0 0 0
0 0 0 1 0 00

T T

T

A B A B BX X X X
B

− −
⎡ ⎤ ⎛ ⎞⎡ ⎤⎡ ⎤ ⎡ ⎤

+ − ρ − γ +⎜ ⎟⎢ ⎥ ⎢ ⎥⎢ ⎥ ⎢ ⎥⎜ ⎟⎢ ⎥⎢ ⎥⎣ ⎦ ⎣ ⎦ ⎣ ⎦⎝ ⎠⎣ ⎦

1 1

12 12

0
0

0

T

T

C C

D D

⎡ ⎤
<⎢ ⎥
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 (18) 

Then the full state feedback gain 

 [ ]2 2 0 1T
a aK B X X− −= −ρ = −ρ  (19) 

leads to || ||∞< γΣ  
Proof. 
Consider the standard system (9) with the full state feedback gain  

( ) ( )u t Kx t=   

and the closed loop system 

1 0

11

( ) ( ) ( ),   (0)

( ) ( ) ( )

u

u

x t A x t B w t x x

z t C x t D w t

= + =

= +
 

where 11 0D = , 2
uA A B K= + , 1 12

uC C D K= +  is strictly dissipative with respect to the 
quadratic supply rate (11) such that the matrix uA  is asymptotically stable. This implies that 
the related system 

1 0

1

( ) ( ) ( ),   (0)
( ) ( )

x t Ax t B w t x x
z t C x t

= + =

=
 

where 1
1

u uA A B Q SC−= − , 1/2
1 1B B Q−=  and 1 1/2

1 ( )T uC S Q S R C−= −  has H∞ norm strictly 
less than 1, which implies there exits a matrix 0X >  solving the following Algebraic Riccati 
Inequality (ARI) (Petersen et al. 1991) 

 1 1 1 1 0T T TA X XA XB B X C C+ + + <  (20) 

In terms of the parameter of the original system, this can be written as 

 ( )u T uA X XA+ + 1
1 1[ ( ) ] [ ]u T T T uXB C S Q B X SC−− − − ( ) 0u T uC RC <  (21)   

Define the full state feedback gain  

 ( )1 1
2 1 12 12 1(

T
K E B B Q SD X D RC− −= − − +  (22) 

By inserting  
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into (21) , completing the squares and removing the gain K give the following ARI  
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 (23) 

Using the results (Scherer, 1990), if there exists 0X >  satisfies (23) then K  given by (22) is 
stabilizing such that the closed loop system 2

uA A B K= +  is asymptotically stable. 
Now consider the augmented plant with integral backstepping in (16). In this case, 

[ ]1 0 0 0 T
aD = . Note that 2 0T

a aD C =  and 1 0aD = . The H∞ performance is satisfied by 
setting the quadratic supply rate (11) as follow:  

2 2 2 2
1

2 2 2 2

0,   ,   ,   ,

( )

T T
a a a a a

T T
a a a a
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= = − = = = =
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Inserting the setting to the ARI (23) yields  
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The equation can then be written in compact form  

 2 2( ) 0T T T T
a a a a w w a aXA A X X B B B B X C C− −+ − ρ − γ + <  (24) 

this gives (18). The full state feedback gain is then found by inserting the setting into (22)  

( )1 1
2 2( )T T

a a w a a aK E B B Q SD X D RC− −= − − −  

that gives || ||∞< γΣ  (Yuliar et al., 1998; Scherer & Weiland, 1999). This completes the 
proof. 
The relation of the ARI solution (8) to the ARE solution is shown in the following. Let the 
transfer function of the plant (9) is represented by 

11 12

21 22

( ) ( ) ( ) ( )
( ) ( ) ( ) ( )

z s P s P s w s
y s P s P s u s
⎡ ⎤ ⎡ ⎤ ⎡ ⎤

=⎢ ⎥ ⎢ ⎥ ⎢ ⎥
⎣ ⎦ ⎣ ⎦ ⎣ ⎦

 

and assume the following conditions hold: 
(A1). 2 2( , , )A B C  is stabilizable and detectable 
(A2). 22 0D =  
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The following theorem gives the existence condition and the formula of the stabilizing gain 
feedback aK . 
Theorem 2. 
Given 0γ >  and 0ρ > . If there exists 0TX X= >  of the following Algebraic Riccati 
Inequality 

 2 2 2 1 1

2

0 0 0 0
0 0 0 1 0 00
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A B A B BX X X X
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− −
⎡ ⎤ ⎛ ⎞⎡ ⎤⎡ ⎤ ⎡ ⎤

+ − ρ − γ +⎜ ⎟⎢ ⎥ ⎢ ⎥⎢ ⎥ ⎢ ⎥⎜ ⎟⎢ ⎥⎢ ⎥⎣ ⎦ ⎣ ⎦ ⎣ ⎦⎝ ⎠⎣ ⎦

1 1

12 12
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D D
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⎢ ⎥⎣ ⎦
 (18) 

Then the full state feedback gain 

 [ ]2 2 0 1T
a aK B X X− −= −ρ = −ρ  (19) 

leads to || ||∞< γΣ  
Proof. 
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u

x t A x t B w t x x

z t C x t D w t

= + =

= +
 

where 11 0D = , 2
uA A B K= + , 1 12

uC C D K= +  is strictly dissipative with respect to the 
quadratic supply rate (11) such that the matrix uA  is asymptotically stable. This implies that 
the related system 

1 0

1

( ) ( ) ( ),   (0)
( ) ( )

x t Ax t B w t x x
z t C x t

= + =

=
 

where 1
1

u uA A B Q SC−= − , 1/2
1 1B B Q−=  and 1 1/2

1 ( )T uC S Q S R C−= −  has H∞ norm strictly 
less than 1, which implies there exits a matrix 0X >  solving the following Algebraic Riccati 
Inequality (ARI) (Petersen et al. 1991) 

 1 1 1 1 0T T TA X XA XB B X C C+ + + <  (20) 

In terms of the parameter of the original system, this can be written as 

 ( )u T uA X XA+ + 1
1 1[ ( ) ] [ ]u T T T uXB C S Q B X SC−− − − ( ) 0u T uC RC <  (21)   

Define the full state feedback gain  

 ( )1 1
2 1 12 12 1(

T
K E B B Q SD X D RC− −= − − +  (22) 
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2 1 12
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−
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(A3). 12D  has full column rank, 21D  has full row rank 
(A4). 12( )P s and 21( )P s  have no invariant zero on the imaginary axis 
From (Gahinet & Apkarian, 1994), equivalently the Algebraic Riccati Equation (ARE) given 
by the formula 

 
1 1

12 1 1 1 12 1 1 1
1 1

1 1 1 1

( ) ( )

( ) 0

T T

T T T T

X A BE D RC B QSC A BE D RC B QSC X

X BE B B Q B X C D RDC

− −

− −

− − + − − −

− + =
 (25) 

has a (unique) solution 0X∞ ≥ , such that  

1
2 1 1 1 12[ ( )]TA B K B Q B X S C D K−+ + − +   

is asymptotically stable. The characterization of feasible γ  using the Algebraic Riccati 
Inequality (ARI) in (24) and ARE in (25) is immediately where the solution of ARE ( X∞ ) and 
ARI ( 0X ) satisfy 00 X X∞≤ < , 0 0 0TX X= >  (Gahinet & Apkarian, 1994).  
The Algebraic Riccati Inequality (24) by Schur complement implies 

 2

2

0 0

0

T T
a a a a a w

T
a
T
w

A X XA C C XB XB

B X I

B X I

⎡ ⎤+ +
⎢ ⎥

ρ <⎢ ⎥
⎢ ⎥

−γ⎢ ⎥⎣ ⎦

 (26) 

Ther problem is then to find 0X > such that the LMI given in (26) holds. The LMI problem 
can be solved using the method (Gahinet & Apkarian, 1994) which implies the solution of 
the ARI (18) (Liu & He, 2006).  The parameters of the PID controller which are designed by 
using H∞  dissipative integral backstepping can then be found by using the following 
algorithm: 
1. Select 0ρ >   
2. Select 0γ >  
3. Find 0 0X >  by solving LMI in (26) 
4. Find aK  using (19) 
5. Find K̂  using (7) 
6. Compute 1K , 2K  and 3K  using (4) 
7. Apply in the PID controller (2) 
8. If it is needed to achieve γ  minimum, repeat step 2 and 3 until minγ = γ  then follows the 

next step  

4. Delay time uncertainties compensation 
Consider the plant given by a first order system with delay time which is common 
assumption in industrial process control and further assume that the delay time 
uncertainties belongs to an a priori known interval  

 1( ) ( )
1

LsY s e U s
s

−=
τ +

, [ , ]L a b∈  (27) 

The example is taken from (Joelianto et al., 2008) which represents a problem in industrial 
process control due to the implementation of industrial digital data communication via 
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ethernet networks with fieldbus topology from the controller to the sensor and the actuator 
(Hops et al., 2004; Jones, 2006, Joelianto & Hosana, 2009). In order to write in the state space 
representation, the delay time is approximated by using the first order Pade approximation 

 1 1( ) ( )
1 1

dsY s U s
s ds

− +
=
τ + +

, /2d L=  (28) 

In this case, the values of τ and d are assumed as follows: τ = 1 s and nomd  = 3 s. These pose 
a difficult problem as the ratio between the delay time and the time constant is greater than 
one ( ( / ) 1d τ > ). The delay time uncertainties are assumed in the interval [2,4]d∈ .  
The delay time uncertainty is separated from its nominal value by using linear fractional 
transformation (LFT) that shows a feedback connection between the nominal and the 
uncertainty block. 
 

θu θy

δ

u y
d

 
Fig. 3. Separation of nominal and uncertainty using LFT 

The delay time uncertainties can then be represented as 

nomd d= α + βδ , 1 1− < δ <  

0 1
,ud F

⎛ ⎞⎡ ⎤
= δ⎜ ⎟⎢ ⎥⎜ ⎟β α⎣ ⎦⎝ ⎠

 

After simplification, the delay time uncertainties of any known ranges have a linear 
fractional transformation (LFT) representation as shown in the following figure. 
 

θu θy

totG

δ

u y
 

Fig. 4. First order system with delay time uncertainty 



 Robust Control, Theory and Applications 

 

78 

(A3). 12D  has full column rank, 21D  has full row rank 
(A4). 12( )P s and 21( )P s  have no invariant zero on the imaginary axis 
From (Gahinet & Apkarian, 1994), equivalently the Algebraic Riccati Equation (ARE) given 
by the formula 

 
1 1

12 1 1 1 12 1 1 1
1 1

1 1 1 1

( ) ( )

( ) 0

T T

T T T T

X A BE D RC B QSC A BE D RC B QSC X

X BE B B Q B X C D RDC

− −

− −

− − + − − −

− + =
 (25) 

has a (unique) solution 0X∞ ≥ , such that  
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one ( ( / ) 1d τ > ). The delay time uncertainties are assumed in the interval [2,4]d∈ .  
The delay time uncertainty is separated from its nominal value by using linear fractional 
transformation (LFT) that shows a feedback connection between the nominal and the 
uncertainty block. 
 

θu θy

δ

u y
d

 
Fig. 3. Separation of nominal and uncertainty using LFT 

The delay time uncertainties can then be represented as 

nomd d= α + βδ , 1 1− < δ <  

0 1
,ud F

⎛ ⎞⎡ ⎤
= δ⎜ ⎟⎢ ⎥⎜ ⎟β α⎣ ⎦⎝ ⎠

 

After simplification, the delay time uncertainties of any known ranges have a linear 
fractional transformation (LFT) representation as shown in the following figure. 
 

θu θy

totG

δ

u y
 

Fig. 4. First order system with delay time uncertainty 



 Robust Control, Theory and Applications 

 

80 

The representation of the plant augmented with the uncertainty is 

 
1 2

1 11 12

2 21 22

( ) x x
tot

x x

A B B
A B

G s C D D
C D

C D D

⎡ ⎤
⎡ ⎤ ⎢ ⎥= =⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎢ ⎥⎣ ⎦

 (29) 

The corresponding matrices in (29) are 

11 0
1 1
x

x
A

A
⎡ ⎤

= ⎢ ⎥−⎣ ⎦
, 11 2

0 1
x x

x
B B

B
⎡ ⎤

= ⎢ ⎥
⎣ ⎦

, 11 0
0 1
x

x
C

C
⎡ ⎤

= ⎢ ⎥
⎣ ⎦

, 11 12

0 0
x x

x
D D

D
⎡ ⎤

= ⎢ ⎥
⎣ ⎦

 

In order to incorporate the integral backstepping design, the plant is then augmented with 
an integrator as follows 

11 11
2

0
1 1 0

0 0
0 0 0

x x

a

A B
A B

A
⎡ ⎤

⎡ ⎤ ⎢ ⎥= = −⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎢ ⎥⎣ ⎦

 

11
1 0

0
0

x

w

B
B

B
⎡ ⎤

⎡ ⎤ ⎢ ⎥= =⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎢ ⎥⎣ ⎦

, 

0
0

0
1

aB
I

⎡ ⎤
⎡ ⎤ ⎢ ⎥= =⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎢ ⎥⎣ ⎦

, 

11

12

0
0
0 0

x

a x

C
C D

⎡ ⎤
⎢ ⎥= ⎢ ⎥
⎢ ⎥⎣ ⎦

, 

2

0
0aD
⎡ ⎤
⎢ ⎥= ⎢ ⎥
⎢ ⎥ρ⎣ ⎦

 

The problem is then to find the solution 0X >  and 0γ >  of ARI (18) and to compute the full 
state feedback gain given by 

[ ]( )2 ( )
( ) ( ) 0 1

( )a a a
x t

u t K x t X
u t

− ⎡ ⎤
= = −ρ ⎢ ⎥

⎣ ⎦
 

which is stabilizing and leads to the infinity norm || ||∞< γΣ . 
The state space representation for the nominal system is given by 

1.6667 0.6667
1 0nomA

− −⎡ ⎤
= ⎢ ⎥
⎣ ⎦

, 1
0nomB
⎡ ⎤

= ⎢ ⎥
⎣ ⎦

,  [ ]1 0.6667nomC = −  
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In this representation, the performance of the closed loop system will be guaranteed for the 
specified delay time range with fast transient response (z). The full state feedback gain of the 
PID controller is given by the following equation 

[ ]( )
11

2 3 2

3 3

ˆ
1 ˆ1 1 0.6667
0 ˆ

KK
K K K
K K

⎡ ⎤⎡ ⎤ ⎢ ⎥⎡ ⎤⎢ ⎥ = − − ⎢ ⎥⎢ ⎥⎢ ⎥ ⎢ ⎥⎣ ⎦⎢ ⎥⎣ ⎦ ⎢ ⎥⎣ ⎦

 

For different γ , the PID parameters and transient performances, such as: settling time ( sT ) 
and rise time ( rT ) are calculated by using LMI (26) and presented in Table 1. For different ρ  
but fixed γ , the parameters are shown in Table 2. As comparison, the PID parameters are 
also computed by using the standard H∞ performance obtained by solving ARE in (25). The 
results are shown Table 3 and Table 4 for different γ  and different ρ  respectively. It can be 
seen from Table 1 and 2 that there is no clear pattern either in the settling time or the rise 
time. Only Table 1 shows that decreasing γ   decreases the value of the three parameters. On 
the other hand, the calculation using ARE shows that the settling time and the rise time are 
decreased by reducing γ  or ρ . Table 3 shows the same result with the Table 1 when the 
value of γ  is decreased. 
 

γ ρ Kp Ki Kd Tr (s) Ts 5% (s) 

0.1 1 0.2111 0.1768 0.0695 10.8 12.7 

0.248 1 0.3023 0.2226 0.1102 8.63  13.2 

0.997 1 0.7744 0.3136 0.2944 4.44 18.8 

1.27 1 10.471 0.5434 0.4090 2.59  9.27 

1.7 1 13.132 0.746 0.5191 1.93  13.1 

Table 1. Parameters and transient response of PID for different γ  with LMI 

 

γ ρ Kp Ki Kd Tr (s) Ts 5% (s) 

0.997 0.66 11.019 0.1064 0.3127 39.8 122 

0.997 0.77 0.9469 0.2407 0.3113 13.5 39.7 

0.997 1 0.7744 0.3136 0.2944 4.44 18.8 

0.997 1.24 0.4855 0.1369 0.1886 21.6 56.8 

0.997 1.5 0.2923 0.0350 0.1151 94.4 250 

Table 2. Parameters and transient response of PID for different ρ  with LMI 
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but fixed γ , the parameters are shown in Table 2. As comparison, the PID parameters are 
also computed by using the standard H∞ performance obtained by solving ARE in (25). The 
results are shown Table 3 and Table 4 for different γ  and different ρ  respectively. It can be 
seen from Table 1 and 2 that there is no clear pattern either in the settling time or the rise 
time. Only Table 1 shows that decreasing γ   decreases the value of the three parameters. On 
the other hand, the calculation using ARE shows that the settling time and the rise time are 
decreased by reducing γ  or ρ . Table 3 shows the same result with the Table 1 when the 
value of γ  is decreased. 
 

γ ρ Kp Ki Kd Tr (s) Ts 5% (s) 

0.1 1 0.2111 0.1768 0.0695 10.8 12.7 

0.248 1 0.3023 0.2226 0.1102 8.63  13.2 

0.997 1 0.7744 0.3136 0.2944 4.44 18.8 

1.27 1 10.471 0.5434 0.4090 2.59  9.27 

1.7 1 13.132 0.746 0.5191 1.93  13.1 

Table 1. Parameters and transient response of PID for different γ  with LMI 

 

γ ρ Kp Ki Kd Tr (s) Ts 5% (s) 

0.997 0.66 11.019 0.1064 0.3127 39.8 122 

0.997 0.77 0.9469 0.2407 0.3113 13.5 39.7 

0.997 1 0.7744 0.3136 0.2944 4.44 18.8 

0.997 1.24 0.4855 0.1369 0.1886 21.6 56.8 

0.997 1.5 0.2923 0.0350 0.1151 94.4 250 

Table 2. Parameters and transient response of PID for different ρ  with LMI 
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γ ρ Kp Ki Kd Tr (s) Ts 5% (s) 

0.1 1 0.2317 0.055 0.1228 55.1 143 

0.248 1 0.2319 0.0551 0.123 55.0 141 

0.997 1 0.2373 0.0566 0.126 53.8 138 

1.27 1 0.2411 0.0577 0.128 52.6 135 

1.7 1 0.2495 0.0601 0.1327 52.2 130 

Table 3. Parameters and transient response of PID for different γ  with ARE 
 

γ ρ Kp Ki Kd Tr (s) Ts 5% (s) 

0.997 0.66 0.5322 0.1396 0.2879 21.9 57.6 

0.997 0.77 0.4024 0.1023 0.2164 29.7 77.5 

0.997 1 0.2373 0.0566 0.126 39.1 138 

0.997 1.24 0.1480 0.0332 0.0777 91.0 234 

0.997 1.5 0.0959 0.0202 0.0498 150.0 383 

Table 4. Parameters and transient response of PID for different ρ  with ARE 
 

 
Fig. 5. Transient response for different γ  using LMI 
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Fig. 6.  Transient response for different ρ using LMI 

 

 
 

Fig. 7. Nyquist plot 0.248γ =  and 1ρ =  using LMI 
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Fig. 8. Nyquist plot 0.997γ =  and 0.66ρ =  using LMI  

 

 
 

Fig. 9. Transient response for different d using  LMI 
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Fig. 10. Transient response for different  bigger d  using LMI 

The simulation results are shown in Figure 5 and 6 for LMI, with γ  and ρ  are denoted by 
g  and r  respectively in the figure. The LMI method leads to faster transient response 

compared to the ARE method for all values of γ  and ρ .  Nyquist plots in Figure 7 and 8 
show that the LMI method has small gain margin. In general, it also holds for phase margin 
except at 0.997γ =  and 1.5ρ =  where LMI has bigger phase margin. 
In order to test the robustness to the specified delay time uncertainties, the obtained robust 
PID controller with parameter γ =0.1 and 1ρ =  is tested by perturbing the delay time in the 
range value of [1,4]d∈ . The results of using LMI are shown in Figure 9 and 10 respectively. 
The LMI method yields faster transient responses where it tends to oscillate at bigger time 
delay.  With the same parameters γ  and ρ , the PID controller is subjected to bigger delay 
time than the design specification. The LMI method can handle the ratio of delay time and 
time constant / 12L τ ≤  s while the ARE method has bigger ratio / 43L τ ≤  s. In summary, 
simulation results showed that LMI method produced fast transient response of the closed 
loop system with no overshoot and the capability in handling uncertainties. If the range of 
the uncertainties is known, the stability and the performance of the closed loop system will 
be guaranteed.  

5. Conclusion 
The paper has presented a model based method to select the optimum setting of the PID 
controller using robust H∞ dissipative integral backstepping method with state feedback 
synthesis. The state feedback gain is found by using LMI solution of Algebraic Riccati 
Inequality (ARI). The paper also derives the synthesis of the state feedback gain of robust H∞ 
dissipative integral backstepping method. The parameters of the PID controller are 
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calculated by using two new parameters which correspond to the infinity norm and the 
weighting of the control signal of the closed loop system.   
The LMI method will guarantee the stability and the performance of the closed loop system 
if the range of the uncertainties is included in the LFT representation of the model. The LFT 
representation in the design can also be extended to include plant uncertainties, 
multiplicative perturbation, pole clustering, etc. Hence, the problem will be considered as 
multi objectives LMI based robust H∞ PID controller problem. The proposed approach can 
be directly extended for MIMO control problem with MIMO PID controller. 
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1. Introduction  
The innate immune system provides a tactical response, signaling the presence of ‘non-self’ 
organisms and activating B cells to produce antibodies to bind to the intruders’ epitopic 
sites. The antibodies identify targets for scavenging cells that engulf and consume the 
microbes, reducing them to non-functioning units (Stengel et al., 2002b). The antibodies also 
stimulate the production of cytokines, complement factors and acute-phase response 
proteins that either damage an intruder’s plasma membrane directly or trigger the second 
phase of immune response. The innate immune system protects against many extracellular 
bacteria or free viruses found in blood plasma, lymph, tissue fluid, or interstitial space 
between cells, but it cannot clean out microbes that burrow into cells, such as viruses, 
intracellular bacteria, and protozoa (Janeway, 2005; Lydyard et al., 2000; Stengel et al., 
2002b). The innate immune system is a complex system and the obscure relationships 
between the immune system and the environment in which several modulatory stimuli are 
embedded (e.g. antigens, molecules of various origin, physical stimuli, stress stimuli).This 
environment is noisy because of the great amount of such signals. The immune noise has 
therefore at least two components: (a) the internal noise, due to the exchange of a network of 
molecular and cellular signals belonging to the immune system during an immune response 
or in the homeostasis of the immune system. The concept of the internal noise might be 
viewed in biological terms as a status of sub-inflammation required by the immune 
response to occur; (b) the external noise, the set of external signals that target the immune 
system (and hence that add noise to the internal one) during the whole life of an organism. 
For clinical treatment of infection, several available methods focus on killing the invading 
microbes, neutralizing their response, and providing palliative or healing care to other 
organs of the body. Few biological or chemical agents have just one single effect; for 
example, an agent that kills a virus may also damage healthy ‘self’ cells. A critical function 
of drug discovery and development is to identify new compounds that have maximum 
intended efficacy with minimal side effects on the general population. These examples 
include antibiotics as microbe killers; interferons as microbe neutralizers; interleukins, 
antigens from killed (i.e. non-toxic) pathogens, and pre-formed and monoclonal antibodies 
as immunity enhancers (each of very different nature); and anti-inflammatory and anti-
histamine compounds as palliative drugs (Stengel et al., 2002b). 
Recently, several models of immune response to infection (Asachenkov, 1994; Nowak & 
May, 2000; Perelson & Weisbuch, 1997; Rundell et al., 1995) with emphasis on the human-
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1. Introduction  
The innate immune system provides a tactical response, signaling the presence of ‘non-self’ 
organisms and activating B cells to produce antibodies to bind to the intruders’ epitopic 
sites. The antibodies identify targets for scavenging cells that engulf and consume the 
microbes, reducing them to non-functioning units (Stengel et al., 2002b). The antibodies also 
stimulate the production of cytokines, complement factors and acute-phase response 
proteins that either damage an intruder’s plasma membrane directly or trigger the second 
phase of immune response. The innate immune system protects against many extracellular 
bacteria or free viruses found in blood plasma, lymph, tissue fluid, or interstitial space 
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intracellular bacteria, and protozoa (Janeway, 2005; Lydyard et al., 2000; Stengel et al., 
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environment is noisy because of the great amount of such signals. The immune noise has 
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molecular and cellular signals belonging to the immune system during an immune response 
or in the homeostasis of the immune system. The concept of the internal noise might be 
viewed in biological terms as a status of sub-inflammation required by the immune 
response to occur; (b) the external noise, the set of external signals that target the immune 
system (and hence that add noise to the internal one) during the whole life of an organism. 
For clinical treatment of infection, several available methods focus on killing the invading 
microbes, neutralizing their response, and providing palliative or healing care to other 
organs of the body. Few biological or chemical agents have just one single effect; for 
example, an agent that kills a virus may also damage healthy ‘self’ cells. A critical function 
of drug discovery and development is to identify new compounds that have maximum 
intended efficacy with minimal side effects on the general population. These examples 
include antibiotics as microbe killers; interferons as microbe neutralizers; interleukins, 
antigens from killed (i.e. non-toxic) pathogens, and pre-formed and monoclonal antibodies 
as immunity enhancers (each of very different nature); and anti-inflammatory and anti-
histamine compounds as palliative drugs (Stengel et al., 2002b). 
Recently, several models of immune response to infection (Asachenkov, 1994; Nowak & 
May, 2000; Perelson & Weisbuch, 1997; Rundell et al., 1995) with emphasis on the human-
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immunodeficiency virus have been reported (Nowak et al., 1995; Perelson et al., 1993; 
Perelson et al., 1996; Stafford et al., 2000). Norbert Wiener (Wiener, 1948) and Richard 
Bellman (Bellman, 1983) appreciated and anticipated the application of mathematical 
analysis for treatment in a broad sense, and Swan made surveys on early optimal control 
applications to biomedical problems (Swan, 1981). Kirschner (Kirschner et al., 1997) offers an 
optimal control approach to HIV treatment, and intuitive control approaches are presented 
in (Bonhoeffer et al., 1997; De Boer & Boucher, 1996; Wein et al., 1998; Wodarz & Nowak, 
1999, 2000).  
The dynamics of drug response (pharmacokinetics) are modeled in several works 
(Robinson, 1986; van Rossum et al., 1986) and control theory is applied to drug delivery in 
other studies (Bell & Katusiime, 1980; Carson et al., 1985; Chizeck & Katona, 1985; Gentilini 
et al., 2001; Jelliffe, 1986; Kwong et al., 1995; Parker et al., 1996; Polycarpou & Conway, 1995; 
Schumitzky, 1986). Recently, Stengel (Stengel et al., 2002a) presented a simple model for the 
response of the innate immune system to infection and therapy, reviewed the prior method 
and results of optimization, and introduced a significant extension to the optimal control of 
enhancing the immune response by solving a two-point boundary-value problem via an 
iterative method. Their results show that not only the progression from an initially life-
threatening state to a controlled or cured condition but also the optimal history of 
therapeutic agents that produces that condition. In their study, the therapeutic method is 
extended by adding linear-optimal feedback control to the nominal optimal solution. 
However, the performance of quadratic optimal control for immune systems may be 
decayed by the continuous exogenous pathogen input, which is considered as an 
environmental disturbance of the immune system. Further, some overshoots may occur in 
the optimal control process and may lead to organ failure because the quadratic optimal 
control only minimizes a quadratic cost function that is only the integration of squares of 
states and allows the existence of overshoot (Zhou et al., 1996). 
Recently, a minimax control scheme of innate immune system is proposed by the dynamic 
game theory approach to treat the robust control with unknown disturbance and initial 
condition (Chen et al., 2008). They consider unknown disturbance and initial condition as a 
player who wants to destroy the immune system and a control scheme as another player to 
protect the innate immune system against the disturbance and uncertain initial condition. 
However, they assume that all state variables are available. It is not the case in practical 
application. 
In this study, a robust H∞ tracking control of immune response is proposed for therapeutic 
enhancement to track a desired immune response under stochastic exogenous pathogen 
input, environmental disturbances and uncertain initial states. Furthermore, the state 
variables may not be all available and the measurement is corrupted by noises too. 
Therefore, a state observer is employed for state estimation before state feedback control of 
stochastic immune systems. Since the statistics of these stochastic factors may be unknown 
or unavailable, the H∞ observer-based control methodology is employed for robust H∞ 
tracking design of stochastic immune systems. In order to attenuate the stochastic effects of 
stochastic factors on the tracking error, their effects should be considered in the stochastic 
H∞ tracking control procedure from the robust design perspective. The effect of all possible 
stochastic factors on the tracking error to a desired immune response, which is generated by 
a desired model, should be controlled below a prescribed level for the enhanced immune 
systems, i.e. the proposed robust H∞ tracking control need to be designed from the 
stochastic H∞ tracking perspective. Since the stochastic innate immune system is highly 
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nonlinear, it is not easy to solve the robust observer-based tracking control problem by the 
stochastic nonlinear H∞ tracking method directly. 
Recently, fuzzy systems have been employed to efficiently approximate nonlinear dynamic 
systems to efficiently treat the nonlinear control problem (Chen et al., 1999,2000; Li et al., 
2004; Lian et al., 2001). A fuzzy model is proposed to interpolate several linearized 
stochastic immune systems at different operating points to approximate the nonlinear 
stochastic innate immune system via smooth fuzzy membership functions. Then, with the 
help of fuzzy approximation method, a fuzzy H∞ tracking scheme is developed so that the 
H∞ tracking control of stochastic nonlinear immune systems could be easily solved by 
interpolating a set of linear H∞ tracking systems, which can be solved by a constrained 
optimization scheme via the linear matrix inequality (LMI) technique (Boyd, 1994) with the 
help of Robust Control Toolbox in Matlab (Balas et al., 2007). Since the fuzzy dynamic model 
can approximate any nonlinear stochastic dynamic system, the proposed H∞ tracking 
method via fuzzy approximation can be applied to the robust control design of any model of 
nonlinear stochastic immune system that can be T-S fuzzy interpolated. Finally, a 
computational simulation example is given to illustrate the design procedure and to confirm 
the efficiency and efficacy of the proposed H∞ tracking control method for stochastic 
immune systems under external disturbances and measurement noises. 

2. Model of innate immune response  
A simple four-nonlinear, ordinary differential equation for the dynamic model of infectious 
disease is introduced here to describe the rates of change of pathogen, immune cell and 
antibody concentrations and as an indicator of organic health (Asachenkov, 1994; Stengel et 
al., 2002a). In general, the innate immune system is corrupted by environmental noises. 
Further, some state variable cannot be measured directly and the state measurement may be 
corrupted by measurement noises. A more general dynamic model will be given in the 
sequel. 
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where x1 denotes the concentration of a pathogen that expresses a specific foreign antigen; x2 
denotes the concentration of immune cells that are specific to the foreign antigen; x3 denotes 
the concentration of antibodies that bind to the foreign antigen; x4 denotes the characteristic 
of a damaged organ [x4=0: healthy, x4 ≥ 1: dead]. The combined therapeutic control agents 
and the exogenous inputs are described as follows: u1 denotes the pathogen killer’s agent; u2 
denotes the immune cell enhancer; u3 denotes the antibody enhancer; u4 denotes the organ 
healing factor (or health enhancer); w1 denotes the rate of continuing introduction of 
exogenous pathogens; w2 ~ w4 denote the environmental disturbances or unmodeled errors 
and residues; w1 ~ w4 are zero mean white noises, whose covariances are uncertain or 
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unavailable; and a21(x4) is a nonlinear function that describes the mediation of immune cell 
generation by the damaged cell organ. And if there is no antigen, then the immune cell 
maintains the steady equilibrium value of x2*. The parameters have been chosen to produce 
a system that recovers naturally from the pathogen infections (without treatment) as a 
function of initial conditions during a period of times. Here, y1, y2, y3 are the measurements 
of the corresponding states; c1, c2, c3 are the measurement scales; and n1, n2, n3 are the 
measurement noises. In this study, we assume the measurement of pathogen x1 is 
unavailable. For the benchmark example in (1), both parameters and time units are 
abstractions, as no specific disease is addressed. The state and control are always positive 
because concentrations cannot go below zero, and organ death is indicated when x4 ≥ 1. The 
structural relationship of system variables in (1) is illustrated in Fig. 1. Organ health 
mediates immune cell production, inferring a relationship between immune response and 
fitness of the individual. Antibodies bind to the attacking antigens, thereby killing 
pathogenic microbes directly, activating complement proteins, or triggering an attack by 
phagocytic cells, e.g. macrophages and neutrophils. Each element of the state is subject to an 
independent control, and new microbes may continue to enter the system. In reality, 
however, the concentration of invaded pathogens is hardly to be measured. We assume that 
only the rest of three elements can be measured with measurement noises by medical 
devices or other biological techniques such as an immunofluorescence microscope, which is 
a technique based on the ability of antibodies to recognize and bind to specific molecules. It 
is then possible to detect the number of molecules easily by using a fluorescence microscope 
(Piston, 1999).  
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Fig. 1. Innate and enhanced immune response to a pathogenic attack under exogenous 
pathogens, environmental disturbances, and measurement noises. 
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Several typical uncontrolled responses to increasing levels of initial pathogen concentration 
under sub-clinical, clinical, chronic, and lethal conditions have been discussed and shown in 
Fig. 2 (Stengel et al., 2002a). In general, the sub-clinical response would not require medical 
examination, while the clinical case warrants medical consultation but is self-healing 
without intervention. Pathogen concentration stabilizes at non-zero values in the chronic 
case, which is characterized by permanently degraded organ health, and pathogen 
concentration diverges without treatment in the lethal case and kills the organ (Stengel et al., 
2002b). Finally, a more general disease dynamic model for immune response could be 
represented as 

 0( ) ( ( )) ( ( )) ( ) ( ), (0)
( ) ( ( )) ( )

x t f x t g x t u t Dw t x x
y t c x t n t

= + + =
= +

 (2) 

where 1( ) nx t ×∈R  is the state vector; 1( ) mu t ×∈R  is the control agent; 1( ) nw t ×∈R  includes 
exogenous pathogens, environmental disturbances or model uncertainty. 1( ) ly t ×∈R  is the 
measurement output; and 1( ) ln t ×∈R  is the measurement noises. We assume that w(t) and 
n(t) are independent stochastic noises, whose covariances may be uncertain or unavailable. 
All possible nonlinear interactions in the immune system are represented by f(x(t)). 
 

 
Fig. 2. Native immune responses to attack by different pathogens which are sub-clinical, 
clinical, chronic, and lethal conditions (Stengel et al., 2002a). 
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3. Robust H∞ Therapeutic Control of Stochastic Innate Immune Response 
Our control design purpose for nonlinear stochastic innate immune system in (2) is to 
specify a state feedback control ( ) ( ( ) ( ))du t k x t x t= −  so that the immune system can track the 
desired response xd(t). Since the state variables are unavailable for feedback tracking control, 
the state variables have to be estimated for feedback tracking control ˆ( ) ( ( ) ( ))du t k x t x t= − . 
Suppose the following observer-based control with y(t) as input and u(t) as output is 
proposed for robust H∞ tracking control. 

 
ˆ ˆ ˆ ˆ ˆ( ) ( ( )) ( ( )) ( ) ( ( ))( ( ) ( ( )))

ˆ( ) ( ( ) ( ))d

x t f x t g x t u t l x t y t c x t
u t k x t x t

= + + −
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               (3) 

where the observer-gain ˆ( ( ))l x t  is to be specified so that the estimation error ˆ( ) ( ) ( )e t x t x t= −  
can be as small as possible and control gain ˆ( ( ) ( ))dk x t x t−  is to be specified so that the 
system states x(t) can come close to the desired state responses xd(t) from the stochastic point 
of view. 
Consider a reference model of immune system with a desired time response described as 

 ( ) ( ) ( )d d dx t A x t r t= +                               (4) 

where 1( ) n
dx t ×∈R  is the reference state vector; n n

dA ×∈R  is a specific asymptotically stable 
matrix and r(t) is a desired reference signal. It is assumed that xd(t), 0t∀ >  represents a 
desired immune response for nonlinear stochastic immune system in (2) to follow, i.e. the 
therapeutic control is to specify the observer-based control in (3) such that the tracking error 

( ) ( ) ( )dx t x t x t= −  must be as small as possible under the influence of uncertain exogenous 
pathogens and environmental disturbances w(t) and measurement noises n(t). Since the 
measurement noises n(t), the exogenous pathogens and environmental disturbances w(t) are 
uncertain and the reference signal r(t) could be arbitrarily assigned, the robust H∞ tracking 
control design in (3) should be specified so that the stochastic effect of three uncertainties 
w(t), n(t) and r(t) on the tracking error could be set below a prescribed value 2ρ , i.e. both the 
stochastic H∞ reference tracking and H∞ state estimation should be achieved simultaneously 
under uncertain w(t), n(t) and r(t). 
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The diagonal element j
iiq  of Qi denotes the punishment on the corresponding tracking error 

and estimation error. Since the stochastic effect of w(t), r(t) and n(t) on tracking error ( )x t  
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and estimation error e(t) is prescribed below a desired attenuation level 2ρ  from the energy 
point of view, the robust H∞ stochastic tracking problem of equation (5) is suitable for the 
robust H∞ stochastic tracking problem under environmental disturbances w(t), measurement 
noises n(t) and changeable reference r(t), which are always met in practical design cases. 
Remark 1: 
If the environmental disturbances w(t)and measurement noises n(t) are deterministic 
signals, the expectative symbol [ ]E i   in (5) can be omitted. 
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The augmented stochastic system above can be represented in a general form by 
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The robust H∞ stochastic tracking performance in (5) can be represented by 
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If the stochastic initial condition (0) 0x ≠  and is also considered in the H∞ tracking 
performance, then the above stochastic H∞ inequality should be modified as 
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3. Robust H∞ Therapeutic Control of Stochastic Innate Immune Response 
Our control design purpose for nonlinear stochastic innate immune system in (2) is to 
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the state variables have to be estimated for feedback tracking control ˆ( ) ( ( ) ( ))du t k x t x t= − . 
Suppose the following observer-based control with y(t) as input and u(t) as output is 
proposed for robust H∞ tracking control. 
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where the weighting matrices Qi are assumed to be diagonal as follows 
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The diagonal element j
iiq  of Qi denotes the punishment on the corresponding tracking error 

and estimation error. Since the stochastic effect of w(t), r(t) and n(t) on tracking error ( )x t  
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and estimation error e(t) is prescribed below a desired attenuation level 2ρ  from the energy 
point of view, the robust H∞ stochastic tracking problem of equation (5) is suitable for the 
robust H∞ stochastic tracking problem under environmental disturbances w(t), measurement 
noises n(t) and changeable reference r(t), which are always met in practical design cases. 
Remark 1: 
If the environmental disturbances w(t)and measurement noises n(t) are deterministic 
signals, the expectative symbol [ ]E i   in (5) can be omitted. 
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If the stochastic initial condition (0) 0x ≠  and is also considered in the H∞ tracking 
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for some positive function ( (0))V x . Then we get the following result. 
Theorem 1: If we can specify the control gain ˆ( )dk x x−  and observer gain ˆ( )l x  in the 
observer-based control law in (3) for stochastic immune system (2) such that the following 
HJI has a positive solution ( ( )) 0V x t >  

 2
( ( )) 1 ( ( )) ( )( ) ( ) ( ( )) 0

( ) ( ) ( )4

T T
T TV x t V x t V xx t Qx t F x t DD

x t x t x t
⎛ ⎞ ⎛ ⎞ ⎛ ⎞∂ ∂ ∂

+ + <⎜ ⎟ ⎜ ⎟ ⎜ ⎟
∂ ∂ ∂ρ⎝ ⎠ ⎝ ⎠ ⎝ ⎠

   (10) 

Then the robust stochastic H∞ tracking performance in (5) is achieved for a prescribed 
tracking performance 2ρ . 
Proof: see Appendix A. 
Since 2ρ  is a prescribed noise attenuation level of H∞ tracking performance in (5), based on 
the analysis above, the optimal stochastic H∞ tracking performance still need to minimize 

2ρ  as follows 

 2 2
0 ( ) 0

min
V x >

ρ = ρ  (11) 

subject to ( ( )) 0V x t >  and equation (10). 
At present, there does not exist any analytic or numerical solution for (10) or (11) except in 
very simple cases. 

4. Robust fuzzy observer-based tracking control design for stochastic innate 
immune system 
Because it is very difficult to solve the nonlinear HJI in (10), no simple approach is available 
to solve the constrained optimization problem in (11) for robust model tracking control of 
stochastic innate immune system. Recently, the fuzzy T-S model has been widely applied to 
approximate the nonlinear system via interpolating several linearized systems at different 
operating points (Chen et al., 1999,2000; Takagi & Sugeno, 1985). Using fuzzy interpolation 
approach, the HJI in (10) can be replaced by a set of linear matrix inequalities (LMIs). In this 
situation, the nonlinear stochastic H∞ tracking problem in (5) could be easily solved by fuzzy 
method for the design of robust H∞ tracking control for stochastic innate immune response 
systems. 
Suppose the nonlinear stochastic immune system in (1) can be represented by the Takagi-
Sugeno (T-S) fuzzy model (Takagi & Sugeno, 1985). The T-S fuzzy model is a piecewise 
interpolation of several linearized models through membership functions. The fuzzy model 
is described by fuzzy If-Then rules and will be employed to deal with the nonlinear H∞ 
tracking problem by fuzzy observer-based control to achieve a desired immune response 
under stochastic noises. The i-th rule of fuzzy model for nonlinear stochastic immune 
system in (1) is in the following form (Chen et al., 1999,2000).  
Plant Rule i: 
                                       If 1( )z t  is 1iF  and …  and ( )gz t  is igF , 

 
then ( ) ( ) ( ) ( ), 1,2,3, ,

( ) ( ) ( )
i i

i

x t x t u t Dw t i L
y t C x t n t

= + + =
= +

A B� �
                  (12) 
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in which ijF  is the fuzzy set; iA , iB , and iC  are known constant matrices; L is the number 
of If-Then rules; g is the number of premise variables; and 1 2( ) ( ) ( )gz t z t z t, , ,…  are the 
premise variables. The fuzzy system is inferred as follows (Chen et al., 1999,2000; Takagi & 
Sugeno, 1985) 
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where 
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i ij j
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μ∑
 1 2( ) [ ( ), ( ), , ( )]gz t z t z t z t= … , and 

( ( ))ij jF z t  is the grade of membership of ( )jz t  in ijF . 

We assume 

 ( ( )) 0i z tμ ≥  and 
1

( ( )) 0
L

i
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z t
=
μ >∑                        (14) 

Therefore, we get 

 ( ( )) 0ih z t ≥  and 
1

( ( )) 1
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i
i

h z t
=

=∑                        (15) 

The T-S fuzzy model in (13) is to interpolate L stochastic linear systems to approximate the 
nonlinear system in (1) via the fuzzy basis functions ( ( ))ih z t . We could specify the 

parameter iA  and iB  easily so that 
1

( ( )) ( )
L

i i
i

h z t x t
=
∑ A  and 

1
( ( ))

L

i i
i

h z t
=
∑ B  in (13) can 

approximate ( ( ))F x t  and ( ( ))g x t  in (2) by the fuzzy identification method (Takagi & 
Sugeno, 1985). 
By using fuzzy If-Then rules interpolation, the fuzzy observer is proposed to deal with the 
state estimation of nonlinear stochastic immune system (1). 
Observer Rule i: 
                                 If 1( )z t  is 1iF  and …  and ( )gz t  is igF , 

 ˆ ˆ ˆthen ( ) ( ) ( ) ( ( ) ( )), 1,2,3, ,i i ix t x t u t L y t y t i L= + + − =A B� �          (16) 

where Li is the observer gain for the ith observer rule and 1
ˆ ˆ( ) ( ( )) ( )L

i iiy t h z t C x t
=

= ∑ . 

The overall fuzzy observer in (16) can be represented as (Chen et al., 1999,2000) 
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1

ˆ ˆ ˆ( ) ( ( )) ( ) ( ) ( ( ) ( ))
L

i i i i
i

x t h z t x t u t L y t y t
=

= + + −∑ A B�                  (17) 
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in which ijF  is the fuzzy set; iA , iB , and iC  are known constant matrices; L is the number 
of If-Then rules; g is the number of premise variables; and 1 2( ) ( ) ( )gz t z t z t, , ,…  are the 
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approximate ( ( ))F x t  and ( ( ))g x t  in (2) by the fuzzy identification method (Takagi & 
Sugeno, 1985). 
By using fuzzy If-Then rules interpolation, the fuzzy observer is proposed to deal with the 
state estimation of nonlinear stochastic immune system (1). 
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Suppose the following fuzzy observer-based controller is employed to deal with the above 
robust H∞ tracking control design 
Control Rule j: 
                                     If 1( )z t  is 1jF  and …  and ( )gz t  is jgF , 

 
1

ˆthen ( ( )) ( ( ) ( ))
L

j j d
j

u h z t K x t x t
=

= −∑  (18) 

Remark 2: 
1. The premise variables z(t) can be measurable stable variables, outputs or combination of 

measurable state variables (Ma et al., 1998; Tanaka et al., 1998; Wang et al., 1996). The 
limitation of this approach is that some state variables must be measurable to construct 
the fuzzy observer and fuzzy controller. This is a common limitation for control system 
design of T–S fuzzy approach (Ma et al., 1998; Tanaka et al., 1998). If the premise 
variables of the fuzzy observer depend on the estimated state variables, i.e., ˆ( )z t  instead 
of z(t) in the fuzzy observer, the situation becomes more complicated. In this case, it is 
difficult to directly find control gains Kj and observer gains Li. The problem has been 
discussed in (Tanaka et al., 1998). 

2. The problem of constructing T–S fuzzy model for nonlinear systems can be found in 
(Kim et al., 1997; Sugeno & Kang, 1988). 

Let us denote the estimation errors as ˆ( ) ( ) ( )e t x t x t= − . The estimation errors dynamic is 
represented as 

1 1

1 1

ˆ( ) ( ) ( )

ˆ ˆ( ( )) ( ( ))[ ( ) ( ) ( )] ( ) ( ) ( ( ) ( ))

( ( )) ( ( ))[( ) ( ) ( )] ( )
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i j i i i i i j
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L L

i j i i j i
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= =

= =

= −

⎡ ⎤= + + − + + −⎣ ⎦

= − − +

∑∑

∑∑

A B A B

A

�� �

 

After manipulation, the augmented system in (6) can be expressed as the following fuzzy 
approximation form 

 
1 1

( ) ( ( )) ( ( )) ( ) ( )
L L

i j ij i
i j

x t h z t h z t x t E w t
= =

⎡ ⎤= +⎣ ⎦∑ ∑ A�                     (19) 

where 

0 0

0 0

i i j
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d

L C
K K K

A

−⎡ ⎤
⎢ ⎥

= − + −⎢ ⎥
⎢ ⎥
⎣ ⎦

A
A B A B B , 

( )
( ) ( )

( )d

e t
x t x t

x t

⎡ ⎤
⎢ ⎥= ⎢ ⎥
⎢ ⎥⎣ ⎦

, 
( )

( ) ( )
( )

n t
w t w t

r t

⎡ ⎤
⎢ ⎥= ⎢ ⎥
⎢ ⎥⎣ ⎦

, 
0

0 0
0 0

i

i

L D
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. 

Theorem 2: In the nonlinear stochastic immune system of (2), if 0TP P= >  is the common 
solution of the following matrix inequalities: 

 2
1 0T T

ij ij i iP P PE E P Q+ + + <
ρ

A A , , 1,2, ,Li j = �                (20) 

then the robust H∞ tracking control performance in (8) or (9) is guaranteed for a prescribed 2ρ . 
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In the above robust H∞ tracking control design, we don’t need the statistics of disturbances, 
measurement noises and initial condition. We only need to eliminate their effect on the 
tracking error and state estimation error below a prescribed level 2ρ . To obtain the best H∞ 
tracking performance, the optimal H∞ tracking control problem can be formulated as the 
following minimization problem. 

 2 2
0 0

min
P>

ρ = ρ                                  (21) 

subject to 0P >  and equation (20). 
Proof: see Appendix B. 
In general, it is not easy to analytically determine the constrained optimization problem in 
(21). Fortunately, the optimal H∞ tracking control problem in (21) can be transferred into a 
minimization problem subject to some linear matrix inequalities (LMIs). The LMIP can be 
solved by a computationally efficient method using a convex optimization technique (Boyd, 
1994) as described in the following. 
By the Schur complements (Boyd, 1994), equation (20) is equivalent to 
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Suppose the following fuzzy observer-based controller is employed to deal with the above 
robust H∞ tracking control design 
Control Rule j: 
                                     If 1( )z t  is 1jF  and …  and ( )gz t  is jgF , 
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j j d
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Remark 2: 
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measurable state variables (Ma et al., 1998; Tanaka et al., 1998; Wang et al., 1996). The 
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the fuzzy observer and fuzzy controller. This is a common limitation for control system 
design of T–S fuzzy approach (Ma et al., 1998; Tanaka et al., 1998). If the premise 
variables of the fuzzy observer depend on the estimated state variables, i.e., ˆ( )z t  instead 
of z(t) in the fuzzy observer, the situation becomes more complicated. In this case, it is 
difficult to directly find control gains Kj and observer gains Li. The problem has been 
discussed in (Tanaka et al., 1998). 

2. The problem of constructing T–S fuzzy model for nonlinear systems can be found in 
(Kim et al., 1997; Sugeno & Kang, 1988). 
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represented as 
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After manipulation, the augmented system in (6) can be expressed as the following fuzzy 
approximation form 
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Since five parameters P11, P22, P33, Kj, and Li should be determined from (23) and they are 
highly coupled, there are no effective algorithms for solving them simultaneously till now. 
In the following, a decoupled method (Tseng, 2008) is provided to solve these parameters 
simultaneously. 
Note that (23) can be decoupled as 
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where γ  and 1γ  are some positive scalars. 
Lemma 1: 
If 
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and 
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Proof: see Appendix C. 
From the above lemma, it is obvious that if 
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then (23) holds. 
Remark 3: 
Note that (28) is related to the observer part (i.e., the parameters are P11, P22, P33, and Li) and 
(29) is related to the controller part (i.e., the parameters are P22 and Kj), respectively. 
Although the parameters P22, Kj and γ  are coupled nonlinearly, seven parameters P11, P22, 
P33, Kj, Li, γ  and 1γ  can be determined by the following arrangement. 
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Remark 3: 
Note that (28) is related to the observer part (i.e., the parameters are P11, P22, P33, and Li) and 
(29) is related to the controller part (i.e., the parameters are P22 and Kj), respectively. 
Although the parameters P22, Kj and γ  are coupled nonlinearly, seven parameters P11, P22, 
P33, Kj, Li, γ  and 1γ  can be determined by the following arrangement. 
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Note that, by the Schur complements (Boyd, 1994) equation (28) is equivalent to 
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where 1
22 22W P−= , and equation (29) is equivalent to 
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where 22j jY K W= . 

Therefore, if (30) and (31) are all held then (23) holds. Recall that the attenuation 2ρ  can be 
minimized so that the optimal H∞ tracking performance in (21) is reduced to the following 
constrained optimization problem. 

 
11 22 33

2 2
0 , ,

min
P P P

ρ = ρ  (32) 

subject to 11 0P > , 22 0P > , 33 0P > , 0γ > , 1 0γ >  and (30)-(31). 
which can be solved by decreasing 2ρ  as small as possible until the parameters 11 0P > , 

22 0P > , 33 0P > , 0γ >  and 1 0γ >  do not exist. 
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Remark 4: 
Note that the optimal H∞ tracking control problem in (32) is not a strict LMI problem since it 
is still a bilinear form in (30)-(31) of two scalars γ  and 1γ  and becomes a standard linear 
matrix inequality problem (LMIP) (Boyd, 1994) if γ  and 1γ  are given in advance. The 
decoupled method (Tseng, 2008) bring some conservatism in controller design. However, 
the parameters 11P , 1

22 22P W −= , 33P , 1
22j jK Y W −=  and 1

11i iL P Z−=  can be determined 
simultaneously from (32) by the decoupled method if scalars γ  and 1γ  are given in 
advance. The useful software packages such as Robust Control Toolbox in Matlab (Balas et 
al., 2007) can be employed to solve the LMIP in (32) easily. 
In general, it is quite easy to determine scalars γ  and 1γ  beforehand to solve the LMIP with 
a smaller attenuation level 2ρ . In this study, the genetic algorithm (GA) is proposed to deal 
with the optimal H∞ tracking control problem in (32) since GA, which can simultaneously 
evaluate many points in the parameters space, is a very powerful searching algorithm based 
on the mechanics of natural selection and natural genetics. More details about GA can be 
found in (Jang et al., 1997). 
According to the analysis above, the H∞ tracking control of stochastic innate immune system 
via fuzzy observer-based state feedback is summarized as follows and the structural 
diagram of robust fuzzy observer-based tracking control design has shown in Fig. 3. 
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Fig. 3. Structural diagram of robust fuzzy observer-based tracking control design. 
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Note that, by the Schur complements (Boyd, 1994) equation (28) is equivalent to 
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where 22j jY K W= . 

Therefore, if (30) and (31) are all held then (23) holds. Recall that the attenuation 2ρ  can be 
minimized so that the optimal H∞ tracking performance in (21) is reduced to the following 
constrained optimization problem. 
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Design Procedure: 
1. Provide a desired reference model in (4) of the immune system. 
2. Select membership functions and construct fuzzy plant rules in (12). 
3. Generate randomly a population of binary strings: With the binary coding method, the 

scalars γ  and 1γ  would be coded as binary strings. Then solve the LMIP in (32) with 
scalars γ  and 1γ  corresponding to binary string using Robust Control Toolbox in 
Matlab by searching the minimal value of 2ρ . If the LMIP is infeasible for the 
corresponding string, this string is escaped from the current generation. 

4. Calculate the fitness value for each passed string: In this step, the fitness value is 
calculated based on the attenuation level 2ρ . 

5. Create offspring strings to form a new generation by some simple GA operators like 
reproduction, crossover, and mutation: In this step, (i) strings are selected in a mating 
pool from the passed strings with probabilities proportional to their fitness values, (ii) 
and then crossover process is applied with a probability equal to a prescribed crossover 
rate, (iii) and finally mutation process is applied with a probability equal to a prescribed 
mutation rate. Repeating (i) to (iii) until enough strings are generated to form the next 
generation. 

6. Repeat Step 3 to Step 5 for several generations until a stop criterion is met. 
7. Based on the scalars γ  and 1γ  obtained from above steps, one can obtain the 

attenuation level 2ρ  and the corresponding 11P , 1
22 22P W −= , 33P , 1

22j jK Y W −=  and 
1

11i iL P Z−= , simultaneously. 
8. Construct the fuzzy observer in (17) and fuzzy controller in (18). 

5. Computational simulation example 
 

Parameter Value Description 
11a  1 Pathogens reproduction rate coefficient 
12a  1 The suppression by pathogens coefficient 
22a  3 Immune reactivity coefficient 
23a  1 The mean immune cell production rate coefficient 
*
2x  2 The steady-state concentration of immune cells 
31a  1 Antibodies production rate coefficient 
32a  1.5 The antibody mortality coefficient 
33a  0.5 The rate of antibodies suppress pathogens 
41a  0.5 The organ damage depends on the pathogens damage 

possibilities coefficient 
42a  1 Organ recovery rate 
1b  -1 Pathogen killer’s agent coefficient 
2b  1 Immune cell enhancer coefficient 
3b  1 Antibody enhancer coefficient 
4b  -1 Organ health enhancer coefficient 
1c  1 Immune cell measurement coefficient 
2c  1 Antibody measurement coefficient 
3c  1 Organ health measurement coefficient 

Table 1. Model parameters of innate immune system (Marchuk, 1983; Stengel et al., 2002b). 
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We consider the nonlinear stochastic innate immune system in (1), which is shown in Fig. 1. 
The values of the parameters are shown in Table 1. The stochastic noises of immune systems 
are mainly due to measurement errors, modeling errors and process noises (Milutinovic & 
De Boer, 2007). The rate of continuing introduction of exogenous pathogen and environmental 
disturbances 1 4~w w  are unknown but bounded signals. Under infectious situation, the 
microbes infect the organ not only by an initial concentration of pathogen at the beginning 
but also by the continuous exogenous pathogens invasion 1w  and other environmental 
disturbances 2 4~w w . In reality, however, the concentration of invaded pathogens is hardly 
to be measured. So, we assume that only immune cell, antibody, and organ health can be 
measured with measurement noises by medical devices or other biological techniques (e.g. 
immunofluorescence microscope). And then we can detect the numbers of molecules easily 
by using a fluorescence microscope (Piston, 1999).  
The dynamic model of stochastic innate immune system under uncertain initial states, 
environmental disturbances and measurement noises is controlled by a combined 
therapeutic control as 
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A set of initial condition is assumed [ ](0) 3.5 2 1.33 0 Tx = . For the convenience of 
simulation, we assume that 1 4~w w  are zero mean white noises with standard deviations 
being all equal to 2. The measurement noises 1 3~n n  are zero mean white noises with 
standard deviations being equal to 0.1. In this example, therapeutic controls 1 4~u u  are 
combined to enhance the immune system. The measurable state variables 1 3~y y  with 
measurement noises by medical devices or biological techniques are shown in Fig. 4.  
Our reference model design objective is that the system matrix dA  and ( )r t  should be 
specified beforehand so that its transient responses and steady state of reference system for 
stochastic innate immune response system are desired. If the real parts of eigenvalues of dA  
are more negative (i.e. more robust stable), the tracking system will be more robust to the 
environmental disturbances. After some numerical simulations for clinical treatment, the 
desired reference signals are obtained by the following reference model, which is shown in 
Fig. 5. 
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d d d stepx t x t B u t
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where [ ]0 4 16 /3 0 T
dB =  and ( )stepu t  is the unit step function. The initial condition is 

given by [ ](0) 2.5 3 1.1 0.8 T
dx = . 
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where [ ]0 4 16 /3 0 T
dB =  and ( )stepu t  is the unit step function. The initial condition is 

given by [ ](0) 2.5 3 1.1 0.8 T
dx = . 
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Fig. 4. The measurable state variables 1 3~y y  with measurement noises 1 3~n n  by medical 
devices or biological technique. 
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Fig. 5. The desired reference model with four desired states in (34): pathogens ( 1dx , blue, 
dashed square line), immune cells ( 2dx , green, dashed triangle line), antibodies ( 3dx , red, 
dashed diamond line) and organ ( 4dx , magenta, dashed, circle line) 
We consider the lethal case of uncontrolled stochastic immune system in Fig. 6. The 
pathogen concentration increases rapidly causing organ failure. We aim at curing the organ 
before the organ health index excesses one after a period of pathogens infection. As shown 
in Fig. 6, the black dashed line is a proper time to administrate drugs.  
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Fig. 6. The uncontrolled stochastic immune responses (lethal case) in (33) are shown to 
increase the level of pathogen concentration at the beginning of the time period. In this case, 
we try to administrate a treatment after a short period of pathogens infection. The cutting 
line (black dashed line) is an optimal time point to give drugs. The organ will survive or fail 
based on the organ health threshold (horizontal dotted line) [x4<1: survival, x4>1: failure]. 

To minimize the design effort and complexity for this nonlinear innate immune system in 
(33), we employ the T-S fuzzy model to construct fuzzy rules to approximate nonlinear 
immune system with the measurement output 3y  and 4y  as premise variables. 
Plant Rule i: 

If 3y  is 1iF  and 4y  is 2iF , then 
( ) ( ) ( ) ( ), 1,2,3, ,ix t x t u t Dw t i L= + + =A B  
( ) ( ) ( )y t Cx t n t= +  

To construct the fuzzy model, we must find the operating points of innate immune 
response. Suppose the operating points for 3y  are at 31 0.333y = − , 32 1.667y = , and 

33 3.667y = . Similarly, the operating points for 4y  are at 41 0y = , 42 1y = , and 43 2y = . For 
the convenience, we can create three triangle-type membership functions for the two 
premise variables as in Fig. 7 at the operating points and the number of fuzzy rules is 9L = . 
Then, we can find the fuzzy linear model parameters iA  in the Appendix D as well as other 
parameters B , C  and D . In order to accomplish the robust H∞ tracking performance, we 
should adjust a set of weighting matrices 1Q  and 2Q  in (8) or (9) as 
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After specifying the desired reference model, we need to solve the constrained optimization 
problem in (32) by employing Matlab Robust Control Toolbox. Finally, we obtain the 
feasible parameters 40γ =  and 1 0.02γ = , and a minimum attenuation level 2

0 0.93ρ =  and a 
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common positive-definite symmetric matrix P  with diagonal matrices 11P , 22P  and 33P  as 
follows 

11

0.23193 -1.5549e-4 0.083357 -0.2704
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The control gain jK  and the observer gain iL  can also be solved in the Appendix D. 
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Figures 8-9 present the robust H∞ tracking control of stochastic immune system under the 
continuous exogenous pathogens, environmental disturbances and measurement noises. 
Figure 8 shows the responses of the uncontrolled stochastic immune system under the initial 
concentrations of the pathogens infection. After the one time unit (the black dashed line), we 
try to provide a treatment by the robust H∞ tracking control of pathogens infection. It is seen 
that the stochastic immune system approaches to the desired reference model quickly. From 
the simulation results, the tracking performance of the robust model tracking control via T-S 
fuzzy interpolation is quite satisfactory except for pathogens state x1 because the pathogens 
concentration cannot be measured. But, after treatment for a specific period, the pathogens 
are still under control. Figure 9 shows the four combined therapeutic control agents. The 
performance of robust H∞ tracking control is estimated as 
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Fig. 8. The robust H∞ tracking control of stochastic immune system under the continuous 
exogenous pathogens, environmental disturbances and measurement noises. We try to 
administrate a treatment after a short period (one time unit) of pathogens infection then the 
stochastic immune system approach to the desired reference model quickly except for 
pathogens state x1. 
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Fig. 9. The robust H∞ tracking control in the simulation example. The drug control agents 1u  
(blue, solid square line) for pathogens, 2u  for immune cells (green, solid triangle line), 3u  
for antibodies (red, solid diamond line) and 4u  for organ (magenta, solid circle line). 
Obviously, the robust H∞ tracking performance is satisfied. The conservative results are due 
to the inherent conservation of solving LMI in (30)-(32). 
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Fig. 8. The robust H∞ tracking control of stochastic immune system under the continuous 
exogenous pathogens, environmental disturbances and measurement noises. We try to 
administrate a treatment after a short period (one time unit) of pathogens infection then the 
stochastic immune system approach to the desired reference model quickly except for 
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Fig. 9. The robust H∞ tracking control in the simulation example. The drug control agents 1u  
(blue, solid square line) for pathogens, 2u  for immune cells (green, solid triangle line), 3u  
for antibodies (red, solid diamond line) and 4u  for organ (magenta, solid circle line). 
Obviously, the robust H∞ tracking performance is satisfied. The conservative results are due 
to the inherent conservation of solving LMI in (30)-(32). 
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6. Discussion and conclusion 
In this study, we have developed a robust H∞ tracking control design of stochastic immune 
response for therapeutic enhancement to track a prescribed immune response under 
uncertain initial states, environmental disturbances and measurement noises. Although the 
mathematical model of stochastic innate immune system is taken from the literature, it still 
needs to compare quantitatively with empirical evidence in practical application. For 
practical implementation, accurate biodynamic models are required for treatment 
application. However, model identification is not the topic of this paper. Furthermore, we 
assume that not all state variables can be measured. In the measurement process, the 
measured states are corrupted by noises. In this study, the statistic of disturbances, 
measurement noises and initial condition are assumed unavailable and cannot be used for 
the optimal stochastic tracking design. Therefore, the proposed H∞ observer design is 
employed to attenuate these measurement noises to robustly estimate the state variables for 
therapeutic control and H∞ control design is employed to attenuate disturbances to robustly 
track the desired time response of stochastic immune system simultaneity. Since the 
proposed H∞ observer-based tracking control design can provide an efficient way to create a 
real time therapeutic regime despite disturbances, measurement noises and initial condition 
to protect suspected patients from the pathogens infection, in the future, we will focus on 
applications of robust H∞ observer-based control design to therapy and drug design 
incorporating nanotechnology and metabolic engineering scheme. 
Robustness is a significant property that allows for the stochastic innate immune system to 
maintain its function despite exogenous pathogens, environmental disturbances, system 
uncertainties and measurement noises. In general, the robust H∞observer-based tracking 
control design for stochastic innate immune system needs to solve a complex nonlinear 
Hamilton-Jacobi inequality (HJI), which is generally difficult to solve for this control design. 
Based on the proposed fuzzy interpolation approach, the design of nonlinear robust H∞ 
observer-based tracking control problem for stochastic innate immune system is 
transformed to solve a set of equivalent linear H∞ observer-based tracking problem. Such 
transformation can then provide an easier approach by solving an LMI-constrained 
optimization problem for robust H∞ observer-based tracking control design. With the help 
of the Robust Control Toolbox in Matlab instead of the HJI, we could solve these problems 
for robust H∞ observer-based tracking control of stochastic innate immune system more 
efficiently. From the in silico simulation examples, the proposed robust H∞ observer-based 
tracking control of stochastic immune system could track the prescribed reference time 
response robustly, which may lead to potential application in therapeutic drug design for a 
desired immune response during an infection episode. 

7. Appendix 
7.1 Appendix A: Proof of Theorem 1 
Before the proof of Theorem 1, the following lemma is necessary. 
Lemma 2: 
For all vectors 1, n×α β∈R , the following inequality always holds 

2
2

1T T T Tα β +β α ≤ α α + ρ β β
ρ

 for any scale value 0ρ > . 

Let us denote a Lyapunov energy function ( ( )) 0V x t > . Consider the following equivalent 
equation: 
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 [ ] [ ]
0 0

( ( ))( ) ( ) ( (0)) ( ( )) ( ) ( )f ft tT T dV x tx t Qx t dt V x V x x t Qx t dt
dt

⎡ ⎤⎛ ⎞⎡ ⎤ = − ∞ + +⎜ ⎟⎢ ⎥⎢ ⎥⎣ ⎦ ⎝ ⎠⎣ ⎦
∫ ∫E E E E  (A1) 

By the chain rule, we get 
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Substituting the above equation into (A1), by the fact that ( ( )) 0V x ∞ ≥ , we get 
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By Lemma 2, we have 
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Therefore, we can obtain 
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By the inequality in (10), then we get 
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0 0
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If (0) 0x = , then we get the inequality in (8). 

7.2 Appendix B: Proof of Theorem 2 
Let us choose a Lyapunov energy function ( ( )) ( ) ( ) 0TV x t x t Px t= >  where 0TP P= > . Then 
equation (A1) is equivalent to the following: 
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transformed to solve a set of equivalent linear H∞ observer-based tracking problem. Such 
transformation can then provide an easier approach by solving an LMI-constrained 
optimization problem for robust H∞ observer-based tracking control design. With the help 
of the Robust Control Toolbox in Matlab instead of the HJI, we could solve these problems 
for robust H∞ observer-based tracking control of stochastic innate immune system more 
efficiently. From the in silico simulation examples, the proposed robust H∞ observer-based 
tracking control of stochastic immune system could track the prescribed reference time 
response robustly, which may lead to potential application in therapeutic drug design for a 
desired immune response during an infection episode. 

7. Appendix 
7.1 Appendix A: Proof of Theorem 1 
Before the proof of Theorem 1, the following lemma is necessary. 
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For all vectors 1, n×α β∈R , the following inequality always holds 
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By the inequality in (10), then we get 
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By Lemma 2, we have 
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By the inequality in (20), then we get 
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This is the inequality in (9). If (0) 0x = , then we get the inequality in (8). 
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7.4 Appendix D: Parameters of the Fuzzy System, control gains and observer gains 
The nonlinear innate immune system in (33) could be approximated by a Takagi-Sugeno 
Fuzzy system. By the fuzzy modeling method (Takagi & Sugeno, 1985), the matrices of the 
local linear system iA , the parameters B , C , D , jK  and iL  are calculated as follows: 
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By Lemma 2, we have 
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By the inequality in (20), then we get 
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This is the inequality in (9). If (0) 0x = , then we get the inequality in (8). 
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The nonlinear innate immune system in (33) could be approximated by a Takagi-Sugeno 
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1. Introduction  
Switched systems are a class of hybrid system consisting of subsystems and a switching law, 
which define a specific subsystem being activated during a certain interval of time. Many 
real-world processes and systems can be modeled as switched systems, such as the 
automobile direction-reverse systems, computer disk systems, multiple work points control 
systems of airplane and so on. Therefore, the switched systems have the wide project 
background and can be widely applied in many domains (Wang, W. & Brockett, R. W., 1997; 
Tomlin, C. et al., 1998; Varaiya, P., 1993). Besides switching properties, when modeling a 
engineering system, system uncertainties that occur as a result of using approximate system 
model for simplicity, data errors for evaluation, changes in environment conditions, etc, also 
exit naturally in control systems. Therefore, both of switching and uncertainties should be 
integrated into system model. Recently, study of switched systems mainly focuses on 
stability and stabilization (Sun, Z. D. & Ge, S. S., 2005; Song, Y. et al., 2008; Zhang, Y. et al., 
2007). Based on linear matrix inequality technology, the problem of robust control for the 
system is investigated in the literature (Pettersson, S. & Lennartson, B., 2002). In order to 
guarantee H∞ performance of the system, the robust H∞ control is studied using linear matrix 
inequality method in the literature (Sun, W. A. & Zhao, J., 2005). 
In many engineering systems, the actuators may be subjected to faults in special 
environment due to the decline in the component quality or the breakage of working 
condition which always leads to undesirable performance, even makes system out of 
control. Therefore, it is of interest to design a control system which can tolerate faults of 
actuators. In addition, many engineering systems always involve time delay phenomenon, 
for instance, long-distance transportation systems, hydraulic pressure systems, network 
control systems and so on. Time delay is frequently a source of instability of feedback 
systems. Owing to all of these, we shouldn’t neglect the influence of time delay and 
probable actuators faults when designing a practical control system. Up to now, research 
activities of this field for switched system have been of great interest. Stability analysis of a 
class of linear switching systems with time delay is presented in the literature (Kim, S. et al., 
2006). Robust H∞ control for discrete switched systems with time-varying delay is discussed 
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in the literature (Song, Z. Y. et al., 2007). Reliable guaranteed-cost control for a class of 
uncertain switched linear systems with time delay is investigated in the literature (Wang, R. 
et al., 2006). Considering that the nonlinear disturbance could not be avoided in several 
applications, robust reliable control for uncertain switched nonlinear systems with time 
delay is studied in the literature (Xiang, Z. R. & Wang, R. H., 2008). Furthermore, Xiang and 
Wang (Xiang, Z. R. & Wang, R. H., 2009) investigated robust L∞ reliable control for uncertain 
nonlinear switched systems with time delay. 
Above the problems of robust reliable control for uncertain nonlinear switched time delay 
systems, the time delay is treated as a constant. However, in actual operation, the time delay 
is usually variable as time. Obviously, the system model couldn’t be described appropriately 
using constant time delay in this case. So the paper focuses on the system with time-varying 
delay. Besides, it is considered that H∞ performance is always an important index in control 
system. Therefore, in order to overcome the passive effect of time-varying delay for 
switched systems and make systems be anti-jamming and fault-tolerant, this paper 
addresses the robust H∞ reliable control for nonlinear switched time-varying delay systems 
subjected to uncertainties. The multiple Lyapunov-Krasovskii functional method is used to 
design the control law. Compared with the multiple Lyapunov function adopted in the 
literature (Xiang, Z. R. & Wang, R. H., 2008; Xiang, Z. R. & Wang, R. H., 2009), the multiple 
Lyapunov-Krasovskii functional method has less conservation because the more system 
state information is contained in the functional. Moreover, the controller parameters can be 
easily obtained using the constructed functional. 
The organization of this paper is as follows. At first, the concept of robust reliable controller, 
γ -suboptimal robust H∞ reliable controller and γ -optimal robust H∞ reliable controller are 
presented. Secondly, fault model of actuator for system is put forward. Multiple Lyapunov-
Krasovskii functional method and linear matrix inequality technique are adopted to design 
robust H∞ reliable controller. Meanwhile, the corresponding switching law is proposed to 
guarantee the stability of the system. By using the key technical lemma, the design problems 
of γ -suboptimal robust H∞ reliable controller and γ -optimal robust H∞ reliable controller 
can be transformed to the problem of solving a set of the matrix inequalities. It is worth to 
point that the matrix inequalities in the γ -optimal problem are not linear, then we make use 
of variable substitute method to acquire the controller gain matrices and γ -optimal problem 
can be transferred to solve the minimal upper bound of the scalar γ . Furthermore, the 
iteration solving process of optimal disturbance attenuation performance γ  is presented. 
Finally, a numerical example shows the effectiveness of the proposed method. The result 
illustrates that the designed controller can stabilize the original system and make it be of H∞ 
disturbance attenuation performance when the system has uncertain parameters and 
actuator faults.  
Notation Throughout this paper, TA  denotes transpose of matrix A , 2[0, )L ∞  denotes 
space of square integrable functions on [0, )∞ . ( )x t  denotes the Euclidean norm. I  is an 
identity matrix with appropriate dimension. { }idiag a  denotes diagonal matrix with the 
diagonal elements ia , 1,2, ,i q= . 0S <  (or 0S > ) denotes S  is a negative (or positive) 
definite symmetric matrix. The set of positive integers is represented by Z+ . A B≤  (or 
A B≥ ) denotes A B−  is a negative (or positive) semi-definite symmetric matrix. ∗  in 
A B

C
⎡ ⎤
⎢ ⎥∗⎣ ⎦

 represents the symmetric form of matrix, i.e. TB∗ = . 

Robust H∞ Reliable Control of Uncertain Switched Nonlinear Systems with Time-varying Delay    

 

119 

2. Problem formulation and preliminaries 
Consider the following uncertain switched nonlinear system with time-varying delay 

 ( ) ( ) ( ) ( ) ( )
ˆ ˆ ˆ( ) ( ) ( ( )) ( ) ( ) ( ( ), )f

t d t t t tx t A x t A x t d t B u t D w t f x t tσ σ σ σ σ= + − + + +�  (1) 

 ( ) ( ) ( )( ) ( ) ( ) ( )f
t t tz t C x t G u t N w tσ σ σ= + +  (2) 

 ( ) ( ), [ ,0]x t t tφ ρ= ∈ −  (3) 

where ( ) mx t R∈  is the state vector, ( ) qw t R∈  is the measurement noise, which belongs to 
2[0, )L ∞ , ( ) pz t R∈  is the output to be regulated, ( )f lu t R∈  is the control input of actuator 

fault. The function ( ) :[0, ) {1,2, , }t N Nσ ∞ → = �  is switching signal which is deterministic, 
piecewise constant, and right continuous, i.e. 1 1( ) : {(0, (0)),( , ( )), ,( , ( ))},k kt t t t t k Zσ σ σ σ + ∈� , 
where kt  denotes the k th switching instant. Moreover, ( )t iσ =  means that the i th 
subsystem is activated, N  is the number of subsystems. ( )tφ  is a continuous vector-valued 
initial function. The function ( )d t  denotes the time-varying state delay satisfying 
0 ( ) , ( ) 1d t d tρ μ≤ ≤ < ∞ ≤ <�  for constants ρ , μ , and ( , ) :if i i

m mR R R× →  for i N∈  are 
unknown nonlinear functions satisfying 

 ( ( ), ) ( )i if x t t U x t≤  (4) 

where iU  are known real constant matrices. 
The matrices ˆ

iA , ˆ
diA  and ˆ

iB  for i N∈  are uncertain real-valued matrices of appropriate 
dimensions. The matrices ˆ

iA , ˆ
diA  and ˆ

iB  can be assumed to have the form 

 1 2
ˆ ˆ ˆ[ , , ] [ , , ] ( )[ , , ]i di i i di i i i i di iA A B A A B H F t E E E= +  (5) 

where 1, , , , ,i di i i i diA A B H E E  and 2iE  for i N∈  are known real constant matrices with proper 
dimensions, 1, ,i i diH E E  and 2iE  denote the structure of the uncertainties, and ( )iF t  are 
unknown time-varying matrices that satisfy 

 ( ) ( )T
i iF t F t I≤  (6) 

The parameter uncertainty structure in equation (5) has been widely used and can represent 
parameter uncertainty in many physical cases (Xiang, Z. R. & Wang, R. H., 2009; Cao, Y. et  
al., 1998). 
In actual control system, there inevitably occurs fault in the operation process of actuators. 
Therefore, the input control signal of actuator fault is abnormal. We use ( )u t  and ( )fu t  to 
represent the normal control input and the abnormal control input, respectively. Thus, the 
control input of actuator fault can be described as 

 ( ) ( )f
iu t M u t=  (7) 

where iM  is the actuator fault matrix of the form 

 1 2{ , , , }i i i ilM diag m m m= � , 0 ik ik ikm m m≤ ≤ ≤ , 1ikm ≥ , 1,2, ,k l= �  (8) 
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Therefore, the input control signal of actuator fault is abnormal. We use ( )u t  and ( )fu t  to 
represent the normal control input and the abnormal control input, respectively. Thus, the 
control input of actuator fault can be described as 

 ( ) ( )f
iu t M u t=  (7) 

where iM  is the actuator fault matrix of the form 

 1 2{ , , , }i i i ilM diag m m m= � , 0 ik ik ikm m m≤ ≤ ≤ , 1ikm ≥ , 1,2, ,k l= �  (8) 
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For simplicity, we introduce the following notation 

 0 1 2{ , , , }i i i ilM diag m m m=  (9) 

 1 2{ , , , }i i i ilJ diag j j j=  (10) 

 1 2{ , , , }i i i ilL diag l l l=  (11) 

where 1 ( )
2ik ik ikm m m= + , ik ik

ik
ik ik

m mj
m m

−
=

+
, ik ik

ik
ik

m ml
m
−

=  

By equation (9)-(11), we have 

 0( )i i iM M I L= + , i iL J I≤ ≤  (12) 

where iL  represents the absolute value of diagonal elements in matrix iL , i.e.  

 1 2{ , , , }i i i ilL diag l l l=  

Remark 1 1ikm =  means normal operation of the k th actuator control signal of the i th 
subsystem. When 0ikm = , it covers the case of the complete fault of the k th actuator control 
signal of the i th subsystem. When 0ikm >  and 1ikm ≠ , it corresponds to the case of partial 
fault of the k th actuator control signal of the i th subsystem. 
Now, we give the definition of robust H∞ reliable controller for the uncertain switched 
nonlinear systems with time-varying delay.  
Definition 1 Consider system (1) with ( ) 0w t ≡ . If there exists the state feedback controller 

( )( ) ( )tu t K x tσ=  such that the closed loop system is asymptotically stable for admissible 
parameter uncertainties and actuator fault under the switching law ( )tσ , ( )( ) ( )tu t K x tσ=  is 
said to be a robust reliable controller. 
Definition 2 Consider system (1)-(3). Let  0γ >  be a positive constant, if there exists the 
state feedback controller ( )( ) ( )tu t K x tσ=  and the switching law ( )tσ  such that  
i. With ( ) 0w t ≡ , the closed system is asymptotically stable.  
ii. Under zero initial conditions, i.e. ( ) 0x t = ( [ ,0])t ρ∈ − , the following inequality holds 

 
2 2( ) ( )z t w tγ≤ , 2( ) [0, )w t L∀ ∈ ∞ , ( ) 0w t ≠  (13) 

( )( ) ( )tu t K x tσ=  is said to be γ -suboptimal robust H∞ reliable controller with disturbance 
attenuation performance γ . If there exists a minimal value of disturbance attenuation 
performance γ , ( )( ) ( )tu t K x tσ=  is said to be γ -optimal robust H∞ reliable controller.  
The following lemmas will be used to design robust H∞ reliable controller for the uncertain 
switched nonlinear system with time-varying delay. 

Lemma 1 (Boyd, S. P. et al., 1994; Schur complement) For a given matrix 11 12

21 22

S S
S

S S
⎡ ⎤

= ⎢ ⎥
⎣ ⎦

 

with 11 11
TS S= , 22 22

TS S= , 12 21
TS S= , then the following conditions are equivalent 

i 0S <  
ii 11 0S < , 1

22 21 11 12 0S S S S−− <  

iii 22 0S < , 1
11 12 22 21 0S S S S−− <  
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Lemma 2 (Cong, S. et al., 2007) For matrices X  and Y  of appropriate dimension and 0Q > , 
we have 

1T T T TX Y Y X X QX Y Q Y−+ ≤ +  
 

Lemma 3 (Lien, C.H., 2007) Let , ,Y D E  and F  be real matrices of appropriate dimensions 
with F  satisfying TF F= , then for all TF F I≤  
 

0T T TY DFE E F D+ + <  
 

if and only if there exists a scalar 0ε >  such that 

1 0T TY DD E Eε ε −+ + <  
 

Lemma 4 (Xiang, Z. R. & Wang, R. H., 2008) For matrices 1 2,R R , the following inequality 
holds 

1
1 2 2 1 1 1 2 2( ) ( )T T T TR t R R t R R UR R URΤΣ Σ β β −+ ≤ +  

where 0β > , ( )tΣ  is time-varying diagonal matrix, U  is known real constant matrix 
satisfying ( )t UΣ ≤ , ( )tΣ  represents the absolute value of diagonal elements in matrix 

( )tΣ . 
Lemma 5 (Peleties, P. & DeCarlo, R. A., 1991) Consider the following system  

 ( )( ) ( ( ))tx t f x tσ=  (14) 
 

where ( ) :[0, ) {1,2, , }t N Nσ  ∞ → = . If there exist a set of functions : ,m
iV R R i N→   ∈  such 

that  
(i) iV  is a positive definite function, decreasing and radially unbounded; 
(ii) ( ( )) ( ) ( ) 0i i idV x t dt V x f x= ∂ ∂ ≤  is negative definite along the solution of (14); 
(iii) ( ( )) ( ( ))j k i kV x t V x t≤  when the i th subsystem is switched to the j th subsystem  , ,i j N∈  

i j≠  at the switching instant ,kt k Z+=  , then system (14) is asymptotically stable. 

3. Main results 
3.1 Condition of stability 
Consider the following unperturbed switched nonlinear system with time-varying delay 

 ( ) ( ) ( )( ) ( ) ( ( )) ( ( ), )t d t tx t A x t A x t d t f x t tσ σ σ= + − +  (15) 

 ( ) ( ), [ ,0]x t t tφ ρ= ∈ −  (16) 
 

The following theorem presents a sufficient condition of stability for system (15)-(16). 
Theorem 1 For system (15)-(16), if there exists symmetric positive definite matrices ,iP Q ,  
and the positive scalar δ  such that 
 

 iP Iδ<  (17)     
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 0
* (1 )

T T
i i i i j i i i diA P P A P Q U U P A

Q
δ

μ

⎡ ⎤+ + + +
<⎢ ⎥

− −⎢ ⎥⎣ ⎦
 (18) 

where , ,i j i j N≠   ∈ , then systems (15)-(16) is asymptotically stable under the switching law 

( ) arg min{ ( ) ( )}T
ii N

t x t P x tσ
∈

= . 

Proof For the i th subsystem, we define Lyapunov-Krasovskii functional 

( )
( ( )) ( ) ( ) ( ) ( )

tT T
i i t d t

V x t x t Px t x Qx dτ τ τ
−

= + ∫  

where ,iP Q  are symmetric positive definite matrices. Along the trajectories of system (15), 
the time derivative of ( )iV t  is given by 

( ( )) ( ) ( ) ( ) ( ) ( ) ( ) (1 ( )) ( ( )) ( ( ))

( ) ( ) ( ) ( ) ( ) ( ) (1 ) ( ( )) ( ( ))

2 ( ) [ ( ) ( ( )) ( ( ), )] ( ) ( )

T T T T
i i i

T T T T
i i

T T
i i di i

V x t x t Px t x t Px t x t Qx t d t x t d t Qx t d t

x t Px t x t Px t x t Qx t x t d t Qx t d t

x t P A x t A x t d t f x t t x t Qx t

        μ

= + + − − − −

≤ + + − − − −

= + − + +

 (1 ) ( ( )) ( ( ))

( )( ) ( ) 2 ( ) ( ( )) 2 ( ) ( ( ), )

(1 ) ( ( )) ( ( ))

T

T T T T
i i i i i di i i

T

x t d t Qx t d t

x t A P P A Q x t x t P A x t d t x t P f x t t

x t d t Qx t d t

μ

μ

− − − −

= + + + − +

− − − −

 

  

 

From Lemma 2, it is established that 

   2 ( ) ( ( ), ) ( ) ( ) ( ( ), ) ( ( ), )T T T
i i i i i ix t P f x t t x t P x t f x t t P f x t t≤ +  

From expressions (4) and (17), it follows that   

 2 ( ) ( ( ), ) ( ) ( ) ( ( ), ) ( ( ), ) ( )( ) ( )T T T T T
i i i i i i i ix t P f x t t x t Px t f x t t f x t t x t P U U x tδ δ≤ + ≤ +  

Therefore, we can obtain that 

( ( )) ( )( ) ( ) 2 ( ) ( ( ))

(1 ) ( ( )) ( ( ))

T T T T
i i i i i i i i i di

T

T
i

V x t x t A P P A Q P U U x t x t P A x t d t

x t d t Qx t d t

δ

μ

η Θ η

≤ + + + + + −

  − − − −

=

 

where 
( )

,
( ( )) * (1 )

T T
i i i i i i i i di

i
x t A P P A Q P U U P A

x t d t Q
δ

η Θ
μ

⎡ ⎤⎡ ⎤ + + + +
=    = ⎢ ⎥⎢ ⎥− − −⎢ ⎥⎣ ⎦ ⎣ ⎦

 

From (18), we have 

 { ,0} 0i j idiag P PΘ + − <  (19) 

Using Tη  and η  to pre- and post- multiply the left-hand term of expression (19) yields 

 ( ( )) ( )( ) ( )T
i i jV x t x t P P x t< −  (20) 
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The switching law ( ) arg min{ ( ) ( )}T
ii N

t x t P x tσ
∈

=  expresses that for , ,i j N i j∈  ≠ , there holds the 
inequality 

 ( ) ( ) ( ) ( )T T
i jx t P x t x t P x t≤  (21) 

(20) and (21) lead to 

 ( ( )) 0iV x t <  (22) 

Obviously, the switching law ( ) arg min{ ( ) ( )}T
ii N

t x t P x tσ
∈

=  also guarantees that Lyapunov-

Krasovskii functional value of the activated subsystem is minimum at the switching instant. 
From Lemma 5, we can obtain that system (15)-(16) is asymptotically stable. The proof is 
completed.                                                                                                                                             
■ 
Remark 2 It is worth to point that the condition (21) doesn’t imply i jP P≤ , for the state ( )x t  
doesn’t represent all the state in domain mR  but only the state of the i th activated subsystem.  

3.2 Design of robust reliable controller 
Consider system (1) with ( ) 0w t ≡  

 ( ) ( ) ( ) ( )
ˆ ˆ ˆ( ) ( ) ( ( )) ( ) ( ( ), )f

t d t t tx t A x t A x t d t B u t f x t tσ σ σ σ= + − + +  (23) 

 ( ) ( ), [ ,0]x t t tφ ρ= ∈ −  (24) 

By (7), for the i th subsystem the feedback control law can be designed as 

 ( ) ( )f
i iu t M K x t=  (25) 

Substituting (25) to (23), the corresponding closed-loop system can be written as 

 ˆ( ) ( ) ( ( )) ( ( ), )i di ix t A x t A x t d t f x t t= + − +  (26) 
where ˆ ˆ

i i i i iA A B M K= + , i N∈ . 
The following theorem presents a sufficient existing condition of the robust reliable 
controller for system (23)-(24). 
Theorem 2 For system (23)-(24), if there exists symmetric positive definite matrices ,iX S , 
matrix iY  and the positive scalar λ  such that 

 iX Iλ>  (27) 

 

* (1 ) 0 0 0 0
* * 0 0 0 0

0* * * 0 0 0
* * * * 0 0
* * * * * 0
* * * * * *

T T
i di i i i i i i

T
di

j

A S H X X X U

S SE
I

I
S

X
I

Ψ Φ

μ

λ

⎡ ⎤
⎢ ⎥

− −⎢ ⎥
⎢ ⎥−⎢ ⎥
⎢ ⎥ <−
⎢ ⎥

−⎢ ⎥
⎢ ⎥−
⎢ ⎥
⎢ ⎥−⎣ ⎦

 (28) 
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where 
( )

,
( ( )) * (1 )

T T
i i i i i i i i di

i
x t A P P A Q P U U P A

x t d t Q
δ

η Θ
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where , ,i j i j N≠  ∈ , ( )T
i i i i i i i i i i iA X B M Y A X B M YΨ = + + + , 1 2i i i i i iE X E M YΦ = + , then there 

exists the robust reliable state feedback controller  

 ( )( ) ( )tu t K x tσ= , 1
i i iK Y X−=  (29) 

and the switching law is designed as 1( ) arg min{ ( ) ( )}T
ii N

t x t X x tσ −

∈
= , the closed-loop system is 

asymptotically stable. 
Proof From (5) and Theorem 1, we can obtain the sufficient condition of asymptotically 
stability for system (26) 

 iP Iδ<  (30) 

 
( ( ) )

0
* (1 )
ij i di i i diP A H F t E

Q
Λ

 
μ

+⎡ ⎤
<⎢ ⎥

− −⎣ ⎦
 (31) 

and the switching law is designed as  ( ) arg min{ ( ) ( )}T
ii N

t x t P x tσ
∈

= , where  

1 2 1 2[ ( )( )] [ ( )( )]Tij i i i i i i i i i i i i i i i i i i i i i i

T
j i i

P A B M K H F t E E M K A B M K H F t E E M K P

P Q U U

Λ  

δ

= + + + + + + +

         + + +
 

Denote  

 
( ) ( )

* (1 )

T T
i i i i i i i i i i j i i i di

ij
P A B M K A B M K P P Q U U P A

Y
Q

δ

μ

⎡ ⎤+ + + + + +
= ⎢ ⎥

− −⎢ ⎥⎣ ⎦
 (32) 

Then (31) can be written as  

 [ ] [ ]1 2 1 2( ) ( ) 0
0 0

T
Ti i i iT

ij i i i i i di i i i i di i
P H P H

Y F t E E M K E E E M K E F t
⎡ ⎤ ⎡ ⎤

+ + + + <⎢ ⎥ ⎢ ⎥
⎣ ⎦ ⎣ ⎦

 (33) 

By Lemma 3, if there exists a scalar 0ε >  such that 

 [ ] [ ]1
1 2 1 2 0

0 0

T
Ti i i i

ij i i i i di i i i i di
P H P H

Y E E M K E E E M K Eε ε −⎡ ⎤ ⎡ ⎤
+ + + + <⎢ ⎥ ⎢ ⎥

⎣ ⎦ ⎣ ⎦
 (34) 

then (31) holds.  
(34) can also be written as  

 
1

1 2

1

( )
0

* (1 )

T
ij i di i i i i di

T
di di

P A E E M K E

Q E E

Π ε

μ ε

−

−

⎡ ⎤+ +
⎢ ⎥ <
⎢ ⎥− − +⎣ ⎦

 (35) 

where  

1
1 2 1 2( ) ( ) ( ) ( )T T T

ij i i i i i i i i i i i i i i i i i i i i i i

T
j i i

A B M K P P A B M K P H H P E E M K E E M K

P Q U U

Π ε ε

δ

−= + + + + + + +

         + + +
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Using 
1 1

2 2{ , }diag ε ε  to pre- and post- multiply the left-hand term of expression (35) and 

denoting ,i iP P Q Qε ε=  = , we have 

 1 2( )
0

* (1 )

T
ij i di i i i i di

T
di di

P A E E M K E

Q E E

Π

μ

⎡ ⎤+ +
⎢ ⎥ <
⎢ ⎥− − +⎣ ⎦

 (36) 

where  

1 2 1 2( ) ( ) ( ) ( )T T T
ij i i i i i i i i i i i i i i i i i i i i i i

T
j i i

A B M K P P A B M K P H H P E E M K E E M K

P Q U U

Π

εδ

= + + + + + + +

          + + +
 

By Lemma 1, (36) is equivalent to  

 

'
1 2( )

* (1 ) 0 0
* * 0
* * *

T
ij i di i i i i i i

T
di

P A P H E E M K

Q E
I

I

Π

μ

⎡ ⎤+
⎢ ⎥
⎢ ⎥− − <⎢ ⎥

−⎢ ⎥
⎢ ⎥−⎣ ⎦

 (37) 

where ' ( ) ( )T T
ij i i i i i i i i i i j i iA B M K P P A B M K P Q U UΠ εδ= + + + + + +  

Using 1 1{ , , , }idiag P Q I I− −  to pre- and post- multiply the left-hand term of expression (37) and 

denoting 1 1 1 1, , , ( )i i i i iX P Y K P S Q λ εδ− − − −= = = = , (37) can be written as 

 

''
1 2( )

* (1 ) 0 0
* * 0
* * *

T
ij di i i i i i i

T
di

A S H E X E M Y

S SE
I

I

Π

μ

⎡ ⎤+
⎢ ⎥
⎢ ⎥− − <⎢ ⎥

−⎢ ⎥
⎢ ⎥−⎣ ⎦

 (38) 

where '' 1 1 1( ) ( ) ( )T T
ij i i i i i i i i i i j i i iA X B M Y A B M Y X X S U U XΠ λ− − −= + + + + + +  

Using Lemma 1 again, (38) is equivalent to (28). Meanwhile, substituting 1 ,i i i iX P P Pε−= =  

and 1( )λ εδ −=  to (30) yields (27). Then the switching law becomes  

 1( ) arg min{ ( ) ( )}T
ii N

t x t X x tσ −

∈
=  (39) 

Based on the above proof line, we know that if (27) and (28) holds, and the switching law is 
designed as (39), the state feedback controller ( )( ) ( )tu t K x tσ= , 1

i i iK Y X−=  can guarantee 
system (23)-(24) is asymptotically stable. The proof is completed.                                            ■ 

3.3 Design of robust H∞ reliable controller 
Consider system (1)-(3). By (7), for the i th subsystem the feedback control law can be 
designed as 
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where , ,i j i j N≠  ∈ , ( )T
i i i i i i i i i i iA X B M Y A X B M YΨ = + + + , 1 2i i i i i iE X E M YΦ = + , then there 

exists the robust reliable state feedback controller  

 ( )( ) ( )tu t K x tσ= , 1
i i iK Y X−=  (29) 

and the switching law is designed as 1( ) arg min{ ( ) ( )}T
ii N

t x t X x tσ −

∈
= , the closed-loop system is 

asymptotically stable. 
Proof From (5) and Theorem 1, we can obtain the sufficient condition of asymptotically 
stability for system (26) 

 iP Iδ<  (30) 

 
( ( ) )

0
* (1 )
ij i di i i diP A H F t E

Q
Λ

 
μ

+⎡ ⎤
<⎢ ⎥

− −⎣ ⎦
 (31) 

and the switching law is designed as  ( ) arg min{ ( ) ( )}T
ii N

t x t P x tσ
∈

= , where  

1 2 1 2[ ( )( )] [ ( )( )]Tij i i i i i i i i i i i i i i i i i i i i i i

T
j i i

P A B M K H F t E E M K A B M K H F t E E M K P

P Q U U

Λ  

δ

= + + + + + + +

         + + +
 

Denote  

 
( ) ( )

* (1 )

T T
i i i i i i i i i i j i i i di

ij
P A B M K A B M K P P Q U U P A

Y
Q

δ

μ

⎡ ⎤+ + + + + +
= ⎢ ⎥

− −⎢ ⎥⎣ ⎦
 (32) 

Then (31) can be written as  

 [ ] [ ]1 2 1 2( ) ( ) 0
0 0

T
Ti i i iT

ij i i i i i di i i i i di i
P H P H

Y F t E E M K E E E M K E F t
⎡ ⎤ ⎡ ⎤

+ + + + <⎢ ⎥ ⎢ ⎥
⎣ ⎦ ⎣ ⎦

 (33) 

By Lemma 3, if there exists a scalar 0ε >  such that 

 [ ] [ ]1
1 2 1 2 0

0 0

T
Ti i i i

ij i i i i di i i i i di
P H P H

Y E E M K E E E M K Eε ε −⎡ ⎤ ⎡ ⎤
+ + + + <⎢ ⎥ ⎢ ⎥

⎣ ⎦ ⎣ ⎦
 (34) 

then (31) holds.  
(34) can also be written as  

 
1

1 2

1

( )
0

* (1 )

T
ij i di i i i i di

T
di di

P A E E M K E

Q E E

Π ε

μ ε

−

−

⎡ ⎤+ +
⎢ ⎥ <
⎢ ⎥− − +⎣ ⎦

 (35) 

where  

1
1 2 1 2( ) ( ) ( ) ( )T T T

ij i i i i i i i i i i i i i i i i i i i i i i

T
j i i

A B M K P P A B M K P H H P E E M K E E M K

P Q U U

Π ε ε

δ

−= + + + + + + +

         + + +
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Using 
1 1

2 2{ , }diag ε ε  to pre- and post- multiply the left-hand term of expression (35) and 

denoting ,i iP P Q Qε ε=  = , we have 

 1 2( )
0

* (1 )

T
ij i di i i i i di

T
di di

P A E E M K E

Q E E

Π

μ

⎡ ⎤+ +
⎢ ⎥ <
⎢ ⎥− − +⎣ ⎦

 (36) 

where  

1 2 1 2( ) ( ) ( ) ( )T T T
ij i i i i i i i i i i i i i i i i i i i i i i

T
j i i

A B M K P P A B M K P H H P E E M K E E M K

P Q U U

Π

εδ

= + + + + + + +

          + + +
 

By Lemma 1, (36) is equivalent to  

 

'
1 2( )

* (1 ) 0 0
* * 0
* * *

T
ij i di i i i i i i

T
di

P A P H E E M K

Q E
I

I

Π

μ

⎡ ⎤+
⎢ ⎥
⎢ ⎥− − <⎢ ⎥

−⎢ ⎥
⎢ ⎥−⎣ ⎦

 (37) 

where ' ( ) ( )T T
ij i i i i i i i i i i j i iA B M K P P A B M K P Q U UΠ εδ= + + + + + +  

Using 1 1{ , , , }idiag P Q I I− −  to pre- and post- multiply the left-hand term of expression (37) and 

denoting 1 1 1 1, , , ( )i i i i iX P Y K P S Q λ εδ− − − −= = = = , (37) can be written as 

 

''
1 2( )

* (1 ) 0 0
* * 0
* * *

T
ij di i i i i i i

T
di

A S H E X E M Y

S SE
I

I

Π

μ

⎡ ⎤+
⎢ ⎥
⎢ ⎥− − <⎢ ⎥

−⎢ ⎥
⎢ ⎥−⎣ ⎦

 (38) 

where '' 1 1 1( ) ( ) ( )T T
ij i i i i i i i i i i j i i iA X B M Y A B M Y X X S U U XΠ λ− − −= + + + + + +  

Using Lemma 1 again, (38) is equivalent to (28). Meanwhile, substituting 1 ,i i i iX P P Pε−= =  

and 1( )λ εδ −=  to (30) yields (27). Then the switching law becomes  

 1( ) arg min{ ( ) ( )}T
ii N

t x t X x tσ −

∈
=  (39) 

Based on the above proof line, we know that if (27) and (28) holds, and the switching law is 
designed as (39), the state feedback controller ( )( ) ( )tu t K x tσ= , 1

i i iK Y X−=  can guarantee 
system (23)-(24) is asymptotically stable. The proof is completed.                                            ■ 

3.3 Design of robust H∞ reliable controller 
Consider system (1)-(3). By (7), for the i th subsystem the feedback control law can be 
designed as 
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 ( ) ( )f
i iu t M K x t=  (40) 

Substituting (40) to (1) and (2), the corresponding closed-loop system can be written as 

 ˆ( ) ( ) ( ( )) ( ) ( ( ), )i di i ix t A x t A x t d t D w t f x t t= + − + +  (41) 

 ( ) ( ) ( )i iz t C x t N w t= +  (42) 

where ˆ ˆ ,i i i i i i i i i iA A B M K C C G M K= + = + , i N∈ . 
The following theorem presents a sufficient existing condition of the robust H∞ reliable 
controller for system (1)-(3). 
Theorem 3  For system (1)-(3), if there exists symmetric positive definite matrices ,iX S , 
matrix iY  and the positive scalar ,λ ε  such that 

 iX Iλ>  (43) 

 

( )

* 0 0 0 0 0 0

* * 0 0 0 0 0 0

* * * (1 ) 0 0 0 0
0

* * * * 0 0 0 0
* * * * * 0 0 0
* * * * * * 0 0
* * * * * * * 0
* * * * * * * *

T T T
i i i i i i i di i i i i i i

T
i

T
di

j

D C X G M Y A S H X X X U

I N

I

S SE
I

I
S

X
I

Ψ Φ

γε
γ
ε

μ

λ

⎡ ⎤+
⎢ ⎥

−⎢ ⎥
⎢ ⎥
⎢ ⎥−
⎢ ⎥
⎢ ⎥− −⎢ ⎥ <
⎢ ⎥−
⎢ ⎥

−⎢ ⎥
⎢ ⎥−⎢ ⎥

−⎢ ⎥
⎢ ⎥

−⎢ ⎥⎣ ⎦

 (44) 

where , ,i j i j N≠  ∈ , ( )T
i i i i i i i i i i iA X B M Y A X B M YΨ = + + + , 1 2i i i i i iE X E M YΦ = + , then there 

exists the robust H∞ reliable state feedback controller  

 ( )( ) ( )tu t K x tσ= , 1
i i iK Y X−=  (45) 

and the switching law is designed as 1( ) arg min{ ( ) ( )}T
ii N

t x t X x tσ −

∈
= , the closed-loop system is 

asymptotically stable with disturbance attenuation performance γ  for all admissible 
uncertainties as well as all actuator faults. 
Proof By (44), we can obtain that 

 

* (1 ) 0 0 0 0
* * 0 0 0 0

0* * * 0 0 0
* * * * 0 0
* * * * * 0
* * * * * *

T T
i di i i i i i i

T
di

j

A S H X X X U

S SE
I

I
S

X
I

Ψ Φ

μ

λ

⎡ ⎤
⎢ ⎥

− −⎢ ⎥
⎢ ⎥−⎢ ⎥
⎢ ⎥ <−
⎢ ⎥

−⎢ ⎥
⎢ ⎥−
⎢ ⎥
⎢ ⎥−⎣ ⎦

 (46) 
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From Theorem 2, we know that closed-loop system (41) is asymptotically stable.  
Define the following piecewise Lyapunov-Krasovskii functional candidate 

 1( )
( ( )) ( ( )) ( ) ( ) ( ) ( ) , [ , 0,1,

tT T
i i n nt d t

V x t V x t x t P x t x Qx d t t t nτ τ τ +−
= = + ∈   ),  =  ∫    (47) 

where ,iP Q  are symmetric positive definite matrices, and 0 0t = . Along the trajectories of 
system (41), the time derivative of ( ( ))iV x t  is given by 

 
( ( ) )

( ( )) * 0 0
* * (1 )

i i i i di i i di
T

i

PD P A H F t E
V x t

Q

Λ
ξ  ξ

μ

+⎡ ⎤
⎢ ⎥≤ ⎢ ⎥
⎢ ⎥− −⎣ ⎦

 (48) 

where  

1 2 1 2

( ) ( ) ( ( )) ,

[ ( )( )] [ ( )( )]

TT T T

T
i i i i i i i i i i i i i i i i i i i i i i i

T
i i i

x t w t x t d t

P A B M K H F t E E M K A B M K H F t E E M K P

P Q U U

ξ

Λ  

  δ

⎡ ⎤= −⎣ ⎦
= + + + + + + +

+ + +

 

By simple computing, we can obtain that 

 

1

1 1

1

( ) ( ) ( ) ( )

( ) ( ) ( ) 0

* 0
* * 0

T T

T T
i i i i i i i i i i i i i

T T
i i

z t z t w t w t

C G M K C G M K C G M K N

N N I

γ γ

γ γ

ξ γ γ  ξ

−

− −

−

−

⎡ ⎤+ + +
⎢ ⎥

= −⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

   

 (49) 

Denote 1 1 1, , , ,i i i i i i iX P Y K P S Q P P Q Qε ε− − −= = = = = . Substituting them to (44), and using 
Lemma 1 and Lemma 3, through equivalent transform we have 

11

1

( ) ( ( ) )( ) ( )
* 0 0
* * (1 )

TT
i i i i i i i i di i i dii i i i i i i i ij

T
i i

C G M K N PD P A H F t EC G M K C G M K
N N I

Q

γγ Λ

γ γ
μ

−−

−

⎤⎡ + + ++ + +
⎥⎢

− <⎥⎢
⎥⎢ − − ⎥⎢⎣ ⎦

     (50) 

where  

1 2 1 2[ ( )( )] [ ( )( )]Tij i i i i i i i i i i i i i i i i i i i i i i

T
j i i

P A B M K H F t E E M K A B M K H F t E E M K P

P Q U U

Λ  

δ

= + + + + + + +

         + + +
 

Obviously, under the switching law ( ) arg min{ ( ) ( )}T
ii N

t x t P x tσ
∈

=  there is 

 1 ( ) ( ) ( ) ( ) ( ( )) 0T T
iz t z t w t w t V x tγ γ− − + <  (51) 

Define 

 1
0

( ( ) ( ) ( ) ( ))T TJ z t z t w t w t dtγ γ
∞ −= −∫  (52) 
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 ( ) ( )f
i iu t M K x t=  (40) 

Substituting (40) to (1) and (2), the corresponding closed-loop system can be written as 

 ˆ( ) ( ) ( ( )) ( ) ( ( ), )i di i ix t A x t A x t d t D w t f x t t= + − + +  (41) 

 ( ) ( ) ( )i iz t C x t N w t= +  (42) 

where ˆ ˆ ,i i i i i i i i i iA A B M K C C G M K= + = + , i N∈ . 
The following theorem presents a sufficient existing condition of the robust H∞ reliable 
controller for system (1)-(3). 
Theorem 3  For system (1)-(3), if there exists symmetric positive definite matrices ,iX S , 
matrix iY  and the positive scalar ,λ ε  such that 

 iX Iλ>  (43) 

 

( )

* 0 0 0 0 0 0

* * 0 0 0 0 0 0

* * * (1 ) 0 0 0 0
0

* * * * 0 0 0 0
* * * * * 0 0 0
* * * * * * 0 0
* * * * * * * 0
* * * * * * * *

T T T
i i i i i i i di i i i i i i

T
i

T
di

j

D C X G M Y A S H X X X U

I N

I

S SE
I

I
S

X
I

Ψ Φ

γε
γ
ε

μ

λ

⎡ ⎤+
⎢ ⎥

−⎢ ⎥
⎢ ⎥
⎢ ⎥−
⎢ ⎥
⎢ ⎥− −⎢ ⎥ <
⎢ ⎥−
⎢ ⎥

−⎢ ⎥
⎢ ⎥−⎢ ⎥

−⎢ ⎥
⎢ ⎥

−⎢ ⎥⎣ ⎦

 (44) 

where , ,i j i j N≠  ∈ , ( )T
i i i i i i i i i i iA X B M Y A X B M YΨ = + + + , 1 2i i i i i iE X E M YΦ = + , then there 

exists the robust H∞ reliable state feedback controller  

 ( )( ) ( )tu t K x tσ= , 1
i i iK Y X−=  (45) 

and the switching law is designed as 1( ) arg min{ ( ) ( )}T
ii N

t x t X x tσ −

∈
= , the closed-loop system is 

asymptotically stable with disturbance attenuation performance γ  for all admissible 
uncertainties as well as all actuator faults. 
Proof By (44), we can obtain that 

 

* (1 ) 0 0 0 0
* * 0 0 0 0

0* * * 0 0 0
* * * * 0 0
* * * * * 0
* * * * * *

T T
i di i i i i i i

T
di

j

A S H X X X U

S SE
I

I
S

X
I

Ψ Φ

μ

λ

⎡ ⎤
⎢ ⎥

− −⎢ ⎥
⎢ ⎥−⎢ ⎥
⎢ ⎥ <−
⎢ ⎥

−⎢ ⎥
⎢ ⎥−
⎢ ⎥
⎢ ⎥−⎣ ⎦

 (46) 

Robust H∞ Reliable Control of Uncertain Switched Nonlinear Systems with Time-varying Delay    

 

127 

From Theorem 2, we know that closed-loop system (41) is asymptotically stable.  
Define the following piecewise Lyapunov-Krasovskii functional candidate 

 1( )
( ( )) ( ( )) ( ) ( ) ( ) ( ) , [ , 0,1,

tT T
i i n nt d t

V x t V x t x t Px t x Qx d t t t nτ τ τ +−
= = + ∈   ),  =  ∫    (47) 

where ,iP Q  are symmetric positive definite matrices, and 0 0t = . Along the trajectories of 
system (41), the time derivative of ( ( ))iV x t  is given by 

 
( ( ) )

( ( )) * 0 0
* * (1 )

i i i i di i i di
T

i

PD P A H F t E
V x t

Q

Λ
ξ  ξ

μ

+⎡ ⎤
⎢ ⎥≤ ⎢ ⎥
⎢ ⎥− −⎣ ⎦

 (48) 

where  

1 2 1 2

( ) ( ) ( ( )) ,

[ ( )( )] [ ( )( )]

TT T T

T
i i i i i i i i i i i i i i i i i i i i i i i

T
i i i

x t w t x t d t

P A B M K H F t E E M K A B M K H F t E E M K P

P Q U U

ξ

Λ  

  δ

⎡ ⎤= −⎣ ⎦
= + + + + + + +

+ + +

 

By simple computing, we can obtain that 

 

1

1 1

1

( ) ( ) ( ) ( )

( ) ( ) ( ) 0

* 0
* * 0

T T

T T
i i i i i i i i i i i i i

T T
i i

z t z t w t w t

C G M K C G M K C G M K N

N N I

γ γ

γ γ

ξ γ γ  ξ

−

− −

−

−

⎡ ⎤+ + +
⎢ ⎥

= −⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

   

 (49) 

Denote 1 1 1, , , ,i i i i i i iX P Y K P S Q P P Q Qε ε− − −= = = = = . Substituting them to (44), and using 
Lemma 1 and Lemma 3, through equivalent transform we have 
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1

( ) ( ( ) )( ) ( )
* 0 0
* * (1 )

TT
i i i i i i i i di i i dii i i i i i i i ij

T
i i

C G M K N PD P A H F t EC G M K C G M K
N N I

Q

γγ Λ

γ γ
μ

−−

−

⎤⎡ + + ++ + +
⎥⎢

− <⎥⎢
⎥⎢ − − ⎥⎢⎣ ⎦

     (50) 

where  

1 2 1 2[ ( )( )] [ ( )( )]Tij i i i i i i i i i i i i i i i i i i i i i i

T
j i i

P A B M K H F t E E M K A B M K H F t E E M K P

P Q U U

Λ  

δ

= + + + + + + +

         + + +
 

Obviously, under the switching law ( ) arg min{ ( ) ( )}T
ii N

t x t P x tσ
∈

=  there is 

 1 ( ) ( ) ( ) ( ) ( ( )) 0T T
iz t z t w t w t V x tγ γ− − + <  (51) 

Define 

 1
0

( ( ) ( ) ( ) ( ))T TJ z t z t w t w t dtγ γ
∞ −= −∫  (52) 
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Consider switching signal  

 (0) (1) (2) ( )
1 2( ) : {(0, ), ( , ),( , ), , ( , )}k

kt i t i t i t iσ         

which means the ( )ki th subsystem is activated at kt .  
Combining (47), (51) and (52), for zero initial conditions, we have 

1 2
(0) (1)

1

1 1
0

( ( ) ( ) ( ) ( ) ( )) ( ( ) ( ) ( ) ( ) ( ))

0

t tT T T T
i it

J z t z t w t w t V t dt z t z t w t w t V t dtγ γ γ γ− −≤ − + + − + +

<

∫ ∫
 

 

Therefore, we can obtain 2 2( ) ( )z t w tγ< . The proof is completed.                    ■ 
When the actuator fault is taken into account in the controller design, we have the following 
theorem. 
Theorem 4 For system (1)-(3), γ  is a given positive scalar, if there exists symmetric positive 
definite matrices ,iX S , matrix iY  and the positive scalar , ,α ε λ  such that 

 iX Iλ>  (53) 
 

 

1
2

1 2 0

3 2

4

* 0 0 0 0 0 0 0

* * 0 0 0 0 0 0

* * * (1 ) 0 0 0 0 0
* * * * 0 0 0 0 0 0
* * * * * 0 0 0 0
* * * * * * 0 0 0
* * * * * * * 0 0
* * * * * * * * 0
* * * * * * * * *

T T T T
i i i di i i i i i i i i i

T
i

T
i i i i

T
di

i

j

D A S H X X X U Y M J

I N

G J E

S SE
I

S
X

I
I

Σ Σ Σ

γε

Σ α

μ

Σ

λ
α

⎡ ⎤
⎢ ⎥
⎢ ⎥−⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥− −
⎢ ⎥− <⎢ ⎥
⎢ ⎥
⎢ ⎥

−⎢ ⎥
⎢ ⎥−⎢ ⎥
⎢ ⎥−
⎢ ⎥

−⎢ ⎥⎣ ⎦

 (54) 

where , ,i j i j N≠  ∈  

0 0

1 0

2 1 2 0 2

3 4 2 2

( )

,

T T
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then there exists the γ -suboptimal robust H∞ reliable controller  

 ( )( ) ( )tu t K x tσ= , 1
i i iK Y X−=  (55) 
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and the switching law is designed as 1( ) arg min{ ( ) ( )}T
ii N

t x t X x tσ −

∈
= , the closed-loop system is 

asymptotically stable. 
Proof By Theorem 3, substituting (12) to (44) yields 
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Consider switching signal  
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theorem. 
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and the switching law is designed as 1( ) arg min{ ( ) ( )}T
ii N

t x t X x tσ −

∈
= , the closed-loop system is 

asymptotically stable. 
Proof By Theorem 3, substituting (12) to (44) yields 
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Notice that 0iM  and iL  are both diagonal matrices, then we have  
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0 00 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0
0 0
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i i
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L M Y L M Y
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Ξ
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⎜ ⎟⎢ ⎥ ⎢ ⎥
⎜ ⎟⎢ ⎥ ⎢ ⎥
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⎜ ⎟⎢ ⎥ ⎢ ⎥
⎜ ⎟⎢ ⎥ ⎢ ⎥
⎜ ⎟⎢ ⎥ ⎢ ⎥⎜ ⎟⎣ ⎦ ⎣ ⎦⎝ ⎠

From Lemma 4 and (12), we can obtain that 
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⎢ ⎥ ⎢ ⎥⎢ ⎥ ⎢ ⎥≤ + ⎢ ⎥ ⎢ ⎥⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦ ⎣ ⎦ ⎣ ⎦

 (58) 

Then the following inequality 
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⎢ ⎥ ⎢ ⎥⎢ ⎥ ⎢ ⎥+ + <⎢ ⎥ ⎢ ⎥⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦ ⎣ ⎦ ⎣ ⎦

 (59) 

can guarantee (56) holds.  
By Lemma 1, we know that (59) is equivalent to (54). The proof is completed.           ■ 
Remark 3 (54) is not linear, because there exist unknown variables ε , 1ε − . Therefore, we 
consider utilizing variable substitute method to solve matrix inequality (54). Using 

1{ , , , , , , , , , }diag I I I I I I I I Iε −  to pre- and post- multiply the left-hand term of expression (54), 
and denoting 1η ε −= , (54) can be transformed as the following linear matrix inequality 
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* * * (1 ) 0 0 0 0 0
* * * * 0 0 0 0 0
* * * * * 0 0 0 0
* * * * * * 0 0 0
* * * * * * * 0 0
* * * * * * * * 0
* * * * * * * * *
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⎢ ⎥−⎢ ⎥
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⎢ ⎥
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0<  (60) 

where 3
T

i i i iI G J GΣ ηγ α= − +  
Corollary 1 For system (1)-(3), if the following optimal problem  

 
0, 0, 0, 0,

min
i iX S Yα ε λ

γ
>  >  >  >  >0,

 (61) 

s.t. (53) and (54) 
has feasible solution 0, 0, 0, 0, 0, ,i iX S Y i Nα ε λ> > > > > ∈ , then there exists the γ -optimal 
robust H∞ reliable controller  

 ( )( ) ( )tu t K x tσ= , 1
i i iK Y X−=  (62) 

and the switching law is designed as 1( ) arg min{ ( ) ( )}T
ii N

t x t X x tσ −

∈
= , the closed-loop system is 

asymptotically stable. 
Remark 4 There exist unknown variables γε , 1γε −  in (54), so it is difficult to solve the 
above optimal problem. We denote  θ γε= , 1χ γε −= , and substitute them to (54), then (54) 
becomes a set of linear matrix inequalities. Notice that 

2
θ χγ +

≤ , we can solve the following 

the optimal problem to obtain the minimal upper bound of γ  
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* * * * * * * * *
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can guarantee (56) holds.  
By Lemma 1, we know that (59) is equivalent to (54). The proof is completed.           ■ 
Remark 3 (54) is not linear, because there exist unknown variables ε , 1ε − . Therefore, we 
consider utilizing variable substitute method to solve matrix inequality (54). Using 
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s.t. (53) and (54) 
has feasible solution 0, 0, 0, 0, 0, ,i iX S Y i Nα ε λ> > > > > ∈ , then there exists the γ -optimal 
robust H∞ reliable controller  
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 iX Iλ>  (65) 

where 3
T

i i i iI G J GΣ χ α= − + , then the minimal value of γ  can be acquired based on the 
following steps 

Step 1. From (63)-(65), we solve the minimal value (0)γ  of 
2

θ χ+ , where (0)γ  is the first 

iterative value; 
Step 2. Choosing an appropriate step size 0δ δ= , and let (1) (0)

0γ γ δ= − , then we substitute 
Step 3. (1)γ  to (60) to solve LMIs. If there is not feasible solution, stop iterating and (0)γ  is 

just the optimal performance index; Otherwise, continue iterating until ( )kγ  is 
feasible solution but ( 1)kγ +  is not, then (0)

0kγ γ δ= −  is the optimal performance 
index. 

4. Numerical example 
In this section, an example is given to illustrate the effectiveness of the proposed method. 
Consider system (1)-(3) with parameter as follows (the number of subsystems 2N = ) 
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When 1 2M M I= = , from Theorem 3 and using LMI toolbox in Matlab, we have  
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The state responses of the closed-loop system are shown in Fig. 1. 
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Fig. 1. State responses of the closed-loop system with the normal switched controller when 
the actuator is normal 
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Fig. 1. State responses of the closed-loop system with the normal switched controller when 
the actuator is normal 
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The Fig. 1 illustrates that the designed normal switched controller can guarantee system is 
asymptotically stable when the actuator is normal. 
However, in fact, the actuator fault can not be avoided. Here, we assume that the actuator 
fault model with parameters as follows 
For subsystem 1  

110.04 1m≤ ≤ , 120.1 1.2m≤ ≤  
For subsystem 2  

210.1 1m≤ ≤ , 220.04 1m≤ ≤  
Then we have  

10
0.52 0

0 0.65
M

⎡ ⎤
= ⎢ ⎥
⎣ ⎦

, 1
0.92 0

0 0.85
J

⎡ ⎤
= ⎢ ⎥
⎣ ⎦

 

20
0.55 0
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M

⎡ ⎤
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⎣ ⎦

, 2
0.82 0
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J
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= ⎢ ⎥
⎣ ⎦

 

Choosing the fault matrices of subsystem 1 and subsystem 2 are  

1
0.04 0

0 0.1
M

⎡ ⎤
= ⎢ ⎥
⎣ ⎦

, 2
0.1 0
0 0.04

M
⎡ ⎤

= ⎢ ⎥
⎣ ⎦

 

Then the above switched controller still be used to stabilize the system, the simulation result 
of the state responses of closed-loop switched system is shown in Fig. 2. 
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Fig. 2. State responses of the closed-loop system with the normal switched controller when 
the actuator is failed 

Obviously, it can be seen that system state occurs vibration and the system can not be 
stabilized effectively. 
The simulation comparisons of Fig. 1 and Fig. 2 shows that the design method for normal 
switched controller  may lose efficacy when the actuator is failed. 
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Then for the above fault model, by Theorem 3 and using LMI toolbox in Matlab, we have 

1
0.0180 0.0085
0.0085 0.0123

X
⎡ ⎤

= ⎢ ⎥
⎣ ⎦

, 2
0.0436 -0.0007
-0.0007 0.0045

X
⎡ ⎤

= ⎢ ⎥
⎣ ⎦

 

1
0.4784 0.6606
-0.5231 -0.0119

Y
⎡ ⎤

= ⎢ ⎥
⎣ ⎦

, 2
0.7036 -0.1808
-0.1737 -0.5212

Y
⎡ ⎤

= ⎢ ⎥
⎣ ⎦

 

0.0130 0.0000
0.0000 0.0012

S
⎡ ⎤
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, 0.0416α = , 946.1561ε = , 0.0036λ =  

Then robust H∞  reliable controller can be designed as 
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K
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Choosing the switching law as 
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The state responses of the closed-loop system are shown in Fig. 3. 
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Fig. 3. State responses of the closed-loop system with the reliable switched controller when 
the actuator is failed 
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Fig. 2. State responses of the closed-loop system with the normal switched controller when 
the actuator is failed 

Obviously, it can be seen that system state occurs vibration and the system can not be 
stabilized effectively. 
The simulation comparisons of Fig. 1 and Fig. 2 shows that the design method for normal 
switched controller  may lose efficacy when the actuator is failed. 
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It can be seen that the designed robust H∞  reliable controller makes the closed-loop switched 
system is asymptotically stable for admissible uncertain parameter and actuator fault. 
The simulation of Fig. 3 also shows that the design method of robust H∞ reliable controller 
can overcome the effect of time-varying delay for switched system. 
Moreover, by Corollary 1, based on the solving process of Remark 4 we can obtain the 
optimal H∞ disturbance attenuation performance 0.54γ = , the optimal robust H∞  reliable 
controller can be designed as 

1
9.7714 115.4893

-69.8769 41.1641
K

⎡ ⎤
= ⎢ ⎥
⎣ ⎦

, 2
9.9212 -106.5624

-62.1507 -608.0198
K

⎡ ⎤
= ⎢ ⎥
⎣ ⎦

 

The parameter matrices 1X ,  2X  of the switching law are 

1
0.0031 0.0011
0.0011 0.0018

X
⎡ ⎤

= ⎢ ⎥
⎣ ⎦

, 2
0.0119 -0.0011
-0.0011 0.0004

X
⎡ ⎤

= ⎢ ⎥
⎣ ⎦

 

5. Conclusion 
In order to overcome the passive effect of time-varying delay for switched systems and 
make systems be anti-jamming and fault-tolerant, robust H∞ reliable control for a class of 
uncertain switched systems with actuator faults and time-varying delays is investigated. At 
first, the concept of robust reliable controller, γ -suboptimal robust H∞ reliable controller 
and γ -optimal robust H∞ reliable controller are presented. Secondly, fault model of actuator 
for switched systems is put forward. Multiple Lyapunov-Krasovskii functional method and 
linear matrix inequality technique are adopted to design robust H∞ reliable controller. The 
matrix inequalities in the γ -optimal problem are not linear, then we make use of variable 
substitute method to acquire the controller gain matrices. Furthermore, the iteration solving 
process of optimal disturbance attenuation performance γ  is presented. Finally, a numerical 
example shows the effectiveness of the proposed method. The result illustrates that the 
designed controller can stabilize the original system and makes it be of H∞ disturbance 
attenuation performance when the system has uncertain parameters and actuator faults. Our 
future work will focus on constructing the appropriate multiply Lyapunov-Krasovskii 
functional to obtain the designed method of time delay dependent robust H∞ reliable 
controller. 
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Optimal Sliding Mode Control for a  
Class of Uncertain Nonlinear Systems  

Based on Feedback Linearization 
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1. Introduction 
Optimal control is one of the most important branches in modern control theory, and linear 
quadratic regulator (LQR) has been well used and developed in linear control systems. 
However, there would be several problems in employing LQR to uncertain nonlinear 
systems. The optimal LQR problem for nonlinear systems often leads to solving a nonlinear 
two-point boundary-value (TPBV) problem (Tang et al. 2008; Pang et al. 2009) and an 
analytical solution generally does not exist except some simplest cases (Tang & Gao, 2005). 
Additionally, the optimal controller design is usually based on the precise mathematical 
models. While if the controlled system is subject to some uncertainties, such as parameter 
variations, unmodeled dynamics and external disturbances, the performance criterion which 
is optimized based on the nominal system would deviate from the optimal value, even the 
system becomes unstable (Gao & Hung, 1993 ; Pang & Wang, 2009). 
The main control strategies to deal with the optimal control problems of nonlinear systems 
are as follows. First, obtain approximate solution of optimal control problems by iteration or 
recursion, such as successive approximate approach (Tang, 2005), SDRE (Shamma & 
Cloutier, 2001), ASRE (Cimen & Banks, 2004). These methods could have direct results but 
usually complex and difficult to be realized. Second, transform the nonlinear system into a 
linear one by the approximate linearization (i.e. Jacobian linearization), then optimal control 
can be realized easily based on the transformed system. But the main problem of this 
method is that the transformation is only applicable to those systems with less nonlinearity 
and operating in a very small neighborhood of equilibrium points. Third, transform the 
nonlinear system into a linear one by the exact linearization technique (Mokhtari et al. 2006; 
Pang & Chen, 2009). This differs entirely from approximate linearization in that the 
approximate linearization is often done simply by neglecting any term of order higher than 
1 in the dynamics while exact linearization is achieved by exact state transformations and 
feedback.  
As a precise and robust algorithm, the sliding mode control (SMC) (Yang & Özgüner, 1997; 
Choi et al. 1993; Choi et al. 1994) has attracted a great deal of attention to the uncertain 
nonlinear system control problems. Its outstanding advantage is that the sliding motion 
exhibits complete robustness to system uncertainties. In this chapter, combining LQR and 
SMC, the design of global robust optimal sliding mode controller (GROSMC) is concerned. 
Firstly, the GROSMC is designed for a class of uncertain linear systems. And then, a class of 
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affine nonlinear systems is considered. The exact linearization technique is adopted to 
transform the nonlinear system into an equivalent linear one and a GROSMC is designed 
based on the transformed system. Lastly, the global robust optimal sliding mode tracking 
controller is studied for a class of uncertain affine nonlinear systems. Simulation results 
illustrate the effectiveness of the proposed methods. 

2. Optimal sliding mode control for uncertain linear system 
In this section, the problem of robustify LQR for a class of uncertain linear systems is 
considered. An optimal controller is designed for the nominal system and an integral sliding 
surface (Lee, 2006; Laghrouche et al. 2007) is constructed. The ideal sliding motion can 
minimize a given quadratic performance index, and the reaching phase, which is inherent in 
conventional sliding mode control, is completely eliminated (Basin et al. 2007). Then the 
sliding mode control law is synthesized to guarantee the reachability of the specified sliding 
surface. The system dynamics is global robust to uncertainties which satisfy matching 
conditions. A GROSMC is realized. To verify the effectiveness of the proposed scheme, a 
robust optimal sliding mode controller is developed for rotor position control of an electrical 
servo drive system. 

2.1 System description and problem formulation 
Consider an uncertain linear system described by 

 ( ) ( ) ( ) ( ) ( ) ( , )x t A A x t B B u t x tδ= + Δ + + Δ +  (1) 

where ( ) nx t R∈  and ( ) mu t R∈  are the state and the control vectors, respectively. AΔ  and 
BΔ  are unknown time-varying matrices representing system parameter uncertainties. 
( , )x tδ is an uncertain extraneous disturbance and/or unknown nonlinearity of the system. 

Assumption 1. The pair ( , )A B is controllable and rank( )B m= . 
Assumption 2. AΔ , BΔ  and ( , )x tδ are continuously differentiable in x , and piecewise 
continuous in t . 
Assumption 3. There exist unknown continuous functions of appropriate dimension AΔ , 

BΔ  and ( , )x tδ , such that  

, , ( , ) ( , ).A B A B B B x t B x tδ δΔ = Δ Δ = Δ =  

These conditions are the so-called matching conditions. 
From these assumptions, the state equation of the uncertain dynamic system (1) can be 
rewritten as 

 ( ) ( ) ( ) ( , ),x t Ax t Bu t B x tδ= + +  (2) 
where  
Assumption 4. There exist unknown positive constants 0γ  and 1γ  such that  

0 1( , ) ( ) .x t x tδ γ γ≤ +  

where •  denotes the Euclidean norm. 
By setting the uncertainty to zero, we can obtain the dynamic equation of the original 
system of (1), as 
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 ( ) ( ) ( ).x t Ax t Bu t= +  (3) 

For the nominal system (3), let’s define a quadratic performance index as follows: 

 T T
0 0

1 [ ( ) ( ) ( ) ( )] ,
2

J x t Qx t u t Ru t dt
∞

= +∫  (4) 

where n nQ R ×∈  is a semi-positive definite matrix, the weighting function of states; 
m mR R ×∈  is a positive definite matrix, the weighting function of control variables. 

According to optimal control theory and considering Assumption1, there exists an optimal 
feedback control law that minimizes the index (4). The optimal control law can be written as 

 * 1( ) ( ) ,Tu t R B Px t−= −  (5) 

where n nP R ×∈  is a positive definite matrix solution of Riccati matrix equation: 

 1 0.T TPA A P PBR B P Q−− − + − =  (6) 

So the dynamic equation of the closed-loop system is  

 1( ) ( ) ( ).Tx t A BR B P x t−= −  (7) 

Obviously, according to optimal control theory, the closed-loop system is asymptotically 
stable. However, when the system is subjected to uncertainties such as external disturbances 
and parameter variations, the optimal system behavior could be deteriorated, even unstable. 
In the next part, we will utilize sliding mode control strategy to robustify the optimal control 
law. 

2.2 Design of optimal sliding mode controller 
2.2.1 Design of optimal sliding mode surface 
Considering the uncertain system (2), we chose the integral sliding surface as follows: 

 1 T
0

( , ) [ ( ) (0)] ( ) ( ) 0.
t

s x t G x t x G A BR B P x dτ τ−= − − − =∫  (8) 

where m nG R ×∈ , which satisfies that GB is nonsingular, (0)x is the initial state vector. In 
sliding mode, we have ( , ) 0s x t = and ( , ) 0s x t = . Differentiating (8) with respect to t  and 
considering (1), we obtain 

 

1 T

1 T

1 T

[( ) ( ) ] ( )

( )

( ) ( )

s G A A x B B u G A BR B P x

G Ax G B B u G GBR B Px

G Ax BR B Px G G B B u

δ

δ

δ

−

−

−

= + Δ + + Δ + − −

= Δ + + Δ + +

= Δ + + + + Δ

 (9) 

the equivalent control becomes 

 1 1 T
eq [ ( )] [ ( ) ].u G B B G A BR B P x Gδ− −= − + Δ Δ + +  (10) 

Substituting (10) into (1) and considering Assumption3, the ideal sliding mode dynamics 
becomes  
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1 1 T

1 1 T

1 T

( ) ( )[ ( )] [ ( ) ]

( ) ( )[ ( )] [ ( ) ]

( )

x A A x B B G B B G A BR B P x G

A B A x B B B G B B B GB Ax GBR B Px B

A BR B P x

δ δ

δ δ

− −

− −

−

= + Δ − + Δ + Δ Δ + + +

= + Δ − + Δ + Δ Δ + + +

= −

 (11) 

Comparing equation (11) with equation (7), we can see that they have the same form. So the 
sliding mode is asymptotically stable. Furthermore, it can be seen from (11) that the sliding 
mode is robust to uncertainties which satisfying matching conditions. So we call (8) a robust 
optimal sliding surface. 

2.2.2 Design of sliding mode control law 
To ensure the reachability of sliding mode in finite time, we chose the sliding mode control 
law as follows: 

 
c d

1 T
c

1
d 0 1

( ) ( ) ( ),

( ) ( ),

( ) ( ) ( ( ) )sgn( ).

u t u t u t

u t R B Px t

u t GB GB GB x t sη γ γ

−

−

= +

= −

= − + +

 (12) 

Where 0η > , c( )u t is the continuous part, used to stabilize and optimize the nominal 
system; d( )u t is the discontinuous part, which provides complete compensation for 
uncertainties of system (1). Let’s select a quadratic performance index as follows: 

 T T
c c0

1( ) [ ( ) ( ) ( ) ( )] .
2

J t x t Qx t u t Ru t dt
∞

= +∫  (13) 

where the meanings of Q and R are as the same as that in (4). 
Theorem 1. Consider uncertain linear system (1) with Assumptions 1-4. Let u and sliding 
surface be given by (12) and (8), respectively. The control law (12) can force the system 
trajectories with arbitrarily given initial conditions to reach the sliding surface in finite time 
and maintain on it thereafter.  
Proof. Choosing T(1 2)V s s=  as a lyapunov function, and differentiating this function with 
respect to t and considering Assumptions 1-4, we have 
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where 1•  denotes 1-norm. Noting the fact that 1s s≥ , we get 

 TV s s sη= ≤ −  (14) 

This implies that the sliding mode control law we have chosen according to (12) could 
ensure the trajectories which start from arbitrarily given points be driven onto the sliding 
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surface (8) in finite time and would not leave it thereafter despite uncertainties. The proof is 
complete. 
Conclusion 1. The uncertain system (1) with the integral sliding surface (8) and the control 
law (12) achieves global sliding mode, and the performace index (13) is minimized. So the 
system designed is global robust and optimal. 

2.3 Application to electrical servo drive 
The speed and position electrical servo drive systems are widely used in engineering 
systems, such as CNC machines, industrial robots, winding machines and etc. The main 
properties required for servo systems include high tracking behavior, no overshoot, no 
oscillation, quick response and good robustness. 
In general, with the implementation of field-oriented control, the mechanical equation of an 
induction motor drive or a permanent synchronous motor drive can be described as 

 d e( ) ( )m mJ t B t T Tθ θ+ + =  (15) 

where θ  is the rotor position; mJ is the moment of inertia; mB is the damping coefficient; dT  
denotes the external load disturbance, nonlinear friction and unpredicted uncertainties; eT  
represents the electric torque which defined as 

 e tT K i=  (16) 

where tK  is the torque constant and i  is the torque current command. 
Define the position tracking error d( ) ( ) ( )e t t tθ θ= − , where d( )tθ denotes the desired 
position, and let 1( ) ( )x t e t= , 2 1( ) ( )x t x t= , u i= , then the error state equation of an electrical 
servo drive can be described as 
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Supposing the desired position is a step signal, the error state equation can be simplified as 
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 (18) 

The parameters of the servo drive model in the nominal condition with d 0NmT =  are (Lin 
& Chou, 2003): 

2 2
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ˆ 5.77 10 Nms ,
ˆ 8.8 10 Nms/rad,
ˆ 0.667 Nm/A.
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= ×

= ×

=

 

The initial condition is [ ](0) 1 0 Tx = . To investigate the effectiveness of the proposed 
controller, two cases with parameter variations in the electrical servo drive and load torque 
disturbance are considered here. 
Case 1: ˆ

m mJ J= , ˆ
m mB B= , d 1( 10)Nm 1( 13)NmT t t= − − − . 
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Case 2: ˆ3m mJ J= , ˆ
m mB B= , d 0T = . 

The optimal controller and the optimal robust SMC are designed, respectively, for both 
cases. The optimal controller is based on the nominal system with a quadratic performance 
index (4). Here 

1 0
, 1

0 1
Q R

⎡ ⎤
= =⎢ ⎥
⎣ ⎦

 

In Case 1, the simulation results by different controllers are shown in Fig. 1. It is seen that 
when there is no disturbance ( 10st < ), both systems have almost the same performance. 
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Fig. 1. Simulation results in Case 1 

But when a load torque disturbance occurs at (10 ~ 13)st = , the position trajectory of 
optimal control system deviates from the desired value, nevertheless the position trajectory 
of the robust optimal SMC system is almost not affected. 
In Case 2, the simulation results by different controllers are given in Fig.2. It is seen that the 
robust optimal SMC system is insensitive to the parameter uncertainty, the position 
trajectory is almost as the same as that of the nominal system. However, the optimal control 
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system is affected by the parameter variation. Compared with the nominal system, the 
position trajectory is different, bigger overshoot and the relative stability degrades. 
In summery, the robust optimal SMC system owns the optimal performance and global 
robustness to uncertainties. 
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(b) Performance indexes 

Fig. 2. Simulation results in Case 2 

2.4 Conclusion 
In this section, the integral sliding mode control strategy is applied to robustifying the 
optimal controller. An optimal robust sliding surface is designed so that the initial condition 
is on the surface and reaching phase is eliminated. The system is global robust to 
uncertainties which satisfy matching conditions and the sliding motion minimizes the given 
quadratic performance index. This method has been adopted to control the rotor position of 
an electrical servo drive. Simulation results show that the robust optimal SMCs are superior 
to optimal LQR controllers in the robustness to parameter variations and external 
disturbances. 
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3. Optimal sliding mode control for uncertain nonlinear system 
In the section above, the robust optimal SMC design problem for a class of uncertain linear 
systems is studied. However, nearly all practical systems contain nonlinearities, there would 
exist some difficulties if optimal control is applied to handling nonlinear problems (Chiou & 
Huang, 2005; Ho, 2007, Cimen & Banks, 2004; Tang et al., 2007).In this section, the global 
robust optimal sliding mode controller (GROSMC) is designed based on feedback 
linearization for a class of MIMO uncertain nonlinear system.  

3.1 Problem formulation 
Consider an uncertain affine nonlinear system in the form of 

 
( ) ( ) ( , ) ,
( ) ,

x f x g x u d t x
y H x
= + +
=

 (19) 

where nx R∈ is the state, mu R∈ is the control input, and ( )f x and ( )g x  are sufficiently 
smooth vector fields on a domain nD R⊂ .Moreover, state vector x  is assumed available, 

( )H x is a measured sufficiently smooth output function and T
1( ) ( , , )mH x h h= . ( , )d t x  is an 

unknown function vector, which represents the system uncertainties, including system 
parameter variations, unmodeled dynamics and external disturbances.  
Assumption 5. There exists an unknown continuous function vector ( , )t xδ such that ( , )d t x  
can be written as  

( , ) ( ) ( , )d t x g x t xδ= . 

This is called matching condition. 
Assumption 6. There exist positive constants 0γ  and 1γ , such that  

0 1( , )t x xδ γ γ≤ +  

where the notation ⋅  denotes the usual Euclidean norm. 
By setting all the uncertainties to zero, the nominal system of the uncertain system (19) can 
be described as  

 
( ) ( ) ,
( ) .

x f x g x u
y H x
= +
=

 (20) 

The objective of this paper is to synthesize a robust sliding mode optimal controller so that 
the uncertain affine nonlinear system has not only the optimal performance of the nominal 
system but also robustness to the system uncertainties. However, the nominal system is 
nonlinear. To avoid the nonlinear TPBV problem and approximate linearization problem, 
we adopt the feedback linearization to transform the uncertain nonlinear system (19) into an 
equivalent linear one and an optimal controller is designed on it, then a GROSMC is 
proposed. 

3.2 Feedback linearization 
Feedback linearization is an important approach to nonlinear control design. The central 
idea of this approach is to find a state transformation ( )z T x=  and an input transformation 
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( , )u u x v=  so that the nonlinear system dynamics is transformed into an equivalent linear 
time-variant dynamics, in the familiar form z Az Bv= + , then linear control techniques can 
be applied.  
Assume that system (20) has the vector relative degree { }1 , , mr r  and 1 mr r n+ + = . 
According to relative degree definition, we have 
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is nonsingular in some domain 0x X∀ ∈ .  
Choose state and input transformations as follows: 

 ( ) , 1, , ; 0,1, , 1j j j
i ii i fz T x L h i m j r= = = = −  (22) 

 1( )[ ( )] ,u E x v K x−= −  (23) 

where 1 T
1( ) ( , , )mrr

mf fK x L h L h= , v  is an equivalent input to be designed later. The uncertain 

nonlinear system (19) can be transformed into m subsystems; each one is in the form of 
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 (24) 

So system (19) can be transformed into the following equivalent model of a simple linear 
form:  

 ( ) ( ) ( ) ( , ) ,z t Az t Bv t t zω= + +  (25) 

where nz R∈ , mv R∈  are new state vector and input, respectively. n nA R ×∈  and n mB R ×∈  
are constant matrixes, and ( , )A B are controllable. ( , ) nt z Rω ∈ is the uncertainties of the 
equivalent linear system. As we can see, ( , )t zω also satisfies the matching condition, in 
other words there exists an unknown continuous vector function ( , )t zω  such that 

( , ) ( , )t z B t zω ω= . 
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i ii i fz T x L h i m j r= = = = −  (22) 

 1( )[ ( )] ,u E x v K x−= −  (23) 

where 1 T
1( ) ( , , )mrr

mf fK x L h L h= , v  is an equivalent input to be designed later. The uncertain 

nonlinear system (19) can be transformed into m subsystems; each one is in the form of 
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 (24) 

So system (19) can be transformed into the following equivalent model of a simple linear 
form:  

 ( ) ( ) ( ) ( , ) ,z t Az t Bv t t zω= + +  (25) 

where nz R∈ , mv R∈  are new state vector and input, respectively. n nA R ×∈  and n mB R ×∈  
are constant matrixes, and ( , )A B are controllable. ( , ) nt z Rω ∈ is the uncertainties of the 
equivalent linear system. As we can see, ( , )t zω also satisfies the matching condition, in 
other words there exists an unknown continuous vector function ( , )t zω  such that 

( , ) ( , )t z B t zω ω= . 
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3.3 Design of GROSMC 
3.3.1 Optimal control for nominal system 
The nominal system of (25) is  

 ( ) ( ) ( ).z t Az t Bv t= +  (26) 

For (26), let 0v v=  and 0v can minimize a quadratic performance index as follows: 

 T T
0 00

1 [ ( ) ( ) ( ) ( )]
2

J z t Qz t v t Rv t dt
∞

= +∫  (27) 

where n nQ R ×∈ is a symmetric positive definite matrix, m mR R ×∈  is a positive definite 
matrix. According to optimal control theory, the optimal feedback control law can be 
described as  

 1 T
0( ) ( )v t R B Pz t−= −  (28) 

with P  the solution of the matrix Riccati equation 

 T 1 T 0.PA A P PBR B P Q−+ − + =  (29) 

So the closed-loop dynamics is  

 1 T( ) ( ) ( ).z t A BR B P z t−= −  (30) 

The closed-loop system is asymptotically stable.  
The solution to equation (30) is the optimal trajectory z*(t) of the nominal system with 
optimal control law (28). However, if the control law (28) is applied to uncertain system (25), 
the system state trajectory will deviate from the optimal trajectory and even the system 
becomes unstable. Next we will introduce integral sliding mode control technique to 
robustify the optimal control law, to achieve the goal that the state trajectory of uncertain 
system (25) is the same as that of the optimal trajectory of the nominal system (26). 

3.3.2 The optimal sliding surface  
Considering the uncertain system (25) and the optimal control law (28), we define an 
integral sliding surface in the form of 

 1 T
0

( ) [ ( ) (0)] ( ) ( )
t

s t G z t z G A BR B P z dτ τ−= − − −∫  (31) 

where m nG R ×∈ , which satisfies that GB is nonsingular, (0)z  is the initial state vector. 
Differentiating (31) with respect to t and considering (25), we obtain 
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( ) ( ) ( , )

s t Gz t G A BR B P z t
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GBv t GBR B Pz t G t z

ω

ω

−

−

−

= − −

= + + − −

= + +

 (32) 

Let ( ) 0s t = , the equivalent control becomes 
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 1 1 T
eq( ) ( ) ( ) ( , )v t GB GBR B Pz t G t zω− −⎡ ⎤= − +⎣ ⎦

 (33) 

Substituting (33) into (25), the sliding mode dynamics becomes 

 

1 1 T

1 T 1

1 T 1

1 T

( ) ( )

( )

( )

( )

z Az B GB GBR B Pz G

Az BR B Pz B GB G

Az BR B Pz B GB GB B

A BR B P z

ω ω

ω ω

ω ω

− −

− −

− −

−

= − + +

= − − +

= − − +

= −

 (34) 

Comparing (34) with (30), we can see that the sliding mode of uncertain linear system (25) is 
the same as optimal dynamics of (26), thus the sliding mode is also asymptotically stable, 
and the sliding motion guarantees the controlled system global robustness to the uncertainties 
which satisfy the matching condition. We call (31) a global robust optimal sliding surface. 
Substituting state transformation ( )z T x=  into (31), we can get the optimal switching 
function ( , )s x t  in the x -coordinates. 

3.3.3 The control law 
After designing the optimal sliding surface, the next step is to select a control law to ensure 
the reachability of sliding mode in finite time.  
Differentiating ( , )s x t  with respect to t  and considering system (20), we have 

 ( ( ) ( ) ) .s s s ss x f x g x u
x t x t
∂ ∂ ∂ ∂

= + = + +
∂ ∂ ∂ ∂

 (35) 

Let 0s = , the equivalent control of nonlinear nominal system (20) is obtained 

 
1

( ) ( ) ( ) .eq
s s su t g x f x
x x t

−∂ ∂ ∂⎡ ⎤ ⎡ ⎤== − +⎢ ⎥ ⎢ ⎥∂ ∂ ∂⎣ ⎦ ⎣ ⎦
 (36) 

Considering equation (23), we have 1
0( )[ ( )]equ E x v K x−= − .  

Now, we select the control law in the form of  

 

con dis
1

con

1

dis 0 1

( ) ( ) ( ),

( ) ( ) ( ) ,

( ) ( ) ( ( ) ( ) )sgn( ),

u t u t u t

s s su t g x f x
x x t

s su t g x x g x s
x x

η γ γ

−

−

= +

∂ ∂ ∂⎡ ⎤ ⎡ ⎤== − +⎢ ⎥ ⎢ ⎥∂ ∂ ∂⎣ ⎦ ⎣ ⎦

∂ ∂⎡ ⎤= − + +⎢ ⎥∂ ∂⎣ ⎦

 (37) 

where [ ]T1 2sgn( ) sgn( ) sgn( ) sgn( )ms s s s=  and 0η > . con( )u t  and dis( )u t  denote 
continuous part and discontinuous part of ( )u t , respectively. 
The continuous part con( )u t , which is equal to the equivalent control of nominal system (20), 
is used to stabilize and optimize the nominal system. The discontinuous part dis( )u t  
provides the complete compensation of uncertainties for the uncertain system (19). 
Theorem 2. Consider uncertain affine nonlinear system (19) with Assumputions 5-6. Let 
u and sliding surface be given by (37) and (31), respectively. The control law can force the 
system trajectories to reach the sliding surface in finite time and maintain on it thereafter.  
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con dis
1
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1

dis 0 1

( ) ( ) ( ),

( ) ( ) ( ) ,
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u t u t u t

s s su t g x f x
x x t

s su t g x x g x s
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η γ γ
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−
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∂ ∂⎡ ⎤= − + +⎢ ⎥∂ ∂⎣ ⎦

 (37) 

where [ ]T1 2sgn( ) sgn( ) sgn( ) sgn( )ms s s s=  and 0η > . con( )u t  and dis( )u t  denote 
continuous part and discontinuous part of ( )u t , respectively. 
The continuous part con( )u t , which is equal to the equivalent control of nominal system (20), 
is used to stabilize and optimize the nominal system. The discontinuous part dis( )u t  
provides the complete compensation of uncertainties for the uncertain system (19). 
Theorem 2. Consider uncertain affine nonlinear system (19) with Assumputions 5-6. Let 
u and sliding surface be given by (37) and (31), respectively. The control law can force the 
system trajectories to reach the sliding surface in finite time and maintain on it thereafter.  
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Proof. Utilizing T(1 / 2)V s s= as a Lyapunov function candidate, and taking the Assumption 5 
and Assumption 6, we have 

T T

T
0 1

T T T
0 1 0 11 1

0 11

( ( ) )

( ) sgn( )

( ) sgn( ) ( )

( )

s sV s s s f gu d
x t

s s s s s ss f f x g s d
x x t x x t

s s s ss x g s s d s x g s s g
x x x x

ss x
x

η γ γ

η γ γ η γ γ δ

η γ γ

∂ ∂
= = + + + =

∂ ∂
⎧ ⎡ ⎤⎛ ⎞∂ ∂ ∂ ∂ ∂ ∂⎪ ⎫= − + + + + + + =⎨ ⎬⎢ ⎥⎜ ⎟∂ ∂ ∂ ∂ ∂ ∂ ⎭⎝ ⎠⎪ ⎣ ⎦⎩
⎧ ⎫⎡ ⎤∂ ∂ ∂ ∂⎪ ⎪= − + + + = − − + +⎨ ⎬⎢ ⎥∂ ∂ ∂ ∂⎪ ⎪⎣ ⎦⎩ ⎭

∂
≤ − − +

∂

� �

1

0 1 0 11 1( ) ( )

sg s g s
x

s ss x g s x g s
x x

δ

η γ γ γ γ

∂
+ ≤

∂
∂ ∂

≤ − − + + +
∂ ∂

 (38) 

where 1i  denotes the 1-norm. Noting the fact that 1s s≥ , we get 

 T 0 , for 0.V s s s sη= ≤ − < ≠� �  (39) 

This implies that the trajectories of the uncertain nonlinear system (19) will be globally 
driven onto the specified sliding surface 0s = despite the uncertainties in finite time. The 
proof is complete. 
From (31), we have (0) 0s = , that is the initial condition is on the sliding surface. According 
to Theorem2, we know that the uncertain system (19) with the integral sliding surface (31) 
and the control law (37) can achieve global sliding mode. So the system designed is global 
robust and optimal. 

3.4 A simulation example 
Inverted pendulum is widely used for testing control algorithms. In many existing 
literatures, the inverted pendulum is customarily modeled by nonlinear system, and the 
approximate linearization is adopted to transform the nonlinear systems into a linear one, 
then a LQR is designed for the linear system.  
To verify the effectiveness and superiority of the proposed GROSMC, we apply it to a single 
inverted pendulum in comparison with conventional LQR.  
The nonlinear differential equation of the single inverted pendulum is 

 
1 2

2
1 2 1 1 1

2 2
1

,

sin sin cos cos ( ),
(4 /3 cos )

x x

g x amLx x x au xx d t
L am x

=

− +
= +

−

�

�
 (40) 

where 1x  is the angular position of the pendulum (rad) , 2x is the angular speed (rad/s) , 
M is the mass of the cart, m and L are the mass and half length of the pendulum, 
respectively. u denotes the control input, g  is the gravity acceleration, ( )d t  represents the 
external disturbances, and the coefficient /( )a m M m= + . The simulation parameters are as 
follows: 1 kgM = , 0.2 kgm = , 0.5 mL = , 29.8 m/sg = , and the initial state vector is 

T(0) [ /18 0]x π= − . 
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Two cases with parameter variations in the inverted pendulum and external disturbance are 
considered here. 
Case 1: The m and L are 4 times the parameters given above, respectively. Fig. 3 shows the 

 robustness to parameter variations by the suggested GROSMC and conventional 
 LQR. 

Case 2: Apply an external disturbance ( ) 0.01sin 2d t t=  to the inverted pendulum system at 
 9t s= . Fig. 4 depicts the different responses of these two controllers to external 
 disturbance. 
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Fig. 3. Angular position responses of the inverted pendulum with parameter variation  
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Fig. 4. Angular position responses of the inverted pendulum with external disturbance. 

From Fig. 3 we can see that the angular position responses of inverted pendulum with and 
without parameter variations are exactly same by the proposed GROSMC, but the responses 
are obviously sensitive to parameter variations by the conventional LQR. It shows that the 
proposed GROSMC guarantees the controlled system complete robustness to parameter 
variation. As depicted in Fig. 4, without external disturbance, the controlled system could be 
driven to the equilibrium point by both of the controllers at about 2t s= . However, when 
the external disturbance is applied to the controlled system at 9t s= , the inverted 
pendulum system could still maintain the equilibrium state by GROSMC while the LQR not. 
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Proof. Utilizing T(1 / 2)V s s= as a Lyapunov function candidate, and taking the Assumption 5 
and Assumption 6, we have 
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where 1i  denotes the 1-norm. Noting the fact that 1s s≥ , we get 
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This implies that the trajectories of the uncertain nonlinear system (19) will be globally 
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proof is complete. 
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Fig. 4. Angular position responses of the inverted pendulum with external disturbance. 

From Fig. 3 we can see that the angular position responses of inverted pendulum with and 
without parameter variations are exactly same by the proposed GROSMC, but the responses 
are obviously sensitive to parameter variations by the conventional LQR. It shows that the 
proposed GROSMC guarantees the controlled system complete robustness to parameter 
variation. As depicted in Fig. 4, without external disturbance, the controlled system could be 
driven to the equilibrium point by both of the controllers at about 2t s= . However, when 
the external disturbance is applied to the controlled system at 9t s= , the inverted 
pendulum system could still maintain the equilibrium state by GROSMC while the LQR not. 
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The switching function curve is shown in Fig. 5. The sliding motion occurs from the 
beginning without any reaching phase as can be seen. Thus, the GROSMC provides better 
features than conventional LQR in terms of robustness to system uncertainties. 
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Fig. 5. The switching function s(t) 

3.5 Conclusion 
In this section, the exact linearization technique is firstly adopted to transform an uncertain 
affine nonlinear system into a linear one. An optimal controller is designed to the linear 
nominal system, which not only simplifies the optimal controller design, but also makes the 
optimal control applicable to the entire transformation region. The sliding mode control is 
employed to robustfy the optimal regulator. The uncertain system with the proposed 
integral sliding surface and the control law achieves global sliding mode, and the ideal 
sliding dynamics can minimized the given quadratic performance index. In summary, the 
system designed is global robust and optimal. 

4. Optimal sliding mode tracking control for uncertain nonlinear system 
With the industrial development, there are more and more control objectives about the 
system tracking problem (Ouyang et al., 2006; Mauder, 2008; Smolders et al., 2008), which is 
very important in control theory synthesis. Taking the robot as an example, it is often 
required to follow some special trajectories quickly as well as provide robustness to system 
uncertainties, including unmodeled dynamics, internal parameter variations and external 
disturbances. So the main tracking control problem becomes how to design the controller, 
which can not only get good tracking performance but also reject the uncertainties 
effectively to ensure the system better dynamic performance. In this section, a robust LQR 
tracking control based on intergral sliding mode is proposed for a class of nonlinear 
uncertain systems.  

4.1 Problem formulation and assumption  
Consider a class of uncertain affine nonlinear systems as follows: 

 
( ) ( ) ( )[ ( , , )]
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x f x f x g x u x t u
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δ= + Δ + +⎧
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where nx R∈  is the state vector, mu R∈ is the control input with 1m = , and y R∈  is the 
system output. ( )f x , ( )g x , ( )f xΔ  and ( )h x  are sufficiently smooth in domain nD R⊂ . 

( , , )x t uδ is continuous with respect to t  and smooth in ( , )x u . ( )f xΔ and ( , , )x t uδ  represent 
the system uncertainties, including unmodelled dynamics, parameter variations and 
external disturbances. 
Our goal is to design an optimal LQR such that the output y  can track a reference 
trajectory r( )y t  asymptotically, some given performance criterion can be minimized, and the 
system can exhibit robustness to uncertainties. 
Assumption 7. The nominal system of uncertain affine nonlinear system (41), that is 

 ( ) ( )
( )

x f x g x u
y h x
= +⎧

⎨ =⎩
 (42) 

has the relative degree ρ  in domain D  and nρ = . 
Assumption 8. The reference trajectory r( )y t  and its derivations ( )

r ( )iy t ( 1, , )i n= can be 
obtained online, and they are limited to all 0t ≥ . 
While as we know, if the optimal LQR is applied to nonlinear systems, it often leads to 
nonlinear TPBV problem and an analytical solution generally does not exist. In order to 
simplify the design of this tracking problem, the input-output linearization technique is 
adopted firstly. 
Considering system (41) and differentiating y , we have  

( ) ( ), 0 1k k
fy L h x k n= ≤ ≤ −  

( ) 1 1( ) ( ) ( )[ ( , , )].n n n n
f f f g fy L h x L L h x L L h x u x t uδ− −

Δ= + + +  

According to the input-out linearization, choose the following nonlinear state transformation  

 
T1( ) ( ) ( ) .n

fz T x h x L h x−⎡ ⎤= = ⎣ ⎦  (43) 

So the uncertain affine nonlinear system (40) can be written as  
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+
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Define an error state vector in the form of  

1 r

( 1)
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z y
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z y −

⎡ ⎤−
⎢ ⎥

= = −ℜ⎢ ⎥
⎢ ⎥−⎣ ⎦

 

where T( 1)
r r

ny y −⎡ ⎤ℜ = ⎣ ⎦
. By this variable substitution e z= −ℜ , the error state equation 

can be described as follows: 
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e e i n

e L h x L L h x L L h x u t L L h x x t u y tδ
+

− − −
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The switching function curve is shown in Fig. 5. The sliding motion occurs from the 
beginning without any reaching phase as can be seen. Thus, the GROSMC provides better 
features than conventional LQR in terms of robustness to system uncertainties. 
 

0 5 10 15 20
-0.5

-0.4

-0.3

-0.2

-0.1

0

0.1

0.2

0.3

0.4

0.5

t (s)

s 
(t)

Sliding Surface

 
Fig. 5. The switching function s(t) 
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required to follow some special trajectories quickly as well as provide robustness to system 
uncertainties, including unmodeled dynamics, internal parameter variations and external 
disturbances. So the main tracking control problem becomes how to design the controller, 
which can not only get good tracking performance but also reject the uncertainties 
effectively to ensure the system better dynamic performance. In this section, a robust LQR 
tracking control based on intergral sliding mode is proposed for a class of nonlinear 
uncertain systems.  

4.1 Problem formulation and assumption  
Consider a class of uncertain affine nonlinear systems as follows: 
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where nx R∈  is the state vector, mu R∈ is the control input with 1m = , and y R∈  is the 
system output. ( )f x , ( )g x , ( )f xΔ  and ( )h x  are sufficiently smooth in domain nD R⊂ . 

( , , )x t uδ is continuous with respect to t  and smooth in ( , )x u . ( )f xΔ and ( , , )x t uδ  represent 
the system uncertainties, including unmodelled dynamics, parameter variations and 
external disturbances. 
Our goal is to design an optimal LQR such that the output y  can track a reference 
trajectory r( )y t  asymptotically, some given performance criterion can be minimized, and the 
system can exhibit robustness to uncertainties. 
Assumption 7. The nominal system of uncertain affine nonlinear system (41), that is 
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obtained online, and they are limited to all 0t ≥ . 
While as we know, if the optimal LQR is applied to nonlinear systems, it often leads to 
nonlinear TPBV problem and an analytical solution generally does not exist. In order to 
simplify the design of this tracking problem, the input-output linearization technique is 
adopted firstly. 
Considering system (41) and differentiating y , we have  

( ) ( ), 0 1k k
fy L h x k n= ≤ ≤ −  

( ) 1 1( ) ( ) ( )[ ( , , )].n n n n
f f f g fy L h x L L h x L L h x u x t uδ− −
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According to the input-out linearization, choose the following nonlinear state transformation  
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So the uncertain affine nonlinear system (40) can be written as  
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Let the feedback control law be selected as  

 
( )
r

1

( ) ( ) ( )
( )

( )

nn
f

n
g f

L h x v t y t
u t

L L h x−

− + +
=  (44) 

The error equation of system (40) can be given in the following forms: 

 

1 1

0 00 1 0 0 0
0 00 0 1 0 0
0 00( ) ( ) ( ) .

0 0 0 1
0 0 0 0 0 1( ) ( ) ( , , )n n

f f g f

e t e t v t

L L h x L L h x x t uδ− −
Δ

⎡ ⎤ ⎡ ⎤⎡ ⎤ ⎡ ⎤
⎢ ⎥ ⎢ ⎥⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥⎢ ⎥ ⎢ ⎥= + + +
⎢ ⎥ ⎢ ⎥⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦⎣ ⎦ ⎣ ⎦

 (45) 

Therefore, equation (45) can be rewritten as 

  ( ) ( ) ( ) .e t Ae t A Bv t δ= + Δ + + Δ  (46) 
where  

0 1 0 0 0
0 0 1 0 0

0, ,
0 0 0 1
0 0 0 0 0 1

A B

⎡ ⎤ ⎡ ⎤
⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥= =
⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦

 

1 1

0 0
0 0
0 0, .

( ) ( ) ( , , )n n
f f g f

A

L L h x L L h x x t u

δ

δ− −
Δ

⎡ ⎤ ⎡ ⎤
⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥Δ = Δ =
⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥
⎣ ⎦ ⎣ ⎦

 

As can be seen, ne R∈ is the system error vector, v R∈ is a new control input of the 
transformed system. n nA R ×∈  and  n mB R ×∈  are corresponding constant matrixes. AΔ  and 
δΔ  represent uncertainties of the transformed system.  

Assumption 9. There exist unknown continuous function vectors of appropriate dimensions 
AΔ  and δΔ , such that 

A B AΔ = Δ , Bδ δΔ = Δ  
 

Assumption 10. There exist known constants ma , mb such that 

mA aΔ ≤ , mbδΔ ≤  

Now, the tracking problem becomes to design a state feedback control law v  such that 
0e →  asymptotically. If there is no uncertainty, i.e. ( , ) 0t eδ = , we can select the new input 

as v Ke= −  to achieve the control objective and obtain the closed loop dynamics 
( )e A BK e= − . Good tracking performance can be achieved by choosing K  using optimal 
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control theory so that the closed loop dynamics is asymptotically stable. However, in 
presence of the uncertainties, the closed loop performance may be deteriorated. In the 
next section, the integral sliding mode control is adopted to robustify the optimal control 
law. 

4.2 Design of optimal sliding mode tracking controller 
4.2.1 Optimal tracking control of nominal system.  
Ignoring the uncertainties of system (46), the corresponding nominal system is  

 ( ) ( ) ( ).e t Ae t Bv t= +  (47) 

For the nominal system (47), let 0v v=  and 0v  can minimize the quadratic performance 
index as follows: 

 T T
0 00

1 [ ( ) ( ) ( ) ( )]
2

I e t Qe t v t Rv t dt
∞

= +∫  (48) 

where n nQ R ×∈ is a symmetric positive definite matrix, m mR R ×∈  (here 1m = ) is a positive 
definite matrix. 
According to optimal control theory, an optimal feedback control law can be obtained as: 

 1 T
0( ) ( )v t R B Pe t−= −  (49) 

with P  the solution of matrix Riccati equation 

T 1 T 0.PA A P PBR B P Q−+ − + =  

So the closed-loop system dynamics is  

 1 T( ) ( ) ( ).e t A BR B P e t−= −  (50) 

The designed optimal controller for system (47) is sensitive to system uncertainties 
including parameter variations and external disturbances. The performance index (48) may 
deviate from the optimal value. In the next part, we will use integral sliding mode control 
technique to robustify the optimal control law so that the uncertain system trajectory could 
be same as nominal system. 

4.2.2 The robust optimal sliding surface.  
To get better tracking performance, an integral sliding surface is defined as 

 1 T
0

( , ) ( ) ( ) ( ) (0),
t

s e t Ge t G A BR B P e d Geτ τ−= − − −∫  (51) 

where m nG R ×∈  is a constant matrix which is designed so that GB is nonsingular. And (0)e  
is the initial error state vector. 
Differentiating (51) with respect to t  and considering system (46), we obtain 

 

1 T

1 T

1 T

( , ) ( ) ( ) ( )

[ ( ) ( ) ] ( ) ( )

( ) ( ) ( ).

s e t Ge t G A BR B P e t

G Ae t A Bv t G A BR B P e t

GBv t GBR B Pe t G A

δ

δ

−

−

−

= − −

= + Δ + + Δ − −

= + + Δ + Δ

 (52) 
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Let the feedback control law be selected as  
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The error equation of system (40) can be given in the following forms: 
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Therefore, equation (45) can be rewritten as 
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where  
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As can be seen, ne R∈ is the system error vector, v R∈ is a new control input of the 
transformed system. n nA R ×∈  and  n mB R ×∈  are corresponding constant matrixes. AΔ  and 
δΔ  represent uncertainties of the transformed system.  

Assumption 9. There exist unknown continuous function vectors of appropriate dimensions 
AΔ  and δΔ , such that 

A B AΔ = Δ , Bδ δΔ = Δ  
 

Assumption 10. There exist known constants ma , mb such that 
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Now, the tracking problem becomes to design a state feedback control law v  such that 
0e →  asymptotically. If there is no uncertainty, i.e. ( , ) 0t eδ = , we can select the new input 
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control theory so that the closed loop dynamics is asymptotically stable. However, in 
presence of the uncertainties, the closed loop performance may be deteriorated. In the 
next section, the integral sliding mode control is adopted to robustify the optimal control 
law. 

4.2 Design of optimal sliding mode tracking controller 
4.2.1 Optimal tracking control of nominal system.  
Ignoring the uncertainties of system (46), the corresponding nominal system is  

 ( ) ( ) ( ).e t Ae t Bv t= +  (47) 

For the nominal system (47), let 0v v=  and 0v  can minimize the quadratic performance 
index as follows: 

 T T
0 00

1 [ ( ) ( ) ( ) ( )]
2

I e t Qe t v t Rv t dt
∞

= +∫  (48) 

where n nQ R ×∈ is a symmetric positive definite matrix, m mR R ×∈  (here 1m = ) is a positive 
definite matrix. 
According to optimal control theory, an optimal feedback control law can be obtained as: 

 1 T
0( ) ( )v t R B Pe t−= −  (49) 

with P  the solution of matrix Riccati equation 

T 1 T 0.PA A P PBR B P Q−+ − + =  

So the closed-loop system dynamics is  

 1 T( ) ( ) ( ).e t A BR B P e t−= −  (50) 

The designed optimal controller for system (47) is sensitive to system uncertainties 
including parameter variations and external disturbances. The performance index (48) may 
deviate from the optimal value. In the next part, we will use integral sliding mode control 
technique to robustify the optimal control law so that the uncertain system trajectory could 
be same as nominal system. 

4.2.2 The robust optimal sliding surface.  
To get better tracking performance, an integral sliding surface is defined as 

 1 T
0

( , ) ( ) ( ) ( ) (0),
t

s e t Ge t G A BR B P e d Geτ τ−= − − −∫  (51) 

where m nG R ×∈  is a constant matrix which is designed so that GB is nonsingular. And (0)e  
is the initial error state vector. 
Differentiating (51) with respect to t  and considering system (46), we obtain 
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Let ( , ) 0s e t =� , the equivalent control can be obtained by 

 1 1 T
eq( ) ( ) [ ( ) ( )].v t GB GBR B Pe t G A δ− −= − + Δ + Δ  (53) 

Substituting (53) into (46), and considering Assumption 10, the ideal sliding mode dynamics 
becomes 

 

eq
1 1 T

1 T 1

1 T 1

1 T

( ) ( ) ( )

( ) ( ) [ ( ) ( )]

( ) ( ) ( ) [ ]

( ) ( ) ( ) ( ) ( )

( ) ( ).

e t Ae t A Bv t

Ae t A B GB GBR B Pe t G A

A BR B P e t B GB G A A

A BR B P e t B GB GB A B A

A BR B P e t

δ

δ δ

δ δ

δ δ

− −

− −

− −

−

= + Δ + + Δ

= + Δ − + Δ + Δ + Δ

= − − Δ + Δ + Δ + Δ

= − − Δ + Δ + Δ + Δ

= −

�

� �� �
 (54) 

It can be seen from equation (50) and (54) that the ideal sliding motion of uncertain system 
and the optimal dynamics of the nominal system are uniform, thus the sliding mode is also 
asymptotically stable, and the sliding mode guarantees system (46) complete robustness to 
uncertainties. Therefore, (51) is called a robust optimal sliding surface. 

4.2.3 The control law. 
For uncertain system (46), we propose a control law in the form of 

 
c d

1 T
c

1
d

( ) ( ) ( ),

( ) ( ),

( ) ( ) [ sgn( )].

v t v t v t

v t R B Pe t

v t GB ks sε

−

−

= +

= −

= − +

 (55) 

where cv  is the continuous part, which is used to stabilize and optimize the nominal 
system. And dv  is the discontinuous part, which provides complete compensation for 
system uncertainties. [ ]T1sgn( ) sgn( ) sgn( )ms s s= � . k  and ε  are appropriate positive 
constants, respectively. 
Theorem 3. Consider uncertain system (46) with Assumption9-10. Let the input v and the 
sliding surface be given as (55) and (51), respectively. The control law can force system 
trajectories to reach the sliding surface in finite time and maintain on it thereafter if 

m m( )a d GBε ≥ + .  
Proof: Utilizing T(1 /2)V s s=  as a Lyapunov function candidate, and considering 
Assumption 9-10, we obtain 

{ }
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[ ]{ }

T T 1 T

T 1 T

T 1 T 1 T

T T
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m m m m1

[ ( ) ( ) ( )]

[ ( ) ( ) ] ( ) ( )

( ) sgn( ) ( )

sgn( ) ( )

( ) (

V s s s Ge t G A BR B P e t

s G Ae t A Bv t G A BR B P e t
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δ

ε δ

ε δ ε δ

ε ε

−

−

− −

= = − −

= + Δ + + Δ − −

⎡ ⎤= Δ − − + + Δ +⎣ ⎦
= − + + Δ + Δ = − − + Δ + Δ

≤ − − + + ≤ − − − +

� � �

) GB s⎡ ⎤⎣ ⎦

 

where 1i  denotes the 1-norm. Note the fact that for any 0s ≠ , we have 1s s≥ . If 
( )m ma d GBε ≥ + , then 
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 T
1 ( ) 0.V s s s G s G sε δ ε δ= ≤ − + ≤ − − <  (56) 

This implies that the trajectories of uncertain system (46) will be globally driven onto the 
specified sliding surface ( , ) 0s e t =  in finite time and maintain on it thereafter. The proof is 
completed. 
From (51), we have (0) 0s = , that is to say, the initial condition is on the sliding surface. 
According to Theorem3, uncertain system (46) achieves global sliding mode with the 
integral sliding surface (51) and the control law (55). So the system designed is global robust 
and optimal, good tracking performance can be obtained with this proposed algorithm. 

4.3 Application to robots. 
In the recent decades, the tracking control of robot manipulators has received a great of 
attention. To obtain high-precision control performance, the controller is designed which 
can make each joint track a desired trajectory as close as possible. It is rather difficult to 
control robots due to their highly nonlinear, time-varying dynamic behavior and uncertainties 
such as parameter variations, external disturbances and unmodeled dynamics. In this 
section, the robot model is investigated to verify the effectiveness of the proposed method. 
A 1-DOF robot mathematical model is described by the following nonlinear dynamics: 

 
0 1 0 0 0

( ),( , ) ( ) 1 10
( ) ( )( ) ( )

q q
d tC q q G q

q q
M q M qM q M q

τ
⎡ ⎤ ⎡ ⎤ ⎡ ⎤ ⎡ ⎤

⎡ ⎤ ⎡ ⎤⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥= − + −⎢ ⎥ ⎢ ⎥⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥−⎣ ⎦ ⎣ ⎦⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦⎣ ⎦ ⎣ ⎦

 (57) 

where ,q q  denote the robot joint position and velocity, respectively. τ  is the control vector 
of torque by the joint actuators. m  and l  are the mass and length of the manipulator arm, 
respectively. ( )d t  is the system uncertainties. ( , ) 0.03cos( ),C q q q=  ( ) cos( ),G q mgl q=  

( ) 0.1 0.06sin( ).M q q= +  The reference trajectory is r( ) siny t tπ= . 
According to input-output linearization technique, choose a state vector as follows: 

1

2

z q
z

z q
⎡ ⎤ ⎡ ⎤

= =⎢ ⎥ ⎢ ⎥
⎣ ⎦ ⎣ ⎦

. 

