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Preface 

During the last few years, many advances in the knowledge of DNA repair mecha-
nisms were made in eukaryotic cells, thanks to innovative technologies in cellular 
and molecular biology. However, due to the complexity of cellular physiology, 
the whole mechanism is still under investigation, highlighting different factors 
that affect DNA repair efficiency in human cells. The role of proteins involved in 
DNA repair has been widely studied, but the modality and power of extrinsic and 
intrinsic factors in influencing protein functionality and correct protein-protein 
interactions represent a research area under constant investigation. Among intrinsic 
factors affecting DNA repair processes, there is epigenetics, which strongly impacts 
on gene expression regulation of DNA repair genes and the complex network of 
DNA-damage response-related genes. The structure and function of the epigenome 
under physiological and pathological conditions in the presence of DNA damage 
are an open and rapidly growing research field. Moreover, in mammalian aged cells, 
accumulated DNA damage is a source of genomic instability if proper repair is not 
carried out. 

The book is divided into four sections with chapters describing different topics 
connected to DNA repair in human cells. The first section contains the introductory 
chapter dealing with the subjects of the book. The second section is dedicated to the 
role of protein-protein interactions during DNA repair in nuclear and mitochon-
drial compartments. The third section is dedicated to the relationship between the 
epigenome and DNA repair in normal and cancer cells. The fourth section is about 
the interconnection between aging and DNA repair. This last section also contains a 
chapter on the relationship between the angiogenesis of cancer cells and DNA dam-
age repair and a chapter on the DNA repair-enhancing property of glucan. 

I acknowledge the authors that contributed to this book and hope that the topics 
here discussed may suggest readers to explore new avenues and aspects of the 
interconnection between different DNA lesions and responses essential for the 
maintenance of nuclear and mitochondrial genome stability. 

Maddalena Mognato, PhD 
Department of Biology, 

University of Padova, 
Italy 
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Chapter 1

Introductory Chapter: DNA 
Repair in Human Cells - A Daily
Challenge
Maddalena Mognato

1. Introduction

The faithful repair of DNA is a challenge that human cells have to fight every day
to maintain genomic stability. The type and frequency of DNA lesions are related 
to both endogenous and exogenous sources of DNA damage. In addition to normal 
metabolism, which is responsible for a great number of DNA lesions (approximately
70,000 per cell) [1, 2], environmental agents (i.e., ionizing radiation, UV light, and 
chemicals) contribute to enhance such number. The capacity of cells to faithfully
repair their proper DNA is the primary goal to safeguard the genome integrity. To
this purpose, eukaryotic cells have evolved accurate repair systems to overcome the
different lesions induced by both external and internal sources of DNA damage. A 
lot of information is now available for most repair systems, and in the last decades, 
a lot of efforts have been made in the comprehension of the role of DNA repair
proteins, in relation to the type of damage and the effectiveness of repair carried 
out by different complexes. Besides the molecular role of proteins in such pathways, 
several other important factors can affect the efficiency of DNA repair, including 
epigenetics, chromatin structure, mitochondrial function, and aging.

Epigenetics regulate gene function through posttranslational modifications of
histones, DNA methylation noncoding RNAs, and when DNA is damaged, epigenetic
alterations can occur at sites of lesions. Epigenetic alterations that occur during DNA
repair are mostly transient, being the original epigenetic marker restored. However,
sometimes, epigenetic alterations can persist after DNA repair as a sort of “scars” [3].
What is the role of such epigenetic markers left after repair? Epigenetic modifica-
tions occur either in normal cells or in cancer cells, representing a further element for
cancerogenesis in this last case. Numerous studies reported gene expression changes
in human cancers and found signature for specific type of tumors. Each cancer has its
own genetic and epigenetic profile, which increases the difficulty to comprehend the
process of tumorigenicity. In this regard, the response to each tumor to different DNA-
damaging agents is related to the characteristics of its genetic and epigenetic landscape.

The structure of chromatin around DNA damage changes significantly to
promote DNA repair proteins accessibility. During DNA repair, the structure of
chromatin is modified as a consequence of new histone incorporation, replacement, 
and modification. The coordination of DNA repair protein interactions is a critical 
process which needs to be fully elucidated, also in relation to the specific DNA-
damaging agent.

Mitochondria, with their own DNA, are organelles that are on the rise for several 
reasons, including the repair of their proper DNA, the mtDNA. Mitochondrial DNA 
is different from the nuclear one, being circular, without histones, and present in
multiple copies. The repair of mtDNA relies on the activity of proteins encoded by
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Introductory Chapter: DNA 
Repair in Human Cells - A Daily 
Challenge 
Maddalena Mognato 

1. Introduction 

The faithful repair of DNA is a challenge that human cells have to fight every day 
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own genetic and epigenetic profile, which increases the difficulty to comprehend the 
process of tumorigenicity. In this regard, the response to each tumor to different DNA-
damaging agents is related to the characteristics of its genetic and epigenetic landscape. 

The structure of chromatin around DNA damage changes significantly to 
promote DNA repair proteins accessibility. During DNA repair, the structure of 
chromatin is modified as a consequence of new histone incorporation, replacement, 
and modification. The coordination of DNA repair protein interactions is a critical 
process which needs to be fully elucidated, also in relation to the specific DNA-
damaging agent. 

Mitochondria, with their own DNA, are organelles that are on the rise for several 
reasons, including the repair of their proper DNA, the mtDNA. Mitochondrial DNA 
is different from the nuclear one, being circular, without histones, and present in 
multiple copies. The repair of mtDNA relies on the activity of proteins encoded by 
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nuclear DNA, and the efficiency of repair is crucial for the maintenance of mtDNA 
integrity. What happens when the mitochondrial genome is affected by improper 
DNA repair and mutations arise? To address this question, studies should take into 
account that the multiplicity of mtDNA genomes inside the same cell originates a 
coexistence of mutant and wild-type genomes [4]. 

Notably, the accumulation of DNA damages during the cell lifespan threatens 
the fidelity of repair. According to the candidate hallmarks of aging in mammalian 
cells, recently reviewed by Lopez-Otin et al. [4], it appears evident how the process 
of DNA repair is tightly linked to genomic instability, cellular senescence, epigen-
etic alterations, and mitochondrial dysfunction. In humans, alterations in nuclear 
DNA repair are present in several syndromes characterized by premature aging, and 
epigenetic modifications in histones and histone-modifying enzymes affect chro-
matin structure in an age-related manner. Several studies attempted to elucidate the 
linkage between mitochondria dysfunction and aging. Indeed, when the mitochon-
drial function is impaired, the result is an increase of oxidative stress that triggers a 
cascade of toxic effects on cellular environment. 

Finally, the connection between DNA repair process and angiogenesis is another 
open research field. Angiogenesis is a physiological process that allows the regenera-
tion of blood vessels following injuries. However, angiogenesis is extremely harmful 
in pathological conditions, such as in tumoral tissues, characterized by the uncon-
trolled growth of new blood vessels. Mutations or alterations in genes involved in 
the cellular response to DNA damage can affect the angiogenic response. 

Many questions are still open and further investigations are needed to shed light 
on the whole mechanism of DNA repair, either nuclear or mitochondrial. To this 
purpose, the present book offers a collection of chapters dedicated to the interplay 
between DNA repair and epigenetics under physiological and pathological condi-
tions, aging, mitochondrial function, angiogenesis, and the contribution of base 
excision repair process to oxidative damage, giving a contribution to cancer biology 
and clinical management. Figure 1 shows some of the principal aspects discussed in 
this book. 

Figure 1. 
Example of intrinsic factors affecting the repair of DNA damage induced by exogenous and endogenous sources 
in nucleus and mitochondria of eukaryotic cells. 
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Chapter 2

Coordination of DNA Base
Excision Repair by Protein-Protein
Interactions
Nina Moor and Olga Lavrik

Abstract

The system of base excision repair (BER) evolved to correct the most abundant
DNA damages in mammalian cells is the most essential for maintaining the genome
integrity. The multistep BER process involves several enzymes and protein fac-
tors functioning in a coordinated fashion that ensures the repair efficiency. The
coordination is facilitated by the formation of protein complexes stabilized via
either direct or indirect DNA-mediated interactions. This review focuses on direct
interactions of proteins participating in BER with each other and with noncanonical 
factors found recently to modulate the efficiency of BER. All the known partners of
main BER participants, the sites responsible for their interaction, and the charac-
teristics of protein-protein affinity are summarized. Well-documented evidences of
how DNA intermediates and posttranslational modifications of proteins modulate
protein-protein interactions are presented. The available data allow to suggest
that the multiprotein complexes are assembled with the involvement of a scaffold 
protein XRCC1 and poly(ADP-ribose) polymerase 1, a key regulator of the BER 
process, irrespective of the DNA damage; the composition and the structure of the
complexes are dynamically changed depending on the DNA damage, its chromatin
environment, and the step of BER process.

Keywords: base excision repair, protein-protein interactions, noncanonical factors,
posttranslational modifications of proteins, coordination of DNA repair

1. Introduction

Many forms of DNA damage are generated due to permanent action of endog-
enous and exogenous factors. In order to maintain genome integrity, cells have
evolved several specific pathways to repair DNA lesions. Base excision repair (BER), 
which ensures correction of the most abundant damages—modified nitrogenous
bases and apurinic/apyrimidinic (AP) sites—is critically important for survival 
of human cells [1–3]. Enzyme and protein factors of BER also participate in the
repair of DNA single-strand breaks (SSBs) considered as a separate pathway of the
BER system [4, 5]. The other repair systems (Figure 1) deal with bulky nucleobase
lesions (NER), DNA double-strand breaks (HR; NHEJ), and mismatched bases
(MMR). Impaired DNA repair is associated with embryonic lethality, rapid aging, 
and a variety of severe human hereditary diseases as well as development of cancer
[7, 8]. The balance of DNA damage and DNA repair is highly relevant to both
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BER system [4, 5]. The other repair systems (Figure 1) deal with bulky nucleobase 
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Figure 1. 
DNA damages generated by endogenous and exogenous factors and specific systems of their repair. Letter X in 
DNA duplex marks mismatched base pair. Reproduced with modification from [6] with permission of Pleiades 
Publishing, Ltd. 

cancerogenesis and effective anti-cancer therapy due to the ability of cancer cells 
to repair therapeutically induced DNA damage and impact therapeutic efficacy [9]. 
Hence, intensive investigation of DNA damage repair is essential to advance our 
understanding of molecular mechanisms maintaining genome integrity and to 
develop cancer therapy. 

2. Main steps of BER and proteins involved 

The widely accepted model for mammalian BER involves several sub-pathways 
presented schematically in Figure 2. The damaged bases are removed by DNA 
glycosylases specific to the certain type of damage; mono- and bifunctional DNA 
glycosylases form an intact or cleaved (via β- or β/δ-elimination mechanism) AP 
site, respectively [10]. The intact AP site is further processed by the main enzymatic 
activity of multifunctional AP endonuclease 1 (APE1) producing the one-nucleotide 
gap with 3′-hydroxyl and 5′-deoxyribose phosphate residue (5′-dRp) at the gap 
margins. Terminal blocking groups in the DNA intermediates produced by bifunc-
tional DNA glycosylases are removed by the phosphatase activity of polynucleotide 
kinase/phosphatase (PNKP) or 3′-phosphodiesterase and 3′-phosphatase activities 
of APE1. At the next step, a bifunctional DNA polymerase β (Polβ) catalyzes the 
removal of the 5′-dRp residue by its dRp-lyase activity and one-nucleotide gap 
filling by the nucleotidyl transferase activity. The repair of DNA chain integrity 
via joining of the single-strand break is completed by DNA ligase IIIα (LigIIIα) 
acting in the complex with X-ray repair cross-complementing protein 1 (XRCC1). 
This main BER sub-pathway is known as a short-patch repair (SP BER). When 
the 5′-dRp residue is modified, it cannot be removed by the Polβ-lyase activity, 
and a long-patch sub-pathway of BER (LP BER) is realized. Polβ initiates the DNA 
strand displacement synthesis continued by replicative DNA polymerases δ and ε 
(Polδ and Polε) acting in the complexes with protein factors PCNA and RFC. The 
flap structure produced at this step is removed by the flap endonuclease 1 (FEN1). 
According to another model, FEN1 is capable of sequential removing nucleotides 
at the 5′-end of the break, and the produced gap is filled by the activities of Polβ or 
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Figure 2. 
BER sub-pathways for repair of damaged bases and DNA SSBs. Catalytic steps and proteins involved are 
schematically presented. The terminal groups in DNA intermediates and SSBs are designated as follows: 
PUA, 3′-phospho-α,β-unsaturated aldehyde; p, 3′−/5′-phosphate; OH, 3′−/5′-hydroxyl; dRP, 5′-deoxyribose 
phosphate; PG, 3′-phosphoglycolate; Ade, 5′-aldehyde group; and AMP, 5′-AMP. Reproduced with 
modification from [6] with permission of Pleiades Publishing, Ltd. 

Polλ [11, 12]. Final ligation of the break is catalyzed by DNA ligase I (LigI). A new 
long-patch sub-pathway of BER that involves formation of a 9-nucleotide gap 5′ to 
the lesion has been recently discovered; it is mediated by DNA helicase RECQ1 and 
ERCC1-XPF endonuclease in cooperation with PARP1 and replication protein A 
(RPA) [13]. 

Repair of DNA SSBs arising directly via disintegration of the oxidized sugar 
and as a result of erroneous activity of DNA topoisomerase 1 involves the following 
steps: (1) detection of the break, (2) removal of blocking groups, (3) filling the gap, 
and (4) ligation of the break (Figure 2). The DNA breaks are detected primarily 
by poly(ADP-ribose) polymerase 1 (PARP1); the unblocking of 3′- and 5′-ends in 
breaks is catalyzed by specific activities of APE1, PNKP, aprataxin (APTX), and 
tyrosyl-DNA phosphodiesterase 1 (TDP1); gap filling and ligation are catalyzed by 
the same set of enzymes that participate in the respective steps of the short-patch 
repair of the damaged DNA bases (Polβ and LigIIIα). PARP1 is activated via the 
interaction with the damaged DNA; it catalyzes the synthesis of poly(ADP-ribose) 
(PAR) and covalent attachment of the PAR polymer to PARP1 itself and other 
proteins involved in the DNA repair [4, 5]. The XRCC1 protein is considered to be 
a main target of PARP1 catalyzed poly(ADP-ribosyl)ation. PARP1 has been sug-
gested to play the main role in recruitment of the XRCC1 protein to the damages of 
chromosomal DNA [4, 5]. XRCC1 displays no enzymatic activity and is proposed 
to function as a scaffold protein of the BER process. PARP2 is another enzyme from 
the PARP family that is activated via binding with DNA SSB and catalyzes PAR 
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synthesis [14, 15]. The importance of both PARP1 and PARP2 for DNA repair is 
indicated by knockout studies revealed that knocking out the parp1 gene activity 
increased the sensitivity of cells to DNA-damaging agents, while parp1 and parp2 
double knockouts caused early embryonic lethality [16]. The role of PARP2 in BER 
processes and its possible synergism with PARP1 action are under intensive investi-
gation [17, 18]. Poly(ADP-ribosyl)ation of proteins is a transient modification that 
turns over rapidly due to the enzymatic activity of poly(ADP-ribose) glycohydro-
lase (PARG) [19]. Another important function of PARP1 in DNA repair is remodel-
ing of chromatin structure via poly(ADP-ribosyl)ation of histones and binding of 
the remodeling proteins with the synthesized PAR polymer [20]. 

Coordinated action of the enzymes catalyzing the sequential individual reac-
tions of the multistep BER process is required for efficient repair of damaged 
DNA. One of the coordination mechanisms proposed previously is the “passing 
the baton,” that implies the transfer of the DNA intermediate from the enzyme 
remaining bound to the product to the next enzyme [1, 21]. This model is supported 
by numerous data on mutual modulation of activities of the BER enzymes [2, 21]. 
The stimulating effect of APE1 on the catalytic activity of DNA glycosylase OGG1 
explored in detail recently does not require direct interaction between the proteins 
and is adequately described by the “passing the baton” model [22]. Another mecha-
nism of coordination implies the formation of multiprotein complexes (so-called 
repairosomes) composed of enzymes and scaffold proteins [2]. XRCC1 is a striking 
example of the scaffold protein involved in BER. The existence of “repairosomes” 
is evidenced by multiple interactions between enzymes and protein factors of BER 
detected even independent of the DNA damage. Most likely both mechanisms are 
relevant to coordination of the BER process. 

3. Proteins involved in BER interact directly with each other 

Many protein participants of BER have been shown to interact physically with 
each other. Data on their direct interactions and structural domains involved are 
summarized in Table 1. Interactions of the XRCC1 protein with multiple partners 
have been explored in the greatest detail. The structure of XRCC1 is composed of 
three domains linked with disordered fragments (linkers XL1 and XL2), one of 
which (XL1) contains a nuclear localization signal (Figure 3) [23]. The availability 
of two BRCT domains (BRCTa and BRCTb) mediating protein-protein interac-
tions (for review, see [24]), in addition to the N-terminal domain (NTD) involved 
in DNA binding, favors the main function of XRCC1 as scaffold in structural 
organization of “repairosomes”. Interestingly, the binding sites of four enzymes 
catalyzing sequential steps of BER—APE1, PNKP (N-terminal domain), Polβ, 
and LigIIIα—are localized in different structural modules of XRCC1 (Figure 3). 
A second PNKP interaction site localized recently in XRCC1 (linker XL1) binds 
PNKP (catalytic domain) with lower affinity; this interaction has been proposed 
to stimulate PNKP activity, in contrast to the high-affinity interaction responsible 
for PNKP recruitment to DNA damage [25]. At the same time, the binding sites of 
various DNA glycosylases in XRCC1 overlap with those for APE1, Polβ, and PARP1 
(Figure 3). It is likely that the enzymes initiating the repair of damaged bases form 
dynamic contacts with XRCC1 and other constituents of “repairosome.” Direct 
interactions of DNA glycosylases NEIL1, NEIL2, and MYH with other enzymes of 
SP and LP BER (APE1, PNKP, Polβ, LigIIIα, Polδ, FEN1, and LigI) have been shown 
(Table 1). The multiprotein complexes of XRCC1 detected in many studies to be 
formed by recombinant proteins and cell extracts contain Polβ, PNKP, and LigIIIα 
as stable partners, and their presence enhances the interaction of XRCC1 with 
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Figure 3. 
The multidomain structure of XRCC1 and specific regions responsible for its scaffold function in BER. Protein 
partners and their binding sites in XRCC1 are shown schematically in the upper part of the figure. At the 
top, 3D structure models determined for the N-terminal domain, a fragment of XL2 linker, and the BRCTb 
domain crystallized as complexes with the respective domains of Polβ, PNKP, and LigIIIα (PDB codes: 3K75, 
2W3O, and 3QVG) are presented. Reproduced with modification from [6] with permission of Pleiades 
Publishing, Ltd. 

DNA glycosylases [30, 31, 33, 52]. PNKP and LigIIIα are the constituents of another 
multiprotein complex containing XRCC1 and TDP1 [53]. 

The PARP1 protein consists of multiple structural modules constituting an 
N-terminal DNA-binding domain and a C-terminal catalytic domain in addition to 
the central BRCT domain [55, 57]. The coordinating function of PARP1 in BER can be 
realized via direct interaction with some enzymes (PNKP, Polβ, LigIIIα, and TDP1) 
or indirect interaction mediated by the XRCC1 protein. The binding sites for main 
BER enzymes (Polβ and LigIIIα) and the scaffold XRCC1 protein are localized in the 
DNA binding and BRCT domains, while that for TDP1 is completed by the catalytic 
domain of PARP1 (Table 1). As a consequence, TDP1 is capable of the formation of 
a stable ternary complex with PARP1 and XRCC1 [53]. The overlapped binding sites 
for the majority of PARP1 partners create prerequisites for dynamic contacts in the 
preformed multiprotein assemblies, which can be stabilized in the complex with auto-
modified PARP1 (PAR-PARP1). Many BER participants such as XRCC1, Polβ, PNKP, 
APTX, TDP1, LigIIIα, and LigI contain PAR-binding motifs, and some of them 
(XRCC1, LigIIIα, and TDP1) have been shown to interact with PAR-PARP1 more 
efficiently than with the unmodified PARP1 [46, 47, 58, 59]. The poly(ADP-ribose) 
acceptors have been identified in all the structural domains of PARP1; this expands 
significantly the platform for the formation of the “repairosomes” [60]. In contrast to 
PARP1, PARP2 does not have the BRCT domain and specialized zinc-fingers for DNA 
binding [15, 61]. The nonconserved WGR domain of PARP2 is responsible for the 
interaction with proteins (Table 1) as well as for DNA break detection [15]. The func-
tion of PARP2 (similar to that of PARP1) in coordination of the DNA repair process 
can be further mediated through its interaction with XRCC1 [17]. 
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Protein (domain)a Protein partner (domain)a,b 

XRCC1 (NTD) Polβ (CD) [23, 26–28] 

XRCC1 (NTD + XL1) NTH1 (CTD); NEIL1 (CTD); NEIL2 (NTD) [29–31] 

XRCC1 (XL1) PCNA [32]; UNG2 (CD) [33]; PNKP (CD) [25] 

XRCC1 (XL1 + BRCTa) APE1, OGG1 [34] 

XRCC1 (BRCTa) MPG, NTH1 (CTD), NEIL1 (CTD), NEIL2 (NTD) [29–31]; PARP1 (DBD, 
BRCT), PARP2 (WGR) [35, 36] 

XRCC1 (XL2) PNKP (NTD), APTX (FHA) [23, 37–39] 

XRCC1 (BRCTb) LigIIIα (BRCT) [40–42] 

XRCC1 TDP1 [43] 

PARP1 (DBD + BRCT) Polβ (CD), PARP1, PARP2 (WGR) [36, 44, 45]; LigIIIα (55–122) [46] 

PARP1 (CD) TDP1 (NTD) [47] 

APE1 (CTD) MYH (293–351) [48] 

NEIL1 (CTD) PNKP, Polβ, FEN1, LigI [49] 

Polβ (NTD) NEIL1 (CTD), NEIL2 (NTD) [30, 31]; LigI (NTD) [50] 

Polβ (CD) PARP2 (WGR) [36] 

Polβ APE1 [51]; PNKP [52] 

LigIIIα (BRCT) NEIL1 (CTD), NEIL2 (NTD) [30, 31]; PARP2 (WGR) [36]; PNKP [52]; TDP1 
(NTD) [53, 54] 

aProtein domain(s) responsible for the interaction with protein partner(s) is shown in brackets. Structural 
composition of multidomain proteins: XRCC1: NTD 1–155, XL1 156–309, BRCTa 310–405, XL2 406–528, BRCTb 
529–633; [23] PARP1: ZnF1 1–96, ZnF2 97–206, NLS 207–240, ZnF3 241–366, BRCT 381–484, WGR 518–661, 
CD 662–1014; [55] PARP2: NTD 1–63, WGR 64–198, CD 199–559; [36] LigIIIα: ZnF 1–100, linker 101–170, 
DBD 171–390, CD 391–836, BRCT 837–922 [56]. Designations: NTD/CTD, N-/C-terminal domain; CD, catalytic 
domain; DBD, DNA-binding domain; XL1/XL2, linker 1/2 in XRCC1 protein; NLS, nuclear localization signal; 
ZnF, zinc finger; FHA, forkhead-associated domain. The data for human and mouse (PARP2) recombinant proteins 
are presented.
bTechniques used in studies: affinity coprecipitation [25, 26, 29–36, 40, 41, 44–50], two-hybrid analysis [27, 30, 31, 
35, 37, 46, 51–54], gel filtration [27, 28, 41, 42], ultracentrifugation [27, 50], coimmunoprecipitation [29, 31–33, 
36–39, 41, 43, 46, 47, 52–54], fluorescence titration [38], fluorescence polarization [39], surface plasmon resonance 
[41], small-angle X-ray scattering [42], X-ray crystallography [23, 42, 45], and NMR [48]. 

Table 1. 
Interactions between main proteins involved in BER. 

Direct interactions between the enzymes catalyzing different, usually sequen-
tial, steps of the BER process have been demonstrated in several studies (Table 1). 
Interestingly, the enzyme of the final step of SP BER—LigIIIα has direct binding 
partners among the enzymes involved in both the initial and middle steps of the 
process (NEIL1, NEIL2, PNKP, and TDP1), utilizing the BRCT domain for the 
interaction. Data reported recently indicate the ability of this enzyme to control 
the assembly of multiprotein complexes on single-strand DNA damages similar 
to PARP1, thus suggesting a scaffolding function of LigIIIα in the coordination of 
BER [62]. 

Most interactions between proteins involved in BER have been detected using 
the affinity coprecipitation, two-hybrid analysis, and immunoprecipitation tech-
niques (Table 1). These techniques provide no information on physicochemical, 
structural, and conformational parameters of the complexes, leaving open many 
questions on the mechanisms of their functioning, such as the relative contribution 
of the proteins to the formation of macromolecular associates and their stoichiom-
etry, the roles of dynamic interactions, conformational changes, and DNA inter-
mediates in the formation of functional assemblies. Information on the structural 
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organization of these complexes is very limited. The 3D structures determined by 
X-ray crystallography are known for the isolated domains/fragments of the XRCC1 
protein in complexes with the respective domains of its stable partners Polβ, LigIIIα, 
and PNKP (Figure 3). It is interesting to note that the specific contact region of 
the XRCC1 protein with LigIIIα (not involved in XRCC1 homodimerization)—a 
polypeptide consisting of hydrophobic amino acid residues at the N-terminus of the 
BRCTb domain—was revealed in the X-ray study [42]. The binding sites localized in 
proteins by the traditional nonequilibrium techniques participate obviously in the 
most stable interactions. The available structural data are not sufficient to decipher 
the molecular mechanisms of BER coordination. 

Using quantitative equilibrium techniques—fluorescence titration and 
fluorescence (Förster) resonance energy transfer (FRET)—we have character-
ized several homo- and hetero-oligomeric complexes of various BER proteins 
(Figure 4). N-hydroxysuccinimide esters of 5(6)-carboxyfluorescein (FAM) and 
5(6)-carboxytetramethylrhodamine (TMR) were used for N-terminal fluorescent 
labeling of proteins. Direct (not mediated by DNA or other proteins) interactions 
of APE1 with Polβ, TDP1, and PARP1 and of Polβ with TDP1 as well as homo-
oligomerization of APE1 have been detected for the first time. The apparent 
equilibrium dissociation constant (Kd) of the complexes is in the range of 23 to 
270 nM. The XRCC1-PNKP complex characterized previously by using a similar 
approach has a Kd value in the same range [64]. The highest stability of the XRCC1 
complex with Polβ was confirmed by the nonequilibrium approach, size exclusion 
chromatography coupled with multi-angle laser light-scattering (SEC-MALLS) 
[63]. Model DNAs imitating various DNA intermediates of BER have been shown 
to modulate the structure of protein complexes and their stability to different 
extents, depending on the type of DNA damage [63]. The DNA-dependent effects 
on the protein affinity for each other were most pronounced for the complexes of 
APE1 with different proteins (Polβ, XRCC1, and PARP1). Our findings advance 
understanding of the mechanisms underlying coordination and regulation of the 
BER process. The dependence of the efficiency of APE1 interaction with Polβ on 
the type of DNA intermediate indicates that functions of the two key enzymes are 
coordinated not only due to the differences in their affinity for DNAs as proposed 
previously in [65] but also due to the strength of their interaction with each other, 
which is controlled by DNA at different steps of repair. The higher affinity of APE1 
for Polβ in the presence of AP-site containing DNA than in the complex with the 
incision product suggests that the efficient repair is facilitated by the transfer of 
the DNA intermediate to Polβ immediately during the incision step. The higher 
affinity of APE1 and Polβ for PARP1 than for each other in the presence of SSB 
containing DNA suggests that the regulation of functions of the BER participants 
via DNA-dependent modulation of their affinity for each other represents a 
common mechanism for various proteins. On the contrary, the stability of the 
XRCC1-Polβ complex does not depend on the presence of DNA intermediates, even 
though the most pronounced effect of different DNAs on the FRET signal, which 
reflects structural rearrangement of the complex, was detected for this complex. 
Our data indicate that this complex revealed in [66] to protect each protein from 
proteasome-mediated degradation may also serve as a stable component of the 
multiprotein assemblies, similar to the XRCC1-LigIIIα complex. Moreover, the 
XRCC1 binding sites with Polβ and LigIIIα do not overlap with regions mediating 
interactions with most other protein partners, thus enabling participation of the 
preformed ternary Polβ-XRCC1-LigIIIα complex in the entire Polβ- and XRCC1-
dependent BER sub-pathway. Formation of the stable ternary complex in vivo 
is evidenced by synchronous accumulation of XRCC1, Polβ, and LigIIIα at the 
damage sites of DNA [67, 68]. 
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Figure 4. 
Direct interactions between BER proteins detected by fluorescence titration and FRET [63]. The EC50 values 
represent apparent equilibrium dissociation constants of the complexes (determined as half-maximal 
effective concentrations of protein partners); the length of black arrows connecting the protein pairs is 
proportional to the binding affinity; the underlined EC50 values have changed remarkably in the presence of 
DNA intermediates. The interaction in each pair of FAM- (donor) and TMR-labeled (acceptor) proteins 
is characterized by FRET efficiency (E); the highest change of the E value induced by DNA intermediates 
(increase/decrease with +/− sign) is presented in brackets. Reproduced with modification from [6] with 
permission of Pleiades Publishing, Ltd. 

Recently, the oligomeric states of BER proteins and their complexes have been 
estimated based on hydrodynamic sizes determined by using dynamic light scatter-
ing (DLS) technique [69]. All the proteins have been proposed to form homodimers 
upon their self-association. The most probable oligomerization state of the binary 
complexes formed by PARP1 with various proteins is a heterotetramer. The oligo-
merization state of the binary complexes formed by XRCC1 varies from heterodimer 
to heterotetramer, depending on the partner. 

Interaction of PARP1 with Polβ and APE1 detected in our study [63] in both 
the absence and presence of DNA may contribute to regulation of the BER 
process. Cooperation between PARP1 and BER enzymes at different steps of DNA 
repair is evident from our previous studies. Interaction of PARP1, Polβ, and APE1 
with the “central” DNA intermediate in BER established by photoaffinity labeling 
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of BER proteins in the cell extract suggests interplay between these proteins dur-
ing repair synthesis catalyzed by Polβ [70]. The ability of PARP1 to compete with 
APE1 for the binding of an AP-site containing DNA indicates possible coopera-
tion between the proteins upon the recognition and further incision of the AP 
site [71]. Following the incision of AP site, PARP1 can catalyze the synthesis of 
poly(ADP-ribose). According to the initially proposed mechanism of its action, 
PARP1 dissociates from the complex with DNA after covalent attachment of the 
negatively charged PAR polymer. Further studies of an active role of PAR in the 
formation of the repair complexes have modified this hypothesis. It was estab-
lished that following poly(ADP-ribosyl)ation, PARP1 was capable of covalent 
binding to the photoreactive DNA intermediate; the lifetime of such complexes 
was shown to depend on both the size of covalently bound PAR and the initial 
affinity of PARP1 for the DNA damage [70]. Complexes of PAR-PARP1 with dam-
aged DNA have been detected by atomic force microscopy [72]. Recently, kinetics 
of poly(ADP-ribosyl)ation and PAR homeostasis (but not the PARP1 protein) 
have been proposed to play a primary role in protection of cells from acute DNA 
damage [73]. Hence, the formation of BER complexes on the damaged DNA 
can be regulated via either poly(ADP-ribosyl)ation of proteins or their interac-
tions with PAR polymer synthesized by PARP1 and PARP2. Poly(ADP-ribose) 
is the most important cell regulator of protein-protein and protein-nucleic acid 
interactions. [20, 74–78]. 

4. Interactions of BER proteins with noncanonical factors contribute to 
the regulation of DNA repair 

Many proteins with various cellular functions, not considered previously to be 
involved in BER, have been shown to regulate this process via interactions with 
main participants. The HMGB1 protein—a chromatin architecture factor—interacts 
directly with three BER enzymes (APE1, Polβ, and FEN1), modulates their catalytic 
activity in the process of DNA repair, and, hence, ensures regulation of the process 
via the SP or LP BER sub-pathway [79–81]. Human DNA-binding proteins hSSB1 
and SATB1 form complexes with DNA glycosylase OGG1, thus enhancing its effi-
ciency in recognition of DNA damage and its repair [82, 83]. The human mitochon-
drial single-stranded DNA binding protein (mtSSB) interacts with NEIL1 in the 
presence and absence of a DNA substrate revealed to modulate the oligomerization 
state and stability of the NEIL1-mtSSB complex [84]. Protein factors of unknown 
nature that are not involved in chromatin structure remodeling form complex 
with DNA glycosylase NTH1 and stimulate its activity in BER initiation [85]. The 
SSRP1 protein entailed in chromatin disassembly as a histone H2A/H2B chaperone 
interacts with both PAR-PARP1 and XRCC1 and facilitates repair of SSBs [86]. In 
general, the mechanisms of BER functioning within chromatin are largely unex-
plored (for example, see [87]), remaining possibility to discover new noncanonical 
factors of BER. 

In addition to multiple enzymatic functions in DNA repair, APE1 is known to 
play a regulatory role in the transcription processes, RNA processing, and ribosome 
biogenesis [76, 88]. The activities of the multifunctional enzyme, its expression 
level, and intracellular localization are regulated by its interaction with the multi-
functional protein nucleophosmin (NPM1) [89]. Direct interactions of APE1 and 
several DNA glycosylases (TDG, NEIL2, NTH1, OGG1, and UNG2) with protein 
factors of nucleotide excision repair (XPC, XPG, CSB, and RPA) and homologous 
recombination (Rad52) have been shown to play a regulatory role in the overlapping 
repair pathways [90]. 
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PARP1 forms stable complexes with Ku70/Ku80 proteins, and this interaction 
has been proposed to be an important regulator of the Ku70/80 heterodimer 
function in the repair of DNA double-strand breaks (DSBs) [91, 92]. Recent 
studies have demonstrated the involvement of Ku70 and Ku80 proteins in 
different steps of BER [93]. Septin4, a member of GTP binding protein family 
considered to be an essential component of the cytoskeleton, is a novel PARP1 
interacting protein, and the interaction is enhanced under oxidative stress [94]. 
PARP1 interacts with NR1D1 protein, a nuclear receptor subfamily 1 group D 
member 1; the interaction is enhanced under oxidative stress and inhibits the 
catalytic activity of PARP1 [95]. Whether the interaction of these noncanonical 
factors with PARP1 may contribute to regulation of BER remains to be explored. 
The protein DBC1 (deleted in breast cancer 1), one of the most abundant yet 
enigmatic proteins in mammals containing a conserved domain similar to Nudix 
hydrolases (hydrolyzing nucleoside diphosphates) but lacking catalytic activity, 
interacts directly with the BRCT domain of PARP1; the strength of the interac-
tion shown to inhibit the catalytic activity of PARP1 is modulated by NAD+ 
concentration [96]. Thus, a novel function of NAD+ to directly regulate protein-
protein interactions, the modulation of which may protect against cancer, radia-
tion, and aging, has been discovered. 

The multifunctional Y-box-binding protein 1 (YB-1) is another noncanonical 
factor of BER. The proteolytic fragment of this positively charged intrinsically dis-
ordered protein localized in the nucleus is formed in response to DNA damage [97]. 
We have shown that YB-1 interacts with poly(ADP-ribose) and could be an acceptor 
for PARP1/PARP2 catalyzed poly(ADP-ribosyl)ation in vitro [98]. Several proteins 
essential for BER—APE1, Polβ, NEIL1, PARP1, and PARP2—directly interact 
with YB-1, although most complexes being less stable than the complexes of BER 
proteins with each other (the apparent Kd values are in the range of 340 to 810 nM 
as compared to those presented in Figure 4) [99]. A strong interaction detected 
between APE1 and YB-1 could be an important factor for the cooperative action 
of these multifunctional proteins in transcription regulation [100]. Interactions 
of YB-1 protein with BER enzymes could be responsible for the regulation of 
their activities: the AP-endonuclease activity of APE1 and 5′-dRp-lyase activity 
of Polβ are inhibited in the presence of YB-1, while the AP-lyase activity of NEIL1 
is stimulated [99]. YB-1 was found to stimulate the catalytic activity of PARP1 
via strong binding with poly(ADP-ribose) linked to PARP1, which increased the 
lifetime of this complex in DNA [99]. Acting as a cofactor of PARP1, YB-1 decreases 
the efficiency of PARP1 inhibitors [101]. 

5. Intersection of posttranslational modifications and protein-protein 
interactions in BER coordination 

Posttranslational modifications (PTMs) of proteins involved in BER modulate 
catalytic and DNA-binding activities of individual proteins, their expression, 
intracellular localization, structure, and stability as well as protein-protein interac-
tions and may therefore contribute to regulation of DNA repair either directly 
or indirectly. Numerous studies of PTMs and their functions in BER have been 
reviewed previously [90, 102–106]. As mentioned above, PARP1 modifies itself and 
binding partners with poly(ADP-ribose). Among the targets of PARP1 catalyzed 
ADP-ribosylation are two key BER proteins—XRCC1 and Polβ, and XRCC1 nega-
tively regulates PARP1 activity [35, 107]. The automodification of PARP1 has been 
shown to enhance its interaction with XRCC1, LigIIIα, and TDP1; the length of 
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PAR polymer determines the efficiency of PAR-mediated accumulation of XRCC1 
on DNA damage [46, 47, 108]. Recent studies have identified other PTMs, such as 
phosphorylation, acetylation, and methylation, to regulate the activity of PARP1 
[104, 106]. Phosphorylation of PARP1 mediated by protein kinase CDK2 represents 
a novel DNA-independent mechanism of PARP1 activation [106]. Modifications 
of PARP1 mediated by AMP-activated protein kinase (AMPK) and lysine acetyl-
transferase 2B (PCAF) modulate both the activity of PARP1 and ADP-ribosylation 
of other proteins [106]. Polyubiquitination of PARP1 by E3 ubiquitin protein ligase 
is promoted by the automodification of PARP1 and targets PAR-PARP1 for pro-
teasomal degradation [106]. It has to be noted that nonproteolytic roles of protein 
ubiquitination in regulation of DSBs repair and NER have been demonstrated [105]. 
PARP1 modification (at Lys486 residue) with small ubiquitin-like protein catalyzed 
by SUMO E3 ligase (SUMOylation) enhances p300-dependent acetylation of 
PARP1, while it has no effect on its activity [106]. 

The most abundant evidence on PTM-mediated regulation of protein-protein 
interactions is available for the XRCC1 protein. XRCC1 is an extensively phos-
phorylated protein with more than 45 phosphorylation sites localized in the linker 
regions and BRCTa domain [109]. Catalyzed by p38 MAPK kinase phosphorylation 
of the BRCTa domain (at T358 and T367 residues) has been shown to regulate 
PAR-mediated recruitment of XRCC1 to DNA damage [109]. The phosphorylation 
of XRCC1 by checkpoint kinase 2 (CHK2) at Thr284 residue in vivo and in vitro 
increases the affinity of XRCC1 for DNA glycosylase MPG, facilitating thereby 
initiation of BER [110]. As shown recently, the same kinase interacts with PARP1 
and modifies the BRCT domain; the CHK2-dependent phosphorylation of PARP1 
stimulates its catalytic activity and interaction with XRCC1 [111]. Seven sites of 
XRCC1 phosphorylation mediated by kinase CK2 (localized in the XL2 linker) are 
necessary to modulate the interaction of XRCC1 with end-processing enzymes— 
PNKP, APTX, and PNK-like factor APLF—and the efficiency of repair of chromo-
somal DNA SSBs [37–39, 112, 113]. Notably, the phosphorylated and unmodified 
forms of XRCC1 bind different structural domains of PNKP and modulate the 
kinase activity of PNKP or its accumulation on DNA damage, respectively [37, 38]. 
The oxidized form of XRCC1 stabilized by a disulfide bridge between Cys12 and 
Cys20 residues forms a more stable (in comparison with the reduced form) complex 
with Polβ; an increase in the number of intermolecular contacts in this complex has 
been confirmed by X-ray analysis of the complex [23]. The existence of oxidized 
form of XRCC1 in vivo is essential to protect cells against extreme oxidative stress 
[114]. XRCC1 is a substrate for SUMOylation promoted by DNA damage-induced 
PARylation; SUMOylation of XRCC1 contributes to regulation of BER via increas-
ing its binding affinity for Polβ [115]. 

The most frequent PTMs discovered for the multifunctional protein APE1 
include phosphorylation, acetylation, S-nitrosylation, S-glutathionylation, forma-
tion of disulfide bonds, and ubiquitination [90, 102]. Most modifications modulate 
redox activity of APE1 and its regulatory function in transcription. As Cys residues 
are targets of different modifications, it is essential to understand the competition 
between these PTMs and their roles in APE1 function. Numerous studies on APE1 
phosphorylation by a variety of protein kinases provide contradictory data on modu-
lation of the repair activity of APE1 [102]. Recently, it has been shown that acetyla-
tion of APE1 (at Lys residues in the mammalian-conserved N-terminal extension) 
enhances both the AP-endonuclease activity and the interaction with XRCC1 and 
XRCC1-LigIIIα complex, ensuring cell survival in response to genotoxic stress [116]. 

Acetylation of DNA glycosylase TDG weakens its interaction with APE1 and 
produces opposite effects on the excision activity of the enzyme toward various 
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types of base damages; repair of damage induced by the chemotherapeutic action 
of 5-fluorouracil is enhanced by the TDG acetylation [90]. Based on these data, the 
acetylation status of TDG within tumor cells was proposed to impact the chemo-
therapy efficacy. Phosphorylation of the flexible N-terminus of DNA glycosylase 
UNG2 (at Thr6 or Tyr8 residues) shown to disrupt interaction with the PCNA 
factor, without affecting the UNG2 catalytic activity or its RPA interaction, has 
been proposed to regulate the formation of the ternary PCNA-UNG2-RPA protein 
complex [117]. 

Various PTMs of Polβ (acetylation, phosphorylation, and methylation) modu-
late its 5′-dRp-lyase and nucleotidyl transferase activities; the only example of 
PTMs impacts on protein-protein interaction is inhibition of Polβ-PCNA interaction 
due to PRMT1-dependent methylation of Arg137 [102]. The enzymes completing 
BER—LigIIIα and LigI—undergo posttranslational modification in vitro and in vivo; 
however, the intersection of their PTMs with protein-protein interactions is yet 
unknown [102]. 

