
Scheduling Problems
New Applications and Trends

Edited by Rodrigo da Rosa Righi

Edited by Rodrigo da Rosa Righi

Scheduling is defined as the process of assigning operations to resources over time to
optimize a criterion. Problems with scheduling comprise both a set of resources and a

set of a consumers. As such, managing scheduling problems involves managing the use
of resources by several consumers. This book presents some new applications and trends
related to task and data scheduling. In particular, chapters focus on data science, big data,

high-performance computing, and Cloud computing environments. In addition, this
book presents novel algorithms and literature reviews that will guide current and new

researchers who work with load balancing, scheduling, and allocation problems.

Published in London, UK

© 2020 IntechOpen
© AlexanderStein / pixabay

ISBN 978-1-78985-053-6

Scheduling Problem
s - N

ew
 A

pplications and Trends

Scheduling Problems
- New Applications and

Trends
Edited by Rodrigo da Rosa Righi

Published in London, United Kingdom

Supporting open minds since 2005

Scheduling Problems - New Applications and Trends
http://dx.doi.org/10.5772/intechopen.80171
Edited by Rodrigo da Rosa Righi

Contributors
Tahani Aladwani, Ade Jamal, Liliana Grigoriu, Hong Seong Park, Larysa Globa, Alexander Koval, Nataliia
Gvozdetska, Volodymyr Prokopets, Surya Teja Marella, Thummuru Gunasekhar, Rodrigo Da Rosa Righi,
Diorgenes Eugenio da Silveira, Cristiano Costa, Rodolfo Stoffel Antunes, Eduardo Souza dos Reis, Jorge
Luis Barbosa, Marcio Miguel Gomes, Alvaro Machado Júnior, Rodrigo Simon Bavaresco, Rodrigo Saad

© The Editor(s) and the Author(s) 2020
The rights of the editor(s) and the author(s) have been asserted in accordance with the Copyright,
Designs and Patents Act 1988. All rights to the book as a whole are reserved by INTECHOPEN LIMITED.
The book as a whole (compilation) cannot be reproduced, distributed or used for commercial or
non-commercial purposes without INTECHOPEN LIMITED’s written permission. Enquiries concerning
the use of the book should be directed to INTECHOPEN LIMITED rights and permissions department
(permissions@intechopen.com).
Violations are liable to prosecution under the governing Copyright Law.

Individual chapters of this publication are distributed under the terms of the Creative Commons
Attribution 3.0 Unported License which permits commercial use, distribution and reproduction of
the individual chapters, provided the original author(s) and source publication are appropriately
acknowledged. If so indicated, certain images may not be included under the Creative Commons
license. In such cases users will need to obtain permission from the license holder to reproduce
the material. More details and guidelines concerning content reuse and adaptation can be found at
http://www.intechopen.com/copyright-policy.html.

Notice
Statements and opinions expressed in the chapters are these of the individual contributors and not
necessarily those of the editors or publisher. No responsibility is accepted for the accuracy of
information contained in the published chapters. The publisher assumes no responsibility for any
damage or injury to persons or property arising out of the use of any materials, instructions, methods
or ideas contained in the book.

First published in London, United Kingdom, 2020 by IntechOpen
IntechOpen is the global imprint of INTECHOPEN LIMITED, registered in England and Wales,
registration number: 11086078, 7th floor, 10 Lower Thames Street, London,
EC3R 6AF, United Kingdom
Printed in Croatia

British Library Cataloguing-in-Publication Data
A catalogue record for this book is available from the British Library

Additional hard and PDF copies can be obtained from orders@intechopen.com

Scheduling Problems - New Applications and Trends
Edited by Rodrigo da Rosa Righi
p. cm.
Print ISBN 978-1-78985-053-6
Online ISBN 978-1-78985-054-3
eBook (PDF) ISBN 978-1-83962-169-7

Selection of our books indexed in the Book Citation Index
in Web of Science™ Core Collection (BKCI)

Interested in publishing with us?
Contact book.department@intechopen.com

Numbers displayed above are based on latest data collected.
For more information visit www.intechopen.com

4,900+
Open access books available

151
Countries delivered to

12.2%
Contributors from top 500 universities

Our authors are among the

Top 1%
most cited scientists

123,000+
International authors and editors

140M+
Downloads

We are IntechOpen,
the world’s leading publisher of

Open Access books
Built by scientists, for scientists

BOOK
CITATION

INDEX

CL
AR

IVATE ANALYTICS

IN D E X E D

Meet the editor

Rodrigo da Rosa Righi is a senior member of both the Institute
of Electrical and Electronics Engineers (IEEE) and Association
for Computing Machinery (ACM). He is also a professor and
researcher at the University of Vale do Rio dos Sinos (Unisinos),
Brazil. Dr. Righi concluded his post-doctoral studies at the Kore-
an Advanced Institute of Science and Technology (KAIS), South
Korea, in the subjects of the Internet of Things (IoT) and cloud

computing. He is a coordinator of national and international projects in the areas of
resource management in distributed systems, fog and cloud computing, Industry
4.0, and artificial intelligence. His research interests include performance analy-
sis, predictive maintenance, event prediction and correlation, and cloud and fog
resource elasticity. More details about his research can be found at: http://professor.
unisinos.br/rrrighi.

http://professor.unisinos.br/rrrighi
http://professor.unisinos.br/rrrighi

Contents

Preface XI

Section 1
New Scheduling Approaches and Algorithms 1

Chapter 1 3
Global Optimization Using Local Search Approach for Course
Scheduling Problem
by Ade Jamal

Chapter 2 25
Real-Time Scheduling Method for Middleware of Industrial
Automation Devices
by Hong Seong Park

Section 2
On Addressing Scheduling for Parallel and High-Performance
Computing Environments 45

Chapter 3 47
Intelligent Workload Scheduling in Distributed Computing
Environment for Balance between Energy Efficiency
and Performance
by Larysa Globa, Oleksandr Stryzhak, Nataliia Gvozdetska
and Volodymyr Prokopets

Chapter 4 67
Approximation for Scheduling on Parallel Machines with
Fixed Jobs or Unavailability Periods
by Liliana Grigoriu

Chapter 5 85
An Empirical Survey on Load Balancing: A Nature-Inspired
Approach
by Surya Teja Marella and Thummuru Gunasekhar

Contents

Preface XIII

Section 1
New Scheduling Approaches and Algorithms 1

Chapter 1 3
Global Optimization Using Local Search Approach for Course
Scheduling Problem
by Ade Jamal

Chapter 2 25
Real-Time Scheduling Method for Middleware of Industrial
Automation Devices
by Hong Seong Park

Section 2
On Addressing Scheduling for Parallel and High-Performance
Computing Environments 45

Chapter 3 47
Intelligent Workload Scheduling in Distributed Computing
Environment for Balance between Energy Efficiency
and Performance
by Larysa Globa, Oleksandr Stryzhak, Nataliia Gvozdetska
and Volodymyr Prokopets

Chapter 4 67
Approximation for Scheduling on Parallel Machines with
Fixed Jobs or Unavailability Periods
by Liliana Grigoriu

Chapter 5 85
An Empirical Survey on Load Balancing: A Nature-Inspired
Approach
by Surya Teja Marella and Thummuru Gunasekhar

II

Section 3
Cloud Computing and Data Science: Exploring the Benefits
of Task Scheduling on Such Environments 113

Chapter 6 115
Looking at Data Science through the Lens of Scheduling
and Load Balancing
by Diórgenes Eugênio da Silveira, Eduardo Souza dos Reis,
Rodrigo Simon Bavaresco, Marcio Miguel Gomes,
Cristiano André da Costa, Jorge Luis Victoria Barbosa,
Rodolfo Stoffel Antunes, Alvaro Machado Júnior, Rodrigo Saad
and Rodrigo da Rosa Righi

Chapter 7 131
Types of Task Scheduling Algorithms in Cloud Computing
Environment
by Tahani Aladwani

Preface

Scheduling is defined as the process of assigning operations to resources over time
to optimize a criterion. The requirements for scheduling mentioned in the literature
include the minimization of several factors, including completion time of the set of
services under consideration (the makespan), mean Work in Process (WIP), mean
manufacturing time (the mean flow time), mean delay, and mean processing cost,
and the maximization of productivity.

Scheduling is essential in many different fields, including e-health, high-performance
computing, data science, big data, and Industry 4.0. Our book covers new aspects
and uses of scheduling and load balancing, detailing challenges and new trends in
the field. In three sections ergo seven chapters, we revisit the concepts of scheduling
and the novelties of scheduling problems, in addition to examining new areas that are
benefiting from these concepts to both improve efficiency and reduce costs.

Scheduling has a broad impact on several areas. Considering this, the content of
this book is not limited to engineering, but also covers other areas such as biological,
chemical, and computational fields. Thus, this book will be of interest to those
working in the decision-making branches of production in various operational
research areas as well as in the design of computational methods. People from
diverse backgrounds like academia, industry, and research can take advantage of
this volume.

Prof. Dr. Rodrigo da Rosa Righi
Professor and Researcher in the Applied Computing Graduate Program (PIPCA),

Universidade do Vale do Rio dos Sinos (UNISINOS),
São Leopoldo, Brazil

XII

II

Section 3
Cloud Computing and Data Science: Exploring the Benefits
of Task Scheduling on Such Environments 113

Chapter 6 115
Looking at Data Science through the Lens of Scheduling
and Load Balancing
by Diórgenes Eugênio da Silveira, Eduardo Souza dos Reis,
Rodrigo Simon Bavaresco, Marcio Miguel Gomes,
Cristiano André da Costa, Jorge Luis Victoria Barbosa,
Rodolfo Stoffel Antunes, Alvaro Machado Júnior, Rodrigo Saad
and Rodrigo da Rosa Righi

Chapter 7 131
Types of Task Scheduling Algorithms in Cloud Computing
Environment
by Tahani Aladwani

Preface

Scheduling is defined as the process of assigning operations to resources over time
to optimize a criterion. The requirements for scheduling mentioned in the literature
include the minimization of several factors, including completion time of the set of
services under consideration (the makespan), mean Work in Process (WIP), mean
manufacturing time (the mean flow time), mean delay, and mean processing cost,
and the maximization of productivity.

Scheduling is essential in many different fields, including e-health, high-performance
computing, data science, big data, and Industry 4.0. Our book covers new aspects
and uses of scheduling and load balancing, detailing challenges and new trends in
the field. In three sections ergo seven chapters, we revisit the concepts of scheduling
and the novelties of scheduling problems, in addition to examining new areas that are
benefiting from these concepts to both improve efficiency and reduce costs.

Scheduling has a broad impact on several areas. Considering this, the content of
this book is not limited to engineering, but also covers other areas such as biological,
chemical, and computational fields. Thus, this book will be of interest to those
working in the decision-making branches of production in various operational
research areas as well as in the design of computational methods. People from
diverse backgrounds like academia, industry, and research can take advantage of
this volume.

Prof. Dr. Rodrigo da Rosa Righi
Professor and Researcher in the Applied Computing Graduate Program (PIPCA),

Universidade do Vale do Rio dos Sinos (UNISINOS),
São Leopoldo, Brazil

1

Section 1

New Scheduling
Approaches

and Algorithms

1

Section 1

New Scheduling
Approaches

and Algorithms

3

Chapter 1

Global Optimization Using Local
Search Approach for Course
Scheduling Problem
Ade Jamal

Abstract

Course scheduling problem is a combinatorial optimization problem which
is defined over a finite discrete problem whose candidate solution structure is
expressed as a finite sequence of course events scheduled in available time and
space resources. This problem is considered as non-deterministic polynomial
complete problem which is hard to solve. Many solution methods have been stud-
ied in the past for solving the course scheduling problem, namely from the most
traditional approach such as graph coloring technique; the local search family such
as hill-climbing search, taboo search, and simulated annealing technique; and
various population-based metaheuristic methods such as evolutionary algorithm,
genetic algorithm, and swarm optimization. This article will discuss these various
probabilistic optimization methods in order to gain the global optimal solution.
Furthermore, inclusion of a local search in the population-based algorithm to
improve the global solution will be explained rigorously.

Keywords: course scheduling, optimization, local search, genetic algorithm,
particle swarm optimization, combinatorial optimization problem,
probabilistic optimization algorithm

1. Introduction

Scheduling is the process of assigning a set of given tasks to resources by
some means. Among the resources, time resource usually plays a central role in
scheduling process; hence this process is often called timetabling. Besides the time
resource, there are other resources involved in the scheduling process such as space
or room, machine or tools, and human resources. The resources are usually subject
to constraints that make scheduling problems interesting for researchers in finding
an optimal solution or in developing a method for solving it. Course scheduling
problem attracts researchers from the field of operation research and artificial
intelligence [1–9].

This manuscript will focus on the problem of university course schedul-
ing which has several variants such as school timetabling [10] and examination
scheduling [11–13]. The variation of course scheduling problem is merely due to
different constraints on the resources involved in the scheduling processes. Despite
of these variations, they can be considered as the same family of course scheduling
problem. In the scheduling problem, courses or exams have to be assigned into time

3

Chapter 1

Global Optimization Using Local
Search Approach for Course
Scheduling Problem
Ade Jamal

Abstract

Course scheduling problem is a combinatorial optimization problem which
is defined over a finite discrete problem whose candidate solution structure is
expressed as a finite sequence of course events scheduled in available time and
space resources. This problem is considered as non-deterministic polynomial
complete problem which is hard to solve. Many solution methods have been stud-
ied in the past for solving the course scheduling problem, namely from the most
traditional approach such as graph coloring technique; the local search family such
as hill-climbing search, taboo search, and simulated annealing technique; and
various population-based metaheuristic methods such as evolutionary algorithm,
genetic algorithm, and swarm optimization. This article will discuss these various
probabilistic optimization methods in order to gain the global optimal solution.
Furthermore, inclusion of a local search in the population-based algorithm to
improve the global solution will be explained rigorously.

Keywords: course scheduling, optimization, local search, genetic algorithm,
particle swarm optimization, combinatorial optimization problem,
probabilistic optimization algorithm

1. Introduction

Scheduling is the process of assigning a set of given tasks to resources by
some means. Among the resources, time resource usually plays a central role in
scheduling process; hence this process is often called timetabling. Besides the time
resource, there are other resources involved in the scheduling process such as space
or room, machine or tools, and human resources. The resources are usually subject
to constraints that make scheduling problems interesting for researchers in finding
an optimal solution or in developing a method for solving it. Course scheduling
problem attracts researchers from the field of operation research and artificial
intelligence [1–9].

This manuscript will focus on the problem of university course schedul-
ing which has several variants such as school timetabling [10] and examination
scheduling [11–13]. The variation of course scheduling problem is merely due to
different constraints on the resources involved in the scheduling processes. Despite
of these variations, they can be considered as the same family of course scheduling
problem. In the scheduling problem, courses or exams have to be assigned into time

Scheduling Problems - New Applications and Trends

4

and space resources by considering some constraints. University course scheduling
problem can be divided into two categories, post-enrolment scheduling [1–4] and
prior-enrolment scheduling [5–9]. In the prior-enrolment-based course scheduling,
students are not taken into account as an individual person but as a group of study
curriculum and student grade; hence it is also named a curriculum-based schedul-
ing [5, 6]. In the post-enrolment-based course scheduling, students and faculty
members or lecturers are considered as individual person and not as specified
parameter on courses.

University course scheduling problem is simple to understand, yet complex
enough to admit solution at varying level of difficulty in the implementation.
Several studies of university course scheduling are conducted using operation
research, human computer/machine interface, and artificial intelligence. The main
issues in the solving method of university course scheduling problem are quality of
the schedule solution, namely, the optimal solution, and time spent to produce the
schedule solution, i.e., algorithm efficiency.

The most traditional technique for solving the course scheduling problem is the
graph coloring technique [14, 15]. Graph coloring algorithm comes from a clas-
sical problem in graph theory which implies the problem to color the nodes of an
undirected graph such that no two adjacent nodes share the same color. The course
scheduling problem is modeled by letting the nodes and edges represent the courses
and the common students, respectively. Dandashi and Al-Mouhamed [15] have
given a good historical review on the graph coloring technique since 1967 up to
recently.

The second group of solution method is the family of local search methods.
This is a heuristic-based search method. It finds the best solution among a number
of candidate solutions by applying local change from the last found solution. This
is a very fast algorithm, but it has a downside that it can easily be stuck at a local
optimum. This local optimum issue can be cured by many local search variants
such as the taboo search [13], simulated annealing search [2, 10, 12], and improved
hill-climbing search [1, 4, 9, 11, 16].

The third group of solution method is the population-based optimization
methods that gain more attention by researchers in seeking new methods that are
inspired by the nature phenomena such as genetic algorithm [7, 8, 12], evolution-
ary algorithm [3, 17, 18], ant colony algorithm [19], bee colony algorithm [20, 21],
firefly algorithm [22], and particle swam optimization [23, 24].

Evolutionary algorithm was originally not a population-based approach as
introduced by Rechenberg in 1965 where only one species is mutated and only one
species, i.e., the fittest one, survived in every evolution generation. Mutation is the
only reproduction mechanism necessary in the evolutionary algorithm. Crossover
mechanism is another reproduction mechanism inspired by biological evolution
theory. Crossover mechanism is a simplification model of genetically offspring
from mating process of a parent pair. The work of John Holland in the early 1970s
included both genetic operators, and since then a so-called genetic algorithm
became popular that belongs to the evolutionary strategy family. In genetic algo-
rithm, each individual in a population forms a candidate solution. The candidate
solution is evolved by mutation and crossover mechanism in every generation.
Through fitness selection scheme, they move toward a better generation.

After successful mimicking of the nature phenomena from the evolution theory,
once again, Mother Nature has inspired researchers to develop new optimization
algorithm based on swarm intelligent theory. Swarm behavior or swarming is a
collective behavior exhibited by particularly animals which aggregate together in
finding food and moving or migrating in some direction. Ant colony optimiza-
tion algorithm is one of the first metaheuristic optimizations in this group of

5

Global Optimization Using Local Search Approach for Course Scheduling Problem
DOI: http://dx.doi.org/10.5772/intechopen.86228

optimization method, initially proposed by Marco Dorigo in 1992. Initially ants
wander randomly, and upon finding food they return to their colony while leav-
ing trail called pheromone trails. When other ants find such trail, they are likely
to follow the trail and return and reinforce the trails if they eventually find food.
The pheromone trail is the main issue of swarm intelligent communication in ant
colony, on which the algorithm was developed.

Another algorithm that imitates the intelligent foraging behavior of animal is
artificial bee colony optimization algorithm proposed by Karaboga in 2005. There
are three groups of bees in bee colony, i.e., employed bee, scouts, and onlookers.
Employed bees go to their food source and back to hive and dance. Onlookers watch
the dances of the employed bees, and depending on employed bee’s waggle dances,
food sources are chosen or abandoned. The employed bees whose food sources have
been abandoned become a scout and start to seek for a new food source.

The most recent bio-inspired algorithm, as far as the author’s knowledge, is the
firefly algorithm developed by Xin-She Yang in 2008. It is a heuristic algorithm
which is a population-based stochastic method which is derived and motivated by
the flashing or mating behavior of fireflies. The position of all fireflies represents a
possible set of solutions, and their light intensities represent corresponding fitness
values or quality of all solutions.

Particle swarm optimization is a population-based evolutionary computation
technique developed by Eberhart and Kennedy in 1995, inspired by social behavior
of bird flocking or fish schooling. This algorithm is the simplest model of swarm
behavior algorithm. This algorithm shares similarity with genetic algorithm, but
it differs mainly due to the absence of genetic operator. A kind of communication
between particles in the swarm controls the movement of each particle in searching
food. When an animal spots a location that is rich of food, it memorizes the location
until better location is found. The movement of each particle is calibrated to its best
location so far and the best location from the whole animals in the swarm. The algo-
rithm is also much simpler because it has only few parameters to adjust compared
to genetic algorithm. Its simplicity and its generic computation model for broad
application make this algorithm more attractive to assess than other new algorithms
inspired by animal behavior as reviewed by Poli et al. [23].

The following sections will be structured as follows: first we will discuss the
probabilistic optimization methods from three different previously described
approaches. Thereafter we will rigorously explain the university course scheduling
problem and how we model it appropriately for all the employed solution methods.
Discussion of experimental result will be presented in the last section before some
concluding remarks are briefly inscribed.

2. Probabilistic optimization method

From the beforehand described optimization approaches for discrete problem
such as university course scheduling problem, we can summarize that there are
three groups of solution approach, namely, coloring graph, local search approach,
and the population-based approach. The population-based approach can be further
classified into the population-based evolutionary approach and the population-
based social behavior approach.

While the probabilistic characteristic is inherent in the population-based
approaches, the local search approach is a single-based solution technique and nor-
mally not a probabilistic solution method. In this article, we will bring probabilistic
nature into the local search approach by introducing scattered neighborhood [9]
and multiple random start local search method [25]. We will discuss thoroughly this

Scheduling Problems - New Applications and Trends

4

and space resources by considering some constraints. University course scheduling
problem can be divided into two categories, post-enrolment scheduling [1–4] and
prior-enrolment scheduling [5–9]. In the prior-enrolment-based course scheduling,
students are not taken into account as an individual person but as a group of study
curriculum and student grade; hence it is also named a curriculum-based schedul-
ing [5, 6]. In the post-enrolment-based course scheduling, students and faculty
members or lecturers are considered as individual person and not as specified
parameter on courses.

University course scheduling problem is simple to understand, yet complex
enough to admit solution at varying level of difficulty in the implementation.
Several studies of university course scheduling are conducted using operation
research, human computer/machine interface, and artificial intelligence. The main
issues in the solving method of university course scheduling problem are quality of
the schedule solution, namely, the optimal solution, and time spent to produce the
schedule solution, i.e., algorithm efficiency.

The most traditional technique for solving the course scheduling problem is the
graph coloring technique [14, 15]. Graph coloring algorithm comes from a clas-
sical problem in graph theory which implies the problem to color the nodes of an
undirected graph such that no two adjacent nodes share the same color. The course
scheduling problem is modeled by letting the nodes and edges represent the courses
and the common students, respectively. Dandashi and Al-Mouhamed [15] have
given a good historical review on the graph coloring technique since 1967 up to
recently.

The second group of solution method is the family of local search methods.
This is a heuristic-based search method. It finds the best solution among a number
of candidate solutions by applying local change from the last found solution. This
is a very fast algorithm, but it has a downside that it can easily be stuck at a local
optimum. This local optimum issue can be cured by many local search variants
such as the taboo search [13], simulated annealing search [2, 10, 12], and improved
hill-climbing search [1, 4, 9, 11, 16].

The third group of solution method is the population-based optimization
methods that gain more attention by researchers in seeking new methods that are
inspired by the nature phenomena such as genetic algorithm [7, 8, 12], evolution-
ary algorithm [3, 17, 18], ant colony algorithm [19], bee colony algorithm [20, 21],
firefly algorithm [22], and particle swam optimization [23, 24].

Evolutionary algorithm was originally not a population-based approach as
introduced by Rechenberg in 1965 where only one species is mutated and only one
species, i.e., the fittest one, survived in every evolution generation. Mutation is the
only reproduction mechanism necessary in the evolutionary algorithm. Crossover
mechanism is another reproduction mechanism inspired by biological evolution
theory. Crossover mechanism is a simplification model of genetically offspring
from mating process of a parent pair. The work of John Holland in the early 1970s
included both genetic operators, and since then a so-called genetic algorithm
became popular that belongs to the evolutionary strategy family. In genetic algo-
rithm, each individual in a population forms a candidate solution. The candidate
solution is evolved by mutation and crossover mechanism in every generation.
Through fitness selection scheme, they move toward a better generation.

After successful mimicking of the nature phenomena from the evolution theory,
once again, Mother Nature has inspired researchers to develop new optimization
algorithm based on swarm intelligent theory. Swarm behavior or swarming is a
collective behavior exhibited by particularly animals which aggregate together in
finding food and moving or migrating in some direction. Ant colony optimiza-
tion algorithm is one of the first metaheuristic optimizations in this group of

5

Global Optimization Using Local Search Approach for Course Scheduling Problem
DOI: http://dx.doi.org/10.5772/intechopen.86228

optimization method, initially proposed by Marco Dorigo in 1992. Initially ants
wander randomly, and upon finding food they return to their colony while leav-
ing trail called pheromone trails. When other ants find such trail, they are likely
to follow the trail and return and reinforce the trails if they eventually find food.
The pheromone trail is the main issue of swarm intelligent communication in ant
colony, on which the algorithm was developed.

Another algorithm that imitates the intelligent foraging behavior of animal is
artificial bee colony optimization algorithm proposed by Karaboga in 2005. There
are three groups of bees in bee colony, i.e., employed bee, scouts, and onlookers.
Employed bees go to their food source and back to hive and dance. Onlookers watch
the dances of the employed bees, and depending on employed bee’s waggle dances,
food sources are chosen or abandoned. The employed bees whose food sources have
been abandoned become a scout and start to seek for a new food source.

The most recent bio-inspired algorithm, as far as the author’s knowledge, is the
firefly algorithm developed by Xin-She Yang in 2008. It is a heuristic algorithm
which is a population-based stochastic method which is derived and motivated by
the flashing or mating behavior of fireflies. The position of all fireflies represents a
possible set of solutions, and their light intensities represent corresponding fitness
values or quality of all solutions.

Particle swarm optimization is a population-based evolutionary computation
technique developed by Eberhart and Kennedy in 1995, inspired by social behavior
of bird flocking or fish schooling. This algorithm is the simplest model of swarm
behavior algorithm. This algorithm shares similarity with genetic algorithm, but
it differs mainly due to the absence of genetic operator. A kind of communication
between particles in the swarm controls the movement of each particle in searching
food. When an animal spots a location that is rich of food, it memorizes the location
until better location is found. The movement of each particle is calibrated to its best
location so far and the best location from the whole animals in the swarm. The algo-
rithm is also much simpler because it has only few parameters to adjust compared
to genetic algorithm. Its simplicity and its generic computation model for broad
application make this algorithm more attractive to assess than other new algorithms
inspired by animal behavior as reviewed by Poli et al. [23].

The following sections will be structured as follows: first we will discuss the
probabilistic optimization methods from three different previously described
approaches. Thereafter we will rigorously explain the university course scheduling
problem and how we model it appropriately for all the employed solution methods.
Discussion of experimental result will be presented in the last section before some
concluding remarks are briefly inscribed.

2. Probabilistic optimization method

From the beforehand described optimization approaches for discrete problem
such as university course scheduling problem, we can summarize that there are
three groups of solution approach, namely, coloring graph, local search approach,
and the population-based approach. The population-based approach can be further
classified into the population-based evolutionary approach and the population-
based social behavior approach.

While the probabilistic characteristic is inherent in the population-based
approaches, the local search approach is a single-based solution technique and nor-
mally not a probabilistic solution method. In this article, we will bring probabilistic
nature into the local search approach by introducing scattered neighborhood [9]
and multiple random start local search method [25]. We will discuss thoroughly this

Scheduling Problems - New Applications and Trends

6

multiple-scattered local search and compare these two population-based methods,
namely, genetic algorithm and particle swarm optimization, respectively, from
evolutionary approach family and social behavior approach family.

2.1 Multiple-scattered local search (MSLS)

Local search approach has little probabilistic nature. In its original form, namely,
the steepest-ascent hill-climbing method, wherein from its current position sys-
tematically for every possible single mutation is evaluated to find the highest fitness
increase in the neighborhood, this method has no probabilistic aspect at all. The fast
local search, called the next ascent hill-climbing [26], wherein a single mutation
is evaluated systematically from current position until any increase in the fitness
is found, has a little probabilistic nature. Random mutation hill-climbing [26] or
scattered local search [9] is a probabilistic variation of local search wherein from
its current position, a random mutation mechanism takes place until an increase in
fitness is found. Random mutation hill-climbing takes randomly a single mutation,
while scattered hill-climbing takes a certain number of mutation randomly, and
the highest increase in fitness is chosen. Other local searches, such as taboo search
and simulated annealing search, are also improvements and derivatives of the
hill-climbing search method. However, they can hardly be classified as hill-climbing
search technique since the changing makes them differ too much from the original
method.

In general, the hill-climbing procedures are as follows:

1. Evaluate the fitness, i.e., the heuristic objective function, for the current
position.

2. Find the candidate for the next position in the neighborhood area by small
changing from the current position and then evaluate the fitness for the
candidate position.

3. If there was an increase in fitness, then set the candidate for the next position
as the current position.

4. Repeat from step 1 until the maximum iteration was reached or other stop
criteria are fulfilled.

The difference between various hill-climbing search described in previous
paragraph is found only in step 2 of the above procedure. Because of systematically
searching for the candidate for the next position, the steepest ascent hill-climbing
and the next ascent hill-climbing methods are classified as deterministic search
techniques. The random mutation hill-climbing and the scattered hill-climbing are
probabilistic search techniques due to random mutations in searching for the next
position.

Random restart hill-climbing is another approach to embed the probabilistic
nature. In case the hill-climbing search stopped due to its maximum iteration, the
whole hill-climbing search above restarted with a completely new initial position
which set randomly. The restart algorithm will continue until the optimization
criteria are reached. The multiple-scattered local search is actually a set number of
scattered hill-climbing searches running with randomly set initial positions.

Let np be the number of initial position and n the number of scattered candidate
position in the neighborhood of current position, and then the algorithm of the
multiple-scattered local search is as follows:

7

Global Optimization Using Local Search Approach for Course Scheduling Problem
DOI: http://dx.doi.org/10.5772/intechopen.86228

1. Set up np initial positions randomly, and evaluate their heuristic fitness or
objective functions, and save in array of np current positions.

2. Repeat the following steps until maximum iteration or another stop criterion is
reached:

a. For each position in a set of np positions, do:

i. Find n new positions in the neighbor of current position.

ii. Evaluate the fitness of each new position, and save the best position whose
fitness has the highest value.

iii. If the best position gives an increase in fitness compared to the current
position, set the best position as current position.

2.2 Genetic algorithm

Genetic algorithm is a population-based optimization technique that simpli-
fies survival of the fittest principle from the evolution theory. Any individual
chromosome represents a solution state of the problem. Every generation has a
population that consists of a fixed number of individual instances. The popula-
tion of the next generation will inherit their ancestor by crossover of two mating
chromosomes, by mutation of single individual chromosome, and by elitism.
All of these three evolution mechanisms hold the true survival of the fittest
principle.

Elitism in the evolution mechanism means superior chromosomes survive to
the next generation without any changes. This elite group which is only a small
fraction of the population has the highest fitness in the population. The rest of the
population will be selected in pairs through a probabilistic scheme involving their
fitness values. Each pair acts as parent that will have two descendants produced by
crossover between two parent’s chromosomes. Since the population size is constant,
every pair of children replaces their parents in every generation. Finally, mutations
take place in all children by chance of probability distribution.

The following is the pseudocode of genetic algorithm:

1. Set up np individual chromosomes for the first generation.

2. Repeat the following steps limited by maximum generation number:

a. Evaluate the fitness values of every chromosome in the population of current
generation.

b. Sort the chromosomes by the fitness values.

c. Select a small number of ne elite chromosomes, i.e., the highest ranked
chromosomes.

d. Select a pair of parents via a selection mechanism from the rest of the
chromosomes.

e. Based on a crossover probability, crossover scheme takes place between each
selected pair, and the two successors will replace the parents.

Scheduling Problems - New Applications and Trends

6

multiple-scattered local search and compare these two population-based methods,
namely, genetic algorithm and particle swarm optimization, respectively, from
evolutionary approach family and social behavior approach family.

2.1 Multiple-scattered local search (MSLS)

Local search approach has little probabilistic nature. In its original form, namely,
the steepest-ascent hill-climbing method, wherein from its current position sys-
tematically for every possible single mutation is evaluated to find the highest fitness
increase in the neighborhood, this method has no probabilistic aspect at all. The fast
local search, called the next ascent hill-climbing [26], wherein a single mutation
is evaluated systematically from current position until any increase in the fitness
is found, has a little probabilistic nature. Random mutation hill-climbing [26] or
scattered local search [9] is a probabilistic variation of local search wherein from
its current position, a random mutation mechanism takes place until an increase in
fitness is found. Random mutation hill-climbing takes randomly a single mutation,
while scattered hill-climbing takes a certain number of mutation randomly, and
the highest increase in fitness is chosen. Other local searches, such as taboo search
and simulated annealing search, are also improvements and derivatives of the
hill-climbing search method. However, they can hardly be classified as hill-climbing
search technique since the changing makes them differ too much from the original
method.

In general, the hill-climbing procedures are as follows:

1. Evaluate the fitness, i.e., the heuristic objective function, for the current
position.

2. Find the candidate for the next position in the neighborhood area by small
changing from the current position and then evaluate the fitness for the
candidate position.

3. If there was an increase in fitness, then set the candidate for the next position
as the current position.

4. Repeat from step 1 until the maximum iteration was reached or other stop
criteria are fulfilled.

The difference between various hill-climbing search described in previous
paragraph is found only in step 2 of the above procedure. Because of systematically
searching for the candidate for the next position, the steepest ascent hill-climbing
and the next ascent hill-climbing methods are classified as deterministic search
techniques. The random mutation hill-climbing and the scattered hill-climbing are
probabilistic search techniques due to random mutations in searching for the next
position.

Random restart hill-climbing is another approach to embed the probabilistic
nature. In case the hill-climbing search stopped due to its maximum iteration, the
whole hill-climbing search above restarted with a completely new initial position
which set randomly. The restart algorithm will continue until the optimization
criteria are reached. The multiple-scattered local search is actually a set number of
scattered hill-climbing searches running with randomly set initial positions.

Let np be the number of initial position and n the number of scattered candidate
position in the neighborhood of current position, and then the algorithm of the
multiple-scattered local search is as follows:

7

Global Optimization Using Local Search Approach for Course Scheduling Problem
DOI: http://dx.doi.org/10.5772/intechopen.86228

1. Set up np initial positions randomly, and evaluate their heuristic fitness or
objective functions, and save in array of np current positions.

2. Repeat the following steps until maximum iteration or another stop criterion is
reached:

a. For each position in a set of np positions, do:

i. Find n new positions in the neighbor of current position.

ii. Evaluate the fitness of each new position, and save the best position whose
fitness has the highest value.

iii. If the best position gives an increase in fitness compared to the current
position, set the best position as current position.

2.2 Genetic algorithm

Genetic algorithm is a population-based optimization technique that simpli-
fies survival of the fittest principle from the evolution theory. Any individual
chromosome represents a solution state of the problem. Every generation has a
population that consists of a fixed number of individual instances. The popula-
tion of the next generation will inherit their ancestor by crossover of two mating
chromosomes, by mutation of single individual chromosome, and by elitism.
All of these three evolution mechanisms hold the true survival of the fittest
principle.

Elitism in the evolution mechanism means superior chromosomes survive to
the next generation without any changes. This elite group which is only a small
fraction of the population has the highest fitness in the population. The rest of the
population will be selected in pairs through a probabilistic scheme involving their
fitness values. Each pair acts as parent that will have two descendants produced by
crossover between two parent’s chromosomes. Since the population size is constant,
every pair of children replaces their parents in every generation. Finally, mutations
take place in all children by chance of probability distribution.

The following is the pseudocode of genetic algorithm:

1. Set up np individual chromosomes for the first generation.

2. Repeat the following steps limited by maximum generation number:

a. Evaluate the fitness values of every chromosome in the population of current
generation.

b. Sort the chromosomes by the fitness values.

c. Select a small number of ne elite chromosomes, i.e., the highest ranked
chromosomes.

d. Select a pair of parents via a selection mechanism from the rest of the
chromosomes.

e. Based on a crossover probability, crossover scheme takes place between each
selected pair, and the two successors will replace the parents.

Scheduling Problems - New Applications and Trends

8

f. Based on a mutation probability, every single chromosome outside the elite
group undergoes a mutation.

Elitism mechanism has a purpose to make sure that the individuals with the
highest fitness do not vanish by chance of probabilistic. Pairing the parents aims
to find better descendants which differs from both parents but still inherits their
characteristics. Hence, crossover mechanism has a function of an exploration
for new chromosomes. Single chromosome is slightly changing by mutation
which aims to improve the individual in exploitation scheme. Exploration power
of crossover combined with exploitation power of mutation and an additional
power, a conservatism of elitism, makes genetic algorithm very popular for
a long time in the area of artificial intelligence and organization research for
optimization problem [17].

2.3 Particle swarm optimization

Foraging behavior of some animals is in a group of numerous individuals in
swarm formation. In the swarm behavior, animals such as birds, insects, or fishes
move in such mechanism that they do not collide with each other, but they can cover
broaden area for finding the foods. This behavior inspired an optimization tech-
nique called particle swarm optimization which is rather simple than the previously
nature-inspired genetic algorithm. Every position of animals in the swarm repre-
sents a solution state of the problem. Every animal or particle moves in directions
that are influenced by the best individual position so far and the best position of all
individuals in the swarm. The best position means, in the real natural condition, the
richest food available, and in the optimization problem means the highest fitness
solution state.

Let np particles be in the swarm and each particle has its own initial positions
Xo and velocity Vo; then, the pseudocode of the particle swam optimization is as
follows:

1. Evaluate the fitness value of each initial position Xo, and save the individual
best position as XPbest and the global best position as XGbest.

2. Repeat the following steps until maximum iteration or another stop criterion is
reached.

a. Update the velocity of each particle for the next move as follows:

Vi + 1 = Vi + r1 * (XPbest – Xi) + r2 * (XGBest –Xi)

b. Update the new position of each particle as follows:

Xi + 1 = Xi + Vi + 1

c. Evaluate the fitness value of the new position of each particle, and update the
individual best position and the global best position if necessary.

According to James Kennedy who proposes particle swarm optimization (1995),
the adjustment particle movement toward the individual and global best solution is
conceptually similar to the crossover mechanism in genetic algorithm. This move-
ment ensures exploration power of the algorithm. The two types of best positions
are in some sense acting as elitism in genetic algorithm which holds the conserva-
tism of the particle swarm optimization algorithm.

9

Global Optimization Using Local Search Approach for Course Scheduling Problem
DOI: http://dx.doi.org/10.5772/intechopen.86228

2.4 Exploitation power of local search in the global optimization

Genetic algorithm and particle swarm optimization have great power of explora-
tion. The exploration power could almost guarantee finding a global optimum if the
number of iteration is large enough or at least finding a sufficient global optimum
for a reasonable number of iteration. Lack of exploitation power in particle swarm
optimization and slight exploitation power in genetic algorithm make these two
algorithms slow in finding of good enough solutions. We will introduce the exploi-
tation power into genetic algorithm and particle swarm optimization with the aid of
the local search on the elite groups [17, 18].

2.4.1 Hybrid genetic algorithm (HGA)

In the original genetic algorithm, the elites are not mutated, but could be
replaced by new elites in the next generation. Empowering the algorithm using
single iteration of scattered local search on the elites, the hybrid genetic algorithm
becomes as follows:

1. Set up np individual chromosomes for the first generation.

2. Repeat the following steps limited by maximum generation number:

a. Evaluate the fitness values of every chromosome in the population of
 current generation.

b. Sort the chromosomes by the fitness values.

c. Select a small number of ne elite chromosomes, i.e., the highest ranked
chromosomes.

d. For each chromosome in ne elite, do:

i. Randomly develop n new mutated chromosomes.

ii. Evaluate the fitness of each new mutated chromosome, and save the best
chromosome whose fitness has the highest value.

iii. If the best chromosome gives an increase in fitness compared to the current
elite chromosome, set the best chromosome as the new elite chromosome.

e. Select pair of parents via a selection mechanism from the rest of the
chromosomes.

f. Based on a crossover probability, crossover scheme takes place between
each selected pair, and the two successors will replace the parents.

g. Based on a mutation probability, every single chromosome outside the elite
group undergoes a mutation.

2.4.2 Hybrid particle swarm optimization (HPSO)

We will bring the exploitation power in the particle swarm optimization by
performing scattered local search on the individual best positions and the global

Scheduling Problems - New Applications and Trends

8

f. Based on a mutation probability, every single chromosome outside the elite
group undergoes a mutation.

Elitism mechanism has a purpose to make sure that the individuals with the
highest fitness do not vanish by chance of probabilistic. Pairing the parents aims
to find better descendants which differs from both parents but still inherits their
characteristics. Hence, crossover mechanism has a function of an exploration
for new chromosomes. Single chromosome is slightly changing by mutation
which aims to improve the individual in exploitation scheme. Exploration power
of crossover combined with exploitation power of mutation and an additional
power, a conservatism of elitism, makes genetic algorithm very popular for
a long time in the area of artificial intelligence and organization research for
optimization problem [17].

2.3 Particle swarm optimization

Foraging behavior of some animals is in a group of numerous individuals in
swarm formation. In the swarm behavior, animals such as birds, insects, or fishes
move in such mechanism that they do not collide with each other, but they can cover
broaden area for finding the foods. This behavior inspired an optimization tech-
nique called particle swarm optimization which is rather simple than the previously
nature-inspired genetic algorithm. Every position of animals in the swarm repre-
sents a solution state of the problem. Every animal or particle moves in directions
that are influenced by the best individual position so far and the best position of all
individuals in the swarm. The best position means, in the real natural condition, the
richest food available, and in the optimization problem means the highest fitness
solution state.

Let np particles be in the swarm and each particle has its own initial positions
Xo and velocity Vo; then, the pseudocode of the particle swam optimization is as
follows:

1. Evaluate the fitness value of each initial position Xo, and save the individual
best position as XPbest and the global best position as XGbest.

2. Repeat the following steps until maximum iteration or another stop criterion is
reached.

a. Update the velocity of each particle for the next move as follows:

Vi + 1 = Vi + r1 * (XPbest – Xi) + r2 * (XGBest –Xi)

b. Update the new position of each particle as follows:

Xi + 1 = Xi + Vi + 1

c. Evaluate the fitness value of the new position of each particle, and update the
individual best position and the global best position if necessary.

According to James Kennedy who proposes particle swarm optimization (1995),
the adjustment particle movement toward the individual and global best solution is
conceptually similar to the crossover mechanism in genetic algorithm. This move-
ment ensures exploration power of the algorithm. The two types of best positions
are in some sense acting as elitism in genetic algorithm which holds the conserva-
tism of the particle swarm optimization algorithm.

9

Global Optimization Using Local Search Approach for Course Scheduling Problem
DOI: http://dx.doi.org/10.5772/intechopen.86228

2.4 Exploitation power of local search in the global optimization

Genetic algorithm and particle swarm optimization have great power of explora-
tion. The exploration power could almost guarantee finding a global optimum if the
number of iteration is large enough or at least finding a sufficient global optimum
for a reasonable number of iteration. Lack of exploitation power in particle swarm
optimization and slight exploitation power in genetic algorithm make these two
algorithms slow in finding of good enough solutions. We will introduce the exploi-
tation power into genetic algorithm and particle swarm optimization with the aid of
the local search on the elite groups [17, 18].

2.4.1 Hybrid genetic algorithm (HGA)

In the original genetic algorithm, the elites are not mutated, but could be
replaced by new elites in the next generation. Empowering the algorithm using
single iteration of scattered local search on the elites, the hybrid genetic algorithm
becomes as follows:

1. Set up np individual chromosomes for the first generation.

2. Repeat the following steps limited by maximum generation number:

a. Evaluate the fitness values of every chromosome in the population of
 current generation.

b. Sort the chromosomes by the fitness values.

c. Select a small number of ne elite chromosomes, i.e., the highest ranked
chromosomes.

d. For each chromosome in ne elite, do:

i. Randomly develop n new mutated chromosomes.

ii. Evaluate the fitness of each new mutated chromosome, and save the best
chromosome whose fitness has the highest value.

iii. If the best chromosome gives an increase in fitness compared to the current
elite chromosome, set the best chromosome as the new elite chromosome.

e. Select pair of parents via a selection mechanism from the rest of the
chromosomes.

f. Based on a crossover probability, crossover scheme takes place between
each selected pair, and the two successors will replace the parents.

g. Based on a mutation probability, every single chromosome outside the elite
group undergoes a mutation.

2.4.2 Hybrid particle swarm optimization (HPSO)

We will bring the exploitation power in the particle swarm optimization by
performing scattered local search on the individual best positions and the global

Scheduling Problems - New Applications and Trends

10

best position of particles in the swarm. Hence, the hybrid particle swarm optimiza-
tion algorithm becomes as follows:

1. Evaluate the fitness value of each initial position Xo, and save the individual
best position as XPbest and the global best position as XGbest.

2. Repeat the following steps until maximum iteration or another stop criterion is
reached.

a. Update the velocity of each particle for the next move as follows:

Vi + 1 = Vi + r1 * (XPbest – Xi) + r2 * (XGBest –Xi)

b. Update the new position of each particle as follows:

Xi + 1 = Xi + Vi + 1

c. Evaluate the fitness value of the new position of each particle, and update
the individual best position and the global best position if necessary.

d. For each individual best position XPbest and the global best position
XGbest, do:

i. Find n new positions in the neighbor of the best position.

ii. Evaluate the fitness of each new position, and save the new best position
whose fitness has the highest value.

iii. The new best position will replace the best position under consideration,
if it gives increase in fitness.

3. University course scheduling problem and model

3.1 Problem definition

University course scheduling is a process of assigning a set of courses to limited
time resources and space resources, namely, classrooms. We consider only curricu-
lum-based or prior-enrollment course scheduling. In this case, each course has been
set who will teach and which student group will attend the course. The assigning
process must satisfy some hard constraint, for instance, avoiding lecturer conflict.
In addition, some soft constraint such as considering preference time of lecturer
will be desired to be fulfilled in the schedule.

Formally, the curriculum-based course scheduling problem will be described as
follows:

• There is a set of courses [C1, C2, … Cnc] where each course is attended by a
number of students from specified studies and taught by specified lecturers. A
course could be given in more than 1 course hour and probably need computer
equipment in the classroom.

• There is a set of lecturers [L1, L2, … Lnl] who have been assigned to teach some
courses and probably have some unavailable time slots and some preference
time slots to teach.

11

Global Optimization Using Local Search Approach for Course Scheduling Problem
DOI: http://dx.doi.org/10.5772/intechopen.86228

• There is a set of student group [S1, S2, … Sns] which consist of a number of
student from the same department and the same grade.

• There is a set of room [R1, R2, … Rnr] which has a number of seat capacity and
some room equipped with computers.

• There is a set of time slot [T1, T2, … Tnt] which can be expressed in daytime and
clock time.

A feasible course schedule has to satisfy the following eight hard constraints:

• Complete schedule which means all courses have been assigned into available
time and rooms

• Avoiding room conflict which means no room is used by more than one course
event at the same time slot

• Avoiding lecturer conflict which means no lecturer teaches more than one
course event at the same time slot

• Avoiding student conflict which means no student group from the same depart-
ment and same grade must attend more than one course event at the same time

• Avoiding excessive attending student number in classroom

• Avoiding lecturers’ unavailable time which means no lecturer teaches in his or
her unavailable time slot

• Proper equipped classroom which means room has a feature needed by the
assigned course

• Continuous course event which means multiple hour courses must be assigned
in the same room contiguously

Beside the hard constraints that must be fulfilled unconditionally, course
 schedule preferably satisfy some soft constraints such as:

• Avoiding lecturer’s preventive time which means lecturers do not teach in his
or her preventive time slot.

• Lecturer’s preference time which means lecturers teach in their preference time

• Full classroom which means the number of students joining the course is more
than the half of classroom capacity

A course schedule is defined as optimum if the number of hard constraint viola-
tion is zero and the number of soft constraint fulfillment is as many as possible.

3.2 Course scheduling model

Computational model of a course schedule can be represented as a two-
dimensional matrix where rooms and time slot denote as row number and column
number [3, 5, 7]. Each matrix cell is filled up with course event. Time slots comprise

Scheduling Problems - New Applications and Trends

10

best position of particles in the swarm. Hence, the hybrid particle swarm optimiza-
tion algorithm becomes as follows:

1. Evaluate the fitness value of each initial position Xo, and save the individual
best position as XPbest and the global best position as XGbest.

2. Repeat the following steps until maximum iteration or another stop criterion is
reached.

a. Update the velocity of each particle for the next move as follows:

Vi + 1 = Vi + r1 * (XPbest – Xi) + r2 * (XGBest –Xi)

b. Update the new position of each particle as follows:

Xi + 1 = Xi + Vi + 1

c. Evaluate the fitness value of the new position of each particle, and update
the individual best position and the global best position if necessary.

d. For each individual best position XPbest and the global best position
XGbest, do:

i. Find n new positions in the neighbor of the best position.

ii. Evaluate the fitness of each new position, and save the new best position
whose fitness has the highest value.

iii. The new best position will replace the best position under consideration,
if it gives increase in fitness.

3. University course scheduling problem and model

3.1 Problem definition

University course scheduling is a process of assigning a set of courses to limited
time resources and space resources, namely, classrooms. We consider only curricu-
lum-based or prior-enrollment course scheduling. In this case, each course has been
set who will teach and which student group will attend the course. The assigning
process must satisfy some hard constraint, for instance, avoiding lecturer conflict.
In addition, some soft constraint such as considering preference time of lecturer
will be desired to be fulfilled in the schedule.

Formally, the curriculum-based course scheduling problem will be described as
follows:

• There is a set of courses [C1, C2, … Cnc] where each course is attended by a
number of students from specified studies and taught by specified lecturers. A
course could be given in more than 1 course hour and probably need computer
equipment in the classroom.

• There is a set of lecturers [L1, L2, … Lnl] who have been assigned to teach some
courses and probably have some unavailable time slots and some preference
time slots to teach.

11

Global Optimization Using Local Search Approach for Course Scheduling Problem
DOI: http://dx.doi.org/10.5772/intechopen.86228

• There is a set of student group [S1, S2, … Sns] which consist of a number of
student from the same department and the same grade.

• There is a set of room [R1, R2, … Rnr] which has a number of seat capacity and
some room equipped with computers.

• There is a set of time slot [T1, T2, … Tnt] which can be expressed in daytime and
clock time.

A feasible course schedule has to satisfy the following eight hard constraints:

• Complete schedule which means all courses have been assigned into available
time and rooms

• Avoiding room conflict which means no room is used by more than one course
event at the same time slot

• Avoiding lecturer conflict which means no lecturer teaches more than one
course event at the same time slot

• Avoiding student conflict which means no student group from the same depart-
ment and same grade must attend more than one course event at the same time

• Avoiding excessive attending student number in classroom

• Avoiding lecturers’ unavailable time which means no lecturer teaches in his or
her unavailable time slot

• Proper equipped classroom which means room has a feature needed by the
assigned course

• Continuous course event which means multiple hour courses must be assigned
in the same room contiguously

Beside the hard constraints that must be fulfilled unconditionally, course
 schedule preferably satisfy some soft constraints such as:

• Avoiding lecturer’s preventive time which means lecturers do not teach in his
or her preventive time slot.

• Lecturer’s preference time which means lecturers teach in their preference time

• Full classroom which means the number of students joining the course is more
than the half of classroom capacity

A course schedule is defined as optimum if the number of hard constraint viola-
tion is zero and the number of soft constraint fulfillment is as many as possible.

3.2 Course scheduling model

Computational model of a course schedule can be represented as a two-
dimensional matrix where rooms and time slot denote as row number and column
number [3, 5, 7]. Each matrix cell is filled up with course event. Time slots comprise

Scheduling Problems - New Applications and Trends

12

of day and hour, for instance, if the number of day is 5 and every day consists of
8 course hours, then the number of time slot columns are 40 time slots. A variant of
this model has flexible time slot length [7].

A slightly different model from the two-dimensional model is a three
dimensional-model wherein the two components of time slot are put into a two-
dimensional matrix, namely, hour in row and day in column. The room dimension
is placed in the third direction of matrix [9, 17, 18, 27]. As in the two-dimensional
matrix model, every matrix cell contains a single hour of course event.

These two matrix-based models have an advantage that the “room conflict”
hard constraint is inherently fulfilled. However, it has disadvantage on “complete
schedule” hard constraint, namely, ensuring all course events are completely put in
the model. Hence the matrix-based model is inappropriate for randomly assigning
course events in the matrix. Another problem with the matrix-based model is in
crossover evolution mechanism where parent mating could make a course event
duplicate and course event missing in their successors [9, 17].

To get around these two problems, we will use a list of 3-tuple which consists of
course event, room, and time slot <Ci, Rj , Tk> [6, 25]. This 3-tuple list can be simpli-
fied by introducing a space–time function f(Rj , Tk). If we denote all the variable
using only their indices in the 3-tuple such that <Ci, Rj , Tk > is written as <i, j, k>,
then the space–time function can be expressed as

 f (j, k) = k + (j − 1) ∗ nt (1)

where j = 1 .. nr is room index and k = 1 .. nt is time slot index and maximum
value of f(j,k) = nr*nt.

Hence the 3-tuple list schedule is shortened as a vector Sch:

 Sch = { f 1 (j, k) , f 2 (j, k) , … , f i (j, k) , … f nc (j, k) } (2)

where index i represents a course which is associated to student groups Sl,
lecturers Lm, and course event duration.

The first hard constraint, namely, the complete schedule constraint, is assured
by schedule model in Eq. (2). The other seven hard constraints are taken into
account in penalty function HC(Sch) which is an accumulation of every hard con-
straint violation in each course Ci. The three soft constraints are taken into account
in score function SC(Sch) which is an accumulation of every soft constraint fulfill-
ment in every course Ci. Hence the fitness function is formulated as

 fitness (Sch) = w sc ∗ SC (Sch) − w hc ∗ HC (Sch) (3)

where wsc and whc are weight factors. The objective of optimization is to maxi-
mize this fitness function and make sure a zero hard constraint penalty function
HC(Sch).

Using the tuple list scheduling model, the problem size of course scheduling is
mainly determined by the number of course nc.

3.3 Computational model

In the previous section, we explain how the scheduling model is described
including the heuristic fitness function. Here we will describe the computational
model of three algorithms, namely, multiple-scattered local search, hybrid genetic
algorithm, and hybrid particle swarm optimization. Computational model
identifies parameters for the computational size. The objective of defining the

13

Global Optimization Using Local Search Approach for Course Scheduling Problem
DOI: http://dx.doi.org/10.5772/intechopen.86228

computational model is to ensure a fair comparison among three different types of
algorithm, because considering only an equal problem size can yield biased evalua-
tion if the computational model is significantly different.

The global search computational model is governed by population number
np. In the case of multiple-scattered local search, this exploration power size
determines the number of hill climbers; in the case of hybrid genetic algorithm,
it is the amount of chromosomes; and for hybrid particle swarm optimization, it
is set by the number of particles in the swarm. The local search algorithm of all
three algorithms implements the same scattered local search; hence the size of
this exploitation power is determined by the number of probable positions in the
neighborhood ne.

The computational model size, i.e., population number np and neighbor number
ne, and the problem size, i.e. course number nc, will completely govern the size of
three different algorithms. The performance of the success runs for the heuristic
approach control by the required number of iterations or generation in the case of
genetic algorithm.

4. Experimental results and discussion

4.1 Evaluation model

Because course scheduling is a non-deterministic polynomial complete problem
(NP-problem) [5, 28], algorithm evaluation tool for a deterministic polynomial
problem (P-problem), such as complexity asymptotic analysis, is not really
appropriate to evaluate course scheduling algorithms. An empirical approach was
introduced by Hoos [29, 30] to analyze the behavior of non-deterministic polyno-
mial problem for such three algorithms under consideration. Run time distribution
(RTD) and run length distribution (RLD) are empirically constructed by running
the same algorithm with the same condition for a sufficient number of runs until
some stop criteria are reached or up to some cutoff time or maximum iteration. For
each run, the required run time and the required number of iteration, for RTD or
RLD, respectively, to reach a good solution are recorded.

RTD and RLD will represent cumulative probability distribution function:

 F (x) = P ∣ x ≤ X ∣ (4)

where X is a random variable which represents required run time in RTD or
required run length in RLD.

Specification Set I Set II

Number of courses 25 51

Number of rooms 2 4

Number of time slots 80 160

Number of instructors 14 23

Number of student group 4 7

Number of course hours 67 138

Table 1.
Two sets of small course scheduling data [15].

Scheduling Problems - New Applications and Trends

12

of day and hour, for instance, if the number of day is 5 and every day consists of
8 course hours, then the number of time slot columns are 40 time slots. A variant of
this model has flexible time slot length [7].

A slightly different model from the two-dimensional model is a three
dimensional-model wherein the two components of time slot are put into a two-
dimensional matrix, namely, hour in row and day in column. The room dimension
is placed in the third direction of matrix [9, 17, 18, 27]. As in the two-dimensional
matrix model, every matrix cell contains a single hour of course event.

These two matrix-based models have an advantage that the “room conflict”
hard constraint is inherently fulfilled. However, it has disadvantage on “complete
schedule” hard constraint, namely, ensuring all course events are completely put in
the model. Hence the matrix-based model is inappropriate for randomly assigning
course events in the matrix. Another problem with the matrix-based model is in
crossover evolution mechanism where parent mating could make a course event
duplicate and course event missing in their successors [9, 17].

To get around these two problems, we will use a list of 3-tuple which consists of
course event, room, and time slot <Ci, Rj , Tk> [6, 25]. This 3-tuple list can be simpli-
fied by introducing a space–time function f(Rj , Tk). If we denote all the variable
using only their indices in the 3-tuple such that <Ci, Rj , Tk > is written as <i, j, k>,
then the space–time function can be expressed as

 f (j, k) = k + (j − 1) ∗ nt (1)

where j = 1 .. nr is room index and k = 1 .. nt is time slot index and maximum
value of f(j,k) = nr*nt.

Hence the 3-tuple list schedule is shortened as a vector Sch:

 Sch = { f 1 (j, k) , f 2 (j, k) , … , f i (j, k) , … f nc (j, k) } (2)

where index i represents a course which is associated to student groups Sl,
lecturers Lm, and course event duration.

The first hard constraint, namely, the complete schedule constraint, is assured
by schedule model in Eq. (2). The other seven hard constraints are taken into
account in penalty function HC(Sch) which is an accumulation of every hard con-
straint violation in each course Ci. The three soft constraints are taken into account
in score function SC(Sch) which is an accumulation of every soft constraint fulfill-
ment in every course Ci. Hence the fitness function is formulated as

 fitness (Sch) = w sc ∗ SC (Sch) − w hc ∗ HC (Sch) (3)

where wsc and whc are weight factors. The objective of optimization is to maxi-
mize this fitness function and make sure a zero hard constraint penalty function
HC(Sch).

Using the tuple list scheduling model, the problem size of course scheduling is
mainly determined by the number of course nc.

3.3 Computational model

In the previous section, we explain how the scheduling model is described
including the heuristic fitness function. Here we will describe the computational
model of three algorithms, namely, multiple-scattered local search, hybrid genetic
algorithm, and hybrid particle swarm optimization. Computational model
identifies parameters for the computational size. The objective of defining the

13

Global Optimization Using Local Search Approach for Course Scheduling Problem
DOI: http://dx.doi.org/10.5772/intechopen.86228

computational model is to ensure a fair comparison among three different types of
algorithm, because considering only an equal problem size can yield biased evalua-
tion if the computational model is significantly different.

The global search computational model is governed by population number
np. In the case of multiple-scattered local search, this exploration power size
determines the number of hill climbers; in the case of hybrid genetic algorithm,
it is the amount of chromosomes; and for hybrid particle swarm optimization, it
is set by the number of particles in the swarm. The local search algorithm of all
three algorithms implements the same scattered local search; hence the size of
this exploitation power is determined by the number of probable positions in the
neighborhood ne.

The computational model size, i.e., population number np and neighbor number
ne, and the problem size, i.e. course number nc, will completely govern the size of
three different algorithms. The performance of the success runs for the heuristic
approach control by the required number of iterations or generation in the case of
genetic algorithm.

4. Experimental results and discussion

4.1 Evaluation model

Because course scheduling is a non-deterministic polynomial complete problem
(NP-problem) [5, 28], algorithm evaluation tool for a deterministic polynomial
problem (P-problem), such as complexity asymptotic analysis, is not really
appropriate to evaluate course scheduling algorithms. An empirical approach was
introduced by Hoos [29, 30] to analyze the behavior of non-deterministic polyno-
mial problem for such three algorithms under consideration. Run time distribution
(RTD) and run length distribution (RLD) are empirically constructed by running
the same algorithm with the same condition for a sufficient number of runs until
some stop criteria are reached or up to some cutoff time or maximum iteration. For
each run, the required run time and the required number of iteration, for RTD or
RLD, respectively, to reach a good solution are recorded.

RTD and RLD will represent cumulative probability distribution function:

 F (x) = P ∣ x ≤ X ∣ (4)

where X is a random variable which represents required run time in RTD or
required run length in RLD.

Specification Set I Set II

Number of courses 25 51

Number of rooms 2 4

Number of time slots 80 160

Number of instructors 14 23

Number of student group 4 7

Number of course hours 67 138

Table 1.
Two sets of small course scheduling data [15].

Scheduling Problems - New Applications and Trends

14

4.2 Experimental data

We will evaluate the three algorithms using two sets of small curriculum-based
course scheduling problems as given in Table 1.

On each set, evaluation will be performed for 250 runs on each set of schedul-
ing problems until at least one zero HC(Sch) or a specified maximum iteration
is reached. Size of computational model of all three algorithms, i.e., population
number np and neighborhood number ne, will be varied to grant the performance
behavior of these three different algorithms.

4.3 Discussion of results

The effect of two computational size parameters, namely, the population num-
ber np and the neighborhood number ne, will be studied. While the population
number np gives the exploration force to enhance a global search, the neighbor-
hood number ne provides the exploitation force for the local search.

4.3.1 Exploration for global search

We will firstly investigate influences of parameter np on the success probabil-
ity for each algorithm separately using the scheduling problem set I. Test results
from the hybrid particle swarm optimization are represented in Figures 1 and 2,
respectively, RLD and RTD. Figure 1 shows that the higher number of population,
the better its run length distribution, namely, the most left distribution function.
It is also shown that using cutoff of 1000 iterations, 100% probability of success to
find a zero HC(Sch) is obtained for a population number np of at least 40, and for
the smaller np, it is slightly less than 100%. However, the variation of population
number almost does not affect RTD for the hybrid particle swarm optimization as
shown in Figure 2.

Figures 3 and 4, respectively, represent RLD and RTD from the multiple-
scattered local search. Figure 3 shows the same behavior as Figure 1 for the hybrid
particle swarm optimization, namely, increasing number of population shifts RLD
function to the left side, the better behavior. Run time distribution using multiple-
scattered local search depends significantly on the population number because the

Figure 1.
RLD resulting from hybrid particle swarm optimization for population number np 10, 20, 40, and 100 and
neighborhood number ne 20.

15

Global Optimization Using Local Search Approach for Course Scheduling Problem
DOI: http://dx.doi.org/10.5772/intechopen.86228

Figure 2.
RTD resulting from hybrid particle swarm optimization for population number np 10, 20, 40, and 100 and
neighborhood number ne 20.

Figure 3.
RLD resulting from multiple-scattered local search for population number np 10, 20, 40, and 100 and
neighborhood number ne 20.

Figure 4.
RTD resulting from multiple-scattered local search for population number np 10, 20, 40, and 100 and
neighborhood number ne 20.

Scheduling Problems - New Applications and Trends

14

4.2 Experimental data

We will evaluate the three algorithms using two sets of small curriculum-based
course scheduling problems as given in Table 1.

On each set, evaluation will be performed for 250 runs on each set of schedul-
ing problems until at least one zero HC(Sch) or a specified maximum iteration
is reached. Size of computational model of all three algorithms, i.e., population
number np and neighborhood number ne, will be varied to grant the performance
behavior of these three different algorithms.

4.3 Discussion of results

The effect of two computational size parameters, namely, the population num-
ber np and the neighborhood number ne, will be studied. While the population
number np gives the exploration force to enhance a global search, the neighbor-
hood number ne provides the exploitation force for the local search.

4.3.1 Exploration for global search

We will firstly investigate influences of parameter np on the success probabil-
ity for each algorithm separately using the scheduling problem set I. Test results
from the hybrid particle swarm optimization are represented in Figures 1 and 2,
respectively, RLD and RTD. Figure 1 shows that the higher number of population,
the better its run length distribution, namely, the most left distribution function.
It is also shown that using cutoff of 1000 iterations, 100% probability of success to
find a zero HC(Sch) is obtained for a population number np of at least 40, and for
the smaller np, it is slightly less than 100%. However, the variation of population
number almost does not affect RTD for the hybrid particle swarm optimization as
shown in Figure 2.

Figures 3 and 4, respectively, represent RLD and RTD from the multiple-
scattered local search. Figure 3 shows the same behavior as Figure 1 for the hybrid
particle swarm optimization, namely, increasing number of population shifts RLD
function to the left side, the better behavior. Run time distribution using multiple-
scattered local search depends significantly on the population number because the

Figure 1.
RLD resulting from hybrid particle swarm optimization for population number np 10, 20, 40, and 100 and
neighborhood number ne 20.

15

Global Optimization Using Local Search Approach for Course Scheduling Problem
DOI: http://dx.doi.org/10.5772/intechopen.86228

Figure 2.
RTD resulting from hybrid particle swarm optimization for population number np 10, 20, 40, and 100 and
neighborhood number ne 20.

Figure 3.
RLD resulting from multiple-scattered local search for population number np 10, 20, 40, and 100 and
neighborhood number ne 20.

Figure 4.
RTD resulting from multiple-scattered local search for population number np 10, 20, 40, and 100 and
neighborhood number ne 20.

Scheduling Problems - New Applications and Trends

16

Figure 6.
RLD resulting from multiple-scattered local search for population number np 1, 2, 4, 8, and 10 and scheduling
in four rooms.

required run time growth is higher than the reduction of required run length as
function of population number as shown in Figure 4.

Reducing the number of population until np = 10, we found that using multiple-
scattered local search, finding of a feasible schedule is assured if one lets the
algorithm run up to 1000 iterations. We have investigated thoroughly this algorithm
for lower population number until it becomes a single-scattered local search as pre-
sented in Figures 5 and 6. Note that we set maximum iteration of 3000 for this test.
We found that a success run probability of 100% at maximum iteration of 3000
needs at least np = 4 population members and the minimum population number is
getting higher, i.e., np = 8, for larger schedule problem, i.e., scheduling problem set
II as shown in Figure 6.

Figures 7 and 8 show the result of hybrid genetic algorithm. In this case,
increasing number of population np merely improves the run length distribution
as shown in Figure 7. Figure 8 shows that the increasing number only made things
worse, as logically higher population number needs more run time for the same
level of probability.

Figure 5.
RLD resulting from multiple-scattered local search for population number np 1, 2, 4, and 8 and scheduling in
two rooms.