Define an error state vector of system (57) as [ ] [ ]T T
1 2 r r ,e e e q y q y= = − − and let the 

control law r( ) ( ) ( , ) ( )v y M q C q q q G qτ = + + + . 
 So the error state dynamic of the robot can be written as: 

  1 1

2 2

0 1 0 0
( )

0 0 1 1 / ( )
e e

v d t
e e M q
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= + −⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥
⎣ ⎦ ⎣ ⎦ ⎣ ⎦ ⎣ ⎦ ⎣ ⎦

 (58) 

Choose the sliding mode surface and the control law in the form of (51) and (55), 
respectively, and the quadratic performance index in the form of (48). The simulation 
parameters are as follows: 0.02,m =  9.8,g =  0.5,l =  ( ) 0.5sin 2 ,d t tπ=  18,k =  6,ε =  

[ ]0 1 ,G =  10 2
,

2 1
Q

⎡ ⎤
= ⎢ ⎥
⎣ ⎦

 1R = . The initial error state vector is [ ]T0.5 0e = . 

The tracking responses of the joint position qand its velocity are shown in Fig. 6 and Fig. 7, 
respectively. The control input  is displayed in Fig. 8. From Fig. 6 and Fig. 7 it can be seen 
that the position error can reach the equilibrium point quickly and the position track the 
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Let ( , ) 0s e t =� , the equivalent control can be obtained by 
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Substituting (53) into (46), and considering Assumption 10, the ideal sliding mode dynamics 
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It can be seen from equation (50) and (54) that the ideal sliding motion of uncertain system 
and the optimal dynamics of the nominal system are uniform, thus the sliding mode is also 
asymptotically stable, and the sliding mode guarantees system (46) complete robustness to 
uncertainties. Therefore, (51) is called a robust optimal sliding surface. 

4.2.3 The control law. 
For uncertain system (46), we propose a control law in the form of 
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where cv  is the continuous part, which is used to stabilize and optimize the nominal 
system. And dv  is the discontinuous part, which provides complete compensation for 
system uncertainties. [ ]T1sgn( ) sgn( ) sgn( )ms s s= � . k  and ε  are appropriate positive 
constants, respectively. 
Theorem 3. Consider uncertain system (46) with Assumption9-10. Let the input v and the 
sliding surface be given as (55) and (51), respectively. The control law can force system 
trajectories to reach the sliding surface in finite time and maintain on it thereafter if 
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where 1i  denotes the 1-norm. Note the fact that for any 0s ≠ , we have 1s s≥ . If 
( )m ma d GBε ≥ + , then 
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 T
1 ( ) 0.V s s s G s G sε δ ε δ= ≤ − + ≤ − − <  (56) 

This implies that the trajectories of uncertain system (46) will be globally driven onto the 
specified sliding surface ( , ) 0s e t =  in finite time and maintain on it thereafter. The proof is 
completed. 
From (51), we have (0) 0s = , that is to say, the initial condition is on the sliding surface. 
According to Theorem3, uncertain system (46) achieves global sliding mode with the 
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4.3 Application to robots. 
In the recent decades, the tracking control of robot manipulators has received a great of 
attention. To obtain high-precision control performance, the controller is designed which 
can make each joint track a desired trajectory as close as possible. It is rather difficult to 
control robots due to their highly nonlinear, time-varying dynamic behavior and uncertainties 
such as parameter variations, external disturbances and unmodeled dynamics. In this 
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where ,q q  denote the robot joint position and velocity, respectively. τ  is the control vector 
of torque by the joint actuators. m  and l  are the mass and length of the manipulator arm, 
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control law r( ) ( ) ( , ) ( )v y M q C q q q G qτ = + + + . 
 So the error state dynamic of the robot can be written as: 
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Choose the sliding mode surface and the control law in the form of (51) and (55), 
respectively, and the quadratic performance index in the form of (48). The simulation 
parameters are as follows: 0.02,m =  9.8,g =  0.5,l =  ( ) 0.5sin 2 ,d t tπ=  18,k =  6,ε =  
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The tracking responses of the joint position qand its velocity are shown in Fig. 6 and Fig. 7, 
respectively. The control input  is displayed in Fig. 8. From Fig. 6 and Fig. 7 it can be seen 
that the position error can reach the equilibrium point quickly and the position track the 
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reference sine signal yr well. Simulation results show that the proposed scheme manifest 
good tracking performance and the robustness to parameter variations and the load 
disturbance. 

4.4 Conclusions 
In order to achieve good tracking performance for a class of nonlinear uncertain systems, a 
sliding mode LQR tracking control is developed. The input-output linearization is used to 
transform the nonlinear system into an equivalent linear one so that the system can be 
handled easily. With the proposed control law and the robust optimal sliding surface, the 
system output is forced to follow the given trajectory and the tracking error can minimize 
the given performance index even if there are uncertainties. The proposed algorithm is 
applied to a robot described by a nonlinear model with uncertainties. Simulation results 
illustrate the feasibility of the proposed controller for trajectory tracking and its capability of 
rejecting system uncertainties. 
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1. Introduction 
It is well known that many engineering control systems such as conventional oil-chemical 
industrial processes, nuclear reactors, long transmission lines in pneumatic, hydraulic and 
rolling mill systems, flexible joint robotic manipulators and machine-tool systems, jet engine 
and automobile control, human-autopilot systems, ground controlled satellite and 
networked control and communication systems, space autopilot and missile-guidance 
systems, etc. contain some time-delay effects, model uncertainties and external disturbances. 
These processes and plants can be modeled by some uncertain dynamical systems with state 
and input delays. The existence of time-delay effects is frequently a source of instability and 
it degrades the control performances. The stabilization of systems with time-delay is not 
easier than that of systems without time-delay. Therefore, the stability analysis and 
controller design for uncertain systems with delay are important both in theory and in 
practice. The problem of robust stabilization of uncertain time-delay systems by various 
types of controllers such as PID controller, Smith predictor, and time-delay controller, 
recently, sliding mode controllers have received considerable attention of researchers. 
However, in contrast to variable structure systems without time-delay, there is relatively no 
large number of papers concerning the sliding mode control of time-delay systems. 
Generally, stability analysis can be divided into two categories: delay-independent and 
delay-dependent. It is worth to mention that delay-dependent conditions are less 
conservative than delay-independent ones because of using the information on the size of 
delays, especially when time-delays are small. As known from (Utkin, 1977)-(Jafarov, 2009) 
etc. sliding mode control has several useful advantages, e.g. fast response, good transient 
performance, and robustness to the plant parameter variations and external disturbances. 
For this reason, now, sliding mode control is considered as an efficient tool to design of 
robust controllers for stabilization of complex systems with parameter perturbations and 
external disturbances. Some new problems of the sliding mode control of time-delay 
systems have been addressed in papers (Shyu & Yan, 1993)-(Jafarov, 2005). Shyu and Yan 
(Shyu & Yan, 1993) have established a new sufficient condition to guarantee the robust 
stability and β-stability for uncertain systems with single time-delay. By these conditions a 
variable structure controller is designed to stabilize the time-delay systems with 
uncertainties. Koshkoei and Zinober (Koshkouei & Zinober, 1996) have designed a new 
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It is well known that many engineering control systems such as conventional oil-chemical 
industrial processes, nuclear reactors, long transmission lines in pneumatic, hydraulic and 
rolling mill systems, flexible joint robotic manipulators and machine-tool systems, jet engine 
and automobile control, human-autopilot systems, ground controlled satellite and 
networked control and communication systems, space autopilot and missile-guidance 
systems, etc. contain some time-delay effects, model uncertainties and external disturbances. 
These processes and plants can be modeled by some uncertain dynamical systems with state 
and input delays. The existence of time-delay effects is frequently a source of instability and 
it degrades the control performances. The stabilization of systems with time-delay is not 
easier than that of systems without time-delay. Therefore, the stability analysis and 
controller design for uncertain systems with delay are important both in theory and in 
practice. The problem of robust stabilization of uncertain time-delay systems by various 
types of controllers such as PID controller, Smith predictor, and time-delay controller, 
recently, sliding mode controllers have received considerable attention of researchers. 
However, in contrast to variable structure systems without time-delay, there is relatively no 
large number of papers concerning the sliding mode control of time-delay systems. 
Generally, stability analysis can be divided into two categories: delay-independent and 
delay-dependent. It is worth to mention that delay-dependent conditions are less 
conservative than delay-independent ones because of using the information on the size of 
delays, especially when time-delays are small. As known from (Utkin, 1977)-(Jafarov, 2009) 
etc. sliding mode control has several useful advantages, e.g. fast response, good transient 
performance, and robustness to the plant parameter variations and external disturbances. 
For this reason, now, sliding mode control is considered as an efficient tool to design of 
robust controllers for stabilization of complex systems with parameter perturbations and 
external disturbances. Some new problems of the sliding mode control of time-delay 
systems have been addressed in papers (Shyu & Yan, 1993)-(Jafarov, 2005). Shyu and Yan 
(Shyu & Yan, 1993) have established a new sufficient condition to guarantee the robust 
stability and β-stability for uncertain systems with single time-delay. By these conditions a 
variable structure controller is designed to stabilize the time-delay systems with 
uncertainties. Koshkoei and Zinober (Koshkouei & Zinober, 1996) have designed a new 
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sliding mode controller for MIMO canonical controllable time-delay systems with matched 
external disturbances by using Lyapunov-Krasovskii functional. Robust stabilization of 
time-delay systems with uncertainties by using sliding mode control has been considered by 
Luo, De La Sen and Rodellar (Luo et al., 1997). However, disadvantage of this design 
approach is that, a variable structure controller is not simple. Moreover, equivalent control 
term depends on unavailable external disturbances. Li and DeCarlo (Li & De Carlo, 2003) 
have proposed a new robust   four terms sliding mode controller design method for a class 
of multivariable time-delay systems with unmatched parameter uncertainties and matched 
external disturbances by using the Lyapunov-Krasovskii functional combined by LMI’s 
techniques.  The behavior and design of sliding mode control systems with state and input 
delays are considered by Perruquetti and Barbot (Perruquetti & Barbot, 2002) by using 
Lyapunov-Krasovskii functional. 
Four-term robust sliding mode controllers for matched uncertain systems with single or 
multiple, constant or time varying state delays are designed by Gouaisbaut, Dambrine and 
Richard (Gouisbaut et al., 2002) by using Lyapunov-Krasovskii functionals and Lyapunov-
Razumikhin function combined with LMI’s techniques. The five terms sliding mode 
controllers for time-varying delay systems with structured parameter uncertainties have 
been designed by Fridman, Gouisbaut, Dambrine and Richard (Fridman et al., 2003) via 
descriptor approach combined by Lyapunov-Krasovskii functional method. In (Cao et al., 
2007) some new delay-dependent stability criteria for multivariable uncertain networked 
control systems with several constant delays based on Lyapunov-Krasovskii functional 
combined with descriptor approach and LMI techniques are developed by Cao, Zhong and 
Hu. A robust sliding mode control of single state delayed uncertain systems with parameter 
perturbations and external disturbances is designed by Jafarov (Jafarov, 2005). In survey 
paper (Hung et al., 1993) the various type of reaching conditions, variable structure control 
laws, switching schemes and its application in industrial systems is reported by J. Y.Hung, 
Gao and J.C.Hung. The implementation of a  tracking variable structure controller with 
boundary layer and feed-forward term for robotic arms is developed by Xu, Hashimoto, 
Slotine, Arai and Harashima(Xu et al., 1989).A new fast-response sliding mode  current 
controller for boost-type converters is designed by Tan, Lai, Tse, Martinez-Salamero and Wu 
(Tan et al., 2007). By constructing new types of Lyapunov functionals and additional free-
weighting matrices, some new less conservative delay-dependent stability conditions for 
uncertain systems with constant but unknown time-delay have been presented in (Li et al., 
2010) and its references. 
Motivated by these investigations, the problem of sliding mode controller design for 
uncertain multi-input systems with several fixed state delays for delay-independent and 
delay-dependent cases is addressed in this chapter. A new combined sliding mode 
controller is considered and it is designed for the stabilization of perturbed multi-input 
time-delay systems with matched parameter uncertainties and external disturbances. Delay-
independent/dependent stability and sliding mode existence conditions are derived by 
using Lyapunov-Krasovskii functional and Lyapunov function method and formulated in 
terms of LMI. Delay bounds are determined from the improved stability conditions. In 
practical implementation chattering problem can be avoided by using saturation function 
(Hung et al., 1993), (Xu et al., 1989). 
Five numerical examples with simulation results are given to illustrate the usefulness of the 
proposed design method. 
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2. System description and assumptions 
Let us consider a multi-input state time-delay systems with matched parameter uncertainties 
and external disturbances described by the following state-space equation: 

0 0 1 1 1( ) ( ) ( ) ( ) ( ) ... ( ) ( ) ( ) ( ),  t 0N N Nx t A A x t A A x t h A A x t h Bu t Df tΔ Δ Δ= + + + − + + + − + + >�  

 ( ) ( )x t tφ= ,  0h t− ≤ ≤  (1) 

where ( ) nx t R∈  is the measurable state vector, ( ) mu t R∈  is the control input, 0 1, ,.., NA A A  
and B are known constant matrices of appropriate dimensions, with B of full rank, 

1 2max[ , ,..., ], 0N ih h h h h= > , 1 2, ,..., Nh h h  are known constant time-delays, ( )tφ  is a 
continuous vector–valued initial function in 0h t− ≤ ≤ ; 0 1, , , NA A AΔ Δ Δ…  and D are the 
parameter uncertainties, ( )tφ  is unknown but norm-bounded external disturbances. 
Taking known advantages of sliding mode, we want to design a simple suitable sliding 
mode controller for stabilization of uncertain time-delay system (1). 
We need to make the following conventional assumptions for our design problem. 

Assumption 1: 
a. 0( , )A B  is  stabilizable;  
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input, i.e. there exist matrices 0 1( ), ( ), ( ), , ( )NE t E t E t E t… , such that: 

 0 0 1 1( ) ( ) ; ( ) ( ) ; ..., ( ) ( ) ; ( ) ( )N NA t BE t A t BE t A t BE t D t BE tΔ Δ= = = =  (2) 

with norm-bounded matrices: 

0 0 1 1max ( ) ; max ( ) ; ...,max ( )N Nt t t
E t E t E tΔ α Δ α Δ α≤ ≤ ≤  

( )E t α=  

G g=  

 0( )f t f≤  (3) 

where 0 1 1, , ,... ,n gα α α α  and 0f  are known positive scalars. 
The control goal is to design a combined variable structure controller for robust stabilization 
of time-delay system (1) with matched parameter uncertainties and external disturbances. 

3. Control law and sliding surface 
To achieve this goal, we form the following type of combined variable structure controller: 

 ( ) ( ) ( ) ( ) ( )lin eq vs ru t u t u t u t u t= + + +  (4) 

where  

 ( ) ( )linu t Gx t= −  (5) 

 [1
0 1 1( ) ( ) ( ) ( ) ( )]eq N Nu t CB CA x t CA x t h CA x t h−= − + − + + −…  (6) 
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 0 1 1 .
( )( ) ( ) ( ) ... ( )
( )vs N N

s tu t k x t k x t h k x t h
s t

⎡ ⎤= − + − + + −⎣ ⎦  (7) 

 ( )
( )r

s tu
s t

δ= −  (8) 

where 0 1, ,..., Nk k k  andδ are the scalar gain parameters to be selected; G is a design matrix; 
1( )CB − is a non-singular m m× matrix. The sliding surface on which the perturbed time-delay 

system states must be stable is defined as a linear function of the undelayed system states as 
follows:  

   ( ) ( )s t Cx tΓ=  (9)  

where C is a m n×  gain matrix of full rank to be selected; Γ is chosen as identity m m×  
matrix that is used to diagonalize the control.  
Equivalent control term (6) for non-perturbed time-delay system is determined from the 
following equations: 

 0 1 1( ) ( ) ( ) ( ) ... ( ) ( ) 0N Ns t Cx t CA x t CA x t h CA x t h CBu t= = + − + + − + =� �  (10)  

Substituting (6) into (1) we have a non-perturbed or ideal sliding time-delay motion of the 
nominal system as follows: 

 0 1 1( ) ( ) ( ) ( )N Nx t A x t A x t h A x t h= + − + + −� …  (11) 
where 

 1
0 10 0 1 1( ) , , , ..., Neq eq eq N eq NCB C G A BG A A A BG A A A BG A A− = − = − = − =  (12)  

Note that, constructed sliding mode controller consists of four terms:  
1. The linear control term is needed to guarantee that the system states can be stabilized 

on the sliding surface; 
2. The equivalent control term for the compensation of the nominal part of the perturbed 

time-delay system; 
3. The variable structure control term for the compensation of parameter uncertainties of 

the system matrices; 
4. The min-max or relay term for the rejection of the external disturbances. 
Structure of these control terms is typical and very simple in their practical implementation. 
The design parameters 0 1 ,, , , ,..., NG C k k k δ  of the combined controller (4) for delay-
independent case can be selected from the sliding conditions and stability analysis of the 
perturbed sliding time-delay system. 
However, in order to make the delay-dependent stability analysis and choosing an 
appropriate Lyapunov-Krasovskii functional first let us transform the nominal sliding time-
delay system (11) by using the Leibniz-Newton formula. Since x(t) is continuously 
differentiable for  t ≥ 0, using the Leibniz-Newton formula, the time-delay terms can be 
presented as: 

 
1

1( ) ( ) ( ) ,..., ( ) ( ) ( )
N

t t

N
t h t h

x t h x t x d x t h x t x dθ θ θ θ
− −

− = − − = −∫ ∫� �  (13) 
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Then, the system (11) can be rewritten as 

 
1

0 1 1( ) ( ... ) ( ) ( ) ... ( )
N

t t

NN
t h t h

x t A A A x t A x d A x dθ θ θ θ
− −

= + + + − − −∫ ∫  (14) 

Substituting again (11) into (14) yields:  

1

1 1 1

0 1 1 0 1 1

0 1 1

2
0 1 1 0 1 1 1

( ) ( ... ) ( ) ( ) ( ) ... ( )

... ( ) ( ) ... ( )

( ... ) ( ) ( ) ( ) ... ( )

   

N

t

N N N
t h

t

N N N
t h

t t t

N N N
t h t h t h

x t A A A x t A A x A x h A x h d

A A x A x h A x h d

A A A x t A A x d A x h d A A x h d

θ θ θ θ

θ θ θ θ

θ θ θ θ θ θ

−

−

− − −

⎡ ⎤= + + + − + − + + −⎣ ⎦

⎡ ⎤− − + − + + −⎣ ⎦

= + + + − − − − − −

∫

∫

∫ ∫ ∫

2
0 1 1                       ... ( ) ( ) ... ( )

N N N

t t t

N N N N
t h t h t h

A A x d A A x h d A x h dθ θ θ θ θ θ
− − −

− − − − − − −∫ ∫ ∫

 (15) 

Then in adding to (15) the perturbed sliding time-delay system with control action (4) or 
overall closed loop system can be formulated as: 

 

1 1

1

2
0 1 1 0 1 1

1 0 1 1

2
0

1 1

0 1

( ) ( ... ) ( ) ( ) ( )

... ( ) ... ( ) ( )

... ( ) ( )

( ) ... ( )

[ ( ) (

θ θ θ θ

θ θ θ θ θ θ

θ θ

− −

− − −

−

= + + + − − −

− − − − − − −

− − − + Δ

+Δ − + + Δ −

− + −

∫ ∫

∫ ∫ ∫

∫

N N

N

t t

N
t h t h

t t t

N N N N
t h t h t h

t

N N
t h

N N

x t A A A x t A A x d A x h d

A A x h d A A x d A A x h d

A x h d A x t

A x t h A x t h

B k x t k x t h1 .
( ) ( )) ... ( ) ] ( )
( ) ( )

δ+ + − − +N N
s t s tk x t h B Df t
s t s t

 (16) 

where 0 0A A BG= − , the gain matrix G  can be selected such that 0A  has the desirable 
eigenvalues.  
The design parameters 0 1 ,, , , ,..., NG C k k k δ  of the combined controller (4) for delay-
dependent case can be selected from the sliding conditions and stability analysis of the 
perturbed sliding time-delay system (16). 

4. Robust delay-independent stabilization 
In this section, the existence condition of the sliding manifold and delay-independent 
stability analysis of perturbed sliding time-delay systems are presented. 

4.1 Robust delay-independent stabilization on the sliding surface 
In this section, the sliding manifold is designed so that on it or in its neighborhood in 
different from existing methods the perturbed sliding time-delay system (1),(4) is globally 
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asymptotically stable with respect to state coordinates. The perturbed stability results are 
formulated in the following theorem. 

Theorem 1: Suppose that Assumption 1 holds. Then the multivariable time-delay 
system (1) with matched parameter perturbations and external disturbances driven by 
combined controller (4) and restricted to the sliding surface s(t)=0 is robustly globally 
asymptotically delay-independent stable with respect to the state variables, if the 
following LMI conditions and parameter requirements are satisfied: 

 

� � 10 0 1

1 1

...

( ) ... 0 0

( ) 0 ...

T
NN

T

T
N N

A P PA R R PA PA

PA RH

PA R

⎡ ⎤+ + + +⎢ ⎥
⎢ ⎥−= <⎢ ⎥
⎢ ⎥
⎢ ⎥−⎣ ⎦

…

� � � �
 (17) 

 0TCB B PB= >  (18) 

 0 0 1 1; ;...; N Nk k kα α α= = =  (19) 

 ofδ ≥  (20) 

where 1, , NP R R…  are some symmetric positive definite matrices which are a feasible 
solution of LMI (17) with (18); �0 0A A BG= −  in which a gain matrix G can be assigned by 
pole placement such that 0A�  has some desirable eigenvalues. 

Proof: Choose a Lyapunov-Krasovskii functional candidate as follows: 

 
1

( ) ( ) ( ) ( )
i

tN
T T

i
i t h

V x t Px t x R x dθ θ θ
= −

= +∑ ∫  (21) 

The time-derivative of (21) along the state trajectories of time-delay system (1), (4) can be 
calculated as follows: 

[
]

0 1 1 0 1 1

1 1 1 1

0 1 1

2 ( ) ( ) ( ) ... ( ) ( ) ( )
              ... ( ) ( ) ( )

  ( ) ( ) ( ) ( ) ... ( ) ( ) ( ) ( )
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N N N N
T T
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+ + − + +
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= + − +

�
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1 1

0 1 1 .

1

. 2 ( ) ( ) 2 ( ) ( )

  2 ( ) ( ) ... 2 ( ) ( )
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δ
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+ − + + −
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+ + + −… 1 1 1) ( ) ( ) ( )T
N N Nt h R x t h x t h R x t h− − − − − −…

 

Since   ( ) ( )T Tx t PB s t= , then we obtain: 
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Since (17)-(20) hold, then (22) reduces to: 

 ( ) ( ) 0TV z t Hz t≤ <�  (23)   

where [ ]1( ) ( ) ( ) ( )T
Nz t x t x t h x t h= − −… .  

Therefore, we can conclude that the perturbed time-delay system (1), (4) is robustly globally 
asymptotically delay-independent stable with respect to the state coordinates. Theorem 1 is 
proved. 

4.2 Existence conditions 
The final step of the control design is the derivation of the sliding mode existence conditions 
or the reaching conditions for the perturbed time-delay system (1),(4) states to the sliding 
manifold in finite time. These results are summarized in the following theorem. 

Theorem 2: Suppose that Assumption 1 holds. Then the perturbed multivariable time-
delay system (1) states with matched parameter uncertainties and external disturbances 
driven by controller (4) converge to the siding surface s(t)=0 in finite time, if the 
following conditions are satisfied: 

  0 0 1 1; ;...; N Nk g k kα α α= + = =  (24) 

  ofδ ≥  (25) 

Proof: Let us choose a modified Lyapunov function candidate as: 

 11 ( )( ) ( )
2

TV s t CB s t−=  (26) 

The time-derivative of (26) along the state trajectories of time-delay system (1), (4) can be 
calculated as follows: 
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asymptotically stable with respect to state coordinates. The perturbed stability results are 
formulated in the following theorem. 

Theorem 1: Suppose that Assumption 1 holds. Then the multivariable time-delay 
system (1) with matched parameter perturbations and external disturbances driven by 
combined controller (4) and restricted to the sliding surface s(t)=0 is robustly globally 
asymptotically delay-independent stable with respect to the state variables, if the 
following LMI conditions and parameter requirements are satisfied: 
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where 1, , NP R R…  are some symmetric positive definite matrices which are a feasible 
solution of LMI (17) with (18); �0 0A A BG= −  in which a gain matrix G can be assigned by 
pole placement such that 0A�  has some desirable eigenvalues. 

Proof: Choose a Lyapunov-Krasovskii functional candidate as follows: 
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Since   ( ) ( )T Tx t PB s t= , then we obtain: 
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Since (17)-(20) hold, then (22) reduces to: 

 ( ) ( ) 0TV z t Hz t≤ <�  (23)   

where [ ]1( ) ( ) ( ) ( )T
Nz t x t x t h x t h= − −… .  

Therefore, we can conclude that the perturbed time-delay system (1), (4) is robustly globally 
asymptotically delay-independent stable with respect to the state coordinates. Theorem 1 is 
proved. 

4.2 Existence conditions 
The final step of the control design is the derivation of the sliding mode existence conditions 
or the reaching conditions for the perturbed time-delay system (1),(4) states to the sliding 
manifold in finite time. These results are summarized in the following theorem. 

Theorem 2: Suppose that Assumption 1 holds. Then the perturbed multivariable time-
delay system (1) states with matched parameter uncertainties and external disturbances 
driven by controller (4) converge to the siding surface s(t)=0 in finite time, if the 
following conditions are satisfied: 

  0 0 1 1; ;...; N Nk g k kα α α= + = =  (24) 

  ofδ ≥  (25) 

Proof: Let us choose a modified Lyapunov function candidate as: 

 11 ( )( ) ( )
2

TV s t CB s t−=  (26) 

The time-derivative of (26) along the state trajectories of time-delay system (1), (4) can be 
calculated as follows: 
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(27)

 

Since (24), (25) hold, then (27) reduces to: 

 1
0( )( ) ( ) ( ) ( ) ( )TV s t CB s t f s t s tδ η−= ≤ − − ≤ −� �  (28) 

where      

             0 0fη δ= − ≥  (29)  
Hence we can evaluate that 

 
1

min

2( ) ( )
( )

V t V t
CB

η
λ −≤ −�  (30) 

The last inequality (30) is known to prove the finite-time convergence of system (1), (4) 
towards the sliding surface s(t)=0 (Utkin, 1977), (Perruquetti & Barbot, 2002). Therefore, 
Theorem 2 is proved. 

4.3 Numerical examples and simulation 
In order to demonstrate the usefulness of the proposed control design techniques let us 
consider the following examples. 

Example 1: Consider a networked control time-delay system (1), (4) with parameters 
taking from (Cao et al., 2007): 

 0 1
4 0 1.5 0 2

, ,
1 3 1 0.5 2

A A B
− −⎡ ⎤ ⎡ ⎤ ⎡ ⎤

= = =⎢ ⎥ ⎢ ⎥ ⎢ ⎥− − − −⎣ ⎦ ⎣ ⎦ ⎣ ⎦
 (31) 
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0 0 1 10.5sin( ) , 0.5cos( ) , 0.3sin( )A t A A t A f tΔ Δ= = =  

The LMI stability and sliding mode existence conditions are computed by MATLAB 
programming (see Appendix 1) where LMI Control Toolbox is used. The computational 
results are following: 

A0hat = 
   -1.0866    1.0866
    1.9134   -1.9134
⎡ ⎤
⎢ ⎥
⎣ ⎦

; A1hat = 
  -0.1811    0.1811
   0.3189   -0.3189

⎡ ⎤
⎢ ⎥
⎣ ⎦

 

 G1 = [ ]   0.9567    1.2933 ; A0til = 
  -3.0000   -1.5000
   0.0000   -4.5000

⎡ ⎤
⎢ ⎥
⎣ ⎦

; eigA0til = 
  -3.0000
  -4.5000

⎡ ⎤
⎢ ⎥
⎣ ⎦

 

eigA0hat = 
   0.0000
  -3.0000

⎡ ⎤
⎢ ⎥
⎣ ⎦

; eigA1hat = 
   0.0000
  -0.5000

⎡ ⎤
⎢ ⎥
⎣ ⎦

 

 lhs = 

 -1.8137    0.0020   -0.1392    0.1392
 0.0020   -1.7813    0.1382   -0.1382
-0.1392    0.1382   -1.7364    0.0010
 0.1392   -0.1382    0.0010   -1.7202

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

 ; eigsLHS = 

  -2.0448
  -1.7952
  -1.7274
  -1.4843

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

 

  P = 
   0.6308   -0.0782
  -0.0782    0.3891

⎡ ⎤
⎢ ⎥
⎣ ⎦

;  eigP = 
   0.3660
   0.6539

⎡ ⎤
⎢ ⎥
⎣ ⎦

 ;  

  R1 = 
   1.7364   -0.0010
  -0.0010    1.7202

⎡ ⎤
⎢ ⎥
⎣ ⎦

; eigR1 = 
   1.7202
   1.7365

⎡ ⎤
⎢ ⎥
⎣ ⎦

 

  BTP =   [ ]1.1052    0.6217 ; BTPB =    3.4538 
  invBTPB =    0.2895; normG1 =    1.6087 
  k0= 2.1087;   k1=0.5; δ ≥ 0.3;   H< 0; 
The networked control time-delay system is robustly asymptotically delay-independent 
stable. 

Example 2: Consider a time-delay system (1), (4) with parameters: 

0 1
1 0.7 0.1 0.1

, ,
0.3 1 0 0.2

A A
−⎡ ⎤ ⎡ ⎤

= =⎢ ⎥ ⎢ ⎥
⎣ ⎦ ⎣ ⎦

2
0.2 0 1

,
0 0.1 1

A B
⎡ ⎤ ⎡ ⎤

= =⎢ ⎥ ⎢ ⎥
⎣ ⎦ ⎣ ⎦

 

 1 0.1h = ,    2 0.2h =  (32) 

0 1 2
0.2sin( ) 0 0.1cos( ) 0 0.2 cos( ) 0

, , .
0 0.1sin( ) 0 0.2 cos( ) 0 0.1cos( )

t t t
A A A

t t t
Δ Δ Δ

⎡ ⎤ ⎡ ⎤ ⎡ ⎤
= = =⎢ ⎥ ⎢ ⎥ ⎢ ⎥
⎣ ⎦ ⎣ ⎦ ⎣ ⎦

 

Matching condition for external disturbances is given by: 

1
B 0.2cos t

1
D E

⎡ ⎤
= = ⎢ ⎥

⎣ ⎦
; ( ) 0.2 cosf t t=  

The LMI stability and sliding mode existence conditions are computed by MATLAB 
programming (see Appendix 2) where LMI Control Toolbox is used. The computational 
results are following: 
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Since (24), (25) hold, then (27) reduces to: 

 1
0( )( ) ( ) ( ) ( ) ( )TV s t CB s t f s t s tδ η−= ≤ − − ≤ −� �  (28) 

where      

             0 0fη δ= − ≥  (29)  
Hence we can evaluate that 

 
1

min

2( ) ( )
( )

V t V t
CB

η
λ −≤ −�  (30) 

The last inequality (30) is known to prove the finite-time convergence of system (1), (4) 
towards the sliding surface s(t)=0 (Utkin, 1977), (Perruquetti & Barbot, 2002). Therefore, 
Theorem 2 is proved. 

4.3 Numerical examples and simulation 
In order to demonstrate the usefulness of the proposed control design techniques let us 
consider the following examples. 

Example 1: Consider a networked control time-delay system (1), (4) with parameters 
taking from (Cao et al., 2007): 

 0 1
4 0 1.5 0 2

, ,
1 3 1 0.5 2

A A B
− −⎡ ⎤ ⎡ ⎤ ⎡ ⎤

= = =⎢ ⎥ ⎢ ⎥ ⎢ ⎥− − − −⎣ ⎦ ⎣ ⎦ ⎣ ⎦
 (31) 
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0 0 1 10.5sin( ) , 0.5cos( ) , 0.3sin( )A t A A t A f tΔ Δ= = =  

The LMI stability and sliding mode existence conditions are computed by MATLAB 
programming (see Appendix 1) where LMI Control Toolbox is used. The computational 
results are following: 

A0hat = 
   -1.0866    1.0866
    1.9134   -1.9134
⎡ ⎤
⎢ ⎥
⎣ ⎦

; A1hat = 
  -0.1811    0.1811
   0.3189   -0.3189

⎡ ⎤
⎢ ⎥
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 G1 = [ ]   0.9567    1.2933 ; A0til = 
  -3.0000   -1.5000
   0.0000   -4.5000

⎡ ⎤
⎢ ⎥
⎣ ⎦

; eigA0til = 
  -3.0000
  -4.5000

⎡ ⎤
⎢ ⎥
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eigA0hat = 
   0.0000
  -3.0000

⎡ ⎤
⎢ ⎥
⎣ ⎦

; eigA1hat = 
   0.0000
  -0.5000

⎡ ⎤
⎢ ⎥
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 lhs = 

 -1.8137    0.0020   -0.1392    0.1392
 0.0020   -1.7813    0.1382   -0.1382
-0.1392    0.1382   -1.7364    0.0010
 0.1392   -0.1382    0.0010   -1.7202

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

 ; eigsLHS = 

  -2.0448
  -1.7952
  -1.7274
  -1.4843

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
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  P = 
   0.6308   -0.0782
  -0.0782    0.3891

⎡ ⎤
⎢ ⎥
⎣ ⎦

;  eigP = 
   0.3660
   0.6539

⎡ ⎤
⎢ ⎥
⎣ ⎦

 ;  

  R1 = 
   1.7364   -0.0010
  -0.0010    1.7202

⎡ ⎤
⎢ ⎥
⎣ ⎦

; eigR1 = 
   1.7202
   1.7365

⎡ ⎤
⎢ ⎥
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  BTP =   [ ]1.1052    0.6217 ; BTPB =    3.4538 
  invBTPB =    0.2895; normG1 =    1.6087 
  k0= 2.1087;   k1=0.5; δ ≥ 0.3;   H< 0; 
The networked control time-delay system is robustly asymptotically delay-independent 
stable. 

Example 2: Consider a time-delay system (1), (4) with parameters: 

0 1
1 0.7 0.1 0.1

, ,
0.3 1 0 0.2

A A
−⎡ ⎤ ⎡ ⎤

= =⎢ ⎥ ⎢ ⎥
⎣ ⎦ ⎣ ⎦

2
0.2 0 1

,
0 0.1 1

A B
⎡ ⎤ ⎡ ⎤

= =⎢ ⎥ ⎢ ⎥
⎣ ⎦ ⎣ ⎦

 

 1 0.1h = ,    2 0.2h =  (32) 

0 1 2
0.2sin( ) 0 0.1cos( ) 0 0.2 cos( ) 0

, , .
0 0.1sin( ) 0 0.2 cos( ) 0 0.1cos( )

t t t
A A A

t t t
Δ Δ Δ

⎡ ⎤ ⎡ ⎤ ⎡ ⎤
= = =⎢ ⎥ ⎢ ⎥ ⎢ ⎥
⎣ ⎦ ⎣ ⎦ ⎣ ⎦

 

Matching condition for external disturbances is given by: 

1
B 0.2cos t

1
D E

⎡ ⎤
= = ⎢ ⎥

⎣ ⎦
; ( ) 0.2 cosf t t=  

The LMI stability and sliding mode existence conditions are computed by MATLAB 
programming (see Appendix 2) where LMI Control Toolbox is used. The computational 
results are following: 
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A0hat =
   -0.3947   -0.0911
    0.9053    0.2089
⎡ ⎤
⎢ ⎥
⎣ ⎦

; A1hat =
  -0.0304   -0.0304
   0.0696    0.0696

⎡ ⎤
⎢ ⎥
⎣ ⎦

;A2hat =
   0.0607   -0.0304
  -0.1393    0.0696

⎡ ⎤
⎢ ⎥
⎣ ⎦

 
 

 Geq =[ 0.6964    0.3036]; G =[ -4.5759   12.7902] 
 

 A0til = 
   4.1812  -12.8812
   5.4812  -12.5812

⎡ ⎤
⎢ ⎥
⎣ ⎦

; eigA0til = 
 -4.2000 + 0.6000i
 -4.2000 - 0.6000i

⎡ ⎤
⎢ ⎥
⎣ ⎦

 
 

 eigA0hat = 
  -0.1858
   0.0000

⎡ ⎤
⎢ ⎥
⎣ ⎦

; eigA1hat = 
         0
   0.0393

⎡ ⎤
⎢ ⎥
⎣ ⎦

; eigA2hat = 
   0.0000
   0.1304

⎡ ⎤
⎢ ⎥
⎣ ⎦

 
 

lhs = 

   -0.7085   -0.5711   -0.0085   -0.0085    0.0169   -0.0085
   -0.5711   -0.8257    0.0084    0.0084   -0.0167    0.0084
   -0.0085    0.0084   -1.0414   -0.2855         0         0
   -0.0085    0.0084   -0.2855   -1.1000         0         0
    0.0169   -0.0167         0         0           -1.0414   -0.2855
   -0.0085    0.0084         0         0           -0.2855   -1.1000

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

; eigsLHS = 

  -1.3581
  -1.3578
  -1.3412
  -0.7848
  -0.7837
  -0.1916

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

 

 

P=
    2.0633    0.7781
    0.7781    0.4592
⎡ ⎤
⎢ ⎥
⎣ ⎦

; eigP=
   0.1438
   2.3787

⎡ ⎤
⎢ ⎥
⎣ ⎦

; R1=
   1.0414    0.2855
   0.2855    1.1000

⎡ ⎤
⎢ ⎥
⎣ ⎦

; R2=
   1.0414    0.2855
   0.2855    1.1000

⎡ ⎤
⎢ ⎥
⎣ ⎦

 
 

 eigR1 = 
   0.7837
   1.3578

⎡ ⎤
⎢ ⎥
⎣ ⎦

; eigR2 = 
   0.7837
   1.3578

⎡ ⎤
⎢ ⎥
⎣ ⎦

 
 

 BTP =  [ ]  2.8414  1.2373 ; BTPB =    4.0788 
 

 invBTPB =    0.2452; normG =   13.5841 
 

0 1 20.2;   0.2;    0.2α α α= = = ; max 0.2d D= = ;  0 max ( ) 0.2828f f t= = ; 
 

 k0=13.7841; k1=0.2; k2=0.2; δ ≥ 0.2828; H< 0; 
Thus, we have designed all the parameters of the combined sliding mode controller. 
Aircraft control design example 3: Consider the lateral-directional control design of the DC-
8 aircraft in a cruise-flight configuration for M = 0.84, h = 33.000ft, and V = 825ft/s with 
nominal parameters taken from (Schmidt, 1998): 

 

0.228 2.148 0.021 0.0 1.169 0.065
1.0 0.0869 0.0 0.0390 0.0223 0.0

0.335 4.424 1.184 0.0 0.0547 2.120
0.0 0.0 1.0 0.0 0.0 0.0

r

a

r r

p p
β β δ

δ
φ φ

− − −⎡ ⎤ ⎡ ⎤ ⎡ ⎤ ⎡ ⎤
⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥− − ⎡ ⎤⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥= + ⎢ ⎥⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥− − ⎣ ⎦⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥
⎣ ⎦ ⎣ ⎦ ⎣ ⎦ ⎣ ⎦

 (33) 

where β  is the sideslip angle, deg., p  is the roll rate, deg/s, φ  is the bank angle, deg., r  is 
the yaw rate, deg/s, rδ is the rudder control, aδ is the aileron control. However, some small 
transient time-delay effect in this equation may occur because of influence of sideslip on 
aerodynamics flow and flexibility effects of aerodynamic airframe and surfaces in lateral-
directional couplings and directional-lateral couplings. The gain constants of gyro, rate gyro 
and actuators are included in to lateral directional equation of motion. Therefore, it is 
assumed that lateral direction motion of equation contains some delay effect and perturbed 
parameters as follows: 
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 1

0 0 0.002 0.0
0 0 0.0 0.004

0.034 0.442 0 0
0.0 0.0 0 0

A

−⎡ ⎤
⎢ ⎥
⎢ ⎥=
⎢ ⎥−
⎢ ⎥
⎣ ⎦

 (34) 

0 00.1 sin( )A A tΔ = , 1 10.1 cos( )A A tΔ = , 4D I= ; 10.2sin( ) ; 0.01 0.04f t h s= = −  

The LMI stability and sliding mode existence conditions are computed by MATLAB 
programming (see Appendix 3) where LMI Control Toolbox is used. The computational 
results are following: 

A0hat = 

-0.0191   -0.0008    0.0000    0.0007
-1.0042   -0.0434    0.0003    0.0390
 0.0006    0.0000   -0.0000   -0.0000
     0            0         1.0000        0

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

; A1hat = 

-0.0000    0.0000   -0.0000    0.0001
-0.0000    0.0003   -0.0000    0.0040
0.0000   -0.0000    0.0000   -0.0000
     0            0             0            0

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

 

 

G = 
-0.8539    0.0163    0.0262    0
 0.0220   -0.0001    0.4710    0
⎡ ⎤
⎢ ⎥
⎣ ⎦

; G1 = 
-0.5925    0.0890    0.1207    0.0501
 0.0689   -0.0086    0.3452    0.0485
⎡ ⎤
⎢ ⎥
⎣ ⎦

 
 

A0til = 

-0.7162    0.1038    0.1187    0.0561
-0.9910   -0.0454   -0.0024    0.0379
-0.1130    0.0134   -0.7384   -0.1056
    0            0          1.0000        0

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

 

 eigA0til = [ ]-0.5+0.082i  -0.5-0.082i  -0.3  -0.2  

 eigA0hat = [ ]-0.0621   -0.0004   -0.0000   -0.0000  

 eigA1hat =  1.0e-003 *

 0.2577          
-0.0000 + 0.0000i
-0.0000 - 0.0000i
 0   

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

 

P = 

   72.9293   39.4515   -2.3218   24.7039
   39.4515  392.5968   10.8368   -1.4649
   -2.3218   10.8368   67.2609  -56.4314
   24.7039   -1.4649  -56.4314  390.7773

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

; eigP= [ ]57.3353   66.3033  397.7102  402.2156  

R1 = 

   52.5926   29.5452    0.3864    2.5670
   29.5452   62.3324    3.6228   -0.4852
    0.3864    3.6228   48.3292  -32.7030
    2.5670   -0.4852  -32.7030   61.2548

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

; eigR1 = [ ]21.3032   27.3683   86.9363   88.9010  

 BTP = 
-84.5015  -36.7711     6.6350    -31.9983
 -0.1819   25.5383  142.4423 -118.0289

⎡ ⎤
⎢ ⎥
⎣ ⎦

 

 BTPB = 
98.3252    8.5737
 8.5737  301.9658

⎡ ⎤
⎢ ⎥
⎣ ⎦

; invBTPB = 
0.0102   -0.0003

-0.0003    0.0033
⎡ ⎤
⎢ ⎥
⎣ ⎦
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A0hat =
   -0.3947   -0.0911
    0.9053    0.2089
⎡ ⎤
⎢ ⎥
⎣ ⎦

; A1hat =
  -0.0304   -0.0304
   0.0696    0.0696

⎡ ⎤
⎢ ⎥
⎣ ⎦

;A2hat =
   0.0607   -0.0304
  -0.1393    0.0696

⎡ ⎤
⎢ ⎥
⎣ ⎦

 
 

 Geq =[ 0.6964    0.3036]; G =[ -4.5759   12.7902] 
 

 A0til = 
   4.1812  -12.8812
   5.4812  -12.5812

⎡ ⎤
⎢ ⎥
⎣ ⎦

; eigA0til = 
 -4.2000 + 0.6000i
 -4.2000 - 0.6000i

⎡ ⎤
⎢ ⎥
⎣ ⎦

 
 

 eigA0hat = 
  -0.1858
   0.0000

⎡ ⎤
⎢ ⎥
⎣ ⎦

; eigA1hat = 
         0
   0.0393

⎡ ⎤
⎢ ⎥
⎣ ⎦

; eigA2hat = 
   0.0000
   0.1304

⎡ ⎤
⎢ ⎥
⎣ ⎦

 
 

lhs = 

   -0.7085   -0.5711   -0.0085   -0.0085    0.0169   -0.0085
   -0.5711   -0.8257    0.0084    0.0084   -0.0167    0.0084
   -0.0085    0.0084   -1.0414   -0.2855         0         0
   -0.0085    0.0084   -0.2855   -1.1000         0         0
    0.0169   -0.0167         0         0           -1.0414   -0.2855
   -0.0085    0.0084         0         0           -0.2855   -1.1000

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

; eigsLHS = 

  -1.3581
  -1.3578
  -1.3412
  -0.7848
  -0.7837
  -0.1916

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

 

 

P=
    2.0633    0.7781
    0.7781    0.4592
⎡ ⎤
⎢ ⎥
⎣ ⎦

; eigP=
   0.1438
   2.3787

⎡ ⎤
⎢ ⎥
⎣ ⎦

; R1=
   1.0414    0.2855
   0.2855    1.1000

⎡ ⎤
⎢ ⎥
⎣ ⎦

; R2=
   1.0414    0.2855
   0.2855    1.1000

⎡ ⎤
⎢ ⎥
⎣ ⎦

 
 

 eigR1 = 
   0.7837
   1.3578

⎡ ⎤
⎢ ⎥
⎣ ⎦

; eigR2 = 
   0.7837
   1.3578

⎡ ⎤
⎢ ⎥
⎣ ⎦

 
 

 BTP =  [ ]  2.8414  1.2373 ; BTPB =    4.0788 
 

 invBTPB =    0.2452; normG =   13.5841 
 

0 1 20.2;   0.2;    0.2α α α= = = ; max 0.2d D= = ;  0 max ( ) 0.2828f f t= = ; 
 

 k0=13.7841; k1=0.2; k2=0.2; δ ≥ 0.2828; H< 0; 
Thus, we have designed all the parameters of the combined sliding mode controller. 
Aircraft control design example 3: Consider the lateral-directional control design of the DC-
8 aircraft in a cruise-flight configuration for M = 0.84, h = 33.000ft, and V = 825ft/s with 
nominal parameters taken from (Schmidt, 1998): 

 

0.228 2.148 0.021 0.0 1.169 0.065
1.0 0.0869 0.0 0.0390 0.0223 0.0

0.335 4.424 1.184 0.0 0.0547 2.120
0.0 0.0 1.0 0.0 0.0 0.0

r

a

r r

p p
β β δ

δ
φ φ

− − −⎡ ⎤ ⎡ ⎤ ⎡ ⎤ ⎡ ⎤
⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥− − ⎡ ⎤⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥= + ⎢ ⎥⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥− − ⎣ ⎦⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥
⎣ ⎦ ⎣ ⎦ ⎣ ⎦ ⎣ ⎦

 (33) 

where β  is the sideslip angle, deg., p  is the roll rate, deg/s, φ  is the bank angle, deg., r  is 
the yaw rate, deg/s, rδ is the rudder control, aδ is the aileron control. However, some small 
transient time-delay effect in this equation may occur because of influence of sideslip on 
aerodynamics flow and flexibility effects of aerodynamic airframe and surfaces in lateral-
directional couplings and directional-lateral couplings. The gain constants of gyro, rate gyro 
and actuators are included in to lateral directional equation of motion. Therefore, it is 
assumed that lateral direction motion of equation contains some delay effect and perturbed 
parameters as follows: 
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 1

0 0 0.002 0.0
0 0 0.0 0.004

0.034 0.442 0 0
0.0 0.0 0 0

A

−⎡ ⎤
⎢ ⎥
⎢ ⎥=
⎢ ⎥−
⎢ ⎥
⎣ ⎦

 (34) 

0 00.1 sin( )A A tΔ = , 1 10.1 cos( )A A tΔ = , 4D I= ; 10.2sin( ) ; 0.01 0.04f t h s= = −  

The LMI stability and sliding mode existence conditions are computed by MATLAB 
programming (see Appendix 3) where LMI Control Toolbox is used. The computational 
results are following: 

A0hat = 

-0.0191   -0.0008    0.0000    0.0007
-1.0042   -0.0434    0.0003    0.0390
 0.0006    0.0000   -0.0000   -0.0000
     0            0         1.0000        0

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

; A1hat = 

-0.0000    0.0000   -0.0000    0.0001
-0.0000    0.0003   -0.0000    0.0040
0.0000   -0.0000    0.0000   -0.0000
     0            0             0            0

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

 

 

G = 
-0.8539    0.0163    0.0262    0
 0.0220   -0.0001    0.4710    0
⎡ ⎤
⎢ ⎥
⎣ ⎦

; G1 = 
-0.5925    0.0890    0.1207    0.0501
 0.0689   -0.0086    0.3452    0.0485
⎡ ⎤
⎢ ⎥
⎣ ⎦

 
 

A0til = 

-0.7162    0.1038    0.1187    0.0561
-0.9910   -0.0454   -0.0024    0.0379
-0.1130    0.0134   -0.7384   -0.1056
    0            0          1.0000        0

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

 

 eigA0til = [ ]-0.5+0.082i  -0.5-0.082i  -0.3  -0.2  

 eigA0hat = [ ]-0.0621   -0.0004   -0.0000   -0.0000  

 eigA1hat =  1.0e-003 *

 0.2577          
-0.0000 + 0.0000i
-0.0000 - 0.0000i
 0   

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

 

P = 

   72.9293   39.4515   -2.3218   24.7039
   39.4515  392.5968   10.8368   -1.4649
   -2.3218   10.8368   67.2609  -56.4314
   24.7039   -1.4649  -56.4314  390.7773

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

; eigP= [ ]57.3353   66.3033  397.7102  402.2156  

R1 = 

   52.5926   29.5452    0.3864    2.5670
   29.5452   62.3324    3.6228   -0.4852
    0.3864    3.6228   48.3292  -32.7030
    2.5670   -0.4852  -32.7030   61.2548

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

; eigR1 = [ ]21.3032   27.3683   86.9363   88.9010  

 BTP = 
-84.5015  -36.7711     6.6350    -31.9983
 -0.1819   25.5383  142.4423 -118.0289

⎡ ⎤
⎢ ⎥
⎣ ⎦

 

 BTPB = 
98.3252    8.5737
 8.5737  301.9658

⎡ ⎤
⎢ ⎥
⎣ ⎦

; invBTPB = 
0.0102   -0.0003

-0.0003    0.0033
⎡ ⎤
⎢ ⎥
⎣ ⎦
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gnorm = 0.8545lhs = 

-41.4566 -29.8705   -0.6169  -2.3564  -0.0008   0.0105  -0.0016   0.1633
-29.8705 -51.6438   -3.8939   0.8712  -0.0078   0.1015  -0.015     1.5728
-0.6169   -3.8939   -38.2778  32.1696 -0.0002   0.0028 -0.0004   0.043
-2.3564    0.8712    32.1696  -51.6081    0       -0.0002      0       -0.0038
-0.0008   -0.0078    -0.0002     0        -52.593  -29.545  -0.3864  -2.567
0.0105     0.1015      0.0028   -0.0002  -29.545 -62.333  -3.6228   0.4852
-0.0016   -0.015      -0.0004     0        -0.3864  -3.6228   -48.33    32.703
0.1633    1.5728        0.043   -0.0038  -2.567    0.4852   32.703  -61.255

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

; 

 

 eigsLHS = 

  -88.9592
  -86.9820
  -78.9778
  -75.8961
  -27.3686
  -21.3494
  -16.0275
  -11.9344

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

 

k0= 1.0545;   k1=0.5; δ ≥ 0.2;   H< 0; 

Thus, we have designed all the parameters of the aircraft control system and the uncertain 
time-delay system (1), (4) with given nominal (33) and perturbed (34) parameters are 
simulated by using MATLAB-SIMULINK. The SIMULINK block diagram of the uncertain 
time-delay system with variable structure contoller (VSC) is given in Fig. 1. Simulation 
results are given in Fig. 2, 3, 4 and 5. As seen from the last four figures, system time 
responses to the rudder and aileron pulse functions (0.3 within 3-6 sec) are stabilized very 
well for example the settling time is about 15-20 seconds while the state time responses of 
aircraft control action as shown in Fig. 5 are unstable or have poor dynamic characteristics. 
Notice that, as shown in Fig. 4, control action contains some switching, however it has no 
high chattering effects because the continuous terms of controller are dominant. 
Numerical examples and simulation results show the usefulness and effectiveness of the 
proposed design approach.    

5. Robust delay-dependent stabilization 
In this section, the existence condition of the sliding manifold and delay-dependent stability 
analysis of perturbed sliding time-delay systems are presented. 

5.1 Robust delay-dependent stabilization on the sliding surface 
In this section the sliding manifold is designed so that on it or in its neighborhood in 
different from existing methods the perturbed sliding time-delay system (16) is globally 
asymptotically stable with respect to state coordinates. The stability results are formulated 
in the following theorem. 
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Fig. 1. SIMULINK block diagram of uncertain time-delay system with VSC 
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gnorm = 0.8545lhs = 

-41.4566 -29.8705   -0.6169  -2.3564  -0.0008   0.0105  -0.0016   0.1633
-29.8705 -51.6438   -3.8939   0.8712  -0.0078   0.1015  -0.015     1.5728
-0.6169   -3.8939   -38.2778  32.1696 -0.0002   0.0028 -0.0004   0.043
-2.3564    0.8712    32.1696  -51.6081    0       -0.0002      0       -0.0038
-0.0008   -0.0078    -0.0002     0        -52.593  -29.545  -0.3864  -2.567
0.0105     0.1015      0.0028   -0.0002  -29.545 -62.333  -3.6228   0.4852
-0.0016   -0.015      -0.0004     0        -0.3864  -3.6228   -48.33    32.703
0.1633    1.5728        0.043   -0.0038  -2.567    0.4852   32.703  -61.255

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

; 

 

 eigsLHS = 

  -88.9592
  -86.9820
  -78.9778
  -75.8961
  -27.3686
  -21.3494
  -16.0275
  -11.9344

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

 

k0= 1.0545;   k1=0.5; δ ≥ 0.2;   H< 0; 

Thus, we have designed all the parameters of the aircraft control system and the uncertain 
time-delay system (1), (4) with given nominal (33) and perturbed (34) parameters are 
simulated by using MATLAB-SIMULINK. The SIMULINK block diagram of the uncertain 
time-delay system with variable structure contoller (VSC) is given in Fig. 1. Simulation 
results are given in Fig. 2, 3, 4 and 5. As seen from the last four figures, system time 
responses to the rudder and aileron pulse functions (0.3 within 3-6 sec) are stabilized very 
well for example the settling time is about 15-20 seconds while the state time responses of 
aircraft control action as shown in Fig. 5 are unstable or have poor dynamic characteristics. 
Notice that, as shown in Fig. 4, control action contains some switching, however it has no 
high chattering effects because the continuous terms of controller are dominant. 
Numerical examples and simulation results show the usefulness and effectiveness of the 
proposed design approach.    

5. Robust delay-dependent stabilization 
In this section, the existence condition of the sliding manifold and delay-dependent stability 
analysis of perturbed sliding time-delay systems are presented. 

5.1 Robust delay-dependent stabilization on the sliding surface 
In this section the sliding manifold is designed so that on it or in its neighborhood in 
different from existing methods the perturbed sliding time-delay system (16) is globally 
asymptotically stable with respect to state coordinates. The stability results are formulated 
in the following theorem. 
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Fig. 1. SIMULINK block diagram of uncertain time-delay system with VSC 
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Fig. 2. States’ time responses with control 
 

 
Fig. 3. Sliding functions 
 

 
Fig. 4. Control functions 
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Fig. 5. States’ time responses without control 

Theorem 3: Suppose that Assumption 1 holds. Then the transformed multivariable 
sliding time-delay system (16) with matched parameter perturbations and external 
disturbances driven by combined controller (4) and restricted to the sliding surface 
s(t)=0 is robustly globally asymptotically delay-dependent stable with respect to the 
state variables, if the following modified LMI conditions and parameter requirements 
are satisfied: 
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(35)

 

where 

T
11 0 1 N 0 1 N 1 1 1 N N N 1 N(A +...+A ) P P(A +...+A ) h (S R )+...+h (S R )+T +...+TH A A= + + + + + +� �    

 0TCB B PB= >  (36) 

 0 0 1 1; ; ;N Nk k kα α α= = =…  (37) 
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Fig. 5. States’ time responses without control 

Theorem 3: Suppose that Assumption 1 holds. Then the transformed multivariable 
sliding time-delay system (16) with matched parameter perturbations and external 
disturbances driven by combined controller (4) and restricted to the sliding surface 
s(t)=0 is robustly globally asymptotically delay-dependent stable with respect to the 
state variables, if the following modified LMI conditions and parameter requirements 
are satisfied: 
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 ofδ ≥  (38) 

where 1, , NP R R…  are some symmetric positive definite matrices which are a feasible 
solution of modified LMI (35) with (36); �0 0A A BG= −  is a stable matrix. 

Proof: Let us choose a special augmented Lyapunov-Krasovskii functional as follows: 
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The introduced  special augmented functional (39) involves three particular terms: first term 
V1 is standard Lyapunov function, second and third are non-standard terms, namely V2 and 
V3 are similar, except for the length integration horizon [t-h, t] for V2 and [t+θ-h, t] for V3, 
respectively. This functional is different from existing ones. 
The time-derivative of (39) along the perturbed time-delay system (16) can be calculated as: 
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Since for some h>0 Noldus inequality holds: 
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and ( ) ( )T Tx t PB s t=  then (40) becomes as: 
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 ofδ ≥  (38) 

where 1, , NP R R…  are some symmetric positive definite matrices which are a feasible 
solution of modified LMI (35) with (36); �0 0A A BG= −  is a stable matrix. 

Proof: Let us choose a special augmented Lyapunov-Krasovskii functional as follows: 
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The introduced  special augmented functional (39) involves three particular terms: first term 
V1 is standard Lyapunov function, second and third are non-standard terms, namely V2 and 
V3 are similar, except for the length integration horizon [t-h, t] for V2 and [t+θ-h, t] for V3, 
respectively. This functional is different from existing ones. 
The time-derivative of (39) along the perturbed time-delay system (16) can be calculated as: 
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Since for some h>0 Noldus inequality holds: 
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and ( ) ( )T Tx t PB s t=  then (40) becomes as: 
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0 0 1 1 1 0[( ) ( ) ( ) ( ) ( ) ( ) ... ( ) ( ) ( ) ] ( ) ( )N N Nk x t s t k x t h s t k x t h s t f s tα α α δ− − + − − + + − − − −   (42) 
Since (35)-(38) hold, then (42) reduces to: 
 

 ( ) ( ) 0TV z t Hz t≤ <  (43) 
 

Therefore, we can conclude that the perturbed time-delay system (16), (4) is robustly 
globally asymptotically delay-dependent stable. Theorem 3 is proved. 

Special case: Single state-delayed systems: For single state-delayed systems that are 
frequently encountered in control applications and testing examples equation of motion 
and control algorithm can be easily found from (1), (4), (16) letting N=1. Therefore, the 
modified LMI delay-dependent stability conditions for which are significantly reduced 
and  can be summarized in the following Corollary. 
Corollary 1: Suppose that Assumption 1 holds. Then the transformed single-delayed 
sliding system (16) with matched parameter perturbations and external disturbances 
driven by combined controller (4) for which N=1 and restricted by sliding surface s(t)=0 
is robustly globally asymptotically delay-dependent stable with respect to the state 
variables, if the following LMI  conditions and parameter requirements are satisfied: 
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 0TCB B PB= >  (45) 

 0 0 1 1; ;k kα α= =  (46) 

 ofδ ≥  (47) 

Proof: The corollary follows from the proof of the Theorem 3 letting N=1. 

5.2 Existence conditions 
The final step of the control design is the derivation of the sliding mode existence conditions 
or the reaching conditions for the perturbed time-delay system states to the sliding manifold 
in finite time. These results are summarized in the following theorem. 

Theorem 4: Suppose that Assumption 1 holds. Then the perturbed multivariable time-
delay system (1) states with matched parameter uncertainties and external disturbances 
driven by controller (4) converge to the siding surface s(t)=0 in finite time, if the 
following conditions are satisfied: 

 0 0 1 1; ;..., ;N Nk g k kα α α= + = =  (48) 

               ofδ ≥  (49) 

Proof: Let us choose a modified Lyapunov function candidate as: 

 11 ( )( ) ( )
2

TV s t CB s t−=  (50) 

The time-derivative of (50) along the state trajectories of time-delay system (1), (4) can be 
calculated as follows: 
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Since (48), (49) hold, then (51) reduces to: 

 1
0( )( ) ( ) ( ) ( ) ( )TV s t CB s t f s t s tδ η−= ≤ − − ≤ −� �  (52) 
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Since (35)-(38) hold, then (42) reduces to: 
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Therefore, we can conclude that the perturbed time-delay system (16), (4) is robustly 
globally asymptotically delay-dependent stable. Theorem 3 is proved. 

Special case: Single state-delayed systems: For single state-delayed systems that are 
frequently encountered in control applications and testing examples equation of motion 
and control algorithm can be easily found from (1), (4), (16) letting N=1. Therefore, the 
modified LMI delay-dependent stability conditions for which are significantly reduced 
and  can be summarized in the following Corollary. 
Corollary 1: Suppose that Assumption 1 holds. Then the transformed single-delayed 
sliding system (16) with matched parameter perturbations and external disturbances 
driven by combined controller (4) for which N=1 and restricted by sliding surface s(t)=0 
is robustly globally asymptotically delay-dependent stable with respect to the state 
variables, if the following LMI  conditions and parameter requirements are satisfied: 
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 0 0 1 1; ;k kα α= =  (46) 

 ofδ ≥  (47) 

Proof: The corollary follows from the proof of the Theorem 3 letting N=1. 

5.2 Existence conditions 
The final step of the control design is the derivation of the sliding mode existence conditions 
or the reaching conditions for the perturbed time-delay system states to the sliding manifold 
in finite time. These results are summarized in the following theorem. 

Theorem 4: Suppose that Assumption 1 holds. Then the perturbed multivariable time-
delay system (1) states with matched parameter uncertainties and external disturbances 
driven by controller (4) converge to the siding surface s(t)=0 in finite time, if the 
following conditions are satisfied: 

 0 0 1 1; ;..., ;N Nk g k kα α α= + = =  (48) 

               ofδ ≥  (49) 

Proof: Let us choose a modified Lyapunov function candidate as: 
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The time-derivative of (50) along the state trajectories of time-delay system (1), (4) can be 
calculated as follows: 
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Since (48), (49) hold, then (51) reduces to: 
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where    

 0 0fη δ= − ≥  (53) 

Hence we can evaluate that 

 1
min

2( ) ( )
( )

V t V t
CB

η
λ −≤ −  (54) 

The last inequality (54) is known to prove the finite-time convergence of system (1),(4) 
towards the sliding surface s(t)=0 (Utkin, 1977), (Perruquetti & Barbot, 2002). Therefore, 
Theorem 4 is proved.  

5.3. Numerical examples 
In order to demonstrate the usefulness of the proposed control design techniques let us 
consider the following examples. 

Example 4: Consider a time-delay system (1),(4) with parameters taken from (Li & De 
Carlo, 2003): 

0 1
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2 0 1 1 0 0 0
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1 0 1 0.2 4 5 1
0.2sin( ) , 0.2 cos( ) , 0.3sin( )
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⎢ ⎥ ⎢ ⎥ ⎢ ⎥= = − =⎢ ⎥ ⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥ ⎢ ⎥− −⎣ ⎦ ⎣ ⎦ ⎣ ⎦
= = =

 

The LMI delay-dependent stability and sliding mode existence conditions are computed by 
MATLAB programming (see Appendix 4) where LMI Control Toolbox is used. The 
computational results are following: 

Geq = [ ]   1.2573    2.5652    1.0000  
 

A0hat = 
   2.0000         0        1.0000
   1.7500    0.2500    0.8000
  -7.0038   -0.6413   -3.3095

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

; A1hat = 
   -1.0000         0         0
  -0.1000    0.2500    0.2000
   1.5139   -0.6413   -0.5130

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

 

 

eigA0hat = 
 -0.5298 + 0.5383i
 -0.5298 - 0.5383i
   0.0000   

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

; eigA1hat = [ ]  -0.2630    -0.0000    -1.0000  

 

G = [ ]3.3240   10.7583    3.2405 ;    Geq = [ ]1.2573   2.5652   1.0000  
 

A0til = 
    2.0000         0    1.0000
   1.7500    0.2500    0.8000
 -10.3278  -11.3996   -6.5500

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

; eigA0til = 
  -2.7000          
 -0.8000 + 0.5000i
 -0.8000 - 0.5000i

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

 

 

P =  1.0e+008 *
   1.1943   -1.1651    0.1562
  -1.1651    4.1745    0.3597
   0.1562    0.3597    0.1248

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

; R1 =  1.0e+008 *
   1.9320    0.2397    0.8740
   0.2397    1.0386    0.2831
   0.8740    0.2831    0.4341

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦
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S1 =  1.0e+008 *
   0.8783    0.1869    0.2951
   0.1869    1.0708    0.2699
   0.2951    0.2699    0.1587

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

 ; T1 =  1.0e+007 *
   2.3624   -0.7303    0.7264
  -0.7303    7.5758    1.1589
   0.7264    1.1589    0.4838

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

 

 

lhs =  1.0e+008 * 
 

-1.1632    0.4424   -0.1828    0.1743   -0.1030    0.1181   -0.4064
 0.4424   -1.6209   -0.1855    0.5480    0.2138    0.2098    0.3889
-0.1828   -0.1855   -0.0903    0.0445    0.0026    0.0215   -0.0142
 0.1743    0.5480    0.0445   -1.9320   -0.2397   -0.8740         0
-0.1030    0.2138    0.0026   -0.2397   -1.0386   -0.2831         0
 0.1181    0.2098    0.0215   -0.8740   -0.2831   -0.4341         0
-0.4064    0.3889   -0.0142         0          0             0         -0.8783
-0.1030    0.2138    0.0026         0          0             0         -0.1869
-0.0824    0.1711    0.0021         0          0             0         -0.2951
      0           0            0               0           0             0                0
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-0.1030   -0.0824       0          0             0
 0.2138    0.1711     

0                0
      0           0            0               0           0             0                0

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

  0          0             0
 0.0026    0.0021       0          0             0
      0           0             0          0             0
      0           0             0          0             0
      0           0             0          0             0
-0.1869   -0.2951       0          0             0
-1.0708   -0.2699       0          0             0
-0.2699   -0.1587       0          0             0
      0         0       -0.2362    0.0730   -0.0726
      0         0        0.0730   -0.7576   -0.1159
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maxh1 = 1;    eigsLHS = 1.0e+008 *

  -2.8124
  -2.0728
  -1.0975
  -0.9561
  -0.8271
  -0.7829
  -0.5962
  -0.2593
  -0.0216
  -0.0034
  -0.0000
  -0.0000
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;   NormP = 4.5946e+008 

 

  G = [ ]3.3240   10.7583    3.2405 ; NormG =   11.7171 
 

 invBtPB =  8.0109e-008; BtP =  1.0e+007 * [ ]  1.5622    3.5970    1.2483  
 

  eigP = 1.0e+008 *
 0.0162
 0.8828
 4.5946

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

; eigR1 = 1.0e+008 *
 0.0070
 0.9811
 2.4167

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

 

 

  eigS1 = 1.0e+008 *
0.0159
0.7770
1.3149

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

; eigT1 = 1.0e+007 *
0.0000
2.5930
7.8290

⎡ ⎤
⎢ ⎥
⎢ ⎥
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where    

 0 0fη δ= − ≥  (53) 

Hence we can evaluate that 
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The last inequality (54) is known to prove the finite-time convergence of system (1),(4) 
towards the sliding surface s(t)=0 (Utkin, 1977), (Perruquetti & Barbot, 2002). Therefore, 
Theorem 4 is proved.  

5.3. Numerical examples 
In order to demonstrate the usefulness of the proposed control design techniques let us 
consider the following examples. 

Example 4: Consider a time-delay system (1),(4) with parameters taken from (Li & De 
Carlo, 2003): 
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The LMI delay-dependent stability and sliding mode existence conditions are computed by 
MATLAB programming (see Appendix 4) where LMI Control Toolbox is used. The 
computational results are following: 

Geq = [ ]   1.2573    2.5652    1.0000  
 

A0hat = 
   2.0000         0        1.0000
   1.7500    0.2500    0.8000
  -7.0038   -0.6413   -3.3095

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

; A1hat = 
   -1.0000         0         0
  -0.1000    0.2500    0.2000
   1.5139   -0.6413   -0.5130

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

 

 

eigA0hat = 
 -0.5298 + 0.5383i
 -0.5298 - 0.5383i
   0.0000   

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

; eigA1hat = [ ]  -0.2630    -0.0000    -1.0000  

 

G = [ ]3.3240   10.7583    3.2405 ;    Geq = [ ]1.2573   2.5652   1.0000  
 

A0til = 
    2.0000         0    1.0000
   1.7500    0.2500    0.8000
 -10.3278  -11.3996   -6.5500

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

; eigA0til = 
  -2.7000          
 -0.8000 + 0.5000i
 -0.8000 - 0.5000i

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

 

 

P =  1.0e+008 *
   1.1943   -1.1651    0.1562
  -1.1651    4.1745    0.3597
   0.1562    0.3597    0.1248

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

; R1 =  1.0e+008 *
   1.9320    0.2397    0.8740
   0.2397    1.0386    0.2831
   0.8740    0.2831    0.4341

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦
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S1 =  1.0e+008 *
   0.8783    0.1869    0.2951
   0.1869    1.0708    0.2699
   0.2951    0.2699    0.1587

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

 ; T1 =  1.0e+007 *
   2.3624   -0.7303    0.7264
  -0.7303    7.5758    1.1589
   0.7264    1.1589    0.4838

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

 

 

lhs =  1.0e+008 * 
 

-1.1632    0.4424   -0.1828    0.1743   -0.1030    0.1181   -0.4064
 0.4424   -1.6209   -0.1855    0.5480    0.2138    0.2098    0.3889
-0.1828   -0.1855   -0.0903    0.0445    0.0026    0.0215   -0.0142
 0.1743    0.5480    0.0445   -1.9320   -0.2397   -0.8740         0
-0.1030    0.2138    0.0026   -0.2397   -1.0386   -0.2831         0
 0.1181    0.2098    0.0215   -0.8740   -0.2831   -0.4341         0
-0.4064    0.3889   -0.0142         0          0             0         -0.8783
-0.1030    0.2138    0.0026         0          0             0         -0.1869
-0.0824    0.1711    0.0021         0          0             0         -0.2951
      0           0            0               0           0             0                0
      0           0            0               0           0             

-0.1030   -0.0824       0          0             0
 0.2138    0.1711     

0                0
      0           0            0               0           0             0                0

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

  0          0             0
 0.0026    0.0021       0          0             0
      0           0             0          0             0
      0           0             0          0             0
      0           0             0          0             0
-0.1869   -0.2951       0          0             0
-1.0708   -0.2699       0          0             0
-0.2699   -0.1587       0          0             0
      0         0       -0.2362    0.0730   -0.0726
      0         0        0.0730   -0.7576   -0.1159
      0         0       -0.0726   -0.1159   -0.0484

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

 

 

maxh1 = 1;    eigsLHS = 1.0e+008 *

  -2.8124
  -2.0728
  -1.0975
  -0.9561
  -0.8271
  -0.7829
  -0.5962
  -0.2593
  -0.0216
  -0.0034
  -0.0000
  -0.0000

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎣ ⎦

;   NormP = 4.5946e+008 

 

  G = [ ]3.3240   10.7583    3.2405 ; NormG =   11.7171 
 

 invBtPB =  8.0109e-008; BtP =  1.0e+007 * [ ]  1.5622    3.5970    1.2483  
 

  eigP = 1.0e+008 *
 0.0162
 0.8828
 4.5946

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

; eigR1 = 1.0e+008 *
 0.0070
 0.9811
 2.4167

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

 

 

  eigS1 = 1.0e+008 *
0.0159
0.7770
1.3149

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

; eigT1 = 1.0e+007 *
0.0000
2.5930
7.8290

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦
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k0= 11.9171; k1=0.2; δ ≥ 0.3; H<0 

Considered time-delay system is delay-dependently robustly asymptotically stable for all 
constant delays 1h ≤ . 

Example 5: Now, let us consider a networked control time-delay system (1), (4) with 
parameters taken from (Cao et al., 2007): 

 

0 1

0 0 1 1

4 0 1.5 0 2
, , ;

1 3 1 0.5 2
0.5sin( ) , 0.5cos( ) , 0.3sin( )

A A B

A t A A t A f tΔ Δ

− −⎡ ⎤ ⎡ ⎤ ⎡ ⎤
= = =⎢ ⎥ ⎢ ⎥ ⎢ ⎥− − − −⎣ ⎦ ⎣ ⎦ ⎣ ⎦
= = =

 

 

The LMI delay-dependent stability and sliding mode existence conditions are computed by 
MATLAB programming (see Appendix 5) where LMI Control Toolbox is used. The 
computational results are following: 
 

maxh1 =  2.0000; Geq = [ ]   0.4762    0.0238  

A0hat = 
-0.1429    0.1429
2.8571   -2.8571

⎡ ⎤
⎢ ⎥
⎣ ⎦

; A1hat =
-0.0238    0.0238
0.4762   -0.4762
⎡ ⎤
⎢ ⎥
⎣ ⎦

 

eigA0hat = 
-0.0000
-3.0000
⎡ ⎤
⎢ ⎥
⎣ ⎦

; eigA1hat =
-0.0000
-0.5000
⎡ ⎤
⎢ ⎥
⎣ ⎦

 

A0til =
-4.1429   -0.0571
-1.1429   -3.0571
⎡ ⎤
⎢ ⎥
⎣ ⎦

; eigA0til = 
-4.2000
-3.0000

⎡ ⎤
⎢ ⎥
⎣ ⎦

 

P = 1.0e+004 *
5.7534   -0.1805

-0.1805    0.4592
⎡ ⎤
⎢ ⎥
⎣ ⎦

; R1 = 1.0e+004 *
8.4457   -0.2800

-0.2800    0.6883
⎡ ⎤
⎢ ⎥
⎣ ⎦

 

S1 = 1.0e+004 *
7.7987    0.2729
0.2729    0.1307
⎡ ⎤
⎢ ⎥
⎣ ⎦

; T1 = 1.0e+004 *
6.7803    0.3390
0.3390    0.0170
⎡ ⎤
⎢ ⎥
⎣ ⎦

 

lhs = 1.0e+004 * 

-8.4351    1.2170   -0.6689    0.6689
 1.2170   -1.5779    0.6689   -0.6689
-0.6689    0.6689   -4.2228    0.1400
 0.6689   -0.6689    0.1400   -0.3442
-0.1115    0.1115         0         0
 0.1115   -0.1115         0         0
      0            0              0         0
      0            0              0        0     

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢⎣

  

-0.1115    0.1115         0         0
0.1115   -0.1115          0         0
    0             0               0         0
    0             0               0         0
-3.8994   -0.1364         0         0
-0.1364   -0.0653         0         0
   0           0          -6.7803   -0.3390
   0           0          -0.3390   -0.0170

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥⎦
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eigsLHS = 1.0e+004 *

  -8.8561
  -6.7973
  -4.1971
  -3.9040
  -1.4904
  -0.0971
  -0.0000
  -0.0000

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

;    NormP = 5.7595e+004;    G = [ ]2.0000    0.1000  

NormG = 2.0025;  invBtPB = 4.2724e-006;  BtP = 1.0e+005 * [ ]1.1146  0.0557  

eigsP = 1.0e+004 *
0.4530
5.7595

⎡ ⎤
⎢ ⎥
⎣ ⎦

; eigsR1 = 1.0e+004 *
0.6782
8.4558

⎡ ⎤
⎢ ⎥
⎣ ⎦

 

eigsS1 = 1.0e+004 *
0.1210
7.8084

⎡ ⎤
⎢ ⎥
⎣ ⎦

  ;  eigsT1 = 1.0e+004 *
0.0000
6.7973

⎡ ⎤
⎢ ⎥
⎣ ⎦

 

k0= 2.5025;   k1=0.5; δ ≥ 0.3;   H< 0 

The networked control time-delay system is robustly asymptotically delay-dependent stable 
for all constant time-delays 2.0000h ≤ . 
Thus, we have designed all the parameters of the combined sliding mode controller. 
Numerical examples show the usefulness of the proposed design approach. 

6. Conclusion 
The problem of the sliding mode control design for matched uncertain multi-input systems 
with several fixed state delays by using of LMI approach has been considered. A new 
combined sliding mode controller has been proposed and designed for the stabilization of 
uncertain time-delay systems with matched parameter perturbations and external 
disturbances. Delay-independent and delay-dependent global stability and   sliding mode 
existence conditions have been derived by using Lyapunov-Krasovskii functional method 
and formulated in terms of linear matrix inequality techniques. The allowable upper bounds 
on the time-delay are determined from the LMI stability conditions. These bounds are 
independent in different from existing ones of the parameter uncertainties and external 
disturbances. 
Five numerical examples and simulation results with aircraft control application have 
illustrated the usefulness of the proposed design approach. 
The obtained results of this work are presented in (Jafarov, 2008), (Jafarov, 2009). 

7. Appendices 
A1 
clear; 
clc; 
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k0= 11.9171; k1=0.2; δ ≥ 0.3; H<0 

Considered time-delay system is delay-dependently robustly asymptotically stable for all 
constant delays 1h ≤ . 

Example 5: Now, let us consider a networked control time-delay system (1), (4) with 
parameters taken from (Cao et al., 2007): 

 

0 1

0 0 1 1

4 0 1.5 0 2
, , ;

1 3 1 0.5 2
0.5sin( ) , 0.5cos( ) , 0.3sin( )

A A B

A t A A t A f tΔ Δ

− −⎡ ⎤ ⎡ ⎤ ⎡ ⎤
= = =⎢ ⎥ ⎢ ⎥ ⎢ ⎥− − − −⎣ ⎦ ⎣ ⎦ ⎣ ⎦
= = =

 

 

The LMI delay-dependent stability and sliding mode existence conditions are computed by 
MATLAB programming (see Appendix 5) where LMI Control Toolbox is used. The 
computational results are following: 
 

maxh1 =  2.0000; Geq = [ ]   0.4762    0.0238  

A0hat = 
-0.1429    0.1429
2.8571   -2.8571

⎡ ⎤
⎢ ⎥
⎣ ⎦
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⎡ ⎤
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⎡ ⎤
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⎡ ⎤
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⎣ ⎦
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⎢ ⎥
⎣ ⎦
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⎡ ⎤
⎢ ⎥
⎣ ⎦
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⎡ ⎤
⎢ ⎥
⎣ ⎦

 

lhs = 1.0e+004 * 

-8.4351    1.2170   -0.6689    0.6689
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      0            0              0         0
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⎡
⎢
⎢
⎢
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⎢
⎢
⎢
⎢
⎢
⎢
⎢⎣

  

-0.1115    0.1115         0         0
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    0             0               0         0
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⎥
⎥
⎥
⎥
⎥
⎥
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eigsLHS = 1.0e+004 *
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  -0.0971
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⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

;    NormP = 5.7595e+004;    G = [ ]2.0000    0.1000  

NormG = 2.0025;  invBtPB = 4.2724e-006;  BtP = 1.0e+005 * [ ]1.1146  0.0557  
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0.4530
5.7595

⎡ ⎤
⎢ ⎥
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0.6782
8.4558

⎡ ⎤
⎢ ⎥
⎣ ⎦
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⎣ ⎦
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⎣ ⎦

 

k0= 2.5025;   k1=0.5; δ ≥ 0.3;   H< 0 

The networked control time-delay system is robustly asymptotically delay-dependent stable 
for all constant time-delays 2.0000h ≤ . 
Thus, we have designed all the parameters of the combined sliding mode controller. 
Numerical examples show the usefulness of the proposed design approach. 

6. Conclusion 
The problem of the sliding mode control design for matched uncertain multi-input systems 
with several fixed state delays by using of LMI approach has been considered. A new 
combined sliding mode controller has been proposed and designed for the stabilization of 
uncertain time-delay systems with matched parameter perturbations and external 
disturbances. Delay-independent and delay-dependent global stability and   sliding mode 
existence conditions have been derived by using Lyapunov-Krasovskii functional method 
and formulated in terms of linear matrix inequality techniques. The allowable upper bounds 
on the time-delay are determined from the LMI stability conditions. These bounds are 
independent in different from existing ones of the parameter uncertainties and external 
disturbances. 
Five numerical examples and simulation results with aircraft control application have 
illustrated the usefulness of the proposed design approach. 
The obtained results of this work are presented in (Jafarov, 2008), (Jafarov, 2009). 
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A0=[-4   0; -1  -3]; 
A1=[-1.5 0; -1  -0.5]; 
B =[ 2;  2]; 
setlmis([]) 
P =lmivar(1,[2 1]); 
R1=lmivar(1,[2 1]); 
Geq=inv(B'*P*B)*B'*P 
A0hat=A0-B*G*A0 
A1hat=A1-B*G*A1 
G= place(A0hat,B,[-4.5 -3]) 
A0til=A0hat-B*G1 
eigA0til=eig(A0til) 
eigA0hat=eig(A0hat) 
eigA1hat=eig(A1hat) 
ii = 1;    
lmiterm([-1 1 1 P],ii,ii) 
lmiterm([-2 1 1 R1],ii,ii) 
lmiterm([4 1 1 P],1,A0til','s') 
lmiterm([4 1 1 R1],ii,ii) 
lmiterm([4 2 2 R1],-ii,ii) 
lmiterm([4 1 2 P],1,A1hat) 
LMISYS=getlmis; 
[copt,xopt]=feasp(LMISYS); 
P=dec2mat(LMISYS,xopt,P); 
R1=dec2mat(LMISYS,xopt,R1); 
evlmi=evallmi(LMISYS,xopt); 
[lhs,rhs]=showlmi(evlmi,4); 
lhs 
P 
eigP=eig(P) 
R1 
eigR1=eig(R1) 
eigsLHS=eig(lhs) 
BTP=B'*P 
BTPB=B'*P*B 
invBTPB=inv(B'*P*B) 
% recalculate 
Geq=inv(B'*P*B)*B'*P 
A0hat=A0-B*G*A0 
A1hat=A1-B*G*A1 
G= place(A0hat,B,[-4.5 -3]) 
A0til=A0hat-B*G1 
eigA0til=eig(A0til) 
eigA0hat=eig(A0hat) 
eigA1hat=eig(A1hat) 
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ii = 1;    
setlmis([]) 
P =lmivar(1,[2 1]); 
R1=lmivar(1,[2 1]); 
R2=lmivar(1,[2 1]); 
lmiterm([-1 1 1 P],ii,ii) 
lmiterm([-2 1 1 R1],ii,ii) 
lmiterm([4 1 1 P],1,A0til','s') 
lmiterm([4 1 1 R1],ii,ii) 
lmiterm([4 2 2 R1],-ii,ii) 
lmiterm([4 1 2 P],1,A1hat) 
LMISYS=getlmis; 
[copt,xopt]=feasp(LMISYS); 
P=dec2mat(LMISYS,xopt,P); 
R1=dec2mat(LMISYS,xopt,R1); 
evlmi=evallmi(LMISYS,xopt); 
[lhs,rhs]=showlmi(evlmi,4); 
lhs 
P 
eigP=eig(P) 
R1 
eigR1=eig(R1) 
eigsLHS=eig(lhs) 
BTP=B'*P 
BTPB=B'*P*B 
invBTPB=inv(B'*P*B) 
normG1 = norm(G1) 

A2 
clear; 
clc; 
A0=[-1 0.7; 0.3 1]; 
A1=[-0.1 0.1; 0 0.2]; 
A2=[0.2 0; 0 0.1]; 
B=[1;  1] 
setlmis([]) 
P =lmivar(1,[2 1]); 
R1=lmivar(1,[2 1]); 
R2=lmivar(1,[2 1]); 
Geq=inv(B'*P*B)*B'*P 
A0hat=A0-B*G*A0 
A1hat=A1-B*G*A1 
A2hat=A2-B*G*A2 
G= place(A0hat,B,[-4.2-.6i -4.2+.6i]) 
A0til=A0hat-B*G1 
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lhs 
P 
eigP=eig(P) 
R1 
eigR1=eig(R1) 
eigsLHS=eig(lhs) 
BTP=B'*P 
BTPB=B'*P*B 
invBTPB=inv(B'*P*B) 
% recalculate 
Geq=inv(B'*P*B)*B'*P 
A0hat=A0-B*G*A0 
A1hat=A1-B*G*A1 
G= place(A0hat,B,[-4.5 -3]) 
A0til=A0hat-B*G1 
eigA0til=eig(A0til) 
eigA0hat=eig(A0hat) 
eigA1hat=eig(A1hat) 
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ii = 1;    
setlmis([]) 
P =lmivar(1,[2 1]); 
R1=lmivar(1,[2 1]); 
R2=lmivar(1,[2 1]); 
lmiterm([-1 1 1 P],ii,ii) 
lmiterm([-2 1 1 R1],ii,ii) 
lmiterm([4 1 1 P],1,A0til','s') 
lmiterm([4 1 1 R1],ii,ii) 
lmiterm([4 2 2 R1],-ii,ii) 
lmiterm([4 1 2 P],1,A1hat) 
LMISYS=getlmis; 
[copt,xopt]=feasp(LMISYS); 
P=dec2mat(LMISYS,xopt,P); 
R1=dec2mat(LMISYS,xopt,R1); 
evlmi=evallmi(LMISYS,xopt); 
[lhs,rhs]=showlmi(evlmi,4); 
lhs 
P 
eigP=eig(P) 
R1 
eigR1=eig(R1) 
eigsLHS=eig(lhs) 
BTP=B'*P 
BTPB=B'*P*B 
invBTPB=inv(B'*P*B) 
normG1 = norm(G1) 

A2 
clear; 
clc; 
A0=[-1 0.7; 0.3 1]; 
A1=[-0.1 0.1; 0 0.2]; 
A2=[0.2 0; 0 0.1]; 
B=[1;  1] 
setlmis([]) 
P =lmivar(1,[2 1]); 
R1=lmivar(1,[2 1]); 
R2=lmivar(1,[2 1]); 
Geq=inv(B'*P*B)*B'*P 
A0hat=A0-B*G*A0 
A1hat=A1-B*G*A1 
A2hat=A2-B*G*A2 
G= place(A0hat,B,[-4.2-.6i -4.2+.6i]) 
A0til=A0hat-B*G1 
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eigA0til=eig(A0til) 
eigA0hat=eig(A0hat) 
eigA1hat=eig(A1hat) 
eigA2hat=eig(A2hat) 
ii = 1;    
lmiterm([-1 1 1 P],ii,ii) 
lmiterm([-2 1 1 R1],ii,ii) 
lmiterm([-3 1 1 R2],ii,ii) 
lmiterm([4 1 1 P],1,A0til','s') 
lmiterm([4 1 1 R1],ii,ii) 
lmiterm([4 1 1 R2],ii,ii) 
lmiterm([4 2 2 R1],-ii,ii) 
lmiterm([4 1 2 P],1,A1hat) 
lmiterm([4 1 3 P],1,A2hat) 
lmiterm([4 3 3 R2],-ii,ii) 
LMISYS=getlmis; 
[copt,xopt]=feasp(LMISYS); 
P=dec2mat(LMISYS,xopt,P); 
R1=dec2mat(LMISYS,xopt,R1); 
R2=dec2mat(LMISYS,xopt,R2); 
evlmi=evallmi(LMISYS,xopt); 
[lhs,rhs]=showlmi(evlmi,4); 
lhs 
eigsLHS=eig(lhs) 
P 
eigP=eig(P) 
R1 
R2 
eigR1=eig(R1) 
eigR2=eig(R2) 
BTP=B'*P 
BTPB=B'*P*B 
invBTPB=inv(B'*P*B) 
% recalculate 
Geq=inv(B'*P*B)*B'*P 
A0hat=A0-B*G*A0 
A1hat=A1-B*G*A1 
A2hat=A2-B*G*A2 
G= place(A0hat,B,[-4.2-.6i -4.2+.6i]) 
A0til=A0hat-B*G1 
eigA0til=eig(A0til) 
eigA0hat=eig(A0hat) 
eigA1hat=eig(A1hat) 
eigA2hat=eig(A2hat) 
ii = 1;    
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setlmis([]) 
P =lmivar(1,[2 1]); 
R1=lmivar(1,[2 1]); 
R2=lmivar(1,[2 1]); 
lmiterm([-1 1 1 P],ii,ii) 
lmiterm([-2 1 1 R1],ii,ii) 
lmiterm([-3 1 1 R2],ii,ii) 
lmiterm([4 1 1 P],1,A0til','s') 
lmiterm([4 1 1 R1],ii,ii) 
lmiterm([4 1 1 R2],ii,ii) 
lmiterm([4 2 2 R1],-ii,ii) 
lmiterm([4 1 2 P],1,A1hat) 
lmiterm([4 1 3 P],1,A2hat) 
lmiterm([4 3 3 R2],-ii,ii) 
LMISYS=getlmis; 
[copt,xopt]=feasp(LMISYS); 
P=dec2mat(LMISYS,xopt,P); 
R1=dec2mat(LMISYS,xopt,R1); 
R2=dec2mat(LMISYS,xopt,R2); 
evlmi=evallmi(LMISYS,xopt); 
[lhs,rhs]=showlmi(evlmi,4); 
lhs 
eigsLHS=eig(lhs) 
P 
eigP=eig(P) 
R1 
R2 
eigR1=eig(R1) 
eigR2=eig(R2) 
BTP=B'*P 
BTPB=B'*P*B 
invBTPB=inv(B'*P*B) 
normG1 = norm(G1) 

A3 
clear; 
clc; 
A0=[-0.228  2.148  -0.021 0;   -1     -0.0869  0     0.039;  0.335 -4.424  -1.184 0;      0      0       1     0]; 
A1=[ 0      0      -0.002 0;     0      0       0     0.004;     0.034 -0.442   0     0;     0      0       0     0]; 
B =[-1.169  0.065;     0.0223 0;     0.0547 2.120;     0      0]; 
setlmis([]) 
P =lmivar(1,[4 1]); 
R1=lmivar(1,[4 1]); 
G=inv(B'*P*B)*B'*P 
A0hat=A0-B*G*A0 



 Robust Control, Theory and Applications 

 

188 

eigA0til=eig(A0til) 
eigA0hat=eig(A0hat) 
eigA1hat=eig(A1hat) 
eigA2hat=eig(A2hat) 
ii = 1;    
lmiterm([-1 1 1 P],ii,ii) 
lmiterm([-2 1 1 R1],ii,ii) 
lmiterm([-3 1 1 R2],ii,ii) 
lmiterm([4 1 1 P],1,A0til','s') 
lmiterm([4 1 1 R1],ii,ii) 
lmiterm([4 1 1 R2],ii,ii) 
lmiterm([4 2 2 R1],-ii,ii) 
lmiterm([4 1 2 P],1,A1hat) 
lmiterm([4 1 3 P],1,A2hat) 
lmiterm([4 3 3 R2],-ii,ii) 
LMISYS=getlmis; 
[copt,xopt]=feasp(LMISYS); 
P=dec2mat(LMISYS,xopt,P); 
R1=dec2mat(LMISYS,xopt,R1); 
R2=dec2mat(LMISYS,xopt,R2); 
evlmi=evallmi(LMISYS,xopt); 
[lhs,rhs]=showlmi(evlmi,4); 
lhs 
eigsLHS=eig(lhs) 
P 
eigP=eig(P) 
R1 
R2 
eigR1=eig(R1) 
eigR2=eig(R2) 
BTP=B'*P 
BTPB=B'*P*B 
invBTPB=inv(B'*P*B) 
% recalculate 
Geq=inv(B'*P*B)*B'*P 
A0hat=A0-B*G*A0 
A1hat=A1-B*G*A1 
A2hat=A2-B*G*A2 
G= place(A0hat,B,[-4.2-.6i -4.2+.6i]) 
A0til=A0hat-B*G1 
eigA0til=eig(A0til) 
eigA0hat=eig(A0hat) 
eigA1hat=eig(A1hat) 
eigA2hat=eig(A2hat) 
ii = 1;    
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setlmis([]) 
P =lmivar(1,[2 1]); 
R1=lmivar(1,[2 1]); 
R2=lmivar(1,[2 1]); 
lmiterm([-1 1 1 P],ii,ii) 
lmiterm([-2 1 1 R1],ii,ii) 
lmiterm([-3 1 1 R2],ii,ii) 
lmiterm([4 1 1 P],1,A0til','s') 
lmiterm([4 1 1 R1],ii,ii) 
lmiterm([4 1 1 R2],ii,ii) 
lmiterm([4 2 2 R1],-ii,ii) 
lmiterm([4 1 2 P],1,A1hat) 
lmiterm([4 1 3 P],1,A2hat) 
lmiterm([4 3 3 R2],-ii,ii) 
LMISYS=getlmis; 
[copt,xopt]=feasp(LMISYS); 
P=dec2mat(LMISYS,xopt,P); 
R1=dec2mat(LMISYS,xopt,R1); 
R2=dec2mat(LMISYS,xopt,R2); 
evlmi=evallmi(LMISYS,xopt); 
[lhs,rhs]=showlmi(evlmi,4); 
lhs 
eigsLHS=eig(lhs) 
P 
eigP=eig(P) 
R1 
R2 
eigR1=eig(R1) 
eigR2=eig(R2) 
BTP=B'*P 
BTPB=B'*P*B 
invBTPB=inv(B'*P*B) 
normG1 = norm(G1) 

A3 
clear; 
clc; 
A0=[-0.228  2.148  -0.021 0;   -1     -0.0869  0     0.039;  0.335 -4.424  -1.184 0;      0      0       1     0]; 
A1=[ 0      0      -0.002 0;     0      0       0     0.004;     0.034 -0.442   0     0;     0      0       0     0]; 
B =[-1.169  0.065;     0.0223 0;     0.0547 2.120;     0      0]; 
setlmis([]) 
P =lmivar(1,[4 1]); 
R1=lmivar(1,[4 1]); 
G=inv(B'*P*B)*B'*P 
A0hat=A0-B*G*A0 
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A1hat=A1-B*G*A1 
G1= place(A0hat,B,[-.5+.082i -.5-.082i -.2 -.3]) 
A0til=A0hat-B*G1 
eigA0til=eig(A0til) 
eigA0hat=eig(A0hat) 
eigA1hat=eig(A1hat) 
%break 
ii = 1;    
lmiterm([-1 1 1 P],ii,ii) 
lmiterm([-2 1 1 R1],ii,ii) 
lmiterm([4 1 1 P],1,A0til','s') 
lmiterm([4 1 1 R1],ii,ii) 
lmiterm([4 2 2 R1],-ii,ii) 
lmiterm([4 1 2 P],1,A1hat) 
LMISYS=getlmis; 
[copt,xopt]=feasp(LMISYS); 
P=dec2mat(LMISYS,xopt,P); 
R1=dec2mat(LMISYS,xopt,R1); 
evlmi=evallmi(LMISYS,xopt); 
[lhs,rhs]=showlmi(evlmi,4); 
lhs 
P 
eigP=eig(P) 
R1 
eigR1=eig(R1) 
eigsLHS=eig(lhs) 
BTP=B'*P 
BTPB=B'*P*B 
invBTPB=inv(B'*P*B) 
gnorm=norm(G) 

A4 
clear; 
clc; 
A0=[2 0 1; 1.75 0.25 0.8; -1 0 1] 
A1=[-1 0 0; -0.1 0.25 0.2; -0.2 4 5] 
B =[0;0;1] 
%break 
h1=1.0; 
setlmis([]); 
P=lmivar(1,[3 1]); 
Geq=inv(B'*P*B)*B'*P 
A0hat=A0-B*Geq*A0 
A1hat=A1-B*Geq*A1 
eigA0hat=eig(A0hat) 
eigA1hat=eig(A1hat) 
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DesPol = [-2.7 -.8+.5i -.8-.5i]; 
G= place(A0hat,B,DesPol) 
A0til=A0hat-B*G 
eigA0til=eig(A0til) 
R1=lmivar(1,[3 1]); 
S1=lmivar(1,[3 1]); 
T1=lmivar(1,[3 1]); 
lmiterm([-1 1 1 P],1,1); 
lmiterm([-1 2 2 R1],1,1); 
lmiterm([-2 1 1 S1],1,1); 
lmiterm([-3 1 1 T1],1,1); 
lmiterm([4 1 1 P],(A0til+A1hat)',1,'s'); 
lmiterm([4 1 1 S1],h1,1); 
lmiterm([4 1 1 R1],h1,1); 
lmiterm([4 1 1 T1],1,1); 
lmiterm([4 1 2 P],-1,A1hat*A0hat); 
lmiterm([4 1 3 P],-1,A1hat*A1hat); 
lmiterm([4 2 2 R1],-1/h1,1); 
lmiterm([4 3 3 S1],-1/h1,1); 
lmiterm([4 4 4 T1],-1,1); 
LMISYS=getlmis; 
[copt,xopt]=feasp(LMISYS); 
P=dec2mat(LMISYS,xopt,P); 
R1=dec2mat(LMISYS,xopt,R1); 
S1=dec2mat(LMISYS,xopt,S1); 
T1=dec2mat(LMISYS,xopt,T1); 
evlmi=evallmi(LMISYS,xopt); 
[lhs,rhs]=showlmi(evlmi,4); 
lhs,h1,P,R1,S1,T1 
eigsLHS=eig(lhs) 
% repeat 
clc; 
Geq=inv(B'*P*B)*B'*P 
A0hat=A0-B*Geq*A0 
A1hat=A1-B*Geq*A1 
eigA0hat=eig(A0hat) 
eigA1hat=eig(A1hat) 
G= place(A0hat,B,DesPol) 
A0til=A0hat-B*G 
eigA0til=eig(A0til) 
setlmis([]); 
P=lmivar(1,[3 1]); 
R1=lmivar(1,[3 1]); 
S1=lmivar(1,[3 1]); 
T1=lmivar(1,[3 1]); 
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A1hat=A1-B*G*A1 
G1= place(A0hat,B,[-.5+.082i -.5-.082i -.2 -.3]) 
A0til=A0hat-B*G1 
eigA0til=eig(A0til) 
eigA0hat=eig(A0hat) 
eigA1hat=eig(A1hat) 
%break 
ii = 1;    
lmiterm([-1 1 1 P],ii,ii) 
lmiterm([-2 1 1 R1],ii,ii) 
lmiterm([4 1 1 P],1,A0til','s') 
lmiterm([4 1 1 R1],ii,ii) 
lmiterm([4 2 2 R1],-ii,ii) 
lmiterm([4 1 2 P],1,A1hat) 
LMISYS=getlmis; 
[copt,xopt]=feasp(LMISYS); 
P=dec2mat(LMISYS,xopt,P); 
R1=dec2mat(LMISYS,xopt,R1); 
evlmi=evallmi(LMISYS,xopt); 
[lhs,rhs]=showlmi(evlmi,4); 
lhs 
P 
eigP=eig(P) 
R1 
eigR1=eig(R1) 
eigsLHS=eig(lhs) 
BTP=B'*P 
BTPB=B'*P*B 
invBTPB=inv(B'*P*B) 
gnorm=norm(G) 

A4 
clear; 
clc; 
A0=[2 0 1; 1.75 0.25 0.8; -1 0 1] 
A1=[-1 0 0; -0.1 0.25 0.2; -0.2 4 5] 
B =[0;0;1] 
%break 
h1=1.0; 
setlmis([]); 
P=lmivar(1,[3 1]); 
Geq=inv(B'*P*B)*B'*P 
A0hat=A0-B*Geq*A0 
A1hat=A1-B*Geq*A1 
eigA0hat=eig(A0hat) 
eigA1hat=eig(A1hat) 

Robust Delay-Independent/Dependent Stabilization of  
Uncertain Time-Delay Systems by Variable Structure Control    

 

191 

DesPol = [-2.7 -.8+.5i -.8-.5i]; 
G= place(A0hat,B,DesPol) 
A0til=A0hat-B*G 
eigA0til=eig(A0til) 
R1=lmivar(1,[3 1]); 
S1=lmivar(1,[3 1]); 
T1=lmivar(1,[3 1]); 
lmiterm([-1 1 1 P],1,1); 
lmiterm([-1 2 2 R1],1,1); 
lmiterm([-2 1 1 S1],1,1); 
lmiterm([-3 1 1 T1],1,1); 
lmiterm([4 1 1 P],(A0til+A1hat)',1,'s'); 
lmiterm([4 1 1 S1],h1,1); 
lmiterm([4 1 1 R1],h1,1); 
lmiterm([4 1 1 T1],1,1); 
lmiterm([4 1 2 P],-1,A1hat*A0hat); 
lmiterm([4 1 3 P],-1,A1hat*A1hat); 
lmiterm([4 2 2 R1],-1/h1,1); 
lmiterm([4 3 3 S1],-1/h1,1); 
lmiterm([4 4 4 T1],-1,1); 
LMISYS=getlmis; 
[copt,xopt]=feasp(LMISYS); 
P=dec2mat(LMISYS,xopt,P); 
R1=dec2mat(LMISYS,xopt,R1); 
S1=dec2mat(LMISYS,xopt,S1); 
T1=dec2mat(LMISYS,xopt,T1); 
evlmi=evallmi(LMISYS,xopt); 
[lhs,rhs]=showlmi(evlmi,4); 
lhs,h1,P,R1,S1,T1 
eigsLHS=eig(lhs) 
% repeat 
clc; 
Geq=inv(B'*P*B)*B'*P 
A0hat=A0-B*Geq*A0 
A1hat=A1-B*Geq*A1 
eigA0hat=eig(A0hat) 
eigA1hat=eig(A1hat) 
G= place(A0hat,B,DesPol) 
A0til=A0hat-B*G 
eigA0til=eig(A0til) 
setlmis([]); 
P=lmivar(1,[3 1]); 
R1=lmivar(1,[3 1]); 
S1=lmivar(1,[3 1]); 
T1=lmivar(1,[3 1]); 
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lmiterm([-1 1 1 P],1,1); 
lmiterm([-1 2 2 R1],1,1); 
lmiterm([-2 1 1 S1],1,1); 
lmiterm([-3 1 1 T1],1,1); 
lmiterm([4 1 1 P],(A0til+A1hat)',1,'s'); 
lmiterm([4 1 1 S1],h1,1); 
lmiterm([4 1 1 R1],h1,1); 
lmiterm([4 1 1 T1],1,1); 
lmiterm([4 1 2 P],-1,A1hat*A0hat); 
lmiterm([4 1 3 P],-1,A1hat*A1hat); 
lmiterm([4 2 2 R1],-1/h1,1); 
lmiterm([4 3 3 S1],-1/h1,1); 
lmiterm([4 4 4 T1],-1,1); 
LMISYS=getlmis; 
[copt,xopt]=feasp(LMISYS); 
P=dec2mat(LMISYS,xopt,P); 
R1=dec2mat(LMISYS,xopt,R1); 
S1=dec2mat(LMISYS,xopt,S1); 
T1=dec2mat(LMISYS,xopt,T1); 
evlmi=evallmi(LMISYS,xopt); 
[lhs,rhs]=showlmi(evlmi,4); 
lhs,h1,P,R1,S1,T1 
eigLHS=eig(lhs) 
NormP=norm(P) 
G 
NormG = norm(G) 
invBtPB=inv(B'*P*B) 
BtP=B'*P 
eigP=eig(P) 
eigR1=eig(R1) 
eigS1=eig(S1) 
eigT1=eig(T1) 

A5 
clear; clc; 
A0=[-4   0; -1  -3]; 
A1=[-1.5 0; -1  -0.5]; 
B =[ 2;  2]; 
h1=2.0000; 
setlmis([]); 
P=lmivar(1,[2 1]); 
Geq=inv(B'*P*B)*B'*P 
A0hat=A0-B*Geq*A0 
A1hat=A1-B*Geq*A1 
eigA0hat=eig(A0hat) 
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eigA1hat=eig(A1hat) 
% DesPol = [-.8+.5i -.8-.5i]; G= place(A0hat,B,DesPol); 
avec = [2 0.1]; 
G = avec; 
A0til=A0hat-B*G1 
eigA0til=eig(A0til) 
R1=lmivar(1,[2 1]); 
S1=lmivar(1,[2 1]); 
T1=lmivar(1,[2 1]); 
lmiterm([-1 1 1 P],1,1); 
lmiterm([-1 2 2 R1],1,1); 
lmiterm([-2 1 1 S1],1,1); 
lmiterm([-3 1 1 T1],1,1); 
lmiterm([4 1 1 P],(A0til+A1hat)',1,'s'); 
lmiterm([4 1 1 S1],h1,1); 
lmiterm([4 1 1 R1],h1,1); 
lmiterm([4 1 1 T1],1,1); 
lmiterm([4 1 2 P],-1,A1hat*A0hat); 
lmiterm([4 1 3 P],-1,A1hat*A1hat); 
lmiterm([4 2 2 R1],-1/h1,1); 
lmiterm([4 3 3 S1],-1/h1,1); 
lmiterm([4 4 4 T1],-1,1); 
LMISYS=getlmis; 
[copt,xopt]=feasp(LMISYS); 
P=dec2mat(LMISYS,xopt,P); 
R1=dec2mat(LMISYS,xopt,R1); 
S1=dec2mat(LMISYS,xopt,S1); 
T1=dec2mat(LMISYS,xopt,T1); 
evlmi=evallmi(LMISYS,xopt); 
[lhs,rhs]=showlmi(evlmi,4); 
lhs,h1,P,R1,S1,T1 
eigsLHS=eig(lhs) 
% repeat 
Geq=inv(B'*P*B)*B'*P 
A0hat=A0-B*Geq*A0 
A1hat=A1-B*Geq*A1 
eigA0hat=eig(A0hat) 
eigA1hat=eig(A1hat) 
G = avec; 
A0til=A0hat-B*G 
eigA0til=eig(A0til) 
setlmis([]); 
P=lmivar(1,[2 1]); 
R1=lmivar(1,[2 1]); 
S1=lmivar(1,[2 1]); 
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lmiterm([-1 1 1 P],1,1); 
lmiterm([-1 2 2 R1],1,1); 
lmiterm([-2 1 1 S1],1,1); 
lmiterm([-3 1 1 T1],1,1); 
lmiterm([4 1 1 P],(A0til+A1hat)',1,'s'); 
lmiterm([4 1 1 S1],h1,1); 
lmiterm([4 1 1 R1],h1,1); 
lmiterm([4 1 1 T1],1,1); 
lmiterm([4 1 2 P],-1,A1hat*A0hat); 
lmiterm([4 1 3 P],-1,A1hat*A1hat); 
lmiterm([4 2 2 R1],-1/h1,1); 
lmiterm([4 3 3 S1],-1/h1,1); 
lmiterm([4 4 4 T1],-1,1); 
LMISYS=getlmis; 
[copt,xopt]=feasp(LMISYS); 
P=dec2mat(LMISYS,xopt,P); 
R1=dec2mat(LMISYS,xopt,R1); 
S1=dec2mat(LMISYS,xopt,S1); 
T1=dec2mat(LMISYS,xopt,T1); 
evlmi=evallmi(LMISYS,xopt); 
[lhs,rhs]=showlmi(evlmi,4); 
lhs,h1,P,R1,S1,T1 
eigLHS=eig(lhs) 
NormP=norm(P) 
G 
NormG = norm(G) 
invBtPB=inv(B'*P*B) 
BtP=B'*P 
eigP=eig(P) 
eigR1=eig(R1) 
eigS1=eig(S1) 
eigT1=eig(T1) 

A5 
clear; clc; 
A0=[-4   0; -1  -3]; 
A1=[-1.5 0; -1  -0.5]; 
B =[ 2;  2]; 
h1=2.0000; 
setlmis([]); 
P=lmivar(1,[2 1]); 
Geq=inv(B'*P*B)*B'*P 
A0hat=A0-B*Geq*A0 
A1hat=A1-B*Geq*A1 
eigA0hat=eig(A0hat) 
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eigA1hat=eig(A1hat) 
% DesPol = [-.8+.5i -.8-.5i]; G= place(A0hat,B,DesPol); 
avec = [2 0.1]; 
G = avec; 
A0til=A0hat-B*G1 
eigA0til=eig(A0til) 
R1=lmivar(1,[2 1]); 
S1=lmivar(1,[2 1]); 
T1=lmivar(1,[2 1]); 
lmiterm([-1 1 1 P],1,1); 
lmiterm([-1 2 2 R1],1,1); 
lmiterm([-2 1 1 S1],1,1); 
lmiterm([-3 1 1 T1],1,1); 
lmiterm([4 1 1 P],(A0til+A1hat)',1,'s'); 
lmiterm([4 1 1 S1],h1,1); 
lmiterm([4 1 1 R1],h1,1); 
lmiterm([4 1 1 T1],1,1); 
lmiterm([4 1 2 P],-1,A1hat*A0hat); 
lmiterm([4 1 3 P],-1,A1hat*A1hat); 
lmiterm([4 2 2 R1],-1/h1,1); 
lmiterm([4 3 3 S1],-1/h1,1); 
lmiterm([4 4 4 T1],-1,1); 
LMISYS=getlmis; 
[copt,xopt]=feasp(LMISYS); 
P=dec2mat(LMISYS,xopt,P); 
R1=dec2mat(LMISYS,xopt,R1); 
S1=dec2mat(LMISYS,xopt,S1); 
T1=dec2mat(LMISYS,xopt,T1); 
evlmi=evallmi(LMISYS,xopt); 
[lhs,rhs]=showlmi(evlmi,4); 
lhs,h1,P,R1,S1,T1 
eigsLHS=eig(lhs) 
% repeat 
Geq=inv(B'*P*B)*B'*P 
A0hat=A0-B*Geq*A0 
A1hat=A1-B*Geq*A1 
eigA0hat=eig(A0hat) 
eigA1hat=eig(A1hat) 
G = avec; 
A0til=A0hat-B*G 
eigA0til=eig(A0til) 
setlmis([]); 
P=lmivar(1,[2 1]); 
R1=lmivar(1,[2 1]); 
S1=lmivar(1,[2 1]); 



 Robust Control, Theory and Applications 

 

194 

T1=lmivar(1,[2 1]); 
lmiterm([-1 1 1 P],1,1); 
lmiterm([-1 2 2 R1],1,1); 
lmiterm([-2 1 1 S1],1,1); 
lmiterm([-3 1 1 T1],1,1); 
lmiterm([4 1 1 P],(A0til+A1hat)',1,'s'); 
lmiterm([4 1 1 S1],h1,1); 
lmiterm([4 1 1 R1],h1,1); 
lmiterm([4 1 1 T1],1,1); 
lmiterm([4 1 2 P],-1,A1hat*A0hat); 
lmiterm([4 1 3 P],-1,A1hat*A1hat); 
lmiterm([4 2 2 R1],-1/h1,1); 
lmiterm([4 3 3 S1],-1/h1,1); 
lmiterm([4 4 4 T1],-1,1); 
LMISYS=getlmis; 
[copt,xopt]=feasp(LMISYS); 
P=dec2mat(LMISYS,xopt,P); 
R1=dec2mat(LMISYS,xopt,R1); 
S1=dec2mat(LMISYS,xopt,S1); 
T1=dec2mat(LMISYS,xopt,T1); 
evlmi=evallmi(LMISYS,xopt); 
[lhs,rhs]=showlmi(evlmi,4); 
lhs,h1,P,R1,S1,T1 
eigsLHS=eig(lhs) 
NormP=norm(P) 
G 
NormG = norm(G) 
invBtPB=inv(B'*P*B) 
BtP=B'*P 
eigsP=eig(P) 
eigsR1=eig(R1) 
eigsS1=eig(S1) 
eigsT1=eig(T1) 
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1. Introduction 
In this chapter, a novel control method using a reinforcement learning (RL) (Sutton and 
Barto (1998)) with concept of sliding mode control (SMC) (Slotine and Li (1991)) for 
unknown dynamical system is considered. 
 In designing the control system for unknown dynamical system, there are three approaches. 
The first one is the conventional model-based controller design, such as optimal control and 
robust control, each of which is mathematically elegant, however both controller design 
procedures present a major disadvantage posed by the requirement of the knowledge of the 
system dynamics to identify and model it. In such cases, it is usually difficult to model the 
unknown system, especially, the nonlinear dynamical complex system, to make matters 
worse, almost all real systems are such cases.  
The second one is the way to use only the soft-computing, such as neural networks, fuzzy 
systems, evolutionary systems with learning and so on. However, in these cases it is well 
known that modeling and identification procedures for the dynamics of the given uncertain 
nonlinear system and controller design procedures often become time consuming iterative 
approaches during parameter identification and model validation at each step of the 
iteration, and in addition, the control system designed through such troubles does not 
guarantee the stability of the system.   
The last one is the way to use the method combining the above the soft-computing method 
with the model-based control theory, such as optimal control, sliding mode control (SMC), 
H∞  control and so on. The control systems designed through such above control theories 
have some advantages, that is, the good nature which its adopted theory has originally, 
robustness, less required iterative learning number which is useful for fragile system 
controller design not allowed a lot of iterative procedure. This chapter concerns with the last 
one, that is, RL system, a kind of soft-computing method, supported with robust control 
theory, especially SMC for uncertain nonlinear systems.  
RL has been extensively developed in the computational intelligence and machine learning 
societies, generally to find optimal control policies for Markovian systems with discrete state 
and action space. RL-based solutions to the continuous-time optimal control problem have 
been given in Doya (Doya (2000). The main advantage of using RL for solving optimal 
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robustness, less required iterative learning number which is useful for fragile system 
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one, that is, RL system, a kind of soft-computing method, supported with robust control 
theory, especially SMC for uncertain nonlinear systems.  
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societies, generally to find optimal control policies for Markovian systems with discrete state 
and action space. RL-based solutions to the continuous-time optimal control problem have 
been given in Doya (Doya (2000). The main advantage of using RL for solving optimal 
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control problems comes from the fact that a number of RL algorithms, e.g. Q-learning 
(Watkins et al. (1992)) and actor-critic learning (Wang et al. (2002)) and Obayashi et al. 
(2008)), do not require knowledge or identification/learning of the system dynamics. On the 
other hand, remarkable characteristics of SMC method are simplicity of its design method, 
good robustness and stability for deviation of control conditions.  
Recently, a few researches as to robust reinforcement learning have been found, e.g., 
Morimoto et al. (2005) and Wang et al. (2002) which are designed to be robust for external 
disturbances by introducing the idea of H∞ control theory (Zhau et al. (1996)), and our 
previous work (Obayashi et al. (2009)) is for deviations of the system parameters by 
introducing the idea of sliding mode control commonly used in model-based control. 
However, applying reinforcement learning to a real system has a serious problem, that is, 
many trials are required for learning to design the control system.   
Firstly we introduce an actor-critic method, a kind of RL, to unite with SMC. Through the 
computer simulation for an inverted pendulum control without use of the inverted pendulum 
dynamics, it is clarified the combined method mentioned above enables to learn in less trial of 
learning than the only actor-critic method and has good robustness (Obayashi et al. (2009a)). 
In applying the controller design, another problem exists, that is, incomplete observation 
problem of the state of the system. To solve this problem, some methods have been 
suggested, that is, the way to use observer theory (Luenberger (1984)), state variable filter 
theory (Hang (1976), Obayashi et al. 2009b) and both of the theories (Kung and Chen (2005)).  
Secondly we introduce a robust reinforcement learning system using the concept of SMC, 
which uses neural network-type structure in an actor/critic configuration, refer to Fig. 1, to 
the case of the system state partly available by considering the variable state filter (Hang 
(1976)).  
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Fig. 1. The construction of the actor-critic system. (symbols in this figure are reffered to 
section 2) 
The rest of this chapter is organized as follows. In Section 2, the conventional actor-critic 
reinforcement learing system is described. In Section 3, the controlled system, variable filter 
and sliding mode control are shortly explained. The proposed actor-critic reinforcement 
learning system with state variable filter using sliding mode control is described in Section 
4. Comparison between the proposed system and the conventional system through 
simulation experiments is executed in Section 5. Finally, the conclusion is given in Section 6. 
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2. Actor-critic reinforcement learning system   
Reinforcement learning (RL, Sutton and Barto (1998)), as experienced learning through 
trial and error, which is a learning algorithm based on calculation of reward and penalty 
given through mutual action between the agent and environment, and which is 
commonly executed in living things. The actor-critic method is one of representative 
reinforcement learning methods. We adopted it because of its flexibility to deal with both 
continuous and discrete state-action space environment. The structure of the actor-critic 
reinforcement learning system is shown in Fig. 1. The actor plays a role of a controller and 
the critic plays role of an evaluator in control field. Noise plays a part of roles to search 
the optimal action. 

2.1 Structure and learning of critic 
2.1.1 Structure of critic 
The function of the critic is calculation of ( )P t : the prediction value of sum of the discounted 
rewards r(t) that will be gotten over the future. Of course, if the value of ( )P t  becomes 
bigger, the performance of the system becomes better. These are shortly explained as 
follows. 
The sum of the discounted rewards that will be gotten over the future is defined as ( )V t . 

       ( ) ( )
0

n

l
V t r t l

∞

=

≡ ⋅ +∑γ , (1) 

where γ ( 0 1≤ <γ ) is a constant parameter called discount rate. 
Equation (1) is rewritten as  

        ( ) ( ) ( )1V t r t V t= + +γ .  (2)  

Here the prediction value of ( )V t  is defined as ( )P t . The prediction error ( )r̂ t  is expressed 
as follows, 

 ( ) ( ) ( ) ( )ˆ ˆ 1tr t r r t P t P tγ= = + + − . (3) 

The parameters of the critic are adjusted to reduce this prediction error ( )r̂ t . In our case the 
prediction value ( )P t  is calculated as an output of a radial basis function neural network 
(RBFN) such as,  

 ( )
1

( ) ,
J

c c
j j

j
P t y t

=
= ∑ω   (4) 

 2 2

1
( ) exp ( ( ) ) /( )

n
c c c
j i ij ij

i
y t x t c σ

=

⎡ ⎤
= − −⎢ ⎥

⎣ ⎦
∑ . (5) 

Here, ( ) : thc
jy t j node’s output of the middle layer of the critic at time t , c

jω : the weight 
of thj output of the middle layer of the critic, :ix i th state of the environment at time t, 

c
ijc and c

ijσ : center and dispersion in the i th input of j th basis function, respectively, J : the 
number of nodes in the middle layer of the critic, n : number of the states of the system (see 
Fig. 2). 
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Fig. 1. The construction of the actor-critic system. (symbols in this figure are reffered to 
section 2) 
The rest of this chapter is organized as follows. In Section 2, the conventional actor-critic 
reinforcement learing system is described. In Section 3, the controlled system, variable filter 
and sliding mode control are shortly explained. The proposed actor-critic reinforcement 
learning system with state variable filter using sliding mode control is described in Section 
4. Comparison between the proposed system and the conventional system through 
simulation experiments is executed in Section 5. Finally, the conclusion is given in Section 6. 

A Robust Reinforcement Learning System Using Concept of  
Sliding Mode Control for Unknown Nonlinear Dynamical System   

 

199 

2. Actor-critic reinforcement learning system   
Reinforcement learning (RL, Sutton and Barto (1998)), as experienced learning through 
trial and error, which is a learning algorithm based on calculation of reward and penalty 
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continuous and discrete state-action space environment. The structure of the actor-critic 
reinforcement learning system is shown in Fig. 1. The actor plays a role of a controller and 
the critic plays role of an evaluator in control field. Noise plays a part of roles to search 
the optimal action. 

2.1 Structure and learning of critic 
2.1.1 Structure of critic 
The function of the critic is calculation of ( )P t : the prediction value of sum of the discounted 
rewards r(t) that will be gotten over the future. Of course, if the value of ( )P t  becomes 
bigger, the performance of the system becomes better. These are shortly explained as 
follows. 
The sum of the discounted rewards that will be gotten over the future is defined as ( )V t . 

       ( ) ( )
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V t r t l

∞

=

≡ ⋅ +∑γ , (1) 

where γ ( 0 1≤ <γ ) is a constant parameter called discount rate. 
Equation (1) is rewritten as  

        ( ) ( ) ( )1V t r t V t= + +γ .  (2)  

Here the prediction value of ( )V t  is defined as ( )P t . The prediction error ( )r̂ t  is expressed 
as follows, 

 ( ) ( ) ( ) ( )ˆ ˆ 1tr t r r t P t P tγ= = + + − . (3) 

The parameters of the critic are adjusted to reduce this prediction error ( )r̂ t . In our case the 
prediction value ( )P t  is calculated as an output of a radial basis function neural network 
(RBFN) such as,  
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=
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⎡ ⎤
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Here, ( ) : thc
jy t j node’s output of the middle layer of the critic at time t , c

jω : the weight 
of thj output of the middle layer of the critic, :ix i th state of the environment at time t, 

c
ijc and c

ijσ : center and dispersion in the i th input of j th basis function, respectively, J : the 
number of nodes in the middle layer of the critic, n : number of the states of the system (see 
Fig. 2). 
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Fig. 2. Structure of the critic. 

2.1.2 Learning of parameters of critic 
Learning of parameters of the critic is done by back propagation method which makes 
prediction error ( )r̂ t  go to zero. Updating rule of parameters are as follows,  
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Here cη  is a small positive value of learning coefficient. 

2.2 Structure and learning of actor 
2.2.1 Structure of actor 
Figure 3 shows the structure of the actor. The actor plays the role of controller and outputs 
the control signal, action ( )a t , to the environment. The actor basically also consists of radial 
basis function network. The thj basis function of the middle layer node of the actor is as 
follows, 
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       ( )1( ) ( )u t u t n t= + . (10) 

Here : tha
jy j node’s output of the middle layer of the actor, a

ijc and a
ijσ : center and dispersion 

in thi input of thj node basis function of the actor, respectively, a
jω : connection weight 

from thj  node of the middle layer to the output, ( )u t : control input, ( )n t : additive noise. 
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Fig. 3. Structure of the actor. 

2.2.2 Noise generator 
Noise generator let the output of the actor have the diversity by making use of the noise. It 
comes to realize the learning of the trial and error according to the results of performance of 
the system by executing the decided action. Generation of the noise ( )n t  is as follows, 

 ( ) ( )( )min 1,exp(t tn t n noise P t= = ⋅ − , (11) 

where tnoise is uniformly random number of [ ]1 , 1− , min ( ⋅ ): minimum of ⋅ . As the ( )P t  
will be bigger (this means that the action goes close to the optimal action), the noise will be 
smaller. This leads to the stable learning of the actor. 

2.2.3 Learning of parameters of actor 
Parameters of the actor, ( 1, , )a

j j J=ω , are adjusted by using the results of executing the 
output of the actor, i.e. the prediction error t̂r  and noise.  

 1( )ˆ .a
j a t t a

j

u tn rΔω η
ω

∂
= ⋅ ⋅ ⋅

∂
 (12) 

( 0)a >η is the learning coefficient. Equation (12) means that ˆ( )t tn r− ⋅  is considered as an 
error, a

jω  is adjusted as opposite to sign of ˆ( )t tn r− ⋅ . In other words, as a result of executing 
( )u t , e.g. if the sign of the additive noise is positive and the sign of the prediction error is 

positive, it means that positive additive noise is sucess, so the value of a
jω  should be 

increased (see Eqs. (8)-(10)), and vice versa. 

3. Controlled system, variable filter and sliding mode control 
3.1 Controlled  system 
This paper deals with next nth order nonlinear differential equation.  

 ( ) ( ) ( ) ,nx f b u= +x x  (13) 
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 y x= , (14)        

where ( 1)[ , , , ]n Tx x x −=x  is state vector of the system. In this paper, it is assumed that a 
part of states, ( )y x= , is observable, u  is control input, ( ), ( )f bx x  are unknown continuous 
functions. 
Object of the control system: To decide control input u which leads the states of the system 
to their targets x. We define the error vector e as follows, 

 
( 1)

( 1) ( 1)

[ , , , ] ,

[ , , , ] .

n T

n n T
d d d

e e e

x x x x x x

−

− −

=

= − − −

e
 (15) 

The estimate vector of e, ê , is available through the state variable filter (see Fig. 4).  

3.2 State variable filter 
Usually it is that not all the state of the system are available for measurement in the real 
system. In this work we only get the state x, that is, e, so we estimate the values of error 
vector e, i.e.  ê , through the state variable filter, Eq. (16) (Hang (1976) (see Fig. 4). 
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Fig. 4. Internal structure of the state variable filter.  

3.3 Sliding mode control 
Sliding mode control is described as follows. First it restricts states of the system to a sliding 
surface set up in the state space. Then it generates a sliding mode s (see in Eq. (18)) on the 
sliding surface, and then stabilizes the state of the system to a specified point in the state 
space. The feature of sliding mode control is good robustness.  
Sliding time-varying surface H and sliding scalar variable s are defined as follows, 

 { }: | ( ) 0H s =e e , (17) 
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 ( ) Ts =e α e , (18) 

where 1 1n− =α  0 1 1[ , , , ] ,T
n−= α α αα  and 1 2

1 2 0
n n

n np p− −
− −+ + +α α α   is strictly stable in 

Hurwitz, p  is Laplace transformation variable. 

4. Actor-critic reinforcement learning system using sliding mode control with 
state variable filter 
In this section, reinforcement learning system using sliding mode control with the state 
variable filter is explained. Target of this method is enhancing robustness which can not be 
obtained by conventional reinforcement. The method is almost same as the conventional 
actor-critic system except using the sliding variable s as the input to it inspite of the system 
states. In this section, we mainly explain the definition of the reward and the noise 
generation method. 
 

 
Fig. 5. Proposed  reinforcement learning control system using sliding mode control with 
state variable filter. 

4.1 Reward 
We define the reward r(t) to realize the sliding mode control as follows, 

 2( ) exp{ ( ) } ,r t s t= −   (19) 

here, from Eq. (18) if the actor-critic system learns so that the sliding variable s becomes 
smaller, i.e., error vector e would be close to zero, the reward r(t) would be bigger. 

4.2 Noise 
Noise n(t) is used to maintain diversity of search of the optimal input and to find the 
optimal input. The absolute value of sliding variable s is bigger, n(t) is bigger, and that of s is 
smaller, it is smaller.  
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2
1( ) exp ,n t z n
s

⎛ ⎞= ⋅ ⋅ − ⋅⎜ ⎟
⎝ ⎠

β  (20) 

where, z is uniform random number of range [-1, 1]. n is upper limit of the perturbation 
signal for searching the optimal input .u  β  is predefined positive constant for adjusting.  

5. Computer simulation 
5.1 Controlled object  
To verify effectiveness of the proposed method, we carried out the control simulation using 
an inverted pendulum with dynamics described by Eq. (21) (see Fig. 6).  

 sin v qmg mgl T= − +θ θ μ θ . (21) 

Parameters in Eq. (21) are described in Table 1. 
 

 
Fig. 6. An inverted pendulum used in the computer simulation. 

 
θ  joint angle - 
m  mass 1.0 [kg] 
l  length of the pendulum 1.0 [m] 
g  gravity 9.8 [m/sec2] 

Vμ  coefficient  of  friction 0.02 

qT  input torque - 

[ , ]θ θ=X  observation vector - 

Table 1. Parameters of the system used in the computer simulation. 

5.2 Simulation procedure 
Simulation algorithm is as follows, 
Step 1. Initial control input 0qT  is given to the system through Eq. (21). 
Step 2. Observe the state of the system. If the end condition is satisfied, then one trial ends, 

otherwise, go to Step 3. 
Step 3. Calculate the error vector e , Eq. (15). If only ( )y x= , i.e., e  is available, calculate     

ê , the estimate value of through the state variable filters, Eq. (16). 
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Step 4. Calculate the sliding variable s, Eq. (18). 
Step 5. Calculate the reward r by Eq. (19). 
Step 6. Calculate the prediction reward ( )P t  and the control input ( )u t , i.e., torque qT  by 

Eqs. (4) and (10), respectively. 
Step 7. Renew the parameters a

j
c
i ωω , of the actor and the critic by Eqs. (6) and (12). 

Step 8. Set qT in Eq. (21) of the system. Go to Step 2. 

5.3 Simulation conditions 
One trial means that control starts at 0 0( , ) ( 18[ ], 0 [ /sec] )rad rad=θ θ π  and continues the 
system control for 20[sec], and sampling time is 0.02[sec]. The trial ends if / 4≥θ π  or 
controlling time is over 20[sec]. We set upper limit for output 1u  of the actor. Trial success 
means that θ  is in range [ ]360 , 360−π π  for last 10[sec]. The number of nodes of the 
hidden layer of the critic and the actor are set to 15 by trial and error (see Figs. (2)–( 3)). The 
parameters used in this simulation are shown in Table 2. 
 

0α : sliding variable parameter in Eq. (18) 5.0 
cη : learning coefficient of the actor in Eqs. (6)-(A6) 0.1 
aη : learning coefficient of the critic in Eqs. (12)-A(7) 0.1 
maxU : Maximun value of the Torque in Eqs. (9)-(A3) 20 

γ  : forgetting rate  in Eq. (3) 0.9 

Table 2. Parameters used in the simulation for the proposed system. 

5.4 Simulation results 
Using subsection 5.2, simulation procedure, subsection 5.3, simulation conditions, and the 
proposed method mentioned before, the control simulation of the inverted pendulum Eq. 
(21) are carried out. 

5.4.1 Results of the proposed method  
a. The case of  complete observation 
The results of the proposed method in the case of complete observation, that is, θθ ,  are 
available, are shown in Fig. 7. 
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Fig. 7. Result of the proposed method in the case of  complete observation ( θθ ,  ). 
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Fig. 7. Result of the proposed method in the case of  complete observation ( θθ ,  ). 
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b. The case of  incomplete observation using the state variable filters 
In the case that only θ  is available, we have to estimate θ  as θ̂ . Here, we realize it by use  
of the state variable filter (see Eqs. (22)-(23), Fig. 8). By trial and error, the parameters, 

210 ,, ωωω , of it are set to .50,10,100 210 === ωωω The results of the proposed method 
with state variable filter in the case of incomplete observation are shown in Fig. 9. 
 

 
Fig. 8. State variable filter in the case of  incomplete  observation ( θ  ).  

 e
pp

e
01

2
2

0ˆ
ωω

ω
++

=  (22) 

 e
pp
pe

01
2

2
1ˆ

ωω
ω

++
=  (23) 

 

-0.4

-0.2

 0

 0.2

 0.4

 0  5  10  15  20

[ra
d]

 [r
ad

/s
ec

]

TIME [sec]

Angular PositionAngular Velocity

     

-20

-10

 0

 10

 20

 0  5  10  15  20

To
rq

ue
 [N

]

TIME [sec]

Control signal

 
                                     (a) ,θ θ                                                             (b)   Torque  qT  

Fig. 9. Results of the proposed method with the state variable filter in the case of  incomplete  
observation (onlyθ is available). 
c. The case  of  incomplete observation using the difference method  
Instead of the state variable filter in 5.4.1 B, to estimate the velocity angle, we adopt the 
commonly used difference method, like that, 

   1
ˆ

−−= ttt θθθ . (24) 

We construct the sliding variable s  in Eq. (18) by using θθ ˆ, . The results of the simulation of 
the proposed method are shown in Fig. 10. 
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Fig. 10. Result of the proposed method using the difference method in the case of incomplete  
observation (onlyθ is available). 

5.4.2 Results of the conventional method. 
d. Sliding mode control method 
The control input is given as follows, 

 
]N[0.20

0,
0,

)(

max

max

max

=
+=
⎩
⎨
⎧

≤⋅−
>⋅

=

=U
c

ifU
ifU

tu

θθσ

σθ
σθ

 (25)  

Result of the control is shown in Fig. 11. In this case, angular, velocity angular, and Torque 
are all oscillatory because of the bang-bang control. 
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Fig. 11. Result of the conventional (SMC) method  in the case of complete observation ( θθ ,  ). 
e. Conventional actor-critic method  
The structure of the actor of the conventional actor-critic control method is shown in Fig. 12. 
The detail of the conventional actor-critic method is explained in Appendix. Results of the 
simulation are shown in Fig. 13. 
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Fig. 14. Result of the conventional PID control method in the case of complete observation 
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f. Conventional PID control method  
The control signal )(tu  in the PID control is  

 )()()()(
0

teKdtteKteKtu d
t

Ip ⋅−⋅−−= ∫ , (26) 

here, 45, 1, 10p I dK K K= = ⋅ = . Fig. 14 shows the results of the PID control.  

5.4.3 Discussion 
Table 3 shows the control performance, i.e. average error of θθ , , through the controlling 
time when final learning for all the methods the simulations have been done. Comparing  
the proposed method with the conventional actor-critic method, the proposed method is 
better than the conventional one. This means that the performance of the conventional actor-
critic method hass been improved by making use of the concept of sliding mode control.  
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Complete observation 
 

∫ θdt/t 0.3002 0.6021 0.1893 0.2074 0.4350 0.8474 

∫ θdt/t 0.4774 0.4734 0.4835 1.4768 0.4350 1.2396 

Table 3. Control performance when final learning   (S.v.f. : state variable filter, Difference: 
Difference  method). 
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Fig. 15. Comparison of the porposed method with incomplete observation, the conventional 
actor-critic method and PID method for the angle,θ . 
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Figure 15 shows the comparison of the porposed method with incomplete observation, the 
conventional actor-critic method and PID method for the angle, θ . In this figure, the 
proposed method and PID method converge to zero smoothly, however the conventional 
actor-critic method does not converge. The comparison of the proposed method with PID 
control, the latter method converges quickly. These results are corresponding to Fig.16, i.e. 
the torque of the PID method converges first, the next one is the proposed method, and the 
conventional one does not converge. 
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Fig. 16. Comparison of the porposed method with incomplete observation, the conventional 
actor-critic method and PID method for the Torque, qT . 
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Fig. 17. The comparison of the porposed method among the case of the complete observation,  
the case with the state variable filter, and with the difference method  for the angle,θ . 
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Fig. 17 shows the comparison of the porposed method among the case of the complete 
observation, the case with the state variable filter, and with the difference method for the 
angle,θ . Among them, the incomplete state observation with the difference method is best 
of three, especially, better than the complete observation. This reason can be explained by 
Fig. 18. That is, the value of s  of the case of the difference method is bigger than that of the 
observation of the velocity angle, this causes that the input gain becomes bigger and the 
convergence speed has been accelerated. 
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Fig. 18. The values of the sliding variable s  for using the velocity and the difference between 
the angle and 1 sampling past angle. 

5.4.4 Verification of the robust performance of each method 
At first, as above mentioned, each controller was designed at 1.0 [kg]m =  in Eq. (21). Next 
we examined the range of m  in which the inverted pendulum control is success. Success is 
defined as the case that if / 45≤θ π  through the last 1[sec]. Results of the robust 
performance for change of m are shown in Table 4. As to upper/lower limit of m for 
success, the proposed method is better than the conventional actor-critic method not only 
for gradually changing m smaller from 1.0 to 0.001, but also for changing m bigger from 1.0 
to 2.377. However, the best one is the conventional SMC method, next one is the PID control 
method. 

6. Conclusion 
A robust reinforcement learning method using the concept of the sliding mode control was   
mainly explained. Through the inverted pendulum control simulation, it was verified that 
the robust reinforcement learning method using the concept of the sliding mode control has 
good performance and robustness comparing with the conventional actor-critic method, 
because of the making use of the ability of the SMC method.   



 Robust Control, Theory and Applications 

 

210 

Figure 15 shows the comparison of the porposed method with incomplete observation, the 
conventional actor-critic method and PID method for the angle, θ . In this figure, the 
proposed method and PID method converge to zero smoothly, however the conventional 
actor-critic method does not converge. The comparison of the proposed method with PID 
control, the latter method converges quickly. These results are corresponding to Fig.16, i.e. 
the torque of the PID method converges first, the next one is the proposed method, and the 
conventional one does not converge. 
 

-20

-10

 0

 10

 20

 0  2  4  6  8  10

Incomplete state observation using State-filter RL+SMC
actor-critic RL

PID

 
Fig. 16. Comparison of the porposed method with incomplete observation, the conventional 
actor-critic method and PID method for the Torque, qT . 
 

-0.1

-0.05

 0

 0.05

 0.1

 0.15

 0.2

 0  0.5  1  1.5  2  2.5  3  3.5  4

A
ng

le
 [r

ad
]

TIME [sec]

Incomplete state observation using State-filter RL+SMC
Complete state observation RL+SMC

Incomplete state observation using Differencial RL+SMC

 
Fig. 17. The comparison of the porposed method among the case of the complete observation,  
the case with the state variable filter, and with the difference method  for the angle,θ . 

A Robust Reinforcement Learning System Using Concept of  
Sliding Mode Control for Unknown Nonlinear Dynamical System   

 

211 

Fig. 17 shows the comparison of the porposed method among the case of the complete 
observation, the case with the state variable filter, and with the difference method for the 
angle,θ . Among them, the incomplete state observation with the difference method is best 
of three, especially, better than the complete observation. This reason can be explained by 
Fig. 18. That is, the value of s  of the case of the difference method is bigger than that of the 
observation of the velocity angle, this causes that the input gain becomes bigger and the 
convergence speed has been accelerated. 
 

-0.4

-0.2

 0

 0.2

 0.4

 0.6

 0.8

 1

 0  5  10  15  20
TIME [sec]

Sliding using Velocity
Sliding using Differencial

 
Fig. 18. The values of the sliding variable s  for using the velocity and the difference between 
the angle and 1 sampling past angle. 

5.4.4 Verification of the robust performance of each method 
At first, as above mentioned, each controller was designed at 1.0 [kg]m =  in Eq. (21). Next 
we examined the range of m  in which the inverted pendulum control is success. Success is 
defined as the case that if / 45≤θ π  through the last 1[sec]. Results of the robust 
performance for change of m are shown in Table 4. As to upper/lower limit of m for 
success, the proposed method is better than the conventional actor-critic method not only 
for gradually changing m smaller from 1.0 to 0.001, but also for changing m bigger from 1.0 
to 2.377. However, the best one is the conventional SMC method, next one is the PID control 
method. 

6. Conclusion 
A robust reinforcement learning method using the concept of the sliding mode control was   
mainly explained. Through the inverted pendulum control simulation, it was verified that 
the robust reinforcement learning method using the concept of the sliding mode control has 
good performance and robustness comparing with the conventional actor-critic method, 
because of the making use of the ability of the SMC method.   



 Robust Control, Theory and Applications 

 

212 

The way to improve the control performance and to clarify the stability of the proposed 
method theoretically has been remained. 
 

Proposed method Conventional method 

Actor-Critic + SMC SMC PID Actor-Critic 
 

Complete 
observation 

Incomplete 
observ. + 

s.v.f.* 

Complete 
observation 

Complete 
observation

 

Complete 
observation 

m-max 
[kg] 2.081 2.377 11.788 4.806 1.668 

m-min 
[kg] 0.001 0.001 0.002 0.003 0.021 

*(s.v.f.: state variable filter) 

Table 4.  Robust control performance for change of m in Eq. (21). 
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8. Appendix 
The structure of the critic of the conventional actor-critic control method is shown in Fig. 2. 
The number of nodes of the hidden layer of it is 15 as same as that of the proposed method.  
The prediction reward, P(t), is as follow, 
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The structure of actor is also similar with critic shown in Fig. 11. The output of the actor, 
'( )u t , and the control input, u(t), are  as follows, respectively, 
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the RBF networks are set to be at equivalent distance in the range of ]10[ <<σ . The values 
mentioned above, particularly, near the original are set to close. The reward )(tr is set as Eq. 
(A5) in order it to maximize at )0,0(),( =θθ , 
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The learning of parameters of critic and actor are carried out through the back-propagation 
algorithm as Eqs. (A6)-(A7) . )0,( >ac ηη  
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1. Introduction 
Robust stability and robust control belong to fundamental problems in control theory and 
practice; various approaches have been proposed to cope with uncertainties that always 
appear in real plants as a result of identification /modelling errors, e.g. due to linearization 
and approximation, etc. A control system is robust if it is insensitive to differences between 
the actual plant and its model used to design the controller. To deal with an uncertain plant 
a suitable uncertainty model is to be selected and instead of a single model, behaviour of a 
whole class of models is to be considered. Robust control theory provides analysis and 
design approaches based upon an incomplete description of the controlled process 
applicable in the areas of non-linear and time-varying processes, including multi input – 
multi output (MIMO) dynamic systems. 
MIMO systems usually arise as interconnection of a finite number of subsystems, and in 
general, multivariable centralized controllers are used to control them. However, practical 
reasons often make restrictions on controller structure necessary or reasonable. In an 
extreme case, the controller is split into several local feedbacks and becomes a decentralized 
controller. Compared to centralized full-controller systems such a control structure brings 
about certain performance deterioration; however, this drawback is weighted against 
important benefits, e.g. hardware, operation and design simplicity, and reliability 
improvement. Robust approach is one of useful ways to address the decentralized control 
problem (Boyd et al., 1994; Henrion et al., 2002; de Oliveira et al., 1999; Gyurkovics & 
Takacs, 2000; Ming Ge et al., 2002; Skogestad & Postlethwaite, 2005; Kozáková and Veselý, 
2008; Kozáková et al., 2009a). 
In this chapter two robust controller design approaches are presented: in the time domain 
the approach based on Linear (Bilinear) matrix inequality (LMI, BMI), and in the frequency 
domain the recently developed Equivalent Subsystem Method (ESM) (Kozáková et al., 
2009b). As proportional-integral-derivative (PID) controllers are the most widely used in 
industrial control systems, this chapter focuses on the time- and frequency domain PID 
controller design techniques resulting from both approaches. 
The development of Linear Matrix Inequality (LMI) computational techniques has provided 
an efficient tool to solve a large set of convex problems in polynomial time (e.g. Boyd et al., 
1994). Significant effort has been therefore made to formulate crucial control problems in 



10 

Robust Controller Design:  
New Approaches in the  

Time and the Frequency Domains 
Vojtech Veselý, Danica Rosinová and Alena Kozáková 

Slovak University of Technology 
Slovak Republic 

1. Introduction 
Robust stability and robust control belong to fundamental problems in control theory and 
practice; various approaches have been proposed to cope with uncertainties that always 
appear in real plants as a result of identification /modelling errors, e.g. due to linearization 
and approximation, etc. A control system is robust if it is insensitive to differences between 
the actual plant and its model used to design the controller. To deal with an uncertain plant 
a suitable uncertainty model is to be selected and instead of a single model, behaviour of a 
whole class of models is to be considered. Robust control theory provides analysis and 
design approaches based upon an incomplete description of the controlled process 
applicable in the areas of non-linear and time-varying processes, including multi input – 
multi output (MIMO) dynamic systems. 
MIMO systems usually arise as interconnection of a finite number of subsystems, and in 
general, multivariable centralized controllers are used to control them. However, practical 
reasons often make restrictions on controller structure necessary or reasonable. In an 
extreme case, the controller is split into several local feedbacks and becomes a decentralized 
controller. Compared to centralized full-controller systems such a control structure brings 
about certain performance deterioration; however, this drawback is weighted against 
important benefits, e.g. hardware, operation and design simplicity, and reliability 
improvement. Robust approach is one of useful ways to address the decentralized control 
problem (Boyd et al., 1994; Henrion et al., 2002; de Oliveira et al., 1999; Gyurkovics & 
Takacs, 2000; Ming Ge et al., 2002; Skogestad & Postlethwaite, 2005; Kozáková and Veselý, 
2008; Kozáková et al., 2009a). 
In this chapter two robust controller design approaches are presented: in the time domain 
the approach based on Linear (Bilinear) matrix inequality (LMI, BMI), and in the frequency 
domain the recently developed Equivalent Subsystem Method (ESM) (Kozáková et al., 
2009b). As proportional-integral-derivative (PID) controllers are the most widely used in 
industrial control systems, this chapter focuses on the time- and frequency domain PID 
controller design techniques resulting from both approaches. 
The development of Linear Matrix Inequality (LMI) computational techniques has provided 
an efficient tool to solve a large set of convex problems in polynomial time (e.g. Boyd et al., 
1994). Significant effort has been therefore made to formulate crucial control problems in 



 Robust Control, Theory and Applications 

 

218 

algebraic way (e.g. Skelton et al., 1998), so that the numerical LMI solution can be employed. 
This approach is advantageously used in solving control problems for linear systems with 
convex (affine or polytopic) uncertainty domain. However, many important problems in 
linear control design, such as decentralized control, simultaneous static output feedback 
(SOF) or more generally - structured linear control problems have been proven as NP hard 
(Blondel & Tsitsiklis, 1997). Though there exist solvers for bilinear matrix inequalities (BMI), 
suitable to solve e.g. SOF, they are numerically demanding and restricted to problems of 
small dimensions. Intensive research has been devoted to overcome nonconvexity and 
transform the nonconvex or NP-hard problem into convex optimisation problem in LMI 
framework. Various techniques have been developed using inner or outer convex 
approximations of the respective nonconvex domains. The common tool in both inner and 
outer approximation is the use of linearization or convexification. In (Han & Skelton, 2003; 
de Oliveira et al., 1999), the general convexifying algorithm for the nonconvex function 
together with potential convexifying functions for both continuous and discrete-time case 
have been proposed. Linearization approach for continuous and discrete-time system design 
was independently used in (Rosinová & Veselý, 2003; Veselý, 2003). 
When designing a (PID) controller, the derivative part of the controller causes difficulties 
when uncertainties are considered. In multivariable PID control schemes using LMI 
developed recently (Zheng et al., 2002), the incorporation of the derivative part requires 
inversion of the respective matrix, which does not allow including uncertainties. Another 
way to cope with the derivative part is to assume the special case when output and its 
derivative are state variables, robust PID controller for first and second order SISO systems 
are proposed for this case in (Ming Ge et al., 2002). 
In Section 2, the state space approach to the design of (decentralized or multi-loop) PID 
robust controllers is proposed for linear uncertain system with guaranteed cost using a new 
quadratic cost function. The major contribution is in considering the derivative part in 
robust control framework. The resulting matrix inequality can be solved either using BMI 
solver, or using linearization approach and following LMI solution. 
The frequency domain design techniques have probably been the most popular among the 
practitioners due to their insightfulness and link to the classical control theory. In 
combination with the robust approach they provide a powerful engineering tool for control 
system analysis and synthesis. An important field of their implementation is control of 
MIMO systems, in particular the decentralized control (DC) due to simplicity of hardware 
and information processing algorithms. The DC design proceeds in two main steps: 1) 
selection of a suitable control configuration (pairing inputs with outputs); 2) design of local 
controllers for individual subsystems. There are two main approaches applicable in Step 2: 
sequential (dependent) design, and independent design. When using sequential design local 
controllers are designed sequentially as a series controller, hence information about “lower 
level” controllers is directly used as more loops are closed. Main drawbacks are lack of 
failure tolerance when lower level controllers fail, strong dependence of performance on the 
loop closing order, and a trial-and-error design process.  
According to the independent design, local controllers are designed to provide stability of 
each individual loop without considering interactions with other subsystems. The effect of 
interactions is assessed and transformed into bounds for individual designs to guarantee 
stability and a desired performance of the full system. Main advantages are direct design of 
local controllers with no need for trial and error; the limitation consists in that information 
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about controllers in other loops is not exploited, therefore obtained stability and 
performance conditions are only sufficient and thus potentially conservative.  
Section 3 presents a frequency domain robust decentralized controller design technique 
applicable for uncertain systems described by a set of transfer function matrices.  The core of 
the technique is the Equivalent Subsystems Method - a Nyquist-based DC design method 
guaranteeing performance of the full system (Kozáková et al., 2009a; 2009b). To guarantee 
specified performance (including stability), the effect of interactions is assessed using a 
selected characteristic locus of the matrix of interactions further used to reshape frequency 
responses of decoupled subsystems thus generating so-called equivalent subsystems. Local 
controllers of equivalent subsystems independently tuned to guarantee specified 
performance measure value in each of them constitute the decentralized (diagonal) 
controller; when applied to real subsystems, the resulting controller guarantees the same 
performance measure value for the full system. To guarantee robust stability over the 
specified operating range of the plant, the M-Δ stability conditions are used (Skogestad & 
Postlethwaite, 2005; Kozáková et al., 2009a, 2009b). Two versions of the robust DC design 
methodology have been developed: a the two-stage version (Kozáková & Veselý, 2009; 
Kozáková et al. 2009a), where robust stability is achieved by additional redesign of the DC 
parameters; in the direct version, robust stability conditions are integrated in the design of 
local controllers for equivalent subsystems. Unlike standard robust approaches, the 
proposed technique allows considering full nominal model thus reducing conservatism of 
robust stability conditions. Further conservatism relaxing is achieved if the additive affine 
type uncertainty description and the related Maf – Q stability conditions are used (Kozáková 
& Veselý, 2007; 2008). 
In the sequel, X > 0 denotes positive definite matrix; * in matrices denotes the respective 
transposed term to make the matrix symmetric; I denotes identity matrix and 0 denotes zero 
matrix of the respective dimensions. 

2. Robust PID controller design in the time domain 
In this section the PID control problem formulation via LMI is presented that is appropriate 
for polytopic uncertain systems. Robust PID control scheme is then proposed for structured 
control gain matrix, thus enabling decentralized PID control design. 

2.1 Problem formulation and preliminaries 
Consider the class of linear affine uncertain time-invariant systems described as: 
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known constant matrices of the respective dimensions corresponding to the nominal system, 
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where j jj
γ γ γ≤ ≤  are unknown uncertainty parameters; , , 1,2,...,j jA B j p=  are constant 

matrices of uncertainties of the respective dimensions and structure. The uncertainty 
domain for a system described in (1), (2) can be equivalently described by a polytopic model 
given by its vertices 
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The (decentralized) feedback control law is considered in the form 
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where F is an output feedback gain matrix. The uncertain closed-loop polytopic system is 
then  
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To assess the performance, a quadratic cost function known from LQ theory is frequently 
used. In practice, the response rate or overshoot are often limited, therefore we include the 
additional derivative term for state variable into the cost function to damp the oscillations 
and limit the response rate.  
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where , ,n n m mQ S R R R× ×∈ ∈ are symmetric positive definite matrices. The concept of 
guaranteed cost control is used in a standard way: let there exist a feedback gain matrix F0 and 
a constant J0  such that  

 0J J≤  (9) 

holds for the closed loop system (5), (6). Then the respective control (4) is called the 
guaranteed cost control and the value of J0 is the guaranteed cost.  
The main aim of Section 2 of this chapter is to solve the next problem. 
Problem 2.1 
Find a (decentralized) robust PID control design algorithm that stabilizes the uncertain 
system (1) with guaranteed cost with respect to the cost function (7) or (8).  
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We start with basic notions concerning Lyapunov stability and convexifying functions. In 
the following we use D-stability concept (Henrion et al., 2002) to receive the respective 
stability conditions in more general form. 
Definition 2.1 (D-stability) 
Consider the D-domain in the complex plain defined as 

*
11 12
*
12 22

1 1
{ iscomplex  number : 0}

r r
D s

s sr r
⎡ ⎤⎡ ⎤ ⎡ ⎤

= <⎢ ⎥⎢ ⎥ ⎢ ⎥
⎢ ⎥⎣ ⎦ ⎣ ⎦⎣ ⎦

. 

The considered linear system (1) is D-stable if and only if all its poles lie in the D-domain.  
(For simplicity, we use in Def. 2.1 scalar values of parameters rij, in general the stability 
domain can be defined using matrix values of parameters rij with the respective 
dimensions.) The standard choice of rij  is r11 = 0, r12 = 1, r22 = 0 for a continuous-time system; 
r11 = -1, r12 = 0, r22 = 1 for a discrete-time system, corresponding to open left half plane and 
unit circle respectively.  
The quadratic D-stability of uncertain system is equivalent to the existence of one Lyapunov 
function for the whole uncertainty set. 
Definition 2.2  (Quadratic D-stability) 
The uncertain system (5) is quadratically D-stable if and only if there exists a symmetric 
positive definite matrix P such that 
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To obtain less conservative results than using quadratic stability, a robust stability notion is 
considered based on the parameter dependent Lyapunov function (PDLF) defined as 
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Definition 2.3  (deOliveira et al., 1999) 
System (5) is robustly D-stable in the convex uncertainty domain (6) with parameter-
dependent Lyapunov function (11) if and only if there exists a matrix ( ) ( ) 0TP Pα α= > such 
that 
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for all α such that ( )CA α  is given by (6).   
Now recall the sufficient robust D-stability condition proposed in (Peaucelle et al., 2000), 
proven as not too conservative (Grman et al., 2005). 
Lemma 2.1 
If there exist matrices ,nxn nxnE R G R∈ ∈  and N symmetric positive definite matrices 
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then uncertain system (5) is robustly D-stable. 
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1 1

( ) , 1, 0 ,

.

N N

C i Ci i i
i i

Ci i i

A A

A A B FC

α α α α
= =

⎧ ⎫⎪ ⎪∈ = ≥⎨ ⎬
⎪ ⎪⎩ ⎭

= +

∑ ∑  (6) 

To assess the performance, a quadratic cost function known from LQ theory is frequently 
used. In practice, the response rate or overshoot are often limited, therefore we include the 
additional derivative term for state variable into the cost function to damp the oscillations 
and limit the response rate.  

 
0

[ ( ) ( ) ( ) ( ) ( ) ( )]T T T
cJ x t Qx t u t Ru t x t S x t dtδ δ

∞

= + +∫  for a continuous-time and (7) 

 
0
[ ( ) ( ) ( ) ( ) ( ) ( )]T T T

d
k

J x t Qx t u t Ru t x t S x tδ δ
∞

=
= + +∑  for a discrete-time system  (8) 

where , ,n n m mQ S R R R× ×∈ ∈ are symmetric positive definite matrices. The concept of 
guaranteed cost control is used in a standard way: let there exist a feedback gain matrix F0 and 
a constant J0  such that  

 0J J≤  (9) 

holds for the closed loop system (5), (6). Then the respective control (4) is called the 
guaranteed cost control and the value of J0 is the guaranteed cost.  
The main aim of Section 2 of this chapter is to solve the next problem. 
Problem 2.1 
Find a (decentralized) robust PID control design algorithm that stabilizes the uncertain 
system (1) with guaranteed cost with respect to the cost function (7) or (8).  
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We start with basic notions concerning Lyapunov stability and convexifying functions. In 
the following we use D-stability concept (Henrion et al., 2002) to receive the respective 
stability conditions in more general form. 
Definition 2.1 (D-stability) 
Consider the D-domain in the complex plain defined as 

*
11 12
*
12 22

1 1
{ iscomplex  number : 0}

r r
D s

s sr r
⎡ ⎤⎡ ⎤ ⎡ ⎤

= <⎢ ⎥⎢ ⎥ ⎢ ⎥
⎢ ⎥⎣ ⎦ ⎣ ⎦⎣ ⎦

. 

The considered linear system (1) is D-stable if and only if all its poles lie in the D-domain.  
(For simplicity, we use in Def. 2.1 scalar values of parameters rij, in general the stability 
domain can be defined using matrix values of parameters rij with the respective 
dimensions.) The standard choice of rij  is r11 = 0, r12 = 1, r22 = 0 for a continuous-time system; 
r11 = -1, r12 = 0, r22 = 1 for a discrete-time system, corresponding to open left half plane and 
unit circle respectively.  
The quadratic D-stability of uncertain system is equivalent to the existence of one Lyapunov 
function for the whole uncertainty set. 
Definition 2.2  (Quadratic D-stability) 
The uncertain system (5) is quadratically D-stable if and only if there exists a symmetric 
positive definite matrix P such that 

 *
12 12 11 22( ) ( ) ( ) ( ) 0T T

C C C Cr PA r A P r P r A PAα α α α+ + + <  (10) 

To obtain less conservative results than using quadratic stability, a robust stability notion is 
considered based on the parameter dependent Lyapunov function (PDLF) defined as 

 
1

( ) where 0
N

T
i i i i

i
P P P Pα α

=
= = >∑  (11) 

Definition 2.3  (deOliveira et al., 1999) 
System (5) is robustly D-stable in the convex uncertainty domain (6) with parameter-
dependent Lyapunov function (11) if and only if there exists a matrix ( ) ( ) 0TP Pα α= > such 
that 

 *
12 12 11 22( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) 0T T

C C C Cr P A r A P r P r A P Aα α α α α α α α+ + + <  (12) 

for all α such that ( )CA α  is given by (6).   
Now recall the sufficient robust D-stability condition proposed in (Peaucelle et al., 2000), 
proven as not too conservative (Grman et al., 2005). 
Lemma 2.1 
If there exist matrices ,nxn nxnE R G R∈ ∈  and N symmetric positive definite matrices 

nxn
iP R∈  such that for all i = 1,…, N: 

 11 12
*
12 22

0
( )

T T T
i Ci Ci i Ci

T T T
i Ci i

r P A E EA r P E A G

r P E G A r P G G

⎡ ⎤+ + − +
<⎢ ⎥

− + − +⎢ ⎥⎣ ⎦
 (13) 

then uncertain system (5) is robustly D-stable. 



 Robust Control, Theory and Applications 

 

222 

Note that matrices E and G are not restricted to any special form; they were included to 
relax the conservatism of the sufficient condition. To transform nonconvex problem of 
structured control (e.g. output feedback, or decentralized control) into convex form, the 
convexifying (linearizing) function can be used (Han&Skelton, 2003; deOliveira et al., 2000; 
Rosinová&Veselý, 2003; Veselý, 2003). The respective potential convexifying function for 

1X−  and XWX has been proposed in the linearizing form: 
- the linearization of  1 nxnX R− ∈  about the value 0kX > is 

 1 1 1 1( , ) ( )k k k k kX X X X X X XΦ − − − −= − −  (14) 

- the linearization of  nxnXWX R∈  about kX is 

 ( , )k k k k kXWX X X WX XWX X WXΨ = − + +  (15) 

Both functions defined in (14) and (15) meet one of the basic requirements on convexifying 
function: to be equal to the original nonconvex term if and only if Xk = X. However, the 
question how to choose the appropriate nice convexifying function remains still open. 

2.2 Robust optimal controller design 
In this section the new design algorithm for optimal control with guaranteed cost is 
developed using parameter dependent Lyapunov function and convexifying approach 
employing iterative procedure. The proposed control design approach is based on sufficient 
stability condition from Lemma 2.1. The next theorem provides the new form of robust 
stability condition for linear uncertain system with guaranteed cost. 
Theorem 2.1 
Consider uncertain linear system (1), (2) with static output feedback (4) and cost function (7) 
or (8). The following statements are equivalent: 
i. Closed loop uncertain system (5)  is robustly D-stable with PDLF (11) and guaranteed 

cost  with respect to cost function (7) or (8): 0 (0) ( ) (0)TJ J x P xα≤ = . 
ii. There exist matrices ( ) 0P α > defined by (11) such that 

 
*

12 12 11 22( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )

( ) ( ) 0

T T
C C C C

T T T
C C

r P A r A P r P r A P A

Q C F RFC A SA

α α α α α α α α

α α

+ + + +

+ + + <
 (16) 

iii. There exist matrices ( ) 0P α > defined by (11) and matrices H, G and F of the respective 
dimensions such that  

 11
*
12 22

( ) ( ) ( ) *
0

( ) ( ) ( ) ( )

T T T T
Ci Ci

T T T
Ci

r P A H HA Q C F RFC

r P H G A r P G G S

α α α

α α α

⎡ ⎤+ + + +
⎢ <⎥
⎢ − + − + + ⎥⎦⎣

 (17) 

( )Ci i iA A B FC= +  denotes the i-th closed loop system vertex. Matrix F is the guaranteed cost 
control gain for the uncertain system (5), (6).    
Proof. For brevity the detail steps of the proof are omitted where standard tools are applied. 
(i) ⇔ (ii): the proof is analogous to that in (Rosinová, Veselý, Kučera, 2003). The (ii) ⇒(i) is 
shown by taking ( ) ( ) ( ) ( )V t x t P x tα= as a candidate Lyapunov function for (5) and writing 

( )V tδ , where     
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( ) ( ) for continuous-time system
( ) ( 1) ( ) for discrete-time system

V t V t
V t V t V t
δ
δ

=
= + −

 

 *
12 12 11 22( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )T T T TV t r x t P x t r x t P x t r x t P x t r x t P x tδ δ α α δ α δ α δ= + + +  (18) 

Substituting for xδ  from (5) to (18) and comparing with (16) provides D-stability of the 
considered system when the latter inequality holds. The guaranteed cost can be proved by 
summing or integrating both sides of the following inequality for t from 0 to ∞: 

( ) ( ) [ ( ) ( )] ( )T T T T
C CV t x t Q C F RFC A SA x tδ α α< − + +  

The (i) ⇒(ii) can be proved by contradiction. 
(ii)⇔ (iii): The proof follows the same steps to the proof of Lemma 2.1: (iii) ⇒(ii) is proved 
in standard way multiplying both sides of (17) by the full rank matrix (equivalent 
transformation): 

{ }( ) . . .(17) 0
( )

T
C

C

I
I A l h s

A
α

α
⎡ ⎤⎡ ⎤ <⎢ ⎥⎣ ⎦ ⎣ ⎦

. 

(ii) ⇒(iii) follows from applying a Schur complement to (16) rewritten as 
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12 12 11 22( ) ( ) ( ) ( ) ( ) ( )[ ( ) ] ( ) 0T T T T

C C C Cr P A r A P Q C F RFC r P A r P S Aα α α α α α α α+ + + + + + <  

Therefore  11 12

12 22
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X X

X X
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<⎢ ⎥
⎢ ⎥⎣ ⎦

    where 

*
11 11 12 12

12 22

22 22

( ) ( ) ( ) ( ) ( )

( )[ ( ) ]
[ ( ) ]

T T T
C C

T
C

X r P r P A r A P Q C F RFC

X A r P S
X r P S

α α α α α

α α
α

= + + + +

= +
= − +

 

which for  H = 12 ( )r P α , G = 22[ ( ) ]r P Sα +  gives (17). 
The proposed guaranteed cost control design is based on the robust stability condition (17). 
Since the matrix inequality (17) is not LMI when both ( )P α  and F are to be found, we use 
the inner approximation for the continuous time system applying linearization formula (15) 
together with using the respective quadratic forms to obtain LMI formulation, which is then 
solved by iterative procedure. 

2.3 PID robust controller design for continuous-time systems 
Control algorithm for PID is considered as 

 
0

( ) ( ) ( ) ( )
t

P I d du t K y t K y t dt F C x t= + +∫  (19) 

The proportional and integral term can be included into the state vector in the common way 

defining the auxiliary state 
0

( )
t

z y t= ∫ , i.e. ( ) ( ) ( )z t y t Cx t= = . Then the closed-loop system for 

PI part of the controller is 
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Note that matrices E and G are not restricted to any special form; they were included to 
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Both functions defined in (14) and (15) meet one of the basic requirements on convexifying 
function: to be equal to the original nonconvex term if and only if Xk = X. However, the 
question how to choose the appropriate nice convexifying function remains still open. 
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In this section the new design algorithm for optimal control with guaranteed cost is 
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employing iterative procedure. The proposed control design approach is based on sufficient 
stability condition from Lemma 2.1. The next theorem provides the new form of robust 
stability condition for linear uncertain system with guaranteed cost. 
Theorem 2.1 
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or (8). The following statements are equivalent: 
i. Closed loop uncertain system (5)  is robustly D-stable with PDLF (11) and guaranteed 

cost  with respect to cost function (7) or (8): 0 (0) ( ) (0)TJ J x P xα≤ = . 
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( )Ci i iA A B FC= +  denotes the i-th closed loop system vertex. Matrix F is the guaranteed cost 
control gain for the uncertain system (5), (6).    
Proof. For brevity the detail steps of the proof are omitted where standard tools are applied. 
(i) ⇔ (ii): the proof is analogous to that in (Rosinová, Veselý, Kučera, 2003). The (ii) ⇒(i) is 
shown by taking ( ) ( ) ( ) ( )V t x t P x tα= as a candidate Lyapunov function for (5) and writing 
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summing or integrating both sides of the following inequality for t from 0 to ∞: 
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in standard way multiplying both sides of (17) by the full rank matrix (equivalent 
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which for  H = 12 ( )r P α , G = 22[ ( ) ]r P Sα +  gives (17). 
The proposed guaranteed cost control design is based on the robust stability condition (17). 
Since the matrix inequality (17) is not LMI when both ( )P α  and F are to be found, we use 
the inner approximation for the continuous time system applying linearization formula (15) 
together with using the respective quadratic forms to obtain LMI formulation, which is then 
solved by iterative procedure. 

2.3 PID robust controller design for continuous-time systems 
Control algorithm for PID is considered as 
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defining the auxiliary state 
0

( )
t

z y t= ∫ , i.e. ( ) ( ) ( )z t y t Cx t= = . Then the closed-loop system for 
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 0
( )

0 0n
x A A x B B

x u t
z C z

δ δ+ +⎡ ⎤ ⎡ ⎤ ⎡ ⎤ ⎡ ⎤
= = +⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥
⎣ ⎦ ⎣ ⎦ ⎣ ⎦ ⎣ ⎦

 and  ( ) ( ) ( )d du t FCx t F C x t= +  (20) 

where  ( )FCx t  and ( )d dF C x t  correspond respectively to the PI and D term of PID controller. 
The resulting closed loop system with PID controller (19) is then 

 [ ]( ) ( ) ( ) ( ) 0 ( )n C n d d nx t A x t B F C x tα α= +  (21) 

where the PI controller term is included in ( )CA α . (For brevity we omit the argument t.) To 
simplify the denotation, in the following we consider PD controller (which is equivalent to 
the assumption, that the I term of PID controller has been already included into the system 
dynamics in the above outlined way) and the closed loop is described by 

 ( ) ( ) ( ) ( ) ( )C d dx t A x t B F C x tα α= +  (22) 

Let us consider the following performance index 

 [ ]
0

0
0

T T
T

s
xQ C F RFCJ x x dt
xS

∞ ⎡ ⎤ ⎡ ⎤+
= ⎢ ⎥ ⎢ ⎥

⎢ ⎥ ⎣ ⎦⎣ ⎦
∫  (23) 

which formally corresponds to (7). Then for Lyapunov function (11) we have the necessary 
and sufficient condition for robust stability with guaranteed cost in the form (16), which for 
continuous time system can be rewritten as: 

 [ ] ( ) 0
( )

T T
T xQ C F RFC Px x

xP S
α

α

⎡ ⎤ ⎡ ⎤+
<⎢ ⎥ ⎢ ⎥

⎢ ⎥ ⎣ ⎦⎣ ⎦
 (24) 

The main result on robust PID control stabilization is summarized in the next theorem. 
Theorem 2.2 
Consider a continuous uncertain linear system (1), (2) with PID controller (19) and cost 
function (23). The following statements are equivalent: 
i Closed loop system (21) is robustly D-stable with PDLF (11) and guaranteed cost with 

respect to cost function (23):   0 (0) ( ) (0)TJ J x P xα≤ = . 
ii There exist matrices ( ) 0P α > defined by (11),  and H, G, F and Fd of the respective 

dimensions such that  

 
*

0
T T T T
Ci Ci

T T T T
i di Ci di di

A H HA Q C F RFC

P M H G A M G G M S

⎡ ⎤+ + +
⎢ <⎥
⎢ − + − − + ⎥⎦⎣

 (25) 

( )Ci i iA A B FC= +  denotes the i-th closed loop system vertex, Mdi includes the derivative part 
of the PID controller: di i d dM I B F C= − .  
Proof.  Owing to (22) for any matrices H and G: 

 
( )

( )
( ( ) ( ) )

( ( ) ( ) ) 0

T T T
C d d

T T
C d d

x H x G x A x B F C x

x A x B F C x H x Gx

α α

α α

− − − − +

+ − − − =
 (26) 
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Summing up the l.h.s of (26) and (24) and taking into consideration linearity w.r.t. α  we get 
condition (25). 
Theorem 2.2 provides the robust stability condition for the linear uncertain system with PID 
controller. Notice that the derivative term does not appear in the matrix inversion and 
allows including the uncertainty in control matrix B into the stability condition.  
Considering PID control design, there are unknown matrices H, G, F and Fd to be solved 
from (25). (Recall that ( )Ci i iA A B FC= + , di i d dM I B F C= − .) Then, inequality (25) is bilinear 
with respect to unknown matrices and can be solved either by BMI solver, or by 
linearization approach using (15) to cope with the respective unknown matrices products. 
For the latter case the PID iterative control design algorithm based on LMI (4x4 matrix) has 
been proposed. The resulting closed loop system with PD controller is 

 ( ) ( )1( ) ( )i d d i ix t I B F C A B FC x t−= − + ,    i=1,...,N (27) 

The extension of the proposed algorithm to decentralized control design is straightforward 
since the respective F and Fd matrices are assumed as being of the prescribed structure, 
therefore it is enough to prescribe the decentralized structure for both matrices. 

2.4 PID robust controller design for discrete-time systems 
Control algorithm for discrete-time PID (often denoted as PSD controller) is considered as 

 
0

( ) ( ) ( ) [ ( ) ( 1)]
k

P I D
i

u k k e k k e k k e k e k
=

= + + − −∑  (28) 

control error ( ) ( )e k w y k= − ; discrete time being denoted for clarity as k instead of t. PSD 
description in state space: 

 
[ ]

0 1 0
( 1) ( ) ( ) ( ) ( )

0 1 1
( ) ( ) ( ) ( )

R R

D I D P I D

z k z k e k A z k B e k

u k k k k z k k k k e k
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+ = + = +⎢ ⎥ ⎢ ⎥

⎣ ⎦ ⎣ ⎦
= − + + +

 (29) 

Combining (1) for t k≈  and (29) the augmented closed loop system is received as 

 [ ]2 1
( 1) 0 ( ) 0 ( )
( 1) ( ) 0 0 ( )R R

x k A A x k B B C x k
K K

z k B C A z k I z k
δ δ+ + +⎡ ⎤ ⎡ ⎤ ⎡ ⎤ ⎡ ⎤ ⎡ ⎤ ⎡ ⎤

= + −⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥+ −⎣ ⎦ ⎣ ⎦ ⎣ ⎦ ⎣ ⎦ ⎣ ⎦ ⎣ ⎦
 (30) 

where [ ]2 1( ),P I D D I DK k k k K k k k= + + = − . 
Note that there is a significant difference between PID (19) and PSD (28) control design 
problem: for continuous time PID structure results in closed loop system that is not strictly 
proper which complicates the controller design, while for discrete time PSD structure, the 
control design is formulated as static output feedback (SOF) problem therefore the 
respective techniques to SOF design can be applied. 
In this section an algorithm for PSD controller design is proposed.  Theorem 2.1 provides the 
robust stability condition for the linear time varying uncertain system, where a constrained 
control structure can be assumed: considering ( )Ci i iA A B FC= +  we have SOF problem 
formulation which is also the case of discrete time PSD control structure for 
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( )Ci i iA A B FC= +  denotes the i-th closed loop system vertex, Mdi includes the derivative part 
of the PID controller: di i d dM I B F C= − .  
Proof.  Owing to (22) for any matrices H and G: 

 
( )

( )
( ( ) ( ) )

( ( ) ( ) ) 0

T T T
C d d

T T
C d d

x H x G x A x B F C x

x A x B F C x H x Gx

α α

α α

− − − − +

+ − − − =
 (26) 
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Summing up the l.h.s of (26) and (24) and taking into consideration linearity w.r.t. α  we get 
condition (25). 
Theorem 2.2 provides the robust stability condition for the linear uncertain system with PID 
controller. Notice that the derivative term does not appear in the matrix inversion and 
allows including the uncertainty in control matrix B into the stability condition.  
Considering PID control design, there are unknown matrices H, G, F and Fd to be solved 
from (25). (Recall that ( )Ci i iA A B FC= + , di i d dM I B F C= − .) Then, inequality (25) is bilinear 
with respect to unknown matrices and can be solved either by BMI solver, or by 
linearization approach using (15) to cope with the respective unknown matrices products. 
For the latter case the PID iterative control design algorithm based on LMI (4x4 matrix) has 
been proposed. The resulting closed loop system with PD controller is 

 ( ) ( )1( ) ( )i d d i ix t I B F C A B FC x t−= − + ,    i=1,...,N (27) 

The extension of the proposed algorithm to decentralized control design is straightforward 
since the respective F and Fd matrices are assumed as being of the prescribed structure, 
therefore it is enough to prescribe the decentralized structure for both matrices. 

