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Preface

Since ancient times combinatorics and probability theory have been closely interre-
lated. Combinatorial techniques were used for the calculation of probabilities even
when the latter were not directly assumed and were hidden behind the concept of
“chances.” After the notion of probability appeared, was acknowledged and
comprehended, this interrelation became even stronger. Now probabilistic and
combinatorial techniques are often used for solving advanced problems. The union
of probability and combinatorics becomes more and more actual within the problem
of Big Data, which assumes the possibility of detection of latent regularities or
relations in new non-structured data types and construction of predictive models.
One of the most urgent directions of the development of methods for Big Data
analysis is their application in artificial intelligence systems. The problems of ade-
quate modeling involve the development of the mathematical apparatus for the
construction of reasonable models of statistical regularities and the study of their
analytical and asymptotic properties. Whereas for a layman probability is still asso-
ciated with divination on daisies, for specialists these methods long ago became
powerful tools in predicting successes or failures, preventive management and
achieving the desired successes. Some of these applicable techniques are demon-
strated in this book. It is worth noting that to a great extent the calculus of proba-
bilities became a mathematical theory due to the findings and works of the
representatives of the Russian mathematical school: P.L. Chebyshev (1821–1894), A.
A. Markov (1856–1922), A.M. Lyapunov (1857–1918), S.N. Bernstein (1880–1968),
A.Ya. Khinchin (1894–1959), A.N. Kolmogorov (1903–1987), B.V. Gnedenko (1912–
1995), Yu.V. Prokhorov (1929–2013), who by all means deserve to be remembered
along with the famous creators of probability theory J. Bernoulli (1655–1705), P.-S.
Laplace (1749–1827), S.D. Poisson (1781–1840), C.F. Gauss (1777–1855) and others.

This book is very unusual. It is not at all a random collection on a topic devoted to a
formalization of uncertainties. Considering that because of high complexity and
uncertainties the existing probabilistic models can’t be used sometimes directly to
predict and estimate desired results, the initial concept of the book is as follows:

• to draw the reader’s attention to the fact that the same mathematical models for
cognitive solving of different problems are useful in a variety of applications
(e.g., artificial intelligence systems, high-power hydro turbine, system of
flowering synchronization with respect to climate dynamics, organizational-
technical-economical systems, offshore platforms, asymptotic approximations,
graphs, uncertain costs, equipment of nuclear power plants, trunk oil
pipelines, risk processes, social networks, combinatorial cosmology);

• to educate how modern probabilistic and combinatorial models may be created
to formalize uncertainties;

• to train how new probabilistic models can be generated for the systems of
complex structures;

• to present the correct use of the presented models for rational control in
systems creation and operation; and
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• to demonstrate analytical possibilities and practical effects for solving different
system problems on each life cycle stage.

For example, the described approaches are applicable:

• on concept stage – for a system analysis of expected challenges, risks, usefulness
and profits, studying of system creation, rationale of system requirements;

• on development, production and utilization stages – for a system analysis of
feasibility, estimation of technical solutions and risks, prediction (on possible
data) of reliability, safety, quality, effectiveness and efficiency, for optimization;

• on support stage – for an estimation of challenges and risks, prediction (on real
data) of reliability, safety, quality, effectiveness and efficiency, for
optimization, planning and rationale of improvements.

Of course, the described approaches do not exhaust all existing views on the prob-
lems of “probability, combinatorics and control.” Nevertheless, after competent
application of the proposed models, we are sure the reader will be able to trace
distinctly the following chain of purposeful actions of the authors of this book:

1.From a formalization of uncertainties - to probabilistic modeling;

2.From probabilistic modeling - to reasonable control;

3.From reasonable control - to artificial intelligence;

4.From balanced human and artificial intelligence - to achievable effects;

5.From achievable effects - to sustainable harmony.

We wish you, dear readers, the patience in understanding the book’s ideas and their
successful implementations in different theoretical and applications areas. It will
allow to control effects in time and to achieve sustainable harmony in system
engineering, your creative life and activity.

Andrey Kostogryzov
Federal Research Center “Computer Science and Control”

of the Russian Academyof Sciences,
Gubkin Russian State University of Oil and Gas,

Russia

Victor Korolev
Lomonosov Moscow State University

(Faculty of Computational Mathematics and Cybernetics,
Department of Mathematical Statistics),

Federal Research Center “Computer Science and Control”
of the Russian Academy of Sciences,

Russia
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Chapter 1

Probabilistic Methods for
Cognitive Solving of Some
Problems in Artificial
Intelligence Systems
Andrey Kostogryzov and Victor Korolev

Abstract

As a result of the analysis of dispatcher intelligence centers and aerial, land,
underground, underwater, universal, and functionally focused artificial intelligence
robotics systems, the problems of rational control, due to be performed under
specific conditions of uncertainties, are chosen for probabilistic study. The choice
covers the problems of planning the possibilities of functions performance on the
base of monitored information about events and conditions and the problem of
robot route optimization under limitations on risk of “failure” in conditions of
uncertainties. These problems are resolved with a use of the proposed probabilistic
approach. The proposed methods are based on selected probabilistic models (for
“black box” and complex systems), which are implemented effectively in wide
application areas. The cognitive solving of problems consists in improvements,
accumulation, analysis, and use of appearing knowledge. The described analytical
solutions are demonstrated by practical examples.

Keywords: artificial intelligence system, method, probability, risk, uncertainty

1. Introduction

Today, artificial intelligence (AI) has confidently entered our lives. The first
mention of it belongs to the mid-50s of the last century. Under AI, we usually
understand it as the branch of computer science devoted to develop data processing
systems that perform functions normally associated with human intelligence, such
as reasoning, learning, and self-improvement (ISO/IEC 2382-1:1993 Information
technology–Vocabulary–Part 1). According to this, over the decades, AI has found
its application in expert systems supporting decision-making, in heuristic classifi-
cation, computer vision, pattern recognition, understanding natural language, etc.
[1–14]. Here, under AI systems (AIS), we understand systems that include data
processing systems that perform functions by AI, in particular by modeling and
logic reasoning.

Note. System is a combination of interacting elements organized to achieve one
or more stated purposes (according to ISO/IEC/IEEE 15288 “Systems and software
engineering–System life cycle processes”).
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If the modern human brain already possesses skills of adaptation to conditions of
various uncertainties in the world around, artificial intelligence systems require
creation of effective methods for cognitive solving actual practical problems. “Cog-
nitive solving” means relating to or involving the processes of thinking and reason-
ing (Cambridge English Dictionary). The applicable mathematical methods are
focused mainly on conditions of actions in the logician “if …, that …” according to
the gathered information, and on an estimation of traced situations by a man-
operator. At increase and expansion of uncertainty conditions, quite often, there are
failures and errors because of complexity. It means that search of new methods for
advanced solving of AIS practical problems today is very important.

In the present chapter, various AIS for supporting decision-making in intellec-
tual manufacture and robotics systems are analyzed. According to robotics, it is
supposed that AIS may be used for solving multiple aerial, land, underground,
underwater, universal, and special problems of creation and operation. At the same
time, we would like to emphasize that the main efforts of this chapter are not
focused on illustrating the capabilities of AIS, but on demonstrating the applicabil-
ity of author’s probabilistic models and methods to improve some of the existing
capabilities of AIS.

For this goal, the problem of planning the possibilities of functions performance
on the base of monitored information and the problem of robot route optimization
under uncertainties limitations are chosen. The choice of these problems in AIS
applications is caused on the one hand by increase of quantity and a variety of
specific uncertainties conditions, and on the other hand by an urgency and width of
areas for their practical use. However, some relevant problems (such as the prob-
lems of robotics orientation, localization and mapping, information gathering, the
perception and analysis of commands, movement and tactile, realizations of
manipulations, and also rational control) for which different probabilistic methods
are also applicable have been left out of the scope of work.

For cognitive solving and improvements by the use of probabilistic methods, the
chosen problems are transformed more specifically to:

• problem 1 of planning the possibilities of functions performance on the base of
monitored information about events and conditions, and

• problem 2 of robot route optimization under limitations on risk of “failure” in
conditions of uncertainties.

The proposed methods for cognitive solving AIS problems are based on theoret-
ical and practical author’s researches [15–37] and need to be used either in combi-
nation or in addition to existing methods. There, where often it is required
prognostic analysis or where the used approaches are not effective, the proposed
methods can be used as rational basis or alternative.

The proposed and referred author’s methods and models can be used in AIS life
cycle to form system requirements, compare different processes, rationale technical
decisions, and estimate reliability, quality, and risks. The decisions, scientifically
proved by the offered models and software tools, can provide purposeful essential
improvement of quality and mitigation of risks and decrease expenses for created
and operating systems. The spectrum of the explored systems by these methods
includes systems (not only AIS) operated by government agencies, manufacturing
structures (including power generation, coal enterprises, oil and gas systems), food
storage, space industry, emergency services, municipal economy, etc.
[15–19, 22–37]. The supporting software tools are original Russian creations
registered by Rospatent [38–44]. They have been presented at seminars,
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symposiums, conferences, ISO/IEC working groups, and other forums since 2000
in Russia, Australia, Canada, China, Finland, France, Germany, Italy, Kuwait,
Luxembourg, Poland, Serbia, the USA, etc. The software tools were awarded by the
Golden Medal of the International Innovation and Investment Salon and the
International Exhibition “Intellectual Robots,” acknowledged on the World’s fair of
information technologies CeBIT in Germany, noted by diplomas of the Hanover
Industrial Exhibition and the Russian exhibitions of software.

Note. The proposed methods below do not replace existing methods for robots
actions (for example, the methods of solving the systems of differential equations,
the methods of refreshed linear and geometric algebra, geometry, Lie groups, line-
arization, solving Jacobians and Hessians, Kalman filters, Lyapunov analysis, the
methods of biomechanics, graph theory, Laplas transforming for large-scale
dynamic systems, etc.) [1–14].

The structure of the chapter research is shown in Figure 1. It provides an
explanation of the essence of cognitive solving of problems on the base of probabi-
listic modeling, selection of some author’s probabilistic models applicable for cog-
nitive solving problems 1 and 2, the practical steps to solve these problems, and five
practical examples demonstrating system planning the possibilities of functions
performance by using robot-manipulators (in space), by AIS for a coal company
and by AIS used for a security service of floating oil and gas platform, example of
forming input for probabilistic modeling from monitored data and example of robot
route optimization under limitations on risk of “failure” in conditions of uncer-
tainties. Various areas of the examples’ applications have been chosen purposely to
demonstrate universality and analytical usefulness of the proposed methods and
models. Appendices includes the proof for the proposed model of a quite general
technology of periodical diagnostics of system integrity and some short models
results to estimate quality of used information.

Figure 1.
The structure of the research.
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Figure 1.
The structure of the research.
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2. The essence of cognitive solving of problems on the base of
probabilistic modeling

This section explains the definitions and interpretations which can help to
understand the proposed models and results of modeling complex systems in
different application areas.

AIS itself can be considered as an interested system (for example, dispatching
intellectual center) or as a part of other, more comprehensive interested system
(for example, functionally focused robots in safety systems). The current
information is processed in real time for performing the set or expected functions of
interested system. To meet system requirements, the solutions of considered
problems 1 (of planning the possibilities of functions performance) and 2 (of robot
route optimization) are initiated along with the solutions of other problems.

The cognitive solving of problems include improvements, accumulation, analy-
sis, and a use of appearing knowledge, see Figure 2. Possible uncertainties for the
given period (from initial time point t1 to future moment tx) may be considered by
using proposed probabilistic modeling, prediction, and optimization.

The solutions for problems 1 and 2 are estimated by probability of “success”
and/or “failure” (risk of “failure”) during given prognostic time period. Thus,
prognostic period should be defined so to be in time to recover capabilities (which
can be lost), or to carry out preventive action (with which the initiation of solving
the problem is connected). Such behavior means operation in real time.

In each real case of modeling the term “success” should be defined in terms of
admissible condition of interested system to operate for the purpose. The term
“failure” means “unsuccess.” Generally, a “success” of interested system operation
during the given time period means an admissible degree of integrity. Accordingly,
“failure” for interested system during given time period means inadmissible degree
of integrity at least once within this period. System (or system element) integrity is
defined as such system (system element) state when system (system element)
purposes are achieved with the required quality and/or safety. The risk of “failure”

Figure 2.
The essence of cognitive of solving of problems.
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is understood as a probabilistic measure of “failure” considering consequences
(according to ISO Guide 73).

Note. For example, an interested system is a dangerous manufacturing object.
The object structure includes an AIS, which monitors events and conditions in
and/or around its manufacture. Equipment parameters (temperature, pressure, and
so forth) which should be in norm limits are traced. The “failure” of interested
system operation may mean an incident or accident on object.

Generally, from the point of view of formalization for each estimated variants
(for problem 1 or 2), the interested system is logically decomposed to compound
subsystems; see Figures 3 and 4. Each subsystem is a set of components (elements
and/or other subsystems): for problem 1, this set covers the components participat-
ing in functions performance; and for problem 2, the set covers compound parts of
a possible route of the robot in space. Complete set of these components formally
characterizes a variant of decomposed system for solving problem 1 or 2. The
analysis and optimization are carried out on complete set of all compared possible
variants.

Interpretation of such decomposition is the following:
The subsystem from serial connected elements provides functions performance

with admissible level of integrity (quality and/or safety) at given time, if:

• “AND” 1st component, …, “AND” last element provide admissible level of
integrity (quality and/or safety) at given time (for problem 1);

• “AND” 1st compound part of the route, …, “AND” last compound part of the
route are overcame successfully by the robot at given time (for problem 2).

The subsystem from parallel connected elements provides functions perfor-
mance with admissible level of integrity (quality and/or safety) at given time, if:

• “OR” 1st component, …, “OR” last component in the subsystem provide
admissible level of integrity (quality and/or safety) at given time (for
problem 1);

Figure 3.
Variant of system decomposition.

Figure 4.
Variant of subsystem decomposition.
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• “OR” 1st compound part of the route, …, “OR” last compound part of the route
are overcame successfully by the robot at given time (for problem 2).

Each component after system decomposition is presented as a “black box.” For
each “black box,” various probabilistic models can be applied for calculations and
for building required probabilistic distribution function (PDF) of time between the
next deviations from an established norm. A norm is connected with definitions of
“success” and “failure,” it may be connected with the precondition to “failure” (to
prevent “failure”—see Example 2). Focus on processes’ description allows to use
only time characteristics (mean time or frequency of events), the dimensionless or
cost characteristics peculiar for various applications.

Appropriate calculated probabilities of “success” and/or “failure” (risk of “fail-
ure”) in comparisons to real events during the prediction periods represent the
knowledge of admissibility borders for probabilities of “success” and acceptability
borders for risks of “failure.” The process of cognitive solving of problems 1 and 2
means not only the formation and use of this knowledge for interested system, but
also the estimated quality of monitored and used information (including definition
of input for continuous modeling).

3. Selection of the models

The proposed probabilistic methods for cognitive solving of problems 1 and 2 are
based on selected probabilistic models which are implemented effectively in wide
application areas. The main principle at a selection of models consists that useful
knowledge should be result of their application in conditions of various uncer-
tainties. Knowledge is understood as the form of existence and ordering of results of
cognitive activity of human. In the applications to solve problems 1 and 2, useful
knowledge (received as a result of probabilistic modeling in time) is an output
information of admissible quality or cognitive conclusion that allows to solve a
specific applied problem. As the results of selection, the author’s models to estimate
the probabilistic measures of a quality of used information and the probabilities of
“success” and risks of “failure” for “black box” and for complex structures are
proposed for AIS. The models are widely tested and approved in practice
[15–19, 22–37].

3.1 Selection for “black box”

Selected models for every system element, presented as “black box,” allow to
estimate probabilities of “success” and/or “failure” during given prognostic period.
A probabilistic space (Ω, B, P) for estimation of system operation processes is
traditional [15–21], whereΩ is a limited space of elementary events; B is a class of all
subspace of Ω-space, satisfied to the properties of σ-algebra; and P is a probability
measure on a space of elementary events Ω. Such space (Ω, B, P) is built and
proposed for using [22–37].

Not considering uncertainty specificities, in general case, intellectual operation
of AIS component aims to provide reliable and timely producing complete, valid
and/or, if needed, confidential information; see Figure 5. The gathered information
is used for its proper specificity. And, the proposed models [18–19] allow to esti-
mate the intellectual operation processes on a level of used information quality,
which is important for every AIS (information may be used by technical devices,
“smart” elements, robotics, users, etc.).
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The proposed analytical models (“The model of functions performance by a
complex system in conditions of unreliability of its components,” “The models
complex of calls processing for the different dispatcher technologies,” “The model
of entering into system current data concerning new objects of application
domain,” “The model of information gathering,” “The model of information analy-
sis,” “The models complex of dangerous influences on a protected system,” and
“The models complex of an authorized access to system resources”) allow to esti-
mate the probability of “success” and risks to lose quality of intellectual operation
during given prognostic period considering consequences; see Table 1. Required
limits on probability measures are recommended as produced knowledge for the
best AIS practice (estimated on dozens practical estimations for various
application areas).

The next probabilistic model is devoted to estimate a probability of “success”
and risk of “failure” on high meta level. This is based on studying the general AIS
technology of periodical diagnostics of system integrity. Some general technologies
were researched for “The models complex of dangerous influences on a protected
system,” see Table 1. Here, the general case for AIS is presented.

For system element allowing prediction of risks to lose its integrity during given
prognostic period, there is studied the next general AIS technology of providing
system integrity.

Technology is based on the periodical diagnostics of system integrity (without
the continuous monitoring between diagnostics). Diagnostics are carried out to
detect danger sources occurrence from threats into a system or consequences of
negative influences (for example, these may be destabilizing factors on dangerous
enterprise). The lost system integrity can be detected only as a result of diagnostics,
after which system recovery is started. Dangerous influence on system is acted step-
by step: at first, a danger source occurs into a system, and then after its activation
may be a loss of integrity; see Figure 6. Occurrence time is a random value that can
be distributed by PDF of time between neighboring occurrences of danger
Ωoccur(t) = P(τoccurrence ≤ t) = 1 � exp(t/Toccur), Toccur is mean time, frequency
σ = 1/Toccur. Activation time is also random value which can be distributed by PDF
of activation time of occurred danger Ωactiv(t) = P(τactivation ≤ t) = 1 � exp(t/Tactiv),
Tactiv is mean time. System integrity cannot be lost before an occurred danger
source is activated. A threat is considered to be realized only after a danger source
has activated and influenced on system.

It is supposed that used diagnostics tools allow to provide system integrity
recovery after revealing danger sources occurrence or the consequences of influ-
ences. Thus, the probability (P) of providing system integrity within the given

Figure 5.
Quality of used information (abstraction).
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prognostic period Tgiven (i.e., probability of “success”) may be estimated as a result
of the use of the next probabilistic model. Risk to lose integrity (R) addition to 1 for
probability of providing system integrity R = 1 � P.

Threats to AIS operation
quality

Evaluated measure (required limits
as produced knowledge for the best
practice)

Model tittle

Information is not produced
as a result of system
unreliability

Probability of providing reliable
functions performance during given
time (no less than 0.99).
Mean time between failures.
System availability (no less than
0.9995)

The model of functions
performance by a complex
system in conditions of
unreliability of its components

Delayed information
producing (i.e., not in real
time)

Probability of well-timed processing
during the required term (no less than
0.95).
Mean response time.
Relative portion of all well-timed
processed calls.
Relative portion of well-timed
processed calls of those types for
which the customer requirements are
met (no less than 95%)

The models complex of calls
processing for the different
dispatcher technologies

Producing of incomplete
information

Probability that system contains
information about states of all real
object and coincides (no less than 0.9)

The model of entering into
system current data
concerning new objects of
application domain

Information validity
deterioration caused by:
• non-actual input

information;
• errors missed or made

during information
verification;

• incorrectness of
processing

Probability of information actuality on
the moment of its use (no less than
0.9).
Probability of errors absence after
checking (no less than 0.97).
Fraction of errors in information after
checking.
Probability of correct analysis results
obtaining (no less than 0.95)

The model of information
gathering.
The model of information
analysis

Violation of information
confidentiality

Probability of system protection
against unauthorized access during
objective period (no less than 0.999)

The models complex of an
authorized access to system
resources

Violation of secure system
operation including
• random faults of staff and

users;
• dangerous influences

(revealing of software
and technical defects,
virus influences,
violators’ influences,
terrorist attacks in
information
environment,
psychological influence
etc.);

• unauthorized access

Probability of faultless (correct)
operation during given time (no less
than 0.95).
Mean time between errors.
Probability of system protection
against unauthorized access (no less
than 0.99)

The models complex of
dangerous influences on a
protected system.
The models complex of an
authorized access to system
resources

Table 1.
The proposed analytical models to estimate AIS operation quality [18, 19].
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There are possible the next variants:

variant 1—given prognostic period Tgiven is less than the established period
between neighboring diagnostics (Tgiven < Tbetw. + Tdiag);
variant 2—given prognostic period Tgiven is more than or equal to the
established period between neighboring diagnostics (Tgiven ≥ Tbetw. + Tdiag).

Here, Tbetw. is the time between the end of diagnostics and the beginning of the
next diagnostics and Tdiag is the diagnostics time.

For the given period Tgiven, the next statements are proposed for use, see in
detail [18, 19, 35–37].

Under the condition of independence of considered characteristics, the
probability of providing system integrity (probability of “success”) is equal to

1.for variant 1

P 1ð Þ Tgiven
� � ¼ 1� Ωoccur ∗Ωactiv Tgiven

� �
, (1)

2.for variant 2

measure (a)

P 2ð Þ Tgiven
� � ¼ N Tbetw þ Tdiag

� �
=Tgiven

� �
P 1ð ÞN Tbetw þ Tdiag

� �
þ Trmn=Tgiven
� �

P 1ð Þ Trmnð Þ, (2)

where N = [Tgiven/(Тbetw. + Тdiag.)] is the integer part, Trmn = Tgiven � N
(Tbetw + Tdiag);

measure (b)

P 2ð Þ Tgiven
� � ¼ P 1ð ÞN Tbetw þ Tdiag

� �
P 1ð Þ Trmnð Þ (3)

The probability of success within given prognostic period P(1)(Tgiven) is defined
by (1).

The modification of this model allows to use different values of diagnostics
and recovery time [35–37]; for formulas (1)–(3), recovery time is equal to
diagnostics time.

All these models, supported by various versions of software tools, registered by
Rospatent, may be applied and improved for solving quality and safety problems,
connected with intellectual system presented as “black box” [18, 19, 38–44].

Figure 6.
Some random events for technology: left—correct operation to provide system integrity; right—a loss of integrity
during prognostic period Tgiven.
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All these models, supported by various versions of software tools, registered by
Rospatent, may be applied and improved for solving quality and safety problems,
connected with intellectual system presented as “black box” [18, 19, 38–44].

Figure 6.
Some random events for technology: left—correct operation to provide system integrity; right—a loss of integrity
during prognostic period Tgiven.
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Summaries for the last model are as follows:

• The input for modeling include: frequency of the occurrences of potential
threats (or mean time between the moments of the occurrences of potential
threats which equals to 1/frequency); mean activation time of threats; mean
recovery time; time between the end of diagnostics and the beginning of the
next diagnostics; diagnostics time; and given prognostic period.

• The calculated results of modeling include: the probability of providing system
integrity within given prognostic period (i.e., probability of “success”); and
risk to lose integrity (i.e., probability of “failure”) as addition to 1 for
probability of “success.”

3.2 Integration for complex structures on the level of probability distribution
functions

If probability of providing system integrity within given prognostic period for all
points Tgiven from 0 to∞ are computed, it means a trajectory of the PDF depending
on characteristics of threats, periodic diagnostics, and recovery. And, the building
of PDF is the real base to predict probabilistic metrics for given time Tgiven. In
analogy with reliability, it is important to know a mean time between neighboring
losses of integrity (MTBLI) like mean time between failures in reliability (MTBF),
but in application to concepts of quality, safety, etc.

For complex systems with serial or parallel structure, new models with known
PDF can be developed by the next method [17–21]. Let us consider the elementary
structure from two independent parallel or serial elements (Figures 3 and 4). Let
the PDF of time between losses of i-th element integrity be Вi(t), i.e.,
Вi(t) = Р(τi ≤ t), then:

1.time between losses of integrity for system combined from serial connected-
independent elements is equal to minimum from two times τi: failure of first or
second elements (it means the system goes into a state of lost integrity when
either first, or second element integrity is lost). For this case, the PDF of time
between losses of system integrity is defined by the expression

В tð Þ ¼ Р min τ1, τ2ð Þ≤ tð Þ ¼ 1� Р min τ1, τ2ð Þ>tð Þ ¼ 1� Р τ1>tð ÞР τ2>tð Þ
¼ 1� 1� В1 tð Þ½ � 1� В2 tð Þ½ � (4)

2.time between losses of integrity for system combined from parallel connected
independent elements (hot reservation) is equal to a maximum from two times
τi: failure of first and second elements (it means the system goes into a state of
lost integrity when both first and second elements have lost integrity). For this
case, the PDF of time between losses of system integrity is defined by the
expression

В tð Þ ¼ Р max τ1, τ2ð Þ≤ tð Þ ¼ Р τ1 ≤ tð ÞР τ2 ≤ tð Þ ¼ В1 tð ÞВ2 tð Þ (5)

By applying recurrently expressions (4) and (5), it is possible to build PDF of
time between losses of integrity for any complex system with parallel and/or serial
structure.

As summary, the calculated results of modeling are: PDF of time between losses
of integrity for system and each compound subsystems and elements; mean time
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between losses of integrity for system and each compound subsystems and elements
(MTBLI as analog of MTBF).

For example, integrated complex system, combined from intellectual structures
for modeling interested system including AIS (Figure 7), can be analyzed by for-
mulas (1)–(5) and probabilistic models described above and allowing to form PDF
by (4) and (5). The correct operation of this complex system during the given
period means: during this period both first and second subsystems (left and right)
should operate correctly according their destinations, i.e., integrity of complex
system is provided if “AND” integrity of first system left “AND” integrity of second
system right are provided.

All these ideas of analytical modeling operation processes are supported by the
software tools [18, 19, 21, 23, 38–44].

What about new knowledge by using the proposed methods and models for
cognitive solving of problems 1 and 2 of the chapter? A use of these methods and
models on different stages of AIS life cycle (concept, development, utilization,
support stages) allows to produce cognitive answers for the following questions:

• What about different risks to lose integrity in operation?

• What about the justified norms for values of monitored parameters?

• What requirements should be specified to MTBLI and to repair time for
different possible scenarios of operation?

• Which information operation processes should be duplicated and how?

Figure 7.
An integrated complex system of two serial subsystems (abstraction).
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• What processing devices and technologies should be used to achieve the
necessary level of system integrity (quality, safety, etc.)?

• What is the system tolerance to data flows changing?

• What data flows and functional tasks may be the main causes of “bottlenecks”?

• What data gathering technologies and engineering solutions can guarantee the
completeness and actuality of used information?

• What information verification and validation control should be used?

• What qualification requirements should be for the users of AIS (from the AIS
effectiveness and efficiency points of view)?

• How dangerous are scenarios of environment influences and what protective
technologies will provide the required security?

• How the use of integrity diagnostics and security monitoring will worsen time-
probabilistic characteristics of system?

• What protection system effectiveness should be to prevent an unauthorized
access?

• What are the information security risks? etc.

The rationale answers allow to improve and accumulate knowledge
concerning AIS.

The proposed methods and models provide the next approach for cognitive
solving problems 1 and 2.

4. Problem 1 of planning the possibilities of functions performance on
the base of monitored information about events and conditions

It is supposed that the terms “success” and accordingly “failure” are defined in
terms of admissible condition of interested system to operate for the purpose.

Note. For example, for each parameter of equipment, the ranges of possible
values of conditions may be estimated as “Working range inside of norm” and “Out
of working range, but inside of norm” (“success”) or “Abnormality” (“failure”),
interpreted similarly light signals—“green,” “yellow,” and “red.” For this defini-
tion, a “failure” of equipment operation characterizes a threat to lose system norm
integrity after danger influence (on the logic level this range “Abnormality”may be
interpreted analytically as failure, fault, losses of quality, or safety etc.). But the
definition may be another: for example, a “failure” may be defined as incident or
accident. For this definition, short-time being in the range “Abnormality” is not
“failure,” because the incident or accident may not happen.

There are four steps proposed for cognitive solving of problem 1 of planning the
possibilities of functions performance on the base of monitored information about
events and conditions; see Figure 8.

Step 1. The complete set of variants for actions, and for each variant—a set of
components is defined. Each use case may be characterized by an expected gain in
comparable conventional units. If the objective value of gain cannot be defined,
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expert value of expected level of “success” for each variant may be established,
for example, on a dimensionless scale from 0 to 100 (0—“no gain”, i.e., “failure”;
100—“the maximal gain,” i.e., complete “success”). After learning by knowledge
base, self-improving AIS uses input and the corresponding results of probabilistic
modeling in a form of the solution of previously specific encountered problem 1.

Knowledge base (K-base) is defined as a database that contains inference rules
and information about human experience and expertise in a domain (ISO/IEC
2382-1:1993).

Step 2. The measures and optimization criteria are chosen. As criteria can be
accepted:

• Maximum of gain as a result of the functions performance under the given
conditions and limitations on the acceptable risk of failure and/or other
limitations

• Maximum probability of “success” or minimum risk of “failure” under
limitations

Step 3. The accumulated knowledge is used to refine the input for modeling. A
quality of used information is estimated by models above considering limitations
from Table 1. Using the model for each variant, the probabilistic measures are
calculated for given prognostic period (see proposed models above and Step 1).
From a set of possible variants, the optimal one is chosen, according to Step 2
criterion.

Note. For example, there are proposed the next general formal statements of
problems for system optimization:

Figure 8.
Steps for cognitive solving of problem 1.
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1.on the stages of system concept, development, production, and support:
system parameters, software, technical, and management measures (Q) are
the most rationale for the given period if on them the minimum of expenses
(Zdev.) for creation of system is reached

Zdev: Qrationalð Þ ¼ min
Q

Zdev: Qð Þ, (6)

at limitations on probability of an admissible level of quality Pquality (Q) ≥ Padm.

and expenses for operation Сoper. (Q) ≤ Сadm. and under other development, oper-
ation, or maintenance conditions;

2.on utilization stage: system parameters, software, technical, and management
measures (Q) are the most rational for the given period of operation if on
them the maximum of probability of correct system operation is reached

Pquality Qrationalð Þ ¼ max
Q

Pquality Qð Þ, (7)

at limitations on probability of an admissible level of quality Pquality (Q) ≥ Padm.

and expenses for operation Сoper. (Q) ≤ С adm. and under other operation or main-
tenance conditions.

For limitation on Pquality (Q) K-base is used; for example, see Table 1. For
calculation probabilistic measures for given prognostic period, the proposed models
are used.

These statements (6), (7) may be transformed into the problems of expenses or
risk minimization in different limitations. There may be a combination of these
formal statements in system’s life cycle.

Step 4. A plan for the optimal variant of actions (defined in Step 3) is formed.
To support the efficiency and/or effectiveness of the functions, the achievable gain
calculated at Step 3 is recorded. New knowledge is improved, accumulated, and
systematized in K-base by comparing it with reality (for example, by a specific
method considering AIS capabilities for self-improving).

Note. A solution that meets all conditions may not exist. In this case, there is no
optimal variant of planning the possibilities of functions performance on the base of
monitored information. Additional systems analysis, adjustment of the criteria, or
limitations is required (see, for example, ISO/IEC/IEEE 15288).

5. Problem 2 of robot route optimization under limitations on risk of
“failure” in conditions of uncertainties

For a robot, the concept of “failure” under uncertainty is defined as the
“unsuccess” to achieve the goal within a given time. It is assumed that there are
several possible routes to achieve the goal, and uncertainties may include both the
conditions for robot operation (including random events in orientation, localiza-
tion, and mapping in cooperation with drone for gathering actual data). The mini-
mum risk of failure under the existing conditions and limitations is used as a
criterion of optimization.

The next four steps are proposed for cognitive solving of problem 2 of robot
route optimization under limitations on risk of “failure” in conditions of uncer-
tainties, see Figure 9.

Step 1. The complete set of route variants to achieve the goal within the given
time, and for each variant—a set of components is defined (redefined). Data char-
acterizing every part of route for each of the variants are gathered (refined) for
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modeling. To do this, the robot can use data from various sources (for example,
from air drones, intelligent buoys on the water or sensors under water, etc.). If
necessary, possible damages are taken into account. For example, each use case may
be characterized by an expected damage in comparable conventional units. If the
objective value of a damage cannot be defined, expert value of expected level of
“failure” for each variant may be established, for example, on a dimensionless scale
from 0 to 100 (0—“no damages”, i.e., “success”; 100—“the maximal damage”).
After learning by K-base, self-improving AIS also uses input and the corresponding
results of probabilistic modeling in a form of the solution of previously specific
encountered problem 2.

The index i of the first part of the selected route is set to the initial value i = 1.
Step 2. The accumulated knowledge is used to refine the input for prognostic

modeling. A quality of used information is estimated by models above considering
limitations from Table 1. Using probabilistic model, a calculation of the probability
of failure is carried out for each variant. From the set of remaining route variants,
the optimal one is chosen (for it is the minimum probability of failure that is
achieved).

Step 3. The robot overcomes the i-th part of the selected route. If the part cannot
be overcome successfully according to probabilistic modeling and/or actual data, the
comeback to the initial point of the part is being. If an alternative route is not here,
the comeback to initial point of the previous part is being. The input for modeling
every part of possible route for each of the variants is updated. New knowledge is
improved, accumulated, and systematized in K-base by comparing it with reality
(using a specific method considering AIS capabilities for self-improving).

Step 4. If, after overcoming the i-th part, the robot arrived at the intended point
of route (i.e., the last part of the route is overcome and the goal is achieved), then
the solution of task 2 for optimizing the route is complete. If the robot has not yet
arrived at the intended point (i.e., the last part of the route is not overcome), then

Figure 9.
Steps for cognitive solving of problem 2.
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the complete set of different route variants for achieving the goal is redefined
(similar to step 1). The input for modeling every part of possible route for each of
the variants is updated. i = i + 1. Then, Steps 2–4 are repeated until the last part of
the route is overcome on the set of possible variants (i.e., it means the goal is
achieved and problem 2 is solved).

If the set of possible options is exhausted and the goal is not achieved, it is
concluded that the goal is unattainable with the risk of “failure” less than the
acceptable risk (i.e., it means an impossibility of solving problem 2 in the defined
conditions).

Thus, for optimizing robot route in space (i.e., for the “successful” solution of
problem 2) in real time, information gathering, probabilistic predictions for possible
route variants, their comparison, the choice of the best variant, the implementation
of further actions, the improvement, accumulation, systematization, and use of
knowledge are being, see Figure 9.

Note. The proposed methods of solving problems 1 and 2 are essentially identical
approaches based on the use of the same probabilistic models (Section 3). The only
difference is that for the system planning the possibilities of functions performance
(problem 1), the concept of “success” is used; and for the robot route optimization
under limitations on risk of “failure” (problem 2), the concept of “failure,” which is
defined as the lack of “success,” is used.

6. Examples

6.1 Example 1 of system planning the possibilities of functions performance in
space by using robot-manipulators

Here, problem 1 (of planning the possibilities of functions performance) is
solved by the proposed approach on the base of information gathered from differ-
ent similar projects, accumulated and systematized in K-base including history.
Applicability of the proposed probabilistic methods and models on development
stage is demonstrated to improve some of the existing capabilities of robot-
manipulator. It is required to predict the possible period of robot-manipulator use in
space. When planning the possibilities of performing the functions of the
cosmonaut-operator, two variants were compared: first variant–without a use of
AIS; second–by using some AIS for supporting decision-making and monitoring the
status of the operator’s console, power units, central controller, and control handle
for manipulator means.

A robot-manipulator as a system is composed on subsystems: an operator’s
console, a power unit, a central controller with a handle of control and manipulator
means. There are supposed that a frequency of anomalies is in average 1 times a
year, mean activation time from anomaly occurrence to failure is about 3 days. Time
between the end of diagnostics and the beginning of the next diagnostics is about
2 months, and the recovery time is about 2 days.

System decomposition is presented on Figure 10. We do STEPS 1–4 (Figure 8)
and use formulas (1)–(3) for solving the problem for complex structure composed
by elementary variants decompositions presented on Figures 3 and 4. Here, proba-
bility of “success” (P) covers the following:

• Probability of reliable operation of robot-manipulator as a system

• Probability of reliable operation of every subsystem

Risks of “failure” (R) means addition to 1 for probability of “success.”
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Results of modeling the first variant of project have shown the following
(Figure 10): for operator’s console (first subsystem), power unit (second
subsystem) and central controller with a handle of control (third subsystem)
MTBLI = 8766 h, for manipulator means (including a hinge of roving of key, a
hinge of shoulder, a hinge of roving of elbow, a hinge of elbow, a hinge of roving
of brush, a hinge of brushes, a hinge of brush rotation, a device for grasping,
videocamera—united as subsystem 4, which can operate if one of these means is
available) MTBLI = 31,293 h, for all complex 1,…,4 MTBLI = 2672 h; probability of
reliable operation of complex 1,…,4 during 8 h is equal to 0.979; probability of
reliable operation of complex 1,…,4 during 48 h is equal to 0.965.

The maximum probability of “success” and minimum risk of “failure” under
limitations on the successful functions performance are used as a criterion.

The results of first variant are used for estimating input for the second variant of
modeling: every subsystem for second variant (for subsystems equipped by AIS) is
characterized by MTBLI = 31,293 h in analogy to the subsystem 4 of first variant.
Owing to AIS, the frequency of anomalies is about 0.28 year�1 (it is equal to
1/MTBLI), but the conditions of anomalies activation time are more strong: the
mean time is 30 min. The time between the end of diagnostics and the beginning of
the next diagnostics is 1 month, and the recovery time is about 1 day.

What about the risks of “failure” during period from 0.05 to 2 years?
Analysis of modeling results proves: risks are very high despite the use of AIS

with the described characteristics, see Figure 11.
For a robot-manipulator used in space, new knowledge for accumulating and

improving K-base is as follows:

1.The input (used for modeling) characterizes inadmissible conditions for
functions performance by robot-manipulator.

2.The probability of “success” on level 0.98 or risk of “failure” on level 0.02
during six sessions of cosmonaut work is inadmissible for reliable robot-
manipulator operation more than 1–2 weeks in space.

3.For a robot-manipulator used in space, the level 31,293 h of MTBLI is
inadmissible level for every compound subsystem equipped by
considered AIS.

Figure 10.
Results of probabilistic modeling robot-manipulator operation.
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and use formulas (1)–(3) for solving the problem for complex structure composed
by elementary variants decompositions presented on Figures 3 and 4. Here, proba-
bility of “success” (P) covers the following:
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Risks of “failure” (R) means addition to 1 for probability of “success.”
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4.Analyzed project of robot-manipulator operation effectiveness can be added to
K-base history as precedent of “unsuccess.”

5.For analyzed project, new research for decreasing risks with the proof of its
efficiency on the basis of modeling is strongly required after improving
characteristics for every subsystem of robot-manipulator.

6.2 Example of forming input for probabilistic modeling from monitored data

In practice, many devices proper to intelligent manufacturing are sources of data
monitored. This example explains how monitored data can be tailored in AIS for
probabilistic modeling to solve both problems 1 and 2.

The approach to form specific input for modeling is demonstrated on example of
mean time Toccur for PDF Ωoccur(t) and mean time Tactiv for PDF Ωactiv(t) from
random values τoccurrence and τactivation (Figures 6 and 12).

The elementary ranges for monitored parameters from quality or safety point of
view should be set. For each parameter, the ranges of possible values of conditions
are set: “Working range inside of norm,” “Out of working range, but inside of
norm,” and “Abnormality,” The condition “Abnormality” characterizes a threat to
lose system integrity after danger influence (on the logic level this range “Abnor-
mality” may be interpreted analytically as failure, fault, losses of quality, or safety
etc.). The construction on Figure 12 allows to extract data for probabilistic model-
ing: time between moments of the occurrences of dangers (potential threats), acti-
vation time of occurred dangers, and recovery time.

For example, from Figure 12:
Mean time between moments of the occurrences of dangers (potential threats)
Toccur = (τoccurrence 1 + τoccurrence 2)/2

Figure 11.
Risks of “failures” depending on the prognostic period of use (from 0.05 to 2 years).
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Mean activation time Tactiv = (τactivation 1 + τactivation 2 + τactivation 3)/3
Mean recovery time for Trecovery = (τrecovery 1 + τrecovery 2)/2

This example is auxiliary to understand some sources of input for the proposed
models (Sections 3–5) used for the next examples.

6.3 Example of system planning the possibilities of functions performance by
AIS for a coal company

Applicability of the proposed probabilistic methods and models is demonstrated
to improve some of the existing capabilities of AIS for a coal company. This sub-
section contains an explanation how problem 1 (of planning the possibilities of
functions performance) may be solved for intelligent manufacturing by the pro-
posed approach on the base of data monitored. This demonstrates AIS possibilities
for a coal company on its operation stage.

Let a coal company (as system) is decomposed on 9 subsystems for studying
efficiency. Of course, every subsystem also may be considered as complex system,
for example, see Figure 7. Components from 1 to 6 united by multifunctional safety
system of the mine, component 7 is associated with the washing factory, component
8 is associated with transport, and component 9 with port, see Figure 13: 1—the
control system of ventilation and local airing equipment; 2—the system of modular
decontamination equipment and compressed air control; 3—the system of air and
gas control; 4—the system of air dust content control; 5—the system of dynamic
phenomena control and forecasting; 6—the system of fire-prevention protection;
7—the safety system of washing factory; 8—the safety system for transport; and 9
—the safety system of port. Information is monitored from different sources, accu-
mulated in a database of dispatcher intelligence center, processed, and systematized
(including systematization described in Example 2 to get input for modeling).

For planning possibilities of functions performance by AIS in this example, the
probabilistic modeling is being to answer the next two questions:

• How every responsible worker can know a residual time before the next
parameters abnormalities?

• What risks to lose system integrity may be for a year, for 10 and 20 years if all
subsystems are supported by AISs that transform all system components to the
level which is proper to skilled workers (Optimistic view on dangerous coal
intelligent manufacturing)?

Figure 12.
The universal elementary ranges for monitored parameters.
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(including systematization described in Example 2 to get input for modeling).

For planning possibilities of functions performance by AIS in this example, the
probabilistic modeling is being to answer the next two questions:

• How every responsible worker can know a residual time before the next
parameters abnormalities?

• What risks to lose system integrity may be for a year, for 10 and 20 years if all
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To answer the first question, the ranges of possible values of conditions are
established: “Working range inside of norm,” “Out of working range, but inside of
norm,” and “Abnormality” for each separate critical parameter of equipment. It is
interpreted similarly by light signals—“green,” “yellow,” and “red,” as it is reflected
on Figure 12. Some examples of parameters may include compression, capacity, air
temperature (out, in, at machinery room), voltage, etc. The information from
Example 6.2 and additional time data of enterprise procedures are used by AIS as
input for using formulas (1) and (3) and Steps 1–4 (from Figure 8) in real time of
company operation activity. Here, risks to lose the system integrity during the given
period Tgiven means risks to be at least once in state “Abnormality” within Tgiven.
The functions of modeling is performed on special servers (centralized or mapped);

Figure 13.
An example of a coal company with AISs that transformed all system components to the level which is proper to
skilled workers.
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see details in [27, 36]. If virtual risks are computed by formulas (1) and (3) for all
points Tgiven from 0 to ∞, the calculated values form a trajectory of the PDF. The
mathematical expectation of this PDF means the mean residual time to the next
state “Abnormality.” It defines MTBLI from this PDF. This output of probabilistic
modeling can be transmitted to interested workers. Requirements to AIS operation
quality are: quality measures of used information by AIS should meet admissible
level recommended in Table 1.

Thus, the answer on the first question “How responsible worker can know a
residual time before the next parameters abnormalities?” is: the calculated mean
residual time to the next state “Abnormality” (MTBLI for “red” range on Figure 12)
can be transmitted in real time to responsible worker immediately after parameter
value cross the border from “Working range inside of norm,” “Out of working
range, but inside of norm” (from “green” to “yellow” range on Figures 12 and 13).
It is possible as a result of implementation of the proposed approach—see example
of implementation in [27, 36].

To answer the second question, let the next input be formed from data
monitored.

Let for every system component, a frequency of occurrence of the latent or
obvious threats is equal to once a month and the mean activation time of threats is
about 1 day. The system diagnostics are used once for work shift 8 h, a mean
duration of the system control is about 10 min, and the mean recovery time of the
lost integrity of object equals to 1 day. The workers (they may be robotics, skilled
mechanics, technologists, engineers, etc.) are supported by capabilities of an AIS
and a remote monitoring systems allowing estimating in real time the mean residual
time before the next parameters abnormalities considering the results of probabi-
listic modeling. Formally they operate as parallel elements with hot reservation
(structure on Figure 4, right). Owing to AIS support workers are capable to reveal-
ing signs of a critical situation after their occurrence. Workers can commit errors on
the average not more often once a year (it is proper to skilled workers).

To answer the question we do Steps 1–4 (from Figure 8) and use formulas (1)–
(3) for solving the problem for complex structure, see Figure 13. Here, risks to lose
system integrity means risks of “failure” for every subsystem which can be detailed
to the level of every separate critical parameter of equipment.

The fragments of built PDF on Figure 13 show: risk of “failure” increases from
0.000003 for a year to 0.0004 for 10 years and to 0.0013 for 20 years. Thus, the
mean time between neighboring losses of integrity (MTBLI) equals to 283 years.

These are some estimations for example assumptions.
Thus, the answer on second question “What risks to lose system integrity may

be for a year, for 10 and 20 years if all subsystems are supported by AISs that
transform all system components to the level which is proper to skilled workers?” is:
risks to lose system integrity may be 0.000003 for a year, 0.0004 for 10 years and
0.0013 for 20 years, herewith (MTBLI) is equal to 283 years. These are the Opti-
mistic estimations for dangerous coal intelligent manufacturing that make sense to
take over a desired level of AIS operation effectiveness.

New knowledge for accumulating and improving K-base is as follows:

1.The input (used for modeling) characterizes admissible conditions for
functions performance by AIS for a coal company.

2.The probability of “success” on levels 0.99997 for a year, 0.9996 for 10 years
and 0.9987 for 20 years or risk of “failure” on levels 0.000003 for a year to
0.0004 for 10 years and 0.0013 for 20 years (with predicted risks levels for
discovered “bottlenecks”) are admissible.
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3.Expected term in average 283 years and more is admissible systemic aim for
providing safe company operation.

4.Analyzed project of AISs operation effectiveness (that transform all system
components to the level which is proper to skilled workers of coal company)
can be added to K-base history as a precedent of “success.”

6.4 Example of system planning the possibilities of functions performance by
AIS used for a security service of floating oil and gas platform

This subsection continues an explanation on how problem 1 (of planning the
possibilities of functions performance) may be solved for intelligent manufacturing
by the proposed approach on the base of data monitored. This demonstrates the

Figure 14.
An example of a floating oil and gas platform with AISs that transform all system components to the level which
is proper to medium-level workers.
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capabilities of AIS used for a security service of floating oil and gas platform on its
operation stage. The difference from previous example is in more degree of uncer-
tainties (because of high complexity) that allows to transform all system compo-
nents to the level which is proper to medium-level workers of floating oil and gas
platform. The same approach, structure, and formulas for probabilistic modeling
are used.

Let a floating oil and gas platform is also decomposed on nine subsystems. Every
subsystem is enumerated on Figure 14, and operates as parallel elements with hot
reservation.

Components are: 1—a construction of platform; 2—an AIS on platform for
robotics monitoring and control; 3—an underwater communication modem; 4—a
remote controlled unmanned underwater robotic vehicle; 5—a sonar beacon; 6—an
autonomous unmanned underwater robotic vehicle; 7—non-boarding robotic boat,
a spray of the sorbent; 8—non-boarding robotic boat, a pollution collector; and 9—
an unmanned aerial vehicle.

And let input for modeling is the same as in Example 6.3. Only one difference is
because of complexity characteristics are proper to medium-level workers of float-
ing oil and gas platform. For this example, it means workers and AIS can commit
errors more often in comparison with skilled workers, for one element it is equal to
1 time a month instead of once a year.

For planning possibilities of functions performance by AIS in this example, the
probabilistic modeling is being to answer the question:

What risks to lose system integrity may be for a year, for 10 and 20 years if all
subsystems are supported by AISs that transform all system components to the level
which is proper to medium-level workers (realistic view on dangerous oil and gas
intelligent manufacturing)?

To answer the question, we do Steps 1–4 (from Figure 8) and use formulas (1)–
(3) for solving the problem for complex structure, see structure on Figure 13. Here,
risks to lose the system integrity mean risks of “failure” for every subsystem. The
fragments of built PDF on Figure 14 show: from 0.0009 for a year to 0.0844 for
10 years and 0.25 for 20 years. Thus, MTBLI equals to 24 years. It is 11.4 times less
often against the results of Example 6.3.

These are some estimations for example assumptions.
Thus, the answer on question is: risks to lose system integrity may be 0.0009 for

a year, 0.0844 for 10 years and 0.25 for 20 years; herewith, mean time between
neighboring losses of integrity is equal to 24 years. These are the realistic estima-
tions for dangerous oil and gas intelligent manufacturing.

New knowledge for accumulating and improving K-base is as follows:

1.The input (used for modeling) characterize possible complex conditions for
functions performance by AIS used for a security service of floating oil and gas
platform.

2.The probability of “success” on levels 0.9991 for a year, 0.9156 for 10 years and
0.75 for 20 years or risk of “failure” on levels 0.0009 for a year, 0.0844 for
10 years and 0.25 for 20 years (with possible consequences) and expected term
in average 24 years as estimation of mean time between neighboring losses of
integrity are realistic view on dangerous floating oil and gas platform
intelligent manufacturing.

3.For analyzed project new research to improve characteristics for the security
service of floating oil and gas platform for decreasing risks with the proof of its
efficiency on the basis of modeling is required.
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4.Analyzed project of AISs operation effectiveness (that transform all system
components to the level which is proper to medium-level workers of floating
oil and gas platform) can be added to K-base history as precedent.

6.5 Example of robot route optimization under limitations on risk of “failure”
in conditions of uncertainties

Applicability of the proposed probabilistic methods and models is demonstrated
to improve some of the existing capabilities of rescue robot for route optimization.
This subsection contains an explanation on how problem 2 may be cognitively
solved. Similar problems of specific robot route optimization from point A (Start)
to point F (Finish) can arise on water, under water (Figure 15), in burning wood
(Figure 16), in the conditions of a city or in mountains (Figure 17), and in other
situations in conditions of uncertainties. Specific cases of uncertainties can be
connected additionally with complex conditions of environment and necessity of
robotics orientation, localization, and mapping that influences on input for the
proposed probabilistic models.

Figure 15.
A system view on situation for robot route from point A (Start) to point F (Finish) on water and under water.

Figure 16.
A system view on situation for robot route from point A (Start) to point F (Finish) in burning wood.
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Here, we demonstrate the proposed approach by a simplified example of moving
a special rescue robot from point A to the final point F of the route (from where the
SOS signals from tourists are following). It is required to optimize the route of the
robot in space under uncertainty of weather, complex snow conditions in moun-
tains to achieve the goal in 2 h with an acceptable risk of failure less than 0.1 (i.e., a
probability of success should be more than 0.9). Interaction with the drone-
informant is supposed, see Figure 17.

The applications to cognitive solving the problem of robot route optimization
are demonstrated by the next steps.

Step 1. The complete set of route variants to achieve the goal within about 2 h:
first route is ABCF, second route AGKF, third route if AHLDEF, and fourth variant
is a combination of routes 1–3. Points A, B, C, G, K, H, L, D, E, F mean that they
may change the route (including return to the previous point). Respectively, it may
be a refinement of the further route at these points. Robot speed allows to overcome
any route in time.

For each variant, a set of system compared by modeling is defined: there are
ABCF, AGKF, AHLDEF, and possible combinations. Inputs characterizing every
part of route for each of the variants are formed by K-base and gathered data from
drone-informant:

• Frequencies of the occurrences of potential threats are for route ABCF σ = 1
time at 10 h, AGKF σ = 1.5 times at 10 h, AHLDEF σ = 2 times at 10 h (since
8.00 a.m. to 8.00 p.m.)

• Mean activation time of threats Tactiv = 30 min

• Time between the end of diagnostics and the beginning of the next diagnostics
of robot availability Tbetw. = 2 min

• Diagnostics time of robot availability Tdiag = 30 s

• Recovery time of robot availability = 10 min (for modified model [42–44])

• Given prognostic period Tgiven = 2 h

Figure 17.
A system view on situation for robot route from point A (Start) to point F (Finish) in mountains.
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i = 1.
Step 2 (i = 1). Using probabilistic model, a calculation of the probability of

failure is carried out for each variant. From the set of variants ABCF, AGKF, and
AHLDEF, the shorter variant ABCF for which risk is equal to 0.034 is chosen (for
the route AGKF risk = 0.051, for route AHLDEF risk = 0.067), see Figure 18. The
relevant data from the drone about the forecasted conditions and the weather on the
part CF to 8.30 a.m. are taken into account.

Step 3 (i = 1). The robot overcomes the part AB of route. For the new initial
point B, the input for modeling every part of possible route is updated in real time
for routes BCF, BGKF, and BGHLDEF.

Step 4 (i = 1). The robot has not yet arrived at the intended point F (i.e., the last
part of the route is not overcome).

i = i + 1 = 2.
Step 2 (i = 2 for variants BCF, BGKF, and BGHLDEF). Input for modeling is not

changed. Risks are the same. From the route variants BCF, BGKF, and BGHLDEF,
the shorter one BCF (with minimal risk) is chosen.

Step 3 (i = 2 for variant BCDEF). The robot overcomes the part BC. For the new
initial point C, the input for modeling every part of possible route is updated in real
time: bad weather on the CF part does not allow further movement. And weather
improvements in the next 2 h are not expected. Part CF is impassable. The come-
back to the initial point B of the part is being.

Step 2 (i = 2 for two remaining variants). From variants BGKF and BGHLDEF,
the shorter one BGKF (with minimal risk 0.051) is chosen.

Step 3 (i = 2 for variant BGKF). The robot overcomes the part BG. For the new
initial point G, the input for modeling every part of possible route is updated in real
time: according drone from 9.00 a.m. on parts GK and KF the imminent avalanche
are detected. The accumulated knowledge is used to clarify the input for modeling,
namely: the frequency threats in the part GKF increases from 1.5 to 2.5 times at 10 h.
Using a probabilistic model for each variant, a recalculation of the risk of failure is
carried out. Of the variants GKF and GHLDEF, the variant GHLDEF is chosen (risk
is equal to 0.067, for the route GKF risk equals 0.083).

Figure 18.
The risk of “failure” in dependence on prognostic period during the robot route from point A (Start) to point F
(Finish).
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Step 4. After overcoming the part GHLDEF, the robot arrived at the intended
point F of route in time.

Thus, the way ABCBGHLDEF is the result of optimization. The robot purpose
was achieved owing to preventive measures which were defined by using risk
control on the way (with probability of “success” more than 0.9).

New knowledge for accumulating and improving K-base is as follows:

1.The input (used for modeling) characterizes possible complex conditions for
rescue robot route optimization under limitations on risk of “failure” in
conditions of uncertainties. In particular, the information updates every 2 min
for robot route optimization under limitations on risk of “failure” less than 0.1
is admissible for considered situation.

2.The acceptable risk 0.1 is justified; the predicted risks for all variants of the
routes did not exceed 0.1.

3.Analyzed project can be added to K-base history as precedent.

7. Conclusion

The proposed approach to build and implement the probabilistic methods and
models is demonstrated by application to cognitive solving:

• The problem of planning the possibilities of functions performance on the base
of monitored information about events and conditions

• The problem of robot route optimization under limitations on risk of “failure”
in conditions of uncertainties

There is proposed to carry out probabilistic prediction of critical processes in
time so that not only to act according to the prediction, but also to compare pre-
dictions against their coincidence to the subsequent realities.

The described analytical solutions are demonstrated by practical examples
such as:

System planning the possibilities of functions performance in space by using
robot-manipulators, by AIS for a coal company and for a floating oil and gas
platform
Forming input for probabilistic modeling from monitored data
Robot route optimization under limitations on risk of “failure” in conditions of
uncertainties

A cognitive solving of the chosen problems consists in improvements,
accumulation, analysis, and use of appearing knowledge.

Appendix

Proofs for formulas (1)–(3)
According to the proof of formula (1): because between diagnostics system is not

protected from threats an influence (a loss of integrity) will take place only after
danger occurrence and activation during given time before the next diagnostic
(Figure 6). A risk to lose integrity (i.e., probability of “failure”) is equal to
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Ωpenetr*Ωactiv(Treq) because these PDF are independent. The found probability of
providing system integrity (probability of “success”) is equal to addition to 1.

The proof of formula (1) is complete.
For the special case, if Ωoccur(t) = 1 � exp(σt), σ = 1/Toccur, Ωactiv(t) = 1 � exp

(t/β), β = Tactiv

P 1ð Þ Tgiven
� � ¼

σ � β�1� ��1
σe�Tgiven=β � β�1e�σTgiven
� �

, if σ 6¼ β�1,

e�σTgiven 1þ σTgiven
� �

, if σ ¼ β�1:

8<
:

Note. This formula (1) is used also for the estimation of system operation
without diagnostics. There is supposed that before the beginning of period Tgiven

system integrity is provided.
According to the proofs of formulas (2) and (3), we consider independence.

Then formula (2) means measure P(2)(Tgiven) = Pmdl + Pend, where Pmdl is the
probability of correct operation (“success”) within the period Tgiven since beginning
to the last diagnostics, Pmdl = N((Tbetw + Tdiag)/Treq)P(1)

N(Tbetw + Tdiag), here
P(1)(Tbetw + Tdiag) is defined by formula (1), but one is calculated only for time
Tbetw + Tdiag; Pend is the probability of correct operation (“success”) within the
assigned period Tgiven after the last diagnostics, i.e. in the last remainder
Trmn = Treq – [N(Tbetw + Tdiag)], Pend = (Trmn/Treq) P(1)(Trmn). Here, P(1)(Trmn) is
defined by formula (1), but one is calculated only for the remainder time Trmn.
Really, for this time Trmn, the main condition of the first variant is true:
Trmn < Tbetw + Tdiag.

Formula (3) means measure P(2)(Tgiven) = P(1)
N(Tbetw + Tdiag)P(1)(Trmn). Inter-

pretation is the next: “success” is on all N periods (Tbetw + Tdiag) AND on remainder
time Trmn.

The proofs for formulas (1)–(3) are complete.
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Chapter 2

Laboratory, Bench, and Full-Scale
Researches of Strength, Reliability,
and Safety of High-Power Hydro
Turbines
Nikolay Makhutov, Yury Petrenia, Anatoly Lepikhin,
Vladimir Moskvichev, Mikhail Gadenin
and Anatoly Tchernyaev

Abstract

Large hydropower plants (HPPs) are categorized as critically and strategically
important infrastructure facilities in industrialized countries. Therefore, the issues
of ensuring HPPs safety are of paramount importance. In this chapter, the basic
aspects of the safety analysis of HPPs, calculation and experimental substantiation
of the strength, and resource and reliability of the main equipment are discussed.
The scientific and technical measures to ensure safety of HPPs are presented. As a
defining measure of safety, it is proposed to ensure the protection of HPPs from
severe accidents and disasters according to risk criteria. The main provisions of the
risk assessment are presented on the basis of a sequential analysis of loads, features
of stress-strain states, characteristics of mechanical properties, and limit states of
hydraulic equipment of HPPs. The issues of calculation and experimental evaluation
of hydro turbine’s resource, which limit the safety of HPPs, are considered. The
features of technical diagnosis of hydraulic turbines are considered; characteristic
defects and damages are described. The main provisions of the estimated residual
life of hydro turbines are presented. The results of the risk estimates of HPPs and
hydro turbine resource are given.

Keywords: hydropower plants, hydro turbines, safety, risk, protection, strength,
resource, experimental studies, technical diagnostics, operational state

1. Introduction

Hydropower plants are among the most important elements of the life support
infrastructure of many countries. Currently, there are over 100 hydropower plants
with a capacity of over 100 MW with a total installed capacity of about 45 GW in
Russia. This number includes 10 large hydropower plants with a capacity of more
than 1000 MW and 5 largest hydropower plants with a capacity of over 3000 MW.
The latter include the Sayano-Shushenskaya HPP with a capacity of 6400 MW, with
a dam height of 245 m and a length of 1074 m; Krasnoyarskaya HPP with a capacity
of 6000 MW, with a dam height of 128 m and a length of 1072 m; Ust-Ilimskaya
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HPP with a capacity of 3840 MW, with a dam height of 105 m and a length of
1475 m; Bratskaya HPP with a capacity of 4500 MW, with a dam height of 124 m
and a length of 924 m; and Boguchanskaya HPP with a capacity of 3000 MW, with
a dam height of 96 m and a length of 2690 m (Figure 1). In the world, there are 7
large hydropower plants with capacity from 5000 to 14,000 MW.

In the presence of extensive national and international experience in the design,
construction, and operation of large hydropower plants, accidents of various scales
occur on them, including great economic losses and human losses. The largest in the
history of hydropower is the Sayano-Shushenskaya HPP disaster, accompanied by
the destruction and flooding of the machine room, damage to hydraulic units, and
the death of people (Figure 2). In this regard, the development of measures and
means to ensure the safety of hydropower facilities is of paramount importance.

Figure 1.
Sayano-Shushenskaya (a), Krasnoyarskaya (b), Ust-Ilimkaya (c), and Bratskaya (d) hydropower plants.

Figure 2.
Disaster of Sayano-Shushenskaya HPP.
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For many years, the safety of technical systems was based on the assumption that a
technical object is sufficiently reliable and safe if it meets the requirements of the
current regulatory documents. However, the operating experience of such objects
showed that compliance with the design, manufacturing, and operating regulations
does not exclude the possibility of emergency situations, accidents, and disasters.
From this it follows that the security system for hydropower plants should be based
not only on traditional approaches but also on new, scientifically based methods of
computational-experimental analysis within the concepts of “security—protection
—risk—safety—survivability—reliability—resource—strength.” Such an analysis
requires adjustment of the existing traditional methods of design, construction, and
operation of hydropower plants, with the solution of problems of strength and
service life of structures and equipment from the standpoint of ensuring the lowest
possible risk of accidents. This chapter outlines the main provisions of such an
approach for hydro turbines, which are the main equipment of hydropower plants.
The scientific and technical tasks, considered here, reflect the experience of research
and ensuring the strength, resource, and safety of the technical objects [1–3].

2. Concept of computational and experimental substantiation of
hydropower plant safety

Taking into account the consequences of accidents and disasters, hydropower
plants with a capacity of 1000–5000 MW can be attributed to critical infrastructure
objects. Hydropower plants with a capacity of more than 5000 MW can be consid-
ered as strategical objects of infrastructure. For such objects, along with the provi-
sion of generally accepted standards and requirements of strength, resource, and
reliability, the problems of protection from severe accidents and disasters with
survivability and risk analysis should be considered [4]. General requirements for
ensuring the protection of hydropower plants from severe accidents were formu-
lated in [5]. For water power plants, along with abidance of generally accepted
requirements of technical regulations and standards, protection against the most
severe catastrophes (design, beyond design and hypothetical) and terrorist impacts
must be considered. When solving safety problems, the following should be
analyzed:

• Types of disasters

• Scenarios and sources of occurrence

• Critical elements, critical zones, and critical points of the most critical nodes

• Probability characteristics of disasters

• Consequences of the emergence and development of disasters

• Methods and systems of protection against disasters (rigid, functional, natural,
combined)

• Measures to counter disasters and analyze and reduce the risks of disasters at
water power plants for the region and the country

The results of the investigation into the causes of the Sayano-Shushenskaya HPP
catastrophe [2, 4, 5] indicate the need for conducting special studies of the causal

37

Laboratory, Bench, and Full-Scale Researches of Strength, Reliability, and Safety…
DOI: http://dx.doi.org/10.5772/intechopen.88306



HPP with a capacity of 3840 MW, with a dam height of 105 m and a length of
1475 m; Bratskaya HPP with a capacity of 4500 MW, with a dam height of 124 m
and a length of 924 m; and Boguchanskaya HPP with a capacity of 3000 MW, with
a dam height of 96 m and a length of 2690 m (Figure 1). In the world, there are 7
large hydropower plants with capacity from 5000 to 14,000 MW.

In the presence of extensive national and international experience in the design,
construction, and operation of large hydropower plants, accidents of various scales
occur on them, including great economic losses and human losses. The largest in the
history of hydropower is the Sayano-Shushenskaya HPP disaster, accompanied by
the destruction and flooding of the machine room, damage to hydraulic units, and
the death of people (Figure 2). In this regard, the development of measures and
means to ensure the safety of hydropower facilities is of paramount importance.

Figure 1.
Sayano-Shushenskaya (a), Krasnoyarskaya (b), Ust-Ilimkaya (c), and Bratskaya (d) hydropower plants.

Figure 2.
Disaster of Sayano-Shushenskaya HPP.

36

Probability, Combinatorics and Control

For many years, the safety of technical systems was based on the assumption that a
technical object is sufficiently reliable and safe if it meets the requirements of the
current regulatory documents. However, the operating experience of such objects
showed that compliance with the design, manufacturing, and operating regulations
does not exclude the possibility of emergency situations, accidents, and disasters.
From this it follows that the security system for hydropower plants should be based
not only on traditional approaches but also on new, scientifically based methods of
computational-experimental analysis within the concepts of “security—protection
—risk—safety—survivability—reliability—resource—strength.” Such an analysis
requires adjustment of the existing traditional methods of design, construction, and
operation of hydropower plants, with the solution of problems of strength and
service life of structures and equipment from the standpoint of ensuring the lowest
possible risk of accidents. This chapter outlines the main provisions of such an
approach for hydro turbines, which are the main equipment of hydropower plants.
The scientific and technical tasks, considered here, reflect the experience of research
and ensuring the strength, resource, and safety of the technical objects [1–3].

2. Concept of computational and experimental substantiation of
hydropower plant safety

Taking into account the consequences of accidents and disasters, hydropower
plants with a capacity of 1000–5000 MW can be attributed to critical infrastructure
objects. Hydropower plants with a capacity of more than 5000 MW can be consid-
ered as strategical objects of infrastructure. For such objects, along with the provi-
sion of generally accepted standards and requirements of strength, resource, and
reliability, the problems of protection from severe accidents and disasters with
survivability and risk analysis should be considered [4]. General requirements for
ensuring the protection of hydropower plants from severe accidents were formu-
lated in [5]. For water power plants, along with abidance of generally accepted
requirements of technical regulations and standards, protection against the most
severe catastrophes (design, beyond design and hypothetical) and terrorist impacts
must be considered. When solving safety problems, the following should be
analyzed:

• Types of disasters

• Scenarios and sources of occurrence

• Critical elements, critical zones, and critical points of the most critical nodes

• Probability characteristics of disasters

• Consequences of the emergence and development of disasters

• Methods and systems of protection against disasters (rigid, functional, natural,
combined)

• Measures to counter disasters and analyze and reduce the risks of disasters at
water power plants for the region and the country

The results of the investigation into the causes of the Sayano-Shushenskaya HPP
catastrophe [2, 4, 5] indicate the need for conducting special studies of the causal

37

Laboratory, Bench, and Full-Scale Researches of Strength, Reliability, and Safety…
DOI: http://dx.doi.org/10.5772/intechopen.88306



complex of accidents at similar facilities to create scientifically based regulations of
risk analysis, survivability, and safety criteria. These researches should include next
computational and experimental works [5]:

1.Develop a fundamentally new methodology for assessing and improving the
protection of hydropower plants, as critical facilities, from severe disasters
according to risk criteria.

2.Conduct a computational modeling and experimental analysis of the new
parameters of the resource, survivability, safety, and risks in the conditions of
a severe disaster of hydroelectric power plants.

3.Develop a methodology for refined estimation of the dynamics,
hydrodynamics, and aerodynamics of the occurrence and development of a
severe catastrophe on typical hydraulic units.

4.Develop a methodology for constructing a special control system and
automated protection of hydro turbines and hydroelectric power plants in the
transition from standard to emergency and catastrophic situations.

In order to form a general regulatory framework for the protection of hydro-
power plants, it is necessary to implement the following measures with the prepa-
ration of the relevant regulatory documents:

1.Develop standards and carry out categorization of hydropower plants as
critically and strategically important infrastructure facilities according to the
risk levels of national, regional, and local disasters.

2.Develop a nomenclature of emergency and catastrophic situations at
hydropower plants and levels of protection from them.

3.Build scenarios for the development of severe disasters; identify the damaging
factors and the degree of vulnerability of hydropower stations in severe
accidents.

4.Develop a methodology for assessing the strategic risks of severe disasters at
hydropower plants, taking into account all stages of the life cycle.

5.Develop principles, methods, and systems for protecting hydropower plants
from accidents and disasters.

6.Develop the diagnostic methods of hydropower plants and automated
protection systems in the event of emergency and catastrophic situations.

7.Determine the role of human factors and responsibility at the stages of
decision making, project implementation, and operation of hydropower
plants to prevent severe disasters.

8.Perform the complex computational and experimental studies’ survivability,
safety, and protection of hydropower plants from severe disasters on models
and objects.

9.Develop safety criteria for hydraulic engineering dams and methods for
assessing actual safety factors.
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10.Develop computational models of dams and computational technologies for
analyzing the characteristics of their stress-strain state, taking into account
the actual changes in the characteristics of concrete and the presence of cracks
and damage.

11.Develop criteria for the performance of hydroelectric equipment based on the
models of cavitation processes, fatigue, and corrosion damage.

12.Conduct model calculations of emergency situations and scenarios of their
development for all existing hydropower plants of Russia.

13.Develop models and methods for assessing the social, environmental, and
economic consequences of accidents of hydropower plants.

To ensure the protection of hydropower plants from severe accidents and disas-
ters, their design, construction, and operation should fully address traditional tasks:

• Carrying out normative calculations for static and cyclic strength

• Conducting bench studies of hydrodynamic processes in the flow part of the
hydroelectric station

• Control and repair work on the damaged items of equipment

In addition to this, it is necessary to conduct:

• Calculation and experimental analysis of hazardous mechanical and hydraulic
processes in power systems of hydropower plants in regular and emergency
situations

• Calculation and experimental analysis of the limiting states of critical elements
for normal and extreme loads and impacts

To solve these problems, it is necessary to develop fundamental research in the
following areas:

• Study of hazardous processes in the environment and technical systems of
hydropower plants, taking into account the role of the human factor

• Development of methods and tools for mathematical (computational)
modeling of mechanical, hydrodynamic, and electromagnetic processes that
affect the conditions for the occurrence and development of severe accidents
and disasters

• Development of new methods and means of prompt diagnosis of emergency
situations

• Development of the theory and methods to ensure the protection of
hydropower stations from severe accidents and disasters

The scientific and methodological basis for ensuring the protection of hydro-
power plants from severe accidents and disasters is a risk analysis. Risk assessments
can be performed in the classical form:
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RΣ tð Þ ¼
X
i

Ri tð Þ, (1)

Ri tð Þ ¼ Pi tð Þ �Ui tþ τð Þ (2)

where Pi(t) is the probability of reaching the ith limiting state leading to disaster
with damage Ui(t + τ) and τ is discounting time.

The probability Pi(t) is determined by the given criteria of the limiting state for
the most critical zones of highly loaded elements of hydraulic equipment structures:

Pi tð Þ ¼ Fp σc; ec; dc; lc; tf g (3)

The values of critical stresses σc, deformations ec, damage dc, and size of
crack-like defects lc depend on the complex of operating technological and
operational loads:

Q tð Þ ¼ FQ QM tð Þ;QH tð Þ;QE tð Þ;QV tð Þ;QS tð Þf g (4)

where QM is mechanical loads from the weight and installation and welding of
elements and from the rotation of the hydraulic turbine; QH is hydrodynamic loads
from pressure and pressure of water, water hammer, and pressure pulsation; QE is
electromagnetic load from the interaction of the rotor and the stator of the turbine;
QV is vibration loads; and QS is seismic loads.

The components of stresses σ and deformations e, which characterize the
stress-strain state of the structure, are determined by calculation and experimental
methods according to the values of the indicated loads:

σ; ef g ¼ Fσ Q tð Þ; ασ ;E; μ;m;A;Wf g (5)

where E, μ, and m are modulus of elasticity, Poisson’s ratio, and strain hardening
coefficient, A and W are sectional areas and moments of resistance of the consid-
ered elements of hydro turbines, and ασ is stress concentration factors.

Characteristics E, μ, and m of the mechanical properties of materials are deter-
mined by laboratory testing and full-scale sample testing. The stress concentration
coefficient ασ is determined experimentally or by calculation methods.

Based on Eq. (5), the characteristics of cyclic loading of hydro turbine elements
are determined: stress amplitudes σa and deformations ea, mean stresses σm and
deformations em, and cycle asymmetry coefficients r = σmin/σmax. Next, determine
the number of loading cycles to failure:

Nc ¼ FN σa; ea; σm; em; r; Sc;ψ c; σ�1;mN;mσ;ωf g (6)

where Sc and ψc are tensile strength and ultimate plasticity of the material, σ�1 is
material fatigue limit, mN and mσ are the characteristics of the sensitivity of mate-
rials to cyclic loading, and ω is the loading frequency.

The ratio of actual Ne to critical Nc loading cycles establishes damage level:

d N; tð Þ ¼
X
i

di N; tð Þ, di N; tð Þ

¼ N ið Þ
e =N ið Þ

c

(7)

If there are crack-like defects in the structural elements, the resources l(t) or
N(l) are determined at the crack growth stage from initial l0 to critical lc sizes:

40

Probability, Combinatorics and Control

l tð Þ ¼ Fl Q tð Þ; l0;Ne;ΔKf g (8)

N lð Þ ¼ FNl Q tð Þ;Ne; l0; lc;ΔKf g (9)

where ΔK is the magnitude of the stress intensity factor.
The estimation of probabilities Pi(t) is carried out taking into account

Eqs. (3)–(9) under the assumption that the form of the probability functions FP, FQ,
Fσ, FN, Fl, and FNl and their parameters is defined. Damage assessment Ui(t + τ) is
performed by actual losses or calculated by economic methods for the considered
scenarios of possible accidents of hydro turbines.

The calculated estimates of the probability of damages to equipment and struc-
tures of hydropower plants in accordance with the above principles gave the
following accident probability values:

• Normal working conditions of hydropower plant (regulatory loads)

Pi ¼ 2:2� 10�4 � 1:5� 10�3

• Violation of normal operating conditions of hydropower plant (increased loads)

Pi ¼ 6:0� 10�3 � 3:1� 10�2

• Emergency situations (extreme loads)

Pi ≥0:1

Qualitative estimates of potential damage for the enlarged scenarios of accidents
of hydropower plants were given the following values (in rubles):

• Overflow over the dam 108–109

• The destruction of the dam (breakthrough of the pressure front) 109–1011

• Destruction (flooding) of hydropower plant 109–1010

Taking into account the indicated probabilities and damages, the following
generalized risk assessments (in $) of accidents for hydropower plants of the
Angaro-Yenisei cascade of Russia were obtained:

• Risk of breaking the pressure front

RΣ ¼ 3:6� 105 � 2:5� 106

• Risk of destruction of hydropower plant

RΣ ¼ 1:0� 106 � 5:0� 106

• Risk of terrorist threat

RΣ ≤ 5:1� 104

The aggregated statistical estimates of major accidents of hydropower plants
give probabilities Pi = 3.3 � 10�2–2.3 � 10�3. Direct damages from such accidents
reach 5 � 109 $, and indirect damages are (1.8–2.5) � 1010 $.
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It should be emphasized that the approach outlined requires statistical informa-
tion on all parameters, which is included in the calculations. Particular attention
should be paid to characteristics of mechanical properties, parameters of stress-
strain states, and structural damage. Such information can be obtained by
conducting large volumes of tests and experimental studies. At the same time, the
most preferable are methods and means allowing to evaluate the determining
parameters (stresses, deformations, sizes of defects), taking into account the pecu-
liarities of the micro- and macrostructure of structural materials.

3. Computational models and experimental evaluation operational state
of hydro turbines

The main source of the most severe HPP accidents and disasters are damage and
destruction of hydro turbines. Therefore, the problem assessing resource, diagnos-
ing damage, optimizing the operating modes of hydro turbines, and timing of repair
works takes a special place in ensuring HPP safety. Until recently, the hydro turbine
resource received little attention, since it was assumed that the hydraulic turbines
have sufficient strength for long-term safe operation. However, the statistics of
failures of hydro turbines shows [6, 7] that large safety margins do not guarantee
long-term safe operation of hydro turbines.

The hydro turbine resource must be justified taking into account the peculiari-
ties of the loading modes and damage accumulation processes. With this in mind,
the interest in assessment of the resource of hydro turbines is steadily growing. This
is facilitated by the following circumstances [8]:

• An increase in the number of powerful hydro turbines that have fulfilled the
standard operating time

• Operating modes of hydro turbines with a high level of power variation

• Constantly increasing design requirements for efficiency, maneuverability,
and reliability of hydro turbines

• The use of new methods and means of technical diagnostics, indicating the
presence of defects and damage not previously detected

• The emergence of new perspectives for studying the behavior and state of
hydro turbines based on the achievements of experimental and computational
technologies

The main factors that reduce the life of hydro turbines are fatigue, corrosion-
fatigue and cavitation damage, degradation mechanical properties of materials, and
redistribution of stress and strain fields in the most loaded local zones. Fatigue
damages are caused by a complex loading spectrum of hydro turbines, containing
components with different frequencies. Low-frequency loads (with a frequency
below or equal to rotation frequency) are dangerous the high amplitudes that cause
formation and development of cracks in the most loaded zones. High-frequency
components have small amplitudes, but the number of cycles can reach 109–1010,
which ultimately also leads to the formation and development of cracks. A signifi-
cant danger is represented by “start-stop” cycles, in which parasitic vortex struc-
tures, hydraulic shocks, and flow instability zones with nonoptimal flow around the
blades arise. The most dangerous are the loads caused by water pressure pulsations
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due to the interaction between the stator and the rotor at the blade frequency, as
well as the loads caused by Karman vortices. Special attention should be paid to
resonance phenomena, when the proximity of the natural frequencies of the
elements of hydro turbines and the frequencies of external influences occurs.

The level of resource exhaustion is determined by the results of special calcula-
tions. These calculations consist in determining the time t or the number of loading
cycles N as a function of amplitudes σa and average values σm of the loading cycle,
defect sizes l, characteristics of the mechanical properties of materials (conditional
yield strength σ0.2, temporary fracture resistance σb, fatigue limit σ�1, destructive
deformations εf), and safety factors for stresses nσ, for a number of cycles nN and for
size of defects nl. The results of the calculations usually defined the fatigue diagrams
of the main elements of hydro turbines, the residual resource, and the probability of
failure at a given operating time.

The main elements of hydraulic turbines requiring the design justification of the
resource are an impeller, a turbine shaft, a turbine cover with fastening elements, a
shoulder blade of guide, and other elements. Calculation justification is carried out
on the basis of data on operating modes, acting loads, defects, and damages detected
during the diagnostics [9].

One of the main stages of resource assessment is the determination of
external loads for equipment components and the corresponding internal stresses.
Despite the great interest of this topic and the significant achievements of recent
years, the problem of correctly describing the dynamic behavior of hydro turbine
under partial power conditions and during transients has not been fully resolved.
With this in mind, it is becoming a more common method of computational
modeling [10]. These methods are based on mathematical models that include
three main elements: geometric model, model of external loads, and model of
boundary conditions. The accuracy of each model can have a decisive influence
on the results of numerical experiments, including the issues of resource
estimation [8].

The main problems of estimate resource for hydro turbines today are:

• The complexity of accounting technological and operational defects, stress
concentration, residual stresses in welded joints, and heat-affected zones

• The poverty of database on the characteristics of materials for a reliable
assessment of the resource

• The complexity of the damage summation mechanism in condition uncertainty
of external loads and non-design modes of operation

• The difficulty of predicting crack growth under the conditions of actual spectra
and loading conditions

The trends in the development of hydro turbine resource assessment methods at
the present stage are characterized by the following circumstances:

1. Increasing interest for the problem resource assessment in connection with
emergence of new technical capabilities

2.The desire to increase the reliability and accuracy of solving problems at all
stages the assessment of hydro turbine resource

3.The need to take into account the non-project operation condition influence on
the resource
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4.Predicting the growth of cracks in the process of operating time for the
purpose of determining the optimal time between repairs

5.An increase in the share of the numerical experiment due to partial
replacement of the model and natural experiments

6.Resource management due to the choice of optimal operational parameters,
taking into account the capabilities of the power system

7.Increased interest of resource estimates of hydraulic turbines in the absence of
the recommended calculation methods and regulatory requirements for
service life and criteria for the admissibility of operation

8.The lack of systematic studies of the residual life of hydro turbines, similar to
how it was done for the turbines of thermal and nuclear power plants

Thus, the problem of calculation and experimental evaluation operational state
of hydro turbines has a number of unsolved or difficult tasks that require in-depth
basic research on the nature of the stress-strain state of hydraulic units, features of
damage development mechanisms, and degradation of mechanical properties of
materials.

4. Technical diagnostics of hydro turbines

The technical condition assessing of hydro turbines is crucial for the estimated
assessment of residual life. Such works are performed in accordance with the pro-
visions of the norms and standards [11, 12]. These works include a wide range of
studies of actual state of hydraulic turbines by destructive and nondestructive
control methods [13]:

• Analysis of design, maintenance, and repair documentation

• Nondestructive testing of structural elements and welded joints

• Experimental studies of metal and welded joints (measurement of hardness,
determination of mechanical properties, conducting metallographic studies,
and determination of chemical composition)

• Visual measurement control of geometry, surface defects, and shape defects
with the determination of their sizes

• Nondestructive penetration control for substance detection of surface defects

• Nondestructive ultrasonic testing of structural elements and welds for
detection of internal defects and cracks

• Ultrasonic thickness gauging of elements and determination of the internal
stratification of the metal

In addition to the listed methods of nondestructive testing, stress-strain state
studies using strain-gauge methods [14] and optical methods of electronic speckle
interferometry [15] are performed.
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This complex of methods and means is used in diagnosing the technical condi-
tion of hydro turbines with over standard operating life. Such work was carried out
at the abovementioned hydropower stations in recent years. The main attention was
focused on the most loaded structures: the impeller, the turbine shaft, the turbine
cover, and the blade of guide.

The systematization and classification results of nondestructive testing showed
that the main defects of the impeller blades of hydro turbines are:

• Cavitation erosion

• Corrosion fatigue cracks of the base metal and fatigue cracks of welded joints

• Corrosion damage

• Technological defects of welds

Figure 3.
Corrosion damage and cavitation damage metal of impeller blades.

Figure 4.
Cracks in metal of impeller blades.

Figure 5.
Internal defects of impeller blades, detected by ultrasound tomography.
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Thus, the problem of calculation and experimental evaluation operational state
of hydro turbines has a number of unsolved or difficult tasks that require in-depth
basic research on the nature of the stress-strain state of hydraulic units, features of
damage development mechanisms, and degradation of mechanical properties of
materials.

4. Technical diagnostics of hydro turbines

The technical condition assessing of hydro turbines is crucial for the estimated
assessment of residual life. Such works are performed in accordance with the pro-
visions of the norms and standards [11, 12]. These works include a wide range of
studies of actual state of hydraulic turbines by destructive and nondestructive
control methods [13]:

• Analysis of design, maintenance, and repair documentation

• Nondestructive testing of structural elements and welded joints

• Experimental studies of metal and welded joints (measurement of hardness,
determination of mechanical properties, conducting metallographic studies,
and determination of chemical composition)

• Visual measurement control of geometry, surface defects, and shape defects
with the determination of their sizes

• Nondestructive penetration control for substance detection of surface defects

• Nondestructive ultrasonic testing of structural elements and welds for
detection of internal defects and cracks

• Ultrasonic thickness gauging of elements and determination of the internal
stratification of the metal

In addition to the listed methods of nondestructive testing, stress-strain state
studies using strain-gauge methods [14] and optical methods of electronic speckle
interferometry [15] are performed.
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This complex of methods and means is used in diagnosing the technical condi-
tion of hydro turbines with over standard operating life. Such work was carried out
at the abovementioned hydropower stations in recent years. The main attention was
focused on the most loaded structures: the impeller, the turbine shaft, the turbine
cover, and the blade of guide.

The systematization and classification results of nondestructive testing showed
that the main defects of the impeller blades of hydro turbines are:

• Cavitation erosion

• Corrosion fatigue cracks of the base metal and fatigue cracks of welded joints

• Corrosion damage

• Technological defects of welds

Figure 3.
Corrosion damage and cavitation damage metal of impeller blades.

Figure 4.
Cracks in metal of impeller blades.

Figure 5.
Internal defects of impeller blades, detected by ultrasound tomography.

45

Laboratory, Bench, and Full-Scale Researches of Strength, Reliability, and Safety…
DOI: http://dx.doi.org/10.5772/intechopen.88306



The nature of the defects and damage is presented in Figures 3–5. Similar
defects were detected and investigated previously in the impellers of the Sayano-
Shushenskaya HPP and Krasnoyarskaya HPP [6, 7].

Statistical analysis of the nondestructive testing results for cavitation erosion
zones allowed determining the main geometrical parameters for these defects: the
length, width, and depth (Figure 6).

5. Estimated justification resource of hydro turbines

Standard operating life of hydraulic units is established by project documenta-
tion and for most units are 30–40 years. Currently, a significant part of hydraulic
units of powerful hydroelectric power plants is carried out outside the standard
operating time. This leads to a decrease in the overall level of reliability of the
structure as a whole and its individual elements and to an increase in the
probability of failures and financial costs for technical diagnostics and repairs. The
exhaustion of the standard operating life of the elements of hydro turbines raises
the question of the assessment of the residual resource as one of the priorities in
the field of ensuring the safety of hydraulic structures [7–9]. At the same time, as
noted in [8], there are no generally accepted methods for assessing the
residual life and the regulatory framework that defines the procedure for
extending the service life of the impellers and making decisions about
their replacement.

Taking into account the specified circumstances, the authors formulated the
basic provisions for the calculation of the residual life of hydraulic turbine elements.
The calculation of the resource before the formation of cracks is carried out on the
allowable stresses:

σ½ � ¼ min
R02

n02
;
Rm

nm

� �
(10)

where R02 and Rm are regulatory design resistances of the metal and n02 and nm
are dimensionless safety margins.

The estimated allowable number of loading cycles of the elements of the
turbine at the stage of the occurrence of cracks, for the “start-stop”mode and mode
control with the transition through the “forbidden” zone of operation modes, is
determined by the formula:

Figure 6.
Distribution corrosion damages of length (a) and depth (b).
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where σ�1 is fatigue limit of given loading mode; σm is stress average of cycle;
σa is stress amplitude of cycle; r is the asymmetry coefficient of the loading cycle;
γ, ε, and β are dimensionless coefficients that take into account the influence
of the medium, scale factor, and surface quality; and Kσ is stress
concentration factor.

The estimated allowable number of loading cycles at blade and blade frequencies
is determined by the following formula:

N½ � ¼ N0
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(12)

where N0 is the base number of loading cycles and m is dimensionless fatigue
pattern indicator.

The influence of the multifrequency component of the loading mode from
Karman vortices is taken into account through the reduced stress amplitude:

σa ¼
Xn
i¼1

σai ωi=ω1ð Þα (13)

where σai is stress amplitude at the frequency ωi, ω1 is the frequency of reduc-
tion, α is dimensionless coefficient taking into account the influence of the
multifrequency nature of loading, and nN is the safety factor by the number of
loading cycles.

The total accumulated fatigue damage for the considered loading modes is
defined as the sum of the ratios of the actual Nei and the calculated loading cycles:

d ¼
X
i

Nei

N½ � ≤ 1 (14)

The number of cycles Nl at the stage of crack growth is determined by the
following formulas:
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where q, β, and μ are parameters of the cyclic crack growth diagram,
eKth ¼ Kth=KC and eKmax ¼ Kmax=KC are relative threshold and maximum stress
intensity factors, Kc is the crack resistance characteristic of steel, ω is relative
frequency of loading, and Kth is the threshold stress intensity factor.
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Figure 7.
Estimated cumulative damage for impeller blades.

Figure 8.
Estimated residual life of impeller blades by the criterion of cracking.

Figure 9.
Estimated residual life of impeller blades at the stage of crack development.
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Figures 7–9 show the comparison of the results of the resource calculation
according to the above procedure for the elements of hydro turbines of the
Krasnoyarskaya HPP. The calculations were carried out on the basis of the results of
a comprehensive diagnosis of the technical condition, with an assessment of the
characteristics of the stress-strain state, the characteristics of the mechanical prop-
erties, and the defectiveness of the structural elements. The calculations took into
account loading cycles: “start-stop,” mode control, on blade frequencies, and at the
frequencies of the Karman vortices.

As can be seen from the figures, the resource has a wide range of values. This is
due to the different levels of metal damage detected during technical diagnostics
and the initial dimensions of crack-like defects in structural elements.

The calculation results show that the hydraulic units surveyed using modern
means of technical diagnostics and nondestructive testing have a resource reserve
sufficient for planning and carrying out work to replace the impellers with more
modern units.

It can also be assumed that an integrated approach to the problem of ensuring
the reliability and safety of hydraulic units makes it possible to reliably predict the
possibilities, terms, and conditions for their further operation.

6. Conclusion

Analysis of domestic and foreign studies and the practice of operating hydraulic
equipment of large hydroelectric power plants indicate the need for the develop-
ment of more advanced computational methods for estimating the life of hydro
turbines that have completed their standard (design) service lives. When solving
problems of resource assessment, special complex methods of technical diagnostics
and modern computational and experimental technologies should be applied. These
methods should be based on a combination of engineering design models that take
into account the individual characteristics of hydraulic units based on routine mon-
itoring and diagnostics and systems of reasonable safety factors (fatigue, crack
length, stress, etc.) reflecting the uncertainty of the task with the required degree of
accuracy design loads, material properties, and modes of operation.

It should be emphasized that the purpose, role, and place of technical diagnostics
and assessment of the hydraulic equipment resource should be linked to the task of
assessing the protection of hydropower stations from severe accidents and disasters
according to risk criteria. In technical assignments for the design of hydroelectric
power plants, new quantitative safety indicators should be introduced that
implement the design-experimental complex “strength—resource—reliability—
survivability—safety—risk—security”.
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Chapter 3

Mixture Transition Distribution
Modelling of Multivariate Time
Series of Discrete State Processes:
With an Application to Modelling
Flowering Synchronisation with
Respect to Climate Dynamics
Irene Hudson, Susan Won Sun Kim and Marie Keatley

Abstract

A new approach to assess synchronicity developed in this chapter is a novel
bivariate extension of the generalised mixture transition distribution (MTDg) model
(we coin this B-MTD). The aim of this chapter is to test MTDg an extended MTD
with interactions model and its bivariate extension of MTD (B-MTD) to investigate
synchrony of flowering of four Eucalypts species—E. leucoxylon, E. microcarpa,
E. polyanthemos and E. tricarpa over a 31 year period. The mixture transition distri-
bution (MTDg) is a method to estimate transition probabilities of high order Markov
chains. Our B-MTD approach allows us the derive rules of thumb for synchrony and
asynchrony between pairs of species, e.g. flowering of the four species. The latter
B-MTD rules are based on transition probabilities between all possible on and off
flowering states from previous to current time. We also apply MTDg modelling using
lagged flowering states and climate covariates as predictors to model current
flowering status (on/off) to assess synchronisation using residuals from the resultant
models via our adaptation of Moran’s classic synchrony statistic. We compare these
MTDg (with covariates)-based synchrony measures with our B-MTD results in
addition to those from extended Kalman filter (EKF)-based residuals.

Keywords: multivariate mixed transition distributions, Markov chains, synchrony,
climate, eucalypt flowering

1. Introduction

Separation or lack of overlap of flowering time in eucalypts has been suggested
as a mechanism for maintaining overall ‘generic identity’ of a plant species. If, for
example flowering times and pollinators overlap in sympatric species, hybridization
can occur between closely related eucalypts species. Therefore examination of long-
term synchrony establishes a baseline of flowering behaviour which may assist in
detecting recent or future changes. Although Eucalyptus as a genus dominates much
of the Australian landscape [1, 2], few studies have quantified eucalypt flowering
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overlap within or between species, due to the shortage of phenological data in
Australia [3, 4, 7]. This chapter examines flowering synchrony over a 31 year
period, 1940–1970, at the population level among four eucalypts species—Eucalyp-
tus leucoxylon, E. microcarpa, E. polyanthemos and E. tricarpa [3–8].

A new approach to assess synchronicity developed in this chapter is a novel bivar-
iate extension of the of the MTDg model [6, 9] (we coin this B-MTD). The aim of this
chapter is to test mixture transition distribution (MTD) and an extended MTDg with
interactions; and a novel bivariate extension of MTD (B-MTD) to investigate syn-
chrony in phenological data. The MTDgmodel [6, 9] was the first approach developed
to study the multivariate relationship between the probability of flowering with two
states of rain and mean temperature via a mixture transition distribution (MTD),
assuming, however a different transition matrix from each lag to the present time (our
MTDg analysis), thus generalising theMTD approach in [13], (see also [10]) which led
to the development of the MARCH software to perform MTD without covariates
[11, 12]. The MTDg model is different to MARCH not only in terms of incorporating
interactions between the covariates but also in its minimization process, namely using
the ADModel BuilderTM [14], which uses auto-differentiation as a minimisation tool.
This is shown to be computationally less intensive than MARCH. The assumption
Berchtold’s MTD model, namely the assumed equality of the transition matrices
among different lags, was a strong assumption, so the idea of the mixture transition
distribution model was to consider independently the effect of each lag to the present
instead of considering the effect of the combination of lags as in pure Markov chain
processes. Specifically, an extended model for MTDg analysis which accommodates
interactions was developed in [6], and applied to MTDg modelling of the flowering of
four eucalyptus species studied in this chapter, as multivariate time series.

This work extends both MARCH and the work in [15, 16] to allow for differing
transition matrices among the lags, i.e. our B-MTD method builds on this approach
of the MTDg with interaction model [6, 9]. The MTDg model with interactions
showed that the flowering of E. leucoxylon and E. tricarpa behave similarly with
temperature (both flower at low temperature) and both have a positive relationship
with flowering intensity 11 months ago. The flowering of E. microcarpa behaves
differently in that E. microcarpa flowers at high temperature.

Our B-MTD approach developed in this chapter allows us the derive rules of
thumb for synchrony and asynchrony between pairs of species. The latter B-MTD
rules are based on transition probabilities between all possible on and off flowering
states from previous to current time. Synchronisation is also tested using residuals
from the resultant models via an adaptation of Moran’s [17, 18] classical synchrony
statistic, incorporating MTDg residuals [17–19].

We also apply the earlier MTDg modelling in [6] using climate covariates and
lagged flowering states as predictors to model flowering states (on/off) and thus
assess synchronisation using an adaptation of the approach of Moran to the resul-
tant MTDg model and fitted residuals. We compare these MTDg (with covariates)-
based synchrony measures with our B-MTD results in addition to those using the
extended Kalman filter (EKF) [15, 19], based residuals obtained earlier in [21].