6. Conclusions 

Intensive studies of DNA repair system ensuring repair of damaged bases and 
single-strand DNA breaks (BER) in recent decades have made impressive prog-
ress in establishing the participants of the repair process, main sub-pathways, 
and auxiliary mechanisms activated when the main BER sub-pathways are 
inefficient. In addition to the enzymes responsible for catalytic steps of BER, 
several proteins, such as XRCC1, PARP1, PARP2, and others, have been identi-
fied as BER participants essential for assembling and functioning of the dynamic 
multiprotein system. Multiprotein complexes of various compositions can be 
formed without the involvement of DNA, but their structure and stability are 
modulated by the damaged DNA and intermediates formed in different steps of 
BER. Interactions of individual BER enzymes with DNA substrates and products 
have been deciphered in detail by X-ray studies. This method is of little use to 
explore dynamic supramolecular structures operating in DNA repair. The next 
step is required to clarify how the BER system functions upon association of the 
multiprotein complexes with chromatin; novel methods in structural analysis, 
such as electron microscopy, and more complex models imitating DNA repair 
in chromatin structure might be helpful to apply. How protein-protein interac-
tions and posttranslational modifications coordinate BER with other DNA repair 
systems requires future studies. Elucidation of molecular mechanisms underly-
ing efficient BER and its dysregulation in pathological states will help broaden 
our understanding the origins of diseases and provide novel strategy of their 
treatment. 
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Chapter 3 

Mitochondrial Genome 
Maintenance: Damage and Repair 
Pathways 
Ulises Omar García-Lepe and Rosa Ma Bermúdez-Cruz 

Abstract 

The mitochondrial genomic material (mtDNA), similarly to nuclear genome, is 
exposed to a plethora of exogenous and endogenous agents, as well as natural processes 
like replication that compromise the integrity and fidelity of the mtDNA, despite the 
abovementioned, the mtDNA does not contain genes involved in DNA repair, there-
fore mitochondria completely depend on the importation of nuclear-encoded elements 
to achieve genome maintenance, which implies a coordinated crosstalk between these 
two organelles. It has been determined that to counteract damage, mitochondria pos-
sess well-defined repair pathways quite similar to those of the nucleus, among which 
are: base excision repair (BER), mismatch repair (MMR), single-strand break repair 
(SSBR), microhomology-mediated end joining (MMEJ), and probably homology 
recombination dependent repair (HRR). If these repair pathways are nonfunctional 
and the lesions remain unrepaired, the emergence of mutations, deletions, and other 
insults may result in compromised cellular viability and disease. 

Keywords: mitochondria, mtDNA, damage, repair, BER, MMR, SSBR, 
HRR, MMEJ 

1. Introduction 

The mitochondrion is an essential organelle involved principally in the produc-
tion of ATP and other metabolites which are important to several cellular functions, 
besides this organelle participates in other processes as iron-sulfur cluster biogen-
esis, heme production, and calcium regulation [1]. The mitochondrion possesses 
its own circular genomic material (mtDNA), which is exposed to the same DNA 
lesions as nuclear genome is, however, unlike the latter, mtDNA does not encode for 
genes involved in DNA maintenance or repair which implies that these processes 
completely depend on nuclear-encoded elements translocated to mitochondria. It 
was first thought that mitochondria lacked the ability to repair its DNA material, 
and this assumption was originated due to the observation of the absence of pyrimi-
dine dimer resolution after ultra violet light exposition in mammalian cells [2]; 
however, nowadays, the study of mtDNA repair pathways has evolved into a com-
plete research area that is constantly growing, since it has been observed that mito-
chondria not only possess some of the nuclear-conserved mechanisms like: base 
excision repair (BER), mismatch repair (MMR), single-strand break repair (SSBR), 
microhomology-mediated end joining (MMEJ), and homologous recombination 
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dependent repair (HRR), additionally mitochondria have evolved specific unique 
methods to deal with mtDNA insults based on the redundancy nature of mtDNA 
and mitochondrion itself, if the damage surpasses its repair capabilities, the mtDNA 
molecules can be destroyed and replicated again or even the whole organelle can 
be degraded [3]. Of importance, lesions that remain unrepaired in mtDNA such 
as deletions, mutations, inversions, and other rearrangements have been linked 
to several heritable disease syndromes [4]; further, mtDNA rearrangements and 
deletions have been associated with aging and cancer (www.mitomap.org/org/ 
MITOMAP) [5]. In this chapter, we will summarize the different mechanisms by 
which the mammalian mtDNA can be damaged and the described pathways that are 
involved in maintenance of fidelity and integrity of mitochondrial genome. 

2. The mitochondrial genome 

One of the features of mammalian cells is that they have two DNA-containing 
compartments: nuclei and mitochondria. Nuclear genome is large, diploid, and lin-
ear; in contrast, mitochondrial genome is polyploid and quite small, since is formed 
by a 16,569 pb circular molecule that accounts for 0.0005% of the human genome 
and 0.1% of the total number of genes in the human; mtDNA is redundant, since a 
few hundred to few thousand copies can be found per cell [3], when all the copies 
are identical, the genotype is termed homoplasmy, instead when multiple forms 
exist within the same tissue or cell; the genotype is called heteroplasmy [6]. The 
mitochondrial genome presents 37 genes, 13 of which encode for proteins oxidative 
phosphorylation chain specific and the remaining are implicated in translation: 2 
ribosomal RNAs (small of 12S and large of 16S) and 22 tRNAs. The grade of compac-
tion of mtDNA is interesting since it has no introns, and the intergenic regions are 
almost absent, additionally there are two noncoding regions: one of approximately 
1 kb known as noncoding region (NCR) and another small of 30 bp, both implicated 
in regulation of replication and transcription [7]. The NCR presents a triple stranded 
region, named D-loop, which occupies most of its extension and is related to the 
start of transcription [8], besides it has been observed that some genes overlap and 
others lack termination codons; therefore, it has been established that the promoters 
produce polycistronic transcripts which are further processed to generate mature 
RNA molecules [9]. As mentioned above, some of the proteins involved in respira-
tory system and ATP synthesis, which are extremely important to cellular functions, 
are encoded by mtDNA and not the nuclear genome, thus it is important to maintain 
mitochondrial genome integrity to preserve homeostasis [10]. 

Despite the advances made in the study of mtDNA replication mechanism, 
the exact machinery and steps involved in this procedure are not fully known; 
however, it has been determined a general head core to this process which con-
sists of the polymerase gamma (Polγ), a DNA helicase named Twinkle, and the 
mitochondrial single-stranded binding protein (mtSSB) [11]. Nowadays, there are 
three proposed models to explain mtDNA replication: (1) the first is quite similar 
to nucleus DNA replication, with standard leading and lagging strand replication, 
(2) a strand displacement model, where the lagging strand is synthetized once the 
leading has advanced and synthetized a long fragment, and (3) in this model, the 
lagging strand is hybridized with complementary RNA, a mechanism termed RNA 
incorporation throughout the lagging strand (RITOL) [8]. Another interesting 
feature about mtDNA replication is that contrary to what occurs in nuclear genome, 
mitochondrial genome replication is not limited to S phase of the cell cycle [12]. 

Unlike the nucleus, where the DNA forms part of nucleoprotein complexes, con-
sisting of DNA molecules wrapped around histone structures, the mitochondrial 
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genome does not present histones. It has been thought that this lack is responsible of 
the high rate of mtDNA mutagenesis, which is 10-fold greater than that in nucleus; 
however, this hypothesis is controversial since experimental evidence has suggested 
that histones might provoke DNA damage instead of preventing it [3]. Despite the 
above, mitochondrial genome is not naked; it is packaged into protein-DNA com-
plexes, which are termed mitochondrial nucleoids due to its similarity to bacterial 
chromosomes [13]. The most abundant nucleoid-associated proteins are mtSSB, 
transcription factor A of mitochondria (TFAM), Polγ, mitochondrial RNA poly-
merase (POLRMT), and Twinkle DNA helicase [14]. 

3. Sources of mtDNA damage 

Mitochondrial genome is exposed to almost the same insults that nuclear 
genome is, which can be originated by internal and external sources. Six types of 
DNA damage have been proposed to be the more relevant in mitochondria [3]. 

3.1 Alkylation damage 

This kind of lesion may be due to exposition to exogenous agents as chemothera-
peutic drugs, diet, and tobacco smoke; however, DNA alkylation damage can also 
be generated from the interaction of DNA with endogenous molecules [15], such as 
betaine, choline, and S-adenosylmethionine (SAM); the latter is the most relevant 
alkylating agent in the cell; SAM is a co-substrate involved in the transfer of methyl 
groups, when incubated with DNA in aqueous solutions leads to base modification, 
forming small amounts of 7-methylguanine and 3-methyladenine nonenzymati-
cally, therefore SAM acts as a weak DNA-alkylating agent [16]. Of interest, these 
DNA modifications, in specific 7-methylguanine can trigger the formation of 
mutagenic apurinic sites (AP) and imidazole ring opening which results in the stop-
page of replication machinery [17]; moreover, 3-methylguanine itself is a cytotoxic 
DNA lesion that also blocks replication [15]. Interestingly, mitochondria store about 
30% of total hepatic SAM [18], thus mtDNA is constantly exposed to this alkylating 
agent, which threats its stability and integrity. 

3.2 Hydrolytic damage 

There are two types of hydrolytic damage, the first is the formation of AP sites 
as a product of hydrolysis of the glycosidic bonds between bases and deoxyribose, 
and these lesions could appear due to heating, alkylation damage (previously 
mentioned) or by the action of N-glycosylases [19]. It has been estimated that AP is 
one of the most frequent lesions in the DNA, with approximately 10,000 lesions per 
cell, per day [20]. Interestingly, typical AP sites generate base pair modifications, 
since there is a preference to incorporate adenine opposite to AP by polymerases 
during DNA replication [21]. The other form of hydrolytic damage is the hydrolytic 
deamination of bases, where cytosine and its homolog 5-methylcitosine are mainly 
affected. It is noteworthy that the conversion of cytosine to uracil may introduce 
punctual mutations to the genome during replication if left unrepaired [20]. 

3.3 Formation of adducts 

This type of lesions can be generated for exposition to ultraviolet type B and C 
light which produce bulky DNA adducts termed photodimers, in addition, activated 
metabolites of several organic contaminants, for example, polycyclic aromatic 
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hydrocarbons and mycotoxins may bring about adducts [1]. On the other hand, 
adduct formation can also be stimulated by endogenous factors, for example, it has 
been demonstrated that reactive intermediate products of diethylstilbestrol metab-
olization form DNA adducts preferentially with mitochondrial genome, where 
these insults are suggested to avoid replication and/or transcription, thus producing 
mtDNA instability in vivo [22]. 

3.4 Mismatches 

During replication, polymerases can introduce base to base mismatches as well 
as generate nucleotide insertions or deletions in mitochondria, which are normally 
known as insertion-deletion loops (IDLs). One important source of mismatches are 
damaged deoxyribonucleotide triphosphates (dNTPs), predominantly oxidized, 
which can be incorporated to DNA during synthesis [3, 10]. 

3.5 DNA strand breaks 

These injuries are divided based on the breaking of one or both strands. Single 
strand breaks (SSBs) can be generated by normal cellular procedures that went 
wrong, such as erroneous or abortive activity of DNA topoisomerase I (Top1), 
which presents mitochondrial localization, and when it fails may produce protein-
linked DNA breaks [23], also SSBs are produced by ineffective base excision repair 
(BER), or by oxidative stress [24]. One lesion related to SSBs is the formation of a 
covalently linked AMP to a 5′ phosphate, product of an unsuccessful DNA ligase 
activity [25]. On the other hand, double strand breaks (DSBs) are the most harm-
ful, since they can provoke global cellular responses that involve many aspects of 
cell metabolism [26]. These lesions may occur by endogenous agents like reactive 
oxygen species (ROS), errors in DNA metabolism by topoisomerases, and nucleases 
or detention of replisome. On the other hand, lesion can be caused by exogenous 
insults such as ionizing radiation and chemotherapeutic drugs [1]. 

3.6 Oxidative damage 

In living organisms, ROS are normally produced as a consequence of endog-
enous metabolic reactions and also by external factors. ROS include superoxide 
anion (O2 

−), hydrogen peroxide (H2O2), hydroxyl radical (OH−), and single oxygen 
(O2), all of them can oxidize DNA molecules and generate several types of dam-
age including oxidized bases and single- and double-strand breaks [15]. Oxidative 
damage is by far the most prevalent and studied in mtDNA, since mitochondria are 
an important contributor in the creation of ROS [27], generated by the leakage of 
electrons from the electron transportation chain (ETC) [28], and there are at least 
nine sites responsible for generating the superoxide anion [29]. The importance of 
ROS affecting mtDNA lies in the observation that oxidative damage accumulates 
in several human diseases [30]. Of interest, it has also been reported that reactive 
nitrogen species (RNS) are able to oxidize or deaminate DNA and produce strand 
breaks, lesions that could be possible in mtDNA since these RNS can be found in 
mitochondria [31, 32]. 

4. Mitochondrial DNA repair machinery 

Most of the repair pathways used by mitochondria to deal with its damaged 
DNA are quite similar to those operating in the nucleus; this observation makes 
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sense when we realize that mitochondrion relies completely in import of DNA 
repair elements encoded by nuclear genome, despite that mitochondrial genome 
does not contain any gene implicated in repair; it appears that the mitochondrial 
version of the repair machinery operates with fewer proteins than the nuclear 
counterparts [33] (Figure 1). 

4.1 Base excision repair (BER) 

Base excision repair (BER) is the commissioned pathway to removed nonbulky 
lesions like alkylated, deaminated, and oxidized bases from the DNA. This pathway 
has been well studied in the nucleus and was the first repair mechanism reported in 
mitochondria and to date the best characterized in this last organelle [33, 34]. BER 
mechanism is highly conserved from bacteria to humans and basically comprises five 
stages: (1) recognition and excision of the damaged base, (2) removal of the abasic site 
formed, (3) DNA end processing, (4) repair synthesis, and (5) ligation [35], and at the 
same time, BER can be divided into two branches (both founded in mitochondria): 
short patch and long patch, where the difference lies in the procedure used to repair, 
while short patch forms a single nucleotide gap, long patch forms a bigger one of 2–10 
nucleotides [36]. One of the main elements involved in BER processes are the DNA 
glycosylases, enzymes that catalyze the excision of the N-glycosidic bond between 
the altered base and its corresponding carbohydrate, thus creating an abasic site, and 
activity that was first observed by Lindahl et al. [37]. These glycosylases can be sub-
divided into monofunctional or bifunctional, depending on whether they have lyase 
activity or not, ability that determines the type of damage they can repair, while mono-
functional glycosylases focus on nonoxidative damage, bifunctional exert their action 
against oxidized DNA bases [35]. In mammalian mitochondria, seven glycosylases 
have been reported, three monofunctional: uracil-DNA glycosylase (UNG1), E. coli 
MutY homolog (MYH), and N-methylpurine DNA glycosylase (AAG/MPG) and four 
bifunctional: 8-oxoguanina-DNA glycosylase (OGG1), E. coli endonuclease III homo-
log (NTH1) endonuclease VIII-like glycosylase 1 and 2 (NEIL1 and 2) [38–41]. After 
the action of glycosylases, the next step, DNA end processing, is catalyzed by nuclear 
BER enzymes that are also found in mitochondria, as apurinic-apyrimidinic endo-
nuclease 1 (APE1) and polynucleotide kinase-3′-phosphatase (PNKP) [35], further the 

Figure 1. 
Mitochondrial import and mtDNA repair pathways. The elements that participate in mitochondrial genome 
maintenance are nuclear encoded; therefore, mitochondria need to import these effector proteins, which are 
involved in different repair pathways. 
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synthesis is carried out by the main mitochondrial polymerase (Polγ). It was recently 
reported that polymerase beta (Polβ) also localizes within mitochondria, whereas 
similar to the nucleus, it has a relevant role in mtDNA maintenance and mitochondrial 
homeostasis through its participation in BER [42]. It has also been observed that FEN1, 
DNA2, and EXOG are involved in the removal of DNA flap generated by polymerase 
strand displacement synthesis [43]. Finally, the ligation activity is made by mitochon-
drial ligase III [44]. In conclusion, despite that BER is the most characterized pathway 
in mitochondria, it is still unknown whether all the nuclear elements are conserved in 
mitochondrial BER, or on the contrary, if this pathway have specific proteins that do 
not participate in nuclear version of BER, it is not well understood either which are the 
regulatory signals that controls the import of these elements to mitochondria. 

4.2 Nucleotide excision repair (NER) 

Nucleotide excision repair (NER) pathway is a complex machinery involved in 
recognition of lesions, adducts or structures that modifies the DNA double helix 
structure, having the possibility of blocking transcription, replication, and thus 
affecting DNA stability. One of the most important features of NER is its versatility 
on a wide kind of lesions since they are detected and repaired. Roughly, the process 
starts with damage recognition, next, the damaged strand is cleaved at both sides 
of the lesion to be removed later, then the missing sequence is synthesized using the 
complementary strand as a template, and finally the ends are ligated, thus restoring 
DNA sequence and integrity [45]. 

There is a large body of evidence reporting the absence of nucleotide excision 
repair activity in mitochondria. The first observation about this lack was made by 
Clayton et al. in 1974 [2], who reported that mitochondria were unable to remove 
UV-induced pyrimidine dimers. As a result, lesions that are normally repaired in 
nucleus by NER could persist in mitochondrial genome; this damage is not only 
restricted to photodimers, since NER also participates in repair of other bulky 
lesions and a subset of oxidative DNA damage [1]. In the nucleus, bulky lesions 
can also be overcome through the use of specialized translesion synthesis (TLS) 
polymerases; however, in mitochondria, the major polymerase (Polγ) presents 
a weakly thymine dimer bypass activity in vitro and at present, it is unknown 
whether this activity is conserved in vivo [46]. On the other hand, it was recently 
reported that polymerase theta (Polθ), an enzyme that acts as a translesion bypass 
polymerase, thus promoting the pass of replicative stalling lesions in the nucleus 
[47], is localized to mitochondria. Additionally, it was observed that there is 
an increase of Polθ localization to mitochondria after treating the cells with an 
oxidative agent, suggesting that the enzyme is recruited to the organelle when this 
kind of damage is inflicted, where it could facilitate translesion bypass synthesis. 
Interestingly, in POLQ KO cells, the rate of point mutation in mtDNA was signifi-
cantly reduced after oxidative treatment; this observation indicates that Polθ is 
involved in a pathway of error-prone DNA synthesis that may facilitate replication 
in mitochondria [48]. 

Despite that the nucleotide excision repair pathway has not been clearly recog-
nized in mitochondria, there are several proteins involved in the nuclear version of 
this pathway that not only localize to the organelle but also they accumulate upon 
oxidative damage, and when they are depleted from cells, the number of point muta-
tion is increased, observations that strongly suggest their participation in mtDNA 
maintenance. Some of these proteins are: Cockayne syndrome A (CSA), Cockayne 
syndrome B (CSB), and Rad23A [48–50]. Therefore, further investigation is needed 
to completely rule out NER pathway from mitochondria, or to elucidate whether 
these mentioned proteins are involved in other pathways different to nucleus. 
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4.3 Mismatch repair (MMR) 

MMR is a highly conserved pathway involved in the correction of misincorpora-
tion and slippage mistakes committed by polymerases during DNA replication, and 
base mismatches generated by base deamination, alkylation, and oxidation [3]. In 
general terms, MMR process presents the next steps: localization of the mismatch 
and identification of the newly synthesized strand, excision at both extremes of the 
mismatch lesion, DNA resynthesis, and finally ligation to complete the process [10]. 

The first demonstration of mammalian mitochondria capable to repair mismatch 
lesions was done by Mason et al. [51]. They observed that rat liver mitochondrial 
lysates repaired G-T and G-G mismatches; however, by using immunodetection no 
MSH2, a key nuclear element in MMR, was detected in these lysates, suggesting 
that mitochondrial MMR activity uses different elements to those of the nucleus. 
Posteriorly, in the pursuit of proteins responsible for the activity observed, one study 
reported that mismatches and small IDLs in mitochondrial genome are recognized 
by the Y-box binding protein 1 (YB1), which also localizes to nucleus where it exerts 
other functions, and its depletion in cultured cells triggers an increased mutagenesis 
in mtDNA. In addition, it was demonstrated that MMR activity is independent of 
MSH2 and that MSH3, MSH6 or MLH1 are not present in human mitochondria, at 
least under the experimental conditions employed [52]. In contrast to the previous 
observation, it was later demonstrated that MLH1 do localizes to mitochondria 
[53]. Through overexpression of Mlh1 or Msh2 in retinal endothelial cells, it was 
determined that MLH1 has a protective role in mtDNA after glucose-induced DNA 
damage, and on the other hand, this protective effect was not detected when Msh2 
was overexpressed, observation that suggests no participation in mtDNA mainte-
nance [54], in accordance with previous studies. Additionally, it was reported that 
the incidence of base-mismatches in mtDNA in diabetic retina is a consequence of 
expression silencing of MLH1 by methylation of its promoter, activity performed by 
Dnmt1, enzyme overexpressed in diabetes. Thus, these observations propose that 
MLH1 has an important role in mtDNA maintenance, since its silencing by methyla-
tion triggers mtDNA damage [55]. In summary, MMR pathway is involved in mito-
chondrial genome maintenance; however, not all the elements implicated have been 
found. It could be possible that the proteins of mitochondrial MMR may have a dif-
ferent splicing or post translational versions than nuclear ones, which impairs their 
identification through antibody-based techniques, or in the other hand, mitochon-
drial MMR could not depend of all the elements involved in the canonical nuclear 
form, as it was seen with the participation of YB1 [52]. In any case, more research is 
needed to find more MMR nuclear factors within mitochondria or to discover new 
ones and be able to catalog the mitochondrial MMR as an original pathway. 

4.4 Single strand break repair (SSBR) 

The repair of SSBs in mitochondria is achieved through a BER subpathway 
known as base excision/SSB repair (which is also present in nucleus), since both 
mechanisms share common component, especially in the last steps: gap filling and 
DNA ligation [10, 24]. Indeed, most of the SSBs can be repaired by elements of BER 
pathway: APE1, PKPK, and Polγ [24]. Other members of mitochondrial SSB repair 
include: PARP1, a protein implicated in the detection of SSBs in the nucleus and also 
more recently observed in mitochondria, where not only it binds to mtDNA, but 
also when is depleted, this provokes accumulations of DNA damage, thus confirm-
ing its participation in mtDNA maintenance [56]. Besides, the participation of 
ExoG in SSB repair has been elucidated, since its depletion induces mitochondrial 
persisting SSBs that eventually lead to apoptosis [57]. 
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As was previously mentioned, there are some lesions associated to SSB, like trapped 
topoisomerase 1 (Top1), damage that can be repaired through the action of tyrosil-
DNA phosphodiesterase 1 (TDP1), an important enzyme involved in the release of 
covalently trapped Top1 with DNA that was first described in yeast [58]. In addition 
to its well characterized function, it has been observed that TDP1 also removes other 
types of 3′-blocking lesions, resulting oxidative damage [59–61]. A fraction of TDP1 
(nuclear encoded) localizes to the mitochondria, where it has been implicated in 
mtDNA repair, since the treatment with chain terminator nucleotide analogs (CTNAs), 
which are also substrates of this enzyme, in tdp1−/− cells generate a reduction in mtDNA 
copy number, whereas wild type cells remain unaffected [61, 62]. These findings 
confirm the involvement of TDP1 in mtDNA damage repair, in this case induced by 
CTNAs. Another SSB-related lesion is the generation of a covalent binding of adenine 
monophosphate (AMP) to the 5′end of mtDNA, and this error is promoted by abortive 
ligase activity. The resolution of such damage relies in aprataxin (APTX) protein that 
is able to remove 5′-adenylate groups. APTX localizes to mitochondria, whereas its 
depletion generates a decline of mtDNA copy number as well as higher levels of DNA 
damage, observations that suggest a direct role of this enzyme in mtDNA maintenance 
[63]. If any of the lesions mentioned remains unrepaired, further complications may 
appear, since SSBs may progress to DSBs, which are more deleterious to cells. 

4.5 Double strand break repair (DSBR) 

In general, cells of higher eukaryotes use two main approaches to repair DSBs. 
The first approach is through the union of the ends in a nonhomologous dependent 
way, this pathway is termed nonhomologous end joining (NHEJ); it has been 
determined that NHEJ possesses some alternatives versions that use noncanoni-
cal elements, these sub pathways are known as alternative NHEJ (A-NHEJ); the 
repair with these mechanisms guarantee the restoration of DNA integrity but not 
sequence. 

4.5.1 Nonhomologous end joining (NHEJ) 

Nonhomologous end joining (NHEJ) is one of the two main pathways used by 
the cells to repair DNA double strand breaks. Similar to most DNA repair processes, 
NHEJ is based on three general steps: the action of a nuclease to resect the damaged 
DNA, next, the fill-in to make new DNA by a polymerase, and finally the participa-
tion of a ligase to restore the integrity of the strands. One of the most interesting 
features of NHEJ is the diversity of substrates that can use and convert to joined 
products [64]. By virtue of its template-independent operation, NHEJ is associated 
with insertions and deletions and hence with a lack of reliable restoration [26]. 

It has been observed that mammalian mitochondria do possess the capacity 
to bind DNA ends, activity that is retained even in Ku-deficient cells [65], addi-
tionally, the efficiency and precision of this activity apparently depend on the 
structure of the ends generated, since blunt-ended DNA fragment repaired are 
less conserved than sticky ends in comparison to the original [66]. Tadi et al. [67] 
demonstrated that mitochondria have a noncanonical version of NHEJ, also named 
alternative NHEJ (A-NHEJ). The repair by this pathway is based on microhomol-
ogy and is sometimes associated with long deletions, and hence it is described as 
microhomology-mediated end joining (MMEJ). In this same study, using rodents 
and human mitochondrial extracts, a lack of end-to-end joining of nonligatable 
broken DNA was observed, the fact that suggests the absence of a functionally 
operative canonical NHEJ in mitochondria, or at least is undetected with the tech-
niques used. In contrast, mitochondria have the ability to join oligomeric dsDNAs 
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harboring direct repeats (microhomology) that vary in length, from 5 to 22 nt, with 
an efficiency that is enhanced with the increase in the length of homology. These 
results are supported by a previous observation, where DSBs are induced in mice 
through mitochondrially targeted restriction endonuclease (Pst I), and the repaired 
mtDNA presented small directed repeats (a few nucleotides) at the breakpoint [68], 
resolution that fits with the repair manner of MMEJ, and in addition, these repair 
products have also been observed in most of the mtDNA deletions associated with 
human diseases, which are mostly (~85%) flanked by small direct repeats [69]. 
Besides, it has been determined that this mitochondrial MMEJ activity involved the 
proteins CtIP, FEN1, Mre11, PARP1, and ligase III [67]. 

Therefore, MMEJ has been proposed as a central pathway in the repair of double 
strand breaks and maintenance of mammalian mitochondrial genome, and the use 
of this pathway and possibly not C-NHEJ may explain the Ku independence pro-
teins to exert the joining activity as was previously mentioned. The possible absence 
of C-NHEJ activity in mitochondria is contrasting with the observation that anti-
bodies to KU70 and KU80 cross-react with proteins from mitochondrial extracts 
with DNA end-binding activity [10, 70]. Furthermore, it has been determined that 
XRCC4, a mediator protein of nuclear DSB repair pathway, is present in mitochon-
drial, where it is indeed involved in mtDNA repair and possibly associated with 
DNA ligase III [48]. In summary, at present no NHEJ activity has been described in 
mitochondria; however, this organelle presents the ability to join broken DNA ends, 
and it appears that this action depends on the structure of the ends generated and in 
the presence of homology at both ends of the DSB, further, the repair by MMEJ may 
explain the deletions observed in the majority of mitochondrial diseases. 

4.5.2 Homologous recombination (HR) 

Homologous recombination (HR) is a ubiquitous process conserved from 
bacteriophages to humans and is one of the most important pathways used by the 
cells to deal with DNA double strand breaks. To achieve the restoration of molecular 
integrity and sequence in a free-error manner, HR needs a homologous sequence to 
use it as a template [26, 71]. 

It has been determined that HR is essential for preservation of mtDNA in plants, 
yeast, and fungi, and on the other hand, although there is evidence about HR in 
mammalian, its significance in vivo is not clear [1]. One of the first reports about 
mitochondrial homologous repair capabilities was made by Thyagarajan et al. [72] 
where they observed that mitochondrial protein extracts from mammalian cells 
catalyzed homologous recombination repair of plasmid DNA substrates, therefore 
concluding that mitochondria do possess the machinery to perform this process. 
Additionally, after preincubating protein extracts with anti-RecA antibodies, an 
inhibition of the reaction was observed, fact that suggests the participation of a 
mammalian mitochondrial RecA homolog. Supporting this evidence, in 2010, Sage 
et al. [73] demonstrated that Rad51 and the related proteins, Rad51C and XRCC3, 
localize to human mitochondria, and they also reported that the protein levels were 
enriched after stress induction and that depletion of any of these elements generates 
a dramatic decrease in mtDNA copy number, these results strongly suggest some 
type of HR participation in mitochondrial genome maintenance. Other proteins 
involved in HR have been observed in mitochondria, and their participation in 
mtDNA repair has been validated, such as Dna2 [74] and Mre11 [67, 75, 76]; more-
over, it has been suggested that ExoG could supply Exo1, and therefore, many of the 
factors needed to perform HR process are present in mitochondria. 

Recently, using biochemical assays, it was determined that HR is the major 
DSBR mechanism, where it has a role in maintenance of mitochondrial genome 
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integrity, since the induction of DSBs significantly enhanced this process. Besides 
the participation of Rad51, Mre11 and Nibrin relevance in HR was confirmed by 
suppression of HR-mediated repair after immunodepletion of these proteins in 
the mitochondrial extracts [76]. The process of mitochondrial HR may proceed in 
two ways, one through intramolecular recombinant events, where a sole mtDNA 
molecule recombines with itself, and a second form, where a molecule can recom-
bine with another one homologous or heterologous [77, 78]. Despite the knowledge 
of the elements involved in mitochondrial HR have increased over the last years, the 
exact mechanism about how HR is achieved in mitochondria is lacking in compari-
son to the nuclear models [33]. 

The second approach is through the use of nondamaged homologous sequences; 
this kind of repair restores molecular integrity as well as sequence; another path-
way that uses homology sequences is single strand annealing (SSA), which needs 
directed repeats in both ends of the DSB, in such a way that when repairing, it 
restores integrity and sequence but at the expense of a variable length deletion [26]. 

4.6 Other pathways 

As it has been previously described in this chapter, mitochondria have a repertoire 
of elements to deal with DNA damage, even it has been observed that mitochondria 
possess a mechanism to “prevent” further lesions (described below). However, if the 
mtDNA lesions surpass the mitochondrial repair capabilities, the cell maintains other 
options to avoid a higher damage, and in these circumstances, it is possible to degrade 
the unrepairable mtDNA, the organelle or even the whole cell [10]. 

4.6.1 Sanitation of the dNTP pool 

The DNA is not the only molecule susceptible to chemical damage, the deoxy-
ribonucleotide triphosphates (dNTPs) pool is also affected, being oxidative dam-
age one of the most recurrent alterations [79]. If unrepaired, these lesions could 
become a source of mismatch errors during DNA synthesis [3]. To cope with this 
threat, mitochondria have MTH1, an specialized enzyme also found in the nucleus, 
which can hydrolyze oxidized dNTPs such as 8-oxo-20-deoxyguanosine triphos-
phate (8-oxo-dGTP), 8-oxo-20-deoxyadenosine triphosphate (8-oxo-dATP), and 
2-hydroxy-20-deoxtadenosine triphosphate (2-hydroxy-ATP) to corresponding 
monophosphates, which cannot be assembled in the DNA by polymerases [41, 80]. 
In 2008, Pursell et al. [81] reported that 8-oxo-dGTP exists in some rat tissues at 
levels that are potentially mutagenic; therefore, these data suggest that oxidized 
dNTP precursors could generate mutagenesis in vivo and consequently promote 
mitochondrial dysfunction. In addition, it was reported that a pathogenic variant of 
Polγ, which is present in patients with progressive external ophthalmoplegia (PEO), 
increases 8-oxo-dGTP misincorporation, observation that establishes a relationship 
between the oxidative lesions and increased mtDNA damage observed in other mod-
els with this pathogenic version, and misincorporation of oxidized nucleotides [82]. 
In summary, although sanitation of premutagenic free nucleotides is not properly a 
DNA repair mechanism, its participation prevents the formation of mismatches in 
mitochondrial genome and therefore reduces the probability of mutagenesis. 

4.6.2 mtDNA degradation 

Compared to nuclear genome, mitochondrial genomic material has a remark-
able advantage about DNA damage and repair, its redundancy, consisting of 
hundreds to thousands of copies per cell. Due to this characteristic, mitochondria 
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can dispose of a considerable fraction of mtDNA, where its repair capabilities 
were exceeded; however, it does not compromise organelle functions, and this 
is not an option for nucleus, where the diploid genome cannot be submitted to 
degradation without affecting the cellular homeostasis [3]. It is thought that after 
mtDNA degradation, the lost molecules are restored by mitochondrial genome 
turnover, a process that was first described several decades ago [83] (Figure 2). 
There is a wide body of evidence that supports this hypothesis of mtDNA deg-
radation after unrepairable insults; for instance, it was observed that when one 
of the initial steps of the BER repair pathway is inhibited by methoxyamine 
drug, the increase of incidence of oxidative and alkylating damage enhanced 
the mtDNA degradation [84]; additionally, through qPCR analysis, it has been 
shown a mtDNA amount decrease after persisting exposure with the oxidizing 
agent hydrogen peroxide [85, 86]. Furthermore, the absence of mutation fixation 
after persisting cell treatment with alkylating agents which have a high mutagenic 
potential suggests that due to the lack of mechanisms for repairing bulky lesion, 
the mtDNA could be selectively degraded and to prevent further modifications 
[87]. Nowadays, it is not completely clear how the mitochondrion degrades its 
damaged DNA; however, it has been recently determined that endonuclease G 
(EndoG) has an important role in mtDNA depletion, since it promotes cleavage of 
mtDNA as a response to oxidative and nitrosative stress, action that subsequently 
generates an upregulation of mtDNA replication as an indirect outcome [88]. This 
evidence is supported by the fact that endo G is the most abundant and active 
nuclease within mitochondria, and it has a preference on oxidized DNA harboring 
single-strand breaks or distorted DNA product of crosslinking agents to exert its 
endonuclease activity in vitro [89], also it has been reported that this nuclease 
preferentially cleaves 5-hydroxymethylcytosine an oxidized product of 5-methyl-
cytosine [90]. In conclusion, despite that additional research is needed to eluci-
date the whole mechanisms and elements that participate in mtDNA degradation, 
this pathway emerges as a unique and mitochondrial specific method to maintain 
DNA integrity. 

Figure 2. 
mtDNA degradation and mitophagy. (A) Damaged mtDNA (yellow circles) can be selectively degraded 
inside mitochondria, thus keeping “healthy” mtDNA (green circles), then this can replicate to re-establish 
mitochondrial genome homeostasis. (B) If the mtDNA is severely damaged and the repair mechanism is 
surpassed, injured mitochondria can be selectively degraded by the formation of an autophagosome and 
subsequent fusion with lysosomes [91]. On the other hand, the mtDNA lesions can also trigger cell apoptosis. 
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4.6.3 Mitochondrial clearance, dynamics, and apoptosis 

In general terms, autophagy is a highly conserved degradative mechanism 
used by cells to maintain homeostasis [92]. This is a finely regulated process that 
takes part in cell growth, development, and in the maintenance of an equilibrium 
between synthesis, degradation and recycling of cellular elements including 
whole organelles [11]. There is a specialized sub pathway of autophagy, which is 
specifically involved in degradation of damaged and dysfunctional mitochon-
dria, and this procedure is known as mitophagy or mitochondrial clearance. 
Although mitophagy can emerge as a programmed cellular event, like the one 
that is observed during erythroblast maturation in order to generate mature red 
blood cells lacking mitochondria [11], it has been proposed that mitophagy could 
participate in the elimination of organelles harboring low levels of DNA damage 
stress. On the other hand, when the DNA lesions are too many to handle with 
mtDNA repair mechanism or by mitochondrial clearance, the cellular response 
could trigger apoptosis [93], therefore the choice of which pathway must be used 
depends on the degree of DNA damage (Figure 2). In accordance with the previ-
ous mechanism, Suen et al. [94] observed selectively degradation by mitophagy of 
organelles harboring deleterious COXI mutations after overexpressing the protein 
Parkin, which translocated to affected mitochondria and induced autophagic 
elimination, thus this selection enriched cells for nonmutated mtDNA and restor-
ing cytochrome c oxidase activity [95]. 

It appears that mitophagy is closely associated with mitochondrial dynamics 
processes: fission and fusion [96]. Fusion is the joining of two organelles to form 
one, this mechanism allows mitochondria to distribute mtDNA and to replenish it 
when is damaged, therefore safeguarding mtDNA integrity and protecting it from 
mutations [97]. On the other hand, fission is the division of a single organelle to 
create two, this process is very important to cellular viability, it contributes to sym-
metrical distribution of mitochondria during mitosis, and promotes the removal 
of lesioned organelles by partitioning the damaged elements (like mtDNA) to a 
derived mitochondria that can fuse to a healthy one with the intention of recovering 
functionality or to be degraded by mitophagy. Therefore, mitochondrial removal 
by mitophagy is preceded by mitochondrial fission, which is capable of dividing 
the organelle into smaller pieces to be degraded easily [98]. When mitochondrial 
clearance, fusion, or fission are dysfunctional, the cells could be severely affected, 
since it has been observed that in these situations, an increase in mtDNA instability 
and generation of neurodegenerative, cardiovascular, and age-related diseases were 
obtained [99]. 

5. mtDNA repair, diseases, and aging 

Mitochondrial diseases are a heterogeneous group of illnesses affecting multiple 
organs and leading to eventual degeneration and in some cases premature death. 
These affectations have origin in mutations on mtDNA, which are generated by 
errors during DNA replication, exogenous sources, and ROS; however, mitochon-
drial dysfunction may also arise from mutations in nuclear genes which encode 
proteins with mitochondrial function, involved in several processes like biogenesis, 
transcription, replication, mitochondrial dynamics, and mtDNA repair, among 
others. Of interest, neurodegeneration is a prevalent trait in mitochondrial diseases, 
maybe because the brain needs a higher demand of energy in comparison with other 
tissues [11]. On the other hand, there is a large body of evidence that underscores 
the relationship between mitochondrial disorders and aging; however, there is still 
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controversy about whether these mutations in the mtDNA are the product of age-
related disorders or they are themselves the cause [100]. 

About the genes involved in mtDNA maintenance, it has been well established 
that failure of the mtDNA repair pathways may promote diseases and age-related 
disorders in humans [11, 28]; in addition to mutations, the reduction of mtDNA 
copy number has also been associated with neurodegeneration, aging, diabetes, and 
cancer [101]. For example, it has been observed that the lack of proofreading activ-
ity of Polγ in mice generates multi-systemic disease and phenotypes resembling to 
premature aging [102], furthermore, over 200 mutations in POLG have been associ-
ated with mitochondrial diseases, these POLG-related disorders can be classified 
into five main phenotypes of neurodegeneration: Alpers-Huttenlocher syndrome 
(AHS), childhood myocerebrohepatopathy spectrum (MCHS), myoclonic epilepsy 
myopathy sensory ataxia (MEMSA), ataxia neuropathy spectrum (ANS), and PEO 
[28], besides, mutations in Twinkle helicase often causes infantile onset spino-
cerebellar ataxia (IOSCA), which usually appears in early childhood [103]. Other 
mtDNA repair elements, such as APTX and TDP1, implicated in SSBR, are related 
with the generation of ataxia with ocular motor apraxia (AOA1) when are mutated 
[10, 104]. Also, defects in the proteins CSA and CSB, implicated in the possibly 
mitochondrial DNA repair transcription coupled-NER pathway, are related with the 
development of progressive cerebellar pathology [105]. Furthermore, alterations in 
fusion, fission, or mitophagy processes due to mutations in the proteins involved 
generate mtDNA instability, which in turn may induce neurodegenerative, cardio-
vascular, and age-related diseases [99], such is the case of MFN2, which is impli-
cated in mitochondria fusion, and its alteration lead to organelle fragmentation 
and causes axonal Charcot-Marie-Tooth disease (CMT2A) [106], also mutations 
in OPA1, lead to optic atrophy, affectation that can be accompanied with hearing 
loss and ophthalmoplegia [107]. Additionally, mutations in DNA2 and mitochon-
drial genome maintenance exonuclease 1 (MGME1) nucleases are implicated in 
ophthalmoplegia, myopathy, and mtDNA depletion [108, 109]. In conclusion, the 
importance of mtDNA maintenance lies in the observation that when the repair 
elements are affected, or the mechanisms exceeded, the risk of disease development 
increases, thus the understanding of these alterations may shed light for clinical 
targets to prevent diseases or treat them. 

6. Concluding remarks 

After decades of study, it has been concluded that like nucleus, mitochondria 
do possess specific mechanisms to maintain integrity of its small and polyploid 
genome, and although nowadays, the complete repertoire of elements participating 
in mtDNA repair has not been identified, it appears that these pathways resemble 
those of nucleus but operating with fewer elements. In addition, mitochondria have 
evolved organelle specific mechanisms which work as a backup when the repair 
pathways are surpassed by the amount of damage and that would be impossible to 
carry out in nuclear genome. In conclusion, the repair of mitochondrial genome is a 
field in continuous growth that promises new discoveries in the years to come. 
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Chapter 4

Cellular Responses to Aflatoxin-
Associated DNA Adducts
Michael Fasullo

Abstract

Aflatoxin B1 (AFB1) is the most potent known hepatocarcinogen. The signature
p53 mutation (p53 249ser) that is found in AFB1-associated liver cancer suggests
that AFB1 is a potent genotoxin. AFB1 is not genotoxic per se but is metabolically
activated by cytochrome P450 enzymes that convert the promutagen into a highly
reactive epoxide, which primarily reacts with the N7 group of guanine, forming 
8,9-dihydro-8-(N7-guanyl)-9-hydroxyaflatoxin B1 (AFB1-N7-dG). While this
primary adduct is unstable, the subsequent trans-8,9-dihydro-8-(2,6-diamino-
4-oxo-3,4-dihydropyrimid-5-yl-formamido)-9-hydroxy aflatoxin B1 (AFB1-Fapy)-
derived adducts are stable and are mutagenic. Studies have revealed that nucleotide
excision repair (NER), base excision repair (BER), recombinational repair, and 
DNA replication bypass are all involved in conferring AFB1 resistance. To minimize
the genotoxicity of AFB1, pathways function to detoxify the metabolically active
intermediate, excise resulting DNA adducts, bypass unrepaired adducts, and repair
secondary DNA breaks. How these repair pathways functionally cooperate to
minimize AFB1-associated genetic instability phenotypes is not well understood. 
Insights can be gained from epidemiological research and model organisms. Gene
profiling and next-generation sequencing are facilitating how pathways and tissue-
specific differences are induced. This review will encompass studies concerning 
human genetic susceptibility to AFB1 and pathways that repair and tolerate AFB1-
associated DNA damage.