2.4 PID robust controller design for discrete-time systems 
Control algorithm for discrete-time PID (often denoted as PSD controller) is considered as 

 
0

( ) ( ) ( ) [ ( ) ( 1)]
k

P I D
i

u k k e k k e k k e k e k
=

= + + − −∑  (28) 

control error ( ) ( )e k w y k= − ; discrete time being denoted for clarity as k instead of t. PSD 
description in state space: 

 
[ ]

0 1 0
( 1) ( ) ( ) ( ) ( )

0 1 1
( ) ( ) ( ) ( )

R R

D I D P I D

z k z k e k A z k B e k

u k k k k z k k k k e k

⎡ ⎤ ⎡ ⎤
+ = + = +⎢ ⎥ ⎢ ⎥

⎣ ⎦ ⎣ ⎦
= − + + +

 (29) 

Combining (1) for t k≈  and (29) the augmented closed loop system is received as 

 [ ]2 1
( 1) 0 ( ) 0 ( )
( 1) ( ) 0 0 ( )R R

x k A A x k B B C x k
K K

z k B C A z k I z k
δ δ+ + +⎡ ⎤ ⎡ ⎤ ⎡ ⎤ ⎡ ⎤ ⎡ ⎤ ⎡ ⎤

= + −⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥+ −⎣ ⎦ ⎣ ⎦ ⎣ ⎦ ⎣ ⎦ ⎣ ⎦ ⎣ ⎦
 (30) 

where [ ]2 1( ),P I D D I DK k k k K k k k= + + = − . 
Note that there is a significant difference between PID (19) and PSD (28) control design 
problem: for continuous time PID structure results in closed loop system that is not strictly 
proper which complicates the controller design, while for discrete time PSD structure, the 
control design is formulated as static output feedback (SOF) problem therefore the 
respective techniques to SOF design can be applied. 
In this section an algorithm for PSD controller design is proposed.  Theorem 2.1 provides the 
robust stability condition for the linear time varying uncertain system, where a constrained 
control structure can be assumed: considering ( )Ci i iA A B FC= +  we have SOF problem 
formulation which is also the case of discrete time PSD control structure for 
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[ ( ) ]P I D D I DF k k k k k k= − + + − (see (30)); (taking block diagonal structure of feedback 
matrix gain F provides decentralized controller). Inequality (17) is LMI for stability analysis 
for unknown H, G and Pi, however considering control design, having one more unknown 
matrix F in ( )Ci i iA A B FC= + , the inequality (17) is no more LMI. Then, to cope with the 
respective unknown matrix products the inner approximation approach can be used, when 
the resulting LMI is sufficient for the original one to hold.  
The next robust output feedback design method is based on (17) using additional constraint 
on output feedback matrix and the state feedback control design approach proposed 
respectively in (Crusius and Trofino, 1999; deOliveira et al., 1999).  For stabilizing PSD 
control design (without considering cost function) we have the following algorithm (taking 
H=0, Q=0, R=0, S=0). 
PSD controller design algorithm 
Solve the following LMI for unknown matrices F, M, G and Pi of appropriate dimensions, 
the Pi being symmetric, positive definite, M, G being any matrices with corresponding 
dimensions: 

 0i i i
T T T T T T

i i i

P A G B KC

G A C K B G G P S

⎡ ⎤− +
<⎢ ⎥

+ − − + +⎢ ⎥⎣ ⎦
 (31) 

 0,       1,...,iP i N
MC CG
> =
=

 (32) 

Compute the corresponding output feedback gain matrix 

 1F KM−=  (33) 

where  [ ( ) ]Pi Ii Di Di Ii DiF k k k k k k= − + + −  
The algorithm above is quite simple and often provides reasonable results. 

2.5 Examples 
In this subsection the major contribution of the proposed approach: design of robust 
controller with derivative feedback is illustrated on the examples. The results obtained using 
the proposed new iterative algorithm based on (25) to design the PD controller are provided 
and discussed. The impact of matrix S choice is studied as well. We consider affine models 
of uncertain system (1), (2) with symmetric uncertainty domain: 

, jj q qε ε= − =  

Example 2.1 
Consider the uncertain system (1), (2) where 

4.365 0.6723 0.3363 2.3740 0.7485
7.0880 6.5570 4.6010 1.3660 3.4440
2.4100 7.5840 14.3100 0.9461 9.6190

A B
− − −⎡ ⎤ ⎡ ⎤

⎢ ⎥ ⎢ ⎥= − − =⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥− − −⎣ ⎦ ⎣ ⎦

   
0 1 0
0 0 1dC C
⎡ ⎤

= = ⎢ ⎥
⎣ ⎦

 

uncertainty parameter q=1; uncertainty matrices 
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1 1

0.5608 0.8553 0.5892 2.3740 0.7485
0.6698 1.3750 0.9909 1.3660 3.4440
3.1917 1.7971 2.5887 0.9461 9.6190

A B
−⎡ ⎤ ⎡ ⎤
⎢ ⎥ ⎢ ⎥= − − =⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥− −⎣ ⎦ ⎣ ⎦

 

2 2

0.6698 1.3750 0.9909 0.1562 0.1306
2.8963 1.5292 10.5160 0.4958 4.0379
3.5777 2.8389 1.9087 0.0306 0.8947

A B
− −⎡ ⎤ ⎡ ⎤

⎢ ⎥ ⎢ ⎥= − − = −⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥− −⎣ ⎦ ⎣ ⎦

                          

The uncertain system can be described by 4 vertices; corresponding maximal eigenvalues in 
the vertices of open loop system are respectively: -4.0896 ± 2.1956i;  -3.9243;  1.5014;  -4.9595. 
Notice, that the open loop uncertain system is unstable (positive eigenvalue in the third 
vertex). The stabilizing optimal PD controller has been designed by solving matrix 
inequality (25). Optimality is considered in the sense of guaranteed cost w.r.t. cost function 
(23) with matrices  2 2 3 3, 0.001 *R I Q I× ×= = . The results summarized in Tab.2.1 indicate the 
differences between results obtained for different choice of cost matrix S respective to a 
derivative of x. 
 

 
S 

Controller matrices  
F   (proportional part) 
Fd  (derivative part) 

Max eigenvalues in 
vertices 

 
1e-6 *I 

1.0567 0.5643
2.1825 1.4969

F
− −⎡ ⎤

= ⎢ ⎥− −⎣ ⎦
 

0.3126 0.2243
0.0967 0.0330dF
− −⎡ ⎤

= ⎢ ⎥−⎣ ⎦
 

-4.8644 
-2.4074 
 
-3.8368 ± 1.1165 i 
-4.7436 

 
0.1 *I 

1.0724 0.5818
2.1941 1.4642

F
− −⎡ ⎤

= ⎢ ⎥− −⎣ ⎦
 

0.3227 0.2186
0.0969 0.0340dF

− −⎡ ⎤
= ⎢ ⎥−⎣ ⎦

 

-4.9546 
-2.2211 
 
-3.7823 ± 1.4723 i 
-4.7751 

Table 2.1  PD controllers from Example 2.1. 
Example 2.2 
Consider the uncertain system (1), (2) where 

2.9800 0.9300 0 0.0340 0.0320
0.9900 0.2100 0.0350 0.0011 0

0 0 0 1 0
0.3900 5.5550 0 1.8900 1.6000

A B

− − −⎡ ⎤ ⎡ ⎤
⎢ ⎥ ⎢ ⎥− − −⎢ ⎥ ⎢ ⎥= =
⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥

− − −⎣ ⎦ ⎣ ⎦

    
0 0 1 0
0 0 0 1

C
⎡ ⎤

= ⎢ ⎥
⎣ ⎦

 

0 1.5 0 0 0
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0

A B

⎡ ⎤ ⎡ ⎤
⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥= =
⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥
⎣ ⎦ ⎣ ⎦

. 
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[ ( ) ]P I D D I DF k k k k k k= − + + − (see (30)); (taking block diagonal structure of feedback 
matrix gain F provides decentralized controller). Inequality (17) is LMI for stability analysis 
for unknown H, G and Pi, however considering control design, having one more unknown 
matrix F in ( )Ci i iA A B FC= + , the inequality (17) is no more LMI. Then, to cope with the 
respective unknown matrix products the inner approximation approach can be used, when 
the resulting LMI is sufficient for the original one to hold.  
The next robust output feedback design method is based on (17) using additional constraint 
on output feedback matrix and the state feedback control design approach proposed 
respectively in (Crusius and Trofino, 1999; deOliveira et al., 1999).  For stabilizing PSD 
control design (without considering cost function) we have the following algorithm (taking 
H=0, Q=0, R=0, S=0). 
PSD controller design algorithm 
Solve the following LMI for unknown matrices F, M, G and Pi of appropriate dimensions, 
the Pi being symmetric, positive definite, M, G being any matrices with corresponding 
dimensions: 

 0i i i
T T T T T T

i i i

P A G B KC

G A C K B G G P S

⎡ ⎤− +
<⎢ ⎥

+ − − + +⎢ ⎥⎣ ⎦
 (31) 

 0,       1,...,iP i N
MC CG
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=

 (32) 

Compute the corresponding output feedback gain matrix 
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where  [ ( ) ]Pi Ii Di Di Ii DiF k k k k k k= − + + −  
The algorithm above is quite simple and often provides reasonable results. 

2.5 Examples 
In this subsection the major contribution of the proposed approach: design of robust 
controller with derivative feedback is illustrated on the examples. The results obtained using 
the proposed new iterative algorithm based on (25) to design the PD controller are provided 
and discussed. The impact of matrix S choice is studied as well. We consider affine models 
of uncertain system (1), (2) with symmetric uncertainty domain: 
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Example 2.1 
Consider the uncertain system (1), (2) where 
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A B
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⎣ ⎦
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The uncertain system can be described by 4 vertices; corresponding maximal eigenvalues in 
the vertices of open loop system are respectively: -4.0896 ± 2.1956i;  -3.9243;  1.5014;  -4.9595. 
Notice, that the open loop uncertain system is unstable (positive eigenvalue in the third 
vertex). The stabilizing optimal PD controller has been designed by solving matrix 
inequality (25). Optimality is considered in the sense of guaranteed cost w.r.t. cost function 
(23) with matrices  2 2 3 3, 0.001 *R I Q I× ×= = . The results summarized in Tab.2.1 indicate the 
differences between results obtained for different choice of cost matrix S respective to a 
derivative of x. 
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Controller matrices  
F   (proportional part) 
Fd  (derivative part) 

Max eigenvalues in 
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1e-6 *I 
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2.1825 1.4969

F
− −⎡ ⎤

= ⎢ ⎥− −⎣ ⎦
 

0.3126 0.2243
0.0967 0.0330dF
− −⎡ ⎤
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-4.8644 
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0.1 *I 
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2.1941 1.4642

F
− −⎡ ⎤

= ⎢ ⎥− −⎣ ⎦
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Table 2.1  PD controllers from Example 2.1. 
Example 2.2 
Consider the uncertain system (1), (2) where 

2.9800 0.9300 0 0.0340 0.0320
0.9900 0.2100 0.0350 0.0011 0

0 0 0 1 0
0.3900 5.5550 0 1.8900 1.6000

A B

− − −⎡ ⎤ ⎡ ⎤
⎢ ⎥ ⎢ ⎥− − −⎢ ⎥ ⎢ ⎥= =
⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥
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0 0 1 0
0 0 0 1

C
⎡ ⎤

= ⎢ ⎥
⎣ ⎦

 

0 1.5 0 0 0
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0

A B

⎡ ⎤ ⎡ ⎤
⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥= =
⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥
⎣ ⎦ ⎣ ⎦
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The results are summarized in Tab.2.2 for 4 41, 0.0005 *R Q I ×= = for various values of cost 
function matrix S. As indicated in Tab.2.2, increasing values of S slow down the response as 
assumed (max. eigenvalue of closed loop system is shifted to zero). 
 

S qmax Max. eigenvalue of closed loop system 
1e-8 *I 1.1 -0.1890 
0.1 *I 1.1 -0.1101 
0.2 *I 1.1 -0.0863 
0.29 *I 1.02 -0.0590 

Table 2.2  Comparison of closed loop eigenvalues (Example 2.2) for various S. 

3. Robust PID controller design in the frequency domain 
In this section an original frequency domain robust control design methodology is presented 
applicable for uncertain systems described by a set of transfer function matrices. A two-
stage as well as a direct design procedures were developed, both being based on the 
Equivalent Subsystems Method - a Nyquist-based decentralized controller design method 
for stability and guaranteed performance (Kozáková et al., 2009a;2009b), and stability 
conditions for the M-Δ structure (Skogestad & Postlethwaite, 2005; Kozáková et al., 2009a, 
2009b). Using the additive affine type uncertainty and related Maf–Q structure stability 
conditions, it is possible to relax conservatism of the M-Δ stability conditions (Kozáková & 
Veselý, 2007). 

3.1 Preliminaries and problem formulation 
Consider a MIMO system described by a transfer function matrix ( ) m mG s R ×∈ , and a 
controller ( ) m mR s R ×∈  in the standard feedback configuration (Fig. 1); w, u, y, e, d are 
respectively vectors of reference, control, output, control error and disturbance of 
compatible dimensions. Necessary and sufficient conditions for internal stability of the 
closed-loop in Fig. 1 are given by the Generalized Nyquist Stability Theorem applied to the 
closed-loop characteristic polynomial   

 det ( ) det[ ( )]F s I Q s= +  (34) 

where ( ) ( ) ( )Q s G s R s= m mR ×∈  is the open-loop transfer function matrix. 
 

w e yu
d

R(s) G(s) 

 
Fig. 1. Standard feedback configuration 

The following standard notation is used: D - the standard Nyquist D-contour in the complex 
plane; Nyquist plot of ( )g s  - the image of the Nyquist contour under g(s); [ , ( )]N k g s  - the 
number of anticlockwise encirclements of the point (k, j0) by the Nyquist plot of g(s). 
Characteristic functions of ( )Q s  are the set of m algebraic functions ( ), 1,...,iq s i m=  given as  

Robust Controller Design: New Approaches in the Time and the Frequency Domains    

 

229 

 det[ ( ) ( )] 0 1,...,i mq s I Q s i m− = =  (35) 

Characteristic loci (CL) are the set of loci in the complex plane traced out by the 
characteristic functions of Q(s), s D∀ ∈ . The closed-loop characteristic polynomial (34) 
expressed in terms of characteristic functions of ( )Q s  reads as follows 

 
1

det ( ) det[ ( )] [1 ( )]
m

i
i

F s I Q s q s
=

= + = +∏  (36) 

Theorem 3.1 (Generalized Nyquist Stability Theorem) 
The closed-loop system in Fig. 1 is stable if and only if  

 

1

a.      det ( ) 0

b.      [0,det ( )] {0,[1 ( )]}
m

i q
i

F s s D

N F s N q s n
=

≠ ∀ ∈

= + =∑  (37) 

where ( ) ( ( ))F s I Q s= + and nq is the number of unstable poles of Q(s).   
Let the uncertain plant be given as a set Π of N transfer function matrices  

 { ( )}, 1,2,...,kG s k NΠ = =  where { }( ) ( )k k
ij m m

G s G s
×

=  (38) 
 

The simplest uncertainty model is the unstructured uncertainty, i.e. a full complex 
perturbation matrix with the same dimensions as the plant. The set of unstructured 
perturbations DU is defined as follows 

 max max: { ( ) : [ ( )] ( ), ( ) max [ ( )]}U k
D E j E j E jω σ ω ω ω σ ω= ≤ =  (39) 

 

where ( )ω  is a scalar weight function on the norm-bounded perturbation ( ) m ms RΔ ×∈ , 
max[ ( )] 1jσ Δ ω ≤  over given frequency range, max( )σ ⋅  is the maximum singular value of (.), 

i.e. 
 

 ( ) ( ) ( )E j jω ω Δ ω=  (40) 
 

For unstructured uncertainty, the set Π  can be generated by either additive (Ea), 
multiplicative input (Ei) or output (Eo) uncertainties, or their inverse counterparts (Eia, Eii, 
Eio), the latter used for uncertainty associated with plant poles located in the closed right 
half-plane (Skogestad & Postlethwaite, 2005).  
Denote ( )G s any member of a set of possible plants , , , , , ,k k a i o ia ii ioΠ = ; 0( )G s the nominal 
model used to design the controller, and ( )k ω the scalar weight on a normalized 
perturbation. Individual uncertainty forms generate the following related sets kΠ : 
Additive uncertainty: 
 

 
0

max 0

: { ( ) : ( ) ( ) ( ), ( ) ( ) ( )}

( ) max [ ( ) ( )], 1,2, ,
a a a a

k
a k

G s G s G s E s E j j

G j G j k N

Π ω ω Δ ω

ω σ ω ω

= = + ≤

= − =  (41) 
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The results are summarized in Tab.2.2 for 4 41, 0.0005 *R Q I ×= = for various values of cost 
function matrix S. As indicated in Tab.2.2, increasing values of S slow down the response as 
assumed (max. eigenvalue of closed loop system is shifted to zero). 
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for stability and guaranteed performance (Kozáková et al., 2009a;2009b), and stability 
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2009b). Using the additive affine type uncertainty and related Maf–Q structure stability 
conditions, it is possible to relax conservatism of the M-Δ stability conditions (Kozáková & 
Veselý, 2007). 

3.1 Preliminaries and problem formulation 
Consider a MIMO system described by a transfer function matrix ( ) m mG s R ×∈ , and a 
controller ( ) m mR s R ×∈  in the standard feedback configuration (Fig. 1); w, u, y, e, d are 
respectively vectors of reference, control, output, control error and disturbance of 
compatible dimensions. Necessary and sufficient conditions for internal stability of the 
closed-loop in Fig. 1 are given by the Generalized Nyquist Stability Theorem applied to the 
closed-loop characteristic polynomial   

 det ( ) det[ ( )]F s I Q s= +  (34) 

where ( ) ( ) ( )Q s G s R s= m mR ×∈  is the open-loop transfer function matrix. 
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The following standard notation is used: D - the standard Nyquist D-contour in the complex 
plane; Nyquist plot of ( )g s  - the image of the Nyquist contour under g(s); [ , ( )]N k g s  - the 
number of anticlockwise encirclements of the point (k, j0) by the Nyquist plot of g(s). 
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Characteristic loci (CL) are the set of loci in the complex plane traced out by the 
characteristic functions of Q(s), s D∀ ∈ . The closed-loop characteristic polynomial (34) 
expressed in terms of characteristic functions of ( )Q s  reads as follows 
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Theorem 3.1 (Generalized Nyquist Stability Theorem) 
The closed-loop system in Fig. 1 is stable if and only if  
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m

i q
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N F s N q s n
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= + =∑  (37) 

where ( ) ( ( ))F s I Q s= + and nq is the number of unstable poles of Q(s).   
Let the uncertain plant be given as a set Π of N transfer function matrices  
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The simplest uncertainty model is the unstructured uncertainty, i.e. a full complex 
perturbation matrix with the same dimensions as the plant. The set of unstructured 
perturbations DU is defined as follows 

 max max: { ( ) : [ ( )] ( ), ( ) max [ ( )]}U k
D E j E j E jω σ ω ω ω σ ω= ≤ =  (39) 

 

where ( )ω  is a scalar weight function on the norm-bounded perturbation ( ) m ms RΔ ×∈ , 
max[ ( )] 1jσ Δ ω ≤  over given frequency range, max( )σ ⋅  is the maximum singular value of (.), 

i.e. 
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For unstructured uncertainty, the set Π  can be generated by either additive (Ea), 
multiplicative input (Ei) or output (Eo) uncertainties, or their inverse counterparts (Eia, Eii, 
Eio), the latter used for uncertainty associated with plant poles located in the closed right 
half-plane (Skogestad & Postlethwaite, 2005).  
Denote ( )G s any member of a set of possible plants , , , , , ,k k a i o ia ii ioΠ = ; 0( )G s the nominal 
model used to design the controller, and ( )k ω the scalar weight on a normalized 
perturbation. Individual uncertainty forms generate the following related sets kΠ : 
Additive uncertainty: 
 

 
0

max 0

: { ( ) : ( ) ( ) ( ), ( ) ( ) ( )}

( ) max [ ( ) ( )], 1,2, ,
a a a a

k
a k

G s G s G s E s E j j

G j G j k N

Π ω ω Δ ω

ω σ ω ω

= = + ≤

= − =  (41) 
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Multiplicative input uncertainty: 

 0
1

max 0 0

: { ( ) : ( ) ( )[ ( )], ( ) ( ) ( )}

( ) max { ( )[ ( ) ( )]}, 1,2, ,
i i i i

k
i k

G s G s G s I E s E j j j

G j G j G j k N

Π ω ω Δ ω

ω σ ω ω ω−

= = + ≤

= − =
 (42) 

Multiplicative output uncertainty: 

 0 0
1

max 0 0

: { ( ) : ( ) [ ( )] ( ), ( ) ( ) ( )}

( ) max {[ ( ) ( )] ( )}, 1,2, ,
o o o

k
o k

G s G s I E s G s E j j j

G j G j G j k N

Π ω ω Δ ω

ω σ ω ω ω−

= = + ≤

= − =
 (43) 

Inverse additive uncertainty 

 
1

0 0
1 1

max 0

: { ( ) : ( ) ( )[ ( ) ( )] , ( ) ( ) ( )}

( ) max {[ ( )] [ ( )] }, 1,2, ,
ia ia ia ia

k
ia k

G s G s G s I E s G j E j j

G j G j k N

Π ω ω ω Δ ω

ω σ ω ω

−

− −

= = − ≤

= − =
 (44) 

Inverse multiplicative input uncertainty 

 
1

0
1

max 0

: { ( ) : ( ) ( )[ ( )] , ( ) ( ) ( )}

( ) max { [ ( )] [ ( )]}, 1,2, ,
ii ii ii ii

k
ii k

G s G s G s I E s E j j

I G j G j k N

Π ω ω Δ ω

ω σ ω ω

−

−

= = − ≤

= − =
 (45) 

Inverse multiplicative output uncertainty: 

 
1

0
1

max 0

: { ( ) : ( ) [ ( )] ( ), ( ) ( ) ( )}

( ) max { [ ( )][ ( )] }, 1,2, ,
io io io io

k
io k

G s G s I E s G s E j j

I G j G j k N

Π ω ω Δ ω

ω σ ω ω

−

−

= = − ≤

= − =
 (46) 

Standard feedback configuration with uncertain plant modelled using any above 
unstructured uncertainty form can be recast into the M Δ−  structure (for additive 
perturbation Fig. 2) where M(s) is the nominal model and ( ) m ms RΔ ×∈ is the norm-bounded 
complex perturbation.  
If the nominal closed-loop system is stable then M(s) is stable and ( )sΔ is a perturbation 
which can destabilize the system. The following theorem establishes conditions on M(s) so 
that it cannot be destabilized by ( )sΔ  (Skogestad & Postlethwaite, 2005). 
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Fig. 2. Standard feedback configuration with unstructured additive uncertainty (left) recast 
into the M Δ−  structure (right) 
Theorem 3.2 (Robust stability for unstructured perturbations) 
Assume that the nominal system M(s) is stable (nominal stability) and the perturbation 

( )sΔ is stable. Then the M Δ−  system in Fig. 2 is stable for all perturbations 
( )sΔ : max( ) 1σ Δ ≤  if and only if 
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 max[ ( )] 1 ,M jσ ω ω< ∀  (47) 

For individual uncertainty forms ( ) ( ), , , , , ,k kM s M s k a i o ia ii io= =� ; the corresponding 
matrices ( )kM s are given below (disregarding the negative signs which do not affect 
resulting robustness condition); commonly, the nominal model 0( )G s is obtained as a model 
of mean parameter values. 

 1
0( ) ( ) ( )[ ( ) ( )] ( ) ( )a a aM s s R s I G s R s s M s−= + =� �  additive uncertainty (48) 

 1
0 0( ) ( ) ( )[ ( ) ( )] ( ) ( ) ( )i i iM s s R s I G s R s G s s M s−= + =� �  multiplicative input uncertainty (49) 

 1
0 0( ) ( ) ( ) ( )[ ( ) ( )] ( ) ( )o o oM s s G s R s I G s R s s M s−= + =� �  multiplicative output uncertainty (50) 

 1
0 0( ) ( )[ ( ) ( )] ( ) ( ) ( )ia ia iaM s s I G s R s G s s M s−= + =� �  inverse additive uncertainty (51) 

 1
0( ) ( )[ ( ) ( )] ( ) ( )ii ii iiM s s I R s G s s M s−= + =� �  inverse multiplicative input uncertainty (52) 

 1
0( ) ( )[ ( ) ( )] ( ) ( )io io ioM s s I G s R s s M s−= + =� �  inverse multiplicative output uncertainty (53) 

Conservatism of the robust stability conditions can be reduced by structuring the 
unstructured additive perturbation by introducing the additive affine-type uncertainty ( )afE s  
that brings about new way of nominal system computation and robust stability conditions 
modifiable for the decentralized controller design as (Kozáková & Veselý, 2007; 2008). 

 
1

( ) ( )
p

af i i
i

E s G s q
=

= ∑  (54) 

where ( ) m m
iG s R ×∈ , i=0,1, …, p are stable matrices, p is the number of uncertainties defining 

2p polytope vertices that correspond to individual perturbed models; qi are polytope 
parameters. The set afΠ  generated by the additive affine-type uncertainty (Eaf) is   

 0 min max min max
1

: { ( ) : ( ) ( ) , ( ) , , , 0}
p

af af af i i i i i i i
i

G s G s G s E E G s q q q q q qΠ
=

= = + = ∈< > + =∑  (55) 

where 0( )G s  is the „afinne“ nominal model. Put into vector-matrix form, individual 
perturbed plants (elements of the set afΠ ) can be expressed as follows 

 
1

0 1 0

( )
( ) ( ) [ ] ( ) ( )

( )
q qp u

p

G s
G s G s I I G s QG s

G s

⎡ ⎤
⎢ ⎥

= + = +⎢ ⎥
⎢ ⎥
⎣ ⎦

… �  (56) 

where 
1

( )[ ]
p

m m pT
q qQ I I R × ×= ∈… ,  

iq i m mI q I ×= ,   ( )
1( ) [ ] m p mT

u pG s G G R × ×= ∈… . 

Standard feedback configuration with uncertain plant modelled using the additive affine 
type uncertainty is shown in Fig. 3 (on the left); by analogy with previous cases, it can be 
recast into the afM Q−  structure in Fig. 3 (on the right) where  
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Multiplicative input uncertainty: 
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k
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Multiplicative output uncertainty: 
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k
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ω σ ω ω ω−
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1 1

max 0

: { ( ) : ( ) ( )[ ( ) ( )] , ( ) ( ) ( )}
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k
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Π ω ω ω Δ ω

ω σ ω ω

−
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1

0
1

max 0

: { ( ) : ( ) ( )[ ( )] , ( ) ( ) ( )}

( ) max { [ ( )] [ ( )]}, 1,2, ,
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k
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G s G s G s I E s E j j

I G j G j k N

Π ω ω Δ ω

ω σ ω ω

−

−
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= − =
 (45) 

Inverse multiplicative output uncertainty: 

 
1

0
1

max 0

: { ( ) : ( ) [ ( )] ( ), ( ) ( ) ( )}

( ) max { [ ( )][ ( )] }, 1,2, ,
io io io io

k
io k

G s G s I E s G s E j j

I G j G j k N

Π ω ω Δ ω

ω σ ω ω

−

−

= = − ≤

= − =
 (46) 

Standard feedback configuration with uncertain plant modelled using any above 
unstructured uncertainty form can be recast into the M Δ−  structure (for additive 
perturbation Fig. 2) where M(s) is the nominal model and ( ) m ms RΔ ×∈ is the norm-bounded 
complex perturbation.  
If the nominal closed-loop system is stable then M(s) is stable and ( )sΔ is a perturbation 
which can destabilize the system. The following theorem establishes conditions on M(s) so 
that it cannot be destabilized by ( )sΔ  (Skogestad & Postlethwaite, 2005). 
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Fig. 2. Standard feedback configuration with unstructured additive uncertainty (left) recast 
into the M Δ−  structure (right) 
Theorem 3.2 (Robust stability for unstructured perturbations) 
Assume that the nominal system M(s) is stable (nominal stability) and the perturbation 

( )sΔ is stable. Then the M Δ−  system in Fig. 2 is stable for all perturbations 
( )sΔ : max( ) 1σ Δ ≤  if and only if 
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For individual uncertainty forms ( ) ( ), , , , , ,k kM s M s k a i o ia ii io= =� ; the corresponding 
matrices ( )kM s are given below (disregarding the negative signs which do not affect 
resulting robustness condition); commonly, the nominal model 0( )G s is obtained as a model 
of mean parameter values. 
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 1
0( ) ( )[ ( ) ( )] ( ) ( )io io ioM s s I G s R s s M s−= + =� �  inverse multiplicative output uncertainty (53) 

Conservatism of the robust stability conditions can be reduced by structuring the 
unstructured additive perturbation by introducing the additive affine-type uncertainty ( )afE s  
that brings about new way of nominal system computation and robust stability conditions 
modifiable for the decentralized controller design as (Kozáková & Veselý, 2007; 2008). 

 
1

( ) ( )
p

af i i
i

E s G s q
=

= ∑  (54) 

where ( ) m m
iG s R ×∈ , i=0,1, …, p are stable matrices, p is the number of uncertainties defining 

2p polytope vertices that correspond to individual perturbed models; qi are polytope 
parameters. The set afΠ  generated by the additive affine-type uncertainty (Eaf) is   

 0 min max min max
1

: { ( ) : ( ) ( ) , ( ) , , , 0}
p

af af af i i i i i i i
i

G s G s G s E E G s q q q q q qΠ
=

= = + = ∈< > + =∑  (55) 

where 0( )G s  is the „afinne“ nominal model. Put into vector-matrix form, individual 
perturbed plants (elements of the set afΠ ) can be expressed as follows 

 
1

0 1 0

( )
( ) ( ) [ ] ( ) ( )

( )
q qp u

p

G s
G s G s I I G s QG s

G s

⎡ ⎤
⎢ ⎥

= + = +⎢ ⎥
⎢ ⎥
⎣ ⎦

… �  (56) 

where 
1

( )[ ]
p

m m pT
q qQ I I R × ×= ∈… ,  

iq i m mI q I ×= ,   ( )
1( ) [ ] m p mT

u pG s G G R × ×= ∈… . 

Standard feedback configuration with uncertain plant modelled using the additive affine 
type uncertainty is shown in Fig. 3 (on the left); by analogy with previous cases, it can be 
recast into the afM Q−  structure in Fig. 3 (on the right) where  
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 1 1
0 0( ) ( )af u uM G R I G R G I RG R− −= + = +  (57) 

 

w e y 
uQ 

yQ 

-
G0(s) R(s)  

Gu(s) Q 

uQ 

Maf (s) 

yQ 
Q 

 
Fig. 3. Standard feedback configuration with unstructured affine-type additive uncertainty 
(left), recast into the Maf  -Q structure (right) 

Similarly as for the M-Δ system, stability condition of the afM Q−  system is obtained as  

 max( ) 1afM Qσ <  (58) 

Using singular value properties, the small gain theorem, and the assumptions that 
0 min maxi iq q q= = and the nominal model Maf(s) is stable, (58) can further be modified to 

yield the robust stability condition 

 max 0( ) 1afM q pσ <  (59) 

The main aim of Section 3 of this chapter is to solve the next problem. 
Problem 3.1 

Consider an uncertain system with m subsystems given as a set of N transfer function 
matrices obtained in N working points of plant operation, described by a nominal model 

0( )G s and any of the unstructured perturbations (41) – (46) or (55).  
Let the nominal model 0( )G s  can be split into the diagonal part representing mathematical 
models of decoupled subsystems, and the off-diagonal part representing interactions 
between subsystems 

 0( ) ( ) ( )d mG s G s G s= +  (60) 
where   

 ( ) { ( )}d i m mG s diag G s ×= , det ( ) 0dG s s≠ ∀  0( ) ( ) ( )m dG s G s G s= −  (61) 

A decentralized controller 

 ( ) { ( )}i m mR s diag R s ×= , det ( ) 0R s s D≠ ∀ ∈  (62) 

is to be designed with ( )iR s  being transfer function of the i-th local controller. The designed 
controller has to guarantee stability over the whole operating range of the plant specified by 
either (41) – (46) or (55) (robust stability) and a specified performance of the nominal model 
(nominal performance). To solve the above problem, a frequency domain robust 
decentralized controller design technique has been developed (Kozáková & Veselý, 2009; 
Kozáková et. al., 2009b); the core of it is the Equivalent Subsystems Method (ESM).  
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3.2 Decentralized controller design for performance: equivalent subsystems method  
The Equivalent Subsystems Method (ESM) an original Nyquist-based DC design method for 
stability and guaranteed performance of the full system. According to it, local controller 
designs are performed independently for so-called equivalent subsystems that are actually 
Nyquist plots of decoupled subsystems shaped by a selected characteristic locus of the 
interactions matrix. Local controllers of equivalent subsystems independently tuned for 
stability and specified feasible performance constitute the decentralized controller 
guaranteeing specified performance of the full system. Unlike standard robust approaches, 
the proposed technique considers full mean parameter value nominal model, thus reducing 
conservatism of resulting robust stability conditions. In the context of robust decentralized 
controller design, the Equivalent Subsystems Method (Kozáková et. al., 2009b) is applied to 
design a decentralized controller for the nominal model G0(s) as depicted in Fig. 4.  
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Fig. 4. Standard feedback loop under decentralized controller 

The key idea behind the method is factorisation of the closed-loop characteristic polynomial 
detF(s) in terms of the split nominal system (60) under the decentralized controller (62) 
(existence of 1( )R s−  is implied by the assumption (62) that det ( ) 0R s ≠ ) 

 { } 1det ( ) det [ ( ) ( )] ( ) det[ ( ) ( ) ( )]det ( )d m d mF s I G s G s R s R s G s G s R s−= + + = + +  (63) 
Denote 

 1
1( ) ( ) ( ) ( ) ( ) ( )d m mF s R s G s G s P s G s−= + + = +  (64) 

where 

 1( ) ( ) ( )dP s R s G s−= +  (65) 

is a diagonal matrix ( ) { ( )}i m mP s diag p s ×= . Considering (63) and (64), the stability condition 
(37b) in Theorem 3.1 modifies as follows 

 {0, det[ ( ) ( )]} [0, det ( )]m qN P s G s N R s n+ + =  (66) 

and a simple manipulation of (65) yields 
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where   
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A decentralized controller 

 ( ) { ( )}i m mR s diag R s ×= , det ( ) 0R s s D≠ ∀ ∈  (62) 

is to be designed with ( )iR s  being transfer function of the i-th local controller. The designed 
controller has to guarantee stability over the whole operating range of the plant specified by 
either (41) – (46) or (55) (robust stability) and a specified performance of the nominal model 
(nominal performance). To solve the above problem, a frequency domain robust 
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 ( )[ ( ) ( )] ( ) ( ) 0eq
dI R s G s P s I R s G s+ − = + =  (67) 

where 

 ( ) { ( )} { ( ) ( )} 1, ,eq eq
m m i i m miG s diag G s diag G s p s i m× ×= = − = …  (68) 

is a diagonal matrix of equivalent subsystems ( )eq
iG s ; on subsystems level, (67) yields m 

equivalent characteristic polynomials 

 ( ) 1 ( ) ( ) 1,2,... ,eq eq
ii iCLCP s R s G s i m= + =  (69) 

Hence, by specifying P(s) it is possible to affect performance of individual subsystems 
(including stability) through 1( )R s− . In the context of the independent design philosophy, 
design parameters ( ), 1,2, ,ip s i m= …  represent constraints for individual designs. General 
stability conditions for this case are given in Corollary 3.1. 
Corollary 3.1 (Kozáková & Veselý, 2009) 
The closed-loop in Fig. 4 comprising the system (60) and the decentralized controller (62) is 
stable if and only if  
1. there exists a diagonal matrix 1,...,( ) { ( )}i i mP s diag p s ==  such that all equivalent 

subsystems (68) can be stabilized by their related local controllers Ri(s), i.e. all 
equivalent characteristic polynomials ( ) 1 ( ) ( )eq eq

ii iCLCP s R s G s= + , 1,2,... ,i m=  have 
roots with Re{ } 0s < ;   

2. the  following two conditions are met s D∀ ∈ :  

 
a.    det[ ( ) ( )] 0
b.    [0,det ( )]

m

q

P s G s
N F s n

+ ≠
=

 (70) 

where ( )det ( ) det ( ) ( )F s I G s R s= + and qn is the number of open loop poles with Re{ } 0s > . 
In general, ( )ip s  are to be transfer functions, fulfilling conditions of Corollary 3.1, and the 
stability condition resulting form the small gain theory;  according to it if both P-1(s) and 
Gm(s) are stable, the necessary and sufficient closed-loop stability condition is 

 1( ) ( ) 1mP s G s− <       or    min max[ ( )] [ ( )]mP s G sσ σ>  (71) 

To provide closed-loop stability of the full system under a decentralized controller, 
( ), 1,2, ,ip s i m= …  are to be chosen so as to appropriately cope with the interactions ( )mG s .  

A special choice of P(s) is addressed in (Kozáková et al.2009a;b): if considering characteristic 
functions ( )ig s of Gm(s) defined according to (35) for 1,...,i m= , and choosing P(s) to be 
diagonal with identical entries equal to any selected characteristic function gk(s) of [-Gm(s)], 
where {1,..., }k m∈  is fixed, i.e. 

 ( ) ( )kP s g s I= − ,    {1,..., }k m∈  is fixed (72) 

then substituting (72) in (70a) and violating the well-posedness condition yields 

 
1

det[ ( ) ( )] [ ( ) ( )] 0
m

m k i
i

P s G s g s g s
=

+ = − + =∏ s D∀ ∈  (73) 
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In such a case the full closed-loop system is at the limit of instability with equivalent 
subsystems generated by the selected ( )kg s  according to 

 ( ) ( ) ( ) 1,2,...,eq
i kikG s G s g s i m= + = , s D∀ ∈  (74) 

 
Similarly, if choosing ( ) ( )kP s g s Iα α− = − − , 0 mα α≤ ≤  where mα denotes the maximum 
feasible degree of stability for the given plant under the decentralized controller ( )R s , then  

 1
1

det ( ) [ ( ) ( )] 0
m

k i
i

F s g s g sα α α
=

− = − − + − =∏     s D∀ ∈  (75) 

Hence, the closed-loop system is stable and has just poles with Re{ }s α≤ − , i.e. its degree of 
stability is α . Pertinent equivalent subsystems are generated according to 

 ( ) ( ) ( ) 1,2,...,eq
i kikG s G s g s i mα α α− = − + − =  (76) 

To guarantee stability, the following additional condition has to be satisfied simultaneously 

 1
1 1

det [ ( ) ( )] ( ) 0
m m

k k i ik
i i

F g s g s r sα
= =

= − − + = ≠∏ ∏    s D∀ ∈  (77) 

Simply put, by suitably choosing :α 0 mα α≤ ≤ to generate ( )P s α−  it is possible to 
guarantee performance under the decentralized controller in terms of the degree of 
stabilityα . Lemma 3.1 provides necessary and sufficient stability conditions for the closed-
loop in Fig. 4 and conditions for guaranteed performance in terms of the degree of stability.  
Definition 3.1 (Proper characteristic locus) 
The characteristic locus ( )kg s α−  of ( )mG s α− , where fixed {1,..., }k m∈ and 0α > , is called 
proper characteristic locus if it satisfies conditions (73), (75) and (77). The set of all proper 
characteristic loci of a plant is denoted SΡ .  
Lemma 3.1 
The closed-loop in Fig. 4 comprising the system (60) and the decentralized controller (62) is 
stable if and only if the following conditions are satisfied s D∀ ∈ , 0α ≥  and 
fixed {1,..., }k m∈ : 
1. ( )k Sg s Pα− ∈    
2. all equivalent characteristic polynomials (69) have roots with Res α≤ − ;   
3. [0,det ( )] qN F s n αα− =  
where ( ) ( ) ( )F s I G s R sα α α− = + − − ; qn α  is the number of open loop poles with Re{ }s α> − . 
Lemma 3.1 shows that local controllers independently tuned for stability and a specified 
(feasible) degree of stability of equivalent subsystems constitute the decentralized controller 
guaranteeing the same degree of stability for the full system. The design technique resulting 
from Corollary 3.1 enables to design local controllers of equivalent subsystems using any 
SISO frequency-domain design method, e.g. the Neymark D-partition method (Kozáková et 
al. 2009b), standard Bode diagram design etc.  If considering other performance measures in 
the ESM, the design proceeds according to Corollary 3.1 with P(s) and  

( ) ( ) ( ), 1,2,...,eq
i kikG s G s g s i m= + =  generated according to (72) and (74), respectively. 
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equivalent characteristic polynomials 
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Hence, by specifying P(s) it is possible to affect performance of individual subsystems 
(including stability) through 1( )R s− . In the context of the independent design philosophy, 
design parameters ( ), 1,2, ,ip s i m= …  represent constraints for individual designs. General 
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where ( )det ( ) det ( ) ( )F s I G s R s= + and qn is the number of open loop poles with Re{ } 0s > . 
In general, ( )ip s  are to be transfer functions, fulfilling conditions of Corollary 3.1, and the 
stability condition resulting form the small gain theory;  according to it if both P-1(s) and 
Gm(s) are stable, the necessary and sufficient closed-loop stability condition is 
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To provide closed-loop stability of the full system under a decentralized controller, 
( ), 1,2, ,ip s i m= …  are to be chosen so as to appropriately cope with the interactions ( )mG s .  

A special choice of P(s) is addressed in (Kozáková et al.2009a;b): if considering characteristic 
functions ( )ig s of Gm(s) defined according to (35) for 1,...,i m= , and choosing P(s) to be 
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 ( ) ( )kP s g s I= − ,    {1,..., }k m∈  is fixed (72) 
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In such a case the full closed-loop system is at the limit of instability with equivalent 
subsystems generated by the selected ( )kg s  according to 

 ( ) ( ) ( ) 1,2,...,eq
i kikG s G s g s i m= + = , s D∀ ∈  (74) 

 
Similarly, if choosing ( ) ( )kP s g s Iα α− = − − , 0 mα α≤ ≤  where mα denotes the maximum 
feasible degree of stability for the given plant under the decentralized controller ( )R s , then  
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Hence, the closed-loop system is stable and has just poles with Re{ }s α≤ − , i.e. its degree of 
stability is α . Pertinent equivalent subsystems are generated according to 
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To guarantee stability, the following additional condition has to be satisfied simultaneously 
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Simply put, by suitably choosing :α 0 mα α≤ ≤ to generate ( )P s α−  it is possible to 
guarantee performance under the decentralized controller in terms of the degree of 
stabilityα . Lemma 3.1 provides necessary and sufficient stability conditions for the closed-
loop in Fig. 4 and conditions for guaranteed performance in terms of the degree of stability.  
Definition 3.1 (Proper characteristic locus) 
The characteristic locus ( )kg s α−  of ( )mG s α− , where fixed {1,..., }k m∈ and 0α > , is called 
proper characteristic locus if it satisfies conditions (73), (75) and (77). The set of all proper 
characteristic loci of a plant is denoted SΡ .  
Lemma 3.1 
The closed-loop in Fig. 4 comprising the system (60) and the decentralized controller (62) is 
stable if and only if the following conditions are satisfied s D∀ ∈ , 0α ≥  and 
fixed {1,..., }k m∈ : 
1. ( )k Sg s Pα− ∈    
2. all equivalent characteristic polynomials (69) have roots with Res α≤ − ;   
3. [0,det ( )] qN F s n αα− =  
where ( ) ( ) ( )F s I G s R sα α α− = + − − ; qn α  is the number of open loop poles with Re{ }s α> − . 
Lemma 3.1 shows that local controllers independently tuned for stability and a specified 
(feasible) degree of stability of equivalent subsystems constitute the decentralized controller 
guaranteeing the same degree of stability for the full system. The design technique resulting 
from Corollary 3.1 enables to design local controllers of equivalent subsystems using any 
SISO frequency-domain design method, e.g. the Neymark D-partition method (Kozáková et 
al. 2009b), standard Bode diagram design etc.  If considering other performance measures in 
the ESM, the design proceeds according to Corollary 3.1 with P(s) and  

( ) ( ) ( ), 1,2,...,eq
i kikG s G s g s i m= + =  generated according to (72) and (74), respectively. 
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According to the latest results, guaranteed performance in terms of maximum overshoot is 
achieved by applying Bode diagram design for specified phase margin in equivalent 
subsystems. This approach is addressed in the next subsection. 

3.3  Robust decentralized controller design  
The presented frequency domain robust decentralized controller design technique is 
applicable for uncertain systems described as a set of transfer function matrices.  The basic 
steps are: 
1. Modelling the uncertain system 
This step includes choice of the nominal model and modelling uncertainty using any 
unstructured uncertainty (41)-(46) or (55). The nominal model can be calculated either as the 
mean value parameter model (Skogestad & Postlethwaite, 2005), or the “affine” model, 
obtained within the procedure for calculating the affine-type additive uncertainty 
(Kozáková & Veselý, 2007; 2008). Unlike the standard robust approach to decentralized 
control design which considers diagonal model as the nominal one (interactions are 
included in the uncertainty), the ESM method applied in the design for nominal 
performance allows to consider the full nominal model.  
2. Guaranteeing  nominal stability and performance  
The ESM method is used to design a decentralized controller (62) guaranteeing stability and 
specified performance of the nominal model (nominal stability, nominal performance). 
3. Guaranteeing robust stability 
In addition to nominal performance, the decentralized controller has to guarantee closed-
loop stability over the whole operating range of the plant specified by the chosen 
uncertainty description (robust stability). Robust stability is examined by means of the M-Δ 
stability condition (47) or the Maf--Q stability condition (59) in case of the affine type additive 
uncertainty (55). 
Corollary 3.2 (Robust stability conditions under DC)   
The closed-loop in Fig. 3 comprising the uncertain system given as a set of transfer function 
matrices and described by any type of unstructured uncertainty (41) – (46) or (55) with 
nominal model fulfilling (60), and the decentralized controller (62) is stable over the  
pertinent uncertainty region if any of the following conditions hold 
1. for any (41)–(46), conditions of Corollary 3.1 and (47) are simultaneously satisfied where 

( ) ( ), , , , , ,k kM s M s k a i o ia ii io= =  and Mk given by (48)-(53) respectively. 
2. for (55), conditions of Corollary 3.1 and (59) are simultaneously satisfied. 
Based on Corollary 3.2, two approaches to the robust decentralized control design have been 
developed:  the two-stage and the direct approaches. 

1. The two stage robust decentralized controller design approach based on the M-Δ structure stability 
conditions (Kozáková & Veselý, 2008;, Kozáková & Veselý, 2009; Kozáková et al. 2009a).  

In the first stage, the decentralized controller for the nominal system is designed using ESM, 
afterwards, fulfilment of the M-Δ or Maf-Q stability conditions (47) or (59), respectively is 
examined; if satisfied, the design procedure stops, otherwise the second stage follows: either 
controller parameters are additionally modified to satisfy robust stability conditions in the 
tightest possible way (Kozáková et al. 2009a), or the redesign is carried out with modified 
performance requirements (Kozáková & Veselý, 2009). 
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2. Direct decentralized controller design for robust stability and nominal performance 

By direct integration of the robust stability condition (47) or (59) in the ESM, local controllers 
of equivalent subsystems are designed with regard to robust stability. Performance 
specification for the full system in terms of the maximum peak of the complementary 
sensitivity TM  corresponding to maximum overshoot in individual equivalent subsystems 
is translated into lower bounds for their phase margins according to (78) (Skogestad & 
Postlethwaite, 2005)  

 
1 12arcsin [ ]

2 T T
PM rad

M M
⎛ ⎞

≥ ≥⎜ ⎟
⎝ ⎠

 (78) 

where PM is the phase margin, MT is the maximum peak of the complementary sensitivity  

 1( ) ( ) ( )[ ( ) ( )]T s G s R s I G s R s −= +  (79) 

As for MIMO systems  

 max( )TM Tσ=  (80) 

the upper bound for MT can be obtained using the singular value properties in 
manipulations of the M-Δ condition (47) considering (48)-(53), or the  Maf – Q condition  (58) 
considering (57) and (59). The following upper bounds max 0[ ( )]T jσ ω  for the nominal 
complementary sensitivity 1

0 0 0( ) ( ) ( )[ ( ) ( )]T s G s R s I G s R s −= +  have been derived: 

 min 0
max 0

[ ( )][ ( )] ( )
( ) A

a

G jT j Lσ ω
σ ω ω ω

ω
< = ∀  additive uncertainty (81) 

 max 0
1[ ( )] ( ), , ,
( ) K

k
T j L k i oσ ω ω ω

ω
< = = ∀  multiplicative input/output uncertainty (82) 

 min 0
max 0

max0

[ ( )]1[ ( )] ( )
[ ( )] AF

u

G jT j L
G jq p

σ ω
σ ω ω ω

σ ω
< = ∀  additive affine-type uncertainty (83) 

Using (80) and (78) the upper bounds for the complementary sensitivity of the nominal 
system (81)-(83) can be directly implemented in the ESM due to the fact that performance 
achieved in equivalent subsystems is simultaneously guaranteed for the full system. The 
main benefit of this approach is the possibility to specify maximum overshoot in the full 
system guaranteeing robust stability in terms of max 0( )Tσ ,  translate it into minimum phase 
margin of equivalent subsystems and design local controllers independently for individual 
single input – single output equivalent subsystems. 
The design procedure is illustrated in the next subsection. 

3.4 Example 
Consider a laboratory plant consisting of two interconnected DC motors, where each 
armature voltage (U1, U2) affects rotor speeds of both motors (ω1, ω2). The plant was 
identified in three operating points, and is given as a set 1 2 3{ ( ), ( ), ( )}G s G s G sΠ =  where 
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According to the latest results, guaranteed performance in terms of maximum overshoot is 
achieved by applying Bode diagram design for specified phase margin in equivalent 
subsystems. This approach is addressed in the next subsection. 

3.3  Robust decentralized controller design  
The presented frequency domain robust decentralized controller design technique is 
applicable for uncertain systems described as a set of transfer function matrices.  The basic 
steps are: 
1. Modelling the uncertain system 
This step includes choice of the nominal model and modelling uncertainty using any 
unstructured uncertainty (41)-(46) or (55). The nominal model can be calculated either as the 
mean value parameter model (Skogestad & Postlethwaite, 2005), or the “affine” model, 
obtained within the procedure for calculating the affine-type additive uncertainty 
(Kozáková & Veselý, 2007; 2008). Unlike the standard robust approach to decentralized 
control design which considers diagonal model as the nominal one (interactions are 
included in the uncertainty), the ESM method applied in the design for nominal 
performance allows to consider the full nominal model.  
2. Guaranteeing  nominal stability and performance  
The ESM method is used to design a decentralized controller (62) guaranteeing stability and 
specified performance of the nominal model (nominal stability, nominal performance). 
3. Guaranteeing robust stability 
In addition to nominal performance, the decentralized controller has to guarantee closed-
loop stability over the whole operating range of the plant specified by the chosen 
uncertainty description (robust stability). Robust stability is examined by means of the M-Δ 
stability condition (47) or the Maf--Q stability condition (59) in case of the affine type additive 
uncertainty (55). 
Corollary 3.2 (Robust stability conditions under DC)   
The closed-loop in Fig. 3 comprising the uncertain system given as a set of transfer function 
matrices and described by any type of unstructured uncertainty (41) – (46) or (55) with 
nominal model fulfilling (60), and the decentralized controller (62) is stable over the  
pertinent uncertainty region if any of the following conditions hold 
1. for any (41)–(46), conditions of Corollary 3.1 and (47) are simultaneously satisfied where 

( ) ( ), , , , , ,k kM s M s k a i o ia ii io= =  and Mk given by (48)-(53) respectively. 
2. for (55), conditions of Corollary 3.1 and (59) are simultaneously satisfied. 
Based on Corollary 3.2, two approaches to the robust decentralized control design have been 
developed:  the two-stage and the direct approaches. 

1. The two stage robust decentralized controller design approach based on the M-Δ structure stability 
conditions (Kozáková & Veselý, 2008;, Kozáková & Veselý, 2009; Kozáková et al. 2009a).  

In the first stage, the decentralized controller for the nominal system is designed using ESM, 
afterwards, fulfilment of the M-Δ or Maf-Q stability conditions (47) or (59), respectively is 
examined; if satisfied, the design procedure stops, otherwise the second stage follows: either 
controller parameters are additionally modified to satisfy robust stability conditions in the 
tightest possible way (Kozáková et al. 2009a), or the redesign is carried out with modified 
performance requirements (Kozáková & Veselý, 2009). 
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2. Direct decentralized controller design for robust stability and nominal performance 

By direct integration of the robust stability condition (47) or (59) in the ESM, local controllers 
of equivalent subsystems are designed with regard to robust stability. Performance 
specification for the full system in terms of the maximum peak of the complementary 
sensitivity TM  corresponding to maximum overshoot in individual equivalent subsystems 
is translated into lower bounds for their phase margins according to (78) (Skogestad & 
Postlethwaite, 2005)  
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where PM is the phase margin, MT is the maximum peak of the complementary sensitivity  

 1( ) ( ) ( )[ ( ) ( )]T s G s R s I G s R s −= +  (79) 

As for MIMO systems  

 max( )TM Tσ=  (80) 

the upper bound for MT can be obtained using the singular value properties in 
manipulations of the M-Δ condition (47) considering (48)-(53), or the  Maf – Q condition  (58) 
considering (57) and (59). The following upper bounds max 0[ ( )]T jσ ω  for the nominal 
complementary sensitivity 1

0 0 0( ) ( ) ( )[ ( ) ( )]T s G s R s I G s R s −= +  have been derived: 
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Using (80) and (78) the upper bounds for the complementary sensitivity of the nominal 
system (81)-(83) can be directly implemented in the ESM due to the fact that performance 
achieved in equivalent subsystems is simultaneously guaranteed for the full system. The 
main benefit of this approach is the possibility to specify maximum overshoot in the full 
system guaranteeing robust stability in terms of max 0( )Tσ ,  translate it into minimum phase 
margin of equivalent subsystems and design local controllers independently for individual 
single input – single output equivalent subsystems. 
The design procedure is illustrated in the next subsection. 

3.4 Example 
Consider a laboratory plant consisting of two interconnected DC motors, where each 
armature voltage (U1, U2) affects rotor speeds of both motors (ω1, ω2). The plant was 
identified in three operating points, and is given as a set 1 2 3{ ( ), ( ), ( )}G s G s G sΠ =  where 
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In calculating the affine nominal model G0(s), all possible allocations of G1(s), G2(s), G3(s) into 
the 22 = 4 polytope vertices were examined (24 combinations) yielding 24 affine nominal 
model candidates and related transfer functions matrices G4(s) needed to complete the 
description of the uncertainty region. The selected affine nominal model G0(s) is the one 
guaranteeing the smallest additive uncertainty calculated according to (41): 
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The upper bound ( )AFL ω for T0(s) calculated according to (82) is plotted in Fig. 5. Its worst 
(minimum value) min ( ) 1.556T AFM L

ω
ω= =  corresponds to 37.48PM ≥ according to (78). 
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Fig. 5. Plot of LAF(ω) calculated according to (82) 

The Bode diagram design of local controllers for guaranteed PM was carried out for 
equivalent subsystems generated according to (74) using characteristic locus g1(s) of the 
matrix of interactions Gm(s), i.e. 21 ( ) ( ) ( ) 1,2eq

iiG s G s g s i= + = . Bode diagrams of equivalent 
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subsystems 11 21( ), ( )eq eqG s G s  are in Fig. 6. Applying the PI controller design from Bode diagram 
for required phase margin 39PM = has yielded the following local controllers 

1
3.367 s +1.27( )R s

s
=  2

1.803 0.491( ) sR s
s
+

=  

Bode diagrams of compensated equivalent subsystems in Fig. 8 prove the achieved phase 
margin. Robust stability was verified using the original Maf-Q condition (59) with p=2 and 
q0=1; as depicted in Fig. 8, the closed loop under the designed controller is robustly stable. 
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Fig. 6. Bode diagrams of equivalent subsystems 11( )eqG s (left), 21( )eqG s (right) 
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Fig. 7. Bode diagrams of equivalent subsystems 11( )eqG s (left), 21( )eqG s (right) under designed 
local controllers R1(s), R2(s), respectively.  
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In calculating the affine nominal model G0(s), all possible allocations of G1(s), G2(s), G3(s) into 
the 22 = 4 polytope vertices were examined (24 combinations) yielding 24 affine nominal 
model candidates and related transfer functions matrices G4(s) needed to complete the 
description of the uncertainty region. The selected affine nominal model G0(s) is the one 
guaranteeing the smallest additive uncertainty calculated according to (41): 
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Fig. 5. Plot of LAF(ω) calculated according to (82) 
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subsystems 11 21( ), ( )eq eqG s G s  are in Fig. 6. Applying the PI controller design from Bode diagram 
for required phase margin 39PM = has yielded the following local controllers 
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Bode diagrams of compensated equivalent subsystems in Fig. 8 prove the achieved phase 
margin. Robust stability was verified using the original Maf-Q condition (59) with p=2 and 
q0=1; as depicted in Fig. 8, the closed loop under the designed controller is robustly stable. 
 
 

10 -3 10-2 10-1 10
0

10
1

10
2

-60

-40

-20

0

20

M
ag

ni
tu

de
 [d

B
] 

10 -3 10-2 10-1 100 101 102
-300

-200

-100

0

omega [rad/s]

P
ha

sa
 [d

eg
] 

     

10-3 10-2 10-1 100 10 1 10 2
-60

-40

-20

0

20

M
ag

ni
tu

de
 [d

B
] 

10-3 10-2 10-1 100 10 1 10 2
-300

-200

-100

0

omega [rad/s]

P
ha

se
 [d

eg
] 
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Fig. 7. Bode diagrams of equivalent subsystems 11( )eqG s (left), 21( )eqG s (right) under designed 
local controllers R1(s), R2(s), respectively.  



 Robust Control, Theory and Applications 

 

240 

0 5 10 15 20 25 30
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

ω [rad/s]

 

 

 

Fig. 8. Verification of robust stability using condition (59) in the form max
1( )
2afMσ <  

4. Conclusion 
The chapter reviews recent results on robust controller design for linear uncertain systems 
applicable also for decentralized control design. 
In the first part of the chapter the new robust PID controller design method based on LMI` is 
proposed for uncertain linear system. The important feature of this PID design approach is 
that the derivative term appears in such form that enables to consider the model 
uncertainties. The guaranteed cost control is proposed with a new quadratic cost function 
including the derivative term for state vector as a tool to influence the overshoot and 
response rate.  
In the second part of the chapter a novel frequency-domain approach to the decentralized 
controller design for guaranteed performance is proposed. Its principle consists in including 
plant interactions in individual subsystems through their characteristic functions, thus 
yielding a diagonal system of equivalent subsystems. Local controllers of equivalent 
subsystems independently tuned for specified performance constitute the decentralized 
controller guaranteeing the same performance for the full system. The proposed approach 
allows direct integration of robust stability condition in the design of local controllers of 
equivalent subsystems.  
Theoretical results are supported with results obtained by solving some examples. 
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Robust Stabilization and Discretized PID Control

Yoshifumi Okuyama
Tottori University, Emeritus

Japan

1. Introduction

At present, almost all feedback control systems are realized using discretized
(discrete-time and discrete-value, i.e., digital) signals. However, the analysis and design
of discretized/quantized control systems has not been entirely elucidated. The first attempt
to elucidate the problem was described in a paper by Kalman (1) in 1956. Since then,
many researchers have studied this problem, particularly the aspect of understanding and
mitigating the quantization effects in quantized feedback control, e.g.,(2–4). However, few
results have been obtained for the stability analysis of the nonlinear discrete-time feedback
system.
This article describes the robust stability analysis of discrete-time and discrete-value control
systems and presents a method for designing (stabilizing) PID control for nonlinear
discretized systems. The PID control scheme has been widely used in practice and theory
thus far irrespective of whether it is continuous or discrete in time (5; 6) since it is a basic
feedback control technique.
In the previous study (7–9), a robust stability condition for nonlinear discretized control
systems that accompany discretizing units (quantizers) at equal spaces was examined in a
frequency domain. It was assumed that the discretization is executed at the input and output
sides of a nonlinear continuous elemet (sensor/actuator) and that the sampling period is
chosen such that the size is suitable for discretization in the space. This paper presents a
designing problem for discretized control systems on a grid pattern in the time and controller
variables space. In this study, the concept of modified Nyquist and Nichols diagrams for
nonlinear control systems given in (10; 11) is applied to the designing procedure in the
frequency domain.
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Fig. 1. Nonlinear discretized PID control system.
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2. Discretized control system

The discretized control system in question is represented by a sampled-data (discrete-time)
feedback system as shown in Fig. 1. In the figure, G(z) is the z-transform of continuous plant
G(s) together with the zero-order hold, C(z) is the z-transform of the digital PID controller,
and D1 and D2 are the discretizing units at the input and output sides of the nonlinear
element, respectively.
The relationship between e and u† = Nd(e) is a stepwise nonlinear characteristic on an
integer-grid pattern. Figure 2 (a) shows an example of discretized sigmoid-type nonlinear
characteristic. For C-language expression, the input/output characteristic can be written as

e† = γ ∗ (double)(int)(e/γ)
u = 0.4 ∗ e† + 3.0 ∗ atan(0.6 ∗ e†) (1)

u† = γ ∗ (double)(int)(u/γ),

where (int) and (double) denote the conversion into an integral number (a round-down
discretization) and the reconversion into a double-precision real number, respectively. Note
that even if the continuous characteristic is linear, the input/output characterisitc becomes
nonlinear on a grid pattern as shown in Fig. 2 (b), where the linear continuous characteristic
is chosen as u = 0.85 ∗ e†.
In this study, a round-down discretization, which is usually executed on a computer, is
applied. Therefore, the relationship between e† and u† is indicated by small circles on the
stepwise nonlinear characteristic. Here, each signal e†, u†, · · · can be assigned to an integer
number as follows:

e† ∈ {· · · ,−3γ,−2γ,−γ, 0, γ, 2γ, 3γ, · · · },

u† ∈ {· · · ,−3γ,−2γ,−γ, 0, γ, 2γ, 3γ, · · · },

where γ is the resolution of each variable. Without loss of generality, hereafter, it is assumed
that γ = 1.0. That is, the variables e†, u†, · · · are defined by integers as follows:

e†, u† ∈ Z, Z = {· · · − 3,−2,−1, 0, 1, 2, 3, · · · }.

On the other hand, the time variable t is given as t ∈ {0, h, 2h, 3h, · · · } for the sampling period
h. When assuming h = 1.0, the following expression can be defined:

t ∈ Z+, Z+ = {0, 1, 2, 3, · · · }.

Therefore, each signal e†(t), u†(t), · · · traces on a grid pattern that is composed of integers in
the time and controller variables space.
The discretized nonlinear characteristic

u† = Nd(e†) = K e† + g(e†), 0 < K < ∞, (2)

as shown in Fig. 2(a) is partitioned into the following two sections:

|g(e†)| ≤ ḡ < ∞, (3)

for |e†| < ε, and
|g(e†)| ≤ β |e†|, 0 ≤ β ≤ K, (4)
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Fig. 2. Discretized nonlinear characteristics on a grid pattern.

for |e†| ≥ ε. (In Fig. 2 (a) and (b), the threshold is chosen as ε = 2.0.)
Equation (3) represents a bounded nonlinear characteristic that exists in a finite region. On
the other hand, equation (4) represents a sectorial nonlinearity for which the equivalent linear
gain exists in a limited range. It can also be expressed as follows:

0 ≤ g(e†)e† ≤ βe†2 ≤ Ke†2. (5)

When considering the robust stability in a global sense, it is sufficient to consider the nonlinear
term (4) for |e†| ≥ ε because the nonlinear term (3) can be treated as a disturbance signal. (In
the stability problem, a fluctuation or an offset of error is assumed to be allowable in |e†| < ε.)
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Fig. 3. Nonlinear subsystem g(e).

g∗(·)

W(β, q, z)

�

�

� �

���

�

r� e∗ v∗

u�y� d�

+

−

+
+

Fig. 4. Equivalent feedback system.

245Robust Stabilization and Discretized PID Control



2. Discretized control system

The discretized control system in question is represented by a sampled-data (discrete-time)
feedback system as shown in Fig. 1. In the figure, G(z) is the z-transform of continuous plant
G(s) together with the zero-order hold, C(z) is the z-transform of the digital PID controller,
and D1 and D2 are the discretizing units at the input and output sides of the nonlinear
element, respectively.
The relationship between e and u† = Nd(e) is a stepwise nonlinear characteristic on an
integer-grid pattern. Figure 2 (a) shows an example of discretized sigmoid-type nonlinear
characteristic. For C-language expression, the input/output characteristic can be written as

e† = γ ∗ (double)(int)(e/γ)
u = 0.4 ∗ e† + 3.0 ∗ atan(0.6 ∗ e†) (1)

u† = γ ∗ (double)(int)(u/γ),

where (int) and (double) denote the conversion into an integral number (a round-down
discretization) and the reconversion into a double-precision real number, respectively. Note
that even if the continuous characteristic is linear, the input/output characterisitc becomes
nonlinear on a grid pattern as shown in Fig. 2 (b), where the linear continuous characteristic
is chosen as u = 0.85 ∗ e†.
In this study, a round-down discretization, which is usually executed on a computer, is
applied. Therefore, the relationship between e† and u† is indicated by small circles on the
stepwise nonlinear characteristic. Here, each signal e†, u†, · · · can be assigned to an integer
number as follows:

e† ∈ {· · · ,−3γ,−2γ,−γ, 0, γ, 2γ, 3γ, · · · },

u† ∈ {· · · ,−3γ,−2γ,−γ, 0, γ, 2γ, 3γ, · · · },

where γ is the resolution of each variable. Without loss of generality, hereafter, it is assumed
that γ = 1.0. That is, the variables e†, u†, · · · are defined by integers as follows:

e†, u† ∈ Z, Z = {· · · − 3,−2,−1, 0, 1, 2, 3, · · · }.

On the other hand, the time variable t is given as t ∈ {0, h, 2h, 3h, · · · } for the sampling period
h. When assuming h = 1.0, the following expression can be defined:

t ∈ Z+, Z+ = {0, 1, 2, 3, · · · }.

Therefore, each signal e†(t), u†(t), · · · traces on a grid pattern that is composed of integers in
the time and controller variables space.
The discretized nonlinear characteristic

u† = Nd(e†) = K e† + g(e†), 0 < K < ∞, (2)

as shown in Fig. 2(a) is partitioned into the following two sections:

|g(e†)| ≤ ḡ < ∞, (3)
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3. Equivalent discrete-time system

In this study, the following new sequences e∗†
m (k) and v∗†

m (k) are defined based on the above
consideration:

e∗†
m (k) = e†

m(k) + q · Δe†(k)
h

, (6)

v∗†
m (k) = v†

m(k) − βq · Δe†(k)
h

, (7)

where q is a non-negative number, e†
m(k) and v†

m(k) are neutral points of sequences e†(k) and
v†(k),

e†
m(k) =

e†(k) + e†(k − 1)
2

, (8)

v†
m(k) =

v†(k) + v†(k − 1)
2

, (9)

and Δe†(k) is the backward difference of sequence e†(k), that is,

Δe†(k) = e†(k) − e†(k − 1). (10)

The relationship between equations (6) and (7) with respect to the continuous values is shown
by the block diagram in Fig. 3. In this figure, δ is defined as

δ(z) :=
2
h
· 1 − z−1

1 + z−1 . (11)

Thus, the loop transfer function from v∗ to e∗ can be given by W(β, q, z), as shown in Fig. 4,
where

W(β, q, z) =
(1 + qδ(z))G(z)C(z)

1 + (K + βqδ(z))G(z)C(z)
, (12)

and r�, d� are transformed exogenous inputs. Here, the variables such as v∗, u� and y� written
in Fig. 4 indicate the z-transformed ones.
In this study, the following assumption is provided on the basis of the relatively fast sampling
and the slow response of the controlled system.

[Assumption] The absolute value of the backward difference of sequence e(k) does not
exceed γ, i.e.,

|Δe(k)| = |e(k)− e(k − 1)| ≤ γ. (13)

If condition (13) is satisfied, Δe†(k) is exactly ±γ or 0 because of the discretization. That is, the
absolute value of the backward difference can be given as

|Δe†(k)| = |e†(k) − e†(k − 1)| = γ or 0. �

The assumption stated above will be satisfied by the following examples. The phase trace of
backward difference Δe† is shown in the figures.
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4. Norm inequalities

In this section, some lemmas with respect to an �2 norm of the sequences are presented. Here,
we define a new nonlinear function

f (e) := g(e) + β e. (14)

When considering the discretized output of the nonlinear characteristic, v† = g(e†), the
following expression can be given:

f (e†(k)) = v†(k) + βe†(k). (15)

From inequality (4), it can be seen that the function (15) belongs to the first and third
quadrants. Figure 5 shows an example of the continuous nonlinear characteristics u = N(e)
and f (e), the discretized outputs u† = Nd(e†) and f (e†), and the sector (4) to be considered.
When considering the equivalent linear characteristic, the following inequality can be defined:

0 ≤ ψ(k) :=
f (e†(k))

e†(k)
≤ 2β. (16)

When this type of nonlinearity ψ(k) is used, inequality (4) can be expressed as

v†(k) = g(e†(k)) = (ψ(k)− β)e†(k). (17)

For the neutral points of e†(k) and v†(k), the following expression is given from (15):

1
2
( f (e†(k)) + f (e†(k − 1))) = v†

m(k) + βe†
m(k). (18)

Moreover, equation (17) is rewritten as v†
m(k) = (ψ(k) − β)e†

m(k). Since |e†
m(k)| ≤ |em(k)|, the

following inequality is satisfied when a round-down discretization is executed:

|v†
m(k)| ≤ β|e†

m(k)| ≤ β|em(k)|. (19)
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Based on the above premise, the following norm conditions are examined

[Lemma-1] The following inequality holds for a positive integer p:

�v†
m(k)�2,p ≤ β�e†

m(k)�2,p ≤ β�em(k)�2,p. (20)

Here, � · �2,p denotes the Euclidean norm, which can be defined by

�x(k)�2,p :=

(
p

∑
k=1

x2(k)

)1/2

.

(Proof) The proof is clear from inequality (19). �
[Lemma-2] If the following inequality is satisfied with respect to the inner product of the
neutral points of (15) and the backward difference:

� v†
m(k) + βe†

m(k), Δe†(k) �p ≥ 0, (21)

the following inequality can be obtained:

�v∗†
m (k)�2,p ≤ β�e∗†

m (k)�2,p (22)

for any q ≥ 0. Here, �·, ·�p denotes the inner product, which is defined as

� x1(k), x2(k) �p =
p

∑
k=1

x1(k)x2(k).

(Proof) The following equation is obtained from (6) and (7):

β2�e∗†
m (k)�2

2,p − �v∗†
m (k)�2

2,p = β2�e†
m(k)�2

2,p − �v†
m(k)�2

2,p +
2βq

h
· �v†

m(k) + βe†
m(k), Δe†(k)�p.

(23)
Thus, (22) is satisfied by using the left inequality of (20). Moreover, as for the input of g∗(·),
the following inequality can be obtained from (23) and the right inequality (20):

�v∗†
m (k)�2,p ≤ β�e∗m(k)�2,p. (24)

�
The left side of inequality (21) can be expressed as a sum of trapezoidal areas.

[Lemma-3] For any step p, the following equation is satisfied:

σ(p) := � v†
m(k) + βe†

m(k), Δe†(k) �p =
1
2

p

∑
k=1

( f (e†(k)) + f (e†(k − 1)))Δe†(k). (25)

(Proof) The proof is clear from (18). �
In order to understand easily, an example of the sequences of continuous/discretized signals
and the sum of trapezoidal areas is depicted in Fig. 6. The curve e and the sequence of circles
e† show the input of the nonlinear element and its discretized signal. The curve u and the
sequence of circles u† show the corresponding output of the nonlinear characteristic and its
discretized signal, respectively. As is shown in the figure, the sequences of circles e† and
u† trace on a grid pattern that is composed of integers. The sequence of circles v† shows
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Fig. 6. Discretized input/output signals of a nonlinear element.

the discretized output of the nonlinear characteristic g(·). The curve of shifted nonlinear
characteristic f (e) and the sequence of circles f (e†) are also shown in the figure.
In general, the sum of trapezoidal areas holds the following property.

[Lemma-4] If inequality (13) is satisfied with respect to the discretization of the control
system, the sum of trapezoidal areas becomes non-negative for any p, that is,

σ(p) ≥ 0. (26)

(Proof) Since f (e†(k)) belongs to the first and third quadrants, the area of each trapezoid

τ(k) :=
1
2
( f (e†(k)) + f (e†(k − 1)))Δe†(k) (27)

On the other hand, the trapezoidal area τ(k) is non-positive when e(k) decreases (increases)
in the first (third) quadrant. Strictly speaking, when (e(k) ≥ 0 and Δe(k) ≥ 0) or
(e(k) ≤ 0 and Δe(k) ≤ 0), τ(k) is non-negative for any k. On the other hand, when
(e(k) ≥ 0 and Δe(k) ≤ 0) or (e(k) ≤ 0 and Δe(k) ≥ 0), τ(k) is non-positive for any k. Here,
Δe(k) ≥ 0 corresponds to Δe†(k) = γ or 0 (and Δe(k) ≤ 0 corresponds to Δe†(k) = −γ or 0)
for the discretized signal, when inequality (13) is satisfied.
The sum of trapezoidal area is given from (25) as:

σ(p) =
p

∑
k=1

τ(k). (28)

Therefore, the following result is derived based on the above. The sum of trapezoidal areas
becomes non-negative, σ(p) ≥ 0, regardless of whether e(k) (and e†(k)) increases or decreases.
Since the discretized output traces the same points on the stepwise nonlinear characteristic,
the sum of trapezoidal areas is canceled when e(k) (and e†(k) decreases (increases) from a
certain point (e†(k), f (e†(k))) in the first (third) quadrant. (Here, without loss of generality, the
response of discretized point (e†(k), f (e†(k))) is assumed to commence at the origin.) Thus,
the proof is concluded. �

249Robust Stabilization and Discretized PID Control



Based on the above premise, the following norm conditions are examined

[Lemma-1] The following inequality holds for a positive integer p:

�v†
m(k)�2,p ≤ β�e†

m(k)�2,p ≤ β�em(k)�2,p. (20)

Here, � · �2,p denotes the Euclidean norm, which can be defined by

�x(k)�2,p :=

(
p

∑
k=1

x2(k)

)1/2

.

(Proof) The proof is clear from inequality (19). �
[Lemma-2] If the following inequality is satisfied with respect to the inner product of the
neutral points of (15) and the backward difference:

� v†
m(k) + βe†

m(k), Δe†(k) �p ≥ 0, (21)

the following inequality can be obtained:

�v∗†
m (k)�2,p ≤ β�e∗†

m (k)�2,p (22)

for any q ≥ 0. Here, �·, ·�p denotes the inner product, which is defined as

� x1(k), x2(k) �p =
p

∑
k=1

x1(k)x2(k).

(Proof) The following equation is obtained from (6) and (7):

β2�e∗†
m (k)�2

2,p − �v∗†
m (k)�2

2,p = β2�e†
m(k)�2

2,p − �v†
m(k)�2

2,p +
2βq

h
· �v†

m(k) + βe†
m(k), Δe†(k)�p.

(23)
Thus, (22) is satisfied by using the left inequality of (20). Moreover, as for the input of g∗(·),
the following inequality can be obtained from (23) and the right inequality (20):

�v∗†
m (k)�2,p ≤ β�e∗m(k)�2,p. (24)

�
The left side of inequality (21) can be expressed as a sum of trapezoidal areas.

[Lemma-3] For any step p, the following equation is satisfied:

σ(p) := � v†
m(k) + βe†

m(k), Δe†(k) �p =
1
2

p

∑
k=1

( f (e†(k)) + f (e†(k − 1)))Δe†(k). (25)

(Proof) The proof is clear from (18). �
In order to understand easily, an example of the sequences of continuous/discretized signals
and the sum of trapezoidal areas is depicted in Fig. 6. The curve e and the sequence of circles
e† show the input of the nonlinear element and its discretized signal. The curve u and the
sequence of circles u† show the corresponding output of the nonlinear characteristic and its
discretized signal, respectively. As is shown in the figure, the sequences of circles e† and
u† trace on a grid pattern that is composed of integers. The sequence of circles v† shows

248 Robust Control, Theory and Applications

Fig. 6. Discretized input/output signals of a nonlinear element.

the discretized output of the nonlinear characteristic g(·). The curve of shifted nonlinear
characteristic f (e) and the sequence of circles f (e†) are also shown in the figure.
In general, the sum of trapezoidal areas holds the following property.

[Lemma-4] If inequality (13) is satisfied with respect to the discretization of the control
system, the sum of trapezoidal areas becomes non-negative for any p, that is,

σ(p) ≥ 0. (26)

(Proof) Since f (e†(k)) belongs to the first and third quadrants, the area of each trapezoid

τ(k) :=
1
2
( f (e†(k)) + f (e†(k − 1)))Δe†(k) (27)

On the other hand, the trapezoidal area τ(k) is non-positive when e(k) decreases (increases)
in the first (third) quadrant. Strictly speaking, when (e(k) ≥ 0 and Δe(k) ≥ 0) or
(e(k) ≤ 0 and Δe(k) ≤ 0), τ(k) is non-negative for any k. On the other hand, when
(e(k) ≥ 0 and Δe(k) ≤ 0) or (e(k) ≤ 0 and Δe(k) ≥ 0), τ(k) is non-positive for any k. Here,
Δe(k) ≥ 0 corresponds to Δe†(k) = γ or 0 (and Δe(k) ≤ 0 corresponds to Δe†(k) = −γ or 0)
for the discretized signal, when inequality (13) is satisfied.
The sum of trapezoidal area is given from (25) as:

σ(p) =
p

∑
k=1

τ(k). (28)

Therefore, the following result is derived based on the above. The sum of trapezoidal areas
becomes non-negative, σ(p) ≥ 0, regardless of whether e(k) (and e†(k)) increases or decreases.
Since the discretized output traces the same points on the stepwise nonlinear characteristic,
the sum of trapezoidal areas is canceled when e(k) (and e†(k) decreases (increases) from a
certain point (e†(k), f (e†(k))) in the first (third) quadrant. (Here, without loss of generality, the
response of discretized point (e†(k), f (e†(k))) is assumed to commence at the origin.) Thus,
the proof is concluded. �

249Robust Stabilization and Discretized PID Control



5. Robust stability in a global sense

By applying a small gain theorem to the loop transfer characteristic (12), the following robust
stability condition of the discretized nonlinear control system can be derived

[Theorem] If there exists a q ≥ 0 in which the sector parameter β with respect to nonlinear
term g(·) satisfies the following inequality, the discrete-time control system with sector
nonlinearity (4) is robust stable in an �2 sense:

β < β0 = K · η(q0, ω0) = max
q

min
ω

K · η(q, ω), (29)

when the linearized system with nominal gain K is stable.
The η-function is written as follows:

η(q, ω) :=
−qΩ sin θ +

√
q2Ω2 sin2 θ + ρ2 + 2ρ cos θ + 1

ρ
, ∀ω ∈ [0, ωc], (30)

where Ω(ω) is the distorted frequency of angular frequency ω and is given by

δ(ejωh) = jΩ(ω) = j
2
h

tan
(

ωh
2

)
, j =

√−1 (31)

and ωc is a cut-off frequency. In addition, ρ(ω) and θ(ω) are the absolute value and the phase
angle of KG(ejωh)C(ejωh), respectively.
(Proof) Based on the loop characteristic in Fig. 4, the following inequality can be given with
respect to z = ejωh:

�e∗m(z)�2,p ≤ c1�r�m(z)�2,p + c2�d�m(z)�2,p + sup
z=1

|W(β, q, z)| · �w∗†
m (z)�2,p. (32)

Here, r�m(z) and d�m(z) denote the z-transformation for the neutral points of sequences r�(k)
and d�(k), respectively. Moreover, c1 and c2 are positive constants.
By applying inequality (24), the following expression is obtained:

(
1 − β · sup

z=1
|W(β, q, z)|

)
�e∗m(z)�2,p ≤ c1�r�m(z)�2,p + c2�d�m(z)�2,p. (33)

Therefore, if the following inequality (i.e., the small gain theorem with respect to �2 gains) is
valid,

|W(β, q, ejωh)| =

∣∣∣∣∣
(1 + jqΩ(ω))P(ejωh)C(ejωh)

1 + (K + jβqΩ(ω))P(ejωh)C(ejωh)

∣∣∣∣∣ =

∣∣∣∣∣
(1 + jqΩ(ω))ρ(ω)ejθ(ω)

K + (K + jβqΩ(ω))ρ(ω)ejθ(ω)

∣∣∣∣∣ <
1
β

.

(34)
the sequences e∗m(k), em(k), e(k) and y(k) in the feedback system are restricted in finite values
when exogenous inputs r(k), d(k) are finite and p → ∞. (The definition of �2 stable for
discrete-time systems was given in (10; 11).)
From the square of both sides of inequality (34),

β2ρ2(1 + q2Ω2) < (K + Kρ cos θ − βρqΩ sin θ)2 + (Kρ sin θ + βρqΩ cos θ)2.
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Fig. 7. An example of modified Nichols diagram (M = 1.4, cq = 0.0, 0.2, · · · , 4.0).
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Thus, the following quadratic inequality can be obtained:

β2ρ2 < −2βKρqΩ sin θ + K2(1 + ρ cos θ)2 + K2ρ2 sin2 θ. (35)

Consequently, as a solution of inequality (35),

β <
−KqΩ sin θ + K

√
q2Ω2 sin2 θ + ρ2 + 2ρ cos θ + 1

ρ
= Kη(q, ω). (36)

�

6. Modified Nichols diagram

In the previous papers,the inverse function was used instead of the η-function, i.e.,

ξ(q, ω) =
1

η(q, ω)
.

Using the notation, inequality (29) can be rewritten as follows:

M0 = ξ(q0, ω0) = min
q

max
ω

ξ(q, ω) <
K
β

. (37)

When q = 0, the ξ-function can be expressed as:

ξ(0, ω) =
ρ√

ρ2 + 2ρ cos θ + 1
= |T(ejωh)|, (38)

where T(z) is the complementary sensitivity function for the discrete-time system.
It is evident that the following curve on the gain-phase plane,

ξ(0, ω) = M, (M : const.) (39)
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corresponds to the contour of the constant M in the Nichols diagram. In this study, since an
arbitrary non-negative number q is considered, the ξ-function that corresponds to (38) and
(39) is given as follows:

ρ

−qΩ sin θ +
√

q2Ω2 sin2 θ + ρ2 + 2ρ cos θ + 1
= M. (40)

From this expression, the following quadratic equation can be obtained:

(M2 − 1)ρ2 + 2ρM(M cos θ − qΩ sin θ) + M2 = 0. (41)

The solution of this equation is expressed as follows:

ρ = − M
M2 − 1

(M cos θ − qΩ sin θ) ± M
M2 − 1

√
(M cos θ − qΩ sin θ)2 − (M2 − 1). (42)

The modified contour in the gain-phase plane (θ, ρ) is drawn based on the equation of (42).
Although the distorted frequency Ω is a function of ω, the term qΩ = cq ≥ 0 is assumed to
be a constant parameter. This assumption for M contours was also discussed in (11). Figure
7 shows an example of the modified Nichols diagram for cq ≥ 0 and M = 1.4. Here, GP1
is a gain-phase curve that touches an M contour at the peak value (Mp = ξ(0, ωp) = 1.4).
On the other hand, GP2 is a gain-phase curve that crosses the θ = −180◦ line and all the
M contours at the gain crossover point P2. That is, the gain margin gM becomes equal to
−20 log10 M/(M + 1) = 4.68[dB]. The latter case corresponds to the discrete-time system in
which Aizerman’s conjecture is valid (14; 15). At the continuous saddle point P2, the following
equation is satisfied: (

∂ξ(q, ω)
∂q

)

q=q0,ω=ω0

= 0. (43)

Evidently, the phase margin pM is obtained from the phase crossover point Q2.

7. Controller design

The PID controller applied in this study is given by the following algorithm:

uc(k) = Kpu†(k) + Ci

k

∑
j=0

u†(j) + CdΔu†(k), (44)

where Δu†(k) = u†(k) − u†(k − 1) is a backward difference in integer numbers, and each
coefficient is defined as

Kp, Ci, Cd ∈ Z+, Z+ = {0, 1, 2, 3 · · · }.

Here, Kp, Ci, and Cd correspond to Kp, Kph/TI , and KpTD/h in the following (discrete-time
z-transform expression) PID algorithm:

C(z) = Kp

(
1 +

h
TI(1 − z−1)

+
TD

h
(1 − z−1)

)
. (45)

We use algorithm (44) without division because the variables u†, uc, and coefficients Kp, Ci,
Cd are integers.
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Using the z-transform expression, equation (44) is written as:

uc(z) = C(z)u(z)

=
(

Kp + Ci(1 + z−1 + z−2 + · · · ) + Cd(1 − z−1)
)

u(z).

In the closed form, controller C(z) can be given as

C(z) = Kp + Ci · 1
1 − z−1 + Cd(1 − z−1) (46)

for discrete-time systems. When comparing equations (45) and (46), Ci and Cd become equal
to Kph/TI and KpTD/h, respectively.
The design method adopted in this paper is based on the classical parameter specifications in
the modified Nichols diagram. This method can be conveniently designed, and it is significant
in a physical sense (i.e., mechanical vibration and resonance).
Furthermore, in this article, PID-D2 is considered. The algorithm is written as

uc(k) = Kpu†(k) + Ci

k

∑
j=0

u†(j) + Cd1Δu†(k) + Cd2Δ2u†(k), (47)

where
Δ2u†(k) = Δu†(k) − Δu†(k − 1) = u†(k) − 2u†(k − 1) + u†(k − 2).

Thus, the controller C(z) can be given as

C(z) = Kp + Ci · 1
1 − z−1 + Cd1(1 − z−1) + Cd2(1 − 2z−1 + z−2) (48)

for discrete-time systems.

8. Numerical examples

[Example-1] Consider the following third order controlled system:

G(s) =
K1

(s + 0.04)(s + 0.2)(s + 0.4)
, (49)

where K1 = 0.0002 = 2.0 × 10−4.

Kp Ci Cd β0 gM[dB] pM[deg] Mp
(i) 100 0 0 β̄ 7.72 34.9 1.82
(ii) 100 3 0 0.98 5.92 23.8 2.61
(iii) 100 3 120 β̄ 11.1 35.4 1.69
(iv) 50 0 0 β̄ 10.8 48.6 1.29
(v) 50 2 0 1.00 7.92 30.6 1.99
(vi) 50 2 60 β̄ 13.3 40.5 1.45

Table 1. PID parameters for Example-1 (gM: gain margins, pM: phase margins, Mp: peak
values, β0: allowable sectors).
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Fig. 8. Modified contours and gain-phase curves for Example-1 (M = 1.69,
cq = 0.0, 0.2, · · · , 4.0).
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The discretized nonlinear characteristic (discretized sigmoid, i.e. arc tangent (12)) is as shown
in Fig. ?? (a). In this article, the resolution value and the sampling period are assumed to be
γ = 1.0 and h = 1.0 as described in section 2.
When choosing the nominal gain K = 1.0 and the threshold ε = 2.0, the sectorial area of the
discretized nonlinear characteristic for ε ≤ |e| can be determined as [0.5, 1.5] drawn by dotted
lines in the figure. Figure 8 shows gain-phase curves of KG(ejωh)C(ejωh) on the modified
Nichols diagram. Here, GP1, GP2, and GP3 are cases (i), (ii), and (iii), respectively. The PID
parameters are specified as shown in Table 1. The gain margins gM, the phase margin pM
and the peak value Mp can be obtained from the gain crossover points P, the phase crossover
points Q, and the points of contact with regard to the M contours, respectively.
The max-min value β0 is calculated from (29) (e.g., (ii)) as follows:

β0 = max
q

min
ω

K · η(q, ω) = K · η(q0, ω0) = 0.98.

Therefore, the allowable sector for nonlinear characteristic g(·) is given as [0.0, 1.98]. The
stability of discretized control system (ii) (and also systems (i),(iii)) will be guaranteed. In this
example, the continuous saddle point (43) appears (i.e., Aizerman’s conjecture is satisfied).
Thus, the allowable interval of equivalent linear gain K� can be given as 0 < K� < 1.98. In the
case of (i) and (iii), β0 becomes not less than K. However, from the definition of (4), β̄ in the
tables should be considered β0 = β̄ = 1.0. Figure 9 shows step responses for the three cases. In
this figure, the time-scale line is drawn in 10h increments because of avoiding indistinctness.
Sequences of the input u†(k) and the output u†

c of PID controller are also shown in the figure.
Here, u†

c (k) is drawn to the scale of 1/100. Figure 10 shows phase traces (i.e., sequences of
(e(k), Δe(k)) and (e†((k), Δe†(k))). As is obvious from Fig. 10, assumtion (13) is satisfied. The
step response (i) remains a sutained oscillation and an off-set. However, as for (ii) and (iii) the
responses are improved by using the PID, especially integral (I: a summation in this paper)
algorithm.
The discretized linear characteristic as shown in Fig. ?? (b) is also considered here. In the
figure, the sectorial area of the discretized characteristic for ε ≤ |e| can be determined
as [0.5, 0.85] drawn by dotted lines, and the nominal gain is given as K = 0.675. When
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Fig. 9. Step responses for Example-1.

Fig. 10. Phase traces for Example-1.

Δe

e

normalizing the nominal gain for K = 1.0 (i.e., choosing the gain constant K2 = K1/0.675),
the sectorial area is determined as [0.74, 1.26]. In this case, an example of step responces is
depicted in Fig. 11. The PID parameters used here are also shown in Table 1.

[Example-2] Consider the following fourth order controlled system:

G(s) =
K1

(s + 0.04)(s + 0.2)(s + 0.4)(s + 1.0)
, (50)

where K1 = 0.0002 = 2.0 × 10−4. The same nonlinear characteristic and the nominal gain are
chosen as shown in Example-1.
Figure 12 shows gain-phase curves of KG(ejωh)C(ejωh) on the modified Nichols diagram.
Here, GP1, GP2, GP3 and GP4 are cases (i), (ii), (iii) and (iv) in Table 2, respectively. In this
example, PID-D2 control scheme is also used. The PID-D2 parameters are specified as shown
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Fig. 9. Step responses for Example-1.

Fig. 10. Phase traces for Example-1.
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normalizing the nominal gain for K = 1.0 (i.e., choosing the gain constant K2 = K1/0.675),
the sectorial area is determined as [0.74, 1.26]. In this case, an example of step responces is
depicted in Fig. 11. The PID parameters used here are also shown in Table 1.

[Example-2] Consider the following fourth order controlled system:

G(s) =
K1

(s + 0.04)(s + 0.2)(s + 0.4)(s + 1.0)
, (50)

where K1 = 0.0002 = 2.0 × 10−4. The same nonlinear characteristic and the nominal gain are
chosen as shown in Example-1.
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Fig. 11. Step responses for Example-1 (Discretized linear case).

Fig. 12. Modified contours and gain-phase curves for Example-2 (M = 2.14,
cq = 0.0, 0.2, · · · , 4.0).
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in the table. The max-min value β0 is calculated from (29) (e.g., (iv)) as follows:

β0 = max
q

min
ω

K · η(q, ω) = K · η(q0, ω0) = 0.69.

Therefore, the allowable sector for nonlinear characteristic g(·) is given as [0.0, 1.69]. The
stability of discretized control system (ii) (and also systems (i),(iii),(iv)) will be guaranteed.
In this example, the continuous saddle point (43) appears (i.e., Aizerman’s conjecture is
satisfied). Thus, the allowable interval of equivalent gain K� can be given as 0 < K� < 1.69.
As is shown in Fig. 13, the step response (i) remains a sutained oscillation and an off-set.
However, as for (ii), (iii) and (iv) the responses are improved by using PI, PID and PID-D2

algorithm (D2: a second difference).
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Fig. 13. Step responses for Example-2.

Fig. 14. Modified contours and gain-phase curves for Example-3 (M = 1.44,
cq = 0.0, · · · , 4.0).

ρ

GP3

GP2

GP1

θ

[Example-3] Consider the following nonminimum phase controlled system:

G(s) =
K2(s + 0.2)(−s + 0.4)

(s + 0.02)(s + 0.04)(s + 1.0)
, (51)

Kp Ci Cd1 Cd2 β0 gM[dB] pM[deg] Mp
(i) 80 0 0 0 β̄ 6.8 37.2 1.79
(ii) 80 3 0 0 0.69 4.69 20.9 3.10
(iii) 80 3 60 0 1.00 6.63 27.4 2.26
(iv) 80 3 60 120 β̄ 7.76 28.8 2.14

Table 2. PID-D2 parameters for Example-2.
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Fig. 15. Step responses for Example-3.

where K3 = 0.001 = 1.0 × 10−3. Also, in this example, the same nonlinear characteristic and
the nominal gain are chosen as shown in Example-1. The modified Nichols diagram with
gain-phase curves of KG(ejωh)C(ejωh) is as shown in Fig. 14. Here, GP1, GP2 and GP3 are
cases (i), (ii), and (iii), and the PID parameters are specified as shown in Table 3. Figure 15
shows time responses for the three cases.
For example, in the case of (iii), although the allowable sector of equivalent linear gain is
0 < K� < 5.9, the allowable sector for nonlinear characteristic becomes [0.0, 1.44] as shown
in Table 3. Since the sectorial area of the discretized nonlinear characteristic is [0.5, 1.5], the
stability of the nonlinear control system cannot be guaranteed. The response for (iii) actually
fluctuates as shown in Figs. 15 and 16. This is a counter example for Aizerman’s conjecture.

9. Conclusion

In this article, we have described robust stabilization and discretized PID control for
continuous plants on a grid pattern with respect to controller variables and time elapsed.
A robust stability condition for nonlinear discretized feedback systems was presented along
with a method for designing PID control. The design procedure employs the modified Nichols
diagram and its parameter specifications. The stability margins of the control system are
specified directly in the diagram. Further, the numerical examples showed that the time
responses can be stabilized for the required performance. The concept described in this article
will be applicable to digital and discrete-event control system in general.

Kp Ci Cd β0 gM[dB] pM[deg] Mp
(i) 100 0 0 0.92 15.5 40.6 1.44
(ii) 100 2 0 0.71 14.7 27.7 2.09
(iii) 100 4 40 0.44 15.3 18.1 3.18

Table 3. PID parameters for Example-3.
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Fig. 16. Phase traces for Example-3.
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Fig. 15. Step responses for Example-3.
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Kp Ci Cd β0 gM[dB] pM[deg] Mp
(i) 100 0 0 0.92 15.5 40.6 1.44
(ii) 100 2 0 0.71 14.7 27.7 2.09
(iii) 100 4 40 0.44 15.3 18.1 3.18

Table 3. PID parameters for Example-3.
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Fig. 16. Phase traces for Example-3.
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1. Introduction 
In this section, the small gain theorem is introduced as a background theory of this chapter. 
Then, a large mission on safety and a small mission on analytic solutions are introduced 
after indicating the some problems in discussing robust PI control systems. Moreover, the 
way how it came to be possible to obtain the analytic solution of PI control adjustment for 
the concrete robust control problems with uncertain modeling error which is impossible 
using the space theory for MIMO systems, is shown for a SISO system. The worst lines of 
closed loop gain margin were shown in a parameter plane. Finally, risk, merit and demerit 
of the robust control is discussed and the countermeasure for safeness of that is introduced. 
And some theme, eg., in the lag time system, the MIMO system and a class of non-linear 
system for expansion of the approach of this chapter is introduced. 
- Many researchers have studied on many kinds of robust system recently.  The basic 

robust stability concept is based on the small gain theorem (Zbou K. with Doyle F. C. 
and Glover K., 1996). The theorem insists that a closed loop system is internal (robust) 
stable sufficiently and necessary if the H∞  norm of the nominal closed loop transfer 
function is smaller than the inverse of H∞  norm of the any uncertainty of feedback 
elements. (Fig. 1) Moreover, the expansion of the theorem claims that a closed loop 
system is stable sufficiently if  the product of H∞  norms of open loop transfer functions 
is smaller than 1 when the forward and the feedback transfer functions are both stable. 
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Fig. 1. Feed back system configuration with unknown feedback element 

- In MIMO state space models (A,B,C,D), a necessary and sufficient condition using LMI 
(Linear Matrix Inequality) for the above bounded norm of controlled objects is known 
as the following Bounded Real Lemma (Zhou K. And Khargonekar P.P., 1988) using the 
Riccati unequality and Shure complement. 



[13] Y. Okuyama, “Robust Stabilization and for Discretized PID Control Systems with
Transmission Delay”, Proc. of IEEE Int. Conf. on Decision and Control, Shanghai, P. R. China,
pp. 5120-5126, 2009.

[14] L. T. Grujic, “On Absolute Stability and the Aizerman Conjecture”, Automatica, pp.
335-349. 1981.

[15] Y. Okuyama et al., “Robust Stability Analysis for Nonlinear Sampled-Data Control
Systems and the Aizerman Conjecture”, Proc. of IEEE Int. Conf. on Decision and Control,
Tampa, USA, pp. 849-852, 1998.

260 Robust Control, Theory and Applications

12 

Simple Robust Normalized PI  
Control for Controlled Objects with  

One-order Modelling Error 
Makoto Katoh 

Osaka Institute of Technology 
Japan 

1. Introduction 
In this section, the small gain theorem is introduced as a background theory of this chapter. 
Then, a large mission on safety and a small mission on analytic solutions are introduced 
after indicating the some problems in discussing robust PI control systems. Moreover, the 
way how it came to be possible to obtain the analytic solution of PI control adjustment for 
the concrete robust control problems with uncertain modeling error which is impossible 
using the space theory for MIMO systems, is shown for a SISO system. The worst lines of 
closed loop gain margin were shown in a parameter plane. Finally, risk, merit and demerit 
of the robust control is discussed and the countermeasure for safeness of that is introduced. 
And some theme, eg., in the lag time system, the MIMO system and a class of non-linear 
system for expansion of the approach of this chapter is introduced. 
- Many researchers have studied on many kinds of robust system recently.  The basic 

robust stability concept is based on the small gain theorem (Zbou K. with Doyle F. C. 
and Glover K., 1996). The theorem insists that a closed loop system is internal (robust) 
stable sufficiently and necessary if the H∞  norm of the nominal closed loop transfer 
function is smaller than the inverse of H∞  norm of the any uncertainty of feedback 
elements. (Fig. 1) Moreover, the expansion of the theorem claims that a closed loop 
system is stable sufficiently if  the product of H∞  norms of open loop transfer functions 
is smaller than 1 when the forward and the feedback transfer functions are both stable. 

 

  

+
A(s) 

Δ (s)
+

Y(s) 
W(s)

    

1when  if A  then internal stable∞ ∞Δ ≤ γ <
γ  

Fig. 1. Feed back system configuration with unknown feedback element 

- In MIMO state space models (A,B,C,D), a necessary and sufficient condition using LMI 
(Linear Matrix Inequality) for the above bounded norm of controlled objects is known 
as the following Bounded Real Lemma (Zhou K. And Khargonekar P.P., 1988) using the 
Riccati unequality and Shure complement. 



 Advances in Reinforcement Learning 

 

262 

 1 10 0 ( )

1

T T

T T T
m

p

PA A P PB C

P P such that B P I D G s

C D I

∞

⎡ ⎤
⎢ ⎥+⎢ ⎥
⎢ ⎥

∃ = > − < ⇔ <⎢ ⎥γ γ⎢ ⎥
⎢ ⎥

−⎢ ⎥γ⎣ ⎦

   (0) 

A gain margin between the critical closed loop gain of a dependent type IP controller by 
the Furwits criteria and the analytical closed loop gain solution when closed loop Hardy 
space norm became 1, and the parametric stability margin (Bhattacharyya S. P., 
Chapellat H., and Keel L. H., 1994; Katoh 2010) on uncertain time constant and 
damping coefficient were selected in this chapter for its easiness and robustness  
although it was expected also using this lemma that internal stable concrete conditions 
for controlled objects and forward controllers may obtain. 

- One of H∞ control problems is described to obtain a robust controller K(s) when Hardy 
space norm of closed loop transfer function matrix is bounded like Fig.2 assuming 
various (additive, multiplicative, left co-prime factor etc.) uncertainty of controlled 
objects P(s) (Zbou K. with Doyle F. C. and Glover K., 1996).   
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Fig. 2. Feed back system configuration for obtained robust control K(s) when Hardy space 
norm of closed loop transfer function matrix is bounded 

- The purpose of this chapter for the robust control problem is to obtain analytical 
solution of closed loop gain of a dependent type IP controller and analyze robustness 
by closed loop gain margin for 2nd order controlled objects with one-order feedback like 
(left co-prime factor) uncertainty as Fig.1 in some tuning regions of IP controller when 
Hardy space norm of closed loop transfer function matrix is bounded less than 1. 

- Though another basic robust problem is a cooperation design in frequency region 
between competitive sensitivity and co-sensitivity function, it was omitted in this 
chapter because a tuning region of IP control was superior for unknown input 
disturbance other tuning region was superior for unknown reference disturbance. 

- However, there is some one not simple for using higher order controllers with many 
stable zeros and using the norm with window (Kohonen T., 1995, 1997) for I in Hardy 
space for evaluating the uncertainty of models. Then, a number of robust PI or PID 
controller and compensator design methods have recently been proposed.  But, they are 
not considered on the modelling error or parameter uncertainty. 

- Our given large mission is to construct safe robust systems using simple controllers and 
simple evaluating method of the uncertainty of models. Then, we have proposed robust 
PI controllers for controlled objects without stable zeros (Katoh M., 2008, 2009). Our 
small mission in this chapter is to obtain analytical solution of controller gain with flat 
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gain curve in a band width as Butter-worse filter for the 3rd order closed systems with 
one-order modelling errors and to show the robust property by loop gain margin for 
damping coefficients of nominal controlled objects and time constants of missing 
objects (sensor and signal conditioner) using Table Computation Tool (Excel: Microsoft 
Co. LTD). It is interesting and important historically that infinity time constant is 
contained in the investing set though it isn’t existing actually. Moreover, we confirm the 
robustness for a parameter change by raising and lowering of step response using CAD 
Tool (Simulink: Mathworks Co. LTD). 

- Risk of Integral term of PI controller when disconnecting the feedback line can be 
rescued by M/A station used in many industrial applications or by shutdown of the 
plant in our standing point. Then, we show a simple soft M/A station for simulation 
with PI controllers in appendix.  

- This method is not actually because it becomes complicated to computation for higher 
order objects contained plants with lag time as pointed out in appendix but useful. 

2. System description 
In this section, a description of the higher order generalized system for later 2nd order 
examples with one-order modeling error  is presented although they may not computed 
concretely. 

2.1 Normalized transfer function 
In this section, how to normalize and why to normalize transfer functions are explained. 
The following transfer functions of controlled objects Eq. (1) with multiplicative one-order 
modeling error Eq. (2) are normalized using a general natural angular frequency n

∗ω  and 
gain o sK K K∗ =  as Eq. (3) although the three positions distributed for normalization are 
different.  
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Moreover, converting the differential operator s to s as, 
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Neglecting one-order modeling error, the following normalized open loop transfer function is 
obtained: 
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 where n = 2r + q (6) 

2.2 State space models  
In this section, 3 kinds of description on normalized state space models are shown although 
they may not computed concretely. First shows a continuous realization form of the higher 
order transfer functions to a SISO system. Second shows a normalized sampled system form 
for the first continuous realization on sampling points. Third shows a normalized 
continuously approximated form using logarithm conversion for the second sampled 
system. 
Minimum realization of normalized transfer function: The normalized transfer function, 
shown in Eq. (6), is converted to the following SISO controllable minimum realization:   
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Normalized sampled system on sampling points: Integrating the response between two 
sampling points to the next sampling point, the following precise sampled system is 
obtained: 
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Normalized sampled system approximated:   
Approximating Eq. (3) by the advanced difference method, the following sampled system is 
obtained: 
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Normalized System in continuous region:   
Returning to the continuous region after conversion using the matrix logarithm function, the 
following system is obtained in continuous region: 
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The condition of convergence for logarithm conversion Eq. (11) of controllable accompany 
description Eq. (7) is not described because it is assumed that the sampled time h is 
sufficiently small. The approximated order is then selected as the 9th order. Thus, 0d =  is 
assumed for the simplification. 

3. Controller and parameter tuning 
In this section, an IP controller and a number of parameter tuning methods are presented in 
order to increase the robustness of the control system. 

3.1 Normalized IP controller 
In this section, 3 kinds of description on normalized integral lead dependent type IP 
controller which is not conventional proportional lead dependent type PI controller are 
shown. First is showing inherent frequency for normalization as magnitudes of integral and 
proportional in continuous systems. Second is showing that in digital systems. Third is 
showing again that of digital systems in returning approximated continuous systems. 
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Note that the digital IP controller of Eq. (13) is asymptotic to the proportional control as h 
approaches zero or p  becomes larger.  This controller is called IPL tuning. Then, the stable 
zero = - 1/ pmust be placed not in the neighborhood of the system poles for safety. 

3.2 Stability of closed loop transfer function  
In this section, more higher order systems are processed  for consideration generally on 
three tuning region classified by the amplitude of P control parameter using Hurwits 
approach in example of a second-order system with one-order modelling error. It is guessed 
that there may be four elementary tuning regions and six combinatorial tuning regions 
generally in the aspect of Hurwits stability. 
The following normalized loop transfer function is obtained from the normalized controlled 
object Eq. (5) and the normalized controller Eq. (12): 
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If the original parameters , , 0, 0i ji j ς α∀ > > are positive, then , 0kk β∀ > . 
Assuming p  > 0 and  iK  > 0, and that  
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is a Hurwits polynomial, the stability limits of iK can be obtained as a region of p . Then, 
this region is called a IPL region when p  has a maximum lower bound and an IP0 region 
when p =0. The region between zero and the minimum upper bound is called the IPS. The 
region between the minimum upper bound and the maximum lower bound is called the 
IPM region.  Generally, there are four elementary regions and six combinatorial regions. 

3.3 Stationary points investing approach on fraction equation 
In this section, Stationary Points Investing approach on Fraction Equation for searching 
local maximum with equality restriction is shown using Lagrange’s undecided multiplier 
approach. Then, multiple same solutions of the independent variable are solved at the 
stationary points. They can be used to check for mistakes in calculation as self-diagnostics 
approach. 
Here, the common normalized control parameters iK  and p  will be obtained in continuous 
region, which has reduction models reduced from original region. 
Stationary Points Investing for Fraction Equation approach for searching local maximum 
with equality restriction: 
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This is the design policy of servo control for wide band width. In particular, ( ) 1W o =  
means that steady state error is 0.  
Next, Lagrange’s undecided multiplier approach is applied to obtain stationary points 
sω with equality restriction using the above u,v notations. 

Then, the original problem can be converted to the following problem: 
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where λ is a Lagrange  multiplier. 
The necessary conditions for obtaining the local minimum/maximum of a new function 
become as followings.  
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The following relations are obtained from eqs. (19) and (20): 
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Solutions of control parameters:   
Solving these simultaneous equations, the following functions can be obtained: 
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where sω  is the stationary points vector. 
Multiple solutions of iK can be used to check for mistakes in calculation. 

3.4 Example of a second-order system with one-order modelling error 
In this section, an IP control system in continuous design for a second-order original 
controlled object without one-order sensor and signal conditioner dynamics is assumed for 
simplicity. The closed loop system with uncertain one-order modeling error is normalized 
and obtained the stable region of the integral gain in the three tuning region classified by 
the amplitude of  P control parameter using Hurwits approach. Then, the safeness of the 
only I tuning region and the risk of the large P tuning region are discussed.  Moreover, the 
analytic solutions of stationary points and double same integral gains are obtained using 
the Stationary Points Investing on Fraction Equation approach for the gain curve of a 
closed loop system. 
Here, an IP control system for a second-order controlled object without sensor dynamics is 
assumed. 
Closed-loop transfer function: 
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Stable conditions by Hurwits approach with four parameters: 
a. In the case of a certain  time constant 
IPL&IPS Common Region: 
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Stable conditions by Hurwits approach with four parameters: 
a. In the case of a certain  time constant 
IPL&IPS Common Region: 
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IPL, IPS Separate Region: 
The integral gain stability region is given by Eqs. (28)-(30).  
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It can be proven that 3k >0 in the IPS region, and 
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IP0 Region: 
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The IP0 region is most safe because it has not zeros. 
b. In the case of an uncertain positive time constant 
IPL&IPS Common Region: 
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IPL, IPS Separate Region: 
This region is given by Eq. (32). 
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IP0 Region: 
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c. Robust loop gain margin 
The following loop gain margin is obtained from eqs. (28) through (38) in the cases of certain 
and uncertain parameters: 

 iUL

i

Kgm
K

 (39) 

where  i ULK  is the upper limit of the stable loop gain iK . 
Stable conditions by Hurwits approach with three parameters: 
The stability conditions will be shown in order to determine the risk of one order modelling 
error, 
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Hurwits Stability is omitted because h  is sufficiently small, although it can be checked using 
the bilinear transform. 
Robust loop gain margin: 

 ( _ )gm PL region= ∞  (42) 

It is risky to increase the loop gain in the IPL region too much, even if the system does not 
become unstable because a model order error may cause instability in the IPL region. In the 
IPL region, the sensitivity of the disturbance from the output rises and the flat property of 
the gain curve is sacrificed, even if the disturbance from the input can be isolated to the 
output upon increasing the control gain. 
Frequency transfer function: 
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When the evaluation function is considered to be two variable functions (ω  and 
iK ) and the 

stationary point is obtained, the system with the parameters does not satisfy the above 
stability conditions.  
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When the evaluation function is considered to be two variable functions (ω  and 
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stationary point is obtained, the system with the parameters does not satisfy the above 
stability conditions.  
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Therefore, only the stationary points in the direction of ω  will be obtained without 
considering the evaluation function on iK  alone.   
Stationary points and the integral gain:  
Using the Stationary Points Investing for Fraction Equation approach based on Lagrange’s 
undecided multiplier approach with equality restriction, the following two loop gain 
equations on x are obtained. Both identities can be used to check for miscalculation. 

 2 2
1 0.5{ 2(2 1) 1}/{2 ( 1) }iK x x x pς ς= + − + + −  (44) 
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Equating the right-hand sides of these equations, the third-order algebraic equation and the 
solutions for semi-positive stationary points are obtained as follows: 

 
22(2 1)(2 )0, 1px x
p

ς ς− −
= = −  (46) 

These points, which are called the first and second stationary points, call the first and second 
tuning methods, respectively, which specify the points for gain 1. 

4. Numerical results 
In this section, the solutions of double same integral gain for a tuning region at the 
stationary point of the gain curve of the closed system are shown and checked in some 
parameter tables on normalized proportional gains and normalized damping coefficients. 
Moreover, loop gain margins are shown in some parameter tables on uncertain time 
constants of one-order modeling error and damping coefficients of original controlled 
objects  for some tuning regions contained with safest only I region. 
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Table 1. 

pω  values for ς  and p  in IPL tuning by the first tuning method 
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Table 2. 1 2i iK K=  values for ς  and p in IPL tuning by the first tuning method 
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Table 1 lists the stationary points for the first tuning method. Table 2 lists the integration 
gains ( 1 2i iK K= ) obtained by substituting Eq. (46) into Eqs. (44) and (45) for various 
damping coefficients. 
Table 3 lists the integration gains ( 1 2i iK K= ) for the second tuning method. 
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Table 3. 1 2i iK K= values for ς  and p  in IPL tuning by the second tuning method 

Then, a table of loop gain margins ( 1gm > ) generated by Eq. (39) using the stability limit 
and the loop gain by the second tuning method on uncertainε  in a given region of ε  for 
each controlled ς by IPL ( p =1.5) control is very useful for analysis of robustness. Then, the 
unstable region, the unstable region, which does not become unstable even if the loop gain 
becomes larger, and robust stable region in which uncertainty of the time constant, are 
permitted in the region of ε . 
Figure 3 shows a reference step up-down response with unknown input disturbance in the 
continuous region. The gain for the disturbance step of the IPL tuning is controlled to be 
approximately 0.38 and the settling time is approximately 6 sec. 
The robustness on indicial response for the damping coefficient change of ±0.1 is an 
advantageous property. Considering Zero Order Hold. with an imperfect dead-time 
compensator using 1st-order Pade approximation, the overshoot in the reference step 
response is larger than that in the original region or that in the continuous region. 
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Fig. 3. Robustness of IPL tuning for damping coefficient change. 

Then, Table 4 lists robust loop gain margins ( 1gm > ) using the stability limit by Eq.(37) and 
the loop gain by the second tuning method on uncertainε  in the region of (0.1 10)ε≤ ≤  for 
each controlled ς (>0.7) by IPL( p =1.5) control. The first gray row shows the area that is also 
unstable.   
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Therefore, only the stationary points in the direction of ω  will be obtained without 
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Table 1. 

pω  values for ς  and p  in IPL tuning by the first tuning method 
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Table 1 lists the stationary points for the first tuning method. Table 2 lists the integration 
gains ( 1 2i iK K= ) obtained by substituting Eq. (46) into Eqs. (44) and (45) for various 
damping coefficients. 
Table 3 lists the integration gains ( 1 2i iK K= ) for the second tuning method. 
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Table 3. 1 2i iK K= values for ς  and p  in IPL tuning by the second tuning method 

Then, a table of loop gain margins ( 1gm > ) generated by Eq. (39) using the stability limit 
and the loop gain by the second tuning method on uncertainε  in a given region of ε  for 
each controlled ς by IPL ( p =1.5) control is very useful for analysis of robustness. Then, the 
unstable region, the unstable region, which does not become unstable even if the loop gain 
becomes larger, and robust stable region in which uncertainty of the time constant, are 
permitted in the region of ε . 
Figure 3 shows a reference step up-down response with unknown input disturbance in the 
continuous region. The gain for the disturbance step of the IPL tuning is controlled to be 
approximately 0.38 and the settling time is approximately 6 sec. 
The robustness on indicial response for the damping coefficient change of ±0.1 is an 
advantageous property. Considering Zero Order Hold. with an imperfect dead-time 
compensator using 1st-order Pade approximation, the overshoot in the reference step 
response is larger than that in the original region or that in the continuous region. 
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Then, Table 4 lists robust loop gain margins ( 1gm > ) using the stability limit by Eq.(37) and 
the loop gain by the second tuning method on uncertainε  in the region of (0.1 10)ε≤ ≤  for 
each controlled ς (>0.7) by IPL( p =1.5) control. The first gray row shows the area that is also 
unstable.   
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Table 5 does the same for each controlled ς (>0.4) by IPS( p =0.01). Table 6 does the same for 
each controlled ς (>0.4) by IP0( p =0.0). 
 

 eps/zita 0.3 0.7 0.8 0.9 1 1.1 1.2
0.1 -2.042 -1.115 1.404 5.124 10.13 16.49 24.28
0.2 -1.412 -0.631 0.788 2.875 5.7 9.33 13.83
1.5 -0.845 -0.28 0.32 1.08 2 3.08 4.32
2.4 -1.019 -0.3 0.326 1.048 1.846 2.702 3.6
3.2 -1.488 -0.325 0.342 1.06 1.8 2.539 3.26

5 -2.128 -0.386 0.383 1.115 1.778 2.357 2.853
10 -4.596 -0.542 0.483 1.26 1.81 2.187 2.448  

Table 4. Robust loop gain margins on uncertainε  in each region for each controlled ς at IPL 
( p =1.5) 

 

eps/zita 0.4 0.5 0.6 0.7 0.8
0.1 1.189 1.832 2.599 3.484 4.483
0.6 1.066 1.524 2.021 2.548 3.098

1 1.097 1.492 1.899 2.312 2.729
2.1 1.254 1.556 1.839 2.106 2.362
10 1.717 1.832 1.924 2.003 2.073

Table 5. Robust loop gain margins on uncertainε  in each region for each controlled ς at IPS 
( p =0.01) 

 

eps/zita 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0.1 0.6857 1.196 1.835 2.594 3.469 4.452 5.538 6.722
0.4 0.6556 1.087 1.592 2.156 2.771 3.427 4.118 4.84
0.5 0.6604 1.078 1.556 2.081 2.645 3.24 3.859 4.5
0.6 0.6696 1.075 1.531 2.025 2.547 3.092 3.655 4.231

1 0.7313 1.106 1.5 1.904 2.314 2.727 3.141 3.556
2.1 0.9402 1.264 1.563 1.843 2.109 2.362 2.606 2.843
10 1.5722 1.722 1.835 1.926 2.004 2.073 2.136 2.195

9999 1.9995 2 2 2 2 2 2 2

Table 6. Robust loop gain margins on uncertainε  in each region for each controlled ς at IP0 
( p =0.0) 

These table data with additional points were converted to the 3D mesh plot as following  
Fig. 4. As IP0 and IPS with very small p  are almost equivalent though the equations differ 
quiet, the number of figures are reduced. It implies validity of both equations. 
According to the line of worst loop gain margin as the parameter of attenuation in the 
controlled objects which are described by gray label, this parametric stability margin (PSM) 
(Bhattacharyya S. P., Chapellat H., and Keel L. H., 1994) is classified to 3 regions in IPS and 
IP0 tuning regions and to 4 regions in IPL tuning regions as shown in Fig.5.  We may call the 
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larger attenuation region with more than 2 loop gain margin to the strong robust segment 
region in which region  uncertainty time constant of one-order modeling error  is allowed in 
the any region and some change of attenuation is also allowed. 
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Fig. 4. Mesh plot of closed loop gain margin 

Next, we call the larger attenuation region with more than 1>γ  and less than 2 loop gain 
margin to the weak robust segment region in which region  uncertainty time constant of 
one-order modeling error is only allowed in some region over some larger loop gain margin 
and some larger change of attenuation is not allowed. The third and the forth segment is 
almost unstable.  Especially, notice that the joint of each segment is large bending so that the 
sensitivity of uncertainty for loop gain margin is larger more than the imagination.  
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Fig. 5. The various worst lines of loop gain margin in a parameter plane (certain&uncertain) 

Moreover, the readers had to notice that the strong robust region and weak robust region 
of IPL is shift to larger damping coefficient region than ones of IPS and IP0. Then, this is 
also one of risk on IPL tuning region and change of tuning region from IP0 or IPS to IPL 
region. 

5. Conclusion 
In this section, the way to convert this IP control tuning parameters to independent type PI 
control is presented. Then, parameter tuning policy and the reason adopted the policy on the 
controller are presented. The good and no good results, limitations and meanings in this 
chapter are summarized. The closed loop gain curve obtained from the second order example 
with one-order feedback modeling error implies the butter-worth filter model matching 
method in higher order systems may be useful. The Hardy space norm with bounded 
window was defined for I, and robust stability was discussed for MIMO system by an 
expanssion of small gain theorem under a bounded condition of closed loop systems. 
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Table 5 does the same for each controlled ς (>0.4) by IPS( p =0.01). Table 6 does the same for 
each controlled ς (>0.4) by IP0( p =0.0). 
 

 eps/zita 0.3 0.7 0.8 0.9 1 1.1 1.2
0.1 -2.042 -1.115 1.404 5.124 10.13 16.49 24.28
0.2 -1.412 -0.631 0.788 2.875 5.7 9.33 13.83
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2.4 -1.019 -0.3 0.326 1.048 1.846 2.702 3.6
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Table 4. Robust loop gain margins on uncertainε  in each region for each controlled ς at IPL 
( p =1.5) 
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0.6 0.6696 1.075 1.531 2.025 2.547 3.092 3.655 4.231

1 0.7313 1.106 1.5 1.904 2.314 2.727 3.141 3.556
2.1 0.9402 1.264 1.563 1.843 2.109 2.362 2.606 2.843
10 1.5722 1.722 1.835 1.926 2.004 2.073 2.136 2.195

9999 1.9995 2 2 2 2 2 2 2

Table 6. Robust loop gain margins on uncertainε  in each region for each controlled ς at IP0 
( p =0.0) 

These table data with additional points were converted to the 3D mesh plot as following  
Fig. 4. As IP0 and IPS with very small p  are almost equivalent though the equations differ 
quiet, the number of figures are reduced. It implies validity of both equations. 
According to the line of worst loop gain margin as the parameter of attenuation in the 
controlled objects which are described by gray label, this parametric stability margin (PSM) 
(Bhattacharyya S. P., Chapellat H., and Keel L. H., 1994) is classified to 3 regions in IPS and 
IP0 tuning regions and to 4 regions in IPL tuning regions as shown in Fig.5.  We may call the 
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larger attenuation region with more than 2 loop gain margin to the strong robust segment 
region in which region  uncertainty time constant of one-order modeling error  is allowed in 
the any region and some change of attenuation is also allowed. 
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Fig. 4. Mesh plot of closed loop gain margin 

Next, we call the larger attenuation region with more than 1>γ  and less than 2 loop gain 
margin to the weak robust segment region in which region  uncertainty time constant of 
one-order modeling error is only allowed in some region over some larger loop gain margin 
and some larger change of attenuation is not allowed. The third and the forth segment is 
almost unstable.  Especially, notice that the joint of each segment is large bending so that the 
sensitivity of uncertainty for loop gain margin is larger more than the imagination.  
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Fig. 5. The various worst lines of loop gain margin in a parameter plane (certain&uncertain) 

Moreover, the readers had to notice that the strong robust region and weak robust region 
of IPL is shift to larger damping coefficient region than ones of IPS and IP0. Then, this is 
also one of risk on IPL tuning region and change of tuning region from IP0 or IPS to IPL 
region. 

5. Conclusion 
In this section, the way to convert this IP control tuning parameters to independent type PI 
control is presented. Then, parameter tuning policy and the reason adopted the policy on the 
controller are presented. The good and no good results, limitations and meanings in this 
chapter are summarized. The closed loop gain curve obtained from the second order example 
with one-order feedback modeling error implies the butter-worth filter model matching 
method in higher order systems may be useful. The Hardy space norm with bounded 
window was defined for I, and robust stability was discussed for MIMO system by an 
expanssion of small gain theorem under a bounded condition of closed loop systems. 
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- We have obtained first an integral gain leading type of normalized IP controller to 
facilitate the adjustment results of tuning parameters explaining in the later. The 
controller is similar that conventional analog controllers are proportional gain type of PI 
controller. It can be converted easily to independent type of PI controller as used in recent 
computer controls by adding some converted gains. The policy of the parameter tuning is 
to make the norm of the closed loop of frequency transfer function contained one-order 
modeling error with uncertain time constant to become less than 1. The reason of selected 
the policy is to be able to be similar to the conventional expansion of the small gain 
theorem and to be possible in PI control. Then, the controller and uncertainty of the model 
becomes very simple. Moreover, a simple approach for obtaining the solution is proposed 
by optimization method with equality restriction using Lagrange’s undecided multiplier 
approach for the closed loop frequency transfer function.   

- The stability of the closed loop transfer function was investigated using Hurwits 
Criteria as the structure of coefficients were known though they contained uncertain 
time constant. 

- The loop gain margin which was defined as the ratio of the upper stable limit of integral 
gain and the nominal integral gain, was investigated in the parameter plane of damping 
coefficient and uncertain time constant. Then, the robust controller is safe in a sense if 
the robust stable region using the loop gain margin is the single connection and changes 
continuously in the parameter plane even if the uncertain time constant changes larger 
in a wide region of damping coefficient and even if the uncertain any adjustment is 
done.  Then, IP0 tuning region is most safe and IPL region is most risky. 

- Moreover, it is historically and newly good results that the worst loop gain margin as 
each damping coefficient approaches to 2 in a larger region of damping coefficients. 

- The worst loop gain margin line in the uncertainty time constant and controlled objects 
parameters plane had 3 or 4 segments and they were classified strong robust segment 
region for more than 2 closed loop gain margin and weak robust segment region for 
more than γ > 1 and less than 2 loop gain margin. Moreover, the author was presented 
also risk of IPL tuning region and the change of tuning region. 

- It was not good results that the analytical solution and the stable region were 
complicated to obtain for higher order systems with higher order modeling error 
though they were easy and primary. Then, it was unpractical. 

6. Appendix  
A. Example of a second-order system with lag time and one-order modelling error 
In this section, for applying the robust PI control concept of this chapter to systems with 
lag time, the systems with one-order model error are approximated using Pade 
approximation and only the simple stability region of the integral gain is shown in the 
special proportional tuning case for simplicity because to obtain the solution of integral 
gain is difficult. 
Here, a digital IP control system for a second-order controlled object with lag time L without 
sensor dynamics is assumed. For simplicity, only special proportional gain case is shown. 
Transfer functions: 
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Normalized operation: 
The normalize operations as same as above mentioned are done as follows. 
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Closed loop transfer function: 
The closed loop transfer function is obtained using above normalization as follows; 
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- We have obtained first an integral gain leading type of normalized IP controller to 
facilitate the adjustment results of tuning parameters explaining in the later. The 
controller is similar that conventional analog controllers are proportional gain type of PI 
controller. It can be converted easily to independent type of PI controller as used in recent 
computer controls by adding some converted gains. The policy of the parameter tuning is 
to make the norm of the closed loop of frequency transfer function contained one-order 
modeling error with uncertain time constant to become less than 1. The reason of selected 
the policy is to be able to be similar to the conventional expansion of the small gain 
theorem and to be possible in PI control. Then, the controller and uncertainty of the model 
becomes very simple. Moreover, a simple approach for obtaining the solution is proposed 
by optimization method with equality restriction using Lagrange’s undecided multiplier 
approach for the closed loop frequency transfer function.   

- The stability of the closed loop transfer function was investigated using Hurwits 
Criteria as the structure of coefficients were known though they contained uncertain 
time constant. 

- The loop gain margin which was defined as the ratio of the upper stable limit of integral 
gain and the nominal integral gain, was investigated in the parameter plane of damping 
coefficient and uncertain time constant. Then, the robust controller is safe in a sense if 
the robust stable region using the loop gain margin is the single connection and changes 
continuously in the parameter plane even if the uncertain time constant changes larger 
in a wide region of damping coefficient and even if the uncertain any adjustment is 
done.  Then, IP0 tuning region is most safe and IPL region is most risky. 

- Moreover, it is historically and newly good results that the worst loop gain margin as 
each damping coefficient approaches to 2 in a larger region of damping coefficients. 

- The worst loop gain margin line in the uncertainty time constant and controlled objects 
parameters plane had 3 or 4 segments and they were classified strong robust segment 
region for more than 2 closed loop gain margin and weak robust segment region for 
more than γ > 1 and less than 2 loop gain margin. Moreover, the author was presented 
also risk of IPL tuning region and the change of tuning region. 

- It was not good results that the analytical solution and the stable region were 
complicated to obtain for higher order systems with higher order modeling error 
though they were easy and primary. Then, it was unpractical. 

6. Appendix  
A. Example of a second-order system with lag time and one-order modelling error 
In this section, for applying the robust PI control concept of this chapter to systems with 
lag time, the systems with one-order model error are approximated using Pade 
approximation and only the simple stability region of the integral gain is shown in the 
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Normalized operation: 
The normalize operations as same as above mentioned are done as follows. 
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Closed loop transfer function: 
The closed loop transfer function is obtained using above normalization as follows; 
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Stability analysis by Hurwits Approach 

1. 
2 10.5 ,0 min{ , }, 0, 0

0.5 (0.5 )ip L K
pL L p

ε ς ς ε+
< < < > >

−
 

 
2 2 2{(2 1)(2 0.5 ) } (2 1) 0.5i iL K K when p Lςε ς ε ε ςε+ + − − > + =  (A13) 

 

2

2 2

2 ( 2 1) 0.5
(2 1){(2 1) 0.5 } iK when p L

L
ς ε ςε

ςε ςε
+ +

> =
+ + +  

(A14)
 

k3 < k2  then 
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In continuous region with one order modelling error, 
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Analytical solution of Ki for flat gain curve using Stationary Points Investing for Fraction 
Equation approach is complicated to obtain, then it is remained for reader’s theme.  
In the future, another approach will be developed for safe and simple robust control.  
B. Simple soft M/A station 
In this section, a configuration of simple soft M/A station and the feedback control system 
with the station is shown for a simple safe interlock avoiding dangerous large overshoot.  
B.1 Function and configuration of simple soft M/A station 
This appendix describes a simple interlock plan for an simple soft M/A station that has a 
parameter-identification mode (manual mode) and a control mode (automatic mode). 
The simple soft M/A station is switched from automatic operation mode to manual 
operation mode for safety when it is used to switch the identification mode and the control 
mode and when the value of Pv exceeds the prescribed range. This serves to protect the 
plant; for example, in the former case, it operates when the integrator of the PID controller 
varies erratically and the control system malfunctions. In the latter case, it operates when 
switching from P control with a large steady-state deviation with a high load to PI or PID 
control, so that the liquid in the tank spillovers. Other dangerous situations are not 
considered here because they do not fall under general basic control. 
There have several attempts to arrange and classify the control logic by using a case base. 
Therefore, the M/A interlock should be enhanced to improve safety and maintainability; 
this has not yet been achieved for a simple M/A interlock plan (Fig. A1). 
For safety reasons, automatic operation mode must not be used when changing into manual 
operation mode by changing the one process value, even if the process value recovers to an 
appropriate level for automatic operation. 
Semiautomatic parameter identification and PID control are driven by case-based data for 
memory of tuners, which have a nest structure for identification. 
This case-based data memory method can be used for reusing information, and preserving 
integrity and maintainability for semiautomatic identification and control. The semiautomatic 
approach is adopted not only to make operation easier but also to enhance safety relative to 
the fully automatic approach.  
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Notation in computer control (Fig. B1, B3) 
 Pv : Process value 
 Av: Actual value 
 Cv : Control value 
 Mv : Manipulated value 
 Sp: Set point 
 A : Auto 
 M : Manual 
 T : Test 
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Fig. B1 A Configuration of Simple Soft M/A Station 

B.2 Example of a SISO system 
Fig. B2 shows the way of using M/A station in a configuration of a SISO control system. 
 

 
Fig. B2  Configuration of a IP Control System with a M/A Station for a SISO Controlled Object 

where the transfer function  needed in Fig.B2 is as follows.  
1. Controlled Object: ( )

1
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3. Controller: 2
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4. Sensor Caribration Gain: 1 / sK  

5. Normalized Gain before M/A Station: 1 / 0.5TL  
6. Normalized Gain after M/A Station: 1 /K  
Fig. B3 shows examples of simulated results for 2 kinds of switching mode when Pv 
becomes higher than a given threshold. (a) shows one to out of service and (b) does to 
manual mode.  
In former, Mv is down and Cv is almost hold. In latter, Mv is hold and Cv is down. 



 Advances in Reinforcement Learning 

 

276 
 

Stability analysis by Hurwits Approach 

1. 
2 10.5 ,0 min{ , }, 0, 0

0.5 (0.5 )ip L K
pL L p

ε ς ς ε+
< < < > >

−
 

 
2 2 2{(2 1)(2 0.5 ) } (2 1) 0.5i iL K K when p Lςε ς ε ε ςε+ + − − > + =  (A13) 

 

2

2 2

2 ( 2 1) 0.5
(2 1){(2 1) 0.5 } iK when p L

L
ς ε ςε

ςε ςε
+ +

> =
+ + +  

(A14)
 

k3 < k2  then 

 
2

2 2 2 2
2 2 ( 2 1)0 min{ , } 0.5

0.5 (2 1){(2 1) 0.5 }iK when p L
L L

+ + +
< < =

+ + +
ε ς ς ε ςε

ςε ςε
 (A15) 

In continuous region with one order modelling error, 

 
2 2

20 0.5
(1 0.5 )iK when p L

L
ς

< < =
+  

(A16)
 

Analytical solution of Ki for flat gain curve using Stationary Points Investing for Fraction 
Equation approach is complicated to obtain, then it is remained for reader’s theme.  
In the future, another approach will be developed for safe and simple robust control.  
B. Simple soft M/A station 
In this section, a configuration of simple soft M/A station and the feedback control system 
with the station is shown for a simple safe interlock avoiding dangerous large overshoot.  
B.1 Function and configuration of simple soft M/A station 
This appendix describes a simple interlock plan for an simple soft M/A station that has a 
parameter-identification mode (manual mode) and a control mode (automatic mode). 
The simple soft M/A station is switched from automatic operation mode to manual 
operation mode for safety when it is used to switch the identification mode and the control 
mode and when the value of Pv exceeds the prescribed range. This serves to protect the 
plant; for example, in the former case, it operates when the integrator of the PID controller 
varies erratically and the control system malfunctions. In the latter case, it operates when 
switching from P control with a large steady-state deviation with a high load to PI or PID 
control, so that the liquid in the tank spillovers. Other dangerous situations are not 
considered here because they do not fall under general basic control. 
There have several attempts to arrange and classify the control logic by using a case base. 
Therefore, the M/A interlock should be enhanced to improve safety and maintainability; 
this has not yet been achieved for a simple M/A interlock plan (Fig. A1). 
For safety reasons, automatic operation mode must not be used when changing into manual 
operation mode by changing the one process value, even if the process value recovers to an 
appropriate level for automatic operation. 
Semiautomatic parameter identification and PID control are driven by case-based data for 
memory of tuners, which have a nest structure for identification. 
This case-based data memory method can be used for reusing information, and preserving 
integrity and maintainability for semiautomatic identification and control. The semiautomatic 
approach is adopted not only to make operation easier but also to enhance safety relative to 
the fully automatic approach.  

Simple Robust Normalized PI Control for Controlled Objects with One-order Modelling Error   

 

277 

Notation in computer control (Fig. B1, B3) 
 Pv : Process value 
 Av: Actual value 
 Cv : Control value 
 Mv : Manipulated value 
 Sp: Set point 
 A : Auto 
 M : Manual 
 T : Test 
 

 

Pv

Mv at manual mode

Cv

Mv

Mv at auto mode

SwitchConditions
On Pv

Conditions
On M/A
Switch

M

A

Integrated
Switching
Logic

Self-holding
Logic

S
W
I
T
C
HT Pv’

Pv

Mv at manual mode

Cv

Mv

Mv at auto mode

SwitchConditions
On Pv

Conditions
On M/A
Switch

M

A

Integrated
Switching
Logic

Self-holding
Logic

S
W
I
T
C
HT Pv’

 
Fig. B1 A Configuration of Simple Soft M/A Station 
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Fig. B3 shows examples of simulated results for 2 kinds of switching mode when Pv 
becomes higher than a given threshold. (a) shows one to out of service and (b) does to 
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In former, Mv is down and Cv is almost hold. In latter, Mv is hold and Cv is down. 
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(a) Switching example from auto mode to 

out of service by Pv High 
(b) Switching example from auto mode to 

manual mode by Pv High 
Fig. B3  Simulation results for 2 kinds of switching mode 

C. New norm and expansion of small gain theorem  
In this section, a new range restricted norm of Hardy space with window(Kohonen T., 1995) 

wH∞  is defined for I, of which window is described to notation of norm with superscript w, 
and a new expansion of small gain theorem based on closed loop system like general wH∞  
control problems and robust sensitivity analysis is shown  for applying the robust PI 
control concept of this chapter to MIMO systems. 
The robust control was aims soft servo and requested internal stability for a closed loop 
control system. Then, it was difficult to apply process control systems or hard servo systems 
which was needed strong robust stability without deviation from the reference value in the 
steady state like integral terms.  
The method which sets the maximum value of closed loop gain curve to 1 and the results of 
this numerical experiments indicated the above sections will imply the following new 
expansion of small gain theorem which indicates the upper limit of Hardy space norm of a 
forward element using the upper limit of all uncertain feedback elements for robust 
stability. 
For the purpose using unbounded functions in the all real domain on frequency like integral 
term in the forward element, the domain of Hardy norm of the function concerned on 
frequency is limited clearly to a section in a positive real one-order space so that the function 
becomes bounded in the section. 
Proposition 
Assuming that feedback transfer function H(s) (with uncertainty) are stable and the 
following inequality is holds, 

 1( ) , 1H s ∞ ≤ γ ≥
γ

 (C-1) 

Moreover , if the negative closed loop system as shown in Fig.C-1 is stable and the following 
inequality holds,  
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then the following inequality on the open loop transfer function is hold in a region of 
frequency. 

 min max
1( ) ( ) , 1 [ , ]

1
wG j H j for
∞

ω ω ≤ γ ≥ ω∈ ω ω
γ −

 (C-3) 

In the same feedback system, G(s) holds the following inequality in a region of frequency. 
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Fig. C-1 Configuration of a negative feed back system 
(proof)   
Using triangle inequality on separation of norms of summension and inequality on 
separation of norms of product like Helder’s one under a region of frequency min max[ , ]ω ω , 
as a domain of the norm of Hardy space with window, the following inequality on the 
frequency transfer function of ( )G jω  is obtained from the assumption of the proposition. 
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Moreover, the following inequality on open loop frequency transfer function is shown. 

 1 ( ) ( ) ( ) ( )
1

w w wG j H j G j H j
∞ ∞ ∞

≥ ω ω ≥ ω ω
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 (C-8) 

On the inequality of norm, the reverse proposition may be shown though the separation of 
product of norms in the Hardy space with window are not clear. The sufficient conditions 
on closed loop stability are not clear. They will remain reader’s theme in the future. 
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D. Parametric robust topics 
In this section, the following three topics (Bhattacharyya S. P., Chapellat H., and Keel L. H., 1994.) 
are introduced at first for parametric robust property in static one,  dynamic one and stable one as 
assumptions after linearizing a class of non-linear system to a quasi linear parametric variable 
(QLPV) model by Taylar expansion using first order reminder term. (M.Katoh, 2010) 
1. Continuity for change of parameter 
Boundary Crossing Theorem 

1) fixed order polynomials P(λ,s) 
2) continuous polynomials with respect to one parameter λ on a fixed interval I=[a,b]. 
If P(a,s) has all its roots in S, P(b,s) has at least one root in U, then there exists at least 
one ρ in (a,b] such that: 

a) P(ρ,s) has all roots in S U∂S 
b) P(ρ,s) has at least one root in ∂S 

  

P(a,s) P(b,s)
P(ρ,s)

 
Fig. D-1 Image of boundary crossing theorem 
2. Convex for change of parameter 
Segment Stable Lemma 

Let define a segment using two stable polynomials as follows. 

1 2( ) ( ) (1 ) ( )s s sλδ λδ λ δ+ −  

 

1 2

1 2

[ ( ), ( )] { ( ) : [0,1]}
( ), ( ) _ _ _ _ deg _
_ _ _ _ _

s s s
where s s is polynomials of ree n

and stable with respect to S

λδ δ δ λ
δ δ

∈

 

(D-1)

 
Then, the followings are equivalent: 
 a) The segment 1 2[ ( ), ( )]s sδ δ  is stable with respect to S 

* *) ( ) 0 , _ _ ; [0 ,1]b s for a ll s Sλδ λ≠ ∈ ∂ ∈  
3. Worst stability margin for change of parameter 

Parametric stability margin (PSM) is defined as the worst case stability margin within 
the parameter variation. It can be applied to a QLPV system of a class of non-linear 
system. There are non-linear systems such as becoming worse stability margin  than 
linearized system although there are ones with better stability margin than it. There is a 
case which is characterized by the one parameter m which describes the injection rate of 
I/O,  the interpolation rate of segment or degree of non-linearity.  

E. Risk and Merit Analysis 
Let show a summary and enhancing of the risk discussed before sections for safety in the following 
table. 
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Kinds Evaluation of influence Countermeasure 
1) Disconnection of 
feedback line  
2) Overshoot over limit 
value 

1) Spill-over threshold 
2) Attack to weak material 

Auto change to manual 
mode by M/A station 
Auto shut down 

Change of tuning region 
from IPS to IPL by making 
proportional gain to large 

Grade down of stability 
region from strong or weak 
to weak or un-stability 

Use IP0 and not use IPS 
Not making proportional 
gain to large in IPS tuning 
region 

Change of damping 
coefficient or inverse of 
time constant over weak 
robust limit 

Grade down of stability 
region from strong or weak 
to weak or un-stability 

Change of tuning region 
from IPL to IPS or IP0 

Table E-1 Risk analysis for safety 
It is important to reduce risk as above each one by adequate countermeasures after 
understanding the property of and the influence for the controlled objects enough. 
Next, let show a summary and enhancing of the merit and demerit discussed before sections for 
robust control in the following table, too. 
 
 

Kinds Merit Demerit 
1) Steady state error is 
vanishing as time by effect 
of integral 
 

1)  It is important property 
in process control and hard 
servo area 
 

It is dislike property in soft 
servo and robot control 
because of hardness for 
disturbance 

There is a strong robust 
stability damping region in 
which the closed loop gain 
margin for any uncertainty 
is over 2 and almost not 
changing. 

It is uniform safety for 
some proportional gain 
tuning region and changing 
of damping coefficient. 
For  integral loop gain 
tuning, it recommends the 
simple limiting sensitivity 
approach. 

1) Because the region is 
different by proportional 
gain, there is a risk of grade 
down  by the gain tuning. 

There is a weak robust 
stability damping region in 
which the worst closed loop 
gain margin for any 
uncertainty is over given 
constant. 

1)  It can specify the grade 
of robust stability for any 
uncertainty 

1) Because the region is 
different by proportional 
gain, there is a risk of grade 
down  by the gain tuning. 
It is different safety for 
some proportional gain 
tuning region. 

Table E-2 Merit analysis for control 
It is important to apply to the best application area which the merit can be made and the 
demerit can be controlled by the wisdom of everyone. 
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Parametric stability margin (PSM) is defined as the worst case stability margin within 
the parameter variation. It can be applied to a QLPV system of a class of non-linear 
system. There are non-linear systems such as becoming worse stability margin  than 
linearized system although there are ones with better stability margin than it. There is a 
case which is characterized by the one parameter m which describes the injection rate of 
I/O,  the interpolation rate of segment or degree of non-linearity.  

E. Risk and Merit Analysis 
Let show a summary and enhancing of the risk discussed before sections for safety in the following 
table. 
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Kinds Evaluation of influence Countermeasure 
1) Disconnection of 
feedback line  
2) Overshoot over limit 
value 

1) Spill-over threshold 
2) Attack to weak material 

Auto change to manual 
mode by M/A station 
Auto shut down 

Change of tuning region 
from IPS to IPL by making 
proportional gain to large 

Grade down of stability 
region from strong or weak 
to weak or un-stability 

Use IP0 and not use IPS 
Not making proportional 
gain to large in IPS tuning 
region 

Change of damping 
coefficient or inverse of 
time constant over weak 
robust limit 

Grade down of stability 
region from strong or weak 
to weak or un-stability 

Change of tuning region 
from IPL to IPS or IP0 

Table E-1 Risk analysis for safety 
It is important to reduce risk as above each one by adequate countermeasures after 
understanding the property of and the influence for the controlled objects enough. 
Next, let show a summary and enhancing of the merit and demerit discussed before sections for 
robust control in the following table, too. 
 
 

Kinds Merit Demerit 
1) Steady state error is 
vanishing as time by effect 
of integral 
 

1)  It is important property 
in process control and hard 
servo area 
 

It is dislike property in soft 
servo and robot control 
because of hardness for 
disturbance 

There is a strong robust 
stability damping region in 
which the closed loop gain 
margin for any uncertainty 
is over 2 and almost not 
changing. 

It is uniform safety for 
some proportional gain 
tuning region and changing 
of damping coefficient. 
For  integral loop gain 
tuning, it recommends the 
simple limiting sensitivity 
approach. 

1) Because the region is 
different by proportional 
gain, there is a risk of grade 
down  by the gain tuning. 

There is a weak robust 
stability damping region in 
which the worst closed loop 
gain margin for any 
uncertainty is over given 
constant. 

1)  It can specify the grade 
of robust stability for any 
uncertainty 

1) Because the region is 
different by proportional 
gain, there is a risk of grade 
down  by the gain tuning. 
It is different safety for 
some proportional gain 
tuning region. 

Table E-2 Merit analysis for control 
It is important to apply to the best application area which the merit can be made and the 
demerit can be controlled by the wisdom of everyone. 
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1. Introduction

Today, as a result of increasing complexity of industrial automation technologies, fault
handling of such automatic systems has become a challenging task. Indeed, although
industrial systems are usually designed to perform optimally over time, performance
degradation occurs inevitably. These are due, for example, to aging of system components,
which have to be monitored to prevent system-wide failures. Fault handling is also necessary
to allow redesign of the control in such a way to recover, as much as possible, an optimal
performance. To this end, researchers in the systems control community have focused on
a specific control design strategy, called Fault tolerant control (FTC). Indeed, FTC is aimed
at achieving acceptable performance and stability for the safe, i.e. fault-free system as well
as for the faulty system. Many methods have been proposed to deal with this problem.
For survey papers on FTC, the reader may refer to (5; 38; 53). While the available schemes
can be classified into two types, namely passive and active FTC (53), the work presented
here falls into the first category of passive FTC. Indeed, active FTC is aimed at ensuring
the stability and some performance, possibly degraded, for the post-fault model, and this
by reconfiguring on-line the controller, by means of a fault detection and diagnosis (FDD)
component that detects, isolates and estimates the current fault (53). Contrary to this active
approach, the passive solution consists in using a unique robust controller that, will deal
with all the expected faults. The passive FTC approach has the drawback of being reliable
only for the class of faults expected and taken into account in the design. However, it has
the advantage of avoiding the time delay required in active FTC for on-line fault diagnosis
and control reconfiguration (42; 54), which is very important in practical situations where
the time window during which the faulty system stay stabilizable is very short, e.g. the
unstable double inverted pendulum example (37). In fact, in practical applications, passive
FTC complement active FTC schemes. Indeed, passive FTC schemes are necessary during
the fault detection and estimation phase (50), to ensure the stability of the faulty system,
before switching to active FTC. Several passive FTC methods have been proposed, mainly
based on robust theory, e.g. multi-objective linear optimization and LMIs techniques (25), QFT
method (47; 48), H∞ (36; 37), absolute stability theory (6), nonlinear regulation theory (10; 11),
Lyapunov reconstruction (9) and passivity-based FTC (8). As for active FTC, many methods
have been proposed for active linear FTC, e.g. (19; 29; 43; 46; 51; 52), as well as for nonlinear
FTC, e.g. (4; 7; 13; 14; 20; 21; 28; 32–35; 39; 41; 49).
We consider in this work the problem of fault tolerant control for failures resulting from loss of
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1. Introduction

Today, as a result of increasing complexity of industrial automation technologies, fault
handling of such automatic systems has become a challenging task. Indeed, although
industrial systems are usually designed to perform optimally over time, performance
degradation occurs inevitably. These are due, for example, to aging of system components,
which have to be monitored to prevent system-wide failures. Fault handling is also necessary
to allow redesign of the control in such a way to recover, as much as possible, an optimal
performance. To this end, researchers in the systems control community have focused on
a specific control design strategy, called Fault tolerant control (FTC). Indeed, FTC is aimed
at achieving acceptable performance and stability for the safe, i.e. fault-free system as well
as for the faulty system. Many methods have been proposed to deal with this problem.
For survey papers on FTC, the reader may refer to (5; 38; 53). While the available schemes
can be classified into two types, namely passive and active FTC (53), the work presented
here falls into the first category of passive FTC. Indeed, active FTC is aimed at ensuring
the stability and some performance, possibly degraded, for the post-fault model, and this
by reconfiguring on-line the controller, by means of a fault detection and diagnosis (FDD)
component that detects, isolates and estimates the current fault (53). Contrary to this active
approach, the passive solution consists in using a unique robust controller that, will deal
with all the expected faults. The passive FTC approach has the drawback of being reliable
only for the class of faults expected and taken into account in the design. However, it has
the advantage of avoiding the time delay required in active FTC for on-line fault diagnosis
and control reconfiguration (42; 54), which is very important in practical situations where
the time window during which the faulty system stay stabilizable is very short, e.g. the
unstable double inverted pendulum example (37). In fact, in practical applications, passive
FTC complement active FTC schemes. Indeed, passive FTC schemes are necessary during
the fault detection and estimation phase (50), to ensure the stability of the faulty system,
before switching to active FTC. Several passive FTC methods have been proposed, mainly
based on robust theory, e.g. multi-objective linear optimization and LMIs techniques (25), QFT
method (47; 48), H∞ (36; 37), absolute stability theory (6), nonlinear regulation theory (10; 11),
Lyapunov reconstruction (9) and passivity-based FTC (8). As for active FTC, many methods
have been proposed for active linear FTC, e.g. (19; 29; 43; 46; 51; 52), as well as for nonlinear
FTC, e.g. (4; 7; 13; 14; 20; 21; 28; 32–35; 39; 41; 49).
We consider in this work the problem of fault tolerant control for failures resulting from loss of

*E-mail: benosman@merl.com

M. Benosman
Mitsubishi Electric Research Laboratories 201 Broadway street, Cambridge, MA 02139,*

USA

Passive Fault Tolerant Control 

13



actuator effectiveness. FTCs dealing with actuator faults are relevant in practical applications
and have already been the subject of many publications. For instance, in (43), the case
of uncertain linear time-invariant models was studied. The authors treated the problem
of actuators stuck at unknown constant values at unknown time instants. The active FTC
approach they proposed was based on an output feedback adaptive method. Another active
FTC formulation was proposed in (46), where the authors studied the problem of loss
of actuator effectiveness in linear discrete-time models. The loss of control effectiveness
was estimated via an adaptive Kalman filter. The estimation was complemented by a fault
reconfiguration based on the LQG method. In (30), the authors proposed a multiple-controller
based FTC for linear uncertain models. They introduced an active FTC scheme that ensured
the stability of the system regardless of the decision of FDD.
However, as mentioned earlier and as presented for example in (50), the aforementioned
active schemes will incur a delay period during which the associate FDD component will have
to converge to a best estimate of the fault. During this time period of FDD response delay,
it is essential to control the system with a passive fault tolerant controller which is robust
against actuator faults so as to ensure at least the stability of the system, before switching to
another controller based on the estimated post-fault model, that ensures optimal post-fault
performance. In this context, we propose here passive FTC schemes against actuator loss
of effectiveness. The results presented here are based on the work of the author introduced
in (6; 8). We first consider linear FTC and present some results on passive FTC for loss of
effectiveness faults based on absolute stability theory. Next we present an extension of the
linear results to some nonlinear models and use passivity theory to write nonlinear fault
tolerant controllers. In this chapter several controllers are proposed for different problem
settings: a) Linear time invariant (LTI) certain plants, b) uncertain LTI plants, c) LTI models
with input saturations, d) nonlinear plants affine in the control with single input, e) general
nonlinear models with constant as well as time-varying faults and with input saturation. We
underline here that we focus in this chapter on the theoretical developments of the controllers,
readers interested in numerical applications should refer to (6; 8).

2. Preliminaries

Throughout this chapter we will use the L2 norm denoted ||.||, i.e. for x ∈ Rn we define
||x|| =

√
xTx. The notation L f h denotes the standard Lie derivative of a scalar function h(.)

along a vector function f (.). Let us introduce now some definitions from (40), that will be
frequently used in the sequel.
Definition 1 ((40), p.45): The solution x(t, x0) of the system ẋ = f (x), x ∈ Rn, f locally
Lipschitz, is stable conditionally to Z, if x0 ∈ Z and for each � > 0 there exists δ(�) > 0
such that

||x̃0 − x0|| < δ and x̃0 ∈ Z ⇒ ||x(t, x̃0) − x(t, x0)|| < �, ∀t ≥ 0.

If furthermore, there exist r(x0) > 0, s.t. ||x(t, x̃0) − x(t, x0)|| ⇒ 0, ∀||x̃0 − x0|| <
r(x0) and x̃0 ∈ Z, the solution is asymptotically stable conditionally to Z. If r(x0) → ∞,
the stability is global.
Definition 2 ((40), p.48): Consider the system H : ẋ = f (x, u), y = h(x, u), x ∈ Rn, u, y ∈ Rm,
with zero inputs, i.e. ẋ = f (x, 0), y = h(x, 0) and let Z ⊂ Rn be its largest positively invariant
set contained in {x ∈ Rn|y = h(x, 0) = 0}. We say that H is globally zero-state detectable
(GZSD) if x = 0 is globally asymptotically stable conditionally to Z. If Z = {0}, the system H
is zero-state observable (ZSO).
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Definition 3 ((40), p.27): We say that H is dissipative in X ⊂ Rn containing x = 0, if there exists
a function S(x), S(0) = 0 such that for all x ∈ X

S(x) ≥ 0 and S(x(T))− S(x(0)) ≤
∫ T

0
ω(u(t), y(t))dt,

for all u ∈ U ⊂ Rm and all T > 0 such that x(t) ∈ X, ∀ t ∈ [0, T]. Where the function
ω : Rm × Rm → R called the supply rate, is locally integrable for every u ∈ U, i.e.∫ t1

t0
|ω(u(t), y(t))|dt < ∞, ∀ t0 ≤ t1. S is called the storage function. If the storage function is

differentiable the previous conditions writes as

Ṡ(x(t)) ≤ ω(u(t), y(t)).

The system H is said to be passive if it is dissipative with the supply rate w(u, y) = uTy.
Definition 4 ((40), p.36): We say that H is output feedback passive (OFP(ρ)) if it is dissipative
with respect to ω(u, y) = uTy − ρyTy for some ρ ∈ R.
We will also need the following definition to study the case of time-varying faults in Section
8.
Definition 5 (24): A function x : [0, ∞) → Rn is called a limiting solution of the system ẋ =
f (t, x), f a smooth vector function, with respect to an unbounded sequence tn in [0, ∞), if there
exist a compact κ ⊂ Rn and a sequence {xn : [tn, ∞) → κ} of solutions of the system such
that the associated sequence {x̂n :→ xn(t + tn)} converges uniformly to x on every compact
subset of [0, ∞).
Also, throughout this paper it is said that a statement P(t) holds almost everywhere (a.e.) if the
Lebesgue measure of the set {t ∈ [0, ∞) |P(t) is f alse} is zero. We denote by d f the differential
of the function f : Rn → R. We also mean by semiglobal stability of the equilibrium point
x0 for the autonomous system ẋ = f (x), x ∈ Rn with f a smooth function, that for each
compact set K ⊂ Rn containing x0, there exist a locally Lipschitz state feedback, such that x0

is asymptotically stable, with a basin of attraction containing K ((44), Definition 3, p. 1445).

3. FTC for known LTI plants

First, let us consider linear systems of the form

ẋ = Ax + Bαu, (1)

where, x ∈ Rn, u ∈ Rm are the state and input vector, respectively, and α ∈ Rm×m is a diagonal
time variant fault matrix, with diagonal elements αii(t), i = 1, ..., m s.t., 0 < �1 ≤ αii(t) ≤ 1.
The matrices A, B have appropriate dimensions and satisfy the following assumption.
Assumption(1): The pair (A, B) is controllable.

3.1 Problem statement
Find a state feedback controller u(x) such that the closed-loop controlled system (1) admits x = 0 as a
globally uniformly asymptotically (GUA) stable equilibrium point ∀α(t) (s.t. 0 < �1 ≤ αii(t) ≤ 1).

3.2 Problem solution
Hereafter, we will re-write the problem of stabilizing (1), for ∀α(t) s.t., 0 < �1 ≤ αii(t) ≤ 1, as
an absolute stability problem or Lure’s problem (2). Let us first recall the definition of sector
nonlinearities.
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time variant fault matrix, with diagonal elements αii(t), i = 1, ..., m s.t., 0 < �1 ≤ αii(t) ≤ 1.
The matrices A, B have appropriate dimensions and satisfy the following assumption.
Assumption(1): The pair (A, B) is controllable.

3.1 Problem statement
Find a state feedback controller u(x) such that the closed-loop controlled system (1) admits x = 0 as a
globally uniformly asymptotically (GUA) stable equilibrium point ∀α(t) (s.t. 0 < �1 ≤ αii(t) ≤ 1).

3.2 Problem solution
Hereafter, we will re-write the problem of stabilizing (1), for ∀α(t) s.t., 0 < �1 ≤ αii(t) ≤ 1, as
an absolute stability problem or Lure’s problem (2). Let us first recall the definition of sector
nonlinearities.

285Passive Fault Tolerant Control



Definition 6 ((22), p. 232): A static function ψ : [0, ∞)×Rm → Rm, s.t. [ψ(t, y)−K1y]T[ψ(t, y)−
K2y] ≤ 0, ∀(t, y), with K = K2 − K1 = KT > 0, where K1 = diag(k11, ..., k1m), K2 =
diag(k21, ..., k2m), is said to belong to the sector [K1, K2].
We can now recall the definition of absolute stability or Lure’s problem.
Definition 7 (Absolute stability or Lure’s problem (22), p. 264): We assume a linear system of the
form

ẋ = Ax + Bu
y = Cx + Du
u = −ψ(t, y),

(2)

where, x ∈ Rn, u ∈ Rm, y ∈ Rm, (A, B) controllable, (A, C) observable and ψ : [0, ∞) ×
Rm → Rm is a static nonlinearity, piecewise continuous in t, locally Lipschitz in y and satisfies
a sector condition as defined above. Then, the system (2) is absolutely stable if the origin
is GUA stable for any nonlinearity in the given sector. It is absolutely stable within a finite
domain if the origin is uniformly asymptotically (UA) stable within a finite domain.
We can now introduce the idea used here, which is as follows:
Let us associate with the faulty system (1) a virtual output vector y ∈ Rm

ẋ = Ax + Bαu
y = Kx, (3)

and let us write the controller as an output feedback

u = −y. (4)

From (3) and (4), we can write the closed-loop system as

ẋ = Ax + Bv
y = Kx
v = −α(t)y.

(5)

We have thus transformed the problem of stabilizing (1), for all bounded matrices α(t), to the
problem of stabilizing the system (5) for all α(t). It is clear that the problem of GUA stabilizing
(5) is a Lure’s problem in (2), with the linear time varying stationarity ψ(t, y) = α(t)y, and
where the ‘nonlinearities’ admit the sector bounds K1 = diag(�1, ..., �1), K2 = Im×m.
Based on this formulation we can now solve the problem of passive fault tolerant control of
(1) by applying the absolute stability theory (26).
We can first write the following result:
Proposition 1: Under Assumption 1, the closed-loop of (1) with the static state feedback

u = −Kx, (6)

where K is solution of the optimal problem

min
kij

(∑i=m
i=1 ∑

j=n
j=1 k2

ij)�
PÂ(K) + ÂT(K)P (ĈT − PB̂)W−1

((ĈT − PB̂)W−1)T −I

�
< 0

P > 0

rank

⎡
⎢⎢⎢⎣

K
KA

...
KAn−1

⎤
⎥⎥⎥⎦ = n,

(7)
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for P = PT > 0, W = (D̂ + D̂T)0.5 and {Â(K), B̂(K), Ĉ(K), D̂(K)} is a minimal realization
of the transfer matrix

Ĝ = [I + K(sI − A)−1B][I + �1 × Im×mK(sI − A)−1B]−1, (8)

admits the origin x = 0 as GUA stable equilibrium point.
Proof: We saw that the problem of stabilizing (1) with a static state feedback u = −Kx is
equivalent to the stabilization of (5). Studying the stability of (5) is a particular case of Lure’s
problem defined by (2), with the ‘nonlinearity’ function ψ(t, y) = −α(t)y associated with
the sector bounds K1 = �1 × Im×m, K2 = Im×m (introduced in Definition 1). Then based on
Theorem 7.1, in ((22), p. 265), we can write that under Assumption1 and the constraint of
observability of the pair (A, K), the origin x = 0 is GUA stable equilibrium point for (5), if the
matrix transfer function

Ĝ = [I + G(s)][I + �1 × Im×mG(s)]−1,

where G(s) = K(sI − A)−1B, is strictly positive real (SPR). Now, using the KYP lemma as
presented in (Lemma 6.3, (22), p. 240), we can write that a sufficient condition for the GUA
stability of x = 0 along the solution of (1) with u = −Kx is the existence of P = PT > 0, L and
W, s.t.

PÂ(K) + ÂT(K)P = −LTL − �P, � > 0
PB̂(K) = ĈT(K)− LTW
WTW = D̂(K) + D̂T(K),

(9)

where, {Â, B̂, Ĉ, D̂} is a minimal realization of Ĝ. Finally, adding to equation (9), the
observability condition of the pair (A, K), we arrive at the condition

PÂ(K) + ÂT(K)P = −LTL − �P, � > 0
PB̂(K) = ĈT(K)− LTW
WTW = D̂(K) + D̂T(K)

rank

⎡
⎢⎢⎢⎣

K
KA

...
KAn−1

⎤
⎥⎥⎥⎦ = n.

(10)

Next, if we choose W = WT we can write W = (D̂ + D̂T)0.5. The second equation in (10) leads
to LT = (ĈT − PB̂)W−1. Finally, from the first equation in (10), we arrive at the following
condition on P

PÂ(K) + ÂT(K)P + (ĈT − PB̂)W−1((ĈT − PB̂)W−1)T < 0,

which is in turn equivalent to the LMI
�

PÂ(K) + ÂT(K)P (ĈT − PB̂)W−1

((ĈT − PB̂)W−1)T −I

�
< 0. (11)

Thus, to solve equation (10) we can solve the constrained optimal problem

287Passive Fault Tolerant Control



Definition 6 ((22), p. 232): A static function ψ : [0, ∞)×Rm → Rm, s.t. [ψ(t, y)−K1y]T[ψ(t, y)−
K2y] ≤ 0, ∀(t, y), with K = K2 − K1 = KT > 0, where K1 = diag(k11, ..., k1m), K2 =
diag(k21, ..., k2m), is said to belong to the sector [K1, K2].
We can now recall the definition of absolute stability or Lure’s problem.
Definition 7 (Absolute stability or Lure’s problem (22), p. 264): We assume a linear system of the
form
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min
kij

(∑i=m
i=1 ∑

j=n
j=1 k2

ij)�
PÂ(K) + ÂT(K)P (ĈT − PB̂)W−1

((ĈT − PB̂)W−1)T −I

�
< 0

P > 0

rank

⎡
⎢⎢⎢⎣

K
KA

...
KAn−1

⎤
⎥⎥⎥⎦ = n. �

(12)

Note that the inequality constraints in (7) can be easily solved by available LMI algorithms, e.g.
feasp under Matlab. Furthermore, to solve equation (10), we can propose two other different
formulations:

1. Through nonlinear algebraic equations: Choose W = WT which implies by the third
equation in (10) that W = (D̂(K) + D̂T(K))0.5, for any K s.t.

PÂ(K) + ÂT(K)P = −LTL − εP, ε > 0, P = PT > 0
PB̂(K) = ĈT(K)− LTW

rank

⎡
⎢⎢⎢⎣

K
KA

...
KAn−1

⎤
⎥⎥⎥⎦ = n.

(13)

To solve (13) we can choose ε = ε̃2 and P = P̃TP̃, which leads to the nonlinear algebraic
equation

F(kij, p̃ij, lij, ε̃) = 0, (14)

where kij, i = 1, ..., m, j = 1, ...n, p̃ij, i = 1, ..., ñ (Â ∈ Rñ×ñ), j = 1, ...ñ and lij, i =
1, ..., m, j = 1, ...ñ are the elements of K, P̃ and L, respectively. Equation (14) can then be
resolved by any nonlinear algebraic equations solver, e.g. fsolve under Matlab.

2. Through Algebraic Riccati Equations (ARE): It is well known that the positive real lemma
equations, i.e. the first three equations in (10) can be transformed to the following ARE ((3),
pp. 270-271):

P( ˆ̂A − B̂R−1Ĉ) + ( ˆ̂AT − ĈTR−1B̂T)P + PB̂R−1B̂T P + ĈTR−1Ĉ = 0, (15)

where ˆ̂A = Â + 0.5ε.Iñ×ñ, R = D̂(K) + D̂T(K) > 0. Then, if a solution P = PT > 0 is
found for (15) it is also a solution for the first three equation in (10), together with

W = −VR1/2, L = (PB̂ − ĈT)R−1/2VT , VVT = I.

To solve equation (10), we can then solve the constrained optimal problem
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min
kij

(∑i=m
i=1 ∑

j=n
j=1 k2

ij)

P > 0

rank

⎡
⎢⎢⎢⎣

K
KA

...
KAn−1

⎤
⎥⎥⎥⎦ = n,

(16)

where P is the symmetric solution of the ARE (15), that can be directly computed by
available solvers, e.g. care under Matlab.

There are other linear controllers for LPV system, that might solve the problem stated in
Section 3. 1, e.g. (1). However, the solution proposed here benefits from the simplicity of the
formulation based on the absolute stability theory, and allows us to design FTCs for uncertain
and saturated LTI plants, as well as nonlinear affine models, as we will see in the sequel.
Furthermore, reformulating the FTC problem in the absolute stability theory framework may
be applied to solve the FTC problem for several other systems, like infinite dimensional
systems, i.e. PDEs models, stochastic systems and systems with delays (see (26) and the
references therein). Furthermore, compared to optimal controllers, e.g. LQR, the proposed
solution offers greater robustness, since it compensates for the loss of effectiveness over
[�1, 1]. Indeed, it is well known that in the time invariant case, optimal controllers like LQR
compensates for a loss of effectiveness over [1/2, 1] ((40), pp. 99-102). A larger loss of
effectiveness can be covered but at the expense of higher control amplitude ((40), Proposition
3.32, p.100), which is not desirable in practical situations.
Let us consider now the more practical case of LTI plants with parameter uncertainties.

4. FTC for uncertain LTI plants

We consider here models with structured uncertainties of the form

ẋ = (A + ΔA)x + (B + ΔB)αu, (17)

where ΔA ∈ ◦A = {ΔA ∈ Rn×n|ΔAmin ≤ ΔA ≤ ΔAmax, ΔAmin, ΔAmax ∈ Rn×n},
ΔB ∈ ◦B = {ΔB ∈ Rn×m|ΔBmin ≤ ΔB ≤ ΔBmax, ΔBmin, ΔBmax ∈ Rn×m},
α = diag(α11, ..., αmm), 0 < �1 ≤ αii ≤ 1 ∀i ∈ {1, ..., m}, and A, B, x, u as defined before.

4.1 Problem statement
Find a state feedback controller u(x) such that the closed-loop controlled system (17) admits x = 0 as a
globally asymptotically (GA) stable equilibrium point ∀α(s.t. 0 < �1 ≤ αii ≤ 1), ∀ΔA ∈ ◦A, ΔB ∈
◦B.

4.2 Problem solution
We first re-write the model (17) as follows:

ẋ = (A + ΔA)x + (B + ΔB)v
y = Kx
v = −αy.

(18)

The formulation given by (18), is an uncertain Lure’s problem (as defined in (15) for example).
We can write the following result:
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The formulation given by (18), is an uncertain Lure’s problem (as defined in (15) for example).
We can write the following result:
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Proposition 2: Under Assumption 1, the system (17) admits x = 0 as GA stable equilibrium
point, with the static state feedback u = −K̃H̃−1x, where K̃, H̃ are solutions of the LMIs

Q̃ + H̃AT − K̃TLTBT + AH̃ − BLK̃ ≤ 0 ∀L ∈ Lv, Q̃ = Q̃T > 0, H̃ > 0
−Q̃ + H̃ΔAT − K̃T LTΔBT + ΔAH̃ − ΔBLK̃ < 0, ∀(ΔA, ΔB, Ł) ∈ ◦Av × ◦Bv × Lv,

(19)

where, Lv is the set containing the vertices of {�1 Im×m, Im×m}, and ◦Av, ◦Bv are the set of
vertices of ◦A, ◦B respectively.
Proof: Under Assumption 1, and using Theorem 5 in ((15), p. 330), we can write the stabilizing
static state feedback u = −Kx, where K is such that, for a given H > 0, Q = QT > 0 we have

{
Q + (A − BLK)T H + H(A − BLK) ≤ 0 ∀L ∈ Lv

−Q + ((ΔA − ΔBLK)TH + H(ΔA − ΔBLK)) < 0 ∀(ΔA, ΔB, Ł) ∈ ◦Av × ◦Bv × Lv,
(20)

where, Lv is the set containing the vertices of {�1 Im×m, Im×m}, and ◦Av, ◦Bv are the set of
vertices of ◦A, ◦B respectively. Next, inequalities (20) can be transformed to LMIs by defining
the new variables K̃ = KH−1, H̃ = H−1, Q̃ = H−1QH−1 and multiplying both sides of the
inequalities in (20) by H−1, we can write finally (20) as

Q̃ + H̃AT − K̃TLTBT + AH̃ − BLK̃ ≤ 0 ∀L ∈ Lv, Q̃ = Q̃T > 0, H̃ > 0
−Q̃ + H̃ΔAT − K̃TLTΔBT + ΔAH̃ − ΔBLK̃ < 0 ∀(ΔA, ΔB, Ł) ∈ ◦Av × ◦Bv × Lv,

(21)

the controller gain will be given by K = K̃H̃−1.�
Let us consider now the practical problem of input saturation. Indeed, in practical applications
the available actuators have limited maximum amplitudes. For this reason, it is more realistic
to consider bounded control amplitudes in the design of the fault tolerant controller.

5. FTC for LTI plants with control saturation

We consider here the system (1) with input constraints |ui| ≤ umaxi , i = 1, ..., m, and study the
following FTC problem.

5.1 Problem statement
Find a bounded feedback controller, i.e. |ui| ≤ umaxi, i = 1, ..., m, such that the closed-loop controlled
system (1) admits x = 0 as a uniformly asymptotically (UA) stable equilibrium point ∀α(t) (s.t. 0 <
�1 ≤ αii(t) ≤ 1), i = 1, ..., m, within an estimated domain of attraction.

5.2 Problem solution
Under the actuator constraint |ui| ≤ umaxi , i = 1, ..., m, the system (1) can be re-written as

ẋ = Ax + BUmaxv
y = Kx
v = −α(t)sat(y),

(22)

where Umax = diag(umax1, ..., umaxm), sat(y) = (sat(y1), ..., sat(ym))T, sat(yi) =
sign(yi)min{1, |yi|}.
Thus we have rewritten the system (1) as a MIMO Lure’s problem with a generalized sector
condition, which is a generalization of the SISO case presented in (16).
Next, we define the two functions ψ1 : Rn → Rm, ψ1(x) = −�1 Im×msat(Kx) and
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ψ2 : Rn → Rm, ψ2(x) = −sat(Kx).
We can then write that v is spanned by the two functions ψ1, ψ2:

v(x, t) ∈ co{ψ1(x), ψ2(x)}, ∀x ∈ Rn, t ∈ R, (23)

where co{ψ1(x), ψ2(x)} denotes the convex hull of ψ1, ψ2, i.e.

co{ψ1(x), ψ2(x)} := {
i=2

∑
i=1

γi(t)ψi(x),
i=2

∑
i=1

γi(t) = 1, γi(t) ≥ 0 ∀t}.

Note that in the SISO case, the problem of analyzing the stability of x = 0 for the system (22)
under the constraint (23) is a Lure’s problem with a generalized sector condition as defined in
(16).
Let us recall now some material from (16; 17), that we will use to prove Proposition 4.
Definition 8 ((16), p.538): The ellipsoid level set ε(P, ρ) := {x ∈ Rn : V(x) = xTPx ≤ ρ}, ρ >
0, P = PT > 0 is said to be contractive invariant for (22) if

V̇ = 2xT P(Ax − BUmaxαsat(Kx)) < 0,

for all x ∈ ε(P, ρ)\{0}, ∀t ∈ R.
Proposition 3 ((16), P. 539): An ellipsoid ε(P, ρ) is contractively invariant for

ẋ = Ax + Bsat(Fx), B ∈ Rn×1

if and only if
(A + BF)TP + P(A + BF) < 0,

and there exists an H ∈ R1×n such that

(A + BH)TP + P(A + BH) < 0,

and ε(P, ρ) ⊂ {x ∈ RN : |Fx| ≤ 1}.
Fact 1 ((16), p.539): Given a level set LV(ρ) = {x ∈ Rn/ V(x) ≤ ρ} and a set of functions
ψi(u), i ∈ {1, ..., N}. Suppose that for each i ∈ {1, ..., N}, LV(ρ) is contractively invariant
for ẋ = Ax + Bψi(u). Let ψ(u, t) ∈ co{ψi(u), i ∈ {1, ..., N}} for all u, t ∈ R, then LV(ρ) is
contractively invariant for ẋ = Ax + Bψ(u, t).
Theorem 1((17), p. 353): Given an ellipsoid level set ε(P, ρ), if there exists a matrix H ∈ Rm×n

such that
(A + BM(v, K, H))TP + P(A + BM(v, K, H)) < 0,

for all1 v ∈ V := {v ∈ Rn|vi = 1 or 0}, and ε(P, ρ) ⊂ L(H) := {x ∈ RN : |hix| ≤ 1, i =
1, ..., m}, where

M(v, K, H) =

⎡
⎢⎣

v1k1 + (1 − v1)h1
...

vmkm + (1 − vm)hm

⎤
⎥⎦ , (24)

then ε(P, ρ) is a contractive domain for ẋ = Ax + Bsat(Kx).
We can now write the following result:
Proposition 4: Under Assumption 1, the system (1) admits x = 0 as a UA stable equilibrium

1 Hereafter, hi , ki denote the ith line of H, K, respectively.
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Proposition 2: Under Assumption 1, the system (17) admits x = 0 as GA stable equilibrium
point, with the static state feedback u = −K̃H̃−1x, where K̃, H̃ are solutions of the LMIs

Q̃ + H̃AT − K̃TLTBT + AH̃ − BLK̃ ≤ 0 ∀L ∈ Lv, Q̃ = Q̃T > 0, H̃ > 0
−Q̃ + H̃ΔAT − K̃T LTΔBT + ΔAH̃ − ΔBLK̃ < 0, ∀(ΔA, ΔB, Ł) ∈ ◦Av × ◦Bv × Lv,

(19)

where, Lv is the set containing the vertices of {�1 Im×m, Im×m}, and ◦Av, ◦Bv are the set of
vertices of ◦A, ◦B respectively.
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{
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−Q + ((ΔA − ΔBLK)TH + H(ΔA − ΔBLK)) < 0 ∀(ΔA, ΔB, Ł) ∈ ◦Av × ◦Bv × Lv,
(20)

where, Lv is the set containing the vertices of {�1 Im×m, Im×m}, and ◦Av, ◦Bv are the set of
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the new variables K̃ = KH−1, H̃ = H−1, Q̃ = H−1QH−1 and multiplying both sides of the
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(21)

the controller gain will be given by K = K̃H̃−1.�
Let us consider now the practical problem of input saturation. Indeed, in practical applications
the available actuators have limited maximum amplitudes. For this reason, it is more realistic
to consider bounded control amplitudes in the design of the fault tolerant controller.