17

Global Optimization Using Local Search Approach for Course Scheduling Problem
DOI: http://dx.doi.org/10.5772/intechopen.86228

4.3.2 Exploitation for local search

The novelty of the presented hybrid algorithms is the introducing of exploita-
tion force in the original algorithm where exploration power is essential. This
enhancement is affected by the number of scattered candidates in the neighborhood
of the elites, denoted as ne. If this neighborhood number ne is zero, it means the
hybrid algorithm is exactly the same as the original versions.

Figure 9 depicts effect of local search in the hybrid genetic algorithm on the
run length probability distribution. Even a small neighborhood number ne = 2
affects the probability function significantly compared to the original genetic
algorithm.

Figure 10 depicts effect of local search in the hybrid particle swarm optimi-
zation on the run length probability distribution. Using 6000 iterations as the
maximum stop criterion, the original particle swarm optimization fails to yield any
feasible solution; hence no result is given in Figure 10 for the original version. Even
a small neighborhood number ne = 2 affects the probability function significantly
compared to the original genetic algorithm.

Figure 7.
RLD resulting from hybrid genetic algorithm with population number np 20, 40, 100 and neighborhood
number ne 20.

Figure 8.
RTD resulting from hybrid genetic algorithm for population number np 20, 40, and 100 and neighborhood
number ne 20.

Scheduling Problems - New Applications and Trends

16

Figure 6.
RLD resulting from multiple-scattered local search for population number np 1, 2, 4, 8, and 10 and scheduling
in four rooms.

required run time growth is higher than the reduction of required run length as
function of population number as shown in Figure 4.

Reducing the number of population until np = 10, we found that using multiple-
scattered local search, finding of a feasible schedule is assured if one lets the
algorithm run up to 1000 iterations. We have investigated thoroughly this algorithm
for lower population number until it becomes a single-scattered local search as pre-
sented in Figures 5 and 6. Note that we set maximum iteration of 3000 for this test.
We found that a success run probability of 100% at maximum iteration of 3000
needs at least np = 4 population members and the minimum population number is
getting higher, i.e., np = 8, for larger schedule problem, i.e., scheduling problem set
II as shown in Figure 6.

Figures 7 and 8 show the result of hybrid genetic algorithm. In this case,
increasing number of population np merely improves the run length distribution
as shown in Figure 7. Figure 8 shows that the increasing number only made things
worse, as logically higher population number needs more run time for the same
level of probability.

Figure 5.
RLD resulting from multiple-scattered local search for population number np 1, 2, 4, and 8 and scheduling in
two rooms.

17

Global Optimization Using Local Search Approach for Course Scheduling Problem
DOI: http://dx.doi.org/10.5772/intechopen.86228

4.3.2 Exploitation for local search

The novelty of the presented hybrid algorithms is the introducing of exploita-
tion force in the original algorithm where exploration power is essential. This
enhancement is affected by the number of scattered candidates in the neighborhood
of the elites, denoted as ne. If this neighborhood number ne is zero, it means the
hybrid algorithm is exactly the same as the original versions.

Figure 9 depicts effect of local search in the hybrid genetic algorithm on the
run length probability distribution. Even a small neighborhood number ne = 2
affects the probability function significantly compared to the original genetic
algorithm.

Figure 10 depicts effect of local search in the hybrid particle swarm optimi-
zation on the run length probability distribution. Using 6000 iterations as the
maximum stop criterion, the original particle swarm optimization fails to yield any
feasible solution; hence no result is given in Figure 10 for the original version. Even
a small neighborhood number ne = 2 affects the probability function significantly
compared to the original genetic algorithm.

Figure 7.
RLD resulting from hybrid genetic algorithm with population number np 20, 40, 100 and neighborhood
number ne 20.

Figure 8.
RTD resulting from hybrid genetic algorithm for population number np 20, 40, and 100 and neighborhood
number ne 20.

Scheduling Problems - New Applications and Trends

18

Figure 10.
RLD resulting from hybrid particle swarm optimization with variation of neighborhood number ne 2, 5, 20,
and 40.

Figure 11.
RTD resulting from the three algorithms for population number np 20 and neighborhood number ne 20, which
are multiple-scattered local search, hybrid genetic algorithm, and hybrid particle swarm optimization.

Figure 9.
RLD resulting from hybrid genetic algorithm with variation of neighborhood number ne 2, 10, and 20 and the
original genetic algorithm.

19

Global Optimization Using Local Search Approach for Course Scheduling Problem
DOI: http://dx.doi.org/10.5772/intechopen.86228

4.3.3 Comparison between three algorithms

Figure 11 depicts RTD for three algorithms for the same computational size,
i.e., np = 20 and ne = 20. It shows that multiple-scattered local search is the most
efficient in time and also in the required iteration number, while hybrid particle
swarm optimization is the worst.

5. Conclusions

Course scheduling problem is a discrete optimization problem and considered as
NP complete problem which is hard to solve. Therefore, we presented three algo-
rithms which are modification from three popular algorithms. The first algorithm
is multiple-scattered local search which is an enhancement of the hill-climbing
search. The improvement is achieved by introducing exploration search power in
the original single local search.

The hybrid genetic algorithm and the hybrid particle swarm optimization are
the last two presented algorithms. The original version of these two algorithms is
well known for their powerful of exploration ability in searching of global solution
for a sufficiently large number of iterations. The hybrid enhancement of these two
algorithms was implemented by implanting scattered local search on the small elite
group. The enhancement aimed to accelerate searching process.

Course scheduling problems used for the evaluation of three algorithms are
curriculum-based or pre-enrollment course schedules which must fulfill eight hard
constraints and three soft constraints. The course schedule problem was modeled
using a list of 3-tuple which consists of course event, room, and time slot <Ci, Rj,
Tk> which further simplified as a vector containing time–space allocation of every
course. The essential advantage of using this course model is to resolve the problem
of missing courses and double allocated of the same courses in the evolution mecha-
nism. Furthermore, this course model can be used for all three algorithms under
consideration with comparable computation model size, i.e. the population number
np the neighborhood number ne.

The experimental test results have proven that the population number consis-
tently governs the exploration power for better global search in term of required
iteration numbers at cost of more time needed. In the case of multiple-scattered
local search, only a small number of population are needed to obtain a good prob-
ability behavior of success run.

The effect of implanting local search in two originally global search algorithms
is more remarkable. Letting a very small-scattered local search in the elite group has
improved the cumulative probability distribution function of hybrid genetic algo-
rithm and hybrid particle swarm optimization compared to the original versions.
However, comparing all three algorithms for the same problem condition yields the
multiple-scattered local search as the superior algorithm over the other two hybrid
algorithms for cumulative time probability distribution and cumulative run length
distribution.

Acknowledgements

The author would like to thank Anisa Utami and Dody Haryadi for their contri-
bution in this research.

Scheduling Problems - New Applications and Trends

18

Figure 10.
RLD resulting from hybrid particle swarm optimization with variation of neighborhood number ne 2, 5, 20,
and 40.

Figure 11.
RTD resulting from the three algorithms for population number np 20 and neighborhood number ne 20, which
are multiple-scattered local search, hybrid genetic algorithm, and hybrid particle swarm optimization.

Figure 9.
RLD resulting from hybrid genetic algorithm with variation of neighborhood number ne 2, 10, and 20 and the
original genetic algorithm.

19

Global Optimization Using Local Search Approach for Course Scheduling Problem
DOI: http://dx.doi.org/10.5772/intechopen.86228

4.3.3 Comparison between three algorithms

Figure 11 depicts RTD for three algorithms for the same computational size,
i.e., np = 20 and ne = 20. It shows that multiple-scattered local search is the most
efficient in time and also in the required iteration number, while hybrid particle
swarm optimization is the worst.

5. Conclusions

Course scheduling problem is a discrete optimization problem and considered as
NP complete problem which is hard to solve. Therefore, we presented three algo-
rithms which are modification from three popular algorithms. The first algorithm
is multiple-scattered local search which is an enhancement of the hill-climbing
search. The improvement is achieved by introducing exploration search power in
the original single local search.

The hybrid genetic algorithm and the hybrid particle swarm optimization are
the last two presented algorithms. The original version of these two algorithms is
well known for their powerful of exploration ability in searching of global solution
for a sufficiently large number of iterations. The hybrid enhancement of these two
algorithms was implemented by implanting scattered local search on the small elite
group. The enhancement aimed to accelerate searching process.

Course scheduling problems used for the evaluation of three algorithms are
curriculum-based or pre-enrollment course schedules which must fulfill eight hard
constraints and three soft constraints. The course schedule problem was modeled
using a list of 3-tuple which consists of course event, room, and time slot <Ci, Rj,
Tk> which further simplified as a vector containing time–space allocation of every
course. The essential advantage of using this course model is to resolve the problem
of missing courses and double allocated of the same courses in the evolution mecha-
nism. Furthermore, this course model can be used for all three algorithms under
consideration with comparable computation model size, i.e. the population number
np the neighborhood number ne.

The experimental test results have proven that the population number consis-
tently governs the exploration power for better global search in term of required
iteration numbers at cost of more time needed. In the case of multiple-scattered
local search, only a small number of population are needed to obtain a good prob-
ability behavior of success run.

The effect of implanting local search in two originally global search algorithms
is more remarkable. Letting a very small-scattered local search in the elite group has
improved the cumulative probability distribution function of hybrid genetic algo-
rithm and hybrid particle swarm optimization compared to the original versions.
However, comparing all three algorithms for the same problem condition yields the
multiple-scattered local search as the superior algorithm over the other two hybrid
algorithms for cumulative time probability distribution and cumulative run length
distribution.

Acknowledgements

The author would like to thank Anisa Utami and Dody Haryadi for their contri-
bution in this research.

Scheduling Problems - New Applications and Trends

20

© 2019 The Author(s). Licensee IntechOpen. This chapter is distributed under the terms
of the Creative Commons Attribution License (http://creativecommons.org/licenses/
by/3.0), which permits unrestricted use, distribution, and reproduction in any medium,
provided the original work is properly cited.

Author details

Ade Jamal
University of Al-Azhar Indonesia, Jakarta, Indonesia

*Address all correspondence to: adja@uai.ac.id

21

Global Optimization Using Local Search Approach for Course Scheduling Problem
DOI: http://dx.doi.org/10.5772/intechopen.86228

References

[1] Goh SL, Kendall G, Sabar NR.
Improved local search approaches
to solve the post enrolment course
timetabling problem. European
Journal of Operational Research.
2017;261(1):17-29. DOI: 10.1016/j.
ejor.2017.01.040

[2] Elmohamed MAS, Fox G,
Coddington P. A comparison of
annealing techniques for academic
course scheduling. DHPC-045, SCSS-
777; 1998

[3] Myszkowski P, Norbeciak M.
Evolutionary algorithms for timetable
problems. Annales UMCS, Informatica.
2003;1(1):115-125. Available from:
http://www.annales.umc.lublin.pl

[4] Phillips AE, Walker CG, Ehrgott M,
Ryan, DM. Integer programming
for minimal perturbation problems
in university course timetabling. In:
Proceeding of 10th International
Conference of the Practice and Theory
of Automated Timetabling (PATAT
2014); August 2014; York, United
Kingdom; 2014. pp. 26-29

[5] Al-Betar MA, Abdul Khader AT.
A harmony search algorithm for
university course timetabling.
Annals of Operations Research.
2012;194(1):3-31. DOI: 10.1007/
s10479-010-0769-z

[6] Moody D, Kendall G, Bar-Noy A.
Constructing initial neighborhoods to
identify critical constraints. In: Burke
EK, Gendreau M, editors. Proceedings
of the 7th International Conference on
the Practice and Theory of Automated
Timetabling (PATAT '08); August 2008;
Montréal, Canada; 2008

[7] Lewis R, Paechter B. Application
of the grouping genetic algorithm to
university course timetabling. In: Raidl
G, Gottlieb J, editors. Evolutionary
Computation in Combinatorial

Optimization. Berlin, Germany:
Springer; 2005. pp. 144-153. LNCS 3448

[8] Massoodian S, Esteki A. A hybrid
genetic algorithm for curriculum based
course timetabling. In: Burke EK,
Gendreau M, editors. Proceedings of
the 7th International Conference on
the Practice and Theory of Automated
Timetabling (PATAT’08); August 2008;
Montréal, Canada; 2008

[9] Jamal A. Solving university course
scheduling problem using improved
hill climbing approach; In: Proceeding
of the International Joint Seminar in
Engineering; August 2008; Jakarta,
Indonesia; 2008

[10] Abramson D. Constructing school
timetables using simulated annealing:
Parallel and sequential solutions.
Management Science. 1991;37(1):98-113.
DOI: 10.1287/mnsc.37.1.98

[11] Meyers C, Orlin JB. Very large scale
neighborhood search in timetabling
problems. In: Proceeding of the 6th
International Conference on the
Practice and Theory of Automated
Timetabling (PATAT '06); Brno, Czech
Republic; 2006

[12] Akinwale OC, Olatunde OS, Olusayo
OE, Temitayo F. Hybrid metaheuristic
of simulated annealing and genetic
algorithm for solving examination
timetabling problem. International
Journal of Computer Science and
Engineering - IJCSE. 2014;3(5):7-22

[13] Lawal HD, Adeyanju IA, Omidiora
EO, Arulogun OT, Omotosho OI.
University examination timetabling
using Tabu Search. International
Journal of Scientific and Engineering
Research. 2014;5:10. Available from:
http://www.ijser.org

[14] Leighton FT. A graph coloring
algorithm for large scheduling problems.

Scheduling Problems - New Applications and Trends

20

© 2019 The Author(s). Licensee IntechOpen. This chapter is distributed under the terms
of the Creative Commons Attribution License (http://creativecommons.org/licenses/
by/3.0), which permits unrestricted use, distribution, and reproduction in any medium,
provided the original work is properly cited.

Author details

Ade Jamal
University of Al-Azhar Indonesia, Jakarta, Indonesia

*Address all correspondence to: adja@uai.ac.id

21

Global Optimization Using Local Search Approach for Course Scheduling Problem
DOI: http://dx.doi.org/10.5772/intechopen.86228

References

[1] Goh SL, Kendall G, Sabar NR.
Improved local search approaches
to solve the post enrolment course
timetabling problem. European
Journal of Operational Research.
2017;261(1):17-29. DOI: 10.1016/j.
ejor.2017.01.040

[2] Elmohamed MAS, Fox G,
Coddington P. A comparison of
annealing techniques for academic
course scheduling. DHPC-045, SCSS-
777; 1998

[3] Myszkowski P, Norbeciak M.
Evolutionary algorithms for timetable
problems. Annales UMCS, Informatica.
2003;1(1):115-125. Available from:
http://www.annales.umc.lublin.pl

[4] Phillips AE, Walker CG, Ehrgott M,
Ryan, DM. Integer programming
for minimal perturbation problems
in university course timetabling. In:
Proceeding of 10th International
Conference of the Practice and Theory
of Automated Timetabling (PATAT
2014); August 2014; York, United
Kingdom; 2014. pp. 26-29

[5] Al-Betar MA, Abdul Khader AT.
A harmony search algorithm for
university course timetabling.
Annals of Operations Research.
2012;194(1):3-31. DOI: 10.1007/
s10479-010-0769-z

[6] Moody D, Kendall G, Bar-Noy A.
Constructing initial neighborhoods to
identify critical constraints. In: Burke
EK, Gendreau M, editors. Proceedings
of the 7th International Conference on
the Practice and Theory of Automated
Timetabling (PATAT '08); August 2008;
Montréal, Canada; 2008

[7] Lewis R, Paechter B. Application
of the grouping genetic algorithm to
university course timetabling. In: Raidl
G, Gottlieb J, editors. Evolutionary
Computation in Combinatorial

Optimization. Berlin, Germany:
Springer; 2005. pp. 144-153. LNCS 3448

[8] Massoodian S, Esteki A. A hybrid
genetic algorithm for curriculum based
course timetabling. In: Burke EK,
Gendreau M, editors. Proceedings of
the 7th International Conference on
the Practice and Theory of Automated
Timetabling (PATAT’08); August 2008;
Montréal, Canada; 2008

[9] Jamal A. Solving university course
scheduling problem using improved
hill climbing approach; In: Proceeding
of the International Joint Seminar in
Engineering; August 2008; Jakarta,
Indonesia; 2008

[10] Abramson D. Constructing school
timetables using simulated annealing:
Parallel and sequential solutions.
Management Science. 1991;37(1):98-113.
DOI: 10.1287/mnsc.37.1.98

[11] Meyers C, Orlin JB. Very large scale
neighborhood search in timetabling
problems. In: Proceeding of the 6th
International Conference on the
Practice and Theory of Automated
Timetabling (PATAT '06); Brno, Czech
Republic; 2006

[12] Akinwale OC, Olatunde OS, Olusayo
OE, Temitayo F. Hybrid metaheuristic
of simulated annealing and genetic
algorithm for solving examination
timetabling problem. International
Journal of Computer Science and
Engineering - IJCSE. 2014;3(5):7-22

[13] Lawal HD, Adeyanju IA, Omidiora
EO, Arulogun OT, Omotosho OI.
University examination timetabling
using Tabu Search. International
Journal of Scientific and Engineering
Research. 2014;5:10. Available from:
http://www.ijser.org

[14] Leighton FT. A graph coloring
algorithm for large scheduling problems.

Scheduling Problems - New Applications and Trends

22

Journal of Research - The National Bureau
of Standards. 1979;84(6):489-506. DOI:
10.6028/jres.084.024

[15] Dandashi A, Al-Mouhamed M.
Graph coloring for class scheduling.
In: Proceeding of the 8th ACS/
IEEE International Conference on
Computer Systems and Applications
(AICCSA 2010); Hammamet, Tunisia;
May 2010

[16] Soria-Alcaraz JA, Özcan E, Swan J,
Kendall G, Carpio M. Iterated local
search using an add and delete
hyper-heuristic for university course
timetabling. Applied Soft Computing.
2016;40:581-593. DOI: 10.1016/j.
asoc.2015.11.043

[17] Jamal A. University course
scheduling using the evolutionary
algorithm. In: Proceeding of
International Conference on Soft
Computing, Intelligent System, and
Information System (ICSIIT 2010); Bali,
Indonesia; 2010. pp. 86-90

[18] Jamal A. A three stages approach
of evolutionary algorithm and local
search for solving the had-m and soft
constrained course scheduling problem.
In: Proceeding of the 11th Seminar
on Intelligence Technology and its
Application (SITIA2010); Surabaya,
Indonesia; 2010. pp. 324-328

[19] Lutuksin T, Pongcharoen P.
Experimental design and analysis
on parameter investigation and
performance comparison of ant
algorithms for course timetabling
problem. Naresuan University
Engineering Journal. 2009;4:31-38

[20] Oner A, Ozcan S, Dengi D.
Optimization of university course
scheduling problem with a hybrid
artificial bee colony algorithm. In:
Proceeding of 2011 IEEE Congress of
Evolutionary Computation (CEC 2011);
2011. pp. 339-346

[21] Bolaji AL, Khader AT, Al-Betara
MA, Awadallah MA. University course
timetabling using hybridized artificial
bee colony with hill climbing optimizer.
Journal of Computational Science.
2014;5(5):809-818. DOI: 10.1016/j.
jocs.2014.04.002

[22] Ojha D, Sahoo RK, Das S. Automatic
generation of timetable using firefly
algorithm. International Journal of
Advanced Research in Computer
Science and Software Engineering.
2016;6(4):589-593

[23] Poli R, Kennedy J, Blackwell T.
Particle swarm optimization: An
overview. Swarm Intelligence.
2007;1(1):33-57. DOI: 10.1007/
s11721-007-0002-0

[24] Shiau DF. A hybrid particle swarm
optimization for a university course
scheduling problem with flexible
preferences. Expert Systems with
Applications. 2011;38(1):235-248. DOI:
10.1016/j.eswa.2010.06.051

[25] Jamal A. Multiple local scattered
local search for course scheduling
problem. In: Proceeding International
Conference on Soft Computing,
Intelligent System and Information
Technology (ICSIIT 2017) IEEE;
September 2017; Bali, Indonesia; 2017.
DOI: 10.1109/ICSIIT.2017.22

[26] Forrest S, Mitchell M. Relative
building-block fitness and the
building-block hypothesis. In: Whitley
D, editor. Foundations of Genetic
Algorithms 2. San Mateo, CA: Morgan
Kaufmann; 1993

[27] Trabzon SA, Pehlivan H,
Dehkharghani R. Adaptation and use of
artificial bee colony algorithm to solve
curriculum-based course time-tabling
problem. In: Proceeding of the 5th
International Conference on Intelligent
Systems, Modelling and Simulation;
2014. pp. 77-82

23

Global Optimization Using Local Search Approach for Course Scheduling Problem
DOI: http://dx.doi.org/10.5772/intechopen.86228

[28] Burke EK, Elliman DG, Weare RF. A
genetic algorithm based university
timetabling system. In: Proceeding
of the 2nd East-West International
Conference on Computer Technology
in Education; September 1994; Crimea,
Ukraine; 1994. pp. 35-40

[29] Hoos HH. Stochastic local search:
Methods, models, application [Thesis].
Darmstadt, Germany: Technisen
Universitat Darmstadt; 1998

[30] Hoos HH, Stutzle T. Stochastic
local search: Foundation and
applications. San Francisco: Elsevier;
2004

Scheduling Problems - New Applications and Trends

22

Journal of Research - The National Bureau
of Standards. 1979;84(6):489-506. DOI:
10.6028/jres.084.024

[15] Dandashi A, Al-Mouhamed M.
Graph coloring for class scheduling.
In: Proceeding of the 8th ACS/
IEEE International Conference on
Computer Systems and Applications
(AICCSA 2010); Hammamet, Tunisia;
May 2010

[16] Soria-Alcaraz JA, Özcan E, Swan J,
Kendall G, Carpio M. Iterated local
search using an add and delete
hyper-heuristic for university course
timetabling. Applied Soft Computing.
2016;40:581-593. DOI: 10.1016/j.
asoc.2015.11.043

[17] Jamal A. University course
scheduling using the evolutionary
algorithm. In: Proceeding of
International Conference on Soft
Computing, Intelligent System, and
Information System (ICSIIT 2010); Bali,
Indonesia; 2010. pp. 86-90

[18] Jamal A. A three stages approach
of evolutionary algorithm and local
search for solving the had-m and soft
constrained course scheduling problem.
In: Proceeding of the 11th Seminar
on Intelligence Technology and its
Application (SITIA2010); Surabaya,
Indonesia; 2010. pp. 324-328

[19] Lutuksin T, Pongcharoen P.
Experimental design and analysis
on parameter investigation and
performance comparison of ant
algorithms for course timetabling
problem. Naresuan University
Engineering Journal. 2009;4:31-38

[20] Oner A, Ozcan S, Dengi D.
Optimization of university course
scheduling problem with a hybrid
artificial bee colony algorithm. In:
Proceeding of 2011 IEEE Congress of
Evolutionary Computation (CEC 2011);
2011. pp. 339-346

[21] Bolaji AL, Khader AT, Al-Betara
MA, Awadallah MA. University course
timetabling using hybridized artificial
bee colony with hill climbing optimizer.
Journal of Computational Science.
2014;5(5):809-818. DOI: 10.1016/j.
jocs.2014.04.002

[22] Ojha D, Sahoo RK, Das S. Automatic
generation of timetable using firefly
algorithm. International Journal of
Advanced Research in Computer
Science and Software Engineering.
2016;6(4):589-593

[23] Poli R, Kennedy J, Blackwell T.
Particle swarm optimization: An
overview. Swarm Intelligence.
2007;1(1):33-57. DOI: 10.1007/
s11721-007-0002-0

[24] Shiau DF. A hybrid particle swarm
optimization for a university course
scheduling problem with flexible
preferences. Expert Systems with
Applications. 2011;38(1):235-248. DOI:
10.1016/j.eswa.2010.06.051

[25] Jamal A. Multiple local scattered
local search for course scheduling
problem. In: Proceeding International
Conference on Soft Computing,
Intelligent System and Information
Technology (ICSIIT 2017) IEEE;
September 2017; Bali, Indonesia; 2017.
DOI: 10.1109/ICSIIT.2017.22

[26] Forrest S, Mitchell M. Relative
building-block fitness and the
building-block hypothesis. In: Whitley
D, editor. Foundations of Genetic
Algorithms 2. San Mateo, CA: Morgan
Kaufmann; 1993

[27] Trabzon SA, Pehlivan H,
Dehkharghani R. Adaptation and use of
artificial bee colony algorithm to solve
curriculum-based course time-tabling
problem. In: Proceeding of the 5th
International Conference on Intelligent
Systems, Modelling and Simulation;
2014. pp. 77-82

23

Global Optimization Using Local Search Approach for Course Scheduling Problem
DOI: http://dx.doi.org/10.5772/intechopen.86228

[28] Burke EK, Elliman DG, Weare RF. A
genetic algorithm based university
timetabling system. In: Proceeding
of the 2nd East-West International
Conference on Computer Technology
in Education; September 1994; Crimea,
Ukraine; 1994. pp. 35-40

[29] Hoos HH. Stochastic local search:
Methods, models, application [Thesis].
Darmstadt, Germany: Technisen
Universitat Darmstadt; 1998

[30] Hoos HH, Stutzle T. Stochastic
local search: Foundation and
applications. San Francisco: Elsevier;
2004

25

Chapter 2

Real-Time Scheduling Method
for Middleware of Industrial
Automation Devices
Hong Seong Park

Abstract

In this study, a real-time scheduling algorithm, which supports periodic and
sporadic executions with event handling, is proposed for the middleware of indus-
trial automation devices or controllers, such as industrial robots and programmable
logic controllers. When sensors and embedded controllers are included in control
loops having different control periods, they should transmit their data periodically
to the controllers and actuators; otherwise, fatal failure of the system including the
devices could occur. The proposed scheduling algorithm manages modules, namely,
the thread type (or .so type) and process type (or .exe type), for periodic execu-
tion, sporadic execution, and non-real-time execution. The program structures for
the thread-type and process-type modules that can make the proposed algorithm
manage the modules efficiently are suggested; then, they are applied in periodic
and sporadic executions. For sporadic executions, the occurrences of events are first
examined to invoke the execution modules corresponding to the events. The pro-
posed scheduling algorithm is implemented using the Xenomai real-time operating
system (OS) and Linux, and it is validated through several examples.

Keywords: real-time scheduler, middleware, automation device, industrial robot,
PLC, periodic execution, sporadic execution, thread type, process type

1. Introduction

Currently, there are many studies about Industry 4.0 [1–3], where numerous
industrial automation devices such as industrial robots, programmable logic con-
trollers (PLCs), and industrial Internet of things (IIOT) are used. Manufacturing
processes in smart factories have achieved increased flexibility through robots,
PLCs, and smart devices, which enable the production of various types of products.
Because the robots and PLCs used in these factories are working with humans, the
safety of human workers is critical and should be guaranteed. Note that PLCs gen-
erally control conveyors and the flow of production processes. In particular, sensors
and embedded controllers should transmit their data periodically to the control-
lers and actuators according to the preset control periods if they are included in
control loops having different periods. If some data transmissions fail, fatal failure
of the system including the devices could occur. Hence, real-time characteristics,
namely, periodic and sporadic, are extremely important for those devices. The
periodic characteristic is required for operating the manufacturing system stably
and safely, whereas the sporadic characteristic is needed to cope with safety issues.

25

Chapter 2

Real-Time Scheduling Method
for Middleware of Industrial
Automation Devices
Hong Seong Park

Abstract

In this study, a real-time scheduling algorithm, which supports periodic and
sporadic executions with event handling, is proposed for the middleware of indus-
trial automation devices or controllers, such as industrial robots and programmable
logic controllers. When sensors and embedded controllers are included in control
loops having different control periods, they should transmit their data periodically
to the controllers and actuators; otherwise, fatal failure of the system including the
devices could occur. The proposed scheduling algorithm manages modules, namely,
the thread type (or .so type) and process type (or .exe type), for periodic execu-
tion, sporadic execution, and non-real-time execution. The program structures for
the thread-type and process-type modules that can make the proposed algorithm
manage the modules efficiently are suggested; then, they are applied in periodic
and sporadic executions. For sporadic executions, the occurrences of events are first
examined to invoke the execution modules corresponding to the events. The pro-
posed scheduling algorithm is implemented using the Xenomai real-time operating
system (OS) and Linux, and it is validated through several examples.

Keywords: real-time scheduler, middleware, automation device, industrial robot,
PLC, periodic execution, sporadic execution, thread type, process type

1. Introduction

Currently, there are many studies about Industry 4.0 [1–3], where numerous
industrial automation devices such as industrial robots, programmable logic con-
trollers (PLCs), and industrial Internet of things (IIOT) are used. Manufacturing
processes in smart factories have achieved increased flexibility through robots,
PLCs, and smart devices, which enable the production of various types of products.
Because the robots and PLCs used in these factories are working with humans, the
safety of human workers is critical and should be guaranteed. Note that PLCs gen-
erally control conveyors and the flow of production processes. In particular, sensors
and embedded controllers should transmit their data periodically to the control-
lers and actuators according to the preset control periods if they are included in
control loops having different periods. If some data transmissions fail, fatal failure
of the system including the devices could occur. Hence, real-time characteristics,
namely, periodic and sporadic, are extremely important for those devices. The
periodic characteristic is required for operating the manufacturing system stably
and safely, whereas the sporadic characteristic is needed to cope with safety issues.

Scheduling Problems - New Applications and Trends

26

In addition, mobile manipulators, which consist of mobile platforms and industrial
robots, can make the production line more flexible. If this flexibility is expanded to
some extent, the manufacturing process can become reconfigurable. However, it is
required that the production line is also reconfigurable. A conventional production
line is based on a long conveyor system controlled by a PLC, which can obstruct
the reconfigurability of the production line. Moreover, the PLC is one of the most
important automation devices, and its functional specifications including motion
controls are standardized [4–5]. Hence, it is currently being implemented in the
software (SW) of embedded controllers and used widely in industrial fields such as
smart factories and industrial robots.

In general, industrial robots used in factories utilize PLCs because they must be
able to move parts from one cell to another or assemble parts in a cell. Thus, if the
production line is composed of two or more cells, which are implemented as mov-
ing units based on robots and PLCs, the production line can be reconfigurable. This
means that the industrial robot systems used in the lines must perform various types
of functions such as manipulation and moving of parts. Hence, the controller of
industrial robot systems used in lines manages the motion control SW for manipula-
tion and the PLC function for conveyors and grippers. Some current PLC products
can simultaneously manage both conveyors and industrial robots but not all types
of industrial robots [6, 7]. Industrial robots and PLCs can control both motion SW
for manipulation and PLC functions. Furthermore, they should exchange data via
communication among servers and various types of sensors because the program
and measured data must be transmitted to other automation devices.

Information technology (IT) is at the center of these technologies. It is however
difficult to integrate the rapidly developing IT with conventional robot systems
and PLCs. Consequently, middleware technology has been studied for automation
devices such as robots and PLCs [4–19]. The middleware used in automation devices
manages the processes/threads related to manipulations, vision recognition, PLC
functions, transmission of various types of data, safety, and security. This article
focuses on the management of processes/threads, which is called real scheduling.

There are some middleware that can be used for automation devices [6–21].
Well-known examples are the CORBA [20], OPC-UA [21], the ones used in
CoDeSys [6, 7] and TwinCAT [8], ROS [9, 10], OPRoS [11, 12], openRTM [13, 14],
and OROCOS [15, 16]. Among these examples, the OPC-UA and ROS are a type
of communication middleware. The ROS manages the execution periods of SW
modules using the sleep function, but when SW modules are executed as a process
type, it is difficult to keep the period of these modules accurate. Hence, most of
the real-time operating systems (OSs) utilize the thread type to keep real-time
characteristics. The CoDeSys and TwinCAT support a runtime system that executes
control SW modules in real time, which is thought of as a type of middleware. Note
that control SW modules used in the CoDeSys and TwinCAT are motion modules
for manipulation and PLC functions. The ROS, OPRoS, openRTM, and OROCOS
are types of middleware used in robot technology. The CORBA is the most famous
middleware supporting communication and management of SW modules, but it is
difficult to be implemented in automation devices due to the large size of SW.

The ROS is a popular open SW in the robot field and has been mainly imple-
mented on Linux, but the OPRoS, OROCOS, and openRTM are performed on vari-
ous types of OSs such as Windows, Linux, and real-time OS. The former executes
SW modules as process types, whereas the latter executes SW modules as thread
types. Note that general users can use the process type with ease but have dif-
ficulty in using the thread type because of its debugging issues and special format.
However, the real-time characteristics of SW modules are kept more easily in the
thread type. Hence, most of the real-time OSs provide only thread types of SW

27

Real-Time Scheduling Method for Middleware of Industrial Automation Devices
DOI: http://dx.doi.org/10.5772/intechopen.86769

modules for real time. Because the middleware is utilized in various types of OSs
including real-time OSs, it should have a real-time scheduler, which can manage the
SW modules in real-time whether they are of process type or thread type. Note that
the OPRoS, OROCOS, and openRTM support only thread types of SW modules for
real-time services.

Real-time services can be classified into periodic services and sporadic services.
In particular, sporadic services of an SW module are processed as follows: the mid-
dleware checks the occurrence of an event and then executes the SW module related
to that event. Hence, it is necessary for the middleware to support the event handling
of sporadic services. Middleware systems applied to industrial robot controllers are
the OPRoS and OROCOS, but they do not support sporadic services in real time.

Real-time schedulers of middleware are generally designed and developed based
on the execution lifecycle (or state machine), which consists of some states such
as IDLE, EXECUTING, DESTRUCTED, and ERROR and is described in the next
section. Note that the execution lifecycle is applied only to thread-type SW modules
but not to process-type SW modules. In other words, the scheduler controls state
transitions to enter into the target state and then manage the real-time threads in a
safe manner. However, it is difficult for process-type SW modules to be managed
by middleware as seen in the ROS. Hence, the OPRoS, openRTM, and OROCOS
manage only the thread-type modules. If the real-time scheduler processes the
modules as independent threads, the overhead time including context switching can
be critical in the case where the shorter period (e.g., 100 μs) is used. The overhead
time needs to be reduced. In addition, it is necessary to consider the execution of
process-type SW modules so that users can utilize the middleware easily.

Industrial automation devices used in Industry 4.0 should have flexibility, which
can be provided by middleware with real-time schedulers and reliable communica-
tion. Real-time schedulers play important roles in supporting reliable and real-time
communication. Real-time schedulers for industrial automation devices such as
industrial robots [22] should have the following properties of P1–P6:

• (P1) support both process and thread types as execution models of SW modules.

• (P2) support periodic services and sporadic services as real-time services.

• (P3) support non-real-time service if necessary.

• (P4) keep jitters within the minimum bound.

• (P5) support the user-defined priority for each SW module.

• (P6) support the configuration of the SW modules that users can set up.

Examples of processes and threads can be motor control modules, multiple
robot control modules, kinematic modules, path planning modules, PLC modules,
human-robot interaction modules, and object recognition modules. Motor control
modules are executed according to different periods, and PLC modules can be
performed cyclically or periodically.

This study proposes a real-time scheduler that satisfies the properties listed
above. To reduce the overhead time among threads, the proposed scheduler calls
directly the related methods (or functions) of modules in the thread type, where
the modules are loaded in .so type in Linux. In addition, it checks the event occur-
rences to process the corresponding SW modules as sporadic services and then
invokes the corresponding SW modules if the related event condition is satisfied.

Scheduling Problems - New Applications and Trends

26

In addition, mobile manipulators, which consist of mobile platforms and industrial
robots, can make the production line more flexible. If this flexibility is expanded to
some extent, the manufacturing process can become reconfigurable. However, it is
required that the production line is also reconfigurable. A conventional production
line is based on a long conveyor system controlled by a PLC, which can obstruct
the reconfigurability of the production line. Moreover, the PLC is one of the most
important automation devices, and its functional specifications including motion
controls are standardized [4–5]. Hence, it is currently being implemented in the
software (SW) of embedded controllers and used widely in industrial fields such as
smart factories and industrial robots.

In general, industrial robots used in factories utilize PLCs because they must be
able to move parts from one cell to another or assemble parts in a cell. Thus, if the
production line is composed of two or more cells, which are implemented as mov-
ing units based on robots and PLCs, the production line can be reconfigurable. This
means that the industrial robot systems used in the lines must perform various types
of functions such as manipulation and moving of parts. Hence, the controller of
industrial robot systems used in lines manages the motion control SW for manipula-
tion and the PLC function for conveyors and grippers. Some current PLC products
can simultaneously manage both conveyors and industrial robots but not all types
of industrial robots [6, 7]. Industrial robots and PLCs can control both motion SW
for manipulation and PLC functions. Furthermore, they should exchange data via
communication among servers and various types of sensors because the program
and measured data must be transmitted to other automation devices.

Information technology (IT) is at the center of these technologies. It is however
difficult to integrate the rapidly developing IT with conventional robot systems
and PLCs. Consequently, middleware technology has been studied for automation
devices such as robots and PLCs [4–19]. The middleware used in automation devices
manages the processes/threads related to manipulations, vision recognition, PLC
functions, transmission of various types of data, safety, and security. This article
focuses on the management of processes/threads, which is called real scheduling.

There are some middleware that can be used for automation devices [6–21].
Well-known examples are the CORBA [20], OPC-UA [21], the ones used in
CoDeSys [6, 7] and TwinCAT [8], ROS [9, 10], OPRoS [11, 12], openRTM [13, 14],
and OROCOS [15, 16]. Among these examples, the OPC-UA and ROS are a type
of communication middleware. The ROS manages the execution periods of SW
modules using the sleep function, but when SW modules are executed as a process
type, it is difficult to keep the period of these modules accurate. Hence, most of
the real-time operating systems (OSs) utilize the thread type to keep real-time
characteristics. The CoDeSys and TwinCAT support a runtime system that executes
control SW modules in real time, which is thought of as a type of middleware. Note
that control SW modules used in the CoDeSys and TwinCAT are motion modules
for manipulation and PLC functions. The ROS, OPRoS, openRTM, and OROCOS
are types of middleware used in robot technology. The CORBA is the most famous
middleware supporting communication and management of SW modules, but it is
difficult to be implemented in automation devices due to the large size of SW.

The ROS is a popular open SW in the robot field and has been mainly imple-
mented on Linux, but the OPRoS, OROCOS, and openRTM are performed on vari-
ous types of OSs such as Windows, Linux, and real-time OS. The former executes
SW modules as process types, whereas the latter executes SW modules as thread
types. Note that general users can use the process type with ease but have dif-
ficulty in using the thread type because of its debugging issues and special format.
However, the real-time characteristics of SW modules are kept more easily in the
thread type. Hence, most of the real-time OSs provide only thread types of SW

27

Real-Time Scheduling Method for Middleware of Industrial Automation Devices
DOI: http://dx.doi.org/10.5772/intechopen.86769

modules for real time. Because the middleware is utilized in various types of OSs
including real-time OSs, it should have a real-time scheduler, which can manage the
SW modules in real-time whether they are of process type or thread type. Note that
the OPRoS, OROCOS, and openRTM support only thread types of SW modules for
real-time services.

Real-time services can be classified into periodic services and sporadic services.
In particular, sporadic services of an SW module are processed as follows: the mid-
dleware checks the occurrence of an event and then executes the SW module related
to that event. Hence, it is necessary for the middleware to support the event handling
of sporadic services. Middleware systems applied to industrial robot controllers are
the OPRoS and OROCOS, but they do not support sporadic services in real time.

Real-time schedulers of middleware are generally designed and developed based
on the execution lifecycle (or state machine), which consists of some states such
as IDLE, EXECUTING, DESTRUCTED, and ERROR and is described in the next
section. Note that the execution lifecycle is applied only to thread-type SW modules
but not to process-type SW modules. In other words, the scheduler controls state
transitions to enter into the target state and then manage the real-time threads in a
safe manner. However, it is difficult for process-type SW modules to be managed
by middleware as seen in the ROS. Hence, the OPRoS, openRTM, and OROCOS
manage only the thread-type modules. If the real-time scheduler processes the
modules as independent threads, the overhead time including context switching can
be critical in the case where the shorter period (e.g., 100 μs) is used. The overhead
time needs to be reduced. In addition, it is necessary to consider the execution of
process-type SW modules so that users can utilize the middleware easily.

Industrial automation devices used in Industry 4.0 should have flexibility, which
can be provided by middleware with real-time schedulers and reliable communica-
tion. Real-time schedulers play important roles in supporting reliable and real-time
communication. Real-time schedulers for industrial automation devices such as
industrial robots [22] should have the following properties of P1–P6:

• (P1) support both process and thread types as execution models of SW modules.

• (P2) support periodic services and sporadic services as real-time services.

• (P3) support non-real-time service if necessary.

• (P4) keep jitters within the minimum bound.

• (P5) support the user-defined priority for each SW module.

• (P6) support the configuration of the SW modules that users can set up.

Examples of processes and threads can be motor control modules, multiple
robot control modules, kinematic modules, path planning modules, PLC modules,
human-robot interaction modules, and object recognition modules. Motor control
modules are executed according to different periods, and PLC modules can be
performed cyclically or periodically.

This study proposes a real-time scheduler that satisfies the properties listed
above. To reduce the overhead time among threads, the proposed scheduler calls
directly the related methods (or functions) of modules in the thread type, where
the modules are loaded in .so type in Linux. In addition, it checks the event occur-
rences to process the corresponding SW modules as sporadic services and then
invokes the corresponding SW modules if the related event condition is satisfied.

Scheduling Problems - New Applications and Trends

28

For this purpose, the middleware provides an event handling function. This study
implements the proposed scheduler using Xenomai [23]. Some examples are given
to validate the proposed scheduler and show that the worst-case jitters in thread/
process types of modules are kept within the minimum bound and that the middle-
ware is performed on Xenomai and Linux.

In Section 2, the requirements of real-time schedulers for middleware of indus-
trial automation devices are proposed. The real-time scheduling algorithm and the
program structures for periodic and sporadic executions are suggested, where those
executions based on the state machine are related to the thread-type modules. In
Section 3, some examples are presented to validate the proposed scheduler. Finally,
the conclusions drawn are given in Section 4.

2. Real-time scheduler for middleware of industrial automation devices

2.1 Requirements

In industrial automation devices, such as industrial robots and PLCs for process
control, most of the SW modules should be executed periodically. Obviously, PLCs
used in discrete I/O controls such as control of conveyors are executed cyclically.
Moreover, embedded controllers used in automation devices can execute both
manipulation control of industrial robots and control of digital I/Os. Because SW
modules used in those automation devices may have different execution periods, it
is necessary to set the execution periods smoothly according to the target applica-
tions. For example, let us consider SW modules A, B, and C in application 1, which
are executed at periods of 10, 30, and 20 ms, respectively. The same modules can be
executed at periods of 15, 60, and 30 ms in application 2. The period of a module
can vary depending on the application even though the same module is used; thus,
it is necessary to set the period smoothly. In general, two terms, namely, basic
period and macro period, are utilized in periodic applications. The former is com-
puted using the greatest common divisor of the periods of the modules in the given
application, whereas the latter is computed using their least common multiple.

The proposed real-time scheduler is designed and implemented to satisfy the
following requirements, which are derived from properties P1–P6 mentioned in
Section 1:

• Should support periodic services, sporadic services, and non-real-time
services.

• Periodic/sporadic services are divided into thread and process types, and the
corresponding information should be provided.

• Should support the process types of legacy SW modules, which can be per-
formed in periodic, sporadic, and non-real-time modes.

• Should be triggered by an event so that sporadic services are performed.

• The event condition is enrolled so that the event handling function can be pro-
cessed. If the enrolled event condition is satisfied, the corresponding sporadic
service is invoked, regardless of the type (whether process type or thread type).

• The event handling function is executed periodically to check the event
conditions.

29

Real-Time Scheduling Method for Middleware of Industrial Automation Devices
DOI: http://dx.doi.org/10.5772/intechopen.86769

• Periodic services have the highest priority and sporadic services the next
priority. Periodic modules and sporadic modules can have different priorities as
independent modules, regardless of the type.

• Should use a timer-based operation mode to keep jitters of thread and pro-
cesses within the minimum bound.

• Should utilize a configuration file written in XML so that users can provide
information related to the SW module to the middleware.

Particularly note that events considered in this study are not hardware-driven
types because the middleware is executed over the OS. The scheduler in the next
subsection is proposed based on these requirements.

2.2 Algorithm for real-time scheduler

The information for users to provide to the middleware is listed below:

• Module types (thread or process)

• Service/operation mode (periodic, sporadic, or non-real-time)

• Module name (file name)

• Period (for periodic service) or deadline (for sporadic service)

• Priority (lower priority or higher)

• Property (input parameters needed to execute the file)

The middleware reads the XML file containing this information and processes it
accordingly.

An example of a file in which the above information is stored is shown in
Figure 1, and its file name is module.xml written in XML. Note that the time unit
in the file is nanosecond (ns).

Figure 2 shows a brief algorithm of the proposed real-time scheduler. In main()
function, the algorithm reads the configuration file named module.xml and builds
two tables, i.e., periodic scheduling table and sporadic scheduling table, according
to the computed basic period and priorities of modules. After that, the method
“scheduler()” and the basic period are set to link to the timer interrupt and then
are periodically executed according to the basic period. The method scheduler()
manages the periodic and sporadic threads and processes. The periodic and spo-
radic processes are managed via signals of scheduler(). Non-real-time modules are
executed after the thread of scheduler() has linked to the timer interrupt routine.
That is, the execution of the non-real-time modules is independent of the proposed
real-time scheduler. The scheduler does not manage the non-real-time modules to
reduce the computation time.

The middleware reads the configuration file such as module.xml in Figure 1
and computes the basic period of 100 μs and the macro period of 600 μs. Using
these two periods, the middleware generates the periodic scheduling table
shown in Figure 3 and the sporadic scheduling table shown in Figure 4. Note
that pRun() denotes the pointer of the function run(), which is described in
Section 2.3.

Scheduling Problems - New Applications and Trends

28

For this purpose, the middleware provides an event handling function. This study
implements the proposed scheduler using Xenomai [23]. Some examples are given
to validate the proposed scheduler and show that the worst-case jitters in thread/
process types of modules are kept within the minimum bound and that the middle-
ware is performed on Xenomai and Linux.

In Section 2, the requirements of real-time schedulers for middleware of indus-
trial automation devices are proposed. The real-time scheduling algorithm and the
program structures for periodic and sporadic executions are suggested, where those
executions based on the state machine are related to the thread-type modules. In
Section 3, some examples are presented to validate the proposed scheduler. Finally,
the conclusions drawn are given in Section 4.

2. Real-time scheduler for middleware of industrial automation devices

2.1 Requirements

In industrial automation devices, such as industrial robots and PLCs for process
control, most of the SW modules should be executed periodically. Obviously, PLCs
used in discrete I/O controls such as control of conveyors are executed cyclically.
Moreover, embedded controllers used in automation devices can execute both
manipulation control of industrial robots and control of digital I/Os. Because SW
modules used in those automation devices may have different execution periods, it
is necessary to set the execution periods smoothly according to the target applica-
tions. For example, let us consider SW modules A, B, and C in application 1, which
are executed at periods of 10, 30, and 20 ms, respectively. The same modules can be
executed at periods of 15, 60, and 30 ms in application 2. The period of a module
can vary depending on the application even though the same module is used; thus,
it is necessary to set the period smoothly. In general, two terms, namely, basic
period and macro period, are utilized in periodic applications. The former is com-
puted using the greatest common divisor of the periods of the modules in the given
application, whereas the latter is computed using their least common multiple.

The proposed real-time scheduler is designed and implemented to satisfy the
following requirements, which are derived from properties P1–P6 mentioned in
Section 1:

• Should support periodic services, sporadic services, and non-real-time
services.

• Periodic/sporadic services are divided into thread and process types, and the
corresponding information should be provided.

• Should support the process types of legacy SW modules, which can be per-
formed in periodic, sporadic, and non-real-time modes.

• Should be triggered by an event so that sporadic services are performed.

• The event condition is enrolled so that the event handling function can be pro-
cessed. If the enrolled event condition is satisfied, the corresponding sporadic
service is invoked, regardless of the type (whether process type or thread type).

• The event handling function is executed periodically to check the event
conditions.

29

Real-Time Scheduling Method for Middleware of Industrial Automation Devices
DOI: http://dx.doi.org/10.5772/intechopen.86769

• Periodic services have the highest priority and sporadic services the next
priority. Periodic modules and sporadic modules can have different priorities as
independent modules, regardless of the type.

• Should use a timer-based operation mode to keep jitters of thread and pro-
cesses within the minimum bound.

• Should utilize a configuration file written in XML so that users can provide
information related to the SW module to the middleware.

Particularly note that events considered in this study are not hardware-driven
types because the middleware is executed over the OS. The scheduler in the next
subsection is proposed based on these requirements.

2.2 Algorithm for real-time scheduler

The information for users to provide to the middleware is listed below:

• Module types (thread or process)

• Service/operation mode (periodic, sporadic, or non-real-time)

• Module name (file name)

• Period (for periodic service) or deadline (for sporadic service)

• Priority (lower priority or higher)

• Property (input parameters needed to execute the file)

The middleware reads the XML file containing this information and processes it
accordingly.

An example of a file in which the above information is stored is shown in
Figure 1, and its file name is module.xml written in XML. Note that the time unit
in the file is nanosecond (ns).

Figure 2 shows a brief algorithm of the proposed real-time scheduler. In main()
function, the algorithm reads the configuration file named module.xml and builds
two tables, i.e., periodic scheduling table and sporadic scheduling table, according
to the computed basic period and priorities of modules. After that, the method
“scheduler()” and the basic period are set to link to the timer interrupt and then
are periodically executed according to the basic period. The method scheduler()
manages the periodic and sporadic threads and processes. The periodic and spo-
radic processes are managed via signals of scheduler(). Non-real-time modules are
executed after the thread of scheduler() has linked to the timer interrupt routine.
That is, the execution of the non-real-time modules is independent of the proposed
real-time scheduler. The scheduler does not manage the non-real-time modules to
reduce the computation time.

The middleware reads the configuration file such as module.xml in Figure 1
and computes the basic period of 100 μs and the macro period of 600 μs. Using
these two periods, the middleware generates the periodic scheduling table
shown in Figure 3 and the sporadic scheduling table shown in Figure 4. Note
that pRun() denotes the pointer of the function run(), which is described in
Section 2.3.

Scheduling Problems - New Applications and Trends

30

Figure 1.
Module.xml file.

31

Real-Time Scheduling Method for Middleware of Industrial Automation Devices
DOI: http://dx.doi.org/10.5772/intechopen.86769

In Figure 3, the index is the execution order. That is, four periodic modules are
executed in the first period (index 0) starting at 0 μs. In the first period, control3.so
is first executed, and control4.exe is executed last according to the priority in Figure 1.
Control1.so is executed once every 600 μs, and control4.exe is executed once every
300 μs. Obviously, the real-time scheduler distinguishes threads and processes and
executes them properly. The sporadic scheduling table is shown in Figure 4. The
sporadic modules are listed in order of priority in the table. For execution of the SW
modules, the function pointers and the process IDs are stored according to the type
(thread or process) in the scheduling table.

Figure 2.
Brief algorithm for the proposed real-time scheduler.

Scheduling Problems - New Applications and Trends

30

Figure 1.
Module.xml file.

31

Real-Time Scheduling Method for Middleware of Industrial Automation Devices
DOI: http://dx.doi.org/10.5772/intechopen.86769

In Figure 3, the index is the execution order. That is, four periodic modules are
executed in the first period (index 0) starting at 0 μs. In the first period, control3.so
is first executed, and control4.exe is executed last according to the priority in Figure 1.
Control1.so is executed once every 600 μs, and control4.exe is executed once every
300 μs. Obviously, the real-time scheduler distinguishes threads and processes and
executes them properly. The sporadic scheduling table is shown in Figure 4. The
sporadic modules are listed in order of priority in the table. For execution of the SW
modules, the function pointers and the process IDs are stored according to the type
(thread or process) in the scheduling table.

Figure 2.
Brief algorithm for the proposed real-time scheduler.

Scheduling Problems - New Applications and Trends

32

Figure 5.
Execution lifecycle of thread-type SW module.

The thread modules are executed according to the execution lifecycle shown in
Figure 5. After loading the thread-type SW modules, the module is initialized by the
method initialize(), which is illustarted in Figure 8, and the module enters into the
MW_INITIALIZE state. If the method start() is invoked, the module enters into
the MW_START state. After all the thread-type modules enter into the MW_START
states, execution of the real-time scheduling algorithm, scheduler() is started by

Figure 3.
Example of periodic scheduling table based on Figure 1.

Figure 4.
Example of sporadic scheduling table based on Figure 1.

33

Real-Time Scheduling Method for Middleware of Industrial Automation Devices
DOI: http://dx.doi.org/10.5772/intechopen.86769

invoking the method run(), which is also shown in Figure 8. The module is periodi-
cally called or receives signal at the MW_EXECUTING state. After completion of
the module execution, the module invokes the method destroy() and then enters
into the MW_DESTRUCT state, and consequently, the execution of the module is
ended. In the MW_RECOVER state, some error handling is possible using recover-
related methods. Note that the scheduler directly calls or invokes the method run()
of modules to reduce the OS overhead time such as context switching time.

Process-type modules are also executed, and they immediately wait for the
period-starting signal. If a module receives signals from the scheduler, the module
is re-executed from the waiting position.

The operation of the scheduler in Figure 2 is shown in Figure 6. In this figure, it
can be observed that the non-real-time modules can be executed only when a suf-
ficient idle time remains in one period. The scheduler calls the run() method of the
modules to reduce the overhead of controlling the threads or processes, where the
run() method is shown in Figures 7 and 8. After the executions of periodic modules
are finished in a period, the scheduler checks the event conditions of sporadic
modules. If the condition is true, the scheduler calls the corresponding sporadic
method for thread types and sends the signal to the sporadic module for process

Figure 6.
Operation of real-time scheduler for periodic, sporadic, and non-real-time services based on Figures 3 and 4.

Figure 7.
Example of control scheme of real-time scheduler for periodic and sporadic modules.

Scheduling Problems - New Applications and Trends

32

Figure 5.
Execution lifecycle of thread-type SW module.

The thread modules are executed according to the execution lifecycle shown in
Figure 5. After loading the thread-type SW modules, the module is initialized by the
method initialize(), which is illustarted in Figure 8, and the module enters into the
MW_INITIALIZE state. If the method start() is invoked, the module enters into
the MW_START state. After all the thread-type modules enter into the MW_START
states, execution of the real-time scheduling algorithm, scheduler() is started by

Figure 3.
Example of periodic scheduling table based on Figure 1.

Figure 4.
Example of sporadic scheduling table based on Figure 1.

33

Real-Time Scheduling Method for Middleware of Industrial Automation Devices
DOI: http://dx.doi.org/10.5772/intechopen.86769

invoking the method run(), which is also shown in Figure 8. The module is periodi-
cally called or receives signal at the MW_EXECUTING state. After completion of
the module execution, the module invokes the method destroy() and then enters
into the MW_DESTRUCT state, and consequently, the execution of the module is
ended. In the MW_RECOVER state, some error handling is possible using recover-
related methods. Note that the scheduler directly calls or invokes the method run()
of modules to reduce the OS overhead time such as context switching time.

Process-type modules are also executed, and they immediately wait for the
period-starting signal. If a module receives signals from the scheduler, the module
is re-executed from the waiting position.

The operation of the scheduler in Figure 2 is shown in Figure 6. In this figure, it
can be observed that the non-real-time modules can be executed only when a suf-
ficient idle time remains in one period. The scheduler calls the run() method of the
modules to reduce the overhead of controlling the threads or processes, where the
run() method is shown in Figures 7 and 8. After the executions of periodic modules
are finished in a period, the scheduler checks the event conditions of sporadic
modules. If the condition is true, the scheduler calls the corresponding sporadic
method for thread types and sends the signal to the sporadic module for process

Figure 6.
Operation of real-time scheduler for periodic, sporadic, and non-real-time services based on Figures 3 and 4.

Figure 7.
Example of control scheme of real-time scheduler for periodic and sporadic modules.

Scheduling Problems - New Applications and Trends

34

Figure 8.
Program structure of thread-type periodic module.

type. Note that the modules are executed over the multicore CPU and modules with
thread types and process types are executed on different cores. Hence, two types of
modules can be executed at the same time.

Periodic and sporadic operations can be divided into thread type and process
type as shown in Figure 6. The scheduler manages the SW modules according to
their types. Figure 7 shows an example of a control scheme of a real-time scheduler
for periodic and sporadic modules, where the thread-type modules are directly
called by the scheduler and the process-type modules are executed by the signal
from the scheduler. As shown in Figure 7, the periodic modules are executed first.
The scheduler executes a module by calling the run() method of the corresponding
module in the .so file, where the module has a thread type. To execute a process-
type module, the scheduler sends a signal to the process of the module. Note that
process-type modules are executed independently of the scheduler as a type of
process and the scheduler is also a type of process.

The program structures of thread-type and process-type modules are described
in the next subsection.

2.3 Program structures for thread-type and process-type modules

Because the operation method of a thread-type periodic module is different from
that of a process type, the program structure of the thread-type periodic module should
be different from that of the process type, which are shown in Figures 8 and 9 respec-
tively. The method initialize() is executed immediately after the module is loaded in
the memory. The methods start(), run(), destruct(), error(), and recover() are called

35

Real-Time Scheduling Method for Middleware of Industrial Automation Devices
DOI: http://dx.doi.org/10.5772/intechopen.86769

when events such as START, RUN, DESTRUCT, XXX_ERROR, and RECOVER occur,
respectively, which are shown in Figure 5.

Users should insert proper codes into parts named user program. In general, a
legacy program has a structure of a process type, which is simpler than that of a
thread type. To use a legacy program on the proposed middleware, two functions

Figure 9.
Program structure of process-type periodic module.

Figure 10.
Program structure of .so-type sporadic module.

Scheduling Problems - New Applications and Trends

34

Figure 8.
Program structure of thread-type periodic module.

type. Note that the modules are executed over the multicore CPU and modules with
thread types and process types are executed on different cores. Hence, two types of
modules can be executed at the same time.

Periodic and sporadic operations can be divided into thread type and process
type as shown in Figure 6. The scheduler manages the SW modules according to
their types. Figure 7 shows an example of a control scheme of a real-time scheduler
for periodic and sporadic modules, where the thread-type modules are directly
called by the scheduler and the process-type modules are executed by the signal
from the scheduler. As shown in Figure 7, the periodic modules are executed first.
The scheduler executes a module by calling the run() method of the corresponding
module in the .so file, where the module has a thread type. To execute a process-
type module, the scheduler sends a signal to the process of the module. Note that
process-type modules are executed independently of the scheduler as a type of
process and the scheduler is also a type of process.

The program structures of thread-type and process-type modules are described
in the next subsection.

2.3 Program structures for thread-type and process-type modules

Because the operation method of a thread-type periodic module is different from
that of a process type, the program structure of the thread-type periodic module should
be different from that of the process type, which are shown in Figures 8 and 9 respec-
tively. The method initialize() is executed immediately after the module is loaded in
the memory. The methods start(), run(), destruct(), error(), and recover() are called

35

Real-Time Scheduling Method for Middleware of Industrial Automation Devices
DOI: http://dx.doi.org/10.5772/intechopen.86769

when events such as START, RUN, DESTRUCT, XXX_ERROR, and RECOVER occur,
respectively, which are shown in Figure 5.

Users should insert proper codes into parts named user program. In general, a
legacy program has a structure of a process type, which is simpler than that of a
thread type. To use a legacy program on the proposed middleware, two functions

Figure 9.
Program structure of process-type periodic module.

Figure 10.
Program structure of .so-type sporadic module.

Scheduling Problems - New Applications and Trends

36

initPeriodExe() and waitPeriod() should be added in it. initPeriodExe() is a func-
tion for enrollment of the corresponding process to the scheduler, and waitPeriod()
is a type of function to wait for a signal from the scheduler. Note that the scheduler
sends a signal to a process when the corresponding process wants to be executed.
Upon receiving the periodic signal, the module transitions from the waiting state to
the executing state and then executes the main body, which is the part marked user
periodic body in Figure 9. The module enters into the waiting state by the waitPe-
riod() function.

After the execution of periodic modules, the scheduler checks whether any
events for sporadic modules have occurred. The modules corresponding to such
events are listed in order of priority using EDF (earliest deadline first) method
[6–9]. As shown in Figures 2 and 6, the scheduler checks periodically by calling
or invoking the condition() function in Figures 10 and 11. If condition() returns
a value of TRUE in Figure 10, the scheduler executes the corresponding .so-type
module. The process-type sporadic module is designed so that it receives sporadic
signals from the scheduler, checks its condition, and executes the user execution
body if condition() is satisfied.

3. Evaluation

Experiments were performed using the test cases in Table 1 on a PC with the
following specifications to validate the proposed scheduling algorithm:

Figure 11.
Program structure of process-type sporadic module.

37

Real-Time Scheduling Method for Middleware of Industrial Automation Devices
DOI: http://dx.doi.org/10.5772/intechopen.86769

• Ubuntu 14.04 LTS (64 bit), kernel: Linux 4.1.18

• Xenomai 3.0.3, ipipe-core-4.1.18

• CPU: Intel(R) Core(TM) i7–7700 CPU @ 3.60 GHz, four cores

The purpose of the experiments was to determine how the periodic modules are
affected by the execution of all types of modules. Hence, the worst-case jitter and
related jitter statistics are measured and analyzed. Let J n , T n , and P n denote the nth jit-
ter, the starting time of the n-th execution of the target, and the starting time of the
nth period, respectively. The jitter considered in this article is calculated as follows:

 J n = P n – T n = T 0 + n ∗ period– T n , (1)

where T 0 denotes the reference time of the target module and period, period
denotes a basic period, and P n = T 0 + n ∗ period.

The modules were executed using a basic period of 100 μs. In Table 1, the type of
measured module indicates whether the jitter was measured in a .so (thread) or .exe
(process) module. The test results are also presented in Table 1 and Figures 12–19.
Note that the jitter is computed using Eq. (1) and it is measured in a special module
of periodic modules and the type of the measured module is given in Table 1.

Table 1 and Figures 12–19 show that the ranges of mean values and variances
of the process-type periodic module in the test cases are -5.5519 μs to -5.991 μs
and 11.598–12.438 μs, respectively. The ranges of mean values and variances of
the thread-type periodic module in the test cases are -0.027 μs to -0.105 μs and
0.716–3.772 μs, respectively. The worst-case jitter is 12.438 μs, which is measured in
the process-type periodic module, and the jitter rate is 12.438% with respect to the
basic period of 100 μs. The worst-case jitter measured in the thread-type periodic

No. Test cases Test results

Number
of periodic

modules

Number of
sporadic
modules

Number
of non-

real-time
modules

Type of
measured

module

Jitter
mean (μs)

Jitter
variance

(μs)

Worst-
case jitter

(μs)

.so .exe .so .exe

1 1 0 0 0 0 Thread −0.027 0.000839 3.772

2 15 0 0 0 0 Thread 0.127 0.002037 2.933

3 5 3 0 0 0 Thread −0.042 0.001263 2.793

4 5 3 0 0 0 Process −5.723 19.480341 11.598

5 5 3 11 0 0 Thread 0.033 0.001174 0.716

6 5 3 11 0 0 Process −5.580 19.624376 11.614

7 5 3 5 6 0 Thread −0.105 0.001633 1.405

8 5 3 5 6 0 Process −5.991 21.136330 12.438

9 5 3 5 5 8 Thread 0.007 0.001424 1.104

10 5 3 5 5 8 Process −5.519 20.617964 11.758

Table 1.
Test cases for evaluation of scheduling algorithm.

Scheduling Problems - New Applications and Trends

36

initPeriodExe() and waitPeriod() should be added in it. initPeriodExe() is a func-
tion for enrollment of the corresponding process to the scheduler, and waitPeriod()
is a type of function to wait for a signal from the scheduler. Note that the scheduler
sends a signal to a process when the corresponding process wants to be executed.
Upon receiving the periodic signal, the module transitions from the waiting state to
the executing state and then executes the main body, which is the part marked user
periodic body in Figure 9. The module enters into the waiting state by the waitPe-
riod() function.

After the execution of periodic modules, the scheduler checks whether any
events for sporadic modules have occurred. The modules corresponding to such
events are listed in order of priority using EDF (earliest deadline first) method
[6–9]. As shown in Figures 2 and 6, the scheduler checks periodically by calling
or invoking the condition() function in Figures 10 and 11. If condition() returns
a value of TRUE in Figure 10, the scheduler executes the corresponding .so-type
module. The process-type sporadic module is designed so that it receives sporadic
signals from the scheduler, checks its condition, and executes the user execution
body if condition() is satisfied.

3. Evaluation

Experiments were performed using the test cases in Table 1 on a PC with the
following specifications to validate the proposed scheduling algorithm:

Figure 11.
Program structure of process-type sporadic module.

37

Real-Time Scheduling Method for Middleware of Industrial Automation Devices
DOI: http://dx.doi.org/10.5772/intechopen.86769

• Ubuntu 14.04 LTS (64 bit), kernel: Linux 4.1.18

• Xenomai 3.0.3, ipipe-core-4.1.18

• CPU: Intel(R) Core(TM) i7–7700 CPU @ 3.60 GHz, four cores

The purpose of the experiments was to determine how the periodic modules are
affected by the execution of all types of modules. Hence, the worst-case jitter and
related jitter statistics are measured and analyzed. Let J n , T n , and P n denote the nth jit-
ter, the starting time of the n-th execution of the target, and the starting time of the
nth period, respectively. The jitter considered in this article is calculated as follows:

 J n = P n – T n = T 0 + n ∗ period– T n , (1)

where T 0 denotes the reference time of the target module and period, period
denotes a basic period, and P n = T 0 + n ∗ period.

The modules were executed using a basic period of 100 μs. In Table 1, the type of
measured module indicates whether the jitter was measured in a .so (thread) or .exe
(process) module. The test results are also presented in Table 1 and Figures 12–19.
Note that the jitter is computed using Eq. (1) and it is measured in a special module
of periodic modules and the type of the measured module is given in Table 1.

Table 1 and Figures 12–19 show that the ranges of mean values and variances
of the process-type periodic module in the test cases are -5.5519 μs to -5.991 μs
and 11.598–12.438 μs, respectively. The ranges of mean values and variances of
the thread-type periodic module in the test cases are -0.027 μs to -0.105 μs and
0.716–3.772 μs, respectively. The worst-case jitter is 12.438 μs, which is measured in
the process-type periodic module, and the jitter rate is 12.438% with respect to the
basic period of 100 μs. The worst-case jitter measured in the thread-type periodic

No. Test cases Test results

Number
of periodic

modules

Number of
sporadic
modules

Number
of non-

real-time
modules

Type of
measured

module

Jitter
mean (μs)

Jitter
variance

(μs)

Worst-
case jitter

(μs)

.so .exe .so .exe

1 1 0 0 0 0 Thread −0.027 0.000839 3.772

2 15 0 0 0 0 Thread 0.127 0.002037 2.933

3 5 3 0 0 0 Thread −0.042 0.001263 2.793

4 5 3 0 0 0 Process −5.723 19.480341 11.598

5 5 3 11 0 0 Thread 0.033 0.001174 0.716

6 5 3 11 0 0 Process −5.580 19.624376 11.614

7 5 3 5 6 0 Thread −0.105 0.001633 1.405

8 5 3 5 6 0 Process −5.991 21.136330 12.438

9 5 3 5 5 8 Thread 0.007 0.001424 1.104

10 5 3 5 5 8 Process −5.519 20.617964 11.758

Table 1.
Test cases for evaluation of scheduling algorithm.