Keywords: aflatoxin B1, liver carcinogenesis, DNA damage tolerance, oncogenes, p53

1. Introduction

The mycotoxin aflatoxin B1 (AFB1) is the most potent known liver carcinogen
[1] and is also a lung [2] and esophageal carcinogen [3]. The International Agency
for Research and Cancer (IARC) has classified AFB1 as a Group 1 human carcino-
gen [1]. AFB1 was discovered as the causative chemical agent in Turkey X disease, 
so named after a 1960 occurrence where 100,000 turkeys in Great Britain died 
after feeding on contaminated peanut meal imported from Brazil [4]. Its notoriety
is underscored by its persistence in grain supplies, ground nuts and animal feed, 
which must be continually monitored [5]. Produced by aspergillus parasiticus
and aspergillus flavis, the mycotoxin is a particular problem in subtropical areas
of China, and in tropical areas of Southeast Asia and Africa [6, 7]. In temperate
climates, such as in North America, high levels of AFB1 contamination have been
found in corn and nuts, such as almonds and pistachios [8]. To minimize health
risks in humans, the Food and Drug Administration (FDA) mandates that the

 
 

  
 

 
 

 

 

 
 

 
 

 
 

 

 
 

 
 

 

 
 
 

 
 

 



 
 

  
 

 
 

 

 

 
 

 
 

 
 

 

 
 

 
 

 

 
 
 

 
 

 

Chapter 4 

Cellular Responses to Aflatoxin-
Associated DNA Adducts 
Michael Fasullo 

Abstract 

Aflatoxin B1 (AFB1) is the most potent known hepatocarcinogen. The signature 
p53 mutation (p53 249ser) that is found in AFB1-associated liver cancer suggests 
that AFB1 is a potent genotoxin. AFB1 is not genotoxic per se but is metabolically 
activated by cytochrome P450 enzymes that convert the promutagen into a highly 
reactive epoxide, which primarily reacts with the N7 group of guanine, forming 
8,9-dihydro-8-(N7-guanyl)-9-hydroxyaflatoxin B1 (AFB1-N7-dG). While this 
primary adduct is unstable, the subsequent trans-8,9-dihydro-8-(2,6-diamino-
4-oxo-3,4-dihydropyrimid-5-yl-formamido)-9-hydroxy aflatoxin B1 (AFB1-Fapy)-
derived adducts are stable and are mutagenic. Studies have revealed that nucleotide 
excision repair (NER), base excision repair (BER), recombinational repair, and 
DNA replication bypass are all involved in conferring AFB1 resistance. To minimize 
the genotoxicity of AFB1, pathways function to detoxify the metabolically active 
intermediate, excise resulting DNA adducts, bypass unrepaired adducts, and repair 
secondary DNA breaks. How these repair pathways functionally cooperate to 
minimize AFB1-associated genetic instability phenotypes is not well understood. 
Insights can be gained from epidemiological research and model organisms. Gene 
profiling and next-generation sequencing are facilitating how pathways and tissue-
specific differences are induced. This review will encompass studies concerning 
human genetic susceptibility to AFB1 and pathways that repair and tolerate AFB1-
associated DNA damage. 

Keywords: aflatoxin B1, liver carcinogenesis, DNA damage tolerance, oncogenes, p53 

1. Introduction 

The mycotoxin aflatoxin B1 (AFB1) is the most potent known liver carcinogen 
[1] and is also a lung [2] and esophageal carcinogen [3]. The International Agency 
for Research and Cancer (IARC) has classified AFB1 as a Group 1 human carcino-
gen [1]. AFB1 was discovered as the causative chemical agent in Turkey X disease, 
so named after a 1960 occurrence where 100,000 turkeys in Great Britain died 
after feeding on contaminated peanut meal imported from Brazil [4]. Its notoriety 
is underscored by its persistence in grain supplies, ground nuts and animal feed, 
which must be continually monitored [5]. Produced by aspergillus parasiticus 
and aspergillus flavis, the mycotoxin is a particular problem in subtropical areas 
of China, and in tropical areas of Southeast Asia and Africa [6, 7]. In temperate 
climates, such as in North America, high levels of AFB1 contamination have been 
found in corn and nuts, such as almonds and pistachios [8]. To minimize health 
risks in humans, the Food and Drug Administration (FDA) mandates that the 
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human food supply contain no more than 20 ppb AFB1 [5]. While human food 
supply is relatively protected in developed countries, outbreaks of acute mycotoxin 
contamination have been noted in third world countries and among animals, as 
recently as 2006 [5]. Although the incidence of acute aflatoxicosis is rare, it is esti-
mated that a large fraction of the population in the developing world are chronically 
exposed to AFB1 and thus at a higher risk for aflatoxin-associated cancer, especially 
liver cancer [6]. 

Liver cancer ranks third in all worldwide cancer mortalities [9–11] and ninth in 
cancer mortalities in the United States [12, 13]. 4–28% of cancer cases are related to 
AFB1 exposure [2]. Most liver cancer is characterized as hepatocellular carcinoma 
(HCC). HCC is highest where there is both a high rate of hepatitis B (HBV) [14, 15] and 
C virus (HCV) infection [15–17] and high levels of AFB1 contamination in the human 
food supply, especially in areas of Southeast Asia, China and Africa [6]. Interestingly, 
the incidence for liver cancer is higher in men than women, regardless of whether the 
cancer is associated with AFB1 exposure [18]. Because diagnosis is often late and there is 
no effective treatment for late-stage cancer, the five year survival rate is low in both men 
and women [12, 13]. The carcinogenic potency of AFB1 is correlated with AFB1 being 
a strong genotoxin, the signature p53 mutation, p53 249ser [19, 20], is found in 40–60% 
of all liver cancer derived from patients in heavily contaminated areas [2]. Animal 
studies have further strengthened the idea that AFB1 carcinogenicity is associated with 
its genotoxicity; AFB1-associated DNA adduct levels are directly proportional to the 
number of the animals stricken with liver cancer [21, 22]. 

Observations that HCC incidence is correlated to AFB1 exposure continues 
to motivate biomedical researchers to study the repair and toleration of AFB1-
associated DNA adducts, the cellular response to these DNA adducts, and 
associated factors that may enhance or mitigate the high mutagenicity of the 
DNA adducts in humans. This review will address (1) associated risk factors that 
enhance or synergize with AFB-associated DNA adducts that increase liver cancer 
incidence, (2) genetic instability phenotypes associated with AFB1-associated 
DNA adducts, and (3) repair mechanisms that have been elucidated in model 
organisms and conserved in humans, (4) cellular responses that enhance repair 
mechanisms, and (5) future directions in understanding the contributions of 
genes in AFB1-associated DNA repair. In particular, novel research that addresses 
epigenetic factors that can alter the repair of AFB1-associated genotoxic damage 
will be addressed. 

2. Progression of HCC 

Liver cancer progression is slow and the median age of onset is 60–65 years [11]; 
populations in areas that are at high risk for environmental and life-style factors 
are exceptions. For example, the incidence of liver cancer in the Qidong province 
of China peaks at 45 years [9, 11]. HCC generally develops as a consequence of liver 
injury, whether caused by chronic hepatitis or cirrhosis, which leads to chronic 
inflammation and deposition of connective tissue. Chronic hepatitis leads to 
upregulation of mitogenic pathways, partially through epigenetic mechanisms [23]. 
Monoclonal populations of dysplastic hepatocytes may exhibit telomere erosion and 
re-expression of telomerase to maintain viability. Eventual malignant cells accumu-
late irreversible genetic alterations [23]. As the transformed phenotype advances, 
the rate in the accumulation of genetic alterations increases [24]. The exact thresh-
old for the number of mutations or alterations present in liver cancer has not been 
established. Thus, the progression of liver cancer is associated and is accelerated 
with the accumulation of genetic mutations and altered gene expression patterns. 
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2.1 Mutations that contribute to liver cancer 

Understanding which HCC-associated genetic changes are associated with AFB1 
exposure requires a comparison of the genomic alterations that occur in sporadic 
HCC or HCC associated with other causes. For sporadic HCC, similar to solid 
tumors, there is both a multiplicity and heterogeneity in genetic alterations in HCC 
[23–25]. In general, these genetic alterations can be grouped into those that result 
in loss of function and those that result in gain of function. Genetic alterations that 
result in loss of function include dominant negative mutations and recessive muta-
tions, which are expressed after loss of heterozygosity (LOH). 

Among sporadic tumors, both loss of heterozygosity (LOH) and mutations 
have been found in HCC tumors. Among 363 patients, The Cancer Genome Atlas 
Research Network [25], report that the most heavily mutated gene was TP53 (31%), 
encoding p53, followed by WNT pathway member CTNNB1 (27%), encoding 
β-catenin, and AXIN (8%), encoding a WNT signaling scaffolding protein, and 
chromatin remodeling genes (12%) [25]. In greater than 10% of HCC, mutations 
are found in CDH1, TP53, IGF2H, RB1, CDKN2A, PTEN, KLC, TP73, EXT, MLH1, 
THRB, THRA, E2F5, and CTNNB1 [23]. Whether these mutations occur early or 
late in the etiology of liver cancer is still not understood. While the p53 gene func-
tions in controlling the DNA damage response and apoptosis, the WNT pathway is 
important in controlling cell proliferation [23]. Many of the mutagenic events result 
from G to T transversions, unlike events found other tumors. The strong bias for G 
to T transversions suggests that these genetic alterations likely result from chemical 
DNA damaging agents, rather than spontaneous events, such as cytosine deamina-
tion [23]. While the heterogeneity in genetic mutations may reflect multiple mecha-
nisms for liver cell transformation, identifying alterations in HCC are informative 
in understanding the etiology and possible treatment of individual cancer cases. 
For example, β-catenin defective liver cancer may be easier to treat than liver cancer 
resulting from multiple mutations [23–25]. 

In addition to mutation and LOH events, gain-of-function genetic alterations 
may confer higher levels of oncogene expression and thereby accelerate carcino-
genesis [26–29]. Such alterations could include gene amplification events, such as 
c-N-methyl-N′-nitro-N-nitroso-guanidine HOS transforming gene (c-MET) and 
cyclin D (CCND1) [27]. Other gains of function mutations include mutations in 
the promoter for telomerases reverse transcriptase (TERT) promoter. TERT muta-
tions frequently were shown to be among the earliest and most prevalent neoplastic 
events in HCC [28, 30]. 

Both epidemiological and molecular pathology studies have facilitated the 
identification of which genetic alterations are likely to be associated AFB1 exposure. 
Mutated genes found in HCC from areas with high AFB1 exposure include p53 and 
β-catenin [30]. The p53 249ser mutation shows a strong correlation with HCC associ-
ated with AFB1 exposure, while is less frequent or absent in HCC from localities 
where there is little AFB1 exposure [19, 20]. For example, among have HCCs from 
southern Guangxi province of China, an area of high AFB1 exposure, the p53 249ser 

mutation was found in 36% of tumors [30]. CTNNB1 mutations and β-catenin 
protein accumulation in human hepatocellular carcinomas is also associated with 
high exposure to AFB1, although it is less clear whether these mutations directly 
result from AFB1-associated DNA adducts [30]. Whether these mutations must 
occur early or late in cancer progression is still unclear. One hypothesis is that initial 
mutations confer a higher level genetic instability that is aggravated by further 
exposure to genotoxic agents. 

To determine whether mutations found in HCC confer higher levels of genetic 
instability and a higher probability of liver cancer when present in a non-cancerous 
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liver, scientists have constructed transgenic mice that exhibit similar genotypes 
found in human cancer. Ghebranious and Sell [31] constructed transgenic mice 
that were both homozygous and heterozygous for the p53ser246 gene, equivalent 
to the human p53 249ser mutations. Male mice expressing p53ser246 increased the 
incidence of AFB1-associated high-grade tumors to 14%, compared to 0% exhibited 
by p53+ (wild type) mice [31]. These studies indicate that the mutant p53 249ser may 
also be a driver of AFB1-associated liver cancer. 

The role of inflammation in liver cancer has led to insights into the gender bias 
of its incidence. Men are afflicted more than women in nearly all age groups; how-
ever the prognosis of liver cancer in either sex is about the same [9]. Naugler et al. 
[18], have shown that inflammatory cytokines, such as IL-6, are more prevalent in 
men than women, estrogen having a negative effect on IL-6 production. This gender 
difference is not only true for humans [32, 33] but also for rodents, including mice 
and rats [31]. The gender bias underscores the notion that inflammatory responses 
play a role in liver cancer etiology. 

2.2 Associated risk factors that accelerate AFB1-associated liver cancer: role 
of HBV and HCC virus 

The incidence of HCC synergistically increases when individuals are both 
exposed to AFB1 and infected with either HBV or HCV virus. Interestingly, the inci-
dence of high grade tumors in p53ser246 transgenic mice that are HBsAg-positive is 
100% [31]. The common molecular mechanisms by which HBV and HCV infection 
stimulates AFB1-associated genetic instability phenotypes are still not completely 
understood; HBV is a DNA virus that replicates by reverse transcription while HCC 
is a RNA virus that replicates by RNA replication and encodes a single polycistronic 
message [34, 35]. While 257 million individuals are estimated to be infected with 
HBV, 140 million individuals are estimated to be infected with HCV; and chronic 
HBV and HCV infection is the leading cause for 60–70% of HCC [35, 36]. Although 
HCC contains no oncogenes per se, HCV-associated carcinogenesis is associated 
with increase in reactive oxygen species (ROS), ROS-associated genetic instability, 
inflammation, and hepatocyte proliferations [36]. Similarly, HBV-associated HCC 
is associated with inflammation and necro-inflammatory liver damage [16, 36]. 
Both viruses are not cytopathic per se; liver damage caused by HCV and HBV is 
likely induced by viral-specific CD8+ T and natural killer cells (NK) [35, 36]. Thus, 
both HCV and HBV create an inflammatory cellular environment that stimulates 
repopulation of hepatocytes, enhancing AFB1-associated genetic instability. 

However, different pathologies of HBV and HCV infection may accelerate HCC 
progression at different rates. While the median onset age for HBV-associated HCC 
is 55 years that of HCV is 65 years [11]. HBV can chronically infect children after 
transmission from the mother [11, 36]. Once HBV is stably integrated into the host 
genome, HBV can promote chromosomal rearrangements and mutations in cancer-
associated genes and interfere with checkpoint controls [37, 38]. For example, HBV 
integration can occur in TERT promoters, stimulating expression of telomerase, 
and near LINE sequences [39]. The HBV-encoded oncogene HBx can activate 
both Src and Ras signaling and is essential for viral DNA (cccDNA) replication. 
To facilitate replication, HBx mediates chromatin changes by recruiting histone 
acetyltransferases to acetylate histone H3. HBx is also thought to interact with p53 
249ser, and attenuate DNA repair and apoptosis [20]. 

Besides stimulating host cell replication, HBx may also interfere with the host 
cell’s DNA repair pathways and promote genetic instability and replication [38, 
40–44]. HBx binds to DNA damage binding protein 1 (DDB1) and cullin-4 (Cul4), 
which form a ubiquitinase complex, and can perturb the stability of structural 
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maintenance of chromosome proteins 5 and 6 (Smc5/6) and thus affect DNA 
replication and DNA damage tolerance [35]. HBx may also interfere with nucleotide 
excision repair (NER) of AFB1-associated DNA adducts [40–42, 44]. Although less 
substantiated, HBx is also thought to interfere with PARP1 and decrease excision 
repair of DNA adducts. Thus HBx drives carcinogenesis by multiple mechanisms 
that accelerate carcinogenesis. 

2.3 Gene polymorphisms associated with AFB1-associated liver cancer 

While HBV and HCV infections are the primary factors that aggravate the risk 
for AFB1-associated HCC, genetic risk factors have also been postulated [45]. With 
the advent of technologies that accelerate genome sequencing, such as next genera-
tion sequencing (NGS), epidemiologists have identified candidate polymorphic 
genes that increase the risk for aflatoxin-associated liver cancer. Single nucleotide 
polymorphisms (SNPs) may be located in the amino acid coding region, the 
introns, or the promoter regions of the candidate genes. Risk factors generally can 
be grouped into those that (1) are associated with AFB1 metabolic activation and 
detoxification and (2) that function in DNA repair or DNA damage tolerance genes. 

To understand genetic risk factors that affect metabolic activation and detoxifi-
cation of AFB1 it is necessary to identify genes involved in these pathways. AFB1 is 
activated by cytochrome P450 enzymes that hydroxylate AFB1 so that the metabo-
lized carcinogen can be rendered hydrophilic and effectively excreted; for review, 
see [46–48]. Referred to as phase I enzymes and monooxygenases, the cytochrome 
P450 enzymes contain a heme group at their active sites and catalyze the transfer 
of single oxygen to specific sites on the target molecule [46]. Cytochrome P450 
enzymes require NADPH oxidoreductase (POR) to maintain activity [46]. The 
P450 enzymes are located in the endoplasmic reticulum in the vicinity of the POR 
[46]. Of the characterized enzymes expressed by 57 CYP450 genes, CYP1A2 is liver 
specific and has a high affinity for AFB1, while CYP3A4 constitutes approximately 
50% of the hepatic P450 activity. While there have been disagreements over which 
cytochrome P450 enzymes is chiefly responsible for AFB1 activation in the liver [46, 
49, 50], several reports favored CYP3A4 [50, 51], while another report suggested 
that CYP3A5 has the highest catalytic activity [52]. Among extrahepatic CYPs, 
CYP2A13 activates AFB1 in the lung, while CYP1A1 catalyzes the formation of 
AFM1, a hydroxylated AFB1 derivative that can be excreted in milk, which is 
still carcinogenic [2]. A transient intermediate in the hydroxylation pathway is 
a highly reactive epoxide, referred to as AFB1-8,9-exo-epoxide (AFBO) (Figure 1). 
This epoxide can be effectively detoxified by either epoxide hydrolases (EHs) 
or glutathione S-transferases (GSTs), referred to as phase II enzymes [47, 48]. 
While multiple cytochrome P450s can activate AFB1, the highly reactive epoxide 
is thought to be the predominant reactive intermediate in all P450 reactions. Thus, 
gene polymorphisms that increase the risk of HCC could: (1) increase P450 enzyme 
levels or activation, (2) downregulate phase II enzymes, (3) decrease the repair of 
DNA existing lesions, and (4) channel the repair of the DNA lesions into mutagenic 
pathways. 

One source of polymorphic enzymes that can influence the fate of AFB1 is glu-
tathione S-transferases that are present in the liver [53]. In the mouse, knock-out of 
GSTa3 confers extreme AFB1-associated toxicity [54] and GSTa3 expression levels 
correlate with AFB1-associated liver cancer in young mice [55]. In humans, HCC 
risk is dramatically increased by SNPs in glutathione S transferase mu1 (GSTMI) 
and (glutathione-S-transferase theta1) (GSTT1) [56]. Expression of epoxide 
hydrolase in yeast also leads to detoxification of AFBO [57]; however, polymor-
phisms associated with epoxide hydrolase only have a weak association with liver 
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Figure 1. 
CYP-mediated metabolic activation of AFB1 to the activated AFB1-8,9 epoxide and adduct formation and 
conversion to AFB1-Fapy. Adapted from Ref. [130]. 

cancer [45]. These studies support the idea that detoxification of the highly reactive 
epoxide is critical in reducing AFB1 toxicity. 

While diminished ability to detoxify AFBO is a risk factor for AFB1-associated 
liver cancer, higher or altered P450 activity could also increase HCC risk. HBx 
activates the pregnane receptor (PXR) and stimulates expression of CYP3A4 [58]. 
Particular CYP3A5 alleles, such as CYP3A5*3, are correlated with higher levels of 
expression and aflatoxin-protein adducts in individuals from Gambia, Africa [59]. 
CYP3A5*3 is present in a high percentage of individuals in Gambia but not in the 
Caucasian population [59]; the allele found in the Caucasian population confers an 
altered spliced mRNA, which is poorly expressed [60]. However, establishing cor-
relations between HCC and increased expression of other P450 genes is complicated 
by the multiple interactions between P450 enzymes. 

Genetic risk factors have also been identified among polymorphic alleles of 
DNA repair and cell cycle checkpoint genes, which may increase chromosomal 
instability in cells chronically exposed to AFB1. These risk factors have been found 
in p53, XRCC1, XRCC3, and ERCC1. The combination of p53 codon 72 Arg72Pro 
and MDM2 (mouse double minute 2 homolog) SNP309 (T>G) increases the risk 
of HCC in individuals infected with HBV [61]; p53 codon 72 Arg72Pro affects the 
frequency of double strand breaks and is associated with hyper-methylation of 
promoters in tumor suppressor genes [61]. XRCC3 (X-ray complementing defec-
tive repair in Chinese hamster cells) encodes a Rad51 paralog which is involved in 
double-strand break repair and could be involved in error-free by pass of AFB1-
associated DNA lesions. The XRCC3 rs861539 allele (codon Thr241Met polymor-
phism) is a risk factor for HCC, and the risk is aggravated if individuals are exposed 
to AFB1 [62–64]. Other alleles that have been associated with higher risk for HCC 
include those participating in the base excision repair (BER) and NER pathways, 
such as XRCC1 rs25487 polymorphism (codon Arg399Gln polymorphism) [65, 66] 
and XPD rs25487 polymorphism, respectively [67]. These studies reinforce the idea 
that AFB1-associated genotoxicity can accelerate HCC progression. To understand 
the genotoxicity in more detail it is important to understand the nature of the AFB1-
associated DNA adducts. 
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2.4 AFB1-associated DNA adducts and cellular targets 

AFB1-associated DNA adducts have been characterized in vitro and isolated 
from organisms that were exposed in vivo. DNA exposed to synthesized AFBO 
reacts predominately with the N7 group of guanine bases forming 8,9-dihydro-
8-(N7-guanyl)-9-hydroxyaflatoxin B1 (AFB1-N7-Gua), as identified by mass spec-
trometry analysis. In the presence of hydroxyl ions (base), N7-guanine DNA adduct 
is unstable and decays into an apurinic site and a AFB1 formamidopyrimidine (Fapy, 
Figure 2) DNA adduct; for review, see [68]. It is unclear whether both apurinic sites 
and AFB1-Fapy DNA adducts are equally generated; based on mutations generated 
by DNA lesions constructed in vitro, it has been suggested that AFB1-Fapy DNA 
adducts are the primary source of genetic mutations [69, 70], especially G to T 
transversion mutations that are found in AFB1-associated liver cancer [71, 72]. The 
AFB1-Fapy adduct is stable and can be present in two anomer forms; the alpha and 
the beta forms. While the beta form is highly mutagenic in Escherichia coli [69], the 
alpha form can stabilize the duplex helix and interfere with DNA replication [70]. 
In the rat liver, the half-life for AFB1-N7-Gua is 7.5 h, while that for AFB1-Fapy is at 
least 24 h [68]. While the AFB1-N7-Gua is unstable, the accumulation of AFB1-Fapy 
in the rat liver may also result from differential repair of the two types of DNA 
adducts. 

AFB1 exposure also generates oxidative stress (ROS) in exposed cultured cells 
in vitro and in the liver and lung in vivo [73]. Multiple factors may contribute to 

Figure 2. 
Intercalation of the AFB1-Fapy-dG in duplex DNA. The adduct is in lighter tone; adapted from Ref. [121]. 
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AFB1-associated oxidative stress including cytochrome P450 activity that involves 
iron-catalyzed reactions and Kupffer cells [68]. Oxidative stress generates hydroxyl 
radicals that form 8′-hydroxy-2′-deoxyguanosine (8oxodG) DNA damage. AFB1 
exposure increases the 8OH-dG in the livers of ducks [74] and rats [75] and cultured 
woodchuck hepatocytes [68]. 

Interestingly, Niranjan et al. [76] observed that in rats, AFB1 bound to 
mitochondria l DNA exceeded the amount that was bound to the nuclear DNA 
and persisted for a longer period of time [76]. Furthermore, the persistence of 
mitochondrial DNA adducts correlated with a longer delay in expression of mito-
chondrial proteins, compared to that of nuclear-encoded proteins. The authors 
speculated that the persistence of AFB1 in the mitochondria may result from the 
lack of NER in the mitochondria. These studies support the notion that mitochon-
dria are a prime target for acute effects of AFB1 exposure, and oxidative stress 
associated with AFB1-exposure could be indirect due to damage to mitochondria 
and the generation of superoxide. 

To further elucidate the pathological consequences of AFB1-associated 
mitochondrial DNA lesions, Liu and Wang [77] measured AFB1-associated mito-
chondrial damage in primary broiler hepatocytes by monitoring mitochondrial 
membrane potential (MMP), ROS generation, apoptosis, and nuclear factor ery-
throid 2-like factor 2 (Nrf2)-related signal pathway. They observed mitochondrial 
ROS generation, decreased MMP and induced apoptosis. The increase in apoptotic 
cells correlated with an increase expression of caspase-9 and caspase-3. They 
concluded that AFB1 exposure results in a disruption of mitochondrial functions, 
generating more ROS, and consequently inducing apoptosis while triggering the 
Nrf2 signaling pathway [77]. 

2.5 Epigenetic changes associated with AFB1-associated damage 

While genetic instability associated with AFB1 have been described, less well 
known are epigenetic changes. Epigenetic changes are inheritable changes that 
result in phenotypic changes without affecting the DNA sequence. Epigenetic 
changes can result from DNA methylation (hypermethylation) or demethylation 
(hypomethylation), histone modifications, and changes in microRNA (miRNA) 
expression [78]. AFB1-associated epigenetic changes have been observed in cell 
cultures, animal studies, and human tumors (Table 1). Hypomethylation has been 
observed to increase the expression of oncogenes and repetitive sequences, while 
hypermethylation may decrease expression of DNA repair and tumor suppressor 
genes (Table 1). Zhang et al. [79] observed global hypomethylation in AFB1-
associated cancers, where particular genomic repetitive elements, such as LINE-1 
elements, were hypomethylated; correlating with increased retro transposition and 
genetic instability [80]. Hypomethylation also correlated with increased expression 
of the oncogene c-MET, which is associated with accelerated liver cancer progres-
sion and poor prognosis [81]. Hyper-methylated genes include the DNA repair gene 
methylguanine methyl transferase (MGMT) and p16, which have a negative effect 
on DNA repair and apoptosis [82]. Thus, methylation patterns may possibly serve as 
biomarker that can indicate increased risk for HCC [83–85]. 

Additional biomarkers that indicate AFB1 exposure include alterations in 
miRNA expression. miRNAs are small noncoding RNAs that are generally 19–25 
nucleotides in length and regulate gene express at the post-transcriptional level. 
They are important factors in regulating HCC development in mammalian organ-
isms [87, 88], and a list of miRNAs that correlate with AFB1 exposure is shown in 
Table 1. This comprises a partial group of total miRNAs that have been associated 
with HCC. Several miRNAs upregulated after rats or liver cell lines are exposed to 
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AFB1 may be protective by downregulating cell proliferation, while upregulated 
miRNAs found in AFB1-associated HCC may promote tumor size or carcinogen-
esis. While an individual microRNA may target multiple genes, the expression of 
individual microRNA can be influenced by multiple transcriptional and epigenetic 
factors, as well as by genomic changes. These factors include CpG methylation, 
c-Met signaling, and gene copy number. 

Among HCC tumor cells associated with AFB1 exposure, upregulation of 
several miRNAs, such as miR-429 and miR-24 [86], are associated with larger 
tumor size [83]. In human bronchial epithelial cells that express CYP2A13 (P50-
B-2a13 CELLS), AFB1 exposure induces malignant transformation of immortalized 
cells [89]. Among transformed cells, one downregulated miRNA was miR-138-1, 
observed to inhibit proliferation, colony formation, and transformation of P50-
B-2a13 CELLS [89]. This miRNA preferentially inhibits 3-phosphoinositide depen-
dent protein kinase-1 (PDK1), which lowers the expression of the P13K/PDK/Akt 
pathway [89]. These studies indicate that changes in miRNA expression in AFB1-
associated HCC may promote carcinogenesis. 

HBV infection also upregulates the expression of miRNAs in hepatocytes and 
may promote HBV-associated HCC. The expression of miR106b-25 is upregulated 
in HCC patients in general, and in HCC patients infected with HBV [90]. Hep 3B 
cells transformed with an HBx expression plasmid also express higher levels of 
miR106b-25, compared to cells that do not express HBx. The miR106b-25 is a mem-
ber of a cluster of miRNAs in MCM7 that downregulate the expression of several 
tumor suppressors, including p21, E2F, BIM, and pTEN [91]. Thus, HBV infection 
may not only interfere with DNA repair mechanisms but also epigenetically silence 
tumor suppressor genes and accelerate HCC progression. 

2.6 Mutagenic signatures associated with AFB1-associated DNA adducts 

Mutation signatures are useful biomarkers to determine AFB1 exposure and 
HCC progression. AFB1 is known to induce mutations in E. coli, Saccharomyces 
cerevisiae (budding yeast), and in mammalian cells. AFB1 was one of the original 
carcinogens published in the Ames assay [92, 93]. While G to T transversions are 
considered associated with chronic AFB1 exposure in humans [19, 20, 68, 71], in E. 
coli, carcinogen-induced transversion mutations require over-expression of expres-
sion of MucAB, which encodes the polV error-prone polymerase [94]. In budding 
yeast expressing either human CYP1A2 or CYP1A1, AFB1 has been shown to 
increase mutation frequencies at a CAN1, LYS2, and URA3; however the mutagenic 
signature of AFB1 in yeast has yet to be identified [95, 96]. The mutagenicity of 
AFB1 in yeast, however, is low compared to many alkylating agents, such as ethyl 
methane sulfonate (EMS) [95]. 

While AFB1 is well-known to cause G to T transversion mutation in mammalian 
cells, other nucleotide substitutions occur, some of which are in the vicinity of 
the AFB1-DNA adduct. Investigators have used two approaches to determine the 
DNA sequence context of AFB1-associated mutations; one technique utilizes PCR 
(QPCR) and ligation-mediated PCR (LMPCR), and the second technique utilizes 
whole genome sequencing. Using the first technique, Denissenko et al. [97] mapped 
total AFB1 adducts in genomic DNA treated with AFB1-8,9-epoxide. In a second 
experiment, Denissenko et al. [97] mapped total AFB adducts in hepatocytes 
exposed to either AFB1 activated by rat liver microsomes or AFB1 activated by 
human liver microsomal preparations. The p53 gene-specific adduct frequencies in 
DNA, modified in cells with 40–400 μM AFB1, were 0.07–0.74 adducts per kilobase 
(kb). In vitro modification with 1–4 ng AFB1-8,9-epoxide per microgram DNA 
produced 0.03–0.58 lesions per kb. The adduct patterns obtained with the epoxide 
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and the different microsomal systems were virtually identical indicating that AFB1 
adducts share similar sequence-specificity whether occurring in vitro and in vivo. 

With the advent of next generation sequencing (NGS) [98], investigators have 
studied the entire genome and determine whether particular mutation signatures. 
Huang et al. [99] determine whole genome sequencing data to determine the 
position of >40,000 mutations in two human cell lines, and in liver tumors from 
wild type mice and a transgenic mouse carrying the hepatitis B surface antigen. 
The mutational signature from all four experimental systems was remarkably 
similar and compared well with experimental mutational signatures derived from 
sequenced HCCs form Qidong County in China, an area of high AFB1 exposure 
[100]. The Catalog of Somatic Mutations in Cancer (COSMIC) mutational signature 
24 [101], previously associated with AFB1-associated liver cancer, was confirmed 
and also shown to be present in a high proportion (16%) in HCC from Hong Kong, 
but in 1% or less from HCC from Japan or North America. The COSMIC mutation 
signature 24 indicates guanine damage with a very strong transcriptional strand 
bias for C>A mutations. Additional studies being performed by multiple research 
groups [25, 102] confirm the presence of signature 24 in human HCC tumors and in 
tumors induced by AFB1 in mice. In addition to signature 24, investigators have also 
noted the presence of transition mutations that might also occur in the context of 
oxidative stress. It has not been determined which of these minor mutation classes 
drive HCC. 

2.7 AFB1 is a potent recombinagen 

In budding yeast expressing CYP1A2, AFB1 is potent recombinagen but a poor 
mutagen [95]. Exposure to AFB1 stimulates homologous recombination between 
sister chromatids (sister chromatid exchange or SCE), chromosome homologs, 
and repeated sequences located on non-homologous chromosomes. Using a 
recombination assay involving truncated fragments of his3 [103] positioned on 
non-homologous chromosomes, Sengstag et al. [95] showed that homologous 
recombination could be stimulated 50-fold in contrast to a less than 10-fold stimu-
lation of mutations. AFB1 concentrations as low as 5 μM were shown to be effective 
at stimulating the formation of reciprocal translocations, and the karyotypes were 
confirmed by pulse field gel electrophoresis [103]. AFB1 is also a recombinagen in 
human and Chinese hamster ovary (CHO) cells and can increase the frequencies 
of SCE [104–107]. It is unclear whether the same AFB1-associated DNA lesions can 
stimulate both mutations and recombination. For example, it could be possible that 
particular lesions that stall DNA replication and generate breaks generate more 
recombination events while other lesions that can be bypassed by DNA polymerases 
generate more mutagenic events. These studies thus demonstrate that the genotox-
icity of AFB1 extends beyond making mutations and involves stimulating chromo-
somal rearrangements in model eukaryotic organisms and in humans. 

2.8 Repair of AFB1-associated DNA damage 

Considering the genotoxicity of AFB1-associated DNA adducts and possible 
hindrance of DNA replication, it is important to identify which DNA repair pathways 
and which replication bypass mechanisms are used to tolerate the most persistent 
AFB1-associated DNA adducts. There are several pathways that are involved in 
repairing AFB1-associated DNA damage. Among these repair pathways are nucleotide 
excision repair NER, BER, and recombinational repair; for a general review see [108]. 
Post-replication repair pathways to bypass DNA adducts involve (1) either error-
prone or error-free DNA polymerases, or (2) template switch mechanisms. The later 
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mechanism involves DNA recombination mechanisms, which are utilized in tolerat-
ing UV-induced DNA damage and alkylated DNA bases. While in some organisms 
there are preferred pathways, a general theme in DNA repair is that organisms have 
evolved redundant DNA repair mechanisms. A prediction of redundant DNA repair 
pathways is that eliminating genes in two or more repair pathways should effectively 
lead to a synergistic decrease in AFB1 resistance, while eliminating genes in the same 
pathway should confer no greater sensitivity than the most sensitive mutant. 

Nucleotide excision repair (NER) involves the recognition of the DNA adduct, 
the opening of the helix at the DNA damage site, the excision of the DNA adduct 
and the re-synthesis of DNA using the non-damaged DNA strand as a template. In 
general, 12–13 nucleotides are excised in prokaryotes (for review see [109]) while 
24–32 nucleotides are excised in eukaryotes. Global genome repair (GGR) can occur 
on either the transcribed or non-transcribed strand. Transcription-coupled repair 
(TCR) does discriminate and preferentially repairs the transcribed strand. The 
mechanistic difference between the two pathways is how the DNA adduct is recog-
nized; in GGR specific proteins recognize the DNA helical distortion while in TCR, 
the RNA polymerase stalled complex is recognized; for general review see [110]. In 
eukaryotes and prokaryotes, both mechanisms are used. While the mechanism is 
widely conserved among eukaryotes, the mechanism differs between prokaryotes 
and eukaryotes in the amount of DNA that is excised. 

NER is likely to be the predominant mechanism for the repair of AFB1-
associated DNA damage in many eukaryotic and prokaryotic organisms [68]. The 
AFB1-N7-guanine adduct is fairly unstable while the AFB1-Fapy DNA adduct can 
insert between the base pairs of the DNA double helix [111]. UvrABC from E. coli 
can effectively excise both DNA adducts, although the AFB1-Fapy adduct appears 
to be more chemically stable [68, 112]. The excision of the DNA adducts does not 
depend on the SOS response; thus, basal levels of the DNA repair enzymes appear 
to be adequate in repairing the DNA lesions. In E. coli, both AFB1-N7-Gua and 
AFB1-Fapy adduct appear to be excised at a similar rate. One explanation is that the 
UvrABC complex does not rely on helix distortion to repair the DNA adduct, but 
rather size and structure of the aromatic rings [68, 112]. 

Other insights from model organism yeast revealed that the NER genes are 
required to excise AFB1-associated DNA adducts [96, 113, 114]. RAD14 (XPA) and 
RAD1-RAD10 (XPF-ERCC1) are required for AFB1 resistance. Failure to repair the 
DNA adducts in a rad4 (XPC) haploid mutant results in S phase arrest, support-
ing the notion that particular AFB1-associated DNA adducts interfere with DNA 
replication [113, 114]. In addition, in rad4 mutants the level of AFB1-N7-Gua DNA 
adducts was reported to increase three fold [114]. These studies support the notion 
that the yeast NER pathway recognizes and repairs AFB1-N7-Gua DNA adducts. 

In mammalian cells, the NER pathway preferential repairs AFB1-N7-Gua DNA 
adducts but still participates in the repair of AFB1-Fapy DNA adducts [115, 116]. In 
XPA human fibroblast cells, the loss of AFB1-N7-Gua DNA is much slower and the 
accumulation of the AFB1-Fapy DNA adducts is greater compared to wild type cells 
[116]. XPA−/− deficient mice are also more susceptible to AFB1-associated tumori-
genesis compared to wild-type mice [117]. Since the accumulation of DNA adducts 
correlate with the increased carcinogenicity of the DNA adducts [71, 72, 118], it is 
likely that the burden of AFB1-associated DNA adducts increases the frequencies of 
carcinogen-associated mutations in the XPA deficient mice. 

The second major pathway to repair DNA involves the BER pathway (for review, 
see Fortini and Dogliotti [119]). As in NER, the DNA damage base is excised and new 
DNA is synthesized using the undamaged DNA as template for repair (Figure 3). 
In BER, the modified DNA base is recognized and excised by a specific enzyme that 
generally referred to as a glycosylase. Subsequently, a apurinic endonuclease (APE1) 
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Figure 3. 
BER (left) and NER (right) mechanisms to repair the AFB1-Fapy adduct. Both mechanisms involve incision 
and excision of the damage base, followed by unscheduled DNA synthesis. 

generates a 3′OH for primer recognition and new DNA synthesis. In mammalian cells, 
polymerase β synthesizes new DNA across the gap and removes the deoxyribose resi-
due, and XRCC1/Ligase III cooperate to seal the nick An alternative pathway that does 
not involve APE1, employs endonuclease VIII like-1 (NEIL1). Following excision of the 
damaged base by a βδ excision mechanism, the 3′ phosphate is excised by polynucleo-
tide kinase (PNK) to yield a 3′OH for primer recognition and new DNA synthesis. 
For long patch repair, DNA polymerase δ/PCNA/RFC synthesizes across the gap, the 
displaced oligonucleotide is excised by FEN1, and the nick is sealed by Ligase I [119]. 
Poly(ADP-ribose) polymerase PARP1 generally protects the single-strand gap from 
being subjected to further cleavage or from serving as a substrate for recombinational 
repair proteins although additional pathways have been proposed [120]. 

Interestingly, while BER mechanisms have been thought to play a minor role for 
DNA repair of some AFB1-associated DNA adducts in yeast, BER mechanisms for 
AFB1-associated DNA adducts can occur in mammalian cells. In budding yeast, the 
apn1/apn2 haploid double mutant is no more AFB1 sensitive than the haploid wild 
type [96]. However, AFB1-associated mutagenesis is lower in the apn1/apn2 haploid 
double mutant compared to wild type [96], suggesting that either Apn1 or Apn2 
still function in processing the AFB1-associated adducts for post-replication repair. 
One interpretation of these results is that there is redundancy in both NER and BER 
mechanisms for conferring AFB1 resistance, while another interpretation is that 
budding yeast lack the BER enzymes, such as NEIL1, which may actively participate 
in the repair of AFB1-associated DNA adducts. 

In mice, the NEIL1 gene has been isolated and knock-out of the gene leads to 
higher levels of AFB1-associated DNA adducts and AFB1-associated HCC [121]. 
The NEIL1 enzyme recognizes and excises AFB1-Fapy-dG adducts in “bubble” 
DNA structures, such as the one described by Brown et al. [70, 111]. One idea is 
that AFB1-Fapy-dG adducts may stably intercalate in the helix and be recognized by 
NEIL1-dependent BER pathway but not by the NER pathway; the repair pathway 
may thus depend on the DNA sequence context of the AFB1-Fapy-dG adduct. 
Knock-out of NEIL1 in mice leads to an increase of AFB1-associated tumors and 
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an accumulation of Fapy-adducts [121]. Vartanian et al. [121] assert that the 
AFB1-associated carcinogenicity in Neil1−/− mice is as high if not higher than that 
observed in Xpa−/− mice, noting that both the size and number of tumors are 
greater in the Neil1−/− mice compared to the Xpa−/− mice. However, the investigators 
indicate that spontaneous tumors arise at a much higher frequency in Xpa−/− mice, 
so that the increase in AFB1-associated tumors were measured until the mice were 
11 months in age and not when the mice were 15 months in age. 

AFB1 exposure is also associated with oxidative stress, as evident by the accumula-
tion of 8-oxodG lesions. It is particularly interesting whether 8-oxodG accumulates 
in particular DNA repair mutants and contributes to genotoxicity and the etiology 
of liver cancer. The contribution of 8-oxodG to overall AFB1-associated genotoxicity 
is unclear; Ogg1−/Ogg1− transgenic mice do not exhibit more AFB1-associated lung 
tumors than those that are wild type, but do exhibit increased weight loss and mortal-
ity [122]. However, Ogg1−/− null mice succumb to other cancers after being exposed to 
oxidizing agents and carcinogens [123]. These studies suggest that AFB1-associated 
8-oxodG lesions are not the causative lesions in liver or lung cancer. 

The third major pathway in cells that function in AFB1-associated DNA damage 
is recombination repair. Knocking out RAD51 in either rad14 or rad4 cells leads 
to a synergistic increase in AFB1 sensitivity in yeast [96, 113]. There are two dif-
ferent explanations. One explanation is that some AFB1-associated DNA lesions 
that accumulate in rad4 cells are converted into single or double-strand breaks and 
require recombinational repair. A single double-strand break has previously been 
shown to be lethal in strains defective in homologous recombination [124]. An 
alternative explanation is that cells require RAD51 to bypass the DNA lesions and 
accumulate stalled replication forks. Studies have shown that RAD51 is required 
for DNA damage-associated SCE [125], which likely occur by replication bypass 
mechanisms. This second reason is also supported by the notion that rad4 cells tend 
to arrest in a small budded stage upon entry into the cell cycle. 

2.9 DNA damage tolerance and AFB1-associated DNA damage 

DNA damage tolerance pathways allow cellular replication mechanisms to bypass 
blocking DNA adducts, such as the AFB1-Fapy DNA adduct, resulting in persistence 
of the DNA adduct in the divided cells. These mechanisms are divided into error-free 
mechanisms where the original “correct” base is opposite the modified base and 
error-prone mechanisms where an “incorrect” base is inserted opposite the damaged 
base, thereby generating mutations. The insertion of the “incorrect” base is gener-
ally accomplished by substituting a “high fidelity” polymerase with a lower fidelity 
polymerase that also has lower processivity. The polymerase switch mechanism is 
accomplished by a series of ubiquitination reactions on PCNA, which is the proces-
sivity factor for DNA polymerase on the DNA template; for review, see [126, 127]. 
The first ubiquitination reaction of PCNA is a monoubiquitination reaction catalyzed 
by Rad18/Rad6. Subsequent polyubiquitination of PCNA by Rad5/Ubc13/Mms2 is 
required for error-free by-pass mechanisms, which includes template-switch mecha-
nisms. Both RAD18/RAD6 and RAD5 genes are well conserved in eukaryotes. 

The function of replication bypass in conferring AFB1 resistance has been 
validated in model organisms. In budding yeast, RAD18, RAD5, REV1, and REV7/ 
REV  are required for AFB1 resistance [96]. These genes are also required for AFB1-
associated mutagenesis [96]. These results indicate that all three translesion poly-
merases are required for AFB1 resistance, while it is unclear which gene is required 
for replication bypass of individual AFB1-associated DNA adduct. 

While there are only three translesion DNA polymerases in budding yeast, in 
humans, there are at least 11 translesion polymerases, forming the majority of the 15 
DNA template-dependent DNA polymerases [128]. Both the AFB1-N7-Guanine and 
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the AFB1-Fapy DNA adducts can be bypassed by translesion polymerases [129, 130]. 
Of the translesion polymerases, DNA polymerase ζ, also referred to as Rev3L the Rev3 
homolog in humans, limits chromosomal damage and promotes cell survival follow-
ing AFB1 exposure [131]. The authors suggest that Rev3 is required for progression 
through S phase since mouse embryonic fibroblasts, derived from Rev3L−/− knock 
down mice, arrest in S/G2 after AFB1 exposure [131]. These cells also exhibit an 
increase in gamma-H2AX foci, micronuclei, and chromosomal aberrations; the kinet-
ics of micronuclei formation support a replication-dependent mechanism that results 
in the accumulation of unrepaired DSBs in. The Rev3 requirement for DNA replication 
of an AFB1-associated DNA adduct was also demonstrated for a single lesion present 
on a replicating plasmid in HEK239 cells [131]. Considering the number of mammalian 
translesion polymerases [128], the Rev3 requirement for replication bypass may reflect 
the efficiency by which AFB1-associated DNA adducts block other polymerases or 
Rev3’s ability to minimize detrimental chromosomal damage [132]. 

