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Preface

Topology is the science of position and surfaces. It endows with a structure. Symplectic 
geometry is an even-dimensional geometry living on an even-dimensional structure 
space. Generally, topology has many applications in a variety of disciplines including 
networking, communications, dynamics, and other fields of science. Structure 
topology is an interesting branch of general topology. Symplectic geometry studies 
the invariant properties of structure graphics after symplectic transformation. It 
has beautiful mathematical principles and contents such as the duality principle, 
continuity principle, and butterfly theorem. With the development of research in 
the field, symplectic geometry is used not only to solve classical nonlinear dynamical 
systems but also to address various nonlinear time series on physics, engineering, and 
biomedical engineering.

Chapter 1 is a review of the applications of linear operators and Chapter 2 presents 
interesting results about operators working on topologies. Chapter 3 establishes some 
detail about the use of topology on symmetrized Omega algebra. Chapter 4 discusses 
applications of Clifford algebra in geometry, while Chapter 5 studies quasiconformal 
reflection across polygonal lines. Finally, Chapter 6 introduces some basic concepts 
and elements of mathematics in symplectic geometry theory. Algorithms based on 
MATLAB software are provided for applications of symplectic geometry on time 
series analysis, such as embedding dimension estimation, nonlinear testing, noise 
reduction, and fault diagnosis.

This book will help researchers and students understand how topology and structures 
are related and how to apply symplectic geometry theory to analyze practical data 
from engineering fields. The content of this book is conducive to the development 
and applications of structure topology and symplectic geometry in other branches of 
sciences and engineering.
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Chapter 1

A Review Note on the Applications
of Linear Operators in Hilbert
Space
Karthic Mohan and Jananeeswari Narayanamoorthy

Abstract

Hilbert Spaces are the closest generalization to infinite dimensional spaces of the
Euclidean Spaces. We Consider Linear transformations defined in a normed space
and we see that all of them are Continuous if the Space is finite Dimensional Hilbert
Space Provide a user-friendly framework for the study of a wide range of subjects
from Fourier Analysis to QuantumMechanics. The adjoint of an Operator is defined
and the basic properties of the adjoint operation are established. This allows the
introduction of self Adjoint Operators are the subject of the section.

Keywords: linear space, norm of a vector, inner product, orthogonal vector,
adjoint of an operator

1. Introduction

The Concept of Hilbert Space was put forwarded by David Hilbert in his work on
Quadratic forms in infinitely many Variables. We take a Closer look at Linear Con-
tinuous map between Hilbert Spaces [1]. These are called bounded operators and
branch of Functional Analysis Called “Operator Theory” [2]. Next we derive an
important inequality which has many interesting applications in the theory of inner
product spaces and as a consequence we obtain that each inner product space is a
normed Vector spaces with the norm [3], i.e. the inner product generates this form.
Moreover there are several essential algebraic identities, variously and ambiguously
called Polarization Identities. These and other closely related identities are of constant
use. Now we are in position to state and prove the above mentioned important
inequality known as Cauchy-Schwartz Buniakowsi inequality (briefly we say CSB
inequality) and we shall also use this to define the concept of angle by means of a
formula [1]. The theory of Hilbert Space that Hilbert and Others developed has not
only greatly enriched the world of Mathematics but has Proven Extremely useful in
the development of Scientific Theories Particularly Quantum Mechanics.

2. Definition 1

A Hilbert space is a complex Banach space whose norm induced from an inner
produce [4] i.e., in which there is defined a complex function x, yð Þ of vectors
x & y and α, β are scalars with the following properties
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i. αxþ βy, zð Þ ¼ α x, zð Þ þ β y, zð Þ

ii. x, yð Þ ¼ y, xð Þ

iii. x, xð Þ ¼ xk k2

2.1 Remark 1.1

Every polynomial equation of the nth degree with complex co-efficient has
exactly n complex roots [5].

In accordance with the above remarks the scalars in this example are understood
to be the complex number.

Consider the space ln2 with the inner product of two vectors x ¼ x1, x2, … , xnð Þ
and y ¼ y1, y2, … , yn

� �
defined by

x, yð Þ ¼
Xn
i¼1

xyyi

Now we are going to prove that ln2 is a Hilbert space.

2.1.1 Proof

By using Hilbert Space definition [ x, yð Þ of complex function, α, β are scalars]

i. αxþ βy, zð Þ ¼Pn
i¼1 αxi þ βyi
� �

zi

¼ α
Pn

i¼1xizi þ β
Pn

i¼1yizi

αxþ βy, zð Þ ¼ α x, zð Þ þ β y, zð Þ∀x, y, z∈ ln2

ii. x, yð Þ ¼Pn
i¼1xiyi

¼Pn
i¼1xiyi

¼Pn
i¼1yixi

¼ y, xð Þ

iii. x, xð Þ ¼Pn
i¼1xixi

¼Pn
i¼1 xij j2

x, xð Þ ¼ xk k2

Therefore x, yð Þ is an inner product on ln2 .
Therefore ln2 is a Hilbert space.

2.2 Theorem 1.1 (Schwartz inequality)

If x and y are any two vectors in Hilbert space then x, yð Þj j≤ xk k yk k [6–8].

2.2.1 Proof

When y ¼ 0, the result is clear for both sides vanish

2
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i.e., x, yð Þj j ¼ x, 0ð Þj j ¼ 0j j ¼ 0

xk k yk k ¼ xk k 0k k ¼ xk k0 ¼ 0

x, yð Þj j ¼ xk k yk k ¼ 0

When y 6¼ 0
Take any scalar α∈C [Complex banach space] always x� αyk k2 ≥0

x� αy, x� αyð Þ≥0

x, xð Þ � x, αyð Þ � αy, xð Þ þ αy, αyð Þ≥0

x, xð Þ � α x, yð Þ � α y, xð Þ þ αα y, yð Þ≥0

xk k2 � α x, yð Þ � α x, yð Þ þ αα yk k2 ≥0 (1)

Put α ¼ x, yð Þ
yk k2 where x, yð Þ∈C.

∵ y 6¼ 0 and yk k 6¼ 0.

So choose α ¼ x, yð Þ
yk k2 , α ¼ x, yð Þ

yk k2 .

From Eq. (1) becomes

xk k2 � x, yð Þ
yk k2 x, yð Þ � x, yð Þ

yk k2 x, yð Þ þ x, yð Þ
yk k2

x, yð Þ
yk k2 yk k2 ≥0

xk k2 � x, yð Þj j2
yk k2 � x, yð Þj j2

yk k2 þ x, yð Þj j2
yk k2 ≥0

xk k2 � x, yð Þj j2
yk k2 ≥0

x, yð Þj j2
yk k2 ≤ xk k2

x, yð Þj j2 ≤ xk k2 yk k2

∴ x, yð Þj j≤ xk k yk k

2.3 Result 1

An inner product space is a normal linear space [9].

2.3.1 Proof

To prove.
xk k≥0 and xk k ¼ 0 if x ¼ 0

xk k ¼
ffiffiffiffiffiffiffiffiffiffiffi
x, xð Þ

p
) xk k2 ¼ x, xð Þ≥0

So that xk k≥0 and xk k ¼ 0⇔ x ¼ 0.
Now we have to show that xþ yk k≤ xk k þ yk k

xþ yk k2 ¼ xþ yð Þ, xþ yð Þ½ �
¼ x, xð Þ þ x, yð Þ þ y, xð Þ þ y, yð Þ
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¼ xk k2 þ x, yð Þ þ x, yð Þ þ yk k2

¼ xk k2 þ 2Re x, yð Þ þ yk k2

≤ xk k2 þ 2 xk k yk k þ yk k2

xþ yk k2 ≤ xk k þ yk kð Þ2

xþ yk k≤ xk k þ yk k

Now we can prove that αxk k ¼ αj j xk k.
Consider

αxk k2 ¼ αx, αxð Þ
¼ αα x, xð Þ

αxk k2 ¼ αj j2 xk k2

αxk k ¼ αj j xk k

An inner product is a normed linear space.

2.4 Result 1.1

An inner product in Hilbert space is jointly continuous [10].

2.4.1 Proof

Since xn ! x and yn ! y ) xn, yn
� �! x, yð Þ

We have.
xn � xk k ! 0 as n ! ∞ and
yn � y
�� ��! 0 as n ! ∞ and
Now consider

xn, yn
� �

, ðx, yÞ�� �� ¼ xn, yn
� �� ðxn, yÞ þ ðxn, yÞ � ðx, yÞ�� ��

≤ xn, yn
� �� ðxn, yÞ
�� ��þ xn, yð Þ � ðx, yÞj j

≤ xnk k yn � y
�� ��þ xn � xk k yk k (by Schwartz Inequality)

! 0 as yn ! y and xn ! x
xn, yn
� �

, ðx, yÞ�� ��! 0 as n ! ∞
xn, yn
� �! x, yð Þ as n ! ∞

2.5 Theorem 1.1 (parallelogram law in Hilbert space)

If x and y are any two vectors in Hilbert space then

xþ yk k2 þ x� yk k2 ¼ 2 xk k2 þ 2 yk k2 (2)

2.5.1 Proof

xþ yk k2 ¼ xþ y, xþ yð Þ
¼ x, xð Þ þ x, yð Þ þ y, xð Þ þ y, yð Þ
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¼ xk k2 þ x, yð Þ þ x, yð Þ þ yk k2 (3)

x� yk k2 ¼ x� y, x� yð Þ
¼ x, xð Þ � x, yð Þ � y, xð Þ � y, yð Þ
¼ xk k2 � x, yð Þ � x, yð Þ þ yk k2 (4)

Adding (3) and (4) we get,

xþ yk k2 þ x� yk k2 ¼ 2 xk k2 þ 2 yk k2

2.6 Theorem 1.2 (polarization identity)

If x and y are any two vectors in Hilbert space then

4 x, yð Þ ¼ xþ yk k2 � x� yk k2 þ i xþ iyk k2 � i xþ iyk k2 (5)

2.6.1 Proof

xþ yk k2 ¼ xþ y, xþ yð Þ
¼ x, xð Þ þ x, yð Þ þ y, xð Þ þ y, yð Þ
¼ xk k2 þ x, yð Þ þ x, yð Þ þ yk k2 (6)

x� yk k2 ¼ x� y, x� yð Þ
¼ x, xð Þ � x, yð Þ � y, xð Þ þ y, yð Þ
¼ xk k2 � x, yð Þ � x, yð Þ þ yk k2 (7)

Subtracting (6) and (7) we get

xþ yk k2 � x� yk k2 ¼ 2 x, yð Þ þ 2 y, xð Þ (8)

Replace y by iy in Eq. (8)

xþ yk k2 � x� yk k2 ¼ 2 x, iyð Þ þ 2 iy, xð Þ
¼ 2i x, yð Þ þ 2i y, xð Þ
¼ �2i x, yð Þ þ 2i y, xð Þ

Multiply both sides by i

i xþ yk k2 � i x� yk k2 ¼ 2 x, yð Þ � 2 y, xð Þ (9)

Adding (8) and (9) we get

xþ yk k2 � x� yk k2 þ i xþ yk k2 � i x� yk k2 ¼ 4 x, yð Þ: (10)

3. Definition 2

Let B be an arbitrary banach space. A convex set in B is a non-empty subset
S with the property that if x and y are in S then
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z ¼ xþ t y� xð Þ ¼ 1� tð Þxþ ty

it also in S for all real number t such that 0≤ t≤ 1 .
A convex set is a non-empty set which contains the segment joining any pairs of

its points.
Since C is convex it is non-empty and contains xþy

2 whenever it contains
x and y [11].

3.1 Theorem 2.1

3.1.1 Application of parallelogram law

A closed convex subset C of a Hilbert space H contains a unit vector of smallest
norm [12].

3.1.2 Proof

Step 1:
Since C is a convex set, it is non empty and contains xþy

2 ∈C whenever x, y∈C.
Let d ¼ inf xk k=x∈Cf g then

d≤ xk k∀x∈C (11)

Then there exist a sequence xnf g of vectors in C such that xnf g ! d as

n ! ∞ (12)

Let xm, xn ∈C .
∵C is convex, xmþxn

2 ∈C
By (11), d≤ xmþxn

2

�� ��

d≤
xm þ xnk k

2
2d≤ xm þ xnk k
4d2 ≤ xm þ xnk k2

�4d2 ≥ � xm þ xnk k2 (13)

By parallelogram law

xm þ xnk k2 þ xm � xnk k2 ¼ 2 xmk k2 þ 2 xnk k2

xm � xnk k2 ¼ 2 xmk k2 þ 2 xnk k2 � xm þ xnk k2

xm � xnk k2 ≤ 2 xmk k2 þ 2 xnk k2 � 4d2 by Eq. (13)
≤ 2d2 þ 2d2 � 4d2 by Eq. (12) as n ! ∞.

xm � xnk k ! 0 as n ! ∞, m ! ∞.

∴ xnf g is a Cauchy sequence in C.
∵C is a closed set in complete Space H
) C is complete
There exist a vector x in C such that xn ! x
i.e.) x ¼ lim xn

6
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xk k ¼ lim xnk k
¼ lim xnk k ¼ d

¼ inf
xk k
x

∈C
� �

) xk k is smallest.
∴x is a vector in C with smallest norm.
Step 2:
To prove uniqueness of x.
Suppose there exist a vector x in C with x0k k ¼ d and x 6¼ x0 in C
∵C is convex, xþx0

2 ∈C
By Eq. (11)

d≤
xþ x0

2

����
���� (14)

By parallelogram law,

xþ x0

2

����
����
2

þ x� x0

2

����
����
2

¼ 2
x
2

���
���
2
þ 2

x0

2

����
����
2

xþ x0

2

����
����
2

¼ 2
x
2

���
���
2
þ 2

x0

2

����
����
2

� xþ x0

2

����
����
2

≤ 2
x
2

���
���
2
þ 2

x0

2

����
����
2

≤
2 xk k2
2

þ 2 x0k k2
2

≤
2d2

4
þ 2d2

4

≤
4d2

4

xþ x0

2

����
����
2

≤ d2

xþ x0

2

����
����≤ d

Which is a contradiction to Eq. (14)
Therefore our assumption on x 6¼ x0 is wrong
Hence x ¼ x0

3.2 Theorem 2.2 (orthogonal complements)

Two Vectors x and y in a Hilbert space H are said to be orthogonal (written as
x⊥y) if x, yð Þ ¼ 0 [9]

i. x⊥y⇔ x, y
� � ¼ 0

⇔ x, y
� � ¼ 0

7
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⇔ y, xð Þ ¼ 0

⇔ y⊥x

ii. 0, xð Þ ¼ 0∀xϵH

) 0⊥x∀xϵH

Therefore 0 is orthogonal to every vector x in H

iii. x⊥x⇔ x, xð Þ ¼ 0

⇔ xk k2 ¼ 0

⇔ xk k ¼ 0

⇔ x ¼ 0

This means that 0 is the only vector orthogonal to itself

3.3 Theorem 2.3 (Pythagorean theorem)

Geometric fact about orthogonal vectors in the Pythagorean theorem such that
x⊥y implies [9]

xþ yk k2 ¼ x� yk k2 ¼ xk k2 þ yk k2

3.3.1 Proof

Since

x⊥y⇔ x, y
� � ¼ 0

⇔ x, y
� � ¼ 0

⇔ y, xð Þ ¼ 0

⇔ y⊥x

xþ yk k2 ¼ xþ y, xþ yð Þ
¼ x, xð Þ þ x, yð Þ þ y, xð Þ þ y, yð Þ

¼ xk k2 þ yk k2 by

x, yð Þ ¼ 0, y, xð Þ ¼ 0 (15)

x� yk k2 ¼ x� y, x� yð Þ
¼ x, xð Þ � x, yð Þ � y, xð Þ þ y, yð Þ

¼ xk k2 þ yk k2 by

x, yð Þ ¼ 0, y, xð Þ ¼ 0 (16)

From Eq. (15) and (16)

xþ yk k2 ¼ x� yk k2 ¼ xk k2 þ yk k2

8
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4. Definition 3

A Vector x is said to be orthogonal to a non-empty set S (written as x⊥s) if
x⊥y∀yϵS [7].

4.1 Definition 3.1

The orthogonal complement of S denoted by S⊥ is the set of all vectors
orthogonal to s i.e., S⊥ ¼ x=x∈H and x⊥sf g.

i.e., x∈ S⊥ ⇔ x⊥s [10].
The following statements are the easy consequence of the definition

i. 0f g⊥ ¼ H

ii. H⊥ ¼ 0f g

iii. S∩S⊥ ⊆ 0f g

iv. S1 ⊆ S2 ) S⊥2 ⊆ S⊥1

v. S⊥ is a closed subspace of H.

4.1.1 Theorem 3.1.1

If M is a proper closed linear subspace of a Hilbert Space H. Then there exists a
non-zero vectors z0 in H such that orthogonal to M. i.e., z0⊥M [10].

4.1.1.1 Proof

Let x be a vector not inM and let d be the distance from r to M. Then by theorem
“Let M be a closed linear subspace of a Hilbert Space H, let x be a vector not in M
and let d be the distance from x to M . Then there exists a unique vector y0 in M
such that x� y0

�� �� ¼ d”
We define z0 ¼ x� y0, x∈H, y0 ∈M

) y0 ∈H

) x� y0 ∈H

) z0 ∈H

d ¼ d x,Mð Þ ¼ inf x�mk k : m∈Mf g
) d≤ x�mk k∀m∈M and (17)

x�mk k≥0∀m∈M

inf x�mk k : m∈Mf g≥0

) d≥0

Claim:- d>0,
If d ¼ 0 then inf x�mk k : m∈Mf g ¼ 0.
Then there exists a sequence mnf g in M such that x�mnk k ¼ 0 as n ! ∞
) mnf g ! x as n ! ∞.
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) x∈M, since M is closed.
This is a contradiction to x ∉ M . d 6¼ 0.
Hence d>0 .

z0k k ¼ x� y0
�� �� ¼ d

) z0k k ¼ d>0

) z0k k>0

) z0 6¼ 0

x∈M ) x∈Hsince M⊆H

y0 ∈M ) y0 ∈H

) x� y0 ∈H

) z0 ∈H

This proves the existence of non-zero vector z0 in H .
We conclude the proof by showing that if y is an arbitrary vector in M then

z0⊥M .
Let α be any scalar then

z0 � αyk k ¼ x� y0 � αy
�� ��

¼ x� y0 þ αy
� ��� ��

≥ α z0k k
z0 � αyk k≥ z0k k

) z0 � αyð Þ z0 � αyð Þ≥ z0, z0ð Þ
z0, z0ð Þ � z0, αyð Þ � αy, z0ð Þ þ αy, αyð Þ≥ z0, z0ð Þ

�α z0, yð Þ � α y, z0ð Þ þ αα y, yð Þ≥0 (18)

Put α ¼ β z0, yð Þ for an arbitrary real β then α ¼ β z0, yð Þ i.e. (18) becomes

) �β z0, yð Þ z0, yð Þ � β z0, yð Þ y, z0ð Þ þ β z0, yð Þβ z0, yð Þ yk k2 ¼ 0

) �β z0, yj j2 � β z0, yð Þj j2 þ β2 z0, yð Þj j2 yk k2 ≥0

) �2β z0, yð Þj j2 þ β2 z0, yj j2 yk k2 ≥0

) β z0, yð Þj j2 �2þ β yk k2
� �

≥0

) β z0, yð Þj j2 β yk k2 � 2
� �

≥0 (19)

Clearly

z0, yð Þj j ¼ 0

Suppose

z0, yð Þj j>0

Choose β arbitrary smallest +ve such that β yk k2 < 2

10
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β yk k2 � 2
� �

<0

) β z0, yð Þj j2 β yk k2 � 2
� �

<0

This is a contradiction to the Eq. (19)

z0, yð Þj j ¼ 0

) z0, yð Þ ¼ 0

Therefore
z0⊥y, y∈M

) z0⊥M:

Hence it is proved.

5. Definition 4

5.1 Adjoint of an operator

Let H be a Hilbert Space and T be an operator on H then the mapping T ∗ :
H ! H defined by Tx, yð Þ ¼ x,T ∗ yð Þ∀ x, y∈H is called the adjoint of T . We verify
that T ∗ is actually an operator on H [13]

i. To prove that T ∗ is linear

i.e., To prove

T ∗ yþ zð Þ ¼ T ∗ yð Þ þ T ∗ zð Þ
T ∗ αyð Þ ¼ αT ∗ yð Þ
x,T ∗ yþ zð Þð Þ ¼ Tx, yþ zð Þ
¼ x,T ∗ yð Þ þ x,T ∗ zð Þ
¼ x,T ∗ yþ T ∗ zð Þ
x,T ∗ yþ zð Þð Þ ¼ x,T ∗ yð Þ þ T ∗ zð Þð Þ
) T ∗ yþ zð Þ ¼ T ∗ yð Þ þ T ∗ zð Þ
x,T ∗ αyð Þð Þ ¼ Tx, αyð Þ
¼ α Tx, yð Þ
¼ α x,T ∗ yð Þ
x,T ∗ yþ zð Þð Þ ¼ x, αT ∗ yð Þð Þ
) T ∗ αyð Þ ¼ αT ∗ yð Þ

Therefore T is linear

ii. To prove that T ∗ is continuous

0≤ T ∗ xð Þk k2

¼ T ∗ x,T ∗ xð Þ
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¼ TT ∗ x, xð Þ
¼ TT ∗ x, xð Þj j
≤ TT ∗ xk k xk k
≤ Tk k T ∗ xk k xk k (by Schwartz Inequality)

T ∗ xk k≤ Tk k xk k
sup T ∗ xk k= xk k≤ 1f g≤ Tk k if xk k≤ 1

T ∗k k≤ Tk k

Since T is bounded, T ∗ is also bounded.
Hence T ∗ is an operator on H .
These facts tell us that T ! T ∗ is an mapping of B Hð Þ into itself
This mapping is called the adjoint operation on B Hð Þ. [B(H) is a Banach Space].

5.2 Theorem 4.1

The adjoint operation T ! T ∗ on B Hð Þ has the following properties [9]

i. T1 þ T2ð Þ ∗ ¼ T ∗
1 þ T ∗

2

ii. αTð Þ ∗ ¼ αT ∗

iii. T1T2ð Þ ∗ ¼ T ∗
2 T

∗
1

iv. T ∗ ∗ ¼ T

v. T ∗k k ¼ Tk k

vi. T ∗Tk k ¼ Tk k2

5.2.1 Proof

i. T1 þ T2ð Þ ∗ ¼ T ∗
1 þ T ∗

2

x, T1 þ T2ð Þ ∗ yð Þ ¼ T1 þ T2ð Þx, yð Þ
¼ T1xþ T2x, yð Þ
¼ T1x, yð Þ þ T2x, yð Þ
¼ x,T ∗

1 y
� �þ x,T ∗

2 y
� �

x, T1 þ T2ð Þ ∗ yð Þ ¼ x,T ∗
1 y

� �þ x,T ∗
2 y

� �

T1 þ T2ð Þ ∗ y ¼ T ∗
1 yþ T ∗

2 y

T1 þ T2ð Þ ∗ y ¼ T ∗
1 þ T ∗

2

� �
y∀y∈H

T1 þ T2ð Þ ∗ ¼ T ∗
1 þ T ∗

2

ii. To prove αTð Þ ∗ ¼ αT ∗

x, αTð Þ ∗ yð Þ ¼ αTð Þx, yð Þ

12
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¼ αTx, yð Þ
¼ α Tx, yð Þ
¼ α x,T ∗ yð Þ

x, αTð Þ ∗ yð Þ ¼ α x,T ∗ yð Þ∀x∈H

αTð Þ ∗ ¼ αT ∗

iii. To prove T1T2ð Þ ∗ ¼ T ∗
2 T

∗
1

x, T1T2ð Þ ∗ yð Þ ¼ T1T2ð Þx, yð Þ
¼ T1 T2xð Þ, yð Þ
¼ T2x,T ∗

1 y
� �

x, T1T2ð Þ ∗ yð Þ ¼ x,T ∗
2 T

∗
1 y

� �

T1T2ð Þ ∗ y ¼ T ∗
2 T

∗
1 y∀y∈H

T1T2ð Þ ∗ ¼ T ∗
2 T

∗
1

iv. To prove that T ∗ ∗ ¼ T

x,T ∗ ∗ yð Þ ¼ T ∗ x, yð Þ∀x∈H

¼ y,T ∗ x
� �

¼ Ty, xð Þ∀x∈H

¼ x,Tyð Þ
T ∗ ∗ y ¼ Ty

T ∗ ∗ ¼ T

v. To prove that T ∗k k ¼ Tk k
0≤ T ∗ xð Þk k2

¼ T ∗ x,T ∗ xð Þ
¼ TT ∗ x, xð Þ
¼ TT ∗ x, xð Þj j
≤ TT ∗ xk k xk k
≤ Tk k T ∗ xk k xk k [by Schwartz Inequality].

T ∗ xk k≤ Tk k xk k if xk k ¼ 1].

sup T ∗ xk k= xk k ¼ 1f g≤ Tk k
T ∗ xk k≤ Tk k (20)

We know that T ¼ T ∗ ∗ .

) Tk k ¼ T ∗ ∗k k
≤ T ∗k k
Tk k≤ T ∗k k (21)
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From Eq. (20) and (21) we get

T ∗k k ¼ Tk k

vi. To prove that T ∗Tk k ¼ Tk k2.
0≤ Txk k2

¼ Tx,Txð Þ
¼ Tx,T ∗ ∗ xð Þ
¼ T ∗Tx, xð Þ
¼ T ∗Tx, xð Þj j
≤ T ∗Txk k xk k by Schwartz Inequality]

≤ T ∗Tk k xk k xk k
Txk k2 ≤ TT ∗k k xk k2 if xk k ¼ 1

Txk k2 ≤ TT ∗k k if xk k ¼ 1

sup Txk k= xk k ¼ 1f g≤ TT ∗k k
Tk k2 ≤ TT ∗k k (22)

) TT ∗k k ¼ Tk k T ∗k k
≤ Tk k Tk k
≤ Tk k2 (23)

From Eq. (22) and (23) we get.

T2
�� �� ¼ TT ∗k k

6. Definition 5

6.1 Self Adjoint operator

An operator A on a Hilbert Space H is said to be self Adjoint if A ¼ A ∗ . Since
0 ∗ ¼ 0 and I ∗ ¼ I, 0 and I are self-Adjoint operator [14].

6.2 Theorem 5.1

The Self-Adjoint operator in B Hð Þ from the closed real linear subspace of B Hð Þ
and a real banch space which contains the identity transformation [14].

6.2.1 Proof

We will notice here about the product of two self-adjoint operators.
Let S denote the set of all Self-Adjoint operator in B Hð Þ .
To prove S is a real linear subspace of B Hð Þ.
Let

A1,A2 ∈ S

14
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) A1 andA2 are Self Adjoint.
) A ∗

1 ¼ A1 and A ∗
2 ¼ A2.

Let α, β are real,

αA1 þ βA2ð Þ ∗ ¼ αA1ð Þ ∗ þ βA2ð Þ ∗

¼ αA ∗
1 þ βA ∗

2

¼ αA ∗
1 þ βA ∗

2

¼ αA1 þ βA2

αA1 þ βA2ð Þ ∗ ¼ αA1 þ βA2

) αA1 þ βA2 ∈ S

Therefore S is real linear subspace of B Hð Þ.
Further if Anf g is a sequence of self Adjoint operators which converges to an

operator A. Then it is easy to see that A is also self Adjoint.
i.e.) Let Anf g be a sequence in S such that An ! A.

A� A ∗k k ¼ A� An þ An � A ∗
n þ A ∗

n � A ∗�� ��
≤ A� Ank k þ An � A ∗

n

�� ��þ A ∗
n � A ∗�� ��

≤ A� Ank k þ An � Ak k by T ∗k k ¼ Tk k.
≤ 2 An � Ak k ! 0 as An ! A

Therefore An � Ak k≤0
) An � Ak k ¼ 0 (since norm cannot be –ve)

) A� A ∗ ¼ 0

) A ¼ A ∗

) A is Self Adjoint

Therefore A∈ S.
Hence S is closed in B Hð Þ.
Therefore B Hð Þ is complete, S is complete.
Hence S is a real Banach Space.
∵I ∗ ¼ I, I is self-Adjoint.
) I∈ S[ Hð Þ Contains identity transformation].
Hence it is proved.

7. Conclusion

Even though every Hilbert Space is a Banach space, but there exist plenty of
Banach space which are not Hilbert Spaces. However the converse is not true [13].
The Parallelogram Identity gives a criterion for normed space to become an inner
product space [15]. It is important to emphasize that every finite dimensional
normed Linear Space is a Hilbert Space [2]. Since every finite dimensional normed
space is complete. The Theorems of this section allows us to define the adjoint
Operator of a bounded Operator [3]. Finally we studied the Self adjoint Operator
and its Properties. The results included here are Classical and can be found in the
following Reference books in Functional Analysis.
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Chapter 2

Operator Topology for
Logarithmic Infinitesimal
Generators
Yoritaka Iwata

Abstract

Generally unbounded infinitesimal generators are studied in the context of
operator topology. Beginning with the definition of seminorm, the concept of
locally convex topological vector space is introduced as well as the concept of
Fréchet space. These are the basis for defining operator topologies. Consequently,
by associating the topological properties with the convergence of sequence, a
suitable mathematical framework for obtaining the logarithmic representation of
infinitesimal generators is presented.

Keywords: operator theory, locally strong topology, infinitesimal generator

1. Introduction

Let X be an infinite/finite dimensional Banach space with the norm ∥ � ∥, and Y
be a dense subspace of X. The Cauchy problem for abstract evolution equation of
hyperbolic type [1, 2] is defined by

du tð Þ=dt� A tð Þu tð Þ ¼ f tð Þ, t∈ 0,T½ �,
u 0ð Þ ¼ u0

(1)

in X, where A tð Þ: Y ! X is assumed to be the infinitesimal generator of evolu-
tion operator U t, sð Þ satisfying the strong continuity (for the definition of strong
topology, refer to the following section) and the semigroup property:

U t, sð Þ ¼ U t, rð ÞU r, sð Þ (2)

for 0≤ s≤ r≤ t<T. U t, sð Þ is a two-parameter C0-semigroup of operator that is a
generalization of one-parameter C0-semigroup and therefore an abstract generali-
zation of the exponential function of operator. For an infinitesimal generator A tð Þ of
U t, sð Þ, the solution u tð Þ is represented by u tð Þ ¼ U t, sð Þus with us ∈X for a certain
0≤ s≤T (cf. Hille-Yosida Theorem; for example see [3–5]).

2. Operator topology

2.1 The dual formalism of evolution equation

The dual space of X being denoted by X ∗ is defined by

19



X ∗ ¼ L X,Kð Þ, (3)

where K is a scalar field making up the space X, and L X,Kð Þ denotes the space of
continuous linear functionals. Since K is also a Banach space, L X,Kð Þ satisfies the
properties of Banach space.

Let �, �h i: X � X ∗ ! ℂ be a dual product between X and X ∗ , and ℂ be a set of
complex numbers. The adjoint operator A tð Þ ∗ : D A tð Þð Þ ! X ∗ is defined by the
operator satisfying

A tð Þu, vh i ¼ u,A tð Þ ∗ vh i (4)

for any u∈D A tð Þð Þ and v∈D A tð Þ ∗ð Þ. If X is a Hilbert space, the dual product is
replaced with a scalar product �, �ð Þ equipped with X. Unique dual correspondence is
valid, if X is strictly convex Banach space at least (for convex Banach space, see
[6]). By taking the dual product, the abstract evolution equation in X:

du tð Þ=dt� A tð Þu tð Þ ¼ f tð Þ, t∈ 0,T½ � (5)

is written as a scalar-valued evolution equation in ℂ:

du tð Þ=dt, v tð Þh i � A tð Þu tð Þ, v tð Þh i ¼ f tð Þ, v tð Þh i, t∈ 0,T½ � (6)

for a certain v tð Þ∈X ∗ . The formalism (6), which is associated with the Gelfand
triplets [7], has been considered by variational method of abstract evolution
equations [8, 9]. Eqs. (5) and (6) cannot necessarily be equivalent in the sense of
operator topology.

2.2 Locally strong topology

Let p uð Þ be a seminorm equipped with a space X , and the family of seminorms be
denoted by P. Locally convex spaces are the generalization of normed spaces. Here
the topology is called locally convex, if the topology admits a local base at 0 consisting
of balanced, absorbent, and convex sets. In other words, a topological space X is
called locally convex, if its topology is generated by a family of seminorms satisfying

∩p∈P u∈X ; p uð Þ ¼ 0f g ¼ 0X , (7)

where 0X denotes the zero of topological space X . Fréchet spaces are locally
convex spaces that are completely metrizable with a certain complete metric. It
follows that a Banach space X is trivially a Fréchet space.

For Banach spaces X and Y, the bounded linear operators from X to Y is denoted
by B X,Yð Þ. In particular B X,Xð Þ is written by B Xð Þ. The operator space B Xð Þ is
called the Banach algebra, since it holds the structure of algebraic ring. The norm of
B Xð Þ, which means the operator norm, is defined by

∥T∥B Xð Þ ¼ sup
x6¼0

∥Tx∥X
∥x∥X

: (8)

A norm is trivially a seminorm. Consequently, the topological space in this
article is set to be a Banach space B Xð Þ.

There are several standard typologies defined on B Xð Þ. The topologies listed
below are all locally convex, which implies that they are defined by a family of
seminorms. The topologies are identified by the convergence arguments. Let Tnf g
be a sequence in a Banach space X.
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• Tn ! T in the uniform topology, if ∥Tn � T∥B Xð Þ ! 0;

• Tn ! T in the strong topology, if Tnx ! Tx for any x∈X;

• Tn ! T in the weak topology, if F Tnxð Þ ! F Txð Þ for any F∈X ∗ and x∈X;

where the uniform topology is the strongest, and the weak topology is the
weakest. Indeed a topology is called stronger if it has more open sets and weaker if it
has less open sets. If Y is a vector space of linear maps on the vector space X, then a
topology σ X,Yð Þ is defined to be the weakest topology on X such that all elements of
Y are continuous. The topology of σ X,Yð Þ type is apparent if the formalism (6) is
considered; the weak topology is written by σ B Xð Þ,B Xð Þ ∗ð Þ. Although there are
some intermediate topologies between the above three; strong* topology, weak*
topology, and so on, another type of topology is newly introduced in this article.

Definition 1 (locally strong topology)

• Tn ! T in the locally strong topology, if Tnx ! Tx for a certain x∈X.

This topology is utilized to define a weak differential appearing in the logarithmic
representation of infinitesimal generators.

3. Infinitesimal generator

3.1. Logarithmic infinitesimal generator

The logarithm of evolution operator is represented using the Riesz-Dunford
integral. A time interval 0,T½ � with 0≤ s, t≤T is provided. For a certain us ∈X, let a
trajectory u tð Þ ¼ U t, sð Þus be given in a Banach space X. For a given U t, sð Þ∈B Xð Þ,
its logarithm is well defined [10]; there exists a certain complex number κ satisfying

Log U t, sð Þ þ κIð Þ ¼ 1
2πi

ð

Γ
Logλ λ� κ � U t, sð Þð Þ�1dλ, (9)

where an integral path Γ, which excludes the origin, is a circle in the resolvent
set of U t, sð Þ þ κI.

Let us call Log U t, sð Þ þ κIð Þ the alternative infinitesimal generator to A tð Þ. Since
the alternative infinitesimal generator [11]

a t, sð Þ≔Log U t, sð Þ þ κIð Þ (10)

is necessarily bounded on X, its exponential function ea t,sð Þ is always well defined
as a convergent power series. Note that the alternative infinitesimal generator a t, sð Þ is
bounded on X, although the corresponding infinitesimal generator A tð Þ is possibly an

unbounded operator. It follows that e�a t,sð Þ ¼ ea t,sð Þ� ��1
is automatically well defined if

ea t,sð Þ is well defined. Also ea t,sð Þ is invertible regardless of the validity of the invertible
property for originalU t, sð Þ. The logarithmic representation of infinitesimal generator
(logarithmic infinitesimal generator, for short) is obtained as follows.