Scheduling Problems - New Applications and Trends

38

Figure 14.
Jitters in test case 3.

Figure 12.
Jitters in test case 1.

Figure 13.
Jitters in test case 2.

39

Real-Time Scheduling Method for Middleware of Industrial Automation Devices
DOI: http://dx.doi.org/10.5772/intechopen.86769

module is 2.933 μs, which is the result of test case 2, and the jitter rate is 2.933% with
respect to 100 μs.

For the thread-type periodic module, as the load increases, the variation
amount of jitters also increases; however, the worst-case jitter does not exceed
4 μs, and the change in the jitter variances is not significant. For the process-type
periodic module, as the load increases, the variation amount of jitters increases
significantly; however, the worst-case jitter does not exceed 12.5 μs, and the
changes in the jitter variances and worst-case jitters are not large. The test results
in Table 1 and Figures 11–18 indicate that the proposed scheduling algorithm
can be efficiently used by industrial automation devices even for various types of
applications.

It is evident from the results in Table 1 and Figures 12–19 that the basic period
is maintained very satisfactorily in all test cases. This means that the proposed

Figure 15.
Jitters in test case 4.

Figure 16.
Jitters in test case 5.

Scheduling Problems - New Applications and Trends

38

Figure 14.
Jitters in test case 3.

Figure 12.
Jitters in test case 1.

Figure 13.
Jitters in test case 2.

39

Real-Time Scheduling Method for Middleware of Industrial Automation Devices
DOI: http://dx.doi.org/10.5772/intechopen.86769

module is 2.933 μs, which is the result of test case 2, and the jitter rate is 2.933% with
respect to 100 μs.

For the thread-type periodic module, as the load increases, the variation
amount of jitters also increases; however, the worst-case jitter does not exceed
4 μs, and the change in the jitter variances is not significant. For the process-type
periodic module, as the load increases, the variation amount of jitters increases
significantly; however, the worst-case jitter does not exceed 12.5 μs, and the
changes in the jitter variances and worst-case jitters are not large. The test results
in Table 1 and Figures 11–18 indicate that the proposed scheduling algorithm
can be efficiently used by industrial automation devices even for various types of
applications.

It is evident from the results in Table 1 and Figures 12–19 that the basic period
is maintained very satisfactorily in all test cases. This means that the proposed

Figure 15.
Jitters in test case 4.

Figure 16.
Jitters in test case 5.

Scheduling Problems - New Applications and Trends

40

Figure 19.
Jitters in test case 10.

Figure 18.
Jitters in test case 9.

Figure 17.
Jitters in test case 6.

41

Real-Time Scheduling Method for Middleware of Industrial Automation Devices
DOI: http://dx.doi.org/10.5772/intechopen.86769

scheduler can work effectively in various situations. Moreover, it can be observed
from the test results that the process-type periodic module has a greater effect on
jitters than the thread-type and the sporadic modules. Hence, it is better to use the
thread-type than the process-type for periodic modules. If the process-type mod-
ules as legacy modules are utilized, it is necessary to reduce their number.

4. Conclusion

This study proposed a real-time scheduling algorithm for middleware of
industrial automation devices or controllers such as industrial robots and PLCs.
The proposed algorithm strictly maintains the periods and supports both periodic
and sporadic executions with event handling. It has managed modules, namely, the
thread type (or .so type) and process type (or .exe type), for periodic execution,
sporadic execution, and non-real-time execution. This study provided the program
structures of the thread-type and process-type modules for periodic and sporadic
services to manage them efficiently. For sporadic services, the scheduler checks
for the occurrence of events using the condition() method in the sporadic modules
before invoking the corresponding module.

The proposed scheduling algorithm was implemented using the Xenomai
real-time OS and Linux, and it was validated through some test cases. The worst-
case jitters measured in the thread-type periodic module and the process-type
periodic module were 2.933 and 12.438 μs, respectively, where the jitter rates were
2.933 and 12.438% with respect to the basic period of 100 μs. The basic period was
maintained very satisfactorily without missing any periods in all the test cases. The
test results showed that the proposed scheduler could work well in various situa-
tions. Furthermore, it is better to use the thread-type module than the process-type
module when periodic modules are used. It was demonstrated that the proposed
scheduling algorithm could be used for the middleware of industrial automation
devices or controllers.

In future research, the proposed scheduling algorithm will be tested to handle
periodic modules, sporadic events, and non-real-time modules in multicore sys-
tems, manage process-type periodic modules with smaller worst-case jitters, and
support various types of OSs.

Acknowledgements

This work was partly supported by Korea Evaluation Institute of Industrial
Technology (KEIT) grant funded by the Korea government (MOTIE) (No.
10067414, development of real-time-assisting SW platform for industrial robot).

Scheduling Problems - New Applications and Trends

40

Figure 19.
Jitters in test case 10.

Figure 18.
Jitters in test case 9.

Figure 17.
Jitters in test case 6.

41

Real-Time Scheduling Method for Middleware of Industrial Automation Devices
DOI: http://dx.doi.org/10.5772/intechopen.86769

scheduler can work effectively in various situations. Moreover, it can be observed
from the test results that the process-type periodic module has a greater effect on
jitters than the thread-type and the sporadic modules. Hence, it is better to use the
thread-type than the process-type for periodic modules. If the process-type mod-
ules as legacy modules are utilized, it is necessary to reduce their number.

4. Conclusion

This study proposed a real-time scheduling algorithm for middleware of
industrial automation devices or controllers such as industrial robots and PLCs.
The proposed algorithm strictly maintains the periods and supports both periodic
and sporadic executions with event handling. It has managed modules, namely, the
thread type (or .so type) and process type (or .exe type), for periodic execution,
sporadic execution, and non-real-time execution. This study provided the program
structures of the thread-type and process-type modules for periodic and sporadic
services to manage them efficiently. For sporadic services, the scheduler checks
for the occurrence of events using the condition() method in the sporadic modules
before invoking the corresponding module.

The proposed scheduling algorithm was implemented using the Xenomai
real-time OS and Linux, and it was validated through some test cases. The worst-
case jitters measured in the thread-type periodic module and the process-type
periodic module were 2.933 and 12.438 μs, respectively, where the jitter rates were
2.933 and 12.438% with respect to the basic period of 100 μs. The basic period was
maintained very satisfactorily without missing any periods in all the test cases. The
test results showed that the proposed scheduler could work well in various situa-
tions. Furthermore, it is better to use the thread-type module than the process-type
module when periodic modules are used. It was demonstrated that the proposed
scheduling algorithm could be used for the middleware of industrial automation
devices or controllers.

In future research, the proposed scheduling algorithm will be tested to handle
periodic modules, sporadic events, and non-real-time modules in multicore sys-
tems, manage process-type periodic modules with smaller worst-case jitters, and
support various types of OSs.

Acknowledgements

This work was partly supported by Korea Evaluation Institute of Industrial
Technology (KEIT) grant funded by the Korea government (MOTIE) (No.
10067414, development of real-time-assisting SW platform for industrial robot).

Scheduling Problems - New Applications and Trends

42

Author details

Hong Seong Park
Department of Electrical and Electronic Engineering, Kangwon National
University, South Korea

*Address all correspondence to: hspark@kangwon.ac.kr

© 2019 The Author(s). Licensee IntechOpen. This chapter is distributed under the terms
of the Creative Commons Attribution License (http://creativecommons.org/licenses/
by/3.0), which permits unrestricted use, distribution, and reproduction in any medium,
provided the original work is properly cited.

43

Real-Time Scheduling Method for Middleware of Industrial Automation Devices
DOI: http://dx.doi.org/10.5772/intechopen.86769

References

[1] Rueßmann M, Lorenz M,
Gerbert P, Waldner M, Justus J,
Engel P, Harnisch M. Industry
4.0: The Future of Productivity
and Growth in Manufacturing
Industries. Boston Consulting
Group; 2015. Available from: https://
www.bcg.com/publications/2015/
engineered_products_project_business_
industry_4_future_productivity_
growth_manufacturing_industries.aspx

[2] Thoben K, Wiesner S, Wuest T.
Industrie 4.0 and smart
manufacturing—A review of research
issues and application examples.
International Journal of Automation
Technology. 2017;11:4-16. DOI:
10.20965/ijat.2017.p0004

[3] MacDougall W. Industrie 4.0 smart
manufacturing for the future. Available
from: https://www.manufacturing-
policy.eng.cam.ac.uk/documents-folder/
policies/germany-industrie-4-0-smart-
manufacturing-for-the-future-gtai/
view

[4] IEC. IEC 61131-3 Programmable
controllers—Part 3: Programming
languages; 2013

[5] PLCopen Technical Committee 2.
Function Blocks for Motion Control:
Part 3—User Guidelines. 2013. Available
from: https://www.plcopen.org/system/
files/downloads/plcopen_motion_
control_part_3_version_2.0.pdf

[6] CODESYS Group. WHY CODESYS?
[Internet]. Available from: https://www.
codesys.com/the-system/why-codesys.
html

[7] Korobiichuk I, Dobrzhansky O,
Kachniarz M. Remote control of
nonlinear motion for mechatronic
machine by means of CoDeSys
compatible industrial controller.
Tehnički Vjesnik. 2017;24:1661-1667.
DOI: 10.17559/TV-20151110164217

[8] Beckhoff. TWINCAT-PLC and
motion control on the PC [Internet].
Available from: https://www.beckhoff.
com/twincat/

[9] OSRF Site [Online]. Available from:
www.ros.org

[10] Wei H, Shao Z, Huang Z, Chend R,
Guanb Y, Tanc J, et al. RT-ROS: A
real-time ROS architecture on multi-
core processors. Future Generation
Computer Systems. 2016;56:171-178.
DOI: 10.1016/j.future.2015.05.008

[11] Han S, Kim M, Park HS. Open
software platform for robotic services.
IEEE Transactions on Automation
Science and Engineering. 2012;9:
467-481. DOI: 10.1109/
TASE.2012.2193568

[12] OPRoS Site [Online]. Available
from: www.ropros.org

[13] OpenRTM Site [Online]. Available
from: www.openrtm.org

[14] Hasegawa R, Yawata N, Ando N,
Nishio N, Azumi T. Embedded
component-based framework for robot
technology middleware. Journal of
Information Processing. 2017;25:
811-819. DOI: 10.2197/ipsjjip.25.811

[15] OROCOS site [Online]. Available
from: www.orocos.org

[16] Rastogi N, Dutta P, Krishna V,
Gotewa KK. Implementation of an
OROCOS based real-time equipment
controller for remote maintenance
of tokamaks. In: Proceedings of the
Advances in Robotics; June 28-02
July 2017; New Delhi, India; DOI:
10.1145/3132446.3134900

[17] Muratore L, Laurenzi A, Hoffman EM,
Rocchi A, Caldwell DG, Tsagarakis NG.
XBotCore: A real-time cross-robot
software platform. In: 2017 First IEEE

Scheduling Problems - New Applications and Trends

42

Author details

Hong Seong Park
Department of Electrical and Electronic Engineering, Kangwon National
University, South Korea

*Address all correspondence to: hspark@kangwon.ac.kr

© 2019 The Author(s). Licensee IntechOpen. This chapter is distributed under the terms
of the Creative Commons Attribution License (http://creativecommons.org/licenses/
by/3.0), which permits unrestricted use, distribution, and reproduction in any medium,
provided the original work is properly cited.

43

Real-Time Scheduling Method for Middleware of Industrial Automation Devices
DOI: http://dx.doi.org/10.5772/intechopen.86769

References

[1] Rueßmann M, Lorenz M,
Gerbert P, Waldner M, Justus J,
Engel P, Harnisch M. Industry
4.0: The Future of Productivity
and Growth in Manufacturing
Industries. Boston Consulting
Group; 2015. Available from: https://
www.bcg.com/publications/2015/
engineered_products_project_business_
industry_4_future_productivity_
growth_manufacturing_industries.aspx

[2] Thoben K, Wiesner S, Wuest T.
Industrie 4.0 and smart
manufacturing—A review of research
issues and application examples.
International Journal of Automation
Technology. 2017;11:4-16. DOI:
10.20965/ijat.2017.p0004

[3] MacDougall W. Industrie 4.0 smart
manufacturing for the future. Available
from: https://www.manufacturing-
policy.eng.cam.ac.uk/documents-folder/
policies/germany-industrie-4-0-smart-
manufacturing-for-the-future-gtai/
view

[4] IEC. IEC 61131-3 Programmable
controllers—Part 3: Programming
languages; 2013

[5] PLCopen Technical Committee 2.
Function Blocks for Motion Control:
Part 3—User Guidelines. 2013. Available
from: https://www.plcopen.org/system/
files/downloads/plcopen_motion_
control_part_3_version_2.0.pdf

[6] CODESYS Group. WHY CODESYS?
[Internet]. Available from: https://www.
codesys.com/the-system/why-codesys.
html

[7] Korobiichuk I, Dobrzhansky O,
Kachniarz M. Remote control of
nonlinear motion for mechatronic
machine by means of CoDeSys
compatible industrial controller.
Tehnički Vjesnik. 2017;24:1661-1667.
DOI: 10.17559/TV-20151110164217

[8] Beckhoff. TWINCAT-PLC and
motion control on the PC [Internet].
Available from: https://www.beckhoff.
com/twincat/

[9] OSRF Site [Online]. Available from:
www.ros.org

[10] Wei H, Shao Z, Huang Z, Chend R,
Guanb Y, Tanc J, et al. RT-ROS: A
real-time ROS architecture on multi-
core processors. Future Generation
Computer Systems. 2016;56:171-178.
DOI: 10.1016/j.future.2015.05.008

[11] Han S, Kim M, Park HS. Open
software platform for robotic services.
IEEE Transactions on Automation
Science and Engineering. 2012;9:
467-481. DOI: 10.1109/
TASE.2012.2193568

[12] OPRoS Site [Online]. Available
from: www.ropros.org

[13] OpenRTM Site [Online]. Available
from: www.openrtm.org

[14] Hasegawa R, Yawata N, Ando N,
Nishio N, Azumi T. Embedded
component-based framework for robot
technology middleware. Journal of
Information Processing. 2017;25:
811-819. DOI: 10.2197/ipsjjip.25.811

[15] OROCOS site [Online]. Available
from: www.orocos.org

[16] Rastogi N, Dutta P, Krishna V,
Gotewa KK. Implementation of an
OROCOS based real-time equipment
controller for remote maintenance
of tokamaks. In: Proceedings of the
Advances in Robotics; June 28-02
July 2017; New Delhi, India; DOI:
10.1145/3132446.3134900

[17] Muratore L, Laurenzi A, Hoffman EM,
Rocchi A, Caldwell DG, Tsagarakis NG.
XBotCore: A real-time cross-robot
software platform. In: 2017 First IEEE

Scheduling Problems - New Applications and Trends

44

International Conference on Robotic
Computing (IRC); 10-12 April 2017;
Taichung, Taiwan; DOI: 10.1109/
IRC.2017.45

[18] YARP site [Online]. Available from:
www.yarp.it

[19] Paikan A, Pattacini U, Domenichelli
D. A best-effort approach for run-time
channel prioritization in real-time
robotic application. In: 2015 IEEE/RSJ
International Conference on Intelligent
Robots and Systems (IROS); 28 Sept.-2
Oct. 2015; Hamburg, Germany.
2015. pp. 1799-1805. DOI: 10.1109/
IROS.2015.7353611

[20] Levine DL, Schmidt DC, Flores-
Gaitan S. CORBA measuring OS support
for real-time CORBA ORBs. In: 1999
Proceedings Fourth International
Workshop on Object-Oriented
Real-Time Dependable Systems;
27-29 Jan. 1999; Santa Barbara, CA,
USA. 1999. pp. 9-17. DOI: 10.1109/
WORDS.1999.806555

[21] OPC Foundation. PLCopen and
OPC Foundation: OPC UA Information
Model for IEC 61131-3. 2010

[22] Yu D, Park HS. Real-time
middleware with periodic service
for industrial robot. In: 2017 14th
International Conference on Ubiquitous
Robots and Ambient Intelligence
(URAI); 28 June-1 July 2017; Jeju, South
Korea. 2017. pp. 879-881. DOI: 10.1109/
URAI.2017.7992853

[23] Xenomai site [online]. Available
from: xenomai.org

Section 2

On Addressing Scheduling
for Parallel and

High-Performance
Computing Environments

45

Scheduling Problems - New Applications and Trends

44

International Conference on Robotic
Computing (IRC); 10-12 April 2017;
Taichung, Taiwan; DOI: 10.1109/
IRC.2017.45

[18] YARP site [Online]. Available from:
www.yarp.it

[19] Paikan A, Pattacini U, Domenichelli
D. A best-effort approach for run-time
channel prioritization in real-time
robotic application. In: 2015 IEEE/RSJ
International Conference on Intelligent
Robots and Systems (IROS); 28 Sept.-2
Oct. 2015; Hamburg, Germany.
2015. pp. 1799-1805. DOI: 10.1109/
IROS.2015.7353611

[20] Levine DL, Schmidt DC, Flores-
Gaitan S. CORBA measuring OS support
for real-time CORBA ORBs. In: 1999
Proceedings Fourth International
Workshop on Object-Oriented
Real-Time Dependable Systems;
27-29 Jan. 1999; Santa Barbara, CA,
USA. 1999. pp. 9-17. DOI: 10.1109/
WORDS.1999.806555

[21] OPC Foundation. PLCopen and
OPC Foundation: OPC UA Information
Model for IEC 61131-3. 2010

[22] Yu D, Park HS. Real-time
middleware with periodic service
for industrial robot. In: 2017 14th
International Conference on Ubiquitous
Robots and Ambient Intelligence
(URAI); 28 June-1 July 2017; Jeju, South
Korea. 2017. pp. 879-881. DOI: 10.1109/
URAI.2017.7992853

[23] Xenomai site [online]. Available
from: xenomai.org

Section 2

On Addressing Scheduling
for Parallel and

High-Performance
Computing Environments

45

Chapter 3

Intelligent Workload Scheduling
in Distributed Computing
Environment for Balance
between Energy Efficiency
and Performance
Larysa Globa, Oleksandr Stryzhak, Nataliia Gvozdetska
and Volodymyr Prokopets

Abstract

Global digital transformation requires more productive large-scale distributed
systems. Such systems should meet lots of requirements, such as high availability,
low latency and reliability. However, new challenges become more and more
important nowadays. One of them is energy efficiency of large-scale computing
systems. Many service providers prefer to use cheap commodity servers in their
distributed infrastructure, which makes the problem of energy efficiency even
harder because of hardware inhomogeneity. In this chapter an approach to finding
balance between performance and energy efficiency requirements within inhomo-
geneous distributed computing environment is proposed. The main idea of the
proposed approach is to use each node’s individual energy consumption models in
order to generate distributed system scaling patterns based on the statistical daily
workload and then adjust these patterns to match the current workload while using
energy-aware Power Consumption and Performance Balance (PCPB) scheduling
algorithm. An approach is tested using Matlab modeling. As a result of applying the
proposed approach, large-scale distributed computing systems save energy while
maintaining a fairly high level of performance and meeting the requirements of the
service-level agreement (SLA).

Keywords: energy efficiency, performance, SLA, distributed computing system,
scheduling, horizontal scaling

1. Introduction

Nowadays information technologies penetrate all spheres of human life.
According to the Gartner Top 10 Strategic Technology Trends for 2019 [1], the new
world-driving trends are going to include augmented analytics, immersive technol-
ogies, edge computing and blockchain in the nearest future. These technologies
require extremely highly efficient distributed computing systems that could process
large amounts of data, consuming as little resources as possible.

47

Chapter 3

Intelligent Workload Scheduling
in Distributed Computing
Environment for Balance
between Energy Efficiency
and Performance
Larysa Globa, Oleksandr Stryzhak, Nataliia Gvozdetska
and Volodymyr Prokopets

Abstract

Global digital transformation requires more productive large-scale distributed
systems. Such systems should meet lots of requirements, such as high availability,
low latency and reliability. However, new challenges become more and more
important nowadays. One of them is energy efficiency of large-scale computing
systems. Many service providers prefer to use cheap commodity servers in their
distributed infrastructure, which makes the problem of energy efficiency even
harder because of hardware inhomogeneity. In this chapter an approach to finding
balance between performance and energy efficiency requirements within inhomo-
geneous distributed computing environment is proposed. The main idea of the
proposed approach is to use each node’s individual energy consumption models in
order to generate distributed system scaling patterns based on the statistical daily
workload and then adjust these patterns to match the current workload while using
energy-aware Power Consumption and Performance Balance (PCPB) scheduling
algorithm. An approach is tested using Matlab modeling. As a result of applying the
proposed approach, large-scale distributed computing systems save energy while
maintaining a fairly high level of performance and meeting the requirements of the
service-level agreement (SLA).

Keywords: energy efficiency, performance, SLA, distributed computing system,
scheduling, horizontal scaling

1. Introduction

Nowadays information technologies penetrate all spheres of human life.
According to the Gartner Top 10 Strategic Technology Trends for 2019 [1], the new
world-driving trends are going to include augmented analytics, immersive technol-
ogies, edge computing and blockchain in the nearest future. These technologies
require extremely highly efficient distributed computing systems that could process
large amounts of data, consuming as little resources as possible.

47

Electrical power is one of the most demanded resources for the large-scale
distributed computing systems. Both science and industry have made tremendous
efforts to reduce the power consumption of large-scale computing systems over the
past 10 years. According to the Huawei Technologies Sweden estimation, presented
in [2], power consumption of data centres all over the world is still going to grow in
the nearest future. However, due to the newly developed techniques, we can expect
much lower growth up to 2967 TWh. On the contrary, in the worst case, data
centres could consume up to 7933 TWh of energy without the use of any energy-
saving approaches (Figure 1).

Although the fruitful cooperation between science and industry has already
brought very good results in terms of reducing data centre power consumption,
there is still a very high demand for approaches that would allow to cope with new
challenges associated with the rapid development of distributed computing.

Within this study we propose an intelligent workload scheduling approach,
which is aimed at improving energy efficiency of distributed computing systems
through the application of energy-aware scheduling combined with scaling, taking
into account data processing performance as well. An approach considers first of all
inhomogeneous distributed systems designed to use cheap commodity hardware as
much as possible.

The chapter is structured as follows: Section 2 contains state-of-the-art analysis
of distributed computing system energy efficiency problem. Section 3 explains the
problem to be solved by proposed approach. Section 4 introduces proposed intelli-
gent workload scheduling approach efficiently combined with dynamic scaling
approaches. Section 4.1 presents a model of proposed approach implementation,
and Section 5 concludes the work with a summary and outlook on future work.

2. State of the art and background

Many approaches to increasing energy efficiency of the large-scale distributed
computing systems (power management approaches) already exist. According to

Figure 1.
Electricity usage of data centres 2010–2030 estimation [2].

48

Scheduling Problems - New Applications and Trends

the paper [3], these approaches can be divided into static and dynamic in terms of
decision-making process. Both static and dynamic approaches can be applied either
at the hardware level or at the software level. At the same time, these approaches
are also classified according to the scope (cloud environment, single server, etc.).
The overall structure of approach classification proposed in [3] is depicted in
Figure 2.

Since the load on computing systems usually changes dynamically (in particular,
in the cloud environment), it is worth to pay attention to the dynamic approaches to
power management, respectively. Thus, within this study we mainly focus on
dynamic energy-efficient approaches.

Considering hardware-based approaches, one of the most common approaches
is dynamic voltage and frequency scaling (DVFS). DVFS is a power management
technique that is effective in reducing power dissipation by lowering the supply
voltage [4]. DVFS is widely used to manage the energy and power consumption in
modern processors; however, for DVFS to be effective, there is a need to accurately
predict the performance impact of scaling a processor’s voltage and frequency
[5, 6]. Moreover, the implementation of hardware-based approaches may be chal-
lenging, especially when it comes to inhomogeneous systems consisting of com-
modity hardware. Such approaches usually require additional expenses in order to
adapt the system to their use. However, hardware-based approaches are very effi-
cient. And they might bring even more energy efficiency when used in conjunction
with software-based techniques.

Among the software approaches, the most commonly used are scheduling and
consolidation [7]. Scheduling approaches are aimed at distributing the workload
among the servers in a way that no servers are underutilized, jobs’ processing
performance is high enough and, in the case of energy-aware scheduling, the power
consumption of the whole computing system is minimized. Consolidation
approaches concern virtualized environments and are designed to balance virtual
machines (VMs) so that they can run on as few servers as possible. Idling servers are
then shut down or switched to a standby mode. It means that the consolidation is
tightly coupled with horizontal scaling approaches.

The authors of [8] proposed the performance and energy-based cost prediction
framework that dynamically supports VMs auto-scaling decision and demonstrates
the trade-off between cost, power consumption and performance. This framework
allows to estimate auto-scaling total cost, which is essential when using consolida-
tion and horizontal auto-scaling approaches. Dynamic auto-scaling can be a big gain
in energy efficiency, but estimating the cost of automatic scaling should not lead to
excessive overhead. Thus, in some cases, it may be worthwhile to avoid constant
dynamic auto-scaling and basically rely on statistics instead, while adjusting the
scale of the system when it is really needed.

Figure 2.
Classification of power management approaches to increasing energy efficiency of computing systems [3].

49

Intelligent Workload Scheduling in Distributed Computing Environment for Balance…
DOI: http://dx.doi.org/10.5772/intechopen.86874

Electrical power is one of the most demanded resources for the large-scale
distributed computing systems. Both science and industry have made tremendous
efforts to reduce the power consumption of large-scale computing systems over the
past 10 years. According to the Huawei Technologies Sweden estimation, presented
in [2], power consumption of data centres all over the world is still going to grow in
the nearest future. However, due to the newly developed techniques, we can expect
much lower growth up to 2967 TWh. On the contrary, in the worst case, data
centres could consume up to 7933 TWh of energy without the use of any energy-
saving approaches (Figure 1).

Although the fruitful cooperation between science and industry has already
brought very good results in terms of reducing data centre power consumption,
there is still a very high demand for approaches that would allow to cope with new
challenges associated with the rapid development of distributed computing.

Within this study we propose an intelligent workload scheduling approach,
which is aimed at improving energy efficiency of distributed computing systems
through the application of energy-aware scheduling combined with scaling, taking
into account data processing performance as well. An approach considers first of all
inhomogeneous distributed systems designed to use cheap commodity hardware as
much as possible.

The chapter is structured as follows: Section 2 contains state-of-the-art analysis
of distributed computing system energy efficiency problem. Section 3 explains the
problem to be solved by proposed approach. Section 4 introduces proposed intelli-
gent workload scheduling approach efficiently combined with dynamic scaling
approaches. Section 4.1 presents a model of proposed approach implementation,
and Section 5 concludes the work with a summary and outlook on future work.

2. State of the art and background

Many approaches to increasing energy efficiency of the large-scale distributed
computing systems (power management approaches) already exist. According to

Figure 1.
Electricity usage of data centres 2010–2030 estimation [2].

48

Scheduling Problems - New Applications and Trends

the paper [3], these approaches can be divided into static and dynamic in terms of
decision-making process. Both static and dynamic approaches can be applied either
at the hardware level or at the software level. At the same time, these approaches
are also classified according to the scope (cloud environment, single server, etc.).
The overall structure of approach classification proposed in [3] is depicted in
Figure 2.

Since the load on computing systems usually changes dynamically (in particular,
in the cloud environment), it is worth to pay attention to the dynamic approaches to
power management, respectively. Thus, within this study we mainly focus on
dynamic energy-efficient approaches.

Considering hardware-based approaches, one of the most common approaches
is dynamic voltage and frequency scaling (DVFS). DVFS is a power management
technique that is effective in reducing power dissipation by lowering the supply
voltage [4]. DVFS is widely used to manage the energy and power consumption in
modern processors; however, for DVFS to be effective, there is a need to accurately
predict the performance impact of scaling a processor’s voltage and frequency
[5, 6]. Moreover, the implementation of hardware-based approaches may be chal-
lenging, especially when it comes to inhomogeneous systems consisting of com-
modity hardware. Such approaches usually require additional expenses in order to
adapt the system to their use. However, hardware-based approaches are very effi-
cient. And they might bring even more energy efficiency when used in conjunction
with software-based techniques.

Among the software approaches, the most commonly used are scheduling and
consolidation [7]. Scheduling approaches are aimed at distributing the workload
among the servers in a way that no servers are underutilized, jobs’ processing
performance is high enough and, in the case of energy-aware scheduling, the power
consumption of the whole computing system is minimized. Consolidation
approaches concern virtualized environments and are designed to balance virtual
machines (VMs) so that they can run on as few servers as possible. Idling servers are
then shut down or switched to a standby mode. It means that the consolidation is
tightly coupled with horizontal scaling approaches.

The authors of [8] proposed the performance and energy-based cost prediction
framework that dynamically supports VMs auto-scaling decision and demonstrates
the trade-off between cost, power consumption and performance. This framework
allows to estimate auto-scaling total cost, which is essential when using consolida-
tion and horizontal auto-scaling approaches. Dynamic auto-scaling can be a big gain
in energy efficiency, but estimating the cost of automatic scaling should not lead to
excessive overhead. Thus, in some cases, it may be worthwhile to avoid constant
dynamic auto-scaling and basically rely on statistics instead, while adjusting the
scale of the system when it is really needed.

Figure 2.
Classification of power management approaches to increasing energy efficiency of computing systems [3].

49

Intelligent Workload Scheduling in Distributed Computing Environment for Balance…
DOI: http://dx.doi.org/10.5772/intechopen.86874

In this chapter we use this idea, and we are mainly focused on the efficient
combination of horizontal scaling and energy-aware scheduling approaches. In the
field of energy-aware scheduling, there are many approaches developed so far.
Some of them are also aimed to combine different fundamental ideas of
energy-efficient computing.

The authors of the paper [9] proposed adaptive energy-efficient scheduling
(AES) approach which combines scheduling with the dynamic voltage scaling
(DVS) technique. This approach is proposed to be used in homogeneous computing
systems. It consists of two phases—in the first phase, an adaptive threshold-based
task duplication strategy is used, which can adjust the optimal threshold according
to the specified schedule length, network power, processor power and application;
in the second phase, DVS-enabled processors that can scale down their voltages are
used for processing. A proposed approach gives a gain of 31.7% in terms of energy
efficiency without performance loss that is quite a good result. Within this study we
also use an idea of combining scheduling approaches with other methodologies;
however, the authors of [9] use DVS and are limited by using DVS-enabled hard-
ware. Their approach is designed for homogeneous computer environments, while
we are focused on inhomogeneous environments, since it makes sense for service
providers to use cheap commodity hardware with different physical parameters in
order to reduce capital expenses.

Another example of energy-aware scheduling approach is Min_c [10]. This
strategy takes into account the variety of tasks that comes to the computing system
and the fact that the resources required by these tasks are different. The main
drawback of this approach is that the model of energy consumption is the same for
each node. It has nonlinear character that is close to reality, but the characteristics
of different machines can differ. Therefore, we propose defining
P ¼ f CPUð Þ dependencies for each machine individually.

Within our previous research [11–13], energy-aware scheduling approach called
power consumption and performance balance (PCPB) was proposed and experi-
mentally tested. In [13] two possible modifications to the PCPB were described—
one of them uses tasks classification; another one applies scaling in addition to
energy-aware scheduling in order to further increase energy efficiency. It was
determined that developed energy-aware scheduling approach PCPB gives the best
results in terms of energy efficiency (energy savings up to 33.59%) while being used
in conjunction with horizontal scaling (scale-in and scale-out). Thus, in this chapter
we elaborate on this basic idea and propose to enhance PCPB with scaling tech-
niques and smartly power off and on idling servers while distributing the workload
between them using PCPB.

3. Problem definition

Consider a distributed computing system consisting of N nodes. Each node Nj is
described by the following:

• Vj—the amount of available RAM

• flopsj—the productivity of the node Nj, which has k_coresj of the computing
cores

• Pj ¼ f CPUj
� �

—the power consumption function of the node, which is
experimentally determined for each Nj

50

Scheduling Problems - New Applications and Trends

Job is the unit of computing. The component of job is called a task. Physically,
one job is represented as a single computing process of a computer. Subprocesses or
child processes in turn appear to be tasks.

We will use the term “job” to determine the atomic computational problem that
can be located and executed on one of the computing nodes of the system (i.e. “job”
is the unit of load distribution). The income jobs form the queue.

Let us introduce the assumptions:

1. The queue consists of Q positions.

2. Jobs come to the queue at randommoments of time τ. If the length of the queue
is 0 < l<Q, the job is placed on a free space in the queue. Otherwise, the job is
rejected.

3.All jobs in the queue are independent to each other.

4.The job may have one of the five possible states: “preparation for execution”,
“readiness for execution”, “in process of execution”, “execution successfully
completed”, and “execution interrupted”.

5. Each ith job is characterized by the following parameters:

• The volume of job—the number of floating-point operations that must be
performed by the machine within this job (the number of floating-point
operations is not natively used to measure the jobs’ volume; however, we use
this artificial unit to express the amount of work that is required by job to be
performed):

Vi ¼ const operations½ �

• The maximum execution time (or timeout):

Δtmaxi ¼ const sec½ �
is the time period from the moment the job arrives at the processing, after which

it must be completed. If the job has not been transferred to the state of “execution
successfully completed” after the time Δtmaxi, it is transferred to the state of “exe-
cution interrupted” and is output from the system.

• Minimal amount of resources required to complete the job:

◦ Minimal amount of RAM needed:

RAM_min_i Gb½ �

◦ Minimal required number of processing cores:

k_cores_min_i cores½ �
An optimal parallelization for the task is not considered within this study. Let us

consider that the tasks are parallelized beforehand and just declared how many
cores they require to be processed, as an input data for processing system.

◦ Minimal required volume of persistent storage:

51

Intelligent Workload Scheduling in Distributed Computing Environment for Balance…
DOI: http://dx.doi.org/10.5772/intechopen.86874

In this chapter we use this idea, and we are mainly focused on the efficient
combination of horizontal scaling and energy-aware scheduling approaches. In the
field of energy-aware scheduling, there are many approaches developed so far.
Some of them are also aimed to combine different fundamental ideas of
energy-efficient computing.

The authors of the paper [9] proposed adaptive energy-efficient scheduling
(AES) approach which combines scheduling with the dynamic voltage scaling
(DVS) technique. This approach is proposed to be used in homogeneous computing
systems. It consists of two phases—in the first phase, an adaptive threshold-based
task duplication strategy is used, which can adjust the optimal threshold according
to the specified schedule length, network power, processor power and application;
in the second phase, DVS-enabled processors that can scale down their voltages are
used for processing. A proposed approach gives a gain of 31.7% in terms of energy
efficiency without performance loss that is quite a good result. Within this study we
also use an idea of combining scheduling approaches with other methodologies;
however, the authors of [9] use DVS and are limited by using DVS-enabled hard-
ware. Their approach is designed for homogeneous computer environments, while
we are focused on inhomogeneous environments, since it makes sense for service
providers to use cheap commodity hardware with different physical parameters in
order to reduce capital expenses.

Another example of energy-aware scheduling approach is Min_c [10]. This
strategy takes into account the variety of tasks that comes to the computing system
and the fact that the resources required by these tasks are different. The main
drawback of this approach is that the model of energy consumption is the same for
each node. It has nonlinear character that is close to reality, but the characteristics
of different machines can differ. Therefore, we propose defining
P ¼ f CPUð Þ dependencies for each machine individually.

Within our previous research [11–13], energy-aware scheduling approach called
power consumption and performance balance (PCPB) was proposed and experi-
mentally tested. In [13] two possible modifications to the PCPB were described—
one of them uses tasks classification; another one applies scaling in addition to
energy-aware scheduling in order to further increase energy efficiency. It was
determined that developed energy-aware scheduling approach PCPB gives the best
results in terms of energy efficiency (energy savings up to 33.59%) while being used
in conjunction with horizontal scaling (scale-in and scale-out). Thus, in this chapter
we elaborate on this basic idea and propose to enhance PCPB with scaling tech-
niques and smartly power off and on idling servers while distributing the workload
between them using PCPB.

3. Problem definition

Consider a distributed computing system consisting of N nodes. Each node Nj is
described by the following:

• Vj—the amount of available RAM

• flopsj—the productivity of the node Nj, which has k_coresj of the computing
cores

• Pj ¼ f CPUj
� �

—the power consumption function of the node, which is
experimentally determined for each Nj

50

Scheduling Problems - New Applications and Trends

Job is the unit of computing. The component of job is called a task. Physically,
one job is represented as a single computing process of a computer. Subprocesses or
child processes in turn appear to be tasks.

We will use the term “job” to determine the atomic computational problem that
can be located and executed on one of the computing nodes of the system (i.e. “job”
is the unit of load distribution). The income jobs form the queue.

Let us introduce the assumptions:

1. The queue consists of Q positions.

2. Jobs come to the queue at randommoments of time τ. If the length of the queue
is 0 < l<Q, the job is placed on a free space in the queue. Otherwise, the job is
rejected.

3.All jobs in the queue are independent to each other.

4.The job may have one of the five possible states: “preparation for execution”,
“readiness for execution”, “in process of execution”, “execution successfully
completed”, and “execution interrupted”.

5. Each ith job is characterized by the following parameters:

• The volume of job—the number of floating-point operations that must be
performed by the machine within this job (the number of floating-point
operations is not natively used to measure the jobs’ volume; however, we use
this artificial unit to express the amount of work that is required by job to be
performed):

Vi ¼ const operations½ �

• The maximum execution time (or timeout):

Δtmaxi ¼ const sec½ �
is the time period from the moment the job arrives at the processing, after which

it must be completed. If the job has not been transferred to the state of “execution
successfully completed” after the time Δtmaxi, it is transferred to the state of “exe-
cution interrupted” and is output from the system.

• Minimal amount of resources required to complete the job:

◦ Minimal amount of RAM needed:

RAM_min_i Gb½ �

◦ Minimal required number of processing cores:

k_cores_min_i cores½ �
An optimal parallelization for the task is not considered within this study. Let us

consider that the tasks are parallelized beforehand and just declared how many
cores they require to be processed, as an input data for processing system.

◦ Minimal required volume of persistent storage:

51

Intelligent Workload Scheduling in Distributed Computing Environment for Balance…
DOI: http://dx.doi.org/10.5772/intechopen.86874

storage_min_i Gb½ �

• Job’s priority is an optional numeric parameter that can be set for a job and

determine the priority of its execution in comparison with other jobs. Let the
priority priorityi be determined by an integer from 1 to 10. In this case,
priority processing requires tasks with priority 1. Let the default value of
the priority of the job be 10 units.

Consider the daily workload curve to be a part of an input data for the problem.
Every service provider is able to gather the daily statistics of the workload in his
computing system. As a result, the pattern of the day workload can be generated.
For example, Google provides such statistics of using its web search service in the
Transparency Report [14] (Figure 3).

Under the certain circumstances (holidays, festivals, special events, etc.), this
pattern can be changed. It means that it is possible to create certain system config-
uration patterns for the stable workload, respectively, but there is a need to adapt
the system in the case of changes being foreseen.

Given an input data, the problem is formulated as follows: to reduce total
power consumption of considered computing system while increasing the
performance of data processing and meeting service-level agreement (SLA)
requirements.

4. Proposed approach

Within the previous studies [11–13], it was determined that the use of energy-
aware scheduling is most effective when used in conjunction with consolidation
approaches and further scaling the whole system in and out. In [13] it was shown
that powering off idle servers could save up to 33.59% of the energy in the
considered computing cluster.

Within the current study, the system model and main idea of proposed approach
were modified and can be described as follows:

Figure 3.
Workload statistic for the Google web search service (11 March 2019) [14].

52

Scheduling Problems - New Applications and Trends

1. To define experimentally individual dependencies Pj ¼ f CPUj
� �

for all
computing nodes of the system as power consumption functions. Having
power consumption functions and performance value of each node, to range all
nodes according to their integrated performance and power consumption
criteria from the best one to the worst one.

2. To use energy-aware PCPB scheduling approach proposed in [11] to distribute
the workload in the system.

3.On the basis of the daily workload statistics, to determine a set of scaling
patterns describing the state of the computer system (in particular the number
of active nodes of the system) such that:

• The probability of job loss is minimized and is less than what is required
by SLA.

• Workload is processed with sufficient performance.

• Total energy consumption of the system is minimized. Individual
functions of power consumption are used to define the total energy
consumption of the system.

Scale the system horizontally with the respect of defined patterns. Patterns should
be formed only once on the basis of long-term workload statistics.

4.To detect the deviation of the current workload from the statistical one and
adjust scaling patterns dynamically for the fulfillment of the conditions listed
above.

4.1 Individual Pj ¼ f CPUj
� �

dependencies definition

As the first step of the approach, it is proposed to define individual power
consumption functions Pj ¼ f CPUj

� �
for each node of the system. This process is

described in details in [12]. In a nutshell, it is done as follows:

• An appropriate stress test is chosen in order to load each node’s CPU from 0 to
100%.

• A power consumption of each node is measured for a set of CPU utilization
levels (this can be done using special hardware (multimeter/wattmeter) or
software that also evaluates power consumption according to computer
hardware models. It is recommended to use hardware measurement tools as
they provide higher measurement accuracy).

• An analytical function is obtained from the experimental data using
interpolation [15].

As a result, Pj ¼ f CPUj
� �

functions are obtained in a form of polynomials
(Eq. (1)).

Pj CPUj
� � ¼ a ∗CPU4

j þ b ∗CPU3
j þ c ∗CPU2

j þ d ∗CPU1
j þ e ∗CPU0

j (1)

53

Intelligent Workload Scheduling in Distributed Computing Environment for Balance…
DOI: http://dx.doi.org/10.5772/intechopen.86874

storage_min_i Gb½ �

• Job’s priority is an optional numeric parameter that can be set for a job and

determine the priority of its execution in comparison with other jobs. Let the
priority priorityi be determined by an integer from 1 to 10. In this case,
priority processing requires tasks with priority 1. Let the default value of
the priority of the job be 10 units.

Consider the daily workload curve to be a part of an input data for the problem.
Every service provider is able to gather the daily statistics of the workload in his
computing system. As a result, the pattern of the day workload can be generated.
For example, Google provides such statistics of using its web search service in the
Transparency Report [14] (Figure 3).

Under the certain circumstances (holidays, festivals, special events, etc.), this
pattern can be changed. It means that it is possible to create certain system config-
uration patterns for the stable workload, respectively, but there is a need to adapt
the system in the case of changes being foreseen.

Given an input data, the problem is formulated as follows: to reduce total
power consumption of considered computing system while increasing the
performance of data processing and meeting service-level agreement (SLA)
requirements.

4. Proposed approach

Within the previous studies [11–13], it was determined that the use of energy-
aware scheduling is most effective when used in conjunction with consolidation
approaches and further scaling the whole system in and out. In [13] it was shown
that powering off idle servers could save up to 33.59% of the energy in the
considered computing cluster.

Within the current study, the system model and main idea of proposed approach
were modified and can be described as follows:

Figure 3.
Workload statistic for the Google web search service (11 March 2019) [14].

52

Scheduling Problems - New Applications and Trends

1. To define experimentally individual dependencies Pj ¼ f CPUj
� �

for all
computing nodes of the system as power consumption functions. Having
power consumption functions and performance value of each node, to range all
nodes according to their integrated performance and power consumption
criteria from the best one to the worst one.

2. To use energy-aware PCPB scheduling approach proposed in [11] to distribute
the workload in the system.

3.On the basis of the daily workload statistics, to determine a set of scaling
patterns describing the state of the computer system (in particular the number
of active nodes of the system) such that:

• The probability of job loss is minimized and is less than what is required
by SLA.

• Workload is processed with sufficient performance.

• Total energy consumption of the system is minimized. Individual
functions of power consumption are used to define the total energy
consumption of the system.

Scale the system horizontally with the respect of defined patterns. Patterns should
be formed only once on the basis of long-term workload statistics.

4.To detect the deviation of the current workload from the statistical one and
adjust scaling patterns dynamically for the fulfillment of the conditions listed
above.

4.1 Individual Pj ¼ f CPUj
� �

dependencies definition

As the first step of the approach, it is proposed to define individual power
consumption functions Pj ¼ f CPUj

� �
for each node of the system. This process is

described in details in [12]. In a nutshell, it is done as follows:

• An appropriate stress test is chosen in order to load each node’s CPU from 0 to
100%.

• A power consumption of each node is measured for a set of CPU utilization
levels (this can be done using special hardware (multimeter/wattmeter) or
software that also evaluates power consumption according to computer
hardware models. It is recommended to use hardware measurement tools as
they provide higher measurement accuracy).

• An analytical function is obtained from the experimental data using
interpolation [15].

As a result, Pj ¼ f CPUj
� �

functions are obtained in a form of polynomials
(Eq. (1)).

Pj CPUj
� � ¼ a ∗CPU4

j þ b ∗CPU3
j þ c ∗CPU2

j þ d ∗CPU1
j þ e ∗CPU0

j (1)

53

Intelligent Workload Scheduling in Distributed Computing Environment for Balance…
DOI: http://dx.doi.org/10.5772/intechopen.86874

where a, b, c, d and e are fourth degree polynomial coefficients, defined within
interpolation process. An example of the Pj ¼ f CPUj

� �
curves obtained for five

computing nodes is presented in Figure 4.
Having Pj ¼ f CPUj

� �
functions and performance values flopsj (in FLOPS) for all

nodes in the system, we can range them from the worst one to the best one as
follows:

1. For each node calculate the area under power consumption curve using Eq. (2).

Sj ¼
ð100

0

Pj CPUj
� �

dCPUj, (2)

In Eq. (2) CPU load is expressed as a percentage from 0 to 100%.

2. Sort all nodes by their Sj value in descending order.

3. Sort all nodes by their flopsj value (performance metric) in ascending order.

4.Grant each node with a mark that equals the sum of the node positions in two
sorted arrays. The node with the highest mark is considered to be the best one.

Thus, using this simple approach, we are able to form sorted list of nodes in
order to make a decision, in which the node is the most inefficient one and should
be switched off first during scale-in process (Figure 4). Obviously, this only makes
sense for inhomogeneous systems where nodes are different from each other and
can be sorted.

4.2 Basic scheduling scheme

As a basic scheduler in a system, it is proposed to use PCPB energy-aware
scheduler that was proposed and further developed in [11–13]. The main idea of this

Figure 4.
Sorted list of five nodes according to their integrated performance and power consumption criteria and their
Pj ¼ f CPUj

� �
curves obtained experimentally.

54

Scheduling Problems - New Applications and Trends

scheduler is to use individual power consumption functions Pj ¼ f CPUj
� �

within
the scheduling process in order to determine dynamically, on which node the task is
going to consume less power. This approach considers performance criteria as well.
The main idea of approach is similar to that one described for the nodes’ ranging;
however, in PCPB the current state of computing nodes is considered. As it possible
to see in Figure 4, the increase in energy consumption at different levels of CPU
load is different (the curves grow steeper when the load changes from 0 to 25% and
flatter when the load changes from 75 to 100%).

The PCPB scheduling algorithm is described by Figure 5.
Scheduler gathers the data regarding current load of the nodes in a system. In

Step 1 it evaluates the CPU utilization of each node at the time moment τk�1, before
scheduling the next job in a queue.

Having the knowledge on how many resources the jobi requires, scheduler
excludes those nodes that currently do not have enough RAM or cores available for
the execution (Step 2).

In Step 3 scheduler calculates the theoretical total power that is going to be
consumed by the whole computing system supposing that jobi is given for the
processing to the node Nj in the moment τk (Eq. (3)):

PΣi τk&Nj ¼ PΣ

�� ��τk�1 þ ΔPij∣τk, (3)

where PΣ∣τk�1 is the total power consumption of the whole system at the
moment τk�1 and ΔPij∣τk ¼ f CPUjjτk

� �
is the increase of power consumption, in the

case of jobi being allocated to the node Nj at the moment τk.
After that the nodes are sorted according to the current PΣi ∣τk&Nj values and

according to their performance value flopsj. The nodes get the mark for their posi-
tion in both sorted lists. The job is allocated to the node with the maximal mark (the
detailed description of PCPB approach is presented in [11]).

Figure 5.
PCPB scheduling algorithm.

55

Intelligent Workload Scheduling in Distributed Computing Environment for Balance…
DOI: http://dx.doi.org/10.5772/intechopen.86874

where a, b, c, d and e are fourth degree polynomial coefficients, defined within
interpolation process. An example of the Pj ¼ f CPUj

� �
curves obtained for five

computing nodes is presented in Figure 4.
Having Pj ¼ f CPUj

� �
functions and performance values flopsj (in FLOPS) for all

nodes in the system, we can range them from the worst one to the best one as
follows:

1. For each node calculate the area under power consumption curve using Eq. (2).

Sj ¼
ð100

0

Pj CPUj
� �

dCPUj, (2)

In Eq. (2) CPU load is expressed as a percentage from 0 to 100%.

2. Sort all nodes by their Sj value in descending order.

3. Sort all nodes by their flopsj value (performance metric) in ascending order.

4.Grant each node with a mark that equals the sum of the node positions in two
sorted arrays. The node with the highest mark is considered to be the best one.

Thus, using this simple approach, we are able to form sorted list of nodes in
order to make a decision, in which the node is the most inefficient one and should
be switched off first during scale-in process (Figure 4). Obviously, this only makes
sense for inhomogeneous systems where nodes are different from each other and
can be sorted.

4.2 Basic scheduling scheme

As a basic scheduler in a system, it is proposed to use PCPB energy-aware
scheduler that was proposed and further developed in [11–13]. The main idea of this

Figure 4.
Sorted list of five nodes according to their integrated performance and power consumption criteria and their
Pj ¼ f CPUj

� �
curves obtained experimentally.

54

Scheduling Problems - New Applications and Trends

scheduler is to use individual power consumption functions Pj ¼ f CPUj
� �

within
the scheduling process in order to determine dynamically, on which node the task is
going to consume less power. This approach considers performance criteria as well.
The main idea of approach is similar to that one described for the nodes’ ranging;
however, in PCPB the current state of computing nodes is considered. As it possible
to see in Figure 4, the increase in energy consumption at different levels of CPU
load is different (the curves grow steeper when the load changes from 0 to 25% and
flatter when the load changes from 75 to 100%).

The PCPB scheduling algorithm is described by Figure 5.
Scheduler gathers the data regarding current load of the nodes in a system. In

Step 1 it evaluates the CPU utilization of each node at the time moment τk�1, before
scheduling the next job in a queue.

Having the knowledge on how many resources the jobi requires, scheduler
excludes those nodes that currently do not have enough RAM or cores available for
the execution (Step 2).

In Step 3 scheduler calculates the theoretical total power that is going to be
consumed by the whole computing system supposing that jobi is given for the
processing to the node Nj in the moment τk (Eq. (3)):

PΣi τk&Nj ¼ PΣ

�� ��τk�1 þ ΔPij∣τk, (3)

where PΣ∣τk�1 is the total power consumption of the whole system at the
moment τk�1 and ΔPij∣τk ¼ f CPUjjτk

� �
is the increase of power consumption, in the

case of jobi being allocated to the node Nj at the moment τk.
After that the nodes are sorted according to the current PΣi ∣τk&Nj values and

according to their performance value flopsj. The nodes get the mark for their posi-
tion in both sorted lists. The job is allocated to the node with the maximal mark (the
detailed description of PCPB approach is presented in [11]).

Figure 5.
PCPB scheduling algorithm.

55

Intelligent Workload Scheduling in Distributed Computing Environment for Balance…
DOI: http://dx.doi.org/10.5772/intechopen.86874

4.3 System state pattern determination

Since within previous research [13], it was determined that energy-aware
scheduling gives the best results in terms of energy efficiency while being used in
conjunction with horizontal scaling; let us define the optimal system scale patterns
in a form of set n; tstart; tendf g, where n is a number of active computing nodes in the
system and tstart; tendf g denotes the boundaries of time interval of the day, during
which these patterns remain optimal. These patterns are formed with respect to the
power consumption and job loss probability metrics. In order to find an optimal
pattern for each time interval, it is a need to determine these two metrics as
functions of number of active nodes in the system.

The certain level of system availability for service user is guaranteed by the SLA
as the probability that service will be available (i.e. the user’s job will be served)
when it is requested. Let the probability of the job loss required by SLA be defined
as in Eq. (4):

plossSLA ¼ 1� pSLA (4)

where PSLA is guaranteed by SLA probability that the job will be served.
The more nodes available in the system, the less likely it is that a new incoming

task will find the system in a state where all nodes and the queue are fully loaded. It
means that the probability of job loss depends on the number of available nodes in
computing system and can be presented as a function ploss ¼ f nð Þ, where n is the
number of active nodes in the system.

Thus, the purpose of scaling patterns is to answer the question: Howmany active
nodes does the system need to have in order to fulfill the requirements to ploss and
minimize total power consumption PΣ?

In order to estimate the dependency between the probability of job loss ploss and
number of active nodes n, consider the queueing system with a finite queue: The
basic concepts of queuing theory are requests (or customers) and servers [16]. The
natural way of modeling considered system as a queueing system would be to treat
jobs as requests and computing nodes as servers. However, in this case we would
have to eliminate the fact that the job may be served by several cores of one server
and one server may serve several jobs simultaneously as well. These facts bring the
certain complexity to the queueing system modeling. To be more precise, consider
one computing core to be a server in terms of queueing system. In order to model
input workload as requests of queueing system, we introduce a correction factor
k ¼ coresminavg that denotes how many cores in average are requested by an input
job. Using this correction factor, we can represent an input workload as a number of
queueing system requests per time unit [Eq. (5)]:

λ tð Þ ¼ k ∗ λstat tð Þ, (5)

where λstat tð Þ is the statistical workload represented as a number of
computational jobs.

Input data for queuing system:

• Number of active servers in the system:

• n computing nodes or n0 ¼ ∑n
j¼1kcorej servers in terms of queueing system,

where kcorej is the number of cores of jth node.

56

Scheduling Problems - New Applications and Trends

• Queue length: Q jobs or k ∗Q queueing system requests

• Service discipline:

Serving discipline is basically defined by scheduler that is being used. In consid-
ered case, using PCPB, the jobs are selected from the queue according to the first-
in-first-out (FIFO) discipline.

• The mean arrival rate:

The mean arrival rate can be defined on the basis of the workload statistics as it
is done in Eq. (5).

However, in order to build a model, it is worthy to operate with the value λTmax
that is the maximal value of load during the period T (T defines the time of one
pattern validity).

• The mean service rate:

In general case, in order to evaluate the service rate for a particular server of the
system, it is necessary to determine the average number of requests that leave the
server after a successful processing per time unit. This is a random value; within
this study we will consider service rate to be determined experimentally (on the basis of
statistic of load processing for a particular system) and defined by its mean value μavg.
In this case, the model is actually simplified, but still allows us to estimate the general
relationship between the probability of loss and the number of nodes in the system.

Queueing system problem:

To define the probability of job loss, ploss ¼ f nð Þ as the function of the number of
active servers n (nodes of computing system), such that 2 < n <N, where N is the
total number of nodes in the system.

This system can be represented with a Markov chain (Figure 6), where S0
denotes the state of the system, when 0 servers are occupied and the queue is
empty, S1 � Sn0 denotes there are 1 to n0occupied servers, and Sn0þ1 � Sn0þkQ denotes
all servers are occupied and some requests are placed to a queue.

The probability of loss for the queueing system with a finite queue is defined by
Eq. (6) [16]:

ploss ¼ p0 ∗
ρn0þkQ

n0!n0kQ
(6)

where

Figure 6.
System model as a Markov chain.

57

Intelligent Workload Scheduling in Distributed Computing Environment for Balance…
DOI: http://dx.doi.org/10.5772/intechopen.86874

4.3 System state pattern determination

Since within previous research [13], it was determined that energy-aware
scheduling gives the best results in terms of energy efficiency while being used in
conjunction with horizontal scaling; let us define the optimal system scale patterns
in a form of set n; tstart; tendf g, where n is a number of active computing nodes in the
system and tstart; tendf g denotes the boundaries of time interval of the day, during
which these patterns remain optimal. These patterns are formed with respect to the
power consumption and job loss probability metrics. In order to find an optimal
pattern for each time interval, it is a need to determine these two metrics as
functions of number of active nodes in the system.

The certain level of system availability for service user is guaranteed by the SLA
as the probability that service will be available (i.e. the user’s job will be served)
when it is requested. Let the probability of the job loss required by SLA be defined
as in Eq. (4):

plossSLA ¼ 1� pSLA (4)

where PSLA is guaranteed by SLA probability that the job will be served.
The more nodes available in the system, the less likely it is that a new incoming

task will find the system in a state where all nodes and the queue are fully loaded. It
means that the probability of job loss depends on the number of available nodes in
computing system and can be presented as a function ploss ¼ f nð Þ, where n is the
number of active nodes in the system.

Thus, the purpose of scaling patterns is to answer the question: Howmany active
nodes does the system need to have in order to fulfill the requirements to ploss and
minimize total power consumption PΣ?

In order to estimate the dependency between the probability of job loss ploss and
number of active nodes n, consider the queueing system with a finite queue: The
basic concepts of queuing theory are requests (or customers) and servers [16]. The
natural way of modeling considered system as a queueing system would be to treat
jobs as requests and computing nodes as servers. However, in this case we would
have to eliminate the fact that the job may be served by several cores of one server
and one server may serve several jobs simultaneously as well. These facts bring the
certain complexity to the queueing system modeling. To be more precise, consider
one computing core to be a server in terms of queueing system. In order to model
input workload as requests of queueing system, we introduce a correction factor
k ¼ coresminavg that denotes how many cores in average are requested by an input
job. Using this correction factor, we can represent an input workload as a number of
queueing system requests per time unit [Eq. (5)]:

λ tð Þ ¼ k ∗ λstat tð Þ, (5)

where λstat tð Þ is the statistical workload represented as a number of
computational jobs.

Input data for queuing system:

• Number of active servers in the system:

• n computing nodes or n0 ¼ ∑n
j¼1kcorej servers in terms of queueing system,

where kcorej is the number of cores of jth node.

56

Scheduling Problems - New Applications and Trends

• Queue length: Q jobs or k ∗Q queueing system requests

• Service discipline:

Serving discipline is basically defined by scheduler that is being used. In consid-
ered case, using PCPB, the jobs are selected from the queue according to the first-
in-first-out (FIFO) discipline.

• The mean arrival rate:

The mean arrival rate can be defined on the basis of the workload statistics as it
is done in Eq. (5).

However, in order to build a model, it is worthy to operate with the value λTmax
that is the maximal value of load during the period T (T defines the time of one
pattern validity).

• The mean service rate:

In general case, in order to evaluate the service rate for a particular server of the
system, it is necessary to determine the average number of requests that leave the
server after a successful processing per time unit. This is a random value; within
this study we will consider service rate to be determined experimentally (on the basis of
statistic of load processing for a particular system) and defined by its mean value μavg.
In this case, the model is actually simplified, but still allows us to estimate the general
relationship between the probability of loss and the number of nodes in the system.

Queueing system problem:

To define the probability of job loss, ploss ¼ f nð Þ as the function of the number of
active servers n (nodes of computing system), such that 2 < n <N, where N is the
total number of nodes in the system.

This system can be represented with a Markov chain (Figure 6), where S0
denotes the state of the system, when 0 servers are occupied and the queue is
empty, S1 � Sn0 denotes there are 1 to n0occupied servers, and Sn0þ1 � Sn0þkQ denotes
all servers are occupied and some requests are placed to a queue.

The probability of loss for the queueing system with a finite queue is defined by
Eq. (6) [16]:

ploss ¼ p0 ∗
ρn0þkQ

n0!n0kQ
(6)

where

Figure 6.
System model as a Markov chain.

57

Intelligent Workload Scheduling in Distributed Computing Environment for Balance…
DOI: http://dx.doi.org/10.5772/intechopen.86874

p0 ¼ 1þ ρ
1!
þ ρ2

2!
þ…þ ρn0

n0!
þ ρn0þ1

n0 ∗n0!
∗

1� ρ
n0
� �kQ� �

1� ρ
n0

0
@

1
A

�1

ρ ¼ λTmax=μavg

n0—number of servers in queueing system.
kQ—length of the queue.
Thus, the simplified model described above allows us to estimate the depen-

dency between the number of nodes of the system and probability of the loss. This
model should be precisely adjusted to each real system, but the general principle
may still stay the same.

Let us estimate the power consumption of the system in order to find an optimal
number of nodes so that the power consumption is minimized and probability of
loss does not exceed the permissible by SLA value.

As the first step, we defined individual functions of power consumption
Pj ¼ f CPUj

� �
for each node in the system. These functions may be formally

represented in the form of polynomials (Eq. (1)).
The total power consumption of the whole system (as a sum of nodes’ individual

power consumptions) depends on the load that is being processed by the nodes. We
have the daily workload on the system as an input data. However, according to the
system model, current load of each system node highly depends on the scheduling
technique.

Initially, input workload is represented as a “number of jobs per time unit”. Each
job may differ computationally and can be evaluated by its maximal execution time
or job volume (as a number of floating-point operations). For the sake of simplicity,
let us consider the static situation in some point of time, when we have k jobs that
would totally fit to the processing nodes. Assume that these jobs in total form the
load to the system of ∑k

i¼1Vi operations½ �: In this case, scheduler will schedule these
jobs accordingly to its policy. In the simplest case, if round-robin fair scheduler is
used [17], it would schedule tasks in a way that each node would get an average

s ¼ ∑k
i¼1Vi
n of load. Let s be a scheduler coefficient, which should be defined for each

concrete scheduler. In the case of using round-robin, the dependency of power
consumption of the node from its load can be formulated as Eq. (7):

Pj ¼ f CPUð Þ ¼ f
∑k

i¼1Vi

n
∗C

 !
¼ a ∗

∑k
i¼1Vi

n
∗C

 !4

þ b ∗
∑k

i¼1Vi

n
∗C

 !3

þ c ∗

∗
∑k

i¼1Vi

n
∗C

 !2

þ d ∗
∑k

i¼1Vi

n
∗C

 !1

þ e ∗
∑k

i¼1Vi

n
∗C

 !0

,

(7)

where C is a constant, which expresses how the input load is converted into a
CPU load in percentages. And for the more general case, Eq. (7) is transformed into
Eq. (8):

Pj ¼ f CPUð Þ ¼ f s ∗Cð Þ ¼ a ∗ s ∗Cð Þ4 þ b ∗ s ∗Cð Þ3þ
þ c ∗ s ∗Cð Þ2 þ d ∗ s ∗Cð Þ1 þ e ∗ s ∗Cð Þ0

(8)

This formula is very simplified though. Depending on scheduler being used, the
load of the system’s nodes may be different.

58

Scheduling Problems - New Applications and Trends

There is another more generalized approach to evaluate power consumption of
system nodes. Usually, servers are kept to be utilized at some average level CPUavgj

that may be defined statistically for each system. It is actually more precise solution
in comparison with analytical definition of CPU utilization that depends on sched-
uling being used and incoming load. For the whole system, total power consump-
tion is then defined by Eq. (9):

PΣ ¼ ∑
n

j¼1
Pj CPUavgj

� �
, (9)

where Pj CPUavgj

� �
is the individual functions of nodes’ power consumption.

The mathematical models of total power consumption and loss probability men-
tioned above lead us to the optimization problem that can be formulated as follows:

To define an optimal number of active nodes of the distributed computing
system n, the objective function (Eq. (10)) is minimized subject to Eq. (11).

PΣ ¼ ∑
n

j¼1
Pj CPUavgj

� �
! min (10)

subject to:

ploss ¼ p0 ∗
λTmax
μavg

� �n0þkQ

n0!n0kQ
< plossSLA, 1 < n<N (11)

To solve this problem, we need to choose the time intervals T for which we will
create the patterns. Since patterns are created statically on the basis of statistical
workload, it is possible to define the time moments, when thresholds are achieved
so that ploss ¼ plossSLA. When it happens there is a need to increase the number of
nodes (thus, to change the pattern). In case the load is decreasing, it is possible to
define the moment when PΣ is not minimal anymore for the current statistical load.

The above problem solved for each time interval T would allow to determine the
optimal number of processing nodes n for each time interval depending on the
incoming load. Meanwhile, the following conditions will be fulfilled:

1. Energy consumption of the system will be minimal.

2. Job loss probability will meet the SLA requirements.

On the basis of the obtained values of n, T, it is possible to create patterns for the
number of nodes of the system for periods of the day. These patterns may be
created once for the regular workload and be corrected during further system
operation. Since the dependencies of energy consumption and loss probability from
the number of active nodes in system are already defined, it requires only minimal
effort to adapt the system to a new workload pattern.

4.4 Deviations from patterns detection and system reconfiguration

In order to cope with unpredictable service workload deviations that can be
caused by different reasons (e.g. holidays, special events, etc.), there is a need to
detect significant deviations from the statistic workload curve, predict the workload
for the next chosen time period and reconfigure the system, respectively.

59

Intelligent Workload Scheduling in Distributed Computing Environment for Balance…
DOI: http://dx.doi.org/10.5772/intechopen.86874

p0 ¼ 1þ ρ
1!
þ ρ2

2!
þ…þ ρn0

n0!
þ ρn0þ1

n0 ∗n0!
∗

1� ρ
n0
� �kQ� �

1� ρ
n0

0
@

1
A

�1

ρ ¼ λTmax=μavg

n0—number of servers in queueing system.
kQ—length of the queue.
Thus, the simplified model described above allows us to estimate the depen-

dency between the number of nodes of the system and probability of the loss. This
model should be precisely adjusted to each real system, but the general principle
may still stay the same.

Let us estimate the power consumption of the system in order to find an optimal
number of nodes so that the power consumption is minimized and probability of
loss does not exceed the permissible by SLA value.

As the first step, we defined individual functions of power consumption
Pj ¼ f CPUj

� �
for each node in the system. These functions may be formally

represented in the form of polynomials (Eq. (1)).
The total power consumption of the whole system (as a sum of nodes’ individual

power consumptions) depends on the load that is being processed by the nodes. We
have the daily workload on the system as an input data. However, according to the
system model, current load of each system node highly depends on the scheduling
technique.