2.10 Template-switch mechanisms as an alternative mechanism for tolerating 
DNA damage 

Exposure to AFB1 stimulates SCE in multiple organisms. One possible mechanism 
is that in post-replication repair, processing of AFB1-associated DNA damage gener-
ates apurinic sites and/or subsequent DNA single-strand gaps, which initiate SCE by 
serving as substrates for DNA recombination proteins. Template switch mechanisms 
are another mechanism (Figure 4) that avoid the necessity of using error-prone 
polymerase for replication bypass. In support of the role of template switching in 
AFB1-associated SCE, studies have been performed in budding yeast indicating that 
rad51 null mutants, deficient in DNA damage-associated SCE [125], exhibit higher 
frequencies of AFB1-associated mutations [96, 133]. In addition, Rad51 foci appear as 
cells enter S phase [114] and not in G2, suggesting that the appearance of Rad51 foci 
are replication-dependent and not associated with double- or single-strand breaks 
after replication. However, it is possible that multiple mechanisms are involved. 

AFB1-associated SCE are also observed in human and mammalian cells. SCEs 
have been detected in human lymphocytes, Chinese hamster V79 cells, rat and 
mouse hepatocyte cell lines [104–107]. It has not yet been determined whether 
mammalian cells defective in homologous recombination exhibit more AFB1-
associated mutations. Nonetheless, it is interesting that polymorphisms of XRCC3 
[62–64], which functions in homologous recombination, are a risk factor for HCC. 

2.11 Tissue specificity of DNA damage repair of AFB1-associated DNA adducts 

Since AFB1-associated DNA adducts are found in different tissues, the question 
can be asked whether there are tissue-specific differences in repair mechanisms. 
Mudler et al. [134] addressed the question whether oxidative damage caused by AFB1, 
8-oxodG, was repaired more efficiently in the mouse lung compared to the mouse liver. 
They exposed mice to a low chronic amount of AFB1 (0.2 or 1.0 ppm AFB1) and then 
assayed for the amount of dGTP incorporation. Interestingly, they found that although 
Ogg1 was present in both the lung and the liver, there was a lower repair efficiency in 
the liver after exposure to 1.0 ppm AFB1. The lower efficiency of the repair in the liver 
did not correspond to AFB1-associated cytotoxic effects, and they speculated that the 
differences could result from AFB1 directly inhibiting Ogg1 [134]. 

Bedard et al. [135] asked the question whether AFB1-N7-Gua and AFB1-Fapy 
DNA adducts were repaired more efficiently in the mouse liver or lung. They also 
compared the efficiency of repair in the rat liver and the mouse liver. After exposing 
mice to 50 mg/kg AFB1, extracts were obtained from the various tissues and used 
to determine the repair of plasmid DNA AFB1-N7-guanine or AFB1-Fapy adducts as 
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Figure 4. 
DNA damage tolerance mechanisms used to bypass a AFB1-Fapy DNA adduct blocking the leading strand 
polymerase on a growing replication fork. Error-free (left) bypass uses a template switch mechanism while error-
prone (right) bypass uses a low fidelity DNA polymerase, resulting in the insertion of an A opposite the DNA adduct. 

substrates. Mouse liver extracts repaired AFB1-N7-guanine and AFB1-Fapy adducts 
5- and 30-fold more effectively, respectively, than did extracts from the mouse lung. 
Mouse liver extracts also repaired the adducts 6-fold and 4-fold more effectively, 
respectively, than did liver extracts from rats. They conclude that there is a tissue-
specific induction in repair in the mouse liver that renders the mouse liver more 
resistant to AFB1-associated carcinogenesis. However, further studies are needed to 
determine which NER and BER enzymes are preferentially induced in the liver. 

2.12 AFB1-induction of DNA repair and protective mechanisms 

The redundancy in repair mechanisms for DNA adducts in yeast and in mamma-
lian organisms provokes the question of which genes are transcriptionally induced 
after the exposure of AFB1. Two complementary studies have been performed 
using budding yeast and several studies have been performed in mammalian cells. 
While studies in yeast utilized microarrays, more recent studies in mammalian cells 
have used RNAseq and NGS technology. The common genes that are induced have 
provided clues into which pathways are shared among eukaryotic organisms. 

Keller-Seitz et al. [113] determined which budding yeast genes were induced after 
exposure to AFB1. Essentially, an exponentially grown culture was concentrated to 
4 × 10e8 cells/ml and then exposed to 25 μM AFB1 in phosphate buffer (pH 7.5). After 
RNA was extracted, cDNA was synthesized and labeled for analysis on microarrays. 
Fourteen DNA repair genes were upregulated more than two-fold, with RAD51 
being upregulated more than seven-fold. Among NER genes, RAD16, RAD3, and 
RAD1 were AFB1-inducible. The upregulation of selected genes was verified by 
RT-PCR. Additional genes that were induced included those involved in mismatch 
repair and DNA synthesis, while genes participating in NHEJ were downregulated. 

A similar study was done by Guo et al. [136], except AFB1-inducible genes were 
identified in actively growing cultures. Similar to the Keller-Seitz study [113], 
RAD51 was upregulated over seven-fold. However, additional genes involved in 
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regulating dNTP levels were also upregulated including DUN1, which encodes a 
DNA damage-signaling kinase, and RNR2 and RNR4, which are subunits of ribo-
nucleotide reductase. Although the functional significance of the AFB1-associated 
inducibility is unknown, there is good overlap with a cluster of genes identified as 
DNA damage-inducible but not generally stress-inducible [137]; DNA damage-
inducible genes from multiple studies include DUN1, RAD51, RNR2, and RNR4. In 
contrast to the previous study by Keller-Seitz, NER genes were not upregulated. In 
both studies, the DNA damage-inducibility of RAD51 is MEC1-dependent; MEC1 is 
the ATM/ATR orthologue of yeast. The functional significance of the upregulation 
was illustrated by showing that the recombination deficiency exhibited by mec1 
mutants could be partially suppressed by over-expression of RAD51 [113]. Thus, 
upregulation of particular DNA repair genes could enhance AFB1 genotoxic effects. 

Additional genes that were upregulated in both studies included genes involved 
in cell cycle control, protein transport, DNA metabolism, and ion homeostasis 
[113, 136]. Although the functional significance of the upregulation of each of 
these genes is unknown, many of these genes are involved cell cycle regulation. 
Interestingly, genes involved in histone biosynthesis were downregulated, reflecting 
a delay in S phase [136]. The delay in S phase may result from the stability of the 
AFB1-Fapy DNA adduct during the exposure time. 

Identification of AFB1-inducible genes in mammalian cells revealed broader 
classes of upregulated genes, compared to the yeast studies, reflecting the hepatic 
cell’s ability to metabolize and neutralize xenobiotic agents. Merrick et al. [138] 
performed RNA seq analysis on liver cells after the rat was injected with AFB1. In 
brief, RNA was obtained from male rats exposed 1 ppm AFB1 in feed for 90 days, and 
RNA seq analysis was performed using the appropriate number of unexposed rats as 
controls. 1026 differentially induced transcripts were identified. Genes upregulated 
more than five-fold relevant to hepatocellular proliferation include follistatin (442-
fold), Aldh3a1 (302-fold), Mybl2 (21-fold), Mybl1 (6-fold), and Sox9 (6-fold). Genes 
upregulated and involving the E2f1 transcription factor included Cdk1, Mdm2, Ect2, 
Mad2L1, and Nuf2. Of those genes that were upregulated, of particular interest are 
those involved in DNA damage tolerance and repair. A two to four-fold increase was 
observed for Mgmt, Top2a, Rad51, Rad18, Xrcc6, Mnd1, and Tynns [138]. These stud-
ies indicate that chronic AFB1 exposure in animals can also induce DNA repair genes 
that are involved in cell cycle regulation and DNA replication bypass. 

2.13 Signal transduction and checkpoint activation 

Both studies in yeast and in mammalian cells indicate that AFB1 triggers a check-
point response that delays cell cycle progression so that DNA damage can be repaired. 
The mechanism by which the AFB1 DNA adducts are sensed is unknown. However, it 
is likely that DNA replication stress triggers S phase delay that is associated with Rad53 
(Chk2 orthologue) phosphorylation [133]. In budding yeast, exposure to 50 μM AFB1 
is sufficient to delay S phase [133, 135]. The Rad53 phosphorylation is dependent on 
MEC1, the ATM/ATR orthologue. Fasullo et al. [133] observed that the downstream 
effector of Rad53, DUN1, was required for both AFB1-associated mutation and AFB1-
associated recombination. However, the substrates for the signaling cascade that affect 
AFB1-associated recombination and mutation are unknown. One possibility is that 
Rad55 phosphorylation is important in triggering AFB1-associated recombination. 

In mammalian cells, the DNA damage response to AFB1-associated DNA adducts 
has been addressed by only a few studies. After exposure to AFB1, HepG2 cells exhibit 
53BP1 foci and H2AX foci but not Chk1 or Chk2 activation [139]. However, other stud-
ies [140] in other cell lines suggest a robust stimulation of the checkpoint response. 
In human bronchial epithelial cells (BEAS-2B) expressing CYP2A13 and exposed to 
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low concentrations of AFB1, AFB1-DNA adducts and 8oxodG significantly increased, 
along with phosphorylation of ATR and BRCA1. In addition, Mre11, Rad50 and Rad51 
were significantly increased. These studies suggest that similar to yeast, checkpoint 
activation leads to higher expression of DNA recombination genes in3BEAS-2B cells. 

3. Conclusions 

Liver cancer is the third leading cause of cancer deaths, and unfortunately the 
incidence of liver cancer is increasing in the USA. Environmental and lifestyle factors 
include AFB1 exposure and infection with HCV and HBV viruses. AFB1 is a potent liver 
carcinogen because it is a potent genotoxin and AFB1 exposure is correlated to signature 
mutations found in HCC. Liver injury and inflammation set the stage for regenerative 
cell proliferation that enhances AFB1-associated genetic instability. As liver cancer 
progresses, multiple genetic mutations and epigenetic changes accumulate that eventu-
ally accelerate an irreversible path toward malignancy and poor prognosis. 

Nonetheless, cellular defense mechanisms have evolved to diminish the AFB1 geno-
toxicity and repair or tolerate AFB1 DNA adducts so that mutations and chromosomal 
instability are avoided. First, there are multiple pathways to repair AFB1-associated 
DNA adducts. These include BER repair involving NEIL1 and NER pathways that excise 
AFB1-associated DNA adducts. However, it is still unclear which pathway is favored 
in humans and whether they are redundant. Second, there are common repair and 
checkpoint pathways that are upregulated in both model organisms and in mammalian 
organisms; these include ATR signaling pathways and recombinational repair pathways. 
These pathways may suppress chromosomal instability by error-free mechanisms by 
which DNA adducts can be bypassed by the DNA replication machinery. One error 
free mechanism involves recombination-mediated template switch mechanisms. 
Supporting this idea, RAD51 expression is enhanced in yeast and particular polymor-
phisms XRCC3, a RAD51 paralogue, may be risk factors for HCC. Nonetheless the DNA 
repair process can be thwarted by HBV virus, where Hepatitis B virus may directly 
interfere with NER and perpetuate the replication of cells containing damaged DNA. 

The studies presented in this chapter point to future directions in elucidating 
repair mechanisms of AFB1-associated DNA damage and genetic susceptibility to 
AFB1-associated cancer. The advent of NGS technology has made it possible to profile 
the yeast and mammalian genomes for AFB1 resistance which will facilitate identify-
ing the most prominent AFB1 resistant genes. This will facilitate epidemiological 
studies in determining potential gene polymorphisms that may pose the greatest risk 
for HCC. NGS technology can facilitate characterizing the DNA sequence contexts 
where AFB1-associated mutations occur. With the advent of NGS it may be possible 
to determine the temporal and sequence contexts by with AFB1-associated mutations 
occur. With the accumulation of genetic information, new biomarkers may be avail-
able to aid clinicians and epidemiologists to detect individuals most of risk for HCC 
and to take appropriate prophylactic actions at earl signs of HCC progression. 
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Chapter 5

Epigenetics: Dissecting Gene
Expression Alteration in PDAC
Alia Abukiwan and Martin R. Berger

Abstract

Pancreatic cancer is the fourth leading cause of cancer deaths, with a low
5-year survival rate of about 7% due to its highly invasive nature. Pancreatic ductal
adenocarcinoma (PDAC) comprises more than 90% of all pancreatic cancer cases.
At the time of detection, around 80% of cases harbor metastases due to the lack
of early diagnosis. For decades, scientists have primarily focused on dissecting the
origin of pancreatic cancer through genetic alterations and their contribution to
diagnosis. Recently, PDAC research has turned into epigenetics to revolutionize our
understanding about the silencing of critical regulatory genes. Epigenetic events can
be divided mechanistically into various components, including DNA methylation,
histone posttranslational modification, nucleosome remodeling, and regulation of
transcription or translation by microRNA. The identified epigenetic processes in
PDAC contribute to its specific epigenotype and are correlated phenotypic features.
Strikingly, some of them have been suggested to have potential as cancer biomarkers,
for disease monitoring, prognosis, and risk validation. As epigenetic aberrations are
reversible, their correction will become as a promising therapeutic target.

Keywords: PDAC, epigenetics, DNA methylation, histone modification,
microRNA, 3’ UTR

1. Introduction

Pancreatic ductal adenocarcinoma (PDAC) comprises more than 90% of all 
pancreatic cancer cases. It is highly aggressive, extremely lethal and shows resis-
tance to chemotherapy [1–3]. At diagnosis, around 80% of PDAC cases have already
metastasized, thus rendering the current therapeutic options practically ineffective. 
In line with this, potentially curative surgical resection is limited to a very small 
portion of patients [4].

On the other hand, cancer metastasis is associated not only with simple gene/
protein expression models but also with the existence of epigenetic mechanisms [5], 
which complicates this process through DNA methylation, histone modifications, 
and microRNA regulation (see Figure 1). Recent studies uncovered the regulatory
mechanisms of each process and their key role in EMT and cancer metastasis [6].

2. PDAC from genetics to epigenetics

Historically, the development of PDAC was attributed to DNA mutations, which
are classified into three main types: oncogenes (KRAS, BRAF, AKT2, MYB, and AIBI),
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Keywords: PDAC, epigenetics, DNA methylation, histone modification, 
microRNA, 3’ UTR 

1. Introduction 

Pancreatic ductal adenocarcinoma (PDAC) comprises more than 90% of all 
pancreatic cancer cases. It is highly aggressive, extremely lethal and shows resis-
tance to chemotherapy [1–3]. At diagnosis, around 80% of PDAC cases have already 
metastasized, thus rendering the current therapeutic options practically ineffective. 
In line with this, potentially curative surgical resection is limited to a very small 
portion of patients [4]. 

On the other hand, cancer metastasis is associated not only with simple gene/ 
protein expression models but also with the existence of epigenetic mechanisms [5], 
which complicates this process through DNA methylation, histone modifications, 
and microRNA regulation (see Figure 1). Recent studies uncovered the regulatory 
mechanisms of each process and their key role in EMT and cancer metastasis [6]. 

2. PDAC from genetics to epigenetics 

Historically, the development of PDAC was attributed to DNA mutations, which 
are classified into three main types: oncogenes (KRAS, BRAF, AKT2, MYB, and AIBI), 
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Figure 1. 
Schematic diagram of epigenetic mechanisms influencing gene expression. DNA methylation is an epigenetic 
mechanism through which cytosine residues within CpG regions are covalently modified (left). In addition, 
the modification of histones has two consequences on genes, which pending on the type of modification and 
the target residues can either activate or repress the target gene (middle). The epigenetic mechanism is also 
influenced by microRNAs (miRNAs). These are small noncoding RNAs, which have a proximal length of 
22 nucleotides. Functionally, the miRNAs influence gene expression through base pairing with 3′ UTRs of 
messenger RNAs (right). 

tumor suppressor genes (p16, CDKN2A, p53, p21, BRCA2, and SMAD4), and genome 
maintenance and repair genes (MLH, MSH2, and BRCA2) [1, 2]. Several studies 
explained the complexity of genetic aberrations and their regulatory signaling pathways 
[3]. Although a large variety of signal transduction pathways have already been studied 
in PDAC, much less is known about the cross talk between epigenetic mechanism and 
signaling pathways typical for PDAC [1]. Strikingly, there are also particular cases where 
signaling pathways are altered, which directly affect important components of the epi-
genetic machinery. Therefore, a clear understanding of the epigenetic mechanisms and 
their implication in PDAC development will open new avenues of therapy. This approach 
will exploit the intricate process through which cells induce changes at transcription level 
[4–6]. 

Epigenetic mechanisms are defined in a way that they can both silence or 
activate genes without alteration to the DNA sequence itself. Mechanistically, 
epigenetic changes represent DNA hypermethylation or hypomethylation, histone-
based mechanisms that include posttranslational modifications and nucleosome 
remodeling, as well as aberrant expression of microRNAs [5, 7]. These modifica-
tions affect chromatin structure and promoter accessibility, which contribute to 
genetic alterations [8]. 

In PDAC, the famous mutant gene KRAS and its downstream signaling cascade 
are an example for the low therapeutic effect, which is accomplished by current 
therapies against this gene and its downstream effectors. Interestingly, recent stud-
ies demonstrate that dysregulation of epigenetic regulators is essential for PDAC 
progression as well as for that of many other tumors [9]. Genomic deletions, muta-
tions, and rearrangements frequently target genes encoding components of the 
chromatin remodeling complex (SWI/SNF), which have been identified in 10–15% 
of PDAC patients [10]. 
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In general, the discovery of the involvement of the epigenetic effect in cancer 
added a new concept of gene therapy and informative markers for the diagnosis 
and prognosis for many malignancies [11]. Whole genomic sequencing studies have 
revealed driver mutations in epigenetic regulators in various cancer types such as 
IDH1/2, DNMT3A, KDM6A, DNMT3B, SMARCB1, and CREBBP/EP300 [12]. In 
PDAC, the sequencing experiments showed more pathogenic mutations in genes 
encoding multiple components of the SWI/SNF complexes, including ARID1A, 
ARID1B, PBRM1, SMARCA2, and SMARCA4 [13]. Additionally, recent studies 
found mutations in important epigenetic regulators like histone methyltransferase 
enzymes MLL1, MLL2, and MLL3 and histone demethylase KDM6A [13, 14]. 
Specifically, KDM6A has been found mutated in 5–10% of PDAC patients [15]. 

Several studies on familial PDAC have shown an association between DNA 
repair genes’ dysfunction and those genes that are responsible for this inheritance 
(BRCA2, BRCA1, CDKN2A/p16, STK11/LKB1) [13, 16]. Strikingly, the altered 
DNA repair system is a hallmark of cancer, which causes genome instability and 
DNA damage [17]. Each cell contains a specific enzymatic system termed the DNA 
mismatch repair (MMR), which is responsible for detecting and correcting DNA 
replication errors [18, 19]. Loss or silencing of any protein in this system leads to 
the accumulation of gene mutations. In this regard, studies reported that MMR 
inactivation was caused by the epigenetic silencing of the hMLH1 and hMLH2 genes 
[20, 21]. The hMLH1 protein is one component of a family of seven members of 
MMR proteins that work coordinately to regulate DNA replication error in humans 
[20]. In this context, hypermethylation of the hMLH1 promoter has been shown 
to be an early detection marker of esophageal cancer and also a prognostic marker 
in colorectal and pancreatic cancers. On the other hand, this mechanism cannot be 
generalized, as methylation of the hMLH2 gene results less clear into gene inactiva-
tion, because the respective promoter is a weak target for CpG island methylation 
[16, 17, 20–22]. 

Another example of an affected DNA repair gene is the O6-methylguanine-DNA 
transferase (MGMT), which is most intensively regulated by CpG promoter meth-
ylation [23]. MGMT is responsible for removing alkyl groups from O6 in guanine and 
thus prevents mismatch errors during DNA replication. The silencing of the MGMT 
activity in human colorectal adenomas has been linked to K-ras GC → AT transition 
mutations [24, 25]. Interestingly, the epigenetic silencing of MGMT has two main 
effects in human cancer. First, it reveals a new mutator pathway that causes the 
accumulation of G-to-A transition mutations. Second, there is a strong and signifi-
cant positive association between MGMT promoter hypermethylation and enhanced 
tumor sensitivity to alkylating drugs. These findings highlight the significance of 
MGMT promoter hypermethylation in translational cancer research [17, 26, 27]. 

3. DNA methylation 

The first epigenetic modification to be identified was DNA methylation [28], 
which is based on stable and heritable changes in gene structure without a change in 
DNA sequence [12]. Methylation refers to the addition of a methyl group to the fifth 
carbon in cytosine forming 5-methylcytosine (5-mC), which is mediated by DNMTs 
[29]. Generally, methylation occurs in intergenic regions and repetitive sequences 
such as satellite repeats, and long and short interspersed nuclear elements, while 
CpG islands of gene promoters often are unmethylated [5, 7, 30]. Interestingly, the 
global effects of epigenetic alterations in gene regulatory sequences from over 100 
cancer cell lines have been identified by the ENCODE project [31]. Normally, DNA 
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methylation is critical for maintaining pluripotency, X chromosome inactivation, 
and genome imprinting [12]. Aberrant DNA methylation is one of the hallmarks of 
cancer [32]. 

Methylation of DNA is catalyzed by the enzymes DNMT3A and DNMT3B and 
is then maintained by the major DNA methyltransferase DNMT1, which is also 
assisted by DNMT3A and DNMT3B [9, 12]. A recent study found that DNMT1, 
DNMT3A, and DNMT3B are themselves differentially methylated in PDAC [33]. 
Besides, a very recent finding suggests that the interactions between TP53 and 
H3K4, MLL3 and MOZ genes play a major role in chromatin regulation [34]. The 
methylation of tumor suppressor genes is the best-characterized epigenetic event 
in several malignancies, including PDAC [11]. In fact, several genes such as APC, 
BRCA1, P16INK4a, P15INK4b, RARβ, and p73 are frequently methylated [10]. 
Recent studies have revealed that apparent DNA methylation occurred in critical 
signaling pathways in PDAC such as TGFβ, WNT, integrin, cell adhesion, and axon 
guidance signaling pathways [35]. Likewise, TGFβ induces epithelial-mesenchymal 
transition (EMT) by enhancing hypermethylation of CpG islands in the VAV1 gene 
promoter [36] (see Figure 2). Furthermore, the WNT signaling pathway is a target 
of hypermethylation in PDAC. This has been found for WNT ligands WNT5A, 
WNT7A, and WNT9A, or the cell surface receptor FZD9, or the cytoplasmic 
transducer APC2, the nuclear factors SOX1, SOX7, SOX14, and SOX17, and the 
pathway inhibitors FRZB, SFRP1, SFRP2, KREMEN2, NKD2, and WIF1. Strikingly, 
the tumor suppressor candidate HIC1 is hypermethylated, which is acting as a 
transcriptional repressor for abnormal survival circuits of the transcription factors 
involved in the WNT signaling pathway [33, 37]. 

Furthermore, several studies demonstrated that promoter DNA hypermeth-
ylation is associated with the transcriptional repression of multiple microRNAs 
(miRNAs). This results into upregulation of oncogenic target genes of the microR-
NAs, such as observed for the downregulation of miR-181b, which promotes the 

Figure 2. 
Schematic diagram of signaling pathways in PDAC, which are deregulated by DNA methylation. Critical 
tumor suppressors and transcription factors are silenced, whereas oncogenes are activated. This deregulation 
promotes EMT and metastasis. 
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Gene Gene name Epigenetic 
alteration 

Function References 

CADM1 Cell adhesion 
molecule 1 

Hypermethylation Cell-cell interaction [41] 

CDH1 Epithelial cadherin Hypermethylation Cell adhesion and 
invasion 

[42] 

DKK3 Dickkopf-related 
protein 3 

Hypermethylation Tumor suppressor [43] 

S100A4 S100 calcium-
binding protein A4 

Hypermethylation Invasion, motility, 
and tubulin 
polymerization 

[44] 

P16 Cyclin-dependent 
kinase inhibitor 2A 

Hypermethylation Multiple tumor 
suppressor 

[45] 

DNMT3A DNA (cytosine-5-)-
methyltransferase 
3 alpha 

Hypermethylation Enzyme [33] 

BMP3 Bone morphogenetic 
protein 3 

Hypermethylation Growth factor [33] 

ST6GAL2 ST6 beta-
galactosamide 
alpha-2,6-
sialyltranferase 2 

Hypermethylation Generation of the cell 
surface carbohydrate 
determinants and 
differentiation 
antigens 

[42] 

ST8SIA5 ST8 alpha-N-acetyl-
neuraminide α-2,8-
sialyltransferase 5 

Hypermethylation A member of 
glycosyltransferase 
family 

[42] 

ST8SIA2 ST8 α-N-acetyl-
neuraminide alpha-
2,8-sialyltransferase 
2 

Hypermethylation A member of 
glycosyltransferase 
family 

[42] 

ST8SIA3 ST8 α-N-acetyl-
neuraminideα-2,8-
sialyltransferase 3 

Hypermethylation A member of 
glycosyltransferase 
family 

[42] 

AKT1 v-Akt murine 
thymoma viral 
oncogene homolog 1 

Hypermethylation Kinases [30] 

LCN2 Lipocalin 2 Hypomethylation Epithelial 
differentiation 

[33] 

CCND2 Cyclin D2 Hypermethylation Cell cycle control [33] 

CLDN4 Claudin-4 Hypomethylation Cell adhesion [44] 

miR-9-1 MicroRNA-9 Hypomethylation miRNA translation 
control 

[40] 

P59 Cyclin-dependent 
kinase inhibitor 1C 

Hypermethylation Cyclin-dependent 
kinase inhibitor 

[34] 

P16 Cyclin-dependent 
kinase inhibitor 2A 

Hypermethylation Cyclin-dependent 
kinase inhibitor 

[33] 

RARB Retinoic acid 
receptor 

Hypermethylation Cell growth control [33] 

SFN Stratifin 
(14-3-3sigma) 

Hypomethylation P53-induced G2/M 
cell cycle arrest 

[9] 

LCN2 Tissue factor 
pathway inhibitor 

Hypomethylation Epithelial 
differentiation 

[9] 
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Gene Gene name Epigenetic 
alteration 

Function References 

CDKN1C/ 
P57 

Cyclin-dependent 
kinase inhibitor 1C 

Hypomethylation Cyclin-dependent 
kinase inhibitor 

[42] 

FOXE1 Forkhead box E1 Hypomethylation Thyroid transcription 
factor 

[42] 

Table 1. 
A series of methylated genes in PDAC. 

expression of BCL 2 [38]. Moreover, downregulation of the miR-29 family was 
associated with the overexpression of the DNA methyltransferases DNMT3A and 
DNM3B [39]. The noncoding RNAs and antisense RNA sequences are strongly 
involved in the respective DNA hypermethylation process, which silences important 
genes such as polycomb group (PcGs), which in turn may expose these regions to 
DNA methylation changes [40]. More examples are listed in Table 1, all of which 
are related to PDAC. 

4. Histone modification 

Nucleosomes are considered to be the basic constituents of chromatin. Each 
nucleosome is an octamer of histones, which consist of two copies each of histone 
proteins H2A, H2B, H3, and H4 [46]. The most interesting epigenetic events in PDAC 
are histone modifications, since several studies revealed that the most frequently 
mutated epigenetic genes occurred in the histone family [13]. The posttranslational 
modifications include methylation, acetylation, citrullination, phosphorylation, 
SUMOylation, and ADP ribosylation. However, the most studied histone modifica-
tions in cancer are lysine alterations, including lysine methylation, acetylation, and 
phosphorylation [47–49]. In normal cell development, histone modifications regulate 
critical cell processes such as DNA replication and transcription or repair [46], while 
in cancer, histone modifications contribute to the maintenance of malignant pheno-
types. In PDAC, the most common modification includes methylation and acetylation 
of lysine residues within the N terminal tails of histone proteins [11]. 

In the context of epithelial-mesenchymal transition (EMT) in PDAC, SNAIL is a 
critical transcription repressor of E-cadherin in EMT process. It plays a significant 
role in embryonic development and tumorigenesis [50]. Moreover, SNAIL has an 
essential function in histone modifications. This includes the activation of a set 
of chromatin modifiers such as lysine-specific demethylase, euchromatic histone 
lysine methyltransferase 2 (G 9a), suppressor of variegation 3–9 homolog 1 histone 
methyltransferases (Suv39H1), SIN3 transcription regulator family member A 
(SIN3A), and histone deacetylases (HDAC1 and HDAC2) [51, 52]. 

4.1 Histone methylation 

Methylation of histones is coordinated by histone methyltransferases (HMTs) 
and histone demethylases (HDMs). There are at least 17 different HMTs, all of which 
share the conserved (Su (var) 3–9, enhancer-of-zeste, trithorax) motif. The lysine 
methylation residue is most common and is mediated by histone lysine methyl-
transferases (HKMTs) [53]. Particularly, methylation at H3K9, H3K27, and H3K20 
is associated with transcriptional repression, while methylation of H3K4, H3K36, 
and H3K79 causes transcriptional activation [47]. The silencing of tumor suppressor 
genes in cancer is caused by the corresponding activities of the HMT and HDMT 
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enzymes. On the other hand, the H3K27me3-specific HMT EZH2 (enhancer of zeste 
homolog 2), the catalytic subunit of PRC2, is overexpressed in a broad range of solid 
tumors, including prostate, lung, breast, colon, skin, and pancreatic cancers [54, 55]. 

The most frequently altered histone methylated genes in PDAC are KDM6A and 
MLL2 [33]. KDM6A is an H3K27me3 demethylase, which has a role in endoderm 
differentiation by regulating the expression of WNT signaling and HOX genes 
[56]. Other studies found that the loss of trimethylation at K27 of histone H3, 
which causes nuclear accumulation of EZH2, is strongly correlated with a poor 
PDAC outcome [57]. Various interactions have been shown to occur between DNA 
methylation and histone methylation. For example, the interaction between EZH2 
and DNMTs renders the EZH2 gene a potential therapeutic target. Mucins (MUCs) 
are also known to play essential roles in tumor growth and invasion in pancreatic 
neoplasms. MUC1 and MUC4 are high-molecular-weight transmembrane mucins. 
Overexpression of mucins in cancer is associated with poor prognosis. It has been 
shown that mucin expression changes in PDAC are due to DNA methylation of H3 at 
the lysine9 residue [58, 59]. 

4.2 Histone acetylation 

Histone acetylation is the first discovered histone modification. The acetylation 
of lysine residues neutralizes their positive charge, which induces chromatin relax-
ation and activates a set of genes associated with transcription. On the other hand, 
removal of the acetyl groups is associated with gene silencing. Histone acetylases 
(HATs) and deacetylases (HDAC) are the required enzymes for this process [60, 61] 
(see Figure 3a). 

Figure 3. 
Schematic diagram on the role of HDACs in PDAC. (A) HDACs mediate E-cadherin translational repression 
by activating the binding of EMT transcription factors to the E-boxes present in the E-cadherin promoter. 
(B) SIRT6 mediates the deacetylation of p53, FOXO3A, and C-Myc, which leads to increased metastasis and 
drug resistance. 
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Recent studies show a series of significant alterations of the acetylation process 
in PDAC, as well as mutations in the histone acetylase EP300 [33]. Furthermore, 
the SIRT6 gene is associated with the deacetylation of histone H3 at lysine residues 
9 and 56, thus increasing the expression of the SIRT6 gene associated with PDAC 
metastasis by deacetylation of p53 and FOXOA3 [62](see Figure 3b). For instance, 
the activation of KRAS and increased expression of the c-Myc transcription factor 
promote PDAC metastasis [13]. Also, expression of HDAC7 and HDAC2 has been 
found increased in PDAC [63]. In addition, HDACs/HATs play important roles in 
the activation of several tumor suppressor genes in PDAC, such as p53 and EP300 
[11, 14, 53, 64]. 

A recent study identified the acetylation of glutamate oxaloacetate transaminases 
2 (GOT2) at three lysine residues (K159, K185, and K404) in PDAC. This promotes 
the transfer of NADH from the cytoplasm into mitochondria, enhancing PDAC cell 
proliferation and tumor growth in vivo. On the other hand, the acetylation of GOT2 
at only K159 is correlated with downregulation of SIRT3 expression [65]. 

4.3 Histone phosphorylation 

Histone phosphorylation has been associated with different cell processes, 
including apoptosis, cell cycle, DNA transcription, DNA repair, chromosome 
condensation, gene regulation, cell signaling pathways, energy, and metabolic path-
ways [66]. Phosphorylation of histones occurs on serine, threonine, and tyrosine 
residues, a process mediated by different kinases and phosphatases [46]. In cell 
development, the most important site for histone phosphorylation is the serine 10 
of histone H3 (H3S10P), which is mediated by the Aurora-B kinase. This modifica-
tion is a critical event in cell mitosis and meiosis [67]. 

Several studies identified histone phosphorylation changes during DNA dam-
age, such as the phosphorylation of serine 139 on the histone H2A(X). On the other 
hand, phosphorylation of serines, e.g., 10 and 28 on H3, and serine 32 on H2B 
have been contributed by the activation of the epidermal growth factor (EGF). 
Moreover, H3ser28p mediated the expression of c-fos and α-globin [68–70]. 

It has been shown that H2A T120 is phosphorylated in PDAC by VRK1 on the 
promoter region of CCND1, which consequently activates the transcription of cyclin 
D1 [71]. Besides, KRAS is most well-studied and known activated oncogene in PDAC 
[72]. Other studies have implicated the activation of the Ras-MAPK pathway with 
the upregulation of phospho-ERK1/2 and their downstream levels of H3 S10ph [73]. 

5. MicroRNA 

MicroRNAs (miRNAs) are small (20–23 nucleotides), endogenous, noncoding, 
single-stranded RNA molecules, which control the expression of around 60% 
of the protein-coding genes [74]. Moreover, they can control both physiological 
and pathological processes, such as development and cancer [75]. In addition, the 
miRNA machinery is of great importance for drug development, since a func-
tional miRNA machinery is a compulsory prerequisite for any RNA interference 
(RNAi)-based therapy approach. A total of 700 miRNAs have been discovered 
in human diseases, and more than 1000 predicted miRNA genes are yet to be 
experimentally validated [76]. 

Mature microRNAs require several steps of preprocessing before they can become 
functional. After they are transcribed by RNA polymerase II/III from intragenic 
regions or from regions that code for introns, the primary transcript (pri-miRNA) 
is processed by the ribonuclease Drosha and DGCR8 in the nucleus. The process 
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produces pre-microRNAs, hairpin-shaped intermediates of 70–100 nucleotides. 
Exportin-5, a Ran-GTP-dependent dsRNA-binding protein, transports pre-microR-
NAs into the cytoplasm where they are further processed by the ribonuclease Dicer 
and TRBP (Tar RNA-binding protein) into a double-stranded miRNA. The strands 
separate and a mature single-stranded molecule join an RNA-induced silencing com-
plex (RISC). The double miRNA strands are required to interact with RISC complex 
or to be degraded. Ordinarily, one miRNA strand can give rise to two individual 
mature miRNA sequences with different targets due to complementary seed sequence 
[74, 77, 78]. The single-stranded mature microRNA remains stable on the miRISC and 
induces posttranscriptional silencing of one or more target genes, usually through 
imperfect pairing with a target sequence in the 3’ UTR [74]. However, this is not the 
only binding region for miRNAs, as there are also binding sites located in 5’ UTR or 
even within the coding DNA sequence of mRNAs [77]. The seed sequence or seed 
region is a conserved heptametrical sequence, which is mostly situated at positions 
2–7 from the miRNA 5’ end [79, 80]. Furthermore, degradation of mature miRNAs 
appears to depend on their activity; in the absence of complementary targets, the 
miRNA could be released from miRNA-RISC complex, and then its 5′ end becomes 
accessible to the 5′ → 3′ exonuclease XRN2, which degrades the miRNA [81]. 

Cancer represents a heterogeneous group of diseases characterized by uncon-
trolled growth of cells, high proliferation rates, and apoptosis resistance. All of 
these features result from a complex of structural and expression abnormalities of 
genes, including those encoding microRNAs [75, 82]. The classification of cancer 
is more accurately defined with microRNA profiling than with mRNA profiling 
because of the strong correlation between microRNA expression signatures and 
tumor origin [75]. In general, microRNAs have two main functions in cancer; they 
can act as tumor suppressors (TSmiRs) or oncogenes (OncomiRs) [75, 76, 82, 83]. 

One of the first indications that miRNAs serve as tumor suppressors (TSmiRs) 
came from Calin and colleagues when they discovered that miR-15a and miR-16-1 
were deleted or downregulated in about 68% of chronic lymphocytic leukemia 
(CLL) samples. MiR-15a and miR-16-1 have been shown to control the expression 
of VEGF, a key proangiogenic factor involved in tumor angiogenesis. Furthermore, 
both of them induce the apoptosis of leukemic cells by affecting the antiapoptotic 
protein BCL2 [75, 84]. Another prominent TSmiR is the let-7 family, located at a 
chromosomal region, which is usually deleted in human cancers. It has been reported 
as a TSmiR in lung, breast [84], urothelial, and cervical cancers [85]. Recent studies 
found that let-7 was able to regulate the RAS oncogene in lung cancer. In addition, 
let-7 regulates late embryonic development by suppressing a number of genes such as 
c-Myc, RAS, and HAMGA2 [76, 82]. Taken together, reduced expression of TSmiRs 
in cancer releases oncogenic genes and promotes tumor initiation and progression. 

In contrast, oncogenic miRNAs (OncomiRs) promote tumorigenesis by 
inhibiting tumor suppressor genes that play roles within other functions, such 
as cell differentiation and apoptosis. The first OncomiR that was discovered is 
the miR-17-92 cluster, which encodes miR-17-5p, miR-17-3p, miR-18a, miR-19a, 
miR-20a, miR19b-1, and miR-92-1. This cluster is located on chromosome 13 and 
is commonly found to be amplified in human B-cell lymphomas, lung cancer, and 
anaplastic thyroid cancer cells [86]. Another oncogenic miRNA, miR-21, has been 
validated in nine solid tumor types (lung, breast, head and neck, prostate, colon, 
pancreas, esophagus, stomach, and brain). Experimental data confirmed that 
miR-21 plays a significant role in cancer cell proliferation, apoptosis, and invasion. 
Accordingly, inhibition of miR-21 induces cell cycle arrest, increased apoptosis, and 
increased chemosensitivity to anticancer agents [87]. 

The important emerging role of miRNAs in many cancer types, together with 
the fact that they can function as TSmiRs or OncomiRs, supports the potential of 
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miRNAs as a new class of targets in the development of cancer therapies. Several 
studies have focused on targeting miRNAs as an experimental therapy in vitro or 
in vivo [85]. Notably, to modulate cancer-associated miRNAs in vivo, two main 
approaches were established: first, miRNA replacement therapy, which is based on 
adding the miRNAs missing in cancer cells for restoring their normal functions; 
second, inhibition of oncogenic miRNAs by using single-stranded chemically 
modified anti-miR oligonucleotides [85, 88]. The first successful in vivo experiment 
using anti-miRs in conjunction with locked nucleic acids was successfully applied in 
African green monkeys with hypercholesterolemia. The experiments resulted in the 
successful control of triglyceride and cholesterol levels, together with the manage-
ment of disease manifestations with minimal side effects to herald a new research 
approach that is equally applicable in cancer [89]. 

PDAC shares many features with other solid tumors. Numerous studies 
have reported the significant roles, which miRNAs play in PDAC progression. 
Furthermore, these studies have also provided important information about cellular 
features, such as growth, invasive, and metastatic behavior that have been modified 
or altered in PDAC as a result of miRNAs, thus highlighting, to a large extent, the 
significance of miRNAs in PDAC progression [90]. High-throughput microarray 
technologies have been used to extensively profile miRNA signatures in cell lines, 
normal frozen tissues, formalin-fixed paraffin-embedded tissues (FFPE), blood, 
and fine needle aspiration biopsy (FNAB) samples, in order to establish a common 
expression pattern in PDAC [91]. Recently, a meta-analysis reviewed 11 miRNA 
profiling studies in PDAC and reported 439 miRNAs as deregulated in the 538 
PDAC samples that were evaluated [92]. This analysis defines a common pool of 

miRNAs Expression Target genes References 
status 

Let-7 family Downregulated KRAS, MAPK, c-Myc, STAT3 [94, 104] 

miR-181s Upregulated TIMP3, TCL1, TGFBI, TRIM2, SIRT1, Bcl2 [91, 105] 

miR-26s Downregulated MMP2, MMP14, cyclin D1, Mcl-1, Bcl2 [91, 106, 107] 

miR-125a Upregulated Bcl-w, Bcl2 [108] 

miR-192 Downregulated SERPINE1 [109] 

miR-148a,b Downregulated DNMT3B, Mtif, CCKBR, BCL2 [90, 91, 110] 

miR-200 Downregulated VEGF-A, KRAS, KDR, VEGFR2, ZEB1/2 [100, 111–113] 
family 

miR-34a Downregulated Notch1/2, Bcl2, SIRIT, CDK4, VEGF [99, 114–117] 

miR-375 Downregulated PDK1 [90] 

miR-124 Downregulated ITGB1, Rac1, RocK2, EZH1, Bcl2, CDK6 [91, 101, 118] 

miR-217 Downregulated KRAS, SIRIT, c-MYC [119, 120] 

miR-21 Upregulated PTEN [121] 

miR-132 Upregulated Rb1, SMAD2 [122, 123] 

miR-208 Upregulated E-cadherin [106] 

miR-196-a Upregulated NFKBIA [124] 

miR-100 Upregulated IGFR1 [90] 

miR-155 Upregulated TP53INP1 [125] 

miR-10b Upregulated TIP30 [91] 

Table 2. 
Top frequently deregulated miRNAs in PDAC. 
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miRNAs that are atypically expressed in PDAC, and the potential renormaliza-
tion of these miRNAs and/or expression patterns could help create a therapeutic 
approach in managing this aggressive disease [93]. 

The commonly deregulated miRNAs are associated with major regulatory genes 
in several signaling pathways (Table 2), which are involved in most aspects of cellu-
lar physiology including regulation of cell cycle, differentiation, proliferation, and 
apoptosis. Notably, altered miRNA expression in PDAC contributes to metastasis 
and drug resistance [92, 94, 95]. The more frequently deregulated miRNAs in PDAC 
include miR-21, the expression of which is regulated by KRAS, and correlates with 
the degree of tumor progression [90]. KRAS is an important molecule in PDAC and 
is a direct target of miR-96, miR-217, miR-126, and miR-200c. The overexpression 
of these miRNAs reduces the level of KRAS expression, resulting in decreased cell 
invasion, migration, and tumor growth [96, 97]. Strikingly, two of these miRNAs, 
miR-145 and miR-200c, function as a regulatory network in the AKT-PI3K signaling 
pathway [98]. Conversely, it has been reported that KRAS activation suppresses 
the expression of the miR-134/145 cluster via the Ras responsive element-binding 
protein (RREB1) [99]. The miR-200 family is also frequently deregulated in PDAC 
and plays a significant role in EMT inhibition. One study demonstrated that 
miR-200 negatively regulates ZEB1 and ZEB2, which are both direct repressors of 
E-cadherin [100]. In the context of epigenetic modifications, several studies have 
found TSmiRs in PDAC, including miR-9-1, miR-124s, miR-192, miR-615-5p, and 
miR-1247, which were hypermethylated [44, 101–103]. 