Lemma 1 (Logarithmic infinitesimal generators [10]). Let t and s satisfy
0≤ t, s≤T, and Y be a dense subspace of X. If A tð Þ and U t, sð Þ commute, infinites-
imal generators A tð Þf g0≤ t≤T are represented by means of the logarithm function;
there exists a certain complex number κ 6¼ 0 such that
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A tð Þ u ¼ I � κe�a t,sð Þ
� ��1

∂ta t, sð Þ u, (11)

where u is an element of a dense subspace Y of X, and ∂t is a kind weak
differential being defined by the locally strong topology.

Proof. Only formal discussion is made here (for the detail, see [10, 12]).

U t, sð Þ þ κIð Þ∂ta t, sð Þ ¼ U t, sð Þ þ κIð Þ U t, sð Þ þ κIð Þ�1
∂tU t, sð Þ: (12)

It leads to

A tð Þ u ¼ U t, sð Þ�1
∂tU t, sð Þu ¼ U t, sð Þ�1 U t, sð Þ þ κIð Þ∂ta t, sð Þ u

¼ I þ κ ea t,sð Þ � κI
� ��1

� �
∂ta t, sð Þ u

¼ ea t,sð Þ � κI þ κI
� �

ea t,sð Þ � κI
� ��1

∂ta t, sð Þ u

¼ I � κe�a t,sð Þ
� ��1

∂ta t, sð Þ u,

(13)

where u is an element in Y. □
The solution trajectory is given, and {A(t)}0 ≤ t ≤ T are determined for one fixed

u ∈ Y. Here is a reason why the locally-strong topology is introduced. Eq. (11) is the
logarithmic representation of infinitesimal generator A tð Þ. This representation is
useful not only to mathematical analysis but also to operator algebra [12, 13].

3.2. Differential operator in the logarithmic representation

The convergence of the limit in the differential operator ∂t of Eq. (11) is
discussed. The convergence in the locally strong topology is applied to the evolution
operator U t, sð Þ∈B Xð Þ.

Definition 2 (Weak limit using the locally strong topology). For 0≤ t, s≤T, the
weak limit

lim
h!0

h�1 U tþ h, sð Þ �U t, sð Þð Þ us ¼ lim
h!0

h�1 U tþ h, tð Þ � Ið Þ U t, sð Þ us (14)

is assumed to exist for a certain us in a dense subspace Y of X. The limit “ lim ” is
practically denoted by “w lim ” in the following, since it is a limit in a kind of weak
topology.

Let t-differential of U t, sð Þ in a weak sense of the above be denoted by ∂t, then it
follows that

∂tU t, sð Þ us ¼ A tð ÞU t, sð Þ us, (15)

and a generalized concept of infinitesimal generator A tð Þ : Y ! X is
introduced by

A tð Þus≔wlim
h!0

h�1 U tþ h, tð Þ � Ið Þus (16)

for a certain us ∈Y, where the convergence in w lim must be replaced with the
strong convergence in the standard theory of abstract evolution equations [4].

The operator A tð Þ defined in this way for a whole family U t, sð Þf g0≤ t,s≤T is called
the pre-infinitesimal generator in [10], because only its exponetiability with a
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certain ideal domain is ensured without justifying the dense property of its domain
space. Indeed pre-infinitesimal generators are not necessarily infinitesimal genera-
tors, while infinitesimal generators are pre-infinitesimal generators.

4. Main result

According to the standard theory of abstract evolution equation [4], the evolu-
tion operator is assumed to be strongly continuous. It follows that the trajectory
U t, sð Þus is continuous in X. Here is the reason why it is sufficient to consider the
convergence of differential operator ∂t only with a fixed element u ¼ us ∈Y ⊂X
with 0≤ s≤T. Also, in terms of analyzing the trajectory in finite-/infinite-
dimensional dynamical systems, it is reasonable to consider the convergence in the
topology uniquely sticking to the trajectory. Consequently the infinitesimal genera-
tor can be extracted by one sample point in the interval (Figure 1). Indeed,
according to the independence between t and s,

A tð Þus ¼ wlim
h!0

h�1 U tþ h, tð Þ � Ið Þus (17)

is true for any t∈ s,T½ �, once A tð Þ is obtained for a sample point us ∈Y. Such a
restrictive topological treatment contributes to generalize or weaken the differential.

For a given evolution operator U t, sð Þ∈B Xð Þ, the profile of locally strong topol-
ogy is obtained in this article. In Banach space B Xð Þ, a subset F⊂B Xð Þ is a closed set,
if and only if

anf g∈F, a∈B Xð Þ, an ! a ) a∈F (18)

is satisfied n ¼ 1, 2,⋯ð Þ, where the operation of limit depends on a chosen
topology. Here the following two theorems are proved to clarify the mathematical
property of the locally strong topology.

Theorem 1.1. The locally strong topology is weaker than the strong topology.
Proof. It is enough to prove that a closed set in strong topology is closed in the

locally strong topology. Let an arbitrary closed set of B Xð Þ in the strong topology be
V. It satisfies

Figure 1.
Trajectory U t, sð Þus in X. U t, sð Þ∈B Xð Þ is assumed to be strongly continuous with respect to time variables, so
that a trajectory U t, sð Þus is continuous in X. Note that it is necessary to replace the trajectory U t, sð Þus with the
regularized trajectory ea t,sð Þ � κI

� �
us to consider the negative time evolution [11, 12].
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Tnf g∈V,T ∈B Xð Þ, lim
n!∞

∥Tnx� Tx∥ ¼ 0 ) T ∈V (19)

for an arbitrary x∈X. In the locally strong topology (∥ Tn � Tð Þx∥ for a certain
x∈X), the convergence Tn ! T ∈V is true. □

Theorem 1.2. The locally strong topology is not necessarily stronger than the
weak topology.

Proof. The proof is carried out in the similar manner to Theorem 1.1. Let an
arbitrary closed set of B Xð Þ in the locally strong topology be V. It satisfies

Tnf g∈V,T ∈B Xð Þ, lim
n!∞

∥Tnx� Tx∥ ¼ 0 ) T ∈V (20)

for a fixed x∈X. By taking the dual product of an arbitrary F∈X ∗ , it
follows that

Tnf g∈V, a∈B Xð Þ, lim
n!∞

Tn � Tð Þx,Fh i ¼ 0 ) T ∈V (21)

It shows that the closedness of V in a locally weak topology, where the locally
weak topology is defined by fixing the weak topology with x ¼ x in the same
manner as the locally strong topology.

On the other hand, weak convergence cannot be assured if x 6¼ x. Indeed, for
x1 6¼ x, the statement

Tnf g∈V, a∈B Xð Þ, lim
n!∞

Tn � Tð Þx1, Fh i ¼ 0 ) T ∈V (22)

does not follow from the statement (20). It shows that there is no guarantee for
locally strong topology to be stronger than the weak topology. □

5. Summary

The concept of locally strong topology is introduced by the proofs clarifying its
specific topological weakness. The locally strong topology is a topology unique to
the solution trajectory of abstract evolution equations (Figure 1). That is, the locally
strong topology holds the one-dimensionality specific to a certain trajectory.
Although the locally strong topology has already been utilized even without the
nomenclature to clarify the algebraic structure of semigroups of operators and their
infinitesimal generators, those fundamentals are made in this article. The locally
strong topology is also expected to be useful to analyze each single trajectory
defined in finite-/infinite-dimensional dynamical systems.
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Chapter 3

New Topology on Symmetrized
Omega Algebra
Mesfer Alqahtani, Cenap Özel and Ibtesam Alshammari

Abstract

The purpose of this paper is to define a new topology called symmetrized omega
algebra topology and discuss some of its topological properties. Two different
examples from an ordered infinite set of symmetrized omega topology are
introduced. Furthermore, we study the relationship between symmetrized omega
topology and weaker kinds of normality.

Keywords: tropical geometry, idempotent semiring, topological space,
topological properties, omega algebra and symmetrized omega algebra

1. Introduction

Tropical geometry is the most recent but fast growing branch of mathematical
sciences, which is analytically based on idempotent analysis and algebraically on
idempotent semirings also known as tropical semirings. These are basically
extended sets of real numbers ∞ : ∪ ∞f g and �∞ : ∪ �∞f g which are given
monoidal structures by using min and max operations for addition, respectively. In
order to adhere to the semiring structure, the additive operation of  is used as the
multiplication operation. By these choices, both ∞ and �∞ become idempotent
semirings. The literature, they are also termed as min and max plus algebras,
respectively. In both cases, 0 of  becomes a multiplicative identity and ∞ and �∞
become additive identities of these semirings, respectively. Interestingly, some
authors associate �∞ to tropical geometry, while other authors associate ∞ to
tropical geometry (see [1–4]). Omega algebra or “ω� algebra” for short, unifies the
different terms and introduces an original structure, which, in fact, is an “abstract
tropical algebra”. The �∞ and ∞ and their nearby structures, like min � max
and max� times algebras, etc., are all subsumed under omega algebra. All these are
idempotent semirings, which are also called dioids. In previous studies, for the
construction of all such semirings, an ordered infinite abelian group is mandatory.
In ω� algebra, the definition is extended to cyclically ordered abelian groups and
also to finite sets under some suitable ordering. Note that cyclically ordered abelian
groups are more general than that of ordered abelian groups [5]. The aim of this
paper is to define a new topology on symmetrized omega algebra, and discus some
of its topological properties. Two different examples from an ordered infinite sets of
symmetrized omega topology are introduced. Furthermore, we study the relation-
ship between symmetrized omega topology and weaker kinds of normality. Our
paper is organized as follows. In Section 2, we review an abstract definition for
some basic facts about abstract omega algebras. In addition, we give a brief of
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symmetrized omega algebra and rules of calculation in omega. In Section 3, we
define a new topology on symmetrized omega algebra and discuss some of its
topological properties. In Section 4, we provide two different examples of symme-
trized omega topology: the first and second examples are from an ordered infinite
set. Finally, we study the relationship between symmetrized omega topology and
weaker kinds of normality in Section 5. Throughout this paper, we do not assume T2

in the definition of compactness. We also do not assume regularity in the definition
of Lindelöfness.

The ideas from this paper were taken from the PhD thesis of Mr. Mesfer Hayyan
Alqahtani in King Abdulaziz University.

2. Preliminaries

In this section, we provide an abstract definition for review some basic facts
about abstract omega algebra. Furthermore, we also provide a brief of symmetrized
omega algebra and rules of calculation in omega. For more details, see [6].

2.1 Omega algebra

Let G, ∘ , eð Þ be an abelian group. Let A be a closed subset of G and e∈A: Then
A, ∘ , eð Þ is a submonoid of G: Assume that ω is an indeterminate (may belong to A
or G, as we will see in Examples 1 and 2). Obviously, in this case ω is no longer an
indeterminate. Because the terms are generated from tropical geometry, this
indeterminate can be called a tropical indeterminate.

Definition 1. [6]
We say that Aω ¼ A∪ ωf g is an omega algebra (in short ω� algebra) over the

group G in case Aω is closed under two binary operations,

⊕ , ⊗ : Aω � Aω ! Aω, (1)

such that ∀a1, a2, a3 ∈A, the following axioms are satisfied:

i. a1 ⊕ a2 ¼ a1 or a2;

ii: a1 ⊕ω ¼ a1 ¼ ω⊕ a1;

iii: ω⊕ω ¼ ω;

iv: a1 ⊗ a2 ¼ a2 ⊗ a1 ∈A;

v:  a1 ⊗ a2ð Þ⊗ a3 ¼ a1 ⊗ a2 ⊗ a3ð Þ;
vi: a1 ⊗ e ¼ a1;

vii: a1 ⊗ω ¼ ω⊗ a1 ¼
ω if ω 6¼ e
a1 if ω ¼ e

�
;

viii: ω⊗ω ¼ ω;

ix: a1 ⊗ a2 ⊕ a3ð Þ ¼ a1 ⊗ a2ð Þ⊕ a1 ⊗ a3ð Þ:

Remark 2. [6]

1. ⊕ is a pairwise comparison operation such as max, min, inf, sup, up, down,
lexicographic ordering, or anything else that compairs two elements of Aω:
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Obviously, it is associative and commutative and the tropical indeterminate ω
plays the role of the identity. Hence Aω, ⊕ ,ωð Þ is a commutative monoid.

2. ⊗ is also associative and commutative on Aω, and e plays the role of the
multiplicative identity of Aω. Hence, Aω, ⊗ , eð Þ is also a commutative monoid.

3.The left distributive law (ix) also gives the right distributive law.

4.Every element of Aω is an idempotent under ⊕ :

5.Altogether, we write both structures as: Aω ¼ Aω, ⊕ , ⊗ ,ω, eð Þ: This is an
idempotent semiring.

Remark 3. [6] A ω� algebra can similarly be defined over a commutative
monoid, ring, or even a semiring. More generally, one may construct analogously
such algebras on other weaker structures. In this note, we confined ourselves to only
ω� algebras over abelian groups and rings.

Example 4. [6] Max-plus algebra, min-plus algebra and all such “so called”
algebras are particular cases of the ω� algebra over the ring  or its associated
subrings. A simpler example is the following. In the abelian group ,þð Þ, for any
integer m, we haveW mð Þ ¼ 0,m, 2m,⋯f g: This is an additive submonoid of ð ,þÞ:
Let ω ¼ �∞, a1 ⊕ a2 ¼ max a1, a2ð Þ and a1 ⊗ a2 ¼ a1 þ a2, ∀a1, a2 ∈W mð Þ: Then,

W mð Þ�∞ ¼ W mð Þ�∞, ⊕ , ⊗ ,�∞, 0
� �

(2)

is �∞ � algebra over the abelian group of integers . Hence, we have a
sequence of ω� subalgebras

W mð Þ≥W 2mð Þ≥⋯:

Example 5. [6] Cartesian products of omega algebras. In this example, we
explain a construction of an omega algebra from other given omega algebras. Let
Gi, ∘ i, eið Þ : i ¼ 1,⋯, nf g be abelian groups and Aωi , ⊕ i, ⊗ i,ωi, eið Þ : i ¼ 1,⋯, nf g

be a respective family of omega algebras, where ωi are tropical indeterminate. As
usual, we define the Cartesian product as

Xω ¼ Aω1 �⋯� Aωn ¼ a1,⋯anð Þ : ai ∈Aωi ; i ¼ 1,⋯, nf g: (3)

In order to provide a convenient technique to give an additive structure to Xω,
we assume that the n� tuples a ¼ a1,⋯anð Þ, b ¼ b1,⋯bnð Þ∈Xω are in lexico-
graphic ordering. Then, to define the sum

a⊕b ¼ a or b (4)

by using the following rules:

If a1 ⊕ 1b1 ¼ a1 thena⊕b ¼ a: (5)

If ai ¼ bi for1≤ i≤ k≤ n, andakþ1 ⊕ kþ1bkþ1 ¼ akþ1, then, a⊕b ¼ a: (6)

Similarly, rules for a⊕b ¼ b can be determined. Multiplication can be to define
component wise. Thus,

a⊗b ¼ a1 ⊗ 1b1,⋯, an ⊗ nbnð Þ: (7)
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The other rules of the Definition 1 can straightforwardly be verified. Hence,
Xω, ⊕ , ⊗ ,ω, eð Þ, where ω ¼ ω1,⋯,ωnð Þ is the additive identity and e ¼ e1,⋯, enð Þ
is the multiplicative identity of Xω, is an omega algebra over the Cartesian product
of abelian groups G1 �⋯� Gn:.

2.2 The symmetrized omega algebra

Let G, ∘ , eð Þ be an abelian group and Aω, ⊕ , ⊗ ,ω, eð Þ an ω�algebra over the
group G. Following the method used in constructing integers from the natural
numbers, we consider the set of ordered pairs Pω ¼ A2

ω with component wise
addition ⊕ , for all a, bð Þ, c, dð Þ∈Pω,

a, bð Þ⊕ c, dð Þ ¼ a⊕ c, b⊕ dð Þ (8)

Because of the four possibilities a, bð Þ, a, dð Þ, c, dð Þ or c, bð Þ for the result, the
addition in (8), is ambiguous. As our goal from constructing the algebra of pairs is
the construction of the symmetrized omega algebra of Aω, we are in front of two
possibilities: One is to use –for n ¼ 2, and define an equivalence relation � on the
ω�algebra of pairs which is compatible with relevant operations, and the other is to
define an equivalence relation on the set Pω that allows the component wise
addition to be defined in the quotient set.

First Construction, let ≤ be the ordering defined on Aω by the relation

a≤ b⇔ a⊕ b ¼ b (9)

which gives a total order on Aω and for all a∈Aω, we have ω≤ a. For a 6¼ b, such
that a⊕ b ¼ b, we denote by a< b. Under the ordering ≤ , rules (5) and (6) defined
in Example 5, are satisfied on Pω ¼ A2

ω and so Pω is an ω�algebra under the
addition defined in 1 and the component wise multiplication. Let ∇ be the relation
defined on Pω as follows: for all a, bð Þ, c, dð Þ∈ Pω

a, bð Þ∇ c, dð Þ⇔ a⊕ d ¼ b⊕ c: (10)

Then ∇ is reflexive and symmetric but not transitive for Aω contains more than
4 elements. In fact, let a, b, c, d∈Aω such that a< b< c< d, then we have

a⊕ d ¼ d ¼ b⊕ d ¼ c⊕ d and a⊕ c ¼ c 6¼ b ¼ b⊕ b

which give a, bð Þ∇ d, dð Þ and d, dð Þ∇ b, cð Þ, but there is no relation between a, bð Þ
and b, cð Þ. As ∇ is not an equivalence relation, we cannot use it to obtain the
quotient ω�algebra Pω

∇ (like the one to obtain integers from the natural numbers).
Definition 6. [6] Let � be the equivalence relation close to ∇ defined as follows:

for all a, bð Þ, c, dð Þ∈ Pω,

a, bð Þ � c, dð Þ⇔
a, bð Þ∇ c, dð Þ if a 6¼ band c 6¼ d

a, bð Þ ¼ c, dð Þ otherwise

(
(11)

In addition to the class element ω ¼ ω,ωð Þ; for all a∈Aω, with a 6¼ ω, we have
three kinds of equivalence classes:

1. a,ωð Þ ¼ a, bð Þ∈Pω, b< af g, called positive ω�element.
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2. ω, að Þ ¼ b, að Þ∈Pω, b< af g, called negative ω�element.

3. a, að Þ called balanced ω�element.

Unfortunately, the addition defined by (7) and rules (8) and (9) in Example 5 is
not compatible with the equivalence relation in Pω, because for a,ωð Þ, a, bð Þ, ω, cð Þ,
d, cð Þ∈Pω, such that

a,ωð Þ � a, bð Þ
ω, cð Þ � d, cð Þ,

�
(12)

we have

a,ωð Þ⊕ ω, cð Þ � a, bð Þ⊕ d, cð Þ iff a, bð Þ⊕ d, cð Þ ¼ a, bð Þ (13)

and if a, bð Þ⊕ d, cð Þ ¼ d, cð Þ, (14)

then there is no compatibility. So the omega algebra of pairs cannot produce the
symmetrized omega algebra.

Second Construction
Proposition 7. [6]
The addition operation ⊕ defined by

a, bð Þ⊕ c, dð Þ ¼ a⊕ c, b⊕ dð Þ

on the quotient set Pω
� is well defined and satisfies the axioms ið Þ, iið Þ and iiið Þ of

Definition 1, with the zero class element w ¼ ω,ωð Þ, except this case
a,ωð Þ⊕ ω, að Þ ¼ ω, að Þ⊕ a,ωð Þ ¼ a, að Þ, where a∈Aωn ωf g does not satisfy the
axiom ið Þ:

Proposition 8. [6]

i. The set Pω
� is closed under the binary multiplication operation ⊗ defined as

follows: for all a, bð Þ, c, dð Þ∈ Pω
� ;

a, bð Þ⊗ c, dð Þ ¼ a⊗ cð Þ⊕ b⊗ dð Þ, a⊗ dð Þ⊕ b⊗ cð Þð Þ (15)

and satisfies axioms from ivð Þ to ixð Þ of Definition 1, with the unit class
element e ¼ e,ωð Þ.

ii. In addition, we have for all a, b∈Aω

a. a,ωð Þ⊗ b,ωð Þ ¼ a⊗ b,ωð Þ;

b. a,ωð Þ⊗ ω, bð Þ ¼ ω, a⊗ bð Þ;

c. a,ωð Þ⊗ b, bð Þ ¼ a⊗ b, a⊗ bð Þ;

d. ω, að Þ⊗ b, bð Þ ¼ a⊗ b, a⊗ bð Þ:

Definition 9. [6] The structure Pω
� , ⊕ , ⊗ ,ω, e
� �

is called the symmetrized
ω�algebra over the abelian group G� G and we denote it by ω.
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In the coming sections just for simplicity we will only use ⊕ and ⊗ instead the
operations ⊕ and ⊗ , respectively.

Remark 10. [6]

1.Despite the nature of the positive and the negative ω�elements, they are not
the inverses of each other for the additive operation ⊕ ,

2.We have three symmetrized ω�subalgebras of ω,

 þð Þ
ω ¼ a,ωð Þ, a∈Aω

n o
,

 �ð Þ
ω ¼ ω, að Þ, a∈Aω

n o
,

 0ð Þ
ω ¼ a, að Þ, a∈Aω

n o
:

3.The three symmetrized ω�subalgebras of ω are connected by the zero class
element ω.

4.The positive ω�elements, the negative ω�elements and the balanced elements
are called signed and denoted by ∨ω ¼  þð Þ

ω ∪  �ð Þ
ω , where the zero class ω,ωð Þ

corresponds to ω.

2.3 Rules of calculation in omega

Notation 11. [6] Let a∈ω. Then we admit the following notations:

þa ¼ a,ωð Þ, � a ¼ ω, að Þ, � a ¼ a, að Þ: (16)

By results in Proposition 7 and Proposition 8 and the above notation, it is easy to
verify the rules of calculation in the following proposition:

Proposition 12. [6] For all a, b∈Aω, we have

i. það Þ⊕ þbð Þ ¼ þ a⊕ bð Þ;

ii. það Þ⊕ �bð Þ ¼
þa if b< a

�b if b> a;

�a if b� a

8>><
>>:

iii. �að Þ⊕ �bð Þ ¼ �a if b< a

�b if b> a
:

(

iv. �að Þ⊕ �bð Þ ¼ � a⊕ bð Þ;

v. það Þ⊗ þbð Þ ¼ þ a⊗ bð Þ;

vi. það Þ⊗ �bð Þ ¼ � a⊗ bð Þ;

vii. �að Þ⊗ �bð Þ ¼ � a⊗ bð Þ;

viii. �að Þ⊗ �bð Þ ¼ þ a⊗ bð Þ:
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From the previous rules, we can notice that the sign of the result in the addition
operation follows the greater element in Aω. While in the multiplication operation,
the balance sign is the strong one (has priority).

3. Symmetrized omega topology

In this section, we define a new topology on symmetrized omega algebra and
discuss some of its topological properties.

Throughout this paper, we assume that ⊗ ∣A ¼ ∘ :
Proposition 13. Let ω ¼ Pω

� , ⊕ , ⊗ ,ω, e
� �

be a symmetrized ω�algebra over the
abelian group G�G, where Pω ¼ Aω � Aω and ⊗ ∣A ¼ ∘ . We define a new topol-
ogy on ω called a symmetrized omega topology, denoted by τω as follow:

τω ¼ ∅,ωf g∪ fU ⊆ω :  0ð Þ
ω ⊆U and for any þa, � a∈U, their multiplicative

inverses exists in U, where a∈Aωn ωf gg.
Proof.Condition∅,ω ∈ τω is satisfied from the definition of τω:Now letV1,V2 ∈ τω

be arbitrary. If eitherV1 orV2 is equal∅, thenV1 ∩V2 ¼ ∅∈ τω. Assume now,V1 6¼
∅ 6¼ V2. If eitherV1 orV2 is equal ω, thenV1 ∩V2 ¼ V1 orV2 ∈ τω. So assume that,
V1 6¼ ω 6¼ V2, thenV1 ∩V2 ∈ τω, because 0ð Þ

ω ⊆V1 and  0ð Þ
ω ⊆V2, hence  0ð Þ

ω ⊆V1 ∩V2,
also for any elementþa, � a∈V1 ∩V2, where a 6¼ ω, thenwe haveþa, � a∈V1 and
þa, � a∈V2, then themultiplicative inverse ofþa, � amust belong toV1 andV2.
Hence, themultiplicative inverse ofþa, � a belong toV1 ∩V2, thenV1 ∩V2 ∈ τω. For
the third condition let Sγ ∈ τω for any γ ∈Λ. If Sγ ¼ ∅ for all γ ∈Λ, then ∪ γ ∈ΛSγ ¼
∅∈ τω. So, assume that somemember is nonempty, but since the empty set does not
affect any union, wemay assume, without loss of generality, that Sγ 6¼ ∅ for all γ ∈Λ. If
there exist γ1 ∈Λ such that Sγ1 ¼ ω, then ∪ γ ∈ΛSγ ¼ ω ∈ τω. So, assume now that
Sγ 6¼ ω for all γ ∈Λ. Then ∪ γ ∈ΛSγ ∈ τω, because  0ð Þ

ω ⊆ Sγ for all γ ∈Λ. Hence
 0ð Þ
ω ⊆ ∪ γ ∈ΛSγ . Also for anyþa, � a∈ ∪ γ ∈ΛSγ, where a 6¼ ω, there exists γ1, γ2 ∈Λ

such thatþa∈ Sγ1 and�a∈ Sγ2 . Hence the multiplicative inverse ofþa, � a belong
to Sγ1 and Sγ2 respectively, then the multiplicative inverse ofþa, � a belong to
∪ γ ∈ΛSγ . Hence ∪ γ ∈ΛSγ ∈ τω.

Therefore, ω, τωð Þ is topological space.
Proposition14. Ifω ¼ Pω

� , ⊕ , ⊗ ,ω, e
� �

be a symmetrizedω�algebra over the abelian
groupG� G,wherePω ¼ Aω � Aω, and ⊗∣A ¼ ∘ . Then an element a has amultiplicative
inverse in Aω if and only if the elementsþa, � a have amultiplicative inverses in ω:

Proof. Let a∈Aω be arbitrary, which has a multiplicative inverse, denoted by a�1,
then

það Þ⊗ þa�1� � ¼ a,ωð Þ⊗ a�1,ωð Þ ¼ a⊗ a�1ð Þ⊕ ω⊗ωð Þ, a⊗ωð Þ⊕ ω⊗ a�1ð Þð Þ
¼ a⊗ a�1,ωð Þ
¼ a ∘ a�1,ωð Þ ¼ e,ωð Þ ¼ e,

then þa�1 is a multiplicative inverse of þa in ω: Also,

�að Þ⊗ �a�1� � ¼ ω, að Þ⊗ ω, a�1ð Þ ¼ ω⊗ωð Þ⊕ a⊗ a�1ð Þ, ω⊗ a�1ð Þ⊕ a⊗ωð Þð Þ
¼ a⊗ a�1,ωð Þ
¼ a ∘ a�1,ωð Þ ¼ e,ωð Þ ¼ e,

then �a�1 is a multiplicative inverse of �a in ω.
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Conversely, let þa∈ ω be arbitrary, which has a multiplicative inverse x, yð Þ,
where x, y∈Aω, then we have:

það Þ⊗ x, yð Þ ¼ a,ωð Þ⊗ x, yð Þ¼ a⊗ xð Þ⊕ ω⊗ yð Þ, a⊗ yð Þ⊕ ω⊗ xð Þð Þ
¼ a⊗ x, a⊗ yð Þ
¼ a ∘ x, a ∘ yð Þ ¼ e,ωð Þ ¼ e,

(17)

then a ∘ x ¼ e and a ∘ y ¼ ω. Hence, x ¼ a�1 is the multiplicative of a in Aω.
Let �a∈ ω be arbitrary, which has a multiplicative inverse x, yð Þ, where

x, y∈Aω, then we have:

�að Þ⊗ x, yð Þ ¼ ω, að Þ⊗ x, yð Þ¼ ω⊗ xð Þ⊕ a⊗ yð Þ, ω⊗ yð Þ⊕ a⊗ xð Þð Þ

¼ a⊗ y, a⊗ xð Þ

¼ a ∘ y, a ∘ xð Þ ¼ e,ωð Þ ¼ e,

(18)

then a ∘ y ¼ e and a ∘ x ¼ ω. Hence, y ¼ a�1 is the multiplicative inverse of a in Aω.
Proposition 15. For any �a∈  0ð Þ

ω , where ω 6¼ e, then �a has no multiplicative
inverse.

Proof. Suppose that, �a∈ 0ð Þ
ω has a multiplicative inverse x, yð Þ, where x, y∈Aω,

then

�að Þ⊗ x, yð Þ ¼ a, að Þ⊗ x, yð Þ ¼ a⊗ xð Þ⊕ a⊗ yð Þ, a⊗ yð Þ⊕ a⊗ xð Þð Þ
¼ a ∘ xð Þ⊕ a ∘ yð Þ, a ∘ yð Þ⊕ a ∘ xð Þð Þ ¼ e,ωð Þ:

(19)

Hence, a ∘ xð Þ⊕ a ∘ yð Þ ¼ e and a ∘ yð Þ⊕ a ∘ xð Þ ¼ ω, thus a contradiction.
Corollary 16. If a∈Aωn ωf g has no multiplicative inverse, then ω is the only open

set in ω, τωð Þ containing þa and �a:.
Remark 17.

1.We denote for any element a∈ ω, by sign :ð Þa or sign að Þa, where
sign :ð Þ, sign að Þ∈ þ, � , �f g;

2. If a ¼ ω, then �a ¼ þa ¼ �a;

3. If a�1 is the multiplicative inverse of a in Aω, then þa�1 and �a�1 are the
multiplicative inverses of þa and �a, respectively in ω (vice versa);

4.If a has no multiplicative inverse in Aω, then þa and �a have no multiplicative
inverses in ω (vice versa).

Proposition 18. A symmetrized omega topological space ω, τωð Þ has a base

B ¼ ω,  0ð Þ
ω , 0ð Þ

ω ∪ þa,þa�1� �
,  0ð Þ

ω ∪ �a,�a�1� �
: a∈Aωn ωf g

n

has a multiplicative inverseg:
(20)

Proof. For the first condition, let B∈B be arbitrary. If B ¼  0ð Þ
ω or ω then

B∈ τω (satisfied by the definition of τω). Assuming that,

34

Structure Topology and Symplectic Geometry



B ¼  0ð Þ
ω ∪ þa,þa�1

� �
or  0ð Þ

ω ∪ �a,�a�1
� �

for any a∈Aωn ωf g, which has a multi-

plicative inverse in Aω, then B∈ τω, because  0ð Þ
ω ⊂B, and the elements þaand� a in

B its multiplicative inverse þa�1 and� a�1 respectively, exists in B. Thus B⊆ τω.
For the second condition, let sign að Þa∈ω be arbitrary. Let U be any open neigh-
borhood of sign að Þa in ω. Then we have three cases:

Case 1: If sign að Þ ¼ �, then there exists B ¼  0ð Þ
ω ∈B, such that �a∈B⊆U, because

the smallest open neighborhood in ω containing �a is  0ð Þ
ω :

Case 2: If sign að Þ ¼ þ, where a 6¼ ω (If a ¼ ω, then we have þω ¼ �ω ¼ �ω, this
is Case 1),

Subcase 2.1: If a has a multiplicative inverse in Aω, then there exists B ¼
 0ð Þ
ω ∪ þa,þa�1

� �
∈B, such that þa∈B⊆U, because the smallest open neighbor-

hood in ω containing þa is  0ð Þ
ω ∪ þa,þa�1

� �
:

Subcase 2.2: If a has no multiplicative inverse in Aω, then there exists B ¼ ω,
such that þa∈B⊆U, because the smallest open neighborhood in ω containing þa
is ω:

Case 3: If sign að Þ ¼ �, where a 6¼ ω.
Subcase 3.1: If a has a multiplicative inverse in Aω, then there exists B ¼

 0ð Þ
ω ∪ �a,�a�1

� �
∈B, such that �a∈B⊆U, because the smallest open neighbor-

hood in ω containing �a is  0ð Þ
ω ∪ �a,�a�1

� �
:

Subcase 3.2: If a has no multiplicative inverse in Aω, then there exists B ¼ ω,
such that �a∈B⊆U, because the smallest open neighborhood in ω containing
�a is ω:

Therefore, B is a base for the symmetrized omega topological space ω, τωð Þ.
Corollary 19. If Aωn ωf g, ⊗ð Þ be a group, then the symmetrized omega topological

space ω, τωð Þ has a base,

B ¼  0ð Þ
ω ,  0ð Þ

ω ∪ þa,þa�1� �
, 0ð Þ

ω ∪ �a,�a�1� �
: a∈Aωn ωf g

n o
: (21)

Corollary 20. Let ∅ 6¼ U ⊆Aω, then U ∈ τω if and only if for each sign að Þa∈U,
there exists basic open set B∈B, such that sign að Þa∈B⊆U.

Proposition 21. If Aω has a finite number of elements, which have a multiplicative
inverses, then the symmetrized omega topological space ω, τωð Þ is second countable.

Proof. Suppose that a1, a2,⋯, am, where m∈þ are the finite number of ele-
ments in Aω, which have a multiplicative inverses. Then.

B ¼ ω,  0ð Þ
ω ,  0ð Þ

ω ∪
n

þa1,þa�1
1

� �
, 0ð Þ

ω ∪ �a1,�a�1
1

� �
,⋯,  0ð Þ

ω ∪ þam,þa�1
m

� �
,

 0ð Þ
ω ∪ �am,�a�1

m

� �g is a countable base for ω, τωð Þ:
Proposition 22. The symmetrized omega topological space ω, τωð Þ is first countable.
Proof. Let sign að Þa∈ ω be arbitrary. Then we have three cases:

Case 1: If sign að Þ ¼ �, then B �að Þ ¼  0ð Þ
ω

n o
is a countable local base at �a.

Case 2: If sign að Þ ¼ þ, where a 6¼ ω (If a ¼ ω, thenþω ¼ �ω ¼ �ω, this is Case 1),
Subcase 2.1: If a has a multiplicative inverse in Aω, then B það Þ ¼

 0ð Þ
ω ∪ þa,þa�1

� �n o
is a countable local base at þa.

Subcase 2.2: If a has no multiplicative inverse in Aω, then B það Þ ¼ ωf g is a
countable local base at þa.

Case 3: If sign að Þ ¼ �, where a 6¼ ω,
Subcase 3.1: If a has a multiplicative inverse in Aω, then B �að Þ ¼  0ð Þ

ω ∪ �a,�a�1
� �n o

is a countable local base at �a.
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Subcase 3.2: If a has no multiplicative inverse in Aω, then B �að Þ ¼ ωf g is a
countable local base at �a. Hence, for any sign að Þa∈ω, there exists a countable
local base at sign að Þa.

Therefore, ω, τωð Þ is first countable.
Proposition 23. The symmetrized omega topological space ω, τωð Þ is separable.
Proof. There exists �ωf g ¼ ω,ωð Þ

n o
⊆ω, such that for any U ∈ τω, we have

U ∩ �ωf g 6¼ ∅, because any open set in ω, τωð Þ must be containing  0ð Þ
ω , and

�ω∈ 0ð Þ
ω . Then �ωf g is countable dense subset of ω: Therefore, ω, τωð Þ is separable.

Let us recall this definition.
Definition 24. A topological space X is said to be hyperconnected space if every

non-empty open set of X is dense in X or there exists no disjoint non-empty open
sets in X.

Proposition 25. The symmetrized omega topological space ω, τωð Þ is
hyperconnected.

Proof. If ω is singleton, then it is hyperconnected. Suppose that ω, which has
more than one element. Since any nonempty open set in ω is containing  0ð Þ

ω , then
ω has no disjoint nonempty open sets. Hence, ω, τωð Þ is hyperconnected.

Since any hyperconnected space is connected and locally connected, then we
conclude the following corollaries.