Initially, input workload is represented as a “number of jobs per time unit”. Each
job may differ computationally and can be evaluated by its maximal execution time
or job volume (as a number of floating-point operations). For the sake of simplicity,
let us consider the static situation in some point of time, when we have k jobs that
would totally fit to the processing nodes. Assume that these jobs in total form the
load to the system of ∑k

i¼1Vi operations½ �: In this case, scheduler will schedule these
jobs accordingly to its policy. In the simplest case, if round-robin fair scheduler is
used [17], it would schedule tasks in a way that each node would get an average

s ¼ ∑k
i¼1Vi
n of load. Let s be a scheduler coefficient, which should be defined for each

concrete scheduler. In the case of using round-robin, the dependency of power
consumption of the node from its load can be formulated as Eq. (7):

Pj ¼ f CPUð Þ ¼ f
∑k

i¼1Vi

n
∗C

 !
¼ a ∗

∑k
i¼1Vi

n
∗C

 !4

þ b ∗
∑k

i¼1Vi

n
∗C

 !3

þ c ∗

∗
∑k

i¼1Vi

n
∗C

 !2

þ d ∗
∑k

i¼1Vi

n
∗C

 !1

þ e ∗
∑k

i¼1Vi

n
∗C

 !0

,

(7)

where C is a constant, which expresses how the input load is converted into a
CPU load in percentages. And for the more general case, Eq. (7) is transformed into
Eq. (8):

Pj ¼ f CPUð Þ ¼ f s ∗Cð Þ ¼ a ∗ s ∗Cð Þ4 þ b ∗ s ∗Cð Þ3þ
þ c ∗ s ∗Cð Þ2 þ d ∗ s ∗Cð Þ1 þ e ∗ s ∗Cð Þ0

(8)

This formula is very simplified though. Depending on scheduler being used, the
load of the system’s nodes may be different.

58

Scheduling Problems - New Applications and Trends

There is another more generalized approach to evaluate power consumption of
system nodes. Usually, servers are kept to be utilized at some average level CPUavgj

that may be defined statistically for each system. It is actually more precise solution
in comparison with analytical definition of CPU utilization that depends on sched-
uling being used and incoming load. For the whole system, total power consump-
tion is then defined by Eq. (9):

PΣ ¼ ∑
n

j¼1
Pj CPUavgj

� �
, (9)

where Pj CPUavgj

� �
is the individual functions of nodes’ power consumption.

The mathematical models of total power consumption and loss probability men-
tioned above lead us to the optimization problem that can be formulated as follows:

To define an optimal number of active nodes of the distributed computing
system n, the objective function (Eq. (10)) is minimized subject to Eq. (11).

PΣ ¼ ∑
n

j¼1
Pj CPUavgj

� �
! min (10)

subject to:

ploss ¼ p0 ∗
λTmax
μavg

� �n0þkQ

n0!n0kQ
< plossSLA, 1 < n<N (11)

To solve this problem, we need to choose the time intervals T for which we will
create the patterns. Since patterns are created statically on the basis of statistical
workload, it is possible to define the time moments, when thresholds are achieved
so that ploss ¼ plossSLA. When it happens there is a need to increase the number of
nodes (thus, to change the pattern). In case the load is decreasing, it is possible to
define the moment when PΣ is not minimal anymore for the current statistical load.

The above problem solved for each time interval T would allow to determine the
optimal number of processing nodes n for each time interval depending on the
incoming load. Meanwhile, the following conditions will be fulfilled:

1. Energy consumption of the system will be minimal.

2. Job loss probability will meet the SLA requirements.

On the basis of the obtained values of n, T, it is possible to create patterns for the
number of nodes of the system for periods of the day. These patterns may be
created once for the regular workload and be corrected during further system
operation. Since the dependencies of energy consumption and loss probability from
the number of active nodes in system are already defined, it requires only minimal
effort to adapt the system to a new workload pattern.

4.4 Deviations from patterns detection and system reconfiguration

In order to cope with unpredictable service workload deviations that can be
caused by different reasons (e.g. holidays, special events, etc.), there is a need to
detect significant deviations from the statistic workload curve, predict the workload
for the next chosen time period and reconfigure the system, respectively.

59

Intelligent Workload Scheduling in Distributed Computing Environment for Balance…
DOI: http://dx.doi.org/10.5772/intechopen.86874

The authors of the research [18] have proposed an approach to hybrid resource
provisioning in virtualized networks. The main idea of this approach is as follows:

• To use workload statistics to create a baseline resource allocation scheme

• To monitor deviation of the actual workload from the statistical one

• To react dynamically to deviations from the base workload, which exceeds the
permissible value

• To predict the workload for the next time interval T and adjust the resource
allocation accordingly

This approach can be briefly explained using Figure 7, where an example of
applying the approach is highlighted by red circle.

Within the current study, this approach may be adapted to serve the need of
detecting deviations from the statistical workload in considered distributed systems
and to adjust the number of active system nodes in accordance with defined opti-
mization problem.

Consider that the system has k scaling patterns that correspond to the daily
workload (Figure 8). Pattern in this context means the number of active nodes that
remains optimal for the certain time period, so the pattern may be denoted as a set
n; tstart; tendf g, where n is the number of active nodes and tstart, tend show the interval

of the day, during which these patterns remain optimal. These patterns may contain
other configuration information as well, but it lies beyond the scope of the current
study.

According to the adapted approach proposed in [18], the current workload
should be monitored throughout the day, but the intensity of the monitoring may
vary according to the deviation between the statistical workload and the current
one. Let Ibase be a baseline time monitoring interval. This interval should be deter-
mined empirically for each system. Monitoring interval then should be adjusted
according to Eq. (12):

W tð Þ ¼ Ibase � K ∑
t�1

j¼t�h

max 0; λobs tð Þ � λpred tð Þ� �
h

Ibase, (12)

Figure 7.
The main idea of hybrid resource provisioning approach [18].

60

Scheduling Problems - New Applications and Trends

where:
W is an new monitoring interval.
Ibase is the baseline predefined monitoring interval.
K is the normalization constant that should be defined for each system individually.
λobs tð Þ is the current load arrival rate during the time t.
λpred tð Þ is the predicted load arrival rate during the time t (according to the

statistical workload curve).
h is the number of preceding intervals considered by the algorithm.
If λbasepred tð Þ is a basic (statistical) load arrival rate for a period of time t and

λobs tð Þ is the current load arrival rate during the time t, the load predicted for the
next interval should be adjusted according to Eq. (13):

λpred tð Þ ¼ λbasepred tð Þ þ ∑
t�1

j¼t�h

λobs jð Þ � λpred jð Þ
h

(13)

This approach is described in details in [18].
Thus, having the predicted value of workload for the next time period, we can

recalculate the pattern for that period and change the number of nodes in the
system according to the calculated optimal number.

As a result of applying proposed steps, we get formed patterns n; tstart; tendf g for
the static day workload and may adjust them according to the deviation between
current workload and statistical one.

5. Modeling

Within the modeling the system with comparatively low workload and number
of computing nodes was chosen for clarity, but such model can be scaled for larger
systems as well. Matlab system was used to create the model.

Suppose we have a daily workload curve depicted in Figure 9 (the value of
workload is defined for each minute, so we also have value λ for each minute).

For this workload let us define static scaling patterns that describe the optimal
numbers of active nodes and time periods, for which these numbers remain optimal.

Figure 8.
Scaling patterns of the system that correspond to the daily workload.

61

Intelligent Workload Scheduling in Distributed Computing Environment for Balance…
DOI: http://dx.doi.org/10.5772/intechopen.86874

The authors of the research [18] have proposed an approach to hybrid resource
provisioning in virtualized networks. The main idea of this approach is as follows:

• To use workload statistics to create a baseline resource allocation scheme

• To monitor deviation of the actual workload from the statistical one

• To react dynamically to deviations from the base workload, which exceeds the
permissible value

• To predict the workload for the next time interval T and adjust the resource
allocation accordingly

This approach can be briefly explained using Figure 7, where an example of
applying the approach is highlighted by red circle.

Within the current study, this approach may be adapted to serve the need of
detecting deviations from the statistical workload in considered distributed systems
and to adjust the number of active system nodes in accordance with defined opti-
mization problem.

Consider that the system has k scaling patterns that correspond to the daily
workload (Figure 8). Pattern in this context means the number of active nodes that
remains optimal for the certain time period, so the pattern may be denoted as a set
n; tstart; tendf g, where n is the number of active nodes and tstart, tend show the interval

of the day, during which these patterns remain optimal. These patterns may contain
other configuration information as well, but it lies beyond the scope of the current
study.

According to the adapted approach proposed in [18], the current workload
should be monitored throughout the day, but the intensity of the monitoring may
vary according to the deviation between the statistical workload and the current
one. Let Ibase be a baseline time monitoring interval. This interval should be deter-
mined empirically for each system. Monitoring interval then should be adjusted
according to Eq. (12):

W tð Þ ¼ Ibase � K ∑
t�1

j¼t�h

max 0; λobs tð Þ � λpred tð Þ� �
h

Ibase, (12)

Figure 7.
The main idea of hybrid resource provisioning approach [18].

60

Scheduling Problems - New Applications and Trends

where:
W is an new monitoring interval.
Ibase is the baseline predefined monitoring interval.
K is the normalization constant that should be defined for each system individually.
λobs tð Þ is the current load arrival rate during the time t.
λpred tð Þ is the predicted load arrival rate during the time t (according to the

statistical workload curve).
h is the number of preceding intervals considered by the algorithm.
If λbasepred tð Þ is a basic (statistical) load arrival rate for a period of time t and

λobs tð Þ is the current load arrival rate during the time t, the load predicted for the
next interval should be adjusted according to Eq. (13):

λpred tð Þ ¼ λbasepred tð Þ þ ∑
t�1

j¼t�h

λobs jð Þ � λpred jð Þ
h

(13)

This approach is described in details in [18].
Thus, having the predicted value of workload for the next time period, we can

recalculate the pattern for that period and change the number of nodes in the
system according to the calculated optimal number.

As a result of applying proposed steps, we get formed patterns n; tstart; tendf g for
the static day workload and may adjust them according to the deviation between
current workload and statistical one.

5. Modeling

Within the modeling the system with comparatively low workload and number
of computing nodes was chosen for clarity, but such model can be scaled for larger
systems as well. Matlab system was used to create the model.

Suppose we have a daily workload curve depicted in Figure 9 (the value of
workload is defined for each minute, so we also have value λ for each minute).

For this workload let us define static scaling patterns that describe the optimal
numbers of active nodes and time periods, for which these numbers remain optimal.

Figure 8.
Scaling patterns of the system that correspond to the daily workload.

61

Intelligent Workload Scheduling in Distributed Computing Environment for Balance…
DOI: http://dx.doi.org/10.5772/intechopen.86874

As an input data for modeling, we also have the following:

1. P ¼ f CPUð Þ functions for N ¼ 10 servers in the form of polynomials. These
functions were defined experimentally and interpolated using fourth degree
polynomials. Analytical and graphical representation of the P ¼ f CPUð Þ
functions is presented in Figure 10.

2. Corresponding values of RAM volume, number of cores and performance for
these ten servers.

3. Scheduler algorithm that is being used—PCPB algorithm (the details regarding
PCPB algorithm modeling are provided within the previous research [11]).

4.Average serving rate for given servers: μavg ¼ 25 req=min.

5.Q ¼ 5, the length of the queue.

6.Let the probability of loss be defined by SLA be plossSLA ¼ 10�6.

Figure 10.
Analytical and graphical representation of the P ¼ f CPUð Þ functions defined experimentally.

Figure 9.
Daily workload curve used for modeling.

62

Scheduling Problems - New Applications and Trends

In order to create patterns for certain time periods, it is worthy to run calcula-
tions according to Eq. (1) for each minute at first. Then, as soon as the thresholds of
ploss and PjΣ are defined, it is possible to derive tstart; tendf g values for each pattern.

Let us build the curves described by Eq. (10) and Eq. (11) for the first minute
workload. Resulting curves are depicted in Figure 11.

In Figure 11 it is possible to see that in order to meet the SLA requirements
plossSLA ¼ 10�6, we need to have at least five nodes in the system. We can also see
that these five nodes will consume near 900 W of energy. As the nodes are sorted
from the worst one to the best one, these five leftover nodes are the most energy
efficient and productive among the others.

We need to do the same for the remaining part of workload curve. This process
was modeled using Matlab. As a result, we got all the scaling patterns for the given
input workload (Figure 12).

Let us introduce some deviation to the statistical workload in order to apply
pattern adjustment. Introduced workload deviation is circled in red in Figure 13.
Adjustment was made according to Eqs. 12 and 13 proposed in [18].

In Figure 13, the adjustment of the received patterns is shown in the right graph.
As it is possible to see, the interval of patterns optimality and number of nodes were
changed, respectively.

Figure 11.
Loss probability and power consumption calculations for the first workload value.

Figure 12.
Created scaling patterns for the given input workload.

63

Intelligent Workload Scheduling in Distributed Computing Environment for Balance…
DOI: http://dx.doi.org/10.5772/intechopen.86874

As an input data for modeling, we also have the following:

1. P ¼ f CPUð Þ functions for N ¼ 10 servers in the form of polynomials. These
functions were defined experimentally and interpolated using fourth degree
polynomials. Analytical and graphical representation of the P ¼ f CPUð Þ
functions is presented in Figure 10.

2. Corresponding values of RAM volume, number of cores and performance for
these ten servers.

3. Scheduler algorithm that is being used—PCPB algorithm (the details regarding
PCPB algorithm modeling are provided within the previous research [11]).

4.Average serving rate for given servers: μavg ¼ 25 req=min.

5.Q ¼ 5, the length of the queue.

6.Let the probability of loss be defined by SLA be plossSLA ¼ 10�6.

Figure 10.
Analytical and graphical representation of the P ¼ f CPUð Þ functions defined experimentally.

Figure 9.
Daily workload curve used for modeling.

62

Scheduling Problems - New Applications and Trends

In order to create patterns for certain time periods, it is worthy to run calcula-
tions according to Eq. (1) for each minute at first. Then, as soon as the thresholds of
ploss and PjΣ are defined, it is possible to derive tstart; tendf g values for each pattern.

Let us build the curves described by Eq. (10) and Eq. (11) for the first minute
workload. Resulting curves are depicted in Figure 11.

In Figure 11 it is possible to see that in order to meet the SLA requirements
plossSLA ¼ 10�6, we need to have at least five nodes in the system. We can also see
that these five nodes will consume near 900 W of energy. As the nodes are sorted
from the worst one to the best one, these five leftover nodes are the most energy
efficient and productive among the others.

We need to do the same for the remaining part of workload curve. This process
was modeled using Matlab. As a result, we got all the scaling patterns for the given
input workload (Figure 12).

Let us introduce some deviation to the statistical workload in order to apply
pattern adjustment. Introduced workload deviation is circled in red in Figure 13.
Adjustment was made according to Eqs. 12 and 13 proposed in [18].

In Figure 13, the adjustment of the received patterns is shown in the right graph.
As it is possible to see, the interval of patterns optimality and number of nodes were
changed, respectively.

Figure 11.
Loss probability and power consumption calculations for the first workload value.

Figure 12.
Created scaling patterns for the given input workload.

63

Intelligent Workload Scheduling in Distributed Computing Environment for Balance…
DOI: http://dx.doi.org/10.5772/intechopen.86874

Thus, created model fully illustrates the process of proposed intelligent work-
load scheduling approach which is improved through the use of scaling approaches.
The model shows the main idea of proposed approach; however, in real systems it is
worthy to add some redundancy and always keep at least one extra server active in
order to cope with unpredicted workload deviations.

6. Conclusion

In this chapter an intelligent approach to the workload scheduling in distributed
computing environment was proposed. According to the proposed approach, energy-
aware PCPB scheduling algorithm is combined with scaling approaches that allow to
achieve an optimal balance between energy efficiency and performance while fulfill-
ing the SLA requirements. In order to achieve these goals, we propose to create and
dynamically adjust system scaling patterns while using energy-aware scheduling. An
approach was modeled using Matlab. The simulation results showed that it is able to
cope with the efficient processing of statistical load, as well as load deviations.

Within the future research, the system representation as a queueing system is
going to be made more precisely, and proposed approach’s efficiency should be
proven by means of experiment.

Author details

Larysa Globa1*, Oleksandr Stryzhak2, Nataliia Gvozdetska1

and Volodymyr Prokopets1

1 National Technical University of Ukraine “Igor Sikorsky Kyiv Polytechnic
Institute”, Kyiv, Ukraine

2 National Academy of Sciences in Ukraine, Kyiv, Ukraine

*Address all correspondence to: lgloba@its.kpi.ua

© 2019 TheAuthor(s). Licensee IntechOpen. This chapter is distributed under the terms
of theCreativeCommonsAttribution License (http://creativecommons.org/licenses/
by/3.0),which permits unrestricted use, distribution, and reproduction in anymedium,
provided the original work is properly cited.

Figure 13.
Scaling patterns’ dynamic adjustment result.

64

Scheduling Problems - New Applications and Trends

References

[1] Gartner. Gartner Top 10 Strategic
Technology Trends for 2019 [Internet].
2018. Available from: https://www.ga
rtner.com/smarterwithgartner/gartner-
top-10-strategic-technology-trends-for-
2019/

[2] Andrae A, Edler T. On global
electricity usage of communication
technology: Trends to 2030. Challenges.
2015;6:117-157. DOI: 10.3390/
challe6010117

[3] Beloglazov A. Energy-efficient
management of virtual machines in data
centers for cloud computing [thesis].
Department of Computing and
Information Systems, The University of
Melbourne; 2013

[4] Suleiman D, Ibrahim M, Hamarash I.
Dynamic voltage frequency scaling
(DVFS) for microprocessors power and
energy reduction. In: Proceedings of the
4th International Conference on
Electrical and Electronics Engineering.
2005

[5] Akram S, Sartor J, Eeckhout L. DVFS
performance prediction for managed
multithreaded applications. In:
Proceedings of the IEEE International
Symposium on Performance Analysis of
Systems and Software-ISPASS. 2016.
pp. 12-23

[6] Agarwal K, Nowka K. Dynamic
power management by combination of
dual static supply voltages. In:
Proceedings of the 8th International
Symposium on Quality of
Electronic Design (ISQED 2007);
26-28 March 2007; San Jose, CA,
USA. 2007

[7] Möbius C, Dargie W, Schill A. Power
consumption estimation models for
processors, virtual machines, and
servers. In: Proceedings of the IEEE
Transactions on Parallel and Distributed
Systems. 2014. pp. 1600-1614

[8] Aldossary M, Djemame K.
Performance and energy-based cost
prediction of virtual machines auto-
scaling in clouds. In: Proceedings of the
44th Euromicro Conference on
Software Engineering and Advanced
Applications (SEAA 2018); 29-31
August 2018; Prague, Czech Republic.
2018. pp. 502-509. DOI: 10.1109/
SEAA.2018.00086

[9] Liu W, Du W, Chen J, Wang W,
Zeng G. Adaptive energy-efficient
scheduling algorithm for parallel tasks
on homogeneous clusters. Journal of
Network and Computer Applications.
2013;41:101-113. DOI: 10.1016/j.
jnca.2013.10.009

[10] Armenta-Cano F, Tchernykh A,
Cortés-Mendoza J, Yahyapour R,
Drozdov A, Bouvry P, et al.
Heterogeneous job consolidation for
power aware scheduling with quality of
service. In: Proceedings of the Russian
Supercomputing Days. RuSCDays’15;
Moskow. 2015

[11] Schill A, Globa L, Stepurin O,
Gvozdetska N, Prokopets V. Power
consumption and performance balance
(PCPB) scheduling algorithm for
computer cluster. In: Proceedings of the
2017 International Conference on
Information and Telecommunication
Technologies and Radio Electronics
(UkrMiCo 2017); Odesa, Ukraine. 2017.
pp. 1-8

[12] Gvozdetska N, Stepurin O, Globa L.
Experimental analysis of PCPB
scheduling algorithm. In: Proceedings of
the 14th International Conference the
Experience of Designing and
Application of CAD Systems in
Microelectronics (CADSM); 21-25
February 2017; Polyana-Svalyava
(Zakarpattya), Ukraine. 2017

[13] Bezruk V, Globa L, Stryzhak O,
editors. Knowledge-Based Technologies

65

Intelligent Workload Scheduling in Distributed Computing Environment for Balance…
DOI: http://dx.doi.org/10.5772/intechopen.86874

Thus, created model fully illustrates the process of proposed intelligent work-
load scheduling approach which is improved through the use of scaling approaches.
The model shows the main idea of proposed approach; however, in real systems it is
worthy to add some redundancy and always keep at least one extra server active in
order to cope with unpredicted workload deviations.

6. Conclusion

In this chapter an intelligent approach to the workload scheduling in distributed
computing environment was proposed. According to the proposed approach, energy-
aware PCPB scheduling algorithm is combined with scaling approaches that allow to
achieve an optimal balance between energy efficiency and performance while fulfill-
ing the SLA requirements. In order to achieve these goals, we propose to create and
dynamically adjust system scaling patterns while using energy-aware scheduling. An
approach was modeled using Matlab. The simulation results showed that it is able to
cope with the efficient processing of statistical load, as well as load deviations.

Within the future research, the system representation as a queueing system is
going to be made more precisely, and proposed approach’s efficiency should be
proven by means of experiment.

Author details

Larysa Globa1*, Oleksandr Stryzhak2, Nataliia Gvozdetska1

and Volodymyr Prokopets1

1 National Technical University of Ukraine “Igor Sikorsky Kyiv Polytechnic
Institute”, Kyiv, Ukraine

2 National Academy of Sciences in Ukraine, Kyiv, Ukraine

*Address all correspondence to: lgloba@its.kpi.ua

© 2019 TheAuthor(s). Licensee IntechOpen. This chapter is distributed under the terms
of theCreativeCommonsAttribution License (http://creativecommons.org/licenses/
by/3.0),which permits unrestricted use, distribution, and reproduction in anymedium,
provided the original work is properly cited.

Figure 13.
Scaling patterns’ dynamic adjustment result.

64

Scheduling Problems - New Applications and Trends

References

[1] Gartner. Gartner Top 10 Strategic
Technology Trends for 2019 [Internet].
2018. Available from: https://www.ga
rtner.com/smarterwithgartner/gartner-
top-10-strategic-technology-trends-for-
2019/

[2] Andrae A, Edler T. On global
electricity usage of communication
technology: Trends to 2030. Challenges.
2015;6:117-157. DOI: 10.3390/
challe6010117

[3] Beloglazov A. Energy-efficient
management of virtual machines in data
centers for cloud computing [thesis].
Department of Computing and
Information Systems, The University of
Melbourne; 2013

[4] Suleiman D, Ibrahim M, Hamarash I.
Dynamic voltage frequency scaling
(DVFS) for microprocessors power and
energy reduction. In: Proceedings of the
4th International Conference on
Electrical and Electronics Engineering.
2005

[5] Akram S, Sartor J, Eeckhout L. DVFS
performance prediction for managed
multithreaded applications. In:
Proceedings of the IEEE International
Symposium on Performance Analysis of
Systems and Software-ISPASS. 2016.
pp. 12-23

[6] Agarwal K, Nowka K. Dynamic
power management by combination of
dual static supply voltages. In:
Proceedings of the 8th International
Symposium on Quality of
Electronic Design (ISQED 2007);
26-28 March 2007; San Jose, CA,
USA. 2007

[7] Möbius C, Dargie W, Schill A. Power
consumption estimation models for
processors, virtual machines, and
servers. In: Proceedings of the IEEE
Transactions on Parallel and Distributed
Systems. 2014. pp. 1600-1614

[8] Aldossary M, Djemame K.
Performance and energy-based cost
prediction of virtual machines auto-
scaling in clouds. In: Proceedings of the
44th Euromicro Conference on
Software Engineering and Advanced
Applications (SEAA 2018); 29-31
August 2018; Prague, Czech Republic.
2018. pp. 502-509. DOI: 10.1109/
SEAA.2018.00086

[9] Liu W, Du W, Chen J, Wang W,
Zeng G. Adaptive energy-efficient
scheduling algorithm for parallel tasks
on homogeneous clusters. Journal of
Network and Computer Applications.
2013;41:101-113. DOI: 10.1016/j.
jnca.2013.10.009

[10] Armenta-Cano F, Tchernykh A,
Cortés-Mendoza J, Yahyapour R,
Drozdov A, Bouvry P, et al.
Heterogeneous job consolidation for
power aware scheduling with quality of
service. In: Proceedings of the Russian
Supercomputing Days. RuSCDays’15;
Moskow. 2015

[11] Schill A, Globa L, Stepurin O,
Gvozdetska N, Prokopets V. Power
consumption and performance balance
(PCPB) scheduling algorithm for
computer cluster. In: Proceedings of the
2017 International Conference on
Information and Telecommunication
Technologies and Radio Electronics
(UkrMiCo 2017); Odesa, Ukraine. 2017.
pp. 1-8

[12] Gvozdetska N, Stepurin O, Globa L.
Experimental analysis of PCPB
scheduling algorithm. In: Proceedings of
the 14th International Conference the
Experience of Designing and
Application of CAD Systems in
Microelectronics (CADSM); 21-25
February 2017; Polyana-Svalyava
(Zakarpattya), Ukraine. 2017

[13] Bezruk V, Globa L, Stryzhak O,
editors. Knowledge-Based Technologies

65

Intelligent Workload Scheduling in Distributed Computing Environment for Balance…
DOI: http://dx.doi.org/10.5772/intechopen.86874

of Optimization and Management in
Infocommunication Networks:
Monograph. 1st ed. Kyiv: National
Academy of Pedagogical Sciences of
Ukraine; 2019. p. 194. ISBN 978-617-
7734-02-3

[14] Google. Google Transparency
Report [Internet]. 2019. Available from:
http://www.google.com/transparencyre
port/traffic/

[15] Mastroianni G, Milovanovic G.
Interpolation Processes: Basic Theory
and Applications. 1st ed. Berlin,
Heidelberg: Springer; 2008. p. 446. DOI:
10.1007/978-3-15540-68349-0

[16] Sztrik J. Basic Queueing Theory. 1st
ed. Debrecen, Hungary: University of
Debrecen, Faculty of Informatics; 2011.
p. 193

[17] Wikipedia. Round-Robin
Scheduling [Internet]. 2019. Available
from: https://en.wikipedia.org/
wiki/Round-robin_scheduling

[18] Sulima S, Skulysh M. Hybrid
resource provisioning system for virtual
network functions. Radio Electronics,
Computer Science, Control. 2017;(1):
16-23. DOI: 10.15588/1607-3274-
2017-1-2

66

Scheduling Problems - New Applications and Trends

67

Chapter 4

Approximation for Scheduling on
Parallel Machines with Fixed Jobs
or Unavailability Periods
Liliana Grigoriu

Abstract

We survey results that address the problem of non-preemptive scheduling
on parallel machines with fixed jobs or unavailability periods with the purpose
of minimizing the maximum completion time. We consider both identical and
uniform processors, and also address the special case of scheduling on nonsimul-
taneous parallel machines, which may start processing at different times. The
discussed results include polynomial-time approximation algorithms that achieve
the best possible worst-case approximation bound of 1.5 in the class of polynomial
algorithms unless P = NP for scheduling on identical processors with at most one
fixed job on each machine and on uniform machines with at most one fixed job on
each machine. The presented heuristics have similarities with the LPT algorithm or
the MULTIFIT algorithm and they are fast and easy to implement. For scheduling
on nonsimultaneous machines, experiments suggest that they would perform well
in practice. We also include references to the relevant work in this area that contains
more complex algorithms. We then discuss the main methods of argument used in
the approximation bound proofs for the simple heuristics, and comment upon cur-
rent challenges in this area by describing aspects of related practical problems from
the automotive industry.

Keywords: multiprocessor scheduling, availability constraints, fixed jobs,
uniform processors, worst-case approximation, nonsimultaneous machines,
makespan, maximum completion time, unavailability

1. Introduction

The necessity to assign resources such as machines to jobs that need to be
performed without interruption, where the time required for a machine to per-
form a certain job is known in advance, is a widely encountered problem. It can
occur for example in production planning or when assigning landing and take-off
stripes to planes in airports. Sometimes these resources become unavailable for
predetermined periods of time, for example because of necessary maintenance.
Minimizing the maximum completion time of all tasks is often considered as a goal,
for example such that the workers who operate the machines can undertake other
activities afterward or go home early. As a consequence, the problem of schedul-
ing on multiple machines with predefined unavailability periods (downtimes) to
minimize the maximum completion time, that is, the latest completion time of a job
in a schedule, has been considered. A closely related problem, of scheduling with

of Optimization and Management in
Infocommunication Networks:
Monograph. 1st ed. Kyiv: National
Academy of Pedagogical Sciences of
Ukraine; 2019. p. 194. ISBN 978-617-
7734-02-3

[14] Google. Google Transparency
Report [Internet]. 2019. Available from:
http://www.google.com/transparencyre
port/traffic/

[15] Mastroianni G, Milovanovic G.
Interpolation Processes: Basic Theory
and Applications. 1st ed. Berlin,
Heidelberg: Springer; 2008. p. 446. DOI:
10.1007/978-3-15540-68349-0

[16] Sztrik J. Basic Queueing Theory. 1st
ed. Debrecen, Hungary: University of
Debrecen, Faculty of Informatics; 2011.
p. 193

[17] Wikipedia. Round-Robin
Scheduling [Internet]. 2019. Available
from: https://en.wikipedia.org/
wiki/Round-robin_scheduling

[18] Sulima S, Skulysh M. Hybrid
resource provisioning system for virtual
network functions. Radio Electronics,
Computer Science, Control. 2017;(1):
16-23. DOI: 10.15588/1607-3274-
2017-1-2

66

Scheduling Problems - New Applications and Trends

67

Chapter 4

Approximation for Scheduling on
Parallel Machines with Fixed Jobs
or Unavailability Periods
Liliana Grigoriu

Abstract

We survey results that address the problem of non-preemptive scheduling
on parallel machines with fixed jobs or unavailability periods with the purpose
of minimizing the maximum completion time. We consider both identical and
uniform processors, and also address the special case of scheduling on nonsimul-
taneous parallel machines, which may start processing at different times. The
discussed results include polynomial-time approximation algorithms that achieve
the best possible worst-case approximation bound of 1.5 in the class of polynomial
algorithms unless P = NP for scheduling on identical processors with at most one
fixed job on each machine and on uniform machines with at most one fixed job on
each machine. The presented heuristics have similarities with the LPT algorithm or
the MULTIFIT algorithm and they are fast and easy to implement. For scheduling
on nonsimultaneous machines, experiments suggest that they would perform well
in practice. We also include references to the relevant work in this area that contains
more complex algorithms. We then discuss the main methods of argument used in
the approximation bound proofs for the simple heuristics, and comment upon cur-
rent challenges in this area by describing aspects of related practical problems from
the automotive industry.

Keywords: multiprocessor scheduling, availability constraints, fixed jobs,
uniform processors, worst-case approximation, nonsimultaneous machines,
makespan, maximum completion time, unavailability

1. Introduction

The necessity to assign resources such as machines to jobs that need to be
performed without interruption, where the time required for a machine to per-
form a certain job is known in advance, is a widely encountered problem. It can
occur for example in production planning or when assigning landing and take-off
stripes to planes in airports. Sometimes these resources become unavailable for
predetermined periods of time, for example because of necessary maintenance.
Minimizing the maximum completion time of all tasks is often considered as a goal,
for example such that the workers who operate the machines can undertake other
activities afterward or go home early. As a consequence, the problem of schedul-
ing on multiple machines with predefined unavailability periods (downtimes) to
minimize the maximum completion time, that is, the latest completion time of a job
in a schedule, has been considered. A closely related problem, of scheduling with

Scheduling Problems - New Applications and Trends

68

fixed jobs, where on each machine certain jobs have to be performed at predefined
times, has also been considered. The difference between these two problems is
in the meaning of the objective function: when scheduling with fixed jobs, the
maximum completion time of the jobs must be at least the latest completion time of
a fixed job, whereas the maximum completion time when scheduling in the pres-
ence of unavailability periods can occur before the end of an unavailability period.
We consider the static nonresumable variant of the problem of scheduling with
unavailability periods, where the downtimes are known for each machine before the
schedule needs to be made, and where jobs that start executing before a downtime
cannot resume execution after it.

In these problems, the job execution times are usually assumed to be given as an
integer number of computing units such as clock cycles or of other suitable units
such as time units. Similarly, the starttimes and endtimes of unavailability periods
or of fixed jobs are assumed to be given as integer multiples of adequately chosen
time units. We note that any problem with rational numbers as job durations and
starttimes and endtimes of downtimes or of fixed jobs can be transformed into an
equivalent problem where these entities are integers by multiplying them with an
adequate factor, thus there is arguably no loss of generality in this assumption when
considering the representation of any practical problem.

Both the problem of multiprocessor scheduling on fixed jobs and that of multi-
processor scheduling with unavailability periods are strongly NP-hard as they are
more general than the strongly NP-hard multiprocessor scheduling problem (MSP),
which has no downtimes or fixed jobs.

For scheduling with downtimes, it is NP-hard to find a schedule that ends within
a given constant multiple of an optimal schedule even when scheduling on identical
machines with at most one downtime on each machine. We discuss this in more detail
in Section 4.2. To obtain approximation results for scheduling with unavailability
periods in this context, assumptions about the downtimes were made such as the
assumption that only a fraction of the processors can be unavailable at the same time
[1, 2], or by comparing the generated schedule to the latest among the end of an opti-
mal schedule or the latest end of a downtime, thus essentially considering scheduling
with fixed jobs [3, 4].

To describe the performance of an approximation algorithm, we use the notion
of a worst-case approximation bound. In this work, we call worst-case approxima-
tion bound of an algorithm A when applied to a scheduling problem SP the largest
ratio between the maximum completion time of a schedule produced by A and the
maximum completion time of an optimal schedule for a problem instance of SP.

For the problem of multiprocessor scheduling with fixed jobs to minimize the
maximum completion time, even in the case where there is at most one fixed job on
each machine, it has been shown in [5] that no polynomial algorithm can achieve a
worst-case approximation bound that is less than 1.5 unless P = NP . Sharbrodt et al.
[5] also give a polynomial-time approximation scheme (PTAS) for scheduling on a
constant number of uniform processors with fixed jobs. Polynomial-time approxi-
mation algorithms for this problem that achieve the worst-case approximation
bound of 1.5 were given for the general problem in [6]. For the case where there is
at most one fixed job on each machine, significanlty simpler heuristics with lower
time complexities resembling the largest processing time algorithm (LPT) [7] for
identical processors and the MULTIFIT algorithm [8] for uniform processors also
achieve this bound [3, 4].

The case where all downtimes are at the beginning of the processing time on all
machines is called scheduling with nonsimultaneous machine available times, as the
machines start processing jobs nonsimultaneously. For this problem, polynomial-
time algorithms with constant worstcase approximation bounds exist.

69

Approximation for Scheduling on Parallel Machines with Fixed Jobs or Unavailability Periods
DOI: http://dx.doi.org/10.5772/intechopen.89694

For scheduling on identical nonsimultaneous parallel machines, MULTIFIT
achieves a tight worst-case approximation bound of 24/19 (~1.2632) [9] and another
algorithm achieves a bound of 5/4 [10], while in the case of scheduling on uniform
nonsimultaneous parallel machines, a MULTIFIT variant has a worst-case approxi-
mation bound of 1.382 [11], which was shown by generalizing the bound obtained
for MULTIFIT when scheduling on uniform processors in [12]. Experimental results
suggest that for scheduling on nonsimultaneous uniform machines, the MULTIFIT
variant from [11] is adequate for use in practice, as we discuss in Section [4].

In Section 2, we describe the ways in which the content of this work can be used.
In Section 3, we introduce the algorithms LPT and MULTIFIT. In Section 4, we
consider scheduling with unavailability periods, while first focussing on schedul-
ing with nonsimultaneous machine available times in Section 4.1, and on the more
general case where downtimes do not have to occur at the beginning of the schedule
in Section 4.2. In Section 5, we present results on scheduling with fixed jobs. Section
6 contains the description of main techniques used in the worst-case approximation
bound proofs and Section 7 contains concluding remarks and a discussion of some
of the challenges in this area.

2. Contributions of this work

We next present ways to use the content of this work.

2.1 A deeper understanding

This work aims to provide a deeper understanding of multiple related problems
that involve scheduling on parallel machines with fixed jobs or unavailability periods
to minimize the maximum completion time. We explain why multiprocessor schedul-
ing with at most one unavailability period on each machine does not have a polyno-
mial-time approximation algorithm with a constant worst-case approximation bound
unless P = NP, which is the main reason why results on this topic are hard to obtain.

Furthermore, we observe that most results in this area involve variants of LPT
and MULTIFIT, and comment on the other results obtained. We also hope that this
work will increase awareness of these results and of how they relate to each other.

2.2 Practical use of the heuristics

The heuristics presented and referenced in this work can be used directly in
practice or for research purposes to solve the problems they address. The heuristics
based on LPT and MULTIFIT are fast and easy to implement and some of them
have best possible worst-case approximation bounds in the class of polynomial
algorithms unless P = NP for the problems they address. In addition to worst-case
approximation results, this work also highlights for some cases experimental
insights into how the heuristics would perform in practice based on how they
perform for randomly generated instances. As expected, they perform much better
for such instances than in the worst case. Also, for some cases, references to more
complex methods are provided in case the user prefers to use those.

2.3 Proof techniques

This work presents the main proof techniques used to obtain worst-case approxi-
mation bounds for LPT- and MULTIFIT-like heuristics when the aim is to minimize
the maximum completion time. Thus, the interested reader is provided with a

Scheduling Problems - New Applications and Trends

68

fixed jobs, where on each machine certain jobs have to be performed at predefined
times, has also been considered. The difference between these two problems is
in the meaning of the objective function: when scheduling with fixed jobs, the
maximum completion time of the jobs must be at least the latest completion time of
a fixed job, whereas the maximum completion time when scheduling in the pres-
ence of unavailability periods can occur before the end of an unavailability period.
We consider the static nonresumable variant of the problem of scheduling with
unavailability periods, where the downtimes are known for each machine before the
schedule needs to be made, and where jobs that start executing before a downtime
cannot resume execution after it.

In these problems, the job execution times are usually assumed to be given as an
integer number of computing units such as clock cycles or of other suitable units
such as time units. Similarly, the starttimes and endtimes of unavailability periods
or of fixed jobs are assumed to be given as integer multiples of adequately chosen
time units. We note that any problem with rational numbers as job durations and
starttimes and endtimes of downtimes or of fixed jobs can be transformed into an
equivalent problem where these entities are integers by multiplying them with an
adequate factor, thus there is arguably no loss of generality in this assumption when
considering the representation of any practical problem.

Both the problem of multiprocessor scheduling on fixed jobs and that of multi-
processor scheduling with unavailability periods are strongly NP-hard as they are
more general than the strongly NP-hard multiprocessor scheduling problem (MSP),
which has no downtimes or fixed jobs.

For scheduling with downtimes, it is NP-hard to find a schedule that ends within
a given constant multiple of an optimal schedule even when scheduling on identical
machines with at most one downtime on each machine. We discuss this in more detail
in Section 4.2. To obtain approximation results for scheduling with unavailability
periods in this context, assumptions about the downtimes were made such as the
assumption that only a fraction of the processors can be unavailable at the same time
[1, 2], or by comparing the generated schedule to the latest among the end of an opti-
mal schedule or the latest end of a downtime, thus essentially considering scheduling
with fixed jobs [3, 4].

To describe the performance of an approximation algorithm, we use the notion
of a worst-case approximation bound. In this work, we call worst-case approxima-
tion bound of an algorithm A when applied to a scheduling problem SP the largest
ratio between the maximum completion time of a schedule produced by A and the
maximum completion time of an optimal schedule for a problem instance of SP.

For the problem of multiprocessor scheduling with fixed jobs to minimize the
maximum completion time, even in the case where there is at most one fixed job on
each machine, it has been shown in [5] that no polynomial algorithm can achieve a
worst-case approximation bound that is less than 1.5 unless P = NP . Sharbrodt et al.
[5] also give a polynomial-time approximation scheme (PTAS) for scheduling on a
constant number of uniform processors with fixed jobs. Polynomial-time approxi-
mation algorithms for this problem that achieve the worst-case approximation
bound of 1.5 were given for the general problem in [6]. For the case where there is
at most one fixed job on each machine, significanlty simpler heuristics with lower
time complexities resembling the largest processing time algorithm (LPT) [7] for
identical processors and the MULTIFIT algorithm [8] for uniform processors also
achieve this bound [3, 4].

The case where all downtimes are at the beginning of the processing time on all
machines is called scheduling with nonsimultaneous machine available times, as the
machines start processing jobs nonsimultaneously. For this problem, polynomial-
time algorithms with constant worstcase approximation bounds exist.

69

Approximation for Scheduling on Parallel Machines with Fixed Jobs or Unavailability Periods
DOI: http://dx.doi.org/10.5772/intechopen.89694

For scheduling on identical nonsimultaneous parallel machines, MULTIFIT
achieves a tight worst-case approximation bound of 24/19 (~1.2632) [9] and another
algorithm achieves a bound of 5/4 [10], while in the case of scheduling on uniform
nonsimultaneous parallel machines, a MULTIFIT variant has a worst-case approxi-
mation bound of 1.382 [11], which was shown by generalizing the bound obtained
for MULTIFIT when scheduling on uniform processors in [12]. Experimental results
suggest that for scheduling on nonsimultaneous uniform machines, the MULTIFIT
variant from [11] is adequate for use in practice, as we discuss in Section [4].

In Section 2, we describe the ways in which the content of this work can be used.
In Section 3, we introduce the algorithms LPT and MULTIFIT. In Section 4, we
consider scheduling with unavailability periods, while first focussing on schedul-
ing with nonsimultaneous machine available times in Section 4.1, and on the more
general case where downtimes do not have to occur at the beginning of the schedule
in Section 4.2. In Section 5, we present results on scheduling with fixed jobs. Section
6 contains the description of main techniques used in the worst-case approximation
bound proofs and Section 7 contains concluding remarks and a discussion of some
of the challenges in this area.

2. Contributions of this work

We next present ways to use the content of this work.

2.1 A deeper understanding

This work aims to provide a deeper understanding of multiple related problems
that involve scheduling on parallel machines with fixed jobs or unavailability periods
to minimize the maximum completion time. We explain why multiprocessor schedul-
ing with at most one unavailability period on each machine does not have a polyno-
mial-time approximation algorithm with a constant worst-case approximation bound
unless P = NP, which is the main reason why results on this topic are hard to obtain.

Furthermore, we observe that most results in this area involve variants of LPT
and MULTIFIT, and comment on the other results obtained. We also hope that this
work will increase awareness of these results and of how they relate to each other.

2.2 Practical use of the heuristics

The heuristics presented and referenced in this work can be used directly in
practice or for research purposes to solve the problems they address. The heuristics
based on LPT and MULTIFIT are fast and easy to implement and some of them
have best possible worst-case approximation bounds in the class of polynomial
algorithms unless P = NP for the problems they address. In addition to worst-case
approximation results, this work also highlights for some cases experimental
insights into how the heuristics would perform in practice based on how they
perform for randomly generated instances. As expected, they perform much better
for such instances than in the worst case. Also, for some cases, references to more
complex methods are provided in case the user prefers to use those.

2.3 Proof techniques

This work presents the main proof techniques used to obtain worst-case approxi-
mation bounds for LPT- and MULTIFIT-like heuristics when the aim is to minimize
the maximum completion time. Thus, the interested reader is provided with a

Scheduling Problems - New Applications and Trends

70

concise description of the tools that can be used to develop such proofs, and he or she
may not have to read hundreds of pages in order to become aware of all of them or
work with an expert in the area when developing such a proof. Even for people with
expertise in the area, one or more of the ideas presented may be new and helpful.

3. The algorithms LPT and MULTIFIT

The algorithms LPT and MULTIFIT are among the most studied approximation
algorithms for multiprocessor scheduling with or without unavailability periods
or fixed jobs. In this section, we describe the basic versions of these algorithms for
MSP, which can be stated as follows: given a set of m machines P and n jobs J find a
non-preemptive schedule that ends at the earliest possible time. A non-preemptime
schedule is an assignment of jobs to processors, together with an order in which the
jobs on each processor are processed.

The algorithm LPT [7] works as follows:

The algorithm MULTIFIT was first introduced by Coffmann Garey and Johnson
in 1978 [8]. It uses binary search for the end of its resulting schedule and receives as
input an accuracy ε with which it determines this schedule end. In each iteration it
assigns a deadline and attempts to create a schedule that contains all tasks that ends
at or before that deadline by using the bin packing algorithm first fit decreasing
(FFD). If a feasible schedule is created, it decreases the deadline and otherwise it
increases the deadline. This process is repeated until the difference between the cur-
rent deadline and the previously considered deadline is less than ε. More formally,
the algorithm is described as Algorithm 2.

The MULTIFIT algorithm results in a schedule with a maximum completion
time that is within ε of the maximum completion time of the schedule that would
result if the binary search for the deadline would be continued.

An example of a LPT-schedule and a MULTIFIT schedule for the same problem
instance are presented in Figures 1 and 2 respectively.

Figure 1.
A LPT schedule. The jobs are numbered according to the order in which they are considered. At start, when all
processors are available at the same time, they are considered in the order p1, p2, p3 in this example.

Algorithm 1 The largest processing time algorithm (LPT)

1: Order jobs in nonincreasing order of their processing time.
2: In this order assign each job at the earliest possible time allowed by the schedule that exists when the job is

assigned.

71

Approximation for Scheduling on Parallel Machines with Fixed Jobs or Unavailability Periods
DOI: http://dx.doi.org/10.5772/intechopen.89694

The MULTIFIT algorithm tends to produce more balanced schedules than LPT,
and, as a consequence it tends to perform better when the aim is to minimize the
maximum completion time. It also has a higher time complexity, as it tries to make a
schedule about log 2 (ub − lb) times, whereas the LPT algorithm only does that once.
When the instances are prohibitively big and the schedule needs to be made in a
short time, it may be indicated to use LPT or another list scheduling algorithm to
schedule the jobs. This is because in practical situations, there may not be enough
time to go through the list of jobs more than once while scheduling thousands of
jobs and making sure that all required constraints are obeyed by the schedule.
The reason why such big schedules are made is that the companies aim to estimate
delivery times for their orders.

3.1 Time complexity of MULTIFIT

If the parameter ε of MULTIFIT is adequately set, for example as a computer
clock cycle, the algorithm returns the best possible MULTIFIT schedule, that is,
running it further would not result in a better schedule, as was commented
upon in [4].

The binary search for the deadline within the MULTIFIT algorithm happens
within log 2 [(ub − lb) / ε] time, which is at most log 2 (ub / ε) , which is the size of ub in
binary, assuming that the numbers for the upper bound and the lower bound do not
change their representation during the execution of the algorithm and that they allow
within their representation for an accuracy of ε . In Section 1, we mentioned that the
job durations are usually given as integer multiples of an adequately chosen (time)

Figure 2.
A MULTIFIT schedule together with a possible deadline. The jobs are numbered according to the order in which
they are considered. The processors are considered in the order p1, p2, p3 when generating the schedule.

Algorithm 2 The algorithm MULTIFIT

1: Order the jobs in non-increasing order of their duration.
2: Assign upper bound (ub) and lower bound (lb) for the end of schedule; (for example, lb = sum of job

durations/number of processors, ub = sum of job durations).
3: Assign b = (ub + lb) / 2 as deadline.
4: FFD: Assign tasks in non-increasing order on the first processor on which they fit while respecting the
deadline (the processors are considered in each iteration in the same order).
5: If all tasks are successfully scheduled decrease the upper bound: ub = b .
6: Else increase the lower bound: lb = b .
7: If ub − lb ≥ ε loop back to Step 3.

Scheduling Problems - New Applications and Trends

70

concise description of the tools that can be used to develop such proofs, and he or she
may not have to read hundreds of pages in order to become aware of all of them or
work with an expert in the area when developing such a proof. Even for people with
expertise in the area, one or more of the ideas presented may be new and helpful.

3. The algorithms LPT and MULTIFIT

The algorithms LPT and MULTIFIT are among the most studied approximation
algorithms for multiprocessor scheduling with or without unavailability periods
or fixed jobs. In this section, we describe the basic versions of these algorithms for
MSP, which can be stated as follows: given a set of m machines P and n jobs J find a
non-preemptive schedule that ends at the earliest possible time. A non-preemptime
schedule is an assignment of jobs to processors, together with an order in which the
jobs on each processor are processed.

The algorithm LPT [7] works as follows:

The algorithm MULTIFIT was first introduced by Coffmann Garey and Johnson
in 1978 [8]. It uses binary search for the end of its resulting schedule and receives as
input an accuracy ε with which it determines this schedule end. In each iteration it
assigns a deadline and attempts to create a schedule that contains all tasks that ends
at or before that deadline by using the bin packing algorithm first fit decreasing
(FFD). If a feasible schedule is created, it decreases the deadline and otherwise it
increases the deadline. This process is repeated until the difference between the cur-
rent deadline and the previously considered deadline is less than ε. More formally,
the algorithm is described as Algorithm 2.

The MULTIFIT algorithm results in a schedule with a maximum completion
time that is within ε of the maximum completion time of the schedule that would
result if the binary search for the deadline would be continued.

An example of a LPT-schedule and a MULTIFIT schedule for the same problem
instance are presented in Figures 1 and 2 respectively.

Figure 1.
A LPT schedule. The jobs are numbered according to the order in which they are considered. At start, when all
processors are available at the same time, they are considered in the order p1, p2, p3 in this example.

Algorithm 1 The largest processing time algorithm (LPT)

1: Order jobs in nonincreasing order of their processing time.
2: In this order assign each job at the earliest possible time allowed by the schedule that exists when the job is

assigned.

71

Approximation for Scheduling on Parallel Machines with Fixed Jobs or Unavailability Periods
DOI: http://dx.doi.org/10.5772/intechopen.89694

The MULTIFIT algorithm tends to produce more balanced schedules than LPT,
and, as a consequence it tends to perform better when the aim is to minimize the
maximum completion time. It also has a higher time complexity, as it tries to make a
schedule about log 2 (ub − lb) times, whereas the LPT algorithm only does that once.
When the instances are prohibitively big and the schedule needs to be made in a
short time, it may be indicated to use LPT or another list scheduling algorithm to
schedule the jobs. This is because in practical situations, there may not be enough
time to go through the list of jobs more than once while scheduling thousands of
jobs and making sure that all required constraints are obeyed by the schedule.
The reason why such big schedules are made is that the companies aim to estimate
delivery times for their orders.

3.1 Time complexity of MULTIFIT

If the parameter ε of MULTIFIT is adequately set, for example as a computer
clock cycle, the algorithm returns the best possible MULTIFIT schedule, that is,
running it further would not result in a better schedule, as was commented
upon in [4].

The binary search for the deadline within the MULTIFIT algorithm happens
within log 2 [(ub − lb) / ε] time, which is at most log 2 (ub / ε) , which is the size of ub in
binary, assuming that the numbers for the upper bound and the lower bound do not
change their representation during the execution of the algorithm and that they allow
within their representation for an accuracy of ε . In Section 1, we mentioned that the
job durations are usually given as integer multiples of an adequately chosen (time)

Figure 2.
A MULTIFIT schedule together with a possible deadline. The jobs are numbered according to the order in which
they are considered. The processors are considered in the order p1, p2, p3 when generating the schedule.

Algorithm 2 The algorithm MULTIFIT

1: Order the jobs in non-increasing order of their duration.
2: Assign upper bound (ub) and lower bound (lb) for the end of schedule; (for example, lb = sum of job

durations/number of processors, ub = sum of job durations).
3: Assign b = (ub + lb) / 2 as deadline.
4: FFD: Assign tasks in non-increasing order on the first processor on which they fit while respecting the
deadline (the processors are considered in each iteration in the same order).
5: If all tasks are successfully scheduled decrease the upper bound: ub = b .
6: Else increase the lower bound: lb = b .
7: If ub − lb ≥ ε loop back to Step 3.

Scheduling Problems - New Applications and Trends

72

unit; therefore, the end of any schedule is an integer, and thus, there is no point in
making ε less than 1, in which case the MULTIFIT loop is repeated log 2 (ub) times.

As a consequence, the number of times the MULTIFIT loop is called is polyno-
mial in the size of the input, as any reasonable upper bound is at most the sum of
the processing times of all jobs, which can be represented within at most the total
number of bits used to represent all jobs. In [4], Grigoriu and Friesen also comment
that if the upper bound is 2 years, the lower bound is 0 and the deadline is deter-
mined with an accuracy of 10−13 s, the MULTIFIT loop is called at most 40 times.

The time complexity of MULTIFIT is thus O (n log n + nm log 2 (ub)) , as the jobs
need to be sorted according to their execution times in a non-increasing order in
Step (1), and as in each iteration of the MULTIFIT loop, the algorithm looks for
each job for the first processor on which it fits; thus, it will have to look at most at m
processors. Recall that n is the number of jobs in the considered problem instance.

4. Scheduling with unavailability periods

In this section, we first present results for the case where all unavailability
periods are at the beginning of the schedule. Then, we present results for the more
general case where the unavailability periods can occur anywhere in the schedule.

4.1 Scheduling with nonsimultaneous machine available times

This section addresses the case where the processors may have unavailability
periods at the start of their processing time. This situation is more general than the
multiprocessor scheduling problem (where there are no fixed jobs or downtimes)
and less general than the problems of scheduling with fixed jobs or with unavail-
ability periods. As the less general multiprocessor scheduling problem is NP-hard,
so are the problems of scheduling on identical machines with nonsimultaneous
machine available times (NMSP: nonsimultaneous multiprocessor scheduling
problem) and scheduling on uniform processors with nonsimultaneous machine
available times (UNMSP) when minimizing the maximum completion time. Due
to the NP-hardness of these problems, polynomial-time approximation algorithms
like LPT and MULTIFIT and their variants have been studied for their solution. As
before, we will continue to denote with the number of processors in the problem
instance being considered with m.

4.1.1 Scheduling on identical nonsimultaneous processors

For NMSP, worst-case approximation bounds for LPT of 3 / 2 − 1 / (2m) and for a
modified version of LPT (MLPT) of 4/3 have been obtained by Lee [13]. The bound
obtained by Lee in [13] was improved upon by Kellerer in [10], where a dual approx-
imation algorithm with a worst-case approximation bound of 5/4 was presented.

When MULTIFIT is used for MSP, a deadline results in periods of equal duration
in which jobs can be scheduled on each processor; thus the schedules resulting from
using any ordering of processors in step (4) of MULTIFIT have the same maximum
completion time. When considering NMSP, thus allowing for nonsimultaneous
machines, the order in which processors are considered becomes relevant, as the
period in which jobs can be executed on each processor corresponding to a deadline
depends on the time the processor becomes available. MULTIFIT variants that
address such situations usually order the processors in non-decreasing order of their
periods in which jobs can be scheduled. Thus, in this case, the ordering is in non-
increasing order of the times at which the processors become available.

73

Approximation for Scheduling on Parallel Machines with Fixed Jobs or Unavailability Periods
DOI: http://dx.doi.org/10.5772/intechopen.89694

A bound of 9/7 (about 1.2857) was obtained for MULTIFIT by Chang and
Hwang [14]. In [10], Kellerer gives a problem instance of NMSP for which the
approximation factor of its MULTIFIT schedule is 24/19 (about 1.2632). More
recently, 24/19 was shown to be the exact worst-case approximation bound when
using MULTIFIT for NMSP by Hwang and Lim [9]. By comparison, a tight worst-
case approximation bound of 13/11 (about 1.18182) was shown by Yue [15] for
MUTLIFIT when applied to MSP.

4.1.2 Scheduling on uniform nonsimultaneous processors

For the uniform multiprocessor scheduling problem with simultaneous
machine available times (UMSP), that is, where processors execute jobs at dif-
ferent speeds, the amount of jobs that fit on a processor corresponding to a given
MULTIFIT deadline depends on the speed of that processor. Usually, the slowest
processor is considered to have a speed of 1, and for each job j, the time it would
take to process it on this processor l j is given. Thus, on a machine with speed 5, a
job j needs a time of l j / 5 to be processed. As a consequence, the ordering in which
the processors are considered in Step (4) of MULTIFIT is in most cases relevant
to the maximum completion time of the resulting schedule. MULTIFIT for UMSP
orders processors in each iteration before its Step (4) in non-decreasing order
of the duration of the processing time on that processor times the speed of that
processor [12, 16].

For UMSP, approximation bounds of 1.4 and 1.382 were obtained for MULTIFIT
by Friesen and Langston [16] and by Chen [12] respectively. In [17], Burkard and
He derive a worst-case approximation bound of √

_
 6 / 2 (about 1.2247) of MULTIFIT

for UMSP with at most two processors, and show a better bound of (√
_

 2 + 1) / 2
(about 1.2071) for the case where MULTIFIT is combined with LPT as an incum-
bent algorithm.

In [11], Grigoriu and Friesen show that bounds that apply to the MULTIFIT
variants from previous work such as [12, 16, 17] where scheduling on two uniform
processors is considered also apply to a slightly different proposed variant of
MULTIFIT for UNMSP, LMULTIFIT, which was first proposed in [4] in a more gen-
eral form. The difference between the MULTIFIT variants from [12, 16, 17] on the
one hand and LMULTIFIT on the other hand is that in the latter, the choice of the
initial upper and lower bounds is not given explicitly within the algorithm, and thus
the worst-case approximation bound proofs are more general, as they work for any
initial choices of upper and lower bounds for the duration of the resulting schedule.
A first step in the proofs that the bounds hold in the more general case, where there
are uniform nonsimultaneous parallel machines, was to show that LMULTIFIT
obeys the bounds of the earlier MULTIFIT variants in the simultaneous machines
case for the instances considered in those works.

Using LPT for UNMSP has been considered in [18], where worst-case approxi-
mation bound of 5/3 was shown in the general case, as well as a better bound for the
case where there are only two machines.

For the case where the number of machines is constant, a PTAS exists for
UNMSP [11], which was derived from a PTAS for scheduling on a constant num-
ber of uniform processors with fixed jobs from [5]. As the objective function for
scheduling with fixed jobs that are at the beginning of the schedule and scheduling
with unavailability periods that are at the beginning of the schedule differ, the
PTAS from [5] can not be used unaltered to address UNMSP. To address UNMSP,
the PTAS from [5] is first run for the transformed problem instance where the
unavailability periods become fixed jobs, and then for all problem instances result-
ing from successively removing the machine with the latest end of a fixed job from

Scheduling Problems - New Applications and Trends

72

unit; therefore, the end of any schedule is an integer, and thus, there is no point in
making ε less than 1, in which case the MULTIFIT loop is repeated log 2 (ub) times.

As a consequence, the number of times the MULTIFIT loop is called is polyno-
mial in the size of the input, as any reasonable upper bound is at most the sum of
the processing times of all jobs, which can be represented within at most the total
number of bits used to represent all jobs. In [4], Grigoriu and Friesen also comment
that if the upper bound is 2 years, the lower bound is 0 and the deadline is deter-
mined with an accuracy of 10−13 s, the MULTIFIT loop is called at most 40 times.

The time complexity of MULTIFIT is thus O (n log n + nm log 2 (ub)) , as the jobs
need to be sorted according to their execution times in a non-increasing order in
Step (1), and as in each iteration of the MULTIFIT loop, the algorithm looks for
each job for the first processor on which it fits; thus, it will have to look at most at m
processors. Recall that n is the number of jobs in the considered problem instance.

4. Scheduling with unavailability periods

In this section, we first present results for the case where all unavailability
periods are at the beginning of the schedule. Then, we present results for the more
general case where the unavailability periods can occur anywhere in the schedule.

4.1 Scheduling with nonsimultaneous machine available times

This section addresses the case where the processors may have unavailability
periods at the start of their processing time. This situation is more general than the
multiprocessor scheduling problem (where there are no fixed jobs or downtimes)
and less general than the problems of scheduling with fixed jobs or with unavail-
ability periods. As the less general multiprocessor scheduling problem is NP-hard,
so are the problems of scheduling on identical machines with nonsimultaneous
machine available times (NMSP: nonsimultaneous multiprocessor scheduling
problem) and scheduling on uniform processors with nonsimultaneous machine
available times (UNMSP) when minimizing the maximum completion time. Due
to the NP-hardness of these problems, polynomial-time approximation algorithms
like LPT and MULTIFIT and their variants have been studied for their solution. As
before, we will continue to denote with the number of processors in the problem
instance being considered with m.

4.1.1 Scheduling on identical nonsimultaneous processors

For NMSP, worst-case approximation bounds for LPT of 3 / 2 − 1 / (2m) and for a
modified version of LPT (MLPT) of 4/3 have been obtained by Lee [13]. The bound
obtained by Lee in [13] was improved upon by Kellerer in [10], where a dual approx-
imation algorithm with a worst-case approximation bound of 5/4 was presented.

When MULTIFIT is used for MSP, a deadline results in periods of equal duration
in which jobs can be scheduled on each processor; thus the schedules resulting from
using any ordering of processors in step (4) of MULTIFIT have the same maximum
completion time. When considering NMSP, thus allowing for nonsimultaneous
machines, the order in which processors are considered becomes relevant, as the
period in which jobs can be executed on each processor corresponding to a deadline
depends on the time the processor becomes available. MULTIFIT variants that
address such situations usually order the processors in non-decreasing order of their
periods in which jobs can be scheduled. Thus, in this case, the ordering is in non-
increasing order of the times at which the processors become available.

73

Approximation for Scheduling on Parallel Machines with Fixed Jobs or Unavailability Periods
DOI: http://dx.doi.org/10.5772/intechopen.89694

A bound of 9/7 (about 1.2857) was obtained for MULTIFIT by Chang and
Hwang [14]. In [10], Kellerer gives a problem instance of NMSP for which the
approximation factor of its MULTIFIT schedule is 24/19 (about 1.2632). More
recently, 24/19 was shown to be the exact worst-case approximation bound when
using MULTIFIT for NMSP by Hwang and Lim [9]. By comparison, a tight worst-
case approximation bound of 13/11 (about 1.18182) was shown by Yue [15] for
MUTLIFIT when applied to MSP.

4.1.2 Scheduling on uniform nonsimultaneous processors

For the uniform multiprocessor scheduling problem with simultaneous
machine available times (UMSP), that is, where processors execute jobs at dif-
ferent speeds, the amount of jobs that fit on a processor corresponding to a given
MULTIFIT deadline depends on the speed of that processor. Usually, the slowest
processor is considered to have a speed of 1, and for each job j, the time it would
take to process it on this processor l j is given. Thus, on a machine with speed 5, a
job j needs a time of l j / 5 to be processed. As a consequence, the ordering in which
the processors are considered in Step (4) of MULTIFIT is in most cases relevant
to the maximum completion time of the resulting schedule. MULTIFIT for UMSP
orders processors in each iteration before its Step (4) in non-decreasing order
of the duration of the processing time on that processor times the speed of that
processor [12, 16].

For UMSP, approximation bounds of 1.4 and 1.382 were obtained for MULTIFIT
by Friesen and Langston [16] and by Chen [12] respectively. In [17], Burkard and
He derive a worst-case approximation bound of √

_
 6 / 2 (about 1.2247) of MULTIFIT

for UMSP with at most two processors, and show a better bound of (√
_

 2 + 1) / 2
(about 1.2071) for the case where MULTIFIT is combined with LPT as an incum-
bent algorithm.

In [11], Grigoriu and Friesen show that bounds that apply to the MULTIFIT
variants from previous work such as [12, 16, 17] where scheduling on two uniform
processors is considered also apply to a slightly different proposed variant of
MULTIFIT for UNMSP, LMULTIFIT, which was first proposed in [4] in a more gen-
eral form. The difference between the MULTIFIT variants from [12, 16, 17] on the
one hand and LMULTIFIT on the other hand is that in the latter, the choice of the
initial upper and lower bounds is not given explicitly within the algorithm, and thus
the worst-case approximation bound proofs are more general, as they work for any
initial choices of upper and lower bounds for the duration of the resulting schedule.
A first step in the proofs that the bounds hold in the more general case, where there
are uniform nonsimultaneous parallel machines, was to show that LMULTIFIT
obeys the bounds of the earlier MULTIFIT variants in the simultaneous machines
case for the instances considered in those works.

Using LPT for UNMSP has been considered in [18], where worst-case approxi-
mation bound of 5/3 was shown in the general case, as well as a better bound for the
case where there are only two machines.

For the case where the number of machines is constant, a PTAS exists for
UNMSP [11], which was derived from a PTAS for scheduling on a constant num-
ber of uniform processors with fixed jobs from [5]. As the objective function for
scheduling with fixed jobs that are at the beginning of the schedule and scheduling
with unavailability periods that are at the beginning of the schedule differ, the
PTAS from [5] can not be used unaltered to address UNMSP. To address UNMSP,
the PTAS from [5] is first run for the transformed problem instance where the
unavailability periods become fixed jobs, and then for all problem instances result-
ing from successively removing the machine with the latest end of a fixed job from

Scheduling Problems - New Applications and Trends

74

the transformed instance [11]. This accounts for the cases where a number between
1 and m − 1 of processors start processing after the end of the optimal schedule.

In [19], a lower bound is derived for the end of an optimal schedule of an
UNMSP instance, and using that bound approximation factors for LMULTIFIT
schedules of randomly generated instances are determined. The reasonably exten-
sive experiments described in [19] suggest that LMULTIFIT is a good option for
solving UNMSP in practice, not only because of being fast and easy to implement,
but also because it has very good approximation factors (less than 1.03) for the
generated instances with an average of at least five jobs for each machine. In order to
obtain the approximation factors, a lower bound for the end of the optimal schedule
that can be calculated directly from the problem instance was used.

4.2 Multiprocessor scheduling with availability constraints

In this section, we consider the multiprocessor scheduling problem where
downtimes can occur at any time during the scheduling horizon.

Surveys with focus on scheduling with availability constraints are given in
[20–24]. Besides the makespan, the authors of these works survey work on various
other objective functions such as total completion time, and also address additional
variants of the problem, such as its resumable version.

Unless assumptions about the unavailability periods are made or unless P = NP,
there is no polynomial-time approximation algorithm with a constant worst-case
approximation bound for the problem of scheduling with unavailability periods to
minimize the maximum completion time, since there is a polynomial-time reduction
from the NP-hard problem of 3-Partition to the problem of finding a schedule that has
a maximum completion time that is at most α times the end of an optimal schedule for
this problem. We next outline such a reduction. Let X be an instance of 3-Partition, that
is, a set of 3m positive integers, given with the purpose of finding out whether there is a
partition of these numbers into m sets, such that the sum of the numbers in each set is
the same for all sets. Let S be the sum of all numbers in X . The instance Y of scheduling
with unavailability periods that we build is given as follows: there are m processors, each
of which has an unavailability period of duration (α + 1) S that starts at time S / m , and
the job durations in Y are the numbers in X . X is a yes-instance of 3-Partition if and only
if in instance Y , the optimal schedule ends at time S / m . In such a situation, any approxi-
mation algorithm with worst-case approximation factor α for scheduling with avail-
ability constraints will find a schedule that ends at or before time 𝛼𝛼S / m which is less than
(α + 1) S . Thus, the found schedule must end before or when the unavailability periods
start, at time S / m . In such a schedule, the sets of durations of jobs on each processor
are a 3-Partition of X. Therefore, any polynomial-time approximation algorithm for
scheduling with unavailability periods with a worst-case approximation factor α can be
used to solve 3-Partition in polynomial time.