6. Conclusions 

For the high mortality, poor prognosis, and undefined therapeutic targets in 
PDAC, the unraveling of the complex molecular layers driving this lethal cancer 
is a prerequisite for more effective therapeutic strategies and consistent diag-
nostic markers. The recent research on epigenetic mechanisms has significantly 
enriched our knowledge about the regulatory characteristics involved in the 
initiation, progression, and metastasis of PDAC. This book chapter has focused 
on the most critical epigenetics mechanisms, including DNA methylation, histone 
modifications, and modulated expression of miRNAs that play a significant role 
in PDAC tumorigenesis, and could serve as future therapeutic targets. Currently, 
significant emphasis is still given on detecting somatic genetic alterations in 
PDAC. However, it seems also promising to investigate the underlying epigen-
etic mechanisms for completing the full puzzle of altered gene expression in 
PDAC. The epigenetics field has developed strongly and will continue to advance 
into a frontier field for PDAC research. Additionally, it is essential to highlight 
the features of epigenetic mechanisms of gene regulation—their reversibility. 
This feature provides a ground for specifically targeting the epigenetic changes 
contributing to PDAC. 
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Chapter 6

The Role of DNA Repair and the
Epigenetic Markers Left after
Repair in Neurologic Functions, 
Including Memory and Learning
Carol Bernstein and Harris Bernstein

Abstract

In eukaryotic cell nuclei, DNA is wrapped around and firmly associated with
histone proteins, forming chromatin. When DNA is damaged, the chromatin
structure needs to be loosened to allow repair enzymes to gain access to the damage.
This requires modifying the histone proteins. These modifications, called epigenetic
alterations, do not alter the base-pair sequence. Repair-associated epigenetic altera-
tions are usually transient, removed when no longer needed for repair. However,
some remain after repair. In the human brain, long-lasting novel epigenetic altera-
tions appear to account for the persistence of addictions to such substances as
alcohol, nicotine and cocaine. Certain neurodegenerative diseases are caused by
inherited mutations in genes necessary for DNA repair. Deficient DNA repair in
these diseases is associated with extensive epigenetic alterations that likely have a
role in the disease phenotype. Persistent epigenetic alterations due to DNA repair
processes, both histone modifications and methylations of DNA, can also have posi-
tive consequences. Stimulation of brain activity (e.g. learning and memory forma-
tion) is often accompanied by the generation of DNA damage in neuronal DNA,
followed by repair associated with persistent epigenetic alterations. In particular,
recent research has shown the need for non-homologous end joining and base exci-
sion repair in memory formation.

Keywords: DNA repair, epigenetic, histone acetylation, histone methylation,
CpG island methylation, addiction, neurodegenerative disease, memory, learning,
cognition

1. Introduction

Even in the earliest stages of evolution, damage to the genome was presumably
a fundamental problem for life. Thus it is likely that organisms developed processes
for repairing genome damages very early. Such repair processes are ordinarily
restorative, designed to reestablish the original undamaged genome sequence. 
During the course of the evolution of lineages leading to mammals, DNA repair
processes became more complex, and acquired additional capabilities. One such
example is the employment of the DNA double-strand break repair process of non-
homologous end joining in the generation of immunological diversity [1].
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In chromatin, epigenetic alterations are an integral part of DNA repair pro-
cesses [2]. Although most epigenetic alterations introduced during DNA repair 
are transient with restoration of the epigenetic pattern that existed prior to repair, 
some are long lasting. Epigenetic alterations can enhance or inhibit gene expression 
without changing the DNA base pair sequence. Examples of epigenetic alterations 
are hyper- or hypomethylation of cytosines in the DNA sequence, increased or 
decreased histone H3 and H4 acetylation by histone acetyltransferases or histone 
deacetylases, and increased or decreased histone methylation by histone methyl-
transferases or histone demethylases. 

In humans, the oxygen demands of the brain are high, constituting about 20% 
of total body oxygen consumption, while the mass of the brain is only about 2% 
of body mass [3]. This results in elevated release of reactive oxygen species in the 
brain that, in turn, cause oxidative DNA damages. Because damages are prevalent, 
processes that repair DNA damages have a vital role in maintaining the health of 
brain neurons, and these DNA repair processes can cause epigenetic alterations. 

When DNA repair processes are impaired or insufficient, the result can be 
improper (non-adaptive) epigenetic alterations. Such improper epigenetic altera-
tions in neurons are likely an important underlying cause of certain addictions and 
neurodegenerative diseases. Several addictive agents cause increased DNA damage 
in neurons resulting in increased dependence on DNA repair. Addictions are associ-
ated with characteristic persistent patterns of epigenetic alterations in the brain. 
In several neurodegenerative diseases the neurological impairments are caused by 
inherited mutations in genes that encode proteins employed in DNA repair. These 
diseases are associated with particular patterns of epigenetic alterations in neu-
rons. It is likely that the neurological impairments suffered by individuals during 
addiction or neurodegenerative disease are caused, at least in part, by epigenetic 
alterations resulting from insufficient or faulty DNA repair. That is, insufficient 
or faulty DNA repair may produce epigenetic alterations that have long-lasting 
negative consequences at the level of gene expression that manifest as neurological 
impairment. 

Zovkic et al. [4] noted that learning and memory can be broadly defined as 
lasting alterations of a behavioral output produced in response to a transient 
environmental input. In order for a brief stimulus to cause a persistent change in 
behavior, neurons need to undergo some kind of molecular alterations that stabilize 
a memory into an enduring set of cellular marks. As reviewed by Bird in 2002 [5], 
in mammals, DNA methylation is adapted for specific cellular memory in develop-
ment, even over successive cell divisions. This observation of cellular memory 
indicated that epigenetic mechanisms could provide a molecular basis for neuronal 
memory formation and maintenance in non-replicating neurons [4]. In addition 
to DNA methylation/demethylation, it is now known that other mechanisms such 
as chromatin histone acetylation and histone methylation can also cause persistent 
epigenetic changes [6]. 

In the sections below, we review evidence for the following ideas. Neuronal 
activity causes DNA damages, and repair processes are required to deal with these 
damages. Such repair processes involve epigenetic alterations, some of which are 
long lasting. Individuals, addicted to abuse of certain substances that cause DNA 
damage, have long-lasting epigenetic alterations in brain neurons that appear to 
be related to the dependency. Also, inherited inability to adequately repair DNA 
damages can cause epigenetic alterations in neurons associated with neurodegen-
erative disease. However, long-lasting epigenetic alterations can also be adaptively 
beneficial. Cognitive functions such as memory and learning in response to external 
stimuli appear to depend, at least in part, on persistent epigenetic alterations arising 
during DNA repair processes. 
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2. Epigenetic alterations required for DNA repair 

DNA is condensed in the nucleus of the cell in a highly organized and compact 
manner, referred to as chromatin (reviewed by Walker and Nestler [7] and Ding 
et al. [8]). In chromatin, the DNA is packaged with histone proteins to form nucleo-
somes. DNA repair proteins are recruited and interact with DNA in response to DNA 
damage. However, the architecture of nucleosomes and the organization of chroma-
tin can present barriers to DNA damage recognition and repair. Epigenetic modifiers 
play an important role in regulating nucleosome and chromatin structure to facilitate 
DNA repair. Epigenetic alterations relax certain regions of chromatin to allow access 
to DNA repair enzymes and also condense certain regions to repress transcription 
in order to facilitate repair. When repair is complete, epigenetic modifications are 
largely returned to the state before damage occurred. These roles of epigenetic modi-
fiers in DNA repair have been described as the “access-repair-restore” model [9]. 

2.1 Histone acetylation 

The basic unit of chromatin, the nucleosome, is composed of 147 DNA base pairs 
wrapped around a histone octamer consisting of two copies of each of the follow-
ing proteins: H2A, H2B, H3, and H4. The histones also have histone tail extensions, 
constituting up to 30% by mass of the histones (Figure 1). Each histone protein can 
undergo post translational modifications in which molecules, such as an acetyl group 
or one (or up to three) methyl group(s), are covalently added to (or removed from) 

Figure 1. 
A nucleosome showing 4 pairs of histones (H2A, H2B, H3, and H4), each pair with the same color. The amino-
terminal (N-terminal) tails of one of each pair of histones is shown, labeled with the positions of lysine amino 
acids (labeled “K” in the single letter code for lysine) that are subject to acetylation or methylation. The number 
at each lysine indicates its position counting from the amino end of the protein chain. Acetylations (indicated by 
Ac) and methylations (indicated by Me) are shown in some positions susceptible to these alterations. The DNA, 
wound around the histone core, is indicated by the dark line. 
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lysine residues of their amino terminal (N-terminal) tail. The single letter K designates 
lysine. If an acetyl group is added to a lysine located as the 4th amino acid from the 
N-terminal tail end of histone 3, this is designated H3K4Ac. These modifications not 
only alter the structure of the nucleosome but also change the interaction of DNA with 
the associated histones, thus allowing entry of DNA repair enzymes into chromatin 
and permitting histones to be moved, if needed, to allow for repair [2]. The epigenetic 
modifications, if they remain after DNA repair, also can increase or decrease the likeli-
hood of transcription of a given gene near the site of the repaired DNA damage [10]. 

Acetylation of histone lysines promotes chromatin relaxation to facilitate DNA 
repair [2]. It is also generally associated with a permissive transcriptional state. By 
negating the positive charge associated with the lysine residues on histone tails, 
acetylation promotes an “open” chromatin state. 

2.2 Histone methylation 

Histone lysine methylation is associated with either activation or repression of gene 
expression depending on which residues are methylated and whether one, two or three 
methyl groups are added at that position [11]. For instance enrichment of H3K4Me1 or 
H3K4Me3 at specific gene regions is correlated positively with increased transcription 
levels, whereas enrichment of H3K9Me2, H3K9Me3 or H3K27Me3 is negatively cor-
related with transcription. In response to DNA double-strand breaks, histone methyl 
transferases are recruited to sites of damage where they catalyze trimethylation of H3K9 
and H3K27, thereby repressing transcription in order to facilitate DNA repair [12]. 

2.3 DNA methylation 

An important epigenetic regulator in addition to histone modification is DNA 
methylation. DNA methylation often occurs with the addition of a methyl group to 
the DNA sequence cytosine-phosphate-guanine (CpG) at the C5 position (5mC). 
DNA methylation at gene promoters is generally associated with repression, 
while methylation within genes has been associated with active transcription [7]. 
DNA methyl transferase 1 (DNMT1) binds to sites of oxidative damage formed in 
GC-rich regions of the genome and promotes formation and recruitment of a large 
epigenetic silencing complex. Localization of these epigenetic modifiers to sites of 
oxidative damage in promoter CpG islands results in increased DNA methylation. 

2.4 Noncoding RNA 

Non-coding RNAs provide an additional type of epigenetic regulation. As one 
example, microRNAs are short sequences of RNA (about 22 bases) that exert a 
repressive role on gene expression by binding a target sequence on specific mRNAs 
and blocking translation or inducing degradation. The typical microRNA has about 
400 specific target mRNAs. In one report, specific microRNAs collaborated with 
histone deacetylases and cooperatively regulated several relevant target genes [13]. 

2.5 Epigenetic alterations allow DNA repair 

Figure 2 illustrates some of the actions of epigenetic alterations. Histone 
acetyltransferases add acetyl groups to histone tails to open chromatin structure to 
make DNA damages accessible to repair enzymes. If the acetyl groups remain after 
DNA repair, this allows genes in the area of DNA repair to be switched on. Histone 
deacetylases remove acetyl groups from histone tails to complete DNA repair and 
return chromatin to its condensed state existing before DNA repair. Improper 
actions of histone deacetylases can inappropriately switch genes off. 
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Figure 2. 
A gene located in chromatin, with its DNA wrapped around histones. Open chromatin (top image) has been 
relaxed by acetylation of histone tails. Condensed chromatin (lower image) has been tightened by removal of 
acetyl groups and addition of methylation of histone tails. Symbols include histone acetyltransferase (HAT), 
histone deacetylase (HDAC), and histone methyltransferase (HMT). SWI/SNF (not an epigenetic alteration) 
is a nucleosome-remodeling complex that stimulates gene expression if the epigenetic factors (methylation on 
cytosines in DNA; acetylations and methylations of lysines in histone tails) allow transcription [14]. 

In this figure, histone methyltransferase (HMT) is shown as switching a gene 
off. However, some histone methylations serve to activate genes [11]. 

DNA gene promoters without methylated cytosines are indicated (in Figure 2) 
as allowing transcription (upper image), and DNA gene promoters with methylated 
cytosines (in CpG sites) are indicated as impeding transcription. The green verti-
cal ovals represent transcription factors. They are not epigenetic factors, but also 
regulate gene transcription. 

3. Epigenetic remnants (scars) after DNA repair 

Dabin et al. [15], in an extensive review, noted that after repair of various types 
of DNA damages there are a number of types of epigenetic alterations that could 
potentially remain as scars. These epigenetic alterations include (1) changes in DNA 
methylation, (2) incorporation into nucleosomes of new histones with a pattern of 
acetylations or methylations that differ from that in the histones originally present 
before DNA damage, (3) incorporation into nucleosomes of histone variants such as 
histone H2AZ, (4) altered acetylation or methylation of histone tails, and even (5) 
altered histone density at repair sites. Several illustrative reports showing such scars 
after DNA repair are described below. 

3.1 Homologous recombinational repair (HRR) of double-strand breaks leaves 
epigenetic alterations 

Homologous recombinational repair (HRR) modified the DNA methylation pat-
tern of a repaired DNA double-strand break in a green fluorescent protein (GFP) gene 
inserted into the HeLa cell genome [16]. In different subclones isolated after HRR 
repair events, the repair created either more highly methylated or less highly methyl-
ated cytosines in the GFP gene DNA. HRR also altered local histone H3 methylation, 
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forming H3K9Me2 or H3K9Me3 at repair locations. However, H3K9Me2/3 was selec-
tively retained after HRR only in recombined genes with increased DNA methylation. 

During a 2-week period after repair, some transcription-associated demeth-
ylation of the repaired DNA was promoted by base excision repair enzymes [16]. 
Subsequently, the repaired genes displayed stable but diverse methylation profiles. 
These profiles governed the levels of expression in each clone. These epigenetic 
alterations (scars) were stable over time and were recovered with the same fre-
quency after 3 years of continuous culture. 

3.2 Double-strand break repair by non-homologous end joining leaves epigenetic 
alterations 

DNA repair by non-homologous end joining induces alterations in DNA cytosine 
methylation and these alterations are a source of permanent epigenetic changes [17]. 
In a HeLa cell line containing a green fluorescent protein (GFP) based reporter gene, 
a double-strand break in the gene followed by non-homologous end joining repair 
created two populations of cells, those with increased DNA methylation in the GFP 
gene (identified by a dim green color) and those with decreased DNA methylation in 
the GFP gene (identified by a bright green color). The degree of methylation for each 
population changed somewhat over the subsequent 4 days, but then remained stable 
for 24 days. Even though the HeLa cells were undergoing replication, the epigenetic 
changes produced stable high expressing or low expressing clones. 

3.3 Base excision repair is associated with epigenetic alterations 

The major forms of oxidative DNA damage are non-bulky lesions such as 8-oxo-
2′-deoxyguanosine and thymine glycol that are repaired predominantly by base exci-
sion repair. After oxidative DNA damage was increased in HCT116 cells in culture, 
histone alterations were found in genes with CpG island-containing gene promoters 
and these histone alterations caused decreased transcription [18]. The histone altera-
tions introduced by increased oxidative damage included reduction in H3K4Me3 and 
H4K16Ac and an increase in H3K27Me3. DNA methylation was also increased, but 
primarily in promoters of genes which normally have low basal expression [18]. 

3.4 Histone replacements during DNA repair 

For many types of DNA damage, histones must be removed and replaced during 
the repair of the damaged DNA [19]. Disruption of nucleosomes in human cells 
after introduction of double-strand breaks or UV damage occurs with a drop in 
histone H2B levels and a selective loss of histones H2A and H2B, but not of H3 or H4 
at the site of the damage [19]. After DNA repair, new histones (in addition to some 
pre-existing histones) are deposited at the site of repair. The new histones lack the 
histone post-translational modifications that existed before the repair. The presence 
of the differently modified new histones can specifically mark the domain as a site 
of repair, and remain as a scar [19]. The failure to recycle all of the pre-existing 
histone marks results in alterations in gene expression [15]. 

4. Addiction 

One of the principal features of addiction is its persistence. The persistent behav-
ioral changes appear to be due to long-lasting changes, resulting from epigenetic 
alterations affecting gene expression, within particular regions of the brain [20]. 
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4.1 Alcohol 

Alcohol can be addictive. About 7% of the US population are alcoholics, with 
alcohol use disorder [21]. Many negative physiologic consequences of alcoholism 
are reversible during abstinence. Long-term chronic alcoholics suffer a variety of 
cognitive deficiencies [22]. Multiyear abstinence resolves many neurocognitive 
deficits. One exception is lingering deficits in spatial processing [23]. In addition, 
some frequent long-term consequences are not reversible during abstinence. 
Alcohol craving (compulsive need to consume alcohol) is usually present long-
term among alcoholics [24]. Among 461 individuals who sought help for alcohol 
problems, follow-up was provided for up to 16 years [25]. By 16 years, 54% of those 
who tried to remain abstinent without professional help had relapsed, and 39% 
of those who tried to remain abstinent with help (such as Alcoholics Anonymous) 
had relapsed. 

Long-term, stable consequences of chronic alcohol abuse are thought to be due 
to stable changes of gene expression resulting from epigenetic alterations within 
particular regions of the brain [26–28]. For example, in rats exposed to alcohol for 
up to 5 days, there was an increase in histone 3 lysine 9 acetylation in the pronoci-
ceptin promoter in the brain amygdala complex. This acetylation is an activating 
mark for pronociceptin. The nociceptin/nociceptin opioid receptor system is 
involved in the reinforcing or conditioning effects of alcohol [29]. 

4.2 Cigarette smoking 

Cigarette smokers (about 21% of the US population in 2013) [30] are usually 
addicted to nicotine [31]. This is a strong addiction. The proportion of smokers who 
reported having seriously tried to quit and who managed to quit for 6 months or 
more was less than 10% [32]. 

After 7 days of nicotine treatment of mice, the post-translational modifica-
tions consisting of acetylation of both histone H3 and histone H4 was increased at 
the FosB promoter in the nucleus accumbens of the brain, causing a 61% increase 
in FosB expression [33]. This also increases expression of the splice variant Delta 
FosB. In the nucleus accumbens of the brain, Delta FosB functions as a “sustained 
molecular switch” and “master control protein” in the development of an addiction 
[34, 35]. Similarly, after 15 days of nicotine treatment of rats, the post-translational 
modification consisting of threefold increased acetylation of histone H4 occurs at 
the promoter of the dopamine D1 receptor gene in the prefrontal cortex of the rats. 
This caused increased dopamine release in the prefrontal cortex reward-related 
brain region, and such increased dopamine release is recognized as an important 
factor for addiction [36]. 

4.3 Cocaine 

Cocaine addiction occurs in about 0.5% of the US population. In humans 
treated for cocaine addiction, the relapse rate after 5 years was 25% [37]. Repeated 
cocaine administration in mice induces post-translational modifications including 
hyperacetylation of histone 3 (H3) or histone 4 (H4) at 1696 genes in one brain 
reward region, the nucleus accumbens, and deacetylation at 206 genes [7, 38]. At 
least 45 genes, shown in previous studies to be upregulated in the brain nucleus 
accumbens of mice after chronic cocaine exposure, were found to be associated 
with post-translational hyperacetylation of histone H3 or histone H4. Many of these 
individual genes are directly related to aspects of addiction associated with cocaine 
exposure [38]. 
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4.4 Addictive substances can cause DNA damage 

In rodent models, many addictive substances cause DNA damage in the brain. 
For example, alcohol, through its metabolic product acetaldehyde, induces double-
strand breaks in DNA in the mouse brain [39]. 

Nicotine from cigarette smoke also very likely causes DNA damage in the 
brain. Nicotine reaches the brain 10–20 seconds after a puff of smoke. The level of 
nicotine in the brain is 75–80% as high as in the blood or the liver [40]. E-cigarette 
smoke is composed primarily of nicotine vapors. Nicotine from E-cigarettes, 
applied to mice (with the dose and duration equivalent in human terms to light 
E-cigarette smoking for 10 years), caused DNA damages including mutagenic 
O6-methyl-deoxyguanosines and γ-hydroxy-1,N2-propano-deoxyguanosines in 
the lung, bladder, and heart [41]. These same damages are likely to occur as well in 
neurons upon exposure to nicotine. 

Cocaine [42] and methamphetamine [43, 44] each also cause DNA damage in 
the brain. 

After repair at the sites of DNA damages caused by drugs of addiction, the 
epigenome may not return entirely to their pre-damage states. Some of the meth-
ylations of DNA and/or the acetylations or methylations of histones at the sites of 
DNA repair may remain and thus become epigenetic scars on chromatin [15]. Such 
epigenetic scars likely contribute to the persistent epigenetic alterations found in 
addiction. 

5. Neurodegenerative diseases with deficient DNA repair 

DNA repair processes in mammalian cells normally involve extensive chromatin 
remodeling. This remodeling involves epigenetic modifications of chromatin that 
are usually transient, but may persist. When a protein necessary for proper DNA 
repair is mutationally defective, epigenetic alterations that deviate from a normal 
functional pattern can be introduced. In a number of neurodegenerative diseases, 
such epigenetic alterations appear to significantly underlie the disease phenotype. 

We describe below four neurodegenerative diseases, ataxia telangiectasia, 
Huntington’s disease, Aicardi-Goutières syndrome and Cockayne syndrome that 
have inherited genetic deficiencies due to mutations in genes necessary for DNA 
repair. We briefly summarize for each disease, the notable neurodegenerative 
features of the disease, the DNA repair processes that are defective, and the accom-
panying epigenetic alterations that likely have a role in the etiology of the disease. 
On the basis of the evidence reviewed, it appears that the proper functioning of the 
nervous system depends on DNA repair processes that not only restore damaged 
DNA sequence information, but also promote normal gene expression through the 
maintenance of an appropriate pattern of epigenetic markers. 

5.1 Ataxia telangiectasia (AT) 

AT is a multisystem disease characterized by neurodegeneration in the central 
nervous system. Certain regions of the brain including the cerebellum, are adversely 
affected in AT resulting in difficulty with movement and coordination. There is also 
an association with microcephaly. AT is inherited as an autosomal recessive trait, and 
is caused by mutation of the gene AT mutated (ATM) that encodes a serine/threo-
nine protein kinase. The wild-type ATM protein has a key role in the DNA damage 
response. ATM is part of a molecular complex that signals the presence of oxidative 
DNA damage, including double-strand breaks, and facilitates subsequent repair [45]. 

112 



 
 

 
 

 

 
 

 
  

 
 

  
 

 
 

 
 

 
 

 

   
 

 

 
 

 

 

 

 
  

 
 

The Role of DNA Repair and the Epigenetic Markers Left after Repair in Neurologic Functions… 
DOI: http://dx.doi.org/10.5772/intechopen.83477 

ATM protein is employed in chromatin remodeling and in epigenetic alterations 
that are required for repairing DNA double-strand breaks [45]. ATM mutation 
causes defects in epigenetic regulation that likely contribute to the rapid postnatal 
degeneration of the cerebellum that underlies the progressive ataxia observed in 
AT [45]. AT is associated with histone acetylation alterations, including significant 
decreases in histone H3 and H4 acetylation [46]. ATM regulates neuron specific epi-
genetic alterations involving histone deacetylase-4 [45]. In ATM mutant neurons, 
misallocation of histone deacetylase-4 represses transcription of genes important in 
neuronal function and synaptic maintenance [45]. 

5.2 Huntington’s disease (HD) 

HD typically occurs in midlife. The symptoms include progressive movement 
disorder, cognitive dysfunction and psychiatric impairment. HD is inherited in an 
autosomal dominant manner. HD results from an unstable expansion of CAG repeat 
sequences in exon 1 of the huntingtin gene (HTT). Several lines of evidence link the 
HTT protein to repair of DNA damage [47]. HTT is a scaffolding protein that directly 
participates in oxidative DNA damage repair [48]. The ATM protein recruits HTT to 
sites of DNA damage. HTT co-localizes with, and acts as a scaffold for, proteins of the 
DNA damage response pathway in response to oxidative stress. The fibroblasts of HD 
patients with expanded CAG repeats have deficient oxidative damage repair [48]. 

Impaired DNA repair in HD also appears to cause deleterious epigenetic alterations 
that are linked to transcriptional dysregulation. Individuals with HD experience accel-
erated epigenetic aging of the brain, particularly in the frontal lobe, cingulate gyrus 
and the parietal lobe. This process is associated with substantial changes in brain DNA 
methylation levels [49]. Also post-translational modifications of histone proteins are 
significantly altered in HD patients as well as in HD cellular and animal models [50]. 

5.3 Aicardi-Goutières syndrome (AGS) 

AGS is characterized by early onset, often in early infancy. Features of AGS 
include neurological dysfunction, psychomotor retardation, seizures, and micro-
cephaly [51]. AGS is an inherited disease and most cases are inherited in an autoso-
mal recessive pattern. AGS arises from mutations in genes encoding proteins TREX 1 
(AGS1), RNase H2 (AGS2, 3 and 4) and SAMHD1 (AGS5) [51]. The incorporation 
of ribonucleotide triphosphates (rNTPs) into DNA is perhaps the most common 
type of endogenous DNA damage encountered in proliferating cells [52]. Removal 
of rNTPs incorporated into DNA is referred to as rNTP excision repair. Key players 
in rNTP excision repair are TREX1 and RNase H2 [52]. RNase H2 is the predomi-
nant nuclear enzyme to hydrolyze the RNA strand of RNA/DNA hybrids [53]. 

TREX1, RNASEH2 and SAMHD1 mutations in AGS cells cause common molecular 
abnormalities including increased levels of RNA:DNA hybrid species and genome-
wide DNA hypomethylation, a substantial epigenetic perturbance [51]. AGS2 and 
AGS4 mutant cells display about a 20% reduction in genomic methylation levels over-
all, and this reduction is spread along the length of entire chromosomes impacting 
nearly all compartments including genic, intergenic unique and repeat regions [51]. 

5.4. Cockayne syndrome (CS) 

Due to impaired neurological development, individuals with CS are characteristi-
cally mentally retarded and have microcephaly. CS is caused by mutations in the CSA 
and CSB genes. CS is inherited as an autosomal recessive trait. Transcription of DNA 
can be inhibited by DNA damage, and restoration of transcription requires removal 
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of blocking damages by a sub-pathway of nucleotide excision repair that specifically 
removes transcription-blocking DNA damages. This sub-pathway is referred to as 
transcription-coupled DNA repair (TCR). In mammals, TCR depends on the CSA 
and CSB proteins. More than 70% of CS syndrome patients have a mutation in the 
CSB gene. CSA and CSB proteins regulate recruitment of chromatin remodeling and 
repair factors to stalled RNA polymerase at sites of DNA damage [54, 55]. 

Among the proteins recruited by CSA and CSB are nucleotide excision repair 
proteins and histone acetyltransferase, an enzyme that catalyzes chromatin remod-
eling and epigenetic alteration [54]. CSB can slide histones along DNA and histone 
chaperone proteins that accept and donate histones can greatly facilitate this process 
[55]. Nucleosome remodeling by CSB is important for TCR, and inability to effi-
ciently mobilize nucleosomes appears to contribute to the underlying mechanism 
of CS [55]. The chromatin remodeling activity of CSB appears to create an epigen-
etic landscape that permits more efficient DNA repair or facilitates transcription 
resumption after repair is completed [56]. 

5.5 Perspective on the role of DNA repair in neurodegeneration 

The neurodegenerative diseases AT, HD, AGS and CS are due to mutation in 
genes that encode proteins employed in DNA repair. Inadequate DNA repair can lead 
directly to cell death and neuron depletion that may be reflected in microcephaly, as 
is seen in AT, AGS and CS. The defects in DNA repair also cause disruptions in the 
pattern of epigenetic alteration required for normal neuronal function. These epi-
genetic alterations likely underlie characteristic features of the disease phenotype. 
Thus it appears that important functions of the nervous system, including those 
involved in various aspects of cognition and motor function, depend on the role of 
intact DNA repair processes in maintaining normal patterns of epigenetic markers. 

5.6 Other neurodegenerative diseases deficient in DNA repair 

In addition to the four neurodegenerative diseases discussed above, there is also 
evidence for defective DNA repair in the neurodegenerative diseases amyotrophic 
lateral sclerosis [57], fragile X syndrome [58], Friedrich’s ataxia [59], spinocerebel-
lar ataxia type 1 [60], trichothiodystrophy [61], and xeroderma pigmentosum [62]. 

Amyotrophic lateral sclerosis is causally linked to mutations in the gene FUS 
[57]. ALS patients with FUS mutations have increased neuronal DNA damage. FUS 
protein functions in the DNA damage response including recruitment to double-
strand breaks and homologous recombinational DNA repair. FUS protein also 
directly interacts with histone deacetylase 1 in response to DNA damage, and this 
interaction is necessary for efficient DNA repair [57]. 

Fragile X syndrome is a common form of inherited mental retardation. The frag-
ile X mental retardation protein FMRP is a chromatin-binding protein that func-
tions in the DNA damage response, likely in DNA repair [58]. Fragile X syndrome 
is caused by loss of expression of the FMR1 gene, most often due to an expansion of 
a CGG repeat in the first exon of FMR1. The repeat expansion results in abnormal 
methylation of the promoter region which leads to transcriptional silencing of the 
FMR1 gene [63]. 

Friedreich ataxia, a progressive neurodegenerative disease, is caused by defi-
cient frataxin protein resulting from downregulation of the FXN gene. Frataxin is 
employed in the repair of DNA double-strand breaks [59]. Most individuals with 
Friedrich ataxia have a homozygous mutation consisting of a GAA trinucleotide 
repeat expansion within the first intron of the FXN gene. This expansion itself 
may lead to downregulation of the FXN gene. In addition, there is a repressive 
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heterochromatin effect around the FXN gene caused by the expanded GAA repeats, 
consisting of high levels histone methylation of H3K9 and H3K27 [64]. 

Spinocerebellar ataxia type 1 (SCA1) is an autosomal dominant neurodegenera-
tive disease characterized by progressive motor incoordination. SCA1 results from 
mutation in the ATXN1 gene that leads to a pathogenic glutamine-repeat expansion 
in the protein ataxin-1 (ATXN1). The multifunctional protein TERA/VCP/p97 
acts in DNA damage repair. Glutamine-repeat expansion mutant proteins such as 
mutant ATXN1 impair accumulation and function of TERA/VCP/p67 leading to 
an increase in unrepaired DNA double-strand breaks [60]. Also mutant ATXN1 
represses gene transcription by decreasing histone acetylation [65]. 

Trichothiodystrophy (TTD) is an autosomal recessive disorder with a range of 
clinical neurodevelopmental features and often photosensitivity. All photosensi-
tive TTD individuals have a mutation in the XPB, XPD or TTDA genes that encode 
subunits of the dual functional repair/transcription factor IIH (TFIIH) [61]. These 
individuals deficient for TFIIH are defective in nucleotide excision repair, a process 
that repairs transcription-blocking DNA damages, including UV induced DNA 
damages, thus explaining their photosensitivity. Induction of DNA damage in 
cells with XPB or XPD mutations that cause TTD results in reduced transient DNA 
strand breaks that are intermediates during DNA repair [66]. Also methylation of 
histone H3 (H3K9Me3) was reduced in an evaluated model promoter region [66]. 

Xeroderma pigmentosum (XP) is an autosomal recessive genetic disorder. XP has 
characteristic neurological manifestations, but the most prominent feature of the 
condition is sensitivity to sunlight resulting in a high predisposition to UV-induced 
skin cancer. Seven different complementation groups (genes) XPA, XPB, XPC, 
XPD, XPE, XPF and XPG encode proteins employed in nucleotide excision repair, a 
process that repairs bulky DNA damages including damages caused by UV-light [62]. 
XPF and XPG proteins are endonucleases that also trigger chromatin looping and 
DNA demethylation that promote accurate expression of activated genes [67]. 

6. Mental activity is associated with DNA damage and repair in the brain 

An easy type of DNA damage to measure is the double-strand break. When a dou-
ble-strand break occurs there is a rapid effect on particular histones near the break. A 
variant histone, H2AX, is sometimes present in histone cores, and it constitutes about 
2–25% of the H2A histones in mammalian chromatin [68]. After a double-strand 
break, H2AX histones near the break are phosphorylated by the kinases ATM, ATR 
and DNA-PK [69], allowing formation of H2AX phosphorylated on serine 139 near 
the break. This histone is then designated γH2AX. γH2AX can be detected as soon 
as 20 seconds after irradiation of cells (with DNA double-strand break formation), 
and half maximum accumulation of γH2AX occurs in 1 minute [68]. Chromatin with 
phosphorylated γH2AX extends to about a million base pairs on each side of a DNA 
double-strand break [68]. It is easy to detect γH2AX by immunohistochemistry, and 
these large segments of chromatin with γH2AX are called γH2AX foci. 

Learning and new memories occur when mice explore a new, strange environ-
ment. This is a low level stimulation. Exploration of a novel environment increased 
the number of neurons with double-strand breaks in neuronal DNA as measured 
by γH2AX foci [70]. This occurs in different brain regions but particularly in the 
dentate gyrus, which is involved in spatial learning and memory. Within 24 hours 
of break formation, DNA repair occurs with removal of the breaks [70]. When 
double-strand breaks in this situation were also measured by the comet assay 
(another simple assay), roughly 30–40% of dentate gyrus nuclei had comet tails 
indicating double-strand breaks in the nuclear DNA [70]. 
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6.1 Visual stimulation 

Another neuronal activity also caused double-strand breaks. Exposure of anes-
thetized mice to visual stimuli activated the primary visual cortex (V1) of the brain. 
One eye was exposed to visual stimuli for 15 minutes, while the other was shielded 
from light. One hour after the visual stimulation began, the number of cells with 
γH2AX foci in the stimulated contralateral V1 was roughly twice as high as that in 
the unstimulated ipsilateral V1 [70]. 

6.2 Optogenetic stimulation 

Optogenetic stimulation of a mouse striatum brain region also caused DNA 
double-strand breaks [70]. Transgenic mice expressing Cre-recombinase in medium 
spiny neurons of the dorsomedial striatum were used. The Cre-recombinase gene 
inserted into DNA of the striatum neurons in these mice provides a topoisomerase 
I like mechanism to carry out site-specific recombination events. Using this system, 
a viral vector was infused into the striatum, carrying a genetic segment coding for a 
light sensitive ChR2 protein. The ChR2 gene frequently recombined into the mouse 
dorsomedial striatum DNA. A glass fiber was then implanted close to the viral 
injection site. Two weeks later, awake mice were stimulated by light through the glass 
fiber. This caused neuronal activity in the dorsomedial striatum, resulting in behav-
ioral ipsiversive rotations in mice (mice turning in a circle). The mice were then 
terminated and the mouse brains examined. The illuminated striata contained many 
more cells with γH2AX foci than the non-illuminated contralateral striata [70]. 

6.3 Non-homologous end joining (NHEJ) repair required for long-term memory 
retention 

One form of long-term memory, through associative learning, is contextual fear 
conditioning [71]. This fear conditioning occurs, for instance, when a rodent is 
placed in a novel environment (a new context) and is then subjected to an electric 
shock (e.g. a footshock). This produces robust fear learning, shown by a strong fear 
response, when the rodent is placed in that context again. Contextual fear condi-
tioning occurs very rapidly (can occur with a single event) and has a lasting effect. 

Madabhushi et al. [72] subjected wild-type C57BL/6 mice to a training paradigm 
for contextual fear conditioning, following which they prepared hippocampal 
lysates and measured γH2AX levels (as a measure of double-strand breaks in DNA). 
Elevated γH2AX levels were detectable in hippocampal lysates within 15 minutes 
after exposure to the fear-conditioning paradigm. 

NHEJ, which repairs double-strand breaks in DNA, appears to be needed 
specifically for consolidation of memory into long-term memory. Contextual fear 
conditioning in mice increased NHEJ repair activity in the hippocampus brain 
region measured at 10 and 60 minutes after training [73]. The hippocampus is 
important in forming memories [74]. 

When NHEJ repair was active, memories were demonstrated in fear-conditioned 
mice at 6 and 24 hours after training. Ara-C (cytosine arabinoside) interferes with 
DNA synthesis. Injecting animals systemically with ara-C 1 hour before exposing 
them to the conditioning inhibited NHEJ repair [68]. If NHEJ repair was blocked 
before fear conditioning, memories of fear conditioning were substantially dimin-
ished at the 6- and 24-hour time periods tested. Thus it appears that NHEJ repair is 
required for memory formation. Other cognitive elements were not blocked by ara-
C. Mice given ara-C and then subjected to contextual fear conditioning maintained 
their short-term memory (tested at 30 seconds after training) and exploratory 

116 



  

    

 
 

  
 

 
 

 

 

 

 
 

  

 
      

 
 

   
 

 
  

 
 

  
 
 

  
  

  

 

The Role of DNA Repair and the Epigenetic Markers Left after Repair in Neurologic Functions… 
DOI: http://dx.doi.org/10.5772/intechopen.83477 

behavior in an open field 24 hours after training. Treatment with ara-C also did not 
cause general malaise, motor in-coordination, sedation, or anxiety. 

7. Long-term memory depends on epigenetic alterations 

7.1 Contextual fear memory conditioning causes changes in DNA methylation in 
brain neurons 

Halder et al. [75], in a mouse study, evaluated differently expressed genes and 
short differentially methylated regions in neurons of the anterior cingulate cortex, 
a brain region important for associative memory acquisition and maintenance of 
long-term memory. In the anterior cingulate cortex at 1 hour after contextual fear 
conditioning, there were 6250 differentially methylated genes with 46,395 differ-
ently methylated short regions (700 base pair regions). (Frequently, multiple short 
differentially methylated regions occurred in a differentially methylated gene.) At 
4 weeks after training 1223 differentially methylated genes and 5018 differently 
methylated short regions persisted. In addition, at 4 weeks after training they found 
1700 differentially expressed genes in the anterior cingulate cortex. These findings 
suggest that long-term memory (4 weeks) is associated with differential methyla-
tion of DNA and altered expression of genes. 

Halder et al. [75] also evaluated differentially methylated regions and differently 
expressed genes in the hippocampal CA1 region, a region that is crucial for short-
term memory formation during contextual fear conditioning. They found that, 
in contrast to the anterior cingulate cortex, in the hippocampus there were 1619 
differentially methylated regions after 1 hour, but these changes did not persist, and 
almost none were present after 4 weeks. 

Also studying the hippocampus, Duke et al. [76], working with rats, found that at 
24 hours after contextual fear conditioning there were more than 5000 differentially 
methylated regions (500 base pair short regions), but less than 20 differentially meth-
ylated regions after context change alone. Hypermethylated differentially methylated 
regions overlapping differentially expressed genes were associated with decreased gene 
expression, consistent with the concept that cytosine methylation is often a mecha-
nism for suppressing transcription. Also at 24 hours after contextual fear conditioning, 
there were more than 2000 differentially methylated regions that were associated with 
1048 genes having down-regulated expression and 564 genes having up-regulated 
expression (usually known to be associated with hypomethylated regions). At 24 hours 
after training, 9.17% of the genes in the rat genome of hippocampus neurons were 
differentially methylated. Gene Ontology term analysis was performed, and differen-
tially expressed gene enrichment analysis revealed that many of the genes involved in 
synaptic functions after fear conditioning were up-regulated. 

7.2 The role of base excision repair in memory consolidation 

In both the studies of Halder et al. [75] and Duke [76], above, there were on the 
order of a thousand demethylations of cytosines in neuron genomes during memory 
consolidation in the brain after contextual fear conditioning. The two likely processes 
of demethylating cytosine each depend on base excision repair, as shown in Figure 3. 
These processes were reviewed by Bayraktar and Kreutz [77]. There is considerable 
evidence for the left hand process illustrated in Figure 3. In this process there are two 
or more fast oxidations by one of the ten-eleven translocation methylcytosine dioxy-
genases (TET1, TET2, TET3), first altering 5-methylcytosine (5mC) to 5-hydroxy-
methylcytosine (5hmC), and then producing 5-formylcytosine (5fC) followed by 
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Figure 3. 
Demethylation of 5-methylcytosine (5mC) to cytosine (Cyt) in DNA depends on base excision repair 
(BER) as the final step. In initial steps, the ten-eleven translocation methylcytosine dioxygenase family 
of enzymes (TET1, TET2, and TET3) each may catalyze the conversion of 5-methylcytosine (5mC) to 
5-hydroxymethylcytosine (5hmC) and further steps form 5-formylcytosine (5fC) and 5-carboxylcytosine 
(5caC). 5fC and 5caC can be excised from DNA by thymine DNA glycosylase (TDG) to form an apyrimidinic 
site (AP site). AID/APOBEC is a family of cytidine deaminases that can oxidatively deaminate 5mC to 
5-hydroxymethyl uracil (5hmU) or 5mC to thymine (Thy). 5hmU can be excised from DNA by TDG, 
methyl-CpG-binding domain protein 4 (MBD4), endonuclease VIII-like 1 (NEIL1) or single-strand selective 
monofunctional uracil DNA glycosylase (SMUG1). 

5-carboxylcytosine (5caC). Both 5fC and 5caC can be excised by thymine DNA 
glycosylase (TDG), generating an apyrimidinic (AP) site, which is repaired by base 
excision repair to place cytosine (cyt) in the DNA opposite guanine. However there 
is some indication that a cytidine deaminase (AID/APOBEC) enzyme can carry out 
oxidative deamination of 5mC to 5-hydroxymethyluracil, which is then excised by one 
of the four enzymes shown, to form an AP site. Alternatively, a cytidine deaminase 
(AID/APOBEC) may carry out an oxidative deamination of 5mC by to thymine, and 
the mispair of thymine with guanine is then repaired by base excision repair to gener-
ate cytosine paired with guanine in DNA. 

Zhang et al. [78] generated homozygous mutant mice deficient in TET1 catalytic 
activity. These mice were viable and fertile, with no discernible morphological or 
growth abnormality. The Tet1 deficient mice would be expected to have reduced abil-
ity to convert 5mC to cytosine by the TET/base excision repair-dependent pathway. 
When examined in neural progenitor cells, 478 genes showed elevated promoter 
DNA methylation levels compared to the wild-type control, while only 32 genes had 
lower DNA methylation. There was a link between the altered DNA methylation 
pattern and transcriptional activity. In the neural progenitor cells of TET1 mutant 
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mice 1267 genes were down-regulated with respect to transcription and 498 were 
up-regulated compared to wild-type. In particular, with TET1 mutant mice, 39 genes 
were found to be both hyper-methylated and down-regulated in neural progenitor 
cells isolated from the dentate gyrus (part of the brain hippocampus). Four-month-
old wild-type and TET1 knockout mice were tested in the Morris water maze. The 
TET1 deficient mice, with reduced ability to use a pathway dependent on base exci-
sion repair, showed impairment in spatial learning and short-term memory. 