Corollary 26. The symmetrized omega topological space ω, τωð Þ is connected.
Corollary 27. The symmetrized omega topological space ω, τωð Þ is locally connected.
Proposition 28. Let Aωn ωf g, ⊗ð Þ be a group, has more than one element. Then the

symmetrized omega topological space ω, τωð Þ is not T0.
Proof. If Aω ¼ ω ¼ ef g, then ω ¼ �ωf g is singleton, we are done (because some

of omega algebra, has ω ¼ e). Suppose that Aω has more than one element. Let a 6¼ ω,
then there exist �a 6¼ �ω in ω: Let U be any open set in ω, containing either �a or �ω,
by the definition of τω we have  0ð Þ

ω ⊆U, but �ω, � a∈  0ð Þ
ω : Then there is no open set

containing only �ω or �a: Hence, ω, τωð Þ is not T0.
Proposition 29. If Aωn ωf g, ⊗ð Þ be a group, has more than one element, then the

symmetrized omega topological space ω, τωð Þ is not regular.
Proof. There exists K ¼ ωn 0ð Þ

ω is a closed subset of ω and there exists a 6¼ ω,
such that �a ∉ K. We cannot separate �a, and K by any open sets (because any open
sets in ω is containing  0ð Þ

ω , where �a∈ 0ð Þ
ω ). Therefore, ω, τωð Þ is not regular.

Proposition 30. If Aωn ωf g, ⊗ð Þ be a group, has more than one element, then the
symmetrized omega topological space ω, τωð Þ is not normal.

Proof. If Aω ¼ ωf g, then ω ¼ �ωf g is singleton, we are done (because some of
omega algebra, we have ω ¼ e). Suppose that Aω has more than one element. Let
a∈Aωn ωf g. Then we have two cases:

Case 1: If a ¼ e, then we have K ¼ þef g, and H ¼ �ef g are two disjoint closed
subsets of ω, such that we cannot separate them by any open sets (because any
nonempty open sets in ω is containing  0ð Þ

ω ).
Case 2: If a 6¼ e, then we have K ¼ þa,þa�1

� �
, and H ¼ �a,�a�1

� �
are two

disjoint closed subsets of ω, such that we cannot separate them by any open sets
(because any nonempty open sets in ω is containing  0ð Þ

ω ). Therefore, ω, τωð Þ is not
normal.

Proposition 31. If a∈Aωn ωf g has no multiplicative inverse, then the symmetrized
omega topological space ω, τωð Þ is normal.

Proof. Suppose that, V be any non-empty closed subset of ω: Then þa∈V:
Suppose not, þa ∉ V, then þa∈ωnV: By the definition of τω, ωnV is not open,
thus a contradiction. Hence, þa belong to any non-empty closed subsets of ω:
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Let K and H be any two disjoint closed subsets of ω. Then K or H is equal ∅. If
K ¼ ∅, then there exists U ¼ ∅ and V ¼ ω are two disjoint open sets in ω
containing K and H, respectively. If H ¼ ∅, then there exists U ¼ ∅ and V ¼ ω are
two disjoint open sets in ω containing H and K, respectively. Therefore, ω, τωð Þ is
normal.

Proposition 32. If Aωn ωf g, ⊗ð Þ be a group and A is uncountable infinite set, then
the symmetrized omega topological space ω, τωð Þ is not compact (Lindelöf).

Proof. There exists  0ð Þ
ω , 0ð Þ

ω ∪ þa,þa�1
� �

,  0ð Þ
ω ∪ �a,�a�1

� �
: a∈Aωn ωf g

n o
,

which is an open cover of ω, and has no finite (countable) subcover of ω.
Proposition 33. Let a∈Aωn ωf g has no multiplicative inverse. Then the symme-

trized omega topological space ω, τωð Þ is compact.
Proof. Let Cα : α∈Λf g be any open cover of ω. Since þa∈ω, then for some

β∈Λ, there exists Cβ containing þa. But Cβ ¼ ω, because ω is the only open set
containing þa. Hence, Cβ

� �
is a finite subcover of Cα : α∈Λf g, which cover ω.

Therefore ω, τωð Þ is a compact space.
Since any compact space is Lindel€of and countably compact, then we conclude

the following corollaries.
Corollary 34. If a∈Aωn ωf g has no multiplicative inverse, then the symmetrized

omega topological space ω, τωð Þ is Lindel€of.
Corollary 35. If a∈Aωn ωf g has no multiplicative inverse, then the symmetrized

omega topological space ω, τωð Þ is countably compact.
Remark 36. Since every nonempty open sets in ω, τωð Þ contains  0ð Þ

ω . Then the
closure of any nonempty open sets is equal ω.

4. Some of the fundamental properties for different examples on
symmetrized omega topology

In this section, we give two different examples of symmetrized omega
topologies. The examples are from an ordered infinite set.

Example 37. By Example 4, we set W ¼ 0, 1, 2, 3,⋯f g: Then �∞, τ�∞ð Þ,
which is topological space, where �∞ ¼ P�∞

� , ⊕ , ⊗ ,�∞, 0
� �

be a symmetrized
�∞�algebra over the abelian group �  and P�∞ ¼ W�∞ �W�∞. Let a∈Wn 0f g
be arbitrary. Then þa�1 and �a�1 are not exists in �∞, where þa�1 and �a�1 are
the multiplicative inverses of þa and �a in �∞ respectively (because a inW�∞ has
no multiplicative inverse). If a ¼ 0, then þ0�1 ¼ þ0 and �0�1 ¼ �0 (because the
multiplicative inverse of 0 in W�∞ is 0, that is 0�1 ¼ 0). Hence,

τ�∞ ¼ �∞,∅,  0ð Þ
�∞, 

0ð Þ
�∞ ∪ þ0f g,  0ð Þ

�∞ ∪ �0f g,  0ð Þ
�∞ ∪ þ0,�0f g

n o
: (22)

A direct check shows that �∞, τ�∞ð Þ is a topological space.
Proposition 38. The symmetrized omega topological space �∞, τ�∞ð Þ is Second

countable.
Proof. There exists only one element 0∈W�∞, which has a multiplicative

inverse, then by Proposition 21, �∞, τ�∞ð Þ is second countable.
Since any second countable space is first countable and separable, then we

conclude the following corollaries.
Corollary 39. The symmetrized omega topological space �∞, τ�∞ð Þ is first countable.
Corollary 40. The symmetrized omega topological space �∞, τ�∞ð Þ is separable.
Proposition 41. The symmetrized omega topological space �∞, τ�∞ð Þ is not T0.
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Proof. There exists þ2 6¼ þ3 in �∞. Let U be any open set, which either
containing þ2 or þ3: However, there exists only one open set U ¼ �∞ containing
þ2, þ 3. Hence, �∞, τ�∞ð Þ is not T0.

Proposition 42. The symmetrized omega topological space �∞, τ�∞ð Þ is not regular.
Proof. There exists a closed set K ¼ �∞n  0ð Þ

�∞ ∪ þ0f g
� �

and þ0 ∉ K, such that

þ0 and K cannot separate by any two disjoint open sets. Hence, �∞, τ�∞ð Þ is not
regular.

Proposition 43. The symmetrized omega topological space �∞, τ�∞ð Þ is normal.
Proof. There exists an element 2∈W�∞n �∞f g, which has no multiplicative

inverse, then by Proposition 31, �∞, τ�∞ð Þ is a normal space.
Proposition 44. The symmetrized omega topological space �∞, τ�∞ð Þ is

hyperconnected.
Proof. Since any nonempty open set in �∞ is containing  0ð Þ

�∞, then �∞ has no
disjoint nonempty open sets. Hence, �∞, τ�∞ð Þ is hyperconnected.

Since any hyperconnected space is connected and locally connected, then we
conclude the following corollaries.

Corollary 45. The symmetrized omega topological space �∞, τ�∞ð Þ is connected.
Corollary 46. The symmetrized omega topological space �∞, τ�∞ð Þ is locally connected.
Proposition 47. The symmetrized omega topological space �∞, τ�∞ð Þ is compact.
Proof. There exists an element 2∈W�∞n �∞f g, which has no multiplicative

inverse. Hence by Proposition 33, �∞, τ�∞ð Þ is compact.
Since any compact space is Lindel€of and countably compact, then we conclude

the following corollaries.
Corollary 48. The symmetrized omega topological space �∞, τ�∞ð Þ is countably

compact.
Corollary 49. The symmetrized omega topological space �∞, τ�∞ð Þ is Lindelöf.
Example 50. In the ring , þ , �ð Þ, we have ,þð Þ is an additive submonoid of

an abelian group ,þð Þ: Let ω ¼ �∞, a⊕ b ¼ max a, bð Þ and a⊗ b ¼ aþ
b,∀a, b∈. Then �∞ ¼ �∞, ⊕ , ⊗ ,�∞, 0ð Þ is �∞� algebra over the ring
, þ , �ð Þ. We have �∞ ¼ P�∞

� , ⊕ , ⊗ ,�∞, 0
� �

be a symmetrized �∞�algebra over
the abelian group �  and P�∞ ¼ �∞ � �∞. Then, using the same proof as that
Proposition 13. Therefore, �∞, τ�∞ð Þ is a topological space.

Remark 51. The symmetrized omega topological space �∞, τ�∞ð Þ is first count-
able, separable, hyperconnected, connected and locally connected and does not
satisfy any of these T0, regular, normal, Lindel€of and compact.

Example 52. In the ring , þ , �ð Þ, we have ,þð Þ is an additive submonoid of an
abelian group ,þð Þ: Let ω ¼ þ∞, a⊕ b ¼ min a, bð Þ and a⊗ b ¼ aþ b,∀a, b∈.
Then, þ∞ ¼ þ∞, ⊕ , ⊗ ,þ∞, 0ð Þ isþ∞� algebra over the ring , þ , �ð Þ. We have
þ∞ ¼ Pþ∞

� , ⊕ , ⊗ ,þ∞, 0
� �

be a symmetrized þ∞�algebra over the abelian group
�  and Pþ∞ ¼ þ∞ � þ∞. Then, using the same proof as that Proposition 13.
Therefore, þ∞, τþ∞ð Þ is a topological space.

Proposition 53. The symmetrized omega topological spaces �∞, τ�∞ð Þ and
þ∞, τþ∞ð Þ are homeomorphic.

Proof. There exists a map h : �∞, τ�∞ð Þ ! þ∞, τþ∞ð Þ is defined by:

h sign að Það Þ ¼
sign að Þa if a∈

sign �∞ð Þ þ∞ð Þ if sign að Þa ¼ sign �∞ð Þ �∞ð Þ

(
; (23)

Let sign að Þa, sign bð Þb∈ �∞ be arbitrary. Let h sign að Það Þ ¼ h sign bð Þbð Þ, then
sign að Þa ¼ sign bð Þb. Hence, h is an injective. Let sign að Þa∈ þ∞ is arbitrary, then
there exists a sign að Þa∈�∞, such that h sign að Það Þ ¼ sign að Þa. Hence, h is surjective.
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Let B∈ τþ∞ be any basic open set. By Proposition 18, we have

B ¼  0ð Þ
�∞,

0ð Þ
�∞ ∪ þa,þa�1

� �
,  0ð Þ

�∞ ∪ �a,�a�1
� �

: a∈
n o

and

B ¼  0ð Þ
þ∞,

0ð Þ
þ∞ ∪ þa,þa�1

� �
,  0ð Þ

þ∞ ∪ �a,�a�1
� �

: a∈
n o

are a base for �∞ and

þ∞, respectively.
To prove that h is continuous, we have three cases:

Case 1: If B ¼  0ð Þ
þ∞, then h�1 Bð Þ ¼ h�1  0ð Þ

þ∞

� �
¼  0ð Þ

�∞ ∈ τ�∞.

Case 2: If B ¼  0ð Þ
þ∞ ∪ þa,þa�1

� �
, then h�1 Bð Þ ¼ h�1  0ð Þ

þ∞ ∪ þa,þa�1
� �� �

¼
 0ð Þ
�∞ ∪ þa,þa�1

� �
∈ τ�∞.

Case 3: If B ¼  0ð Þ
þ∞ ∪ �a,�a�1

� �
, then h�1 Bð Þ ¼ h�1  0ð Þ

þ∞ ∪ �a,�a�1
� �� �

¼
 0ð Þ
�∞ ∪ �a,�a�1

� �
∈ τ�∞. Hence, h is continuous.

To prove that h�1 is continuous, we have three cases: (since h is one to one and

onto, then h�1� ��1
Bð Þ ¼ h Bð Þ).

Case 1: If B ¼  0ð Þ
�∞, then h�1� ��1

Bð Þ ¼ h Bð Þ ¼ h  0ð Þ
�∞

� �
¼  0ð Þ

þ∞ ∈ τþ∞.

Case 2: If B ¼  0ð Þ
�∞ ∪ þa,þa�1

� �
, then h�1� ��1

Bð Þ ¼ h Bð Þ ¼
h  0ð Þ

�∞ ∪ þa,þa�1
� �� �

¼  0ð Þ
þ∞ ∪ þa,þa�1

� �
∈ τþ∞.

Case 3: If B ¼  0ð Þ
�∞ ∪ �a,�a�1

� �
, then h�1� ��1

Bð Þ ¼ h Bð Þ ¼
h  0ð Þ

�∞ ∪ �a,�a�1
� �� �

¼  0ð Þ
þ∞ ∪ �a,�a�1

� �
∈ τþ∞. Hence h�1 is continuous (which

means h is open).
Therefore, h is homeomorphism, then �∞, τ�∞ð Þ and þ∞, τþ∞ð Þ are

homeomorphic.

5. Symmetrized omega topology and other properties

Recall that a subset A of a space X is said to be regularly-open or an open domain if
it is the interior of its own closure (see [7]). A set A is said to be a regularly-closed or
a closed domain if its complement is an open domain. A subset A of a space X is
called a π-closed if it is a finite intersection of closed domain sets (see [8]). A subset
A is called a π-open if its complement is a π-closed. If T and T 0 are two topologies on
a set X such that T 0 ⊆ T , then T 0 is called the coarser topology than T , and T is
called the finer. A space X is π-normal [9] if any pair of disjoint closed subsets A and
B of X, one of which is π-closed, can be separated by two disjoint open subsets. A
space X is almost-normal [9] if any pair of disjoint closed subsets A and B of X, one
of which is a closed domain, can be separated by two disjoint open subsets. A space
X ismildly normal [10] if any pair of disjoint closed domain subsets A and B of X can
be separated by two disjoint open subsets. A space X, Tð Þ is epi-mildly normal [11] if
there exists a coarser topology T 0 on X such that X, T 0ð Þ is T2 and mildly normal
space. A space X, Tð Þ is epi-almost normal [12] if there exists a coarser topology T 0

on X such that X, T 0ð Þ is T2 and almost normal space.
Theorem 54. If Aωn ωf g, ⊗ð Þ be a group has more than one element, then the

symmetrized omega topological space ω, τωð Þ is π-normal.
Proof. Since the only π-closed sets are the ground set Sω and the empty set, then

Sω, τωð Þ is a π-normal.
It is clear from the definitions that

normal ) π � normal ) almost normal ) mildly normal: (24)
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By (24) and Theorem 54, we conclude the following Corollaries.
Corollary 55. If Aωn ωf g, ⊗ð Þ be a group has more than one element, then the

symmetrized omega topological space ω, τωð Þ is almost normal.
Corollary 56. If Aωn ωf g, ⊗ð Þ be a group has more than one element, then the

symmetrized omega topological space ω, τωð Þ is mildly normal.
If Aωn ωf g, ⊗ð Þ be a group has more than one element, then Sω, τωð Þ is not

T0(see Proposition 28), we have the following Propositions:
Proposition 57. If Aωn ωf g, ⊗ð Þ be a group has more than one element, then the

symmetrized omega topological space ω, τωð Þ is not Epi-mildly Normal.
Proof. Suppose that, ω, τωð Þ is Epi-mildly Normal. Then there exists a coarser

topology T 0 on ω such that ω, T 0ð Þ is T2 and mildly normal space. Hence ω, τωð Þ is
T2, thus a contradiction. Then ω, τωð Þ is not Epi-mildly Normal.

Proposition 58. If Aωn ωf g, ⊗ð Þ be a group has more than one element, then the
symmetrized omega topological space ω, τωð Þ is not Epi-almost Normal.

Proof. Using the same proof of Proposition 57.
Definition 59. Let X be a space. Then:

1.A space X is called a C-normal if there exist a normal space Y and a bijective
function f : X ! Y such that the restriction function f jA : A ! f Að Þ is a
homeomorphism for each compact subspace A⊆X, [13].

2.A space X is called a CC-normal if there exists a normal space Y and a bijective
function f : X ! Y such that the restriction function f jA : A ! f Að Þ is a
homeomorphism for each countably compact subspace A⊆X. [14].

3.A space X is called an L-normal if there exist a normal space Y and a bijective
function f : X ! Y such that the restriction function f jA : A ! f Að Þ is a
homeomorphism for each lindelöf subspace A⊆X, [15].

4.A space X is called an S- normal if there exist a normal space Y and a bijective
function f : X ! Y such that the restriction function f jA : A ! f Að Þ is a
homeomorphism for each separable subspace A⊆X, [16].

5.A space X is called a C-paracompact if there exist a paracompact space Y and a
bijective function f : X ! Y such that the restriction function f jA : A ! f Að Þ
is a homeomorphism for each compact subspace A⊆X, [17].

6.A space X is called a C2-paracompact if there exist a Hausdorff paracompact
space Y and a bijective function f : X ! Y such that the restriction
function f jA : A ! f Að Þ is a homeomorphism for each compact subspace
A⊆X, [17].

Proposition 60. If a∈Aωn ωf g has no multiplicative inverse, then the symmetrized
omega topological space ω, τωð Þ is C-normal.

Proof. By Proposition 31, ω is a normal space. Then there exist Y ¼ ω is a
normal space and the identity function id : ω ! ω is bijective. Let C be any
compact subset of ω, τωð Þ: Then the restriction function id↾C : C ! f Cð Þ is a
homeomorphism. Therefore, ω, τωð Þ is a C�normal.

Since any normal space is CC-normal, L-normal and S-normal, just by taking X ¼
Y and f to be the identity function. Hence, we conclude the following Propositions.

Proposition 61. If a∈Aωn ωf g has no multiplicative inverse, then the symmetrized
omega topological space ω, τωð Þ is CC-normal.

Proof. Using the same proof of Proposition 60.
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Proposition 62. If a∈Aωn ωf g has no multiplicative inverse, then the symmetrized
omega topological space ω, τωð Þ is L-normal.

Proof. Using the same proof of Proposition 60.
Proposition 63. If a∈Aωn ωf g has no multiplicative inverse, then the symmetrized

omega topological space ω, τωð Þ is S-normal.
Proof. Using the same proof of Proposition 60.
Example 64. By Example 37, �∞, τ�∞ð Þ is C-normal, CC-normal, L-normal and

S-normal.
Theorem 65. If Aωn ωf g, ⊗ð Þ be a group has more than one element, then the

symmetrized omega topological space ω, τωð Þ is not S-normal.
Proof. From the proposition any separable S-normal must be normal (see [16])

and since ω, τωð Þ is separable and not normal (see Propositions 30, 23, respec-
tively), then ω, τωð Þ is not S-normal.

Example 66. By Example 50, �∞, τ�∞ð Þ is not a S-normal.
Theorem 67. The symmetrized omega topological space ω, τωð Þ is not

C2-paracompact.
Proof. Since any C2-paracompact Fre0chet space is Hausdorff (see [17]) and

ω, τωð Þ is First countable and not a Hausdorff space, ω, τωð Þ cannot be
C2-paracompact.

Theorem 68. Let a∈Aωn ωf g has no multiplicative inverse. Then the symmetrized
omega topological space ω, τωð Þ is not C-paracompact.

Proof. Assume that ω, τωð Þ is C-paracompact. Let Y be a paracompact space and
f : ω ! Y be bijective such that the restriction f↾C : C ! f Cð Þ is a homeomorphism
for all compact subspace C of ω, τωð Þ. Hence, ω � Y, since ω is compact (see
Proposition 33). However, ω is paracompact, thus a contradiction. Because any
paracompact space is Hausdorff space and ω is not a Hausdorff space. Therefore,
ω, τωð Þ is not a C-paracompact.
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Chapter 4

Some Applications of Clifford
Algebra in Geometry
Ying-Qiu Gu

Abstract

In this chapter, we provide some enlightening examples of the application of
Clifford algebra in geometry, which show the concise representation, simple calcu-
lation, and profound insight of this algebra. The definition of Clifford algebra
implies geometric concepts such as vector, length, angle, area, and volume and
unifies the calculus of scalar, spinor, vector, and tensor, so that it is able to naturally
describe all variables and calculus in geometry and physics. Clifford algebra unifies
and generalizes real number, complex, quaternion, and vector algebra and converts
complicated relations and operations into intuitive matrix algebra independent of
coordinate systems. By localizing the basis or frame of space-time and introducing
differential and connection operators, Clifford algebra also contains Riemann
geometry. Clifford algebra provides a unified, standard, elegant, and open language
and tools for numerous complicated mathematical and physical theories. Clifford
algebra calculus is an arithmetic-like operation that can be well understood by
everyone. This feature is very useful for teaching purposes, and popularizing
Clifford algebra in high schools and universities will greatly improve the efficiency
of students to learn fundamental knowledge of mathematics and physics. So,
Clifford algebra can be expected to complete a new big synthesis of scientific
knowledge.

Keywords: Clifford algebra, geometric algebra, gamma matrix, multi-inner
product, connection operator, Keller connection, spin group, cross ratio, conformal
geometric algebra

1. A brief historical review

It is well known that a rotational transformation in the complex plane is equiv-
alent to multiplying the complex number by a factor eθi. How to generalize this
simple and elegant operation to three-dimensional space is a difficult problem for
many outstanding mathematicians in the early nineteenth century. William Rowan
Hamilton (1805–1865) spent much of his later years studying the issue and eventu-
ally invented quaternion [1]. This generalization requires four elements 1, i, j, kf g,
and the spatial basis should satisfy the multiplying rules i2 ¼ j2 ¼ k2 ¼ �1 and jk ¼
�kj ¼ i, ki ¼ �ik ¼ j, and ij ¼ �ji ¼ �k. Although a quaternion is still a vector, it
constitutes an associative algebra according to the above rules. However, the com-
mutativity of multiplication is violated. Quaternion can solve the rotational trans-
formation in three-dimensional space very well and simplify the representation of
Maxwell equation system of electromagnetic field.
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When Hamilton introduced his quaternion algebra, German high school teacher
Hermann Gunther Grassmann (1809–1877) was constructing his exterior algebra
[2]. He defined the exterior product or outer product a∧ b of two vectors a and b,
which satisfies anti-commutative law a∧ b ¼ �b∧ a and associativity a∧ bð Þ∧ c ¼
a∧ b∧ cð Þ. The exterior product is a generalization of cross product in three-
dimensional Euclidian space. Its geometrical meaning is the oriented volume of a
parallel polyhedron. Exterior product is now the basic tool of modern differential
geometry, but Grassmann’s work was largely neglected in his lifetime.

British mathematician William Kingdon Clifford (1845–1879) was one of the
few mathematicians who read and understood Grassmann’s work. In 1878, he com-
bined the algebraic rules of Hamilton and Grassmann to define a new algebraic
system, which he himself called geometric algebra [3]. In this algebra, both the
inner and exterior products of vectors can be uniquely represented by a linear
combination of geometric product. In addition, geometric algebra is always
isomorphic to some special matrix algebra.

Clifford algebra combines all the advantages of quaternion with the advantages
of vector algebra and uniformly and succinctly describes the contents of geometry
and physics. However, the vector calculus introduced by Gibbs had also successfully
described the mathematical physics problem in three-dimensional space [4].
Clifford died prematurely at the age of 34, so that the theory of geometric algebra
was not deeply researched and fully developed, and people still could not see the
superiority of this algebra at that time. Thus, the important insights of Grassmann
and Clifford were lost in the late nineteenth century papers. Mathematicians
abstracted Clifford algebra from its geometric origins, and, for the most part of a
century, it languished as a minor subdiscipline of mathematics and became one
more algebra among so many others.

With the establishment of relativity, especially the introduction of Pauli and
Dirac’s matrix algebra for spin and the successful application in quantum theory [5],
it was felt that there is an urgent need for a mathematical system to deal with
problems in high-dimensional space-time. In the 1920s, Clifford algebra re-entered
the field of vision and was paid attention and researched by some of the famous
mathematicians and physicists such as R. Lipschitz, T. Vahlen, E. Cartan, E. Witt, C.
Chevalley, and M. Riesz [6–8]. When only formal algebra is involved, we usually
use the term “Clifford algebra,” but more often use the “geometric algebra” named
by Clifford himself if applied to geometric problems.

The first person who realized that Clifford algebra is a unified language in
geometry and physics should be David Hestenes. By the 1960s, Hestenes began to
restore the geometric meaning behind Pauli and Dirac algebra. Although his initial
motivation was to gain insight into the nature of quantum mechanics, he quickly
realized that Clifford algebra was a unified language and tool for mathematics,
physics, and engineering. He published “space-time algebra” in 1966 and has been
working on the promotion of Clifford algebra in teaching and research [9–12].
Because representation and algorithm in geometric algebra are seemingly as ordi-
nary as arithmetic, his work has been neglected by the scientific community for
more than 20 years. Only with the joint impetus of computer-aided design, com-
puter vision and robotics, protein folding, neural networks, modern differential
geometry, mathematical physics [13–17], and especially the Journal “Advances in
Applied Clifford algebras” founded by Professor Jaime Keller, geometric algebra
began to move towards popularity and prosperity.

As a unified and universal language of natural science, Clifford algebra is
developed by many mathematicians, physicists, and engineers according to their
different requirements and knowledge background. Such situation leads to
“There are a thousand Hamlets in a thousand people’s eyes.” In this chapter,
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by introducing typical application of Clifford algebra in geometry, we show some
special feature and elegance of the algebra.

2. Application of Clifford algebra in differential geometry

In Euclidean space, we have several important concepts such as vector, length,
angle, area, volume, and tensor. The study of relationship between these concepts
constitutes the whole content of Euclidean geometry. The mathematical tools pre-
viously used to discuss these contents are vector algebra and geometrical method,
which are complex and require much fundamental knowledge. Clifford algebra
exactly and faithfully describes the intrinsic properties of vector space by introduc-
ing concepts such as inner, exterior, and geometric products of vectors and thus
becomes a unified language and standard tool for dealing with geometric and
physical problems. Clifford algebra has the characteristics of simple concept,
standard operation, completeness in conclusion, and easy understanding.

Definition 1 For Minkowski spacen over number field , if the multiplication rule
of vectors satisfies

1: Antisymmetry, x∧ y ¼ �y∧x; (1)

2: Associativity, x∧ y
� �

∧ z ¼ x∧ y∧ z
� �

; (2)

3: Distributivity, x∧ ayþ bz
� � ¼ ax∧ yþ bx∧ z, a, b∈, (3)

the algebra is called Grassmann algebra and x∧ y exterior product.
The Grassmann is also called exterior algebra. The geometrical meaning of x∧y

is oriented area of a parallelogram constructed by x and y, and the geometrical
meaning of x∧y∧⋯∧ z is the oriented volume of the parallelohedron constructed
by the vectors (see Figure 1). We call x∧ y two-vector, x∧y∧ z three-vector, and
so on. For k-vector x∈Λk and l-vector y∈Λl, we have

x∧y ¼ �1ð Þkly∧x∈Λkþl:

By the definition, we can easily check:
Theorem 1 For exterior algebra defined in V ¼ n, we have

Figure 1.
Geometric meaning of exterior products of vectors.
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Wn ¼ F⊕V⊕Λ2 Vð Þ⋯⊕Λn Vð Þ ¼ ⊕
n

r¼0
Λr Vð Þ:

The dimension of the algebra is

dim nð Þ ¼
Xn

k¼0

Ck
n ¼ 2n:

Under the orthonormal basis e1, e2,⋯, enf g, the exterior algebra takes the following
form:

w ¼ w0 þ wkek þ
X
k< l

wklekl þ
X
j< k< l

wjklejkl þ⋯þw12⋯ne12⋯n, (4)

in which ∀wjk⋯l ∈, ejk⋯l ¼ e j ∧ ek ∧⋯∧ el, and ∀∣ejk⋯l∣ ¼ 1.
The exterior product of vectors contains alternating combinations of basis, for

example:

Vn¼ x1 ∧x2 ∧⋯∧xn ¼ x j
1x

k
2⋯xlnejk⋯l

¼ ϵjk⋯lx
j
1x

k
2⋯xlne12⋯n ¼ det xkj

� �
e12⋯n:

(5)

Definition 2 For any vectors x, y, z∈n, Clifford product of vectors is denoted by

xy ¼ x � yþ x∧ y, (6)

x∧ y
� �

z ¼ y � z� �
x� x � zð Þyþ x∧ y∧ z ¼ � y∧ x

� �
z, (7)

z x∧ y
� � ¼ x � zð Þy� y � z� �

xþ x∧ y∧ z ¼ �z y∧x
� �

, (8)

xy
� �

z ¼ y � z� �
x� x � zð Þyþ x � y� �

z þ x∧ y∧ z ¼ x yz
� �

: (9)

Clifford product is also called geometric product.
Similarly, we can define Clifford algebra for many vectors as xy⋯z. In (6),

x � y ¼ ηabxayb is the scalar product or inner product in n. By x∧y ¼ �y∧x, we
find Clifford product is not commutative. By (6), we have

x � y ¼ 1
2

xyþ yx
� �

, x∧y ¼ 1
2

xy� yx
� �

, x � x ¼ xx ¼ x2: (10)

Definition 3 For Minkowski space p,q with metric ηab ¼ diag Ip,�Iq
� �

, if the
Clifford product of vectors satisfies

ekel þ elek ¼ 2ηkl, or x2 ¼ ηklx
kxl,

then the algebra

c ¼ c0 þ ckek þ
X
k< l

cklekel þ
X
j< k< l

cjkle jekel þ⋯þ c12⋯ne1e2⋯en, (11)

is called as Clifford algebra or geometric algebra, which is denoted as Cℓp,q.
There are several definitions for Clifford algebra [18, 19]. The above definition is

the original definition of Clifford. Clifford algebra has also 2n dimensions.
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Comparing (11) with (4), we find the two algebras are isomorphic in sense of linear
algebra, but their definitions of multiplication rules are different. The Grassmann
products have clear geometrical meaning, but the Clifford product is isomorphic to
matrix algebra and the multiplication of physical variables is Clifford product.
Therefore, representing geometrical and physical variables in the form of (4) will
bring great convenience [20, 21]. In this case, the relations among three products
such as (6)–(9) are important.

In physics, we often use curvilinear coordinate system or consider problems
in curved space-time. In this case, we must discuss problems in n dimensional
pseudo Riemann manifold. At each point x in the manifold, the tangent space
T xð Þ is a n dimensional Minkowski space-time. The Clifford algebra can be also
defined on the tangent space and then smoothly generalized on the whole manifold
as follows.

Definition 4 In n ¼ pþ q dimensional manifold Tp,q over , the element is
defined by

dx ¼ γμdx
μ ¼ γμdxμ ¼ γaδX

a ¼ γaδXa, (12)

where γa is the local orthogonal frame and γa the coframe. The distance ds ¼ ∣dx∣
and oriented volumes dVk is defined by

dx2 ¼ 1
2

γμγν þ γνγμ
� �

dxμdxν ¼ gμνdx
μdxν ¼ ηabδX

aδXb, (13)

dVk ¼ dx1 ∧ dx2 ∧⋯∧ dxk ¼ γμν⋯ωdx
μ
1dx

ν
2⋯dxωk , 1≤ k≤ nð Þ, (14)

in which ηabð Þ ¼ diag Ip,�Iq
� �

is Minkowski metric and gμν is Riemann metric.

γμν⋯ω ¼ γμ ∧ γν ∧⋯∧ γω ∈Λk Tp,qð Þ

is Grassmann basis. The following Clifford-Grassmann number with basis

c ¼ c0I þ cμγμ þ cμνγμν þ⋯þ c12⋯nγ
12⋯n, ∀ck xð Þ∈ð Þ (15)

defines real universal Clifford algebra Cℓp,q on the manifold.
The definitions and treatments in this chapter make the corresponding subtle

and fallible concepts in differential geometry much simpler. For example, in spher-
ical coordinate system of 3, we have element dx and the area element ds in sphere
dr ¼ 0 as

dx ¼ σ1drþ σ2rdθ þ σ3r sin θdφ,

ds ¼ σ2rdθ ∧ σ3r sin θ ¼ iσ1r2 sin θdθdφ:

We have the total area of the sphere

A ¼ ∮ds ¼ iσ1r2∮ sin θdθdφ ¼ iσ14πr2:

The above definition involves a number of concepts, some more explanations
are given in the following:

1.The geometrical meanings of elements dx, dy, dx∧ dy are shown in Figure 2.
The relation between metric and vector basis is given by:
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gμν ¼
1
2

γμγν þ γνγμ
� � ¼ γμ � γν, (16)

ηab ¼
1
2

γaγb þ γbγað Þ ¼ γa � γb, (17)

which is the most important relation in Clifford algebra. Since Clifford algebra is
isomorphic to some matrix algebra, by (17) γa is equivalent to some special
matrices [20]. In practical calculation, we need not distinguish the vector basis
from its representation matrix. The relation between the local frame coefficient

f μa, f
a
μ

� �
and metric is given by:

γμ ¼ f μaγ
a, γμ ¼ f aμγa, f aμ f

μ
b ¼ δab, f aμ f

ν
a ¼ δνμ:

f μa f
ν
bη

ab ¼ gμν, f aμ f
b
νηab ¼ gμν:

2.Assume γaja ¼ 1, 2⋯nf g to be the basis of the space-time, then their exterior
product is defined by [22]:

γa1 ∧ γa2⋯∧ γak �
1
k!

X
∀σ

σb1b2⋯bk
a1a2⋯akγb1γb2⋯γbk , 1≤ k≤ nð Þ:

In which σb1b2⋯bk
a1a2⋯ak is permutation function, if b1b2⋯bk is the even permutation

of a1a2⋯ak, it equals 1. Otherwise, it equals �1. The above formula is a
summation for all permutations, that is, it is antisymmetrization with respect
to all indices. The geometric meaning of the exterior product is oriented
volume of a higher dimensional parallel polyhedron. Exterior algebra is also
called Grassmann algebra, which is associative.

3.By (12) and (13) we find that, using Clifford algebra to deal with the problems
on a manifold or in the tangent space, the method is the same. Unless
especially mentioned, we always use the Greek alphabet to stand for the index
in curved space-time, and the Latin alphabet for the index in tangent space.
We use Einstein summation convention.

4.In Eq. (15), each grade-k term is a tensor. For example, c0I∈Λ0 is a scalar,
cμγμ ∈Λ1 is a true vector, and cμνγμν ∈Λ2 is an antisymmetric tensor of rank-2,
which is also called a bivector, and so on. In practical calculation, coefficient

Figure 2.
Geometric meaning of vectors dx, dy and dx∧ dy.
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and basis should be written together, because they are one entity, such as (12)
and (15). In this form, the variables become coordinate free. The coefficient is
the value of tensor, which is just a number table, but the geometric meaning
and transformation law of the tensor is carried by basis.

The real difficulty in learning modern mathematics is that in order to get a little
result, we need a long list of subtle concepts. Mathematicians are used to defining
concepts over concepts, but if the chain of concepts breaks down, the subsequent
contents will not be understandable. Except for the professionals, the common
readers impossibly have so much time to check and understand all concepts care-
fully. Fortunately, the Clifford algebra can avoid this problem, because Clifford
algebra depends only on a few simple concepts, such as numbers, vectors, deriva-
tives, and so on. The only somewhat new concept is the Clifford product of the
vector bases, which is isomorphic to some special matrix algebra; and the rules of
Clifford algebra are also standardized and suitable for brainless operations, which
can be well mastered by high school students.