2. The mixture transition distribution (MTDg) and B-MTD models:
mathematical formulations in brief

2.1 The MTDg model with interactions between the covariates

The MTD model with covariates was discussed in [6] and developed in [15, 19]
to incorporate interactions between the covariates (e.g. rainfall, temperature
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variants in the case study discussed). The high-order MTD transition probabilities
are computed as follows:

P Xt ¼ i0jXt�1 ¼ i1;…Xt�f ¼ if ;C1 ¼ c1;…Ce ¼ ce;M1 ¼ m1;…Ml ¼ ml
� �

¼
Xf

g¼1

λgqigi0 þ
Xe

h¼1

λfþhdhjhi0 þ
Xl
u¼1

λfþeþusuvui0
(1)

where λfþeþu is the weight for the interaction term, qigi0 is the transition proba-

bility from modality ig observed at time t�g and modality i0 observed at time t in
the transition matrix Q , suvui0 is transition probability between covariate h1 and

covariate h2 interaction term (vu ¼ dh1jh1 � dh2jh2 ) and Xt, and where
Pfþeþl

g¼1 λg ¼ 1
and where λg ≥0.

We refer the reader to [6], and further works in the seminal book by Hudson
and Keatley [7] for further mathematical details.

2.2 The bivariate mixture transition distribution (B-MTD)

Let Xtf g and Ytf g be sequences of random variables (say two (flowering inten-
sity) time series) taking values in the finite set N = {1, …, k}. In a f th-order Markov
chain, the probability that Xt;Ytf g ¼ i0; i00

� �
, (i0, i00 ∈N) depends on the combina-

tion of values taken by Xt�f ,…, Xt�1, Yt�f ,…, Yt�1. In the MTD model, the contri-
butions of the different lags are combined additively. Then a bivariate MTD model,
which we denote by B-MTD, has the following formulation:

P Xt;Ytf g ¼ i0; i00
� �jXt�1 ¼ i1;…;Xt�f ¼ if ;Yt�1 ¼ i01;…;Yt�f ¼ i0f

� �

¼
Xf

g¼1

λgqig, i0g , i0, i00

(2)

where if ,…, i0, i0f ,…, i00 ∈N, the probabilities qig, i0g , i0, i00 are elements of anm2 �m2

transition matrix Q ¼ �qig, i0g , i0, i00
�
, each row of which is a probability distribution

(i.e. each row sums to 1 and the elements are nonnegative) and λ ¼ λf ;…; λ1
� �0 is a

vector of lag parameters. To ensure that the results of the model are probabilities,

that is, 0≤
Pf

g¼1 λgqigi0g i0i00 ≤ 1 the vector λ is subject to the constraints
Pf

g¼1 λg ¼ 1

and λg ≥0.
Covariates and interaction terms can be added to the bivariate MTD (B-MTD) as

follows:

Pð X1, t;…;Xn, tf g ¼ i1,0;…; in,0f g∣Xt�1 ¼ i1,…, Xt�f ¼ if , Yt�1 ¼ i01,…, Yt�f ¼ i0f ,

C1 ¼ c1,…, Ce ¼ ce,M1 ¼ m1,…,Ml ¼ mlÞ

¼
Xf

g¼1

λgqi1,g ,…, in,g, i1,0,…, in,0 þ
Xe

h¼1

λfþhdhjh, i1,0,…, in,0 þ
Xl
u¼1

λfþeþusuvui1,0,…, in,0

(3)
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chapter is to test mixture transition distribution (MTD) and an extended MTDg with
interactions; and a novel bivariate extension of MTD (B-MTD) to investigate syn-
chrony in phenological data. The MTDgmodel [6, 9] was the first approach developed
to study the multivariate relationship between the probability of flowering with two
states of rain and mean temperature via a mixture transition distribution (MTD),
assuming, however a different transition matrix from each lag to the present time (our
MTDg analysis), thus generalising theMTD approach in [13], (see also [10]) which led
to the development of the MARCH software to perform MTD without covariates
[11, 12]. The MTDg model is different to MARCH not only in terms of incorporating
interactions between the covariates but also in its minimization process, namely using
the ADModel BuilderTM [14], which uses auto-differentiation as a minimisation tool.
This is shown to be computationally less intensive than MARCH. The assumption
Berchtold’s MTD model, namely the assumed equality of the transition matrices
among different lags, was a strong assumption, so the idea of the mixture transition
distribution model was to consider independently the effect of each lag to the present
instead of considering the effect of the combination of lags as in pure Markov chain
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of the MTDg with interaction model [6, 9]. The MTDg model with interactions
showed that the flowering of E. leucoxylon and E. tricarpa behave similarly with
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with flowering intensity 11 months ago. The flowering of E. microcarpa behaves
differently in that E. microcarpa flowers at high temperature.

Our B-MTD approach developed in this chapter allows us the derive rules of
thumb for synchrony and asynchrony between pairs of species. The latter B-MTD
rules are based on transition probabilities between all possible on and off flowering
states from previous to current time. Synchronisation is also tested using residuals
from the resultant models via an adaptation of Moran’s [17, 18] classical synchrony
statistic, incorporating MTDg residuals [17–19].

We also apply the earlier MTDg modelling in [6] using climate covariates and
lagged flowering states as predictors to model flowering states (on/off) and thus
assess synchronisation using an adaptation of the approach of Moran to the resul-
tant MTDg model and fitted residuals. We compare these MTDg (with covariates)-
based synchrony measures with our B-MTD results in addition to those using the
extended Kalman filter (EKF) [15, 19], based residuals obtained earlier in [21].

2. The mixture transition distribution (MTDg) and B-MTD models:
mathematical formulations in brief

2.1 The MTDg model with interactions between the covariates

The MTD model with covariates was discussed in [6] and developed in [15, 19]
to incorporate interactions between the covariates (e.g. rainfall, temperature
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variants in the case study discussed). The high-order MTD transition probabilities
are computed as follows:

P Xt ¼ i0jXt�1 ¼ i1;…Xt�f ¼ if ;C1 ¼ c1;…Ce ¼ ce;M1 ¼ m1;…Ml ¼ ml
� �

¼
Xf
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λgqigi0 þ
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h¼1

λfþhdhjhi0 þ
Xl
u¼1

λfþeþusuvui0
(1)

where λfþeþu is the weight for the interaction term, qigi0 is the transition proba-

bility from modality ig observed at time t�g and modality i0 observed at time t in
the transition matrix Q , suvui0 is transition probability between covariate h1 and

covariate h2 interaction term (vu ¼ dh1jh1 � dh2jh2 ) and Xt, and where
Pfþeþl

g¼1 λg ¼ 1
and where λg ≥0.

We refer the reader to [6], and further works in the seminal book by Hudson
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2.2 The bivariate mixture transition distribution (B-MTD)

Let Xtf g and Ytf g be sequences of random variables (say two (flowering inten-
sity) time series) taking values in the finite set N = {1, …, k}. In a f th-order Markov
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, (i0, i00 ∈N) depends on the combina-

tion of values taken by Xt�f ,…, Xt�1, Yt�f ,…, Yt�1. In the MTD model, the contri-
butions of the different lags are combined additively. Then a bivariate MTD model,
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(2)

where if ,…, i0, i0f ,…, i00 ∈N, the probabilities qig, i0g , i0, i00 are elements of anm2 �m2

transition matrix Q ¼ �qig, i0g , i0, i00
�
, each row of which is a probability distribution

(i.e. each row sums to 1 and the elements are nonnegative) and λ ¼ λf ;…; λ1
� �0 is a

vector of lag parameters. To ensure that the results of the model are probabilities,

that is, 0≤
Pf

g¼1 λgqigi0g i0i00 ≤ 1 the vector λ is subject to the constraints
Pf

g¼1 λg ¼ 1

and λg ≥0.
Covariates and interaction terms can be added to the bivariate MTD (B-MTD) as

follows:

Pð X1, t;…;Xn, tf g ¼ i1,0;…; in,0f g∣Xt�1 ¼ i1,…, Xt�f ¼ if , Yt�1 ¼ i01,…, Yt�f ¼ i0f ,

C1 ¼ c1,…, Ce ¼ ce,M1 ¼ m1,…,Ml ¼ mlÞ

¼
Xf

g¼1

λgqi1,g ,…, in,g, i1,0,…, in,0 þ
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where λfþeþu is the weight for the interaction term, suvui1,0,…, in,0 is the transition
probability between covariate h1 and covariate h2 interaction term

(vu ¼ dh1jh1 � dh2jh2 ) and Xt;Ytð Þ, and where
Pfþeþl

g¼1 λg ¼ 1. For example, if both Xt

and Yt are time series that constitute random realizations of two states {0, 1} and
the covariates C1,…, Ce are also defined by bivariate states {0, 1}, then the set of all
possible states for Xt;Ytð Þ is {(0, 0), (0, 1), (1, 0), (1, 1)}. Hence the transition

matrix Q ¼ qigi0g i0i00

h i
is a 4� 4 matrix as specified below.

Previous state Xt�1;Yt�1ð Þ Current state (Xt, Yt)

0, 0 (1) 0, 1 (2) 1, 0 (3) 1, 1 (4)

0, 0 (1) (1, 1) (1, 2) (1, 3) (1, 4)

0, 1 (2) (2, 1) (2, 2) (2, 3) (2, 4)

1, 0 (3) (3, 1) (3, 2) (3, 3) (3, 4)

1, 1 (4) (4, 1) (4, 2) (4, 3) (4, 4)

The transition matrices Dh ¼ dhjhi0i00

h i
, h = 1,…, e, are 2� 4 matrices as below.

Covariate state

Xt ;Ytð Þ 0 (1) 1 (2)

0, 0 (1) (1, 1) (1, 2)

0, 1 (2) (2, 1) (2, 2)

1, 0 (3) (3, 1) (3, 2)

1, 1 (4) (4, 1) (4, 2)

2.3 Synchrony analysis using Moran’s approach

Moran in [17, 18] suggested that if two series xt and yt are synchronous, and if xt
can be estimated by a model f(x), the residuals from series xt fitted to f(x), and the
residuals from series yt, fitted with the same model, but with observations, yt, then, f
(y) will be positively correlated. The synchrony of two series can then be examined
by testing the significance of the correlation of these two series of residuals (using
the same model). Moran used an autoregressive integrated moving average
(ARIMA) model to test synchrony. Moran’s theorem suggests that if two (or more)
populations sharing a common linear density-dependence (in a so-called renewal
process) are disturbed with correlated noise, they will become synchronised with a
correlation matching the noise correlation (see details in [4], and also [6, 15, 21]).

In this chapter we adopt the kth order linear stochastic difference to assess
synchrony. Goodness of fit of the second order AR (k = 2) model is obtained. The
series of residuals can then be found by subtracting the predicted (fitted species)
value from the observed series. In summary, synchrony (or otherwise) of two series
can be established by performing a test of significance on the correlation coefficient
calculated from the two series of residuals as follows:
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• Calculate the residuals for say, E. leucoxylon (Leu) using its AR (2) model.
We denote this residual series by R1.

• Calculate residuals for say, E. tricarpa (Tri) using this same model. We
denote this residual series by R2.

• Calculate the Pearson correlation coefficient between the residual series R1
and R2 and test for its significance at p < 0.05.

Further details on how Moran’s method is used and adapted in the case of the
MTDg-based models are given in [15] (see also Section 4.8). We use the functionals
and parameterisations from the mixture transition distribution (MTD) analysis as
the basis of our EKF modelling approach. EKF is likewise a method to estimate the
past, present and future status of non-linear time series data by minimising the
mean square error. We will also test whether EKF better detects asynchronous
species pairs, given EKF estimates the Kalman gain and covariance matrix at each
time point [15, 19].

3. Data

Flowering data were sourced from the Box-Ironbark Forest near Maryborough,
Victoria, in particular the flowering records of E. leucoxylon, E. microcarpa, E.
polyanthemos and E. tricarpa (1940 and 1971). Flowering intensity was calculated by
using a rank score (from 0 to 5) based on the quantity and distribution of flowering
[4, 20, 23].

Flowering intensity scores were dichotomised into two discrete states, namely
on and off (1/0) flowering (Figure 1) as in [6]. One temperature variant, mean
monthly diurnal temperature (MeanT), in addition to the monthly rainfall (Rain)
were included as climate covariates in the MTDg models; along with the tempera-
ture by rain interaction effect. We used discrete state low/high (lower than median
temperature vs higher than median temperature) for the temperature variable
dichotomies and less/more (less than the median rainfall vs more than the median

Figure 1.
Flowering of the four eucalypts species.
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where λfþeþu is the weight for the interaction term, suvui1,0,…, in,0 is the transition
probability between covariate h1 and covariate h2 interaction term

(vu ¼ dh1jh1 � dh2jh2 ) and Xt;Ytð Þ, and where
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g¼1 λg ¼ 1. For example, if both Xt

and Yt are time series that constitute random realizations of two states {0, 1} and
the covariates C1,…, Ce are also defined by bivariate states {0, 1}, then the set of all
possible states for Xt;Ytð Þ is {(0, 0), (0, 1), (1, 0), (1, 1)}. Hence the transition

matrix Q ¼ qigi0g i0i00

h i
is a 4� 4 matrix as specified below.
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0, 1 (2) (2, 1) (2, 2) (2, 3) (2, 4)

1, 0 (3) (3, 1) (3, 2) (3, 3) (3, 4)

1, 1 (4) (4, 1) (4, 2) (4, 3) (4, 4)

The transition matrices Dh ¼ dhjhi0i00

h i
, h = 1,…, e, are 2� 4 matrices as below.

Covariate state
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0, 0 (1) (1, 1) (1, 2)
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1, 1 (4) (4, 1) (4, 2)

2.3 Synchrony analysis using Moran’s approach

Moran in [17, 18] suggested that if two series xt and yt are synchronous, and if xt
can be estimated by a model f(x), the residuals from series xt fitted to f(x), and the
residuals from series yt, fitted with the same model, but with observations, yt, then, f
(y) will be positively correlated. The synchrony of two series can then be examined
by testing the significance of the correlation of these two series of residuals (using
the same model). Moran used an autoregressive integrated moving average
(ARIMA) model to test synchrony. Moran’s theorem suggests that if two (or more)
populations sharing a common linear density-dependence (in a so-called renewal
process) are disturbed with correlated noise, they will become synchronised with a
correlation matching the noise correlation (see details in [4], and also [6, 15, 21]).

In this chapter we adopt the kth order linear stochastic difference to assess
synchrony. Goodness of fit of the second order AR (k = 2) model is obtained. The
series of residuals can then be found by subtracting the predicted (fitted species)
value from the observed series. In summary, synchrony (or otherwise) of two series
can be established by performing a test of significance on the correlation coefficient
calculated from the two series of residuals as follows:
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• Calculate the residuals for say, E. leucoxylon (Leu) using its AR (2) model.
We denote this residual series by R1.

• Calculate residuals for say, E. tricarpa (Tri) using this same model. We
denote this residual series by R2.

• Calculate the Pearson correlation coefficient between the residual series R1
and R2 and test for its significance at p < 0.05.

Further details on how Moran’s method is used and adapted in the case of the
MTDg-based models are given in [15] (see also Section 4.8). We use the functionals
and parameterisations from the mixture transition distribution (MTD) analysis as
the basis of our EKF modelling approach. EKF is likewise a method to estimate the
past, present and future status of non-linear time series data by minimising the
mean square error. We will also test whether EKF better detects asynchronous
species pairs, given EKF estimates the Kalman gain and covariance matrix at each
time point [15, 19].

3. Data

Flowering data were sourced from the Box-Ironbark Forest near Maryborough,
Victoria, in particular the flowering records of E. leucoxylon, E. microcarpa, E.
polyanthemos and E. tricarpa (1940 and 1971). Flowering intensity was calculated by
using a rank score (from 0 to 5) based on the quantity and distribution of flowering
[4, 20, 23].

Flowering intensity scores were dichotomised into two discrete states, namely
on and off (1/0) flowering (Figure 1) as in [6]. One temperature variant, mean
monthly diurnal temperature (MeanT), in addition to the monthly rainfall (Rain)
were included as climate covariates in the MTDg models; along with the tempera-
ture by rain interaction effect. We used discrete state low/high (lower than median
temperature vs higher than median temperature) for the temperature variable
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Figure 1.
Flowering of the four eucalypts species.

57

Mixture Transition Distribution Modelling of Multivariate Time Series of Discrete State…
DOI: http://dx.doi.org/10.5772/intechopen.88554



rainfall) for the rainfall variable. The cut-points for the states or low/high categories
of each climate covariate are shown in Table 1.

4. Results

4.1 Bivariate MTD (B-MTD) discrete states results

Four eucalypts species, E. leucoxylon, E. microcarpa, E. polyanthemos and E.
tricarpa were modelled using the order 1 B-MTD model discussed in Section 2.2—
without the inclusion of covariates (such as temperature (variants) and rainfall).
These species were paired as follows: E. leucoxylon and E. microcarpa (LeuMic); E.
leucoxylon and E. polyanthemos (LeuPol); E. leucoxylon and E. tricarpa (LeuTri) and
so on; hence 6 pairs were modelled via B-MTD (see Table 2) for the corresponding
bivariate transition probabilities (see also Figure 2).

The possible states for any pair of species is the set {(0, 0), (0, 1), (1, 0), (1, 1)},
where no flowering is represented as 0 (state = 0 = no flowering) and flowering is
represented by a 1 (state = 1 = flowering). Since lag order 1 B-MTD models were
used, the mixing probability λ is equal to 1.0.

The corresponding transition matrices for the 6 B-MTD models are given in
Table 2. These transition profiles are also shown schematically as flow diagrams in
Figures 3–4, and also as transition signatures in Figures 5–6. These shall be
discussed in more detail later. The transitions to differing states (from Table 2) are
shown as arrows (transitions A to F) in the schematic diagram of Figure 2. The
exact probabilities of such transitions are given by the off diagonal elements of
Table 2 and also shown above or below the arrows in Figures 3 and 4.

The transitions have the following intuitive interpretation and associated prob-
ability (sum), which are derived from the subcomponents of the transition matrices
Q (see Table 2).

• A: transition of both species off to one species on: q(0, 0;0, 1) + q(0, 0, 1, 0)

• B: transition of both species on to one species off: q(1, 1;0, 1) + q(1, 1, 1, 0)

• C: species switching states: q(0, 1;1, 0) + q(1, 0; 0, 1)

• D: transition of one species off to both species off: q(0, 1;0, 0) + q(1, 0;0, 0)

• E: transition of one species on to both species on: q(0, 1;1, 1) + q(1, 0;1, 1)

• F: transition of one species on/off to both species off/on: q(0, 0;1, 1) +
q(1, 1;0, 0)

In this chapter we shall demonstrate that transitions that lead towards both
species being off or both species being on (states D, E or F), are considered to be

Climate variables Low (less) High (more)

Mean diurnal temp (°C) ≤13.84 >13.84

Rain (mm) ≤40.45 >40.45

Table 1.
Cut-points for climate variables based on medians.
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synchronising. However, transitions that lead towards only one species being on or
off (flowering) (A and B) and where within a species pair flowering switches
(transitions C) are considered to be asynchronous.

Note that the probabilities of staying in the same state; e.g. both species con-
tinuing to be in a non-flowering state (a (0, 0) to (0, 0) transition); one species
flowering off and the other species in the pair with flowering on, (a (0, 1) to (0, 1)

Figure 2.
Subcomponents of possible transitions.

Species Previous state Current state

(0, 0) (0, 1) (1, 0) (1, 1)

LeuMic (0, 0) 0.6667 0.2280 0.1053 0.0000

(0, 1) 0.0000 0.6000 0.1333 0.2667

(1, 0) 0.0845 0.0376 0.8357 0.0423

(1, 1) 0.0000 0.0612 0.4490 0.4898

LeuPol (0, 0) 0.6970 0.0303 0.2626 0.0101

(0, 1) 0.4444 0.3889 0.0000 0.1667

(1, 0) 0.0562 0.0000 0.7921 0.1517

(1, 1) 0.1309 0.0952 0.1429 0.6310

LeuTri (0, 0) 0.6947 0.1263 0.1053 0.0737

(0, 1) 0.0455 0.3636 0.0000 0.5909

(1, 0) 0.2203 0.0085 0.7034 0.0678

(1, 1) 0.0069 0.0069 0.1736 0.8125

MicPol (0, 0) 0.7637 0.1429 0.0879 0.0055

(0, 1) 0.1818 0.6705 0.1023 0.0455

(1, 0) 0.2737 0.0000 0.6842 0.0421

(1, 1) 0.0714 0.2141 0.3572 0.3573

MicTri (0, 0) 0.7975 0.0316 0.1329 0.0380

(0, 1) 0.2232 0.7500 0.0179 0.0089

(1, 0) 0.1090 0.0182 0.5819 0.2909

(1, 1) 0.0000 0.4259 0.0000 0.5741

PolTri (0, 0) 0.7464 0.1739 0.0797 0.0000

(0, 1) 0.0719 0.7842 0.0360 0.1079

(1, 0) 0.3067 0.0400 0.6400 0.0133

(1, 1) 0.0370 0.1482 0.4074 0.4074

Table 2.
Transition matrices for the 6 B-MTD models.
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rainfall) for the rainfall variable. The cut-points for the states or low/high categories
of each climate covariate are shown in Table 1.

4. Results
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Climate variables Low (less) High (more)

Mean diurnal temp (°C) ≤13.84 >13.84

Rain (mm) ≤40.45 >40.45

Table 1.
Cut-points for climate variables based on medians.
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synchronising. However, transitions that lead towards only one species being on or
off (flowering) (A and B) and where within a species pair flowering switches
(transitions C) are considered to be asynchronous.

Note that the probabilities of staying in the same state; e.g. both species con-
tinuing to be in a non-flowering state (a (0, 0) to (0, 0) transition); one species
flowering off and the other species in the pair with flowering on, (a (0, 1) to (0, 1)

Figure 2.
Subcomponents of possible transitions.
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transition); one species on the other in the pair off (a (1, 0) to (1, 0) transition); and
both species continuing to flower (a (1, 1) to (1, 1) transition) are not shown on
Figure 2. These to same states transitions, are given for each species, by the diago-
nal elements in the transition matrices (from previous to current states) in Table 2;
and are also shown in Figures 3 and 4 as numbers (positioned next to the 4 states as
boxes).

An examination of the transition probabilities for the species pairs in Table 2
shows that there is a significantly high propensity (probability) to remain in the

Figure 3.
Diagram of transition probabilities for synchronous pairs: LeuTri and LeuPol.

Figure 4.
Diagram of transition probabilities for asynchronous pairs: PolTri, LeuMic and MicPol.
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same (bivariate) state as the previous state (see highlighted transition probabilities
on the diagonals). For synchronous species pairs, such as LeuPol, and LeuTri the
likelihood of species switching flowering state (states C), i.e. transition from one
species flowering in a pair previous state = (0, 1) to the other species flowering,
current state = (1, 0) never occurs (transition probability = 0.0000); or the likeli-
hood of the transition from one species flowering to the other species flowering (i.e.
a (1, 0) to (0, 1) transition) is rare (0.0000 ≤ transition probability ≤ 0.0085). For
asynchronous species pairs such as LeuMic, MicPol, and PolTri, their switching
probabilities are significantly higher in that at least one of the transition probabili-
ties from (0, 1) to (1, 0); or from (1, 0) to (0, 1) is greater than 0.036, with
associated probability ≥0.076.

Overall for synchronous pairs the probabilities of one species flowering to both
or no species flowering, i.e. one off to both off, or one on to both on are high
(>0.30). The latter are delineated by D and E transitions in Figure 2 and Table 4.
Overall for asynchronous pairs there are high probabilities of both off (or on) to one
off (or on). The latter transitions are delineated by A and B in Figure 2, with
probabilities given in Tables 3 and 4.

In summary the transitions that lead to both species being off (no flowering) or
both species being on (flowering) (transitions D, E or F), are considered to be

Figure 5.
Transition probabilities from (0, 0) and (1, 1) states for 6 species pairs.
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synchronizing. However, transitions that lead to only one species being on or off
(no flowering) (transitions A and B) and where a species pairs’ flowering status
switches (transitions C) are considered to be asynchronous.

We now provide a rule for synchrony (or asynchrony) based on subcomponent
(sums) of the transition probabilities derived from the B-MTD model:

Figure 6.
Transition probabilities from (0, 1) and (1, 0) states for 6 species pairs.

Transition
names

Description Probability: sum of
subcomponents

Threshold
for

synchrony

Threshold
for

asynchrony

Rules

A Both off to one off q(0, 0;0, 1) + q(0, 0;1, 0) <0.30▼ ≥0.30▲ P(A or B) >
0.8 for

asynchrony
B Both on to one on q(1, 1;0, 1) + q(1, 1;1, 0) <0.50▼ ≥0.50▲

Cϕ Switching q(0, 1;1, 0) + q(1,0;0, 1) <0.05▼ ≥0.05▲
Dϕ One off to both off q(0, 1;0, 0) + q(1, 0;0, 0) ≥0.40▲ <0.40▼ P(D or E) >

0.65 for
synchrony

E One on to both on q(0, 1;1, 1) + q(1, 0;1, 1) ≥0.40▲ <0.40▼

F Both on (off) to
both off (on)

q(0, 0;1, 1) + q(1, 1;0, 0) ≥0.08▲ <0.08▼

ϕEvents or transitions C and F do not occur often.

Table 3.
Descriptions and rules of (a) synchrony based on the transitions A-F.
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• Two species are synchronous if P(D or E) > 0.65, i.e. P(one on to both on)
+ P(one off to both off) > 0.65,

• Two species are asynchronous if P(A or B) > 0.80, i.e. P(both off to one
off) + P(both on to one on) > 0.8.

The transitions have the following interpretation and probabilities
(Tables 3 and 4):

• A: transition of both species off (in the past state) to one species flowering (on)
in the current state;

• B: transition of both species on to one species off;

• C: species switching states;

• D: transition of one species off to both species off;

• E: transition of one species on to both species on;

• F: transition of one species on/off to both species off/on.

According to the rules given in Table 3, the synchronous pairs are LeuTri and
LeuPol (with P(D or E) > 0.65); asynchronous pairs are: PolTri, LeuMic and MicPol
(with P(A or B) > 0.80) and a species pair that is neither synchronous nor
asynchronous is MicTri.

In summary we have a simple rule for (a) synchrony, which in agreement with
the work of [6] (see also [25]), using the synchronisation theory of Moran that:

• E. leucoxylon flowering is synchronous with both E. polyanthemos and
E. tricarpa, but asynchronous with E. microcarpa.

• E. microcarpa is synchronous with none of three species; specifically it is
asynchronous with both E. leucoxylon and E. polyanthemos (and has no
relationship with E. tricarpa).

Transition probability sums P(A) P(B) P(A or B) P(C) P(D) P(E) P(D or E) P(F)

Synchronous (S) pairs

LeuTri 0.232 0.181 0.008 0.266 0.659 0.081

LeuPol 0.293 0.238 0.000 0.501 0.318 0.141

Asynchronous (A) pairs

PolTri 0.254 0.556 0.076 0.379 0.121 0.037

LeuMic 0.333 0.510 0.171 0.085 0.309 0.000

MicPol 0.231 0.571 0.102 0.455 0.088 0.077

Neither S nor A

MicTri 0.165 0.426 0.036 0.332 0.300 0.038

Table 4.
Transition probabilities of events A to F for each species pair categorised into synchronous and asynchronous (or
neither) species pairs.
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off) + P(both on to one on) > 0.8.

The transitions have the following interpretation and probabilities
(Tables 3 and 4):

• A: transition of both species off (in the past state) to one species flowering (on)
in the current state;

• B: transition of both species on to one species off;

• C: species switching states;

• D: transition of one species off to both species off;

• E: transition of one species on to both species on;

• F: transition of one species on/off to both species off/on.

According to the rules given in Table 3, the synchronous pairs are LeuTri and
LeuPol (with P(D or E) > 0.65); asynchronous pairs are: PolTri, LeuMic and MicPol
(with P(A or B) > 0.80) and a species pair that is neither synchronous nor
asynchronous is MicTri.

In summary we have a simple rule for (a) synchrony, which in agreement with
the work of [6] (see also [25]), using the synchronisation theory of Moran that:

• E. leucoxylon flowering is synchronous with both E. polyanthemos and
E. tricarpa, but asynchronous with E. microcarpa.

• E. microcarpa is synchronous with none of three species; specifically it is
asynchronous with both E. leucoxylon and E. polyanthemos (and has no
relationship with E. tricarpa).

Transition probability sums P(A) P(B) P(A or B) P(C) P(D) P(E) P(D or E) P(F)

Synchronous (S) pairs

LeuTri 0.232 0.181 0.008 0.266 0.659 0.081

LeuPol 0.293 0.238 0.000 0.501 0.318 0.141

Asynchronous (A) pairs

PolTri 0.254 0.556 0.076 0.379 0.121 0.037

LeuMic 0.333 0.510 0.171 0.085 0.309 0.000

MicPol 0.231 0.571 0.102 0.455 0.088 0.077

Neither S nor A

MicTri 0.165 0.426 0.036 0.332 0.300 0.038

Table 4.
Transition probabilities of events A to F for each species pair categorised into synchronous and asynchronous (or
neither) species pairs.

63

Mixture Transition Distribution Modelling of Multivariate Time Series of Discrete State…
DOI: http://dx.doi.org/10.5772/intechopen.88554



• E. polyanthemos flowering is synchronous only with E. leucoxylon; and
asynchronous with both E. microcarpa and E. tricarpa.

• E. tricarpa flowering is synchronous only with that of E. leucoxylon; and is
asynchronous with E. polyanthemos (and has no relationship with
E. microcarpa).

We can view Figure 5 as the transition signatures from past states, where both
species flowering is off or both species flowering is on, for synchronous pairings
(LeuTri or LeuPol) and the asynchronous species pairs (PolTri, LeuMic and
MicPol). Figure 6 likewise delineates transition signatures from past states, where
only one species of the pair is flowering. These signatures (Figures 5 and 6) dis-
tinctly differ according to whether a species pair is synchronous or asynchronous.

For MicTri the associated sum of the probabilities for transitions A and B (both
off/on to one off/on) is 0.591 (see Table 4), which is close to the threshold for
synchrony of 0.65. Note that the more sophisticated MTDg modelling approach in
Section 4.2 which incorporates covariates (mean temperature and rainfall) with
interactions, shows that indeed E. microcarpa and E. tricarpa are synchronous
(Tables 6 and 7), wherein the MTDg model allows for prior lag 1 to lag 12 month
flowering effects and climate covariates (see also Table 7 and Figure 7).

4.2 Moran tests on residuals of the MTDg models incorporating climatic
covariates

In this section synchronisation among species pairs is tested using Moran’s
correlation method on the cross-residuals, based on MTDg models which incorpo-
rate both climate covariates and lagged effects of previous flowering. This work is
based on [16], where MTDg models allowing interactions were fitted to the same
four species. We present here only MTDg models with two covariates, namely,
mean temperature and rainfall.

Parameters of the MTDg models are shown in Table 5. Significant lag effects of
previous flowering states (lag j, where j = 1, ..., 12 months), and of the climatic
covariates (meanT and rain) and their interaction (meanT*rain) are also given in
Table 5. The estimated parameters for the MTDg models generally show a (posi-
tive) 1 month lag effect and 9, 11 and 12 months lag effects of previous flowering
status (Table 5).

From Tables 5 and 6 we observe that mean diurnal temperature (meanT) has a
significant effect on flowering for all species; rain impacts significantly only on
E. tricarpa (Tri) and an interaction effect between rain and meanT exists for
E. polyanthemos (Pol). Overall, flowering increases as temperature (MeanT)

Species lag 1 lag 9 lag 10 lag 11 lag 12 Temp variable Rain Temp � rain

E. mic 0.534 - - 0.032ϕ 0.275 0.136 - -

E. poly 0.530 0.060 - 0.160 0.105 0.091 0.009 0.045

E. leu 0.611 - - 0.124 0.042 0.202 - -

E. tri 0.617 0.059 0.009 0.096 - 0.157 0.062 -
ϕCovariate effects above 0.03 are considered significant.
- indicates cells with zero probabilities.

Table 5.
MTDg mixing probabilities of MeanT and rain models.
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increases for E. microcarpa; and flowering decreases as temperature increases for
both E. leucoxylon and E. tricarpa. Rainfall positively impacts the flowering of
E. tricarpa (i.e. flowering increases with more rainfall). Interestingly
E. polyanthemos exhibits increased flowering at low meanT when there is contem-
poraneous below average rainfall and at high meanT with above average rainfall
(see the transition probabilities to flowering for the interaction effect of
E. polyanthemos (i.e. (0.88, 0.12, 0.20, 0.96)) in Table 6.

In what follows we denote the species used to estimate the parameters for the
MTD-based equation as the ‘Model species’ and the species fitted with these

Species Climate
effects

Previous
flowering

Temperature Rain Temperature by rain interaction

(temp/
rain)

Off On Low1 High2 Less3 More4 Low/
less

Low/
more

High/
less

High/
more

E. mic (+/�) 0.00 1.00 0.00 1.00 0.39 0.28 - - - -

E. poly Inter-
action

0.01 1.00 0.00 0.34 0.94 0.03 0.88 0.12 0.20 0.96

E. leu (�/+) 0.05 1.00 1.00 0.00 0.88 0.94 - - - -

E. tri (�/+) 0.00 1.00 1.00 0.00 0.00 1.00 - - - -
1Cut point for low temperature states: MeanT ≤13.83°C.
2Cut point for high temperature states: MeanT >13.84°C.
3Cut point for less rain: rain ≤40.44 mm.
4Cut point for more rain: rain >40.45 mm.
Note that ‘-’ indicates cells with zero probabilities.

Table 6.
Transition probabilities of flowering for the meanT and rain MTDg models.

Model species mic pol leu tri

Synchronous fitted species tri (0.14) leu (0.14) pol (0.16) mic (0.15)

tri (0.11)

Asynchronous fitted species mic (�0.14ϕ)
ϕA negative and significant correlation indicates an asynchronous species pair.

Table 7.
Significant Moran correlations (in brackets) from the MTDg models.

Figure 7.
Synchrony relationships among the four eucalypts species.
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E. polyanthemos (i.e. (0.88, 0.12, 0.20, 0.96)) in Table 6.

In what follows we denote the species used to estimate the parameters for the
MTD-based equation as the ‘Model species’ and the species fitted with these

Species Climate
effects

Previous
flowering

Temperature Rain Temperature by rain interaction

(temp/
rain)

Off On Low1 High2 Less3 More4 Low/
less

Low/
more

High/
less

High/
more

E. mic (+/�) 0.00 1.00 0.00 1.00 0.39 0.28 - - - -

E. poly Inter-
action

0.01 1.00 0.00 0.34 0.94 0.03 0.88 0.12 0.20 0.96

E. leu (�/+) 0.05 1.00 1.00 0.00 0.88 0.94 - - - -

E. tri (�/+) 0.00 1.00 1.00 0.00 0.00 1.00 - - - -
1Cut point for low temperature states: MeanT ≤13.83°C.
2Cut point for high temperature states: MeanT >13.84°C.
3Cut point for less rain: rain ≤40.44 mm.
4Cut point for more rain: rain >40.45 mm.
Note that ‘-’ indicates cells with zero probabilities.

Table 6.
Transition probabilities of flowering for the meanT and rain MTDg models.

Model species mic pol leu tri

Synchronous fitted species tri (0.14) leu (0.14) pol (0.16) mic (0.15)

tri (0.11)

Asynchronous fitted species mic (�0.14ϕ)
ϕA negative and significant correlation indicates an asynchronous species pair.

Table 7.
Significant Moran correlations (in brackets) from the MTDg models.

Figure 7.
Synchrony relationships among the four eucalypts species.
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estimated parameters as the ‘Fitted species’. Table 7 gives the resultant significant
Moran correlations based on the residual series from the MTDg-based model and
fitted species equations. Significant Moran correlations from both the MTDg (and
the EKF models show that (a)synchronous pairings found via the MTD and EKF
models in [15–19] generally agree (Tables 7 and 8); refer also to Figure 7, where a
solid line indicates synchronous pairs and a dashed line indicates asynchronous
pairs of species.

Table 7 shows significant positive MTDg-based correlations (P < 0.006) for the
following (model species: fitted species) pairs—(LeuPol), (PolLeu), (LeuTri),
(MicTri) and (TriMic), indicating that E. leucoxylon is synchronous with E.
polyanthemos, in agreement with the rules of synchrony described earlier
(Tables 3 and 4). E. leucoxylon is synchronous with E. tricarpa; and that E.
microcarpa and E. tricarpa are synchronous. The synchrony of the latter species pair
(MicTri) however, contrasts the results of Moran-based results on raw intensity
profiles which indicate that E. microcarpa and E. tricarpa were neither synchronous
or asynchronous (Table 4). It is noteworthy however, that for this species pairing,
E. microcarpa and E. tricarpa (i.e. MicTri or TriMic), the associated sum of the
probabilities for transitions D and E (one species off/on to both species off/on) is
0.591 (Table 4), which is close to the threshold for synchrony of 0.65
(Tables 3 and 4).

Tables 7 and 8 shows significant negative-based correlations (P < 0.001) for the
following (model species: fitted species) pairs; (LeuMic), (PolMic) and (MicLeu)
indicating that that E. leucoxylon is asynchronous with E. microcarpa and E.
microcarpa is asynchronous with E. polyanthemos (only via the EKF-based residuals)
(Figure 7 RHS); in agreement with the rule for asynchrony (Table 4) and Moran-
based AR analysis of the flowering intensities.

Both the MTDg- and EKF-based models show that E. tricarpa is not asynchro-
nous with E. polyanthemos (Tables 7 and 8). Note that for this species pairing E.
tricarpa and E. polyanthemos (i.e. TriPol and PolTri) the associated sum of the
probabilities for transitions P(A) and P(B) (both species off/on to one species off/
on) is equal to 0.802 (Table 4), which is just above the to the threshold for
asynchrony of 0.80.

4.3 Principal component analysis on the (λ, Q , d, s) parameters

In this section a novel approach which invokes a principal component analysis
(PCA) of the resultant (λ, Q , d, s) parameters (Section 2.2) which details the weight
λ, q, d and s parameters from the MTD (n = 4) models) is performed. The resultant
two dimensional PCA axis plots (Figure 8) of the rotated (λ, Q, d, s)-based PCs
provides an informative visualisation of the synchronous and asynchronous species
groupings (of n > 2 species) allowing for interpretation of the main climate drivers
and climatic profiles (e.g.+/� or ( �/+)) detailed in Table 6.

Model species mic pol leu tri

Synchronous fitted species tri (0.12) leu (0.19) pol (0.18) leu (0.26)

tri (0.33)

Asynchronous fitted species leu (�0.17ϕ) mic (�0.10ϕ)
ϕA negative and significant correlation indicates an asynchronous species pair.

Table 8.
Significant Moran correlations (in brackets) from the EKF models.
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The resulting parameters estimated from the MTDg models with and without
interaction terms can be compared among all four species using Figure 8, which
shows that the separation of E. tricarpa (�/+) and E. microcarpa (+/�) from other
species along the horizontal axis 1, is due to the effect of mean temperature.
Although E. leucoxylon is affected by the similar lag 1 and 11 month flowering terms
as E. polyanthemos, E. leucoxylon (�/+) commences flowering at low temperature
and shuts down at high temperatures. E. microcarpa begins flowering at high tem-
perature (+/�). Figure 8 also displays the similarity (synchronicity) of E. leucoxylon
and E. polyanthemos.

5. Discussion and conclusion

The highest degree of synchrony (via the B-MTD rules of synchrony, the MTD
models and Moran AR method) occurs between E. leucoxylon and E. tricarpa; then
followed by E. polyanthemos and E. leucoxylon which indicates the potential for
intense competition for potential pollinators, and therefore the prospect for a high
level of hybridization. Both these species pairs were shown to be synchronous by
Keatley et al., [20]; with E. leucoxylon and E. tricarpa having 6 years of no overlap
(and a long term mean synchrony value of 0.62); and E. polyanthemos and E.
leucoxylon having 5 years of the 31 years (between 1940 and 1970) with no overlap
(long term mean synchrony value of 0.51); as quantified in [20]. The degree of
synchrony or overlap of flowering was however determined using the method
outlined in [22] which measures the extent of overlapping in the flowering periods
among pairs of individuals in a population.

E. leucoxylon is the only species to synchronise flowering with E. tricarpa, as
shown by all three methods, namely the B-MTD rules of synchrony, MTD models
and Moran’s AR method. Synchrony between E. leucoxylon and E. tricarpa, may be
explained in terms of niche/competition and also facilitation may be a factor, due to
their different modes of flower production. This agrees with the findings of [20].
Interestingly the MTD models discussed here (see also [6, 16, 24]) show that the
climatic drivers or signature of E. leucoxylon and E. tricarpa is similar with respect to
temperature, in that both exhibit decreased flowering with increased temperature.

Likewise E. leucoxylon is the only species to synchronise flowering with E.
polyanthemos. E. leucoxylon and E. polyanthemos sometimes occur in the same

Figure 8.
Distances in the (λ, Q, d, s) parameters among the 4 species—without interaction terms (left) or with
interaction terms (right).
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estimated parameters as the ‘Fitted species’. Table 7 gives the resultant significant
Moran correlations based on the residual series from the MTDg-based model and
fitted species equations. Significant Moran correlations from both the MTDg (and
the EKF models show that (a)synchronous pairings found via the MTD and EKF
models in [15–19] generally agree (Tables 7 and 8); refer also to Figure 7, where a
solid line indicates synchronous pairs and a dashed line indicates asynchronous
pairs of species.

Table 7 shows significant positive MTDg-based correlations (P < 0.006) for the
following (model species: fitted species) pairs—(LeuPol), (PolLeu), (LeuTri),
(MicTri) and (TriMic), indicating that E. leucoxylon is synchronous with E.
polyanthemos, in agreement with the rules of synchrony described earlier
(Tables 3 and 4). E. leucoxylon is synchronous with E. tricarpa; and that E.
microcarpa and E. tricarpa are synchronous. The synchrony of the latter species pair
(MicTri) however, contrasts the results of Moran-based results on raw intensity
profiles which indicate that E. microcarpa and E. tricarpa were neither synchronous
or asynchronous (Table 4). It is noteworthy however, that for this species pairing,
E. microcarpa and E. tricarpa (i.e. MicTri or TriMic), the associated sum of the
probabilities for transitions D and E (one species off/on to both species off/on) is
0.591 (Table 4), which is close to the threshold for synchrony of 0.65
(Tables 3 and 4).

Tables 7 and 8 shows significant negative-based correlations (P < 0.001) for the
following (model species: fitted species) pairs; (LeuMic), (PolMic) and (MicLeu)
indicating that that E. leucoxylon is asynchronous with E. microcarpa and E.
microcarpa is asynchronous with E. polyanthemos (only via the EKF-based residuals)
(Figure 7 RHS); in agreement with the rule for asynchrony (Table 4) and Moran-
based AR analysis of the flowering intensities.

Both the MTDg- and EKF-based models show that E. tricarpa is not asynchro-
nous with E. polyanthemos (Tables 7 and 8). Note that for this species pairing E.
tricarpa and E. polyanthemos (i.e. TriPol and PolTri) the associated sum of the
probabilities for transitions P(A) and P(B) (both species off/on to one species off/
on) is equal to 0.802 (Table 4), which is just above the to the threshold for
asynchrony of 0.80.

4.3 Principal component analysis on the (λ, Q , d, s) parameters

In this section a novel approach which invokes a principal component analysis
(PCA) of the resultant (λ, Q , d, s) parameters (Section 2.2) which details the weight
λ, q, d and s parameters from the MTD (n = 4) models) is performed. The resultant
two dimensional PCA axis plots (Figure 8) of the rotated (λ, Q, d, s)-based PCs
provides an informative visualisation of the synchronous and asynchronous species
groupings (of n > 2 species) allowing for interpretation of the main climate drivers
and climatic profiles (e.g.+/� or ( �/+)) detailed in Table 6.

Model species mic pol leu tri

Synchronous fitted species tri (0.12) leu (0.19) pol (0.18) leu (0.26)

tri (0.33)

Asynchronous fitted species leu (�0.17ϕ) mic (�0.10ϕ)
ϕA negative and significant correlation indicates an asynchronous species pair.

Table 8.
Significant Moran correlations (in brackets) from the EKF models.
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The resulting parameters estimated from the MTDg models with and without
interaction terms can be compared among all four species using Figure 8, which
shows that the separation of E. tricarpa (�/+) and E. microcarpa (+/�) from other
species along the horizontal axis 1, is due to the effect of mean temperature.
Although E. leucoxylon is affected by the similar lag 1 and 11 month flowering terms
as E. polyanthemos, E. leucoxylon (�/+) commences flowering at low temperature
and shuts down at high temperatures. E. microcarpa begins flowering at high tem-
perature (+/�). Figure 8 also displays the similarity (synchronicity) of E. leucoxylon
and E. polyanthemos.

5. Discussion and conclusion

The highest degree of synchrony (via the B-MTD rules of synchrony, the MTD
models and Moran AR method) occurs between E. leucoxylon and E. tricarpa; then
followed by E. polyanthemos and E. leucoxylon which indicates the potential for
intense competition for potential pollinators, and therefore the prospect for a high
level of hybridization. Both these species pairs were shown to be synchronous by
Keatley et al., [20]; with E. leucoxylon and E. tricarpa having 6 years of no overlap
(and a long term mean synchrony value of 0.62); and E. polyanthemos and E.
leucoxylon having 5 years of the 31 years (between 1940 and 1970) with no overlap
(long term mean synchrony value of 0.51); as quantified in [20]. The degree of
synchrony or overlap of flowering was however determined using the method
outlined in [22] which measures the extent of overlapping in the flowering periods
among pairs of individuals in a population.

E. leucoxylon is the only species to synchronise flowering with E. tricarpa, as
shown by all three methods, namely the B-MTD rules of synchrony, MTD models
and Moran’s AR method. Synchrony between E. leucoxylon and E. tricarpa, may be
explained in terms of niche/competition and also facilitation may be a factor, due to
their different modes of flower production. This agrees with the findings of [20].
Interestingly the MTD models discussed here (see also [6, 16, 24]) show that the
climatic drivers or signature of E. leucoxylon and E. tricarpa is similar with respect to
temperature, in that both exhibit decreased flowering with increased temperature.

Likewise E. leucoxylon is the only species to synchronise flowering with E.
polyanthemos. E. leucoxylon and E. polyanthemos sometimes occur in the same

Figure 8.
Distances in the (λ, Q, d, s) parameters among the 4 species—without interaction terms (left) or with
interaction terms (right).
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geographical area; and earlier studies have shown they overlap significantly [20].
From the flowering behaviour indices of Keatley and Hudson in [23], E. leucoxylon
and E. polyanthemos were shown to have temporally separated months of peak
flowering, September and November, respectively; likewise their flowering com-
mencement months May and October, respectively. These two species can occur in
the same geographical area and their flowering period. Differentiation of these two
species is based on their differing months of peak flowering as well as their sepa-
rated months of most probable flowering; October and November, respectively.
Likewise their flowering commencement months differ, May and October, respec-
tively [23].

The least degree of synchrony (via the B-MTD rules of synchrony, the MTD
models and Moran method) is shown in this chapter to occur between E. leucoxylon
and E. microcarpa; then followed by E. polyanthemos and E. microcarpa. Our results
agree with the findings in [20], which established that a cross between E. leucoxylon
and E. microcarpa is impossible. In terms of climatic signatures: the flowering of E.
microcarpa behaves differently from E. leucoxylon and E. tricarpa. E. microcarpa
flowers at higher temperature and its flowering has a significant and positive rela-
tionship with flowering a year ago, refer also to the results reported in [23].

Eucalyptus tricarpa and E. polyanthemos were shown in this chapter also to be
asynchronous (discordant or out of phase). This is in agreement with conclusions
reported in [2]. The MTDg model found a significant interaction between two
climate variables, mean temperature and rainfall on the flowering of E.
polyanthemos. As flowering is viewed as either ‘off’ or ‘on’ this interaction appears to
be delineating E. polyanthemos’ flowering period. It usually commences flowering in
late spring—as mean temperature is increasing and rainfall is decreasing and ceases
in early summer; just prior to the warmest mean temperature and lowest rainfall.

Specific temperature thresholds for commencement and for the cessation of
flowering for the four species studied here, have been established, see [5, 7, 8]. For
example, E. microcarpa was shown to flower at high temperatures, and E. leucoxylon
and E. tricarpa both at lower temperatures. The flowering of E. polyanthemos was
shown to be impacted by both rainfall and temperature, with increased flowering
when conditions were either cool and dry, or hot and wet—indicative of a rainfall
by temperature interaction.

Moran residual analysis and the B-MTD analysis described in this chapter
showed that E. tricarpa and E. microcarpa did not exhibit a significant synchronous
nor an asynchronous relationship. However, for this species pairing, the associated
sum of the probabilities for transitions A and B (both off/on to one off/on) is 0.591,
which is close to the threshold for synchrony of 0.65. Indeed the more sophisticated
MTDg modelling approach which incorporates covariates (mean temperature and
rainfall) with interactions, showed that E. microcarpa and E. tricarpa are synchro-
nous, wherein the MTDg model allows for prior lag 1 to lag 12 month flowering
effects and climate covariates.

SOM-based clustering [4] and Moran AR (2) tests also found that E.
polyanthemos was asynchronous to E. microcarpa and E. tricarpa, in agreement with
the extended Kalman filter (EKF)-based synchrony measures in [15, 21]. Note also
it was demonstrated in [20] that E. polyanthemos and E. microcarpa have 25 years
with no overlap (with a long term mean synchrony value of 0.29). Note that the
more sophisticated MTDg modelling approach which incorporates covariates (mean
temperature and rainfall) with interactions, showed that indeed E. microcarpa and
E. tricarpa are synchronous, wherein the MTDg model allows for prior lag 1 to lag
12 month flowering effects and climate covariates.

Recently synchronisation of eucalypt flowering is shown to be a complex mech-
anism that incorporates all the flowering elements—flowering duration, timing of
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peak flowering, and the timing of start and finishing of flowering, as well as
possibly specific climate drivers for flowering [4]. The four species studied were
shown to be influenced by temperature and rainfall and as a consequence their
flowering phenology will change in response to climate change. This in turn will
have an impact on species interactions and community [4].

Extensions of the B-MTD models to allow for climate covariates and for the
comparison of more than 2 species at a time (a so-called multivariate M-MTD) is
the topic of future work. Other forthcoming research is to examine the timing and
a/synchronisation of the within species phenostages of both budding and flowering.
Refer to earlier work using wavelets [26] and Generalized Additive Model for
Location, Scale and Shape (GAMLSS) [27] to model the relationship between cli-
mate (mean monthly minimum, maximum temperatures and rainfall) during bud
development and the flowering cycles of Eucalyptus leucoxylon and E. tricarpa
from the Maryborough region of Victoria between 1940 and 1962. Monthly
behaviour (start, peak, finish, monthly intensity, duration and success) in
budding and flowering was assessed using, as in this current chapter, the indices
of Keatley in [23].
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geographical area; and earlier studies have shown they overlap significantly [20].
From the flowering behaviour indices of Keatley and Hudson in [23], E. leucoxylon
and E. polyanthemos were shown to have temporally separated months of peak
flowering, September and November, respectively; likewise their flowering com-
mencement months May and October, respectively. These two species can occur in
the same geographical area and their flowering period. Differentiation of these two
species is based on their differing months of peak flowering as well as their sepa-
rated months of most probable flowering; October and November, respectively.
Likewise their flowering commencement months differ, May and October, respec-
tively [23].

The least degree of synchrony (via the B-MTD rules of synchrony, the MTD
models and Moran method) is shown in this chapter to occur between E. leucoxylon
and E. microcarpa; then followed by E. polyanthemos and E. microcarpa. Our results
agree with the findings in [20], which established that a cross between E. leucoxylon
and E. microcarpa is impossible. In terms of climatic signatures: the flowering of E.
microcarpa behaves differently from E. leucoxylon and E. tricarpa. E. microcarpa
flowers at higher temperature and its flowering has a significant and positive rela-
tionship with flowering a year ago, refer also to the results reported in [23].

Eucalyptus tricarpa and E. polyanthemos were shown in this chapter also to be
asynchronous (discordant or out of phase). This is in agreement with conclusions
reported in [2]. The MTDg model found a significant interaction between two
climate variables, mean temperature and rainfall on the flowering of E.
polyanthemos. As flowering is viewed as either ‘off’ or ‘on’ this interaction appears to
be delineating E. polyanthemos’ flowering period. It usually commences flowering in
late spring—as mean temperature is increasing and rainfall is decreasing and ceases
in early summer; just prior to the warmest mean temperature and lowest rainfall.

Specific temperature thresholds for commencement and for the cessation of
flowering for the four species studied here, have been established, see [5, 7, 8]. For
example, E. microcarpa was shown to flower at high temperatures, and E. leucoxylon
and E. tricarpa both at lower temperatures. The flowering of E. polyanthemos was
shown to be impacted by both rainfall and temperature, with increased flowering
when conditions were either cool and dry, or hot and wet—indicative of a rainfall
by temperature interaction.

Moran residual analysis and the B-MTD analysis described in this chapter
showed that E. tricarpa and E. microcarpa did not exhibit a significant synchronous
nor an asynchronous relationship. However, for this species pairing, the associated
sum of the probabilities for transitions A and B (both off/on to one off/on) is 0.591,
which is close to the threshold for synchrony of 0.65. Indeed the more sophisticated
MTDg modelling approach which incorporates covariates (mean temperature and
rainfall) with interactions, showed that E. microcarpa and E. tricarpa are synchro-
nous, wherein the MTDg model allows for prior lag 1 to lag 12 month flowering
effects and climate covariates.

SOM-based clustering [4] and Moran AR (2) tests also found that E.
polyanthemos was asynchronous to E. microcarpa and E. tricarpa, in agreement with
the extended Kalman filter (EKF)-based synchrony measures in [15, 21]. Note also
it was demonstrated in [20] that E. polyanthemos and E. microcarpa have 25 years
with no overlap (with a long term mean synchrony value of 0.29). Note that the
more sophisticated MTDg modelling approach which incorporates covariates (mean
temperature and rainfall) with interactions, showed that indeed E. microcarpa and
E. tricarpa are synchronous, wherein the MTDg model allows for prior lag 1 to lag
12 month flowering effects and climate covariates.

Recently synchronisation of eucalypt flowering is shown to be a complex mech-
anism that incorporates all the flowering elements—flowering duration, timing of
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peak flowering, and the timing of start and finishing of flowering, as well as
possibly specific climate drivers for flowering [4]. The four species studied were
shown to be influenced by temperature and rainfall and as a consequence their
flowering phenology will change in response to climate change. This in turn will
have an impact on species interactions and community [4].

Extensions of the B-MTD models to allow for climate covariates and for the
comparison of more than 2 species at a time (a so-called multivariate M-MTD) is
the topic of future work. Other forthcoming research is to examine the timing and
a/synchronisation of the within species phenostages of both budding and flowering.
Refer to earlier work using wavelets [26] and Generalized Additive Model for
Location, Scale and Shape (GAMLSS) [27] to model the relationship between cli-
mate (mean monthly minimum, maximum temperatures and rainfall) during bud
development and the flowering cycles of Eucalyptus leucoxylon and E. tricarpa
from the Maryborough region of Victoria between 1940 and 1962. Monthly
behaviour (start, peak, finish, monthly intensity, duration and success) in
budding and flowering was assessed using, as in this current chapter, the indices
of Keatley in [23].
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Chapter 4

Hybrid Modeling of Offshore
Platforms’ Stress-Deformed and
Limit States Taking into Account
Probabilistic Parameters
Gennady Yu. Shmal, Vladimir A. Nadein,
Nikolay A. Makhutov, Pavel A. Truskov and Viktor I. Osipov

Abstract

Offshore platforms should be referred to critically and strategically important
objects of a technosphere due to technological and operational challenges, on the
one hand, and the danger potential level, on the other hand. Environmental, social
and economic losses occurred over several decades of accidents and disasters in
unique Great Britain, Norwegian. The Russian and the USA platforms were evalu-
ated in death of dozens of operators, destruction of platforms, environment con-
tamination and hence in multi-bullion losses. All of these indicate insufficiency of
currently taken engineering solutions, providing structure strength, operational life
and safety. The scientific, design, expert and supervising organizations in Russia
and in the world are developing and improving mathematical and physical
methods, implementing the probabilistic formulations for accidents and disasters,
risk assessment and risks reduction on offshore platforms. The solutions of the
following problems are included: extension of the comprehensive computational
and experimental strength, operational life and survivability analysis to the cases of
nonroutine events, accidental and catastrophic conditions; numerical justification
of modelling of critical elements, zones and points with the maximum tension,
deformations and damages occurring under impacts of external extreme seismic,
ice, wind, low temperature; implementation of comprehensive diagnostic methods
for damage states evaluation within nonlinear and probabilistic fracture mechanics;
and use of new structural design and technological systems for reduction of nega-
tive extreme impacts as well as emergency protection systems. The solution of the
specified problems is illustrated by case studies of the Russian specialists for each
life cycle stage of the platforms offshore Caspian and Kara Seas and Sea of Okhotsk.

Keywords: offshore platform, offshore technologies, safety of engineering systems,
design solutions, analysis of the emergency situations, limit states, crash protection,
seismic loads, technical diagnostics
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1. Articulation of issue

Further development of the modern international community is going hand in
hand with the intensive growth of fuel and energy raw materials consumption in all
spheres of activity. Meanwhile, in the majority of on-land oil-and-gas regions,
resources of oil and gas are exhausted and the possibilities of further increase of the
discovered and usable economically recoverable reserves are complicated.

With this knowledge in mind, lately we can see special, increasing interest in a
problem of the seas and oceans’ oil and gas resources development [1, 2].

The gas and oil fields are discovered in 108 countries of the world. Ultimate
reserves of gas reached 172 trillion cubic meters, of oil—172 billion tons; at the
beginning of the twenty-first century, the world gas production was equal t0 2.6
trillion cubic meters, while oil production was 3.3 billion tons.

Initial recoverable hydrocarbon resources of the World Ocean continental
shelf (up to 500 m isobathic line) and the inner continental shelf are
estimated equal approx. to 370 billion tons of fuel oil equivalent (TFOE), including
more than 200 trillion cubic meters of free gas and about 155 billion tons of oil and
condensate.

The primal gas resources in water areas are concentrated within the shelf of the
Northern Asia—44.5 trillion cubic meters. Its bigger part is located offshore in the
Kara Sea. Offshore gas resources of Eastern Europe, North and South America and
the Middle East are also comparable and considerable relative to ones in Northern
Asia (21–24 trillion cubic meters).

In the world, since the 1940s, the multiple sea platforms (SP) are engineered and
operated with a wide range of parameters and are used for offshore petroleum and
gas production. The largest of them are five platforms of the USA, Norway and
Russia. They provide production at sea depths up to 2.5 km and well-drilling up to
10–13 km. About 10 platforms are in operation in Russia: on Caspian, Okhotsk seas
and on the seas of the Arctic Ocean. The most significant of them are the platforms
“Piltun-Astokhskaya-A (former Molikpak),” “Piltun-Astokhskaya-B,”
“Lunskaya-A,” “Orlan,” “Berkut” and “Prirazlomnaya” (Figure 1). Length of
already constructed offshore pipelines is about 300 km. In long term, the need of
Russia in offshore projects includes the necessity to provide functioning of about
50 SPs.

In the world history of development of the continental shelf, a number of
disasters and serious accidents with catastrophic consequences occurred due to lack
of attention to measures for identification and mitigation of threats for safe opera-
tion is wrote. The 15 most dramatic accidents on drilling vessels and platforms of
various types (semisubmersible, submersible, mobile, stationary) happened during
the last 40 years were followed by:

• great loss of lives (up to 164 people) occurred due to limited space on the
platform, evacuation difficulties and vulnerability of personnel to thermal fire
impact and toxic effects caused by combustion products;

• infilling and destruction of platforms infrastructure;

• offshore areas and airspace pollution; and

• vegetal and animal life demise.

Most economic direct loss suffered after the disaster on the platform in the Gulf
of Mexico (USA) and was more than 20 billion dollars, while indirect losses reached

74

Probability, Combinatorics and Control

60 billion dollars; the direct economic loss suffered from flooding of the “Kol’skaya
(Kola)” platform (Russia) is about 200 million dollars.

Review of accidents with catastrophic consequences (death of great number of
people, large-scale ecological contamination or material losses) occurred on oil and
gas production platforms demonstrate reduction in number during recent years.
This can be explained by the platforms’ technological and design performance
improvements and application of modern safety systems (Figure 2).

Evaluation of information about accidents and disasters occurred on offshore
drilling rigs of various types makes it possible to combine and classify all accidents
in accordance with major, internally connected accidents sources (Figure 3):

Figure 1.
Large offshore platforms in Russia.

Figure 2.
Disasters of large scale platforms in USA (a) and Russia (b).
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uncontrolled release of oil and/or gas from the well; damage of integrity of load
bearing (or supporting) structures, as well as equipment failing (or
malfunctioning); personnel mistakes; external impacts of technogenic
(man-induced) nature (allisions with seagoing vessels, helicopters fall, subversive
actions); and off-design impacts of the natural environment.

The probability of accident that may occur during a year on the Unit is in the
range from 8 � 10�5 up to 1.6 � 10�3 per year, and this conclusion is based on the
data in the Declaration of Industrial Safety for four Russian production platforms
and nine floating drilling rigs.

2. Comprehensive issues of industrial safety in the process of the
continental shelf development

2.1 Risks analysis

One of the first places in the field of strategic planning takes the problem of
scientific and methodological frameworks building, while in the field of safe shelf
development takes scientifically grounded criterion base. At the same time, it is
considered that strategic risks of the Russian continental shelf development can be
an essential part of strategic risks of national security.

In view of the foregoing, the main objectives of the Institutes of the Russian
Academy of Science (RAS) and the leading security matters sectoral scientific
research institutes are as follows [1–3]:

• risks’ theorization based on fundamental risk analysis database collected and
studied in the process of research works in social, natural and technical science
of fundamental base. Risks function R(t) is analyzed in three main spheres of
activity—social (N), natural (S) and technogenic (T), forming the uniform
complex social-and-natural-and-technogenic system functioning in time t

R tð Þ ¼ FR RN tð Þ,RS tð Þ,RT tð Þf g; (1)

• formulation of the generalized model of the specified complex system with
definition of its main components N, S, T role in terms of values of basic risks

Figure 3.
Characteristic of accidents on oil and gas production platforms.
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parameters R(t)—probabilities of occurrence of P(t) negative processes and
events (dangers, challenges, threats, crises, disasters and accidents) and
consequential losses U(t)

R tð Þ ¼ FR P tð Þ,U tð Þf g (2)

P tð Þ ¼ FP RN tð Þ,RS tð Þ,RT tð Þf g (3)

U tð Þ ¼ FU UN tð Þ,US tð Þ,UT tð Þf g (4)

• identification of negative events scenarios with regard to a complex system and
quantitative risk assessment R(t) through parameters of main triggering and
affecting factors—dangerous energies E(t), substances W(t) and information
flows I (t)

R tð Þ ¼ FR E tð Þ,W tð Þ, I tð Þf g: (5)

On the basis of Eqs. (1)–(5), categorization of emergency situations, high-risk
objects and dangerous processes in terms of risks R(t) is developed. Objectively, the
norm settings, regulation and control in the area of safety provision as per safety
and security major components (i.e., social and economic, military, scientific and
technical, industrial, environmental and demographic) when using risks nominally
comes down to ratio

R tð Þ ≤ R tð Þ½ �, (6)

where [R(t)] is acceptable risks level.
The [R(t)] value is set and defined by bodies of the highest public administration

with consideration of abilities and the capacity of the country, level of scientific
justifications and domestic and international experience. The realization of the
requirement (6) [1–3] will be provided proceeding from the position that the
defining risks of R(t) are two groups of risks:

• individual risks (1 per year) of life and health loss caused by abovementioned
negative processes and events; and

• economical risks (rubles per year, dollars per year) caused by negative
processes and events that are taking into account vulnerability of social (N),
natural (S) and technogenic (Т) areas according to Eqs. (1)–(4).

The economic damages due to loss of lives and human health and environmental
and technical infrastructure damages are included in the economic risks R(t). Sci-
entific justification of acceptable risks [R(t)] includes development of methodology
of definition of critical (limiting, inadmissible) risks Rc (t) and fixing of risks
margin nR in the form of

Rc tð Þ½ � ¼ Rc tð Þ
nR

(7)

For quantitative assessment of value of risks Rc (t) relevant to accidents and
disasters on SP all basic, Eqs. (1)–(7) can be used while the value of risks margin nR
shall be greater than unity (nR ≥ 1). Considering the best domestic and foreign
practices, the variation for risks margin can be rather wide (2 ≤ nR ≤ 10) at the
beginning.
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Rc tð Þ½ � ¼ Rc tð Þ
nR

(7)

For quantitative assessment of value of risks Rc (t) relevant to accidents and
disasters on SP all basic, Eqs. (1)–(7) can be used while the value of risks margin nR
shall be greater than unity (nR ≥ 1). Considering the best domestic and foreign
practices, the variation for risks margin can be rather wide (2 ≤ nR ≤ 10) at the
beginning.
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Based on (1)–(7), actions to provide enhancement of safety and security with
the corresponding economic expenses Z(t) shall be developed. The actions directed
to reduction of risks R(t) value to the level [R(t)] have to be effective and correlate
with the levels of estimated risks R(t)

ð8Þ

where mz is the performance factor of economic costs for reduction of economic
risks (mz ≥ 1).

The general expression for the analysis and the sea platforms safety provision as
per risks criteria based on Eqs. (1)–(8) is the following:

ð9Þ

In the Eq. (9), practically are represented all set above main:

• scientific risks R(t) analysis via its basic components P(t), U(t);

• justification of acceptable risks [R(t)];

• scientific-methodological justification of risks’ tolerance Rс(t) and risks’
margins nR; and

• development of methodological recommendations on formation and
implementation of the actions directed to risks R(t) reduction to the
acceptable level [R(t)] providing optimal expenses Z(t) with the set efficiency
factor mZ.

2.2 Potential hazards characterization in the technical area when developing
the sea shelf

With the progress and complication of engineering of technogenic aspects in the
field of sea shelf development the analysis of man-caused (technogenic) offshore
accidents and disasters becomes one of the most vital tasks of fundamental, inter-
disciplinary research; applied scientific and technical developments; development
of diagnostic and monitoring systems; and designing of barriers and protection
means. The ultimate purpose of such research works and development becomes the
problem of evidence-based assessment of comprehensive risks and adjusting these
risks to acceptable levels by use of expressions (1)–(9).

The analysis and generalization of the numerous data (in the most developed
countries, such data bases amount thousands and tens of thousands facts) make it
possible to carry out certain classification of technogenic and natural and man-
made accidents and disasters [3]. Classification of accidents can be performed on
scales of the countries and territories affected by them, on number of the victims
and injured persons and on economic and ecological damage; in such classification,
seven general groups can be identified: planetary, global, national, regional, local,
object-based and local emergency and catastrophic situations (Figure 4).

The events resulting in similar serious accidents within technogenic field can
also be classified by potential hazard and in this line can be named objects of the
nuclear, chemical, metallurgical and mining industry, unique engineer
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constructions (dams, platforms), offshore development objects (sea platforms,
hydrocarbons storage tanks, LNG plants), the transport systems (airspace, surface
and underwater, on-land) that provide transportation of dangerous cargos, large
number of people, main gas-, oil pipelines and product lines. In this line, the
hazardous objects of defense industry also shall be mentioned.

At the same time, a majority of accidents and disasters are followed by infringe-
ment of stress conditions and depletion of lifetime of the most loaded components in
routine situations or in emergencies. The probabilities P(t) characterizing frequency
of disaster accidents occurrence in peace time ranges from (2–3)�10�2 up to (0.5–1)�
10�1 per year, while damages (losses) U(t) ranges from 1011 to 109 dollars per
accident. At the same time, their risks R(t) vary in the limits from 104 dollars per year
to 1010 dollars per year ranging from 104 dollars/year up to 1010 dollars/year.

In view of said above, the new fundamental and applied scientific tasks needed
to be set at national and international levels, for instance:

• mathematical theory of disasters and probabilistic theory of risks;

• physics, chemistry and mechanics of emergencies and disasters;

• limit states, strength and lifetime theories taking into account accidental and
emergency situations;

• theory of hardware, functional and integral protection in case of emergency of
objects, operators and personnel;

• theories of monitoring and forecast of scenarios and technogenic (man-made)
disasters consequences (using airspace, airborne and ground-based systems);
and

• scientific methods, technologies and hardware for mitigation of consequences
of emergency situations of technogenic nature.

Figure 4.
Losses (damages) and frequency of natural and man-made accidents and disasters.
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Based on the level of potential hazard, according to the legislation requirements
and taking into account accidents occurrence risks, the abovementioned objects of a
technosphere can be split in four (4) main groups (Figure 5) for each of which
corresponding safety requirements are provided:

• the objects subject to technical regulation (STR) with the main damages to
objects themselves;

• the hazardous production facilities (HPF) with the main damages to
production sites and objects which safe operation is provided under the law on
industrial safety—there are hundreds of thousands of such facilities;

• the critically important objects (CIO) which damages affect members of the
Russian Federation; and

• the strategically important objects (SIO) which damages are followed by losses
to the country and the bordering states.

For the continental shelf infrastructures, the number of the objects to be ana-
lyzed is reduced by one or two orders.

In the system of initial standards, specifications and guidelines used for design
and calculations of SPs were included the following documents:

• Russian regulations database:

GOST 27751-88 “Reliability of structural units and foundations. Basic
calculations methodology.”, 1988;
SNiP 2.01.07-85 “Loads and impacts”, 1996;
SNiP 2.06.04-82*, “Loads and impacts on hydrotechnical structures (waves, ice
and sea vessels)”, 1995 & 1983;
Marine Registry. FDR/OFR Guidelines, 2001;
VSN 41-88, “Industry Specific Code of Practice for design of offshore ice-
resistant fixed platform (OIRFP)”, М., 1988;

• Foreign regulations database:

Recommended Practice for Planning, Designing, and Constructing Fixed
Offshore Platforms – Load and Resistance Factor Design, АРI Recommended
Practice 2A-LRFD, 1993, Washigton;

Figure 5.
Diagram of analysis of potentially hazardous objects of the technosphere.
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Recommended Practice for Planning, Designing, and Constructing Fixed
Offshore Structures in Ice Environments, АРI Recommended Practice 2N (RP
2N), 1995, Washington;
CAN/CSA-S471-92, “General Requirements, Design Criteria, the Environment,
and Loads”, A National Standard of Canada, 1992; Toronto; Commentary to
CSA Standard CAN/CSA-S471-92, “General Requirements, Design Criteria, the
Environment, and Loads”, 1992, Toronto;
CAN CAN/CSA-S473-92, “Offshore Structures”, A National Standard of
Canada, 1992 CAN CAN/CSA-S16.1-94, “Limit States Design of Steel
Structures”, A National Standard of Canada, 1992, Toronto;
DnV, “Structural Design, General”, Rules for classification of Fixed Offshore
Installations, 1993;
DnV, “Structural Reliability Analysis of Marine Structures”, 1992. DnV,
Offshore Standard OS-C101, Design of Offshore Steel Structures, General, 2001;
ISO 19906, 2010 (ISO/DIS 19906 “Petroleum and natural gas industries - Arctic
offshore structures”, 2010).
Above documentation was used for definition of the main basic specified
characteristic load during design of the sea platforms intended for use at a sea
depth from 20 to 70 m to 200–250 m.

2.3 Types, design diagrams and cases

Implementation of the proposed recommendations and norms covers the struc-
tures with vertical and inclined sides, monopods and multicolumn constructions. In
the documents, the rules of definition of the main loads conditioned by action of all
potentially dangerous ice features subject to consideration are given. In Figure 6,
the various structures design versions are presented.

The following loads are subject to analysis:

Global conventional and extreme loads on conical and vertical
constructions: sheet and rafted ice; ice ridge compression; ultimate moving
force (ice field crowding force); global (abnormal loads); ice islands (stopped
by a construction).
Local ice pressure (for vertical and inclined surfaces): solid ice area; and ice
fragments area.
Ice loads dynamics: shock actions and interaction “ice—construction” (self-
excited); ice load change in time; fatigue ice impact; ice grinding impact; and
regelation.

Figure 6.
Types of sea platforms dependent on the sea depth (for standard soil conditions): (a) the artificial pad, depth is
up to 5 m; (b) the caisson-island fixed along contour, depth up to 15–20 m; (c) the monopod or monokone,
depth is up to 25–30 m; (d) shell support; and (e) the truss-shell type supports, depth 25–30 m and more.
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Broadly speaking, the offshore oil and gas facilities can be classified by the
following signs: structural materials; design features; methods of fixing to a bottom;
ice resistance indications; and functional features. The design features of offshore
oil and gas facilities incorporate the following types: stationary platforms; submers-
ible and semi-submersible platforms; pendulum constructions; tension structures;
platforms of SPAR type (with the underwater cylindrical foundation); access brid-
ges and pier sites; and dams and unpaved sites.

Ice-resistant constructions can be grouped as follows (Table 1).

2.4 Russian shelf specific conditions

The Russian continental shelf area exceeds 6 million sq. km that takes about 25%
of a shelf zone of all the World Ocean. The Arctic and Far East shelf areas are the
areas of the greatest interest.

With respect to environmental, bathymetric, engineering-geological, seismic
and other conditions, the shelf of Russia is different from others due to a number of
features:

• severe ice conditions (large drifting ice fields, ice ridges, floating ice
hummocks, etc.);

• shallow waters (depths less than 100 m) leading to significant increase in
wave loadings;

• high level of seismicity (on the Far East shelf); and

• difficult engineering and geological conditions.

In designing platforms for the Russian shelf, as a rule, it is necessary to consider
a combination of at least three factors from listed above. This is unlike world
practice.

When selecting this or that type of platform jack design along with environ-
mental conditions, it is necessary to take into account the impact of the field
development general scheme, production method and hydrocarbons transportation
technology as well as terms of platform fabrication and transportation on site.

When developing scientifically grounded methodology of design of gravitation-
type platforms for use on Russia shelf, i.e., design providing the required reliability
and safety level and, as much as possible, based on the lessons learned by the
international and Russian specialists in design, construction and operation of plat-
forms, it is necessary to:

• analyze the Russian and foreign regulating documents;

• set up an integral approach to platforms reliability and safety assurance at
different stages of their life cycle;

• select correct existing and develop new methods of definition of environment
loads;

Utility Fixed to the bottom Floating Islands

Design Gravity
based

Pile
supported

Integrated With anchor
mooring

Dynamic
positionable

Outlined Non-
outlined

Table 1.
Ice resistant oil and gas utilities.
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• develop the concept of consideration of engineering-geological conditions;

• provide consideration of the level, nature and duration of dynamic impacts;

• formulate additional requirements to be imposed on sea engineering surveys;
and

• justify the range of design cases for assessment of bearing capacity and stress-
deformed state of the system “construction—foundation.”

2.5 The analysis of external and internal factors and threats for safety of sea
platforms

The analysis of threats for off-shore oil and gas production platforms is the first
stage of the accidents’ risks analysis for the specified objects and provides estima-
tion of their safety level [1, 2]. The threat for SP is the probabilistic characteristic
defining a possibility of the impact of affecting factors of specific type, intensity
and duration in response to some dangerous (extreme) event that can take place
both in the territory of the object and in the external environment. Therefore, the
analysis of threats for SP has to be preceded by assessment of dangerous events
which can initiate impact of the affecting factors on platforms.

The secondary dangers occur and provoke secondary affecting factors when
some object’s process modules – SP parts are damaged. The possibility of initiation
of these secondary threats will be defined by vulnerability of an object in relation to
the primary threats. Thus, the analysis of threats has to be made in an agreement
with assessment of vulnerability of the SP parts in relation to the affecting factors
acting on them.

The danger to SP is defined by the pattern of random events or processes (Th):
extreme external natural and technogenic impact, wrong personnel actions and
operating conditions of the object technical systems having the potential which can
lead to accident. Examples of such events are: seismic activity, extreme wave or ice
loads (external dangers), loss of the oil tank containment or of fatigue damages
accumulation (internal dangers). The danger of an extreme event is a random
variable which, in the simplest case, can be characterized by the probability of
occurrence of an event P Thð Þ during a certain period (1 year) or the during the
platform’s operational lifetime (Figure 7).

Threats for SP are characterized by impacts on an object of the affecting
factors of dangerous events. The threat is also a random event (process) H, which

Figure 7.
Presentation of accident occurrence and development as a complex event. (a) Probabilities of the elementary
events are described with the help of point estimations, and (b) probabilities of the elementary events are
described with the help of probabilistic determination.
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can take place in case of occurrence of a dangerous event and be characterized by
conditional probability P HjThð Þ. For the abovenamed dangers, the events listed
below will act as threats:

• in earthquake case, the seismic wave will reach the site where object is located;
and

• loss of the oil tank containment will cause the oil leak.

Vulnerability of SP to threat of this type is defined as the conditional probability
in case of the affecting factor’s impact on an object when the latter one will get a
certain damage rate P DSkj Hð Þ, where k is an object damage rate.

If it is required to get more accurate description of danger of an extreme event, it
should not be characterized by the point estimation of probability of occurrence of a
dangerous event P Thð Þ but by the distribution curve of danger intensity pTh Ωð Þ or
integral distribution function PTh Ωð Þ presented in Figure 7 (where Ω characterizes
dangerous event intensity). In particular, the seismic hazard can be characterized by
distribution of probabilities of potential earthquake intensity degree, while threat
from loss of tank containment can be characterized by the distribution of probability
of the effective opening area. At the same time, threats will be characterized by
family of the conditional distribution functions pH∣Th wð Þ corresponding to different
intensity Ω of a dangerous event. Then the dangers of an earthquake and loss of
containment mentioned above will correspond to the threats described by family of
probabilistic distributions of amplitudes of vibration accelerations of soil on site of
platform location at different earthquake magnitudes and family of probabilistic
distributions of volume of leaked oil for different diameters of effective openings.

Vulnerability of an object relative to impact of the affecting factor with intensity
wwill be characterized by the vulnerability curve V ¼ P DSjW ¼ wð Þ, which defines
the conditional probability of sustained damage of level DS with the proviso that a
random value intensity Wtakes a certain value (W ¼ w).

When making decision on what physical parameter of impact of dangerous
process on an object to select for threat intensity evaluation, it is necessary to
consider vulnerability of an object relative to action of different components of such
impact: for example, in case of seismic impact on the platform, some parts of the
equipment and structures are the most sensitive impact from soil vibration acceler-
ations, while the another to vibration amplitudes.

Within that narrative, the accident initiation on SP can be considered as the
complex event occurring in case of occurrence of simultaneous random events
cascade (Figure 7a or b):

1.danger: realization of the extreme initiating event Th ¼ pTh Ωð Þ;

2. threat: impact of affecting factor of dangerous event on SP parts H ¼ pH∣Th wð Þ;
and

3.vulnerability: damage of SP’s parts as a result of impact affecting factors of the
initiating extreme event V ¼ pV∣H wð Þ.

2.6 Damaging and affecting factors

SP operation is associated with production, storage and transportation of con-
siderable volumes of dangerous materials, transformation of considerable volumes
of energy, running of hazardous technological processes on the platform as well
as with presence in areas of SPs’ location of external sources of natural and

84

Probability, Combinatorics and Control

technogenic nature hazards which are resulting in extreme external impacts on the
platform. Depending on the location of danger source (i.e., location of the place
where the initiating event starts) outside or inside the platform boundaries, it
should be taken into account the external and internal threats damaging and affect-
ing factors. Risks R τð Þ used in expressions (1)–(9) depend on them.

Internal threats for SP are initiated by dangerous process potential of the
following [1–3]:

• mass and composition of chemically dangerous substances W which are on the
platform; and

• amount of the reserved on the object energy E.

Among internal threats to SP are operational loads on parts and components
of oil and gas production facility (OGPF), impact of harsh chemical environment,
control system failures, etc. The considerable segment of internal threats range for
OGPF is caused by human factor action (mistakes at a design stage, construction
and operation of the platform, including violation of regulations, etc.).

Among external threats are affecting factors resulting from natural and
technogenic events (processes) happening outside SP boundaries. Seismic impacts,
hurricane, technogenic accident on the neighboring object, collision with the sea
vessel, extreme weather conditions, etc. are between initiating events of the
external type. Besides mentioned above, external threats include the events
connected with interruptions in work of energy, telecommunication and transpor-
tation infrastructures which lead to breakdown of technological processes, damage
of platform’s control and supply systems and terrorist attacks which also can be
classified as an external threat to the platform.

The probabilistic approaches usually are used for description of the initiating
events and affecting factors [1–4]. The necessity to use the probabilistic methods is
determined by lack of knowledge about comprehensive system “SP—the environ-
ment,” on the one hand, and by stochastic nature of the processes occurring in a
system and environment and by high uncertainty inherent to the examined system
(uncertainty of system parameters, materials strength characteristics, external
loads, etc. and also the uncertainty explained by limited knowledge of an object) on
the other hand.

The threats (affecting factors) H(t) influencing SP (Figure 8a), in general,
should be considered not only as the separate and determined processes (a) but also
as random events (Figure 8b) and stochastic processes (Figure 8c). This is due to the
fact that during analysis of the platforms’ vulnerability relative to the prevailing
threats, an essential role is played by damages’ accumulation and fatigue mecha-
nism of ultimate limit states reaching. Such approach necessitates review threats
as dynamic task taking into account history of operational loads and dynamic
and cyclic impacts of the affecting factors (external loads, influence of extreme
temperatures, harsh environment, etc.).

Figure 8.
Presentation of the threat as a random process.
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In such problem formulation, the definition of threat for SP will be
characterized by the random vector-process which is functional of a vector of internal
and external force actions Q tð Þ, temperature influences T tð Þ, fields of dangerous
substances concentration c tð Þ, radiations ψ tð Þ and information flows I tð Þ.

H tð Þ ¼ F Q tð Þ,T tð Þ, c tð Þ,ψ tð Þ, I tð Þ� �
(10)

Physical and chemical bases of the analysis of accidents occurrence and evolu-
tion conditions are defined both by work processes in technical SP systems, and by
external impacts on these processes.

It is important to note that requirements to detailed level of this object threats’
description are defined based on the used destruction mechanisms—external and
internal types. The analysis of threats to SP has to be carried out in a manner to
provide required data for further calculations of the following:

• stress, stiffness and withstandability (with use of material resistance methods);

• stress and cyclic life and life time (with use of methods of theory of high- and
low-cycle fatigue);

• stress and life capability—life time (with use of methods of creep theory and
creep-rupture strength theory);

• dynamic strength and life time (with use of methods of crash and fracture
dynamics); and

• crack growth resistance (with use of methods of linear and nonlinear fracture
dynamics).

If, on the contrary, the fatigue mechanism of destruction is used, the threat
cannot be considered as a separate extreme event and has to be characterized by
process of on-stream loading.

The quantitative description of development of accidents initiation on SP can be
performed on the basis of fundamental mechanisms of disasters physics, chemistry
and mechanics. At the same time, the stages of occurrence and development of
emergencies can be characterized by various combinations of physical, chemical
and the mechanical affecting and damaging factors.

Analysis of the majority of accidents of technogenic and natural-technogenic
nature occurred on SP demonstrates that they are determined by three major dan-
gerous factors according to equation (5):

• uncontrolled leak of dangerous substances W;

• uncontrolled hazardous energy E release (mechanical and thermal); and

• uncontrolled flows of diagnostic and controlled information of I.

If to take into account (Figure 5) the classification of accidents on critical
infrastructure objects as well as parameters W, E, I mentioned above, then for
classification of oil and gas production facility (OGPF), it is possible to set their
critical states’ limit areas (Figure 9). When talking about critical infrastructure
objects, without no doubt, the off-shore oil- and gas production platforms (local—1,
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facility-based—2, domestic—3, regional—4, national (federal)—5, global
(transboundary)—6, planetary—7) shall be included in the list of such objects.

Then, radius-vector in space of W, E, I will become a quantitative index of
dangers to OGPF

Thj j ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
W

2 þ E
2 þ I

2
q

, Tnj j ¼ W � E � I (11)

where W, E, I is the hazard class of object for each of accidents classes (from 1
to 7). In the first case, the quantitative value of this hazard will vary from 1.73 to
12.2; and in the second case, it varies from 1 to 343.

The hazards related to external natural processes in the territory of OGPFs
location are evaluated in another way and with use of other criteria (earthquakes
intensity degree, force of winds, level of floods, extremeness of climatic tempera-
tures, depths of holes, mass of landslides, volume of rainfall, etc.)

The equation (11) can be accepted as unified for different types of dangers:
technogenic, natural and natural-technogenic.

In traditional formulation when performing analysis of threats to OGPD
initiated by dangerous processes, the first stage of the analysis or problem solving
is assessment of losses and risks relevant to accidents on OGPD objects. The
solution of the inverse task making it possible to classify the threats to OGPD
coming from known consequences of accident occurred on an (Table 2) is of
interest.

At the solution of such tasks, the intensity of threats is subdivided into the
following groups:

Group U1: the threats causing hypothetical accidents which can occur at the
options and scenarios of development which are not predicted in advance, with

Figure 9.
Areas of dangerous and safe states of the system.
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low-cycle fatigue);

• stress and life capability—life time (with use of methods of creep theory and
creep-rupture strength theory);

• dynamic strength and life time (with use of methods of crash and fracture
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cannot be considered as a separate extreme event and has to be characterized by
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and the mechanical affecting and damaging factors.
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gerous factors according to equation (5):
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infrastructure objects as well as parameters W, E, I mentioned above, then for
classification of oil and gas production facility (OGPF), it is possible to set their
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where W, E, I is the hazard class of object for each of accidents classes (from 1
to 7). In the first case, the quantitative value of this hazard will vary from 1.73 to
12.2; and in the second case, it varies from 1 to 343.

The hazards related to external natural processes in the territory of OGPFs
location are evaluated in another way and with use of other criteria (earthquakes
intensity degree, force of winds, level of floods, extremeness of climatic tempera-
tures, depths of holes, mass of landslides, volume of rainfall, etc.)

The equation (11) can be accepted as unified for different types of dangers:
technogenic, natural and natural-technogenic.

In traditional formulation when performing analysis of threats to OGPD
initiated by dangerous processes, the first stage of the analysis or problem solving
is assessment of losses and risks relevant to accidents on OGPD objects. The
solution of the inverse task making it possible to classify the threats to OGPD
coming from known consequences of accident occurred on an (Table 2) is of
interest.

At the solution of such tasks, the intensity of threats is subdivided into the
following groups:

Group U1: the threats causing hypothetical accidents which can occur at the
options and scenarios of development which are not predicted in advance, with
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the greatest possible damages (total destruction of OGPD) and a large number
of the victims.
Group U2 group: the threats causing the beyond-design-basis accidents which
are followed by permanent damages of the SP critical components with high
level of damages and fatalities.
Group U3: the threats causing the design accidents followed by standard
outperformance with predictable and acceptable consequences.
Group U4: the threats causing the SP operating mode accidents followed by
deviations from normal operation conditions while OGPD is operating in
standard mode.
Group U5: the threats when an object operates in standard mode.

2.7 Design loads

The loading on offshore ice-resistant oil and gas structures can be split in three
groups: permanent, temporary and special loads [1, 2]. Among permanent loads are
the loads of the structure weight Рs.w. and self-weight of soil and soil pressure on
fixed piles. The temporary loads are subdivided into long and short term, namely:

• Long-term load:

◦ weight of equipment and drilling rig;

◦ weight of liquids, bulk materials and stocks of drill pipes and tubing;

◦ weight of warehouse equipment and tools; and

◦ weight of drilling cuttings (bore mud, etc.).

• Short-term load:

◦ load on drilling rig in and derrick table during drill string trip;

◦ snow loads (used for design of bowl type helicopter deck);

Type of accident Threat causing the accident Type of
threat

Hypothetical accidents (Type Т1) Combination of unknown, unlikely and the difficult
to predict constructive, technological initiating
events and affecting factors of huge intensity,
including terrorist attacks.

U1

Beyond-design-basis accidents
(Type Т2)

The affecting factors, the initiating events and
damages development are not known in full.

U2

Design accidents (Type Т3) The affecting factors are known and predictable. U3

Operating mode accidents
(deviations from standard
conditions) (Type Т4)

The affecting factors are studied and controlled. U4

Normal (standard) operating
conditions (Type Т5)

The affecting factors are well understood and
controlled.

U5

Table 2.
Accident and threat types.
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◦ due to structural icing;

◦ wind loads Рwind;

◦ waves Рwave and current Рcurr loads;

◦ loads caused by sheet and hummocked ice Рice;

◦ docking impact load; and

◦ helicopter impact load.

The special loads are the seismic ones Рseism and those initiated by natural
phenomena (structure base subsidence, additional dynamic loads due to impact of
ice filed on the structure imbedded in ice); and ice load due to hummocked nature
of ice fields (collision of the structure and iceberg). Seismic impacts are taken into
account during design of stationary platforms constructed in different regions with
seismic magnitude of 7, 8 and 9.

For definition of seismic loads, it is required to have data on seismological param-
eters of seismic zones: magnitudes, depths of earthquake sources, the epicentral dis-
tances, earthquakes frequency, seismicity of the site and spectral characteristics of
seismic impacts depending on engineering-geological conditions on construction sites.

Various types of loads on ice-resistant stationary platforms are schematically
presented in Figure 10.

When calculating the wind and wave loadings, it is expedient to accept load
factor for one of loadings equal to 0.9, and for another equal to 1. This assumption is
based on more realistic knowledge (from physical point of view) by reference to
correlation between these processes. In the case of basic combination, the calculated
values of short-term loadings (wind, wave and current) respectively refer to the
reliability factor which is equal to 1. For special combinations, these loadings are
calculated with factor 0.8, however, at the same time, as well as in the previous
case, two possibilities of wind and wave impacts on ice-resistant structures are
taken into consideration.

Figure 10.
Symbolic diagram of application of external loads on ice-resistant stationary platforms: 1—derrick; 2—deck;
3—jack structure; and 4—bottom module. For loads, the following symbols are used: Рsw—gravity force; and
Рх, Ру—horizontal (shear) and vertical (transverse) reactions.
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the greatest possible damages (total destruction of OGPD) and a large number
of the victims.
Group U2 group: the threats causing the beyond-design-basis accidents which
are followed by permanent damages of the SP critical components with high
level of damages and fatalities.
Group U3: the threats causing the design accidents followed by standard
outperformance with predictable and acceptable consequences.
Group U4: the threats causing the SP operating mode accidents followed by
deviations from normal operation conditions while OGPD is operating in
standard mode.
Group U5: the threats when an object operates in standard mode.

2.7 Design loads
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groups: permanent, temporary and special loads [1, 2]. Among permanent loads are
the loads of the structure weight Рs.w. and self-weight of soil and soil pressure on
fixed piles. The temporary loads are subdivided into long and short term, namely:

• Long-term load:

◦ weight of equipment and drilling rig;
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◦ weight of warehouse equipment and tools; and
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◦ load on drilling rig in and derrick table during drill string trip;

◦ snow loads (used for design of bowl type helicopter deck);
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◦ due to structural icing;

◦ wind loads Рwind;

◦ waves Рwave and current Рcurr loads;

◦ loads caused by sheet and hummocked ice Рice;

◦ docking impact load; and

◦ helicopter impact load.

The special loads are the seismic ones Рseism and those initiated by natural
phenomena (structure base subsidence, additional dynamic loads due to impact of
ice filed on the structure imbedded in ice); and ice load due to hummocked nature
of ice fields (collision of the structure and iceberg). Seismic impacts are taken into
account during design of stationary platforms constructed in different regions with
seismic magnitude of 7, 8 and 9.

For definition of seismic loads, it is required to have data on seismological param-
eters of seismic zones: magnitudes, depths of earthquake sources, the epicentral dis-
tances, earthquakes frequency, seismicity of the site and spectral characteristics of
seismic impacts depending on engineering-geological conditions on construction sites.

Various types of loads on ice-resistant stationary platforms are schematically
presented in Figure 10.

When calculating the wind and wave loadings, it is expedient to accept load
factor for one of loadings equal to 0.9, and for another equal to 1. This assumption is
based on more realistic knowledge (from physical point of view) by reference to
correlation between these processes. In the case of basic combination, the calculated
values of short-term loadings (wind, wave and current) respectively refer to the
reliability factor which is equal to 1. For special combinations, these loadings are
calculated with factor 0.8, however, at the same time, as well as in the previous
case, two possibilities of wind and wave impacts on ice-resistant structures are
taken into consideration.

Figure 10.
Symbolic diagram of application of external loads on ice-resistant stationary platforms: 1—derrick; 2—deck;
3—jack structure; and 4—bottom module. For loads, the following symbols are used: Рsw—gravity force; and
Рх, Ру—horizontal (shear) and vertical (transverse) reactions.
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As an example of the case when simultaneous impact of the wide spectrum
random loadings on ice-resistant structures for sea of Okhotsk conditions can use
the approach based on factors of loads combination shown in Table 3.

In the given case, it is proposed to analyze the following loads combinations:

I. basic combination of loads during ice-free season;

II. combination of loads during construction and assembling works in ice-free
season;

III. special combination allowing for seismic loads;

IV. combination for calculation of maximum efforts in structures of the topside
facilities;

V. special combination allowing ice loads occurring during freeze-up period;
and

VI. basic loads combination during freeze-up period depending on cycles’
number.

In special combinations, the seismic load of calculated earthquake with magni-
tude 8 is accepted allowing the possible side dynamic effects: liquefaction of soil in
the construction bottom and relevant subsidence, additional hydrodynamic load-
ings from ground shaking in case of open water and impact of ice fields on con-
struction jacks during the winter period. However, depending on the earthquake
source location, the specified side effects can happen with considerable time lag
with respect to ground shake time, and summation of the caused by them dynamic
impacts on a construction with seismic loads does not happen. Impact of the hum-
mocky ice-fields can have very serious consequences for a construction; therefore,
such case has to be separated as special loading and be analyzed in other special
combination of loads.

In terms of (1)–(5), the total risk R of SP operation as mathematical expectation
of incurred damages U should be presented as follows [3]:

Types of calculated loads Combinations

I II III IV V VI

Dead loads 1.0 1.0 0.9 1.0 1.0 1.0

Long-term live loads 0.95 — 0.8 1.0 0.95 0.95

Short-term live loads:

• ice load (h = 0.8 m); — — 0.8 — — 1.0

• wave load (repeated once in 100 years); 1.0 1.0 — — — —

• wind load; 0.9 0.9 0.8 1.0 0.8 0.9

• current load 0.9 0.9 0.8 — 0.8 0.9

Special loads:

• ice load (h = 2.5 m); — — — — 1.0 —

• seismic load — — 1.0 — — —

Table 3.
Factors of loads combinations.
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R ¼
Xn
i¼1

P Аið ÞUi, i ¼ 1, … , nð Þ, (12)

where Р(Аi) is the probability of causing damage Ui to a technological object and
other objects, the population and the environment in case of the emergency sce-
nario No. I and n is the number of possible outcomes of an emergency.