4.2.1 Scheduling on identical machines with unavailability periods

For resumable scheduling, where the execution of jobs may continue after
a downtime that interrupted them, but where jobs cannot be preempted by the
scheduling algorithm, and where one machine does not shut down and all other
machines shut down at most once, Lee shows that the makespan of LPT is in the
worst case (m + 1) / 2 times the optimal makespan [25].

In [1], Hwang and Chang make the assumption that at most half of the machines
are unavailable at any time, and show for this situation that the worst-case approxi-
mation bound of LPT is 2. In [3], it is shown that no polynomial algorithm can

75

Approximation for Scheduling on Parallel Machines with Fixed Jobs or Unavailability Periods
DOI: http://dx.doi.org/10.5772/intechopen.89694

have a better bound than 2 for this problem unless P = NP . The result from [1] is
generalized in [2] where it is shown that if at most λ ∈ {1, … , m − 1} machines may be
unavailable at any time, LPT has a worst-case approximation bound of
 1 + 1 _ 2 [m/ (m−λ)] , and that this bound is tight for LPT.

4.2.2 Scheduling on uniform machines with unavailability periods

In [26], scheduling with at most one unavailability period on each machine
is considered and exact algorithms are given for small problem instances. The
authors consider separately the case of identical jobs, and also consider total
completion time beside the makespan as an objective function. For larger
instances, they propose an LPT-like algorithm, which assigns jobs in nonincreasing
order of their processing time to the fastest machine on which they would finish
being processed at the earliest time. They also do experiments on a total number of
68 generated instances where error margins of at most 5.6% are observed. They do
not compare their heuristic to the previously proposed heuristic from [4], which
we discuss in Section 5.1.2, which was also proposed for this problem, even though
its worst-case approximation bound was shown for the objective function of
scheduling with fixed jobs.

5. Scheduling with fixed jobs

The problem of scheduling with fixed jobs is given as a number of processors,
where each processor may have jobs that must be executed during certain given
periods on it, together with a number of other jobs which can be executed by any
processor. As noted in Section 1, job durations or required execution times are
expressed for example as a number of significant units such as clock cycles. For
uniform processors this number represents the time needed by a job to be executed
on the slowest processor. In case there are uniform processors, each processor also
has a speed factor, by which the time needed by a job on the slowest processor is
divided in order to obtain the time needed for the processor to execute the job.

As noted before, the problem of scheduling with fixed jobs differs from the
problem of scheduling with unavailability periods in that its maximum completion
time cannot be earlier than the latest completion time of a fixed job.

In [5], Scharbrodt et al. give a polynomial-time approximation scheme for sched-
uling on a constant number of uniform machines with fixed jobs. They also show that
it is NP-hard to obtain a schedule that ends within a factor of less than 1.5 when sched-
uling on identical processors with at most one fixed job on each machine. Even though
they do not specify their result in this way, their proof that no polynomial-time
approximation algorithm can have a better worst-case approximation bound than 1.5
for multiprocessor scheduling with fixed jobs does not use the fact that there can be
more than one fixed job on each machine, which implies the previous statement.

If all fixed jobs are at the beginning of the schedule, the results presented in
Section 4.1 apply, as the optimal schedule of each problem instance of scheduling on
nonsimultaneous machines can only potentially get worse when scheduling with fixed
jobs is considered instead, and since the resulting schedule of an approximation algo-
rithm ends later for scheduling with fixed jobs only if its maximum completion time is
the completion time of a fixed job, which the optimal schedule also needs to execute.

We next consider the case where there is at most one fixed job on each machine in
Section 5.1, and the case where there can be multiple fixed jobs on each machine in
Section 5.2.

Scheduling Problems - New Applications and Trends

74

the transformed instance [11]. This accounts for the cases where a number between
1 and m − 1 of processors start processing after the end of the optimal schedule.

In [19], a lower bound is derived for the end of an optimal schedule of an
UNMSP instance, and using that bound approximation factors for LMULTIFIT
schedules of randomly generated instances are determined. The reasonably exten-
sive experiments described in [19] suggest that LMULTIFIT is a good option for
solving UNMSP in practice, not only because of being fast and easy to implement,
but also because it has very good approximation factors (less than 1.03) for the
generated instances with an average of at least five jobs for each machine. In order to
obtain the approximation factors, a lower bound for the end of the optimal schedule
that can be calculated directly from the problem instance was used.

4.2 Multiprocessor scheduling with availability constraints

In this section, we consider the multiprocessor scheduling problem where
downtimes can occur at any time during the scheduling horizon.

Surveys with focus on scheduling with availability constraints are given in
[20–24]. Besides the makespan, the authors of these works survey work on various
other objective functions such as total completion time, and also address additional
variants of the problem, such as its resumable version.

Unless assumptions about the unavailability periods are made or unless P = NP,
there is no polynomial-time approximation algorithm with a constant worst-case
approximation bound for the problem of scheduling with unavailability periods to
minimize the maximum completion time, since there is a polynomial-time reduction
from the NP-hard problem of 3-Partition to the problem of finding a schedule that has
a maximum completion time that is at most α times the end of an optimal schedule for
this problem. We next outline such a reduction. Let X be an instance of 3-Partition, that
is, a set of 3m positive integers, given with the purpose of finding out whether there is a
partition of these numbers into m sets, such that the sum of the numbers in each set is
the same for all sets. Let S be the sum of all numbers in X . The instance Y of scheduling
with unavailability periods that we build is given as follows: there are m processors, each
of which has an unavailability period of duration (α + 1) S that starts at time S / m , and
the job durations in Y are the numbers in X . X is a yes-instance of 3-Partition if and only
if in instance Y , the optimal schedule ends at time S / m . In such a situation, any approxi-
mation algorithm with worst-case approximation factor α for scheduling with avail-
ability constraints will find a schedule that ends at or before time 𝛼𝛼S / m which is less than
(α + 1) S . Thus, the found schedule must end before or when the unavailability periods
start, at time S / m . In such a schedule, the sets of durations of jobs on each processor
are a 3-Partition of X. Therefore, any polynomial-time approximation algorithm for
scheduling with unavailability periods with a worst-case approximation factor α can be
used to solve 3-Partition in polynomial time.

4.2.1 Scheduling on identical machines with unavailability periods

For resumable scheduling, where the execution of jobs may continue after
a downtime that interrupted them, but where jobs cannot be preempted by the
scheduling algorithm, and where one machine does not shut down and all other
machines shut down at most once, Lee shows that the makespan of LPT is in the
worst case (m + 1) / 2 times the optimal makespan [25].

In [1], Hwang and Chang make the assumption that at most half of the machines
are unavailable at any time, and show for this situation that the worst-case approxi-
mation bound of LPT is 2. In [3], it is shown that no polynomial algorithm can

75

Approximation for Scheduling on Parallel Machines with Fixed Jobs or Unavailability Periods
DOI: http://dx.doi.org/10.5772/intechopen.89694

have a better bound than 2 for this problem unless P = NP . The result from [1] is
generalized in [2] where it is shown that if at most λ ∈ {1, … , m − 1} machines may be
unavailable at any time, LPT has a worst-case approximation bound of
 1 + 1 _ 2 [m/ (m−λ)] , and that this bound is tight for LPT.

4.2.2 Scheduling on uniform machines with unavailability periods

In [26], scheduling with at most one unavailability period on each machine
is considered and exact algorithms are given for small problem instances. The
authors consider separately the case of identical jobs, and also consider total
completion time beside the makespan as an objective function. For larger
instances, they propose an LPT-like algorithm, which assigns jobs in nonincreasing
order of their processing time to the fastest machine on which they would finish
being processed at the earliest time. They also do experiments on a total number of
68 generated instances where error margins of at most 5.6% are observed. They do
not compare their heuristic to the previously proposed heuristic from [4], which
we discuss in Section 5.1.2, which was also proposed for this problem, even though
its worst-case approximation bound was shown for the objective function of
scheduling with fixed jobs.

5. Scheduling with fixed jobs

The problem of scheduling with fixed jobs is given as a number of processors,
where each processor may have jobs that must be executed during certain given
periods on it, together with a number of other jobs which can be executed by any
processor. As noted in Section 1, job durations or required execution times are
expressed for example as a number of significant units such as clock cycles. For
uniform processors this number represents the time needed by a job to be executed
on the slowest processor. In case there are uniform processors, each processor also
has a speed factor, by which the time needed by a job on the slowest processor is
divided in order to obtain the time needed for the processor to execute the job.

As noted before, the problem of scheduling with fixed jobs differs from the
problem of scheduling with unavailability periods in that its maximum completion
time cannot be earlier than the latest completion time of a fixed job.

In [5], Scharbrodt et al. give a polynomial-time approximation scheme for sched-
uling on a constant number of uniform machines with fixed jobs. They also show that
it is NP-hard to obtain a schedule that ends within a factor of less than 1.5 when sched-
uling on identical processors with at most one fixed job on each machine. Even though
they do not specify their result in this way, their proof that no polynomial-time
approximation algorithm can have a better worst-case approximation bound than 1.5
for multiprocessor scheduling with fixed jobs does not use the fact that there can be
more than one fixed job on each machine, which implies the previous statement.

If all fixed jobs are at the beginning of the schedule, the results presented in
Section 4.1 apply, as the optimal schedule of each problem instance of scheduling on
nonsimultaneous machines can only potentially get worse when scheduling with fixed
jobs is considered instead, and since the resulting schedule of an approximation algo-
rithm ends later for scheduling with fixed jobs only if its maximum completion time is
the completion time of a fixed job, which the optimal schedule also needs to execute.

We next consider the case where there is at most one fixed job on each machine in
Section 5.1, and the case where there can be multiple fixed jobs on each machine in
Section 5.2.

Scheduling Problems - New Applications and Trends

76

5.1 Scheduling with at most one fixed job on each machine

When scheduling on multiple processors with at most one fixed job on each
machine, LPT and MULTIFIT variants have been shown to achieve a worst-case
approximation bound of 1.5, which is best possible for this problem unless P = NP .

5.1.1 Same-speed processors

For scheduling on identical machines with at most one fixed job on each
machine, an LPT-like algorithm, LPTX, was given in [3], for which a worst-case
approximation bound of 1.5 was shown. Before running LPT, LPTX creates an
order of processors, which is then used by LPT to break ties in case two processors
become available at the same time. The ordered list of processors created before
applying LPT is built in two steps:

1. All processors that have an unavailability period that is not at the beginning
of the schedule are assigned to this list in non-decreasing order of the start of
their downtime.

2. All other processors (that is, those which have the downtimes at the beginning
of the scheduling period or have no downtime at all) are appended to the list
built in the previous step in non-decreasing order of the times at which they
can start executing jobs.

5.1.2 Uniform processors

In the more general case of scheduling on uniform machines with at most one
fixed job on each machine, a MULTIFIT-like algorithm, LMULTIFIT, was given in [4],
which achieves the worst-case approximation bound of 1.5. For a MULTIFIT variant to
work in the presence of downtimes, it must be specified how it deals with the fact that
there are more than one time interval in which jobs can be scheduled on one processor.

After a MULTIFIT deadline is assigned and before applying the bin packing
algorithm FFD (see Section 3), LMULTIFIT orders all time intervals in which jobs
can be scheduled in non-decreasing order of their length. Here, the length of a time
interval is the duration of the time interval multiplied by the speed factor of the
processor on which the interval occurs.

5.2 Scheduling with multiple fixed jobs on each machine

For scheduling on identical processors with fixed jobs, where the number of
fixed jobs on a machine can be arbitrary, approximation algorithms that are much
more complex than LPT and MULTIFIT were given in [27], with a worst-case
approximation bound of 1.5 + ε , where ε is the parameter of a fully polynomial
time approximation scheme (FPTAS) for the multiple subset sum problem, and in
[6] with a worst-case approximation bound of 1.5, where a FPTAS for the multiple
knapsack problem is used as a subroutine.

In [28], a very long proof is outlined that LMULTIFIT achieves a worst-case
approximation bound of 1.5 when scheduling on identical processors with at most
two fixed jobs on each machine. In [29], an algorithm using two MULTIFIT-like
algorithms is shown to have a worst-case approximation bound of 1.625, which
likely can be improved to 1.6 without excessive effort.

The time complexity of the MULTIFIT-like and LPT-like algorithms is significanlty
lower than that of the algorithms from [6, 27], and they are also significantly easier to

77

Approximation for Scheduling on Parallel Machines with Fixed Jobs or Unavailability Periods
DOI: http://dx.doi.org/10.5772/intechopen.89694

implement; however, there is little hope in our opinion that bounds better than 1.55
can be shown in the general case for such algorithms with proofs of reasonable length.
Given such problems, the user must decide what is best suited for his or her needs.

6. Proof techniques

Worst-case approximation results in this research area about LPT and
MULTIFIT variants mainly use proofs by contradiction in which some proof
techniques appear very often. We next describe two techniques that we consider to
be the most relevant, and then comment upon some other methods that are used
relatively often. In the following, we call job lengths the durations of the jobs on the
slowest processor.

6.1 Minimal counterexample

A very well-known proof method is that of assuming that there exists a minimal
counterexample to a theorem T, that is, a problem instance for which the algorithm’s
schedule does not obey that theorem, with a minimal number of processors, of jobs,
of downtimes (or of fixed jobs) that do not start at the beginning of the schedule, and/
or of other quantities that can be minimized which are chosen to fit the statements
to prove. A minimal counterexample exists whenever there is a counterexample, and
thus, showing that it does not exist proves T. In order to define minimality among
counterexamples, the author of the proof first chooses a partial order among the prob-
lem instances. An instance which is minimal according to this partial order among the
instances for which a theorem T does not apply is called a minimal counterexample.

This method can be very powerful, because after assuming that a minimal
counterexample does not obey a theorem T, many useful properties of a minimal
counterexample can be derived from the fact that no lesser counterexample exists,
which can ultimately lead to a contradiction.

Here, a lesser counterexample is a counterexample with less processors, or less
tasks, or less downtimes, or with a job with a smaller length, depending on how the
order of instances was defined. Showing that a minimal counterexample does not
exist is usually significantly easier than developing a direct proof for T.

The theorem to prove could be that the worst-case approximation bound holds,
but it can also be an intermediary result that is later used to prove the worst-case
approximation bound. One could address instances that have a certain property
first, and then show that the worst-case approximation bound holds for these, for
example by using a minimal counterexample among these instances, and then do
the same for all other instances.

Sometimes it is enough to define the partial order only using the number of
processors [11], while in most cases, it is useful to include multiple characteristics
of problem instances, such as all or a part of the characteristics enumerated above.
In one situation, a minimal counterexample was defined to also have minimal
job lengths, meaning that if in a minimal counterexample the length of one job is
reduced, the resulting instance is not a counterexample [28].

6.2 Weighing arguments

For a problem instance that does not obey a worst-case approximation bound,
there is a job (X) that is scheduled such that it crosses the bound to prove times the
end of an optimal schedule (B) for LPT-like algorithms, or that can not be sched-
uled when the deadline is at B for MULTIFIT-like algorithms. If the order defined on

Scheduling Problems - New Applications and Trends

76

5.1 Scheduling with at most one fixed job on each machine

When scheduling on multiple processors with at most one fixed job on each
machine, LPT and MULTIFIT variants have been shown to achieve a worst-case
approximation bound of 1.5, which is best possible for this problem unless P = NP .

5.1.1 Same-speed processors

For scheduling on identical machines with at most one fixed job on each
machine, an LPT-like algorithm, LPTX, was given in [3], for which a worst-case
approximation bound of 1.5 was shown. Before running LPT, LPTX creates an
order of processors, which is then used by LPT to break ties in case two processors
become available at the same time. The ordered list of processors created before
applying LPT is built in two steps:

1. All processors that have an unavailability period that is not at the beginning
of the schedule are assigned to this list in non-decreasing order of the start of
their downtime.

2. All other processors (that is, those which have the downtimes at the beginning
of the scheduling period or have no downtime at all) are appended to the list
built in the previous step in non-decreasing order of the times at which they
can start executing jobs.

5.1.2 Uniform processors

In the more general case of scheduling on uniform machines with at most one
fixed job on each machine, a MULTIFIT-like algorithm, LMULTIFIT, was given in [4],
which achieves the worst-case approximation bound of 1.5. For a MULTIFIT variant to
work in the presence of downtimes, it must be specified how it deals with the fact that
there are more than one time interval in which jobs can be scheduled on one processor.

After a MULTIFIT deadline is assigned and before applying the bin packing
algorithm FFD (see Section 3), LMULTIFIT orders all time intervals in which jobs
can be scheduled in non-decreasing order of their length. Here, the length of a time
interval is the duration of the time interval multiplied by the speed factor of the
processor on which the interval occurs.

5.2 Scheduling with multiple fixed jobs on each machine

For scheduling on identical processors with fixed jobs, where the number of
fixed jobs on a machine can be arbitrary, approximation algorithms that are much
more complex than LPT and MULTIFIT were given in [27], with a worst-case
approximation bound of 1.5 + ε , where ε is the parameter of a fully polynomial
time approximation scheme (FPTAS) for the multiple subset sum problem, and in
[6] with a worst-case approximation bound of 1.5, where a FPTAS for the multiple
knapsack problem is used as a subroutine.

In [28], a very long proof is outlined that LMULTIFIT achieves a worst-case
approximation bound of 1.5 when scheduling on identical processors with at most
two fixed jobs on each machine. In [29], an algorithm using two MULTIFIT-like
algorithms is shown to have a worst-case approximation bound of 1.625, which
likely can be improved to 1.6 without excessive effort.

The time complexity of the MULTIFIT-like and LPT-like algorithms is significanlty
lower than that of the algorithms from [6, 27], and they are also significantly easier to

77

Approximation for Scheduling on Parallel Machines with Fixed Jobs or Unavailability Periods
DOI: http://dx.doi.org/10.5772/intechopen.89694

implement; however, there is little hope in our opinion that bounds better than 1.55
can be shown in the general case for such algorithms with proofs of reasonable length.
Given such problems, the user must decide what is best suited for his or her needs.

6. Proof techniques

Worst-case approximation results in this research area about LPT and
MULTIFIT variants mainly use proofs by contradiction in which some proof
techniques appear very often. We next describe two techniques that we consider to
be the most relevant, and then comment upon some other methods that are used
relatively often. In the following, we call job lengths the durations of the jobs on the
slowest processor.

6.1 Minimal counterexample

A very well-known proof method is that of assuming that there exists a minimal
counterexample to a theorem T, that is, a problem instance for which the algorithm’s
schedule does not obey that theorem, with a minimal number of processors, of jobs,
of downtimes (or of fixed jobs) that do not start at the beginning of the schedule, and/
or of other quantities that can be minimized which are chosen to fit the statements
to prove. A minimal counterexample exists whenever there is a counterexample, and
thus, showing that it does not exist proves T. In order to define minimality among
counterexamples, the author of the proof first chooses a partial order among the prob-
lem instances. An instance which is minimal according to this partial order among the
instances for which a theorem T does not apply is called a minimal counterexample.

This method can be very powerful, because after assuming that a minimal
counterexample does not obey a theorem T, many useful properties of a minimal
counterexample can be derived from the fact that no lesser counterexample exists,
which can ultimately lead to a contradiction.

Here, a lesser counterexample is a counterexample with less processors, or less
tasks, or less downtimes, or with a job with a smaller length, depending on how the
order of instances was defined. Showing that a minimal counterexample does not
exist is usually significantly easier than developing a direct proof for T.

The theorem to prove could be that the worst-case approximation bound holds,
but it can also be an intermediary result that is later used to prove the worst-case
approximation bound. One could address instances that have a certain property
first, and then show that the worst-case approximation bound holds for these, for
example by using a minimal counterexample among these instances, and then do
the same for all other instances.

Sometimes it is enough to define the partial order only using the number of
processors [11], while in most cases, it is useful to include multiple characteristics
of problem instances, such as all or a part of the characteristics enumerated above.
In one situation, a minimal counterexample was defined to also have minimal
job lengths, meaning that if in a minimal counterexample the length of one job is
reduced, the resulting instance is not a counterexample [28].

6.2 Weighing arguments

For a problem instance that does not obey a worst-case approximation bound,
there is a job (X) that is scheduled such that it crosses the bound to prove times the
end of an optimal schedule (B) for LPT-like algorithms, or that can not be sched-
uled when the deadline is at B for MULTIFIT-like algorithms. If the order defined on

Scheduling Problems - New Applications and Trends

78

instances includes the number of jobs, there is only one such job in a minimal coun-
terexample to (for example) a theorem that the analyzed algorithm (A) generates
only schedules that obey the bound. Otherwise, all jobs that would be scheduled
afterward can be removed and a lesser counterexample could be obtained, result-
ing in a contradiction. As a consequence of how LPT and MULTIFIT work, X is the
smallest job of the minimal counterexample in both cases.

The schedule S A generated by an LPT-like algorithm A until a job would cross B
and the schedule S A generated by a MULTIFIT-like algorithm A if the MULTIFIT
deadline is at B do not contain the job X . An optimal schedule, however, contains all
jobs, including X .

Therefore, the optimal schedule has more total execution time than S A . Also, if
nonzero weights are assigned to each job, the optimal schedule has a total weight of
all its jobs that is greater than that of S A , the difference being the weight of X . An
adequate assignment of weights to jobs can lead to the conclusion that the sum of
weights of all jobs contained in the schedule S A is at least the sum of the weights of
all jobs in the considered optimal schedule, a contradiction.

There are infinite ways of assigning weights, and there is no unique strategy
that leads to success. Usually, the weight function is monotonic with regard to
job lengths, and, as X has the smallest job length, its weight can be set to 1. In the
following, we denote both the job X and the time X would need to be executed
on the slowest processor by X. The other weights can be assigned for intervals
of job lengths, for example, a job with length within [X,1.5X) could be assigned
weight 1. Weights can also be assigned otherwise: for example, a job with a
certain property can be chosen to be the end of a weight interval. Jobs that have
a certain property can also be assigned a specific weight that corresponds to that
property. Of course, while proving different theorems that lead to the proof of a
worst-case approximation bound, a new weight function can be chosen for each
statement to prove.

6.3 Normalizing time intervals and job execution times

In order to reason easier about time, one can divide all durations of time inter-
vals in which jobs can be scheduled by X if scheduling on identical processors.
For uniform processors, such intervals can be divided by the time it would take
X to execute on the processor on which the interval occurs, in order to derive the
length of the interval [4]. Also, all job durations can be divided by X and these
normalized durations can be used in the proofs. For example, a theorem could be
proved that there are no jobs that have a longer duration than 5, or it can be stated
that the unused time intervals on processors before the MULTIFIT deadline B all
have length less than 1, as otherwise X would have been scheduled in one of those
intervals.

6.4 Task density

In the case of uniform processors, the time intervals can have unbounded
lengths because the speed factors may be arbitrarily high. A way to describe the
amount of jobs assigned within a schedule in such an interval is to use task densi-
ties, which can be defined for each task as being the ratio between its weight and its
length. Also, a task type density can be defined as a lower bound for all possible task
densities of tasks of that type. The concept of task density can be used in order to
reason about time intervals that may be very long. For example, the total weight of
all tasks in an interval of length t is at most t times the maximum task type density
among all task types represented within that interval.

79

Approximation for Scheduling on Parallel Machines with Fixed Jobs or Unavailability Periods
DOI: http://dx.doi.org/10.5772/intechopen.89694

6.5 Processor with more execution time in the optimal schedule

We use the notations from the previous subsection. Since X is not contained
in SA, there must be a processor p* in the optimal schedule that has a total execu-
tion time that is greater than that of SA on p*. Such a processor can be analyzed in
detail and may be shown to have certain properties that, in conjunction with other
methods, result in proofs of useful theorems. For example, the existence of p* may
imply a certain minimum duration of the optimal schedule, in conjunction with the
observation that X could not be fitted by A on p* without causing the maximum
completion time of SA to exceed B.

7. Conclusions and future challenges

In this work, we considered worst-case approximation for scheduling on mul-
tiple machines with availability constraints or with fixed jobs in order to minimize
the maximum completion time. We surveyed results obtained in this research area
and commented upon the algorithms used.

Prominent among these algorithms are LPT and MULTIFIT and their variants,
whereas for multiprocessor scheduling with fixed jobs, more complicated algo-
rithms were used to achieve best possible worst-case approximation bounds in the
class of polynomial algorithms assuming that P ≠ NP in the general case where there
can be any number of fixed jobs on each machine.

The problem of scheduling with availability constraints cannot be approximated
by a polynomial-time algorithm with a constant worst-case approximation bound,
even if there is at most one downtime on each machine, unless assumptions about
the downtimes are made. The results we presented in this area address the problem
of scheduling on identical processors with at most one downtime on each machine,
with various assumptions.

Due to its different objective function, the problem of scheduling on identical
parallel machines with fixed jobs allowed for the development of a polynomial-time
approximation algorithm with a worst-case approximation bound of 1.5, and the
development of a PTAS for scheduling on a constant number of uniform machines
with fixed jobs was also possible.

The MULTIFIT and LPT variants developed for the discussed variants of these
problems could be useful in practice, as their time complexity is low and thus they
should be able to address very large problem instances, as they are easy to imple-
ment, and because in some cases their worst-case approximation bounds could be
considered to be good enough. In the case of scheduling on uniform nonsimultane-
ous machines, the average performance of a MULTIFIT variant was studied, and
shown to be very good, as the experiments suggest that in general, for instances
that can be relevant in practice and for which exhaustive search is not an option, the
algorithm returns schedules with a maximum completion time that is within 3% of
that of an optimal schedule.

We also elaborated on the most encountered proof techniques in worst-case
approximation bound proofs for LPT and MULTIFIT variants.

The limitations of the presented works result mainly from the difficulty of the
problem of scheduling with unavailability periods when considering the subject of
approximation. To assess how well the proposed heuristics for this problem perform
under such conditions is difficult, as it is hard to have a good estimate of the opti-
mal schedule unless it is computed by an exact algorithm as was done in [26]. This
problem has therefore been addressed only by considering the special case where
there is at most one downtime on each machine.

Scheduling Problems - New Applications and Trends

78

instances includes the number of jobs, there is only one such job in a minimal coun-
terexample to (for example) a theorem that the analyzed algorithm (A) generates
only schedules that obey the bound. Otherwise, all jobs that would be scheduled
afterward can be removed and a lesser counterexample could be obtained, result-
ing in a contradiction. As a consequence of how LPT and MULTIFIT work, X is the
smallest job of the minimal counterexample in both cases.

The schedule S A generated by an LPT-like algorithm A until a job would cross B
and the schedule S A generated by a MULTIFIT-like algorithm A if the MULTIFIT
deadline is at B do not contain the job X . An optimal schedule, however, contains all
jobs, including X .

Therefore, the optimal schedule has more total execution time than S A . Also, if
nonzero weights are assigned to each job, the optimal schedule has a total weight of
all its jobs that is greater than that of S A , the difference being the weight of X . An
adequate assignment of weights to jobs can lead to the conclusion that the sum of
weights of all jobs contained in the schedule S A is at least the sum of the weights of
all jobs in the considered optimal schedule, a contradiction.

There are infinite ways of assigning weights, and there is no unique strategy
that leads to success. Usually, the weight function is monotonic with regard to
job lengths, and, as X has the smallest job length, its weight can be set to 1. In the
following, we denote both the job X and the time X would need to be executed
on the slowest processor by X. The other weights can be assigned for intervals
of job lengths, for example, a job with length within [X,1.5X) could be assigned
weight 1. Weights can also be assigned otherwise: for example, a job with a
certain property can be chosen to be the end of a weight interval. Jobs that have
a certain property can also be assigned a specific weight that corresponds to that
property. Of course, while proving different theorems that lead to the proof of a
worst-case approximation bound, a new weight function can be chosen for each
statement to prove.

6.3 Normalizing time intervals and job execution times

In order to reason easier about time, one can divide all durations of time inter-
vals in which jobs can be scheduled by X if scheduling on identical processors.
For uniform processors, such intervals can be divided by the time it would take
X to execute on the processor on which the interval occurs, in order to derive the
length of the interval [4]. Also, all job durations can be divided by X and these
normalized durations can be used in the proofs. For example, a theorem could be
proved that there are no jobs that have a longer duration than 5, or it can be stated
that the unused time intervals on processors before the MULTIFIT deadline B all
have length less than 1, as otherwise X would have been scheduled in one of those
intervals.

6.4 Task density

In the case of uniform processors, the time intervals can have unbounded
lengths because the speed factors may be arbitrarily high. A way to describe the
amount of jobs assigned within a schedule in such an interval is to use task densi-
ties, which can be defined for each task as being the ratio between its weight and its
length. Also, a task type density can be defined as a lower bound for all possible task
densities of tasks of that type. The concept of task density can be used in order to
reason about time intervals that may be very long. For example, the total weight of
all tasks in an interval of length t is at most t times the maximum task type density
among all task types represented within that interval.

79

Approximation for Scheduling on Parallel Machines with Fixed Jobs or Unavailability Periods
DOI: http://dx.doi.org/10.5772/intechopen.89694

6.5 Processor with more execution time in the optimal schedule

We use the notations from the previous subsection. Since X is not contained
in SA, there must be a processor p* in the optimal schedule that has a total execu-
tion time that is greater than that of SA on p*. Such a processor can be analyzed in
detail and may be shown to have certain properties that, in conjunction with other
methods, result in proofs of useful theorems. For example, the existence of p* may
imply a certain minimum duration of the optimal schedule, in conjunction with the
observation that X could not be fitted by A on p* without causing the maximum
completion time of SA to exceed B.

7. Conclusions and future challenges

In this work, we considered worst-case approximation for scheduling on mul-
tiple machines with availability constraints or with fixed jobs in order to minimize
the maximum completion time. We surveyed results obtained in this research area
and commented upon the algorithms used.

Prominent among these algorithms are LPT and MULTIFIT and their variants,
whereas for multiprocessor scheduling with fixed jobs, more complicated algo-
rithms were used to achieve best possible worst-case approximation bounds in the
class of polynomial algorithms assuming that P ≠ NP in the general case where there
can be any number of fixed jobs on each machine.

The problem of scheduling with availability constraints cannot be approximated
by a polynomial-time algorithm with a constant worst-case approximation bound,
even if there is at most one downtime on each machine, unless assumptions about
the downtimes are made. The results we presented in this area address the problem
of scheduling on identical processors with at most one downtime on each machine,
with various assumptions.

Due to its different objective function, the problem of scheduling on identical
parallel machines with fixed jobs allowed for the development of a polynomial-time
approximation algorithm with a worst-case approximation bound of 1.5, and the
development of a PTAS for scheduling on a constant number of uniform machines
with fixed jobs was also possible.

The MULTIFIT and LPT variants developed for the discussed variants of these
problems could be useful in practice, as their time complexity is low and thus they
should be able to address very large problem instances, as they are easy to imple-
ment, and because in some cases their worst-case approximation bounds could be
considered to be good enough. In the case of scheduling on uniform nonsimultane-
ous machines, the average performance of a MULTIFIT variant was studied, and
shown to be very good, as the experiments suggest that in general, for instances
that can be relevant in practice and for which exhaustive search is not an option, the
algorithm returns schedules with a maximum completion time that is within 3% of
that of an optimal schedule.

We also elaborated on the most encountered proof techniques in worst-case
approximation bound proofs for LPT and MULTIFIT variants.

The limitations of the presented works result mainly from the difficulty of the
problem of scheduling with unavailability periods when considering the subject of
approximation. To assess how well the proposed heuristics for this problem perform
under such conditions is difficult, as it is hard to have a good estimate of the opti-
mal schedule unless it is computed by an exact algorithm as was done in [26]. This
problem has therefore been addressed only by considering the special case where
there is at most one downtime on each machine.

Scheduling Problems - New Applications and Trends

80

In the future, it may be interesting to compare the heuristics proposed for the
same problems experimentally.

Another limitation of the discussed works and of many other research works
on scheduling results from the fact they attempt to understand problems with
one, two, or at most three aspects at one time, whereas in many practical prob-
lems such as some production planning problems, many aspects occur at once.
For example, availability constraints can appear alongside a multitude of other
constraints that have to be considered simultaneously. These can be precedence
constraints, that certain jobs have to be assigned to certain machines, or prefer-
ences of the manufacturer that the machines should not have more than a 60%
or another predefined load for example in order to leave room for unexpected
events. Furthermore, orders often come online, and if an urgent order from an
important client needs to be given priority, this can alter the delivery times of
other orders. Also, delivery times and delays have a big relevance in practice,
as not delivering on time can cause fines. Such practical problems can also have
sequence-dependent setup times, the necessity for setup operators to be present to
perform setups, the preference that setup times are kept low by putting jobs from
the same family of types of jobs consecutively on machines whenever possible,
the necessity for workers to attend to certain machines while production takes
place, and worker breaks and holidays. The preexisting schedule also has to be
kept unchanged for a predefined time period since materials are brought to the
production place in preparation for the production process. In addition, orders
may have priorities and deadlines. For such problems, given the time constraints
in which the schedule needs to be generated and that there can be thousands of
jobs, usually a heuristic is employed that first orders the jobs for example by using
priorities assigned to them and/or their deadlines and then schedules them on the
machines in that order while also obeying all constraints and attempting to fulfill
all preferences. Difficulties in researching such problems include that probably for
different sets of orders different scheduling strategies may be better, and that an
optimal schedule may be very hard to find and thus it is hard to quantify how well
a heuristic performs.

Acknowledgements

This publication was supported by the Open Access Publication Fund of
Technische Universität Berlin.

Conflict of interest

The author declares no conflict of interest.

Abbreviations

MSP multiprocessor scheduling problem
NMSP nonsimultaneous multiprocessor scheduling problem
UNMSP uniform nonsimultaneous multiprocessor scheduling problem
LPT largest processing time
FFD first fit decreasing

81

Approximation for Scheduling on Parallel Machines with Fixed Jobs or Unavailability Periods
DOI: http://dx.doi.org/10.5772/intechopen.89694

Author details

Liliana Grigoriu1,2

1 Department of Computer Science and Engineering, Faculty of Control and
Computers, Politehnica University Bucharest, Bucharest, Romania

2 Department of Mathematics, Technical University of Berlin, Berlin, Germany

*Address all correspondence to: liliana.grigoriu@cs.pub.ro

© 2019 The Author(s). Licensee IntechOpen. This chapter is distributed under the terms
of the Creative Commons Attribution License (http://creativecommons.org/licenses/
by/3.0), which permits unrestricted use, distribution, and reproduction in any medium,
provided the original work is properly cited.

Scheduling Problems - New Applications and Trends

80

In the future, it may be interesting to compare the heuristics proposed for the
same problems experimentally.

Another limitation of the discussed works and of many other research works
on scheduling results from the fact they attempt to understand problems with
one, two, or at most three aspects at one time, whereas in many practical prob-
lems such as some production planning problems, many aspects occur at once.
For example, availability constraints can appear alongside a multitude of other
constraints that have to be considered simultaneously. These can be precedence
constraints, that certain jobs have to be assigned to certain machines, or prefer-
ences of the manufacturer that the machines should not have more than a 60%
or another predefined load for example in order to leave room for unexpected
events. Furthermore, orders often come online, and if an urgent order from an
important client needs to be given priority, this can alter the delivery times of
other orders. Also, delivery times and delays have a big relevance in practice,
as not delivering on time can cause fines. Such practical problems can also have
sequence-dependent setup times, the necessity for setup operators to be present to
perform setups, the preference that setup times are kept low by putting jobs from
the same family of types of jobs consecutively on machines whenever possible,
the necessity for workers to attend to certain machines while production takes
place, and worker breaks and holidays. The preexisting schedule also has to be
kept unchanged for a predefined time period since materials are brought to the
production place in preparation for the production process. In addition, orders
may have priorities and deadlines. For such problems, given the time constraints
in which the schedule needs to be generated and that there can be thousands of
jobs, usually a heuristic is employed that first orders the jobs for example by using
priorities assigned to them and/or their deadlines and then schedules them on the
machines in that order while also obeying all constraints and attempting to fulfill
all preferences. Difficulties in researching such problems include that probably for
different sets of orders different scheduling strategies may be better, and that an
optimal schedule may be very hard to find and thus it is hard to quantify how well
a heuristic performs.

Acknowledgements

This publication was supported by the Open Access Publication Fund of
Technische Universität Berlin.

Conflict of interest

The author declares no conflict of interest.

Abbreviations

MSP multiprocessor scheduling problem
NMSP nonsimultaneous multiprocessor scheduling problem
UNMSP uniform nonsimultaneous multiprocessor scheduling problem
LPT largest processing time
FFD first fit decreasing

81

Approximation for Scheduling on Parallel Machines with Fixed Jobs or Unavailability Periods
DOI: http://dx.doi.org/10.5772/intechopen.89694

Author details

Liliana Grigoriu1,2

1 Department of Computer Science and Engineering, Faculty of Control and
Computers, Politehnica University Bucharest, Bucharest, Romania

2 Department of Mathematics, Technical University of Berlin, Berlin, Germany

*Address all correspondence to: liliana.grigoriu@cs.pub.ro

© 2019 The Author(s). Licensee IntechOpen. This chapter is distributed under the terms
of the Creative Commons Attribution License (http://creativecommons.org/licenses/
by/3.0), which permits unrestricted use, distribution, and reproduction in any medium,
provided the original work is properly cited.

82

Scheduling Problems - New Applications and Trends

[1] Hwang H-C, Chang SY. Parallel
machines scheduling with machine
shutdowns. Computers and
Mathematics with Applications. June
1998;36:21-31

[2] Hwang H-C, Lee K, Chang SY. The
effect of machine availability on
the worst-case performance of
LPT. Discrete Applied Mathematics.
April 2005;148:49-61

[3] Grigoriu L, Friesen DK. Scheduling
on same-speed processors with at
most one downtime on each machine.
Discrete Optimization. November
2010;7:212-221

[4] Grigoriu L, Friesen DK. Scheduling
on uniform processors with at most one
downtime on each machine. Discrete
Optimization. November 2015;17:14-24

[5] Scharbrodt M, Steger A, Weisser H.
Approximability of scheduling with
fixed jobs. Journal of Scheduling.
November 1999;2(6):267-284

[6] Jansen K, Pradel L, Schwarz UM,
Svensson O. Faster approximation
algorithms for scheduling with fixed
jobs. In: 17th Conference of Computing:
The Australasian Theory Symposium
(CATS 2011), Perth, Australia, January.
2011

[7] Graham RL. Bounds on
multiprocessing timing anomalies.
SIAM Journal of Applied Mathematics.
March 1969;17:416-429

[8] Coffman EG Jr, Garey MR,
Johnson DS. An application of bin-
packing to multiprocessor scheduling.
SIAM Journal on Computing. February
1978;7:1-17

[9] Hwang HC, Lim K. Exact
performance of MULTIFIT for
nonsimultaneous machines. Discrete
Applied Mathematics. 2014;167:172-187

[10] Kellerer H. Algorithms for
multiprocessor scheduling with
machine release times. IIE Transactions.
1998;30:991-999

[11] Grigoriu L, Friesen DK.
Approximation for scheduling on
uniform nonsimultaneous parallel
machines. Journal of Scheduling.
December 2017;20:593-600

[12] Chen B. Tighter bound for multifit
scheduling on uniform processors.
Discrete Applied Mathematics. May
1991;31:227-260

[13] Lee CY. Parallel machine scheduling
with nonsimultaneous machine
available time. Discrete Applied
Mathematics. January 1991;30:53-61

[14] Chang SY, Hwang HC.
The worst-case analysis of the
MULTIFIT algorithm for scheduling
nonsimultaneous parallel machines.
Discrete Applied Mathematics. June
1999;92:135-147

[15] Yue M. On the exact upper bound
of the MULTIFIT processor scheduling
algorithm. Annals of Operations
Research. December 1990;24:233-259

[16] Friesen DK, Langston MA. Bounds
for multifit scheduling on uniform
processors. SIAM Journal on
Computing. February 1983;12:60-69

[17] Burkard RE, He Y. A note on
MULTIFIT scheduling for uniform
machines. Computing. 1998;61:277-283

[18] He Y. Uniform machine scheduling
with machine available constraints. Acta
Matematicae Applicatae Sinica (English
Series). 2000;16:122-129

[19] Grigoriu L, Friesen DK. Scheduling
on uniform nonsimultaneous parallel
machines. In: Fink A, Fiigenschuh A,
Geiger M, editors. Operations Research

References

83

Approximation for Scheduling on Parallel Machines with Fixed Jobs or Unavailability Periods
DOI: http://dx.doi.org/10.5772/intechopen.89694

Proceedings 2016 Selected Papers of
the Annual International Conference
of the German Operations Research
Society (GOR), Hannover, August 30–
September 2. 2016. pp. 467-473

[20] Lee CY, Lei L, Pinedo M. Current
trends in deterministic scheduling.
Annals of Operations Research. April
1997;70:1-41

[21] Sanlaville E, Schmidt G. Machine
scheduling with availability constraints.
Acta Informatica. September
1998;35:795-811

[22] Schmidt G. Scheduling with limited
machine availability. European Journal
of Operational Research. February
2000;121:1-15

[23] Lee C-Y. Machine scheduling with
availability constraints. In: Leung
JY-T, editor. Handbook of Scheduling:
Algorithms, Models and Performance
Analysis. London: Chapman & Hall/
CRC; 2004. pp. 22-1-22-13

[24] Ma Y, Chu C, Zuo C. A survey of
scheduling with deterministic machine
availability constraints. Computers &
Industrial Engineering. 2010;58:199-211

[25] Lee CY. Machine scheduling with
an availability constraint. Journal
of Global Optimization. December
1996;9:395-416

[26] Kaabi J, Harrath Y. Scheduling on
uniform parallel machines with periodic
unavailability constraints. International
Journal of Production Research.
2019;57(1):216-227

[27] Diedrich F, Jansen K. Improved
approximation algorithms for
scheduling with fixed jobs. Proceedings
of 20th ACM-SIAM Symposium
on Discrete Algorithms (SODA).
2009:675-684

[28] Grigoriu L. Multiprocessor
scheduling with availability constraints

[PhD thesis]. College Station, TX, USA:
Texas A&M University; 2010

[29] Grigoriu L. Scheduling on parallel
machines with variable availability
patterns [PhD thesis]. Bucharest,
Romania: Politehnica University
Bucharest; 2012

82

Scheduling Problems - New Applications and Trends

[1] Hwang H-C, Chang SY. Parallel
machines scheduling with machine
shutdowns. Computers and
Mathematics with Applications. June
1998;36:21-31

[2] Hwang H-C, Lee K, Chang SY. The
effect of machine availability on
the worst-case performance of
LPT. Discrete Applied Mathematics.
April 2005;148:49-61

[3] Grigoriu L, Friesen DK. Scheduling
on same-speed processors with at
most one downtime on each machine.
Discrete Optimization. November
2010;7:212-221

[4] Grigoriu L, Friesen DK. Scheduling
on uniform processors with at most one
downtime on each machine. Discrete
Optimization. November 2015;17:14-24

[5] Scharbrodt M, Steger A, Weisser H.
Approximability of scheduling with
fixed jobs. Journal of Scheduling.
November 1999;2(6):267-284

[6] Jansen K, Pradel L, Schwarz UM,
Svensson O. Faster approximation
algorithms for scheduling with fixed
jobs. In: 17th Conference of Computing:
The Australasian Theory Symposium
(CATS 2011), Perth, Australia, January.
2011

[7] Graham RL. Bounds on
multiprocessing timing anomalies.
SIAM Journal of Applied Mathematics.
March 1969;17:416-429

[8] Coffman EG Jr, Garey MR,
Johnson DS. An application of bin-
packing to multiprocessor scheduling.
SIAM Journal on Computing. February
1978;7:1-17

[9] Hwang HC, Lim K. Exact
performance of MULTIFIT for
nonsimultaneous machines. Discrete
Applied Mathematics. 2014;167:172-187

[10] Kellerer H. Algorithms for
multiprocessor scheduling with
machine release times. IIE Transactions.
1998;30:991-999

[11] Grigoriu L, Friesen DK.
Approximation for scheduling on
uniform nonsimultaneous parallel
machines. Journal of Scheduling.
December 2017;20:593-600

[12] Chen B. Tighter bound for multifit
scheduling on uniform processors.
Discrete Applied Mathematics. May
1991;31:227-260

[13] Lee CY. Parallel machine scheduling
with nonsimultaneous machine
available time. Discrete Applied
Mathematics. January 1991;30:53-61

[14] Chang SY, Hwang HC.
The worst-case analysis of the
MULTIFIT algorithm for scheduling
nonsimultaneous parallel machines.
Discrete Applied Mathematics. June
1999;92:135-147

[15] Yue M. On the exact upper bound
of the MULTIFIT processor scheduling
algorithm. Annals of Operations
Research. December 1990;24:233-259

[16] Friesen DK, Langston MA. Bounds
for multifit scheduling on uniform
processors. SIAM Journal on
Computing. February 1983;12:60-69

[17] Burkard RE, He Y. A note on
MULTIFIT scheduling for uniform
machines. Computing. 1998;61:277-283

[18] He Y. Uniform machine scheduling
with machine available constraints. Acta
Matematicae Applicatae Sinica (English
Series). 2000;16:122-129

[19] Grigoriu L, Friesen DK. Scheduling
on uniform nonsimultaneous parallel
machines. In: Fink A, Fiigenschuh A,
Geiger M, editors. Operations Research

References

83

Approximation for Scheduling on Parallel Machines with Fixed Jobs or Unavailability Periods
DOI: http://dx.doi.org/10.5772/intechopen.89694

Proceedings 2016 Selected Papers of
the Annual International Conference
of the German Operations Research
Society (GOR), Hannover, August 30–
September 2. 2016. pp. 467-473

[20] Lee CY, Lei L, Pinedo M. Current
trends in deterministic scheduling.
Annals of Operations Research. April
1997;70:1-41

[21] Sanlaville E, Schmidt G. Machine
scheduling with availability constraints.
Acta Informatica. September
1998;35:795-811

[22] Schmidt G. Scheduling with limited
machine availability. European Journal
of Operational Research. February
2000;121:1-15

[23] Lee C-Y. Machine scheduling with
availability constraints. In: Leung
JY-T, editor. Handbook of Scheduling:
Algorithms, Models and Performance
Analysis. London: Chapman & Hall/
CRC; 2004. pp. 22-1-22-13

[24] Ma Y, Chu C, Zuo C. A survey of
scheduling with deterministic machine
availability constraints. Computers &
Industrial Engineering. 2010;58:199-211

[25] Lee CY. Machine scheduling with
an availability constraint. Journal
of Global Optimization. December
1996;9:395-416

[26] Kaabi J, Harrath Y. Scheduling on
uniform parallel machines with periodic
unavailability constraints. International
Journal of Production Research.
2019;57(1):216-227

[27] Diedrich F, Jansen K. Improved
approximation algorithms for
scheduling with fixed jobs. Proceedings
of 20th ACM-SIAM Symposium
on Discrete Algorithms (SODA).
2009:675-684

[28] Grigoriu L. Multiprocessor
scheduling with availability constraints

[PhD thesis]. College Station, TX, USA:
Texas A&M University; 2010

[29] Grigoriu L. Scheduling on parallel
machines with variable availability
patterns [PhD thesis]. Bucharest,
Romania: Politehnica University
Bucharest; 2012

Chapter 5

An Empirical Survey on Load
Balancing: A Nature-Inspired
Approach
Surya Teja Marella and Thummuru Gunasekhar

Abstract

Since the dawn of humanity man tried to mimic several animals and their
behavior be it in the age of hunting of while designing the aero plane. Human brain
holds a significant amount of power in observing the species around him and trying
to incorporate their behavior in several walks of life. This mimicking has helped
human to evolve into beings which we are now. Some typical examples include
navigation systems, designing several gadgets like aero planes, boats, etc. These
days these inspirations are several, and their inspiration is being utilized in several
fields like operations, supply-chain management, machine learning and several
other fields. The similar kind of approach has been discussed in this paper where we
tried to analyze different phenomenon in nature and how different algorithms were
designed from these and how these can ultimately be used to solve different issues
in cloud balancing. Essential component of cloud computing is load balancer which
holds a crucial role of task allocation in virtual machines and several kinds of
algorithms were developed on different ways of task allocation procedures each
holding its significance here we tried to find the optimal resource allocation in terms
of task allocation and rather than approaching through traditional methods we tried
to solve this issue by using soft computing techniques. Specifically, nature-inspired
algorithms as it hold the key to unlocking massive potential regarding research and
problem-solving approach. The central idea of this paper is to connect different
optimization techniques to load balancer and how could we make a hybrid algo-
rithm to serve the purpose. We also discussed several different types of algorithms
each bearing its roots from different natural procedures. All the algorithms in this
paper can be broadly tabulated into three different types SO (Swarm optimization
techniques), GO (Genetic-based algorithms), PO (Physics-based algorithms).

Keywords: load balancing, cloud computing, nature-inspired algorithms,
optimization techniques

1. Introduction

Load balancing implies guaranteeing the even distribution of workloads and to
adjust the load among the accessible resources ideally. It helps in accomplishing a
high client fulfillment and asset utilization proportion. Many scheduling algorithms
have been proposed to maintain load balancing. The primary point is the ideal assets
utilization resulting in improved throughput, migration times or smaller response,

85

Chapter 5

An Empirical Survey on Load
Balancing: A Nature-Inspired
Approach
Surya Teja Marella and Thummuru Gunasekhar

Abstract

Since the dawn of humanity man tried to mimic several animals and their
behavior be it in the age of hunting of while designing the aero plane. Human brain
holds a significant amount of power in observing the species around him and trying
to incorporate their behavior in several walks of life. This mimicking has helped
human to evolve into beings which we are now. Some typical examples include
navigation systems, designing several gadgets like aero planes, boats, etc. These
days these inspirations are several, and their inspiration is being utilized in several
fields like operations, supply-chain management, machine learning and several
other fields. The similar kind of approach has been discussed in this paper where we
tried to analyze different phenomenon in nature and how different algorithms were
designed from these and how these can ultimately be used to solve different issues
in cloud balancing. Essential component of cloud computing is load balancer which
holds a crucial role of task allocation in virtual machines and several kinds of
algorithms were developed on different ways of task allocation procedures each
holding its significance here we tried to find the optimal resource allocation in terms
of task allocation and rather than approaching through traditional methods we tried
to solve this issue by using soft computing techniques. Specifically, nature-inspired
algorithms as it hold the key to unlocking massive potential regarding research and
problem-solving approach. The central idea of this paper is to connect different
optimization techniques to load balancer and how could we make a hybrid algo-
rithm to serve the purpose. We also discussed several different types of algorithms
each bearing its roots from different natural procedures. All the algorithms in this
paper can be broadly tabulated into three different types SO (Swarm optimization
techniques), GO (Genetic-based algorithms), PO (Physics-based algorithms).

Keywords: load balancing, cloud computing, nature-inspired algorithms,
optimization techniques

1. Introduction

Load balancing implies guaranteeing the even distribution of workloads and to
adjust the load among the accessible resources ideally. It helps in accomplishing a
high client fulfillment and asset utilization proportion. Many scheduling algorithms
have been proposed to maintain load balancing. The primary point is the ideal assets
utilization resulting in improved throughput, migration times or smaller response,

85

ideal adaptability, and overall system production [1]. There are individual difficul-
ties in cloud computing, and that needed to be routed to give the most reasonable
and productive effective load balancing algorithms. These challenges are:

1. Geographical/spatial distributions of the nodes: to design an LBA that works
for spatially or geographically distributed nodes is an arduous task. It is
because as the distance increases the speed of the network links among the
nodes is influenced which thusly influences the throughput [2].

2. The complexity of algorithm: complexity affects the overall performance of a
system. Generally, LBA has a less complicated implementation. Complexity
lead to delays which further causes more problems [3].

3. Point of failure: the load balancing algorithm ought to be planned in a way that
they abstain from having a single point of failure.

4.Static load balancing algorithm: a static load balancing algorithm works on the
earlier state/previous data, not on the ongoing state. It cannot adjust to the load
changes at run-time [4].

The challenges as mentioned above remain unsolved. Researchers are going on
to bring about changes in the existing algorithms and to create new algorithms to
overcome these challenges.

Cloud load balancing is the activity of regulating the workload and computing
assets in a cloud computing environment to accomplish high performance at
potentially lower costs. This includes facilitating the dissemination of workload
activity and requests that dwell over the Interweb [5]. As we know that, a load
balancing technique is basically appropriating workloads among the servers and
processing assets in a cloud domain in which the number of clients where more
significant than the servers so that there can be the burden on the servers so we
need to balance the load so we distribute the tasks among the servers equally so it
cannot be the bash with any other server and in this way we can increase the
performance of a server [6]. By allocating the resources among the various com-
puter network or server, Load balancing allows companies or organizations to
manage the applications or workload demands, so load balancing in cloud comput-
ing that incorporate facilitating the distribution of workload activity and request
over the system so first level every one of the customers have been composed, In
second level all the servers have been organized and in between these two a load
balance rare used to balance the load among the server and is generally used by the
company or organizations to manage their applications. Cloud computing is an
advanced worldview to give benefits through the Interweb [7]. Load balancing is an
essential part of cloud computing and avoids the situation in which a couple of
nodes wind up finished weight while the others are sitting still or have little work to
do. Load balancing can upgrade the Quality of Service (QoS) estimations, including
response time, cost, throughput, execution and asset utilization. In computing,
Load balancing [8] enhances the distribution of workloads over various figuring
assets, for example, PCs, a PC gathering, central processing units, network links, or
disk drives. Load balancing means to enhance asset usage, maximize throughput,
confine response time, and maintain a strategic distance from over-weight of any
single asset. Using different parts with load balancing rather than a single compo-
nent may increase reliability and accessibility through excess. The load balancing
in clouds may be among physical hosts or VMs. This balancing segment scatters the
dynamic workload fairly among every one of the hubs (hosts or VMs).

86

Scheduling Problems - New Applications and Trends

The heap adjusting in the cloud is additionally alluded to as load adjusting as an
administration (LBaaS) [9] (Figure 1).

Load adjusting is to move the workload to computational assets that are
underutilized, with an outrageous objective of lessening the general execution time.
A considerable measure of research has been added to the point, and this case
continues with framework figuring and disseminated computation [10]. In the area
of multi-core computing, a typical multi-core framework comprises of same cores
that communicate using shared memory space. Similarly stays consistent with
GPUs also [11]. Thus, a notwithstanding dividing of the load among accessible cores
should do the trick to deliver a base execution time. Regardless, this dispute is
effectively countered by the manner in which that we can have a gathering of
workloads, each with various or obscure computation requirements. An even or
approach apportioning would not be doable. If a distributed memory system is
utilized as an execution stage, correspondence overheads can turn into a genuine
performance concern [11].

As a rule, legitimately dividing the workload is basic to boosting execution.
Toward this objective, we ought to think about a comparable number of the stage
(e.g., computational speed) and issue attributes (e.g., cost of data transmission) as
conceivable [12]. Dynamic load adjusting insinuates a wide assembling of compu-
tations that perform or change stack assignments on the Web, i.e., in the midst of

Figure 1.
Load balancing model.

87

An Empirical Survey on Load Balancing: A Nature-Inspired Approach
DOI: http://dx.doi.org/10.5772/intechopen.87002

ideal adaptability, and overall system production [1]. There are individual difficul-
ties in cloud computing, and that needed to be routed to give the most reasonable
and productive effective load balancing algorithms. These challenges are:

1. Geographical/spatial distributions of the nodes: to design an LBA that works
for spatially or geographically distributed nodes is an arduous task. It is
because as the distance increases the speed of the network links among the
nodes is influenced which thusly influences the throughput [2].

2. The complexity of algorithm: complexity affects the overall performance of a
system. Generally, LBA has a less complicated implementation. Complexity
lead to delays which further causes more problems [3].

3. Point of failure: the load balancing algorithm ought to be planned in a way that
they abstain from having a single point of failure.

4.Static load balancing algorithm: a static load balancing algorithm works on the
earlier state/previous data, not on the ongoing state. It cannot adjust to the load
changes at run-time [4].

The challenges as mentioned above remain unsolved. Researchers are going on
to bring about changes in the existing algorithms and to create new algorithms to
overcome these challenges.

Cloud load balancing is the activity of regulating the workload and computing
assets in a cloud computing environment to accomplish high performance at
potentially lower costs. This includes facilitating the dissemination of workload
activity and requests that dwell over the Interweb [5]. As we know that, a load
balancing technique is basically appropriating workloads among the servers and
processing assets in a cloud domain in which the number of clients where more
significant than the servers so that there can be the burden on the servers so we
need to balance the load so we distribute the tasks among the servers equally so it
cannot be the bash with any other server and in this way we can increase the
performance of a server [6]. By allocating the resources among the various com-
puter network or server, Load balancing allows companies or organizations to
manage the applications or workload demands, so load balancing in cloud comput-
ing that incorporate facilitating the distribution of workload activity and request
over the system so first level every one of the customers have been composed, In
second level all the servers have been organized and in between these two a load
balance rare used to balance the load among the server and is generally used by the
company or organizations to manage their applications. Cloud computing is an
advanced worldview to give benefits through the Interweb [7]. Load balancing is an
essential part of cloud computing and avoids the situation in which a couple of
nodes wind up finished weight while the others are sitting still or have little work to
do. Load balancing can upgrade the Quality of Service (QoS) estimations, including
response time, cost, throughput, execution and asset utilization. In computing,
Load balancing [8] enhances the distribution of workloads over various figuring
assets, for example, PCs, a PC gathering, central processing units, network links, or
disk drives. Load balancing means to enhance asset usage, maximize throughput,
confine response time, and maintain a strategic distance from over-weight of any
single asset. Using different parts with load balancing rather than a single compo-
nent may increase reliability and accessibility through excess. The load balancing
in clouds may be among physical hosts or VMs. This balancing segment scatters the
dynamic workload fairly among every one of the hubs (hosts or VMs).

86

Scheduling Problems - New Applications and Trends

The heap adjusting in the cloud is additionally alluded to as load adjusting as an
administration (LBaaS) [9] (Figure 1).

Load adjusting is to move the workload to computational assets that are
underutilized, with an outrageous objective of lessening the general execution time.
A considerable measure of research has been added to the point, and this case
continues with framework figuring and disseminated computation [10]. In the area
of multi-core computing, a typical multi-core framework comprises of same cores
that communicate using shared memory space. Similarly stays consistent with
GPUs also [11]. Thus, a notwithstanding dividing of the load among accessible cores
should do the trick to deliver a base execution time. Regardless, this dispute is
effectively countered by the manner in which that we can have a gathering of
workloads, each with various or obscure computation requirements. An even or
approach apportioning would not be doable. If a distributed memory system is
utilized as an execution stage, correspondence overheads can turn into a genuine
performance concern [11].

As a rule, legitimately dividing the workload is basic to boosting execution.
Toward this objective, we ought to think about a comparable number of the stage
(e.g., computational speed) and issue attributes (e.g., cost of data transmission) as
conceivable [12]. Dynamic load adjusting insinuates a wide assembling of compu-
tations that perform or change stack assignments on the Web, i.e., in the midst of

Figure 1.
Load balancing model.

87

An Empirical Survey on Load Balancing: A Nature-Inspired Approach
DOI: http://dx.doi.org/10.5772/intechopen.87002

the execution of a program [13]. Dynamic load balancing is depicted by the ability
to adjust to changes to the execution organize (e.g., hubs going isolates, correspon-
dence joins finding the opportunity to be congested, and whatnot.) yet to the
burden of additional coordination overhead [14]. Static load modifying can give a
close ideal answer for the load-partitioning issue, the exchange offs being the failure
to adapt to run-time changes and the need to develop insinuate learning about the
execution characteristics of the individual fragments making up the execution
arrange [15].

To attain these goals, two types of load balancing algorithms are designed:

1.1 Static load balancing

In static load balancing, cloud requires knowledge of processing power, perfor-
mance, nodes capacity and memory [5]. The cloud additionally requires learning of
client necessities which cannot be changed on run-time. It is simpler to mimic the
static condition, yet in the event that client necessities change static condition cannot
adjust to it. Two well-known algorithms applied in static environments are [16].

1.1.1 Round Robin algorithm

In the Round Robin algorithm, assets are allocated to errand on First-come-First-
Serve (FCFS) premise. It implies the errand which arrives first; assets are distrib-
uted to it first. In this algorithm, tasks are scheduled in time sharing manner [17].

1.1.2 Central load balancing decision model

It is an improved approach to Round Robin algorithm. It uses the basics of the
Round Robin algorithm. This algorithm calculates total execution time spent by a
task on the cloud. It uses this information to calculate time elapsed during client and
server communication [18].

1.2 Dynamic load balancing

In a dynamic environment, various resources are installed. In a dynamic envi-
ronment, cloud considers runtime statistics [19]. In a dynamic environment, the
cloud allows changes in user requirements on runtime. Algorithms in a dynamic
environment can quickly adapt to runtime changes. The dynamic environment is
challenging to simulate [20]. Various load balancing algorithms implemented in a
dynamic environment are weighted least connection (WLC) algorithm, load
balancing min-min (LBMM) algorithm and opportunistic load balancing (OLB)
algorithm [21].

Considering the scalability and free nature of the cloud, dynamic environments
are preferred over static environments for cloud implementation as it also satisfies
the particular goals of load balancing as given below,

Goals of load balancing are:

• To maintain the fault tolerance of the system.

• To maintain the stability of the system.

• To improve efficiency and performance of the system.

• To minimize job execution time.

88

Scheduling Problems - New Applications and Trends

• To minimize time spent waiting in the queue.

• To facilitate improved resource utilization ratio

1.3 Related works

Each technique holds significance and a different approach to solve the problem.
Swarm optimization is generally used to find an optimal solution it might not be the
best fit solution, Genetic algorithms generally try to find the best fit but it consumes
much time, and physics algorithm generally used as hybrid or support algorithm to
minimize other procedures in different algorithms. Swarm optimization is generally
inspired by observing different flock behaviors be it in frogs, bats, fireflies and ants
and each takes a specific approach to the problem of food gathering, communica-
tion, foraging, etc. [22]. A genetic algorithm is approximately enlivened by Charles
Darwin theory of survival of fittest and algorithms like a genetic algorithm, mimetic
algorithm come under this category. Physics algorithms are inspired from different
physical phenomena like gravitation, mass-energy equivalence, simulated
annealing, etc. These generally act as support factors for different algorithms. In
every algorithm the process can be generalized as randomization, calculating fitness
and arriving at a possible solution. The approach varies, but the process is more or
less the same. The underlying algorithms used these days in different spheres are
ant colony optimization; in the chapter, genetic algorithm and simulated annealing
are also discussed. We also discussed concepts like task allocation based on a few
traditional algorithms. Factors like green computing which affect the performance
of the device considerably are also discussed. To conclude we tried to solve the
optimal resource allocation in a natural way because nature itself looks for best
fitting procedures for its procedures and mimicking it in computing could be
advantageous [25].

To expand the general execution of the framework, load balancing is an intense
instrument that aides in conveying bigger workloads into smaller processing work-
loads. To achieve proper resource utilization and excellent user satisfaction, it helps
in the fair allocation of computing resources. It avoids bottlenecks and implements
failover thus increasing the scalability. To transfer and receive data without any
delay, load balancing divides the traffic between all the servers to get an optimum
solution. The central vision of load balancing is to make sure that at any point in
time, the processors in the system does the same amount of work. It is necessary for
load balancing to utilize full parallel and distributed system’s resources. Load
balancing is classified as dynamic load balancing and static load balancing [23]. The
processor’s performance is decided at the beginning of execution in static load
balancing. From that point onward, as per their execution, the workload is
partitioned by the ace processor. It should be possible utilizing algorithms named
“central manager algorithm,” “threshold algorithm,” and “round robin algorithm.”
The work is divided during the runtime in dynamic load balancing. With new
information collected by the master, new processes it assigned to the slaves. Here,
processes are allocated dynamically. It can be carried out using algorithms such as,
“local queue algorithm” and “central queue algorithm” [24].

A load balancer can perform the following functions:

1. Distributes network load and requests of clients across many servers.

2. According to demand, it can add and subtract the servers.

3. Provides high scalability, reliability and availability to the online servers.

89

An Empirical Survey on Load Balancing: A Nature-Inspired Approach
DOI: http://dx.doi.org/10.5772/intechopen.87002

the execution of a program [13]. Dynamic load balancing is depicted by the ability
to adjust to changes to the execution organize (e.g., hubs going isolates, correspon-
dence joins finding the opportunity to be congested, and whatnot.) yet to the
burden of additional coordination overhead [14]. Static load modifying can give a
close ideal answer for the load-partitioning issue, the exchange offs being the failure
to adapt to run-time changes and the need to develop insinuate learning about the
execution characteristics of the individual fragments making up the execution
arrange [15].

To attain these goals, two types of load balancing algorithms are designed:

1.1 Static load balancing

In static load balancing, cloud requires knowledge of processing power, perfor-
mance, nodes capacity and memory [5]. The cloud additionally requires learning of
client necessities which cannot be changed on run-time. It is simpler to mimic the
static condition, yet in the event that client necessities change static condition cannot
adjust to it. Two well-known algorithms applied in static environments are [16].

1.1.1 Round Robin algorithm

In the Round Robin algorithm, assets are allocated to errand on First-come-First-
Serve (FCFS) premise. It implies the errand which arrives first; assets are distrib-
uted to it first. In this algorithm, tasks are scheduled in time sharing manner [17].

1.1.2 Central load balancing decision model

It is an improved approach to Round Robin algorithm. It uses the basics of the
Round Robin algorithm. This algorithm calculates total execution time spent by a
task on the cloud. It uses this information to calculate time elapsed during client and
server communication [18].

1.2 Dynamic load balancing

In a dynamic environment, various resources are installed. In a dynamic envi-
ronment, cloud considers runtime statistics [19]. In a dynamic environment, the
cloud allows changes in user requirements on runtime. Algorithms in a dynamic
environment can quickly adapt to runtime changes. The dynamic environment is
challenging to simulate [20]. Various load balancing algorithms implemented in a
dynamic environment are weighted least connection (WLC) algorithm, load
balancing min-min (LBMM) algorithm and opportunistic load balancing (OLB)
algorithm [21].