8. Perspective on the role of DNA repair in cognitive functions 

The evidence discussed above in Section 6 clearly indicated that neuronal activity 
causes DNA double-strand breaks, especially in early response genes after neuronal 
stimulation. NHEJ repair is required to repair these breaks, and NHEJ repair is 
required for long-term memory formation. As discussed in Section 7, long-term 
memory formation depends on large numbers of epigenetic alterations including 
methylations and demethylations of cytosine in DNA. Although it is known that 
repair of double-strand breaks by NHEJ repair can leave epigenetic alterations 
(scars) (including alterations in the pattern of cytosine methylation) after the repair 
occurs, it is not known whether the NHEJ repair “scars” are a major portion of these 
epigenetic alterations. About a thousand demethylations occur during long-term 
memory formation in rats and mice. Base excision repair is central to demethylation 
of 5mC to cytosine. A deficiency in the TET/base excision repair pathway causes 
diminished epigenetic demethylations of DNA as well as alterations in memory. 

Overall, memory and learning depend on epigenetic alterations. Two forms of DNA 
repair, NHEJ repair and base excision repair, have essential roles in cognitive functions, 
and at least base excision repair has a direct role in regulating one major type of epigen-
etic alteration, the demethylation of 5mC to cytosine in DNA during memory formation. 

9. Conclusion 

In eukaryotic cell nuclei, DNA is associated with histone proteins in highly 
organized and compact structures to form chromatin. When the DNA is damaged, 
repair enzymes need to gain access to the damage, and this requires modification of 
the compact structure. These modifications, termed epigenetic alterations, include 
acetylation of histones, methylation of histones and methylation of CpG sequences 
in DNA. Such epigenetic alterations can allow access of repair enzymes to sites of 
DNA damage while not disturbing the DNA base-pair sequence. 

DNA repair processes are characteristically initiated rapidly and completed in 
a short period of minutes to hours, but epigenetic alterations introduced by such 
repair may be retained after repair is completed. A type of epigenetic alteration 
that can last after repair of a double-strand break is the DNA methylation of CpG 
islands in gene promoters. Such epigenetic alterations can silence gene expression. 
Also, several types of oxidative DNA damage are removed by base excision repair. 
Base excision repair is accompanied by epigenetic alterations of histones that are 
associated with genes containing CpG islands in their promoters. These epigenetic 
alterations can cause decreased transcription of the genes. 

The persistent behavioral changes that are a prominent feature of addictions 
appear to be the result of epigenetic alterations that affect gene expression in 
particular regions of the brain. Specific epigenetic alterations have been found 
to be associated with addiction to alcohol, nicotine and cocaine. The epigenetic 
alterations that occur in those particular regions of the brain are considered to be 
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involved with each of the addictions. Nicotine and cocaine, and alcohol through its 
metabolic product acetaldehyde, cause DNA damage in the brain. Such DNA dam-
age is subject to DNA repair processes that likely cause at least a portion of the long 
lasting epigenetic alterations found in the brains of addicted individuals. 

In humans and other mammals inherited mutations in genes necessary for DNA 
repair can cause neurodegenerative diseases. Examples of such diseases are ataxia 
telangiectasia, Huntington’s disease, Aicardi-Goutières syndrome and Cockayne syn-
drome. The deficiencies in DNA repair in these diseases cause disruptions in the pat-
tern of epigenetic alterations required for normal neuronal function. These epigenetic 
alterations likely underlie key features of the neurodegenerative disease phenotypes. 

Learning and new memories occur when mice explore a new, strange environ-
ment. Exploration of a novel environment increases the number of neurons with 
double-strand breaks in neuronal DNA, particularly in the dentate gyrus, which is 
involved in spatial learning and memory. Another neuronal activity, visual stimula-
tion, was found to cause DNA double-strand breaks. Direct stimulation of the stria-
tum region of the brain also caused DNA double-strand breaks. Memory retention of 
context associated electric shock events in mice involved induction of double-strand 
breaks and their repair by the process of non-homologous end joining in the hippo-
campus, a region of the brain known to be important in forming memories. Inhibition 
of non-homologous end joining substantially diminished memory retention. 

The anterior cingulate cortex is a brain region important for long-term memory 
formation. Long-term memory (4 weeks in mice) subsequent to a contextual 
conditioning experience was found to be associated with substantial retention of a 
differential DNA methylation and gene expression pattern in the anterior cingulate 
cortex. In addition, differential DNA methylation in the hippocampus appears to be 
associated with short-term memory formation. Together, long-term and short-term 
memory formations are associated with on the order of a thousand demethylations 
of cytosines in neuron genomes during memory consolidation. Demethylation of 
5-methylcytosine to cytosine in DNA depends on base excision repair. 

In general, the evidence indicates that, in mammals, DNA repair processes can 
cause epigenetic alterations in chromatin, some of which are long lasting. These epi-
genetic alterations can have negative consequences on neurological function such 
as in certain addictions and neurodegenerative diseases. In addition, epigenetic 
alterations resulting from DNA repair processes, such as non-homologous end join-
ing and base excision repair, appear to have a positive role in facilitating adaptive 
cognitive capabilities that include memory and learning. 

Author details 

Carol Bernstein* and Harris Bernstein 
Department of Cellular and Molecular Medicine, College of Medicine, University of 
Arizona, Tucson, Arizona, USA 

*Address all correspondence to: bernstein324@yahoo.com 

© 2018 The Author(s). Licensee IntechOpen. This chapter is distributed under the terms 
of the Creative Commons Attribution License (http://creativecommons.org/licenses/ 
by/3.0), which permits unrestricted use, distribution, and reproduction in any medium, 
provided the original work is properly cited. 

120 

http://creativecommons.org/licenses
mailto:bernstein324@yahoo.com


 
 

 
 

 

 
  

 

 

  
 

 

 
 

 

   
 

  
 

 

 
 

 

  
    

  
 

 

   

  
 

 

 
 

 

 

   
 

  
 

 
 

  
 

The Role of DNA Repair and the Epigenetic Markers Left after Repair in Neurologic Functions… 
DOI: http://dx.doi.org/10.5772/intechopen.83477 

References 

[1] Pryor JM, Conlin MP, Carvajal-
Garcia J, Luedeman ME, Luthman 
AJ, Small GW, et al. Ribonucleotide 
incorporation enables repair 
of chromosome breaks by 
nonhomologous end joining. Science. 
2018;361(6407):1126-1129. DOI: 
10.1126/science.aat2477 

[2] Dhar S, Gursoy-Yuzugullu O, 
Parasuram R, Price BD. The tale of a 
tail: Histone H4 acetylation and the 
repair of DNA breaks. Philosophical 
Transactions of the Royal Society of 
London. Series B, Biological Sciences. 
2017;372(1731). pii: 20160284). DOI: 
10.1098/rstb.2016.0284 

[3] Raichle ME, Gusnard DA. Appraising 
the brain's energy budget. Proceedings 
of the National Academy of Sciences 
of the United States of America. 
2002;99(16):10237-10239. DOI: 10.1073/ 
pnas.172399499 

[4] Zovkic JB, Guzman-Karisson MC, 
Sweatt JD. Epigenetic regulation of 
memory formation and maintenance. 
Learning & Memory. 2013;20(2):61-74. 
DOI: 10.1101/lm.026575.112 

[5] Bird A. DNA methylation patterns 
and epigenetic memory. Genes & 
Development. 2002;16(1):6-21. DOI: 
10.1101/gad.947102 

[6] Budhavarapu VN, Chavez M, Tyler JK. 
How is epigenetic information 
maintained through DNA replication? 
Epigenetics & Chromatin. 2013;6(1):32. 
DOI: 10.1186/1756-8935-6-32 

[7] Walker DM, Nestler EJ. 
Neuroepigenetics and addiction. 
Handbook of Clinical Neurology. 
2018;148:747-765. DOI: 10.1016/ 
B978-0-444-64076-5.00048-X 

[8] Ding N, Maiuri AR, O'Hagan HM. 
The emerging role of epigenetic 
modifiers in repair of DNA damage 

associated with chronic inflammatory 
diseases. Mutation Research—Reviews 
in Mutation Research. Online Sept 
28, 2017. In Press. DOI: 10.1016/j. 
mrrev.2017.09.005 

[9] Polo SE, Almouzni G. Chromatin 
dynamics after DNA damage: The legacy 
of the access-repair-restore model. DNA 
Repair (Amst). 2015;36:114-121. DOI: 
10.1016/j.dnarep.2015.09.014 

[10] Eberharter A, Becker PB. Histone 
acetylation: A switch between repressive 
and permissive chromatin. Second in 
review series on chromatin dynamics. 
EMBO Reports. 2002;3(3):224-229. DOI: 
10.1093/embo-reports/kvf053 

[11] Black JC, Van Rechem C, Whetstine JR. 
Histone lysine methylation dynamics: 
Establishment, regulation, and 
biological impact. Molecular Cell. 
2012;48(4):491-507. DOI: 10.1016/j. 
molcel.2012.11.006 

[12] Wei S, Li C, Yin Z, Wen J, Meng H, 
Xue L, et al. Histone methylation in 
DNA repair and clinical practice: New 
findings during the past 5-years. Journal 
of Cancer. 2018;9(12):2072-2081. DOI: 
10.7150/jca.23427 

[13] Swierczynski S, Klieser E, Illig R, 
Alinger-Scharinger B, Kiesslich T, 
Neureiter D. Histone deacetylation 
meets miRNA: Epigenetics and post-
transcriptional regulation in cancer and 
chronic diseases. Expert Opinion on 
Biological Therapy. 2015;15(5):651-664. 
DOI: 10.1517/14712598.2015.1025047 

[14] Wikipedia article “Chromatin 
remodeling” figure is adapted from 
Luong, P. Basic Principles of Genetics, 
Connexions Web site (2009) under a 
Creative Commons Attribution License 
(CC-BY 3.0). Further modification 
of the figure is performed by the 
image uploader with reference from 
Davis PK, Brackmann RK. Chromatin 

121 

http://dx.doi.org/10.5772/intechopen.83477


 
 

 

 

 
 

 

  
 

 
 

 
 

 

  
 

 
 

 
 

 

  
 

 
 

 
 

  

  
 

 
 

 
 

 

  
 

 
 

 
 

  

 

 
 

 

  

 
 

 

 
     

DNA Repair - An Update 

remodeling and cancer. Cancer Biology 
& Therapy. 2003;2:22. Image labeled for 
non-commercial reuse, licensed under 
the Creative Commons Attribution 3.0 
License 

[15] Dabin J, Fortuny A, Polo SE. 
Epigenome maintenance in response 
to DNA damage. Molecular Cell. 
2016;62(5):712-727. DOI: 10.1016/j. 
molcel.2016.04.006 

[16] Russo G, Landi R, Pezone A, 
Morano A, Zuchegna C, Romano A, 
et al. DNA damage and repair modify 
DNA methylation and chromatin 
domain of the targeted locus: 
Mechanism of allele methylation 
polymorphism. Scientific Reports. 
2016;6:33222. DOI: 10.1038/srep33222 

[17] Allen B, Pezone A, Porcellini 
A, Muller MT, Masternak MM. 
Non-homologous end joining 
induced alterations in DNA 
methylation: A source of permanent 
epigenetic change. Oncotarget. 
2017;8(25):40359-40372. DOI: 
10.18632/oncotarget.16122 

[18] O'Hagan HM, Wang W, Sen 
S, Destefano Shields C, Lee SS, 
Zhang YW, et al. Oxidative damage 
targets complexes containing DNA 
methyltransferases, SIRT1, and 
polycomb members to promoter CpG 
Islands. Cancer Cell. 2011;20(5): 
606-619. DOI: 10.1016/j. 
ccr.2011.09.012 

[19] Hauer MH, Gasser SM. Chromatin 
and nucleosome dynamics in 
DNA damage and repair. Genes & 
Development. 2017;31(22):2204-2221. 
DOI: 10.1101/gad.307702.117 

[20] Nestler EJ, Barrot M, Self DW. 
DeltaFosB: A sustained molecular 
switch for addiction. Proceedings of 
the National Academy of Sciences 
of the United States of America. 
2001;98(20):11042-11046. DOI: 
10.1073/pnas.191352698 

[21] Available from: https://www. 
niaaa.nih.gov/alcohol-health/ 
overview-alcohol-consumption/ 
alcohol-facts-and-statistics 

[22] Oscar-Berman M, Valmas 
MM, Sawyer KS, Ruiz SM, 
Luhar RB, Gravitz ZR. Profiles 
of impaired, spared, and 
recovered neuropsychologic 
processes in alcoholism. 
Handbook of Clinical Neurology. 
2014;125:183-210. DOI: 10.1016/ 
B978-0-444-62619-6.00012-4 

[23] Fein G, Torres J, Price LJ, Di 
Sclafani V. Cognitive performance 
in long-term abstinent alcoholic 
individuals. Alcoholism, Clinical 
and Experimental Research. 
2006;30(9):1538-1544. DOI: 
10.1111/j.1530-0277.2006.00185.x 

[24] Bottlender M, Soyka M. Impact 
of craving on alcohol relapse during, 
and 12 months following, outpatient 
treatment. Alcohol and Alcoholism. 
2004;39(4):357-361. DOI: 10.1093/ 
alcalc/agh073 

[25] Moos RH, Moos BS. Rates 
and predictors of relapse after 
natural and treated remission from 
alcohol use disorders. Addiction. 
2006;101(2):212-222. DOI: 
10.1111/j.1360-0443.2006.01310.x 

[26] Krishnan HR, Sakharkar AJ, 
Teppen TL, Berkel TD, Pandey SC. The 
epigenetic landscape of alcoholism. 
International Review of Neurobiology. 
2014;115:75-116. DOI: 10.1016/ 
B978-0-12-801311-3.00003-2 

[27] Jangra A, Sriram CS, Pandey S, 
Choubey P, Rajput P, Saroha B, et al. 
Epigenetic modifications, alcoholic 
brain and potential drug targets. Annals 
of Neurosciences. 2016;23(4):246-260. 
DOI: 10.1159/000449486 

[28] Berkel TD, Pandey SC. Emerging 
role of epigenetic mechanisms in alcohol 

122 

https://niaaa.nih.gov/alcohol-health
https://www


 

 

 
 

 

 

 

 

 
 

 
 

  

 
 

 

 

 

 
 

 

 

 
 

 
  

 
 

 
 

 
 
 

  
 

 

 

  
 

 

 

 
 

 

The Role of DNA Repair and the Epigenetic Markers Left after Repair in Neurologic Functions… 
DOI: http://dx.doi.org/10.5772/intechopen.83477 

addiction. Alcoholism, Clinical and 
Experimental Research. 2017;41(4): 
666-680. DOI: 10.1111/acer.13338 

[29] D'Addario C, Caputi FF, Ekström 
TJ, Di Benedetto M, Maccarrone M, 
Romualdi P, et al. Ethanol induces 
epigenetic modulation of prodynorphin 
and pronociceptin gene expression 
in the rat amygdala complex. 
Journal of Molecular Neuroscience. 
2013;49(2):312-319. DOI: 10.1007/ 
s12031-012-9829-y 

[30] Available from: https://www. 
samhsa.gov/data/sites/default/files/ 
NSDUHresultsPDFWHTML2013/Web/ 
NSDUHresults2013.pdf 

[31] Available from: https://www. 
drugabuse.gov/publications/research-
reports/tobacco-nicotine-e-cigarettes/ 
nicotine-addictive 

[32] Available from: https://www. 
ncbi.nlm.nih.gov/pmc/articles/ 
PMC2376894/pdf/0980317.pdf 

[33] Levine A, Huang Y, Drisaldi B, 
Griffin EA Jr, Pollak DD, Xu S, et al. 
Molecular mechanism for a gateway 
drug: Epigenetic changes initiated by 
nicotine prime gene expression by 
cocaine. Science Translational Medicine. 
2011;3(107):107-109. DOI: 10.1126/ 
scitranslmed.3003062 

[34] Ruffle JK. Molecular neurobiology 
of addiction: What's all the (Δ) 
FosB about? The American 
Journal of Drug and Alcohol 
Abuse. 2014;40(6):428-437. DOI: 
10.3109/00952990.2014.933840 

[35] Nestler EJ. Epigenetic mechanisms 
of drug addiction. Neuropharmacology. 
2014;76(Pt B):259-268. DOI: 10.1016/j. 
neuropharm.2013.04.004 

[36] Gozen O, Balkan B, Yildirim E, 
Koylu EO, Pogun S. The epigenetic 
effect of nicotine on dopamine D1 
receptor expression in rat prefrontal 

cortex. Synapse. 2013;67(9):545-552. 
DOI: 10.1002/syn.21659 

[37] Simpson DD, Joe GW, Broome 
KM. A national 5-year follow-up 
of treatment outcomes for cocaine 
dependence. Archives of General 
Psychiatry. 2002;59(6):538-544. DOI: 
10.1001/archpsyc.59.6.538 

[38] Renthal W, Kumar A, Xiao G, 
Wilkinson M, Covington HE 3rd, 
Maze I, et al. Genome-wide analysis 
of chromatin regulation by cocaine 
reveals a role for sirtuins. Neuron. 
2009;62(3):335-348. DOI: 10.1016/j. 
neuron.2009.03.026 

[39] Rulten SL, Hodder E, 
Ripley TL, Stephens DN, Mayne 
LV. Alcohol induces DNA damage 
and the Fanconi anemia D2 protein 
implicating FANCD2 in the 
DNA damage response pathways 
in brain. Alcoholism, Clinical 
and Experimental Research. 
2008;32(7):1186-1196. DOI: 
10.1111/j.1530-0277.2008.00673.x 

[40] Hukkanen J, Jacob P 3rd, Benowitz 
NL.Metabolism and disposition kinetics 
of nicotine. Pharmacological Reviews 
2005;57(1):79-115. DOI: 10.1124/ 
pr.57.1.3 

[41] Lee HW, Park SH, Weng MW, 
Wang HT, Huang WC, Lepor H, et al. 
E-cigarette smoke damages DNA and 
reduces repair activity in mouse lung, 
heart, and bladder as well as in human 
lung and bladder cells. Proceedings 
of the National Academy of Sciences 
of the United States of America. 
2018;115(7):E1560-E1569. DOI: 10.1073/ 
pnas.1718185115 

[42] de Souza MF, Gonçales TA, 
Steinmetz A, Moura DJ, Saffi J, 
Gomez R, et al. Cocaine induces 
DNA damage in distinct brain 
areas of female rats under different 
hormonal conditions. Clinical and 
Experimental Pharmacology & 

123 

https://ncbi.nlm.nih.gov/pmc/articles
https://www
https://drugabuse.gov/publications/research
https://www
https://samhsa.gov/data/sites/default/files
https://www
http://dx.doi.org/10.5772/intechopen.83477


 
 

 

  
  

 

 
 

 
 

 
 

 
 

  
 
 

 
 

 
 

 

  
 

 

 

 
 

   

 

 
 

  
 

 
 

 

   
 

 
 

   

 
 
 

 

DNA Repair - An Update 

Physiology. 2014;41(4):265-269. DOI: 
10.1111/1440-1681.12218 

[43] Johnson Z, Venters J, Guarraci FA, 
Zewail-Foote M. Methamphetamine 
induces DNA damage in specific 
regions of the female rat brain. Clinical 
and Experimental Pharmacology & 
Physiology. 2015;42(6):570-575. DOI: 
10.1111/1440-1681.12404 

[44] Tokunaga I, Ishigami A, Kubo 
S, Gotohda T, Kitamura O. The 
peroxidative DNA damage and 
apoptosis in methamphetamine-treated 
rat brain. The Journal of Medical 
Investigation. 2008;55(3-4):241-245. 
DOI: 10.2152/jmi.55.241 

[45] Berger ND, Stanley FKT, 
Moore S, Goodarzi AA. ATM-
dependent pathways of chromatin 
remodeling and oxidative DNA 
damage responses. Philosophical 
Transactions of the Royal Society B. 
2017;372. pll: 20160283. DOI: 10.1098/ 
rstb.2016.0283 

[46] Li J, Chen J, Ricupero CL, 
Hart RP, Schwartz MS, Kusnecov 
A, et al. Nuclear accumulation of 
HDAC4 in ATM deficiency promotes 
neurodegeneration in ataxia 
telangiectasia. Nature Medicine. 
2012;18(5):783-790. DOI: 10.1038/ 
nm.2709 

[47] Massey TH, Jones L. The central 
role of DNA damage and repair 
in CAG repeat diseases. Disease 
Models & Mechanisms. 2018;11(1). 
pii: dmm031930). DOI: 10.1242/ 
dmm.031930 

[48] Maiuri T, Mocle AJ, Hung CL, 
Xia J, van Roon-Mom WM, Truant R. 
Huntingtin is a scaffolding protein 
in the ATM oxidative DNA damage 
response complex. Human Molecular 
Genetics. 2017;26(2):395-406. DOI: 
10.1093/hmg/ddw395 

[49] Horvath S, Langfelder P, Kwak 
S, Aaronson J, Rosinski J, Vogt TF, 
et al. Huntington's disease accelerates 
epigenetic aging of human brain and 
disrupts DNA methylation levels. Aging 
(Albany NY). 2016;8(7):1485-1512. DOI: 
10.18632/aging.101005 

[50] Glajch KE, Sadri-Vakili G. 
Epigenetic mechanisms involved in 
Huntington's disease pathogenesis. 
Journal of Huntington's Disease. 
2015;4(1):1-15. DOI: 10.3233/ 
JHD-159001 

[51] Lim YW, Sanz LA, Xu X, Hartone 
SR, Chetin F. Genome-wide DNA 
hypomethylation and RNA:DNA hybrid 
accumulation in Aicardi-Goutieres 
syndrome. eLife. 2015;4:08007. DOI: 
10.7554/eLife.08007 

[52] McKinnon PJ. Genome integrity 
and disease prevention in the nervous 
system. Genes & Development. 
2017;31(12):1180-1194. DOI: 10.1101/ 
gad.301325.117 

[53] Reijns MA, Bubeck D, Gibson 
LC, Graham SC, Baillie GS, Jones 
EY, et al. The structure of the human 
RNase H2 complex defines key 
interaction interfaces relevant to 
enzyme function and human disease. 
The Journal of Biological Chemistry. 
2011;286(12):10530-10539. DOI: 
10.1074/jbc.M110.177394 

[54] Fousteri M, Vermeulen W, van 
Zeeland AA, Mullenders LH. Cockayne 
syndrome A and B proteins 
differentially regulate recruitment of 
chromatin remodeling and repair factors 
to stalled RNA polymerase II in vivo. 
Molecular Cell. 2006;23(4):471-482. 
DOI: 10.1016/j.molcel.2006.06.029 

[55] Cho I, Tsai PF, Lake RJ, Basheer A, 
Fan HY. ATP-dependent chromatin 
remodeling by Cockayne syndrome 
protein B and NAP1-like histone 

124 



 

 

 
 

  
 

 
 
 

 
 
 
 

 
 

 
 

 

   
 

 
 

 

 
  

 
 

  
 

 

 
 

 
 

 
 

 

 

 

 
 

  
 

  

The Role of DNA Repair and the Epigenetic Markers Left after Repair in Neurologic Functions… 
DOI: http://dx.doi.org/10.5772/intechopen.83477 

chaperones is required for efficient 
transcription-coupled DNA repair. PLoS 
Genetics. 2013;9(4):e1003407. DOI: 
10.1371/journal.pgen.1003407 

[56] Boetefuer EL, Lake RJ, Fan HY. 
Mechanistic insights into the regulation 
of transcription and transcription-
coupled DNA repair by Cockayne 
syndrome protein B. Nucleic Acids 
Research. 2018;46(15):7471-7479. DOI: 
10.1093/nar/gky660 

[57] Wang WY, Pan L, Su SC, Quinn EJ, 
Sasaki M, Jimenez JC, et al. Interaction 
of FUS and HDAC1 regulates DNA 
damage response and repair in 
neurons. Nature Neuroscience. 
2013;16(10):1383-1391. DOI: 10.1038/ 
nn.3514 

[58] Alpatov R, Lesch BJ, Nakamoto-
Kinoshita M, Blanco A, Chen S, Stützer 
A, et al. A chromatin-dependent role of 
the fragile X mental retardation protein 
FMRP in the DNA damage response. 
Cell. 2014;157(4):869-881. DOI: 
10.1016/j.cell.2014.03.040 

[59] Khonsari H, Schneider M, 
Al-Mahdawi S, Chianea YG, Themis M, 
Parris C, et al. Lentivirus-meditated 
frataxin gene delivery reverses genome 
instability in Friedreich ataxia patient 
and mouse model fibroblasts. Gene 
Therapy. 2016;23(12):846-856. DOI: 
10.1038/gt.2016.61 

[60] Fujita K, Nakamura Y, Oka T, 
Ito H, Tamura T, Tagawa K, et al. A 
functional deficiency of TERA/VCP/ 
p97 contributes to impaired DNA repair 
in multiple polyglutamine diseases. 
Nature Communications. 2013;4:1816. 
DOI: 10.1038/ncomms2828 

[61] Theil AF, Hoeijmakers JH, 
Vermeulen W. TTDA: Big impact of 
a small protein. Experimental Cell 
Research. 2014;329(1):61-68. DOI: 
10.1016/j.yexcr.2014.07.008 

[62] Koch SC, Simon N, Ebert C, Carell 
T. Molecular mechanisms of xeroderma 
pigmentosum (XP) proteins. Quarterly 
Reviews of Biophysics. 2016;49:e5. DOI: 
10.1017/S0033583515000268 

[63] Serrano M. Epigenetic 
cerebellar diseases. Handbook 
of Clinical Neurology. 
2018;155:227-244. DOI: 10.1016/ 
B978-0-444-64189-2.00015-9 

[64] Yandim C, Natisvili T, Festenstein 
R. Gene regulation and epigenetics 
in Friedreich's ataxia. Journal of 
Neurochemistry. 2013;126(Suppl 1): 
21-42. DOI: 10.1111/jnc.12254 

[65] Cvetanovic M, Kular RK, 
Opal P. LANP mediates neuritic 
pathology in Spinocerebellar ataxia 
type 1. Neurobiology of Disease. 
2012;48(3):526-532. DOI: 10.1016/j. 
nbd.2012.07.024 

[66] Singh A, Compe E, Le May N, 
Egly JM. TFIIH subunit alterations 
causing xeroderma pigmentosum and 
trichothiodystrophy specifically disturb 
several steps during transcription. 
American Journal of Human Genetics. 
2015;96(2):194-207. DOI: 10.1016/j. 
ajhg.2014.12.012 

[67] Le May N, Fradin D, Iltis I, 
Bougnères P, Egly JM. XPG and XPF 
endonucleases trigger chromatin 
looping and DNA demethylation for 
accurate expression of activated genes. 
Molecular Cell. 2012;47(4):622-632. 
DOI: 10.1016/j.molcel.2012.05.050 

[68] Rogakou EP, Pilch DR, Orr AH, 
Ivanova VS. Bonner WM. DNA 
double-stranded breaks induce histone 
H2AX phosphorylation on serine 139. 
The Journal of Biological Chemistry. 
1998;273(10):5858-5868 

[69] Furuta T, Takemura H, Liao ZY, 
Aune GJ, Redon C, Sedelnikova OA, 

125 

https://10.1038/gt.2016.61
http://dx.doi.org/10.5772/intechopen.83477


 

 

 
 

 
 

 

 

 

 
 
 

 
 

 
 

 

 

 

    

 
 

 

 
 

 

DNA Repair - An Update 

et al. Phosphorylation of histone 
H2AX and activation of Mre11, Rad50, 
and Nbs1 in response to replication-
dependent DNA double-strand 
breaks induced by mammalian DNA 
topoisomerase I cleavage complexes. 
The Journal of Biological Chemistry. 
2003;278(22):20303-20312. DOI: 
10.1074/jbc.M300198200 

[70] Suberbielle E, Sanchez PE, Kravitz 
AV, Wang X, Ho K, Eilertson K, et al. 
Physiologic brain activity causes DNA 
double-strand breaks in neurons, with 
exacerbation by amyloid-β. Nature 
Neuroscience. 2013;16(5):613-621. DOI: 
10.1038/nn.3356 

[71] Kim JJ, Jung MW. Neural circuits 
and mechanisms involved in Pavlovian 
fear conditioning: A critical review. 
Neuroscience and Biobehavioral 
Reviews. 2006;30(2):188-202. DOI: 
10.1016/j.neubiorev.2005.06.005 

[72] Madabhushi R, Gao F, Pfenning 
AR, Pan L, Yamakawa S, Seo J, et al. 
Activity-induced DNA breaks govern 
the expression of neuronal early-
response genes. Cell. 2015;161(7): 
1592-1605. DOI: 10.1016/j. 
cell.2015.05.032 

[73] Colón-Cesario M, Wang J, Ramos 
X, García HG, Dávila JJ, Laguna J, et al. 
An inhibitor of DNA recombination 
blocks memory consolidation, but 
not reconsolidation, in context fear 
conditioning. Journal of Neuroscience. 
2006;26(20):5524-5533. DOI: 10.1523/ 
JNEUROSCI.3050-05.2006 

[74] Hansen N. The longevity of 
hippocampus-dependent memory is 
orchestrated by the locus coeruleus-
noradrenergic system. Neural 
Plasticity. 2017;2017:2727602. DOI: 
10.1155/2017/2727602 

[75] Halder R, Hennion M, Vidal RO, 
Shomroni O, Rahman RU, Rajput A, 
et al. DNA methylation changes 
in plasticity genes accompany the 

formation and maintenance of memory. 
Nature Neuroscience. 2016;19(1): 
102-110. DOI: 10.1038/nn.4194 

[76] Duke CG, Kennedy AJ, Gavin 
CF, Day JJ, Sweatt JD. Experience-
dependent epigenomic reorganization in 
the hippocampus. Learning & Memory. 
2017;24(7):278-288. DOI: 10.1101/ 
lm.045112.117 

[77] Bayraktar G, Kreutz MR. The role of 
activity-dependent DNA demethylation 
in the adult brain and in neurological 
disorders. Frontiers in Molecular 
Neuroscience. 2018;11:169. DOI: 
10.3389/fnmol.2018.00169 

[78] Zhang RR, Cui QY, Murai K, Lim 
YC, Smith ZD, Jin S, et al. Tet1 regulates 
adult hippocampal neurogenesis 
and cognition. Cell Stem Cell. 
2013;13(2):237-245. DOI: 10.1016/j. 
stem.2013.05.006 

126 



 
 

 
  

 
 

  
  

 

 

  
  

 
  

  
 

  
 

 
 

 

 

Chapter 7 

Regulation of Oxidized Base 
Repair in Human Chromatin by 
Posttranslational Modification 
Shiladitya Sengupta, Chunying Yang, Bradley J. Eckelmann, 
Muralidhar L. Hegde and Sankar Mitra 

Abstract 

Base excision repair (BER) is the major pathway for the repair of oxidized bases 
and apurinic/apyrimidinic (abasic; AP) sites produced by reaction with reactive 
oxygen/nitrogen species (ROS/RNS). These metabolites are generated spontane-
ously by endogenous cellular processes and also by environmental agents. Because 
most of these lesions are promutagenic, linked to diverse disease-associated somatic 
mutations, as well as heritable single nucleotide polymorphisms (SNPs) in the 
normal human population, their prompt repair is warranted. Impairment of repair 
leading to mutation, a hallmark of cancer, underscores the essentiality of BER 
for maintaining genome integrity in humans and other mammals. In mammals, 
repair of oxidized bases and other BER substrates is initiated by DNA glycosylases 
(DGs), which excise the damaged bases and cleave the DNA strands at the resulting 
AP sites, followed by sequential end processing, gap-filling DNA synthesis, and 
ligation. In vitro BER performed with naked DNA substrates has been extensively 
studied, which delineates its basic mechanistic steps and subpathways. However, 
recent interest is directed to unraveling BER in cell chromatin, including its regula-
tion via posttranslational modifications (PTMs), which occurs possibly in concert 
with nucleosome remodeling. Emerging reports on various PTMs of BER enzymes 
indicate that the PTMs, while dispensable for the enzymatic activity, regulate 
overall repair by modulating interactions with other repair proteins and chromatin 
factors, assembly of BER complexes, as well as turnover of the proteins, and may 
ultimately dictate the cellular phenotype. Here, we discuss recent advances in the 
BER field by reviewing the PTMs and how they regulate BER in chromatin. 

Keywords: oxidative stress, base oxidation, base excision repair, 
posttranslational modifications, acetylation, phosphorylation, SUMOylation, 
methylation, chromatin 

1. Introduction 

DNA, the genetic repository of all cellular functions, is packaged with histones 
into chromatin consisting of nucleosome units. One hundred forty-seven base pair 
(bp) segments in DNA wrap ~1.65 times in a left-handed superhelical turn around a 
histone octamer consisting of two histone H2A-H2B dimers and a H3-H4 tetramer, 
which form the nucleosome core; the adjacent nucleosomes are separated by some 
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50 bp unfolded, linker DNA bound to histone H1 or H5. Organization of DNA 
into chromatin enables the compaction required to accommodate large eukaryotic 
genomes inside the cell nucleus. This compaction renders DNA inaccessible to any 
DNA transaction machinery. Replication and transcription are tightly coordinated 
with specific interactions of their complexes with DNA [1, 2]. 

The integrity of DNA is under constant threat, naturally from endogenous 
sources, as well as by environmental factors in the form of a chemical addition, an 
alteration in the nitrogen base structure, thereby creating an abnormal nucleotide, 
or a break in one or both strands of DNA [3–8]. Cellular metabolic processes includ-
ing mitochondrial respiration and hydrolytic reactions generate reactive molecules, 
such as reactive oxygen species (ROS), reactive nitrogen species (RNS), and alkylat-
ing agents. Some chemical bonds in DNA are susceptible to spontaneous hydrolysis. 
About 70,000 lesions are generated per cell, per day in humans. Single-strand 
breaks (SSBs), as well as a plethora of oxidized bases, are formed during oxida-
tive genome damage. In addition, deamination, depurination, depyrimidination, 
double-strand breaks (DSBs), propano-, etheno-, and malondialdehyde-derived 
DNA adducts, base propenals, and alkylated bases are also formed endogenously. 
Environmental factors such as UV rays, ionizing radiation (IR), heat, and chemicals 
from tobacco smoke and industrial sources pose additional risks to DNA. 

2. Oxidative genome damage and oxidized bases 

For aerobic organisms, oxygen acts like a double-edged sword; while it is 
absolutely essential for life, it is also a threat to the life, recognized as the “Oxygen 
Paradox” [9–11]. ROS, which include the superoxide anion (O2

•−), hydrogen perox-
ide (H2O2), singlet oxygen (1O2), and the hydroxyl radical (•OH), along with RNS, 
for example, peroxynitrite (ONOO−) react with all biological molecules including 
DNA. The hydroxyl radical having the highest reduction potential is mainly gener-
ated from Fenton reaction between reduced redox active metal ions (Fe2+, Cu+) and 
H2O2 [12], as well as by the IR-induced radiolysis of water [13]. A wide variety of 
cellular antioxidant defense mechanisms including both redox-buffering enzymatic 
and nonenzymatic systems have evolved, for example, superoxide dismutases, cata-
lases, glutathione peroxidases, peroxiredoxins, and glutaredoxins; these counteract 
the detrimental effect of oxidative stress to the biological molecules, and an imbal-
ance in their homeostasis leads to increased damage to the biomolecules [14]. 

A plethora of oxidized base lesions are generated mostly from guanine (G) in 
DNA, which has the lowest redox potential among the natural bases. Other lesions 
including 2-deoxyribose modifications, SSBs, DSBs, and protein-DNA cross-links are 
also ROS reaction products in DNA [10, 14–17]. Nearly 100 such lesions have been 
identified; however, because of the lack of sensitivity of the techniques used to iden-
tify the lesions and inherent instability of some of them, the total number formed in 
the genome under a pro-oxidant environment is likely to be much higher [18]. 

The most commonly formed oxidized base lesion is 7,8-dihydro-8-oxoguanine 
(8-oxoguanine, 8-oxoG), which was discovered by Kasai and Nishimura in 1983 
and coined as 8-hydroxyguanine [19–21]. All the nucleobases are also ionized by IR 
and by high intensity 266-ns laser photolysis. The DNA bases undergo one-electron 
oxidation (one electron ionization potential of G<A<C~T). 8-oxoG is generated at 
a much higher level (>5-fold) than the combined level of other one-electron base 
oxidation products. Singlet oxygen (1O2), the major ROS in UVA-mediated oxida-
tion of DNA, specifically targets G and 2-deoxyribose moiety [22–24]. Other major 
oxidized base lesions are 5-hydroxy-6-hydrothymine, thymine glycol (TG), cyto-
sine glycol (CG), 5-hydroxycytosine (5-OHC), uracil glycol (UG), 5-hydroxyuracil 
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Table 1. 
Common oxidized bases detected in DNA. 

(5-OHU), 8-hydroxyadenine, and 2-hydroxyadenine [14, 17]. Hypochlorous acid 
(HOCl), generated by myeloperoxidase in neutrophils during inflammation, chlo-
rinates both DNA and RNA bases [25, 26], and the main products are 5-chlorocy-
tosine, 8-chloroadenine, and 8-chloroguanine. A summary of commonly formed 
oxidized bases detected in cellular DNA is shown in Table 1 [16]. Apart from 
ROS-induced generation of oxidized bases, 5-hydroxymethylcytosine (5hmC), 
5-formylcytosine (5fC), and 5-carboxylcytosine (5caC) are formed enzymati-
cally during transcriptional reprogramming involving oxidative demethylation 
of 5-methyl C (5mC), mostly localized in promoter CpG islands, induced by TET 
dioxygenases [27, 28]. However, enzymatically generated 5-methyl C oxidation 
products are produced >2-fold higher than that from direct oxidative damage to 
DNA [29, 30]. Additionally, tandem base lesions are produced by radicals gener-
ated from •OH or one-electron oxidation reactions. Examples include the addition 
of either 5-(uracilyl)methyl radicals or 6-hydroxy-5,6-dihydrocytosin-5-yl radicals 
to 5′-adjacent guanine moieties in the DNA of cells exposed to H2O2 [31, 32] and 
formation of a guanine-thymine cross-link upon initial formation of guanine radi-
cal cation [33, 34]. One-electron oxidation also leads to DNA-protein cross-links. 
UVA irradiation of 6-thioguanine-containing DNA forms DNA-protein cross-links 
in human cells [33, 35]. 

3. Fate of oxidized bases and accumulation of mutations 

ROS-induced oxidized base lesions and AP sites if left unrepaired are replicated 
by replicative or DNA translesion synthesis (TLS) polymerases [36]. Their mis-
replication generates mutations, a hallmark of cancer genomes, which account for 
two-thirds of single base pair substitutions [37–40]. Furthermore, single nucleotide 
polymorphisms (SNPs), observed in normal human genomes, also likely result 
from such spontaneous single base pair substitutions. U and 5-OHU, the spontane-
ous and ROS-induced oxidative deamination product of C, respectively, preferably 
pair with A during replication, resulting in GC → AT transition mutation; 8-oxoG, 
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the predominant oxidized base lesion mispairs with A, leading to GC → TA trans-
version mutation [41, 42]. In response to continuous assault by both endogenous 
and environmental factors, cellular defense mechanisms including diverse DNA 
repair pathways have evolved in all organisms to correct these base modifications 
and maintain genomic integrity. 

4. Base excision repair of oxidized bases 

Base excision repair (BER) is responsible for repairing most oxidized base 
lesions, AP sites, and DNA SSBs. The basic mechanism of BER first elucidated in 
Escherichia coli is broadly conserved across all organisms, as highlighted in several 
reviews [43–46]. BER requiring only four or five enzymes in the basic reaction steps 
is initiated with excision of the damaged base by a monofunctional DNA glycosyl-
ase (DG), for example, uracil-DNA glycosylase (UDG) or 3-methyladenine-DNA 
glycosylase, generating an abasic apurinic/apyrimidinic (AP) site due to hydrolysis 
of the N-glycosidic bond of the damaged base. The AP endonuclease (APE1 in 
mammalian cells) cleaves the resulting AP site in the second step and generates 3′ 
OH and 5′ deoxyribose phosphate (dRP) termini. The DNA polymerase in the third 
step fills in the single nucleotide gap. In mammalian cells, DNA polymerase β (Pol β) 
also has intrinsic dRP lyase activity, which cleaves the dRP residue and generates 
5′ phosphate; the resulting nick after incorporation of the correct base is sealed by 
DNA ligase III (Lig III) complexed with XRCC1 in the final step. 

The BER initiating DGs for oxidized bases, on the other hand, are bifunctional 
with intrinsic AP lyase activity. The bifunctional oxidized base-specific DGs further 
process the AP site via β or βδ lyase reaction. The Nth family of DGs, OGG1, and 
NTH1, via β eliminations generates 3′ phospho α,β-unsaturated aldehyde (3′ PUA; 
formally named 3′ phospho 4-hydroxylpentenal) and 5′ phosphate at the strand 
break. NTH1 prefers oxidized pyrimidines as substrates, and 8-oxoG and ring opened 
guanine, that is, formamidopyrimidine (Fapy-G), are preferred substrates for OGG1. 
The Fpg/Nei family DGs NEIL1, NEIL2, NEIL3, discovered by us and others [47–51] 
catalyze βδ elimination and remove the deoxyribose residue to produce a 3′ phosphate 
and 5′ phosphate at the strand break. NEILs prefer modified pyrimidine substrates, 
NEIL1 having preference for ring-opened purines, for example, Fapy-A and 
Fapy-G. The activity and substrate specificity of NEILs depend on the DNA structure, 
and NEILs have significant 5-OHU excision activity with single-stranded or bubble, 
forked DNA. In contrast, OGG1 and NTH1 prefer double-stranded DNA substrates. 
Usually, the base excision and lyase reactions act in a concerted sequence. However, 
due to weak lyase activity of OGG1, intact AP sites are the major product after OGG1-
catalyzed cleavage of 8-oxoG [52, 53]. All these bifunctional DGs have broad and 
overlapping substrate range and possess backup activity for many base lesions. This 
accounts for the fact that only few DGs have been discovered so far for much larger 
number of oxidized bases and for the nonessentiality of individual DGs. 

The 3′ phosphate generated by the NEILs by βδ elimination is a poor substrate 
for mammalian APE1 and is processed by polynucleotide kinase phosphatase 
(PNKP) [54–57]. Thus, for oxidized bases, the DGs actually define the subsequent 
steps. APE1 is responsible for processing the β elimination product of OGG1 and 
NTH1, whereas PNKP is required for generating 3′-OH termini from 3′ phosphate, 
a βδ elimination product of NEILs. Furthermore, AP sites and 3′ PUA generated by 
other DNA glycosylases can also be processed through a NEIL-PNKP-dependent 
pathway [53, 57]. This alternative repair route provides the functional redundancy 
in mammalian BER for genome safeguarding against a plethora of endogenous and 
induced oxidative damages. 
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BER, in the simplistic model, generates a 1-nucleotide gap after excision 
of the damaged base and has been termed single nucleotide BER (SN-BER) or 
short-patch BER (SP-BER). In contrast, long-patch BER (LP-BER) involves repair 
synthesis of two to eight deoxynucleotides. The 5′ blocking group after oxida-
tion of AP sites cannot be removed by Pol β via its dRP lyase activity. Instead it 
is removed by 5′-flap endonuclease 1 (FEN-1), which is normally required for 
removing the 5′ RNA primers from Okazaki fragments during DNA replication. 
Thus, the subsequent steps of LP-BER are identical to that of DNA replication, uti-
lizing DNA replication machinery, involving DNA polymerases δ/ε (Pol δ/ε) and 
DNA ligase I (Lig I). These enzymes including FEN-1 are recruited by the sliding 
clamp PCNA, loaded by replication factor-C (RFC), as in replication [58]. Thus, 
the choice of LP-BER vs. SN-BER depends on the 5′-terminus at the base cleavage 
site. With unaltered aldehyde group in deoxyribose, Pol β could carry out SN-BER 
by excising the 5′-dRP. LP-BER becomes necessary for repairing the oxidized AP 
sites, which cannot be processed by the 5′ end cleaning lyase activity of Pol β. The 
nuclear replicative Pol δ/ε lack dRP lyase activity and thus repair synthesis by 
these enzymes have to follow the LP-BER subpathway. Because Pol β-depleted cells 
are resistant to oxidative stress, Pol δ/ε can substitute for DNA Pol β and carry out 
the preferred LP-BER. The BER subpathways are schematically shown in Figure 1, 
adapted from [44]. 