Generally, the probability P of occurrence of analyzed unfavorable event (or its
components Pi) is defined as the function of function (functionality) depending on
sources, corresponding affecting factors and objects subject to damage: person N,
off-shore technosphere object T and environment S; taking into account (3), the
probability will be defined by the formula:

P ¼ Fp PN tð Þ,PT tð Þ,PS tð Þf g ¼
X
i

FPi PNi tð Þ,PTi tð Þ,PSi tð Þð Þ: (13)

PN tð Þ,PT tð Þ,PS tð Þ are the probabilities of occurrence at time t of unfavorable
(dangerous) event initiated correspondingly by human factor, technosphere or
nature.

The general damage U or its components Ui defined by damages affected by the
population N, objects of a technosphere T and the environment S as follows:

U ¼ FU UN tð Þ,UT tð Þ,US tð Þf g ¼
X
i

FUi UNi tð Þ,UTi tð Þ,USi tð Þð Þ: (14)

UN tð Þ,UT tð Þ,US tð Þ are damages caused by unfavorable (dangerous) events at
time t from which suffered population N, objects of a technosphere T and the
environment S correspondingly.

At the present stage of technical regulation, it is recommended to estimate the
quantities of damages U and total risk R from unfavorable events by two indicators:
economic—in dollars, rubles (conventional units) and in human losses (fatalities or
non-fatal outcomes). Human losses should be estimated by the number of injured or
probability of fatalities.

Taking into account expressions of (13) and (14), components of damages and
probabilities of accidents can be calculated separately by use of various methods of
risk assessment. Also from the expression of the risk (12) presenting the summation
of risks of different emergencies, it becomes clear that to define the total risk, the
various methods for definition of its components can be used, i.e., the combined
approach is applied.

Combined risk analysis is based on the systematic approach that provides review
of the system of interest in a formalized manner, i.e., by studying of subsystems’
components by considering structural and functional features of this system at the
same time.

The damages and losses U caused by technogenic accidents and disasters are
defined by three basic components by taking into account expression (4):

U ¼ UT þ US þUN, (15)

where UT are damages to off-shore technosphere objects; US are environmental
damages; and UN are damages to the population (to the person and society).

Damages UT are defined by summation of damages from destruction of
industrial buildings and constructions of UTП type; damages from destruction
of civilian (residential) objects of UTГ type; and damages from destruction of
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Types of calculated loads Combinations

I II III IV V VI

Dead loads 1.0 1.0 0.9 1.0 1.0 1.0

Long-term live loads 0.95 — 0.8 1.0 0.95 0.95

Short-term live loads:

• ice load (h = 0.8 m); — — 0.8 — — 1.0

• wave load (repeated once in 100 years); 1.0 1.0 — — — —

• wind load; 0.9 0.9 0.8 1.0 0.8 0.9

• current load 0.9 0.9 0.8 — 0.8 0.9

Special loads:

• ice load (h = 2.5 m); — — — — 1.0 —

• seismic load — — 1.0 — — —

Table 3.
Factors of loads combinations.

90

Probability, Combinatorics and Control

R ¼
Xn
i¼1

P Аið ÞUi, i ¼ 1, … , nð Þ, (12)

where Р(Аi) is the probability of causing damage Ui to a technological object and
other objects, the population and the environment in case of the emergency sce-
nario No. I and n is the number of possible outcomes of an emergency.
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off-shore technosphere object T and environment S; taking into account (3), the
probability will be defined by the formula:

P ¼ Fp PN tð Þ,PT tð Þ,PS tð Þf g ¼
X
i

FPi PNi tð Þ,PTi tð Þ,PSi tð Þð Þ: (13)

PN tð Þ,PT tð Þ,PS tð Þ are the probabilities of occurrence at time t of unfavorable
(dangerous) event initiated correspondingly by human factor, technosphere or
nature.

The general damage U or its components Ui defined by damages affected by the
population N, objects of a technosphere T and the environment S as follows:

U ¼ FU UN tð Þ,UT tð Þ,US tð Þf g ¼
X
i

FUi UNi tð Þ,UTi tð Þ,USi tð Þð Þ: (14)

UN tð Þ,UT tð Þ,US tð Þ are damages caused by unfavorable (dangerous) events at
time t from which suffered population N, objects of a technosphere T and the
environment S correspondingly.

At the present stage of technical regulation, it is recommended to estimate the
quantities of damages U and total risk R from unfavorable events by two indicators:
economic—in dollars, rubles (conventional units) and in human losses (fatalities or
non-fatal outcomes). Human losses should be estimated by the number of injured or
probability of fatalities.

Taking into account expressions of (13) and (14), components of damages and
probabilities of accidents can be calculated separately by use of various methods of
risk assessment. Also from the expression of the risk (12) presenting the summation
of risks of different emergencies, it becomes clear that to define the total risk, the
various methods for definition of its components can be used, i.e., the combined
approach is applied.

Combined risk analysis is based on the systematic approach that provides review
of the system of interest in a formalized manner, i.e., by studying of subsystems’
components by considering structural and functional features of this system at the
same time.

The damages and losses U caused by technogenic accidents and disasters are
defined by three basic components by taking into account expression (4):

U ¼ UT þ US þUN, (15)

where UT are damages to off-shore technosphere objects; US are environmental
damages; and UN are damages to the population (to the person and society).

Damages UT are defined by summation of damages from destruction of
industrial buildings and constructions of UTП type; damages from destruction
of civilian (residential) objects of UTГ type; and damages from destruction of
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infrastructure of UTИ type (transportation, energy, pipeline, telecommunication
systems, etc.):

UT ¼ UTП þ UTГ þ UTИ : (16)

Environmental damages US defined by summation of damages to soil USП,
aquatic USа, air USв environment, flora USр and fauna USж are as follows:

US ¼ USП þUSа þUSв þUSр þ USж: (17)

Damages to the personnel and population UN are defined by summation of losses
from fatalities UNб and losses from injuries (permanent injuries and health dam-
ages) UNу, which are as follows:

UN ¼ UNб þUNу: (18)

Damages and losses quantitatively are defined by two types of parameters:

• in physical units—scales (number of damaged objects and injured people,
polluted and damaged territories by area); and

• in equivalent economic units (rubles, dollars).

In statistical estimation of the above damages, the summarized information
about emergencies from the state reports of departments can be used.

In probabilistic estimation of damages, the data from simulation modeling, data
on probable areas covered by the affecting factors, and probabilistic and statistical
data on vulnerability of objects, the environment and the population at various
emergencies are used.

In the analysis and risk assessment, various aspects of accidents and disasters
occurrence and development including various dangerous processes, the factors
initiating events, scenarios of development, objects and personnel pattern damage
function, etc. can be considered.

The variety of issues to be studied in the analysis process and risk assessment
requires application of various methods at various stages of the systems analysis of
examined object safety, as well as their integrated application.

Some methods in nature are integral ones; for example, the logical-and-proba-
bilistic method, which includes a graph method, a probabilistic method, a logical
reasoning method, event tree analysis and fault tree analysis are probabilistic
methods implementing the graph method.

Figure 11.
Basic scenarious of accident development on sea platform (SP).

92

Probability, Combinatorics and Control

The main possible events chains for scenarios of accidents on OGPF are
presented in Figure 11. The main events (faults) causing accidents are the leak
and rupture of technical pipelines. These faults cause development of accidents in
various scenarios and corresponding damages. All these possible scenarios and
corresponding damages have to be taken into account.

2.8 Consideration of ultimate limit states at risk assessment of SP condition

When forming a system of classification of ultimate limit states in routine
operating conditions of objects and in case of occurrence of accidents and disasters
in comprehensive technical systems, it is required to identify various combinations
of states for five groups of situations [1, 2, 5]:

• ultimate limit states for regular service conditions;

• ultimate limit states for abnormal service conditions;

• ultimate limit states for designed accident;

• ultimate limit states for beyond-design-basis accident; and

• ultimate limit states for hypothetical accident.

Ultimate limit stress for normal service conditions have to be in full reflected in
design codes of potentially hazardous objects, consider a set of design operating
modes and proceed from all previous operating experience of similar objects.

In case of violation of normal (i.e., abnormal) service conditions (at any devia-
tion from planned operating procedure causing the necessity to change operating
mode or stop an object without necessity to activate or use all safety systems) the
given above types of ultimate limit states can be used, or more extensive and wide.
Such expansion is caused by the increase of number of work abnormalities and
range of operation parameters changes.

When analyzing a design accident requiring the stop of an object and activation
of safety systems, in addition to mentioned above types, it is necessary to consider
those types of ultimate limit states which occur at increased mechanical, thermal,
electromagnetic and other loads at scheduled stages of accident development.

For beyond-design-basis accidents followed by full activation of safety systems,
it is not possible to exclude considerable damages of the most critical components
and the equipment in general; in this case, the ultimate limit states include not only
standard ones, but also new ultimate limit states that are object specific at broad
variation of load conditions at all stages of accidents development.

The hypothetical accidents are most severe, hardly probable and poorly studied,
and the worst combination of the affecting factors and that is why it is necessary not
only to provide the analysis of the ultimate limit states stated above but also to
analyze the states at which significant changes of conditions of working substances
and structural and mechanical conditions of engineering materials are possible.

When accidents (explosions, destruction, fires, collisions, collapses, chemically
dangerous substances release) are occurring in the load bearing structures, the
corresponding ultimate limit states are arising. At different stages of accidents
development, these limit states can change both in the direction of scaling up of
consequences, and in the direction of localization and full stop of the accident
development.
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When determining safety of the most important objects, the following types of
ultimate limit states have to be considered: plastic deformation and forming; short-
duration elastic failure; delayed or fast brittle failure; long-term static fracture;
cyclic (low- and multi-cycle) destruction; creep strain accumulation; cyclic strain
accumulation; buckling; dangerous vibrations occurrence; coupled units wear; sin-
gle loading cracks initiation and propagation; cyclic cracks initiation and propaga-
tion; corrosion, corrosion and mechanical, cavitation and erosive damages;
leakages; and change of structures and a condition of the bearing components.

The ultimate limit states listed above identify methods, structure and criteria of
safety analysis by integrated approaches of mechanics, physics and chemistry of
disasters.

In the process of design of structure, its components and, at the bottom, the
following groups of the ultimate limit states are taken into consideration. The
first group with unacceptable plastic strain and damages includes ultimate limit
states surpassing of which will cause total unusability of the structure or total (or
partial) loss of supporting capacity of the platform substructure. The second group
with damages accumulation and development includes the ultimate limit states
where surpassing makes impossible the normal operation of the platform
substructure.

It should be noted that the above-listed ultimate limit states were taken into
account at design of the reinforced concrete support substructure of gravity type for
offshore stationary platforms on the sites of the Sakhalin-II project for Piltun-
Astokhsky (PA-B) and Lunsky (LUN-A) fields.

The design elements of the platform substructure can be split into criticality
categories depending on the external impacts taken into account:

High criticality design elements—these are elements whose destruction can
cause fatalities, serious damages to constructions and environment contamination.

Low criticality design elements—these are elements whose destruction will not
cause fatalities, serious damages to constructions and environment contamination.

Between high criticality design elements, the following ones shall be listed:

• design elements of skirt and skirt interface with caisson bottom;

• column walls in areas of their connection with the bottom and top plates of
overlapping of a caisson;

• parts of walls and columns overlapping subject to significant loads
concentration;

• design elements contacting with ice;

• connection of deck with the column;

• outer walls, floor slabs and caisson bottom;

• internal waterproof walls;

• design elements of supporters of the critical and safety equipment including
riser holders; and

• structures which damage and destruction will cause dramatic environment
contamination including risers.
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Between low criticality design elements, the following ones shall be listed:

• internal structure not involved in provision of general strength; and

• design elements of equipment supporter not identified as elements of critical
importance.

2.9 Comprehensive assessment of risk, strength, in-service life, reliability and
safety

Characterization of initial strength, in-service life, risk and safety of the bearing
elements of the sea oil and gas production platform in terms of impact of a complex
of loads (including such specific service conditions as collisions with the drifting ice
floes, impact of storm and gale-force winds, existence of the corrosive environ-
ment, low-temperature embrittlement effects, etc.) is the comprehensive problem
considering occurrence of the cyclic dynamic loads corresponding to these condi-
tions and, consequently, nonlinear change in time of the kinetic fields of stresses
and deformations in these elements of SP under the impact of irregular loads [1–4].
In this regard in zones of design concentration, the local stresses and deformations
have the increased values and the processes of material damage run more inten-
sively leading to appearance of local destructions zones (cracks) eventually devel-
oping into macrodestructions (loss of bearing capacity). In such conditions,
depending on the nature of loading and the operational environment, various
mechanisms of accumulation of damages and destruction are implemented.

For the analysis of operational load of SP (as well as on other objects of energy,
transport, oil and gas chemistry) at all stages of the life cycle, curves of the param-
eters dependent on calculated or real force impact on the bearing elements of the oil
and gas production platform (set in the specification or measured during operation)
are plotted. Among these parameters are number of loading cycles N, time τ,
temperature t as well as service forcing P, stress σ and deformation e. The curves of
parameters P, t, σ and e as function of time (Figure 12) are plotted for all stages and
operational phases.

Figure 12.
Diagram of operational loads and their basic parameters.
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Between low criticality design elements, the following ones shall be listed:
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and deformations in these elements of SP under the impact of irregular loads [1–4].
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These dependences are initial for the analysis of strength, in-service life, risk and
safety of elements of engineering designs both for their initial states and for the
damaged states. Values P, t and τ, are, as a rule, set by the modes of operation and
can be registered by instrumentation and control diagnostic systems or by moni-
toring equipment.

At the same time, σ and e parameters of the general and local stress-deformed
states can be obtained with the help of calculation based on the values of parameters
P, t and τ or purposely measured by means of full-scale strain gauging and ther-
mometry.

In Figure 12 where a block of external and internal technological operational
loadings are presented, the following standard modes of loading of the SP elements
are highlighted: assembling (AS), tests (TS), start-up (SU), stationary the mode
with maintenance of set operating parameters (SO), basic parameters adjustment
(PA), accident occurrence (AO) (including those after of earthquakes), protection
systems actuation (PS) and shut-down after planned or fault situation (SD).

When analyzing the initial and residual strength, service-life, survivability, risk
and safety of the oil and gas production platform, the key phase is decomposition of
SP and selection and identification of its potentially dangerous critical components,
defining the greatest risks of accidents and disasters occurrence. The critical zones of
SP components and critical points in them are identified on the basis of experimental
and computational studies of stress-deformed and ultimate limit states. In such zones
and points, as a rule, processes of local destructions are initiated followed by tramline
destructions. At the same time for further experimental and computational evalua-
tions of initial and residual strength, service-life, survivability, risk and safety, the
following characteristics of history of loading (Figure 12) are accepted:

• maximum rated load Pmax;

• maximum (minimum) rated temperature tmax(tmin);

• time of standard load conditions τi and total time pf all modes and blocks of
modes τΣ (life capacity).

With the help of this history of loading set are additional design parameters:

• peak-to-peak range of forcing ΔP and forcing amplitude;

• peak-to-peak range of temperature variations Δt; and

• peak-to-peak range of vibration loads ΔPВ (dual- or multi-frequency) loads.

From the analysis of all i modes according to standard calculation, the most
adverse combinations of P and t are identified: Pmax, tmaxð Þ—for heavy loadings and
areas of increased temperatures impacts, and Pmin, tminð Þ—for heavy loadings and
low temperatures (including cryogenic). A set of such combinations is defined by
taking into account the number and geometrical shape of the designed details or
elements and number of critically dangerous zones, sections and points in them.

For quantitative evaluation of static and cyclic strength, as well as in-service life
[1, 2, 5], experimental and computational diagram in coordinates of “σa-N”

(Figure 13) is used.

σа ¼ еа � Е ¼ F N, rσ, σт, σвf g, (19)
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where σа, еа are strength and deformation amplitudes; Е is the elasticity modu-
lus; N is the number of cycles prior to destruction; rσ is the stress ratio; σт, σв are
yield and ultimate stress limits of the structural material.

On Figure 13: σai, (σaв)i is the amplitude of basic and vibratory stresses for
i-mode; ni, (nв)i is the number of cycles for basic and vibratory loads; Ni, Nвi is
the number of destructive cycles; σт, σв are yield and strength limits; [σa*], [N] are
acceptable tensions amplitudes [σа] and endurance capability [N] are defined on
the basis of traditional calculations with consideration of ultimate factor of safety nσ
and marginal life nN

σ½ � ¼ σ

nσ
, N½ � ¼ N

nN
: (20)

When making stress assessment, the characteristics σВ and σТ have to be set with
taking into account service conditions—impact of loading cycling, temperatures
and operating environment.

2.10 Criteria of strength, in-service life, safety and protection level (security)

As it was noted above, the solution of fundamental problems of provision of
safety, risks and security of critically and strategically important infrastructure
facilities is based on the analysis and development of fundamental scientific
approaches to issues relevant to strength and in-service life, development of engi-
neering methods of calculations and tests, creation of norms and rules regulating
design and fabrication of objects of offshore technosphere, ensuring their function-
ing within identified limits of the design and beyond-design modes and parameters.
Nowadays, the analysis and development of all components of the criterial sequence
“Strength ! rigidity ! consistency ! in-service life ! reliability ! survivability
! safety ! risk ! protection level (security)” became the basic ones, step by step
raising requirements imposed on their routine (normal) functioning and ensuring
realization of design parameters at all stages of life cycle.

Figure 13.
Diagram that is used for identification of static, cyclic and long-term initial strength and in-service life
parameters: I—AS, SU,TS, PS, SD; II—SO; III—PA; and IV—V (vibration Δσv�).
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design and fabrication of objects of offshore technosphere, ensuring their function-
ing within identified limits of the design and beyond-design modes and parameters.
Nowadays, the analysis and development of all components of the criterial sequence
“Strength ! rigidity ! consistency ! in-service life ! reliability ! survivability
! safety ! risk ! protection level (security)” became the basic ones, step by step
raising requirements imposed on their routine (normal) functioning and ensuring
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Figure 13.
Diagram that is used for identification of static, cyclic and long-term initial strength and in-service life
parameters: I—AS, SU,TS, PS, SD; II—SO; III—PA; and IV—V (vibration Δσv�).
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The specified requirements implemented in this knowledge area are imposed on
operability of critical structures and expressed by means of the corresponding
characteristic parameters of criteria dependences for the above sequence.

A “pyramid” of provision of technosphere objects’ operability according to the
main criteria (Figure 14) was constructed based on requirements and parameters
providing safe operation conditions of these objects.

From Figure 14, it is clear that every element located above the other one is
supported by the lower elements, i.e., it is laid on it as on foundation. It eventually
means that the solution of the task of security, risk and safety provision has to rest
upon the solution of problems of “survivability ! reliability ! in-service life !
rigidity ! consistency ! strength” with passing through traditional stages of their
interaction I! VIII. Fundamental results of identification and provision of strength
(stage I) were obtained in the beginning of the nineteenth century and it took a long
time, while complete analysis of rigidity and resistance (consistency) (stage II)
came to the end by the end of this century. In the twentieth century, the theory and
practice of provision of “in-service life! reliability! survivability” (stages III, IV, V)
were formed. At the end of the last century, the fundamental problem of the analysis
and safety and risk provision (stage VI) was formulated for all potentially hazardous
civilian and defense objects with transition to management (stage VII) of safety and
security according to risks criteria. At these stages, safety and security requirements
were formulated like governing, and this provoked development of the new line where
consequence “VII! I” becomes the basis for the future technosphere development.
At the beginning of this century, the new task (stage VIII) was formulated and this
is provision of safety and security of crucial objects based on anti-accidents and
anti-disasters of technogenic, natural and anthropogenic character performance.

According to abovementioned and expressions (1)–(9) and Figure 14, the
proofness of SP is the function of function (functional) Fz of the basic change in
time τ parameters

Zк τð Þ ¼ Fz Rσ τð Þ,RNτ τð Þ,Lld τð Þ,PPR τð Þ, S τð Þf g, (21)

where Zк is the proofness determined by the ability of an object to resist to
accidents occurrence and development of adverse situations in normal and abnor-
mal conditions; Rσ is the strength determined by resistance of the bearing object
elements to destruction under normal and emergency impacts; RNτ is the in-service
life (endurance capability) determined by time τ or cycles number N prior to

Figure 14.
General structure of provision of technosphere objects operability.
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destructions or instability; Lld is the survivability determined by ability of an object
to perform limited functions at damages d and dimensions of defects l that are
inadmissible according to norms; PPR is the reliability determined by ability of an
object to perform specified functions in the known or defected state at specified
loadings P or service-life RNτ; and S is the safety determined by the ability of an
object not to pass into a catastrophic state causing significant damages to the
person, the technosphere and the environment.

As it was already mentioned, operational conditions of loads of SP are charac-
terized by a significant amount of various factors and parameters; among them are
loading conditions and levels of static and dynamic mechanical loads (Figure 15a)
and impact of corrosive environment, of external factors, etc. These factors taken
together and each one individually can cause significant change of nature of behav-
ior of material, its mechanical properties, ability to resist cyclic deformation in
comparison with standard design loading specifications (stationary application of
cyclic load, room temperature, etc.) at which standard experiments are usually
conducted to define the corresponding characteristics. They also may contribute
changes in the corresponding patterns of damages accumulation in the material of
the equipment components experiencing their influence when in operation.

Cyclic loading waveform of random operating modes as a rule has more sophis-
ticated nature than widely used in experimental practice sinusoidal or triangular
waveforms of cyclic loadings.

In some cases, it is obviously possible to schematize and replace actual condi-
tions of loadings by more simple, single-frequency modes. However, generally, the
patterns of change of the loadings influencing the structural elements have random
nature (Figure 15b).

The actual loading modes are schematized (Figure 15c,e) in the process of the
loading history tracking (Figure 15e). Approximation of simulated loading condi-
tions of the equipment as accurate, in respect to reality, as possible for each factor
occurring during equipment operation and taking into consideration of impact of
these factor on parameters of the characteristic equations and equations describing
damages accumulation process is an effective step for adjustment of applied
methods for calculations of strength, endurance capability and reliability of the oil
and gas production platform components’ and hence to identification of really
grounded and justified their safe in-service life.

Cyclic strength σ and endurance capacity N are defined by the use of the stress-
cycle relationship and the equation

ea ¼ 1
2 � 4Nð Þmp

ln
100

100� ψK
þ 1

4Nð Þme
� SK
E 1þ 1þ2

1�2

� � , (22)

where ψK is the limit plastic yield of contraction, SK is the rupture strength of
contraction and E is the elasticity modulus defined in the process of standard tests
of static tension. Value of index of plastic mp and elastic me components of defor-
mation еа in the absence of direct data on their values can be determined with the
help of material yield stress and ultimate stress values, which are as follows

mp ¼ 0, 36þ 2 � 10�4σB,me ¼ 0, 132 � lg SK=σ�1ð Þ, (23)

where value of fatigue limit σ�1 can be defined as σ�1 ffi 0, 45σB, and rupture
strength of contraction SK, dependent on ultimate stress limit σB and relative
narrowing of contraction ψK , correspondingly comes from relation SK ¼
σB 1þ 1, 4 � ψKð Þ: Parameters σв, ψK, SK in general case are dependent on time τ,
operational temperature and full size cross-sections of SP bearing elements.
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2.11 Probabilistic analysis of strength, in-service life and risks

Because SP is functioning in the conditions of the high level of uncertainty
concerning external impacts during operation period and bearing capacity level
changing due to structures degradation, the criteria in expressions (21)–(23) have to
be probabilistic [2–6].

Let function of ultimate limit states for the considered platform element is
defined by a ratio of bearing capacity and loading l. Generally, function of ultimate
limit states

g r, lð Þ ¼ r� l (24)

Figure 15.
Methods of schematization of operational modes of loads. a) Sign-variable and sign-constant service loading
mode. b) Random and routine loading modes. c) Service loading modes schematization. d) Modeling mode of
random loading with equally probable change of stress amplitude in set range. e) Rainflow technique.
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is written as g xð Þ, where x ¼ x1, x2,⋯, xnð Þ is the vector of variables describing the
element state. Then the element failure can be generally described as follows (Figure 16)

F ¼ xjg xð Þ ≤0f g (25)

Conditional probability of failure in case when the element is under load L ¼ l is
defined by function FR xð Þ (this is due to the fact that FR xð Þ ¼ P R< lð Þ). Then, using
the theorem of total probability, it is possible to write expression for the probability
of element failure as follows:

P Fð Þ ¼
ð∞
�∞

FR xð Þ f L xð Þdx, (26)

where R is the bearing capacity and x ¼ l is the load.
Let us consider the random variable of margin of safety, in-service life and

proofness (safety) M ¼ R� L equal to excess of bearing capacity over load. As R
and L are random variables, M is also the random variable with mathematical
expectation μM and rms deviation σM. They can be calculated from mathematical
expectation and rms deviation of values R и L:

μM ¼ μR � μL

σM ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
σ2R þ σ2L þ 2ρRLσRσL

q
(27)

The probability of system failure which is equal to the probability of value M be
less or equal to 0.

P Fð Þ ¼ P M ≤0ð Þ ¼ Φ � μM
σM

� �
¼ Φ �βð Þ, (28)

where β is the proofness (safety) index (this variable sometimes is called reli-
ability index) of the element analyzed upon its ultimate limit state g xð Þ. Value β
characterizes the distance of the ultimate limit state surface and can be treated as
safety (proofness or security) characteristics of element relative to analyzed failure
mechanism.

If the destruction mechanism relative to excess of maximum permissible load is
considered, then equation of the surface of ultimate limit states takes the form

Figure 16.
Probability density functions for bearing capacity and loading. Probability curves for design parameters at
assessment of chances of failure.
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gU xð Þ ¼ R� L, (29)

where R is the strength (bearing capacity) of the element and L is the maximal
load during the analyzed period.

Safety (proofness or security) upon the criterion of exceed of maximal permis-
sible load will be presented by the expression:

βU ¼ μR � μLffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
σ2R þ σ2L þ 2ρRLσRσL

p : (30)

If to talk about the fatigue mechanism of element destruction, then equation of
the surface of ultimate limit states takes the form gF хð Þ ¼ N � n where N is the
number of cycles prior to destruction at the set level of stresses range and n is the
number of cycles to which the element is exposed during use. Then the proofness of
element upon criterion of fatigue failure will look as follows:

βF ¼ μN � μKffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
σ2N þ σ2K � 2ρNKσNσK

p : (31)

Because of hostile environment influence on the OGPF elements and relevant
degradation processes in them, the function of element ultimate limit states has to
depend on time. In the considered statement, the proofness (safety or security)
reserve of a critical element is estimated in the form of M = R-L, where R is the
bearing capacity in critical cross-section and L is the loading in the same cross-
section. If to consider that both random variables of R and L in real systems can
depend on time, then the bearing capacity can change because of degradation of
material properties (corrosion, fatigue, etc.); loading, in its turn, can change due to
change of service conditions, of external environment, etc. At that their mathemat-
ical expectations μR tð Þ μL tð Þ and rms deviations σR tð Þ σL tð Þ will change as well. Then
the margins of bearing capacity can be written as follows:

M tð Þ ¼ R tð Þ � L tð Þ: (32)

Figure 17.
Load and bearing capacity changing in time.
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In this case, the probability of failure becomes the function of time:

P f tð Þ ¼ P R tð Þ ≤L tð Þf g ¼ P g X tð Þð Þ ≤0f g, (33)

where g X tð Þð Þ ¼ M tð Þ, dependingon timeproofnessmargins as per bearing capacity.
The probability of system failure is

P f tð Þ ¼
ð

g X tð Þð Þ ≤0
fX tð Þx tð Þdx tð Þ: (34)

The identification of time moment t ∗ when loading L tð Þ for the first time will
exceed the bearing capacity of an element R tð Þ is an important task (Figure 17).

2.12 Engineering justification of strength, in-service life and safety

As it was noted above, continuously raising requirements to regular (normal)
and abnormal functioning are imposed on modern SP. In modern conditions of the
analysis and provision of safe operation of technosphere objects, the new task about
identification and safety and security provision upon criteria of actual R τð Þ and
acceptable [R τð Þ] bearing capacities are used in expressions (7) and (9). Within that
narrative [1–4, 7], only characteristics of safety with the set levels of risks give
justification to acceptance (or rejection) of decisions on permission of new projects
realization or permission to operate running offshore objects.

Operational impacts on the SP elements in general (periodically arising ice
loadings, service, wind and seismic loads) are characterized by the following
parameters, in particular numbers of loading cycles N, time of loading τ and ambi-
ent temperature t. At the same time, N and τ define in-service life of the examined
object, while t defines its cold brittleness. The imperfection of bearing structures is
defined by the sizes of cracks of l, their shape and location. Sizes l are initial for
determination of objects survivability. Characteristic of flexibility, rigidity, stability
λ of the bearing component of the analyzed element depends on a shape and
dimensions of cross section, length and type of supporting. It defines his stability.

External routine and abnormal impacts (including accidents and catastrophic)
generate in the analyzed element design stress level σ and deformations e; they
depend on the applied loads (mechanical, temperature, aero hydrodynamic, seis-
mic, etc.), a way of their application, the sizes and shapes of cross-sections. If these
impacts increase, then at some point in the bearing elements, the ultimate state
limits (critical) are achieved, and these elements are destructed, losing stability and
getting inadmissible deformations. Stresses and deformations at this moment
achieve extreme (critical) values σf, ef.

Values of characteristics σf, ef according to Figures 12–14 depend on values N, τ,
l, t, λ. Based on these dependences and upon experimental and laboratory studies of
the construction materials, the following are plotted:

• fatigue curves (live curve) for stresses “σ–N” and deformations “e–N”;

• stress rupture curves for stresses “σ–τ” and deformations “e–τ”;

• crack resistance curve (survivability) for stresses “σ–l” and deformations
“e–l”;

• temperature resistance curve (cold- and heat resistance) in coordinates of
stresses “σ–t” and deformations “e–t”; and
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• stability curves (general or local) in coordinates of stresses “σ–λ” and
deformations “e–λ.”

At relatively low levels of external routine impacts when occurring deformations
are elastic, the calculations relevant to stresses and deformations have identical
results. At the increased abnormal and stress impacts when occurred are general
and local plastic deformations, the calculations made with respect to stresses σ and
deformations e are divergent—the values of stresses σf happen to be insensitive to
N, τ, l, λ variation. This fact predetermines the importance of transition from
the traditional determined calculations in terms of stresses σf to probabilistic
calculations in terms of deformations ef [2, 5, 7–9].

In case of the integral analysis of strength, in-service life and safety, the defor-
mation curve in true coordinates (the true stress σ and true deformations e) is
presented as follows

σ ¼ σT е=еТð Þm, (35)

m ¼ lg Sk=σTð Þ=lg ek=eTð Þ, (36)

where σТ is the yield stress; m is the work hardening exponent (0 ≤ m ≤ 0.3); Sk
is the tension strength; eT = σТ/E; ek = Sk/E; and E is the elasticity modulus.

The strength-duration curves σtBτ and ductility property ψ t
kτ for time τ are the

basic ones in case of long-term loading at increased temperature

σtBτ ¼ σtB τo=τð ÞmВ,ψ
t
kτ ¼ ψ t

k τo=τð Þmψ (37)

where τ0 is the time of short-time tests (τ0 ≈ 0.05 h); andmB,mψ are the material
characteristics depending on temperature t and yield stress σtT (0 ≤ mв ≤ 0.08,
0 ≤ mψ ≤ 0.15). Then, it is possible to obtain the cyclic stress curve “σ ∗ - N” as per
parameter τ.

In estimating the effect of temperatures t, different from room temperature
t0 = 20°С (both in the range of low climatic temperatures 20°С ≥ t ≥ �60°С,
including cryogenic range -60°С ≥ t ≥ �270°С and elevated 20°С ≤ t ≤ 350°С and
high temperatures 350°С ≤ t ≤ 1000°С), standard tests are carried out in
thermocryocameras. In the absence of such tests’ results, the estimated depen-
dences of mechanical properties on temperature of t °С or T °К (T = t + 273) T are
plotted

σtm, σ
t
в

� � ¼ σт, σвf g � βm, βвf g 1
Т
� 1
То

� �
(38)

where Т is the temperature in Kelvin degrees (Т = to + 273); and βT and βB are
designed material characteristics dependent on σT. Limiting yielding is calculated
via ψк, σT and σB at room temperature.

For dynamically loaded components of the SP, the values of βT decrease from
120 to 50 with σT changing from 300 to 700 MPa, and at increased deformation
velocities _e ¼ de=dτ (100 с�1 ≤ _e ≤ 103 с�1), there is increase of yield stress and
ultimate stress limit defined experimentally or calculated with the help of polyno-
mial equation

σ _е
в ¼ σв _е= _е0ð Þmев , σ _е

т ¼ σт _е= _е0ð ÞmT (39)

Dynamic plasticity performance calculation is done via ψк, σT and σB, with the
help of the same relations that are used for temperature effects description.
Eqs. (37)–(39) provide possibility to calculate work-hardening index m in Eq. (36).
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The entire system of experimentally defined (E,σT, σB, ψк) and designed (m, Sк,
mp, me, mB, mψ, βT, βB, n _e

B, n
_e
T) characteristics is identified with regard to results of

mechanical tests of smooth standard samples.
The real bearing SP components have various zones of concentration and

various sizes of cross-sections. Performance of the mechanical tests for
assessment of sensitivity to a factor of tension concentration (in elastic and inelastic
areas) and size factor represents essential methodical difficulties and is time-
consuming.

For big group of constructive metal materials due to use of the modified analyt-
ical decisions (of Neuber type), it is possible to receive correlation of tension
concentration factor Kσ and deformations Ke in elastoplastic domain with theoreti-
cal concentration factor ασ in elastic domain, taking into account the relative level of
the effective stress σ/σT and work-hardening index m

Kσ,Kef g ¼ Fk ασ, σ=σT,mf g: (40)

For existing offshore structures 1 ≤ ασ ≤ 5, 1 ≤ Kσ ≤ ασ, ασ < Ke ≤ ασ
2.

For experimental evaluation of size facto impact (sizes F of transverse cross-
section) on mechanical properties of large-size SP components a set of polynomial
equations is recommended:

σFT ¼ σT F0=Fð ÞmTF , σFВ ¼ σВ F0=Fð ÞmВF ,ψF
k ¼ ψk F0=Fð ÞmψF , (41)

where mTF, mBF, mψF –characteristics not separate steels, but their groups
(as per the stress level and doping level (mTF ≈ mBF = 0.013, mψF = 0.024–0.04).

For assessment of survivability characteristics based on crack resistance criteria
in presence in the SP bearing structures of cracks like defects, the standard, unified
and special tests with variation of cracks sizes l, cross-sections F and loads technique
Q shall be conducted. The critical value of the stress intensity factor within the
frameworks of the linear fracture mechanics is generally viewed as fundamental
characteristic of crack resistance at cyclic loading

KIc ¼ σc
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
πl � F l, F,Qf g

p
, (42)

where σс is the failure stress for the sample with limitation σс ≤ (0.9–1.0)σT.
At the same time, by numerous experiments, it was shown that at change of l, F,

Q, and temperature t, time τ, deformation velocity and stress voluminosity Iσ,De the
basic characteristic KIc changes (in the same manner as change other basic design
characteristics σT, σB, ψк.).

As the first assumption in technical practice use is made of minimal values of KIc

depending on the temperature t as this not always is counted as safety factor. The
most acceptable in comprehensive assessment of strength, in-service life and safety
of the SP components is the use of the minimum values defined on cylindrical
samples with a circular crack with further calculation of KIc value as per basic
characteristics σT, m, eк with regard to changes caused by variation of parameters l,
F, Q , t, τ, Iσ, De. In more general case when conditions of linear mechanics of
destruction are not satisfied and there are considerable deformations of plasticity
and creep, instead of the standard characteristics KIc (or critical integral Jc and
critical cracks opening δс), the deformation criterion of KIec is developed and
implemented, where KIec is the critical factor of deformations intensity [5–7].
Factually this factor plays the same role as deformations concentration factor Ke in
(41) upon condition of similarity of ασ and KI. At the same time, the modified
analytical solution with regard to (4.14) type gives dependence
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KIe ¼ K
pke
I , (43)

where KI ¼ KI
σт

; σn ¼ σn=σт; σт is the yield stress; Pke ¼ 2�n 1�mð Þ 1�σnð Þ
1þm is the gen-

eralized parameter depending on work-hardening index m and relative level of
rated stresses; m is the work-hardening index for deformation curve; and n is the
characteristic of structural material type n ≈ 0.5.

The value of stress intensity factor in terms of operation at stress σn with regard
t0 (4.14) equals to

KI ¼ σn
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
πl � F l,F,Qf g

p
: (44)

Expressions (41) and (44) make it possible to get conditions of local
destruction—crack formation (41) and its development according to (43).

In presence of cracks and use of local criterion obtained is expression to plot the
fracture diagram connecting increment of the crack length Δl with the rated stress
value and designed parameters of mechanical properties

Δl ¼ 1
2π

KIe

e f

 !
: (45)

where e f ¼ 1
eт

еkð Þ.
If loading process is cyclic, the value Δl is equivalent to crack increment in

preplanned cycle Δl ¼ dl
dN, and the main parameter of loading appears to be the

peak-to-peak range of deformations intensity factor ΔK Nð Þ
Ie in this very loading cycle

Nwith a variable work-hardening indexm =m(N). The valuem =m(N) depends on
cyclic properties of materials that can be as follows:

• cyclically stable—m(N) does not change depending on number of half-cycles
of N;

• cyclically hardening—m(N) increases with growth of N; and

• cyclically softening—m(N) decreases with growth of N. Then

dl
dN

¼ 1
2π

ΔK kð Þ
Ie

e f

 !2

¼ 1
2πe2f

ΔK
kð Þ
Ie

� �2
¼ Ce ΔKI

� �me

: (46)

Expression (46) with regard to expressions (43), (44) is similar to known Paris-
Erdogan equation when С and mk are material constants; however, in expression
(46), the values C and m are variables and are calculated. Mechanical tests for
identification of KIe,KIec, dl=dN within the frames of nonlinear destruction
mechanics are more comprehensive than those in linear destruction mechanics
when identified are values of KIc and dl/dN. In non-routine events, emergency and
catastrophic situations in nonlinear setting of the problem analyzed are the follow-
ing essential effects of redistribution of the local plastic deformations and creep
deformations depending on m, t, τ, N, F, Iσ, De in case of probabilistic approach.
Noted complexity is overcome within deformation destruction criteria at setting of
the general problems of strength, in-service life, reliability, survivability, risks,
safety and SP equipment protection.
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Theoretical and practical solutions of the considered problems of strength, in-
service life, reliability, crack resistance were already performed for such high-risk
objects as nuclear reactors, hydraulic and thermal power stations, aircraft, main
pipelines and unique engineering constructions.

The ground for the analysis and risk management directed to quantitative eval-
uation of critical and acceptable risks is based on the matrix of risks. Qualitative and
quantitative risk assessment is based on the standard matrices of criticality deter-
mined by probabilities of adverse events occurrence (destructions, failures, etc.)
and consequences of these events. However, within risk matrixes, the mechanisms
of material and the bearing SP components degradation relevant to the erosion and
corrosion processes are considered.

The listed above approaches, methods, criteria, design schemes and calculation
dependences give the chance to carry out assessment of SP technical condition and
risks monitoring.

3. Development of methods of calculations and justification of strength,
in-service life and safety

3.1 Techniques of provision and enhancement of strength, in-service life and
safety

Taking into account a possibility of reaching in time of the ultimate limit states
in the wide range of loading parameters, further it is required to define the follow-
ing groups of situations occurring during SP functioning as presented in Table 2.

Each class of situations corresponds to diminution of safety level of the analyzed
objects while diminution of safety level can be estimated on expressions (1)–(9) as
per values of risks Rэ

i tð Þ of objects operation on a specified time interval of opera-
tion. Quantitative values of risks Rэ

i tð Þ are calculated as product of the probability of
occurrence of each of the specified situation i - Рэ

i tð Þ by economic losses values as
per analyzed situation Uэ

i tð Þ. At the same time, the condition of safety provision
takes the following form nR ¼ Rc tð Þ=Rэ

t tð Þ where Rc tð Þ is critical (inadmissible,
unacceptable risk), Rэ

t tð Þ is designed risk for the moment of operation t for mode i
and nR is the safety margin as per risks.

According to Table 2, the last three abovementioned groups of the situations
(T5, T4, T3) occurring during objects functioning can be referred to a kind of the
risks which are monotonously increasing up to critical values. Such risks, mainly,
are caused by the controlled processes of damages and degradations of physical-
mechanical properties of material relevant to its aging. The first two groups (T2,
T1) correspond to the occurrence of the most dangerous situations with
extreme impact parameters (earthquakes, tsunami, acts of terrorism and military
actions). These cases require use of the most difficult calculations, tests,
modeling, diagnostics, monitoring and protection. In this case, classic methods of a
material consumption justification, constructability and efficiency are insufficient.
In such statement, the approaches presented in clauses 2.9–2.12 have to be
implemented.

3.2 Risk-based inspections

In case of use of foreign and domestic safety standards for risk analysis, the
approaches given in [1, 2, 10, 11] can be rather efficient:
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• flow chart and fault-tree construction techniques (Figure 11);

• probabilistic modeling technique (Figures 7 and 8); and

• risk-based inspection (RBI) technique developed by Shell Global Solutions
International company for residual life evaluation and planning of the objects’
high-pressure equipment health monitoring frequency with consideration of
risks-analysis (Figure 18). Inspections and tests planning is performed upon
analysis of data about current technical condition of specified equipment item.

In the approach (Figure 19) presented above by analogy with Figure 4, the
classes and categories of criticality, consequences of damages from accidents and
accidents can be assessed in a similar way to Figure 4.

The risks analysis technique is based on information about scenarios of dange-
rous situations and probabilities of their occurrence received a priory. It is possible
for SP for which design and operation experiences are accumulated already. In
engineering design performed according to clauses 2.9–2.12, the inspections fre-
quency can be obtained upon calculations as per expressions (18)–(41).

Figure 18.
Basic diagram of implementation risk based inspections technique.

Figure 19.
Criticality and risks matrix.
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3.3 Monitoring and seismic protection of offshore platforms

One essentially important question in the problem of protection of objects of
offshore and land infrastructures is provision of SP seismic stability; this can be
achieved with the help of developed scientific bases of design of self-lubricating,
and self-adjusting sliding supports with reverse motion used as seismic-insulators
for bridges, industrial and civil constructions. These works are also used for oil and
gas offshore platforms on the continental shelf of the Russian Federation on the
Sakhalin Island [1, 2, 17, 18].

It was proposed offshore structures protection against earthquakes to use the
friction pendulum bearings (FPB) as the seismic-insulators [1, 12–14]. A calculation
method for the service life of a FPB and the method of assessment of friction
coefficient were experimentally developed [17, 18].

The real possibility of pendulum sliding supports use as efficient mean for
absorption of energy from external force appeared in the last 30–40 years thanks to
development of new technologies (in particular in connection with development of
space research works in the USSR and the USA) and to introduction of new
tribotechnical materials (such as the antifriction self-lubricant weaved fibrous
materials).

In the SP pendulum bearings used are pendulum characteristics, providing
increase of the natural oscillations (vibrations) period of the isolated structure in a
manner to avoid the maximal forces occurring at an earthquake. During an earth-
quake, the articulation slide block in the bearing moves (slides) along a stainless
steel concave surface, forcing a support to move within small pendulum displace-
ments. The schematic view of the bearing is presented in Figure 20. The plate with
a spherical concave surface is mounted on the top as viewed from the deck; this is
done to arrange convenient operation. At such location of a concave plate, the
grease does not get on the slide face. The lower plate of the case is mounted on the
jack structure.

If forces occurring during an earthquake do not exceed the level of friction
forces, then the structure supported by the bearing corresponds to the standard
structure lying on the jack and has its own oscillation (vibration) period without
insulator. As soon as the level of friction forces is exceeded, the structure starts
oscillate with designed period; at that the dynamic response and damping are
defined by bearing properties.

The hemispherical design of the articulation slide block allows getting relatively
uniform distribution of pressure under the slide block and this reduces the move-
ment judder and prevents occurrence of high local pressure in the bearing.

Figure 20.
Bearing structure diagram.
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One essentially important question in the problem of protection of objects of
offshore and land infrastructures is provision of SP seismic stability; this can be
achieved with the help of developed scientific bases of design of self-lubricating,
and self-adjusting sliding supports with reverse motion used as seismic-insulators
for bridges, industrial and civil constructions. These works are also used for oil and
gas offshore platforms on the continental shelf of the Russian Federation on the
Sakhalin Island [1, 2, 17, 18].

It was proposed offshore structures protection against earthquakes to use the
friction pendulum bearings (FPB) as the seismic-insulators [1, 12–14]. A calculation
method for the service life of a FPB and the method of assessment of friction
coefficient were experimentally developed [17, 18].

The real possibility of pendulum sliding supports use as efficient mean for
absorption of energy from external force appeared in the last 30–40 years thanks to
development of new technologies (in particular in connection with development of
space research works in the USSR and the USA) and to introduction of new
tribotechnical materials (such as the antifriction self-lubricant weaved fibrous
materials).

In the SP pendulum bearings used are pendulum characteristics, providing
increase of the natural oscillations (vibrations) period of the isolated structure in a
manner to avoid the maximal forces occurring at an earthquake. During an earth-
quake, the articulation slide block in the bearing moves (slides) along a stainless
steel concave surface, forcing a support to move within small pendulum displace-
ments. The schematic view of the bearing is presented in Figure 20. The plate with
a spherical concave surface is mounted on the top as viewed from the deck; this is
done to arrange convenient operation. At such location of a concave plate, the
grease does not get on the slide face. The lower plate of the case is mounted on the
jack structure.

If forces occurring during an earthquake do not exceed the level of friction
forces, then the structure supported by the bearing corresponds to the standard
structure lying on the jack and has its own oscillation (vibration) period without
insulator. As soon as the level of friction forces is exceeded, the structure starts
oscillate with designed period; at that the dynamic response and damping are
defined by bearing properties.

The hemispherical design of the articulation slide block allows getting relatively
uniform distribution of pressure under the slide block and this reduces the move-
ment judder and prevents occurrence of high local pressure in the bearing.

Figure 20.
Bearing structure diagram.
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As the displacements caused by an earthquake initially occur in bearings that are
seismic-insulators, the side loadings and vibration motions transferred to a con-
struction drop significantly.

In Table 4, the mean peak accelerations are presented, influencing, at designed
earthquake, on the components of the oil and gas platform Lun-A for cases when
friction pendulum bearings are in use and are not in use.

Accelerations drop is at 1.5–3 times that leads to significant reduction of wear of
bearings and the antifriction self-lubricant film.

Development of oil and gas fields, as a rule, is carried out in the seismically
active areas (their activity reaches magnitude 8–9 on 1–9 scale), and this is one of
the main difficulties to be overcome in the process of such developments execution.

Sea platforms “Lun–А” and “PA-B” of the Sakhalin-II project are installed on the
shelf of the Sakhalin Island in 2007. The weight of the gravity based structure is: for
the“Lun–А” platform—103 thousand tons and for the “PA-B” platform—106 thou-
sand tons. The weight of the topsides of “Lun–А” is 28 thousand tons and of “PA-
B”—34 thousand tons. Service life of sea platforms “Lun–А” and “PA-B” is 30 years.
Their design shall provide operation of equipment without damages and failures
and resist loads occurred in the process of earthquake with probable repeatability
once in 200 years and keep running without serious damages after impact upon
such seldom earthquake that may occur once in 3000 years.

For the first time in world practice on “Sakhalin-II” project were installed fric-
tional pendulum sliding supports (Figure 21) to provide seismic insulation between
sea platform concrete gravity based structure and topside.

Such FPB previously were used for construction of highways, bridges and air-
ports never before they were used in sea platforms.

Four bearings—seismic insulators installed in the catwalk of four concrete sup-
ports provide damping of extreme horizontal loadings due to isolation of the topside
buildings from the most destructive pushes and due to reduction of loads on the
topside buildings caused by impact of daily temperature changes, pressure of ice
and waves.

3.4 Comprehensive on-line diagnostics, monitoring and the automated
protection

Comprehensive on-line diagnostics and monitoring of sophisticated constructive
components of SP equipment as per strength criteria, in-service life and crack
resistance takes on greater and greater importance in the course of studies and

Platform component а b

Deck 0.24 0.73

Deck, level (+)27 m 0.31 0.65

Deck, level (+)38 m 0.25 0.74

Deck, level (+)47 m 0.31 0.84

Flare unit 2.00 4.37

Drilling module 0.61 1.22

Crane on the North side 0.82 1.74

Crane on the South side 1.46 2.27

Table 4.
Average side accelerations д(m/sec2) of the oil and gas platform components when pendulum bearings are used
(a) and without such bearings (b).
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works with regard to technogenic safety [1, 2, 4, 5, 7, 15, 16]. So far, the solution of
these tasks is difficult because of absence of enough nomenclature and number of
means for multi-parameter and multi-factor diagnostics of the damaged SP ele-
ments with taking into account scenarios of accidents. When looking for methods
and diagnostic means and monitoring performance, it is necessary to apply the
system concept providing umbrella approach for: the preliminary analysis of the
stress-deformed states by analytical and numerical methods; identification of the
most loaded and dangerous zones; nondestructive testing and diagnostics at all
stages of equipment life cycle; and development of a system of diagnostic data
collection and exchange between design offices, manufacturers and operators.

Only based on this understanding, it is possible to provide high system reliabil-
ity, sufficient depth and validity of diagnosing.

3.5 New offshore subsea technology solution for shelf development

Along with expert evaluation of above-water and above-ice technologies, the
feasibility studies and assessment of basic features of subsea systems, including
issues of energy security, were carried out. This analysis is made by the community
of the specialized sea organizations: RNTs “Kurchatov institute” and Institute of
machine science named after A.A. Blagonravov RAS (Moscow) with participation
of the National laboratory Sandia (USA).

As a solution acceptable from the economical and technical point of view of
above task is related to the transition to the system of underwater and under-ice
technology of exploration, production, treatment and transportation of hydrocar-
bons (oil and liquefied natural gas—LNG (Figure 22) that so far is not available.
Higher price of such underwater and under-ice system is compensated by the
reduction of the subsequent costs required to provide safety and physical protec-
tion. Estimates show that the possible losses caused by technogenic accidents of
above-water natural threats and terrorist impacts on the objects of a underwater
technologies complex is 10 times less, than from impact of similar risk factors for
traditional above-water technologies. The appraisals done by the specialized orga-
nizations show the technical capability of Russia to develop for the Arctic shelf the
underwater and under-ice atomic technologies (Figure 22).

Calculations done with taking into account information from clause 2 make it
possible to obtain the risks values for both traditional (on-land and above-water
sea) technologies and for new (underwater) technologies. The following risks’

Figure 21.
Use of frictional pendulum bearings (sliding supports) on sea oil platforms installed in the top part of four
concrete jacks. a) PA-B Platform; b) Lun-A Platform.
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works with regard to technogenic safety [1, 2, 4, 5, 7, 15, 16]. So far, the solution of
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most loaded and dangerous zones; nondestructive testing and diagnostics at all
stages of equipment life cycle; and development of a system of diagnostic data
collection and exchange between design offices, manufacturers and operators.

Only based on this understanding, it is possible to provide high system reliabil-
ity, sufficient depth and validity of diagnosing.

3.5 New offshore subsea technology solution for shelf development

Along with expert evaluation of above-water and above-ice technologies, the
feasibility studies and assessment of basic features of subsea systems, including
issues of energy security, were carried out. This analysis is made by the community
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bons (oil and liquefied natural gas—LNG (Figure 22) that so far is not available.
Higher price of such underwater and under-ice system is compensated by the
reduction of the subsequent costs required to provide safety and physical protec-
tion. Estimates show that the possible losses caused by technogenic accidents of
above-water natural threats and terrorist impacts on the objects of a underwater
technologies complex is 10 times less, than from impact of similar risk factors for
traditional above-water technologies. The appraisals done by the specialized orga-
nizations show the technical capability of Russia to develop for the Arctic shelf the
underwater and under-ice atomic technologies (Figure 22).

Calculations done with taking into account information from clause 2 make it
possible to obtain the risks values for both traditional (on-land and above-water
sea) technologies and for new (underwater) technologies. The following risks’
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characteristics are given in Table 5: R—risks estimates currently for on-land, above-
water and under-water technologies without loss of LNG and oil at accidents and
disasters; R*—the same risks, but taking into account losses; R(t)—expected risks in
10 years at growth of LNG production, transportation and consumption rate in 4%
without LNG loss; R * (t)—the same risks taking into account LNG loss; RUS(t)—
expected risks for LNG and oil transportation in the USA without LNG losses; and
RUS*(t) —expected risks for the USA taking into account loss of LNG and oil.

The estimated cost efficiency of new underwater technologies (liquefaction and
transportation) increases in comparison with the traditional (on-land and above-
water) technologies. Risks of new technologies at an initial stage are (8.6–10.1)�106

of dollars/year; and for traditional ones (59.2–61.3)�106 dollars/year.

Figure 22.
Scheme of under-water and under-ice technological complex: 1—ice coverage on the sea surface; 2—underwater
LNG carrier or tanker; 3—subsea oil and LNG tank; 4—subsea natural gas liquefaction and oil unit; 5—Field
processing unit; 6—subsea power generation unit; 7—subsea condensate storage facility; 8—subsea condensate
carrier; 9—LNG terminal; and 10—subsea well.

Types of risks R R* R(t) R*(t) RUS(t) RUS*(t)

1. Risks for on-land infrastructures RН 48.3 48.9 71.5 72.4 59.9 60.6

2. Risks of above-water sea transportation RМ 4.1 4.13 6.1 6.2 5.08 5.12

3. Risks of on-land and above water technologies RНМ 52.4 53.0 77.6 78.6 64.0 65.7

4. Risks of terrorist attacks on on-land infrastructures RН
Т

6.0 6.1 55.1 56.1 46.2 46.4

5. Risks of terrorist attacks in case of above-water sea
transportation RМ

Т

0.8 2.15 3.1 8.29 2.46 6.4

6. Risks of terrorist attacks on land infrastructures and on
sea transportation RНМ

Т

6.8 8.25 58.2 64.4 48.7 52.8

Table 5.
Risks of the traditional LNG technologies (million dollars per year).
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These risks have to be considered at stage of economic assessment of all newly
created technologies related to shelf developments.

The person (operator) or an automatic system, when conducting diagnostics and
monitoring (Figure 23), closely follow change of parameters and use their abilities
to identify and forecast the processes and the phenomena., most actively joins in
control processes. The software provides comprehensive processing of the obtained
information and active assistance to the operator by performing additional data
processing and presenting upon operator’s request necessary information recorded
in the computing system memory.

A set of the principles, methods and means of defects finding and detection or,
in another words, arranging of diagnostic assurance of crack resistance of equip-
ment elements during production and in service, forms the basis for accidents
prevention, actuation of the automated protection and safety enhancement.

Such approach was implemented during Sakhalin-II projects execution for
protection of SP from earthquakes and tsunami.

4. Conclusion

Issues of development of the world and Russian continental shelf for explora-
tion, drilling, production, treatment, storage and transportation of hydrocarbons
become more and more important socioeconomically and in scientific and technical
aspects. Unique sea platforms for a temperate and Arctic climate, undoubtedly, fall
into group of critically and strategically important objects of infrastructures of life
activity and life support. The fundamental studies and applied research works in the
field of provision of strength, in-service life, survivability and risks play key role in
comprehensive solution of issues relevant to the sea platforms safety, security and
protection from accidents and disasters.

Their implementation is focused on scientific justification of classification of
continental shelf technosphere objects, classification of routine and abnormal situ-
ations, development of methods and systems of diagnostic, monitoring and
protection.

In the future-oriented technologies for safe continental shelf development,
the results of advanced scientific theoretical and experimental developments in
such industries as nuclear, airspace and transport will be used. The specified

Figure 23.
Diagnostics and monitoring procedure chart.
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Chapter 5

Probabilistic Modeling, Estimation
and Control for CALS
Organization-Technical-Economic
Systems
Igor Sinitsyn and Anatoly Shalamov

Abstract

Theoretical propositions of new probabilistic methodology of analysis, model-
ing, estimation and control in stochastic organizational-technical-economic systems
(OTES) based on stochastic CALS informational technologies are considered.
Stochastic integrated logistic support (ILS) of OTES modeling life cycle (LC),
stochastic optimal of current state estimation in stochastic media defined by inter-
nal and external noises (including specially organized OTES-NS (noise support) and
stochastic OTES optimal control) according to social-technical-economic-support
criteria in real time by informational-analytical tools (IAT) of global type are
presented. OTES-CALS are nonlinear and continuous-discrete. So we use approxi-
mate methods of normal approximation of probabilistic densities both for modeling
and estimation. Spectrum of possibilities may be broaden by solving problems
of OTES-CALS integration for existing markets of finances, goods and services.
Analytical modeling, analysis, parametric optimization and optimal stochastic
processes regulation in limits of illustrate some technologies and IAT given plans.

Keywords: continuous acquisition logic support (CALS), estimation control,
planning and management technologies, modeling and analysis technologies,
organizational-technical-economic systems (OTES), stochastic systems (StS)

1. Introduction

Probabilistic foundations of one of the modern directions in the field of after sale
product service—integrated logistic support (ILS) are systematically treated.
Stochastic continuous acquisition logic support (CALS) is the basis of ILS function-
ing in the presence of noises and stochastic factors in organizational-technical-
economic systems (OTES). While spelling this chapter we firstly tried to explain
reader the new approaches for creation informational technologies (IT) of model-
ing, optimal data processing in stochastic systems (StS) for high-quality
manufacturing products (MP). Secondly, we consider optimization problems for
complex of enterprises being part of virtual enterprise (VE).1 In broad sense VE

1 Virtual enterprise is such an enterprise that consolidates geographically separated economical subjects

and interact in the process mutual production using chiefly electronical communicational means.
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presents geographically distributed OTES whose consolidated budget at fixed time
period is divided between two basic structure types of VE. First structure is
responsible for MP creation and production with given functional and
exploitational-technical qualities.2 Second structure is responsible for professional
quality and staff life quality (professional skills, medical services, etc.). In this case
OTES criteria for complex optimal OTES control3 are defined by the social-
technical-economic efficiency indicators. Such indicators depends on the resources
costs at required quality of basic processes in both structures during life cycle (LC).

Besides standard ILS problems solving by such OTES systems modern IT pro-
vides deep OTES integration in general structures of local and global markets of
finances, goods and services (FGS).

New approaches for OTES control are based on the probabilistic methodology
for analytical modeling of stochastic processes coming from stochastic nature of
internal and external noises. Special attention is paid to stochastic noises generated
by injurious OTES-NS (noise supplier).

In the modern ILS models and strategies ERP (enterprise resource planning) and
MRP2 (manufacturing resource planning) only statically deterministic mathematics
is used for solving planning problems. Unlike the existing methodology the suggested
stochastic methodology firstly takes into account stochastic optimal planning pro-
cesses dynamics and secondly performs current operative control using modern
methods of stochastic analysis, modeling and estimation (filtering, for casting, iden-
tification, etc.) and control methods and technologies [1–4]. It gives opportunity to
raise the level and the quality of OTES control by means of informational-analytical
tools (IAT). There tools are being global control VE net based on CALS principles and
technologies. Stochastic imitational models and complex imitational models give the
opportunity to estimate the accuracy of analytical models and solve problems of
optimal data processing and control in high dimensional and fast OTES-CALS.

Stochastic CALSmethodology was firstly developed in [5] for modeling and analy-
sis. Let us consider the development the stochastic estimation and control problems.
We hope that these approaches will be useful for probabilistic systems engineering [6].

2. CALS technologies and OTES

According to contemporary notions in broad sense ILS being the CALS basis
represents the system of scientific, design-project, organization-technical,
manufactural and informational-management technologies, means and fractional
measures during LC of high-quality MP for obtaining maximal required available
level of quality and minimal product technical exploitational costs.

Contemporary ILS standards [7–12] being CALS vanguard methodology not in
the right measure answer necessary purposes. CALS standard, have as debatable
achievements and the following essential shortcomings:

• informational-technical-economic models being not dynamical;

• integrated data base (DB) for analysis of logistic support (ALS) is super plus on
one hand and on the other hand does not contain information necessary for

2 Functional product quality means how technical MP answers the functional purpose, exploitation,

maintenance and repair. Exploitational-technical quality of MP is defined as adjustment to control,

support and restoration during MP lifetime.
3 OTES control is being business process management (BPM).
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complex through cost life cycle (CLC) estimation according to modern
decision support algorithms;

• computational algorithms for various LC stages are simplified and do not
permit forecasting with necessary accuracy and perform optimal control at
conditions of internal and external noises and stochastic factors.

So ILS standards do not provide the whole realization of advantages for modern
and perspective IT including staff structure in the field of stochastic modeling and
control of two interconnected spheres: techno-sphere (technics and technologies)
and social ones. These systems form the new the system class: OTES-CALS systems.
Such systems destined for the production and realization of various services
including staff structure, engineering and other categorical works providing
exploitation, after sales MP support and repair, staff, medical, economical and
financial support of all processes. New developed approach is based on the new
stochastic modeling and control IT (Figure 1). These technologies are based on
generalized social-technical-economic efficiency indicators for LC processes in
comparison with usual CALS standards.

Research and control object in OTES are processes total LC of homogeneous sets
of MP and resources. Special attention is paid to staff as object of professional
training, improvement and medical service.

3. Probabilistic modeling and analysis

3.1 Basic elements of OTES stochastic modeling

According to [13, 14] we introduce composite elements (CE) as OTES with the
following elements: (1) basic technical means (TM) and TM being part of serving
equipment; (2) staff. For creation unique stochastic model of interoperable OTES
processes it necessary to define the data set forecasting CLC indicators at given
period of exploitation. This set of indicators includes: (1) coefficient of CE perfor-
mance at planning for given period of exploitation; (2) level of professional and

Figure 1.
Integrated modeling, estimation and control technologies for cost life cycle control in after sale support (ASS)
systems.
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medical readiness; (3) investment readiness. Analogously the technical resources
corresponding values of professional, staff health and investment resources are
defined. Informational-analytical tools (IAT) perform probabilistic analytical
modeling of OTES technical means for after sales servicing (ASS).

Solving problems:

1. initial data forming;

2.modeling technical means and exploitation processes;

3.modeling streams of plan works;

4.modeling streams of non-plan works;

5. modeling streams of TM written off CP after random fault when we have
exceeding of fixed number of repairs and/or reaching given resource;

6.modeling spare parts (SP) accumulation processes on stores;

7. modeling of SP delivery processes from stores into exploitation system;

8.cost modeling of after sales CP supply at given period of TM exploitation
according payments items;

9. forming total cost model of TM after sale processes for whole CP list at given
period of exploitation and providing given level of TM park.

In addition it is possible to give analogous list of problems for modeling staff and
medical services.

3.2 Structural schemes of state change streams

State graph of TM, graph of equipment infrastructure and state staff graph are
the basis of stochastic OTES-CALS model. For example, let us consider (Figure 2)
basic CP state graph. This graph is constructed in accordance with basic LC pro-
cesses for TM and OTES infrastructure for each CP. Being CP in any states that
corresponds the definite costs of various resources and the total production value.
This production value must be the object of monitoring and statistical data
processing for estimation of probability characteristics (means, probabilistic
moments, distributions, etc.). For each CP being the part of aggregate with the help
special technologies are sequentially aggregated for final product (FP).

Main modeling stage of usage and service processes consists in probabilistic
forecast of main indicators final values: sum of production costs and technical
readiness level for OTES-CALS technical means maintenance at given time period.
Thus, graph (Figure 2) must be supplemented additional graph for calculating
integrals cost values at this time period according to [14] recommendations.

Vertex of basic graph maps CP current LC states in two level operational
capability:

1. CP is on the stock in amount X1 tð Þ;

2. CP service able exploiting in aggregate in amount of X2 tð Þ
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3.CP is at user repair (first level) in amount X3 tð Þ;

4.CP is written off part and utilized in amount X4 tð Þ;

5. CP is at routine maintenance in amount X5 tð Þ;

6.CP is in factory repair (second level) at supplier in amount X6 tð Þ;

7. CP is in capital repairs at supplier in amount X7 tð Þ.

Graphs edges describe CP transition direction at states changes. Parameters pij tð Þ
are transition intensities from one state to another. Values U1 tj

� �
reflect the discrete

filling process of the store by SP at time moments tj, j ¼ 1, 2,… for providing tech-
nical readiness of TM. In general case value and time moment of replenishment are
random. These factors must be taken into consideration in LS for OTES-CALS
model development. Basic graph of TM state, professional level of staff and health
state are given on Figure 2.

The developed methodology is unique as for modeling TM and OTES-CALS
dynamical staff potentials. Therefore, for constructing unique forecasting costs of
staff potential the stochastic model it is necessary to apply developed integrated
approach for description and modeling professional level personal health state
[14, 15].

3.3 Stochastic processes and equations for OTES-CALS

Let us consider basic elements of stochastic OTES-CALS modeling and analysis
using Figure 3 for after sales maintenance support system.

Figure 2.
Basic graph of TM state, professional level and staff health state.
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Vertex of graph (Figure 3) corresponds 1, 2,…, n states, where of the same type
resource be. Let current amount of resources be X1 tð Þ,…, Xn tð Þ,
X tð Þ ¼ X t1ð Þ;…;X tnð Þ½ �T. Graphs edges corresponds transition of resources from
state to state h k; h ¼ 1; 2;…; n; k 6¼ nð Þ at random time moments forming Poisson
streams transition events properly. Find some of resources states corresponding in
queuing system for repeatedly recovery. General capacity is defined by the number
of channels and being essentially nonlinear intensity4 function depending on the
amount of input resource units. This fact is mapped by ρkh X; tð Þ. In general case this
nonlinear function has vector argument.

Stochastic equations and corresponding algorithms of analytical modeling for
mathematical expectation m ¼ m tð Þ, covariance matrix θ ¼ θ tð Þ and matrix of
covariance functions K t1; t2ð Þ are as follows [5]:

dX ¼ φ X; tð Þdtþ
ð

Rq
0

c X; v; tð ÞP dv; dtð Þ ¼ φ X; tð Þdtþ
Xn

k, h¼0

ð

Rq
0

STkh vkh;X; tð ÞP dvkh; dtð Þ, X t0ð Þ ¼ X0,

(1)

_m ¼ M φ X; tð Þ þ Sρ½ �, m t0ð Þ ¼ m0,
_θ ¼ M φ X; tð Þ þ Sρ½ �X0T þ X0 φT X; tð Þ þ ρTSТ

� �þ S diag ρð ÞSТ� �
, θ t0ð Þ ¼ θ0,

∂ K t1; t2ð Þ
∂t2

¼ MfX0
1 φT X2; t2ð Þ þ ρT X2; t2ð ÞSТ� �

, K t1; t1ð Þ ¼ θ t1ð Þ:
(2)

Hence M is symbol of mathematical expectation; P is symbol of probabilistic
measure; X and X0 are noncentered and centered state vectors; φ Xt; tð Þ is in general
vector nonlinear function reflecting current value of OTES-CALS efficiency crite-
rion; S vð Þ structure matrix of Poisson streams of resources (production) with values

v according to state graph; Sи vð Þ ¼ suk1 vukð Þ…sukng vukð Þ
h i

is u-row of matrix S vð Þ; ρ is
the intensity vector.

Forming the structure matrix S ¼ Skh½ � for OTES-CALS (Figure 2) is shown in
Table 1.

Column 1. Transition direction in system graph. Total amount of rows is equal to
amount transitions—m; amount of columns is equal to states amounts—n (graph
vertex); two servicing columns: first and nþ 2.

Column 2—nþ 1. Values of intensities of transition—ρkh.
So columns from 2 till nþ 1 presents m� n matrix S and column under number

nþ 2ð Þ is m dimensional vector with intensity vector ρ.

Figure 3.
General state graph for after sales maintenance support system.

4 Stream of random events intensity is being mean number of events per time unit.
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Equation (2) are approximate and valid at conditions of normal (Gaussian)
approximation method. For raising the accuracy of analytical modeling and analysis
methods of probabilistic distributions (moments, semi-invariants, coefficients of
orthogonal expansions of densities) [2, 3] may be used.

The developed ordinary differential equations with initial conditions may be
used for basic risk problems of systems engineering [6].

3.4 Modeling and analysis of aircraft vehicles park life cycle

Following [16] let us consider informational-analytical tools (IAT) for aircraft
vehicle park modeling and control by technical-economic efficiency criteria after
sales maintenance products (ASMP).

IAT modular includes:

• normative data base (DB) of passported aggregates;

• operative DB;

• forecasting processes block for ASMP;

• optimization block of delivery programs (annual application);

• catalog of codified items supply.

3.4.1 Normative DB (NDB)

According to contract supplier creates NDB according to standards DEFSTAN
00-600, S1000D, S2000 M and specifications S1000D, S2000 M. For IAT acceler-
ation there are designed emulated DB (DBE) in the form of additional tables.
Information from NDB automatically comes into DBE. These data characterize:

• interrepair resource of final MP (FMP) and CP;

• mean duration of capital repair (CR) of FMP and CP;

Table 1.
Forming the structure matrix S.
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3.4.1 Normative DB (NDB)
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00-600, S1000D, S2000 M and specifications S1000D, S2000 M. For IAT acceler-
ation there are designed emulated DB (DBE) in the form of additional tables.
Information from NDB automatically comes into DBE. These data characterize:

• interrepair resource of final MP (FMP) and CP;
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Table 1.
Forming the structure matrix S.
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• mean capacity of CR of FMP;

• tone between scheduled services of FMP and CP;

• mean duration of regulation works (RW) of FMP and CP;

• mean capacity of RW for FMP;

• fix resource (lifetime) of FMP and CP;

• fixed resource till first and next repair of FMP;

• CP price;

• MP mean time to first failure;

• mean capacity of MP operative repair (OR);

• mean duration of OR;

• mean capacity of overhaul repair (OHR);

• mean duration of OHR;

• sign of availability;

• CP maximum number of repairs;

• sign of repairing indication after fixed resource.

3.4.2 Data base monitoring

According to contract software tools as operative DB (ODB) is filling in accor-
dance with corresponding instruction of annual planning.

For current application the following information is formed:

• planning time period;

• actual amount of FMP;

• amount of no repaired of FMP;

• amount of repaired FMP;

• amount of FMP being in capital repair (CR);

• required coefficient of good condition;

• CP mean annual planning lifetime;

• CP mean time to first failure;

• CP frequency of overhaul (OHR);
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• mean capacity of regulation works (RW);

• mean cost of the first technical service;

• CP surplus in store.

3.4.3 Forecasting block of ASS processes

Corresponding software tools are described by mathematical model of park state
changes amount of FMP and CP during fixed period of exploitation, material-
technical technical service and types of repairs.

Output forecasting characteristics are the following:

• coefficient of technical readiness along the park for each CP (0…1);

• delivery cost of SP along CP parks;

• coefficient of technical readiness for FMP park;

• delivery cost of SP along FMP park;

• cost of ASS for LC cost estimation.

3.4.4 Optimization block for annual application

This software tool is destined for automatic work with delivery list SP for
forming SP optimal program for any fixed time period of exploitation (including
annual application) providing given level of technical readiness of FMP park at
conditions of minimal purchasing price.

Structure of initial parameters includes:

• calculating reliability or exploitation for each CP;

• repairing system for each component (period, duration of works, etc.);

• service prices (repair and delivery);

• annual budget for CP repair and SP delivery;

• level of price escalation for planning time period;

• regular amount of FMP;

• CP real mean lifetime;

• amount of CP and FMP being in repair;

• planning time period (from 1 year to lifetime);

• planning annual lifetime FMP and CP;

• required level of technical readiness coefficient.
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Among the cost parameters there are specified the following ones: annual bud-
get, price of one CP, price of one CP repair. For each characteristic, annual escala-
tion price coefficient is fixed.

Replenishment and repair programs are optimal if SP superplus on store are
minimal. It is equivalent to cost supply minimum.

The received in computer experiments optimal programs are calculated for grant
support of fixed level of readiness during exploitation time period at conditions of
minimal sufficient budgetwhich is determined in optimizationprocess. In the case of the
optimizationdelivery programat conditions ofwittingly restrictedbudget thedeveloped
programs provide readiness level. This level is beingmaximally close to given value.

Let us demonstrate designed “Optimization SASS, Version 2.0” IAT for prognosis
and optimization in various regimes. Figures 4–6 corresponds search regime SP deliv-
ery program and repair capacity in years of planning time period for support fixed level
of repair characteristic—0,75 (Figures 4 and 5) at minimally sufficient budget. As the
result of optimal search program (Table 2) the following programs were obtained:

• for SP delivery (0, 0, 1, 3, 4, 5, 6, 6, 6) (in things);

• for CP repair capacity (21, 23, 23, 20, 20, 20, 20, 21, 22) (in years�1).

Figure 4.
Mean coefficient of serviceability (minimal adequate budget).

Figure 5.
Dynamics of costs and appropriations (minimal adequate budget).
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General costs for delivery and repair are equal to $7150 at total budget $6947.
Dynamics of costs and appropriations are given on Figure 5. Evidently, maximal
costs are being repair costs. The repair costs are economically sound at given price
ratio. Repair coefficient full during 4 years of exploitation is explained by the fact
that the maintenance of repair coefficient is unprofitable during period when its
value exceeds given level. It is obvious that CP repair begins with outset of
exploitation period but SP purchasing after 4 years of exploitation.

Figures 6 and 7 corresponds programs of search of delivery and repair at
conditions of financial restrictions. In this case general delivery and costs do not
exceed annual budget and also whole planning time period. But it is impossible
to deduct repair coefficient at 0,75 level (Figure 6). Optimal programs at the
level of repair coefficient equal to 0,66 for the end of time period are given on
Table 3. In this case budget restrictions are valid. Therefore, we have the
following programs:

• for SP delivery (0, 0, 1, 1, 2, 3, 2, 9, 14) (in things);

• for CP repair capacity (21, 23, 23, 19, 18, 18, 17, 2, 0) (years�1).

General costs are approximately equal 5860 $ at total budget 5788 $. Optimal
dynamics of delivery and repair costs are given on Figure 7.

Figure 6.
Mean coefficient of serviceability (wittingly restricted budget).

Table 2.
Optimization results (restricted budget wittingly).

127

Probabilistic Modeling, Estimation and Control for CALS Organization-Technical-Economic…
DOI: http://dx.doi.org/10.5772/intechopen.88025



Among the cost parameters there are specified the following ones: annual bud-
get, price of one CP, price of one CP repair. For each characteristic, annual escala-
tion price coefficient is fixed.

Replenishment and repair programs are optimal if SP superplus on store are
minimal. It is equivalent to cost supply minimum.

The received in computer experiments optimal programs are calculated for grant
support of fixed level of readiness during exploitation time period at conditions of
minimal sufficient budgetwhich is determined in optimizationprocess. In the case of the
optimizationdelivery programat conditions ofwittingly restrictedbudget thedeveloped
programs provide readiness level. This level is beingmaximally close to given value.

Let us demonstrate designed “Optimization SASS, Version 2.0” IAT for prognosis
and optimization in various regimes. Figures 4–6 corresponds search regime SP deliv-
ery program and repair capacity in years of planning time period for support fixed level
of repair characteristic—0,75 (Figures 4 and 5) at minimally sufficient budget. As the
result of optimal search program (Table 2) the following programs were obtained:

• for SP delivery (0, 0, 1, 3, 4, 5, 6, 6, 6) (in things);

• for CP repair capacity (21, 23, 23, 20, 20, 20, 20, 21, 22) (in years�1).

Figure 4.
Mean coefficient of serviceability (minimal adequate budget).

Figure 5.
Dynamics of costs and appropriations (minimal adequate budget).

126

Probability, Combinatorics and Control

General costs for delivery and repair are equal to $7150 at total budget $6947.
Dynamics of costs and appropriations are given on Figure 5. Evidently, maximal
costs are being repair costs. The repair costs are economically sound at given price
ratio. Repair coefficient full during 4 years of exploitation is explained by the fact
that the maintenance of repair coefficient is unprofitable during period when its
value exceeds given level. It is obvious that CP repair begins with outset of
exploitation period but SP purchasing after 4 years of exploitation.

Figures 6 and 7 corresponds programs of search of delivery and repair at
conditions of financial restrictions. In this case general delivery and costs do not
exceed annual budget and also whole planning time period. But it is impossible
to deduct repair coefficient at 0,75 level (Figure 6). Optimal programs at the
level of repair coefficient equal to 0,66 for the end of time period are given on
Table 3. In this case budget restrictions are valid. Therefore, we have the
following programs:

• for SP delivery (0, 0, 1, 1, 2, 3, 2, 9, 14) (in things);

• for CP repair capacity (21, 23, 23, 19, 18, 18, 17, 2, 0) (years�1).

General costs are approximately equal 5860 $ at total budget 5788 $. Optimal
dynamics of delivery and repair costs are given on Figure 7.

Figure 6.
Mean coefficient of serviceability (wittingly restricted budget).

Table 2.
Optimization results (restricted budget wittingly).

127

Probabilistic Modeling, Estimation and Control for CALS Organization-Technical-Economic…
DOI: http://dx.doi.org/10.5772/intechopen.88025



4. Probabilistic optimal estimation and control

4.1 Optimal estimation

Nowadays such IT as filtering, extrapolation, identification, etc., are widely used in
technical applications of complex systems functioning in stochastic media. These IT
are based on statistical data analysis, modeling and estimation and gives only statistical
estimates [2–4]. For OTES-CALS we have latent specially supported noises. Following
[17–19, 22] let consider optimal filtering IT for special class of OTES using example 1.

Example 1. Let us consider typical OTES as system of after sales servicing
(SASS). This system provides maintenance of technical readiness given level for MP
park at quality conditions. Corresponding costs are fixed in bookkeeper documen-
tation. Let us name it by “real” bookkeeper. In case of some types of noises it is
possible to speak about “additional” bookkeeper. This bookkeeper is generated by
fictional SASS for reserved taking out of the surplus of finances. On Figure 8 the
corresponding scheme is given where:

• SASS graph is given in upper part of Figure 9, number 1, 2, 3 being the
following states: on store, in exploitation, in repair;

• “additional” graph of SASS generating noises ζi being fictitious analogs of Хi tð Þ
is given by dashed line in lower part of Figure 8;

Table 3.
Optimization results (wittingly restricted budget).

Figure 7.
Program of delivery and repair (restricted budget wittingly).
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• in the middle part of Figure 8 measuring observation devices are given; zi tð Þ
measure parameters and processes on background noise ζi; Х̂ i tð Þ being optimal
estimates of real processes Хi tð Þ.

As it is known from [2–4] estimation technologies are based on: (1) model of
OTES; (2) model OTES-OS (observation system); (3) model OTES-NS (noise
support); (4) criteria and estimation methods; (5) filters (estimators) models.

Figure 8.
Structure of stochastic SASS.

Figure 9.
Continuous discrete self-conjugated processes Xt and Ψt.
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It is required to develop it for the useful processes Xi tð Þ filtration from its
mixture with processes ζi tð Þ of system noise.

For solving this problem the linear Kalman filter is used [3, 4]. So we get the
following result. Let complex stochastic models OTES, OTES-OS and OTES-NS are
described by the following linear differential Equations:

_Х t ¼ аХt þ a1Gt þ a2ζt þ а0 þ χxVΩ, (3)

_Gt ¼ q Dtð ÞXt þ b2ζt þ χgVΩ (4)

_Dt ¼ bXt þ b1Dt þ b0 þ χd VΩ (5)

_ζ t ¼ с2ζt þ c0 þ χζ VΩ (6)

Hence Хt, Gt, Dt, ζt are OTES, OTES-OS and OTES-NS; q Dtð Þ is amplification
factor of measurement block depending on number of resources in OTES-OS;

VΩ tð Þ ¼ VТ
х tð Þ VТ

g tð Þ VT
ζ tð Þ VT

и tð Þ
h iТ

is composite noise vector of white noises;

χx, χg, χd, χζ are matrices of corresponding dimensions. Then equation for optimal
linear Kalman filter at q Dtð Þ ¼ qt will be

_̂Xt ¼ аХ̂ t þ a1Gt þ a2ζt þ a0 þ RtqTt υg
�1 Zt � qtX̂ t þ b2ζt

� �� �
(7)

where υg is the matrix of white noise intensities of internal noises OTES-OS
and external noises from OTES-NS; ζt is the noise in the form Poisson process in
OTES-NS; Rt is the solution of the following Riccati Equation:

_Rt ¼ aRt þ RtaT þ υх � RtqTt υg
�1qtRt (8)

where υх is vector internal OTES noises.

4.2 Optimal control

Modern OTES are class of large scale systems of microeconomics of special type
corresponding to five technological structures. These systems satisfy modern stan-
dards but need further effective control systems based on stochastic system theory
during the whole LC of OTES elements.

Effective control of OTES needs optimal technologies for solution of the follow-
ing problems:

• planning stocks of various recourses on the basis of forecasting external and
internal demand;

• planning necessary manufacturing capacity and product delivery system in
accordance with expected demand;

• distribution of finished products;

• planning loading capacities for repair and service with long work time, etc.

In general, case functional organization and control for the definite processes in
OTES we need to solve the following problems:
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• design mathematical models of various variants of logistical systems;

• work out methods of optimal complex planning of such processes as delivery,
production, marketing and transporting of finished products, etc.

At modern design practice logistical systems and in whole OTES of given desti-
nation and for functional control known standards MRP/ERP, DEFSTAN 00-600,
MIL STD 1388 [7–12] are used. These standards are typical for relatively stable
economics. Such approaches are rested upon deterministic consumer demands
models and corresponding local optimization methods implemented only in isolated
nodes of logistic and production chains but global OTES optimization. For this
reason MRP/ERP approaches cannot permit optimal complex planning LC processes
at given period of time with calculating boundaries of proper values. This problem
is very important for customer corresponding to profit finances. Deterministic
approaches are useful only at conditions of economics with stable state of markets.
At stochastic conditions, it is necessary to use corresponding approaches and anal-
ysis and synthesis OTES informational technologies based on stochastic models and
methods that permit to calculate optimal control strategy.

Control of OTES being the integrated net of enterprises includes: (1) processes
planning in accordance with goals and criteria; (2) effective operational (situa-
tional) control. The first concerns program control, the second—state regulation.
Program control principles are as following: orientation finite goal expressed by
goal graph and corresponding efficiency indicators, working restrictions, though
planning and order-continuous principle [20, 21].

Basic stages of program control are the following: (1) optimization of resources
distribution between goals and frequency of financing; (2) priorities of program
separate goals and achievement means; (3) adaptation of program goal to changing
external conditions. For one type of production, program control includes planning
and adaptive distribution general budget between OTES participants (net nodes)
based on stochastic estimation of processes and parameters and adaptation to
external processes (noises).

For the stochastic OTES control actions are as follows:

• streams intensity transition between nodes;

• parameters of probabilistic distributions values of resources parties or products
which involve the intransitions;

• frequency and size of discrete supply at replenishment (works volume) at
calendar services;

• mean capacity service personal.

Analysis of these control categories shows that first part of control functions is
continuous. The second part is discrete time functions (supply plan, plan of
resources service and products at calendar plan, etc.). So it is necessary to consider
OTES as mixed continuous-discrete stochastic system (StS) and apply probabilistic
stochastic methods and IT of analysis, modeling, estimation and control.

Let us consider the basis of OTES filtering.

4.2.1 Problem statement

At first let us consider deterministic multidimensional dynamical system
described by the following nonlinear differential and difference equations [1, 5]:
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_Xt ¼ ξ Xt; πt; tð Þ, (9)

Хk ¼ B Хk�0;Ukð Þ, Xk ¼ X tkð Þ (10)

Here Xt is пх � 1 phase vector; Хk�0 is the value of Хt precede tk; πt is the control
vector in continuous time; ξ, B are continuously differentiable пх � 1 vector func-
tions; t0 and tf is initial and terminal time moments; Uk is пи � 1 dimensional
control vector at time moments t0 < t1, t2,…, tNk ≤ t≤ tf ; X0 is initial condition. We
choose the following functional J which includes discrete and continuous compo-
nents representing expenditure functioning and control:

J ¼
XNk

k¼1

Г Хk�0;Ukð Þ þ
ðtf

t0

K Xt; πt; tð ÞdtþH Xf
� �

(11)

where Г, K,H are known scalar differentiable functions. It is required to define
optimal functions of continuous and discrete control πt and Uk jointly supply min-

imum for functional J: J ∗ ¼ min|{z}
πt, Uk

PNk
k¼1 Г Хk�0;Ukð Þ þ Ð

tf

t0
K Xt; πt; tð ÞdtþH Xf

� �( )
.

Hence for optimal control functions we have: π ∗
t ;U

∗
k

� � ¼ argmin|{z}
πt, Uk

J.

4.2.2 General solution

Let us find general solution by variational method [1]. For this purpose we
compose mixed (from continuous and discrete functions) Lagrange functional
(Lagrangian):

L ¼
ðtf

t0

K Xt; πt; tð Þ þ ΨT
t � Xt

� �0h i
dtþ

XNk

k¼1

Г Хk�0;Ukð Þ þH Xf
� �

: (12)

where variable Ψt is vector indefinite Lagrange multiplier. Vectors variables Ψt
and Xt have discontinuity of the first kind at t ¼ tk. At these times Xt is continuous
on the right and being continuous on the left from the theory two-point boundary-
value problem. We get Ψt (Figure 9) by integration of corresponding equations
from tf to t0. So taking into account (9), (10) and considering integrand as
generalized function of the following form:

d
dt

ΨT
t Xt

� � ¼ _Ψ
T
t Xt þΨT

t
_Xt þ ΨT

kþ0Xk �ΨT
k Xk�0

� �� �
δ t� tkð Þ ¼

¼ _Ψ
T
t Xt þ ΨT

t ξ Xt; πt; tð Þ þ ΨT
kþ0 B Хk�0;Ukð Þ½ � �ΨT

k Xk�0
� �

δ t� tkð Þ:
(13)

After substitution (13) into (12) and using δ-function property we get new
expression for functional L:

L ¼
ðtf

t0

Ξtdtþ
XNk

k¼1

Θk þH Xf
� � ¼

ðtf

t0

K Xt; πt; tð Þ þ _Ψ
T
t Xt þΨT

t ξ Xt; πt; tð Þ
h i
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XNk
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where

Ξt ¼ K Xt; πt; tð Þ þ _ΨT
t Xt þ ΨT

t ξ Xt; πt; tð Þ (15)

Θk ¼ Г Xk�0;Ukð Þ þΨT
kþ0 B Хk�0;Ukð Þ½ � � ΨT

k Xk�0 (16)

From Lagrangian stationary conditions we have the following algorithms
Ψt,Ψkþ0 from and π ∗

t , U
∗
k :

∂L
∂Xt

¼ ∂Ξt

∂Xt
¼ ∂K Xt; πt; tð Þ

∂Xt
þ ∂ξТ Xt; πt; tð Þ

∂Xt
Ψt þ _Ψt ¼ 0 (17)

∂L
∂πt

¼ ∂Ξt

∂πt
¼ ∂K Xt; πt; tð Þ

∂πt
þ ∂ξТ Xt; πt; tð Þ

∂πt
Ψt ¼ 0 (18)

∂L
∂Uk

¼ ∂Θk

∂Uk
¼ ∂Г Xk�0;Ukð Þ

∂Uk
þ ∂ ВТ Хk�0;Ukð Þ½ �

∂Uk
Ψkþ0 ¼ 0 (19)
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¼ ∂Г Xk�0;Ukð Þ

∂Xk�0
þ ∂ ВТ Хk�0;Ukð Þ½ �

∂Xk�0
Ψkþ0 �Ψk ¼ 0 (20)

Ψ tf
� � ¼ ∂H

∂Xf
(21)

Relations (17)–(21) are necessary optimal control conditions in given
continuous-discrete problem. Thus two-point boundary value is described by
closed set of Eqs. (9)–(14) and Eqs. (17)–(21). So from (17), (20) we get
equations for Ψt,Ψkþ0 conjugated with Xt, Хk�0. From (18), (19) we get implicit
forms for π ∗

t and U ∗
k .

4.2.3 Solution of linear-quadratic problem

Consider linear continuously-discrete system [1, 5]:

_Xt ¼ ξxXt þ ξππt, (22)

Хk ¼ BxXk�0 þ BuUk, (23)

where ξt, ξπ are matrix coefficients of, nx � nx and nx � nπ dimensions changing
at t ¼ tk; Bx, Bu are matrices coefficients of nx � nx and nx � пu dimensions.

It is given quadratic efficiency criterion:

L ¼
ðtf

t0

Ξtdtþ
XNk

k¼1

Θk þ 1
2
XT

tf HXtf ¼
ðtf

t0

1
2

XT
t KtXt þ πTt Kππt

� �þ _Ψ
T

t
Xt þΨT

t ξxXt þ ξππtð Þ
� �

dtþ

þ
XNk

k¼1

1
2

XT
k�0ГxXk�0 þ UT

k ГuUk
� �þΨT

kþ0 BxXk�0 þ BuUkð Þ �ΨT
k Xk�0

� �
þ 1
2
XT

tf HXtf ,

(24)

where

Ξt ¼ 1
2

XT
t KxXt þ πTt Kππt

� �þ _ΨT
t Xt þ ΨT

t ξxXt þ ξππtð Þ (25)
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_Xt ¼ ξ Xt; πt; tð Þ, (9)

Хk ¼ B Хk�0;Ukð Þ, Xk ¼ X tkð Þ (10)
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� �

(11)

where Г, K,H are known scalar differentiable functions. It is required to define
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imum for functional J: J ∗ ¼ min|{z}
πt, Uk

PNk
k¼1 Г Хk�0;Ukð Þ þ Ð

tf

t0
K Xt; πt; tð ÞdtþH Xf

� �( )
.
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t ;U

∗
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πt, Uk

J.
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Θk ¼ 1
2

XT
k�0ГxXk�0 þUT

k ГuUk
� �þΨT

kþ0 BxXk�0 þ BuUkð Þ �ΨT
k Xk�0� � ΨT

k Xk�0,

(26)

Kx, Гx,Нtf and Kπ, Гu being positive semidefinite and positive defined matrices
of corresponding dimension. It is required to find optimal algorithm control for
linear system described by Eqs. (22)–(24). Algorithm of optimal design based state
feedback control gives the followings equations:

_Ψt ¼ �ξTxΨt � KxXt (27)

Ψtf ¼ HXtf (28)

πt ¼ �K�1
π ξTπΨt (29)

Ψk ¼ BТ
хΨkþ0 þ ГxXk�0 (30)

Uk ¼ �Г�1
и ВТ

иΨkþ0 (31)

Algorithm includes: (1) integration in inverse time with initial condition (28) of
vector differential Eq. (27) and difference Eq. (30) with data storage in each step;
(2) formulae (29), (31) for calculating controls with usage of stored Ψt, Ψkþ0. Note
that during Eq. (27) integration at time moments t ¼ tk, k ¼ Nf ,Nf�1,…, 1 step-wise
changes Ψt occur according to Eq. (30).

For reducing two-point boundary problem to ordinary we apply known
approach and perform linear change of variables in Eqs. (22)–(31):

Ψt ¼ ~RtXt (32)

Ψk ¼ ~RkXk�0 (33)

Ψkþ0 ¼ ~Rkþ0Xk (34)

where ~Rt, ~Rkþ0 are values of coefficients matrices. These variables are the solu-
tions of continuous and discrete Riccati. These equations are integrated in inverse
time. So we get optimal solutions in interconnected continuous and discrete parts of
OTES-CALS in the following forms:

π ∗
t ¼ �K�1

π ξTπ ~RtXt, (35)

U ∗
k ¼ �Г�1

u BТ
u
~Rkþ0 Iþ BuГ

�1
u BТ

u
~Rkþ0

� ��1
BxXk�0: (36)

Expansions (35) and (36) define on-line regulator on the basis of known values
of phase current vector Xt, Xk�0 For linear system with quadratic criterion
described by the following equations:

_Xt ¼ ξxXt þ ξππt þ ξ0t (37)

Хk ¼ BxXk�0 þ BuUk, (38)

the optimal control π ∗
t is expressed by

π ∗ ¼ �K�1
π ξTπ ~RtXt þ 1

2
gt

� �
(39)
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_gt ¼ ~RtξπK
�1
π ξTπ � ξTx

� �
gt � 2~Rtξ0t, gtf ¼ 0 (40)

Here ξ0t is constant term; formula for U ∗
k remains similar.

Example 2. For illustration let us consider SASS (Figure 10) for the technological
supply process by serviceable CP. On Figure 10 graphs nodes corresponds CP states:

• CP being in usage stage with amount Xt19;

• CP being in repair with amount Xt2 (after usage);

• CP being draft out with amount Xt3.

It is evidently Xt3 ¼ N0 � Xt1 þ Xt2ð Þ; ρ12, ρ13 being intensity parameters of
ordinary CP Poisson streams entering for repair and draft of; πt being repair
productivity. Time of CP filling up is equal to T.

It is required to determine optimal parameter π ∗
t of restoration and optimal

volumes U ∗
k ¼ U ∗ tkð Þ, tk ¼ kT which gives minimum to quadratic functional being

sum of expenditure costs:

L ¼ α

2

XN

k¼1

U2
k þ

β

2

ðtf

t0

π ∗ tð Þdtþ δ

2
M т1 tf

� �� γ
� �2h i

(41)

Here α, β, γ, δ are parameters of functional; т1 tf
� �

are mathematical expectation
of CP remainder at tf ready for use; γ ¼ KТГN0 mean number of aggregates ready
for use; KТГ ∈ 0; 1½ � being coefficient of technical readiness; N0 originate amount
of CP.

Is possible to show that at φ Х; tð Þ ¼ 0 mathematical expectation of CP amount
and at step-vise X1t is defined by the following equations:

_т1t ¼ �ρ12т1t þ πtт2t, т1t 0ð Þ ¼ N0, _т2t ¼ �ρ12т1t � πtт2t, т2t 0ð Þ ¼ 0, (42)

т1, k ¼ т1, k¼0 þ U1k: (43)

These mathematical expectations are continuous and discrete variables. This
problem being nonlinear because control function πt enters into the right hand of
equations in the form of composition with function m2t depending upon control. So
it is necessary to use general problem statement Eqs. (9) and ((1) and expressions
(17)–(21).

Let us denote.

ð44Þ

Figure 10.
System state graph.

135

Probabilistic Modeling, Estimation and Control for CALS Organization-Technical-Economic…
DOI: http://dx.doi.org/10.5772/intechopen.88025



Θk ¼ 1
2

XT
k�0ГxXk�0 þUT

k ГuUk
� �þΨT

kþ0 BxXk�0 þ BuUkð Þ �ΨT
k Xk�0� � ΨT

k Xk�0,

(26)

Kx, Гx,Нtf and Kπ, Гu being positive semidefinite and positive defined matrices
of corresponding dimension. It is required to find optimal algorithm control for
linear system described by Eqs. (22)–(24). Algorithm of optimal design based state
feedback control gives the followings equations:

_Ψt ¼ �ξTxΨt � KxXt (27)

Ψtf ¼ HXtf (28)

πt ¼ �K�1
π ξTπΨt (29)

Ψk ¼ BТ
хΨkþ0 þ ГxXk�0 (30)

Uk ¼ �Г�1
и ВТ

иΨkþ0 (31)

Algorithm includes: (1) integration in inverse time with initial condition (28) of
vector differential Eq. (27) and difference Eq. (30) with data storage in each step;
(2) formulae (29), (31) for calculating controls with usage of stored Ψt, Ψkþ0. Note
that during Eq. (27) integration at time moments t ¼ tk, k ¼ Nf ,Nf�1,…, 1 step-wise
changes Ψt occur according to Eq. (30).