Considering the scalability and free nature of the cloud, dynamic environments
are preferred over static environments for cloud implementation as it also satisfies
the particular goals of load balancing as given below,

Goals of load balancing are:

• To maintain the fault tolerance of the system.

• To maintain the stability of the system.

• To improve efficiency and performance of the system.

• To minimize job execution time.

88

Scheduling Problems - New Applications and Trends

• To minimize time spent waiting in the queue.

• To facilitate improved resource utilization ratio

1.3 Related works

Each technique holds significance and a different approach to solve the problem.
Swarm optimization is generally used to find an optimal solution it might not be the
best fit solution, Genetic algorithms generally try to find the best fit but it consumes
much time, and physics algorithm generally used as hybrid or support algorithm to
minimize other procedures in different algorithms. Swarm optimization is generally
inspired by observing different flock behaviors be it in frogs, bats, fireflies and ants
and each takes a specific approach to the problem of food gathering, communica-
tion, foraging, etc. [22]. A genetic algorithm is approximately enlivened by Charles
Darwin theory of survival of fittest and algorithms like a genetic algorithm, mimetic
algorithm come under this category. Physics algorithms are inspired from different
physical phenomena like gravitation, mass-energy equivalence, simulated
annealing, etc. These generally act as support factors for different algorithms. In
every algorithm the process can be generalized as randomization, calculating fitness
and arriving at a possible solution. The approach varies, but the process is more or
less the same. The underlying algorithms used these days in different spheres are
ant colony optimization; in the chapter, genetic algorithm and simulated annealing
are also discussed. We also discussed concepts like task allocation based on a few
traditional algorithms. Factors like green computing which affect the performance
of the device considerably are also discussed. To conclude we tried to solve the
optimal resource allocation in a natural way because nature itself looks for best
fitting procedures for its procedures and mimicking it in computing could be
advantageous [25].

To expand the general execution of the framework, load balancing is an intense
instrument that aides in conveying bigger workloads into smaller processing work-
loads. To achieve proper resource utilization and excellent user satisfaction, it helps
in the fair allocation of computing resources. It avoids bottlenecks and implements
failover thus increasing the scalability. To transfer and receive data without any
delay, load balancing divides the traffic between all the servers to get an optimum
solution. The central vision of load balancing is to make sure that at any point in
time, the processors in the system does the same amount of work. It is necessary for
load balancing to utilize full parallel and distributed system’s resources. Load
balancing is classified as dynamic load balancing and static load balancing [23]. The
processor’s performance is decided at the beginning of execution in static load
balancing. From that point onward, as per their execution, the workload is
partitioned by the ace processor. It should be possible utilizing algorithms named
“central manager algorithm,” “threshold algorithm,” and “round robin algorithm.”
The work is divided during the runtime in dynamic load balancing. With new
information collected by the master, new processes it assigned to the slaves. Here,
processes are allocated dynamically. It can be carried out using algorithms such as,
“local queue algorithm” and “central queue algorithm” [24].

A load balancer can perform the following functions:

1. Distributes network load and requests of clients across many servers.

2. According to demand, it can add and subtract the servers.

3. Provides high scalability, reliability and availability to the online servers.

89

An Empirical Survey on Load Balancing: A Nature-Inspired Approach
DOI: http://dx.doi.org/10.5772/intechopen.87002

To scale with the increased demands, vendors of the cloud are more toward
automatic load balancing services that allow the entities to increase the memory and
count of CPU for their resources.

2. Models of nature-inspired algorithms

Nature-inspired algorithm is a capacity that aroused by activities that are per-
ceived by nature. These registering approaches prompted the change of develop-
ment named nature-inspired algorithms (NIA) [25]. This breakthrough is apt for
computational agility. The objective of developing such algorithms is to optimize
engineering problems [26] (Figure 2).

These algorithms use recombination and change overseers to streamline the
perplexing issues, e.g., genetic algorithm and differential evolution et cetera. The
basic objective of nature-inspired algorithms is to discover a universally response
for a given issue. Two key factors normal in all nature-inspired algorithms are
strengthening and expansion regularly named as Exploration and Exploitation [27].

Some of the algorithms are,

2.1 Hill climbing

It is a nature-inspired algorithm which takes its inspiration from a process of hill
climbing. It is an iterative algorithm. This algorithm is thus helpful to find the
minimal solution and can be used in the load balancer [28]. A tool called load
balancer which is used to find the assets allocation in the cluster and several kinds of
algorithms are used to find the resource allocation to the cluster and here to find the
solution we can use the hill climbing algorithm.

Initially, the algorithm considers the cluster as a graph and mimics hill climbing
behavior on that graph and generates a solution for optimal resource allocation [29].

To locate the ideal answer for the given issue this strategy can be utilized, this
method can be utilized as a part of load adjusting to locate the ideal asset assignment
for the given issue.

Figure 2.
Load balancing taxonomy.

90

Scheduling Problems - New Applications and Trends

This technique has three different variants,

1.Coordinate descent: this technique is optimally used to determine the optimal
solution for the given problem but cannot be implemented as it has an
exponential time worst case scenario.

2.Stochastic hill climbing: this technique does not guarantee an optimal
solution, but it is better than stochastic hill climbing regarding the time taken
to find the optimal solution.

3.Traditional hill climbing approach: this technique cannot be used in the load
balancer as the solution we get out of this is not optimal.

Hence, here we describe a stochastic hill climbing approach as it is best
regarding both time complexity and optimization (Figure 3).

Present node = initialNode;
loop
k=neighbours(presentNode);

nextEvalatuation = -knf
nextNode = NULL;

for all x in L
if (EVALuation(x) >nextEvalution)

nextNode = j;
nextEvaluation = evaLuation(x);

if nextEvaluation<= evaluation(presentNode)

return presentNode;
presentNode = nextNode;

Figure 3.
Hill climbing.

91

An Empirical Survey on Load Balancing: A Nature-Inspired Approach
DOI: http://dx.doi.org/10.5772/intechopen.87002

To scale with the increased demands, vendors of the cloud are more toward
automatic load balancing services that allow the entities to increase the memory and
count of CPU for their resources.

2. Models of nature-inspired algorithms

Nature-inspired algorithm is a capacity that aroused by activities that are per-
ceived by nature. These registering approaches prompted the change of develop-
ment named nature-inspired algorithms (NIA) [25]. This breakthrough is apt for
computational agility. The objective of developing such algorithms is to optimize
engineering problems [26] (Figure 2).

These algorithms use recombination and change overseers to streamline the
perplexing issues, e.g., genetic algorithm and differential evolution et cetera. The
basic objective of nature-inspired algorithms is to discover a universally response
for a given issue. Two key factors normal in all nature-inspired algorithms are
strengthening and expansion regularly named as Exploration and Exploitation [27].

Some of the algorithms are,

2.1 Hill climbing

It is a nature-inspired algorithm which takes its inspiration from a process of hill
climbing. It is an iterative algorithm. This algorithm is thus helpful to find the
minimal solution and can be used in the load balancer [28]. A tool called load
balancer which is used to find the assets allocation in the cluster and several kinds of
algorithms are used to find the resource allocation to the cluster and here to find the
solution we can use the hill climbing algorithm.

Initially, the algorithm considers the cluster as a graph and mimics hill climbing
behavior on that graph and generates a solution for optimal resource allocation [29].

To locate the ideal answer for the given issue this strategy can be utilized, this
method can be utilized as a part of load adjusting to locate the ideal asset assignment
for the given issue.

Figure 2.
Load balancing taxonomy.

90

Scheduling Problems - New Applications and Trends

This technique has three different variants,

1.Coordinate descent: this technique is optimally used to determine the optimal
solution for the given problem but cannot be implemented as it has an
exponential time worst case scenario.

2.Stochastic hill climbing: this technique does not guarantee an optimal
solution, but it is better than stochastic hill climbing regarding the time taken
to find the optimal solution.

3.Traditional hill climbing approach: this technique cannot be used in the load
balancer as the solution we get out of this is not optimal.

Hence, here we describe a stochastic hill climbing approach as it is best
regarding both time complexity and optimization (Figure 3).

Present node = initialNode;
loop
k=neighbours(presentNode);

nextEvalatuation = -knf
nextNode = NULL;

for all x in L
if (EVALuation(x) >nextEvalution)

nextNode = j;
nextEvaluation = evaLuation(x);

if nextEvaluation<= evaluation(presentNode)

return presentNode;
presentNode = nextNode;

Figure 3.
Hill climbing.

91

An Empirical Survey on Load Balancing: A Nature-Inspired Approach
DOI: http://dx.doi.org/10.5772/intechopen.87002

2.2 Ant colony optimization

In nature-inspired algorithms the “ant colony optimization algorithm (ACO)” is
a probabilistic intends to determine computational issues which can be diminished
to finding the correct routes through graphs. Artificial Ants remain for multi-agent
strategies motivated by the conduct of genuine ants. The pheromone-based com-
munication of organic ants is frequently the dominating worldview utilized. Mixes
of artificial ants and nearby local search algorithms have turned into a strategy for
decision for various improvement tasks including some like vehicle routing and
Internet routing [30].

Load balancing technique is essentially procedure which is used to find the
optimal solution to given resource distribution problem in the given cloud comput-
ing scenario. Ant colony optimization considers the given problem as a graph and
tries to find the optimal path and optimal resource allocation for the given problem
can be found by using this specific procedure. The algorithm starts from random-
ness to optimization and alleviates the problem of the cluster. Initially, ants wander
randomly and come back to the source by laying pheromone in their path. Then
remaining ants follow the path set by the ants using pheromone [31]. There is a
problem of pheromone getting evaporated this will allow for the shortest path
determination. If it takes more time in this path, then the pheromone will evaporate
there only shortest path pheromone survives to contribute to the shortest path. All
the ants follow the same path to follow others eventually Thus after getting the
shortest path whole ants to follow this path leading to the whole system following
this path. This algorithm is more advantageous as it tackles the dynamic allocation
problem easily. To solve the load balancing in a cloud environment the ant-based
control system was designed. Each and every node was configured with capacity of
being a destination, the probability of being destination, pheromone table. There
are many variants for this technique namely Elitist depicts that global best solution
gives pheromone update after every iteration, Max-Min ant system takes a min-
max data structure and updates its value from minimum to maximum, Rank-based
ant system takes all the possible solution and ranks according to sum of weights,
continuous orthogonal ant colony takes additional angle parameter which makes for
efficient searching, Recursive ant colony optimization takes solution and uses
genetics to find out best solution [32].

The whole algorithm can be divided into different phases Edge selection and
pheromone update. Initially randomly all ants are placed in the random order and
after all the ants placed we updated pheromone level by using this formula Pxy<-
(1-p)*pxy+ sum of all pheromone levels (Figure 4).

Here pxy is pheromone level which can be calculated by using this formula.

Del the kð Þ ¼ J here j is the perimeter of curve xy for straight line use 0:

2.3 Artificial bee colony

The “artificial bee colony (ABO)” algorithm is a swarm based meta-heuristic
algorithm. The algorithm is constructed unequivocally with respect to the model
that is proposed for the scrounging conduct of honey bee settlements. The excellent
comprises of three imperative parts: used and unemployed foraging honey bees, and
sustenance sources. The underlying two sections, used and unemployed foraging
honey bees, examine for rich sustenance sources, which is the third fragment, close
to their hive. The model in like manner describes two driving techniques for lead
which are basic for self-sorting out and total knowledge: enlistment of foragers to
bounteous sustenance sources achieving positive information and surrender of poor

92

Scheduling Problems - New Applications and Trends

sources by foragers causing negative feedback [33]. In ABC, a state of artificial
forager honey bees check for rich phony sustenance sources. To apply ABC, the
treated change issue is first changed to the issue of finding the best parameter
vector which lessens a goal work. By then, artificial forager honey bees erratically
discover a people of beginning arrangement vectors and a while later iteratively
improve them by using the techniques: moving toward better arrangements utiliz-
ing a neighbor search mechanism while forsaking poor arrangements [34].

A technique called artificial bee colony optimization which is used to find the
optimal solution to the given problem. It models the given problem as a graph and
algorithm mimic the behavior of bees to approach a solution to the given Here
problem refers to optimal resource allocation in given load balancer then resource
allocation is done accordingly. ABC is an algorithm which takes inspiration from
bees and tries to find the shortest path for the given graph cluster. Derviskaraboga
developed it in 2005. The position of bees is modified to find out best position with
the highest nectar since it is a population-based search procedure. Generally, bees
perform a waggle dance to convey information regarding distances and directions.
The whole graph system can be modeled into two significant components of food
sources and foragers. Further classified of foragers can be done as unemployed
foragers, employed foragers and experienced foragers. The algorithm can again be
divided into four different phases [35].

(1) Initialization phase: the initial food sources are allocated randomly by
using this formula.

Km ¼ lbþ random 0; 1ð Þ ∗ ub� lbð Þ (1)

Here lb, ub are lower and upper bound of solution space of objective function.

Figure 4.
Ant colony optimization.

93

An Empirical Survey on Load Balancing: A Nature-Inspired Approach
DOI: http://dx.doi.org/10.5772/intechopen.87002

2.2 Ant colony optimization

In nature-inspired algorithms the “ant colony optimization algorithm (ACO)” is
a probabilistic intends to determine computational issues which can be diminished
to finding the correct routes through graphs. Artificial Ants remain for multi-agent
strategies motivated by the conduct of genuine ants. The pheromone-based com-
munication of organic ants is frequently the dominating worldview utilized. Mixes
of artificial ants and nearby local search algorithms have turned into a strategy for
decision for various improvement tasks including some like vehicle routing and
Internet routing [30].

Load balancing technique is essentially procedure which is used to find the
optimal solution to given resource distribution problem in the given cloud comput-
ing scenario. Ant colony optimization considers the given problem as a graph and
tries to find the optimal path and optimal resource allocation for the given problem
can be found by using this specific procedure. The algorithm starts from random-
ness to optimization and alleviates the problem of the cluster. Initially, ants wander
randomly and come back to the source by laying pheromone in their path. Then
remaining ants follow the path set by the ants using pheromone [31]. There is a
problem of pheromone getting evaporated this will allow for the shortest path
determination. If it takes more time in this path, then the pheromone will evaporate
there only shortest path pheromone survives to contribute to the shortest path. All
the ants follow the same path to follow others eventually Thus after getting the
shortest path whole ants to follow this path leading to the whole system following
this path. This algorithm is more advantageous as it tackles the dynamic allocation
problem easily. To solve the load balancing in a cloud environment the ant-based
control system was designed. Each and every node was configured with capacity of
being a destination, the probability of being destination, pheromone table. There
are many variants for this technique namely Elitist depicts that global best solution
gives pheromone update after every iteration, Max-Min ant system takes a min-
max data structure and updates its value from minimum to maximum, Rank-based
ant system takes all the possible solution and ranks according to sum of weights,
continuous orthogonal ant colony takes additional angle parameter which makes for
efficient searching, Recursive ant colony optimization takes solution and uses
genetics to find out best solution [32].

The whole algorithm can be divided into different phases Edge selection and
pheromone update. Initially randomly all ants are placed in the random order and
after all the ants placed we updated pheromone level by using this formula Pxy<-
(1-p)*pxy+ sum of all pheromone levels (Figure 4).

Here pxy is pheromone level which can be calculated by using this formula.

Del the kð Þ ¼ J here j is the perimeter of curve xy for straight line use 0:

2.3 Artificial bee colony

The “artificial bee colony (ABO)” algorithm is a swarm based meta-heuristic
algorithm. The algorithm is constructed unequivocally with respect to the model
that is proposed for the scrounging conduct of honey bee settlements. The excellent
comprises of three imperative parts: used and unemployed foraging honey bees, and
sustenance sources. The underlying two sections, used and unemployed foraging
honey bees, examine for rich sustenance sources, which is the third fragment, close
to their hive. The model in like manner describes two driving techniques for lead
which are basic for self-sorting out and total knowledge: enlistment of foragers to
bounteous sustenance sources achieving positive information and surrender of poor

92

Scheduling Problems - New Applications and Trends

sources by foragers causing negative feedback [33]. In ABC, a state of artificial
forager honey bees check for rich phony sustenance sources. To apply ABC, the
treated change issue is first changed to the issue of finding the best parameter
vector which lessens a goal work. By then, artificial forager honey bees erratically
discover a people of beginning arrangement vectors and a while later iteratively
improve them by using the techniques: moving toward better arrangements utiliz-
ing a neighbor search mechanism while forsaking poor arrangements [34].

A technique called artificial bee colony optimization which is used to find the
optimal solution to the given problem. It models the given problem as a graph and
algorithm mimic the behavior of bees to approach a solution to the given Here
problem refers to optimal resource allocation in given load balancer then resource
allocation is done accordingly. ABC is an algorithm which takes inspiration from
bees and tries to find the shortest path for the given graph cluster. Derviskaraboga
developed it in 2005. The position of bees is modified to find out best position with
the highest nectar since it is a population-based search procedure. Generally, bees
perform a waggle dance to convey information regarding distances and directions.
The whole graph system can be modeled into two significant components of food
sources and foragers. Further classified of foragers can be done as unemployed
foragers, employed foragers and experienced foragers. The algorithm can again be
divided into four different phases [35].

(1) Initialization phase: the initial food sources are allocated randomly by
using this formula.

Km ¼ lbþ random 0; 1ð Þ ∗ ub� lbð Þ (1)

Here lb, ub are lower and upper bound of solution space of objective function.

Figure 4.
Ant colony optimization.

93

An Empirical Survey on Load Balancing: A Nature-Inspired Approach
DOI: http://dx.doi.org/10.5772/intechopen.87002

(2) Employed bee phase: the neighboring food source Nmi is determined by
using the following formula.

Nmi ¼ Kmiþ random �1; 1½ � ∗ Kmi� Kkið Þ (2)

Here i is any randomly selected parameter index.

Here fitness is calculated by using the following formula and a greedy
algorithm is applied.

Fitness Kmð Þ ¼ 1=1þ obj Kmð Þ, obj Kmð Þ>0,Fitness Kmð Þ ¼ 1þ ∣obj Kmð Þ∣, obj Kmð Þ<0

Here obj(Km) is objective function of Km.

(3) Onlooker bee phase: the quantity of food sources is the ratio of total fitness
to the individual bee fitness.

Profitm ¼ individual fitness=sum of all fitness:

Onlooker bee uses the formula (2) for neighboring food source.

(4) Scout phase: the new solutions are randomly searched by the scout bees.

The new solution Km is randomly searched by following formula.

Km ¼ lbþ random 0; 1ð Þ ∗ ub� lbð Þ

Here ub and lb are upper and lower bounds to the solution phase (Figure 5).

2.4 Genetic algorithm

The approval of GA is situated on four considerations: populace estimate, muta-
tion rate, crossover rate and the number of generations. To control the first rate
individual among a masses, qualities of comparing people are ordered against the
objective function. The formative structure through which another successor is
conveyed is crossover and mutation. In the crossover mechanism, an offspring is
conveyed by joining the characteristics of consolidating the qualities of chose people
among populace while transformation causes some irregular changes in qualities of
an individual in this manner delivering new hereditary person. The transformative
mechanism is finished to the moment that joining criteria are satisfied [36].

The genetic algorithm is used to find out the optimal solution to the given
cluster. The approval of GA is situated on four contemplations: populace estimate,
A genetic algorithm is a refinement algorithm natural selection (survival of the
fittest) is the one inspired genetic algorithm, Essentially we have to show the given
bunch and attempt to explain it by utilizing a hereditary calculation. The genetic
algorithm performs optimization and searching using three different bio-inspired
operators such as mutation, crossover and selection [37]. One genetic representa-
tion of all the possible solutions and a fitness function is required by typical GA to
figure out the quality of the given solution. The given problem can be either
modeled as a graph or tree, and a genetic algorithm can be applied to this to
determine the optimal solution. The genetic algorithm borrows its properties from
natural selection by Darwin or Darwinian evolution theory. Hence we need to

94

Scheduling Problems - New Applications and Trends

implement these characteristics in our algorithm. The three significant steps in this
algorithm are Initialization, selection and validation.

1. Initialization step: it is performed in randomness here we take all the possible
solutions and list them out.

2.Selection step: with the help of probabilities possible solutions are listed out
based on probabilities and parents are selected according to highest
probabilities to form a solution.

3.Termination step: in the final step, we use different techniques like mutation,
crossover, etc. to form a solution and this solution is evaluated by using fitness

Figure 5.
Artificial bee colony (ABC).

95

An Empirical Survey on Load Balancing: A Nature-Inspired Approach
DOI: http://dx.doi.org/10.5772/intechopen.87002

(2) Employed bee phase: the neighboring food source Nmi is determined by
using the following formula.

Nmi ¼ Kmiþ random �1; 1½ � ∗ Kmi� Kkið Þ (2)

Here i is any randomly selected parameter index.

Here fitness is calculated by using the following formula and a greedy
algorithm is applied.

Fitness Kmð Þ ¼ 1=1þ obj Kmð Þ, obj Kmð Þ>0,Fitness Kmð Þ ¼ 1þ ∣obj Kmð Þ∣, obj Kmð Þ<0

Here obj(Km) is objective function of Km.

(3) Onlooker bee phase: the quantity of food sources is the ratio of total fitness
to the individual bee fitness.

Profitm ¼ individual fitness=sum of all fitness:

Onlooker bee uses the formula (2) for neighboring food source.

(4) Scout phase: the new solutions are randomly searched by the scout bees.

The new solution Km is randomly searched by following formula.

Km ¼ lbþ random 0; 1ð Þ ∗ ub� lbð Þ

Here ub and lb are upper and lower bounds to the solution phase (Figure 5).

2.4 Genetic algorithm

The approval of GA is situated on four considerations: populace estimate, muta-
tion rate, crossover rate and the number of generations. To control the first rate
individual among a masses, qualities of comparing people are ordered against the
objective function. The formative structure through which another successor is
conveyed is crossover and mutation. In the crossover mechanism, an offspring is
conveyed by joining the characteristics of consolidating the qualities of chose people
among populace while transformation causes some irregular changes in qualities of
an individual in this manner delivering new hereditary person. The transformative
mechanism is finished to the moment that joining criteria are satisfied [36].

The genetic algorithm is used to find out the optimal solution to the given
cluster. The approval of GA is situated on four contemplations: populace estimate,
A genetic algorithm is a refinement algorithm natural selection (survival of the
fittest) is the one inspired genetic algorithm, Essentially we have to show the given
bunch and attempt to explain it by utilizing a hereditary calculation. The genetic
algorithm performs optimization and searching using three different bio-inspired
operators such as mutation, crossover and selection [37]. One genetic representa-
tion of all the possible solutions and a fitness function is required by typical GA to
figure out the quality of the given solution. The given problem can be either
modeled as a graph or tree, and a genetic algorithm can be applied to this to
determine the optimal solution. The genetic algorithm borrows its properties from
natural selection by Darwin or Darwinian evolution theory. Hence we need to

94

Scheduling Problems - New Applications and Trends

implement these characteristics in our algorithm. The three significant steps in this
algorithm are Initialization, selection and validation.

1. Initialization step: it is performed in randomness here we take all the possible
solutions and list them out.

2.Selection step: with the help of probabilities possible solutions are listed out
based on probabilities and parents are selected according to highest
probabilities to form a solution.

3.Termination step: in the final step, we use different techniques like mutation,
crossover, etc. to form a solution and this solution is evaluated by using fitness

Figure 5.
Artificial bee colony (ABC).

95

An Empirical Survey on Load Balancing: A Nature-Inspired Approach
DOI: http://dx.doi.org/10.5772/intechopen.87002

function. This process is iterated until we form an optimal solution [38]. As it is
an iterative technique this can perform for the infinite amount of time this
should be terminated at some of the other instants to consider the optimal
solution to the given problem. This can be terminated at either any of these
cases:

a. If the latest solution persuades minimum criteria.

b.Fixed no of generations reached.

c. Allocated budget used up.

d.Manual inspection.

In its heart, genetic algorithm follows each of this basic mechanism:

a. Variation: this is implemented in the initialization part here we need to take
variation as this would contribute to the formation of a solution.

b.Selection: this is implemented in the selection part here we take or consider the
solution which has a higher probability to form a solution and remaining are
eliminated.

c. Hereditary: this is implemented in the final stage whereby use of process like
mutation allows the new solution to have two properties (Figure 6).

Figure 6.
Genetic algorithm.

96

Scheduling Problems - New Applications and Trends

2.5 Cuckoo search

“Cuckoo search algorithm (CSA)” is another algorithm and is inspired by the
raising behavior of the cuckoo bird they select their home by self-assertively
accepting control over the home of some extraordinary winged animals for an age.
They lay their eggs in the picked home of host cuckoo bird and drop the host
winged animal’s egg. The host bird either drop cuckoo fledgling’s egg or surrender
the whole home Some female cuckoo can copy their eggs like host fowl’s egg and lay
their eggs just before the laying of host feathered creature’s egg. This grows the
probability of their chick survival. Each egg in settle speaks to one arrangement, and
the cuckoo flying creature’s egg speaks to another arrangement. Wellness for every
arrangement is handled, and settle with the high bore of eggs addresses the best
game plan. The methodology is continued with aside from if a worldwide ideal
arrangement is refined [39] (Figure 7).

To solve the problem of clusterin load balancer cuckoo search algorithm can be
used. It does so by finding out the optimal resource allocation. Initially, we model

Figure 7.
Cuckoo search.

97

An Empirical Survey on Load Balancing: A Nature-Inspired Approach
DOI: http://dx.doi.org/10.5772/intechopen.87002

function. This process is iterated until we form an optimal solution [38]. As it is
an iterative technique this can perform for the infinite amount of time this
should be terminated at some of the other instants to consider the optimal
solution to the given problem. This can be terminated at either any of these
cases:

a. If the latest solution persuades minimum criteria.

b.Fixed no of generations reached.

c. Allocated budget used up.

d.Manual inspection.

In its heart, genetic algorithm follows each of this basic mechanism:

a. Variation: this is implemented in the initialization part here we need to take
variation as this would contribute to the formation of a solution.

b.Selection: this is implemented in the selection part here we take or consider the
solution which has a higher probability to form a solution and remaining are
eliminated.

c. Hereditary: this is implemented in the final stage whereby use of process like
mutation allows the new solution to have two properties (Figure 6).

Figure 6.
Genetic algorithm.

96

Scheduling Problems - New Applications and Trends

2.5 Cuckoo search

“Cuckoo search algorithm (CSA)” is another algorithm and is inspired by the
raising behavior of the cuckoo bird they select their home by self-assertively
accepting control over the home of some extraordinary winged animals for an age.
They lay their eggs in the picked home of host cuckoo bird and drop the host
winged animal’s egg. The host bird either drop cuckoo fledgling’s egg or surrender
the whole home Some female cuckoo can copy their eggs like host fowl’s egg and lay
their eggs just before the laying of host feathered creature’s egg. This grows the
probability of their chick survival. Each egg in settle speaks to one arrangement, and
the cuckoo flying creature’s egg speaks to another arrangement. Wellness for every
arrangement is handled, and settle with the high bore of eggs addresses the best
game plan. The methodology is continued with aside from if a worldwide ideal
arrangement is refined [39] (Figure 7).

To solve the problem of clusterin load balancer cuckoo search algorithm can be
used. It does so by finding out the optimal resource allocation. Initially, we model

Figure 7.
Cuckoo search.

97

An Empirical Survey on Load Balancing: A Nature-Inspired Approach
DOI: http://dx.doi.org/10.5772/intechopen.87002

the given cluster into a graph and then find the optimal resource allocation to this
graph. Global solution to the given problem can be found using this technique. It
essentially mimics the behavior of cuckoos and their behavior in laying eggs [40].

a. The algorithm is roughly based on these ideas.

b.How cuckoos lay their eggs in host nests.

c. How the eggs are hatched by hosts, if not detected and destroyed.

d.How can we mimic this behavior to make an algorithm.

This algorithm can be divided into five different steps:
Generating initial population:
We are generating host nests for k nests.

l1; b1ð Þ, l2; b2ð Þ, ��������� ln ; bnð Þ

These are optimal parameters

(1) Lay the cuckoo eggs (lk’, bk’) in the n nest.

n nest is randomly selected. Both have similar structure.

Lk’ ¼ lkþ Randomwalk Levy flight
� �

lk

bk’ ¼ bkþ Randomwalk Levy flight
� �

bk

(2) Compare the fitness of both eggs

The fitness can be found out by any statistical technique.

(3) Now replace the eggs according to the fitness value.

(4) If the host bird notices then leave that nest and search for other nest (to
avoid local optimization).

(5) Repeat step 2–5 until we satisfy termination condition.

2.6 Firefly optimization

“Firefly algorithm (FA)” is the most heuristic algorithm for worldwide improve-
ment, which is enlivened by the blazing behavior of firefly creepy crawlies. Xin-She
Yang proposed this algorithm in 2008. The basic role of an (FA) is to go about as a
flag framework to draw in different fireflies. Xin-She Yang defined this firefly
algorithm by accepting that whole firefly are epicene with the goal that any single
firefly will be pulled in to every other firefly. Engaging quality is relative to their
shine, and for any two fireflies, the less brilliant one will be pulled in by the brighter
one. In any case, the power diminishes as their aggregate length raises. If near are no
fireflies luminous than an accustomed firefly, it will move randomly. The illumina-
tion should be related to the objective function [41] (Figure 8).

A load balancer is a device which is used to solve cluster problems in resource
allocation. To solve the optimal resource allocation problem in the cluster we use

98

Scheduling Problems - New Applications and Trends

different kinds of algorithms. Here we are proposing this algorithm to solve the
cluster of resource allocation in the load balancer. To solve the optimal resource
allocation problem in the load balancer we use firefly optimization. Firefly optimi-
zation is unique in its approach as it tends to lead toward an optimal global solution.
Essentially it mimics the behavior of fireflies, more explicitly flashing patterns of
fireflies. Initially, we model the given problem into the graph, and we implement
the firefly algorithm on this graph to find the optimal resource allocation [42].

1. Uses of flashing patterns like: communication, attracting prey, warning
mechanism (female flies react toward the male’s unique pattern of flashing in
the same species).

2. Rules for the algorithm:
Rule 1: fireflies are unisex.

Figure 8.
Firefly optimization.

99

An Empirical Survey on Load Balancing: A Nature-Inspired Approach
DOI: http://dx.doi.org/10.5772/intechopen.87002

the given cluster into a graph and then find the optimal resource allocation to this
graph. Global solution to the given problem can be found using this technique. It
essentially mimics the behavior of cuckoos and their behavior in laying eggs [40].

a. The algorithm is roughly based on these ideas.

b.How cuckoos lay their eggs in host nests.

c. How the eggs are hatched by hosts, if not detected and destroyed.

d.How can we mimic this behavior to make an algorithm.

This algorithm can be divided into five different steps:
Generating initial population:
We are generating host nests for k nests.

l1; b1ð Þ, l2; b2ð Þ, ��������� ln ; bnð Þ

These are optimal parameters

(1) Lay the cuckoo eggs (lk’, bk’) in the n nest.

n nest is randomly selected. Both have similar structure.

Lk’ ¼ lkþ Randomwalk Levy flight
� �

lk

bk’ ¼ bkþ Randomwalk Levy flight
� �

bk

(2) Compare the fitness of both eggs

The fitness can be found out by any statistical technique.

(3) Now replace the eggs according to the fitness value.

(4) If the host bird notices then leave that nest and search for other nest (to
avoid local optimization).

(5) Repeat step 2–5 until we satisfy termination condition.

2.6 Firefly optimization

“Firefly algorithm (FA)” is the most heuristic algorithm for worldwide improve-
ment, which is enlivened by the blazing behavior of firefly creepy crawlies. Xin-She
Yang proposed this algorithm in 2008. The basic role of an (FA) is to go about as a
flag framework to draw in different fireflies. Xin-She Yang defined this firefly
algorithm by accepting that whole firefly are epicene with the goal that any single
firefly will be pulled in to every other firefly. Engaging quality is relative to their
shine, and for any two fireflies, the less brilliant one will be pulled in by the brighter
one. In any case, the power diminishes as their aggregate length raises. If near are no
fireflies luminous than an accustomed firefly, it will move randomly. The illumina-
tion should be related to the objective function [41] (Figure 8).

A load balancer is a device which is used to solve cluster problems in resource
allocation. To solve the optimal resource allocation problem in the cluster we use

98

Scheduling Problems - New Applications and Trends

different kinds of algorithms. Here we are proposing this algorithm to solve the
cluster of resource allocation in the load balancer. To solve the optimal resource
allocation problem in the load balancer we use firefly optimization. Firefly optimi-
zation is unique in its approach as it tends to lead toward an optimal global solution.
Essentially it mimics the behavior of fireflies, more explicitly flashing patterns of
fireflies. Initially, we model the given problem into the graph, and we implement
the firefly algorithm on this graph to find the optimal resource allocation [42].

1. Uses of flashing patterns like: communication, attracting prey, warning
mechanism (female flies react toward the male’s unique pattern of flashing in
the same species).

2. Rules for the algorithm:
Rule 1: fireflies are unisex.

Figure 8.
Firefly optimization.

99

An Empirical Survey on Load Balancing: A Nature-Inspired Approach
DOI: http://dx.doi.org/10.5772/intechopen.87002

Rule 2: attraction increases as the brightness of light increases and decreases as
the distance increases.

Rule 3: the brightness of fireflies is generally determined by the objective function.

3. The principle of the algorithm:

This algorithm can be divided into six different steps,
(a) Initializing the objective function:

I ¼ I_0 ⅇ �kd2ð Þ

Here k is the absorption coefficient and d is the distance.
As we know,

I dð Þ ¼ I sð Þ=d2

(b) Generating initial firefly population: we use this equation to initialize the
firefly population

Mtþ 1 ¼ Mtþ Bo ∗ e�k d2� �� �þ a ∗ e

second term attraction third term randomization.
(c) Determine the intensity of light: find brightness for every firefly using

objective function equation.
(d) Calculate the attractiveness of Firefly:

B ¼ B0 ∗ ⅇ �kd2ð Þ

(e) Move the less bright fireflies to bright ones.
(f) Rank the flies and find the current best, Update the intensities.

2.7 Simulated annealing

For approximating the worldwide ideal of an inclined function, “simulated
annealing (SA)” is a valuable method. It is often worn when the pursuit space is
detached. For issues where revelation a close global optimum is broader than com-
pleting up an obvious local optimum in a shot volume of age, simulated annealing
may be attractive over decisions, for example, gradient descent [43].

Simulated annealing is a strategy for approximating the worldwide ideal of a
given function. It is utilized for global enhancement in expansive search space. It is
utilized when search space is discrete. Annealing technology in metallurgy rouses it.
A procedure including both warming and simultaneously cooling to increase the
size and to decrease abandons in the given material. This procedure is utilized to
locate a right arrangement. A load balancer is an apparatus which is utilized to find
the optimal asset allotment of a given cluster issue in the cloud, and we can utilize a
few sorts of metaheuristics to locate an optimal solution here we utilize recreated
toughening to locate the optimal solution for the given issue. This solution begins by
modeling graph of the given cluster, and we have to apply this strategy on the chart
which will correspond to the optimal resource allocation solution in the cluster [44].

Initial slow cooling can be explored as the probability to accept the worst solu-
tion when this solution is running iteratively we get the best possible solution. After
generating each solution the algorithm checks for its fitness and compares with
previous one and picks the best one [45] (Figure 9).

100

Scheduling Problems - New Applications and Trends

A process to find the best solution:

1. Selecting parameters: initially, we need to specify the following parameters in
order to find an optimal solution:

1. The space state.

2. The energy goal function. E()

3. The candidate generator neighbor()

4.The acceptance probability p()

5. The annealing scheduling temperature()

6. Initial temperature()

2. Transition probability

3.Acceptance probability

4.Efficient candidate generation

5. Avoiding barrier

6.Cooling procedure

Each step can be mapped to the original simulated annealing process where we
perform all these steps to get metal without defects here we use a similar procedure
to find out the optimal solution.

Figure 9.
Simulated annealing.

101

An Empirical Survey on Load Balancing: A Nature-Inspired Approach
DOI: http://dx.doi.org/10.5772/intechopen.87002

Rule 2: attraction increases as the brightness of light increases and decreases as
the distance increases.

Rule 3: the brightness of fireflies is generally determined by the objective function.

3. The principle of the algorithm:

This algorithm can be divided into six different steps,
(a) Initializing the objective function:

I ¼ I_0 ⅇ �kd2ð Þ

Here k is the absorption coefficient and d is the distance.
As we know,

I dð Þ ¼ I sð Þ=d2

(b) Generating initial firefly population: we use this equation to initialize the
firefly population

Mtþ 1 ¼ Mtþ Bo ∗ e�k d2� �� �þ a ∗ e

second term attraction third term randomization.
(c) Determine the intensity of light: find brightness for every firefly using

objective function equation.
(d) Calculate the attractiveness of Firefly:

B ¼ B0 ∗ ⅇ �kd2ð Þ

(e) Move the less bright fireflies to bright ones.
(f) Rank the flies and find the current best, Update the intensities.

2.7 Simulated annealing

For approximating the worldwide ideal of an inclined function, “simulated
annealing (SA)” is a valuable method. It is often worn when the pursuit space is
detached. For issues where revelation a close global optimum is broader than com-
pleting up an obvious local optimum in a shot volume of age, simulated annealing
may be attractive over decisions, for example, gradient descent [43].

Simulated annealing is a strategy for approximating the worldwide ideal of a
given function. It is utilized for global enhancement in expansive search space. It is
utilized when search space is discrete. Annealing technology in metallurgy rouses it.
A procedure including both warming and simultaneously cooling to increase the
size and to decrease abandons in the given material. This procedure is utilized to
locate a right arrangement. A load balancer is an apparatus which is utilized to find
the optimal asset allotment of a given cluster issue in the cloud, and we can utilize a
few sorts of metaheuristics to locate an optimal solution here we utilize recreated
toughening to locate the optimal solution for the given issue. This solution begins by
modeling graph of the given cluster, and we have to apply this strategy on the chart
which will correspond to the optimal resource allocation solution in the cluster [44].

Initial slow cooling can be explored as the probability to accept the worst solu-
tion when this solution is running iteratively we get the best possible solution. After
generating each solution the algorithm checks for its fitness and compares with
previous one and picks the best one [45] (Figure 9).

100

Scheduling Problems - New Applications and Trends

A process to find the best solution:

1. Selecting parameters: initially, we need to specify the following parameters in
order to find an optimal solution:

1. The space state.

2. The energy goal function. E()

3. The candidate generator neighbor()

4.The acceptance probability p()

5. The annealing scheduling temperature()

6. Initial temperature()

2. Transition probability

3.Acceptance probability

4.Efficient candidate generation

5. Avoiding barrier

6.Cooling procedure

Each step can be mapped to the original simulated annealing process where we
perform all these steps to get metal without defects here we use a similar procedure
to find out the optimal solution.

Figure 9.
Simulated annealing.

101

An Empirical Survey on Load Balancing: A Nature-Inspired Approach
DOI: http://dx.doi.org/10.5772/intechopen.87002

Here we consider graph as metal and perform these tasks to find out the optimal
solution.

2.8 Shuffled frog leaping algorithm

Load balancing using improved shuffled frog leaping algorithm. The “shuffled frog
leaping algorithm (SFLA)” is a populace based algorithm excited by regular ridiculous.
The virtual frogs go about as hosts or transporters of images where an image is a unit of
social headway. The algorithm plays out an independent local search in each
memeplex at the same time [46]. The local search is finished utilizing a particle swarm
enhancement like technique adjusted for discrete issues, however, emphasizing a local
search. To guarantee global investigation, the virtual frogs are intermittently
rearranged and redesigned into newmemeplexes in an approach indistinguishable
from that well used in the rearranged complex evolution algorithm [47].

Load balancing technique essentially requires optimization technique to solve
the given cluster problem of resource allocation. Any number of techniques can do
this essentially we are using improved shuffled frog leaping algorithm which is also
a part of swarm intelligence. To find the optimal solution to the given problem this
algorithm imitates the behavior of frogs leaping and used this procedure. For load
balancing with this technique, we require graph modeling of the cluster we get from

Figure 10.
Shuffled frog leaping algorithm.

102

Scheduling Problems - New Applications and Trends

the load balancer and then use this algorithm to find the optimal resource allocation.
Every node in this algorithm consists of the capacity of VM, probability, etc. [48].
After graph modeling is done we continue with the stage of implementation using a
frog leaping algorithm (Figure 10).

Essentially this algorithm can be classified into five phases:

1. Initialization phase: firstly, we need to declare the population size (k), no of
subarrays (M), no of iterations in local exploration (u), no of algorithmic
iterations (I), after that we need to generate no of frogs (k) randomly.

2. Fitness phase: firstly, we need to check the fitness of every frog using fitness
functions.

3. Fitness functions: fitness = (1-(avg(load)/(avg(load)-least lode) + ((no of
underloaded and overloaded nodes)/total no of nodes). Then after calculating
the fitness of every frog, we need to sort them based on descending order of
fitness values.

4.Formation of sub array and subarray: initially partitioning the sorted fitness
array into subarrays as declared initially and now partitioning each subarray
into another sub-array.

5. Local search phase: now perform a local search for every sub-array here is
where this algorithm mimics frog leaping and perform search accordingly.

6.Convergence checking: now check for converging if convergence is satisfied
this is optimal solution else repeat from frog fitness phase.

7. Off-spring generation phase: now perform this phase using fitness algorithm.
Compare frogs and exchange information between sb, sw and continue this
divide and conquer approach for u times, Now replace this final output by sb
value.

The fitness for new product generated by the local search is calculated and this is
updated solutions and this process continues until termination is given.

1. Termination phase:

a. Number of generations.

b.The fitness of the optimal solution.

c. Time took.

2.9 Bat algorithm

The “bat algorithm (BA)” is the most eristic algorithm for global improvement.
It was propelled by the allotment conduct of microbats, with fluctuating heartbeat
rates of outflow and din. Xin-She Yang built up this algorithm in 2010. Each virtual
bat flies heedlessly with a speed at a circumstance with a shifting recurrence or
wavelength and tumult as it ventures and finds its prey, it changes recurrence, din
and heartbeat surge rate. A local random walk escalates seek. Decision of the best
continues to the point that specific stop criteria are met [49].

103

An Empirical Survey on Load Balancing: A Nature-Inspired Approach
DOI: http://dx.doi.org/10.5772/intechopen.87002

Here we consider graph as metal and perform these tasks to find out the optimal
solution.

2.8 Shuffled frog leaping algorithm

Load balancing using improved shuffled frog leaping algorithm. The “shuffled frog
leaping algorithm (SFLA)” is a populace based algorithm excited by regular ridiculous.
The virtual frogs go about as hosts or transporters of images where an image is a unit of
social headway. The algorithm plays out an independent local search in each
memeplex at the same time [46]. The local search is finished utilizing a particle swarm
enhancement like technique adjusted for discrete issues, however, emphasizing a local
search. To guarantee global investigation, the virtual frogs are intermittently
rearranged and redesigned into newmemeplexes in an approach indistinguishable
from that well used in the rearranged complex evolution algorithm [47].

Load balancing technique essentially requires optimization technique to solve
the given cluster problem of resource allocation. Any number of techniques can do
this essentially we are using improved shuffled frog leaping algorithm which is also
a part of swarm intelligence. To find the optimal solution to the given problem this
algorithm imitates the behavior of frogs leaping and used this procedure. For load
balancing with this technique, we require graph modeling of the cluster we get from

Figure 10.
Shuffled frog leaping algorithm.

102

Scheduling Problems - New Applications and Trends

the load balancer and then use this algorithm to find the optimal resource allocation.
Every node in this algorithm consists of the capacity of VM, probability, etc. [48].
After graph modeling is done we continue with the stage of implementation using a
frog leaping algorithm (Figure 10).

Essentially this algorithm can be classified into five phases:

1. Initialization phase: firstly, we need to declare the population size (k), no of
subarrays (M), no of iterations in local exploration (u), no of algorithmic
iterations (I), after that we need to generate no of frogs (k) randomly.

2. Fitness phase: firstly, we need to check the fitness of every frog using fitness
functions.

3. Fitness functions: fitness = (1-(avg(load)/(avg(load)-least lode) + ((no of
underloaded and overloaded nodes)/total no of nodes). Then after calculating
the fitness of every frog, we need to sort them based on descending order of
fitness values.

4.Formation of sub array and subarray: initially partitioning the sorted fitness
array into subarrays as declared initially and now partitioning each subarray
into another sub-array.

5. Local search phase: now perform a local search for every sub-array here is
where this algorithm mimics frog leaping and perform search accordingly.

6.Convergence checking: now check for converging if convergence is satisfied
this is optimal solution else repeat from frog fitness phase.

7. Off-spring generation phase: now perform this phase using fitness algorithm.
Compare frogs and exchange information between sb, sw and continue this
divide and conquer approach for u times, Now replace this final output by sb
value.

The fitness for new product generated by the local search is calculated and this is
updated solutions and this process continues until termination is given.

1. Termination phase:

a. Number of generations.

b.The fitness of the optimal solution.

c. Time took.

2.9 Bat algorithm

The “bat algorithm (BA)” is the most eristic algorithm for global improvement.
It was propelled by the allotment conduct of microbats, with fluctuating heartbeat
rates of outflow and din. Xin-She Yang built up this algorithm in 2010. Each virtual
bat flies heedlessly with a speed at a circumstance with a shifting recurrence or
wavelength and tumult as it ventures and finds its prey, it changes recurrence, din
and heartbeat surge rate. A local random walk escalates seek. Decision of the best
continues to the point that specific stop criteria are met [49].

103

An Empirical Survey on Load Balancing: A Nature-Inspired Approach
DOI: http://dx.doi.org/10.5772/intechopen.87002

To solve the resource allocation problem in the given cluster a load balancer is
an instrument which is utilized. We have to locate the ideal asset designation to
take care of the issue of asset portion. The information for ideal asset portion is
normally present in the cluster. We have to utilize any methods to locate the ideal
answer for the given asset allotment issue. Here to locate the ideal answer for the
given issue in the cluster we utilize the bat algorithm which impersonates the
conduct of the bat. We need to use graph modeling of the given cluster to find the
optimal solution initially. Essentially every node of cluster contains information
about resource allocation, and when we use optimization on that graph, we find the
optimal solution to the task which turns out to be optimal resource allocation for
the given problem in the cluster. Here we are using Bat algorithm which is kind
of swarm intelligence as it mimics the behavior of any flock of animals here we
observe that we are mimicking the bat to find optimal solution hence bat
algorithm [50].

Xin-She Yang proposed bat algorithm in the year 2010. It mimics the echoloca-
tion phenomenon seen in the bats. It uses sonar effect to navigate and communi-
cate with other bats. Sonar is a form of ultrasonic sound only a few creatures like
bats can understand and navigate through this. They calculate time delay to
navigate, and the time delay is between emission and reflection. While reflecting
bats use two notions zero means no emission one means maximum emission
(Figure 11).

Ground Rules for this algorithm:

a. Bats can sense all kind of obstacles by this sound.

b.They fly randomly.

c. Loudness is always positive

Figure 11.
Bat algorithm.

104

Scheduling Problems - New Applications and Trends

Mathematical equations:

Fi ¼ f0þ f1� f0ð Þ ∗K
Vit ¼ vit� 1þ xit� x ∗ð Þfi

Xit ¼ xit� 1þ vit

K is random value between 0 and 1.
x* is current best solution.

Figure 12.
Gravitational search algorithm.

105

An Empirical Survey on Load Balancing: A Nature-Inspired Approach
DOI: http://dx.doi.org/10.5772/intechopen.87002

To solve the resource allocation problem in the given cluster a load balancer is
an instrument which is utilized. We have to locate the ideal asset designation to
take care of the issue of asset portion. The information for ideal asset portion is
normally present in the cluster. We have to utilize any methods to locate the ideal
answer for the given asset allotment issue. Here to locate the ideal answer for the
given issue in the cluster we utilize the bat algorithm which impersonates the
conduct of the bat. We need to use graph modeling of the given cluster to find the
optimal solution initially. Essentially every node of cluster contains information
about resource allocation, and when we use optimization on that graph, we find the
optimal solution to the task which turns out to be optimal resource allocation for
the given problem in the cluster. Here we are using Bat algorithm which is kind
of swarm intelligence as it mimics the behavior of any flock of animals here we
observe that we are mimicking the bat to find optimal solution hence bat
algorithm [50].

Xin-She Yang proposed bat algorithm in the year 2010. It mimics the echoloca-
tion phenomenon seen in the bats. It uses sonar effect to navigate and communi-
cate with other bats. Sonar is a form of ultrasonic sound only a few creatures like
bats can understand and navigate through this. They calculate time delay to
navigate, and the time delay is between emission and reflection. While reflecting
bats use two notions zero means no emission one means maximum emission
(Figure 11).

Ground Rules for this algorithm:

a. Bats can sense all kind of obstacles by this sound.

b.They fly randomly.

c. Loudness is always positive

Figure 11.
Bat algorithm.

104

Scheduling Problems - New Applications and Trends

Mathematical equations:

Fi ¼ f0þ f1� f0ð Þ ∗K
Vit ¼ vit� 1þ xit� x ∗ð Þfi

Xit ¼ xit� 1þ vit

K is random value between 0 and 1.
x* is current best solution.

Figure 12.
Gravitational search algorithm.

105

An Empirical Survey on Load Balancing: A Nature-Inspired Approach
DOI: http://dx.doi.org/10.5772/intechopen.87002

A
lg
or
it
hm

A
dv

an
ta
ge

s
D
is
ad

va
nt
ag

es
U
ti
li
za

ti
on

A
da

pt
iv
e

1.
H
ill

C
lim

bi
ng

1.
B
et
te
r
op

ti
m
iz
at
io
n
te
ch

ni
qu

e
ra
th
er

th
an

FI
FO

,D
FS

,e
tc
.

2.
C
an

be
us
ed

w
it
h
le
ss

co
m
pu

ta
ti
on

al
re
so
ur
ce
s.

3.
T
ak

es
le
ss
er

ti
m
e.

4.
C
an

be
us
ed

in
D
yn

am
ic

al
lo
ca
ti
on

.

1.
C
o-
or
di
na

te
de

sc
en

t
ca
nn

ot
be

us
ed

as
it
ta
ke

s
hu

ge
am

ou
nt

of
ti
m
e
to

de
te
rm

in
e
op

ti
m
al

so
lu
ti
on

.S
to
ch

as
ti
c
hi
ll
cl
im

bi
ng

ca
nn

ot
be

us
ed

as
it
do

es
no

t
fi
nd

th
e
ex
ac
t
op

ti
m
al

so
lu
ti
on

.I
s
le
ss

ef
fi
ci
en

t
w
he

n
co
m
pa

re
d
to

ot
he

r
it
er
at
iv
e
al
go

ri
th
m
s
lik

e
an

tc
ol
on

y
ba

se
d,

G
en

et
ic
al
go

ri
th
m
.

1.
C
an

be
us
ed

to
fi
nd

ou
t
in
it
ia
l

op
ti
m
al

so
lu
ti
on

an
d
ca
n
be

pu
t

in
it
er
at
iv
e
op

ti
m
al

so
lu
ti
on

s
to

fi
nd

be
st
so
lu
ti
on

.

1.
Y
es
,b

ec
au

se
th
er
e
ar
e
tw

o
di
ff
er
en

t
va

ri
an

ts
of

te
ch

ni
qu

es
w
it
h
re
sp
ec
tt
o
th
e

gi
ve

n
pr
ob

le
m
.

1.
A
nt

co
lo
ny

O
pt
im

iz
at
io
n

1.
B
es
to

pt
im

al
so
lu
ti
on

ca
n
be

fo
un

d
ou

t
fo
r
bo

th
st
at
ic

an
d
dy

na
m
ic

pr
ob

le
m
s.
T
ak

es
re
la
ti
ve

ly
le
ss

ti
m
e
th
an

tr
ad

it
io
na

la
lg
or
it
hm

s.
A
s
it
ha

s
m
an

y
va

ri
an

ts
lik

e
re
cu

rs
iv
e
on

e
it
ca
n
be

us
ed

ba
se
d

on
co
nt
ex
t.

1.
B
es
to

pt
im

al
so
lu
ti
on

ca
n
be

fo
un

d
bu

t
is
re
la
ti
ve

ly
le
ss

ef
fe
ct
iv
e
th
an

ge
ne

ti
c
an

d
su
ch

ki
nd

of
al
go

ri
th
m
s.

1.
T
hi
s
ca
n
be

us
ed

to
bo

th
fi
nd

in
it
ia
ls
ol
ut
io
n
an

d
be

tt
er

th
e

so
lu
ti
on

by
us
in
g
it
er
at
iv
e

va
ri
an

t.

1.
Y
es
,i
t
is
ad

ap
ta
bl
e
as

it
ha

s
m
an

y
va

ri
an

ts

1.
A
rt
if
ic
ia
lb

ee
co
lo
ny

:
1.

C
an

so
lv
e
an

y
ki
nd

of
op

ti
m
iz
at
io
n
pr
ob

le
m

in
th
is
ca
se

ca
n
so
lv
e
an

y
ki
nd

of
re
so
ur
ce

al
lo
ca
ti
on

.S
im

pl
e,

Fl
ex
ib
le

an
d

ro
bu

st
.A

bi
lit
y
to

ex
pl
or
e
lo
ca
l

so
lu
ti
on

s.
E
as
e
of

im
pl
em

en
ta
ti
on

.

1.
T
he

so
lu
ti
on

w
e
ge
t
is
op

ti
m
al

bu
t

no
tp

er
fe
ct

so
lu
ti
on

.N
ot

ad
ap

ta
bl
e

be
ca
us
e
ev

er
y
pr
ob

le
m

ca
nn

ot
be

m
od

el
ed

in
to

a
gr
ap

h.
C
an

no
t

ta
ck
le

dy
na

m
ic

al
lo
ca
ti
on

.T
ak

es
up

m
or
e
am

ou
nt

of
ti
m
e.
U
se
s
up

m
or
e
co
m
pu

ta
ti
on

al
re
so
ur
ce
s.

1.
St
at
ic

en
vi
ro
nm

en
t,
In
it
ia
l

so
lu
ti
on

1.
N
o,

be
ca
us
e
no

t
ev

er
y

pr
ob

le
m

ca
n
be

m
od

el
ed

as
gr
ap

h.

1.
G
en

et
ic

A
lg
or
it
hm

1.
T
ak

es
up

le
ss

am
ou

nt
of

ti
m
e.

M
or
e
de

si
ra
bl
e
th
an

al
lt
he

tr
ad

it
io
na

la
lg
or
it
hm

s
in

te
rm

s
of

bo
th

ti
m
e
ta
ke

n
an

d
fo
rm

in
g

ou
tp
ut
.

1.
N
ee
ds

m
or
e
co
m
pu

ta
ti
on

al
as
se
ts

to
pr
od

uc
e
th
e
id
ea
la
ns
w
er

fo
r
th
e

is
su
e.
T
he

al
go

ri
th
m

ir
re
sp
ec
ti
ve

of
it
s
ac
cu

ra
cy

ca
n
fi
nd

di
ff
ic
ul
ty

to
fi
nd

gl
ob

al
m
ax
im

um
an

d
so
m
et
im

es
st
ru
ck

at
lo
ca
lm

ax
im

a.
T
he

te
rm

in
at
io
n
is
so
m
et
im

es
un

cl
ea
r
th
at

is
op

ti
m
al

so
lu
ti
on

is
al
w
ay
s
co
m
pa

ra
ti
ve

.C
an

no
t

ha
nd

le
dy

na
m
ic

al
lo
ca
ti
on

.

1.
G
en

er
al
ly

us
ed

fo
r
st
at
ic
pr
ob

le
m

an
d
ca
n
be

us
ed

fo
r
it
er
at
iv
e

so
lu
ti
on

m
ak

in
g.

1.
Y
es
,t
hi
s
ca
n
be

us
ed

on
an

y
ki
nd

of
pr
ob

le
m

cl
us
te
r.

106

Scheduling Problems - New Applications and Trends

A
lg
or
it
hm

A
dv

an
ta
ge

s
D
is
ad

va
nt
ag

es
U
ti
li
za

ti
on

A
da

pt
iv
e

1.
C
uc

ko
o

Se
ar
ch

1.
D
ea
ls
w
it
h
m
ul
ti
cr
it
er
ia

op
ti
m
iz
at
io
n
pr
ob

le
m
.E

as
y
to

im
pl
em

en
t.
Si
m
pl
e
to

un
de

rs
ta
nd

.
A
im

s
to

sp
ee
d
up

co
nv

er
ge
nc

e.

1.
C
an

no
t
ta
ck
le

dy
na

m
ic

re
so
ur
ce

al
lo
ca
ti
on

.
1.

Si
m
ila

r
to

A
B
C
it
ca
n
be

ut
ili
ze
d

if
w
e
co
m
pr
om

is
e
on

th
e
qu

al
it
y

of
so
lu
ti
on

.

1.
It
is
no

t
ad

ap
ti
ve

as
it
do

es
no

t
ta
ck
le

dy
na

m
ic

re
so
ur
ce

al
lo
ca
ti
on

.

1.
Fi
re
fl
y

op
ti
m
iz
at
io
n:

1.
It
ca
n
de

al
w
it
h
hi
gh

ly
no

n-
lin

ea
r

pr
ob

le
m
s.

2.
It
do

es
no

t
us
e
ve

lo
ci
ti
es
.

3.
D
oe
s
no

t
re
qu

ir
e
go

od
in
it
ia
ls
ta
rt

fo
r
op

ti
m
iz
at
io
n.

1.
G
lo
ba

ls
ea
rc
hi
ng

.
2.

Sl
ow

co
nv

er
gi
ng

sp
ee
d.

3.
H
ig
h
po

ss
ib
ili
ty

to
ge
t
tr
ap

pe
d
in

th
e
lo
ca
lo

pt
im

um
.

1.
It
ca
n
be

us
ed

to
fi
nd

th
e
ac
cu

ra
te

so
lu
ti
on

.
1.

N
ot

ad
ap

ti
ve

as
it
ha

s
sl
ow

co
nv

er
gi
ng

sp
ee
d.

1.
Si
m
ul
at
ed

an
ne

al
in
g:

1.
It
ca
n
de

al
w
it
h
in
co
ns
is
te
nt

an
d

no
is
y
da

ta
.

2.
T
o
ap

pr
oa
ch

gl
ob

al
op

ti
m
um

.
3.

It
is
ve

rs
at
ile

as
it
do

es
no

t
re
ly

on
re
st
ri
ct
iv
e
pr
op

er
ty

of
m
od

el
.

1.
Lo

t
of

ch
oi
ce
s
ar
e
re
qu

ir
ed

to
m
ak

e
it
in
to

ac
tu
al
al
go

ri
th
m
.

2.
It
ta
ke

s
lo
t
of

co
m
pu

ta
ti
on

ti
m
e

1.
It
ca
n
be

us
ed

to
fi
nd

ac
cu

ra
te

so
lu
ti
on

as
it
ap

pr
oa
ch

es
to

fi
nd

th
e
gl
ob

al
so
lu
ti
on

.

1.
N
ot

ad
ap

ta
bl
e
as

it
ta
ke

s
lo
to

f
co
m
pu

ta
ti
on

al
ti
m
e.

1.
Sh

uf
fl
ed

Fr
og

Le
ap

in
g

A
lg
or
it
hm

1.
N
ee
d
no

t
to

m
od

el
th
e
gi
ve

n
cl
us
te
r
as

a
gr
ap

h.
2.

St
ud

ie
s
sh
ow

th
at

th
is
al
go

ri
th
m

is
di
re
ct
in
g
to
w
ar
d
gl
ob

al
op

ti
m
al

so
lu
ti
on

.
3.

O
pt
im

al
so
lu
ti
on

is
fo
un

d
ou

t
in

it
er
at
iv
e
m
an

ne
r.

1.
T
ak

es
up

m
or
e
co
m
pu

ta
ti
on

al
re
so
ur
ce
s.

2.
T
ak

es
up

m
or
e
am

ou
nt

of
ti
m
e.

1.
T
hi
s
ca
n
be

us
ed

fo
r
bo

th
st
at
ic

al
lo
ca
ti
on

pr
ob

le
m

an
d
dy

na
m
ic

al
lo
ca
ti
on

pr
ob

le
m
.

1.
Y
es
,a

s
it
do

es
no

t
al
w
ay
s

re
qu

ir
e
gr
ap

h
m
od

el
in
g.

1.
B
at

A
lg
or
it
hm

1.
A
ut
om

at
ic

zo
om

in
g

Pa
ra
m
et
er

co
nt
ro
l

Fr
eq

ue
nc

y
tu
ni
ng

1.
Li
m
it
ed

ac
cu

ra
cy

U
na

bl
e
to

pr
ed

ic
t
be

st
so
lu
ti
on

.
1.

C
an

be
us
ed

to
fi
nd

th
e

im
m
ed

ia
te

so
lu
ti
on

.
1.

N
ot

ad
ap

ti
ve

as
it
ha

s
lim

it
ed

ac
cu

ra
cy
.

1.
G
ra
vi
ta
ti
on

al
se
ar
ch

al
go

ri
th
m
:

1.
Le

ss
ex
ec
ut
io
n
ti
m
e.

2.
Le

ss
co
m
pu

ta
ti
on

al
re
so
ur
ce
.

3.
M
or
e
op

ti
m
al
so
lu
ti
on

.

1.
T
hi
s
al
go

ri
th
m

ca
nn

ot
be

us
ed

on
it
s
ow

n
bu

t
ca
n
be

us
ed

as
su
pp

or
t

al
go

ri
th
m

in
hy

br
id

fu
nc

ti
on

al
it
y

or
fo
r
ca
lc
ul
at
in
g
fi
tn
es
s
in

ot
he

r
al
go

ri
th
m
s.

1.
U
ti
liz

at
io
n:

fo
r
st
at
ic

al
lo
ca
ti
on

1.
N
o,

it
is
no

t
ad

ap
ti
ve

as
it

re
qu

ir
es

gr
ap

h
m
od

el
in
g.

T
ab

le
1.

C
om

pa
ri
so
n
of

va
ri
ou
s
al
go
ri
th
m
s.

107

An Empirical Survey on Load Balancing: A Nature-Inspired Approach
DOI: http://dx.doi.org/10.5772/intechopen.87002

A
lg
or
it
hm

A
dv

an
ta
ge

s
D
is
ad

va
nt
ag

es
U
ti
li
za

ti
on

A
da

pt
iv
e

1.
H
ill

C
lim

bi
ng

1.
B
et
te
r
op

ti
m
iz
at
io
n
te
ch

ni
qu

e
ra
th
er

th
an

FI
FO

,D
FS

,e
tc
.

2.
C
an

be
us
ed

w
it
h
le
ss

co
m
pu

ta
ti
on

al
re
so
ur
ce
s.

3.
T
ak

es
le
ss
er

ti
m
e.

4.
C
an

be
us
ed

in
D
yn

am
ic

al
lo
ca
ti
on

.

1.
C
o-
or
di
na

te
de

sc
en

t
ca
nn

ot
be

us
ed

as
it
ta
ke

s
hu

ge
am

ou
nt

of
ti
m
e
to

de
te
rm

in
e
op

ti
m
al

so
lu
ti
on

.S
to
ch

as
ti
c
hi
ll
cl
im

bi
ng

ca
nn

ot
be

us
ed

as
it
do

es
no

t
fi
nd

th
e
ex
ac
t
op

ti
m
al

so
lu
ti
on

.I
s
le
ss

ef
fi
ci
en

t
w
he

n
co
m
pa

re
d
to

ot
he

r
it
er
at
iv
e
al
go

ri
th
m
s
lik

e
an

tc
ol
on

y
ba

se
d,

G
en

et
ic
al
go

ri
th
m
.

1.
C
an

be
us
ed

to
fi
nd

ou
t
in
it
ia
l

op
ti
m
al

so
lu
ti
on

an
d
ca
n
be

pu
t

in
it
er
at
iv
e
op

ti
m
al

so
lu
ti
on

s
to

fi
nd

be
st
so
lu
ti
on

.

1.
Y
es
,b

ec
au

se
th
er
e
ar
e
tw

o
di
ff
er
en

t
va

ri
an

ts
of

te
ch

ni
qu

es
w
it
h
re
sp
ec
tt
o
th
e

gi
ve

n
pr
ob

le
m
.

1.
A
nt

co
lo
ny

O
pt
im

iz
at
io
n

1.
B
es
to

pt
im

al
so
lu
ti
on

ca
n
be

fo
un

d
ou

t
fo
r
bo

th
st
at
ic

an
d
dy

na
m
ic

pr
ob

le
m
s.
T
ak

es
re
la
ti
ve

ly
le
ss

ti
m
e
th
an

tr
ad

it
io
na

la
lg
or
it
hm

s.
A
s
it
ha

s
m
an

y
va

ri
an

ts
lik

e
re
cu

rs
iv
e
on

e
it
ca
n
be

us
ed

ba
se
d

on
co
nt
ex
t.

1.
B
es
to

pt
im

al
so
lu
ti
on

ca
n
be

fo
un

d
bu

t
is
re
la
ti
ve

ly
le
ss

ef
fe
ct
iv
e
th
an

ge
ne

ti
c
an

d
su
ch

ki
nd

of
al
go

ri
th
m
s.

1.
T
hi
s
ca
n
be

us
ed

to
bo

th
fi
nd

in
it
ia
ls
ol
ut
io
n
an

d
be

tt
er

th
e

so
lu
ti
on

by
us
in
g
it
er
at
iv
e

va
ri
an

t.

1.
Y
es
,i
t
is
ad

ap
ta
bl
e
as

it
ha

s
m
an

y
va

ri
an

ts

1.
A
rt
if
ic
ia
lb

ee
co
lo
ny

:
1.

C
an

so
lv
e
an

y
ki
nd

of
op

ti
m
iz
at
io
n
pr
ob

le
m

in
th
is
ca
se

ca
n
so
lv
e
an

y
ki
nd

of
re
so
ur
ce

al
lo
ca
ti
on

.S
im

pl
e,

Fl
ex
ib
le

an
d

ro
bu

st
.A

bi
lit
y
to

ex
pl
or
e
lo
ca
l

so
lu
ti
on

s.
E
as
e
of

im
pl
em

en
ta
ti
on

.

1.
T
he

so
lu
ti
on

w
e
ge
t
is
op

ti
m
al

bu
t

no
tp

er
fe
ct

so
lu
ti
on

.N
ot

ad
ap

ta
bl
e

be
ca
us
e
ev

er
y
pr
ob

le
m

ca
nn

ot
be

m
od

el
ed

in
to

a
gr
ap

h.
C
an

no
t

ta
ck
le

dy
na

m
ic

al
lo
ca
ti
on

.T
ak

es
up

m
or
e
am

ou
nt

of
ti
m
e.
U
se
s
up

m
or
e
co
m
pu

ta
ti
on

al
re
so
ur
ce
s.