Definition 5 For vector x ¼ γμxμ ∈Λ1 and multivector m ¼ γθ1θ2⋯θkm
θ1θ2⋯θk ∈Λk,

their inner product is defined as

x⊙m ¼ γμ ⊙ γθ1θ2⋯θk

� �
xμmθ1θ2⋯θk , m⊙x ¼ γθ1θ2⋯θk ⊙ γμ

� �
xμmθ1θ2⋯θk , (18)

in which

γμ ⊙ γθ1θ2⋯θk � gμθ1γθ2⋯θk � gμθ2γθ1θ3⋯θk þ⋯þ �1ð Þkþ1gμθkγθ1⋯θk�1 , (19)

γθ1θ2⋯θk ⊙ γμ � �1ð Þkþ1gμθ1γθ2⋯θk þ �1ð Þkgμθ2γθ1θ3⋯θk þ⋯þ gμθkγθ1⋯θk�1 : (20)

Theorem 2 For basis of Clifford algebra, we have the following relations

γμγθ1θ2⋯θk ¼ γμ ⊙ γθ1θ2⋯θk þ γμθ1⋯θk , (21)

γθ1θ2⋯θkγμ ¼ γθ1θ2⋯θk ⊙ γμ þ γθ1⋯θkμ: (22)

γa1a2⋯an�1
¼ ϵa1a2⋯anγ12⋯nγ

an , (23)

γa1a2⋯an�2
¼ 1

2!
ϵa1a2⋯anγ12⋯nγ

an�1an , (24)

γa1a2⋯an�k
¼ 1

k!
ϵa1a2⋯anγ12⋯nγ

an�kþ1⋯an : (25)

Proof. Clearly γμγθ1θ2⋯θk ∈Λk�1 ∪Λkþ1, so we have

γμγθ1θ2⋯θk ¼ a1gμθ1γθ2⋯θk þ a2gμθ2γθ1θ3⋯θk þ⋯þ akgμθkγθ1⋯θk�1 þ Aγμθ1⋯θk : (26)

Permuting the indices θ1 and θ2, we find a2 ¼ �a1. Let μ ¼ θ1, we get a1 ¼ 1.
Check the monomial in exterior product, we get A ¼ 1. Thus, we prove (21). In like
manner, we prove (22). For orthonormal basis γa, by (22) we have:

γa1a2⋯an�1
γan ¼ ϵa1a2⋯anγ12⋯n: (27)

Again by γanγ
an ¼ 1 (not summation), we prove (23). Other equations can be

proved by antisymmetrization of indices. The proof is finished.
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Likewise, we can define multi-inner product A⊙ kB between multivectors as
follows:

γμν ⊙ γαβ ¼ gμβγνα � gμαγνβ þ gναγμβ � gνβγμα, (28)

γμν ⊙ 2γαβ ¼ gμβgνα � gμαgνβ, γμν ⊙ kγαβ ¼ 0, k> 2ð Þ: ⋯ (29)

We use A⊙ kB rather A�kB, because the symbol “�” is too small to express
exponential power. Then for the case γμ1μ2⋯μ f γθ1θ2⋯θk , we have similar results. For
example, we have

γμνγαβ ¼ γμν ⊙ 2γαβ þ γμν ⊙ γαβ þ γμναβ: (30)

In Cℓ1,3, denote the Pauli matrices by

σa � 1 0

0 1

� �
,

0 1

1 0

� �
,

0 �i
i 0

� �
,

1 0

0 �1

� �� �
, (31)

σ0 ¼ ~σ0 ¼ I, ~σk ¼ �σk, k ¼ 1, 2, 3ð Þ: (32)

We use k, f , j standing for spatial indices. Define Dirac γ� matrix by:

γa ¼ 0 ~σa

σa 0

� �
, γ5 ¼ diag I,�Ið Þ: (33)

γa forms the grade-1 basis of Clifford algebra Cℓ1,3. In equivalent sense, the
representation (33) is unique. By γ-matrix (33), we have the complete bases of Cℓ1,3

as follows [21]:

I, γa, γab ¼ i
2
ϵabcdγcdγ

5, γabc ¼ iϵabcdγdγ
5, γ0123 ¼ �iγ5: (34)

Based on the above preliminaries, we can display some enlightening examples of
application, which show how geometric algebra works efficiently. For a skew-
symmetrical torsion T μνω � gμβT β

νω in 1,3, by Clifford calculus, we have:

T ¼ T μνωγ
μνω ¼ T abcγ

abc ¼ T abcϵabcdγd iγ5
� � � iγdγ

5T d ¼ iγαγ
5T α, (35)

and then

T α ¼ f αdT abcϵabcd ¼ T μνω f
μ
a f

ν
b f

ω
c f

α
dϵ

abcd ¼ 1ffiffiffigp ϵμνωαT μνω, (36)

where g ¼ ∣det gμν
� �

∣. So we get:

T μνω ¼ ffiffiffi
g

p ϵμνωαT α, T μνωT ω ¼ 0, T α
μνT ν ¼ 0: (37)

So, the skew-symmetrical torsion is equivalent to a pseudo vector in 1,3. This
example shows the advantages to combine variable with basis together.

The following example discusses the absolute differential of tensors. The defini-
tion of vector, tensor, and spinor in differential geometry involving a number of
refined concepts such as vector bundle and dual bundle, which are too complicated
for readers in other specialty. Here, we inherit the traditional definitions based on
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the bases γa and γμ. In physics, basis of tensors is defined by direct products of
grade-1 bases γμ. For metric, we have [23]:

g¼ gμνγ
μ ⊗ γν ¼ gμνγμ ⊗ γν ¼ δνμγ

μ ⊗ γν

¼ ηabγ
a ⊗ γb ¼ ηabγa ⊗ γb ¼ δbaγ

a ⊗ γb:
(38)

For simplicity, we denote tensor basis by:

⊗ γμ1μ2⋯μn ¼ γμ1 ⊗ γμ2 ⊗⋯γμn , ⊗ γ μ2μ3⋯μn
μ1

¼ γμ1 ⊗ γμ2 ⊗⋯γμn , ⋯ (39)

In general, a tensor of rank n is given by:

T ¼ Tμ1μ2⋯μn ⊗ γμ1μ2⋯μn ¼ Tμ1
μ2⋯μn

⊗ γ μ2μ3⋯μn
μ1

¼ ⋯ (40)

The geometrical information of the tensor such as transformation law and dif-
ferential connection are all recorded by basis γμ, and all representations of rank r, sð Þ
tensor denote the same one practical entity T xð Þ. Tν⋯

μ⋯ is just a quantity table similar
to cμν in (15), but the physical and geometrical meanings of the tensor T are
represented by basis γμ. Clifford algebra is a special kind of tensor with exterior
product. Its algebraic calculus exactly reflects the intrinsic property of space-time
and makes physical calculation simple and clear.

For the absolute differential of vector field A ¼ γμA
μ, we have

dA� lim
Δx!0

A xþ Δxð Þ � A xð Þ½ �

¼ ∂αAμγμ þ Aμdαγμ
� �

dxα ¼ ∂αAμγ
μ þ Aμdαγμ

� �
dxα:

(41)

We call dα connection operator [23]. According to its geometrical meanings,
connection operator should satisfy the following conditions:

1. It is a real linear transformation of basis γμ,

2. It satisfies metric consistent condition dg ¼ 0.

Thus, the differential connection can be generally expressed as:

dαγ
μ ¼ � Πμ

αβ þ T μ
αβ

� �
γβ, Πμ

αβ ¼ Πμ
βα, T μ

αβ ¼ �T μ
βα: (42)

For metric g ¼ gμνγ
μ ⊗ γν, by metric consistent condition we have:

0 ¼ dg ¼ d gμνγ
μ ⊗ γν

� �

¼ ∂αgμν
� �

γμ ⊗ γν þ gμν dαγ
μð Þ⊗ γν þ gμνγ

μ ⊗ dαγ
ν

h i
dxα

¼ ∂αgμν � gνβΠ
β
αμ � gμβΠ

β
αν

� �
dxα � gνβT β

αμ þ gμβT β
αν

� �
dxα

h i
γμ ⊗ γν:

(43)

By (43), we have:

∂αgμν � gνβΠ
β
αμ � gμβΠ

β
αν

� �
dxα � gνβT β

αμ þ gμβT β
αν

� �
dxα ¼ 0: (44)
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Since dxα $ δXa is an arbitrary vector in tangent space, (44) is equivalent to:

∂αgμν � gνβΠ
β
αμ � gμβΠ

β
αν ¼ gνβT

β
αμ þ gμβT

β
αν: (45)

(45) is a linear nonhomogeneous algebraic equation of Πμ
αβ,T

μ
αβ

� �
.

Solving (45), we get the symmetrical particular solution “Christoffel symbols” as
follows;

Πα
μν ¼

1
2
gαβ ∂μgβν þ ∂νgμβ � ∂βgμν
� �

þ παμν ¼ Γα
μν þ παμν, (46)

in which Γα
μν is called Levi-Civita connection determined by metric, παμν ¼ πανμ is a

symmetrical post-metric part of connection. In this chapter, the “post-metric con-
nection” means the parts of connection cannot be determined by metric, i.e., the
components παμν and Tα

μν different from Levi-Civita connection Γα
μν. Denote

T μ∣να ¼ gμβT β
να, πμ∣να ¼ gμβπ

β
να, Kμνα ¼ πμ∣να þ T μ∣να, (47)

where Kμνα is called contortion with total n3 components [24]. Substituting (46)
and (47) into metric compatible condition (45), we get 12 nþ 1ð Þn2 constraints for Kμνα,

Kμνα þ Kνμα ¼ 0 ¼ πμ∣να þ πν∣μα
� �þ T μ∣να þ T ν∣μα

� �
: (48)

By (48), Kμνα has only 1
2 n� 1ð Þn2 independent components. Noticing torsion

T μ∣να has just 1
2 n� 1ð Þn2 independent components, so Kμνα or πμ∣να can be

represented by T μ∣να.
Theorem 3 For post-metric connections we have the following relations

πμ∣να ¼ T ν∣αμ þ T α∣νμ, (49)

Kμνα ¼ T ν∣αμ þ T α∣νμ þ T μ∣να, (50)

T μ∣να ¼ 1
3

πα∣μν � πν∣μα
� �þ ~T μνα, (51)

and consistent condition

πμ∣να þ πα∣μν þ πν∣αμ ¼ 0: (52)

~T ¼ ~T μνωγμνω ∈Λ3 is an arbitrary skew-symmetrical tensor.
Proof If we represent πμ∣να by T μ∣να, by (48) and symmetry we have solution as

(49). By (49), we get consistent condition (52). By (49) and (47), we get (50).
If we represent T μ∣να by πμ∣να, we generally have linear relation

T μ∣να ¼ k πν∣μα � πα∣μν
� �þ ~T μνα, (53)

in which k is a constant to be determined, ~T μνα is particular solution as πμ∣να � 0.
~T μνα satisfies

~T μνα ¼ ~T αμν ¼ ~T ναμ ¼ � ~T μαν ¼ � ~T νμα ¼ � ~T ανμ: (54)

So this part of torsion is a skew-symmetrical tensor ~T ¼ ~T μνωγμνω ∈Λ3, which has
C3
n ¼ 1

6 n� 2ð Þ n� 1ð Þn independent components. Substituting (53) into (48), we get
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k� 1ð Þ πμ∣να þ πν∣μα
� � ¼ 2kπα∣μν: (55)

Calculating the summation of (55) for circulation of μ, ν, αf g, we also get con-
sistent condition (52). Substituting (52) into (55) we get k ¼ 1

3. Again by (53), we get
solution (51). It is easy to check, (49) and (51) are the inverse representation under
condition (52). The proof is finished.

Substituting (42) into

0 ¼ dg ¼ δμν dαγμ
� �

⊗ γν þ γμ ⊗ dαγ
ν

� �
dxα, (56)

we get

dαγμ ¼ Γν
αμ þ πναμ þ T ν

αμ

� �
γν: (57)

To understand the meaning of παμν and T α
μν, we examine the influence on

geodesic.

dv
ds

� dvα

ds
γα þ vαdμγαv

μ¼ dvα

ds
þ Γα

μν þ παμν þ T α
μν

� �
vμvν

� �
γα,

¼ d
ds

vα þ Γα
μνv

μvν
� �

γα þ παμνv
μvνγα:

(58)

The term T α
μνv

μvν ¼ 0 due to T α
μν ¼ �T α

νμ. So the symmetrical part παμν influences
the geodesic, but the antisymmetrical part T α

μν only influences spin of a particle.
This means παμν 6¼ 0 violates Einstein’s equivalent principle. In what follows, we take
παμν ¼ 0.

By (42) and (57), we get:
Theorem 4 In the case παμν � 0, the absolute differential of vector A is given by

dA ¼ ∇αAμγμdx
α ¼ ∇αAμγ

μdxα, (59)

in which ∇α denotes the absolute derivatives of vector defined as follows:

∇αAμ ¼ Aμ
; α þ T μ

αβA
β, Aμ

; α ¼ ∂αAμ þ Γμ
ανA

ν, (60)

∇αAμ ¼ Aμ; α � T β
αμAβ, Aμ; α ¼ ∂αAμ � Γν

αμAν, (61)

where Aμ
; α and Aμ; α are usual covariant derivatives of vector without torsion. Torsion

T μνω ∈Λ3 is an antisymmetrical tensor of C3
n independent components.

Similarly, we can calculate the absolute differential for any tensor. The example
also shows the advantages to combine variable with basis.

Now we take spinor connection as example to show the power of Clifford algebra.
For Dirac equation in curved space-time without torsion, we have [23, 25, 26]:

γμi ∂μ þ Γμ

� �
ϕ ¼ mϕ, Γμ ¼ 1

4
γν ∂μγ

ν þ Γν
μαγ

α
� �

: (62)

Γμ is called spinor connection. Representing γμΓμ ∈Λ1 ∪Λ3 in the form of (15),
we get:

αμp̂μϕ� sμΩμϕ ¼ mγ0ϕ, (63)

53

Some Applications of Clifford Algebra in Geometry
DOI: http://dx.doi.org/10.5772/intechopen.93444



where αμ is current operator, p̂μ is momentum operator, and sμ spin operator.
They are defined respectively by:

αμ ¼ diag σμ, ~σμð Þ, p̂μ ¼ i ∂μ þ ϒμ

� �� eAμ, sμ ¼ 1
2
diag σμ,�~σμð Þ, (64)

where σμ ¼ f μaσ
a and ~σμ ¼ f μa~σ

a are the Pauli matrices in curved space-time.
ϒμ ∈Λ1 is called Keller connection, and Ωμ ∈Λ3 is called Gu-Nester potential, which
is a pseudo vector [23, 26, 27]. They are calculated by:

ϒμ ¼ 1
2
f νa ∂μ f

a
ν � ∂ν f

a
μ

� �
, Ωα ¼ 1

2
ϵabcd f αd f

μ
a f

ν
b∂μ f

e
νηce ¼

1
4
ϵdabc f αd f

β
aS

μν
bc∂βgμν,

(65)

where Sμνab � f fμa f νgb sign a� bð Þ for LU decomposition of metric. In the Hamilto-
nian of a spinor, we get a spin-gravity coupling potential sμΩμ. If the metric of the
space-time can be orthogonalized, we have Ωμ � 0.

If the gravitational field is generated by a rotating ball, the corresponding met-
ric, like the Kerr one, cannot be diagonalized. In this case, the spin-gravity coupling
term has nonzero coupling effect. In asymptotically flat space-time, we have the
line element in quasi-spherical coordinate system [28]:

dx ¼ γ0
ffiffiffiffi
U

p
dtþWdφð Þ þ

ffiffiffiffi
V

p
γ1drþ γ2rdθð Þ þ γ3

ffiffiffiffiffiffiffiffiffi
U�1

p
r sin θdφ, (66)

dx2 ¼ U dtþWdφð Þ2 � V dr2 þ r2dθ2
� �� U�1r2 sin 2θdφ2, (67)

in which U,V,Wð Þ is just functions of r, θð Þ. As r ! ∞ we have:

U ! 1� 2m
r

, W ! 4L
r

sin 2θ, V ! 1þ 2m
r

, (68)

where m,Lð Þ are mass and angular momentum of the star, respectively. For
common stars and planets, we always have r≫m≫L. For example, we have m _¼3
km for the sun. The nonzero tetrad coefficients of metric (66) are given by:

f 0t ¼ ffiffiffiffi
U

p
, f 1r ¼

ffiffiffiffi
V

p
, f 2θ ¼ r

ffiffiffiffi
V

p
, f 3φ ¼ r sin θffiffiffiffi

U
p , f 0φ ¼

ffiffiffiffi
U

p
W,

f t0 ¼ 1ffiffiffiffi
U

p , f r1 ¼
1ffiffiffiffi
V

p , f θ2 ¼
1

r
ffiffiffiffi
V

p , f φ3 ¼
ffiffiffiffi
U

p

r sin θ
, f t3 ¼

� ffiffiffiffi
U

p
W

r sin θ
:

8>>>><
>>>>:

(69)

Substituting it into (65) we get

Ωα¼ f t0 f
r
1 f

θ
2 f

φ
3 0, ∂θgtφ,�∂rgtφ, 0
� �

¼ Vr2 sin θ
� ��1

0, ∂θ UWð Þ,�∂r UWð Þ, 0ð Þ

! 4L
r4

0, 2r cos θ, sin θ, 0ð Þ:

(70)

By (70), we find that the intensity of Ωα is proportional to the angular momen-
tum of the star, and its force line is given by:
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dxμ

ds
¼ Ωμ ) dr

dθ
¼ 2r cos θ

sin θ
⇔r ¼ R sin 2θ: (71)

(71) shows that the force lines of Ωα is just the magnetic lines of a magnetic
dipole. According to the above results, we know that the spin-gravity coupling
potential of charged particles will certainly induce a macroscopic dipolar magnetic
field for a star, and it should be approximately in accordance with the Schuster-
Wilson-Blackett relation [29–31].

3. Representation of Clifford algebra

The matrix representation of Clifford algebra is an old problem with a long
history. As early as in 1908, Cartan got the following periodicity of 8 [18, 19].

Theorem5For real universal Clifford algebraCℓp,q, we have the following isomorphism

Cℓp,q ffi

Mat 2
n
2,

� �
, if mod p� q, 8ð Þ ¼ 0, 2

Mat 2
n�1
2 ,

� �
⊕Mat 2

n�1
2 ,

� �
, if mod p� q, 8ð Þ ¼ 1

Mat 2
n�1
2 ,ℂ

� �
, if mod p� q, 8ð Þ ¼ 3, 7

Mat 2
n�2
2 ,

� �
, if mod p� q, 8ð Þ ¼ 4, 6

Mat 2
n�3
2 ,

� �
⊕Mat 2

n�3
2 ,

� �
, if mod p� q, 8ð Þ ¼ 5:

8>>>>>>>>>>><
>>>>>>>>>>>:

(72)

For Cℓ0,2, we have C ¼ tI þ xγ1 þ yγ2 þ zγ12 with

γ21 ¼ γ22 ¼ γ212 ¼ �1, γ1γ2 ¼ �γ2γ1 ¼ γ12, γ2γ12 ¼ �γ12γ2 ¼ γ1, γ12γ1 ¼ �γ1γ12 ¼ γ2:

(73)

By (73), we find C is equivalent to a quaternion, that is, we have isomorphic
relation Cℓ0,2 ffi .

Similarly, for Cℓ2,0, we have C ¼ tI þ xγ1 þ yγ2 þ zγ12 with

γ21 ¼ γ22 ¼ γ212 ¼ 1, γ1γ2 ¼ �γ2γ1 ¼ γ12, γ2γ12 ¼ �γ12γ2 ¼ �γ1, γ12γ1 ¼ �γ1γ12 ¼ �γ2:

(74)

By (74), the basis is equivalent to

γ1 ¼
0 1

1 0

� �
, γ2 ¼

1 0

0 �1

� �
, γ12 ¼

0 �1

1 0

� �
: (75)

Thus, (75) means Cℓ2,0 ffi Mat 2,ð Þ.
In geometry and physics, the matrix representation of generators of Clifford

algebra is more important and fundamental than the representation of whole
algebra. Define γμ by

γμ ¼ 0 ~ϑ
μ

ϑμ 0

 !
� Γμ mð Þ, ϑμ ¼ diag σμ, σμ,⋯, σμ

zfflfflfflfflfflfflfflfflffl}|fflfflfflfflfflfflfflfflffl{m !
, ~ϑμ

¼ diag ~σμ, ~σμ,⋯, ~σμ
zfflfflfflfflfflfflfflfflffl}|fflfflfflfflfflfflfflfflffl{m

0
@

1
A: (76)
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which forms the generator or grade-1 basis of Clifford algebra Cℓ1,3. To denote
γμ by Γμ mð Þ is for the convenience of representation of high dimensional Clifford
algebra. For any matrices Cμ satisfying Cℓ1,3 Clifford algebra, we have [20, 32]:

Theorem 6 Assuming the matrices Cμ satisfy anti-commutative relation of Cℓ1,3

CμCν þ CνCμ ¼ 2ημν, (77)

then there is a natural number m and an invertible matrix K, such that
K�1CμK ¼ Γμ mð Þ.

This means in equivalent sense, we have unique representation (76) for genera-
tor of Cℓ1,3. In [20], we derived complex representation of generators of Cℓp,q

based on Theorem 6 and real representations according to the complex representa-
tions as follows.

Theorem 7 Let

γ5 ¼ idiag E,�Eð Þ, E � diag I2k,�I2lð Þ, kþ l ¼ n: (78)

Other γμ, μ≤ 3ð Þ are given by (76). Then the generators of Clifford algebra Cℓ1,4 are
equivalent to ∀γμ, μ ¼ 0, 1, 2, 3, 5ð Þ.

In order to express the general representation of generators, we introduce some
simple notations. Im stands form�m unit matrix. For any matrix A ¼ Aabð Þ, denote
block matrix

A⊗ Im ¼ AabImð Þ, A,B,C,⋯½ � ¼ diag A,B,C,⋯ð Þ: (79)

in which the direct product of matrix is Kronecker product. Obviously, we have
I2 ⊗ I2 ¼ I4, I2 ⊗ I2 ⊗ I2 ¼ I8, and so on. In what follows, we use Γμ mð Þ defined in
(76). For μ∈ 0, 1, 2, 3f g, Γμ mð Þ is 4m� 4mmatrix, which constitute the generator of
Cℓ1,3. Similar to the above proofs, we can check the following theorem by method
of induction.

Theorem 8

1.In equivalent sense, for Cℓ4m, the matrix representation of generators is uniquely
given by

Γμ nð Þ, Γμ n
22

� �
,�Γμ n

22

� �� �
⊗ I2,

�

Γμ n
24

� �
,�Γμ n

24

� �� �
,� Γμ n

24

� �
,�Γμ n

24

� �� �� �
⊗ I22 ,

Γμ n
26

� �
,�Γμ n

26

� �
,�Γμ n

26

� �
,Γμ n

26

� �
,�Γμ n

26

� �
,Γμ n

26

� �
,Γμ n

26

� �
,�Γμ n

26

� �� �
⊗ I23 ,⋯

�
:

(80)

in which n ¼ 2m�1N, where N is any given positive integer. All matrices are
2mþ1N � 2mþ1N type.

2.For Cℓ4mþ1, besides (80) we have another real generator

γ4mþ1 ¼ E,�E,�E,E,�E,E,E,�E⋯½ �, E ¼ I2k,�I2l½ �: (81)

If and only if k ¼ l, this representation can be uniquely expanded as generators of
Cℓ4mþ4.
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3.For any Cℓp,q, p, qjpþ q≤4m,mod pþ q, 4ð Þ 6¼ 1f g, the combination of pþ q
linear independent generators γμ, iγνf g taking from (80) constitutes the complete set
of generators. In the case p, qjpþ q≤ 4m,mod pþ q, 4ð Þ ¼ 1f g, besides the
combination of γμ, iγνf g, we have another normal representation of generator
taking the form (81) with k 6¼ l.

4.For Cℓm, m<4ð Þ, we have another 2� 2 Pauli matrix representation for its
generators σ1, σ2, σ3

� �
.

Then, we get all complex matrix representations for generators of real Cℓp,q

explicitly.
The real representation of Cℓp,q can be easily constructed from the above com-

plex representation. In order to get the real representation, we should classify the
generators derived above. Let Gc nð Þ stand for any one set of all complex generators
of Cℓn given in Theorem 8, and set the coefficients before all σμ and ~σμ as 1 or i.
Denote Gcþ stands for the set of complex generators of Cℓn,0 and Gc� for the set of
complex generators of Cℓ0,n. Then, we have:

Gc ¼ Gcþ ∪Gc�, Gc� ffi iGcþ: (82)

By the construction of generators, we have only two kinds of γμ matrices. One is
the matrix with real nonzero elements and the other is that with imaginary nonzero
elements. This is because all nonzero elements of σ2 are imaginary but all other
σμ ∀μ 6¼ 2ð Þ are real. Again assume

Gcþ ¼ Gr ∪Gi, Gr ¼ γμr jγμr is real
� �

, Gi ¼ γμi jγμi is imaginary
� �

: (83)

Denote J2 ¼ iσ2, we have J22 ¼ �I2. J2 becomes the real matrix representation for
imaginary unit i. Using the direct products of complex generators with I2, J2ð Þ, we
can easily construct the real representation of all generators for Cℓp,q from Gcþ as
follows.

Theorem 9

1.For Cℓn,0, we have real matrix representation of generators as

Grþ ¼ γμ ⊗ I2 if γμ ∈Grð Þ; iγν ⊗ J2 if γν ∈Gið Þf g: (84)

2.For Cℓ0,n, we have real matrix representation of generators as

Gr� ¼ γμ ⊗ J2jγμ ∈Grþf g: (85)

3.For Cℓp,q, we have real matrix representation of generators as

Gr ¼ Γμaþ ,Γνb�
Γμaþ ¼ γμa ∈Grþ, a ¼ 1, 2,⋯, pð Þ
Γνb� ¼ γνb ∈Gr�, b ¼ 1, 2,⋯, qð Þ

�����

( )
: (86)

Obviously we have Cp
nC

q
n ¼ Cp

n

� �2 choices for the real generators of Cℓp,q from each
complex representation.

Proof. By calculating rules of block matrix, it is easy to check the following
relations:

γμ ⊗ I2ð Þ γν ⊗ J2ð Þ þ γν ⊗ J2ð Þ γμ ⊗ I2ð Þ ¼ γμγν þ γνγμð Þ⊗ J2, (87)
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γμ ⊗ J2ð Þ γν ⊗ J2ð Þ þ γν ⊗ J2ð Þ γμ ⊗ J2ð Þ ¼ � γμγν þ γνγμð Þ⊗ I2: (88)

By these relations, Theorem 9 becomes a direct result of Theorem 8.
For example, we have 4� 4 real matrix representation for generators of Cℓ0,3 as

follows:

i σ1, σ2, σ3
� � ffi σ1 ⊗ J2, iσ

2 ⊗ I2, σ3 ⊗ J2
� � � Σ1,Σ2,Σ3� � ¼

0 0 0 1

0 0 �1 0

0 1 0 0

�1 0 0 0

0
BBBBB@

1
CCCCCA
,

0 0 1 0

0 0 0 1

�1 0 0 0

0 �1 0 0

0
BBBBB@

1
CCCCCA
,

0 1 0 0

�1 0 0 0

0 0 0 �1

0 0 1 0

0
BBBBB@

1
CCCCCA

8>>>>><
>>>>>:

9>>>>>=
>>>>>;
:

(89)

It is easy to check

ΣkΣl þ ΣlΣk ¼ �2δkl, ΣkΣl � ΣlΣk ¼ 2ϵklmΣm: (90)

4. Transformation of Clifford algebra

Assume V is the base vector space of Cℓp,q, then Clifford algebra has the
following global properties [22, 33, 34]:

Cℓp,q ¼ ⊕
n

k¼0
ΛkV ¼ Cℓþ

p,q ⊕Cℓ�
p,q, (91)

Cℓþ
p,q � ⊕

k¼even
ΛkV, Cℓ�

p,q � ⊕
k¼odd

ΛkV, (92)

Cℓp,q ffi Cℓþ
p,qþ1: (93)

Cℓp,q is a ℤ2-graded superalgebra, and Cℓþ
p,q is a subalgebra of Cℓp,q. We have:

CℓþCℓþ ¼ Cℓ�Cℓ� ¼ Cℓþ, CℓþCℓ� ¼ Cℓ�Cℓþ ¼ Cℓ�: (94)

Definition 6 The conjugation of element in Cℓp,q is defined by

γk1k2⋯km

� � ∗ ¼ �1ð Þmγkm⋯k2k1 ¼ �1ð Þ12m mþ1ð Þγk1k2⋯km , 0≤m≤ nð Þ: (95)

The main involution of element is defined by

α γk1k2⋯km

� � ¼ �1ð Þmγk1k2⋯km , 0≤m≤ nð Þ: (96)

The norm and inverse of element are defined by

N Xð Þ � XX ∗ , X�1 ¼ X ∗ =N Xð Þ if N Xð Þ 6¼ 0: (97)

By the definition, it is easy to check

γ ∗
k ¼ �γk, γ ∗

ab ¼ �γab, γ ∗
abc ¼ γabc, ⋯ (98)

α x ∗ð Þ ¼ α xð Þ ∗ , α γkð Þ ¼ �γk, α γabð Þ ¼ γab, ⋯ (99)

g�1 ¼ g ∗ , g ¼ g1g2⋯gmj∀gk ∈Λ1,N gk
� � ¼ 1

� �
: (100)
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Definition 7 The Pin group and Spin group of Cℓp,q are defined by

Pinp,q ¼ g∈Cℓp,qjN gð Þ ¼ �1, α gð Þxg ∗ ∈V∀x∈V
� �

, (101)

Spinp,q ¼ g∈Cℓþ
p,qjN gð Þ ¼ �1, gxg ∗ ∈V∀x∈V

n o
¼ Pin∩Cℓþ: (102)

The transformation x↦ α g
� �

xg ∗ is called sandwich operator. Pin or Spin group
consists of two connected components with N g

� � ¼ 1 or N g
� � ¼ �1,

Spinþ
p,q ¼ g∈Cℓþ

p,qjN g
� � ¼ þ1, gxg ∗ ∈V∀x∈V

n o
, (103)

Spin�
p,q ¼ g∈Cℓþ

p,qjN g
� � ¼ �1, gxg ∗ ∈V∀x∈V

n o
: (104)

For ∀g∈Pinp,q,x∈V, the sandwich operator is a linear transformation for vec-
tor in V,

x0 ¼ α g
� �

xg ∗ ) X0 ¼ KX,X ¼ x1, x2⋯xn
� �T

: (105)

In all transformations of vector, the reflection and rotation transformations are
important in geometry. Here, we discuss the transformation in detail. Let m∈Λ1 be
a unit vector in V, then the reflection transformation of vectorX∈Λ1 with respect
to n� 1 dimensional mirror perpendicular to m is defined by [35]:

X0 ¼ mXm ∗ ¼ �mXm: (106)

Let m ¼ γama,X ¼ γaX
a, substituting it into (106) and using (21), we have:

X0¼ � m⊙XþmaXbγab
� �

m ¼ � m⊙Xð Þm�maXbmc γabγcð Þ
¼ � m⊙Xð Þm�maXbmc gbcγa � gacγb þ γabc

� �

¼ �2 m⊙Xð ÞmþX ¼ X⊥ �X∥:

(107)

Eq. (107) clearly shows the geometrical meaning of reflection. By (106), we
learn reflection transformation belongs to Pinp,q group (Figure 3).

The rotation transformation R∈ Spinp,q,

X0 ¼ RXR�1: (108)

The group elements of elementary transformation in Λ2 are given by [22, 36]:

cosh
υab
2

þ γab sinh
υab
2

� ��1
¼ cosh

υab
2

� γab sinh
υab
2

� �
, υab ∈, (109)

cos
θab
2

þ γab sin
θab
2

� ��1

¼ cos
θab
2

� γab sin
θab
2

� �
, θab ∈ �π, π½ Þ: (110)

The total transformation can be expressed as multiplication of elementary
transformations as follows:

R ¼
Y

ηaaηbb¼�1f g
cosh

υab
2

þ γab sinh
υab
2

� � Y
ηaaηbb¼1f g

cos
θab
2

þ γab sin
θab
2

� �
: (111)
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(111) has 1
2 n� 1ð Þn generating elements like SO nð Þ. In (111), we have commuta-

tive relation as follows:

cosh
υab
2

þ γab sinh
υab
2
, cos

θcd
2

þ γcd sin
θcd
2

� �
¼ 2 sinh

υab
2

sin
θcd
2

γab ⊙ γcd,

(112)

cos
θab
2

þ γab sin
θab
2
, cos

θcd
2

þ γcd sin
θcd
2

� �
¼ 2 sin

θab
2

sin
θcd
2

γab ⊙ γcd, (113)

in which

γab ⊙ γcd ¼ ηbcγad � ηacγbd þ ηadγbc � ηbdγac ∈Λ2: (114)

If a 6¼ b 6¼ c 6¼ d, the right hand terms vanish, and then two elementary trans-
formations commute with each other.

R forms a Lie Group of 1
2 n� 1ð Þn paraments. In the case Cℓn,0 or Cℓ0,n, R is

compact group isomorphic to SO nð Þ. Otherwise, R is noncompact one similar to
Lorentz transformation. The infinitesimal generators of the corresponding Lie
group is γab, and the Lie algebra is given by:

R ¼ εabγab, γab, γcd½ � ¼ 2γab ⊙ γcd ∈Λ2, ∀εab ∈: (115)

Thus, Λ2 p,qð Þ is just the Lie algebra of proper Lorentz transformation of the
space-time p,q.

5. Application in classical geometry

Suppose the basic space of projective geometry is n-dimensional Euclidean space
π (see Figure 4), and the basis is γaja ¼ 1, 2,⋯, nf g. The coordinate of point x is

Figure 3.
Reflection transformation X0 ¼ X⊥ �X∥.
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given by x ¼ γaxa. The projective polar is P, and its height from the basic space π is
h. The total projective space is nþ 1 dimensional, and an auxiliary basis γnþ1 ¼ γp
is introduced. The coordinate of the polar P is p ¼ γμpμ. In this section, we use
Greek characters for nþ 1 indices. Assume the unit directional vector of the
projective ray is t ¼ γμtμ, the unit normal vector of the image space π0 is n ¼ γμnμ,
coordinate in π0 is y ¼ γμyμ, and the intercept of π0 with the nþ 1 coordinate axis is
a. Then, we have:

y� a
� �

⊙n ¼ 0, or y⊙n ¼ nμyμ ¼ anp: (116)

The equation of projective ray is given by:

s ¼ pþ λt, (117)

where λ is parameter coordinate of the line. In the basic space π, we have snþ1 ¼
0 and λ ¼ �h=tp, so the coordinate of the line in π reads

x ¼ p� h
tp
t: (118)

Let s ¼ y and substitute (117) into (116) we get image equation as follows:

y ¼ pþ anp � p⊙n
t⊙n

t, λ ¼ anp � p⊙n
t⊙n

: (119)

In the above equation t⊙n 6¼ 0, which means t cannot be perpendicular to n;
otherwise, the projection cannot be realized. Eliminating coordinate t in (118)
and (119), we find the projective transformation y $ x is nonlinear. In (119),
only the parameters a,nð Þ are related to image space π0; so, all geometric
variables independent of two parameters a,nð Þ are projective invariants. In
what follows we prove the fundamental theorems of projective geometry by
Clifford algebra.

Theorem 10 For 4 different points y1, y2, y3, y4
� �

on a straight line L, the following
cross ratio is a projective invariant

12; 34ð Þ � ∣y1 � y3∣
∣y2 � y3∣

� ∣y2 � y4∣
∣y1 � y4∣

: (120)

Figure 4.
Diagram of parameter setting for projective geometry.
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Proof Substituting (119) into (120) we get

12; 34ð Þ ¼ ∣ t3 ⊙nð Þt1 � t1 ⊙nð Þt3∣
∣ t3 ⊙nð Þt2 � t2 ⊙nð Þt3∣ �

∣ t4 ⊙nð Þt2 � t2 ⊙nð Þt4∣
∣ t4 ⊙nð Þt1 � t1 ⊙nð Þt4∣ : (121)

By (19) and (20), we get

tb ⊙nð Þta � ta ⊙ nð Þtb ¼ ta ∧ tbð Þ⊙n ¼ �∣ta ∧ tb∣m⊙n, (122)

where m is the unit normal vector of the plane spanned by ta, tbð Þ, which is
independent of the image space π0. Substituting it into (121), we get

12; 34ð Þ ¼ ∣t3 ∧ t1∣
∣t3 ∧ t2∣

� ∣t4 ∧ t2∣
∣t4 ∧ t1∣

: (123)

(123) is independent of a,nð Þ; so, it is a projective invariant. Likewise, 13; 24ð Þ
and 14; 23ð Þ are also projective invariants. The proof is finished.