For reducing two-point boundary problem to ordinary we apply known
approach and perform linear change of variables in Eqs. (22)–(31):

Ψt ¼ ~RtXt (32)

Ψk ¼ ~RkXk�0 (33)

Ψkþ0 ¼ ~Rkþ0Xk (34)

where ~Rt, ~Rkþ0 are values of coefficients matrices. These variables are the solu-
tions of continuous and discrete Riccati. These equations are integrated in inverse
time. So we get optimal solutions in interconnected continuous and discrete parts of
OTES-CALS in the following forms:

π ∗
t ¼ �K�1

π ξTπ ~RtXt, (35)

U ∗
k ¼ �Г�1

u BТ
u
~Rkþ0 Iþ BuГ

�1
u BТ

u
~Rkþ0

� ��1
BxXk�0: (36)

Expansions (35) and (36) define on-line regulator on the basis of known values
of phase current vector Xt, Xk�0 For linear system with quadratic criterion
described by the following equations:

_Xt ¼ ξxXt þ ξππt þ ξ0t (37)

Хk ¼ BxXk�0 þ BuUk, (38)

the optimal control π ∗
t is expressed by

π ∗ ¼ �K�1
π ξTπ ~RtXt þ 1

2
gt

� �
(39)

134

Probability, Combinatorics and Control

_gt ¼ ~RtξπK
�1
π ξTπ � ξTx

� �
gt � 2~Rtξ0t, gtf ¼ 0 (40)

Here ξ0t is constant term; formula for U ∗
k remains similar.

Example 2. For illustration let us consider SASS (Figure 10) for the technological
supply process by serviceable CP. On Figure 10 graphs nodes corresponds CP states:

• CP being in usage stage with amount Xt19;

• CP being in repair with amount Xt2 (after usage);

• CP being draft out with amount Xt3.

It is evidently Xt3 ¼ N0 � Xt1 þ Xt2ð Þ; ρ12, ρ13 being intensity parameters of
ordinary CP Poisson streams entering for repair and draft of; πt being repair
productivity. Time of CP filling up is equal to T.

It is required to determine optimal parameter π ∗
t of restoration and optimal

volumes U ∗
k ¼ U ∗ tkð Þ, tk ¼ kT which gives minimum to quadratic functional being

sum of expenditure costs:

L ¼ α

2

XN

k¼1

U2
k þ

β

2

ðtf

t0

π ∗ tð Þdtþ δ

2
M т1 tf

� �� γ
� �2h i

(41)

Here α, β, γ, δ are parameters of functional; т1 tf
� �

are mathematical expectation
of CP remainder at tf ready for use; γ ¼ KТГN0 mean number of aggregates ready
for use; KТГ ∈ 0; 1½ � being coefficient of technical readiness; N0 originate amount
of CP.

Is possible to show that at φ Х; tð Þ ¼ 0 mathematical expectation of CP amount
and at step-vise X1t is defined by the following equations:

_т1t ¼ �ρ12т1t þ πtт2t, т1t 0ð Þ ¼ N0, _т2t ¼ �ρ12т1t � πtт2t, т2t 0ð Þ ¼ 0, (42)

т1, k ¼ т1, k¼0 þ U1k: (43)

These mathematical expectations are continuous and discrete variables. This
problem being nonlinear because control function πt enters into the right hand of
equations in the form of composition with function m2t depending upon control. So
it is necessary to use general problem statement Eqs. (9) and ((1) and expressions
(17)–(21).

Let us denote.

ð44Þ

Figure 10.
System state graph.

135

Probabilistic Modeling, Estimation and Control for CALS Organization-Technical-Economic…
DOI: http://dx.doi.org/10.5772/intechopen.88025



For conjugated functions from Eqs. (17), (21) and (41) we get:

ð45Þ

Than from Eq. (19) follows ψ1t, kþ0 ¼ ψ1t, k, ψ2t, kþ0 ¼ ψ2t, k. So the conjugated
variables ψ1t, ψ2t are continuous functions.

From Eqs. (18) and (19) we have the following expressions for optimal contin-
uous and discrete controls

π ∗ tð Þ ¼ 1
β
m2t ψ2 � ψ1ð Þ, (46)

U ∗
k tð Þ ¼ � 1

α
ψ1, kþ0: (47)

Taking into account that firstly π ∗ tð Þ implicitly incoming into right hand of
Eq. (42) and U ∗

k secondly U ∗
k and π ∗ tð Þ implicitly connected between each other

over ψ1,kþ0 such numerical methods as gradient method may be used [1, 23].
According to gradient method next iþ 1ð Þ iteration of π ∗ tð Þ is calculated by
πiþ1 ¼ πi � rΔi where Δi ¼ βπi þm2t ψ2 � ψ1ð Þ. Hence the recurrent iteration is cal-
culated by the following expression:

ð48Þ

where r is chose from convergence and exactness condition.
Numerical results for m1t and π ∗ tð Þ are given o Figure 11, Values of jumps m1t at

tk ¼ kT, k ¼ 1,…, f corresponds to optimal values of deliveries U ∗
k . Values of

parameters are: ρ12 ¼ 0, 7 ρ13 ¼ 0, 3; N0 ¼ 100; T ¼ 0, 5; tf ¼ 2; 2α ¼ 0, 5;
2β ¼ 0, 1; 2δ0 ¼ 100; KТГ ¼ 0, 8.

Two main conclusions follows from Figure 11:

Figure 11.
Volumes U ∗

k of delivery SP optimized jointly with repair capacity π ∗
t .
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• optimal nonstationary restoring politics U ∗
k and restoring channel capacity

goes to γ = 80 at the end t0; tf
� �

;

• values U ∗
k are conjugated with π ∗

t ;

• by variation α, β we choose the cost parameters αþ β ¼ 1 type of control
depending on cost ratio.

Thus the described restoring politics for given level gives CP owners the oppor-
tunity to form separate repair net based on CP order (on supplier side).

Peculiarities of optimal control stochastic continuous-discrete systems with state
feedback.

For the linear equations:

_Xt ¼ ξxXt þ ξππt þ ξ0t þ Vt, (49)

Хk ¼ ВxXk�0 þ ВиUk, (50)

where Vt is internal noise being white noise (in strict sense) with known prob-
abilistic characteristics acting in continuous channel; Uk is known discrete function
depending on control using formulae for linear stochastic regulator synthesis for
system (49) and (50) optimal control and separation theorem we come to the
following basic algorithm. It includes two steps:

• optimal deterministic regulator design;

• calculation of optimal estimates X̂ t,X̂k�0 of (49) and (50) phase vector which is
observed in mixture with white noise and substitution into regulator formulae.
Exact solution exists only for linear stochastic systems. Using method of
normal approximation or statistical linearization [2–5] relatively to state vector
it is possible to get the simple approximate algorithm.

4.3 Optimal planning and control

As it was already mentioned in Subsection 4.1 OTES-CALS includes complex
through along LC on-line planning of processes with goals and objectives and given
criteria. Program—object planning is the separate part of applied control theory of
LS processes for complex high-technology products which ensure solving LS inte-
gration tasks enterprises-participants. We introduce virtual enterprise (VE) as a
system developing according with given goals, objectives and programs. On-line
realization of plans and programs occur in presence on one side internal noises due
to control stochastic and on the other hand by external noises from third party and
organizations.

Following [2–4, 23] let us consider optimal regulator for operative control.
Within given framework program/plan for OTES-CALS as VE functioning in
stochastic media using social-technical-economic effectiveness criteria. We use
probability filtering theory based on Kalman and Pugachev filters [2–4]. Optimal
stochastic regulator (Figure 12) is designed on the basis of the partition theorem.
So at first it is necessary to design optimal regulator and then filter for reducing
noises.

Using Kalman filtering theory [2–4] for linear continuous-discrete OTES-CALS
we get the following equations for stochastic optimal continuous-discrete regulator:
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According to gradient method next iþ 1ð Þ iteration of π ∗ tð Þ is calculated by
πiþ1 ¼ πi � rΔi where Δi ¼ βπi þm2t ψ2 � ψ1ð Þ. Hence the recurrent iteration is cal-
culated by the following expression:

ð48Þ

where r is chose from convergence and exactness condition.
Numerical results for m1t and π ∗ tð Þ are given o Figure 11, Values of jumps m1t at

tk ¼ kT, k ¼ 1,…, f corresponds to optimal values of deliveries U ∗
k . Values of

parameters are: ρ12 ¼ 0, 7 ρ13 ¼ 0, 3; N0 ¼ 100; T ¼ 0, 5; tf ¼ 2; 2α ¼ 0, 5;
2β ¼ 0, 1; 2δ0 ¼ 100; KТГ ¼ 0, 8.

Two main conclusions follows from Figure 11:

Figure 11.
Volumes U ∗

k of delivery SP optimized jointly with repair capacity π ∗
t .
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• optimal nonstationary restoring politics U ∗
k and restoring channel capacity

goes to γ = 80 at the end t0; tf
� �

;

• values U ∗
k are conjugated with π ∗

t ;

• by variation α, β we choose the cost parameters αþ β ¼ 1 type of control
depending on cost ratio.

Thus the described restoring politics for given level gives CP owners the oppor-
tunity to form separate repair net based on CP order (on supplier side).

Peculiarities of optimal control stochastic continuous-discrete systems with state
feedback.

For the linear equations:

_Xt ¼ ξxXt þ ξππt þ ξ0t þ Vt, (49)

Хk ¼ ВxXk�0 þ ВиUk, (50)

where Vt is internal noise being white noise (in strict sense) with known prob-
abilistic characteristics acting in continuous channel; Uk is known discrete function
depending on control using formulae for linear stochastic regulator synthesis for
system (49) and (50) optimal control and separation theorem we come to the
following basic algorithm. It includes two steps:

• optimal deterministic regulator design;

• calculation of optimal estimates X̂ t,X̂k�0 of (49) and (50) phase vector which is
observed in mixture with white noise and substitution into regulator formulae.
Exact solution exists only for linear stochastic systems. Using method of
normal approximation or statistical linearization [2–5] relatively to state vector
it is possible to get the simple approximate algorithm.

4.3 Optimal planning and control

As it was already mentioned in Subsection 4.1 OTES-CALS includes complex
through along LC on-line planning of processes with goals and objectives and given
criteria. Program—object planning is the separate part of applied control theory of
LS processes for complex high-technology products which ensure solving LS inte-
gration tasks enterprises-participants. We introduce virtual enterprise (VE) as a
system developing according with given goals, objectives and programs. On-line
realization of plans and programs occur in presence on one side internal noises due
to control stochastic and on the other hand by external noises from third party and
organizations.

Following [2–4, 23] let us consider optimal regulator for operative control.
Within given framework program/plan for OTES-CALS as VE functioning in
stochastic media using social-technical-economic effectiveness criteria. We use
probability filtering theory based on Kalman and Pugachev filters [2–4]. Optimal
stochastic regulator (Figure 12) is designed on the basis of the partition theorem.
So at first it is necessary to design optimal regulator and then filter for reducing
noises.

Using Kalman filtering theory [2–4] for linear continuous-discrete OTES-CALS
we get the following equations for stochastic optimal continuous-discrete regulator:
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Filter equations

_̂Xt ¼ аХ̂ t þ a2ζt þ а0 þ RtqTt υ
�1
z Zt � qtX̂ t þ b2ζt

� �� �þ ξππ
∗
t (51)

Х̂k ¼ BxX̂k�0 þ BxU ∗
k (52)

_Rt ¼ aRt þ RtaT þ υх � RtqTt υ
�1
z qtRt (53)

where Zt ¼ _Gt, υх is matrix of in OTES-CALS internal noises intensities; υz is
matrix of OTES-OS and OTES-NS intensifies of noises;

R0 ¼ М X0 � X̂0
� �

X0 � X̂0
� �Th i

is initial conditions for Eq. (53). Direct time inte-

gration of Riccati Eq. (54) is used.
Regulator equations:

π ∗
t ¼ �K�1

π ξTπ ~RtX̂ t þ 1
2
gt

� �
, (54)

_gt ¼ ~RtξπK
�1
π ξTπ � ξTx

� �
gt � 2~Rttа2ζt, gtf ¼ 0 (55)

U ∗
k ¼ �Г�1

u BТ
u
~Rkþ0 Iþ BuГ

�1
u BТ

u
~Rkþ0

� ��1
BxX̂k�0, (56)

Auxiliary equations:

~Rt ¼ �~Rtξx � ξTx ~Rt þ ~RtξπK
�1
π ξTπ ~Rt � Kx, ~Rtf ¼ Htf (57)

~Rk ¼ ВТ
х
~Rkþ0 Iþ ВиГ

�1
и ВТ

и
~Rkþ0

� ��1
Вx þ Kx (58)

Inverse time integration of Riccati Eqs. (57) and (58) is needed Eq. (51). The
continuous-discrete Kalman filter equations are inter connected with regulator
equations (Figure 12).

At last we get equations describing OTES-CALS dynamics with optimal
continuous-discrete regulator insuring minimal deviation from given plan during
given time interval [t0, tf ]

_Xt ¼ аXt þ a2ζt � ξπK
�1
π ξTπ ~RtX̂ t þ 1

2
gt

� �
, (59)

Хk ¼ ВxXk�0 � BuГ
�1
u BТ

u
~Rkþ0 Iþ BuГ

�1
u BТ

u
~Rkþ0

� ��1
BxX̂k�0 (60)

where ζt is external noise from OTES-NS also acting on OTES-OS.

Figure 12.
Optimal stochastic regulator.
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So the design of OTES-CALS includes two stages:

• solution of connected Eqs. (57) and (58) in inverse time with time fixation of
coming current data massive;

• solution of differential Eqs. (51)–(53) and (55) in direct time using earlier fixed
data and with substitution Eqs. (54) and (56).

5. Conclusion

The suggested probabilistic methodology for OTES-CALS allows to solve:

• problems of systems analysis, risk prognosis substations of forestall measures
stability of extraction of latent effects on the basis of stochastic analytical
modeling for applied LC problems;

• problems of optimal estimation and control on the basis probabilistic
estimation and control methods.

Such systems are industrial, energetical, transport systems, financial and
economic systems, insurance companies, etc.

Optimization being realized using social-technical-economic criteria. This per-
mits to optimize project budgets for providing given quality MP and OTES-CALS
staff potential.
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Chapter 6

Combined Calculated,
Experimental and Determinated
and Probable Justifications for
Strength of Trunk Crude Oil
Pipelines
Dmitry Neganov and Nikolay Makhutov

Abstract

Within the long-term Russian and foreign practice, deterministic methods of
basic strength calculations have been developed and are being developed at the
design stage of long-distance pipelines. Occurring operational damages, failures,
accidents, and catastrophes show there are no direct substantiations for the pre-
vention of such emergencies in the framework of existing calculations. In order to
respond to these situations, the following are developed: additional precise deter-
ministic, static, and probabilistic calculations with linear and nonlinear criteria of
deformation and fracture mechanics, complex diagnostics of the state of the pipe-
line using in-line pigs, and laboratory, model, bench, and field tests of pipelines
with technological and operational defects. The results of systematic scientific
research and applied developments are presented.

Keywords: pipeline, strength, calculation

1. Statement of the problem

The trunk pipelines for transporting liquid and gaseous hydrocarbons are one of
the main types of transport infrastructure in the world.

The most important pumped media are crude oil, gas, broad hydrocarbon frac-
tions, and petroleum products. The total length of trunk pipelines in the world is
more than 1.5 million km; in Russia it is about 230 thousand km, and the length of
oil pipelines in the world is 170 thousand km; in Russia it is about 70 thousand km.

The length of the largest individual oil pipeline systems is Canada-USA 4700–
5300 km with pipe diameters of 450–1220 mm, China-Kazakhstan 2200 km with a
diameter of 813 mm, Azerbaijan-Georgia-Turkey 1768 km with a diameter of
1067 mm, Tanzania-Zambia 17,210 km with a diameter of 200–300 mm, and Italy-
Germany 1000 km with a diameter of 660 mm.

In Russia, the largest oil pipelines are the Eastern Siberia-Pacific Ocean, 4740 km
with a diameter of 1020–1200 mm, and Druzhba, 5500 km with a diameter of
520–1020 mm; eight trunk oil pipelines have a length of more than 1000 km.
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The operating pressures in the main oil pipelines range from 2 to 10 MPa
(Figure 1).

The trunk oil pipelines are operated in a very wide range of climatic conditions
(from �70°С to +60°С) and natural hazards (seismic, landslides, geological faults),
with ground, underground, and underwater laying.

Despite the large, more than century-old experience of research, testing, con-
struction, and operation of oil trunk pipelines in the world and in Russia, there were
large-scale accidents and disasters. These accidents were accompanied by the
release of large amounts of oil (up to 100–600 thousand barrels) into the environ-
ment (land, water) with great environmental damage, fires, death and injury to
people, and pollution of hundreds of hectares of land. Economic damages from such
accidents are estimated at $ 10–100 million. The total number of accidents on oil
pipelines in the world over the past 20 years is more than 2000, and the number of
large oil leaks is more than 4500. For every million tons of pumped oil, 3–5 tons fall
into leaks.

In general, the accident rate on the trunk oil pipelines is reduced. However, at
present it is at the level of 0.1–0.3 per 1000 km per year (Figure 2).

These data indicate the need for further research and practical development to
reduce accidents and improve the safety of trunk pipelines.

In recent years, four basic approaches to determining the strength, resource, and
safety of oil pipelines have emerged:

• Deterministic

• Statistical

• Probabilistic

• Combined

2. Solving the problems of strength by basic and calibration methods

2.1 Basic deterministic calculations

The system of domestic and foreign trunk oil pipelines that took shape in the
second half of the twentieth and the beginning of the twenty-first century is char-
acterized by multistage creation and development of integrated approaches to jus-
tifying their strength [1–4]. These approaches were initially formed on the basis of
the fundamental theories of thin-walled shells, classical theories of strength; they
made it possible to form the main computational methods for the selection of

Figure 1.
Oil trunk pipelines (Russia).
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computational schemes and computational cases and the assessment of static
strength, taking into account the types of stress and limit states.

The basic strength condition was then recorded in the simplest form:

ð1Þ

where is maximum operating voltage stress and is hazardous stress.
For a thin-walled pipe with a diameter D with wall thickness , ring

stresses are maximal:
(Figure 3).

ð2Þ

where is maximum operating pressure (Figure 3).

Figure 2.
Accidents on oil pipelines (Venezuela, China, Russia).

Figure 3.
The main design scheme.
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acterized by multistage creation and development of integrated approaches to jus-
tifying their strength [1–4]. These approaches were initially formed on the basis of
the fundamental theories of thin-walled shells, classical theories of strength; they
made it possible to form the main computational methods for the selection of

Figure 1.
Oil trunk pipelines (Russia).
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computational schemes and computational cases and the assessment of static
strength, taking into account the types of stress and limit states.

The basic strength condition was then recorded in the simplest form:

ð1Þ

where is maximum operating voltage stress and is hazardous stress.
For a thin-walled pipe with a diameter D with wall thickness , ring

stresses are maximal:
(Figure 3).

ð2Þ

where is maximum operating pressure (Figure 3).

Figure 2.
Accidents on oil pipelines (Venezuela, China, Russia).

Figure 3.
The main design scheme.
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Since in engineering calculations of static strength according to (1) and (2), a
whole set of design, technological, and operational methods remained unclear,
permissible stresses with corresponding safety margins were entered into the
calculation:

ð3Þ

Dangerous stresses were applicable ones corresponding to:

• Ultimate strength , which excluded the occurrence of fracture (the first
significant limiting state).

• Yield strength (or conditional yield strength ), which excluded the
formation of unacceptable plastic deformations (the second most significant
limiting state). For modern pipeline systems transporting petroleum and
petroleum products, a number of main life cycle stages, as measured up to
30–60 years, are introduced into the strength analysis:

• Feasibility study of the project

• Outline and detailed design

• Construction and testing of pipeline systems

• Operation of pipeline systems with diagnostic and repair and rehabilitation
works

• The withdrawal of sections of pipelines or pipeline systems from operation

• For each of these stages and for the entire life cycle, to date, in our country and
abroad, certain approaches and methods to substantiate strength have been
formed.

These methods are divided into two main groups:

• Basic strength calculations

• Verification calculations of strength for the used construction material

The formation of methods of basic and calibration calculations is currently
associated with the stages of the life cycle. At the same time, an important role is
always played by scientific studies to substantiate the strength criteria, the choice of
design schemes and design cases, followed by the introduction of safety margins.
This is a scientific basis for solving applied problems of strength—the development
of strength standards with their design characteristics (Figure 4).

For all pipe steels and to fulfill condition (3), the margins must satisfy.

ð4Þ

The development of pipeline transport during the decades of the twentieth to
twenty-first centuries [5, 6] was accompanied by a gradual increase in the
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mechanical properties of pipe steels (200 ≤ ≤ 800, 350 ≤ ≤ 950) and a
decrease in strength margins (2.8 ≥ ≥ 1.5, 4.0 ≥ ≥ 1.8).

Expressions (1)–(4) were and remain central to foreign strength standards
[2–4]. In Russian practice [1, 4, 5], expressions (1) and (2) were retained, but the
strength margins in (3) were presented in a differentiated form:

ð5Þ

where n, K1, and Kн are the reliability factors for load, material, and purpose
(n,K1,Kн ≥ 1) and m is the operating condition ratio (m ≤ 1).

In view of Figure 4 and expressions (1)–(5) in the feasibility study of the
project, two main parameters are defined and assigned, pэmax and D, ensuring the
specified pipeline performance.

At the stage of preliminary and detailed design, the main calculation is reduced
to the calculated determination of the minimum wall thickness of the pipeline
according to the given pэmax and D, taking into account economically and techno-
logically reasonable choice of pipe steel with characteristics (according to
technical conditions or standards):

δmin ≥
pэmax �D
2 σ½ � : (6)

Since the values pэmax at each of the calculated sections of the pipeline depend on
their height position, which determines the hydrostatic part of the pressure, the
calculated values are variable in length.

At the stage of construction and pre-hydraulic pressure tests pг ≥ pэmax, calibra-
tion calculations with an assessment of the maximum hydraulic tests are carried out
in accordance with (2), their comparison with permissible values in accordance
with (3) and (5) and confirmation of the absence of destruction or the formation of
unacceptable plastic deformations

σгmax ¼
pг �D
2δmin

≤
σоп
nгσ

: (7)

Figure 4.
Generalized scheme of research and rating of strength.
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At the stage of operation for the time there is a possibility of accumulation of
damage, and a decrease in wall thickness due to corrosion, erosion, as well

as a change in mechanical properties
These parameters are determined according to periodic in-line inspection, as

well as according to mechanical testing of samples from damaged sections of pipe-
lines. The verification calculation of the strength for this stage is reduced to the
assessment of the strength margin

ð8Þ

σэ τð Þ ¼ рэmax �D
δmin τð Þ ; (9)

ð10Þ

If for the analyzed stage margin по (8) is not less than in in (3) and (5), then
the operation of the pipeline can be continued.

To calculate the estimated time of the next in-line inspection, it is necessary to

have data on monitoring and on the basis of previous in-

line inspections operations.
If such initial information is absent, then the construction of calculated curves is

possible:

ð11Þ

where —If such initial information is absent, then the construction of calcu-
lated curves is possible [6, 7] (0≤ ≤ 0.03 for in hours).

2.2 Statistical strength analysis

In actual practice, in the manufacture and testing of pipes, the construction of
pipeline sections and the operation of pipeline systems, all specified parameters of
expressions (1)–(11), are statistically variable, despite the determination of the
main calculations in the design of pipelines throughout the system of design
expressions.

The statistical analysis of the calculated parameters in the framework of the
basic calculations of the strength of pipelines is aimed at establishing:

• Minimum (min), average (m), and maximum (max) parameter values

• Comparability with the values adopted in the project documentation

• Deviations of the calculated parameters to the dangerous and safe side in
comparison with the statistically determined.

On this basis, two decisions are made about the possibility or impossibility of
further operations of pipelines.

In the first case, the main requirement for the strength of pipelines must be met;
in the second case, the strength is considered not ensured if the maximum operating
stresses exceed the allowable.
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σэmax c ≤ σ½ �;σэmax c> σ½ �: (12)

For the scientific substantiation of the need and possibility of extending the
operation of pipelines in cases of failure to meet the strength conditions, it is
possible to reduce the operating pressure to level.

рэс < рэ, when σэс < σэ ≤ σ½ � (13)

Simultaneous fulfillment of conditions (1)–(3) requires the mandatory calcula-
tion of the strength of the pipeline—its pipes and sections, where the realization of
expression (12) is detected.

This calculation should include:

• Maximum values of operating pressure рэmax

• Maximum values of the diameter Dmax of the pipe or section of the pipeline

• Minimum wall thickness δmin

• The minimum values of the characteristics of mechanical properties
σтmin, σвmin:

In this case, you can write

σэс ¼ Fσ pэmax,Dmax, δmin
� �

≤ σ½ � ¼ min
σвmin

nв
,
σтmin

nт

� �
(14)

The strength condition according to expression (14) should be checked
according to the statistical analysis and when conditions (12) are fulfilled.

At the same time, both for condition (12) and for conditions (13) and (14), it is
advisable to give an assessment of the strength according to (1):

• With average values of all parameters рэm, Dm, δm, and σт m, σв m

σэс ¼ Fσ pэm,Dm, δm
� �

≤ σ½ � ¼ min
σв m

nв
,
σт m

nт

� �
(15)

• At extreme (extreme) values рэmax, δmax, Dmin, and σт max, σв max

σэmax ¼ Fσ pэmax,Dmin, δmax
� �

≤ σ½ � ¼ min
σв max

nв
,
σт max

nт

� �
: (16)

Thus, according to (12)–(16), the calculated (average, minimum, maximum)
values of рэ, D, δ, and σт, σв are due to a whole range of design, technological, and
operational factors.

2.2.1 Operating pressure

The statistical nature of operating pressures рэ satisfies inequalities.

рэmin ≤ рэm ≤ рэmax (17)

due to changes in the actual pressures in a given pipe or in a given section of the
pipeline due to
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• Actuation systems to maintain the specified working pressure at pumping
stations

рэн min ≤ рэн m ≤ рэн max (18)

• Deterministic design and actual operational differences of hydrostatic
pressures Δрг from changes in the profile of the heights of laying pipelines

Δрэг min ≤Δрэг m ≤Δрэг max (19)

• Deterministic design pressure changes Δргс

• Deterministic design pressure changes due to changes in hydraulic resistance to
the movement of oil and oil products (due to changes in flow areas, viscosity,
and temperature of the transported working fluid)

Δргс min ≤Δргс m ≤Δргс max (20)

• Deterministic design and actual operating pressure changes due to external
effects on the pipeline (seismic, temperature, vibration, aero-hydrodynamic)

Δрв min ≤Δрв m ≤Δрв max (21)

In the basic calculations using expressions (1)–(11), for deterministic and statis-
tical estimates of the static strength of pipelines, pressure components should be
included when the pipelines are operating at maximum design conditions:

рэр ¼ рэ þ
X

Δрэ: (22)

Deeper in scope, cyclic pressure changes due to software changes in pipeline
operation modes (start-up, shutdowns, performance change—throughput) are
subject to accounting for cyclic strength and durability calibration calculations.
Statistical information on the change in pressure is obtained from the registration
data at pumping stations.

2.2.2 Diameter of pipelines in operation

The diameter D, which is included in expressions (1), (4)–(6), and the pipeline,
is characterized by the scattering of its actual values. It is due to pipe manufacturing
technology and is reflected in the maximum and minimum technological tolerances
on the diameter ΔDт:

Dт
max,D

т
min

� � ¼ Dп � ΔDт, (23)

where Dп is design diameter.
Values ΔDт in either direction may be the same or different.
The diameters of Dэ pipes in various parts of pipelines that are fixed during

operation during inspections and diagnostics of pipelines may differ from the
diameters Dт after the manufacture of pipes:

Dэ
max,D

э
min

� � ¼ Dт
max,D

т
min

� �� ΔDэ: (24)
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Values ΔDэ, as a rule, have a positive value due to the possible deformation
under the action of test or operating modes with increased pressure.

The second factor of change in diameters Dэ can be ovalization of the cross-
section during transportation, construction, and operation (usually while
maintaining the length of the perimeter of the pipeline):

Dэ ¼ FD Dэ
min,D

э
max

� �
, (25)

where Dэ
min,D

э
min are minimum and maximum diameter in the zone of

ovalization.
For ovalized sections, the calculated determination of stresses according to (1)

should take into account their increase.
The calculated justification of static strength in the framework of the basic

calculations according to (1)–(21) should be mainly oriented:

• To the maximum values in Dmax in (23) and (25)

• At maximum operating stress σэmax

2.2.3 Pipeline wall thickness in operation

Pipeline wall thickness δ has the most significant effect on operating stresses σэ

and strength conditions.
The statistical variation of values, as well as diameters D, is due to:

• Rolling sheet technology, which is a blank for pipes:

δтmin, δ
т
max

� � ¼ δп � Δδт, (26)

where δп is design wall thickness and Δδт is technological tolerance for thickness.
The change in wall thickness during pipe rolling can be neglected, taking into

account the main bending deformations.
When testing pipes at the manufacturing stage and during construction, it is

possible to change the wall thickness downwards:

• Due to plastic deformations from high-pressure tests ри

Δδи ¼ Fδ ри,ΔDэ, μf g, (27)

where μ is Poisson’s ratio (0.3 ≤ μ ≤ 0.5) and ΔDэ is a possible increase in the
diameter Dэ of the pipeline, defined by (25).

• Due to corrosion and erosion damage

Δδкэ ¼ Fδ рэ, τэ, скэf g, (28)

where τэ is operation time and скэ is the rate of corrosion erosion damage.
In the basic calculations of static strength according to the basic calculations of

static strength according to the expressions (1)–(28), the minimum value of the
wall thickness should be used:

δэmin ¼ δп � Δδт � Δδи � Δδкэ: (29)
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Expression (29) under condition (14) will mean the maximum increase in oper-
ating stresses σэ.

2.2.4 Characteristics of mechanical properties

Mechanical properties with strength characteristics (σв, σт), (R1, R2), as well
as рэ,D, δ are stochastic. In order to ensure and justify the static strength of pipe-
lines ,their minimum values should be entered into the calculation. The statistical
variation in the characteristics of the mechanical properties of pipe steels is
determined by a set of technological factors:

• Chemical composition and structural structure (grain size d)

• Modes of thermal and thermomechanical (tт) processing

• The level of preliminary plastic deformations еn during sheet rolling, rolling of
tube blanks, and testing of pipes, sections, and sections of pipelines

• Temporary factors of aging and degradation in time τ

σэв, σ
э
т

� � ¼ Fσ d3, tп, еn, tэf g: (30)

For widely used pipe steels, the increase in strength characteristics σт, σв is
usually combined with a decrease in ductility.

In the main calculations of the strength of pipelines, it is recommended to use
statistical data on the reduction of strength characteristics:

σэв, σ
э
т

� � ¼ min σв, σтf g: (31)

2.2.5 Reflection of statistical factors of strength in margin

Use in domestic and foreign basic regulatory calculations of the strength of the
system of strength margins nσ (when calculating the permissible stresses σ½ �) and
reliability coefficients K1, K2, m, and n (when calculating the limiting states and
resistances) makes it possible to obtain a connection between them in the form of
expression (5).

All coefficients of expression (5) in a deterministic form, taking into account the
statistics of design parameters for expressions (12)–(31), reflect the general varia-
tion of design, technological, and operational strength factors.

The strength margins nσ of (5) in the deterministic basic and calibration statisti-
cal calculations take into account the level of the necessary reduction of operating
stress σэ compared to dangerous stresses σэmax < σоп

� �
:

nσ ¼ σоп
σэmax

: (32)

At the same time, dangerous stresses σоп are understood not only as determinis-
tic but also as statistical limits of strength σв (to exclude one-time static damage)
and plasticity σт (to exclude one-time static damage) and plasticity (to prevent the
formation of unacceptable plastic deformations):

σоп ¼ min σв, σтf g: (33)
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The statistical information about the values σэ is obtained on the basis of the
analysis of the stress–strain state by statistical parameters рэ,D, δ on the basis of the
entire system of expressions (1)–(33).

In combination with the statistical data on the hazard values of the criterial
characteristics σоп in the form of tensile strengths σв and yield strengths σт (or
design resistances R1, R2), a scatter can be obtained nσ nв, nтð Þ:

nσmin ¼ σв min

σэmax
,
σт min

σэmax

� �
;nσ max ¼ σв max

σэmin
,
σт max

σэmin

� �
: (34)

To make decisions about the admissibility of safety margins, nσ should be esti-
mated, and their average values

nσ ср ¼ σв m

σэm
,
σт m

σэm

� �
: (35)

The strength of the pipeline, determined by the allowable stresses in the statis-
tical interpretation, can be considered as secured if the normatively specified
margin nσн nвн, nтнð Þ satisfies the inequality

nσ max ≥ nσ m ≥ nσ min ≥ nσн: (36)

According to these statistics, it is possible to quantify statistical variations of the
coefficients m, n, K1, and Kн. On this basis, you can make a conclusion about the
strength of the pipeline, if combinations are performed:

mmin,KIImax,Kн max, nminf g> m,K1,Kн, nf gн: (37)

Failure to comply with conditions (36) and (37) requires making decisions about
conducting refined basic and calibration calculations by deterministic and statistical
methods.

2.3 Basics of probabilistic strength calculations

The accumulation of statistical information in the form of histograms of the
main design parameters of strength makes it possible to proceed to a probabilistic
analysis in the form of a distribution of strength. They are reflected in regulatory
calculations for limiting states and limiting resistances [5] through the safety
factors for the material, load, working conditions and purpose, and load in
expression (25):

The essence of this analysis [1, 6, 8] is:

• to obtain the probability density functions р of external and internal effects
(the number of pressure рэ) and the corresponding design stresses σэ and
design resistances (yield strength σТ and strength σв) with the subsequent
determination of the probability of failure Рр in areas, where areas with
extremely low probabilities (Рр ≤ 10�7);

• to construct probability functions Р σэð Þ and Р{σТ , σв} with the definition of the
relationship between strength margins {nТ , nв} and given probabilities Р σэð Þ,
Р{σТ , σв}, corresponding to the volume of the initial statistical and probabilistic
information.
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Expression (29) under condition (14) will mean the maximum increase in oper-
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σэв, σ
э
т

� � ¼ Fσ d3, tп, еn, tэf g: (30)
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σэв, σ
э
т

� � ¼ min σв, σтf g: (31)

2.2.5 Reflection of statistical factors of strength in margin

Use in domestic and foreign basic regulatory calculations of the strength of the
system of strength margins nσ (when calculating the permissible stresses σ½ �) and
reliability coefficients K1, K2, m, and n (when calculating the limiting states and
resistances) makes it possible to obtain a connection between them in the form of
expression (5).

All coefficients of expression (5) in a deterministic form, taking into account the
statistics of design parameters for expressions (12)–(31), reflect the general varia-
tion of design, technological, and operational strength factors.

The strength margins nσ of (5) in the deterministic basic and calibration statisti-
cal calculations take into account the level of the necessary reduction of operating
stress σэ compared to dangerous stresses σэmax < σоп

� �
:

nσ ¼ σоп
σэmax

: (32)
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σоп ¼ min σв, σтf g: (33)
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The statistical information about the values σэ is obtained on the basis of the
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σэmax
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σт min

σэmax

� �
;nσ max ¼ σв max

σэmin
,
σт max

σэmin

� �
: (34)
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σэm
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σт m

σэm

� �
: (35)
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There is a simple relationship between probability Р and the amount of initial
statistical information:

n ¼ i� 0, 5
P

, (38)

where i is the sequence number of the measured value and n is the total number
of measurements.

With a commonly used sample of 20 measurements, the value is Р = 2.5�10�2

(or 2.5%).
To estimate the values of Р at the level of 10�2 (or 1%) it is necessary to make

already 50 measurements, and for the probability of 10�4 – 5000.
In statistical and probabilistic studies of the mechanical properties of structural

steels, the volume of samples n is in the range of 20–22.000 [6, 10]. According to
the histogram of the limit distribution functions σт, σв, the functional F is obtained
for the strength margins nт, nв:

nT, nвf g ¼ F P σэð Þ,Р σТ , σвÞð gf (39)

The number of laboratory samples of steel 17G1S, cut from pipes in the initial
state and after 40 years of operation is 28.

To solve probabilistic problems of strength in terms of expression (39) in the
zone of small probabilities of destruction Рр, a large amount of statistical informa-
tion is needed with samples measured in the hundreds and thousands, which is
practically impossible in many real cases. In this connection, it is more promising to
use expressions (38) and (39), which allow nT, nвf g estimating reserves for a given
probability Р of calculated characteristics, corresponding to the availability of
experiments on the distribution functions, Р σэð Þ and Р{σТ , σв}, with the choices of
tens and hundreds.

Figure 5 shows the scheme for the implementation of a probabilistic analysis of
reserves: along the ordinate axis, the probabilities Р σэð Þ and Р σвð Þ on a scale
corresponding to the normal distribution law. Then by the median values σэm и σвm
for the probability Р = 50% and for other values of Р (Р < 50%).

nσвð Þm ¼ σвð Þm
σэð Þm

; nσвð Þр ¼
σвð Þр
σэð Þр

: (40)

If, according to the results of statistical processing of values σэ and σв the
parameters of their probability distributions are obtained—(the coefficients of var-
iation Vσэ and Vσв and their average values σэm

� �
mand σвð Þm, then the calculated

values σвð Þр and σэð Þр for a given probability P are obtained from the expressions.

σэð Þр, σвð Þр
n o

¼ σэð Þm, σвð Þm
� �

1� Zp Vσэ,Vσвf g� �
, (41)

where Zp is distribution quantile depending on Р.
For coefficients of variation in the range of Vσэ и Vσв in the range of 0.03–0.1

the calculated probabilities Рр are obtained when the margin factors nσв>1, 8 are in
the range of 10�15 to 10�5.

With the currently existing banks of data on operational load σэ and mechanical
properties of pipe steels (σв, σТ), it is more reasonable to consider not determining
the values of Рр in the area of their low values, but determining the strength margins
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from (40) using the specified probability parameters Р in the range of 10�4 to 10�5

and above.
On the basis of (5) and (41), it is possible to analyze changes in the regulatory

strength margin nв taking into account the probabilistic characteristics of the oper-
ational loading σэ and the limits of strength σв:

np ¼ nв
1� Zp � Vσв
1þ Zp � Vσэ

¼ nв � np, (42)

where np is margin of strength for a given probability Р and np is margin
reduction rationв. The relationship between np and Р in (42) with Vσв ¼ 0, 05 and
Vσэ ¼ 0, 08 is shown in Figure 6. From the data in Figures 5 and 6, it can be seen
that the greatest influence on the allowable change in the strength margins nв is
observed when Р decreases from 0.5 to 10�3. Refinement of probabilistic calcula-
tions of strength at lower Р does not make much practical sense.

The probabilistic approach acquires its practical relevance in the critical sections
of trunk pipelines:

• At their intersections with other transport systems (rail, high-voltage,
pipeline), with non-compliance with the allowable distances from other
facilities and infrastructures

• On water transitions

• In zones of geological faults, landslides, and seismic effects

This approach becomes significant and necessary for those cases when the
assigned service lives and estimated durability are developed, and the in-line
inspections show increased defectiveness.

Figure 5.
Scheme for assessing the impact of probability P on the strength margin.

155

Combined Calculated, Experimental and Determinated and Probable Justifications…
DOI: http://dx.doi.org/10.5772/intechopen.89036



There is a simple relationship between probability Р and the amount of initial
statistical information:

n ¼ i� 0, 5
P

, (38)

where i is the sequence number of the measured value and n is the total number
of measurements.

With a commonly used sample of 20 measurements, the value is Р = 2.5�10�2

(or 2.5%).
To estimate the values of Р at the level of 10�2 (or 1%) it is necessary to make

already 50 measurements, and for the probability of 10�4 – 5000.
In statistical and probabilistic studies of the mechanical properties of structural

steels, the volume of samples n is in the range of 20–22.000 [6, 10]. According to
the histogram of the limit distribution functions σт, σв, the functional F is obtained
for the strength margins nт, nв:

nT, nвf g ¼ F P σэð Þ,Р σТ , σвÞð gf (39)

The number of laboratory samples of steel 17G1S, cut from pipes in the initial
state and after 40 years of operation is 28.

To solve probabilistic problems of strength in terms of expression (39) in the
zone of small probabilities of destruction Рр, a large amount of statistical informa-
tion is needed with samples measured in the hundreds and thousands, which is
practically impossible in many real cases. In this connection, it is more promising to
use expressions (38) and (39), which allow nT, nвf g estimating reserves for a given
probability Р of calculated characteristics, corresponding to the availability of
experiments on the distribution functions, Р σэð Þ and Р{σТ , σв}, with the choices of
tens and hundreds.

Figure 5 shows the scheme for the implementation of a probabilistic analysis of
reserves: along the ordinate axis, the probabilities Р σэð Þ and Р σвð Þ on a scale
corresponding to the normal distribution law. Then by the median values σэm и σвm
for the probability Р = 50% and for other values of Р (Р < 50%).

nσвð Þm ¼ σвð Þm
σэð Þm

; nσвð Þр ¼
σвð Þр
σэð Þр

: (40)

If, according to the results of statistical processing of values σэ and σв the
parameters of their probability distributions are obtained—(the coefficients of var-
iation Vσэ and Vσв and their average values σэm

� �
mand σвð Þm, then the calculated

values σвð Þр and σэð Þр for a given probability P are obtained from the expressions.

σэð Þр, σвð Þр
n o

¼ σэð Þm, σвð Þm
� �

1� Zp Vσэ,Vσвf g� �
, (41)

where Zp is distribution quantile depending on Р.
For coefficients of variation in the range of Vσэ и Vσв in the range of 0.03–0.1

the calculated probabilities Рр are obtained when the margin factors nσв>1, 8 are in
the range of 10�15 to 10�5.

With the currently existing banks of data on operational load σэ and mechanical
properties of pipe steels (σв, σТ), it is more reasonable to consider not determining
the values of Рр in the area of their low values, but determining the strength margins

154

Probability, Combinatorics and Control

from (40) using the specified probability parameters Р in the range of 10�4 to 10�5

and above.
On the basis of (5) and (41), it is possible to analyze changes in the regulatory

strength margin nв taking into account the probabilistic characteristics of the oper-
ational loading σэ and the limits of strength σв:

np ¼ nв
1� Zp � Vσв
1þ Zp � Vσэ

¼ nв � np, (42)

where np is margin of strength for a given probability Р and np is margin
reduction rationв. The relationship between np and Р in (42) with Vσв ¼ 0, 05 and
Vσэ ¼ 0, 08 is shown in Figure 6. From the data in Figures 5 and 6, it can be seen
that the greatest influence on the allowable change in the strength margins nв is
observed when Р decreases from 0.5 to 10�3. Refinement of probabilistic calcula-
tions of strength at lower Р does not make much practical sense.

The probabilistic approach acquires its practical relevance in the critical sections
of trunk pipelines:

• At their intersections with other transport systems (rail, high-voltage,
pipeline), with non-compliance with the allowable distances from other
facilities and infrastructures

• On water transitions

• In zones of geological faults, landslides, and seismic effects

This approach becomes significant and necessary for those cases when the
assigned service lives and estimated durability are developed, and the in-line
inspections show increased defectiveness.

Figure 5.
Scheme for assessing the impact of probability P on the strength margin.

155

Combined Calculated, Experimental and Determinated and Probable Justifications…
DOI: http://dx.doi.org/10.5772/intechopen.89036



3. Implementation of combined methods to substantiate strength

3.1 Formation of the structure of the combined methods

The generalized structure of the standard basic and calibration determination of
the strength parameters of main oil pipeline systems discussed above (Section 2)
reflects the theory and practice of computational and experimental substantiation
of strength developed in our country and abroad for six to seven decades. The focus
is on the trunk pipelines for the transportation of oil and oil products. The calcula-
tion of strength analysis is based on two methods—the method of calculation for
permissible stresses (adopted in foreign practice) and the method of calculation for
limiting states and limit resistances (adopted in Russian practice).

The most developed and applied is the deterministic strength calculation at the
design stage. This solves the direct main problems of determining the wall thickness
of the pipeline for given pressures, throughput of pipes and selected pipe steels.
The same method is used at the stage of calibration calculations of the
strength of the pipelines under construction and the majority of the pipelines being
operated.

In those cases when it is necessary to calculate the substantiation of the strength
of functioning pipelines with deviations from the design decisions and when defects
in pipes occur outside the established norms, it is necessary to carry out calibration
calculations using actual statistical information on all the calculated parameters.
One of the tasks solved at the same time is the appointment of all the main design
parameters according to the obtained statistical information. In these cases the
preservation of regulatory reserves is typical.

For the most critical sections of pipelines, statistical strength analysis may be
insufficient and unacceptable. Then probabilistic estimates of strength are required
using the functions of the distribution of operational loading and the mechanical
properties of pipe steels by the parameter of operation time. For these situations, it
becomes possible to change the safety margins for the required probabilities of the
occurrence of dangerous states.

Figure 6.
Relative decrease in strength margins n with changing probabilistic characteristics of loading and mechanical
properties.
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The scientific basis of these calculations is the entire system of calculation
expressions (1)–(42) (Figure 7).

This system has been and remains basic in all international practice [1–4] to the
present time with the development of methods for the design, construction, and
operation of trunk pipelines to ensure their strength and deformability expressed in
a gradual decrease in margins n (1.8 ≥ nT ≥ 1.2; 2.5 ≥ nв ≥ 1.7) и and an increase in
the strength characteristics σт, σв (200 ≤ σТ ≤ 800; 420 ≤ σв ≤ 920 MPa).

All uncertainty factors included in the calculations and reflecting the operating
conditions, design, and construction technologies were taken into account by the
coefficients (nσ, nT, nв) and the standard purpose of guaranteed mechanical prop-
erties (σв, σТ).

A generalized analysis of trends and parameters of the development of pipeline
transport of oil and oil pipelines and methods for calculating the strength is made in
[6, 7].

Expressions (1) and (2) are initial in assessing the strength of pipelines at all the
main stages of the life cycle—design, construction, operation, and
decommissioning. Currently two tasks are being solved:

• The direct task of a deterministic basic calculation of the wall thickness δ of the
pipeline at the design stage with a preliminary feasibility study of the diameter
Dв and pressure р as well as with the selected structural material σоп, σв, σТð )
and assigned margin nσ, nT, nвð Þ:

δ ≥
рDв

2 σ½ � ¼
рDв � nσ
2σоп

: (43)

Under these conditions, the wall thickness δ cannot be less than the value
calculated by expression (6) (Figure 8).

At the stages of construction, operation, and decommissioning on the basis of
(43), deterministic calibration calculations are performed with the following
objectives:

• Check of permissible operating pressure [р] at specified

р½ �≤ 2
σоп
nσ

: (44)

Figure 7.
Block diagram of regulatory foreign and domestic calculations.
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• Validation of selected and assigned mechanical properties σоп, σТ , σвð Þ with
known р,Dв, δ, nσ

σоп ≥
pDв

2δ
� nσ: (45)

• Check by (6) the permissible wall thickness δ½ � at

δ½ � ≥ рDвnσ
2σоп

: (46)

• Checking the allowable strength margin[nσ]with known

nσ ≥
σоп � 2δ
рDв

: (47)

In deterministic calculations according to (1) and (2), a systematic analysis of
uncertainty factors affecting the quantities nσ, n, m, KI, and Kн is carried out. These
factors [6–10] included such factors as:

• The effect of the absolute dimensions of the sections Dв, δð Þ

• Type of stress–strain state (components of the main stress σ1, σ2, σ3)

• Temperature–time change in mechanical properties σТ , σв, which determines
the processes of aging and degradation

• Availability of welded joints with altered properties

3.2 Databases for calculations

On the basis of statistical measurements and estimates of all specified design
parameters (pressures р, mechanical properties σТ , σв, geometrical dimensions δ
and Dв with variations within {min, max}), first of all, the determination of their
average (median) values becomes important

Rпm ¼ 1
nп

X
Rпi, (48)

Figure 8.
Regulatory basic and verification calculations for different stages of the pipeline life cycle.
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where nп is the number of measurements of calculated parameters Rпi.
According to the obtained statistical information on the parameters Rпi, the

corresponding histograms are constructed by the intervals of their values. For
example, Figure 9 shows the change in the main design parameters—pressure р and
ultimate strength σв [10].

Inequality (47) with the parameters included in it, as well as the data from
Figure 9, are the basis for calculating the determination of Rp taking into account
the statistical and probabilistic dispersion characteristics. At the same time, the
assigned parameters Rр should correspond to the inequality systems

Pmin ≤Pm ≤Pp ≤Pmax (49)

σT, σвf gmin ≤ σT, σвf gp ≤ σT, σвf gm ≤ σT, σвf g (50)

Dmin ≤Dm ≤Dp ≤Dmax (51)

δmin ≤ δp ≤ δm ≤ δmax (52)

For the design stage, statistical analysis of the design parameters using expres-
sions (8)–(12) is done using factory test data for sheet blanks for pipes (δ), pipes
(δ,D), and laboratory samples for static tension (σТ, σв).The values obtained δр,Dp,
(σТ, σв)p are entered in the technical conditions or standards. They are the basis of
deterministic calculations.

If these measurements are carried out at the stage of construction or operation,
then the data obtained from (49)–(52) are included in deterministic calibration
calculations and expressions (44)–(47) (Figure 10).

Technical diagnostics of trunk pipelines (mainly using in-line diagnostics [11])
shows that the most significant from the point of view of strength is the decrease in
time τ wall thickness parameters δ due to such processes as uniform and uneven
corrosion, formation and development of cracks of corrosion, and cyclical nature.
These processes, as a rule, increase the variation of values δ in (52).

The statistical variation of diameters in (11) at the stage of manufacturing,
construction, and operation of the linear part of trunk pipelines is small (0.99 ≤ Dв/
Dm ≤ 1.01) and can be neglected in deterministic and statistical strength calcula-
tions according to (1). However, if during operation there are significant reductions

Figure 9.
Histograms of pressures and strengths.
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Figure 9.
Histograms of pressures and strengths.
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in wall thickness δ, then a significant local increase in diameter Dв (by 5–10 due to
plastic deformations with the formation of shape defects) is possible. Similar pro-
cesses of loss of shape and increase in Dв are possible with nonstandard bending of
pipelines with loss of stability and formation of corrugations.

The change in the average values and variation of the design characteristics of
strength σв, σТð ) according to (50) is associated with the instability of technological
processes for the production of pipe steels, rolling and heat treatment of sheets, pipe
manufacturing, construction of pipeline systems, as well as temporary processes of
aging and degradation.

Figures 11 and 12 show histograms and distribution functions of the mechanical
properties of a long-term (up to 50 years) operated 17G1S tubular steel. This infor-
mation is used in the implementation of calculations for paragraphs 2.1–2.3.

Figure 10.
Statistics on the relative decrease or increase in operating time.

Figure 11.
Strength tensile histograms (total number of tests n = 160).
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In the process of development (in time ) of pipeline transportation of hydro-
carbons in Russia and abroad, three trends remain dominant using deterministic
(D), statistical (C), and probabilistic (P) methods (Table 1 and Figure 13).

Figure 12.
Distribution function of the ultimate strength of pipe steels 17G1S.

No. Description Symbols Value

1. Coefficient of working conditions m 0.6–0,9

2. Load reliability factor K1 1.1–1,5

3. Material reliability factor K2 1.34–1,55

4. Reliability factor to destination Kн 1.0–1,05

Table 1.
Calculated standard values of coefficients.

Figure 13.
The main regularities of changes in the estimated parameters of pipelines.
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• Increase in diameters of pipelines D (from 250 to 300 mm to 1200 to
1400 mm) and pressures p (from 2.0 to 2.5 MPa to 14.0 to 16.0 MPa)

• Increase of mechanical properties of pipe hoists (yield strengths σТ) from 200
to 250МПа to 600 to 800 MPa and strength from 400 to 450 MPa to 700 to
900 MPa

• Reduction of strength margins nТ (от 1.8–3,2 до 1.2–1,5) and (от 2.4–3,5 до
1.6–1,8) in expression (3) and the estimated coefficients in expression (5)

4. Conclusion

The above data (pp. 1–3) allow you to build a comprehensive strength analysis
system using deterministic, statistical, and probabilistic methods for various com-
ponents, taking into account design, technological, and operational factors.

Deterministic strength calculations are used as part of regulatory national and
international approaches for design calculations. They apply to the majority of
functioning oil pipelines systems.

Statistical calculations become relevant in cases where during operational pro-
cess the diagnostic studies of the condition of pipelines are carried out or during
construction routine tests and during operation defects of technological and opera-
tional origin are detected. Probabilistic calculations are necessary on the most dan-
gerous sections of the pipeline (in case of crossing water barriers, transport
infrastructures, and laying offshore pipelines).

In all cases, safety margins are linked to the normative standard documentation
(deterministic approach), the results of diagnostics and defect identification and
measurement (statistical approach), and taking into account the most dangerous
operating conditions (probabilistic approach).
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Chapter 7

From Asymptotic Normality
to Heavy-Tailedness via Limit
Theorems for Random Sums
and Statistics with Random
Sample Sizes
Victor Korolev and Alexander Zeifman

Abstract

This chapter contains a possible explanation of the emergence of heavy-tailed
distributions observed in practice instead of the expected normal laws. The bases
for this explanation are limit theorems for random sums and statistics constructed
from samples with random sizes. As examples of the application of general theo-
rems, conditions are presented for the convergence of the distributions of random
sums of independent random vectors with finite covariance matrices to multivariate
elliptically contoured stable and Linnik distributions. Also, conditions are presented
for the convergence of the distributions of asymptotically normal (in the
traditional sense) statistics to multivariate Student distributions. The joint
asymptotic behavior of sample quantiles is also considered.

Keywords: random sum, random sample size, multivariate normal mixtures,
heavy-tailed distributions, multivariate stable distribution, multivariate Linnik
distribution, Mittag-Leffler distribution, multivariate Student distribution,
sample quantiles
AMS 2000 Subject Classification: 60F05, 60G50, 60G55, 62E20, 62G30

1. Introduction

In many situations related to experimental data analysis, one often comes across
the following phenomenon: although conventional reasoning based on the central
limit theorem of probability theory concludes that the expected distribution of
observations should be normal, instead, the statistical procedures expose the
noticeable non-normality of real distributions. Moreover, as a rule, the observed
non-normal distributions are more leptokurtic than the normal law, having sharper
vertices and heavier tails. These situations are typical in the financial data analysis
(see, e.g., Chapter 4 in [1] or Chapter 8 in [2] and references therein), in experi-
mental physics (see, e.g., [3]), and other fields dealing with statistical analysis of
experimental data. Many attempts were undertaken to explain this heavy-
tailedness. Most significant theoretical breakthrough is usually associated with the
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results of B. Mandelbrot and others who proposed, instead of the standard central
limit theorem, to use reasoning based on limit theorems for sums of random sum-
mands with infinite variances (see, e.g., [4]) resulting in non-normal stable laws as
heavy-tailed models of the distributions of experimental data. However, first, in
most cases the key assumption within this approach, the infiniteness of the vari-
ances of elementary summands can hardly be believed to hold in practice and,
second, although more heavy-tailed than the normal law, the real distributions
often turn out to be more light-tailed than the stable laws.

In this work, in order to give a more realistic explanation of the observed non-
normality of the distributions of real data, an alternative approach based on limit
theorems for statistics constructed from samples with random sizes is developed.
Within this approach, it becomes possible to obtain arbitrarily heavy tails of the
data distributions without assuming the non-existence of the moments of the
observed characteristics.

This work was inspired by the publication of the paper [5] in which, based on
the results of [6], a particular case of random sums was considered. One more
reason for writing this work was the recent publication [7], the authors of which
reproduced some results of [8, 9] without citing these earlier papers.

Here we give a more general description of the transformation of the limit
distribution of a sum of independent random variables or another statistic (i.e., of a
measurable function of a sample) under the replacement of the non-random num-
ber of summands or the sample size by a random variable. General limit theorems
are proved (Section 3). Section 4 contains some comments on heavy-tailedness of
scale mixtures of normal distributions. As examples of the application of general
theorems, conditions are presented for the convergence of the distributions of
random sums of independent random vectors with finite covariance matrices to
multivariate elliptically contoured stable and Linnik distributions (Section 5). Also,
conditions are presented for the convergence of the distributions of asymptotically
normal (in the traditional sense) statistics to multivariate Student distributions
(Section 6).

In Section 7, the joint asymptotic behavior of sample quantiles is considered. In
applied researches related to risk analysis, such characteristic as VaR (Value-at-
Risk) is very popular. Formally, VaR is a certain quantile of the observed risky
value. Therefore, the joint asymptotic behavior of sample quantiles in samples with
random sizes is considered in detail in Section 7 as one more example of the
application of the general theorem proved in Section 3. In this section, we show how
the proposed technique can be applied to the continuous-time case assuming that
the sample size increases in time following a Cox process. One more interpretation
of this setting is related with an important case where the sample size has the mixed
Poisson distribution.

In classical problems of mathematical statistics, the size of the available sample,
that is, the number of available observations, is traditionally assumed to be deter-
ministic. In the asymptotic settings, it plays the role of infinitely increasing known
parameter. At the same time, in practice very often the data to be analyzed are
collected or registered during a certain period of time and the flow of informative
events each of which brings a next observation forms a random point process.
Therefore, the number of available observations is unknown till the end of the
process of their registration and also must be treated as a (random) observation. For
example, this is so in insurance statistics where, during different accounting
periods, different numbers of insurance events (insurance claims and/or insurance
contracts) occur and in high-frequency financial statistics where the number of
events in a limit order book during a time unit essentially depends on the intensity
of order flows. Moreover, contemporary statistical procedures of insurance and
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financial mathematics do take this circumstance into consideration as one of possi-
ble ways of dealing with heavy tails. However, in other fields such as medical
statistics or quality control, this approach has not become conventional; yet, the
number of patients with a certain disease varies from month to month due to
seasonal factors or from year to year due to some epidemic reasons and the number
of failed items varies from lot to lot. In these cases, the number of available obser-
vations as well as the observations themselves is unknown beforehand and should
be treated as random to avoid underestimation of risks or error probabilities.

Therefore, it is quite reasonable to study the asymptotic behavior of general
statistics constructed from samples with random sizes for the purpose of construc-
tion of suitable and reasonable asymptotic approximations. As this is so, to obtain
non-trivial asymptotic distributions in limit theorems of probability theory and
mathematical statistics, an appropriate centering and normalization of random
variables and vectors under consideration must be used. It should be especially
noted that to obtain reasonable approximation to the distribution of the basic
statistics, both centering and normalizing values should be non-random. Otherwise,
the approximate distribution becomes random itself and, for example, the problem
of evaluation of quantiles or significance levels becomes senseless.

In asymptotic settings, statistics constructed from samples with random
sizes are special cases of random sequences with random indices. The randomness
of indices usually leads to the limit distributions for the corresponding random
sequences being heavy-tailed even in the situations where the distributions
of non-randomly indexed random sequences are asymptotically normal
(see, e.g., [2, 8, 10]).

Many authors noted that the asymptotic properties of statistics constructed from
samples with random samples differ from those of the asymptotically normal sta-
tistics in the classical sense. To illustrate this, we will repeatedly cite [11] where the
following example is given. Let X 1ð Þ, … ,X nð Þ be order statistics constructed from
the sample X1, … ,Xn. It is well known (see, e.g., [12]) that in the standard situation
the sample median is asymptotically normal. At the same time, in [11] it was
demonstrated that if the sample size Nn has the geometric distribution with expec-
tation n, then the normalized sample median

ffiffiffi
n

p
X Nn=2½ �þ1ð Þ � medX1
� �

has the
limit distribution function

Ψ xð Þ ¼ 1
2

1þ xffiffiffiffiffiffiffiffiffiffiffiffiffi
2þ x2

p
� �

(1)

(the Student distribution with two degrees of freedom) which has such heavy
tails that its moments of orders δ≥ 2 do not exist. In general, as it was shown in [8],
if a statistic that is asymptotically normal in the traditional sense is constructed on
the basis of a sample with random size having negative binomial distribution, then
instead of the expected normal law, the Student distribution with power-type
decreasing heavy tails appears as an asymptotic law for this statistic.

2. Notation and definitions: auxiliary results

Let r∈. We will consider random elements taking values in the r-dimensional
Euclidean space r.

Assume that all the random variables and random vectors are defined on one
and the same probability space Ω,A, Pð Þ. By the measurability of a random field, we
will mean its measurability as a function of two variates, an elementary outcome
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and a parameter, with respect to the Cartesian product of the σ-algebra A and the
Borel σ-algebra B rð Þ of subsets of r.

The distribution of a random vector ξ with respect to the measure P will be
denoted L ξð Þ. The weak convergence, the coincidence of distributions, and the
convergence in probability with respect to a specified probability measure will be

denoted by the symbols ), ¼d , and !P , respectively.
Let Σ be a positive definite matrix. The normal distribution in r with zero

vector of expectations and covariance matrix Σ will be denoted ΦΣ. This distribu-
tion is defined by its density

ϕ xð Þ ¼ exp � 1
2x

ΤΣ�1x
� �

2πð Þr=2 Σj j1=2
, x∈r:

The characteristic function fY tð Þ of a random variable Y such that L Yð Þ ¼ ΦΣ
has the form

fY tð Þ � E exp it⊤Y
� � ¼ exp � 1

2
t⊤Σt

� �
, t∈r: (2)

Consider a sequence Snf gn≥ 1 of random elements taking values in r. Let Ξ rð Þ
be the set of all nonsingular linear operators acting from r to r. The identity
operator acting from r to r will be denoted Ir. Assume that there exist sequences
Bnf gn≥ 1 of operators from Ξ rð Þ and anf gn≥ 1 of elements from r such that

Yn � B�1
n Sn � anð Þ ) Y n ! ∞ð Þ (3)

where Y is a random element whose distribution with respect to P will be
denoted H, H ¼ L Yð Þ.

Along with Snf gn≥ 1, consider a sequence of integer-valued positive random
variables Nnf gn≥ 1 such that for each n≥ 1 the random variable Nn is independent of
the sequence Skf gk≥ 1. Let cn ∈r, Dn ∈Ξ rð Þ, and n≥ 1. Now, we will formulate
sufficient conditions for the weak convergence of the distributions of the random
elements Zn ¼ D�1

n SNn � cnð Þ as n ! ∞.
For g∈r, denote Wn gð Þ ¼ D�1

n BNng þ aNn � cnð Þ. In [13, 14], the following the-
orem was proved, which establishes sufficient conditions of the weak convergence
of multivariate random sequences with independent random indices under operator
normalization.

Theorem 1 [14]. Let ∥D�1
n ∥ ! ∞ as n ! ∞ and let the sequence of random vari-

ables ∥D�1
n BNn∥

� �
n≥ 1 be tight. Assume that there exist a random element Y with distri-

bution H and an r-dimensional random field W gð Þ, g∈r, such that 3ð Þ holds and
Wn gð Þ ) W gð Þ n ! ∞ð Þ

for H-almost all g∈r. Then the random field W gð Þ is measurable, linearly
depends on g and

Zn ) W Yð Þ n ! ∞ð Þ,

where the random field W �ð Þ and the random element Y are independent.
Now, consider an auxiliary statement dealing with the identifiability of a special

family of mixtures of multivariate normal distributions. Let U be a nonnegative
random variable. The symbol EΦUΣ �ð Þ will denote the distribution which for each
Borel set A in r is defined as
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EΦUΣ Að Þ ¼
ð∞
0
ΦuΣ Að ÞdP U < uð Þ:

Let U be the set of all nonnegative random variables.
It is easy to see that if Y is a random vector such that L Yð Þ ¼ ΦΣ independent of

U, then EΦUΣ ¼ L ffiffiffiffi
U

p
Y

� �
.

Lemma 1. Whatever nonsingular covariance matrix Σ is, the family of distributions
EΦUΣ �ð Þ : U ∈Uf g is identifiable in the sense that if U1 ∈U, U2 ∈U, and

EΦU1Σ Að Þ ¼ EΦU2Σ Að Þ (4)

for any set A∈B rð Þ, then U1 ¼d U2.
The proof of this lemma is very simple. If U ∈U, then the characteristic function

v Uð Þ tð Þ corresponding to the distribution EΦUΣ �ð Þ has the form

v Uð Þ tð Þ ¼
ð∞
0
exp � 1

2
tΤ uΣð Þt

� �
dP U < uð Þ ¼

ð∞
0
exp � 1

2
utΤΣt

� �
dP U < uð Þ

¼
ð∞
0
exp �usf gdP U < uð Þ, s ¼ 1

2
tΤΣt, t∈r,

(5)

But on the right-hand side of (5), there is the Laplace-Stieltjes transform of the
random variable U. From (4), it follows that v U1ð Þ tð Þ � v U2ð Þ tð Þ whence by virtue of
(5) the Laplace-Stieltjes transforms of the random variables U1 and U2 coincide,

whence, in turn, it follows that U1 ¼d U2. The lemma is proved.
Remark 1. When proving Lemma 1, we established a simple but useful by-

product result: if ψ sð Þ is the Laplace-Stieltjes transform of the random variable U,
then the characteristic function v Uð Þ tð Þ corresponding to the distribution EΦUΣ has
the form

v Uð Þ tð Þ ¼ ψ
1
2
t⊤Σt

� �
, t∈r: (6)

3. General theorems

First, consider the case where the random vectors Snf gn≥ 1 are formed as grow-
ing sums of independent random variables. Namely, let X1,X2, … be independent
r-valued random vectors, and for n∈ let

Sn ¼ X1 þ … þ Xn:

Consider a sequence of integer-valued positive random variables Nnf gn≥ 1 such
that for each n≥ 1 the random variable Nn is independent of the sequence Skf gk≥ 1.
Let bnf gn≥ 1 be an infinitely increasing sequence of positive numbers such that

L Snffiffiffiffiffi
bn

p
� �

) ΦΣ (7)

as n ! ∞, where Σ is some positive definite matrix.
Let dnf gn≥ 1 be an infinitely increasing sequence of positive numbers. As Zn take

the scalar normalized random vector
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Zn ¼ SNnffiffiffiffiffi
dn

p :

Theorem 2. Let Nn ! ∞ in probability as n ! ∞. Assume that the random vari-
ables X1,X2, … satisfy condition 6ð Þ with an asymptotic covariance matrix Σ. Then a
distribution F such that

L Znð Þ ) F n ! ∞ð Þ, (8)

exists if and only if there exists a distribution function V xð Þ satisfying the
conditions

i.V xð Þ ¼ 0 for x<0;

ii. for any A∈B rð Þ,

F Að Þ ¼ EΦUΣ Að Þ ¼
ð∞
0
ΦuΣ Að ÞdV uð Þ, x∈1;

iii. P bNn < dnxð Þ ) V xð Þ, n ! ∞.

Proof. The “if” part. We will essentially exploit Theorem 1. For each n≥ 1, set
an ¼ cn ¼ 0, Bn ¼ Dn ¼

ffiffiffiffiffi
dn

p
Ir. For the convenience of notation, introduce a random

variable U with the distribution function V xð Þ. Note that the conditions of the
theorem guarantee the tightness of the sequence of random variables

∥D�1
n BNn∥ ¼

ffiffiffiffiffiffiffiffi
bNn

dn

s
, n ¼ 1, 2, …

implied by its weak convergence to the random variable
ffiffiffiffi
U

p
. Further, in the case

under consideration, we haveWn gð Þ ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
bNn=dn

p � g, g∈r. Therefore, the condition
Nn=dn ) U implies Wn gð Þ ) ffiffiffiffi

U
p

g for all g∈r. Condition (7) means that in the
case under consideration, H ¼ ΦΣ. Hence, by Theorem 1, Zn )

ffiffiffiffi
U

p
Y where Y is a

random element with the distribution ΦΣ independent of the random variable U. It
is easy to see that the distribution of the random element

ffiffiffiffi
U

p
Y coincides with

EΦUΣ �ð Þ where the matrix Σ satisfies (7).
The “only if” part. Let condition (8) hold. Make sure that the sequence

∥D�1
n BNn∥

� �
n≥ 1 is tight. Let Y be a random element with the distribution ΦΣ. There

exist δ > 0 and R > 0 such that

P ∥Y∥ > Rð Þ > δ: (9)

For R specified above and an arbitrary x > 0, we have

P ∥Zn∥ > xð Þ≥P
SNnffiffiffiffiffi
dn

p
����

���� > x;
SNnffiffiffiffiffiffiffiffi
bNn

p
�����

����� > R

 !
¼

¼ P

ffiffiffiffiffiffiffiffi
bNn

dn

s
> x � SNnffiffiffiffiffiffiffiffi

bNn

p
�����

�����
�1

;
SNnffiffiffiffiffiffiffiffi
bNn

p
�����

����� > R

0
@

1
A≥P

ffiffiffiffiffiffiffiffi
bNn

dn

s
>

x
R
;

SNnffiffiffiffiffiffiffiffi
bNn

p
�����

����� > R

 !
¼

¼
X∞

k¼1

P Nn ¼ kð ÞP
ffiffiffiffiffi
bk
dn

s
>

x
R
;

Skffiffiffiffiffi
bk

p
����

���� > R

 !
¼
X∞

k¼1

P Nn ¼ kð ÞP
ffiffiffiffiffi
bk
dn

s
>

x
R

 !
P

Skffiffiffiffiffi
bk

p
����

���� > R
� �

(10)
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(the last equality holds since any constant is independent of any random vari-
able). Since by (7) the convergence Sk=

ffiffiffiffiffi
bk

p ) Y takes place as k ! ∞, from (9) it
follows that there exists a number k0 ¼ k0 R, δð Þ such that

P
Skffiffiffiffiffi
bk

p
����

���� > R
� �

> δ=2

for all k > k0. Therefore, continuing (10) we obtain

P ∥Zn∥ > xð Þ≥ δ

2

X∞

k¼k0þ1

P Nn ¼ kð ÞP
ffiffiffiffiffi
bk
dn

s
>

x
R

 !
¼

¼ δ

2
P

ffiffiffiffiffiffiffiffi
bNn

dn

s
>

x
R

 !
�
Xk0
k¼1

P Nn ¼ kð ÞP
ffiffiffiffiffi
bk
dn

s
>

x
R

 !" #
≥

δ

2
P

ffiffiffiffiffiffiffiffi
bNn

dn

s
>

x
R

 !
� P Nn ≤ k0ð Þ

" #
:

Hence,

P

ffiffiffiffiffiffiffiffi
bNn

dn

s
>

x
R

 !
≤

2
δ
P ∥Zn∥ > xð Þ þ P Nn ≤ k0ð Þ: (11)

From the condition Nn !P ∞ as n ! ∞, it follows that for any ϵ > 0 there exists
an n0 ¼ n0 ϵð Þ such that P Nn ≤ n0ð Þ< ϵ for all n≥ n0. Therefore, with the account of
the tightness of the sequence Znf gn≥ 1 that follows from its weak convergence to the
random element Z with L Zð Þ ¼ F implied by (8), relation (11) implies

lim
x!∞

s upn≥ n0 ϵð ÞP

ffiffiffiffiffiffiffiffi
bNn

dn

s
>

x
R

 !
≤ ϵ, (12)

whatever ϵ > 0 is. Now assume that the sequence

∥D�1
n BNn∥ ¼

ffiffiffiffiffiffiffiffi
bNn

dn

s
, n ¼ 1, 2, …

is not tight. In that case, there exists an α > 0 and sequences N of natural and
xnf gn∈N of real numbers satisfying the conditions xn↑∞ n ! ∞, n∈Nð Þ and

P

ffiffiffiffiffiffiffiffi
bNn

dn

s
> xn

 !
> α, n∈N : (13)

But, according to (12), for any ϵ > 0 there exist M ¼ M ϵð Þ and n0 ¼ n0 ϵð Þ
such that

s upn≥ n0 ϵð ÞP

ffiffiffiffiffiffiffiffi
bNn

dn

s
> M ϵð Þ

 !
≤ 2ϵ: (14)

Choose ϵ< α=2 where α is the number from (13). Then for all n∈N large
enough, in accordance with (13), the inequality opposite to (14) must hold. The
obtained contradiction by the Prokhorov theorem proves the tightness of the
sequence ∥D�1

n BNn∥
� �

n≥ 1 or, which in this case is the same as that, of the sequence
bNn=dnf gn≥ 1.
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(the last equality holds since any constant is independent of any random vari-
able). Since by (7) the convergence Sk=
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p ) Y takes place as k ! ∞, from (9) it
follows that there exists a number k0 ¼ k0 R, δð Þ such that

P
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Introduce the set W Zð Þ containing all nonnegative random variables U such
that P Z ∈Að Þ ¼ EΦUΣ Að Þ for any A∈B rð Þ. Let L �, �ð Þ be any probability metric
that metrizes weak convergence in the space of random variables, or, which is the
same in this context, n the space of distribution functions, say, the Lévy metric
or the smoothed Kolmogorov distance. If X1 and X2 are random variables with the
distribution functions F1 and F2 respectively, then we identify L X1,X2ð Þ and
L F1,F2ð Þ. Show that there exists a sequence of random variables Unf gn≥ 1,
Un ∈W Zð Þ, such that

L
bNn

dn
,Un

� �
! 0 n ! ∞ð Þ: (15)

Denote

βn ¼ inf L
bNn

dn
,U

� �
: U ∈W Zð Þ

� �
:

Prove that βn ! 0 as n ! ∞. Assume the contrary. In that case, βn ≥ δ for some
δ > 0 and all n from some subsequence N of natural numbers. Choose a
subsequence N 1 ⊆N so that the sequence bNn=dnf gn∈N 1

weakly converges to a
random variable U (this is possible due to the tightness of the family bNn=dnf gn≥ 1

established above). But then Wn gð Þ ) ffiffiffiffi
U

p
g n ! ∞ð , n∈N 1Þ for any g∈r. Apply-

ing Theorem 1 to n∈N 1 with condition (7) playing the role of condition (3), we
make sure that U ∈W Zð Þ, since condition (8) provides the coincidence of the limits
of all weakly convergent subsequences. So, we arrive at the contradiction to the
assumption that βn ≥ δ for all n∈N 1. Hence, βn ! 0 as n ! ∞.

For any n ¼ 1, 2, … , choose a random variable Un from W Zð Þ satisfying the
condition

L
bNn

dn
,Un

� �
≤ βn þ

1
n
:

This sequence obviously satisfies condition (15). Now consider the structure of
the set W Zð Þ. This set contains all the random variable’s defining the family of
special mixtures of multivariate normal laws considered in Lemma 1, according to
which this family is identifiable. So, whatever a random element Z is, the set W Zð Þ
contains at most one element. Therefore, actually condition (15) is equivalent to

bNn

dn
) U n ! ∞ð Þ,

that is, to condition (iii) of the theorem. The theorem is proved.
Corollary 1. Under the conditions of Theorem 2, non-randomly normalized random

sums SNn=dn are asymptotically normal with some covariance matrix Σ0 if and only if
there exists a number c > 0 such that

bNn

dn
) c n ! ∞ð Þ:

Moreover, in this case, Σ0 ¼ cΣ.
This statement immediately follows from Theorem 2 with the account of

Lemma 1.
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Now consider a formally more general setting.
Let N1,N2, … and W1,W2, … be random variables and random vectors,

respectively, such that for each n≥ 1 the random variable Nn takes only natural
values and is independent of the sequence W1,W2, … . Let

Tn ¼ Tn W1, … ,Wnð Þ ¼ Tn,1 W1, … ,Wnð Þ, … ,Tn,r W1, … ,Wnð Þð Þ

be a statistic taking values in r, r≥ 1. For each n≥ 1 define a random vector
(random element) TNn by setting

TNn ωð Þ ¼ TNn ωð Þ W1 ωð Þ, … ,WNn ωð Þ ωð Þ� �

for every elementary outcome ω∈Ω.
We shall say that a statistic Tn is asymptotically normal with the asymptotic

covariance matrix Σ if there exists a non-random r-dimensional vector t such that

L ffiffiffi
n

p
Tn � tð Þ� �) ΦΣ n ! ∞ð Þ: (16)

Examples of asymptotically normal statistics are well known. Under certain
conditions, the property of asymptotic normality is inherent in maximum likelihood
estimators, sample moments, sample quantiles, etc.

Our nearest aim is to describe the asymptotic behavior of the random elements
TNn , that is, of statistics constructed from samples with random sizes Nn.

Again let dnf gn≥ 1 be an infinitely increasing sequence of positive numbers. Now
set

Zn ¼
ffiffiffiffiffi
dn

p
TNn � tð Þ:

Theorem 3. Let Nn ! ∞ in probability as n ! ∞. Assume that a statistic Tn is
asymptotically normal in the sense of 16ð Þ with an asymptotic covariance matrix Σ. Then
a distribution F such that

L Znð Þ ) F n ! ∞ð Þ,

exists if and only if there exists a distribution function V xð Þ satisfying the
conditions.

(i) V xð Þ ¼ 0 for x<0;
(ii) for any A∈B rð Þ

F Að Þ ¼
ð∞
0
Φu�1Σ Að ÞdV uð Þ, x∈1;

(iii) P Nn < dnxð Þ ) V xð Þ, n ! ∞.

The proof of Theorem 3 relies on Theorem 1 with (16) playing the role of (3) and
Lemma 1 and differs from the proof of Theorem 2 only by that bNn=dn is replaced by
dn=Nn.

Corollary 2. Under the conditions of Theorem 3 the statistic TNn is asymptotically
normal with some covariance matrix Σ0 if and only if there exists a number c > 0 such
that

Nn

dn
) c n ! ∞ð Þ:
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Moreover, in this case, Σ0 ¼ c�1Σ.
This statement immediately follows from Theorem 2 with the account of

Lemma 1.

4. Some remarks on the heavy-tailedness of scale mixtures of normals

The one-dimensional marginals of the multivariate limit law in Theorems 2 and
3 are scale mixtures of normals with zero means of the form EΦ x=Uð Þ, x∈, where
Φ xð Þ is the standard normal distribution function and U is a nonnegative random
variable. It turns out, although absolutely not so evident, that these distributions are
always leptokurtic having sharper vertex and heavier tails than the normal law
itself.

It is easy to see that

EΦ x=Uð Þ ¼ P X �U < xð Þ, x∈,

where X is a standard normal variable independent of U. First, as a measure of
leptokurtosity, consider the excess coefficient which is traditionally used in
(descriptive) statistics. Recall that for a random variable Y with EY4 <∞, the excess
coefficient (kurtosis) κ Yð Þ is defined as

κ Yð Þ ¼ E
Y � EYffiffiffiffiffiffiffi

DY
p

� �4

:

If P X < xð Þ ¼ Φ xð Þ, then κ Xð Þ ¼ 3. Densities with sharper vertices (and, respec-
tively, with heavier tails) than the normal density, have κ > 3, and κ< 3 for densities
with more flat vertices.

Lemma 2. Let X and U be independent random variables with finite fourth moments;
moreover, let EX ¼ 0 and P U ≥0ð Þ ¼ 1. Then

κ XUð Þ ≥ κ Xð Þ:

Furthermore, κ XUð Þ ¼ κ Xð Þ if and only if P U ¼ constð Þ ¼ 1.
For the proof see [10].
So, if X is a standard normal random variable and U is a nonnegative random

variable with EU4 <∞ independent of X, then κ X �Uð Þ≥ 3 and κ X �Uð Þ ¼ 3 if and
only if U is non-random.

Using the Jensen inequality, we can easily obtain one more inequality directly
connecting the tails of the normal mixtures with the tails of the normal distribution.

Lemma 3. Assume that the random variable U satisfies the normalization condition
EU�1 ¼ 1. Then

1� EΦ x=Uð Þ≥ 1�Φ xð Þ, x > 0:

From Lemma 3, it follows that if X is the standard normal random variable and
U is a nonnegative random variable independent of X with EU�1 ¼ 1, then for any
x≥0

P jX �Uj≥ xð Þ ≥ P jXj≥ xð Þ ¼ 2 1�Φ xð Þ½ �ð Þ,

that is, scale mixtures of normal laws are always more leptokurtic and have
heavier tails than normal laws themselves.
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The class of scale mixtures of normal laws is very rich and involves distributions
with various character of decrease of tails. For example, this class contains Student
distributions with arbitrary (not necessarily integer) number of degrees of freedom
(and the Cauchy distribution included), symmetric stable distributions (see the
“multiplication theorem” 3.3.1 in [15]), symmetric fractional stable distributions
(see [16]), symmetrized gamma distributions with arbitrary shape and scale
parameters (see [10]), and symmetrized Weibull distributions with shape parame-
ters belonging to the interval 0, 1ð � (see [17, 18]). As an example, in the next section,
we will discuss the conditions for the convergence of the distributions of the
statistics constructed from samples with random sizes to the multivariate Student
distribution.

5. Convergence of the distributions of random sums of random vectors
with finite covariance matrices to multivariate elliptically contoured
stable and Linnik distributions

5.1 Convergence of the distributions of random sums of random vectors to
multivariate stable laws

Let Σ be a positive definite r� rð Þ-matrix, α∈ 0, 2ð �. A random vector Zα,Σ is said
to have the (centered) elliptically contoured stable distribution Gα,Σ with charac-
teristic exponent α, if its characteristic function gα,Σ tð Þ has the form

gα,Σ tð Þ � E exp it⊤X
� � ¼ exp � t⊤Σt

� �α=2n o
, t∈r:

Univariate stable distributions are popular examples of heavy-tailed distribu-
tions. Their moments of orders δ≥ α do not exist (the only exception is the normal
law corresponding to α ¼ 2). Stable laws and only they can be limit distributions for
sums of a non-random number of independent identically distributed random vari-
ables with infinite variance under linear normalization. Here it will be shown that
they also can be limiting for random sums of random vectors with finite covariance
matrices. The result of this subsection generalizes the main theorem of [19] to a
multivariate case.

By ζα, we will denote a positive random variable with the one-sided stable
distribution corresponding to the characteristic function

gα tð Þ ¼ exp � tj jα exp � 1
2
iπα signt

� �� �
, t∈,

with 0< α≤ 1 (for more details see [15] or [4]).
Let α∈ 0, 2ð �. It is known that, if Y is a random vector such that L Yð Þ ¼ ΦΣ

independent of the random variable ζα=2, then

Zα,Σ ¼d
ffiffiffiffiffiffiffiffi
ζα=2

q
� Y (17)

(see Proposition 2.5.2 in [4]). In other words,

Gα,Σ ¼ EΦζα=2Σ: (18)

As in Section 3, let X1,X2, … be independent r-valued random vectors. For
n∈, denote Sn ¼ X1 þ … þ Xn. Consider a sequence of integer-valued positive
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Moreover, in this case, Σ0 ¼ c�1Σ.
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Lemma 1.
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where X is a standard normal variable independent of U. First, as a measure of
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p
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moreover, let EX ¼ 0 and P U ≥0ð Þ ¼ 1. Then
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Furthermore, κ XUð Þ ¼ κ Xð Þ if and only if P U ¼ constð Þ ¼ 1.
For the proof see [10].
So, if X is a standard normal random variable and U is a nonnegative random

variable with EU4 <∞ independent of X, then κ X �Uð Þ≥ 3 and κ X �Uð Þ ¼ 3 if and
only if U is non-random.

Using the Jensen inequality, we can easily obtain one more inequality directly
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EU�1 ¼ 1. Then
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P jX �Uj≥ xð Þ ≥ P jXj≥ xð Þ ¼ 2 1�Φ xð Þ½ �ð Þ,

that is, scale mixtures of normal laws are always more leptokurtic and have
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(and the Cauchy distribution included), symmetric stable distributions (see the
“multiplication theorem” 3.3.1 in [15]), symmetric fractional stable distributions
(see [16]), symmetrized gamma distributions with arbitrary shape and scale
parameters (see [10]), and symmetrized Weibull distributions with shape parame-
ters belonging to the interval 0, 1ð � (see [17, 18]). As an example, in the next section,
we will discuss the conditions for the convergence of the distributions of the
statistics constructed from samples with random sizes to the multivariate Student
distribution.

5. Convergence of the distributions of random sums of random vectors
with finite covariance matrices to multivariate elliptically contoured
stable and Linnik distributions

5.1 Convergence of the distributions of random sums of random vectors to
multivariate stable laws

Let Σ be a positive definite r� rð Þ-matrix, α∈ 0, 2ð �. A random vector Zα,Σ is said
to have the (centered) elliptically contoured stable distribution Gα,Σ with charac-
teristic exponent α, if its characteristic function gα,Σ tð Þ has the form

gα,Σ tð Þ � E exp it⊤X
� � ¼ exp � t⊤Σt

� �α=2n o
, t∈r:

Univariate stable distributions are popular examples of heavy-tailed distribu-
tions. Their moments of orders δ≥ α do not exist (the only exception is the normal
law corresponding to α ¼ 2). Stable laws and only they can be limit distributions for
sums of a non-random number of independent identically distributed random vari-
ables with infinite variance under linear normalization. Here it will be shown that
they also can be limiting for random sums of random vectors with finite covariance
matrices. The result of this subsection generalizes the main theorem of [19] to a
multivariate case.

By ζα, we will denote a positive random variable with the one-sided stable
distribution corresponding to the characteristic function

gα tð Þ ¼ exp � tj jα exp � 1
2
iπα signt
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, t∈,

with 0< α≤ 1 (for more details see [15] or [4]).
Let α∈ 0, 2ð �. It is known that, if Y is a random vector such that L Yð Þ ¼ ΦΣ

independent of the random variable ζα=2, then

Zα,Σ ¼d
ffiffiffiffiffiffiffiffi
ζα=2

q
� Y (17)

(see Proposition 2.5.2 in [4]). In other words,

Gα,Σ ¼ EΦζα=2Σ: (18)

As in Section 3, let X1,X2, … be independent r-valued random vectors. For
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random variables Nnf gn≥ 1 such that for each n≥ 1 the random variable Nn is
independent of the sequence Skf gk≥ 1. Let bnf gn≥ 1 be an infinitely increasing
sequence of positive numbers providing convergence (6) with some positive defi-
nite matrix Σ.

Theorem 4. Let Nn ! ∞ in probability as n ! ∞. Assume that the random vari-
ables X1,X2, … satisfy condition 7ð Þ with an asymptotic covariance matrix Σ. Then

L
SNnffiffiffiffiffi
dn

p
� �

) Gα,Σ n ! ∞ð Þ

with some infinitely increasing sequence of positive numbers dnf gn≥ 1 and some
α∈ 0, 2ð �, if and only if

Nn

dn
) ζα=2,1

as n ! ∞.
Proof. This theorem is a direct consequence of Theorem 2 with the account of

relations (17) and (18).

5.2 Convergence of the distributions of random sums of random vectors with
finite covariance matrices to multivariate elliptically contoured Linnik
distributions

In 1953, Yu. V. Linnik [20] introduced the class of univariate symmetric proba-
bility distributions defined by the characteristic functions

fLα tð Þ ¼ 1
1þ tj jα , t∈,

where α∈ 0, 2ð �. Later, the distributions of this class were called Linnik distribu-
tions [21] or α-Laplace distributions [22]. Here the first term will be used since it has
become conventional. With α ¼ 2, the Linnik distribution turns into the Laplace
distribution corresponding to the density

fΛ xð Þ ¼ 1
2
e�∣x∣, x∈:

A random variable with the Linnik distribution with parameter α will be
denoted L1,α.

The Linnik distributions possess many interesting analytic properties (see, e.g.,
[17, 18] and the references therein) but, perhaps, most often Linnik distributions
are recalled as examples of geometric stable distributions often used as heavy-tailed
models of some statistical regularities in financial data [23, 24].

The multivariate Linnik distribution was introduced by D. N. Anderson in [25]
where it was proved that the function

f
Lð Þ
α,Σ tð Þ ¼ 1

1þ t⊤Σtð Þα=2
, t∈r, α∈ 0, 2ð Þ, (19)

is the characteristic function of an r-variate probability distribution, where Σ is a
positive definite r� rð Þ-matrix. In [25], the distribution corresponding to the
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characteristic function (19) was called the r-variate Linnik distribution. For the
properties of the multivariate Linnik distributions, see [25, 26].

The r-variate Linnik distribution can also be defined in another way. For this
purpose, recall that the distribution of a nonnegative random variable Mδ whose
Laplace transform is

ψδ sð Þ � Ee�sMδ ¼ 1
1þ sδ

, s≥0, (20)

where 0< δ≤ 1, is called the Mittag-Leffler distribution. It is another example
of heavy-tailed geometrically stable distributions; for more details see for example,
[17, 18] and the references therein. The Mittag-Leffler distributions are of serious
theoretical interest in the problems related to thinned (or rarefied) homogeneous
flows of events such as renewal processes or anomalous diffusion or relaxation
phenomena, see [27, 28] and the references therein. In [18], it was
demonstrated that

L1,α ¼d Y1 �
ffiffiffiffiffiffiffiffiffiffiffiffiffi
2Mα=2

q
, (21)

where Y1 is a random variable with the standard univariate normal distribution
independent of the random variable Mα=2 with the Mittag-Leffler distribution with
parameter α=2.

Now let Y be a random vector such that L Yð Þ ¼ ΦΣ, where Σ is a positive
definite r� rð Þ-matrix, independent of the random variable Mα=2. By analogy with
(21), introduce the random vector Lr,α,Σ as

Lr,α,Σ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffi
2Mα=2

q
� Y:

Then, in accordance with what has been said in Section 2,

L Lr,α,Σð Þ ¼ EΦ2Mα=2Σ: (22)

The distribution (14) will be called the ð centeredÞ elliptically contoured multivar-
iate Linnik distribution.

Using Remark 1, we can easily make sure that the two definitions of the multi-
variate Linnik distribution coincide. Indeed, with the account of (20), according to
Remark 1, the characteristic function of the random vector Lr,α,Σ defined by (22) has
the form

E exp it⊤Lr,α,Σ
� � ¼ ψα=2 t⊤Σt

� � ¼ 1

1þ t⊤Σtð Þα=2
¼ f

Lð Þ
α,Σ tð Þ, t∈r,

that coincides with Anderson’s definition (19).
Our definition (22) together with Theorem 2 opens the way to formulate a

theorem stating that the multivariate Linnik distribution can not only be limiting
for geometric random sums of independent identically distributed random vectors
with infinite second moments [29], but it can also be limiting for random sums of
independent random vectors with finite covariance matrices.

Theorem 5. Let Nn ! ∞ in probability as n ! ∞. Assume that the random vari-
ables X1,X2, … satisfy condition 7ð Þ with an asymptotic covariance matrix Σ. Then
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dn
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Nn
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is the characteristic function of an r-variate probability distribution, where Σ is a
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characteristic function (19) was called the r-variate Linnik distribution. For the
properties of the multivariate Linnik distributions, see [25, 26].

The r-variate Linnik distribution can also be defined in another way. For this
purpose, recall that the distribution of a nonnegative random variable Mδ whose
Laplace transform is

ψδ sð Þ � Ee�sMδ ¼ 1
1þ sδ

, s≥0, (20)
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phenomena, see [27, 28] and the references therein. In [18], it was
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L1,α ¼d Y1 �
ffiffiffiffiffiffiffiffiffiffiffiffiffi
2Mα=2

q
, (21)

where Y1 is a random variable with the standard univariate normal distribution
independent of the random variable Mα=2 with the Mittag-Leffler distribution with
parameter α=2.

Now let Y be a random vector such that L Yð Þ ¼ ΦΣ, where Σ is a positive
definite r� rð Þ-matrix, independent of the random variable Mα=2. By analogy with
(21), introduce the random vector Lr,α,Σ as

Lr,α,Σ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffi
2Mα=2

q
� Y:

Then, in accordance with what has been said in Section 2,

L Lr,α,Σð Þ ¼ EΦ2Mα=2Σ: (22)

The distribution (14) will be called the ð centeredÞ elliptically contoured multivar-
iate Linnik distribution.

Using Remark 1, we can easily make sure that the two definitions of the multi-
variate Linnik distribution coincide. Indeed, with the account of (20), according to
Remark 1, the characteristic function of the random vector Lr,α,Σ defined by (22) has
the form

E exp it⊤Lr,α,Σ
� � ¼ ψα=2 t⊤Σt

� � ¼ 1

1þ t⊤Σtð Þα=2
¼ f

Lð Þ
α,Σ tð Þ, t∈r,

that coincides with Anderson’s definition (19).
Our definition (22) together with Theorem 2 opens the way to formulate a

theorem stating that the multivariate Linnik distribution can not only be limiting
for geometric random sums of independent identically distributed random vectors
with infinite second moments [29], but it can also be limiting for random sums of
independent random vectors with finite covariance matrices.

Theorem 5. Let Nn ! ∞ in probability as n ! ∞. Assume that the random vari-
ables X1,X2, … satisfy condition 7ð Þ with an asymptotic covariance matrix Σ. Then
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L
SNnffiffiffiffiffi
dn

p
� �

) L Lr,α,Σð Þ n ! ∞ð Þ

with some infinitely increasing sequence of positive numbers dnf gn≥ 1 and some
α∈ 0, 2ð �, if and only if

Nn

dn
) 2Mα=2

as n ! ∞.
Proof. This theorem is a direct consequence of Theorem 2 with the account of

relation (22).

6. Convergence of the distributions of asymptotically normal statistics
to the multivariate Student distribution

The multivariate Student distribution is described, for example, in [30] (also see
[31]). Consider an r-dimensional normal random vector Y with zero vector of
expectations and covariance matrix Σ. Assume that a random variable Wγ has the
chi-square distribution with parameter (the “number of degrees of freedom”) γ > 0
(not necessarily integer) and is independent of Y. The distribution Pγ,Σ of the
random vector

Q γ,Σ ¼
ffiffiffiffiffiffiffiffiffiffiffiffi
γ=Wγ

q
� Y (23)

is called the multivariate Student distribution (with parameters γ and Σ). For any
x∈r the distribution density of Z has the form

pγ,Σ xð Þ ¼ Γ rþ γð Þ=2Þ
Σj j1=2Γ γ=2ð Þ πγð Þr=2

� 1

1þ 1
γ x

ΤΣ�1x
� � rþγð Þ=2 :

According to Theorem 3, the multivariate Student distribution is the resulting
transformation of the limit distribution of an asymptotically normal (in the sense of
(16)) statistic under the replacement of the sample size by a random variable whose
asymptotic distribution is chi-square. Consider this case in more detail.

Let Gm,m xð Þ be the gamma-distribution function with the shape parameter coin-
ciding with the scale parameter and equal to m:

Gm,m xð Þ ¼
0 if x≤0,
mm

Γ mð Þ
ðx
0
e�my ym�1dy if x > 0:

8<
:

Theorem 6. Let γ > 0 be arbitrary, Σ be a positive definite matrix and let dnf gn≥ 1 be
an infinitely increasing sequence of positive numbers. Assume that Nn ! ∞ in probabil-
ity as n ! ∞. Let a statistic Tn be asymptotically normal in the sense of 16ð Þ. Then the
convegence

L
ffiffiffiffiffi
dn

p
TNn � tð Þ

� �
) Pγ,Σ n ! ∞ð Þ,
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takes place if and only if

P Nn < dnxð Þ ) Gγ=2,γ=2 xð Þ, n ! ∞,

where Gγ=2,γ=2 xð Þ is the gamma-distribution function with coinciding shape and
scale parameters equal to γ=2.