5. FTC for LTI plants with control saturation

We consider here the system (1) with input constraints |ui| ≤ umaxi , i = 1, ..., m, and study the
following FTC problem.

5.1 Problem statement
Find a bounded feedback controller, i.e. |ui| ≤ umaxi, i = 1, ..., m, such that the closed-loop controlled
system (1) admits x = 0 as a uniformly asymptotically (UA) stable equilibrium point ∀α(t) (s.t. 0 <
�1 ≤ αii(t) ≤ 1), i = 1, ..., m, within an estimated domain of attraction.

5.2 Problem solution
Under the actuator constraint |ui| ≤ umaxi , i = 1, ..., m, the system (1) can be re-written as

ẋ = Ax + BUmaxv
y = Kx
v = −α(t)sat(y),

(22)

where Umax = diag(umax1, ..., umaxm), sat(y) = (sat(y1), ..., sat(ym))T, sat(yi) =
sign(yi)min{1, |yi|}.
Thus we have rewritten the system (1) as a MIMO Lure’s problem with a generalized sector
condition, which is a generalization of the SISO case presented in (16).
Next, we define the two functions ψ1 : Rn → Rm, ψ1(x) = −�1 Im×msat(Kx) and
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ψ2 : Rn → Rm, ψ2(x) = −sat(Kx).
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i=2

∑
i=1

γi(t)ψi(x),
i=2

∑
i=1

γi(t) = 1, γi(t) ≥ 0 ∀t}.

Note that in the SISO case, the problem of analyzing the stability of x = 0 for the system (22)
under the constraint (23) is a Lure’s problem with a generalized sector condition as defined in
(16).
Let us recall now some material from (16; 17), that we will use to prove Proposition 4.
Definition 8 ((16), p.538): The ellipsoid level set ε(P, ρ) := {x ∈ Rn : V(x) = xTPx ≤ ρ}, ρ >
0, P = PT > 0 is said to be contractive invariant for (22) if

V̇ = 2xT P(Ax − BUmaxαsat(Kx)) < 0,

for all x ∈ ε(P, ρ)\{0}, ∀t ∈ R.
Proposition 3 ((16), P. 539): An ellipsoid ε(P, ρ) is contractively invariant for

ẋ = Ax + Bsat(Fx), B ∈ Rn×1

if and only if
(A + BF)TP + P(A + BF) < 0,

and there exists an H ∈ R1×n such that

(A + BH)TP + P(A + BH) < 0,

and ε(P, ρ) ⊂ {x ∈ RN : |Fx| ≤ 1}.
Fact 1 ((16), p.539): Given a level set LV(ρ) = {x ∈ Rn/ V(x) ≤ ρ} and a set of functions
ψi(u), i ∈ {1, ..., N}. Suppose that for each i ∈ {1, ..., N}, LV(ρ) is contractively invariant
for ẋ = Ax + Bψi(u). Let ψ(u, t) ∈ co{ψi(u), i ∈ {1, ..., N}} for all u, t ∈ R, then LV(ρ) is
contractively invariant for ẋ = Ax + Bψ(u, t).
Theorem 1((17), p. 353): Given an ellipsoid level set ε(P, ρ), if there exists a matrix H ∈ Rm×n

such that
(A + BM(v, K, H))TP + P(A + BM(v, K, H)) < 0,

for all1 v ∈ V := {v ∈ Rn|vi = 1 or 0}, and ε(P, ρ) ⊂ L(H) := {x ∈ RN : |hix| ≤ 1, i =
1, ..., m}, where

M(v, K, H) =

⎡
⎢⎣

v1k1 + (1 − v1)h1
...

vmkm + (1 − vm)hm

⎤
⎥⎦ , (24)

then ε(P, ρ) is a contractive domain for ẋ = Ax + Bsat(Kx).
We can now write the following result:
Proposition 4: Under Assumption 1, the system (1) admits x = 0 as a UA stable equilibrium

1 Hereafter, hi , ki denote the ith line of H, K, respectively.
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point, within the estimated domain of attraction ε(P, ρ), with the static state feedback u =
Kx = YQ−1x, where Y, Q solve the LMI problem

in fQ>0,Y,GJ[
JR I
I Q

]
≥ 0, J > 0

QAT + AQ + M(v, Y, G)T(BUmaxα�)T + (BUmaxα�)M(v, Y, G) < 0, ∀v ∈ V
QAT + AQ + M(v, Y, G)T(BUmax)T + (BUmax)M(v, Y, G) < 0, ∀v ∈ V[

1 gi
gT

i Q

]
≥ 0, i = 1, ..., m

(25)

where gi ∈ R1×n is the ith line of G, α� = �1 × Im×m, M given by (24), P = ρQ−1, and
R > 0, ρ > 0 are chosen.
Proof: Based on Theorem 1 recalled above, the following inequalities

(A + BUmaxα� M(v,−K, H))TP + P(A + BUmaxα� M(v,−K, H)) < 0, (26)

together with the condition ε(P, ρ) ⊂ L(H) are sufficient to ensure that ε(P, ρ) is contractive
invariant for (1) with α = �1 Im×m, u = −umaxsat(Kx).
Again based on Theorem 1, the following inequalities

(A + BUmaxM(v,−K, H))TP + P(A + BUmaxM(v,−K, H)) < 0, (27)

together with ε(P, ρ) ⊂ L(H) are sufficient to ensure that ε(P, ρ) is contractive invariant for
(1) with α = Im×m, u = −umaxsat(Kx). Now based on the direct extension to the MIMO
case, of Fact 1 recalled above, we conclude that ε(P, ρ) is contractive invariant for (1) with
u = −umaxsat(Kx), ∀αii(t), i = 1, ..., m, s.t., 0 < �1 ≤ αii(t) ≤ 1.
Next, the inequalities conditions (26), (27) under the constraint ε(P, ρ) ⊂ L(H) can be
transformed to LMI conditions ((17), p. 355) as follows: To find the control gain K such that
we have the bigger estimation of the attraction domain, we can solve the LMI problem

in fQ>0,Y,GJ[
JR I
I Q

]
≥ 0, J > 0

QAT + AQ + M(v, Y, G)T(BUmaxα�)T + (BUmaxα�)M(v, Y, G) < 0, ∀v ∈ V
QAT + AQ + M(v, Y, G)T(BUmax)T + (BUmax)M(v, Y, G) < 0, ∀v ∈ V[

1 gi
gT

i Q

]
≥ 0, i = 1, ..., m,

(28)

where Y = −KQ, Q = (P/ρ)−1, G = H(P/ρ)−1, M(v, Y, G) = M(v,−K, H)Q, gi =
hi(P/ρ)−1, hi ∈ R1×n is the ith line of H and R > 0 is chosen. �
Remark 1: To solve the problem (25) we have to deal with 2m+1 + m + 1 LMIs, to reduce the
number of LMIs we can force Y = G, which means K = −H(P/ρ)−1Q−1. Indeed, in this case
the second and third conditions in (25) reduce to the two LMIs

QAT + AQ + GT(BUmaxα�)T + (BUmaxα�)G < 0
QAT + AQ + GT(BUmax)T + (BUmax)G < 0,

(29)

which reduces the total number of LMIs in (25) to m + 3. �
In the next section, we report some results in the extension of the previous linear controllers
to single input nonlinear affine plants.
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6. FTC for nonlinear single input affine plants

Let us consider now the nonlinear affine system

ẋ = f (x) + g(x)αu, (30)

where x ∈ Rn, u ∈ R represent, respectively, the state vector and the scalar input. The vector
fields f , columns of g are supposed to satisfy the classical smoothness assumptions, with
f (0) = 0. The fault coefficient is such that 0 < �1 ≤ α ≤ 1.

6.1 Problem statement
Find a state feedback controller u(x) such that the closed-loop controlled system (44) admits x = 0 as
a local (global) asymptotically stable equilibrium point ∀α (s.t. 0 < �1 ≤ α ≤ 1).

6.2 Problem solution
We follow here the same idea used above for the linear case, and associate with the faulty
system (44) a virtual scalar output, the corresponding system writes as

ẋ = f (x) + g(x)αu
y = k(x),

(31)

where k : R → R is a continuous function.
Let us chose now the controller as the simple output feedback

u = −k(x). (32)

We can then write from (31) and (32) the closed-loop system as

ẋ = f (x) + g(x)v
y = k(x)
v = −αy.

(33)

As before we have cast the problem of stabilizing (44), for all α as an absolute stability problem
(33) as defined in ((40), p.55). We can then use the absolute stability theory to solve the
problem.
Proposition 5: The closed-loop system (44) with the static state feedback

u = −k(x), (34)

where k is such that there exist a C1 function S : Rn → R positive semidefinite, radially
unbounded, i.e. S(x) → +∞, ||x|| → +∞, that satisfies the PDEs

L f S(x) = −0.5qT(x)q(x) +
(

�1
1−�1

)
k2(x)

LgS(x) =
(

1+�1
1−�1

)
k(x) − qTw,

(35)

where the function w : Rn → Rl is s.t. wTw = 2
1−�1

, and q : Rn → Rl , l ∈ N, under the
condition of local (global) detectability of the system

ẋ = f (x) + g(x)v
y = k(x), (36)

293Passive Fault Tolerant Control



point, within the estimated domain of attraction ε(P, ρ), with the static state feedback u =
Kx = YQ−1x, where Y, Q solve the LMI problem

in fQ>0,Y,GJ[
JR I
I Q

]
≥ 0, J > 0

QAT + AQ + M(v, Y, G)T(BUmaxα�)T + (BUmaxα�)M(v, Y, G) < 0, ∀v ∈ V
QAT + AQ + M(v, Y, G)T(BUmax)T + (BUmax)M(v, Y, G) < 0, ∀v ∈ V[

1 gi
gT

i Q

]
≥ 0, i = 1, ..., m

(25)

where gi ∈ R1×n is the ith line of G, α� = �1 × Im×m, M given by (24), P = ρQ−1, and
R > 0, ρ > 0 are chosen.
Proof: Based on Theorem 1 recalled above, the following inequalities

(A + BUmaxα� M(v,−K, H))TP + P(A + BUmaxα� M(v,−K, H)) < 0, (26)

together with the condition ε(P, ρ) ⊂ L(H) are sufficient to ensure that ε(P, ρ) is contractive
invariant for (1) with α = �1 Im×m, u = −umaxsat(Kx).
Again based on Theorem 1, the following inequalities

(A + BUmaxM(v,−K, H))TP + P(A + BUmaxM(v,−K, H)) < 0, (27)

together with ε(P, ρ) ⊂ L(H) are sufficient to ensure that ε(P, ρ) is contractive invariant for
(1) with α = Im×m, u = −umaxsat(Kx). Now based on the direct extension to the MIMO
case, of Fact 1 recalled above, we conclude that ε(P, ρ) is contractive invariant for (1) with
u = −umaxsat(Kx), ∀αii(t), i = 1, ..., m, s.t., 0 < �1 ≤ αii(t) ≤ 1.
Next, the inequalities conditions (26), (27) under the constraint ε(P, ρ) ⊂ L(H) can be
transformed to LMI conditions ((17), p. 355) as follows: To find the control gain K such that
we have the bigger estimation of the attraction domain, we can solve the LMI problem

in fQ>0,Y,GJ[
JR I
I Q

]
≥ 0, J > 0

QAT + AQ + M(v, Y, G)T(BUmaxα�)T + (BUmaxα�)M(v, Y, G) < 0, ∀v ∈ V
QAT + AQ + M(v, Y, G)T(BUmax)T + (BUmax)M(v, Y, G) < 0, ∀v ∈ V[

1 gi
gT

i Q

]
≥ 0, i = 1, ..., m,

(28)

where Y = −KQ, Q = (P/ρ)−1, G = H(P/ρ)−1, M(v, Y, G) = M(v,−K, H)Q, gi =
hi(P/ρ)−1, hi ∈ R1×n is the ith line of H and R > 0 is chosen. �
Remark 1: To solve the problem (25) we have to deal with 2m+1 + m + 1 LMIs, to reduce the
number of LMIs we can force Y = G, which means K = −H(P/ρ)−1Q−1. Indeed, in this case
the second and third conditions in (25) reduce to the two LMIs

QAT + AQ + GT(BUmaxα�)T + (BUmaxα�)G < 0
QAT + AQ + GT(BUmax)T + (BUmax)G < 0,

(29)

which reduces the total number of LMIs in (25) to m + 3. �
In the next section, we report some results in the extension of the previous linear controllers
to single input nonlinear affine plants.

292 Robust Control, Theory and Applications

6. FTC for nonlinear single input affine plants

Let us consider now the nonlinear affine system

ẋ = f (x) + g(x)αu, (30)

where x ∈ Rn, u ∈ R represent, respectively, the state vector and the scalar input. The vector
fields f , columns of g are supposed to satisfy the classical smoothness assumptions, with
f (0) = 0. The fault coefficient is such that 0 < �1 ≤ α ≤ 1.

6.1 Problem statement
Find a state feedback controller u(x) such that the closed-loop controlled system (44) admits x = 0 as
a local (global) asymptotically stable equilibrium point ∀α (s.t. 0 < �1 ≤ α ≤ 1).

6.2 Problem solution
We follow here the same idea used above for the linear case, and associate with the faulty
system (44) a virtual scalar output, the corresponding system writes as

ẋ = f (x) + g(x)αu
y = k(x),

(31)

where k : R → R is a continuous function.
Let us chose now the controller as the simple output feedback

u = −k(x). (32)

We can then write from (31) and (32) the closed-loop system as

ẋ = f (x) + g(x)v
y = k(x)
v = −αy.

(33)

As before we have cast the problem of stabilizing (44), for all α as an absolute stability problem
(33) as defined in ((40), p.55). We can then use the absolute stability theory to solve the
problem.
Proposition 5: The closed-loop system (44) with the static state feedback

u = −k(x), (34)

where k is such that there exist a C1 function S : Rn → R positive semidefinite, radially
unbounded, i.e. S(x) → +∞, ||x|| → +∞, that satisfies the PDEs

L f S(x) = −0.5qT(x)q(x) +
(

�1
1−�1

)
k2(x)

LgS(x) =
(

1+�1
1−�1

)
k(x) − qTw,

(35)

where the function w : Rn → Rl is s.t. wTw = 2
1−�1

, and q : Rn → Rl , l ∈ N, under the
condition of local (global) detectability of the system

ẋ = f (x) + g(x)v
y = k(x), (36)
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admits the origin x = 0 as a local (global) asymptotically stable equilibrium point.
Proof: We saw the equivalence between the problem of stabilizing (44), and the absolute
stability problem (33), with the ‘nonlinearities’ sector bounds �1 and 1. Based on this, we can
use the sufficient condition provided in Proposition 2.38 in ((40), p. 55) to ensure the absolute
stability of the origin x = 0 of (33), for all α ∈ [�1, 1].
First we have to ensure that the parallel interconnection of the system

ẋ = f (x) + g(x)v
y = k(x), (37)

with the trivial unitary gain system
y = v, (38)

is OFP(−k̃), with k̃ = �1
1−�1

and with a C1 radially unbounded storage function S.
Based on Definition 4, this is true if the parallel interconnection of (37) and (38) is dissipative
with respect to the supply rate

ω(v, ỹ) = vTỹ +
(

�1
1 − �1

)
ỹTỹ, (39)

where ỹ = y + v. This means, based on Definition 3, that it exists a C1 function S : Rn → R,
with S(0) = 0 and S(x) ≥ 0, ∀x, s.t.

Ṡ(x(t)) ≤ ω(v, ỹ)
≤ vTy + ||v||2 +

(
�1

1−�1

)
||y + v||2.

(40)

Furthermore, S should be radially unbounded.
From the condition (40) and Theorem 2.39 in ((40), p. 56), we can write the following condition
on S, k for the dissipativity of the parallel interconnection of (37) and (38) with respect to the
supply rate (39):

L f S(x) = −0.5qT(x)q(x) +
(

�1
1−�1

)
k2(x)

LgS(x) = k(x) + 2
(

�1
1−�1

)
k(x) − qTw,

(41)

where the function w : Rn → Rl is s.t. wTw = 2
1−�1

, and q : Rn → Rl , l ∈ N. Finally,
based on Proposition 2.38 in ((40), p. 55), to ensure the local (global) asymptotic stability of
x = 0, the system (37) has to be locally (globally) ZSD, which is imposed by the local (global)
detectability of (36). �
Solving the condition (41) might be computationally demanding, since it requires to solve a
system of PDEs. We can simplify the static state feedback controller, by considering a lower
bound of the condition (40). Indeed, condition (40) is true if the inequality

Ṡ ≤ vTy, (42)

is satisfied. Thus, it suffices to ensure that the system (37) is passive with the storage function
S. Now, based again on the necessary and sufficient condition given in Theorem 2.39 ((40),
p.56), the storage function and the feedback gain have to satisfy the condition

L f S(x) ≤ 0
LgS(x) = k(x).

(43)
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�v = u̇
u(0) = 0

ξ̇ = αv
ξ(0) = 0

�ξ ẋ = f (x) + g(x)ξ �x

Fig. 1. The model (45) in cascade form

However, by considering a lower bound of (40), we are considering the extreme case where
�1 → 0, which may result in a conservative feedback gain (refer to (6)). It is worth noting
that in that case the controller given by (52), (41), reduces to the classical damping or
Jurdjevic-Quinn control u = −LgS(x), e.g. ((40), p. 111), but based on a semidefinite function
S.

7. FTC for nonlinear multi-input affine plants with constant loss of effectiveness
actuator faults

We consider here affine nonlinear models of the form

ẋ = f (x) + g(x)u, (44)

where x ∈ Rn, u ∈ Rm represent respectively the state and the input vectors. The vector fields
f , and the columns of g are assumed to be C1, with f (0) = 0.
We study actuator’s faults modelled by a multiplicative constant coefficient, i.e. a loss of
effectiveness, which implies the following form for the faulty model2

ẋ = f (x) + g(x)αu, (45)

where α ∈ Rm×m is a diagonal constant matrix, with the diagonal elements αii, i = 1, ..., m s.t.,
0 < �1 ≤ αii ≤ 1. We write then the FTC problem as follows.
Problem statement: Find a feedback controller such that the closed-loop controlled system (45) admits
x = 0 as a globally asymptotically stable (GAS) equilibrium point ∀α (s.t. 0 < �1 ≤ αii ≤ 1).

7.1 Problem solution
Let us first rewrite the faulty model (45) in the following cascade form (see figure 1)

ẋ = f (x) + g(x)h(ξ)
ξ̇ = αv, ξ(0) = 0

y = h(ξ) = ξ,
(46)

where we define the virtual input v = u̇ with u(0) = 0. This is indeed, a cascade form where
the controlling subsystem, i.e. ξ dynamics, is linear (40). Using this cascade form, it is possible
to write a stabilizing controller for the faulty model (45), as follows.

2 Hereafter, we will denote by x the states of the faulty system (45) to avoid cumbersome notations.
However, we remind the reader that the solutions of the healthy system (44) and the faulty system (45)
are different.

295Passive Fault Tolerant Control



admits the origin x = 0 as a local (global) asymptotically stable equilibrium point.
Proof: We saw the equivalence between the problem of stabilizing (44), and the absolute
stability problem (33), with the ‘nonlinearities’ sector bounds �1 and 1. Based on this, we can
use the sufficient condition provided in Proposition 2.38 in ((40), p. 55) to ensure the absolute
stability of the origin x = 0 of (33), for all α ∈ [�1, 1].
First we have to ensure that the parallel interconnection of the system

ẋ = f (x) + g(x)v
y = k(x), (37)

with the trivial unitary gain system
y = v, (38)

is OFP(−k̃), with k̃ = �1
1−�1

and with a C1 radially unbounded storage function S.
Based on Definition 4, this is true if the parallel interconnection of (37) and (38) is dissipative
with respect to the supply rate

ω(v, ỹ) = vTỹ +
(

�1
1 − �1

)
ỹTỹ, (39)

where ỹ = y + v. This means, based on Definition 3, that it exists a C1 function S : Rn → R,
with S(0) = 0 and S(x) ≥ 0, ∀x, s.t.

Ṡ(x(t)) ≤ ω(v, ỹ)
≤ vTy + ||v||2 +

(
�1

1−�1

)
||y + v||2.

(40)

Furthermore, S should be radially unbounded.
From the condition (40) and Theorem 2.39 in ((40), p. 56), we can write the following condition
on S, k for the dissipativity of the parallel interconnection of (37) and (38) with respect to the
supply rate (39):

L f S(x) = −0.5qT(x)q(x) +
(

�1
1−�1

)
k2(x)

LgS(x) = k(x) + 2
(

�1
1−�1

)
k(x) − qTw,

(41)

where the function w : Rn → Rl is s.t. wTw = 2
1−�1

, and q : Rn → Rl , l ∈ N. Finally,
based on Proposition 2.38 in ((40), p. 55), to ensure the local (global) asymptotic stability of
x = 0, the system (37) has to be locally (globally) ZSD, which is imposed by the local (global)
detectability of (36). �
Solving the condition (41) might be computationally demanding, since it requires to solve a
system of PDEs. We can simplify the static state feedback controller, by considering a lower
bound of the condition (40). Indeed, condition (40) is true if the inequality

Ṡ ≤ vTy, (42)

is satisfied. Thus, it suffices to ensure that the system (37) is passive with the storage function
S. Now, based again on the necessary and sufficient condition given in Theorem 2.39 ((40),
p.56), the storage function and the feedback gain have to satisfy the condition

L f S(x) ≤ 0
LgS(x) = k(x).

(43)
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�v = u̇
u(0) = 0

ξ̇ = αv
ξ(0) = 0

�ξ ẋ = f (x) + g(x)ξ �x

Fig. 1. The model (45) in cascade form

However, by considering a lower bound of (40), we are considering the extreme case where
�1 → 0, which may result in a conservative feedback gain (refer to (6)). It is worth noting
that in that case the controller given by (52), (41), reduces to the classical damping or
Jurdjevic-Quinn control u = −LgS(x), e.g. ((40), p. 111), but based on a semidefinite function
S.

7. FTC for nonlinear multi-input affine plants with constant loss of effectiveness
actuator faults

We consider here affine nonlinear models of the form

ẋ = f (x) + g(x)u, (44)

where x ∈ Rn, u ∈ Rm represent respectively the state and the input vectors. The vector fields
f , and the columns of g are assumed to be C1, with f (0) = 0.
We study actuator’s faults modelled by a multiplicative constant coefficient, i.e. a loss of
effectiveness, which implies the following form for the faulty model2

ẋ = f (x) + g(x)αu, (45)

where α ∈ Rm×m is a diagonal constant matrix, with the diagonal elements αii, i = 1, ..., m s.t.,
0 < �1 ≤ αii ≤ 1. We write then the FTC problem as follows.
Problem statement: Find a feedback controller such that the closed-loop controlled system (45) admits
x = 0 as a globally asymptotically stable (GAS) equilibrium point ∀α (s.t. 0 < �1 ≤ αii ≤ 1).

7.1 Problem solution
Let us first rewrite the faulty model (45) in the following cascade form (see figure 1)

ẋ = f (x) + g(x)h(ξ)
ξ̇ = αv, ξ(0) = 0

y = h(ξ) = ξ,
(46)

where we define the virtual input v = u̇ with u(0) = 0. This is indeed, a cascade form where
the controlling subsystem, i.e. ξ dynamics, is linear (40). Using this cascade form, it is possible
to write a stabilizing controller for the faulty model (45), as follows.

2 Hereafter, we will denote by x the states of the faulty system (45) to avoid cumbersome notations.
However, we remind the reader that the solutions of the healthy system (44) and the faulty system (45)
are different.
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Theorem 2: Consider the closed-loop system that consists of the faulty system (45) and the
dynamic state feedback

u̇ = −LgW(x)T − kξ, u(0) = 0
ξ̇ = �1(−(LgW(x))T − kξ), ξ(0) = 0,

(47)

where W is a C1 radially unbounded, positive semidefinite function, s.t. L f W ≤ 0, and k > 0.
Consider the fictitious system

ẋ = f (x) + g(x)ξ
ξ̇ = �1(−(LgW)T + ṽ)

y = h(ξ) = ξ.
(48)

If the system (48) is (G)ZSD with the input ṽ and the output y, then the closed-loop system
(45) with (47) admits the origin (x, ξ) = (0, 0) as (G)AS equilibrium point.
Proof: We first prove that the cascade system (48) is passive from ṽ to y = ξ.
To do so, let us first consider the linear part of the cascade system

ξ̇ = �1v, ξ(0) = 0
y = h(ξ) = ξ.

(49)

The system (49) is passive, with the C1 positive definite, radially unbounded, storage function
U(ξ) = 1

2 ξTξ. Indeed, we can easily see that ∀ T > 0

U(ξ(T)) =
1
2

ξT(T)ξ(T) ≤
∫ T

0
vTydt

≤ 1
�1

∫ T

0
ξ̇Tξdt

≤ 1
�1

∫ ξ(T)

ξ(0)
ξTdξ ≤ 1

2
1
�1

ξT(T)ξ(T),

which is true for 0 < �1 ≤ 1
Next, we can verify that the nonlinear part of the cascade

ẋ = f (x) + g(x)ξ
y = LgW(x), (50)

is passive, with the C1 radially unbounded, positive semidefinite storage function W. Since,
Ẇ = L f W + LgWξ ≤ LgWξ. Thus we have proved that both the linear and the nonlinear
parts of the cascade are passive , we can then conclude that the feedback interconnection (48)
of (49) and (50) (see figure 2) is passive from the new input ṽ = LgW + v to the output ξ, with
the storage function S(x, ξ) = W(x) + U(ξ) (see Theorem 2.10 in (40), p. 33).
Finally, the passivity associated with the (G)ZSD implies that the control ṽ = −kξ, k > 0
achieves (G)AS (Theorem 2.28 in (40), p. 49).
Up to now, we proved that the negative feedback output feedback ṽ = −kξ, k > 0 achieves
the desired AS for α = �1 Im×m. We have to prove now that the result holds for all α s.t.
0 < �1 ≤ αii ≤ 1, even if ξ is fed back from the fault’s model (46) with α = �1 Im×m, since
we do not know the actual value of α. If we multiply the control law (47) by a constant gain
matrix k̃ = diag(k̃1, ..., k̃m), 1 ≤ k̃i ≤ 1

�1
, we can write the new control as

u̇ = −k̃(LgW(x)T − kξ), k > 0, u(0) = 0
ξ̇ = �1 k̃(−(LgW(x))T − kξ), ξ(0) = 0.

(51)
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�ṽ + � ξ̇ = �1v
y = h(ξ) = ξ

�ξ

�ẋ = f (x) + g(x)ξ
y = LgW(x)

�−

Fig. 2. Feedback interconnection of (49) and (50)

It is easy to see that this gain does not change the stability result, since we can define for
the nonlinear cascade part (50) the new storage function W̃ = k̃W and the passivity is still
satisfied from its input ξ to the new output k̃LgW(x). Next, since the ZSD property remains
unchanged, we can chose the new stabilizing output feedback ṽ = −k̃kξ, which is still a
stabilizing feedback with the new gain k̃k > 0, and thus the stability result holds for all
α s.t. 0 < �1 ≤ αii ≤ 1, i = 1, ..., m. �
The stability result obtained in Theorem 2, depends on the ZSD property. Indeed, if the ZSD is
global, the stability obtained is global otherwise only local stability is ensured. Furthermore,
we note here that with the dynamic controller (47) we ensure that the initial control is zero,
regardless of the initial value of the states. This might be important for practical applications,
where an abrupt switch from zero to a non zero initial value of the control is not tolerated by
the actuators.
In Theorem 2, one of the necessary conditions is the existence of W ≥ 0, s.t. the uncontrolled
part of (45) satisfies L f W ≤ 0. To avoid this condition that may not be satisfied for some
practical systems, we propose the following Theorem.
Theorem 3: Consider the closed-loop system that consists of the faulty system (45) and the
dynamic state feedback

u̇ = 1
�1

(−k(ξ − βK(x)) − βLgWT + β ∂K
∂x ( f + gξ)), β = diag(β11, ..., βmm), 0 < �̃1

�1
≤ βii ≤ 1,

ξ̇ = −k(ξ − βK(x))− βLgWT + β ∂K
∂x ( f + gξ), ξ(0) = 0, u(0) = 0,

(52)
where k > 0 and the C1 function K(x) is s.t. there exists a C1 radially unbounded, positive
semidefinite function W satisfying

∂W
∂x

( f (x) + g(x)βK(x)) ≤ 0, ∀x ∈ Rn, ∀β = diag(β11, ..., βmm), 0 < �̃1 ≤ βii ≤ 1. (53)

Consider the fictitious system

ẋ = f (x) + g(x)ξ

ξ̇ = β ∂K
∂x ( f + gξ)− βLgWT + ˜̃v

ỹ = ξ − βK(x).
(54)

If (54) is (G)ZSD with the input ˜̃v and the output ỹ, for for all β s.t. βii, i = 1, ..., m, 0 < �̃1 ≤
βii ≤ 1. Then, the closed-loop system (45) with (52) admits the origin (x, ξ) = (0, 0) as (G)AS
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(47)

where W is a C1 radially unbounded, positive semidefinite function, s.t. L f W ≤ 0, and k > 0.
Consider the fictitious system

ẋ = f (x) + g(x)ξ
ξ̇ = �1(−(LgW)T + ṽ)

y = h(ξ) = ξ.
(48)

If the system (48) is (G)ZSD with the input ṽ and the output y, then the closed-loop system
(45) with (47) admits the origin (x, ξ) = (0, 0) as (G)AS equilibrium point.
Proof: We first prove that the cascade system (48) is passive from ṽ to y = ξ.
To do so, let us first consider the linear part of the cascade system

ξ̇ = �1v, ξ(0) = 0
y = h(ξ) = ξ.

(49)

The system (49) is passive, with the C1 positive definite, radially unbounded, storage function
U(ξ) = 1

2 ξTξ. Indeed, we can easily see that ∀ T > 0

U(ξ(T)) =
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2
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�1

∫ ξ(T)

ξ(0)
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2
1
�1
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which is true for 0 < �1 ≤ 1
Next, we can verify that the nonlinear part of the cascade

ẋ = f (x) + g(x)ξ
y = LgW(x), (50)

is passive, with the C1 radially unbounded, positive semidefinite storage function W. Since,
Ẇ = L f W + LgWξ ≤ LgWξ. Thus we have proved that both the linear and the nonlinear
parts of the cascade are passive , we can then conclude that the feedback interconnection (48)
of (49) and (50) (see figure 2) is passive from the new input ṽ = LgW + v to the output ξ, with
the storage function S(x, ξ) = W(x) + U(ξ) (see Theorem 2.10 in (40), p. 33).
Finally, the passivity associated with the (G)ZSD implies that the control ṽ = −kξ, k > 0
achieves (G)AS (Theorem 2.28 in (40), p. 49).
Up to now, we proved that the negative feedback output feedback ṽ = −kξ, k > 0 achieves
the desired AS for α = �1 Im×m. We have to prove now that the result holds for all α s.t.
0 < �1 ≤ αii ≤ 1, even if ξ is fed back from the fault’s model (46) with α = �1 Im×m, since
we do not know the actual value of α. If we multiply the control law (47) by a constant gain
matrix k̃ = diag(k̃1, ..., k̃m), 1 ≤ k̃i ≤ 1

�1
, we can write the new control as
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Fig. 2. Feedback interconnection of (49) and (50)

It is easy to see that this gain does not change the stability result, since we can define for
the nonlinear cascade part (50) the new storage function W̃ = k̃W and the passivity is still
satisfied from its input ξ to the new output k̃LgW(x). Next, since the ZSD property remains
unchanged, we can chose the new stabilizing output feedback ṽ = −k̃kξ, which is still a
stabilizing feedback with the new gain k̃k > 0, and thus the stability result holds for all
α s.t. 0 < �1 ≤ αii ≤ 1, i = 1, ..., m. �
The stability result obtained in Theorem 2, depends on the ZSD property. Indeed, if the ZSD is
global, the stability obtained is global otherwise only local stability is ensured. Furthermore,
we note here that with the dynamic controller (47) we ensure that the initial control is zero,
regardless of the initial value of the states. This might be important for practical applications,
where an abrupt switch from zero to a non zero initial value of the control is not tolerated by
the actuators.
In Theorem 2, one of the necessary conditions is the existence of W ≥ 0, s.t. the uncontrolled
part of (45) satisfies L f W ≤ 0. To avoid this condition that may not be satisfied for some
practical systems, we propose the following Theorem.
Theorem 3: Consider the closed-loop system that consists of the faulty system (45) and the
dynamic state feedback

u̇ = 1
�1

(−k(ξ − βK(x)) − βLgWT + β ∂K
∂x ( f + gξ)), β = diag(β11, ..., βmm), 0 < �̃1

�1
≤ βii ≤ 1,

ξ̇ = −k(ξ − βK(x))− βLgWT + β ∂K
∂x ( f + gξ), ξ(0) = 0, u(0) = 0,

(52)
where k > 0 and the C1 function K(x) is s.t. there exists a C1 radially unbounded, positive
semidefinite function W satisfying

∂W
∂x

( f (x) + g(x)βK(x)) ≤ 0, ∀x ∈ Rn, ∀β = diag(β11, ..., βmm), 0 < �̃1 ≤ βii ≤ 1. (53)

Consider the fictitious system

ẋ = f (x) + g(x)ξ

ξ̇ = β ∂K
∂x ( f + gξ)− βLgWT + ˜̃v

ỹ = ξ − βK(x).
(54)

If (54) is (G)ZSD with the input ˜̃v and the output ỹ, for for all β s.t. βii, i = 1, ..., m, 0 < �̃1 ≤
βii ≤ 1. Then, the closed-loop system (45) with (52) admits the origin (x, ξ) = (0, 0) as (G)AS
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equilibrium point.
Proof: We will first prove that the controller (52) achieves the stability results for a faulty
model with α = �1 Im×m and then we will prove that the stability result holds the same for all
α s.t. αii, i = 1, ..., m, 0 < �1 ≤ αii ≤ 1.
First, let us define the virtual output ỹ = ξ − βK(x), we can write the model (46) with α =
�1 Im×m as

ẋ = f (x) + g(x)(ỹ + βK(x))
ξ̇ = �1 Im×mv

ỹ = ξ − βK(x),
(55)

we can then write
˙̃y = �1 Im×mv − β

∂K
∂x

( f + g(ỹ + βK(x))) = ṽ.

To study the passivity of (55), we define the positive semidefinite storage function

V = βW(x) +
1
2

ỹT ỹ,

and write
V̇ = βL f +gβKW + βLgWỹ + ỹTṽ,

and using the condition (53), we can write

V̇ ≤ ỹT(βLgWT + ṽ),

which establishes the passivity of (55) from the new input ˜̃v = ṽ + βLgWT to the output ỹ.
Finally, using the (G)ZSD condition for α = �1 Im×m, we conclude about the (G)AS of (46) for
α = �1 Im×m, with the controller (52) (Theorem 2.28 in (40), p. 49). Now, remains to prove that
the same result holds for all α s.t. αii, i = 1, ..., m, 0 < �1 ≤ αii ≤ 1, i.e. the controller (52) has
the appropriate gain margin. In our particular case, it is straightforward to analyse the gain
margin of (52), since if we multiply the controller in (52) by a matrix α, s.t. αii, i = 1, ..., m,
0 < �1 ≤ αii ≤ 1, the new control writes as

u̇ = 1
�1

Im×m(−αk(ξ − βK(x)) − αβLgWT + αβ ∂K
∂x ( f + gξ)),

k > 0, β = diag(β1, ..., βm), 0 < βi ≤ 1,
ξ̇ = αk(ξ − βK(x)) − αβLgWT + αβ ∂K

∂x ( f + gξ), ξ(0) = 0, u(0) = 0.
(56)

We can see that this factor will not change the structure of the initial control (52), since it
will be directly absorbed by the gains, i.e. we can write k̃ = αk, with all the elements of
diagonal matrix k̃ positive, we can also define β̃ = αβ which is still a diagonal matrix with
bounded elements in [�̃1, 1], s.t. (53) and (54) are is still satisfied. Thus the stability result
remains unchanged. �
The previous theorems may guaranty global AS. However, the conditions required may be
difficult to satisfy for some systems. We present below a control law ensuring, under less
demanding conditions, semiglobal stability instead of global stability.
Theorem 4: Consider the closed-loop system that consists of the faulty system (45) and the
dynamic state feedback

u̇ = −k(ξ − unom(x)), k > 0,
ξ̇ = −k�1(ξ − unom(x)), ξ(0) = 0, u(0) = 0,

(57)
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where the nominal controller unom(x) achieves semiglobal asymptotic and local exponential
stability of x = 0 for the safe system (44). Then, the closed-loop (45) with (57) admits the origin
(x, ξ) = (0, 0) as semiglobal AS equilibrium point.
Proof: The prove is a direct application of the Proposition 6.5 in ((40), p. 244), to the system
(46), with α = �1 Im×m. Any positive gain α, s.t. 1 ≤ αii ≤ 1

�1
, i = 1, ..., m, will be absorbed

by k > 0, keeping the stability results unchanged. Thus the control law (57) stabilize (46) and
equivalently (45) for all α s.t. αii, i = 1, ..., m, 0 < �1 ≤ αii ≤ 1. �
Let us consider now the practical problem of input saturation. Indeed, in practical systems
the actuator powers are limited, and thus the control amplitude bounds should be taken into
account in the controller design. To solve this problem, we consider a more general model than
the affine model (44). In the following we first study the problem of FTC with input saturation,
on the general model

ẋ = f (x) + g(x, u)u, (58)

where, x, u, f are defined as before, g is now function of both the states and the inputs, and
is assumed to be C1 w.t.r. to x, u.
The actuator faut model, writes as

ẋ = f (x) + g(x, αu)αu, (59)

with the loss of effectiveness matrix α defined as before. This problem is treated in the
following Theorem, for the scalar case where α ∈ [�1, 1], i.e. when the same fault occurs
on all the actuators.
Theorem 5: Consider the closed-loop system that consists of the faulty system (59), for
α ∈ [�1, 1], and the static state feedback

u(x) = −λ(x)G(x, 0)T

G(x, 0) = ∂W(x)
∂x �1g(x, 0)

λ(x) = 2u
(1+γ1(|x|2+4u2 |G(x,0)|2))(1+|G(x,0)|2) > 0

γ1 =
∫ 2s

0
γ1(s)

1+γ1(1)ds

γ1(s) = 1
s

∫ 2s
s (γ̃1(t)− 1)dt + s

γ̃1(s) = max{(x,u)||x|2+|u|2≤s}{1 +
∫ 1

0
∂W(x)

∂x
∂g(x,τ�1u)

∂u dτ},

(60)

where W is a C2 radially unbounded, positive semidefinite function, s.t. L f W ≤ 0. Consider
the fictitious system

ẋ = f (x) + g(x, �1u)�1u

y = ∂W(x)
∂x �1g(x, �1u).

(61)

If (61) is (G)ZSD, then the closed-loop system (59) with (60) admits the origin as (G)AS
equilibrium point. Furthermore |u(x)| ≤ u, ∀x.
Proof: Let us first consider the faulty model (59) with α = �1. For this model, we can compute
the derivative of W as

Ẇ(x) = L f W +
∂W(x)

∂x
�1g(x, �1u)u

Ẇ(x) ≤ ∂W(x)
∂x

�1g(x, �1u)u.

Now, using Lemma II.4 (p.1562 in (31)), we can directly write the controller (60), s.t.

Ẇ ≤ − 1
2

λ(x)|G(x, 0)|2.
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equilibrium point.
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where the nominal controller unom(x) achieves semiglobal asymptotic and local exponential
stability of x = 0 for the safe system (44). Then, the closed-loop (45) with (57) admits the origin
(x, ξ) = (0, 0) as semiglobal AS equilibrium point.
Proof: The prove is a direct application of the Proposition 6.5 in ((40), p. 244), to the system
(46), with α = �1 Im×m. Any positive gain α, s.t. 1 ≤ αii ≤ 1

�1
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with the loss of effectiveness matrix α defined as before. This problem is treated in the
following Theorem, for the scalar case where α ∈ [�1, 1], i.e. when the same fault occurs
on all the actuators.
Theorem 5: Consider the closed-loop system that consists of the faulty system (59), for
α ∈ [�1, 1], and the static state feedback

u(x) = −λ(x)G(x, 0)T

G(x, 0) = ∂W(x)
∂x �1g(x, 0)

λ(x) = 2u
(1+γ1(|x|2+4u2 |G(x,0)|2))(1+|G(x,0)|2) > 0

γ1 =
∫ 2s

0
γ1(s)

1+γ1(1)ds

γ1(s) = 1
s

∫ 2s
s (γ̃1(t)− 1)dt + s

γ̃1(s) = max{(x,u)||x|2+|u|2≤s}{1 +
∫ 1

0
∂W(x)

∂x
∂g(x,τ�1u)

∂u dτ},

(60)

where W is a C2 radially unbounded, positive semidefinite function, s.t. L f W ≤ 0. Consider
the fictitious system

ẋ = f (x) + g(x, �1u)�1u

y = ∂W(x)
∂x �1g(x, �1u).

(61)

If (61) is (G)ZSD, then the closed-loop system (59) with (60) admits the origin as (G)AS
equilibrium point. Furthermore |u(x)| ≤ u, ∀x.
Proof: Let us first consider the faulty model (59) with α = �1. For this model, we can compute
the derivative of W as

Ẇ(x) = L f W +
∂W(x)

∂x
�1g(x, �1u)u

Ẇ(x) ≤ ∂W(x)
∂x

�1g(x, �1u)u.

Now, using Lemma II.4 (p.1562 in (31)), we can directly write the controller (60), s.t.

Ẇ ≤ − 1
2

λ(x)|G(x, 0)|2.

299Passive Fault Tolerant Control



Furthermore |u(x)| ≤ u, ∀x.
We conclude then that the trajectories of the closed-loop equations converge to the invariant
set {x| λ(x)|G(x, 0)|2 = 0} which is equivalent to the set {x| G(x, 0) = 0}. Based on Theorem
2.21 (p. 43, (40)), and the assumption of (G)ZSD for (61), we conclude about the (G)AS of
the origin of (59), (60), with α = �1. Now multiplying u by any positive coefficient α, s.t.
0 < �1 ≤ α ≤ 1 does not change the stability result. Furthermore, if |u(x)| ≤ u, ∀x, then
|αu(x)| ≤ u, ∀x, which completes the proof. �
Remark 2: In Theorem 5, we consider only the case of scalar fault α ∈ [�1, 1], i.e. the case
of uniform fault, since we need this assumption to be able to apply the result of Lemma II.4
in (31). However, this assumption can be satisfied in practice by a class of actuators, namely
pneumatically driven diaphragm-type actuators (23), for which the failure of the pressure
supply system might lead to a uniform fault of all the actuators. Furthermore, in Proposition
6 below we treat for the case of systems affine in the control, i.e. g(x, u) = g(x), the general
case of any diagonal matrix of loss of effectiveness coefficients.
Proposition 6: Consider the closed-loop system that consists of the faulty system (45), and the
static state feedback

u(x) = −λ(x)G(x)T

G(x) = ∂W(x)
∂x �1g(x)

λ(x) = 2u
1+|G(x)|2 .

(62)

where W is a C2 radially unbounded, positive semidefinite function, s.t. L f W ≤ 0. Consider
the fictitious system

ẋ = f (x) + g(x)�1u
y = ∂W(x)

∂x �1g(x).
(63)

If (63) is (G)ZSD, then the closed-loop system (45) with (62) admits the origin as (G)AS
equilibrium point. Furthermore |u(x)| ≤ u, ∀x.
Proof: The proof follows the same steps as in the proof of Theorem 5, except that in this case
the constraint of considering that the same fault occurs on all the actuators, i.e. for a scalar α, is
relaxed. Indeed, in this case we can directly ensure the negativeness of Ẇ, since if u is such that
Ẇ ≤ −λ(x)LgW(x)�1LgW(x)T ≤ 0, then in the case of a diagonal fault matrix, the derivative
writes as Ẇ ≤ −λ(x)LgW(x)�1αLgW(x)T ≤ −λ(x)�2

1LgW(x)LgW(x)T ≤ −�2
1λ(x)|G(x)|2.

Thus, the stability result remains unchanged. �
Up to now we have considered the case of abrupt faults, modelled with constant loss of
effectiveness matrices. However, in practical applications, the faults are usually time-varying
or incipient, modelled with time-varying loss of effectiveness coefficients, e.g. (50). We
consider in the following section this case of time-varying loss of effectiveness matrices.

8. FTC for nonlinear multi-input affine plants with time-varying loss of
effectiveness actuator faults

We consider here faulty models of the form

ẋ = f (x) + g(x)α(t)u, (64)

where α(t) is a diagonal time-varying matrix, with C1 diagonal elements αii(t), i = 1, ..., m
s.t., 0 < �1 ≤ αii(t) ≤ 1, ∀t. We write then the FTC problem as follows.
Problem statement: Find a feedback controller such that the closed-loop controlled system (64) admits
x = 0 as a uniformly asymptotically stable (UAS) equilibrium point ∀α(t) (s.t. 0 < �1 ≤ αii(t) ≤ 1).
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8.1 Problem solution
To solve this problem we use some of the tools introduced in (24), where a generalization of
Krasovskii-LaSalle theorem, has been proposed for nonlinear time-varying systems.
We can first write the following result.
Theorem 6: Consider the closed-loop system that consists of the faulty system (64) with the
dynamic state feedback

u̇ = −LgW(x)T − kξ, k > 0, u(0) = 0
ξ̇ = α̃(t)(−(LgW(x))T − kξ), ξ(0) = 0,

(65)

where α̃(t) is a C1 function, s.t. 0 < �1 ≤ α̃(t) ≤ 1, ∀t, and W is a C1, positive semidefinite
function, such that:
1- L f W ≤ 0,
2- The system ẋ = f (x) is AS conditionally to the set M = {x | W(x) = 0},
3- ∀(x, ξ) limiting solutions for the system

ẋ = f (x) + g(x)ξ

ξ̇ = α(t)(−(LgW)T − kξ)
y = h(x, ξ) = ξ,

(66)

w.r.t. unbounded sequence {tn} in [0, ∞), then if h(x, ξ) = 0, a.e., then either (x, ξ)(t0) = (0, 0)
for some t0 ≥ 0 or (0, 0) is a ω-limit point of (x, ξ), i.e. limt→∞(x, ξ)(t) → (0, 0).
Then the closed-loop system (64) with (65) admits the origin (x, ξ) = (0, 0) as UAS equilibrium
point.
Proof: Let us first rewrite the system (64) for α(t) = α̃(t), in the cascade form

ẋ = f (x) + g(x)h(ξ)
ξ̇ = α̃(t)v, v = u̇, ξ(0) = 0, u(0) = 0
y = h(ξ) = ξ.

(67)

Replacing v = u̇ by its value in (65) gives the feedback system

ẋ = f (x) + g(x)h(ξ)
ξ̇ = α̃(t)(−LgW(x)T + ṽ), ξ(0) = 0, u(0) = 0
y = h(ξ) = ξ.

(68)

We prove that (68) is passive from the input ṽ to the output ξ. We consider first the linear part
of (67)

ξ̇ = α̃(t)v, ξ(0) = 0
y = h(ξ) = ξ,

(69)

which is passive with the storage function U(ξ) = 1
2 ξTξ, i.e. U̇(t, ξ) = ξT ξ̇ = ξT α̃(t)v ≤

ξTv = vTξ.
Next, we consider the nonlinear part

ẋ = f (x) + g(x)ξ
y = LgW(x), (70)

which is passive with the storage function W(x), s.t. Ẇ = L f W + LgWξ ≤ LgWξ.
We conclude that the feedback interconnection (68) of (69) and (70) is passive from ṽ to ξ, with
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Furthermore |u(x)| ≤ u, ∀x.
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the fictitious system
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y = ∂W(x)

∂x �1g(x).
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If (63) is (G)ZSD, then the closed-loop system (45) with (62) admits the origin as (G)AS
equilibrium point. Furthermore |u(x)| ≤ u, ∀x.
Proof: The proof follows the same steps as in the proof of Theorem 5, except that in this case
the constraint of considering that the same fault occurs on all the actuators, i.e. for a scalar α, is
relaxed. Indeed, in this case we can directly ensure the negativeness of Ẇ, since if u is such that
Ẇ ≤ −λ(x)LgW(x)�1LgW(x)T ≤ 0, then in the case of a diagonal fault matrix, the derivative
writes as Ẇ ≤ −λ(x)LgW(x)�1αLgW(x)T ≤ −λ(x)�2

1LgW(x)LgW(x)T ≤ −�2
1λ(x)|G(x)|2.

Thus, the stability result remains unchanged. �
Up to now we have considered the case of abrupt faults, modelled with constant loss of
effectiveness matrices. However, in practical applications, the faults are usually time-varying
or incipient, modelled with time-varying loss of effectiveness coefficients, e.g. (50). We
consider in the following section this case of time-varying loss of effectiveness matrices.

8. FTC for nonlinear multi-input affine plants with time-varying loss of
effectiveness actuator faults

We consider here faulty models of the form

ẋ = f (x) + g(x)α(t)u, (64)

where α(t) is a diagonal time-varying matrix, with C1 diagonal elements αii(t), i = 1, ..., m
s.t., 0 < �1 ≤ αii(t) ≤ 1, ∀t. We write then the FTC problem as follows.
Problem statement: Find a feedback controller such that the closed-loop controlled system (64) admits
x = 0 as a uniformly asymptotically stable (UAS) equilibrium point ∀α(t) (s.t. 0 < �1 ≤ αii(t) ≤ 1).
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8.1 Problem solution
To solve this problem we use some of the tools introduced in (24), where a generalization of
Krasovskii-LaSalle theorem, has been proposed for nonlinear time-varying systems.
We can first write the following result.
Theorem 6: Consider the closed-loop system that consists of the faulty system (64) with the
dynamic state feedback

u̇ = −LgW(x)T − kξ, k > 0, u(0) = 0
ξ̇ = α̃(t)(−(LgW(x))T − kξ), ξ(0) = 0,

(65)

where α̃(t) is a C1 function, s.t. 0 < �1 ≤ α̃(t) ≤ 1, ∀t, and W is a C1, positive semidefinite
function, such that:
1- L f W ≤ 0,
2- The system ẋ = f (x) is AS conditionally to the set M = {x | W(x) = 0},
3- ∀(x, ξ) limiting solutions for the system

ẋ = f (x) + g(x)ξ

ξ̇ = α(t)(−(LgW)T − kξ)
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w.r.t. unbounded sequence {tn} in [0, ∞), then if h(x, ξ) = 0, a.e., then either (x, ξ)(t0) = (0, 0)
for some t0 ≥ 0 or (0, 0) is a ω-limit point of (x, ξ), i.e. limt→∞(x, ξ)(t) → (0, 0).
Then the closed-loop system (64) with (65) admits the origin (x, ξ) = (0, 0) as UAS equilibrium
point.
Proof: Let us first rewrite the system (64) for α(t) = α̃(t), in the cascade form

ẋ = f (x) + g(x)h(ξ)
ξ̇ = α̃(t)v, v = u̇, ξ(0) = 0, u(0) = 0
y = h(ξ) = ξ.

(67)

Replacing v = u̇ by its value in (65) gives the feedback system

ẋ = f (x) + g(x)h(ξ)
ξ̇ = α̃(t)(−LgW(x)T + ṽ), ξ(0) = 0, u(0) = 0
y = h(ξ) = ξ.

(68)

We prove that (68) is passive from the input ṽ to the output ξ. We consider first the linear part
of (67)

ξ̇ = α̃(t)v, ξ(0) = 0
y = h(ξ) = ξ,

(69)

which is passive with the storage function U(ξ) = 1
2 ξTξ, i.e. U̇(t, ξ) = ξT ξ̇ = ξT α̃(t)v ≤

ξTv = vTξ.
Next, we consider the nonlinear part

ẋ = f (x) + g(x)ξ
y = LgW(x), (70)

which is passive with the storage function W(x), s.t. Ẇ = L f W + LgWξ ≤ LgWξ.
We conclude that the feedback interconnection (68) of (69) and (70) is passive from ṽ to ξ, with
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the storage function S(x, ξ) = W(x) + U(ξ) (see Theorem 2.10, p. 33 in (40)).
This implies that the derivative of S along (68) with ṽ = −kξ, k > 0, writes

Ṡ(t, x, ξ) ≤ ṽTξ ≤ 0.

Now we define for (68) with ṽ = −kξ, k > 0, the positive invariant set

M = {(x, ξ)|W(x) + U(ξ) = 0}
M = {(x, 0)|W(x) = 0}.

We note that the restriction of (68) with ṽ = −kξ, k > 0 on M is ẋ = f (x), then applying
Theorem 5 in (18), we conclude that, under Condition 2 of Theorem 6, the origin (x, ξ) = (0, 0)
is US for the system (64) for α = α̃ and the dynamic controller (65). Now, multiplying u by
any α(t), s.t. 0 < �1 ≤ αii(t) ≤ 1, ∀t, does not change neither the passivity property, nor the
AS condition of ẋ = f (x) on M, which implies the US of (x, ξ) = (0, 0) for (64), (65) ∀α(t), s.t.
0 < �1 ≤ αii(t) ≤ 1, ∀t.
Now we first note the following fact: for any σ > 0 and any t ≥ t0 we can write

S(t, x(t), ξ(t))− S(t0, x(t0), ξ(t0)) ≤ −
∫ t

t0

μ(h(ξ(τ)))dτ = −
∫ t

t0

k|ξ(τ)|2dτ,

thus we have
∫ t

t0

(μ(h(ξ(τ))) − σ)dτ ≤
∫ t

t0

μ(h(ξ(τ)))dτ ≤ S(t0, x(t0), ξ(t0)) < M̃; M̃ > 0.

Finally, using Theorem 1 in (24), under Condition 3 of Theorem 6, we conclude that (x, ξ) =
(0, 0) is UAS for (64), (65). �
Remark 3: The function α̃ in (65) has been chosen to be any C1 time varying function, s.t.
0 < �1 ≤ α̃(t) ≤ 1, ∀t. The general time-varying nature of the function was necessary in the
proof to be able to use the results of Theorem 5 in (18) to prove the US of the faulty system’s
equilibrium point. However, in practice one can simply chose α̃(t) = 1, ∀t �.
Remark 4: Condition 3 in Theorem 6 is general and has been used to properly prove the
stability results in the time-varying case. However, in practical application it can be further
simplified, using the notion of reduced limiting system. Indeed, using Theorem 3 and Lemma
7 in (24), Condition 3 simplifies to:
∀(x, ξ) solutions for the reduced limiting system

ẋ = f (x) + g(x)ξ

ξ̇ = αγ(t)(−(LgW(x))T − kξ)
y = h(x, ξ) = ξ,

(71)

where the limiting function αγ(t) is defined us αγ(t)
�
= limn→∞ α(t + tn) w.r.t. unbounded

sequence {tn} in [0, ∞). Then, if h(x, ξ) = 0, a.e., then either (x, ξ)(t0) = (0, 0) for some
t0 ≥ 0 or (0, 0) is a ω-limit point of (x, ξ). Now, since in our case the diagonal matrix-valued
function α is s.t. 0 < �1 ≤ αii(t) ≤ 1, ∀t, then it obviously satisfies a permanent excitation
(PE) condition of the form

∫ t+T

t
α(τ)α(τ)Tdτ ≥ rI, T > 0, r > 0, ∀t,
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which implies, based on Lemma 8 in (24), that to check Condition 3 we only need to check the
classical ZSD condition:
∀x solutions for the system

ẋ = f (x)
LgW(x) = 0, (72)

either x(t0) = 0 for some t0 ≥ 0 or 0 is a ω-limit point of x. �
Let us consider again the problem of input saturation. We consider here again the more general
model (58), and study the problem of FTC with input saturation for the time-varying faulty
model

ẋ = f (x) + g(x, α(t)u)α(t)u, (73)

with the diagonal loss of effectiveness matrix α(t) defined as before. This problem is treated
in the following Theorem, for the scalar case where α(t) ∈ [�1, 1], ∀t, i.e. when the same fault
occurs on all the actuators.
Theorem 7: Consider the closed-loop system that consists of the faulty system (73) for α ∈
[�1, 1], ∀t, with the static state feedback

u(x) = −λ(x)G(x, 0)T

G(x, 0) = ∂W(x)
∂x g(x, 0)

λ(x) = 2u
(1+γ1(|x|2+4u2 |G(x,0)|2))(1+|G(x,0)|2) > 0

γ1 =
∫ 2s

0
γ1(s)

1+γ1(1)ds

γ1(s) = 1
s

∫ 2s
s (γ̃1(t)− 1)dt + s

γ̃1(s) = max{(x,u)||x|2+|u|2≤s}{1 +
∫ 1

0
∂W(x)

∂x
∂g(x,τ�1u)

∂u dτ},

(74)

where W is a C2, positive semidefinite function, such that:
1- L f W ≤ 0,
2- The system ẋ = f (x) is AS conditionally to the set M = {x | W(x) = 0},
3- ∀x limiting solutions for the system

ẋ = f (x) + g(x, �1u(x))(−λ(x)α(t) ∂W
∂x (x)g(x, 0))T

y = h(x) = λ(x)0.5| ∂W
∂x (x)g(x, 0)|, (75)

w.r.t. unbounded sequence {tn} in [0, ∞), then if h(x) = 0, a.e., then either x(t0) = 0 for some
t0 ≥ 0 or 0 is a ω-limit point of x.
Then the closed-loop system (73) with (74) admits the origin x = 0 as UAS equilibrium point.
Furthermore |u(x)| ≤ u, ∀x.
Proof: We first can write, based on Condition 1 in Theorem 7

Ẇ ≤ ∂W
∂x

g(x, α(t)u)α(t)u,

using Lemma II.4 in (31), and considering the controller (74), we have

Ẇ ≤ − �1
2

λ(x)|G(x, 0)|2, |u(x)| ≤ u ∀x.

Next, we define for (73) and the controller (74) the positive invariant set M = {x| W(x) = 0}.
Note that we can also write

M = {x| Ẇ(x) = 0} ⇔ {x| G(x, 0) = 0} ⇔ {x| u(x) = 0}.
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This implies that the derivative of S along (68) with ṽ = −kξ, k > 0, writes
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M = {(x, 0)|W(x) = 0}.
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∫ t

t0

μ(h(ξ(τ)))dτ = −
∫ t

t0

k|ξ(τ)|2dτ,

thus we have
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Finally, using Theorem 1 in (24), under Condition 3 of Theorem 6, we conclude that (x, ξ) =
(0, 0) is UAS for (64), (65). �
Remark 3: The function α̃ in (65) has been chosen to be any C1 time varying function, s.t.
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sequence {tn} in [0, ∞). Then, if h(x, ξ) = 0, a.e., then either (x, ξ)(t0) = (0, 0) for some
t0 ≥ 0 or (0, 0) is a ω-limit point of (x, ξ). Now, since in our case the diagonal matrix-valued
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which implies, based on Lemma 8 in (24), that to check Condition 3 we only need to check the
classical ZSD condition:
∀x solutions for the system

ẋ = f (x)
LgW(x) = 0, (72)

either x(t0) = 0 for some t0 ≥ 0 or 0 is a ω-limit point of x. �
Let us consider again the problem of input saturation. We consider here again the more general
model (58), and study the problem of FTC with input saturation for the time-varying faulty
model

ẋ = f (x) + g(x, α(t)u)α(t)u, (73)

with the diagonal loss of effectiveness matrix α(t) defined as before. This problem is treated
in the following Theorem, for the scalar case where α(t) ∈ [�1, 1], ∀t, i.e. when the same fault
occurs on all the actuators.
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λ(x) = 2u
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0
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where W is a C2, positive semidefinite function, such that:
1- L f W ≤ 0,
2- The system ẋ = f (x) is AS conditionally to the set M = {x | W(x) = 0},
3- ∀x limiting solutions for the system

ẋ = f (x) + g(x, �1u(x))(−λ(x)α(t) ∂W
∂x (x)g(x, 0))T

y = h(x) = λ(x)0.5| ∂W
∂x (x)g(x, 0)|, (75)

w.r.t. unbounded sequence {tn} in [0, ∞), then if h(x) = 0, a.e., then either x(t0) = 0 for some
t0 ≥ 0 or 0 is a ω-limit point of x.
Then the closed-loop system (73) with (74) admits the origin x = 0 as UAS equilibrium point.
Furthermore |u(x)| ≤ u, ∀x.
Proof: We first can write, based on Condition 1 in Theorem 7

Ẇ ≤ ∂W
∂x

g(x, α(t)u)α(t)u,

using Lemma II.4 in (31), and considering the controller (74), we have

Ẇ ≤ − �1
2

λ(x)|G(x, 0)|2, |u(x)| ≤ u ∀x.

Next, we define for (73) and the controller (74) the positive invariant set M = {x| W(x) = 0}.
Note that we can also write

M = {x| Ẇ(x) = 0} ⇔ {x| G(x, 0) = 0} ⇔ {x| u(x) = 0}.
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Thus, the restriction of (73) on M is the system ẋ = f (x). Finally, using Theorem 5 in (18), and
under Condition 2 in Theorem 7, we conclude that x = 0 is US for (73) and the controller (74).
Furthermore if |u(x)| ≤ u then |α(t)u(x)| ≤ u ∀t, x.
Now we note that for the virtual output y = h(x) = λ(x)0.5| ∂W

∂x (x)g(x, 0)|, and σ > 0 we can
write

W(t, x(t)) − W(t0, x(t0)) ≤ − �1
2

∫ t

t0

|y(τ)|2dτ = −
∫ t

t0

μ(y(τ))dτ,

thus we have
∫ t

t0

(μ(y(τ)) − σ)dτ ≤
∫ t

t0

μ(y(τ))dτ ≤ W(t0, x(t0)) ≤ M̃, M̃ > 0.

Finally, based on this last inequality and under Condition 3 in Theorem 7, using Theorem 1 in
(24), we conclude that x = 0 is UAS equilibrium point for (73), (74). �
Remark 5: Here again we can simplify Condition 3 of Theorem 7, as follows. Based on
Proposition 3 and Lemma 7 in (24), this condition is equivalent to: ∀x solutions for the reduced
limiting system

ẋ = f (x) + g(x, �1u(x))(−λ(x)αγ(t) ∂W
∂x (x)g(x, 0))T

y = h(x) = λ(x)0.5| ∂W
∂x (x)g(x, 0)|, (76)

where the limiting function αγ(t) is defined us αγ(t)
�
= limn→∞ α(t + tn) w.r.t. unbounded

sequence {tn} in [0, ∞). Then, if h(x) = 0, a.e., then either x(t0) = 0 for some t0 ≥ 0 or 0 is a
ω-limit point of x. Which writes directly as the ZSD condition:
∀x solutions for the system

ẋ = f (x)
∂W
∂x (x)g(x, 0) = 0,

(77)

either x(t0) = 0 for some t0 ≥ 0 or 0 is a ω-limit point of x. �
Theorem 7 deals with the case of the general nonlinear model (73). For the particular case of
affine nonlinear models, i.e. g(x, u) = g(x), we can directly write the following Proposition.
Proposition 7: Consider the closed-loop system that consists of the faulty system (64) with the
static state feedback

u(x) = −λ(x)G(x)T

G(x) = ∂W(x)
∂x g(x)

λ(x) = 2u
1+|G(x)|2 .

(78)

where W is a C2, positive semidefinite function, such that:
1- L f W ≤ 0,
2- The system ẋ = f (x) is AS conditionally to the set M = {x | W(x) = 0},
3- ∀x limiting solutions for the system

ẋ = f (x) + g(x)(−λ(x)α(t) ∂W
∂x (x)g(x))T

y = h(x) = λ(x)0.5| ∂W
∂x (x)g(x)|, (79)

w.r.t. unbounded sequence {tn} in [0, ∞), then if h(x) = 0, a.e., then either x(t0) = 0 for some
t0 ≥ 0 or 0 is a ω-limit point of x.
Then the closed-loop system (64) with (78) admits the origin x = 0 as UAS equilibrium point.
Furthermore |u(x)| ≤ u, ∀x.
Proof: The proof is a direct consequence of Theorem 7. However in this case the constraint of
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considering that the same fault occurs on all the actuators, is relaxed. Indeed, in this case we
can directly write ∀α(t) ∈ Rm×m, s.t. 0 < �1 ≤ αii(t) ≤ 1, ∀t:

Ẇ ≤ −λ(x)LgW(x)α(t)LgW(x)T

Ẇ ≤ −λ(x)�1LgW(x)LgW(x)T ≤ −�1|G(x)|2.

The rest of the proof remains unchanged. �
If we compare the dynamic controllers proposed in the Theorems 2, 3, 4, 6 and the static
controllers of Theorems 5, 7, we can see that the dynamic controllers ensure that the control at
the initialization time is zero, whereas this is not true for the static controllers. In the opposite,
the static controllers have the advantage to ensure that the feedback control amplitude stays
within the desired bound u. We can also notice that, except for the controller in Theorem 3, all
the remaining controllers proposed here do not involve the vector field f in there computation.
This implies that these controllers are robust with respect to any uncertainty Δ f as long as the
conditions on f , required in the different theorems are still satisfied by the uncertain vector
field f + Δ f . Furthermore, the dynamic controller of Theorem 4 inherits the same robustness
properties of the nominal controller unom used to write equation (57) (refer to Proposition 6.5,
(40), p. 244).

9. Conclusion and future work

In this chapter we have presented different passive fault tolerant controllers for linear as well
as for nonlinear models. Firstly, we have formulated the FTC problem in the context of the
absolute stability theory, which has led to direct solutions to the passive FTC problem for
LTI systems with uncertainties as well as input saturations. Open problems to which this
formulation may be applied include infinite dimension models, stochastic models as well as
time-delay models. Secondly, we have proposed several fault tolerant controllers for nonlinear
models, by formulating the FTC problem as a cascade passivity-based control. Although, the
proposed formulation has led to solutions for a large class of loss of actuator effectiveness
faults for nonlinear systems, a more general result treating component faults entering the
system through the vector field f plus additive faults on g, as well as the complete loss of
some actuators is still missing and should be the subject of future work.
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If we compare the dynamic controllers proposed in the Theorems 2, 3, 4, 6 and the static
controllers of Theorems 5, 7, we can see that the dynamic controllers ensure that the control at
the initialization time is zero, whereas this is not true for the static controllers. In the opposite,
the static controllers have the advantage to ensure that the feedback control amplitude stays
within the desired bound u. We can also notice that, except for the controller in Theorem 3, all
the remaining controllers proposed here do not involve the vector field f in there computation.
This implies that these controllers are robust with respect to any uncertainty Δ f as long as the
conditions on f , required in the different theorems are still satisfied by the uncertain vector
field f + Δ f . Furthermore, the dynamic controller of Theorem 4 inherits the same robustness
properties of the nominal controller unom used to write equation (57) (refer to Proposition 6.5,
(40), p. 244).
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as for nonlinear models. Firstly, we have formulated the FTC problem in the context of the
absolute stability theory, which has led to direct solutions to the passive FTC problem for
LTI systems with uncertainties as well as input saturations. Open problems to which this
formulation may be applied include infinite dimension models, stochastic models as well as
time-delay models. Secondly, we have proposed several fault tolerant controllers for nonlinear
models, by formulating the FTC problem as a cascade passivity-based control. Although, the
proposed formulation has led to solutions for a large class of loss of actuator effectiveness
faults for nonlinear systems, a more general result treating component faults entering the
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some actuators is still missing and should be the subject of future work.
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1. Introduction

The complexity of control systems requires the fault tolerance schemes to provide control of
the faulty system. The fault tolerant systems are that one of the more fruitful applications with
potential significance for those domains in which control must proceed while the controlled
system is operative and testing opportunities are limited by given operational considerations.
The real problem is usually to fix the system with faults so that it can continue its mission
for some time with some limitations of functionality. These large problems are known as the
fault detection, identification and reconfiguration (FDIR) systems. The practical benefits of
the integrated approach to FDIR seem to be considerable, especially when knowledge of the
available fault isolations and the system reconfigurations is used to reduce the cost and to
increase the control reliability and utility. Reconfiguration can be viewed as the task to select
these elements whose reconfiguration is sufficient to do the acceptable behavior of the system.
If an FDIR system is designed properly, it will be able to deal with the specified faults and
maintain the system stability and acceptable level of performance in the presence of faults.
The essential aspect for the design of fault-tolerant control requires the conception of diagnosis
procedures that can solve the fault detection and isolation problem. The fault detection is
understood as a problem of making a binary decision either that something has gone wrong
or that everything is in order. The procedure composes residual signal generation (signals that
contain information about the failures or defects) followed by their evaluation within decision
functions, and it is usually achieved designing a system which, by processing input/output
data, is able generating the residual signals, detect the presence of an incipient fault and isolate
it.
In principle, in order to achieve fault tolerance, some redundancy is necessary. So far direct
redundancy is realized by redundancy in multiple hardware channels, fault-tolerant control
involve functional redundancy. Functional (analytical) redundancy is usually achieved by
design of such subsystems, which functionality is derived from system model and can be
realized using algorithmic (software) redundancy. Thus, analytical redundancy most often
means the use of functional relations between system variables and residuals are derived
from implicit information in functional or analytical relationships, which exist between
measurements taken from the process, and a process model. In this sense a residual is
a fault indicator, based on a deviation between measurements and model-equation-based
computation and model based diagnosis use models to obtain residual signals that are as a
rule zero in the fault free case and non-zero otherwise.
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A fault in the fault diagnosis systems can be detected and isolated when has to cause a
residual change and subsequent analyze of residuals have to provide information about faulty
component localization. From this point of view the fault decision information is capable
in a suitable format to specify possible control structure class to facilitate the appropriate
adaptation of the control feedback laws. Whereas diagnosis is the problem of identifying
elements whose abnormality is sufficient to explain an observed malfunction, reconfiguration
can be viewed as a problem of identifying elements whose in a new structure are sufficient to
restore acceptable behavior of the system.

1.1 Fault tolerant control
Main task to be tackled in achieving fault-tolerance is design a controller with suitable
reconfigurable structure to guarantee stability, satisfactory performance and plant operation
economy in nominal operational conditions, but also in some components malfunction.
Generally, fault-tolerant control is a strategy for reliable and highly efficient control law
design, and includes fault-tolerant system requirements analysis, analytical redundancy
design (fault isolation principles) and fault accommodation design (fault control requirements
and reconfigurable control strategy). The benefits result from this characterization give a
unified framework that should facilitate the development of an integrated theory of FDIR
and control (fault-tolerant control systems (FTCS)) to design systems having the ability to
accommodate component failures automatically.
FTCS can be classified into two types: passive and active. In passive FTCS, fix controllers are
used and designed in such way to be robust against a class of presumed faults. To ensure this a
closed-loop system remains insensitive to certain faults using constant controller parameters
and without use of on-line fault information. Because a passive FTCS has to maintain the
system stability under various component failures, from the performance viewpoint, the
designed controller has to be very conservative. From typical relationships between the
optimality and the robustness, it is very difficult for a passive FTCS to be optimal from the
performance point of view alone.
Active FTCS react to the system component failures actively by reconfiguring control actions
so that the stability and acceptable (possibly partially degraded, graceful) performance of
the entire system can be maintained. To achieve a successful control system reconfiguration,
this approach relies heavily on a real-time fault detection scheme for the most up-to-date
information about the status of the system and the operating conditions of its components.
To reschedule controller function a fixed structure is modified to account for uncontrollable
changes in the system and unanticipated faults. Even though, an active FTCS has the potential
to produce less conservative performance.
The critical issue facing any active FTCS is that there is only a limited amount of reaction
time available to perform fault detection and control system reconfiguration. Given the fact of
limited amount of time and information, it is highly desirable to design a FTCS that possesses
the guaranteed stability property as in a passive FTCS, but also with the performance
optimization attribute as in an active FTCS.
Selected useful publications, especially interesting books on this topic (Blanke et al.,2003),
(Chen and Patton,1999), (Chiang et al.,2001), (Ding,2008), (Ducard,2009), (Simani et al.,2003)
are presented in References.
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1.2 Motivation
A number of problems that arise in state control can be reduced to a handful of
standard convex and quasi-convex problems that involve matrix inequalities. It is
known that the optimal solution can be computed by using interior point methods
(Nesterov and Nemirovsky,1994) which converge in polynomial time with respect to the
problem size and efficient interior point algorithms have recently been developed for and
further development of algorithms for these standard problems is an area of active research.
For this approach, the stability conditions may be expressed in terms of linear matrix
inequalities (LMI), which have a notable practical interest due to the existence of powerful
numerical solvers. Some progres review in this field can be found e.g. in (Boyd et al.,1994),
(Herrmann et al.,2007), (Skelton et al.,1998), and the references therein.
In contradiction to the standard pole placement methods application in active FTCS design
there don’t exist so much structures to solve this problem using LMI approach (e.g.
see (Chen et al.,1999), (Filasova and Krokavec,2009), (Liao et al.,2002), (Noura et al.,2009)). To
generalize properties of non-expansive systems formulated as H∞ problems in the bounded
real lemma (BRL) form, the main motivation of this chapter is to present reformulated design
method for virtual sensor control design in FTCS structures, as well as the state estimator
based active control structures for single actuator faults in the continuous-time linear MIMO
systems. To start work with this formalism structure residual generators are designed at first
to demonstrate the application suitability of the unified algebraic approach in these design
tasks. LMI based design conditions are outlined generally to posse the sufficient conditions
for a solution. The used structure is motivated by the standard ones (Dong et al.,2009), and in
this presented form enables to design systems with the reconfigurable controller structures.

2. Problem description

Through this chapter the task is concerned with the computation of reconfigurable feedback
u(t), which control the observable and controllable faulty linear dynamic system given by the
set of equations

q̇(t) = Aq(t) + Buu(t) + B f f(t) (1)

y(t) = Cq(t) + Duu(t) + D f f(t) (2)

where q(t) ∈ IRn, u(t) ∈ IRr, y(t) ∈ IRm, and f(t) ∈ IRl are vectors of the state, input,
output and fault variables, respectively, matrices A ∈ IRn×n, Bu ∈ IRn×r, C ∈ IRm×n,
Du ∈ IRm×r, B f ∈ IRn×l, D f ∈ IRm×l are real matrices. Problem of the interest is to design
the asymptotically stable closed-loop systems with the linear memoryless state feedback
controllers of the form

u(t) = −Koy e(t) (3)

u(t) = −Kq e(t)− Lfe(t) (4)

respectively. Here Ko ∈ IRr×m is the output controller gain matrix, K ∈ IRr×n is the nominal
state controller gain matrix, L ∈ IRr×l is the compensate controller gain matrix, y e(t) is by
virtual sensor estimated output of the system, qe(t) ∈ IRn is the system state estimate vector,
and fe(t) ∈ IRl is the fault estimate vector. Active compensate method can be applied for such
systems, where [

B f
D f

]
=

[
Bu
Du

]
L (5)
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and the additive term B f f(t) is compensated by the term

− B f fe(t) = −BuLfe(t) (6)

which implies (4). The estimators are then given by the set of the state equations

q̇e(t) = Aqe(t) + Buu(t) + B f fe(t) + J(y(t)− ye(t)) (7)

ḟe(t) = Mfe(t) + N(y(t)− ye(t)) (8)

ye(t) = Cqe(t) + Duu(t) + D f fe(t) (9)

where J ∈ IRn×m is the state estimator gain matrix, and M ∈ IRl×l, N ∈ IRl×m are the system
and input matrices of the fault estimator, respectively or by the set of equation

q̇ f e(t) = Aq f e(t) + Buu f (t) + J(y f (t) − Duu f (t) − C f q f e(t)) (10)

ye(t) = E(y f (t) + (C − EC f )q f e(t) (11)

where E ∈ IRm×m is a switching matrix, generally used in such a way that E = 0, or E = Im.

3. Basic preliminaries

Definition 1 (Null space) Let E, E ∈ IRh×h, rank(E) = k < h be a rank deficient matrix. Then the
null space NE of E is the orthogonal complement of the row space of E.
Proposition 1 (Orthogonal complement) Let E, E ∈ IRh×h, rank(E) = k < h be a rank deficient
matrix. Then an orthogonal complement E⊥ of E is

E⊥ = E◦UT
2 (12)

where UT
2 is the null space of E and E◦ is an arbitrary matrix of appropriate dimension.

Proof. The singular value decomposition (SVD) of E, E ∈ IRh×h, rank(E) = k < h gives

UTEV =

[
UT

1
UT

2

]
E

[
V1 V2

]
=

[
Σ1 012
021 022

]
(13)

where UT ∈ IRh×h is the orthogonal matrix of the left singular vectors, V ∈ IRh×h is the
orthogonal matrix of the right singular vectors of E and Σ1 ∈ IRk×k is the diagonal positive
definite matrix of the form

Σ1 = diag
[

σ1 · · · σk
]

, σ1 ≥ · · · ≥ σk > 0 (14)

which diagonal elements are the singular values of E. Using orthogonal properties of U and
V, i.e. UTU = Ih, as well as VTV = Ih, and

[
UT

1
UT

2

]
[
U1 U2

]
=

[
I1 0
0 I2

]
, UT

2 U1 = 0 (15)

respectively, where Ih ∈ IRh×h is the identity matrix, then E can be written as

E = UΣVT =
[
U1 U2

][Σ1 012
021 022

] [
VT

1
VT

2

]
=

[
U1 U2

][S1
02

]
= U1S1 (16)

312 Robust Control, Theory and Applications

where S1 = Σ1VT
1 . Thus, (15) and (16) implies

UT
2 E = UT

2
�
U1 U2

��S1
02

�
= 0 (17)

It is evident that for an arbitrary matrix E◦ is

E◦UT
2 E = E⊥E = 0 (18)

E⊥ = E◦UT
2 (19)

respectively, which implies (12). This concludes the proof.
Proposition 2. (Schur Complement) Let Q > 0, R > 0, S are real matrices of appropriate
dimensions, then the next inequalities are equivalent

�
Q S
ST −R

�
< 0 ⇔

�
Q + SR−1ST 0

0 −R

�
< 0 ⇔ Q + SR−1ST < 0, R > 0 (20)

Proof. Let the linear matrix inequality takes form
�

Q S
ST −R

�
< 0 (21)

then using Gauss elimination principle it yields
�

I SR−1

0 I

� �
Q S
ST −R

� �
I 0

R−1ST I

�
=

�
Q + SR−1ST 0

0 −R

�
(22)

Since

det
�

I SR−1

0 I

�
= 1 (23)

and it is evident that this transform doesn’t change negativity of (21), and so (22) implies (20).
This concludes the proof.
Note that in the next the matrix notations E, Q, R, S, U, and V be used in another context, too.
Proposition 3 (Bounded real lemma) For given γ ∈ IR and the linear system (1), (2) with f(t) = 0
if there exists symmetric positive definite matrix P > 0 such that

⎡
⎣

ATP + PA PBu CT

∗ −γ2Ir DT
u

∗ ∗ −Im

⎤
⎦ < 0 (24)

where Ir ∈ IRr×r, Im ∈ IRm×m are the identity matrices, respectively then given system is
asymptotically stable.
Hereafter, ∗ denotes the symmetric item in a symmetric matrix.
Proof. Defining Lyapunov function as follows

v(q(t)) = qT(t)Pq(t) +
� t

0

�
yT(r)y(r)− γ2uT(r)u(r)

�
dr > 0 (25)

where P = PT > 0, P ∈ IRn×n, γ ∈ IR, and evaluating the derivative of v(q(t)) with respect to
t then it yields

v̇(q(t)) = q̇T(t)Pq(t) + qT(t)Pq̇(t) + yT(t)y(t)− γ2uT(t)u(t) < 0 (26)
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V, i.e. UTU = Ih, as well as VTV = Ih, and

[
UT

1
UT

2

]
[
U1 U2

]
=

[
I1 0
0 I2

]
, UT

2 U1 = 0 (15)

respectively, where Ih ∈ IRh×h is the identity matrix, then E can be written as

E = UΣVT =
[
U1 U2

][Σ1 012
021 022

] [
VT

1
VT

2

]
=

[
U1 U2

][S1
02

]
= U1S1 (16)
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where S1 = Σ1VT
1 . Thus, (15) and (16) implies

UT
2 E = UT

2
�
U1 U2

��S1
02

�
= 0 (17)

It is evident that for an arbitrary matrix E◦ is

E◦UT
2 E = E⊥E = 0 (18)

E⊥ = E◦UT
2 (19)

respectively, which implies (12). This concludes the proof.
Proposition 2. (Schur Complement) Let Q > 0, R > 0, S are real matrices of appropriate
dimensions, then the next inequalities are equivalent

�
Q S
ST −R

�
< 0 ⇔

�
Q + SR−1ST 0

0 −R

�
< 0 ⇔ Q + SR−1ST < 0, R > 0 (20)

Proof. Let the linear matrix inequality takes form
�

Q S
ST −R

�
< 0 (21)

then using Gauss elimination principle it yields
�

I SR−1

0 I

� �
Q S
ST −R

� �
I 0

R−1ST I

�
=

�
Q + SR−1ST 0

0 −R

�
(22)

Since

det
�

I SR−1

0 I

�
= 1 (23)

and it is evident that this transform doesn’t change negativity of (21), and so (22) implies (20).
This concludes the proof.
Note that in the next the matrix notations E, Q, R, S, U, and V be used in another context, too.
Proposition 3 (Bounded real lemma) For given γ ∈ IR and the linear system (1), (2) with f(t) = 0
if there exists symmetric positive definite matrix P > 0 such that

⎡
⎣

ATP + PA PBu CT

∗ −γ2Ir DT
u

∗ ∗ −Im

⎤
⎦ < 0 (24)

where Ir ∈ IRr×r, Im ∈ IRm×m are the identity matrices, respectively then given system is
asymptotically stable.
Hereafter, ∗ denotes the symmetric item in a symmetric matrix.
Proof. Defining Lyapunov function as follows

v(q(t)) = qT(t)Pq(t) +
� t

0

�
yT(r)y(r)− γ2uT(r)u(r)

�
dr > 0 (25)

where P = PT > 0, P ∈ IRn×n, γ ∈ IR, and evaluating the derivative of v(q(t)) with respect to
t then it yields

v̇(q(t)) = q̇T(t)Pq(t) + qT(t)Pq̇(t) + yT(t)y(t)− γ2uT(t)u(t) < 0 (26)
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Thus, substituting (1), (2) with f(t) = 0 it can be written

v̇(q(t)) = (Aq(t) + Buu(t))TPq(t) + qT(t)P(Aq(t) + Buu(t))+
+(Cq(t) + Duu(t))T(Cq(t) + Duu(t))− γ2uT(t)u(t) < 0

(27)

and with notation
qT

c (t) =
�

qT(t) uT(t)
�

(28)

it is obtained
v̇(q(t)) = qT

c (t)Pcqc(t) < 0 (29)

where

Pc =
�

ATP + PA PBu
∗ −γ2Ir

�
+

�
CTC CTDu
∗ DT

u Du

�
< 0 (30)

Since �
CTC CTDu
∗ DT

u Du

�
=

�
CT

DT
u

� �
C Du

� ≥ 0 (31)

Schur complement property implies
⎡
⎣

0 0 CT

∗ 0 DT
u

∗ ∗ −Im

⎤
⎦ ≥ 0 (32)

then using (32) the LMI (30) can now be written compactly as (24). This concludes the proof.
Remark 1 (Lyapunov inequality) Considering Lyapunov function of the form

v(q(t)) = qT(t)Pq(t) > 0 (33)

where P = PT > 0, P ∈ IRn×n, and the control law

u(t) = −Ko
�
y(t)− Duu(t)

�
= −KoCq(t) (34)

where Ko ∈ IRr×m is a gain matrix. Because in this case (27) gives

v̇(q(t)) = (Aq(t) + Buu(t))TPq(t) + qT(t)P(Aq(t) + Buu(t)) < 0 (35)

then inserting (34) into (35) it can be obtained

v̇(q(t)) = qT(t)Pcbq(t) < 0 (36)

where
Pcb = ATP + PA − PBuKoC − (PBuKoC)T < 0 (37)

Especially, if all system state variables are measurable the control policy can be defined as
follows

u(t) = −Kq(t) (38)

and (37) can be written as

ATP + PA − PBuK − (PBuK)T < 0 (39)

Note that in a real physical dynamic plant model usually Du = 0.
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Proposition 4 Let for given real matrices F, G and Θ = ΘT > 0 of appropriate dimension a matrix
Λ has to satisfy the inequality

FΛGT + GΛTFT − Θ < 0 (40)

then any solution of Λ can be generated using a solution of inequality
�−FHFT − Θ FH + GΛT

∗ −H

�
< 0 (41)

where H = HT > 0 is a free design parameter.

Proof. If (40) yields then there exists a matrix H−1 = H−T > 0 such that

FΛGT + GΛTFT − Θ + GΛTH−1ΛGT < 0 (42)

Completing the square in (42) it can be obtained

(FH + GΛT)H−1(FH + GΛT)T − FHFT − Θ < 0 (43)

and using Schur complement (43) implies (41).

4. Fault isolation

4.1 Structured residual generators of sensor faults
4.1.1 Set of the state estimators
To design structured residual generators of sensor faults based on the state estimators, all
actuators are assumed to be fault-free and each estimator is driven by all system inputs and
all but one system outputs. In that sense it is possible according with given nominal fault-free
system model (1), (2) to define the set of structured estimators for k = 1, 2, . . . , m as follows

q̇ke(t) = Akeqke(t) + Bukeu(t) + JskTsk
�
y(t)− Duu(t)

�
(44)

yke(t) = Cqke(t) + Duu(t) (45)

where Ake ∈ IRn×n, Buke ∈ IRn×r, Jsk ∈ IRn×(m−1), and Tsk ∈ IR(m−1)×m takes the next form

Tsk = Im�k =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 0 · · · 0 0 0 0 0 · · · 0 0
...

...
0 0 · · · 0 1 0 0 0 · · · 0 0
0 0 · · · 0 0 0 1 0 · · · 0 0

...
...

0 0 · · · 0 0 0 0 0 · · · 0 1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(46)

Note that Tsk can be obtained by deleting the k-th row in identity matrix Im.
Since the state estimate error is defined as ek(t) = q(t)− qke(t) then

ėk(t) = Aq(t) + Buu(t)− Akeqke(t) − Bukeu(t)− JskTsk
�
y(t)− Duu(t)

�
=

= (A − Ake − JskTskC)q(t) + (Bu − Buke)u(t) + Akeek(t)
(47)

To obtain the state estimate error autonomous it can be set

Ake = A − JskTskC, Buke = Bu (48)
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DT
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then using (32) the LMI (30) can now be written compactly as (24). This concludes the proof.
Remark 1 (Lyapunov inequality) Considering Lyapunov function of the form

v(q(t)) = qT(t)Pq(t) > 0 (33)

where P = PT > 0, P ∈ IRn×n, and the control law

u(t) = −Ko
�
y(t)− Duu(t)

�
= −KoCq(t) (34)

where Ko ∈ IRr×m is a gain matrix. Because in this case (27) gives

v̇(q(t)) = (Aq(t) + Buu(t))TPq(t) + qT(t)P(Aq(t) + Buu(t)) < 0 (35)

then inserting (34) into (35) it can be obtained

v̇(q(t)) = qT(t)Pcbq(t) < 0 (36)

where
Pcb = ATP + PA − PBuKoC − (PBuKoC)T < 0 (37)

Especially, if all system state variables are measurable the control policy can be defined as
follows

u(t) = −Kq(t) (38)

and (37) can be written as

ATP + PA − PBuK − (PBuK)T < 0 (39)

Note that in a real physical dynamic plant model usually Du = 0.
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Proposition 4 Let for given real matrices F, G and Θ = ΘT > 0 of appropriate dimension a matrix
Λ has to satisfy the inequality

FΛGT + GΛTFT − Θ < 0 (40)

then any solution of Λ can be generated using a solution of inequality
�−FHFT − Θ FH + GΛT

∗ −H

�
< 0 (41)

where H = HT > 0 is a free design parameter.

Proof. If (40) yields then there exists a matrix H−1 = H−T > 0 such that

FΛGT + GΛTFT − Θ + GΛTH−1ΛGT < 0 (42)

Completing the square in (42) it can be obtained

(FH + GΛT)H−1(FH + GΛT)T − FHFT − Θ < 0 (43)

and using Schur complement (43) implies (41).

4. Fault isolation

4.1 Structured residual generators of sensor faults
4.1.1 Set of the state estimators
To design structured residual generators of sensor faults based on the state estimators, all
actuators are assumed to be fault-free and each estimator is driven by all system inputs and
all but one system outputs. In that sense it is possible according with given nominal fault-free
system model (1), (2) to define the set of structured estimators for k = 1, 2, . . . , m as follows

q̇ke(t) = Akeqke(t) + Bukeu(t) + JskTsk
�
y(t)− Duu(t)

�
(44)

yke(t) = Cqke(t) + Duu(t) (45)

where Ake ∈ IRn×n, Buke ∈ IRn×r, Jsk ∈ IRn×(m−1), and Tsk ∈ IR(m−1)×m takes the next form

Tsk = Im�k =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 0 · · · 0 0 0 0 0 · · · 0 0
...

...
0 0 · · · 0 1 0 0 0 · · · 0 0
0 0 · · · 0 0 0 1 0 · · · 0 0

...
...

0 0 · · · 0 0 0 0 0 · · · 0 1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(46)

Note that Tsk can be obtained by deleting the k-th row in identity matrix Im.
Since the state estimate error is defined as ek(t) = q(t)− qke(t) then

ėk(t) = Aq(t) + Buu(t)− Akeqke(t) − Bukeu(t)− JskTsk
�
y(t)− Duu(t)

�
=

= (A − Ake − JskTskC)q(t) + (Bu − Buke)u(t) + Akeek(t)
(47)

To obtain the state estimate error autonomous it can be set

Ake = A − JskTskC, Buke = Bu (48)
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It is obvious that (48) implies

ėk(t) = Akeek(t) = (A − JskTskC)ek(t) (49)

(44) can be rewritten as

q̇ke(t) = (A − JskTskC)qke(t) + Buu(t) + JskTsk
(
y(t)− Duu(t)

)
=

= Aqke(t) + Buu(t) + JskTsk
(
y(t)− (Cqke(t) + Duu(t))

) (50)

and (44), (45) can be rewritten equivalently as

q̇ke(t) = Aqke(t) + Buu(t) + JskTsk
(
y(t)− yke(t)

)
(51)

yke(t) = Cqke(t) + Duu(t) (52)

Theorem 1 The k-th state-space estimator (52), (53) is stable if there exist a positive definite symmetric
matrix Psk > 0, Psk ∈ IRn×n and a matrix Zsk ∈ IRn×(m−1) such that

Psk = PT
sk > 0 (53)

ATPsk + PskA − ZskTskC − CTTT
skZT

sk < 0 (54)

Then Jsk can be computed as
Jsk = P−1

sk Zsk (55)

Proof. Since the estimate error is autonomous Lyapunov function of the form

v(ek(t)) = eT
k (t)Pskek(t) > 0 (56)

where Psk = PT
sk > 0, Psk ∈ IRn×n can be considered. Thus,

v̇(ek(t)) = eT
k (t)(A − JskTskC)TPskek(t) + eT

k (t)Psk(A − JskTskC)ek(t) < 0 (57)

v̇(ek(t)) = eT
k (t)Pskcek(t) < 0 (58)

respectively, where

Pskc = ATPsk + PskA − PskJskTskC − (PskJskTskC)T < 0 (59)

Using notation PskJsk = Zsk (59) implies (54). This concludes the proof.

4.1.2 Set of the residual generators
Exploiting the model-based properties of state estimators the set of residual generators can be
considered as

rsk(t) = Xskqke(t) + Ysk(y(t)− Duu(t)), k = 1, 2, . . . , m (60)

Subsequently

rsk(t) = Xsk
(
q(t)− ek(t)

)
+ YskCq(t) = (Xsk + YskC)q(t)− Xskek(t) (61)
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Fig. 1. Measurable outputs for single sensor faults

To eliminate influences of the state variable vector it is necessary in (61) to consider

Xsk + YskC = 0 (62)

Choosing Xsk = −TskC (62) implies

Xsk = −TskC, Ysk = Tsk (63)

Thus, the set of residuals (60) takes the form

rsk(t) = Tsk
�
y(t)− Duu(t)− Cqke(t)

�
, k = 1, 2, . . . , m (64)

When all actuators are fault-free and a fault occurs in the l-th sensor the residuals will satisfy
the isolation logic

�rsk(t)� ≤ hsk, k = l, �rsk(t)� > hsk, k �= l (65)

This residual set can only isolate a single sensor fault at the same time. The principle can be
generalized based on a regrouping of faults in such way that each residual will be designed
to be sensitive to one group of sensor faults and insensitive to others.

Illustrative example
To demonstrate algorithm properties it was assumed that the system is given by (1), (2) where
the nominal system parameters are given as

A =

⎡
⎣

0 1 0
0 0 1

−5 −9 −5

⎤
⎦ , Bu =

⎡
⎣

1 3
2 1
1 5

⎤
⎦ , C =

�
1 2 1
1 1 0

�
, Du =

�
0 0
0 0

�

and it is obvious that

Ts1 = I2�1 =
�

0 1
�

, Ts2 = I2�2 =
�

1 0
�

, Ts1C =
�

1 1 0
�

, Ts2C =
�

1 2 1
�

Solving (53), (54) with respect to the LMI matrix variables Psk, and Zsk using
Self-Dual-Minimization (SeDuMi) package for Matlab, the estimator gain matrix design
problem was feasible with the results

Ps1 =

⎡
⎣

0.8258 −0.0656 0.0032
−0.0656 0.8541 0.0563

0.0032 0.0563 0.2199

⎤
⎦ , Zs1 =

⎡
⎣

0.6343
0.2242

−0.8595

⎤
⎦ , Js1 =

⎡
⎣

0.8312
0.5950

−4.0738

⎤
⎦
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Psk = PT
sk > 0 (53)
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sk < 0 (54)

Then Jsk can be computed as
Jsk = P−1

sk Zsk (55)

Proof. Since the estimate error is autonomous Lyapunov function of the form

v(ek(t)) = eT
k (t)Pskek(t) > 0 (56)

where Psk = PT
sk > 0, Psk ∈ IRn×n can be considered. Thus,

v̇(ek(t)) = eT
k (t)(A − JskTskC)TPskek(t) + eT

k (t)Psk(A − JskTskC)ek(t) < 0 (57)

v̇(ek(t)) = eT
k (t)Pskcek(t) < 0 (58)

respectively, where

Pskc = ATPsk + PskA − PskJskTskC − (PskJskTskC)T < 0 (59)

Using notation PskJsk = Zsk (59) implies (54). This concludes the proof.

4.1.2 Set of the residual generators
Exploiting the model-based properties of state estimators the set of residual generators can be
considered as

rsk(t) = Xskqke(t) + Ysk(y(t)− Duu(t)), k = 1, 2, . . . , m (60)

Subsequently

rsk(t) = Xsk
(
q(t)− ek(t)

)
+ YskCq(t) = (Xsk + YskC)q(t)− Xskek(t) (61)
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To eliminate influences of the state variable vector it is necessary in (61) to consider

Xsk + YskC = 0 (62)

Choosing Xsk = −TskC (62) implies

Xsk = −TskC, Ysk = Tsk (63)

Thus, the set of residuals (60) takes the form

rsk(t) = Tsk
�
y(t)− Duu(t)− Cqke(t)

�
, k = 1, 2, . . . , m (64)

When all actuators are fault-free and a fault occurs in the l-th sensor the residuals will satisfy
the isolation logic

�rsk(t)� ≤ hsk, k = l, �rsk(t)� > hsk, k �= l (65)

This residual set can only isolate a single sensor fault at the same time. The principle can be
generalized based on a regrouping of faults in such way that each residual will be designed
to be sensitive to one group of sensor faults and insensitive to others.

Illustrative example
To demonstrate algorithm properties it was assumed that the system is given by (1), (2) where
the nominal system parameters are given as

A =

⎡
⎣

0 1 0
0 0 1

−5 −9 −5

⎤
⎦ , Bu =

⎡
⎣

1 3
2 1
1 5

⎤
⎦ , C =

�
1 2 1
1 1 0

�
, Du =
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0 0
0 0

�

and it is obvious that

Ts1 = I2�1 =
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0 1
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, Ts2 = I2�2 =
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1 0
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, Ts1C =
�

1 1 0
�

, Ts2C =
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1 2 1
�

Solving (53), (54) with respect to the LMI matrix variables Psk, and Zsk using
Self-Dual-Minimization (SeDuMi) package for Matlab, the estimator gain matrix design
problem was feasible with the results

Ps1 =

⎡
⎣

0.8258 −0.0656 0.0032
−0.0656 0.8541 0.0563

0.0032 0.0563 0.2199

⎤
⎦ , Zs1 =

⎡
⎣

0.6343
0.2242

−0.8595

⎤
⎦ , Js1 =

⎡
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⎤
⎦
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Fig. 2. Residuals for the 1st sensor fault
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Fig. 3. Residuals for the 2nd sensor fault

Ps2 =

⎡
⎣

0.8258 −0.0656 0.0032
−0.0656 0.8541 0.0563

0.0032 0.0563 0.2199

⎤
⎦ , Zs2 =

⎡
⎣

0.0335
0.6344

−0.9214

⎤
⎦ , Js2 =

⎡
⎣

0.1412
1.0479

−4.4614

⎤
⎦

respectively. It is easily verified that the system matrices of state estimators are stable with the
eigenvalue spectra

ρ(A − Js1Ts1C) = {−1.0000 − 2.3459 − 3.0804}
ρ(A − Js2Ts2C) = {−1.5130 − 1.0000 − 0.2626}

respectively, and the set of residuals takes the form

rs1(t) =
�

0 1
� �

y(t)−
�

1 2 1
1 1 0

�
qke(t)

�

rs2(t) =
�

1 0
� �

y(t)−
�

1 2 1
1 1 0

�
qke(t)

�

Fig. 1-3 plot the residuals variable trajectories over the duration of the system run. The results
show that one residual profile remain about the same through the entire run while the second
shows step changes, which can be used in the fault isolation stage.
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4.2 Structured residual generators of actuator faults
4.2.1 Set of the state estimators
To design structured residual generators of actuator faults based on the state estimators, all
sensors are assumed to be fault-free and each estimator is driven by all system outputs and
all but one system inputs. To obtain this a congruence transform matrix Tak ∈ IRn×n, k =
1, 2, . . . , r be introduced, and so it is natural to write

Takq̇(t) = TakAq(t) + TakBuu(t) (66)

q̇k(t) = Akq(t) + Buku(t) (67)

respectively, where
Ak = TakA, Buk = TakBu (68)

as well as
yk(t) = CTakq(t) = Cqk(t) (69)

The set of state estimators associated with (67), (69) for k = 1, 2, . . . , r can be defined in the
next form

q̇ke(t) = Akqke(t) + Bukeu(t) + Lky(t)− Jkyke(t) (70)

yke(t) = Cqke(t) (71)

Ake ∈ IRn×n, Buke ∈ IRn×r, Jk, Lk ∈ IRn×m. Denoting the estimate error as ek(t) = qk(t)−qke(t)
the next differential equations can be written

ėk(t) = q̇k(t)− q̇ke(t) =

= Akq(t) + Buku(t)− Akqke(t) − Bukeu(t)− Lky(t) + Jkyke(t) =

= Akq(t) + Buku(t)− Ak
(
qk(t) − ek(t)

)− Bukeu(t)−
−LkCq(t) + JkC

(
qk(t)− ek(t)

)
=

= (Ak − AkTak + JkCTak − LkC)q(t) + (Buk − Buke)u(t) + (Ak − JkC)ek(t)

(72)

ėk(t) = (TakA − AkeTak − LkC)q(t) + (Buk − Buke)u(t) + Akeek(t) (73)

respectively, where

Ake = Ak − JkC = TakA − JkC, k = 1, 2, . . . , r (74)

are elements of the set of estimators system matrices. It is evident, to make estimate error
autonomous that it have to be satisfied

LkC = TakA − AkeTak, Buke = Buk = TakBu (75)

Using (75) the equation (73) can be rewritten as

ėk(t) = Akeek(t) = (Ak − JkC)ek(t) = (TakA − JkC)ek(t) (76)

and the state equation of estimators are then

q̇ke(t) = (TakA − JkC)qke(t) + Buku(t) + Lky(t)− Jkyke(t) (77)

yke(t) = Cqke(t) (78)
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Ps2 =

⎡
⎣

0.8258 −0.0656 0.0032
−0.0656 0.8541 0.0563

0.0032 0.0563 0.2199

⎤
⎦ , Zs2 =

⎡
⎣

0.0335
0.6344

−0.9214

⎤
⎦ , Js2 =

⎡
⎣

0.1412
1.0479

−4.4614

⎤
⎦

respectively. It is easily verified that the system matrices of state estimators are stable with the
eigenvalue spectra

ρ(A − Js1Ts1C) = {−1.0000 − 2.3459 − 3.0804}
ρ(A − Js2Ts2C) = {−1.5130 − 1.0000 − 0.2626}

respectively, and the set of residuals takes the form

rs1(t) =
�

0 1
� �

y(t)−
�

1 2 1
1 1 0

�
qke(t)

�

rs2(t) =
�

1 0
� �

y(t)−
�

1 2 1
1 1 0

�
qke(t)

�

Fig. 1-3 plot the residuals variable trajectories over the duration of the system run. The results
show that one residual profile remain about the same through the entire run while the second
shows step changes, which can be used in the fault isolation stage.
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4.2 Structured residual generators of actuator faults
4.2.1 Set of the state estimators
To design structured residual generators of actuator faults based on the state estimators, all
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Takq̇(t) = TakAq(t) + TakBuu(t) (66)

q̇k(t) = Akq(t) + Buku(t) (67)

respectively, where
Ak = TakA, Buk = TakBu (68)

as well as
yk(t) = CTakq(t) = Cqk(t) (69)

The set of state estimators associated with (67), (69) for k = 1, 2, . . . , r can be defined in the
next form

q̇ke(t) = Akqke(t) + Bukeu(t) + Lky(t)− Jkyke(t) (70)

yke(t) = Cqke(t) (71)
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the next differential equations can be written
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= Akq(t) + Buku(t)− Ak
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qk(t) − ek(t)

)− Bukeu(t)−
−LkCq(t) + JkC
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qk(t)− ek(t)

)
=

= (Ak − AkTak + JkCTak − LkC)q(t) + (Buk − Buke)u(t) + (Ak − JkC)ek(t)

(72)

ėk(t) = (TakA − AkeTak − LkC)q(t) + (Buk − Buke)u(t) + Akeek(t) (73)

respectively, where

Ake = Ak − JkC = TakA − JkC, k = 1, 2, . . . , r (74)

are elements of the set of estimators system matrices. It is evident, to make estimate error
autonomous that it have to be satisfied

LkC = TakA − AkeTak, Buke = Buk = TakBu (75)

Using (75) the equation (73) can be rewritten as

ėk(t) = Akeek(t) = (Ak − JkC)ek(t) = (TakA − JkC)ek(t) (76)

and the state equation of estimators are then

q̇ke(t) = (TakA − JkC)qke(t) + Buku(t) + Lky(t)− Jkyke(t) (77)

yke(t) = Cqke(t) (78)
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4.2.2 Congruence transform matrices
Generally, the fault-free system equations (1), (2) can be rewritten as

q̇(t) = Aq(t) + bukuk(t) +
r

∑
h=1,h �=k

buhuh(t) (79)

ẏ(t) = Cq̇(t) + Duu̇(t) = CAq(t) + Cbukuk(t) + Duu̇(t) +
r

∑
h=1,h �=k

Cbuhuh(t) (80)

Cbukuk(t) = ẏ(t)− CAq(t)− Duu̇(t)−
r

∑
h=1,h �=k

Cbuhuh(t) (81)

respectively. Thus, using matrix pseudoinverse it yields

uk(t) =̇ (Cbuk)�1
(

ẏ(t) − CAq(t)− Duu̇(t)−
r

∑
h=1,h �=k

Cbuhuh(t)
)

(82)

and substituting (81)
bukuk(t) =̇ buk(Cbuk)�1Cbukuk(t) (83)(

In − buk(Cbuk)�1C
)
bukuk(t) =̇ 0 (84)

respectively. It is evident that if

Tak = In − buk(Cbuk)�1C , k = 1, 2, . . . , r (85)

influence of uk(t) in (77) be suppressed (the k-th column in Buk = TakBu is the null column,
approximatively).

4.2.3 Estimator stability

Theorem 2 The k-th state-space estimator (77), (78) is stable if there exist a positive definite symmetric
matrix Pak > 0, Pak ∈ IRn×n and a matrix Zak ∈ IRn×m such that

Pak = PT
ak > 0 (86)

ATTakPak + PakTakA − ZakC − CTZT
ak < 0 (87)

Then Jk can be computed as
Jk = P−1

ak Zak (88)

Proof. Since the estimate error is autonomous Lyapunov function of the form

v(ek(t)) = eT
k (t)Pakek(t) > 0 (89)

where Pak = PT
ak > 0, Pak ∈ IRn×n can be considered. Thus,

v̇(ek(t)) = eT
k (t)(TakA − JkC)TPakek(t) + eT

k (t)Pak(TakA − JkC)ek(t) < 0 (90)

v̇(ek(t)) = eT
k (t)Pakcek(t) < 0 (91)

respectively, where

Pakc = ATTT
akPak + PakTakA − PakJkC − (PakJkC)T < 0 (92)

Using notation PakJk = Zak (92) implies (87). This concludes the proof.
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4.2.4 Estimator gain matrices
Knowing Jk, k = 1, 2, . . . , r elements of this set can be inserted into (75). Thus

LkC = Ak − AkeTak = Ak −
(
Ak − JkC

)(
I − buk(Cbuk)�1C

)
=

=
(

Jk +
(
Ak − JkC

)
buk(Cbuk)�1

)
C =

(
Jk + Akebuk(Cbuk)�1

)
C

(93)

and
Lk = Jk + Akebuk(Cbuk)�1, k = 1, 2, . . . , r (94)

4.2.5 Set of the residual generators
Exploiting the model-based properties of state estimators the set of residual generators can be
considered as

rak(t) = Xakqke(t) + Yak(y(t)− Duu(t)), k = 1, 2, . . . , m (95)

Subsequently

rak(t) = Xak
(
Takq(t)− ek(t)

)
+ YakCq(t) = (XakTak + YakC)q(t)− Xakek(t) (96)

To eliminate influences of the state variable vector it is necessary to consider

XakTak + YakC = 0 (97)

Xak
(
In − buk(Cbuk)

�1C
)
+ YakC = 0 (98)

respectively. Choosing Xak = −C (98) gives

− (
C − Cbuk(Cbuk)

�1C
)
+ YakC = −(Im − Cbuk(Cbuk)

�1)C + YakC = 0 (99)

i.e.
Yak = Im − Cbuk(Cbuk)

�1 (100)

Thus, the set of residuals (95) takes the form

rak(t) = (Im − Cbuk(Cbuk)�1)y(t)− Cqke(t) (101)

When all sensors are fault-free and a fault occurs in the l-th actuator the residuals will satisfy
the isolation logic

�rsk(t)� ≤ hsk, k = l, �rsk(t)� > hsk, k �= l (102)

This residual set can only isolate a single actuator fault at the same time. The principle can be
generalized based on a regrouping of faults in such way that each residual will be designed
to be sensitive to one group of actuator faults and insensitive to others.
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Fig. 5. Residuals for the 1st actuator fault

Illustrative example
Using the same system parameters as that given in the example in Subsection 4.1.2, the next
design parameters be computed

bu1 =

⎡
⎣

1
2
1

⎤
⎦ , (Cbu1)�1 =

�
0.1333 0.0667

�
, Ta1 =

⎡
⎣

0.8000 −0.3333 −0.1333
−0.4000 0.3333 −0.2667
−0.2000 −0.3333 0.8667

⎤
⎦

bu2 =

⎡
⎣

3
1
5

⎤
⎦ , (Cbu2)�1 =

�
0.0862 0.0345

�
, Ta2 =

⎡
⎣

0.6379 −0.6207 −0.2586
−0.1207 0.7931 −0.0862
−0.6034 −1.0345 0.5690

⎤
⎦

A1 =

⎡
⎣

0.6667 2.0000 0.3333
1.3333 2.0000 1.6667

−4.3333 −8.0000 −4.6667

⎤
⎦ , A2 =

⎡
⎣

1.2931 2.9655 0.6724
0.4310 0.6552 1.2241

−2.8448 −5.7241 −3.8793

⎤
⎦

Ya1 =
�

0.2 −0.4
−0.4 0.8

�
, Ya2 =

�
0.1379 −0.3448

−0.3448 0.8621

�

Solving (86), (87) with respect to the LMI matrix variables Pak, and Zak using
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Self-Dual-Minimization (SeDuMi) package for Matlab, the estimator gain matrix design
problem was feasible with the results

Pa1 =

⎡
⎣

0.7555 −0.0993 0.0619
−0.0993 0.7464 0.1223

0.0619 0.1223 0.3920

⎤
⎦

Za1 =

⎡
⎣

0.0257 0.7321
0.4346 0.2392

−0.7413 −0.7469

⎤
⎦ , J1 =

⎡
⎣

0.3504 1.2802
0.9987 0.8810

−2.2579 −2.3825

⎤
⎦ , L1 =

⎡
⎣

0.2247 1.2173
0.7807 0.7720

−2.8319 −2.6695

⎤
⎦

Pa2 =

⎡
⎣

0.6768 −0.0702 0.0853
−0.0702 0.7617 0.0685

0.0853 0.0685 0.4637

⎤
⎦

Za2 =

⎡
⎣

0.2127 0.9808
0.3382 0.0349

−0.6686 −0.4957

⎤
⎦ , J2 =

⎡
⎣

0.5888 1.6625
0.6462 0.3270

−1.6457 −1.4233

⎤
⎦ , L2 =

⎡
⎣

0.3878 1.5821
0.6720 0.3373

−2.6375 −1.8200

⎤
⎦

respectively. It is easily verified that the system matrices of state estimators are stable with the
eigenvalue spectra

ρ(Ta1A − J1C) = {−1.0000 − 1.6256 ± 0.3775 i}
ρ(Ta2A − J2C) = {−1.0000 − 1.5780 ± 0.4521 i}

respectively, and the set of residuals takes the form

ra1(t) =
�

0.2 −0.4
−0.4 0.8

�
y(t)−

�
1 2 1
1 1 0

�
q1e(t)

ra2(t) =
�

0.1379 −0.3448
−0.3448 0.8621

�
y(t)−

�
1 2 1
1 1 0

�
q2e(t)

Fig. 4-6 plot the residuals variable trajectories over the duration of the system run. The results
show that both residual profile show changes through the entire run, therefore a fault isolation
has to be more sophisticated.
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⎤
⎦ , J1 =

⎡
⎣

0.3504 1.2802
0.9987 0.8810

−2.2579 −2.3825

⎤
⎦ , L1 =

⎡
⎣

0.2247 1.2173
0.7807 0.7720

−2.8319 −2.6695

⎤
⎦

Pa2 =

⎡
⎣

0.6768 −0.0702 0.0853
−0.0702 0.7617 0.0685

0.0853 0.0685 0.4637

⎤
⎦

Za2 =

⎡
⎣

0.2127 0.9808
0.3382 0.0349

−0.6686 −0.4957

⎤
⎦ , J2 =

⎡
⎣

0.5888 1.6625
0.6462 0.3270

−1.6457 −1.4233

⎤
⎦ , L2 =

⎡
⎣

0.3878 1.5821
0.6720 0.3373

−2.6375 −1.8200

⎤
⎦

respectively. It is easily verified that the system matrices of state estimators are stable with the
eigenvalue spectra

ρ(Ta1A − J1C) = {−1.0000 − 1.6256 ± 0.3775 i}
ρ(Ta2A − J2C) = {−1.0000 − 1.5780 ± 0.4521 i}

respectively, and the set of residuals takes the form

ra1(t) =
�

0.2 −0.4
−0.4 0.8

�
y(t)−

�
1 2 1
1 1 0

�
q1e(t)

ra2(t) =
�

0.1379 −0.3448
−0.3448 0.8621

�
y(t)−

�
1 2 1
1 1 0

�
q2e(t)

Fig. 4-6 plot the residuals variable trajectories over the duration of the system run. The results
show that both residual profile show changes through the entire run, therefore a fault isolation
has to be more sophisticated.
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5. Control with virtual sensors

5.1 Stability of the system
Considering a sensor fault then (1), (2) can be written as

q̇ f (t) = Aq f (t) + Buu f (t) (103)

y f (t) = C f q f (t) + Duu f (t) (104)

where q f (t) ∈ IRn, u f (t) ∈ IRr are vectors of the state, and input variables of the faulty
system, respectively, C f ∈ IRm×n is the output matrix of the system with a sensor fault, and
y f (t) ∈ IRm is a faulty measurement vector. This interpretation means that one row of C f is
null row.
Problem of the interest is to design a stable closed-loop system with the output controller

u f (t) = −Koye(t) (105)

where
ye(t) = Ey f (t) + (C − EC f )q f e(t) (106)

Ko ∈ IRr×m is the controller gain matrix, and E ∈ IRm×m is a switching matrix, generally used
in such a way that E = 0, or E = Im. If E = 0 full state vector estimation is used for control,
if E = Im the outputs of the fault-free sensors are combined with the estimated state variables
to substitute a missing output of the faulty sensor.
Generally, the controller input is generated by the virtual sensor realized in the structure

q̇ f e(t) = Aq f e(t) + Buu f (t) + J(y f (t) − Duu f (t) − C f q f e(t)) (107)

The main idea is, instead of adapting the controller to the faulty system virtually adapt the
faulty system to the nominal controller.

Theorem 3 Control of the faulty system with virtual sensor defined by (103) – (107) is stable in the
sense of bounded real lemma if there exist positive definite symmetric matrices Q, R ∈ IRn×n, and
matrices Ko ∈ IRr×m, J ∈ IRn×m such that

⎡
⎢⎢⎢⎣

Φ1 QBuKo(C − EC f ) −QBuKoE
�
C f − DuKo(C − EC f )

�T

∗ Φ2 0
�
DuKo(C − EC f )

�T

∗ ∗ −γ2Ir −�
DuKoE

�T

∗ ∗ ∗ −Im

⎤
⎥⎥⎥⎦ < 0 (108)

where
Φ1 = Q

�
A − BuKo(C − EC f )

�
+

�
A − BuKo(C − EC f )

�TQ (109)

Φ2 = R
�
A − JC f

�
+

�
A − JC f

�TR (110)

Proof. Assembling (103), (104), and (107) gives
�

q̇ f (t)
q̇ f e(t)

�
=

�
A 0

JC f A − JC f

� �
q f (t)
q f e(t)

�
+

�
Bu
Bu

�
u f (t) (111)

y f (t) = C f q f (t) + Duu f (t) (112)
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Thus, defining the estimation error vector

eq f (t) = q f (t)− q f e(t) (113)

as well as the congruence transform matrix

T = T−1 =
[

I 0
I −I

]
(114)

and then multiplying left-hand side of (111) by (114) results in

T
[

q̇ f (t)
q̇ f e(t)

]
= T

[
A 0

JC f A − JC f

]
T−1T

[
q f (t)
q f e(t)

]
+ T

[
Bu
Bu

]
u f (t) (115)

[
q̇ f (t)
ėq f (t)

]
=

[
A 0
0 A − JC f

] [
q f (t)
eq f (t)

]
+

[
Bu
0

]
u f (t) (116)

respectively. Subsequently, inserting (105), (106) into (116), (112) gives
[

q̇ f (t)
ėq f (t)

]
=

[
A−BuKo(C−EC f ) BuKo(C−EC f )

0 A−JC f

][
q f (t)
eq f (t)

]
+

[−BuKoE
0

]
ye(t) (117)

together with

y f (t) =
[
C f − DuKo(C−EC f ) DuKo(C−EC f )

][q f (t)
eq f (t)

]
− DuKoEye(t) (118)

and it is evident, that the separation principle yields.
Denoting

qT
ε (t) =

[
qT

f (t) eT
q f (t)

]
, wε(t) = ye(t) (119)

Aε =
[

A − BuKo(C − EC f ) BuKo(C − EC f )
0 A − JC f

]
, Bε =

[−BuKoE
0

]
(120)

Cε =
[

C f − DuKo(C − EC f ) DuKo(C − EC f )
]

, Dε = −DuKoE (121)

To accept the separation principle a block diagonal symmetric matrix Pε > 0 is chosen, i.e.

Pε = diag
[

Q R
]

(122)

where Q = QT > 0, R = RT > 0, Q, R ∈ IRn×n Thus, with (109), (110) it yields

PεAε + AT
ε Pε =

[
Φ1 QBuKo(C − EC f )
∗ Φ2

]
, PεBε =

[−QBuKoE
0

]
(123)

and inserting (121), (123), into (24) gives (108). This concludes the proof.
It is evident that there are the cross parameter interactions in the structure of (108). Since the
separation principle pre-determines the estimator structure (error vectors are independent on
the state as well as on the input variables), the controller, as well as estimator have to be
designed independent.
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5.2 Output feedback controller design

Theorem 4 (Unified algebraic approach) A system (103), (104) with control law (105) is stable if
there exist positive definite symmetric matrices P > 0, Π = P−1 > 0 such that

�
B⊥

u (AΠ + ΠAT)B⊥T
u B⊥

u ΠCT
f i

∗ −Im

�
< 0, i = 0, 1, 2, . . . , m (124)

⎡
⎢⎣ C•T⊥

f i

�
PA + ATP 0

∗ −γ2Ir

�
C•T⊥T

f i C•T⊥
f i

�
CT

f i
0

�

∗ −Im

⎤
⎥⎦ < 0 i = 1, 2, . . . , m, E = Im (125)

�
CT⊥(PA + ATP)CT⊥T CT⊥CT

f i
∗ −Im

�
< 0 i = 0, 1, 2, . . . m, E = 0 (126)

where

C•T⊥
f i =

�
(C−EC f i)T

E

�⊥
(127)

and B⊥
u is the orthogonal complement to Bu. Then the control law gain matrix Ko exists if for obtained

P there exist a symmetric matrices H > 0 such that
�−FHFT − Θi FH + GiKT

o
∗ −H

�
< 0 (128)

where i = 0, 1, 2, . . . , m, and

Θi = −
⎡
⎣

PA + ATP 0 CT
f i

∗ −γ2Ir 0
∗ ∗ −Im

⎤
⎦ < 0, F = −

⎡
⎣

PBu
0
0

⎤
⎦ , G =

⎡
⎣

(C−EC f i)T

E
0

⎤
⎦ (129)

Proof. Considering eq(t) = 0 then inserting Q = P (108) implies
⎡
⎢⎣

Φ1 −PBuKoE
�
C f − DuKo(C − EC f )

�T

∗ −γ2Ir −�
DuKoE

�T

∗ ∗ −Im

⎤
⎥⎦ < 0 (130)

where
Φ1 = P

�
A − BuKo(C − EC f )

�
+

�
A − BuKo(C − EC f )

�TP (131)

For the simplicity it is considered in the next that Du = 0 (in real physical systems this
condition is satisfied) and subsequently (130), (131) can now be rewritten as

⎡
⎣

PA + ATP 0 CT
f

∗ −γ2Ir 0
∗ ∗ −Im

⎤
⎦−

−
⎡
⎣

PBu
0
0

⎤
⎦ Ko

�
C−EC f E 0

� −
⎡
⎣

(C−EC f )T

E
0

⎤
⎦ KT

o
�

BT
u P 0 0

�
< 0

(132)

326 Robust Control, Theory and Applications

Defining the congruence transform matrix

Tv = diag
�

P−1 Ir Im
�

(133)

then pre-multiplying left-hand side and right-hand side of (132) by (133) gives
⎡
⎣

AP−1 + P−1AT 0 P−1CT
f

∗ −γ2Ir 0
∗ ∗ −Im

⎤
⎦−

−
⎡
⎣

Bu
0
0

⎤
⎦ Ko

�
(C−EC f )P−1 E 0

�
−

⎡
⎣

P−1(C−EC f )T

E
0

⎤
⎦ KT

o
�

BT
u 0 0

�
< 0

(134)

Since it yields

B◦⊥
u =

⎡
⎣

Bu
0
0

⎤
⎦
⊥

=

⎡
⎣

B⊥
u 0 0

0 Ir 0
0 0 Im

⎤
⎦ (135)

pre-multiplying left hand side of (134) by (135) as well as right-hand side of (134) by
transposition of (135) leads to inequalities

⎡
⎣

B⊥
u (AP−1 + P−1AT)B⊥T

u 0 B⊥
u P−1CT

f
∗ −γ2Ir 0
∗ ∗ −Im

⎤
⎦ < 0 (136)

�
B⊥

u (AP−1 + P−1AT)B⊥T
u B⊥

u P−1CT
f

∗ −Im

�
< 0 (137)

respectively. Considering all possible structures C f i, i = 1, 2, . . . , m associated with simple
sensor faults, as well as fault-free regime associated with the nominal matrix C = C f 0, then
using the substitution P−1 = Π the inequality (136) implies (124).
Analogously, using orthogonal complement

C◦T⊥
f =

⎡
⎣

(C−EC f )T

E
0

⎤
⎦
⊥

=

⎡
⎢⎣

�
(C−EC f )T

E

�⊥
0

0 Im

⎤
⎥⎦ =

�
C•T⊥

f 0
∗ Im

�
(138)

and pre-multiplying left-hand side of (132) by (138) and its right-hand side by transposition
of (138) results in

⎡
⎢⎣ C•T⊥

f

�
PA + ATP 0

∗ −γ2Ir

�
C•T⊥T

f C•T⊥
f

�
CT

f
0

�

∗ −Im

⎤
⎥⎦ < 0 (139)

Considering all possible structures C f i, i = 1, 2, . . . , m (139) implies (125).
Inequality (125) takes a simpler form if E = 0. Thus, now

C◦T⊥
f =

⎡
⎣

CT

0
0

⎤
⎦
⊥

=

⎡
⎣

CT⊥ 0 0
0 Ir 0
0 0 Im

⎤
⎦ (140)
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f
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CT
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⊥
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and pre-multiplying left-hand sides of (132) by (140) and its right-hand side by transposition
of (140) results in ⎡

⎣
CT⊥(PA + ATP)CT⊥T 0 CT⊥CT

f
∗ −γ2Ir 0
∗ ∗ −Im

⎤
⎦ < 0 (141)

which implies (126). This concludes the proof.
Solving LMI problem (124), (125), (126) with respect to LMI variable P, then it is possible to
construct (128), and subsequently to solve (127) defining the feedback control gain Ko, and H
as LMI variables.
Note, (124), (125), (126) have to be solved iteratively to obtain any approximation P−1 = Π.
This implies that these inequalities together define only the sufficient condition of a solution,
and so one from (P, Π−1) can be used in design independently while verifying solution
using the latter. Since of an approximative solution the matrix Θ defined in (129) need not
be negative definite, and so it is necessary to introduce into (128) a negative definite matrix
Θ◦

f i as follows
Θ◦

f i = Θ f i − Δ < 0 (142)

where Δ > 0.
If (124), (125), (126) is infeasible the principle can be modified based on inequalities regrouping
e.g. in such way that solving (124), (125), and (124), (126) separatively and obtaining two
virtual sensor structures (one for E = 0 and other for E = Im). It is evident that virtual sensor
switching be more sophisticated in this case.

5.3 Virtual sensor design

Theorem 5 Virtual sensor (107) associated with the system (103), (104) is stable if there exist symmetric
positive definite matrix R ∈ IRn×n, and a matrix Z ∈ IRn×m, such that

R = RT > 0 (143)

RA + ATR − ZC f i + CT
f iZ

T < 0, i = 0, 1, 2, . . . , m (144)

The virtual sensor matrix parameter is then given as

J = R−1Z (145)

Proof. Supposing that q(t) = 0 and Du = 0 then (108), (110) is reduced as follows
⎡
⎣

Φ2 0 0
∗ −γ2Ir 0
∗ ∗ −Im

⎤
⎦ < 0 (146)

R
�
A − JC f

�
+

�
A − JC f

�TR < 0 (147)

respectively. Thus, with the notation
Z = RJ (148)

(147) implies (144). This concludes the proof.

328 Robust Control, Theory and Applications

Illustrative example
Using for E = 0 the same system parameters as that given in the example in Subsection 4.1.2,
then the next design parameters were computed

B⊥
u =

�−0.8581 0.1907 0.4767
�

, CT⊥ =
�

0.5774 −0.5774 0.5774
�

C f 0 =
�

1 2 1
1 1 0

�
, C f 1 =

�
0 0 0
1 1 0

�
, C f 2 =

�
1 2 1
0 0 0

�

Solving (124) and the set of polytopic inequalities (126) with respect to P, Π using the SeDuMi
package the problem was feasible and the matrices

P =

⎡
⎣

0.6836 0.0569 −0.0569
0.0569 0.6836 0.0569

−0.0569 0.0569 0.6836

⎤
⎦

as well as H = 0.1I2 was used to construct the next ones

Θ0 =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

0.5688 0.9111 −3.0769 1 1
0.9111 −0.9100 −5.8103 2 1

−3.0769 −5.8103 −6.7225 1 0
−0.1

−0.1
1.0000 2.0000 1.0000 −1
1.0000 1.0000 0 −1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

, Θ1, Θ2

FT = −
�

0.7405 1.4810 0.7405 0 0 0 0
1.8234 1.1386 3.3044 0 0 0 0

�
, GT =

�
1 2 1 0 0 0 0
1 1 0 0 0 0 0

�

To obtain negativity of Θ◦
f i the matrix Δ = 4.94I7 was introduced. Solving the set of polytopic

inequalities (128) with respect to Ko the problem was also feasible and it gave the result

Ko =
�−0.0734 −0.0008
−0.1292 0.1307

�

which secure robustness of control stability with respect to all structures of output matrices
C f i, i = 0, 1, 2. In this sense

ρ(A − BuKoC) =
�−1.0000 −1.3941 ± 2.3919 i

�

ρ(A − BuKoC f 1) =
�−1.0000 −2.2603 ± 1.6601 i

�

ρ(A − BuKoC f 2) =
�−1.0000 −1.1337 ± 1.8591 i

�

Solving the set of polytopic inequalities (144) with respect to R, Z the feasible solution was

R =

⎡
⎣

0.7188 0.0010 0.0016
0.0010 0.7212 0.0448
0.0016 0.0448 0.1299

⎤
⎦ , Z =

⎡
⎣
−0.0006 0.4457

0.0117 0.0701
−0.0629 −0.5894

⎤
⎦

Thus, the virtual sensor gain matrix J was computed as

J =

⎡
⎣

0.0002 0.6296
0.0473 0.3868

−0.5003 −4.6799

⎤
⎦
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Fig. 7. System output and its estimation

which secure robustness of virtual sensor stability with respect to all structures of output
matrices C f i, i = 0, 1, 2. In this sense

ρ(A − JC) =

⎡
⎣
−1.0000
−1.1656
−3.4455

⎤
⎦ , ρ(A − JC f 1) =

⎡
⎣
−1.0000
−1.2760
−3.7405

⎤
⎦

ρ(A − BuKoC f 2) =

⎡
⎣

−1.0000
−1.1337 + 1.8591 i
−1.1337 − 1.8591 i

⎤
⎦

As was mentioned above the simulation results were obtained by solving the semi-definite
programming problem under Matlab with SeDuMi package 1.2, where the initial conditions
were set to

q(0) =
�

0.2 0.2 0.2
�T , qe(0) =

�
0 0 0

�T

respectively, and the control law in forced mode was

u f (t) = −Koye(t) + w(t), w(t) =
�−0.2 −0.2

�T

Fig. 7 shows the trajectory of the system outputs and the trajectory of the estimate system
outputs using virtual sensor structure. It can be seen there a reaction time available to perform
fault detection and isolation in the trajectory of the estimate system outputs, as well as a
reaction time of control system reconfiguration in the system output trajectory. The results
confirm that the true signals and their estimation always reside between limits given by static
system error of the closed-loop structure.

6. Active control structures with a single actuator fault

6.1 Stability of the system

Theorem 6 Fault tolerant control system defined by (1) – (9) is stable in the sense of bounded real
lemma if there exist positive definite symmetric matrices Q, R ∈ IRn×n, S ∈ IRl×l, and matrices
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K ∈ IRr×n, L ∈ IRr×l, J ∈ IRn×m, M ∈ IRl×l, N ∈ IRl×m such that

⎡
⎢⎢⎢⎢⎢⎢⎣

Φ11 QBuK QBuL 0 0 (C − DuK)T

∗ Φ22 R(B f − JD f ) − (SNC)T 0 0 (DuK)T

∗ ∗ Φ33 −SM S (DuL)T

∗ ∗ ∗ −γ2Il 0 0
∗ ∗ ∗ ∗ −γ2Il 0
∗ ∗ ∗ ∗ ∗ −Im

⎤
⎥⎥⎥⎥⎥⎥⎦

< 0 (149)

where
Φ11 = Q(A − BuK) + (A − BuK)TQ, Φ22 = R(A − JC) + (A − JC)TR (150)

Φ33 = S(M − ND f ) + (M − ND f )
TS (151)

Proof. Considering equality ḟ(t) = ḟ(t) and assembling this equality with (1) – (4), and with
(7) – (9) gives the result

⎡
⎢⎢⎣

q̇(t)
q̇e(t)
ḟ(t)
ḟe(t)

⎤
⎥⎥⎦ =

⎡
⎢⎢⎣

A −BuK B f −BuL
JC A − BuK − JC JD f B f − JD f − BuL
0 0 0 0

NC −NC ND f M − ND f

⎤
⎥⎥⎦

⎡
⎢⎢⎣

q(t)
qe(t)
f(t)
fe(t)

⎤
⎥⎥⎦ +

⎡
⎢⎢⎣

0
0

ḟ(t)
0

⎤
⎥⎥⎦ (152)

y =
�

C −DuK D f −DuL
�
⎡
⎢⎢⎣

q(t)
qe(t)
f(t)
fe(t)

⎤
⎥⎥⎦ (153)

which can be written in a compact form as

q̇α(t) = Aαqα(t) + fα(t) (154)

y = Cαqα(t) (155)

where
qT

α (t) =
�

qT(t) qT
e (t) fT(t) fT

e (t)
�

, fT
α (t) =

�
0T 0T ḟT(t) 0T

�
(156)

Aα =

⎡
⎢⎢⎣

A −BuK B f −BuL
JC A − BuK − JC JD f B f − JD f − BuL
0 0 0 0

NC −NC ND f M − ND f

⎤
⎥⎥⎦ (157)

Cα =
�

C −DuK D f −DuL
�

(158)

Using notations
eq(t) = q(t)− qe(t), e f (t) = f(t)− fe(t) (159)

where eq(t) is the error between the actual state and the estimated state, and e f (t) is the error
between the actual fault and the estimated fault, respectively then it is possible to define the
state transformation

qβ(t) = Tqα(t) =

⎡
⎢⎢⎣

q(t)
eq(t)
f(t)

e f (t)

⎤
⎥⎥⎦ , fβ(t) = Tfα(t) =

⎡
⎢⎢⎣

0
0

ḟ(t)
ḟ(t)

⎤
⎥⎥⎦ , T = T−1 =

⎡
⎢⎢⎣

I 0 0 0
I −I 0 0
0 0 I 0
0 0 I −I

⎤
⎥⎥⎦ (160)
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were set to
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Fig. 7 shows the trajectory of the system outputs and the trajectory of the estimate system
outputs using virtual sensor structure. It can be seen there a reaction time available to perform
fault detection and isolation in the trajectory of the estimate system outputs, as well as a
reaction time of control system reconfiguration in the system output trajectory. The results
confirm that the true signals and their estimation always reside between limits given by static
system error of the closed-loop structure.

6. Active control structures with a single actuator fault

6.1 Stability of the system

Theorem 6 Fault tolerant control system defined by (1) – (9) is stable in the sense of bounded real
lemma if there exist positive definite symmetric matrices Q, R ∈ IRn×n, S ∈ IRl×l, and matrices
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⎡
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Φ11 QBuK QBuL 0 0 (C − DuK)T

∗ Φ22 R(B f − JD f ) − (SNC)T 0 0 (DuK)T

∗ ∗ Φ33 −SM S (DuL)T

∗ ∗ ∗ −γ2Il 0 0
∗ ∗ ∗ ∗ −γ2Il 0
∗ ∗ ∗ ∗ ∗ −Im

⎤
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< 0 (149)

where
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�
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ḟ(t)

⎤
⎥⎥⎦ , T = T−1 =

⎡
⎢⎢⎣

I 0 0 0
I −I 0 0
0 0 I 0
0 0 I −I

⎤
⎥⎥⎦ (160)

331Design Principles of Active Robust Fault Tolerant Control Systems



and to rewrite (154), (155) as follows

q̇β(t) = Aβqβ(t) + fβ(t) (161)

y = Cβqβ(t) (162)

where

Aβ = TAαT−1 =

⎡
⎢⎢⎣

A BuK B f − BuL BuL
0 A − JC 0 B f − JD f
0 0 0 0
0 −NC −M M − ND f

⎤
⎥⎥⎦ (163)

Cβ = CαT−1 =
�

C − DuK DuK D f − DuL DuL
�

(164)

Since (5) implies
B f − BuL = 0, D f − DuL = 0 (165)

it obvious that (163), (165) can be simplified as

Aβ = TAαT−1 =

⎡
⎢⎢⎣

A BuK 0 BuL
0 A − JC 0 B f − JD f
0 0 0 0
0 −NC −M M − ND f

⎤
⎥⎥⎦ (166)

Cβ = CαT−1 =
�

C − DuK DuK 0 DuL
�

(167)

Eliminating out equality ḟ(t) = ḟ(t) it can be written

q̇δ(t) = Aδqδ(t) + Bδwδ(t) (168)

y = Cδqδ(t) + Dδwδ(t) (169)

where
qT

δ (t) =
�

qT(t) eT
q (t) eT

f (t)
�

, wT
δ (t) =

�
fT(t) ḟT(t)

�
(170)

Aδ =

⎡
⎣

A BuK BuL
0 A − JC B f − JD f
0 −NC M − ND f

⎤
⎦ , Bδ =

⎡
⎣

0 0
0 0

−M I

⎤
⎦ (171)

Cδ =
�

C − DuK DuK DuL
�

, Dδ =
�

0 0
�

(172)

To apply the separation principle a block diagonal symmetric matrix Pδ > 0 has to be chosen,
i.e.

Pδ = diag
�

Q R S
�

(173)

where Q, R ∈ IRn×n, S ∈ IRl×l. Thus, with (150), (151) it yields

PδAδ + AT
δ Pδ =

⎡
⎣

Φ11 QBuK QBuL
∗ Φ22 R(B f − JD f )− (SNC)T

∗ ∗ Φ33

⎤
⎦ , PδBδ =

⎡
⎣

0 0
0 0

−SM S

⎤
⎦ (174)

and inserting (171), (172), and (174) into (24) gives (149). This concludes the proof.
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6.2 Feedback controller gain matrix design

It is evident that there are the cross parameter interactions in the structure of (149). Since the
separation principle pre-determines the estimator structure (error vectors are independent on
the state as well as on the input variables), at the first design step can be computed a feedback
controller gain matrix K, and at the next step be designed the estimators gain matrices J ∈
IRn×m, M ∈ IRl×l, N ∈ IRl×m, including obtained K.

Theorem 7. For a fault-free system (1), (2) exists a stable nominal control (4) if there exist a positive
definite symmetric matrix X > 0, X ∈ IRn×n, a matrix Y ∈ IRr×n, and a positive scalar γ > 0, γ ∈ IR
such that

X = XT > 0 (175)⎡
⎣

AX + XAT − YTBT
u − BuY BuL XCT − YTDT

u
∗ −γ2Il LTDT

u
∗ ∗ −Im

⎤
⎦ < 0 (176)

The control law gain matrix is then given as

K = YX−1 (177)

Proof. Considering eq(t) = 0, then separating q(t) from (168)-(169) gives

q̇(t) = A◦q(t) + B◦w◦(t) (178)

y(t) = C◦q(t) + D◦w◦(t) (179)

where
w◦(t) = e f (t) (180)

A◦ = A − BuK, B◦ = BuL, C◦ = C − DuK, D◦ = DuL (181)

and with (181), and P = Q inequality (24) can be written as
⎡
⎣

QA + ATQ − QBuK − KTBT
u Q QBuL CT − KTDT

u
∗ −γ2Il LTDT

u
∗ ∗ −Im

⎤
⎦ < 0 (182)

Introducing the congruence transform matrix

H = diag
�

Q−1 Il Im
�

(183)

then multiplying left-hand side, as well right-hand side of (182) by (183) gives
⎡
⎣

AQ−1 + Q−1AT − BuKQ−1 − QKTBT
u BuL Q−1(CT − KTDT

u )
∗ −γ2Il LTDT

u
∗ ∗ −Im

⎤
⎦ < 0 (184)

With notation
Q−1 = X > 0, KQ−1 = Y (185)

(184) implies (176). This concludes the proof.
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and to rewrite (154), (155) as follows
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⎡
⎢⎢⎣

A BuK B f − BuL BuL
0 A − JC 0 B f − JD f
0 0 0 0
0 −NC −M M − ND f

⎤
⎥⎥⎦ (163)

Cβ = CαT−1 =
�

C − DuK DuK D f − DuL DuL
�

(164)
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⎡
⎢⎢⎣

A BuK 0 BuL
0 A − JC 0 B f − JD f
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0 −NC −M M − ND f

⎤
⎥⎥⎦ (166)

Cβ = CαT−1 =
�

C − DuK DuK 0 DuL
�

(167)
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qT

δ (t) =
�

qT(t) eT
q (t) eT

f (t)
�

, wT
δ (t) =

�
fT(t) ḟT(t)

�
(170)

Aδ =

⎡
⎣

A BuK BuL
0 A − JC B f − JD f
0 −NC M − ND f

⎤
⎦ , Bδ =

⎡
⎣

0 0
0 0

−M I

⎤
⎦ (171)

Cδ =
�

C − DuK DuK DuL
�

, Dδ =
�

0 0
�

(172)

To apply the separation principle a block diagonal symmetric matrix Pδ > 0 has to be chosen,
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Pδ = diag
�

Q R S
�

(173)
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PδAδ + AT
δ Pδ =

⎡
⎣

Φ11 QBuK QBuL
∗ Φ22 R(B f − JD f )− (SNC)T

∗ ∗ Φ33

⎤
⎦ , PδBδ =

⎡
⎣

0 0
0 0

−SM S

⎤
⎦ (174)
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6.2 Feedback controller gain matrix design

It is evident that there are the cross parameter interactions in the structure of (149). Since the
separation principle pre-determines the estimator structure (error vectors are independent on
the state as well as on the input variables), at the first design step can be computed a feedback
controller gain matrix K, and at the next step be designed the estimators gain matrices J ∈
IRn×m, M ∈ IRl×l, N ∈ IRl×m, including obtained K.
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definite symmetric matrix X > 0, X ∈ IRn×n, a matrix Y ∈ IRr×n, and a positive scalar γ > 0, γ ∈ IR
such that

X = XT > 0 (175)⎡
⎣

AX + XAT − YTBT
u − BuY BuL XCT − YTDT

u
∗ −γ2Il LTDT

u
∗ ∗ −Im

⎤
⎦ < 0 (176)
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u )
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With notation
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(184) implies (176). This concludes the proof.
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6.3 Estimator system matrix design

Theorem 8 For given scalar γ > 0, γ ∈ IR, and matrices Q = QT > 0, Q ∈ IRn×n, K ∈ IRr×n,
L ∈ IRr×l estimators (7) – (9) associated with the system (1), (2) are stable if there exist symmetric
positive definite matrices R ∈ IRn×n, S ∈ IRl×l, and matrices Z ∈ IRn×m, V ∈ IRl×l, W ∈ IRl×m

such that
R = RT > 0 (186)

S = ST > 0 (187)
⎡
⎢⎢⎢⎢⎣

Φ22 RB f − ZD f − (WC)T 0 0 (DuK)T

∗ Φ33 −V S (DuL)T

∗ ∗ −γ2Il 0 0
∗ ∗ ∗ −γ2Il 0
∗ ∗ ∗ ∗ −Im

⎤
⎥⎥⎥⎥⎦

(188)

where
Φ22 = RA − ZC + ATR − CTZT, Φ33 = V − WD f + VT − DT

f WT (189)

The estimators matrix parameters are then given as

M = S−1V, N = S−1W, J = R−1Z (190)

Proof. Supposing that q(t) = 0 then (149) is reduced as follows

⎡
⎢⎢⎢⎢⎣

Φ22 R(B f − JD f )− (SNC)T 0 0 (DuK)T

∗ Φ33 −SM S (DuL)T

∗ ∗ −γ2Il 0 0
∗ ∗ ∗ −γ2Il 0
∗ ∗ ∗ ∗ −Im

⎤
⎥⎥⎥⎥⎦

< 0 (191)

where

Φ22 = R(A − JC) + (A − JC)TR, Φ33 = S(M − ND f ) + (M − ND f )TS (192)

Thus, with notation
SM = V, SN = W, RJ = Z (193)

(191), (192) implies (188), (189). This concludes the proof.
It is obvious that Fe = A − JC, as well as M have to be stable matrices.

6.4 Illustrative example
To demonstrate algorithm properties it was assumed that the system is given by (1), (2) where

A =

⎡
⎣

0 1 0
0 0 1

−5 −9 −5

⎤
⎦ , Bu =

⎡
⎣

1 3
2 1
1 5

⎤
⎦ , B f =

⎡
⎣

1
2
1

⎤
⎦ , L =

�−1
0

�

C =
�

1 2 1
1 1 0

�
, Du =

�
0 0
0 0

�
, D f =

�
0
0

�
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Fig. 9. System output and its estimation

Solving (175), (176) with respect to the LMI matrix variables γ, X, and Y using
Self-Dual-Minimization (SeDuMi) package for Matlab, the feedback gain matrix design
problem was feasible with the result

X =

⎡
⎣

1.7454 −0.8739 0.0393
−0.8739 1.3075−0.5109

0.0393 −0.5109 2.0436

⎤
⎦ , Y =

�
0.9591 1.2907 −0.1049

−0.1950 −0.5166−0.4480

�
, γ = 1.8509

K =
�

1.2524 1.7652 0.0436
−0.0488 −0.2624 −0.3428

�

In the next step the solution to (186) – (188) using design parameters γ = 1.8509 was also
feasible giving the LMI variables

V = −1.3690, S = 1.1307, W =
�

0.9831 0.7989
�

R =

⎡
⎣

1.7475 0.0013 0.0128
0.0013 1.4330 0.0709
0.0128 0.0709 0.6918

⎤
⎦ , Z =

⎡
⎣
−0.0320 1.0384

0.1972 0.1420
−2.0509 −1.1577

⎤
⎦
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Solving (175), (176) with respect to the LMI matrix variables γ, X, and Y using
Self-Dual-Minimization (SeDuMi) package for Matlab, the feedback gain matrix design
problem was feasible with the result

X =
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�
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K =
�

1.2524 1.7652 0.0436
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�

In the next step the solution to (186) – (188) using design parameters γ = 1.8509 was also
feasible giving the LMI variables

V = −1.3690, S = 1.1307, W =
�

0.9831 0.7989
�

R =

⎡
⎣

1.7475 0.0013 0.0128
0.0013 1.4330 0.0709
0.0128 0.0709 0.6918

⎤
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⎣
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which gives

J =

⎡
⎣

0.0035 0.6066
0.2857 0.1828

−2.9938 −1.7033

⎤
⎦ , N =

�
0.8694 0.7066

�
, M = −1.2108

Since M < 0 it is evident that the fault estimator is stable and verifying the rest subsystem
stability it can see that

Ac = A−BuK =

⎡
⎣
−1.1062 0.0282 0.9847
−2.4561−3.2659 1.2555
−6.0087−9.4430−3.3297

⎤
⎦ , �(Ac) = {−0.7110 − 3.4954 ± i 4.3387}

Aqe = A−JC =

⎡
⎣
−0.6101 0.3864 −0.0035
−0.4684 −0.7541 0.7143
−0.3029 −1.3092−2.0062

⎤
⎦ , �(Aqe) = {−1.0000 − 1.1852 ± i 0.7328}

where �(·) is eigenvalue spectrum of a real square matrix. It is evident that the designed
observer-based control structure results the stable system.
The example is shown of the closed-loop system response in the autonomous mode where Fig.
8 represents the first actuator fault as well as its estimation, and the system input variables,
respectively, and Fig. 9 is concerned with the system outputs and its estimation, respectively.

7. Concluding remarks

This chapter provides an introduction to the aspects of reconfigurable control design method
with emphasis on the stability conditions and related system properties. Presented viewpoint
has been that non-expansive system properties formulated in the H∞ design conditions
underpins the nature of dynamic and feedback properties. Sufficient conditions of asymptotic
stability of systems have thus been central to this approach. Obtained closed-loop eigenvalues
express the internal dynamics of the system and they are directly related to aspects of system
performance as well as affected by the different types of faults. On the other hand, control
structures alternation achieved under virtual sensors, or by design or re-design of an actuator
fault estimation can be done robust with respect of unaccepted faults. The role and significance
of another reconfiguration principles may be found e.g. in the literature (Blanke et al.,2003),
(Krokavec and Filasova,2007), (Noura et al.,2009), and references therein.
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1. Introduction 
Model Predictive Control (MPC) is frequently implemented as one of the layers of a control 
structure where a Real Time Optimization (RTO) algorithm - laying in an upper layer of this 
structure - defines optimal targets for some of the inputs and/or outputs (Kassmann et al., 
2000). The main scope is to reach the most profitable operation of the process system while 
preserving safety and product specification constraints. The model predictive controller is 
expected to drive the plant to the optimal operating point, while minimizing the dynamic 
error along the input and output paths. Since in the control structure considered here the 
model predictive controller is designed to track the optimal targets, it is expected that for 
nonlinear process systems, the linear model included in the controller will become uncertain 
as we move from the design condition to the optimal condition. The robust MPC presented 
in this chapter explicitly accounts for model uncertainty of open loop stable systems, where 
a different model corresponds to each operating point of the process system. In this way, 
even in the presence of model uncertainty, the controller is capable of maintaining all 
outputs within feasible zones, while reaching the desired optimal targets. In several other 
process systems, the aim of the MPC layer is not to guide all the controlled variables to 
optimal targets, but only to maintain them inside appropriate ranges or zones. This strategy 
is designated as zone control (Maciejowski, 2002). The zone control may be adopted in some 
systems, where there are highly correlated outputs to be controlled, and there are not 
enough inputs to control all the outputs. Another class of zone control problems relates to 
using the surge capacity of tanks to smooth out the operation of a process unit. In this case, 
it is desired to let the level of the tank to float between limits, as necessary, to buffer 
disturbances between sections of a plant. The paper by Qin and Badgwell (2003), which 
surveys the existing industrial MPC technology, describes a variety of industrial controllers 
and mention that they always provide a zone control option. Other example of zone control 
can be found in Zanin et al, (2002), where the authors exemplify the application of this 
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strategy in the real time optimization of a FCC system. Although this strategy shows to have 
an acceptable performance, stability is not usually proved, even when an infinite horizon is 
used, since the control system keeps switching from one controller to another throughout 
the continuous operation of the process. 
There are several research works that treat the problem of how to obtain a stable MPC with 
fixed output set points. Although stability of the closed loop is commonly achieved by 
means of an infinite prediction horizon, the problem of how to eliminate output steady state 
offset when a supervisory layer produces optimal economic set points, and how to explicitly 
incorporate the model uncertainty into the control problem formulation for this case, remain 
an open issue. For the nominal model case, Rawlings (2000), Pannochia and Rawlings (2003), 
Muske and Badgwell (2002), show how to include disturbance models in order to assure 
that the inputs and states are led to the desired values without offset. Muske and Badgwell 
(2002) and Pannochia and Rawlings (2003) develop rank conditions to assure the 
detectability of the augmented model. 
For the uncertain system, Odloak (2004) develops a robust MPC for the multi-plant 
uncertainty (that is, for a finite set of possible models) that uses a non-increasing cost 
constraint (Badgwell, 1997). In this strategy, the MPC cost function to be minimized is 
computed using a nominal model, but the non-increasing cost constraint is settled for each 
of the models belonging to the set. The stability is then achieved by means of the recursive 
feasibility of the optimization problem, instead of the optimality. On the other hand, there 
exist some recent MPC formulations that are based on the existence of a control Lyapunov 
function (CLF), which is independent of the control cost function. Although the construction 
of the CFL may not be a trivial task, these formulations also allow the explicit 
characterization of the stability region subject to constraints and they do not need an infinite 
output horizon. Mashkar et al. (2006) explore this approach for the control of nominal 
nonlinear systems, and Mashkar (2006) extends the approach for the case of model 
uncertainty and control actuator fault. More recently, González et al. (2009) extended the 
infinite horizon approach to stabilize the closed loop with the MPC controller for the case of 
multi-model uncertainty and optimizing targets. They developed a robust MPC by adapting 
the non-increasing cost constraint strategy to the case of zone control of the outputs and it is 
desirable to guide some of the manipulated inputs to the targets given by a supervisory 
stationary optimization stage, while maintaining the controlled output in their 
corresponding zones, taking into account a finite set of possible models. This problem, that 
seems to interchange an output tracking by an input-tracking formulation, is not trivial, 
since once the output lies outside the corresponding zone (because of a disturbance, or a 
change in the output zones), the priority of the controller is again to control the outputs, 
even if this implies that the input must be settled apart from its targets. 
Since in many process systems, mainly from the chemical and petrochemical industries, the 
process model shows significant time delays, the main contribution of this chapter is to 
extend the approach of González et al. (2009) to the case of input delayed multi-model 
systems by introducing minor modifications in the state space model, in such a way that the 
structure of the control algorithm is preserved. Simulation of a process system of the oil 
refining industry illustrates the performance of the proposed strategy. 

2. System representation 
Consider a system with nu inputs and ny outputs, and assume for simplicity that the poles 
relating any input uj to any output yi are non-repeated. To account for the implementation of 

Robust Model Predictive Control for Time Delayed Systems  
with Optimizing Targets and Zone Control   

 

341 

an intuitive MPC formulation, an output prediction oriented model (OPOM) originally 
presented in Odloak (2004) is adapted here to the case of time delayed systems. Let us 
designate ,i jθ  the time delay between input uj and output yi, and define ,,

max i ji j
p θ> . Then, 

the state space model considered here is defined as follows: 
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The advantage of using the structure of the transition matrix A is that the state vector is 
divided into components that are associated to the system modes. In the state equation (1), 
the state components xs correspond to the (predicted) output steady state, which are in 
addition the integrating modes of the system (the integrating modes are induced by the 
incremental form of the inputs), and the components xd correspond to the stable modes of 
the system. Naturally, when the system approaches steady state these last components tend 
to zero. For the case of non-repeated pole, F is a diagonal matrix with components of the 
form ir Te  where ri is a pole of the system and T is the sampling period. It is assumed that the 
system has nd stable poles and sB  is the gain matrix of the system. The upper left block of 
matrix A is included to account for the time delay of the system. S1, … , Sp+1 are the step 
response coefficients of the system. Matrix Ψ , which appears in the extended state matrix, 
is defined as follows 
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strategy in the real time optimization of a FCC system. Although this strategy shows to have 
an acceptable performance, stability is not usually proved, even when an infinite horizon is 
used, since the control system keeps switching from one controller to another throughout 
the continuous operation of the process. 
There are several research works that treat the problem of how to obtain a stable MPC with 
fixed output set points. Although stability of the closed loop is commonly achieved by 
means of an infinite prediction horizon, the problem of how to eliminate output steady state 
offset when a supervisory layer produces optimal economic set points, and how to explicitly 
incorporate the model uncertainty into the control problem formulation for this case, remain 
an open issue. For the nominal model case, Rawlings (2000), Pannochia and Rawlings (2003), 
Muske and Badgwell (2002), show how to include disturbance models in order to assure 
that the inputs and states are led to the desired values without offset. Muske and Badgwell 
(2002) and Pannochia and Rawlings (2003) develop rank conditions to assure the 
detectability of the augmented model. 
For the uncertain system, Odloak (2004) develops a robust MPC for the multi-plant 
uncertainty (that is, for a finite set of possible models) that uses a non-increasing cost 
constraint (Badgwell, 1997). In this strategy, the MPC cost function to be minimized is 
computed using a nominal model, but the non-increasing cost constraint is settled for each 
of the models belonging to the set. The stability is then achieved by means of the recursive 
feasibility of the optimization problem, instead of the optimality. On the other hand, there 
exist some recent MPC formulations that are based on the existence of a control Lyapunov 
function (CLF), which is independent of the control cost function. Although the construction 
of the CFL may not be a trivial task, these formulations also allow the explicit 
characterization of the stability region subject to constraints and they do not need an infinite 
output horizon. Mashkar et al. (2006) explore this approach for the control of nominal 
nonlinear systems, and Mashkar (2006) extends the approach for the case of model 
uncertainty and control actuator fault. More recently, González et al. (2009) extended the 
infinite horizon approach to stabilize the closed loop with the MPC controller for the case of 
multi-model uncertainty and optimizing targets. They developed a robust MPC by adapting 
the non-increasing cost constraint strategy to the case of zone control of the outputs and it is 
desirable to guide some of the manipulated inputs to the targets given by a supervisory 
stationary optimization stage, while maintaining the controlled output in their 
corresponding zones, taking into account a finite set of possible models. This problem, that 
seems to interchange an output tracking by an input-tracking formulation, is not trivial, 
since once the output lies outside the corresponding zone (because of a disturbance, or a 
change in the output zones), the priority of the controller is again to control the outputs, 
even if this implies that the input must be settled apart from its targets. 
Since in many process systems, mainly from the chemical and petrochemical industries, the 
process model shows significant time delays, the main contribution of this chapter is to 
extend the approach of González et al. (2009) to the case of input delayed multi-model 
systems by introducing minor modifications in the state space model, in such a way that the 
structure of the control algorithm is preserved. Simulation of a process system of the oil 
refining industry illustrates the performance of the proposed strategy. 

2. System representation 
Consider a system with nu inputs and ny outputs, and assume for simplicity that the poles 
relating any input uj to any output yi are non-repeated. To account for the implementation of 
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an intuitive MPC formulation, an output prediction oriented model (OPOM) originally 
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, ,i j kr , with k=1,…,na, are the poles of the transfer function that relates input uj and output 
yi and na is the order of this transfer function. It is assumed that na is the same for any 
pair (uj, yi). The time delay affects the dimension of the state matrix A through parameter p 
and the components of matrix Ψ . Input matrix B is also affected by the value of the time 
delay as the step response coefficients Sn will be equal to zero for any n smaller than the 
time delay. 

2.1 Model uncertainty 
With the model structure presented in (1), model uncertainty is related to uncertainty in 
matrices F, Bs, Bd and the matrix of time delays θ . The uncertainty in these parameters also 
reflects in the uncertainty of the step response coefficients, which appear in (2). There are 
several practical ways to represent model uncertainty in model predictive control. One 
simple way to represent model uncertainty is to consider the multi-plant system (Badgwell, 
1997), where we have a discrete set Ω of plants, and the real plant is unknown, but it is 
assumed to be one of the components of this set. With this representation of model 
uncertainty, we can define the set of possible plants as { }1 ,... , LΩ Θ Θ=  where each nΘ  
corresponds to a particular plant: ( ), , , , 1, ...,s d

n n
F B B n LΘ θ= = . 

Also, let us assume that the true plant, which lies within the set Ω is designated as θT and 
there is a most likely plant that also lies in Ω and is designated as NΘ . In addition, it is 
assumed that the current estimated state corresponds to the true plant. 
Badgwell (1997) developed a robust linear quadratic regulator for stable systems with the 
multi-plant uncertainty. Later, Odloak (2004) extended the method of Badgwell to the 
output tracking of stable systems considering the same kind of model uncertainty. These 
strategies include a new constraint corresponding to each of the models lying in Ω, that 
prevents an increase in the true plant cost function at successive time steps. More recently, 
González and Odloak (2009) presented an extension of the method by combining the 
approach presented in Odloak (2004) with the idea of including the output set point as a 
new restricted optimization variable to develop a robust MPC for systems where the control 
objective is to maintain the outputs into their corresponding feasible zone, while reaching 
the desired optimal input target given by the supervisory stationary optimization. In this 
work the controller proposed by González et al. (2009) is extended to the case of uncertain 
systems with time delays. 

2.2. System steady state 
As was already said, one of the advantages of the model defined in (1) and (2) is that the 
state component ( )sx k  represents the predicted output at steady state, and furthermore this 
component concentrates the integrating modes of the system. Observe that for the model 
defined in (1) and (2), if ( ) 0u k jΔ + =  for 0j ≥ , then the future states can be computed as 
follows 

( ) ( )jx k j A x k+ =  

Assuming that F has all the eigenvalues inside the unit circle (i.e. the system is open loop 
stable), it is easy to show that 
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+ = + = . Therefore, xs(k) can be interpreted as the prediction of the 

output at steady state. The state component xs(k) is assumed to be known or estimated 
through a stable state observer. A stable observer for the model defined in (1) and (2) is 
given by 

( )ˆ ˆ ˆ( 1| 1) ( 1| ) ( 1) ( 1| )x k k x k k K y k Cx k k+ + = + + + − +  
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For open loop stable systems this is a stable observer as matrix ( )I KC A−  has the 
eigenvalues of F and the remaining eigenvalues are equal to zero. 

3. Control structure 
In this work, we consider the control structure shown in Figure 1. In this structure, the 
economic optimization stage is dedicated to the calculation of the (stationary) desired target, 

,des ku , for the input manipulated variables. This stage may be based on a rigorous stationary 
model and takes into account the process measurements and some economic parameters. In 
addition, this stage works with a smaller frequency than the low-level control stage, which 
allows a separation between the two stages. In the zone control framework the low-level 
control stage, given by the MPC controller, is devoted to guide the manipulated input from 
the current stationary value ssu  to the desired value given by the supervisory economic 
stage, ,des ku , while keeping the outputs within specified zones. In general, the target udes,k 
will vary whenever the plant operation or the economic parameters change. If it is assumed 
that the system is currently at a stationary value given by ( ,ss ssu y ), the desired target udes,k 
should satisfy not only the input constraints 

min , maxdes ku u u≤ ≤  

but also the output zone condition 

 ( )( ) ( )min , maxˆs s
n des k ss ny B u u x k yΘ≤ − + ≤ , n = 1,...,L (3) 
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control stage, given by the MPC controller, is devoted to guide the manipulated input from 
the current stationary value ssu  to the desired value given by the supervisory economic 
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where minu  and maxu  represent the lower and upper bounds of the input, miny  and maxy  
represent the lower and upper limits of the output, ( )s

nB Θ  is the gain corresponding to a 
given model nΘ , and ( )ˆ s

nx k  is the estimated steady-state values of the output 
corresponding to model nΘ . Note that in the control structure depicted in Figure 1, as the 
model structure adopted here has integral action, the estimation of component ( )s

nx k  tends 
to the measured output at steady state for all the models lying in Ω, which means that  

( )ˆ s
n ssx k y=  if the system is at steady state (See González and Odloak 2009 for details). 

Taking into account this fact, equation (3) can be rewritten as 

 ( )min , , max 1, ,s
n des k n ssy B u d y n LΘ≤ + ≤ = , (4) 

where ( ) ( ) ( ), ˆ s s s
n ss n n ss ss n ssd x k B u y B uΘ Θ= − = −  is the output bias based on the comparison 

between the current actual output at steady state and the current predicted output at steady 
state for each model. In other words, ( ) , ,

s
n des k n ssB u dΘ +  can be interpreted as the corrected 

output steady state. Note that, since ( )
0

k

ss
j

u u jΔ
=

= ∑ , for a large k , the term ( )s
n ssB uΘ  

represents the output prediction based only on the past inputs. 
 

 
Fig. 1. Control structure. 

Based on the later concepts, it is possible to define two input feasible sets for the stationary 
desired target udes,k. The first one is the global input feasible set { }min max:o u u u uϑ = ≤ ≤ , 
which represents a box-type set. In addition, it is possible to define the more restricted input 
feasible set uϑ , which is computed taking into account both, the input constraints and the 
output limits: 
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 ( ) ( )
,

min max min max: and , 1, ,
n ssd

s s
u n n ss ssu u u u y B u B u y y n Lϑ Θ Θ

⎧ ⎫
⎪ ⎪= ≤ ≤ ≤ − + ≤ =⎨ ⎬
⎪ ⎪
⎩ ⎭

. (5) 

This set, which depends on the current stationary point given by ( ,ss ssu y ), is the intersection 
of several sets, each one corresponding to a model lying in set Ω. When the output zones are 
narrow, the restricted input feasible set is smaller than the global feasible set, defined solely 
by the input constraints. An intuitive diagram of the input feasible set is shown in Figure 4, 
where three models are used to represent the uncertainty set. In the following sections it will 
be shown that the proposed controller remains stable and feasible even when the desired 
input target ,des ku  is outside the set uϑ , or the set uϑ  itself is null. 

4. Nominal MPC with zone control and input target 
One way to handle the zone control strategy, that is, to maintain the controlled output inside 
its corresponding range, is by means of an appropriate choice of the output error 
penalization in the conventional MPC cost function. In this case the output weight is made 
equal to zero when the system output is inside the range, and the output weight is different 
from zero if the output prediction is violating any of the constraints, so that the output 
variable is strictly controlled only if it is outside the feasible range. In this way, the closed 
loop is guided to a feasible steady state. In Zanin et al. (2002), an algorithm assigns three 
possible values to the output set points used in the MPC controller: the upper bound of the 
output feasible range if the predicted output is larger than the upper bound; the lower 
bound of the output feasible range if the predicted output is smaller than this lower bound; 
and the predicted output itself, if the predicted output is inside the feasible range. However, 
a rigorous analysis of the stability of this strategy is not possible even when using an infinite 
output horizon. González et al. (2006) describe a stable MPC based on the incremental 
model defined in (1) and (2), that takes into account a stationary optimization of the plant 
operation. The controller was designed specifically for a heat exchanger network with a 
number of degrees of freedom larger than zero. In that work, the mismatch between the 
stationary and the dynamic model was treated by means of an appropriate choice of the 
weighting matrices in the control cost. However, stability and offset elimination was assured 
only when the model was perfect. 
Based on the work of González et al (2006), we consider the following nominal cost function: 
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where ( | )u k j kΔ +  is the control move computed at time k to be applied at time k+j, m is the 
control or input horizon, , ,y uQ Q R  are positive weighting matrices of appropriate dimension, 
ysp,k and udes,k are the output and input targets, respectively. The output target ysp,k becomes a 
computed set point when the output has no optimizing target and consequently the output is 
controlled by zone. This cost explicitly incorporates an input deviation penalty that tries to 
accommodate the system at an optimal economic stationary point.  
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Based on the later concepts, it is possible to define two input feasible sets for the stationary 
desired target udes,k. The first one is the global input feasible set { }min max:o u u u uϑ = ≤ ≤ , 
which represents a box-type set. In addition, it is possible to define the more restricted input 
feasible set uϑ , which is computed taking into account both, the input constraints and the 
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equal to zero when the system output is inside the range, and the output weight is different 
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variable is strictly controlled only if it is outside the feasible range. In this way, the closed 
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output feasible range if the predicted output is larger than the upper bound; the lower 
bound of the output feasible range if the predicted output is smaller than this lower bound; 
and the predicted output itself, if the predicted output is inside the feasible range. However, 
a rigorous analysis of the stability of this strategy is not possible even when using an infinite 
output horizon. González et al. (2006) describe a stable MPC based on the incremental 
model defined in (1) and (2), that takes into account a stationary optimization of the plant 
operation. The controller was designed specifically for a heat exchanger network with a 
number of degrees of freedom larger than zero. In that work, the mismatch between the 
stationary and the dynamic model was treated by means of an appropriate choice of the 
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where ( | )u k j kΔ +  is the control move computed at time k to be applied at time k+j, m is the 
control or input horizon, , ,y uQ Q R  are positive weighting matrices of appropriate dimension, 
ysp,k and udes,k are the output and input targets, respectively. The output target ysp,k becomes a 
computed set point when the output has no optimizing target and consequently the output is 
controlled by zone. This cost explicitly incorporates an input deviation penalty that tries to 
accommodate the system at an optimal economic stationary point.  
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In the case of systems without time delay the term corresponding to the infinite output error 
in the cost Vk is divided in two parts: the first goes from the current time k to the end of the 
control horizon, k+m-1; while the second one goes from time k+m to infinity. This is so 
because beyond the control horizon no control actions are implemented and so, considering 
only the state at time k+m, the infinite series can be reduced to a single terminal cost. In the 
case of time delayed systems, however, the horizon beyond which the entire output 
evolution can be predicted by a terminal cost is given by k+p. As a result, the cost defined in 
(6) can be developed as follows 
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The first term on the right hand side of (7) can be developed as follows 
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Consequently, considering (8), the term ,1kV  can be written as follows 
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The term corresponding to the infinite horizon error on the system output in (7) can be 
written as follows 
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In order to force Vk,2 to be bounded, we include the following constraint in the control 
problem 
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With the above equation and (11), Eq. (10) becomes 
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Finally, the infinite term corresponding to the error on the input along the infinite horizon in 
(7) can be written as follows 
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Consequently, considering (8), the term ,1kV  can be written as follows 
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The term corresponding to the infinite horizon error on the system output in (7) can be 
written as follows 
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kx k m k F x k B uΔ+ = + , 1 2d m d m d dB F B F B B− −⎡ ⎤= ⎣ ⎦  
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In order to force Vk,2 to be bounded, we include the following constraint in the control 
problem 
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With the above equation and (11), Eq. (10) becomes 
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Finally, the infinite term corresponding to the error on the input along the infinite horizon in 
(7) can be written as follows 
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Then, it is clear that in order to force (12) to be bounded one needs the inclusion of the 
following constraint 

,( | ) 0des ku k m k u+ − =  
or 

 ,( 1) 0T
u k des ku k I u uΔ− + − =  (13) 
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u nu nu
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⎣ ⎦

 

Then, assuming that (13) is satisfied, (12) can be written as follows 
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Now, taking into account the proposed terminal constraints, the control cost defined in (7) 
can be written as follows 
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To formulate the IHMPC with zone control and input target for the time delayed nominal 
system, it is convenient to consider the output set point as an additional decision variable of 
the control problem and the controller results from the solution to the following 
optimization problem: 

,,
min 2

k sp k
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where 
T dT d T

y d uH S Q S B Q B M Q M R= + + +  

( )( ) ( ) ( ) ( 1) TT T T d T m T d T
f x y d des u uc x k N Q S x k F Q B u k u I Q M= + + − −  

Constraints (14) and (15) are terminal constraints, and they mean that both, the input and 
the integrating component of the output errors will be null at the end of the control horizon 
m. Constraint (16), on the other hand, forces the new decision variable ysp,k to be inside the 
zone given by ymin and ymax. So, as ysp,k  is a set point variable, constraint (16) means that the 
effective output set point of the proposed controller is now the complete feasible zone. 
Notice that if the output bounds are settled so that the upper bound equals the lower bound, 
then the problem becomes the traditional set point tracking problem. 

4.1 Enlarging the feasible region 
The set of constraints added to the optimization problem in the last section may produce a 
severe reduction in the feasible region of the resulting controller. Specifically, since the input 
increments are usually bounded, the terminal constraints frequently result in infeasible 
problems, which means that it is not possible for the controller to achieve the constraints in 
m time steps, given that m is frequently small to reduce the computational cost. A possible 
solution to this problem is to incorporate slack variables in the terminal constraints. So, 
assuming that the slack variables are unconstrained, it is possible to guarantee that the 
control problem will be feasible. Besides, these slack variables must be penalized in the cost 
function with large weights to assure the constraint violation will be minimized by the 
control actions. Thus, the cost function can be written as follows 
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 (17) 

where ,y uS S  are positive definite matrices of appropriate dimension and 
, ,,ny nu

y k u kδ δ∈ℜ ∈ℜ  are the slack variables (new decision variables) that eliminate any 
infeasibility of the control problem. Following the same steps as in the controller where 
slacks are not considered, it can be shown that the cost defined in (17) will be bounded if the 
following constraints are included in the control problem: 

, ,( ) 0s s
k sp k y kx k B u yΔ δ+ − − =  
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Then, it is clear that in order to force (12) to be bounded one needs the inclusion of the 
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Now, taking into account the proposed terminal constraints, the control cost defined in (7) 
can be written as follows 
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To formulate the IHMPC with zone control and input target for the time delayed nominal 
system, it is convenient to consider the output set point as an additional decision variable of 
the control problem and the controller results from the solution to the following 
optimization problem: 
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where 
T dT d T
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Constraints (14) and (15) are terminal constraints, and they mean that both, the input and 
the integrating component of the output errors will be null at the end of the control horizon 
m. Constraint (16), on the other hand, forces the new decision variable ysp,k to be inside the 
zone given by ymin and ymax. So, as ysp,k  is a set point variable, constraint (16) means that the 
effective output set point of the proposed controller is now the complete feasible zone. 
Notice that if the output bounds are settled so that the upper bound equals the lower bound, 
then the problem becomes the traditional set point tracking problem. 

4.1 Enlarging the feasible region 
The set of constraints added to the optimization problem in the last section may produce a 
severe reduction in the feasible region of the resulting controller. Specifically, since the input 
increments are usually bounded, the terminal constraints frequently result in infeasible 
problems, which means that it is not possible for the controller to achieve the constraints in 
m time steps, given that m is frequently small to reduce the computational cost. A possible 
solution to this problem is to incorporate slack variables in the terminal constraints. So, 
assuming that the slack variables are unconstrained, it is possible to guarantee that the 
control problem will be feasible. Besides, these slack variables must be penalized in the cost 
function with large weights to assure the constraint violation will be minimized by the 
control actions. Thus, the cost function can be written as follows 
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where ,y uS S  are positive definite matrices of appropriate dimension and 
, ,,ny nu

y k u kδ δ∈ℜ ∈ℜ  are the slack variables (new decision variables) that eliminate any 
infeasibility of the control problem. Following the same steps as in the controller where 
slacks are not considered, it can be shown that the cost defined in (17) will be bounded if the 
following constraints are included in the control problem: 

, ,( ) 0s s
k sp k y kx k B u yΔ δ+ − − =  
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 , ,( 1) 0T
u k des k u ku k I u uΔ δ− + − − =  (18) 

In this case, the cost defined in (17) can be reduced to the following quadratic function 
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where 

11 ( )T d T d T
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y yH H S Q I= = − ,  13 31
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y yH H S Q I= = − ,  14 41
T T

u uH H M Q I= = −  
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T
u u uH I Q I= ,  23 32

T T
y y yH H I Q I= = ,  33

T
y y y yH I Q I S= + ,  44

T
u u u uH I Q I S= +  

24 42 34 43 0T TH H H H= = = =  

( ),1 ( ) ( ) ( ) ( 1) TT T d T m T d T
f x y d m des u uc x k N Q S x k F Q B u k u I Q M= + + − −  

,2 ( )T T
f x y yc x k N Q I= − ,   ,3 ( )T T

f x y yc x k N Q I= −  

( ),4 ,( 1) T T
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Then, the nominally stable MPC controller with guaranteed feasibility for the case of output 
zone control of time delayed systems with input targets results from the solution to the 
following optimization problem: 
Problem P1 
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min max
0

( 1) ( | ) ; 0,1, , 1
j

i
u u k u k i k u j mΔ

=
≤ − + + ≤ = −∑  

 min , maxsp ky y y≤ ≤  (19) 
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It must be noted that the use of slack variables is not only convenient to avoid dynamic 
feasibility problems, but also to prevent stationary feasibility problems. Stationary feasibility 
problems are usually produced by the supervisory optimization level shown in the control 
structure defined in Figure 1. In such a case, for instance, the slack variable ,y kδ  allows the 
predicted output to be different from the set point variable ,sp ky  at steady state (notice that 
only ,sp ky  is constrained to be inside the desired zone). So, the slacked problem formulation 
allows the system output to remain outside the desired zone, if no stationary feasible 
solution can be found. 
It can be shown that the controller produced through the solution of problem P1 results in a 
stable closed loop system for the nominal system. However, the aim here is to extend this 
formulation to the case of multi model uncertainty. 