Now we examine affine transformation. In this case, the polar P at infinity and
the directional vector t of rays becomes constant vector. The equation of rays is
given by y ¼ xþ λt. Substituting it into (116), we get the coordinate transformation
from basic space π to image space π0,

y ¼ xþ anp � n⊙x
t⊙n

t, λ ¼ anp � n⊙x
t⊙n

: (124)

Since t and n are constant vectors for all rays, the affine transformation y $ x is
linear. A variable independent of a,nð Þ is an affine invariant.

Theorem 11 Assume x1,x2,x3f g are 3 points on a straight line L in basic space π, and
y1, y2, y3
� �

are respectively their projective images on line L0 in π0. Then the simple ratio

12, 13ð Þ � ∣y2 � y1∣
∣y3 � y1∣

(125)

is an affine invariant.
Proof By equation of transformation (124) we get

yk ¼ xk þ
anp � n⊙xk

t⊙n
t: (126)

In (126), only the parameters a,nð Þ are related to image space π0. Substituting
(126) into (125), we have:

12, 13ð Þ ¼ ∣ t⊙nð Þ x2 � x1ð Þ � n⊙ x2 � x1ð Þt∣
∣ t⊙nð Þ x3 � x1ð Þ � n⊙ x3 � x1ð Þt∣ ¼

∣ x2 � x1ð Þ∧ tð Þ⊙n∣
∣ x3 � x1ð Þ∧ tð Þ⊙n∣

: (127)

Denote the unit directional vector of line L by k, then we have

x2 � x1 ¼ �∣x2 � x1∣k, x3 � x1 ¼ �∣x3 � x1∣k: (128)

Substituting them into (127) we get:

12, 13ð Þ ¼ ∣y2 � y1∣
∣y3 � y1∣

¼ ∣x2 � x1∣
∣x3 � x1∣

: (129)
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This proves the simple ratio 12, 13ð Þ is an affine invariant. Likewise, we can
prove 12, 23ð Þ and 13, 23ð Þ are also affine invariants. The proof is finished.

The treatment of image information by computer requires concise and
general algebraic representation for geometric modeling as well as fast and robust
algebraic algorithm for geometric calculation. Conformal geometry algebra was
introduced in this context. By establishing unified covariant algebra representation
of classical geometry, the efficient calculation of invariant algebra is realized
[13–15]. It provides a unified and concise homogeneous algebraic framework
for classical geometry and algorithms, which can thus be used for complicated
symbolic geometric calculations. This technology is currently widely applied in
high-tech fields such as computer graphics, vision calculation, geometric design,
and robots.

The algebraic representation of a geometric object is homogeneous, which
means that any two algebraic expressions representing this object differ by only one
nonzero factor and any such algebraic expressions with different nonzero multiple
represent the same geometric object. The embedding space provided by conformal
geometric algebra for n dimensional Euclidean space is nþ 2 dimensional
Minkowski space. Since the orthonormal transformation group of the embedding
space is exactly double coverage of the conformal transformation group of the
Euclidean space, this model is also called the conformal model. The following is a
brief introduction to the basic concepts and representation for geometric objects of
conformal geometric algebra. The materials mainly come from literature [13].

In conformal geometry algebra, an additional Minkowski plane 1,1 is attached
to n dimensional Euclidean space n, 1,1 has an orthonormal basis eþ, e�f g, which
has the following properties:

e2þ ¼ 1, e2� ¼ �1, eþ ⊙ e� ¼ 0: (130)

In practical application, eþ, e�f g is replaced by null basis e0, ef g

e0 ¼ 1
2

e� � eþð Þ, e ¼ e� þ eþ: (131)

They satisfy

e20 ¼ e2 ¼ 0, e⊙ e0 ¼ �1: (132)

A unit pseudo-scalar E for 1,1 is defined by:

E ¼ e∧ e0 ¼ eþ ∧ e� ¼ eþe�: (133)

In conformal geometric algebra, we work with nþ1,1 ¼ n ⊕1,1.
Define the horosphere of n by:

N n
e ¼ x∈nþ1,1jx2 ¼ 0, x⊙ e ¼ �1

� �
: (134)

N n
e is a homogeneous model of n. The powerful applications of conformal

geometry come from this model. By calculation, for ∀x∈n we have:

x ¼ xþ 1
2
x2eþ e0, (135)
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which is a bijective mapping x∈n $ x∈N n
e , we haveN n

e ffi n. x is referred to
as the homogeneous point of x. Clearly, 0∈n $ e0 ∈N n

e and ∞∈n $ e∈N n
e

are in homogeneous coordinate.
Now we examine how conformal geometric algebra represents geometric

objects. For a line passing through points a and b, we have

e∧ a∧ b ¼ ea∧bþ b� að ÞE: (136)

Since a∧b ¼ a∧ b� að Þ is the moment for a line through point a with tangent
a� b, e∧ a∧b characterizes the line completely.

Again by using (135) and (136), we get

e∧ a∧ b∧ c ¼ ea∧b∧ cþ b� að Þ∧ c� að ÞE: (137)

We recognize a∧b∧ c as the moment of a plane with tangent b� að Þ∧ c� að Þ.
Thus, e∧ a∧ b∧ c represents a plane through points {a, b, c}, or, more specifically,
the triangle (2-simplex) with these points as vertices.

For a sphere with radius ρ and center p∈n, we have x� pð Þ2 ¼ ρ2. By (135),
the equation in terms of homogeneous points becomes

x⊙ p ¼ � 1
2
ρ2: (138)

Using x⊙ e ¼ �1, we get:

x⊙ s ¼ 0, s ¼ p� 1
2
ρ2e ¼ pþ e0 þ 1

2
p2 � ρ2
� �

e, (139)

where

s2 ¼ ρ2, e⊙ s ¼ �1: (140)

From these properties, the form (139) and center p can be recovered. Therefore,
every sphere in n is completely characterized by a unique vector s∈nþ1,1.
According to (140), s lies outside the null cone. Analysis shows that every such
vector determines a sphere.

6. Discussion and conclusion

The examples given above are only applications of Clifford algebra in geometry,
but we have seen the power of Clifford algebra in solving geometrical problems. In
fact, Clifford algebra is more widely used in physics. Why does Clifford algebra
work so well? As have been seen from the above examples, the power of Clifford
algebra comes from the following features:

1. In the geometry of flat space, the basic concepts are only length, angle, area,
and volume, which are already implicitly included in the definition of Clifford
algebra. So, Clifford algebra summarizes these contents of classical geometry
and algebraize them all. By introducing the concepts of inner, exterior, and
direct products of vector, Clifford algebra summarizes the operations of
scalars, vectors, and tensors and then can represent all the physical variables in
classical physics, because only these variables are included in classical physics.
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2.By localizing the basis or frame of space-time, Clifford algebra is naturally
suitable for the tangent space in a manifold. If the differential ∂μ and
connection operator dμγν are introduced, Clifford algebra can be used for the
whole manifold, so it contains Riemann geometry. Furthermore, Clifford
algebra can express all contents of classical physics, including physical
variables, differential equations, and algebraic operations. Clifford algebra
transforms complicated theories and relations into a unified and standard
calculus with no more or less contents, and all representations are neat and
elegant [23, 36].

3. If the above contents seem to be very natural, Clifford algebra still has another
unusual advantage, that is, it includes the theory of spinor. So, Clifford algebra
also contains quantum theory and spinor connection. These things are far
beyond the human intuition and have some surprising properties.

4.There are many reasons to make Clifford algebra become a unified and
efficient language and tool for mathematics, physics, and engineering, such as
Clifford algebra generalizes real number, complex number, quaternion, and
vector algebra; Clifford algebra is isomorphic to matrix algebra; the derivative
operator γμ∇μ contains grad, div, curl, etc. However, the most important
feature of Clifford algebra should be taking the physical variable and the basis
as one entity, such as g ¼ gμνγ

μ ⊗ γν and T ¼ T μνωγμνω. In this representation,
the basis is an operator without ambiguity. Clifford algebra calculus is an
arithmetic-like operation which can be well understood by everyone.

“But, if geometric algebra is so good, why is it not more widely used?” As
Hestenes replied in [11]: “Its time will come!” The published geometric algebra
literature is more than sufficient to support instruction with geometric algebra
at intermediate and advanced levels in physics, mathematics, engineering, and
computer science. Though few faculty are conversant with geometric algebra
now, most could easily learn what they need while teaching. At the
introductory level, geometric algebra textbooks and teacher training will be
necessary before geometric algebra can be widely taught in the schools. There
is steady progress in this direction, but funding is needed to accelerate it.
Malcolm Gladwell has discussed social conditions for a “tipping point” when
the spread of an idea suddenly goes viral. Place your bets now on a Tipping
Point for Geometric Algebra!

Acknowledgements

I would like to thank Dr. Min Lei for her kind invitation and help. The discussion
on torsion is completed under the inspiration and guidance of Prof. James M.
Nester. The content of conformal geometric algebra is added according to the
suggestion of Dr. Isiah Zaplana. The chapter has been improved according to the
comments of a referee.

65

Some Applications of Clifford Algebra in Geometry
DOI: http://dx.doi.org/10.5772/intechopen.93444



Author details

Ying-Qiu Gu
School of Mathematical Science, Fudan University, Shanghai, China

*Address all correspondence to: yqgu@fudan.edu.cn

©2020TheAuthor(s). Licensee IntechOpen. This chapter is distributed under the terms
of theCreativeCommonsAttribution License (http://creativecommons.org/licenses/
by/3.0),which permits unrestricted use, distribution, and reproduction in anymedium,
provided the original work is properly cited.

66

Structure Topology and Symplectic Geometry



References

[1] Hamilton W. On quaternions, or on a
new system of imaginaries in algebra.
Philosophical Magazine. 1844

[2] Grassmann H. Die Lineale
Ausdehnungslehre, ein neuer Zweig der
Mathematik [The Theory of Linear
Extension, a New Branch of
Mathematics]. O. Wigand, 1844, New
York: Cambridge University Press; 2013

[3] Clifford W. Application of
Grassmann’s extensive algebra.
American Journal of Mathematics. 1878;
1:350-358

[4] Gibbs W. The Scientific Papers of
Willard Gibbs. Vol. 3. London:
Longmas, Green and Company; 1906

[5] Dirac P. The quantum theory of the
electron. Proceedings of the Royal
Society of London. 1928;A117:610-624

[6] Cartan E. The Theory of Spinors.
Cambridge, MA: The M.T.I. Press; 1966

[7] Chevalley C. The Algebraic Theory of
Spinors and Clifford Algebras. Berlin:
Springer; 1996

[8] Riesz M. In: Bolinder EF, Lounesto P,
editors. Clifford Numbers and Spinors.
Netherlands: Springer; 1993

[9] Hestenes D. Space Time Algebra.
New York: Gordon and Breach; 1966

[10] Hestenes D. Oersted medal lecture
2002: Reforming the mathematical
language of physics. American Journal
of Physics. 2003;71:104-121

[11] Hestenes D. The genesis of
geometric algebra: A personal
retrospective. Advances in Applied
Clifford Algebras. 2017;27(1):351-379

[12] Sobczyk G. Clifford geometric
algebras in multilinear algebra and non-
Euclidean geometries. In: Byrnes J,

editor. Computational Noncommutative
Algebra and Applications. Netherlands:
Springer; 2004

[13] Li HB, Hestenes D, Rockwood A.
Generalized homogeneous coordinates
for computational geometry. In:
Sommer G, editor. Geometric Computing
with Clifford Algebras. Heidelberg:
Springer-Verlag; 2001. pp. 27-60

[14] Doran C, Lasenby A. Geometric
Algebra for Physicists. Cambridge:
Cambridge University Press; 2003

[15] Lasenby A, Lasenby J, Wareham R.
A Covariant Approach to Geometry
Using Geometric Algebra, Technical
Report. Cambridge, UK: University of
Cambridge Department of Engineering;
2004

[16] Doran CJL, Lasenby AN, Gull SF,
Somaroo S, Challinor A. Spacetime
algebra and electron physics. Advances
in Electronics and Electron Physics.
1996;95:272-383

[17] Sommer G, editor. Applications of
Geometric Algebra in Engineering.
1st ed. Springer Verlag; 1999

[18] Lounesto P. Clifford Algebras and
Spinors. Cambridge: Cambridge
University Press; 2001

[19] Shirokov DS. Clifford algebras and
their applications to Lie groups and
spinors. In: Mladenov IM, Yoshioka A,
editors. Proceedings of the Nineteenth
International Conference on Geometry,
Integrability and Quantization. Sofia:
Avangard Prima; 2018. pp. 11-53. arXiv:
1709.06608

[20] Gu YQ. A Note on the
Representation of Clifford Algebra.
Preprints; 2020. p. 2020020466.
[Preprint]. DOI: 10.20944/
preprints202002.0466.v1

67

Some Applications of Clifford Algebra in Geometry
DOI: http://dx.doi.org/10.5772/intechopen.93444



[21] Pavsic M. Clifford algebra,
geometry and physics. NATO Science
Series II. 2003;95:165-174. arXiv:gr-qc/
0210060

[22] Lachiéze-Rey M. Spin and Clifford
algebras, an introduction. Advances in
Applied Clifford Algebras. 2009;19(3–
4):687-720. arXiv:1007.2481

[23] Gu YQ. Space-time geometry and
some applications of Clifford algebra in
physics. Advances in Applied Clifford
Algebras. 2018;28(4):79

[24] Hehl FW, von der Heyde P,
Kerlick GD, Nester JM. General
relativity with spin and torsion:
Foundation and prospects. Reviews of
Modern Physics. 1976;48:393-416

[25] Bergmann PG. Two-component
Spinors in general relativity. Physics
Review. 1957;107(2):624-629

[26] Gu YQ. The Simplification of Spinor
Connection and Classical
Approximation. [Preprint] arXiv:gr-qc/
0610001

[27] Nester JM. Special orthonormal
frames. Journal of Mathematical
Physics. 1992;33:910

[28] Gu YQ. The series solution to the
metric of stationary vacuum with
axisymmetry. Chinese Physics B. 2008;
19(3):90-100

[29] Blackett PMS. The magnetic field of
massive rotating bodies. Nature. 1947;
159:658-666

[30] Dolginov A. Electromagnetic field
created by rotation of celestial bodies.
Journal of Modern Physics. 2016;7(16):
2418-2425

[31] Gu YQ. A new explanation for the
origin of magnetic field of celestial
bodies. Natural Science (in Chinese).
2019;7(6):464-470

[32] Gu YQ. A canonical form for
relativistic dynamic equation. Advances
in Applied Clifford Algebras. 1997;V7
(1):13-24

[33] Garling DJH. Clifford Algebras: An
Introduction. Cambridge: Cambridge
University Press; 2011

[34] Lawson HB, Michelsohn ML. Spin
Geometry. Princeton: Princeton
University Press; 1989

[35] Gunn CG. Doing Euclidean plane
geometry using projective geometric
algebra. Advances in Applied Clifford
Algebras. 2017;27:1203-1232

[36] Gu YQ. Clifford algebra, Lorentz
transformation and unified field theory.
Advances in Applied Clifford Algebras.
2018;28(2):37

68

Structure Topology and Symplectic Geometry

Chapter 5

Quasiconformal Reflections across
Polygonal Lines
Samuel L. Krushkal

Abstract

An important open problem in geometric complex analysis is to establish
algorithms for explicit determination of the basic curvelinear and analytic func-
tionals intrinsically connected with conformal and quasiconformal maps, such as
their Teichmüller and Grunsky norms, Fredholm eigenvalues and the
quasireflection coefficient. This has not been solved even for convex polygons. This
case has intrinsic interest in view of the connection of polygons with the geometry
of the universal Teichmüller space and approximation theory. This survey extends
our previous survey of 2005 and presents the new approaches and recent essential
progress in this field of geometric complex analysis, having various important
applications. Another new topic concerns quasireflections across finite collections
of quasiintervals.

Keywords: Grunsky inequalities, univalent function, Beltrami coefficient,
quasiconformal reflection, universal Teichmüller space, Fredholm eigenvalues,
convex polygon

1. Quasiconformal reflections: general theory

1.1 Quasireflections and quasicurves

The classical Brouwer-Kerekjarto theorem ([1, 2], see also [3]) says that
every periodic homeomorphism of the sphere S2 is topologically equivalent to a
rotation, or to a product of a rotation and a reflection across a diametral plane. The
first case corresponds to orientation-preserving homeomorphisms (and then E
consists of two points), the second one is orientation reversing, and then either
the fixed point set E is empty (which is excluded in our situation) or it is a
topological circle.

We are concerned with homeomorphisms reversing orientation. Such homeo-
morphisms of order 2 are topological involutions of S2 with f ∘ f ¼ id and are called
topological reflections.

We shall consider here quasiconformal reflections or quasireflections on the
Riemann sphere ̂ ¼ ∪ ∞f g ¼ S2, that is, the orientation reversing
quasiconformal automorphisms of order 2 (involutions) of the sphere with f ∘ f ¼ id.
The topological circles admitting such reflections are called quasicircles. Such
circles are locally quasiintervals, that is, the images of straight line segments under
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circles are locally quasiintervals, that is, the images of straight line segments under
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quasiconformal maps of the sphere S2. Any quasireflection preserves pointwise
fixed a quasicircle L⊂ ̂ interchanging its inner and outer domains.

Under quasiconformal map w zð Þ of a domain D⊂ ̂, we understand an
orientation-preserving generalized solution of the Beltrami equation (uniformly
elliptic system of the first order)

∂w
∂z

¼ μ zð Þ ∂w
∂z

, z∈D,

where

∂

∂z
¼ 1

2
∂

∂x
� i

∂

∂y

� �
,

∂

∂z
¼ 1

2
∂

∂x
� i

∂

∂y

� �

are the distributional partial derivatives, μ is a given function from L∞ Dð Þ with
∥μ∥∞ < 1, called the Beltrami coefficient (or complex dilatation) of the map w, and
the quantity k wð Þ ¼ ∥μ∥∞ is the (quasiconformal) dilatation of this map. There are
some equivalent analytic and geometric definitions of such maps.

Quasiconformality preserves (up to bounded perturbations) the main intrinsic
properties of conformal maps (see, e.g., [4–6]).

Qualitatively, any quasicircle L is characterized, due to [7], by uniform bound-
edness of the cross-ratios for all ordered quadruples z1, z2, z3, z4ð Þ of the distinct
points on L; namely,

z1z2
z1z3

z3z4
z2z4

≤C<∞

for any quadruple of points z1, z2, z3, z4 on L following this order. Using a
fractional linear transformation, one can send one of the points, for example, z4, to
infinity; then the above inequality assumes the form

z2 � z1
z3 � z1

����
����≤C:

This is shown in [7] by applying the properties of quasisymmetric maps. Ahlfors
has established also that if a topological circle L admits quasireflections (i.e., is a
quasicircle), then there exists a differentiable quasireflection across L which is
(euclidian) bilipschitz-continuous. This property is very useful in various applica-
tions. On its extension to hyperbolic M-bilipschitz reflections see [8].

Geometrically, a quasicircle is characterized by the property that, for any two
points z1, z2 on L, the ratio of the chordal distance ∣z1 � z2∣ to the diameters of the
corresponding subarcs with these endpoints is uniformly bounded. Note also that
every quasicircle has zero two-dimensional Lebesgue measure.

Other characterizations of quasicircles are given, for example, in [9–11]. We will
not touch here the extension of this theory to higher dimensions.

Quasireflections across more general sets E⊂ ̂ also appear in certain questions
and are of independent interest. Those sets admitting quasireflections are called
quasiconformal mirrors.

One defines for each mirror E its reflection coefficient

qE ¼ inf k fð Þ ¼ inf ∥∂zf=∂zf∥∞ (1)

and quasiconformal dilatation
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QE ¼ 1þ qE
� �

= 1� qE
� �

≥ 1;

the infimum in (1) is taken over all quasireflections across E, provided those
exist, and is attained by some quasireflection f 0.

When E ¼ L is a quasicircle, the corresponding quantity

kE ¼ inf k f ∗
� �

: f ∗ S1
� � ¼ E

� �
(2)

and the reflection coefficient qE can be estimated in terms of one another;
moreover, due to [4, 12], we have

QE ¼ KE ≔
1þ kE
1� kE

� �2

: (3)

The infimum in (2) is taken over all orientation-preserving quasiconformal
automorhisms f ∗ carrying the unit circle onto L, and k f ∗

� � ¼ ∥∂z f ∗ =∂z f ∗ ∥∞.
Theorem 1. For any set E⊂ ̂ which admits quasireflections, there is a quasicircle

L⊃E with the same reflection coefficient; therefore,

QE ¼ min QL : L⊃E quasicirclef g: (4)

The proof of this important theorem was given for finite sets E ¼ z1, … , znf g
by Kühnau in [13], using Teichmüller’s theorem on extremal quasiconformal maps
applied to the homotopy classes of homeomorphisms of the punctured spheres, and
extended to arbitrary sets E⊂ hC by the author in [14].

Theorem 1 yields, in particular, that similar to (3) for any set E⊂ ̂, its
quasiconformal dilatation satsfies

QE ¼ 1þ kEð Þ2= 1� kEð Þ2,

where kE ¼ inf ∥∂zf=∂zf∥∞ over all quasicircles L⊃E and all orientation-
preserving quasiconformal homeomorphisms f : ̂ ! ̂ with f ̂

� � ¼ L.
This theorem implies various quantitative consequences. A new its application

will be given in the last section.
We point out that the conformal symmetry on the extended complex plane is

strictly rigid and reduces to reflection z↦ z within conjugation by transformations
g∈PSL 2,ð Þ. The quasiconformal symmetry avoids such rigidity and is possible
over quasicircles. Theorem 1 shows that, in fact, this case is the most general one,
since for any set E⊂ ̂we have QE ¼ ∞, unless E is a subset of a quasicircle with the
same reflection coefficient.

Let us mention also that a somewhat different construction of quasiconformal
reflections across Jordan curves has been provided in [15]; it relies on the
conformally natural extension of homeomorphisms of the circle introduced by
Douady and Earle [16].

The quasireflection coefficients of curves are closely connected with intrinsic
functionals of conformal and quasiconformal maps such as their Teichmüller and
Grunsky norms and the first Fredholm eigenvalue, which imply a deep quantitative
characterization of the features of these maps.

One of the main problem here, important also in applications of geometric
complex analysis, is to establish the algorithms for explicit determination of these
quantities for individual quasicircles or quasiintervals. This was remains open a long
time even for generic quadrilaterals.
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1.2 Fredholm eigenvalues

Recall that the Fredholm eigenvalues ρn of an oriented smooth closed Jordan
curve L on the Riemann sphere ̂ ¼ ∪ ∞f g are the eigenvalues of its double-layer
potential, or equivalently, of the integral equation

u zð Þ þ ρ

π

ð

L

u ζð Þ ∂

∂nζ
log

1
∣ζ � z∣

dsζ ¼ h zð Þ,

which has has many applications (here nζ is the outer normal and dsζ is the
length element at ζ∈L).

The least positive eigenvalue ρL ¼ ρ1 plays a crucial role and is naturally
connected with conformal and quasiconformal maps. It can be defined for any
oriented closed Jordan curve L by

1
ρL

¼ sup
∣DG uð Þ � DG ∗ uð Þ∣
DG uð Þ þ DG ∗ uð Þ ,

where G and G ∗ are, respectively, the interior and exterior of L;D denotes the
Dirichlet integral, and the supremum is taken over all functions u continuous on ̂
and harmonic on G∪G ∗ . In particular, ρL ¼ ∞ only for the circle.

An upper bound for ρL is given by Ahlfors’ inequality [17].

1
ρL

≤ qL, (5)

where qL denotes the minimal dilatation of quasireflections across L.
In view of the invariance of all quantities in (5) under the action of the Möbius

group PSL 2,ð Þ=� 1, it suffices to consider the quasiconformal homeomorphisms
of the sphere carrying S1 onto L whose Beltrami coefficients μ f zð Þ ¼ ∂zf=∂zf have
support in the unit disk  ¼ jzj< 1f g, and f ∣ ∗ zð Þ ¼ zþ b0 þ b1z�1 þ … , where
 ∗ ¼ ̂n (or in the upper half-plane U ¼ Imz>0f g). Then qL is equal to the
minimum k0 fð Þ of dilatations k fð Þ ¼ ∥μ∥∞ of quasiconformal extensions of the
function f ∗ ¼ f ∣ ∗ into .

The inequality (5) serves as a background for defining the value ρL, being com-
bined with the features of Grunsky inequalities given by the classical Kühnau-Schiffer
theorem. The related results can be found, for example, in surveys [12, 18, 19] and the
references cited there.

In the following sections, we provide a new general approach.

1.3 The Grunsky and Milin inequalities

Let

 ¼ z : jzj< 1f g,  ∗ ¼ z∈ ̂ ¼ ∪ ∞f g :jzj> 1
n o

:

In 1939, Grunsky discovered the necessary and sufficient conditions for
univalence of a holomorphic function in a finitely connected domain on the
extended complex plane ̂ in terms of an infinite system of the coefficient inequal-
ities. In particular, his theorem for the canonical disk  ∗ yields that a holomorphic
function f zð Þ ¼ zþ constþO z�1ð Þ in a neighborhood of z ¼ ∞ can be extended to a
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univalent holomorphic function on the  ∗ if and only if its Grunsky coefficients
αmn satisfy

X∞
m, n¼1

ffiffiffiffiffiffiffi
mn

p
αmnxmxn

�����

�����≤ 1, (6)

where αmn are defined by

log
f zð Þ � f ζð Þ

z� ζ
¼ �

X∞
m, n¼1

αmnz�mζ�n, z, ζð Þ∈  ∗ð Þ2, (7)

the sequence x ¼ xnð Þ runs over the unit sphere S l2
� �

of the Hilbert space l2 with

norm ∥x∥2 ¼P
∞

1
xnj j2, and the principal branch of the logarithmic function is chosen

(cf. [20]). The quantity

ϰ fð Þ ¼ sup
X∞
m, n¼1

ffiffiffiffiffiffiffi
mn

p
αmnxmxn

�����

����� : x ¼ xnð Þ∈ S l2
� �( )

≤ 1 (8)

is called the Grunsky norm of f.
For the functions with k-quasiconformal extensions (k< 1), we have instead of

(8) a stronger bound

X∞
m, n¼1

ffiffiffiffiffiffiffi
mn

p
αmnxmxn

�����

�����≤ k forany x ¼ xnð Þ∈ S l2
� �

, (9)

established first in [21] (see also [18, 22]). Then

ϰ fð Þ≤ k fð Þ, (10)

where k fð Þ denotes the Teichmüller norm of f , which is equal to the infimum
of dilatations k wμð Þ ¼ ∥μ∥∞ of quasiconformal extensions of f to ̂. Here wμ denotes
a homeomorphic solution to the Beltrami equation ∂zw ¼ μ∂zw on  extending f .

Note that the Grunsky (matrix) operator

G fð Þ ¼ ffiffiffiffiffiffiffi
mn

p
αmn fð Þ� �∞

m,n¼1

acts as a linear operator l2 ! l2 contracting the norms of elements x∈ l2; the
norm of this operator equals ϰ fð Þ (cf. [23, 24]).

For most functions f , we have in (10) the strong inequality ϰ fð Þ< k fð Þ (more-
over, the functions satisfying this inequality form a dense subset of Σ), while the
functions with the equal norms play a crucial role in many applications (see [18, 22,
25–28]).

The method of Grunsky inequalities was generalized in several directions, even
to bordered Riemann surfaces X with a finite number of boundary components (cf.
[6, 11, 20, 29, 30]; see also [31]). In the general case, the generating function (7)
must be replaced by a bilinear differential

� log
f zð Þ � f ζð Þ

z� ζ
� RX z, ζð Þ ¼

X∞
m, n¼1

βmn φm zð Þφn ζð Þ : X � X ! , (11)
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where the surface kernel RX z, ζð Þ relates to the conformal map jθ z, ζð Þ of X onto
the sphere ̂ slit along arcs of logarithmic spirals inclined at the angle θ∈ 0, π½ Þ to a
ray issuing from the origin so that jθ ζ, ζð Þ ¼ 0 and

jθ zð Þ ¼ z� zθð Þ�1 þ constþO 1= z� zθð Þð Þ as z ! zθ ¼ j�1
θ ∞ð Þ

(in fact, only the maps j0 and jπ=2 are applied). Here φnf g∞1 is a canonical system
of holomorphic functions on X such that (in a local parameter)

φn zð Þ ¼ an,n
zn

þ anþ1,n

znþ1 þ … with an,n >0, n ¼ 1, 2, … ,

and the derivatives (linear holomorphic differentials) φ0
n form a complete

orthonormal system in H2 Xð Þ.
We shall deal only with simply connected domains X ¼ D ∗ ∍∞ with

quasiconformal boundaries (quasidisks). For any such domain, the kernel RD van-
ishes identically on D ∗ �D ∗ , and the expansion (11) assumes the form

� log
f zð Þ � f ζð Þ

z� ζ
¼
X∞
m, n¼1

βmnffiffiffiffiffiffiffi
mn

p
χ zð Þm χ ζð Þn , (12)

where χ denotes a conformal map of D ∗ onto the disk  ∗ so that χ ∞ð Þ ¼
∞, χ0 ∞ð Þ>0.

Each coefficient αmn fð Þ in (12) is represented as a polynomial of a finite number
of the initial coefficients b1, b2, … , bs of f ; hence it depends holomorphically on
Beltrami coefficients of quasiconformal extensions of f as well as on the Schwarzian
derivatives

S f zð Þ ¼ f 00 zð Þ
f 0 zð Þ

� �0
� 1
2

f 00 zð Þ
f 0 zð Þ

� �2

, z∈D ∗ : (13)

These derivatives range over a bounded domain in the complex Banach space
B D ∗ð Þ of hyperbolically bounded holomorphic functions φ∈ ∗ with norm

∥φ∥B ¼ sup
D ∗

λ�2
D ∗ zð Þ∣φ zð Þ∣,

where λD ∗ zð Þ∣dz∣ denotes the hyperbolic metric of D ∗ of Gaussian curvature �4.
This domain models the universal Teichmüller space T with the base point
χ0 ∞ð ÞD ∗ (in holomorphic Bers’ embedding of T).

A theorem of Milin [29] extending the Grunsky univalence criterion for the disk
 ∗ to multiply connected domains D ∗ states that a holomorphic function f zð Þ ¼
zþ constþ O z�1ð Þ in a neighborhood of z ¼ ∞ can be continued to a univalent
function in the whole domain D ∗ if and only if the coefficients βmn in (12) satisfy,
similar to the classical case of the disk  ∗ , the inequality

X∞
m, n¼1

βmn xmxn

�����

�����≤ 1 (14)

for any point x ¼ xnð Þ∈ S l2
� �

. We call the quantity
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ϰD ∗ fð Þ ¼ sup
X∞
m, n¼1

βmn xmxn

�����

����� : x ¼ xnð Þ∈ S l2
� �( )

, (15)

the generalized Grunsky norm of f . By (14), ϰD ∗ fð Þ≤ 1 for any f from the class
Σ D ∗ð Þ of univalent functions in D ∗ with hydrodynamical normalization

f zð Þ ¼ zþ b0 þ b1z�1 þ … near z ¼ ∞:

The inequality ϰD ∗ fð Þ≤ 1 is necessary and sufficient for univalence of f in D ∗

(see [11, 20, 29]).
The norm (15) also is dominated by the Teichmüller norm k fð Þ of this map.

Similar to (10),

ϰD ∗ fð Þ≤ k fð Þ ¼ tanh τT 0, SFð Þ,

where τT denotes the Teichmüller distance on the universal Teichmüller space T
with the base point D, and for the most of univalent functions, we also have here
the strict inequality.

The quasiconformal theory of generic Grunsky coefficients has been developed
in [32]. This technique is a powerful tool in geometric complex analysis having
fundamental applications in the Teichmüller space theory and other fields.

Note that in the case D ∗ ¼  ∗ , βmn ¼
ffiffiffiffiffiffiffi
mn

p
αmn; for this disk, we shall use the

notations Σ and ϰ fð Þ. We denote by S the canonical class of univalent functions
F zð Þ ¼ zþ a2z2 þ … in the unit disk .

The Grunsky norm of univalent functions F∈ S is defined similar to (5), (6); so
any such F zð Þ and its inversion f zð Þ ¼ 1=F 1=zð Þ univalent in D ∗ have the same
Grunsky coefficients αmn. Technically it is more convenient to deal with functions
univalent in  ∗ .

1.4 Extremal quasiconformality

A crucial point here is that the Teichmüller norm on Σ is intrinsically connected
with integrable holomorphic quadratic differentials ψ zð Þdz2 on the complemen-
tary domain

D ¼ ̂nD ∗

(the elements of the subspace A1 Dð Þ of L1 Dð Þ formed by holomorphic func-
tions), while the Grunsky norm naturally relates to the abelian structure deter-
mined by the set of quadratic differentials

A2
1 Dð Þ ¼ ψ ∈A1 Dð Þ : ψ ¼ ω2� �

having only zeros of even order on D.
We describe the general intrinsic features. Let L be a quasicircle passing through

the points 0, 1,∞, which is the common boundary of two domains D and D ∗ . Let L
be an oriented quasiconformal Jordan curve (quasicircle) on the Riemann sphere ̂
with the interior and exterior domains D and D ∗ . Denote by λD zð Þ∣dz∣ the hyper-
bolic metric of D of Gaussian curvature �4 and by δD zð Þ ¼ dist z, ∂Dð Þ the Euclidean
distance from the point z∈D to the boundary. Then
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θ ∞ð Þ
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φn zð Þ ¼ an,n
zn

þ anþ1,n
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n form a complete

orthonormal system in H2 Xð Þ.
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� log
f zð Þ � f ζð Þ

z� ζ
¼
X∞
m, n¼1

βmnffiffiffiffiffiffiffi
mn

p
χ zð Þm χ ζð Þn , (12)
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S f zð Þ ¼ f 00 zð Þ
f 0 zð Þ

� �0
� 1
2

f 00 zð Þ
f 0 zð Þ

� �2

, z∈D ∗ : (13)

These derivatives range over a bounded domain in the complex Banach space
B D ∗ð Þ of hyperbolically bounded holomorphic functions φ∈ ∗ with norm

∥φ∥B ¼ sup
D ∗

λ�2
D ∗ zð Þ∣φ zð Þ∣,
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X∞
m, n¼1

βmn xmxn

�����

�����≤ 1 (14)

for any point x ¼ xnð Þ∈ S l2
� �

. We call the quantity
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ϰD ∗ fð Þ ¼ sup
X∞
m, n¼1

βmn xmxn

�����

����� : x ¼ xnð Þ∈ S l2
� �( )

, (15)
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1
4
≤ λD zð ÞδD zð Þ≤ 1,

where the right-hand inequality follows from the Schwarz lemma and the left
from Koebe’s 1

4 theorem.
Consider the unit ball of Beltrami coefficients supported on D,

Belt Dð Þ1 ¼ μ∈L∞ ð Þ : μjD ∗ ¼ 0 ∥μ∥∞ < 1f g

and take the corresponding quasiconformal automorphisms wμ zð Þ of the sphere
̂ satisfying on  the Beltrami equation ∂zw ¼ μ∂zw preserving the points 0, 1,∞
fixed. Recall that k wð Þ ¼ ∥μw∥∞ is the dilatation of the map w.