Proof. This statement is a direct consequence of Theorem 3, representation (23)
and Lemma 1.

Let Np,m be a random variable with the negative binomial distribution

P Np,m ¼ k
� � ¼ Ck�1

mþk�2p
m 1� pð Þk�1, k ¼ 1, 2, … (24)

Here m > 0 and p∈ 0, 1ð Þ are parameters; for non-integer m, the quantity
Ck�1
mþk�2 is defined as

Ck�1
mþk�2 ¼ Γ mþ k� 1ð Þ

k� 1ð Þ! � Γ mð Þ :

In particular, form ¼ 1, relation (24) determines the geometric distribution. It is
well known that

ENp,m ¼ m 1� pð Þ þ p
p

,

so that ENp,m ! ∞ as p ! 0.
As is known, the negative binomial distribution with natural m admits an illus-

trative interpretation in terms of Bernoulli trials. Namely, the random variable with
distribution (24) is the number of the Bernoulli trials held up to the mth failure, if
the probability of the success in a trial is 1� p.

Lemma 4. For any fixed m > 0

lim
p!0

s upx∈∣P
Np,m

ENp,m
< x

� �
� Gm,m xð Þ∣ ¼ 0,

where Gm,m xð Þ is the gamma-distribution function with the shape parameter
coinciding with the scale parameter and equal to m.

The proof is a simple exercise on characteristic functions; for more details, see [8].
Corollary 3. Let m > 0 be arbitrary. Assume that for each n≥ 1 the random variable

Nn has the negative binomial distribution with parameters p ¼ 1
n and m. Let a statistic

Tn be asymptotically normal in the sense of 16ð Þ. Then

L ffiffiffiffiffiffiffi
mn

p
TNn � tð Þ� � ) P2m,Σ n ! ∞ð Þ

where P2m,Σ is the r-variate Student distribution with parameters γ ¼ 2m and Σ.
Proof. By Lemma 4 we have

Nn

nm
¼ Nn

ENn
� ENn

nm
¼ Nn

ENn
�m n� 1ð Þ þ 1

mr
¼ Nn

ENn
1þ O

1
n

� �� �
) Um

as n ! ∞ where Um is the random variable having the gamma-distribution
function with coinciding shape and scale parameters equal to m. Now the desired
assertion directly follows from Theorem 6.
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Remark 2. The r-variate Cauchy distribution (γ ¼ 1) appears in the situation
described in Corollary 2 when the sample size Nn has the negative binomial distri-
bution with the parameters p ¼ 1

n, m ¼ 1
2, and n is large.

Remark 3. In the case where the sample size Nn has the negative binomial
distribution with the parameters p ¼ 1

n, m ¼ 1 (that is, the geometric distribution
with the parameter p ¼ 1

n), then, as n ! ∞, we obtain the limit r-variate Student
distribution with parameters γ ¼ 2 and Σ. Moreover, if Σ ¼ Ir (that is, the r-variate
Student distribution is spherically symmetric), then its one-dimensional marginals
have the form (1). As we have already noted, distribution (1) was apparently for the
first time introduced as a limit distribution for the sample median in a sample with
geometrically distributed random size in [11]. It is worth noticing that in the cited
paper [11], distribution (1) was not identified as the Student distribution with two
degrees of freedom.

Thus, the main conclusion of this section can be formulated as follows. If the
number of random factors that determine the observed value of a random variable
is random itself with the distribution that can be approximated by the gamma
distribution with coinciding shape and scale parameters (e.g., is negative binomial
with probability of success close to one, see Lemma 4), then those functions of the
random factors that are regarded as asymptotically normal in the classical situation
are actually asymptotically Student with considerably heavier tails. Hence, since
gamma-models and/or negative binomial models are widely applicable (to confirm
this it may be noted that the negative binomial distribution is mixed Poisson with
mixing gamma distribution, this fact is widely used in insurance), the Student
distribution can be used in descriptive statistics as a rather reasonable heavy-tailed
asymptotic approximation.

7. The asymptotic distribution of sample quantiles in samples with sizes
generated by a Cox process

Sometimes, when the performance of a technical or financial system is analyzed,
a forecast of main characteristics is made on the basis of data accumulated during a
certain period of the functioning of the system. As a rule, data are accumulated as a
result of some “informative events” that occur during this period. For example,
inference concerning the distribution of insurance claims, which is very important
for the estimation of, say, the ruin probability of an insurance company, is usually
performed on the basis of the statistic W1,W2, … ,WN Tð Þ of the values of insurance
claims arrived within a certain time interval 0,T½ � (here N Tð Þ denotes the number
of claims arrived during the time interval 0,T½ �). Moreover, this inference is typi-
cally used for the prediction of the value of the ruin probability for the next period
T, 2T½ �. But it is obvious (at least in the example above) that the observed number of
informative events occurred during the time interval 0,T½ � is actually a realization
of a random variable, because both the number of insurance claims arrived within
this interval follow a stochastic counting process. If the random character of the
number of available observations is not taken into consideration, then all what can
be done is the conditional forecast. To obtain a complete prediction with the account
of the randomness of the number of “informative events,” we should use the results
similar to Theorems 2 and 3. One of rather realistic and general assumptions
concerning N tð Þ, the number of observations accumulated by the time t, is that N tð Þ
is a Cox process. In this section, as an example, we will consider the asymptotic
behavior of sample quantiles constructed from a sample whose size is determined
by a Cox process. As we have already noted in the introduction, this problem is very
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important for the proper application of such risk measures as VaR (Value-at-Risk)
in, say, financial engineering.

Let W1, … ,Wn, n≥ 1, be independent identically distributed random variables
with common distribution density p xð Þ and W 1ð Þ, … ,W nð Þ be the corresponding
order statistics, W 1ð Þ ≤W 2ð Þ ≤ … ≤W nð Þ. Let r∈ λ1, … , λr be some numbers such
that 0< λ1 < λ2 < … < λr < 1. The quantiles of orders λ1, … , λr of the random variable
W1 will be denoted ξλi , i ¼ 1, … , r. The sample quantiles of orders λ1, … , λr are the
random variables W λin½ �þ1ð Þ, i ¼ 1, … , r, with a½ � denoting the integer part of a
number a. The following result due to Mosteller [32] (also see [33], Section 9.2) is
classical. Denote

Y ∗
n, j ¼

ffiffiffi
n

p
W λ jn½ �þ1ð Þ � ξλ j

� �
, j ¼ 1, … , r:

Theorem 7 [32]. If p xð Þ is differentiable in some neighborhoods of the quantiles ξλi
and p ξλi

� � 6¼ 0, i ¼ 1, … , r, then, as n ! ∞, the joint distribution of the normalized
sample quantiles Y ∗

n,1, … ,Y ∗
n,r weakly converges to the r-variate normal distribution with

zero vector of expectations and covariance matrix Σ ¼ σij
� �

,

σij ¼
λi 1� λ j
� �

p ξλi
� �

p ξλ j

� � , i≤ j:

To take into account the randomness of the sample size, consider the sequence
W1,W2 … of independent identically distributed random variables with common
distribution density p xð Þ.

Let N tð Þ, t≥0, be a Cox process controlled by a process Λ tð Þ. Recall the defini-
tion of a Cox process. Let N1 tð Þ, t≥0, be a standard Poisson process (i.e., a homo-
geneous Poisson process with unit intensity). Let Λ tð Þ, t≥0, be a random process
with non-decreasing right-continuous trajectories, Λ 0ð Þ ¼ 0, P Λ tð Þ<∞ð Þ ¼ 1 for all
t > 0. Assume that the processes Λ tð Þ and N1 tð Þ are independent. Set

N tð Þ ¼ N1 Λ tð Þð Þ, t≥0:

The process N tð Þ is called a doubly stochastic Poisson process (or a Cox process)
controlled by the process Λ tð Þ. The one-dimensional distributions of a Cox process
are mixed Poisson. For example, if Λ tð Þ has the gamma distribution, then N tð Þ has
the negative binomial distribution.

Cox processes are widely used as models of inhomogeneous chaotic flows of
events, see, for example, [2].

Assume that all the involved random variables and processes are independent. In
this section, under the assumption that Λ tð Þ ! ∞ in probability, the asymptotics of
the joint distribution of the random variables W λiN tð Þ½ �þ1ð Þ, i ¼ 1, … , r is considered
as t ! ∞.

As we have already noted, it was B. V. Gnedenko who drew attention to the
essential distinction between the asymptotic properties of sample quantiles
constructed from samples with random sizes and the analogous properties of sam-
ple quantiles in the standard situation. Briefly recall the history of the problem
under consideration. B. V. Gnedenko, S. Stomatovič, and A. Shukri [34] obtained
sufficient conditions for the convergence of distribution of the sample median
constructed from sample of random size. In the candidate (PhD) thesis of A. K.
Shukri, these conditions were extended to quantiles of arbitrary orders. In [35],
necessary and sufficient conditions for the weak convergence of the
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one-dimensional distributions of sample quantiles in samples with random sizes
were obtained.

Our aim here is to give necessary and sufficient conditions for the weak conver-
gence of the joint distributions of sample quantiles constructed from samples with
random sizes driven by a Cox process and to describe the r-variate limit distribu-
tions emerging here, thus extending Mosteller’s Theorem 4 to samples with random
sizes. The results of this section extend those of [36] to the continuous-time case.

Lemma 5. Let N tð Þ be a Cox process controlled by the process Λ tð Þ. Then N tð Þ !P

∞ t ! ∞ð Þ if and only if Λ tð Þ !P ∞ t ! ∞ð Þ.
Lemma 6. Let N tð Þ be a Cox process controlled by the process Λ tð Þ. Let d tð Þ > 0 be a

function such that d tð Þ ! ∞ t ! ∞ð Þ. Then the following conditions are equivalent:

1.One-dimensional distributions of the normalized Cox process weakly converge
to the distribution of some random variable Z as t ! ∞:

N tð Þ
d tð Þ ) Z t ! ∞ð Þ:

2.One-dimensional distributions of the controlling process Λ tð Þ, appropriately
normalized, converge to the same distribution:

Λ tð Þ
d tð Þ ) Z t ! ∞ð Þ:

For the proof of Lemmas 5 and 6 see [37].
Now we proceed to the main results of this section. In addition to the notation

introduced above, for positive integer n set Q j nð Þ ¼ W λ jn½ �þ1ð Þ, j ¼ 1, … , r,

Q nð Þ ¼ Q1 nð Þ, … ,Qr nð Þð Þ, ξ ¼ ξλ1 , … , ξλr
� �

. Let d tð Þ be an infinitely increasing pos-
itive function. Set

Z tð Þ ¼
ffiffiffiffiffiffiffiffi
d tð Þ

p
Q N tð Þð Þ � ξð Þ:

Theorem 8. Let Λ tð Þ !P ∞ as t ! ∞. If p xð Þ is differentiable in neighborhoods of the
quantiles ξλi and p ξλi

� � 6¼ 0, i ¼ 1, … , r, then the convergence

Z tð Þ ) Z t ! ∞ð Þ,

to some random vector Z takes place, if and only if there exists a nonnegative
random variable U such that

P Z ∈Að Þ ¼ EΦU�1Σ Að Þ, A∈B rð Þ,

where Σ ¼ σij
� �

,

σij ¼
λi 1� λ j
� �

p ξλi
� �

p ξλ j

� � , i≤ j,

and

Λ tð Þ
d tð Þ ) U t ! ∞ð Þ:
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The proof is a simple combination of Lemmas 1, 5, and 6 and Theorem 3.
Corollary 4. Under the conditions of Theorem 8, the joint distribution of the normal-

ized sample quantiles
ffiffiffiffiffiffiffiffi
d tð Þp

W λ jN tð Þ½ �þ1ð Þ � ξλ j

� �
, j ¼ 1, … , r, weakly converges to the

r-variate normal law with zero expectation and covariance matrix Σ, if and only if

Λ tð Þ
d tð Þ ) 1 t ! ∞ð Þ:

This statement immediately follows from Theorem 8 with the account of
Lemma 1.

Corollary 5. Under the conditions of Theorem 8, the joint distribution of the

normalized sample quantiles
ffiffiffiffiffiffiffiffi
d tð Þp

W λ jN tð Þ½ �þ1ð Þ � ξλ j

� �
, j ¼ 1, … , r, weakly converges

to the r-variate Student distribution with parameters γ > 0 and Σ defined in Theorem 4,
if and only if

P Λ tð Þ< xd tð Þð Þ ) Gγ=2,γ=2 xð Þ, t ! ∞,

where Gγ=2,γ=2 xð Þ is the gamma-distribution function with coinciding shape and
scale parameters equal to γ=2.

Let 0< λ< 1 and let ξλ be the λ-quantile of the random variable W1. As above,
the standard normal distribution function will be denoted Φ xð Þ.

8. Conclusion

The purpose of the chapter was to give a possible explanation of the emergence
of heavy-tailed distributions that are often observed in practice instead of the
expected normal laws. As the base for this explanation, limit theorems for random
sums and statistics constructed from samples with random sizes were considered.
Within this approach, it becomes possible to obtain arbitrarily heavy tails of the
data distributions without assuming the non-existence of the moments of the
observed characteristics. Some comments were made on the heavy-tailedness of
scale mixtures of normal distributions. Two general theorems presenting necessary
and sufficient conditions for the convergence of the distributions of random sums
of random vectors and multivariate statistics constructed from samples with ran-
dom sizes were proved. As examples of the application of these general theorems,
conditions were presented for the convergence of the distributions of random sums
of independent random vectors with finite covariance matrices to multivariate
elliptically contoured stable and Linnik distributions. An alternative definition of
the latter was proposed. Also, conditions were presented for the convergence of the
distributions of asymptotically normal (in the traditional sense) statistics to multi-
variate elliptically contoured Student distributions when the sample size is replaced
by a random variable. The joint asymptotic behavior of sample quantiles in samples
with random sizes was considered. Special attention was paid to the continuous-
time case assuming that the sample size increases in time following a Cox process
resulting in the sample size having the mixed Poisson distribution.
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Chapter 8

Probability Modeling Taking into
Account Nonlinear Processes of a
Deformation and Fracture for the
Equipment of Nuclear Power
Plants
Nikolay Andreevich Makhutov, Mikhail Matveevich Gadenin,
Igor Alexandrovich Razumovskiy,
Sergey Valerievich Maslov and Dmitriy Olegovich Reznikov

Abstract

At the solution of integrated tasks of strength, safe life and service safetymainte-
nance for the nuclear power plants (NPP) equipment with slow reactors—water-
moderated power reactors (WMPR) of VVER type and channel-type graphite-
moderated power reactors (GMPR) of RBMK type arise necessity of physical and
mathematical modeling of nonlinear processes of a deformation, fracture and damage
at nonlinear probability statement. First of all, it concerns deriving determined, statis-
tical and probabilistic characteristics of mechanical properties of reactor materials.
Expectations and variation factors ofmechanical properties’ characteristics obtained
from experimental researches are inducted into the equations for the verification cal-
culations at determination of static and cyclic strengthmargins with the use of nominal
and local stresses and strains. For the improved determined and probability analysis of
these margins modeling experimental researches of stress-strain states of the analyzed
equipment are conducted. Special attention at such tests is given to concentration
factors and variation factors of loading conditions. The final stage of estimation of basic
normative and verification calculation accuracy at laboratory, modeling and test bench
researches are full-scale pre-operational tests (cold-hot running-in) of pilot nuclear
reactors with the use of the experimental mechanics methods. The conditions of safety
service of the NPP equipment are estimated taking into account factors of reaching
limiting states by criteria of risk of initiation of emergency situations.

Keywords: probability modeling, strength, deformation, damages, fracture,
nuclear reactors, safety service, risk, structural materials

1. Introduction

The era of nuclear energy in the world started in 1954 by putting into service the
first nuclear power plant (NPP)—the Obninsk NPP with a channel-type reactor and
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first nuclear power plant (NPP)—the Obninsk NPP with a channel-type reactor and

191



power of 5 MW. Since then, leading countries of the world (the USSR-Russia, the
USA, Great Britain, France, etc.) have come up with a whole spectrum of a new
type of power supply—nuclear-powered.

By 2019, in the Russian Federation, 10 NPPs with 35 power-generating units
with a total power of 29 GW are operational. In model of the NPP of Russia, there
are 20 pressurized water reactors, including water-moderated power reactors
(12 units of VVER-1000 type, 1 unit of VVER-1100 type, 2 units of VVER-1200
type, 5 units of VVER-400 type, and 1 unit of VVER-417 type). There are also
13 units of channel boiling water reactors of a high power of RBMK type (channel-
type graphite-moderated power reactor—GMPR)—(10 units of RBMK-1000 type
and 3 units of type EPG-6 type with power of 12 MW) and 2 units of fast-neutron
reactor (FNPR) of BN type (BN-600 type and BN-800 type).

In 56 states of the world, more than 430 nuclear reactors with a total power
370 GW is now operated. The NPPs in the world produce about 11% of the con-
sumable electric power. Leaders in this production are France (80%), South Korea
(32%), and Ukraine (30%). In Russia, this share amounts to 16%. In the long term
of 20–25 years, probably accretion of this share will be about 25%.

On changeover to reactors of power plants of first generations of 1960–1970
reactors of new third and fourth breeds come. And if the first reactors were con-
sidered as “nuclear boilers” and designed on norms of boiler fabrication for thermal
power, up-to-date reactors develop on these details both on scientifically well-
founded norms and on methods of national (Russia, the USA, Great Britain, France,
and Germany) and international levels (IAEA).

From stands of classes of hazards detection for technosphere objects, nuclear
reactors undoubtedly fall into critically (CRO) and strategically (SRO) relevant
objects. These are facts that demand the profound combined analysis and a justifi-
cation of all design and service solutions for all stages of their life cycle.

In the proximal (till 2020), midrange (till 2030), and kept away (till 2050)
prospects, the evolution of nuclear energetics will be carried out on the basis of
operating, built, and designed nuclear power plants. Basis of the fundamental and
application analysis of strength, life time, reliability, and safety of operation of NPP
elements with reactors of VVER, RBMK, and BN types (Figure 1) in regular both
emergency situations are the equations and criteria linear and nonlinear mechanics
of deformation and fracture [1–11]. They contain in home and foreign strength
standards and are used as at design, so at manufacture and operation of working in

Figure 1.
The Russian reactors of VVER (water-moderated power reactor) (a), RBMK (channel graphite-moderated
power reactor) (b) and BN (fast-neutron reactor) (c) types.
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extremely conditions, a high-loaded power-generating plants with use physical and
mathematical modeling [1, 12–17].

Results of traditional researches and a standardization of strength and life time
of NPP in the determined statement in Russia and abroad are both initial scientific
baseline of normative documents on design and actual baseline of making of per-
spective methods of a reliability estimate, survivability, initiation, and evolution of
accidents and disasters by risk criteria, and also of makings of new principles,
technologies, and engineering complexes ensuring safety service of NPP. These are
conditions that are scientifically grounded to prevent initiation of the emergency
and disastrous situations and also to minimize probable losses at their initiation at
all stages of life cycle. Such situations within the limits of usual normative
approaches and methods, as a rule, remained the least investigated from the scien-
tific and application points of view owing to the complication, small predictability,
and recurrence. At the same time, survivability of power-generating units in emer-
gency situations and risk analysis of probable aftereffects should become weighable
arguments in favor of building of nuclear units with a life expectancy from 60 to
100 years.

The analysis of sources, the reasons, and aftereffects of the heavy disasters
occurring during installations of nuclear energetics display both their likeness and
essential difference. Accidents known to the world on NPP with radioactivity ejec-
tion in a circumambient manner in the USA (the NPP “Three Mile Island (TMI)”—
Figure 2), in the USSR (the Chernobyl NPP (CNPP)—Figure 3), and in Japan (the
NPP “Fukushima-1—Figure 4) were the heaviest [3, 6, 8, 11, 18].

A common after effect of NPP accidents and disasters was that direct and
indirect economical losses from them reached tens and hundreds of billions of USD.
For their forestalling and preventing in the subsequent, the principal changes were
made to designer, technological, and service solutions. Heavy emergency situations
for NPP service arose earlier at the time of damage to their equipment, such as
runners, steam plants, main coolant pumps, heat exchanger pipes, gate valves, and
legs of reactor internals [11, 17].

The abovementioned NPP heavy accidents and disasters originated from
unapproved impacts of human controllers, non-observance of technological disci-
pline at emergency situation (TMI, CNPP), heavy-lift seismic loads, and a tsunami
(Fukushima-1). Regular systems of the automatize guard of the NPP have been
unreasonably disconnected (CNPP) or could not work in an emergency situation
(TMI, Fukushima-1). Heavy emergency situations on turbine runners, steam plants,

Figure 2.
The “Three Mile Island” NPP (TMI).
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gate valves, and legs arose due to the lack of suitable technical diagnostics of these
situations [11, 19], when faults in the form of cracks because of technological or
operational fault attained of the limiting, intolerable sizes (102 to 1.5 � 103 mm),
affecting 50–70% of carrying cross-section and creating sharp magnification of
runner chattering. Thus, the analysis of such situations was not envisioned by
normative calculations.

2. Combined researches of strength and life time

For installations of a nuclear energy in our country and abroad in the second half
of twentieth century, the whole complex of fundamental and application develop-
ments [1–7, 11–14, 20–23] on the creation of normative strength calculations of the
equipment and pipelines for nuclear power plants has been executed. Thus in our
country special meaning had the solution of policy-making bodies that the scientific
adviser of research developments on a justification of norms had been defined the
Academy of Sciences of the USSR (The A.A. Blagonravov Institute for Machine
Sciences—the IMASH), and the head development engineer of norms—the Minis-
try of medium machine building of the USSR (The N.A. Dollezhal Research and
Development Institute of Power Engineering—NIKIET).

The same organizations making all prototype models of reactors for the NPP
established the total statement about the strength before starting a reactor in ser-
vice. Such norms developed both in the USSR [1, 12] and in the USA [14] subse-
quently were developed according to international standards set by the
International Atomic Energy Agency—IAEA [13]. Compared to home norms of an
NPP design [1, 12], basic sections on calculations, monitoring, probability safety
assessment, and a justification of life time extension have been included.

Figure 3.
The accident on the Chernobyl NPP (CNPP).

Figure 4.
The accident on the “Fukushima-1” NPP.
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Long-term experience of home nuclear branch organizations and the academic
institutes has allowed to form (Figure 5) the schematic diagram of the combined
solution of tasks in view:

• The determined and statistical researches of deformation and fracture
processes of laboratory specimens (with groups from 3–10 to 100–200
specimens of one steel)

• Model tests of the metallic specimens imitating most important parts
(for example, studs of threaded connections with a diameter from 24 to
110 mm) and also nonmetallic specimens of studs with a diameter from
60 to 210 mm

• Tests of the modeling reactor vessels fabricated of nonmetallic materials in
scale 1:10 and from metallic materials in scale 1:5

• Full-scale prestarting and starting tests of reactor prototype models of VVER,
RBMK, and BN types

In considered norms, there are two cores sections: calculation of principal
dimensions predominantly by criteria of a static strength and the verification cal-
culations on a different combination of limiting states at low-cycle and high-cycle,
long-term, vibration, seismic loads with initiation of static, cyclic, brittle, corrosion
fracture, and also cyclic forming and radiation damage.

Figure 5.
The structure of the main task solution at making and service of the NPP equipment.
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In the capacity of the most responsible and dangerous NPP components, nuclear
reactor vessels, pipelines, pumps, steam generators, reactors, and machine halls
have been accepted (Figure 6).

In an NPP with water-moderated power reactors (VVER) in the capacity of the
major critical parts, it is possible to consider also the basic attachment fittings of
reactor covers such as studs. Thus, the computational-experimental analysis of
stress-strain states, strengths, and life times of a connection joint of reactor covers is
conducted by improved methods in more detail (Figure 7).

For reactor installations of home production, such analysis was fulfilled [2–4, 11,
15, 16] jointly by the academic institutes, head branch research, and designer orga-
nizations on all prototype models of reactors in our country and abroad (Bulgaria,
Finland, Hungary, Czech, and China) with application of the foremost methods:
model researches of covers, studs, pressing rings on models from stress-optical and
metallic materials, full-scale researches on reactors at preoperational tests on all
regimes (including emergency), and also at an initial stage (till 1–3 years) of service.

In particular, the fifth unit of the Kozloduy NPP (Bulgaria) has been developed
and implemented [15] after a most complicated program of full-scale researches by
methods of a strain measurement, a thermometry, a vibrometry for all components
of a primary loop with 1000 measuring points of local stresses, pressure pulsations,
and temperatures (Figure 8).

Figure 6.
The flow chart of strain-gauging of power equipment: 1—steam generator, 2—reactor, 3—pressure
compensator, 4—bubble tank, 5—a main coolant pump, 6—commutators, and 7—registering apparatuses.

Figure 7.
The scheme of strain-gauging of a threaded connection of an attachment fitting of a cover.
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Modeling and full-scale researches have allowed to define detailed stress distri-
butions on threads (Figure 9) and in a cover (Figure 10). These facts have given
the chance to obtain real history of service impacts and nominal and local stresses
on all parts of a reactor main joint.

Figure 8.
Zones and points of placing of measuring gauges on the NPP equipment.

Figure 9.
A stress loading of a stud attachment fitting of a reactor cover.
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Computational and special experimental test bench researches of a dynamic
stress loading and cyclical damages from seismic loads had a particular actuality.

On metallic modeling studs with a diameter from М12 to М110, data about life
time on the basis of 104–105 cycles have been obtained. These data have allowed to
justify improved margins on strength and life time of analyzed studs.

The principal great value in results these researches had that facts that the
maximum accumulated damages (to 70%) arose in regimes multiple tightening and
seal failure of caps (Figure 11). This fact has demanded work on special activities to
decrease the indicated damages [15, 16].

Formation of development trends at the standardization instituting serviceabil-
ity and safety of a nuclear (power-generating equipment went in a direction of
specification and complicating of applied methods and criteria [1–3, 11, 20–23].
Thus, accidents and disasters (the TMI in the USA, the CNPP in the USSR, and

Figure 10.
Stress distribution diagrams in a cover, flanges, and studs.

Figure 11.
The diagram of stresses change in studs at sealing of the main joint of the VVER-1000 reactor.
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the Fukushima-1 in Japan) added additional information baseline for such
development.

To the traditional solution of a problem of service safety [2, 6–10, 20–25], three
groups of approaches had a direct ratio:

• From the position of strengths (in its multicriteria expression)

• From the position of life time (in time and cyclic statement)

• From the position of inadmissibility of large plastic strains

Traditional methods of strength justification were founded on a complex of
determined characteristics of mechanical properties of materials and fracture
criteria (yield point—σy, ultimate strength—σu, fatigue limit—σ�1, and long-term
strength—σlt). On the basis of these parameters of strength and fracture (present in
standard and technical specifications for reactor structural materials), the status of
safety and life time margins (nσ, nN, nτ) has been generated. These margins are
included in the reference, educational, and standard literature [1, 2, 12, 20–26].
Today, a common system of criteria and strength margins guaranteeing a fracture
of nonadmission for equipment components at observance of the given service
conditions is developed.

Mathematical modeling at the determined normative requirements to strength
and life time came down to two approaches:

• To modeling parts of rods, plates, and thin shell types on the basis of analytical
solutions of the theory of a strength of materials and theory of elasticity

• To modeling real objects on the basis of numerical solutions by finite-element
method, finite difference method, and integral equations method

Research of seismic impacts was the most complicated at computational and
experimental modeling:

• By finite-element method (FEM) for all parts of the first circuit (Figure 12)

• By methods of physical modeling of a reactor with reactor internals
(Figure 13)

It has thus appeared that most high stresses and damages from seismic loads
occur at the zone of attaching of pipelines to a reactor vessel.

On the basis of such modeling, nominal σn and maximum local σmax stresses in
concentration zones were defined. However, in these traditional approaches, nor-
mative materials often did not contain the direct data quantitatively instituting
strength and life time of considered objects taking into account a statistical property
of parameters σy, σu, σ�1, and σlt. Occurring actually dissipation of parameters for
strength calculation and life time of a NPP environment is caused by instability of
manufacturing procedures at production of structural materials and NPP bearing
parts (reactor vessels, pipelines, pumps, and heat exchangers). In the last decades,
this deficiency has been eliminated, and the sphere of the traditional analysis of
serviceability of the NPP equipment includes the theory and criteria of life time and
reliability [2, 20–27].

In addition to normative calculations of reactors on [1] at the complicated
regimes (Figure 14) of an assembly, test and service loading (assembly, a
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tightening of studs, a hydroshaping testing, launch, capacity change, emergency
operations, and shut-down) for events of occurrence of high levels of stresses
improved strength, and life time calculations were carried out on the equations type

ea ¼ 1
4Nð Þme þ 1þre

1�re

� ln 1
1� ψ c

þ 0, 43
σb 1þ ψ cð Þ

E �Nmσ 1þ 1þrσ
1�rσ

� � , (1)

where ea is the amplitude of strain at a design regime; N is the life time at a crack
initiation stage, in cycles; σb is the ultimate strength of a material
(400 ≤ σb ≤ 950 MPa); ψc is the reduction of area in a neck of a specimen at single-
pass rupture (0.3 ≤ ψc ≤ 0.7); re, rσ are the cycle asymmetry parameters on strains
and stresses, accordingly; and me, mσ are the characteristics of a real material
(0.5 ≤ me ≤ 0.6), (0.08 ≤ mσ ≤ 0.12). Values of parameters in Eq. (1) ea, ψc, re, rσ,
me, and mσ are relative and dimensionless.

Figure 13.
A research of a dynamic state of a reactor simulator at seismic excitation.

Figure 12.
Loads and stresses in a connecting pipes zone of a reactor vessel at seismic impacts for YOZ plain—the
computational scheme (a), response stresses (MPa) on outside (b) and interior (c) surfaces; for XOZ plain—
the calculation scheme (d) and stresses (e) on an interior surface.
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Calculation on Eq. (1) with the use of deformation criteria can be brought
together to calculate by force criteria (оn stresses) to accept σ ∗

a ¼ ea � E (Е—a
modulus of elasticity).

Equation (1) is true for a wide band of life times (100 ≤ N ≤ 1012). Permissible
regimes of a stress loading are established in Eq. (1) with introduction of two
margins nσa and nN . Then, the computational curve of permissible values [ea] (or
[σ ∗

a ]) and [N] is accepted as lower enveloping curves on each of these margins.
For the complicated regimes of a two-frequency loading (low-frequency with

frequency fl = f0 (hertz) and amplitude of stress σ ∗
al=σ

∗
a0 (MPa), and high-frequency

with fh (hertz) and σ ∗
ah (MPa), accordingly) on the basis of generalization of exper-

imental data, life time decrease from the number of cycles of basic loading N0

(cycle) to two-frequency life time N2 (cycle) is considered [1, 28] in equation

N2 ¼ N0=χ; χ ¼ f h
f 0

� �η
σ ∗
a0
σ ∗
ah , (2)

where χ and η are dimensionless characteristics of a material and parameters of a
two-frequency regime.

The same approach is used to calculate life time taking into account the presence
of contact (wear resistance) and seismic impacts.

The presence of initial or service defects of cracks type with depth l is reflected
in calculations of survivability on the basis of the equations of linear and a nonlinear
fracture mechanics by change of stresses KI (MPa�m1/2) and strains KIe intensity
factors [2, 20, 29]. For one-time brittle or a ductile fracture,

KI ¼ σ
ffiffiffiffi
πl

p
� f к ≤

KIс

nKσ

; KIe ≤
KIeс

nKe

, (3)

where KIc and KIec are the critical (fracture) stresses and strains intensity factors,
accordingly; nKσ and nKe are the dimensionless margins on stresses and strains
intensity factors, accordingly (nKσ ≤ nKe).

Reliability of equipment PQR(τ) along with the account of the probabilistic
approach to estimations of mechanical properties of a structural material is defined

Figure 14.
The diagram of change of service loading parameters.
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also (Figure 15) on probabilistic characteristics of service stress loading Q(τ) and
life time RNτ(τ) on the basis of distribution functions f of service impacts Qs(τ) and
of ultimate loads Qc(τ) for the given life times Nc, τc. Thus, usually “trees of events”
and “trees of failures” on experience of previous service of analogous technosphere
objects are used. In such statement, the risk can be defined as

R τð Þ ¼ 1� РQR τð Þ: (4)

More oriented on the quantitative solution of a safety problem for complicated
NPP installations, capable to cause severe accidents and disasters, are new methods
and criteria of the following groups [2, 6–8, 11, 18–21, 24–26, 29–33]:

• Survivability (ability and steadiness of operation at occurrence of damages at
different stages of accidents and disaster evolution)

• Safety (taking into account the risk criteria and characteristics of accidents and
disasters)

• Risk (in probability-economic statement)

From the above-stated, the up-to-date justification of strength, life time,
reliability, survivability, safety, and risks (Figure 16) should be based on results of
corresponding calculations and tests with observance of the special and new
requirements established by corresponding normative-legal documents.

For long-term operated high-risk installations of a nuclear energetic to which the
NPPs with reactors of the VVER concern, the BN and the RBMK types’ rate, initial
parameters of strength, life time, risk, and safety were defined in an explicit and
implicit kinds on stages of their design and commissioning on acting then norms
and rules which place at the different displayed in Figure 16 footsteps (on time and
analysis level).

Thereupon, during estimations of their state, two scientific and application
approaches are possible:

• To realize stage by stage an estimation of the initial, exhausted, and remaining
life time

• To estimate current life time, as initial for the given level of the service damage
that has been accumulated in the previous operating period

Figure 15.
The scheme of determination of reliability, failures, accidents, and disaster probability РQR τð Þ.
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At the present time, the first approach was found to be the largest application.
However, subsequently, the second approach appears to be deciding owing to its
higher precision at estimations of the remaining strength, life time, and safety.

3. An estimation of risks and service safety

On the basis of the normative documents developed and accepted to present
safety of power engineering as a whole, and NPPs in particular, the level of indi-
vidual risks and risks of a possibility of accidents and disaster initiation should be
estimated. In the process of perfecting NPPs and their nuclear reactors, these risks
were reduced and will be reduced from 10�4 to 10�8 1/year and less. For example,
the reactor of natural safety with plumbeous heat-transfer agent will have a
probability of fracture considerably below 10�8 1/year [8, 11]. Individual risks of
nonnuclear power engineering lay within the limits 10�4–10�7 1/year (Table 1).

The great importance for the analysis, support, and improvement of safety of
the considered equipment within the limits of dominating and active concepts,

Figure 16.
A structure and evolution of standardization methods on the determined justification of strength and life time
with the use of physical modeling of materials behavior at a static, cyclic, and long-term loading.

Table 1.
Comparative data about a radiation-ecological risk for different directions of the electric power manufacture.
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strategies, norms, orders, and margins has the level of a scientific-practical justifi-
cation of the predictable and acceptable risks characterizing generally regular and
limiting states of these installations.

For all spectrum of technosphere installation types of emergency and cata-
strophic situations, the level of their protectability and types of accompanying risks
at transition from standard conditions operation in regular states to emergency and
catastrophic at service can be described (Table 2) as:

• Regular situations—occurring at installations operation in the breaking points
established by norms and rules; risks for them controlled; and protectability
from them increased

• Regime emergency situations—occurring at a shift from service standard
conditions at regular operation of potentially dangerous installations;
aftereffects from them predicted, risks for them controlled; and protectability
from them sufficient

• Design emergency situations—arise at a runout of installation out of breaking
points of regular regimes with predicted and acceptable aftereffects; risks for
them analyzed; and protectability from them partial

• Out-of-design emergency situations—arise at nonreversible damages of
important parts of installation with high losses and human sacrifices and with
necessity of carrying out a recovery work; risks for them heightened; and the
level of protectability from them insufficient

• Hypothetical emergency situations—can arise at the not forecast in advance
scenarios of evolution with the greatest possible losses and sacrifices; are
characterized by high risks; protectability from them low; and restoration of
installations is impossible

The complex calculation-experimental analysis of the initial and remaining ser-
vice life of an NPP is founded first of all on an estimation of service damages
accumulation conditions at different service regimes taking into account
corresponding state equations, and also on the study of conditions of transition in
limiting states taking into account service kinetics of mechanical properties of
materials, criteria of strength, crack resistance, and survivability.

Generally termed procedures are implemented with the use of a complex criteria
equations, computational equations, and design parameters applied to the analysis
and definition of regular and limiting states of engineering objects. The complex
criteria include the following equations:

For an estimation of static and long-term strength,

Table 2.
Types extreme (emergency and catastrophic) situations and level of protectability from them of high-risk
installations.
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FQ σ; e; t; τf g ¼ FQ f 1
στy
ny

;
στu
nu

;
στlt
nσ

;
eτc
ne

;
τc
nτ

� �
; f 2 mð Þ

� �
, (5)

where FQ is the functional characterizing dependence of stresses from actual
force impacts Q ; σ, е are the operating in time τ at temperature t stresses and
strains; f1 is the functional dependence, which includes στy, σ

τ
u, and στlt that are the

yield, strength, and long-term stress points of a material for deformation time τ,
accordingly, eτc, e

τ
c is the critical values (at fracture) of strains at this time; ny, nu, and

nσ, nе, nτ are the margins accordingly on yield and strength stress points, on stresses,
strains, and time; f 2 mð Þ is the functional dependence (in most cases, power)
for a hardening parameter m in elastoplastic field of a deformation [2, 20, 21].

Для оценки ресурса по параметрам числа N циклов и времени τ

FL σ; e;N; τf g ¼ f 1
σa
nσ

;
ea
ne

;
Nf

nN

� �
f 2 σy;ψ c;mp;me
� �� �

, (6)

where FL is the functional characterizing dependence of life time from ampli-
tudes of stresses σa, strains ea, number of fracture cycles Nf , and margins
corresponding to them, and from plasticity of material ψ c (the relative cross throat
at fracture) and exponents for an equation of a fatigue curve for plastic mp and
elastic me components of cyclic strains ea [2, 7, 20, 21].

For a crack resistance estimation,

FK σ; e;KI;KIe; τ; tf g ¼ FK
σ

nσ
;
e
ne

;
KIc

nK
;
KIec

nKe
;
τc
nτ

;
tc
nt

� �
, (7)

where FK is the functional characterizing dependence of stresses KI and strains
KIe intensity factors, from their critical values KIc and KIec, from stresses σ and
strains е levels, from critical time to fracture τc and critical temperature tc with
corresponding margins [2, 7, 20, 21].

For a survivability estimation,

FLld σ; e; l;N; τ;KI;KIef g ¼ FLld ΔKI;ΔKIeð Þ; dl
dN

;
dl
dτ

� �� �
, (8)

where FLld is the functional characterizing dependence of survivability parame-
ter from values of service stresses and strains, causing material damage d, from sizes
of faults (cracks) l, from crack growth rates on number of cycles dl=dN, and time
dl=dτ parameters, and also from values of ranges of stresses KI and strains KIe
intensity factors [2, 7, 20, 21].

For a risk and safety estimation,

FR P τð Þ;U τð Þf g ¼ R τð Þ; (9)

FS R τð Þ; nRf g ¼ S τð Þ≤ 1
nR

Rc τð Þ ¼ R τð Þ½ � ¼ FM Rc τð Þ; nR;M τð Þ;mMf g, (10)

where FR is the functional, characterizing risk R τð Þ as analytical dependence of
probability P τð Þ of occurrence on installation of an emergency situation of this or
that type and probable loss U τð Þ in case of its implementation; FS is the functional
characterizing parameter of safety S τð Þ, which bundles parameters of really occur-
ring risk with its critical Rc τð Þ (limiting) and admitted R τð Þ½ � (acceptable) values
through margin factor on risk nR defined in advance.
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Thus, the level of installation safety functionally (FM) depends on values of
critical risk, from margin on a risk nR, and also from costsM τð Þ of carrying out steps
to decrease danger (risk) of installation and from effectiveness factor of these costs
mM [8, 18, 24].

The mentioned complex functional criteria in Eqs. (1)–(10) allow to implement
the full sequence of installation calculation for the purpose of providing for its
service safety, beginning from strength parameters and completing at protectability
parameters with acceptable values of risk both on a design stage, and at concrete
stages of service, including a decision made about life time extension.

At an estimation of the remaining life time on resistance to cyclic fracture, levels
of cyclical stresses, cycle asymmetry parameters, a stress concentration, cyclical
properties of a material, service temperatures, special conditions of loading, and
residual stresses and strains are subject to analysis. Under these data calculation
processes and parameters of impacts, fracture stresses and life time are defined. On
the basis of such definition are the functionals that resulted above in Eqs. (4)–(10),
which include calculation dependences (state equations, curve of deformations and
fractures, and strain and force criteria). In improved calculation zones of welded
joints, a plastic deformation in the most loaded zones, variety of operating condi-
tions and impacts, and dispersion of characteristics of mechanical properties [2, 10,
20–29, 31, 34–36] are considered.

As appears from Eqs. (1)–(10) the computational-experimental justification of
static, long-term, and cyclic strength, life time, and risks included in comprehensive
analysis of conditions of safety service of the NPP equipment at regular and
unnominal situations, sampling of types of limiting states, calculation schemes and
calculation cases, methods of the analysis of stress-strain states, methods of prelim-
inary diagnostics of technical state, assignment of margins on strength and on life
times, study of probabilities of limiting states reaching, an estimation of risks of
accidents and disasters [2, 9–11, 20–36].

The built-up calculation of curve (permissible amplitudes of stresses and life time
at a cyclic loading, and also of the maximum stresses and time before fracture in the
long term) is carried out for an estimation of initial and remaining life time on the
basis of a schematization of history of loading, sampling of computational schemes,
and computational cases. The calculation of initial and remaining life time is carried
out in two alternatives: an approximate calculation and improved calculation.

The concept of an estimation, a diagnosis, and a prediction of service life of the
NPP is correlated with the sampling of state variables of the equipment on the level
of wearing and life time exhaustion. To define the factors and parameters influenc-
ing on life time, it is necessary to attribute maximum deviations of wall width and
errors in measurement, a staging of prediction of life time, results of resource and
strength researches, levels of diagnosing of installations, and influence of engineer-
ing preliminary diagnostics efficiency on the level of a fracture risk.

On the basis of summarizing of results of a life time design justification of
reactors, it is possible to establish a dependence of life time on commissioning
terms, for example, an NPP with VVER type reactor of all generations (Figure 17).
To a twenty-first century kickoff in our country and abroad, the design life time
(expected life) has increased to 40–60 years; by 2025, the design life time can
increase to 100 years [1, 3, 7, 11, 24].

Thus, the key problems of design, manufacture, service, upgrading, and a
leading-out from service of nuclear units of the following (the fourth and the fifth)
generations with heightened characteristics of life time and safety are:

• Transition to new principles of reactor core build-up, sharply reducing severe
accident possibility with its melting

206

Probability, Combinatorics and Control

• Use of joint guard from severe accidents by new organization of working
master schedules both in regular and in the emergency situations promoting to
decrease of negative and dangerous aftereffects of accident propagation

• Introduction in practice of making and service of reactors with an in-depth
analysis of risks of occurrence and propagation of the emergency and
catastrophic situations, considering both probabilities of these situations and
their aftereffects

• Inclusion in the analysis of heightened life time, risks and safety of reactors of
such base criteria as strength, life time, reliability, survivability, physical
protectability, and economic justification

• Orientation to escalating requirements to safety of the NPP formed by national
and international laws, norms, and rules

• Elimination of unreasonable conservatism in already accepted normative and
technical documents and introduction in the safety analysis of new threats and
risks (including risks of terrorism)

• Statement as the corner-stone fundamental and applied researches of safety of
nuclear reactors of problems of forming of unified methodical baseline on
integrated study of external and interior impacts of a wide spectrum, responses
to these impacts of critical important bearing elements of the NPP in linear and
nonlinear fields of a deformation, damages, and fractures

• Setting, justification, control, and monitoring of the major parameters of life
time and safety of the NPP operation at regular and emergency situations for
confinement of margins on strength, life time, and risks in safety breaking
points

Problems of safety maintenance on the basis of the concept of risks generally
should to be decided with the use of the determined, statistical, probability, and
combined methods of fracture mechanics and mechanics of disasters. Probabilities
PS of realization in an NPP of system threats can be presented with the use of
functional FPS [2, 6, 8, 18, 24–26, 29, 32, 33]

PS ¼ FPS PN ;PT ;POf g, (11)

where PN is the probability of occurrence of the unfavorable event, stipulated by
the human factor; PT is the probability of such event stipulated by a state of an NPP
components; and PО is the probability of its occurrence stipulated by an environ-
mental exposure.

The type of functional Eq. (11) remains the same and for probabilities of risks
realization included in the analysis at design, making, and service of the NPP. The
great importance thus has that facts that the role of the human factor in appraisal PS
at change PN is defined not only human controllers and the personnel, their profes-
sional qualities and a physiological state, but the experts, making solutions on all
level of the hierarchy by safety of the NPP.

Probabilities PT essentially depend on the level of protectability of the NPP from
accidents and disasters. This protectability is defined by quality of their initial and
current state, extent of degradation of installations at the given stage of service, and
diagnosing and monitoring level. Such position indicates direct interacting of
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parameters PT and PN taking into account base parameters of reliability and quality
of technosphere installations.

Probabilities PS, as it is known, depend on occurrence of dangerous natural
processes (earthquakes, floods, hurricanes, tsunami, landslides, etc.) and also from
a state of the NPP installations and, hence, from PT. Adoption unreasonable (from
the point of view of risks) R (τ) solutions on arrangement of technosphere installa-
tions and zones of population residing does parameter PS dependent and from PN.

Losses US from realization of system threats generally can be recorded through
the functional FUS

US ¼ FUS UN ;UT;UOf g, (12)

where UN is the losses caused to the population at interacting of primary and
secondary knocking factors at realization of strategic system threats; UT is the losses
caused to technosphere installations; and UO is the losses caused to an environment.

Values UN, UT, and UO can be measured both in natural units (for example, a
death-roll of people, number of the blasted installations, and the square of injured
territories) and in equivalents (for example, in economic, monetary parameters).

As a whole, in Russia, taking into account social and economic transformations,
global processes to power supply and experience and prospects of nuclear energetics
development based characteristics of risks R of accidents and disasters of the
natural-technogenic character, defined by their losses U (or severity) and probabil-
ity P (or quantity), have rather complicated character of a time history τ with a
common trend to increment (Figure 18).

Accepting that the relative risks R τð Þ increase eventually owing to natural aging
processes, degradation, accumulation of damages, and level of safety S τð Þ depends
on the relative protectability Z τð Þ.

R τð Þ ¼ FR U τð Þ;P τð Þ� �
; S τð Þ ¼ FS R τð Þ;Z τð Þ� �

, (13)

where the fact of accident and disaster occurrence will correspond to the
condition

Figure 17.
Characteristics of initial design (full line) and the prolonged expected life (lives times) of the NPPs with type
reactors VVER of the first–the fifth generations.
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S τð Þ ¼ R τð Þ=Z τð Þ≤ 1: (14)

Such conditions occurred at the moment of Chernobyl disaster (1986), last years
the twentieth centuries at damages of collecting channels of steam generators PGV-
1000 type, on boundary line of centuries at damages of welds to a weld zone of the
principal circuital pipeline to the steam generator [4, 11].

In Figure 18 the major role of improving of all service parameters of the NPP,
and first of all life time and safety which promote decrease of probabilities of
accidents and disasters occurrence P(τ) and accompanying them losses U(τ) is
visible.

When for the equipment of the concrete NPP, the relative system risks RS (for
population RN, for technosphere installations RT, and for environment RO) are
defined, the surface of limiting states on values of these system risks RS varying on
some random paths V(R) can be plotted (Figure 19).

RS ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
R
2
N þ R

2
T þ R

2
O:

q
(15)

Figure 18.
The time history of the relative risk levels and protectability.

Figure 19.
The surfaces dangerous and safe states on values of risks.
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S τð Þ ¼ R τð Þ=Z τð Þ≤ 1: (14)
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visible.
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some random paths V(R) can be plotted (Figure 19).
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Figure 18.
The time history of the relative risk levels and protectability.

Figure 19.
The surfaces dangerous and safe states on values of risks.
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To reach the acceptable protectability of the NPP equipment, implementation of
complex steps on the decrease of system risks RS is necessary.

If on axes RT, RN, and RO to put aside classes from 1 to 7 for accidents and
disasters on extent of increment of their severity (1—local, 2—object, 3—district,
4—regional, 5—national, 6—global, and 7—planetary), then the quantitative
assessment of extent of the NPP safety and any of its components by criteria of risks
is represented possible. Such estimation is given by the radius vector in three-
dimensional space “RT-RN-RO”. The strength and life time improvement on all
stages of installation design, making, and service should promote decrease in danger
of these installations.

For an NPP transfer in safe states with the use of risk criteria RN, RT, and RO

(Figure 19), it is necessary to reduce the possibility (risk RS) of uncontrollable
emission of potentially dangerous substances W and energies E and also a loss of
control (disruption of data flows I),

RS ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
R
2
W þ R

2
E þ R

2
I ,

q
(16)

or to reduce the relative risks of accidents and disasters RN, RT, and RO as in
Eq. (15) and RW , RE, and RI as in Eq. (16).

This result can be attained by the creation of monitoring systems for diagnostics
and monitoring of risk parameters RN, RT, RO, RW , RE, and RI and guard Z(τ), and
also by the introduction in the analysis of safety S(τ) scenarios of occurrence and
propagation of emergency and catastrophic situations.

The state, regional and object control, regulating and providing of safety S τð Þ by
system risks criteria RS τð Þ comes to the qualitative both quantitative statistical and
determined analysis on the given interval of time Δτ of all service parameters and
to implementation of complex activities on decrease of system risks from actual
unacceptable RS to acceptable (admissible) levels [RS]:

RS ¼ FR PS;US
� �

≤ RS
� � ¼ 1=nSð Þ � RSc ¼ FR PS

� �
; US
� �� � ¼ FM mM

�1 M
� �� �

,

(17)

where nS is the safety factor on system risks; RSc is the unacceptable (critical)
risk; [PS] and US

� �
are the acceptable (permissible) probabilities and losses; [M] is

the necessary acceptable expenditures for decrease of risks; and mM is the cost-
effectiveness ratio 1≤mM ≤ 10ð Þ.

Safety of the NPP by criteria of risks can be considered ensured if the inequality
nS ≥ 1 is attained.

The interval of time Δτ for which risks RS are defined usually is accepted to equal
1 year (Δτ = 1 year).

According to Eqs. (15) and (16), control and planning with the use of the criteria
baseline grounded on risks come to following primal tasks:

To the development of scientifically well-founded methods of the analysis of
risks RS and their basic quantities PS and US

To decision making about the level of allowable values [RS], [PS], and [US] with
an estimation of margin values ns

To scientifically well-founded level of definition of necessary expenditures [M] on
decreasing risks with sampling and improving of efficiency of these expendituresmM

Thus, predicting, monitoring, and forestalling of accidents and disasters for an
NPP (including by improving of all parameters of strength, life time and
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survivability) appear to be essentially more effective, than liquidating of afteref-
fects of catastrophic situations (type of the TMI, the CNPP, and the Fukushima-1).
Values M at a suitable justification of activities on the decrease of risks can be
considerable (in mM time) less losses US caused to economy by vulnerability of the
equipment for all types of NPPs.

As it was already mentioned, safety of nuclear energy installations S(τ), as well
as all other complicated engineering systems, on the given interval of time τ is
defined in Eq. (13) by two basic quantities: probability P(τ) of unfavorable event
occurrence (an unfavorable situation) and probable loss U(τ) from this event.
Values P(τ) and U(τ) are generally statistically uncertain, demanding for their
quantitative assessment of great volumes of the information on the nature,
behaviors, sources, and scenarios of unfavorable events both for each of considered
installations and for the given set of installations (group, batch, and series) at
occurrence and propagation of unfavorable events and also the information on
aftereffects for installations, persons, and an environment at occurrence,
propagation, and liquidation of unfavorable events.

4. The analysis of limiting states

In nuclear energetics with reactors of all types and all generations (from the first
to the fourth) prior to the beginning of the twenty-first century, at failure analysis,
the basic attention was given to parameter P(τ) that defined reliability of safety
operation of the NPP. Special meaning was added thus to the forestalling and
prevention of the heaviest on the aftereffects of catastrophic situations with the
peak damages—melting of the core and a radioactivity runout for breaking points of
all guard barriers—casings of the fuel element, cartridge, reactor vessel, reactor
hall, and containment. In this case, reactor vessel fracture is extremely dangerous.
This event concerns the seventh group of limiting states.

Significant aftereffects arise also at fracture of the basic elements of the first
circuit of a reactor vessel and collecting channels of steam generators, pumps,
volume compensators, bubbler tanks, and also housings and runners of turbines in
the second circuit. These fractures amount the sixth group of the limiting states
creating threats to the population, the NPP, and the environment.

If while in service of the NPP because of occurrence of damages of parts of the
first circuit has arisen a radioactivity outside breaking points of the NPP and there
were thus threats of bombarding radiation for the population, then it is necessary to
attribute these events to the fifth group of dangerous limiting states.

The leakages caused by partial damages (faults of crack type or depressuriza-
tions of connectors) and creating threats for human controllers and the personnel in
the NPP concern the fourth group of limiting states.

The third group of limiting states should be bundled to the considerable damages
of the above-termed parts of the first and the second circuit without a radioactivity
runout for breaking points of an NPP, which are not demanding their mandatory
substitution.

The second group of limiting states concern occurrence in bearing structures of
the NPP of partial damages without a radioactivity runout for breaking points of the
first circuit, not demanding their substitution, but demanding carrying out of
repair-and-renewal operations.

The first group of limiting states is amounted by those of them which are
bundled to damages and the faults that have fallen outside the limits admissible
under inspection norms and calculation, but not demanding mandatory carrying
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out of repair-and-renewal operations and that can be admitted to prolongation of
service before the next examination.

These facts allow to execute summary classification by groups of limiting states
for the NPP equipment (Table 3) from the most dangerous admissible (the seventh
group of limiting states LS-7) to the least dangerous admissible (the first group of
limiting states LS-1).

For the groups of limiting states indicated in Table 3 taking into account sum-
marizing of great volume of normative and technical materials and results of the
executed researches, it is possible to describe demanded (admissible) probabilities
[P(τ)] occurrence of unfavorable events. To such probabilities there correspond
their actual levels obtained from statistics of their occurrence while in service of
NPPs of all generations. Each severe accident or disaster on an NPP, happening at
the moment τc, was accompanied by comprehensive analysis of their reasons and
sources, and also realization of considerable on volumes and expenditures of activ-
ities for safety improving. Eventually, at τs > τc, after such accidents or disasters,
decrease of probabilities from P(τc) to P(τs) was observed.

For values of probabilities P(τc) and P(τs) for all reactors operated in the world at
τ≤ τc and τ ¼ τs, it is possible to estimate on ratios

P τcð Þ ¼ Nd

Ntc � τc ; P τsð Þ ¼ Nd

Nts � τs , (18)

where Nd is the quantity of the reactors that have obtained damages at the given
i-th type of limiting state under Table 3; Ntc is the total of reactors to the time τc of
occurrence of the given i-th type of damage; Nts is the total of reactors to the time τs;
τc is the mean time (years) of service of one reactor to the time of reaching of the
given i-th type of limiting state; and τs is the mean time of the service of one reactor.

As it was already mentioned, unfavorable events on an NPP (disasters, acci-
dents, failures, and disruptions) are accompanied by corresponding losses U(τ)
both at the moment of occurrence of these events τc and after them (τ ≥ τc). These
losses are caused to the person (to human controllers, the personnel, and the
population), to technosphere installations (to an NPP and other installations of
its infrastructure), and also to the environment. Now while miss direct legal
and normative documents by the quantitative definition of these losses. Some
suggestions on this problem are stated below.

Table 3.
Groups of limiting states for the analysis of the NPP safety.
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For a tentative estimation of loss U(τ), it is possible to use the simplified statis-
tical and expert information on such losses. Generally, values of losses are defined
by two basic parameters:

• Losses of human lives or health at occurrence and progressing of unfavorable
situations

• Economical losses (for example, in Rubles or USD) from a loss of life, from
maiming to people, and from fractures and damages of technosphere
installations and the environment

Direct loss U(τ) for the LS-7 limiting state interlinked immediately to fracture of
the NPP or full termination of its service. Then, the datum of loss U(τ) can be
accepted to the equal cost of the NPP. In this, the loss can and should include
charges U(τ1) within 1–2 years on a primary elimination of the consequences of
disaster or accident (realization of protective measures, evacuation of the popula-
tion, and termination of infrastructure installation operation). These charges at
(τ1 ≥ τ) several times (2–4) can exceed the initial loss U(τc). Decrease of secondary
consequences of heavy disasters on an NPP (making of shelters, recultivation,
medical examination and the help, and compensating payments) demands comple-
mentary essential annual expenditures U(τ2) for a long time τ1 < < τc ≤ τ2. In
Figure 20 is displayed schematization of the relative losses U τð Þ ¼ U τið Þ=U τcð Þ
depending on time Δτ after the occurrence of heavy disaster (Δτ = τs = τ) at reaching
the most dangerous limiting state of the LS-7 type, summarized in Table 3.

With the reduction of the hazard level of accidents and disasters (at transition of
limiting states from the LS-7 to the LS-1), value U (τc) and U τð Þ decrease because of
decrease of losses U τ1ð Þ and U τ2ð Þ.

From assemblage of tens methods for definition of risks parameters as the most
simple is the statistical or determined-statistical method according to which it is
possible to write

R τið Þ ¼ P τið Þ �U τið Þ, (19)

where τi is the time for which one the risk assessment is conducted and P(τi) and
U(τi) are the probabilities and losses for time τi.

If under τi is fathomed the time of unfavorable event occurrence of τc, then
according to Eq. (19), it is possible to obtain

Figure 20.
The time-history and schematization of losses U(τ).
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out of repair-and-renewal operations and that can be admitted to prolongation of
service before the next examination.
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Ntc � τc ; P τsð Þ ¼ Nd

Nts � τs , (18)
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Table 3.
Groups of limiting states for the analysis of the NPP safety.
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R τcð Þ ¼ P τcð Þ � U τcð Þ ¼ P ∗ τcð Þ �U τcð Þ: (20)

Risk R(τc) is possible to consider as risks of the implemented unfavorable events
at τi = τc and to use them for prediction of events for times τi ≥ τc. One such
prospective risk appears as the risk for the current phase of service τi = τs. In this
case, on the basis of Eq. (19), it is possible to write

R τsð Þ ¼ P ∗ τsð Þ �U τsð Þ, (21)

where τs is the time after unfavorable event (τs ≥ τc).
This time can be situated in the interval τc ≤ τ1 ≤ τ2. Then, for one operated unit

of the NPP, the common risk at reaching the given i-group of limiting state from the
LS-7 to the LS-1 will constitute

R τcð ÞΣ ¼
X7
i¼1

R τcð Þi (22)
.

If at loss estimations to consider not only direct losses at occurrence of unfavor-
able event U(τк) together with complementary losses U(τ1) and U(τ2), then it is
possible to define common (integral) losses as

U τð ÞΣ ¼ U τcð Þ þ U τ1ð Þ þ U τ2ð Þ (23).

These integral losses respond to the appropriate risks

R τΣð ÞΣ ¼
X7
i¼1

U τΣð ÞiP ∗ τsð Þi: (24)

On the basis of results of an estimation considered above risk components, it is
possible to build dependences between basic parameters of risk for the NPP—
probabilities P(τ) occurrence of unfavorable situations and losses U(τ) from them
(Figure 21).

The line had above and design points in the Figure 21 belong to probabilities
P(τc) and to losses U(τc) for the moment of accident or disaster occurrence on
the NPPs. The lower line made like overhead characterizes a negligible zone of
risk parameters P τcð Þ½ �min � U τcð Þ½ �min and the midline characterizes a zone of
acceptable risks P τcð Þ½ � � U τcð Þ½ �. If to allow common (near-term and long-time)

Figure 21.
Parameters of risks for the NPP with reactors of VVER types.
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for negative consequences of accidents and disasters, it is possible to build a line
of negligible risk parameters P τΣð Þ½ �min � U τΣð Þ½ �min.

5. Conclusion

From stated above follows that the major problems which have been not decided
while to the full for a NPP there are problems of provision of their protectability and
safety on the basis of new scientific fundamental and application researches on
mechanics, hydrodynamics, economics, mathematical and physical modeling of
dangerous processes resulting to heavy disasters, and also development of detailed
methods of the analysis of risks for heavy disasters.

Results of the fulfilled scientific researches and developments in this direction,
integrated [3–8, 15–17] in the serial of monographic publications on strength, life
time, and safety of power nuclear reactors, are initial scientific baseline for the
applicable normative, designer, technological solutions on provision of
protectability of the NPP equipment from heavy disasters on the basis of criteria of
acceptable risks.

The above-mentioned results of analytical and experimental researches can be
considered in the capacity of a theoretical basis for the subsequent development of
practical models of the computational analysis of risks for strategically relevant
installations of a nuclear energetic on the basis of the complex Eqs. (1)–(24).
Development of such models, and the most important—their filling up statistically
reliable probability distribution of fractures on groups of limiting states (see
Table 3) on the one hand, and economical computations of losses, with another, it
is necessary to consider as the major task for a solution of a problem of safe
development of power supply of human community.

At up-to-date and subsequent stages of evolution of power engineering in Russia
in the capacity of a basic recommended position, it is necessary to use the position
about provision of an acceptable risk level of occurrence of accidents and disasters.
In this connection, it is not obviously possible to ensure from social-economic and
technological stands the declared principle of absolute safety with null risks (R
(τ) = 0). Owing to it, the solution of the delivered problem is brought together to
determination of scientifically well-founded admissibility of occurrence of the
emergency situations with possible minimization of loss caused by them, with an
estimation of the greatest possible, acceptable, and controlled risk both at probable
occurrence of global and national accidents and disasters, and their realization at
regional and local levels.
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Chapter 9

Combinatorial Enumeration
of Graphs
Carlos Rodríguez Lucatero

Abstract

In this chapter, I will talk about some of the enumerative combinatorics prob-
lems that have interested researchers during the last decades. For some of those
enumeration problems, it is possible to obtain closed mathematical expressions, and
for some other it is possible to obtain an estimation by the use of asymptotic
methods. Some of the methods used in both cases will be covered in this chapter as
well as some application of graph enumeration in different fields. An overview
about the enumeration of trees will be given as an example of combinatorial prob-
lem solved in a closed mathematical form. Similarly, the problem of enumeration of
regular graphs will be discussed as an example of combinatorial enumeration for
which it is hard to obtain a closed mathematical form solution and apply the
asymptotic estimation method used frequently in analytic combinatorics for this
end. An example of application of the enumerative combinatorics for obtaining a
result of applicability criteria of selection nodes in a virus spreading control prob-
lem will be given as well.

Keywords: combinatorial graph enumeration, generating functions, probability

1. Introduction

Enumerating a finite set of objects is one of the most basic tasks that can be done
by any person. Anybody begins to do it at first while learning the basic arithmetic
operations at school. In a very general setting, to enumerate a finite set of things is
to put in bijective relation a finite subset of the natural numbers with the things to
be counted. As simple as it can be at first sight, the enumeration of things can
become a very interesting mathematical activity when we start to count, for
instance, in how many ways can we dispose or can we select the n elements of set in
k places without repeating them, sometimes allowing repetitions of all of them, or
just some of them, etc. That is the starting point of the combinatorics subject.
Combinatorics is the field of discrete mathematics that allows us, among other
things, to calculate in how many ways some objects can be selected or arranged to
comply with any given property.

Within the topic of combinatorial analysis, there is a subfield that is interested in
accurately predicting large structured configurations under the analytical method
approach and that uses the tool known as generating functions. The analytic com-
binatorics is devoted to the study of finite structures whose construction follows a
certain finite number of given rules. On the other hand, the use of generating
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functions is a tool that allows to relate discrete analysis proper to discrete mathe-
matics with continuous analysis.

One of the most beautiful and ingenious applications of combinatorial enumer-
ation is the probabilistic method. The probabilistic method is intimately related to
the important role that randomness plays in the field of theoretical computer sci-
ence. The utility and beauty of the probabilistic method consists of being an indirect
or nonconstructive proof method. This method has been used successfully during
the last 60 years and constitutes one of the most important scientific contributions
of the great Hungarian mathematician Erdös [1, 2]. Commonly, this method has
been used to prove the existence of a certain mathematical object by showing that if
we choose some object of a given class in a random way, the probability that this
mathematical object complies with certain property is greater than zero.

The probabilistic method has been used with great success to obtain important
results in fields as diverse as number theory, combinatorics, graph theory, linear
algebra, computational sciences, or information theory.

One aim of combinatorial analysis is to count the different ways of arranging
objects under given constraints. Sometimes the structures to be counted are finite
and some other times they are infinite. To enumerate is very important in many
scientific fields because it allows to evaluate and compare different solutions to a
given problem. For example, in computer science, if I want to compare different
algorithms that solve a given kind of information processing problem, it is necessary
to enumerate the number of steps taken by each one of them in the worst case and
to choose the one whose performance is the best. The task of enumerating things
can evolve in complexity to some point that the elementary arithmetical operations
are not enough to reach the goal. For that reason many enumeration problems have
inspired the most talented mathematicians for developing very ingenious methods
for solving them. Some of these techniques for solving combinatorics enumeration
problems are going to be exposed in the next section. One very interesting subject of
the discrete mathematics is the graph theory. It is in the graph theory where many
of the most interesting enumerations of graphs arise that have some given structural
property that require the utilization of mathematical tools that facilitate the discov-
ery of closed mathematical forms for the calculation of the number of graphs that
accomplish some topological property. In this context it can be important to enu-
merate how many labeled graphs can be constructed with n vertex or how many
connected graphs with n vertex exist, etc. For some of these problems, clever
methods have been devised for their calculation that lead to closed mathematical
forms by the use of generating functions. For other problems, it is very hard to
obtain a closed mathematical form solution, and in that case some asymptotic
methods have been developed for estimating a bound when the number of vertex is
very large by means of the Cauchy theorem. These mathematical tools are going to
be covered in the following sections of the present chapter.

2. Body of the manuscript

The chapter will have the following structure. In Section 3, we will make a quick
revision of some mathematical tools that are frequently used for solving combina-
torial enumeration problems. The first tool described will be the ordinary generat-
ing functions as well as the exponential generating functions. These tools are used
when a closed form solution for an enumeration problem can be obtained. The
second tool that will be described in this section will be the analytic combinatorics
method that is normally used for those enumeration problems whose closed math-
ematical form are hard to be calculated. The analytic combinatorics techniques
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allow to estimate an upper bound of that kind of enumeration problems. We take
the enumeration of labeled trees as an example of combinatorial enumeration
problem that can be solved in a closed mathematical form and make an overview of
some different methods devised for that end in Section 4. In Section 5, we roughly
describe how the generating functions can be used to solve graph enumeration
problems. In Section 6, we take the problem of enumerating regular graphs as an
example of a problem whose closed mathematical form is hard to obtain and apply
the analytic combinatorics techniques for estimating an upper bound. In Section 7, I
give an application of the combinatorial enumeration for proving the almost sure
applicability of a node selecting criteria for controlling virus spreading in a complex
network. Finally in Section 8, we make some comments about the possible future
applications of the combinatorial enumeration methods.

3. Generating functions and analytic combinatorics overview

In this section of the chapter, we are going to make a revision of the basic
mathematical tools that have been developed and that facilitate the solution of
many combinatorial enumeration problems. We are going to start with some basic
conceptual definitions that can be found in many textbooks about this topic. In
order to be able to clearly expose the mathematical tools used, it will be necessary to
make use of some basic concepts about them that can be consulted more widely in
texts such as [3]. One of these basic notions that can be found in [3] is the concept
of combinatorial class whose definition is as follows:

Definition 1.1 A combinatorial class is a finite or denumerable set in which a size
function is defined, satisfying the following conditions:

i. The size of an element is a nonnegative integer.

ii. The number of elements of any given size is finite.

On the other hand, it is necessary to know if two combinatorial classes are related
in any way which can be determined using the concept of isomorphism and that can
be defined as follows:

Definition 1.2 The combinatorial classesA and B are said to be (combinatorially)
isomorphic which is written A ffi B if and only if their counting sequences are
identical. This condition is equivalent to the existence of a bijection from A to B
that preserves size, and one also says that A and B are bijectively equivalent.

The notion of ordinary generating functions (OGF) as
P∞

i¼0 aix
i where the

coefficients ai are elements of the sequence A ¼ a0; a1;…f g or combinatorial
class A. This function is also the generating function of the numbers An
whose sizes an ¼ card Anð Þ such that the OGF of class A admits the combinatorial
form

A xð Þ ¼
X
α∈A

x∣α∣: (1)

This means that the variable x marks size in the generating function. The OGF
form (1) can be easily interpreted by observing that the term xn occurs as many
times as there are objects in A of size n. A basic operation that can be defined is the
one that allows to extract the coefficient of the term xn in the power series
A xð Þ ¼P anxn as follows:
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xn½ �
X
n≥0

anxn
 !

¼ an: (2)

The concept of generating function can then be defined as:
Definition 1.3 Let be a0, a0,… a succession of real numbers. The function

f xð Þ ¼ a0 þ a1xþ a2x2 þ… ¼
X∞
i¼0

aixi (3)

is the generating function of the given succession.
The idea comes from the development of Newton’s binomial that con be

defined as:
Definition 1.4

1þ xð Þn ¼ n
0

� �
þ n

1

� �
xþ n

2

� �
x2 þ⋯þ n

n

� �
xn (4)

which is the generating function of the succession

n
0

� �
,

n
1

� �
,

n
2

� �
,

n
3

� �
,…,

n
n

� �
,0;0;0,… (5)

We can say, for example, that

Xn
i¼0

xi ¼ 1þ xþ x2 þ x3 þ…þ xn ¼ 1þ xnþ1

1� x
(6)

is the generating function of the succession 1; 1; 1,…, 1;0;0;0,… where the first
nþ 1 terms are equal to 1. The upper limit of the generating function 6 can be
extended to ∞ which is known as geometric series. This series is known to be
convergent if x< 1 and that case can be defined as

X∞
i¼0

xi ¼ 1þ xþ x2 þ x3 þ…þ ¼ 1
1� x

(7)

which is the geometric series of the succession 1; 1; 1,…. One of the nice proper-
ties of the generating functions is that they can be easily manipulated due to the fact
that they are infinite polynomials.

For instance, if we take the first derivative of the generating function 7, we get

d
dx

1
1� x

¼ d
dx

1þ xþ x2 þ x3 þ…
� � ¼ 1þ 2xþ 3x2 þ 4x3 þ… ¼ 1

1� xð Þ2 (8)

then 1
1�xð Þ2 is the generating function of the succession 1; 2; 3; 4,…, while x

1�xð Þ2 is

the generating function of the succession 0; 1; 2; 3; 4,…. Similarly if we take the first
derivative of the generating function x

1�xð Þ2, we get

d
dx

x

1� xð Þ2 ¼
d
dx

0þ xþ 2x2 þ 3x3 þ 4x4 þ…
� � ¼ xþ 1ð Þ

1� xð Þ3 (9)
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then xþ1ð Þ
1�xð Þ3 is the generating function of the succession 12, 22, 32,…, and x xþ1ð Þ

1�xð Þ3

is the generating function of the succession 02, 12, 22, 32,… Other simple
manipulations that can be done with the generating functions allow us to cancel
some element of an associated succession. For example, if g xð Þ ¼ 1

1�xð Þ and

h xð Þ ¼ g xð Þ � x2 ¼ 1
1�xð Þ � x2, then h xð Þ becomes the generating function of the

succession 1; 1;0; 1; 1; 1,…. By the other side, if we know that x xþ1ð Þ
1�xð Þ3 is the generating

function of the succession 02, 12, 22, 32,… and that x
1�xð Þ2 is the generating

function of the succession 0; 1; 2; 3;4,…, then if we add these two generating
functions, we get

x xþ 1ð Þ
1� xð Þ3 þ

x

1� xð Þ2 ¼
2x

1� xð Þ3 (10)

where 2x
1�xð Þ3 becomes the generating function of the succession

0; 2; 6; 12; 20; 30;42,…whose nth element can be expressed as an ¼ n2 þ n. If we use
the coefficient extracting operator defined by 2, we can say that

xn½ � 2x

1� xð Þ3 ¼ n2 þ n (11)

As an example, let us take the sequence 0; 1; 1; 2; 3; 5; 8; 13; 21; 34; 55,… know as
Fibonacci numbers. This succession can be generated by applying the recurrence
relation

Fnþ1 ¼ Fn þ Fn�1 where n≥ 1, F0 ¼ 0, F1 ¼ 1: (12)

The goal is to obtain nth element of the succession of numbers generated by 12
that is the coefficient of xn in the expansion of the function

x
1� x� x2

(13)

as a power series about the origin. The roots of 1� x� x2 are x1 ¼ 1þ ffiffi
5

p
2 and

x2 ¼ 1� ffiffi
5

p
2 . Given that the generating function of the Fibonacci succession is 13, we

have that

f xð Þ ¼ x
1� x� x2

¼ 1ffiffiffi
5

p 1

1� 1þ ffiffi
5

p
2 x

� 1

1� 1� ffiffi
5

p
2 x

" #
(14)

and the nth term of the Fibonacci succession is expressed in closed form as

Fn ¼ 1ffiffiffi
5

p 1� 1þ ffiffiffi
5

p

2

� �n

� 1� 1� ffiffiffi
5

p

2

� �n" #
(15)

The calculation of the n-th term of the Fibonacci sequence by using power series
allows us to obtain a mathematical closed formula. Because of that we can calculate
the n-th term of the Fibonacci sequence in a more efficient way given that the
computer program to do it will consist in the direct application of the closed
mathematical expression obtained, which is much more efficient than using a
computer program based on the application of the Fibonacci recurrence.
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is the generating function of the succession 02, 12, 22, 32,… Other simple
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1�xð Þ and

h xð Þ ¼ g xð Þ � x2 ¼ 1
1�xð Þ � x2, then h xð Þ becomes the generating function of the

succession 1; 1;0; 1; 1; 1,…. By the other side, if we know that x xþ1ð Þ
1�xð Þ3 is the generating

function of the succession 02, 12, 22, 32,… and that x
1�xð Þ2 is the generating

function of the succession 0; 1; 2; 3;4,…, then if we add these two generating
functions, we get

x xþ 1ð Þ
1� xð Þ3 þ

x

1� xð Þ2 ¼
2x

1� xð Þ3 (10)
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1�xð Þ3 becomes the generating function of the succession
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Fibonacci numbers. This succession can be generated by applying the recurrence
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that is the coefficient of xn in the expansion of the function

x
1� x� x2

(13)

as a power series about the origin. The roots of 1� x� x2 are x1 ¼ 1þ ffiffi
5

p
2 and

x2 ¼ 1� ffiffi
5

p
2 . Given that the generating function of the Fibonacci succession is 13, we

have that

f xð Þ ¼ x
1� x� x2

¼ 1ffiffiffi
5

p 1

1� 1þ ffiffi
5

p
2 x

� 1

1� 1� ffiffi
5

p
2 x

" #
(14)

and the nth term of the Fibonacci succession is expressed in closed form as

Fn ¼ 1ffiffiffi
5

p 1� 1þ ffiffiffi
5

p

2

� �n

� 1� 1� ffiffiffi
5

p

2

� �n" #
(15)

The calculation of the n-th term of the Fibonacci sequence by using power series
allows us to obtain a mathematical closed formula. Because of that we can calculate
the n-th term of the Fibonacci sequence in a more efficient way given that the
computer program to do it will consist in the direct application of the closed
mathematical expression obtained, which is much more efficient than using a
computer program based on the application of the Fibonacci recurrence.
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In [4] the problem of the various results that can be obtained using generating
functions is addressed. The authors of [4] say that by using the tool of generating
functions for obtaining the nth element of a succession, sometimes an exact formula
can be obtained easily, and if it is not the case, a good estimation of the nth element
can be obtained. It can happen also that we get a recurrence formula from where a
generating function can be obtained, or it can happen that from the generating
function a new recurrence is obtained giving us a deeper understanding about the
succession. The use of generating functions provides statistical information about
the succession. The authors of [4] also point out that when it is very difficult to
mathematically obtain the n-th term of a given sequence as a closed mathematical
expression, a good option is to use asymptotic methods to obtain an estimate of that
term. For example, the nth prime number is approximately n log n when n is very
big. The authors of [4] also also point out that using generating functions some
properties of a succession such as unimodality or convexity can be proven. Another
advantage of using generating functions is that some identities as, for example,

Xn
j¼0

n
j

� �2

¼ 2n
n

� �
n ¼ 0; 1; 2;…ð Þ, (16)

are easy to obtain. Finally, the authors of [4] pointed out that by using generat-
ing function, the relationship between problems that have similar generating func-
tions can be discovered.

As was mentioned in the last paragraph, sometimes it is hard to obtain mathe-
matically closed formulas when using generating functions, and in that case, a good
alternative is to the use asymptotic formulas. The mathematical tools used for this
purpose are part of the field known as analytic combinatorics, and a good reference
of this topic is [3]. The main objective of analytic combinatorics is to estimate with a
high level of precision the properties of large structured combinatorial configura-
tions by the use of mathematical analysis tools [3].Under this approach, we begin
with an exact enumerative description of the combinatorial structure using the
generating functions. This description is considered as an algebraic object. The next
step is to take the generating function as an analytical object which is a mapping
from the complex plane to itself. The singularities found in such a mapping allow to
obtain the coefficients of the function in its asymptotic form, resulting in an excel-
lent estimate on the count of the sequences. With this purpose, the authors of [3]
classify the analytic combinatorics in the next three topics:

1.Symbolic methods that establish systematically relations of discrete
mathematics constructions and operations on generating functions that encode
counting sequences

2.Complex asymptotics that allow for extracting asymptotic counting
information from the generating functions by the mapping to the complex
plane mentioned above

3.Random structures concerning the probabilistic properties accomplished by
large random structures

A large material concerning the subject of complex asymptotic analysis is
addressed in [5]. A highly recommended text to consult because it covers the appli-
cations of the combinatorial tools enumerative to the analysis of algorithms is [6].
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In this chapter, there will be a particular interest in the application of generating
functions tool for the enumeration of graphs that have some given properties.

Let us start with the definition of a graph. A graph G ¼ V;Eh i is a structure
with a set of vertices V ¼ v1; v2;…; vp

� �
whose size ∣V∣ ¼ p it is called the order

of G and a set of unordered pairs of adjacent vertices, called edges,

E ¼ vi1 ; vj1
� �

; vi2 ; vj2
� �

;…; viq ; vjq
n on o

if G is undirected or a set of ordered pairs of

adjacent vertices E ¼ vi1 ; vj1
� �

; vi2 ; vj2
� �

;…; viq ; vjq
� �n o

, if G is a directed graph,

whose edge set size is ∣E∣ ¼ q, that has no loops and that has no loops multiple edges.
A graph G with p vertices and q edges is called a p; qð Þ graph. In a labeled graph of
order p, each vertex has a label that is an integer from 1 to p. Typical questions such
as how many graphs can be constructed with n vertices, how many trees with n
vertices can be obtained, and how many of these trees are binary can be answered
using the generating functions, and a mathematically closed formula can be
obtained. In the case that a closed mathematical formula is very hard to be obtained,
an accurate asymptotic estimation formula can be a good option.

There are two commonly used generating functions: the first is the ordinary
generating functions (OFG) and the other is the exponential generating functions
(EGF).

An ordinary generating function is a mathematical function defined by the
following expression:

a xð Þ ¼
X∞

k¼0

akxk, (17)

where the coefficients are elements of the succession of numbers a0, a1, a2,….
The ordinary generating functions are used for enumeration problems where the
order of the objects is not important. An exponential generating function is a
mathematical function defined by the following expression:

b xð Þ ¼
X∞

k¼0

bk
xk

k!
, (18)

where the coefficients are elements of the succession of numbers b0, b1, b2,….
The exponential generating function are used for enumeration problems where the
order of the objects matter. Graphs, words, trees, or integer partitions are some of
the kinds of objects with which combinatorics deals. Combinatorics deals with
discrete objects as, for example, graphs, words, trees, and integer partitions.
Counting such objects is one of the most interesting tasks. Enumeration of graphs
that have some structural property is the main purpose of the present chapter.

The great mathematician George Pólya made huge contributions to the field of
graph enumeration graphs. He obtained closed mathematical expressions for the
enumeration of graphs with a given number of vertices and edges for many graph
counting problems using group theory [7]. Pólya’s formulas greatly facilitated the
enumeration of rooted graphs, connected graphs, etc. The enumeration of number
of triangulations of certain plane polygons was one of the first problems of enu-
meration that attracted the attention of the great mathematician Leonhard Euler [8]
in the eighteenth century. Some years later, Kirchhoff in [9] discovered a method
for enumerating spanning trees in a connected graph. After that, Arthur Cayley
obtained a closed mathematical formula that enumerates labeled trees, rooted trees,
and ordinary trees in [10]. The Cayley discovery will be covered with more detail in
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Section 4. The brilliant and unknown mathematician John Howard Redfield [11]
discovered many enumeration formulas anticipating some of Pólya’s contributions.

Some enumeration problems of objects that are not graphs (automata, Boolean
functions, or chemical isomers) can be solved by cleverly transforming them to
graphs. The generating functions are the tool used for enumerating graphs. There
are two types of graphs associated with combinatorial graph enumeration problems:

1.Labeled graph problems

2.Unlabeled graph problems

Some enumeration problems of labeled graphs are normally addressed by
applying the exponential generating functions tool. The enumeration problems of
unlabeled graphs are normally addressed by applying the ordinary generating func-
tions but require the application of Pólya’s theorem.

One of the first problems of enumerating labeled graphs that may arise is that of
how many graphs with p vertices and q edges can be obtained.

To solve this enumeration problem, let Gp xð Þ be the polynomial or ordinary
generating function whose coefficient of the term xk represents the number of
labeled graphs with p vertices and k edges. If V is the set of vertices of cardinality p,

there are q ¼ p
2

� �
pairs of these vertices. In every vertex set V, each pair is

adjacent or not adjacent. The number of labeled graphs with k edges is therefore

q
k

� �
¼

p

2

 !

k

0
B@

1
CA. Thus, the ordinary generating function Gp xð Þ for labeled graphs

with p vertices is given by

Gp xð Þ ¼
Xm

k¼0

m
k

� �
xk ¼ 1þ xð Þm, (19)

wherem ¼ p
2

� �
. Then, the number of labeled graphs with p vertices is Gp 1ð Þ; so

we have:

Gp ¼ 2m ¼ 2

p
2

� �

: (20)

For example, if we want to know how many labeled graphs with p ¼ 3 vertices
can be obtained, we apply Formula (20), and we get:

G3 ¼ 2

3

2

� �

¼ 2
3!
2!1! ¼ 23 ¼ 8: (21)

If we want to know how many labeled graphs with p ¼ 4 vertices and exactly
q ¼ 5 edges exist, before expression (19), we use the coefficient of the term x5

x5
� �

Gp xð Þ ¼ x5
� �X6

k¼0

6

k

� �
xk ¼ 6

5

� �
¼ 6!

5!1!
¼ 6: (22)
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A question that arises naturally when working with labeled graphs is in how
many ways can this be constructed from a certain number of vertices and edges. In
order to give a possible answer, the number of symmetries or automorphisms must
be taken into account. It is said that there is isomorphism between two graphs G and
G1 if there is a one-to-one map A : V Gð Þ↦V G1ð Þ between them that preserve
adjacency. When G1 ¼ G, then the mapping A is called automorphism of G. The set
of all the automorphisms of G, represented by Γ Gð Þ, is called the group of G. The
elements of Γ Gð Þ are permutations over V. Let s Gð Þ ¼ ∣Γ Gð Þ∣ be the order of the
group or number of symmetries of G. Therefore, the number of ways in which a
graph G of order p can be labeled is

l Gð Þ ¼ p!
s Gð Þ : (23)

Another example of graph enumeration problem is to count the number of
differently labeled connected graphs. The notion of path of length n is defined as a
sequence of vertices v0; v1;…; vnf g where the edges vi; viþ1f g for i ¼ 0,…n that
belong to the path are distinct. It is said that a graph is connected if for any pair of
vertices there is a path between them. To obtain the formula that counts all the
connected graphs Cp of order p, it will be necessary to make use of the concept of
subgraph. It is said that a H is a subgraph of a graph G if V Hð Þ⊂V Gð Þ and
E Hð Þ⊂E Gð Þ. A subgraph that is maximally connected is called component. A rooted
graph is a graph that has a distinguished vertex called root. When there exists an
injective mapping f : V H1ð Þ↦V H2ð Þ between two rooted graphs H1 and H2 that
preserves the adjacency among vertices as well as the roots, it is said that the two
rooted graphs are isomorphic. Let us make the assumption that ak for k ¼ 1; 2; 3,…
represents the number of ways in which we can label all graphs of order that
accomplish the property P að Þ and whose exponential generating function is

a xð Þ ¼
X∞

k¼1

akxk

k!
: (24)

Let us also assume that bk for k ¼ 1; 2; 3,… is the number of ways of labeling all
graphs of order that accomplish the property P bð Þ and whose exponential generat-
ing function is

b xð Þ ¼
X∞

k¼1

bkxk

k!
: (25)

If we make the product of series (24) and (25), the coefficients of xk
k! in a xð Þb xð Þ

is the number of ordered pairs G1;G2ð Þ of two disjoint graphs, where G1 meets the
property P að Þ, G2 fulfills the property P bð Þ, k is the number of vertices in G1 ∪G2,
and the labels from 1 to k have been distributed over G1 ∪G2. If C xð Þ is the expo-
nential generating function for labeled connected graphs

C xð Þ ¼
X∞

k¼1

Ckxk

k!
, (26)

then C xð ÞC xð Þ becomes the generating function that counts all the ordered pairs of
connected graphswith labels. If you divide by 2, equation (26) that is, we divide it by 2,
we get the generating function for labeled graphs that have exactly two components.
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By applying this operation n times, the coefficient of xk
k! that corresponds to the

number of labeled graphs of order k is obtained with exact n components

G xð Þ ¼
X∞
n¼1

Cn xð Þ
n!

: (27)

From (27), we obtain the following relation

1þ G xð Þ ¼ eC xð Þ: (28)

Riordan in [12] obtained the relation Cp ¼ Jp 2ð Þ, where Jp xð Þ enumerates the
trees by inversions, and then deduced

Cp ¼
Xp�1

k¼1

p� 2

k� 1

� �
2k � 1
� �

CkCp�k: (29)

From (29), it should be noted that if the exponential generating function for the
graph class is known in advance, then the exponential generating function for the
class of graphs will be the logarithm of the first series, just as in (28). It should also
be mentioned that another equivalent recurrence function can be obtained for the
enumeration of the connected graphs that have order tags p (p. 7 in [13]) and that
can be expressed mathematically as

Cp ¼ 2

p
2

� �

� 1
p

Xp�1

k¼1

k
p
k

� �
2

p� k
2

� �

Ck: (30)

From (30), the following MATLAB code can be implemented for calculating the
number of connected graphs Cp of orders going from p ¼ 1 to p ¼ 20.

function y = CuentaGrafConnEtiq( p )
% recurrence satisfied by the number of connected graphs
% Harary Graph Enumeration pag. 7
% C_p= 2ˆ{combinations(p,2)}-1/p* \sum_{k=1}ˆ{p-1} k*
% combinations(p,k)*2ˆ{combinations(p-k,2)}*C_{k}

C(1:p)=0;
C(1,1)=1;

for k=2:p
acum=0;
for j=1:k
acum = acum + j * combinaciones(k,j) * CuentaGrafEtiq(k-j) * C(1,j);

end
C(1,k) = CuentaGrafEtiq(k)-(1/k)*acum;

end
y=C(1,p);
sprintf(‘end function z=combinaciones(n,k) z= factorial(n)/(factorial(k)
*factorial(n-k));
end

function z=combinaciones(n,k)
z= factorial(n)/(factorial(k)*factorial(n-k));
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end

%% calling the function from the matlab prompt for the calculation of the
%% evaluation from graphs of order 1 to 20

>> for i=1:20
R(1,i)=CuentaGrafConnEtiq( i );

end

The calculations obtained by the execution of MATLAB code are shown in
Table 1.

From the results of 1, it can be observed that the number of possible connected
graphs Cp grows very fast in terms of the number p of vertices. It should be
mentioned that (29) and (30) are recurrence relations instead of a closed formula.
The recurrences (29) or (30) can be used for the calculation of Cp with a computer
program. The generating functions can be used to solve recurrences and obtain a
closed mathematical expression for the nth term of the succession associated with
the recurrence. It can happen that calculation of the solution of some recurrences
becomes very hard to be solved and in the worst cannot be solved at all. An
alternative method for obtaining an approximate value for big values of p is to recur
to the application of methods used in analytic combinatorics and calculate accurate
approximations of the pth coefficient of the generating function. The generating
functions algebraic structure allows to reflect the structure of combinatorial classes.

p Cp

1 1

2 1

3 4

4 38

5 728

6 26,704

7 1,866,256

8 251,548,592

9 66,296,291,072

10 34,496,488,594,816

11 35,641,657,548,953,344

12 7:335460� 1019

13 3:012722� 1023

14 2:471649� 1027

15 4:052768� 1031

16 1:328579� 1036

17 8:708969� 1040

18 1:41641� 1046

19 2:992930� 1051

20 1:569216� 1057

Table 1.
Order 1–20.
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By applying this operation n times, the coefficient of xk
k! that corresponds to the

number of labeled graphs of order k is obtained with exact n components
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X∞
n¼1

Cn xð Þ
n!

: (27)
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Riordan in [12] obtained the relation Cp ¼ Jp 2ð Þ, where Jp xð Þ enumerates the
trees by inversions, and then deduced
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Xp�1

k¼1

p� 2

k� 1

� �
2k � 1
� �

CkCp�k: (29)

From (29), it should be noted that if the exponential generating function for the
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p
2

� �

� 1
p

Xp�1
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k
p
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� �
2

p� k
2

� �

Ck: (30)

From (30), the following MATLAB code can be implemented for calculating the
number of connected graphs Cp of orders going from p ¼ 1 to p ¼ 20.

function y = CuentaGrafConnEtiq( p )
% recurrence satisfied by the number of connected graphs
% Harary Graph Enumeration pag. 7
% C_p= 2ˆ{combinations(p,2)}-1/p* \sum_{k=1}ˆ{p-1} k*
% combinations(p,k)*2ˆ{combinations(p-k,2)}*C_{k}
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C(1,1)=1;

for k=2:p
acum=0;
for j=1:k
acum = acum + j * combinaciones(k,j) * CuentaGrafEtiq(k-j) * C(1,j);
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C(1,k) = CuentaGrafEtiq(k)-(1/k)*acum;

end
y=C(1,p);
sprintf(‘end function z=combinaciones(n,k) z= factorial(n)/(factorial(k)
*factorial(n-k));
end

function z=combinaciones(n,k)
z= factorial(n)/(factorial(k)*factorial(n-k));
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end

%% calling the function from the matlab prompt for the calculation of the
%% evaluation from graphs of order 1 to 20

>> for i=1:20
R(1,i)=CuentaGrafConnEtiq( i );

end

The calculations obtained by the execution of MATLAB code are shown in
Table 1.

From the results of 1, it can be observed that the number of possible connected
graphs Cp grows very fast in terms of the number p of vertices. It should be
mentioned that (29) and (30) are recurrence relations instead of a closed formula.
The recurrences (29) or (30) can be used for the calculation of Cp with a computer
program. The generating functions can be used to solve recurrences and obtain a
closed mathematical expression for the nth term of the succession associated with
the recurrence. It can happen that calculation of the solution of some recurrences
becomes very hard to be solved and in the worst cannot be solved at all. An
alternative method for obtaining an approximate value for big values of p is to recur
to the application of methods used in analytic combinatorics and calculate accurate
approximations of the pth coefficient of the generating function. The generating
functions algebraic structure allows to reflect the structure of combinatorial classes.
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The analytic combinatorics method consists in examining the generating functions
from the point of view of the mathematical analysis by giving not only real value
values to its variables but also values in the complex plane. When complex values
are assigned to the variables of the generating functions, the function is converted
in a geometric transformation of the complex plane. This kind of geometrical
mapping is said to be regular (holomorphic) near the origin of the complex plane.
When we move away from the origin of the complex plane, some singularities
appear that are related with the absence of smoothness of the function and give a lot
of information about the function coefficients and their asymptotic growth. It can
happen that elementary real analysis is enough for estimating asymptotically enu-
merative successions. If this is not the case, the generating functions are still
explicit, but its form does not allow the easy calculation of the coefficients of the
series. The complex plane analysis however is a good option for asymptotic estima-
tion of these coefficients. In order to give an example of the use of the notion of
singularities, let us take the ordinary generating function of the Catalan numbers

f xð Þ ¼ 1
2

1�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� 4x

p� �
: (31)

Eq. (31) expresses in a compact way the power series of the form

1� yð Þ1=2 ¼ 1� 1
2
y� 1

8
y2 �…: (32)

The generating function (31) coefficients can be explicitly expressed as

f n ¼ xn½ � f xð Þ ¼ 1
n

2n� 2

n� 1

� �
: (33)

Using the Stirling formula, we can get the asymptotic approximation of (33) that
is expressed as

f n � lim
n!∞

4n
ffiffiffiffiffiffiffiffi
πn3

p : (34)

If the generating function is used as an analytic object, the approximation (34)
can be obtained.

In order to do it, we substitute in the power series expansion of the generating
function f(x) any real or complex value ρf whose modulus is small enough, for
example, ρf ¼ 4. The graph that we get by the use of (31) is smooth and differen-
tiable in the real plane and tends to the limit 1

2 as x ! 1
4

� ��, but, if we calculate its
derivative, we obtain the following function

f xð Þ ¼ 1
1� ffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1� 4x
p , (35)

and it can be noticed that the derivative (35) becomes infinite in ρf ¼ 1
4. The

singularities will correspond to those points where the graph is not smooth.
It should be pointed out that that the region where function (31) is still being

continuous can be extended. Let us take for example the value x ¼ �1

f �1ð Þ ¼ 1
2

1�
ffiffiffi
5

p� �
: (36)
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We can evaluate in the same manner (31) giving to x values in the complex plane
whose modulus is less than the radius of convergence of the series defined by (31)
and realize that the orthogonal and regular grid in it transforms the real plane in a
grid on the complex plane that preserves the angles of the curves of the grid. This
property corresponds to the complex differentiability property, which also is
equivalent to the property of analyticity. Concerning the asymptotic behavior of the
coefficients fn of the generating function, it should be observed that it has a general
asymptotic pattern composed by an exponential growth factor An and a
subexponential factor θ nð Þ.