1.
St
at
ic

en
vi
ro
nm

en
t,
In
it
ia
l

so
lu
ti
on

1.
N
o,

be
ca
us
e
no

t
ev

er
y

pr
ob

le
m

ca
n
be

m
od

el
ed

as
gr
ap

h.

1.
G
en

et
ic

A
lg
or
it
hm

1.
T
ak

es
up

le
ss

am
ou

nt
of

ti
m
e.

M
or
e
de

si
ra
bl
e
th
an

al
lt
he

tr
ad

it
io
na

la
lg
or
it
hm

s
in

te
rm

s
of

bo
th

ti
m
e
ta
ke

n
an

d
fo
rm

in
g

ou
tp
ut
.

1.
N
ee
ds

m
or
e
co
m
pu

ta
ti
on

al
as
se
ts

to
pr
od

uc
e
th
e
id
ea
la
ns
w
er

fo
r
th
e

is
su
e.
T
he

al
go

ri
th
m

ir
re
sp
ec
ti
ve

of
it
s
ac
cu

ra
cy

ca
n
fi
nd

di
ff
ic
ul
ty

to
fi
nd

gl
ob

al
m
ax
im

um
an

d
so
m
et
im

es
st
ru
ck

at
lo
ca
lm

ax
im

a.
T
he

te
rm

in
at
io
n
is
so
m
et
im

es
un

cl
ea
r
th
at

is
op

ti
m
al

so
lu
ti
on

is
al
w
ay
s
co
m
pa

ra
ti
ve

.C
an

no
t

ha
nd

le
dy

na
m
ic

al
lo
ca
ti
on

.

1.
G
en

er
al
ly

us
ed

fo
r
st
at
ic
pr
ob

le
m

an
d
ca
n
be

us
ed

fo
r
it
er
at
iv
e

so
lu
ti
on

m
ak

in
g.

1.
Y
es
,t
hi
s
ca
n
be

us
ed

on
an

y
ki
nd

of
pr
ob

le
m

cl
us
te
r.

106

Scheduling Problems - New Applications and Trends

A
lg
or
it
hm

A
dv

an
ta
ge

s
D
is
ad

va
nt
ag

es
U
ti
li
za

ti
on

A
da

pt
iv
e

1.
C
uc

ko
o

Se
ar
ch

1.
D
ea
ls
w
it
h
m
ul
ti
cr
it
er
ia

op
ti
m
iz
at
io
n
pr
ob

le
m
.E

as
y
to

im
pl
em

en
t.
Si
m
pl
e
to

un
de

rs
ta
nd

.
A
im

s
to

sp
ee
d
up

co
nv

er
ge
nc

e.

1.
C
an

no
t
ta
ck
le

dy
na

m
ic

re
so
ur
ce

al
lo
ca
ti
on

.
1.

Si
m
ila

r
to

A
B
C
it
ca
n
be

ut
ili
ze
d

if
w
e
co
m
pr
om

is
e
on

th
e
qu

al
it
y

of
so
lu
ti
on

.

1.
It
is
no

t
ad

ap
ti
ve

as
it
do

es
no

t
ta
ck
le

dy
na

m
ic

re
so
ur
ce

al
lo
ca
ti
on

.

1.
Fi
re
fl
y

op
ti
m
iz
at
io
n:

1.
It
ca
n
de

al
w
it
h
hi
gh

ly
no

n-
lin

ea
r

pr
ob

le
m
s.

2.
It
do

es
no

t
us
e
ve

lo
ci
ti
es
.

3.
D
oe
s
no

t
re
qu

ir
e
go

od
in
it
ia
ls
ta
rt

fo
r
op

ti
m
iz
at
io
n.

1.
G
lo
ba

ls
ea
rc
hi
ng

.
2.

Sl
ow

co
nv

er
gi
ng

sp
ee
d.

3.
H
ig
h
po

ss
ib
ili
ty

to
ge
t
tr
ap

pe
d
in

th
e
lo
ca
lo

pt
im

um
.

1.
It
ca
n
be

us
ed

to
fi
nd

th
e
ac
cu

ra
te

so
lu
ti
on

.
1.

N
ot

ad
ap

ti
ve

as
it
ha

s
sl
ow

co
nv

er
gi
ng

sp
ee
d.

1.
Si
m
ul
at
ed

an
ne

al
in
g:

1.
It
ca
n
de

al
w
it
h
in
co
ns
is
te
nt

an
d

no
is
y
da

ta
.

2.
T
o
ap

pr
oa
ch

gl
ob

al
op

ti
m
um

.
3.

It
is
ve

rs
at
ile

as
it
do

es
no

t
re
ly

on
re
st
ri
ct
iv
e
pr
op

er
ty

of
m
od

el
.

1.
Lo

t
of

ch
oi
ce
s
ar
e
re
qu

ir
ed

to
m
ak

e
it
in
to

ac
tu
al
al
go

ri
th
m
.

2.
It
ta
ke

s
lo
t
of

co
m
pu

ta
ti
on

ti
m
e

1.
It
ca
n
be

us
ed

to
fi
nd

ac
cu

ra
te

so
lu
ti
on

as
it
ap

pr
oa
ch

es
to

fi
nd

th
e
gl
ob

al
so
lu
ti
on

.

1.
N
ot

ad
ap

ta
bl
e
as

it
ta
ke

s
lo
to

f
co
m
pu

ta
ti
on

al
ti
m
e.

1.
Sh

uf
fl
ed

Fr
og

Le
ap

in
g

A
lg
or
it
hm

1.
N
ee
d
no

t
to

m
od

el
th
e
gi
ve

n
cl
us
te
r
as

a
gr
ap

h.
2.

St
ud

ie
s
sh
ow

th
at

th
is
al
go

ri
th
m

is
di
re
ct
in
g
to
w
ar
d
gl
ob

al
op

ti
m
al

so
lu
ti
on

.
3.

O
pt
im

al
so
lu
ti
on

is
fo
un

d
ou

t
in

it
er
at
iv
e
m
an

ne
r.

1.
T
ak

es
up

m
or
e
co
m
pu

ta
ti
on

al
re
so
ur
ce
s.

2.
T
ak

es
up

m
or
e
am

ou
nt

of
ti
m
e.

1.
T
hi
s
ca
n
be

us
ed

fo
r
bo

th
st
at
ic

al
lo
ca
ti
on

pr
ob

le
m

an
d
dy

na
m
ic

al
lo
ca
ti
on

pr
ob

le
m
.

1.
Y
es
,a

s
it
do

es
no

t
al
w
ay
s

re
qu

ir
e
gr
ap

h
m
od

el
in
g.

1.
B
at

A
lg
or
it
hm

1.
A
ut
om

at
ic

zo
om

in
g

Pa
ra
m
et
er

co
nt
ro
l

Fr
eq

ue
nc

y
tu
ni
ng

1.
Li
m
it
ed

ac
cu

ra
cy

U
na

bl
e
to

pr
ed

ic
t
be

st
so
lu
ti
on

.
1.

C
an

be
us
ed

to
fi
nd

th
e

im
m
ed

ia
te

so
lu
ti
on

.
1.

N
ot

ad
ap

ti
ve

as
it
ha

s
lim

it
ed

ac
cu

ra
cy
.

1.
G
ra
vi
ta
ti
on

al
se
ar
ch

al
go

ri
th
m
:

1.
Le

ss
ex
ec
ut
io
n
ti
m
e.

2.
Le

ss
co
m
pu

ta
ti
on

al
re
so
ur
ce
.

3.
M
or
e
op

ti
m
al
so
lu
ti
on

.

1.
T
hi
s
al
go

ri
th
m

ca
nn

ot
be

us
ed

on
it
s
ow

n
bu

t
ca
n
be

us
ed

as
su
pp

or
t

al
go

ri
th
m

in
hy

br
id

fu
nc

ti
on

al
it
y

or
fo
r
ca
lc
ul
at
in
g
fi
tn
es
s
in

ot
he

r
al
go

ri
th
m
s.

1.
U
ti
liz

at
io
n:

fo
r
st
at
ic

al
lo
ca
ti
on

1.
N
o,

it
is
no

t
ad

ap
ti
ve

as
it

re
qu

ir
es

gr
ap

h
m
od

el
in
g.

T
ab

le
1.

C
om

pa
ri
so
n
of

va
ri
ou
s
al
go
ri
th
m
s.

107

An Empirical Survey on Load Balancing: A Nature-Inspired Approach
DOI: http://dx.doi.org/10.5772/intechopen.87002

Xnew ¼ xoldþH ∗ at

H is a random value between �1 and 1 (Loudness decreases as the bat have
found prey).

2.10 Gravitational search algorithm (GSA)

“Gravitational search algorithm (GSA)” is a reality discovering algorithm which
is picking up enthusiasm among scientific community these days. Gravitational
Search Algorithm (GSA) is a populace search algorithm based on Newton’s law of
gravity and the law of movement. GSA is represented to be more instinctual. In
GSA, the specialist has four parameters which are the position, inertial mass, unique
gravitational mass, and uninvolved gravitational mass. The arrangements in the
GSA masses are called specialists, and they speak with each other through the
gravity compel. Its mass measures the execution of these agents. Each agent is
considered an object and all object move toward different items with all the more
extensive mass because of gravity compel [17] (Figure 12).

To solve the cluster problem of resource allocation Load balancing is the tech-
nique used, and several techniques can be used to solve this clustering problem. One
such way is using gravitational search algorithm. The gravitational search algorithm
uses evolutionary computing [51].

Evolutionary computing is more efficient than traditional algorithms because
the solutions do not stagnate in local minima and are faster and robust when
compared to other different algorithms.

It is memoryless takes up less computational time than other algorithms. The
gravitational search algorithm is a likeness to the particle swarm algorithm. Gravi-
tational search algorithm was proposed by Rashedi et al. in the year 2009. This
metaheuristic comes in the category of computational intelligence. Initially, a clus-
ter from the load balancer is taken as an input, and this is modeled into a graph. To
find out the optimal resource allocation now Gravitational search algorithm is
applied to the graph. This algorithm is inspired from Newtonian mechanics and
specifically from Newton’s second law and law of gravitation [52].

3. Advantages and disadvantages of various algorithms

Advantages, disadvantages, utilization and adaptivity of various nature-inspired
algorithms are listed in Table 1.

4. Conclusion

In this paper we chew over different basic concepts of cloud computing, the
primary focus has been kept to understand load balancer and how it functions to do
task allocation and different traditional algorithms which help in task allocation have
also been discussed, and nature-inspired algorithms were discussed in specific. These
were classified into different types like swarm based, genetically inspired, physics-
based and different algorithms from each category were explained, and each was
explained with different advantages, limitations, etc., and all were compared with
respect to their positive points and working methodology and with relevance to load
balancer An attempt has been made to survey out the different algorithms present in
nature and provide relevant solution for optimal resource allocation for load balancer
in cloud. All these different algorithms are nature-inspired and are used for global

108

Scheduling Problems - New Applications and Trends

optimization. These algorithms are useful in finding optimized solutions for our lives
by applying various laws and identifying the patterns of bats and flies like in Bat
Algorithm, a search is identified by their local random walk and Firefly Algorithm.

5. Future scope

Different optimization techniques can be used as a hybrid to suit the appropriate
usage to overcome the disadvantages of one over the other. New optimization
techniques can be formulated from nature.

Author details

Surya Teja Marella* and Thummuru Gunasekhar
Department of Computer Science Engineering, Koneru Lakshmaiah Educational
Foundation Vijayawada, Guntur, India

*Address all correspondence to: suryatejamarella@gmail.com

©2020TheAuthor(s). Licensee IntechOpen. This chapter is distributed under the terms
of theCreativeCommonsAttribution License (http://creativecommons.org/licenses/
by/3.0),which permits unrestricted use, distribution, and reproduction in anymedium,
provided the original work is properly cited.

109

An Empirical Survey on Load Balancing: A Nature-Inspired Approach
DOI: http://dx.doi.org/10.5772/intechopen.87002

Xnew ¼ xoldþH ∗ at

H is a random value between �1 and 1 (Loudness decreases as the bat have
found prey).

2.10 Gravitational search algorithm (GSA)

“Gravitational search algorithm (GSA)” is a reality discovering algorithm which
is picking up enthusiasm among scientific community these days. Gravitational
Search Algorithm (GSA) is a populace search algorithm based on Newton’s law of
gravity and the law of movement. GSA is represented to be more instinctual. In
GSA, the specialist has four parameters which are the position, inertial mass, unique
gravitational mass, and uninvolved gravitational mass. The arrangements in the
GSA masses are called specialists, and they speak with each other through the
gravity compel. Its mass measures the execution of these agents. Each agent is
considered an object and all object move toward different items with all the more
extensive mass because of gravity compel [17] (Figure 12).

To solve the cluster problem of resource allocation Load balancing is the tech-
nique used, and several techniques can be used to solve this clustering problem. One
such way is using gravitational search algorithm. The gravitational search algorithm
uses evolutionary computing [51].

Evolutionary computing is more efficient than traditional algorithms because
the solutions do not stagnate in local minima and are faster and robust when
compared to other different algorithms.

It is memoryless takes up less computational time than other algorithms. The
gravitational search algorithm is a likeness to the particle swarm algorithm. Gravi-
tational search algorithm was proposed by Rashedi et al. in the year 2009. This
metaheuristic comes in the category of computational intelligence. Initially, a clus-
ter from the load balancer is taken as an input, and this is modeled into a graph. To
find out the optimal resource allocation now Gravitational search algorithm is
applied to the graph. This algorithm is inspired from Newtonian mechanics and
specifically from Newton’s second law and law of gravitation [52].

3. Advantages and disadvantages of various algorithms

Advantages, disadvantages, utilization and adaptivity of various nature-inspired
algorithms are listed in Table 1.

4. Conclusion

In this paper we chew over different basic concepts of cloud computing, the
primary focus has been kept to understand load balancer and how it functions to do
task allocation and different traditional algorithms which help in task allocation have
also been discussed, and nature-inspired algorithms were discussed in specific. These
were classified into different types like swarm based, genetically inspired, physics-
based and different algorithms from each category were explained, and each was
explained with different advantages, limitations, etc., and all were compared with
respect to their positive points and working methodology and with relevance to load
balancer An attempt has been made to survey out the different algorithms present in
nature and provide relevant solution for optimal resource allocation for load balancer
in cloud. All these different algorithms are nature-inspired and are used for global

108

Scheduling Problems - New Applications and Trends

optimization. These algorithms are useful in finding optimized solutions for our lives
by applying various laws and identifying the patterns of bats and flies like in Bat
Algorithm, a search is identified by their local random walk and Firefly Algorithm.

5. Future scope

Different optimization techniques can be used as a hybrid to suit the appropriate
usage to overcome the disadvantages of one over the other. New optimization
techniques can be formulated from nature.

Author details

Surya Teja Marella* and Thummuru Gunasekhar
Department of Computer Science Engineering, Koneru Lakshmaiah Educational
Foundation Vijayawada, Guntur, India

*Address all correspondence to: suryatejamarella@gmail.com

©2020TheAuthor(s). Licensee IntechOpen. This chapter is distributed under the terms
of theCreativeCommonsAttribution License (http://creativecommons.org/licenses/
by/3.0),which permits unrestricted use, distribution, and reproduction in anymedium,
provided the original work is properly cited.

109

An Empirical Survey on Load Balancing: A Nature-Inspired Approach
DOI: http://dx.doi.org/10.5772/intechopen.87002

References

[1] Baran ME, Wu FF. Network
reconfiguration in distribution systems
for loss reduction and load balancing.
IEEE Transactions on Power Delivery.
1989;4(2):1401-1407

[2] Randles M, Lamb D, Taleb-Bendiab
A. A comparative study into distributed
load balancing algorithms for cloud
computing. In: 2010 IEEE 24th
International Conference on Advanced
Information Networking and
Applications Workshops (WAINA);
IEEE; April 2010. pp. 551-556

[3] Al Nuaimi K, Mohamed N, Al
Nuaimi M, Al-Jaroodi J. A survey of load
balancing in cloud computing:
Challenges and algorithms. In: 2012
Second Symposium on Network Cloud
Computing and Applications (NCCA);
IEEE; December 2012. pp. 137-142

[4] Velayos H, Aleo V, Karlsson G. Load
balancing in overlapping wireless LAN
cells. In: 2004 IEEE International
Conference on Communications; IEEE;
June 2004; Vol. 7. pp. 3833-3836

[5] Tantawi AN, Towsley D. Optimal
static load balancing in distributed
computer systems. Journal of the ACM
(JACM). 1985;32(2):445-465

[6] Yousaf FZ, Taleb T. Fine-grained
resource-aware virtual network
function management for 5G carrier
cloud. IEEE Network. 2016;30(2):
110-115

[7] Cybenko G. Dynamic load balancing
for distributed memory multiprocessors.
Journal of Parallel and Distributed
Computing. 1989;7(2):279-301

[8] Performance Tradeoffs in Static and
Dynamic Load Balancing Strategies;
NASA; March 1986

[9] Shirazi BA, Kavi KM, Hurson AR.
Scheduling and Load Balancing in

Parallel and Distributed Systems. IEEE
Computer Society Press; 1995

[10] Cardellini V, Colajanni M, Yu PS.
Dynamic load balancing on web-server
systems. IEEE Internet Computing.
1999;3(3):28-39

[11] Schoonderwoerd R, Holland OE,
Bruten JL, Rothkrantz LJ. Ant-based
load balancing in telecommunications
networks. Adaptive Behavior. 1997;5(2):
169-207

[12] Brendel J, Kring CJ, Liu Z, Marino
CC. Resonate Inc. World-wide-web
server with delayed resource-binding
for resource-based load balancing on a
distributed resource multi-node
network. U.S. Patent 5, 774, 660. 1998

[13] Willebeek-LeMair MH, Reeves AP.
Strategies for dynamic load balancing on
highly parallel computers. IEEE
Transactions on Parallel and Distributed
Systems. 1993;4(9):979-993

[14] Miyazaki T, Wada M, Kawahara H,
Sato M, Baba H, Shimada S. Dynamic
load at baseline can predict radiographic
disease progression in medial
compartment knee osteoarthritis.
Annals of the Rheumatic Diseases. 2002;
61(7):617-622

[15] Devine KD, Boman EG, Heaphy RT,
Hendrickson BA, Teresco JD, Faik J,
et al. New challenges in dynamic load
balancing. Applied Numerical
Mathematics. 2005;52(2-3):133-152

[16] KimC, KamedaH. An algorithm for
optimal static load balancing in distributed
computer systems. IEEETransactions on
Computers. 1992;41(3):381-384

[17] Rashedi E, Nezamabadi-Pour H,
Saryazdi S. GSA: A gravitational search
algorithm. Information Sciences. 2009;
179(13):2232-2248

110

Scheduling Problems - New Applications and Trends

[18] Zaki MJ, Li W, Parthasarathy S.
Customized dynamic load balancing for
a network of workstations. In: 1996,
Proceedings of 5th IEEE International
Symposium on High Performance
Distributed Computing; IEEE; August
1996. pp. 282-291

[19] Raz Y, Scherr AL, EMC Corp.
Dynamic load balancing. U.S. Patent 5,
860, 137. 1999

[20] Trigui H, Cuthill R, Kusyk RG.
Reverb Networks. Dynamic load
balancing. U.S. Patent 8, 498, 207. 2013

[21] Raz Y, Vishlitzky N, Alterescu B,
EMC Corp. Dynamic load balancing. U.
S. Patent 6, 173, 306. 2001

[22] Hendrickson B, Devine K. Dynamic
load balancing in computational
mechanics. Computer Methods in
Applied Mechanics and Engineering.
2000;184(2-4):485-500

[23] Sharma S, Singh S, Sharma M.
Performance analysis of load balancing
algorithms. World Academy of Science,
Engineering and Technology. 2008;
38(3):269-272

[24] Boyan JA, Littman ML. Packet
routing in dynamically changing
networks: A reinforcement learning
approach. In: Advances in Neural
Information Processing Systems; 1994.
pp. 671-678

[25] Yang XS. Nature-Inspired
Metaheuristic Algorithms. Luniver
press; 2010

[26] Fister I Jr, Yang XS, Fister I, Brest J,
Fister D. A brief review of nature-
inspired algorithms for optimization.
2013. arXiv preprint arXiv:1307.4186

[27] Zang H, Zhang S, Hapeshi K. A
review of nature-inspired algorithms.
Journal of Bionic Engineering. 2010;
7(4):S232-S237

[28] Mitchell M, Holland JH, Forrest S.
When will a genetic algorithm
outperform hill climbing. In: Advances
in Neural Information Processing
Systems; 1994. pp. 51-58

[29] Tsamardinos I, Brown LE, Aliferis
CF. The max-min hill-climbing Bayesian
network structure learning algorithm.
Machine Learning. 2006;65(1):31-78

[30] Al Salami NM. Ant colony
optimization algorithm. UbiCC Journal.
2009;4(3):823-826

[31] Dorigo M. Ant colony optimization.
Scholarpedia. 2007;2(3):1461

[32] Yaseen SG, Al-SlamyNM. Ant colony
optimization. IJCSNS. 2008;8(6):351

[33] Karaboga D. Artificial bee colony
algorithm. scholarpedia. 2010;5(3):6915

[34] Karaboga D, Akay B. A comparative
study of artificial bee colony algorithm.
Applied Mathematics and Computation.
2009;214(1):108-132

[35] Karaboga D, Basturk B. A powerful
and efficient algorithm for numerical
function optimization: Artificial bee
colony (ABC) algorithm. Journal of
Global Optimization. 2007;39(3):
459-471

[36] Deb K, Pratap A, Agarwal S,
Meyarivan TAMT. A fast and elitist
multiobjective genetic algorithm:
NSGA-II. IEEE Transactions on
Evolutionary Computation. 2002;6(2):
182-197

[37] Morris GM, Goodsell DS, Halliday
RS, Huey R, Hart WE, Belew RK, et al.
Automated docking using a Lamarckian
genetic algorithm and an empirical
binding free energy function. Journal of
Computational Chemistry. 1998;19(14):
1639-1662

[38] Deb K, Agrawal S, Pratap A,
Meyarivan T. A fast elitist

111

An Empirical Survey on Load Balancing: A Nature-Inspired Approach
DOI: http://dx.doi.org/10.5772/intechopen.87002

References

[1] Baran ME, Wu FF. Network
reconfiguration in distribution systems
for loss reduction and load balancing.
IEEE Transactions on Power Delivery.
1989;4(2):1401-1407

[2] Randles M, Lamb D, Taleb-Bendiab
A. A comparative study into distributed
load balancing algorithms for cloud
computing. In: 2010 IEEE 24th
International Conference on Advanced
Information Networking and
Applications Workshops (WAINA);
IEEE; April 2010. pp. 551-556

[3] Al Nuaimi K, Mohamed N, Al
Nuaimi M, Al-Jaroodi J. A survey of load
balancing in cloud computing:
Challenges and algorithms. In: 2012
Second Symposium on Network Cloud
Computing and Applications (NCCA);
IEEE; December 2012. pp. 137-142

[4] Velayos H, Aleo V, Karlsson G. Load
balancing in overlapping wireless LAN
cells. In: 2004 IEEE International
Conference on Communications; IEEE;
June 2004; Vol. 7. pp. 3833-3836

[5] Tantawi AN, Towsley D. Optimal
static load balancing in distributed
computer systems. Journal of the ACM
(JACM). 1985;32(2):445-465

[6] Yousaf FZ, Taleb T. Fine-grained
resource-aware virtual network
function management for 5G carrier
cloud. IEEE Network. 2016;30(2):
110-115

[7] Cybenko G. Dynamic load balancing
for distributed memory multiprocessors.
Journal of Parallel and Distributed
Computing. 1989;7(2):279-301

[8] Performance Tradeoffs in Static and
Dynamic Load Balancing Strategies;
NASA; March 1986

[9] Shirazi BA, Kavi KM, Hurson AR.
Scheduling and Load Balancing in

Parallel and Distributed Systems. IEEE
Computer Society Press; 1995

[10] Cardellini V, Colajanni M, Yu PS.
Dynamic load balancing on web-server
systems. IEEE Internet Computing.
1999;3(3):28-39

[11] Schoonderwoerd R, Holland OE,
Bruten JL, Rothkrantz LJ. Ant-based
load balancing in telecommunications
networks. Adaptive Behavior. 1997;5(2):
169-207

[12] Brendel J, Kring CJ, Liu Z, Marino
CC. Resonate Inc. World-wide-web
server with delayed resource-binding
for resource-based load balancing on a
distributed resource multi-node
network. U.S. Patent 5, 774, 660. 1998

[13] Willebeek-LeMair MH, Reeves AP.
Strategies for dynamic load balancing on
highly parallel computers. IEEE
Transactions on Parallel and Distributed
Systems. 1993;4(9):979-993

[14] Miyazaki T, Wada M, Kawahara H,
Sato M, Baba H, Shimada S. Dynamic
load at baseline can predict radiographic
disease progression in medial
compartment knee osteoarthritis.
Annals of the Rheumatic Diseases. 2002;
61(7):617-622

[15] Devine KD, Boman EG, Heaphy RT,
Hendrickson BA, Teresco JD, Faik J,
et al. New challenges in dynamic load
balancing. Applied Numerical
Mathematics. 2005;52(2-3):133-152

[16] KimC, KamedaH. An algorithm for
optimal static load balancing in distributed
computer systems. IEEETransactions on
Computers. 1992;41(3):381-384

[17] Rashedi E, Nezamabadi-Pour H,
Saryazdi S. GSA: A gravitational search
algorithm. Information Sciences. 2009;
179(13):2232-2248

110

Scheduling Problems - New Applications and Trends

[18] Zaki MJ, Li W, Parthasarathy S.
Customized dynamic load balancing for
a network of workstations. In: 1996,
Proceedings of 5th IEEE International
Symposium on High Performance
Distributed Computing; IEEE; August
1996. pp. 282-291

[19] Raz Y, Scherr AL, EMC Corp.
Dynamic load balancing. U.S. Patent 5,
860, 137. 1999

[20] Trigui H, Cuthill R, Kusyk RG.
Reverb Networks. Dynamic load
balancing. U.S. Patent 8, 498, 207. 2013

[21] Raz Y, Vishlitzky N, Alterescu B,
EMC Corp. Dynamic load balancing. U.
S. Patent 6, 173, 306. 2001

[22] Hendrickson B, Devine K. Dynamic
load balancing in computational
mechanics. Computer Methods in
Applied Mechanics and Engineering.
2000;184(2-4):485-500

[23] Sharma S, Singh S, Sharma M.
Performance analysis of load balancing
algorithms. World Academy of Science,
Engineering and Technology. 2008;
38(3):269-272

[24] Boyan JA, Littman ML. Packet
routing in dynamically changing
networks: A reinforcement learning
approach. In: Advances in Neural
Information Processing Systems; 1994.
pp. 671-678

[25] Yang XS. Nature-Inspired
Metaheuristic Algorithms. Luniver
press; 2010

[26] Fister I Jr, Yang XS, Fister I, Brest J,
Fister D. A brief review of nature-
inspired algorithms for optimization.
2013. arXiv preprint arXiv:1307.4186

[27] Zang H, Zhang S, Hapeshi K. A
review of nature-inspired algorithms.
Journal of Bionic Engineering. 2010;
7(4):S232-S237

[28] Mitchell M, Holland JH, Forrest S.
When will a genetic algorithm
outperform hill climbing. In: Advances
in Neural Information Processing
Systems; 1994. pp. 51-58

[29] Tsamardinos I, Brown LE, Aliferis
CF. The max-min hill-climbing Bayesian
network structure learning algorithm.
Machine Learning. 2006;65(1):31-78

[30] Al Salami NM. Ant colony
optimization algorithm. UbiCC Journal.
2009;4(3):823-826

[31] Dorigo M. Ant colony optimization.
Scholarpedia. 2007;2(3):1461

[32] Yaseen SG, Al-SlamyNM. Ant colony
optimization. IJCSNS. 2008;8(6):351

[33] Karaboga D. Artificial bee colony
algorithm. scholarpedia. 2010;5(3):6915

[34] Karaboga D, Akay B. A comparative
study of artificial bee colony algorithm.
Applied Mathematics and Computation.
2009;214(1):108-132

[35] Karaboga D, Basturk B. A powerful
and efficient algorithm for numerical
function optimization: Artificial bee
colony (ABC) algorithm. Journal of
Global Optimization. 2007;39(3):
459-471

[36] Deb K, Pratap A, Agarwal S,
Meyarivan TAMT. A fast and elitist
multiobjective genetic algorithm:
NSGA-II. IEEE Transactions on
Evolutionary Computation. 2002;6(2):
182-197

[37] Morris GM, Goodsell DS, Halliday
RS, Huey R, Hart WE, Belew RK, et al.
Automated docking using a Lamarckian
genetic algorithm and an empirical
binding free energy function. Journal of
Computational Chemistry. 1998;19(14):
1639-1662

[38] Deb K, Agrawal S, Pratap A,
Meyarivan T. A fast elitist

111

An Empirical Survey on Load Balancing: A Nature-Inspired Approach
DOI: http://dx.doi.org/10.5772/intechopen.87002

non-dominated sorting genetic
algorithm for multi-objective
optimization: NSGA-II. In: International
Conference on Parallel Problem Solving
From Nature; Berlin, Heidelberg:
Springer; September 2000. pp. 849-858

[39] Gandomi AH, Yang XS, Alavi AH.
Cuckoo search algorithm: A
metaheuristic approach to solve
structural optimization problems.
Engineering with Computers. 2013;
29(1):17-35

[40] Yildiz AR. Cuckoo search algorithm
for the selection of optimal machining
parameters in milling operations. The
International Journal of Advanced
Manufacturing Technology. 2013;64
(1-4):55-61

[41] Yang XS. Firefly algorithm,
stochastic test functions and design
optimisation. International Journal of
Bio-Inspired Computation. 2010;2(2):
78-84

[42] Yang XS. Firefly algorithm, levy
flights and global optimization. In:
Research and Development in
Intelligent Systems XXVI. London:
Springer; 2010. pp. 209-218

[43] Corana A, Marchesi M, Martini C,
Ridella S. Minimizing multimodal
functions of continuous variables with
the “simulated annealing” algorithm
corrigenda for this article is available
here. ACM Transactions on
Mathematical Software (TOMS). 1987;
13(3):262-280

[44] Kirkpatrick S, Gelatt CD, Vecchi
MP. Optimization by simulated
annealing. Science. 1983;220(4598):
671-680

[45] Szu H, Hartley R. Fast simulated
annealing. Physics Letters A. 1987;122
(3-4):157-162

[46] Eusuff MM, Lansey KE.
Optimization of water distribution

network design using the shuffled frog
leaping algorithm. Journal of Water
Resources Planning and Management.
2003;129(3):210-225

[47] Eusuff M, Lansey K, Pasha F.
Shuffled frog-leaping algorithm: A
memetic meta-heuristic for discrete
optimization. Engineering
Optimization. 2006;38(2):129-154

[48] Rahimi-Vahed A, Mirzaei AH. A
hybrid multi-objective shuffled frog-
leaping algorithm for a mixed-model
assembly line sequencing problem.
Computers & Industrial Engineering.
2007;53(4):642-666

[49] Yang XS. A new metaheuristic bat-
inspired algorithm. In: Nature Inspired
Cooperative Strategies for Optimization
(NICSO 2010). Berlin, Heidelberg:
Springer; 2010. pp. 65-74

[50] Yang XS, Hossein Gandomi A. Bat
algorithm: A novel approach for global
engineering optimization. Engineering
Computations. 2012;29(5):464-483

[51] Rashedi E, Nezamabadi-Pour H,
Saryazdi S. BGSA: Binary gravitational
search algorithm. Natural Computing.
2010;9(3):727-745

[52] Rashedi E, Nezamabadi-Pour H,
Saryazdi S. Filter modeling using
gravitational search algorithm.
Engineering Applications of Artificial
Intelligence. 2011;24(1):117-122

112

Scheduling Problems - New Applications and Trends

Section 3

Cloud Computing and Data
Science: Exploring the

Benefits of Task Scheduling
on Such Environments

113

non-dominated sorting genetic
algorithm for multi-objective
optimization: NSGA-II. In: International
Conference on Parallel Problem Solving
From Nature; Berlin, Heidelberg:
Springer; September 2000. pp. 849-858

[39] Gandomi AH, Yang XS, Alavi AH.
Cuckoo search algorithm: A
metaheuristic approach to solve
structural optimization problems.
Engineering with Computers. 2013;
29(1):17-35

[40] Yildiz AR. Cuckoo search algorithm
for the selection of optimal machining
parameters in milling operations. The
International Journal of Advanced
Manufacturing Technology. 2013;64
(1-4):55-61

[41] Yang XS. Firefly algorithm,
stochastic test functions and design
optimisation. International Journal of
Bio-Inspired Computation. 2010;2(2):
78-84

[42] Yang XS. Firefly algorithm, levy
flights and global optimization. In:
Research and Development in
Intelligent Systems XXVI. London:
Springer; 2010. pp. 209-218

[43] Corana A, Marchesi M, Martini C,
Ridella S. Minimizing multimodal
functions of continuous variables with
the “simulated annealing” algorithm
corrigenda for this article is available
here. ACM Transactions on
Mathematical Software (TOMS). 1987;
13(3):262-280

[44] Kirkpatrick S, Gelatt CD, Vecchi
MP. Optimization by simulated
annealing. Science. 1983;220(4598):
671-680

[45] Szu H, Hartley R. Fast simulated
annealing. Physics Letters A. 1987;122
(3-4):157-162

[46] Eusuff MM, Lansey KE.
Optimization of water distribution

network design using the shuffled frog
leaping algorithm. Journal of Water
Resources Planning and Management.
2003;129(3):210-225

[47] Eusuff M, Lansey K, Pasha F.
Shuffled frog-leaping algorithm: A
memetic meta-heuristic for discrete
optimization. Engineering
Optimization. 2006;38(2):129-154

[48] Rahimi-Vahed A, Mirzaei AH. A
hybrid multi-objective shuffled frog-
leaping algorithm for a mixed-model
assembly line sequencing problem.
Computers & Industrial Engineering.
2007;53(4):642-666

[49] Yang XS. A new metaheuristic bat-
inspired algorithm. In: Nature Inspired
Cooperative Strategies for Optimization
(NICSO 2010). Berlin, Heidelberg:
Springer; 2010. pp. 65-74

[50] Yang XS, Hossein Gandomi A. Bat
algorithm: A novel approach for global
engineering optimization. Engineering
Computations. 2012;29(5):464-483

[51] Rashedi E, Nezamabadi-Pour H,
Saryazdi S. BGSA: Binary gravitational
search algorithm. Natural Computing.
2010;9(3):727-745

[52] Rashedi E, Nezamabadi-Pour H,
Saryazdi S. Filter modeling using
gravitational search algorithm.
Engineering Applications of Artificial
Intelligence. 2011;24(1):117-122

112

Scheduling Problems - New Applications and Trends

Section 3

Cloud Computing and Data
Science: Exploring the

Benefits of Task Scheduling
on Such Environments

113

Chapter 6

Looking at Data Science through
the Lens of Scheduling and Load
Balancing
Diórgenes Eugênio da Silveira, Eduardo Souza dos Reis,
Rodrigo Simon Bavaresco, Marcio Miguel Gomes,
Cristiano André da Costa, Jorge Luis Victoria Barbosa,
Rodolfo Stoffel Antunes, Alvaro Machado Júnior,
Rodrigo Saad and Rodrigo da Rosa Righi

Abstract

The growth in data generated by private and public organizations leads to
several opportunities to obtain valuable knowledge. In this scenario, data science
becomes pertinent to define a structured methodology to extract valuable knowl-
edge from raw data. It encompasses a heterogeneous group of techniques that
challenge the implementation of a single platform capable of incorporating all the
available resources. Thus, it is necessary to formulate a data science workflow based
on different tools to extract knowledge from massive datasets. In this context, high-
performance computing (HPC) provides the infrastructure required to optimize the
processing time of data science workflows, which become a collection of tasks that
must be efficiently scheduled to provide results in acceptable time intervals. While
few studies explore the use of HPC for data science tasks, in the best of our
knowledge, none conducts an in-depth analysis of scheduling and load balancing on
such workflows. In this context, this chapter proposes an analysis of scheduling and
load balancing from the perspective of data science scenarios. It presents concepts,
environments, and tools to summarize the theoretical background required to
define, assign, and execute data science workflows. Furthermore, we are also
presenting new trends concerning the intersection of data science, scheduling, and
load balance.

Keywords: scheduling, load balance, high-performance computing, data science,
big data

1. Introduction

Private corporate networks, as well as the Internet, generate and share data at
ever increasing rates. This unconstrained growth can easily lead disorganization
and, as a consequence, missed opportunities to analyze and extract knowledge for
these data. There is an essential difference between the concepts of data and infor-
mation. Data cannot express something outside a particular field of expertise.

115

Chapter 6

Looking at Data Science through
the Lens of Scheduling and Load
Balancing
Diórgenes Eugênio da Silveira, Eduardo Souza dos Reis,
Rodrigo Simon Bavaresco, Marcio Miguel Gomes,
Cristiano André da Costa, Jorge Luis Victoria Barbosa,
Rodolfo Stoffel Antunes, Alvaro Machado Júnior,
Rodrigo Saad and Rodrigo da Rosa Righi

Abstract

The growth in data generated by private and public organizations leads to
several opportunities to obtain valuable knowledge. In this scenario, data science
becomes pertinent to define a structured methodology to extract valuable knowl-
edge from raw data. It encompasses a heterogeneous group of techniques that
challenge the implementation of a single platform capable of incorporating all the
available resources. Thus, it is necessary to formulate a data science workflow based
on different tools to extract knowledge from massive datasets. In this context, high-
performance computing (HPC) provides the infrastructure required to optimize the
processing time of data science workflows, which become a collection of tasks that
must be efficiently scheduled to provide results in acceptable time intervals. While
few studies explore the use of HPC for data science tasks, in the best of our
knowledge, none conducts an in-depth analysis of scheduling and load balancing on
such workflows. In this context, this chapter proposes an analysis of scheduling and
load balancing from the perspective of data science scenarios. It presents concepts,
environments, and tools to summarize the theoretical background required to
define, assign, and execute data science workflows. Furthermore, we are also
presenting new trends concerning the intersection of data science, scheduling, and
load balance.

Keywords: scheduling, load balance, high-performance computing, data science,
big data

1. Introduction

Private corporate networks, as well as the Internet, generate and share data at
ever increasing rates. This unconstrained growth can easily lead disorganization
and, as a consequence, missed opportunities to analyze and extract knowledge for
these data. There is an essential difference between the concepts of data and infor-
mation. Data cannot express something outside a particular field of expertise.

115

In turn, information enables the coherent transmission of knowledge. Data science
aims to close the gap between data and knowledge through the use of computational
tools. More specifically, data science is a tool for converting raw data into knowl-
edge [1]. The field of data science leverages many methods originating from com-
puter science and statistics [2]. Figure 1 illustrates a Venn’s diagram that correlates
the research areas with major influence in data science.

Although data science receives significant influence from expert knowledge, it is
plausible to say that a data scientist knows more about computer science than a
statistician and more about statistics than a computer scientist [3]. Besides, it also
encompasses the intersection of data analytics and machine learning. Therefore,
data science encompasses a heterogeneous group of studies and methodologies such
as big data, machine learning, data analytics, and statistics, which challenge the
implementation of a single platform capable of incorporating all the available
techniques.

There are a variety of widely adopted platforms available for data analysis and
knowledge extraction, for example, Tableau,1 Dataiko,2 Microsoft Azure Machine
Learning Studio,3 Orange BioLab,4 each one suitable for a specific step of a data
science process. A workflow can be formulated based on the coordinated applica-
tion of different tools to extract knowledge from massive datasets. In this context,
the use of cloud platforms for data science steadily grows because they offer scal-
ability and distributed execution of individual tasks.

In data science, a large dataset allows the generation of a more in-depth model,
which provides more robust insights because there are more instances to compose
the statistical analysis of data. One of the most relevant aspects regarding a dataset
is the quality of available data. Thus, before the use of any statistical method, the

1

https://www.tableau.com/
2

https://www.dataiku.com/
3

https://azure.microsoft.com/en-us/services/machine-learning-studio/
4

https://orange.biolab.si/

Figure 1.
Venn’s diagram for correlating the influence of other research areas on data science.

116

Scheduling Problems - New Applications and Trends

dataset must go through a cleaning process that ensures the uniformity of values
and the elimination of duplicated data. On one hand, a large dataset with high-
quality data enables an insightful model. On the other hand, the computational
power required to process data is directly proportional to the size of the available
dataset. In this scenario, high-performance computing (HPC) provides the infra-
structure (clusters, grids, and cloud platforms) required to optimize the processing
time of data science workflows. In particular, data science demands are transformed
in a collection of tasks, with or without the notion of dependency among them,
which must be efficiently scheduled along the computational resources [memory,
processors, cores, cluster nodes, graphical processing unit (GPU) cores, grid nodes,
and virtual machines, for example] to provide the results in an acceptable time
interval. To map such tasks to resources, a scheduling policy takes place where load
balancing algorithms are important to provide a better execution equilibrium
among the tasks and a fast response time, mainly when considering either dynamic
or heterogeneous environments. While some articles explore the use of HPC for
data science tasks [4–6], in the best of our knowledge, there are no studies that
conduct an in-depth analysis of how the aspects of scheduling and load balancing
affect data science workflows.

Hence, the present book chapter proposes an analysis of scheduling and load
balancing from the perspective of data science scenarios. Furthermore, it presents
concepts, environments, and tools for data science to summarize the theoretical
background required to understand the definition and execution of data science
workflows. Even though its focus lies on presenting concepts, the chapter also
illustrates new trends concerning the intersection of data science, scheduling, and
load balance.

The remainder of this chapter is organized as follows: Section 2 presents an in-
depth explanation of concepts, workflow, problem classes, and tools used by data
science. Section 3 explores scheduling and load balancing as tools to leverage the
computational power required by data science applications. Section 4 points to
open challenges and trends in the use of HPC applied to data science problems.
Finally, Section 5 concludes the chapter with closing remarks and directions for
future work.

2. Fundamental concepts

This section presents the fundamental concepts related to data science. These are
key to understand the concept of HPC, more specifically scheduling and load
balancing, impact data science processes, as discussed later in the chapter. The
remainder of the section discusses the fundamental components of a data science
pipeline, as observed in real-world scenarios.

2.1 Data science workflow

Data science is highly dependent on its application domain and employs com-
plex methods. Nevertheless, it has a very organized pipeline, which varies in the
number of steps required to extract knowledge. Current work explores a pipeline
that varies between five and seven steps, but in all cases, the process yields similar
outputs. This section aims at presenting the most complete process, composed of
seven steps, widely used by both companies and researchers. Figure 2 depicts the
flow of information step by step. Moreover, the seven proposed steps can be enu-
merated as:

117

Looking at Data Science through the Lens of Scheduling and Load Balancing
DOI: http://dx.doi.org/10.5772/intechopen.92578

In turn, information enables the coherent transmission of knowledge. Data science
aims to close the gap between data and knowledge through the use of computational
tools. More specifically, data science is a tool for converting raw data into knowl-
edge [1]. The field of data science leverages many methods originating from com-
puter science and statistics [2]. Figure 1 illustrates a Venn’s diagram that correlates
the research areas with major influence in data science.

Although data science receives significant influence from expert knowledge, it is
plausible to say that a data scientist knows more about computer science than a
statistician and more about statistics than a computer scientist [3]. Besides, it also
encompasses the intersection of data analytics and machine learning. Therefore,
data science encompasses a heterogeneous group of studies and methodologies such
as big data, machine learning, data analytics, and statistics, which challenge the
implementation of a single platform capable of incorporating all the available
techniques.

There are a variety of widely adopted platforms available for data analysis and
knowledge extraction, for example, Tableau,1 Dataiko,2 Microsoft Azure Machine
Learning Studio,3 Orange BioLab,4 each one suitable for a specific step of a data
science process. A workflow can be formulated based on the coordinated applica-
tion of different tools to extract knowledge from massive datasets. In this context,
the use of cloud platforms for data science steadily grows because they offer scal-
ability and distributed execution of individual tasks.

In data science, a large dataset allows the generation of a more in-depth model,
which provides more robust insights because there are more instances to compose
the statistical analysis of data. One of the most relevant aspects regarding a dataset
is the quality of available data. Thus, before the use of any statistical method, the

1

https://www.tableau.com/
2

https://www.dataiku.com/
3

https://azure.microsoft.com/en-us/services/machine-learning-studio/
4

https://orange.biolab.si/

Figure 1.
Venn’s diagram for correlating the influence of other research areas on data science.

116

Scheduling Problems - New Applications and Trends

dataset must go through a cleaning process that ensures the uniformity of values
and the elimination of duplicated data. On one hand, a large dataset with high-
quality data enables an insightful model. On the other hand, the computational
power required to process data is directly proportional to the size of the available
dataset. In this scenario, high-performance computing (HPC) provides the infra-
structure (clusters, grids, and cloud platforms) required to optimize the processing
time of data science workflows. In particular, data science demands are transformed
in a collection of tasks, with or without the notion of dependency among them,
which must be efficiently scheduled along the computational resources [memory,
processors, cores, cluster nodes, graphical processing unit (GPU) cores, grid nodes,
and virtual machines, for example] to provide the results in an acceptable time
interval. To map such tasks to resources, a scheduling policy takes place where load
balancing algorithms are important to provide a better execution equilibrium
among the tasks and a fast response time, mainly when considering either dynamic
or heterogeneous environments. While some articles explore the use of HPC for
data science tasks [4–6], in the best of our knowledge, there are no studies that
conduct an in-depth analysis of how the aspects of scheduling and load balancing
affect data science workflows.

Hence, the present book chapter proposes an analysis of scheduling and load
balancing from the perspective of data science scenarios. Furthermore, it presents
concepts, environments, and tools for data science to summarize the theoretical
background required to understand the definition and execution of data science
workflows. Even though its focus lies on presenting concepts, the chapter also
illustrates new trends concerning the intersection of data science, scheduling, and
load balance.

The remainder of this chapter is organized as follows: Section 2 presents an in-
depth explanation of concepts, workflow, problem classes, and tools used by data
science. Section 3 explores scheduling and load balancing as tools to leverage the
computational power required by data science applications. Section 4 points to
open challenges and trends in the use of HPC applied to data science problems.
Finally, Section 5 concludes the chapter with closing remarks and directions for
future work.

2. Fundamental concepts

This section presents the fundamental concepts related to data science. These are
key to understand the concept of HPC, more specifically scheduling and load
balancing, impact data science processes, as discussed later in the chapter. The
remainder of the section discusses the fundamental components of a data science
pipeline, as observed in real-world scenarios.

2.1 Data science workflow

Data science is highly dependent on its application domain and employs com-
plex methods. Nevertheless, it has a very organized pipeline, which varies in the
number of steps required to extract knowledge. Current work explores a pipeline
that varies between five and seven steps, but in all cases, the process yields similar
outputs. This section aims at presenting the most complete process, composed of
seven steps, widely used by both companies and researchers. Figure 2 depicts the
flow of information step by step. Moreover, the seven proposed steps can be enu-
merated as:

117

Looking at Data Science through the Lens of Scheduling and Load Balancing
DOI: http://dx.doi.org/10.5772/intechopen.92578

1.business understanding;

2.data extraction;

3.data preparation;

4.data exploring;

5.data model;

6.results evaluation; and

7. implementation.

Step 1 refers to the process of understanding in which context the data are
inserted on, and what is the expected output. This is a high time-consuming process
in a project. However, data scientist must have a deep understanding about the
application domain to validate the model’s structure as well as its outputs. After
understanding the scope of the project, on Step 2, exploring the data that correlate
with the problem understood in the last step. These data can be hosted at the client
or not. If the client does not have useful data available, the data scientist must look
for a synthetic or publicly available dataset to extract the knowledge. Furthermore,
on Step 3, techniques are employed to clean data because there is a high chance that
it is unorganized or unreadable, so it is necessary to preprocess and standardize it.
An example of this step is a dataset that has a column with country names, but in
some registers, the value of this column is “Brasil” and in others, it is “Brazil,” both
values symbolize the same information but are encoded in different languages.
Regarding Step 4, the data are organized, and it is indispensable to execute a

Figure 2.
Flow diagram of data science steps.

118

Scheduling Problems - New Applications and Trends

detailed analysis in order to figure out patterns or insights that would be valuable to
the client. In this stage, the data scientist usually uses plotting techniques to make
the data more readable and figure out information.

On Step 5, previously identified insights serve as input. But at this step, it is
vital to fully understand the data since, without formal knowledge, it is very hard
to fit a model that correctly represents it. At this stage, it is required that the data
scientist uses computer science expertise to choose the better approach to plan and
validate the model. In Step 6, outputs generated by the model are evaluated in
order to analyze how useful they actually are. Usually, this evaluation is conducted
by the client and the data scientist together, to examine graphs, numbers, and
tables and define if the model generated acceptable results. Finally, on Step 7, the
results are validated, and the model is ready to be implemented and deployed in
production; thus, it is applied to prediction tasks, having real data as input. The
architecture used to implement the model is very important, that is, it is necessary
to understand what will be used for the client application since if the client needs a
real-time response, the structure will be very different than a nonreal-time
scenario.

2.2 Solving problems with data science

Data science is not exclusively employed in business scenarios, and it can be
generalized to a plethora of applications, such as in Obama’s campaign for US
presidential elections in 2012. In the context of this election, technology was applied
to identify who were the voters that should receive more attention and marketing
influence. Some analysts highlighted the use of data science as fundamental to
Obama’s victory. However, data science is not limited to the analysis of scenarios,
such as in the above example. Many other challenges can benefit from solutions
based on data science methodologies. For instance, some problem classes in data
science are pattern detection, anomaly detection, cleaning, alignment, classifica-
tion, regression, knowledge base construction, and density estimation [7]. These
classes of problems are explored next.

2.2.1 Pattern detection

The patterns existing in a dataset are not always easily identifiable due to the
organization of the data. It is the method employed to discover information stan-
dards in the dataset. Figuring patterns hidden into data is a relevant task in several
scenarios, for example, to join the clients with similar characteristics, such as those
with the same taste or opinion.

2.2.2 Anomaly detection

The distribution of a dataset regards the positions of data points among each
other in the dataset. Usually, the representation of this distribution employs a
Cartesian plane, in which each point is an instance of the dataset. Within this
representation, regions with a defined concentration of data points become clus-
ters. Therefore, outliers are the data points that are too far from these clusters.
Anomaly detection aims to classify each data into a dataset as an outlier or not. For
example, the banks employ this approach in the scenario of fraud detection. In this
scenario, transactions of a client become clusters, and a new transaction is con-
sidered as unclassified data.

119

Looking at Data Science through the Lens of Scheduling and Load Balancing
DOI: http://dx.doi.org/10.5772/intechopen.92578

1.business understanding;

2.data extraction;

3.data preparation;

4.data exploring;

5.data model;

6.results evaluation; and

7. implementation.

Step 1 refers to the process of understanding in which context the data are
inserted on, and what is the expected output. This is a high time-consuming process
in a project. However, data scientist must have a deep understanding about the
application domain to validate the model’s structure as well as its outputs. After
understanding the scope of the project, on Step 2, exploring the data that correlate
with the problem understood in the last step. These data can be hosted at the client
or not. If the client does not have useful data available, the data scientist must look
for a synthetic or publicly available dataset to extract the knowledge. Furthermore,
on Step 3, techniques are employed to clean data because there is a high chance that
it is unorganized or unreadable, so it is necessary to preprocess and standardize it.
An example of this step is a dataset that has a column with country names, but in
some registers, the value of this column is “Brasil” and in others, it is “Brazil,” both
values symbolize the same information but are encoded in different languages.
Regarding Step 4, the data are organized, and it is indispensable to execute a

Figure 2.
Flow diagram of data science steps.

118

Scheduling Problems - New Applications and Trends

detailed analysis in order to figure out patterns or insights that would be valuable to
the client. In this stage, the data scientist usually uses plotting techniques to make
the data more readable and figure out information.

On Step 5, previously identified insights serve as input. But at this step, it is
vital to fully understand the data since, without formal knowledge, it is very hard
to fit a model that correctly represents it. At this stage, it is required that the data
scientist uses computer science expertise to choose the better approach to plan and
validate the model. In Step 6, outputs generated by the model are evaluated in
order to analyze how useful they actually are. Usually, this evaluation is conducted
by the client and the data scientist together, to examine graphs, numbers, and
tables and define if the model generated acceptable results. Finally, on Step 7, the
results are validated, and the model is ready to be implemented and deployed in
production; thus, it is applied to prediction tasks, having real data as input. The
architecture used to implement the model is very important, that is, it is necessary
to understand what will be used for the client application since if the client needs a
real-time response, the structure will be very different than a nonreal-time
scenario.

2.2 Solving problems with data science

Data science is not exclusively employed in business scenarios, and it can be
generalized to a plethora of applications, such as in Obama’s campaign for US
presidential elections in 2012. In the context of this election, technology was applied
to identify who were the voters that should receive more attention and marketing
influence. Some analysts highlighted the use of data science as fundamental to
Obama’s victory. However, data science is not limited to the analysis of scenarios,
such as in the above example. Many other challenges can benefit from solutions
based on data science methodologies. For instance, some problem classes in data
science are pattern detection, anomaly detection, cleaning, alignment, classifica-
tion, regression, knowledge base construction, and density estimation [7]. These
classes of problems are explored next.

2.2.1 Pattern detection

The patterns existing in a dataset are not always easily identifiable due to the
organization of the data. It is the method employed to discover information stan-
dards in the dataset. Figuring patterns hidden into data is a relevant task in several
scenarios, for example, to join the clients with similar characteristics, such as those
with the same taste or opinion.

2.2.2 Anomaly detection

The distribution of a dataset regards the positions of data points among each
other in the dataset. Usually, the representation of this distribution employs a
Cartesian plane, in which each point is an instance of the dataset. Within this
representation, regions with a defined concentration of data points become clus-
ters. Therefore, outliers are the data points that are too far from these clusters.
Anomaly detection aims to classify each data into a dataset as an outlier or not. For
example, the banks employ this approach in the scenario of fraud detection. In this
scenario, transactions of a client become clusters, and a new transaction is con-
sidered as unclassified data.

119

Looking at Data Science through the Lens of Scheduling and Load Balancing
DOI: http://dx.doi.org/10.5772/intechopen.92578

2.2.3 Cleaning

Dataset contents can present a broad variety of formats, for example, dates,
numeric values, and text data. In many cases, values may also be differently
formatted across dataset entries, even for the same field, due to human error or
lack of standardization. This situation incurs in errors in the dataset, resulting in
possible information loss when processing it. The best solution to this problem is
to employ methods that manage the dataset contents and standardize the data.
For example, in a dataset containing clients birthdays, it is possible that a user
fills the information with an invalid date. This case results in information loss
because the analysis cannot extract useful information related to the user’s
birthday.

2.2.4 Alignment

An organized and standardized dataset is fundamental for the generation of
trustworthy outputs from data science processes. The process of data alignment is
an essential step in dataset standardization. It involves updating the dataset to avoid
the use of multiple values to represent the same information. For example, in a
dataset containing a gender field, users may use both “M” and “Male” values to
represent the same gender. In this context, it is fundamental to unify both entries in
one because the information in both is the same.

2.2.5 Classification

Classification regards assigning specific labels to entries in a dataset. A label is
any information that presents a limited scope of possibilities, for example, a dozen
options present in a specific dataset field. Examples of labels include sentiments,
states, and the scale of integer numbers. This dataset field can then be used to group
multiple dataset entries according to the unique values that the label may take. For
example, in a dataset about client’s purchases, each product may be associated with
a set of keywords. These keywords can then be used to classify the types of pur-
chases a particular client makes, enabling targeted recommendations for other
products.

2.2.6 Regression

Datasets do not always contain fields with labels that enable the classification of
data. Nevertheless, in some problems, it is necessary to label values without a
restricted group of options, for example, using a field that contains real numbers.
This scenario requires a regression approach to estimate which classes an entry
should receive, without considering the limited options available in labels. For
example, in a dataset with prices and sizes of houses in New York, it is possible to
use regression to estimate the price of a new house according to its size. Although
the regression problem has an output similar to classification, its output does not
have a limited set of values, as occurs in labeling.

2.2.7 Knowledge base construction

Datasets are essential for data science, and the problem of knowledge base
construction refers to the process of compiling information to create them. Fre-
quently, this process requires the use of cleaning and alignment methods to

120

Scheduling Problems - New Applications and Trends

standardize data. There are a broad group of knowledge bases on the Internet, for
example, Kaggle,5 UCI Repository,6 Quandl,7 and MSCOCO.8

2.2.8 Density estimation

Density estimation focuses on identifying the clusters that group sets of data
points that represent the entries in a dataset. This process is a fundamental step to
generate the clusters required by anomaly detection methodologies, as described
above. Clustering is another suitable technique to identify groups of entries that
may contain related knowledge within a dataset.

2.3 Data science tools

It is difficult to find a tool that fits all data science processes because, as previ-
ously mentioned, there are multiple steps with a variety of methods available for
use. Hence, there are specific tools for each step, which will provide the most
appropriate result. Table 1 summarizes the most commonly cited tools for each one
of the data science workflow steps. The table has a row that is not considered a step
of the process, but it is fundamental to results that are Storage Data, which refer to
all technologies used for persisting the data in an environment. In the section of data
model, some programming languages are cited, but it is hard for a data scientist to
employ a language without libraries. For example, using Python is very usual to use
libraries such as pandas, sci-kit learn, numpy, and ggplot.

3. Exploring scheduling and load balancing on data science demands

The scheduling problem, in a general view, comprises both a set of resources and
a set of consumers [8]. Its focus is to find an appropriate policy to manage the use of
resources by several consumers in order to optimize a particular performance met-
ric chosen as a parameter. The evaluation of a scheduling proposal commonly
considers two features: (1) performance and (2) efficiency [9]. More specifically,
the evaluation comprises the obtained scheduling as well as the time spent to
execute the scheduler policies. For example, if the parameter to analyze the

Stage Tools

Store data MySql, Mongo DB, Cassandra, PLSql, Redis, HBase

Data preparation Apache Hive

Data exploring Knime, Elasticsearch

Data model Python, R, Julia, Clojure, SPSS, SAS, Apache Manhout

Results evaluation Tableau, Cognos, ggplot, QlikView, Power BI

Development Apache Hadoop, Java, Scala, C, Apache Spark, Haskell

Table 1.
Tools used per step of data science.

5

https://www.kaggle.com
6

https://archive.ics.uci.edu/ml/index.php
7

https://www.quandl.com/
8

http://cocodataset.org/home

121

Looking at Data Science through the Lens of Scheduling and Load Balancing
DOI: http://dx.doi.org/10.5772/intechopen.92578

2.2.3 Cleaning

Dataset contents can present a broad variety of formats, for example, dates,
numeric values, and text data. In many cases, values may also be differently
formatted across dataset entries, even for the same field, due to human error or
lack of standardization. This situation incurs in errors in the dataset, resulting in
possible information loss when processing it. The best solution to this problem is
to employ methods that manage the dataset contents and standardize the data.
For example, in a dataset containing clients birthdays, it is possible that a user
fills the information with an invalid date. This case results in information loss
because the analysis cannot extract useful information related to the user’s
birthday.

2.2.4 Alignment

An organized and standardized dataset is fundamental for the generation of
trustworthy outputs from data science processes. The process of data alignment is
an essential step in dataset standardization. It involves updating the dataset to avoid
the use of multiple values to represent the same information. For example, in a
dataset containing a gender field, users may use both “M” and “Male” values to
represent the same gender. In this context, it is fundamental to unify both entries in
one because the information in both is the same.

2.2.5 Classification

Classification regards assigning specific labels to entries in a dataset. A label is
any information that presents a limited scope of possibilities, for example, a dozen
options present in a specific dataset field. Examples of labels include sentiments,
states, and the scale of integer numbers. This dataset field can then be used to group
multiple dataset entries according to the unique values that the label may take. For
example, in a dataset about client’s purchases, each product may be associated with
a set of keywords. These keywords can then be used to classify the types of pur-
chases a particular client makes, enabling targeted recommendations for other
products.

2.2.6 Regression

Datasets do not always contain fields with labels that enable the classification of
data. Nevertheless, in some problems, it is necessary to label values without a
restricted group of options, for example, using a field that contains real numbers.
This scenario requires a regression approach to estimate which classes an entry
should receive, without considering the limited options available in labels. For
example, in a dataset with prices and sizes of houses in New York, it is possible to
use regression to estimate the price of a new house according to its size. Although
the regression problem has an output similar to classification, its output does not
have a limited set of values, as occurs in labeling.

2.2.7 Knowledge base construction

Datasets are essential for data science, and the problem of knowledge base
construction refers to the process of compiling information to create them. Fre-
quently, this process requires the use of cleaning and alignment methods to

120

Scheduling Problems - New Applications and Trends

standardize data. There are a broad group of knowledge bases on the Internet, for
example, Kaggle,5 UCI Repository,6 Quandl,7 and MSCOCO.8

2.2.8 Density estimation

Density estimation focuses on identifying the clusters that group sets of data
points that represent the entries in a dataset. This process is a fundamental step to
generate the clusters required by anomaly detection methodologies, as described
above. Clustering is another suitable technique to identify groups of entries that
may contain related knowledge within a dataset.

2.3 Data science tools

It is difficult to find a tool that fits all data science processes because, as previ-
ously mentioned, there are multiple steps with a variety of methods available for
use. Hence, there are specific tools for each step, which will provide the most
appropriate result. Table 1 summarizes the most commonly cited tools for each one
of the data science workflow steps. The table has a row that is not considered a step
of the process, but it is fundamental to results that are Storage Data, which refer to
all technologies used for persisting the data in an environment. In the section of data
model, some programming languages are cited, but it is hard for a data scientist to
employ a language without libraries. For example, using Python is very usual to use
libraries such as pandas, sci-kit learn, numpy, and ggplot.

3. Exploring scheduling and load balancing on data science demands

The scheduling problem, in a general view, comprises both a set of resources and
a set of consumers [8]. Its focus is to find an appropriate policy to manage the use of
resources by several consumers in order to optimize a particular performance met-
ric chosen as a parameter. The evaluation of a scheduling proposal commonly
considers two features: (1) performance and (2) efficiency [9]. More specifically,
the evaluation comprises the obtained scheduling as well as the time spent to
execute the scheduler policies. For example, if the parameter to analyze the

Stage Tools

Store data MySql, Mongo DB, Cassandra, PLSql, Redis, HBase

Data preparation Apache Hive

Data exploring Knime, Elasticsearch

Data model Python, R, Julia, Clojure, SPSS, SAS, Apache Manhout

Results evaluation Tableau, Cognos, ggplot, QlikView, Power BI

Development Apache Hadoop, Java, Scala, C, Apache Spark, Haskell

Table 1.
Tools used per step of data science.

5

https://www.kaggle.com
6

https://archive.ics.uci.edu/ml/index.php
7

https://www.quandl.com/
8

http://cocodataset.org/home

121

Looking at Data Science through the Lens of Scheduling and Load Balancing
DOI: http://dx.doi.org/10.5772/intechopen.92578

achieved scheduling is the application execution time, the lower this value, the better
the scheduler performance. In turn, efficiency refers to the policies adopted by the
scheduler and can be evaluated using computational complexity functions [10].

The general scheduling problem is the unification of two terms in everyday use
in the literature. There is often an implicit distinction between the terms scheduling
and allocation. Nevertheless, it can be argued that these are merely alternative
formulations of the same problem, with allocation posed in terms of resource
allocation (from the resources point of view), and scheduling viewed from the
consumers’ point of view. In this sense, allocation and scheduling are merely two
terms describing the same general mechanism but described from different view-
points. One important issue when treating scheduling is the grain of the consumers
[11]. For example, we can have a graph of tasks, a set of processes, and jobs that
need resources to execute. In this context, scheduling schemes for
multiprogrammed parallel systems can be viewed in two levels. In the first level,
processors are allocated to a specific job. In the second level, processes from a job
are scheduled using this pool of processors.

We define static scheduling considering the scheduling grain as a task [8]. If data
such as information about the processors, the execution time of the tasks, the size of
the data, the communication pattern, and the dependency relation among the tasks
are known in advance, we can affirm that we have a static or deterministic sched-
uling model. In this approach, each executable image in the system has a static
assignment to a particular set of processors. Scheduling decisions are made deter-
ministically or probabilistically at compile time and remain constant during
runtime. The static approach is simple to be implemented. However, it is pointed
out that it has two significant disadvantages [11]. First, the workload distribution
and the behavior of many applications cannot be predicted before program execu-
tion. Second, static scheduling assumes that the characteristics of the computing
resources and communication network are known in advance and remain constant.
Such an assumption may not be applied to grid environments, for instance.

In the general form of a static task scheduling problem, an application is
represented by a directed acyclic graph (DAG) in which nodes represent applica-
tion tasks, and edges represent intertask data dependencies [12].

Each node label shows computation cost (expected computation time) of the
task, and each edge label shows intertask communication cost (expected communi-
cation time) between tasks. The objective function of this problem is to map tasks
onto processors and order their executions, so that task-precedence requirements
are satisfied, and the minimum overall completion time is obtained.

In the case that all information regarding the state of the system as well as the
resource needs of a process is known, an optimal assignment can be proposed [11].
Even with all information required for the scheduling, the static method is often
computationally expensive getting to the point of being infeasible. Thus, this fact
results in suboptimal solutions. We have two general categories within the realm of
suboptimal solutions for the scheduling problem: (1) approximate and (2) heuristic.
Approximate scheduling uses the same methods used in the optimal one, but
instead exploring all possible ideal solutions, it stops when a good one is achieved.
Heuristic scheduling uses standard parameters and ideas that affect the behavior of
the parallel system. For example, we can group processes with higher communica-
tion rate to the same local network or sort works and processors in lists following
some predefined criteria in order to perform an efficient mapping among them
(list scheduling).

Dynamic scheduling works with the idea that a little (or none) a priori knowl-
edge about the needs and the behavior of the application is available [9]. It is also
unknown in what environment the process will execute during its lifetime.
The arrival of new tasks, the relation among them, and data about the target

122

Scheduling Problems - New Applications and Trends

architecture are unpredictable, and the runtime environment takes the decision of
the consumer-resource mapping. The responsibility of global scheduling can be
assigned either to a single processor (physically nondistributed) or practiced by a
set of processors (physically distributed). Within the realm of this last classification,
the taxonomy may also distinguish between those mechanisms that involve coop-
eration between the distributed components (cooperative) and those in which the
individual processors make decisions independent of the actions of the other pro-
cessors (noncooperative). In the cooperative case, each processor has the responsi-
bility to carry out its portion of the scheduling, but all processors are working
toward a common system-wide goal.