5. Robust MPC with zone control and input target 
In the model formulation presented in (1) and (2) for the time delayed system, uncertainty 
concentrates not only on matrices F, Bs and Bd as in the system without time delay, but also 
on matrix ny nuθ ×∈ℜ  that contains all the time delays between the system inputs and 
outputs. Observe that the step response coefficients S1,…,Sp+1, which appears in the input 
matrix and ( 1)pΨ + , which appears in the state matrix of the model defined in (1) and (2) 
are also uncertain, but can be computed from F, Bs, Bd and θ . Now, considering the multi-
model uncertainty, assume that each model is designated by a set of parameters defined as 

{ }, , ,s d
n n n n nB B FΘ θ= , 1,...,n L= . Also, assume that in this case 

, ,
max ( , )ni j n

p i j mθ> +  (this 
condition guarantees that the state vector of all models have the same dimension). Then, for 
each model nΘ , we can define a cost function as follows 
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min max
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It must be noted that the use of slack variables is not only convenient to avoid dynamic 
feasibility problems, but also to prevent stationary feasibility problems. Stationary feasibility 
problems are usually produced by the supervisory optimization level shown in the control 
structure defined in Figure 1. In such a case, for instance, the slack variable ,y kδ  allows the 
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Following the same steps as in case of the nominal system, we can conclude that the cost 
defined in (20) will be bounded if the control actions, set points and slack variables are such 
that (18) is satisfied and 
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Then, the robust MPC for the system with time delay and multi-model uncertainty is 
obtained from the solution to the following problem: 
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where, assuming that ( )* * *
1 , 1 , 1 , 1, ( ), , ( )k sp k n u k y k nu yΔ Θ δ δ Θ− − − −  is the optimal solution to Problem 

P2 at time step k-1, we define 
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and define , ( )y k nδ Θ   such that 
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In (20), NΘ  corresponds to the nominal or most probable model of the system. 
Remark 1: The cost to be minimized in problem P2 corresponds to the nominal model. 
However, constraints (23) and (24) are imposed considering the estimated state of each 
model nΘ Ω∈ . Constraint (25) is a non-increasing cost constraint that assures the 
convergence of the true state cost to zero. 
Remark 2: The introduction of L set-point variables allows the simultaneous zeroing of all 
the output slack variables. In that case, whenever possible, the set-point variable ( ),sp k ny Θ  
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Following the same steps as in case of the nominal system, we can conclude that the cost 
defined in (20) will be bounded if the control actions, set points and slack variables are such 
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Then, the robust MPC for the system with time delay and multi-model uncertainty is 
obtained from the solution to the following problem: 
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where, assuming that ( )* * *
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In (20), NΘ  corresponds to the nominal or most probable model of the system. 
Remark 1: The cost to be minimized in problem P2 corresponds to the nominal model. 
However, constraints (23) and (24) are imposed considering the estimated state of each 
model nΘ Ω∈ . Constraint (25) is a non-increasing cost constraint that assures the 
convergence of the true state cost to zero. 
Remark 2: The introduction of L set-point variables allows the simultaneous zeroing of all 
the output slack variables. In that case, whenever possible, the set-point variable ( ),sp k ny Θ  
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will be equal to the output prediction at steady state (represented by ( )s
nx k m+ ),  and so the 

corresponding output penalization will be removed from the cost. As a result, the controller 
gains some flexibility that allows achieving the other control objectives. 
Remark 3: Note that by hypothesis, one of the observers is based on the actual plant model, 
and if the initial and the final steady states are known, then the estimated state ( )ˆTx k  will 
be equal to the actual plant state at each time k. 
Remark 4: Conditions (26) and (27) are used to update the pseudo variables of constraint 
(25), by taking into account the current state estimation ( )ˆ s

nx k  for each of the models lying 
in Ω , and the last value of the input target. 
One important feature that should have a constrained controller is the recursive feasibility 
(i.e. if the optimization problem is feasible at a given time step, it should remain feasible at 
any subsequent time step). The following lemma shows how the proposed controller 
achieves this property.  
Lemma. If problem P2 is feasible at time step k, it will remain feasible at any subsequent 
time step k+j, j=1,2,… 
Proof: 
Assume that the output zones remain fixed, and also assume that 

 ( ) ( )* * * .| 1|
TT T m nu

ku u k k u k m kΔ Δ Δ⎡ ⎤= + − ∈ℜ⎣ ⎦ , (28) 

 ( ) ( )* *
, 1 ,, ,sp k sp k Ly yΘ Θ , ( ) ( )* *

, 1 ,, ,y k y k Lδ Θ δ Θ  and *
,u kδ  (29) 

correspond to the optimal solution to problem P2 at time k. 
Consider now the pseudo variables ( )( ( )1 , 1 1 , 1, , , ,k sp k sp k Lu y yΔ Θ Θ+ + +  ( ), 1 1 , ...,y kδ Θ+  

( ) ), 1 , 1,y k L u kδ Θ δ+ +  where 
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Also, the slacks , 1u kδ +  and ( ), 1y k nδ Θ+  are such that 

 1 , , 1( ) 0T
u k des k u ku k I u uΔ δ+ ++ − − =  (32) 

and 

 ( ) ( ) ( )1 , 1 , 1ˆ ( 1) 0, 1,...,s s
n n k sp k n y k nx k B u y n LΘ Δ Θ δ Θ+ + ++ + − − = =  (33) 

We can show that the solution defined through (30) to (33) represent a feasible solution to 
problem P2 at time k+1, which proves the recursive feasibility. This means that if problem 
P2 is feasible at time step k, then, it will remain feasible at all the successive time steps k+1, 
k+2, …  
Now, the convergence of the closed loop system with the robust controller resulting from 
the later optimization problem can be stated as follows: 
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Theorem. Suppose that the undisturbed system starts at a known steady state and one of the 
state observers is based on the actual model of the plant. Consider also that the input target 
is moved to a new value, or the boundaries of the output zones are modified. Then, if 
condition (3) is satisfied for each model nΘ Ω∈ , the cost function of the undisturbed true 
system in closed loop with the controller defined through the solution to problem P2 will 
converge to zero. 
Proof: 
Suppose that, at time k the uncertain system starts from a steady state corresponding to 
output ( ) ssy k y=  and input ( )1 ssu k u− = . We have already shown that, with the model 
structure considered in (1) and (2), the model states corresponding to this initial steady state 
can be represented as follows: 
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At time step k+1, the cost corresponding to the pseudo variables defined in (30) to (33) for 
the true model is given by 
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Observe that, since the same input sequence is used and the current estimated state 
corresponding to the actual model of the plant is equal to the actual state, then the predicted 
state and output trajectory will be the same as the optimal predicted trajectories at time step 
k. That is, for any 1j ≥ , we have 

( ) ( )| 1 |T Tx k j k x k j k+ + = +  
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will be equal to the output prediction at steady state (represented by ( )s
nx k m+ ),  and so the 

corresponding output penalization will be removed from the cost. As a result, the controller 
gains some flexibility that allows achieving the other control objectives. 
Remark 3: Note that by hypothesis, one of the observers is based on the actual plant model, 
and if the initial and the final steady states are known, then the estimated state ( )ˆTx k  will 
be equal to the actual plant state at each time k. 
Remark 4: Conditions (26) and (27) are used to update the pseudo variables of constraint 
(25), by taking into account the current state estimation ( )ˆ s
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in Ω , and the last value of the input target. 
One important feature that should have a constrained controller is the recursive feasibility 
(i.e. if the optimization problem is feasible at a given time step, it should remain feasible at 
any subsequent time step). The following lemma shows how the proposed controller 
achieves this property.  
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Now, the convergence of the closed loop system with the robust controller resulting from 
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Theorem. Suppose that the undisturbed system starts at a known steady state and one of the 
state observers is based on the actual model of the plant. Consider also that the input target 
is moved to a new value, or the boundaries of the output zones are modified. Then, if 
condition (3) is satisfied for each model nΘ Ω∈ , the cost function of the undisturbed true 
system in closed loop with the controller defined through the solution to problem P2 will 
converge to zero. 
Proof: 
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output ( ) ssy k y=  and input ( )1 ssu k u− = . We have already shown that, with the model 
structure considered in (1) and (2), the model states corresponding to this initial steady state 
can be represented as follows: 

( )ˆ 0 , 1, ,n ss ss ss
p

x k y y y n L
⎡ ⎤
⎢ ⎥= =
⎢ ⎥
⎢ ⎥⎣ ⎦

 

and consequently, ( ) ( )ˆ ˆ, 0, 1, ,s d
n ss nx k y x k n L= = = . 

At time k, the cost corresponding to the solution defined in (28) and (29) for the true model 
is given by 

( ) ( ) ( )( ){ ( ) ( )( )

( ) ( )}
( ) ( )

* * * * * * *
, , , ,
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* * * *
, , , ,
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* * * * * *

, , , ,
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( | ) ( | )

( | ) ( | )
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k T T sp k T y k T y T sp k T y k T
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Θ Θ δ Θ θ δ θ

δ δ

Δ Δ δ Θ δ Θ δ δ

∞

=

−

=

= + − − + − −

+ + − − + − −

+ + + + +

∑

∑

 (34) 

At time step k+1, the cost corresponding to the pseudo variables defined in (30) to (33) for 
the true model is given by 

( )

( ) ( )( ){ ( ) ( )( )

( ) ( )}
( ) ( )
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* * * * * *
, , , ,
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* * * *
, , , ,

1
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( 1| ) ( 1| )

    ( 1 / ) ( 1 / )

 ( 1| ) ( 1| )

k T

T
T sp k T y k T y T sp k T y k T

j

T
des k u k u des k u k

m
T T T

y k T y y k T u k u u k
j

V
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Θ
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+
∞

=

−

=

=
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+ + + − − + + − −
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∑

∑

 (35) 

Observe that, since the same input sequence is used and the current estimated state 
corresponding to the actual model of the plant is equal to the actual state, then the predicted 
state and output trajectory will be the same as the optimal predicted trajectories at time step 
k. That is, for any 1j ≥ , we have 

( ) ( )| 1 |T Tx k j k x k j k+ + = +  
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and 

( ) ( )| 1 |T Ty k j k y k j k+ + = +  

In addition, for the true model we have ( ) ( )*
, 1 ,y k T y k Tδ Θ δ Θ+ =  and *

, 1 ,u k u kδ δ+ = . However, 
the first of these equalities is not true for the other models, as for these models we have 

( ) ( )ˆ 1| 1 1| , forn n n Tx k k x k k Θ Θ+ + ≠ + ≠ . 
Now, subtracting (35) from (34) we have 

( ) ( ) ( ) ( ) ( )( ) ( ) ( ) ( )( )
( ) ( ) ( ) ( )

* * * * * * *
1 , , , ,

* * * * * *
, , , ,

| |

( | ) ( | )

T
k T k T T sp k T y k T y T sp k T y k T

T T
des k u k u des k u k

V V y k k y Q y k k y

u k k u Q u k k u u k R u k

Θ Θ Θ δ Θ Θ δ Θ

δ δ Δ Δ

+− = − − − −

+ − − − − +
 

and, from constraint (25), the following relation is obtained 

( ) ( )*
1 1k T k TV VΘ Θ+ +≤ , 

which finally implies 

( ) ( ) ( ) ( ) ( )( ) ( ) ( ) ( )( )
( ) ( ) ( ) ( )

* * * * * * * *
1 , , , ,

* * * * * *
, , , ,

| |

( | ) ( | )

T
k T k T T sp k T y k T y T sp k T y k T

T T
des k u k u des k u k

V V y k k y Q y k k y

u k k u Q u k k u u k R u k

Θ Θ Θ δ Θ Θ δ Θ

δ δ Δ Δ

+− ≥ − − − −

+ − − − − +

 (36) 

Since the right hand side of (36) is positive definite, the successive values of the cost will be 
strictly decreasing and for a large enough time k , we will have ( ) ( )( )* *

1 0T Tk kV VΘ Θ+− = , 
which proves the convergence of the cost. 
The convergence of ( )*

k TV Θ  means that, at steady state, the following relations should hold 

( ) ( ) ( )* * *
, ,|T T Tsp k y ky k k y Θ δ Θ− =  

* *
, ,( | ) des k u ku k k u δ− =  

( )* 0u kΔ =  

At steady state, the state is such that  

( )
( )
( )

( ) ( )

( )ˆ ( )
ˆ ( )

0ˆ

n
s
n

d
n

y k y k

y k px k y k
x k y k
x k

⎡ ⎤ ⎡ ⎤⎢ ⎥ ⎢ ⎥⎢ ⎥ ⎢ ⎥⎢ ⎥ ⎢ ⎥+= =⎢ ⎥ ⎢ ⎥⎢ ⎥ ⎢ ⎥⎢ ⎥ ⎢ ⎥⎢ ⎥ ⎢ ⎥⎣ ⎦⎣ ⎦

 

where ( )y k  is the actual plant output. Note that the state component ( )ˆ d
nx k  is null as it 

corresponds to the stable modes of the system and the input increment is null at steady 
state. Then, constraint (23) can be written as follows: 
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 ( ) ( ) ( ) ( ) ( )* * * *
, , ,| , 1,...,n n n ny k sp k sp ky k k y y k y n Lδ Θ Θ Θ= − = − = . (37) 

This means that, if the output of the true system is stabilized inside the output zone, then 
the set point corresponding to each particular model will be placed by the optimizer 
exactly at the output predicted values. As a result, all the output slacks will be null. On 
the other hand, if the output of the true system is stabilized at a value outside the output 
zone, then the set-point variable corresponding to any particular model will be placed by 
the optimizer at the boundary of the zone. In this case, the output slack variables will be 
different from zero, but they will all have the same numerical value as can be seen from 
(37). 
Now, to strictly prove the convergence of the input and output to their corresponding 
targets, we must show that slacks ,u kδ  and ( ), Ty kδ Θ  will converge to zero. It is necessary at 
this point to notice that in the case of zone control the degrees of freedom of the system are 
no longer the same as in the fixed set-point problem. So, the desired input values may be 
exactly achieved by the true system, even in the presence of some bounded disturbances. Let 
us now assume that the system is stabilized at a point where, ( ) ( )* *

1, , 0Ly k y kδ Θ δ Θ= = ≠ , 
and , 0u kδ ≠ . In addition, assume that the desired input value is constant at ,des ku . Then, at 
time k  large enough, the cost corresponding to model nΘ  will be reduced to 

 ( ) ( )*
1, , , ,( ) , 1,...,T T

n n y n uk y k y k u k u kV S S n LΘ δ Θ δ Θ δ δ= + = , (38) 

and constraints (21) and (22) become, 

 ( ) ( ), ,ˆ ( ) , 1, ,s
n n nsp k y kx k y n LΘ δ Θ− = =  (39) 

and , ,( 1) des k u ku k u δ− − = . 

Since ( ) ( )ˆ , 1, ,s
nx k y k n L= = , Eq. (39) can be written as 

( ) ( ), ,( ) , 1, ,n nsp k y ky k y n LΘ δ Θ− = = . 

Now, we want to show that if ( )1u k −  and ,des ku  are not on the boundary of the input 
operating range, then it is possible to guide the system toward a point in which the slack 
variables ( ),y k nδ θ  and ,u kδ  are null, and this point have a smaller cost than the steady state 
defined above. Assume also for simplicity that m=1. Let us consider a candidate solution to 
problem P2 defined by: 

 ( ) ( ), ,/ 1des k u ku k k u u kΔ δ= − − = −  (40) 

and 

 ( ) ( ) ( ), ,
s

n nsp k u ky y k Bθ θ δ= −   n=1,…,L (41) 

Now, consider the cost function defined in (21), written for time step k  and the control 
move defined in (40) and the output set point defined in (41): 
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and 
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Since the right hand side of (36) is positive definite, the successive values of the cost will be 
strictly decreasing and for a large enough time k , we will have ( ) ( )( )* *

1 0T Tk kV VΘ Θ+− = , 
which proves the convergence of the cost. 
The convergence of ( )*

k TV Θ  means that, at steady state, the following relations should hold 
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where ( )y k  is the actual plant output. Note that the state component ( )ˆ d
nx k  is null as it 

corresponds to the stable modes of the system and the input increment is null at steady 
state. Then, constraint (23) can be written as follows: 

Robust Model Predictive Control for Time Delayed Systems  
with Optimizing Targets and Zone Control   

 

357 

 ( ) ( ) ( ) ( ) ( )* * * *
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This means that, if the output of the true system is stabilized inside the output zone, then 
the set point corresponding to each particular model will be placed by the optimizer 
exactly at the output predicted values. As a result, all the output slacks will be null. On 
the other hand, if the output of the true system is stabilized at a value outside the output 
zone, then the set-point variable corresponding to any particular model will be placed by 
the optimizer at the boundary of the zone. In this case, the output slack variables will be 
different from zero, but they will all have the same numerical value as can be seen from 
(37). 
Now, to strictly prove the convergence of the input and output to their corresponding 
targets, we must show that slacks ,u kδ  and ( ), Ty kδ Θ  will converge to zero. It is necessary at 
this point to notice that in the case of zone control the degrees of freedom of the system are 
no longer the same as in the fixed set-point problem. So, the desired input values may be 
exactly achieved by the true system, even in the presence of some bounded disturbances. Let 
us now assume that the system is stabilized at a point where, ( ) ( )* *

1, , 0Ly k y kδ Θ δ Θ= = ≠ , 
and , 0u kδ ≠ . In addition, assume that the desired input value is constant at ,des ku . Then, at 
time k  large enough, the cost corresponding to model nΘ  will be reduced to 

 ( ) ( )*
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n n y n uk y k y k u k u kV S S n LΘ δ Θ δ Θ δ δ= + = , (38) 

and constraints (21) and (22) become, 

 ( ) ( ), ,ˆ ( ) , 1, ,s
n n nsp k y kx k y n LΘ δ Θ− = =  (39) 

and , ,( 1) des k u ku k u δ− − = . 

Since ( ) ( )ˆ , 1, ,s
nx k y k n L= = , Eq. (39) can be written as 

( ) ( ), ,( ) , 1, ,n nsp k y ky k y n LΘ δ Θ− = = . 

Now, we want to show that if ( )1u k −  and ,des ku  are not on the boundary of the input 
operating range, then it is possible to guide the system toward a point in which the slack 
variables ( ),y k nδ θ  and ,u kδ  are null, and this point have a smaller cost than the steady state 
defined above. Assume also for simplicity that m=1. Let us consider a candidate solution to 
problem P2 defined by: 

 ( ) ( ), ,/ 1des k u ku k k u u kΔ δ= − − = −  (40) 

and 

 ( ) ( ) ( ), ,
s

n nsp k u ky y k Bθ θ δ= −   n=1,…,L (41) 

Now, consider the cost function defined in (21), written for time step k  and the control 
move defined in (40) and the output set point defined in (41): 
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( )
( )

( ) ( )
( )

1 , , ,

1 , , ,

, ,

, ,,

( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( ) ( ) ( )

( 1) ( 1)

T
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Θ Θ δ Θ δ Θ

Θ δ Θ δ Θ

Θ Θ δ Θ Θ Θ δ

δ δ

= − − −

− − −
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n y n uu k u k y k y k u k u k

M I u I
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− −

+ − − + +

 

Now, since the solution defined by ( ) ( )( ), ,/ , ,ny k u ku k kΔ δ Θ δ  satisfies constraint (23) and 
(24), the above cost can be reduced to 

( ) ( )min, ,
T u

n nk u k u kV SΘ δ Θ δ=  

where 

( ) ( ) ( ) ( ) ( ) ( ) ( )min 1 1
T Tu s s d d

n y n n y y n n n d nS I B S Q I B S B Q B RΘ Θ Θ Θ Θ Θ Θ⎡ ⎤ ⎡ ⎤= − − + +⎣ ⎦ ⎣ ⎦
 

Then, if 

 ( )min , 1,...,u u nS S n LΘ> = , (42) 

the cost corresponding to the decision variables defined in (40) and (41) will be smaller than 
the cost obtained in (38). This means that it is not possible for the system to remain at a point 
in which the slack variables ( ), , 1, ,y k n n Lδ Θ =  and ,u kδ  are different from zero. 
Thus, as long as the system remains controllable, condition (42) is sufficient to guarantee the 
convergence of the system inputs to their target while the system output will remain within 
the output zones. 
Observe that only matrix Su is involved in condition (42) because condition (3) assures that 
the corrected output prediction, i.e. the one corresponding to the desired input values, lies 
in the feasible zone. In this case, for all positive matrices Sy, the total cost can be reduced by 
making the set point variable equal to the steady-state output prediction, which is a feasible 
solution and produces no additional cost. However, matrix Sy is suggested to be large 
enough to avoid any numerical problem in the optimization solution. 
Remark 5: We can prove the stability of the proposed zone controller under the same 
assumptions considered in the proof of the convergence. Output tracking stability means 
that for every 0γ > , there exists a ( )ρ γ  such that if ( )0Tx ρ< , then ( )Tx k γ<  for all 

0k ≥ ; where the extended state of the true system ( )Tx k  may be defined as follows 
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⎢ ⎥
⎢ ⎥
⎢ ⎥+ −⎢ ⎥= ⎢ ⎥−⎢ ⎥
⎢ ⎥
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−⎢ ⎥⎣ ⎦
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To simplify the proof, we still assume that m=1, and suppose that the optimal solution 
obtained at step k-1 is given by ( )* *

1 1 / 1ku u k kΔ Δ− = − − , ( ) ( )* *
, 1 1 , 1, ,sp k sp k Ly yΘ Θ− − , 

( ) ( )* *
, 1 1 , 1, ,y k y k Lδ Θ δ Θ− −  and *

, 1u kδ − . 
A feasible solution to problem P2 at time k is given by: 

0kuΔ = , ( ) ( )*
, , 1sp k n sp k ny yΘ Θ−= , and ,u kδ  and ( ),y k nδ Θ  are such that  

 
0

, ,( 1) 0T
u k des k u ku k I u uΔ δ

=

− + − − =  (43) 

 ( ) ( ) ( )
0

, ,ˆ ( ) 0, 1,...,s s
n n k sp k n y k nx k B u y n LΘ Δ Θ δ Θ

=

+ − − = = . (44) 

Since ( | ) 0u k kΔ = , we have ( | ) ( 1)u k k u k= −  and from (43) we can write 

 , ,( | )u k des ku k k uδ = −  (45) 

For the true system, (44) can be written as follows 

( ) ( )*
, 1 ,( ) 0s

T sp k T y k Tx k y Θ δ Θ−− − =  

and consequently, we have the following relations 

 ( ) ( )*
, , 1( )s

y k T T sp k Tx k yδ Θ Θ−= −  (46) 

and 

 ( ) ( )*
, 1 ,( )s

T sp k T y k Tx k y Θ δ Θ−= +  (47) 

For the feasible solution defined above, the cost defined in (21) can be written for the actual 
model TΘ  as follows 

( ) ( )
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( ) ( )
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* *
, 1 , , 1 ,

, , , ,

*
, 1

( ) ( ) ( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( )
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T T xd T T T
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V N x k I y I Q N x k I y I

F x k Q F x k

I u k I u I Q I u k I u I

x k y S

Θ Θ δ Θ Θ δ Θ

Θ Θ Θ

δ δ
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− −

−

= − − − −

+

+ − − − − − −

+ − ( ) ( ) ( )*
, 1 , ,( ) ( ) ( | ) ( | )Ts

T sp k T des k u des kx k y u k k u S u k k uΘ−− + − −

 (48) 

Now, using (45), (46) and (47) the cost defined in (48) can be reduced to the following 
expression 

( ) ( ){ }1 1 2 2 3 3 4 4( ) ( ) ( ) ( ) ( )
TT T T m m T T

k T T y T d T T y uV x k C Q C C F Q F C C S C C S CΘ Θ Θ Θ= + + +  

where 

1 ( 1) ( 1) ( 1) ( 1)0 0 0p ny p ny ny p ny nd p ny nuC I + + × + × + ×⎡ ⎤= ⎣ ⎦  
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in the feasible zone. In this case, for all positive matrices Sy, the total cost can be reduced by 
making the set point variable equal to the steady-state output prediction, which is a feasible 
solution and produces no additional cost. However, matrix Sy is suggested to be large 
enough to avoid any numerical problem in the optimization solution. 
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To simplify the proof, we still assume that m=1, and suppose that the optimal solution 
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Now, using (45), (46) and (47) the cost defined in (48) can be reduced to the following 
expression 

( ) ( ){ }1 1 2 2 3 3 4 4( ) ( ) ( ) ( ) ( )
TT T T m m T T

k T T y T d T T y uV x k C Q C C F Q F C C S C C S CΘ Θ Θ Θ= + + +  

where 

1 ( 1) ( 1) ( 1) ( 1)0 0 0p ny p ny ny p ny nd p ny nuC I + + × + × + ×⎡ ⎤= ⎣ ⎦  
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2 ( 1)0 0 0nd p ny nd ny nd nd nuC I× + × ×⎡ ⎤= ⎣ ⎦  

3 ( 1)0 0 0ny p ny ny ny nd ny nuC I× + × ×⎡ ⎤= ⎣ ⎦  

4 ( 1)0 0 0nu p ny nu ny nu nd nuC I× + × ×⎡ ⎤= ⎣ ⎦  

Thus, the cost defined in (48) can be written as follows: 

 ( ) ( ) ( ) ( )2, 1
T

k T T T TV x k H x kΘ Θ= , (49) 

where ( ) ( )1 1 1 2 2 3 3 4 4( ) ( ) ( )
TT T m m T T

y T xd T T y uH C Q C C F Q F C C S C C S CΘ Θ Θ= + + + . 

Because of constraint (25), the optimal true cost (that is, the cost based on the true model, 
considering the optimal solution that minimizes the nominal cost at time k) will satisfy 

 ( ) ( )*
k T k TV VΘ Θ≤ . (50) 

and 

 ( ) ( )* *
k n T k TV VΘ Θ+ ≤  for any 1n > . (51) 

By a similar procedure as above and based on the optimal solution at time k+n, we can find 
a feasible solution to Problem P2 at time  k + n + 1, for any n>1, such that 

 ( ) ( )*
1k n T k n TV VΘ Θ+ + +≤  (52) 

and from the definition of 1k nV + +  we have 

( ) ( ) ( ) ( )2, 1 11 1T
k n T T T TV x k n H x k nΘ Θ+ + = + + + +  

Therefore, combining inequalities (49) to (52) results 

( ) ( ) ( ) ( ) ( ) ( )1 11 1 , 1T T
T T T T T Tx k n H x k n x k H x k nΘ Θ+ + + + ≤ ∀ > . 

As ( )1 TH Θ  is positive definite, it follows that 

( ) ( ) ( )1 , 1T T Tx k n x k nα Θ+ + ≤ ∀ >  

where 

( ) ( )( )
( )( )

( )( )
( )( )

1 21 2
max 1max 1

min 1 min 1

max
jT

T jT j

HH
H H

λ Θλ Θ
α Θ

λ Θ λ Θ

⎡ ⎤⎡ ⎤ ⎢ ⎥= ≤⎢ ⎥ ⎢ ⎥⎢ ⎥⎣ ⎦ ⎢ ⎥⎣ ⎦

 

If we restrict the state at time k to the set defined by ( )Tx k ρ< , then, the state at tine k+n+1 
will be inside the set defined by 
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( ) ( )1 , 1T Tx k n nα Θ ρ+ + < ∀ > . 

Which proves stability of the closed loop system, as Tx  will remain inside the ball 
( )T Tx α Θ ρ< , where ( )Tα Θ  is limited, as long as the closed loop starts from a state inside 

the ball Tx ρ< . Therefore, as we have already proved the convergence of the closed loop, 
we can now assure that under the assumption of state controllability at the final equilibrium 
point, the proposed MPC is asymptotically stable. 
Remark 6: It is important to observe that even if condition (3) cannot be satisfied by the 
input target, or the input target is such that one or more outputs need to be kept outside 
their zones, the proposed controller will still be stable. This is a consequence of the 
decreasing property of the cost function (inequality (36)) and the inclusion of appropriate 
slack variables into the optimization problem. When no feasible solution exists, the system 
will evolve to an operating point in which the slack variables, which at steady state are the 
same for all the models, are as small as possible, but different from zero. This is an 
important aspect of the controller, as in practical applications a disturbance may move the 
system to a point from which it is not possible to reach a steady state that satisfies (3). When 
this happens, the controller will do the best to compensate the disturbance, while 
maintaining the system under control. 
Remark 7: We may consider the case when the desired input target ,des ku  is outside the 
feasible set uϑ  and the case where the set uϑ  itself is null. If uϑ  is not null, the input target 
udes,k could be located within the global input feasible set oϑ , but outside the restricted input 
feasible set uϑ . In this case, the slack variables at steady state, ,u ssδ  and ( ),y ss nδ Θ , cannot be 
simultaneously zeroed, and the relative magnitude of matrices Sy and Su will define the 
equilibrium point. If the priority is to maintain the output inside the corresponding range, 
the choice must be y uS S>> , while preserving min

u uS S> . Then, the controller will guide the 
system to a point in which ( ), 0, 1, ,y ss n n Lδ Θ ≈ =  and , 0u ssδ ≠ . On the other hand, if uϑ  
is null, that is, there is no input belonging to the global input feasible set oϑ  that 
simultaneously satisfies all the zones for the models lying in Ω , then, the slack variables 

( ), , 1, ,y ss n n Lδ Θ = , cannot be zeroed, no matter the value of ,u ssδ . In this case (assuming 
that y uS S>> ), the slack variables ( ), , 1, ,y ss n n Lδ Θ = , will be made as small as possible, 
independently of the value of ,u ssδ . Then, once the output slack is established, the input 
slack will be accommodated to satisfy these values of the outputs. 

6. Simulation results for the system with time delay 
The system adopted to test the performance of the robust controller presented here is based 
on the FCC system presented in Sotomayor and Odloak (2005) and González et al. (2009). It 
is a typical example of the chemical process industry, and instead of output set points, this 
system has output zones. The objective of the controller is then to guide the manipulated 
inputs to the corresponding targets and to maintain the outputs (that are more numerous 
than the inputs) within the corresponding feasible zones. The system considered here has 2 
inputs and 3 outputs. Three models constitute the multi-model set Ω  on which the robust 
controller is based. In two of these models, time delays were included to represent a possible 
degradation of the process conditions along an operation campaign. The third model 
corresponds to the process at the design conditions. The parameters corresponding to each 
of these models can be seen in the following transfer functions: 
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. 

In this reduced system, the manipulated input variables correspond to: u1 air flow rate to the 
catalyst regenerator, u2 opening of the regenerated catalyst valve, and the controlled outputs 
are the following: y1 riser temperature, y2 regenerator dense phase temperature, y3: 
regenerator dilute phase temperature. 
In the simulations considered here, model 1Θ  is assumed to be the true model, while model 

3Θ  represents the nominal model that is used into the MPC cost. In the discussion that 
follows, unless explicitly mentioned, the adopted tuning parameters of the controller are 

3m = , 1T = , ( )0.5 * 1 1 1yQ diag= , ( )1 1uQ diag= , ( )1 1R diag= , 
( )310 * 1 1 1yS diag=  and ( )510 * 1 1uS diag= . The input and output constraints, as well 

as the maximum input increments, are shown in Tables 1 and 2. 
 

Output ymin ymax 

y1 (ºC) 510 530 
y2 (ºC) 600 610 
y3 (ºC) 530 590 

Table 1. Output zones of the FCC system 

 
Input maxuΔ  umin umax 

u1 (ton/h) 25 75 250 
u2 (%) 25 25 101 

Table 2. Input constraints of the FCC system 
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Before starting the detailed analysis of the properties of the proposed robust controller, we 
find it useful to justify the need for a robust controller for this specific system. We compare, 
the performance of the proposed robust controller defined through Problem P2, with the 
performance of the nominal MPC defined through Problem P1. We consider the same 
scenario described above except for the input targets that are not fully included in the 
control problem (we consider a target only to input u1 by simply making ( )1 0uQ diag=  
and ( )510 * 1 0uS diag= . This is a possible situation that may happen in practice when the 
process optimizer is sending a target to one of the outputs. Figures 2 and 3 show the output 
and input responses respectively for the two controllers when the system starts from a 
steady state where the outputs are outside their zones. It is clear that the conventional MPC 
cannot stabilize the plant corresponding to model 1Θ  when the controller uses model 3Θ  to 
calculate the output predictions. However, the proposed robust controller performs quite 
well and is able to bring the three outputs to their zones 
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Fig. 2. Controlled outputs for the nominal (- - -) and robust (⎯⎯) MPC. 

We now concentrate our analysis on the application of the proposed controller to the FCC 
system. As was defined in Eq. (5), each of the three models produces an input feasible set, 
whose intersection constitutes the restricted input feasible set of the controller. These sets 
have different shapes and sizes for different stationary operating points (since the 
disturbance ( )nd k  is included into Eq. (5), except for the true model case, where the input 
feasible set remains unmodified as the estimated states exactly match the true states. The 
closed loop simulation begins at uss=[230.5977 60.2359] and yss=[549.5011  704.2756  
690.6233], which are values taken from the real FCC system. For such an operating point, the 
input feasible set corresponding to models 1, 2 and 3 are depicted in Figure 4. These sets are 
quite distinct from each other, which results in an empty restricted feasible input set for the 
controller ( ( ) ( ) ( )1 2 3u u u uϑ ϑ Θ ϑ Θ ϑ Θ= ∩ ∩ ). This means that, we cannot find an input that, 
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We now concentrate our analysis on the application of the proposed controller to the FCC 
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whose intersection constitutes the restricted input feasible set of the controller. These sets 
have different shapes and sizes for different stationary operating points (since the 
disturbance ( )nd k  is included into Eq. (5), except for the true model case, where the input 
feasible set remains unmodified as the estimated states exactly match the true states. The 
closed loop simulation begins at uss=[230.5977 60.2359] and yss=[549.5011  704.2756  
690.6233], which are values taken from the real FCC system. For such an operating point, the 
input feasible set corresponding to models 1, 2 and 3 are depicted in Figure 4. These sets are 
quite distinct from each other, which results in an empty restricted feasible input set for the 
controller ( ( ) ( ) ( )1 2 3u u u uϑ ϑ Θ ϑ Θ ϑ Θ= ∩ ∩ ). This means that, we cannot find an input that, 



 Robust Control, Theory and Applications 

 

364 

taking into account the gains of all the models and all the estimated states, satisfies the 
output constraints. 
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Fig. 3. Manipulated inputs for the nominal (- - -) and robust (⎯⎯) MPC. 
 

 
Fig. 4. Input feasible sets of the FCC system 
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The first objective of the control simulation is to stabilize the system input at 
[ ]165 60a

desu = . This input corresponds to the output [520  606.8  577.6]y =  for the true 
system ( )1Θ , which results in the input feasible sets shown in Figure 5a. In this figure, it can 
be seen that the input feasible set corresponding to model 1 is the same as in Fig. 4, while the 
sets corresponding to the other models adapt their shape and size to the new steady state. 
Once the system is stabilized at this new steady state, we simulate a step change in the 
target of the input (at time step k=50 min). The new target is given by [175 64]b

desu = , and 
the corresponding input feasible sets are shown in Figure 5b. In this case, it can be seen that 
the new target remains inside the new input feasible set b

uϑ , which means that the cost can 
be guided to zero for the true model. Finally, at time step k=100 min, when the system 
reaches the steady state, a different input target is introduced ( [175 58]c

desu = ). Differently 
from the previous targets, this new target is outside the input feasible set c

uϑ , as can be seen 
in Figure 5c. Since in this case, the cost cannot be guided to zero and the output 
requirements are more important than the input ones, the inputs are stabilized in a feasible 
point as close as possible to the desired target. This is an interesting property of the 
controller as such a change in the target is likely to occur in the real plant operation. 
 

   
 

 
Fig. 5. (a): Initial input feasible sets; (b): Input feasible sets when the first input target is 
changed; and (c): Input feasible sets when the second input target is changed. 
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taking into account the gains of all the models and all the estimated states, satisfies the 
output constraints. 
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Fig. 6. Controlled outputs and set points for the FCC subsystem with modified input target. 
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Fig. 7. Manipulated inputs for the FCC subsystem with different input target. 
Figure 6 shows the true system outputs (solid line), the set point variables (dotted line) and 
the output zones (dashed line) for the complete sequence of changes. Figure 7, on the other 
hand, shows the inputs (solid line), and the input targets (dotted line) for the same 
sequence. As was established in Theorem 1, the cost function corresponding to the true 
system is strictly decreasing, and this can be seen in Figure 8. In this figure, the solid line 
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represents the true cost function, while the dotted line represents the cost corresponding to 
model 3. It is interesting to observe that this last cost function is not decreasing, since the 
estimated state does not match exactly the true state. Note also that in the last period of 
time, the cost does not reach zero, as the new target is not inside the input feasible set. 
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Fig. 8. Cost function corresponding to the true system (solid line) and cost corresponding to 
model 3 (dotted line). 
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y1 (ºC) 510 550 
y2 (ºC) 400 500 
y3 (ºC) 350 500 

Table 3. New output zones for the FCC subsystem 

Next, we simulate a change in the output zones. The new bounds are given in Table 3. 
Corresponding to the new control zones, the input feasible set changes its dimension and 
shape significantly. In Figure 9, ( )1

a
uϑ Θ  corresponds to the initial feasible set for the true 

model, and ( )1
d
uϑ Θ , ( )2

d
uϑ Θ  and ( )3

d
uϑ Θ  represent the new input feasible sets for the three 

models considered in the robust controller. Since the input target is outside the input 
feasible set ( ) ( ) ( )1 2 3

d d d d
u u u uϑ ϑ Θ ϑ Θ ϑ Θ= ∩ ∩ , it is not possible to guide the system to a point 

in which the control cost is null at the end of the simulation time. When the output weight 
Sy is as large as the input weight Su, all the outputs are guided to their corresponding zones, 
while the inputs show a steady state offset with respect to the target a

desu . The complete 
behavior of the outputs and inputs of the FCC subsystem, as well as the output set-points, 
can be seen in Figures 10 and 11, respectively when ( )310 * 1 1 1yS diag=  and 

( )310 * 1 1uS diag= . The final stationary value of the input is u= [155  84], which represents 
the closest feasible input value to the target a

desu . Finally, Figure 12 shows the control cost of 
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the two simulated time periods. Observe that in the last period of time (from 51min to 100 
min) the true cost function does not reach zero since the change in the operating point 
prevents the input and output constraints to be satisfied simultaneously. 
 

 
Fig. 9. Input feasible sets for the FCC subsystem when a change in the output zones is 
introduced. 
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Fig. 10. Controlled outputs and set points for the FCC subsystem with modified zones. 
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Fig. 12. Cost function for the FCC subsystem with modified zones. True cost function (solid 
line); Cost function of Model 3 (dotted line). 

7. Conclusion 
In this chapter, a robust MPC previously presented in the literature was extended to the 
output zone control of time delayed system with input targets. To this end an extended 



 Robust Control, Theory and Applications 

 

368 

the two simulated time periods. Observe that in the last period of time (from 51min to 100 
min) the true cost function does not reach zero since the change in the operating point 
prevents the input and output constraints to be satisfied simultaneously. 
 

 
Fig. 9. Input feasible sets for the FCC subsystem when a change in the output zones is 
introduced. 
 

0 10 20 30 40 50 60 70 80 90 100
500

550

y1

time (min)

0 10 20 30 40 50 60 70 80 90 100
400

600

y2

time (min)

0 10 20 30 40 50 60 70 80 90 100

400

600

y3

time (min)  
Fig. 10. Controlled outputs and set points for the FCC subsystem with modified zones. 

a
desu

final 
    stationary u ( )1

d
uϑ θ

( )2
d
uϑ θ

( )3
d
uϑ θ

( )1
a
uϑ θ

Robust Model Predictive Control for Time Delayed Systems  
with Optimizing Targets and Zone Control   

 

369 

0 10 20 30 40 50 60 70 80 90 100
100

150

200

250

u1

time (min)

0 10 20 30 40 50 60 70 80 90 100
40

60

80

100

u2

time (min)  
Fig. 11. Manipulated inputs for the FCC subsystem with modified output zones. 
 

10 20 30 40 50
0

1

2

3

4

5

6

7

8

9

10
x 107

V
k

time (min)
60 70 80 90 100

0

0.5

1

1.5

2

2.5

3
x 108

V
k

time (min)  
Fig. 12. Cost function for the FCC subsystem with modified zones. True cost function (solid 
line); Cost function of Model 3 (dotted line). 

7. Conclusion 
In this chapter, a robust MPC previously presented in the literature was extended to the 
output zone control of time delayed system with input targets. To this end an extended 



 Robust Control, Theory and Applications 

 

370 

model that incorporates additional states to account for the time delay is presented. The 
control structure assumes that model uncertainty can be represented as a discrete set of 
models (multi-model uncertainty). The proposed approach assures both, recursive 
feasibility and stability of the closed loop system. The main idea consists in using an 
extended set of variables in the control optimization problem, which includes the set point 
to each predicted output. This approach introduces additional degrees of freedom in the 
zone control problem. Stability is achieved by imposing non-increasing cost constraints that 
prevent the cost corresponding to the true plant to increase. The strategy was shown, by 
simulation, to have an adequate performance for a 2x3 subsystem of a typical industrial 
system. 
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1. Introduction 
Stability is of primary importance for any control systems. Stability of both linear and 
nonlinear uncertain systems has received a considerable attention in the past decades (see 
for example, Tanaka & Sugeno, 1992; Tanaka, Ikeda, & Wang, 1996; Feng, Cao, Kees, et al. 
1997; Teixeira & Zak, 1999; Lee, Park, & Chen, 2001; Park, Kim, & Park, 2001; Chen, Liu, & 
Tong, 2006; Lam & Leung, 2007, and references therein). Fuzzy logical control (FLC) has 
proved to be a successful control approach for a great many complex nonlinear systems. 
Especially, the well-known Takagi-Sugeno (T-S) fuzzy model has become a convenient tool 
for dealing with complex nonlinear systems. T-S fuzzy model provides an effective 
representation of nonlinear systems with the aid of fuzzy sets, fuzzy rules and a set of local 
linear models. Once the fuzzy model is obtained, control design can be carried out via the so 
called parallel distributed compensation (PDC) approach, which employs multiple linear 
controllers corresponding to the locally linear plant models (Hong & Langari, 2000). It has 
been shown that the problems of controller synthesis of nonlinear systems described by the 
T-S fuzzy model can be reduced to convex problems involving linear matrix inequalities 
(LMIs) (Park, Kim, & Park, 2001). Many significant results on the stability and robust control 
of uncertain nonlinear systems using T-S fuzzy model have been reported (see for example, 
Hong, & Langari, 2000; Park, Kim, & Park, 2001; Xiu & Ren, 2005; Wu & Cai, 2006; 
Yoneyama, 2006; 2007), and considerable advances have been made. However, as stated in 
Guo (2010), many approaches for stability and robust control of uncertain systems are often 
characterized by conservatism when dealing with uncertainties. In practice, uncertainty 
exists in almost all engineering systems and is frequently a source of instability and 
deterioration of performance. So, uncertainty is one of the most important factors that have 
to be taken into account rationally in system analysis and synthesis. Moreover, it has been 
shown (Guo, 2010) that the increasing in conservatism in dealing with uncertainties by some 
traditional methods does not mean the increasing in reliability. So, it is significant to deal 
with uncertainties by means of reliability approach and to achieve a balance between 
reliability and performance/control-cost in design of uncertain systems.  
In fact, traditional probabilistic reliability methods have ever been utilized as measures of 
stability, robustness, and active control effectiveness of uncertain structural systems by 
Spencer et al. (1992,1994); Breitung et al. (1998) and Venini & Mariani (1999) to develop 
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robust control strategies which maximize the overall reliability of controlled structures. 
Robust control design of systems with parametric uncertainties have also been studied by 
Mengali and Pieracci (2000); Crespo and Kenny (2005). These works are meaningful in 
improving the reliability of uncertain controlled systems, and it has been shown that the use 
of reliability analysis may be rather helpful in evaluating the inherent uncertainties in 
system design. However, these works are within the probabilistic framework. 
In Guo (2007,2010), a non-probabilistic robust reliability method for dealing with bounded 
parametric uncertainties of linear controlled systems has been presented. The non-
probabilistic procedure can be implemented more conveniently than probabilistic one 
whether in dealing with the uncertainty data or in controller design of uncertain systems, 
since complex computations are often associated with in controller design of uncertain 
systems. In this chapter, following the basic idea developed in Guo (2007, 2010), we focus on 
developing a robust reliability method for robust fuzzy controller design of uncertain 
nonlinear systems. 

2. Problem statements and preliminary knowledge 
Consider a nonlinear uncertain system represented by the following T-S fuzzy model with 
parametric uncertainties: 

Plant Rule i:  
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Where ijF  is a fuzzy set, nRt ∈)(x  is the state vector, mRt ∈)(u  is the control input vector. r 
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Where ))(( txF jij  is the grade of membership of )(tx j  in the fuzzy set ijF , ))(( ti xω  satisfies 
0))(( ≥ti xω  for all i ( ri ,,1…= ). Therefore, there exist the following relations 
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If the system (1) is local controllable, a fuzzy model of state feedback controller can be stated 
as follows: 

Control Rule i:  

 IF )(1 tx  is 1iF  and … and )(txn  is inF , THEN )()( tt i xKu = , ( ri ,,1…= ) (5) 
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Where nm
i R ×∈K  ( ri ,,1…= ) are gain matrices to be determined. The final output of the 

fuzzy controller can be obtained by 
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By substituting the control law (6) into (2), we obtain the closed-loop system as follows 
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When the parameterized notation (Tuan, Apkarian, and Narikiyo 2001) is used, equations 
(6) and (7) can be rewritten respectively as 
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Note that the uncertain parameters },,,{ 21 pρρρ �=ρ  are involved in the expressions of (9) 
and (11). Following the basic idea developed by Guo (2007,2010), the uncertain-but-bounded 
parameters },,,{ 21 pρρρ �=ρ  involved in the problem can be considered as interval 
variables and expressed in the following normalized form 

 iidii δρρρ += 0  ( pi ,,1…= ) (12) 

where 0iρ  and idρ  are respectively the nominal and deviational values of the uncertain 
parameter iρ , ∈iδ ]1,1[−  is a standard interval variable. Furthermore, the system matrices 
are expressed in a corresponding form of that depend on the standard interval variables 

],,,[ 21 pδδδ �=δ . Suppose that the stability of the control system can be reduced to solving 
a matrix inequality as follows 

 0),,,,( 21 <lPPPδM …  (13) 

where, lPPP ,,, 21 …  are feasible matrices to be determined. The sign “ 0< ” indicates that the 
matrix is negative-definite.  
If the performance function (it may also be referred to as limit-state function) used for 
reliability analysis is defined in terms of the criterion (13) and represented by 

),,,,( 21 lPPPδMM …= , and the reliable domain in the space built by the standard variables 
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robust control strategies which maximize the overall reliability of controlled structures. 
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Note that the uncertain parameters },,,{ 21 pρρρ �=ρ  are involved in the expressions of (9) 
and (11). Following the basic idea developed by Guo (2007,2010), the uncertain-but-bounded 
parameters },,,{ 21 pρρρ �=ρ  involved in the problem can be considered as interval 
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are expressed in a corresponding form of that depend on the standard interval variables 
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where, lPPP ,,, 21 …  are feasible matrices to be determined. The sign “ 0< ” indicates that the 
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If the performance function (it may also be referred to as limit-state function) used for 
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],,,[ 21 pδδδ �=δ  is indicated by }0),,,,(:{ 21 <= lr PPPδMδ …Ω , then the robust reliability 
can be given as follows 

 { } 10),,,,(:sup 21 −<= ∞
∈

lr
p

PPPδMδ
Rδ

…η  (14) 

Where, ∞δ  denote the infinity norm of the vector ],,,[ 21 pδδδ �=δ . Essentially, the robust 
reliability rη  defined by (14) represents the admissible maximum degree of expansion of 
the uncertain parameters in the infinity topology space built by the standard interval 
variables under the condition of that (13) is satisfied. If 0>rη  holds, the system is reliable 
for all admissible uncertainties. The larger the value of rη , the more robust the system with 
respect to uncertainties and the system is more reliable for this reason. So it is referred to as 
robust reliability in the paper as that in Ben-Haim (1996) and Guo (2007,2010).  
The main objective of this chapter is to develop a method based on the robust reliability idea 
to deal with bounded parametric uncertainties of the system (1) and to obtain reliability-
based robust fuzzy controller (6) for stabilizing the nonlinear system. 
Before deriving the main results, the following lemma is given to provide a basis. 
Lemma 1 (Guo, 2010). Given real matrices Y , nEEE ,,, 21 � , ,, 21 FF …, and nF  with 
appropriate dimensions and TYY = , then for any uncertain matrices },,{

11111 mdiag δδ �=Δ , 
},,{

22212 mdiag δδ �=Δ ,,�  and },,{ 1 nnmnn diag δδ �=Δ  satisfying αδ ≤ij  ( ni ,,1…= , 
nmj ,,1…= ), the following inequality holds for all admissible uncertainties 
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if and only if there exist n constant positive-definite diagonal matrices 1H , 2H , …, and nH  
with appropriate dimensions such that 
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3. Methodology and main results 
3.1 Basic theory 
The following commonly used Lyapunov function is considered 

 )()())(( tttV T Pxxx =  (17) 

where P is a symmetric positive definite matrix. The time derivative of ))(( txV  is 

 )()()()())(( tttttV TT xPxPxxx ��� +=  (18) 

Substituting (9) into (18), we can obtain 

 ( ) ( ){ } )()(),(),()(),(),()())(( tttV TT xKρBρAPPKρBρAxx μμμμμμ +++=�  (19) 

So, 0))(( <tV x�  is equivalent to (20) and further equivalent to (21) that are represented as 
follows 
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 ( ) ( ) 0)(),(),()(),(),( <+++ μμμμμμ KρBρAPPKρBρA T , Ωμ∈  (20) 

 ( ) ( ) 0)(),(),()(),(),( <+++ μμμμμμ YρBXρAYρBXρA T , Ωμ∈  (21) 

In which, 1−= PX , XKY )()( μμ =  possess the following form 
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then (21) can be written as 
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Some convex relaxations for (24) have been developed to make it tractable. Two type of 
relaxation are adopted here to illustrate the presented method. 
3.1.1 A simple relaxation of (24) represented as follows is often used by authors (Lee, Park, 
& Chen 2001) 

 0),,( <iii YXρQ , 0),,(),,( <+ ijijij YXρQYXρQ  ( rji ≤<≤1 ) (25) 

These expressions can be rewritten respectively as 
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Expressing all the uncertain parameters },,,{ 21 pρρρ �=ρ  as the standard form of (12), 
furthermore, the system matrices are expressed as a corresponding form of that depend on 
the standard interval variables ],,,[ 21 pδδδ �=δ . Without loss of generality, suppose that all 
the uncertain matrices )(ρAi  and )(ρBi  can be expressed as 

 ∑
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ijijii
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In which, 0iA , 0iB , ijA , and ikB  are known real constant matrices determined by the 
nominal and deviational values of the basic variables. To reduce the conservatism caused by 
dealing with uncertainties as far as possible, representing all the matrices ijA  and ikB  as 
the form of the vector products as follows 
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In which, 1ijV , 2ijV , 1ikU , and 2ikU  are all column vectors. Denoting  
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where, the first four matrices are constructed by the column vectors involved in (29). Then, 
the expressions in (28) can be further written as 

 2110)( iiiii VΔVAρA += , 2210)( iiiii UΔUBρB +=  ( ri ,,1…= ) (31) 

Substituting (31) into equations (26) and (27), we can obtain 
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In terms of Lemma 1, the matrix inequality (32) holds for all admissible uncertainties if and 
only if there exist diagonal positive-definite matrices 1iE  and 2iE  with appropriate 
dimensions such that 
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Similarly, (33) holds for all admissible uncertainties if and only if there exist constant 
diagonal positive-definite matrices 1ijH , 2ijH , 3ijH , and 4ijH  such that  
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Applying the well-known Schur complement, (34) and (35) can be written respectively as  
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symmetric positions. 
Consequently, the following theorem can be obtained. 
 

Theorem 3.1. For the dynamic system (2) with the uncertain matrices represented by (31) 
and αδ ≤m  ( pm ,,1…= ), it is asymptotically stabilizable with the state feedback controller 
(6) if there exist a symmetric positive-definite matrix X , matrices iY , and constant diagonal 
positive-definite matrices 1iE , 2iE , 1ijH , 2ijH , 3ijH , and 4ijH  ( rji ≤<≤1 ) such that the 
LMIs represented by (36) and (37) hold for all admissible uncertainties. If the feasible 
matrices X  and iY  are found out, then the feedback gain matrices deriving the fuzzy 
controller (6) can be obtained by 
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It should be stated that the condition of (25) is restrictive in practice. It is adopted yet here is 
merely to show the proposed reliability method and for comparison.  
3.1.2 Some improved relaxation for (24) have also been proposed in literatures. A relaxation 
provided by Tuan, Apkarian, and Narikiyo (2001) is as follows 
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r YXρQYXρQYXρQ  ( rji ≤≠≤1 ) (40) 

 

The expression (39) is the same completely with the first expression of (25). So, only (40) is 
investigated further. It can be rewritten as 
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}
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2
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On substituting the expression (31) into (41), we obtain  
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 T
ijijij 21VVA = , T

ikijik 21UUB =  ( ri ,,1…= , pj ,,1…= , qk ,,1…= ) (29) 

In which, 1ijV , 2ijV , 1ikU , and 2ikU  are all column vectors. Denoting  
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� �
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where, the first four matrices are constructed by the column vectors involved in (29). Then, 
the expressions in (28) can be further written as 

 2110)( iiiii VΔVAρA += , 2210)( iiiii UΔUBρB +=  ( ri ,,1…= ) (31) 

Substituting (31) into equations (26) and (27), we can obtain 
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In terms of Lemma 1, the matrix inequality (32) holds for all admissible uncertainties if and 
only if there exist diagonal positive-definite matrices 1iE  and 2iE  with appropriate 
dimensions such that 
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Similarly, (33) holds for all admissible uncertainties if and only if there exist constant 
diagonal positive-definite matrices 1ijH , 2ijH , 3ijH , and 4ijH  such that  
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Applying the well-known Schur complement, (34) and (35) can be written respectively as  
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In which, 
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T
jijj 121 VHV  + T

iiji 131 UHU  + T
jijj 141 UHU .  “*” denotes the transposed matrices in the 

symmetric positions. 
Consequently, the following theorem can be obtained. 
 

Theorem 3.1. For the dynamic system (2) with the uncertain matrices represented by (31) 
and αδ ≤m  ( pm ,,1…= ), it is asymptotically stabilizable with the state feedback controller 
(6) if there exist a symmetric positive-definite matrix X , matrices iY , and constant diagonal 
positive-definite matrices 1iE , 2iE , 1ijH , 2ijH , 3ijH , and 4ijH  ( rji ≤<≤1 ) such that the 
LMIs represented by (36) and (37) hold for all admissible uncertainties. If the feasible 
matrices X  and iY  are found out, then the feedback gain matrices deriving the fuzzy 
controller (6) can be obtained by 
 

 1−= XYK ii   ( ri ,,1…= ) (38) 
 

It should be stated that the condition of (25) is restrictive in practice. It is adopted yet here is 
merely to show the proposed reliability method and for comparison.  
3.1.2 Some improved relaxation for (24) have also been proposed in literatures. A relaxation 
provided by Tuan, Apkarian, and Narikiyo (2001) is as follows 
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The expression (39) is the same completely with the first expression of (25). So, only (40) is 
investigated further. It can be rewritten as 
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On substituting the expression (31) into (41), we obtain  
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In terms of Lemma 1, the matrix inequality (42) hold for all admissible uncertainties if and 
only if there exist constant diagonal positive-definite matrices 1iF , 2iF , 3iF , 1ijH , and 2ijH  
such that 
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Applying the Schur complement, (43) is equivalent to 
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This can be summarized as follows. 
Theorem 3.2. For the dynamic system (2) with the uncertain matrices represented by (31) 
and αδ ≤m  ( pm ,,1…= ), it is asymptotically stabilizable with the state feedback controller 
(6) if there exist a symmetric positive-definite matrix X , matrices iY , and constant diagonal 
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positive-definite matrices  1iE , 2iE , 1iF , 2iF , 3iF , 1ijH , and 2ijH  ( rji ≤≠≤1 ) such that the 
LMIs (36) and (44) hold for all admissible uncertainties. If the feasible matrices X  and iY  
are found out, the feedback gain matrices deriving the fuzzy controller (6) can then be given 
by (38). 

3.2 Robust reliability based stabilization 
In terms of Theorem 3.1, the closed-loop fuzzy system (7) is stable if all the matrix 
inequalities (36) and (37) hold for all admissible uncertainties. So, the performance functions 
used for calculation of reliability of that the uncertain system to be stable can be taken as 
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in which, the expressions of iΞ  and ijΓ  are in the same form respectively as that in (36) and 
(37). 
Therefore, the robust reliability of the uncertain nonlinear system in the sense of stability 
can be expressed as 

{ 1 2 1 2 3 4sup : ( , , , , ) 0, ( , , , , , , , ) 0,r i i i i ij i j ij ij ij ij
α

η α α α
+∈

= < <
R

M X Y E E M X Y Y H H H H } 11 −≤<≤ rji  (47) 

where, +R  denotes the set of all positive real numbers. The robust reliability of that the 
uncertain closed-loop system (7) is stable may be obtained by solving the following 
optimization problem 
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 (48) 

From the viewpoint of robust stabilizing controller design, if inequalities (36) and (37) hold 
for all admissible uncertainties, then there exists a fuzzy controller (6) such that the closed-
loop system (7) to be asymptotically stable. Therefore, the performance functions used for 
reliability-based design of control to stabilize the uncertain system (2) can also be taken as 
that of (45) and (46). So, a possible stabilizing controller satisfying the robust reliability 
requirement can be given by a feasible solution of the following matrix inequalities 
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In terms of Lemma 1, the matrix inequality (42) hold for all admissible uncertainties if and 
only if there exist constant diagonal positive-definite matrices 1iF , 2iF , 3iF , 1ijH , and 2ijH  
such that 
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This can be summarized as follows. 
Theorem 3.2. For the dynamic system (2) with the uncertain matrices represented by (31) 
and αδ ≤m  ( pm ,,1…= ), it is asymptotically stabilizable with the state feedback controller 
(6) if there exist a symmetric positive-definite matrix X , matrices iY , and constant diagonal 
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positive-definite matrices  1iE , 2iE , 1iF , 2iF , 3iF , 1ijH , and 2ijH  ( rji ≤≠≤1 ) such that the 
LMIs (36) and (44) hold for all admissible uncertainties. If the feasible matrices X  and iY  
are found out, the feedback gain matrices deriving the fuzzy controller (6) can then be given 
by (38). 

3.2 Robust reliability based stabilization 
In terms of Theorem 3.1, the closed-loop fuzzy system (7) is stable if all the matrix 
inequalities (36) and (37) hold for all admissible uncertainties. So, the performance functions 
used for calculation of reliability of that the uncertain system to be stable can be taken as 
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in which, the expressions of iΞ  and ijΓ  are in the same form respectively as that in (36) and 
(37). 
Therefore, the robust reliability of the uncertain nonlinear system in the sense of stability 
can be expressed as 

{ 1 2 1 2 3 4sup : ( , , , , ) 0, ( , , , , , , , ) 0,r i i i i ij i j ij ij ij ij
α

η α α α
+∈
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where, +R  denotes the set of all positive real numbers. The robust reliability of that the 
uncertain closed-loop system (7) is stable may be obtained by solving the following 
optimization problem 

 1 2 1 2 3 4
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From the viewpoint of robust stabilizing controller design, if inequalities (36) and (37) hold 
for all admissible uncertainties, then there exists a fuzzy controller (6) such that the closed-
loop system (7) to be asymptotically stable. Therefore, the performance functions used for 
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In which, )(⋅iM  and )(⋅ijM  are functions of some matrices and represented by (45) and (46) 
respectively. crη  is the allowable robust reliability. 
If the control cost is taken into account, the robust reliability based design optimization  
of stabilization controller can be carried out by solving the following optimization 
problem 
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In which, the introduced additional matrix N  is symmetric positive-definite and with the 
same dimension as X . When the feasible matrices X  and iY  are found out, the optimal 
fuzzy controller could be obtained by using (6) together with (38). 
If Theorem 3.2 is used, the expression of )(⋅ijM  corresponding to (46) becomes 
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where, ijΨ  is the same with that in (44). Correspondingly, (47) and (48) become respectively 
as follows. 
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Similarly, (50) becomes  
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3.3 A special case 
Now, we consider a special case in which the matrices of (30) is expressed as 

 11 VV =i , 22 VV =i , ΔΔ =1i , 021 == ii UU  ( ri ,,1…= ) (55) 

This means that the matrices )(ρAi  in all the rules have the same uncertainty structure and 
the matrices )(ρBi  become certain. In this case, (31) can be written as 

 210)( VΔVAρA += ii , 0)( ii BρB =  ( ri ,,1…= ) (56) 

and the expressions involved in Theorem 3.1 can be simplified further. This is summarized 
in the following. 
Theorem 3.3. For the dynamic system (2) with the matrices represented by (56) and αδ ≤m  
( pm ,,1…= ), it is asymptotically stabilizable with the state feedback controller (6) if there 
exist a symmetric positive-definite matrix X , matrices iY , and constant diagonal positive-
definite matrices iE  and ijH  ( rji ≤<≤1 ) with appropriate dimensions such that the 
following LMIs hold for all admissible uncertainties 
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ij )2()2( 11 VHV . If the feasible matrices X  and iY  are found out, the feedback  

   gain matrices deriving the fuzzy controller (6) can then be given by (38). 
Proof. In the case, inequalities (32) and (33) become, respectively, 
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In terms of Lemma 1, (58) holds for all admissible uncertainties if and only if there exist 
diagonal positive-definite matrices iE  ( ri ,,1…= ) with appropriate dimensions such that 
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Similarly, (59) holds for all admissible uncertainties if and only if there exist constant 
diagonal positive-definite matrices ijH  such that 
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Applying Schur complement, (57) can be obtained. So, the theorem holds. 
By Theorem 3.3, the performance functions used for reliability calculation can be taken as 
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In terms of Lemma 1, (58) holds for all admissible uncertainties if and only if there exist 
diagonal positive-definite matrices iE  ( ri ,,1…= ) with appropriate dimensions such that 
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Applying Schur complement, (57) can be obtained. So, the theorem holds. 
By Theorem 3.3, the performance functions used for reliability calculation can be taken as 
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Accordingly, a possible stabilizing controller satisfying robust reliability requirement can be 
obtained by a feasible solution of the following matrix inequalities 
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The optimum stabilizing controller based on the robust reliability and control cost can be 
obtained by solving the following optimization problem 
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Similarly, the expressions involved in Theorem 3.2 can also be simplified and the 
corresponding result is summarized in the following.  
Theorem 3.4. For the dynamic system (2) with the matrices represented by (56) and αδ ≤m  
( pm ,,1…= ), it is asymptotically stabilizable with the state feedback controller (6) if there 
exist a symmetric positive-definite matrix X , matrices iY , and constant diagonal positive-
definite matrices iE  and ijH  ( rji ≤≠≤1 ) with appropriate dimensions such that the 
following LMIs hold for all admissible uncertainties 
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   feasible matrices X and Yi are found out, the feedback gain matrices deriving    
the fuzzy controller (6) can then be obtained by (38). 
Proof. (42) can be rewritten as 
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In terms of Lemma 1, (66) holds for all admissible uncertainties if and only if there exist 
diagonal positive-definite matrices ijH  such that 
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Applying Schur complement, (67) is equivalent to the second expression of (65). So, the 
theorem holds. 
By Theorem 3.4, the performance functions used for reliability calculation can be taken as 

 

( )
( )

( )
( )

2

2

2

2

( , , , ) ,    ( 1, , )

( , , , , ) ,   (1 )

T
i

i i i
i

T
ij

ij i j ij
ij

i r

i j r

α
α

α

α
α

α

⎡ ⎤
⎢ ⎥= =⎢ ⎥

−⎢ ⎥⎣ ⎦
⎡ ⎤
⎢ ⎥= ≤ ≠ ≤
⎢ ⎥−⎣ ⎦

Ξ V X
M X Y E

V X E

Ψ V X
M X Y Y H

V X H

…

 (68) 

So, design of the optimal controller based on the robust reliability and control cost could be 
carried out by solving the following optimization problem 
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4. Numerical examples 
Example 1. Consider a simple uncertain nonlinear mass-spring-damper mechanical system 
with the following dynamic equation (Tanaka, Ikeda, & Wang 1996) 

)())(13.01()()()()( 3 tutxtxtctxtx ���� +=++  

Where )(tc  is the uncertain term satisfying ]81.1,5.0[)( ∈tc . 
Assume that ]5.1,5.1[)( −∈tx , ]5.1,5.1[)( −∈tx� . Using the following fuzzy sets 

3 3

1 2
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The uncertain nonlinear system can be represented by the following fuzzy model 
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   feasible matrices X and Yi are found out, the feedback gain matrices deriving    
the fuzzy controller (6) can then be obtained by (38). 
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In terms of Lemma 1, (66) holds for all admissible uncertainties if and only if there exist 
diagonal positive-definite matrices ijH  such that 
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Applying Schur complement, (67) is equivalent to the second expression of (65). So, the 
theorem holds. 
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So, design of the optimal controller based on the robust reliability and control cost could be 
carried out by solving the following optimization problem 
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*
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4. Numerical examples 
Example 1. Consider a simple uncertain nonlinear mass-spring-damper mechanical system 
with the following dynamic equation (Tanaka, Ikeda, & Wang 1996) 

)())(13.01()()()()( 3 tutxtxtctxtx ���� +=++  

Where )(tc  is the uncertain term satisfying ]81.1,5.0[)( ∈tc . 
Assume that ]5.1,5.1[)( −∈tx , ]5.1,5.1[)( −∈tx� . Using the following fuzzy sets 

3 3

1 2
( ) ( )( ( )) 0.5 ,   ( ( )) 0.5

6.75 6.75
x t x tF x t F x t= + = −
� �� �  

The uncertain nonlinear system can be represented by the following fuzzy model 

Plant Rule 1: IF )(tx�  is about 1F , THEN )()()( 11 ttt uBxAx +=�  
 Plant Rule 2: IF )(tx�  is about 2F , THEN )()()( 22 ttt uBxAx +=�  

Where 

1 2 1 2
( ) 1 1.43875 0.56125

( ) ,  , , 
( ) 1 0 0 0

x t c
t

x t
− −⎡ ⎤ ⎡ ⎤ ⎡ ⎤ ⎡ ⎤

= = = = =⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥
⎣ ⎦ ⎣ ⎦ ⎣ ⎦ ⎣ ⎦

x A A B B
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Expressing the uncertain parameter c as the normalized form, δ655.0155.1 +=c , 
furthermore, the system matrices are expressed as 

1A = 2110 ΔVVA + , 2A = 2120 ΔVVA + , 101 BB = , 202 BB = . 
In which 

⎥
⎦

⎤
⎢
⎣

⎡ −−
==

01
155.11

2010 AA , ⎥
⎦

⎤
⎢
⎣

⎡
=

0
1

1V , [ ]655.002 −=V , δ=Δ . 

By solving the optimization problem of (69) with 1* =α  and 3* =α  respectively, the gain 
matrices are obtained as follows 

[ ]1446.00567.01 −−=K , [ ]1768.00730.02 −−=K   ( 1* =α ); 

[ ]0570.13645.01 −−=K , [ ]4978.29191.02 −−=K   ( 3* =α ). 

When the initial value of the state is taken as [ ]T3.11)0( −−=x , the simulation results of the 
controlled system with the uncertain parameter generated randomly within the allowable 
range ]81.1,5.0[)( ∈tc  are shown in Fig. 1. 
 

 
Fig. 1. Simulation of state trajectories of the controlled system (The uncertain parameter c is 
generated randomly within [0.5, 1.81]) 
Example 2. Consider the problem of stabilizing the chaotic Lorenz system with parametric 
uncertainties as follows (Lee, Park, & Chen, 2001)  
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1 1 2

2 1 2 1 3

3 1 2 3

( ) ( ) ( )
( ) ( ) ( ) ( ) ( )
( ) ( ) ( ) ( )

x t x t x t
x t rx t x t x t x t
x t x t x t bx t

σ σ− +⎡ ⎤ ⎡ ⎤
⎢ ⎥ ⎢ ⎥= − −⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥−⎣ ⎦ ⎣ ⎦

 

For the purpose of comparison, the T-S fuzzy model of the chaotic Lorenz system is 
constructed as 

1 1 1 1

1 2 2 2

 :  IF ( ) is about  THEN ( ) ( ) ( )
 :  IF ( ) is about  THEN ( ) ( ) ( )

x t M t t t
x t M t t t

= +
= +

Plant Rule 1 x A x B u
Plant Rule 2 x A x B u

 

Where 

1 1 2 2

1 2

0 0
1 ,   1

0 0
r M r M

M b M b

σ σ σ σ− −⎡ ⎤ ⎡ ⎤
⎢ ⎥ ⎢ ⎥= − − = − −⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥− −⎣ ⎦ ⎣ ⎦

A A  

The input matrices 1B  and 2B , and the membership functions are respectively 

[ ] 1 2 1 1
1 2 1 2

2 1 2 1

( ) ( )1 0 0 ,   ( ( )) ,   ( ( )) .T x t M x t Mt t
M M M M

μ μ− + −
= = = =

− −
B B x x  

The nominal values of ),,( brσ  are (10, 28, 8/3), and choosing ],[ 21 MM = ]30,20[− . All 
system parameters are uncertain-but-bounded within 30% of their nominal values. 
The gain matrices for deriving the stabilizing controller (6) given by Lee, Park, and Chen 
(2001) are 

[ ]0866.82603.1377653.2951 −−−=LK , [ ]6930.128089.2040647.4432 −−=LK . 

(1) Reliability-based feasible solutions 

In order to apply the presented method, all the uncertain parameters ),,( brσ  are expressed 
as the following normalized form 

1310 δσ += , 24.828 δ+=r , 38.03/8 δ+=b . 

Furthermore, the system matrices can be expressed as 

1A = 2110 ΔVVA + , 2A = 2120 ΔVVA + , 101 BB = , 202 BB = . 

In which 

[ ]

10 20 1 2

1 2 3 10 20

10 10 0 10 10 0 1 0 0 3 3 0
28 1 20 ,  28 1 30 , 0 1 0 , 8.4 0 0 ,
0 20 8 / 3 0 30 8 / 3 0 0 1 0 0 0.8

{ , , },  1 0 0 Tdiag δ δ δ

− − −⎡ ⎤ ⎡ ⎤ ⎡ ⎤ ⎡ ⎤
⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥= − = − − = =⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥− − − −⎣ ⎦ ⎣ ⎦ ⎣ ⎦ ⎣ ⎦

= = =

A A V V

Δ B B

 

By solving the matrix inequalities corresponding to (63) with 1* =α , the gain matrices are 
found to be 

[ ] [ ]1 284.2940 23.7152 2.4514 ,  84.4669 23.6170 3.8484= − − − = − −K K  
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The common positive definite matrix X and other feasible matrices obtained are as follows 

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡

−
−−

−
=

6685.00027.00009.0
0027.06627.00845.0

0009.00845.00461.0
X , { }8813.1,3716.2,4260.31 diag=E , 

{ }9972.1,2766.2,4483.32 diag=E , { }3318.1,9734.1,6535.2diag=H . 

Again, by solving the matrix inequalities corresponding to (63) with 2* =α , which means 
that the allowable variation of all the uncertain parameters are within 60% of their nominal 
values, we obtain 

[ ]4747.44674.426352.1231 −−−=K , [ ]8254.68129.429081.1252 −−=K , 

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡

−
−−

−
=

7771.70360.00115.0
0360.07159.77704.1

0115.07704.10410.1
X , { }7070.22,0157.44,7271.981 diag=E , 

{ }7517.24,7451.42,9235.1012 diag=E , { }8173.13,0026.31,8833.68diag=H . 

Clearly, the control inputs of the controllers obtained in the paper in the two cases are all 
lower than that of Lee, Park, and Chen (2001). 
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Fig. 2. State trajectories of the controlled nominal chaotic Lorenz system (On the left- and 
right-hand sides are results respectively of the controller of Lee, Park, and Chen (2001) and 
of the controller obtained in this paper) 
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(2) Robust reliability based design of optimal controller  

Firstly, if Theorem 3.3 is used, by solving a optimization problem corresponding to (64) with 
1* =α , the gain matrices as follows for deriving the controller are obtained 

[ ]2536.35211.138512.201 −−−=GK , [ ]3799.41299.132143.212 −−=GK . 

The norm of the gain matrices are respectively 0635.251 =GK  and 3303.252 =GK . So, 
there exist relations 

1639.3261 =LK G10135.13 K= , 2767.4882 =LK G22764.19 K= . 

To examine the effect of the controllers, the initial values of the states of the Lorenz system 
are taken as [ ]T101010)0( −−=x , the control input is activated at t=3.89s, all as that of 
Lee, Park, and Chen (2001), the simulated state trajectories of the controlled Lorenz system 
without uncertainty are shown in Fig. 2. In which, on the left- and right-hand sides are 
results of the controller of Lee, Park, and Chen (2001) and of the controller obtained in this 
paper respectively. Simulations of the corresponding control inputs are shown in Fig. 3, in 
which, the dash-dot line and the solid line represent respectively the input of the controller 
of Lee, Park, and Chen (2001) and of the controller in the paper.  
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Fig. 3. Control input of the two controllers (dash-dot line and solid line represent 
respectively the result of Lee, Park, and Chen (2001) and the result of the paper) 
The simulated state trajectories and phase trajectory of the controlled Lorenz system are 
shown respectively in Figs. 4 and 5, in which, all the uncertain parameters are generated 
randomly within the allowable ranges. 
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Fig. 4. Ten-times simulated state trajectories of the controlled chaotic Lorenz system with 
parametric uncertainties (all uncertain parameters are generated randomly within the 
allowable ranges, and on the left- and right-hand sides are respectively the results of 
controllers in Lee, Park, and Chen (2001) and in the paper) 
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Fig. 5. Ten-times simulated phase trajectories of the parametric uncertain Lorenz system 
controlled by the presented method (all parameters are generated randomly within their 
allowable ranges) 
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It can be seen that the controller obtained by the presented method is effective, and the 
control effect has no evident difference with that of the controller in Lee, Park, and Chen 
(2001), but the control input of it is much lower. This shows that the presented method is 
much less conservative. 
Taking 3=α , which means that the allowable variation of all the uncertain parameters are 
within 90% of their nominal values, by applying Theorem 3.3 and solving a corresponding 
optimization problem of (64) with 3* =α , the gain matrices for deriving the fuzzy controller 
obtained by the presented method become 

[ ] [ ]1 2-54.0211 32.5959 6.5886 ,  -50.0340 30.6071 10.4215G G= − − = −K K . 

Obviously, the input of the controller in this case is also much lower than that of the 
controller obtained by Lee, Park, and Chen (2001). 
Secondly, when Theorem 3.4 is used, by solving two optimization problems corresponding 
to (69) with 1* =α  and 3* =α  respectively, the gain matrices for deriving the controller are 
found to be 

[ ] [ ]
[ ] [ ]

*
1 2

*
1 2

20.8198 13.5543 3.2560 ,  21.1621 13.1451 4.3928  ( 1).

-54.0517 32.6216 6.6078 , -50.0276 30.6484 10.4362  ( 3)
G G

G G

α

α

= − − − = − − =

= − − = − =

K K

K K
 

Note that the results based on Theorem 3.4 are in agreement, approximately, with those 
based on Theorem 3.3. 

5. Conclusion 
In this chapter, stability of parametric uncertain nonlinear systems was studied from a new 
point of view. A robust reliability procedure was presented to deal with bounded 
parametric uncertainties involved in fuzzy control of nonlinear systems. In the method, the 
T-S fuzzy model was adopted for fuzzy modeling of nonlinear systems, and the parallel-
distributed compensation (PDC) approach was used to control design. The stabilizing 
controller design of uncertain nonlinear systems were carried out by solving a set of linear 
matrix inequalities (LMIs) subjected to robust reliability for feasible solutions, or by solving 
a robust reliability based optimization problem to obtain optimal controller. In the optimal 
controller design, both the robustness with respect to uncertainties and control cost can be 
taken into account simultaneously. Formulations used for analysis and synthesis are within 
the framework of LMIs and thus can be carried out conveniently. It is demonstrated, via 
numerical simulations of control of a simple mechanical system and of the chaotic Lorenz 
system, that the presented method is much less conservative and is effective and feasible. 
Moreover, the bounds of uncertain parameters are not required strictly in the presented 
method. So, it is applicable for both the cases that the bounds of uncertain parameters are 
known and unknown. 
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Taking 3=α , which means that the allowable variation of all the uncertain parameters are 
within 90% of their nominal values, by applying Theorem 3.3 and solving a corresponding 
optimization problem of (64) with 3* =α , the gain matrices for deriving the fuzzy controller 
obtained by the presented method become 

[ ] [ ]1 2-54.0211 32.5959 6.5886 ,  -50.0340 30.6071 10.4215G G= − − = −K K . 

Obviously, the input of the controller in this case is also much lower than that of the 
controller obtained by Lee, Park, and Chen (2001). 
Secondly, when Theorem 3.4 is used, by solving two optimization problems corresponding 
to (69) with 1* =α  and 3* =α  respectively, the gain matrices for deriving the controller are 
found to be 
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*
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*
1 2
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G G

α
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K K

K K
 

Note that the results based on Theorem 3.4 are in agreement, approximately, with those 
based on Theorem 3.3. 

5. Conclusion 
In this chapter, stability of parametric uncertain nonlinear systems was studied from a new 
point of view. A robust reliability procedure was presented to deal with bounded 
parametric uncertainties involved in fuzzy control of nonlinear systems. In the method, the 
T-S fuzzy model was adopted for fuzzy modeling of nonlinear systems, and the parallel-
distributed compensation (PDC) approach was used to control design. The stabilizing 
controller design of uncertain nonlinear systems were carried out by solving a set of linear 
matrix inequalities (LMIs) subjected to robust reliability for feasible solutions, or by solving 
a robust reliability based optimization problem to obtain optimal controller. In the optimal 
controller design, both the robustness with respect to uncertainties and control cost can be 
taken into account simultaneously. Formulations used for analysis and synthesis are within 
the framework of LMIs and thus can be carried out conveniently. It is demonstrated, via 
numerical simulations of control of a simple mechanical system and of the chaotic Lorenz 
system, that the presented method is much less conservative and is effective and feasible. 
Moreover, the bounds of uncertain parameters are not required strictly in the presented 
method. So, it is applicable for both the cases that the bounds of uncertain parameters are 
known and unknown. 
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1. Introduction

Most control techniques require the use of a plant model during the design phase in
order to tune the controller parameters. The mathematical models are an approximation of
real systems and contain imperfections by several reasons: use of low-order descriptions,
unmodelled dynamics, obtaining linear models for a specific operating point (working with
poor performance outside of this working point), etc. Therefore, control techniques that work
without taking into account these modelling errors, use a fixed-structure model and known
parameters (nominal model ) supposing that the model exactly represents the real process,
and the imperfections will be removed by means of feedback. However, there exist other
control methods called robust control techniques which use these imperfections implicity
during the design phase. In the robust control field such imperfections are called uncertainties,
and instead of working only with one model (nominal model), a family of models is used
forming the nominal model + uncertainties. The uncertainties can be classified in parametric
or structured and non-parametric or non-structured. The first ones allow representing the
uncertainties into the model coefficients (e.g. the value of a pole placed between maximum
and minimum limits). The second ones represent uncertainties as unmodelled dynamics (e.g.
differences in the orders of the model and the real system) (Morari and Zafiriou, 1989).
The robust control technique which considers more exactly the uncertainties is the
Quantitative Feedback Theory (QFT). It is a methodology to design robust controllers based
on frequency domain, and was developed by Prof. Isaac Horowitz (Horowitz, 1982; Horowitz
and Sidi, 1972; Horowitz, 1993). This technique allows designing robust controllers which
fulfil some minimum quantitative specifications considering the presence of uncertainty in
the plant model and the existence of perturbations. With this theory, Horowitz showed that
the final aim of any control design must be to obtain an open-loop transfer function with
the suitable bandwidth (cost of feedback) in order to sensitize the plant and reduce the
perturbations. The Nichols plane is used to achieve a desired robust design over the specified
region of plant uncertainty where the aim is to design a compensator C(s) and a prefilter F(s)
(if it is necessary) (see Figure 1), so that performance and stability specifications are achieved
for the family of plants.
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1. Introduction

Most control techniques require the use of a plant model during the design phase in
order to tune the controller parameters. The mathematical models are an approximation of
real systems and contain imperfections by several reasons: use of low-order descriptions,
unmodelled dynamics, obtaining linear models for a specific operating point (working with
poor performance outside of this working point), etc. Therefore, control techniques that work
without taking into account these modelling errors, use a fixed-structure model and known
parameters (nominal model ) supposing that the model exactly represents the real process,
and the imperfections will be removed by means of feedback. However, there exist other
control methods called robust control techniques which use these imperfections implicity
during the design phase. In the robust control field such imperfections are called uncertainties,
and instead of working only with one model (nominal model), a family of models is used
forming the nominal model + uncertainties. The uncertainties can be classified in parametric
or structured and non-parametric or non-structured. The first ones allow representing the
uncertainties into the model coefficients (e.g. the value of a pole placed between maximum
and minimum limits). The second ones represent uncertainties as unmodelled dynamics (e.g.
differences in the orders of the model and the real system) (Morari and Zafiriou, 1989).
The robust control technique which considers more exactly the uncertainties is the
Quantitative Feedback Theory (QFT). It is a methodology to design robust controllers based
on frequency domain, and was developed by Prof. Isaac Horowitz (Horowitz, 1982; Horowitz
and Sidi, 1972; Horowitz, 1993). This technique allows designing robust controllers which
fulfil some minimum quantitative specifications considering the presence of uncertainty in
the plant model and the existence of perturbations. With this theory, Horowitz showed that
the final aim of any control design must be to obtain an open-loop transfer function with
the suitable bandwidth (cost of feedback) in order to sensitize the plant and reduce the
perturbations. The Nichols plane is used to achieve a desired robust design over the specified
region of plant uncertainty where the aim is to design a compensator C(s) and a prefilter F(s)
(if it is necessary) (see Figure 1), so that performance and stability specifications are achieved
for the family of plants.
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This chapter presents for SISO (Single Input Single Output) LTI (Linear Time Invariant)
systems, a detailed description of this robust control technique and two real experiences
where QFT has successfully applied at the University of Almería (Spain). It starts with
a QFT description from a theoretical point of view, afterwards section 3. 1 is devoted to
present two well-known software tools for QFT design, and after that two real applications
in agricultural spraying tasks and solar energy are presented. Finally, the chapter ends with
some conclusions.

2. Synthesis of SISO LTI uncertain feedback control systems using QFT

QFT is a methodology to design robust controllers based on frequency domain (Horowitz,
1993; Yaniv, 1999). This technique allows designing robust controllers which fulfil some
quantitative specifications. The Nichols plane is the key tool for this technique and is used to
achieve a robust design over the specified region of plant uncertainty. The aim is to design
a compensator C(s) and a prefilter F(s) (if it is necessary), as shown in Figure 1, so that
performance and stability specifications are achieved for the family of plants ℘(s) describing
a plant P(s). Here, the notation â is used to represent the Laplace transform for a time domain
signal a(t).

Fig. 1. Two degrees of freedom feedback system.

The QFT technique uses the information of the plant uncertainty in a quantitative way,
imposing robust tracking, robust stability, and robust attenuation specifications (among
others). The 2DoF compensator {F, C}, from now onwards the s argument will be omitted
when necessary for clarity, must be designed in such a way that the plant behaviour variations
due to the uncertainties are inside of some specific tolerance margins in closed-loop. Here, the
family ℘(s) is represented by the following equation

℘(s) =
{

P(s) = k
∏n

i=1(s + zi) ∏m
z=1(s2 + 2ξzω0z + ω2

0z)

sN ∏a
r=1(s + pr) ∏b

t=1(s2 + 2ξtω0t + ω2
0t)

: (1)

k ∈ [kmin, kmax], zi ∈ [zi,min, zi,max], pr ∈ [pr,min, pr,max],
ξz ∈ [ξz,min, ξz,max], ω0z ∈ [ω0z,min, ω0z,max],

ξt ∈ [ξt,min, ξt,max], ω0t ∈ [ω0t,min, ω0t,max],

n + m < a + b + N
}

A typical QFT design involves the following steps:
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1. Problem specification. The plant model with uncertainty is identified, and a set of
working frequencies is selected based on the system bandwidth, Ω ={ω1, ω2, ..., ωk}.
The specifications (stability, tracking, input disturbances, output disturbances, noise, and
control effort) for each frequency are defined, and the nominal plant P0 is selected.

2. Templates. The quantitative information of the uncertainties is represented by a set of
points on the Nichols plane. This set of points is called template and it defines a graphical
representation of the uncertainty at each design frequency ω. An example is shown in
Figure 2, where templates of a second-order system given by P(s) = k/s(s + a), with
k ∈ [1, 10] and a ∈ [1, 10] are displayed for the following set of frequencies Ω =
{0.5, 1, 2, 4, 8, 15, 30, 60, 90, 120, 180} rad/s.

3. Bounds. The specifications settled at the first step are translated, for each frequency ω in
Ω set, into prohibited zones on the Nichols plane for the loop transfer function L0(jω) =
C(jω)P0(jω). These zones are defined by limits that are known as bounds. There exist so
many bounds for each frequency as specifications are considered. So, all these bounds for
each frequency are grouped showing an unique prohibited boundary. Figure 3 shows an
example for stability and tracking specifications.

Fig. 2. QFT Template example.

4. Loop shaping. This phase consists in designing the C controller in such a way that the
nominal loop transfer function L0(jω) = C(jω)P0(jω) fulfils the bounds calculated in the
previous phase. Figure 3 shows the design of L0 where the bounds are fulfilled at each
design frequency.

5. Prefilter. The prefilter F is designed so that the closed-loop transfer function from reference
to output follows the robust tracking specifications, that is, the closed-loop system
variations must be inside of a desired tolerance range, as Figure 4 shows.
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Fig. 3. QFT Bound and Loop Shaping example.

Fig. 4. QFT Prefilter example.
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6. Validation. This step is devoted to verify that the closed-loop control system fulfils, for
the whole family of plants, and for all frequencies in the bandwith of the system, all the
specifications given in the first step. Otherwise, new frequencies are added to the set Ω, so
that the design is repeated until such specifications are reached.

The closed-loop specifications for system in Figure 1 are typically defined in time domain
and/or in the frequency domain. The time domain specifications define the desired outputs
for determined inputs, and the frequency domain specifications define in terms of frequency
the desired characteristics for the system output for those inputs.
In the following, these types of specifications are described and the specifications translation
problem from time domain to frequency domain is considered.

2.1 Time domain specifications
Typically, the closed-loop specifications for system in Figure 1 are defined in terms of the
system inputs and outputs. Both of them must be delimited, so that the system operates in a
predetermined region. For example:

1. In a regulation problem, the aim is to achieve a plant output close to zero (or nearby a
determined operation point). For this case, the time domain specifications could define
allowed operation regions as shown in Figures 5a and 5b, supposing that the aim is to
achieve a plant output close to zero.

2. In a reference tracking problem, the plant output must follow the reference input with
determined time domain characteristics. In Figure 5c a typical specified region is shown,
in which the system output must stay. The unit step response is a very common
characterization, due to it combines a fast signal (an infinite change in velocity at t = 0+)
with a slow signal (it remains in a constant value after transitory).

The classical specifications such as rise time, settling time and maximum overshoot, are special
cases of examples in Figure 5. All these cases can be also defined in frequency domain.

2.2 Frequency domain specifications
The closed-loop specifications for system in Figure 1 are typically defined in terms of
inequalities on the closed-loop transfer functions for the system, as shown in Equations (2)-(7).

1. Disturbance rejection at the plant output:
∣∣∣∣

ĉ

d̂o

∣∣∣∣ =
∣∣∣∣

1
1 + P(jω)C(jω)

∣∣∣∣ ≤ δpo(ω) ∀ω > 0, ∀P ∈ ℘ (2)

2. Disturbance rejection at the plant input:
∣∣∣∣

ĉ

d̂i

∣∣∣∣ =
∣∣∣∣

P(jω)
1 + P(jω)C(jω)

∣∣∣∣ ≤ δpi(ω) ∀ω > 0, ∀P ∈ ℘ (3)

3. Stability: ∣∣∣∣
ĉ

r̂F

∣∣∣∣ =
∣∣∣∣

P(jω)C(jω)
1 + P(jω)C(jω)

∣∣∣∣ ≤ λ ∀ω > 0, ∀P ∈ ℘ (4)

4. References Tracking:

Bl(ω) ≤
∣∣∣∣
ĉ
r̂

∣∣∣∣ =
∣∣∣∣

F(jω)P(jω)C(jω)
1 + P(jω)C(jω)

∣∣∣∣ ≤ Bu(ω) ∀ω > 0, ∀P ∈ ℘ (5)

395A Frequency Domain Quantitative Technique for Robust Control System Design



Fig. 3. QFT Bound and Loop Shaping example.

Fig. 4. QFT Prefilter example.

394 Robust Control, Theory and Applications

6. Validation. This step is devoted to verify that the closed-loop control system fulfils, for
the whole family of plants, and for all frequencies in the bandwith of the system, all the
specifications given in the first step. Otherwise, new frequencies are added to the set Ω, so
that the design is repeated until such specifications are reached.

The closed-loop specifications for system in Figure 1 are typically defined in time domain
and/or in the frequency domain. The time domain specifications define the desired outputs
for determined inputs, and the frequency domain specifications define in terms of frequency
the desired characteristics for the system output for those inputs.
In the following, these types of specifications are described and the specifications translation
problem from time domain to frequency domain is considered.

2.1 Time domain specifications
Typically, the closed-loop specifications for system in Figure 1 are defined in terms of the
system inputs and outputs. Both of them must be delimited, so that the system operates in a
predetermined region. For example:

1. In a regulation problem, the aim is to achieve a plant output close to zero (or nearby a
determined operation point). For this case, the time domain specifications could define
allowed operation regions as shown in Figures 5a and 5b, supposing that the aim is to
achieve a plant output close to zero.

2. In a reference tracking problem, the plant output must follow the reference input with
determined time domain characteristics. In Figure 5c a typical specified region is shown,
in which the system output must stay. The unit step response is a very common
characterization, due to it combines a fast signal (an infinite change in velocity at t = 0+)
with a slow signal (it remains in a constant value after transitory).

The classical specifications such as rise time, settling time and maximum overshoot, are special
cases of examples in Figure 5. All these cases can be also defined in frequency domain.

2.2 Frequency domain specifications
The closed-loop specifications for system in Figure 1 are typically defined in terms of
inequalities on the closed-loop transfer functions for the system, as shown in Equations (2)-(7).

1. Disturbance rejection at the plant output:
∣∣∣∣

ĉ

d̂o

∣∣∣∣ =
∣∣∣∣

1
1 + P(jω)C(jω)

∣∣∣∣ ≤ δpo(ω) ∀ω > 0, ∀P ∈ ℘ (2)

2. Disturbance rejection at the plant input:
∣∣∣∣

ĉ

d̂i

∣∣∣∣ =
∣∣∣∣

P(jω)
1 + P(jω)C(jω)

∣∣∣∣ ≤ δpi(ω) ∀ω > 0, ∀P ∈ ℘ (3)

3. Stability: ∣∣∣∣
ĉ

r̂F

∣∣∣∣ =
∣∣∣∣

P(jω)C(jω)
1 + P(jω)C(jω)

∣∣∣∣ ≤ λ ∀ω > 0, ∀P ∈ ℘ (4)

4. References Tracking:

Bl(ω) ≤
∣∣∣∣
ĉ
r̂

∣∣∣∣ =
∣∣∣∣

F(jω)P(jω)C(jω)
1 + P(jω)C(jω)

∣∣∣∣ ≤ Bu(ω) ∀ω > 0, ∀P ∈ ℘ (5)
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5. Noise rejection:
∣∣∣∣

ĉ
n̂

∣∣∣∣ =
∣∣∣∣

P(jω)C(jω)
1 + P(jω)C(jω)

∣∣∣∣ ≤ δn(ω) ∀ω > 0, ∀P ∈ ℘ (6)

6. Control effort: ∣∣∣∣
û
n̂

∣∣∣∣ =
∣∣∣∣

C(jω)
1 + P(jω)C(jω)

∣∣∣∣ ≤ δce(ω) ∀ω > 0, ∀P ∈ ℘ (7)

For specifications in Eq. (2), (3) and (5), arbitrarily small specifications can be achieved
designing C so that |C(jω)| → ∞ (due to the appearance of the M-circle in the Nichols plot).
So, with an arbitrarily small deviation from the steady state, due to the disturbance, and with
a sensibility close to zero, the control system is more independent of the plant uncertainty.
Obviously, in order to achieve an increase in |C(jω)| is necessary to increase the crossover
frequency1 for the system. So, to achieve arbitrarily small specifications implies to increase
the bandwidth2 of the system. Note that the control effort specification is defined, in this
context, from the sensor noise n to the control signal u. In order to define this specification
from the reference, only the closed-loop transfer function from the n signal to u signal must
be multiplied by F precompensator. However, in QFT, it is not defined in this form because of
F must be used with other purposes.
On the other hand, to increase the value of |C(jω)| implies a problem in the case of the
control effort specification and in the case of the sensor noise rejection, since, as was previously
indicated, the bandwidth of the system is increased (so the sensor noise will affect the system
performance a lot). A compromise must be achieved among the different specifications.
The stability specification is related to the relative stability margins: phase and gain margins.
Hence, supposing that λ is the stability specification in Eq. (4), the phase margin is equal to
2 · arcsin(0.5λ) degrees, and the gain margin is equal to 20log10(1 + 1/λ) dB.
The output disturbance rejection specification limits the distance from the open-loop transfer
function L(jω) to the point (−1, 0) in Nyquist plane, and it sets an upper limit on the
amplification of the disturbances at the plan output. So, this type of specification is also
adequated for relative stability.

2.3 Translation of quantitative specifications from time to frequency domain
As was previously indicated, QFT is a frequency domain design technique, so, when the
specifications are given in the time domain (typically in terms of the unit step response), it
is necessary to translate them to frequency domain. One way to do it is to assume a model for
the transfer function Tcr, closed-loop transfer function from reference r to the output c, and to
find values for its parameters so that the defined time domain limits over the system output
are satisfied.

2.3.1 A first-order model
Lets consider the simplest case, a first-order model given by Tcr(s) = K/(s + a), so that when
r(t) is an unit step the system output is given by c(t) = (K/a)(1 − e−at). Then, in order to
reach c(t) = r(t) for a time t large enough, K should be K = a.

1 The crossover frequency for a system is defined as the frequency in rad/s such that the magnitude of
the open-loop transfer function L(jω) = P(jω)C(jω) is equal to zero decibels (dB).

2 The bandwith of a system is defined as the value of the frequency ωb in rad/s such that
|Tcr(jωb)/Tcr(0)|dB= -3 dB, where Tcr is the closed-loop transfer function from the reference r to the
output c.
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from the reference, only the closed-loop transfer function from the n signal to u signal must
be multiplied by F precompensator. However, in QFT, it is not defined in this form because of
F must be used with other purposes.
On the other hand, to increase the value of |C(jω)| implies a problem in the case of the
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indicated, the bandwidth of the system is increased (so the sensor noise will affect the system
performance a lot). A compromise must be achieved among the different specifications.
The stability specification is related to the relative stability margins: phase and gain margins.
Hence, supposing that λ is the stability specification in Eq. (4), the phase margin is equal to
2 · arcsin(0.5λ) degrees, and the gain margin is equal to 20log10(1 + 1/λ) dB.
The output disturbance rejection specification limits the distance from the open-loop transfer
function L(jω) to the point (−1, 0) in Nyquist plane, and it sets an upper limit on the
amplification of the disturbances at the plan output. So, this type of specification is also
adequated for relative stability.

2.3 Translation of quantitative specifications from time to frequency domain
As was previously indicated, QFT is a frequency domain design technique, so, when the
specifications are given in the time domain (typically in terms of the unit step response), it
is necessary to translate them to frequency domain. One way to do it is to assume a model for
the transfer function Tcr, closed-loop transfer function from reference r to the output c, and to
find values for its parameters so that the defined time domain limits over the system output
are satisfied.

2.3.1 A first-order model
Lets consider the simplest case, a first-order model given by Tcr(s) = K/(s + a), so that when
r(t) is an unit step the system output is given by c(t) = (K/a)(1 − e−at). Then, in order to
reach c(t) = r(t) for a time t large enough, K should be K = a.

1 The crossover frequency for a system is defined as the frequency in rad/s such that the magnitude of
the open-loop transfer function L(jω) = P(jω)C(jω) is equal to zero decibels (dB).

2 The bandwith of a system is defined as the value of the frequency ωb in rad/s such that
|Tcr(jωb)/Tcr(0)|dB= -3 dB, where Tcr is the closed-loop transfer function from the reference r to the
output c.
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For a first-order model τc = 1/a = 1/ωb is the time constant (represents the time it takes the
system step response to reach 63.2% of its final value). In general, the greater the bandwith is,
the faster the system output will be.
One important difficulty for a first-order model considered is that the first derivative for the
output (in time infinitesimaly after zero, t = 0+) is c = K, when it would be desirable to be 0.
So, problems appear at the neighborhood of time t = 0. In Figure 6 typical specified time limits
(from Eq. (5) Bl and Bu are the magnitudes of the frequency response for these time domain
limits) and the system output are shown when a first-order model is used. As observed,
problems appear at the neighborhood of time t = 0. On the other hand the first-order model
does not allow any overshoot, so from the specified time limits the first order model would
be very conservative. Hence, a more complex model must be used for the closed-loop transfer
function Tcr.
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2.3.2 A second-order model
In this case, two free parameters are available (assuming unit static gain): the damping factor
ξ and the natural frequency ωn (rad/s). The model is given by

T(s) =
ω2

n

s2 + 2ξωns + ω2
n

(8)

The unit step response, depending on the value of ξ, is given by
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c(t) =

⎧⎪⎪⎨
⎪⎪⎩

1 − e−ξωnt(cos(ωn
�

1 − ξ2t) + ξωn

ωn

√
1−ξ2

sin(ωn
�

1 − ξ2t)) if ξ < 1

1 − e−ξωnt(cosh(ωn
�

ξ2 − 1t) + ξωn

ωn

√
ξ2−1

sinh(ωn
�

1 − ξ2t)) if ξ > 1

1 − e−ξωnt(1 + ωnt) if ξ = 1

In practice, the step response for a system usually has more terms, but normally it contains
a dominant second-order component with ξ < 1. The second-order model is very popular in
control system design in spite of its simplicity, because of it is applicable to a large number of
systems. The most important time domain indexes for a second-order model are: overshoot,
settling time, rise time, damping factor and natural frequency. In frequency domain, its most
important indexes are: resonance peak (related with the damping factor and the overshoot),
resonance frequency (related with the natural frequency), and the bandwidth (related with
the rise time). The resonance peak is defined as max

ω |Tcr(jω)| � Mp. The resonance frequency
ωp is defined as the frequency at which |Tcr(jωp)| = Mp. One way to control the overshoot
is setting an upper limit over Mp. For example, if this limit is fixed on 3 dB, and the practical
Tcr(jω) for ω in the frequency range of interest is ruled by a pair of complex conjugated poles,
then this constrain assures an overshoot lower than 27%.
In (Horowitz, 1993) tables with these relations are proposed, where, based on the experience of
Professor Horowitz, makes to set a second-order model to be located inside the allowed zone
defined by the possible specifications. As Horowitz suggested in his book, if the magnitude of
the closed-loop transfer function Tcr is located between frequency domain limits Bu(ω) and
Bl(ω) in Eq. (5), then the time domain response is located between the corresponding time
domain specifications, or at most it would be satisfied them in a very approximated way.

2.3.3 A third-order model with a zero
A third-order model with a unit static gain is given by

T(s) =
μω3

n

(s2 + 2ξωns + ω2
n)(s + μωn)

(9)

For values of μ less than 5, a similar behaviour as if the pole is not added to the second-order
model is obtained . So, the model in Eq. (8) would must be used.
If a zero is added to Eq. (9), it results

T(s) =
(1 + s/λξωn)μω3

n

(s2 + 2ξωns + ω2
n)(s + μωn)

(10)

The unit responses obtained in this case are shown in Figure 7 for different values of λ.
As shown in Figure 7, this model implies an improvement with respect to that in Eq. (8),
because of it is possible to reduce the rise time without increasing the overshoot. Obviously, if
ωn > 1, then the response is ωn times faster than the case with ωn = 1 (slower for ωn < 1). In
(Horowitz, 1993), several tables are proposed relating parameters in Eq. (10) with time domain
parameters as overshoot, rise time and settling time.
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In practice, the step response for a system usually has more terms, but normally it contains
a dominant second-order component with ξ < 1. The second-order model is very popular in
control system design in spite of its simplicity, because of it is applicable to a large number of
systems. The most important time domain indexes for a second-order model are: overshoot,
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In (Horowitz, 1993) tables with these relations are proposed, where, based on the experience of
Professor Horowitz, makes to set a second-order model to be located inside the allowed zone
defined by the possible specifications. As Horowitz suggested in his book, if the magnitude of
the closed-loop transfer function Tcr is located between frequency domain limits Bu(ω) and
Bl(ω) in Eq. (5), then the time domain response is located between the corresponding time
domain specifications, or at most it would be satisfied them in a very approximated way.

2.3.3 A third-order model with a zero
A third-order model with a unit static gain is given by

T(s) =
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(9)
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model is obtained . So, the model in Eq. (8) would must be used.
If a zero is added to Eq. (9), it results
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There exist other techniques to translate specifications from time domain to frequency
domain, such as model-based techniques, where based on the structures of the plant and
the controller, a set of allowed responses is defined. Another technique is that presented in
(Krishnan and Cruickshanks, 1977), where the time domain specifications are formulated as∫ t

0 |c(τ) − m(τ)|2dτ ≤ ∫ t
0 v2(τ)dτ, with m(t) and v(t) specified time domain functions, and

where it is established that the energy of the signal, difference between the system output and
the specification m(t), must be enclosed by the energy of the signal v(t), for each instant t, and
with a translation to the frequency domain given by the inequality |ĉ(jω)− m̂(jω)| ≤ |v̂(jω)|.
In (Pritchard and Wigdorowitz, 1996) and (Pritchard and Wigdorowitz, 1997), the relation
time-frequency is studied when uncertainty is included in the system, so that it is possible
to know the time domain limits for the system response from frequency response of a set
of closed-loop transfer functions from reference to the output. This technique may be used
to solve the time-frequency translation problem. However, the results obtained in translation
from frequency to time and from time to frequency are very conservative.

2.4 Controller design
Now, the procedure previously introduced is explained more in detail. The aim is to design
the 2DoF controller {F, G} in Figure 1, so that a subset of specifications introduced in section
2.2is satisfied, and the stability of the closed-loop system for all plant P in ℘ is assured.
The specifications in section 2. 2are translated in circles on Nyquist plane defining allowed
zones for the function L(jω) = P(jω)C(jω). The allowed zone is the outside of the circle for
specifications in Eq. (2)-(6), and the inside one for the specification in Eq. (7). Combining the
allowed zones for each function L corresponding to each plant P in ℘, a set of restrictions for
controller C for each frequency ω is obtained. The limits of these zones represented in Nichols
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plane are called bounds or boundaries. These constrains in frequency domain can be formulated
over controller C or over function L0 = P0C, for any plant P0 in ℘ (so-called nominal plant).
In order to explain the detailed design process, the following example, from (Horowitz, 1993),
is used. Lets suppose the plant in Figure 1 given by

℘ =
{

P(s) =
k

s(s + a)
with k ∈ [1, 20] and a ∈ [1, 5]

}
(11)

corresponding to a range of motors and loads, where the equation modeling the motor
dynamic is Jc̈ + Bċ = Ku, with k = K/J and a = B/J in Eq. (11). Lets suppose the tracking
specifications given by

Bl(ω) ≤ |Tcr(jω)|dB =
∣∣∣∣

F(jω)P(jω)C(jω)
1 + P(jω)C(jω)

∣∣∣∣
dB

≤ Bu(ω) ∀P ∈ ℘ ∀ω > 0 (12)

shown in Figure 8. In Figure 9, the difference δ(ω) = Bu(ω) − Bl(ω) is shown for each
frequency ω. It is easy to see that in order to satisfy the specifications in Eq. (12), the following
inequality must be satisfied

Δ|Tcr(jω)|dB = max
P∈℘

∣∣∣∣
P(jω)C(jω)

1 + P(jω)C(jω)

∣∣∣∣
dB

− min
P∈℘

∣∣∣∣
P(jω)C(jω)

1 + P(jω)C(jω)

∣∣∣∣
dB

≤

≤ δ(ω) = Bu(ω)− Bl(ω) ∀P ∈ ℘ ∀ω > 0
(13)
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0 v2(τ)dτ, with m(t) and v(t) specified time domain functions, and

where it is established that the energy of the signal, difference between the system output and
the specification m(t), must be enclosed by the energy of the signal v(t), for each instant t, and
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to solve the time-frequency translation problem. However, the results obtained in translation
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2.4 Controller design
Now, the procedure previously introduced is explained more in detail. The aim is to design
the 2DoF controller {F, G} in Figure 1, so that a subset of specifications introduced in section
2.2is satisfied, and the stability of the closed-loop system for all plant P in ℘ is assured.
The specifications in section 2. 2are translated in circles on Nyquist plane defining allowed
zones for the function L(jω) = P(jω)C(jω). The allowed zone is the outside of the circle for
specifications in Eq. (2)-(6), and the inside one for the specification in Eq. (7). Combining the
allowed zones for each function L corresponding to each plant P in ℘, a set of restrictions for
controller C for each frequency ω is obtained. The limits of these zones represented in Nichols
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plane are called bounds or boundaries. These constrains in frequency domain can be formulated
over controller C or over function L0 = P0C, for any plant P0 in ℘ (so-called nominal plant).
In order to explain the detailed design process, the following example, from (Horowitz, 1993),
is used. Lets suppose the plant in Figure 1 given by

℘ =
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P∈℘

∣∣∣∣
P(jω)C(jω)

1 + P(jω)C(jω)

∣∣∣∣
dB

− min
P∈℘

∣∣∣∣
P(jω)C(jω)

1 + P(jω)C(jω)

∣∣∣∣
dB

≤

≤ δ(ω) = Bu(ω)− Bl(ω) ∀P ∈ ℘ ∀ω > 0
(13)
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Fig. 9. Specifications on the magnitude variations for the tracking problem.

Making L = PC large enough, for each plant P in ℘, and for a frequency ω, it is possible
to achieve an arbitrarily small specification δ(ω). However, this is not possible in practice,
since the system bandwidth must be limited in order to minimize the influence of the sensor
noise at the plant input. When C has been designed to satisfy the specifications in Eq. (13), the
second degree of freedom, F, is used to locate those variations inside magnitude limits Bl(ω)
and Bu(ω).
In order to design the first degree of freedom, C, it is necessary to define a set of constrains on
C or on L0 in the frequency domain, what guarantee that if C (respectively L0) satisfies those
restrictions then the specifications are satisfied too. As commented above, these constrains are
called bounds or boundaries in QFT, and in order to compute them it is necessary to take into
account:

(i) A set of specifications in frequency domain, that in the case of tracking problem, are given
by Eq. (13), and that in other cases (disturbance rejection, control effort, sensor noise,...) are
similar as shown in section 2.2.

(ii) An object (representation) modeling the plant uncertainty in frequency domain, so-called
template.

The following sections explain more in detail the meaning of the templates and the bounds.

Computation of basic graphical elements to deal with uncertainties: templates
If there is no uncertainty in plant, the set ℘ would contain only one transfer function, P, and
for a frequency, ω, P(jω) would be a point in the Nichols plane. Due to the uncertainty, a set
of points, for each frequency, appears in the Nichols plane. One point for each plant P in ℘.
These sets are called templates. For example, Figure 10 shows the template for ω = 2 rad/s,
corresponding to the set:
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Fig. 10. Template for frequency ω = 2 rad/s and the plant given by Eq. (11).

�(ω = 2) =
{

k
2j(2j + a)

: k ∈ [1, 20] and a ∈ [1, 5]
}

.

For k = 1 and driving a from 1 to 5, the segment ABC is obtained in Figure 10. For a = 3 and
driving k from 1 to 20, the segment BE is calculated. For k = 20 and driving a from 1 to 5, the
segment DEF is obtained.
Choosing a plant P0 belonging to the set ℘, the nominal open-loop transfer function is defined
as L0 = P0C. In order to shift a template in the Nichols plane, a quantity must be added in
phase (degrees) and other quantity in magnitude (decibels) to all points. Using the nominal
point P0(jω) as representative of the full template at frequency ω and shaping the value of the
nominal L0(jω) = P0(jω)C(jω) using C(jω), it is equivalent to add |C(jω)|dB in magnitude
and Angle(C(jω)) degrees in phase to each point P(jω) (with magnitude in decibels and
phase in degrees) inside the template at frequency ω. So, the shaping of the nominal open-loop
transfer function at frequency ω (using the degree of freedom C), is equivalent to shift the
template at that frequency ω to a specific location in the Nichols plane.
The choice of the nominal plant for a template is totally free. The design method is valid
independently of this choice. However, there exist rules for the more adequate choice in
specific situations (Horowitz, 1993).
As was previously indicated, there exists a template for each frequency, so that after the
definition of the specifications for the control problem, the following step is to define a set
of design frequencies Ω. Then, the templates would be computed for each frequency ω in Ω.
Once the specifications have been defined and the templates have been computed, the third
step is the computation of boundaries using these graphical objects and the specifications.
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Making L = PC large enough, for each plant P in ℘, and for a frequency ω, it is possible
to achieve an arbitrarily small specification δ(ω). However, this is not possible in practice,
since the system bandwidth must be limited in order to minimize the influence of the sensor
noise at the plant input. When C has been designed to satisfy the specifications in Eq. (13), the
second degree of freedom, F, is used to locate those variations inside magnitude limits Bl(ω)
and Bu(ω).
In order to design the first degree of freedom, C, it is necessary to define a set of constrains on
C or on L0 in the frequency domain, what guarantee that if C (respectively L0) satisfies those
restrictions then the specifications are satisfied too. As commented above, these constrains are
called bounds or boundaries in QFT, and in order to compute them it is necessary to take into
account:

(i) A set of specifications in frequency domain, that in the case of tracking problem, are given
by Eq. (13), and that in other cases (disturbance rejection, control effort, sensor noise,...) are
similar as shown in section 2.2.

(ii) An object (representation) modeling the plant uncertainty in frequency domain, so-called
template.

The following sections explain more in detail the meaning of the templates and the bounds.

Computation of basic graphical elements to deal with uncertainties: templates
If there is no uncertainty in plant, the set ℘ would contain only one transfer function, P, and
for a frequency, ω, P(jω) would be a point in the Nichols plane. Due to the uncertainty, a set
of points, for each frequency, appears in the Nichols plane. One point for each plant P in ℘.
These sets are called templates. For example, Figure 10 shows the template for ω = 2 rad/s,
corresponding to the set:
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�(ω = 2) =
{

k
2j(2j + a)

: k ∈ [1, 20] and a ∈ [1, 5]
}

.

For k = 1 and driving a from 1 to 5, the segment ABC is obtained in Figure 10. For a = 3 and
driving k from 1 to 20, the segment BE is calculated. For k = 20 and driving a from 1 to 5, the
segment DEF is obtained.
Choosing a plant P0 belonging to the set ℘, the nominal open-loop transfer function is defined
as L0 = P0C. In order to shift a template in the Nichols plane, a quantity must be added in
phase (degrees) and other quantity in magnitude (decibels) to all points. Using the nominal
point P0(jω) as representative of the full template at frequency ω and shaping the value of the
nominal L0(jω) = P0(jω)C(jω) using C(jω), it is equivalent to add |C(jω)|dB in magnitude
and Angle(C(jω)) degrees in phase to each point P(jω) (with magnitude in decibels and
phase in degrees) inside the template at frequency ω. So, the shaping of the nominal open-loop
transfer function at frequency ω (using the degree of freedom C), is equivalent to shift the
template at that frequency ω to a specific location in the Nichols plane.
The choice of the nominal plant for a template is totally free. The design method is valid
independently of this choice. However, there exist rules for the more adequate choice in
specific situations (Horowitz, 1993).
As was previously indicated, there exists a template for each frequency, so that after the
definition of the specifications for the control problem, the following step is to define a set
of design frequencies Ω. Then, the templates would be computed for each frequency ω in Ω.
Once the specifications have been defined and the templates have been computed, the third
step is the computation of boundaries using these graphical objects and the specifications.
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Derivation of boundaries from templates and specifications
Now, zones on Nichols plane are defined for each frequency ω in Ω, so that if the nominal of
the template shifted by C(jω) is located inside that zone, then the specifications are satisfied.
For each specification in section 2. 2and for each frequency ω in Ω, using the template and
the corresponding specification, the boundary must be computed. Details about the different
types of bounds and the most important algorithms to compute them can be found in (Moreno
et al., 2006). In general, a boundary at frequency ω defines a limit of a zone on Nichols plane
so that if the nominal L0(jω) of the shifted template is located inside that zone, then some
specifications are satisfied. So, the most single appearance of a boundary defines a threshold
value in magnitude for each phase φ in the Nichols plane, so that if Angle(L0(jω)) = φ, then
|L0(jω)|dB must be located above (or below depending on the type of specification used to
compute the boundary) that threshold value.
It is important to note that sometimes redefinition of the specifications is necessary. For
example, for system in Eq. (11), for ω ≥ 10 rad/s the templates have similar dimensions, and
the specifications from Eq. (13) in Figure 9 are identical. Then, the boundaries for ω ≥ 10 rad/s
will be almost identical. The function L0(jω) must be above the boundaries for all frequencies,
including ω ≥ 10 rad/s, but this is unviable due to it must be satisfied that L0(jω) → 0
when ω → ∞. Therefore, it is necessary to open the tracking specifications for high frequency
(where furthermore the uncertainty is greater), such as it is shown in Figure 8. On the other
hand, it must be also taken into account that for a large enough frequency ω, the specification

δ(ω) in Eq. (13) must be greater or equal than max
P∈℘ |P(jω)|dB− min

P∈℘ |P(jω)|dB such that, for
a small value of L0(jω) for these frequencies, the specifications are also satisfied. The effect
of this enlargement for the specifcations is negligible when the modifications are introduced
at a frequency large enough. These effects are notable in the response at the neighborhood of
t = 0.
Considering the tracking bounds as negligible from a specific frequency (in the sense that
the specification is large enough), it implies that the stability boundaries are the dominant
ones at these frequencies. As was mentioned above, since the templates are almost identical at
high frequencies and the stability specification λ is independent of the frequency, the stability
bounds are also identical and only one of them can be used as representative of the rest. In
QFT, this boundary is usually called high frequency bound, and it is denoted by Bh.
Notice that the use of a discrete set of design frequencies Ω does not imply any problem.
The variation of the specifications and the variation of the appearance of the templates from a
frequency ω− to a frequency ω+, with ω− < ω < ω+, is smooth. Anyway, the methodology
let us discern the specific cases in which the number of elements of Ω is insufficient, and let
us iterate in the design process to incorporate the boundaries for those new frequencies, then
reshaping again the compensator {F, C}.

Design of the nominal open-loop transfer function fulfilling the boundaries
In this stage, the function L0(jω) must be shaped fulfilling all the boundaries for each frequency.
Furthermore, It must assure that the transfer function 1 + L(s) has no zeros in the right half
plane for any plant P in ℘. So, initially L0 = P0 (C = 1) and poles and zeros are added to this
function (poles and zeros of the controller C) in order to satisfy all of these restrictions on the
Nichols plane. In this stage, only using the function L0, it is possible to assure the fulfillment of
the specifications for all of the elements in the set ℘ when L0(jω) is located inside the allowed
zones defined by the boundary at frequency ω (computed from the corresponding template at
that frequency, and from the specifications).
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Obviously, there exists an infinite number of acceptable functions L0 satisfying the boundaries
and the stability condition. In order to choose among all of these functions, an important factor
to be considered is the sensor noise effect at the plant input. The closed-loop transfer function
from noise n to the plant input u is given by

Tun(s) =
−C(s)

1 + P(s)C(s)
=

−L(s)/P(s)
1 + L(s)

.

In the range of frequencies in which |L(jω)| is large (generally low frequency), |Tun(jω)| →
|1/P(jω)|, so that the value of |Tun(jω)| at low frequency is independent on the design
chosen for L. In the range of frequencies where |L(jω)| is small (generally high frequency),
|Tun(jω)| → |G(jω)|. These two asymptotes cross between themselves at the crossover
frequency.
In order to reduce the influence of the sensor noise at the plant input, |C(jω)| → 0 when
ω → ∞ must be guaranteed. It is equivalent to say that |L0(jω)| must be reduced as fast
as possible at high frequency. A conditionally stable3 design for L0 is especially adequate to
achieve this objective. However, as it is shown in (Moreno et al., 2010) this type of designs
supposes a problem when there exists a saturation non-linearity type in the system.

Design of the prefilter
At this point, only the second degree of freedom, F, must be shaped. The controller C,
designed in the previous step, only guarantees that the specifications in Eq. (13) are satisfied,
but not the specifications in Eq. (12). Using F, it is possible to guarantee that the specifications
in Eq. (12) are satisfied when with C the specifications in Eq. (13) are assured.
In order to design F, the most common method consists of computing for each frequency ω
the following limits

Fu(ω) =
∣∣∣∣max

P∈℘

∣∣∣∣
P(jω)C(jω)

1 + P(jω)C(jω)

∣∣∣∣
dB

− Bu(ω)
∣∣∣∣

and

Fl(ω) =
∣∣∣∣min

P∈℘

∣∣∣∣
P(jω)C(jω)

1 + P(jω)C(jω)

∣∣∣∣
dB

− Bl(ω)
∣∣∣∣

and shaping F adding poles and zeros until Fl(ω) ≤ |F(jω)| ≤ Fu(ω) for all frequency ω in
Ω.

Validation of the design
This is the last step in the design process and consists in studying the magnitude of the
different closed-loop transfer functions, checking if the specifications for frequencies outside
of the set Ω are satisfied. If any specification is not satisfied for a specific frequency, ωp,
then this frequency is added to the set Ω, and the corresponding template and boundary are

3 A system is conditionally stable if a gain reduction of the open-loop transfer function L drives the
closed-loop poles to the right half plane.
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the corresponding specification, the boundary must be computed. Details about the different
types of bounds and the most important algorithms to compute them can be found in (Moreno
et al., 2006). In general, a boundary at frequency ω defines a limit of a zone on Nichols plane
so that if the nominal L0(jω) of the shifted template is located inside that zone, then some
specifications are satisfied. So, the most single appearance of a boundary defines a threshold
value in magnitude for each phase φ in the Nichols plane, so that if Angle(L0(jω)) = φ, then
|L0(jω)|dB must be located above (or below depending on the type of specification used to
compute the boundary) that threshold value.
It is important to note that sometimes redefinition of the specifications is necessary. For
example, for system in Eq. (11), for ω ≥ 10 rad/s the templates have similar dimensions, and
the specifications from Eq. (13) in Figure 9 are identical. Then, the boundaries for ω ≥ 10 rad/s
will be almost identical. The function L0(jω) must be above the boundaries for all frequencies,
including ω ≥ 10 rad/s, but this is unviable due to it must be satisfied that L0(jω) → 0
when ω → ∞. Therefore, it is necessary to open the tracking specifications for high frequency
(where furthermore the uncertainty is greater), such as it is shown in Figure 8. On the other
hand, it must be also taken into account that for a large enough frequency ω, the specification
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of this enlargement for the specifcations is negligible when the modifications are introduced
at a frequency large enough. These effects are notable in the response at the neighborhood of
t = 0.
Considering the tracking bounds as negligible from a specific frequency (in the sense that
the specification is large enough), it implies that the stability boundaries are the dominant
ones at these frequencies. As was mentioned above, since the templates are almost identical at
high frequencies and the stability specification λ is independent of the frequency, the stability
bounds are also identical and only one of them can be used as representative of the rest. In
QFT, this boundary is usually called high frequency bound, and it is denoted by Bh.
Notice that the use of a discrete set of design frequencies Ω does not imply any problem.
The variation of the specifications and the variation of the appearance of the templates from a
frequency ω− to a frequency ω+, with ω− < ω < ω+, is smooth. Anyway, the methodology
let us discern the specific cases in which the number of elements of Ω is insufficient, and let
us iterate in the design process to incorporate the boundaries for those new frequencies, then
reshaping again the compensator {F, C}.

Design of the nominal open-loop transfer function fulfilling the boundaries
In this stage, the function L0(jω) must be shaped fulfilling all the boundaries for each frequency.
Furthermore, It must assure that the transfer function 1 + L(s) has no zeros in the right half
plane for any plant P in ℘. So, initially L0 = P0 (C = 1) and poles and zeros are added to this
function (poles and zeros of the controller C) in order to satisfy all of these restrictions on the
Nichols plane. In this stage, only using the function L0, it is possible to assure the fulfillment of
the specifications for all of the elements in the set ℘ when L0(jω) is located inside the allowed
zones defined by the boundary at frequency ω (computed from the corresponding template at
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Obviously, there exists an infinite number of acceptable functions L0 satisfying the boundaries
and the stability condition. In order to choose among all of these functions, an important factor
to be considered is the sensor noise effect at the plant input. The closed-loop transfer function
from noise n to the plant input u is given by

Tun(s) =
−C(s)

1 + P(s)C(s)
=

−L(s)/P(s)
1 + L(s)

.

In the range of frequencies in which |L(jω)| is large (generally low frequency), |Tun(jω)| →
|1/P(jω)|, so that the value of |Tun(jω)| at low frequency is independent on the design
chosen for L. In the range of frequencies where |L(jω)| is small (generally high frequency),
|Tun(jω)| → |G(jω)|. These two asymptotes cross between themselves at the crossover
frequency.
In order to reduce the influence of the sensor noise at the plant input, |C(jω)| → 0 when
ω → ∞ must be guaranteed. It is equivalent to say that |L0(jω)| must be reduced as fast
as possible at high frequency. A conditionally stable3 design for L0 is especially adequate to
achieve this objective. However, as it is shown in (Moreno et al., 2010) this type of designs
supposes a problem when there exists a saturation non-linearity type in the system.

Design of the prefilter
At this point, only the second degree of freedom, F, must be shaped. The controller C,
designed in the previous step, only guarantees that the specifications in Eq. (13) are satisfied,
but not the specifications in Eq. (12). Using F, it is possible to guarantee that the specifications
in Eq. (12) are satisfied when with C the specifications in Eq. (13) are assured.
In order to design F, the most common method consists of computing for each frequency ω
the following limits

Fu(ω) =
∣∣∣∣max
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P(jω)C(jω)

1 + P(jω)C(jω)
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∣∣∣∣

and

Fl(ω) =
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P(jω)C(jω)
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∣∣∣∣
dB
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∣∣∣∣

and shaping F adding poles and zeros until Fl(ω) ≤ |F(jω)| ≤ Fu(ω) for all frequency ω in
Ω.

Validation of the design
This is the last step in the design process and consists in studying the magnitude of the
different closed-loop transfer functions, checking if the specifications for frequencies outside
of the set Ω are satisfied. If any specification is not satisfied for a specific frequency, ωp,
then this frequency is added to the set Ω, and the corresponding template and boundary are

3 A system is conditionally stable if a gain reduction of the open-loop transfer function L drives the
closed-loop poles to the right half plane.
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computed for that frequency ωp. Then, the function L0 is reshaped, so that the new restriction
is satisfied. Afterwards, the precompensator F is reshaped, and finally the new design is
validated. So, an iterative procedure is followed until the validation result is satisfactory.

3. Computer-based tools for QFT

As it has been described in the previous section, the QFT framework evolves several
stages, where a continuous re-design process must be followed. Furthermore, there are some
steps requiring the use of algorithms to calculate the corresponding parameters. Therefore,
computer-based tools as support for the QFT methodology are highly valuable to help in
the design procedure. This section briefly describes the most well-known tools available in
the literature, The Matlab QFT Toolbox (Borghesani et al., 2003) and SISO-QFTIT (Díaz et al.,
2005a),(Díaz et al., 2005b).

3.1 Matlab QFT toolbox
The QFT Frequency Domain Control Design Toolbox is a commercial collection of Matlab
functions for designing robust feedback systems using QFT, supported by the company
Terasoft, Inc (Borghesani et al., 2003). The QFT Toolbox includes a convenient GUI that
facilitates classical loop shaping of controllers to meet design requirements in the face of
plant uncertainty and disturbances. The interactive GUI for shaping controllers provides
a point-click interface for loop shaping using classical frequency domain concepts. The
toolbox also includes powerful bound computation routines which help in the conversion of
closed-loop specifications into boundaries on the open-loop transfer function (Borghesani et al.,
2003).
The toolbox is used as a combination of Matlab functions and graphical interfaces to perform
a complete QFT design. The best way to do that is to create a Matlab script including all the
required calls to the corresponding functions. The following lines briefly describe the main
steps and functions to use, where an example presented in (Borghesani et al., 2003) is followed
for a better understanding (a more detailed description can be found in (Borghesani et al.,
2003)).
The example to follow is described by:

℘ =
{

P(s) =
k

(s + a)(s + b)
: k = [1, 2, 5, 8, 10], a = [1, 3, 5], b = [20, 25, 30]

}
. (14)

Once the process and the associated uncertainties are defined, the different steps, explained
in section 2., to design the robust control scheme using the QFT toolbox are described in the
following:

• Template computation. First, the transfer function models representing the process
uncertainty must be written. The following code calculates a matrix of 40 plant elements
which is stored in the variable P and represents the system defined by Eq. (14).

» c = 1; k = 10; b = 20;
» for a = linspace(1,5,10),
» P(1,1,c) = tf(k,[1,a+b,a*b]); c = c + 1;
» end
» k = 1; b = 30;
» for a = linspace(1,5,10),
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» P(1,1,c) = tf(k,[1,a+b,a*b]); c = c + 1;
» end
» b = 30; a = 5;
» for k = linspace(1,10,10),
» P(1,1,c) = tf(k, [1,a+b,a*b]); c = c + 1;
» end
» b = 20; a = 1;
» for k = linspace(1,10,10),
» P(1,1,c) = tf(k, [1,a+b,a*b]); c = c + 1;
» end

Then, the nominal element is selected:
» nompt=21;

and the frequency array is set:
» w = [0.1, 5, 10, 100];

Finally, the templates are calculated and visualized using the plottmpl function (see
(Borghesani et al., 2003) for a detailed explanation):

» plottmpl(w,P,nompt);
obtaining the templates shown in Figure 11.

Fig. 11. Matlab QFT Toolbox. Templates for example in Eq. (14)

• Specifications. In this step, the system specifications must be defined according to Eq. (2)-(7).
Once the specifications are determined, the corresponding bounds on the Nichols plane are
computed. The following source code shows the use of specifications in Eq. (2)-(4) for this
example.
A stability specification of λ = 1.2 in Eq. (4) corresponding to a gain margin (GM) ≥ 5.3
dB and a phase margin (PM) = 49.25 degrees is given:

» Ws1 = 1.2;
Then, the stability bounds are computed using the function sisobnds (see (Borghesani et al.,
2003) for a detailed explanation) and its value is stored in the variable bdb1:
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computed for that frequency ωp. Then, the function L0 is reshaped, so that the new restriction
is satisfied. Afterwards, the precompensator F is reshaped, and finally the new design is
validated. So, an iterative procedure is followed until the validation result is satisfactory.

3. Computer-based tools for QFT

As it has been described in the previous section, the QFT framework evolves several
stages, where a continuous re-design process must be followed. Furthermore, there are some
steps requiring the use of algorithms to calculate the corresponding parameters. Therefore,
computer-based tools as support for the QFT methodology are highly valuable to help in
the design procedure. This section briefly describes the most well-known tools available in
the literature, The Matlab QFT Toolbox (Borghesani et al., 2003) and SISO-QFTIT (Díaz et al.,
2005a),(Díaz et al., 2005b).

3.1 Matlab QFT toolbox
The QFT Frequency Domain Control Design Toolbox is a commercial collection of Matlab
functions for designing robust feedback systems using QFT, supported by the company
Terasoft, Inc (Borghesani et al., 2003). The QFT Toolbox includes a convenient GUI that
facilitates classical loop shaping of controllers to meet design requirements in the face of
plant uncertainty and disturbances. The interactive GUI for shaping controllers provides
a point-click interface for loop shaping using classical frequency domain concepts. The
toolbox also includes powerful bound computation routines which help in the conversion of
closed-loop specifications into boundaries on the open-loop transfer function (Borghesani et al.,
2003).
The toolbox is used as a combination of Matlab functions and graphical interfaces to perform
a complete QFT design. The best way to do that is to create a Matlab script including all the
required calls to the corresponding functions. The following lines briefly describe the main
steps and functions to use, where an example presented in (Borghesani et al., 2003) is followed
for a better understanding (a more detailed description can be found in (Borghesani et al.,
2003)).
The example to follow is described by:

℘ =
{

P(s) =
k

(s + a)(s + b)
: k = [1, 2, 5, 8, 10], a = [1, 3, 5], b = [20, 25, 30]

}
. (14)

Once the process and the associated uncertainties are defined, the different steps, explained
in section 2., to design the robust control scheme using the QFT toolbox are described in the
following:

• Template computation. First, the transfer function models representing the process
uncertainty must be written. The following code calculates a matrix of 40 plant elements
which is stored in the variable P and represents the system defined by Eq. (14).

» c = 1; k = 10; b = 20;
» for a = linspace(1,5,10),
» P(1,1,c) = tf(k,[1,a+b,a*b]); c = c + 1;
» end
» k = 1; b = 30;
» for a = linspace(1,5,10),
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» P(1,1,c) = tf(k,[1,a+b,a*b]); c = c + 1;
» end
» b = 30; a = 5;
» for k = linspace(1,10,10),
» P(1,1,c) = tf(k, [1,a+b,a*b]); c = c + 1;
» end
» b = 20; a = 1;
» for k = linspace(1,10,10),
» P(1,1,c) = tf(k, [1,a+b,a*b]); c = c + 1;
» end

Then, the nominal element is selected:
» nompt=21;

and the frequency array is set:
» w = [0.1, 5, 10, 100];

Finally, the templates are calculated and visualized using the plottmpl function (see
(Borghesani et al., 2003) for a detailed explanation):

» plottmpl(w,P,nompt);
obtaining the templates shown in Figure 11.

Fig. 11. Matlab QFT Toolbox. Templates for example in Eq. (14)

• Specifications. In this step, the system specifications must be defined according to Eq. (2)-(7).
Once the specifications are determined, the corresponding bounds on the Nichols plane are
computed. The following source code shows the use of specifications in Eq. (2)-(4) for this
example.
A stability specification of λ = 1.2 in Eq. (4) corresponding to a gain margin (GM) ≥ 5.3
dB and a phase margin (PM) = 49.25 degrees is given:

» Ws1 = 1.2;
Then, the stability bounds are computed using the function sisobnds (see (Borghesani et al.,
2003) for a detailed explanation) and its value is stored in the variable bdb1:
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» bdb1 = sisobnds(1,w,Ws1,P,0,nompt);
Lets now consider the specifications for output and input disturbance rejection cases, from
Eq. (2)-(3). For the case of the output disturbance specification, the performance weight for
the bandwidth [0,10] is defined as

» Ws2 = tf(0.02*[1,64,748,2400],[1,14.4,169]);
and the bounds are computed in the following way

» bdb2 = sisobnds(2,w(1:3),Ws2,P,0,nompt);
For the input disturbance case, the specification is defined as constant for

» Ws3 = 0.01;
calculating the bounds as

» bdb3 = sisobnds(3,w(1:3),Ws3,P,0,nompt);
also for the bandwidth [0,10].
Once the specifications are defined and the corresponding bounds are calculated. For each
frequency they can be combined using the following functions:

» bdb = grpbnds(bdb1,bdb2,bdb3); // Making a global structure
» ubdb = sectbnds(bdb); // Combining bounds

The resulting bounds which will be used for the loop-shaping stage are shown in Figure 12.
This figure is obtained using the plotbnds function:

» plotbnds(ubdb);

Fig. 12. Matlab QFT Toolbox. Boundaries for example (14)

• Loop-shaping. After obtaining the stability and performance bounds, the next step consists in
designing (loop shaping) the controller. The QFT toolbox includes a graphical interactive
GUI, l pshape, which helps to perform this task in an straightforward way. Before using
this function, it is necessary to define the frequency array for loop shaping, the nominal
plant, and the initial controller transfer function. Therefore, these variables must be set
previously, where for this example are given by:

» wl = logspace(-2,3,100); // frequency array for loop shaping
» C0 = tf(1,1); // Initial Controller
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» L0=P(1,1,nompt)*C0; // Nominal open-loop transfer function
Having defined these variables, the graphical interface is opened using the following line:

» lpshape(wl,ubdb,L0,C0);
obtaining the window shown in Figure 13. As shown from this figure, the GUI allows to
modify the control transfer functions adding, modifying, and removing poles and zeros.
This task can be done from the options available at the right area of the windows or
dragging interactively on the loop L0(s) = P0(s)C(s) represented by the black line on
the Nichols plane.
For this example, the final controller is given by (Borghesani et al., 2003)

C(s) =
379( s

42 + 1)
s2

2472 + s
247 + 1

(15)

Fig. 13. Matlab QFT Toolbox. Loop shaping for example in Eq. (14)

• Pre-filter design. When the control design requires tracking of reference signals, although
this is not the case for this example, a pre-filter F(s) must be used in addition to
the controller C(s) such as discussed in section 2.. The prefilter can be also designed
interactively using a graphical interface similar to that described for the loop shaping stage.
To run this option, the p f shape function must be used (see (Borghesani et al., 2003) for more
details).

• Validation. The control system validation can be done testing the resulting robust controller
for all uncertain plants defined by Eq. (14) and checking that the different specifications
are fulfilled for all of them. This task can be performed directly programming in Matlab or
using the chksiso function from the QFT toolbox.

3.2 An interactive tool based in Sysquake: SISO-QFTIT
SISO-QFTIT is a free software interactive tool for robust control design using the QFT
methodology (Díaz et al., 2005a;b). The main advantages of SISO-QFTIT compared to other
existing tools are its easiness of use and its interactive nature. In the tool described in the
previous section, a combination between code and graphical interfaces must be used, where
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» bdb1 = sisobnds(1,w,Ws1,P,0,nompt);
Lets now consider the specifications for output and input disturbance rejection cases, from
Eq. (2)-(3). For the case of the output disturbance specification, the performance weight for
the bandwidth [0,10] is defined as

» Ws2 = tf(0.02*[1,64,748,2400],[1,14.4,169]);
and the bounds are computed in the following way

» bdb2 = sisobnds(2,w(1:3),Ws2,P,0,nompt);
For the input disturbance case, the specification is defined as constant for

» Ws3 = 0.01;
calculating the bounds as

» bdb3 = sisobnds(3,w(1:3),Ws3,P,0,nompt);
also for the bandwidth [0,10].
Once the specifications are defined and the corresponding bounds are calculated. For each
frequency they can be combined using the following functions:

» bdb = grpbnds(bdb1,bdb2,bdb3); // Making a global structure
» ubdb = sectbnds(bdb); // Combining bounds

The resulting bounds which will be used for the loop-shaping stage are shown in Figure 12.
This figure is obtained using the plotbnds function:

» plotbnds(ubdb);

Fig. 12. Matlab QFT Toolbox. Boundaries for example (14)

• Loop-shaping. After obtaining the stability and performance bounds, the next step consists in
designing (loop shaping) the controller. The QFT toolbox includes a graphical interactive
GUI, l pshape, which helps to perform this task in an straightforward way. Before using
this function, it is necessary to define the frequency array for loop shaping, the nominal
plant, and the initial controller transfer function. Therefore, these variables must be set
previously, where for this example are given by:

» wl = logspace(-2,3,100); // frequency array for loop shaping
» C0 = tf(1,1); // Initial Controller
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» L0=P(1,1,nompt)*C0; // Nominal open-loop transfer function
Having defined these variables, the graphical interface is opened using the following line:

» lpshape(wl,ubdb,L0,C0);
obtaining the window shown in Figure 13. As shown from this figure, the GUI allows to
modify the control transfer functions adding, modifying, and removing poles and zeros.
This task can be done from the options available at the right area of the windows or
dragging interactively on the loop L0(s) = P0(s)C(s) represented by the black line on
the Nichols plane.
For this example, the final controller is given by (Borghesani et al., 2003)

C(s) =
379( s

42 + 1)
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2472 + s
247 + 1

(15)

Fig. 13. Matlab QFT Toolbox. Loop shaping for example in Eq. (14)

• Pre-filter design. When the control design requires tracking of reference signals, although
this is not the case for this example, a pre-filter F(s) must be used in addition to
the controller C(s) such as discussed in section 2.. The prefilter can be also designed
interactively using a graphical interface similar to that described for the loop shaping stage.
To run this option, the p f shape function must be used (see (Borghesani et al., 2003) for more
details).

• Validation. The control system validation can be done testing the resulting robust controller
for all uncertain plants defined by Eq. (14) and checking that the different specifications
are fulfilled for all of them. This task can be performed directly programming in Matlab or
using the chksiso function from the QFT toolbox.

3.2 An interactive tool based in Sysquake: SISO-QFTIT
SISO-QFTIT is a free software interactive tool for robust control design using the QFT
methodology (Díaz et al., 2005a;b). The main advantages of SISO-QFTIT compared to other
existing tools are its easiness of use and its interactive nature. In the tool described in the
previous section, a combination between code and graphical interfaces must be used, where
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some interactive features are also provided for the loop shaping and filter design stages.
However, with SISO-QFTIT all the stages are available from an interactive point of view.
As commented above, the tool has been implemented in Sysquake, a Matlab-like language
with fast execution and excellent facilities for interactive graphics (Piguet, 2004). Windows,
Mac, and Linux operating systems are supported. Since this tool is completely interactive, one
consideration that must be kept in mind is that the tool’s main feature -interactivity- cannot
be easily illustrated in a written text. Thus, the reader is cordially invited to experience the
interactive features of the tool.
The users mainly should operate with only mouse operations on different elements in the
window of the application or text insertion in dialog boxes. The actions that they carry out are
reflected instantly in all the graphics in the screen. In this way the users take aware visually
of the effects that produce their actions on the design that they are carrying out. This tool is
specially conceived as much as for beginner users that want to learn the QFT methodology, as
for expert users (Díaz et al., 2005b).
The user can work with SISO-QFTIT in two different but not excluding ways (Díaz et al.,
2005b):

• Interactive mode. In this work form, the user selects an element in the window and drags
it to take it to a certain value, their actions on this element are reflected simultaneously on
all the present figures in the window of the tool.

• Dialogue mode. In this work form, the user should simply go selecting entrances of the
Settings menu and correctly fill the blanks of dialog boxes.

Such as commented in the manual of this interactive software tool, its main interactive
advantages and options are the following (Díaz et al., 2005b):

• Variations that take place in the templates when modifying the uncertainty of the different
elements of the plant or in the value of the template calculation frequency.

• Individual or combined variation on the bounds as a result of the configuration of
specifications, i.e., by adding zeros and poles to the different specifications.

• The movement of the controller zeros and poles over the complex plane and the
modification of its symbolic transfer function when the open loop transfer function is
modified in the Nichols plane.

• The change of shape of the open loop transfer function in the Nichols plane and the
variation of the expression of the controller transfer function when any movement,
addition or suppression of its zeros or poles in the complex plane.

• The changes that take place in the time domain representation of the manipulated and
controlled variables due to the modification of the nominal values of the different elements
of the plant.

• The changes that take place in the time domain representation of the manipulated and
controlled variables due to the introduction of a step perturbation at the input of the plant.
The magnitude and the occurrence instant of the perturbation is configured by the user by
means of the mouse.

Such as pointed out above, the interactive capabilities of the tool cannot be shown in a
written text. However, some screenshots for the example used with the Matlab QFT toolbox
are provided. Figure 14a shows the resulting templates for the process defined by Eq. (14).
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Notice that with this tool, the frequencies, the process uncertainties and the nominal plant
can be interactively modified. The stability bounds are shown in Figure 14b. The radiobuttons
available at the top-right side of the tool allow to choose the desired specification. Once the
specification is selected, the rest of the screen is changed to include the specification values
in an interactive way. Figure 15a displays the loop shaping stage with the combination of
the different bounds (same result than in Figure 13). The figure also shows the resulting loop
shaping for controller (15). Then, the validation screen is shown in Figure 15b, where it is
possible to check interactively if the robust control design satisfies the specifications for all
uncertain cases. Although for this example it is not necessary to design the pre-filter for the
tracking specifications, this tool also provides a screen where it is possible to perform this task
(see an example in Figure 16).

(a) QFT Templates (b) Stability bounds

Fig. 14. SISO-QFTIT. Templates and bounds for the example described in Eq. (14)

(a) Loop shaping (b) Validation

Fig. 15. SISO-QFTIT. Loop shaping and validation for the example described in Eq. (14)

4. Practical applications

This section presents two industrial projects where the QFT technique has been successfully
used. The first one is focused on the pressure control of a mobile robot which was design
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some interactive features are also provided for the loop shaping and filter design stages.
However, with SISO-QFTIT all the stages are available from an interactive point of view.
As commented above, the tool has been implemented in Sysquake, a Matlab-like language
with fast execution and excellent facilities for interactive graphics (Piguet, 2004). Windows,
Mac, and Linux operating systems are supported. Since this tool is completely interactive, one
consideration that must be kept in mind is that the tool’s main feature -interactivity- cannot
be easily illustrated in a written text. Thus, the reader is cordially invited to experience the
interactive features of the tool.
The users mainly should operate with only mouse operations on different elements in the
window of the application or text insertion in dialog boxes. The actions that they carry out are
reflected instantly in all the graphics in the screen. In this way the users take aware visually
of the effects that produce their actions on the design that they are carrying out. This tool is
specially conceived as much as for beginner users that want to learn the QFT methodology, as
for expert users (Díaz et al., 2005b).
The user can work with SISO-QFTIT in two different but not excluding ways (Díaz et al.,
2005b):

• Interactive mode. In this work form, the user selects an element in the window and drags
it to take it to a certain value, their actions on this element are reflected simultaneously on
all the present figures in the window of the tool.

• Dialogue mode. In this work form, the user should simply go selecting entrances of the
Settings menu and correctly fill the blanks of dialog boxes.

Such as commented in the manual of this interactive software tool, its main interactive
advantages and options are the following (Díaz et al., 2005b):

• Variations that take place in the templates when modifying the uncertainty of the different
elements of the plant or in the value of the template calculation frequency.

• Individual or combined variation on the bounds as a result of the configuration of
specifications, i.e., by adding zeros and poles to the different specifications.

• The movement of the controller zeros and poles over the complex plane and the
modification of its symbolic transfer function when the open loop transfer function is
modified in the Nichols plane.

• The change of shape of the open loop transfer function in the Nichols plane and the
variation of the expression of the controller transfer function when any movement,
addition or suppression of its zeros or poles in the complex plane.

• The changes that take place in the time domain representation of the manipulated and
controlled variables due to the modification of the nominal values of the different elements
of the plant.

• The changes that take place in the time domain representation of the manipulated and
controlled variables due to the introduction of a step perturbation at the input of the plant.
The magnitude and the occurrence instant of the perturbation is configured by the user by
means of the mouse.

Such as pointed out above, the interactive capabilities of the tool cannot be shown in a
written text. However, some screenshots for the example used with the Matlab QFT toolbox
are provided. Figure 14a shows the resulting templates for the process defined by Eq. (14).
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Notice that with this tool, the frequencies, the process uncertainties and the nominal plant
can be interactively modified. The stability bounds are shown in Figure 14b. The radiobuttons
available at the top-right side of the tool allow to choose the desired specification. Once the
specification is selected, the rest of the screen is changed to include the specification values
in an interactive way. Figure 15a displays the loop shaping stage with the combination of
the different bounds (same result than in Figure 13). The figure also shows the resulting loop
shaping for controller (15). Then, the validation screen is shown in Figure 15b, where it is
possible to check interactively if the robust control design satisfies the specifications for all
uncertain cases. Although for this example it is not necessary to design the pre-filter for the
tracking specifications, this tool also provides a screen where it is possible to perform this task
(see an example in Figure 16).

(a) QFT Templates (b) Stability bounds

Fig. 14. SISO-QFTIT. Templates and bounds for the example described in Eq. (14)

(a) Loop shaping (b) Validation

Fig. 15. SISO-QFTIT. Loop shaping and validation for the example described in Eq. (14)

4. Practical applications

This section presents two industrial projects where the QFT technique has been successfully
used. The first one is focused on the pressure control of a mobile robot which was design
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Fig. 16. SISO-QFTIT. Prefilter stage

for spraying tasks in greenhouses (Guzmán et al., 2008). The second one deals with the
temperature control of a solar collector field (Cirre et al., 2010).

4.1 In agricultural and robotics context: Fitorobot
During the last six years, the Automatic Control, Robotics and Electronics research group
and the Agricultural Engineering Department, both from the University of Almería (Spain),
have been working in a project aimed at designing, implementation, and testing a multi-use
autonomous vehicle with safe, efficient, and economic operation which moves through the
crop lines of a greenhouse and which performs tasks that are tedious and/or hazardous for
people. This robot has been called Fitorobot. The first version of this vehicle has been equipped
for spraying activities, but other configurations have also been designed, such as: a lifting
platform to reach high zones to perform tasks (staking, cleaning leaves, harvesting, manual
pollination, etc.), and a forklift to transport and raise heavy materials (Sánchez-Gimeno et al.,
2006). This mobile robot was designed and built following the paradigm of Mechatronics such
as described in (Sánchez-Hermosilla. et al., 2010).
The first objective of the project consisted of developing a prototype to enable the spraying
of a certain volume of chemical products per hectare while controlling the different variables
that affect the spraying system (pressure, flow, and travel speed). The pressure is selected and
the control signal keeps the spraying conditions constant (mainly droplet size). The reference
value of the pressure is calculated based on the mobile robot speed and the volume of pesticide
to apply, where the pressure working range is between 5 and 15 bar.
There are some circumstances where it is impossible to maintain a constant velocity due
to the irregularities of the soil, different slopes of the ground, and the turning movements
between the crop lines. Thus, for work at a variable velocity (Guzmán et al., 2008), it is
necessary to spray using a variable-pressure system based on the vehicle velocity, which is
the proposal adopted and implemented in this work. This system presents some advantages,
such as the higher quality of the process, because the product sprayed over each plant is
optimal. Furthermore, this system saves chemical products because an optimal quantity is
sprayed, reducing the environmental impact and pollution as the volume sprayed to the air is
minimized.
The robot prototype (Figure 17) consists of an autonomous mobile platform with a rubber
tracked system and differential guidance mechanism (to achieve a more homogeneous
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distribution of soil-compaction pressure, thus disturbing less the sandy soil typical of
Mediterranean greenhouses (Sánchez-Gimeno et al., 2006)). The robot is driven by hydraulic
motors fed by two variable displacement pumps powered by a 20-HP gasoline motor,
allowing a maximum velocity of 2.9 m/s. Due to the restrictions imposed by the narrow
greenhouse lanes, the vehicle dimensions are 70 cm width, 170 cm length, and 180 cm height
at the top of the nozzles.

Fig. 17. Mobile robot for agricultural tasks

Fig. 18. Scheme of the spraying system

413A Frequency Domain Quantitative Technique for Robust Control System Design



Fig. 16. SISO-QFTIT. Prefilter stage
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temperature control of a solar collector field (Cirre et al., 2010).

4.1 In agricultural and robotics context: Fitorobot
During the last six years, the Automatic Control, Robotics and Electronics research group
and the Agricultural Engineering Department, both from the University of Almería (Spain),
have been working in a project aimed at designing, implementation, and testing a multi-use
autonomous vehicle with safe, efficient, and economic operation which moves through the
crop lines of a greenhouse and which performs tasks that are tedious and/or hazardous for
people. This robot has been called Fitorobot. The first version of this vehicle has been equipped
for spraying activities, but other configurations have also been designed, such as: a lifting
platform to reach high zones to perform tasks (staking, cleaning leaves, harvesting, manual
pollination, etc.), and a forklift to transport and raise heavy materials (Sánchez-Gimeno et al.,
2006). This mobile robot was designed and built following the paradigm of Mechatronics such
as described in (Sánchez-Hermosilla. et al., 2010).
The first objective of the project consisted of developing a prototype to enable the spraying
of a certain volume of chemical products per hectare while controlling the different variables
that affect the spraying system (pressure, flow, and travel speed). The pressure is selected and
the control signal keeps the spraying conditions constant (mainly droplet size). The reference
value of the pressure is calculated based on the mobile robot speed and the volume of pesticide
to apply, where the pressure working range is between 5 and 15 bar.
There are some circumstances where it is impossible to maintain a constant velocity due
to the irregularities of the soil, different slopes of the ground, and the turning movements
between the crop lines. Thus, for work at a variable velocity (Guzmán et al., 2008), it is
necessary to spray using a variable-pressure system based on the vehicle velocity, which is
the proposal adopted and implemented in this work. This system presents some advantages,
such as the higher quality of the process, because the product sprayed over each plant is
optimal. Furthermore, this system saves chemical products because an optimal quantity is
sprayed, reducing the environmental impact and pollution as the volume sprayed to the air is
minimized.
The robot prototype (Figure 17) consists of an autonomous mobile platform with a rubber
tracked system and differential guidance mechanism (to achieve a more homogeneous
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distribution of soil-compaction pressure, thus disturbing less the sandy soil typical of
Mediterranean greenhouses (Sánchez-Gimeno et al., 2006)). The robot is driven by hydraulic
motors fed by two variable displacement pumps powered by a 20-HP gasoline motor,
allowing a maximum velocity of 2.9 m/s. Due to the restrictions imposed by the narrow
greenhouse lanes, the vehicle dimensions are 70 cm width, 170 cm length, and 180 cm height
at the top of the nozzles.

Fig. 17. Mobile robot for agricultural tasks

Fig. 18. Scheme of the spraying system
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The spraying system carried out by the mobile robot is composed with a 300 l tank used to
store the chemical products, a vertical boom sprayer with 10 nozzles, an on/off electrovalve
to activate the spraying, a proportional electrovalve to regulate the output pressure, a
double-membrane pump with pressure accumulator providing a maximum flow of 30 l/min
and a maximum pressure of 30 bar, and a pressure sensor to close the control loop as shown
in Figure 18.
In this case, the control problem was focused on regulating the output pressure of the
spraying system mounted on the mobile robot despite changes in the vehicle velocity and
the nonlinearities of the process.
For an adequate control system design, it was necessary to model the plant by obtaining its
associated parameters. Several open-loop step-based tests were performed varying the valve
aperture around a particular operating point. The results showed that the system dynamics
can be approximated by a first-order system with delay. Thus, it can be modelled using the
following transfer function

P(s) =
k

τs + 1
e−trs (16)

where k is the static gain, tr is the delay time, and τ is the time constant.
Then, several experiments in open loop were performed to design the dynamic model of
the spraying system using different amplitude opening steps (5% and 10%) over the same
operating points (see Figure 19a). The analysis of the results showed that the output-pressure
behavior changes when different valve-amplitude steps are produced around the same
working point, and also when the same valve opening steps are produced at several operating
points, confirming the uncertainty and nonlinear characteristics of the system.

(a) Time domain
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(b) Frequency domain

Fig. 19. System uncertainties from the time and frequency domains

After analyzing the results (see Figure 19a), the system was modelled as a first-order
dynamical system with uncertain parameters, where the reaction curve method has been
used at the different operating points. Therefore, the resulting uncertain model is given by
the following transfer function (see Figure 19b):

℘ =
{

P(s) =
k

τs + 1
: k ∈ [−0.572,−0.150], τ ∈ [0.4, 1]

}
(17)
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where the gain, k, is given in bar/% aperture and the constant time, τ , in seconds.
Once the system was characterized, the robust control design using QFT was performed
considering specifications on stability and tracking.
First, the specifications for each frequency were defined, and the nominal plant P0 was
selected. The set of frequencies and the nominal plant were set to Ω = {0.1, 1, 2, 10} rad/s
and P0 = −0.3

0.7s+1 , respectively. The stability specification was set to λ = 1.2 corresponding
to a GM ≥ 5.3 dB and a PM = 49.25, and for the tracking specifications the maximum and
minimum values for the magnitude have been described by the following transfer functions
(frequency response for tracking specifications are shown in Figure 19b in dashed lines)

Bl(s) =
10

s + 10
, Bu(s) =

12.25
s2 + 8.75s + 12.25

(18)

Figure 20a shows the different templates of the plant for the set of frequencies determined
above.

(a) QFT Templates (b) Loopshaping stage

Fig. 20. Templates and feedback controller design by QFT

The specifications are translated to the boundaries on the Nichols plane for the loop-transfer
function L(jω) = C(jω)P(jω). Figure 20b shows the different bounds for stability and tracking
specifications set previously.
Then, the loop shaping stage was performed in such a way that the nominal loop-transfer
function L0(jω) = C(jω)P0(jω) was adjusted to make the templates fulfil the bounds
calculated in the previous phase. Figure 20b shows the design of L0 where the bounds are
fulfilled at each design frequency. This figure shows the optimal controller using QFT to
lie on the boundaries at each frequency design. However, a simpler controller fulfilling the
specifications was preferred for practical reasons. The resulting controller was the following:

C(s) =
27.25(s + 1)

s
(19)

To conclude the design process, the prefilter F is determined so that the closed-loop transfer
function matches the robust tracking specifications, that is, the closed-loop system variations
must be inside of a desired tolerance range:

F(s) =
1

0.1786s + 1
(20)
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The spraying system carried out by the mobile robot is composed with a 300 l tank used to
store the chemical products, a vertical boom sprayer with 10 nozzles, an on/off electrovalve
to activate the spraying, a proportional electrovalve to regulate the output pressure, a
double-membrane pump with pressure accumulator providing a maximum flow of 30 l/min
and a maximum pressure of 30 bar, and a pressure sensor to close the control loop as shown
in Figure 18.
In this case, the control problem was focused on regulating the output pressure of the
spraying system mounted on the mobile robot despite changes in the vehicle velocity and
the nonlinearities of the process.
For an adequate control system design, it was necessary to model the plant by obtaining its
associated parameters. Several open-loop step-based tests were performed varying the valve
aperture around a particular operating point. The results showed that the system dynamics
can be approximated by a first-order system with delay. Thus, it can be modelled using the
following transfer function

P(s) =
k

τs + 1
e−trs (16)

where k is the static gain, tr is the delay time, and τ is the time constant.
Then, several experiments in open loop were performed to design the dynamic model of
the spraying system using different amplitude opening steps (5% and 10%) over the same
operating points (see Figure 19a). The analysis of the results showed that the output-pressure
behavior changes when different valve-amplitude steps are produced around the same
working point, and also when the same valve opening steps are produced at several operating
points, confirming the uncertainty and nonlinear characteristics of the system.
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Fig. 19. System uncertainties from the time and frequency domains

After analyzing the results (see Figure 19a), the system was modelled as a first-order
dynamical system with uncertain parameters, where the reaction curve method has been
used at the different operating points. Therefore, the resulting uncertain model is given by
the following transfer function (see Figure 19b):

℘ =
{

P(s) =
k

τs + 1
: k ∈ [−0.572,−0.150], τ ∈ [0.4, 1]

}
(17)
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where the gain, k, is given in bar/% aperture and the constant time, τ , in seconds.
Once the system was characterized, the robust control design using QFT was performed
considering specifications on stability and tracking.
First, the specifications for each frequency were defined, and the nominal plant P0 was
selected. The set of frequencies and the nominal plant were set to Ω = {0.1, 1, 2, 10} rad/s
and P0 = −0.3

0.7s+1 , respectively. The stability specification was set to λ = 1.2 corresponding
to a GM ≥ 5.3 dB and a PM = 49.25, and for the tracking specifications the maximum and
minimum values for the magnitude have been described by the following transfer functions
(frequency response for tracking specifications are shown in Figure 19b in dashed lines)

Bl(s) =
10

s + 10
, Bu(s) =

12.25
s2 + 8.75s + 12.25

(18)

Figure 20a shows the different templates of the plant for the set of frequencies determined
above.

(a) QFT Templates (b) Loopshaping stage

Fig. 20. Templates and feedback controller design by QFT

The specifications are translated to the boundaries on the Nichols plane for the loop-transfer
function L(jω) = C(jω)P(jω). Figure 20b shows the different bounds for stability and tracking
specifications set previously.
Then, the loop shaping stage was performed in such a way that the nominal loop-transfer
function L0(jω) = C(jω)P0(jω) was adjusted to make the templates fulfil the bounds
calculated in the previous phase. Figure 20b shows the design of L0 where the bounds are
fulfilled at each design frequency. This figure shows the optimal controller using QFT to
lie on the boundaries at each frequency design. However, a simpler controller fulfilling the
specifications was preferred for practical reasons. The resulting controller was the following:

C(s) =
27.25(s + 1)

s
(19)

To conclude the design process, the prefilter F is determined so that the closed-loop transfer
function matches the robust tracking specifications, that is, the closed-loop system variations
must be inside of a desired tolerance range:

F(s) =
1

0.1786s + 1
(20)
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Once the robust design was performed, the system was validated by simulation. Figure 21
shows the validation results where the specifications are clearly satisfied for the whole family
of plants described by Eq. (17) for the time domain and frequency domain, respectively.
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Fig. 21. Validation for the QFT design of the pressure system

If the results shown in Figure 19b are compared with those shown in Figure 21b, a considerable
uncertainty reduction can be appreciated, especially in the gain system. Notice that Figure 19
shows the responses of the open-loop system against step inputs for the time and frequency
domains, respectively. From these figures, the system uncertainties can be observed by
deviations in the static gain and in the time constant of the system, such as described in
equation (17).
Finally, the proposed control scheme was tested on the spraying system. The robust control
system is characterized by the ability of the closed-loop system to reach desired specifications
satisfactorily despite of large variations in the (open-loop) plant dynamics. As commented
above, in the pressure system presented in this work such variations appear along the different
operating points of the process. Therefore, the system was initially tested through a group
of different steps in order to verify that the control system fulfills the robust specifications.
Figure 22 shows the results for a sequence of typical steps. It can be observed that the system
faithfully follows the proposed reference, reaching the same performance for the different
operating points.

4.2 In solar energy field: ACUREX
This section presents a robust control scheme for a distributed solar collector (DSC) field.
As DSC are systems subjected to strong disturbances (mainly in solar radiation and inlet
oil temperature), a series feedforward was used as a part of the plant, so that the system
to be controlled has one input (fluid flow) and one output (outlet temperature) as the
disturbances are partially compensated by the series feedforward term, so that the nonlinear
plant is transformed into an uncertain linear system. The QFT technique (QFT) was used to
design a control structure that guarantee desired control specifications, as settling time and
maximum overshoot, under different operating conditions despite system uncertainties and
disturbances (Cirre et al., 2010).
The main difference between a conventional power plant and a solar plant is that the
primary energy source, while being variable, cannot be manipulated. The objective of the
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Fig. 22. Experimental tests for the spraying system

control system in a distributed solar collector field (DCS) is to maintain the outlet oil
temperature of the loop at a desired level in spite of disturbances such as changes in the
solar irradiance level (caused by clouds), mirror reflectivity, or inlet oil temperature. The
means available for achieving this is via the adjustment of the fluid flow and the daily solar
power cycle characteristics are such that the oil flow has to change substantially during
operation. This leads to significant variations in the dynamic characteristics of the field, which
cause difficulties in obtaining adequate performance over the operating range with a fixed
parameter controller (Camacho et al., 1997; 2007a;b). For that reason, this section summarizes
a work developed by the authors where a robust PID controller is designed to control the
outlet oil temperature of a DSC loop using the QFT technique.
In this work, the ACUREX thermosolar plant was used, which is located at the Plataforma
Solar de Almería (PSA), a research centre of the Spanish Centro de Investigaciones Energéticas
Medioambientales y Tecnológicas (CIEMAT), in Almería, Spain. The plant is schematically
composed of a distributed collector field, a recirculation pump, a storage tank and a
three-way valve, as shown in Figures 23 and 24. The distributed collector field consists of 480
east-west-aligned single-axis-tracking parabolic trough collectors, with a total mirror aperture
area of 2672 m2, arranged in 20 rows forming 10 parallel loops (see Figure 23). The parabolic
mirrors in each collector concentrate the solar irradiation on an absorber tube through which
Santotherm 55 heat transfer oil is flowing. For the collector to concentrate sunlight on its focus,
the direct solar radiation must be perpendicular to the mirror plane. Therefore, a sun-tracking
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Once the robust design was performed, the system was validated by simulation. Figure 21
shows the validation results where the specifications are clearly satisfied for the whole family
of plants described by Eq. (17) for the time domain and frequency domain, respectively.
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Fig. 21. Validation for the QFT design of the pressure system

If the results shown in Figure 19b are compared with those shown in Figure 21b, a considerable
uncertainty reduction can be appreciated, especially in the gain system. Notice that Figure 19
shows the responses of the open-loop system against step inputs for the time and frequency
domains, respectively. From these figures, the system uncertainties can be observed by
deviations in the static gain and in the time constant of the system, such as described in
equation (17).
Finally, the proposed control scheme was tested on the spraying system. The robust control
system is characterized by the ability of the closed-loop system to reach desired specifications
satisfactorily despite of large variations in the (open-loop) plant dynamics. As commented
above, in the pressure system presented in this work such variations appear along the different
operating points of the process. Therefore, the system was initially tested through a group
of different steps in order to verify that the control system fulfills the robust specifications.
Figure 22 shows the results for a sequence of typical steps. It can be observed that the system
faithfully follows the proposed reference, reaching the same performance for the different
operating points.

4.2 In solar energy field: ACUREX
This section presents a robust control scheme for a distributed solar collector (DSC) field.
As DSC are systems subjected to strong disturbances (mainly in solar radiation and inlet
oil temperature), a series feedforward was used as a part of the plant, so that the system
to be controlled has one input (fluid flow) and one output (outlet temperature) as the
disturbances are partially compensated by the series feedforward term, so that the nonlinear
plant is transformed into an uncertain linear system. The QFT technique (QFT) was used to
design a control structure that guarantee desired control specifications, as settling time and
maximum overshoot, under different operating conditions despite system uncertainties and
disturbances (Cirre et al., 2010).
The main difference between a conventional power plant and a solar plant is that the
primary energy source, while being variable, cannot be manipulated. The objective of the
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Fig. 22. Experimental tests for the spraying system

control system in a distributed solar collector field (DCS) is to maintain the outlet oil
temperature of the loop at a desired level in spite of disturbances such as changes in the
solar irradiance level (caused by clouds), mirror reflectivity, or inlet oil temperature. The
means available for achieving this is via the adjustment of the fluid flow and the daily solar
power cycle characteristics are such that the oil flow has to change substantially during
operation. This leads to significant variations in the dynamic characteristics of the field, which
cause difficulties in obtaining adequate performance over the operating range with a fixed
parameter controller (Camacho et al., 1997; 2007a;b). For that reason, this section summarizes
a work developed by the authors where a robust PID controller is designed to control the
outlet oil temperature of a DSC loop using the QFT technique.
In this work, the ACUREX thermosolar plant was used, which is located at the Plataforma
Solar de Almería (PSA), a research centre of the Spanish Centro de Investigaciones Energéticas
Medioambientales y Tecnológicas (CIEMAT), in Almería, Spain. The plant is schematically
composed of a distributed collector field, a recirculation pump, a storage tank and a
three-way valve, as shown in Figures 23 and 24. The distributed collector field consists of 480
east-west-aligned single-axis-tracking parabolic trough collectors, with a total mirror aperture
area of 2672 m2, arranged in 20 rows forming 10 parallel loops (see Figure 23). The parabolic
mirrors in each collector concentrate the solar irradiation on an absorber tube through which
Santotherm 55 heat transfer oil is flowing. For the collector to concentrate sunlight on its focus,
the direct solar radiation must be perpendicular to the mirror plane. Therefore, a sun-tracking
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algorithm causes the mirrors to revolve around an axis parallel to the tube. Oil is recirculated
through the field by a pump that under nominal conditions supplies the field at a flow rate
of between 2 l/s (in some applications 3 l/s) and 12 l/s. As it passes through the field, the
oil is heated and then the hot oil enters a thermocline storage tank, as shown in Figure 24. A
complete detailed description of the ACUREX plant can be found in (Camacho et al., 1997).

Fig. 23. ACUREX solar plant

Fig. 24. Simplified layout of the ACUREX plant

As described in (Camacho et al., 1997), DSC dynamics can be approximated by low-order
linear descriptions of the plant (as is usually done in the process industry) to model the
system around different operating conditions and to design diverse control strategies without
accounting for system resonances (Álvarez et al., 2007; Camacho et al., 1997). Thus, different
low-order models are found for different operating points mainly due to fluid velocity and
system disturbances. Using the series feedforward controller (presented in (Camacho et al.,
1997) and improved in (Roca et al., 2008)), a nonlinear plant subjected to disturbances is
treated as an uncertain linear plant with only one input (the reference temperature to the
feedforward controller, Tr f f ).
After performing an analysis of the frequency response (Berenguel et al., 1994), it was
observed that the characteristics of the system (time constants, gains, resonance modes,
...) depend on the fluid flow rate as expected (Álvarez et al., 2007; Camacho et al., 1997).
Therefore, in order to control the system with a fixed-parameter controller, the following
model has been used

℘ =
{

P(s) =
kω2

n
s2 + 2ξωns + ω2

n
e−τds : ξ = 0.8, (21)

τd = 39s, ωn ∈ [0.0038, 0.014]rad/s, k ∈ [0.7, 1.05]
}

,

where the chosen nominal plant is P0(s) with ωn = 0.014 rad/s and k = 0.7.
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Thus, once the uncertain model has been obtained, the specifications were determined on time
domain and translated into the frequency domain for the QFT design. In this case, the tracking
and stability specifications were established (Horowitz, 1993). For tracking specifications
only is necessary to impose the minimum and maximum values for the magnitude of the
closed-loop transfer function from the reference input to the output in all frequencies. With
respect to the stability specification, the desired gain (GM) and phase (PM) margins are set.
The tracking specifications were required to fulfill a settling time between 5 and 35 minutes
and an overshoot less than 30% after 10-20oC setpoint changes for all operating conditions
(realistic specifications, see (Camacho et al., 2007a;b)).
For stability specification, λ = 3.77 in Eq. (4) is selected in order to guarantee at least a phase
margin of 35 degrees for all operating conditions.
To design the compensator C(s), the tracking specifications in Eq. (13), shown in Table 1 for
each frequency in the set of design frequencies Ω, are used

Table 1. Tracking specifications for the C compensator design

ω (rad/s) 0.0006 0.001 0.003 0.01
δ(ω) 0.55 1.50 9.01 19.25

The resulting compensator C(s), synthesized in order to achieve the stability specifications
and the tracking specifications previously indicated, is the following PID-type controller

C(s) = 0.75
(

1 +
1

180s
+ 40s

)
(22)

which represents the resulting loop shaping in Figure 25.
Then, in order to satisfy the tracking specifications, the prefilter F(s) must be designed, where
the synthesized prefilter is given by

F(s) =
0.1

s + 0.1
(23)

Fig. 25. Tracking and stability boundaries with the designed L0(jω)

Figure 26 shows that the tracking specifications are fulfilled for all uncertain cases. Note that
the different appearance of Bode diagrams in closed loop for five operating conditions is due
to the changing root locus of L(s) when the PID is introduced.
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and stability specifications were established (Horowitz, 1993). For tracking specifications
only is necessary to impose the minimum and maximum values for the magnitude of the
closed-loop transfer function from the reference input to the output in all frequencies. With
respect to the stability specification, the desired gain (GM) and phase (PM) margins are set.
The tracking specifications were required to fulfill a settling time between 5 and 35 minutes
and an overshoot less than 30% after 10-20oC setpoint changes for all operating conditions
(realistic specifications, see (Camacho et al., 2007a;b)).
For stability specification, λ = 3.77 in Eq. (4) is selected in order to guarantee at least a phase
margin of 35 degrees for all operating conditions.
To design the compensator C(s), the tracking specifications in Eq. (13), shown in Table 1 for
each frequency in the set of design frequencies Ω, are used

Table 1. Tracking specifications for the C compensator design

ω (rad/s) 0.0006 0.001 0.003 0.01
δ(ω) 0.55 1.50 9.01 19.25

The resulting compensator C(s), synthesized in order to achieve the stability specifications
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which represents the resulting loop shaping in Figure 25.
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the different appearance of Bode diagrams in closed loop for five operating conditions is due
to the changing root locus of L(s) when the PID is introduced.
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Fig. 26. Tracking specifications (dashed-dotted) and magnitude Bode diagram of some closed
loop transfer functions

In order to prove the fulfillment of the tracking and stability specifications of the control
structure, experiments were performed under several operating points and under different
conditions of disturbances (Cirre et al., 2010), although only representative results are shown
in this work.
Figure 27 shows an experiment with the robust controller. At the beginning of the experiment,
the flow is saturated until the outlet temperature is higher than the inlet one (the normal

Fig. 27. QTF control results for the ACUREX plant (24/03/2009) (Cirre et al., 2010)

situation during the operation). This situation always appears due to the oil resident inside
the pipes is cooler than the oil from the tank. Once the oil is mixed in the pipes, the outlet
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temperature reaches a higher temperature than the inlet one. During the start up, steps in the
reference temperature are made until reaching the nominal operating point. The overshoot
at the end of this phase is 18 oC approximately, and thus the specifications are fulfilled.
Analyzing the time responses, a settling time between 11 and 15 minutes is observed at the
different operating points. Therefore, both time specifications, overshoot and settling time are
properly fulfilled. Disturbances in the inlet temperature (from the beginning until t = 12.0 h),
due to the temperature variation of the stratified oil inside the tank, are observed during this
experiment and correctly rejected by the feedforward action (Cirre et al., 2010).

5. Conclusions

This chapter has introduced the Quantitative Feedback Theory as a robust control
technique based on the frequency domain. QFT is a powerful tool which allows to design
robust controllers considering the plant uncertainty, disturbances, noise and the desired
specifications. It is very versatile tool and has been used in multiple control problems
including linear (Horowitz, 1963), non-linear (Moreno et al., 2010), (Moreno et al., 2003),
(Moreno, 2003), MIMO (Horowitz, 1979) and non-minimum phase (Horowitz and Sidi, 1978).
After describing the theoretical aspects, the most well-known software tools to work with QFT
have been described using simple examples. Then, results from two experimental applications
were presented, where QFT were successfully used to compensate for the uncertainties in the
processes.
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temperature reaches a higher temperature than the inlet one. During the start up, steps in the
reference temperature are made until reaching the nominal operating point. The overshoot
at the end of this phase is 18 oC approximately, and thus the specifications are fulfilled.
Analyzing the time responses, a settling time between 11 and 15 minutes is observed at the
different operating points. Therefore, both time specifications, overshoot and settling time are
properly fulfilled. Disturbances in the inlet temperature (from the beginning until t = 12.0 h),
due to the temperature variation of the stratified oil inside the tank, are observed during this
experiment and correctly rejected by the feedforward action (Cirre et al., 2010).