For the case of the expression (34) A ¼ 4 and θ nð Þ � 1
4

ffiffiffiffiffiffiffiffi
πn3

p� ��1
, the exponen-

tial growth factor can be put in relation with the radius of convergence of the series
by A ¼ 1

ρf
that is the singularity that can be observed along the positive real axis of

the complex plane that normally corresponds to the pole of the generating function,

and the subexponential part θ nð Þ ¼ O n�
3
2

� �
arises from the singularity of the square

root type. This asymptotic behavior can be compactly expressed as

xn½ � f xð Þ ¼ Anθ nð Þ: (37)

The exponential growth part of (37) is known as first principle of coefficient
asymptotics and the subexponential growth part as second principle of coefficient
asymptotics. By recalling to the results that can be found in the field complex
variable theory, more general generating functions can be obtained. One of those
results is the Cauchy residue theorem that relates global properties of a meromor-
phic function (its integral along closed curves) to purely local characteristics at the
residues poles. An important application of the Cauchy residue theorem concerns a
coefficient of analytic functions. This is stated in the following theorem [3]:

Theorem 1.5 (Cauchy’s coefficient formula). Let f zð Þ be analytic in a region
containing 0, and let λ be a simple loop around 0 that is positively oriented. Then,
the coefficient zn½ � f zð Þ admits the integral representation:

f n � zn½ � f zð Þ ¼ 1
2iπ

ð

λ
f zð Þ dz

znþ1 : (38)

For more details about analytic combinatorics, we recommend to consult [3] as
well as [5].

4. Enumeration of trees

A graph is a structure composed by a set of vertices V ¼ v1; v1;…vnf g and a set of
pairs of connected vertices E ¼ e1; e2;…; emf g called edges where E⊂V � V and
each edge ek ∈E is composed as pair of vertices ek ¼ vi; vj

� �
. A tree is a special type

of graph that do not have cycles. A tree have no loops or edges that connect a vertex
with himself. The subject of combinatorial graph enumeration has been the center
of interest of many mathematicians a long time ago. The enumeration of total
possible labeled trees with n nodes being nn�2 was one of first results obtained by
Cayley in [10]. Cayley’s formula for enumerating trees is one of the simple and
elegant mathematical results in enumeration of graphs. He detected that from nþ 1
vertices, the number of possible trees that can be built is equal to nþ 1ð Þn�1. Cayley
[10] gives an example for the case of four vertices 4 ¼ nþ 1 then n ¼ 3, and the
total number of possible trees calculated using his formula gives 4ð Þ2 ¼ 16. In this
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We can evaluate in the same manner (31) giving to x values in the complex plane
whose modulus is less than the radius of convergence of the series defined by (31)
and realize that the orthogonal and regular grid in it transforms the real plane in a
grid on the complex plane that preserves the angles of the curves of the grid. This
property corresponds to the complex differentiability property, which also is
equivalent to the property of analyticity. Concerning the asymptotic behavior of the
coefficients fn of the generating function, it should be observed that it has a general
asymptotic pattern composed by an exponential growth factor An and a
subexponential factor θ nð Þ.

For the case of the expression (34) A ¼ 4 and θ nð Þ � 1
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asymptotics. By recalling to the results that can be found in the field complex
variable theory, more general generating functions can be obtained. One of those
results is the Cauchy residue theorem that relates global properties of a meromor-
phic function (its integral along closed curves) to purely local characteristics at the
residues poles. An important application of the Cauchy residue theorem concerns a
coefficient of analytic functions. This is stated in the following theorem [3]:

Theorem 1.5 (Cauchy’s coefficient formula). Let f zð Þ be analytic in a region
containing 0, and let λ be a simple loop around 0 that is positively oriented. Then,
the coefficient zn½ � f zð Þ admits the integral representation:
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For more details about analytic combinatorics, we recommend to consult [3] as
well as [5].
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A graph is a structure composed by a set of vertices V ¼ v1; v1;…vnf g and a set of
pairs of connected vertices E ¼ e1; e2;…; emf g called edges where E⊂V � V and
each edge ek ∈E is composed as pair of vertices ek ¼ vi; vj
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. A tree is a special type

of graph that do not have cycles. A tree have no loops or edges that connect a vertex
with himself. The subject of combinatorial graph enumeration has been the center
of interest of many mathematicians a long time ago. The enumeration of total
possible labeled trees with n nodes being nn�2 was one of first results obtained by
Cayley in [10]. Cayley’s formula for enumerating trees is one of the simple and
elegant mathematical results in enumeration of graphs. He detected that from nþ 1
vertices, the number of possible trees that can be built is equal to nþ 1ð Þn�1. Cayley
[10] gives an example for the case of four vertices 4 ¼ nþ 1 then n ¼ 3, and the
total number of possible trees calculated using his formula gives 4ð Þ2 ¼ 16. In this
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same publication, Cayley gives another example having nþ 1 ¼ 6 vertices (he used
the term knots in his publication) with labels a, b, c, d, e, f and related the concate-
nation of vertices given by the edges for obtaining sequences of labels representing
a given tree. For instance, if the tree is a chain of vertices connected by edges
starting with the vertex a and ending with the vertex f and having as connecting
edges a; bð Þ, b; cð Þ, c; dð Þ, d; eð Þ, e; fð Þ, the corresponding label sequence is abcdef as
shown in Figure 1. As another example of sequence of vertex labels, if the root of
the tree is α and it is connected directly with the other five vertices, then the
connecting edges will be a; bð Þ, a; cð Þ, a; dð Þ, a; eð Þ, a; fð Þ, and the corresponding
sequence of vertex labels will be in that case a5bcdef as shown in Figure 2. As can be
noticed, the exponent of a is 5 that represents the number of occurrences of this
label in the set of connecting edges.

After that Cayley states the theorem for this particular case as follows:
Theorem 1.6 The total number of trees T nþ 1ð Þ that can be built with nþ 1 ¼ 6

vertices can be calculated as follows

T nþ 1ð Þ ¼ aþ bþ cþ dþ eþ fð Þ4abcdef ¼ 64 ¼ 1296 (39)

This calculation relates the sum of the products of the coefficients of the multi-
nomial aþ bþ cþ dþ eþ fð Þ4 with the number of terms of its corresponding type.
Each term obtained by multiplying abcdef with the vertex label inside
aþ bþ cþ dþ eþ fð Þ4 corresponds to different trees.

At the end of [10], Cayley generalizes his theorem by recalling a result obtained
by C.W. Borchardt in [14] that relates some particular kind of determinants that
represent spanning trees and whose product represents the branches of those span-
ning trees. Given that the number of terms of these determinants is nþ 1ð Þn�1,
Cayley can conclude that the number of spanning trees is the same. Since these first
results, many other methods have been proposed for obtaining the same result. One
way to enumerate a collection of objects is to find a bijection between a set of
objects whose enumeration is known and the set of objects that we want to
enumerate. This was the method used by Prüfer in [15] for enumerating the set of
possible spanning trees with n vertices. The set whose number was known before-
hand was a sequence of length n� 2 of numbers from 1 to n. For this end the autor
of article [15] encoded the trees as Prüfer sequences. In [16] Moon generalized the
result derived by Clarke in [17] by induction on d the degree, making induction on
n, and the number of vertices and obtains a new enumeration method for n-labeled
k trees.

Figure 1.
Example of tree of one branch.

Figure 2.
Example of tree with more branches.
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5. Enumeration and generating functions

The field of combinatorial enumeration has aroused enormous interest among
mathematicians who have worked in the area of discrete mathematics during
the last decades [18–21]. Combinatorial enumerative technique developed by
these brilliant researchers have allowed us to count words, permutations,
partitions, sequences, and graphs. As was mentioned in Section 3, the mathematical
tool frequently used for this purpose is the generating functions or formal power
series.

The generating functions allow to connect discrete mathematics and continuous
analysis in a very special way with complex variable theory. The typical situation
that someone faces when trying to solve an enumeration problem is that you want
to know the mathematically closed form that has the nth term of a given sequence
of numbers a0, a1, a2,… For some sequences, we can do by inspection. For example,
if the numerical sequence 1; 3; 5; 7; 9,…, it is easy to see that it is a sequence of odd
numbers whose nth element is an ¼ 2n� 1.

A more complicated sequence is the set of prime numbers 2; 3; 5; 7; 11; 13; 17; 19,…,
whose an is the nth prime number. A closed mathematical formula for nth prime
number is not known, and it seems impossible to obtain in general.

In many cases it is very hard to get a simple formula just by inspection. However
it can be very useful to use the generating functions whose coefficients are the
elements of that sequence transforming it as follows:

X∞
i¼0

aixi: (40)

Eq. (40) defines an ordinary generating function. As mentioned in Section 3,
since they are infinite polynomials, they can be algebraically manipulated easily.

In this chapter, the main interest will be the application of the generating
functions tool as well as the analytic asymptotic methods for the enumeration of
graphs accomplishing some given properties. Many questions about the number of
graphs that have some specified property can be answered by the use of generating
functions. Some typical questions about the number of graphs that fulfill a given
property are, for example: How many different graphs can I build with n vertices?
Howmany different connected graphs with n vertices exist? Howmany binary trees
can be constructed with n vertices? [18, 19], etc. For some of these questions, the
application of generating functions allows us to easily obtain a simple formula. For
some other questions, the answer is an asymptotic estimation formula. The most
commonly used generating functions are the ordinary generating functions and the
exponential generating functions. The generating functions are the tool used for
enumerating graphs. From the point of view of the generating functions, there are
two types of graph enumerating problems:

1.Labeled graph problems

2.Unlabeled graph problems

The labeled graph problems can be easily solved with the direct application of
the exponential generating functions. The case of the unlabeled enumeration prob-
lems can be solved by using ordinary generating functions but require the use of
more combinatorial theory and the application of Pólya’s theorem.
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5. Enumeration and generating functions
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that someone faces when trying to solve an enumeration problem is that you want
to know the mathematically closed form that has the nth term of a given sequence
of numbers a0, a1, a2,… For some sequences, we can do by inspection. For example,
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commonly used generating functions are the ordinary generating functions and the
exponential generating functions. The generating functions are the tool used for
enumerating graphs. From the point of view of the generating functions, there are
two types of graph enumerating problems:

1.Labeled graph problems

2.Unlabeled graph problems

The labeled graph problems can be easily solved with the direct application of
the exponential generating functions. The case of the unlabeled enumeration prob-
lems can be solved by using ordinary generating functions but require the use of
more combinatorial theory and the application of Pólya’s theorem.
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6. Enumerating regular graphs

As we mentioned in Section 6, some enumerating problems can be solved easily
using generating tools for obtaining a closed formula. Some other problems are
more hard to deal with for obtaining a closed mathematical expression, but we can
resort in such a case to the asymptotic approximation of the coefficients of the
power series [22–25]. It was also mentioned in Section 6 that there are some graph
enumerating problems where the nodes are labeled, and in such a case the use of the
exponential generating functions is well adapted for these kinds of problems. The
other case of graph enumerating problems is when we are dealing with graphs
whose nodes do not have an assigned label. Then, we can resort in such case to
Pólya’s enumerating method [7, 13], and the best choice is to use ordinary generating
functions. It should also be mentioned that the edges of the graphs to be enumerated
can be directed or undirected.

One of the seminal articles of enumerating graphs is [26], where a fundamental
theorem was proven in the theory of random graphs on n unlabeled nodes and with
a given number q of edges.

In [26], the authors obtained a necessary and sufficient condition for relating
asymptotically the number of unlabeled graphs with n nodes and q edges with the
number of labeled graphs with n nodes and q edges. Let Tnq be the number of
different graphs with n nodes and q edges, Fnq the corresponding to number of

labeled graphs, N ¼ n n�1ð Þ
2 the possible edges, and Fnq ¼

N
q

� �
¼ N!

q! N�qð Þ!. The result

obtained in [26] can be stated as the following theorem:
Theorem 1.7 The necessary and sufficient conditions that

Tnq �
Fnq

n!
(41)

as n ! ∞ is that

min q;N � qð Þ=n� log n=2ð Þ ! ∞: (42)

The formal result expressed in Theorem 1.7 for unlabeled graphs is a starting
point on the enumeration of regular graphs because it allows for enumerating those
unlabeled graphs that have some number of edges. In fact, the author of [26] proved
that if a graph with ∣E∣ ¼ E nð Þ edges, where n is the number of vertices or order of
such a graph, has no isolated vertices or two vertices of degree n � 1, then the
number of unlabeled graphs of order n and number of edges ∣E∣ divided by the
number unlabeled graphs is asymptotic to n!.

Another interesting article on asymptotic enumeration of labeled graphs having
a given degree sequence was [27]. The authors of [27] obtained their asymptotic
result for n� n symmetric matrices subject to the following constraints:

i. Each row sum is specified and bounded.

ii. The entries are bounded.

iii. A specified sparse set of entries must be zero.

The authors of [27] mentioned that their results can be interpreted in terms of
incidence matrices for labeled graphs. The results of [27] can be stated as follows.
LetM n; zð Þ be the set of all n� n symmetric 0; 1ð Þmatrices with at most z zeroes in
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each row, r a vector over d½ � ¼ 0; 1;…df g, and G M; r; tð Þ the number of n� n

symmetric matrices gij
� �

over t½ � ¼ 0; 1;…tf g such that

i. gij ¼ 0 if mij ¼ 0.

ii.
P

jgij ¼ ri.

Theorem 1.8 For given d, t and z,

G M; r; tð Þ � T f ; δð Þeεa�b
Q

ri!
: (43)

Uniformly, for M; rð Þ∈ ∪∞
n¼1 M n; zð Þ � 0; d½ �nð Þ as f ! ∞, where

f ¼Piri, ε ¼ �1 if t ¼ 1 andþ 1 if t>1, for

a ¼
P

i

ri
2

� �

f

0
BB@

1
CCA

2

þ
P

mij

ri
2

� �

f

0
BB@

1
CCA, b ¼ P

mij¼0, i< jrirj þ
P

i

ri
2

� �

f

0
BB@

1
CCA, δ ¼Pmij¼0ri

and T f ; δð Þ being the number of involutions on [1, f] such that no element in some
specified set of size δ is fixed.

Three years later, the article [28] appeared giving a different approach of [27]
allowing for obtaining a more general asymptotic formula without reference to an
exact formula. The asymptotic result obtained by Bela Bollobás in [28] for enumer-
ating labeled regular graphs is proven by a probabilistic method. This result can be
stated as follows. Let Δ and n be natural numbers such that Δn ¼ 2m is even and

Δ≤ 2 log nð Þ12, where n is the number of vertices and m is the number of edges of the
graph G. Then, as n ! ∞, the number of labeled Δ-regular graphs on n vertices is
asymptotic to

e�λ�λ2 2mð Þ!
m!2m Δ!ð Þm , (44)

where λ ¼ Δ�1ð Þ
2 .

The authors of [27] affirm that the asymptotic Formula (44) holds not only for Δ
constant but also for Δ growing slowly as n ! ∞ and summarized this in the
following theorem.

Theorem 1.9 Let d1 ≥ d2 ≥…dn be natural numbers with
Pn

i¼1 di ¼ 2m even.

Suppose Δ ¼ d1 ≤ 2 log nð Þ12 � 1 andm≥max εΔn; 1þ εð Þnf g for some ε>0. Then, the
number L dð Þ of labeled graphs with degree sequence d ¼ dið Þn1 satisfies

L dð Þ � e�λ�λ2 2mð Þm
2m
Qn

i¼1 di!
� � , (45)

where λ ¼ 1
2m

Pn
i¼1

di
2

� �
:

In the next year, the author on [27] extended this result to the case of unlabeled
graphs in [29]. The result of Theorem 1.9 extended for the case of unlabeled graphs
can be summarized in the following theorem.

Theorem 1.10 If Δ≥ 3 and LΔ ¼ e�λ�λ2 2mð Þ!
m!2m Δ!ð Þm, then
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and T f ; δð Þ being the number of involutions on [1, f] such that no element in some
specified set of size δ is fixed.

Three years later, the article [28] appeared giving a different approach of [27]
allowing for obtaining a more general asymptotic formula without reference to an
exact formula. The asymptotic result obtained by Bela Bollobás in [28] for enumer-
ating labeled regular graphs is proven by a probabilistic method. This result can be
stated as follows. Let Δ and n be natural numbers such that Δn ¼ 2m is even and

Δ≤ 2 log nð Þ12, where n is the number of vertices and m is the number of edges of the
graph G. Then, as n ! ∞, the number of labeled Δ-regular graphs on n vertices is
asymptotic to

e�λ�λ2 2mð Þ!
m!2m Δ!ð Þm , (44)

where λ ¼ Δ�1ð Þ
2 .

The authors of [27] affirm that the asymptotic Formula (44) holds not only for Δ
constant but also for Δ growing slowly as n ! ∞ and summarized this in the
following theorem.

Theorem 1.9 Let d1 ≥ d2 ≥…dn be natural numbers with
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i¼1 di ¼ 2m even.

Suppose Δ ¼ d1 ≤ 2 log nð Þ12 � 1 andm≥max εΔn; 1þ εð Þnf g for some ε>0. Then, the
number L dð Þ of labeled graphs with degree sequence d ¼ dið Þn1 satisfies
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In the next year, the author on [27] extended this result to the case of unlabeled
graphs in [29]. The result of Theorem 1.9 extended for the case of unlabeled graphs
can be summarized in the following theorem.

Theorem 1.10 If Δ≥ 3 and LΔ ¼ e�λ�λ2 2mð Þ!
m!2m Δ!ð Þm, then

237

Combinatorial Enumeration of Graphs
DOI: http://dx.doi.org/10.5772/intechopen.88805



UΔ � LΔ

n!
� e�

Δ2�1ð Þ
4

2mð Þ!
2mm!

Δ!ð Þ�n

n!
, (46)

where m ¼ Δn
2 .

For the details of the proof of Theorems 1. 9 and 1.10, see [28, 29], respectively.

7. Example of proof of a result on control using combinatorial
enumeration

In [30] I used the combinatorial enumeration methods and probability for
showing the applicability of the selection node criteria in a virus spreading control
problem in complex networks. The main purpose of this section is to illustrate how
the enumerative combinatorics in combination with probability theory can be used
for demonstrating mathematically a result in an application field. We can mention
that the case of homogeneity in the behavior of the nodes and their interaction
cannot be discarded given what has been observed in the reaction of the agents in
the context of social networks is that they try to minimize the conflict. Many
successful models can, for example [30–33], base their predicting effectiveness on
the homogeneity of the behavior of the nodes and their interaction. By the other
side, in [30] we have obtained a criteria for selecting the nodes to be controlled, but
such criteria fail if we have homogeneity in the behavior of the nodes and, at the
same time, the topology of the network is regular. Then, what we want to do here is
to justify the applicability of node selection criteria, keeping the homogeneity of the
nodes and trying to compare the number of regular graphs with n vertices with the
total of graphs that can be constructed with n vertices. For this end, based on the
results on combinatorial graph enumeration mentioned on Theorems 1.9 and 1.10,
we can state our main result as follows. First of all, we suppose that our graph is
labeled, G ¼ V;Eð Þ is r-regular with r≥ 3 constant and rn ¼ 2m, where n ¼ ∣V∣
corresponds to the number of vertices and m ¼ ∣E∣ corresponds to the number of
edges. Let Lr the number of labeled regular graphs of degree r whose asymptotic
value is [28]

Lr � e�
r2�1
4

2mð Þ!
2mm!

r!ð Þn: (47)

Let Gn be the number of all possible graphs with n vertices whose value is

Gn ¼ 2
n
2

� �

: (48)

Theorem 1.11 If r≥ 3 and nr ¼ 2m, then

lim
n!∞

Lr

Gn
¼ 0: (49)

Proof of Theorem 1.11. If nr ¼ 2m and r is constant of value c1, then we can
deduce that m ¼ r

2 n ¼ c1
2 n, and this implies that m ¼ O nð Þ so let us say that m ¼ c2n;

then,

lim
n!∞

Lr

Gn
¼ lim

n!∞

e�
c2
1
�1

4
2c2nð Þ! c1!ð Þ�n

2c2n c2nð Þ!

2
n
2

� � (50)
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¼ lim
n!∞

e�
c2
1
�1

4

c1!ð Þn
2c2nð Þ!

2c2n c2nð Þ!

2
n n�1ð Þ

2

, (51)

applying the approximation Stirling formula n! � ffiffiffiffiffiffiffiffi
2πn

p
n
e

� �n

c1!ð Þn ¼
ffiffiffiffiffiffiffiffiffi
2πc1

p c1
e

� �c1� �n
(52)

then

¼ lim
n!∞

e�
c2
1
�1

4ffiffiffiffiffiffiffi
2πc1

p c1
eð Þc1ð Þn

2c2nð Þ!
2c2n c2nð Þ!

2
n n�1ð Þ

2

(53)

simplifying

¼ lim
n!∞

1
ffiffiffiffiffiffiffi
2πc1

pð Þn c1ð Þc1ne
c2
1
þ4c1nþ1

4

2c2nð Þ!
2c2n c2nð Þ!

2
n n�1ð Þ

2

(54)

applying the approximation Stirling formula

2c2nð Þ! ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2π 2c2nð Þ

p 2c2nð Þ
e

� � 2c2nð Þ
(55)

and

c2nð Þ! ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2π c2nð Þ

p c2nð Þ
e

� � c2nð Þ
(56)

we get

¼ lim
n!∞

1
ffiffiffiffiffiffiffi
2πc1

pð Þn c1ð Þc1ne
c2
1
þ4c1nþ1

4

ffiffiffiffiffiffiffiffiffiffiffiffiffi
2π 2c2nð Þ

p 2c2nð Þ
e

� � 2c2nð Þ

2c2n
ffiffiffiffiffiffiffiffiffiffiffi
2π c2nð Þ

p c2nð Þ
e

� � c2nð Þ

2
n n�1ð Þ

2

, (57)

simplifying

¼ lim
n!∞

ffiffi
2

p
ffiffiffiffiffiffiffi
2πc1

pð Þncc1n1 e
c2
1
þ4c1nþ1ð Þ=4

c2n
e

� �c2n

2
n n�1ð Þ

2

(58)

given that r≥ 3, for which we assumed that r is a constant c1, and that nr ¼ 2m,
then we have that c1 ¼ 2c2, and replacing that, in (58), we can express it in terms of
c1, which is the regular degree r assumed as fixed; then, we get

lim
n!∞

ffiffi
2

p
ffiffiffiffiffiffiffi
2πc1

pð Þncc1n1 e
c2
1
þ4c1nþ1ð Þ=4

c1n=2
e

� �c1n=2

2
n n�1ð Þ

2

, (59)

239

Combinatorial Enumeration of Graphs
DOI: http://dx.doi.org/10.5772/intechopen.88805



UΔ � LΔ

n!
� e�

Δ2�1ð Þ
4

2mð Þ!
2mm!

Δ!ð Þ�n

n!
, (46)

where m ¼ Δn
2 .
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simplifying
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given that r≥ 3, for which we assumed that r is a constant c1, and that nr ¼ 2m,
then we have that c1 ¼ 2c2, and replacing that, in (58), we can express it in terms of
c1, which is the regular degree r assumed as fixed; then, we get

lim
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and, replacing c1 by r in (59), we get

lim
n!∞

ffiffi
2

p
ffiffiffiffiffi
2πr

pð Þnrrne r2þ4rnþ1ð Þ=4
rn=2
e

� �rn=2

2
n n�1ð Þ

2

: (60)

Therefore, if the degree r is constant, the limn!∞
Lr
Gn

¼ 0.
Now, our main result can be stated as a consequence of Theorem 1.11.
Theorem 1.12 If we assume that all graphs are uniformly distributed and that the

nodes have homogeneous behavior, then the criteria for selecting nodes to be
controlled are almost always applicable.

Proof of Theorem 1.11. As a consequence of Theorem 11, we know that the
probability that a regular graph appears tends to zero as n ! ∞. Then, the men-
tioned criteria are almost always applicable.

8. Conclusions

In the present chapter, some problems of combinatorial graph enumeration as
well as some useful techniques for obtaining a closed mathematical expression were
addressed. When it is not possible to obtain a closed expression, asymptotic esti-
mations of the kind used in analytic combinatorics can be used. In Section 10 the
use of these techniques for proving a result in the field of virus spreading control
was illustrated [31–34].

This allowed to explore the application of combinatorial techniques to control
problems in networks and thus verify the goodness of said methods for network
analysis and the control of virus propagation in them. This still needs to be studied
by applying the combinatorial methods discussed above, if there are any other types
of topologies that prevent the application of the selection criteria of nodes to be
controlled under the hypothesis of behavior of partially heterogeneous nodes, that
is, if in the network we have subsets of nodes with the same behavioral parameters.
The selecting node criteria described in [30] are based on the combination of the
parameter values of the selected nodes as well as their degrees. In many recent
publications [35–42], interesting and elaborated methods for detecting the
influencer nodes in complex networks have been proposed that I will try to apply in
combination with the mentioned criteria in the future in order to reduce the num-
ber of nodes to be controlled.
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controlled are almost always applicable.

Proof of Theorem 1.11. As a consequence of Theorem 11, we know that the
probability that a regular graph appears tends to zero as n ! ∞. Then, the men-
tioned criteria are almost always applicable.

8. Conclusions

In the present chapter, some problems of combinatorial graph enumeration as
well as some useful techniques for obtaining a closed mathematical expression were
addressed. When it is not possible to obtain a closed expression, asymptotic esti-
mations of the kind used in analytic combinatorics can be used. In Section 10 the
use of these techniques for proving a result in the field of virus spreading control
was illustrated [31–34].

This allowed to explore the application of combinatorial techniques to control
problems in networks and thus verify the goodness of said methods for network
analysis and the control of virus propagation in them. This still needs to be studied
by applying the combinatorial methods discussed above, if there are any other types
of topologies that prevent the application of the selection criteria of nodes to be
controlled under the hypothesis of behavior of partially heterogeneous nodes, that
is, if in the network we have subsets of nodes with the same behavioral parameters.
The selecting node criteria described in [30] are based on the combination of the
parameter values of the selected nodes as well as their degrees. In many recent
publications [35–42], interesting and elaborated methods for detecting the
influencer nodes in complex networks have been proposed that I will try to apply in
combination with the mentioned criteria in the future in order to reduce the num-
ber of nodes to be controlled.
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Chapter 10

New Variations of the Online
k-Canadian Traveler Problem:
Uncertain Costs at Known
Locations
Davood Shiri and F. Sibel Salman

Abstract

In this chapter, we study new variations of the online k-Canadian Traveler
Problem (k-CTP) in which there is an input graph with a given source node O and a
destination node D. For a specified set consisting of k edges, the edge costs are
unknown (we call these uncertain edges). Costs of the remaining edges are known
and given. The objective is to find an online strategy such that the traveling agent
finds a route from O to D with minimum total travel cost. The agent learns the cost
of an uncertain edge, when she arrives at one of its end-nodes and decides on her
travel path based on the discovered cost. We call this problem the online
k-Canadian Traveler Problem with uncertain edges. We analyze both the single-
agent and the multi-agent versions of the problem. We propose a tight lower bound
on the competitive ratio of deterministic online strategies together with an optimal
online strategy for the single-agent version. We consider the multi-agent version
with two different objectives. We suggest lower bounds on the competitive ratio
of deterministic online strategies to these two problems.

Keywords: multi-agent k-CTP, online strategies, deterministic strategies,
competitive ratio, undirected graphs

1. Introduction

The online k-Canadian Traveler Problem (k-CTP) is a well-known navigation
problem within the field of combinatorial optimization. In the online k-CTP, the
objective is to reach a destination in a network within minimum travel time under
uncertainty of some information. Uncertain information is revealed, while one or
more travelers (agents) discover the information during their travels. In the k-CTP
and its variants studied in the literature, uncertainty is on the locations of blocked
edges in the input graph. That is, it is known that there are at most k blocked edges,
but their locations are not known. In this study, we consider new variations of the k-
CTP where a known set of edges have unknown (uncertain) travel times (costs). To
the best of our knowledge, this variant of the k-CTP with given locations of edges
that have unknown traveling costs has not been studied yet in the literature.

Uncertainty in travel times arises in various situations, such as following a disaster
or in daily urban traffic systems. After a disaster, uncertainty in travel times arises

245



[39] Pei S, Makse HA. Spreading
dynamics in complex networks. Journal
of Statistical Mechanics: Theory and
Experiment. 2013;2013:P12002

[40] Min B, Morone F, Makse HA.
Searching for influencers in big-data
complex networks. In: Bunde A, Caro J,
Karger J, Vogl G, editors. Diffusive
Spreading in Nature, Technology and
Society. Berlin, Germany: Springer;
2016

[41] Leskovec J, Adamic LA,
Huberman BA. The dynamics of viral
marketing. ACM Transactions on the
Web. 2007;1:5

[42] Rogers EM. Diffusion of
Innovations. New York, NY, USA:
Simon and Schuster; 2010

244

Probability, Combinatorics and Control

Chapter 10

New Variations of the Online
k-Canadian Traveler Problem:
Uncertain Costs at Known
Locations
Davood Shiri and F. Sibel Salman

Abstract

In this chapter, we study new variations of the online k-Canadian Traveler
Problem (k-CTP) in which there is an input graph with a given source node O and a
destination node D. For a specified set consisting of k edges, the edge costs are
unknown (we call these uncertain edges). Costs of the remaining edges are known
and given. The objective is to find an online strategy such that the traveling agent
finds a route from O to D with minimum total travel cost. The agent learns the cost
of an uncertain edge, when she arrives at one of its end-nodes and decides on her
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1. Introduction

The online k-Canadian Traveler Problem (k-CTP) is a well-known navigation
problem within the field of combinatorial optimization. In the online k-CTP, the
objective is to reach a destination in a network within minimum travel time under
uncertainty of some information. Uncertain information is revealed, while one or
more travelers (agents) discover the information during their travels. In the k-CTP
and its variants studied in the literature, uncertainty is on the locations of blocked
edges in the input graph. That is, it is known that there are at most k blocked edges,
but their locations are not known. In this study, we consider new variations of the k-
CTP where a known set of edges have unknown (uncertain) travel times (costs). To
the best of our knowledge, this variant of the k-CTP with given locations of edges
that have unknown traveling costs has not been studied yet in the literature.

Uncertainty in travel times arises in various situations, such as following a disaster
or in daily urban traffic systems. After a disaster, uncertainty in travel times arises
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due to both damage on road segments and traffic congestion on some parts of the
road network. We typically know which roads are likely to have damage and to be
congested, but the actual travel times can be estimated more accurately when we
observe the situation right on the spot. Regarding urban traffic systems, problematic
road segments can be detected beforehand since in most current traffic management
systems, data indicating locations with high accident frequency are available, but it is
difficult to predict the time of occurrence or the intensity of the accident accurately.
Also, we usually know where there is a high likelihood of heavy traffic, but travel
times show variability. Moreover, nowadays navigation applications indicate which
locations have heavy traffic, but the travel times are still not known with certainty,
and the situation evolves dynamically as we reach the locations themselves.

In many real-world emergency operations, including response to disasters and
daily medical or fire emergencies, operations managers must give dispatching deci-
sions urgently under uncertain travel times. Therefore, it is useful to develop online
strategies beforehand. For example, for effective disaster response, these strategies
can be adopted before the disaster so that they can be implemented in the shortest
time after the disaster. Likewise, when traveling in traffic, in order to reach the
desired destination in the shortest time, we need a strategy defined on a network
which answers the following questions: when to arrive at the end-node of an uncer-
tain edge to learn its travel cost and when to avoid visiting it; when the travel time of
an uncertain edge is learned, whether to take it or change the travel route; and if there
exists a route to the destination without any uncertain edges, whether to take it or
not. In this chapter, we focus on both developing effective online strategies that
answer these questions and analyzing their performances theoretically to reveal their
worst-case behavior. We next define our problem and its variants formally.

1.1 The online k-CTP with uncertain edges

Let G ¼ V;E; kð Þ denote an undirected graph with O as the source and D as the
destination in which the costs of k edges with given locations in the graph are
unknown and a traveling agent can only discover their costs when she reaches an
end-node of them. The costs of the remaining edges are known and deterministic. We
call the edges with unknown costs uncertain edges and the edges with known costs
deterministic edges. The objective is to provide an online strategy such that the travel-
ing agent who is located at O initially receives G ¼ V;E; kð Þ and the known costs as
input and targets to reach D with minimum total travel cost under uncertainty. Since
the problem is a new variation of the k-CTP, we call this problem the single-agent k-
CTP with uncertain edges, in short the S-k-CTP-U. We also study the multi-agent
version of this problem where there are L agents, who are initially located at O. We
assume that the agents have the capability to transmit their location and edge cost
information to the other agents in real time. We consider the multi-agent version of
the problem with two different objectives, where the traveling agents follow an
online strategy to ensure that the time when (1) the first agent and (2) the last agent
arrive at D is minimum. We call these problems the M-k-CTP-U-f and the M-k-CTP-
U-l, respectively. In real-life applications mentioned before, e.g., disaster response,
the objective of the M-k-CTP-U-f is applicable when search-and-rescue teams try to
reach a target in the shortest time, whereas the objective of the M-k-CTP-U-l is
applicable when a convoy of k vehicles delivers aid to a point of distribution.

1.2 Competitive analysis

The key concept in analyzing an online strategy is to compare a solution pro-
duced by the online strategy with the best possible solution under complete
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information, which is called the offline optimum solution. An offline strategy is to
solve the same problem as an online strategy, except that all information about the
problem inputs is revealed to an offline strategy from the beginning. An optimal
offline strategy is the optimal strategy in the presence of complete input informa-
tion which produces the offline optimum solution. To analyze the performance of
online strategies, competitive ratio has been introduced in [1] and used by many
researchers. The competitive ratio is the maximum ratio of the cost of the online
strategy to the cost of the offline strategy over all instances of the problem. In our
problems, the costs of the uncertain edges are known in the offline counterparts.
Hence, the offline problems reduce to the shortest path problem.

Next, we discuss related work in the literature. Then, we state our contributions
to the defined problems later on in this section.

1.3 Previous studies

We focus on studies on the k-CTP which are conducted from the online optimi-
zation and the competitive analysis perspective, since these are the most related
works to our survey. First, we review the literature for the single-agent variants.
Next, we discuss the relevant studies on the multi-agent versions.

1.3.1 Single-agent k-CTP and variants

The CTP was defined first in [2]. Papadimitriou and Yannakakis [2] proved that
devising an online strategy with a bounded competitive ratio is PSPACE-complete
for the CTP. Bar-Noy and Schieber [3] also considered the CTP and its variants.
They introduced the k-CTP, where an upper bound k on the number of blocked
edges is given as input. They showed that for arbitrary k, the problem of designing
an online strategy that guarantees the minimum travel cost is PSPACE-complete.

Westphal [4] considered the k-CTP from the competitive ratio perspective. He
showed the lower bounds of 2kþ 1 and kþ 1 on the competitive ratio of determin-
istic and randomized online strategies, respectively. He also presented an optimal
deterministic online strategy for the k-CTP which is called the backtrack strategy.
Xu et al. [5] also considered the k-CTP and presented two online strategies, the
greedy and the comparison strategy, and proved competitive ratios of 2kþ1 � 1 and
2kþ 1, respectively, for these strategies. Bender and Westphal [6] presented a
randomized online strategy for the k-CTP which meets the lower bound of kþ 1 in
special cases. Shiri and Salman [7] modified the strategy given in [7] and proposed
an optimal randomized online strategy for the k-CTP on O-D edge-disjoint graphs.

1.3.2 Multi-agent k-CTP and variants

A generalization of the k-CTP with multiple agents was first considered by
Zhang et al. in [8]. They analyzed the multi-agent k-CTP in two scenarios, with

limited and complete communication. They proposed lower bounds of 2 k�1
L1

j k
þ 1

and 2 k
L

� �þ 1 on the competitive ratio of deterministic online strategies for the cases
with limited and complete communication, respectively. Note that in the proposed
lower bounds L denotes the total number of agents and L1 denotes the number of
agents who benefit from complete communication. They also proposed an optimal
deterministic online strategy when there are two agents in the graph. Shiri and
Salman [9] also investigated the multi-agent k-CTP. They provided an updated
lower bound on the competitive ratio of deterministic online strategies for the case
with limited communication. They also presented a deterministic online strategy
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due to both damage on road segments and traffic congestion on some parts of the
road network. We typically know which roads are likely to have damage and to be
congested, but the actual travel times can be estimated more accurately when we
observe the situation right on the spot. Regarding urban traffic systems, problematic
road segments can be detected beforehand since in most current traffic management
systems, data indicating locations with high accident frequency are available, but it is
difficult to predict the time of occurrence or the intensity of the accident accurately.
Also, we usually know where there is a high likelihood of heavy traffic, but travel
times show variability. Moreover, nowadays navigation applications indicate which
locations have heavy traffic, but the travel times are still not known with certainty,
and the situation evolves dynamically as we reach the locations themselves.

In many real-world emergency operations, including response to disasters and
daily medical or fire emergencies, operations managers must give dispatching deci-
sions urgently under uncertain travel times. Therefore, it is useful to develop online
strategies beforehand. For example, for effective disaster response, these strategies
can be adopted before the disaster so that they can be implemented in the shortest
time after the disaster. Likewise, when traveling in traffic, in order to reach the
desired destination in the shortest time, we need a strategy defined on a network
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1.1 The online k-CTP with uncertain edges
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version of this problem where there are L agents, who are initially located at O. We
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1.2 Competitive analysis

The key concept in analyzing an online strategy is to compare a solution pro-
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information, which is called the offline optimum solution. An offline strategy is to
solve the same problem as an online strategy, except that all information about the
problem inputs is revealed to an offline strategy from the beginning. An optimal
offline strategy is the optimal strategy in the presence of complete input informa-
tion which produces the offline optimum solution. To analyze the performance of
online strategies, competitive ratio has been introduced in [1] and used by many
researchers. The competitive ratio is the maximum ratio of the cost of the online
strategy to the cost of the offline strategy over all instances of the problem. In our
problems, the costs of the uncertain edges are known in the offline counterparts.
Hence, the offline problems reduce to the shortest path problem.

Next, we discuss related work in the literature. Then, we state our contributions
to the defined problems later on in this section.

1.3 Previous studies

We focus on studies on the k-CTP which are conducted from the online optimi-
zation and the competitive analysis perspective, since these are the most related
works to our survey. First, we review the literature for the single-agent variants.
Next, we discuss the relevant studies on the multi-agent versions.

1.3.1 Single-agent k-CTP and variants

The CTP was defined first in [2]. Papadimitriou and Yannakakis [2] proved that
devising an online strategy with a bounded competitive ratio is PSPACE-complete
for the CTP. Bar-Noy and Schieber [3] also considered the CTP and its variants.
They introduced the k-CTP, where an upper bound k on the number of blocked
edges is given as input. They showed that for arbitrary k, the problem of designing
an online strategy that guarantees the minimum travel cost is PSPACE-complete.

Westphal [4] considered the k-CTP from the competitive ratio perspective. He
showed the lower bounds of 2kþ 1 and kþ 1 on the competitive ratio of determin-
istic and randomized online strategies, respectively. He also presented an optimal
deterministic online strategy for the k-CTP which is called the backtrack strategy.
Xu et al. [5] also considered the k-CTP and presented two online strategies, the
greedy and the comparison strategy, and proved competitive ratios of 2kþ1 � 1 and
2kþ 1, respectively, for these strategies. Bender and Westphal [6] presented a
randomized online strategy for the k-CTP which meets the lower bound of kþ 1 in
special cases. Shiri and Salman [7] modified the strategy given in [7] and proposed
an optimal randomized online strategy for the k-CTP on O-D edge-disjoint graphs.

1.3.2 Multi-agent k-CTP and variants

A generalization of the k-CTP with multiple agents was first considered by
Zhang et al. in [8]. They analyzed the multi-agent k-CTP in two scenarios, with

limited and complete communication. They proposed lower bounds of 2 k�1
L1

j k
þ 1

and 2 k
L

� �þ 1 on the competitive ratio of deterministic online strategies for the cases
with limited and complete communication, respectively. Note that in the proposed
lower bounds L denotes the total number of agents and L1 denotes the number of
agents who benefit from complete communication. They also proposed an optimal
deterministic online strategy when there are two agents in the graph. Shiri and
Salman [9] also investigated the multi-agent k-CTP. They provided an updated
lower bound on the competitive ratio of deterministic online strategies for the case
with limited communication. They also presented a deterministic online strategy
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which is optimal in both cases with complete and limited communication on O-D
edge-disjoint graphs. Randomized online strategies for the multi-agent k-CTP are
investigated in [10], where lower bounds on the expected competitive ratio
together with optimal randomized online strategies on O-D edge-disjoint graphs are
proposed for the cases with limited and complete communication.

Xu and Zhang [11] focused on a real-time rescue routing problem from a source
node to an emergency spot in the presence of online blockages. They analyzed the
problem with the objective to make all the rescuers arrive at the emergency spot
with minimum total cost. They studied the problem in two scenarios, without
communication and with complete communication. They investigated both of the
scenarios on the grid networks and general networks, respectively. They showed
that the consideration of both the grid network and the rescuers’ communication
can significantly improve the rescue efficiency.

1.4 Our contributions

In the literature, the common unknown information in the k-CTP variants is the
locations of the blocked edges in the graph. In fact, in all of the versions of the
online k-CTP, all of the edges are equally likely to be blocked, and the agents have to
explore the blockages in the graph to identify a route from the source node to the
destination node with minimum total travel cost. However, in many real-world
instances, assuming that all of the edges are equally likely to be congested or
blocked ignores valuable information. In other words, there might exist many edges
in the graph in which the agent is assured that they are not blocked before she starts
her travel. Hence, considering all of the edges to be blocked with equal chance is not
a realistic assumption in some of the real-world applications of the k-CTP.

As discussed at the beginning of this section, it is possible to identify the poten-
tial locations of the blocked edges in the graph in many real-world instances, such as
in the urban traffic and post-disaster response. We introduce a new variation of the
k-CTP with at most k number of uncertain edges with given locations and unknown
traveling costs. We call this new problem the online k-Canadian Traveler Problem
with uncertain edges. We consider both single-agent and multi-agent versions of
this problem. In the multi-agent version of the problem, we analyze the problem
with two different objectives, where the agents aim to ensure the first and the last
arrival of the agents at D with minimum travel cost, respectively. The main contri-
butions of our study are detailed below:

1.We introduce new variations of the online k-CTP which find applications in
real-world problems, namely, the S-k-CTP-U, the M-k-CTP-U-f, and the M-
k-CTP-U-l.

2.We provide a tight lower bound on the competitive ratio of deterministic
online strategies for the S-k-CTP-U and introduce an optimal deterministic
online strategy.

3.We derive lower bounds on the competitive ratio of deterministic online
strategies for the M-k-CTP-U-f and the M-k-CTP-U-l.

The rest of this chapter is organized as follows. In Section 2, we describe the
assumptions and give preliminaries. In Section 3, we analyze the single-agent ver-
sion of the problem and provide a tight lower bound and an optimal strategy to this
problem. In Section 4, we suggest lower bounds on the competitive ratio for the
multi-agent versions of the problem. Finally, we conclude in Section 5.
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2. Preliminaries

We consider the single-agent and the multi-agent problems defined in Section
1.1 with the following assumptions [1]:

1.The agent(s) are initially located at O. We call this stage the initial stage of the
problem.

2.If any k edges are removed from the graph, there still exists a path between the
source and the destination node. This is a standard assumption in the
literature.

3.The cost of the uncertain edges can take any value between 0 and M. An
uncertain edge with explored cost equal toMwould be considered as a blocked
edge.

4.Once the cost of an uncertain edge is learned, it remains the same whenever
the traveler visits that edge. In other words the cost is not assumed to be time-
dependent.

5.We call the time periods in which the cost of a new uncertain edge is
identified, stages of the problem. That is, there are k stages in the problem, i.e.,
stage 1 corresponds to the time period starting at the initial stage and ending at
the moment before the cost of the first uncertain edge is learned.

We apply the following symbols and definitions to describe our results. We call
the O-D paths which contain uncertain edges uncertain paths and which do not have
uncertain edges deterministic paths. Let Di denote the shortest deterministic path at
the ith stage and di i ¼ 1; 2;…; kð Þ denote its corresponding cost. If there are more
than one shortest deterministic path at the ith stage, one of them can be selected as
Di arbitrarily. Note that at any stage of the problem there exists at least one deter-
ministic O-D path based on Assumption 2.

We define the optimistic cost of the O-D path as the cost of the O-D path after
setting the costs of the unvisited uncertain edges on it equal to 0. The optimistic
shortest O-D path at the ith stage of the problem is denoted by πi, which corresponds
to the shortest O-D path after setting the costs of the remaining uncertain edges
equal to 0. We denote its corresponding cost by pi i ¼ 1; 2;…; kð Þ. That is, π1 is the
optimistic shortest O-D path at the initial stage of the problem. We denote the
shortest path after the status of all of the uncertain edges is explored by πkþ1, i.e.,
πkþ1 is the offline optimum and pkþ1 is its corresponding cost.

3. Single-agent k-CTP with uncertain edges

In this section, we analyze the single-agent problem, namely, the S-k-CTP-U.
We present a lower bound to this problem and prove its tightness by introducing a
simple strategy. To suggest a lower bound on the competitive ratio of deterministic
strategies, we need to analyze the performance of all of deterministic strategies on a
special instance. Below, we propose our lower bound on the S-k-CTP-U, by analyz-
ing an instance of O-D edge-disjoint graphs. Note that an O-D edge-disjoint graph is
an undirected graph G with a given source node O and a destination node D, such
that any two distinct O-D paths in G are edge-disjoint, that is, they do not have a
common edge.
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in the urban traffic and post-disaster response. We introduce a new variation of the
k-CTP with at most k number of uncertain edges with given locations and unknown
traveling costs. We call this new problem the online k-Canadian Traveler Problem
with uncertain edges. We consider both single-agent and multi-agent versions of
this problem. In the multi-agent version of the problem, we analyze the problem
with two different objectives, where the agents aim to ensure the first and the last
arrival of the agents at D with minimum travel cost, respectively. The main contri-
butions of our study are detailed below:

1.We introduce new variations of the online k-CTP which find applications in
real-world problems, namely, the S-k-CTP-U, the M-k-CTP-U-f, and the M-
k-CTP-U-l.

2.We provide a tight lower bound on the competitive ratio of deterministic
online strategies for the S-k-CTP-U and introduce an optimal deterministic
online strategy.

3.We derive lower bounds on the competitive ratio of deterministic online
strategies for the M-k-CTP-U-f and the M-k-CTP-U-l.

The rest of this chapter is organized as follows. In Section 2, we describe the
assumptions and give preliminaries. In Section 3, we analyze the single-agent ver-
sion of the problem and provide a tight lower bound and an optimal strategy to this
problem. In Section 4, we suggest lower bounds on the competitive ratio for the
multi-agent versions of the problem. Finally, we conclude in Section 5.
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2. Preliminaries

We consider the single-agent and the multi-agent problems defined in Section
1.1 with the following assumptions [1]:

1.The agent(s) are initially located at O. We call this stage the initial stage of the
problem.

2.If any k edges are removed from the graph, there still exists a path between the
source and the destination node. This is a standard assumption in the
literature.

3.The cost of the uncertain edges can take any value between 0 and M. An
uncertain edge with explored cost equal toMwould be considered as a blocked
edge.

4.Once the cost of an uncertain edge is learned, it remains the same whenever
the traveler visits that edge. In other words the cost is not assumed to be time-
dependent.

5.We call the time periods in which the cost of a new uncertain edge is
identified, stages of the problem. That is, there are k stages in the problem, i.e.,
stage 1 corresponds to the time period starting at the initial stage and ending at
the moment before the cost of the first uncertain edge is learned.

We apply the following symbols and definitions to describe our results. We call
the O-D paths which contain uncertain edges uncertain paths and which do not have
uncertain edges deterministic paths. Let Di denote the shortest deterministic path at
the ith stage and di i ¼ 1; 2;…; kð Þ denote its corresponding cost. If there are more
than one shortest deterministic path at the ith stage, one of them can be selected as
Di arbitrarily. Note that at any stage of the problem there exists at least one deter-
ministic O-D path based on Assumption 2.

We define the optimistic cost of the O-D path as the cost of the O-D path after
setting the costs of the unvisited uncertain edges on it equal to 0. The optimistic
shortest O-D path at the ith stage of the problem is denoted by πi, which corresponds
to the shortest O-D path after setting the costs of the remaining uncertain edges
equal to 0. We denote its corresponding cost by pi i ¼ 1; 2;…; kð Þ. That is, π1 is the
optimistic shortest O-D path at the initial stage of the problem. We denote the
shortest path after the status of all of the uncertain edges is explored by πkþ1, i.e.,
πkþ1 is the offline optimum and pkþ1 is its corresponding cost.

3. Single-agent k-CTP with uncertain edges

In this section, we analyze the single-agent problem, namely, the S-k-CTP-U.
We present a lower bound to this problem and prove its tightness by introducing a
simple strategy. To suggest a lower bound on the competitive ratio of deterministic
strategies, we need to analyze the performance of all of deterministic strategies on a
special instance. Below, we propose our lower bound on the S-k-CTP-U, by analyz-
ing an instance of O-D edge-disjoint graphs. Note that an O-D edge-disjoint graph is
an undirected graph G with a given source node O and a destination node D, such
that any two distinct O-D paths in G are edge-disjoint, that is, they do not have a
common edge.
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Theorem 1.1 For the S-k-CTP-U, there is no deterministic online strategy with
competitive ratio less than min d1=p1; 2k� 1

� �
.

Proof. Consider the special graph in Figure 1. For each of deterministic strate-
gies, we consider the instance when the cost of all of the first k� 1 visited uncertain
edges equals M and the cost of the last visited uncertain edge equals 0. Hence, the
cost of the offline shortest path equals p1. For a strategy, we call this instance the
adverse instance. In the special graph in Figure 1, any deterministic strategy corre-
sponds to a permutation which specifies in which order the uncertain paths and D1

(not necessarily all of them) are going to be selected. For each of these strategies,
consider the adverse instance. We define α as a binary coefficient which equals 1, if
the agent takes D1, and equals 0, if the agent does not take D1 in the strategy.
Suppose that the agent has taken i number of uncertain paths before takingD1 when
α equals 1. In this case, the competitive ratio of deterministic strategies on the

special graph shown in Figure 1 can be formulated as
2i p1ð Þþα d1ð Þþ 1�αð Þp1

p1
(i ¼ 0; 1; 2,…, k� 1). Note that in the adverse instance, the agent has to incur a cost
equal to 2p1 in her first k� 1 trials at the uncertain paths, since she has to come back
to O after finding the uncertain edges blocked. However, since the cost of the kth
visited uncertain edge equals 0, the agent incurs p1 in her kth trial at the uncertain
paths and reaches D. Now, we present our proof by considering two cases.

• Case 1. d1p1 ≤ 2k� 1. We consider this case for α ¼ 0 and α ¼ 1 separately.

◦ α ¼ 1. In this case the competitive ratio of the corresponding strategies can

be formulated as
2i p1ð Þþd1

p1
(i ¼ 0, 1,…, k� 1). The minimum competitive

ratio equals d1
p1
, when i ¼ 0, which matches the proposed lower bound of the

problem.

◦ α ¼ 0. In this case the minimum competitive ratio of the corresponding
strategies equals 2k� 1, which is greater than or equal to the lower bound of
the problem.

Figure 1.
A special graph.
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• Case 2. d1p1 >2k� 1. We also consider this case for α ¼ 0 and α ¼ 1 separately.

◦ α ¼ 1. In this case the competitive ratio of the corresponding strategies can

be formulated as
2i p1ð Þþd1

p1
(i ¼ 0, 1,…, k� 1). The minimum competitive

ratio equals d1
p1
, when i ¼ 0, which is greater than the proposed lower bound

of the problem.

◦ α ¼ 0. In this case the minimum competitive ratio of the corresponding
strategies equals 2k� 1, which matches the lower bound of the problem.

Since we proved that the competitive ratios of all of the deterministic strategies
for this special instance are greater than or equal to min d1=p1; 2k� 1

� �
, the proof is

complete.
Now, we introduce a new deterministic strategy which meets the presented

lower bound. We call this strategy the pessimistic strategy since the agent avoids to
explore more than one uncertain edge at each iteration.

3.1 Pessimistic strategy

• Initialization. Put i ¼ 0, where i denotes the iteration number. At each
iteration the agent starts her travel from O and explores the cost of one
uncertain edge or will reach D without visiting any unvisited uncertain edge. If
the agent reaches D, then the strategy ends. Otherwise, she backtracks to O or
reaches D without visiting any other unvisited uncertain edge. In the latter case
when the agent reaches D, the strategy ends. Note that each iteration
corresponds to one of the stages of the problem, because at each iteration the
cost of one of the uncertain edges is learned. That is, the first iteration
corresponds to stage 1 of the problem. Also note that pi is nondecreasing in i,
where pi is the cost of the optimistic shortest O-D path at the beginning of the
ith iteration. Let ci denote the cost of the uncertain edge which is learned at the
ith iteration. Note that piþ1 is computable immediately after the agent observes
ci. Let S denote the set of the uncertain edges in the graph.

• Step 1. Compute d1, p1, and min d1=p1; 2k� 1
� �

. If the minimum is d1=p1, take
D1, otherwise go to step 2.

• Step 2. If (i ¼ k� 1), then go to step 3; otherwise, put i ¼ iþ 1 and find πi. If it
does not contain uncertain edges, the agent takes it to reach D. Otherwise, take
πi to reach the ith visited uncertain edge, observe ci, set the value of the newly
visited uncertain edge equal to ci, and remove it from S. That is, it is not
considered as an uncertain edge hereafter. Next, check the following
conditions.

• Condition 1. Check if

2
Pi�1

j¼1 pj
� �

þ pi þ ci

piþ1
< 2k� 1 (1)

and there exists no uncertain edge in the selected path, and proceed to reach D.
Otherwise, check condition 2.
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• Case 2. d1p1 >2k� 1. We also consider this case for α ¼ 0 and α ¼ 1 separately.

◦ α ¼ 1. In this case the competitive ratio of the corresponding strategies can

be formulated as
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p1
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, when i ¼ 0, which is greater than the proposed lower bound

of the problem.
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Since we proved that the competitive ratios of all of the deterministic strategies
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, the proof is

complete.
Now, we introduce a new deterministic strategy which meets the presented

lower bound. We call this strategy the pessimistic strategy since the agent avoids to
explore more than one uncertain edge at each iteration.

3.1 Pessimistic strategy

• Initialization. Put i ¼ 0, where i denotes the iteration number. At each
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the agent reaches D, then the strategy ends. Otherwise, she backtracks to O or
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where pi is the cost of the optimistic shortest O-D path at the beginning of the
ith iteration. Let ci denote the cost of the uncertain edge which is learned at the
ith iteration. Note that piþ1 is computable immediately after the agent observes
ci. Let S denote the set of the uncertain edges in the graph.

• Step 1. Compute d1, p1, and min d1=p1; 2k� 1
� �

. If the minimum is d1=p1, take
D1, otherwise go to step 2.

• Step 2. If (i ¼ k� 1), then go to step 3; otherwise, put i ¼ iþ 1 and find πi. If it
does not contain uncertain edges, the agent takes it to reach D. Otherwise, take
πi to reach the ith visited uncertain edge, observe ci, set the value of the newly
visited uncertain edge equal to ci, and remove it from S. That is, it is not
considered as an uncertain edge hereafter. Next, check the following
conditions.

• Condition 1. Check if

2
Pi�1

j¼1 pj
� �

þ pi þ ci

piþ1
< 2k� 1 (1)

and there exists no uncertain edge in the selected path, and proceed to reach D.
Otherwise, check condition 2.
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• Condition 2. Note that immediately after the agent observes ci, Diþ1 and diþ1

are computable. Check if

2
Pi

i¼1 pi
� �

þ diþ1

piþ1
< 2k� 1, (2)

and then go back to O and take Diþ1. Otherwise, return to O and go to the
beginning of step 2.

• Step 3. Take πk and observe ck. Then compare

A ¼
2
Pk

i¼1 pi
� �

þ pkþ1

pkþ1
(3)

and

B ¼
2
Pk�1

i¼1 pi
� �

þ pk þ ck

pkþ1
: (4)

If A<B return to O and take the shortest path πkþ1ð Þ; otherwise, travel through
the uncertain edge in the kth uncertain path and reach D.

Below we show that our strategy is optimal by using the inequalities which are
presented in different steps of the pessimistic strategy.

Theorem 1.2 The pessimistic strategy is optimal for the S-k-CTP-U.
Proof. Note that if the strategy ends in either step 1 or 2, the competitive ratio

would be less than or equal to the lower bound. Hence, we just need to analyze the
cases where the strategy ends in step 3. Note that the competitive ratio of the
strategy would not exceed min A;Bf g in step 3. Thus, it is enough to show that
either A or B does not exceed the proposed lower bound of the problem, if the
strategy ends in step 3. We consider three different scenarios for πkþ1 to show the
optimality of the pessimistic strategy, if the strategy ends in step 3.

• Scenario 1. πkþ1 contains the uncertain edge which is visited in the kth
iteration. In this case, we show that B meets the proposed lower bound of the
problem. Since both πkþ1 and πk (i.e., πkþ1 ≥ πk) contain the kth visited
uncertain edge, pk þ ck equals pkþ1. Hence we can replace pk þ ck by pkþ1 in the
numerator of B. We can also replace pi values for i ¼ 1; 2;…; k� 1ð Þ by pkþ1 in
the numerator of B, since pi is nondecreasing in i. In this case, B would be at
most 2k� 1 which equals the lower bound of the problem.

Here, we note that πkþ1 does not contain the kth visited uncertain edge in the
next two scenarios.

• Scenario 2. πkþ1 contains the uncertain edge which is visited in the k� 1ð Þth
iteration. Note that k≥ 2 in this scenario, since πkþ1 does not contain the kth
visited uncertain edge and contains the k� 1ð Þth visited uncertain edge. In this
case, we show that A meets the proposed lower bound of the problem.
Consider condition 1 in step 2 at the k� 1ð Þth iteration. Since we have assumed
that the strategy ends in step 3, we have

2
Pk�2

i¼1 pi
� �

þ pk�1 þ ck�1

pk
>2k� 1: (5)
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Since, both πkþ1 and πk�1 (i.e., πkþ1 ≥ πk�1) contain the k� 1ð Þth visited
uncertain edge, pk�1 þ ck�1 is less than or equal to pkþ1. Hence, we can replace
pk�1 þ ck�1 by pkþ1 in the numerator above. We can also replace pi values for
i ¼ 1; 2;…; k� 2ð Þ by pk in the numerator since pi is nondecreasing in i. We obtain
2k� 4ð Þpk þ pkþ1> 2k� 1ð Þpk; hence, pkþ1>3pk.

Now, we replace pi values for i ¼ 1; 2;…; kð Þ by pk in the numerator of A. We
obtain

A ¼ 2k pk
� �þ pkþ1

pkþ1
: (6)

Now, we can replace 2k pk
� �

by 2k
3 pkþ1

� �
in the numerator of A. In this case, A

would be at most 2k
3 þ 1 which is less than or equal to the lower bound for k≥ 2

since we are comparing 2k
3 þ 1 and min d1=p1; 2k� 1

� �
for k≥ 2. Note that since the

strategy ends in step 3, min d1=p1; 2k� 1
� �

equals 2k� 1.

• Scenario 3. πkþ1 does not contain the uncertain edges which are visited in
the k� 1ð Þth and the kth iterations. In this case, we show that A meets the
proposed lower bound of the problem. Note that when k≤ 2, πkþ1 ¼ D1 in this
scenario. Thus, the strategy ends in step 1 when k≤ 2. For k≥ 3, consider
condition 2 in step 2 at the k� 2ð Þth iteration. We have

2
Pk�2

i¼1 pi
� �

þ dk�1

pk�1
>2k� 1: (7)

Since πkþ1 does not contain the uncertain edges which are visited in the k� 1ð Þth
and the kth iterations, πkþ1 is equivalent to Dk�1. Hence we can replace dk�1 by pkþ1
in the numerator above. We can also replace pi values for i ¼ 1; 2;…; k� 2ð Þ by pk�1
in the numerator since pi is nondecreasing in i. We obtain
2k� 4ð Þpk�1 þ pkþ1> 2k� 1ð Þpk�1. Thus, pkþ1>3pk�1. Now, we replace pi values for
i ¼ 1; 2;…; k� 1ð Þ by pk�1 in the numerator of A. We obtain

A ¼ 2k� 2ð Þpk�1 þ 2pk þ pkþ1

pkþ1
: (8)

Now, we can replace 2k� 2ð Þpk�1 by
2k�2
3 pkþ1

� �
in the numerator of A. We also

replace pk by pkþ1, since pi is nondecreasing in i. In this case, A would be at most
2k�2
3 þ 3, which is less than or equal to the lower bound for k≥ 3.
Since we showed that the competitive ratio of the pessimistic strategy is less than

or equal to the lower bound, the proof is complete.
As an illustrative example for the pessimistic strategy, consider the instance

given in Figure 2 which represents a part of the Gulf Coast area of the United
States. In Figure 2, the nodes represent the cities, and the numbers on the edges
denote the edge travel times (per hour) in a post-disaster scenario. The edges
(2,6) and (5,6) are the uncertain edges whose costs are not known at the
beginning. The traveling agent is initially at node 1 and node 6 is the destination
node. Path 1-3-6 is the shortest deterministic path (D1), and path 1-2-6 is the
shortest optimistic path (π1) at the initial stage, i.e., d1 ¼ 11 and p1 ¼ 3. When
step 1 of the pessimistic strategy is implemented, the agent compares d1

p1
¼ 11

3 with
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• Condition 2. Note that immediately after the agent observes ci, Diþ1 and diþ1

are computable. Check if

2
Pi

i¼1 pi
� �

þ diþ1

piþ1
< 2k� 1, (2)
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A ¼
2
Pk

i¼1 pi
� �

þ pkþ1

pkþ1
(3)

and

B ¼
2
Pk�1

i¼1 pi
� �

þ pk þ ck

pkþ1
: (4)
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cases where the strategy ends in step 3. Note that the competitive ratio of the
strategy would not exceed min A;Bf g in step 3. Thus, it is enough to show that
either A or B does not exceed the proposed lower bound of the problem, if the
strategy ends in step 3. We consider three different scenarios for πkþ1 to show the
optimality of the pessimistic strategy, if the strategy ends in step 3.

• Scenario 1. πkþ1 contains the uncertain edge which is visited in the kth
iteration. In this case, we show that B meets the proposed lower bound of the
problem. Since both πkþ1 and πk (i.e., πkþ1 ≥ πk) contain the kth visited
uncertain edge, pk þ ck equals pkþ1. Hence we can replace pk þ ck by pkþ1 in the
numerator of B. We can also replace pi values for i ¼ 1; 2;…; k� 1ð Þ by pkþ1 in
the numerator of B, since pi is nondecreasing in i. In this case, B would be at
most 2k� 1 which equals the lower bound of the problem.

Here, we note that πkþ1 does not contain the kth visited uncertain edge in the
next two scenarios.

• Scenario 2. πkþ1 contains the uncertain edge which is visited in the k� 1ð Þth
iteration. Note that k≥ 2 in this scenario, since πkþ1 does not contain the kth
visited uncertain edge and contains the k� 1ð Þth visited uncertain edge. In this
case, we show that A meets the proposed lower bound of the problem.
Consider condition 1 in step 2 at the k� 1ð Þth iteration. Since we have assumed
that the strategy ends in step 3, we have

2
Pk�2

i¼1 pi
� �

þ pk�1 þ ck�1

pk
>2k� 1: (5)
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Since, both πkþ1 and πk�1 (i.e., πkþ1 ≥ πk�1) contain the k� 1ð Þth visited
uncertain edge, pk�1 þ ck�1 is less than or equal to pkþ1. Hence, we can replace
pk�1 þ ck�1 by pkþ1 in the numerator above. We can also replace pi values for
i ¼ 1; 2;…; k� 2ð Þ by pk in the numerator since pi is nondecreasing in i. We obtain
2k� 4ð Þpk þ pkþ1> 2k� 1ð Þpk; hence, pkþ1>3pk.

Now, we replace pi values for i ¼ 1; 2;…; kð Þ by pk in the numerator of A. We
obtain

A ¼ 2k pk
� �þ pkþ1

pkþ1
: (6)

Now, we can replace 2k pk
� �

by 2k
3 pkþ1

� �
in the numerator of A. In this case, A

would be at most 2k
3 þ 1 which is less than or equal to the lower bound for k≥ 2

since we are comparing 2k
3 þ 1 and min d1=p1; 2k� 1

� �
for k≥ 2. Note that since the

strategy ends in step 3, min d1=p1; 2k� 1
� �

equals 2k� 1.

• Scenario 3. πkþ1 does not contain the uncertain edges which are visited in
the k� 1ð Þth and the kth iterations. In this case, we show that A meets the
proposed lower bound of the problem. Note that when k≤ 2, πkþ1 ¼ D1 in this
scenario. Thus, the strategy ends in step 1 when k≤ 2. For k≥ 3, consider
condition 2 in step 2 at the k� 2ð Þth iteration. We have

2
Pk�2

i¼1 pi
� �

þ dk�1

pk�1
>2k� 1: (7)

Since πkþ1 does not contain the uncertain edges which are visited in the k� 1ð Þth
and the kth iterations, πkþ1 is equivalent to Dk�1. Hence we can replace dk�1 by pkþ1
in the numerator above. We can also replace pi values for i ¼ 1; 2;…; k� 2ð Þ by pk�1
in the numerator since pi is nondecreasing in i. We obtain
2k� 4ð Þpk�1 þ pkþ1> 2k� 1ð Þpk�1. Thus, pkþ1>3pk�1. Now, we replace pi values for
i ¼ 1; 2;…; k� 1ð Þ by pk�1 in the numerator of A. We obtain

A ¼ 2k� 2ð Þpk�1 þ 2pk þ pkþ1

pkþ1
: (8)

Now, we can replace 2k� 2ð Þpk�1 by
2k�2
3 pkþ1

� �
in the numerator of A. We also

replace pk by pkþ1, since pi is nondecreasing in i. In this case, A would be at most
2k�2
3 þ 3, which is less than or equal to the lower bound for k≥ 3.
Since we showed that the competitive ratio of the pessimistic strategy is less than

or equal to the lower bound, the proof is complete.
As an illustrative example for the pessimistic strategy, consider the instance

given in Figure 2 which represents a part of the Gulf Coast area of the United
States. In Figure 2, the nodes represent the cities, and the numbers on the edges
denote the edge travel times (per hour) in a post-disaster scenario. The edges
(2,6) and (5,6) are the uncertain edges whose costs are not known at the
beginning. The traveling agent is initially at node 1 and node 6 is the destination
node. Path 1-3-6 is the shortest deterministic path (D1), and path 1-2-6 is the
shortest optimistic path (π1) at the initial stage, i.e., d1 ¼ 11 and p1 ¼ 3. When
step 1 of the pessimistic strategy is implemented, the agent compares d1

p1
¼ 11

3 with
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2k� 1 ¼ 3. Since 11
3 >3, the strategy enters step 2. Next, the agent takes the

shortest optimistic path π1 and arrives at node 2 after traversing edge (1,2).
We assume that the costs of the uncertain edges (2,6) and (5,6) are 3 and 2,
respectively. When the agent arrives at node 2, she learns the traveling time of edge
(2,6), i.e., c1 ¼ 3. Then she checks if p1þc1

p2
< 2k� 1. Since 6

6 < 3, the agent takes edge

(2,6) to arrive at node 6 and the strategy ends. Note that the cost of the offline
optimum is 6. Therefore, the competitive ratio of the pessimistic strategy is one in
the described scenario.

4. Multi-agent k-CTP with uncertain edges

In this section, we study the M-k-CTP-U-f and the M-k-CTP-U-l. Note that L
denotes the number of agents in the graph in these problems. We assume that there
is no distinction between the L agents and all of the agents benefit from complete
communication in the sense that they can transmit their locations and explored
uncertain edges’ cost information to the other agents in real time. By considering
an instance of O-D edge-disjoint graphs, we derive lower bounds on the
competitive ratio of deterministic online strategies to the M-k-CTP-U-f and the
M-k-CTP-U-l.

Theorem 1.3 For the M-k-CTP-U-f and the M-k-CTP-U-l, there is no determin-
istic online strategy with competitive ratio less than min d1=p1; 2

k
L

� �� �þ 1
� �

and
min d1=p1; 2

k
L

� �� �þ 1
� �

, respectively.
Proof. We again consider the special graph in Figure 1. In this case, any

deterministic strategy corresponds to a permutation which describes in which
order the uncertain paths and D1 (not necessarily all of them) are going to be
selected by the agents. For all of these strategies, consider the adverse instance
which is defined in the proof of Theorem 1.1. Note that the agents will not
reach D via uncertain paths unless the costs of all of the uncertain edges are
specified. Before we present the rest of our proof, we need to propose the
following lemma.

Lemma 1.4 In the adverse instance, the competitive ratio of the strategies in
which the arrivals of the agents at D is via the uncertain paths is at least 2 k

L

� �þ 1 and
2 k

L

� �þ 1, for the M-k-CTP-U-f and the M-k-CTP-U-l, respectively.
Proof. Note that the agents will not reach D via the uncertain paths unless the

costs of all of the uncertain edges are specified since we are considering the adverse
instance. Now we present our proof for each claim separately.

Figure 2.
A scenario from the Gulf Coast area of the United States network with Atlanta as the source node and
Wilmington as the destination node.
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• M-k-CTP-U-f. In this problem, the agents have to incur a cost of at least
2 k

L

� �� �
p1 to discover the costs of L k

L

� �� �
number of uncertain edges and

backtrack to O. The agents have to incur p1 to learn the costs of the remaining
uncertain edges and deliver at least one of the agents to D. Since the cost of the
shortest path is at least p1 in the adverse instance, the competitive ratio of
deterministic strategies when none of the agents take D1 would be at least
2 k

Lb cð Þp1þp1
p1

, which is equal to 2 k
L

� �þ 1.

• M-k-CTP-U-l. In this problem, it takes a cost of at least 2 k
L

� �� �
p1 to explore the

costs of all of the k uncertain edges and backtrack the agents to O. It takes at
least p1 for all of the agents to take the shortest path and arrive at D. Since the
cost of the shortest path is p1 in the adverse instance, the competitive ratio of
deterministic strategies when none of the agents take D1 would be at least
2 k

Ld eð Þp1þp1
p1

, which is equal to 2 k
L

� �þ 1.

Note that since we are considering the arrivals of the agents at D via the uncer-
tain paths, the performance of the strategies will not be improved if one or more
agents take D1. The proof is complete.

Now, we present the rest of our proof for each problem separately:

• M-k-CTP-U-f. We present our proof by considering two cases:

◦ Case 1. d1p1 ≥ 2 k
L

� �þ 1. In this case, the competitive ratio of the strategies in

which the first arrival of the agents at D is via D1 is at least d1
p1
, which is

greater than or equal to min d1=p1; 2
k
L

� �� �þ 1
� �

. The competitive ratio of
deterministic strategies in which the first arrival of the agents at D is via the
uncertain paths would be at least 2 k

L

� �þ 1, which matches the proposed
lower bound of the problem.

◦ Case 2. d1p1 < 2 k
L

� �þ 1. In this case, the competitive ratio of deterministic

strategies in which the first arrival of the agents at D is via the uncertain
paths would be at least 2 k

L

� �þ 1, which is greater than the proposed lower
bound of min d1=p1; 2

k
L

� �� �þ 1
� �

. The competitive ratio of the strategies in
which the first arrival of the agents at D is via D1 is at least d1

p1
, which

matches the proposed lower bound of the problem.

• M-k-CTP-U-l. We present our proof by considering two cases:

◦ Case 1. d1p1 ≥ 2 k
L

� �þ 1. In this case, the competitive ratio of the strategies in

which the last arrival of the agents at D is via D1 is at least d1
p1
which is greater

than or equal to min d1=p1; 2
k
L

� �� �þ 1
� �

. The competitive ratio of
deterministic strategies in which the last arrival of the agents at D is via the
uncertain edges would be at least 2 k

L

� �þ 1, which matches the proposed
lower bound of the problem.

◦ Case 2. d1p1 < 2 k
L

� �þ 1. In this case, the competitive ratio of deterministic

strategies in which the last arrival of the agents at D is via the uncertain
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2k� 1 ¼ 3. Since 11
3 >3, the strategy enters step 2. Next, the agent takes the

shortest optimistic path π1 and arrives at node 2 after traversing edge (1,2).
We assume that the costs of the uncertain edges (2,6) and (5,6) are 3 and 2,
respectively. When the agent arrives at node 2, she learns the traveling time of edge
(2,6), i.e., c1 ¼ 3. Then she checks if p1þc1

p2
< 2k� 1. Since 6

6 < 3, the agent takes edge

(2,6) to arrive at node 6 and the strategy ends. Note that the cost of the offline
optimum is 6. Therefore, the competitive ratio of the pessimistic strategy is one in
the described scenario.

4. Multi-agent k-CTP with uncertain edges

In this section, we study the M-k-CTP-U-f and the M-k-CTP-U-l. Note that L
denotes the number of agents in the graph in these problems. We assume that there
is no distinction between the L agents and all of the agents benefit from complete
communication in the sense that they can transmit their locations and explored
uncertain edges’ cost information to the other agents in real time. By considering
an instance of O-D edge-disjoint graphs, we derive lower bounds on the
competitive ratio of deterministic online strategies to the M-k-CTP-U-f and the
M-k-CTP-U-l.

Theorem 1.3 For the M-k-CTP-U-f and the M-k-CTP-U-l, there is no determin-
istic online strategy with competitive ratio less than min d1=p1; 2

k
L

� �� �þ 1
� �

and
min d1=p1; 2

k
L

� �� �þ 1
� �

, respectively.
Proof. We again consider the special graph in Figure 1. In this case, any

deterministic strategy corresponds to a permutation which describes in which
order the uncertain paths and D1 (not necessarily all of them) are going to be
selected by the agents. For all of these strategies, consider the adverse instance
which is defined in the proof of Theorem 1.1. Note that the agents will not
reach D via uncertain paths unless the costs of all of the uncertain edges are
specified. Before we present the rest of our proof, we need to propose the
following lemma.

Lemma 1.4 In the adverse instance, the competitive ratio of the strategies in
which the arrivals of the agents at D is via the uncertain paths is at least 2 k

L

� �þ 1 and
2 k

L

� �þ 1, for the M-k-CTP-U-f and the M-k-CTP-U-l, respectively.
Proof. Note that the agents will not reach D via the uncertain paths unless the

costs of all of the uncertain edges are specified since we are considering the adverse
instance. Now we present our proof for each claim separately.

Figure 2.
A scenario from the Gulf Coast area of the United States network with Atlanta as the source node and
Wilmington as the destination node.
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• M-k-CTP-U-f. In this problem, the agents have to incur a cost of at least
2 k

L

� �� �
p1 to discover the costs of L k

L

� �� �
number of uncertain edges and

backtrack to O. The agents have to incur p1 to learn the costs of the remaining
uncertain edges and deliver at least one of the agents to D. Since the cost of the
shortest path is at least p1 in the adverse instance, the competitive ratio of
deterministic strategies when none of the agents take D1 would be at least
2 k

Lb cð Þp1þp1
p1

, which is equal to 2 k
L

� �þ 1.

• M-k-CTP-U-l. In this problem, it takes a cost of at least 2 k
L

� �� �
p1 to explore the

costs of all of the k uncertain edges and backtrack the agents to O. It takes at
least p1 for all of the agents to take the shortest path and arrive at D. Since the
cost of the shortest path is p1 in the adverse instance, the competitive ratio of
deterministic strategies when none of the agents take D1 would be at least
2 k

Ld eð Þp1þp1
p1

, which is equal to 2 k
L

� �þ 1.

Note that since we are considering the arrivals of the agents at D via the uncer-
tain paths, the performance of the strategies will not be improved if one or more
agents take D1. The proof is complete.

Now, we present the rest of our proof for each problem separately:

• M-k-CTP-U-f. We present our proof by considering two cases:

◦ Case 1. d1p1 ≥ 2 k
L

� �þ 1. In this case, the competitive ratio of the strategies in

which the first arrival of the agents at D is via D1 is at least d1
p1
, which is

greater than or equal to min d1=p1; 2
k
L

� �� �þ 1
� �

. The competitive ratio of
deterministic strategies in which the first arrival of the agents at D is via the
uncertain paths would be at least 2 k

L

� �þ 1, which matches the proposed
lower bound of the problem.

◦ Case 2. d1p1 < 2 k
L

� �þ 1. In this case, the competitive ratio of deterministic

strategies in which the first arrival of the agents at D is via the uncertain
paths would be at least 2 k

L

� �þ 1, which is greater than the proposed lower
bound of min d1=p1; 2

k
L

� �� �þ 1
� �

. The competitive ratio of the strategies in
which the first arrival of the agents at D is via D1 is at least d1

p1
, which

matches the proposed lower bound of the problem.

• M-k-CTP-U-l. We present our proof by considering two cases:

◦ Case 1. d1p1 ≥ 2 k
L

� �þ 1. In this case, the competitive ratio of the strategies in

which the last arrival of the agents at D is via D1 is at least d1
p1
which is greater

than or equal to min d1=p1; 2
k
L

� �� �þ 1
� �

. The competitive ratio of
deterministic strategies in which the last arrival of the agents at D is via the
uncertain edges would be at least 2 k

L

� �þ 1, which matches the proposed
lower bound of the problem.

◦ Case 2. d1p1 < 2 k
L

� �þ 1. In this case, the competitive ratio of deterministic

strategies in which the last arrival of the agents at D is via the uncertain
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paths would be at least 2 k
L

� �þ 1 which is greater than the proposed lower
bound of min d1=p1; 2

k
L

� �� �þ 1
� �

. The competitive ratio of the strategies in
which the last arrival of the agents at D is via D1 is at least d1

p1
which matches

the proposed lower bound of the problem.

We just proved that the competitive ratio of deterministic strategies in the
adverse instance is not better than min d1=p1; 2

k
L

� �� �þ 1
� �

and
min d1=p1; 2

k
L

� �� �þ 1
� �

, for the M-k-CTP-U-f and the M-k-CTP-U-l, respectively.
Hence, we conclude that the competitive ratio of the problems cannot be better
than the proposed lower bounds.

5. Conclusions

We introduced new variants of the online k-CTP which find various important
real-life applications. In these variants, the locations of the uncertain edges are
known, where the traveling costs of these edges are unknown. We investigated both
the single-agent and the multi-agent versions of the problem. We proposed a tight
lower bound on the competitive ratio of deterministic online strategies and an
optimal strategy for the single-agent problem that we call the S-k-CTP-U. We
derived lower bounds on the competitive ratio of deterministic online strategies for
the multi-agent problems called as the M-k-CTP-U-f and the M-k-CTP-U-l. Provid-
ing optimal strategies for the M-k-CTP-U-f and the M-k-CTP-U-l which match the
proposed lower bounds can be considered as a future research direction. Analyzing
the problem on special networks such as grid networks is another future research
direction for these new variations.

Author details

Davood Shiri*† and F. Sibel Salman†

Koç University, Istanbul, Turkey

*Address all correspondence to: dshiri@ku.edu.tr

†These authors contributed equally to this work.

© 2019 TheAuthor(s). Licensee IntechOpen. This chapter is distributed under the terms
of theCreativeCommonsAttribution License (http://creativecommons.org/licenses/
by/3.0),which permits unrestricted use, distribution, and reproduction in anymedium,
provided the original work is properly cited.

256

Probability, Combinatorics and Control

References

[1] Sleator D, Tarjan R. Amortized
efficiency of list update and paging
rules. Communications of the ACM.
1985;28:202-208

[2] Papadimitriou C, Yannakakis M.
Shortest paths without a map.
Theoretical Computer Science. 1991;84:
127-150

[3] Bar-Noy A, Schieber B. The Canadian
Traveler Problem. In: SODA ‘91
Proceedings of the Second Annual
ACM-SIAM Symposium on Discrete
Algorithms; 1991. pp. 261-270

[4] Westphal S. A note on the k-
Canadian Traveler Problem.
Information Processing Letters. 2008;
106:87-89

[5] Xu Y, Hu M, Su B, et al. The
Canadian Traveler Problem and its
competitive analysis. Journal of
Combinatorial Optimization. 2009;18:
185-205

[6] Bender M, Westphal S. An optimal
randomized online algorithm for the
k-Canadian Traveller Problem on
node-disjoint paths. Journal of
Combinatorial Optimization. 2015;30:
87-96

[7] Shiri D, Salman FS. On the
randomized online strategies for the k-
Canadian Traveler Problem. Journal of
Combinatorial Optimization. 2019;1:
1-14

[8] Zhang H, Xu Y, Qin L. The k-
Canadian Travelers Problem with
communication. Journal of
Combinatorial Optimization. 2013;26:
251-265

[9] Shiri D, Salman FS. On the online
multi-agent O-D k-Canadian
Traveler Problem. Journal of
Combinatorial Optimization. 2017;34:
453-461

[10] Shiri D, Salman FS. Competitive
analysis of randomized online strategies
for the online k-Canadian Traveler
Problem. Journal of Combinatorial
Optimization. 2019;37:848-865

[11] Xu Y, Zhang H. How much the grid
network and rescuers’ communication
can improve the rescue efficiency in
worst-case analysis. Journal of
Combinatorial Optimization. 2015;30:
1062-1076

257

New Variations of the Online k-Canadian Traveler Problem: Uncertain Costs at Known Locations
DOI: http://dx.doi.org/10.5772/intechopen.88741



paths would be at least 2 k
L
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� �
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and
min d1=p1; 2

k
L

� �� �þ 1
� �

, for the M-k-CTP-U-f and the M-k-CTP-U-l, respectively.
Hence, we conclude that the competitive ratio of the problems cannot be better
than the proposed lower bounds.

5. Conclusions

We introduced new variants of the online k-CTP which find various important
real-life applications. In these variants, the locations of the uncertain edges are
known, where the traveling costs of these edges are unknown. We investigated both
the single-agent and the multi-agent versions of the problem. We proposed a tight
lower bound on the competitive ratio of deterministic online strategies and an
optimal strategy for the single-agent problem that we call the S-k-CTP-U. We
derived lower bounds on the competitive ratio of deterministic online strategies for
the multi-agent problems called as the M-k-CTP-U-f and the M-k-CTP-U-l. Provid-
ing optimal strategies for the M-k-CTP-U-f and the M-k-CTP-U-l which match the
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Chapter 11

A Geometrical Realisation
of Quasi-Cyclic Codes
Cristina Martinez Ramirez and Alberto Besana

Abstract

We study and enumerate cyclic codes which include generalised Reed-Solomon
codes as function field codes. This geometrical approach allows to construct longer
codes and to get more information on the parameters defining the codes. We
provide a closed formula in terms of Stirling numbers for the number of irreducible
polynomials and we relate it with other formulas existing in the literature. Further,
we study quasi-cyclic codes as orbit codes in the Grassmannian parameterizing
constant dimension codes. In addition, we review Horn’s algorithm and apply it to
construct classical codes by their defining ideals.

Keywords: cyclic code, partition, Grassmannian

1. Introduction

Function fields are used ubiquitously in algebraic coding theory for their flexi-
bility in constructions and have produced excellent linear codes. Suitable families of
function fields, for example good towers of function fields, have been used to
construct families of codes with parameters bound better than the asymptotic
bound.

Let q a power of a prime number p. It is well known, that there exists exactly one
finite field with q elements which is isomorphic to the splitting field of the polyno-
mial xq � x over the prime field p. Any other field F of characteristic p contains a
copy of p. We denote respectively by n q

� �
and n q

� �
the affine space and the

projective space over q. Let q x1, x2, … , xn½ � be the algebra of polynomials in n
variables over q.

The encoding of an information word into a k-dimensional subspace is usually
known as coding for errors and erasures in random network coding [1]. Namely, let
V be an N�dimensional vector space over q, a code for an operator channel with
ambient space V is simply a non-empty collection of subspaces of V. The collection
of subspaces is a code for error correcting errors that happen to send data through
an operator channel. The matrix coding the information is parameterised by ran-
dom variables a1, a2, … , an which constitute the letters of an alphabet. Here the
operator channel is an abstraction of the operator encountered in random linear
network coding, when neither transmitter nor receiver has knowledge of the chan-
nel transfer characteristics. The input and output alphabet for an operator channel
is the projective geometry. A good code is capable of correcting error and erasures at
the output of the operator channel. Thus in order to construct good codes one need
to choose a metric consistent with channel errors and search of a set of vectors with
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given metric properties as a correcting code. The codes considered here are codes
for channels whose errors are consistent with the weighted Hamming metric
(WHM).

Let C be a non-singular, projective, irreducible curve defined over q, as the
vanishing locus of a polynomial F∈q x0, x1, x2½ �. We define the number N qð Þ of
q�rational points on the curve to be

N qð Þ ¼ ∣ x0, x1, x2ð Þ∈2 q
� �jF x0, x1, x2ð Þ ¼ 0

� �
∣:

It is a polynomial in q with integer coefficients, whenever q is a prime power.
The number of points C qr

� �
on C over the extensions qr of q is encoded in an

exponential generating series, called the zeta function of C:

Z C, tð Þ ¼ exp
X∞
r¼1

#C qr
� � tr

r

 !
:

Garcia and Stichtenoth analysed the asymptotic behaviour of the number of
rational places and the genus in towers of function fields, [2]. From Garcia-
Stichtenoth’s second tower one obtains codes over any field q where q is an even
power of a prime [3].

One of the main problems in coding theory is to obtain non-trivial lower bounds
of the number N Fið Þ of rational places of towers of function fields Fi=q

� �∞
i¼1 such

that Fi ⊊ Fiþ1. Suitable families of function fields, for example good towers of
function fields, have been used to construct families of codes that beat the Gilbert-
Varshamov bound. This paper aims to explore this link for the study and construc-
tion of quasi-cyclic codes. For example good codes are obtained for curves of genus
0, they are in fact extended generalised Reed-Solomon codes.

Notation. Let q denote the Galois field of q elements and let q
� �n denote the

vector spaces of all ordered n-tuples over q. The Hamming weight of a vector x,
denoted by wt xð Þ is then number of non-zero entries in x. A linear code C of length
n and dimension k over q is a k-dimensional subspace of q

� �n. Such a code is
called n, k, d½ �q code if its minimum Hamming distance is d. For d a positive integer,
α ¼ α1, … , αmð Þ is a partition of d into m parts if the αi are positive and decreasing.

2. Algebraic geometric codes

Let q be a finite field of q elements, where q is a power of a prime. We consider
as an alphabet a set P ¼ P1, … ,PNf g of N � q rational points lying on a smooth
projective curve C of genus g and degree d defined over the field q. If D is a divisor
on the curve C, L Dð Þ is the linear series attached to this divisor with coefficients in
the field.

Definition 2.1. Algebraic Geometric Codes (AGC) are constructed by evaluation of
the global sections of a line bundle or a vector bundle on the curve C over N N > gð Þ
distinct rational places P1, … ,PN. Namely, let F∣q be the function field of the curve, D
the divisor P1 þ⋯þ PN and G a divisor of F∣q of degree s≤N such that
Supp G∩ Supp D ¼ ø. Then the geometric Goppa code associated with the divisors D
and G is defined by

C D,Gð Þ ¼ x P1ð Þ, … , x Pnð Þð Þjx∈L Gð Þf g⊆qn :
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Recall that qn ∣q is a cyclic Galois extension and it is finitely generated by
unique element α∈qnnq. α is a primitive element and 1, α, α2, … , αn�1

� �
is a basis

of the field extension q ↪ q αð Þ, that is, qn ffi q
� �n.

In the sequel, an n, k½ �q-code C is a k-dimensional subspace of q
� �n

:

2.1 Generalised Reed-Solomon codes as cyclic codes

Another important family of Goppa codes is obtained considering the normal
rational curve (NRC) Cn defined over q:

Cn ≔ q 1, α, … , αnð Þ : α∈q ∪ ∞f g� �
:

Assuming that n, pð Þ ¼ 1 are coprime, the set 1, α, α2, … , αn�1
� �

forms a basis of
qn over q, where p is the characteristic of the field. Thus points in the NRC are in
correspondence with q�linear combinations of the base vectors up to collineation.
The Goppa codes of dimension n defined over Cn are constructed by evaluating non-
zero polynomials of degree less than n over a sequence α1, … , αn of n distinct
elements in q, if k≤ n, then the map

ϵ : q x½ � ! n
q, f ↦ f α1, … , αnð Þð Þ (1)

is injective, since the existence of a non-zero polynomial of degree less than k
vanishing on all αi implies n< k by the fundamental theorem of algebra (a non-zero
polynomial of degree r with coefficients in a field can have at most r roots). These
are just Reed-Solomon codes of parameters n, k, d½ � over a finite field q, with parity
check polynomial h xð Þ ¼Qq

i¼1 x� αi
� �

, where α is a primitive root of q such that
αkþ1 ¼ αþ 1. Any codeword c0, c1, … , cn�1ð Þ can be expanded into a q-ary k vector
with respect to the basis 1, α, … , αk�1

� �
. Construction of generalised Reed-Solomon

codes over q only employ elements of q, hence their lengths are at most qþ 1. In
order to get longer codes, one can make use of elements of an extension of q, for
instance considering subfield subcodes of Reed-Solomon codes. In this way, one
gets cyclic codes. Recall that a linear cyclic code is an ideal in the ring q x½ �= xn � 1ð Þ
generated by a polynomial g xð Þ with roots in the splitting field l

q of x
n � 1, where

n∣ql � 1, ([4]). We shall identify the code with the set of its codewords. A natural
question then to ask is how many irreducible polynomials of degree at least 2 are
there over the algebraic closure of q x½ �. Next theorem expresses this number in
terms of Stirling numbers.

Theorem 2.2. Assume that q, nð Þ ¼ 1, then the number of polynomials of degree
n≥ 2ð Þ decomposable into distinct linear factors over a finite field q of arbitrary
characteristic a prime number p, is equal to

Pn
k¼1 qð Þk, where qð Þk is the falling factorial

polynomial q � q� 1ð Þ… q� kð Þ ¼Pn
k¼0s n, kð Þqk, where s n, kð Þ is the Stirling number

of the first kind (the number of ways to partition a set of n objects into k non-empty
subsets), divided by the order of the affine transformation group of the affine line 1 ¼
1n∞, that is q2 � q.

Proof. We need to count all the polynomials f n xð Þ in one variable of degree n
fixed. We assume that our polynomial f n xð Þ decomposes into linear factors, other-
wise we work over q x½ �, where q denotes the algebraic closure of the finite field q.
Since the number of ordered sequences on q symbols is q! and each root is counted
with its multiplicity, it follows that the number of monic polynomials with n� 1
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different roots is q q� 1ð Þ q� 2ð Þ… q� nþ 1ð Þ≔ q� 2ð Þn. Now we observe that
polynomials are invariant by the action of automorphisms of the affine line, so we
must divide this number by the order of this group which is q2 � q. □

Theorem 2.3. Given a set of integers 0, 1, … , n� 1f g module n, there is a set J of k
integers which is a set of roots, that is, there is a polynomial h xð Þ ¼Qj∈ J x� αj

� �
, where

α is a generator of pm
� �

for some prime number p and m is the least integer such that
n∣pm � 1. The ideal h xð Þ generates in pm x½ �= xn � 1ð Þ is a cyclic linear code of parameters
n, k, n� kþ 1ð Þ.

Proof. Let m be the least integer such that n divides pm � 1, then g:c:d m, pð Þ ¼ 1.
We define an equivalence relation on the set of integers 0, 1, … , n� 1f g, by
declaring two integers i and j in the range 0≤ i≤ n� 1 to be conjugate module n

if psi � j mod nð Þ. This equivalence relation partition the set into cyclotomic
cosets. The cyclotomic coset containing j, which we will denote by Ωj, can be
described explicitly as the set j, pj, … , pk�1j

� �
, where k is the least positive

integer such that pkj � j mod nð Þ and j is not necessarily the smallest integer
in such coset. Denote by In the set consisting of the smallest integers in each
cyclotomic coset, then In is a set root, that is, it is a set of k integers in
arithmetic progression modulo n whose increment is relatively prime to n.
Let d ¼ n� kþ 1, then the polynomial

Q
i∈ In x� αi
� �

defines a cyclic code of
parameters n, k, dð Þ. □

As an application of Theorem 2.2, given an integer n, we can count the number
of cyclic codes of parameters n, k½ � for each 0≤ k≤ n and set of roots α1, … , αk in the
splitting field of xn � 1, the corresponding polynomial g xð Þ ¼Qk

i¼1 x� αið Þ gener-
ates a linear cyclic code in the ring q x½ �= xn � 1ð Þ. Thus for each 0≤ k≤ n there are
exactly qð Þk= q2 � qð Þ cyclic codes.

In the theory of error-correcting codes to a given code C⊂n
q, one assigns

another important parameter, the minimum distance d which measures how good
the decoding is.

Definition 2.4. The distance between vectors a ¼ a1, a2, … , anð Þ and b ¼
b1, b2, … , bnð Þ in the Weighted Hamming metric (WHM) is defined by a function:

dWH a, bð Þ ¼
Xn
i¼1

wid ai, bið Þ,

where wi >0, d ai, bið Þ ¼ 1 if ai 6¼ bi and d ai, bið Þ ¼ 0 if ai ¼ bi. The weight of a
vector a in the WHM is wtWH að Þ ¼ dWH a, 0ð Þ ¼Pi:ai 6¼0wi. The value wi and vector
w ¼ w1,w2, … ,wnð Þ are called a weight of position i and a vector of weights of
positions respectively.

Geometrically a binary vector a1, … , anð Þ of length n gives the coordinates of a
vertex of a unit cube in n dimensions.

Example 1. Consider the Goppa code defined by the rational function g xð Þ ¼ 3x2�5xþ5
x3�2x2þx

which admits as decomposition into partial fractions the expression G xð Þ≔ 5
x � 2

x�1 þ
3

x�1ð Þ2. The presence of a double factor x� 1ð Þ2 corresponds to the existence of an
eigenspace E in the vector space n

q of multiplicity 2 and thus an α�splitting subspace
where the operator α is just the linear operator A� λI, with λ the eigenvalue associated to
E and A is the generator matrix of the code. We recall that an r�dimensional W
subspace is α�splitting if αiW ¼ W is invariant under the action of any element αi in the
Galois group of the extension q ↣q αð Þ.
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2.2 Algebraic function field codes

A much greater variety of linear codes is obtained if one uses places of arbitrary
degree rather than just places of degree 1. These codes are more naturally described
through function field codes. A general viewpoint is that function field codes are
certain finite dimensional linear subspaces of an algebraic function field over a
finite field as in Goppa’s construction.

In the paper [5], the authors introduce another construction where places of
arbitrary degree are allowed. The method consists of choosing two divisors G1 and G2
of an algebraic curve over q with G1 ≤G2. Then L G1ð Þ is a subspace of the vector
space L G2ð Þ over q. If we choose a basis of L G2ð Þ, then the coordinate vectors of the
elements of L G1ð Þ form a linear code over q of length n ¼ dim L G2ð Þð Þ and dimen-
sion k ¼ dim L G1ð Þð Þ. These are known as function field codes and they provide a
general perspective on the construction of algebraic-geometry codes [6].

Example 2.We consider as in [7] the Suzuki curve χ defined over q by the following
equation yq � y ¼ xq0 xq � xð Þ with q ¼ 2q20 ≥ 8 and q0 ¼ 2r. This curve has exactly
q2 þ 1�rational places with a single place at infinity P∞ and it is of genus gS ¼
q0 q� 1ð Þ: We construct a code out of the divisor F ¼ mP∞ and Q where Q ¼
P1 þ … þ Pq2 is the sum of the q2�rational points and the parameter m satisfies the
bound m> 2g � 2 and g is the genus of the curve.