Data science comprises the manipulation of a large set of data to extract knowl-
edge [13, 14]. To accomplish this, we have input that is passed through processing
engines to generate valuable outputs. In particular, this second step is usually
processed as sequential programs that implement both artificial intelligence and
statistical-based computational methods. We can take profit from the several
processing cores that exist in today’s processors to map this sequential demand to be
executed in a multithreading program. To accomplish this, Pthreads library and
OpenMP are the most common approaches to write multithread parallel programs,
where each thread can be mapped to a different core, so exploiting the full power of
a multiprocessor HPC architecture.

In addition to multiprocessor architectures, it is possible to transform a sequen-
tial code in message passing interface (MPI)-based parallel one, so targeting dis-
tributed architectures such as clusters and grids [15]. In this way, contrary to the
prior alternative that encompasses the use of standard multiprocessor systems, the
efficient use of MPI needs a parallel machine that generally has higher financial
costs. Also, a distributed program is more error prone, since problems in the nodes
or the network can put all application down. Repairing these future problems
sometimes is not trivial, requiring graphical tools to observe processes’ interactions.
Finally, in addition to multicore and multicomputer architectures, we also have the
use of GPU, where graphic cards present a set of nongeneral purpose processors to
execute vector calculus much faster than the conventional general-purpose proces-
sors [14]. The challenge consists in transforming a sequential code in a parallel one
in a transparent way at the user viewpoint, in such a way the data science demand
can run faster in parallel deployments. Moreover, the combination of these three
aforesaid parallel techniques is also a challenge since optimizations commonly vary
from one application to another.

Cloud computing environments today also represent a viable solution to run
data science demands [16]. Providers such as Amazon EC2, Microsoft Azure, and
Google Cloud have HPC-driven architectures to exploit multiprocessor,
multicomputer, and GPU parallelism. In particular, different from standard dis-
tributed systems, cloud computing presents the resource elasticity feature where an
initial deployment can be on-the-fly changed following the input demand. Thus, it
is possible to scale resources in or out (through the addition or removal of con-
tainers/virtual machines) or to scale down or up (by performing resource resizing in
virtual units) in a transparent way to the user. Logically, the own data science
application must be written in such a way to take profit of newly available resources
as the current set of working resources.

The CPU load is the most common metric to drive resource elasticity data
science demands since most of them execute CPU-bound artificial intelligence-
based algorithms. Any network data manipulation through the TCP protocol uses
CPU cycles since this is a software protocol executed in the kernel of the operating
system and executes software routines to provide data transfer reliability.

Load balancing and resource scheduling are sometimes seen as having the same
functionality. However, there is a slight difference: one of the members of resource

123

Looking at Data Science through the Lens of Scheduling and Load Balancing
DOI: http://dx.doi.org/10.5772/intechopen.92578

achieved scheduling is the application execution time, the lower this value, the better
the scheduler performance. In turn, efficiency refers to the policies adopted by the
scheduler and can be evaluated using computational complexity functions [10].

The general scheduling problem is the unification of two terms in everyday use
in the literature. There is often an implicit distinction between the terms scheduling
and allocation. Nevertheless, it can be argued that these are merely alternative
formulations of the same problem, with allocation posed in terms of resource
allocation (from the resources point of view), and scheduling viewed from the
consumers’ point of view. In this sense, allocation and scheduling are merely two
terms describing the same general mechanism but described from different view-
points. One important issue when treating scheduling is the grain of the consumers
[11]. For example, we can have a graph of tasks, a set of processes, and jobs that
need resources to execute. In this context, scheduling schemes for
multiprogrammed parallel systems can be viewed in two levels. In the first level,
processors are allocated to a specific job. In the second level, processes from a job
are scheduled using this pool of processors.

We define static scheduling considering the scheduling grain as a task [8]. If data
such as information about the processors, the execution time of the tasks, the size of
the data, the communication pattern, and the dependency relation among the tasks
are known in advance, we can affirm that we have a static or deterministic sched-
uling model. In this approach, each executable image in the system has a static
assignment to a particular set of processors. Scheduling decisions are made deter-
ministically or probabilistically at compile time and remain constant during
runtime. The static approach is simple to be implemented. However, it is pointed
out that it has two significant disadvantages [11]. First, the workload distribution
and the behavior of many applications cannot be predicted before program execu-
tion. Second, static scheduling assumes that the characteristics of the computing
resources and communication network are known in advance and remain constant.
Such an assumption may not be applied to grid environments, for instance.

In the general form of a static task scheduling problem, an application is
represented by a directed acyclic graph (DAG) in which nodes represent applica-
tion tasks, and edges represent intertask data dependencies [12].

Each node label shows computation cost (expected computation time) of the
task, and each edge label shows intertask communication cost (expected communi-
cation time) between tasks. The objective function of this problem is to map tasks
onto processors and order their executions, so that task-precedence requirements
are satisfied, and the minimum overall completion time is obtained.

In the case that all information regarding the state of the system as well as the
resource needs of a process is known, an optimal assignment can be proposed [11].
Even with all information required for the scheduling, the static method is often
computationally expensive getting to the point of being infeasible. Thus, this fact
results in suboptimal solutions. We have two general categories within the realm of
suboptimal solutions for the scheduling problem: (1) approximate and (2) heuristic.
Approximate scheduling uses the same methods used in the optimal one, but
instead exploring all possible ideal solutions, it stops when a good one is achieved.
Heuristic scheduling uses standard parameters and ideas that affect the behavior of
the parallel system. For example, we can group processes with higher communica-
tion rate to the same local network or sort works and processors in lists following
some predefined criteria in order to perform an efficient mapping among them
(list scheduling).

Dynamic scheduling works with the idea that a little (or none) a priori knowl-
edge about the needs and the behavior of the application is available [9]. It is also
unknown in what environment the process will execute during its lifetime.
The arrival of new tasks, the relation among them, and data about the target

122

Scheduling Problems - New Applications and Trends

architecture are unpredictable, and the runtime environment takes the decision of
the consumer-resource mapping. The responsibility of global scheduling can be
assigned either to a single processor (physically nondistributed) or practiced by a
set of processors (physically distributed). Within the realm of this last classification,
the taxonomy may also distinguish between those mechanisms that involve coop-
eration between the distributed components (cooperative) and those in which the
individual processors make decisions independent of the actions of the other pro-
cessors (noncooperative). In the cooperative case, each processor has the responsi-
bility to carry out its portion of the scheduling, but all processors are working
toward a common system-wide goal.

Data science comprises the manipulation of a large set of data to extract knowl-
edge [13, 14]. To accomplish this, we have input that is passed through processing
engines to generate valuable outputs. In particular, this second step is usually
processed as sequential programs that implement both artificial intelligence and
statistical-based computational methods. We can take profit from the several
processing cores that exist in today’s processors to map this sequential demand to be
executed in a multithreading program. To accomplish this, Pthreads library and
OpenMP are the most common approaches to write multithread parallel programs,
where each thread can be mapped to a different core, so exploiting the full power of
a multiprocessor HPC architecture.

In addition to multiprocessor architectures, it is possible to transform a sequen-
tial code in message passing interface (MPI)-based parallel one, so targeting dis-
tributed architectures such as clusters and grids [15]. In this way, contrary to the
prior alternative that encompasses the use of standard multiprocessor systems, the
efficient use of MPI needs a parallel machine that generally has higher financial
costs. Also, a distributed program is more error prone, since problems in the nodes
or the network can put all application down. Repairing these future problems
sometimes is not trivial, requiring graphical tools to observe processes’ interactions.
Finally, in addition to multicore and multicomputer architectures, we also have the
use of GPU, where graphic cards present a set of nongeneral purpose processors to
execute vector calculus much faster than the conventional general-purpose proces-
sors [14]. The challenge consists in transforming a sequential code in a parallel one
in a transparent way at the user viewpoint, in such a way the data science demand
can run faster in parallel deployments. Moreover, the combination of these three
aforesaid parallel techniques is also a challenge since optimizations commonly vary
from one application to another.

Cloud computing environments today also represent a viable solution to run
data science demands [16]. Providers such as Amazon EC2, Microsoft Azure, and
Google Cloud have HPC-driven architectures to exploit multiprocessor,
multicomputer, and GPU parallelism. In particular, different from standard dis-
tributed systems, cloud computing presents the resource elasticity feature where an
initial deployment can be on-the-fly changed following the input demand. Thus, it
is possible to scale resources in or out (through the addition or removal of con-
tainers/virtual machines) or to scale down or up (by performing resource resizing in
virtual units) in a transparent way to the user. Logically, the own data science
application must be written in such a way to take profit of newly available resources
as the current set of working resources.

The CPU load is the most common metric to drive resource elasticity data
science demands since most of them execute CPU-bound artificial intelligence-
based algorithms. Any network data manipulation through the TCP protocol uses
CPU cycles since this is a software protocol executed in the kernel of the operating
system and executes software routines to provide data transfer reliability.

Load balancing and resource scheduling are sometimes seen as having the same
functionality. However, there is a slight difference: one of the members of resource

123

Looking at Data Science through the Lens of Scheduling and Load Balancing
DOI: http://dx.doi.org/10.5772/intechopen.92578

scheduling is the scheduling, and this policy can employ or not load balancing
algorithms [14]. The basic idea of load balancing is to attempt to balance the load on
all processors in such a way to allow all processes on all nodes to proceed at
approximately with the same rate. The most significant reason to launch the load
balancing is the fact that exists an amount of processing power that is not used
efficiently, mainly in dynamic and heterogeneous environments, including grids. In
this context, schedulers’ policies can use load balancing mechanisms for several
purposes, such as: (1) to choose the amount of work to be sent to a process; (2) to
move work from an overloaded processor to another that presents a light load;
(3) to choose a place (node) to launch a new process from a parallel application; and
(4) to decide about process migration. Load balancing is especially essential for
some parallel applications that present synchronization points, in which the pro-
cesses must execute together with the next step.

The most fundamental topic in load balancing consists of determining the mea-
sure of the load [13, 15]. There are many different possible measures of load
including: (1) number of tasks in a queue; (2) CPU load average; (3) CPU utilization
at specific moment; (4) I/O utilization; (5) amount of free CPU; (6) amount of free
memory; (7) amount of communication among the processes; and so on. Besides
this, we can have any combinations of the above indicators. Considering the scope
of processes from the operating system, such measures will influence in deciding
about when to trigger the load balancing, which processes will be involved, and
where are the destination places in which these processes will execute. Especially on
the last topic, other factors to consider when selecting where to put a process
include the nearness to resources, some processor and operating system capabilities,
and specialized hardware/software features. We must first determine when to
balance the load to turn the mechanism useful. Doing so is composed of two phases:
(1) detecting that a load unbalancing exists and (2) determining if the cost of load
balancing exceeds its possible benefits.

The use of load balancing in data science demands can vary depending on the
structure of the parallel applications: Master-Slave, Bag of Tasks, Divide-and-Con-
quer, Pipeline, or Bulk-Synchronous Parallel [15, 16]. In the first two, we usually
have a centralized environment where it is easy to know data about the whole set of
resources, to dispatching tasks to them following their load and theoretical capacity.
A traditional example of a combination of these parallel applications is the
MapReduce framework. In the divide-and-conquer applications, we have a recur-
sive nature to execute the parallel application where new levels of child nodes are
created with the upper one cannot execute the tasks in an acceptable time interval.
The challenge consists of dividing the tasks rightly following the capacity of the
resources. Pipeline-based applications, in their turn, have a set of stages where each
incoming task must cross. In order to maintain the cadence between the stages, they
must execute in the same time interval, so an outcoming task from the stage n
serves as the direct input for the stage n + 1. However, the fact of guaranteeing this
capacity is not a trivial procedure because of the stages commonly present different
complexities in terms of execution algorithms. Finally, bulk-synchronous applica-
tions are composed by supersteps, each one with local processing, and arbitrary
communication and barrier phases. Load balancing is vital to guarantee that the
slowest process does not compromise the performance of the entire application.

4. Open opportunities and trends

This section aims at compiling the previous two sections, so detailing open
opportunities and trends when joining resource scheduling and load balancing and
the area of data science. In this way, we compile these aspects as follows:

124

Scheduling Problems - New Applications and Trends

• Automatic transformation of a sequential data science demand to a parallel
one—today data science executes locally to query databases and to build
knowledge graphs. Sometimes these tasks are time consuming, then it is
pertinent to transform a sequential demand in a parallel one to execute faster
on multicore, multinode, and GPU architectures.

• Use of GPU cards as an accelerator for data science algorithms—write of data
science demands that combine R and Python together with OpenCL or CUDA
programming languages, so combining CPU and GPU codes with running fast
and in parallel to address a particular data science demand.

• Combination of multimetric load balancing engine to handle data science
efficiently—data science typically encompasses excellent access to IO
(including main memory and hard disk) and a high volume of CPU cycles to
process CPU-bound algorithms. In this way, the idea is to execute data science
demands and learn their behavior, so proposing an adaptable load balancing
metrics that take into account different parameters as input.

• Task migration heuristics—when developing long-running data science parallel
codes, it is essential to develop task migration alternatives to reschedule
demands from one resource to another. This is particularly pertinent on dynamic
environments, either at the application or infrastructure level.

• Cloud elasticity to address data science demand—cloud elasticity comes to
adapt the number of the resource following the current demand. Thus, we
propose a combination of vertical and horizontal elasticity, together with
reactive and proactive approaches to detect abnormal situations. We can use
both consolidation and inclusion of resources, aiming to always accommodate
the most appropriate number of resources for a particular and momentaneous
data science demand.

• Definition of a standard API to deal with data science—frequently enterprises
present several departments, each one with its data science demands. In this
way, we envisage an opportunity on developing a standard framework (with a
standard API too) to support the data science demands of the whole enterprise.
The idea is to provide a dashboard with a collection of data science functions,
also expressing the expected input and the output for each one.

• Smart correlation of events—enterprises regularly have timed data in several
databases. We present an opportunity, at each time a problem is found, to take
this particular timestamp and compare in the data sources looking for eventual
data correlations. Thus, we can perceive relations such as: (1) if this happens,
these other things will also happen and (2) this event happened because a set of
prior events happened beforehand.

• Benchmark to evaluate a mapping of data science tasks to HPC resources—how
we know if particular scheduling outperforms another one for executing a
particular data science demand? We see as an opportunity for the exploration
of benchmarks to evaluate scheduling and load balancing techniques that
manipulate data science tasks. Thus, such benchmarks must define what they
expect as input and provide a set of metrics as output. Yet, the output can be a
single value, a collection of values (as a data vector), or a collection of elements
of a data structure (e.g., timestamp and data are useful to develop user profiles
and tracking of assets).

125

Looking at Data Science through the Lens of Scheduling and Load Balancing
DOI: http://dx.doi.org/10.5772/intechopen.92578

scheduling is the scheduling, and this policy can employ or not load balancing
algorithms [14]. The basic idea of load balancing is to attempt to balance the load on
all processors in such a way to allow all processes on all nodes to proceed at
approximately with the same rate. The most significant reason to launch the load
balancing is the fact that exists an amount of processing power that is not used
efficiently, mainly in dynamic and heterogeneous environments, including grids. In
this context, schedulers’ policies can use load balancing mechanisms for several
purposes, such as: (1) to choose the amount of work to be sent to a process; (2) to
move work from an overloaded processor to another that presents a light load;
(3) to choose a place (node) to launch a new process from a parallel application; and
(4) to decide about process migration. Load balancing is especially essential for
some parallel applications that present synchronization points, in which the pro-
cesses must execute together with the next step.

The most fundamental topic in load balancing consists of determining the mea-
sure of the load [13, 15]. There are many different possible measures of load
including: (1) number of tasks in a queue; (2) CPU load average; (3) CPU utilization
at specific moment; (4) I/O utilization; (5) amount of free CPU; (6) amount of free
memory; (7) amount of communication among the processes; and so on. Besides
this, we can have any combinations of the above indicators. Considering the scope
of processes from the operating system, such measures will influence in deciding
about when to trigger the load balancing, which processes will be involved, and
where are the destination places in which these processes will execute. Especially on
the last topic, other factors to consider when selecting where to put a process
include the nearness to resources, some processor and operating system capabilities,
and specialized hardware/software features. We must first determine when to
balance the load to turn the mechanism useful. Doing so is composed of two phases:
(1) detecting that a load unbalancing exists and (2) determining if the cost of load
balancing exceeds its possible benefits.

The use of load balancing in data science demands can vary depending on the
structure of the parallel applications: Master-Slave, Bag of Tasks, Divide-and-Con-
quer, Pipeline, or Bulk-Synchronous Parallel [15, 16]. In the first two, we usually
have a centralized environment where it is easy to know data about the whole set of
resources, to dispatching tasks to them following their load and theoretical capacity.
A traditional example of a combination of these parallel applications is the
MapReduce framework. In the divide-and-conquer applications, we have a recur-
sive nature to execute the parallel application where new levels of child nodes are
created with the upper one cannot execute the tasks in an acceptable time interval.
The challenge consists of dividing the tasks rightly following the capacity of the
resources. Pipeline-based applications, in their turn, have a set of stages where each
incoming task must cross. In order to maintain the cadence between the stages, they
must execute in the same time interval, so an outcoming task from the stage n
serves as the direct input for the stage n + 1. However, the fact of guaranteeing this
capacity is not a trivial procedure because of the stages commonly present different
complexities in terms of execution algorithms. Finally, bulk-synchronous applica-
tions are composed by supersteps, each one with local processing, and arbitrary
communication and barrier phases. Load balancing is vital to guarantee that the
slowest process does not compromise the performance of the entire application.

4. Open opportunities and trends

This section aims at compiling the previous two sections, so detailing open
opportunities and trends when joining resource scheduling and load balancing and
the area of data science. In this way, we compile these aspects as follows:

124

Scheduling Problems - New Applications and Trends

• Automatic transformation of a sequential data science demand to a parallel
one—today data science executes locally to query databases and to build
knowledge graphs. Sometimes these tasks are time consuming, then it is
pertinent to transform a sequential demand in a parallel one to execute faster
on multicore, multinode, and GPU architectures.

• Use of GPU cards as an accelerator for data science algorithms—write of data
science demands that combine R and Python together with OpenCL or CUDA
programming languages, so combining CPU and GPU codes with running fast
and in parallel to address a particular data science demand.

• Combination of multimetric load balancing engine to handle data science
efficiently—data science typically encompasses excellent access to IO
(including main memory and hard disk) and a high volume of CPU cycles to
process CPU-bound algorithms. In this way, the idea is to execute data science
demands and learn their behavior, so proposing an adaptable load balancing
metrics that take into account different parameters as input.

• Task migration heuristics—when developing long-running data science parallel
codes, it is essential to develop task migration alternatives to reschedule
demands from one resource to another. This is particularly pertinent on dynamic
environments, either at the application or infrastructure level.

• Cloud elasticity to address data science demand—cloud elasticity comes to
adapt the number of the resource following the current demand. Thus, we
propose a combination of vertical and horizontal elasticity, together with
reactive and proactive approaches to detect abnormal situations. We can use
both consolidation and inclusion of resources, aiming to always accommodate
the most appropriate number of resources for a particular and momentaneous
data science demand.

• Definition of a standard API to deal with data science—frequently enterprises
present several departments, each one with its data science demands. In this
way, we envisage an opportunity on developing a standard framework (with a
standard API too) to support the data science demands of the whole enterprise.
The idea is to provide a dashboard with a collection of data science functions,
also expressing the expected input and the output for each one.

• Smart correlation of events—enterprises regularly have timed data in several
databases. We present an opportunity, at each time a problem is found, to take
this particular timestamp and compare in the data sources looking for eventual
data correlations. Thus, we can perceive relations such as: (1) if this happens,
these other things will also happen and (2) this event happened because a set of
prior events happened beforehand.

• Benchmark to evaluate a mapping of data science tasks to HPC resources—how
we know if particular scheduling outperforms another one for executing a
particular data science demand? We see as an opportunity for the exploration
of benchmarks to evaluate scheduling and load balancing techniques that
manipulate data science tasks. Thus, such benchmarks must define what they
expect as input and provide a set of metrics as output. Yet, the output can be a
single value, a collection of values (as a data vector), or a collection of elements
of a data structure (e.g., timestamp and data are useful to develop user profiles
and tracking of assets).

125

Looking at Data Science through the Lens of Scheduling and Load Balancing
DOI: http://dx.doi.org/10.5772/intechopen.92578

• Simulation environment to execute data science demands on distributed
resources, but doing all of this a local program—simulation environments, like
Simgrid or GridSim, are useful to use a sequential program to test and simulate
complex parallel demands on a set of virtual resources. Thus, we can save time
on testing different parameters and algorithms when developing scheduling
and load balancing algorithms for data science.

• Definition of metrics to evaluate the scheduling and/or load balancing of data
science tasks—CPU load, memory footprint, disk space, network throughput,
and cache hit rate are examples of metrics that are commonly employed on
distributed systems. Data science is a new area of knowledge, where we
encourage the definition of new metrics to compare the execution of data
science demands.

5. Conclusion

The continuous generation of data by different industry segments presents a
valuable opportunity for analysis and knowledge extraction through data science
methods. There is a high interest in studies that explore the application of data
science to a variety of scenarios, each one with distinct characteristics that reflect on
the composition of available datasets. Furthermore, there is not a single data science
methodology that is applied to all possible data science problems. Consequently, the
most common approach to data science problems is to define a sequence of methods
that depend on the characteristics of the dataset and the intended results.

The constant growth in dataset sizes and the complexity of specific data science
methods also impose a considerable challenge to provide the computational power
required to process data and extract meaningful knowledge. In this context, cloud,
fog, and grid computing architectures present themselves as ideal solutions to apply
data science processes to massively sized datasets.

The distributed nature of such environments raises a series of new challenges,
some of which widely studied in the literature. Nevertheless, the unique character-
istics of data science workloads bring new aspects to these challenges, which require
renewed attention from the scientific community.

This chapter focused on the specific challenge of scheduling and load balancing
in the context of computational environments applied to data science. We
presented an overview of data science processes, in addition to how scheduling and
load balancing methodologies impact these processes and what aspects to consider
when using distributed environments applied to data science. In particular, the
challenge of enabling the automatic transformation of sequential data science
demands into parallel ones is of particular interest because it abstracts part of the
complexity involved in parallelizing data science tasks. As a result, such an auto-
matic transformation promotes wider adoption of distributed environments as
standard tools for large-scale data science processes.

Another notable challenge is to develop cloud elasticity techniques tailored to
data science tasks. Such techniques must consider the specific requirements of data
science processes to guarantee the proper reservation of resources and migration of
tasks in order to guarantee a high throughput for such scenarios. These and the
other investigated challenges represent prime research opportunities to increase the
performance of data science processes.

126

Scheduling Problems - New Applications and Trends

Author details

Diórgenes Eugênio da Silveira1, Eduardo Souza dos Reis1, Rodrigo Simon Bavaresco1,
Marcio Miguel Gomes1, Cristiano André da Costa1, Jorge Luis Victoria Barbosa1,
Rodolfo Stoffel Antunes1, Alvaro Machado Júnior2, Rodrigo Saad2 and
Rodrigo da Rosa Righi1*

1 Universidade do Vale do Rio dos Sinos, São Leopoldo, RS, Brazil

2 DELL Computadores do Brasil, Eldorado do Sul, RS, Brazil

*Address all correspondence to: rrrighi@unisinos.br

© 2020TheAuthor(s). Licensee IntechOpen. This chapter is distributed under the terms
of theCreativeCommonsAttribution License (http://creativecommons.org/licenses/
by/3.0),which permits unrestricted use, distribution, and reproduction in anymedium,
provided the original work is properly cited.

127

Looking at Data Science through the Lens of Scheduling and Load Balancing
DOI: http://dx.doi.org/10.5772/intechopen.92578

• Simulation environment to execute data science demands on distributed
resources, but doing all of this a local program—simulation environments, like
Simgrid or GridSim, are useful to use a sequential program to test and simulate
complex parallel demands on a set of virtual resources. Thus, we can save time
on testing different parameters and algorithms when developing scheduling
and load balancing algorithms for data science.

• Definition of metrics to evaluate the scheduling and/or load balancing of data
science tasks—CPU load, memory footprint, disk space, network throughput,
and cache hit rate are examples of metrics that are commonly employed on
distributed systems. Data science is a new area of knowledge, where we
encourage the definition of new metrics to compare the execution of data
science demands.

5. Conclusion

The continuous generation of data by different industry segments presents a
valuable opportunity for analysis and knowledge extraction through data science
methods. There is a high interest in studies that explore the application of data
science to a variety of scenarios, each one with distinct characteristics that reflect on
the composition of available datasets. Furthermore, there is not a single data science
methodology that is applied to all possible data science problems. Consequently, the
most common approach to data science problems is to define a sequence of methods
that depend on the characteristics of the dataset and the intended results.

The constant growth in dataset sizes and the complexity of specific data science
methods also impose a considerable challenge to provide the computational power
required to process data and extract meaningful knowledge. In this context, cloud,
fog, and grid computing architectures present themselves as ideal solutions to apply
data science processes to massively sized datasets.

The distributed nature of such environments raises a series of new challenges,
some of which widely studied in the literature. Nevertheless, the unique character-
istics of data science workloads bring new aspects to these challenges, which require
renewed attention from the scientific community.

This chapter focused on the specific challenge of scheduling and load balancing
in the context of computational environments applied to data science. We
presented an overview of data science processes, in addition to how scheduling and
load balancing methodologies impact these processes and what aspects to consider
when using distributed environments applied to data science. In particular, the
challenge of enabling the automatic transformation of sequential data science
demands into parallel ones is of particular interest because it abstracts part of the
complexity involved in parallelizing data science tasks. As a result, such an auto-
matic transformation promotes wider adoption of distributed environments as
standard tools for large-scale data science processes.

Another notable challenge is to develop cloud elasticity techniques tailored to
data science tasks. Such techniques must consider the specific requirements of data
science processes to guarantee the proper reservation of resources and migration of
tasks in order to guarantee a high throughput for such scenarios. These and the
other investigated challenges represent prime research opportunities to increase the
performance of data science processes.

126

Scheduling Problems - New Applications and Trends

Author details

Diórgenes Eugênio da Silveira1, Eduardo Souza dos Reis1, Rodrigo Simon Bavaresco1,
Marcio Miguel Gomes1, Cristiano André da Costa1, Jorge Luis Victoria Barbosa1,
Rodolfo Stoffel Antunes1, Alvaro Machado Júnior2, Rodrigo Saad2 and
Rodrigo da Rosa Righi1*

1 Universidade do Vale do Rio dos Sinos, São Leopoldo, RS, Brazil

2 DELL Computadores do Brasil, Eldorado do Sul, RS, Brazil

*Address all correspondence to: rrrighi@unisinos.br

© 2020TheAuthor(s). Licensee IntechOpen. This chapter is distributed under the terms
of theCreativeCommonsAttribution License (http://creativecommons.org/licenses/
by/3.0),which permits unrestricted use, distribution, and reproduction in anymedium,
provided the original work is properly cited.

127

Looking at Data Science through the Lens of Scheduling and Load Balancing
DOI: http://dx.doi.org/10.5772/intechopen.92578

References

[1] Amirian P, van Loggerenberg F,
Lang T. Data Science and Analytics.
Cham: Springer International
Publishing; 2017. pp. 15-37

[2] Gibert K, Horsburgh JS,
Athanasiadis IN, Holmes G.
Environmental data science.
Environmental Modelling and Software.
2018;106:4-12. Special Issue on
Environmental Data Science. Applications
to Air quality and Water cycle

[3] Grus J. Data Science from Scratch:
First Principles with Python. 1st ed.
O’Reilly Media, Inc.; 2015. Available
from: https://www.amazon.com/
Data-Science-Scratch-Principles-
Python/dp/149190142X

[4] Ahmad A, Paul A, Din S,
Rathore MM, Choi GS, Jeon G.
Multilevel data processing using parallel
algorithms for analyzing big data in
high-performance computing.
International Journal of Parallel
Programming. 2018;46(3):508-527

[5] Bomatpalli T, Wagh R, Balaji S. High
performance computing and big data
analytics paradigms and challenges.
International Journal of Computer
Applications. 2015;116(04):28-33

[6] Singh D, Reddy CK. A survey on
platforms for big data analytics. Journal
of Big Data. 2014;2(1):8

[7] Dorr BJ, Greenberg CS, Fontana P,
Przybocki M, Le Bras M, Ploehn C, et al.
A new data science research program:
evaluation, metrology, standards, and
community outreach. International
Journal of Data Science and Analytics.
2016;1(3):177-197

[8] Chasapis D, Moreto M, Schulz M,
Rountree B, Valero M, Casas M. Power
efficient job scheduling by predicting
the impact of processor manufacturing
variability. In: Proceedings of the ACM

International Conference on
Supercomputing (ICS’19). New York,
NY, USA: ACM; 2019. pp. 296-307

[9] Liu L, Tan H, Jiang SH-C, Han Z,
Li X-Y, Huang H. Dependent task
placement and scheduling with function
configuration in edge computing. In:
Proceedings of the International
Symposium on Quality of Service
(IWQoS’19). New York, NY, USA:
ACM; 2019. pp. 20:1-20:10

[10] Palyvos-Giannas D, Gulisano V,
Papatriantafilou M. Haren: A
framework for ad-hoc thread scheduling
policies for data streaming applications.
In: Proceedings of the 13th ACM
International Conference on Distributed
and Event-based Systems (DEBS ’19).
New York, NY, USA: ACM; 2019.
pp. 19-30

[11] Feng Y, Zhu Y. PES: Proactive event
scheduling for responsive and energy-
efficient mobile web computing. In:
Proceedings of the 46th International
Symposium on Computer Architecture
(ISCA ’19). New York, NY, USA: ACM;
2019. pp. 66-78

[12] Topcuoglu H, Hariri S, Min-You
WU. Performance-effective and low-
complexity task scheduling for
heterogeneous computing. IEEE
Transactions on Parallel and Distributed
Systems. 2002;13(3):260-274

[13] Menon H, Kale L. A distributed
dynamic load balancer for iterative
applications. In: Proceedings of the
International Conference on High
Performance Computing, Networking,
Storage and Analysis (SC’13).
New York, NY, USA: ACM; 2013. pp. 15:
1-15:11

[14] Schepis L, Cuomo F, Petroni A,
Biagi M, Listanti M, Scarano G.
Adaptive data update for cloud-based
internet of things applications. In:

128

Scheduling Problems - New Applications and Trends

Proceedings of the ACM MobiHoc
Workshop on Pervasive Systems in the
IoT Era (PERSIST-IoT’19). New York,
NY, USA: ACM; 2019. pp. 13-18

[15] Bak S, Menon H,White S, Diener M,
Kale L. Integrating openmp into the
charm++ programming model. In:
Proceedings of the Third International
Workshop on Extreme Scale
Programming Models and Middleware
(ESPM2’17). New York, NY, USA:
ACM; 2017. pp. 4:1-4:7

[16] Gandhi R, Liu HH, Hu YC, Lu G,
Padhye J, Yuan L, et al. Duet: Cloud
scale load balancing with hardware and
software. SIGCOMM Computer
Communication Review. 2014;44(4):
27-38

129

Looking at Data Science through the Lens of Scheduling and Load Balancing
DOI: http://dx.doi.org/10.5772/intechopen.92578

References

[1] Amirian P, van Loggerenberg F,
Lang T. Data Science and Analytics.
Cham: Springer International
Publishing; 2017. pp. 15-37

[2] Gibert K, Horsburgh JS,
Athanasiadis IN, Holmes G.
Environmental data science.
Environmental Modelling and Software.
2018;106:4-12. Special Issue on
Environmental Data Science. Applications
to Air quality and Water cycle

[3] Grus J. Data Science from Scratch:
First Principles with Python. 1st ed.
O’Reilly Media, Inc.; 2015. Available
from: https://www.amazon.com/
Data-Science-Scratch-Principles-
Python/dp/149190142X

[4] Ahmad A, Paul A, Din S,
Rathore MM, Choi GS, Jeon G.
Multilevel data processing using parallel
algorithms for analyzing big data in
high-performance computing.
International Journal of Parallel
Programming. 2018;46(3):508-527

[5] Bomatpalli T, Wagh R, Balaji S. High
performance computing and big data
analytics paradigms and challenges.
International Journal of Computer
Applications. 2015;116(04):28-33

[6] Singh D, Reddy CK. A survey on
platforms for big data analytics. Journal
of Big Data. 2014;2(1):8

[7] Dorr BJ, Greenberg CS, Fontana P,
Przybocki M, Le Bras M, Ploehn C, et al.
A new data science research program:
evaluation, metrology, standards, and
community outreach. International
Journal of Data Science and Analytics.
2016;1(3):177-197

[8] Chasapis D, Moreto M, Schulz M,
Rountree B, Valero M, Casas M. Power
efficient job scheduling by predicting
the impact of processor manufacturing
variability. In: Proceedings of the ACM

International Conference on
Supercomputing (ICS’19). New York,
NY, USA: ACM; 2019. pp. 296-307

[9] Liu L, Tan H, Jiang SH-C, Han Z,
Li X-Y, Huang H. Dependent task
placement and scheduling with function
configuration in edge computing. In:
Proceedings of the International
Symposium on Quality of Service
(IWQoS’19). New York, NY, USA:
ACM; 2019. pp. 20:1-20:10

[10] Palyvos-Giannas D, Gulisano V,
Papatriantafilou M. Haren: A
framework for ad-hoc thread scheduling
policies for data streaming applications.
In: Proceedings of the 13th ACM
International Conference on Distributed
and Event-based Systems (DEBS ’19).
New York, NY, USA: ACM; 2019.
pp. 19-30

[11] Feng Y, Zhu Y. PES: Proactive event
scheduling for responsive and energy-
efficient mobile web computing. In:
Proceedings of the 46th International
Symposium on Computer Architecture
(ISCA ’19). New York, NY, USA: ACM;
2019. pp. 66-78

[12] Topcuoglu H, Hariri S, Min-You
WU. Performance-effective and low-
complexity task scheduling for
heterogeneous computing. IEEE
Transactions on Parallel and Distributed
Systems. 2002;13(3):260-274

[13] Menon H, Kale L. A distributed
dynamic load balancer for iterative
applications. In: Proceedings of the
International Conference on High
Performance Computing, Networking,
Storage and Analysis (SC’13).
New York, NY, USA: ACM; 2013. pp. 15:
1-15:11

[14] Schepis L, Cuomo F, Petroni A,
Biagi M, Listanti M, Scarano G.
Adaptive data update for cloud-based
internet of things applications. In:

128

Scheduling Problems - New Applications and Trends

Proceedings of the ACM MobiHoc
Workshop on Pervasive Systems in the
IoT Era (PERSIST-IoT’19). New York,
NY, USA: ACM; 2019. pp. 13-18

[15] Bak S, Menon H,White S, Diener M,
Kale L. Integrating openmp into the
charm++ programming model. In:
Proceedings of the Third International
Workshop on Extreme Scale
Programming Models and Middleware
(ESPM2’17). New York, NY, USA:
ACM; 2017. pp. 4:1-4:7

[16] Gandhi R, Liu HH, Hu YC, Lu G,
Padhye J, Yuan L, et al. Duet: Cloud
scale load balancing with hardware and
software. SIGCOMM Computer
Communication Review. 2014;44(4):
27-38

129

Looking at Data Science through the Lens of Scheduling and Load Balancing
DOI: http://dx.doi.org/10.5772/intechopen.92578

131

Chapter 7

Types of Task Scheduling
Algorithms in Cloud Computing
Environment
Tahani Aladwani

Abstract

Cloud computing is one of the most important technologies used in recent
times, it allows users (individuals and organizations) to access computing
resources (software, hardware, and platform) as services remotely through
the Internet. Cloud computing is distinguished from traditional computing
paradigms by its scalability, adjustable costs, accessibility, reliability, and on-
demand pay-as-you-go services. As cloud computing is serving millions of users
simultaneously, it must have the ability to meet all users requests with high
performance and guarantee of quality of service (QoS). Therefore, we need to
implement an appropriate task scheduling algorithm to fairly and efficiently meet
these requests. Task scheduling problem is the one of the most critical issues in
cloud computing environment because cloud performance depends mainly on it.
There are various types of scheduling algorithms; some of them are static sched-
uling algorithms that are considered suitable for small or medium scale cloud
computing; and dynamic scheduling algorithms that are considered suitable for
large scale cloud computing environments. In this research, we attempt to show
the most popular three static task scheduling algorithms performance there are:
first come first service (FCFS), short job first scheduling (SJF), MAX-MIN. The
CloudSim simulator has been used to measure their impact on algorithm complex-
ity, resource availability, total execution time (TET), total waiting time (TWT),
and total finish time (TFT).

Keywords: task scheduling algorithms, load balance, performance

1. Introduction

Cloud computing is a new technology derived from grid computing and dis-
tributed computing and refers to using computing resources (hardware, software,
and platforms) as a service and provided to beneficiaries on demand through the
Internet [1]. It is the first technology that uses the concept of commercial imple-
mentation of computer science with public users [2]. It relies on sharing resources
among users through the use of the virtualization technique. High performance
can be provided by a cloud computing, based on distributing workloads across all
resources fairly and effectively to get less waiting time, execution time, maximum
throughput, and exploitation of resources effectively. Still, there are many chal-
lenges prevalent in cloud computing, Task scheduling and load balance are the

131

Chapter 7

Types of Task Scheduling
Algorithms in Cloud Computing
Environment
Tahani Aladwani

Abstract

Cloud computing is one of the most important technologies used in recent
times, it allows users (individuals and organizations) to access computing
resources (software, hardware, and platform) as services remotely through
the Internet. Cloud computing is distinguished from traditional computing
paradigms by its scalability, adjustable costs, accessibility, reliability, and on-
demand pay-as-you-go services. As cloud computing is serving millions of users
simultaneously, it must have the ability to meet all users requests with high
performance and guarantee of quality of service (QoS). Therefore, we need to
implement an appropriate task scheduling algorithm to fairly and efficiently meet
these requests. Task scheduling problem is the one of the most critical issues in
cloud computing environment because cloud performance depends mainly on it.
There are various types of scheduling algorithms; some of them are static sched-
uling algorithms that are considered suitable for small or medium scale cloud
computing; and dynamic scheduling algorithms that are considered suitable for
large scale cloud computing environments. In this research, we attempt to show
the most popular three static task scheduling algorithms performance there are:
first come first service (FCFS), short job first scheduling (SJF), MAX-MIN. The
CloudSim simulator has been used to measure their impact on algorithm complex-
ity, resource availability, total execution time (TET), total waiting time (TWT),
and total finish time (TFT).

Keywords: task scheduling algorithms, load balance, performance

1. Introduction

Cloud computing is a new technology derived from grid computing and dis-
tributed computing and refers to using computing resources (hardware, software,
and platforms) as a service and provided to beneficiaries on demand through the
Internet [1]. It is the first technology that uses the concept of commercial imple-
mentation of computer science with public users [2]. It relies on sharing resources
among users through the use of the virtualization technique. High performance
can be provided by a cloud computing, based on distributing workloads across all
resources fairly and effectively to get less waiting time, execution time, maximum
throughput, and exploitation of resources effectively. Still, there are many chal-
lenges prevalent in cloud computing, Task scheduling and load balance are the

Scheduling Problems - New Applications and Trends

132

biggest yet because it is considered the main factors that control other performance
criteria such as availability, scalability, and power consumption.

2. Tasks scheduling algorithms overview

Tasks scheduling algorithms are defined as the mechanism used to select the
resources to execute tasks to get less waiting and execution time.

2.1 Scheduling levels

In the cloud computing environment there are two levels of scheduling
algorithms:

• First level: in host level where a set of policies to distribute VMs in host.

• Second level: in VM level where a set of policies to distribute tasks to VM.

In this research we focus on VM level to scheduling tasks, we selected task schedul-
ing algorithms as a research field because it is the biggest challenge in cloud computing
and the main factor that controls the performance criteria such as (execution time,
response time, waiting time, network, bandwidth, services cost) for all tasks and
controlling other factors that can affect performance such as power consumption, avail-
ability, scalability, storage capacity, buffer capacity, disk capacity, and number of users.

2.2 Tasks scheduling algorithms definition and advantages

Tasks scheduling algorithms are defined as a set of rules and policies used to
assign tasks to the suitable resources (CPU, memory, and bandwidth) to get the
highest level possible of performance and resources utilization.

2.2.1 Task scheduling algorithms advantages

• Manage cloud computing performance and QoS.

• Manage the memory and CPU.

• The good scheduling algorithms maximizing resources utilization while
minimizing the total task execution time.

• Improving fairness for all tasks.

• Increasing the number of successfully completed tasks.

• Scheduling tasks on a real-time system.

• Achieving a high system throughput.

• Improving load balance.

2.3 Tasks scheduling algorithms classifications

Tasks scheduling algorithms classified as in Figure 1.

133

Types of Task Scheduling Algorithms in Cloud Computing Environment
DOI: http://dx.doi.org/10.5772/intechopen.86873

2.3.1 Tasks scheduling algorithms can be classified as follows

• Immediate scheduling: when new tasks arrive, they are scheduled to VMs
directly.

• Batch scheduling: tasks are grouped into a batch before being sent; this type is
also called mapping events.

• Static scheduling: is considered very simple compared to dynamic schedul-
ing; it is based on prior information of the global state of the system. It does
not take into account the current state of VMs and then divides all traffic
equivalently among all VMs in a similar manner such as round robin (RR) and
random scheduling algorithms.

• Dynamic scheduling: takes into account the current state of VMs and does not
require prior information of the global state of the system and distribute the
tasks according to the capacity of all available VMs [4–6].

• Preemptive scheduling: each task is interrupted during execution and can be
moved to another resource to complete execution [6].

• Non-preemptive scheduling: VMs are not re-allocated to new tasks until finish-
ing execution of the scheduled task [6].

In this research, we focus on the static scheduling algorithms. Static scheduling
algorithm such as first come first service (FCFS), shortest job first (SJF), and MAX-
MAX scheduling algorithms in complexity and cost within a small or medium scale.

2.4 Task scheduling system in cloud computing

The task scheduling system in cloud computing passes through three levels [7].

• The first task level: is a set of tasks (Cloudlets) that is sent by cloud users,
which are required for execution.

• The second scheduling level: is responsible for mapping tasks to suitable
resources to get highest resource utilization with minimum makespan. The
makespan is the overall completion time for all tasks from the beginning to the
end [7].

• The third VMs level: is a set of (VMs) which are used to execute the tasks as in
Figure 2.

Figure 1.
Tasks scheduling classes.

Scheduling Problems - New Applications and Trends

132

biggest yet because it is considered the main factors that control other performance
criteria such as availability, scalability, and power consumption.

2. Tasks scheduling algorithms overview

Tasks scheduling algorithms are defined as the mechanism used to select the
resources to execute tasks to get less waiting and execution time.

2.1 Scheduling levels

In the cloud computing environment there are two levels of scheduling
algorithms:

• First level: in host level where a set of policies to distribute VMs in host.

• Second level: in VM level where a set of policies to distribute tasks to VM.

In this research we focus on VM level to scheduling tasks, we selected task schedul-
ing algorithms as a research field because it is the biggest challenge in cloud computing
and the main factor that controls the performance criteria such as (execution time,
response time, waiting time, network, bandwidth, services cost) for all tasks and
controlling other factors that can affect performance such as power consumption, avail-
ability, scalability, storage capacity, buffer capacity, disk capacity, and number of users.

2.2 Tasks scheduling algorithms definition and advantages

Tasks scheduling algorithms are defined as a set of rules and policies used to
assign tasks to the suitable resources (CPU, memory, and bandwidth) to get the
highest level possible of performance and resources utilization.

2.2.1 Task scheduling algorithms advantages

• Manage cloud computing performance and QoS.

• Manage the memory and CPU.

• The good scheduling algorithms maximizing resources utilization while
minimizing the total task execution time.

• Improving fairness for all tasks.

• Increasing the number of successfully completed tasks.

• Scheduling tasks on a real-time system.

• Achieving a high system throughput.

• Improving load balance.

2.3 Tasks scheduling algorithms classifications

Tasks scheduling algorithms classified as in Figure 1.

133

Types of Task Scheduling Algorithms in Cloud Computing Environment
DOI: http://dx.doi.org/10.5772/intechopen.86873

2.3.1 Tasks scheduling algorithms can be classified as follows

• Immediate scheduling: when new tasks arrive, they are scheduled to VMs
directly.

• Batch scheduling: tasks are grouped into a batch before being sent; this type is
also called mapping events.

• Static scheduling: is considered very simple compared to dynamic schedul-
ing; it is based on prior information of the global state of the system. It does
not take into account the current state of VMs and then divides all traffic
equivalently among all VMs in a similar manner such as round robin (RR) and
random scheduling algorithms.

• Dynamic scheduling: takes into account the current state of VMs and does not
require prior information of the global state of the system and distribute the
tasks according to the capacity of all available VMs [4–6].

• Preemptive scheduling: each task is interrupted during execution and can be
moved to another resource to complete execution [6].

• Non-preemptive scheduling: VMs are not re-allocated to new tasks until finish-
ing execution of the scheduled task [6].

In this research, we focus on the static scheduling algorithms. Static scheduling
algorithm such as first come first service (FCFS), shortest job first (SJF), and MAX-
MAX scheduling algorithms in complexity and cost within a small or medium scale.

2.4 Task scheduling system in cloud computing

The task scheduling system in cloud computing passes through three levels [7].

• The first task level: is a set of tasks (Cloudlets) that is sent by cloud users,
which are required for execution.

• The second scheduling level: is responsible for mapping tasks to suitable
resources to get highest resource utilization with minimum makespan. The
makespan is the overall completion time for all tasks from the beginning to the
end [7].

• The third VMs level: is a set of (VMs) which are used to execute the tasks as in
Figure 2.

Figure 1.
Tasks scheduling classes.

Scheduling Problems - New Applications and Trends

134

2.5 This level passes through two steps

• The first step is discovering and filtering all the VMs that are presented in the
system and collecting status information related to them by using a datacenter
broker [8].

• In the second step a suitable VM is selected based on task properties [8].

3. Static tasks scheduling algorithms in cloud computing environment

3.1 FCFS

FCFS: the order of tasks in task list is based on their arriving time then
assigned to VMs [3].

3.1.1 Advantages

• Most popular and simplest scheduling algorithm.

• Fairer than other simple scheduling algorithms.

• Depend on FIFO rule in scheduling task.

• Less complexity than other scheduling algorithms.

3.1.2 Disadvantages

• Tasks have high waiting time.

• Not give any priority to tasks. That means when we have large tasks in
the begin tasks list, all tasks must wait a long time until the large tasks to
finish.

• Resources are not consumed in an optimal manner.

• In order to measure the performance achieved by this method, we will be
testing them and then measuring its impact on (fairness, ET, TWT,
and TFT).

Figure 2.
Task scheduling system.

135

Types of Task Scheduling Algorithms in Cloud Computing Environment
DOI: http://dx.doi.org/10.5772/intechopen.86873

3.1.3 Assumptions

Some of the assumptions must be taken into account when scheduling tasks to
VMs in the cloud computing environment.

• Number of tasks should be more than the number of VMs, which means that
each VM must execute more than one task.

• Each task is assigned to only one VM resource.

• Lengths of tasks varying from small, medium, and large.

• Tasks are not interrupted once their executions start.

• VMs are independent in terms of resources and control.

• The available VMs are of exclusive usage and cannot be shared among differ-
ent tasks. It means that the VMs cannot consider other tasks until the comple-
tion of the current tasks is in progress [3].

Tasks lengths: assume we have 15 tasks with their lengths as in Table 1.

Table 1.
Set of tasks with different length orders depends on the arrival time for each task.

Scheduling Problems - New Applications and Trends

134

2.5 This level passes through two steps

• The first step is discovering and filtering all the VMs that are presented in the
system and collecting status information related to them by using a datacenter
broker [8].

• In the second step a suitable VM is selected based on task properties [8].

3. Static tasks scheduling algorithms in cloud computing environment

3.1 FCFS

FCFS: the order of tasks in task list is based on their arriving time then
assigned to VMs [3].

3.1.1 Advantages

• Most popular and simplest scheduling algorithm.

• Fairer than other simple scheduling algorithms.

• Depend on FIFO rule in scheduling task.

• Less complexity than other scheduling algorithms.

3.1.2 Disadvantages

• Tasks have high waiting time.

• Not give any priority to tasks. That means when we have large tasks in
the begin tasks list, all tasks must wait a long time until the large tasks to
finish.

• Resources are not consumed in an optimal manner.

• In order to measure the performance achieved by this method, we will be
testing them and then measuring its impact on (fairness, ET, TWT,
and TFT).

Figure 2.
Task scheduling system.

135

Types of Task Scheduling Algorithms in Cloud Computing Environment
DOI: http://dx.doi.org/10.5772/intechopen.86873

3.1.3 Assumptions

Some of the assumptions must be taken into account when scheduling tasks to
VMs in the cloud computing environment.

• Number of tasks should be more than the number of VMs, which means that
each VM must execute more than one task.

• Each task is assigned to only one VM resource.

• Lengths of tasks varying from small, medium, and large.

• Tasks are not interrupted once their executions start.

• VMs are independent in terms of resources and control.

• The available VMs are of exclusive usage and cannot be shared among differ-
ent tasks. It means that the VMs cannot consider other tasks until the comple-
tion of the current tasks is in progress [3].

Tasks lengths: assume we have 15 tasks with their lengths as in Table 1.

Table 1.
Set of tasks with different length orders depends on the arrival time for each task.

Scheduling Problems - New Applications and Trends

136

3.1.4 VM properties

Assume we have six VMs with different properties based on tasks size:

 VM list = {VM1, VM2, VM3, VM4, VM5, VM6} .

 MIPS of VM list = {500, 500, 1500, 1500, 2500, 2500} .

We selected a set of VMs with different properties to make each category have VMs
with appropriate ability to serve a specific class of tasks, to improve the load balance.
Because when we use VMs with same properties with all categories it leads to load
imbalance, where each class is different from other classes in terms of tasks lengths.

3.1.5 When applying FCFS, work mechanism will be as following

Figure 3 shows FCFS tasks scheduling algorithm working mechanism and how
tasks are executed based on their arrival time.

Dot arrows refer to first set of tasks scheduling based on their arrival time.
Dash arrows refer to second set of tasks scheduling based on their arrival time.
Solid arrows refer to third set of tasks scheduling based on their arrival time.
And here it is clear to us that t1 is too large compared with t7 and t12. However,

t7 and t12 must wait for t1, which leads to an increase in the TWT, ET, TFT, and a
decrease in fairness.

 VM1 = {t1 ⟶ t7 ⟶ t12} .

 VM2 = {t2 ⟶ t8 ⟶ t14} .

 VM3 = {t3 ⟶ t9 ⟶ t15} .

 VM4 = {t4 ⟶ t10} .

 VM5 = {t5 ⟶ t11} .

 VM6 = {t6 ⟶ t13} .

Table 2 shows how FCFS scheduling algorithm increases waiting time for all tasks.

Figure 3.
FCFS work mechanism.

137

Types of Task Scheduling Algorithms in Cloud Computing Environment
DOI: http://dx.doi.org/10.5772/intechopen.86873

3.2 SJF

Tasks are sorted based on their priority. Priority is given to tasks based on tasks
lengths and begins from (smallest task ≡ highest priority).

3.2.1 Advantages

• Wait time is lower than FCFS.

• SJF has minimum average waiting time among all tasks scheduling
algorithms.

3.2.2 Disadvantages

• Unfairness to some tasks when tasks are assigned to VM, due to the long
tasks tending to be left waiting in the task list while small tasks are assigned
to VM.

• Taking long execution time and TFT.

Table 2.
Waiting times of tasks in FCFS.

Scheduling Problems - New Applications and Trends

136

3.1.4 VM properties

Assume we have six VMs with different properties based on tasks size:

 VM list = {VM1, VM2, VM3, VM4, VM5, VM6} .

 MIPS of VM list = {500, 500, 1500, 1500, 2500, 2500} .

We selected a set of VMs with different properties to make each category have VMs
with appropriate ability to serve a specific class of tasks, to improve the load balance.
Because when we use VMs with same properties with all categories it leads to load
imbalance, where each class is different from other classes in terms of tasks lengths.

3.1.5 When applying FCFS, work mechanism will be as following

Figure 3 shows FCFS tasks scheduling algorithm working mechanism and how
tasks are executed based on their arrival time.

Dot arrows refer to first set of tasks scheduling based on their arrival time.
Dash arrows refer to second set of tasks scheduling based on their arrival time.
Solid arrows refer to third set of tasks scheduling based on their arrival time.
And here it is clear to us that t1 is too large compared with t7 and t12. However,

t7 and t12 must wait for t1, which leads to an increase in the TWT, ET, TFT, and a
decrease in fairness.

 VM1 = {t1 ⟶ t7 ⟶ t12} .

 VM2 = {t2 ⟶ t8 ⟶ t14} .

 VM3 = {t3 ⟶ t9 ⟶ t15} .

 VM4 = {t4 ⟶ t10} .

 VM5 = {t5 ⟶ t11} .

 VM6 = {t6 ⟶ t13} .

Table 2 shows how FCFS scheduling algorithm increases waiting time for all tasks.

Figure 3.
FCFS work mechanism.

137

Types of Task Scheduling Algorithms in Cloud Computing Environment
DOI: http://dx.doi.org/10.5772/intechopen.86873

3.2 SJF

Tasks are sorted based on their priority. Priority is given to tasks based on tasks
lengths and begins from (smallest task ≡ highest priority).

3.2.1 Advantages

• Wait time is lower than FCFS.

• SJF has minimum average waiting time among all tasks scheduling
algorithms.

3.2.2 Disadvantages

• Unfairness to some tasks when tasks are assigned to VM, due to the long
tasks tending to be left waiting in the task list while small tasks are assigned
to VM.

• Taking long execution time and TFT.

Table 2.
Waiting times of tasks in FCFS.

Scheduling Problems - New Applications and Trends

138

3.2.3 SJF work mechanism

When applying SJF, work mechanism will be as follows:
Assume we have 15 tasks as in Table 1 above. We will be sorting tasks in the task

list, as in Table 3. Tasks are sorted from smallest task to largest task based on their
lengths as in Table 3, then assigned to VMs list sequential.

3.2.4 Execute tasks will be

 VM1 = {t4 ⟶ t6 ⟶ t7} .

 VM2 = {t10 ⟶ t9 ⟶ t1} .

 VM3 = {t11 ⟶ t13 ⟶ t8} .

 VM4 = {t5 ⟶ t14} .

 VM5 = {t12 ⟶ t2} .

 VM6 = {t3 ⟶ t15} .
Table 4 shows that the large tasks must be waiting in the task list until the small-

est tasks finish execution.

3.3 MAX-MIN

In MAX-MIN tasks are sorted based on the completion time of tasks; long tasks
that take more completion time have the highest priority. Then assigned to the VM
with minimum overall execution time in VMs list.

3.3.1. Advantages

• Working to exploit the available resources in an efficient manner.

• This algorithm has better performance than the FCFS, SJF, and MIN-MIN algorithm.

3.3.2 Disadvantages

• Increase waiting time to small and medium tasks; if we have six long tasks, in
MAX-MIN scheduling algorithm they will take priority in six VMs in VM list,
and short tasks must be waiting until the large tasks finish.

Unfairness to some or most small and medium tasks when tasks are assigned to VM.

• When applying MAX-MIN, Work Mechanism will be as follows.

Table 3.
A set of tasks sorted based on SJF scheduling algorithm.

139

Types of Task Scheduling Algorithms in Cloud Computing Environment
DOI: http://dx.doi.org/10.5772/intechopen.86873

Assume we have 15 tasks as in Table 1 above. We will be sorting tasks in task
list as in Table 5. Tasks sorted from largest task to smallest task based on highest
completion time. They are then assigned to the VMs with minimum overall execu-
tion time in VMs list.

3.3.3 Execute tasks will be

 VM6 = {t1 ⟶ t13 ⟶ t11} .

 VM5 = {t8 ⟶ t9 ⟶ t10} .

 VM4 = {t7 ⟶ t6 ⟶ t4} .

 VM3 = {t15 ⟶ t3} .

 VM2 = {t2 ⟶ t12} .

 VM1 = {t14 ⟶ t5} .

Tables 6 and 7 shows that the small and medium tasks must be waiting in the
task list until the large tasks finish execution.

Figure 4 shows the TWT and TFT for the three tasks scheduling algorithms FCFS,
SJF, and MAX-MIN. SJF tasks scheduling algorithm is the best in term of TWT and TFT.

Table 4.
Waiting times of tasks in SJF.

Table 5.
A set of tasks sorted based on MAX-MIN scheduling algorithm.

Scheduling Problems - New Applications and Trends

138

3.2.3 SJF work mechanism

When applying SJF, work mechanism will be as follows:
Assume we have 15 tasks as in Table 1 above. We will be sorting tasks in the task

list, as in Table 3. Tasks are sorted from smallest task to largest task based on their
lengths as in Table 3, then assigned to VMs list sequential.

3.2.4 Execute tasks will be

 VM1 = {t4 ⟶ t6 ⟶ t7} .

 VM2 = {t10 ⟶ t9 ⟶ t1} .

 VM3 = {t11 ⟶ t13 ⟶ t8} .

 VM4 = {t5 ⟶ t14} .

 VM5 = {t12 ⟶ t2} .

 VM6 = {t3 ⟶ t15} .
Table 4 shows that the large tasks must be waiting in the task list until the small-

est tasks finish execution.

3.3 MAX-MIN

In MAX-MIN tasks are sorted based on the completion time of tasks; long tasks
that take more completion time have the highest priority. Then assigned to the VM
with minimum overall execution time in VMs list.

3.3.1. Advantages

• Working to exploit the available resources in an efficient manner.

• This algorithm has better performance than the FCFS, SJF, and MIN-MIN algorithm.

3.3.2 Disadvantages

• Increase waiting time to small and medium tasks; if we have six long tasks, in
MAX-MIN scheduling algorithm they will take priority in six VMs in VM list,
and short tasks must be waiting until the large tasks finish.

Unfairness to some or most small and medium tasks when tasks are assigned to VM.

• When applying MAX-MIN, Work Mechanism will be as follows.

Table 3.
A set of tasks sorted based on SJF scheduling algorithm.

139

Types of Task Scheduling Algorithms in Cloud Computing Environment
DOI: http://dx.doi.org/10.5772/intechopen.86873

Assume we have 15 tasks as in Table 1 above. We will be sorting tasks in task
list as in Table 5. Tasks sorted from largest task to smallest task based on highest
completion time. They are then assigned to the VMs with minimum overall execu-
tion time in VMs list.

3.3.3 Execute tasks will be

 VM6 = {t1 ⟶ t13 ⟶ t11} .

 VM5 = {t8 ⟶ t9 ⟶ t10} .

 VM4 = {t7 ⟶ t6 ⟶ t4} .

 VM3 = {t15 ⟶ t3} .

 VM2 = {t2 ⟶ t12} .

 VM1 = {t14 ⟶ t5} .

Tables 6 and 7 shows that the small and medium tasks must be waiting in the
task list until the large tasks finish execution.

Figure 4 shows the TWT and TFT for the three tasks scheduling algorithms FCFS,
SJF, and MAX-MIN. SJF tasks scheduling algorithm is the best in term of TWT and TFT.

Table 4.
Waiting times of tasks in SJF.

Table 5.
A set of tasks sorted based on MAX-MIN scheduling algorithm.

Scheduling Problems - New Applications and Trends

140

4. Conclusion

This chapter introduces the meaning of the tasks scheduling algorithms and
types of static and dynamic scheduling algorithms in cloud computing environ-
ment. This chapter also introduces a comparative study between the static task
scheduling algorithms in a cloud computing environment such as FCFS, SJF, and
MAX-MIN, in terms of TWT, TFT, fairness between tasks, and when becoming
suitable to use?

Experimentation was executed on CloudSim, which is used for modeling the
different tasks scheduling algorithms.

Table 6.
Waiting time of tasks in MIX-MIN scheduling algorithm.

FCFS SJF MAX-MIN

TWT 739.19 79.59 404

TFT 1969.69 678.69 968.698

Table 7.
Comparison between FCFS tasks scheduling algorithm, SJF, and MAX-MIN in terms of TWT and TFT.

Figure 4.
Comparison between FCFS tasks scheduling algorithm, SJF, and MAX-MIN in terms of TWT and TFT.

141

Types of Task Scheduling Algorithms in Cloud Computing Environment
DOI: http://dx.doi.org/10.5772/intechopen.86873

Author details

Tahani Aladwani
Mecca, Saudi Arabia

*Address all correspondence to: aladwani_tahani@yahoo.com

© 2020 The Author(s). Licensee IntechOpen. This chapter is distributed under the terms
of the Creative Commons Attribution License (http://creativecommons.org/licenses/
by/3.0), which permits unrestricted use, distribution, and reproduction in any medium,
provided the original work is properly cited.

Scheduling Problems - New Applications and Trends

140

4. Conclusion

This chapter introduces the meaning of the tasks scheduling algorithms and
types of static and dynamic scheduling algorithms in cloud computing environ-
ment. This chapter also introduces a comparative study between the static task
scheduling algorithms in a cloud computing environment such as FCFS, SJF, and
MAX-MIN, in terms of TWT, TFT, fairness between tasks, and when becoming
suitable to use?

Experimentation was executed on CloudSim, which is used for modeling the
different tasks scheduling algorithms.

Table 6.
Waiting time of tasks in MIX-MIN scheduling algorithm.

FCFS SJF MAX-MIN

TWT 739.19 79.59 404

TFT 1969.69 678.69 968.698

Table 7.
Comparison between FCFS tasks scheduling algorithm, SJF, and MAX-MIN in terms of TWT and TFT.

Figure 4.
Comparison between FCFS tasks scheduling algorithm, SJF, and MAX-MIN in terms of TWT and TFT.

141

Types of Task Scheduling Algorithms in Cloud Computing Environment
DOI: http://dx.doi.org/10.5772/intechopen.86873

Author details

Tahani Aladwani
Mecca, Saudi Arabia

*Address all correspondence to: aladwani_tahani@yahoo.com

© 2020 The Author(s). Licensee IntechOpen. This chapter is distributed under the terms
of the Creative Commons Attribution License (http://creativecommons.org/licenses/
by/3.0), which permits unrestricted use, distribution, and reproduction in any medium,
provided the original work is properly cited.

142

Scheduling Problems - New Applications and Trends

References

[1] Ramotra A, Bala A. Task-Aware
Priority Based Scheduling in Cloud
Computing [master thesis]. Thapar
University; 2013

[2] Microsoft Azure website. [Accessed:
01 October 2017]

[3] Kumar Garg S, Buyya R. Green
Cloud Computing and Environmental
Sustainability, Australia: Cloud
Computing and Distributed Systems
(CLOUDS) Laboratory Department
of Computer Science and Software
Engineering, The University of
Melbourne; 2012

[4] Al-maamari A, Omara F.
Task scheduling using PSO algorithm
in cloud computing environments.
International Journal of Grid Distribution
Computing. 2015;8(5):245-256

[5] http://www.pbenson.net/2013/04/the-
cloud-defined-part-1-of-8-on-demand-
self-service/ [Accessed: 01 October 2017]

[6] Endo P, Rodrigues M, Gonçalves G,
Kelner J, Sadok D, Curescu C. High
availability in clouds: Systematic review
and research challenges. Journal of
Cloud Computing Advances, Systems
and Applications. 2016

[7] http://www.techinmind.com/
what-is-cloud-computing-what-are-
its-advantages-and-disadvantages/
[Accessed: 01 October 2017]

[8] https://siliconangle.com/
blog/2016/04/29/survey-sees-rapid-
growth-in-enterprise-cloud-adoption/
[Accessed: 01 October 2017]

142

Scheduling Problems - New Applications and Trends

References

[1] Ramotra A, Bala A. Task-Aware
Priority Based Scheduling in Cloud
Computing [master thesis]. Thapar
University; 2013

[2] Microsoft Azure website. [Accessed:
01 October 2017]

[3] Kumar Garg S, Buyya R. Green
Cloud Computing and Environmental
Sustainability, Australia: Cloud
Computing and Distributed Systems
(CLOUDS) Laboratory Department
of Computer Science and Software
Engineering, The University of
Melbourne; 2012

[4] Al-maamari A, Omara F.
Task scheduling using PSO algorithm
in cloud computing environments.
International Journal of Grid Distribution
Computing. 2015;8(5):245-256

[5] http://www.pbenson.net/2013/04/the-
cloud-defined-part-1-of-8-on-demand-
self-service/ [Accessed: 01 October 2017]

[6] Endo P, Rodrigues M, Gonçalves G,
Kelner J, Sadok D, Curescu C. High
availability in clouds: Systematic review
and research challenges. Journal of
Cloud Computing Advances, Systems
and Applications. 2016

[7] http://www.techinmind.com/
what-is-cloud-computing-what-are-
its-advantages-and-disadvantages/
[Accessed: 01 October 2017]

[8] https://siliconangle.com/
blog/2016/04/29/survey-sees-rapid-
growth-in-enterprise-cloud-adoption/
[Accessed: 01 October 2017]

Scheduling Problems
New Applications and Trends

Edited by Rodrigo da Rosa Righi

Edited by Rodrigo da Rosa Righi

Scheduling is defined as the process of assigning operations to resources over time to
optimize a criterion. Problems with scheduling comprise both a set of resources and a

set of a consumers. As such, managing scheduling problems involves managing the use
of resources by several consumers. This book presents some new applications and trends
related to task and data scheduling. In particular, chapters focus on data science, big data,

high-performance computing, and Cloud computing environments. In addition, this
book presents novel algorithms and literature reviews that will guide current and new

researchers who work with load balancing, scheduling, and allocation problems.

Published in London, UK

© 2020 IntechOpen
© AlexanderStein / pixabay

ISBN 978-1-78985-053-6

Scheduling Problem
s - N

ew
 A

pplications and Trends

ISBN 978-1-83962-169-7

	Scheduling Problems - New Applications and Trends
	Contents
	Preface
	Section 1
New Scheduling Approaches and Algorithms
	Chapter1
Global Optimization Using Local Search Approach for Course Scheduling Problem
	Chapter2
Real-Time Scheduling Method for Middleware of Industrial Automation Devices

	Section 2
On Addressing Scheduling for Parallel and High-Performance Computing Environments
	Chapter3
IntelligentWorkload Scheduling in Distributed Computing Environment for Balance between Energy Efficiency and Performance
	Chapter4
Approximation for Scheduling on Parallel Machines with Fixed Jobs or Unavailability Periods
	Chapter5
An Empirical Survey on Load Balancing: A Nature-Inspired Approach

	Section 3
Cloud Computing and Data Science: Exploring the Benefits of Task Scheduling on Such Environments
	Chapter6
Looking at Data Science through the Lens of Scheduling and Load Balancing
	Chapter7
Types of Task Scheduling Algorithms in Cloud Computing Environment