5. Conclusions

This chapter has introduced the Quantitative Feedback Theory as a robust control
technique based on the frequency domain. QFT is a powerful tool which allows to design
robust controllers considering the plant uncertainty, disturbances, noise and the desired
specifications. It is very versatile tool and has been used in multiple control problems
including linear (Horowitz, 1963), non-linear (Moreno et al., 2010), (Moreno et al., 2003),
(Moreno, 2003), MIMO (Horowitz, 1979) and non-minimum phase (Horowitz and Sidi, 1978).
After describing the theoretical aspects, the most well-known software tools to work with QFT
have been described using simple examples. Then, results from two experimental applications
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network of identical linear state-space models under a possibly time-varying and directed
interconnection structure. Many investigations are carried out when the dynamic structure is
fixed and the communication topology is time varying (i.e. in (R.O. Saber & R. Murray, 2004;
W. Ren & R. W. Beard, 2005; Ya Zhanga & Yu-Ping Tian, 2009)). One of main appealing field
of research is the investigation of the MASs consensusability under both the dynamic agent
structure and communication topology variations. In particular, it is worth analyzing the joint
impact of the agent dynamic and the communication topology on the MASs consensusability.
The aim of the chapter is to give consensusability conditions of LTI MASs as function of the
agent dynamic structure, communication topology and coupling strength parameters. The
theoretical results are derived by transferring the consensusability problem into the robust
stability analysis of LTI-MASs. Differently from the existing works, here the consensuability
conditions are given in terms of the adjacency matrix rather than Laplacian matrix. Moreover,
it is shown that the interplay among consensusability, node dynamic and topology must be
taken into account for MASs stabilization: specifically, consensuability of MASs is assessed
for all topologies, dynamic and coupling strength satisfying a pre-specified bound. From
the practical point of view the consensuability conditions can be used for both the analysis
and planning of MASs protocols to guarantee robust stability for a wide range of possible
interconnection topologies, coupling strength and node dynamics. Also, the number of
subsystems affecting the overall system stability is taken into account as it is analyzed the
robustness of multi agent systems if the number of subsystems changes. Finally, simulation
examples are given to illustrate the theoretical analysis.

2. Problem statement

We consider a network composed of linear systems interconnected by a specific topological
structure. The dynamical system at each node is of m-th order and described by the matrices
(A, B, C). Let G(V, E, U) be a directed weighted graph (digraph) with the set of nodes V = 1..n,
set of edges E ⊆ n × n, and the associated weighted adjacency matrix U = {uij} with uij > 0
if there is a directed edge of weight uij from vertex j (node parent) into vertex i (node child).
The linear systems are interconnected by a directed weighted graph G(V, E, U). Each node
dynamical is described by:

ẋi(t) = Axi(t) + Bvi(t)

yi(t) = Cxi(t) (1)

with vi(t) is the input to the i-th node of the form

vi(t) =
n

∑
j=1

uijyj(t). (2)

In this way, each node dynamic is influenced by the sum of its neighbors’ outputs. This yields
to the MAS network equation:

ẋi(t) = Axi(t) +
n

∑
j=1

uijBCxj(t) (3)

with 1 ≤ i ≤ n, and its compact form:

ẋ(t) = Agx(t) (4)

424 Robust Control, Theory and Applications

with Ag = (In ⊗ A) + (U ⊗ BC), with ⊗ denotes the matrix Kronecker product. Notice that
the above equation can be associated to the main model used in the literature for describing
the synchronization phenomena, energy distribution, tanks network (e.g. in (R. Cogill & S.
Lall, 2004)). Moreover the system at each node can be MIMO or SISO type, and the matrix
product BC takes into account the coupling strength and the coupling interaction among the
state system variables. Observing the MAS model (3) we point out as the overall network
dynamic is affected by the node system dynamic matrix A, the coupling matrix BC, and by
the adjacency matrix U of the topological structure.
Consider a network with n agents whose topology information exchange is described by
a graph G(V, E, U) and let xi the state of agent-node i-th, consensus corresponds to the
network condition such that the state of the agents as a whole asymptotically converges to an
equilibrium state with identical elements (i.e. xi = xj for all (i, j) ∈ n × n). The common value
x̄ is named consensus value. Consensusability of MASs is a fundamental problem concerning
with the conditions for assessing network consensus equilibrium. Under the assumption
of the existence of a network equilibrium, then consensuability deals with the research of
analytical conditions such that the network equilibrium corresponds to a consensus state.
In this way, without loss of generality, the consensuability problem can be reduced to the
problem of assessing stabilization conditions of the MAS network (3) with respect to the 0
equilibrium point (i.e. xi = xj = 0 for all (i, j) ∈ n × n).
Hence, we are interested in solving the following problem:

Problem Given a multi agent network described by (3), to determinate the MAS
consensuability conditions as function of node dynamic, topology and coupling strength.

Specifically, consensuability of MASs is assessed for all topologies, dynamic and coupling
strength satisfying a pre-specified bound.
In the follows we will present analytical conditions for solving the above Problem.

3. Conditions for MASs consensuability

Before of presenting the MASs consensuability conditions of (3), we have to recast the
eigenvalues set σ(Ag) of MAS network dynamic matrix Ag.

Lemma 1 Let σ(U)={μi} the eigenvalues set of the adjacency matrix U, σ(Ag) the eigenvalues
set of the MAS dynamical matrix Ag, then results: σ(Ag) =

⋃
i σ(A + μiBC) for all 1 ≤ i ≤ n.

Proof Let J the Jordan canonical form of U, then it exists a similarity matrix S so that J =
S−1US. Hence S ⊗ In is a similarity matrix for the matrices Im ⊗ A + U ⊗ BC and Im ⊗ A +
J ⊗ BC. From the Kronecker product (Horn R.A. & Johnson C.R., 1995) results:

(S ⊗ In)−1(Im ⊗ A + U ⊗ BC)(S ⊗ In) =

(S−1 ⊗ In)(Im ⊗ A + U ⊗ BC)(S ⊗ In) =

(Im ⊗ A) + (S−1US ⊗ BC) = (Im ⊗ A) + (J ⊗ BC)

with J being an upper triangular matrix with Im ⊗ A + J ⊗ BC as upper triangular block
matrix. Hence the eigenvalues of the matrix Im ⊗ A + J ⊗ BC are the union of the eigenvalues
of the block matrix on the diagonal.
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From the above Lemma 1, the eigenvalues of the MAS dynamic matrix Ag are explicitly
function of those of the matrix A + μiBC, for all i. So we can decouple the effects of topology
structure (by μi), the coupling strength BC and node dynamic A on the overall stability of the
MAS. This can be used for giving stability MAS condition as function of topology structure,
node dynamic and coupling strength as shown by the following Theorem 1:

Theorem 1 Let the MAS composed of n identical MIMO system of order m-th and
interconnected by the digraph G = (V, E, U) with adjacency matrix U, with eigenvalues
μ1 ≤ μ2 ≤ . . . μn. If the node dynamic matrix A = {aij} and the coupling matrix BC = {cij}
fulfill the conditions:

aii + μkcii ≤ 0 (5)

|aii + μkcii| ≥ ∑
j �=i

|aij + μkcij|

∀i = 1, 2, ..., m and ∀k = 1, 2, ...., n, then the MAS (3) is stable.

Proof If the conditions (5) hold, then all eigenvalues of the matrix

A + μkBC =

⎛
⎜⎜⎜⎝

a11 + μkc11 a12 + μkc12 . . . a1m + μkc1n
a21 + μkc21 a22 + μkc22 . . . a2m + μkc2m

...
...

...
. . .

am1 + μkcm1 am2 + μkcm2 . . . amm + μkcmm

⎞
⎟⎟⎟⎠ ,

∀k = 1, 2, . . . , n, are located in a convex set in the left complex half plane as result by the
application of the Gershgorin’s circle theorem (Horn R.A. & Johnson C.R., 1995). Hence, by
Lemma 1, the MAS is stable.

The previous Theorem 1 easily yields to the following corollaries.

Corollary 1 Let the MAS composed of n identical MIMO system of order 2 and
interconnected by the digraph G = (V, E, U), with adjacency matrix U with eigenvalues
μ1 ≤ μ2 ≤ . . . μn. If the node dynamic matrix A = {aij} and the coupling matrix BC = {cij}
with cij ≥ 0, i, j = 1, 2, fulfill the conditions:

aij ≥ −cijμ1
aii ≤ −aij − (cii + cij) · μn

(6)

or

aii ≤ −ciiμn
aij ≤ −cijμn

aii ≤ aij + (cij − cii) · μ1,
(7)

i, j = 1, 2, then the MAS (3) is stable.
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Because the adjacency matrix U of a graph has both positive and negative eigenvalues, the
conditions (6) and (7) implicitly imply the assumption that the single system at the node is
stable. In this way, as expected, we derive that it is not possible to stabilize a network of
instable systems by acting only on the topological structure. Given a specified node dynamic,
coupling strength and bound on the adjacency matrix U, by conditions (6) and (7) we
can assess MAS stability. Moreover, the MAS robustness with respect to varying switching
topology can be dealt by considering the span of the eigenvalue of the admissible structure
topologies. As we will show in the follows, it is possible easily to evaluate the eigenvalues of
Ag, given the eigenvalues of U in some simple and representative cases of interest.

Corollary 2 Let the MAS composed of n identical MIMO system of order 1 and
interconnected by the digraph G = (V, E, U), with adjacency matrix U with eigenvalues
μ1 ≤ μ2 ≤ . . . μn. If the node dynamic matrix A = a and the coupling matrix BC = c fulfill
the conditions:

a ≤ −c · μn if c ≥ 0 (8)

a ≤ −c · μ1 if c < 0, (9)

then the MAS (3) is stable.

The Corollary 2 reduces the analytical result of Theorem 1 to the case of the consensus of
integrator (R.O. Saber & R. Murray, 2004) with coupling gain c. Smaller c, higher is the degree
of robustness of the network to the slower node dynamic. In the opposite, higher c reduces the
stability margin of the MAS. Finally, for a fixed dynamic at the node, the maximum admissible
coupling strength c depends on the maximum and minimum eigenvalues of the adjacency
matrix:

c ≤ − a
μn

if c ≥ 0 (10)

c ≥ − a
μ1

if c < 0. (11)

Corollary 3 Let the MAS of n identical MIMO system of the m-th order, interconnected by the
digraph G = (V, E, U), with adjacency matrix U with eigenvalues μ1 ≤ μ2 ≤ . . . μn. If the
node dynamic matrix A = {aij} and the coupling matrix BC = {cij} are both upper or lower
triangular matrix and fulfill the conditions:

aii ≤ −cii · μn if cii ≥ 0 (12)

aii ≤ −cii · μ1 if cii < 0, (13)

then the MAS (3) is stable.
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Corollary 1 Let the MAS composed of n identical MIMO system of order 2 and
interconnected by the digraph G = (V, E, U), with adjacency matrix U with eigenvalues
μ1 ≤ μ2 ≤ . . . μn. If the node dynamic matrix A = {aij} and the coupling matrix BC = {cij}
with cij ≥ 0, i, j = 1, 2, fulfill the conditions:

aij ≥ −cijμ1
aii ≤ −aij − (cii + cij) · μn

(6)

or

aii ≤ −ciiμn
aij ≤ −cijμn

aii ≤ aij + (cij − cii) · μ1,
(7)

i, j = 1, 2, then the MAS (3) is stable.
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Because the adjacency matrix U of a graph has both positive and negative eigenvalues, the
conditions (6) and (7) implicitly imply the assumption that the single system at the node is
stable. In this way, as expected, we derive that it is not possible to stabilize a network of
instable systems by acting only on the topological structure. Given a specified node dynamic,
coupling strength and bound on the adjacency matrix U, by conditions (6) and (7) we
can assess MAS stability. Moreover, the MAS robustness with respect to varying switching
topology can be dealt by considering the span of the eigenvalue of the admissible structure
topologies. As we will show in the follows, it is possible easily to evaluate the eigenvalues of
Ag, given the eigenvalues of U in some simple and representative cases of interest.

Corollary 2 Let the MAS composed of n identical MIMO system of order 1 and
interconnected by the digraph G = (V, E, U), with adjacency matrix U with eigenvalues
μ1 ≤ μ2 ≤ . . . μn. If the node dynamic matrix A = a and the coupling matrix BC = c fulfill
the conditions:

a ≤ −c · μn if c ≥ 0 (8)

a ≤ −c · μ1 if c < 0, (9)

then the MAS (3) is stable.

The Corollary 2 reduces the analytical result of Theorem 1 to the case of the consensus of
integrator (R.O. Saber & R. Murray, 2004) with coupling gain c. Smaller c, higher is the degree
of robustness of the network to the slower node dynamic. In the opposite, higher c reduces the
stability margin of the MAS. Finally, for a fixed dynamic at the node, the maximum admissible
coupling strength c depends on the maximum and minimum eigenvalues of the adjacency
matrix:

c ≤ − a
μn

if c ≥ 0 (10)

c ≥ − a
μ1

if c < 0. (11)

Corollary 3 Let the MAS of n identical MIMO system of the m-th order, interconnected by the
digraph G = (V, E, U), with adjacency matrix U with eigenvalues μ1 ≤ μ2 ≤ . . . μn. If the
node dynamic matrix A = {aij} and the coupling matrix BC = {cij} are both upper or lower
triangular matrix and fulfill the conditions:

aii ≤ −cii · μn if cii ≥ 0 (12)

aii ≤ −cii · μ1 if cii < 0, (13)

then the MAS (3) is stable.
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Fig. 1. Procedure of redirectioning of links in a regular network (a) with increasing probability p. As p
increases the network moves from regular (a) to random (c), becoming small world (b) for a critical value
of p. n=20, k=4

Notice that if BC = c · In, (10) and (11) become:

c ≤ −
min

i
|aii|

μn
If cii ≥ 0 (14)

c > −
min

i
|aii|

μ1
If cii < 0 (15)

and hence the stability of MAS is explicitly given as function of the network slowest node
dynamic.
Now we would like to point out the case of undirected topology with symmetric adjacency
matrix U. If we assume A and BC being symmetric, then Ag is symmetric with real eigenvalue.
Moreover from the field value property (Horn R.A. & Johnson C.R., 1995), let σ(A) = {αj} and
σ(BC) = {νj} the eigenvalues set of A and BC, then the eigenvalues of A + μiBC are in the
interval [minj{αj} + μi minj{νj}, maxj{αj} + μi maxj{νj}], for every 1 ≤ i ≤ n , 1 ≤ j ≤ m.
In this way, there is a bound need to be satisfied by the topology structure, node dynamic and
coupling matrix for MAS stabilization.
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In the literature, the MAS consensuability results have been given in terms of Laplacian
matrix properties. Here, differently, we have given bounds as function of the adjacency
matrix features. Anyway we can use the results on the Laplacian eigenvalue for recasting
the bounds given on the adjacency matrix. To this aim, defined the degree di of i-th node of
an undirected graph as ∑j uij, the Laplacian matrix is defined as L = D − U with D is the
diagonal matrix with the degree of node i-th in position i-th. Clearly L is a zero row sums
matrix with non-positive off-diagonal elements. It has at least one zero eigenvalue and all
nonzero eigenvalues have nonnegative real parts. So U = D − L and being the minimum and
maximum Laplacian eigenvalues respectively bounded by 0 and the highest node degree, we
have:

Lemma 2 Let U the adjacency matrix of undirected and connected graph G = (V, E, U), with
eigenvalues μ1 ≤ μ2 ≤ . . . ≤ μn, then results:

μ1(U) ≥ min
i

di − min(max
k,j

{dk + dj : (k, j) ∈ E(G)}, n) (16)

μn(U) ≤ max
i

di (17)

Proof Easily follows from the Laplacian eigenvalues bound and the field value property
(Horn R.A. & Johnson C.R., 1995).

4. Simulation validation

In the follows we will present a variety of simulations to validate the above theoretical results
under different kinds of node dynamic and network topology variations. Specifically the MAS
topology variations have been carried out by using the well known Watts-Strogats procedure
described in (Watts & S. H. Strogatz, 1998). In particular, starting from the regular network
topology (p = 0), by increasing the probability p of rewiring the links, it is possible smoothly
to change its topology into a random one (p = 1), with small world typically occurring at
some intermediate value. In so doing neither the number of nodes nor the overall number of
edges is changed. In Fig. 1 it shown the results in the case of MAS of 20 nodes with each one
having k = 4 neighbors.
Among the simulation results we focus our attention on the maximum and minimum
eigenvalues of the matrixes U (i.e. μn and μ1) and Ag (i.e. λM and λm) and their bounds
computed by using the results of the previous section. In particular, by Lemma 2, we convey
the bounds on U eigenvalues in bounds on Ag eigenvalues suitable for the case of time varying
topology structure. We assume in the simulations the matrices A and BC to be symmetric. In
this way, if U eigenvalues are in [v1, v2], let σ(A) = {αi}, σ(BC) = {νi}, the eigenvalues of Ag
will be in the interval [min

i
αi + min

j
{v1νj , v2νj}, max

i
αi + max

j
{v1νj, v2νj}] for i, j = 1, 2, . . . , n.

Notice that, known the interval of variation [v1, v2] of the eigenvalues set of U under switching
topologies, we can recast the conditions (8), (9), (12), (13), (6), (7) and to use it for design
purpose. Specifically, given the interval [v1, v2] associated to the topology possible variations,
we derive conditions on A or BC for MAS consensuability.
We consider a graph of n = 400 and k = 4. In the evolving network simulations, we started
with k = 4 and bounded it to the order of O(log(n)) for setting a sparse graph. In Tab 1 are
drawn the node dynamic and coupling matrices considered in the first set of simulations.
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of p. n=20, k=4

Notice that if BC = c · In, (10) and (11) become:

c ≤ −
min

i
|aii|

μn
If cii ≥ 0 (14)
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and hence the stability of MAS is explicitly given as function of the network slowest node
dynamic.
Now we would like to point out the case of undirected topology with symmetric adjacency
matrix U. If we assume A and BC being symmetric, then Ag is symmetric with real eigenvalue.
Moreover from the field value property (Horn R.A. & Johnson C.R., 1995), let σ(A) = {αj} and
σ(BC) = {νj} the eigenvalues set of A and BC, then the eigenvalues of A + μiBC are in the
interval [minj{αj} + μi minj{νj}, maxj{αj} + μi maxj{νj}], for every 1 ≤ i ≤ n , 1 ≤ j ≤ m.
In this way, there is a bound need to be satisfied by the topology structure, node dynamic and
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In the literature, the MAS consensuability results have been given in terms of Laplacian
matrix properties. Here, differently, we have given bounds as function of the adjacency
matrix features. Anyway we can use the results on the Laplacian eigenvalue for recasting
the bounds given on the adjacency matrix. To this aim, defined the degree di of i-th node of
an undirected graph as ∑j uij, the Laplacian matrix is defined as L = D − U with D is the
diagonal matrix with the degree of node i-th in position i-th. Clearly L is a zero row sums
matrix with non-positive off-diagonal elements. It has at least one zero eigenvalue and all
nonzero eigenvalues have nonnegative real parts. So U = D − L and being the minimum and
maximum Laplacian eigenvalues respectively bounded by 0 and the highest node degree, we
have:
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μ1(U) ≥ min
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di − min(max
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{dk + dj : (k, j) ∈ E(G)}, n) (16)

μn(U) ≤ max
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di (17)

Proof Easily follows from the Laplacian eigenvalues bound and the field value property
(Horn R.A. & Johnson C.R., 1995).

4. Simulation validation

In the follows we will present a variety of simulations to validate the above theoretical results
under different kinds of node dynamic and network topology variations. Specifically the MAS
topology variations have been carried out by using the well known Watts-Strogats procedure
described in (Watts & S. H. Strogatz, 1998). In particular, starting from the regular network
topology (p = 0), by increasing the probability p of rewiring the links, it is possible smoothly
to change its topology into a random one (p = 1), with small world typically occurring at
some intermediate value. In so doing neither the number of nodes nor the overall number of
edges is changed. In Fig. 1 it shown the results in the case of MAS of 20 nodes with each one
having k = 4 neighbors.
Among the simulation results we focus our attention on the maximum and minimum
eigenvalues of the matrixes U (i.e. μn and μ1) and Ag (i.e. λM and λm) and their bounds
computed by using the results of the previous section. In particular, by Lemma 2, we convey
the bounds on U eigenvalues in bounds on Ag eigenvalues suitable for the case of time varying
topology structure. We assume in the simulations the matrices A and BC to be symmetric. In
this way, if U eigenvalues are in [v1, v2], let σ(A) = {αi}, σ(BC) = {νi}, the eigenvalues of Ag
will be in the interval [min

i
αi + min

j
{v1νj , v2νj}, max
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αi + max
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Notice that, known the interval of variation [v1, v2] of the eigenvalues set of U under switching
topologies, we can recast the conditions (8), (9), (12), (13), (6), (7) and to use it for design
purpose. Specifically, given the interval [v1, v2] associated to the topology possible variations,
we derive conditions on A or BC for MAS consensuability.
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Fig. 2. Case 1. Dashed line: bound on the eigenvalue; continuous line: eigenvalues, (a) Maximum
eigenvalue of Ag , (b) Maximum eigenvalue of U, (c) Minimum eigenvalue of Ag, (d) Minimum
eigenvalue of U
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Fig. 4. Case 2. Dashed line: bound on the eigenvalue; continuous line: eigenvalue: (a) Maximum
eigenvalue of Ag , (b) Maximum eigenvalue of U, (c) Minimum eigenvalue of Ag, (d) Minimum
eigenvalue of U

A B C

Case 1: -4.1 1 1
Case 2: -12 1 1
Case 3: -6 1 1
Case 4: -6 2 1

Table 1. Node system matrices (A,B,C)
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eigenvalue of Ag , (b) Maximum eigenvalue of U, (c) Minimum eigenvalue of Ag, (d) Minimum
eigenvalue of U
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eigenvalue of Ag , (b) Maximum eigenvalue of U, (c) Minimum eigenvalue of Ag, (d) Minimum
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Fig. 7. Case 4. Dashed line: bound on the eigenvalues; continuous line: eigenvalues: (a) Maximum
eigenvalue of Ag , (b) Maximum eigenvalue of U, (c) Minimum eigenvalue of Ag, (d) Minimum
eigenvalue of U

In the case 1 (Fig 2), we note as although we start from a stable MAS network, the topology
variation leads the network instability condition (namely λM becomes positive). In Fig. 3 it is
shown the time state evolution of the firsts 10 nodes, under the switching frequency of 1 Hz.
We note as the MAS converges to the consensus state till it is stable, then goes in instability
condition.
In the case 2, we consider a node dynamic faster than the maximum network degree dM of
all evolving network topologies from compete to random graph. Notice that although this
assures MAS consensuability as drawn in Fig. 4, it can be much conservative.
In the case 3 (Fig 5), we consider a slower node dynamic than the cases 2. The MAS is robust
stable under topology variations. In Fig. 6 the state dynamic evolution is convergent and the
settling time is about 4.6/|λM(Ag)|.
Then we have varied the value for BC by doubling the B matrix value leaving unchanged the
node dynamic matrix. As appears in Fig. 7, the MAS goes in instability condition pointing out
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In the case 1 (Fig 2), we note as although we start from a stable MAS network, the topology
variation leads the network instability condition (namely λM becomes positive). In Fig. 3 it is
shown the time state evolution of the firsts 10 nodes, under the switching frequency of 1 Hz.
We note as the MAS converges to the consensus state till it is stable, then goes in instability
condition.
In the case 2, we consider a node dynamic faster than the maximum network degree dM of
all evolving network topologies from compete to random graph. Notice that although this
assures MAS consensuability as drawn in Fig. 4, it can be much conservative.
In the case 3 (Fig 5), we consider a slower node dynamic than the cases 2. The MAS is robust
stable under topology variations. In Fig. 6 the state dynamic evolution is convergent and the
settling time is about 4.6/|λM(Ag)|.
Then we have varied the value for BC by doubling the B matrix value leaving unchanged the
node dynamic matrix. As appears in Fig. 7, the MAS goes in instability condition pointing out
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Fig. 8. Case 5. Dashed line: bound on the eigenvalue; continuous line: eigenvalue: (a) Maximum
eigenvalue of Ag , (b) Maximum eigenvalue of U, (c) Minimum eigenvalue of Ag, (d) Minimum
eigenvalue of U

that also the coupling strength can affect the stability (as stated by the conditions (8), (9)) and
that this effect can be amplified by the network topological variations.

A B C

Case 5:
[−6 3

3 −12

] [
1
0

] [
1 0

]

Case 6:
[−3 3

3 −6

] [
1
0

] [
1 0

]

Case 7:
[−3 3

3 −6

] [
0.25

0

] [
1 0

]

Table 2. Node system matrices (A,B,C).
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Fig. 9. Case 6. Dashed line: bound on the eigenvalue; continuous line: eigenvalue: (a) Maximum
eigenvalue of Ag , (b) Maximum eigenvalue of U, (c) Minimum eigenvalue of Ag, (d) Minimum
eigenvalue of U

On the other side, a reduction on BC increases the MAS stability margin. So we can tune
the BC value in order to guarantee stability or desired robust stability MAS margin under a
specified node dynamic and topology network variations. Indeed if BC has eigenvalues above
1, its effect is to amplify the eigenvalues of U and we need a faster node dynamic for assessing
MAS stability. If BC has eigenvalues less of 1, its effect is of attenuation and the node dynamic
can be slower without affecting the network stability.
Now we consider SISO system of second order at the node as shown in Tab.2. In this case the
matrix BC has one zero eigenvalue being the rows linearly dependent.
In the case 5 the eigenvalues of A are α1 = −4.76 and α2 = −13.23, the eigenvalues of the
coupling matrix BC are ν1 = 1 and ν2 = 0. In this case the node dynamic is sufficiently fast for
guaranteeing MAS consensuability (Fig. 8). In the case 6, we reduce the node dynamic matrix
A to α1 = −1.15 e α2 = −7.85. Fig. 9 shows instability condition for the MAS network. We
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Fig. 8. Case 5. Dashed line: bound on the eigenvalue; continuous line: eigenvalue: (a) Maximum
eigenvalue of Ag , (b) Maximum eigenvalue of U, (c) Minimum eigenvalue of Ag, (d) Minimum
eigenvalue of U

that also the coupling strength can affect the stability (as stated by the conditions (8), (9)) and
that this effect can be amplified by the network topological variations.

A B C

Case 5:
[−6 3

3 −12

] [
1
0

] [
1 0

]

Case 6:
[−3 3

3 −6

] [
1
0

] [
1 0

]

Case 7:
[−3 3

3 −6

] [
0.25

0

] [
1 0

]

Table 2. Node system matrices (A,B,C).
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Fig. 9. Case 6. Dashed line: bound on the eigenvalue; continuous line: eigenvalue: (a) Maximum
eigenvalue of Ag , (b) Maximum eigenvalue of U, (c) Minimum eigenvalue of Ag, (d) Minimum
eigenvalue of U

On the other side, a reduction on BC increases the MAS stability margin. So we can tune
the BC value in order to guarantee stability or desired robust stability MAS margin under a
specified node dynamic and topology network variations. Indeed if BC has eigenvalues above
1, its effect is to amplify the eigenvalues of U and we need a faster node dynamic for assessing
MAS stability. If BC has eigenvalues less of 1, its effect is of attenuation and the node dynamic
can be slower without affecting the network stability.
Now we consider SISO system of second order at the node as shown in Tab.2. In this case the
matrix BC has one zero eigenvalue being the rows linearly dependent.
In the case 5 the eigenvalues of A are α1 = −4.76 and α2 = −13.23, the eigenvalues of the
coupling matrix BC are ν1 = 1 and ν2 = 0. In this case the node dynamic is sufficiently fast for
guaranteeing MAS consensuability (Fig. 8). In the case 6, we reduce the node dynamic matrix
A to α1 = −1.15 e α2 = −7.85. Fig. 9 shows instability condition for the MAS network. We
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can lead the MAS in stability condition by designing the coupling matrix BC as appear by the
case 7 and the associate Fig. 10.

4.1 Robustness to node fault
Now we deal with the case of node fault. We can state the following Theorem.

Theorem 2 Let A and BC symmetric matrix and G(V, E, U) an undirected graph. If the MAS
system described by Ag is stable, it is stable also in the presence of node faults. Moreover the
MAS dynamic becomes faster after the node fault.

Proof Being the graph undirected and A and BC symmetric then Ag is symmetric. Let Ãg the
MAS dynamic matrix associated to the network after a node fault. Ãg is obtained from Ag by
eliminating the rows and columns corresponding to the nodes went down. So Ãg is a minor of
Ag and for the interlacing theorem (Horn R.A. & Johnson C.R., 1995) it has eigenvalues inside
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Fig. 11. Eigenvalues in the case l = 1. Dashed line: eigenvalue in the case of complete topology with
n = 100; continuous line: eigenvalue in the case of node fault: (a) Maximum eigenvalue of Ag, (b)
Maximum eigenvalue of U, (c) Minimum eigenvalue of Ag, (d) Minimum eigenvalue of U

the real interval with extremes the minimum and maximum Ag eigenvalues. Hence if Ag is
stable, Ãg is stable too. Moreover, the maximum eigenvalue of Ãg is less than one of Ag. So
the slowest dynamic of the system ẋ(t) = Ãgx(t) is faster than the system ẋ(t) = Agx(t).

In the follows we will show the eigenvalues of MAS dynamic in the presence of node fault.
We consider MAS network with n = 100. We compare for each evolving network topology
at each time simulation step, the maximum and minimum eigenvalues of Ag than those ones
resulting with the fault of randomly chosen l nodes. Figures 11 and 12 show the eigenvalues
of system dynamic for the cases l = 1 and l = 50.
Notice that as the eigenvalues of U and Ag of fault network are inside the real interval
containing the eigenvalues of U and Ag of the complete graph. In Fig. 13 are shown the time
evolutions of state of the complete and faulted graphs. Notice that the fault network is faster
than the initial network as stated by the analysis of the spectra of Ag and Ãg.
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Theorem 2 Let A and BC symmetric matrix and G(V, E, U) an undirected graph. If the MAS
system described by Ag is stable, it is stable also in the presence of node faults. Moreover the
MAS dynamic becomes faster after the node fault.

Proof Being the graph undirected and A and BC symmetric then Ag is symmetric. Let Ãg the
MAS dynamic matrix associated to the network after a node fault. Ãg is obtained from Ag by
eliminating the rows and columns corresponding to the nodes went down. So Ãg is a minor of
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stable, Ãg is stable too. Moreover, the maximum eigenvalue of Ãg is less than one of Ag. So
the slowest dynamic of the system ẋ(t) = Ãgx(t) is faster than the system ẋ(t) = Agx(t).

In the follows we will show the eigenvalues of MAS dynamic in the presence of node fault.
We consider MAS network with n = 100. We compare for each evolving network topology
at each time simulation step, the maximum and minimum eigenvalues of Ag than those ones
resulting with the fault of randomly chosen l nodes. Figures 11 and 12 show the eigenvalues
of system dynamic for the cases l = 1 and l = 50.
Notice that as the eigenvalues of U and Ag of fault network are inside the real interval
containing the eigenvalues of U and Ag of the complete graph. In Fig. 13 are shown the time
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Fig. 12. Eigenvalues in the case of l = 50. Dashed line: eigenvalue in the case of complete topology with
n = 100; continuous line: eigenvalue in the case of node fault: (a) Maximum eigenvalue of Ag, (b)
Maximum eigenvalue of U, (c) Minimum eigenvalue of Ag, (d) Minimum eigenvalue of U

5. Conclusions

In this book chapter we have investigated the consensuability of the MASs under both the
dynamic agent structure and communication topology variations. Specifically, it has given
consensusability conditions of linear MASs as function of the agent dynamic structure,
communication topology and coupling strength parameters. The theoretical results are given
by transferring the consensusability problem to the stability analysis of LTI-MASs. Moreover,
it is shown that the interplay among consensusability, node dynamic and topology must
be taken into account for MASs stabilization: consensuability of MASs is assessed for
all topologies, dynamic and coupling strength satisfying a pre-specified bound. From the
practical point of view the consensuability conditions can be used for both the analysis
and planning of MASs protocols to guarantee robust stability for a wide range of possible
interconnection topologies, coupling strength and node dynamics. Also, the consensuability
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Fig. 13. Time evolution of the state variables for l=50: top Figure: complete graph. Bottom Figure: graph
with fault.

of MAS in the presence of node faults has been analyzed. Simulation scenarios are given to
validate the theoretical results.
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1. Introduction

The aim of this chapter is to present several interesting connections between the input-output
stability properties and the stabilizability and detectability of variational control systems,
proposing a new perspective concerning the interference of the interpolation methods in
control theory and extending the applicability area of the input-output methods in the stability
theory.
Indeed, let X be a Banach space, let (Θ, d) be a locally compact metric space and let E = X×Θ.
We denote by B(X) the Banach algebra of all bounded linear operators on X. If Y, U are two
Banach spaces, we denote by B(U, Y) the space of all bounded linear operators from U into Y
and by Cs(Θ,B(U, Y)) the space of all continuous bounded mappings H : Θ → B(U, Y). With
respect to the norm |||H||| := sup

θ∈Θ
||H(θ)||, Cs(Θ,B(U, Y)) is a Banach space.

If H ∈ Cs(Θ,B(U, Y)) and Q ∈ Cs(Θ,B(Y, Z)) we denote by QH the mapping Θ � θ �→
Q(θ)H(θ). It is obvious that QH ∈ Cs(Θ,B(U, Z)) .

Definition 1.1. Let J ∈ {R+, R}. A continuous mapping σ : Θ × J → Θ is called a flow on Θ
if σ(θ, 0) = θ and σ(θ, s + t) = σ(σ(θ, s), t), for all (θ, s, t) ∈ Θ × J2.

Definition 1.2. A pair π = (Φ, σ) is called a linear skew-product flow on E = X × Θ if σ is a
flow on Θ and Φ : Θ × R+ → B(X) satisfies the following conditions:
(i) Φ(θ, 0) = Id, the identity operator on X, for all θ ∈ Θ;
(ii) Φ(θ, t + s) = Φ(σ(θ, t), s)Φ(θ, t), for all (θ, t, s) ∈ Θ × R2

+ (the cocycle identity);
(iii) (θ, t) �→ Φ(θ, t)x is continuous, for every x ∈ X;
(iv) there are M ≥ 1 and ω > 0 such that ||Φ(θ, t)|| ≤ Meωt, for all (θ, t) ∈ Θ × R+.
The mapping Φ is called the cocycle associated to the linear skew-product flow π = (Φ, σ).

Let L1
loc(R+, X) denote the linear space of all locally Bochner integrable functions u : R+ → X.

Let π = (Φ, σ) be a linear skew-product flow on E = X × Θ. We consider the variational
integral system

(Sπ) xθ(t; x0, u) = Φ(θ, t)x0 +
∫ t

0
Φ(σ(θ, s), t − s)u(s) ds, t ≥ 0, θ ∈ Θ

* The work is supported by The National Research Council CNCSIS-UEFISCSU, PN II Research Grant
ID 1081 code 550.
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if σ(θ, 0) = θ and σ(θ, s + t) = σ(σ(θ, s), t), for all (θ, s, t) ∈ Θ × J2.

Definition 1.2. A pair π = (Φ, σ) is called a linear skew-product flow on E = X × Θ if σ is a
flow on Θ and Φ : Θ × R+ → B(X) satisfies the following conditions:
(i) Φ(θ, 0) = Id, the identity operator on X, for all θ ∈ Θ;
(ii) Φ(θ, t + s) = Φ(σ(θ, t), s)Φ(θ, t), for all (θ, t, s) ∈ Θ × R2

+ (the cocycle identity);
(iii) (θ, t) �→ Φ(θ, t)x is continuous, for every x ∈ X;
(iv) there are M ≥ 1 and ω > 0 such that ||Φ(θ, t)|| ≤ Meωt, for all (θ, t) ∈ Θ × R+.
The mapping Φ is called the cocycle associated to the linear skew-product flow π = (Φ, σ).

Let L1
loc(R+, X) denote the linear space of all locally Bochner integrable functions u : R+ → X.

Let π = (Φ, σ) be a linear skew-product flow on E = X × Θ. We consider the variational
integral system

(Sπ) xθ(t; x0, u) = Φ(θ, t)x0 +
∫ t

0
Φ(σ(θ, s), t − s)u(s) ds, t ≥ 0, θ ∈ Θ
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with u ∈ L1
loc(R+, X) and x0 ∈ X.

Definition 1.3. The system (Sπ) is said to be uniformly exponentially stable if there are N, ν > 0
such that

||xθ(t; x0, 0)|| ≤ Ne−νt||x0||, ∀(θ, t) ∈ Θ × R+, ∀x0 ∈ X.

Remark 1.4. It is easily seen that the system (Sπ) is uniformly exponentially stable if and only
if there are N, ν > 0 such that ||Φ(θ, t)|| ≤ Ne−νt, for all (θ, t) ∈ Θ × R+.

If π = (Φ, σ) is a linear skew-product flow on E = X × Θ and P ∈ Cs(Θ,B(X)), then there
exists a unique linear skew-product flow denoted πP = (ΦP, σ) on X × Θ such that this
satisfies the variation of constants formula:

ΦP(θ, t)x = Φ(θ, t)x +
� t

0
Φ(σ(θ, s), t − s)P(σ(θ, s))ΦP(θ, s)x ds (1.1)

and respectively

ΦP(θ, t)x = Φ(θ, t)x +
� t

0
ΦP(σ(θ, s), t − s)P(σ(θ, s))Φ(θ, s)x ds (1.2)

for all (x, θ, t) ∈ E × R+. Moreover, if M, ω are the exponential growth constants given by
Definition 1.2 (iv) for π, then

||ΦP(θ, t)|| ≤ Me(ω+M ||P||)t, ∀(θ, t) ∈ Θ × R+.

The perturbed linear skew-product flow πP = (ΦP, σ) is obtained inductively (see Theorem
2.1 in (Megan et al., 2002)) via the formula

ΦP(θ, t) =
∞

∑
n=0

Φn(θ, t),

where

Φ0(θ, t)x = Φ(θ, t)x and Φn(θ, t)x =
� t

0
Φ(σ(θ, s), t − s) P(σ(θ, s)) Φn−1(θ, s)x ds, n ≥ 1

for every (x, θ) ∈ E and t ≥ 0.
Let U, Y be two Banach spaces, let B ∈ Cs(Θ,B(U, X)) and C ∈ Cs(Θ,B(X, Y)). We consider
the variational control system (π, B, C) described by the following integral model

⎧
⎨
⎩

x(θ, t, x0, u) = Φ(θ, t)x0 +
� t

0 Φ(σ(θ, s), t − s)B(σ(θ, s))u(s) ds

y(θ, t, x0, u) = C(σ(θ, t))x(θ, t, x0, u)

where t ≥ 0, (x0, θ) ∈ E and u ∈ L1
loc(R+, U).

Two fundamental concepts related to the asymptotic behavior of the associated perturbed
systems (see (Clark et al., 2000), (Curtain & Zwart, 1995), (Sasu & Sasu, 2004)) are described
by stabilizability and detectability as follows:

Definition 1.5. The system (π, B, C) is said to be:
(i) stabilizable if there exists a mapping F ∈ Cs(Θ,B(X, U)) such that the system (SπBF) is
uniformly exponentially stable;
(ii) detectable if there exists a mapping K ∈ Cs(Θ,B(Y, X)) such that the system (SπKC) is
uniformly exponentially stable.
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Remark 1.6. (i) The system (π, B, C) is stabilizable if and only if there exists a mapping F ∈
Cs(Θ,B(X, U)) and two constants N, ν > 0 such that the perturbed linear skew-product flow
πBF = (ΦBF, σ) has the property

||ΦBF(θ, t)|| ≤ Ne−νt, ∀(θ, t) ∈ Θ × R+;

(ii) The system (π, B, C) is detectable if and only if there exists a mapping K ∈ Cs(Θ,B(Y, X))
and two constants N, ν > 0 such that the perturbed linear skew-product flow πKC = (ΦKC, σ)
has the property

||ΦKC(θ, t)|| ≤ Ne−νt, ∀(θ, t) ∈ Θ × R+.

In the present work we will investigate the connections between the stabilizability and
the detectability of the variational control system (π, B, C) and the asymptotic properties
of the variational integral system (Sπ). We propose a new method based on input-output
techniques and on the behavior of some associated operators between certain function spaces.
We will present a distinct approach concerning the stabilizability and detectability problems
for variational control systems, compared with those in the existent literature, working with
several representative classes of translations invariant function spaces (see Section 2 in (Sasu,
2008) and also (Bennet & Sharpley, 1988)) and thus we extend the applicability area, providing
new perspectives concerning this framework.
A special application of our main results will be the study of the connections between
the exponential stability and the stabilizability and detectability of nonautonomous control
systems in infinite dimensional spaces. The nonautonomous case treated in this chapter will
include as consequences many interesting situations among which we mention the results
obtained by Clark, Latushkin, Montgomery-Smith and Randolph (see (Clark et al., 2000))
and the authors (see (Sasu & Sasu, 2004)) concerning the connections between stabilizability,
detectability and exponential stability.

2. Preliminaries on Banach function spaces and auxiliary results

In what follows we recall several fundamental properties of Banach function spaces and we
introduce the main tools of our investigation. Indeed, let M(R+, R) be the linear space of all
Lebesgue measurable functions u : R+ → R, identifying the functions equal a.e.

Definition 2.1. A linear subspace B of M(R+, R) is called a normed function space, if there is a
mapping | · |B : B → R+ such that:
(i) |u|B = 0 if and only if u = 0 a.e.;
(ii) |αu|B = |α| |u|B, for all (α, u) ∈ R × B;
(iii) |u + v|B ≤ |u|B + |v|B, for all u, v ∈ B;
(iv) if |u(t)| ≤ |v(t)| a.e. t ∈ R+ and v ∈ B, then u ∈ B and |u|B ≤ |v|B.

If (B, | · |B) is complete, then B is called a Banach function space.

Remark 2.2. If (B, | · |B) is a Banach function space and u ∈ B then |u(· )| ∈ B.

A remarkable class of Banach function spaces is represented by the translations invariant
spaces. These spaces have a special role in the study of the asymptotic properties of the
dynamical systems using control type techniques (see Sasu (2008), Sasu & Sasu (2004)).
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with u ∈ L1
loc(R+, X) and x0 ∈ X.

Definition 1.3. The system (Sπ) is said to be uniformly exponentially stable if there are N, ν > 0
such that

||xθ(t; x0, 0)|| ≤ Ne−νt||x0||, ∀(θ, t) ∈ Θ × R+, ∀x0 ∈ X.

Remark 1.4. It is easily seen that the system (Sπ) is uniformly exponentially stable if and only
if there are N, ν > 0 such that ||Φ(θ, t)|| ≤ Ne−νt, for all (θ, t) ∈ Θ × R+.

If π = (Φ, σ) is a linear skew-product flow on E = X × Θ and P ∈ Cs(Θ,B(X)), then there
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Definition 1.2 (iv) for π, then
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The perturbed linear skew-product flow πP = (ΦP, σ) is obtained inductively (see Theorem
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for every (x, θ) ∈ E and t ≥ 0.
Let U, Y be two Banach spaces, let B ∈ Cs(Θ,B(U, X)) and C ∈ Cs(Θ,B(X, Y)). We consider
the variational control system (π, B, C) described by the following integral model

⎧
⎨
⎩
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0 Φ(σ(θ, s), t − s)B(σ(θ, s))u(s) ds

y(θ, t, x0, u) = C(σ(θ, t))x(θ, t, x0, u)

where t ≥ 0, (x0, θ) ∈ E and u ∈ L1
loc(R+, U).

Two fundamental concepts related to the asymptotic behavior of the associated perturbed
systems (see (Clark et al., 2000), (Curtain & Zwart, 1995), (Sasu & Sasu, 2004)) are described
by stabilizability and detectability as follows:

Definition 1.5. The system (π, B, C) is said to be:
(i) stabilizable if there exists a mapping F ∈ Cs(Θ,B(X, U)) such that the system (SπBF) is
uniformly exponentially stable;
(ii) detectable if there exists a mapping K ∈ Cs(Θ,B(Y, X)) such that the system (SπKC) is
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and two constants N, ν > 0 such that the perturbed linear skew-product flow πKC = (ΦKC, σ)
has the property
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In the present work we will investigate the connections between the stabilizability and
the detectability of the variational control system (π, B, C) and the asymptotic properties
of the variational integral system (Sπ). We propose a new method based on input-output
techniques and on the behavior of some associated operators between certain function spaces.
We will present a distinct approach concerning the stabilizability and detectability problems
for variational control systems, compared with those in the existent literature, working with
several representative classes of translations invariant function spaces (see Section 2 in (Sasu,
2008) and also (Bennet & Sharpley, 1988)) and thus we extend the applicability area, providing
new perspectives concerning this framework.
A special application of our main results will be the study of the connections between
the exponential stability and the stabilizability and detectability of nonautonomous control
systems in infinite dimensional spaces. The nonautonomous case treated in this chapter will
include as consequences many interesting situations among which we mention the results
obtained by Clark, Latushkin, Montgomery-Smith and Randolph (see (Clark et al., 2000))
and the authors (see (Sasu & Sasu, 2004)) concerning the connections between stabilizability,
detectability and exponential stability.

2. Preliminaries on Banach function spaces and auxiliary results

In what follows we recall several fundamental properties of Banach function spaces and we
introduce the main tools of our investigation. Indeed, let M(R+, R) be the linear space of all
Lebesgue measurable functions u : R+ → R, identifying the functions equal a.e.

Definition 2.1. A linear subspace B of M(R+, R) is called a normed function space, if there is a
mapping | · |B : B → R+ such that:
(i) |u|B = 0 if and only if u = 0 a.e.;
(ii) |αu|B = |α| |u|B, for all (α, u) ∈ R × B;
(iii) |u + v|B ≤ |u|B + |v|B, for all u, v ∈ B;
(iv) if |u(t)| ≤ |v(t)| a.e. t ∈ R+ and v ∈ B, then u ∈ B and |u|B ≤ |v|B.

If (B, | · |B) is complete, then B is called a Banach function space.

Remark 2.2. If (B, | · |B) is a Banach function space and u ∈ B then |u(· )| ∈ B.

A remarkable class of Banach function spaces is represented by the translations invariant
spaces. These spaces have a special role in the study of the asymptotic properties of the
dynamical systems using control type techniques (see Sasu (2008), Sasu & Sasu (2004)).
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Definition 2.3. A Banach function space (B, | · |B) is said to be invariant to translations if for
every u : R+ → R and every t > 0, u ∈ B if and only if the function

ut : R+ → R, ut(s) =
{

u(s − t) , s ≥ t
0 , s ∈ [0, t)

belongs to B and |ut|B = |u|B.

Let Cc(R+, R) denote the linear space of all continuous functions v : R+ → R with compact
support contained in R+ and let L1

loc(R+, R) denote the linear space of all locally integrable
functions u : R+ → R.

We denote by T (R+) the class of all Banach function spaces B which are invariant to
translations and satisfy the following properties:
(i) Cc(R+, R) ⊂ B ⊂ L1

loc(R+, R);
(ii) if B \ L1(R+, R) �= ∅ then there is a continuous function δ ∈ B \ L1(R+, R).

For every A ⊂ R+ we denote by χA the characteristic function of the set A.

Remark 2.4. (i) If B ∈ T (R+), then χ[0,t) ∈ B, for all t > 0.
(ii) Let B ∈ T (R+), u ∈ B and t > 0. Then, the function ũt : R+ → R, ũt(s) = u(s + t) belongs
to B and |ũt|B ≤ |u|B (see (Sasu, 2008), Lemma 5.4).

Definition 2.5. (i) Let u, v ∈ M(R+, R). We say that u and v are equimeasurable if for every
t > 0 the sets {s ∈ R+ : |u(s)| > t} and {s ∈ R+ : |v(s)| > t} have the same measure.
(ii) A Banach function space (B, | · |B) is rearrangement invariant if for every equimeasurable
functions u, v : R+ → R+ with u ∈ B we have that v ∈ B and |u|B = |v|B.

We denote by R(R+) the class of all Banach function spaces B ∈ T (R+) which are
rearrangement invariant.

A remarkable class of rearrangement invariant function spaces is represented by the so-called
Orlicz spaces which are introduced in the following remark:

Remark 2.6. Let ϕ : R+ → R+ be a non-decreasing left-continuous function, which is
not identically zero on (0, ∞). The Young function associated with ϕ is defined by Yϕ(t) =∫ t

0 ϕ(s) ds. For every u ∈ M(R+, R) let Mϕ(u) :=
∫ ∞

0 Yϕ(|u(s)|) ds. The set Oϕ of all
u ∈ M(R+, R) with the property that there is k > 0 such that Mϕ(ku) < ∞, is a linear
space. With respect to the norm |u|ϕ := inf{k > 0 : Mϕ(u/k) ≤ 1}, Oϕ is a Banach space,
called the Orlicz space associated with ϕ.
The Orlicz spaces are rearrangement invariant (see (Bennet & Sharpley, 1988), Theorem 8.9).
Moreover, it is well known that, for every p ∈ [1, ∞], the space Lp(R+, R) is a particular case
of Orlicz space.

Let now (X, || · ||) be a real or complex Banach space. For every B ∈ T (R+) we denote
by B(R+, X), the linear space of all Bochner measurable functions u : R+ → X with the
property that the mapping Nu : R+ → R+, Nu(t) = ||u(t)|| lies in B. Endowed with the norm
||u||B(R+,X) := |Nu|B, B(R+, X) is a Banach space.
Let (Θ, d) be a metric space and let E = X × Θ. Let π = (Φ, σ) be a linear skew-product flow
on E = X × Θ. We consider the variational integral system

(Sπ) xθ(t; x0, u) = Φ(θ, t)x0 +
∫ t

0
Φ(σ(θ, s), t − s)u(s) ds, t ≥ 0, θ ∈ Θ

444 Robust Control, Theory and Applications

with u ∈ L1
loc(R+, X) and x0 ∈ X.

An important stability concept related with the asymptotic behavior of dynamical systems is
described by the following concept:

Definition 2.7. Let W ∈ T (R+). The system (Sπ) is said to be completely (W(R+, X),
W(R+, X))-stable if the following assertions hold:
(i) for every u ∈ W(R+, X) and every θ ∈ Θ the solution xθ(· ; 0, u) ∈ W(R+, X);
(ii) there is λ > 0 such that ||xθ(· ; 0, u)||W(R+,X) ≤ λ||u||W(R+,X), for all (u, θ) ∈ W(R+, X) ×
Θ.

A characterization of uniform exponential stability of variational systems in terms of the
complete stability of a pair of function spaces has been obtained in (Sasu, 2008) (see Corollary
3.19) and this is given by:

Theorem 2.8. Let W ∈ R(R+). The system (Sπ) is uniformly exponentially stable if and only if
(Sπ) is completely (W(R+, X), W(R+, X))-stable.

The problem can be also treated in the setting of the continuous functions. Indeed, let
Cb(R+, R) be the space of all bounded continuous functions u : R+ → R. Let C0(R+, R)
be the space of all continuous functions u : R+ → R with lim

t→∞
u(t) = 0 and let C00(R+, R) :=

{u ∈ C0(R+, R) : u(0) = 0}.

Definition 2.9. Let V ∈ {Cb(R+, R), C0(R+, R), C00(R+, R)}. The system (Sπ) is said to be
completely (V(R+, X), V(R+, X))-stable if the following assertions hold:
(i) for every u ∈ V(R+, X) and every θ ∈ Θ the solution xθ(· ; 0, u) ∈ V(R+, X);
(ii) there is λ > 0 such that ||xθ(· ; 0, u)||V(R+,X) ≤ λ||u||V(R+,X), for all (u, θ) ∈ V(R+, X)× Θ.

For the proof of the next result we refer to Corollary 3.24 in (Sasu, 2008) or, alternatively, to
Theorem 5.1 in (Megan et al., 2005).

Theorem 2.10. Let V ∈ {Cb(R+, R), C0(R+, R), C00(R+, R)}. The system (Sπ) is uniformly
exponentially stable if and only if (Sπ) is completely (V(R+, X), V(R+, X))-stable.

Remark 2.11. Let W ∈ R(R+) ∪ {C0(R+, X), C00(R+, X), Cb(R+, X)}. If the system (Sπ) is
uniformly exponentially stable then for every θ ∈ Θ the linear operator

Pθ
W : W(R+, X) → W(R+, X), (Pθ

Wu)(t) =
∫ t

0
Φ(σ(θ, s), t − s)u(s) ds

is correctly defined and bounded. Moreover, if λ > 0 is given by Definition 2.7 or respectively
by Definition 2.9, then we have that supθ∈Θ ||Pθ

W || ≤ λ.

These results have several interesting applications in control theory among we mention those
concerning the robustness problems (see (Sasu, 2008)) which lead to an inedit estimation of
the lower bound of the stability radius, as well as to the study of the connections between
stability and stabilizability and detectability of associated control systems, as we will see in
what follows. It worth mentioning that these aspects were studied for the very first time for
the case of systems associated to evolution operators in (Clark et al., 2000) and were extended
for linear skew-product flows in (Megan et al., 2002).
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with u ∈ L1
loc(R+, X) and x0 ∈ X.

An important stability concept related with the asymptotic behavior of dynamical systems is
described by the following concept:

Definition 2.7. Let W ∈ T (R+). The system (Sπ) is said to be completely (W(R+, X),
W(R+, X))-stable if the following assertions hold:
(i) for every u ∈ W(R+, X) and every θ ∈ Θ the solution xθ(· ; 0, u) ∈ W(R+, X);
(ii) there is λ > 0 such that ||xθ(· ; 0, u)||W(R+,X) ≤ λ||u||W(R+,X), for all (u, θ) ∈ W(R+, X) ×
Θ.

A characterization of uniform exponential stability of variational systems in terms of the
complete stability of a pair of function spaces has been obtained in (Sasu, 2008) (see Corollary
3.19) and this is given by:

Theorem 2.8. Let W ∈ R(R+). The system (Sπ) is uniformly exponentially stable if and only if
(Sπ) is completely (W(R+, X), W(R+, X))-stable.

The problem can be also treated in the setting of the continuous functions. Indeed, let
Cb(R+, R) be the space of all bounded continuous functions u : R+ → R. Let C0(R+, R)
be the space of all continuous functions u : R+ → R with lim

t→∞
u(t) = 0 and let C00(R+, R) :=

{u ∈ C0(R+, R) : u(0) = 0}.

Definition 2.9. Let V ∈ {Cb(R+, R), C0(R+, R), C00(R+, R)}. The system (Sπ) is said to be
completely (V(R+, X), V(R+, X))-stable if the following assertions hold:
(i) for every u ∈ V(R+, X) and every θ ∈ Θ the solution xθ(· ; 0, u) ∈ V(R+, X);
(ii) there is λ > 0 such that ||xθ(· ; 0, u)||V(R+,X) ≤ λ||u||V(R+,X), for all (u, θ) ∈ V(R+, X)× Θ.

For the proof of the next result we refer to Corollary 3.24 in (Sasu, 2008) or, alternatively, to
Theorem 5.1 in (Megan et al., 2005).

Theorem 2.10. Let V ∈ {Cb(R+, R), C0(R+, R), C00(R+, R)}. The system (Sπ) is uniformly
exponentially stable if and only if (Sπ) is completely (V(R+, X), V(R+, X))-stable.

Remark 2.11. Let W ∈ R(R+) ∪ {C0(R+, X), C00(R+, X), Cb(R+, X)}. If the system (Sπ) is
uniformly exponentially stable then for every θ ∈ Θ the linear operator

Pθ
W : W(R+, X) → W(R+, X), (Pθ

Wu)(t) =
∫ t

0
Φ(σ(θ, s), t − s)u(s) ds

is correctly defined and bounded. Moreover, if λ > 0 is given by Definition 2.7 or respectively
by Definition 2.9, then we have that supθ∈Θ ||Pθ

W || ≤ λ.

These results have several interesting applications in control theory among we mention those
concerning the robustness problems (see (Sasu, 2008)) which lead to an inedit estimation of
the lower bound of the stability radius, as well as to the study of the connections between
stability and stabilizability and detectability of associated control systems, as we will see in
what follows. It worth mentioning that these aspects were studied for the very first time for
the case of systems associated to evolution operators in (Clark et al., 2000) and were extended
for linear skew-product flows in (Megan et al., 2002).
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3. Stabilizability and detectability of variational control systems

As stated from the very beginning, in this section our attention will focus on the connections
between stabilizability, detectability and the uniform exponential stability. Let X be a Banach
space, let (Θ, d) be a metric space and let π = (Φ, σ) be a linear skew-product flow on E =
X × Θ. We consider the variational integral system

(Sπ) xθ(t; x0, u) = Φ(θ, t)x0 +
� t

0
Φ(σ(θ, s), t − s)u(s) ds, t ≥ 0, θ ∈ Θ

with u ∈ L1
loc(R+, X) and x0 ∈ X.

Let U, Y be Banach spaces and let B ∈ Cs(Θ,B(U, X)), C ∈ Cs(Θ,B(X, Y)). We consider the
variational control system (π, B, C) described by the following integral model

⎧
⎨
⎩

x(θ, t, x0, u) = Φ(θ, t)x0 +
� t

0 Φ(σ(θ, s), t − s)B(σ(θ, s))u(s) ds

y(θ, t, x0, u) = C(σ(θ, t))x(θ, t, x0, u)

where t ≥ 0, (x0, θ) ∈ E and u ∈ L1
loc(R+, U).

According to Definition 1.5 it is obvious that if the system (Sπ) is uniformly exponentially
stable, then the control system (π, B, C) is stabilizable (via the trivial feedback F ≡ 0) and
this is also detectable (via the trivial feedback K ≡ 0). The natural question arises whether the
converse implication holds.

Example 3.1. Let X = R, Θ = R and let σ(θ, t) = θ + t. Let (Sπ) be a variational integral
system such that Φ(θ, t) = Id (the identity operator on X), for all (θ, t) ∈ Θ × R+. Let U =
Y = X and let B(θ) = C(θ) = Id, for all θ ∈ Θ. Let δ > 0. By considering F(θ) = −δ Id, for all
θ ∈ Θ, from relation (1.1), we obtain that

ΦBF(θ, t)x = x − δ
� t

0
ΦBF(θ, s)x ds, ∀t ≥ 0

for every (x, θ) ∈ E . This implies that ΦBF(θ, t)x = e−δtx, for all t ≥ 0 and all (x, θ) ∈ E ,
so the perturbed system (SπBF) is uniformly exponentially stable. This shows that the system
(π, B, C) is stabilizable.
Similarly, if δ > 0, for K(θ) = −δ Id, for all θ ∈ Θ, we deduce that the variational control
system (π, B, C) is also detectable.
In conclusion, the variational control system (π, B, C) is both stabilizable and detectable, but
for all that, the variational integral system (Sπ) is not uniformly exponentially stable.

It follows that the stabilizability or/and the detectability of the control system (π, B, C) are
not sufficient conditions for the uniform exponential stability of the system (Sπ). Naturally,
additional hypotheses are required. In what follows we shall prove that certain input-output
conditions assure a complete resolution to this problem. The answer will be given employing
new methods based on function spaces techniques.
Indeed, for every θ ∈ Θ, we define

Pθ : L1
loc(R+, X) → L1

loc(R+, X), (Pθw)(t) =
� t

0
Φ(σ(θ, s), t − s)w(s) ds

446 Robust Control, Theory and Applications

and respectively

Bθ : L1
loc(R+, U) → L1

loc(R+, X), (Bθu)(t) = B(σ(θ, t))u(t)

Cθ : L1
loc(R+, X) → L1

loc(R+, Y), (Cθv)(t) = C(σ(θ, t))v(t).

We also associate with the control system S = (π, B, C) three families of input-output
mappings, as follows: the left input-output operators {Lθ}θ∈Θ defined by

Lθ : L1
loc(R+, U) → L1

loc(R+, X), Lθ := PθBθ

the right input-output operators {Rθ}θ∈Θ given by

Rθ : L1
loc(R+, X) → L1

loc(R+, Y), Rθ := CθPθ

and respectively the global input-output operators {Gθ}θ∈Θ defined by

Gθ : L1
loc(R+, U) → L1

loc(R+, Y), Gθ := CθPθBθ .

A fundamental stability concept for families of linear operators is given by the following:

Definition 3.2. Let Z1, Z2 be two Banach spaces and let W ∈ T (R+) be a Banach function
space. A family of linear operators {Oθ : L1

loc(R+, Z1) → L1
loc(R+, Z2)}θ∈Θ is said to be

(W(R+, Z1), W(R+, Z2))-stable if the following conditions are satisfied:
(i) for every α1 ∈ W(R+, Z1) and every θ ∈ Θ, Oθα1 ∈ W(R+, Z2);
(ii) there is m > 0 such that ||Oθα1||W(R+,Z2) ≤ m ||α1||W(R+,Z1), for all α1 ∈ W(R+, Z1) and
all θ ∈ Θ.

Thus, we observe that if W ∈ R(R+), then the variational integral system (Sπ) is uniformly
exponentially stable if and only if the family {Pθ}θ∈Θ is (W(R+, X), W(R+, X))-stable (see
also Remark 2.11).

Remark 3.3. Let Z1, Z2 be two Banach spaces and let W ∈ T (R+) be a Banach function space.
If Q ∈ Cs(Θ,B(Z1, Z2)) then the family {Qθ}θ∈Θ defined by

Qθ : L1
loc(R+, Z1) → L1

loc(R+, Z2), (Qθα)(t) = Q(σ(θ, t))α(t)

is (W(R+, Z1), W(R+, Z2))-stable. Indeed, this follows from Definition 2.1 (iv) by observing
that

||(Qθα)(t)|| ≤ |||Q||| ||α(t)||, ∀t ≥ 0, ∀α ∈ W(R+, Z1), ∀θ ∈ Θ.

The main result of this section is:

Theorem 3.4. Let W be a Banach function space such that W ∈ R(R+). The following assertions are
equivalent:
(i) the variational integral system (Sπ) is uniformly exponentially stable;
(ii) the variational control system (π, B, C) is stabilizable and the family of the left input-output
operators {Lθ}θ∈Θ is (W(R+, U), W(R+, X))-stable;
(iii) the variational control system (π, B, C) is detectable and the family of the right input-output
operators {Rθ}θ∈Θ is (W(R+, X), W(R+, Y))-stable
(iv) the variational control system (π, B, C) is stabilizable, detectable and the family of the global
input-output operators {Gθ}θ∈Θ is (W(R+, U), W(R+, Y))-stable.

447On Stabilizability and Detectability of Variational Control Systems



3. Stabilizability and detectability of variational control systems

As stated from the very beginning, in this section our attention will focus on the connections
between stabilizability, detectability and the uniform exponential stability. Let X be a Banach
space, let (Θ, d) be a metric space and let π = (Φ, σ) be a linear skew-product flow on E =
X × Θ. We consider the variational integral system

(Sπ) xθ(t; x0, u) = Φ(θ, t)x0 +
� t

0
Φ(σ(θ, s), t − s)u(s) ds, t ≥ 0, θ ∈ Θ

with u ∈ L1
loc(R+, X) and x0 ∈ X.

Let U, Y be Banach spaces and let B ∈ Cs(Θ,B(U, X)), C ∈ Cs(Θ,B(X, Y)). We consider the
variational control system (π, B, C) described by the following integral model

⎧
⎨
⎩

x(θ, t, x0, u) = Φ(θ, t)x0 +
� t

0 Φ(σ(θ, s), t − s)B(σ(θ, s))u(s) ds

y(θ, t, x0, u) = C(σ(θ, t))x(θ, t, x0, u)

where t ≥ 0, (x0, θ) ∈ E and u ∈ L1
loc(R+, U).

According to Definition 1.5 it is obvious that if the system (Sπ) is uniformly exponentially
stable, then the control system (π, B, C) is stabilizable (via the trivial feedback F ≡ 0) and
this is also detectable (via the trivial feedback K ≡ 0). The natural question arises whether the
converse implication holds.

Example 3.1. Let X = R, Θ = R and let σ(θ, t) = θ + t. Let (Sπ) be a variational integral
system such that Φ(θ, t) = Id (the identity operator on X), for all (θ, t) ∈ Θ × R+. Let U =
Y = X and let B(θ) = C(θ) = Id, for all θ ∈ Θ. Let δ > 0. By considering F(θ) = −δ Id, for all
θ ∈ Θ, from relation (1.1), we obtain that

ΦBF(θ, t)x = x − δ
� t

0
ΦBF(θ, s)x ds, ∀t ≥ 0

for every (x, θ) ∈ E . This implies that ΦBF(θ, t)x = e−δtx, for all t ≥ 0 and all (x, θ) ∈ E ,
so the perturbed system (SπBF) is uniformly exponentially stable. This shows that the system
(π, B, C) is stabilizable.
Similarly, if δ > 0, for K(θ) = −δ Id, for all θ ∈ Θ, we deduce that the variational control
system (π, B, C) is also detectable.
In conclusion, the variational control system (π, B, C) is both stabilizable and detectable, but
for all that, the variational integral system (Sπ) is not uniformly exponentially stable.

It follows that the stabilizability or/and the detectability of the control system (π, B, C) are
not sufficient conditions for the uniform exponential stability of the system (Sπ). Naturally,
additional hypotheses are required. In what follows we shall prove that certain input-output
conditions assure a complete resolution to this problem. The answer will be given employing
new methods based on function spaces techniques.
Indeed, for every θ ∈ Θ, we define

Pθ : L1
loc(R+, X) → L1

loc(R+, X), (Pθw)(t) =
� t

0
Φ(σ(θ, s), t − s)w(s) ds

446 Robust Control, Theory and Applications

and respectively

Bθ : L1
loc(R+, U) → L1

loc(R+, X), (Bθu)(t) = B(σ(θ, t))u(t)

Cθ : L1
loc(R+, X) → L1

loc(R+, Y), (Cθv)(t) = C(σ(θ, t))v(t).

We also associate with the control system S = (π, B, C) three families of input-output
mappings, as follows: the left input-output operators {Lθ}θ∈Θ defined by

Lθ : L1
loc(R+, U) → L1

loc(R+, X), Lθ := PθBθ

the right input-output operators {Rθ}θ∈Θ given by

Rθ : L1
loc(R+, X) → L1

loc(R+, Y), Rθ := CθPθ

and respectively the global input-output operators {Gθ}θ∈Θ defined by

Gθ : L1
loc(R+, U) → L1

loc(R+, Y), Gθ := CθPθBθ .

A fundamental stability concept for families of linear operators is given by the following:

Definition 3.2. Let Z1, Z2 be two Banach spaces and let W ∈ T (R+) be a Banach function
space. A family of linear operators {Oθ : L1

loc(R+, Z1) → L1
loc(R+, Z2)}θ∈Θ is said to be

(W(R+, Z1), W(R+, Z2))-stable if the following conditions are satisfied:
(i) for every α1 ∈ W(R+, Z1) and every θ ∈ Θ, Oθα1 ∈ W(R+, Z2);
(ii) there is m > 0 such that ||Oθα1||W(R+,Z2) ≤ m ||α1||W(R+,Z1), for all α1 ∈ W(R+, Z1) and
all θ ∈ Θ.

Thus, we observe that if W ∈ R(R+), then the variational integral system (Sπ) is uniformly
exponentially stable if and only if the family {Pθ}θ∈Θ is (W(R+, X), W(R+, X))-stable (see
also Remark 2.11).

Remark 3.3. Let Z1, Z2 be two Banach spaces and let W ∈ T (R+) be a Banach function space.
If Q ∈ Cs(Θ,B(Z1, Z2)) then the family {Qθ}θ∈Θ defined by

Qθ : L1
loc(R+, Z1) → L1

loc(R+, Z2), (Qθα)(t) = Q(σ(θ, t))α(t)

is (W(R+, Z1), W(R+, Z2))-stable. Indeed, this follows from Definition 2.1 (iv) by observing
that
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Proof. We will independently prove each equivalence (i) ⇐⇒ (ii), (i) ⇐⇒ (iii) and
respectively (i) ⇐⇒ (iv). Indeed, we start with the first one and we prove that (i) =⇒ (ii).
Taking into account that (Sπ) is uniformly exponentially stable, we have that the family
{Pθ}θ∈Θ is (W(R+, X), W(R+, X))-stable. In addition, observing that

||(Lθu)(t)|| ≤ sup
θ∈Θ

||Pθ|| |||B||| ||u(t)||, ∀u ∈ W(R+, U), ∀θ ∈ Θ

from Definition 2.1 (iv) we deduce that that the family {Lθ}θ∈Θ is
(W(R+, U), W(R+, X))-stable.
To prove the implication (ii) =⇒ (i), let F ∈ Cs(Θ,B(X, U)) be such that the
system (SπBF) is uniformly exponentially stable. It follows that the family {Hθ}θ∈Θ is
(W(R+, X), W(R+, X))-stable, where

Hθ : L1
loc(R+, X) → L1

loc(R+, X), (Hθu)(t) =
∫ t

0
ΦBF(σ(θ, s), t − s)u(s) ds, t ≥ 0, θ ∈ Θ.

For every θ ∈ Θ let

Fθ : L1
loc(R+, X) → L1

loc(R+, U), (Fθu)(t) = F(σ(θ, t))u(t).

Then from Remark 3.3 we have that the family {Fθ}θ∈Θ is (W(R+, X), W(R+, U))-stable.
Let θ ∈ Θ and let u ∈ L1

loc(R+, X). Using Fubini’s theorem and formula (1.1), we successively
deduce that

(Lθ Fθ Hθu)(t) =
∫ t

0

∫ s

0
Φ(σ(θ, s), t − s)B(σ(θ, s))F(σ(θ, s))ΦBF(σ(θ, τ), s − τ)u(τ) dτ ds =

=
∫ t

0

∫ t

τ
Φ(σ(θ, s), t − s)B(σ(θ, s))F(σ(θ, s))ΦBF(σ(θ, τ), s − τ)u(τ) ds dτ =

=
∫ t

0

∫ t−τ

0
Φ(σ(θ, τ + ξ), t − τ − ξ)B(σ(θ, τ + ξ))F(σ(θ, τ + ξ))ΦBF(σ(θ, τ), ξ)u(τ) dξ dτ =

=
∫ t

0
[ΦBF(σ(θ, τ), t − τ)u(τ)− Φ(σ(θ, τ), t − τ)u(τ)] dτ =

= (Hθu)(t)− (Pθu)(t), ∀t ≥ 0.

This shows that
Pθu = Hθu − Lθ Fθ Hθu, ∀u ∈ L1

loc(R+, X), ∀θ ∈ Θ. (3.1)

Let m1 and m2 be two constants given by Definition 3.2 (ii) for {Hθ}θ∈Θ and for {Lθ}θ∈Θ,
respectively. From relation (3.1) we deduce that Pθu ∈ W(R+, X), for every u ∈ W(R+, X)
and

||Pθu||W(R+,X) ≤ m1(1 + m2|||F|||) ||u||W(R+,X), ∀u ∈ W(R+, X), ∀θ ∈ Θ.

From the above relation we obtain that the family {Pθ}θ∈Θ is (W(R+, X), W(R+, X))-stable,
so the system (Sπ) is uniformly exponentially stable.
The implication (i) =⇒ (iii) follows using similar arguments with those used in the proof
of (i) =⇒ (ii). To prove (iii) =⇒ (i), let K ∈ Cs(Θ,B(Y, X)) be such that the system (SπKC)
is uniformly exponentially stable. Then, the family {Γθ}θ∈Θ is (W(R+, X), W(R+, X))-stable,
where

Γθ : L1
loc(R+, X) → L1

loc(R+, X), (Γθu)(t) =
∫ t

0
ΦKC(σ(θ, s), t − s)u(s) ds.
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For every θ ∈ Θ we define

Kθ : L1
loc(R+, Y) → L1

loc(R+, X), (Kθu)(t) = K(σ(θ, t))u(t).

From Remark 3.3 we have that the family {Kθ}θ∈Θ is (W(R+, Y), W(R+, X))-stable.
Using Fubini’s theorem and the relation (1.2), by employing similar arguments with those
from the proof of the implication (ii) =⇒ (i), we deduce that

Pθu = Γθu − ΓθKθRθu, ∀u ∈ L1
loc(R+, X), ∀θ ∈ Θ. (3.2)

Denoting by q1 and by q2 some constants given by Definition 3.2 (ii) for {Γθ}θ∈Θ and for
{Rθ}θ∈Θ, respectively, from relation (3.2) we have that Pθu ∈ W(R+, X), for every u ∈
W(R+, X) and

||Pθu||W(R+,X) ≤ q1(1 + q2|||K|||) ||u||W(R+,X), ∀u ∈ W(R+, X), ∀θ ∈ Θ.

Hence we deduce that the family {Pθ}θ∈Θ is (W(R+, X), W(R+, X))-stable, which shows that
the system (Sπ) is uniformly exponentially stable.
The implication (i) =⇒ (iv) is obvious, taking into account the above items. To prove that
(iv) =⇒ (i), let K ∈ Cs(Θ,B(Y, X)) be such that the system (SπKC) is uniformly exponentially
stable and let {Kθ}θ∈Θ and {Γθ}θ∈Θ be defined in the same manner like in the previous stage.
Then, following the same steps as in the previous implications, we obtain that

Lθu = ΓθBθu − ΓθKθGθu, ∀u ∈ L1
loc(R+, X), ∀θ ∈ Θ. (3.3)

From relation (3.3) we deduce that the family {Lθ}θ∈Θ is (W(R+, U), W(R+, X))-stable.
Taking into account that the system (π, B, C) is stabilizable and applying the implication
(ii) =⇒ (i), we conclude that the system (Sπ) is uniformly exponentially stable. �
Corollary 3.5. Let V ∈ {Cb(R+, R), C0(R+, R), C00(R+, R)}. The following assertions are
equivalent:
(i) the variational integral system (Sπ) is uniformly exponentially stable;
(ii) the variational control system (π, B, C) is stabilizable and the family of the left input-output
operators {Lθ}θ∈Θ is (V(R+, U), V(R+, X))-stable;
(iii) the variational control system (π, B, C) is detectable and the family of the right input-output
operators {Rθ}θ∈Θ is (V(R+, X), V(R+, Y))-stable
(iv) the variational control system (π, B, C) is stabilizable, detectable and the family of the global
input-output operators {Gθ}θ∈Θ is (V(R+, U), V(R+, Y))-stable.

Proof. This follows using similar arguments and estimations with those from the proof of
Theorem 3.4, by applying Theorem 2.10. �

4. Applications to nonautonomous systems

An interesting application of the main results from the previous section is to deduce necessary
and sufficient conditions for uniform exponential stability of nonautonomous systems in
terms of stabilizability and detectability. For the first time this topic was considered in (Clark
et al., 2000)). We propose in what follows a new method for the resolution of this problem
based on the application of the conclusions from the variational case, using arbitrary Banach
function spaces.
Let X be a Banach space and let Id denote the identity operator on X.
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For every θ ∈ Θ we define

Kθ : L1
loc(R+, Y) → L1

loc(R+, X), (Kθu)(t) = K(σ(θ, t))u(t).
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4. Applications to nonautonomous systems

An interesting application of the main results from the previous section is to deduce necessary
and sufficient conditions for uniform exponential stability of nonautonomous systems in
terms of stabilizability and detectability. For the first time this topic was considered in (Clark
et al., 2000)). We propose in what follows a new method for the resolution of this problem
based on the application of the conclusions from the variational case, using arbitrary Banach
function spaces.
Let X be a Banach space and let Id denote the identity operator on X.
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Definition 4.1. A family U = {U(t, s)}t≥s≥0 ⊂ B(X) is called an evolution family if the
following properties hold:
(i) U(t, t) = Id and U(t, s)U(s, t0) = U(t, t0), for all t ≥ s ≥ t0 ≥ 0;
(ii) there are M ≥ 1 and ω > 0 such that ||U(t, s)|| ≤ Meω(t−s), for all t ≥ s ≥ t0 ≥ 0;
(iii) for every x ∈ X the mapping (t, s) �→ U(t, s)x is continuous.

Remark 4.2. For every P ∈ Cs(R+,B(X)) (see e.g. (Curtain & Zwart, 1995)) there is a unique
evolution family UP = {UP(t, s)}t≥s≥0 such that the variation of constants formulas hold:

UP(t, s)x = U(t, s)x +
� t

s
U(t, τ)P(τ)UP(τ, s)x dτ, ∀t ≥ s ≥ 0, ∀x ∈ X

and respectively

UP(t, s)x = U(t, s)x +
� t

s
UP(t, τ)P(τ)U(τ, s)x dτ, ∀t ≥ s ≥ 0, ∀x ∈ X.

Let U = {U(t, s)}t≥s≥0 be an evolution family on X. We consider the nonautonomous integral
system

(SU ) xs(t; x0, u) = U(t, s)x0 +
� t

s
U(t, τ)u(τ) dτ, t ≥ s, s ≥ 0

with u ∈ L1
loc(R+, X) and x0 ∈ X.

Definition 4.3. The system (SU ) is said to be uniformly exponentially stable if there are N, ν > 0
such that ||xs(t; x0, 0)|| ≤ Ne−ν(t−s)||x0||, for all t ≥ s ≥ 0 and all x0 ∈ X.

Remark 4.4. The system (SU ) is uniformly exponentially stable if and only if there are N, ν > 0
such that ||U(t, s)|| ≤ Ne−ν(t−s), for all t ≥ s ≥ 0.

Definition 4.5. Let W ∈ T (R+). The system (SU ) is said to be completely (W(R+, X),
W(R+, X))-stable if for every u ∈ W(R+, X), the solution x0(·; 0, u) ∈ W(R+, X).

Remark 4.6. If the system (SU ) is completely (W(R+, X), W(R+, X))-stable, then it makes
sense to consider the linear operator

P : W(R+, X) → W(R+, X), P(u) = x0(·; 0, u).

It is easy to see that P is closed, so it is bounded.

Let now U, Y be Banach spaces, let B ∈ Cs(R+,B(U, X)) and let C ∈ Cs(R+,B(X, Y)). We
consider the nonautonomous control system (U , B, C) described by the following integral
model ⎧⎨

⎩
xs(t; x0, u) = U(t, s)x0 +

� t
s U(t, τ)B(τ)u(τ) dτ, t ≥ s, s ≥ 0

ys(t; x0, u) = C(t)xs(t; x0, u), t ≥ s, s ≥ 0

with u ∈ L1
loc(R+, U), x0 ∈ X.

Definition 4.7. The system (U , B, C) is said to be:
(i) stabilizable if there exists F ∈ Cs(R+,B(X, U)) such that the system (SUBF) is uniformly
exponentially stable;
(ii) detectable if there exists G ∈ Cs(R+,B(Y, X)) such that the system (SUGC

) is uniformly
exponentially stable.
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We consider the operators

B : L1
loc(R+, U) → L1

loc(R+, X), (Bu)(t) = B(t)u(t)

C : L1
loc(R+, X) → L1

loc(R+, Y), (Cu)(t) = B(t)u(t)

and we associate with the system (U , B, C) three input-output operators: the left input-output
operator defined by

L : L1
loc(R+, U) → L1

loc(R+, X), L = PB

the right input-output operator given by

R : L1
loc(R+, X) → L1

loc(R+, Y), R = CP

and respectively the global input-output operator defined by

G : L1
loc(R+, U) → L1

loc(R+, Y), G = CPB.

Definition 4.8. Let Z1, Z2 be two Banach spaces and let W ∈ T (R+) be a Banach
function space. An operator Q : L1

loc(R+, Z1) → L1
loc(R+, Z2) is said to be

(W(R+, Z1), W(R+, Z2))-stable if for every λ ∈ W(R+, Z1) the function Qλ ∈ W(R+, Z2).

The main result of this section is:

Theorem 4.9. Let W be a Banach function space such that B ∈ R(R+). The following assertions are
equivalent:
(i) the integral system (SU ) is uniformly exponentially stable;
(ii) the control system (U , B, C) is stabilizable and the left input-output operator L is
(W(R+, U), W(R+, X))-stable;
(iii) the control system (U , B, C) is detectable and the right input-output operator R is
(W(R+, X), W(R+, Y))-stable;
(iv) the control system (U , B, C) is stabilizable, detectable and the global input-output operator G is
(W(R+, U), W(R+, Y))-stable.

Proof. We prove the equivalence (i) ⇐⇒ (ii) , the other equivalences: (i) ⇐⇒ (iii) and (i) ⇐⇒
(iv) being similar.
Indeed, the implication (i) =⇒ (ii) is immediate. To prove that (ii) =⇒ (i) let Θ = R+,
σ : Θ × R+ → Θ, σ(θ, t) = θ + t and let Φ(θ, t) = U(t + θ, θ), for all (θ, t) ∈ Θ × R+. Then
π = (Φ, σ) is a linear skew-product flow and it makes sense to associate with π the following
integral system

(Sπ) xθ(t; x0, u) = Φ(θ, t)x0 +
� t

0
Φ(σ(θ, s), t − s)u(s) ds, t ≥ 0, θ ∈ Θ

with u ∈ L1
loc(R+, X) and x0 ∈ X.

We also consider the control system (π, B, C) given by
⎧⎨
⎩

x(θ, t, x0, u) = Φ(θ, t)x0 +
� t

0 Φ(σ(θ, s), t − s)B(σ(θ, s))u(s) ds

y(θ, t, x0, u) = C(σ(θ, t))x(θ, t, x0, u)

where t ≥ 0, (x0, θ) ∈ E and u ∈ L1
loc(R+, U). For every θ ∈ Θ we associate with the system

(π, B, C) the operators Pθ , Bθ and Lθ using their definitions from Section 3.
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We prove that the family {Lθ}θ∈Θ is (W(R+, U), W(R+, X))-stable. Let θ ∈ Θ and let α ∈
W(R+, U). Since W is invariant to translations the function

αθ : R+ → U, αθ(t) =
{

α(t − θ), t ≥ θ
0, t ∈ [0, θ)

belongs to W(R+, U) and ||αθ ||W(R+,U) = ||α||W(R+,U). Since the operator L is
(W(R+, U), W(R+, X))-stable we obtain that the function

ϕ : R+ → X, ϕ(t) = (Lαθ)(t)

belongs to W(R+, X). Using Remark 2.4 (ii) we deduce that the function

γ : R+ → X, γ(t) = ϕ(t + θ)

belongs to W(R+, X) and ||γ||W(R+,X) ≤ ||ϕ||W(R+,X). We observe that

(Lθα)(t) =
∫ t

0
U(θ + t, θ + s)B(θ + s)α(s) ds =

∫ θ+t

θ
U(θ + t, τ)B(τ)α(τ − θ) dτ =

=
∫ θ+t

θ
U(θ + t, τ)B(τ)αθ(τ) dτ = (Lαθ)(θ + t) = γ(t), ∀t ≥ 0.

This implies that Lθα belongs to W(R+, X) and

||Lθα||W(R+,X) = ||γ||W(R+,X) ≤ ||ϕ||W(R+,X) ≤

≤ ||L|| ||αθ||W(R+,U) = ||L|| ||α||W(R+,U). (4.1)

Since θ ∈ Θ and α ∈ W(R+, U) were arbitrary from (4.1) we deduce that the family {Lθ}θ∈Θ
is (W(R+, U), W(R+, X))-stable.
According to our hypothesis we have that the system (U , B, C) is stabilizable. Then there is
F ∈ Cs(R+,B(X, U)) such that the (unique) evolution family UBF = {UBF(t, s)}t≥s≥0 which
satisfies the equation

UBF(t, s)x = U(t, s)x +
∫ t

s
U(t, τ)B(τ)F(τ)UBF(τ, s)x dτ, ∀t ≥ s ≥ 0, ∀x ∈ X (4.2)

has the property that there are N, ν > 0 such that

||UBF(t, s)|| ≤ Ne−ν(t−s), ∀t ≥ s ≥ 0. (4.3)

For every (θ, t) ∈ Θ × R+, let Φ̃(θ, t) := UBF(θ + t, θ). Then, we have that π̃ = (Φ̃, σ) is a
linear skew-product flow. Moreover, using relation (4.2) we deduce that

∫ t

0
Φ(σ(θ, s), t − s)B(σ(θ, s))F(σ(θ, s))Φ̃(θ, s)x ds =

=
∫ t

0
U(θ + t, θ + s)B(θ + s)F(θ + s)UBF(θ + s, θ)x ds =

=
∫ θ+t

θ
U(θ + t, τ)B(τ)F(τ)UBF(τ, θ)x dτ =
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= UBF(θ + t, θ)x − U(θ + t, θ)x = Φ̃(θ, t)x − Φ(θ, t)x (4.4)

for all (θ, t) ∈ Θ × R+ and all x ∈ X. According to Theorem 2.1 in (Megan et al., 2002), from
relation (4.4) it follows that

Φ̃(θ, t) = ΦBF(θ, t), ∀(θ, t) ∈ Θ × R+

so π̃ = πBF. Hence from relation (4.3) we have that

||ΦBF(θ, t)|| = ||UBF(θ + t, θ)|| ≤ Ne−νt, ∀t ≥ 0, ∀θ ∈ Θ

which shows that the system (SπBF) is uniformly exponentially stable. So the system (π, B, C)
is stabilizable.
In this way we have proved that the system (Sπ) is stabilizable and the associated left
input-output family {Lθ}θ∈Θ is (W(R+, U), W(R+, X))-stable. By applying Theorem 3.4 we
deduce that the system (Sπ) is uniformly exponentially stable. Then, there are Ñ, δ > 0 such
that

||Φ(θ, t)|| ≤ Ñe−δt, ∀t ≥ 0, ∀θ ∈ Θ.

This implies that

||U(t, s)|| = ||Φ(s, t − s)|| ≤ Ñe−δ(t−s), ∀t ≥ s ≥ 0. (4.5)

From inequality (4.5) and Remark 4.4 we obtain that the system (SU ) is uniformly
exponentially stable. �
Remark 4.10. The version of the above result, for the case when W = Lp(R+, R) with p ∈
[1, ∞), was proved for the first time by Clark, Latushkin, Montgomery-Smith and Randolph
in (Clark et al., 2000) employing evolution semigroup techniques.

The method may be also extended for spaces of continuous functions, as the following result
shows:

Corollary 4.11. Let V ∈ {Cb(R+, R), C0(R+, R), C00(R+, R)}. The following assertions are
equivalent:
(i) the system (SU ) is uniformly exponentially stable;
(ii) the system (U , B, C) is stabilizable and the left input-output operator L is
(V(R+, U), V(R+, X))-stable;
(iii) the system (U , B, C) is detectable and the right input-output operator R is
(V(R+, X), V(R+, Y))-stable;
(iv) the system (U , B, C) is stabilizable, detectable and the global input-output operator G is
(V(R+, U), V(R+, Y))-stable.

Proof. This follows using Corollary 3.5 and similar arguments with those from the proof of
Theorem 4.9. �

5. Conclusions

Stabilizability and detectability of variational/nonautonomous control systems are two
properties which are strongly related with the stable behavior of the initial integral system.
These two properties (not even together) cannot assure the uniform exponential stability of the
initial system, as Example 3.1 shows. But, in association with a stability of certain input-output
operators the stabilizability or/and the detectability of the control system (π, B, C) imply
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Remark 4.10. The version of the above result, for the case when W = Lp(R+, R) with p ∈
[1, ∞), was proved for the first time by Clark, Latushkin, Montgomery-Smith and Randolph
in (Clark et al., 2000) employing evolution semigroup techniques.
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shows:

Corollary 4.11. Let V ∈ {Cb(R+, R), C0(R+, R), C00(R+, R)}. The following assertions are
equivalent:
(i) the system (SU ) is uniformly exponentially stable;
(ii) the system (U , B, C) is stabilizable and the left input-output operator L is
(V(R+, U), V(R+, X))-stable;
(iii) the system (U , B, C) is detectable and the right input-output operator R is
(V(R+, X), V(R+, Y))-stable;
(iv) the system (U , B, C) is stabilizable, detectable and the global input-output operator G is
(V(R+, U), V(R+, Y))-stable.

Proof. This follows using Corollary 3.5 and similar arguments with those from the proof of
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5. Conclusions

Stabilizability and detectability of variational/nonautonomous control systems are two
properties which are strongly related with the stable behavior of the initial integral system.
These two properties (not even together) cannot assure the uniform exponential stability of the
initial system, as Example 3.1 shows. But, in association with a stability of certain input-output
operators the stabilizability or/and the detectability of the control system (π, B, C) imply
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the existence of the exponentially stable behavior of the initial system (Sπ). Here we have
extended the topic from evolution families to variational systems and the obtained results are
given in a more general context. As we have shown in Remark 2.6 the spaces involved in the
stability properties of the associated input-output operators may be not only Lp-spaces but
also general Orlicz function spaces which is an aspect that creates an interesting link between
the modern control theory of dynamical systems and the classical interpolation theory.
It worth mentioning that the framework presented in this chapter may be also extended
to some slight weak concepts, taking into account the main results concerning the uniform
stability concept from Section 3 in (Sasu, 2008) (see Definition 3.3 and Theorem 3.6 in
(Sasu, 2008)). More precisely, considering that the system (π, B, C) is weak stabilizable
(respectively weak detectable) if there exists a mapping F ∈ Cs(Θ,B(X, U)) (respectively
K ∈ Cs(Θ,B(Y, X))) such that the system (SπBF) (respectively (SπKC)) is uniformly stable, then
starting with the result provided by Theorem 3.6 in (Sasu, 2008), the methods from the present
chapter may be applied to the study of the uniform stability in terms of weak stabilizability
and weak detectability. In authors opinion, the technical trick of the new study will rely on
the fact that in this case the families of the associated input-output operators will have to be
(L1, L∞)-stable.
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1. Introduction

Asymptotic estimation of external, unstructured, perturbation inputs, with the aim of exactly,
or approximately, canceling their influences at the controller stage, has been treated in the
existing literature under several headings. The outstanding work of professor C.D. Johnson
in this respect, under the name of Disturbance Accommodation Control (DAC), dates from the
nineteen seventies (see Johnson (1971)). Ever since, the theory and practical aspects of DAC
theory have been actively evolving, as evidenced by the survey paper by Johnson Johnson
(2008). The theory enjoys an interesting and useful extension to discrete-time systems, as
demonstrated in the book chapter Johnson (1982). In a recent article, by Parker and Johnson
Parker & Johnson (2009), an application of DAC is made to the problem of decoupling
two nonlinearly coupled linear systems. An early application of disturbance accommodation
control in the area of Power Systems is exemplified by the work of Mohadjer and Johnson
in Mohadjer & Johnson (1983), where the operation of an interconnected power system is
approached from the perspective of load frequency control.
A closely related vein to DAC is represented by the sustained efforts of the late Professor
Jingqing Han, summarized in the posthumous paper, Han Han (2009), and known as: Active
Disturbance Estimation and Rejection (ADER). The numerous and original developments of
Prof. Han, with many laboratory and industrial applications, have not been translated into
English and his seminal contributions remain written in Chinese (see the references in Han
(2009)). Although the main idea of observer-based disturbance estimation, and subsequent
cancelation via the control law, is similar to that advocated in DAC, the emphasis in ADER
lies, mainly, on nonlinear observer based disturbance estimation, with necessary developments
related to: efficient time derivative computation, practical relative degree computation and
nonlinear PID control extensions. The work, and inspiration, of Professor Han has found
interesting developments and applications in the work of Professor Z. Gao and his colleagues
( see Gao et al. (2001), Gao (2006), also, in the work by Sun and Gao Sun & Gao (2005) and
in the article by Sun Sun (2007)). In a recent article, a closely related idea, proposed by Prof.
M. Fliess and C. Join in Fliess & Join (2008), is at the core of Intelligent PID Control(IPIDC).
The mainstream of the IPIDC developments makes use of the Algebraic Method and it
implies to resort to first order, or at most second order, non-phenomenological plant models.
The interesting aspect of this method resides in using suitable algebraic manipulations to
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The interesting aspect of this method resides in using suitable algebraic manipulations to

20



locally deprive the system description of the effects of nonlinear uncertain additive terms
and, via further special algebraic manipulations, to efficiently identify time-varying control
gains as piece-wise constant control input gains (see Fliess et al. (2008)). An entirely algebraic
approach for the control of synchronous generator was presented in Fliess and Sira-Ramírez,
Sira-Ramírez & Fliess (2004).
In this chapter, we advocate, within the context of trajectory tracking control for nonlinear
flat systems, the use of approximate, yet accurate, state dependent disturbance estimation
via linear Generalized Proportional Integral (GPI) observers. GPI observers are the dual
counterpart of GPI controllers, developed by M. Fliess et al. in Fliess et al. (2002). A high
gain GPI observer naturally includes a, self-updating, lumped, time-polynomial model of
the nonlinear state-dependent perturbation; it estimates it and delivers the time signal to
the controller for on-line cancelation while simultaneously estimating the phase variables
related to the measured output. The scheme is, however, approximate since only a small as
desired reconstruction error is guaranteed at the expense of high, noise-sensitive, gains. The
on-line approximate estimation is suitably combined with linear, estimation-based, output
feedback control with the appropriate, on-line, disturbance cancelation. The many similarities
and the few differences with the DAC and ADER techniques probably lie in 1) the fact that we
do not discriminate between exogenous (i.e., external) unstructured perturbation inputs and
endogenous (i.e., state-dependent) perturbation inputs in the nonlinear input-output model.
These perturbations are all lumped into a simplifying time-varying signal that needs to be
linearly estimated. Notice that plant nonlinearities generate time functions that are exogenous
to any observer and, hence, algebraic loops are naturally avoided 2) We emphasize the natural
possibilities of differentially flat systems in the use of linear disturbance estimation and linear
output feedback control with disturbance cancelation (For the concept of flatness see Fliess et
al. Fliess et al. (1995)) and the book Sira-Ramírez & Agrawal (2004).
This chapter is organized as follows: Section 2 presents an introduction to linear control
of nonlinear differentially flat systems via (high-gain) GPI observers and suitable linear
controllers feeding back the phase variables related to the output function. The single
input-single output synchronous generator model in the form a swing equation, is described
in Section 3. Here, we formulate the reference trajectory tracking problem under a number
of information restrictions about the system. The linear observer-linear controller output
feedback control scheme is designed for lowering the deviation angle of the generator. We
carry out a robustness test regarding the response to a three phase short circuit. We also carry
an evaluation of the performance of the control scheme under significant variations of the two
control gain parameters required for an exact cancelation of the gain. Section 4 is devoted to
present an experimental illustrative example concerning the non-holonomic car which is also
a multivariable nonlinear system with input gain matrix depending on the estimated phase
variables associated with the flat outputs.

2. Linear GPI observer-based control of nonlinear systems

Consider the following perturbed nonlinear single-input single input-output, smooth,
nonlinear system,

y(n) = ψ(t, y, ẏ, ..., y(n−1)) + φ(t, y)u + ζ(t) (1)
The unperturbed system, (ζ(t) ≡ 0) is evidently flat, as all variables in the system are
expressible as differential functions of the flat output y.
We assume that the exogenous perturbation ζ(t) is uniformly absolutely bounded, i.e., it
an L∞ scalar function. Similarly, we assume that for all bounded solutions, y(t), of (1),
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obtained by means of suitable control input u, the additive, endogenous, perturbation input,
ψ(t, y(t), ẏ(t), ..., y(n−1)(t)), viewed as a time signal is uniformly absolutely bounded.
We also assume that the nonlinear gain function φ(t, y(t)) is L∞ and uniformly bounded away
from zero, i.e., there exists a strictly positive constant μ such that

inf
t
|φ(t, y(t))| ≥ μ (2)

for all smooth, bounded solutions, y(t), of (1) obtained with a suitable control input u.
Although the results below can be extended when the input gain function φ depends on
the time derivatives of y, we let, motivated by the synchronous generator case study to be
presented, φ to be an explicit function of time and of the measured flat output y. This is
equivalent to saying the φ(t, y(t)) is perfectly known.
We have the following formulation of the problem:
Given a desired flat output reference trajectory, y∗(t), devise a linear output feedback controller for
system (1) so that regardless of the endogenous perturbation signal ψ(t, y(t), ẏ(t), ..., y(n−1)(t)) and
of the exogenous perturbation input ζ(t), the flat output y tracks the desired reference signal y∗(t) even
if in an approximate fashion. This approximate character specifically means that the tracking error,
e(t) = y − y∗(t), and its first, n, time derivatives, globally asymptotically exponentially converge
towards a small as desired neighborhood of the origin in the reference trajectory tracking error phase
space.
The solution to the problem is achieved in an entirely linear fashion if one conceptually
considers the nonlinear model (1) as the following linear perturbed system

y(n) = v + ξ(t) (3)

where v = φ(t, y)u, and ξ(t) = ψ(t, y(t), ẏ(t), ..., y(n−1)(t)) + ζ(t).
Consider the following preliminary result:

Proposition 1. The unknown perturbation vector of time signals, ξ(t), in the simplified tracking error
dynamics (3), is observable in the sense of Diop and Fliess (see Diop & Fliess (1991))).

Proof The proof of this fact is immediate after writing (3) as

ξ(t) = y(n) − v = y(n) − φ(t, y)u (4)

i.e., ξ(t) can be written in terms of the output vector y, a finite number of its time derivatives
and the control input u. Hence, ξ(t) is observable.

Remark 2. This means, in particular, that if ξ(t) is bestowed with an exact linear model; an exact
asymptotic estimation of ξ(t) is possible via a linear observer. If, on the other hand, the linear model
is only approximately locally valid, then the estimation obtained via a linear observer is asymptotically
convergent towards an equally approximately locally valid estimate.

We assume that the perturbation input ξ(t) may be locally modeled as a p − 1-th degree time
polynomial z1 plus a residual term, r(t), i.e.,

ξ(t) = z1 + r(t) = a0 + a1t + · · · + ap−1tp−1 + r(t), for all t (5)

The time polynomial model, z1, (also called: a Taylor polynomial) is invariant with respect
to time shifts and it defines a family of p − 1 degree Taylor polynomials with arbitrary real
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coefficients. We incorporate z1 as an internal model of the additive perturbation input (see
Johnson (1971)).
The perturbation model z1 will acquire a self updating character when incorporated as part of a
linear asymptotic observer whose estimation error is forced to converge to a small vicinity of
zero. As a consequence of this, we may safely assume that the self-updating residual function,
r(t), and its time derivatives, say r(p)(t), are uniformly absolutely bounded. To precisely state
this, let us denote by yj an estimate of y(j−1) for j = 1, ..., n.
We have the following general result:

Theorem 3. The GPI observer-based dynamical feedback controller:

u =
1

φ(t, y)

⎡
⎣[y∗(t)](n) −

n−1

∑
j=0

�
κj [yj − (y∗(t))(j)]

�
− ξ̂(t)

⎤
⎦ (6)

ξ̂(t) = z1

ẏ1 = y2 + λp+n−1(y − y1)
ẏ2 = y3 + λp+n−2(y − y1)

...

ẏn = v + z1 + λp(y − y1)
ż1 = z2 + λp−1(y − y1)

...

żp−1 = zp + λ1(y − y1)
żp = λ0(y − y1) (7)

asymptotically exponentially drives the tracking error phase variables, e(k)
y = y(k) − [y∗(t)](k),

k = 0, 1, .., n − 1 to an arbitrary small neighborhood of the origin, of the tracking error phase space,
which can be made as small as desired from the appropriate choice of the controller gain parameters
{κ0, ..., κn−1}. Moreover, the estimation errors: ẽ(i) = y(i) − yi, i = 0, ..., n − 1 and the perturbation
estimation error: zm − ξm−1(t), m = 1, ..., p asymptotically exponentially converge towards a small
as desired neighborhood of the origin of the reconstruction error space which can be made as small as
desired from the appropriate choice of the controller gain parameters {λ0, ..., λp+n−1}.

Proof The proof is based on the fact that the estimation error ẽ satisfies the perturbed linear
differential equation

ẽ(p+n) + λp+n−1e(p+n−1) + · · · + λ0 ẽ = r(p)(t) (8)

Since r(p)(t) is assumed to be uniformly absolutely bounded then there exists coefficients
λk such that ẽ converges to a small vicinity of zero, provided the roots of the associated
characteristic polynomial in the complex variable s:

sp+n + λp+n−1sp+n−1 + · · · + λ1s + λ0 (9)
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are all located deep into the left half of the complex plane. The further away from the
imaginary axis, of the complex plane, are these roots located, the smaller the neighborhood
of the origin, in the estimation error phase space, where the estimation error ẽ will remain
ultimately bounded (see Kailath Kailath (1979)). Clearly, if ẽ and its time derivatives converge
to a neighborhood of the origin, then zj − ξ(j), j = 1, 2, ..., also converge towards a small
vicinity of zero.
The tracking error ey = y − y∗(t) evolves according to the following linear perturbed
dynamics

e(n)
y + κn−1e(n−1)

y + · · ·+ κ0ey = ξ(t) − ξ̂(t) (10)

Choosing the controller coefficients {κ0, · · · , κn−1}, so that the associated characteristic
polynomial

sn + κn−1sn−1 + · · · + κ0 (11)

exhibits its roots sufficiently far from the imaginary axis in the left half portion of the
complex plane, the tracking error, and its various time derivatives, are guaranteed to converge
asymptotically exponentially towards a vicinity of the tracking error phase space. Note that,
according to the observer expected performance, the right hand side of (10) is represented
by a uniformly absolutely bounded signal already evolving on a small vicinity of the origin.
For this reason the roots of (11) may be located closer to the imaginary axis than those of
(9). A rather detailed proof of this theorem may be found in the article by Luviano et al.
Luviano-Juárez et al. (2010)

Remark 4. The proposed GPI observer (7) is a high gain observer which is prone to exhibiting the
“peaking" phenomena at the initial time. We use a suitable “clutch" to smooth out these transient
peaking responses in all observer variables that need to be used by the controller. This is accomplished
by means of a factor function smoothly interpolating between an initial value of zero and a final value
of unity. We denote this clutching function as s f (t) ∈ [0, 1] and define it in the following (non-unique)
way

s f (t) =
{

1 for t > �

sinq (
πt
2�

)
for t ≤ �

(12)

where q is a su itably large positive even integer.

2.1 Generalized proportional integral observer with integral injection
Let ξ(t) be a measured signal with an uniformly absolutely bounded iterated integral of order
m. The function ξ(t) is a measured signal, whose first few time derivatives are required for
some purpose.

Definition 5. We say that a signal ρ1(t) converges to a neighborhood of ξ(t) whenever the error
signal, ξ(t) − ρ1(t), is ultimately uniformly absolutely bounded inside a small vicinity of the origin.

The following proposition aims at the design of a GPI observer based estimation of time
derivatives of a signal, ξ(t), where ξ(t) is possibly corrupted by a zero mean stochastic
process whose statistics are unknown. In order to smooth out the noise effects on the on-line
computation of the time derivative, we carry out a double iterated integration of the measured
signal, ξ(t), thus assuming the second integral of ξ(t) is uniformly absolutely bounded (i.e.,
m = 2).
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coefficients. We incorporate z1 as an internal model of the additive perturbation input (see
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φ(t, y)
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⎣[y∗(t)](n) −

n−1

∑
j=0

�
κj [yj − (y∗(t))(j)]

�
− ξ̂(t)

⎤
⎦ (6)
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computation of the time derivative, we carry out a double iterated integration of the measured
signal, ξ(t), thus assuming the second integral of ξ(t) is uniformly absolutely bounded (i.e.,
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Proposition 6. Consider the following perturbed second order integration system, where the input
signal, ξ(t), is a measured (zero-mean) noise corrupted signal satisfying the above assumptions:

ẏ0 = y1, ẏ1 = ξ(t) (13)

Consider the following integral injection GPI observer for (13) including an internal time polynomial
model of degree r for the signal ξ(t) and expressed as ρ1,

˙̂y0 = ŷ1 + λr+1(y0 − ŷ0)
˙̂y1 = ρ1 + λr(y0 − ŷ0)
ρ̇1 = ρ2 + λr−1(y0 − ŷ0) (14)

...

ρ̇r = λ0(y0 − ŷ0) (15)

Then, the observer variables, ρ1, ρ2, ρ3, ..., respectively, asymptotically converge towards a small as
desired neighborhood of the disturbance input, ξ(t), and of its time derivatives: ξ̇(t), ξ̈(t),... provided
the observer gains, {λ0, ..., λr+2}, are chosen so that the roots of the polynomial in the complex variable
s.

P(s) = sr+2 + λr+1sr+1 + · · · + λ1s + λ0 (16)

are located deep into the left half of the complex plane. The further the distance of such roots from
the imaginary axis of the complex plane, the smaller the neighborhood of the origin bounding the
reconstruction errors.

Proof. Define the twice iterated integral injection error as, ε = y0 − ŷ0. The injection error
dynamics is found to be described by the perturbed linear differential equation

ε(r+2) + λr+1ε(r+1) + · · · + λ1 ε̇ + λ0ε = ξ(r)(t) (17)

By choosing the observer parameters, λ0, λ1, · · · , λr+1, so that the polynomial (16) is Hurwitz,
with roots located deep into the left half of the complex plane, then, according to well known
results of solutions of perturbed high gain linear differential equations, the injection error ε
and its time derivatives are ultimately uniformly bounded by a small vicinity of the origin
of the reconstruction error phase space whose radius of containment fundamentally depends
on the smallest real part of all the eigenvalues of the dominantly linear closed loop dynamics
(see Luviano et al. Luviano-Juárez et al. (2010) and also Fliess and Rudolph Fliess & Rudolph
(1997)).

3. Controlling the single synchronous generator model

In this section, we advocate, within the context of the angular deviation trajectory control for
a single synchronous generator model, the use of approximate, yet accurate, state dependent
disturbance estimation via linear Generalized Proportional Integral (GPI) observers. GPI
observers are the dual counterpart of GPI controllers, developed by M. Fliess et al. in
Fliess et al. (2002). A high gain GPI observer naturally includes a, self-updating, lumped,
time-polynomial model of the nonlinear state-dependent perturbation; it estimates it and
delivers the time signal to the controller for on-line cancelation while simultaneously
estimating the phase variables related to the measured output. The scheme is, however,
approximate since only a small as desired reconstruction error is guaranteed at the expense
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of high, noise-sensitive, gains. The on-line approximate estimation is suitably combined with
linear, estimation-based, output feedback control with the appropriate, on-line, disturbance
cancelation. The many similarities and the few differences with the DAC and ADER
techniques probably lie in 1) the fact that we do not discriminate between exogenous (i.e.,
external) unstructured perturbation inputs and endogenous (i.e., state-dependent) perturbation
inputs in the nonlinear input-output model. These perturbations are all lumped into a
simplifying time-varying signal that needs to be linearly estimated. Notice that plant
nonlinearities generate time functions that are exogenous to any observer and, hence, algebraic
loops are naturally avoided 2) We emphasize the natural possibilities of differentially flat
systems in the use of linear disturbance estimation and linear output feedback control with
disturbance cancelation (For the concept of flatness see Fliess et al. Fliess et al. (1995)) and the
book Sira-Ramírez & Agrawal (2004).

3.1 The single synchronous generator model
Consider the swing equation of a synchronous generator, connected to an infinite bus, with
a series capacitor connected with the help of a thyristor bridge (See Hingorani Hingorani &
Gyugyi (2000)),

ẋ1 = x2

ẋ2 = Pm − b1x2 − b2x3 sin(x1)
ẋ3 = b3(−x3 + x∗3(t) + u + ζ(t)) (18)

x1 is the load angle, considered to be the measured output. The variable, x2, is the deviation
from nominal, synchronous, speed at the shaft, while x3 stands for the admittance of the
system. The control input, u, is usually interpreted as a quantity related to the fire angle of
the switch. ζ(t) is an unknown, external, perturbation input. The static equilibrium point of
the system, which may be parameterized in terms of the equilibrium position for the angular
deviation, x1, is given by,

x1 = x1, x2 = 0, x3 = x∗3(t) =
Pm

b2 sin(x1)
(19)

We assume that the system parameters, b2, and, b3, are known. The constant quantities Pm, b1
and the time varying quantity, x∗3 (t), are assumed to be completely unknown.

3.2 Problem formulation
It is desired to have the load angular deviation, y = x1, track a given reference trajectory, y∗(t) =
x∗1 (t), which remains bounded away from zero, independently of the unknown system parameters and
in spite of possible external system disturbances (such as short circuits in the three phase line, setting,
momentarily, the mechanical power, Pm, to zero), and other unknown, or un-modeled, perturbation
inputs comprised in ζ(t).

3.3 Main results
The unperturbed system in (18) is flat, with flat output given by the load angle deviation
y = x1. Indeed, all system variables are differentially parameterizable in terms of the load
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delivers the time signal to the controller for on-line cancelation while simultaneously
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of high, noise-sensitive, gains. The on-line approximate estimation is suitably combined with
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cancelation. The many similarities and the few differences with the DAC and ADER
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x1 is the load angle, considered to be the measured output. The variable, x2, is the deviation
from nominal, synchronous, speed at the shaft, while x3 stands for the admittance of the
system. The control input, u, is usually interpreted as a quantity related to the fire angle of
the switch. ζ(t) is an unknown, external, perturbation input. The static equilibrium point of
the system, which may be parameterized in terms of the equilibrium position for the angular
deviation, x1, is given by,

x1 = x1, x2 = 0, x3 = x∗3(t) =
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We assume that the system parameters, b2, and, b3, are known. The constant quantities Pm, b1
and the time varying quantity, x∗3 (t), are assumed to be completely unknown.

3.2 Problem formulation
It is desired to have the load angular deviation, y = x1, track a given reference trajectory, y∗(t) =
x∗1 (t), which remains bounded away from zero, independently of the unknown system parameters and
in spite of possible external system disturbances (such as short circuits in the three phase line, setting,
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inputs comprised in ζ(t).

3.3 Main results
The unperturbed system in (18) is flat, with flat output given by the load angle deviation
y = x1. Indeed, all system variables are differentially parameterizable in terms of the load
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angle and its time derivatives. We have:

x1 = y

x2 = ẏ

x3 =
Pm − b1ẏ − ÿ

b2 sin(y)

u = − b1ÿ + y(3)

b3b2 sin(y)
− Pm − b1ẏ − ÿ

b3b2 sin2(y)
ẏ cos(y)

+
Pm − b1ẏ − ÿ

b2 sin(y)
− x∗3(t) (20)

The perturbed input-output dynamics, devoid of any zero dynamics, is readily obtained
with the help the control input differential parametrization (20). One obtains the following
simplified, perturbed, system dynamics, including ζ(t), as:

y(3) = − [b3b2 sin(y)] u + ξ(t) (21)

where ξ(t) is given by

ξ(t) = −b1ÿ + b3 (Pm − b1ẏ − ÿ)
(

1 − ẏ cos(y)
b3 sin(y)

)

−b3b2 sin(y) (x∗3(t) + ζ(t)) (22)

We consider ξ(t) as an unknown but uniformly absolutely bounded disturbance input that
needs to be on-line estimated by means of an observer and, subsequently, canceled from the
simplified system dynamics via feedback in order to regulate the load angle variable y towards
the desired reference trajectory y∗(t). It is assumed that the gain parameters b2 and b3 are
known.
The problem is then reduced to the trajectory tracking problem defined on the perturbed
third order, predominantly, linear system (21) with measurable state dependent input gain
and unknown, but uniformly bounded, disturbance input.
We propose the following estimated state feedback controller with a smoothed (i.e., “clutched"
) disturbance cancelation term, z1s(t) = s f (t)z1(t), and smoothed estimated phase variables
yjs = s f (t)yj(t), j = 1, 2, 3 with s f (t) as in equation (12) with a suitable � value.

u = − 1
b3b2 sin(y)

[
(y∗(t))(3) − k2(y3s − ÿ∗(t))

−k1(y2s − ẏ∗(t)) − k0(y − y∗(t))− z1s]

The corresponding variables, y3, y2 and z1, are generated by the following linear GPI observer:

ẏ1 = y2 + λ5(y − y1)
ẏ2 = y3 + λ4(y − y1)
ẏ3 = − (b3b2 sin(y)) u + z1 + λ3(y − y1)
ż1 = z2 + λ2(y − y1)
ż2 = z3 + λ1(y − y1)
ż3 = λ0(y − y1) (23)
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where y1 is the redundant estimate of the output y, y2 is the shaft velocity estimate and y3 is
the shaft acceleration estimate. The variable z1 estimates the perturbation input ξ(t) by means
of a local, self updating, polynomial model of third order, taken as an internal model of the
state dependent additive perturbation affecting the input-output dynamics (21).
The clutched observer variables z1s, y2s and y3s are defined by

θs = s f (t)θ, s f (t) =
{

sin8( πt
2� ) for t ≤ �

1 for t > �
(24)

with θs being either z1s, y2s or y3s
The reconstruction error system is obtained by subtracting the observer model from the
perturbed simplified linear system model. We have, letting ẽ = e1 = y − y1, e2 = ẏ − y2,
etc.

ė1 = e2 − λ5e1

ė2 = e3 − λ4e1

ė3 = ξ(t)− z1 − λ3e1

ż1 = z2 + λ2(y − y1)
ż2 = z3 + λ1(y − y1)
ż3 = λ0(y − y1) (25)

The reconstruction error, ẽ = e1 = y − y1, is seen to satisfy the following linear, perturbed,
dynamics

ẽ(6) + λ5 ẽ(5) + λ4 ẽ(4) + · · · + λ1 ˙̃e + λ0 ẽ = ξ(3)(t) (26)

Choosing the gains {λ5, · · · , λ0} so that the roots of the characteristic polynomial,

po(s) = s6 + λ5s5 + λ4s4 + · · · + λ1s + λ0, (27)

are located deep into the left half of the complex plane, it follows from the bounded input,
bounded output stability theory that the trajectories of the reconstruction error ẽ and those of
its time derivatives ẽ(j), j = 1, 2, ... are uniformly ultimately bounded by a disk, centered at the
origin in the reconstruction error phase space, whose radius can be made arbitrarily small as
the roots of po(s) are pushed further to the left of the complex plane.
The closed loop tracking error dynamics satisfies

e(3)
y + κ2e(2)

y + κ1 ėy + κ0ey = ξ(t)− z1s (28)

The difference, ξ(t) − z1s, being arbitrarily small after some time, produces a reference
trajectory tracking error, ey = y − y∗(t), that also asymptotically exponentially converges
towards a small vicinity of the origin of the tracking error phase space.
The characteristic polynomial of the predominant linear component of the closed loop system
may be set to have poles placed in the left half of the complex plane at moderate locations

pc(s) = s3 + κ2s2 + κ1s + κ0 (29)
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ż3 = λ0(y − y1) (23)

462 Robust Control, Theory and Applications

where y1 is the redundant estimate of the output y, y2 is the shaft velocity estimate and y3 is
the shaft acceleration estimate. The variable z1 estimates the perturbation input ξ(t) by means
of a local, self updating, polynomial model of third order, taken as an internal model of the
state dependent additive perturbation affecting the input-output dynamics (21).
The clutched observer variables z1s, y2s and y3s are defined by

θs = s f (t)θ, s f (t) =
{

sin8( πt
2� ) for t ≤ �

1 for t > �
(24)

with θs being either z1s, y2s or y3s
The reconstruction error system is obtained by subtracting the observer model from the
perturbed simplified linear system model. We have, letting ẽ = e1 = y − y1, e2 = ẏ − y2,
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ė2 = e3 − λ4e1
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are located deep into the left half of the complex plane, it follows from the bounded input,
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its time derivatives ẽ(j), j = 1, 2, ... are uniformly ultimately bounded by a disk, centered at the
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e(3)
y + κ2e(2)

y + κ1 ėy + κ0ey = ξ(t)− z1s (28)

The difference, ξ(t) − z1s, being arbitrarily small after some time, produces a reference
trajectory tracking error, ey = y − y∗(t), that also asymptotically exponentially converges
towards a small vicinity of the origin of the tracking error phase space.
The characteristic polynomial of the predominant linear component of the closed loop system
may be set to have poles placed in the left half of the complex plane at moderate locations

pc(s) = s3 + κ2s2 + κ1s + κ0 (29)
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3.4 Simulation results
3.4.1 A desired rest-to-rest maneuver
It is desired to smoothly lower the load angle, y1 = x1, from an equilibrium value of y = 1
[rad] towards a smaller value, say, y = 0.6 [rad] in a reasonable amount of time, say, T = 5 [s],
starting at t = 5 [s] of an equilibrium operation characterized by (see Bazanella et al. Bazanella
et al. (1999) and Pai Pai (1989))

x1 = 1, x2 = 0, x3 = 0.8912

We used the following parameter values for the system

b1 = 1, b2 = 21.3360, b3 = 20

We set the external perturbation input, ζ(t), as the time signal,

ζ(t) = 0.005e(sin2(3t) cos(3t)) cos(0.3t)

The observer parameters were set in accordance with the following desired characteristic
polynomial po(s) for the, predominantly, linear reconstruction error dynamics. We set po(s) =
(s2 + 2ζoωnos + ω2

no)3, with
ζo = 1, ωno = 20

The controller gains κ2, κ1, κ0 were set so that the following closed loop characteristic
polynomial, pc(s), was enforced on the tracking error dynamics,

pc(s) = (s2 + 2ζcωncs + ω2
nc)(s + pc)

with
pc = 3, ωnc = 3, ζc = 1

The trajectory for the load angle, y∗(t), was set to be

y∗(t) = x1,initial + (ρ(t, t1, t2))(x1,final − x1,initial)

with ρ(t, t1, t2) being a smooth Bèzier polynomial achieving a smooth rest-to-rest trajectory
for the nominal load angle y∗(t) from the initial equilibrium value y∗(t1) = x1,initial = 1 [rad]
towards the final desired equilibrium value y∗(t2) = x1,final = 0.6 [rad]. We set t1 = 5.0 [s],
t2 = 10.0 [s]; � = 3.0
The interpolating polynomial ρ(t, t1, t2), is of the form:

ρ(t) = τ8
[
r1 − r2τ + r3τ2 − r4τ3 + r5τ4

−r6τ5 + r7τ6 − r8τ7 + r9τ8
]

with,

τ =
t − t1
t2 − t1

The choice,

r1 = 12870, r2 = 91520, r3 = 288288

r4 = 524160, r5 = 600600, r6 = 443520

r7 = 205920, r8 = 54912, r9 = 6435
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Fig. 1. Performance of GPI observer based linear controller for load angle rest-to-rest
trajectory tracking in a perturbed synchronous generator.

renders a time polynomial which is guaranteed to have enough derivatives being zero, both,
at the beginning and at the end of the desired rest to rest maneuver.
Figure 1 depicts the closed loop performance of the proposed GPI observer based linear
output feedback controller for the forced evolution of the synchronous generator load angle
trajectory following a desired rest to rest maneuver.

3.4.2 Robustness with respect to controller gain mismatches
We simulated the behavior of the closed loop system when the gain parameters product, b3b2,
is not precisely known and the controller is implemented with an estimated (guessed) value
of this product, denoted by b̂2b3, and set to be b̂2b3 = κb2b3. We determined that κ is a positive
factor ranging in the interval [0.95, ∞]. However, if we allow independent estimates of the
parameters in the form b̂2 = κb2b2 and b̂3 = κb3b3, we found that a larger robustness interval
of mismatches is allowed by satisfying the empirical relation κb2κb3 ≥ 0.95. The assessment
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Fig. 2. Performance of GPI observer based controller under a sudden loss of power at t=2
[sec] during 0.2 [sec].

was made in terms of the proposed rest to rest maneuver and possible simulations look about
the same.

3.4.3 Robustness with respect to sudden power failures
We simulated an un-modeled sudden three phase short circuit occurring at time t = 2 [s]. The
power failure lasts for t = 0.2 [s]. Figure 3 depicts the performance of the GPI observer based
controller in the rapid transient occurring during the recovery of the prevailing equilibrium
conditions.

4. Controlling the non-holonomic car

Controlling non-holonomic mobile robots has been an active topic of research during the
past three decades due to the wide variety of applications. Several methods have been
proposed, and applied, to solve the regulation and trajectory tracking tasks in mobile robots.
These methods range from sliding mode techniques Aguilar et al. (1997), Wang et al. (2009),
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Yang & Kim (1999), backstepping Hou et al. (2009), neural networks approaches (see Peng
et al. (2007) and references therein), linearization techniques Kim & Oh (1999), and classical
control approaches (see Sugisaka & Hazry (2007)) among many other possibilities. A classical
contribution to this area is given in the work of Canudas de Wit Wit & Sordalen (1992). An
excellent book, dealing with some appropriate control techniques for this class of systems, is
that of Dixon et al. Dixon et al. (2001). A useful approach to control non-holonomic mechanical
systems is based on linear time-varying control schemes (see Pomet (1992); Tian & Cao (2007)).
In the pioneering work of Samson Samson (1991), smooth feedback controls (depending on
an exogeneous time variable) are proposed to stabilize a wheeled cart.
It has been shown that some mobile robotic systems are differentially flat when slippage is
not allowed in the model ( see Leroquais & d’Andrea Novel (1999)). The differential flatness
property allows a complete parametrization of all system variables in terms of the flat outputs
an a and a finite number of their time derivatives. Flat outputs constitute a limited set of
special, differentially independent, output variables. The reader is referred to the work of
Fliess et al. Fliess et al. (1995) for the original introduction of the idea in the control systems
literature.
From the flatness of the non-holonomic car system, it is possible to reduce the control task
to that of a linearizable, extended, multivariable input-output system. The linearization of
the flat output dynamics requires the cancelation of the nonlinear input gain matrix, which
depends only on the cartesian velocities of the car. To obtain this set of noisy unmeasured state
variables, we propose linear Generalized Proportional Integral (GPI) observers consisting
of linear, high gain Luenberger-like observers Luenberger (1971) exhibiting an internal
polynomial model for the measured signal. These GPI observers, introduced in Sira-Ramírez
& Feliu-Battle (2010), can provide accurate, filtered, time derivatives of the injected output
signals via an appropriate iterated integral estimation error injection (see also Cortés-Romero
et al. (2009)). Since high-gain observers are known to be sensitive to noisy measurements, the
iterated integral injection error achieves a desirable low pass filtering effect.
The idealized model of a single axis two wheeled vehicle is depicted in figure 3. The axis is of
length L and each wheel of radius R is powered by a direct current motor yielding variable
angular speeds ω1, ω2 respectively. The position variables are (x1, x2) and θ is the orientation
angle of the robot. The linear velocities of the points of contact of the wheels respect to the
ground are given by v1 = ω1R and v2 = ω2R. In this case, the only measurable variables are
x1, x2. This system is subject to non-holonomic restrictions.
The kinematic model of the system is stated as follows

⎧
⎨
⎩

ẋ1 = u1 cos θ,
ẋ2 = u1 sin θ,
θ̇ = u2

(30)

where:

�
u1
u2

�
=

�
R/2 R/2
−R/L R/L

� �
ω1
ω2

�

The control objective is stated as follows: given a desired trajectory (x∗1(t), x∗2(t)), devise
feedback control laws, u1, u2, such that the flat output coordinates, (x1, x2), perform an
asymptotic tracking while rejecting the un-modeled additive disturbances.
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R/2 R/2
−R/L R/L
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�
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4.1 Controller design
System (30) is differentially flat, with flat outputs given by the pair of coordinates: (x1, x2),
which describes the position of the rear axis middle point. Indeed the rest of the system
variables, including the inputs are differentially parameterized as follows:

θ = arctan
�

ẋ2

ẋ1

�
, u1 =

�
ẋ2

1 + ẋ2
2, u2 =

ẍ2 ẋ1 − ẋ2 ẍ1

ẋ2
1 + ẋ2

2

Note that the relation between the inputs and the flat outputs highest derivatives is not
invertible due to an ill defined relative degree. To overcome this obstacle to feedback
linearization, we introduce, as an extended auxiliary control input, the time derivative of u1.
We have:

u̇1 =
ẋ1 ẍ1 + ẋ2 ẍ2�

ẋ2
1 + ẋ2

2

This control input extension yields now an invertible control input-to-flat outputs highest
derivatives relation, of the form:

�
u̇1
u2

�
=

⎡
⎣

ẋ1√
ẋ2

1+ẋ2
2

ẋ2√
ẋ2

1+ẋ2
2−ẋ2

ẋ2
1+ẋ2

2

ẋ1
ẋ2

1+ẋ2
2

⎤
⎦

�
ẍ1
ẍ2

�
(31)
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4.2 Observer-based GPI controller design
Consider the following multivariable feedback controller based on linear GPI controllers and
estimated cancelation of the nonlinear input matrix gain:

�
u̇1
u2

�
=

⎡
⎢⎢⎢⎣

ˆ̇x1�
( ˆ̇x1)2 + ( ˆ̇x2)2

ˆ̇x2�
( ˆ̇x1)2 + ( ˆ̇x2)2

− ˆ̇x2

( ˆ̇x1)2 + ( ˆ̇x2)2

ˆ̇x1

( ˆ̇x1)2 + ( ˆ̇x2)2

⎤
⎥⎥⎥⎦

�
ν1
ν2

�
(32)

with the auxiliary control variables, ν1, ν2, given by1:

ν1 = ẍ∗1(t)−
�

k12s2 + k11s + k10
s(s + k13)

�
(x1 − x∗1 (t))

ν2 = ẍ∗2(t)−
�

k22s2 + k21s + k20

s(s + k23)

�
(x2 − x∗2 (t))

(33)

and where the estimated velocity variables: ˆ̇x1, ˆ̇x2, are generated, respectively, by the variables
ρ11 and ρ12 in the following single iterated integral injection GPI observers (i.e., with m = 1),

˙̂y10 = ŷ1 + λ13(y10 − ŷ10)
˙̂y1 = ρ11 + λ12(y10 − ŷ10)

ρ̇11 = ρ21 + λ11(y10 − ŷ10) (34)

ρ̇21 = λ10(y10 − ŷ10)

y10 =
� t

0
x1(τ)dτ

˙̂y20 =ŷ2 + λ23(y20 − ŷ20)
˙̂y2 =ρ12 + λ22(y20 − ŷ20)

ρ̇12 =ρ22 + λ21(y20 − ŷ20) (35)

ρ̇22 =λ20(y20 − ŷ20)

y20 =
� t

0
x2(τ)dτ

Then, the following theorem describes the effect of the proposed integral injection observers,
and of the GPI controllers, on the closed loop system:

Theorem 7. Given a set of desired reference trajectories, (x∗(t), y∗(t)), for the desired
position in the plane of the kinematic model of the car, described by (30); given a
set initial conditions, (x(0), y(0)), sufficiently close to the initial value of the desired
nominal trajectories, (x∗(0), y∗(0)), then, the above described GPI observers and the linear
multi-variable dynamical feedback controllers, (32)-(35), forces the closed loop controlled
system trajectories to asymptotically converge towards a small as desired neighborhood of
the desired reference trajectories, (x∗1(t), x∗2(t)), provided the observer and controller gains

1 Here we have combined, with an abuse of notation, frequency domain and time domain signals.

469Robust Linear Control of Nonlinear Flat Systems



θ

X1

X2

(x1, x2)

v1

v2

R

L

Fig. 3. The one axis car

4.1 Controller design
System (30) is differentially flat, with flat outputs given by the pair of coordinates: (x1, x2),
which describes the position of the rear axis middle point. Indeed the rest of the system
variables, including the inputs are differentially parameterized as follows:

θ = arctan
�

ẋ2
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2−ẋ2

ẋ2
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ρ̇22 =λ20(y20 − ŷ20)
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1 Here we have combined, with an abuse of notation, frequency domain and time domain signals.
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are chosen so that the roots of the corresponding characteristic polynomials describing,
respectively, the integral injection estimation error dynamics and the closed loop system, are
located deep into the left half of the complex plane. Moreover, the greater the distance of
these assigned poles to the imaginary axis of the complex plane, the smaller the neighborhood
that ultimately bounds the reconstruction errors, the trajectory tracking errors, and their time
derivatives.

Proof. Since the system is differentially flat, in accordance with the results in Maggiore
& Passino (2005), it is valid to make use of the separation principle, which allows us to
propose the above described GPI observers. The characteristic polynomials associated with
the perturbed integral injection error dynamics of the above GPI observers, are given by,

Pε1(s) = s4 + λ13s3 + λ12s2 + λ11s + λ10

Pε2(s) = s4 + λ23s3 + λ22s2 + λ21s + λ20

s ∈ C

thus, the λi,j, i = 1, 2, j = 0, · · · , 3, are chosen to identify, term by term, the above estimation
error characteristic polynomials with the following desired stable injection error characteristic
polynomials,

Pε1(s) = Pε2(s) = (s + 2μ1σ1s + σ2
1 )(s + 2μ2σ2s + σ2

2 )

s ∈ C, μ1, μ2, σ1, σ2 ∈ R+

Since the estimated states, ˆ̇x1 = ρ11, ˆ̇x2 = ρ12, asymptotically exponentially converge towards
a small as desired vicinity of the actual states: ẋ1, ẋ2, substituting (32) into (31), transforms
the control problem into one of controlling two decoupled double chains of integrators. One
obtains the following dominant linear dynamics for the closed loop tracking errors:

e(4)
1 + k13e(3)

1 + k12 ë1 + k11 ė1 + k10e1 = 0 (36)

e(4)
2 + k23e(2)

2 + k22 ë2 + k21 ė2 + k20e2 = 0 (37)

The pole placement for such dynamics has to be such that both corresponding associated
characteristic equations guarantee a dominant exponentially asymptotic convergence. Setting
the roots of these characteristic polynomials to lie deep into the left half of the complex plane
one guarantees an asymptotic convergence of the perturbed dynamics to a small as desired
vicinity of the origin of the tracking error phase space.

4.3 Experimental results
An experimental implementation of the proposed controller design method was carried out
to illustrate the performance of the proposed linear control approach. The used experimental
prototype was a parallax “Boe-Bot" mobile robot (see figure 5). The robot parameters are the
following: The wheels radius is R = 0.7 [m]; its axis length is L = 0.125 [m]. Each wheel
radius includes a rubber band to reduce slippage. The motion system is constituted by two
servo motors supplied with 6 V dc current. The position acquisition system is achieved by
means of a color web cam whose resolution is 352 × 288 pixels. The image processing was
carried out by the MATLAB image acquisition toolbox and the control signal was sent to the
robot micro-controller by means of a wireless communication scheme. The main function of
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the robot micro-controller was to modulate the control signals into a PWM input for the motor.
The used micro-controller was a BASIC Stamp 2 with a blue-tooth communication card. Figure
4 shows a block diagram of the experimental framework. The proposed tracking tasks was a
six-leaved “rose" defined as follows:

x∗1(t) = sin(3ωt + η) sin(2ωt + η)
x∗2(t) = sin(3ωt + η) cos(2ωt + η)

The design parameters for the observers were set to be, μ1 = 1.8, μ2 = 2.3, σ1 = 3, σ2 = 4
and for the corresponding parameters for the controllers, ζ1 = ζ3 = 1.2, ζ2 = ζ4 = 1.5,
ωn1 = ωn3 = 1.8, ωn2 = ωn4 = 1.9. Also, we compared the observer response with that
of a GPI observer without the integral injection (x1_, x2_) Luviano-Juárez et al. (2010). The
experimental implementation results of the control law are depicted in figures, 6 and 7, where
the control inputs and the tracking task are depicted. Notice that in the case of figure 8, there is
a clear difference between the integral injection observer and the usual observer; the filtering
effect of the integral observer helped to reduce the high noisy fluctuations of the control input
due to measurement noises. On the average, the absolute error for the tracking task, for booth
schemes, is less than 1 [cm]. This is quite a reasonable performance considering the height of
the camera location and its relatively low resolution.
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Fig. 5. Mobile Robot Prototype

5. Conclusions

In this chapter, we have proposed a linear observer-linear controller approach for the robust
trajectory tracking task in nonlinear differentially flat systems. The nonlinear inputs-to-flat
outputs representation is viewed as a linear perturbed system in which only the orders of
integration of the Kronecker subsystems and the control input gain matrix of the system are
considered to be crucially relevant for the controller design. The additive nonlinear terms
in the input output dynamics can be effectively estimated, in an approximate manner, by
means of a linear, high gain, Luenberger observer including finite degree, self updating,
polynomial models of the additive state dependent perturbation vector components. This
perturbation may also include additional unknown external perturbation inputs of uniformly
absolutely bounded nature. A close approximate estimate of the additive nonlinearities is
guaranteed to be produced by the linear observers thanks to customary, high gain, pole
placement procedure. With this information, the controller simply cancels the disturbance
vector and regulates the resulting set of decoupled chain of perturbed integrators after a
direct nonlinear input gain matrix cancelation. A convincing simulation example has been
presented dealing with a rather complex nonlinear physical system. We have also shown
that the method efficiently results in a rather accurate trajectory tracking output feedback
controller in a real laboratory implementation. A successful experimental illustration was
presented which considered a non-holonomic mobile robotic system prototype, controlled by
an overhead camera.

472 Robust Control, Theory and Applications

0 50 100 150 200
0

0.1

0.2

Time [s]

u 1 [m
/s

]

0 50 100 150 200

−2

0

2

Time [s]

u 2 [m
/s

]

Fig. 6. Experimental applied control inputs

−0.6 −0.4 −0.2 0 0.2 0.4 0.6

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

x
1
 [m]

x 2 [m
]

 

 

Reference Tracking

Fig. 7. Experimental performance of GPI observer-based control on trajectory tracking task

473Robust Linear Control of Nonlinear Flat Systems



Fig. 5. Mobile Robot Prototype

5. Conclusions

In this chapter, we have proposed a linear observer-linear controller approach for the robust
trajectory tracking task in nonlinear differentially flat systems. The nonlinear inputs-to-flat
outputs representation is viewed as a linear perturbed system in which only the orders of
integration of the Kronecker subsystems and the control input gain matrix of the system are
considered to be crucially relevant for the controller design. The additive nonlinear terms
in the input output dynamics can be effectively estimated, in an approximate manner, by
means of a linear, high gain, Luenberger observer including finite degree, self updating,
polynomial models of the additive state dependent perturbation vector components. This
perturbation may also include additional unknown external perturbation inputs of uniformly
absolutely bounded nature. A close approximate estimate of the additive nonlinearities is
guaranteed to be produced by the linear observers thanks to customary, high gain, pole
placement procedure. With this information, the controller simply cancels the disturbance
vector and regulates the resulting set of decoupled chain of perturbed integrators after a
direct nonlinear input gain matrix cancelation. A convincing simulation example has been
presented dealing with a rather complex nonlinear physical system. We have also shown
that the method efficiently results in a rather accurate trajectory tracking output feedback
controller in a real laboratory implementation. A successful experimental illustration was
presented which considered a non-holonomic mobile robotic system prototype, controlled by
an overhead camera.

472 Robust Control, Theory and Applications

0 50 100 150 200
0

0.1

0.2

Time [s]

u 1 [m
/s

]

0 50 100 150 200

−2

0

2

Time [s]

u 2 [m
/s

]

Fig. 6. Experimental applied control inputs

−0.6 −0.4 −0.2 0 0.2 0.4 0.6

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

x
1
 [m]

x 2 [m
]

 

 

Reference Tracking

Fig. 7. Experimental performance of GPI observer-based control on trajectory tracking task

473Robust Linear Control of Nonlinear Flat Systems



0 50 100 150 200

−0.1

−0.05

0

0.05

0.1

Time [s]

 

 

˙̂x1
˙̂x1 ẋ1
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Sun, D. (2007). Comments on active disturbance rejection control, IEEE Transactions on
Industrial Electronics 54(6): 3428–3429.

Tian, Y. & Cao, K. (2007). Time-varying linear controllers for exponential tracking of
non-holonomic systems in chained form, International Journal of Robust and Nonlinear
Control 17: 631–647.

Wang, Z., Li, S. & Fei, S. (2009). Finite-time tracking control of a nonholonomic mobile robot,
Asian Journal of Control 11(3): 344–357.

Wit, C. C. D. & Sordalen, O. (1992). Exponential stabilization of mobile robots with
nonholonomic constraints, IEEE Transactions on Automatic Control 37(11): 1791–1797.

Yang, J. & Kim, J. (1999). Sliding mode control for trajectory tracking of nonholonomic
wheeled mobile robots, IEEE Transactions on Robotics and Automation 15(3): 578–587.

476 Robust Control, Theory and Applications

Part 5 

Robust Control Applications 



Hao Zhang1 and Huaicheng Yan2

1Department of Control Science and Engineering, Tongji University, Shanghai 200092
2School of Information Science and Engineering, East China University of Science and

Technology,Shanghai 200237
P R China

1. Introduction

The Internet is playing an important role in information retrieval, exchange, and applications.
Internet-based control, a new type of control systems, is characterized as globally remote
monitoring and adjustment of plants over the Internet. In recent years, Internet-based
control systems have gained considerable attention in science and engineering [1-6], since
they provide a new and convenient unified framework for system control and practical
applications. Examples include intelligent home environments, windmill and solar power
stations, small-scale hydroelectric power stations, and other highly geographically distributed
devices, as well as tele-manufacturing, tele-surgery, and tele-control of spacecrafts.
Internet-based control is an interesting and challenging topic. One of the major challenges
in Internet-based control systems is how to deal with the Internet transmission delay. The
existing approaches of overcoming network transmission delay mainly focus on designing
a model based time-delay compensator or a state observer to reduce the effect of the
transmission delay. Being distinct from the existing approaches, literatures (7–9) have been
investigating the overcoming of the Internet time-delay from the control system architecture
angle, including introducing a tolerant time to the fixed sampling interval to potentially
maximize the possibility of succeeding the transmission on time. Most recently, a dual-rate
control scheme for Internet-based control systems has been proposed in literature (10). A
two-level hierarchy was used in the dual-rate control scheme. At the lower level a local
controller which is implemented to control the plant at a higher frequency to stabilize the
plant and guarantee the plant being under control even the network communication is lost
for a long time. At the higher level a remote controller is employed to remotely regulate the
desirable reference at a lower frequency to reduce the communication load and increase the
possibility of receiving data over the Internet on time. The local and the remote controller are
composed of some modes, which mode is enabled due to the time and state of the network.
The mode may changes at instant time k, k ∈ {N+} and at each instant time only one mode
of the controller is enabled. A typical dual-rate control scheme is demonstrated in a process
control rig (7; 8) and has shown a great potential to over Internet time-delay and bring this
new generation of control systems into industries. However, since the time-delay is variable
and the uncertainty of the process parameters is unavoidable, a dual-rate Internet-based
control system may be unstable for certain control intervals. The interest in the stability of
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networked control systems have grown in recent years due to its theoretical and practical
significance [11-21], but to our knowledge there are very few reports dealing with the robust
passive control for such kind of Internet-based control systems. The robust passive control
problem for time-delay systems was dealt with in (24; 25). This motivates the present passivity
investigation of multi-rate Internet-based switching control systems with time-delay and
uncertainties.
In this paper, we study the modelling and robust passive control for Internet-based switching
control systems with multi-rate scheme, time-delay, and uncertainties. The controller is
switching between some modes due to the time and state of the network, either different time
or the state changing may cause the controller changes its mode and the mode may changes at
each instant time. Based on remote control and local control strategy, a new class of multi-rate
switching control model with time-delay is formulated. Some new robust passive properties
of such systems under arbitrary switching are investigated. An example is given to illustrate
the effectiveness of the theoretical results.
Notation: Through the paper I denotes identity matrix of appropriate order, and ∗ represents
the elements below the main diagonal of a symmetric block matrix. The superscript �
represents the transpose. L2[0, ∞) refers to the space of square summable infinite vector
sequences. The notation X > 0(≥, <,≤ 0) denotes a symmetric positive definite (positive
semi-definite, negative, negative semi-definite) matrix X. Matrices, if not explicitly stated, are
assumed to have compatible dimensions. Let N = {1, 2, · · · } and N+ = {0, 1, 2, · · · } denote
the sets of positive integer and nonnegative integer, respectively.

2. Problem formulation

A typical multi-rate control structure with remote controller and local controller can be shown
as Fig. 1. The control architrave gives a discrete dynamical system, where plant is in circle
with broken line, x(k) ∈ Rn is the system state, z(k) ∈ Rq is the output, and ω(k) ∈ Rp is
the exogenous input, which is assumed to belong to L2[0, ∞), r(k) is the input and for the
passivity analysis one can let r(k) = 0, u1(k) and u2(k) are the output of remote control
and local control, respectively. A1, B1, B2 and C are parameter matrices of the model with
appropriate dimensions, K2i and K1j are control gain switching matrices where the switching
rules are given by i(k) = s(x(k), k) and j(k) = σ(x(k), k), and i ∈ {1, 2, · · · , N1}, j ∈
{1, 2, · · · , N2}, N1, N2 ∈ N, which imply that the switching controllers have N1 and N2 modes,
respectively. τ1 and τ2 are time-delays caused by communication delay in systems.
For the system given by Fig. 1, it is assumed that, the sampling interval of remote controller is
the m multiple of local controller with m being positive integer, and the switching device
SW1 closes only at the instant time k = nm, n ∈ N+, and otherwise, it switches off.
Correspondingly, remote controller u1(k) updates its state at k = nm, n ∈ N+ only, and
otherwise, it keeps invariable. Also, it is assumed that the benchmark of discrete systems is
the same as local controller. In this case, the system can be described by the following discrete
system with time-delay

⎧⎪⎪⎨
⎪⎪⎩

x(k + 1) = A1 x(k) + B2 u2(k) + Eω(k),

u2(k) = B1 u1(k − τ2)− K2i x(k),

z(k) = C x(k) + Dω(k),

(1)
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Fig. 1. Multi-rate network control loop with time-delays

where remote controller u1(k − τ2) is given by
�

u1(k − τ2)=r(k − τ2)− K1j x(k − τ1 − τ2), k = nm,

u1(k − τ2)=r(nm − τ2)− K1j x(nm − τ1 − τ2), k ∈ {nm + 1, · · · , nm + m − 1},
(2)

with i ∈ {1, 2, · · · , N1}, j ∈ {1, 2, · · · , N2}, k, n ∈ N+ and N1, N2 ∈ N. Moreover, it follows
from (1) and (2) that, for k = nm,

�
x(k + 1)=(A1−B2K2i) x(k) − B2 B1 K1j x(k − τ1 − τ2) + B2 B1 r(k − τ2) + Eω(k),

z(k) =C x(k) + Dω(k),
(3)

and for k ∈ {nm + 1, · · · , nm + m − 1},
�

x(k + 1)=(A1 − B2K2i) x(k) − B2 B1 K1j x(nm − τ1 − τ2) + B2 B1 r(nm − τ2) + Eω(k),

z(k) =C x(k) + Dω(k).
(4)

For the passivity analysis, one can let r(k) = 0, and then the system (3) and (4) become
⎧⎪⎨
⎪⎩

x(k + 1)=(A1 − B2K2i) x(k) − B2 B1 K1j x(k − τ) + Eω(k), k = nm,

x(k + 1)=(A1 − B2K2i) x(k) − B2 B1 K1j x(nm − τ) + Eω(k), k ∈ {nm + 1, · · · , nm + m − 1},
z(k) =C x(k) + Dω(k),

(5)
where τ = τ1 + τ2 > 0, k ∈ N+, n ∈ N+, m > 0 is a positive integer.
Obviously, if define Ai = A1 − B2K2i, Bj = −B2B1K1j, then the controlled system (5) becomes

⎧⎨
⎩

x(k + 1) = Aix(k) + Bjx(k − τ) + Eω(k), k = nm,
x(k + 1) = Aix(t) + Bjx(nm − τ) + Eω(k), k ∈ {nm + 1, · · · , nm + m − 1},
z(k) = C x(k) + Dω(k),

(6)
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where A1, B1, B2, C, D, E are matrices with appropriate dimensions, K1j and K2i are mode gain
matrices of the remote controller and local controller. At each instant time k, there is only
one mode of each controller is enabled. τ = τ1 + τ2 > 0 and m > 0 are integers, k ∈ N+,
n = 0, 1, 2, · · · .
Furthermore, note that, as k = nm + s with s = 0, 1, · · · , m − 1, and nm − τ = k − (τ + s) then
(6) can be rewritten as

�
x(k + 1) = Ai x(k) + Bj x(k − h) + Eω(k),
z(k) = C x(k) + Dω(k),

(7)

with 0 ≤ τ ≤ h ≤ τ + m− 1. Accordingly, for the case of time-varying structured uncertainties
(7) becomes

�
x(k + 1)=(Ai + ΔA(k)) x(k) + (Bj + ΔB(k)) x(k − h) + (E + ΔE)ω(k),
z(k) =C x(k) + Dω(k),

(8)

with 0 ≤ τ ≤ h ≤ τ + m − 1, and ΔA(k), ΔB(k) and ΔE being structured uncertainties, and
are assumed to have the form of

ΔA(k) = D1F(k)Ea, ΔB(k) = D1F(k)Eb, ΔE(k) = D1F(k)Ee, (9)

where D1, Ea, Eb and Ee are known constant real matrices with appropriate dimensions. It is
assumed that

F�(k)F(k) ≤ I, ∀k. (10)

In what follows, the the passive control for the hybrid model (7) and (8) are first studied, and
then, an example of systems (8) is investigated.

3. Passivity analysis

On the basis of models (7) and (8), consider the following discrete-time nominal switching
system with time-delay:

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

x(k + 1) = Aix(k) + Bjx(k − h) + Eω(k) ,

z(k) = Cx(k) + Dω(k),
x(k) = φ(k), k ∈ [−h, 0],
i(k) = s(x(k), k),
j(k) = σ(x(k), k),

(11)

where s and σ are switching rules, i ∈ {1, · · · , N1}, j ∈ {1, · · · , N2}, N1, N2 ∈ N, Ai, Bj ∈ Rn×n

are ith and jth switching matrices of system (11), h ∈ N is the time delay, and φ(·) is the initial
condition.
For the case of structured uncertainties, it can be described by

⎧
⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

x(k + 1) = Ai(k)x(k) + Bj(k)x(k − h) + E(k)ω(k) ,

z(k) = Cx(k) + Dω(k),
x(k) = φ(k), k ∈ [−h, 0],
i(k) = s(x(k), k),
j(k) = σ(x(k), k),

(12)
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where Ai(k) = Ai + ΔA(k), Bj(k) = Bj + ΔB(k), E(k) = E + ΔE(k), and it is assumed that
(9) and (10) are satisfied. Our problem is to test whether system (11) and (12) are passive with
the switching controllers. To this end, we introduce the following fact and related definition
of passivity.
Lemma 1 (22). The following inequality holds for any a ∈ Rna , b ∈ Rnb , N ∈ Rna×nb , X ∈
Rna×na , Y ∈ Rna×nb , and Z ∈ Rnb×nb :

− 2a�Nb ≤
�

a
b

�� �
X Y − N
∗ Z

� �
a
b

�
, (13)

where
�

X Y
∗ Z

�
≥ 0.

Lemma 2 (23). Given matrices Q = Q�, H, E and R = R� > 0 of appropriate dimensions,

Q + HFE + E�F�H� < 0 (14)

holds for all F satisfying F�F ≤ R, if and only if there exists some λ > 0 such that

Q + λHH� + λ−1E�RE < 0. (15)

Definition 1 (26) The dynamical system (11) is called passive if there exists a scalar β such that

k f

∑
k=0

ω�(k)z(k) ≥ β, ∀ω ∈ L2[0, ∞), ∀k f ∈ N,

where β is some constant which depends on the initial condition of system.
In the sequel, we provide condition under which a class of discrete-time switching dynamical
systems with time-delay and uncertainties can be guaranteed to be passive.
System (11) can be recast as

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

y(k)= x(k + 1) − x(k),

0 = (Ai + Bj− I)x(k)− y(k)−Bj
k−1
∑

l=k−h
y(l) + Eω(k),

z(k)= Cx(k) + Dω(k),
x(k)= φ(k), k ∈ [−h, 0]
i(k) = s(x(k), k),
j(k) = σ(x(k), k).

(16)

It is noted that (11) is completely equivalent to (16).
Theorem 1. System (11) is passive under arbitrary switching rules s and σ, if there exist
matrices P1 > 0, P2, P3, W1, W2, W3, M1, M2, S1 > 0, S2 > 0 such that the following LMIs hold

Λ =

⎡
⎢⎢⎣

Q1 Q2 P�
2 Bj − M1 P�

2 E − C
∗ Q3 P�

3 Bj − M2 P�
3 E

∗ ∗ −S2 0
∗ ∗ ∗ −(D + D�)

⎤
⎥⎥⎦ < 0, (17)

and �
W M

M� S1

�
≥ 0, (18)
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for i ∈ {1, · · · , N1}, j ∈ {1, · · · , N2}, N1, N2 ∈ N, where

Q1 = P�
2 (Ai − I) + (Ai − I)�P2 + hW1 + M1 + M�

1 + S2,
Q2 = (Ai − I)�P3 + P�

1 − P�
2 + hW2 + M�

2 ,
Q3 = −P3 − P�

3 + hW3 + P1 + hS1,

W =
�

W1 W2
∗ W3

�
, M =

�
M1
M2

�
.

Proof. Construct Lyapunov function as

V(k)=x�(k)P1x(k) +
0
∑

θ=−h+1

k−1
∑

l=k−1+θ
y�(l)S1y(l) +

k−1
∑

l=k−h
x�(l)S2x(l),

then
ΔV(k) = V(k + 1)− V(k)

= 2x�(k)P1y(k) + x�(k)S2x(k) + y�(k)(P1 + hS1)y(k)

−x�(k − h)S2x(k − h) − k−1
∑

l=k−h
y�(l)S1y(l),

(19)

where

2x�(k)P1y(k)=2η�(k)P�{
�

y(k)
(Ai + Bj − I)x(k) − y(k) + Eω(k)

�
−

k−1
∑

l=k−h

�
0
Bj

�
y(l)}, (20)

with η�(k) =
�

x�(k) y�(k)
�

, P =
�

P1 0
P2 P3

�
, and

2η�(k)P�
�

y(k)
(Ai + Bj − I)x(k) − y(k) + Eω(k)

�

= 2η�(k)P�{
�

0
Ai − I

�
x(k) +

�
I
−I

�
y(k) +

�
0
Bj

�
x(k) +

�
0

Eω(k)

�
}.

(21)

According to Lemma 1 we get that

−2
k−1
∑

l=k−h
η�(k)P�

�
0
Bj

�
y(l)

≤ k−1
∑

l=k−h

�
η(k)
y(l)

�� ⎡
⎣ W M − P�

�
0
Bj

�

∗ S1

⎤
⎦

�
η(k)
y(l)

�

=η�(k)hWη(k) + 2η�(k)(M − P�
�

0
Bj

�
)(x(k) − x(k − h)) +

k−1
∑

l=k−h
y�(l)S1y(l),

(22)

where
�

W M
∗ S1

�
≥ 0.
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From (19)-(22) we can get

ΔV(k) − 2z�(k)ω(k)=2η�(k)P�
�

0 I
Ai − I −I

�
η(k) + η�(k)hWη(k)

+2η�(k)Mx(k) + 2η�(k)(P�
�

0
Bj

�
− M)x(k − h) + x�(k)S2x(k)

+y�(k)(P1 + hS1)y(k) − x�(k − h)S2x(k − h) + 2η�(k)P�
�

0
Eω(k)

�

−2(x�(k)C�ω(k) + ω�(k)D�ω(k)).

Let ξ�(k) = [x�(k), y�(k), x�(k − h), ω�(k)], then ΔV(k)− 2z�(k)ω(k) ≤ ξ(k)�υξ(k), where

υ =

⎡
⎢⎢⎣

φ P�
�

0
Bj

�
− M

�
P�

2 E − C�
P�

3 E

�

∗ −S2 0
∗ ∗ −(D + D�)

⎤
⎥⎥⎦ , (23)

and

φ=P�
�

0 I
Ai − I −I

�
+

�
0 I

Ai − I −I

��
P + hW +

�
M 0

�
+

�
M�

0

�
+

�
S2 0
0 P1 + hS1

�
.

If v < 0, then �V(k) − 2z�(k)ω(k) < 0, which gives

k f

∑
k=0

ω�(k)z(k) >
1
2

k f

∑
k=0

�V(k) =
1
2
[V(k f + 1) − V(0)].

Furthermore, since V(k) = V(x(k)) ≥ 0, it follows that

k f

∑
k=0

ω�(k)z(k) ≥ − 1
2

V(0) ≡ β, ∀ω ∈ L2[0, ∞), ∀k f ∈ N,

which implies from Definition 1 that the system (11) is passive. Using the Schur complement
(23) is equivalent to (17). This complete the proof.

Theorem 2. System (12) is passive under arbitrary switching rules s and σ, if there
exist matrices P1 > 0, P2, P3, W1, W2, W3, M1, M2, S1 > 0, S2 > 0 such that the following LMIs
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⎢⎢⎢⎢⎣

Q1+E�
a Ea Q2 P�

2 Bj−M1+E�
a Eb P�

2 E − C� + E�
a Ee P�

2 D1
∗ Q3 P�

3 Bj − M2 P�
3 E P�

3 D1
∗ ∗ −S2 + E�

b Eb E�
b Ee 0

∗ ∗ ∗ −(D + D�) + E�
e Ee 0

∗ ∗ ∗ ∗ −I

⎤
⎥⎥⎥⎥⎦
<0, (24)

and �
W M

M� S1

�
≥ 0, (25)

for

i ∈ {1, · · · , N1}, j ∈ {1, · · · , N2}, N1, N2 ∈ N,
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2

V(0) ≡ β, ∀ω ∈ L2[0, ∞), ∀k f ∈ N,

which implies from Definition 1 that the system (11) is passive. Using the Schur complement
(23) is equivalent to (17). This complete the proof.

Theorem 2. System (12) is passive under arbitrary switching rules s and σ, if there
exist matrices P1 > 0, P2, P3, W1, W2, W3, M1, M2, S1 > 0, S2 > 0 such that the following LMIs
holds ⎡
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Q1+E�
a Ea Q2 P�

2 Bj−M1+E�
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2 E − C� + E�
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2 D1
∗ Q3 P�

3 Bj − M2 P�
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3 D1
∗ ∗ −S2 + E�
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∗ ∗ ∗ −(D + D�) + E�
e Ee 0

∗ ∗ ∗ ∗ −I

⎤
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and �
W M

M� S1

�
≥ 0, (25)

for

i ∈ {1, · · · , N1}, j ∈ {1, · · · , N2}, N1, N2 ∈ N,
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where Q1, Q2, Q3, W, M are defined in Theorem 1 and Ea, Eb, Ee are given by (9) and (10).

Proof. Replacing Ai, Bj and E in (17) with Ai + D1F(k)Ea, Bj + D1F(k)Eb and E + D1F(k)Ee,
respectively, we find that (17) for (12) is equivalent to the following condition

Λ +

⎡
⎢⎢⎣

P�
2 D1

P�
3 D1
0
0

⎤
⎥⎥⎦ F(k)

�
Ea 0 Eb Ee

�
+

⎡
⎢⎢⎣

E�
a
0

E�
b

E�
e

⎤
⎥⎥⎦ F�(k)

�
D�

1 P2 D�
1 P3 0 0

�
< 0.

By Lemma 2, a sufficient condition guaranteeing (17) for (12) is that there exists a positive
number λ > 0 such that

λΛ + λ2

⎡
⎢⎢⎣

P�
2 D1

P�
3 D1
0
0

⎤
⎥⎥⎦

�
D�

1 P2 D�
1 P3 0 0

�
+

⎡
⎢⎢⎣

E�
a
0

E�
b

E�
e

⎤
⎥⎥⎦

�
Ea 0 Eb Ee

�
< 0. (26)

Replacing λP, λS1, λS2, λM and λW with P, S1, S2, M and W respectively, and applying the
Schur complement shows that (26) is equivalent to (24). This completes the proof.

4. A numerical example

In this section, we shall present an example to demonstrate the effectiveness and applicability
of the proposed method. Consider system (12) with parameters as follows:

A1 =
�−6 −6

2 −2

�
, A2 =

�−4 −6
4 −4

�
, B1 =

�−1 −2
0 −1

�
, B2 =

�−2 0
−3 −1

�
,

B3 =
�−1 0

0 −1

�

C =
�

0.1 −0.2
�

, E =
�

0.2
0.1

�
, Ea =

�
0.5 0
0.1 0.2

�
, Eb =

�
0.6 0
0 0.3

�
, D1 =

�
0.1 0
0 1

�
,

D = 0.1, h = 5.

Applying Theorem 2, with i ∈ {1, 2}, j ∈ {1, 2, 3}. It has been found by using software LMIlab
that the switching discrete time-delay system (12) is the passive and we obtain the solution as
follows:

P1 = 10−3 ×
�

0.1586 0.0154
∗ 0.2660

�
, P2 =

�
0.5577 0.3725
−1.6808 1.0583

�
, P3 =

�
0.1689 −0.0786
−0.0281 0.1000

�
,

S1 = 10−4 ×
�

0.4207 0.0405
∗ 0.6941

�
, S2 =

�
2.6250 0.8397

∗ 2.0706

�
, W1 =

�
0.2173 −0.0929

∗ 0.0988

�
,

W2 =
�

0.0402 −0.0173
∗ 0.0182

�
, W3 =

�
0.0075 −0.0032

∗ 0.0034

�
, M1 = 10−4 ×

�−0.0640 −0.2109
0.1402 −0.5777

�
,

M2 = 10−5 ×
�

0.0985 −0.4304
0.1231 −0.9483

�
.
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5. Conclusions

In this paper, based on remote control and local control strategy, a class of hybrid multi-rate
control models with uncertainties and switching controllers have been formulated and their
passive control problems have been investigated. Using the Lyapunov-Krasovskii function
approach on an equivalent singular system, some new conditions in form of LMIs have been
derived. A numerical example has been shown to verify the effectiveness of the proposed
control and passivity methods.
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1. Introduction  
A demand for the miniaturization and reducing the total moment of inertia which allows to 
shorten the response time of the whole system is evident in modern drives system. 
However, reducing the size of the mechanical elements may result in disclosure of the finite 
stiffness of the drive shaft, which can lead to the occurrence of torsional vibrations. This 
problem is common in rolling-mill drives, belt-conveyors, paper machines, robotic-arm 
drives including space manipulators, servo-drives and throttle systems (Itoh et al., 2004, 
Hace et al., 2005 , Ferretti et al. 2005, Sugiura & Hori, Y., 1996, Szabat & Orłowska-Kowalska, 
2007, O’Sullivan at al. 2007, Ryvkin et al., 2003 , Wang & Frayman, 2004, Vasak & Peric, 
2009, Vukosovic & Stojic, 1998). 
To improve performances of the classical control structure with the PI controller, the 
additional feedback loop from one selected mechanical state variable can be used. The 
additional feedback allows setting the desired value of the damping coefficient, but the free 
value of the resonant frequency cannot be achieved simultaneously (Szabat & Orłowska-
Kowalska, 2007). According to the literature, the application of the additional feedback from 
the shaft torque is very common (Szabat & Orłowska-Kowalska, 2007). The design 
methodology of that system can be divided into two groups. In the first framework the shaft 
torque is treated as the disturbance. The simplest approach relies on feeding back the 
estimated shaft torque to the control structure, with the gain less than one. The more 
advanced methodology, called Resonance Ratio Control (RRC) is presented in (Hori et al.,  
1999). The system is said to have good damping ability when the ratio of the resonant to 
antiresonant frequency has a relatively big value (about 2). The second framework consists 
in the application of the modal theory. Parameters of the control structure are calculated by 
comparison of the characteristic equation of the whole system to the desired polynomial. To 
obtain a free design of the control structure parameters, i.e. the resonant frequency and the 
damping coefficient, the application of two feedbacks from different groups of mechanical 
state variables is necessary. The design methodology of this type of the systems is presented 
in (Szabat & Orłowska-Kowalska, 2007).  
The control structures presented so far are based on the classical cascade compensation 
schemes. Since the early 1960s a completely different approach to the analysis of the system 
dynamics has been developed – the state space methodology (Michels et al., 2006). The 
application of the state-space controller allows to place the system poles in an arbitrary 
position so theoretically it is possible to obtain any dynamic response of the system. The 
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comparison of the characteristic equation of the whole system to the desired polynomial. To 
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application of the state-space controller allows to place the system poles in an arbitrary 
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suitable location of the closed-loop system poles becomes one of the basic problems of the 
state space controller application. In (Ji & Sul,, 1995) the selection of the system poles is 
realized through LQ approach. The authors emphasize the difficulty of the matrices 
selection in the case of the system parameter variation. The influence of the closed-loop 
location on the dynamic characteristics of the two-mass system is analyzed in (Qiao et al., 
2002), (Suh et al., 2001). In (Suh et al., 2001) it is stated that the location of the system poles in 
the real axes improve the performance of the drive system and makes it more robust against 
the parameter changes.  
In the case of the system with changeable parameters more advanced control concepts have 
been developed. In (Gu et al., 2005), (Itoh et al., 2004) the applications of the robust control 
theory based on the H∞ and μ-synthesis frameworks are presented. The implementation of 
the genetic algorithm to setting of the control structure parameters is shown in (Itoh et al., 
2004). The author reports good performance of the system despite the variation of the inertia 
of the load machine. The next approach consists in the application of the sliding-mode 
controller. For example, in paper (Erbatur et al., 1999) this method is applied to controlling 
the SCARA robot. A design of the control structure is based on the Lyapunov function. The 
similar approach is used in (Hace et al., 2005) where the conveyer drive is modelled as the 
two-mass system. The authors claim that the designed structure is robust to the parameter 
changes of the drive and external disturbances. Other application examples of the sliding-
mode control can be found in (Erenturk, 2008). The next two frameworks of control 
approach relies on the use of the adaptive control structure. In the first framework the 
controller parameters are adjusted on-line on the basis of the actual measurements. For 
instance in (Wang & Frayman, 2004) a dynamically generated fuzzy-neural network is used 
to damp torsional vibrations of the rolling-mill drive. In (Orlowska-Kowalska & Szabat, 
2008) two neuro-fuzzy structures working in the MRAS structure are compared. The 
experimental results show the robustness of the proposed concept against plant parameter 
variations. In the other framework changeable parameters of the plant are identified and 
then the controller is retuned in accordance with the currently identified parameters. The 
Kalman filter is applied in order to identify the changeable value of the inertia of the load 
machine (Szabat & Orlowska-Kowalska, 2008). This value is used to correct the parameters 
of the PI controller and two additional feedbacks. A similar approach is presented in 
(Hirovonen et al., 2006).  
The Model Predictive Control (MPC) is one of the few techniques (apart from PI/PID 
techniques) which are frequently applied to industry (Maciejowski 2002, Cychowski 2009). 
The MPC algorithm adapts to the current operation point of the process generating an 
optimal control signal. It is able to directly take into consideration the input and output 
constraints of the system which is not easy in a control structure using classical structures. 
Nevertheless, the real time implementations of the MPC are traditionally limited to objects 
with relatively large time constants (Maciejowski 2002, Cychowski 2009). The application of 
MPC to industrial processes characterized by fast dynamics, such as those of electrical 
drives, is complicated by the formidable real-time computational complexity often 
necessitating the use of high-performance computers and complex software. The state-of-
the-art of currently employed predictive control methods in the power electronics and 
motion control sector is given in (Kennel et al, 2008). Still, there are few works which report 
the application of the MPC in the control structure of a two-mass system (Cychowski et al. 
2009).  
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The main contribution of this paper is the design and real-time validation of an explicit 
model predictive controller for a two-mass elastic drive system which is robust to the 
parameter changes. The explicit version of the MPC algorithm presented here does not 
involve complex optimization to be performed in a control unit but requires only a 
piecewise linear function evaluation which can be realized through a simple look-up table 
approach. This problem is computationally far more attractive than the standard 
optimization-based MPC and enables the application of complex constrained control 
algorithms to demanding systems with sampling in the mili/micro second scale. In addition 
to low complexity, the proposed MPC controller respects the inherent electromagnetic 
(input) and shaft (output) torque constraints while guaranteeing optimal closed-loop 
performance. This safety feature is crucial for many two-mass drive applications as violating 
the shaft ultimate tensile strength may result in damage of the shaft and ultimately in the 
failure of the entire drive system. Contrary to the previous works of the authors (Cychowski 
et al. 2009), where the system was working under nominal condition, in the present paper 
the issues related to the robust control of the drive system with elastic joint are presented.   
This paper is divided into seven sections. After an introduction, the mathematical model of 
the two-mass drive system and utilized control structure are described. In section III the 
idea of the MPC is presented. Then the whole investigated control structure is described. 
The simulation results are demonstrated in sections V. After a short description of the 
laboratory set-up, the experimental results are presented in section VI. Conclusions are 
presented at the end of the paper. 

2. The mathematical model of the two-mass system and the control structure 
In technical papers there exist many mathematical models, which can be used for the 
analysis of the plant with elastic couplings. In many cases the drive system can be modelled 
as a two-mass system, where the first mass represents the moment of inertia of the drive and 
the second mass refers to the moment of inertia of the load side. The mechanical coupling is 
treated as an inertia free. The internal damping of the shaft is sometimes also taken into 
consideration. Such a system is described by the following state equation (Szabat & 
Orlowska-Kowalska, 2007) (with non-linear friction neglected): 

 

( )
( )
( )

( )
( )
( )

[ ] [ ]Le

s
cc

s

M
J

M
J

tM
t
t

KK
JJ

D
J
D

JJ
D

J
D

tM
t
t

dt
d  

0

1
0

 
0
0

1

 

0

1

1

2

1

2

1

222

111

2

1

⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡
−

+

⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢

⎣

⎡

+
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡
Ω
Ω

⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

−

−

−−

=
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡
Ω
Ω

 

(1)

 
where: Ω1- motor speed, Ω2- load speed, Me– motor torque, Ms– shaft (torsional) torque, ML– 
load torque, J1 – inertia of the motor, J2– inertia of the load machine, Kc– stiffness coefficient, 
D – internal damping of the shaft. 
The schematic diagram of the two-mass system is presented in Fig. 1 
The described model is valid for the system in which the moment of inertia of the shaft is 
much smaller than the moment of the inertia of the motor and the load side. In other cases a 
more extended model should be used, such as the Rayleigh model of the elastic coupling or 
even a model with distributed parameters. The suitable choice of the mathematical model is 
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suitable location of the closed-loop system poles becomes one of the basic problems of the 
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selection in the case of the system parameter variation. The influence of the closed-loop 
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where: Ω1- motor speed, Ω2- load speed, Me– motor torque, Ms– shaft (torsional) torque, ML– 
load torque, J1 – inertia of the motor, J2– inertia of the load machine, Kc– stiffness coefficient, 
D – internal damping of the shaft. 
The schematic diagram of the two-mass system is presented in Fig. 1 
The described model is valid for the system in which the moment of inertia of the shaft is 
much smaller than the moment of the inertia of the motor and the load side. In other cases a 
more extended model should be used, such as the Rayleigh model of the elastic coupling or 
even a model with distributed parameters. The suitable choice of the mathematical model is 
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a compromise between the accuracy and calculation complexity. As can be concluded from 
the literature, nearly in all cases the simplest shaft-inertia-free model has been used. 
 

1T 2T

( )tmS ( )tmS( )tme

( )t1ω ( )t2ωCT d
 

Fig. 1. The schematic diagram of the two-mass system 
 

To simplify the comparison of the dynamical performances of the drive systems of different 
power, the mathematical model (1) is expressed in per unit system, using the following 
notation of new state variables: 
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where: ΩN – nominal speed of the motor, MN – nominal torque of the motor, ω1, ω2 – motor 
and load speeds, me, ms, mL – electromagnetic, shaft and load torques in per unit system.  
The mechanical time constant of the motor – T1 and the load machine – T2 are thus given as: 
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The stiffness time constant – Tc and internal damping of the shaft – d can be calculated as 
follows: 
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Taking into account the equations (3)-(5) the state equation of the two-mass system in per-
unit value is represented as: 
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Usually, due to its small value the internal damping of the shaft d is neglected in the 
analysis of the two-mass drive system as in eq. (5).  
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3. Model predictive control and its explicit formulation 
In model predictive control, an explicit model of the plant is used to predict the effect of 
future actions of the manipulated variables on the process output. In the recent literature, 
the following linear discrete-time state-space model is typically employed [14] 
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where x(k), u(k) and y(k) denote the system state, input and output vectors, respectively. Let 
yk represent the value of the output vector at a future time k, given an input sequence uk, and 
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where Q ≥ 0 and R > 0 are the weighting matrices, Np and Nc denote the prediction and 
control horizon, respectively and umin, umax, ymin, and ymax are the input and output 
constraints of the system.  
The MPC algorithm based on optimization problem can be implemented in two ways. The 
traditional approach relies on solving the optimization problem on-line for a given x(k) in a 
receding-horizon fashion. This means that, at the current time k, only the first element 
control signal uk of the optimal input sequence is actually implemented to the plant and the 
rest of the control moves are discarded. At the next time step, the whole procedure is 
repeated for the new measured or estimated output y(k+1) (Maciejowski 2002, Cychowski 
2009). This strategy can be computationally demanding for systems requiring fast sampling 
or low-performance computers and hence greatly restricting the scope of applicability to 
systems with relatively slow dynamics. In the second approach, the problem (7) is first 
solved off-line for all possible state realizations within some compact set Xf  using multi-
parametric programming (Maciejowski 2002, Cychowski 2009). Specifically, by treating the 
state vector x(k) as a parameter vector, it can be shown that the parameter space Xf can be 
subdivided into characteristic regions, where the optimizer is given as an explicit function of 
the parameters. This profile is a piecewise affine state feedback law: 

 ( ) ,r r rU x K x g x P= + ∀ ∈   (8) 

where Pr are polyhedral sets defined as: 
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a compromise between the accuracy and calculation complexity. As can be concluded from 
the literature, nearly in all cases the simplest shaft-inertia-free model has been used. 
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Fig. 1. The schematic diagram of the two-mass system 
 

To simplify the comparison of the dynamical performances of the drive systems of different 
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where: ΩN – nominal speed of the motor, MN – nominal torque of the motor, ω1, ω2 – motor 
and load speeds, me, ms, mL – electromagnetic, shaft and load torques in per unit system.  
The mechanical time constant of the motor – T1 and the load machine – T2 are thus given as: 
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The stiffness time constant – Tc and internal damping of the shaft – d can be calculated as 
follows: 
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Taking into account the equations (3)-(5) the state equation of the two-mass system in per-
unit value is represented as: 
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Usually, due to its small value the internal damping of the shaft d is neglected in the 
analysis of the two-mass drive system as in eq. (5).  
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3. Model predictive control and its explicit formulation 
In model predictive control, an explicit model of the plant is used to predict the effect of 
future actions of the manipulated variables on the process output. In the recent literature, 
the following linear discrete-time state-space model is typically employed [14] 
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where Q ≥ 0 and R > 0 are the weighting matrices, Np and Nc denote the prediction and 
control horizon, respectively and umin, umax, ymin, and ymax are the input and output 
constraints of the system.  
The MPC algorithm based on optimization problem can be implemented in two ways. The 
traditional approach relies on solving the optimization problem on-line for a given x(k) in a 
receding-horizon fashion. This means that, at the current time k, only the first element 
control signal uk of the optimal input sequence is actually implemented to the plant and the 
rest of the control moves are discarded. At the next time step, the whole procedure is 
repeated for the new measured or estimated output y(k+1) (Maciejowski 2002, Cychowski 
2009). This strategy can be computationally demanding for systems requiring fast sampling 
or low-performance computers and hence greatly restricting the scope of applicability to 
systems with relatively slow dynamics. In the second approach, the problem (7) is first 
solved off-line for all possible state realizations within some compact set Xf  using multi-
parametric programming (Maciejowski 2002, Cychowski 2009). Specifically, by treating the 
state vector x(k) as a parameter vector, it can be shown that the parameter space Xf can be 
subdivided into characteristic regions, where the optimizer is given as an explicit function of 
the parameters. This profile is a piecewise affine state feedback law: 
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and Nr denotes the total number of polyhedral regions in the partition. Algorithms for the 
construction of a polyhedral partition of the state space and computation of a PWA control 
law are given in (Maciejowski 2002, Cychowski 2009). In its simplest form, the PWA control 
law (8)–(9) can be evaluated by searching for a region containing current state x in its 
interior and applying the affine control law associated with this region. More efficient search 
strategies which offer a logarithmic-type complexity with respect to the total number of 
regions Nr in the partition have also been developed (Cychowski, 2009, Kvasnica et al. 2004, 
Tøndel et al. 2003, Spjøtvold et al. 2006). Nonetheless, the implementation of the explicit 
MPC control law can often be several orders of magnitude more efficient than solving the 
optimization problem (7) directly. This gain in efficiency is crucial for demanding 
applications with fast dynamics or high sampling rates in the milli/micro second range, 
such as the drive system considered in this paper.  