Observe that the geometric Goppa code C F,Qð Þ is an q-subspace of q
� �q2 and

its dimension k as an q�vector space is the dimension of the code. Geometrically,
it corresponds to a point in the Grassmannian Gq2,k q

� �
. The set of codewords

recognised by the code C F,Qð Þ admits the following description in terms of mono-
mial ideals in the variables x, y, z,w:

xaybzcwd0 ja, b, c, d0 ≥0, aqþ b qþ q0
� �þ c qþ 2q0

� �þ d0 qþ 2q0 þ 1
� �

≤ d
n o

,

where z ¼ x2q0þ1 and w ¼ xy2q0 � z2q0 are elements in the function field
Fχ ≔q x, yð Þ over q. Moreover, it is a generating set for the linear series L dP∞ð Þ
associated to the divisor dP∞.

Theorem 2.5. Cyclic codes are function field codes constructed over the curve Cn,m
with affine equation ym þ xn ¼ 1 defined over a finite field q of q elements, where q is a
power of a prime p and n,m are integer numbers greater or equal than 2.

Proof. Let us assume n is an integer even number, thus n ¼ 2k � s, with s an
integer odd number. We recall that a linear cyclic code is an ideal in the ring
q x½ �= xn � 1ð Þ generated by a polynomial g xð Þ with roots in the splitting field l

q of

xn � 1, where n∣ql � 1. If we consider the factorisation of the polynomial xn � 1 over

p x½ �, we get xn=2 � 1
� �

xn=2 þ 1
� � ¼ xn=4 � 1

� �
xn=4 þ 1
� �

xn=2 þ 1
� � ¼

xn=2
k � 1

� �
xn=2

k þ 1
� �

xn=2
k�1ð Þ � 1

� �
xn=2

k�1ð Þ þ 1
� �

… xn=2 þ 1
� �

. We see that the

point P0 ¼ α, 0ð Þ∈ 2
q

� �
with αn=2 ¼ p� 1 is an q2�rational place of the affine

curve ym ¼ xn=2 þ 1
� �

. The other rational places are Pk ¼ β, 0ð Þwith βn=2
k ¼ p� 1,...,

P2 ¼ β2, 0
� �

, P1 ¼ 1, 0ð Þ, P0 ¼ �1, 0ð Þ and the place P∞ ¼ 0, αð Þ at ∞. The cyclic
code is realised as the algebraic geometric code associated to the divisors D ¼
P0 þ P1 þ … þ Pk, G ¼ μP∞ and the parameter μ satisfies the bound μ> 2g � 2,
where g is the genus of the curve Cn,m. Note that m is the least integer such that
n∣pm � 1. In particular α is a generator of p

� �m.
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different roots is q q� 1ð Þ q� 2ð Þ… q� nþ 1ð Þ≔ q� 2ð Þn. Now we observe that
polynomials are invariant by the action of automorphisms of the affine line, so we
must divide this number by the order of this group which is q2 � q. □

Theorem 2.3. Given a set of integers 0, 1, … , n� 1f g module n, there is a set J of k
integers which is a set of roots, that is, there is a polynomial h xð Þ ¼Qj∈ J x� αj

� �
, where

α is a generator of pm
� �

for some prime number p and m is the least integer such that
n∣pm � 1. The ideal h xð Þ generates in pm x½ �= xn � 1ð Þ is a cyclic linear code of parameters
n, k, n� kþ 1ð Þ.
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� �
, where k is the least positive

integer such that pkj � j mod nð Þ and j is not necessarily the smallest integer
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cyclotomic coset, then In is a set root, that is, it is a set of k integers in
arithmetic progression modulo n whose increment is relatively prime to n.
Let d ¼ n� kþ 1, then the polynomial

Q
i∈ In x� αi
� �

defines a cyclic code of
parameters n, k, dð Þ. □

As an application of Theorem 2.2, given an integer n, we can count the number
of cyclic codes of parameters n, k½ � for each 0≤ k≤ n and set of roots α1, … , αk in the
splitting field of xn � 1, the corresponding polynomial g xð Þ ¼Qk

i¼1 x� αið Þ gener-
ates a linear cyclic code in the ring q x½ �= xn � 1ð Þ. Thus for each 0≤ k≤ n there are
exactly qð Þk= q2 � qð Þ cyclic codes.

In the theory of error-correcting codes to a given code C⊂n
q, one assigns

another important parameter, the minimum distance d which measures how good
the decoding is.

Definition 2.4. The distance between vectors a ¼ a1, a2, … , anð Þ and b ¼
b1, b2, … , bnð Þ in the Weighted Hamming metric (WHM) is defined by a function:

dWH a, bð Þ ¼
Xn
i¼1

wid ai, bið Þ,

where wi >0, d ai, bið Þ ¼ 1 if ai 6¼ bi and d ai, bið Þ ¼ 0 if ai ¼ bi. The weight of a
vector a in the WHM is wtWH að Þ ¼ dWH a, 0ð Þ ¼Pi:ai 6¼0wi. The value wi and vector
w ¼ w1,w2, … ,wnð Þ are called a weight of position i and a vector of weights of
positions respectively.

Geometrically a binary vector a1, … , anð Þ of length n gives the coordinates of a
vertex of a unit cube in n dimensions.

Example 1. Consider the Goppa code defined by the rational function g xð Þ ¼ 3x2�5xþ5
x3�2x2þx

which admits as decomposition into partial fractions the expression G xð Þ≔ 5
x � 2

x�1 þ
3

x�1ð Þ2. The presence of a double factor x� 1ð Þ2 corresponds to the existence of an
eigenspace E in the vector space n

q of multiplicity 2 and thus an α�splitting subspace
where the operator α is just the linear operator A� λI, with λ the eigenvalue associated to
E and A is the generator matrix of the code. We recall that an r�dimensional W
subspace is α�splitting if αiW ¼ W is invariant under the action of any element αi in the
Galois group of the extension q ↣q αð Þ.
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2.2 Algebraic function field codes

A much greater variety of linear codes is obtained if one uses places of arbitrary
degree rather than just places of degree 1. These codes are more naturally described
through function field codes. A general viewpoint is that function field codes are
certain finite dimensional linear subspaces of an algebraic function field over a
finite field as in Goppa’s construction.

In the paper [5], the authors introduce another construction where places of
arbitrary degree are allowed. The method consists of choosing two divisors G1 and G2
of an algebraic curve over q with G1 ≤G2. Then L G1ð Þ is a subspace of the vector
space L G2ð Þ over q. If we choose a basis of L G2ð Þ, then the coordinate vectors of the
elements of L G1ð Þ form a linear code over q of length n ¼ dim L G2ð Þð Þ and dimen-
sion k ¼ dim L G1ð Þð Þ. These are known as function field codes and they provide a
general perspective on the construction of algebraic-geometry codes [6].

Example 2.We consider as in [7] the Suzuki curve χ defined over q by the following
equation yq � y ¼ xq0 xq � xð Þ with q ¼ 2q20 ≥ 8 and q0 ¼ 2r. This curve has exactly
q2 þ 1�rational places with a single place at infinity P∞ and it is of genus gS ¼
q0 q� 1ð Þ: We construct a code out of the divisor F ¼ mP∞ and Q where Q ¼
P1 þ … þ Pq2 is the sum of the q2�rational points and the parameter m satisfies the
bound m> 2g � 2 and g is the genus of the curve.

Observe that the geometric Goppa code C F,Qð Þ is an q-subspace of q
� �q2 and

its dimension k as an q�vector space is the dimension of the code. Geometrically,
it corresponds to a point in the Grassmannian Gq2,k q

� �
. The set of codewords

recognised by the code C F,Qð Þ admits the following description in terms of mono-
mial ideals in the variables x, y, z,w:

xaybzcwd0 ja, b, c, d0 ≥0, aqþ b qþ q0
� �þ c qþ 2q0

� �þ d0 qþ 2q0 þ 1
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n o

,

where z ¼ x2q0þ1 and w ¼ xy2q0 � z2q0 are elements in the function field
Fχ ≔q x, yð Þ over q. Moreover, it is a generating set for the linear series L dP∞ð Þ
associated to the divisor dP∞.

Theorem 2.5. Cyclic codes are function field codes constructed over the curve Cn,m
with affine equation ym þ xn ¼ 1 defined over a finite field q of q elements, where q is a
power of a prime p and n,m are integer numbers greater or equal than 2.

Proof. Let us assume n is an integer even number, thus n ¼ 2k � s, with s an
integer odd number. We recall that a linear cyclic code is an ideal in the ring
q x½ �= xn � 1ð Þ generated by a polynomial g xð Þ with roots in the splitting field l

q of

xn � 1, where n∣ql � 1. If we consider the factorisation of the polynomial xn � 1 over

p x½ �, we get xn=2 � 1
� �

xn=2 þ 1
� � ¼ xn=4 � 1
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xn=4 þ 1
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xn=2 þ 1
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k þ 1
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k�1ð Þ � 1

� �
xn=2

k�1ð Þ þ 1
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… xn=2 þ 1
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. We see that the

point P0 ¼ α, 0ð Þ∈ 2
q

� �
with αn=2 ¼ p� 1 is an q2�rational place of the affine

curve ym ¼ xn=2 þ 1
� �

. The other rational places are Pk ¼ β, 0ð Þwith βn=2
k ¼ p� 1,...,

P2 ¼ β2, 0
� �

, P1 ¼ 1, 0ð Þ, P0 ¼ �1, 0ð Þ and the place P∞ ¼ 0, αð Þ at ∞. The cyclic
code is realised as the algebraic geometric code associated to the divisors D ¼
P0 þ P1 þ … þ Pk, G ¼ μP∞ and the parameter μ satisfies the bound μ> 2g � 2,
where g is the genus of the curve Cn,m. Note that m is the least integer such that
n∣pm � 1. In particular α is a generator of p

� �m.
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If n is an integer odd number, by Theorem 2.3, we know there is a set of roots
αj
� �

j∈ J, such that α is a generator of pm
� �

. Now we consider the points Pj ¼ αj, 0
� �

with j∈ J and the point P at P∞ ¼ 0, αð Þ ¼ ∞, and the cyclic code is realised as the
function field code associated to the divisors D ¼Pj∈ J Pj and μP∞. □

Remark 2.6. The proof given in theorem gives a realisation of cyclic codes as AG codes
constructed over the curve with affine model ym þ xn ¼ 1. In particular when m ¼ n ¼
qþ 1, we cover the codes defined over the Hermitian curve.

Another important family of cyclic codes is obtained considering the roots of the
polynomial xn � 1 over its splitting field. These codes are of great importance in
ADN-computing and as they are linear codes, they can be described as function
fields. Let α be a primitive element of the underlying vector space over q. Since the
base field is of characteristic p, xn � 1 has n different zeroes. Let q x½ � be the
extension field containing the nth roots of unity 1, α, … , αn�1, where αn�1 þ αn�2 þ
… þ αþ 1 ¼ 0. Moreover the set 1, α, … , αn�1

� �
constitutes a basis over the prime

field p, and the field extensions pn ffi p x½ �= xn�1 þ … þ xþ 1ð Þ are isomorphic.
Example 3. The polynomial x2 þ xþ 1 over p x½ � is irreducible, thus the fields

p2 ffi p x½ �= x2 þ xþ 1ð Þ are isomorphic, and the roots w,wþ 1 correspond to one place
of degree 2 in the extension field p wð Þ.

Example 4. We define the polynomials f xð Þ ¼ xn þ a1xn�1 þ⋯þ an, with ai ∈,
and f x, tð Þ ¼ f xð Þ � t. Then, if f is a separable polynomial, then the Galois group of
f x, tð Þ over  tð Þ is a regular extension with Galois group Sn.

Observe that  x1 … , xnð Þ is the function field of an n� 1ð Þ�dimensional projec-
tive space n�1 ð Þ over . Suppose that z1, … , zn are the roots of f in a splitting field
of f over . Each coefficient ai of xi in f is symmetric in z1, … , zn, thus by the
theorem on symmetric functions, we can write ai as a symmetric polynomial in
z1, … , zn with rational coefficients. On the other side, for a permutation σ ∈ Sn, set
Eσ ¼ x1z σ 1ð Þð Þ þ⋯þ xnz σ nð Þð Þ in  x1 … , xnð Þ and f xð Þ ¼Qσ x� Eσð Þ, where σ runs
through all permutations in Sn.

Theorem 2.7. (Hilbert) Let G ¼ Sn be acting on  x1, … , xnð Þ. The field E of Sn�
invariants is  t1, … , tnð Þ, where ti is the ith symmetric polynomial in x1, … , xn and
 x1, … , xnð Þ has Galois group Sn over E. It is the splitting field of the polynomial
f xð Þ ¼ xn � t1xn�1 þ … þ �1ð Þntn:

Let F be a finite field such that charF, nð Þ ¼ 1. A non-zero polynomial in  x, y½ �
defines a curve on the plane 

2
. The elliptic curves are curves of the form y2 ¼ f xð Þ,

where f xð Þ is a polynomial of degree 3 with coefficients in .
Proposition 2.8. Let n ¼ rs be a factorisation of an integer positive number n into

irreducible coprime factors and assume r< s, then there is a sequence of field extensions
qr ⊂qs ⊂qn .

Proof. Consider the map Tn : Fn ↦Fn

tj ¼ �1ð Þ jσj x1, … , xnð Þ,

where σj is the jth elementary symmetric function in the variables xi. Thus
tj, j ¼ 1,⋯n
� �

, are the coefficients of the equation:

f z, t1, … , tnð Þ ¼ zn þ �1ð Þ t1zn�1 þ⋯þ �1ð Þn tn ¼ z� x1ð Þ z� x2ð Þ⋯ z� xnð Þ:

If we apply Theorem 2.7 to the ith elementary symmetric polynomial in the
symbols α, αq, αq

2
, … , αq

n
, we get that the field of Sn invariants of the polynomial
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f z, t1, … , tnð Þ contains an extension qn of q. Moreover, for any divisor r of n, one
can consider the field of Sr invariants, and apply Theorem 2.7 to the symbols
α, αq

2s
, … , αq

rs
, where n ¼ rs. Then we get an extension qs of qr and all its q-

subspaces are stable under Gal qs=qr
� �

. □
Example 5. Assume n ¼ qþ 1 and we study again the roots of the polynomial xq � 1

in its splitting field. Let ξ be a non-trivial n-root of unity, for any divisor r of n, one can
consider the symbols ξq

r
, … , ξq, ξ. The field of Sr invariants of the polynomial

f z, t1, … , trð Þ is the set of solutions to the equation:

xq
r þ … þ xq þ x ¼ a in qn : (2)

In 2n , for any divisor d of n, there are exactly 2d�1 solutions to Eq. (2) if n=d is
odd and 2d solutions if n=d is even.

Instead of considering r, s divisors of n, we can consider a partition of n into two
parts. For example for an integer 0≤ k≤ n, we consider the partition k, n� kð Þ of n.
Fix two elements g1, g2 ∈GL n, qð Þ of rank k and rank n� k. These points correspond
to linear transformations Tgi : qn ! qn , i∈ 1, 2. It is well known that the
corresponding points qk,qn ⊂qn and qn�k,qn ⊂qn in the Grassmannians Gk,n q

� �
of

k�dimensional subspaces and the Grassmannian Gn�k q
� �

of n� k dimensional
subspaces respectively are dual subspaces in the underlying vector space q

� �n for
the Euclidean inner product. Note that the Hamming weight is preserved under
invertible linear transformation. This case is of great interest for applications in
coding theory, since the corresponding codes with generator matrices G1 and G2

respectively are dual codes. Namely, given a linear n, k½ �-code, a parity check matrix
for C is an n� kð Þ � n matrix H of rank n� k such that C ¼ x∈ q

� �n
: HcT ¼ 0

� �
.

Then the dual code C⊥ is the linear n, n� k½ � code generated by the parity check
matrix of C. There is a right action of the general linear group GL n,q

� �
on Gk,n q

� �
:

Gk,n q
� ��GL n,q

� �! Gk,n q
� �

(3)

U,Að Þ ! UA: (4)

One can study the orbits of Gk,n q
� �

by the action of any subgroup in the general
linear group GL n,q

� �
. For example we can study the orbit of any triangle group:

the Klein group ℤ2 � ℤ2, the dihedral group, the alternated groups A4 and A5 or the
symmetric group Sn. Take as T the standard shift operator on n

q, a linear code C is

said to be quasi-cyclic of index l or l�quasi-cyclic if and only if is invariant under Tl.
If l ¼ 1, it is just a cyclic code. The quantity m≔ n=l is called the co-index of C.
Namely, if we view a codeword c0, c1, … , cn�1ð Þ of C as a polynomial c0 þ c1xþ
… þ cn�1xn�1 ∈q x½ �, then T c xð Þð Þ ¼ x � c xð Þ mod xn � 1ð Þ.

Example 6.We study the action of a rotation element on the Grassmannian G2,4 q
� �

of lines in a 3-dimensional projective space PG 3, qð Þ. We apply to any line g a rotation τ
of angle α ¼ 2π

n , represented by the array of vectors < 1, 0, 0ð Þ, 0, cos αð Þ, sin αð Þð Þ,
0,� cos αð Þ, sin αð Þð Þ> . It is easy to see that the orbit code by the composed action τm

with m divisor of n is a quasi-cyclic code of index m
n.

In general, we study generalised Grassmannians or more commonly known as
flag varieties. Fix a partition λ ¼ λ1, … , λrð Þ of n and let F λ ¼ F λ q

� �
be the variety

of partial flags of q�vector spaces
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If n is an integer odd number, by Theorem 2.3, we know there is a set of roots
αj
� �

j∈ J, such that α is a generator of pm
� �

. Now we consider the points Pj ¼ αj, 0
� �

with j∈ J and the point P at P∞ ¼ 0, αð Þ ¼ ∞, and the cyclic code is realised as the
function field code associated to the divisors D ¼Pj∈ J Pj and μP∞. □

Remark 2.6. The proof given in theorem gives a realisation of cyclic codes as AG codes
constructed over the curve with affine model ym þ xn ¼ 1. In particular when m ¼ n ¼
qþ 1, we cover the codes defined over the Hermitian curve.
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ADN-computing and as they are linear codes, they can be described as function
fields. Let α be a primitive element of the underlying vector space over q. Since the
base field is of characteristic p, xn � 1 has n different zeroes. Let q x½ � be the
extension field containing the nth roots of unity 1, α, … , αn�1, where αn�1 þ αn�2 þ
… þ αþ 1 ¼ 0. Moreover the set 1, α, … , αn�1

� �
constitutes a basis over the prime

field p, and the field extensions pn ffi p x½ �= xn�1 þ … þ xþ 1ð Þ are isomorphic.
Example 3. The polynomial x2 þ xþ 1 over p x½ � is irreducible, thus the fields

p2 ffi p x½ �= x2 þ xþ 1ð Þ are isomorphic, and the roots w,wþ 1 correspond to one place
of degree 2 in the extension field p wð Þ.

Example 4. We define the polynomials f xð Þ ¼ xn þ a1xn�1 þ⋯þ an, with ai ∈,
and f x, tð Þ ¼ f xð Þ � t. Then, if f is a separable polynomial, then the Galois group of
f x, tð Þ over  tð Þ is a regular extension with Galois group Sn.

Observe that  x1 … , xnð Þ is the function field of an n� 1ð Þ�dimensional projec-
tive space n�1 ð Þ over . Suppose that z1, … , zn are the roots of f in a splitting field
of f over . Each coefficient ai of xi in f is symmetric in z1, … , zn, thus by the
theorem on symmetric functions, we can write ai as a symmetric polynomial in
z1, … , zn with rational coefficients. On the other side, for a permutation σ ∈ Sn, set
Eσ ¼ x1z σ 1ð Þð Þ þ⋯þ xnz σ nð Þð Þ in  x1 … , xnð Þ and f xð Þ ¼Qσ x� Eσð Þ, where σ runs
through all permutations in Sn.

Theorem 2.7. (Hilbert) Let G ¼ Sn be acting on  x1, … , xnð Þ. The field E of Sn�
invariants is  t1, … , tnð Þ, where ti is the ith symmetric polynomial in x1, … , xn and
 x1, … , xnð Þ has Galois group Sn over E. It is the splitting field of the polynomial
f xð Þ ¼ xn � t1xn�1 þ … þ �1ð Þntn:

Let F be a finite field such that charF, nð Þ ¼ 1. A non-zero polynomial in  x, y½ �
defines a curve on the plane 

2
. The elliptic curves are curves of the form y2 ¼ f xð Þ,

where f xð Þ is a polynomial of degree 3 with coefficients in .
Proposition 2.8. Let n ¼ rs be a factorisation of an integer positive number n into

irreducible coprime factors and assume r< s, then there is a sequence of field extensions
qr ⊂qs ⊂qn .

Proof. Consider the map Tn : Fn ↦Fn

tj ¼ �1ð Þ jσj x1, … , xnð Þ,

where σj is the jth elementary symmetric function in the variables xi. Thus
tj, j ¼ 1,⋯n
� �

, are the coefficients of the equation:

f z, t1, … , tnð Þ ¼ zn þ �1ð Þ t1zn�1 þ⋯þ �1ð Þn tn ¼ z� x1ð Þ z� x2ð Þ⋯ z� xnð Þ:

If we apply Theorem 2.7 to the ith elementary symmetric polynomial in the
symbols α, αq, αq

2
, … , αq

n
, we get that the field of Sn invariants of the polynomial
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f z, t1, … , tnð Þ contains an extension qn of q. Moreover, for any divisor r of n, one
can consider the field of Sr invariants, and apply Theorem 2.7 to the symbols
α, αq

2s
, … , αq

rs
, where n ¼ rs. Then we get an extension qs of qr and all its q-

subspaces are stable under Gal qs=qr
� �

. □
Example 5. Assume n ¼ qþ 1 and we study again the roots of the polynomial xq � 1

in its splitting field. Let ξ be a non-trivial n-root of unity, for any divisor r of n, one can
consider the symbols ξq

r
, … , ξq, ξ. The field of Sr invariants of the polynomial

f z, t1, … , trð Þ is the set of solutions to the equation:

xq
r þ … þ xq þ x ¼ a in qn : (2)

In 2n , for any divisor d of n, there are exactly 2d�1 solutions to Eq. (2) if n=d is
odd and 2d solutions if n=d is even.

Instead of considering r, s divisors of n, we can consider a partition of n into two
parts. For example for an integer 0≤ k≤ n, we consider the partition k, n� kð Þ of n.
Fix two elements g1, g2 ∈GL n, qð Þ of rank k and rank n� k. These points correspond
to linear transformations Tgi : qn ! qn , i∈ 1, 2. It is well known that the
corresponding points qk,qn ⊂qn and qn�k,qn ⊂qn in the Grassmannians Gk,n q

� �
of

k�dimensional subspaces and the Grassmannian Gn�k q
� �

of n� k dimensional
subspaces respectively are dual subspaces in the underlying vector space q

� �n for
the Euclidean inner product. Note that the Hamming weight is preserved under
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� �n
: HcT ¼ 0

� �
.

Then the dual code C⊥ is the linear n, n� k½ � code generated by the parity check
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� �
on Gk,n q

� �
:

Gk,n q
� ��GL n,q

� �! Gk,n q
� �

(3)

U,Að Þ ! UA: (4)

One can study the orbits of Gk,n q
� �

by the action of any subgroup in the general
linear group GL n,q

� �
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� �
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of angle α ¼ 2π
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flag varieties. Fix a partition λ ¼ λ1, … , λrð Þ of n and let F λ ¼ F λ q

� �
be the variety

of partial flags of q�vector spaces
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0f g ¼ Er ⊂Er�1 ⊂ … ⊂E1 ⊂E0 ¼ q
� �n

such that dim Ei�1=Ei� � ¼ λi. The group GL n,q
� �

acts on F λ in the natural way.
Fix an element X0 ∈F λ and denote by Pλ the stabilizer of X0 in G and by Uλ the
subgroup of elements g∈Pλ which induces the identity on Ei=Eiþ1 for all i ¼
0, 1, … , n� 1. Put Lλ ¼ GLλr q

� �� … , � GLλ1 q
� �

, then we have Pλ ¼ Lλ � Uλ.
Proposition 2.9. Let us consider the factorisation of n into irreducible pairwise

coprime factors n ¼ pe11 p
e2
2 ⋯perr with e1 < e2 < … < er, and λ ¼ e1, … , erð Þ be the parti-

tion of exponents. Then there is a flag variety F λ q
� �

of partial flags of q�vector spaces:

0f g ¼ Er ⊂Er�1 ⊂⋯⊂E1 ⊂E0 ¼ q
� �n,

such that dim Ei�1=Ei� � ¼ ei.
Proof Observe that the result follows trivially for the case in which n is a prime

number e1 ¼ ⋯ ¼ er ¼ 1. If n ¼ rs factorizes into two irreducible prime factors, the
result follow as we have seen above, there is a flag 0f g ¼ Er ⊂Es ⊂E0 ¼ q

� �n and
then by induction in r the result follows. □

Given a cyclic code over F of length n, its defining set is given by the exponents
occurring in g xð Þ, where g xð Þ is the generator polynomial of the ideal of the code in
F x½ �= xn � 1ð Þ.

Let α∈F be an nth primitive root of unity. The nth cyclotomic polynomial
Φn xð Þ ¼Q1< j< n, j,nð Þ¼1 x� αj

� �
∈F x½ � is the minimal polynomial of α over F. It is

monic of degree of the Euler’s totient function φ nð Þ. It has integer coefficients and it is
irreducible over . In  x½ �, we have the factorization into irreducible polynomials:

xn � 1 ¼
Y
d∣n

Φd xð Þ:

By Möebius inversion:

Φn xð Þ ¼
Y
d∣n

xd � 1
� �μ n=dð Þ

In the case of binary codes where q ¼ 2, Bezzateev and Shekhunova [8] have
obtained that the number of irreducible normalized polynomials I2m lð Þ of degree l
over 2m satisfy the following equation:

I2m lð Þ ¼ 1
l

X
d=l

μ dð Þ2m l
d: (5)

where μ dð Þ is the Möebius function:

μ dð Þ ¼
1 if d ¼ 1;

�1ð Þr if d is a product of r different prime numbers;
0 in all other cases:

8><
>:

Let g xð Þ equals the least common multiple lcm Φi xð Þ : αi ∈ S
� �

, then S is a
defining set for C. We will describe the defining set by the exponents occurring in S
with S ¼ i1, i2, … , ilf g, where i1 < … < il. A parity check matrix for the code C Sð Þ is
given by:
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M Sð Þ ¼

αi1
� �0

αi1
� �1 ⋯ αi1

� �n�1

αi2
� �0

αi2
� �1 ⋯ αi2

� �n�1

⋮ ⋮
αir
� �0

αir
� �1 ⋯ αir

� �n�1Þ

0
BBBB@

1
CCCCA

The code C⊂Fn is obtained as the subfield subcode of C:

C ¼ c∈Fn : M Rð ÞcT ¼ 0
� �

:

Given a triple I, J,Kð Þ of subsets of 1, … , nf g of the same cardinality r, we
associate to them partitions λ, μ and ν as follows. Let I ¼ i1 < … < irf g⊂ 1, … , nf g,
then the corresponding partition is defined as λ ¼ ir � r, … , r1 � 1ð Þ, and respec-
tively for J,K. We call the triple I, J,Kð Þ admissible for the Horn problem, if the
corresponding triple of partitions λ, μ, γð Þ occurs as eigenvalues of a triple of
Hermitian r by r matrices, with the third one the sum of the first two.

We describe Horn’s inductive procedure to produce set of triples
I, J,Kð Þ⊂ 0, 1, … , nf g.

Un
r ¼ I, J,Kð Þj

X
i∈ I

iþ
X
j∈ J

j ¼
X
k∈K

kþ r rþ 1ð Þ=2
( )

,

Tn
r ¼ f I, J,Kð Þ∈Un

r ∣ for all p< r and all F,G,Hð Þ∈Tr
p,

X
f ∈ F

if þ
X
g∈G

jg ≤
X
h∈H

kh þ p pþ 1ð Þ=2g:

Example 7. Let us consider the triple of subsets

I, J,Kð Þ ¼ 1, 3, 5f g, 1, 3, 5f g, 2, 4, 6f gð Þ

and the corresponding triple of partitions λ, μ, νð Þ ¼ 2, 1, 0ð Þ, 2, 1, 0ð Þ 3, 2, 1ð Þð Þ
arises from the triple of diagonal 3 by 3 matrices with diagonal entries
2, 1, 0ð Þ, 1, 0, 2ð Þ and 3, 1, 2ð Þ.

Lemma 2.10. For any triple I, J,Kð Þ admissible for the Horn problem, the poly-
nomials defined by f xð Þ ¼Qi∈ I x� αi

� �
, g xð Þ ¼Qj∈ J x� αj

� �
, and h xð Þ ¼Q

k∈K x� αk
� �

generate a cyclic code of length n ¼ ir þ jr þ krmodp and k ¼ r, where
r ¼ ∣I∣þ ∣ J∣þ ∣K∣ and p is the characteristic of the field F.

Proof. The cyclic code generated by f xð Þ coincides with the cyclic code generated
by lcm mi xð Þ : αi, i∈ I

� �
and respectively for g xð Þ and h xð Þ the polynomials

lcm mj xð Þ : αj, j∈ J
� �

and lcm mk xð Þ : αk, k∈K
� �

: It is the cyclic code generated by
the minimal polynomial of αirþjrþkr . □

Remark 2.11. We see that Horn’s algorithm is relevant since some classical code
constructions can be seen as ideals in a finite dimensional commutative semi simple algebra
over a finite field q with q ¼ pr elements and p a prime number as in example (3).

Lemma 2.12. The family of cyclic codes obtained by considering the roots of the
polynomial xn � 1 over its splitting fields are indeed AG codes arising from genus 0
curves, and by Riemann-Roch theorem, their parameters satisfy the bound d≥ nþ 1� k,
where d is the minimum distance.

Proof Let q x½ � be the extension field containing the nth roots of unity
1, α, … , αn�1, where αn�1 þ αn�2 þ … þ αþ 1 ¼ 0. Moreover the set 1, α, … , αn�1

� �
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constitutes a basis over the prime field p, and the field extensions pn ffi
p x½ �= xn�1 þ … þ xþ 1ð Þ are isomorphic. □

2.3 Generating functions of conjugacy classes in a group

The automorphism group of the projective line  q
� �

is the projective linear
group PGL 2, qð Þ. Any finite subgroup A⊂PGL 2, qð Þ defines a k�uniform Cayley
(sum) hypergraph Γk Að Þ whose vertices are the generating k�tuples of A and the

edges are k�element sets x1, … , xkf g∈ G
k

� �
represented by random variables

x1, … , xk. In particular, if f zð Þ is the ordinary generating function that enumerates A,
that is, number of conjugacy classes in A, then 1

1�f zð Þ is the ordinary generating
function enumerating sequences of k elements in A. If G is an abelian group, then
x1 þ⋯þ xk ∈A. In general, we will consider k-arcs in Γ Að Þ which represent casual
connections between the variables. Applications are known in statistics, for example
the multinomial experiment consists of n identical independent trials, and there are k
possible outcomes (classes, categories or cells) to each trial and the cell counts
n1, n2, … , nk are the random variables, the number of observations that fall into each
of the k�categories.

Definition 2.13. In PG n� 1, qð Þ a k; rð Þ�arc is a set of k points any r of which form
a basis for n

q, or in other words, r� 1 of them but not r are collinear.
Consider the normal rational curve over q:

Vn
1 ≔ q 1, x, x2, … , xn

� �j x∈q ∪ ∞f g� �

is a (q + 1)-arc in the n-dimensional projective space PG n, qð Þ.
We see that if q≤ n, the NRC is a basis of a q-dimensional projective subspace,

that is, a PGq n, qð Þ. So we can enumerate how many NRC’s are there in a PG n, qð Þ.
The answer is ϕ q; n, qð Þ, the number of ways of choosing such a set of points in a
particular q-space. If q≥ nþ 2, the NRC is an example of a (q + 1)-arc. It contains
q + 1 points, and every set of nþ 1 points are linearly independent.

2.4 Conclusion

The problem of considering finite subgroups and conjugacy classes in PGL 2, qð Þ
the automorphism group of the projective line can be generalised to that of finite
subgroups in PGL n, qð Þ, the collineation group of the normal rational curve.
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Chapter 12

Moments of the Discounted
Aggregate Claims with Delay
Inter-Occurrence Distribution and
Dependence Introduced by a FGM
Copula
Franck Adékambi

Abstract

In this chapter, with renewal argument, we derive higher simple moments of the
Discounted Compound Delay Renewal Risk Process (DCDRRP) when introducing
dependence between the inter-occurrence time and the subsequent claim size. To
illustrate our results, we assume that the inter-occurrence time is following a delay-
Poisson process and the claim amounts is following a mixture of Exponential distri-
bution, we then provide numerical results for the first two moments. The depen-
dence structure between the inter-occurrence time and the subsequent claim size is
defined by a Farlie-Gumbel-Morgenstern copula. Assuming that the claim distribu-
tion has finite moments, we obtain a general formula for all the moments of the
DCDRRP process.

Keywords: compound delay-Poisson process, discounted aggregate claims,
moments, FGM copula, constant interest rate

1. Introduction

The classical Poisson model is attractive in the sense that the memoryless prop-
erty of the exponential distribution makes calculations easy. Then the research was
extended to ordinary Sparre-Andersen renewal risk models where the inter-claim
times have other distributions than the exponential distribution. Dickson and Hipp
[1, 2] considered the Erlang-2 distribution, Li and Garrido [3] the Erlang-n distri-
bution, Gerber and Shiu [4] the generalized Erlang-n distribution (a sum of n
independent exponential distributions with different scale parameters) and Li and
Garrido [5] looked into the Coxian class distributions. One difficulty with these
models is that we have to assume that a claim occurs at time 0, which is not the case
in usual setting.

Albrecher and Teugels [6] considered modeling dependence with the use of an
arbitrary copula. In a similar dependence model to Albrecher and Teugels as well,
Asimit and Badescu [7] considered a constant force of interest and heavy tailed
claim amounts.
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Chapter 12

Moments of the Discounted
Aggregate Claims with Delay
Inter-Occurrence Distribution and
Dependence Introduced by a FGM
Copula
Franck Adékambi

Abstract

In this chapter, with renewal argument, we derive higher simple moments of the
Discounted Compound Delay Renewal Risk Process (DCDRRP) when introducing
dependence between the inter-occurrence time and the subsequent claim size. To
illustrate our results, we assume that the inter-occurrence time is following a delay-
Poisson process and the claim amounts is following a mixture of Exponential distri-
bution, we then provide numerical results for the first two moments. The depen-
dence structure between the inter-occurrence time and the subsequent claim size is
defined by a Farlie-Gumbel-Morgenstern copula. Assuming that the claim distribu-
tion has finite moments, we obtain a general formula for all the moments of the
DCDRRP process.

Keywords: compound delay-Poisson process, discounted aggregate claims,
moments, FGM copula, constant interest rate

1. Introduction

The classical Poisson model is attractive in the sense that the memoryless prop-
erty of the exponential distribution makes calculations easy. Then the research was
extended to ordinary Sparre-Andersen renewal risk models where the inter-claim
times have other distributions than the exponential distribution. Dickson and Hipp
[1, 2] considered the Erlang-2 distribution, Li and Garrido [3] the Erlang-n distri-
bution, Gerber and Shiu [4] the generalized Erlang-n distribution (a sum of n
independent exponential distributions with different scale parameters) and Li and
Garrido [5] looked into the Coxian class distributions. One difficulty with these
models is that we have to assume that a claim occurs at time 0, which is not the case
in usual setting.

Albrecher and Teugels [6] considered modeling dependence with the use of an
arbitrary copula. In a similar dependence model to Albrecher and Teugels as well,
Asimit and Badescu [7] considered a constant force of interest and heavy tailed
claim amounts.
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Barges et al. [8] followed the idea of Albrecher and Teugels [6] and supposed
that the dependence is introduced by a copula, the Farlie-Gumbel-Morgenstern
(GGM) copula, between a claim inter-arrival time and its subsequent claim amount.

Adékambi and Dziwa [9] and Adékambi [10] provide a direct point of extension
but assuming that the claim counting process to follow an unknown general distri-
bution in a framework of dependence with random force of interest to calculate the
first two moments of the present value of aggregate random cash flows or random
dividends.

The discounted aggregate sum has also been applied in many other fields. For
example, it can be used in health cost modeling, see Govorun and Latouche [11],
Adékambi [12], or in reliability, in civil engineering, see Van Noortwijk and
Frangopol [13].

The delayed or modified renewal risk model solves this problem by assuming that
the time until the first claim has a different distribution than the rest of the inter-
claim times. Not much research has been done for this model at this stage. Among the
first works was Willmot [14] where a mixture of a “generalized equilibrium” distri-
bution and an exponential distribution is considered for the distribution of the time
until the first claim. Special cases of the model include the stationary renewal risk
model and the delayed renewal risk model with the time until the first claim expo-
nentially distributed. Our focus is to extend the work of Bargès et al. [8], Adékambi
and Dziwa [9] and Adékambi [10] by allowing the counting process to follow a delay
renewal risk process and thus derive a recursive formula of the moments of this
subsequent Discounted Compound Delay Poisson Risk Value (DCDPRV).

For example, young performer companies typically have a high growth rate at
the beginning, but as they mature their growth rate may decrease with the increas-
ing scarcity of investment opportunities. That makes dividends dependent on the
economic climate at the dividend occurrence time. Obviously the distribution of
inter-dividends time in times of economic expansion and in times of economic crisis
cannot be identically distributed. So it would be appropriate to use a delayed
renewal model to model the distribution of the inter-dividend time. A delayed
renewal process is just like an ordinary renewal process, except that the first arrival
time is allowed to have a different distribution than the other inter-dividends times.

The chapter is organized as follows: In the second section, we present the model
of the continuous time discounted compound delay-Poisson risk process that we use
and give some notation. In Section 3, we present a general formula for all the
moments of the DCDPRV process. A numerical example of the first two moments
will then follow in Section 4.

2. The model

We use the same model as the one in Bargès et al. [8], where the instantaneous
interest rate δ is constant.

Define our risk model as follows:

i. The number of claims N tð Þ; t≥0f g and Nd tð Þ; t≥0f g form, respectively, an
ordinary and a delayed renewal process and, for k∈N ¼ 1; 2; 3;…f g:

• the positive claim occurrence times are given by Tk,

• the positive claim inter-arrival times are given by τk ¼ Tk � Tk�1, k∈N,
and T0 ¼ 0:

• τkð Þk≥ 2 � τ2 are independent and identically distributed (i.i.d),
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ii. The kth random claim is given by Xk, and

• Xk; k∈Nf g are independent and identically distributed (i.i.d),

• Xk; τk; k∈Nf g are mutually independent; and the higher moments,
μk ¼ E Xk

1

� �
of X1 exist.

iii. The discounted aggregate value at time t ¼ 0 of the claims recorded over the
period 0; t½ � yields, respectively, for the ordinary and the delayed renewal
case:

Z0 tð Þ ¼
XNo tð Þ

k¼1

e�δTkXk, Zd tð Þ ¼
XNd tð Þ

k¼1

e�δTkXk, (1)

where Z0 tð Þ ¼ Zd tð Þ ¼ 0 if N0 tð Þ ¼ Nd tð Þ ¼ 0.

2.1 The dependence

We introduce a specific structure of dependence based on the
Farlie-Gumbel-Morgenstern (FGM) copula. The advantage of using the FGM
copula and its generalizations lies in its mathematical manageability. The joint
cumulative distribution function (c.d.f.) of Xi; τið Þ, the ith claim and its
occurrence time is

FXi,τi x; vð Þ ¼ C FXi xð Þ;Fτi vð Þð Þ
¼ FXi xð ÞFτi vð Þ þ θFXi xð ÞFτi vð Þ 1‐FXi xð Þð Þ 1‐Fτi vð Þð Þ,

(2)

for x; vð Þ∈Rþ ∗Rþ and where FXi xð Þ and Fτi vð Þ are the marginals of Xi and τi
respectively. Recall that the density of the FGM copula is

cFGMθ u; vð Þ ¼ 1þ θ 1‐2uð Þ 1‐2vð Þ, (3)

for u; vð Þ∈ 0; 1½ � ∗ 0; 1½ � so that the joint probability density function (p.d.f.) of
Xi; τið Þ is

f Xi,Ti
x; vð Þ ¼ cFGMθ FXi xð Þ;FTi vð Þð Þf Xi

xð Þf Ti
vð Þ

¼ f Xi
xð Þf Ti

vð Þ þ θ f Xi
xð Þf Ti

vð Þ 1‐2FXi xð Þð Þ 1‐2FTi vð Þð Þ
, (4)

where f Xi
and f τi are the p.d.f.’s of Xi and τi respectively.

With these hypotheses, we present in Section 3 recursive formula of the
higher moments of this present value risk process, for a constant instantaneous
interest rate.

3. Recursive expression for higher moments

It is often easier to calculate the moments of the random variable Zd tð Þ; t≥0f g
than finding its distribution. If the probability generation function of Zd tð Þ; t≥0f g
or its moment generating function (mgf ) exists, it is possible to obtain the
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corresponding distribution by inversion of its mgf. Since, there is relatively
little research devoted to the study of the distribution of the discounted
compound renewal sums. We could then think about another technique other
than the one proposed by the above authors by studying the moments of
Zd tð Þ; t≥0f g.

3.1 Delay renewal case

The mathematical expectation of total claims plays an important role in the
determination of the pure premium, in addition to giving a measure of the central
tendency of its distribution. The moments centered at the average of order 2, 3 and
4 are the other moments usually considered because they usually give a good
indication of the pace of distribution, and these give us respectively a measure of
the dispersion of the distribution around its mean, a measure of the asymmetry and
flattening of the distribution considered.

Moments, whether simple, joined or conditional, may eventually be used to
construct approximations of the distribution of the DCDPRV.

Theorem 3.1
The Laplace transform of the mth moment of Zd tð Þ; t≥0f g is given by:

~πmZd
rð Þ ¼ 1þ λ2

rþmδ
þ λ1 � λ2
rþmδþ λ1

� �
~um rð Þ

¼ λ1 1þ λ2
rþmδ

þ λ1 � λ2
rþmδþ λ1

� �

�
Xm�1

j¼0

m

j

0
@

1
A μm�j � θ μ0m�j � μm�j

� �� �

λ1 þmδþ r
þ
2θ μ0m�j � μm�j

� �

2λ1 þmδþ r

8<
:

9=
;~π j

Zo
rð Þ

(5)

where

~πmZd
rð Þ ¼ ~um rð Þ þ λ2

mδ
~um rð Þ � Lτ1 m; δ; rð Þ þ λ1 � λ2

mδþ λ1
~um � Lτ1 mδþ λ1; rð Þ: (6)

Proof
Conditioning on the arrival of the first claim leads to

πmZd
tð Þ ¼ E Zm tð Þ½ �

¼ E E e�δsX1 þ e�δsZo t� sð Þ� �m τ1 ¼ sj� �� �

¼
Xm�1

j¼0

m

j

0
@

1
A
ðt

0

 f τ1 sð Þe�mδsE Xm�j τ1 ¼ sj� �
π j
Zo

t� sð Þds

þ
ðt

0

 f τ1 sð Þe�mδsπmZo
t� sð Þds:

(7)
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We have

E Xm�j τ1 ¼ sj� � ¼
ð∞

0

xm�jf X τ1¼sj xð Þdx

¼
ð∞

0

xm�j 1þ θ 1� 2FX xð Þð Þ 1� 2Fτ1 sð Þð Þf gf X xð Þdx

¼ E Xm�j� �þ θ
ð∞

0

xm�j 1� 2FX xð Þð Þ 1� 2Fτ1 sð Þð Þf X xð Þdx

¼ E Xm�j� �þ θ
ð∞

0

xm�j 2� 2FX xð Þð Þ 1� 2Fτ1 sð Þð Þf X xð Þdx

� θ
ð∞

0

xm�j 1� 2Fτ1 sð Þð Þ f X xð Þdx

¼ E Xm�j� �
1� θ 1� 2Fτ1 sð Þð Þð Þ

þ θ 1� 2Fτ1 sð Þð Þ
ð∞

0

m� jð Þxm�j 1� Fτ1 sð Þð Þdx:

(8)

We let,

μ0m�j ¼ E X0m�j
h i

¼
ð∞

0

m� jð Þxm�j�1 1� FX xð Þð Þ2dx

,

ð∞

0

m� jð Þxm�j�1 1� FX xð Þð Þdx ¼ E Xm�j� �
,∞

(9)

such that the above equation becomes

E Xm�j τ1 ¼ sj� � ¼ μm�j þ θ 1� 2Fτ1 sð Þð Þ μ0m�j � μm�j

� �
: (10)

πmZd
tð Þ ¼ E Zm tð Þ½ �

¼ E E e�δsX1 þ e�δsZo t� sð Þ� �m τ1 ¼ sj� �� �

¼
Xm�1

j¼0

m

j

0
@

1
A
ðt

0

 f τ1 sð Þe�mδs μm�j þ θ 1� 2Fτ1 sð Þð Þ μ0m�j � μm�j

� �n o
πjZo

t� sð Þds

þ
ðt

0

 f τ1 sð Þe�mδsπmZo
t� sð Þds:
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Let us
Ð t
0 f τ1 sð Þe�mδsds ¼ Hδ tð Þ, Ð t0 f τ2 sð Þe�mδsds ¼ Iδ tð Þ then

πmZd
tð Þ ¼

Xm�1

j¼0

m

j

 !ðt

0

 f τ1 sð Þe�mδs μm�j þ θ 1� 2Fτ1 sð Þð Þ μ0m�j � μm�j

� �n o
π j
Zo

t� sð Þds

þHmδ ∗ πmZo :ð Þ

¼ um þHmδ ∗ um þ Imδ ∗ πmZo :ð Þ
n o

¼ um þHmδ ∗ um þHmδ ∗ Imδ ∗ πmZo :ð Þ

¼ um þHmδ ∗ um þHmδ ∗ Imδ ∗ um þ Imδ ∗ πmZo :ð Þ
n o

¼ um þHmδ ∗ um þ um ∗
X∞

k¼1

Hmδ ∗ Iδ ∗ kð Þ
m tð Þ ¼ um þ um ∗

X∞

k¼0

Hmδ ∗ Iδ ∗ kð Þ
m tð Þ

¼ um þ
ðt

0

um t� sð Þe�mδsdmd sð Þ,

(11)

where um tð Þ ¼Pm�1
j¼0

m
j

� � Ð t
0 f τ1 sð Þe�mδs μj þ θ 1� 2Fτ1 sð Þð Þ μ0j � μj

� �n o
πm�j
Zo

t� sð Þds.
We consider the case where the canonical random variable τ2 has an Exponential

distribution with parameter λ2 .0 and τ1 has an Exponential distribution with
parameter λ1 .0.

That is, we have:

f τ1 tð Þ ¼ λ1e�λ1t, f τ2 tð Þ ¼ λ2e�λ2t, Lτ1 λ1; sð Þ ¼
ð∞

0

e�svf τ1 vð Þdv ¼ λ1
λ1 þ s

� �
, Lτ2 λ2; sð Þ ¼ λ2

λ2 þ s

� �
:

md tð Þ ¼ λ2tþ λ1 � λ2
λ1

1� eλ1t
� �

(12)

The mth moment of Zd tð Þ is then given by,

πmZd
tð Þ ¼ um þ

ðt

0

um t� sð Þe�mδsdmd sð Þ

¼ um þ λ2
ðt

0

um t� sð Þe�mδsd sð Þ þ λ1 � λ2ð Þ
ðt

0

um t� sð Þe� mδþλ1ð Þsd sð Þ

¼ um þ λ2
mδ

ðt

0

um t� sð Þmδe�mδsd sð Þ þ λ1 � λ2
mδþ λ1

ðt

0

um t� sð Þ mδþ λ1ð Þe� mδþλ1ð Þsd sð Þ

(13)

Taking the Laplace transform of the above equation, we get:

~πmZd
rð Þ ¼ ~um rð Þ þ λ2

mδ
~um rð Þ � Lτ1 mδ; rð Þ þ λ1 � λ2

mδþ λ1
~um � Lτ1 mδþ λ1; rð Þ (14)
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But,

um tð Þ ¼
Xm�1

j¼0

m

j

0
@

1
A
ðt

0

 f τ1 sð Þe�mδs μj þ θ 1� 2Fτ1 sð Þð Þ μ0j � μj
� �n o

πm�j
Zo

t� sð Þds

¼
Xm�1

j¼0

m

j

0
@

1
A
ðt

0

λ1e�λ1se�mδs μj þ θ 2e�λ1s � 1
� �

μ0j � μj
� �n o

πm�j
Zo

t� sð Þds

¼
λ1 μj � θ μ0j � μj

� �� �

λ1 þmδ

Xm�1

j¼0

m

j

0
@

1
A
ðt

0

λ1 þmδð Þe� λ1þmδð Þsπm�j
Zo

t� sð Þds

þ 2θ
λ1 μ0j � μj
� �

2λ1 þmδ

Xm�1

j¼0

m

j

0
@

1
A
ðt

0

2λ1 þmδð Þe� 2λ1þmδð Þsπm�j
Zo

t� sð Þds

(15)

Then the Laplace transform of um tð Þ, at r, will give:

~um rð Þ ¼ λ1
Xm�1

j¼0

m
j

� � μj � θ μ0j � μj
� �� �

λ1 þmδþ r
þ

2θ μ0j � μj
� �

2λ1 þmδþ r

8<
:

9=
;~πm�j

Zo
rð Þ (16)

Substituting Eq. (14) into Eq. (13), we have:

~πmZd
rð Þ ¼ 1þ λ2

rþmδ
þ λ1 � λ2
rþmδþ λ1

� �
~um rð Þ

¼ λ1 1þ λ2
rþmδ

þ λ1 � λ2
rþmδþ λ1

� �Xm�1

j¼0

m

j

0
@

1
A μj � θ μ0j � μj

� �� �

λ1 þmδþ r
þ

2θ μ0j � μj
� �

2λ1 þmδþ r

8<
:

9=
;~πm�j

Zo
rð Þ

(17)

Solving the above equation for the ordinary case, where τ2ð Þk≥ 2 � τ2, we have:

~πmZo
rð Þ ¼ λ2μm

r rþ δmþ λ2ð Þ þ
λ2

rþ δmþ λ2ð Þ
Xm�1

k¼1

Ck
m μk~π

m�kð Þ
Zo

rð Þ

þ θ μ0m � μm
� � λ2 rþ δmð Þ

r rþ δmþ λ2ð Þ rþ δmþ 2λ2ð Þ

þ θ
λ2 rþ δmð Þ

rþ δmþ λ2ð Þ rþ δmþ 2λ2ð Þ
Xm�1

k¼1

Ck
m μ0k � μk
� �

~π m�kð Þ
Zo

rð Þ

þ λ2
rþ δmþ λ2ð Þ ~π

m
Z0

rð Þ

(18)
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Let us
Ð t
0 f τ1 sð Þe�mδsds ¼ Hδ tð Þ, Ð t0 f τ2 sð Þe�mδsds ¼ Iδ tð Þ then

πmZd
tð Þ ¼

Xm�1

j¼0

m

j

 !ðt

0

 f τ1 sð Þe�mδs μm�j þ θ 1� 2Fτ1 sð Þð Þ μ0m�j � μm�j

� �n o
π j
Zo

t� sð Þds

þHmδ ∗ πmZo :ð Þ

¼ um þHmδ ∗ um þ Imδ ∗ πmZo :ð Þ
n o

¼ um þHmδ ∗ um þHmδ ∗ Imδ ∗ πmZo :ð Þ

¼ um þHmδ ∗ um þHmδ ∗ Imδ ∗ um þ Imδ ∗ πmZo :ð Þ
n o

¼ um þHmδ ∗ um þ um ∗
X∞

k¼1

Hmδ ∗ Iδ ∗ kð Þ
m tð Þ ¼ um þ um ∗

X∞

k¼0

Hmδ ∗ Iδ ∗ kð Þ
m tð Þ

¼ um þ
ðt

0

um t� sð Þe�mδsdmd sð Þ,

(11)

where um tð Þ ¼Pm�1
j¼0

m
j

� � Ð t
0 f τ1 sð Þe�mδs μj þ θ 1� 2Fτ1 sð Þð Þ μ0j � μj

� �n o
πm�j
Zo

t� sð Þds.
We consider the case where the canonical random variable τ2 has an Exponential

distribution with parameter λ2 .0 and τ1 has an Exponential distribution with
parameter λ1 .0.

That is, we have:

f τ1 tð Þ ¼ λ1e�λ1t, f τ2 tð Þ ¼ λ2e�λ2t, Lτ1 λ1; sð Þ ¼
ð∞

0

e�svf τ1 vð Þdv ¼ λ1
λ1 þ s

� �
, Lτ2 λ2; sð Þ ¼ λ2

λ2 þ s

� �
:

md tð Þ ¼ λ2tþ λ1 � λ2
λ1

1� eλ1t
� �

(12)

The mth moment of Zd tð Þ is then given by,

πmZd
tð Þ ¼ um þ

ðt

0

um t� sð Þe�mδsdmd sð Þ

¼ um þ λ2
ðt

0

um t� sð Þe�mδsd sð Þ þ λ1 � λ2ð Þ
ðt

0

um t� sð Þe� mδþλ1ð Þsd sð Þ

¼ um þ λ2
mδ

ðt

0

um t� sð Þmδe�mδsd sð Þ þ λ1 � λ2
mδþ λ1

ðt

0

um t� sð Þ mδþ λ1ð Þe� mδþλ1ð Þsd sð Þ

(13)

Taking the Laplace transform of the above equation, we get:

~πmZd
rð Þ ¼ ~um rð Þ þ λ2

mδ
~um rð Þ � Lτ1 mδ; rð Þ þ λ1 � λ2

mδþ λ1
~um � Lτ1 mδþ λ1; rð Þ (14)
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But,

um tð Þ ¼
Xm�1

j¼0

m

j

0
@

1
A
ðt

0

 f τ1 sð Þe�mδs μj þ θ 1� 2Fτ1 sð Þð Þ μ0j � μj
� �n o

πm�j
Zo

t� sð Þds

¼
Xm�1

j¼0

m

j

0
@

1
A
ðt

0

λ1e�λ1se�mδs μj þ θ 2e�λ1s � 1
� �

μ0j � μj
� �n o

πm�j
Zo

t� sð Þds

¼
λ1 μj � θ μ0j � μj

� �� �

λ1 þmδ

Xm�1

j¼0

m

j

0
@

1
A
ðt

0

λ1 þmδð Þe� λ1þmδð Þsπm�j
Zo

t� sð Þds

þ 2θ
λ1 μ0j � μj
� �

2λ1 þmδ

Xm�1

j¼0

m

j

0
@

1
A
ðt

0

2λ1 þmδð Þe� 2λ1þmδð Þsπm�j
Zo

t� sð Þds

(15)

Then the Laplace transform of um tð Þ, at r, will give:

~um rð Þ ¼ λ1
Xm�1

j¼0

m
j

� � μj � θ μ0j � μj
� �� �

λ1 þmδþ r
þ

2θ μ0j � μj
� �

2λ1 þmδþ r

8<
:

9=
;~πm�j

Zo
rð Þ (16)

Substituting Eq. (14) into Eq. (13), we have:

~πmZd
rð Þ ¼ 1þ λ2

rþmδ
þ λ1 � λ2
rþmδþ λ1

� �
~um rð Þ

¼ λ1 1þ λ2
rþmδ

þ λ1 � λ2
rþmδþ λ1

� �Xm�1

j¼0

m

j

0
@

1
A μj � θ μ0j � μj

� �� �

λ1 þmδþ r
þ

2θ μ0j � μj
� �

2λ1 þmδþ r

8<
:

9=
;~πm�j

Zo
rð Þ

(17)

Solving the above equation for the ordinary case, where τ2ð Þk≥ 2 � τ2, we have:

~πmZo
rð Þ ¼ λ2μm

r rþ δmþ λ2ð Þ þ
λ2

rþ δmþ λ2ð Þ
Xm�1

k¼1

Ck
m μk~π

m�kð Þ
Zo

rð Þ

þ θ μ0m � μm
� � λ2 rþ δmð Þ

r rþ δmþ λ2ð Þ rþ δmþ 2λ2ð Þ

þ θ
λ2 rþ δmð Þ

rþ δmþ λ2ð Þ rþ δmþ 2λ2ð Þ
Xm�1

k¼1

Ck
m μ0k � μk
� �

~π m�kð Þ
Zo

rð Þ

þ λ2
rþ δmþ λ2ð Þ ~π

m
Z0

rð Þ

(18)
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Rearranging the above equation, we will get

~πmZo
rð Þ ¼ λ2μm

r rþ δmð Þ þ
λ2

rþ δmð Þ
Xm�1

k¼1

Ck
m μk~π

m�kð Þ
Zo

rð Þ

þ θ
λ2 μ0m � μm
� �

r rþ δmþ 2λ2ð Þ þ θ
λ2

rþ δmþ 2λ2ð Þ
Xm�1

k¼1

Ck
m μ0k � μk
� �

~π m�kð Þ
Zo

rð Þ
(19)

Corollary 3.1
The first moment of Zd tð Þ; t≥0f g is given by:

πZd tð Þ ¼ θλ1 μ01 � μ1
� � λ2 þ δ

δþ λ1ð Þ δþ 2λ2ð Þ þ
λ1 λ2 þ δð Þ
δ δþ λ1ð Þ μ1

� �

þ θλ1 μ01 � μ1
� � λ1 � λ2

λ1 � 2λ2

� �
� λ1 � λ2ð Þμ1

� �
1

δþ λ1
e� δþλ1ð Þt

� θλ1
1

δþ 2λ2
λ2

λ1 � 2λ2
μ01 � μ1
� �

e� δþ2λ2ð Þt

� 2θλ1
1

δþ 2λ1
μ01 � μ1
� �

e� δþ2λ1ð Þt � λ2
δ
μ1e

�δt

(20)

Proof:
From Theorem 3.1, we have:

~πZd rð Þ ¼ λ1μ1
r rþ δþ λ1ð Þ þ

λ1
rþ δþ λ1ð Þ ~πZ0 rð Þ

þ θ μ01 � μ1
� � λ1 rþ δð Þ

r rþ δþ λ1ð Þ rþ δþ 2λ1ð Þ

(21)

From Bargès et al. [8], we have

~πZo rð Þ ¼ λ2μ1
r rþ δð Þ þ θ

λ2 μ01 � μ1
� �

r rþ δþ 2λ2ð Þ (22)

Substituting Eq. (22) into Eq. (21), yields

~πZd rð Þ ¼ λ1μ1
r rþ δþ λ1ð Þ þ

λ1
rþ δþ λ1ð Þ

λ2μ1
r rþ δð Þ þ θ

λ2 μ01 � μ1
� �

r rþ δþ 2λ2ð Þ
� �

þ θλ1 μ01 � μ1
� � rþ δð Þ

r rþ δþ λ1ð Þ rþ δþ 2λ1ð Þ

¼ λ1λ2
r rþ δð Þ rþ δþ λ1ð Þ þ

λ1
r rþ δþ λ1ð Þ

� �
μ1

þ θλ1 μ01 � μ1
� � λ2

r rþ δþ λ1ð Þ rþ δþ 2λ2ð Þ þ
rþ δ

r rþ δþ λ1ð Þ rþ δþ 2λ1ð Þ
� �

(23)

with

λ1
r rþ δþ λ1ð Þ¼

λ1
δþ λ1ð Þ :

1
r
� λ1

δþ λ1ð Þ :
1

rþ δþ λ1ð Þ (24)
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λ1λ2
r rþ δð Þ rþ δþ λ1ð Þ¼

λ1λ2
δ δþ λ1ð Þ :

1
r
þ λ2

δþ λ1ð Þ :
1

rþ δþ λ1ð Þ �
λ2
δ
:

1
rþ δð Þ (25)

λ2
r rþ δþ λ1ð Þ rþ δþ 2λ2ð Þ ¼

λ2
δþ λ1ð Þ δþ 2λ2ð Þ

1
r

þ λ2
λ1 � 2λ2

1
δþ λ1

1
rþ δþ λ1

� 1
δþ 2λ2

1
rþ δþ 2λ2

� �

(26)

rþ δ
r rþ δþ λ1ð Þ rþ δþ 2λ1ð Þ ¼

δ
δþ λ1ð Þ δþ 2λ1ð Þ

1
r

þ 1
δþ λ1

1
rþ δþ λ1

� 2
δþ 2λ1

1
rþ δþ 2λ1

(27)

Substituting Eqs. (24), (25), (26) and (27) into Eq. (23), yields:

~πZd rð Þ ¼ μ1
λ1

δþ λ1ð Þ :
1
r
� λ1

δþ λ1ð Þ :
1

rþ δþ λ1ð Þ
� �

þ θ μ01 � μ1
� �

λ2
δþ λ1ð Þ δþ 2λ2ð Þ

1
r

þ λ2
λ1 � 2λ2

1
δþ λ1

1
rþ δþ λ1

� 1
δþ 2λ2

1
rþ δþ 2λ2

� �

8>>>>><
>>>>>:

9>>>>>=
>>>>>;

þ θλ1 μ01 � μ1
� �

δ
δþ λ1ð Þ δþ 2λ1ð Þ

1
r

þ 1
δþ λ1

1
rþ δþ λ1

� 2
δþ 2λ1

1
rþ δþ 2λ1

8>>>><
>>>>:

9>>>>=
>>>>;

þ μ1
λ1λ2

δ δþ λ1ð Þ :
1
r
þ λ2

δþ λ1ð Þ :
1

rþ δþ λ1ð Þ �
λ2
δ
:

1
rþ δð Þ

� �

(28)

Rearranging the above equation, will give

πZd tð Þ ¼ θλ1 μ01 � μ1
� � λ2 þ δ

δþ λ1ð Þ δþ 2λ2ð Þ þ
λ1 λ2 þ δð Þ
δ δþ λ1ð Þ μ1

� �
1
r

þ θλ1 μ01 � μ1
� � λ1 � λ2

λ1 � 2λ2

� �
� λ1 � λ2ð Þμ1

� �
1

δþ λ1
1

rþ δþ λ1

� θλ1
1

δþ 2λ2
λ2

λ1 � 2λ2
μ01 � μ1
� � 1

rþ δþ 2λ2

� 2θλ1
1

δþ 2λ1
μ01 � μ1
� � 1

rþ δþ 2λ1
� λ2

δ
μ1

1
rþ δ

(29)
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Rearranging the above equation, we will get

~πmZo
rð Þ ¼ λ2μm

r rþ δmð Þ þ
λ2

rþ δmð Þ
Xm�1

k¼1

Ck
m μk~π

m�kð Þ
Zo

rð Þ

þ θ
λ2 μ0m � μm
� �

r rþ δmþ 2λ2ð Þ þ θ
λ2

rþ δmþ 2λ2ð Þ
Xm�1

k¼1

Ck
m μ0k � μk
� �

~π m�kð Þ
Zo

rð Þ
(19)

Corollary 3.1
The first moment of Zd tð Þ; t≥0f g is given by:

πZd tð Þ ¼ θλ1 μ01 � μ1
� � λ2 þ δ

δþ λ1ð Þ δþ 2λ2ð Þ þ
λ1 λ2 þ δð Þ
δ δþ λ1ð Þ μ1

� �

þ θλ1 μ01 � μ1
� � λ1 � λ2

λ1 � 2λ2

� �
� λ1 � λ2ð Þμ1

� �
1

δþ λ1
e� δþλ1ð Þt

� θλ1
1

δþ 2λ2
λ2

λ1 � 2λ2
μ01 � μ1
� �

e� δþ2λ2ð Þt

� 2θλ1
1

δþ 2λ1
μ01 � μ1
� �

e� δþ2λ1ð Þt � λ2
δ
μ1e

�δt

(20)

Proof:
From Theorem 3.1, we have:

~πZd rð Þ ¼ λ1μ1
r rþ δþ λ1ð Þ þ

λ1
rþ δþ λ1ð Þ ~πZ0 rð Þ

þ θ μ01 � μ1
� � λ1 rþ δð Þ

r rþ δþ λ1ð Þ rþ δþ 2λ1ð Þ

(21)

From Bargès et al. [8], we have

~πZo rð Þ ¼ λ2μ1
r rþ δð Þ þ θ

λ2 μ01 � μ1
� �

r rþ δþ 2λ2ð Þ (22)

Substituting Eq. (22) into Eq. (21), yields

~πZd rð Þ ¼ λ1μ1
r rþ δþ λ1ð Þ þ

λ1
rþ δþ λ1ð Þ

λ2μ1
r rþ δð Þ þ θ

λ2 μ01 � μ1
� �

r rþ δþ 2λ2ð Þ
� �

þ θλ1 μ01 � μ1
� � rþ δð Þ

r rþ δþ λ1ð Þ rþ δþ 2λ1ð Þ

¼ λ1λ2
r rþ δð Þ rþ δþ λ1ð Þ þ

λ1
r rþ δþ λ1ð Þ

� �
μ1

þ θλ1 μ01 � μ1
� � λ2

r rþ δþ λ1ð Þ rþ δþ 2λ2ð Þ þ
rþ δ

r rþ δþ λ1ð Þ rþ δþ 2λ1ð Þ
� �

(23)

with

λ1
r rþ δþ λ1ð Þ¼

λ1
δþ λ1ð Þ :

1
r
� λ1

δþ λ1ð Þ :
1

rþ δþ λ1ð Þ (24)
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λ1λ2
r rþ δð Þ rþ δþ λ1ð Þ¼

λ1λ2
δ δþ λ1ð Þ :

1
r
þ λ2

δþ λ1ð Þ :
1

rþ δþ λ1ð Þ �
λ2
δ
:

1
rþ δð Þ (25)

λ2
r rþ δþ λ1ð Þ rþ δþ 2λ2ð Þ ¼

λ2
δþ λ1ð Þ δþ 2λ2ð Þ

1
r

þ λ2
λ1 � 2λ2

1
δþ λ1

1
rþ δþ λ1

� 1
δþ 2λ2

1
rþ δþ 2λ2

� �

(26)

rþ δ
r rþ δþ λ1ð Þ rþ δþ 2λ1ð Þ ¼

δ
δþ λ1ð Þ δþ 2λ1ð Þ

1
r

þ 1
δþ λ1

1
rþ δþ λ1

� 2
δþ 2λ1

1
rþ δþ 2λ1

(27)

Substituting Eqs. (24), (25), (26) and (27) into Eq. (23), yields:

~πZd rð Þ ¼ μ1
λ1

δþ λ1ð Þ :
1
r
� λ1

δþ λ1ð Þ :
1

rþ δþ λ1ð Þ
� �

þ θ μ01 � μ1
� �

λ2
δþ λ1ð Þ δþ 2λ2ð Þ

1
r

þ λ2
λ1 � 2λ2

1
δþ λ1

1
rþ δþ λ1

� 1
δþ 2λ2

1
rþ δþ 2λ2

� �

8>>>>><
>>>>>:

9>>>>>=
>>>>>;

þ θλ1 μ01 � μ1
� �

δ
δþ λ1ð Þ δþ 2λ1ð Þ

1
r

þ 1
δþ λ1

1
rþ δþ λ1

� 2
δþ 2λ1

1
rþ δþ 2λ1

8>>>><
>>>>:

9>>>>=
>>>>;

þ μ1
λ1λ2

δ δþ λ1ð Þ :
1
r
þ λ2

δþ λ1ð Þ :
1

rþ δþ λ1ð Þ �
λ2
δ
:

1
rþ δð Þ

� �

(28)

Rearranging the above equation, will give

πZd tð Þ ¼ θλ1 μ01 � μ1
� � λ2 þ δ

δþ λ1ð Þ δþ 2λ2ð Þ þ
λ1 λ2 þ δð Þ
δ δþ λ1ð Þ μ1

� �
1
r

þ θλ1 μ01 � μ1
� � λ1 � λ2

λ1 � 2λ2

� �
� λ1 � λ2ð Þμ1

� �
1

δþ λ1
1

rþ δþ λ1

� θλ1
1

δþ 2λ2
λ2

λ1 � 2λ2
μ01 � μ1
� � 1

rþ δþ 2λ2

� 2θλ1
1

δþ 2λ1
μ01 � μ1
� � 1

rþ δþ 2λ1
� λ2

δ
μ1

1
rþ δ

(29)
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Remark 1
If λ1 ¼ λ2 then Eq. (29) becomes

~πZd rð Þ ¼ θλ μ01 � μ1
� � 1

δþ 2λ

� �
þ λ
δ
μ1

� �
1
r

� 1
δþ 2λ

θλ μ01 � μ1
� � 1

rþ δþ 2λ
� λ
δ
μ1

1
rþ δð Þ

¼ λ
δ
μ1

1
r
� 1
rþ δ

� �
þ θλ μ01 � μ1

� � 1
δþ 2λ

� �
1
r
� 1
rþ δþ 2λ

� �

¼ λμ1
r rþ δð Þ þ

λθ μ01 � μ1
� �

r rþ δþ 2λð Þ ,

(30)

which is exactly the result of Bargès et al. [8].
The inverse of the Laplace transform in Eq. (29) will give

πZd tð Þ ¼ θλ1 μ01 � μ1
� � λ2 þ δ

δþ λ1ð Þ δþ 2λ2ð Þ þ
λ1λ2 þ λ1δ
δ δþ λ1ð Þ μ1

� �

þ θλ1 μ01 � μ1
� � λ2

λ1 � 2λ2
þ 1

� �
þ λ2 � λ1ð Þμ1

� �
1

δþ λ1
e� δþλ1ð Þt

� θλ1
1

δþ 2λ2
λ2

λ1 � 2λ2
μ01 � μ1
� �

e� δþ2λ2ð Þt

� 2θλ1
1

δþ 2λ1
μ01 � μ1
� �

e� δþ2λ1ð Þt � λ2
δ
μ1e

�δt

(31)

Remarks 2
If θ ¼ 0 and λ1 6¼ λ2 then

πZd tð Þ ¼ λ1
δ

λ2 þ δ
δþ λ1

� �
� λ2

δ
e�δt

� �
μ1 þ

λ2 � λ1
δþ λ1

� �
μ1e

� δþλ1ð Þt

¼ λ2
1� e�δt

δ

� �
μ1 þ λ1 � λ2ð Þ 1� e� δþλ1ð Þt

δþ λ1

� �
μ1

¼ λ2at δj þ λ1 � λ2ð Þat δþλ1j
� �

μ1

(32)

which is exactly the result of Léveillé et al. [15].
If λ1 ¼ λ2 and θ 6¼ 0 then

πZo tð Þ ¼ θλ μ01 � μ1
� � 1

δþ 2λ2ð Þ þ
λ
δ
μ1

� �

� θλ
1

δþ 2λ
μ01 � μ1
� �

e� δþ2λð Þt � λ
δ
μ1e

�δt

¼ λ
δ

1� e�δt� �
μ1 þ θλ

1� e� δþ2λð Þt

δþ 2λ

� �
μ01 � μ1
� �

(33)

which is exactly the result of Bargès et al. [8].
If λ1 ¼ λ2 and θ ¼ 0 then

πZo tð Þ ¼ λ
δ

1� e�δt� �
μ1 ¼ λat δj μ1, (34)

which is exactly the result of Léveillé et al. [15].
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Corollary 3.2
The second moment of Zd tð Þ; t≥0f g is given by the following development:
The result in Theorem 3.1 when n ¼ 2 gives:

~π2Zd
rð Þ ¼ 2λ1 λ1 � λ2ð Þ

r rþ 2δþ λ1ð Þ rþ 2δþ 2λ1ð Þ
1
r
μ2 þ 2μ1~πZo

rð Þ
� �

þ λ1
rþ 2δþ λ1ð Þ

rþ 2δð Þ rþ 2δþ 2λ2ð Þ
λ2 rþ 2δþ 2λ1ð Þ þ 1

� �
~π2Z0

rð Þ,

(35)

From Bargès et al. [8], we have.

~πZo
rð Þ ¼ λ2 μ1

r rþ δð Þ þ θ
λ2 μ01 � μ1
� �

r rþ δþ 2λ2ð Þ (36)

and

~π2Zo
rð Þ ¼ λ2μ2

r rþ 2δð Þ þ θ
λ2 μ02 � μ2
� �

r rþ 2δþ 2λ2ð Þ

þ 2λ22 μ21
r rþ δð Þ rþ 2δð Þ þ 2θλ22 μ1 μ01 � μ1

� �
r rþ δþ 2λ2ð Þ rþ 2δð Þ þ

2θλ22μ1 μ01 � μ1
� �

r rþ 2δþ 2λ2ð Þ rþ δð Þ

þ 2θ2λ22 μ01 � μ1
� �2

r rþ δþ 2λ2ð Þ rþ 2δþ 2λ2ð Þ
(37)

Substituting Eqs. (39) and (40) into Eq. (38), yields:

~π2Zd
rð Þ ¼ 2λ1 λ1 � λ2ð Þ

r rþ 2δþ λ1ð Þ rþ 2δþ 2λ1ð Þ
1
r
μ2 þ 2μ1

λ2 μ1
r rþ δð Þ þ θ

λ2 μ01 � μ1
� �

r rþ δþ 2λ2ð Þ
� �� �

þ λ1
rþ 2δþ λ1ð Þ

rþ 2δð Þ rþ 2δþ 2λ2ð Þ
λ2 rþ 2δþ 2λ1ð Þ þ 1

� �

�

λ2μ2
r rþ 2δð Þ þ θ

λ2 μ02 � μ2
� �

r rþ 2δþ 2λ2ð Þ

þ 2λ22 μ21
r rþ δð Þ rþ 2δð Þ þ 2θλ22 μ1 μ01 � μ1

� �
r rþ δþ 2λ2ð Þ rþ 2δð Þ þ

2θλ22μ1 μ01 � μ1
� �

r rþ 2δþ 2λ2ð Þ rþ δð Þ

þ 2θ2λ22 μ01 � μ1
� �2

r rþ δþ 2λ2ð Þ rþ 2δþ 2λ2ð Þ

8>>>>>>>>>>>>>><
>>>>>>>>>>>>>>:

9>>>>>>>>>>>>>>=
>>>>>>>>>>>>>>;

,

(38)
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Remark 1
If λ1 ¼ λ2 then Eq. (29) becomes

~πZd rð Þ ¼ θλ μ01 � μ1
� � 1

δþ 2λ

� �
þ λ
δ
μ1

� �
1
r

� 1
δþ 2λ

θλ μ01 � μ1
� � 1

rþ δþ 2λ
� λ
δ
μ1

1
rþ δð Þ

¼ λ
δ
μ1

1
r
� 1
rþ δ

� �
þ θλ μ01 � μ1

� � 1
δþ 2λ

� �
1
r
� 1
rþ δþ 2λ

� �

¼ λμ1
r rþ δð Þ þ

λθ μ01 � μ1
� �

r rþ δþ 2λð Þ ,

(30)

which is exactly the result of Bargès et al. [8].
The inverse of the Laplace transform in Eq. (29) will give

πZd tð Þ ¼ θλ1 μ01 � μ1
� � λ2 þ δ

δþ λ1ð Þ δþ 2λ2ð Þ þ
λ1λ2 þ λ1δ
δ δþ λ1ð Þ μ1

� �

þ θλ1 μ01 � μ1
� � λ2

λ1 � 2λ2
þ 1

� �
þ λ2 � λ1ð Þμ1

� �
1

δþ λ1
e� δþλ1ð Þt

� θλ1
1

δþ 2λ2
λ2

λ1 � 2λ2
μ01 � μ1
� �

e� δþ2λ2ð Þt

� 2θλ1
1

δþ 2λ1
μ01 � μ1
� �

e� δþ2λ1ð Þt � λ2
δ
μ1e

�δt

(31)

Remarks 2
If θ ¼ 0 and λ1 6¼ λ2 then

πZd tð Þ ¼ λ1
δ

λ2 þ δ
δþ λ1

� �
� λ2

δ
e�δt

� �
μ1 þ

λ2 � λ1
δþ λ1

� �
μ1e

� δþλ1ð Þt

¼ λ2
1� e�δt

δ

� �
μ1 þ λ1 � λ2ð Þ 1� e� δþλ1ð Þt

δþ λ1

� �
μ1

¼ λ2at δj þ λ1 � λ2ð Þat δþλ1j
� �

μ1

(32)

which is exactly the result of Léveillé et al. [15].
If λ1 ¼ λ2 and θ 6¼ 0 then

πZo tð Þ ¼ θλ μ01 � μ1
� � 1

δþ 2λ2ð Þ þ
λ
δ
μ1

� �

� θλ
1

δþ 2λ
μ01 � μ1
� �

e� δþ2λð Þt � λ
δ
μ1e

�δt

¼ λ
δ

1� e�δt� �
μ1 þ θλ

1� e� δþ2λð Þt

δþ 2λ

� �
μ01 � μ1
� �

(33)

which is exactly the result of Bargès et al. [8].
If λ1 ¼ λ2 and θ ¼ 0 then

πZo tð Þ ¼ λ
δ

1� e�δt� �
μ1 ¼ λat δj μ1, (34)

which is exactly the result of Léveillé et al. [15].
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Corollary 3.2
The second moment of Zd tð Þ; t≥0f g is given by the following development:
The result in Theorem 3.1 when n ¼ 2 gives:

~π2Zd
rð Þ ¼ 2λ1 λ1 � λ2ð Þ

r rþ 2δþ λ1ð Þ rþ 2δþ 2λ1ð Þ
1
r
μ2 þ 2μ1~πZo

rð Þ
� �

þ λ1
rþ 2δþ λ1ð Þ

rþ 2δð Þ rþ 2δþ 2λ2ð Þ
λ2 rþ 2δþ 2λ1ð Þ þ 1

� �
~π2Z0

rð Þ,

(35)

From Bargès et al. [8], we have.

~πZo
rð Þ ¼ λ2 μ1

r rþ δð Þ þ θ
λ2 μ01 � μ1
� �

r rþ δþ 2λ2ð Þ (36)

and

~π2Zo
rð Þ ¼ λ2μ2

r rþ 2δð Þ þ θ
λ2 μ02 � μ2
� �

r rþ 2δþ 2λ2ð Þ

þ 2λ22 μ21
r rþ δð Þ rþ 2δð Þ þ 2θλ22 μ1 μ01 � μ1

� �
r rþ δþ 2λ2ð Þ rþ 2δð Þ þ

2θλ22μ1 μ01 � μ1
� �

r rþ 2δþ 2λ2ð Þ rþ δð Þ

þ 2θ2λ22 μ01 � μ1
� �2

r rþ δþ 2λ2ð Þ rþ 2δþ 2λ2ð Þ
(37)

Substituting Eqs. (39) and (40) into Eq. (38), yields:

~π2Zd
rð Þ ¼ 2λ1 λ1 � λ2ð Þ

r rþ 2δþ λ1ð Þ rþ 2δþ 2λ1ð Þ
1
r
μ2 þ 2μ1

λ2 μ1
r rþ δð Þ þ θ

λ2 μ01 � μ1
� �

r rþ δþ 2λ2ð Þ
� �� �

þ λ1
rþ 2δþ λ1ð Þ

rþ 2δð Þ rþ 2δþ 2λ2ð Þ
λ2 rþ 2δþ 2λ1ð Þ þ 1

� �

�

λ2μ2
r rþ 2δð Þ þ θ

λ2 μ02 � μ2
� �

r rþ 2δþ 2λ2ð Þ

þ 2λ22 μ21
r rþ δð Þ rþ 2δð Þ þ 2θλ22 μ1 μ01 � μ1

� �
r rþ δþ 2λ2ð Þ rþ 2δð Þ þ

2θλ22μ1 μ01 � μ1
� �

r rþ 2δþ 2λ2ð Þ rþ δð Þ

þ 2θ2λ22 μ01 � μ1
� �2

r rþ δþ 2λ2ð Þ rþ 2δþ 2λ2ð Þ

8>>>>>>>>>>>>>><
>>>>>>>>>>>>>>:

9>>>>>>>>>>>>>>=
>>>>>>>>>>>>>>;

,

(38)
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and rearranging Eq. (38), will give:

~π2Zd
rð Þ ¼ λ1μ2

r rþ 2δþ λ1ð Þ þ
2λ1λ2μ21

r rþ δð Þ rþ 2δþ λ1ð Þ þ 2θλ1λ2μ1 μ01 � μ1
� �

r rþ δþ 2λ2ð Þ rþ 2δþ λ1ð Þ

þ θλ1 μ02 � μ2
� � rþ 2δð Þ

r rþ 2δþ λ1ð Þ rþ 2δþ 2λ1ð Þ

þ 2θλ1λ2μ1 μ01 � μ1
� � rþ 2δð Þ

r rþ δð Þ rþ 2δþ λ1ð Þ rþ 2δþ 2λ1ð Þ

þ 2θ2λ1λ2 μ01 � μ1
� �2 rþ 2δð Þ

r rþ δþ 2λ2ð Þ rþ 2δþ λ1ð Þ rþ 2δþ 2λ1ð Þ þ λ1λ2μ2
1

r rþ 2δð Þ rþ 2δþ λ1ð Þ

þ θλ1λ2 μ02 � μ2
� � 1

r rþ 2δþ 2λ2ð Þ rþ 2δþ λ1ð Þ þ 2λ1λ22μ
2
1

1
r rþ δð Þ rþ 2δð Þ rþ 2δþ λ1ð Þ

þ 2θλ1λ22μ1 μ01 � μ1
� � 1

r rþ δþ 2λ2ð Þ rþ 2δð Þ rþ 2δþ λ1ð Þ

þ 2θλ22λ1μ1 μ01 � μ1
� � 1

r rþ 2δþ 2λ2ð Þ rþ δð Þ rþ 2δþ λ1ð Þ

þ 2θ2λ22λ1 μ01 � μ1
� �2 1

r rþ δþ 2λ2ð Þ rþ 2δþ 2λ2ð Þ rþ 2δþ λ1ð Þ ,

(39)

which can be simplified to

~π2Zd
rð Þ ¼ γ0

r
þ γ1
rþ δ

þ γ2
rþ 2δ

þ γ3
rþ 2δþ λ1

þ γ4
rþ δþ 2λ2

þ γ5
rþ 2δþ 2λ1

þ γ6
rþ 2δþ 2λ2

,

(40)

with,

γ0 ¼

λ1μ2
2δþ λ1ð Þ þ

2λ1λ2μ21
δ 2δþ λ1ð Þ þ

2θλ1λ2μ1 μ01 � μ1
� �

2δþ λ1ð Þ δþ 2λ2ð Þ þ
θδλ1 μ02 � μ2

� �
2δþ λ1ð Þ δþ λ1ð Þ

þ 2θλ1λ2μ1 μ01 � μ1
� �

2δþ λ1ð Þ δþ λ1ð Þ þ
2δθ2λ1λ2 μ01 � μ1

� �2
2δþ λ1ð Þ δþ λ1ð Þ δþ 2λ2ð Þ þ

λ1λ2μ2
2δ 2δþ λ1ð Þ

þ θλ1λ2 μ02 � μ2
� �

2 δþ λ2ð Þ 2δþ λ1ð Þ þ
λ1λ22μ21

δ2 2δþ λ1ð Þ þ
θλ1λ22μ1 μ01 � μ1

� �
δ δþ 2λ2ð Þ 2δþ λ1ð Þ

þ θλ1λ22μ1 μ01 � μ1
� �

δ δþ λ2ð Þ 2δþ λ1ð Þ þ
θ2λ1λ22 μ01 � μ1

� �2
2 δþ 2λ2ð Þ δþ λ2ð Þ 2δþ λ1ð Þ

8>>>>>>>>>>>>>>>>>>>>><
>>>>>>>>>>>>>>>>>>>>>:

9>>>>>>>>>>>>>>>>>>>>>=
>>>>>>>>>>>>>>>>>>>>>;

(41)

γ1 ¼ � 2λ1λ2μ21
δ δþ λ1ð Þ �

2θλ1λ2μ1 μ01 � μ1
� �

δþ λ1ð Þ δþ 2λ1ð Þ �
2λ1λ22μ21

δ2 δþ λ1ð Þ �
2θλ1λ22μ1 μ01 � μ1

� �
δ δþ 2λ2ð Þ δþ λ1ð Þ

( )
(42)
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γ2 ¼ � λ2μ2
2δ

þ λ22μ21
δ2

þ θλ22μ1 μ01 � μ1
� �

δ δ� 2λ2ð Þ

( )
(43)

γ3 ¼

� λ1μ2
2δþ λ1

þ 2λ1λ2μ21
2δþ λ1ð Þ δþ λ1ð Þ þ

2θλ1λ2μ1 μ01 � μ1
� �

2δþ λ1ð Þ λ1 þ δ� 2λ2ð Þ þ
θλ1 μ02 � μ2
� �
2δþ λ1

� 2θλ1λ2μ1 μ01 � μ1
� �

2δþ λ1ð Þ δþ λ1ð Þ �
2θ2λ1λ2 μ01 � μ1

� �2
2δþ λ1ð Þ λ1 þ δ� 2λ2ð Þ þ

λ2μ2
2δþ λ1

þ θλ1λ2 μ02 � μ2
� �

2δþ λ1ð Þ λ1 � 2λ2ð Þ �
2λ22μ21

2δþ λ1ð Þ δþ λ1ð Þ �
2θλ22μ1 μ01 � μ1

� �
2δþ λ1ð Þ λ1 þ δ� 2λ2ð Þ

þ 2θλ1λ22μ1 μ01 � μ1
� �

2λ2 � λ1ð Þ δþ λ1ð Þ 2δþ λ1ð Þ þ
2θ2λ1λ22 μ01 � μ1

� �2
2δþ λ1ð Þ λ1 þ δ� 2λ2ð Þ 2λ2 � λ1ð Þ

8>>>>>>>>>>>>>>>><
>>>>>>>>>>>>>>>>:

9>>>>>>>>>>>>>>>>=
>>>>>>>>>>>>>>>>;

(44)

γ4 ¼

�2θλ1λ2μ1 μ01 � μ1
� �

δþ 2λ2ð Þ λ1 þ δ� 2λ2ð Þ þ
2θ2λ1λ2 μ01 � μ1

� �2 2λ2 � δð Þ
δþ 2λ2ð Þ λ1 þ δ� 2λ2ð Þ 2λ1 � 2λ2 þ δð Þ

� 2θλ1λ22μ1 μ01 � μ1
� �

δþ 2λ2ð Þ δ� 2λ2ð Þ λ1 þ δ� 2λ2ð Þ �
2θ2λ1λ22 μ01 � μ1

� �2
δ δþ 2λ2ð Þ λ1 þ δ� 2λ2ð Þ

8>>>><
>>>>:

9>>>>=
>>>>;

(45)

γ5 ¼ � θλ1 μ02 � μ2
� �
δþ λ1

þ 2θλ1λ2μ1 μ01 � μ1
� �

δþ λ1ð Þ δþ 2λ1ð Þ �
2θ2λ1λ2 μ01 � μ1

� �2
δþ λ1ð Þ 2λ1 � δ� 2λ2ð Þ

( )
(46)

γ6 ¼ � θλ1λ2 μ02 � μ2
� �

2 δþ λ2ð Þ λ1 � 2λ2ð Þ þ
θλ1λ22μ1 μ01 � μ1

� �
δþ λ2ð Þ δþ 2λ2ð Þ λ1 � 2λ2ð Þ þ

θ2λ1λ22 μ01 � μ1
� �2

δ δþ λ2ð Þ λ1 � 2λ2ð Þ

(47)

Remark 2
When

λ1 ¼ λ2

~π2Zd
rð Þ ¼ 2λ2μ2

r rþ δð Þ rþ 2δð Þ þ
2θλ2μ1 μ01 � μ1

� �
r rþ δþ 2λð Þ rþ 2δð Þ

þ λμ2
r rþ 2δð Þ þ θλ μ02 � μ2

� �
r rþ 2δþ 2λð Þ

2θλ2μ1 μ01 � μ1
� �

r rþ δð Þ rþ 2δþ 2λð Þ þ
2θ2λ2 μ01 � μ1

� �2
r rþ δþ 2λð Þ rþ 2δþ 2λð Þ ,

(48)

which is exactly the result of Bargès et al. [8].
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and rearranging Eq. (38), will give:

~π2Zd
rð Þ ¼ λ1μ2

r rþ 2δþ λ1ð Þ þ
2λ1λ2μ21

r rþ δð Þ rþ 2δþ λ1ð Þ þ 2θλ1λ2μ1 μ01 � μ1
� �

r rþ δþ 2λ2ð Þ rþ 2δþ λ1ð Þ

þ θλ1 μ02 � μ2
� � rþ 2δð Þ

r rþ 2δþ λ1ð Þ rþ 2δþ 2λ1ð Þ

þ 2θλ1λ2μ1 μ01 � μ1
� � rþ 2δð Þ

r rþ δð Þ rþ 2δþ λ1ð Þ rþ 2δþ 2λ1ð Þ

þ 2θ2λ1λ2 μ01 � μ1
� �2 rþ 2δð Þ

r rþ δþ 2λ2ð Þ rþ 2δþ λ1ð Þ rþ 2δþ 2λ1ð Þ þ λ1λ2μ2
1

r rþ 2δð Þ rþ 2δþ λ1ð Þ

þ θλ1λ2 μ02 � μ2
� � 1

r rþ 2δþ 2λ2ð Þ rþ 2δþ λ1ð Þ þ 2λ1λ22μ
2
1

1
r rþ δð Þ rþ 2δð Þ rþ 2δþ λ1ð Þ

þ 2θλ1λ22μ1 μ01 � μ1
� � 1

r rþ δþ 2λ2ð Þ rþ 2δð Þ rþ 2δþ λ1ð Þ

þ 2θλ22λ1μ1 μ01 � μ1
� � 1

r rþ 2δþ 2λ2ð Þ rþ δð Þ rþ 2δþ λ1ð Þ

þ 2θ2λ22λ1 μ01 � μ1
� �2 1

r rþ δþ 2λ2ð Þ rþ 2δþ 2λ2ð Þ rþ 2δþ λ1ð Þ ,

(39)

which can be simplified to

~π2Zd
rð Þ ¼ γ0

r
þ γ1
rþ δ

þ γ2
rþ 2δ

þ γ3
rþ 2δþ λ1

þ γ4
rþ δþ 2λ2

þ γ5
rþ 2δþ 2λ1

þ γ6
rþ 2δþ 2λ2

,

(40)

with,

γ0 ¼

λ1μ2
2δþ λ1ð Þ þ

2λ1λ2μ21
δ 2δþ λ1ð Þ þ

2θλ1λ2μ1 μ01 � μ1
� �

2δþ λ1ð Þ δþ 2λ2ð Þ þ
θδλ1 μ02 � μ2

� �
2δþ λ1ð Þ δþ λ1ð Þ

þ 2θλ1λ2μ1 μ01 � μ1
� �

2δþ λ1ð Þ δþ λ1ð Þ þ
2δθ2λ1λ2 μ01 � μ1

� �2
2δþ λ1ð Þ δþ λ1ð Þ δþ 2λ2ð Þ þ

λ1λ2μ2
2δ 2δþ λ1ð Þ

þ θλ1λ2 μ02 � μ2
� �

2 δþ λ2ð Þ 2δþ λ1ð Þ þ
λ1λ22μ21

δ2 2δþ λ1ð Þ þ
θλ1λ22μ1 μ01 � μ1

� �
δ δþ 2λ2ð Þ 2δþ λ1ð Þ

þ θλ1λ22μ1 μ01 � μ1
� �

δ δþ λ2ð Þ 2δþ λ1ð Þ þ
θ2λ1λ22 μ01 � μ1

� �2
2 δþ 2λ2ð Þ δþ λ2ð Þ 2δþ λ1ð Þ

8>>>>>>>>>>>>>>>>>>>>><
>>>>>>>>>>>>>>>>>>>>>:

9>>>>>>>>>>>>>>>>>>>>>=
>>>>>>>>>>>>>>>>>>>>>;

(41)

γ1 ¼ � 2λ1λ2μ21
δ δþ λ1ð Þ �

2θλ1λ2μ1 μ01 � μ1
� �

δþ λ1ð Þ δþ 2λ1ð Þ �
2λ1λ22μ21

δ2 δþ λ1ð Þ �
2θλ1λ22μ1 μ01 � μ1

� �
δ δþ 2λ2ð Þ δþ λ1ð Þ

( )
(42)
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γ2 ¼ � λ2μ2
2δ

þ λ22μ21
δ2

þ θλ22μ1 μ01 � μ1
� �

δ δ� 2λ2ð Þ

( )
(43)

γ3 ¼

� λ1μ2
2δþ λ1

þ 2λ1λ2μ21
2δþ λ1ð Þ δþ λ1ð Þ þ

2θλ1λ2μ1 μ01 � μ1
� �

2δþ λ1ð Þ λ1 þ δ� 2λ2ð Þ þ
θλ1 μ02 � μ2
� �
2δþ λ1

� 2θλ1λ2μ1 μ01 � μ1
� �

2δþ λ1ð Þ δþ λ1ð Þ �
2θ2λ1λ2 μ01 � μ1

� �2
2δþ λ1ð Þ λ1 þ δ� 2λ2ð Þ þ

λ2μ2
2δþ λ1

þ θλ1λ2 μ02 � μ2
� �

2δþ λ1ð Þ λ1 � 2λ2ð Þ �
2λ22μ21

2δþ λ1ð Þ δþ λ1ð Þ �
2θλ22μ1 μ01 � μ1

� �
2δþ λ1ð Þ λ1 þ δ� 2λ2ð Þ

þ 2θλ1λ22μ1 μ01 � μ1
� �

2λ2 � λ1ð Þ δþ λ1ð Þ 2δþ λ1ð Þ þ
2θ2λ1λ22 μ01 � μ1

� �2
2δþ λ1ð Þ λ1 þ δ� 2λ2ð Þ 2λ2 � λ1ð Þ

8>>>>>>>>>>>>>>>><
>>>>>>>>>>>>>>>>:

9>>>>>>>>>>>>>>>>=
>>>>>>>>>>>>>>>>;

(44)

γ4 ¼

�2θλ1λ2μ1 μ01 � μ1
� �

δþ 2λ2ð Þ λ1 þ δ� 2λ2ð Þ þ
2θ2λ1λ2 μ01 � μ1

� �2 2λ2 � δð Þ
δþ 2λ2ð Þ λ1 þ δ� 2λ2ð Þ 2λ1 � 2λ2 þ δð Þ

� 2θλ1λ22μ1 μ01 � μ1
� �

δþ 2λ2ð Þ δ� 2λ2ð Þ λ1 þ δ� 2λ2ð Þ �
2θ2λ1λ22 μ01 � μ1

� �2
δ δþ 2λ2ð Þ λ1 þ δ� 2λ2ð Þ

8>>>><
>>>>:

9>>>>=
>>>>;

(45)

γ5 ¼ � θλ1 μ02 � μ2
� �
δþ λ1

þ 2θλ1λ2μ1 μ01 � μ1
� �

δþ λ1ð Þ δþ 2λ1ð Þ �
2θ2λ1λ2 μ01 � μ1

� �2
δþ λ1ð Þ 2λ1 � δ� 2λ2ð Þ

( )
(46)

γ6 ¼ � θλ1λ2 μ02 � μ2
� �

2 δþ λ2ð Þ λ1 � 2λ2ð Þ þ
θλ1λ22μ1 μ01 � μ1

� �
δþ λ2ð Þ δþ 2λ2ð Þ λ1 � 2λ2ð Þ þ

θ2λ1λ22 μ01 � μ1
� �2

δ δþ λ2ð Þ λ1 � 2λ2ð Þ

(47)

Remark 2
When

λ1 ¼ λ2

~π2Zd
rð Þ ¼ 2λ2μ2

r rþ δð Þ rþ 2δð Þ þ
2θλ2μ1 μ01 � μ1

� �
r rþ δþ 2λð Þ rþ 2δð Þ

þ λμ2
r rþ 2δð Þ þ θλ μ02 � μ2

� �
r rþ 2δþ 2λð Þ

2θλ2μ1 μ01 � μ1
� �

r rþ δð Þ rþ 2δþ 2λð Þ þ
2θ2λ2 μ01 � μ1

� �2
r rþ δþ 2λð Þ rþ 2δþ 2λð Þ ,

(48)

which is exactly the result of Bargès et al. [8].
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The Laplace transform in Eq. (49), is a combination of terms of the form:

~g rð Þ ¼ 1
r α1 þ rð Þ α2 þ rð Þ… αn þ rð Þ , (49)

with g a function defined for all non-negative real numbers. As described in the
proof of Theorem 1.1 in Baeumer [16], each of these terms can be expressed as a
combinations of partial fraction such as ~g rð Þ ¼ γ0

1
r þ γ1

1
α1þr þ…þ γn

1
αnþr where.