Figure 1. 
A schematic representation of oxidized base-specific BER subpathways. The damaged base is represented as . 
BER is initiated by the DGs: OGG1, NTH1, NEILs, and converge to common steps for end cleaning, followed by 
repair synthesis and ligation. See text for details. 
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5. Prereplicative BER of oxidized bases 

The genomic integrity is particularly vulnerable during replication. Transient 
single-stranded (ss) DNA serving as a template during DNA replication after 
unwinding of the duplex genome is particularly vulnerable to ROS, which induces 
oxidized bases, sugar fragments, as well as strand breaks. Most oxidized bases do 
not stall replicative DNA polymerases, but they mispair during replication, thereby 
causing mutations. In contrast, bulky lesions, which stall replicative polymerases, 
block replisomes so as to allow repair. However, blocked replication may also lead 
to fork collapse, causing significant alteration in genomic stability. Furthermore, 
oxidized deoxynucleotides may be incorporated into the progeny strand during 
replication. If left unrepaired, these mutations could accumulate in progeny cells, 
a recipe for pathologies linked to genomic instability, including cancer, accelerated 
aging, and degenerative brain diseases [59, 60]. Repair of oxidative lesions, which 
are generated at much higher abundance than the bulky adducts in the replicat-
ing genome, is thus critical to maintain genomic fidelity. Mammalian cells have 
developed multiple ways to faithfully repair such base damages via prereplicative 
repair in the template strand and postreplicative repair in the progeny strand, 
immediately after replicative synthesis. Both the pathways involve an intricate 
collaboration of specific repair machinery with the replication proteins, likely via 
formation of dynamic “preformed” “repair-replication complexes” at the replica-
tion fork [61, 62]. 

Repair of most mutagenic base lesions except 8-oxoG, for example, 5-OHU, TG, 
5-OHC, Fapy-A, 8-oxoA, and UG must be carried out prior to replication in order to 
prevent mutation fixation. How such lesions, which do not block replicative Pol δ, 
are flagged for prereplicative repair without causing DSBs was unclear. Our recent 
study showed that the mammalian DG NEIL1 binds to the oxidized lesion sites in ss 
DNA substrates in vitro to facilitate fork regression and participates in prereplicative 
repair of the damaged base in the reannealed duplex DNA [61, 62]. We compared 
the function of NEIL1 in stalling the replication fork at the damage sites for the 
prereplicative repair to the function of a “cow catcher” attached to the front of early 
steam locomotives that served to push aside animals or debris from the track ahead 
of the train’s traversal, in a simplistic analogy to this exquisitely orchestrated pro-
cess [63]. The key features of this “cow catcher” model are the ability of NEIL1 to 
recognize base lesions in ss DNA templates and its nonproductive binding to lesions 
in ss DNA, which, while preventing lethal DSB formation, causes the stalling of the 
replication fork. Subsequent fork reversal allows base lesion repair in the reannealed 
duplex. High expression and activation of NEIL1 in replicating cells, together with 
its stable physical and functional association with proteins in the DNA replica-
tion complex [48, 64–66], are consistent with this surveillance role of NEIL1. The 
human genome during each cell division may be at higher risk for oxidative damage 
whose repair would prevent accumulation of mutations in the daughter cells. Thus 
NEIL1’s prereplicative BER function appears to be critical for preventing mutations 
and maintaining genome fidelity during cell division. 

6. Posttranslational modifications of BER proteins 

In vitro BER studies, carried out during the last couple of decades, are straightfor-
ward, mainly documenting functions of the repair proteins; however, in the complex 
cellular environment, the pathways are tightly regulated by interactions among the 
partner proteins in multiprotein complexes, which in turn also dictates the stabil-
ity of the complexes. The stability and subcellular localization of these proteins are 
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regulated by site-specific posttranslational modifications (PTMs), primarily involv-
ing acetylation, methylation, phosphorylation, SUMOylation, ubiquitination, and 
PARylation. Thus PTMs are at the root of major regulatory processes, by bestowing 
novel biochemical properties to the modified proteins, including changes in enzy-
matic activity, subcellular localization, interaction partners, protein stability, and 
DNA binding. Although purified recombinant BER proteins without any PTMs are 
proficient in their enzymatic activities, in cellulo BER is significantly affected by these 
PTMs. In this section, we discuss all the major PTMs of BER proteins identified so far. 

The hallmark of mammalian DGs and early BER proteins is the presence of 
nonconserved, intrinsically disordered appendages at the N or C terminus, which 
are absent in their bacterial orthologs. Some examples are the N-terminal extension 
in human NTH1 absent in the E. coli Nth, C-terminal extension in human NEIL1 
which is lacking in E. coli Nei, N-terminal extension in human APE1 lacking in E. 
coli Xth [44, 65, 67, 68]. Although the unfolded sequence generally exists at the N or 
C terminus, this could also exist internally as in Human NEIL2, where it may serve 
as a linker of the two domains. Analogous to the situation of histones H3 and H4, 
where mostly all PTMs occur in the disordered N-terminal tail [69, 70], PTMs in 
many early BER proteins are clustered in their disordered domains. See Table 2 for 
the major BER PTMs known so far. 

6.1 Acetylation 

Acetylation of histones was discovered back in 1963 after the Nobel prize-
winning discovery of acetyl CoA [71–74], and acetylation of histones at the ε-amino 
group of Lys residues in their disordered N-terminal region was shown to suppress 
their abilities to inhibit transcription [75]. Following these pioneering discoveries 
that linked histone acetylation to chromatin decondensation and transcriptional 
activation [76–78], diverse acetylation modifiers were identified and character-
ized. These include various histone acetyltransferases (HATs) such as E1a-binding 
protein p300 (p300), CREB-binding protein (CBP), ortholog of yeast transcription 
regulator Gcn5, TAF(II)250 subunit of transcription factor IID, several members 
of the MYST family (MOZ, YBF2/SAS3, SAS2, and TIP60) and p300/CBP associ-
ated factor (PCAF). Histone deacetylases (HDACs) were subsequently discovered 
as “erasers,” which include distinct members, HDACs1–11 and SIRTs in different 
transcriptional repressor complexes SIN3, NURD, etc., which regulate acetylation/ 
deacetylation cycle in cells [79–81]. These discoveries set the stage for epigenetic 
regulation of gene expression. Simultaneously, the concept of “reader” proteins 
[80, 82] that specifically recognize acetylated Lys residues through their bromodo-
mains was introduced in addition to the “writers” (HATs) and “erasers” (HDACs). 
Although the first discovered nonhistone protein acetylation dated back in 1997 for 
the tumor suppressor TP53 [83], the overwhelming numbers of nonhistone protein 
acetylation, particularly in large macromolecular complexes involved in chromatin 
remodeling, DNA repair, cell cycle, etc., were appreciated much later, after 2006, 
from mass spectrometric-based proteomic approaches, and provided the global 
scenario of “cellular acetylome” [81, 84–86]. 

6.2 Phosphorylation 

Although enzymatic phosphorylation of proteins was discovered in 1954 
[87], phosphorylated protein was known much earlier, based on identification of 
phosphate in vitellin [88], followed by detection of phosphoserine in this protein 
[89]. During the 1950s, ATP was discovered to be required for phosphorylation 
when the phosphate group was found to be covalently attached to specific serine/ 
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Functional 
class 

BER protein PTM and 
identified site 

BER 
activity 

Protein 
stability 

Reference 

DNA 
glycosylases 

Uracil DNA 
glycosylase 
(UNG) 

Phosphorylation; 
T6, S23, T60, S64, 
T126 

+ − [127, 128, 
213] 

SUMOylation + [214] 

Ubiquitination − [127, 215, 
216] 

Single-strand-
selective 
monofunctional 
uracil DNA 
glycosylase 1 
(SMUG1) 

Ubiquitination − [215, 216] 

Methyl CpG-
binding domain 
protein 4, DNA 
glycosylase 
(MBD4) 

Phosphorylation; 
S156,S262 

+ [217] 

Thymine DNA Acetylation; K94, − [129, 130] 
glycosylase K95, K98 
(TDG) 

Phosphorylation; + [129, 130] 
S93, S96, S99 

SUMOylation; 
K330 
K341 

− 
+ 

[131, 
218–221] 

Ubiquitination − [222, 223] 

MutY DNA 
glycosylase 
homolog (MYH) 

Phosphorylation; 
S524 

Ubiquitination; 
C-terminal K 
between aa 475–535 

+ 

− 

[224, 225] 

[226] 

8-Oxo guanine Acetylation; K338, + [203] 
DNA glycosylase K341 
1 (OGG1) 

Phosphorylation; + [227, 228] 
S326 

Ubiquitination − − [229] 

Nei-like DNA 
glycosylase 1 
(NEIL1) 

Acetylation; K296, 
K297, K298 

Phosphorylation; 
S61, S207, Y263, 
S269, S306 

+ + [161] 

[230–232] 

Nei-like DNA 
glycosylase 2 
NEIL2 

Acetylation; K49, 
K153 

− [233] 

N-methylpurine Acetylation + [234] 
DNA glycosylase 

Phosphorylation; + [235] (MPG) 
S172 
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Functional 
class 

BER protein PTM and 
identified site 

BER 
activity 

Protein 
stability 

Reference 

End 
processors 

Apurinic/ 
apyrimidinic 
endonuclease 1 
(APE1) 

Acetylation; K6, K7, 
K27, K31, K32, K35 

Phosphorylation; 
T233 

+ 

− 

+ [135, 136, 
236–238] 

[239, 240] 

Ubiquitination; K6, 
K7, K24, K25, K27, 
K31, K32, K35 

− [137, 138, 
241] 

Polynucleotide 
kinase 
phosphatase 
(PNKP) 

Phosphorylation; 
S114, S126 

Ubiquitination; 
K414, K417, K484 

+ + 

− 

[139–141] 

[139] 

Flap Acetylation; K354, − [242] 
endonuclease-1 K355, K377, K380 
(FEN-1) Phosphorylation; − − [144, 145] 

S187 

Methylation; R192 + + [146] 

SUMOylation; K168 − [143] 

DNA DNA polymerase Acetylation; K72 − [147] 
polymerases β (Pol β) Methylation; R137, + [148, 149] 

R83, R152 

Ubiquitination; 
K41, K61, K81 

− [150, 151] 

DNA polymerases 
δ (Pol δ) 

Phosphorylation; 
S458 of p68 subunit 

− [243] 

DNA ligases DNA ligase IIIα 
(Lig IIIα) 

Phosphorylation; 
S123 

[244] 

Ubiquitination − [150, 245] 

Accessory 
proteins 

X-Ray 
repair cross-
complementing 1 
(XRCC1) 

Phosphorylation; 
S518, T519, T523, 
C-terminal linker, 
T284, S371 

+ + [246–252] 

SUMOylation [152, 253] 

Ubiquitination; 
BRCA1 C terminus 
(BRCT II) motif on 
the C-terminal end 

− [150, 245, 
252] 

Poly(ADP-ribose) 
polymerase 1 
(PARP-1) 

Acetylation; K498, 
K505, K508, K521, 
K524 

[254] 

Phosphorylation; 
S372, T373 

+ [255] 

SUMOylation; 
K203, K482, and 
K486 

[132, 133] 

Ubiquitination − [132, 245, 
256] 

Table 2. 
PTMs of BER proteins. 
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threonine residues [90, 91]. Subsequently, various kinases that phosphorylate 
serine/threonine and later tyrosine residues were characterized for their ability to 
modulate protein functions [91–93]. As with acetylation, phosphorylation induces 
conformational changes in the protein that stimulates its enzymatic activity and 
modulates protein-protein interactions [92, 94, 95]. Although the initial studies 
in protein phosphorylation were focused on cellular communications and signal 
transduction pathways, eventually the critical role of protein kinases and the 
relevance of phosphorylation/dephosphorylation events in DNA damage response 
(DDR) are extensively acknowledged, and mass spectrometry-based global screen-
ing approaches enabled identification of diverse phosphorylation targets [96, 97]. 

6.3 Ubiquitination and SUMOylation 

Proteins are also posttranslationally modified via isopeptide bond formation 
with small proteins, which leads to nonlinear polypeptides [98, 99]. Ubiquitin is 
the first-discovered and well-characterized member of this growing family of small 
peptide modifiers, which covalently modify diverse proteins involved in chromatin 
organization, gene expression, signal transduction, DDR, DNA repair, and protein 
degradation [100–102]. Ubiquitin signals are generated by an enzymatic cascade 
involving E1 ubiquitin-activating enzymes, E2 ubiquitin-conjugating enzymes, and 
E3 ubiquitin ligases. Ubiquitination is a highly dynamic process with deubiquitin-
ases (DUBs) involved in this signaling, and growing evidence indicates the involve-
ment of ubiquitination/deubiquitination in BER, as shown in Table 2. 

Small ubiquitin-related modifier (SUMO), containing 100 amino acid (aa) 
residues protein, is ubiquitin-like polypeptide, which is conjugated to substrates in 
a manner similar to ubiquitination [102, 103]. The SUMO paralogs are synthesized 
as precursor proteins that are cleaved by a family of SUMO isopeptidases [104]. 
Mature SUMO is subsequently activated by a heterodimeric E1-activating enzyme 
Aos1/Uba2 (SAE1/SAE2) forming a thioester bond between its catalytic cysteine 
and the C-terminal carboxyl group of mature SUMO. Then SUMO is transferred 
to the catalytic cysteine of the E2-conjugating enzyme Ubc9. In contrast to the 
ubiquitin system where dozens of E2 enzymes have been identified, Ubc9 is the 
only known SUMO E2 conjugating enzyme. Finally, an isopeptide bond is formed 
between SUMO and the substrate by E3 ligases. A consensus SUMO acceptor site 
has been identified consisting of the sequence ΨKXE, where Ψ is a large hydro-
phobic amino acid and K is the site of SUMO conjugation [105]. There are at least 
four SUMO paralogs in humans, SUMO1, SUMO2, SUMO3, and SUMO4, which 
have more than 1000 protein targets. SUMOylation is highly dynamic and can 
be reversed by the action of deSUMOylating enzymes (SENPs). SUMOylation 
regulates protein-protein interactions involving SUMO-interacting motifs (SIMs), 
and it targets a group of proteins in the same pathway to facilitate association of 
multiprotein complexes for transcription, nuclear transport, chromatin assembly 
and modification, chromosome segregation, DNA damage repair, replication, and 
cell signaling [106, 107]. 

6.4 PARylation 

Poly ADP-ribosylation (PARylation), a crucial PTM that appears rapidly at 
DNA damage sites, is catalyzed by poly(ADP-ribose) polymerases (PARPs). The 
human PARP family contains 17 members among which only PARP1, 2, and 3 are 
involved in DDR [108–111]. PARPs covalently attach the ADP-ribose unit via an 
ester bond to the carboxyl group of glutamate or aspartate and sometimes also 
attach to cysteine or lysine of the target proteins [112–114]. PARPs successively 
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transfer ADP-ribose units from NAD+ to produce PAR chains containing up to 200 
ADP-ribose units; however, in many cases, only single mono ADP-ribose moiety 
is transferred to the target proteins. Strand breaks in DNA activate PARP1, the 
founding and predominant member of the PARP family; the primary substrate 
of PARP1 is itself. Many proteins in the DDR pathways as well as the damage 
processing enzymes interact with PARP1 and/or are PARylated [112, 115]. In cells, 
PARylation/dePARylation is tightly and dynamically regulated; the PAR polymers 
are degraded by PAR glycohydrolase (PARG), possessing both exoglycosidic and 
endoglycosidic activities, and release free ADP-ribose moieties [116–118]. ADP-
ribosyl-acceptor hydrolase (ARH) also exhibits PAR-degrading activity, although it 
has only exoglycosidase activity [119, 120]. Retention of PAR chains in cells triggers 
apoptotic cell death [121]. Although PARP1 interacts with the SSBR sensor XRCC1, 
as well as with other BER/SSBR proteins, and enables early recruitment of XRCC1 
to the DNA lesions [122–126], there is no convincing evidence for PARylation of 
BER/SSBR proteins. 

6.5 Cross-talks between different PTMs, their regulation, and effect on BER 

Proteins employ diverse PTMs sequentially or concurrently to expand their rep-
ertoire of functions, thereby impacting global cellular signaling. The best example 
is the disordered N-terminal tail of histone H3, which has multiple sites for acetyla-
tion, methylation, phosphorylation, ubiquitination, and SUMOylation [69, 70]. 
These PTMS could act synergistically or via reciprocal exclusion to modulate 
chromatin organization, thus affecting the transcriptome. The same Lys residues 
(K9, K27) in H3 are targets for both acetylation (marker of active chromatin) and 
methylation; however, monomethylation of these residues are markers of active 
chromatin, while di- and trimethylation are associated with repression. Recent 
evidence on BER enzymes, summarized below, suggests that specific modification 
at one site can dramatically influence another modification at a different site, which 
may critically impact BER activity. 

Cyclin-dependent kinase (CDK)-mediated phosphorylation of UNG2 (nuclear 
UDG) in S phase signals its ubiquitination-dependent degradation, and CDK-
inhibitor roscovitine prevents such degradation [127, 128]. This suggests that 
phosphorylation-induced conformational change in UNG2 is a prerequisite for 
ubiquitination. 

In the case of TDG, acetylation inhibits its repair activity by two distinct 
mechanisms. TDG acetylation at K94, K95, and K98 by p300/CBP suppresses BER 
by preventing APE1 recruitment to the damage site [129]. Protein kinase C (PKC)-
mediated phosphorylation at S93, S96, and S99, close to the acetylation sites, may 
promote repair by sterically blocking repair-inhibitory acetylation of adjacent lysine 
residues [130]. On the other hand, SUMOylation at K341 inhibits TDG’s interaction 
with CBP, preventing its acetylation and thereby promoting BER [131]. 

PARP1, SUMOylated at K203 and K486, is a target for ubiquitination and degrada-
tion, which is believed to be the mechanism for its turnover [132]. In contrast, PARP1’s 
SUMOylation at K482 does not degrade the protein, rather stimulates PARylation of 
chromatin-associated proteins [133]. On the other hand, acetylation of PARP1, which 
stimulates its transactivation function, is inhibited by K486 SUMOylation. Thus, 
K486 SUMOylation restrains PARP1’s transactivation function [134]. 

While acetylation of APE1 enhances its stability in chromatin and enzymatic 
activity [135, 136], CDK5-mediated phosphorylation enhances its ubiquitination 
and degradation [137, 138]. Thus, it is possible that phosphorylation and acetylation 
are mutually exclusive, acetylation stabilizing the protein, and phosphorylation 
guiding to its degradation. 
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In the case of PNKP, ATM-dependent phosphorylation was shown to prevent 
ubiquitination and hence its degradation. Thus, in response to oxidative stress, 
ATM phosphorylates and stabilizes PNKP in order to activate a coordinated DDR 
pathway [139–141]. Furthermore, PNKP interacts with the deubiquitination enzyme 
ataxin-3 (ATXN3), which enhances its stability and phosphatase activity [142]. 

Phosphorylation of FEN-1 by CDK1 at S187 was shown to promote SUMOylation 
at K168, which enhanced its polyubiquitination-dependent degradation [143]. 
Phosphorylation inhibits FEN-1’s flap endonuclease activity [144, 145], which 
cross-talks with methylation, a lesser studied PTM of BER proteins. Methylation 
by arginine methyltransferase 5 at R192 prevents this phosphorylation and thus is 
proposed to be essential for the repair activities of FEN-1 [146]. Thus, in response to 
oxidative stress in cycling cells, methylation of FEN-1 could be a critical requirement 
for LP-BER. 

Acetylation of Pol β at K72 inhibits its dRP lyase activity [147], and this could 
account for acetylation-induced inhibition of enzymatic activity and switch from 
SN-BER to LP-BER. Methylation of Pol β at R137 has no effect on dRP lyase or DNA 
polymerase activities but inhibits its interaction with PCNA [148] and could thus be 
predicted to inhibit LP-BER. In contrast, R83 and R152 methylation enhanced Pol β’s 
DNA binding and increased processivity [149]. Cellular Pol β level appears to be 
maintained by two ubiquitin E3 ligases, Mule and CHIP. DNA Pol β is monoubiq-
uitinated by Mule, which in turn is recognized and polyubiquitinated by CHIP in 
undamaged cells. In response to oxidative stress, it is deubiquitinated, thus ensuring 
its stability and oxidized base damage repair [150, 151]. 

A recent study shows how PARylation stimulates SUMOylation [152]. In response 
to DNA strand breaks induced by alkylating agent methylmethanesulfonate (MMS), 
PARP1 is activated and synthesizes PAR chains; this promotes recruitment of SUMO 
E3 TOPORS to XRCC1, which facilitates XRCC1 SUMOylation. XRCC1 SUMOylation 
recruits Pol β at the damaged sites and thus ensures completion of BER. 

7. Does chromatin organization affect BER? Understanding BER at the 
chromatin context 

BER, as studied in vitro with naked DNA substrates, involves sequential enzymatic 
steps in which each enzyme utilizes the product of the previous step as the substrate. 
This observation inspired the prevailing dogma that the sequential steps in BER 
involves the hand-off process where the product of one step is handed over to the 
enzyme in the next step [153, 154]. Later steps generate intermediate product lesions 
that are more toxic than the original lesions. The BER intermediates such as AP sites 
and SSBs, which are highly mutagenic, interfere with replication and transcription, 
and hence the entire BER steps must be coordinated once the repair is initiated 
[155–158]. Cumulating evidence suggests that the BER proteins act in concert beyond 
simply recognizing and acting upon the product of the previous step, by being present 
at the site of the original lesion [43, 52, 61, 62, 64, 65, 125, 159, 160]. This is the basis 
for the emerging paradigm of “preformed BER complexes,” named, “BERosomes” in 
mammalian cells. Being an integral part of complexes, it may be easier for the BER 
intermediates to be handed over to the next enzyme, which likely undergoes allosteric 
changes after binding to its substrate. Recent studies in our and collaborators’ labs 
suggest that these “BERosomes” are constitutively chromatin-bound to ensure prompt 
repair in the event of any threat [62, 135, 161]. Simultaneously, recent interests in the 
BER field have evolved toward deciphering the role of different chromatin factors and 
the underlying chromatin remodeling in oxidized base repair. 
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Several in vitro studies showed reduced BER activity with reconstituted core 
nucleosome particles, where every step during repair of diverse lesions was found 
to be inhibited by histones [162–170]. Overall BER efficiency is strongly inhibited 
by the presence of nucleosomes, which interfere with the interaction between the 
repair proteins and their substrate lesions, thereby compromising physical interaction 
and catalysis. Because oxidized bases perturb the DNA structure only mildly [170], 
whether chromatin remodeling occurs during BER was questionable. But, as BER effi-
ciently occurs in cells, the results from these in vitro experiments imply that chromatin 
rearrangement occurs at oxidized DNA damage sites in cells, as was shown in the case 
of repair of DSBs, UV ray-mediated damages, and mismatched base pairs [171–173]. 

An inverse correlation exists in cells between BER and chromatin compaction. 
ROS induces assembly of BER complexes preferentially on open chromatin regions 
[174], as we have also observed that the BER complexes are constitutively present on 
actively transcribing sequences [175]. Interestingly, BER is involved during active 
CpG demethylation in promoters, mediated by TET dioxygenase(s) during tran-
scriptional activation [176–180]. The TET proteins oxidize 5mC to 5hmC, 5fC, and 
5caC; 5fC and 5caC are the TDG substrates. Thus, this coordination between CpG 
DNA demethylation, an epigenetic process essential for chromatin decondensation 
during transcriptional activation, and base damage repair supports our notion that 
“open-chromatin prefers BER activity across the genomic landscape” and highlights 
a regulatory link between epigenetics, chromatin remodeling, and BER. 

Various ATP-dependent chromatin remodeling (ACR) complexes, which play 
significant roles in protein/DNA and protein/protein interactions in chromatin 
and regulate transcription, DNA repair processes such as DSB repair (DSBR), 
nucleotide excision repair (NER), and cross-link repair, also affect BER. ACR 
complexes utilize the energy of ATP hydrolysis to restructure nucleosomes on 
chromatin [181–183], thereby affecting gene expression profile and DNA repair. 
Four structurally related, but functionally distinct, ACR complex families 
were identified: SWI/SNF (switching defective/sucrose nonfermenting; most 
extensively studied), ISWI (imitation switch), CHD (chromodomain, helicase, 
DNA binding), and INO80 (inositol requiring 80). In vitro BER studies with 
reconstituted nucleosomes showed enhanced repair activity in the presence of 
purified SWI/SNF or ISW1/ISW2 complexes [184–186]. There are some indirect 
evidences of ACR during BER in yeast and mammalian cells. Depletion of STH1 
(ATPase subunit of RSC, a member of SWI/SNF family) causes genome-wide BER 
inhibition and thus emphasizes a link between chromatin organization and BER 
[187]. In a recent study, depletion of ALC1/CHD1L, another member of SWI/SNF, 
compromises chromatin relaxation, associated with BER inhibition and increased 
sensitivity to MMS and H2O2 in chicken cells [188]. On the contrary, INO80 
deficiency in MMS-sensitive yeast cells has no effect on genome-wide BER [189]. 
K56 acetylation in histone H3 is increased in chromatin of both yeast and mam-
malian cells following MMS treatment, which generates alkylated base substrates 
for BER, [190, 191]. H3K56Ac was also found to be enriched at DSBR sites and 
responsible for SWI/SNF complex recruitment during transcription [192]. Thus, 
it would be interesting to examine if any specific PTM(s) would target ACR after 
oxidized base damage and illuminate the phenomenon of ACR during BER. In any 
event, additional studies are required to test if ACR plays a role in enabling BER 
in condensed chromatin. It would be also of interest to explore if the BER proteins 
possess inherent chromatin remodeling activities, similar to the NER proteins, 
which have SWI/SNF domains [193–195]. Though no known BER proteins have 
SWI/SNF domains, the XRCC1-Lig IIIα complex could disrupt nucleosomes in 
vitro and enable BER completion [166]. 
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Poly-ADP-ribosylation of histones by PARP1 after genome damage adds nega-
tive charge on histones and disrupts histone-DNA interactions, thereby promot-
ing chromatin decondensation and enhancing interaction between the proteins 
involved in DNA transactions and DNA [111, 196–198]. This could increase DNA 
accessibility to the BER proteins. Although PARP1’s role in regulating transcrip-
tion is well established, this would link chromatin remodeling to BER. 

Nucleosomes pose obstruction to all DNA transactions and are likely disassembled 
to allow DNA replication, repair, and transcription, followed by their reassem-
bly, which utilizes both parental histones and newly synthesized histones. Such 
replication-coupled nucleosome assembly in the S phase or replication-independent, 
transcription-coupled assembly throughout the cell cycle involves histone chaperones 
functioning at multiple steps of nucleosome formation [172, 199, 200]. Replication-
coupled nucleosome assembly is aided by the chromatin assembly factor (CAF-1) 
and Rtt106 with the help of antisilencing function 1A (ASF1A) protein. Histone cell 
cycle regulator (HIRA) protein, along with Daxx, mediates replication-independent 
nucleosome assembly. While exploring chromatin-bound BER complexes, we 
serendipitously discovered CHAF1A (the largest subunit of CAF-1, along with 
other subunits CHAF1B and RBBP4), ASF1A, and various H3/H4 variants in the 
immunoprecipitation complex of NEIL1 or acetylated NEIL1 (201; unpublished). 
This underscores the importance of the diverse chromatin components in preformed 
“BERosomes,” which could regulate oxidize base repair in chromatin. We showed 
that ROS-induced oxidized base lesions caused transient dissociation of CHAF1A, 
ASF1A, and histones from the BER complexes and were restored back after repair 
completion. The repair activities of NEIL1 and OGG1, as well as complete cellular 
BER, were found to be inhibited by CAF-1, as well as the CHAF1A monomer [201]. 
So, we propose a hypothesis of temporal regulation of BER by the histone chaperones, 
whose dissociation from BER complexes is essential to initiate BER [201]. This has 
been illustrated in Figure 2. 

Recently, we discovered acetylation of NEIL1 at the disordered C-terminal 
K296-K298 by p300, which enhances its activity, and found that acetylated NEIL1 
(AcNEIL1) could be detected only in the chromatin fraction and not in the soluble 
nuclear fraction [161]. Although the nonacetylable NEIL1 3KRmutant (Lys296–298 
substituted with Arg) translocates to the nucleus and binds to chromatin, presumably 
due to retention of positive charges as in the WT enzyme, it forms less stable BER com-
plexes with the histones, histone chaperones, and downstream BER proteins. Thus, as 
proposed earlier [65], the positive charge cluster in the disordered C-terminal region 
is required for NEIL1’s nonspecific DNA binding, after which acetylation occurs on 
the chromatin. Hydrophobic interaction of NEIL1 after acetylation-mediated charge 
neutralization probably stabilizes NEIL1’s complexes with nucleosome components 
and downstream BER proteins. Consequently, cells with acetylable NEIL1 exhibit 
enhanced BER efficiency and are less sensitive to oxidative stress. It is thus likely that 
unmodified NEIL1 binds to chromatin nonspecifically, and acetylation specifically at 
the promoter regions of actively transcribing genes by enhanced p300 activity actually 
stabilizes NEIL1’s (and possibly other DG’s) BERosomes on these preferred chromatin 
regions (Figure 3), which warrants further investigation. 

In a separate study, while investigating how APE1 repairs AP sites in cells, our 
collaborator’s lab found that acetylated APE1 (AcAPE1), like AcNEIL1, is exclu-
sively and stably chromatin-bound throughout the cell cycle [135]. APE1 undergoes 
acetylation after binding to AP sites in chromatin, which enhances its enzymatic 
activity. In the absence of APE1 acetylation, cells accumulated AP sites and exhib-
ited higher sensitivity to DNA damaging agents. We predict that other BER proteins 
OGG1 and MPG, whose repair activity is enhanced by acetylation, are similarly 
stabilized in chromatin-bound state. 
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Figure 2. 
A schematic showing chromatin-bound BER complexes with histones and histone chaperones. ROS-induced 
damage causes transient dissociation of histones and histone chaperones to initiate BER, which are restored 
back after repair completion. 

Figure 3. 
An illustrative view of “open” chromatin regions, containing bound “BERosomes” with histones, histone 
chaperones, PARPs, TETs, etc., for preferential repair of these transcriptionally active regions. 

8. Future perspectives 

The genome-wide impact of various PTMs in the cross-talks among BER pro-
teins, which dictates the overall repair efficiency, thus preserving genomic integrity 
against genotoxic insults from both endogenous and external oxidative stress, 
has not been investigated. In this NextGen era, holistic, whole-genome scanning 
approaches, although a daunting challenge, make it likely to map individual PTMs 
of BER proteins, the kinetics of their formation and removal, and their correlation 
with both intrinsic and ROS-induced BER efficiency across the genomic landscape. 
Because histone PTMs have been well established in chromatin remodeling, it is also 
important to explore how specific histone PTMs interfere with the BER PTMs. 

The Access-Repair-Restore model [182, 202] provides an accepted view of DNA 
repair in chromatin, where chromatin remodeling is essential for the DNA repair 
machineries to get access to the damaged DNA. For BER, it is still not clear how chro-
matin remodeling and the associated histone PTMs initiate BER. The BER complexes 
constitutively bind to“open” chromatin regions, and chromatin remodeling could assist 
specific enzyme-substrate binding and enzyme catalysis needed to initiate and propa-
gate BER. Moreover, although chromatin remodeling has been found to enable BER, the 
enhanced repair activity may be simply due to ROS-induced stimulation of BER genes’ 
expression or their specific PTM (acetylation), as has been shown by us [203–205], 
along with enhanced substrate binding in“open” chromatin. This may underesti-
mate the contribution of ACR complexes at oxidized base lesion sites to enhance 
BER. Alternatively, in cells, chromatin remodeling-stimulated BER could be linked 
to replication and transcription, similar to transcription-coupled NER, which always 
occurs on“open” chromatin [206]. Indeed, repair of oxidized bases preferentially 
occurs in the transcribed strand [175], which could be assisted by Cockayne syndrome 
protein B (CSB), a NER factor, in transcription-coupled but NER-independent fashion 
[207]. Because BER/SSBR proteins such as PARP1 and APE1 are emerging as potential 
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therapeutic targets [208–212], understanding if and how chromatin remodeling 
impacts BER activity is crucial to manipulating BER for effective modulation of repair 
activity in cancer cells. This would provide better efficacy and specificity in cancer 
therapy. 
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Chapter 8

The Role of DNA Repair in
Cellular Aging Process
Francisco Alejandro Lagunas-Rangel 
and Rosa María Bermúdez-Cruz

Abstract

Aging is defined as the time-dependent decline of functional properties. One
common denominator of aging is mitochondrial dysfunction and accumulation
of genetic damage throughout life. In fact, the imperfect maintenance of nuclear
and mitochondrial DNA likely represents a critical contributor of aging. Each day, 
the integrity and stability of DNA are challenged by exogenous physical, chemical, 
or biological agents, as well as by endogenous processes, including DNA replica-
tion mistakes, spontaneous hydrolytic reactions, and reactive oxygen species. In
this way, DNA repair systems have evolved a complex network that is collectively
able of dealing with most of the damages inflicted. However, their efficiency may
decrease with age and, therefore, influence the rate of aging. Thus, the purpose of
this work is to summarize the recent knowledge in cellular aging process and its link
with DNA repair systems, with a particular emphasis on the molecular mechanisms
associated.

Keywords: DNA damage, DNA repair, BER, NER, MMR, HR, NHEJ

1. Introduction

Aging is a complex biological process that results in a progressive loss of physi-
ological integrity. Overall, aging is a consequence of accumulation of cellular
damage and is characterized by nine hallmarks: genomic instability, telomere
attrition, epigenetic alterations, cellular senescence, mitochondrial dysfunction,
loss of proteostasis, deregulated nutrient sensing, stem cell exhaustion, and altered
intercellular communication (Figure 1) [1]. Although aging may involve damage to
various cellular constituents, there is evidence suggesting that DNA constitutes the
key target in this process [2]; consequently, genomic instability is the main factor
of aging [3–5]. Genome instability has been implicated as a cause of aging since
unrepaired DNA damage, DNA mutations, and epimutations accumulate in an
age-related manner [3]. In the same way, the notion that multi-system premature
aging syndromes are mainly caused by defects in genome maintenance or affect
genome function highlights the role of genome integrity in aging [6]. Meanwhile,
normal aging is accompanied by telomere shortening with cell division due to the
“end-replication problem” and telomere end processing. Currently, there is a wide
body of evidence associating reduction in the length of telomeres with failure of cell
division and senescence of normal cells, and oxidative stress and inflammation can
contribute to the rate of attrition of telomere length [7]. Age-related changes involve
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this work is to summarize the recent knowledge in cellular aging process and its link 
with DNA repair systems, with a particular emphasis on the molecular mechanisms 
associated. 

Keywords: DNA damage, DNA repair, BER, NER, MMR, HR, NHEJ 

1. Introduction 

Aging is a complex biological process that results in a progressive loss of physi-
ological integrity. Overall, aging is a consequence of accumulation of cellular 
damage and is characterized by nine hallmarks: genomic instability, telomere 
attrition, epigenetic alterations, cellular senescence, mitochondrial dysfunction, 
loss of proteostasis, deregulated nutrient sensing, stem cell exhaustion, and altered 
intercellular communication (Figure 1) [1]. Although aging may involve damage to 
various cellular constituents, there is evidence suggesting that DNA constitutes the 
key target in this process [2]; consequently, genomic instability is the main factor 
of aging [3–5]. Genome instability has been implicated as a cause of aging since 
unrepaired DNA damage, DNA mutations, and epimutations accumulate in an 
age-related manner [3]. In the same way, the notion that multi-system premature 
aging syndromes are mainly caused by defects in genome maintenance or affect 
genome function highlights the role of genome integrity in aging [6]. Meanwhile, 
normal aging is accompanied by telomere shortening with cell division due to the 
“end-replication problem” and telomere end processing. Currently, there is a wide 
body of evidence associating reduction in the length of telomeres with failure of cell 
division and senescence of normal cells, and oxidative stress and inflammation can 
contribute to the rate of attrition of telomere length [7]. Age-related changes involve 
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alterations in DNA methylation patterns and posttranslational modification of 
histones such as increased histone H4K16 acetylation [8], H4K20 trimethylation [9], 
or H3K4 trimethylation [10], as well as decreased H3K9 methylation [11] or H3K27 
trimethylation [12]. At the same time, with aging there is also a global heterochro-
matin loss and redistribution [13], thus affecting the expression of several genes, 
mainly those involved in DNA repair, cellular proliferation, differentiation, and 
cell-cycle regulation, and therefore triggering the emergence of other hallmarks of 
aging [14, 15]. Cellular senescence is a process that has become an important con-
tributor in aging since it imposes a permanent proliferative arrest of cells in response 
to various stressors such as DNA damage and telomere loss [16]. Furthermore, as 
cells and organisms age, mitochondria suffer a decline in their integrity and func-
tion, tending to diminish the efficacy of the respiratory chain and thus reducing 
ATP generation, increasing electron leakage and ROS production that can damage 
DNA, proteins, and lipids, among other important biomolecules [17]. Proteostasis 
involves mechanisms for correct folding proteins and mechanisms for the degrada-
tion of proteins, which act in a coordinated fashion to prevent the accumulation 
of damaged components and assuring the continuous renewal of intracellular 
proteins. There is evidence that aging is associated with perturbed proteostasis, 
thus favoring the development of several diseases [18]. Recent data have shown that 
anabolic signaling accelerates aging; in agreement with this, caloric-restricted diet 
decreases nutrient signaling and as a result, a long life span is promoted since DNA 
repair systems are improved; on the other hand, protein homeostasis decreases ROS 
production and delays cellular senescence [19]. Decline in the regenerative potential 
of tissues is one of the most obvious characteristics of aging, where stem cell exhaus-
tion is also important and explained by a decreased cell-cycle activity. Interestingly, 
this correlates with the accumulation of DNA damage, telomere shortening, and 
overexpression of cell-cycle inhibitory proteins such as p16INK4a, increasing the 
relevancy of DNA repair systems [20]. Finally, aging also involves changes at the 
level of intercellular communication, where neurohormonal signaling tends to be 
deregulated together with composition of the peri- and extracellular environment 

Figure 1. 
The hallmarks of aging. The figure illustrates nine hallmarks previously described [1] and where age-related 
changes in DNA repair systems have important roles to promote the development of this phenotype. 
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and immune system, specially increasing inflammatory reactions and declining 
immunosurveillance against pathogens and premalignant cells [21]. In this way, our 
work focuses on describing the molecular bases that associate DNA damage and the 
cell aging process, with a special emphasis in DNA repair systems. 

2. Age-related changes in DNA repair 

Each day, the integrity and stability of DNA are challenged by exogenous physical, 
chemical, or biological agents, as well as by endogenous processes, including DNA 
replication mistakes, spontaneous hydrolytic reactions, and reactive oxygen species 
(ROS). Thus, depending on the source of damage, DNA can be affected in different 
ways, including nucleotide alterations, bulky adducts, single-strand breaks (SSB), 
and double-strand breaks (DSB). To combat threats posed by DNA damage, cells have 
evolved complex and finely regulated mechanisms collectively referred to as DNA 
damage response (DDR) which detects DNA lesions, signals their presence, and pro-
motes their repair [22–24]. However, according with the genome maintenance hypoth-
esis of aging, DNA repair can itself be subject to age-related changes and deterioration, 
allowing accumulation of damages (Figure 2). The wide diversity of DNA-lesion 
types requires multiple, largely distinct DNA repair mechanisms that differ in their 
components, whereas some lesions are subject to direct protein-mediated reversal, 
most are repaired by a sequence of catalytic events mediated by multiple proteins [22]. 
Thus, cells with defects in key proteins involved in DDR have been shown an acceler-
ated aging phenotype caused by the accumulation of mutations and epimutations that 
eventually cause malfunction of the cells, senescence, or apoptosis [25]. 

2.1 Response to DNA single-strand breaks (SSBs) 

2.1.1 Base excision repair (BER) 

BER pathway corrects DNA damage from oxidation, deamination, alkyla-
tion, and other small DNA alterations that do not distort the overall structure of 
double helix. In general, BER is initiated by a DNA glycosylase that recognizes and 

Figure 2. 
Age-related changes in DNA repair and their consequences. Aging involves deterioration of DNA repair systems 
allowing the damages to accumulate and eventually cause a malfunction of the cells. In general, all age-
related changes in DNA repair pathways promote genomic instability in different ways. Decline in efficiency 
and fidelity of BER and NER leads to point mutations, whereas inefficient MMR leads to microsatellite 
instability and point mutations. Meanwhile, deficiencies in NHEJ and HRR result in deletions and genomic 
rearrangements. 
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removes the damaged base, leaving an abasic (apurinic/apyrimidinic; AP) site that 
is subsequently processed by an AP endonuclease (APE), an exonuclease, a DNA 
polymerase, a ligase, and many other ancillary factors in a short-patch repair or 
long-patch repair [26]. Notably, several pieces of evidence indicate that the efficacy 
of BER may negatively change with age, and it has a significant impact in longevity 
together with homologous recombination repair (HRR) [27]. Age-related changes 
in the BER mechanism have been studied mainly in neuronal extracts where it con-
stitutes the main repair pathway. In this way, an overall deficiency in several factors 
has been observed [28], where DNA polymerase β (pol β) together with DNA ligase 
[29] and APE1 activities [30, 31] seem to be the most limiting factors. Interestingly, 
an age-dependent attenuation in the transcriptional activation of pol β and APE1 
was observed in response to DNA damage [32] together with APE1 accumulation 
in the nucleus and mitochondria [33]. Aging has also been shown to have a signifi-
cant effect on cleavage efficacy of tetrahydrofuran:A, U:G mispair, U:A base pair, 
thymine glycol:A, and 8-oxo-7,8-dihydroguanine:C [34]. Thus, senescent human 
fibroblasts as well as leukocytes from old donors showed higher basal level of AP 
sites than young donors. However, after a challenge with the oxidizing agent H2O2 
or the alkylating agent methyl methanesulfonate (MMS), the number of AP sites 
increased quickly in young cells, whereas in senescent and older cells, they were 
observed to grow slowly with a concomitant loss of viability, suggesting a decrease 
in DNA glycosylase activity, mainly in OGG1 8-oxoguanine and 3-methyladenine 
DNA glycosylases [35], although other reports have also mentioned a decrease in 
the UDG uracil-DNA glycosylase [28]. Because polyADP-ribosylation (PARylation) 
levels are linked to downstream mechanisms in DNA repair together with other 
cellular deficiencies as cell-cycle arrest, cell survival, cell death, and/or cell trans-
formation, a decline in PARP1 activity is important since it has been linked with 
the age in humans and rats [36]. Further, a decrease in the interaction between the 
endonuclease VIII-like NEIL1 and PARP1 was observed in old mice when compared 
to young mice [37], which also could be associated with the decrease in PARP1 
activity. Meanwhile, a significant decrease in the expression of SIRT6 has been 
reported to have a relevant role in BER because it regulates repair activity through a 
PARP1-dependent pathway [38]. Since sirtuins can function as metabolic sensors, 
they could also be related with a significative increase in pol β [39] and APE activi-
ties [30] under caloric restricted diets. Consequently, BER pathway showed to be 
deficient when repairing age-downregulated genes in comparison with genes that 
are not affected by age [40]. 