Take the equivalence classes μ½ � and wμ½ � letting the coefficients μ1 and μ2 from
Belt D ∗ð Þ1 be equivalent if the corresponding maps wμ1 and wμ2 coincide on L (and
hence on D). These classes are in one-to-one correspondence with the Schwarzians
Swμ on D ∗

, which fill a bounded domain in the space B2 D ∗ð Þmodeling the universal
Teichmüller space T ¼ T D ∗ð Þ with the base point D ∗ . The quotient map

ϕT : Belt Dð Þ1 ! T, ϕT μð Þ ¼ Swμ

is holomorphic (as the map from L∞ Dð Þ to B2 Dð Þ). Its intrinsic Teichmüller
metric is defined by

τT ϕT μð Þ,ϕT νð Þð Þ ¼ 1
2
inf logK wμ ∗ ∘ wν ∗ð Þ�1

� �
: μ ∗ ∈ϕT μð Þ, ν ∗ ∈ϕT νð Þ

n o
,

It is the integral form of the infinitesimal Finsler metric

FT ϕT μð Þ,ϕ0
T μð Þν� � ¼ inf ∥ν ∗ = 1� μj j2

� �
∥∞ : ϕ0

T μð Þν ∗ ¼ ϕ0
T μð Þν

n o

on the tangent bundle T T of T, which is locally Lipschitzian.
The Grunsky coefficients give rise to another Finsler structure F x, vð Þ on the

bundle T T. It is dominated by the canonical Finsler structure FT x, vð Þ and allows
one to reconstruct the Grunsky norm along the geodesic Teichmüller disks in T
(see [33]).

We call the Beltrami coefficient μ∈Belt D ∗ð Þ1 extremal (in its class) if

∥μ∥∞ ¼ inf ∥ν∥∞ : ϕT νð Þ ¼ ϕT μð Þf g

and call μ infinitesimally extremal if

∥μ∥∞ ¼ inf ∥ν∥∞ : ν∈L∞ D ∗ð Þ, ϕ0
T 0ð Þν ¼ ϕ0

T 0ð Þμ� �
:

Any infinitesimally extremal Beltrami coefficient μ is globally extremal (and vice
versa), and by the basic Hamilton-Krushkal-Reich-Strebel theorem the extremality
of μ is equivalent to the equality

∥μ∥∞ ¼ inf j< μ,ψ > D ∗ j: ψ ∈A Dð Þ : ∥ψ∥ ¼ 1f g

where A Dð Þ is the space of the integrable holomorphic quadratic differentials on
D (the subspace of L1 Dð Þ formed by holomorphic functions on D) and the pairing

μ,ψh iD ¼
ðð

D
μ zð Þψ zð Þdxdy, μ∈L∞ Dð Þ, ψ ∈L1 Dð Þ z ¼ xþ iyð Þ:
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Let w0 ≔wμ0 be an extremal representative of its class w0½ � with dilatation

k w0ð Þ ¼ ∥μ0∥∞ ¼ inf k wμð Þ : wμjL ¼ w0jLf g,

and assume that there exists in this class a quasiconformal map w1 whose
Beltrami coefficient μA1

satisfies the inequality ess supAr
∣μw1

zð Þ∣< k w0ð Þ in some ring
domain R ¼ D ∗ nG complement to a domain G⊃D ∗ . Any such w1 is called the
frame map for the class w0½ �, and the corresponding point in the universal
Teichmüller space T is called the Strebel point.

These points have the following important properties.
Theorem 2. (i) If a class f½ � has a frame map, then the extremal map f 0 in this class

(minimizing the dilatation ∥μ∥∞) is unique and either a conformal or a Teichmüller
map with Beltrami coefficient μ0 ¼ k∣ψ0∣=ψ0 on D, defined by an integrable
holomorphic quadratic differential ψ0 on D and a constant k∈ 0, 1ð Þ [34].

(ii) The set of Strebel points is open and dense in T [35, 36].
The first assertion holds, for example, for asymptotically conformal curves L.

Similar results hold also for arbitrary Riemann surfaces (cf. [36, 37]).
Recall that a Jordan curve L⊂ is called asymptotically conformal if for any

pair of points a, b∈L,

max
z∈L

∣a� z∣þ ∣z� b∣
∣a� b∣

! 1 as ∣a� b∣ ! 0,

where z lies between a and b.
Such curves are quasicircles without corners and can be rather pathological (see,

e.g., [38, p. 249]). In particular, all C1-smooth curves are asymptotically conformal.
The polygonal lines are not asymptotically conformal, and the presence of angles

causes non-uniqueness of extremal quasireflections.
The boundary dilatation H fð Þ admits also a local version Hp fð Þ involving the

Beltrami coefficients supported in the neighborhoods of a boundary point p∈ ∂D.
Moreover (see, e.g., [36], Ch. 17), H fð Þ ¼ supp∈ ∂DHp fð Þ, and the points with
Hp fð Þ ¼ H fð Þ are called substantial for f and for its equivalence class.

On the unique and non-unique extremality see, for example, [5, 34, 39–44].
The extremal quasiconformality is naturally connected with extremal

quasireflections.

1.5 Complex geometry and basic Finsler metrics on universal Teichmüller space

Recall that the universal Teichmüller space T is the space of quasisymmetric
homeomorphisms h of the unit circle S1 ¼ ∂ factorized by Möbius transforma-
tions. Its topology and real geometry are determined by the Teichmüller metric,
which naturally arises from extensions of these homeomorphisms h to the unit disk.
This space admits also the complex structure of a complex Banach manifold (and
this is valid for all Teichmüller spaces).

One of the fundamental notions of geometric complex analysis is the invariant
Kobayashi metric on hyperbolic complex manifolds, even in the infinite dimen-
sional Banach or locally convex complex spaces.

The canonical complex Banach structure on the space T is defined by factoriza-
tion of the ball of Beltrami coefficients

Belt ð Þ1 ¼ μ∈L∞ ð Þ : μj ∗ ¼ 0, ∥μ∥< 1f g,
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1
4
≤ λD zð ÞδD zð Þ≤ 1,

where the right-hand inequality follows from the Schwarz lemma and the left
from Koebe’s 1

4 theorem.
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letting μ, ν∈Belt ð Þ1 be equivalent if the corresponding maps wμ,wν ∈Σ0 coin-
cide on S1 (hence, on  ∗ ) and passing to Schwarzian derivatives S f μ . The defining
projection ϕT : μ ! Swμ is a holomorphic map from L∞ ð Þ to B. The equivalence
class of a map wμ will be denoted by wμ½ �.

An intrinsic complete metric on the space T is the Teichmüller metric, defined
above in Section 1.4, with its infinitesimal Finsler form (structure)
FT ϕT μð Þ,ϕ0

T μð Þν� �
, μ∈Belt ð Þ1; ν, ν ∗ ∈L∞ ð Þ.

The space T as a complex Banach manifold also has invariant metrics. Two of
these (the largest and the smallest metrics) are of special interest. They are called the
Kobayashi and the Carathéodory metrics, respectively, and are defined as follows.

The Kobayashi metric dT on T is the largest pseudometric d on T does not get
increased by holomorphic maps h :  ! T so that for any two points ψ1, ψ2 ∈T,
we have

dT ψ1,ψ2ð Þ≤ inf d 0, tð Þ : h 0ð Þ ¼ ψ1, h tð Þ ¼ ψ2f g,

where d is the hyperbolic Poincaré metric on  of Gaussian curvature �4,
with the differential form

ds ¼ λhyp zð Þ∣dz∣ ≔ ∣dz∣= 1� zj j2
� �

:

The Carathéodory distance between ψ1 and ψ2 in T is

cT ψ1,ψ2ð Þ ¼ supd h ψ1ð Þ, h ψ2ð Þð Þ,

where the supremum is taken over all holomorphic maps h :  ! T.
The corresponding differential (infinitesimal) forms of the Kobayashi and

Carathéodory metrics are defined for the points ψ , vð Þ of the tangent bundle T Tð Þ,
respectively, by

KT ψ , vð Þ ¼ inf 1=r : r>0, h∈Hol r,Tð Þ, h 0ð Þ ¼ ψ , dh 0ð Þ ¼ vf g,
CT ψ , vð Þ ¼ sup jdf ψð Þvj: f ∈Hol T,ð Þ, f ψð Þ ¼ 0f g,

where Hol X,Yð Þ denotes the collection of holomorphic maps of a complex
manifold X into Y and r is the disk jzj< rf g.

The Schwarz lemma implies that the Carathéodory metric is dominated by the
Kobayashi metric (and similarly for their infinitesimal forms). We shall use here
mostly the Kobayashi metric.

Due to the fundamental Gardiner-Royden theorem, the Kobayashi metric on any
Teichmüller spaces is equal to its Teichmüller metric (see [15, 36, 40, 45]).

For the the universal Teichmüller space T, we have the following strengthened
version of this theorem for universal Teichmüller space given in [46].

Theorem 3. The Teichmüller metric τT ψ1,ψ2ð Þ of either of the spaces T or T  ∗ð Þ is
plurisubharmonic separately in each of its arguments; hence, the pluricomplex Green
function of T equals

gT ψ1,ψ2ð Þ ¼ log tanh τT ψ1,ψ2ð Þ ¼ log k ψ1,ψ2ð Þ,

where k is the norm of extremal Beltrami coefficient defining the distance between the
points ψ1,ψ2 in T (and similar for the space T  ∗ð Þ).

The differential (infinitesimal) Kobayashi metric KT ψ , vð Þ on the tangent bundle
T Tð Þ of T is logarithmically plurisubharmonic in ψ ∈T, equals the infinitesimal Finsler
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form FT ψ , vð Þ of metric τT and has constant holomorphic sectional curvature κK ψ , vð Þ ¼
�4 on the tangent bundle T Tð Þ.

In other words, the Teichmüller-Kobayashi metric is the largest invariant
plurisubharmonic metric on T.

The generalized Gaussian curvature κλ of an upper semicontinuous Finsler
metric ds ¼ λ tð Þ∣dt∣ in a domain Ω⊂ is defined by

κλ tð Þ ¼ � log λ tð Þ
λ tð Þ2 ,

where  is the generalized Laplacian

λ tð Þ ¼ 4 lim inf
r!0

1
r2

1
2π

ð2π
0
λ tþ reiθ
� �

dθ � λ tð Þ
� �

(provided that �∞≤ λ tð Þ<∞). Similar to C2 functions, for which  coincides
with the usual Laplacian, one obtains that λ is subharmonic on Ω if and only if
λ tð Þ≥0; hence, at the points t0 of local maximuma of λ with λ t0ð Þ> �∞, we have
λ t0ð Þ≤0.

The sectional holomorphic curvature of a Finsler metric on a complex Banach
manifold X is defined in a similar way as the supremum of the curvatures over
appropriate collections of holomorphic maps from the disk into X for a given
tangent direction in the image.

The holomorphic curvature of the Kobayashi metric K x, vð Þ of any complete
hyperbolic manifold X satisfies κKX ≥ � 4 at all points x, vð Þ of the tangent bundle
T Xð Þ of X, and for the Carathéodory metric CX we have κC x, vð Þ≤ � 4.

Finally, the pluricomplex Green function of a domain X on a complex Banach
space manifold E is defined as gX x, yð Þ ¼ supuy xð Þ x, y∈Xð Þ, where supremum is
taken over all plurisubharmonic functions uy xð Þ : X ! �∞, 0½ Þ satisfying uy xð Þ ¼
log ∥x� y∥þ O 1ð Þ in a neighborhood of the pole y. Here ∥ � ∥ is the norm on X and
the remainder term O 1ð Þ is bounded from above. If X is hyperbolic and its
Kobayashi metric dX is logarithmically plurisubharmonic, then gX x, yð Þ ¼
log tanh dX x, yð Þ, which yields the representation of gT in Theorem 3.

For details and general properties of invariant metrics, we refer to [47, 48] (see
also [18, 49]).

Theorem 3 has various applications in geometric function theory and in complex
geometry Teichmüller spaces. Its proof involves the technique of the Grunsky
coefficient inequalities.

Plurisubharmonicity of a function u xð Þ on a domain D in a Banach space X
means that u xð Þ is upper continuous in D and its restriction to the intersection of D
with any complex line L is subharmonic.

A deep Zhuravlev’s theorem implies that the intersection of the universal
Teichmüller space T with every complex line is a union of simply connected planar
(moreover, this holds for any Teichmüller space); see ([50], pp. 75–82, [51]).

1.6 The Grunsky-Milin inequalities revised

Denote by Σ0 D ∗ð Þ the subclass of Σ D ∗ð Þ formed by univalent ̂-holomorphic
functions in D ∗ with expansions f zð Þ ¼ zþ b0 þ b1z�1 þ … near z ¼ ∞ admitting
quasiconformal extensions to ̂. It is dense in Σ D ∗ð Þ in the weak topology of locally
uniform convergence on D ∗

.
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T μð Þν� �
, μ∈Belt ð Þ1; ν, ν ∗ ∈L∞ ð Þ.
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ds ¼ λhyp zð Þ∣dz∣ ≔ ∣dz∣= 1� zj j2
� �

:
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form FT ψ , vð Þ of metric τT and has constant holomorphic sectional curvature κK ψ , vð Þ ¼
�4 on the tangent bundle T Tð Þ.
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κλ tð Þ ¼ � log λ tð Þ
λ tð Þ2 ,

where  is the generalized Laplacian

λ tð Þ ¼ 4 lim inf
r!0

1
r2

1
2π

ð2π
0
λ tþ reiθ
� �

dθ � λ tð Þ
� �
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Each Grunsky coefficient αmn fð Þ is a polynomial of a finite number of the initial
coefficients b1, b2, … , bmþn�1 of f ; hence it depends holomorphically on Beltrami
coefficients of extensions of f as well as on the Schwarzian derivatives S f ∈B2 D ∗ð Þ.

Consider the set

A2
1 Dð Þ ¼ ψ ∈A1 Dð Þ : ψ ¼ ω2� �

consisting of the integrable holomorphic quadratic differentials on D having
only zeros of even order and put

αD fð Þ ¼ sup j μ0,ψh iDj: ψ ∈A2
1, ∥ψ∥A1 Dð Þ ¼ 1

n o
:

The following theorem from [32] completely describes the relation between the
Grunsky and Teichmüller norms (more special results were obtained in [26, 52]).

Theorem 4. For all f ∈Σ0 D ∗ð Þ,

ϰD ∗ fð Þ≤ k
kþ αD fð Þ
1þ αD fð Þk , k ¼ k fð Þ,

and ϰD ∗ fð Þ< k unless

αD fð Þ ¼ ∥μ0∥∞, (16)

where μ0 is an extremal Beltrami coefficient in the equivalence class f½ �. The last
equality is equivalent to ϰD ∗ fð Þ ¼ k fð Þ.

If ϰ fð Þ ¼ k fð Þ and the equivalence class of f (the collection of maps equal to f
on S1 ¼ ∂D ∗ ) is a Strebel point, then the extremal μ0 in this class is necessarily of
the form

μ0 ¼ ∥μ0∥∞∣ψ0∣=ψ0 with ψ0 ∈A2
1 Dð Þ: (17)

Note that geometrically (16) means the equality of the Carathéodory and
Teichmüller distances on the geodesic disk ϕT tμ0=∥μ0∥ð Þ : t∈f g in the universal
Teichmüller space T and that the mentioned above the strict inequality ϰ fð Þ< k fð Þ
is valid on the (open) dense subset of Σ0 in both strong and weak topologies (i.e., in
the Teichmüller distance and in locally uniform convergence on D ∗ ).

An important property of the Grunsky coefficients αmn fð Þ ¼ αmn SFð Þ is that
these coefficients are holomorphic functions of the Schwarzians φ ¼ S f on the
universal Teichmüller space T. Therefore, for every f ∈Σ0 and each x ¼ xnð Þ∈ S l2

� �
,

the series

hx φð Þ ¼
X∞
m, n¼1

ffiffiffiffiffiffiffi
mn

p
αmn φð Þxmxn (18)

defines a holomorphic map of the space T into the unit disk , and ϰD ∗ Fð Þ ¼
supx∣hx SFð Þ∣.

The convergence and holomorphy of the series (18) simply follow from the
inequalities

XM
m¼j

XN

n¼l

ffiffiffiffiffiffiffi
mn

p
αmnxmxn

�����

�����
2

≤
XM
m¼j

xmj j2
XN

n¼l

xnj j2
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(for any finite M, N), which, in turn, are a consequence of the classical area
theorem (see, e.g., [11], p. 61; [29], p. 193).

Using Parseval’s equality, one obtains that the elements of the distinguished set
A2

1 ð Þ are represented in the form

ψ zð Þ ¼ 1
π

X∞
mþn¼2

ffiffiffiffiffiffiffi
mn

p
xmxnzmþn�2 (19)

with x ¼ xnð Þ∈ l2 so that ∥x∥l2 ¼ ∥ψ∥A1
(see [52]). This result extends to arbi-

trary domains D with quasiconformal boundaries but the proof is much more
complicated (see [22]).

1.7 The first Fredholm eigenvalue and Grunsky norm

One of the basic tools in quantitative estimating the Freholm eigenvalues ρL of
quasicircles is given by the classical Kühnau-Schiffer theorem mentioned above.
This theorem states that the value ρL is reciprocal to the Grunsky norm ϰ fð Þ of the
Riemann mapping function of the exterior domain of L (see. [27, 53]).

Another important tool is the following Kühnau’s jump inequality [12]:
If a closed curve L⊂ ̂ contains two analytic arcs with the interior intersection

angle πα0, then

1
ρL

≥ ∣1� ∣α0k: (20)

This implies the lower estimate for qL and 1=ρL. By approximation, this inequal-
ity extends to smooth arcs.

One of the standard ways of establishing the reflection coefficients qL (respec-
tively, the Fredholm eigenvalues ρL) consists of verifying wether the equality in (5)
or the equality ϰ f ∗ð Þ ¼ k0 f ∗ð Þ hold for a given curve L (cf. [12, 28, 52, 54, 55]).

This was an open problem a long time even for the rectangles stated by R.
Kühnau, after it was established only [12, 55] that the answer is in affirmative for
the square and for close rectangles R whose moduli m Rð Þ vary in the interval
1≤m Rð Þ< 1:037; moreover, in this case qL ¼ 1=ρL ¼ 1=2. The method exploited
relied on an explicit construction of an extremal reflection. The complete answer
was given in [33].

The relation between the basic curvelinear functionals intrinsically connected
with conformal and quasiconformal maps is described in Kühau’s paper [56].

1.8 Holomorphic motions

Let E be a subset of ̂ containing at least three points.
A holomorphic motion of E is a function f : E�  ! ̂ such that:

a. for every fixed z∈E, the function t↦ f z, tð Þ : E�  ! ̂ is holomorphic in ;

b. for every fixed t∈, the map f z, tð Þ ¼ f t zð Þ : E ! ̂ is injective;

c. f z, 0ð Þ ¼ z for all z∈E.

The remarkable lambda-lemma of Mañé, Sad, and Sullivan [57] yields that
such holomorphic dependence on the time parameter provides quasiconformality
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equality is equivalent to ϰD ∗ fð Þ ¼ k fð Þ.

If ϰ fð Þ ¼ k fð Þ and the equivalence class of f (the collection of maps equal to f
on S1 ¼ ∂D ∗ ) is a Strebel point, then the extremal μ0 in this class is necessarily of
the form

μ0 ¼ ∥μ0∥∞∣ψ0∣=ψ0 with ψ0 ∈A2
1 Dð Þ: (17)

Note that geometrically (16) means the equality of the Carathéodory and
Teichmüller distances on the geodesic disk ϕT tμ0=∥μ0∥ð Þ : t∈f g in the universal
Teichmüller space T and that the mentioned above the strict inequality ϰ fð Þ< k fð Þ
is valid on the (open) dense subset of Σ0 in both strong and weak topologies (i.e., in
the Teichmüller distance and in locally uniform convergence on D ∗ ).
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the series
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(for any finite M, N), which, in turn, are a consequence of the classical area
theorem (see, e.g., [11], p. 61; [29], p. 193).

Using Parseval’s equality, one obtains that the elements of the distinguished set
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1 ð Þ are represented in the form

ψ zð Þ ¼ 1
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ffiffiffiffiffiffiffi
mn

p
xmxnzmþn�2 (19)

with x ¼ xnð Þ∈ l2 so that ∥x∥l2 ¼ ∥ψ∥A1
(see [52]). This result extends to arbi-

trary domains D with quasiconformal boundaries but the proof is much more
complicated (see [22]).

1.7 The first Fredholm eigenvalue and Grunsky norm

One of the basic tools in quantitative estimating the Freholm eigenvalues ρL of
quasicircles is given by the classical Kühnau-Schiffer theorem mentioned above.
This theorem states that the value ρL is reciprocal to the Grunsky norm ϰ fð Þ of the
Riemann mapping function of the exterior domain of L (see. [27, 53]).

Another important tool is the following Kühnau’s jump inequality [12]:
If a closed curve L⊂ ̂ contains two analytic arcs with the interior intersection

angle πα0, then

1
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≥ ∣1� ∣α0k: (20)

This implies the lower estimate for qL and 1=ρL. By approximation, this inequal-
ity extends to smooth arcs.

One of the standard ways of establishing the reflection coefficients qL (respec-
tively, the Fredholm eigenvalues ρL) consists of verifying wether the equality in (5)
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Kühnau, after it was established only [12, 55] that the answer is in affirmative for
the square and for close rectangles R whose moduli m Rð Þ vary in the interval
1≤m Rð Þ< 1:037; moreover, in this case qL ¼ 1=ρL ¼ 1=2. The method exploited
relied on an explicit construction of an extremal reflection. The complete answer
was given in [33].

The relation between the basic curvelinear functionals intrinsically connected
with conformal and quasiconformal maps is described in Kühau’s paper [56].

1.8 Holomorphic motions

Let E be a subset of ̂ containing at least three points.
A holomorphic motion of E is a function f : E�  ! ̂ such that:

a. for every fixed z∈E, the function t↦ f z, tð Þ : E�  ! ̂ is holomorphic in ;
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such holomorphic dependence on the time parameter provides quasiconformality
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of f in the space parameter z. Moreover: (i) f extends to a holomorphic motion of the
closure E of E;

(ii) each f t zð Þ ¼ f t, zð Þ : E ! ̂ is quasiconformal; (iii) f is jointly continuous in z, tð Þ.
Quasiconformality here means, in the general case, the boundedness of the

distortion of the circles centered at the points z∈E or of the cross-ratios of the
ordered quadruples of points of E.

The Slodkowski lifting theorem ([58], see also [59–61]) solves the problem of
Sullivan and Thurston on the extension of holomorphic motions from any set to a
whole sphere:

Extended lambda-lemma: Any holomorphic motion f : E�  ! ̂ can be
extended to a holomorphic motion ~f : ̂�  ! ̂, with ~f ∣E�  ¼ f .

The corresponding Beltrami differentials μ~f t zð Þ ¼ ∂z
~f z, tð Þ=∂z~f z, tð Þ are

holomorphic in t via elements of L∞ ð Þ, and Schwarz’s lemma yields

∥μ~f t∥∞ ≤ ∣t∣,

or equivalently, the maximal dilatations K ~f t
� �

≤ 1þjtjð Þ= 1�jtjð Þ. This bound
cannot be improved in the general case.

Holomorphic motions have been important in the study of dynamical systems,
Kleinian groups, holomorphic families of conformal maps and of Riemann surfaces
as well as in many other fields (see, e.g., [40, 57, 59, 60, 62–68], and the references
there).

There is an intrinsic connection between holomorphic motions and Teichmüller
spaces, first mentioned by Bers and Royden in [69]. McMullen and Sullivan intro-
duced in [65] the Teichmüller spaces for arbitrary holomorphic dynamical systems,
and this approach is now one of the basic in complex dynamics [70].

Topics discussed in this section were studied in classic works [71–85] as well as
other references.

2. Unbounded convex polygons

2.1 Main theorem

The inequalities (5), (20) have served a long time as the main tool for
establishing the exact or approximate values of the Fredholm value ρL and allowed
to establish it only for some special collections of curves and arcs.

In this section, we present, following [33, 86], a new method that enables us to
solve the indicated problems for large classes of convex domains and of their frac-
tional linear images. This method involves in an essential way the complex geometry
of the universal Teichmüller space T and the Finsler metrics on holomorphic disks in
T as well as the properties of holomorphic motions on such disks.

It is based on the following general theorem for unbounded convex domains
giving implies an explicit representation of the main associated curvelinear and
analytic functionals invariants by geometric characteristics of these domains solving
the problem for unbounded convex domains completely.

Theorem 5. For every unbounded convex domain D⊂ with piecewise C1þδ-smooth
boundary L δ>0ð Þ (and all its fractional linear images), we have the equalities

qL ¼ 1=ρL ¼ ϰ fð Þ ¼ ϰ f ∗ð Þ ¼ k0 fð Þ ¼ k0 f ∗ð Þ ¼ 1� ∣α∣, (21)
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where f and f ∗ denote the appropriately normalized conformal maps  ! D
and  ∗ ! D ∗ ¼ ̂nD, respectively, k0 fð Þ and k0 f ∗ð Þ are the minimal dilatations
of their quasiconformal extensions to ̂; ϰ fð Þ and ϰ f ∗ð Þ stand for their Grunsky
norms, and π∣α∣ is the opening of the least interior angle between the boundary arcs
L j ⊂L. Here 0< α< 1 if the corresponding vertex is finite and �1< α<0 for the
angle at the vertex at infinity.

The same is true also for the unbounded concave domains (the complements of convex
ones) which do not contain ∞; for those one must replace the last term by ∣β∣� 1, where
π∣β∣ is the opening of the largest interior angle of D.

The proof of Theorem 5 is outlined in [33, 64]. In the next section we provide an
extension of this important theorem to nonconvex polygons giving the detailed
proof.

The equalities of type (21) were known earlier only for special closed curves (see
[12, 19, 26, 55]), for example, for polygons bounded by circular arcs with a common
inner tangent circle. The proof of Theorem 4 involves a completely different
approach; it relies on the properties of holomorphic motions.

Let us mention also that the geometric assumptions of Theorem 4 are applied in
the proof in an essential way. Its assertion extends neither to the arbitrary
unbounded nonconvex or nonconcave domains nor to the arbitrary bounded con-
vex domains.

This theorem has various important consequences. It distinguishes a broad class
of domains, whose geometric properties provide the explicit values of intrinsic
conformal and quasiconformal characteristics of these domains.

2.2 Examples

1. Let L be a closed unbounded curve with the convex interior, which is C1þδ

smooth at all finite points and has at infinity the asymptotes approaching the
interior angle πα<0. For any such curve, Theorem 4 yields the equalities

qL ¼ 1=ρL ¼ 1� ∣α∣: (22)

2. More generally, assume that L also has a finite angle point z0 with the angle
opening πα0. Then, similar to (22),

qL ¼ 1=ρL ¼ max 1�jα0j, 1�jα∞jð Þ:

Simultaneously this quantity gives the exact value of the reflection coefficient
for any convex curvelinear lune bounded by two smooth arcs with the common
endpoints a, b, because any such lune is a Moebius image of the exterior domain for
the above curve L.

Other quantitative examples illustrating Theorem 5 are presented in [64].

3. Extension to unbounded non-convex polygons

3.1 An open question

An open question is to establish the extent in which Theorem 5 can be
prolonged to arbitrary unbounded polygons

Our goal is to show that this is possible for unbounded rectilinear polygons for
which the extent of deviation from convexity is sufficiently small.
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of f in the space parameter z. Moreover: (i) f extends to a holomorphic motion of the
closure E of E;
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The inequalities (5), (20) have served a long time as the main tool for
establishing the exact or approximate values of the Fredholm value ρL and allowed
to establish it only for some special collections of curves and arcs.
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qL ¼ 1=ρL ¼ ϰ fð Þ ¼ ϰ f ∗ð Þ ¼ k0 fð Þ ¼ k0 f ∗ð Þ ¼ 1� ∣α∣, (21)
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where f and f ∗ denote the appropriately normalized conformal maps  ! D
and  ∗ ! D ∗ ¼ ̂nD, respectively, k0 fð Þ and k0 f ∗ð Þ are the minimal dilatations
of their quasiconformal extensions to ̂; ϰ fð Þ and ϰ f ∗ð Þ stand for their Grunsky
norms, and π∣α∣ is the opening of the least interior angle between the boundary arcs
L j ⊂L. Here 0< α< 1 if the corresponding vertex is finite and �1< α<0 for the
angle at the vertex at infinity.

The same is true also for the unbounded concave domains (the complements of convex
ones) which do not contain ∞; for those one must replace the last term by ∣β∣� 1, where
π∣β∣ is the opening of the largest interior angle of D.

The proof of Theorem 5 is outlined in [33, 64]. In the next section we provide an
extension of this important theorem to nonconvex polygons giving the detailed
proof.

The equalities of type (21) were known earlier only for special closed curves (see
[12, 19, 26, 55]), for example, for polygons bounded by circular arcs with a common
inner tangent circle. The proof of Theorem 4 involves a completely different
approach; it relies on the properties of holomorphic motions.

Let us mention also that the geometric assumptions of Theorem 4 are applied in
the proof in an essential way. Its assertion extends neither to the arbitrary
unbounded nonconvex or nonconcave domains nor to the arbitrary bounded con-
vex domains.

This theorem has various important consequences. It distinguishes a broad class
of domains, whose geometric properties provide the explicit values of intrinsic
conformal and quasiconformal characteristics of these domains.

2.2 Examples

1. Let L be a closed unbounded curve with the convex interior, which is C1þδ

smooth at all finite points and has at infinity the asymptotes approaching the
interior angle πα<0. For any such curve, Theorem 4 yields the equalities

qL ¼ 1=ρL ¼ 1� ∣α∣: (22)

2. More generally, assume that L also has a finite angle point z0 with the angle
opening πα0. Then, similar to (22),

qL ¼ 1=ρL ¼ max 1�jα0j, 1�jα∞jð Þ:

Simultaneously this quantity gives the exact value of the reflection coefficient
for any convex curvelinear lune bounded by two smooth arcs with the common
endpoints a, b, because any such lune is a Moebius image of the exterior domain for
the above curve L.

Other quantitative examples illustrating Theorem 5 are presented in [64].

3. Extension to unbounded non-convex polygons

3.1 An open question

An open question is to establish the extent in which Theorem 5 can be
prolonged to arbitrary unbounded polygons

Our goal is to show that this is possible for unbounded rectilinear polygons for
which the extent of deviation from convexity is sufficiently small.
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This extension essentially increases the collections of individual polygonal
curves and arcs with explicitly established Fredholm eigenvalues and reflection
coefficients.

3.2 Main theorem

Let Pn be a rectilinear polygon with the finite vertices A1,A2, … ,An�1 and with
vertex A∞ ¼ ∞, and let the interior angle at the vertex A j be equal to πα j and at A∞

be equal to πα∞, where α∞ <0 and all a j 6¼ 1, so that α1 þ … þ αn�1 þ α∞ ¼ 2. Let f n
be the conformal map of the upper half-plane U ¼ z : Imz>0f g onto Pn, which
without loss of generality, can be normalized by f n zð Þ ¼ z� iþ O z� ið Þ as z ! i
(assuming that Pn contains the origin w ¼ 0).

An important geometric characteristic of polynomials is the quantity

∣1� ∣αk ¼ max j1�jα1k, … , j1�jαn�1k, 1�jα∞kjf g; (23)

it valuates the local boundary quasiconformal dilatation of Pn.
Using this quantity, we first prove that an assertion similar to Theorem 4 fails

for the generic rectilinear polygons.
Theorem 6. There exist rectilinear polygons Pn whose conformal mapping functions

f n satisfy

ϰ f n
� � ¼ k f n

� �
> ∣1� ∣ak, (24)

where a is defined via (23).
Proof. We shall use the rectangles P4; in this case all α j ¼ 1=2. It is known that

the mapping function f 4 of any rectangle has equal Grunsky and Teichmüller
norms,

ϰ f 4
� � ¼ k f 4

� �

(see [12, 55, 87]).
Using the Moebius map σ : z↦ 1=z, we transform the rectangle into a

(nonconvex) circular quadrilateral σ P4ð Þ with angles π=2 and mutually orthogonal
edges so that two unbounded edges from these are rectilinear and two bounded are
circular, and note that for sufficiently long rectangles must be

k f̂ 4
� �

¼ ϰ f̂ 4
� �

> 1=2, (25)

where f̂ 4 denotes the conformal map  ! σ P4ð Þ.
Indeed, as was established by Kühnau [12], the quadrilaterals with the side ratios

(conformal module) greater than 3:31 have the reflection coefficient q
∂P4

> 1=2 (the
last inequality follows also from the fact that the long rectangles give in the limit a
half-strip with two unbounded parallel sides. Such a domain is not a quasidisk, so its
reflection coefficient equals 1); this proves (25).

Any circular quadrilateral σ P4ð Þ satisfying (25) can be approximated by appro-
priate rectilinear polygons Pn. Assuming now that the equalities of type (21) or (24)
are valid for all such polygons, one obtains a contradiction with (25), because both
dilatation k fð Þ and q

∂P are lower continuous functionals under locally uniform
convergence of quasiconformal maps (i.e., k fð Þ≤ lim inf k f n

� �
as f n ! f in the

indicated topology, and similarly for the reflection coefficient). This contradiction
proves the theorem.
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3.3 The main result

The main result of this section is
Theorem 7. [86] Let Pn be a unbounded rectilinear polygon, neither convex nor

concave, and hence contain the vertices A j whose inner angles πα j have openings πα j with
1< α j < 2. Assume that all such α j satisfy

α j � 1< ∣1� ∣αk, (26)

where α is given by (23) (which means that the maximal value in (22) is attained at
some vertex A j with 0< ∣a j∣< 1).

For any such polygon, taking appropriate Moebius map σ :  ! U, we have the
equalities

ϰ f n∘ σ
� � ¼ k f n

� � ¼ q
∂Pn

¼ 1=ρ∂Pn
¼ ∣1� ∣αk: (27)

Proof. Let Pn be an unbounded rectilinear polygon. Its conformal mapping
function f n : U ! Pn fixing the infinite point and with f n ið Þ ¼ 0 is represented by
the Schwarz-Christoffel integral

f n ζð Þ ¼ d1
ðz

0

ξ� a1ð Þα1�1
… ξ� an�1ð Þαn�1�1dξþ d0, (28)

where all a j ¼ f�1
∗ A j
� �

∈ and d0, d1 are the corresponding complex constants.

The logarithmic derivative b f ¼ log f 0
� �0 ¼ f 00= f 0 of this map has the form

b fn zð Þ ¼
Xn�1

1

α j � 1
� �

z� a j
� ��1

:

Letting Iα ¼ t∈ : �1=j1�jαk< t< 1=j1�jαkf g, α ¼ t∈ : jtj< 1=j1�jαkf g,
we construct for f n an ambient complex isotopy (holomorpic motion)

w z, tð Þ : U � α ! ̂, (29)

(containing f n as a fiber map), which is injective in the space coordinate z for
any fixed t, holomorphic in t for a fixed z and w z, 0ð Þ � z.

First observe that for real r∈ Iα the solution Wr to the equation w00 zð Þ ¼
rb f 4 zð Þw0 zð Þ with the initial conditions wr ið Þ ¼ i, wr ∞ð Þ ¼ ∞ satisfies

bWr zð Þ ¼
Xn�1

1

r
α j � 1
z� a j

¼
Xn
1

α j rð Þ � 1
z� a j

,

where

α j rð Þ ¼ r α j � 1
� �þ 1: (30)

If the interior angles of the initial polygon Pn satisfy the assumption (26), then
all the functions Wr are represented by an integral of type (27) (replacing α j by
α j rð Þ, and with suitable constants d0r, d1r).

Geometrically this means that the exterior angle 2π � πα j rð Þ at any finite vertex
A j rð Þ decreases with r (but the value α j rð Þ � 1 increases if 1< α j < 2). Under the
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This extension essentially increases the collections of individual polygonal
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Using the Moebius map σ : z↦ 1=z, we transform the rectangle into a
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edges so that two unbounded edges from these are rectilinear and two bounded are
circular, and note that for sufficiently long rectangles must be
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> 1=2, (25)

where f̂ 4 denotes the conformal map  ! σ P4ð Þ.
Indeed, as was established by Kühnau [12], the quadrilaterals with the side ratios

(conformal module) greater than 3:31 have the reflection coefficient q
∂P4

> 1=2 (the
last inequality follows also from the fact that the long rectangles give in the limit a
half-strip with two unbounded parallel sides. Such a domain is not a quasidisk, so its
reflection coefficient equals 1); this proves (25).