4. MPC-based control structure 
A typical electrical drive system is composed of a power converter-fed motor coupled to a 
mechanical system, a microprocessor-based controllers, current, rotor speed and/or position 
sensors used as feedback signals. Typically, cascade speed control structure containing two 
major control loops is used, as presented in Fig 2.  
The inner control loop performs a motor torque regulation and consists of the power 
converter, electromagnetic part of the motor, current sensor and respective current or torque 
controller. As this control loop is designed to provide sufficiently fast torque control, it can 
be approximated by an equivalent first order term with small time constant. If the control is 
ensured, the driven machine could be an AC or DC motor, with no difference in the outer 
speed control loop. The outer loop consists of the mechanical part of the motor, speed 
sensor, speed controller, and is cascaded to the inner loop. It provides speed control 
according to the reference value (Szabat & Orlowska-Kowalska, 2007). 
 

 
Fig. 2. The classical cascade control structure of the two-mass system 

Such a classical structure in not effective enough in the case of the two-mass system. To 
improve the dynamical characteristics of the drive, the modification of the cascade structure 
is necessary. In this paper the structure with the MPC controller is considered which 
requires knowledge of all mechanical state variables of the drive. In the industrial 
applications, the direct measurement of the shaft torque ms and the load speed ω2 is very 
difficult. For that reason, in this paper the Kalman Filter (Szabat & Orlowska-Kowalska, 
2008) is used to provide the information about non-measurable mechanical state variables. 
Additionally, the load torque mL is also estimated and used in the MPC based control 
structure. In Fig. 3 the block diagram of the considered control structure is presented. 
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Fig. 3. The block diagram of the MPC-based control structure 

5. Simulation study 
In this section, the proposed single-loop explicit MPC control strategy for the drive system 
with an elastic coupling will be evaluated through simulations. A primary design objective 
for the MPC controller is to ensure that the load speed response follows the set-point with 
the desired dynamics. This needs to be achieved without generating excessive shaft torque 
responses and without violating the input and output constraints of the drive. The first two 
requirements can be addressed by defining the following auxiliary output variables: 

 1 1 refy ω ω= − 2 2 ry ω ω= − 3 s Ly m m= −  (10) 

where y1 and y2 account for tracking performance and y3 relates to load-shaft torque 
imbalance. Due to (8)-(10), the reference speed variable and the disturbance torque need to 
be directly incorporated into the drive system model. 
Decreasing the values of the cost function in the MPC algorithm leads to the minimization of 
the errors between the reference value of both speeds and reduce the torsional tension in the 
shaft. In order to calculate the values of the y1-y3, the original state vector of the system has 
to be extended by load torque mL and the reference speed ωr. Thus, the new model used in 
the MPC algorithm is described by the following state equation: 
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The dynamics of the reference value is described by the second order term: 
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where oω is a reference frequency and the ς is the damping coefficient of the reference 
model.  
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where oω is a reference frequency and the ς is the damping coefficient of the reference 
model.  
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The task of the MPC controller is to bring the output variables to zero by manipulating mer 
while respecting the safety and physical limitations of the drive system, which in the 
analysed case are set as follows: 

 3 3erm− ≤ ≤ 1.5 1.5sm− ≤ ≤  (13) 

The selection of the prediction and control horizons is a compromise between the drive 
performance and computational complexity. In practice, Nc ≤ Np to avoid large 
computational burden for the standard MPC and large number of regions for the explicit 
MPC.  
The dynamic of the control system with MPC controller can be adjusted by the changes of 
the values of the Q matrix. In the current work only the elements located in the main 
diagonal of the matrix have been changed. The form of the matrix Q used in the study is 
presented below: 
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Taking into account (10) and (14) the cost function can be presented as follows: 
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The robustness of the MPC algorithm is ensured by the suitable selection of the elements of 
matrix in (14) with the help of the pattern search algorithm. The cost function used in the 
optimization algorithm is as follows:  
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where: e1- tracking terror of motor speed ω1, e2- tracking terror of load speed ω2, K1 – penalty 
coefficient for exceeds of the limit of the shaft torque, K2 - penalty coefficient for overshoot in 
the load speed, e3 – coefficient in the cost function responsible for minimization of the 
tracking error of the speed for the systems with a different value of the parameter T2. The 
terms of the (16) can be represented as in (17): 
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Penalty coefficient K1 and K2 can be expressed as (18): 
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The responses of the reference model used under simulation study are shown in Fig. 4. 
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Fig. 4. The responses of the reference models used in the study 

As can be concluded from Fig. 4, the settling times  for the utilized reference models are 0.2 
and 0.4s. These transients determine responses of the system. The pattern search algorithm 
is looking a one set of values in the matrix Q which enables the smallest difference between 
the speeds and the reference value for different value of the time constant of the load 
machine. The optimization algorithm has been working with the set value of the reference 
signal equal to 0.25 of the nominal speed in order to avoid the electromagnetic torque limit. 
Transients of the state variables of the system working with the MPC algorithm for slower 
reference model are presented in Fig.5 . The parameters of the MPC controller are as follows: 
N=12, Nu=2, numbers of the regions: 121, while values in the matrix are diag(Q) = [8.89 0.15 
198.2]. The value of cost function in pattern search algorithm is F=1.22e-7.  
As can be concluded from the transients presented in Fig. 5, the system is working correctly. 
The load speed transients for different value of the load side inertia are close to the reference 
signal. The difference between the motor speed and the reference signal is slightly bigger 
than – between the reference and the load speed (which comes from the small value of the 
q11). The application of the load torque causes the speed drop which is eliminated quickly. 
Those drop is bigger  for the system with the smaller value of the load inertia significantly. 
During this disturbance the electromagnetic torque as well as the shaft torque reach the 
maximal allowed value for those states. In Fig. 5e the enlarged transients of the load speed 
errors are presented. It is clearly visible that during the start-up the drive with the biggest 
inertia has the biggest error.  
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Penalty coefficient K1 and K2 can be expressed as (18): 
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Fig. 4. The responses of the reference models used in the study 

As can be concluded from Fig. 4, the settling times  for the utilized reference models are 0.2 
and 0.4s. These transients determine responses of the system. The pattern search algorithm 
is looking a one set of values in the matrix Q which enables the smallest difference between 
the speeds and the reference value for different value of the time constant of the load 
machine. The optimization algorithm has been working with the set value of the reference 
signal equal to 0.25 of the nominal speed in order to avoid the electromagnetic torque limit. 
Transients of the state variables of the system working with the MPC algorithm for slower 
reference model are presented in Fig.5 . The parameters of the MPC controller are as follows: 
N=12, Nu=2, numbers of the regions: 121, while values in the matrix are diag(Q) = [8.89 0.15 
198.2]. The value of cost function in pattern search algorithm is F=1.22e-7.  
As can be concluded from the transients presented in Fig. 5, the system is working correctly. 
The load speed transients for different value of the load side inertia are close to the reference 
signal. The difference between the motor speed and the reference signal is slightly bigger 
than – between the reference and the load speed (which comes from the small value of the 
q11). The application of the load torque causes the speed drop which is eliminated quickly. 
Those drop is bigger  for the system with the smaller value of the load inertia significantly. 
During this disturbance the electromagnetic torque as well as the shaft torque reach the 
maximal allowed value for those states. In Fig. 5e the enlarged transients of the load speed 
errors are presented. It is clearly visible that during the start-up the drive with the biggest 
inertia has the biggest error.  
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In the work, a system with increased length of the control horizon has been investigated 
also. The increase of Nu from 2 to 3 allows to reduce the value of the cost function to 6.78e-8. 
However, at the same time the number of the controller regions goes up to 381. Due to the 
large computational complexity (significant in the experiment) the result related to this 
controller are not presented. 
Next the system with faster reference model has been tested. After the optimization 
procedure the following values of the matrix Q were set: diag(Q)= [17.22 0.40 398.15]. The 
transients of the tested system are presented in Fig.6. 
The drive systems with different inertia ratio have correct properties. The load speed 
transients cover the reference value almost perfectly. A much bigger difference exists in the 
transients of the motor speed. It comes from the small value of q11, as in the previous case. 
The torsional vibrations are not evident in the system transients. The biggest value of the 
electromagnetic as well as the shaft torque characterise the system with the biggest inertia. 
The application of the load torque causes the speed drop but the reaction of the system to 
the disturbance is very dynamic. The electromagnetic torque reaches its allowed limit (Fig. 
6a) in a short while.  
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Fig. 5. Transients of the drive system: electromagnetic torque (a), shaft torque (b), motor 
speed (c), load speed (d), load speed errors (e) for the system with slower reference model 
and the controller parameters N=12, Nu=2 
 

Finally, the system has been investigated for a bigger value of the reference speed and 
slower reference model. The values of the parameters of the matrix Q remain unchanged 
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(the same as for the ωref=0.25). The transients of the state variables of the system are 
presented in Fig. 7.  
As can be seen from Fig. 7, the increase of the value of the reference speed changes the 
working point of the drive. During the start-up the electromagnetic torque is limited in all 
cases. Because of this limitation the speeds of the drive cannot follow the reference value. 
The bigger error appears in the system with T2=2*T2 due to the biggest inertia value of the 
entire drive system. What is evident from the shaft torque transients is that its limitations 
are in general prevented. Some small exceeds, which come from the applied softening 
strategy, are visible. However, they are eliminated fast.  
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Fig. 6. Transients of the drive system: electromagnetic torque (a), shaft torque (b), motor 
speed (c), load speed (d), load speed errors (e) for the system with faster reference model 
and the controller parameters N=12, Nu=2 

The pattern search algorithm is not robust against local minimum. In order to eliminate this 
drawback the starting point of the algorithm has been selected many times. The best three 
solutions obtained for the three different starting points v1=[100 100 100]; v2=[10 10 10]; 
v3=[0.1 0.1 0.1] are presented in Tab. 1. 
Despite the fact that the value of the cost function is similar for three starting values, the 
finding points are different. However, the ratios between find values are similar in every 
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In the work, a system with increased length of the control horizon has been investigated 
also. The increase of Nu from 2 to 3 allows to reduce the value of the cost function to 6.78e-8. 
However, at the same time the number of the controller regions goes up to 381. Due to the 
large computational complexity (significant in the experiment) the result related to this 
controller are not presented. 
Next the system with faster reference model has been tested. After the optimization 
procedure the following values of the matrix Q were set: diag(Q)= [17.22 0.40 398.15]. The 
transients of the tested system are presented in Fig.6. 
The drive systems with different inertia ratio have correct properties. The load speed 
transients cover the reference value almost perfectly. A much bigger difference exists in the 
transients of the motor speed. It comes from the small value of q11, as in the previous case. 
The torsional vibrations are not evident in the system transients. The biggest value of the 
electromagnetic as well as the shaft torque characterise the system with the biggest inertia. 
The application of the load torque causes the speed drop but the reaction of the system to 
the disturbance is very dynamic. The electromagnetic torque reaches its allowed limit (Fig. 
6a) in a short while.  
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(the same as for the ωref=0.25). The transients of the state variables of the system are 
presented in Fig. 7.  
As can be seen from Fig. 7, the increase of the value of the reference speed changes the 
working point of the drive. During the start-up the electromagnetic torque is limited in all 
cases. Because of this limitation the speeds of the drive cannot follow the reference value. 
The bigger error appears in the system with T2=2*T2 due to the biggest inertia value of the 
entire drive system. What is evident from the shaft torque transients is that its limitations 
are in general prevented. Some small exceeds, which come from the applied softening 
strategy, are visible. However, they are eliminated fast.  
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speed (c), load speed (d), load speed errors (e) for the system with faster reference model 
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The pattern search algorithm is not robust against local minimum. In order to eliminate this 
drawback the starting point of the algorithm has been selected many times. The best three 
solutions obtained for the three different starting points v1=[100 100 100]; v2=[10 10 10]; 
v3=[0.1 0.1 0.1] are presented in Tab. 1. 
Despite the fact that the value of the cost function is similar for three starting values, the 
finding points are different. However, the ratios between find values are similar in every 
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case. It confirms that the find solution is the global solution or very close to it. The 
parameters of the optimization procedure are presented in Fig. 8. 
 

V Iteration F Finding points 
v1 57 7.8784e-08 9188 184.0429 206948 
v2 51 7.9072e-08 930 24.1264 21898 
v3 60 8.7297e-08 17.2250 0.4017 398.10 

Table 1. Parameters related to the pattern search algorithm 
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Fig. 7. Transients of the drive system: electromagnetic torque (a), shaft torque (b), motor 
speed (c), load speed (d), load speed errors (e) for the system with faster reference model 
and the controller parameters N=12, Nu=2 and nominal value of the reference speed 

6. Experimental results    
All theoretical considerations have been confirmed experimentally in a laboratory set-up 
composed of a 0.5kW DC-motor driven by a static converter. The motor is coupled to a load 
machine by an elastic shaft (a steel shaft of 5mm diameter and 600mm length). The speed 
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and position of the driven and loading motors have been measured by incremental encoders 
(36000 pulses per rotation). The mechanical system has a natural frequency of 
approximately 9.5Hz, while the nominal parameters of the system are T1=203ms, T2=203ms, 
Tc =2.6ms. The picture of the experimental set-up is presented in Fig. 9.  
The control structure of the drive is shown in Fig. 3. The sampling time of the 
electromagnetic torque control as well as the estimator is 100μs in the experimental system. 
The outer speed control loop has the sampling time equal to 500 μs.  
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Fig. 8. The parameters of the pattern search algorithm: variation of the cost function (a,d,g), 
variation of the grid (b,e,h), found values of the parameters (c,f,i) for starting point v1 (a,b,c), 
v2 (d,e,f), v3 (g,h,i) 

In the experimental study the system with a slower reference model has been tested. In Fig. 
10 the transients of the motor speeds (a), shaft torques (b), load speed (c) as well as the 
tracking errors (c) for the drive system with nominal and twice bigger value of the load side 
inertia are presented. The system was tested for two inertia values of the loading machine. 
As can be concluded from the presented transients the drive system works correctly. The 
shape of the load speeds obtained for different inertia ratio almost perfectly covers the 
transients of the reference model (Fig. 10). Also the tracking errors between the motor 
speeds and the reference model are very small. Similarly as in the simulation study, the 
tracking error during the start-up is bigger for the system with a bigger value of inertia (Fig. 
10d). Contrary to this situation, the application of the load torque causes the bigger tracking 
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case. It confirms that the find solution is the global solution or very close to it. The 
parameters of the optimization procedure are presented in Fig. 8. 
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Table 1. Parameters related to the pattern search algorithm 
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speed (c), load speed (d), load speed errors (e) for the system with faster reference model 
and the controller parameters N=12, Nu=2 and nominal value of the reference speed 

6. Experimental results    
All theoretical considerations have been confirmed experimentally in a laboratory set-up 
composed of a 0.5kW DC-motor driven by a static converter. The motor is coupled to a load 
machine by an elastic shaft (a steel shaft of 5mm diameter and 600mm length). The speed 
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and position of the driven and loading motors have been measured by incremental encoders 
(36000 pulses per rotation). The mechanical system has a natural frequency of 
approximately 9.5Hz, while the nominal parameters of the system are T1=203ms, T2=203ms, 
Tc =2.6ms. The picture of the experimental set-up is presented in Fig. 9.  
The control structure of the drive is shown in Fig. 3. The sampling time of the 
electromagnetic torque control as well as the estimator is 100μs in the experimental system. 
The outer speed control loop has the sampling time equal to 500 μs.  
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variation of the grid (b,e,h), found values of the parameters (c,f,i) for starting point v1 (a,b,c), 
v2 (d,e,f), v3 (g,h,i) 

In the experimental study the system with a slower reference model has been tested. In Fig. 
10 the transients of the motor speeds (a), shaft torques (b), load speed (c) as well as the 
tracking errors (c) for the drive system with nominal and twice bigger value of the load side 
inertia are presented. The system was tested for two inertia values of the loading machine. 
As can be concluded from the presented transients the drive system works correctly. The 
shape of the load speeds obtained for different inertia ratio almost perfectly covers the 
transients of the reference model (Fig. 10). Also the tracking errors between the motor 
speeds and the reference model are very small. Similarly as in the simulation study, the 
tracking error during the start-up is bigger for the system with a bigger value of inertia (Fig. 
10d). Contrary to this situation, the application of the load torque causes the bigger tracking 
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error in the system with smaller inertia. The transients of the shaft torque are presented in 
Fig. 10b. There are no limit exceeds in the shaft torque. 
 
 

  
                                      a)                                                                               b) 

Fig. 9. The mechanical part of the laboratory set-up (a) and the general view of the 
laboratory set-up (b)  
 

 

 
Fig. 10. Transients of the drive system: electromagnetic torque (a), shaft torque (b), motor 
speed (c), load speed (d), load speed errors (e) for the system with slower reference model 
and value of the reference speed ωref=0.25.  
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After the experiment presented above the system has been examined for nominal value of 
the reference speed. The drive transients are presented in Fig. 11. As in the previous case, 
the drive system is working in a stable way. For nominal parameters the motor and the load 
speeds follow the reference value without noticeable errors (Fig. 11a, c). It steams from the 
fact that the shaft torque reaches its maximal limits only for a short time (Fig. 11b). During 
this time the tracking error increases. Then, when the system is below the limit the tracking 
error goes to zero. The transients of speeds for the system with a bigger value of inertia do 
not follow the reference value during the start-up because of the limitation of the 
electromagnetic and shaft torque set in the system. Enlarging the value of these limits will 
allow to follow the reference system without the error. However, at the same time the 
mechanical stress could damage the whole drive system. 
 

 
Fig. 11. Transients of the drive system: electromagnetic torque (a), shaft torque (b), motor 
speed (c), load speed (d), load speed errors (e) for the system with slower reference model 
and value of the reference speed wr=0.25.  

7. Conclusion 
In order to damp the torsional vibrations, which could destroy the mechanical coupling 
between the driven and loading machine, the control structure with MPC is applied. The 
coefficients used in MPC are set using the optimization method in order to make the system 
robust against the changes of the load side inertia. The constraints of the electromagnetic 
and shaft torques are included during the design of the control algorithm.  
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coefficients used in MPC are set using the optimization method in order to make the system 
robust against the changes of the load side inertia. The constraints of the electromagnetic 
and shaft torques are included during the design of the control algorithm.  
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As can be concluded from the presented results, the drive system works correctly despite 
parameter variations. The set control constraints of the shaft torque are not validated. It 
means that the control structure based on the MPC can ensure safe work in a drive system 
with uncertain or changeable parameters. 
The future work will be devoted to designing of an adaptive MPC control. A part of its work 
will be the design methodology of a robust Kalman filter used to estimate the mechanical 
parameters of the drive.  
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1. Introduction

This paper proposes a new current controller for high-speed drives of position sensor-less
controlled Interior Permanent Magnet Synchronous Motors (IPMSMs).
Recent demands of motor drive systems are

1. improved efficiency,

2. high torque response,

3. minimum motor size,

4. low cost.

IPMSMs and vector control are widely utilized because of thier efficiency(1) and high torque
response(2). In addition, much attention about high speed motors has been attracted from
the viewpoint of (3) because the high speed operation makes it possible to achieve smaller
motor size for specialized applications such as electric vehicles and home appliances, and
so on. High-performance digital control processors cannot be employed to achieve low cost
system(4), however, so lower cut-off frequency needs to be achieved because the relatively
long control period( – often 500μs to 1ms – ) is required. In this situation, the conventional
current control system for an IPMSM often degrades and violates stability of the system.
In high-speed drives of AC motors, it has been pointed out that unstable current control
tends to occur since coupling terms based on electromotive force impair the characteristics
of current control ( J.Jung & K.Nam (1999), K.Kondo et al. (1998 (in Japanese) ). These papers
have proposed a new dynamic decoupling controller, respectively, under the assumption that
the controller’s coordinate (γ − δ) is perfectly aligned with the rotating coordinate fixed to
the rotor magnet or rotor flux(d − q). Hence, it is easily expected that this instability problem
tends to be emphasized when position error between these coordinates occurs, which is often
visible in the case of position sensor-less control.
In this paper, stability analysis is carried out while considering its application to position
sensor-less system (Z.Chen et al. (2003), S.Morimoto et al. (2002), M.Hasegawa & K.Matsui
(2008)) , and stable regions are clarified, in which it is especially difficult to control currents
on synchronous reference frame at high-speed (K.Tobari et al. (2004 (in Japanese)) . In order
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to solve this instability, a simply modified current controller is proposed in this paper. To
guarantee both robust stability and current control performance simultaneously, this paper
employees two degree of freedom (2DOF) structure fot the current controller, which can
enlarge stable region and maintain its performance (Hasegawa et al. (2007)). Finally, some
experiments with a disturbance observer for sensor-less control show that the proposed
current controller is effective to enlarge high-speed drives for IPMSM sensor-less system.

2. IPMSM model and conventional controller design

IPMSM on the rotational reference coordinate synchronized with the rotor magnet (d− q axis)
can be expressed by

[
vd
vq

]
=

[
R + pLd −PωrmLq
PωrmLd R + pLq

] [
id
iq

]
+

[
0

PωrmKE

]
, (1)

in which R means winding resistance, and Ld and q stand for inductances in d-q axes. ωrm and
P express motor speed in mechanical angle and the number of pole pairs, respectively.
In conventional current controller design, the following decoupling controller is usually
utilized to independently control d axis current and q axis current:

v∗d = v�d − PωrmLqiq , (2)

v∗q = v�q + Pωrm(Ldid + KE) , (3)

where v�d and v�q are obtained by amplifying current control errors with proportional - integral
controllers to regulate each current to the desired value, as follows:

v�d =
Kpds + Kid

s
(i∗d − id) , (4)

v�q =
Kpqs + Kiq

s
(i∗q − iq) , (5)

in which x∗ means reference of x. From (1) to (5), feed-back loop for id and iq is constructed,
and current controller gains are often selected as follows:

Kpd = ωcLd , (6)

Kid = ωcR , (7)

Kpq = ωcLq , (8)

Kiq = ωcR , (9)

where ωc stands for the cut-off frequency for current control. Therefore, the stability of
the current control system can be guaranteed, and these PI controllers can play a role in
eliminating slow dynamics of current control by cancelling the poles of motor winding
(= − R

Ld
, − R

Lq
) by the zero of controllers.

It should be noted, however, that extremely accurate measurement of the rotor position must
be assumed to hold this discussion and design because these current controllers are designed
and constructed on d − q axis. Hence, the stability of the current control system would easily
be violated when the current controller is constructed on γ − δ axis if there exists position
error Δθre (see Fig. 1) due to the delay of position estimation and the parameter mismatches in
position sensor-less control system. The following section proves that the instability especially
tends to occur in high-speed regions when synchronous motors with large Ld − Lq are
employed.
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3. Stability analysis of current control system

3.1 Problem Statement
This section analyses stability of current control system while considering its application to
position sensor-less system. Let γ − δ axis be defined as a rectangular coordinate away from
d − q axis by position error Δθre shown in Fig.1. This section investigates the stability of the
current control loop, which consists of IPMSM and current controller on γ − δ axis as shown
in Fig.2.
From (1), IPMSM on γ − δ axis can be rewritten as

[
vγ

vδ

]
=

[
R − PωrmLγδ + Lγ p −PωrmLδ + Lγδ p

PωrmLγ + Lγδ p R + PωrmLγδ + Lδ p

] [
iγ

iδ

]

+ PωrmKE

[− sin Δθre
cos Δθre

]
, (10)

in which

Lγ = Ld − (Ld − Lq) sin2 Δθre ,

Lδ = Lq + (Ld − Lq) sin2 Δθre ,

Lγδ =
Ld − Lq

2
sin 2Δθre .

It should be noted that the equivalent resistances on d axis and q axis are varied as ωrm
increases when Lγδ exists, which is caused by Δθre. As a result, Δθre forces us to modify the
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current controllers (2) – (5) as follows:

v∗γ = v�γ − PωrmLqiδ , (11)

v∗δ = v�δ + Pωrm(Ldiγ + KE) , (12)

v�γ =
Kpds + Kid

s
(i∗γ − iγ) , (13)

v�δ =
Kpqs + Kiq

s
(i∗δ − iδ) . (14)

3.2 Closed loop system of current control and stability analysis
This subsection analyses robust stability of the closed loop system of current control. Consider
the robust stability of Fig.2 to Δθre. Substituting the decoupling controller (11) and (12) to the
model (10) if the PWM inverter to feed the IPMSM can operate perfectly (this means vγ = v∗γ,
vδ = v∗δ ), the following equation can be obtained:

[
v�γ
v�δ

]
=

[
R − PωrmLγδ + Lγ p ΔZγδ(p, ωrm)

ΔZδγ(p, ωrm) R + PωrmLγδ + Lδ p

] [
iγ

iδ

]

+PωrmKE

[ − sin Δθre
cos Δθre − 1

]
, (15)

where ΔZγδ(p, ωrm) and ΔZδγ(p, ωrm) are residual terms due to imperfect decoupling control,
and are defined as follows:

ΔZγδ(p, ωrm) = −Pωrm(Ld − Lq) sin2 Δθre + Lγδ p ,

ΔZδγ(p, ωrm) = Pωrm(Ld − Lq) sin2 Δθre + Lγδ p .

It should be noted that the decoupling controller fails to perfectly reject coupled terms because
of Δθre. In addition, with current controllers (13) and (14), the closed loop system can be
expressed as shown in Fig.3, the transfer function (16) is obtained with the assumption
pΔθre = 0, pωrm = 0 as follows:
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.

Figs.4 and 5 show step responses based on Fig.3 with conventional controller (designed with
ωc = 2π × 30 rad/s) at ωrm =500 min−1 and 5000 min−1, respectively. In this simulation, Δθre
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Fig. 4. Response with the conventional controller (ωrm = 500 min−1 )

was intentionally given by Δθre = −20◦. i∗δ was stepwise set to 5 A and i∗γ was stepwise kept
to the value according to maximum torque per current (MTPA) strategy:

i∗γ =
KE

2(Lq − Ld)
−

√
K2

E
4(Lq − Ld)2 +

(
i∗δ

)2 . (17)

The parameters of IPMSM are shown in Table 1. It can be seen from Fig.4 that each current can
be stably regulated to each reference. The results in Fig.5, however, illustrate that each current
diverges and fails to be successfully regulated. These results show that the current control
system tends to be unstable as the motor speed goes up. In other words, currents diverge and
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Fig. 5. Response with conventional controller (ωrm = 5000 min−1 )

fail to be successfully regulated to each reference in high-speed region because of Δθre, which
is often visible in position sensor-less control systems.
Figs.6 and 7 show poles and zero assignment of Gγ(s) and Gδ(s), respectively. It is revealed
from Fig.6 that all poles of Gγ(s) and Gδ(s) are in the left half plane, which means the
current control loop can be stabilized, and this analysis is consistent with simulation results as
previously shown. It should be noted, however, the pole by motor winding is not cancelled by
controller’s zero, since this pole moves due to Δθre. On the contrary, Fig.7 shows that poles are
not in stable region. Hence stability of the current control system is violated, as demonstrated
in the aforementioned simulation. This is why one onf the equivalent resistances observed
from γ − δ axis tends to become small as speed goes up, as shown in (10), and poles of current
closed loop are reassigned by imperfect decoupling control.
It can be seen from Gγ(s) and Gδ(s) that stability criteria are given by

Kpd + R − PωrmLγδ > 0 , (18)

Kpq + R + PωrmLγδ > 0 . (19)

Fig.8 shows stable region by conventional current controller, which is plotted according to (18)
and (19). The figure shows that stable speed region tends to shrink as motor speed increases,
even if position error Δθre is extremely small. It can also be seen that the stability condition on
γ axis (18) is more strict than that on δ axis (19) because of Kpd < Kpq, in which these gains
are given by (6) and (8), and Ld < Lq in general. To solve this instability problem, all poles of
Gγ(s) and Gδ(s) must be reassigned to stable region (left half plane) even if there exists Δθre.
This implies that equivalent resistances in γ − δ axis need to be increased.

4. Proposed current controller with 2DOF structure

4.1 Requirements for stable current control under high-speed region
As described previously, the stability of current control is violated by Δθre. This is because
one of the equivalent resistances observed on γ − δ axis tends to become too small, and one
of the stability criteria (18) and (19) is not satisfied under high-speed region. To enlarge the
stable region, the current controller could, theoretically, be designed with higher performance
(larger ωc). This strategy is, however, not consistent with the aim of achieving lower cost as
described in section 1., and thus is not a realistic solution in this case. Therefore, this instability
cannot be improved upon by the conventional PI current controller.
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Kpq + R + PωrmLγδ > 0 . (19)

Fig.8 shows stable region by conventional current controller, which is plotted according to (18)
and (19). The figure shows that stable speed region tends to shrink as motor speed increases,
even if position error Δθre is extremely small. It can also be seen that the stability condition on
γ axis (18) is more strict than that on δ axis (19) because of Kpd < Kpq, in which these gains
are given by (6) and (8), and Ld < Lq in general. To solve this instability problem, all poles of
Gγ(s) and Gδ(s) must be reassigned to stable region (left half plane) even if there exists Δθre.
This implies that equivalent resistances in γ − δ axis need to be increased.

4. Proposed current controller with 2DOF structure

4.1 Requirements for stable current control under high-speed region
As described previously, the stability of current control is violated by Δθre. This is because
one of the equivalent resistances observed on γ − δ axis tends to become too small, and one
of the stability criteria (18) and (19) is not satisfied under high-speed region. To enlarge the
stable region, the current controller could, theoretically, be designed with higher performance
(larger ωc). This strategy is, however, not consistent with the aim of achieving lower cost as
described in section 1., and thus is not a realistic solution in this case. Therefore, this instability
cannot be improved upon by the conventional PI current controller.
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Fig. 9. Proposed current controller with 2DOF structure (only γ axis)

On the other hand, two degree of freedom (2DOF) structure would allow us to simultaneously
determine both robust stability and its performance. In this stability improvement problem,
robust stability with respect to Δθre needs to be improved up to high-speed region while
maintaining its performance, so that 2DOF structure seems to be consistent with this stability
improvement problem of current control for IPMSM drives. From this point of view, this paper
employees 2DOF structure in the current controller to enlarge the stability region.

4.2 Proposed current controller
The following equation describes the proposed current controller:

v�γ =
Kpds + Kid

s
(i∗γ − iγ) − Krdiγ , (20)

v�δ =
Kpqs + Kiq

s
(i∗δ − iδ) − Krqiδ . (21)

Fig. 9 illustrates the block diagram of the proposed current controller with 2DOF structure,
where it should be noted that Krd and Krq are just added, compared with the conventional
current controller. This current controller consists of conventional decoupling controllers (11)
and (12), conventional PI controllers with current control error (13) and (14) and the additional
gain on γ − δ axis to enlarge stable region. Hence, this controller seems to be very simple for
its implementation.

4.3 Closed loop system using proposed 2DOF controller
Substituting the decoupling controller (11) and (12), and the proposed current controller with
2DOF structure (20) and (21) to the model (10), the following closed loop system can be
obtained: [

iγ

iδ

]
=

[
1 F�

γδ(s)
F�

δγ(s) 1

]−1 [
G�

γ(s) · i∗γ
G�

δ(s) · i∗δ

]
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Fig. 10. Current control system with Krd and Krq

where

F�
γδ(s) =

ΔZγδ(s, ωrm) · s
Lγs2 + (Kpd + Krd + R − PωrmLγδ)s + Kid

,

F�
δγ(s) =

ΔZδγ(s, ωrm) · s
Lδs2 + (Kpq + Lrq + R + PωrmLγδ)s + Kiq

,

G�
γ(s) =

Kpd · s + Kid

Lγs2 + (Kpd + Krd + R − PωrmLγδ)s + Kid
,

G�
δ(s) =

Kpq · s + Kiq

Lδs2 + (Kpq + Krq + R + PωrmLγδ)s + Kiq
.

From these equations, stability criteria are given by

Kpd + Krd + R − PωrmLγδ > 0 , (22)

Kpq + Krq + R + PωrmLγδ > 0 . (23)

The effect of Krd and Krq is described here. It should be noted from stability criteria (22) and
(23) that these gains are injected in the same manner as resistance R, so that the current control
loop system with Krd and Krq is depicted by Fig.10. This implies that Krd and Krq play a role
in virtually increasing the stator resistance of IPMSM. In other words, the poles assigned near
imaginary axis (= − R

Ld
, − R

Lq
) are moved to the left (= − R+Krd

Ld
, − R+Krq

Lq
) by proposed current

controller, which means that robust current control can be easily realized by designers. In
the proposed current controller, PI gains are selected in the same manner as occur in the
conventional design:

Kpd = ωcLd , (24)

Kid = ωc(R + Krd) , (25)

Kpq = ωcLq , (26)

Kiq = ωc(R + Krq) . (27)

This parameter design makes it possible to cancel one of re-assigned poles by zero of PI
controller when Δθre = 0◦. It should be noted, based this design, that the closed loop dynamics

515
Robust Current Controller Considering Position Estimation Error for Position
Sensor-less Control of Interior Permanent Magnet Synchronous Motors under High-speed Drives



Fig. 9. Proposed current controller with 2DOF structure (only γ axis)

On the other hand, two degree of freedom (2DOF) structure would allow us to simultaneously
determine both robust stability and its performance. In this stability improvement problem,
robust stability with respect to Δθre needs to be improved up to high-speed region while
maintaining its performance, so that 2DOF structure seems to be consistent with this stability
improvement problem of current control for IPMSM drives. From this point of view, this paper
employees 2DOF structure in the current controller to enlarge the stability region.

4.2 Proposed current controller
The following equation describes the proposed current controller:

v�γ =
Kpds + Kid

s
(i∗γ − iγ) − Krdiγ , (20)

v�δ =
Kpqs + Kiq

s
(i∗δ − iδ) − Krqiδ . (21)

Fig. 9 illustrates the block diagram of the proposed current controller with 2DOF structure,
where it should be noted that Krd and Krq are just added, compared with the conventional
current controller. This current controller consists of conventional decoupling controllers (11)
and (12), conventional PI controllers with current control error (13) and (14) and the additional
gain on γ − δ axis to enlarge stable region. Hence, this controller seems to be very simple for
its implementation.

4.3 Closed loop system using proposed 2DOF controller
Substituting the decoupling controller (11) and (12), and the proposed current controller with
2DOF structure (20) and (21) to the model (10), the following closed loop system can be
obtained: [

iγ

iδ

]
=

[
1 F�

γδ(s)
F�

δγ(s) 1

]−1 [
G�

γ(s) · i∗γ
G�

δ(s) · i∗δ

]

514 Robust Control, Theory and Applications

Fig. 10. Current control system with Krd and Krq

where

F�
γδ(s) =

ΔZγδ(s, ωrm) · s
Lγs2 + (Kpd + Krd + R − PωrmLγδ)s + Kid

,

F�
δγ(s) =

ΔZδγ(s, ωrm) · s
Lδs2 + (Kpq + Lrq + R + PωrmLγδ)s + Kiq

,

G�
γ(s) =

Kpd · s + Kid

Lγs2 + (Kpd + Krd + R − PωrmLγδ)s + Kid
,

G�
δ(s) =

Kpq · s + Kiq

Lδs2 + (Kpq + Krq + R + PωrmLγδ)s + Kiq
.

From these equations, stability criteria are given by

Kpd + Krd + R − PωrmLγδ > 0 , (22)

Kpq + Krq + R + PωrmLγδ > 0 . (23)

The effect of Krd and Krq is described here. It should be noted from stability criteria (22) and
(23) that these gains are injected in the same manner as resistance R, so that the current control
loop system with Krd and Krq is depicted by Fig.10. This implies that Krd and Krq play a role
in virtually increasing the stator resistance of IPMSM. In other words, the poles assigned near
imaginary axis (= − R

Ld
, − R

Lq
) are moved to the left (= − R+Krd

Ld
, − R+Krq

Lq
) by proposed current

controller, which means that robust current control can be easily realized by designers. In
the proposed current controller, PI gains are selected in the same manner as occur in the
conventional design:

Kpd = ωcLd , (24)

Kid = ωc(R + Krd) , (25)

Kpq = ωcLq , (26)

Kiq = ωc(R + Krq) . (27)

This parameter design makes it possible to cancel one of re-assigned poles by zero of PI
controller when Δθre = 0◦. It should be noted, based this design, that the closed loop dynamics

515
Robust Current Controller Considering Position Estimation Error for Position
Sensor-less Control of Interior Permanent Magnet Synchronous Motors under High-speed Drives



by the proposed controller is identical to that by conventional controller regardless of Krd and
Krq:

id
i∗d

=
iq

i∗q
=

ωc

s + ωc
.

Therefore, the proposed design can improve robust stability by only proportional gains Krd
and Krq while maintaining closed loop dynamics of the current control. This is why the
authors have chosen to adopt 2DOF control.

4.4 Design of Krd and Krq, and pole re-assignment results

As previously described, re-assigned poles by proposed controller (= − R+Krd
Ld

, − R+Krq
Lq

) can
further be moved to the left in the s−plane as larger Krd and Krq are designed. However,
employment of lower-performance micro-processor is considered in this paper as described
in section 1., and re-assignment of poles by Krd and Krq is restricted to the cut-off frequency of
the closed-loop dynamics at most. Hence, Krd and Krq design must satisfy

R + Krd
Ld

≤ ωc, (28)

R + Krq

Lq
≤ ωc. (29)

As a result, the design of additional gains is proposed as follows:

Krd = −R + ωcLd , (30)

Krq = −R + ωcLq . (31)

Based on this design, characteristics equation of the proposed current closed loop (the
denominator of G�

γ(s) and G�
δ(s) ) is expressed under Δθre = 0 by

Ls2 + 2ωcLs + ω2
c L = 0,

where L stands for Ld or Lq. This equation implies that the dual pole assignment at s = −ωc
is the most desirable solution to improve robust stability with respect to Δθre under the
restriction of ωc. In other words, this design can guarantee stable poles in the left half plane
even if the poles move from the specified assignment due to Δθre.

4.5 Stability analysis using proposed 2DOF controller
Fig.11 shows stable region according to (22) and (23) by proposed current controller designed
with ωc = 2π × 30 rad/s. It should be noted from these results that the stable speed region
can successfully be enlarged up to high-speed range compared with conventional current
regulator(dashed lines), which is the same in Fig. 8. Point P in this figure stands for operation
point at ωrm =5000 min−1 and Δθre = −20◦. It can be seen from this stability map that
operation point P can be stabilized by the proposed current controller with 2DOF structure,
despite the fact that the conventional current regulator fails to realize stable control and
current diverges, as shown in the previous step response.
Fig.12 demonstrates that stable step response can be realized under ωrm =5000 min−1 and
Δθre = −20◦. These results demonstrate that robust current control can experimentally be
realized even if position estimation error Δθre occurs in position sensor-less control.
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Fig. 12. Response with proposed controller (ωrm = 5000 min−1 )

5. Experimental results

5.1 System setup
Experiments were carried out to confirm the effectiveness of the proposed design. The
experimental setup shown in Fig.13 consists of a tested IPMSM (1.5 kW) with concentrated
winding, a PWM inverter with FPGA and DSP for implementation of vector controller, and
position estimator. Also, the induction motor was utilized for load regulation. Parameters
of the test IPMSM are shown in Table 1. The speed controller, the current controller, and
the coordinate transformer were executed by DSP(TI:TMS320C6701), and the pulse width
modulation of the voltage reference was made by FPGA(Altera:EPF10K20TC144-4). The
estimation period and the control period were 100 μs, which was set relatively short to
experimentally evaluate the analytical results discussed in continuous time domain. The
carrier frequency of the PWM inverter was 10 kHz. Also, the motor currents were detected
by 14bit ADC. Rotor position was measured by an optical pulse encoder(2048 pulse/rev).
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employment of lower-performance micro-processor is considered in this paper as described
in section 1., and re-assignment of poles by Krd and Krq is restricted to the cut-off frequency of
the closed-loop dynamics at most. Hence, Krd and Krq design must satisfy

R + Krd
Ld

≤ ωc, (28)

R + Krq

Lq
≤ ωc. (29)

As a result, the design of additional gains is proposed as follows:

Krd = −R + ωcLd , (30)

Krq = −R + ωcLq . (31)

Based on this design, characteristics equation of the proposed current closed loop (the
denominator of G�

γ(s) and G�
δ(s) ) is expressed under Δθre = 0 by

Ls2 + 2ωcLs + ω2
c L = 0,

where L stands for Ld or Lq. This equation implies that the dual pole assignment at s = −ωc
is the most desirable solution to improve robust stability with respect to Δθre under the
restriction of ωc. In other words, this design can guarantee stable poles in the left half plane
even if the poles move from the specified assignment due to Δθre.

4.5 Stability analysis using proposed 2DOF controller
Fig.11 shows stable region according to (22) and (23) by proposed current controller designed
with ωc = 2π × 30 rad/s. It should be noted from these results that the stable speed region
can successfully be enlarged up to high-speed range compared with conventional current
regulator(dashed lines), which is the same in Fig. 8. Point P in this figure stands for operation
point at ωrm =5000 min−1 and Δθre = −20◦. It can be seen from this stability map that
operation point P can be stabilized by the proposed current controller with 2DOF structure,
despite the fact that the conventional current regulator fails to realize stable control and
current diverges, as shown in the previous step response.
Fig.12 demonstrates that stable step response can be realized under ωrm =5000 min−1 and
Δθre = −20◦. These results demonstrate that robust current control can experimentally be
realized even if position estimation error Δθre occurs in position sensor-less control.
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Fig. 12. Response with proposed controller (ωrm = 5000 min−1 )

5. Experimental results

5.1 System setup
Experiments were carried out to confirm the effectiveness of the proposed design. The
experimental setup shown in Fig.13 consists of a tested IPMSM (1.5 kW) with concentrated
winding, a PWM inverter with FPGA and DSP for implementation of vector controller, and
position estimator. Also, the induction motor was utilized for load regulation. Parameters
of the test IPMSM are shown in Table 1. The speed controller, the current controller, and
the coordinate transformer were executed by DSP(TI:TMS320C6701), and the pulse width
modulation of the voltage reference was made by FPGA(Altera:EPF10K20TC144-4). The
estimation period and the control period were 100 μs, which was set relatively short to
experimentally evaluate the analytical results discussed in continuous time domain. The
carrier frequency of the PWM inverter was 10 kHz. Also, the motor currents were detected
by 14bit ADC. Rotor position was measured by an optical pulse encoder(2048 pulse/rev).
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5.2 Robust stability of current control to rotor position error
The first experiment demonstrates robust stability of the proposed 2DOF controller. In
this experiment, the test IPMSM speed was controlled using vector control with position
detection in speed regulation mode. The load was kept constant to 75% motoring torque by
vector-controlled induction motor. In order to evaluate robustness to rotor position error, Δθre
was intentionally given from 0◦ to −45◦ gradually in these experiments.
Figs. 14 and 15 show current control results of the conventional PI controller and the proposed
2DOF controller (ωc = 200rad/s) at 4500min−1, respectively. It is obvious from Fig.14 that
currents started to be violated at 3.4sec, and they finally were interrupted by PWM inverter
due to over-current at 4.2sec. These experimental results showed that Δθre where currents
started to be violated was about -21◦, which is consistent with (18) and (19). On the other
hand, the proposed 2DOF controller can robustly stabilize current control despite large Δθre
as shown in Fig.15. This result is also consistent with the robust stability analysis discussed
in the previous section. Although a current ripple is steadily visible in both experiments, we
confirmed that this ripple is primarily the 6th-order component of rotor speed. The tested
IPMSM was constructed with concentrated winding, and this 6th-order component cannot be
suppressed by lower-performance current controller.
Experimental results at 7000min−1 are illustrated in Figs.16 and 17. In the case of conventional
controller, current control system became unstable at Δθre = −10◦ as shown in Fig.16. Fig.17
shows results of the proposed 2DOF controller, in which currents were also tripped at Δθre =
−21◦. All Δθre to show unstable phenomenon is met to (18) and (19), which describes that
the robust stability analysis discussed in the previous section is theoretically feasible. This
robust stability cannot be improved upon as far as the proposed strategy is applied. In other
words, furthermore robust stability improvement necessitates higher cut-off frequency ωc,
which forces us to employ high-performance processor.

5.3 Position sensor-less control
This subsection demonstrates robust stability of current control system when position
sensor-less control is applied. As the method for position estimation, the disturbance observer
based on the extended electromotive force model ( Z.Chen et al. (2003) ) was utilized for
all experiments. Rotor speed estimation was substituted by differential value of estimated
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as shown in Fig.15. This result is also consistent with the robust stability analysis discussed
in the previous section. Although a current ripple is steadily visible in both experiments, we
confirmed that this ripple is primarily the 6th-order component of rotor speed. The tested
IPMSM was constructed with concentrated winding, and this 6th-order component cannot be
suppressed by lower-performance current controller.
Experimental results at 7000min−1 are illustrated in Figs.16 and 17. In the case of conventional
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shows results of the proposed 2DOF controller, in which currents were also tripped at Δθre =
−21◦. All Δθre to show unstable phenomenon is met to (18) and (19), which describes that
the robust stability analysis discussed in the previous section is theoretically feasible. This
robust stability cannot be improved upon as far as the proposed strategy is applied. In other
words, furthermore robust stability improvement necessitates higher cut-off frequency ωc,
which forces us to employ high-performance processor.

5.3 Position sensor-less control
This subsection demonstrates robust stability of current control system when position
sensor-less control is applied. As the method for position estimation, the disturbance observer
based on the extended electromotive force model ( Z.Chen et al. (2003) ) was utilized for
all experiments. Rotor speed estimation was substituted by differential value of estimated

518 Robust Control, Theory and Applications

sec1

*
δi

δi

γi

o40

1min4000 −

o0

1min0 −

A0

A0

reθΔ

A0

A8

rmω

sec1

*
δi

δi

γi

o40

1min4000 −

o0

1min0 −

A0

A0

reθΔ

A0

A8

rmω

Fig. 14. Current control characteristics by conventional controller at 4500min−1

δ

δ

γ

Fig. 15. Current control characteristics by proposed controller at 4500min−1

δ

δ

γ

Fig. 16. Current control characteristics by conventional controller at 7000min−1

δ

δ

γ

Fig. 17. Current control characteristics by proposed controller at 7000min−1

519
Robust Current Controller Considering Position Estimation Error for Position
Sensor-less Control of Interior Permanent Magnet Synchronous Motors under High-speed Drives



δ

δ

γ

Fig. 18. Current control characteristics by position sensor-less system with conventional
controller

sec0.2

qi

i

i

1min4000 −

o0
1min0 −

A0

A0

reθΔ

A0
A8

rmω

o40 sec0.2

*i

i

i

1min4000 −

o0
1min0 −

A0

A0

reθΔ

A0
A8

rmω

o40o40

δ

δ

γ

Fig. 19. Current control characteristics by position sensor-less system with proposed
controller

rotor position. It should be noted, however, that position estimation delay never fails to occur,
especially under high-speed drives, due to the low-pass filter constructed in the disturbance
observer. This motivated us to investigate robustness of current control to position estimation
delay.

5.3.1 Current step response in position sensor-less control
Figs.18 and 19 show current control results with conventional PI current controller and the
proposed controller(designed with ωc = 300rad/s), respectively. In these experiments, rotor
speed was kept to 7000min−1 by the induction motor.
It turns out from Fig.18 that currents showed over-current immediately after current reference
i∗q changed from 1A to 5A, and PWM inverter finally failed to flow the current to the test
IPMSM. On the contrary, Fig.19 illustrates that stable current response can be realized even
when the current reference is stepwise, which means that the proposed controller is superior
to the conventional one in terms of robustness to Δθre.
Also, these figures show that Δθre of about −40◦ is steadily caused because of estimation
delay in disturbance observer. Needless to say, this error can be compensated since DC
component of Δθre can be obtained in advance according to motor speed and LPF time
constant in disturbance observer. Δθre cannot be compensated, however, at the transient time.
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In this study, the authors aimed for robust stability improvement to position estimation error
in consideration of transient characteristics such as speed step response and current step
response. Hence, Δθre was not corrected intentionally in these experiments.

5.3.2 Speed step response in position sensor-less control
Figs.20 and 21 show speed step response from ω∗

rm = 2000min−1 to 6500min−1 by the
conventional PI current controller and proposed controller(designed with ωc = 200rad/s),
respectively. 20% motoring load was given by the induction motor in these experiments.
It turns out from Fig. 20 that current control begins to oscillate at 0.7sec due to Δθre, and
then the amplitude of current oscillation increases as speed goes up. On the other hand, the
proposed current controller (Fig. 21) makes it possible to realize stable step response with the
assistance of the robust current controller to Δθre.
It should be noted that these experimental results were obtained by the same sensor-less
control system except with additional gain and its design of the proposed current controller.
Therefore, these sensor-less control results show that robust current controller enables us to
improve performances of total control system, and it is important to design robust current
controller to Δθre as well as to realize precise position estimation, which has been surveyed by
many researchers over several decades.
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Figs.18 and 19 show current control results with conventional PI current controller and the
proposed controller(designed with ωc = 300rad/s), respectively. In these experiments, rotor
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It turns out from Fig.18 that currents showed over-current immediately after current reference
i∗q changed from 1A to 5A, and PWM inverter finally failed to flow the current to the test
IPMSM. On the contrary, Fig.19 illustrates that stable current response can be realized even
when the current reference is stepwise, which means that the proposed controller is superior
to the conventional one in terms of robustness to Δθre.
Also, these figures show that Δθre of about −40◦ is steadily caused because of estimation
delay in disturbance observer. Needless to say, this error can be compensated since DC
component of Δθre can be obtained in advance according to motor speed and LPF time
constant in disturbance observer. Δθre cannot be compensated, however, at the transient time.
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conventional PI current controller and proposed controller(designed with ωc = 200rad/s),
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It turns out from Fig. 20 that current control begins to oscillate at 0.7sec due to Δθre, and
then the amplitude of current oscillation increases as speed goes up. On the other hand, the
proposed current controller (Fig. 21) makes it possible to realize stable step response with the
assistance of the robust current controller to Δθre.
It should be noted that these experimental results were obtained by the same sensor-less
control system except with additional gain and its design of the proposed current controller.
Therefore, these sensor-less control results show that robust current controller enables us to
improve performances of total control system, and it is important to design robust current
controller to Δθre as well as to realize precise position estimation, which has been surveyed by
many researchers over several decades.
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6. Conclusions

This paper is summarized as follows:

1. Stability analysis has been carried out while considering its application to position
sensor-less system, and operation within stable region by conventional current controller
has been analyzed. As a result, this paper has clarified that current control system tends to
become unstable as motor speed goes up due to position estimation error.

2. This paper has proposed a new current controller. To guarantee both robust stability and
performance of current control simultaneously, two degree of freedom (2DOF) structure
has been utilized in the current controller. In addition, a design of proposed controller has
also been proposed, that indicated the most robust controller could be realized under the
restriction of lower-performance processor, and thus clarifying the limitations of robust
performance.

3. Some experiments have shown the feasibility of the proposed current controller with 2DOF
structure to realize an enlarged stable region and to maintain its performance.

This paper clarifies that robust current controller enables to improve performances of total
control system, and it is important to design robust current controller to Δθre as well as to
realize precise position estimation.
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1. Introduction

The most common approach to design active power filters and its controllers is to consider
the plant to be controlled as the coupling filter of the active power filter. The load dynamics
and the line impedances are usually neglected and considered as perturbations in the
mathematical model of the plant. Thus, the controller must be able to reject these perturbations
and provide an adequate dynamic behavior for the active power filter. However, depending
on these perturbations the overall system can present oscillations and even instability. These
effects have been reported in literature (Akagi, 1997), (Sangwongwanich & Khositkasame,
1997), (Malesani et al., 1998). The side effects of the oscillations and instability are evident in
damages to the bank of capacitors, frequent firing of protections and damage to line isolation,
among others (Escobar et al., 2008).
Another problem imposed by the line impedance is the voltage distortion due the circulation
of non-sinusoidal current. It degrades the performance of the active power filters due its
effects on the control and synchronization systems involved. The synchronization problem
under non-sinusoidal voltages can be verified in (Cardoso & Gründling, 2009). The line
impedance also interacts with the switch commutations that are responsible for the high
frequency voltage ripple at the point of common coupling (PCC) as presented in (Casadei
et al., 2000).
Due the effects that line impedance has on the shunt active filters, several authors have been
working on its identification or on developing controllers that are able to cope with its side
effects. The injection of a small current disturbance is used in (Palethorpe et al., 2000) and
(Sumner et al., 2002) to estimate the line impedance. A similar approach, with the aid of
Wavelet Tranform is used in (Sumner et al., 2006). Due to line impedance voltage distortion,
(George & Agarwal, 2002) proposed a technique based on Lagrange multipliers to optimize
the power factor while the harmonic limits are satisfied. A controller designed to reduce the
perturbation caused by the mains voltage in the model of the active power filter is introduced
in (Valdez et al., 2008). In this case, the line impedances are not identified. The approach is
intended to guarantee that the controller is capable to reject the mains perturbation.
Therefore, the line impedances are a concern for the active power filters designers. As shown,
some authors choose to measure (estimate or identify) the impedances. Other authors prefer
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to deal with this problem by using an adequate controller that can cope with this uncertainty
or perturbation. In this chapter the authors use the second approach. It is employed a Robust
Model Reference Adaptive Controller and a fixed Linear Quadratic Regulator with a new
mathematical model which inserts robustness to the system. The new LQR control scheme
uses the measurement of the common coupling point voltages to generate all the additional
information needed and no disturbance current is used in this technique.

2. Model of the plant

The schematic diagram of the power quality conditioning device, consisting of a DC source
of energy and a three-phase/three-legs voltage source PWM inverter, connected in parallel to
the utility, is presented in Fig 1.

Fig. 1. Schematic diagram of the power quality conditioning device.

The Kirchoff’s laws for voltage and current, applied at the PCC, allow us to write the 3
following differential equations in the ”123” frame,

v1N = L f
diF1
dt

+ R f iF1 + v1M + vMN , (1)

v2N = L f
diF2
dt

+ R f iF2 + v2M + vMN , (2)

v3N = L f
diF3
dt

+ R f iF3 + v3M + vMN . (3)

The state space variables in the ”123” frame have sinusoidal waveforms in steady state. In
order to facilitate the control efforts of this system, the model may be transformed to the
rotating reference frame ”dq”. Such frame changing is made by the Park’s transformation,
given by (4).
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The state space variables represented in the ’dq’ frame are related to the ”123” frame state
space variables by equations (5)-(7).
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and d is the switching function (Kedjar & Al-Haddad, 2009). As it is a three-phase/three-wire
system, the zero component of the rotating frame is always zero, thus the minimum plant
model is then given by Eq. (12)
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Eq. (12) shows the direct system state variable dependency on the voltages at the PCC, which
are presented in the ’dq’ frame (vdq). Fig. 2 depicts the plant according to that representation.
Based on the block diagram of Fig. 2, it can be seen that the voltages at the PCC have direct
influence on the plant output. It suggests that the control designer has also to be careful with
those signals, which are frequently disregarded on the project stage.

2.1 Influence of the line impedance on the grid voltages
In power conditioning systems’ environment, the line impedance is often an unknown
parameter. Moreover, it has a strong impact on the voltages at the PCC, which has its harmonic
content more dependent on the load, as the grid impedance increases. Fig. 3 shows the open
loop system with a three-phase rectified load connected to the grid through a variable line
impedance.
As already mentioned, by increasing the line impedance values, the harmonic content of the
voltages at the PCC also increases. Higher harmonic content in the voltages leads to a more
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to deal with this problem by using an adequate controller that can cope with this uncertainty
or perturbation. In this chapter the authors use the second approach. It is employed a Robust
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information needed and no disturbance current is used in this technique.

2. Model of the plant
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of energy and a three-phase/three-legs voltage source PWM inverter, connected in parallel to
the utility, is presented in Fig 1.
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Fig. 2. Block representation of the plant.

Fig. 3. Open loop system with variable line inductance

distorted waveform. It can be visualized in Fig. 4, that shows the voltage signals v123 at the
PCC, for a line inductance of LS = 2mH.

Fig. 4. Open loop voltages at the PCC with line inductance of LS = 2mH.
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Fig. 5 shows now an extreme case, with line inductance of LS = 5mH, it is also visually
perceptible the significant growth on the voltage harmonic content.

Fig. 5. Open loop voltages at the PCC with line inductance of LS = 5mH.

Concluding, the voltages at the PCC have its dynamic substantially dependent on the line
impedance. In other hand, the system dynamic is directly associated with the PCC voltages.
Therefore, the control of this kind of system strongly depends on the behavior of the voltages
at the PCC. As the output filter of the Voltage Source Inverter (VSI) has generally well-known
parameters (they are defined by the designer), which are at most fixed for the linear system
operation, one of the greatest control challenges of these plants is associated with the PCC
voltages. The text that follows is centered on that point and proposes an adaptive and a fixed
robust algorithm in order to control the chosen power conditioner device, even under load
unbalance and line with variable or unknown impedance.

3. Robust Model Reference Adaptive Control (RMRAC)

The RMRAC controller has the characteristic of being designed under an incomplete
knowledge of the plant. To design such controller it is necessary to obtain a representative
mathematical model for the system. The RMRAC considers in its formulation a parametric
model with a reduced order modeled part, as well as a multiplicative and an additive term,
describing the unmodeled dynamics. The adaptive law is computed for compensating the
plant parametric variation and the control strategy is robust to such unmodeled dynamics. In
the present application, the uncertainties are due to the variation of the line impedance and
load.

3.1 Mathematical model
From the theory presented by Ioannou & Tsakalis (1986) and by Ioannou & Sun (1995), to have
an appropriated RMRAC design, the plant should be modeled in the form

iF(s)
u(s)

= G(s) = G0(s)[1 + μΔm(s)] + μΔa(s)

G0(s) = kp
Z0(s)
R0(s)

(13)

where u represents the control input of the system and iF is the output variable of interest as
shown in Fig. 1.

527Robust Algorithms Applied for Shunt Power Quality Conditioning Devices



Fig. 2. Block representation of the plant.

Fig. 3. Open loop system with variable line inductance

distorted waveform. It can be visualized in Fig. 4, that shows the voltage signals v123 at the
PCC, for a line inductance of LS = 2mH.

Fig. 4. Open loop voltages at the PCC with line inductance of LS = 2mH.

526 Robust Control, Theory and Applications

Fig. 5 shows now an extreme case, with line inductance of LS = 5mH, it is also visually
perceptible the significant growth on the voltage harmonic content.

Fig. 5. Open loop voltages at the PCC with line inductance of LS = 5mH.

Concluding, the voltages at the PCC have its dynamic substantially dependent on the line
impedance. In other hand, the system dynamic is directly associated with the PCC voltages.
Therefore, the control of this kind of system strongly depends on the behavior of the voltages
at the PCC. As the output filter of the Voltage Source Inverter (VSI) has generally well-known
parameters (they are defined by the designer), which are at most fixed for the linear system
operation, one of the greatest control challenges of these plants is associated with the PCC
voltages. The text that follows is centered on that point and proposes an adaptive and a fixed
robust algorithm in order to control the chosen power conditioner device, even under load
unbalance and line with variable or unknown impedance.

3. Robust Model Reference Adaptive Control (RMRAC)

The RMRAC controller has the characteristic of being designed under an incomplete
knowledge of the plant. To design such controller it is necessary to obtain a representative
mathematical model for the system. The RMRAC considers in its formulation a parametric
model with a reduced order modeled part, as well as a multiplicative and an additive term,
describing the unmodeled dynamics. The adaptive law is computed for compensating the
plant parametric variation and the control strategy is robust to such unmodeled dynamics. In
the present application, the uncertainties are due to the variation of the line impedance and
load.

3.1 Mathematical model
From the theory presented by Ioannou & Tsakalis (1986) and by Ioannou & Sun (1995), to have
an appropriated RMRAC design, the plant should be modeled in the form

iF(s)
u(s)

= G(s) = G0(s)[1 + μΔm(s)] + μΔa(s)

G0(s) = kp
Z0(s)
R0(s)

(13)

where u represents the control input of the system and iF is the output variable of interest as
shown in Fig. 1.

527Robust Algorithms Applied for Shunt Power Quality Conditioning Devices



⇒ Assumptions for the Plant

H1.Z0 is a monic stable polynomial of degree m(m ≤ n − 1),

H2.R0 is a monic polynomial of degree n;

H3.The sign of kp > 0 and the values of m, n are known.

For the unmodeled part of the plant it is assumed that:

H4.Δm is a stable transfer function;

H5.Δa is a stable and strictly proper transfer function;

H6.A lower bound p0 > 0 on the stability margin p > 0 for which the poles of Δm(s − p) and
Δa(s − p) are stable is known.

3.2 RMRAC strategy
The goal of the model reference adaptive control can be summarized as follows: Given a
reference model

ym

r
= Wm(s) = km

Zm(s)
Rm(s)

, (14)

it is desired to design an adaptive controller, for μ > 0 and μ ∈ [0, μ∗) where the resultant
closed loop system is stable and the plant output tracks, as closer as possible, the model
reference output, even under the unmodeled dynamics Δm and Δa. In (14), r is a uniformly
limited signal.

⇒ Assumptions for the model reference:

M1.Zm a monic stable polynomial of degree m(m ≤ n − 1);

M2.Rm is a monic polynomial of degree n.

The plant input is given by

u =
θTω + c0r

θ4
(15)

where θT =
[
θT

1 , θT
2 , θ3

]
, ωT = [ω1, ω2, y] ∈ �2n−1 and c0 is the relation between the gain

of the open loop system and the gain of the model reference. The input u and the plant output
y are used to generate the signals ω1, ω2 ∈ �n−1

ω1 =
α(s)
Λ(s)

u and ω2 =
α(s)
Λ(s)

y. (16)

⇒ Assumptions for the signals ω1 and ω2:

R1.The polynomial Λ in (16) is a monic Hurwitz of degree n− 1, containing stable eigenvalues.

R2.For n ≥ 2, α �
[
sn−2, . . . , s, 1

]T and for n = 1, α � 0.

For the adaptation of the control action parameters, the following modified gradient algorithm
was considered

θ̇ = −σP θ − P ζε

m2 (17)
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The σ-modification in 17 is given by

σ =

⎧⎪⎪⎨
⎪⎪⎩

0 if �θ� < M0

σ0

� �θ�
M0

− 1
�

if M0 ≤ �θ� < 2M0

σ0 if �θ� > 2M0

(18)

where σ0 > 0 is a parameter of design. P = P T > 0, ε = y − ym + θTζ − Wmν = φTζ + μη
and M0 is an upper limit �θ∗�, such that �θ∗� + δ3 ≤ M0 for a δ3 > 0. The normalization
signal m is given by

ṁ = −δ0m + δ1 (|u| + |y| + 1) (19)

with m0 > δ1/δ0, δ1 ≥ 1 and δ0 > 0.
The normalization signal m is the parameter which ensures the robustness of the system.
Looking to Eq. (15)-(19), it can be seen that when the control action u, the plant output y or
both variables are large enough, the θ parameters decreases and therefore the control action,
which depends on the θ parameters, also has its values reduced, limiting the control action as
well as the system output in order to stabilize the system.

3.3 RMRAC applied for the power conditioning device
In the considered power conditioning system, as shows Eq. (12), there is a coupling between
the "dq" variables. To facilitate the control strategy, which should consider a multiple input
multiple output system (MIMO), it is possible to rewrite Eq. (12) as

L f
did
dt + R f id = L f ωiq − vdcdnd + vd

L f
diq
dt + R f iq = −L f ωid − vdcdnq + vq

(20)

Defining, the equivalent input as in Eq. (21) and (22),

ud = L f ωiq − vdcdnd + vd (21)

and
uq = −L f ωid − vdcdnq + vq, (22)

the MIMO tracking problem, with coupled dynamics, is transformed in two single input single
output (SISO) problems, with decoupled dynamics. Thus, currents id and iq may be controlled
independently through the inputs ud e uq, respectively. For the presented decoupled plant, the
RMRAC controller equations are given by (23) and (24).

ud =
θT

dωd + c0rd
θ4d

(23)

and

uq =
θT

qωq + c0rq

θ4q
. (24)

The PWM actions (dnd and dnq), are obtained through Eq. (21) and (22) after computation of
(23) and (24).
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3.3.1 Design procedure
Before starting the procedure, lets examine the hypothesis H1, H2, M1, M2, R1 and R2. Firstly,
as the nominal system, accordingly to Eq. (12), is a first order plant. The degrees n and m are
then defined by n = 1 and m = 0. Therefore, the structure of the model reference and the
dynamic of signals ω1 and ω2 can be determined. By M1 and M2, the model reference is also
a first order transfer function Wm(s), thus

Wm(s) = km
ωm

s − ωm
. (25)

Furthermore, from R1 and R2: α � 0; and from Eq. (15), the control law reduces to

ud =
θ3did + rd

θ4d
(26)

and

uq =
θ3qiq + rq

θ4q
. (27)

From the information of the maximum order harmonic, which has to be compensated by
the power conditioning device, it is possible to design the model reference, given in Eq. 25.
Choosing, for example, the 35th harmonic, as the last harmonic to be compensated, and Wm(s)
with unitary gain, the model reference parameters become ωm = 35 · 2 · π · 60 ≈ 13195 rad

s and
km = 1. Fig. 6 shows the frequency responses of the nominal plant of a power conditioning
device, with parameters L f = 1mH and R f = 0.01Ω and of a model reference with the
parameters aforementioned.

Fig. 6. Bode diagram of G0(s) and Wm(s).

The vector θ is obtained by the solution of a Model Reference Controller (MRC) for the
modeled part of the plant G0(s). The design procedure of a MRC is basically to calculate the
closed loop system of the nominal plant which has to be equal to the model reference transfer
function.
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3.3.2 RMRAC results
The RMRAC was applied to the power conditioning device, shown in Fig. 7, to control the
compensation currents iF123. Table 1 summarizes the parameters of the system.

Fig. 7. Block diagram of the system.

Grid Voltage 380V (RMS) R f 0.01Ω

ω 377rad/s L f 1mH

fs 12kHz RS 0.01Ω

Vdc 550V LS 5uH / 2mH / 5mH

θd(0) [−1.02, 0.53]T P diag{0.99, 0.99}
θq(0) [−1.02, 0.53]T km 1

c0 1 ωm 13195 rad
s

LL 2mH LL1 2mH

RL 25Ω RL1 25Ω

Table 1. Design Parameters

To verify the robustness of the closed loop system, which has to be stable for an appropriated
range of line inductance (in the studied case: from LS = 5μH to LS = 5mH), some simulations
were carried out considering variations on the line inductance (LS).
In the first analysis, it was considered a line impedance of LS = 5uH. Fig. 8 (a) shows the load
currents as well as the compensated currents, which are provided by the main source. It is
also possible to see by Fig. 8 (b) the appropriate reference tracking for the RMRAC controlled
system for the case of small line inductance. Fig 8 (b) shows the reference currents in black
plotted with the compensation currents in gray.
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Fig. 8. System currents (LS = 5μH): (a) Load and source currents (b) Reference and
compensation currents.

In a second analysis, the line impedance was considered LS = 2mH. Fig. 9 (a) shows the
load currents and the compensated currents, provided by the main source. Fig. 9 (b) shows
the appropriated reference tracking of the RMRAC controlled system for the case of high line
inductance. Fig. 9 (b) exhibits the good tracking of the reference currents, shown in black, by
the compensation currents, shown in gray.
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Finally, for an extreme case of line inductance of LS = 5mH, the load currents as well as the
compensated currents are shown in Fig. 10 (a). Fig. 10 (b) shows the tracking performance
of the RMRAC controlled system under high line impedance circumstances, which remains
stable even under high inductance levels. In this figure, the reference is depicted in black and
the output current is shown in gray.
Fig. 11 shows the convergence of the θd and θq parameters for each case of line impedance.
In black, the parameters θ3d, θ3q, θ4d and θ4q for a line inductance of LS = 5μH; in blue for a
line inductance of LS = 2mH; and finally, in red, for LS = 5mH. In all cases the controller has
an adequate convergence of its parameters.
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compensation currents.

Fig. 11. Control parameters convergence.

4. A fixed robust LQR control

The Linear Quadratic Regulator (LQR) has been widely applied to several applications where
optimal control is required. The LQR control strategy implementation uses state feedback
where the states weighting can be chosen such the control output is properly designed to
satisfy a performance criterion (Phillips & Nagle, 1995). In this control strategy, the states
weighting gains are obtained through the solution of an associated algebraic Ricatti equation,
which includes a performance index. The advantage of a LQR controller over other controllers
found in literature is that it is designed to minimize a performance index, which can reduce the
control efforts or keep the energy of some important state variable under control. Moreover, if
the plant is accurately modeled, the LQR may be considered a robust controller, minimizing
satisfactorily the considered states.
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Consider a linear time invariant multivariable controllable system as in Eq. (28)-(29),

ẋ(t) = Ax(t) + Bu(t) (28)

and
y(t) = Cx(t). (29)

The Zero Order Hold (ZOH) discrete time model of the system with sample period Ts is

xk+1 = Adxk + Bduk (30)

and
yk = Cdxk, (31)

where,
Ad = eATs , Bd = A−1(eATs − I)B

and
Cd = C.

The LQR control law is given by Eq. (32)

uk = −Kxk. (32)

and the cost function to be minimized is given by Eq. (33)

J =
1
2

∞

∑
k=0

{ xT
k Q xk + uT

k Ruk } , (33)

where Qm×m is a positive semidefinite matrix and Rn×n is a positive definite matrix.
The K gains can be obtained solving the algebraic Riccati equation (Phillips & Nagle, 1995),

P = Ad
T P(Ad − Bd K) + Q, (34)

K = (BT
d PBd + R)−1BT

d PAd. (35)

4.1 Modification on the mathematical model of the system
To achieve an adequate performance, the linear quadratic regulator needs the feedback of all
significative states of the system. If there are significative disturbances in the process that can
be modeled, it is plausible to include such dynamics in the state space variable set of the plant
(Kanieski, Gründling & Cardoso, 2010). Considering the positive sequence of the voltages at
the PCC, the equations which represent the behavior of this system can be obtained through
the Laplace transform of φ radians delayed sines functions, given by Eq. (36):

v(s) = V
ω cos (φ) + sen (φ) s

s2 + ω2 , (36)

where V is the magnitude of the waveform considered. The state space representation of that
system is given in Eq. (37),
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•�
v(t)
v̇(t)

�
=

�
0 1

−ω2 0

� �
v(t)
v̇(t)

�
. (37)

Thus, the three-phase sinusoidal waveforms delayed by φ radians can be generated by
choosing the initial conditions of the voltages and its derivatives, as shown in Eq. (38),

v(0) = Vsen (φ) ,
dv(0)

dt = Vω cos (φ) .
(38)

Therefore, the complete model that represents the voltage disturbance at the PCC of the energy
storage system in the ”123” frame is presented in Eq. (39)

•⎡
⎢⎢⎢⎢⎢⎢⎣

v1N
v2N
v3N
v̇1N
v̇2N
v̇3N

⎤
⎥⎥⎥⎥⎥⎥⎦

= M6x6

⎡
⎢⎢⎢⎢⎢⎢⎣

v̇1N
v̇2N
v̇3N
v1N
v2N
v3N

⎤
⎥⎥⎥⎥⎥⎥⎦

, (39)

where,

M6x6 =

⎡
⎢⎢⎢⎢⎢⎢⎣

1 0 0 0 0 0
0 1 0 0 0 0
0 0 1 0 0 0
0 0 0 −ω2 0 0
0 0 0 0 −ω2 0
0 0 0 0 0 −ω2

⎤
⎥⎥⎥⎥⎥⎥⎦

.

With equations (4), (11) and the matrix differentiation property given by Eq. (40)

d
dt

�
C

dqO
123

�
idqO

��
= C

dqO
123

d
dt

�
idqO

�
+

�
d
dt C

dqO
123

� �
idqO

�
, (40)

it is possible to derive the following ’dq’ frame model for the voltages at the PCC:

•⎡
⎢⎢⎣

vd
vq
v̇d
v̇q

⎤
⎥⎥⎦ =

⎡
⎢⎢⎣

0 0 1 0
0 0 0 1

−ω2 0 0 ω

0 −ω2 −ω 0

⎤
⎥⎥⎦

⎡
⎢⎢⎣

vd
vq
v̇d
v̇q

⎤
⎥⎥⎦ . (41)

Thereby, the complete rotating reference frame of the considered system is given by Eq. (42)

•⎡
⎢⎢⎢⎢⎢⎢⎣

id
iq
vd
vq
v̇d
v̇q

⎤
⎥⎥⎥⎥⎥⎥⎦

= Â

⎡
⎢⎢⎢⎢⎢⎢⎣

id
iq
vd
vq
v̇d
v̇q

⎤
⎥⎥⎥⎥⎥⎥⎦

+ B̂
�

dnd
dnq

�
, (42)
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where,

Â =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

− R f
L f

ω 1
L f

0 0 0

−ω − R f
L f

0 1
L f

0 0
0 0 0 0 1 0
0 0 0 0 0 1
0 0 −ω2 0 0 ω

0 0 0 −ω2 −ω 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

and

B̂ = −

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

vdc
L f

0
0 vdc

L f

0 0
0 0
0 0
0 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

.

Hence, the actual model may be seen as depicts Fig. 12 below, where Ĉ is such that the outputs
are the ’dq’ frame currents. That is,

Ĉ =
�

1 0
0 1

�
.

Fig. 12. Model of the system, considering the voltages at PCC as being part of the model.

4.2 LQR tuning
In the LQR tuning case, the cost function to be minimized is given by Eq. (43):

JN =
1
2

∞

∑
k=0

�
xT

Nk
QN xNk + uT

Nk
RNuNk

�
. (43)

It is perceptible, on this equation, the presence of the states related to the PCC voltages.
Despite of the consideration of the voltage variables at the PCC in the plant model, for the
computation of the LQR controller feedback gains, the energy related to those variables are not
passible of control. Hence, those variables can not be minimized. Therefore, all the elements of
the LQR matrices QN and RN , related to those states, are defined as zero. The other elements
are evaluated as in (Kanieski, Carati & Cardoso, 2010).
The dynamic of the states in closed loop is equal to the errors dynamics. Therefore Eq. (44) is
applicable,

xT
Nk

=
�

ed eq v1
d v1

q v̇1
d v̇1

q

�
, (44)
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which presents, as the feedback vector, the tracking errors of the states of the plant and the
states related to the PCC voltages. The vector

uT
Nk

=
�

dnd dnq
�

(45)

is the control action of the system in the ”dq” frame.
With that, it is possible to obtain the following LQR matrices:

QN =

⎡
⎢⎢⎢⎢⎢⎢⎣

qN11 0 0 0 0 0
0 qN22 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0

⎤
⎥⎥⎥⎥⎥⎥⎦

, RN =
�

1 0
0 1

�
.

Fig. 13 shows the structure of the proposed LQR system. In this figure the box ”KF” represents
the Kalman filter estimator, which gives information about the PCC voltages, needed to
compute the LQR KN gain.

Fig. 13. Block diagram of the proposed LQR system.

5. Optimum extraction of the signal components

Using the same approach as presented in Cardoso (2008), the harmonic components of
a distorted signal can be optimally extracted using a Kalman filter with an appropriate
mathematical model describing the evolution of such a signal.

5.1 Modeling a signal with harmonics
The use of Kalman filter implies a model that describes the evolution of the process to be
filtered. As presented by Cardoso et al. (2007) and Cardoso et al. (2008), a linear signal Sk with
n harmonic components, that is,

Sk =
n

∑
i=1

Aik
sin(iωktk + θik

) (46)

where Aik
, iωk and θik

are the amplitude, angular frequency and phase of each harmonic
component i at the time instant tk, has the following state-variable representation
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where Aik
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are the amplitude, angular frequency and phase of each harmonic
component i at the time instant tk, has the following state-variable representation
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⎡
⎢⎢⎢⎢⎢⎣

x1
x2
...

x2n−1
x2n

⎤
⎥⎥⎥⎥⎥⎦

k+1

=

⎡
⎢⎣

M1 · · · 0
...

. . .
...

0 · · · Mn

⎤
⎥⎦

k

⎡
⎢⎢⎢⎢⎢⎣

x1
x2
...

x2n−1
x2n

⎤
⎥⎥⎥⎥⎥⎦

k

+

⎡
⎢⎢⎢⎢⎢⎣

γ1
γ2
...

γ2n−1
γ2n

⎤
⎥⎥⎥⎥⎥⎦

k

, (47)

yk =
�
1 0 · · · 1 0

�

⎡
⎢⎢⎢⎢⎢⎣

x1
x2
...

x2n−1
x2n

⎤
⎥⎥⎥⎥⎥⎦

k

+ νk, (48)

where

Mi =
�

cos(iωkTs) sin(iωkTs)
− sin(iωkTs) cos(iωkTs)

�
, (49)

x(2i−1)k
= Aik

sin(iωktk + θik
) (50)

and
x2ik

= Aik
cos(iωktk + θik

). (51)

In Eq. (47) it is considered a perturbation vector [γ1 γ2 · · · γ2n−1 γ2n]Tk that models amplitude
or phase changes in the signal. In Eq. (48) νk represents the measurement noise. At the
same time that the mathematical model given by equations (47)-(49) describes a signal with
harmonics, it has the appropriate form necessary for the use in the Kalman filter.
The Kalman filter algorithm mentioned above will be used to generate the current references
by measuring the load currents and extracting the references from it. Moreover, by measuring
the voltages at the PCC, it is also possible to filter its harmonic components and, as suggests
Eq. (51), the quadrature component as well. Therefore, considering that the voltage at the PCC
is predominantly at the fundamental frequency, the voltage modeled in Eq. (39) is directly
obtained by Eq. (50) and the derivative component is obtained by Eq. (51) multiplied by the
angular frequency ω.
Fig. 14 shows the response of a Kalman filter estimator, when extracting a voltage signal and
its derivative. VGrid and V̇Grid, in gray, are the normalized grid voltage and its derivative. In
black, V̂Grid and ˆ̇VGrid are the normalized Kalman filter estimated voltage and its derivative,
which, as it can be seen, presents a good performance.

Fig. 14. Grid voltage and its derivative with their estimates provided by the Kalman filter.
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5.1.1 LQR Results
The LQR control of the compensation currents iF123 was implemented in the same platform
as presented in the RMRAC results section (section 3.3.2). Table 1 also shows the parameters
used in the analysis made on this section. The QN and RN matrices of the LQR controller are
given by:

QN =

⎡
⎢⎢⎢⎢⎢⎢⎣

1500 0 0 0 0 0
0 2000 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0

⎤
⎥⎥⎥⎥⎥⎥⎦

, RN =
�

1 0
0 1

�
.

The same procedure that was used for the verification of the RMRAC controller was used
to analyze the LQR controller performance. At first, with a small line inductance of LS =
5uH, Fig. 15 (a) shows the load currents and the compensated currents, provided by the main
source. The appropriated reference tracking is verified in Fig. 15 (b) for the case of small line
inductance. In Fig. 15 (b), it is shown the reference currents in black, while the compensation
currents are presented in gray.

Fig. 15. System currents (LS = 5μH): (a) Load and source currents (b) Reference and
compensation currents.

In a second analysis, an inductor of LS = 2mH represents the line impedance. Fig. 16 depicts
the results for this case.
Fig. 16 (a) shows the load currents and the compensated currents, provided by the main
source. Fig. 16 (b) depicts good reference tracking for the system controlled by the proposed
LQR scheme for the case of high line inductance.
Finally, for the case of line inductance of LS = 5mH, the load currents and the compensated
currents are shown in Fig. 17 (a). Fig. 17 (b) shows the tracking performance of the LQR
controller, under high line impedance circumstances, which remains stable and with a good
tracking performance, even under high inductance levels.

6. Conclusion

In this chapter, it was presented two robust algorithms frequently discussed in the literature,
which are chosen to control the power quality conditioner due to its well known features of
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�
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) (50)

and
x2ik

= Aik
cos(iωktk + θik

). (51)

In Eq. (47) it is considered a perturbation vector [γ1 γ2 · · · γ2n−1 γ2n]Tk that models amplitude
or phase changes in the signal. In Eq. (48) νk represents the measurement noise. At the
same time that the mathematical model given by equations (47)-(49) describes a signal with
harmonics, it has the appropriate form necessary for the use in the Kalman filter.
The Kalman filter algorithm mentioned above will be used to generate the current references
by measuring the load currents and extracting the references from it. Moreover, by measuring
the voltages at the PCC, it is also possible to filter its harmonic components and, as suggests
Eq. (51), the quadrature component as well. Therefore, considering that the voltage at the PCC
is predominantly at the fundamental frequency, the voltage modeled in Eq. (39) is directly
obtained by Eq. (50) and the derivative component is obtained by Eq. (51) multiplied by the
angular frequency ω.
Fig. 14 shows the response of a Kalman filter estimator, when extracting a voltage signal and
its derivative. VGrid and V̇Grid, in gray, are the normalized grid voltage and its derivative. In
black, V̂Grid and ˆ̇VGrid are the normalized Kalman filter estimated voltage and its derivative,
which, as it can be seen, presents a good performance.

Fig. 14. Grid voltage and its derivative with their estimates provided by the Kalman filter.
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5.1.1 LQR Results
The LQR control of the compensation currents iF123 was implemented in the same platform
as presented in the RMRAC results section (section 3.3.2). Table 1 also shows the parameters
used in the analysis made on this section. The QN and RN matrices of the LQR controller are
given by:

QN =

⎡
⎢⎢⎢⎢⎢⎢⎣

1500 0 0 0 0 0
0 2000 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0

⎤
⎥⎥⎥⎥⎥⎥⎦

, RN =
�

1 0
0 1

�
.

The same procedure that was used for the verification of the RMRAC controller was used
to analyze the LQR controller performance. At first, with a small line inductance of LS =
5uH, Fig. 15 (a) shows the load currents and the compensated currents, provided by the main
source. The appropriated reference tracking is verified in Fig. 15 (b) for the case of small line
inductance. In Fig. 15 (b), it is shown the reference currents in black, while the compensation
currents are presented in gray.

Fig. 15. System currents (LS = 5μH): (a) Load and source currents (b) Reference and
compensation currents.

In a second analysis, an inductor of LS = 2mH represents the line impedance. Fig. 16 depicts
the results for this case.
Fig. 16 (a) shows the load currents and the compensated currents, provided by the main
source. Fig. 16 (b) depicts good reference tracking for the system controlled by the proposed
LQR scheme for the case of high line inductance.
Finally, for the case of line inductance of LS = 5mH, the load currents and the compensated
currents are shown in Fig. 17 (a). Fig. 17 (b) shows the tracking performance of the LQR
controller, under high line impedance circumstances, which remains stable and with a good
tracking performance, even under high inductance levels.

6. Conclusion

In this chapter, it was presented two robust algorithms frequently discussed in the literature,
which are chosen to control the power quality conditioner due to its well known features of
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Fig. 16. System currents (LS = 2mH): (a) Load and source currents (b) Reference and
compensation currents.

Fig. 17. System currents (LS = 5mH): (a) Load and source currents (b) Reference and
compensation currents.

performance and robustness: The Robust Model Reference Adaptive Controller and the fixed
Linear Quadratic Regulator.
The RMRAC controller guarantees the robustness of the closed loop system by acting on the
θ parameter values. The evolution of the direct axis θ parameters were presented as well as
the tracking performance of the controller, for each case of line impedance (LS = 5μH, LS =
2mH and LS = 5mH), showing adequate convergence of the closed loop dynamics into the
designed model reference.
For the Linear Quadratic Regulator a novel modeling approach was presented and applied
to the power quality conditioning system. The scheme aimed, compared to other techniques
found in literature, to have a more realistic representation of the system, by using a resonant
model of the PCC voltages instead of considering it as a disturbance. The great advantage of
this approach lies in having a fixed controller capable to deal with voltages disturbances,
resulted from high harmonic content of load, in conditions of high line impedance. The
presented mathematical model decouples the whole system, formed by the conditioner
device, the main source and the load, providing an easy manner of considering just the power
quality device output filter, the voltages at the PCC and its derivatives on the controller
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project. The tracking performance of this fixed controller was presented, for the same three
cases of line impedance tested in the RMRAC system.
The results obtained for the two cases, presented during the text, illustrated that the developed
control structures exhibit good performance and robustness regarding to line inductance
variation, for a huge class of loads, including those with unbalance.
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1. Introduction 
Minimally invasive surgery (MIS) has excellent characteristics that can reduce the burden on 
patients. However, surgeons experience great difficulties in operation due to limitations in 
dexterity imposed by the surgical instruments and the small work space. Therefore, the 
development of surgical assistance devices with the application of robotic and mechatronic 
technology is in high demand (Taylor & Stoianovici, 2003). 
Recently, robotic surgical support systems such as `da VINCI' are in clinical use (Guthart & 
Salisbury, 2000). In particular, the development of multi-DOF robotic forceps manipulators 
capable of reproducing complex human finger movements in laparoscopic surgery is one of 
the most important issues in the field of robotic surgical systems.  
A large number of conventional multi-DOF robotic forceps manipulators currently available 
for MIS are of the wire actuation type (Ikuta et al., 2003). However, the rigidity and the 
durability of wires are poor. Furthermore, cleaning and sterilization of the wire are 
problematic. 
In order to improve the rigidity and the sterilization capability of the manipulator, multi-
DOF robotic forceps manipulators which use methods different from wire actuation for 
bending motion have been developed. These are roughly divided into two types. The first 
type is where two-DOF bending is achieved by combining independent joints which 
perform yaw and pitch motions, respectively. The second type is where omnidirectional 
two-DOF bending is achieved by inclination of the entire bending part of the forceps. Many 
manipulators of the first type are linkage-driven forceps manipulators. In (Yamashita et al., 
2005), an endoscopic forceps manipulator using a multi-slider linkage mechanism is 
developed without using wires for bending motion. However, a wire is used for gripping 
motion. In (Arata et al., 2005), a linkage-driven forceps manipulator which does not use 
wires for either bending or gripping motions is developed.  
On the other hand, as one of the omnidirectional driven-type forceps manipulators, an 
active forceps manipulator in the form of a tripodal platform is developed in (Kobayashi et 
al., 2002). Although it has high rigidity, its bending range is 40 to 50 degrees, and it is 
difficult to expand the bending range due to constraints inherent in the mechanism. 
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motion. In (Arata et al., 2005), a linkage-driven forceps manipulator which does not use 
wires for either bending or gripping motions is developed.  
On the other hand, as one of the omnidirectional driven-type forceps manipulators, an 
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al., 2002). Although it has high rigidity, its bending range is 40 to 50 degrees, and it is 
difficult to expand the bending range due to constraints inherent in the mechanism. 
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We have developed a multi-DOF robotic forceps manipulator for minimally invasive 
surgery incorporating a novel omnidirectional bending technique with a screw drive 
mechanism, termed Double-Screw-Drive (DSD) mechanism, so far (Ishii et al., 2010). A 
robotic forceps manipulator incorporating the DSD mechanism (DSD robotic forceps) can 
bend without using wires. Without wires, it has high rigidity, and it can bend at 90 degrees 
in any arbitrary direction. In addition, the gripper of the DSD robotic forceps can perform 
rotational motion. Opening and closing motions of the gripper are attained by wire 
actuation. 
In order to improve the operability of the robotic surgical support systems and to help 
surgeon's dexterity, development of haptic forceps teleoperation systems is required. Most 
recently, haptic forceps manipulator for minimally invasive surgery has been proposed in 
(Seibold et al., 2005) and (Zemiti et al., 2007), in which operation force is measured by sensor 
and force feedback is provided. In addition, the motion scaling, which can adequately 
reduce or enlarge the movements and tactile senses of the operator and the robot, is 
necessary to assure safety of the surgery.  
On the other hand, communication time delay is inevitable in teleoperation systems, which 
may causes instability of the teleoperation systems. Therefore, stability of the system must 
be guaranteed in the presence of the communication time delay between master device and 
slave device. For bilateral teleoperation systems with constant time delay, stabilization 
method based on scattering transformation is proposed in (Anderson & Spong, 1989). 
(Chopra & Spong, 2005) proposed a passivity based control scheme which guarantees delay 
dependent exponential stability of the position and velocity tracking error. However, 
coupling torques are given as a function of position and velocity, and is not a function of 
force. Hence, motion scaling in force tracking cannot be achieved. 
In this chapter, improving the control scheme proposed in (Chopra & Spong, 2005), such a 
passivity based bilateral control scheme that enables motion scaling in both position 
tracking and force tracking,  and guarantees the stability of the teleoperation system in the 
presence of constant time delay, is proposed. This can be achieved by adding force tracking 
error terms to the coupling torques.  
Then, the proposed bilateral control scheme is applied to a haptic control of bending motion 
of the DSD robotic forceps teleoperation system with constant time delay. However, the 
proposed bilateral control law is applicable only to the one-DOF bending motion of the DSD 
robotic forceps. Therefore, using the change of coordinates, the proposed bilateral control 
scheme is extended so that it may become applicable to the omnidirectional bending motion 
of the DSD robotic forceps.  
Experimental works were carried out using the proposed bilateral control scheme, and 
experimental results showed the effectiveness of the proposed control scheme. 

2. DSD robotic forceps 
In this section, details of the DSD robotic forceps are explained. Overview of the developed 
DSD robotic forceps manipulator is shown in Fig. 1, and the configuration of its bending 
part is shown in Fig. 2. 

2.1 Specifications 
The total length of the DSD robotic forceps manipulator is 635 mm, and its gross weight is 
1050 g. The main specifications of the DSD robotic forceps are given as follows. 
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1. In order to insert a forceps into a trocar, the diameter of the rod of the forceps must be 
10 mm or less since the diameter of the trocar is 12 mm. 

2. The bending force, defined as the lifting force at the tip of the forceps, must be larger 
than 4 N, which would allow the forceps to lift 1/3 of an average human liver. This 
ability is required during operations of internal organs under the liver. 

3. The bending range must be 180 (-90 to +90) degrees or more in both horizontal and 
vertical direction. This ability is required in order to obtain a sufficient degree of 
freedom in limited work space. 

4. The gripper must be able to perform opening and closing motions smoothly. This 
operational requirement is necessary for the proper holding and releasing of medical 
needles. 

5. In order to perform suturing in a small work space, such as the opposite or the far side 
of internal organs, the gripper of the forceps must be able to rotate. 

 

Rod with three shafts inside

Motors

Bending part

Drive Unit

Gripper

Rod with three shafts inside

Motors

Bending part

Drive Unit

Gripper  
Fig. 1. Overview of DSD robotic forceps manipulator 

 

 

 
Fig. 2. Bending part of DSD robotic forceps manipulator 

2.2 Bending mechanism 
One module of the bending mechanism is shown in Fig.3. 
The DSD mechanism has three linkages, and when examined in cross-sectional view, each 
linkage is 120 degrees apart from the other linkages and 6 mm from the center of the cross-
section. Let us denote the group consisting of part  and part  as a “bending linkage” and 
the group consisting of part  and part  as a “grasping linkage”. Bending motion is 
achieved by rotating the two bending linkages, and grasping linkage is used for actuating 
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1. In order to insert a forceps into a trocar, the diameter of the rod of the forceps must be 
10 mm or less since the diameter of the trocar is 12 mm. 

2. The bending force, defined as the lifting force at the tip of the forceps, must be larger 
than 4 N, which would allow the forceps to lift 1/3 of an average human liver. This 
ability is required during operations of internal organs under the liver. 

3. The bending range must be 180 (-90 to +90) degrees or more in both horizontal and 
vertical direction. This ability is required in order to obtain a sufficient degree of 
freedom in limited work space. 

4. The gripper must be able to perform opening and closing motions smoothly. This 
operational requirement is necessary for the proper holding and releasing of medical 
needles. 

5. In order to perform suturing in a small work space, such as the opposite or the far side 
of internal organs, the gripper of the forceps must be able to rotate. 
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Motors

Bending part

Drive Unit

Gripper

Rod with three shafts inside

Motors

Bending part

Drive Unit

Gripper  
Fig. 1. Overview of DSD robotic forceps manipulator 

 

 

 
Fig. 2. Bending part of DSD robotic forceps manipulator 

2.2 Bending mechanism 
One module of the bending mechanism is shown in Fig.3. 
The DSD mechanism has three linkages, and when examined in cross-sectional view, each 
linkage is 120 degrees apart from the other linkages and 6 mm from the center of the cross-
section. Let us denote the group consisting of part  and part  as a “bending linkage” and 
the group consisting of part  and part  as a “grasping linkage”. Bending motion is 
achieved by rotating the two bending linkages, and grasping linkage is used for actuating 



 Robust Control, Theory and Applications 

 

546 

the gripper. The key point of this mechanism is that one side of part  is a left-handed 
screw and the other side is a right-handed screw. When a DSD module is connected to 
another module, a joint is formed. The principle of the bending motion for such a joint is 
illustrated in Fig. 4. 
 

 

BCA

 
A and B: Bending linkage, C: Grasping linkage 

 Universal joint shaft 
 Coupling 
 Plate with left-handed threaded hole 
 Plate with right-handed threaded hole 
 Universal joint of the screw drive 
 Spline nut 

Fig. 3. One module of DSD mechanism 
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Fig. 4. Principle of bending motion 

The left-handed screw of part  connects to part , and the right-handed screw of part  
connects to part  of another module. The rotation of the linkage changes the connecting 
length of the screw and the plate at both ends of part . As a result, an angle is formed 
between part  and part . For example, when the linkage rotates clockwise, part  and 
part  approach each other, and when the linkage rotates counterclockwise, they move 
away from each other. Thus, bending motion is achieved. The maximum bending angle of 
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one joint is between -30 and +30 degrees since this is the allowable bending angle of the 
universal joint. One bending linkage allows for one-DOF bending motion, and by using two 
bending linkages and controlling their rotation angles, arbitrary omnidirectional bending 
motion can be attained. The total length of the bending part is 59 mm excluding a gripper. 

2.3 Attachment and rotary gripper 
The gripper is exchangeable as an end effector and can be replaced with tools such as 
scalpels or surgical knives. Fig. 5 shows the attachment of the end effecter and mechanism of 
the rotary gripper. Gear 1 is on the tip of the grasping linkage and gear 2 is at the root of the 
jaw mesh. The gripper is turned by rotation of the grasping linkage. Although the rotary 
gripper can rotate arbitrary degrees, it should be rotated within 360 degrees to avoid 
winding of the wire which drives the jaw. 
 

Gear1

Gear2End effecter

End plate

Gear1

Gear2

Gear1

Gear2End effecter

End plate

End effecter

End plate

 
Fig. 5. Attachment and rotation of gripper 

2.4 Open and close of jaws 
The opening and closing motions of the gripper are achieved by wire actuation. Only one 
side of the jaws can move, and the other side is fixed. The wire for actuation connects to the 
drive unit through the inside of the DSD mechanism and the rod, and is pulled by the 
motor. The open and closed states of the gripper are shown in Fig.6. 
 

Open Close

Wire

Open Close

Wire

 
Fig. 6. Grasping of gripper 

2.5 Drive unit 
The feature of a drive unit for the DSD robotic forceps manipulator is shown in Fig.7. The 
total length of the drive unit is 274 mm, its maximum diameter is 50 mm, and its weight is 
935 g. Driving forces from motors are transmitted to the linkages through the gears. There 
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2.5 Drive unit 
The feature of a drive unit for the DSD robotic forceps manipulator is shown in Fig.7. The 
total length of the drive unit is 274 mm, its maximum diameter is 50 mm, and its weight is 
935 g. Driving forces from motors are transmitted to the linkages through the gears. There 
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are four motors in the drive unit. Three motors are mounted at the center of the drive unit. 
Two of them are used for inducing bending motion and the third one is used for inducing 
rotary motion of the gripper. The fourth motor, which is mounted in the tail, is for the 
opening and closing motions of the gripper actuated by wire. The wire capstan is attached to 
the motor shaft of the forth motor and acts as a reel for the wire. The spring is used for 
maintaining the tension of the wire. DC micromotors 1727U024C (2.25W) produced by 
FAULHABER Co. were selected for the bending motion and the rotary motion of the 
gripper. For the opening and closing motions of the gripper, a DC micro motor 1727U012C 
(2.25W) produced by FAULHABER Corp. was selected. A reduction gear and a rotary 
encoder are installed in the motor. 
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Spring
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Fig. 7. Drive unit 

The inside part of the rod, as shown in Fig. 1, consists of three shafts, each 2 mm in diameter 
and 300 mm long. Each motor in the drive unit and each linkage in the DSD mechanism are 
connected to each other through a shaft. Therefore, the rotation of each motor is transmitted 
to each respective linkage through a shaft. 

2.6 Built DSD robotic forceps manipulator 
The proposed DSD robotic forceps manipulator was built from stainless steel SUS303 and 
SUS304 to satisfy bio-compatibility requirements. The miniature universal joints produced 
by Miyoshi Co., LTD. were selected. The universal joints have a diameter of 3 mm and are of 
the MDDS type. The screws on both sides of the yokes were fabricated by special order. 
The built DSD robotic forceps manipulator is shown in Fig. 8. Its maximum diameter from 
the top of the bending part to the root of the rod is 10 mm. The total length of the bending 
part, including the gripper, is 85 mm. 
 

 
Fig. 8. Built DSD robotic forceps manipulator 

A transition chart of the rotary gripper is shown in Fig.9. 
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Fig. 9. Transition chart of the rotary gripper 

2.7 Master manipulator for teleoperation 
In a laparoscopic surgery, multi-DOF robotic forceps manipulators are operated by remote 
control. In order to control the DSD robotic forceps as a teleoperation system, the joy-stick 
type master manipulator for teleoperation was designed and built in (Ishii et al., 2010) by 
reconstruction of a ready-made joy-stick combined with the conventional forceps, which 
enables to control bending, grasping and rotary motions of the DSD robotic forceps 
manipulator. In addition, the built joy-stick type master manipulator was modified so that 
the operator can feel reaction force generated by the electric motors. The teleoperation 
system and the force feedback mechanisms for the bending force are illustrated in Fig.10. 
The operation force is detected by the strain gauges, and variation of the position is 
measured by the encoders mounted in the electric motors. 
 

Strain gauge

BendingStrain gauge
Motor with

rotary encoder

Joystick

Master Slave

mx

sx

sf

mf

Strain gauge

BendingStrain gauge
Motor with

rotary encoder

Joystick

Strain gauge

BendingStrain gauge
Motor with

rotary encoder

Joystick

Master Slave

mx

sx

sf

mf

 
Fig. 10. DSD robotic forceps teleoperation system 

3. Bilateral control for one-DOF bending 
In this section, bilateral control law for one-DOF bending of the DSD robotic forceps 
teleoperation system with communication time delay is derived. 

3.1 Derivation of Control Law 
Let the dynamics of the one-DOF master-slave teleoperation system be given by 

 m m m m m m m mm x b x c x f+ + = τ + , (1) 
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manipulator. In addition, the built joy-stick type master manipulator was modified so that 
the operator can feel reaction force generated by the electric motors. The teleoperation 
system and the force feedback mechanisms for the bending force are illustrated in Fig.10. 
The operation force is detected by the strain gauges, and variation of the position is 
measured by the encoders mounted in the electric motors. 
 

Strain gauge

BendingStrain gauge
Motor with

rotary encoder

Joystick

Master Slave

mx

sx

sf

mf

Strain gauge

BendingStrain gauge
Motor with

rotary encoder

Joystick

Strain gauge

BendingStrain gauge
Motor with

rotary encoder

Joystick

Master Slave

mx

sx

sf

mf

 
Fig. 10. DSD robotic forceps teleoperation system 

3. Bilateral control for one-DOF bending 
In this section, bilateral control law for one-DOF bending of the DSD robotic forceps 
teleoperation system with communication time delay is derived. 

3.1 Derivation of Control Law 
Let the dynamics of the one-DOF master-slave teleoperation system be given by 

 m m m m m m m mm x b x c x f+ + = τ + , (1) 
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 s s s s s s s sm x b x c x f+ + = τ − , (2) 

where subscripts m and s denote master and slave respectively. xm and xs represent the 
displacements, mm and ms the masses, bm and bs the viscous coefficients, and cm and cs the 
spring coefficients of the master and slave devices. fm stands for the force applied to the 
master device by human operator, fs the force of the slave device due to the mechanical 
interaction between slave device and handling object, and mτ  and sτ  are input motor 
toques.  
As shown in Fig.11, there exists constant time delay T in the network between the master 
and the slave systems.  
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Fig. 11. Communication time delay in teleoperation systems 

Define motor torques as 

 mmmmmmmm xcxbxm +−−= λλττ , (3) 

 ssssssss xcxbxm +−−= λλττ , (4) 

where λ  is a positive constant, and mτ  and sτ  are coupling torques. Then, the dynamics 
are rewritten as follows. 

 mmmmmm frbrm +=+ τ , (5) 

 ssssss frbrm −=+ τ , (6) 

where rm and rs are new variables defined as 

 mmm xxr λ+= , (7) 

 sss xxr λ+= . (8) 

Control objective is described as follows. 
[Design Problem] Find a bilateral control law which satisfies the following two 
specifications. 
Specification 1: In both position tracking and force tracking, the motion scaling, which can 
adequately reduce or enlarge the movements and tactile senses of the master device and the 
slave device, is achievable. 
Specification 2: The stability of the teleoperation system in the presence of the constant 
communication time delay between master device and slave device, is guaranteed. 
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Assume the following condition. 
Assumption: The human operator and the remote environment are passive. 
In the presence of the communication time delay between master device and slave device, 
the following fact is shown in (Chopra et al., 2003). 
Fact: In the case where the communication time delay T  is constant, the teleoperation 
system is passive. 
From Assumption and Fact, the following inequalities hold. 
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Using inequalities (9) and (10), define a positive definite function V  as follows. 
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where 1K , mK  and sK  are feedback gains, and 1pG ≥  and 1fG ≥  are scaling gains for 
position tracking and force tracking, respectively. 
The derivative of V  along the trajectories of the systems (5) and (6) is given by 
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Let the coupling torques be given as follows. 

 ( )( ) ( )( )1m p s m m f s mK G r t T r K G f t T fτ = − − − − − , (13) 

 ( )( ) ( )( )1s m p s s m f sK r t T G r K f t T G fτ = − − + − − . (14) 
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Using (13) and (14), (12) is rewritten as follows. 
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Thus, stability of the teleoperation system is assured in spite of the presence of the constant 
communication time delay, and delay independent exponential convergence of the tracking 
errors of position to the origin is guaranteed. 
Finally, motor torques (3) and (4) are given as follows. 
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3.2 Experiments 
In order to verify an effectiveness of the proposed control law, experimental works were 
carried out for the developed DSD robotic forceps teleoperation system. Here, only vertical 
direction of the bending motion is considered. Namely, bending motion of the DSD robotic 
forceps is restricted to one degree of freedom. Then, the dynamics of the master-slave 
teleoperation system are given by equations (1) and (2), since only one bending linkage is 
used. Parameter values of the system are given as mm = 0.07 kg, ms = 0.025 kg, bm = 0.25 
Nm/s, bs = 2.5 Nm/s, cm = 9 N/s and cs = 9 N/s. The control system is constructed under the 
MATLAB/Simulink software environment. 
In the experiments, 200g weights pet bottle filled with water was hung up on the tip of the 
forceps, and lift and down were repeated in vertical direction. Appearance of the 
experiment is shown in Fig. 12. 
First, in order to see the effect of the motion scaling, experimental works with the following 
conditions were carried out. 
a. Verification of the effect of the motion scaling. 

i) Gp= Gf = 1 and T = 0 
ii) Gp = 2, Gf = 3 and T = 0 

Second, in order to see the effect to the time delay, comparison of the proposed bilateral 
control scheme and conventional bilateral control method was performed. 

Robust Bilateral Control for Teleoperation System with Communication Time Delay  
- Application to DSD Robotic Forceps for Minimally Invasive Surgery -   

 

553 

 
Fig. 12. Appearance of experiment 

b. Verification of the effect to the time delay. 
i) Gp= Gf = 1 and T = 0.125 
ii) Force reflecting servo type bilateral control law with constant time delay T = 0.125 

In b-ii), the force reflecting servo type bilateral control law is given as follows. 
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where Kf and Kp are feedback gains of force and position. The time delay T = 0.125 is 
intentionally generated in the control system, whose value was referred from (Arata et al., 
2007) as the time delay of the control signal between Japan and Thailand: approximately 
124.7 ms.  
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Using (13) and (14), (12) is rewritten as follows. 
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Thus, stability of the teleoperation system is assured in spite of the presence of the constant 
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Finally, motor torques (3) and (4) are given as follows. 
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direction of the bending motion is considered. Namely, bending motion of the DSD robotic 
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used. Parameter values of the system are given as mm = 0.07 kg, ms = 0.025 kg, bm = 0.25 
Nm/s, bs = 2.5 Nm/s, cm = 9 N/s and cs = 9 N/s. The control system is constructed under the 
MATLAB/Simulink software environment. 
In the experiments, 200g weights pet bottle filled with water was hung up on the tip of the 
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First, in order to see the effect of the motion scaling, experimental works with the following 
conditions were carried out. 
a. Verification of the effect of the motion scaling. 
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ii) Gp = 2, Gf = 3 and T = 0 

Second, in order to see the effect to the time delay, comparison of the proposed bilateral 
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Fig. 14. Experimental result for a-ii) 
Note that the proposed bilateral control scheme guarantees stability of the teleoperation 
system in the presence of constant time delay, however, stability is not guaranteed in use of 
the force reflecting servo type bilateral control law in the presence of constant time delay. 
Feedback gains were adjusted by trial and error through repetition of experiments, which 
were determined as λ  = 3.8, K1 = 30, Km = 400, Ks = 400, Kp = 60 and Kf = 650. Experimental 
results for condition a) are shown in Fig. 13 and Fig. 14. 
As shown in Fig. 13 and Fig. 14, it is verified that the motion of slave tracks the motion of 
master with specified scale in both position tracking and force tracking. 
Experimental results for condition b) are shown in Fig. 15 and Fig. 16. 
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Fig. 16. Experimental result for b-ii) 
As shown in Fig. 15 and Fig. 16, tracking errors of both position and force in Fig. 15 are 
smaller than those of Fig. 16. From the above observations, the effectiveness of the proposed 
control law for one-DOF bending motion of the DSD robotic forceps was verified. 

4. Bilateral control for omnidirectional bending 
In this section, the bilateral control scheme described in the former session is extended to 
omnidirectional bending of the DSD robotic forceps teleoperation system with constant time 
delay. 

4.1 Extension to omnidirectional bending 
As shown in Fig.10, master device is modified joy-stick type manipulator. Namely, this is 
different structured master-slave system. The cross-section views of shaft of the joy-stick 
and the DSD robotic forceps are shown in Fig.17. 
Due to the placement of strain gauges and motors with encoder of the master device, the 
dynamics of the master device are given in x-y coordinates as follows.  

 m m m m m m xm xmm x b x c x f+ + = τ + , (20) 

 m m m m m m ym ymm y b y c y f+ + = τ + . (21) 

When only motor A drives, bending direction of the DSD robotic forceps is along A-axis, 
and when only motor B drives, bending direction of the DSD robotic forceps is along B-axis. 
Thus, due to the arrangement of the bending linkages, the dynamics of the slave device are 
given in A-B coordinates as follows. 

 s s s s s s As Asm A b A c A f+ + = τ − , (22) 

 s s s s s s Bs Bsm B b B c B f+ + = τ − . (23) 
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Note that the proposed bilateral control scheme guarantees stability of the teleoperation 
system in the presence of constant time delay, however, stability is not guaranteed in use of 
the force reflecting servo type bilateral control law in the presence of constant time delay. 
Feedback gains were adjusted by trial and error through repetition of experiments, which 
were determined as λ  = 3.8, K1 = 30, Km = 400, Ks = 400, Kp = 60 and Kf = 650. Experimental 
results for condition a) are shown in Fig. 13 and Fig. 14. 
As shown in Fig. 13 and Fig. 14, it is verified that the motion of slave tracks the motion of 
master with specified scale in both position tracking and force tracking. 
Experimental results for condition b) are shown in Fig. 15 and Fig. 16. 
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As shown in Fig. 15 and Fig. 16, tracking errors of both position and force in Fig. 15 are 
smaller than those of Fig. 16. From the above observations, the effectiveness of the proposed 
control law for one-DOF bending motion of the DSD robotic forceps was verified. 

4. Bilateral control for omnidirectional bending 
In this section, the bilateral control scheme described in the former session is extended to 
omnidirectional bending of the DSD robotic forceps teleoperation system with constant time 
delay. 

4.1 Extension to omnidirectional bending 
As shown in Fig.10, master device is modified joy-stick type manipulator. Namely, this is 
different structured master-slave system. The cross-section views of shaft of the joy-stick 
and the DSD robotic forceps are shown in Fig.17. 
Due to the placement of strain gauges and motors with encoder of the master device, the 
dynamics of the master device are given in x-y coordinates as follows.  

 m m m m m m xm xmm x b x c x f+ + = τ + , (20) 

 m m m m m m ym ymm y b y c y f+ + = τ + . (21) 

When only motor A drives, bending direction of the DSD robotic forceps is along A-axis, 
and when only motor B drives, bending direction of the DSD robotic forceps is along B-axis. 
Thus, due to the arrangement of the bending linkages, the dynamics of the slave device are 
given in A-B coordinates as follows. 

 s s s s s s As Asm A b A c A f+ + = τ − , (22) 
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Fig. 17. Coordinates of master device and slave device 

In order to extend the proposed bilateral control law to the omnidirectional bending motion 
of the DSD robotic forceps, the coordinates must be unified. 
As shown in Fig. 17, xm and ym are measured by encoders. fxm, fym, fxs, and fys are measured by 
strain gauges. xmτ , ymτ , xsτ  and ysτ  are calculated from the bilateral control laws. These 
values are obtained in x-y coordinates. Therefore, consider to unify the coordinates in x-y 
coordinates. While, displacement of the slave As and Bs are measured by encoder, which are 
obtained in A-B coordinates. These values must be changed into x-y coordinates. 
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Fig. 18. Change of coordinates 

The change of coordinates for position r(A,B) given in A-B coordinates to r(x,y) given in x-y 
coordinates (Fig. 18) is given as follows. 
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Thus, the dynamics of the slave device given in A-B coordinates are converted into x-y 
coordinates. Finally, the dynamics of the two-DOF DSD robotic forceps teleoperation system 
in horizontal direction and vertical direction are described as follows. 

 m m m m m m xm xm

s s s s s s xs xs

m x b x c x f
m x b x c x f

+ + = τ +⎧
⎨ + + = τ −⎩

 (25) 

 m m m m m m ym ym

s s s s s s ys ys

m y b y c y f
m y b y c y f

+ + = τ +⎧⎪
⎨ + + = τ −⎪⎩

 (26) 

For each direction, the bilateral control law derived in the former session, which is 
developed for one-DOF bending of the DSD robotic forceps, is applied. 
However, as shown in Fig. 17, the actual torque inputs to the motors in the slave device are 

Asτ  and Bsτ . Therefore, input torque of the slave must be given in A-B coordinates. Asτ  and 
Bsτ  can be obtained from xsτ  and ysτ  through an inverse transformation of (24), which is 

given by 

 
1 / 3 1

1 / 3 1
xsAs

ysBs

⎡ ⎤ τ⎡ ⎤τ⎡ ⎤
= ⎢ ⎥ ⎢ ⎥⎢ ⎥ ττ −⎢ ⎥⎣ ⎦ ⎣ ⎦⎣ ⎦

. (27) 

Thus, bilateral control for the omnidirectional bending motion of the DSD robotic forceps is 
realized. 

4.2 Experiments 
Experimental works were carried out using the proposed bilateral control laws. The 
parameter values of the system are given as same value as described in subsection 3.2. 
In the experiments, 100g weight pet bottle filled with water was hung up on the tip of the 
forceps, and the pet bottle was lifted by vertical bending motion of the forceps. Then, the 
forceps was controlled so that the tip of the forceps draws a quarter circular orbit 
counterclockwise, and the PET bottle was landed on the floor.  
Experimental works were carried out under the communication time delay T = 0.125. The 
control gains were determined by trial and error through the repetition of experiments, 
which are given as λ  = 5.0, K1 = 40, Km = 80, and Ks = 80. Scaling gains were chosen as Gp= 
Gf = 1. Experimental results are shown in Fig. 19. 
In Fig. 19, the top two figures show force and position in x coordinates, and the bottom two 
figures show force and position in y coordinates. In the experiment, the PET bottle was lifted 
at around 4 seconds, and landed on the floor at around 20 seconds. The counterclockwise 
rotation at the tip of the forceps has begun from around 12 seconds. 
Although small tracking errors can be seen, the reaction forces which acted on the slave 
device in x-y directions were reproducible to the master manipulator as tactile sense. In 
terms of above observations, it can be said that the effectiveness of the proposed control 
scheme was verified. 
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Fig. 18. Change of coordinates 

The change of coordinates for position r(A,B) given in A-B coordinates to r(x,y) given in x-y 
coordinates (Fig. 18) is given as follows. 
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Experimental works were carried out under the communication time delay T = 0.125. The 
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at around 4 seconds, and landed on the floor at around 20 seconds. The counterclockwise 
rotation at the tip of the forceps has begun from around 12 seconds. 
Although small tracking errors can be seen, the reaction forces which acted on the slave 
device in x-y directions were reproducible to the master manipulator as tactile sense. In 
terms of above observations, it can be said that the effectiveness of the proposed control 
scheme was verified. 
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Fig. 19. Experimental results for omnidirectional bending of DSD robotic forceps 

5. Conclusion 
In this chapter, robust bilateral control for teleoperation systems in the presence of 
communication time delay was discussed. The Lyapunov function based bilateral control 
law that enables the motion scaling in both position tracking and force tracking, and 
guarantees stability of the system in the presence of the constant communication time delay, 
was proposed under the passivity assumption.  
The proposed control law was applied to the haptic control of one-DOF bending motion of 
the DSD robotic forceps teleoperation system with constant time delay, and experimental 
works were executed.  
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In addition, the proposed bilateral control scheme was extended so that it may become 
applicable to the omnidirectional bending motion of the DSD robotic forceps. Experimental 
works for the haptic control of omnidirectional bending motion of the DSD robotic forceps 
teleoperation system with constant time delay were carried out. From the experimental 
results, the effectiveness of the proposed control scheme was verified. 
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1. Introduction 
Vehicle stability control is very important to vehicle active safety, in particular, during 
severe driving manoeuvres. The yaw moment control has been regarded as one of the most 
promising means of vehicle stability control, which could considerably enhance vehicle 
handling and stability (Abe, 1999; Mirzaei, 2010). Up to the date, different strategies on yaw 
moment control, such as optimal control (Esmailzadeh et al., 2003; Mirzaei et al., 2008), 
fuzzy logic control (Boada et al, 2005; Li & Yu 2010), internal model control (IMC) (Canale et 
al., 2007), flatness-based control (Antonov et al, 2008), and coordinated control (Yang et al, 
2009), etc., have been proposed in the literature.  
It is noticed that most existing yaw moment control strategies rely on the measurement of 
both sideslip angle and yaw rate. However, the measurement of sideslip angle is hard to be 
done in practice because the current available sensors for sideslip angle measurement are all 
too expensive to be acceptable by customers. To implement yaw moment controller without 
increasing too much cost on a vehicle, the estimation of sideslip angle based on 
measurement available signals, such as yaw rate and lateral acceleration, etc., is becoming 
necessary. And, the measurement noise should also be considered so that the estimation 
based controller is more robust. On the other hand, most of the existing studies use a linear 
lateral dynamics model with nominal cornering stiffness for the yaw moment controller 
design. Since the yaw moment control obviously relies on the tyre lateral force and the tyre 
force strongly depends on tyre vertical load and road conditions which are very sensitive to 
the vehicle motion and the environmental conditions, the tyre cornering stiffness must have 
uncertainties. Taking cornering stiffness uncertainties into account will make the controller 
being more robust to the variation of road conditions. In addition, actuator saturation 
limitations resulting from some physical constraints and tyre-road conditions must be 
considered so that the implementation of the controller can be more practical.  
In this chapter, a nonlinear observer based robust yaw moment controller is designed to 
improve vehicle handling and stability with considerations on cornering stiffness 
uncertainties, actuator saturation limitation, and measurement noise. The yaw moment 
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based controller is more robust. On the other hand, most of the existing studies use a linear 
lateral dynamics model with nominal cornering stiffness for the yaw moment controller 
design. Since the yaw moment control obviously relies on the tyre lateral force and the tyre 
force strongly depends on tyre vertical load and road conditions which are very sensitive to 
the vehicle motion and the environmental conditions, the tyre cornering stiffness must have 
uncertainties. Taking cornering stiffness uncertainties into account will make the controller 
being more robust to the variation of road conditions. In addition, actuator saturation 
limitations resulting from some physical constraints and tyre-road conditions must be 
considered so that the implementation of the controller can be more practical.  
In this chapter, a nonlinear observer based robust yaw moment controller is designed to 
improve vehicle handling and stability with considerations on cornering stiffness 
uncertainties, actuator saturation limitation, and measurement noise. The yaw moment 
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controller uses the measurement of yaw rate and the estimation of sideslip angle as feedback 
signals, where the sideslip angle is estimated by a Takagi-Sugeno (T-S) fuzzy model-based 
observer. The design objective of this observer based controller is to achieve optimal 
performance on sideslip angle and estimation error subject to the cornering stiffness 
uncertainties, actuator saturation limitation, and measurement noise. The design of such an 
observer based controller is implemented in a two-step procedure where linear matrix 
inequalities (LMIs) are built and solved by using available software Matlab LMI Toolbox. 
Numerical simulations on a vehicle model with nonlinear tyre model are used to validate 
the control performance of the designed controller. The results show that the designed 
controller can achieve good performance on sideslip angle responses for a given actuator 
saturation limitation with measurement noise under different road conditions and 
manoeuvres.  
This chapter is organised as follows. In Section 2, the vehicle lateral dynamics model is 
introduced. The robust observer-based yaw moment controller design is introduced in 
Section 3. In Section 4, the simulation results on a nonlinear vehicle model are discussed. 
Finally, conclusions are presented in Section 5.  
The notation used throughout the paper is fairly standard. For a real symmetric matrix M 
the notation of M>0 (M<0) is used to denote its positive- (negative-) definiteness. . refers to 
either the Euclidean vector norm or the induced matrix 2-norm. I is used to denote the 
identity matrix of appropriate dimensions. To simplify notation, * is used to represent a 
block matrix which is readily inferred by symmetry. 

2. Vehicle dynamics model  
In spite of its simplicity, a bicycle model of vehicle lateral dynamics, as shown in Fig. 1, can 
well represent vehicle lateral dynamics with constant forward velocity and is often used for 
controller design and evaluation.  
 

 
Fig. 1. Vehicle lateral dynamics model 

In this model, the vehicle has mass m and moment of inertia Iz about yaw axis through its 
center of gravity (CG). The front and rear axles are located at distances lf and lr, respectively, 
from the vehicle CG. The front and rear lateral tyre forces Fyf and Fyr depend on slip angles 
αf and αr, respectively, and the steering angle δ changes the heading of the front tyres.  
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When lateral acceleration is lower, the tyres operate in the linear region and the lateral 
forces at the front and rear can be related to slip angles by the cornering stiffnesses of the 
front and rear tyres as 

 yf αf f yr αr rF =-C α , F =-C α  (1) 

where Cαf and Cαr are cornering stiffnesses of the front and rear tyres, respectively. With 
using Newton law and the following relationships 

 f r
f r

l r l rα =β+ -δ, α =β-
v v

 (2) 

vehicle lateral dynamics model can be written in state space equation as 
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where β  is vehicle sideslip angle, r is yaw rate, zM is yaw moment, v  is forward velocity. 
Equation (3) can be further written as 
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where 
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and  
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 (6) 

which is used to define the saturation state of control input and limu is the limitation of 
available yaw moment in practice. 
It is noticed that the linear relationship between tyre lateral force and slip angle in equation 
(1) can only exist when lateral acceleration is lower (less than about 0.4 g). When lateral 
acceleration increases, the relationship goes into nonlinear region as shown in Fig. 2 where 
change of lateral tyre force to sideslip angle generated from Dugoff tyre model is depicted. 
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Therefore, cornering stiffnesses are no longer constant values but time-varying variables, 
and relationship between tyre lateral force and slip angle is a nonlinear function of sideslip 
angle. To describe this nonlinear relationship, cornering stiffnesses need to be measured or 
estimated. However, either way is difficult to be implemented due to cost or accuracy 
consideration although some approaches have been proposed for the estimation of 
cornering stiffnesses. 
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Fig. 2. Tyre lateral force characteristics.   

Since Takagi-Sugeno (T-S) fuzzy model has been effectively applied to approximate 
nonlinear functions in many different applications (Tanaka & Wang, 2001), instead of 
estimating cornering stiffness, we use T-S fuzzy model to describe the nonlinear relationship 
between tyre lateral force and sideslip angle in the vehicle lateral dynamics model. The 
plant rules for the T-S fuzzy lateral dynamics model are built as  
IF Δr is 1N THEN 

 1 11 2x=A x+B w+B u  (7) 

IF Δr is 2N THEN 

 2 12 2x=A x+B w+B u  (8) 

where 1N  and 2N are fuzzy sets, Δr is premise variable which is defined by deviation of 
yaw rate as  

 ( )2
ref

c

r -r l rvΔr= 1+
v v r

⎡ ⎤⎛ ⎞⎢ ⎥⎜ ⎟
⎢ ⎥⎝ ⎠⎣ ⎦

 (9) 

where cv is characteristic velocity, l=lf+lr, and the reference yaw rate refr is defined as 
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 ref 2
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l v1+

v
⎛ ⎞
⎜ ⎟
⎝ ⎠

 (10) 

The deviation of yaw rate is used as a premise variable in this T-S fuzzy model because it 
can approximately show the degree of nonlinear state and can be used to judge whether the 
vehicle is in linear or nonlinear region (Fukada, 1999).  
By fuzzy blending, the final output of the T-S fuzzy model is inferred as follows 

 ( )
2

i i 1i 2
i=1

x= h (Δr) A x+B w+B u∑  (11) 

where 2
i i ii=1h (Δr)=μ (Δr)/ μ (Δr)∑ , iμ (Δr)  is the degree of the membership of Δr in iN . In 

general, triangular membership function can be used for fuzzy set iN , and we have 
ih (Δr) 0≥  and 2

ii=1h (Δr)=1∑ . i 1iA  and B  are sub-matrices which are obtained by 
substituting cornering stiffness values for linear and nonlinear regions, respectively.  

3. Observer based robust controller design 
It was pointed in many previous research works that both sideslip angle and yaw arte are 
useful information for effective vehicle handling and stability control. However, sensors for 
measuring sideslip angle are really expensive and cannot be used in stability control for 
commercial automotives. Therefore, estimation of slip angle is a cost-effective way to solve 
this problem. On the contrary, measurement of yaw rate is relatively easy and cheap, and 
gyroscopic sensor can be used to do it. Base on the measurable yaw rate signal, sideslip 
angle can be estimated and then used for full state feedback control signal.  
In a real application, the state measurements can not be perfect. Thus, the measured state 
variables should be corrupted by measurement noises as 

 y=Cx+n  (12) 

where y is the measured output, n denotes the measurement noise, C is a constant matrix (if 
all the state variables are measured, C is an identity matrix). To estimate the state variables 
from noisy measurements, we construct a T-S fuzzy observer as 
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i i 2 i
i=1

ˆ ˆ ˆx= h (Δr)[A x+B u+L (y-y)]

ˆŷ=Cx

∑  (13) 

where x̂ is observer state vector, Li is observer gain matrix to be designed, ŷ is observer 
output. 
By defining the estimation error  

 ˆe=x-x  (14) 
we obtain 
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Therefore, cornering stiffnesses are no longer constant values but time-varying variables, 
and relationship between tyre lateral force and slip angle is a nonlinear function of sideslip 
angle. To describe this nonlinear relationship, cornering stiffnesses need to be measured or 
estimated. However, either way is difficult to be implemented due to cost or accuracy 
consideration although some approaches have been proposed for the estimation of 
cornering stiffnesses. 
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Fig. 2. Tyre lateral force characteristics.   

Since Takagi-Sugeno (T-S) fuzzy model has been effectively applied to approximate 
nonlinear functions in many different applications (Tanaka & Wang, 2001), instead of 
estimating cornering stiffness, we use T-S fuzzy model to describe the nonlinear relationship 
between tyre lateral force and sideslip angle in the vehicle lateral dynamics model. The 
plant rules for the T-S fuzzy lateral dynamics model are built as  
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IF Δr is 2N THEN 

 2 12 2x=A x+B w+B u  (8) 

where 1N  and 2N are fuzzy sets, Δr is premise variable which is defined by deviation of 
yaw rate as  

 ( )2
ref

c

r -r l rvΔr= 1+
v v r

⎡ ⎤⎛ ⎞⎢ ⎥⎜ ⎟
⎢ ⎥⎝ ⎠⎣ ⎦

 (9) 

where cv is characteristic velocity, l=lf+lr, and the reference yaw rate refr is defined as 
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The deviation of yaw rate is used as a premise variable in this T-S fuzzy model because it 
can approximately show the degree of nonlinear state and can be used to judge whether the 
vehicle is in linear or nonlinear region (Fukada, 1999).  
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commercial automotives. Therefore, estimation of slip angle is a cost-effective way to solve 
this problem. On the contrary, measurement of yaw rate is relatively easy and cheap, and 
gyroscopic sensor can be used to do it. Base on the measurable yaw rate signal, sideslip 
angle can be estimated and then used for full state feedback control signal.  
In a real application, the state measurements can not be perfect. Thus, the measured state 
variables should be corrupted by measurement noises as 

 y=Cx+n  (12) 

where y is the measured output, n denotes the measurement noise, C is a constant matrix (if 
all the state variables are measured, C is an identity matrix). To estimate the state variables 
from noisy measurements, we construct a T-S fuzzy observer as 
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where x̂ is observer state vector, Li is observer gain matrix to be designed, ŷ is observer 
output. 
By defining the estimation error  

 ˆe=x-x  (14) 
we obtain 
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i i i 1i i
i=1

ˆe=x-x= h (Δr)[(A -L C)e+B w-L n]∑  (15) 

To making the estimation error as small as possible, we define one control output as  

 o ez =C e  (16) 

where Ce is constant matrix. The objective of observer design is to find Li such that the H∞  
norm of owT , which denotes the closed-loop transfer function from the steering input w to 
the control output zo (estimation error e) and is defined as  

 
2

o 2
ow

w 0 2

z
T = sup

w∞
≠

 (17) 

where 2 T
o o o2 0

z z (t)z (t)dt
∞

= ∫  and 2 T
2 0

w w (t)w(t)dt
∞

= ∫ , is minimised. 

On the other hand, to realise good handling and stability, the sideslip angle and the yaw 
rate need to be controlled to the desired values. Generally, the desired sideslip angle is given 
as zero and the desired yaw rate is defined in terms of vehicle speed and steering input 
angle (Zheng, 2006). For simplicity, we only consider to control sideslip angle as small as 
possible, which in most cases can also lead to satisfied yaw rate. Thus, we define another 
control output as 

 β βz =C x  (18) 

where βC =[1 0], and the objective is to design a robust T-S fuzzy controller based on the 
estimated state variables as 

 
2

i i
i=1

ˆu= h (Δr)K x∑  (19) 

where Ki is control gain matrix to be designed, such as the H∞  norm of βwT , which 
denotes the closed-loop transfer function from the steering input w to the control output βz , 
is minimised. Together with control output (16), the control output for both observer and 
controller design is defined as 

 
β β

z
e

ˆC C x
z=C x=

e0 C
⎡ ⎤ ⎡ ⎤
⎢ ⎥ ⎢ ⎥

⎣ ⎦⎣ ⎦
 (20) 

where T T Tˆx=[x  e ] is the augmented system state vector. It can be seen from (20) that Ce can 
be used to make the compromise between βz and zo in the control objective.  
To derive the conditions for obtaining Ki and Li, we now define a Lyapunov function as 

 T Tˆ ˆV=x Px+e Qe  (21) 

where P = PT > 0, Q = QT > 0. Taking the time derivative of V along (13) and (15) yields 
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where definition (19) and inequalities T T T -1 TX Y+Y X κX X+κ Y Y≤  for any matrices X and 

Y and positive scalar κ  (Du et al, 2005) and 
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0<ε<1 (Kim & Jabbari, 2002) are applied, and T T Tw=[w  n ] ,  
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By adding T 2 Tz z-γ w w to two sides of (22) yields 
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To making the estimation error as small as possible, we define one control output as  
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where Ce is constant matrix. The objective of observer design is to find Li such that the H∞  
norm of owT , which denotes the closed-loop transfer function from the steering input w to 
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On the other hand, to realise good handling and stability, the sideslip angle and the yaw 
rate need to be controlled to the desired values. Generally, the desired sideslip angle is given 
as zero and the desired yaw rate is defined in terms of vehicle speed and steering input 
angle (Zheng, 2006). For simplicity, we only consider to control sideslip angle as small as 
possible, which in most cases can also lead to satisfied yaw rate. Thus, we define another 
control output as 

 β βz =C x  (18) 

where βC =[1 0], and the objective is to design a robust T-S fuzzy controller based on the 
estimated state variables as 
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where Ki is control gain matrix to be designed, such as the H∞  norm of βwT , which 
denotes the closed-loop transfer function from the steering input w to the control output βz , 
is minimised. Together with control output (16), the control output for both observer and 
controller design is defined as 
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where T T Tˆx=[x  e ] is the augmented system state vector. It can be seen from (20) that Ce can 
be used to make the compromise between βz and zo in the control objective.  
To derive the conditions for obtaining Ki and Li, we now define a Lyapunov function as 

 T Tˆ ˆV=x Px+e Qe  (21) 

where P = PT > 0, Q = QT > 0. Taking the time derivative of V along (13) and (15) yields 
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By adding T 2 Tz z-γ w w to two sides of (22) yields 
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where T Tx=[x  w ]T , and  
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It can inferred from (25) that if Θi < 0, then T 2 TV+z z-γ w w<0 . Thus, the closed-loop system 
augmented by (13) and (15) is stable when the disturbance w=0  and the H∞  performance 
on zwT is satisfied when x(0)=0 . 
By the Schur complement, Θi < 0 is equivalent to 
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which can be written as 
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It is noted from (28) that P, Q, Ki, Li, and κ  are unknown parameters in the inequality that 
need to be determined. Because they are coupled together, no effective algorithms for 
solving them simultaneously can be found by now. Therefore, a two-step procedure is 
applied. Note that (28) means that 22Ω 0< . So, in the first step, we solve 22Ω 0< . By 
defining Xi= QLi and using the Schur complement, from 22Ω 0< , we obtain 
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which are LMIs and can be solved by means of the Matlab LMI Toolbox software. Then, we 
can obtain Li by using Li = Q−1Xi for a given γ. 
In the second step, by defining W = P−1, pre- and post-multiplying (28) by diag(W I)T and its 
transpose, respectively, we obtain 
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After defining Yi = KiW and using the Schur complement, we obtain 
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which are LMIs and can be solved by means of the Matlab LMI Toolbox software to obtain 
Ki = YiW−1 for a given γ. 
On the other hand, from (19), the constraint 
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can be expressed as lim
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It can inferred from (25) that if Θi < 0, then T 2 TV+z z-γ w w<0 . Thus, the closed-loop system 
augmented by (13) and (15) is stable when the disturbance w=0  and the H∞  performance 
on zwT is satisfied when x(0)=0 . 
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which can be written as 
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It is noted from (28) that P, Q, Ki, Li, and κ  are unknown parameters in the inequality that 
need to be determined. Because they are coupled together, no effective algorithms for 
solving them simultaneously can be found by now. Therefore, a two-step procedure is 
applied. Note that (28) means that 22Ω 0< . So, in the first step, we solve 22Ω 0< . By 
defining Xi= QLi and using the Schur complement, from 22Ω 0< , we obtain 
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which are LMIs and can be solved by means of the Matlab LMI Toolbox software. Then, we 
can obtain Li by using Li = Q−1Xi for a given γ. 
In the second step, by defining W = P−1, pre- and post-multiplying (28) by diag(W I)T and its 
transpose, respectively, we obtain 
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After defining Yi = KiW and using the Schur complement, we obtain 
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which are LMIs and can be solved by means of the Matlab LMI Toolbox software to obtain 
Ki = YiW−1 for a given γ. 
On the other hand, from (19), the constraint 
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2003) 
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By the Schur complement, inequality (34) can be written as 
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Using the definitions W = P−1 and Yi = KiW, inequality (35) is equivalent to 
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In summary, the procedure for the observer based robust controller design is given as: (1) 
give initial value for γ; (2) solve LMIs (30), (32), and (36) to obtain Li and Ki; (3) decrease γ 
and repeat the previous two steps until no feasible solutions can be found; (4) construct the 
observer and controller in terms of Li and Ki. 

4. Numerical simulations 
To evaluate the effectiveness of the proposed observer based controller design approach, 
numerical simulations on a yaw-plane 2DOF vehicle dynamics model with nonlinear 
Dugoff tyre model will be done in this section. The parameters used for the vehicle model 
are given as m=1298.9 kg, Iz=1627 kg.m2, lf=1.0 m, lr=1.454 m. The robust observer based 
controller is designed using the above introduced approach, where Cf= Cr =60000 N.rad-1 is 
used when tyre sideslip angle is in linear region and Cf= Cr =6000 N.rad-1 is used when tyre 
sideslip angle is in nonlinear region, and the saturation limit is assumed as 3000 Nm, i.e., 
ulim=3000 Nm. By choosing ε =0.024, ρ =9.8, we obtain the controller matrices as 
K1=104[2.2258 -2.6083] and K2=104[-1.1797 -1.6864], and observer gain matrices as L1=[8.1763 
165.4576] and L2=[8.4599 162.6120].  
To testify the vehicle lateral dynamics performance, a J-turn manoeuvre, which is produced 
from the ramp steering input (the maximum degree is 6 deg), is used. To validate the 
effectiveness of the designed observer based controller, we first assume the vehicle is 
driving on a snow surface road (road friction is assumed as 0.5) with forward velocity 20 
m/s, and only yaw rate is measurable without measurement noise. To see the observer 
performance clearly, we define different initial values for the vehicle model and observer. 
Fig. 3 shows sideslip angle responses under J-turn manoeuvre for the uncontrolled system 
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(without any controller), the controlled system (with the designed controller), and the 
sideslip angle observer. 
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Fig. 3. Sideslip angle responses under J-turn manoeuvre on a snow road without 
measurement noise. Dashed-dotted line is sideslip angle for uncontrolled system. Dotted 
line is sideslip angle for controlled system with the designed controller, and solid line is 
sideslip angle estimated from observer. 
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Fig. 4. Yaw moment under J-turn manoeuvre on a snow road without measurement noise. 

It can be seen from Fig. 3 that the sideslip angle of the controlled system converges to the 
desired sideslip value, zero degree. On the contrary, the sideslip angle of the uncontrolled 
system is big which may cause vehicle unstable motion (Mirzaei, 2010). It is also observed 
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Fig. 3. Sideslip angle responses under J-turn manoeuvre on a snow road without 
measurement noise. Dashed-dotted line is sideslip angle for uncontrolled system. Dotted 
line is sideslip angle for controlled system with the designed controller, and solid line is 
sideslip angle estimated from observer. 
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Fig. 4. Yaw moment under J-turn manoeuvre on a snow road without measurement noise. 

It can be seen from Fig. 3 that the sideslip angle of the controlled system converges to the 
desired sideslip value, zero degree. On the contrary, the sideslip angle of the uncontrolled 
system is big which may cause vehicle unstable motion (Mirzaei, 2010). It is also observed 
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from Fig. 3 that the estimated sideslip angle is converging to the real sideslip angle quickly 
even though there is big difference on the initial values of observer and vehicle model. Fig. 4 
shows the required yaw moment, which is within the defined saturation limit. As 
demonstrated by the simulation results, the designed observer based controller effectively 
improves the vehicle handling and stability performance with using yaw rate measurement. 
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Fig. 5. Sideslip angle responses under J-turn manoeuvre on a snow road with measurement 
noise. Dashed-dotted line is sideslip angle for uncontrolled system. Dotted line is sideslip 
angle for controlled system with the designed controller, and solid line is sideslip angle 
estimated from observer. 
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Fig. 6. Yaw moment under J-turn manoeuvre on a snow road with measurement noise. 
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To validate the robustness of the designed controller, we now add measurement noise on yaw 
rate. The sideslip angle responses under J-turn manoeuvre for uncontrolled system, controlled 
system, and observer are shown in Fig. 5. It can been seen from Fig. 5 that the sideslip angle of 
the controlled system is still approaching to the desired sideslip angle in spite of small effect 
caused by the measurement noise.  The required yaw moment is shown in Fig. 6, where big 
variations on the yaw moment caused by measurement noise can be observed. 
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Fig. 7. Sideslip angle responses under J-turn manoeuvre on a dry surface road with 
measurement noise. Dashed-dotted line is sideslip angle for uncontrolled system. Dotted 
line is sideslip angle for controlled system with the designed controller, and solid line is 
sideslip angle estimated from observer. 
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Fig. 8. Yaw moment under J-turn manoeuvre on a dry road with measurement noise. 
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from Fig. 3 that the estimated sideslip angle is converging to the real sideslip angle quickly 
even though there is big difference on the initial values of observer and vehicle model. Fig. 4 
shows the required yaw moment, which is within the defined saturation limit. As 
demonstrated by the simulation results, the designed observer based controller effectively 
improves the vehicle handling and stability performance with using yaw rate measurement. 
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Fig. 5. Sideslip angle responses under J-turn manoeuvre on a snow road with measurement 
noise. Dashed-dotted line is sideslip angle for uncontrolled system. Dotted line is sideslip 
angle for controlled system with the designed controller, and solid line is sideslip angle 
estimated from observer. 
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Fig. 6. Yaw moment under J-turn manoeuvre on a snow road with measurement noise. 
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rate. The sideslip angle responses under J-turn manoeuvre for uncontrolled system, controlled 
system, and observer are shown in Fig. 5. It can been seen from Fig. 5 that the sideslip angle of 
the controlled system is still approaching to the desired sideslip angle in spite of small effect 
caused by the measurement noise.  The required yaw moment is shown in Fig. 6, where big 
variations on the yaw moment caused by measurement noise can be observed. 
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Fig. 7. Sideslip angle responses under J-turn manoeuvre on a dry surface road with 
measurement noise. Dashed-dotted line is sideslip angle for uncontrolled system. Dotted 
line is sideslip angle for controlled system with the designed controller, and solid line is 
sideslip angle estimated from observer. 
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Fig. 8. Yaw moment under J-turn manoeuvre on a dry road with measurement noise. 
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To further validate the robustness of the designed controller, we now assume the vehicle is 
driving on a dry surface road (road friction is assumed as 0.9) with forward velocity 20 m/s. 
The sideslip angle responses and yaw moment are shown in Figs. 7 and 8, respectively. It 
can be seen the designed controller can achieve good performance with the limited yaw 
moment no matter the change of road condition. 
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Fig. 9. Sideslip angle responses under lane change manoeuvre on a dry road with 
measurement noise. Dashed-dotted line is sideslip angle for uncontrolled system. Dotted 
line is sideslip angle for controlled system with the designed controller, and solid line is 
sideslip angle estimated from observer. 
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Fig. 10. Yaw moment under lane change manoeuvre on a dry road with measurement noise. 
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Finally, a lane change manoeuvre is applied to validate the effectiveness of the designed 
controller. As shown in Fig. 9 on sideslip angle and Fig. 10 on yaw moment, similar 
conclusion can be obtained on the performance achieved by the designed controller. 

5. Conclusion 
In this chapter, the practical design of a robust direct yaw moment controller for vehicle to 
improve lateral dynamics stability and handling with considering tyre cornering stiffness 
uncertainties, actuator saturation, measurement noise, and estimation of sideslip angle is 
studied. A two-step procedure is used to solve the observer and controller design problem, 
which can further be expressed as LMIs and can be solved very efficiently using currently 
available software like Matlab LMI Toolbox. Numerical simulations are applied to check the 
performance of the designed controller. The results show that the designed controller can 
improve vehicle handling and stability regardless of the measurement noise, changes of 
road conditions and manoeuvres. Further study on this topic will consider parameter 
uncertainties such as mass, moment of inertia, and forward velocity, etc., and study the 
reflection of road friction on vehicle model with choosing the most appropriate premise 
variables and defining the optimal membership functions.  
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line is sideslip angle for controlled system with the designed controller, and solid line is 
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Fig. 10. Yaw moment under lane change manoeuvre on a dry road with measurement noise. 
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uncertainties, actuator saturation, measurement noise, and estimation of sideslip angle is 
studied. A two-step procedure is used to solve the observer and controller design problem, 
which can further be expressed as LMIs and can be solved very efficiently using currently 
available software like Matlab LMI Toolbox. Numerical simulations are applied to check the 
performance of the designed controller. The results show that the designed controller can 
improve vehicle handling and stability regardless of the measurement noise, changes of 
road conditions and manoeuvres. Further study on this topic will consider parameter 
uncertainties such as mass, moment of inertia, and forward velocity, etc., and study the 
reflection of road friction on vehicle model with choosing the most appropriate premise 
variables and defining the optimal membership functions.  
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1. Introduction 
Wastewater treatment issues are extremely important for humanity. Their consideration 
becomes more than a necessity, a responsibility and every producer must improve their 
treatment processes. The efficiency increasing of these processes has been done in two ways: 
1. by technological way - various types of treatment were developed during the past years 

and this domain has almost no technological secrets;  
2. by using control methods – which currently represent a real challenge for researchers.  
Wastewater treatment processes consist of a series of physical, chemical or biological 
processes that allow the separation between some particles (solid or dissolved, organic 
compounds, minerals etc.) and water, aiming to obtain a "clean" water able to meet certain 
standards for discharge or domestic/industrial consumption. In Europe, the water purity 
standards are established by the Directive no. 2000/60/EC. In the same time, the standards 
that are currently in use, defined by water law from February 3th, 1992, modified by the 
ordinance from February 2nd, 1998, are added to this directive. These rules define the 
maximum concentrations for each harmful compound from the wastewater. Generally the 
admissible concentrations are functions of the daily effluent flow.  
Currently, new rules are applied regularly to the wastewater treatment. Global indicators 
for treatment efficiency, such as COD (Chemical Oxygen Demand), BOD (Biochemical Oxygen 
Demand), TOC (Total Organic Carbon) and for nutrients removal (phosphorus, ammonia 
nitrogen, total nitrogen etc.), whose normative are increasingly stringent, are taken into 
account. New compounds such as pigments, heavy metals, organic compounds, chlorinated 
solvents etc. are also considered for removal. For the waters coming from different 
industries and to be discharged into nature, the treatment rules are not the same. They 
depend on the receiving water and the type of the industry from which the wastewater 
results. For example, in metallurgical industry the wastewater containing heavy metals 
dominates, unlike the food industry, where the water containing organic compounds 
prevails. 
Biological treatment processes are characterized by a number of specific features that make 
these processes real challenges for the specialists in control (Olsson & Newell, 1999): 
- the daily volume of wastewater treated can be huge; 
- the disturbances in the influent are enormous compared to most industries; 
- the influent must be accepted and treated, there is no returning it to the supplier; 
- the concentrations of nutrients (pollutants) are very small, even challenging sensors; 



 Robust Control, Theory and Applications 

 

576 

Mirzaei, M., Alizadeh, G., Eslamian, M. and Azadi, S. (2008). An optimal approach to 
nonlinear control of vehicle yaw dynamics, Proc. Instn. Mech. Engrs. Part I: J. 
Systems and Control Engineering Vol. 222, 217-229. 

Mirzaei, M. (2010). A new strategy for minimum usage of external yaw moment in vehicle 
dynamic control system, Transportation Research Part C: Emerging Technologies Vol. 
18, No. 2, 213–224. 

Tanaka, K. andWang, H. O. (2001). Fuzzy control systems design and analysis: A linear matrix 
inequality approach, John Wiley & Sons, Inc., New York. 

Yang, X., Wang, Z. and Peng, W. (2009). Coordinated control of AFS and DYC for vehicle 
handling and stability based on optimal guaranteed cost theory, Vehicle System 
Dynamics, Vol. 47, No. 1, 57-79 

Zheng, S.; Tang, H., Han, Z. and Zhang, Y. (2006). Controller design for vehicle stability 
enhancement, Control Engineering Practice, Vol. 14, 1413-1421 

27 

QFT Robust Control of  
Wastewater Treatment Processes 

Marian Barbu and Sergiu Caraman 
”Dunarea de Jos” University of Galati 

Romania 

1. Introduction 
Wastewater treatment issues are extremely important for humanity. Their consideration 
becomes more than a necessity, a responsibility and every producer must improve their 
treatment processes. The efficiency increasing of these processes has been done in two ways: 
1. by technological way - various types of treatment were developed during the past years 

and this domain has almost no technological secrets;  
2. by using control methods – which currently represent a real challenge for researchers.  
Wastewater treatment processes consist of a series of physical, chemical or biological 
processes that allow the separation between some particles (solid or dissolved, organic 
compounds, minerals etc.) and water, aiming to obtain a "clean" water able to meet certain 
standards for discharge or domestic/industrial consumption. In Europe, the water purity 
standards are established by the Directive no. 2000/60/EC. In the same time, the standards 
that are currently in use, defined by water law from February 3th, 1992, modified by the 
ordinance from February 2nd, 1998, are added to this directive. These rules define the 
maximum concentrations for each harmful compound from the wastewater. Generally the 
admissible concentrations are functions of the daily effluent flow.  
Currently, new rules are applied regularly to the wastewater treatment. Global indicators 
for treatment efficiency, such as COD (Chemical Oxygen Demand), BOD (Biochemical Oxygen 
Demand), TOC (Total Organic Carbon) and for nutrients removal (phosphorus, ammonia 
nitrogen, total nitrogen etc.), whose normative are increasingly stringent, are taken into 
account. New compounds such as pigments, heavy metals, organic compounds, chlorinated 
solvents etc. are also considered for removal. For the waters coming from different 
industries and to be discharged into nature, the treatment rules are not the same. They 
depend on the receiving water and the type of the industry from which the wastewater 
results. For example, in metallurgical industry the wastewater containing heavy metals 
dominates, unlike the food industry, where the water containing organic compounds 
prevails. 
Biological treatment processes are characterized by a number of specific features that make 
these processes real challenges for the specialists in control (Olsson & Newell, 1999): 
- the daily volume of wastewater treated can be huge; 
- the disturbances in the influent are enormous compared to most industries; 
- the influent must be accepted and treated, there is no returning it to the supplier; 
- the concentrations of nutrients (pollutants) are very small, even challenging sensors; 



 Robust Control, Theory and Applications 

 

578 

- the process depends on microorganisms, which have a definite mind of their own; 
- wastewater treatment processes are very complex, strongly non-linear and characterized 

by uncertainties regarding its parameters (Goodman & Englande, 1974). 
In the literature there are many models that try to capture as closely as possible the 
evolution of the wastewater treatment processes with activated sludge (Henze et al., 1987, 
1995, 2000). The modelling of these processes is made globally, considering the nonlinear 
dynamics, but trying in the same time to simplify the models for their use in control (Barbu, 
2009). One can state that the problem of wastewater treatment process control is difficult 
due to the factors mentioned before. The low repeatability rate, slow responses and the lack 
or high cost of the measuring instruments for the state variables of bioprocesses (biomass 
concentration, COD concentration etc.) also contribute to the difficulty of wastewater 
treatment process control. Therefore advanced and robust control algorithms that usually 
include in their structure state and parameter observers are currently used to control these 
processes. 
Accordingly to (Larsson & Skogestad, 2000) two approaches in choosing the process control 
structure are taken into consideration: the approach oriented to the process and the one 
based on mathematical model. The first approach assumes the separated control of the main 
interest variables: dissolved oxygen concentration, nitrate and phosphate. One of the major 
and oldest problems encountered in wastewater treatment processes with direct impact on 
performance requirements is the dissolved oxygen concentration control. One can state that 
a satisfactory level of the dissolved oxygen concentration allows the developing of the 
microorganism’ populations (the sludge) used in the process (Olsson, 1985), (Ingildsen, 
2002). Taking into account the importance of this problem, there are many approaches 
regarding the dissolved oxygen control in the literature: PI and PID-control, fuzzy logic, 
robust control, model based control etc. (Garcia-Sanz et al., 2008), (Olsson & Newell, 1999). 
Recently the control problem of nitrate and phosphate level also became a priority. The 
control based on mathematical model of the wastewater treatment process has known many 
developing, depending on the type of the mathematical model used in the control algorithm 
design, as in the case of state estimators. So, the model described in (Olsson & Chapman, 
1985) allowed the use of classic and modern techniques. It can be mentioned the classic 
structures of PI and PID type (Katebi et al., 1999) where the non-linear model linearized 
around an operating point is used for controller design, up to exact linearizing control, 
multivariable or in an adaptive version together with a state and parameter estimator 
(Nejjari et al., 1999). The use of this model leads to the design of an indirect control structure 
of the process. It can be concluded that the control of the dissolved oxygen concentration in 
the aerated tank practically assures a satisfactory level for the organic substrate. This 
problem - the control of the dissolved oxygen concentration - has been approached with 
good results in the control of a non-linear organic substrate removal process using multi-
model techniques (Barbu et al., 2004).   
The use of ASM1 model (Activated Sludge Model 1) determined by a work group belonging to 
IAWQ (International Association of Water Quality) makes the control problem more difficult 
and the results are less numerous. Based on ASM1 model in (Brdys et al., 2001a) a non-linear 
predictive control technique for the indirect control of organic substrate through the control 
of dissolved oxygen concentration has been used. For the same model (Brdys et al., 2001b) 
proposes a hierarchic control structure. This structure contains three levels: a higher level 
where a stable trajectory for the process on a time horizon is calculated, a mean level where 
the optimization of the trajectories for dissolved oxygen concentration, the recycled 
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activated sludge flow and the recycled nitrate flow takes place and the lower level where the 
control of dissolved oxygen concentration based on the setpoint imposed by the mean level 
is done. Another approach that now is very appropriated is artificial intelligence based 
control. It uses the knowledge and the expertise of the specialists about the process 
management. Expert systems, fuzzy and neuro-fuzzy systems have been used for the 
wastewater treatment processes control (Manesis et al., 1998), (Yagi et al., 2002).  
In the present chapter the authors propose the use of a robust control method (QFT – 
Quantitative Feedback Theory) for wastewater treatment processes control. Generally, 
wastewater treatment processes, as well as biotechnological processes, are characterized by 
parametric uncertainties that are determined by the operating conditions and the biomass 
growth. QFT method is a linear method frequently used for the processes described by 
variable parameter models. In this case, the transfer function with variable parameters will 
include both modifications caused by changing the operating point and parametric 
uncertainties that affect the process.  
The chapter is structured as follows: the second section presents a few aspects regarding 
wastewater treatment process modelling (subsection 2.1 describes the wastewater treatment 
pilot plant with which some experiments were carried out in different operating conditions: 
different types of wastewaters, different concentrations of the influent and biomass etc. 
aiming to control the dissolved oxygen concentration in the aerated tank despite the 
variability of the operating conditions; in subsection 2.2 the simplified version of ASM1 
model for ammonium removal is presented); the third section deals with the theoretical 
aspects regarding QFT robust control method; the fourth section shows the results obtained 
in the case of two control applications: the first is the control of dissolved oxygen 
concentration (experimentally validated) and the second is the control of ammonium 
concentration in the wastewater (validated through numerical simulations). In both control 
applications the robust control method QFT was used. The last section is dedicated to the 
conclusions. 

2. A few aspects regarding wastewater treatment process modelling 
This section deals with the wastewater treatment pilot plant used for carrying out the 
experiments for the design of dissolved oxygen robust control loop (subsection 2.1) and with 
simplified version of ASM1 model used for the ammonium removal (subsection 2.2). 

2.1 Wastewater treatment pilot plant 
A wastewater treatment pilot plant which is completely controlled by the computer (Figure 
1) was conceived for studying and implementing various control algorithms in a national 
research project managed by “Dunarea de Jos” University of Galati.  
The objective of the pilot plant was the efficiency improvement of the biological treatment 
processes of various types of wastewaters in aerobic conditions using control methods. This 
concept leads to a flexible design which allows us to interchange easily the treatment 
profiles (Barbu et al., 2010). 
The feeding tank [1] has the capacity of 100 L and the ability to maintain the wastewater 
inside at almost constant characteristics due to its refrigeration equipment (1 – 6°C). The 
feeding flow can be strictly controlled through a peristaltic pump with a 12 Lph maximum 
flow. Before being pumped into the tanks the wastewater can be heated in a small expansion 
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tank. The aeration tank [2] is the heart of the biological treatment process. Here the 
wastewater is mixed with the activated sludge and to fulfil the process it is also mixed with 
air. The air is bubbled into the aeration tank through a set of air ejectors which have also a 
mixing role. To be able to control the medium homogeneity the aeration tank is also 
equipped with a mechanical paddle mixer with three working regimes: 60rpm, 180rpm and 
300rpm. The aeration tank working volume is 35L. The treatment temperature can be on-line 
monitored and controlled through a temperature probe and an electric heating resistance 
both mounted inside the tank. The pH can also be on-line monitored and controlled through 
a pH electrode connected to a pH controller and two peristaltic pumps, one for acid and the 
other for base (acid tank [3] and base tank [4]). The turbidity can be on-line monitored with 
a dedicated optical electrode. The evolution of biomass can be indirectly estimated through 
the turbidity values; the correlation between the two variables is usually made off-line by 
measuring the sludge dry matter. The aeration tank is also provided with an ORP (oxide-
reduction potential) transducer. ORP potential can be correlated, in some cases, with the 
COD of the wastewater. The anoxic tank [5] can be used in the advanced nitrification – 
denitrification processes or it can be used in a sludge stabilization stage. In our experiments 
this tank remained unused. The sludge flocks formed in the aeration tank are allowed to 
settle in the clarifier [6]. This tank is provided with an ultrasonic level transducer which 
gives the flexibility to work at different retention times according to the chosen treatment 
scheme. From the bottom of the clarifier the settled sludge is recycled with a peristaltic 
pump back into the aeration tank. 
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[4] [3] 

[5] 

[6] 

 
Fig. 1. Wastewater treatment pilot plant 
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One of the most important variables in an aerobic treatment process is the DO (dissolved 
oxygen) concentration which is controlled by a cascade control structure. The cascade control 
system contains an inner loop (air flow control loop) that has a fast dynamics and an outer 
loop (the DO control loop) that has a slower dynamics. The air flow is on-line measured with a 
flow meter and it is controlled with an electric continuous valve. The DO concentration is 
on-line measured with an electrochemical electrode mounted in the aeration tank and it is 
controlled using the aeration rate as a control variable. The transducer signals are captured 
by a PCI data acquisition board. A HMI (Human-Machine Interface) facilitates the process 
control and monitoring. The data can be stored in a data base and processed thereafter. 

2.2 Mathematical model of the wastewater treatment processes that include the 
nitrogen removal 
The most popular model in literature of the wastewater treatment processes that includes 
the carbon and nitrogen removal is ASM1, proposed in 1987 (Henze et al., 1987). The model 
is extremely complex, it captures eight phenomena occurring in the anoxic and aerated 
reactors: 
 

P1 Aerobic growth of heterotrophic biomass - the process converts readily 
biodegradable substrate, dissolved oxygen and ammonium in the 
heterotrophic biomass; 

P2 Anoxic growth of heterotrophic biomass – the process converts readily 
biodegradable substrate, nitrate and ammonium in heterotrophic 
biomass; 

P3 Aerobic growth of autotrophic biomass – the process converts the 
dissolved oxygen, and ammonium in autotrophic biomass; 

P4 Heterotrophic decomposition - heterotrophic biomass is decomposed 
into slowly biodegradable substrate and other particles; 

P5 Autotrophic decomposition - autotrophic biomass is decomposed into 
slowly biodegradable substrate and other particles; 

P6 Ammonification - biodegradable organic nitrogen is converted to 
ammonium; 

P7 Hydrolysis of the organic matter - slowly biodegradable substrate is 
converted into readily biodegradable substrate; 

P8 Hydrolysis of organic nitrogen - solid biodegradable organic nitrogen 
is converted into soluble biodegradable organic nitrogen. 

Table 1. The eight phenomena occurring in the anoxic and aerated reactor 

The main deficiency of the model ASM1 is its complexity, making it virtually useless in 
control issues. A simplified version of the model ASM1 is proposed in (Jeppsson, 1996). 
Thus, in this version, only the significant variables for an average time scale (several hours 
to several days) are considered. Therefore, variables with a slow variation in time are 
considered constant, while those with a fast variation will be neglected. Based on these 
considerations, the processes of autotrophic and heterotrophic growth could be seen as slow 
events, so the processes denoted by P4 and P5 can be neglected within the model.  
The ammonification and hydrolysis processes (P6, P7 and P8) will also be neglected, 
because under normal operating conditions these processes have a constant evolution.  
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P6 Ammonification - biodegradable organic nitrogen is converted to 
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The main deficiency of the model ASM1 is its complexity, making it virtually useless in 
control issues. A simplified version of the model ASM1 is proposed in (Jeppsson, 1996). 
Thus, in this version, only the significant variables for an average time scale (several hours 
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The model ASM1 contains 13 state variables, as follows: 
 

SI Soluble inert organic matter; 
SS Readily biodegradable soluble substrate; 
XI Various independent particles of inert organic matter and other 

particles; 
XS Readily biodegradable soluble substrate; 

XB,H Activated heterotrophic biomass; 
XB,A Activated autotrophic biomass; 
XP Different particles resulting from the biomass decomposition; 
SO Dissolved oxygen concentration 

SNO Soluble nitrate; 
SNH Soluble ammonium; 
SND Soluble biodegradable organic nitrogen; 
XND Various particulate of biodegradable organic nitrogen; 
SALK Alkalinity 

Table 2. State variables of ASM1 model 

As a consequence, from the eight processes initially modelled by ASM1, only three of them 
will be used in the simplified model. The treatment process will be modelled as a system 
with two tanks, an anoxic one and an aerated one. The assumption that the amount of 
dissolved oxygen concentration in the anoxic tank is equal to zero is done: (1) 0OS = . In 
these circumstances, the simplified ASM1 model is described by the following equations: 
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Observation: index 1 refers to the anoxic tank and index 2 – to the aerated tank. 
Further on the input and output process variables are presented: 
- input variables: internal recirculating flow, Qi , dissolved oxygen concentration in the 

aerated tank, (2)OS , and external carbon dosage, SdosageS . 
- output variables (measurable variables): ammonium concentration at the output, (2)NHS , 

(equal to ammonium concentration from the aerated tank) and nitrate concentration at 
the output, (2)NOS , (equal to nitrate concentration from the aerated tank). 

The two process output variables are quality variables too. Thus the purpose of the control 
structure will be the obtaining of an effluent having an output ammonium concentration 
less than 1 gN/m3 and an output nitrate concentration less than 6 gN/m3. 
For the model described by equations (1) – (12) the following parameters were taken into 
consideration: 

1V =2000 m3, 2V =3999 m3, Q =18446 m3/day, ,NH inS =30 gN/m3, gη =0.8, XBi =0.08, 

,S inS =115+ SdosageS  gCOD/m3, NHK =1 gNH3–N/m3, NOK =0.5 gNO3–N/m3, AY =0.24, 

HY =0.67, ,O HK =0.2 gO2/m3, ,O AK =0.4 O2/m3, SK =10 gCOD/m3, Aμ =0.6 day-1,  

Hμ =5 day-1, ,B AX =110 gCOD/m3, ,B HX =2200 gCOD/m3. 
Figure 2 presents the simulation results regarding the free dynamics of the simplified ASM1 
model. The simulation was done considering the following initial conditions: (1)(0)NHS =10 
gN/m3, (2)(0)NHS =9.7 gN/m3, (1)(0)NOS =0.9 gN/m3, (2)(0)NOS =2.15 gN/m3, 

(1)(0)SS =2.8 gCOD/m3, (2)(0)SS =0.9 gCOD/m3. 
The following values of the input variables were also taken into consideration:        

(2)OS =1.5 mg/l, iQ =40000 m3/day, SdosageS =40 gCOD/ m3. 

3. Robust control of monovariable processes using QFT method 
QFT is a robust control method proposed by Horowitz in 1973 and it was designed for the 
control of the processes described by linear models with variable parameters (Horowitz, 
1973). QFT is a technique that uses Nichols frequency characteristics aiming to ensure a 
robust design over a specified uncertainty area of the process. The method can be also 
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applied for nonlinear processes through their linearization around several operating points. 
It results a linear model with variable parameters describing the nonlinear process 
behaviour in every point of the operating area. The limits of variation of the linear model 
parameters obtained through linearization can be extended to incorporate the effect of the 
parametric uncertainties that affect the nonlinear process. For this linear model a robust 
controller using QFT method is then designed. 
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Fig. 2. Simulation results of the simplified ASM1 model  

In most control cases, the evolution of the output variable, ( )y t , of the closed-loop system 
must be bounded by an upper and a lower limit, as presented in Figure 3, where both limits 
of the response to a step signal were shown. QFT method ensures the operation of a linear 
system with variable parameters within the imposed domain of evolution. 
It is considered a process described by a variable parameter transfer function of the 
following type: 

 ( ) ( )
KaP s
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+
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where parameters K and a varies due to the operating conditions, so [ ]min max,K K K∈  and 

[ ]min max,a a a∈ . 
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QFT method consists in the synthesis of a compensator G(s) and a prefilter F(s) so that the 
behaviour of the closed-loop system is between the bounds imposed to the system. Figure 4 
presents the control structure: 
 

 
Fig. 4. Compensated linear system 
The steps of robust design using QFT method for a tracking problem are the following 
(Houpis & Rasmussen, 1999): 
Step 1. The synthesis of the desired tracking model. 
The synthesis of the tracking model consists in defining the performance specifications 
through two invariant linear transfer functions, which set upper and lower design limits.  
In this way a series of closed-loop system performances which will result from the design 
are imposed. The considered performances are the rising time, the response time and the 
overshoot. The tracking specifications are referring to the tracking system which, in  
closed-loop, has the following transfer function: 
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Since the linear model parameters change depending on the operating regime, the closed-
loop system characteristics will have some variations. One imposes that these changes be 
within certain limits defined by an „upper“ and „lower“ gain characteristic: 
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 ( ) ( ) ( )ri u rsH j H j H jω ≤ ω ≤ ω  (15) 

in which, usually, the upper tracking model corresponds to the response of a second order 
system with overshoot, while the lower tracking model corresponds to a first order step 
response. Thus ( )riH s  and ( )rsH s have the expressions (Houpis & Rasmussen, 1999): 
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In (16) and (17) it has to take into account the constraint regarding the steady transfer 
coefficient, that always must be equal to 1. Thus, at each frequency iω  a bandwidth ( )u ijδ ω  
is provided, as shown in Figure 5. 
In the transfer function of the upper limit a zero close to the origin could be introduced, with 
an effect as low as possible on the response time. This zero produces the increasing of the 
bandwidth ( )u ijδ ω  at high frequencies. The bandwidth can be increased further by adding a 
pole near the origin. This pole does not significantly modify the response time of the lower 
limit transfer function. By introducing these additional elements one seeks for an easier 
fitting of the parametric uncertainties into the higher frequencies domain and thus the 
problem of prefilter synthesis ( )F s  is simplified. 
Step 2. Description of the linearized process through a set of N invariant linear models, 

which define the parametric uncertainty of the model. 
The linearized process is described through a set of N invariant linear models which define 
the parametric uncertainty of the model. The parametric uncertainties of the linear model 
are determined by the range of operating and parametric uncertainties of the nonlinear 
model. 
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Step 3. The obtaining of the templates at specified frequencies which graphically describe 
the parametric uncertainty area of the process on Nichols characteristic. 

The N characteristics (gain and phase) of the considered models are represented on Nichols 
diagram for every frequency value. These N points define a closed contour, named template, 
which limits the variation range of parametric uncertainty.  
Step 4. Selection of the nominal process, 0( )P s . 
Although any process can be chosen, in practice the process whose point on the Nichols 
characteristic represents the bottom left corner of the templates for all frequencies used in 
the design procedure is chosen. 
Step 5. Determination of the stability contour – the contour U – on Nichols characteristic. 
The performance specifications referring to stability and robust tracking define the limits 
within which the transfer function of the tracking system can vary, when the linear model 
varies in the uncertainty area. The stability of the feedback loop, regardless of how the 
model parameters vary in the uncertainty region is ensured by the stability specifications. 
The transfer function of the closed-loop system is: 

 ( ) ( ) ( )
( ) ( )

( )
( )0 1 1

G s P s L s
H s

G s P s L s
= =

+ +
 (18) 

One imposes that in the considered bandwidth, the gain characteristics associated to the 
closed-loop transfer function to not exceed a value of the upper limit (Horowitz, 1991): 
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Fig. 6. Stability contours corresponding to the model given by equation (13) 
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In these conditions, a region that cannot be penetrated by the templates and the 
transmission functions L(jω) for all frequencies ω is established on Nichols characteristic. 
This region is bounded by the contour LM . The stability margins are determined using a 
frequency vector covering the area of interest. These margins differ from one frequency to 
another. Figure 6 presents the stability margins of the linear model given by equation (13). 
Step 6. Determination of the robust tracking margins on Nichols characteristic. 
The robust tracking margins must be chosen such that the placing of the loop 
transmission on this margin or above it ensures the robust tracking condition imposed by 
equation (15) to be met at every chosen frequency. This practically means that for each 
frequency the difference between the gain of the extreme points from the process template 
must be less than or equal to the maximum bandwidth ( )u ijδ ω . Figure 7 illustrates the 
robust tracking margins of the linear model given by equation (13) with the tracking 
models (16) and (17). 
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Fig. 7. Robust tracking margins corresponding to the model given by equation (13) 

Step 7. Determination of the optimal margins on Nichols characteristics. 
The optimal tracking margins are obtained from the intersection between the stability contours 
and the robust tracking margins for the frequencies considered of interest, taking into 
account the constraints that are imposed to the loop transmission. Thus the stability contour 
resulted at a certain frequency cannot be violated, so only the domains from the tracking 
margin that are not within the stability boundaries (18) will be taken into consideration. 
Figure 8 illustrates the optimal margins of the linear model given by equation (13). 
Step 8. Synthesis of the nominal loop transmission, 0 0( ) ( ) ( )L s G s P s= , that satisfies the 

stability contour and the tracking margins. 
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Starting from the optimal tracking margins, the transmission of the nominal loop is also 
represented on Nichols diagram, corresponding to the nominal model, 0( )P s , considering 
initial expression of the controller ( )G s . The transmission loop is designed such as not to 
penetrate the stability contours and the gain values must be kept on or above the robust 
tracking margins corresponding to the considered frequency. Figure 9 presents the optimal 
margins and the transmission on the nominal loop which has been obtained in its final form. 
It can be noticed that the transmission values within the loop, for the six considered 
frequencies, are distinctly marked, with respect to the condition that the first four values 
must be placed above the corresponding tracking margins. 
Step 9. Synthesis of the prefilter F(s). 
Figure 10 presents Bode characteristic of the closed-loop system without filter. It can be 
noticed that the band defined by the tracking limits of the closed-loop system (solid lines) is 
smaller than the band defined by performance specification limits (dotted lines) but Bode 
characteristic also evolves outside limits imposed by the performance specifications. In 
order to bring the system within the envelope defined by the performance specification 
limits, the filter F(s) is used. Figure 11 presents Bode characteristic of the closed-loop system 
with compensator and prefilter. It can be seen that the system respects the performance 
specifications of robust tracking (the envelope defined by solid lines is inside the envelope 
defined by dotted lines). Thus the robust closed-loop system respects the stability and 
robust specifications in range of variation of the model parametric uncertainties. 
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4. Robust control of the wastewater treatment processes using QFT method 
The control structure of a wastewater treatment process contains a first level with local 
control loops (temperature, pH, dissolved oxygen concentration etc.), which is intended to 
establish the nominal operating point, over which is superposed a second control level 
(global) for the removal of various pollutants such as organic substances, ammonium etc. 
For this reason the models used for developing control structures range from the simplest 
models for local control loops, up to very complicated models such as ASM models, as it is 
mentioned in section 1. Thus, subsection 4.1 will present the identification of dissolved 
oxygen concentration control loop and subsection 4.2 will present the control of ammonium 
concentration using the simplified version of ASM1 model. All the design steps of QFT 
algorithm were implemented using QFT Matlab® toolbox. 