γ0 ¼ 1
α1…αn

, for i ¼ 1,…, n, γi ¼ � 1
αi

Q
j¼1, j6¼i

1
αj�αi

.

Since the inverse Laplace transform of 1
αiþr is e�αit, it is easy to invert ~g and

obtain

g tð Þ ¼ γ0 þ γ1e
�α1t þ γ2e

�α2t þ…þ γne
�αnt: (50)

Using Eq. (49) in Eq. (53), it results that

π2Zd
tð Þ ¼ γ0 þ γ1e

�δt þ γ2e
�2δt þ γ3e

� 2δþλ1ð Þt þ γ4e
� δþ2λ2ð Þt þ γ5e

� 2δþ2λ1ð Þt þ γ6e
� 2δþ2λ2ð Þt, t≥0,

(51)

where γið Þi∈ 0;1;2;…;6f g are given by equation Eq. (50).
Remarks
If θ ¼ 0 then

γθ¼0
0 ¼ λ1μ2

2δþ λ1
þ 2λ1λ2μ21
δ 2δþ λ1ð Þ þ

λ1λ2μ2
2δ 2δþ λ1ð Þ þ

λ1λ22μ21
δ2 2δþ λ1ð Þ

¼ λ1
2δþ λ1

2δþ λ2
2δ

� �
μ2 þ

λ1λ2
δ 2δþ λ1ð Þ

2δþ λ2
δ

� �
μ21

¼ λ1 2δþ λ2ð Þ
2δ 2δþ λ1ð Þ μ2 þ

2λ2μ21
δ

� �
,

(52)

γθ¼0
1 ¼ � 2λ1λ2μ21

δ δþ λ1ð Þ �
2λ1λ22μ21

δ2 δþ λ1ð Þ ¼ � 2λ1λ2μ21
δ δþ λ1ð Þ 1þ λ2

δ

� �
, γθ¼0

2 ¼ λ22μ21
δ2

� λ2μ2
2δ

(53)

γθ¼0
3 ¼ � λ1μ2

2δþ λ1
þ 2λ1λ2μ21

2δþ λ1ð Þ δþ λ1ð Þ þ
λ2μ2

2δþ λ1
� 2λ22μ21

2δþ λ1ð Þ δþ λ1ð Þ

¼ λ2 � λ1ð Þμ2
2δþ λ1

þ 2λ2 λ1 � λ2ð Þμ21
2δþ λ1ð Þ δþ λ1ð Þ ,

(54)

γθ¼0
4 ¼ γθ¼0

5 ¼ γθ¼0
6 : (55)
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Then,

π2Zd
tð Þ ¼ λ1 2δþ λ2ð Þ

2δ 2δþ λ1ð Þ μ2 þ
2λ2μ21
δ

� �
� 2λ1λ2μ21
δ δþ λ1ð Þ 1þ λ2

δ

� �
e�δt

þ λ22μ21
δ2

� λ2μ2
2δ

� �
e�2δt þ 1

2δþ λ1
λ2 � λ1ð Þμ2 þ

2λ2 λ1 � λ2ð Þμ21
2δþ λ1ð Þ δþ λ1ð Þ

� �
e� 2δþλ1ð Þt

¼ λ1 2δþ λ2ð Þ
2δ 2δþ λ1ð Þ �

λ2
2δ

e�2δt þ λ2 � λ1ð Þ
2δþ λ1

e� 2δþλ1ð Þt
� �

μ2

þ λ2λ1 2δþ λ2ð Þ
δ2 2δþ λ1ð Þ � 2λ1λ2

δ δþ λ1ð Þ 1þ λ2
δ

� �
e�δt þ λ22

δ2
e�2δt þ 2λ2 λ1 � λ2ð Þ

2δþ λ1ð Þ δþ λ1ð Þ e
� 2δþλ1ð Þt

� �
μ21

¼ λ1 2δþ λ2ð Þ
2δ 2δþ λ1ð Þ �

λ2
2δ

1� 2δat 2δj
� �þ λ2 � λ1ð Þ

2δþ λ1
1� 2δþ λ1ð Þat 2δþλ1j
� �� �

μ2

þ λ2λ1 2δþ λ2ð Þ
δ2 2δþ λ1ð Þ � 2λ1λ2

δ δþ λ1ð Þ 1þ λ2
δ

� �
e�δt þ 2

λ22
δ2

e�2δt � λ22
δ2

e�2δt
� �

μ21

þ 2λ2 λ1 � λ2ð Þ
δ δþ λ1ð Þ � 2λ2 λ1 � λ2ð Þ

δ 2δþ λ1ð Þ
� �

μ21e
� 2δþλ1ð Þt

¼ λ2at 2δj þ λ1 � λ2ð Þat 2δþλ1j
� �

μ2

þ λ2λ1 2δþ λ2ð Þ
δ2 2δþ λ1ð Þ � 2λ1λ2

δ δþ λ1ð Þ 1þ λ2
δ

� �
e�δt þ 2

λ22
δ2

e�2δt � λ22
δ2

1� 2δat 2δj
� �� �

μ21

þ 2λ2 λ1 � λ2ð Þ
δ δþ λ1ð Þ e� 2δþλ1ð Þtμ21 �

2λ2 λ1 � λ2ð Þ 1� 2δþ λ1ð Þat 2δþλ1j
� �

μ21
δ 2δþ λ1ð Þ

¼ λ2at 2δj þ λ1 � λ2ð Þat 2δþλ1j
� �

μ2 þ
2λ2
δ

λ2at 2δj þ λ1 � λ2ð Þat 2δþλ1j
� �

μ21

� eδt
2λ1λ2

δ δþ λ1ð Þ 1þ λ2
δ

� �
� 2

λ22
δ2

e�δt þ 2λ2 λ1 � λ2ð Þ
δ δþ λ1ð Þ e� δþλ1ð Þt

� �

(56)

π2Zd
tð Þ ¼ λ2at 2δj þ λ1 � λ2ð Þat 2δþλ1j

� �
μ2 þ

2λ2
δ

λ2at 2δj þ λ1 � λ2ð Þat 2δþλ1j
� �

μ21

� eδt
2λ1λ2

δ δþ λ1ð Þ 1þ λ2
δ

� �
� 2

λ22
δ2

e�δt þ 2λ2 λ1 � λ2ð Þ
δ δþ λ1ð Þ e� δþλ1ð Þt

� �

¼ λ2at 2δj þ λ1 � λ2ð Þat 2δþλ1j
� �

μ2 þ
2λ2
δ

λ2at 2δj þ λ1 � λ2ð Þat 2δþλ1j
� �

μ21

� eδt
2λ1λ2

δ δþ λ1ð Þ 1þ λ2
δ

� �
� 2

λ22
δ2

1� δat 2δj
� �þ 2λ2 λ1 � λ2ð Þ

δ δþ λ1ð Þ 1� δþ λ1ð Þat δþλ1j
� �� �

¼ λ2at 2δj þ λ1 � λ2ð Þat 2δþλ1j
� �

μ2 þ
2λ2
δ

λ2at 2δj þ λ1 � λ2ð Þat 2δþλ1j
� �

μ21

� 2λ2
δ

eδt λ2at δj þ λ1 � λ2ð Þat δþλ1j
� �� �

¼ λ2at 2δj þ λ1 � λ2ð Þat 2δþλ1j
� �

μ2

þ 2λ2
δ

λ2at 2δj þ λ1 � λ2ð Þat 2δþλ1j � eδt λ2at δj þ λ1 � λ2ð Þat δþλ1j
� �� �� �

μ21:

(57)

To finally have:

π2Zd
tð Þ ¼ λ2at 2δj þ λ1 � λ2ð Þat 2δþλ1j

� �
μ2

þ 2λ2
δ

λ2at 2δj þ λ1 � λ2ð Þat 2δþλ1j � eδt λ2at δj þ λ1 � λ2ð Þat δþλ1j
� �� �� �

μ21,
(58)
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The Laplace transform in Eq. (49), is a combination of terms of the form:

~g rð Þ ¼ 1
r α1 þ rð Þ α2 þ rð Þ… αn þ rð Þ , (49)

with g a function defined for all non-negative real numbers. As described in the
proof of Theorem 1.1 in Baeumer [16], each of these terms can be expressed as a
combinations of partial fraction such as ~g rð Þ ¼ γ0

1
r þ γ1

1
α1þr þ…þ γn

1
αnþr where.

γ0 ¼ 1
α1…αn

, for i ¼ 1,…, n, γi ¼ � 1
αi

Q
j¼1, j6¼i

1
αj�αi

.

Since the inverse Laplace transform of 1
αiþr is e�αit, it is easy to invert ~g and

obtain

g tð Þ ¼ γ0 þ γ1e
�α1t þ γ2e

�α2t þ…þ γne
�αnt: (50)

Using Eq. (49) in Eq. (53), it results that

π2Zd
tð Þ ¼ γ0 þ γ1e

�δt þ γ2e
�2δt þ γ3e

� 2δþλ1ð Þt þ γ4e
� δþ2λ2ð Þt þ γ5e

� 2δþ2λ1ð Þt þ γ6e
� 2δþ2λ2ð Þt, t≥0,

(51)

where γið Þi∈ 0;1;2;…;6f g are given by equation Eq. (50).
Remarks
If θ ¼ 0 then

γθ¼0
0 ¼ λ1μ2

2δþ λ1
þ 2λ1λ2μ21
δ 2δþ λ1ð Þ þ

λ1λ2μ2
2δ 2δþ λ1ð Þ þ

λ1λ22μ21
δ2 2δþ λ1ð Þ

¼ λ1
2δþ λ1

2δþ λ2
2δ

� �
μ2 þ

λ1λ2
δ 2δþ λ1ð Þ

2δþ λ2
δ

� �
μ21

¼ λ1 2δþ λ2ð Þ
2δ 2δþ λ1ð Þ μ2 þ

2λ2μ21
δ

� �
,

(52)

γθ¼0
1 ¼ � 2λ1λ2μ21

δ δþ λ1ð Þ �
2λ1λ22μ21

δ2 δþ λ1ð Þ ¼ � 2λ1λ2μ21
δ δþ λ1ð Þ 1þ λ2

δ

� �
, γθ¼0

2 ¼ λ22μ21
δ2

� λ2μ2
2δ

(53)

γθ¼0
3 ¼ � λ1μ2

2δþ λ1
þ 2λ1λ2μ21

2δþ λ1ð Þ δþ λ1ð Þ þ
λ2μ2

2δþ λ1
� 2λ22μ21

2δþ λ1ð Þ δþ λ1ð Þ

¼ λ2 � λ1ð Þμ2
2δþ λ1

þ 2λ2 λ1 � λ2ð Þμ21
2δþ λ1ð Þ δþ λ1ð Þ ,

(54)

γθ¼0
4 ¼ γθ¼0

5 ¼ γθ¼0
6 : (55)

284

Probability, Combinatorics and Control

Then,

π2Zd
tð Þ ¼ λ1 2δþ λ2ð Þ

2δ 2δþ λ1ð Þ μ2 þ
2λ2μ21
δ

� �
� 2λ1λ2μ21
δ δþ λ1ð Þ 1þ λ2

δ

� �
e�δt

þ λ22μ21
δ2

� λ2μ2
2δ

� �
e�2δt þ 1

2δþ λ1
λ2 � λ1ð Þμ2 þ

2λ2 λ1 � λ2ð Þμ21
2δþ λ1ð Þ δþ λ1ð Þ

� �
e� 2δþλ1ð Þt

¼ λ1 2δþ λ2ð Þ
2δ 2δþ λ1ð Þ �

λ2
2δ

e�2δt þ λ2 � λ1ð Þ
2δþ λ1

e� 2δþλ1ð Þt
� �

μ2

þ λ2λ1 2δþ λ2ð Þ
δ2 2δþ λ1ð Þ � 2λ1λ2

δ δþ λ1ð Þ 1þ λ2
δ

� �
e�δt þ λ22

δ2
e�2δt þ 2λ2 λ1 � λ2ð Þ

2δþ λ1ð Þ δþ λ1ð Þ e
� 2δþλ1ð Þt

� �
μ21

¼ λ1 2δþ λ2ð Þ
2δ 2δþ λ1ð Þ �

λ2
2δ

1� 2δat 2δj
� �þ λ2 � λ1ð Þ

2δþ λ1
1� 2δþ λ1ð Þat 2δþλ1j
� �� �

μ2

þ λ2λ1 2δþ λ2ð Þ
δ2 2δþ λ1ð Þ � 2λ1λ2

δ δþ λ1ð Þ 1þ λ2
δ

� �
e�δt þ 2

λ22
δ2

e�2δt � λ22
δ2

e�2δt
� �

μ21

þ 2λ2 λ1 � λ2ð Þ
δ δþ λ1ð Þ � 2λ2 λ1 � λ2ð Þ

δ 2δþ λ1ð Þ
� �

μ21e
� 2δþλ1ð Þt

¼ λ2at 2δj þ λ1 � λ2ð Þat 2δþλ1j
� �

μ2

þ λ2λ1 2δþ λ2ð Þ
δ2 2δþ λ1ð Þ � 2λ1λ2

δ δþ λ1ð Þ 1þ λ2
δ

� �
e�δt þ 2

λ22
δ2

e�2δt � λ22
δ2

1� 2δat 2δj
� �� �

μ21

þ 2λ2 λ1 � λ2ð Þ
δ δþ λ1ð Þ e� 2δþλ1ð Þtμ21 �

2λ2 λ1 � λ2ð Þ 1� 2δþ λ1ð Þat 2δþλ1j
� �

μ21
δ 2δþ λ1ð Þ

¼ λ2at 2δj þ λ1 � λ2ð Þat 2δþλ1j
� �

μ2 þ
2λ2
δ

λ2at 2δj þ λ1 � λ2ð Þat 2δþλ1j
� �

μ21

� eδt
2λ1λ2

δ δþ λ1ð Þ 1þ λ2
δ

� �
� 2

λ22
δ2

e�δt þ 2λ2 λ1 � λ2ð Þ
δ δþ λ1ð Þ e� δþλ1ð Þt

� �

(56)

π2Zd
tð Þ ¼ λ2at 2δj þ λ1 � λ2ð Þat 2δþλ1j

� �
μ2 þ

2λ2
δ

λ2at 2δj þ λ1 � λ2ð Þat 2δþλ1j
� �

μ21

� eδt
2λ1λ2

δ δþ λ1ð Þ 1þ λ2
δ

� �
� 2

λ22
δ2

e�δt þ 2λ2 λ1 � λ2ð Þ
δ δþ λ1ð Þ e� δþλ1ð Þt

� �

¼ λ2at 2δj þ λ1 � λ2ð Þat 2δþλ1j
� �

μ2 þ
2λ2
δ

λ2at 2δj þ λ1 � λ2ð Þat 2δþλ1j
� �

μ21

� eδt
2λ1λ2

δ δþ λ1ð Þ 1þ λ2
δ

� �
� 2

λ22
δ2

1� δat 2δj
� �þ 2λ2 λ1 � λ2ð Þ

δ δþ λ1ð Þ 1� δþ λ1ð Þat δþλ1j
� �� �

¼ λ2at 2δj þ λ1 � λ2ð Þat 2δþλ1j
� �

μ2 þ
2λ2
δ

λ2at 2δj þ λ1 � λ2ð Þat 2δþλ1j
� �

μ21

� 2λ2
δ

eδt λ2at δj þ λ1 � λ2ð Þat δþλ1j
� �� �

¼ λ2at 2δj þ λ1 � λ2ð Þat 2δþλ1j
� �

μ2

þ 2λ2
δ

λ2at 2δj þ λ1 � λ2ð Þat 2δþλ1j � eδt λ2at δj þ λ1 � λ2ð Þat δþλ1j
� �� �� �

μ21:

(57)

To finally have:

π2Zd
tð Þ ¼ λ2at 2δj þ λ1 � λ2ð Þat 2δþλ1j

� �
μ2

þ 2λ2
δ

λ2at 2δj þ λ1 � λ2ð Þat 2δþλ1j � eδt λ2at δj þ λ1 � λ2ð Þat δþλ1j
� �� �� �

μ21,
(58)
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which is exactly the result of Léveillé et al.[15].
If λ1 ¼ λ2 then

γλ1¼λ2
0 ¼ λμ2

2δ
þ λ2μ21

δ2
þ θλ2

δ δþ λð Þ þ
θλ2

δ δþ 2λð Þ
� �

μ1 μ01 � μ1
� �þ θλ μ02 � μ2

� �
2 δþ λð Þ

þ θ2λ2 μ01 � μ1
� �2

δþ λð Þ δþ 2λð Þ ,
(59)

γλ1¼λ2
1 ¼ � 2λ2μ21

δ2 � 2θλ2μ1 μ01�μ1ð Þ
δ δþ2λð Þ , γλ1¼λ2

2 ¼ � λμ2
2δ þ λ2μ21

δ2 þ θλ2μ1 μ01�μ1ð Þ
δ δ�2λð Þ ,γλ1¼λ2

3 ¼ 0 (60)

γλ1¼λ2
4 ¼ � 2θλ2μ1 μ01 � μ1

� �
δþ 2λð Þ δ� 2λð Þ �

2θ2λ2 μ01 � μ1
� �2

δ δþ 2λð Þ , (61)

γλ1¼λ2
5 ¼ � θλ μ02 � μ2

� �
δþ λ

þ 2θλ2μ1 μ01 � μ1
� �

δþ λð Þ δþ 2λð Þ þ
2θ2λ2 μ01 � μ1

� �2
δ δþ λð Þ , (62)

γλ1¼λ2
6 ¼ θλ μ02 � μ2

� �
2 δþ λð Þ � θλ2μ1 μ01 � μ1

� �
δþ λð Þ δþ 2λð Þ �

θ2λ2 μ01 � μ1
� �2
δ δþ λð Þ : (63)
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which is exactly the result of Bargès et al. [8].
If λ1 ¼ λ2 and θ ¼ 0 then

π2Zo
tð Þ ¼ λat 2δj μ2 þ λat 2δj μ1

� �2, (65)

which is exactly the result of Léveillé et al. [15].
Remark 3.1
Noting for i ¼ 1, 2,…, m,j ¼ 1, 2,…, m, p ¼ 0, 1 and k∈N� 0f g

ηk i; j; pð Þ ¼

i
j

� �
θpλk E Xj� �� �1�p

E X0j
h i

� E Xj� �� �p

rþ p� 2λþ iδð Þk
: (66)
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We can rewrite ~πZo
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and
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4. Application

4.1 First two moments

For the numerical illustration, suppose that X � pExp β1 ¼ 1
80

� �þ
1� pð ÞExp β2 ¼ 1

200

� �
, the inter-claim time distribution parameters λ1 ¼ 2; 4 and

λ2 ¼ 1, the interest rate δ ¼ 3% (Tables 1–4). We use three different values for the
copula parameter θ ¼ �1;0; 1, p ¼ 1=3 and fix the time t ¼ 1; 10; 100. The mth
moment of X is

μm ¼ p m!
βm1

þ 1� pð Þ m!
βm2

and μ0m ¼ Ð∞
0
mxm�1 1� FX xð Þð Þ2dx ¼ μm ¼ p m!

2β1ð Þm þ
1� pð Þ m!

2β2ð Þm. (72)

θ t ¼ 1 t ¼ 10 t ¼ 100

�1 482.3375 4450 16,428

0 438.1057 4407.1 16,385

1 393.874 4364.2 16,342

Table 1.
E Zd tð Þ½ � for λ1 ¼ 1, λ2 ¼ 10, δ ¼ 3%.
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4.2 Premium calculation

From the results in Section 4.1, we can compute the premium related to the risk
of an insurance portfolio represented by G tð Þ, depending on the premium calcula-
tion principles adopted by the insurance company. The loaded premium Zd tð Þ
consists in the sum of the pure premium E Zd tð Þ½ �, the expected value of the costs
related to the portfolio, and a loading for the risk M tð Þ as

G tð Þ ¼ E Zd tð Þ½ � þM tð Þ (73)

The loading for the risk differs according to the premium calculation principles.

4.2.1 The expected value principle

Denote by θ.0 the safety loading. The expected value principle defines the
loaded premium as:

G tð Þ ¼ E Zd tð Þ½ � þ θE Zd tð Þ½ �, (74)

where M tð Þ ¼ θE Zd tð Þ½ �.

4.2.2 The variance principle

Denote by θ.0 the safety loading. The variance principle defines the loaded
premium as:

θ t ¼ 1 t ¼ 10 t ¼ 100

�1 34027.1 29756.44 7954.606

0 24061.85 21053.72 5731.564

1 366.1484 1035.491 1545.671

Table 4.
Std Zd tð Þ½ � for λ1 ¼ 5, λ2 ¼ 10, δ ¼ 3%.

θ t ¼ 1 t ¼ 10 t ¼ 100

�1 33900.85 29646.71 7928.481

0 23972.65 20976.12 5711.548

1 359.8795 1036.223 1542.412

Table 3.
Std Zd tð Þ½ � for λ1 ¼ 1, λ2 ¼ 10, δ ¼ 3%.

θ t ¼ 1 t ¼ 10 t ¼ 100

�1 597.1633 4578.7 16,557

0 554.5237 4535.5 16,513

1 511.8841 4492.3 16,470

Table 2.
E Zd tð Þ½ � for λ1 ¼ 5, λ2 ¼ 10, δ ¼ 3%.

288

Probability, Combinatorics and Control

G tð Þ ¼ E Zd tð Þ½ � þ θVar Zd tð Þ½ �, (75)

where M tð Þ ¼ θVar Zd tð Þ½ �.

4.2.3 The standard deviation principle

Denote by θ.0 the safety loading. The standard deviation principle defines the
loaded premium as:

G tð Þ ¼ E Zd tð Þ½ � þ θ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Var Zd tð Þ½ �

p
, (76)

where M tð Þ ¼ θ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Var Zd tð Þ½ �p

.

4.2.4 The quantile principle

The standard deviation principle defines the loaded premium as:

G tð Þ ¼ F�1
Zd tð Þ 1� εð Þ, (77)

where ε is smallest (for example: ε ¼ 0:5%, 1%, 2:5%, 5%Þ.
In this case, the safety loading M tð Þ is given by

M tð Þ ¼ F�1
Zd tð Þ 1� εð Þ � E Zd tð Þ½ � (78)

The principles of standard deviation and variance only require partial informa-
tion on the distribution of the random variable, Zd tð Þ, i.e., its expectation and its
variance.

Often, the actuary only has this information for different reasons (time con-
straints, information …).

If the actuary has more information about the random variable, Zd tð Þ i.e., he
knows the form of FZd tð Þ, then he can apply the quantile principle.

But he does not know much about FZd tð Þ, then he can approximate the distribu-
tion of Zd tð Þ using the matching moments technique.

5. Conclusion

We have derived exact expressions for all the moments of the DCDPRV process
using renewal arguments, again disproving the popular belief that renewal tech-
niques cannot be applied in the presence of economic factors. Our results, for the
DCDPRV process, are consistent: (i) with the results of Léveillé et al. [15] for
θ ¼ 0, λ1 6¼ λ2 and for θ ¼ 0, λ1 ¼ λ2, (ii) with the results of Bargès et al. [8] for
θ 6¼ 0, λ1 ¼ λ2.

Within this framework, further research is needed to get exact expressions (or
approximations) of certain functional of the Zd tð Þ; t≥0f g process, as stop-loss pre-
miums and ruin probabilities.

Our models have applications in reinsurance, house insurance and car insurance.
They can also be used in evaluation of health programs, finance, and other areas.

For example, consider the case of a male currently aged 25 who is starting a
defined contribution (DC) pension plan and is planning to retire in, say, 40 years at
the age of 65. He anticipates that when he reaches that age he will convert his
accumulated pension fund into a life annuity in order to hedge his own longevity
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risk and avoid outliving his own financial resources. The value of his retirement
income will depend not only on the value of his pension fund, but also on the price
of annuities at the time. Other things being equal, this means that his retirement
income prospects will be affected by the distribution on future annuity value: the
greater the dispersion of that distribution, the riskier his retirement income will be.
For the assessment of the accumulated pension fund and its variability our models
can be used. We can suppose that this man makes a deposit to a bank account, and
that the time between successive deposits follows a renewal process and the force of
interest is stochastic. Our model allows us to calculate the accumulated pension
fund and its variability at the age of 65.

Another possible application is in reliability, to model the net present value of
aggregate equipment failures costs until its total breakdown. A piece of equipment
is deemed to be beyond repair when the repair time exceeds a predetermined gap.
Of course, another possible definition of total breakdown is when the cost of repair
exceeds a predetermined gap. But, since the cost of repair is defined per unit time,
the two definitions are somewhat equivalent.
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risk and avoid outliving his own financial resources. The value of his retirement
income will depend not only on the value of his pension fund, but also on the price
of annuities at the time. Other things being equal, this means that his retirement
income prospects will be affected by the distribution on future annuity value: the
greater the dispersion of that distribution, the riskier his retirement income will be.
For the assessment of the accumulated pension fund and its variability our models
can be used. We can suppose that this man makes a deposit to a bank account, and
that the time between successive deposits follows a renewal process and the force of
interest is stochastic. Our model allows us to calculate the accumulated pension
fund and its variability at the age of 65.

Another possible application is in reliability, to model the net present value of
aggregate equipment failures costs until its total breakdown. A piece of equipment
is deemed to be beyond repair when the repair time exceeds a predetermined gap.
Of course, another possible definition of total breakdown is when the cost of repair
exceeds a predetermined gap. But, since the cost of repair is defined per unit time,
the two definitions are somewhat equivalent.
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Chapter 13

Modelling the Information-
Psychological Impact in Social
Networks
Igor Goncharov, Nikita Goncharov, Pavel Parinov,
Sergey Kochedykov and Alexander Dushkin

Abstract

The paper considers the objects, subjects, purposes, tools, methods and
implementation of information-psychological impact (IPI). It suggests a cellular
automata model of the diffusion process of information-psychological impact in
social networks, the hierarchy of the changes in the states of the subjects of
information-psychological impact and the chart of transitions from state to state
used in the cellular automaton algorithm. The suggested cellular automaton takes
into account the effect of forgetting the information-psychological impact, as well
as social and psychological parameters and probabilistic characteristics of the sub-
jects of the social network. It therefore allows for the modelling of the diffusion of
the information-psychological impact in the social network. The model can be used
to determine the number of subjects affected by the information-psychological
impact and the possibility of successful diffusion of the impact. The modelling of
the suggested algorithm was performed. The results of the modelling are analysed
in the paper.

Keywords: social network, information-psychological impact,
negative information-psychological impact, positive information-psychological
impact, cellular automata, diffusion, social and psychological parameters

1. Introduction

Information-psychological impact (IPI) is the informational influence on
people’s minds, which alters their perception of the reality, behavioural functions
and, in some cases, even the functioning of their inner organs and body systems
[1–3]. Information-psychological impact (IPI) may affect individuals, groups of
people, communities and the whole society. IPI can be either positive or negative,
depending on the intended purpose. Positive IPI is used for medical treatment
purposes, rehabilitation, improvement of behavioural patterns and creative pur-
poses. It can also be used to unite people for a good cause. Negative IPI is used for
manipulating—directly or indirectly—individuals, groups of people or the whole
society into actions that violate either their own interests or interests of others.
Negative IPI may cause emotional, psychological and social tensions, deterioration
of moral standards and behavioural norms, as well as moral and political disorien-
tation. This, in turn, leads to dramatic changes in individual, group and public
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conscience and alterations in the moral, political, social and psychological
environment within the society [1–3].

Information-psychological impact is implemented by means of various tools and
techniques. At the moment, negative information-psychological impacts are more
common. They influence individuals, groups of people or the society by means of
telecommunication systems, mass media and social networks. Negative IPIs are
used to control the society, force certain opinions on various issues, recruit mem-
bers to religious cults and terrorist groups and to alter people’s mental state. Among
the examples of such IPIs are colour revolutions, the so-called “death groups” on
social networking sites, as well as active recruitment campaigns to terrorist groups,
which are based on films or video games aimed primarily at young people.

It is thus very important to model IPIs in social networks in order to analyse
and select the most effective methods of using positive IPIs and combating negative
IPIs [1, 2, 4].

2. Overview of previous studies

Social networks are usually represented as graphs with multiple vertices (agents)
and edges representing the links between the agents. Agents represent various sub-
jects of the network, from individuals to large groups, organisations and communi-
ties. Links denote the relationships between the agents, such as information
exchange, social relations and communication [4–9]. The process of IPI can be
divided into two stages: diffusion of the IPI and alteration of the agents’ opinions.
Gubanov et al. [4] consider various models of social networks and divide the tasks
connected with studying IPI into following groups: modelling of the informational
influence, modelling of the information management and modelling of the
information confrontation.

Models of the informational influence are used to study the behaviour of the
subject affected by IPI. The influence may be intentional or unintentional. Social
influence becomes obvious during communication or in case of comparison. Models
of the informational influence are used for information management, as they help
the managing subject to determine the kind of informational influence that will
make the controlled subject behave in the desired way. The information manage-
ment model, in turn, is used to model information confrontation, that is, the
interaction of several subjects with conflicting interests who apply their informa-
tional influence to the same controlled subject [4]. There are a number of
approaches to modelling the influence.

1.The Independent Cascade and Linear Threshold Models [4, 8, 10–13]. In these
models, the subject (a vertice of the graph) can be either active or inactive. The
state may only change from active to inactive, not the other way round. The
agent becomes active depending on the selected threshold. The threshold can
be uniform for all agents or may be randomly selected according to a
probabilistic distribution. These models do not take into account groups, game
interaction between the subjects, individual activity of the subjects or
incomplete awareness of the subjects.

2.Network autocorrelation models. In these models, the opinion and behaviour
of the subject are affected by the opinion of the neighbouring subjects and
represent the reaction of the subject to the IPI. The authors [14–19] consider a
determined time-digital linear process, where opinions (properties) of the
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subject are presented as vector yt and change under the influence of other
subjects according to the so-called influence matrix W : ytþ1 ¼ Wyt.

3. Ising models [20, 21]. Invented for studying the phenomenon of
ferromagnetism, Ising model is often used to verify the results of numerical
modelling. When studying the diffusion of IPI in social networks, the model
helps to describe the changes in the behaviour of a large social group caused by
the nearest neighbours. The influence of the nearest neighbours plays a key
role, and the willingness of the group to accept a new idea serves as the
analogue of the temperature.

4. Influence models based on Markov chains. Such models employ corresponding
mathematical tools to represent the activities of every subject and the group
as a whole. They are used to analyse social dynamics and determine the
patterns of the group behaviour. The authors [22–24] consider the similarity of
opinions of the subject, the authors [7, 24] focus on the time over which the
opinions become similar, and the authors [7, 25] study the conditions under
which a uniform final opinion is formed.

All the above-mentioned models represent the rules of interaction between the
subjects or groups of subjects. However, they either do not at all represent the
specifics and characteristics of the network influence and the interaction process or
do this inadequately.

When a social network is considered as a set of agents [4, 26–28], we assume
that every agent has a certain degree of influence on the other agents. It is
therefore necessary to determine a small group of agents with the maximal level of
influence, that is, to solve the influence maximisation problem [4, 10, 29]. These
agents can be used as key nods for influencing other subjects of the social network
or to monitor the social network in order to reveal the presence of IPI. The
influence maximisation problem has been considered in papers focusing on the
following issues.

• Viral marketing [29], where a social network is represented by a Markov
chain with each agent A having his own value that depends on the profit from
sales to other agents influenced by agent A.

• Influence maximisation in the models of innovations’ diffusion [10]. They
include a set of active agents, and at a certain point in time, a new active agent
can activate his neighbours with a set probability.

• Voting process modelling [9], where every agent can, at any stage, change his
opinion by accidentally voting for one of his neighbours and adapting their
opinion. The agent is more likely to adapt the opinion supported by the
majority of his neighbours.

Besides analysing the influence, management and confrontation, there is also a
problem of diffusion of information-psychological impact in the information space
[5]. Information may spread in the following directions [5, 30]: from a subject to
another subject, from a subject to a group, from the information production centre
to an individual subject or a group.

The authors [5, 26–28, 31] suggest a multi-agent model of information diffusion.
The model takes into account the growth of the number of agents over time. Agents
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may appear themselves, produce new agents, disappear from the subjects’
neighbourhood or receive links from other agents.

In [5, 30], the life cycle of the information flow is represented by information
diffusion models based on cellular automata. In these models, each cell of the
automaton can have various states, such as “influence taken,” “influence not rele-
vant,” or “influence rejected.” The information spreads according to probabilistic
rules. The observed states of the objects alter simultaneously in discrete time
intervals following the constant local probabilistic rules. The rules themselves
depend on the state of variables describing the nearest neighbours of the agent or on
the state of the subject itself. For instance, the authors [8, 32] present a model of
word-of-mouth information transfer considering strong and weak links between
the subjects.

In order to analyse the information diffusion process, the authors [6, 33, 34]
compare information diffusion to virus transmission using infiltration and
contamination models such as SIR model and SIRS model.

Runkov [35] compares the structure of social networks and neural networks.
Individual users are viewed as neurons. Using the information about the users’
activities, the neural network may forecast the kind of news they will be interested
in [35, 36] also suggests using neural networks to forecast the behaviour of the
subject of IPI and their recruitability to certain assignments, as well as to assess their
reliability using the data available in the social network.

From the information security perspective, it is vital to identify IPI as soon as
possible. For this purpose, the authors [4, 37] suggest monitoring the states of a
small group of nods in the network using graph models. The problem is to
determine the set of nods to be monitored. Deviations from the standard dynamics
of transmission of some information messages may serve as an indicator of
information-psychological impact. In order to analyse the dynamics of the
information spread and determine the channels caused by external factors, wavelet
analysis can be used [5, 15, 17].

Dodonov and Lande [5] introduce the term information reservation for an
isolated area of the information space and suggest certain modification to
information diffusion models in order to model the dynamics of information flows
in information reservations. Information reservations are information areas subject
to constant information-psychological impact. They can be used for information
and psychological control over the society.

We should say, however, that all the suggested models do not fully consider
social and psychological factors, such as the psychological state of the subjects
during IPI diffusion in social networks. IPI diffusion process depends on the
probabilistic characteristics of the subjects of the social network and the links
between them. It is, therefore, interesting to study IPI diffusion taking into account
social and psychological factors and the psychological state of the subjects of the
social network.

The aim of this paper is to model the process of IPI diffusion in social networks
considering social and psychological factors and the psychological state of the
subjects of the social network. This can be done using a cellular automaton model,
as cellular automata can most adequately represent the process of IPI diffusion in a
social network and the changes in the opinions of its subjects caused by their
immediate neighbours, taking into account social and psychological factors.

3. Materials and methods

When modelling and analysing the process of IPI diffusion, we regarded the
social network as a two-dimensional cellular automaton. A two-dimensional cellular
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automaton is a set of finite automata (subjects of the social network) allocated on
the reference frame and marked with integer coordinates i; jð Þ. Each automaton
can have certain properties and be in one of the states Si, j ∈ S1; S2; ::; Skf g. The
state of a finite automaton i; jð Þ at a certain moment in time tþ 1 is determined as
follows Eq. (1):

Si, j tþ 1ð Þ ¼ F Si, j tð Þ;N i; jð Þ; t� �
, (1)

where F is the rule for the transition of state of the automaton; N i; jð Þ is the point
neighbourhood i; jð Þ and t is a step on the axis of time.

In the cellular automaton model, each cell changes its state while interacting
with a limited number of other cells, normally adjacent ones with the same edge
or vertex. Such models allow for a simultaneous change of the state of all cells
following the general principle of the cellular automaton. Therefore, it is easy to see
the connection between the processes occurring on the micro level and the
processes of spatial interaction between the elements.

Due to the simplicity of their implementation and the ability to describe
complex processes, cellular automata are widely used for the modelling of systems,
which consist of a large number of nonlineary interacting particles (fluid and gas
dynamics in various environments, fires, traffic, and so on), as well as for
representing collective phenomena, such as turbulence, arrangement and chaos.

3.1 Suggested models of IPI in social networks

Given below are the models we suggest for describing the process of
information-psychological impact diffusion in social networks.

1.Information interaction within the social network is presented as a two-
dimensional cellular automaton, whose grid is a two-dimensional array, where
each cell is numbered with an ordered pair i; jð Þ. Each cell is a subject of the
social network. The nearest neighbours of each cell are considered the cells
that have a common vertex with the one observed (Moore neighbourhood).
Thus, each cell has eight nearest neighbours. To eliminate the tip effect,
the grid of the cellular automaton is topologically twisted into a torus [5, 30,
38], that is, the first line is considered to be the continuation of the last
one, and the last one precedes the first one. The same applies to the
columns [5, 30, 38–40].

2.The informational interaction in the social network is presented as a cellular
automaton, whose grid is a free-scale network generated by a Barabási-Albert
algorithm.

Each cell may be in one of the following states: highly positive, neutral (mild
negative or positive attitude) or highly negative. Depending on its state and social
and psychological characteristics, a cell may or may not spread the information (by
influencing the neighbouring cells) [5, 30, 38]. The state and behaviour of cells
change according to the set of rules for the suggested model. These rules take into
account social and psychological factors as well as the psychological state of the
subjects of the social network.

A state transition graph is presented in Figure 1. S0 is the initial state; S1 is the
subject that does not spread the information I and his negative opinion (negative
feedback); S2 is the subject that does not spread the information I and his positive
opinion (positive feedback); S3 is the subject that spreads the information I together
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state of a finite automaton i; jð Þ at a certain moment in time tþ 1 is determined as
follows Eq. (1):

Si, j tþ 1ð Þ ¼ F Si, j tð Þ;N i; jð Þ; t� �
, (1)

where F is the rule for the transition of state of the automaton; N i; jð Þ is the point
neighbourhood i; jð Þ and t is a step on the axis of time.

In the cellular automaton model, each cell changes its state while interacting
with a limited number of other cells, normally adjacent ones with the same edge
or vertex. Such models allow for a simultaneous change of the state of all cells
following the general principle of the cellular automaton. Therefore, it is easy to see
the connection between the processes occurring on the micro level and the
processes of spatial interaction between the elements.

Due to the simplicity of their implementation and the ability to describe
complex processes, cellular automata are widely used for the modelling of systems,
which consist of a large number of nonlineary interacting particles (fluid and gas
dynamics in various environments, fires, traffic, and so on), as well as for
representing collective phenomena, such as turbulence, arrangement and chaos.

3.1 Suggested models of IPI in social networks

Given below are the models we suggest for describing the process of
information-psychological impact diffusion in social networks.

1.Information interaction within the social network is presented as a two-
dimensional cellular automaton, whose grid is a two-dimensional array, where
each cell is numbered with an ordered pair i; jð Þ. Each cell is a subject of the
social network. The nearest neighbours of each cell are considered the cells
that have a common vertex with the one observed (Moore neighbourhood).
Thus, each cell has eight nearest neighbours. To eliminate the tip effect,
the grid of the cellular automaton is topologically twisted into a torus [5, 30,
38], that is, the first line is considered to be the continuation of the last
one, and the last one precedes the first one. The same applies to the
columns [5, 30, 38–40].

2.The informational interaction in the social network is presented as a cellular
automaton, whose grid is a free-scale network generated by a Barabási-Albert
algorithm.

Each cell may be in one of the following states: highly positive, neutral (mild
negative or positive attitude) or highly negative. Depending on its state and social
and psychological characteristics, a cell may or may not spread the information (by
influencing the neighbouring cells) [5, 30, 38]. The state and behaviour of cells
change according to the set of rules for the suggested model. These rules take into
account social and psychological factors as well as the psychological state of the
subjects of the social network.

A state transition graph is presented in Figure 1. S0 is the initial state; S1 is the
subject that does not spread the information I and his negative opinion (negative
feedback); S2 is the subject that does not spread the information I and his positive
opinion (positive feedback); S3 is the subject that spreads the information I together
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with his negative opinion (negative feedback); S4 is the subject that spreads the
information I together with his positive opinion (positive feedback).

Each subject Pk of the social network is interested in a certain number of topics
Tk ¼ Tk

m

� �
and is indifferent to other topics. Subject Pk has the following social

and psychological parameters [41].

1. Initial personal opinion Vk about the information presented in the IPI, which
depends on individual psychological characteristics, education, moral
principles, environment and so on. This parameter is evaluated by the experts
using Harrington scale, according to which values Vk can be interpreted as
follows [41]:

• [�1; �0.64) interval—highly negative opinion that motivates the subject
to spread the information I together with the negative opinion (negative
feedback);

• [�0.64; 0) interval—mild negative opinion that does not motivate the
subject to spread the information I;

• [0; 0.64) interval—mild positive opinion that does not motivate the
subject to spread the information I;

• [0.64; 1) interval—highly positive opinion that motivates the subject to
spread the information I together with the positive opinion (positive
feedback).

2.Level of trust TRkj
TI to the j-th user concerning the topic T. This parameter

influences the attitude of subject Pk to the information presented in the IPI,

Figure 1.
State transition graph.
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received from j-th source. The set of TRkj
T forms a “trust matrix” TRTI for the

topic TI. The TRTI matrix should not necessarily be symmetric.

3.Communication skills Ok. This parameter is evaluated using various
psychological tests, such as Ryakhovsky’s test for communication skills. Let
Ok = {Bad; Average; Good} [41, 42].

4. Information transfer coefficient Gk, showing the force of influence
transmitted by subject Pk to the neighbouring subjects.

5.Level of perception Ck, showing how much subject Pk relies on his own
opinion within the topic TI.

In order to evaluate the current (at a specific time interval t ¼ tþ 1) opinion
Vtþ1

k about the information presented in the IPI, the following relations are
suggested [41]:

Vtþ1
k ¼

1, whenever X ≥ 1,

X, whenever� 1<X < 1,

�1, whenever X ≤ � 1,

X ¼ Vt
k þ CTI

k � CSPtþ1
k

8>>><
>>>:

CSPtþ1
k ¼

PN
i¼1 FiTRTI

ki

N
, Fi ¼ GiVt

i,

(2)

where CSPtþ1
k is an “integral social force,” denoting the degree of influence on

the opinion of subject Pk about the information in the IPI received from the subject
Pk is interacting with; N is the number of subjects interacting with subject Pk; Fi is
the force of IPI with which the i-th subject influences subject Pk and Vt

i is the
opinion of the i-th subject.

Whether subject Pk will spread the IPI with the force F depends on his opinion
Vk and his communication skills Ok. To evaluate the coefficient of the information
transfer by subject Pk at a specific time interval tþ 1ð Þ, the following formula is
used [41]:

Rtþ1
k ¼ 0, if Ok ¼ }bad}и Vk ∈ �0; 64;0; 64½ Þ;

1, else:

�
(3)

The subject affected by the IPI in the social network develops his own opinion
about the received information, which depends on his individual parameters and
the force of the IPI. The opinion can be positive or negative and may change over
time under the influence of other factors. Depending on his opinion about the
information and his communication skills, the subject may or may not spread the
received IPI [43–46].

The effectiveness of the IPI can be defined by the following relation Eq. (4):

P ¼ NS2 þNS4

N
, (4)

where NS2 is the number of subjects in state S2, NS4 is the number of subjects in
state S4 and N is the total number of subjects.
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received from j-th source. The set of TRkj
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The subject affected by the IPI in the social network develops his own opinion
about the received information, which depends on his individual parameters and
the force of the IPI. The opinion can be positive or negative and may change over
time under the influence of other factors. Depending on his opinion about the
information and his communication skills, the subject may or may not spread the
received IPI [43–46].

The effectiveness of the IPI can be defined by the following relation Eq. (4):
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where NS2 is the number of subjects in state S2, NS4 is the number of subjects in
state S4 and N is the total number of subjects.
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Users of the social network may be subject to various kinds of IPI aimed at
different groups of people. IPIs may also differ by their purpose and the effective-
ness of implementation. IPI in social networks may also be used to influence specific
public officers.

Using the results of the IPI modelling, we can perform a comprehensive assess-
ment of the general level of information and psychological security and suggest
practical recommendations on how to eliminate the negative effect of the
information-psychological influence. The assessment can be based on the method-
ology for calculating the security indices in the military, political, economic and
other spheres developed by the PIR Center [48, 49]. This means that the index of
general information and psychological security (IGIPS) is calculated according to
the following formula:

IIPS ¼ G0

H
f 1 1� β1ð Þ þ f 2 1� β2ð Þ þ…þ f H 1� βHð Þ� �þ

þGtar

K
h1 1� γ1ð Þ þ h2 1� γ2ð Þ þ…þ hK 1� γKð Þ½ �χi,

(5)

where Go is the coefficient of the degree of IPI on the social network; H is the
number of IPIs; f i is the coefficient of the importance of the i-th IPI; βi is the
probability of using the i-th IPI in the social network determined by the Eq. (4);Gtar
is the coefficient of the degree of the IPI on the specific management system; K is
the number of public officers that may be subject to the IPI; hi is the coefficient of
the importance of the i-th; γi is the probability of effective implementation of the
IPI used to influence the i-th public officer and χi is the coefficient of importance of
the i-th management object.

Go, Gtar, f i, hi and χi are determined by means of an expert survey. The proba-
bility of effective implementation of the IPI γi used to influence the i-th public
officer is calculated using Eq. (6):

γi ¼
S
D
, (6)

where S is the number of wrong decisions made and D is the total number of
decisions made after the IPI.

The probability of the IPI being aimed at a specific public officer is calculated
using Eq. (7) [2]:

P ¼ 1� 1� aið Þ 1� bj
� �

… gs
� �

, (7)

where ai, bj,…, gs are informational factors determined by the expert survey that
indicate that the IPI is aimed at a certain public officer.

The suggested method of assessing the IGIPS has the following advantages. It
registers the increase in the degree of the IPI on the social network in good time. It
registers the connection between the IPI on public officials and the decisions they
make. It allows for calculating the index of information and psychological security
and developing a strategy to decrease negative IPIs.

3.2 Modelling algorithm

Figure 2 presents a flow chart of the algorithm for modelling IPI. During the
initial stage, main parameters of the social network’s subjects are determined. The
trust matrix is formed, and the communication skills of the subjects, their
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perception level, information transfer coefficient and the initial opinion about the
given issue are determined [43–47].

During the first stage, which corresponds to the origin on the time axis t ¼ 0ð Þ,
the whole grid consists of cells in state S0, except for certain cells that initiate the
diffusion of the IPI together with their positive opinion about the information.

The second stage involves information diffusion and exchange of opinions
between the subjects along the time axis t ¼ tþ 1. The information diffusion
is calculated using Eq. (3), and the opinions are calculated using Eq. (2). Cells with

Figure 2.
Flow chart of the algorithm for modelling IPI.
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the whole grid consists of cells in state S0, except for certain cells that initiate the
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the value of information diffusion equal 1 spread the information to the
neighbouring cells.

A cell may change its state receiving influence Fi from the neighbouring cells
whose information transfer value equals 1. When the influence is received, the
current values of opinion Vk and information diffusion Rk are calculated.

4. Experiments and discussion

4.1 Two-dimensional array implementation

The suggested algorithm was implemented on a 100 � 100 grid. The automaton
was tested in the following way: the initial values were distributed following the
normal distribution law; 10 random initiators of the IPI and 2 opponents were
selected out of all the subjects; the automaton was tested 100 times, each test run
including 1000 steps; average number of subjects in each of the states was
determined. The initial personal opinion of subject Vk about the information was
distributed according to the normal distribution rule within the intervals [�1; �0.5],
[�0.5; 0.5], [0.5; 1]. Trust level TRkj

TI was distributed according to the normal
distribution rule within the interval [0; 1] or [�1; 1]. Figures 3–5 demonstrate the
functioning of the automaton.

Figure 4 demonstrates the functioning of the automaton, when Vk ∈ �0; 5;0; 5½ �,
that is, most subjects are neutral to the IPI. Figure 5 demonstrates the functioning
of the automaton, when Vk ∈ �1;�0; 5½ �, that is, most subjects are negative to the
IPI. Figure 6 demonstrates the functioning of the automaton, when Vk ∈ 0; 5; 1½ �,
that is, most subjects are positive to the IPI. Figures “a” demonstrate the function-
ing of the automaton, when TRkj

TI ∈ 0; 1½ �, that is, the subjects adopt opinions of
other subjects. Figures “b” demonstrate the functioning of the automaton, when
TRkj

TI ∈ �1; 1½ �, that is, the subject has the opposite opinion to the one imposed
by the IPI.

Figure 3.
Distribution of cells according to the discrete time whenever Vk ∈ �0; 5;0; 5½ �.

Figure 4.
Distribution of cells according to the discrete time whenever Vk ∈ �1;�0; 5½ �.
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4.2 Barabási-Albert model implementation

The suggested algorithm was implemented using a random scale-free network
generated by Barabási-Albert algorithm. The network consisted of 1000 nods. The
results are given in Figure 6. The automaton was tested in the following way: the
initial values were distributed following the normal distribution law; 90 random
initiators of the IPI and 10 opponents were selected out of all the subjects; the
automaton was tested 100 times, each test run including 300 steps; average number
of subjects in each of the states was determined. The initial personal opinion of
the subject Vk about the information was distributed according to the normal
distribution rule within the intervals [�1; �0.5], [�0.5; 0.5], [0.5; 1]. Trust level
TRkj

TI was distributed according to the normal distribution rule within the interval
[0; 1] or [�1; 1]. Figures 7–9 demonstrate the functioning of the automaton.

Figure 7 demonstrates the functioning of the automaton, when Vk ∈ �0; 5;0; 5½ �,
that is, most subjects are neutral to the IPI. Figure 8 demonstrates the functioning
of the automaton, when Vk ∈ �1;�0; 5½ �, that is, most subjects are negative to the
IPI. Figure 9 demonstrates the functioning of the automaton, when Vk ∈ 0; 5; 1½ �,
that is, most subjects are positive to the IPI. Figures “a” demonstrate the function-
ing of the automaton, when TRkj

TI ∈ 0; 1½ �, that is, the subjects adopt opinions of

Figure 6.
Random scale-free network generated by Barabási-Albert model.

Figure 5.
Distribution of cells according to the discrete time whenever Vk ∈ 0; 5; 1½ �.
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other subjects. Figures “b” demonstrate the functioning of the automaton, when
TRkj

TI ∈ �1; 1½ �, that is, the subject has the opposite opinion to the one imposed
by the IPI.

4.3 Discussion

Analysis of Figures 3–9 shows that
the character of the IPI diffusion within the social network is practically
exponential;

when the subjects are neutral to the IPI (Figures 3a and 7a), just a small number
of initiators can successfully perform the IPI;

when the subjects are negative or positive to the IPI (Figures 4a, 5a, 8a, and 9a),
the IPI does not influence their state;

Figure 7.
Distribution of cells according to the discrete time whenever Vk ∈ �0; 5;0; 5½ �.

Figure 8.
Distribution of cells according to the discrete time whenever Vk ∈ �1;�0; 5½ �.

Figure 9.
Distribution of cells according to the discrete time whenever Vk ∈ 0; 5; 1½ �.
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when the subjects do not trust each other and change their opinions to the
opposite ones (Figures 3–5b and 7–9b), the number of subjects in states S3
and S4 is similar, irrespective of their initial state.

The results obtained using the suggested models agree with the results presented
in Refs. [4, 5, 30]. These works consider the information diffusion, which is an
individual case of IPI diffusion in social networks. As opposed to Refs. [4, 5, 30, 39,
40], the suggested model is not based on the probabilistic characteristics of the
subjects of the social network but takes into account the social and psychological
parameters of the subjects and their psychological state during IPI diffusion in social
networks.

5. Conclusion

The paper suggests a model for describing the diffusion process of information-
psychological impact in social networks based on cellular automata. Cellular
automata models can change the states of a large number of cells over a minimal
period of time, which is very useful for the modelling of the process of information-
psychological impact diffusion in social networks. The suggested models can thus
represent the process of IPI diffusion in a social network and the corresponding
changes in the opinions of its subjects caused by their immediate neighbours, taking
into account social and psychological factors.
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when the subjects do not trust each other and change their opinions to the
opposite ones (Figures 3–5b and 7–9b), the number of subjects in states S3
and S4 is similar, irrespective of their initial state.

The results obtained using the suggested models agree with the results presented
in Refs. [4, 5, 30]. These works consider the information diffusion, which is an
individual case of IPI diffusion in social networks. As opposed to Refs. [4, 5, 30, 39,
40], the suggested model is not based on the probabilistic characteristics of the
subjects of the social network but takes into account the social and psychological
parameters of the subjects and their psychological state during IPI diffusion in social
networks.

5. Conclusion

The paper suggests a model for describing the diffusion process of information-
psychological impact in social networks based on cellular automata. Cellular
automata models can change the states of a large number of cells over a minimal
period of time, which is very useful for the modelling of the process of information-
psychological impact diffusion in social networks. The suggested models can thus
represent the process of IPI diffusion in a social network and the corresponding
changes in the opinions of its subjects caused by their immediate neighbours, taking
into account social and psychological factors.
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Chapter 14

Combinatorial Cosmology
Martin Tamm

Abstract

In this chapter, a combinatorial model for cosmology is analyzed. We consider
each universe as a path in a graph, and the set of all such paths can be made into a
finite probability space. We can then consider the probabilities for different kinds
of behavior and under certain circumstances argue that a scenario where the
behavior of the entropy is monotonic, either increasing or decreasing, should be
much more likely than a scenario where the behavior is symmetric with respect to
time. In this way we can attempt to construct a model for a multiverse which is
completely time symmetric but where the individual universes tend to be time
asymmetric, i.e., have an arrow of time. One of the main points with this approach
is that this kind of broken symmetry can be studied in very small models using
exact mathematical methods from, e.g., combinatorics. Even if the amount of com-
putations needed increases very rapidly with the size of the model, we can still hope
for valuable information about what properties more realistic models should have.
Some suggestions for further research are pointed out.

Keywords: cosmology, multiverse, graph theory, entropy, time’s arrow

1. Introduction

Applications of combinatorics have in recent years invaded many new areas of
research. Still, cosmology is probably not the first such area which comes to your
mind. Traditional cosmology is usually based on differential geometry and general
relativity, often in combination with various ideas from fundamental physics and
high-precision astronomical measurements. However, it is very much at the heart of
cosmology that any model that we study must be based on rather drastic simplifi-
cations. In fact, when the object of study in a sense contains everything, finding the
right way to discard nonessential information becomes a fundamental problem.
From this point of view, the combinatorial approach is just one of several possible
ways to proceed. For a discussion of this question from a more general point of
view, see [1].

Different problems may of course call for different kinds of simplifications. As a
rather extreme example, I will in this chapter discuss the long open problem of
time’s arrow, where it can be argued that the best method of attack may be to
discard almost everything we know about the universe, just to uncover the under-
lying combinatorial skeleton. In other words, we should forget almost everything
we know about ordinary physics and instead consider all the possible states that a
universe could be in as the nodes of a huge graph. Each possible universe then
becomes a path in this graph, and our mission becomes to try to decide what kinds
of paths are the most common ones.
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Applications of combinatorics have in recent years invaded many new areas of
research. Still, cosmology is probably not the first such area which comes to your
mind. Traditional cosmology is usually based on differential geometry and general
relativity, often in combination with various ideas from fundamental physics and
high-precision astronomical measurements. However, it is very much at the heart of
cosmology that any model that we study must be based on rather drastic simplifi-
cations. In fact, when the object of study in a sense contains everything, finding the
right way to discard nonessential information becomes a fundamental problem.
From this point of view, the combinatorial approach is just one of several possible
ways to proceed. For a discussion of this question from a more general point of
view, see [1].

Different problems may of course call for different kinds of simplifications. As a
rather extreme example, I will in this chapter discuss the long open problem of
time’s arrow, where it can be argued that the best method of attack may be to
discard almost everything we know about the universe, just to uncover the under-
lying combinatorial skeleton. In other words, we should forget almost everything
we know about ordinary physics and instead consider all the possible states that a
universe could be in as the nodes of a huge graph. Each possible universe then
becomes a path in this graph, and our mission becomes to try to decide what kinds
of paths are the most common ones.
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The ambition here is not to claim any kind of final solution to “the riddle of
time.” Rather, the ambition is to give a new angle to a well-known problem. And
also to show that from this point of view, it may even make sense to study models
which are ridiculously small in comparison with the real universe.

After a short introduction to the problem of time’s arrow in Section 2, the basic
structure of the combinatorial multiverse is presented in Section 3. But in order to
study the asymmetry of time, we also need the concept of entropy which is intro-
duced in Section 4, and in Section 5 we then turn to the dynamics. Both the entropy
and the dynamics are treated in a very simplified way. However, the essential point
here is to try to explain how the time-asymmetric development of the entropy that
we observe in our universe can arise from time-symmetric dynamical laws and
boundary conditions. In Section 6, the object is to show how standard methods from
combinatorics can be used to make computations in the combinatorial multiverse.
In Sections 7 and 8, we then consider some very simple probabilistic assumptions
which turn the combinatorial multiverse into a probability space and discuss the
consequences for time asymmetry.

In the simple model discussed so far, it is not difficult to obtain similar results by
heuristic reasoning. However, the approach here should mainly be considered as a
preparation for more complicated models, where the same combinatorial methods
could be used, but heuristics would be difficult to apply.

Thus, this should more be considered as a starting point for further research
than as an endpoint. In Section 9, I will therefore take a step in this direction by
suggesting one such possible generalization (out of many), which could be used to
obtain a stronger kind of time asymmetry. Finally, some conclusions are then
discussed in Section 10.

Many of the ideas presented here have appeared before, e.g., in [2, 3], and in
particular [4], although from a somewhat different angle.

2. The arrow of time

The term “time’s arrow” was coined by Eddington [5] and refers to the fact that
macroscopic time is asymmetric. In fact, we all know that the future is very differ-
ent from the past. For instance, how does it come that we can remember yesterday
but we cannot remember tomorrow? This can also be expressed by saying that we
all agree that there is a well-defined direction from the past toward the future. Ever
since the time of Ludwig Boltzmann, it has been clear that this has something to do
with the growth of entropy and the second law of thermodynamics, although it may
still not be quite obvious exactly what the connection is.

What is mysterious about time’s arrow is that somehow the macroscopic laws
that we observe must emerge from the underlying microscopic laws of motion, and
these are in general considered to be essentially time invariant. So how can asym-
metric macroscopic laws arise from symmetric microscopic ones?

Few questions in physics have generated such a variety of completely different
answers (see, e.g., Barbour [6], Halliwell et al. [7], Zeh [8]), and the problem is still
wide open. But, as has repeatedly been pointed out by Price [9], most such tentative
answers seem to contain some (more or less hidden) asymmetry from the begin-
ning, either in the boundary conditions or in the dynamical laws.

Here I will advocate a different viewpoint. We can consider the set of all possible
universes as a probability space, a “multiverse,” and this probability space will be
completely time symmetric in the sense that reversing the direction of time would
generate the same probability space. But for observers, like ourselves, who are by
necessity confined to our own universe, it can still be that the symmetry appears to
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be broken in the sense that in one direction of time the entropy is increasing and in
the other it is decreasing. Another way to express this would be to say that all the
universes in the multiverse would share the same endpoints, the Big Bang and the
Big Crunch. But only half of them would have the same Big Bang as we have. In the
other half, our Big Bang would instead be the Big Crunch.

3. The combinatorial multiverse

This is not the place to try to describe all possible combinatorial models for
cosmology. Rather, I have chosen to just discuss the simple case of a closed, finite
universe. Many cosmologists these days support open models, and it is of course
possible to apply combinatorial methods to them too. However, since such models
tend to be infinite, they may be considerably more complicated from a probabilistic
point of view.

To model the set of all universes in the simplest possible way, let us for each
moment of time between the endpoints �T0 and T0 (i.e., the Big Bang and the Big
Crunch) consider the finite set of all possible “states” of a universe. To make
everything extremely simple, let us suppose that time is discrete in the sense that we
only consider it at a finite number of points as follows:

ð1Þ

Thus, we can measure time just by counting the number of time intervals, which
means that time can be viewed as integer valued. At the endpoints �T0 and T0,
there will just be one unique state (with zero volume), but in between, there will be
many states for each t. All such states will be the nodes of an enormous graph, and a
universe will then be just a path in this graph with the property that there is exactly
one state for each moment of time. The dynamics of the model can then be specified
by choosing at certain collection of edges between adjacent moments of time, say t
and t+1, which correspond to those time developments which are possible. A quite
schematic picture is displayed in Figure 1.

Remark 1. For the readers taking interest in the underlying physics: the word
“state” is not referring to quantum states as they are usually interpreted. A better
way of thinking of them is to say that they represent “distinguishable configura-
tions.” This is in fact a kind of semiclassical approximation (see Tamm [2]).

The important point here is that a given state can lead to different states in the
future. This is very much what actually happens when, say, a particle decays:
whether or not this happens may, according to the multiverse interpretation, lead to
very different futures within a rather short time. And there is no contradiction

Figure 1.
One universe in the combinatorial multiverse [3].
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The ambition here is not to claim any kind of final solution to “the riddle of
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wide open. But, as has repeatedly been pointed out by Price [9], most such tentative
answers seem to contain some (more or less hidden) asymmetry from the begin-
ning, either in the boundary conditions or in the dynamical laws.

Here I will advocate a different viewpoint. We can consider the set of all possible
universes as a probability space, a “multiverse,” and this probability space will be
completely time symmetric in the sense that reversing the direction of time would
generate the same probability space. But for observers, like ourselves, who are by
necessity confined to our own universe, it can still be that the symmetry appears to
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Big Crunch. But only half of them would have the same Big Bang as we have. In the
other half, our Big Bang would instead be the Big Crunch.

3. The combinatorial multiverse

This is not the place to try to describe all possible combinatorial models for
cosmology. Rather, I have chosen to just discuss the simple case of a closed, finite
universe. Many cosmologists these days support open models, and it is of course
possible to apply combinatorial methods to them too. However, since such models
tend to be infinite, they may be considerably more complicated from a probabilistic
point of view.

To model the set of all universes in the simplest possible way, let us for each
moment of time between the endpoints �T0 and T0 (i.e., the Big Bang and the Big
Crunch) consider the finite set of all possible “states” of a universe. To make
everything extremely simple, let us suppose that time is discrete in the sense that we
only consider it at a finite number of points as follows:
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Thus, we can measure time just by counting the number of time intervals, which
means that time can be viewed as integer valued. At the endpoints �T0 and T0,
there will just be one unique state (with zero volume), but in between, there will be
many states for each t. All such states will be the nodes of an enormous graph, and a
universe will then be just a path in this graph with the property that there is exactly
one state for each moment of time. The dynamics of the model can then be specified
by choosing at certain collection of edges between adjacent moments of time, say t
and t+1, which correspond to those time developments which are possible. A quite
schematic picture is displayed in Figure 1.

Remark 1. For the readers taking interest in the underlying physics: the word
“state” is not referring to quantum states as they are usually interpreted. A better
way of thinking of them is to say that they represent “distinguishable configura-
tions.” This is in fact a kind of semiclassical approximation (see Tamm [2]).

The important point here is that a given state can lead to different states in the
future. This is very much what actually happens when, say, a particle decays:
whether or not this happens may, according to the multiverse interpretation, lead to
very different futures within a rather short time. And there is no contradiction
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One universe in the combinatorial multiverse [3].
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between this and the fact that the development of the underlying wave function for
the whole universe is unique.

Summarizing:
Definition 1. A universe U is a chain of states (one state Ut for each moment of

time t), with the property that the transition between adjacent states is always
possible.

Definition 2. A multiverse M is the set of all possible universes U in the sense of
Definition 1 together with a probability measure on this set.

It may of course be said that quantummechanics should allow for transitions
between all kinds of states, although the probability for most such transitions may be
extremely small. In this extremely simplified treatment, I will assume that for a given
state at a givenmoment of time t, the dynamical laws will only permit transitions to a
very limited number of states at the previous and next moments, which will make the
probabilistic part of the investigation particularly simple. However, modifications are
called for near the endpoints (the Big Bang and the Big Crunch); see Section 5.

As it stands, the model presented so far is too simple to generate any results. In
fact, there are no observable differences at all between the states, which mean that
there are no measurable variables which could be related to the (so far non-
specified) dynamics.

There are of course many different variables which we can choose to enrich this
structure, and which ones to choose must depend on what properties we want to
explain. For explaining the second law of thermodynamics, the obvious choice is the
entropy.

4. Entropy

According to Boltzmann, the total entropy of a certain macro-state at a certain
time is given by

S ¼ kB lnΩ, (2)

or inversely

Ω ¼ WS, with W ¼ e1=kB , (3)

where Ω denotes the number of corresponding micro-states and kB is
Boltzmann’s constant.

This formula was from the beginning derived for simple cases, like an ideal gas.
Nevertheless, it does represent a kind of universal truth in statistical mechanics: the
number of possible micro-states corresponding to a given macro-state grows expo-
nentially with the entropy. Although there are many complications when one tries
to consider the entropy of the universe as a whole, I will still take it as the starting
point for the discussion that the entropy (at a given time t) is an exponential
function of the total entropy as in (3). A more difficult question is if and how the
constant W may vary with time, but for the purpose of the present paper, I will
simply let it be constant.

One may of course argue that this can only be true when the universe is still
quite ordered and the entropy is very far from reaching its maximum. But this is
certainly what the situation is like in our universe today, and according to the
computations in [10, 11], it would take an almost incredibly long time to reach such
a state of maximal entropy. Thus, it will in the following be taken for granted that
this time is much longer than the life-span of our universe.
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5. The dynamics

The next step is to construct a model for the dynamics. The idea, which essen-
tially goes back to Boltzmann (see [12]), is that any given macro-state at any given
time is extremely likely to develop into a state with higher entropy at the next
moment of time, simply because there are so many more states with higher entropy
than with lower entropy (compare with (3)). The problem with this in the present
situation, however, is that this way of thinking in fact presupposes a preferred
direction of time. Otherwise, given that the dynamical laws are time symmetric,
why can we not similarly argue that the entropy should also grow when we go
backward in time? (compare [9]).

There have been many attempts to avoid this problem by looking for defects in
the symmetries. But my conclusion here is that we must actually accept Boltzmann’s
argument in both directions of time and hence we are led to the following:

Principle 1. At every moment of time t and for every state with entropy S, there
are very many “accessible states”with higher entropy, both at the previous moment
of time t� 1 and at the next one tþ 1. On the other hand, the chance for finding
such accessible states with lower entropy, both at times t� 1 and tþ 1, is extremely
small.

This principle also implies a shift of perspective in the search for time’s arrow.
Rather than trying to find the reason for the asymmetry, we must concentrate on
understanding why we cannot observe the symmetric structure of the multiverse as
a whole.

As still one more simplification, let us assume that the entropy can only change
by �1 during each unit of time. This assumption, however, has to be modified near
the endpoints (BB and BC) for the following reason: it is a very important aspect of
this approach to assume that physics during the first and last moments is very
different from the rest of the time, since at these moments quantum phenomena
can be expected to become global. To model this in a simple way, we can split the
life-span of our multiverse up into three parts:

�T0,�T1½ �∪ �T1,T1½ �∪ T1,T0½ �: (4)

Here the first and last parts may be called “the extreme phases,” which are
characterized by the property that transition between very different states can be
possible. During the “normal phase” in between on the other hand, physics is
supposed to behave more or less as we are used to.

6. Modeling the dynamics

To construct a miniature multiverse for computational purposes, one can pro-
ceed as follows: first of all, in the very small multiverses studied here, the extreme
phases will only last for one single unit of time. Also, for ease of notation, let us put
T1 ¼ m, so that the moments of time can in this context be denoted as

�m� 1, �m, �mþ 1, … ,m� 1,m,mþ 1: (5)

The dynamics is specified by randomly choosing for each state at time t with
entropy S, K edges to states at time tþ 1 with entropy Sþ 1, and similarly K edges to
states at time t� 1 with entropy Sþ 1 (with obvious modifications at the end-
points). In this section, again to make everything as simple as possible, K will be set
equal to 2. These random choices are in practice carried out by the random number
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between this and the fact that the development of the underlying wave function for
the whole universe is unique.
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Definition 1. A universe U is a chain of states (one state Ut for each moment of

time t), with the property that the transition between adjacent states is always
possible.

Definition 2. A multiverse M is the set of all possible universes U in the sense of
Definition 1 together with a probability measure on this set.
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between all kinds of states, although the probability for most such transitions may be
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state at a givenmoment of time t, the dynamical laws will only permit transitions to a
very limited number of states at the previous and next moments, which will make the
probabilistic part of the investigation particularly simple. However, modifications are
called for near the endpoints (the Big Bang and the Big Crunch); see Section 5.

As it stands, the model presented so far is too simple to generate any results. In
fact, there are no observable differences at all between the states, which mean that
there are no measurable variables which could be related to the (so far non-
specified) dynamics.

There are of course many different variables which we can choose to enrich this
structure, and which ones to choose must depend on what properties we want to
explain. For explaining the second law of thermodynamics, the obvious choice is the
entropy.

4. Entropy

According to Boltzmann, the total entropy of a certain macro-state at a certain
time is given by

S ¼ kB lnΩ, (2)

or inversely

Ω ¼ WS, with W ¼ e1=kB , (3)

where Ω denotes the number of corresponding micro-states and kB is
Boltzmann’s constant.

This formula was from the beginning derived for simple cases, like an ideal gas.
Nevertheless, it does represent a kind of universal truth in statistical mechanics: the
number of possible micro-states corresponding to a given macro-state grows expo-
nentially with the entropy. Although there are many complications when one tries
to consider the entropy of the universe as a whole, I will still take it as the starting
point for the discussion that the entropy (at a given time t) is an exponential
function of the total entropy as in (3). A more difficult question is if and how the
constant W may vary with time, but for the purpose of the present paper, I will
simply let it be constant.

One may of course argue that this can only be true when the universe is still
quite ordered and the entropy is very far from reaching its maximum. But this is
certainly what the situation is like in our universe today, and according to the
computations in [10, 11], it would take an almost incredibly long time to reach such
a state of maximal entropy. Thus, it will in the following be taken for granted that
this time is much longer than the life-span of our universe.
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5. The dynamics

The next step is to construct a model for the dynamics. The idea, which essen-
tially goes back to Boltzmann (see [12]), is that any given macro-state at any given
time is extremely likely to develop into a state with higher entropy at the next
moment of time, simply because there are so many more states with higher entropy
than with lower entropy (compare with (3)). The problem with this in the present
situation, however, is that this way of thinking in fact presupposes a preferred
direction of time. Otherwise, given that the dynamical laws are time symmetric,
why can we not similarly argue that the entropy should also grow when we go
backward in time? (compare [9]).

There have been many attempts to avoid this problem by looking for defects in
the symmetries. But my conclusion here is that we must actually accept Boltzmann’s
argument in both directions of time and hence we are led to the following:

Principle 1. At every moment of time t and for every state with entropy S, there
are very many “accessible states”with higher entropy, both at the previous moment
of time t� 1 and at the next one tþ 1. On the other hand, the chance for finding
such accessible states with lower entropy, both at times t� 1 and tþ 1, is extremely
small.

This principle also implies a shift of perspective in the search for time’s arrow.
Rather than trying to find the reason for the asymmetry, we must concentrate on
understanding why we cannot observe the symmetric structure of the multiverse as
a whole.

As still one more simplification, let us assume that the entropy can only change
by �1 during each unit of time. This assumption, however, has to be modified near
the endpoints (BB and BC) for the following reason: it is a very important aspect of
this approach to assume that physics during the first and last moments is very
different from the rest of the time, since at these moments quantum phenomena
can be expected to become global. To model this in a simple way, we can split the
life-span of our multiverse up into three parts:

�T0,�T1½ �∪ �T1,T1½ �∪ T1,T0½ �: (4)

Here the first and last parts may be called “the extreme phases,” which are
characterized by the property that transition between very different states can be
possible. During the “normal phase” in between on the other hand, physics is
supposed to behave more or less as we are used to.

6. Modeling the dynamics

To construct a miniature multiverse for computational purposes, one can pro-
ceed as follows: first of all, in the very small multiverses studied here, the extreme
phases will only last for one single unit of time. Also, for ease of notation, let us put
T1 ¼ m, so that the moments of time can in this context be denoted as

�m� 1, �m, �mþ 1, … ,m� 1,m,mþ 1: (5)

The dynamics is specified by randomly choosing for each state at time t with
entropy S, K edges to states at time tþ 1 with entropy Sþ 1, and similarly K edges to
states at time t� 1 with entropy Sþ 1 (with obvious modifications at the end-
points). In this section, again to make everything as simple as possible, K will be set
equal to 2. These random choices are in practice carried out by the random number
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generator in, e.g., Mathematica or MATLAB. But once these are chosen, they spec-
ify a model for the dynamics for the miniature multiverse, and we are faced with
the problem of computing the number of paths of different kinds. It should be
observed that if K≪W, then only a small fraction of all states will be connected to
states with lower entropy at the next or previous moment, in spite of the fact that all
states are connected to several states with higher entropy, just as in the Principle 1
in Section 5.

As an illustration, a schematic picture of the set of the possible states in the case
of a very small multiverse with only 5 moments of time between the Big Bang and
the Big Crunch and with W ¼ 4 is shown in Figure 2.

Note that due to the way we have set up the dynamics, the entropy can grow
with at most one unit during each unit of time. This means that if we start from an
ordered state with S ¼ 0 at one end of the normal phase, then only values of S less
than or equal to four can occur during the life-span of the corresponding universe.
This means that the part of the multiverse graph displayed in Figure 2 is sufficient
for computing the number of all possible universes with zero entropy at one end. To
actually carry out the computation, we can proceed as follows: it is easy to compute
the number of paths with monotonically increasing entropy. According to the above
assumptions, each state with entropy S is connected to exactly two states with
entropy Sþ 1, both at the next and at the previous moment (with an obvious
restriction to just one side at times �m and m). This clearly implies that for each
unit of time, the number of paths doubles: from the state with S ¼ 0 at time �m,
there are precisely two edges to states with S ¼ 1 at time �mþ 1, and for each of
these, there will also be precisely two edges to states with S ¼ 2 at time �mþ 2
which gives in total four paths. At the next step, there will then be eight paths to
states with S ¼ 3 at time �mþ 3 and so on.

In the case m ¼ 2, we obtain 24 ¼ 16 such universes, since there are in this case
four unit intervals of time. Form ¼ 3, we get in an analogous way 26 ¼ 64 universes
since there are in this case six unit intervals of time.

One has to work harder to compute the number of paths with zero entropy at
both ends, at least if we want exact results and not just heuristic ones. The number
of such universes must be considered as a statistical variable which depends on the
random choices of the edges which defines the dynamics. In fact, the most

Figure 2.
A schematic picture of a universe in a very small multiverse with only five moments of time between the
endpoints (i.e., m ¼ 2). In this case, the universe has a monotonically increasing entropy [4].
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significant variable will be the average number of universes when we consider
many graphs at the same time.

The basic combinatorial tool for making these computations is the adjacency
matrix (see [13] or [14]) of the graph.

Thus, recall that a (directed) path v1, v2, … , vm½ � from v1 to vm is a sequence of
nodes such that for each j ¼ 1, 2, … ,m� 1, the pair vj, v jþ1 belongs to the set of
(directed) edges of the graph. A lot of work has been done in combinatorics to
calculate the number of paths of a given length between two nodes. In general, this
is a hard problem or at least a time-consuming one. But for graphs with the special
time-related properties in this chapter, the task may be somewhat easier. In partic-
ular, in this case all paths joining two given nodes all have the same length.

Definition 3. The adjacency matrix of the (directed) graph G with nodes
v1, v2, … , vm is the m�m-matrix A ¼ aij

� �
, where aij ¼ 1 if the pair vi, vj determines

a (directed) edge in G and aij ¼ 0 otherwise.
The reason why this matrix is useful to us lies in the following classical result:
Theorem 1. The element at position ij in the kth power of the adjacency matrix,

Ak, equals the number of paths of length k starting at vi and ending at vj.
Remark 2. The fact that I have chosen to work with directed graphs here should

not be confused with some kind of preferred direction of time. It would in fact be
possible to work with two-sided paths as well. This would however introduce more
elements different from zero in the adjacency matrix and hence slow down the
computations. In other words, the choice to work with directed graphs is just for
technical reasons. In fact, when considering the universes in this chapter, the
number of directed paths from t ¼ �m to t ¼ m is precisely the same as the number
of nondirected path between t ¼ �m and t ¼ m.

When considering powers of the adjacency matrix below, everything we need to
know about paths starting with S ¼ 0 at �m can be obtained from the first row of
A2m. Thus, this can all essentially be done by simple linear algebra. Although simple
in principle, the size of A grows very fast with the size of the model, i.e., primarily
with m and W.

In view of our simple choice for the dynamics and in particular of the fact the
entropy can only change by �1 at each step during the normal phase, it suffices to
consider nodes in the graph with S≤ tþm.

Starting from S ¼ 0 at time �m� 2, we observe that at time t ¼ �1, only states
which have S≤ 1 have to be considered, which gives 1 + 4 = 5 states. In the same
way, we get for t ¼ 0, 1 + 4 + 16 = 21 states; for t ¼ 1, 1 + 4 + 16 + 64 = 85 states; and
finally for t ¼ 2, 1 + 4 + 16 + 64 + 256 = 341 states.

The adjacency matrix can now be written as a block matrix in the following way:

ð6Þ

Here empty blocks should be understood as containing just zeros. Each of the
five-block rows/columns correspond to a moment of time, i.e., to �2, � 1, 0, 1, 2 as
in Figure 2. Inside each such row/column, the states are ordered according to
entropy: the first element is the unique state with S ¼ 0. Then (if t≥ � 1) the four
elements with S ¼ 1 follow, thereafter (if t≥0) the 16 elements with S ¼ 2, and so
on. The internal order between all the elements with equal S and t is not at all
important in the following.
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generator in, e.g., Mathematica or MATLAB. But once these are chosen, they spec-
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the problem of computing the number of paths of different kinds. It should be
observed that if K≪W, then only a small fraction of all states will be connected to
states with lower entropy at the next or previous moment, in spite of the fact that all
states are connected to several states with higher entropy, just as in the Principle 1
in Section 5.

As an illustration, a schematic picture of the set of the possible states in the case
of a very small multiverse with only 5 moments of time between the Big Bang and
the Big Crunch and with W ¼ 4 is shown in Figure 2.

Note that due to the way we have set up the dynamics, the entropy can grow
with at most one unit during each unit of time. This means that if we start from an
ordered state with S ¼ 0 at one end of the normal phase, then only values of S less
than or equal to four can occur during the life-span of the corresponding universe.
This means that the part of the multiverse graph displayed in Figure 2 is sufficient
for computing the number of all possible universes with zero entropy at one end. To
actually carry out the computation, we can proceed as follows: it is easy to compute
the number of paths with monotonically increasing entropy. According to the above
assumptions, each state with entropy S is connected to exactly two states with
entropy Sþ 1, both at the next and at the previous moment (with an obvious
restriction to just one side at times �m and m). This clearly implies that for each
unit of time, the number of paths doubles: from the state with S ¼ 0 at time �m,
there are precisely two edges to states with S ¼ 1 at time �mþ 1, and for each of
these, there will also be precisely two edges to states with S ¼ 2 at time �mþ 2
which gives in total four paths. At the next step, there will then be eight paths to
states with S ¼ 3 at time �mþ 3 and so on.

In the case m ¼ 2, we obtain 24 ¼ 16 such universes, since there are in this case
four unit intervals of time. Form ¼ 3, we get in an analogous way 26 ¼ 64 universes
since there are in this case six unit intervals of time.

One has to work harder to compute the number of paths with zero entropy at
both ends, at least if we want exact results and not just heuristic ones. The number
of such universes must be considered as a statistical variable which depends on the
random choices of the edges which defines the dynamics. In fact, the most

Figure 2.
A schematic picture of a universe in a very small multiverse with only five moments of time between the
endpoints (i.e., m ¼ 2). In this case, the universe has a monotonically increasing entropy [4].
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significant variable will be the average number of universes when we consider
many graphs at the same time.

The basic combinatorial tool for making these computations is the adjacency
matrix (see [13] or [14]) of the graph.

Thus, recall that a (directed) path v1, v2, … , vm½ � from v1 to vm is a sequence of
nodes such that for each j ¼ 1, 2, … ,m� 1, the pair vj, v jþ1 belongs to the set of
(directed) edges of the graph. A lot of work has been done in combinatorics to
calculate the number of paths of a given length between two nodes. In general, this
is a hard problem or at least a time-consuming one. But for graphs with the special
time-related properties in this chapter, the task may be somewhat easier. In partic-
ular, in this case all paths joining two given nodes all have the same length.

Definition 3. The adjacency matrix of the (directed) graph G with nodes
v1, v2, … , vm is the m�m-matrix A ¼ aij

� �
, where aij ¼ 1 if the pair vi, vj determines

a (directed) edge in G and aij ¼ 0 otherwise.
The reason why this matrix is useful to us lies in the following classical result:
Theorem 1. The element at position ij in the kth power of the adjacency matrix,

Ak, equals the number of paths of length k starting at vi and ending at vj.
Remark 2. The fact that I have chosen to work with directed graphs here should

not be confused with some kind of preferred direction of time. It would in fact be
possible to work with two-sided paths as well. This would however introduce more
elements different from zero in the adjacency matrix and hence slow down the
computations. In other words, the choice to work with directed graphs is just for
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ð6Þ

Here empty blocks should be understood as containing just zeros. Each of the
five-block rows/columns correspond to a moment of time, i.e., to �2, � 1, 0, 1, 2 as
in Figure 2. Inside each such row/column, the states are ordered according to
entropy: the first element is the unique state with S ¼ 0. Then (if t≥ � 1) the four
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With this setup and the random dynamics introduced earlier, each B-matrix
contains all the information about the edges from all the states at one moment of
time to the states at the next one. For example, B12 contains the information about
all edges from the single state with S ¼ 0 at time t ¼ �2 to the five states with S≤ 1
when t ¼ �1. In the same way, B23 gives a complete description of the edges from
the 5 states with S≤ 1 at time t ¼ �1 to the 21 states with S≤ 2 when t ¼ 0.

The number of rows and columns in the B-matrices are now given as follows:

B12 : 1� 5, B23 : 5� 21, B34 : 21� 85, B45 : 85� 341: (7)

For the quadratic adjacency matrix A, this gives the format 453 � 453. The
matrices Bk,kþ1 can also be described as block matrices in the following way:
B12 ¼ 0j0101ð Þ (the first element is always a 0 and among the other four, two
randomly chosen elements will be one instead of zero). For the following matrix,
we obtain (with certain random choices of ones as before)

ð8Þ

Both C1 and C3 have rows containing only zeros, except for two randomly
chosen positions where there are ones instead (these are the edges which connect to
states with higher entropy one unit of time later), and C2 is a column of zeros with
two randomly chosen ones instead (these are the edges which connect to states with
lower entropy one unit of time later).

The structures of B34 and B45 are similar:

ð9Þ

where now all D:s and E:s with odd indices have rows with two randomly chosen
ones and those with even indices have columns with two randomly chosen ones.

7. Modeling the combinatorial multiverse as a probability space

Now when we have specified the dynamics of the model, i.e., decided which
paths (universes) can occur, it is time to attribute to each such path its probability
weight so that the multiverse becomes a probability space. Following the tradition
in statistical mechanics, I will frequently make use of un-normalized probabilities.
This means that summing up all (un-normalized) probabilities will give the “state
sum,”which in general is not equal to one. To obtain the usual probabilities, one has
to divide by the state sum. This may seem unnatural at first but turns out to be very
practical in situations where only the relative sizes of the probabilities are needed.
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As for the normal phase, the choice will, to start with, be the simplest possible
one: each path is either possible or not, corresponding to the probability weights 1
and 0. During the extreme phases, this assumption is no longer reasonable. Again
the model will be extremely simplified, but still it is based on physical intuition and,
most importantly, completely time symmetric. Assume that the only types of edges
having a non-neglectable chance of occurring during the extreme phase
�m� 1,�m½ � are of the following two kinds: The first scenario is that the universe
passes through the extreme phase into a state of zero entropy. The other scenario is
that it passes into a state with high entropy (equal to 2m). Universes of one of these
two types will be given the (un-normalized) probability 1 or p, respectively. Here
p>0 should be thought of as a very small number, at least when the size of the
model becomes large. During the other extreme phase m,mþ 1½ �, near the Big
Crunch, we make the completely symmetric assumption.

Remark 3. These assumptions may perhaps seem somewhat arbitrary. And to a
certain extent, this may be so. However, they do represent the following viewpoint
of what may happen at the full cosmological scale: we may think of the Big Bang and
the Big Crunch as states of complete order with zero volume and entropy. Such
states can very well be metastable, very much like an oversaturated gas at a tem-
perature below the point of condensation. If no disturbance takes place, such meta-
stable states can very well continue to exist for a substantial period of time. In
particular, a low-entropy state can have a very good chance of surviving the intense
but extremely short extreme phase. On the other hand, if a sufficiently large dis-
turbance occurs, then the metastable state may almost immediately decay into a
very disordered state of high entropy.

It is not my intension to further argue in favor of this viewpoint here. The main
thing in this chapter is to show that completely symmetric boundary conditions at
the endpoints may give rise to a broken time symmetry.

The multiverse now splits up into four different kinds of paths:

• LL: The entropy is low (=0) at both ends (�m and m).

• LH: The entropy is 0 at �m and 2m at m.

• HL: The entropy is 2m at �m and 0 at m.

• HH: The entropy is high (¼ 2m) at both ends (�m and m).

If we now denote by NLL,NLH,NHL and NHH the number of paths of the
indicated kinds, then with the above assumptions we also get the corresponding
probability weights for the corresponding types as

PLL ¼ NLL, PLH ¼ pNLH, PHL ¼ pNHL, PHH ¼ p2NHH: (10)

We can now consider the following two types of broken time symmetry:
Definition 4. A multiverse is said to exhibit a weak broken time symmetry if

PLL ≪PLH þ PHL: (11)

Definition 5. A multiverse is said to exhibit a strong broken time symmetry if

PLL þ PHH ≪PLH þ PHL: (12)

Both these definitions should of course be made more precise when applied to
specific models for the multiverse, e.g., by showing that the corresponding limits
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lim
PLL

PLH þ PHL
and lim

PLL þ PHH

PLH þ PHL
(13)

equal zero when certain parameters tend to infinity in some well-defined way.
However, it is worthwhile at this stage to note their implications for cosmology.

The strong broken symmetry in Definition 5 actually means that a monotonic
behavior of the entropy is far more probable than a non-monotonic one. In the case
of a weak broken symmetry, this is not necessarily so; it could very well be that the
most probable scenario would be high entropy at both ends. Thus, this is definitely a
weaker statement, but it can nevertheless be argued that it can be used to explain
the time asymmetry that we observe, referring to a kind of anthropic principle: it is
an obvious observational fact that we live in a universe with low entropy at at least
one end. If the statement in Definition 4 is fulfilled, then clearly among such
scenarios, the monotonic ones (LH and HL) are the by far most probable ones.
Thus, since universes with high entropy at both ends would seem to be quite
uninhabitable, one can argue that given the existence of an observer, then with
almost certainty he must live in a universe with monotonic entropy.

Summing up, both limits above can be used to argue in favor of time asymmetry.
Nevertheless, at least to the mind of the author, the strong broken symmetry is the
preferable one. This alternative will be further studied in Section 9.

8. Numerical computations in the combinatorial multiverse

With the setup in Sections 6 and 7, we can now use Mathematica or MATLAB to
generate instances of the combinatorial multiverse for small values of m and W and
then compute the corresponding probability weights PLL, PLH, PHL and PHH. It is
important to note that the matrices here can be treated as sparse, rather than as full
matrices, which make the computations considerably faster.

In particular, in the case m ¼ 2 in Section 6 and with a randomly generated
dynamics which is manifested by an adjacency matrix A, we can compute the
power A4 and read of the first row, which contains all the information we need
about the paths from the state at t ¼ �2 with S ¼ 0. So what do we find?

In Figure 3, I have plotted the ratio NLL= NLH þNHLð Þ for the cases m ¼ 2 (light
gray) and m ¼ 3 (dark gray) for values of W ranging from 3 to 30. What is actually
displayed are the mean values of 1000 randomly generated matrices as above for
each value of W. Although the picture clearly supports the claim that

Figure 3.
The ratio NLL= NLH þNHLð Þ as a function of W for the cases m ¼ 2 (light gray) and m ¼ 3 (dark gray) [4].
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NLL= NLH þNHLð Þ ! 0 when W ! ∞, there is not really enough support for a firm
prediction about the more precise asymptotic behavior for large W. Having said
this, the behavior seems to be rather close to a relationship of the form ρ � 1=W.

It should be possible, although perhaps not so easy, to prove exact limit
theorems to confirm these kinds of predictions. The problem is that we use a large
number of instances to model something much more complicated, namely, the full
quantum mechanical development of the multiverse. For very special unlikely
choices of these instances, the ratio NLL= NLH þNHLð Þmay behave quite differently.

9. Can the dynamics be modified to generate a strong broken symmetry?

Obviously, the above model represents an extreme simplification. But from the
point of view of the author, most of the simplifications can be said to be rather
harmless for the purpose of explaining time’s arrow.

However, there is one assumption which is somewhat problematic in the
dynamics that we have discussed so far: the model can be said to exhibit a kind of
Markov property in the sense that the probability for the entropy to go up or down
at a certain step is completely independent of the prehistory of the state; it just
depends on the state itself. This does not appear to be what is happening in our own
universe: for instance, light emitted from (more or less) pointlike sources like stars
continues to spread out concentrically for billions of years, and in this way it
preserves a memory of the prehistory for a very long time.

A very interesting research project is therefore to try to find better models which
do not exhibit this property. We can, for instance, attempt to construct models
where the behavior of the entropy not only depends on the previous (or following)
step but on a larger part of the prehistory (or post-history). As a particularly simple
example one could let the probabilities for an increase (or decrease) of the entropy
at a certain step, depend not only on the previous and following step but on the two
previous (and following) steps. In fact, such dynamics would not only be more
realistic but would in general also have a much better chance to exhibit a strong
broken time symmetry.

I will now briefly discuss an example of such a modified model. In Section 6 it
was noted that the number of paths between a state i at time �m and another state j
at time m can be computed using the adjacency matrix A as

A2m� �
ij ¼

X
q1

X
q2

⋯
X
q2m�1

aiq1aq1q2⋯aq2m�1j: (14)

This sum can now be modified by introducing various weights depending on the
path. An example of such a weight can be constructed as follows: given a path U
with vertices v�m, v�mþ1, v�mþ2, … , vm, we let S�m, S�mþ1, S�mþ2, … , Sm denote the
corresponding entropies. We can now define

ξ ¼
Xm

k¼�mþ1

Sk � Sk�1ð Þ Skþ1 � Skð Þ, (15)

and note that periods of monotonic growth or decrease of the entropy will tend
to make ξ positive, whereas switches between growth and decrease tend to make it
negative. In fact, if S is monotonic on k� 1, kþ 1½ �, then Sk � Sk�1ð Þ Skþ1 � Skð Þ ¼ 1
and if not, then Sk � Sk�1ð Þ Skþ1 � Skð Þ ¼ �1.
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point of view of the author, most of the simplifications can be said to be rather
harmless for the purpose of explaining time’s arrow.

However, there is one assumption which is somewhat problematic in the
dynamics that we have discussed so far: the model can be said to exhibit a kind of
Markov property in the sense that the probability for the entropy to go up or down
at a certain step is completely independent of the prehistory of the state; it just
depends on the state itself. This does not appear to be what is happening in our own
universe: for instance, light emitted from (more or less) pointlike sources like stars
continues to spread out concentrically for billions of years, and in this way it
preserves a memory of the prehistory for a very long time.
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example one could let the probabilities for an increase (or decrease) of the entropy
at a certain step, depend not only on the previous and following step but on the two
previous (and following) steps. In fact, such dynamics would not only be more
realistic but would in general also have a much better chance to exhibit a strong
broken time symmetry.

I will now briefly discuss an example of such a modified model. In Section 6 it
was noted that the number of paths between a state i at time �m and another state j
at time m can be computed using the adjacency matrix A as

A2m� �
ij ¼

X
q1

X
q2

⋯
X
q2m�1

aiq1aq1q2⋯aq2m�1j: (14)

This sum can now be modified by introducing various weights depending on the
path. An example of such a weight can be constructed as follows: given a path U
with vertices v�m, v�mþ1, v�mþ2, … , vm, we let S�m, S�mþ1, S�mþ2, … , Sm denote the
corresponding entropies. We can now define

ξ ¼
Xm

k¼�mþ1

Sk � Sk�1ð Þ Skþ1 � Skð Þ, (15)

and note that periods of monotonic growth or decrease of the entropy will tend
to make ξ positive, whereas switches between growth and decrease tend to make it
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Given a real number μ≥0, we can then consider the probability measure which
to each path U assigns the (un-normalized) probability exp μξf g and replace the
sum in (14) by

X
q1

X
q2

⋯
X
q2m�1

eμξaiq1aq1q2⋯aq2m�1j: (16)

With this definition, it is now again possible to compute the probability weights
PLL,PLH,PHL and PHH, and we can note that for μ ¼ 0, these will be exactly the
same as in the case without weights in Section 8. Thus, this model is really a
generalization of the previous theory.

Conjecture 1. If μ>0, then we have a strong broken time symmetry in the limit
m ! ∞ (for a suitable fixed choice of p, K, and W with K≪W).

10. Conclusions

Clearly, there is a large gap between the extremely simplified dynamics in this
paper and more realistic dynamics based on, say, ordinary Newtonian physics or
quantum mechanics. This is, for better or for worse, both the strength and the
weakness of the combinatorial method presented here: extreme simplification may
be the price we have to pay in order to see the forest in spite of all the trees.

In any case, the few simple examples in this paper should only be considered as a
first step toward more realistic models. And in fact, when the object of study is
something as enormously large as the multiverse, one should not expect a single
method of attack to give all the answers. Rather, it can be expected that future
developments will have to combine computer computations, heuristics, and exact
mathematical methods in completely new ways.
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