Any circular quadrilateral σ P4ð Þ satisfying (25) can be approximated by appro-
priate rectilinear polygons Pn. Assuming now that the equalities of type (21) or (24)
are valid for all such polygons, one obtains a contradiction with (25), because both
dilatation k fð Þ and q

∂P are lower continuous functionals under locally uniform
convergence of quasiconformal maps (i.e., k fð Þ≤ lim inf k f n

� �
as f n ! f in the

indicated topology, and similarly for the reflection coefficient). This contradiction
proves the theorem.
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3.3 The main result
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∈ and d0, d1 are the corresponding complex constants.

The logarithmic derivative b f ¼ log f 0
� �0 ¼ f 00= f 0 of this map has the form

b fn zð Þ ¼
Xn�1

1

α j � 1
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:
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we construct for f n an ambient complex isotopy (holomorpic motion)

w z, tð Þ : U � α ! ̂, (29)

(containing f n as a fiber map), which is injective in the space coordinate z for
any fixed t, holomorphic in t for a fixed z and w z, 0ð Þ � z.

First observe that for real r∈ Iα the solution Wr to the equation w00 zð Þ ¼
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bWr zð Þ ¼
Xn�1

1

r
α j � 1
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1
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,

where
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� �þ 1: (30)
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assumption (26), the admissible bounds for the possible values of angles ensure the
univalence of this integral on U for every indicated t. This yields that every Wr Uð Þ
also is a polygon with the interior angles πα j rð Þ for r 6¼ 0, while W0 Uð Þ ¼ U.

Now we pass to the conformal map gn ζð Þ ¼ f n∘ σ0 ζð Þ of the unit disk  onto Pn,
using the function σ0 ζð Þ ¼ 1þ ζð Þ= 1� ζð Þ. This map is represented similar to
(28) by

gn ζð Þ ¼ d1

ðζ

0

Yn
1

ξ� e j
� �α j�1dξþ d0,

where the points e j are the preimages of vertices e j ¼ g�1
n A j
� �

on the unit circle
jζj¼ 1f g. Pick d1 to have g0n 0ð Þ ¼ 1. For this function, we have a natural complex
isotopy

~wt ζð Þ ¼ 1
t
gn tζð Þ : �  ! , (31)

with

b~w ζð Þ ¼ ~wt
00 ζð Þ

~w0
t ζð Þ ¼ t

g00 tζð Þ
g0n tζð Þ ¼ tbgn tζð Þ: (32)

Following (31), we set for t ¼ reiθ,

~wt ζð Þ ¼ e�iθWr∘ σ0 eiθζ
� �

:

The relations (32) yield that this function also is univalent in .
The corresponding Schwarzians S~wr ζð Þ ¼ rb0~wr

ζð Þ � r2b~wr ζð Þ2=2 fill a real analytic
line Γ in the universal Teichmüller space T (modeled as a bounded domain in the
complex Banach space B of hyperbolically bounded holomorphic functions on ).
This line is located in the holomorphic disk ~Ω ¼ b Gð Þ⊂T, where b denotes the map
t↦ S~wt and G⊃ Iα is a simply connected planar domain.

By Zhuravlev’s theorem (see [50, 51]), this domain contains for each r∈ Iα also
the points S~wt with ∣t∣ ≤ r (representing the curvelinear polygons with piecewise
analytic boundaries).

This generates the holomorphic motions (complex isotopies) ~w ζ, tð Þ : �G !
̂ and w z, tð Þ : U ! ̂ with w z, 1ð Þ ¼ f n zð Þ.

The basic lambda-lemma for holomorphic motions implies that every fiber map
wt zð Þ is the restriction to U of a quasiconformal automorphism Ŵt zð Þ of the whole
sphere ̂, and the Beltrami coefficients

μ z, tð Þ ¼ ∂zŴt zð Þ=∂zŴt zð Þ, t∈α,

in the lower half-plane U ∗ ¼ z : Imz<0f g depend holomorphically on t as
elements of the space L∞ U ∗ð Þ.

So we have a holomorphic map μ �, tð Þ from the disk α into the unit ball of
Beltrami coefficients supported on U ∗ ,

Belt U ∗ð Þ1 ¼ μ∈L∞ ð Þ : μ zð ÞjU ¼ 0, ∥μ∥< 1f g,
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and the classical Schwarz lemma implies the estimate

k Ŵt
� � ¼ ∥μŴt

∥∞ ≤ ∣1� ∣α∣kt∣:

It follows that the extremal dilatation of the initial map f n zð Þ ¼ Ŵ1 zð Þ∣U
satisfies

k f n
� �

≤ ∣1� ∣αk:

Hence, also q
∂Pn

≤ ∣1� ∣αk and by the inequality (10), ϰ f n
� �

≤ ∣1� ∣αk.
On the other hand, Kühnau’s lower bound (20) implies

1
ρ∂Pn

≥ ∣1� ∣αk:

Together with (5), this yields that the polygon Pn admits all equalities (27)
completing the proof of the theorem.

3.4 Some applications

Theorem 6 widens the collections of curves with explicitly given Fredholm
eigenvalues and reflection coefficients.

For example, let L be a saw-tooth quasicircle with a finite number of triangular
and trapezoidal teeth joined by rectilinear segments. We assume that the angles
of these teeth satisfy the condition (26). Then we have the following consequence
of Theorem 7.

Corollary 1. For any quasicircle L of the indicated form, its quasireflection coefficient
qL and Fredholm eigenvalue ρL are given by

qL ¼ 1=ρL ¼ ∣1� ∣ak,

where ∣α∣ is defined similar to (22) by angles between the subintervals of L. The same
is valid for images γ Lð Þ under the Moebius maps γ ∈PSL 2,ð Þ.

4. Connection with complex geometry of universal Teichmüller space

4.1 Introductory remarks

Another reason why the convex polygons are interesting for quasiconformal
theory is their close geometric connection with the geometry of universal
Teichmüller space.

There is an interesting still unsolved completely question on shape of
holomorphic embeddings of Teichmüller spaces stated in [88]:

For an arbitrary finitely or infinitely generated Fuchsian group Γ is the Bers
embedding of its Teichmüller space T Γð Þ starlike?

Recall that in this embedding T Γð Þ is represented as a bounded domain formed
by the Schwarzian derivatives Sw of holomorphic univalent functions w zð Þ in the
lower half-plane U ∗ ¼ z : Imz<0f g (or in the disk) admitting quasiconformal
extensions to the Riemann sphere ̂ ¼ ∪ ∞f g compatible with the group Γ
acting on U ∗ .
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in the lower half-plane U ∗ ¼ z : Imz<0f g depend holomorphically on t as
elements of the space L∞ U ∗ð Þ.

So we have a holomorphic map μ �, tð Þ from the disk α into the unit ball of
Beltrami coefficients supported on U ∗ ,

Belt U ∗ð Þ1 ¼ μ∈L∞ ð Þ : μ zð ÞjU ¼ 0, ∥μ∥< 1f g,

86

Structure Topology and Symplectic Geometry

and the classical Schwarz lemma implies the estimate
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It was shown in [89] that universal Teichmüller space T ¼ T 1ð Þ has points that
cannot be joined to a distinguished point even by curves of a considerably general
form, in particular, by polygonal lines with the same finite number of rectilinear
segments. The proof relies on the existence of conformally rigid domains
established by Thurston in [90] (see also [91]).

This implies, in particular, that universal Teichmüller space is not starlike
with respect to any of its points, and there exist pointsφ∈T for which the line interval
tφ : 0< t< 1f g contains the points fromBnS, whereB ¼ B U ∗ð Þ is the Banach space of

hyperbolically bounded holomorphic functions in the half-planeU ∗ with norm

∥φ∥B ¼ 4sup
U ∗

y2∣φ zð Þ∣

and S denotes the set of all Schwarzian derivatives of univalent functions on U ∗ .
These points correspond to holomorphic functions on U ∗ which are only locally
univalent.

Toki [92] extended the result on the nonstarlikeness of the space T to
Teichmüller spaces of Riemann surfaces that contain hyperbolic disks of arbitrary
large radius, in particular, for the spaces corresponding to Fuchsian groups of
second kind. The crucial point in the proof of [92] is the same as in [89].

On the other hand, it was established in [46] that also all finite dimensional
Teichmüller spaces T Γð Þ of high enough dimensions are not starlike.

The nonstarlikeness causes obstructions to some problems in the Teichmüller
space theory and its applications to geometric complex analysis.

The argument exploited in the proof of Theorems 4 and 5 provide much simpler
constructive proof that the universal Teichmüller space is not starlike, representing
explicitly the functions, which violate this property. It reveals completely different
underlying geometric features.

Pick unbounded convex rectilinear polygon Pn with finite vertices A1, … ,An�1

and An ¼ ∞. Denote the exterior angles at A j by πα j so that π < α j < 2π, j ¼
1, … , n� 1. Then, similar to (22), the conformal map f n of the lower half-plane
H ∗ ¼ z : Imz<0f g onto the complementary polygon P ∗

n ¼ ̂nPn is represented by
the Schwarz-Christoffel integral

f n zð Þ ¼ d1

ðz

0

ξ� a1ð Þα1�1 ξ� a2ð Þα2�1
… ξ� an�1ð Þαn�1�1dξþ d0,

with a j ¼ f�1
n A j
� �

∈ and complex constants d0, d1; here f�1
n ∞ð Þ ¼ ∞. Its

Schwarzian derivative is given by

S fn zð Þ ¼ b0 f n zð Þ � 1
2
b2f n zð Þ ¼

Xn�1

1

C j

z� a j
� �2 �

Xn�1

j, l¼1

Cjl

z� a j
� �

z� alð Þ , (33)

where b f ¼ f 00= f 0 and

C j ¼ � α j � 1
� �� α j � 1

� �2
=2<0, Cjl ¼ α j � 1

� �
αl � 1ð Þ>0:

It defines a point of the universal Teichmüller space T modeled as a bounded
domain in the space B H ∗ð Þ of hyperbolically bounded holomorphic functions on
H ∗ with norm ∥φ∥B H ∗ð Þ ¼ supH ∗ z� zj j2∣φ zð Þ∣.
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Denote by r0 the positive root of the equation

1
2

Xn�1

1

α j � 1
� �2 þ

Xn�1

j, l¼1

α j � 1
� �

αl � 1ð Þ
2
4

3
5r2 �

Xn�1

1

α j � 1
� �

r� 2 ¼ 0,

and put S fn,t ¼ tb0 f n � b2f n=2, t>0. Then for appropriate α j, we have.
Theorem 8. [93] For any convex polygon Pn, the Schwarzians rS f n,r0 define for any

0< r< r0 a univalent function wr : H ∗ !  whose harmonic Beltrami coefficient
νr zð Þ ¼ � r=2ð Þy2S f n,r0 zð Þ in H is extremal in its equivalence class, and

k wrð Þ ¼ ϰ wrð Þ ¼ r
2
∥S f n,r0∥B H ∗ð Þ: (34)

By the Ahlfors-Weill theorem [94], every φ∈B H ∗ð Þ with ∥φ∥B H ∗ð Þ < 1=2 is the
Schwarzian derivative SW of a univalent function W in H ∗ , and this function has
quasiconformal extension onto the upper half-plane H ¼ z : Imz>0f g with
Beltrami coefficient of the form

μφ zð Þ ¼ �2y2φ zð Þ, φ ¼ S f z ¼ xþ iy∈H ∗ð Þ

called harmonic. Theorem 7 yields that any wr with r< r0 does not admit
extremal quasiconformal extensions of Teichmüller type, and in view of extremality
of harmonic coefficients μSwr the Schwarzians Swr for some r between r0 and 1 must
lie outside of the space T; so this space is not a starlike domain in B H ∗ð Þ.

4.2 There are unbounded convex polygons Pn for which the equalities (33) are
valid in the strengthened form

k f n
� � ¼ ϰ f n

� � ¼ 1
2
∥S fn∥B H ∗ð Þ (35)

for all r≤ 1, completing the bounds (21).
We illustrate this on the case of triangles. Let P3 be a triangle with vertices

A1,A2 ∈ and A3 ¼ ∞ and exterior angles α1, α2, α3. The logarithmic derivative of
conformal map f 3 : H

∗ ! P ∗
3 has the form

b f 3 zð Þ ¼ α1 � 1
z� a1

þ α2 � 1
z� a2

with a j ¼ f�1
3 A j
� �

∈, j ¼ 1, 2, and similar to (34),

S f 3 zð Þ ¼ C1

z� a1ð Þ2 þ
C2

z� a2ð Þ2 �
C12

z� a1ð Þ z� a2ð Þ

with

C j ¼ � α j � 1
� �� 1

2
α j � 1
� �2 ¼ � α2j þ 1

2
<0, j ¼ 1, 2;

C12 ¼ α1 � 1ð Þ α2 � 1ð Þ>0:
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If the angles of P ∗
3 satisfy α1, α2 < ∣a3∣, where �πα3 is the angle at A3, the

arguments from [93] yield that the harmonic Beltrami coefficient μS f3
satisfies (35).

Surprisingly, this construction is closely connected also with the weighted
bounded rational approximation in sup norm [95, 96].

5. Quasiconformal features and fredholm eigenvalues of bounded
convex polygons

5.1 Affine deformations and Grunsky norm

As it was mentioned above, there exist bounded convex domains even with
analytic boundaries L whose conformal mapping functions have different Grunsky
and Teichmüller norms, and therefore, ρL < 1=qL.

The aim of this chapter is to provide the classes of bounded convex domains,
especially polygons, for which these norms are equal and give explicitly the values
of the associate curve functionals k fð Þ, ϰ fð Þ, qL, ρL.

One of the interesting questions is whether the equality of Teichmüller and
Grunsky norms is preserved under the affine deformations

gc wð Þ ¼ c1wþ c2wþ c3

with c ¼ c2=c1, ∣c∣< 1 (as well as of more general maps) of quasidisks.
In the case of unbounded convex domains, this follows from Theorem 4. We

establish this here for bounded domains D.
More precisely, we consider the maps gc, which are conformal in the comple-

mentary domain D ∗ ¼ ̂nD and have in D a constant quasiconformal dilatation c,
regarding such maps as the affine deformations and the collection of domains
gc Dð Þ as the affine class of D.

If f is a quasiconformal automorphism of ̂ conformal in  ∗ mapping the disk 
onto a domainD, then for a fixed c the maps gc∣D∘ f and gc∘ fð Þ∣ differ by a conformal
map h : D ! gc Dð Þ and hence have in the disk  the same Beltrami coefficient.

Note that the inequality ∣c∣< 1 equivalent to ∣c2∣< ∣c1∣ follows immediately from
the orientation preserving under this map and its composition with conformal map
by forming the corresponding affine deformation (which arises after extension the
constant Beltrami coefficient c by zero to the complementary domain).

The following theorem solves the problem positively.
Theorem 9. For any function f ∈Σ0 with ϰ fð Þ ¼ k fð Þ mapping the disk  ∗ onto

the complement of a bounded domain (quasidisk) D and any affine deformation gc of
this domain (with ∣qc∣< 1), we have the equality

ϰ gc∘ fð Þ ¼ k gc∘ fð Þ: (36)

Theorems 9 essentially increases the set of quasicircles L⊂ ̂ for which ρL ¼ 1=qL
giving simultaneously the explicit values of these curve functionals. Even for quad-
rilaterals, this fact was known until now only for some special types of them (for
rectangles [12, 27, 28, 33] and for rectilinear or circular quadrilaterals having a
common tangent circle [55]).

5.2 Scheme of the proof of Theorem 9

The proof follows the lines of Theorem 1.1 in [97] and is divided into several lemmas.
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First, we establish some auxiliary results characterizing the homotopy disk of a
map with ϰ fð Þ ¼ k fð Þ.

Take the generic homotopy function

f t zð Þ ¼ tf z=tð Þ ¼ zþ b0tþ b1t2z�1 þ b2t3z�2 þ … :  ∗ �  ! ̂:

Then S f t zð Þ ¼ t�2S f t�1zð Þ and this point-wise map determines a holomorphic
map χ f tð Þ ¼ S f t �ð Þ :  ! T so that the homotopy disks  S f

� � ¼ χ f ð Þ foliate the
space T. Note also that

αmn f t
� � ¼ αmn fð Þtmþn,

and if F zð Þ ¼ 1=f 1=zð Þ maps the unit disk onto a convex domain, then all level
lines f jzj¼ rð Þ for z∈ ∗ are starlike.

Lemma 1. If the homotopy function f t of f ∈Σ0 satisfy ϰ f t0

� �
¼ k f t0

� �
for some

0< t0 < 1, then the equality ϰ f t
� � ¼ k f t

� �
holds for all ∣t∣ ≤ t0 and the homotopy disk

 S f t

� �
has no critical points t with 0< ∣t∣< t0.

Take the univalent extension f 1 of f to a maximal disk  ∗
b ¼ z∈ ̂ : jzj> b

n o
,

0< b< 1ð Þ and define

f ∗ zð Þ ¼ b�1 f 1 bzð Þ∈Σ0, ∣z∣> 1:

Its Beltrami coefficient in  is defined by holomorphic quadratic differentials
ψ ∈A2

1 of the form (19), and we have the holomorphic map, for a fixed xb ¼ xbn
� �

∈ l2,

hxb S f ∗t

� �
¼
X∞
m, n¼1

ffiffiffiffiffiffiffi
mn

p
αmn f ∗ð Þxbmxbn btð Þmþn (37)

of the disk  S f ∗
� �

into . In view of our assumption on f , the series (37) is

convergent in some wider disk jtj< af g a> 1ð Þ.
Using the map (37), we pull back the hyperbolic metric λ tð Þ ¼ ∣dt∣= 1� tj j2

� �
to

the disk  SF1ð Þ (parametrized by t) and define on this disk the conformal metric
ds ¼ λ~hx tð Þ∣dt∣ with

λ~hxb
tð Þ ¼ hxa∘ χ f 1

� � ∗
λ ¼ ∣~h

0
xb tð Þkdt∣

1� ~hxb tð Þ
���

���
2 : (38)

of Gaussian curvature �4 at noncritical points. In fact, this is the supporting
metric at t ¼ a for the upper envelope λϰ ¼ supx∈ S l2ð Þλ~hxb tð Þ of metrics (38)

followed by its upper semicontinuous regularization

λϰ tð Þ↦ λ ∗
ϰ tð Þ ¼ lim sup

t0!t
λϰ t0ð Þ

(supporting means that λ~hxb að Þ ¼ λϰ að Þ and λ~hxb
tð Þ< λϰ tð Þ in a neighborhood of a).

The metric λϰ tð Þ is logarithmically subharmonic on  and its generalized
Laplacian
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Δu tð Þ ¼ 4 lim inf
r!0

1
r2

1
2π

ð2π
0
u tþ reiθ
� �

dθ � λ tð Þ
� �

satisfies

Δ log λϰ ≥4λ2ϰ

(while for λ~hxb we have at its noncritical points Δ log λ~hxb ¼ 4λ2~hxb
).

As was mentioned above, the Grunsky coefficients define on the tangent bundle
T Tð Þ a new Finsler structure Fϰ φ, vð Þ dominated by the infinitesimal Teichmüller
metric F φ, vð Þ. This structure generates on any embedded holomorphic disk
γ ð Þ⊂T the corresponding Finsler metric λγ tð Þ ¼ Fϰ γ tð Þ, γ0 tð Þð Þ and reconstructs the
Grunsky norm by integration along the Teichmüller disks:

Lemma 2. [97] On any extremal Teichmüller disk  μ0ð Þ ¼ ϕT tμ0ð Þ : t∈f g (and
its isometric images in T), we have the equality

tanh �1 ϰ f rμ0ð Þ½ � ¼
ðr

0

λϰ tð Þdt:

Taking into account that the disk  S f
� �

touches at the point φ ¼ S f a the
Teichmüller disk centered at the origin of T and passing through this point and that
the metric λϰ does not depend on the tangent unit vectors whose initial points are
the points of  S f

� �
, one obtains from Lemma 3 and the equality ϰ f a

� � ¼ k f a
� �

that also

λϰ að Þ ¼ λK að Þ: (39)

The following lemma is a needed reformulation of Theorem 3.
Lemma 3. [97] The infinitesimal forms KT φ, vð Þ and FT φ, vð Þ of both Kobayashi

and Teichmüller metrics on the tangent bundle T Tð Þ of T are continuous logarithmically
plurisubharmonic in φ∈T and have constant holomorphic sectional curvature
κK φ, vð Þ ¼ �4.

We compare the metric λ~hxb with λK using Lemmas 2, 3, and Minda’s maximum

principle given by.
Lemma 4. [98] If a function u : D ! �∞,þ∞½ Þ is upper semicontinuous in a

domain D⊂ and its (generalized) Laplacian satisfies the inequality Δu zð Þ≥Ku zð Þ
with some positive constant K at any point z∈D, where u zð Þ> �∞, and if

lim sup
z!ζ

u zð Þ≤0 forall ζ∈ ∂D,

then either u zð Þ<0 for all z∈D or else u zð Þ ¼ 0 for all z∈Ω.
Lemma 4 and the equality (39) imply that the metrics λ~hxb , λϰ, λK must be equal

in the entire disk  SFð Þ, which yields by Lemma 2 the equality

ϰ f r
� � ¼ k f r

� � ¼
X∞
m, n¼1

ffiffiffiffiffiffiffi
mn

p
αmn F1ð Þrmþnxrmx

r
n

�����

�����

for all r ¼ ∣t∣ ∈ 0, 1ð Þ (with xrn
� �

∈ S l2
� �

depending on r) and that for any f ∈Σ0

with ϰ fð Þ ¼ k fð Þ its homotopy disk  SFð Þ has only a singularity at the origin of T.
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We may now investigate the action of affine deformations on the set of func-
tions f ∈Σ0 with equal Grunsky and Teichmüller norms.

Lemma 5. For any affine deformation gc of a convex domain D with expansion
gc wð Þ ¼ wþ bc0 þ bc1w

�1 þ … near w ¼ ∞, we have

bc1 ¼
Sgc ∞ð Þ

6
¼ 1

6
lim
z!∞

w4Sgc wð Þ 6¼ 0,

and for sufficiently small ∣c∣ all composite maps

W f ,c zð Þ ¼ gc∘ f zð Þ ¼ zþ b̂
c
0 þ b̂

c
1z

�1 þ … , f ∈Σ0,

also satisfy b̂
c
1 6¼ 0.

Finally, we use the following important result of Kühnau [27].
Lemma 6. For any function f zð Þ ¼ zþ b0 þ b1z�1 þ … ∈Σ0 with b1 6¼ 0, the

extremal quasiconformal extensions of the homotopy functions f t to  are defined for
sufficiently small ∣t∣ ≤ r0 ¼ r0 fð Þ r0 >0ð Þ by nonvanishing holomorphic quadratic
differentials, and therefore, ϰ f t

� � ¼ k f t
� �

.

Using these lemmas, one establishes the equalities λϰ ¼ λK on the disk  SW f ,c

� �

and

ϰ WF,cð Þ ¼ k WF,cð Þ: (40)

The final step of the proof is to extend the last equality to all c with ∣c∣< 1.
Applying again the chain rule for Beltrami coefficients μ, ν from the unit ball in

L∞ ð Þ,

wμ∘wν ¼ wτ with τ ¼ νþ ~μð Þ= 1þ ν~μð Þ

and ~μ zð Þ ¼ μ wν zð Þð Þwν
z=w

ν
z (so for ν fixed, τ depends holomorphically on μ in L∞

norm) and defining the corresponding functions (37), one gets now the
holomorphic functions of c∈. Then, constructing in a similar way the
corresponding Finsler metrics

λ~hx cð Þ ¼ ∣~hx
0
cð Þkdc∣= 1� ~hx cð Þ

���
���
2

� �
, ∣c∣< 1:

and taking their upper envelope λϰ cð Þ and its upper semicontinuous regulariza-
tion, one obtains a subharmonic metric of Gaussian curvature κλϰ ≤ � 4 on the
nonsingular disk jcj< 1f g. One can repeat for this metric all the above arguments
using the already established equality (40) for small ∣c∣.

5.3 Generalization

The arguments in the proof of Theorem 9 are extended almost straightforwardly
to more general case:

Theorem 10. Let F∈Σ0 and ϰ Fð Þ ¼ k Fð Þ. Let h be a holomorphic map  ! T
without critical points in  and h 0ð Þ ¼ SF. Denote by gc the univalent solution of the
Schwarzian equation

Sg ¼ h cð Þ∘Hð Þ H0ð Þ2 þ SH,
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Δu tð Þ ¼ 4 lim inf
r!0

1
r2

1
2π

ð2π
0
u tþ reiθ
� �

dθ � λ tð Þ
� �
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Δ log λϰ ≥4λ2ϰ
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).

As was mentioned above, the Grunsky coefficients define on the tangent bundle
T Tð Þ a new Finsler structure Fϰ φ, vð Þ dominated by the infinitesimal Teichmüller
metric F φ, vð Þ. This structure generates on any embedded holomorphic disk
γ ð Þ⊂T the corresponding Finsler metric λγ tð Þ ¼ Fϰ γ tð Þ, γ0 tð Þð Þ and reconstructs the
Grunsky norm by integration along the Teichmüller disks:

Lemma 2. [97] On any extremal Teichmüller disk  μ0ð Þ ¼ ϕT tμ0ð Þ : t∈f g (and
its isometric images in T), we have the equality

tanh �1 ϰ f rμ0ð Þ½ � ¼
ðr

0

λϰ tð Þdt:

Taking into account that the disk  S f
� �

touches at the point φ ¼ S f a the
Teichmüller disk centered at the origin of T and passing through this point and that
the metric λϰ does not depend on the tangent unit vectors whose initial points are
the points of  S f

� �
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where H wð Þ ¼ F�1 wð Þ, on the domain F  ∗ð Þ. Then, for any c∈, the composition
gc∘ F also satisfies ϰ gc∘ F

� � ¼ k gc∘ F
� �

.
Note that by the lambda lemma for holomorphic motions, the map h determines

a holomorphic disk in the ball of Beltrami coefficients on F ð Þ, which yields,
together with assumptions of the theorem, that for small ∣c∣,

gc wð Þ ¼ wþ bc0 þ bc1w
�1 þ … as w ! ∞

with bc1 6¼ 0. This was an essential point in the proof.

5.4 Bounded polygons

The case of bounded convex polygons has an intrinsic interest, in view of the
following negative fact underlying the features and contrasting Theorem 5.

Theorem 11. There exist bounded rectilinear convex polygons Pn with sufficiently
large number of sides such that

ρ∂Pn
< 1=q

∂Pn
:

It follows simply from Theorem 8 that if a polygon Pn, whose edges are
quasiconformal arcs, satisfies ρ∂Pn

¼ 1=q
∂Pn

then this equality is preserved for all its
affine images. In particular, this is valid for all rectilinear polygons obtained by
affine maps from polygons with edges having a common tangent ellipse (which
includes the regular n-gons).

Theorem 10 naturally gives rise to the question whether the property ρ∂Pn
¼ 1=q

∂Pn

is valid for all bounded convex polygons with sufficiently small number of sides.
In the case of triangles this immediately follows from Theorem 7 as well as from

Werner’s result.
Noting that the affinity preserves parallelism and moves the lines to lines, one

concludes from Theorem 8 that the equality ρ∂P4
¼ 1=q

∂P4
holds in particular for

quadrilaterals P4 obtained by affine transformations from quadrilaterals that are
symmetric with respect to one of diagonals and for quadrilaterals whose sides have
common tangent outwardly ellipse (in particular, for all parallelograms and trape-
zoids). For the same reasons, it holds also for hexagons with axial symmetry having
two opposite sides parallel to this axes.

In fact, Theorem 8 allows us to establish much stronger result answering the
question positively for quadrilaterals.

Theorem 12. For every rectilinear convex quadrilateral P4, we have

ϰ fð Þ ¼ k fð Þ ¼ ρ∂P4
¼ 1=q

∂P4
, (41)

where F is the appropriately normalized conformal map of  ∗ onto P ∗
4 .

The proof of this theorem essentially relies on Theorem 8 and on result of [33]
that the equalities (41) are valid for all rectangles, and hence for their affine trans-
formations.

Fix such a quadrilateral P0
4 ¼ A0

1A
0
2A

0
3A

0
4 and consider the collection P0 of quad-

rilaterals P4 ¼ A0
1A

0
2A

0
3A4 with the same first three vertices and variable A4; the

corresponding A4 runs over a subset E of the trice punctured sphere ̂n A0
1 ,A

0
2 ,A

0
3

� �
.

The collection P0 contains the trapezoids, for which we have the equalities (41)
by Theorem 8 (and consequently, the infinitesimal equality (39) at the
corresponding points a).
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Similar to the proof of Theorem 6, one obtains in the universal Teichmüller
space T a holomorphic disk Ω extending the real analytic curve filled by the
Schwarzians, which correspond to the values t ¼ A on E. On this disk, one can
construct, similar to (38), the corresponding metric λϰ. Lemmas 4–6 again imply
that this metric must coincide at all points of Ω with the dominant infinitesimal
Teichmüller-Kobayashi metric λK of T. Together with Lemma 2, this provides the
global equalities (41) for all points of the disk Ω (and hence for the prescribed
quadrilateral P0

4).

5.5 An open problem here is the following question of Kühnau (personal
communication)

Question: Does the reflection coefficient of a rectangle R be a monotone
nondecreasing function of its conformal module μR (the ratio of the vertical and hori-
zontal side lengths)?

The results of Kühnau and Werner for the rectangles R state that if the module
μ Rð Þ satisfies 1≤ μ Rð Þ< 1:037, then

q
∂R ¼ 1=ρ∂R ¼ 1=2;

if μ Rð Þ> 2:76, then q∂ℛ > 1=2 (see [12, 55]).
On the other hand, the reflection coefficients of long rectangles are close to 1,

because the limit half-strip is not a quasidisk.

6. Reflections across finite collections of quasiintervals

6.1 General comments

There are only a few exact estimates of the reflection coefficients of
quasiconformal arcs (quasiintervals) and some their sharp upper bounds presented
in [14, 99]. The most of these bounds have been obtained using the classical
Bernstein-Walsh-Siciak theorem, which quantitatively connects holomorphic
extension of a function defined on a compact K⋐n with the speed of its polynomial
approximation. Another approach was applied by Kühnau in [54, 100–102]. In
particular, using somewhat modification of Teichmüller’s Verschiebungssatz [103],
he established in [102] the reflection coefficient of the set E, which consists of the
interval �2i, 2i½ � and a separate point t>0. All these results are presented in [64].

Theorems 4 and 6 open a new way in solving this problem following the lines of
the first example after Theorem 4.

6.2 Reflections across the finite collections of quasiintervals

Theorems 5 and 7 open a new way in solving this problem following the lines of
the first example after Theorem 5. Namely, given a finite union

L ¼ ∪L1 ∪L2 … ∪LN

of smooth curvelinear quasiintervals (possibly mutually separated) such that L
can be extended without adding new vertices (angular points) to a quasicircle
L0 ⊃L containing z ¼ ∞ and bounding a convex polygon PN that satisfies the
assumptions of Theorem 4 or a polygon considered in Theorem 7, then by these
theorems, the reflection coefficient of the set L equals
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qL ¼ ∣1� ∣ak, (42)

where α is defined for L0 similar to (23).
The main point here is to get a convex (or sufficiently close to convex, as in

Theorem 7) polygon, because the initial and final arcs of components L j can be
smoothly extended and then rounded off.

Note also that adding to L a finite number of appropriately located isolated
points z1, … zm does not change the reflection coefficient (42).
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Chapter 6

Symplectic Geometry and Its
Applications on Time Series
Analysis
Min Lei

Abstract

This chapter serves to introduce the symplectic geometry theory in time series
analysis and its applications in various fields. The basic concepts and basic elements
of mathematics relevant to the symplectic geometry are introduced in the second
section. It includes the symplectic space, symplectic transformation, Hamiltonian
matrix, symplectic principal component analysis (SPCA), symplectic geometry
spectrum analysis (SGSA), symplectic geometry mode decomposition (SGMD),
and symplectic entropy (SymEn), etc. In addition, it also briefly reviews the appli-
cations of symplectic geometry on time series analysis, such as the embedding
dimension estimation, nonlinear testing, noise reduction, as well as fault diagnosis.
Readers who are familiar with the mathematical preliminaries may omit the
second section, i.e. the theory part, and go directly to the third section, i.e. the
application part.

Keywords: symplectic geometry, symplectic principal component analysis (SPCA),
symplectic geometry spectrum analysis (SGSA), symplectic geometry mode
decomposition (SGMD), symplectic entropy (SymEn), chaotic time series,
embedding dimension, feature extraction

1. Introduction

From the viewpoint of mathematical systems, the time series observed in phys-
ics are usually regarded as coming from the Lagrangian systems, also called the
conventional systems. The systems can be analyzed by the conventional Euclidean
geometry [1]. However, the systems in practice are usually nonlinear and complex.
Thus, a lot of interesting time series in nature are complex due to nonlinear phe-
nomena derived from nonlinear dynamical systems [2]. The nonlinear dynamical
systems have been described by Hamiltonian systems and dealt with by using
symplectic geometry [3]. Symplectic geometry is an even dimensional geometry
living on even dimensional spaces. Different from the conventional Euclidean
geometry that measures 1-dimensional lengths and angles, the symplectic geometry
studies the metric properties (such as area) and can preserve the system structure in
the phase space [4]. Apart from applications on the classical dynamical systems to
solve the equation problems, symplectic geometry has been also used on the studies
of nonlinear time series [5–8].
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According to Takens’ embedding theorem, a time series can be reconstructed
into an attractor in phase space [9]. The reconstructed attractor is a geometrical
object that can reflect the underlying dynamical system. In order to better under-
stand the nature of the underlying system, the attractor and its properties are
characterized in the phase space by various mathematical methods, such as dimen-
sion, fractal geometry, Lyapunov exponent, entropy and symplectic geometry [1, 5,
10, 11]. For dimension, fractal geometry, Lyapunov exponent, entropy, there are a
more extensive discussion with mathematical details in some research literatures
[12–15]. Here, we only introduce how to apply symplectic geometry theory to
extract the information from the reconstructed attractor and its application on
physics, engineering and biomedical engineering.

2. Mathematical fundamental

2.1 Reconstruction of the system dynamics in phase space from a time series

The reconstruction from a time series of observation is the first and most crucial
step in nonlinear time series analysis. It is also the basis of applications of symplectic
geometry on time series analysis. Takens’ embedding theorem allows us to recon-
struct an equivalent attractor of the underlying dynamical system by embedding
one time series. The theorem proves that the reconstructed attractor has the same
dynamical characteristics as the attractor of the original system if the embedding
dimension m is sufficiently large. Let a time series of observation x1, x2, …, xn. n is
the number of samples. The reconstructed attractor can be given in N-dimensional
space RN by the time-delay embedding [5]:

X ¼ X1, X2,⋯, Xmð Þ

¼

x1 x2 ⋯ xm

x2 x3 ⋯ xmþ1

⋮ ⋮ ⋱ ⋮

xN xNþ1 ⋯ xn

0
BBBBBB@

1
CCCCCCA

, (1)

where the number of dots in the attractor is m = n-N + 1, the embedding
dimension is N. X is also called as the trajectory matrix of the original system in
phase space. The corresponding program is given by matlab software as follows:

————————————————————————————————

function matrixSignal = signalMatrix(x, N)
% ————Construct data matrix————

%
% Synopsis:
% matrixSignal = signalMatrix(x, N)
%
% Description:
% It constructs a data matrix from a time series as a column vector, i.e., a
% reconstruction attractor.
%
% Input:
% x a time series with the length n.
% N [1x1] Output dimension; N > 1 (default N = dim);
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%
% Ouputs:
% matrixSignal [N x M] a data matrix (M = n-N + 1).
%
if nargin <2, N = 2; end
n = length(x);
M = n-N + 1;

matrixSignal = zeros(N,M);
for i = 1:N
matrixSignal(i,:) = x(i:M + i-1);
end
—————————————————————————————————

2.2 Hamilton matrix from the reconstructed attractor

In the symplectic spaces, Hamiltonian system is the analysis fundamental for the
real physical processes [4, 5]. A real system should be first described by a suitable
Hamiltonian system, i.e. an even dimensional matrix. For a time series, its
Hamiltonian matrix H can be defined by using its reconstructed attractor X.