4.1 Dissolved oxygen concentration control in a wastewater treatment plant with 
activated sludge 
To identify the dissolved oxygen concentration control loop a sequence of steps of various 
amplitudes was applied to the control variable that is the aeration rate. Figure 12 presents 
the sequence of steps applied to the dissolved oxygen concentration control system, while 
Figure 13 shows the evolution of the dissolved oxygen concentration. Analyzing the results 
presented in Figure 13 it can be concluded that the evolution of the dissolved oxygen 
concentration corresponds to the evolution of a first order system. At the same time, it can 
be seen in the same figure that the evolution of the dissolved oxygen concentration is 
strongly influenced by biomass and organic substrate evolutions. Thus, depending on 
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Fig. 12. Step sequence of the control variable: aeration rate 

the oxygen consumption of microorganisms, the dissolved oxygen concentration from the 
aerated tank has different dynamics, each corresponding to different parameters of a first-
order system. 
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Fig. 13. Evolution of the dissolved oxygen concentration in the case when the aeration rate 
evolves according to Figure 12 
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In addition, considering that the microbial activity from the wastewater treatment process is 
influenced by the environmental conditions under which the process unfolds (temperature, 
pH etc.) and the type of substrate used in the process (in the pilot plant will be used organic 
substrates derived from milk and beer industries, substrates having different biochemical 
composition) it results that more transfer functions are necessary, aiming to model the 
evolution of the dissolved oxygen concentration in the aerated tank depending on the 
aeration rate. One possibility to model the dissolved oxygen concentration depending on the 
aeration rate is to take into consideration a first order transfer function with variable 
parameters (Barbu et al., 2010): 

 ( )
1

KH s
Ts

=
+

 (20) 

where, as a result of the identification experiments performed on data collected from 
different experiments carried out with the pilot plant, it was taken into consideration that 
the gain factor K varies in the range [0.8 1.4]K∈  and the time constant of the first-order 
element varies in the range [1700 2500]T ∈ . 
The closed-loop system should have a behaviour between the two imposed limits, that give 
the accepted performance area. Taking into account the variation limits of the linear model 
parameters considered before, the two tracking models (the lower and upper bounds) were 
established: 

 
10( 0.1)( )

( 0.007  0.007)rs
sH s

s j
+

=
+ ± ⋅

 (21) 

 
1( )

(300 1)(310 1)(30 1)riH s
s s s

=
+ + +

 (22) 

Based on the linear model with variable parameters, given by equation (20), and on the 
tracking models, given by equations (21) and (22), all the steps provided in the design 
methodology using QFT robust method for a setpoint tracking problem has been completed. 
The transfer functions of the controller and prefilter are: 
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Analyzing the controller transfer function ( )G s , given by equation (23), it can be noticed 
that it also includes an integral component. Since the control variable is limited to a higher 
value given by the air generator used to provide the aeration - in the case of this pilot plant: 
25 l/min - and the controller includes an integral component, it was necessary to introduce 
an antiwind-up structure. This structure prevents the saturation of the control variable (the 
achievement of some unacceptable values for the integrator), helping to improve the 
dynamic regime of the controller. 
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Fig. 14. Evolution of the dissolved oxygen concentration: solid line – pilot plant, dotted line 
– setpoint 
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Fig. 15. Evolution of the control variable 
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The QFT proposed control structure was tested in the case of two experiments. The purpose 
was to observe the behaviour of the QFT controller in the case of two types of different 
wastewaters and when the process is in different stages of evolution from the biomass 
developing point of view. The first experiment was made considering the wastewater from 
the milk industry. Within this experiment, values of the dissolved oxygen setpoint ranging 
between 1mg/l and 3mg/l were taken into consideration. Figure 14 presents the evolution 
of the output variable (the DO concentration) and Figure 15 presents the evolution of the 
control variable (the air flow). The second experiment was made considering wastewater 
from the beer industry and in this experiment the biomass concentration developed in the 
aerated tank was monitored too. The results obtained in this experiment are shown in 
Figures 16, 17 and 18. 
As a conclusion, the results obtained in the present chapter are very good in both cases, the 
QFT robust control structure succeeding to keep the dissolved oxygen setpoint imposed in 
the case of both types of wastewater considered in the experiments, from beer and milk 
industry, without being affected by the modification of the microorganism’s concentration 
developed in the aerated tank during the experiments. This justifies the choice to use a 
robust controller as is the one designed by QFT method. At the same time, from the analysis 
of the evolution diagrams of the aeration rate and the dissolved oxygen concentration, it can 
be noticed that for maintaining a constant setpoint of the dissolved oxygen concentration in 
the aerated tank, the aeration rate will be directly influenced by the concentration of 
microorganisms that consume oxygen in the aerated tank. 
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Fig. 16. Evolution of the dissolved oxygen concentration: solid line – pilot plant, dotted line 
– setpoint 
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Fig. 16. Evolution of the dissolved oxygen concentration: solid line – pilot plant, dotted line 
– setpoint 
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Fig. 17. Evolution of the control variable 
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Fig. 18. Evolution of the biomass concentration 
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4.2 QFT multivariable control of a biological wastewater treatment process using 
ASM1 model 
Within this section the robust linear control method QFT is used for the control of a 
nonlinear wastewater treatment process with activated sludge. The considered model for 
the wastewater treatment process is a simplified version of ASM1 model which has been 
presented in subsection 2.2. For this purpose the non-linear model was linearized in 
different operating points, resulting a linear model with variable parameters that 
approximates the behaviour of the non-linear process in all its operating points. The control 
variables of the multivariable process are: internal recycled flow, iQ , and dissolved oxygen 
concentration from the aerated tank, (2)OS . The output variables are the following: 
ammonium concentration at the output, (2)NHS , equal to ammonium concentration from 
the aerated tank and nitrate concentration at the output, SNO(2), equal to nitrate 
concentration from the aerated tank. The purpose of the control structure is to obtain an 
effluent having an ammonium concentration at the output under 1 gN/m3 and a nitrate 
concentration at the output under 6 gN/m.3 
In (Barbu & Caraman, 2007) an analysis of the channel interaction, using RGA (Relative 
Gain Array) method was performed. This analysis indicates the fact that a control structure 
based on decentralized loops, considering as main channels – the control channels and as 
secondary channels – the disturbance channels, could be adopted. From the same analysis it 
results the following control channels: the dissolved oxygen concentration from the aerated 
tank – the ammonium concentration at the output ( (2) (2)OS NH− ) and the recycle rate – the 
nitrate concentration at the output ( - (2)iQ NO ). The secondary channels with a very weak 
interaction between them are: the recycle rate – the nitrate concentration at the output 
( - (2)iQ NH ) and the dissolved oxygen concentration from the aerated tank – the nitrate 
concentration at the output ( (2) (2)OS NO− ). 
The non-linear wastewater treatment process can be linearized taking into consideration 
three main functioning points (Barbu & Caraman, 2007):  
1. rain - ,NH inS =25 gN/m3, (2)OS =1.5 mg/l, iQ =30000 m3/day; 
2. normal - ,NH inS =30 gN/m3, (2)OS =1.5 mg/l, iQ =40000 m3/day; 
3. drought - ,NH inS =35 gN/m3, (2)OS =2 mg/l, iQ =50000 m3/day. 
The transfer functions obtained in the case of the three operating regimes were simplified 
through a frequency analysis and they have the following expressions: 
1. Rain: 

 (2) (2)
23.664( )

115OS NHP s
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+
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Fig. 17. Evolution of the control variable 
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Fig. 18. Evolution of the biomass concentration 
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Taking into account the transfer functions obtained for the three operating regimes, it can be 
seen that the main channel, the dissolved oxygen concentration from the aerated tank – the 
ammonium concentration at the output ( (2) (2)OS NH− ) can be described by the following 
transfer function with variable parameters: 
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The robust control structure proposed in this chapter has been tested trought numerical 
simulation in the case of each of the three operating regimes. In Figures 19 and 20 the 
simulation results for the two extreme operating regimes (rain and drought) are presented. 
It was also tested an operating sequence when the three operating regimes alternate, as is 
presented in Figure 21. All this figures show that the robust multivariable control structure 
is able to track the setpoints imposed for the output variables and the biodegradable 
substrate is efficiently treated. This is achieved despite the fact that the multivariable 
nonlinear process modifies its operating point, both in terms of the inflow and the organic 
matter load. 
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5. Conclusions 
The present chapter deals with the robust control of wastewater treatment processes with 
activated sludge using QFT method aiming to increase their efficiency. The paper shows 
that QFT method is suitable for the control of these processes, taking into account the 
complexity, nonlinearity and the high degree of uncertainty that characterize biological 
wastewater treatment processes. QFT robust control method proved its effectiveness to be 
applied with good results both in local control loops, such as dissolved oxygen 
concentration control loop, as well as in the overall biological treatment algorithm, such as 
the control of ammonium concentration from the wastewater. 
In order to design the QFT control law in the case of dissolved oxygen concentration control 
an analysis of the control loop dynamics was performed. It was concluded that the process 
can be approximated by linear models in different operating points. The testing of QFT 
control structure was done on a pilot plant for biological wastewater treatment, also 
presented in the paper. 
In order to design the QFT control law in the case of the control of ammonium concentration 
in the effluent a simplified version of the ASM1 model was used. This model was linearized 
in three relevant operating points (rain, drought and normal). For each linear model the 
corresponding control structure has been designed. The results were validated through 
numerical simulation. 
In both applications developed in this work it can be seen that QFT control structures offers 
good results, that is the output variables are tracking the imposed setpoints despite the fact 
that the nonlinear process modifies its operating point, both in terms of the inflow and the 
organic matter load. 
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Control of a Simple Constrained MIMO System 
with Steady-state Optimization 
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1. Introduction     
This chapter covers two issues (along many others) relating to complex systems control. The 
main theme is connected with control of Multi-Input Multi-Output (MIMO) systems. If the 
controlled system has more inputs than outputs (further labelled as MI+MO) there exist 
many combinations of the inputs for one combination of the outputs. We are able to reach 
desired system outputs (the main control aim) with many input combinations. This situation 
is very interesting from practical point of view. Usually optimal inputs combination exists – 
from some point of view. This combination leads for example to minimum energy 
consumption, maximum production efficiency or minimum machinery load etc. In practice 
the set of possible inputs combination is reduced because of constrains and the best feasible 
combination lies very often on constrain. It would be suitable to extend the controller design 
to include supplementary demand simultaneously with the fulfilment of the main control 
aim – to ensure best feasible input combination, too. The common advanced controller like 
LQ controller has no problem with MIMO system which has different number of inputs and 
outputs in contrary to standard controllers designed as decentralized control. However the 
constrains respecting within the standard LQ controller design is not possible. Another 
advanced controller – Model Predictive Controller (MPC) allows constrains handling 
(Camacho & Bordons, 1999), (Maciejowski, 2002), (Rossiter, 2003) but the standard controller 
design doesn’t solve which combination of inputs will occur in the steady-state in case of 
system with more inputs than outputs. 
One possibility how to achieve optimal inputs combination is to formulate one term of the 
cost function connected with inputs penalization as a deviation from ideal inputs 
combination. This approach is used e.g. in (Novák, 2009) but according to the opinion of 
authors this approach isn’t as universal as following proposal. We have suggested adding 
another term into the cost function of predictive controller – terminal state in a form of the 
deviation from desired terminal state. The desired terminal state is chosen that it 
corresponds to feasible optimal inputs combination and a value of the set-point at the end of 
the control horizon. Authors call this technique Steady-state optimization because the 
influence of the terminal state deviation comes to light namely in steady-state when the 
main control aim (desired output combination) is or has been already fulfilled - see also 
(Dušek & Honc, 2009). The controller ensures both main and supplementary control aims – 
achievement of desired outputs and inputs moving to an optimal combination. An 
incorporation of the terminal state into the cost function has also another advantage. The 
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1. Introduction     
This chapter covers two issues (along many others) relating to complex systems control. The 
main theme is connected with control of Multi-Input Multi-Output (MIMO) systems. If the 
controlled system has more inputs than outputs (further labelled as MI+MO) there exist 
many combinations of the inputs for one combination of the outputs. We are able to reach 
desired system outputs (the main control aim) with many input combinations. This situation 
is very interesting from practical point of view. Usually optimal inputs combination exists – 
from some point of view. This combination leads for example to minimum energy 
consumption, maximum production efficiency or minimum machinery load etc. In practice 
the set of possible inputs combination is reduced because of constrains and the best feasible 
combination lies very often on constrain. It would be suitable to extend the controller design 
to include supplementary demand simultaneously with the fulfilment of the main control 
aim – to ensure best feasible input combination, too. The common advanced controller like 
LQ controller has no problem with MIMO system which has different number of inputs and 
outputs in contrary to standard controllers designed as decentralized control. However the 
constrains respecting within the standard LQ controller design is not possible. Another 
advanced controller – Model Predictive Controller (MPC) allows constrains handling 
(Camacho & Bordons, 1999), (Maciejowski, 2002), (Rossiter, 2003) but the standard controller 
design doesn’t solve which combination of inputs will occur in the steady-state in case of 
system with more inputs than outputs. 
One possibility how to achieve optimal inputs combination is to formulate one term of the 
cost function connected with inputs penalization as a deviation from ideal inputs 
combination. This approach is used e.g. in (Novák, 2009) but according to the opinion of 
authors this approach isn’t as universal as following proposal. We have suggested adding 
another term into the cost function of predictive controller – terminal state in a form of the 
deviation from desired terminal state. The desired terminal state is chosen that it 
corresponds to feasible optimal inputs combination and a value of the set-point at the end of 
the control horizon. Authors call this technique Steady-state optimization because the 
influence of the terminal state deviation comes to light namely in steady-state when the 
main control aim (desired output combination) is or has been already fulfilled - see also 
(Dušek & Honc, 2009). The controller ensures both main and supplementary control aims – 
achievement of desired outputs and inputs moving to an optimal combination. An 
incorporation of the terminal state into the cost function has also another advantage. The 
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addition of the terminal state into the cost function is one of the possibilities how to ensure 
closed-loop stability (Mayne et al., 2000). In (Bitmead et al., 1990) it is proposed using the 
quadratic form xtTPxt, as a terminal cost function where vector xt is state at the end of control 
horizon (terminal state) and the matrix P is terminal value of the Riccati difference equation. 
We propose incorporate the terminal cost function in the form of desired (xw) and 
terminated state (xt) deviation – (xw- xt)TQx(xw- xt) (see Chapter 4.2). The determination of a 
desired state based on the controlled system steady-state gain matrix is shown for the case 
of general MIMO system in the article (Dušek & Honc, 2008b) and in detail in (Dušek & 
Honc, 2008a in Czech). The computation of desired state for the case of MI+MO systems is 
described in Chapter 4.3. 
Suggested technique is applied on the thermostatic bath control. The idealized thermostatic 
bath (see sketch in Fig. 1) is an example of one of the simplest real constrained system with 
more inputs than outputs. On this example it is possible to demonstrate another problem we 
can meet by the control of complex systems – in some cases an advanced controller 
improves control quality only slightly in comparison with very simple controller. The 
problem usually arises when one property of the controlled system is dominant. In that case 
a simple controller respecting the dominant feature can provide satisfactory control. But 
situation can change dramatically if some specific (or additional) information about the 
system is available or additional control demands are formulated. Manipulated variables 
asymmetric constraints are dominant feature of controlled system in our case. Very simple 
on-off controller based on knowledge of constrains provides similar control quality (from 
performance measures and control costs points of view) as the sophisticated MPC controller 
even based on full knowledge of MIMO system dynamic. This holds for the case that we do 
not know nor do not use information about future reference signal course in MPC controller 
design. Simple controller do not allow to use such information on the contrary to advanced 
controller – predictive controller respecting constrains and using future reference course 
knowledge. 

2. Problem formulation, solution fundamentals 
In the following text we will show two different control designs for an ideal thermostatic 
bath. It is possible to describe controlled system behaviour by continues dynamical fourth 
order mathematical model with four inputs (three are manipulated and constrained) and 
one controlled output. The model derivation is based on first principle approach (energy 
conservation law) and a few simplified assumptions. Model parameters are chosen so that 
the model behaviour is realistic for needs of simulated control experiments. The continuous-
time model is numerically transformed into discrete-time state space form for chosen 
sample time. 
The aim of the control is to follow as good as possible a reference signal with respecting the 
manipulated variable constrains with minimum control cost – energy consumption. Two 
very different controllers have been designed. The first one is a couple of very simple 
discrete-time on-off controllers based on system specific feature – two asymmetrically 
constrained manipulated inputs. The second one is an advanced discrete-time predictive 
controller with quadratic cost function, finite horizon and banded constrains based on a 
discrete-time linear state space MI+MO model (TISO – system with two manipulated inputs 
and one controlled output). The controller cost function is supplemented by a quadratic 
terminal cost function of the desired and actual terminal state deviation – ensuring steady-
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state optimization. An addition of a desired terminal state into controller cost function 
allows including the demand on minimal energy cost. The minimisation of cost function is 
made by quadratic programming. The behaviour of both controllers is demonstrated on 
simulated discrete-time control experiments with continuous-time model of ideal 
thermostatic bath. Results of simulated controls by on-off controller and proposed 
predictive controller are discussed. Control responses of the predictive controller without 
knowledge of future course of the reference signal (only an actual set-point is known) and 
when the future course is known are compared too. All the computations, results evaluation 
and visualisation have been made in MATLAB environment. 

3. Controlled system 
The controlled system is the ideal thermostatic bath which principal sketch is drawn in Fig. 
1. Similar real devices are used for controlled heating or cooling of some element. This 
device is one of the simplest real systems with more inputs then outputs. It is represented by 
a partially isolated vessel filled with water (denoted C) and placed element D – its 
temperature TD is controlled. It is possible to increase the water temperature TC with electric 
heating (denoted A). Heating power E is controlled continuously. Cooling helix (denoted B) 
is used to decrease water temperature - water flows with flow-rate Q through a pipe. Inlet 
temperature TB0 must be lower than a placed element desired temperature TD. Temperature 
TC is affected also by ambient temperature To (heating exchange with surroundings because 
of imperfect isolation). Ambient temperature To can cool down the bath if To < TC or heat it if 
To > TC. 
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Fig. 1. Thermostatic bath scheme 

An ambient temperature To is supposed to be constant. A cooling water flow-rate must be 
within the range 0 ≤ Q ≤ Qmax, cooling water input temperature TB0min ≤ TB0 ≤ TB0max and 
heating power 0 ≤ E ≤ Emax. These asymmetrical constrain lead to special actuating of inputs 
– it is possible to increase or decrease the state variables only with the particular input. 
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An ambient temperature To is supposed to be constant. A cooling water flow-rate must be 
within the range 0 ≤ Q ≤ Qmax, cooling water input temperature TB0min ≤ TB0 ≤ TB0max and 
heating power 0 ≤ E ≤ Emax. These asymmetrical constrain lead to special actuating of inputs 
– it is possible to increase or decrease the state variables only with the particular input. 
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3.1 Derivation of mathematical model of the plant 
The thermostatic bath can be divided into four parts (thermal capacities) according to the 
scheme in Fig. 1. The state of every part is approximated by “characteristic or average” 
temperature. The introduction of characteristic temperatures leads to the essential 
simplification of a process description and hence partial differential equations using is not 
necessary. Based on the energy balance of every part the whole system can be described 
under another simplified assumptions (ideal mixing, constant heat transfer coefficients etc.) 
with a four ordinary differential equations – mathematical model of the plant. The model 
has eight time depending variables – four input variables (cooling water flow-rate Q with 
input temperature TB0, heating power E, ambient temperature T0) and four state variables 
(characteristic temperature of the heating element TA, cooling water characteristic 
temperature TB, water characteristic temperature TC and placed element characteristic 
temperature TD). 
If we put together thermal balances mentioned above and introduce simplified assumptions 
we get relatively simple dynamic mathematical model of the thermostatic bath as a set of 
four ordinary differential equations written as 

 E = αASAC(TA-TC) + mAcAdTA/dt (1a) 

 QcBTB0 + αBSBC(TC-TB) = QcBTB + mBcBdTB/dt (1b) 

 αASAC(TA-TC) = αBSBC(TC-TB) + αCSC0 (TC-To) + αDSDC (TC-TD) + mCcCdTC/dt (1c) 

 αDSDC (TC-TD) = mDcDdTD/dt (1d) 

where  
To  is ambient temperature, 
E(t) is heating power in the range 0 ≤ E ≤ Emax (increases temperature of A), 
Q(t) is flow-rate of the cooling water in the range 0 ≤ Q ≤ Qmax (decreases temperature of 

B), 
TB0(t) is input temperature of the cooling water in the range TB0min ≤ TB0 ≤ TB0max 

(decreases temperature of B), 
Tx(t) is characteristic temperature (state variables TA … TD), 
mx is mass of individual part, 
cx is specific heat capacity of individual part, 
Sxy is heat transfer area between two adjacent parts and 
αx is heat transfer coefficient. 
Parameters given in Table 1 are used in following simulation experiments. 
 

 units heating A cooling B water C element D 
mx kg 0.3 0.1567 4.0 8.93 
cx J·kg-1·K-1 452 4180 4180 383 
Sxy m2 0.0095 0.065 0.24 0.06 
αx J·m-2·s-1·K-1 750 500 5 500 

Table 1. Process model parameters 

The graphs in Fig. 2 demonstrate the basic dynamic behaviour of the system with 
parameters according to Table 1. In this figure it is depicted the temperature response of 
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placed element TD (upper graph) to 10 minutes wide pulse of maximal heating power E 
(middle graph) and 10 minutes wide pulse of minimal cooling water temperature TB0 (lower 
graph). The experiment starts from a system steady-state when all temperatures are the 
same and equal to the ambient temperature T0. This steady-state corresponds to heating 
power equal zero and cooling water temperature equal to ambient temperature. The 
constant cooling water flow-rate is 0.5 litres per minute. From graphs it is evident that 
maximal heating is more powerful than maximal cooling. 
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Fig. 2. Output variable response to inputs changes 

3.2 Continuous-time mathematical model in a standard form 
From the control point of view the system has three manipulated variables (Q, TB0, E), one 
measured disturbance (T0), four state variables (TA, TB, TC and TD) and one controlled 
variable (TD). To get linear system suitable for the control design we choose only the input 
temperature TB0 and heating power E as manipulated variables. The dynamic of input 
temperature TB0 refrigerating is neglected to simplify the thermostatic bath description. The 
cooling water flow-rate Q is supposed to be constant. This “non practical” choice is made 
due to simplification of predictive controller design – to avoid problem with nonlinear 
system control design. For needs of this text it isn’t important whether the manipulated 
variable is cooling water flow-rate or temperature. 
The equations (1a) – (1d) can be rewritten in a matrix form of standard continuous-time state 
space model as 
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 dx/dt = Acx + Bcu (2a) 

 y = Ccx (2b) 

Integral part of the process description is information about the manipulated variables 
constrains.  

 0 ≤ E ≤ Emax (2c) 

  TB0min ≤ TB0 ≤ TB0max (2d) 

where  
x(t) is vector of state variables TA, TB, TC and TD, 

x(t) = [TA(t), TB(t), TC(t), TD(t)]T 

u(t) is vector of inputs E, TB0 and T0, 

u(t) = [E(t), TB0(t), T0(t)]T 

y(t) is output variable TD and 
Ac, Bc, Cc  are matrices of continuous-time state space model parameters (see Eq. 2e) 
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The continuous-time mathematical model (2) with parameters given by Table 1 was used in 
simulation control experiments as a plant (process) model. 

3.3 Discrete-time mathematical model for MPC control design 
A standard predictive controller design is based on a discrete-time linear time invariant 
(LTI) process model. If we suppose constant cooling water flow-rate Q than the matrices Ac 
and Bc in (2e) are constant (time invariant) for given values of thermostatic bath parameters. 
Now we can transform the linear continues-time model (2) into equivalent linear discrete-
time state space model (3) or an input-output model under the “zero order hold” 
assumption - that the value of inputs between two equidistant sample times are constant. 
We get the values of discrete-time state space model matrices A, B and C for given sample 
time T numerically (in MATLAB with function c2d) 
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 x(k +1) = Ax(k) + Bu(k) (3a) 

 y(k) = Cx(k) (3b) 

 umin ≤ u(k) ≤ umax (3c) 
where  
x(k) is vector of sampled state variables TA, TB, TC and TD, 

 x(k) = [TA(k), TB(k), TC(k), TD(k)]T 

u(k) is vector of discrete-time inputs E, TB0 and T0, 

u(k) = [E(k), TB0(k), T0(k)]T 

umin =[0, TB0min, T0]T 

umax =[Emax, TB0max, T0]T 

y(k) is sampled output variable TD and 
A, B, C are discrete-time model parameters (matrices). 

3.4 Prediction equations in matrix form 
If we use cost function in a general matrix form then it is suitable to formulate future process 
output directly in a matrix form and not in the original iterative form (3a). Because we will also 
need a state prediction at the end of the prediction horizon we will formulate the state 
prediction equation for N sample step ahead, too. Based on knowledge of the actual state x(k) 
and a vector of future inputs uN we can write these two prediction matrix equations as 

 yN = Syxx(k)+ SyuuN (4a) 

 x(k+N) = Sxxx(k)+ SxuuN (4b) 
where  
yN is vector of future output TD at time k, k+1, …, k+N-1, 

yN =[TD(k+1), TD(k+2),…, TD(k+N)] T 

x(k) is vector of state variables TA, TB, TC and TD at time k, 
uN is vector of future inputs E, TB0 and T0 at time k, k+1, …, k+N-1, 

   uN =[uT(k), uT(k+1),…, uT(k+N-1)] T and 

Sxx, Sxu, Syx, Sxu are constant matrices depending on the process matrices A, B and C 
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The continuous-time mathematical model (2) with parameters given by Table 1 was used in 
simulation control experiments as a plant (process) model. 

3.3 Discrete-time mathematical model for MPC control design 
A standard predictive controller design is based on a discrete-time linear time invariant 
(LTI) process model. If we suppose constant cooling water flow-rate Q than the matrices Ac 
and Bc in (2e) are constant (time invariant) for given values of thermostatic bath parameters. 
Now we can transform the linear continues-time model (2) into equivalent linear discrete-
time state space model (3) or an input-output model under the “zero order hold” 
assumption - that the value of inputs between two equidistant sample times are constant. 
We get the values of discrete-time state space model matrices A, B and C for given sample 
time T numerically (in MATLAB with function c2d) 
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4. Control design 
The main control objectives are to follow the reference signal, to respect manipulated 
variables constrains and at the same time to minimize energy costs for heating and 
refrigerating of the cooling water (we do not consider dynamics of the cooling water input 
temperature). It is evident that the set-point of steady-state output temperature is reachable 
with many combinations of heating power and cooling water temperature. The system has 
different overall energy consumption for each combination. From energy consumption point 
of view the ideal combination in steady-state is when heating power equals to zero and 
temperature of cooling water equals to surrounding temperature. This ideal combination 
with zero energy cost is feasible only in the situation that desired temperature is equal to 
surrounding temperature. Because of the imperfect thermostat insulation it is necessary 
either permanently to heat or to cool in all other cases. Hence if it is necessary to heat then 
refrigeration must be off and vice versa. This idea is the principle of the simplest on-off 
controller without any tuneable parameters described in Chapter 4.1. Based on this idea it is 
also possible to design many other simple controllers with some solution for the system 
with more inputs than outputs. Well known is for example the technique called split range 
in which the output of a controller is split into two or more manipulated variables. 
But these solutions are made ad hoc. More systematic and general way is to use MIMO 
controller. Such a controller based on principles of model predictive control is described in 
Chapter 4.2.   

4.1 On-off controller 
It is possible to control the thermostatic bath with objectives and conditions mentioned 
above by an on-off controller (to switch between minimal and maximal cooling water input 
temperature and heating power according to the sign of the control error). This approach 
uses only one dominant characteristic – asymmetrical manipulated variable actuating. The 
control error performance measure is comparable with a sophisticated predictive controller 
without using any information about the future set-point. This strategy uses the only 
information about manipulated variables constraints (Emax, TB0min, TB0,max), actual value of 
output variable TD and actual value of set point w at discrete time k and there are no 
tuneable controller parameters. The resulting very simple thermostatic bath on-of controller 
is given by (5)  

 e = w(k) - TD(k) (5a) 

 if e<0 then {E=Emax TB0=TB0,max} else {E=0 TB0=TB0,min} (5b) 

where  
w(k) is an actual set-point – desired value of output TD at time k, 
e is an actual control error, 
E is actual heating power and 
TB0 is actual cooling water input temperature. 
Such a very primitive strategy has interesting features. It is a feedback control with a huge 
feedback gain and closed loop stability is ensured by respecting the constraints. It is simple 
variant of adaptive control approach called in literature as Self-Oscillating Adaptive 
Systems (Åström & Wittenmark, 1995). Big feedback gain causes controller insensitivity to 
changing of process properties (Wellstead & Zarrop, 1991) and we can suppose operation 
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without problems even in case when the cooling water flow-rate is used as a manipulated 
variable – in case of nonlinear system. The disadvantage is permanent control variables 
switching between minimal and maximal values and thereby permanently alternating of the 
controlled variable in the steady-state. The control quality and control costs are worse than 
in case of controller with continuous output – see Fig. 3.  

4.2 Predictive controller 
Predictive controller design is open methodology and it allows incorporating many of 
control demands and other information. The control objective is formulated as a 
minimization of a discrete-time cost function that is constrained. It means that the 
dependencies given by the process model have to be respected. From math point of view it 
is a task of finding constrained extreme. If the cost function is quadratic with finite horizons, 
process model is linear and variables are unconstrained then the analytic solution of the cost 
function minimization exists in a form of matrix equations. If inputs, outputs or states are 
linearly constrained then it is possible to solve arising task numerically with quadratic 
programming techniques. 
We formulate the discrete-time quadratic cost function on finite horizon of length N steps 
(both predictive and control horizon) in matrix form (6a) and inputs constrains (6b) as 
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where  
yN is vector of predicted process outputs (see Eq. 4a), 
wN is vector of future reference signal, 
uN is vector of future process inputs, 
uN,0 is vector of supposed (known) future process inputs, 
ΔuN is vector of computed deviations from supposed process inputs 
 (this vector contains only the manipulated inputs), 
xw is desired terminal state (see Chapter 4.3), 
x(k+N) is predicted terminal state (see Eq. 4b), 
N is length of control and prediction horizon (number of samples), 
Q, Qx, R are square weighting matrices and 
uN,min, uN,max are vectors of input constrains. 
The cost function (6a) is composed of three parts. All parts are quadratic function of 
adequate deviations. The first two parts are functions of the all points over the whole 
horizon and the last part is a function of the last point of horizon only. The first part is a 
function of control error (the deviation between output and reference signal). It ensures a 
satisfaction of the main control aim – following the reference signal as close as possible.  
The second part is a function of manipulated variables and ensures that the main control 
aim isn’t fulfilled at any cost – infinite or very large values of manipulated variables. The 
disadvantage of standard form (without deviations) is arising of a steady-state control error. 
We use this term in a form of deviations of inputs from supposed future inputs. The 
deviation decreases a steady-state control error and incorporating of supposed course of 
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without problems even in case when the cooling water flow-rate is used as a manipulated 
variable – in case of nonlinear system. The disadvantage is permanent control variables 
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controlled variable in the steady-state. The control quality and control costs are worse than 
in case of controller with continuous output – see Fig. 3.  
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minimization of a discrete-time cost function that is constrained. It means that the 
dependencies given by the process model have to be respected. From math point of view it 
is a task of finding constrained extreme. If the cost function is quadratic with finite horizons, 
process model is linear and variables are unconstrained then the analytic solution of the cost 
function minimization exists in a form of matrix equations. If inputs, outputs or states are 
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where  
yN is vector of predicted process outputs (see Eq. 4a), 
wN is vector of future reference signal, 
uN is vector of future process inputs, 
uN,0 is vector of supposed (known) future process inputs, 
ΔuN is vector of computed deviations from supposed process inputs 
 (this vector contains only the manipulated inputs), 
xw is desired terminal state (see Chapter 4.3), 
x(k+N) is predicted terminal state (see Eq. 4b), 
N is length of control and prediction horizon (number of samples), 
Q, Qx, R are square weighting matrices and 
uN,min, uN,max are vectors of input constrains. 
The cost function (6a) is composed of three parts. All parts are quadratic function of 
adequate deviations. The first two parts are functions of the all points over the whole 
horizon and the last part is a function of the last point of horizon only. The first part is a 
function of control error (the deviation between output and reference signal). It ensures a 
satisfaction of the main control aim – following the reference signal as close as possible.  
The second part is a function of manipulated variables and ensures that the main control 
aim isn’t fulfilled at any cost – infinite or very large values of manipulated variables. The 
disadvantage of standard form (without deviations) is arising of a steady-state control error. 
We use this term in a form of deviations of inputs from supposed future inputs. The 
deviation decreases a steady-state control error and incorporating of supposed course of 
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inputs uN,0 allows involving known unmanipulated inputs or disturbances (ambient 
temperature in our case). Supposed inputs can be also used for optimization of inputs 
values combination in case of MI+MO systems – similar way as in (Novák, 2009). 
The third part is the deviation of a desired and actual state at the end of horizon (terminal 
state). Adding a terminal cost function ensures closed-loop stability (Mayne et al., 2000) but 
also leads to arising of a steady-state control error. Proposal of a terminal cost function in 
the quadratic form was made by (Bitmead et al., 1990). We propose the quadratic terminal 
cost function of desired and terminal state deviation. The deviation decreases a steady-state 
control error and desired terminal state allows taking into account additional control 
requirement. We use the desired state to steady-state optimization in case of MI+MO systems. 
The desired state computation for MI+MO system is described in following chapter 4.3. 
If we use prediction equations (4a), (4b) to eliminate process output yN and terminal state 
x(k+N) then the cost function (6a) and constraints (6b) can be rewritten into form 
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The minimization of (7a) regarding to ΔuN without constrains (7b) is possible in explicit 
form (7c) on condition that the matrix M is positive definite and symmetric. 

  1
N

−Δ = −u M m  (7c) 

The minimization of (7a) with constrains (7b) is a task of quadratic programming. In both 
cases we get a vector of future manipulated inputs deviation ΔuN that in combination of 
supposed inputs uN,0 gives vector of optimal process inputs uN. The calculated value of 
optimal inputs depends on actual state x(k), future course of reference signal wN , desired 
terminal state xw and supposed future inputs uN,0. If the actual state isn’t measured, then a 
state estimator based on state space model (3a), (3b) can be used. If the future course of 
reference signal isn’t known then the actual set point is used as a future course of constant 
reference signal. The calculation of desired terminal state is described in next chapter. The 
vector of supposed inputs uN,0 can be constructed from actual values of inputs which are 
supposed to be constant in the future or if we know the future course of some inputs (as 
known future disturbances) then we can add this information in corresponding part of uN,0. 
We apply only the control actions of the first member u(k) from the optimal vector uN and 
the minimization is repeated in the next sample time.  

4.3 Calculation of desired state 
The calculation of the desired state xw is a fundamental part of steady-state optimization. It 
is based on a non square steady-state gain matrix Z of a MI+MO system model (3)  

 y∞=Zu (8a) 

 Z=C(I-A)-1B (8b) 
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The calculation is described by equations (9a – 9d) and the solution is valid for steady state. 
The minimization of quadratic cost function (9a) represents the requirement of a minimal 
quadratic distance between ideal inputs values uideal and accessible inputs ũ. At the same 
time the equation (9b) has to be respected. This equation arising from (3) represents a 
requirement that accessible inputs ũ lead the system (in steady-state) to set-point at the end 
of horizon w(k+N). These two equations formulate a standard task of constrained extreme 
minimization. The solution of this task is a value of ũ which can be recalculated to desired 
state xw using the equation (9d).  

 ( ) ( )min T
ideal ideal
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u u I u u  (9a) 

 ( )k N= +Zu w  (9b) 

 min max≤ ≤u u u  (9c) 

 ( ) 1
w

−= −x I A Bu  (9d) 

We can get the solution of unconstrained extreme task – by considering only equations (9a) 
and (9b) – in explicit form by Lagrange’s multipliers. If we rewrite (9a), (9b) into form of 
(10a) then we get the searched input ũ as part of the solution of matrix expression (10b) 
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In case of constrained inputs – by considering also equation (9c) - the problem is formulated 
as quadratic programming task and the searched input ũ has to be computed numerically. 

5. Simulated control experiments 
The simulated experiments demonstrate the discrete-time control of continuous-time 
MI+MO system (thermostatic bath) with simple on-off controller (5) and predictive 
controller without (7) and with steady-state optimization (8). Placed element temperature TD 
is controlled – responses of simulated reference signal tracking are depicted in Figures 3-5. 
The control by predictive controller is shown for two situations – without and with future 
reference signal course knowledge. All experiments are made under identical conditions 
and the control performance is evaluated by two measures. First measure Cquality (quality) 
represents a value of quadratic control error area and the second measure Ccost (cost) is price 
of total energy consumption for the heating Eheat and cooling Ecool. The energy consumption 
for refrigerating Ecool (cooling water temperature decreasing at chosen constant flow-rate) is 
supposed (for needs of following simulations) to be equivalent to energy consumption for 
cooling water heating about same temperature difference with efficiency ef=0.5 (50%). These 
two measures can be written as 
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where  
kprice is electric energy price per unit, 
T is a controller sample time, 
ef is efficiency of cooling and 
Ns is number of samples during experiment. 
The ideal thermostatic bath is simulated as a continuous-time system (Eq. 1) with 
parameters given in Table 1. All control experiments start from steady-state (x0, u0) and 
respect inputs variables ranges. Conditions and constrains are listed in Table 2. The input 
values u0 leading to the steady-state x0 are no optimal from energy consumption point of 
view. These values were chosen to show the influence of the steady-state optimization for 
case of predictive controller. 
 

Input variables ranges and initial inputs u0 Steady-state x0, u0  
E [W] Q [kg·s-1] TB0 [°C] To [°C] TA [°C] 64.63 

umax 1000 0.5/60 25 25 TB [°C] 22.02 
u0 250 0.5/60 15 25 TC [°C] 29.54 
umin 0 0.5/60 5 25 TD [°C] = y0 29.54 

Table 2. Input variables and steady-state 

The on-off controller is realized as discrete-time system (with zero-order hold terms on the 
outputs with sample time T = 10 s). Its response is depicted in Fig. 3. The achieved values of 
control quality and costs measures in this experiment are used as a standard and marked as 
100%. The control quality is apparently bad (the output oscillates) but the computed control 
quality value is comparable with predictive controller without knowledge of future 
reference signal course. The on-off controller responds immediately to changes in reference 
signal with maximal values of heating or cooling and hence the output response is as quick 
as possible. In spite of the fact that the on-off controller ensures that the heating and cooling 
doesn’t actuate concurrently the energy consumption is high because of heating and cooling 
switching to their maximal values. 
Predictive controller with steady-state optimization and inputs constrains (6) is realized as a 
discrete-time system (with zero-order hold terms on the outputs with sample time T = 10 s). 
The control horizon is N = 60 samples (that is N×T = 600 s = 10 min). Control response of the 
predictive controller without future reference signal knowledge is depicted in Fig. 4. It 
means that the controller has information about actual value of set-point and the future 
reference signal is assumed to be constant and equal to set-point at current time. If the actual 
set-point changes then the constant future reference signal over the whole control horizon 
changes too. The values of control measures are relative to corresponding values achieved in 
control with on-off controller and expressed as percentages. 
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Fig. 4.  Predictive controller – without future reference signal knowledge 
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kprice is electric energy price per unit, 
T is a controller sample time, 
ef is efficiency of cooling and 
Ns is number of samples during experiment. 
The ideal thermostatic bath is simulated as a continuous-time system (Eq. 1) with 
parameters given in Table 1. All control experiments start from steady-state (x0, u0) and 
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The control horizon is N = 60 samples (that is N×T = 600 s = 10 min). Control response of the 
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means that the controller has information about actual value of set-point and the future 
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The first 15 minutes of experiment depicted in the Fig. 4 demonstrates the steady-state 
optimization - the controller manipulates inputs without output change. The inputs achieve 
their optimal values after time corresponding to length of horizon (10 minutes). Because of 
the absent of a future reference signal knowledge the controller react only to actual set-
point. The control quality (97.6%) is comparable with on-off controller but the energy 
consumption is significantly better (33.3%). 
A control response of the predictive controller with steady-state optimization and with 
knowledge of the future reference signal is depicted in the Fig. 5. This experiment 
demonstrates best control approach from the point of control quality and energy 
consumption. The controller uses maximum of accessible information. Due to prediction 
horizon and future reference signal knowledge the controller can act before the actual set-
point change.  The time of advance controller reaction depends on both system dynamic and 
constrains. Hence it can be different when the set-point changes up and down. On this 
experiment we can also see that the control quality is preferred before control cost. There are 
parts of control where heating and cooling act simultaneously. We can see this in transient 
state only. This behaviour also depends on the choice of weighting matrices in the cost 
function (6a). 
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Fig. 5. Predictive controller – with future reference signal knowledge 

6. Conclusion 
Control design is often “made-to-measure problem” especially if one feature of the 
controlled process is dominant and therefore affecting control possibilities. Even quite 
sophisticated generally designed controller does not improve control quality compared to 
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simple solution respecting the dominant properties. This was illustrated on an example of a 
MI+MO system thermostatic bath – a system with two constrained inputs and one 
controlled output. If the set-point changes significantly the controller can not do anything 
else than to set both control variables on their appropriate limits because of constrains on 
heating and cooling. Control response of quite complicated predictive controller will be 
improved if additional information and requirements are implemented within the control 
design. Process dynamics knowledge including cross couplings, was fully used only if we 
considered known future reference signal. 
Another problem connected with systems with more inputs then outputs was illustrated on 
the mentioned example of MI+MO system. To solve the problem of indeterminate inputs 
combinations in case of MI+MO processes control we propose to add the “steady-state 
optimization” to controller design. Under the steady-state optimization we understand that 
we need to find such an inputs combination that is as close as possible to ideal process 
inputs and at the same time reaching the set-point in steady-state. We can observe the effect 
of the steady-state optimization during the first 15 minutes of the control response in Fig 4. 
The “ideal” desired input variables combination for the steady-state in our case is zero 
heating power and maximal cooling water input temperature – that is a combination with 
lowest energy cost. Future control error and terminal state error is minimized in every time 
instant as a result of the cost function form with respect to manipulated variables constrains. 
The effect of steady-state optimization is nice to see in steady-state but it takes effect 
continuously. 
To add the steady-state optimization to a predictive controller design we use the terminal 
cost function. The quadratic terminal cost function was originally introduced to ensure 
controller stability. We modified the criterion so that the deviation of a desired and the 
predicted terminal state is used instead the terminal state only. The computation of the 
desired terminal state is based on a desired input variables combination, value of set-point 
at the end of control horizon and no square steady-state gain matrix. The solution is 
formulated as a standard constrained extreme finding task where the inputs constraints can 
be included, too.  
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Robust Inverse Filter Design Based 
on Energy Density Control 
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1. Introduction

3-D audio systems, which provide a listener with 3-D sound illusion at arbitrary locations,
are an important part of immersive interfaces. 3-D audio systems can use headphones or
loudspeakers to present the 3-D sound. A main limitation of producing 3-D sound through
loudspeakers is distortion caused by room acoustics. Various methods of designing inverse
filters that can equalize the room response have been suggested. One of the common
problems of the previous methods is the restriction on the listener to sit in a relatively
narrow equalization zone. The problems were mainly caused by the fact that equalization
was conducted by controlling sound pressure at discrete points, and the points were not ideal
locations to obtain global control of the pressure field.
Most inverse filtering approaches are based on the cost function defined by using acoustic
pressure. These inverse filtering systems typically minimize the squared acoustic pressure
at a control point using the least square (LS) optimization Nelson et al. (1992)Nelson et al.
(1995)Kirkeby et al. (1998). These systems, however, often produce distortions such as
boosting at certain frequencies in the vicinity of the control point, because the room transfer
function (RTF), being defined in an acoustic pressure field, changes drastically with variation
in source and receiver positions inside a space. Thus, a listener’s slight movement easily
harms the inverse filtering performance. To overcome the problem of distortion, an alternative
equalization method called joint LS Abe et al. (1997)Ward (2000), was presented, in which a
sum of the squared pressures at several control points is minimized. A major disadvantage
of this approach is that global control over control points can be partly effective, sometimes;
it is not guaranteed. Recently, the filters for crosstalk cancellation were designed using the
minimax optimization Rao et al. (2007). The minimax approach is known to provide better
channel separation in low-frequency than LS approach with marginal improvement Rao et al.
(2007). But it still inherits the distortion problems mentioned previously, since it is also based
on acoustic pressure at the control point.
Another approach to the problem of room transfer function (RTF) variations with source and
receiver position is equalization via a vector quantization (VQ) method Mourjopoulos (1994),
in which an inverse filter is updated during operation using an RTF codebook generated
by using the VQ method. Although the inverse filtering using VQ methods can resolve the
problems of previous methods by making them effective for all possible source and receiver
positions inside the enclosure, the method needs large sets of off-line measurements of RTFs
to make the RTF codebook and additional tracking modules to find receiver positions.
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are an important part of immersive interfaces. 3-D audio systems can use headphones or
loudspeakers to present the 3-D sound. A main limitation of producing 3-D sound through
loudspeakers is distortion caused by room acoustics. Various methods of designing inverse
filters that can equalize the room response have been suggested. One of the common
problems of the previous methods is the restriction on the listener to sit in a relatively
narrow equalization zone. The problems were mainly caused by the fact that equalization
was conducted by controlling sound pressure at discrete points, and the points were not ideal
locations to obtain global control of the pressure field.
Most inverse filtering approaches are based on the cost function defined by using acoustic
pressure. These inverse filtering systems typically minimize the squared acoustic pressure
at a control point using the least square (LS) optimization Nelson et al. (1992)Nelson et al.
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function (RTF), being defined in an acoustic pressure field, changes drastically with variation
in source and receiver positions inside a space. Thus, a listener’s slight movement easily
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of this approach is that global control over control points can be partly effective, sometimes;
it is not guaranteed. Recently, the filters for crosstalk cancellation were designed using the
minimax optimization Rao et al. (2007). The minimax approach is known to provide better
channel separation in low-frequency than LS approach with marginal improvement Rao et al.
(2007). But it still inherits the distortion problems mentioned previously, since it is also based
on acoustic pressure at the control point.
Another approach to the problem of room transfer function (RTF) variations with source and
receiver position is equalization via a vector quantization (VQ) method Mourjopoulos (1994),
in which an inverse filter is updated during operation using an RTF codebook generated
by using the VQ method. Although the inverse filtering using VQ methods can resolve the
problems of previous methods by making them effective for all possible source and receiver
positions inside the enclosure, the method needs large sets of off-line measurements of RTFs
to make the RTF codebook and additional tracking modules to find receiver positions.
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In this chapter, we present an alternative approach to the problem of room equalization.
This approach utilizes a new performance function based on energy density. The idea of
energy density control has been developed in the field of active noise control for the global
attenuation of broadband noise fields Sommerfeldt & Nashif (1994). It was proven that the
energy density control system outperforms the squared pressure system since the former
system is capable of observing more modes of the pressure field in an enclosure than the
latter. More specifically, if the magnitude of the potential energy in the form of pressure
density associated with a particular mode goes to zero at a control point, the kinetic energy
in the form of particle velocity will approach a maximum. Thus the algorithm is useful in
widening the control zones. We will begin with reviewing the previous approaches to provide
robust inverse filtering and their problems. Later, details of the energy density control will be
described in application, such as in room equalization.

2. Inverse filtering for multichannel sound reproduction system

When a sound source generates a sound field in a room, a large number of echoes build up and
then slowly decay as the sound is absorbed by the walls and the air, creating reverberation.
It is a desirable property of auditoriums to the extent that it helps to overcome the inverse
square law dropoff of sound intensity in the enclosure. However, if it is excessive, it makes the
sounds run together with loss of articulation - the sound becomes muddy. In addition, they
are also undesirable when reproducing a desired sound field in a room. A digital equalization
filter can be used to compensate for deficiencies in a loudspeaker-room frequency response
for sound reproduction systems. In order to design a sound reproduction system of this kind,
one essentially has to invert the transfer function of the reproduction environment.

2.1 Previous approaches
2.1.1 Equalization based on joint LS optimization
Fig. 1 shows the general form of the inverse filtering network for controlling L points where
hp,ml(n), m = 1, · · · , M, l = 1, · · · , L, n = 0, · · · , Nh − 1, represents Nh × 1 the acoustic
impulse response vector of the path from the mth loudspeaker to the lth control point. To
measure the acoustic impulse responses, in general, microphones are located at the control
points and a test signal is radiated through loudspeakers. Thus, the impulse responses are
obtained in the acoustic pressure field. Given the impulse responses, the objective of designing
an equalization system is to find FIR filters wm(n), n = 0, · · · , Nw − 1, such that the recorded
signals are reproduced perfectly at the control points by making the equalized response as
close as possible to the desired one.
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point from M sources can be expressed as

d̂p,l(n) =
M

∑
m=1

Nh+Nw−2

∑
k=0

wm(k)hp,ml(n − k), n = 0, · · · , Nh + Nw − 1. (1)
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⎢⎢⎢⎣
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Fig. 1. Block diagram of the inverse filtering network.
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Thus, the equalized response for M sound channels and L control points can be stacked as
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or, more compactly as
d̂p = Hpw. (5)

The vector of error between the desired and actual impulse responses at the L control points
can now be represented as

ep = dp − Hpw (6)
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where dp = [dT
p,1 dT

p,2 · · · dT
p,L]T represent the desired impulse responses. Finally, an optimal

weight vector can be obtained by minimizing the error between the desired and actual impulse
responses. In an LS sense, the equalization filters are designed using a cost function:

JSP(w) =
∥∥dp − Hpw

∥∥
2 (7)

where � · �2 denotes the vector 2-norm. The optimum set of coefficients in this case is given by

wSP,o = H+
p dp (8)

where + denotes pseudo inverse, so that H+
p =

(
HT

p Hp

)−1
HT

p . Because the equalization
filters in this case jointly minimize the sum of squared errors at the multiple control points,
it is referred to as the joint LS method Ward (2000)Abe et al. (1997). Note that, for L = 1,
the design method reduces to LS method Nelson et al. (1992)Nelson et al. (1995)Kirkeby et al.
(1998).
The optimization method based on squared pressure is widely used because it guarantees to
have a unique global minimum. However, it is found that the equalized response away from
the error sensor position can be worse than the unequalized response in such a design method
Elliott & Nelson (1989).

2.1.2 Equalization based on minimax optimization
An alternative approach to the design of equalization filters is to use minimax optimization
techniques. Now, the cost function becomes

JPM(w) =
∥∥dp − Hpw

∥∥
∞ (9)

where � · �∞ denotes the L∞ norm. It was originally proposed to design crosstalk cancellation
filters Sturm (1999) but it can be applicable for designing equalization filters. The second-order
cone programming (SOCP) approach can be used to design equalization filters in the minimax
sense. The SOCP provides the optimization problem can be solved using interior point solvers
such as the Self-Dual-Minimization (SeDuMi) toolbox of MATLAB Sturm (1999).
According to the results in Sturm (1999), the minimax approach gives better channel
separation at low frequencies than the LS method. The same can be expected when it is
used for the design of equalization filters, but it is also easily harmed by the movement
of the listener’s changes in location since this method inherits the robustness problem of
equalization in the pressure field.

2.1.3 Equalization by vector quantization (VQ)
All-pole modeling of room responses can achieve reduction in the room transfer function
(RTF) and the resulting equalizer order Mourjopoulos & Paraskevas (1991). According to this
method, the all-pole model of the RTF with coefficients, ak, k = 1, 2, · · · , K, is defined as

Hap(z) =
G

1 +
K
∑

k=1
akz−k

(10)

where G is an arbitrary gain constant, K is the model order. And the following equation is the
all-pole RTF equalizer’s impulse response when G = 1:

w(n) = Z−1
[

1
Hap(z)

]
. (11)
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It is clear that an all-pole RTF equalizer will not achieve perfect equalization, because the
all-pole model succeeds in representing poles of RTF, which correspond to resonances of
RTF. This method, however, can achieve a required reduction in the equalizer order at some
expense of its performance Toole & Olive (1988) and be used as the first stage of RTF
processing at a second stage VQ . The use of vector quantization (VQ) can optimally classify
such responses, obtained at different source and receiver positions Mourjopoulos (1994). Fig.
2 shows a block diagram for application of a VQ equalizer. By using the VQ method, the
extremely large set of possible RTFs inside the enclosure will be classified into a smaller
number of groups, so that a three-dimensional codebook of RTFs can be established, which can
be used for equalizer design. During equalizer operation, the coefficients for equalization will
be downloaded into the equalizer when it is detected that the listener is moving into a location.
The combination of all-pole RTF modeling and the VQ method can solve the problems of
the previous methods by making them effective for all possible source and receiver positions
inside the enclosure.

Fig. 2. Block diagram for application of VQ equalizer Mourjopoulos (1994).

2.2 Practical problems
As stated previously, most room equalization research is based on the cost function defined
by using acoustic pressure and these equalization systems typically minimize the squared
acoustic pressure at a control point using LS optimization Nelson et al. (1992)Nelson et al.
(1995)Kirkeby et al. (1998)Abe et al. (1997)Ward (2000)Mourjopoulos (1994)Elliott & Nelson
(1989). However, by controlling the acoustic pressure, the observability problem that leads
to performance degradation happens. This is due to the magnitude of potential energy in
the form of pressure associated with a particular mode goes to zero at the control point.
Previous studies have shown that the geometry of the loudspeakers have a significant effect
on the robustness of the inverse filtering Ward & Elko (1999). At certain frequencies, the sound
signal arriving from the contralateral loudspeaker is delayed by approximately a half-period
when compared with the signal coming from the ipsilateral loudspeaker. In a typical stereo
setup with loudspeaker angle of 30◦ relative to the listener, the difference of the propagation
path lengths between one loudspeaker and two listening points corresponding to the ear
positions is 80 − 100mm. Thus, in such a setup, one of the frequencies being involved in the
signal cancellation is 1700Hz which corresponds to 190mm wavelength. At such frequencies,
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the inverse filtering based on pressure control is associated with numerical problems that
seriously impair the robustness of the control system. In Ward & Elko (1999), the effect of
loudspeaker position on the robustness of crosstalk cancellers was analyzed and a simple
expression for determining the optimum loudspeaker positions was derived.
On the other hand, the VQ method requires previous large sets of off-line measurements
of RTFs in order to design the enclosure’s codebook and an additional tracking module is
necessary to deal with the listener’s movement. In Gardner (1997), Gardner employed a
head tracking module using a camera in order to solve the performance degradation of the
binaural synthesizer and the crosstalk canceller being caused by head movement. Fig. 3 shows
a head-tracked 3-D loudspeaker audio system. The binaural synthesis block is to synthesize
the ear signals corresponding to the target scene by appropriately encoding directional cues,
and the crosstalk cancellation network delivers these signals to the listener without distortions
by inverting the acoustic impulse response of the path from loudspeakers to the listener. When
the listener moves away from the listening point, the crosstalk canceller and the binaural
synthesis module are steered to the location of the tracked listener with the help of the head
tracker module. In such a way, the 3-D audio system can preserve the 3-D illusion over a large
listening area.

Fig. 3. Block diagram of head-tracked 3-D loudspeaker audio system.

3. Robust inverse filtering for multichannel sound reproduction system

Acoustic energy density function is defined using acoustic pressure and particle velocity.
By controlling acoustic energy density, the observability problems that often limit the
performance when controlling the pressure field are effectively overcome. To control acoustic
energy density, however, a velocity sensor or equivalent estimation method is required.

3.1 Acoustic energy density
The time-averaged acoustic energy density at a point in space, x = (x, y, z), is defined as

ξ(x) =
1

4ρc2 |p(x)|2 +
ρ

4
|�v(x)|2 (12)
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where ρ is the ambient fluid density, c is the acoustic wave speed, p(x) is the acoustic pressure,
and �v(x) = (vx(x), vy(x), vz(x)) is the acoustic velocity vector. Note that acoustic energy
density consists of potential energy density in the form of pressure and kinetic energy density
in the form of particle velocity. Thus, it can be said that systems based on the squared pressures
use only half of the acoustic information. Minimizing the sum of the squared pressure, which
is part of the potential energy, at discrete points in space may significantly increase both
the kinetic energy at those points as well as the total energy in the enclosure. The squared
pressure system therefore often yields only local control. On the other hand, minimizing the
sum of the total energy density at discrete points can yield improved equalization over a wide
area covered by the control points since the energy has been definitely reduced at least at the
specified points in space Parkins et al. (2000).
As previously mentioned, the acoustic pressure-based control inherently suffers from the
observability problem that limits performance. One way of overcoming this problem is to
control the acoustic energy density that is expected to provide robust equalization due to
fairly uniform distribution of acoustic energy density.

Fig. 4. Block diagram of the inverse filtering based on energy density control.

3.2 Equalization based on energy density control
Fig. 4 shows a block diagram of the inverse filtering system with L control points. The acoustic
impulse responses in the velocity field at the lth control point due to M sources are described
as

d̂vx,l(n) =
M

∑
m=1

Nh+Nw−2

∑
k=0

wm(k)hvx ,ml(n − k), (13)

d̂vy,l(n) =
M

∑
m=1

Nh+Nw−2

∑
k=0

wm(k)hvy ,ml(n − k), (14)
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d̂vz,l(n) =
M

∑
m=1

Nh+Nw−2

∑
k=0

wm(k)hvz ,ml(n − k), (15)

where the subscript vx, vy, and vz refer to the x, y, and z-directional components of velocity,
respectively. Let d̂T

v,l and Hv,ml, respectively, denote the 3× 1 velocity vector and 3(Nh + Nw −
1) × Nw convolution matrix as given by

d̂T
v,l =

�
d̂vx,l(n) d̂vy,l(n) d̂vz,l(n)

�T
, (16)

Hv,ml =

⎡
⎣

Hvx,ml
Hvy,ml
Hvz ,ml

⎤
⎦ . (17)

The elements Hvx,ml , Hvy,ml , and Hvz,ml are matrices defined similarly to Eq. (3). Now, the
equalized velocity response at the control point l can be written as

d̂T
v,l =

�
Hv,1l Hv,2l · · · Hv,Ml

�
⎡
⎢⎢⎢⎣

w1
w2

...
wM

⎤
⎥⎥⎥⎦ . (18)

The equalized velocity responses can be stacked in a matrix as

⎡
⎢⎢⎢⎣

d̂v,1
d̂v,2

...
d̂v,L

⎤
⎥⎥⎥⎦ =

⎡
⎢⎢⎢⎣

Hv,11 Hv,21 · · · Hv,M1
Hv,12 Hv,22 · · · Hv,M2

...
...

. . .
...

Hv,1L Hv,2L · · · Hv,ML

⎤
⎥⎥⎥⎦

⎡
⎢⎢⎢⎣

w1
w2

...
wM

⎤
⎥⎥⎥⎦ (19)

or
d̂v = Hvw. (20)

Now, the vector of error between the desired and equalized responses in the velocity field at
the L control points is given as

ev = dv − Hvw (21)

where dv = [dT
v,1 dT

v,2 · · · dT
v,L]T represent desired impulse responses in velocity fields. Using

Eqs. (6) and (21), the acoustic energy density at the control points is expressed as

ξ =
1

2ρc2

�
eT

p ep + (ρc)2eT
v ev

�
. (22)

For controlling the energy density, the optimal weight vector is determined by the following
cost function:

JED(w) =
����
�

dp
(ρc) dv

�
−

�
Hpw

(ρc) Hvw

�����
2

. (23)

Note that the modified energy density, i.e. (2ρc2)ξ, is chosen as the cost function. The optimum
filter coefficients are then

wED,o =
�

Hp

(ρc)2 Hv

�+ �
dp

(ρc)2 dv

�
. (24)
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3.3 Velocity components estimation
As shown in Eq. (19), we need the x, y, and z-components of the acoustic velocity to implement
the energy density control method. To this end, we can use a particle velocity sensor such as
a laser vibrometer or velocity microphone. But a more convenient method of doing the same
is approximated estimation using two pressure sensors (microphones). In this method, it is
assumed that two microphones are highly phase-matched.
Euler’s equation in one dimension relates the gradient of the acoustic pressure to the
time-derivative of the acoustic velocity at a point as

ρ
∂vx(x, t)

∂t
= − ∂p(x, t)

∂x
. (25)

Thus, the acoustic velocity is obtained using

v̂x(x, t) = − 1
ρ

∫ t

−∞

∂p(x, t)
∂x

dt. (26)

By approximating the pressure gradient as the pressure difference in a small distance, Eq. (35)
can be approximated as

v̂x(x, t) ≈ − 1
ρ

∫ t

−∞

p2(t) − p1(t)
Δx

dt (27)

where p1(t) and p2(t) are the pressures measured by two closely spaced microphones with
a distance Δx. Integration can be performed using a digital integrator Hodges et al. (1990)
expressed in a simple recursive form:

v̂x(n) = v̂x(n − 1) − 1
ρΔx fs

[p2(n)− p1(n)] e−1/ fs (28)

where fs denotes the sampling frequency.

3.4 Robustness analysis
For ease of analysis, we define the transfer function (TF) between the mth loudspeaker and
the lth control point as Ward & Elko (1999)

Hp,ml(ω) = ej2πλ−1Δml , (29)

where λ is the wavelength and Δml is the distance between the loudspeaker and the control
point. It should be noted that this model disregards both propagation attenuation and the
head shadow effect. Assuming a transaural system, the transfer functions between the two
loudspeakers and the two microphones are collectively expressed as

Hp(ω) =
[Hp,11(ω) Hp,12(ω)
Hp,21(ω) Hp,22(ω)

]
. (30)

Then the robustness of the equalization system is reflected by the condition number of the
matrix Hp(ω) Ward & Elko (1999) defined as

cond
{

Hp(ω)
}

=
σmax

(
HH

p (ω)Hp(ω)
)

σmin
(
HH

p (ω)Hp(ω)
) , (31)
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d̂vz,l(n) =
M

∑
m=1

Nh+Nw−2

∑
k=0

wm(k)hvz ,ml(n − k), (15)

where the subscript vx, vy, and vz refer to the x, y, and z-directional components of velocity,
respectively. Let d̂T

v,l and Hv,ml, respectively, denote the 3× 1 velocity vector and 3(Nh + Nw −
1) × Nw convolution matrix as given by

d̂T
v,l =

�
d̂vx,l(n) d̂vy,l(n) d̂vz,l(n)

�T
, (16)

Hv,ml =

⎡
⎣

Hvx,ml
Hvy,ml
Hvz ,ml

⎤
⎦ . (17)

The elements Hvx,ml , Hvy,ml , and Hvz,ml are matrices defined similarly to Eq. (3). Now, the
equalized velocity response at the control point l can be written as

d̂T
v,l =

�
Hv,1l Hv,2l · · · Hv,Ml

�
⎡
⎢⎢⎢⎣

w1
w2

...
wM

⎤
⎥⎥⎥⎦ . (18)

The equalized velocity responses can be stacked in a matrix as

⎡
⎢⎢⎢⎣

d̂v,1
d̂v,2

...
d̂v,L

⎤
⎥⎥⎥⎦ =

⎡
⎢⎢⎢⎣

Hv,11 Hv,21 · · · Hv,M1
Hv,12 Hv,22 · · · Hv,M2

...
...

. . .
...

Hv,1L Hv,2L · · · Hv,ML

⎤
⎥⎥⎥⎦

⎡
⎢⎢⎢⎣

w1
w2

...
wM

⎤
⎥⎥⎥⎦ (19)

or
d̂v = Hvw. (20)

Now, the vector of error between the desired and equalized responses in the velocity field at
the L control points is given as

ev = dv − Hvw (21)

where dv = [dT
v,1 dT

v,2 · · · dT
v,L]T represent desired impulse responses in velocity fields. Using

Eqs. (6) and (21), the acoustic energy density at the control points is expressed as

ξ =
1

2ρc2

�
eT

p ep + (ρc)2eT
v ev

�
. (22)

For controlling the energy density, the optimal weight vector is determined by the following
cost function:

JED(w) =
����
�

dp
(ρc) dv

�
−

�
Hpw

(ρc) Hvw

�����
2

. (23)

Note that the modified energy density, i.e. (2ρc2)ξ, is chosen as the cost function. The optimum
filter coefficients are then

wED,o =
�

Hp

(ρc)2 Hv

�+ �
dp

(ρc)2 dv

�
. (24)
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3.3 Velocity components estimation
As shown in Eq. (19), we need the x, y, and z-components of the acoustic velocity to implement
the energy density control method. To this end, we can use a particle velocity sensor such as
a laser vibrometer or velocity microphone. But a more convenient method of doing the same
is approximated estimation using two pressure sensors (microphones). In this method, it is
assumed that two microphones are highly phase-matched.
Euler’s equation in one dimension relates the gradient of the acoustic pressure to the
time-derivative of the acoustic velocity at a point as

ρ
∂vx(x, t)

∂t
= − ∂p(x, t)

∂x
. (25)

Thus, the acoustic velocity is obtained using

v̂x(x, t) = − 1
ρ

∫ t

−∞

∂p(x, t)
∂x

dt. (26)

By approximating the pressure gradient as the pressure difference in a small distance, Eq. (35)
can be approximated as

v̂x(x, t) ≈ − 1
ρ

∫ t

−∞

p2(t) − p1(t)
Δx

dt (27)

where p1(t) and p2(t) are the pressures measured by two closely spaced microphones with
a distance Δx. Integration can be performed using a digital integrator Hodges et al. (1990)
expressed in a simple recursive form:

v̂x(n) = v̂x(n − 1) − 1
ρΔx fs

[p2(n)− p1(n)] e−1/ fs (28)

where fs denotes the sampling frequency.

3.4 Robustness analysis
For ease of analysis, we define the transfer function (TF) between the mth loudspeaker and
the lth control point as Ward & Elko (1999)

Hp,ml(ω) = ej2πλ−1Δml , (29)

where λ is the wavelength and Δml is the distance between the loudspeaker and the control
point. It should be noted that this model disregards both propagation attenuation and the
head shadow effect. Assuming a transaural system, the transfer functions between the two
loudspeakers and the two microphones are collectively expressed as

Hp(ω) =
[Hp,11(ω) Hp,12(ω)
Hp,21(ω) Hp,22(ω)

]
. (30)

Then the robustness of the equalization system is reflected by the condition number of the
matrix Hp(ω) Ward & Elko (1999) defined as

cond
{

Hp(ω)
}

=
σmax

(
HH

p (ω)Hp(ω)
)

σmin
(
HH

p (ω)Hp(ω)
) , (31)
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where σmin(·) and σmax(·) denote the smallest and largest singular values, respectively.
Suppose that the TF matrix is acoustically symmetric so that Hp,11(ω) = Hp,22(ω) and
Hp,21(ω) = Hp,12(ω). We now have

HH
p (ω)Hp(ω) = 2

��Hp,11(ω)
��2

�
1 cos(2πλ−1Δ)

cos(2πλ−1Δ) 1

�
, (32)

where Δ denotes the interaural path difference given by Δ11 − Δ12. Singular values can be
found from the following characteristic equation:

(1 − k)2 − cos2(2πλ−1Δ) = 0. (33)

By the definition of robustness, the equalization system will be the most robust when
cos(2πλ−1Δ) = 0 (Hp(ω) is minimized) and the least robust when cos(2πλ−1Δ) = ±1
(Hp(ω) is maximized) Ward & Elko (1999).
A similar analysis can be applied to acoustic energy density control. The composite transfer
function between the two loudspeakers and the two microphones in the pressure and velocity
fields becomes

Hed(ω) =

⎡
⎢⎢⎣

Hp,11(ω) Hp,21(ω)
(ρc)Hv,11(ω) (ρc)Hv,21(ω)
Hp,12(ω) Hp,22(ω)

(ρc)Hv,12(ω) (ρc)Hv,22(ω)

⎤
⎥⎥⎦ , (34)

where Hv,ml(ω) is the frequency-domain matrix corresponding to Hv,ml. Note that the
pressure and velocity at a point in space x = (x, y, z), −→v (x), and p(x) are related via

jωρ−→v (x) = −∇p(x), (35)

where ∇ represents a gradient. Using this relation, the velocity component for the x direction
can be written as

Hvx,ml(ω) =
1
ρc

· Δxml
d

Hp,ml(ω), (36)

where d and Δxml denote the distance and the x component of the displacement vector
between the mth loudspeaker and the lth control point, respectively. Note that the velocity
component for the y and z directions can be expressed similarly. Now we have

HH
ed(ω)Hed(ω) = 2

�
2 Q cos(2πλ−1Δ)

Q cos(2πλ−1Δ) 2

�
, (37)

where
Q = 1 +

Δx11Δx12 + Δy11Δy12 + Δz11Δz12
d11(d11 + Δ)

. (38)

Singular values can be obtained from the following characteristic equation:

(2 − k)2 −
�

Q cos
�

2πλ−1Δ
��2

= 0. (39)

From Eqs. (33) and (39), it can be noted that the maximum condition number of Hp(ω) equals
to infinity, while that of Hed(ω) is (2 + Q)/(2 − Q), when cos(2πλ−1Δ) = ±1. Eq. (38) also
shows that the maximum condition number of the energy density field becomes smaller as Δ
increases because Q approaches to 1. Now, by comparing the maximum condition numbers,
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Fig. 5. The reciprocal of the condition number.

the robustness of the control system can be inferred. Fig. 5 shows the reciprocal condition
number for the case where the loudspeaker is symmetrically placed at a 1 m and 30◦ relative
to the head center. The reciprocal condition number of the pressure control approaches to
zero, but the energy density control has the reciprocal condition numbers that are relatively
significant for entire frequencies. Thus, it can be said that the equalization in the energy
density field is more robust than the equalization in the pressure field.

Fig. 6. Simulation environments. (a) Configuration for the simulation of a multichannel
sound reproduction system. (b) Control points in the simulations. l0 corresponds to the
center of the listener’s head.
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where σmin(·) and σmax(·) denote the smallest and largest singular values, respectively.
Suppose that the TF matrix is acoustically symmetric so that Hp,11(ω) = Hp,22(ω) and
Hp,21(ω) = Hp,12(ω). We now have

HH
p (ω)Hp(ω) = 2

��Hp,11(ω)
��2

�
1 cos(2πλ−1Δ)

cos(2πλ−1Δ) 1

�
, (32)

where Δ denotes the interaural path difference given by Δ11 − Δ12. Singular values can be
found from the following characteristic equation:

(1 − k)2 − cos2(2πλ−1Δ) = 0. (33)

By the definition of robustness, the equalization system will be the most robust when
cos(2πλ−1Δ) = 0 (Hp(ω) is minimized) and the least robust when cos(2πλ−1Δ) = ±1
(Hp(ω) is maximized) Ward & Elko (1999).
A similar analysis can be applied to acoustic energy density control. The composite transfer
function between the two loudspeakers and the two microphones in the pressure and velocity
fields becomes

Hed(ω) =

⎡
⎢⎢⎣

Hp,11(ω) Hp,21(ω)
(ρc)Hv,11(ω) (ρc)Hv,21(ω)
Hp,12(ω) Hp,22(ω)

(ρc)Hv,12(ω) (ρc)Hv,22(ω)

⎤
⎥⎥⎦ , (34)

where Hv,ml(ω) is the frequency-domain matrix corresponding to Hv,ml. Note that the
pressure and velocity at a point in space x = (x, y, z), −→v (x), and p(x) are related via

jωρ−→v (x) = −∇p(x), (35)

where ∇ represents a gradient. Using this relation, the velocity component for the x direction
can be written as

Hvx,ml(ω) =
1
ρc

· Δxml
d

Hp,ml(ω), (36)

where d and Δxml denote the distance and the x component of the displacement vector
between the mth loudspeaker and the lth control point, respectively. Note that the velocity
component for the y and z directions can be expressed similarly. Now we have

HH
ed(ω)Hed(ω) = 2

�
2 Q cos(2πλ−1Δ)

Q cos(2πλ−1Δ) 2

�
, (37)

where
Q = 1 +

Δx11Δx12 + Δy11Δy12 + Δz11Δz12
d11(d11 + Δ)

. (38)

Singular values can be obtained from the following characteristic equation:

(2 − k)2 −
�

Q cos
�

2πλ−1Δ
��2

= 0. (39)

From Eqs. (33) and (39), it can be noted that the maximum condition number of Hp(ω) equals
to infinity, while that of Hed(ω) is (2 + Q)/(2 − Q), when cos(2πλ−1Δ) = ±1. Eq. (38) also
shows that the maximum condition number of the energy density field becomes smaller as Δ
increases because Q approaches to 1. Now, by comparing the maximum condition numbers,
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Fig. 5. The reciprocal of the condition number.

the robustness of the control system can be inferred. Fig. 5 shows the reciprocal condition
number for the case where the loudspeaker is symmetrically placed at a 1 m and 30◦ relative
to the head center. The reciprocal condition number of the pressure control approaches to
zero, but the energy density control has the reciprocal condition numbers that are relatively
significant for entire frequencies. Thus, it can be said that the equalization in the energy
density field is more robust than the equalization in the pressure field.

Fig. 6. Simulation environments. (a) Configuration for the simulation of a multichannel
sound reproduction system. (b) Control points in the simulations. l0 corresponds to the
center of the listener’s head.
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4. Performance Evaluation

We present simulation results to validate energy density control. First, the robustness of
an inverse filtering for multichannel sound reproduction system is evaluated by simulating
the acoustic responses around the control points corresponding to the listener’s ears. The
performance of the robustness is objectively described in terms of the spatial extent of the
equalization zone.

4.1 Simulation result
In this simulation, we assumed a multichannel sound reproduction system consisting of four
sound sources (M = 4) as shown in Fig. 6(a). Details of the control points are depicted in
Fig. 6(b). We assumed a free field radiation and the sampling frequency was 48 kHz. Impulse
responses from the loudspeakers to the control points were modeled using 256-tap FIR filters
(Nh = 256), and equalization filters were designed using 256-tap FIR filters (Nw = 256). The
conventional LS method was tried by jointly equalizing the acoustic pressure at l1, l2, l3, and l4
points, and the energy density control was optimized only for the l0 point. The delayed Dirac
delta function was used for the desired response, i.e., dp,l0

(n) = · · · = dp,l4
(n) = δ(n − n0).

Center The control point (cm)
frequency (0, 0) (0, 5) (2.5, 2.5) (5, 0) (5, 5)

500 Hz 0.06 -0.28 -0.13 -0.42 -0.28
1 kHz 0.30 -1.39 -0.60 -1.91 -3.55
2 kHz 1.26 -7.61 -2.76 -14.53 -10.25

Table 1. The error in dB for the pressure control system based on joint LS optimization at each
center frequency.

Center The control point (cm)
frequency (0, 0) (0, 5) (2.5, 2.5) (5, 0) (5, 5)

500 Hz 0.00 0.25 0.09 -0.21 0.03
1 kHz 0.00 0.25 0.06 -0.95 -0.76
2 kHz 0.00 0.25 -0.69 -4.50 -4.58

Table 2. The error in dB for the energy density control system at each center frequency.

We scanned the equalized responses in a 10 cm square region around the l0 position, and
results are shown in Fig. 7. Note that only the upper right square region was evaluated due
to the symmetry. For the energy density control, velocity x and y were used. Velocity z was
not used. As evident in Fig. 7, the energy density control shows a lower error level than the
joint LS-based squared pressure control over the entire region of interest except at the points
corresponding to l2 (2 cm, 0 cm) and l4 (0 cm, 2 cm), where the control microphones for the
joint LS control were located.
Next, an equalization error was measured as the difference between the desired and actual
responses defined by

C(dB) = 10 log

⎧
⎪⎪⎨
⎪⎪⎩

ωmax

∑
ω=ωmin

��D(ω)− D̂(ω)
��2

ωmax

∑
ω=ωmin

|D(ω)|2

⎫
⎪⎪⎬
⎪⎪⎭

, (40)
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Fig. 7. The spatial extent of equalization by controlling pressure based joint LS optimization
and energy density.
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4. Performance Evaluation

We present simulation results to validate energy density control. First, the robustness of
an inverse filtering for multichannel sound reproduction system is evaluated by simulating
the acoustic responses around the control points corresponding to the listener’s ears. The
performance of the robustness is objectively described in terms of the spatial extent of the
equalization zone.

4.1 Simulation result
In this simulation, we assumed a multichannel sound reproduction system consisting of four
sound sources (M = 4) as shown in Fig. 6(a). Details of the control points are depicted in
Fig. 6(b). We assumed a free field radiation and the sampling frequency was 48 kHz. Impulse
responses from the loudspeakers to the control points were modeled using 256-tap FIR filters
(Nh = 256), and equalization filters were designed using 256-tap FIR filters (Nw = 256). The
conventional LS method was tried by jointly equalizing the acoustic pressure at l1, l2, l3, and l4
points, and the energy density control was optimized only for the l0 point. The delayed Dirac
delta function was used for the desired response, i.e., dp,l0

(n) = · · · = dp,l4
(n) = δ(n − n0).

Center The control point (cm)
frequency (0, 0) (0, 5) (2.5, 2.5) (5, 0) (5, 5)

500 Hz 0.06 -0.28 -0.13 -0.42 -0.28
1 kHz 0.30 -1.39 -0.60 -1.91 -3.55
2 kHz 1.26 -7.61 -2.76 -14.53 -10.25

Table 1. The error in dB for the pressure control system based on joint LS optimization at each
center frequency.

Center The control point (cm)
frequency (0, 0) (0, 5) (2.5, 2.5) (5, 0) (5, 5)

500 Hz 0.00 0.25 0.09 -0.21 0.03
1 kHz 0.00 0.25 0.06 -0.95 -0.76
2 kHz 0.00 0.25 -0.69 -4.50 -4.58

Table 2. The error in dB for the energy density control system at each center frequency.

We scanned the equalized responses in a 10 cm square region around the l0 position, and
results are shown in Fig. 7. Note that only the upper right square region was evaluated due
to the symmetry. For the energy density control, velocity x and y were used. Velocity z was
not used. As evident in Fig. 7, the energy density control shows a lower error level than the
joint LS-based squared pressure control over the entire region of interest except at the points
corresponding to l2 (2 cm, 0 cm) and l4 (0 cm, 2 cm), where the control microphones for the
joint LS control were located.
Next, an equalization error was measured as the difference between the desired and actual
responses defined by

C(dB) = 10 log

⎧
⎪⎪⎨
⎪⎪⎩

ωmax

∑
ω=ωmin

��D(ω)− D̂(ω)
��2

ωmax

∑
ω=ωmin

|D(ω)|2

⎫
⎪⎪⎬
⎪⎪⎭

, (40)

630 Robust Control, Theory and Applications

Fig. 7. The spatial extent of equalization by controlling pressure based joint LS optimization
and energy density.
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where ωmin and ωmax denote the minimum and maximum frequency indices of interest,
respectively. In order to compare the robustness of equalization, we evaluated the pressure
level in the vicinity of the control points. The equalization errors are summarized in Tables
1 and 2. Results show that the energy density control has a significantly lower equalization
error than the joint LS-based squared pressure control, especially at 2 kHz where there are
7 ∼ 10 dB differences.

Fig. 8. A three-dimensional plot of the error surface for the pressure control (left column) and
the energy density control (right column) at different center frequencies.

Finally, three-dimensional contour plots of the equalization errors are presented in Fig. 8.
Fig. 8(a) and (d) show both methods have similar equalization performance at 1 kHz due
to the relatively long wavelength. However, Figs. 8 (a), (b), and (c) indicate that the error
of the pressure control rapidly increases as the frequency increased. On the other hand,
the energy density control provides a more stable equalization zone, which implies that the
energy density control can overcome the observability problem to some extent. Thus, it can
be concluded that the energy density control system can provide a wider zone of equalization
than the pressure control system.

4.2 Implementation consideration
It should be mentioned that it is necessary to have the acoustic velocity components
to implement the energy density control system. It has been demonstrated that the
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two-microphone approach yields performance which is comparable to that of ideal energy
density control in the field of the active noise control system Park & Sommerfeldt (1997). Thus,
it is expected that the energy density control being implemented using the two-microphone
approximation maintains the robustness of room equalization observed in the previous
simulations.
To examine this, we applied two microphone techniques, which were described in section 3.3,
to determine the acoustic velocity along an axis. By using Eq. (28), simulations were conducted
for the case of Δx = 2cm to evaluate the performance of the two-sensor implementation.
Here, l0 and l2 are used for estimating the velocity component for x direction and l0 and l4
are used for estimating the velocity component for y direction; the velocity component for
z direction was not applied. The results obtained by using the ideal velocity signal and two
microphone technique are shown in Fig. 9. It can be concluded that the energy density system
employing the two microphone technique provides comparable performance to the control
system employing the ideal velocity sensor.

Fig. 9. The performance of the energy density control algorithm being implemented using the
two microphone technique.

5. Conclusion

In this chapter, a method of designing equalization filters based on acoustic energy density
was presented. In the proposed algorithm, the equalization filters are designed by minimizing
the difference between the desired and produced energy densities at the control points.
For the effective frequency range for the equalization, the energy density-based method
provides more robust performance than the conventional squared pressure-based method.
Theoretical analysis proves the robustness of the algorithm and simulation results showed
that the proposed energy density-based method provides more robust performance than the
conventional squared pressure-based method in terms of the spatial extent of the equalization
zone.
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1. Introduction 
It is well known that cost-efficient management of production and goods distribution 
systems in varying market conditions requires implementation of an appropriate inventory 
control policy (Zipkin, 2000). Since the traditional approaches to inventory control, focused 
mainly on the statistical analysis of long-term variables and (static) optimization performed 
on averaged values of various cost components, are no longer sufficient in modern 
production-inventory systems, new solutions are being proposed. In particular, due to the 
resemblance of inventory management systems to engineering processes, the methods of 
control theory are perceived as a viable alternative to the traditional approaches. A 
summary of the initial control-theoretic proposals can be found in (Axsäter, 1985), whereas 
more recent results are discussed in (Ortega & Lin, 2004) and (Sarimveis et al., 2008). 
However, despite a considerable research effort, one of the utmost important, yet still 
unresolved (Geary et al., 2006) problems observed in supply chain is the bullwhip effect, 
which manifests itself as an amplification of demand variations in order quantities. 
We consider an inventory setting in which the stock at a distribution center is used to fulfill 
an unknown, time-varying demand imposed by customers and retailers. The stock is 
replenished from a supplier which delivers goods with delay according to the orders 
received from the distribution center. The design goal is to generate ordering decisions such 
that the entire demand can be satisfied from the stock stored at the distribution center, 
despite the latency in order procurement, referred to as lead-time delay. The latency may be 
subject to significant fluctuations according to the goods availability at the supplier and 
transportation time uncertainty. When demand is entirely fulfilled any cost associated with 
backorders, lost sales, and unsatisfied customers is eliminated. Although a number of 
researchers have recognized the need to explicitly consider the delay in the controller design 
and stability analysis of inventory management systems, e.g. Hoberg et al. (2007), 
robustness issues related to simultaneous delay and demand fluctuations remain to a large 
extent unexplored (Dolgui & Prodhon, 2007). A few examples constitute the work of Boukas 
et al. (2000), where an H∞-norm-based controller has been designed for a production-
inventory system with uncertain processing time and input delay, and Blanchini et al. 
(2003), who concentrated on the stability analysis of a production system with uncertain 
demand and process setup. Both papers are devoted to the control of manufacturing 
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systems, rather than optimization of goods flow in supply chain, and do not consider rate 
smoothening as an explicit design goal. On the contrary, in this work, we focus on the 
supply chain dynamics and provide formal methods for obtaining a smooth, non-oscillatory 
ordering signal, what is imperative for reducing the bullwhip effect (Dejonckheere et al., 
2003). 
From the control system perspective we may identify three decisive factors responsible for 
poor dynamical performance of supply chains and the bullwhip effect: 1) abrupt order 
changes in response to demand fluctuations, typical for the traditional order-up-to 
inventory policies, as discussed in (Dejonckheere et al., 2003); 2) inherent delay between 
placing of an order and shipment arrival at the distribution center which may span several 
review periods; and finally, 3) unpredictable variations of lead-time delay. Therefore, to 
avoid (or combat) the bullwhip effect, the designed policy should smoothly react to the 
changes in market conditions, and generate order quantities which will not fluctuate 
excessively in subsequent review intervals even though demand exhibits large and 
unpredictable variations. This is achieved in this work by solving a dynamical optimization 
problem with quadratic performance index (Anderson & Moore, 1989). Next, in order to 
eliminate the negative influence of delay variations, a compensation technique is 
incorporated into the basic algorithm operation together with a saturation block to explicitly 
account for the supplier capacity limitations. It is shown that in the inventory system 
governed by the proposed policy the stock level never exceeds the assigned warehouse 
capacity, which means that the potential necessity for an expensive emergency storage 
outside the company premises is eliminated. At the same time the stock is never depleted, 
which implies the 100% service level. The controller demonstrates robustness to model 
uncertainties and bounded external disturbance. The applied compensation mechanism 
effectively throttles undesirable quantity fluctuations caused by lead-time changes and 
information distortion thus counteracting the bullwhip effect. 

2. Problem formulation 
We consider an inventory system faced by an unknown, bounded, time-varying demand, in 
which the stock is replenished with delay from a supply source. Such setting, illustrated in 
Fig. 1, is frequently encountered in production-inventory systems where a common point 
(distribution center), linked to a factory or external, strategic supplier, is used to provide 
goods for another production stage or a distribution network. The task is to design a control 
strategy which, on one hand, will minimize lost service opportunities (occurring when there 
is insufficient stock at the distribution center to satisfy the current demand), and, on the 
other hand, will ensure smooth flow of goods despite model uncertainties and external 
disturbances. The principal obstacle in providing such control is the inherent delay between 
placing of an order at the supplier and goods arrival at the center that may be subject to 
significant fluctuations during the control process. Another factor which aggravates the 
situation is a possible inconsistency of the received shipments with regard to the sequence of 
orders. Indeed, it is not uncommon in practical situations to obtain the goods from an earlier 
order after the shipment arrival from a more recent one. In addition, we may encounter 
other types of disturbances affecting the replenishment process related to organizational 
issues and quality of information (Zomerdijk & de Vries, 2003) (e.g. when a shipment arrives 
on time but is registered in another review period, or when an incorrect order is issued from 
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the distribution center). The time-varying latency of fulfilling of an order will be further 
referred to as lead-time or lead-time delay. 
 

 
Fig. 1. Inventory system with a strategic supplier 

 

 
Fig. 2. System model 
The schematic diagram of the analyzed periodic-review inventory system is depicted in 
Fig. 2. The stock replenishment orders u are issued at regular time instants kT, where T is the 
review period and k = 0, 1, 2,..., on the basis of the on-hand stock (the current stock level in 
the warehouse at the distribution center) y(kT), the target stock level yd, and the history of 
previous orders. Each non-zero order placed at the supplier is realized with lead-time delay 
L(k), assumed to be a multiple of the review period, i.e. L(k) = n(k)T, where n(k) and its 
nominal value n  are positive integers satisfying 

 ( ) ( ) ( )1 1n n k n− δ ≤ ≤ + δ  (1) 

and 0 ≤ δ < 1. Notice that (1) is the only constraint imposed on delay variations, which 
means that within the indicated interval the actual delay of a shipment may accept any 
statistical distribution. This implies that consecutive shipments sent by the supplier may 
arrive out of order at the distribution center and concurrently with other shipments which 
were sent earlier or afterwards. Since the presented model does not require stating the cause 
of lead-time variations, neither specification of a particular function n(k) or its distribution, it 
allows for conducting the robustness study in a broad spectrum of practical situations with 
uncertain latency in delivering orders.  
The imposed demand (the number of items requested from inventory in period k) is 
modeled as an a priori unknown, bounded function of time d(kT), 

 ( ) max0 .d kT d≤ ≤  (2) 

Notice that this definition of demand is quite general and it accounts for any standard 
distribution typically analyzed in the considered problem. If there is a sufficient number of 
items in the warehouse to satisfy the imposed demand, then the actually met demand h(kT) 
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review period and k = 0, 1, 2,..., on the basis of the on-hand stock (the current stock level in 
the warehouse at the distribution center) y(kT), the target stock level yd, and the history of 
previous orders. Each non-zero order placed at the supplier is realized with lead-time delay 
L(k), assumed to be a multiple of the review period, i.e. L(k) = n(k)T, where n(k) and its 
nominal value n  are positive integers satisfying 
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and 0 ≤ δ < 1. Notice that (1) is the only constraint imposed on delay variations, which 
means that within the indicated interval the actual delay of a shipment may accept any 
statistical distribution. This implies that consecutive shipments sent by the supplier may 
arrive out of order at the distribution center and concurrently with other shipments which 
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modeled as an a priori unknown, bounded function of time d(kT), 
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Notice that this definition of demand is quite general and it accounts for any standard 
distribution typically analyzed in the considered problem. If there is a sufficient number of 
items in the warehouse to satisfy the imposed demand, then the actually met demand h(kT) 
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(the number of items sold to customers or sent to retailers in the distribution network) will 
be equal to the requested one. Otherwise, the imposed demand is satisfied only from the 
arriving shipments, and additional demand is lost (we assume that the sales are not 
backordered, and the excessive demand is equivalent to a missed business opportunity). 
Thus, we may write 

 ( ) ( ) max0 .h kT d kT d≤ ≤ ≤  (3) 

The dynamics of the on-hand stock y depends on the amount of arriving shipments uR(kT) 
and on the satisfied demand h. Assuming that the warehouse is initially empty, i.e. y(kT) = 0 
for k < 0, and the first order is placed at kT = 0, then for any kT ≥ 0 the stock level at the 
distribution center may be calculated from the following equation 

 ( ) ( ) ( ) ( ) ( )
1 1 1 1

0 0 0 0
.

k k k k

R
j j j j

y kT u jT h jT u jT L j h jT
− − − −

= = = =

⎡ ⎤= − = − −⎣ ⎦∑ ∑ ∑ ∑  (4) 

Let us introduce a function ξ(kT) = ξ+(kT) – ξ–(kT), where 
• ξ+(kT) represents the sum of these surplus items which arrive at the distribution center 

by the time kT earlier than expected since their delay experienced in the neighborhood 
of kT is smaller than the nominal one, and 

• ξ–(kT) denotes the sum of items which should have arrived by the time kT, but which 
cannot reach the center due to the (instantaneous) delay greater than the nominal one. 

Assuming that the order quantity is bounded by some positive value umax (e.g. the 
maximum number of items the supplier can accumulate and send in one review period), 
which is commonly encountered in practical systems, then on the basis of (1), 

 ( )0 max max ,k kT u L≥∀ ξ ≤ ξ = δ  (5) 

where L nT=  is the nominal lead-time. With this notation we can rewrite (4) in the 
following way 

 ( ) ( ) ( ) ( )
1 1

0 0
.

k k

j j
y kT u j n T kT h jT

− −

= =

⎡ ⎤= − + ξ −⎣ ⎦∑ ∑  (6) 

It is important to realize that because lead-time is bounded, it suffices to consider the effects 
caused by its variations (represented by function ξ(·) in the model) only in the neighborhood 
of kT implied by (1). Since the summing operation is commutative, all the previous 
shipments, i.e. those arriving before (k – nδ )T, can be added as if they had actually reached 
the distribution center on time and this will not change the overall quantity of the received 
items. In other words, delay variations of shipments acquired in the far past do not inflict 
perturbation on the current stock. 
The discussed model of inventory management system can also be presented in the state 
space. The state-space realization facilitates adaptation of formal design techniques, and is 
selected as a basis for the control law derivation described in detail in Section 3. 
State-space representation 
In order to proceed with a formal controller design we describe the discrete-time model of 
the considered inventory system in the state space: 
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where x(kT) = [x1(kT) x2(kT) x3(kT) ... xn(kT)]T is the state vector with x1(kT) = y(kT) 
representing the stock level in period k and the remaining state variables xj(kT) = u[(k –
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and the system order n = n  + 1. For convenience of the further analysis, we can rewrite the 
model in the alternative form 
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Relation (9) shows how the effects of delay are accounted for in the model by a special 
choice of the state space in which the state variables contain the information about the most 
recent order history. The desired system state is defined as 
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dx � �  (10) 

where xd1 = yd denotes the demand value of the first state variable, i.e. the target stock level. 
By choosing the desired state vector as 

xd = [yd 0 0 ... 0]T 

we want the first state variable (on-hand stock) to reach the level yd, and to be kept at this 
level in the steady-state. For this to take place all the state variables x2...xn should be zero 
once x1(kT) becomes equal to yd, precisely as dictated by (10). 
In the next section, equations (7)–(10) describing the system behavior and interactions 
among the principal system variables (ordering signal, on-hand stock level and imposed 
demand) will be used to develop a discrete control strategy goverining the flow of goods 
between the supplier and the distribution center. 
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where xd1 = yd denotes the demand value of the first state variable, i.e. the target stock level. 
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demand) will be used to develop a discrete control strategy goverining the flow of goods 
between the supplier and the distribution center. 
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3. Proposed inventory policy 
In this section, we formulate a new inventory management policy and discuss its properties 
related to handling the flow of goods. First, the nominal system is considered, and the 
controller parameters are selected by solving a linear-quadratic (LQ) optimization problem. 
Afterwards, the influence of perturbation is analyzed and an enhanced, nonlinear control 
law is formulated which demonstrates robustness to delay and demand variations. The key 
element in the improved controller structure is the compensator which reduces the effects 
caused by delay fluctuations and information distortion. 

3.1 Optimization problem 
From the point of view of optimizing the system dynamics, we may state the aim of the 
control action as bringing the currently available stock to the target level without excessive 
control effort. Therefore, we seek for a control uopt(kT), which minimizes the following cost 
functional 

 ( ) ( ) ( ){ }22

0
,d

k
J u u kT w y y kT

∞

=

= + ⎡ − ⎤⎣ ⎦∑  (11) 

where w is a positive constant applied to adjust the influence of the controller command and 
the output variable on the cost functional value. Small w reduces excessive order quantities, 
but lowers the controller dynamics. High w, in turn, implies fast tracking of the reference 
stock level at the expense of large input signals. In the extreme case, when w → ∞, the term 
yd – y(kT) prevails and the developed controller becomes a dead-beat scheme. From the 
managerial point of view the application of a quadratic cost structure in the considered 
problem of inventory control has similar effects as discussed in (Holt et al., 1960) in the 
context of production planning. It allows for a satisfactory tradeoff between fast reaction to 
the changes in market conditions (reflected in demand variations) and smoothness of 
ordering decisions. As a result, the controller will track the target inventory level yd with 
good dynamics, yet, at the same time, it will prevent rapid demand fluctuations from 
propagating in supply chain. A huge advantage of our approach based on dynamical 
optimization over the results proposed in the past is that the smoothness of ordering 
decisions is ensured by the controller structure itself. This allows us to avoid signal filtering 
and demand averaging, typically applied to decrease the degree of ordering variations in 
supply chain, and thus to avoid errors and inaccuracies inherently implied by these 
techniques. 
Applying the standard framework proposed in (Zabczyk, 1974), to system (7)–(8), the 
control uopt(kT) minimizing criterion (11) can be presented as 

 ( ) ( ) ,optu kT kT r= − +gx  (12) 

where 
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and semipositive, symmetric matrix Kn×n, KT = K ≥ 0, is determined according to the 
following Riccati equation 

 ( ) 1
.T T Tw

−
= + +nK A K I bb K A qq  (14) 

Finding the parameters of the LQ optimal controller for the considered system with delay is 
a challenging task, as it involves solving an nth order matrix Riccati equation. Nevertheless, 
by applying the approach presented in (Ignaciuk & Bartoszewicz, 2010) we are able to solve 
the problem analytically and obtain the control law in a closed form. Below we summarize 
major steps of the derivation. 

3.2 Solution to the optimization problem 
We begin with the most general form of matrix K which can be presented as  
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 (15) 

In the first iteration, we place K0 directly in (14), and after substituting matrix A and vector 
b as defined by (8), we seek for similarities between the elements kij on either side of the 
equality sign in (14). In this way we find the relations among the first four elements in the 
upper left corner of K: k12 = k22 = k11 – w (note that k21 = k12 since K is symmetric). 
Consequently, after the first analytical iteration, we obtain the following form of K 
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Now we substitute K1 given by (16) into the expression on the right hand side of (14) and 
compare with its left hand side. This allows us to represent the elements ki3 (i = 1, 2, 3) in 
terms of k11 as k13 = k23 = k33 = k11 – 2w. Concisely in matrix form we have 
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We proceed with the substitutions until a general pattern is determined, i.e. until all the 
elements of K can be expressed as functions of k11 and the system order n. We get kij = k11 –
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11 11 11 24 2

11 11 11 34 3
2

14 24 34 44 4

1 2 3 4

2
2

2 2 2
.

n

n

n

n

n n n n nn

k k w k w k k
k w k w k w k k

k w k w k w k k
k k k k k

k k k k k

− −⎡ ⎤
⎢ ⎥− − −⎢ ⎥
⎢ ⎥− − −

= ⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

K

…
…
…
…

� � � � � �
…

 (17) 

We proceed with the substitutions until a general pattern is determined, i.e. until all the 
elements of K can be expressed as functions of k11 and the system order n. We get kij = k11 –
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 (j – 1)w for j ≥ i (the upper part of K) and kij = k11 – (i – 1)w for j < i (the lower part of K). In 
matrix form 

 

( )
( )
( )

( ) ( ) ( ) ( )

11 11 11 11

11 11 11 11

11 11 11 11

11 11 11 11

2 1
2 1

2 2 2 1 .

1 1 1 1

k k w k w k n w
k w k w k w k n w

k w k w k w k n w

k n w k n w k n w k n w

⎡ − − − − ⎤
⎢ ⎥− − − − −⎢ ⎥
⎢ ⎥= − − − − −
⎢ ⎥
⎢ ⎥
⎢ ⎥− − − − − − − −⎣ ⎦

K

…
…
…

� � � � �
…

 (18) 

If we substitute (18) into the right hand side of equation (14) and compare the first element 
in the upper left corner of the matrices on either side of the equality sign, we get the 
expression from which we can determine k11: 

 ( ) 1
11 111 1 1 .k nw k n w −
= + − ⎡ − − + ⎤⎣ ⎦  (19) 

Equation (19) has two roots 

 ( ) ( )' "
11 112 1 4 / 2  and  2 1 4 / 2.k w n w w k w n w w⎡ ⎤ ⎡ ⎤= − − + = − + +⎣ ⎦ ⎣ ⎦  (20) 

Since det(K) = wn–1[k11 – (n – 1)w], only ( ) ( )"
11 2 1 4 / 2 1k w n w w n w⎡ ⎤= − + + ≥ −⎣ ⎦  

guarantees that K is semipositive definite. Consequently, we get matrix K (18) with k11 = "
11k . 

This concludes the solution of the Riccati equation. 
Having found K, we evaluate g, 

 [ ] ( ){ }1
111 1 1 1 1 1 1 .k n w −

= − ⎡ − − + ⎤⎣ ⎦g …  (21) 

Vector k is determined by substituting matrix K given by (18) into the last equation in set 
(13). We obtain 

 ( )1 1 1 12 1 ,T
d d dk k wy k wy k n wy= ⎡ + + + − ⎤⎣ ⎦k …  (22) 

where 

 ( ){ }1
1 11 1 .dk wy n k n w −
= − + ⎡ − − ⎤⎣ ⎦  (23) 

Then, using the second equation in set (13), and substituting (23), we calculate r, 

 ( )
( ) ( )

1

11 11

1
.

1 1 1
d dk n wy wyr

k n w k n w
+ −

= − =
− − + − −

 (24) 

Finally, using (21) and (24), the optimal control uopt(kT) can be presented in the following 
way: 

 ( ) ( ) ( ) ( ) ( )11 111

11 .
1 1 1

n
d

opt j
j

wyu kT kT r x kT
k n w k n w=

⎛ ⎞
= − + = − − +⎜ ⎟⎜ ⎟− − + − −⎝ ⎠

∑gx  (25) 
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Substituting ( )11 2 1 4 / 2k w n w w⎡ ⎤= − + +⎣ ⎦ , we arrive at 

 ( ) ( ) ( )1
2

,
n

opt d j
j

u kT y x kT x kT
=

⎡ ⎤
= α − −⎢ ⎥

⎢ ⎥⎣ ⎦
∑  (26) 

where the gain ( ( 4) ) / 2w w wα = + − . From (9) the state variables xj (j = 2, 3,..., n) may be 
expressed in terms of the control signal generated at the previous n – 1 samples as 

 ( ) ( )1 .jx kT u k n j T⎡ ⎤= − + −⎣ ⎦  (27) 

Recall that we introduced the notation x1(kT) = y(kT). Then, substituting (27) into (26), we 
obtain 

 ( ) ( ) ( )
1

,
k

opt d
j k n

u kT y y kT u jT
−

= −

⎡ ⎤
= α − −⎢ ⎥

⎢ ⎥⎣ ⎦
∑  (28) 

which completes the design of the inventory policy for the nominal system. The policy can 
be interpreted in the following way: the quantity to be ordered in each period is 
proportional to the difference between the target and the current stock level (yd – y(kT)), 
decreased by the amount of open orders (the quantity already ordered at the supplier, but 
which has not yet arrived at the warehouse due to lead-time delay). It is tuned in a 
straightforward way by the choice of a single parameter α, i.e. smaller α implies more 
dampening of demand variations (for a detailed discussion on the selection of α refer to 
(Ignaciuk & Bartoszewicz, 2010)). 

3.3 Stability analysis of the nominal system 
The nominal discrete-time system is asymptotically stable if all the roots of the characteristic 
polynomial of the closed-loop state matrix Ac = [In – b(cTb)–1cT]A are located within the unit 
circle on the z-plane. The roots of the polynomial 

 ( ) ( ) ( )1 1det 1 1 ,n n nz z z z z− −− = + α − = ⎡ − − α ⎤⎣ ⎦n cI A  (29) 

are located inside the unit circle, if 0 < α < 2. Since for every n and for every w the gain 
satisfies the condition 0 < α ≤ 1, the system is asymptotically stable. Moreover, since 
irrespective of the value of the tuning coefficient w the roots of (29) remain on the 
nonnegative real axis, no oscillations appear at the output. By changing w from 0 to ∞, the 
nonzero pole moves towards the origin of the z-plane, which results in faster convergence to 
the demand state. In the limit case when w = ∞, all the closed-loop poles are at the origin 
ensuring the fastest achievable response in a discrete-time system offered by a dead-beat 
scheme. 

3.4 Robustness issues 
The order calculation performed according to (28) is based on the nominal delay which 
constitutes an estimate of the true (variable) lead-time set according to the contracting 
agreement with the supplier. The controller designed for the nominal system is robust with 
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constitutes an estimate of the true (variable) lead-time set according to the contracting 
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respect to demand fluctuations, yet may generate negative orders in the presence of lead-
time variations. In order to eliminate this deficiency and at the same time account for the 
supplier capacity limitations, we introduce the following modification into the basic 
algorithm 

 ( )
( )

( ) ( )
( )

max

max max

0, if    0,
, if    0 ,

, if    ,

kT
u kT kT kT u

u kT u

⎧ ϕ <
⎪

= ϕ ≤ ϕ ≤⎨
⎪ ϕ >⎩

 (30) 

where umax > dmax is a constant denoting the maximum order quantity that can be provided 
by the supplier in a single review period. Function φ(·) is defined as 

 ( ) ( ) ( ) ( ) ( )
1 1

0
.

k k

d R
j k n j

kT y y kT u jT u jT u jT L
− −

= − =

⎧ ⎫⎪ ⎪⎡ ⎤ϕ = α − − +ε − −⎨ ⎬⎣ ⎦
⎪ ⎪⎩ ⎭

∑ ∑  (31) 

It consists of two elements: 
• LQ optimal controller as given by (28), and 
• delay variability compensator tuned by the coefficient ε ∈ [0, 1], which accumulates the 

information about the differences between the number of items which actually arrived 
at the distribution center and those which were expected to arrive. 

3.5 Properties of the robust policy 
The properties of the designed nonlinear policy (30)–(31) will be formulated as two 
theorems and analyzed with respect to the most adverse conditions (the extreme 
fluctuations of demand and delay). The first proposition shows how to adjust the warehouse 
storage space to always accommodate the entire stock and in this way eliminate the risk of 
(expensive) emergency storage outside the company premises. The second theorem states 
that with an appropriately chosen target stock level there will be always goods in the 
warehouse to meet the entire demand. 
Theorem 1. If policy (30)–(31) is applied to system (7)–(8), then the stock level at the 
distribution center is always upper-bounded, i.e. 

 ( ) ( )max max max
0

 1 .d
k

y kT y y u
≥

≤ = + + + ε ξ∀  (32) 

Proof. Based on (4), (5), and the definition of function ξ(·), the term compensating the effects 
of delay variations in (31) satisfies the following relation 

 ( ) ( ) ( ) ( ){ } ( ) ( )
1 1 1

0 0 0
.

k k k

R
j j j

u jT u jT L u jT L j u jT L jT kT
− − −

= = =

⎡ ⎤ ⎡ ⎤− − = − − − = ξ = ξ⎣ ⎦⎣ ⎦∑ ∑ ∑  (33) 

Therefore, we may rewrite function φ(·) as 

 ( ) ( ) ( ) ( )
1

.
k

d
j k n

kT y y kT u jT kT
−

= −

⎡ ⎤
ϕ = α − − + εξ⎢ ⎥

⎢ ⎥⎣ ⎦
∑  (34) 
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It follows from the algorithm definition and the system initial conditions that the warehouse 
at the distribution center is empty for any ( )1k n≤ − δ . Consequently, it is sufficient to show 
that the proposition holds for all ( )1k n> − δ . Let us consider some integer ( )1l n> − δ  and 
the value of φ(·) at instant lT. Two cases ought to be analyzed: the situation when φ(lT) ≥ 0, 
and the circumstances when φ(lT) < 0. 
Case 1. We investigate the situation when φ(lT) ≥ 0. Directly from (34), we get 

 ( ) ( ) ( )
1

.
l

d
j l n

y lT y lT u jT
−

= −
≤ + εξ − ∑  (35) 

Since u is always nonnegative, we have 

 ( ) ( ).dy lT y lT≤ + εξ  (36) 

Moreover, since ξ(lT) ≤ ξmax, we obtain 

 ( ) max max ,dy lT y y≤ + εξ ≤  (37) 

which ends the first part of the proof. 
Case 2. In the second part of the proof we analyze the situation when φ(lT) < 0. First, we 
find the last instant l1T < lT when φ(·) was nonnegative. According to (34), φ(0) = αyd > 0, so 
the moment l1T indeed exists, and the value of y(l1T) satisfies the inequality similar to (35), 
i.e. 

 ( ) ( ) ( )
1

1

1

1 1 .
l

d
j l n

y l T y l T u jT
−

= −
≤ + εξ − ∑  (38) 

The stock level at instant lT can be expressed as 

 ( ) ( ) ( ) ( ) ( )
1 1

1 1

1 ,
l n l

j l n j l
y lT y l T u jT lT h jT

− − −

= − =
= + + ξ −∑ ∑  (39) 

which after applying (38) leads to 

 
( ) ( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( )

1

1 1 1

1 1

1 1 1

1

1 1

1           .

l l n l

d
j l n j l n j l

l n l

d
j l j l

y lT y l T u jT u jT lT h jT

y l T lT u jT h jT

− − − −

= − = − =

− − −

= =

≤ + εξ − + + ξ −

≤ + εξ + ξ + −

∑ ∑ ∑

∑ ∑
 (40) 

The algorithm generated a nonzero quantity for the last time before lT at l1T, and this value 

can be as large as umax. Consequently, the sum ( ) ( )
1

1
1 max

l n
j l u jT u l T u− −
=

= ≤∑ . From 

inequalities (3) and the condition ξ(lT) ≤ ξmax  we obtain the following stock estimate 

 
( ) ( ) ( ) ( )1 1

max max max max        ,
d

d

y lT y l T lT u l T
y u y

≤ + εξ + ξ +

≤ + εξ + ξ + =
 (41) 
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max max
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kT
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1 1

0
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k k

d R
j k n j
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 1 .d
k
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 ( ) ( ) ( ) ( ){ } ( ) ( )
1 1 1

0 0 0
.

k k k

R
j j j
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 ( ) ( ) ( ) ( )
1

.
k

d
j k n

kT y y kT u jT kT
−
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⎡ ⎤
ϕ = α − − + εξ⎢ ⎥

⎢ ⎥⎣ ⎦
∑  (34) 
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( ) ( ) ( ) ( )1 1

max max max max        ,
d

d

y lT y l T lT u l T
y u y

≤ + εξ + ξ +

≤ + εξ + ξ + =
 (41) 
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which concludes the second part of the reasoning and completes the proof of Theorem 1.  
Theorem 1 states that the warehouse storage space is finite and never exceeds the level of 
ymax. This means that irrespective of the demand and delay variations the system output y(·) 
is bounded, and the risk of costly emergency storage is eliminated. The second theorem, 
formulated below, shows that with the appropriately selected target stock yd we can make 
the on-hand stock positive, which guarantees the maximum service level in the considered 
system with uncertain, variable delay. 
Theorem 2. If policy (30)–(31) is applied to system (7)–(8), and the target stock level satisfies 

 ( ) ( )max max1 / 1 1 ,dy u n> + α + + + ε ξ  (42) 

then for any k ≥ (1+δ) n +Tmax/T, where Tmax = Tymax/(umax – dmax), the stock level is strictly 
positive. 
Proof. The theorem assumption implies that we deal with time instants 

( ) max1kT nT T≥ + δ + . Considering some ( ) max1 /l n T T≥ + δ +  and the value of signal φ(lT), 
we may distinguish two cases: the situation when φ(lT) < umax, and the circumstances when 
φ(lT) ≥ umax. 
Case 1. First, we consider the situation when φ(lT) < umax. We obtain from (34) 

 ( ) ( ) ( )
1

max .
l

d
j l n

uy lT y u jT lT
−

= −
> − − + εξ

α ∑  (43) 

The order quantity is always bounded by umax, which implies 

 ( ) ( )max max/ .dy lT y u u n lT> − α − + εξ  (44) 

Since ξ(·) ≥ – ξmax, we get 

 ( ) max max max/ .dy lT y u u n> − α − − εξ  (45) 

Using assumption (42), we get y(lT) > 0, which concludes the first part of the proof. 
Case 2. In the second part of the proof we investigate the situation when φ(lT) ≥ umax. First, 
we find the last period l1 < l when function φ(·) was smaller than umax. It comes from 
Theorem 1 that the stock level never exceeds the value of ymax. Furthermore, the demand is 
limited by dmax. Thus, the maximum interval Tmax during which the controller may 
continuously generate the maximum order quantity umax is determined as 
Tmax = Tymax / (umax – dmax), and instant l1T does exist. Moreover, from the theorem 
assumption we get l1T ≥ (1 + δ) n T, which means that by the time l1T the first shipment from 
the supplier has already reached the distribution center, no matter the delay variation. 
The value of φ(l1T) < umax. Thus, following similar reasoning as presented in (43)–(45), we 
arrive at y(l1T) > 0 and 
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Recall that l1T was the last instant before lT when the controller calculated a quantity smaller 
than umax. This quantity, u(l1T), could be as low as zero. Afterwards, the algorithm generates 
the maximum order and the first sum in (46) reduces to umax(l – 1 – l1). Moreover, since for 
any k, u(kT) ≤ umax, the second sum is upper-bounded by umax n , which implies 

 ( ) ( ) ( ) ( ) ( )
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1
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l

d
j l

y lT y u l T u l l u n lT h jT
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=
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According to (3), the realized demand satisfies 0 ≤ h(·) ≤ dmax, hence 

 ( ) ( ) ( ) ( ) ( )max max 1 max 1 max 1/ 1 .dy lT y u u l l u n l T lT d l l> − α + − − − + εξ + ξ − −  (48) 

Since ξ(lT) ≥ – ξmax, we get 

 ( ) ( ) ( )max max 1 max max max max 1/ 1 .dy lT y u u l l u n d l l> − α + − − − − εξ − ξ − −  (49) 

Finally, using the theorem assumption (42), we may estimate the stock level at instant lT in 
the following way 

 ( ) ( )( )max max 1 .y lT u d l l> − −  (50) 

Since l > l1, and by assumption umax > dmax, we get y(lT) > 0. This completes the proof of 
Theorem 2.  
Remark. Theorem 2 defines the warehouse storage space which needs to be provided to 
ensure the maximum service level. The required warehouse capacity is specified following 
the worst-case uncertainty analysis (for an instructive insight how this methodology relates 
to production-distribution systems see e.g. (Blanchini et. al., 2003) and (Sarimveis et al., 
2008)). Notice, however, that the value given in (42) scales linearly with the maximum order 
quantity related to demand by the inequality umax > dmax. Therefore, in the situation when 
the mean demand differs significantly from the maximum one, it may be convenient to 
substitute umax with some positive dL < dmax < umax. In such a case the 100% service level is no 
longer ensured, yet the average stock level, and as a consequence the holding costs, will be 
reduced. 

4. Numerical example 
We verify the properties of the nonlinear inventory policy (30)–(31) proposed in this work in 
a series of simulation tests. The system parameters are chosen in the following way: review 
period T = 1 day, nominal lead-time L nT= = 8 days, tolerance of delay variation δ = 0.25, 
the maximum daily demand at the distribution center dmax = 50 items, and the maximum 
order quantity umax = 55 items. In order to provide fast response yet with a smooth ordering 
signal, the controller gain should not exceed 0.618, which corresponds to the balanced 
optimziation case with w = 1. Since, additionally, we should account for ordering 
oscillations caused by delay changes, in the tests the gain is adjusted to α(w) = α(0.5) = 0.5. 
We consider two scenarios reflecting the most common market situations. 
Scenario 1. In the first series of simulations we test the controller performance in response to 
the demand pattern illustrated in Fig. 3, which shows a trend in the demand with abrupt 
seasonal changes. It is assumed that lead-time fluctuates according to 
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which concludes the second part of the reasoning and completes the proof of Theorem 1.  
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 ( ) ( ) ( )1 sin 2 / 1 0.25sin / 4 8 ,L k kT n nT k⎢ ⎥ ⎢ ⎥= ⎡ + δ π ⎤ = ⎡ + π ⎤⎣ ⎦ ⎣ ⎦⎣ ⎦ ⎣ ⎦  (51) 

where ⎣f⎦ denotes the integer part of f. The actual delay in procurring orders is illustrated in 
Fig. 4. 
 

 
Fig. 3. Market demand – seasonal trend 
 

 
Fig. 4. Lead-time delay 
In order to elaborate on the adverse effects of delay variations, and assess the quality of the 
proposed compensation mechanism, we run two tests. In the first one (curve (a) in the 
graphs), we show the controller performance with compensation turned off, i.e. with ε = 0, 
and in the seond test, we consider the case of a full compensation in action with ε set equal 
to 1 (curve (b) in the graphs). The target stock level yd is adjusted according to the 
guideliness provided by Theorem 2 so that the maximum service level is obtained, and the 
storage space ymax is reserved according to the condition stipulated in Theorem 1. The actual 
values used in the simulations are summarized in Table 1. 
The test results are shown in Figs. 5–7: the ordering signal generated by the controller in 
Fig. 5, the received orders in Fig. 6, and the resultant on-hand stock in Fig. 7. It is clear from 
the graphs that the proposed controller quickly responds to the sudden changes in the 
demand trend. Moreover, the stock does not increase beyond the warehouse capacity, and it 
never drops to zero after the initial phase which implies the 100% service level. If we 
compare the curves representing the case of a full compensation (b) and the case of the 
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compensation turned-off (a) in Figs. 5 and 7, we can notice that the proposed compensation 
mechanism eliminates the oscillations of the control signal originating from delay variations. 
This allows for smooth reaction to the changes in market trend, and an ordering signal 
which is easy to follow by the supplier. We can learn from Fig. 7 that the obtained smooth 
ordering signal also permits reducing the on-hand stock while keeping it positive. This 
means that the maximum service level is achieved, but with decreased holding costs. 
 

Compensation
{on/off} 

Target stock
yd [items] 

Storage space
ymax [items] 

off: ε = 0 720 > 715 885 
on: ε = 1 830 > 825 1105 

Table 1. Controller parameters in Scenario 1 
 

 
Fig. 5. Generated orders 
 

 
Fig. 6. Received shipments 
Scenario 2. In the second scenario, we investigate the controller behavior in the presence of 
highly variable stochastic demand. Function d(·) following the normal distribution with 
mean dμ = 25 items and standard deviation dδ = 25 items, Dnorm(25, 25), is illustrated in Fig. 8. 
 



 Robust Control, Theory and Applications 

 

648 

 ( ) ( ) ( )1 sin 2 / 1 0.25sin / 4 8 ,L k kT n nT k⎢ ⎥ ⎢ ⎥= ⎡ + δ π ⎤ = ⎡ + π ⎤⎣ ⎦ ⎣ ⎦⎣ ⎦ ⎣ ⎦  (51) 

where ⎣f⎦ denotes the integer part of f. The actual delay in procurring orders is illustrated in 
Fig. 4. 
 

 
Fig. 3. Market demand – seasonal trend 
 

 
Fig. 4. Lead-time delay 
In order to elaborate on the adverse effects of delay variations, and assess the quality of the 
proposed compensation mechanism, we run two tests. In the first one (curve (a) in the 
graphs), we show the controller performance with compensation turned off, i.e. with ε = 0, 
and in the seond test, we consider the case of a full compensation in action with ε set equal 
to 1 (curve (b) in the graphs). The target stock level yd is adjusted according to the 
guideliness provided by Theorem 2 so that the maximum service level is obtained, and the 
storage space ymax is reserved according to the condition stipulated in Theorem 1. The actual 
values used in the simulations are summarized in Table 1. 
The test results are shown in Figs. 5–7: the ordering signal generated by the controller in 
Fig. 5, the received orders in Fig. 6, and the resultant on-hand stock in Fig. 7. It is clear from 
the graphs that the proposed controller quickly responds to the sudden changes in the 
demand trend. Moreover, the stock does not increase beyond the warehouse capacity, and it 
never drops to zero after the initial phase which implies the 100% service level. If we 
compare the curves representing the case of a full compensation (b) and the case of the 

Robust Control Approach for Combating the Bullwhip Effect in  
Periodic-Review Inventory Systems with Variable Lead-Time   

 

649 

compensation turned-off (a) in Figs. 5 and 7, we can notice that the proposed compensation 
mechanism eliminates the oscillations of the control signal originating from delay variations. 
This allows for smooth reaction to the changes in market trend, and an ordering signal 
which is easy to follow by the supplier. We can learn from Fig. 7 that the obtained smooth 
ordering signal also permits reducing the on-hand stock while keeping it positive. This 
means that the maximum service level is achieved, but with decreased holding costs. 
 

Compensation
{on/off} 

Target stock
yd [items] 

Storage space
ymax [items] 

off: ε = 0 720 > 715 885 
on: ε = 1 830 > 825 1105 

Table 1. Controller parameters in Scenario 1 
 

 
Fig. 5. Generated orders 
 

 
Fig. 6. Received shipments 
Scenario 2. In the second scenario, we investigate the controller behavior in the presence of 
highly variable stochastic demand. Function d(·) following the normal distribution with 
mean dμ = 25 items and standard deviation dδ = 25 items, Dnorm(25, 25), is illustrated in Fig. 8. 
 



 Robust Control, Theory and Applications 

 

650 

 
Fig. 7. On-hand stock 
Since the mean demand in the stochastic pattern significantly differs from the maximum 
value, we adjust the target stock according to (42) with umax > dmax replaced by dμ = 25 items. 
This results in yd = 375 items (with ε = 1). Although it is no longer guaranteed to satisfy all of 
the customer demand (the service level decreases to 98%), the holding costs are nearly 
halved. For the purpose of comparison we also run the tests for a classical order-up-to 
(OUT) policy (order up to a target value yOUT if the total stock – equal to the on-hand stock 
plus open orders – drops below yOUT). In order to compare the controllers in a fair way, we 
apply the same compensation mechanism for the OUT policy as is used for our, LQ-based 
scheme. We also reduce the value of the target stock level for the OUT policy yOUT setting 
α = 1 in (42). The controller parameters actually used in the test are grouped in Table 2. 
Lead-time is assumed to follow the normal distribution Dnorm(8 days, 2 days). The actual 
delay in procurring orders is illustrated in Fig. 9. 
 
 

Policy Target stock
yd | yOUT [items]

Storage space
ymax [items] 

LQ-based 375 500 
OUT 350 475 

Table 2. Controller parameters in Scenario 2 
The orders generated by both policies are shown in Fig. 10, the received shipments in 
Fig. 11, and the on-hand stock in Fig. 12. It is evident from the plots that in contrast to the 
OUT policy (a), our scheme (b) successfully dampens demand fluctuations at the very first 
stage of supply chain, and it results in a smaller on-hand stock. Performing statistical 
analysis we obtain 261 items2 order variance for the OUT policy and 99 items2 for our 
controller. Consequently, according to the most popular (Miragliota, 2006) measure of the 
bullwhip effect proposed by Chen et al. (2000), which is the ratio of variances of orders and 
demand, we obtain for our scheme 0.44, which corresponds to 2.27 attenuation of demand 
variations. The ratio of variances for the OUT policy equals 1.16 > 1 which implies amplified 
variations and the bullwhip effect. This clearly shows the benefits of application of formal 
control concepts, in particular dynamical optimization and disturbance compensation, in 
alleviating the adverse effects of uncertainties in supply chain. 
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Fig. 8. Market demand following the normal distribution with mean and standard deviation 
equal to 25 items 
 

 
Fig. 9. Lead-time delay following the normal distribution with mean 8 days and standard 
deviation 2 days 
 

 
Fig. 10. Generated orders 
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Fig. 11. Received shipments 
 

 
Fig. 12. On-hand stock 

5. Conclusion 
In this chapter, we presented a robust supply policy for periodic-review inventory systems. 
The policy is designed based on sound control-theoretic foundations with the aim of 
reducing the bullwhip effect. The proposed policy successfully counteracts the increase of 
order oscillations in the presence of highly variable demand, lead-time fluctuations, and 
supplier capacity constraints. It guarantees that the incoming shipments will not cause 
warehouse overflow, implying that emergency storage is never required. Moreover, the 
presented policy ensures that all of the demand is satisfied from the on-hand stock, thus 
eliminating the risk of missed service opportunities and necessity for backorders. 
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1. Introduction

Synchronization is an important property in fundamental biological processes.
Synchronization of biochemical oscillations confers positive functional advantages to
the organism, including temporal organization, spatial organization, and efficiency for
communication between cells (Berridge et al., 1998; Fall et al., 2002; Goldbeter, 2002; Keener
& Sneyd, 1998). Indeed, the relevance of synchronization has been stressed frequently. For
instance synchronized circadian rhythms may influence the pharmacology and the tolerability
of anticancer drugs and/or their antitumor efficacy (Petty, 2004; Fu & Lee, 2003). In the heart,
the impulses coming through the vagus nerve trigger the contraction of the heart only if they
are properly synchronized (Keener & Sneyd, 1998; diBernardo et al., 1998). Synchronized
behavior of calcium oscillators is believed that enables communication from one side of
a cell to another, or between cells, and can serve to synchronize a global, multicellular,
response to a local stimulus (Berridge et al., 1998; Perc & Marhl, 2004). Moreover, there are
some evidences which support that coherent oscillations play an important role in sensory
processing (Izhikevich, 2007).
Understanding both the processes that influence the synchronization of individual
biochemical oscillators and how the behaviors of living cells arise out of the properties of
coupled populations of biological oscillators are important goals in the study of biological
systems, and a field of research with enormous practical application. For instance, elucidating
how and why local biochemical oscillators separated by different distances fluctuate in
synchrony and the study of conditions under which spatiotemporal patterns of biochemical
oscillators can be generated and suppressed (Mikhailov & Hess, 1995; Wolkenhauer et
al., 2003; Walleczek, 2003). Indeed, clarifying the mechanisms behind spatial synchrony
represents a challenge for biologist and also could ultimately provide critical information
to exploit the synchronized behavior in living organisms. For instance, the application
of the knowledge of dynamical systems in biology and medicine is giving rise to new
therapeutic approaches, such as the treatment of Parkinson’s disease by means of neuronal
desynchronization (Tass, 2002), or the indications for the development of new drugs based on
the collective dynamical instabilities in living cells (Petty, 2004).
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Different approaches have been used to synchronize individual biochemical oscillators
(Afraimovich et al., 1997; Boccaletti et al., 2002; Canavier et al., 1999; Collins & Stewart,
1994; Goldbeter, 1996; Mirollo & Strogatz, 1990; Morgul & Solak, 1996; Nijmeijer & Mareels,
1997; Pikovsky et al., 1996; Zhou et al., 2008). Classical synchronization approaches includes
different coupling approaches and the periodic modulation of an external forcing (periodical
or noisy). Despite that synchronization of nonlinear oscillators has been addressed from
control theory community, few papers have been addressed the control and synchronization
problem of biochemical oscillators. In particular, from control theory perspective, there are
basically two ways that are used for synchronization of nonlinear systems. The first is related
with observer based synchronization which is applied for coupling identical systems (i.e.,
same structure and order) and different initial conditions (Alvarez-Ramirez et al., 2002;
Nijmeijer & Mareels, 1997; Morgul & Solak, 1996). In these cases, identical synchronization
is reached which implies the coincidence of the states of the coupled systems. The second
approach from control theory is the application of control laws allows to achieve the
synchronization between nonlinear oscillators, with different structure and order, where the
variable states of the slave system are forced to follow the trajectories of the master system,
such that this approach can be seen as a tracking problem (Fradkov & Pogromsky, 1998;
Alvarez-Ramirez et al., 2001). For control designs the presence of disturbances, dynamic
uncertainties, and nonlinearities in biochemical models pose great challenges. In particular,
biochemical systems have a high degree of uncertainties.
Relevant contributions using control and system theory approaches are the following. Sontag
(2004) has been establishes global asymptotic stability results using small gain theorems
for a class of biochemical systems. Kimura and Nishigaki (2005) have been established an
analogy of circadian rhythm with the PLL framework. Iglesias (2003) has been addressed the
feedback mechanism in chemotaxis using control theory concepts. Steeling et al. (2004) have
been introduced a robustness analysis and a model predictive control approach for circadian
oscillations. Takeuchi et al. (2006) have been also addressed the generation and suppression
of circadian oscillations with control theory tools. We have previously showed that both
modeling error compensation approach and high-order sliding mode control approach can
be used to robust synchronize intracellular calcium oscillators and excitable media (Puebla,
2005, Puebla et al., 2009; Puebla et al., 2010; Aguilar-Lopez et al., 2010).
In this chapter we extend the application of robust controllers for the synchronization of
three benchmark models of biochemical oscillators: (i) Goodwin model of genetic oscillations
(Goodwin, 1965), (ii) FitzHugh-Nagumo model of neurons (FitzHugh, 1961); and (iii) a
model of circadian rhythms in Drosphila (Goldbeter, 1996). We introduce three robust
control approaches for the synchronization of biochemical oscillators: (i) A modeling error
compensation approach (Alvarez-Ramirez, 1999), (ii) integral sliding mode control (Levant,
2001), and (iii) geometric linearizing control (Alvarez-Ramirez, 1999; Hangos et al., 2004). The
proposed controllers have two nice features for biological applications: (i) robustness against
model uncertainties, and (ii) simplicity in the resulting controller. We show how a certain class
of cellular processes can be dynamically synchronized by appropriate input signals.
This chapter is organized as follows: In Section 2, for the sake of clarity in presentation,
we briefly provide some issues on the phenomenology, modeling and nonlinear dynamics
in cellular systems. In Section 3 we review classical synchronization approaches of
biochemical oscillations that have been reported in the literature. In Section 4 we present the
synchronization problem addressed in this chapter and the robust control approaches for the
synchronization of biochemical oscillations. Three numerical benchmark examples in Section
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5 shows the implementation of the proposed feedback control approaches. Finally, in Section
6 we close this chapter with some concluding remarks.

2. Modeling of biochemical oscillators

In this section we define the class of biochemical oscillators that we are studying. First,
we briefly discuss the phenomenology of biological mechanism underlying in biochemical
systems. Next we present some ideas of the modeling of biochemical systems. Finally, we
introduce the class of biochemical systems under consideration in this chapter.

2.1 Biological mechanisms
The processes that underlie cellular behavior are organized in complexly coupled biochemical
reaction networks, where feedforward and feedback information flows provide the links
between the different levels in the hierarchy of cell biochemical network organization (Arkin
& Ross, 1994; Goldbeter, 1996; Glass & Mackey, 1988). Theoretical models of biochemical
reaction networks have been proposed that simulate, for example, cellular dynamics of Ca
oscillations, interactions between different cell signaling pathways, genetic regulatory circuits,
cellular control networks for DNA replication and cellular division (Segel, 1980; Goldbeter,
1996; Keener & Sneyd, 1998; Smolen et al., 2003).
Cells are equipped with exquisite sensing systems which allow them to be continuously
aware of the conditions in their environment and react appropriately to these conditions. The
basic elements of a cellular signaling system are a sensor protein, made of a receptor domain
and a transmitter domain, and a response regulator, consisting of a receiver domain and a
regulator domain (Keener & Sneyd, 1998; Blumenfeld & Tikhonov, 1994). Stimulation of the
sensor (normally bound to the cell membrane) leads to activation of the transmitter, which
produces an intracellular signal. This signal is processed by a cascade of molecules and finally
arrives at the receiver, which in turn activates the regulator. Regulators produce a response
by modulating gene expression or enzyme activities. The key components in this transfer of
information are proteins, which form networks and are able to perform computational tasks
(Goldbeter, 1996; Glass & Mackey, 1998; Fall et al., 2002). Proteins can change their state by
interaction with other proteins or by biochemical modifications (such as phosphorylations)
catalyzed by other proteins. Another common mechanism is the release of small molecules
called second messengers, which diffuse in the cell and activate other proteins (Berridge, 1998;
Keener & Sneyd, 1998).

2.2 Modeling of cellular processes
In contrast to the high complexity of the cell, simple mathematical models have been
developed, mostly based on experimental observations describing phenomena like limitation,
activation, inhibition, saturation, multiple substrate uptake, bottlenecks and multiplicity
of metabolic steady states (De Jong, 2002; Fall et al., 2002; Goldbeter, 2002; Segel, 1980).
Mathematical models of the intracellular complexity of cellular systems are often based on
systems of nonlinear ordinary differential equations (ODEs). These models are usually valid
for a limited, but often sufficiently large range of operating conditions. Of course, the level of
complexity of the mathematical description depends on the application. When the problem
is taken with all its complexity, for instance, if we require that the model accounts for spatial
inhomogeneity, diffusion processes and transport delay, then we deal with partial differential
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equations and time delay (De Jong, 2002; Smolen et al., 2003; Asthagiri & Lauffenburger, 2001).
In this chapter, we restrict ourselves to the simpler case of ODEs.
In cells, most biochemical reactions of interest are catalyzed by enzymes, and a variety of
mathematical descriptions have been developed for these reactions. Many enzymatic reactions
have complex kinetic mechanisms, and specialized equations are needed to describe their
rates in detail. Two typical rate models are the Michelis-Menten kinetics and the allosteric Hill
function (Keener & Sneyd, 1998; Segel, 1980).

1. Michaelis-Menten model: This kinetic model is relevant to situations where there is no
intermediate or product inhibition, and there is no allostericity or cooperativity. The kinetic
model is defined by,

μmax
S

ks + S
(1)

μmax is the maximal growth rate and ks the half-saturation constant.

2. Allosteric interactions: Binding of small molecules can alter an enzyme’s conformation
and alter the rate of the reaction catalyzed by the enzyme. Allosteric interactions can
therefore mediate feedback and feedforward interactions within a biochemical pathway,
as well as crosstalk between pathways. In models of enzyme regulation, allosteric
interactions are commonly represented by Hill functions. These are saturable functions
of the concentration of the effector molecule. With the concentration of effector denoted by
L, if L activates an enzyme, the enzyme activity is taken as proportional to the following
increasing function of the n-th power of L:

Ln

Ln + Kn
H

(2)

The parameter n is called the Hill coefficient. Greater values of n correspond to steeper
sigmoids, that is, to a narrowing of the range of L over which the enzyme activity is
significantly above 0 and also significantly below 1. If L inhibits an enzyme, the enzyme
activity is taken as proportional to a decreasing function of L:

Kn
H

Ln + Kn
H

(3)

2.3 Nonlinear dynamics in cellular systems
Nonlinear phenomena including multiple steady states, periodic or chaotic temporal
evolution and self-organization can be supported by the dynamical cellular system since
functional kinetics are nonlinear in the descriptive variables and the system is maintained far
from equilibrium. The variety of functional dynamics is a consequence of the nonlinearities
inherent in multiple modes of biochemical regulation, such as cooperativity and kinetics at the
levels of gene expression, protein synthesis, enzyme activity, receptor function, and transport
processes (Keener & Sneyd, 1998; Blumenfeld & Tikhonov, 1994; Goldbeter, 2002; Glass, 2001).

1. Simple oscillations: Oscillations occur at every level of a biological organization, with
periods ranging from milliseconds (neurons) to seconds (cardiac cells), minutes (oscillatory
enzymes), hours (pulsatile hormone secretion), days (circadian rhythms), weeks (ovarian
cycle) and even to years (predator-prey interactions in ecology). Oscillatory behavior
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often originates at the cellular level from regulatory feedback loops which involve many
parameters and interacting variables. More generally, oscillations in reaction rates and
concentrations commonly rely, on negative feedback to sustain oscillations. Oscillations
have been observed in the metabolic flux through glycolysis and also in the rates of
secretion of hormones such as insulin (Goldbeter, 2002; Glass, 2001).

2. Bursting and chaos: Bursting represents one type of complex oscillations that is particularly
common in neurobiology. An active phase of spike generation is followed by a quiescent
phase, after which a new active phase begins. Chaos is a common mode of complex
oscillatory behavior that has been studied intensively in physical, chemical and biological
systems. It has been discussed the existence of two main routes to complex oscillatory
phenomena. The first relies on forcing a system that displays simple periodic oscillations
by a periodic input. In an appropriate range of input frequency and amplitude, one
can often observe the transition from simple to complex oscillatory behavior such as
bursting and chaos. For other frequencies and amplitudes of the forcing, entrainment or
quasi-periodic oscillations occur. In the second route complex oscillatory phenomena may
arise through the interplay between several instability-generating mechanisms, each of
which is capable of producing sustained oscillations (Goldbeter, 2002; Glass, 2001).

Oscillatory dynamic is not the only possible outcome of nonlinear equations. Indeed,
nonlinear systems are in general classified within three categories: bistable, excitable, and
oscillatory. Bistable systems are characterized by the existence of two different stable states.
Excitable systems posses a unique stable fixed point; however, if they are affected by a
perturbation which overcomes a certain threshold amplitude, they are able to perform an
excursion in the phase space before returning to the stable fixed point. That is, they do not
relax immediately to the stationary state, but keep the excitation for a finite time (Ferrel, 2002;
Fall et al., 2002; Mikhailov & Hess, 1995).

2.4 The class of biochemical oscillators
As the basic single biochemical oscillator we consider single-input nonlinear systems in the
form,

dy
dt

= f1(y, z) + g(y, z)u (4)

dz
dt

= f2(y, z)

where f1(y, z) ∈ R, f2(y, z) ∈ Rn−1, and g(y, z) ∈ R, are smooth functions of their arguments,
y ∈ R, is the measured output of the system, z ∈ Rn−1, is the internal state, and u can be
manipulated for synchronization purposes.
Suppose that there are N subsystems in a lattice yi, i = 1, ..., N, and, in the absence of coupling,
the dynamics of yi is given by the biochemical oscillator (4). That is, the dynamics of yi
satisfies,

dyi
dt

= f1,i(yi, zi) + gi(yi, zi)ui, i = 1, ..., N (5)

dzi
dt

= f2,i(yi, zi)
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dy
dt

= f1(y, z) + g(y, z)u (4)

dz
dt

= f2(y, z)

where f1(y, z) ∈ R, f2(y, z) ∈ Rn−1, and g(y, z) ∈ R, are smooth functions of their arguments,
y ∈ R, is the measured output of the system, z ∈ Rn−1, is the internal state, and u can be
manipulated for synchronization purposes.
Suppose that there are N subsystems in a lattice yi, i = 1, ..., N, and, in the absence of coupling,
the dynamics of yi is given by the biochemical oscillator (4). That is, the dynamics of yi
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dyi
dt

= f1,i(yi, zi) + gi(yi, zi)ui, i = 1, ..., N (5)
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dt

= f2,i(yi, zi)
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Its not hard to see that several published models of biochemical oscillators can be described
by model (5) (Keener & Sneyd, 1998; Goldbeter, 2002; Tyson et al., 2003; De Jong, 2002).

3. Synchronization of biochemical oscillations

Classical theory of synchronization distinguishes between forced synchronization by an
external periodic driving force and synchronization via the coupling between oscillators.
In both cases manifestations of synchronization are the same. In this section we briefly
review both external forcing and coupling based synchronization approaches proposed in the
literature for biochemical oscillations.

3.1 Synchronization of biochemical oscillations via coupling
Consider that the N subsystems are coupled,

dyi
dt

= Ci(y) + f1,i(yi, zi) + gi(yi, zi)ui, i = 1, ..., N (6)

dzi
dt

= f2,i(yi, zi)

where y = [y1, ..., yN ]T and C(y) is a coupling function.

3.1.1 Diffusive coupling
Consider that the coupling function C(y) is described via a local diffusive (nearest
neighborhood) coupling, such that,

C(y) = σ(yi−1 − 2yi + yi+1) (7)

where σ is the coupling strength. This case is quite interesting since it can be seen as a lattice
approximation to reaction-diffusion systems,

∂2y
∂t2 = σ

∂2y
∂ξ2 + f (y, z) + g(y, z)u (8)

where u = [u1, ..., uN ]T ∈ RN and ξ is the spatial coordinate.
Local coupling provides the system with the notion of vicinity and distance. This is, each
element directly interacts only with its neighbors, which then transmit the interaction to their
own neighbors. Thus, a localized perturbation spreads through the system affecting first its
close proximity and later reaching the farther parts of the system. This is a crucial property of
reaction-diffusion systems.
Diffusive coupling via gap junctions is considered as the natural form of coupling in many
cellular processes (di Bernando et al., 1998; Fall et al., 2002; Glass, 2001; Mirollo & Strogatz,
1990). Gap junctions are composed of arrays of small channels that permit small molecules to
shuttle from one cell to another and thus directly link the interior of adjacent cells. Importantly,
gap junctions allow electrical and metabolic coupling among cells because signals initiated in
one cell can readily propagate to neighboring cells (Keener & Sneyd, 1998; Izhikevich, 2007).
Thus, gap junctions between cells and electrical coupling can be considered as a particular
form of diffusive coupling.
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In the domain of biological systems, nonlocal coupling can be present as well. Coupling is
nonlocal if diffusion is such that the substance released by one cell can reach and affect not
only its neighbors, but even cells which are located far away from it.

3.1.2 Random coupling
In random coupling the coupling function is described as follows,

C(y) = σAy (9)

where the elements Akl of the matrix A are either 0 or 1 and are assigned in a random way.
This is,

Akl =
{

0 if rkl < rmin
1 if rkl ≥ rmin

(10)

where rkl ∈ [0, 1] is a uniformly distributed random number and the threshold rmin ∈ (0, 1).
This coupling structure resembles that of neural networks (Izhikevich, 2007).

3.1.3 Kuramoto coupling
A successful approach to the problem of synchronization consists of modeling each member of
the population as a phase oscillator. Kuramoto analyzed a model of phase oscillators running
at arbitrary intrinsic frequencies, and coupled through the sine of their phase differences
(Kuramoto, 1984). The Kuramoto model is simple enough to be mathematically tractable, yet
sufficiently complex to be non-trivial. The model is rich enough to display a large variety of
synchronization patterns and sufficiently flexible to be adapted to many different contexts.
The Kuramoto model consists of a population of N coupled phase oscillators, θi(t), having
natural frequencies ωi distributed with a given probability density g(ω), and whose dynamics
is governed by,

dθi
dt

= ωi +
N

∑
j=1

Kij sin(θj − θi), i = 1, ..., N (11)

where Kij is the coupling matrix. When the coupling is sufficiently weak, the oscillators
run incoherently whereas beyond a certain threshold collective synchronization emerges
spontaneously. Many different models for the coupling matrix Kij have been considered such
as nearest-neighbor coupling, hierarchical coupling, random long-range coupling, or even
state dependent interactions (Kuramoto, 1984).

3.2 Applications
Classical synchronization approaches have been applied successfully for the synchronization
of biochemical oscillators. Winfree (2002) has suggested that such critical perturbations
applied at the appropriate phase of a limit cycle should stop the clock, at least transiently,
if the perturbation brings the oscillator back into the vicinity of the steady state. Ueda et al
(2002) studied a model for circadian rhythms in Drosophila. As a single cell oscillator, they
used a more detailed model incorporating 10 variables. They then apply a local coupling
through each possible variable, and show that for some of them, synchronization occurs.
Interestingly, they assessed the effect of fluctuations in parameter values and show that the
coupled system is relatively robust to noise. Another theoretical model of coupled circadian
oscillators through local coupling has been proposed by Kunz and Achermann (2003). Using
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the van der Pol model, they described possible spatial effects, including wave propagation
and pattern formation. Gonze et al (2005) proved that a mean field approach can be an
effective way to couple a population of circadian oscillators, where the global coupling drives
oscillators, which would be damped under a constant forcing.
Gap junctions are tacitly postulated as a sufficient means of intercellular communication
for synchronizing Ca2+ transients (Berridge, 1998; Perc & Marhl, 2004). Ca2+ ions may
pass through gap junction channels to the neighboring cell by passive diffusion. Recently,
it has been shown that individual hepatocytes can have very different intrinsic oscillation
frequencies but become phase-locked when coupled by gap junctions (Hofer, 2003; Tang
& Othmer, 1995). It is shown that junctional calcium fluxes are effective in synchronizing
calcium oscillations in coupled hepatocytes. Many neuronal and non-neuronal systems exhibit
synchronized oscillatory behavior in networks of electrically coupled cells (Fall et al., 2002).
Experimental findings have revealed that in some of these systems electrical coupling is
essential for the generation of oscillations and not only for their modulation (FitzHugh, 1961;
Winfree, 2001; Izhikevich, 2007).

3.3 Synchronization of biochemical oscillations via an external forcing
The intrinsic nonlinearity of living systems is of great significance to scientists who study
the response of cells, tissues and whole organisms to natural or artificial stimuli. External or
artificial stimuli of biological systems by time variation of appropriate control parameters
is of great importance from a general point of view. Forced or tuned oscillators are not
only considered to be important in cellular rhythms, but also in technical applications
involving biochemical reaction systems external control may be of great benefit for improving
performance criteria of bioengineering processes (Greenman et al., 2004).
External modulated forcing has been applied for synchronization purposes in some
contributions. For example a population of chaotic amoebae was subjected to a
small-amplitude periodic forcing, which appeared to be sufficient to transform chaotic
behavior into periodic (Goldbeter, 1996). In many organisms, the source of external forcing
has been identified to be a variation of the light due to night and day cycles. Indeed, the
molecular basis of the effect of light on different circadian biochemical networks has been
unraveled (Gonze & Goldbeter, 2000; Jewett et al., 1991). The question on whether such
external forcing is enough to induce the synchronization between circadian cells usually
observed in experiments, or if coupling between the cells is needed, is still open.

4. Robust control approaches for synchronization of biochemical oscillators

In this section the synchronization problem framed as a tracking feedback control problem is
presented. Three robust control approaches are then briefly described: (i) the modeling error
compensation, (ii) the sliding mode control, and (iii) geometric linearizing control.

4.1 Synchronization problem
The synchronization problem consists of making two or more systems oscillate in a
synchronized way. This synchronization problem is cast as a control problem where the
control objective is tracking with respect to a desired single synchronization signal yre f (t)
via manipulation of an external input u.
The synchronization problem description is completed by the following assumptions:
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A1 The measurement of the variable to be synchronized y, is available for synchronization
design purposes.

A2 Nonlinear functions f1,j(xi) and g1,j(xi) are uncertain, and can be available rough
estimates of these terms.

The following comments are in order:

• A1 is a reasonable assumption. For instance, in neurons the measurement of the membrane
potential is standard. Free intracellular calcium (Ca2+) can be also measured using
florescence techniques. Even in the absence of such measurements, a state estimator can be
designed. On the other hand, cell must have some internal mechanism to knows perfectly
its behavior. Indeed, it has been reported elsewhere that Ca2+ acts as an intracellular
messenger, relaying information within cells to regulate their activity, such that should
be exist some internal mechanism in the cells to knows its behavior (Berridge, 1998).

• A2 considers that functions f1,j(xi) and g1,j(xi) can contain uncertain parameters, or in the
worst case the whole terms are unknown. Indeed, parameters in biochemical systems have
some degree of uncertainties, as these parameter values commonly are estimated from
experimental data, which contain errors due to both the estimation procedure adopted
to fit data and the experimental errors of the data themselves (De Jong, 2002; Keener &
Sneyd, 1998). From a practical viewpoint, the assumption of model uncertainties in our
control methodology allows to design a controller that uses only the minimum system
information in order to control the calcium nonlinear dynamics and the resulting control
can be easily interpreted from a biological viewpoint and implemented.

• The use of an external input as the manipulable variable is realistic. Indeed, several
experimental studies have shown that the synchronization of individual biochemical
oscillators depends on external stimulus properties (FitzHugh, 1961; Glass, 2001; Gonze &
Goldbeter, 2000; Jewett et al., 1991; Marhl & Schuster, 2003; Izhikevich, 2007). An external
electrical stimuli can be modeled including an applied current in the current balance
equation. Chemical stimuli can be modeled either by varying concentrations of relevant
agents or by varying parameters which are believed to be correlated to the stimulating
chemical.

The proposed feedback and synchronization arrangements are shown in Fig. 1. A sensor
measures a time-varying output from the cell, y(t), and feeds it to a controller. The controller
produces a signal, u(t), which drives an actuator to produce a time-varying input to
individual biochemical oscillators to get the desired synchronized dynamic behavior. On
the other hand, a reference or master oscillator provides the desired reference to individual
or slave oscillators, that will be driven by individual external inputs to follow the desired
reference behavior.

4.2 Modeling error compensation approach
Sun et al. (1994) proposed a robust controller design method for single-input/single-output
(SISO) minimum-phase linear systems. The design approach consists of a modeling error
compensator (MEC). The central idea is to compensate the error due to uncertainty by
determining the modeling error via plant input and output signals and use this information
in the design. In addition to a nominal feedback, another feedback loop is introduced using
the modeling error and this feedback action is explicitly proportional to the parametric
error which is the source of uncertainty. The MEC approach was extended for a class of
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Fig. 1. Feedback and synchronization system.

linear time-varying and nonlinear linearizable lumped parameter systems with uncertain
and unknown terms by Alvarez-Ramirez (1999), where instead of designing a robust state
feedback to dominate the uncertain term, the uncertain term is viewed as an extra state
that is estimated using a high-gain observer. The estimation of the uncertain term gives the
control system some degree of adaptability. The extension of the MEC approach to distributed
parameter systems has been applied by Puebla (2005) and Puebla et al. (2009, 2010) for a class
of biological distributed parameter systems. The underlying idea behind MEC control designs
is to lump the input-output uncertainties into a term, which is estimated and compensated via
a suitable algorithm.
Consider the class of biochemical oscillators described in Section 2:

dyi
dt

= f1,i(yi, zi) + gi(yi, zi)ui, i = 1, ..., N (12)

dzi
dt

= f2,i(yi, zi)

Let ei = yi − yre f be the tracking error, and define the modeling error function ηi as,

ηi = ( f̃1,i − f1,i) + (g̃i − gi)ui (13)

where f̃1,i and g̃i are rough estimates of uncertain functions f1,i and gi respectively. System
(12) can be written as,

•
ei = ηi − f̃1,i − g̃iu − •

yre f (14)

where
•
yre f is the first derivative of yre f . Consider the inverse dynamics control law,

ui = g̃−1
i (ηi − f̃1,i − •

yre f + τ−1
c ei) (15)

where τc > 0 is a closed-loop time constant. Under the inverse-dynamics control law (15), the
closed-loop system dynamics is dei/dt = −τ−1

c ei, so that the error dynamic behavior is given
as e(t) = e(0) exp(−t/τc). In this way, the asymptotic convergence e(t) → 0, and so y → yre f ,
is guaranteed.
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In order to implement the control input an estimate of the real uncertain term is computed
using a high-gain reduced-order observer,

•
η̃i = τ−1

e (ηi − η̃i) (16)

where τe > 0 is the estimation time constant. After some direct algebraic manipulations the
reduced order observer (16) can be written as,

•
wi = f̃1,i + g̃iui +

•
yre f − η̃i (17)

η̃i = τ−1
e (wi + ei)

The final form of the controller is given by the feedback function (18) and the modeling error
estimator (17),

ui = g̃−1
i (η̃i − f̃1,i − •

yre f + τ−1
c ei) (18)

the resulting feedback controlled depends only on the measure y and the estimated values of
uncertain terms f̃1,i and g̃i. Notice that in a worst-case design, one can choose f̃1,i = 0.
The above model-based control approach has only two control design parameters, i.e., τc and
τe. The closed-loop parameter τc can be chosen as the inverse of the dominant frequency
of the open-loop dynamics. On the other hand, the estimation parameter τe > 0, which
determines the smoothness of the modeling error can be chosen as τe < 1

2 τc. On the other
hand, system (12) is of relative grade one. However, straight extensions of the MEC control
design to both autonomous third and second order systems can be found in Puebla et al.
(2003), and Alvarez-Ramirez, respectively.

4.3 Sliding mode control approaches
Sliding mode control techniques have long been recognized as a powerful robust control
method (Hangos et al., 2004; Levant, 2001; Sira-Ramirez, 2002). Sliding-mode control schemes,
have shown several advantages like allowing the presence of matched model uncertainties
and convergence speed over others existing techniques as Lyapunov-based techniques,
feedback linearization and extended linearization, however standard sliding-mode controllers
have some drawbacks: the closed-loop trajectory of the designed solution is not robust even
with respect to the matched disturbances on a time interval preceding the sliding motion,
the classical sliding-mode controllers are robust in the case of matched disturbances only,
the designed controller ensures the optimality only after the entrance point into the sliding
mode. To try to avoid the above a relatively new kind of sliding-mode structures have
been proposed as the named high-order sliding-mode technique, these techniques consider a
fractional power of the absolute value of the tracking error coupled with the sign function, this
structure provides several advantages as simplification of the control law, higher accuracy and
chattering prevention (Hangos et al., 2004; Levant, 2001; Sira-Ramirez, 2002). In this section
we present some ideas of the integral high order sliding mode control (IHOSMC).
Sliding mode control design consists of two phases. In the first phase the sliding surface is to
be reached (reaching mode), while in the second the system is controlled to move along the
sliding surface (sliding mode). In fact, these two phases can be designed independently from
each other. Reaching the sliding surface can be realized by appropriate switching elements
(Hangos et al., 2004).

665Robust Control Approaches for Synchronization of Biochemical Oscillators



Output 
(y)

Setpoint
(yref) Biochemical  Oscillator

Input 
(u)

Controllere

Reference oscillator

Individual biochemical oscillators

Output 
(y)

Setpoint
(yref) Biochemical  Oscillator

Input 
(u)

Controllere

Reference oscillator

Individual biochemical oscillators

Setpoint
(yref) Biochemical  Oscillator

Input 
(u)

Controllere

Reference oscillator

Individual biochemical oscillators

Reference oscillator

Individual biochemical oscillators

Fig. 1. Feedback and synchronization system.

linear time-varying and nonlinear linearizable lumped parameter systems with uncertain
and unknown terms by Alvarez-Ramirez (1999), where instead of designing a robust state
feedback to dominate the uncertain term, the uncertain term is viewed as an extra state
that is estimated using a high-gain observer. The estimation of the uncertain term gives the
control system some degree of adaptability. The extension of the MEC approach to distributed
parameter systems has been applied by Puebla (2005) and Puebla et al. (2009, 2010) for a class
of biological distributed parameter systems. The underlying idea behind MEC control designs
is to lump the input-output uncertainties into a term, which is estimated and compensated via
a suitable algorithm.
Consider the class of biochemical oscillators described in Section 2:

dyi
dt

= f1,i(yi, zi) + gi(yi, zi)ui, i = 1, ..., N (12)

dzi
dt

= f2,i(yi, zi)

Let ei = yi − yre f be the tracking error, and define the modeling error function ηi as,

ηi = ( f̃1,i − f1,i) + (g̃i − gi)ui (13)

where f̃1,i and g̃i are rough estimates of uncertain functions f1,i and gi respectively. System
(12) can be written as,

•
ei = ηi − f̃1,i − g̃iu − •

yre f (14)

where
•
yre f is the first derivative of yre f . Consider the inverse dynamics control law,

ui = g̃−1
i (ηi − f̃1,i − •

yre f + τ−1
c ei) (15)

where τc > 0 is a closed-loop time constant. Under the inverse-dynamics control law (15), the
closed-loop system dynamics is dei/dt = −τ−1

c ei, so that the error dynamic behavior is given
as e(t) = e(0) exp(−t/τc). In this way, the asymptotic convergence e(t) → 0, and so y → yre f ,
is guaranteed.
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In order to implement the control input an estimate of the real uncertain term is computed
using a high-gain reduced-order observer,

•
η̃i = τ−1

e (ηi − η̃i) (16)

where τe > 0 is the estimation time constant. After some direct algebraic manipulations the
reduced order observer (16) can be written as,

•
wi = f̃1,i + g̃iui +

•
yre f − η̃i (17)

η̃i = τ−1
e (wi + ei)

The final form of the controller is given by the feedback function (18) and the modeling error
estimator (17),

ui = g̃−1
i (η̃i − f̃1,i − •

yre f + τ−1
c ei) (18)

the resulting feedback controlled depends only on the measure y and the estimated values of
uncertain terms f̃1,i and g̃i. Notice that in a worst-case design, one can choose f̃1,i = 0.
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of the open-loop dynamics. On the other hand, the estimation parameter τe > 0, which
determines the smoothness of the modeling error can be chosen as τe < 1

2 τc. On the other
hand, system (12) is of relative grade one. However, straight extensions of the MEC control
design to both autonomous third and second order systems can be found in Puebla et al.
(2003), and Alvarez-Ramirez, respectively.

4.3 Sliding mode control approaches
Sliding mode control techniques have long been recognized as a powerful robust control
method (Hangos et al., 2004; Levant, 2001; Sira-Ramirez, 2002). Sliding-mode control schemes,
have shown several advantages like allowing the presence of matched model uncertainties
and convergence speed over others existing techniques as Lyapunov-based techniques,
feedback linearization and extended linearization, however standard sliding-mode controllers
have some drawbacks: the closed-loop trajectory of the designed solution is not robust even
with respect to the matched disturbances on a time interval preceding the sliding motion,
the classical sliding-mode controllers are robust in the case of matched disturbances only,
the designed controller ensures the optimality only after the entrance point into the sliding
mode. To try to avoid the above a relatively new kind of sliding-mode structures have
been proposed as the named high-order sliding-mode technique, these techniques consider a
fractional power of the absolute value of the tracking error coupled with the sign function, this
structure provides several advantages as simplification of the control law, higher accuracy and
chattering prevention (Hangos et al., 2004; Levant, 2001; Sira-Ramirez, 2002). In this section
we present some ideas of the integral high order sliding mode control (IHOSMC).
Sliding mode control design consists of two phases. In the first phase the sliding surface is to
be reached (reaching mode), while in the second the system is controlled to move along the
sliding surface (sliding mode). In fact, these two phases can be designed independently from
each other. Reaching the sliding surface can be realized by appropriate switching elements
(Hangos et al., 2004).
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Defining

σ(e) = ei = yi − yre f

as the sliding surface, we have that the continuous part of the sliding mode controller is given
by,

ueq,i = −g−1
i ( f1,i − •

yre f )

such that,
•
σ(e) = 0

where
•
yre f is the time-derivative of the desired trajectory signal. Once on the surface, the

dynamic response of the system is governed by dei/dt = 0. To force the system trajectory to
converge to the sliding surface in the presence of both model uncertainties and disturbances,
with chattering minimization and finite-time convergence, the sliding trajectory is proposed
as (Levant, 2001; Aguilar-Lopez et al., 2010),

ueq,i = −g−1
i [δ1ei + δ2

∫ t

0

{
sign(ei) |ei|1/p

}
dτ] (19)

where δ1 and δ2 are control design parameters. The final IHOSMC is given by,

ui = −g−1
i ( f1,i − •

yre f + δ1ei + δ2

∫ t

0

{
sign(ei) |ei|1/p

}
dτ) (20)

The synthesis of the above control law requires accurate knowledge of both f1,i and dyre f /dt
to be realizable. To enhance the robust performance of the above control laws, the uncertain
terms is lumped in single terms and compensated with a reduced-order observer. However,
by exploiting the properties of the sliding part of the sliding-mode type controllers to
compensates uncertain nonlinear terms, the knowledge of the nonlinear term f1,i can be
avoided.
Summarizing, the IHOSMC is composed by a proportional action, which has stabilizing
effects on the control performance, and a high order sliding surface, which compensates the
uncertain nonlinear terms to provide robustness to the closed-loop system. This behavior is
exhibited because, once on the sliding surface, system trajectories remain on that surface, so
the sliding condition is taken and make the surface and invariant set. This implies that some
disturbances or dynamic uncertainties can be compensated while still keeping the surface an
invariant set.

4.4 Robust geometric linearizing control
Differential geometry is an essential tool for the study of the structural properties of nonlinear
control systems. Differential geometric techniques of nonlinear control include static and
dynamic feedback linearization, input-output linearization, nonlinear state observers and
disturbance decoupling (Hangos et al., 2004). In exact linearization the main idea is to
apply a suitable nonlinear coordinate transformation to a nonlinear system in order to
obtain a linear one in the new co-ordinates and between the original output and the newly
introduced transformed input. The coordinates transformation must be supplemented by a
static nonlinear feedback to achieve linearization. After linearization any controller design
method can be used to stabilize the system or modify its dynamic properties.
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Exact linearization via state feedback is a limited technique for control of nonlinear systems
because it is only applicable for systems satisfying a relative degree condition. Indeed, the
relative degree of the system needs to be equal to the number of state variables, i.e. r = n.
Therefore the exact linearization may not be applicable or may not be feasible in practical
cases. Input–output linearization is an alternative way of achieving linear behavior of a system
by nonlinear coordinate transformation (Hangos et al., 2004).
A main drawback in the use of differential geometric control techniques is that depends on the
exact cancelation of the nonlinear dynamics in order to obtain an input-output linear dynamic
behavior. As a consequence, the perfect knowledge of the system is required. Robustness of
geometric differential approaches has received attention in the literature. In this section we
describe a robust geometric input-output linearizing control, where the presence of modeling
errors, unmeasured disturbances and parametric uncertainties are considered in the controller
design.
Consider the class of biochemical oscillators described in Section 2 with yi = hi(yi, zi). An
input-output linearizing controller ui is given by,

ui =
1

LgLr−1
f hi(yi, zi)

(−Lr
f hi(yi, zi) + vi) (21)

= αi(yi, zi) + βi(yi, zi)vi

αi(yi, zi) =
−Lr

f hi(yi, zi)

LgLr−1
f hi(yi, zi)

βi(yi, zi) =
1

LgLr−1
f hi(yi, zi)

where Lg and L f are the lie derivatives of gi and f1,i respectively, and vi is a new external
input.
Under the input-output linearizing controller we have,

dyi
dt

= f1,i(yi, zi) + gi(yi, zi)αi(yi, zi) + βi(yi, zi)vi, i = 1, ..., N (22)

dzi
dt

= f2,i(yi, zi) (23)

The linearizing input-output controller decomposes the system into two parts: (i) a linear
subsystem of order r which is influenced by the chosen input ui (22), and (ii) a nonlinear
subsystem described by the zero dynamics. Thus the main applicability condition of
input–output linearization is to have a stable zero dynamics in a wide domain of the
state-space, or even better, a globally stable zero dynamics (Hangos et al., 2004).
If exact cancelation of nonlinear terms is achieved then the closed-loop system is given by,

dyi
dt

= vi (24)

dzi
dt

= f2,i(yi, zi)
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It is relatively simple to device a feedback control law for vi, which stabilizes the output of the
system, yi, to the desired reference, yre f . A valid choice of the new control input is a simple

linear input, vi = −τ−1
c (yi − yre f ) +

•
yre f , that guarantees the stability of the overall system

provided that the zero dynamics is stable, i.e.,

dei
dt

= −ei (25)

where τc is controller design parameter, ei = yi − yre f , is the tracking error.
The linearizing input-output controller needs accurate knowledge of the nonlinear dynamics
of the system, hence, turns to be inapplicable if the model for the process includes
uncertainties. This fact is behind the motivation to provide robustness properties of the above
linearizing input-output controller. In order to provide robustness against inexact model
cancelations of nonlinear terms, unmodeled dynamics, and external perturbation we proceed
as in the approach of modeling error compensation approach (Alvarez-Ramirez, 1999).
Consider system (22) subject to model uncertainties ηi,

dyi
dt

= f̃1,i(yi, zi) + g̃i(yi, zi)αi(yi, zi) + βi(yi, zi)vi + ηi, i = 1, ..., N (26)

where ηi is defined as,

ηi = ( f1,i(yi, zi) − f̃1,i(yi, zi)) + (gi(yi, zi) − g̃i(yi, zi))αi(yi, zi) (27)

where f̃1,i and g̃i are rough estimates of terms f1,i and gi all the uncertain terms associated
to the biochemical system model are lumped. The uncertain function ηi can be estimated
using a state observer (Alvarez-Ramirez, 1999). We introduce a reduced order observer given
by (16) to this end. After some direct algebraic manipulations we get the robust linearizing
input-output controller as,

dwi
dt

= − f̃1,i(yi, zi)− g̃i(yi, zi)αi(yi, zi) − βi(yi, zi)vi − ηi, i = 1, ..., N (28)

ηi = τ−1
e (wi + yi)

vi = −βi(yi, zi)−1[ηi − τ−1
c ei]

ui = −αi(yi, zi) + βi(yi, zi)vi

Comparing the above robust linearizing input-output controllers with the controller derived
via a MEC approach we can exploit the tunning guidelines of the MEC approach to provide
some guidelines for the tunning of controller parameters τc and τe (Alvarez-Ramirez, 1999).

5. Applications

In this section we consider three examples of the implementation of the proposed
synchronization approach with the robust feedback control approaches presented in the above
section. The examples are: (i) the Goodwin model, (ii) a Fitz-Hugh-Nagumo neuron model,
and (iii) circadian rhythms in Drosphila.
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5.1 Goodwin model for genetic oscillators
Synchronization of coupled genetic oscillators has important biological implications and
potential engineering applications from both theoretical and experimental viewpoints, and it
is also essential for the understanding of the rhythmic phenomena of living organisms at both
molecular and cellular levels. The Goodwin model (Goodwin, 1965) is a benchmark model of
genetic oscillations that contains three simple biochemical components (nuclear messenger,
cytoplasmic messenger, and repressor). In the original model, a clock gene mRNA produces
a clock protein, which activates a transcriptional inhibitor, which inhibits the transcription of
the clock gene, thus forming a negative feedback loop.
Using the notation previously introduced, we consider the following external forcing
modification of the Goodwin model that consists of the following set of three ordinary
differential equations (Goodwin, 1965; Keener & Sneyd, 1998),

dy
dt

=
c1

1 + zp
2
− c2y + u (29)

dz1
dt

= c3y − c4z1

dz2
dt

= c5z1 − c6z2

where y, z1 and z2 represent respectively the concentrations of the mRNA, the enzyme and the
product of the reaction of the enzyme and a substrate, assumed to be available at a constant
level. All ci are constant positive parameters. The creation of y is inhibited by the product z2
and is degraded according to first-order kinetics, while z1 and z2 are created and degraded by
first-order kinetics. We also assumed that u is a plausible manipulated variable.
The synchronization objective is to synchronize an ensemble of two independent genetic
oscillators, to the dynamics generated by a reference Goodwin genetic oscillator, via an
external forcing u to the mRNA concentration y. Figure 2 shows the synchronization
performance for the three proposed robust control approaches: MEC control, IHOSMC, and
the GLC, in the upper, middle and bottom parts of Figure 2 respectively. It can be seen from
Figure 2 that the synchronization objective is achieved for all robust control approaches. MEC
approach uses less control effort than IHOSMC and GLC. The control input for the IHOSMC
displays a switching type behavior typical of SMC approaches. The modulation of external
inputs depends on the measured state such that a feedback mechanism is established and
modifies the natural dynamic behavior of the controlled biochemical oscillators.

5.2 FitzHugh-Nagumo model of neurons
The central nervous system can display a wide spectrum of spatially synchronized, rhythmic
oscillatory patterns of activity with frequencies in the range from 0.5Hz (rhythm), 20Hz
( rhythm), to 30-80 Hz (rhythm) and even higher up to 200Hz (Izhikevich, 2007). In
the past decade it has been shown that synchronized activity and temporal correlation
are fundamental tools for encoding and exchanging information for neuronal information
processing in the brain (Izhikevich, 2007). In particular, it has been suggested that clusters of
cells organize spontaneously into flexible groups of neurons with similar firing rates, but with
a different temporal correlation structure.
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Fig. 2. Synchronization of Goodwin model for genetic oscillators via (a) MEC, (b) IHOSMC
and (c) GLC

A benchmark model of neural activity was proposed by FitzHugh and Nagumo (FHN) as
a mathematical representation of the firing behavior of neuron (FitzHugh, 1961). The neural
FHN model is an excitable media (Keener & Sneyd, 1998). Excitable media are systems that sit
at a steady state and are stable to small disturbances. If, however, they receive a disturbance
(such as a sudden increase in the concentration of the feedback species) above some critical
or threshold value, then they respond with an excitation event (which corresponds to the
reaction front). The FHN model and its modifications served well as simple but reasonable
models of excitation propagation in nerve, heart muscle and other biological excitable media
(Izhikevich, 2007).
The FHN neuron model with external current u studied in this paper is described by the
following set of two ordinary differential equations,

dy
dt

= −y(y − c1)(y − 1) − z + I0 + I cos(c4t) + u (30)

dz
dt

= β(c5y − z)

where y is the potential difference across the membrane, z is a recovery variable which
measures the state of excitability of the cell. Parameters ci are positive constants, I0 stands
for the ionic current inside the cell, I is the amplitude of the external current.
We apply a control approach by injecting the external signal at each individual oscillator in
order to track the desired synchronized signal. In this case, the desired synchronized signal is a
periodic signal. Figures 3 and 4 shows the synchronization performance for the MEC approach
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Fig. 3. Synchronization of 5 individual oscillators for FHN model of neurons.
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Fig. 4. Corresponding control input for Figure 3.

for an ensemble of 5 individual oscillators. It can be seen that, after a short transient, the
array of FHN neurons synchronizes about the desired periodical dynamical behavior. Figure 4
shows that by using periodic applied current we can force the periodicity of the synchronized
neurons. The applied input depends on the current state of the neuron which receives the
external impulse.
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Fig. 2. Synchronization of Goodwin model for genetic oscillators via (a) MEC, (b) IHOSMC
and (c) GLC

A benchmark model of neural activity was proposed by FitzHugh and Nagumo (FHN) as
a mathematical representation of the firing behavior of neuron (FitzHugh, 1961). The neural
FHN model is an excitable media (Keener & Sneyd, 1998). Excitable media are systems that sit
at a steady state and are stable to small disturbances. If, however, they receive a disturbance
(such as a sudden increase in the concentration of the feedback species) above some critical
or threshold value, then they respond with an excitation event (which corresponds to the
reaction front). The FHN model and its modifications served well as simple but reasonable
models of excitation propagation in nerve, heart muscle and other biological excitable media
(Izhikevich, 2007).
The FHN neuron model with external current u studied in this paper is described by the
following set of two ordinary differential equations,

dy
dt

= −y(y − c1)(y − 1) − z + I0 + I cos(c4t) + u (30)

dz
dt

= β(c5y − z)

where y is the potential difference across the membrane, z is a recovery variable which
measures the state of excitability of the cell. Parameters ci are positive constants, I0 stands
for the ionic current inside the cell, I is the amplitude of the external current.
We apply a control approach by injecting the external signal at each individual oscillator in
order to track the desired synchronized signal. In this case, the desired synchronized signal is a
periodic signal. Figures 3 and 4 shows the synchronization performance for the MEC approach
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for an ensemble of 5 individual oscillators. It can be seen that, after a short transient, the
array of FHN neurons synchronizes about the desired periodical dynamical behavior. Figure 4
shows that by using periodic applied current we can force the periodicity of the synchronized
neurons. The applied input depends on the current state of the neuron which receives the
external impulse.
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5.3 Circadian rhythms in Drosphila
The biological functions of most living organisms are organized along an approximate 24-h
time cycle or circadian rhythm (Goldbeter, 1996). Circadian rhythms, are endogenous because
they can occur in constant environmental conditions, e.g. constant darkness. Circadian rhythm
can also be entrained by external forcing of modified light-darkness cycles or phase-shifted
when exposed to light pulses (Goldbeter, 1996; Fu & Lee, 2003; Jewett et al., 1991).
Circadian rhythms are centrally regulated by the suprachiasmatic nucleus (SCN) of the
hypothalamus. Most neurons in the SCN become active during the day and are believed
to comprise the biological clock. Dispersed SCN cells exhibit sustained circadian oscillations
with periods ranging from 20 to 28 hours, but on the tissue level, SCN neurons display a
significant degree of synchrony. Over time, the development of a circadian rhythm might
impart larger benefits to the organism. In cyanobacteria, for example, matching of the
free-running period to the light-dark cycle time provides a selective advantage, which is
presumably the basis for its evolution (Ouyang et al., 1998). In Arabidopsis, matching between
the circadian period and the light-dark cycle results in plants that fix carbon at a higher rate
and grow and survive better than those that lack such a match (Dodd et al., 2005).
Concerning the modeling of this phenomenon, it has to be stressed that the mechanism
can be considerably different for the different living beings in which it has been studied,
ranging from unicellular organisms to mammalians, going through fungi and flies. Some of
the most recent models have a high degree of complexity and involve up to 16 differential
equations. However, it seems to be accepted that the central mechanism causing oscillations is
represented by a negative feedback exerted by a protein on the expression of its corresponding
gene.
We consider as the single biochemical oscillator a simple five-variable model proposed for
circadian rhythms for the central clock of fruit fly Drosophila (Gonze & Goldbeter, 2000),

dy
dt

= u
Kn

I
Kn

I + zn
4
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y
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dz1
dt
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dz4
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= k1z3 − k2z4

where y, z1, z2, z3 and z4 denote, respectively, the concentrations of mRNA, PER protein,
mono- and di-phosphorylated forms of PER protein, and the amount of phosphorylated
protein located in the cells. Once in the nucleus, PER protein down-regulates mRNA
translation, leading to the observed oscillating behavior. The manipulated variable u denotes
the maximal speed of transcription of y. It seems that progresses in gene manipulation
techniques make it reasonable to think of modifying of this parameter. Definition of other
parameters can be found in Goldbeter, (1996). Kinetic parameters can differ from one oscillator
to the other and thus holds variability in individual circadian oscillators.
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Fig. 5. Synchronization of the circadian rhythms in Drosphila using a periodic modulation of
the external input.

The synchronization objective is fix a nominal 24-h period of the circadian oscillations for
an ensemble of individual circadian oscillators. In this case we have implemented the GLC.
Figures 5 and 6 shows that by using a periodic modulation of the external input, we can force
the circadian periodicity. As was stated above, synchronization of circadian rhythms has been
achieved via the periodic modulation of a light sensitive parameter. In this case, the parameter
modulation requires the periodic manipulation of the maxima speed of transcription of
mRNA, which should be addressed using gene manipulation techniques, and is beyond of
the scope of this contribution.

6. Conclusions and perspectives

In this chapter we have discussed the synchronization problem of biochemical oscillators and
we have addressed this problem via three robust feedback control approaches. In this section
we provide some concluding remarks and a perspective on the synchronization of biochemical
systems.

6.1 Concluding remarks
One interesting phenomenon in biological systems is the collective rhythm of all dynamic
cells. Synchronization occurs in many populations of biological oscillators. From the general
synchronization point of view, synchronization approaches can be classified into two
general groups: (i) natural coupling (self-synchronization), and (ii) artificial coupling forced
via periodic modulation or explicit feedback control approaches. Classical methods are
determined by an interplay of time scales by phase locking or, respectively, natural frequency
entrainment or due to suppression of inherent frequencies. Artificial coupling where an
external input can be manipulated can be looked as control synthesis issue and studied within
the control theory framework developed in this work.
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Fig. 5. Synchronization of the circadian rhythms in Drosphila using a periodic modulation of
the external input.

The synchronization objective is fix a nominal 24-h period of the circadian oscillations for
an ensemble of individual circadian oscillators. In this case we have implemented the GLC.
Figures 5 and 6 shows that by using a periodic modulation of the external input, we can force
the circadian periodicity. As was stated above, synchronization of circadian rhythms has been
achieved via the periodic modulation of a light sensitive parameter. In this case, the parameter
modulation requires the periodic manipulation of the maxima speed of transcription of
mRNA, which should be addressed using gene manipulation techniques, and is beyond of
the scope of this contribution.

6. Conclusions and perspectives

In this chapter we have discussed the synchronization problem of biochemical oscillators and
we have addressed this problem via three robust feedback control approaches. In this section
we provide some concluding remarks and a perspective on the synchronization of biochemical
systems.

6.1 Concluding remarks
One interesting phenomenon in biological systems is the collective rhythm of all dynamic
cells. Synchronization occurs in many populations of biological oscillators. From the general
synchronization point of view, synchronization approaches can be classified into two
general groups: (i) natural coupling (self-synchronization), and (ii) artificial coupling forced
via periodic modulation or explicit feedback control approaches. Classical methods are
determined by an interplay of time scales by phase locking or, respectively, natural frequency
entrainment or due to suppression of inherent frequencies. Artificial coupling where an
external input can be manipulated can be looked as control synthesis issue and studied within
the control theory framework developed in this work.
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Fig. 6. Corresponding control input for Figure 5.

In this chapter we have shown that external stimulation with robust feedback control can
effectively synchronize populations of individual oscillators. We have introduced three robust
feedback control approaches: (i) the MEC approach, that leads to simple practical control
design with good robustness and performance capabilities, (ii) sliding mode control approach
that leads to a simple design with the feature of switching type action that can be appropriate
for biochemical systems, and (iii) a robust geometric linearizing input-output control, that
can be useful to establish a relation between neural processing behavior in cells and the
mathematical formalism of geometric differential methods. Numerical simulations results
indicate good tracking performance of the proposed robust control approaches. The three
robust control schemes are based on a minimum information from the cell model (output),
not on the precise details of the model (e.g., kinetic parameters). Thus, our control scheme is
likely to be effective in the more complicated models of cell dynamics.
From a general point of view external forcing of cellular processes is important in many
application areas ranging from bioengineering to biomedicine. At the level of biology the
problem is to supply an input to the cell such that the biochemical processes of the cell achieve
specified control objectives. At the level of control theory the biological problem amounts to
the construction of a control law such the control objectives are achieved. In this way, the
results in this work must be seen as a first approach to addressing the systematic design of
control systems in cellular processes.

6.2 Perspectives
Feedback control and synchronization for cells is in its infancy, with numerous challenges
and opportunities ahead. For instance, an implicit assumption of the control frameworks
discussed in this article is that the control law is implemented without regard the actuator
and sensor constraints for cells. Besides, we have considered cellular systems described by
ordinary differential systems, without delays. Delays are however known to be involved in
biological systems, because for example mRNA synthesis and transport (in eukaryotic cells)
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are certainly not instantaneous. Systems with delays are however most difficult to analyze and
control, because they are differential systems of infinite dimensions, to which mathematical
tools are more involved.
Feedback control theory in combination with biological knowledge can lead to a better
understand of the complex dynamics of cellular processes. Indeed, the design of closed-loop
system in biological systems is a first step to gain insights of the suppression and generation of
oscillatory behavior, and the closed-loop response can resembles the features of the behavior
of biological processes. Current work is in progress in order to study various synchronization
mechanisms by investigating the effects of various biologically plausible couplings and
several kinds of noise from the viewpoint of feedback control theory.
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