Definition 2.1 Let X be a d-dimensional matrix in a real number field Rd.
The matrix Xcan be given by removing the mean values of the columns of the X.
We define the covariance matrix A of the matrix X:

A ¼ X �XT
: (2)

Here, A is a d � d real number matrix.
Definition 2.2 For a d � d matrix A, the Hamiltonian matrix H can be defined:

H ¼ A 0
0 �AT

� �
: (3)

Here, H is a 2d � 2d matrix.

2.3 Mathematical preliminaries in symplectic geometry

Symplectic geometry focuses on the study of area measure in symplectic space
R2n. Its basic concepts and basic properties are related but different from those of a
Euclidean geometry (see Table 1).

In Euclidean space, the inner product is denoted as the measure of the length. The
unit matrix is I, i.e. the main diagonal elements are 1, and the other elements are 0.
Corresponding to the unit matrix I in Euclidean space, the unit matrix in symplectic
space is defined as the unit symplectic matrix J, an even dimensional matrix:

J ¼ J2n ¼
0 þIn
�In 0

� �
, (4)

The properties of the matrix J have:

Jj j ¼ 1, (5)

J2 ¼ �I, (6)

JT ¼ J�1 ¼ �J, (7)
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JJ�1 ¼ J�1J ¼ I: (8)

Definition 2.3 For any two n-dimensional vectors x2n � 1 and y2n � 1, the normal
symplectic inner product is defined by using the inner product of Euclidean space:

x, y
� � ¼ x, J2ny

� � ¼
Xn
i¼1

xiynþi � xnþiyi
� � ¼ xTJ2ny: (9)

The normal symplectic inner product is also denoted briefly as the symplectic
inner product in a real vector space R2n. When n = 1, there is:

J2 ¼
0 1

�1 0

� �
, (10)

Geometry
space

Symplectic space Euclidean space

Space
dimension

2n-dimension n-dimension

Unit matrix unit symplect matrix:

J2n ¼ 0 þIn
�In 0

� �
.

unit matrix:

In ¼
1 0 ⋯ 0

0 1 ⋱ ⋮

⋮ ⋱ ⋱ 0

0 ⋯ 0 1

0
BB@

1
CCA

|fflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflffl}
n

.

Determinant
of unit matrix

|J2n| = 1 |In| = 1

Product
calculation

symplectic inner product <x, y>
x, y
� � ¼ x, J2ny

� �

¼ xTJ2ny
.

Inner product (x, y)
x, y
� � ¼ x, Iny

� �

¼ xTIny

¼ xTy

.

Calculation
measure

area length

Orthogonality x, y
� � ¼ xTJ2ny ¼ 0. x, y

� � ¼ xTIny

¼ xTy

¼ 0

.

Space basis Adjoint symplectic orthonormal basis Q = {x1,
x2, …, xm, y1, y2, …, ym}, m ≤ n; when
determinant |Q| = 1, the basis Q is normal.

Orthogonal basis W = {x1, x2, …,
xm}, m ≤ n; when |W| = 1, the basis
W is normal.

Orthogonal
matrix

Symplectic matrix S
STJS ¼ J.

Orthogonal matrix W
WTIW ¼ WTW ¼ I.

Analysis
matrix

Hamiltonian matrix H
HT = JHJ.

Symmetry matrix A
AT = A = IAI.

Matrix
transformation

Hamiltonian transformation
x,Hy
� � ¼ y,Hx

� �
.

Symmetry transformation
x,Ay
� � ¼ y,Ax

� �
.

Eigenvalues of
the matrix

The eigenvalues of H are �μ. The eigenvalues μ of A are real.

Eigenvectors
of the matrix

The eigenvectors of H are symplectic
orthogonal.

The eigenvectors of A are
orthogonal.

Table 1.
The comparison between symplectic geometry and Euclidean geometry.
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x, y
� � ¼ x, J2y

� � ¼ xTJ2y ¼ x1 y1
x2 y2

����
���� ¼ x1y2 � x2y1: (11)

The symplectic inner product is a bilinear antisymmetric nonsingular cross
product. In symplectic space, the length of any vectors is equal to 0. But there exists
the concept of symplectic orthogonal cross-course.

Definition 2.4 Let x and y be a 2n-dimensional real vector. If their symplectic
inner product is equal to zero, i.e.:

x, y
� � ¼ xTJy ¼ 0, (12)

then x and y are symplectic orthogonal. Otherwise, they are called as symplectic
adjoint.

Definition 2.5 If a vector set {x1, x2, …, xm, y1, y2, …, ym} in the real symplectic
space R2n (m ≤ n)is an adjoint symplectic orthonormal vector set, then the vectors
xi and yi (i = 1, …,m, xi∈ R2n, yi∈ R2n) satisfy

xi, y j

D E
¼ xT

i J2ny j ¼
aii 6¼ 0, i ¼ j
0, i 6¼ j

�
, (13)

xi,  x j
� � ¼ 0, (14)

yi,  y j

D E
¼ 0, (15)

where i, j = 1, 2, …,m. It is called as an adjoint symplectic orthonormal basis in the
2n-dimensional symplectic space. If aii = 1, the vector set {x1, x2, …, xm, y1, y2, …, ym}
is a normal adjoint symplectic orthonormal vector set (a normal adjoint symplectic
orthonormal basis in the space R2n).

The orthogonal of the Euclidean space is different from the symplectic
orthogonal. If vectors x and y in the space Rn are orthonormal, then they satisfy:

x,  y
� � ¼ xTy ¼ 0, (16)

where x 6¼ y.
If a vector set {x1, x2, …, xm}∈Rn is an orthonormal vector set, then any two

vectors in the set satisfy:

xi,  x j
� � ¼ 0, (17)

where i, j = 1, 2, …, m, i 6¼ j. Eq. (17) is similar to Eqs. (14) and (15). In the
n-dimensional Euclidean space, the set {xi} is denoted as an orthonormal basis.
If ||xi || = 1, the orthonormal basis is a normal orthonormal basis.

Theorem 2.1 Let {αi} be a normal adjoint symplectic orthonormal basis in a
2n-dimensional symplectic space Φ. Let the coordinates of any vectors β and γ in Φ
be {x1, x2, … xn, xn + 1, …, x2n}

T and {y1, y2, … yn, yn + 1, …, y2n}
T, respectively.

Referring to the basis {αi}, the coordinates can be described as:

xi ¼ β, αnþih i, xnþi ¼ � β, αih i, yi ¼ γ, αnþih i, ynþi ¼ � γ, αih i, (18)

where i = 1, 2, …, n. Then the symplectic inner product of β and γ is as follows:

β, γh i ¼
Xn
i¼1

xiynþi � xnþiyi
� � ¼ xTJ2ny: (19)
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Thus, the symplectic inner product operation is transformed to the matrix oper-
ation of ordinary vectors or matrices by applying a normal adjoint symplectic
orthonormal basis.

Definition 2.6 Let S is a 2n � 2n matrix, if S satisfies:

JSJ�1 ¼ S�T, or STJS ¼ J, (20)

then S is a symplectic matrix and the determinant |S| = 1 or � 1. Meanwhile, the
inverse matrix and the transpose matrix of a symplectic matrix are a symplectic
matrix, respectively. The symplectic matrix S is similar to an orthogonal matrix W
in Euclidean space, like Eq. (20):

WTIW ¼ WTW ¼ I: (21)

Theorem 2.2 The product of sympletcic matrixes is also a symplectic matrix.
Proof:
Let Si (i = 1, 2, …, n) be a symplectic matrix. The product matrix M:

M ¼
Yn
i¼1

Si: (22)

According to the above definition of symplectic matrix, there are:

JSiJ
�1 ¼ S�T

i , i ¼ 1, 2,⋯, n (23)

J�1J ¼ I, (24)

JMJ�1 ¼ J
Yn
i¼1

Si

 !
J�1

¼ J S1S2⋯Snð ÞJ�1

¼ JS1J
�1JS2J

�1J⋯J�1JSnJ
�1

¼ JS1J
�1� �

JS2J
�1� �

J⋯J�1� �
JSnJ

�1� �

¼ S�T
1 S�T

2 ⋯S�T
n

¼ S1S2⋯Snð Þ�T

¼ M�T

, (25)

Thus, the product of symplectic matrixes is also a symplectic matrix.
Definition 2.7 If a 2n � 2n matrix H is a Hamiltonian matrix, then the matrix H

satisfies the following properties:

JHJ�1 ¼ �HT, JHJ ¼ HT, or JHð ÞT ¼ JH, (26)

x,Hy
� � ¼ y,Hx

� �
, (27)

where x and y are 2n-dimensional vectors. In other words, if an even-
dimensional matrix H satisfies these properties above, the matrix H is a Hamilto-
nian matrix. In Euclidean space, a symmetric matrix A is similar to a Hamilitonian
matrix H, like Eqs. (26) and (27):

IAI ¼ A ¼ AT, (28)
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x,Ay
� � ¼ y,Ax

� �
: (29)

Theorem 2.3 Let a matrix A be a n � n real number matrix, if it can be built into
a 2n � 2n matrix H in symplectic space in the following pattern:

A 0
0 �AT

� �
: (30)

Then the matrix H is a Hamilton matrix.
Proof:

Let H ¼ A 0
0 �AT

� �
, then

JHJ�1 ¼ J
A 0

0 �AT

 !
J�1

¼
0 In

�In 0

 !
A 0

0 �AT

 !
0 In

�In 0

 !�1

¼
�AT 0

0 A

0
@

1
A

¼ �
A 0

0 �AT

 !T

¼ �HT

, (31)

where J is the 2n � 2n unit symplectic matrix. In terms of Definition 2.7, the
matrix H is a 2n � 2n Hamiltonian matrix.

Theorem 2.4 Let a 2n � 2n matrix H be a Hamiltonian matrix. Then its proper-
ties keep unchanged at symplectic similar transform. That is, a Hamiltonian matrix
H through a series of symplectic similar transforms is still a Hamiltonian matrix.

Proof:
According to Definition 2.6, let the matrix S be a symplectic transform matrix.

Then, the inverse matrix S�1 is also a symplectic matrix. For a Hamiltonian matrix
H, let SHS�1 be the matrix M under the symplectic similar transformation of the
matrices S and S�1. Thus,

J Mð ÞJ�1 ¼ J SHS�1� �
J�1

¼ JSJ�1� �
JHJ�1� �

JS�1J�1� �

¼ S�T �HT� �
ST

¼ � SHS�1� �T

¼ �MT

: (32)

Therefore, M is also a Hamiltonian matrix. Moreover, the matrix M is similar to
the matrix H. Therefore, the Hamiltonian matrix H can keep unchanged at
symplectic similar transform in symplectic space.
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The eigenvalues of a Hamiltonian matrix have the specific characteristics of the
Hamiltonian matrix. However, the eigenvalues may be complex or repeated eigen-
values. In order to obtain the real eigenvalues of a Hamiltonian matrix H,
symplectic QR decomposition method is applied to deal with the Hamiltonian H:

1.Let a 2n � 2n matrix H be (AT G; F –A), then

N ¼ H2

¼ AT G

F �A

 !2
, (33)

2.Build a 2n � 2n symplectic matrix Q and satisfy:

Q TNQ ¼ B R
0 BT

� �
, (34)

B ¼

b11 b12 ⋯ ⋯ b1n
b21 b22 ⋯ ⋯ b2n
0 b32 ⋱ ⋱ ⋮
⋮ ⋱ ⋱ ⋱ ⋮
0 ⋯ 0 bnn�1 bnn

0
BBBBBB@

1
CCCCCCA
: (35)

Here B is an upper Hessenberg matrix. Besides, the matrix Q can be a 2n � 2n
Householder matrix.

3.Use the symplectic QR decomposition method to obtain eigenvalues:

μ Bð Þ ¼ μ1, μ2, ⋯, μnf g: (36)

4.The eigenvalues of the Hamiltonian matrix H with multiplicity n are λi ¼ ffiffiffiffi
μi

p ,
i = 1, 2, …, n; λnþi ¼ �λiis also an eigenvalue with multiplicity n.

In symplectic space, the symplectic QR decomposition method allows the pri-
mary 2n-dimensional space transform into n dimensional space to resolve the
eigenvalues of the Hamiltonian H, where the matrix Q is a symplectic unitary
matrix. Thus, the consuming time of the calculation is only one fourth the number
of floating-point operations. In general, one makes use of a Householder matrix
instead of the matrix Q.

Theorem 2.5 If a 2n � 2nmatrix Q is a Householder matrix, then the matrix Q is
a symplectic unitary matrix.

Proof:
Let a Householder matrix Q

Q ¼ Q k,ωð Þ ¼ P 0

0 P

� �
, (37)

P ¼ In � 2ωω ∗

ω ∗ω
, (38)

ω ¼ 0,⋯, 0,ωk,⋯,ωnð ÞT 6¼ 0, (39)

where, ‘*’ means the conjugate transposition. Then, there is
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P ∗ ¼ P, (40)

P ∗P ¼ P2

¼ In � 2ωω ∗

ω ∗ω

� �
In � 2ωω ∗

ω ∗ω

� �

¼ In

, (41)

Q ∗ JQ ¼
P 0

0 P

 ! ∗ 0 In

�In 0

 !
P 0

0 P

 !

¼
0 P ∗P

�P ∗P 0

 !

¼
0 In

�In 0

 !

¼ J

, (42)

Q ∗Q ¼
P 0

0 P

 ! ∗ P 0

0 P

 !

¼
P ∗P 0

0 P ∗P

 !

¼
In 0

0 In

 !

¼ I2n

, (43)

Therefore, the Householder matrix Q is a symplectic unitary matrix.

2.4 Mathematical fundamental on applications

2.4.1 Symplectic geometry spectrums of the reconstructed attractor from a time series

In symplectic space, the reconstructed attractor can keep its properties unchanged
[5, 6]. Its symplectic geometry spectrums can be given by the symplectic geometry
theory above. On the basis of Section 2.1 and 2.2, one can build a Hamiltonian matrix
M from a time series of the observation. Due to the structure characteristics of the
matrixM, its eigenvalues can be calculated by the 2n-dimensional symplectic space
reducing into n-dimensional space. In terms of Theorem 1.5, a 2n � 2n symplectic
Householder matrix Q can be constructed. The matrix P in the matrix Q can be
calculated by the matrix A in the matrixM. The specific steps are as follows:

1.Let A be

ð44Þ
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If the vector α 1ð Þ
21 6¼ 0, set S(1) be the first column vector of A:

S 1ð Þ ¼

a 1ð Þ
11

a 1ð Þ
21

⋮
a 1ð Þ
n1

0
BBBB@

1
CCCCA

¼

a11
a21
⋮
an1

0
BBB@

1
CCCA, (45)

then, there is:

α 1ð Þ ¼ S 1ð Þ�� ��
2, (46)

ρ 1ð Þ ¼ S 1ð Þ � α 1ð ÞE 1ð Þ�� ��
2, (47)

ω 1ð Þ ¼ S 1ð Þ � α 1ð ÞE 1ð Þ

ρ 1ð Þ , (48)

where E(1) = (1, 0, …, 0)T is a n � 1 unit column vector.
Then, the elementary reflective matrix P(1) can be calculated:

P 1ð Þ ¼ I� 2ω 1ð Þ ω 1ð Þ
� �T

: (49)

So, there is

A 2ð Þ ¼ P 1ð ÞA

¼

σ1 a 2ð Þ
12 ⋯ a 2ð Þ

1n

0 a 2ð Þ
22 ⋯ a 2ð Þ

2n

⋮ ⋮ ⋱ ⋮

0 a 2ð Þ
n2 ⋯ a 2ð Þ

nn

0
BBBBBBB@

1
CCCCCCCA

: (50)

Continue to deal with A(2) by repeating the above steps, let S(2) be

S 2ð Þ ¼

0

a 2ð Þ
22

⋮
a 2ð Þ
n2

0
BBB@

1
CCCA: (51)

Then,

α 2ð Þ ¼ S 2ð Þ�� ��
2, (52)

ρ 2ð Þ ¼ S 2ð Þ � α 2ð ÞE 2ð Þ�� ��
2, (53)

ω 2ð Þ ¼ S 2ð Þ � α 2ð ÞE 2ð Þ

ρ 2ð Þ , (54)

where E(2) = (0, 1, 0, …, 0)T is a n � 1 unit column vector.
Then, the elementary reflective matrix P(2) can be calculated:
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P 2ð Þ ¼ I� 2ω 2ð Þ ω 2ð Þ
� �T

: (55)

Thus, we can get A(3) with all zeros elements except the first and second non-
zero elements:

A 3ð Þ ¼ P 2ð ÞA 2ð Þ

¼

σ1 a 3ð Þ
12 a 3ð Þ

13 ⋯

0 σ2 a 3ð Þ
23 ⋯

0 0 a 3ð Þ
33 ⋮

⋮

0

⋮

0

⋮

a 3ð Þ
n3

⋱

⋯

a 3ð Þ
1n

a 3ð Þ
2n

⋮

⋮

a 3ð Þ
nn

0
BBBBBBBBBBBBB@

1
CCCCCCCCCCCCCA

: (56)

Repeat the same steps until A(n) becomes an upper triangle matrix, one can
construct a Householder matrix P as follows:

P ¼ P nð ÞP n�1ð Þ⋯P 1ð Þ: (57)

Thus, a symplectic Householder matrix Q can be built to make the Hamiltonian
matrix M transform as an upper Hessenberg matrix, namely:

QMQ T ¼
P 0

0 P

 !
A 0

0 �AT

 !
P 0

0 P

 !T

¼
PAPT 0

0 �PATPT

 !

¼
B 0

0 �BT

 !

: (58)

μ Að Þ ¼ μ Bð Þ, (59)

where μ means the eigenvalue. The matlab program is as follow:
—————————————————————————————————

function [P, R] = householder (A)
% ————Solve Householder Transform Matrix————

%
% Synopsis:
% [P, R] = householder (A)
%
% Description:
% It solves a Householder matrix from a data matrix, i.e., a
% reconstruction attractor.
%
% Input:
% A [mRow x mCol] a data matrix.
%
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% Ouputs:
% P [mRow x mRow] a Householder matrix
% R [mRow x mCol] an upper triangle matrix

[mRow, mCol] = size(A);
if mRow>mCol

A = A’;
[mRow, mCol] = size(A);

end
I_matrix = eye(mRow);
m = min([mRow, mCol]);
p = I_matrix;
for i = 1:m.

S = A(:,i);
if i > 1.
S(1:i-1) = 0;
end
alpha = sqrt(S’*S);

delta1 = S-alpha*I_matrix(:,i);
delta = sqrt(delta1'*delta1);
if delta==0
delta = eps;
end
omega = delta1/delta;

p = I_matrix-2*omega*omega';
A = p*A;
P = p*P;

end
R = A;
return
—————————————————————————————————

For the attractor matrix X of a time series, its symplectic geometry spectrums
SGS are calculated by the eigenvalues of the A in descending order, that is:

SGSi ¼ log
σi

tr σið Þ
� �

, (60)

σ ¼ μ2 Xð Þ ¼ μ Að Þ, σ1 ¼ μ2max, ⋯, σn ¼ μ2min, (61)

where i = 1, …, n. n is the dimension of the attractor X.

2.4.2 Embedding dimension estimate of the reconstructed attractor from a time series

To estimate the embedding dimension is usually the first step of nonlinear
analysis [5]. For a time series, it is important to resolve a suitable embedding
dimension of the observed system. Due to the measure-preserving charactistic of
symplectic geometry, symplectic geometry spectrums can be used to estimate the
embedding dimension of the system from a time series. With the increase of the
dimension n in Eq. (61), the change of the symplectic geometry spectrums SGS in
Eq. (60) tends to be flat at i = d (i∈(1,n))and enters the noise floor area,
SGS1 > SGS2 > … > SGSd> > SGSd + 1 ≥ … ≥ SGSn,. That is, the eigenvalues exist
σ1 > σ2 > … > σd> > σd + 1 ≥ … ≥ σn, then d is defined as the embedding dimension of
the time series for the reconstruction system.
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2.4.3 Symplectic entropy (SymEn) of a time series

Symplectic entropy(SymEn) is a kind of entropy measure for a dynamic system
in symplectic space [16]. Based on the symplectic geometry spectrums, the SymEn
measures the energy distribution in symplectic space of a dynamic system from a
time series. The distribution of the energy of the system is described by the eigen-
values σ in the relevant symplectic orthonormal bases of the symplectic space. In
each base direction, the probability of the energy distribution can be given as
follows:

pi ¼
σi
Pn
i¼1

σi

, (62)

where i denotes the ith base direction in the symplectic space,
Pn

i¼1pi ¼ 1,
0≤ pi ≤ 1.

Then,

SymEn ¼ �
Xn
i¼1

pi log pi
� �

: (63)

The matlab program is as follows:

————————————————————————————————

function SymEn = SymplecticEntropy(A)

[Q, R] = householder(A);
delta = diag(R);
sum_delta = sum(delta);

p = delta./sum_delta;
SymEn = �sum(p.*log(p));
Return
—————————————————————————————————

The SymEn value represents the uncertainty of the entropy about the underlying
probability distribution of a dynamic system in symplectic space, called Symplectic
Entropy.

2.4.4 Symplectic principal component analysis (SPCA) of a time series

Symplectic principal component analysis (SPCA) is a kind of principal compo-
nent analysis (PCA) to map the dynamic system from a time series into the
symplectic space [17]. Due to the preserving-measure nature of symplectic geome-
try, symplectic principal components elucidate the dominant features of a time
series for an underlying system. The principal components corresponding to larger
eigenvalues capture the key relationship between the variables in symplectic space.
The components corresponding to smaller eigenvalues are regarded to relate pri-
marily to the less important components or noise in the time series. The analysis of
eigenvalues are also called as the symplectic geometry spectrums analysis (SGSA)
[6, 18, 19]. The corresponding components are also regarded as symplectic geome-
try mode decomposition (SGMD) [7, 8, 20, 21]. According to the symplectic geom-
etry spectrums above, if the number of the chosen symplectic principal components
is k, the corresponding principal eigenvector matrix p can be constructed by using
the first k eigenvectors of the matrix P in the matrix Q. The corresponding principal
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eigenvalues are the first k eigenvalues in the symplectic geometry spectrum. If k = n,
p = P. Otherwise, p ⊂ P. Then the reestimated attractor matrix X̂ ¼ p pTX

� �
, where

pTX is defined the transformation coefficient matrix S. If pi is the ith eigenvector in
P corresponding to the ith eigenvalue σi in the symplectic geometry spectrum, Si
will be the ith principal component coefficients, or called the projection of the pith
direction in the symplectic space:

Si ¼ pT
i X ¼ XTpi: (64)

The corresponding pith principal component matrix X̂i is given as follows:

X̂i ¼ piSi: (65)

Then, the reestimated attractor matrix is equal to the sum of X̂i, i = 1,…, n.

X̂ ¼
Xn
i¼1

X̂i: (66)

The reestimated time series xr is equal to the sum of each principal component,
i.e. the sum of projections in different directions. If i = 1, the reestimated time series
is a reduced noise data based on the first principal component.

3. Applications

Symplectic geometry theory has been applied to deal with a time series in fields
of physics, engineering, biomedical engineering [6–8, 11, 16–24], since Lei et al.
(2002) first proposed a symplectic geometry method to estimate the appropriate
embedding dimension from a time series [5]. Here, we will introduce four research
cases in terms of the above theorem and properties of symplectic geometry for the
time series analysis.

Case 1: Embedding dimension estimation for Lorenz chaotic time series [5].
Lorenz chaotic system was accidentally discovered by Edward Norton Lorenz

[25], an American meteorologist, in 1963 when he was studying weather forecast,
and was known as the first chaotic attractor. Since then, people began to study
chaos, a random-like phenomenon. Lorenz chaotic time series x comes from Lorenz
chaotic system, which is a three-dimensional dynamical system as follows [5]:

_x ¼ σ y� xð Þ
_y ¼ γx� y� xz
_z ¼ �bzþ xy ,

(67)

where σ = 10, b = 8/3, γ = 28. The state variable x is chosen as the analyzed data.
The sampling interval is 0.005. The length n is 1000 points.

The attractor reconstructed from Lorenz chaotic time series x can reflect the
Lorenz system. Here, the dimension of the reconstructed attractor is estimated by
the above symplectic geometry method. Let the embedding dimension d be 3: 5: 23,
where i = 1: d. The matlab program is as follows:

—————————————————————————————————

% Compute a Lorenz chaotic time series
% Example:
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% state = [5 5 5];
% Ts = 0.005;
% N = 10000;
% y = calculate_lorenz(state, Ts, N);
% x = y(:,1);

function y = calculate_lorenz(state, Ts, N).

if nargin <1
state = [5 5 5];
Ts = 0.005;

N = 10000;
end
if nargin == 1
Ts = 0.005;

N = 10000;
end
if nargin == 2

N = 10000;
end
% set time span with specific times for the solution
T = 0:Ts:N*Ts;
% set a scalar relative error tolerance 'RelTol' (1e-3 by default).
% and a vector of absolute error tolerances 'AbsTol' (all components 1e-6% by

default).
options = odeset('RelTol',1e-4,'AbsTol',[1e-4 1e-4 1e-5]);
% solve Lorenz chaotic system
[t,y] = ode45('lorenzeq1',T,state,options);
return
function ydot = lorenzeq(t,y)
% Lorenz equation
b = 8/3;
r = 28;
delta = 10;
A = [�delta delta 0;r � 1 -y(1);y(2) 0 -b];
ydot = A*y;
return
——————————————————————————————————

% Calculate the embedding dimension.
state = [5 5 5];
Ts = 0.005;
N = 10000;
y = calculate_lorenz(state, Ts, N);
x = y(:,1);
figure.
for N = 3:5:23

X = signalMatrix(x,N);
A = X*X’;
[Q, R] = householder(A);

delta = diag(R);
sum_delta = sum(delta);

d = log10(delta./sum_delta);
n = length(d);

plot(1:n, d, 'b*-')
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hold on
end
ylabel('log10(\delta_{\iti}/tr(\delta_{\iti}))')
xlabel('{\itd} = 3:5:23')
axis([0 25–15 0])
—————————————————————————————————

Figure 1a shows the symplectic geometry spectrums SGS of x without noise
according to the above equations based on symplectic geometry theory. We can see
that the symplectic geometry spectrums turn abruptly into a flat area from i = 6, i.e.
σ1 > σ2 >… > σ5> > σ5 + 1 ≥… ≥ σd. So, the embedding dimension of the time series x
can be estimated at 6. But from the Figure 1b, we can see that it is difficult for the
SVD method to determinate the embedding dimension from the time series x. The
results indicate that the symplectic geometry method could better determinate the
embedding dimension from a time series due to its preserving-measure properties.

Case 2: Embedding dimension estimation for the surface EMG signal [5].
In the practical engineering research, a lot of time series data due to their

complexity are considered to be nonlinear, such as the surface EMG signal in
biomedical engineering. As a kind of non-invasive measure for the contracting
skeletal muscles, the surface EMG signal reflects some information about the mus-
cle, limb movements and loading of the bones and joints. It has been widely applied
to assess biomechanical and motor control deficits and other functional disorders, as
well as to diagnose neuromuscular problems. However, due to noise interference,
the study of surface EMG signal is still a great challenge in biomedical engineering.
Many researches indicate that the surface EMG signal is complex and nonlinear.
The embedding dimension estimation of the surface EMG signal is usually critical to
analyze its nonlinear features. As an example, we use the above symplectic geome-
try method to estimate the embedding dimension of the surface EMG signal during
forearm supination. The length of the surface EMG signal is 1000 points. The data
sampling frequency is 1 kHz. Figure 2a shows the raw surface EMG signal.
Figure 2b gives the symplectic geometry spectrums SGS of the data in Figure 2a.
From Figure 2b, the symplectic geometry spectrums SGS change slowly at d = 6 and
turn into noise floor with the increase of the index i. Then, the embedding dimen-
sion can be estimated at 6 for the surface EMG signal during forearm supination.

Case 3: SymEn analysis of vibration signals on rolling bearings [11].
In the rotating machinery systems, it is extremely important for rolling bearings

to detect faults from vibration signals. The Case Western Reserve University
(CWRU) Bearing Data Center provides a website database for the vibration signals

Figure 1.
The embedding dimension estimation of Lorenz chaos series with no noise based on: (a) the symplectic geometry
method; (b) the SVD method.

118

Structure Topology and Symplectic Geometry



of bearings (http://csegroups.case.edu/bearingdatacenter /pages/welcome-case-
western-reserve-university-bearing-data-center-website). From the website, the
acceleration vibration data sets for 6205-2RS JEM of SKF deep-groove ball bearings
are obtained to detect their fault categories. The corresponding sampling frequency
is 12 kHz, the shaft speed 1730 r/min. The analyzed data sets include No.100 for
normal condition(NC), No.212 for inner race fault (IRF), No.225 for rolling element
fault (REF), and No.261 for outer race fault (ORF) at 12 o’clock position. The data of
each set consist of the vibration signals at the housing of the drive end (DE) bearing
and that of the fan end (FE) bearing, which the faults are at the drive end. The
corresponding fault depth and diameter are 0.21 inches and 0.53 mm, respectively.

Symplectic geometry preserves the nature of a dynamic system under
symplectic similar transformations. As an entropy measure in symplectic geometry,
the SymEn value of a time series measures the lack of information in a dynamic
system to reflect its properties. For the complexity of a rolling bearing, the SymEn
estimate is applied to test its nonlinear characteristics from the vibration signals.
Figure 2 shows the SymEn values of the vibration signals at the drive end and
their surrogate data sets based on the null hypothesis of a Gaussian linear
stochastic process. Here, the length of each data is 6000 points. The embedding
dimension d = 7.

Meanwhile, the 39 sets of surrogate data are generated by the iterated amplitude
adjusted Fourier transform (IAAFT) algorithm in the 95% confidence level [26].
From Figure 3, we can see that there are the significant differences between these
SymEn values of the vibration signals of a rolling bearing and their surrogate data
sets. The results indicate that the vibration data could contain nonlinear character-
istics. The original vibration signals are not from a Gaussian linear stochastic pro-
cess in the 95% confidence level but from a nonlinear dynamical system. It
conforms that the rolling bearing system is a complex nonlinear dynamical system.

Due to the complexity of rolling bearings, it is often thought that the high
dimensional features can better identify the faults of rolling bearings [27–29].
However, the SymEn method can availably extract the low-dimensional features to
identify the faults of rolling bearings from vibration signals quite precisely.
Figure 4 shows the four working states of rolling bearings, i.e., NC, ORF, REF,
and IRF, based on 2-dimensional features. The abscissa is the SymEn estimates of
vibration signals at the drive end. The ordinate is those estimates of vibration
signals at the fan end. We can see that the four states are obviously different.

Figure 2.
The embedding dimension analysis of the surface EMG signal based on the symplectic geometry spectrums:
(a) Typical surface EMG signal during forearm supination; (b) The symplectic geometry spectrums of
the surface EMG data in (a), where abscissa is the analysis dimension d = 3, 8, 13, 18, 23, ordinate is
SGSi = log σi=tr σið Þð Þ, where the index i = 1: d.
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There are 100% accuracies by RBF classifier for the four states of the rolling
bearings. Figure 5 plots the histogram of error values between output classes and
target classes for the SymEn estimates as features of vibration signals.

Case 4: Noise reduction analysis of vibration signals based on SPCA [17, 30].
In the practical engineering measurement, the vibration data of rolling bearings

have often become contaminated with noise. The noise reduction is also beneficial
to analyze the measured data. The SPCA method preserves the intrinsic nonlinear
nature of the raw data. The symplectic principal components can better retrieve

Figure 3.
The nonlinear analysis of vibration signals based on the SymEn method: (a) for the normal condition (NC);
(b) for the outer race fault (ORF); (c) for the rolling element fault (REF); (d) for the inner race fault (IRF).
The abscissa is the SymEn values of vibration signals and their surrogate data.

Figure 4.
The states analysis of rolling for bearings with the SymEn estimates.
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dominant patterns from the noisy data. For the vibration signals of rolling bearings,
the first symplectic principal component is used two times continuously to reduce
the noise in the data.

The specific analysis procedures are as follows:

1.Build a Hamiltonian matrix from the measured data in terms of Eq. (1),
Definition 2.1, 2.2 and Theorem 2.3;

2.Use the Eq. (44)–(59) to compute a symplectic Householder transform matrix
Q for the symplectic QR decomposition in the SPCA method;

3.Construct the first symplectic principal component eigenvector matrix p1;

4.Calculate the first symplectic principal component coefficients S1, i.e.:

S1 ¼ pT
1X ¼ XTp1;

5.Get the first denoised data x1 from the reestimated matrix in the following:

X̂1 ¼ p1S1;

6.Let the first denoised data x1 into the first step, and repeat the above steps,
then obtain the second denoised data x3.

Figure 6 shows the effect of denoising for the vibration signals of rolling ele-
ment fault (REF), No.225 data in the CWRU database [11]. For the rolling element
fault at the drive end, the fault state can be seen clearly by the second reducing
noise (see Figure 6a). For the vibration signals at the fan end without faults, the
periodical characteristics in the normal state can be shown after the two reducing
noise (see Figure 6b).

Moreover, the noise reduction method based on the symplectic geometry has
been used to denoise several time series data of Lorenz chaotic system, duffing
chaotic system, Chua’s chaotic system with noise, as well as the sunspot number
[30]. The details can be found in literatures [17, 30].

Besides, the symplectic geometry method also further integrate other
approaches to better investigate the fault extraction and identification for rotating
systems, such as symplectic geometry mode decomposition [19] with power

Figure 5.
The analysis of error values identification accuracies of four states.
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spectral entropy [7] as well as Lagrange multiplier [20], symplectic transformation
based variational Bayesian learning [21].

4. Conclusions and future research

This chapter introduces the symplectic geometry theory in the research field of
the time series analysis in view of the complexity of a time series. Corresponding to
Euclidean geometry, the basic concepts and basic elements of mathematics of the
symplectic geometry are given, such as the symplectic space, symplectic transfor-
mation, Hamiltonian matrix, symplectic entropy (SymEn), symplectic principal

Figure 6.
The two times denoising analysis for the vibration signals of rolling element fault (REF) in No.225 data
from the CWRU database. (a) The abscissa is the number of data points; (b) the ordinate is the amplitude
(v) of the data.
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component analysis (SPCA), and so on. Based on the symplectic geometry theory,
the symplectic geometry spectrum analysis (SGSA), the symplectic entropy
(SymEn) method and the symplectic geometry mode decomposition (SGMD)
method are demonstrated to investigate the principal characteristics of a time series
in the symplectic space. Meanwhile, the corresponding matlab programs are given.
At last, in order to facilitate readers to learn, use and develop the symplectic
geometry method, some applications of symplectic geometry on time series analysis
are presented, such as the embedding dimension estimation, nonlinear testing, fault
diagnosis, as well as noise reduction.

The embedding dimension estimation is often the first step in nonlinear time
series analysis. Case 1 and 2 show the embedding dimension estimation of Lorenz
chaotic time series and the surface EMG signal based on symplectic geometry
spectrum. Moreover, the symplectic entropy method is applied to detect the
nonlinearity of vibration signals on rolling bearings and identify the faults of vibra-
tion signals on rolling bearings (see Case 3). Considering the noise pollution in the
practical engineering measurement, to dispose of the noise problem is very neces-
sary for the measured time series analysis. Case 4 uses the SPCA method based on
symplectic geometry to investigate the denoise of the vibration signals for rolling
element fault (REF) from the CWRU database.

Symplectic geometry provides a new research idea for data analysis in practice.
Although the symplectic geometry theory has been developed and applied on the
nonlinear time series analysis, the related research based on symplectic geometry
still needs to be further developed. Many future challenges in the research of
symplectic geometry theory and various applications on a number of diverse
aspects need to be developed furtherly. This chapter is only to provide a snapshot of
some current trends and future challenges in the research of symplectic geometry
theory on the time series analysis.
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