On the other hand, the mitochondrial free radical theory of aging states that 
free radicals generated in mitochondria are strongly related with the intrinsic aging 
process, mainly due to the accumulation of oxidative damage and derived muta-
tions in mitochondrial DNA (mtDNA) mainly in D-loop region. mtDNA is more 
susceptible to oxidative damage than the nuclear genome, presumably because of 
the physical proximity of the source of ROS and lack of histones [41]. BER is the 
predominant and best understood DNA repair pathway in mitochondria involv-
ing at least four components, a DNA glycosylase, an AP endonuclease (or other 
mechanism for processing abasic sites), DNA polymerase γ (pol γ), and DNA ligase 
[42]. Recently, pol β was also detected in mitochondrial protein extracts, where it is 
required to provide enhanced mtDNA BER activity [43]. In a similar way to nuclear 
BER, in rat brain mitochondria, there is a marked age-dependent decline in mito-
chondrial BER activity, as indicated by a pol β, pol γ, ligase, APE1 endonuclease, 
and OGG1 glycosylase activities [44]. Interestingly, activity of mitochondrial OGG1 
AE8-oxoguanine DNA glycosylase increases in mouse liver mitochondria according 
with the age [45]. However, a significant fraction of the OGG1 remains in the outer 
membrane and intermembrane space in an immature form, presumably because 
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its import into the mitochondrial matrix is impaired as a consequence of aging. 
In addition, a nearly identical phenomenon was observed with the mitochondrial 
uracil-DNA glycosylase [46]. 

2.1.2 Nucleotide excision repair (NER) 

NER is the primary pathway for repairing a wide range bulky DNA lesions, 
including UV-induced photoproducts (cyclopyrimidine dimers [CPDs], 6–4 
photoproducts [6-4PPs]), adducts formed by mutagens in the environment such as 
benzo[a]pyrene or some aromatic amines, some oxidative endogenous lesions such 
as cyclopurines, and adducts formed by cancer chemotherapeutic drugs such as 
cisplatin. NER can be initiated by two subpathways: global genome NER (GG-NER) 
where the participation of XPC-RAD23B is involved and the transcription-coupled 
NER (TC-NER) where RNA polymerase interacts with CSA, CSB, and XAB2. Both 
converge to complete the excision process requiring the core NER factors RPA, 
XPA, TFIIH, XPD, XPB, XPG, and ERCC1–XPF, among other auxiliary proteins 
[47]. NER activity decreases with aging possibly because there is a transcriptional 
downregulation of NER genes together with an altered protein function or process-
ing and a decrease in energy production [48]. In this manner, it was previously 
observed that aged human skin [49] and fibroblasts [50] showed decreased levels 
of XPB, PCNA, RPA, XPA, and p53, and more importantly the UVB-induced 
pyrimidine dimers were removed in a slower manner than in younger counterparts 
[50]. Interestingly, the effect of age on the repair of UV-induced DNA damage 
varies for transcribed and nontranscribed DNA, decreasing considerably in unex-
pressed DNA [51, 52] but improving in both cases under calorie restricted diets [52]. 
Furthermore, UV-induced damage and repair in telomeres showed to be slower 
and less frequent than in other regions of the genome such as active genes [53]. 
Additionally, ERCC1 and XPF, which are considered as the rate-limiting members 
in NER, also showed an age-dependent decline in their relative expression levels 
[54]. Because XPC, XPB, and XPF appear to be dependent on the activation status 
of the IGF-1R, decreased levels of IGF-1R observed with aging also contributed 
with the decline of NER pathway [55]. Meanwhile, in an assay based in plasmid 
reactivation after UV damage, cells from older donors introduced an increased 
number of mutations in the transfected plasmid, which suggests that not only the 
repair is less efficient with age but also more mistakes are made [51]. 

2.1.3 Mismatch repair (MMR) 

The mismatched nucleotides in the DNA can result from polymerase misincor-
poration errors, recombination between imperfectly matched sequences, chemical 
or physical damage to nucleotides, and deamination of 5-methylcytosine (5mC) 
mostly during replication. MMR pathway consists of four major heterodimeric 
complexes, MutL homolog (MutL)α, MutLβ, MutS homolog (MutS)α, and MutSβ. 
MutLα involves MLH1 and PMS2, whereas MutLβ consist of MLH1 and PMS1. 
Meanwhile, MutSα consists of MSH2 and MSH6, and MutSβ is constituted by MSH2 
and MSH3. Thus, MutSα complex recognizes single mispaired bases, whereas MutSβ 
detects mispaired runs of 3–6 bases. MutSα or MutSβ recruits MutLα or MutLβ and 
forms a tetrameric complex that serves as a base for the recruitment of excision and 
repair machinery [56]. MMR removes mispaired bases preventing mutations [57], 
and defects in this pathway are strongly associated with a substantial destabilization 
of microsatellites, which are tandemly repeated sequences (from 1 to 6 bp), highly 
polymorphic, interspersed in the genome, and susceptible to slippage during replica-
tion [58]. Previously, a decline in MMR function and efficiency correlation with age 
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was observed [59, 60], especially in microsatellite sequences [61] where age-related 
methylation of the MLH1 [62, 63] and MSH2 [64] promoters could be associated to 
microsatellite instability (MSI). Interestingly, MLH1 shores showed a decrease in 
methylation with increasing age [65]. Shores are regions of the genome around CpG 
islands with lower GC content and with the ability to control gene expression. 

2.2 Response to DNA double-strand breaks (DSBs) 

2.2.1 Homologous recombination repair (HRR) 

With aging there is an increase in DNA double-strand breaks [66]. However, it 
is unknown whether this increase is a consequence of accumulation of unrepaired 
DSBs or progressively delayed repair events, possibly as a reflection of an inherently 
limited capacity to process DSBs [67]. To repair this kind of DNA damage, HRR, 
considered a highly reliable pathway, allows the cell to access and copy information 
from the intact DNA sequence into the sister chromatid. Notably, HRR is restricted 
to late S to G2 phases when chromosomes are aligned [68]. RAD51 and other 
members of the RAD52 epistasis group as RAD50, MRE11, and XRS2 are needed 
for HRR. The efficiency of HRR is enhanced by mediator proteins that promote 
the loading of RAD51 onto ssDNA, RAD52 among them [69]. HR-mediated repair 
efficiency declines precipitously during cellular aging together with a decline of 
RAD51, RAD51C, RAD52, NBS1, CTIP, and MRE11 levels [66, 70]. Furthermore, 
in human and mice oocytes, a decrease in expression of BRCA1 and ATM [71] and 
an impaired recruitment of RAD51 to DNA damage sites during aging [72] were 
observed, which could force cells to utilize the error-prone NHEJ pathway. At the 
same time, in older mice a lower activity of the ATM kinase that results in less 
p53 phosphorylation was reported, thus affecting apoptosis, cell-cycle arrest, and 
senescence [73]. In addition to the above, the decrease in the levels of PARP1 [36] 
and SIRT6 [38] not only affects BER pathway but also has a relevant role in HRR 
since supplementation of recombinant SIRT6 was able to partly restore HR activ-
ity [70]. This could be related to a higher binding of DBC1 to PARP1 inhibiting 
its enzymatic activity as well as the change in NAD+ levels [74]. Decreased NAD+ 
levels observed with age also reduce activity of other sirtuins as SIRT1 and SIRT7 
together with PARP1, reducing NHEJ and HRR pathways [75]. Although HRR is 
essential, its activity must be carefully controlled in order to maintain genomic 
integrity [76]. Previously, it has been demonstrated that frequency of recombinant 
cells is highly variable among tissues, from very low levels in the brain and stomach 
to very frequent in the pancreas and spleen. Additionally, de novo recombination 
events indeed accumulate in mice colonic somatic stem cells with age [77]. 

2.2.2 Nonhomologous end joined (NHEJ) 

In human cells, NHEJ is the major pathway for the repair of DSBs, where 
two ends of DNA with little or no sequence homology are brought together and 
repaired. NHEJ can act throughout most of the cell cycle but predominantly in G1 
phase [68]. NHEJ is divided into two subpathways: the classical NHEJ pathway 
(c-NHEJ), in which DNA-PKcs, Ku70/Ku80 heterodimers, Artemis, XRCC4, XLF, 
and DNA Ligase 4 are involved, and the alternative NHEJ pathway (alt-NHEJ), 
comprised of the repair factors PARP1 and DNA ligase 3 [78]. Both NHEJ pathways 
are associated with changes in DNA sequence, where c-NHEJ causes deletions and 
insertions, whereas alt-NHEJ propitiates the loss of genetic information between 
microhomologies on chromosomes [79]. NHEJ becomes inefficient and more error-
prone during cellular senescence, thus favoring genomic instability and higher 
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incidence of cancer in the elderly [80, 81]. Furthermore, NHEJ-mediated VDJ 
recombination in B lymphocytes is impaired, reducing class switch recombination 
efficiency and contributing to reduced humoral repertoire and impaired immunity 
with aging [82]. Frequency of microhomology-mediated end joining (MMEJ) 
increases as a compensatory mechanism; however, at the same time, it favors that 
more mistakes are generated [81]. Ku 70 and 80 proteins decreased their expres-
sion at least twofold in two lines of senescent human fibroblast; at the same time, 
their localization was changed concentrating them in the nucleus when compared 
with young cells where they are present in both the nucleus and cytoplasm [83]. 
Cytoplasmic Ku proteins could serve as a reserve (pool) that is recruited to the 
nucleus upon DNA damage; therefore in senescent cells these proteins are unavail-
able to repair new lesions [25]. Additionally, binding activity of the Ku 70/80 
heterodimers to broken DNA ends also declines with aging [66]. Notably, mice and 
cells deleted for either Ku70 or Ku80 exhibited not solely NHEJ disruption but also 
altered BER [84]. On the other hand, decreased expression of XRCC4, DNA ligase 
4, and DNA ligase 3 has been observed, and this implicates that during the aging 
process, NHEJ becomes more inefficient and inaccurate, leaving more damage sites 
repaired with a loss of additional genetic information [72]. Interestingly, aging 
increases DNA-PK activity phosphorylating HSP90α and decreasing its chaperone 
function in AMPK, which is critical for mitochondrial biogenesis and energy 
metabolism [85]. Consistently, DNA ligase 4 and Ku80 gene promoters were fre-
quently observed as hypermethylated in elderly people, which could be associated 
with the silencing expression of both genes [86]. However, as mentioned for other 
DNA repair mechanisms, caloric restriction diet improves NHEJ activity possibly 
through SIRT1 and FOXO activity [87]. 

3. Conclusions 

Aging is a consequence of damage accumulation in different cellular constituents 
and where DNA damage is one of the most important. Every day there are thousands 
of insults that affect DNA, either due to endogenous factors (such as metabolism) or 
exogenous factor like contact with radiation sources or exposure to toxic substances; 
but only a minimal amount (less than 0.02%) accumulates as permanent damage, 
while the rest is totally repaired. However, if only one gene is not repaired and its 
function is important as that of a proto-oncogene, a tumor suppressor, or any DNA 
repair genes, this could lead to accumulation of mutations, and then DNA damage 
checkpoints can halt the cell cycle and induce cellular senescence or apoptosis, or 
well erroneous repair or replicative bypass of lesions can result in mutations and 
chromosomal aberrations leading the cells to transform into cancer cells. 

Notably, DNA repair systems are able of dealing with most of the damages 
inflicted to DNA; however, their efficiency decrease with age, permitting that point 
mutations, insertions, deletions, and rearrangements, among others, occur more 
frequently and accumulate over time. This is due in part to the fact that critical 
proteins involved in DNA repair significantly decrease their expression in an age-
related manner. In Figure 2, the main age-related changes reported over the differ-
ent mechanisms of DNA repair together with their consequences that globally cause 
genomic instability and favor cellular senescence and cancer are summarized. 

Overall, this area needs to be more exploited in order to improve our quality of 
life and prevent or delay the harmful effects of aging. Thus, the more knowledge we 
acquire about the natural cell aging process and its interrelation with the mecha-
nisms of DNA repair, the closer we will be to develop drugs, therapies, or even 
vaccines that could help us to prolong our life. 
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Chapter 9 

Hepatocarcinoma Angiogenesis 
and DNA Damage Repair 
Response: An Update 
Xi-Dai Long, Zhou-Ximao Long, Xiao-Ying Huang, 
Jin-Guang Yao, Qiang Xia and Yan Deng 

Abstract 

Hepatocarcinoma is one of the most common lethal human malignant tumors, 
mainly because of active angiogenesis. This kind of high angiogenesis often 
accounts for early metastasis, rapid recurrence, and poor survival. Growing evi-
dence has proved that hepatocarcinoma angiogenesis is closely associated with 
multiple risk factors, such as DNA damages resulting from hepatitis B and C virus 
infection, aflatoxin B1 exposure, ethanol intake, and obesity. Genetic alterations 
and genomic instability, probably resulting from low DNA damage repair response 
(DRR) and the following unrepaired DNA lesions, are also increasingly recognized 
as important risk factors of hepatocarcinoma angiogenesis. Dysregulation of DRRs 
and signaling to cell cycle checkpoints involving in DRR pathways may accelerate 
the accumulation of DNA damages and trigger the dysregulation of angiogenesis-
related genes and the progression of hepatocarcinoma. In this review, we discussed 
DNA damages/DRRs and angiogenesis during hepatocarcinogenesis and their 
interactive regulations. Hopefully, the review will also remind the medical research-
ers and clinic doctors of further understanding and validating the values of DNA 
damages/DRRs in hepatocarcinoma angiogenesis. 

Keywords: hepatocarcinoma, angiogenesis, DNA damage, DNA damage 
repair response 

1. Introduction 

Hepatocellular carcinoma, also termed as hepatocarcinoma, is one of the most 
common malignant tumors, with more than 500,000 new cases per year [1]. Until 
recently, it has been frequent to consider hepatocarcinoma as a tumor with low 
incidence in the western world but with high incidence in the eastern countries [1]. 
However, increasing data exhibit that the incidence of this tumor has increased in 
both western and eastern countries. Etiologically, several risk factors, including 
hepatitis B virus (HBV), hepatitis C virus (HCV), aflatoxin B1 (AFB1), and alcohol, 
have been identified for increasing disease incidence worldwide [2]. Although 
molecular mechanisms of hepatocarcinoma caused by these risk factors have not 
still been clear, chronic and permanent liver damage and damage response may 
play a vital role. Macrocosmically, liver damage consists of a series of pathologi-
cal changes, such as chronic hepatitis, liver cirrhosis, nodular hyperplasia, and 
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dysplasia [3]. Microcosmically, chronic DNA damage, including the formation of 
DNA adducts, DNA strand break and bulk, gene mutations, and genomic instabil-
ity, is the most important type [4]. 

Because of early blood metastasis and high death rate of this malignancy, it has 
become the third most common cause of cancer-associated deaths worldwide. This 
death risk could be explained by high angiogenesis capacities of hepatocarcinoma [1, 2]. 
Increasing evidence has exhibited that hepatocarcinoma patients with high microvessel 
density (MVD) in tumor tissues would feature a poor prognosis, and angiogenesis has 
been regarded as an important marker predicting the risk of invasiveness and metasta-
sis [5]. This chapter summarizes the latest findings in hepatocarcinoma angiogenesis, 
DNA damage, and damage repair response (DRR). We also try to shed light on the 
effects of DNA damage and dysregulation of DRR on tumor angiogenesis. 

2. Angiogenesis and regulation in hepatocarcinoma 

2.1 Angiogenesis process in hepatocarcinoma 

Several previous reviews have summarized the angiogenesis in hepatocarcinoma 
[5–7]. In brief, angiogenesis is a kind of crucial biological function and survival 
potential for normal organism development, growth, and adaptation to new 
environment. The dynamic balance between increasing and decreasing potential of 
angiogenesis is essential in the different physiological and pathological conditions, 
such as injury cure, damage repair, inflammatory procession, tumor progression, 
blindness, and ischemia. Hepatocarcinoma angiogenesis was extensively studied 
via cell models, experimental animal models, and human tumor samples [5–7]. 
Accumulating data have proved that local hypoxia in tumor tissues and the change 
in genome resulting from genetic or environmental risk factors will lead to the 
secretion and synthetics of angiogenetic regulative factors and triggering angio-
genesis [8–10]. In hepatocarcinoma tissues, the process of angiogenesis consists of 
the following several stages: sprouting, extracellular matrix component (ECMs) 
reconstruction, endothelial cell (EC) migration and proliferation, lumen forma-
tion, and stabilization of newborn vessels (Figure 1) [11]. 

The establishment of conditions allowing ECs proliferation and migration, 
which often results from local hypoxia, first facilitates endothelial sprouting 
and budding. During this stage, hypoxia induces the secretion and synthetics of 
angiogenetic factors, such as nitric oxide (NO), vascular endothelial growth factor 
(VEGF), CD31, angiopoietin-1, and so on [11]. The NO-induced vasodilation and 
VEGF-caused high permeability result in the extravasation of plasma components 
(including fibrinogen and fibrin). Together with ECMs, these plasma components 
lay down and form provisional scaffolds for migrating ECs. The basement mem-
branes and ECMs (mainly consisting of collagen I and IV and laminin) are next 
degraded, and subsequently, ECs migrate into local sites and proliferate. Increasing 
proliferation of ECs in the local hypoxia tissues leads to the formation of nascent 
vessels with lumen. After that, nascent vessels are recruited and structurally 
stabilized under the conditions of physical forces and a series of molecules such as 
platelet-derived growth factor β (PDFG-β), angiopoietin-1, angiopoietin-2, VEGF, 
and transforming growth factor β1 (TGF-β1) [7, 11, 12]. 

Vessels in hepatocarcinoma differ from other liver diseases or normal vessels [5, 
11, 13]. First, tumor vessels typically appear as irregular diameter and abnormal 
branching patterns [5]. Second, pericytes of vessels are often incompletely covered 
or lost; furthermore, their basement membranes are also incomplete [11]. Third, 
tumor vessels sometimes form irregular channels and the walls of these channels are 
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Figure 1. 
Angiogenesis procession in hepatocarcinoma. The procession of angiogenesis consists of: (1) sprouting and 
budding; (2) ECM remodeling; (3) EC proliferation and migration; (4) lumen formation and three-D 
organization; and (5) stabilization of nascent vessels. 

comprised of cancer cells. Moreover, the endothelial cells may be replaced by cancer 
cells partially or completely. Finally, angiogenesis in hepatocarcinoma not only 
appears abnormal architecture but also accompanies abnormal molecular expres-
sion and regulation [6, 14]. These characteristics result in abnormal structures and 
function for hepatocarcinoma; however, they can provide some important cues for 
early diagnosis and therapeutic strategies for cases with hepatocarcinoma. 

2.2 Angiogenesis regulation in hepatocarcinoma 

A series of angiogenic and antiangiogenic factors (Tables 1 and 2) regulate the 
angiogenesis process in hepatocarcinoma [5]. During the process of hepatocarci-
noma angiogenesis, hypoxia and VEGF family play a vital role. Hypoxia in local 
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No. Active factors Effects Process involved in 
hepatocarcinoma 

AF01 NO Stimulating vasodilation Increasing vessel permeably 

AF02 VEGF family 
members 

(1) Increasing vascular permeability 
(2) inducing EC proliferation 
(3) Progressing leukocyte adhesion 
(4) Regulating neovascular lumen 
diameter 

(1) Sprouting and budding 
(2) Vessel growth 3-D 
organization 

AF03 VEGF-R Integrate angiogenic and survival 
signals 

Vessel growth 

AF04 NRP-1 Integrate angiogenic and survival 
signals 

Vessel growth 

Angiopoietins Inducing EC proliferation Vessel growth 

IL-4 Inducing EC proliferation Vessel growth 

IL-8 Inducing EC proliferation Vessel growth 

Hepatocyte growth 
factor 

Inducing EC proliferation Vessel growth 

Tissue factor Inducing EC proliferation Vessel growth 

Fibronectin Progressing ECM remodeling 

AF05 Integrins avb3 (1) ECM receptors, intercellular 
communication 
(2) Mobilized during EC migration 
(3) Regulating neovascular lumen 
diameter 

ECM remodeling and EC 
migration Newborn vessel 
stabilization 

AF06 Integrins avb5 (1) ECM receptors, intercellular 
communication 
(2) Mobilized during EC migration 
(3) Regulating neovascular lumen 
diameter 

ECM remodeling and EC 
migration Newborn vessel 
stabilization 

AF07 Integrins a6b1 (1) ECM receptors, intercellular 
communication 
(2) Mobilized during EC migration 
(3) Regulating neovascular lumen 
diameter 

ECM remodeling and EC 
migration Newborn vessel 
stabilization 

AF08 uPA (1) Remodeling ECM 
(2) Releasing and activating growth 
factors 

ECM remodeling and EC 
migration Newborn vessel 
stabilization 

AF09 Plasminogen 
activators 

(1) Remodeling ECM 
(2) Releasing and activating growth 
factors 

ECM remodeling and EC 
migration Newborn vessel 
stabilization 

AF10 MMPs (1) Remodeling ECM 
(2) Releasing and activating growth 
factors 

ECM remodeling and EC 
migration Newborn vessel 
stabilization 

AF11 Heparinases (1) Remodeling ECM 
(2) Releasing and activating growth 
factors 

ECM remodeling and EC 
migration Newborn vessel 
stabilization 

AF12 chymases (1) Remodeling ECM 
(2) Releasing and activating growth 
factors 

ECM remodeling and EC 
migration Newborn vessel 
stabilization 

AF13 Tryptases (1) Remodeling ECM 
(2) Releasing and activating growth 
factors 

ECM remodeling and EC 
migration Newborn vessel 
stabilization 

AF14 Cathepsins (1) Remodeling ECM 
(2) Releasing and activating growth 
factors 

ECM remodeling and EC 
migration Newborn vessel 
stabilization 
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No. Active factors Effects Process involved in 
hepatocarcinoma 

AF15 PlGF Inducing EC proliferation Vessel growth 

AF16 aFGF Inducing EC proliferation Vessel growth 

AF17 bFGF Inducing EC proliferation Vessel growth 

FGF-R1 Receptor for aFGF Vessel growth 

FGF-R2 Receptor for bFGF Vessel growth 

AF18 HGF Inducing EC proliferation Vessel growth 

c-Met Receptor for HGF Vessel growth 

AF19 TGF-a Inducing EC proliferation Vessel growth 

AF20 TGF-b Inducing EC proliferation Vessel growth 

EGF-R Receptor for TGF-a and TGF-b Vessel growth 

AF21 MCP-1 and other 
chemokines 

Pleiotropic role in angiogenesis Newborn vessel stabilization 

AF22 MEF2C Regulating neovascular lumen 
diameter 

Newborn vessel stabilization 

AF23 Ephrin’s Determining branching and arterial/ 
venous specification 

Newborn vessel stabilization 

AF24 PDGF-B and 
receptors 

Recruiting pericytes Newborn vessel stabilization 

AF25 Ang-1 (1) Stabilizing intercellular contacts 
(2) Inhibiting permeability 

Newborn vessel stabilization 

AF26 Ang-2 Ang-1 antagonist (destabilizes 
vessels; causes EC death) 

Vessel regression 

AF27 Tie-2 Receptor for Ang-1 and Ang-2 Newborn vessel stabilization 

AF28 TGF- 1 (1) Promoting vessel maturation 
(2) stimulating ECM generation 
(3) Inducing differentiation of 
mesenchymal cells to pericytes 

ECM remodeling and EC 
migration 

AF29 Endoglin (1) Promoting vessel maturation 
(2) stimulating ECM generation 
(3) Inducing differentiation of 
mesenchymal cells to pericytes 

ECM remodeling and EC 
migration 

AF30 Cyr61 (1) Stimulating directed migration 
of EC through an AVB integrin-
dependent pathway 
(2) Acting as ECM modifiers 
(3) Promoting EC survival 

ECM remodeling and EC 
migration 

AF31 Fisp12 (1) Stimulating directed migration 
of EC through an AVB integrin-
dependent pathway 
(2) Acting as ECM modifiers 
(3) Promoting EC survival 

ECM remodeling and EC 
migration 

Abbreviations: VEGF, vascular endothelial growth factor; ECM, extracellular matrix component; EC, endothelial 
cell; PEDF, Pigment epithelium-derived factor; platelet and endothelial cell adhesion molecule 1; TIMPs, Tissue 
inhibitor of metalloproteases; IFN, interferon; MMPs, matrix metalloproteinases; Ang, angiopoietin; IL, interleukin; 
PIGF, placenta growth factor; HGF, hepatocyte growth factor; TGF, transforming growth factor; EGF, epidermal 
growth factor. 

Table 1. 
Angiogenesis active regulative factors in hepatocarcinoma. 

181 

http://dx.doi.org/10.5772/intechopen.82034


 

 

 

  

  

  

  

  

  

  

  

  

 
  

 
 

 

 
 

 

 

DNA Repair - An Update 

No. Active factors Effects Process involved in 
hepatocarcinoma 

IF01 Arrestin Suppressing VEGF-regulating 
vessel growth 

Vessel growth 

IF02 Canstatin (1) Interruption of stable cell-ECM 
connections 

Vessel regression 

(2) Inducing EC apoptosis 

IF03 Interleukin 12 Suppressing EC cell proliferation Vessel growth 

IF04 PEDF Suppressing EC cell proliferation Vessel growth 

IF05 VE-cadherin (1) Adhering junction molecules 
(2) Intercellular adhesion 
(3) Providing vessel tightness 

Newborn vessel 
stabilization 

IF06 PECAM-1 (1) Adhering junction molecules 
(2) Intercellular adhesion 
(3) Providing vessel tightness 

Newborn vessel 
stabilization 

IF07 Plakoglobin (1) Adhering junction molecules 
(2) Intercellular adhesion 
(3) Providing vessel tightness 

Newborn vessel 
stabilization 

IF08 b-Catenin (1) Adhering junction molecules 
(2) Intercellular adhesion 
(3) Providing vessel tightness 

Newborn vessel 
stabilization 

IF09 Claudins (1) Tightening junction molecules 
(2) Intercellular adhesion 
(3) Providing vessel tightness 

Newborn vessel 
stabilization 

IF10 Occludin (1) Tightening junction molecules 
(2) Intercellular adhesion 
(3) Providing vessel tightness 

Newborn vessel 
stabilization 

IF11 JAM-1 (1) Tightening junction molecules 
(2) Intercellular adhesion 
(3) Providing vessel tightness 

Newborn vessel 
stabilization 

IF12 JAM-2 (1) Tightening junction molecules 
(2) Intercellular adhesion 
(3) Providing vessel tightness 

Newborn vessel 
stabilization 

IF13 JAM-3 (1) Tightening junction molecules 
(2) Intercellular adhesion 
(3) Providing vessel tightness 

Newborn vessel 
stabilization 

IF14 Connexins (1) Gap junction molecules 
(2) Facilitating intercellular 
communication 

Newborn vessel 
stabilization 

IF15 Integrins avb3 Suppressing VEGF- and Flk-1-
mediated EC survival 

Vessel growth 

IF16 Integrins avb5 Suppressing VEGF- and Flk-1-
mediated EC survival 

Vessel growth 

IF17 PAI-1 (1) Inhibiting ECM degradation 
by MMPs (2) Inhibiting EC 
proliferation 

ECM remodeling and 
EC migration 

IF18 TIMPs (1) Inhibiting ECM degradation 
by MMPs (2) Inhibiting EC 
proliferation 

ECM remodeling and 
EC migration 

IF19 Angiostatin and related 
plasminogen fragments 

Suppressing tumor angiogenesis Vessel growth 

IF20 Endostatin Suppressing EC cell proliferation Vessel growth 
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No. Active factors Effects Process involved in 
hepatocarcinoma 

IF21 Antithrombin III Suppressing EC cell proliferation Vessel growth 

IF22 IFN-a Suppressing EC cell proliferation Vessel growth 

IF23 IFN-b Suppressing EC cell proliferation Vessel growth 

IF24 LIF Suppressing EC cell proliferation Vessel growth 

IF25 PF4 Suppressing EC cell proliferation Vessel growth 

IF26 TSP-1 Inhibiting lumen formation Vessel regression 

IF27 Ang-1 (excess) Making vessels too tight and Newborn vessel 
inhibiting sprouting stabilization 

IF28 Ang-2 Facilitating sprouting in the Vessel regression 
presence of VEGF 

IF29 sTie-2 Inhibitor for Ang-1 and Ang-2 Vessel regression 

IF30 sFlt-1 Inhibitor for VEGF family (1) Sprouting and 
budding 
(2) Vessel growth 3-D 
organization 

IF31 Thrombospondin-1 Suppressing EC cell proliferation Vessel growth 

IF32 Thrombospondin-2 Suppressing EC cell proliferation Vessel growth 

IF33 Tumstatin Suppressing EC cell proliferation Vessel growth 

IF34 Vasostatin Suppressing EC cell proliferation Vessel growth 

Abbreviations: VEGF, vascular endothelial growth factor; ECM, extracellular matrix component; EC, endothelial 
cell; PEDF, Pigment epithelium-derived factor; platelet and endothelial cell adhesion molecule 1; TIMPs, Tissue 
inhibitor of metalloproteases; IFN, interferon; MMPs, matrix metalloproteinases; Ang, angiopoietin. 

Table 2. 
Angiogenesis inhibitive regulative factors in hepatocarcinoma. 

tumor tissues, an important pathophysiological phenomenon caused by rapid 
growth of tumor, leads to the expression of hypoxia-inducible factor (HIF)-1α, 
which is a key inducible factor for angiogenesis in hypoxia tissues [7, 14]. On the 
one hand, HIF-1α can induce the expression of hypoxia-response-related genes like 
NO, VEGF, transforming growth factor (TGF) α and β, adrenomedullin (ADM), 
LDL-receptor-related protein 1 (LRP1), and leptin; on the other hand, local 
hypoxia status in tumor tissues also downregulates the expression of antiangio-
genic factors such as thrombospondin-1 (TS1) and -2 (TS2) [15–17]. Additionally, 
growing literature has shown that lots of factors, including genetic or acquired 
alterations in the oncogenes (i.e., Ras, c-Jun, and Myc) and tumor suppressor genes 
(i.e., TP53), Hepatitis B Virus X (HBx) protein, chromobox 4, and DNA damage 
induced by chronic inflammation and AFB1 exposure, can increase the expres-
sion proangiogenic factors [18–23]. For example, HBx protein has a potential for 
increasing HIF-1α expression via promoting transcriptional and translational 
activity and therefore accelerating angiogenesis during carcinogenesis process of 
hepatocarcinoma [24]. Recent studies have reported that chromobox 4 (a known 
transcriptional regulator and also a SUMO E3 enzyme) can promote angiogenesis 
via stabilizing HIF-1 in hepatocarcinoma [18, 19]. VEGF (including its glycoprotein 
family members VEGF-A, -B, -C, and -D) is another important angiogenic factor 
that always upregulates in most cases with hepatocarcinoma [5]. The upregulation 
of VEGF in hepatocarcinoma is proved not only to increase tumor neovasculariza-
tion but also to accelerate tumor growth via in vitro cell experiments and animal 
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models. The role of VEGF is mediated mainly by two receptors: VEGF-R1 (also 
called Flt-1) and VEGF-R2 (also termed as KDR/Flk-1). Both VEGF-R1 and 
VEGF-R2 have tyrosine kinase activity and are normally expressed in hepatic 
parenchyma cells including endothelial cells of portal and sinusoidal tracts [5, 6]. In 
hepatocarcinoma, both mRNA and protein amount of them are increasing notice-
ably in the tumor tissues compared to peri-tumor tissues [25]. Some other factors, 
such as angiopoietin 1 and 2, involve in the regulation of angiogenesis in hepato-
carcinoma (Tables 1 and 2) [5, 6, 13]. Together, increasing angiogenic potential but 
decreasing antiangiogenic potential facilitates hepatocarcinoma angiogenesis. 

2.3 Angiogenesis biomarkers in hepatocarcinoma 

In the past decades, several biomarkers, such as VEGF, angiogenin, and MVD, 
have been selected for elucidating angiogenic potential of hepatocarcinoma. Table 3 
summarized the potential of these biomarkers for hepatocarcinoma angiogenesis 
and angiogenesis-related tumor biological actions. Among these biomarkers, VEGF 
is concerned especially because of its clinic significance. For example, a hospital-
based clinic samples analyses (including 7 cases with liver low-grade dysplastic nod-
ule [DN], 8 cases with liver high-grade DN, 11 cases with early hepatocarcinoma, 17 
cases with small hepatocarcinoma, and 21 cases with advanced hepatocarcinoma) 
by Park et al. [26] showed that the amount of VEGF increased gradually from 
low-grade DN to early hepatocarcinoma. Furthermore, this increasing expression 
of VEGF is significantly associated with neoangiogenesis (marked by MVD with 
CD34 staining) and cancer cell proliferation. Collectively, we can conclude that 
increasing VEGF expression and MVD are positively associated with tumor vascu-
larization and the following tumor progression and poor survival of tumor cases. 
Furthermore, increasing evidence has exhibited that serum levels of VEGF are not 
only parallel with the amount in tumor tissues but also can predict therapy response 
of patients with hepatocarcinoma [29–32]. Thus, VEGF may be useful for improv-
ing therapeutic strategies of hepatocarcinoma based on the angiogenesis thesis. 

No. Study design Samples Results Ref# 

1 Hospital-
based sample 
study 

LGDs (n = 7), HGDs 
(n = 8), eHCCs 
(n = 11), shocks 
(n = 17), and aHCCs 
(n = 21) 

(1) VEGF expression increases 
gradually from LGD to eHCC. 
(2) The sHCCs has an increasing 
neoangiogenesis and cell proliferation 
compared to aHCCs. 
(3) The levels of VEGF expression 
are positively associated with MVD 
(marked by CD34 staining). 

[26] 

2 Hospital-
based sample 
study 

HCCs (n = 60) Amount of VEGF in the serum of 
patients positively correlates with that 
in the tumor tissues. 

[27] 

3 Hospital-
based sample 
study 

HCs (n = 20), 
CHs (n = 36), LCs 
(n = 77), and HCCs 
(n = 86) 

Plasm VEGF levels are increasing in 
patients with HCC compared to in 
non-HCCs and this increase will more 
noticeable in cases with metastasis HCCs. 

[28] 

4 Hospital-
based sample 
study 

HCs (n = 30), LCs 
(n = 26), and HCCs 
(n = 52) 

Plasm VEGF levels are increasing in 
patients with HCC compared to in non-
HCCs and this increase will shorten the 
survival of HCCs. 

[29] 

5 Prospective 
study 

HCCs (n = 100) Plasm VEGF levels of HCC cases are 
related to tumor stage, postoperation 
recurrence, and blood invasion. 

[30] 
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No. Study design Samples Results Ref# 

6 Hospital-
based sample 
study 

HC (n = 15) and 
HCCs (n = 98) 

Serum VEGF is a significant biomarker 
for HCC survival (including OS and 
RFS). 

[31] 

7 Prospective 
study 

HCCs (n = 80) Serum VEGF levels were correlated 
with clinical data, tumor response to 
TACE and survival results. 

[32] 

8 Hospital-
based sample 
study 

HCCs (n = 48) TACE treatment can upregulate 
expression and bFGF in HCC tissues 
possibly due to hypoxia and ischemia. 

[33] 

9 Hospital-
based sample 
study 

HCCs (n = 38) TACE treatment can upregulate 
expression and bFGF in HCC tissues 
possibly due to hypoxia and ischemia. 

[34] 

10 Hospital-
based sample 
study 

HCCs (n = 41) Angiogenin mRNA in serum and tumor 
tissues positively associating with MVD 
and poor prognosis of cases 

[35] 

11 Hospital-
based sample 
study 

HCCs (n = 90) MMP-2, MMP-9 and VEGF expression 
is positively correlated to the prognosis 
of HCC patients. 

[36] 

12 Hospital-
based sample 
study 

HCCs (n = 30) The serum levels of Ang-2, HGF, IL-8, 
PDGF-BB, and VEGF were correlated 
with poor effects of sorafenib treatment 
in patients with HCC. 

[37] 

13 Hospital-
based sample 
study 

CHs (n = 79) and 
HCCs (n = 89) 

(1) TEMs are involved in HCC 
angiogenesis. 
(2) The frequency of circulating TEMs 
was significantly higher in HCC than 
non-HCC patients. 
(3) The TEMs have higher diagnostic 
value for HCC than AFP, PIVKA-II and 
ANG-2. 

[38] 

14 Animal model / Mobilized EPCs participate in tumor 
angiogenesis of HCC 

[39] 

Abbreviations: LGDs, patients with low-grade dysplasia; HGD, patients with high-grade dysplasia; eHCCs, patients 
with early hepatocellular carcinoma; HCC, hepatocellular carcinoma; sHCCs, patients with small HCC; aHCCs, 
patients with advanced HCC; HCCs, patients with HCC; HCs, healthy controls; LCs, patients with liver cirrhosis; 
VEGF, vascular endothelial growth factor; MVD, microvessel density; OS, overall survival; RFS, tumor reoccurrence-
free survival; TACE, transarterial chemoembolization; bFGF, basic fibroblast growth factor; EPCs, bone marrow-
derived endothelial progenitor cells; TEMs, TIE2-expressing monocytes/macrophages; Ang-2, angiopoietin-2; G-CSF, 
granulocyte colony-stimulating factor; HGF, hepatocyte growth factor; IL-8, interleukin-8. 

Table 3. 
The potential of biomarkers for hepatocarcinoma angiogenesis and angiogenesis-related tumor biological 
actions. 

3. DNA damage and DRR in hepatocarcinoma 

3.1 DNA damage induced by risk factors for hepatocarcinoma 

Multiple risk factors, including HBV and HCV infection, AFB1 exposure, 
ethanol consumption, and obesity, have been reported to correlate with hepa-
tocarcinogenesis (Figure 2) [4]. These risk factors can induce multiple types of 
DNA damage, such as DNA single-stand break (SSB), double-strand break (DSB), 
base damage, DNA-adduct formation, oxidation damage, gene mutation, chromo-
somal aberration, and genomic instability [4]. Results from epidemiological and 
experimental studies show that viral-DNA damage relationship is characterized by: 
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Figure 2. 
Risk factors-induced DNA damage and damage repair response during hepatocarcinoma. Abbreviations: 
HBV, hepatitis B virus; HCV, hepatitis C virus; AFB1, aflatoxin B1; AFBO, AFB1-8,9-epoxide; IL, 
interleukin; TGF, transforming growth factor. 

(1) the integration of viral gene (such as HBx gene) into the genome of liver cells 
and resulting genomic instability of host cells [21, 24, 40, 41]; (2) TP53 muta-
tion conducted by HBx integration resulting in abnormal cell response, including 
DNA repair, cell proliferation and cycle, and apoptosis potential [22]; (3) HCV 
core interfering the formation of Mre11/Rad50/Nbs1 (MRN) complex through 
the bind with Nbs1 [5]; (4) the inhibition of such DNA repair proteins as Ataxia 
telangiectasia mutated kinase (ATM) [42, 43]; and (5) inducing dysregulation of 
signal pathways, including Wnt/β-catenin pathway, sex steroid pathway, p38MAPK 
pathway, PI3K/Akt pathway, transforming growth factor 𝛽𝛽 (TGF𝛽𝛽) pathway, 
NF-𝜅𝜅B pathway, and so on [11]. 

For AFB1-induced DNA damage, adducts formation and gene mutations are 
concerned especially [44]. AFB1 is a known I-type chemical hepatocarcinogen pro-
duced mainly by A. parasiticus and A. flavus and a suspected risk factor for hepato-
carcinoma in some dependent areas such as Sub-Saharan area, the southeast region 
of Asia, and the coast of southeast China. Results from prospective epidemiologi-
cal and animal studies have exhibited that AFB1-induced DNA damage plays a vital 
role in the process of hepatocarcinoma caused by AFB1 exposure [40, 45]. Studies 
of AFB1 metabolism have further proved that cytochrome P450 (CYP) enzymes 
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in hepatocytes can facilitate AFB1 into its epoxy compound, also termed as AFB1-
8,9-epoxide (AFBe). AFBe can covalently bind to genomic DNA and ultimately 
induce multiple types of DNA damage [46, 47]. Increasing evidence exhibits 
that AFB1 can multiplicatively interact with HBV and/or HCV infection during 
hepatocarcinogenesis, and that, this multiplicative interaction may be associated 
with more noticeable DNA damage induced by both AFB1 exposure and HBV/ 
HCV infection [23]. Epidemiological studies based on the case-control design with 
a large sample have proved that patients with chronic virus hepatitis (including B 
and C type) will feature increasing hepatocarcinoma risk under the conditions of 
high AFB1 exposure [46]. Furthermore, patients with high AFB1 often companies 
with chronic virus infection and faces higher frequency of gene mutation like TP53 
and ras [47]. Interestingly, the mutation at the codon 249 of TP53 gene, namely 
G:C > T:A mutation resulting in the change of arginine to serine, has been identi-
fied as a relatively specifically change and named AFB1-induced hot-spot mutation 
[44]. This mutation may lead to the dysfunction of TP53 protein and abnormal 
cell actions like promoting cell growth, inhibiting cell apoptosis, and inhibiting 
transcription mediated by TP53 [40]. 

Other risk factors like alcohol intake also cause malignant transformation 
of hepatocytes. Chronic ethanol intake will significantly increase hepatocar-
cinoma risk (about five times) if more than 80 g/day × 10 years. Actually, less 
than this amount of uptake also increases cancer risk in spite of nonsignificance 
[48]. Although mechanisms are not still clear, increasing data have shown that 
chronic hepatic injury, abnormal regeneration, and cirrhosis may act some 
role in hepatocarcinogenesis [4]. Pathological and molecular biological studies 
display that acetaldehyde, an important metabolic product of ethanol, can bind 
to DNA and form DNA adducts. The DNA adduct formation caused could trigger 
replication errors and/or mutations in tumor suppressor genes and/or oncogene 
[4]. Additionally, oxidative DNA damage is more noticeable in tissues with 
hepatocarcinoma than peri-tumor tissues [40, 46]. However, it is unclear whether 
acetaldehyde-DNA adducts and oxidative damages are true carcinogens and how 
they trigger hepatocarcinogenesis [4, 49]. Therefore, future studies on DNA 
damage are needed to better validate these risk factors and detailed molecular 
mechanisms. 

3.2 DRR in hepatocarcinoma 

DNA damage will trigger DRR pathways, a kind of prompt signal event which 
can harmonize whether cells obtain cycle arrest for DNA repair or induce death 
for eliminating cells with severe DNA damage and genomic instability [4]. In 
human, cells develop several types of surveillance mechanisms consisting of SSB 
repair (SSBR), DSB repair (DSBR), base excision repair (BER), base mismatch 
repair (MMR), and nucleotide excision repair (NER) (Figure 2) [4, 40]. Among 
these DNA repair pathways, BER, MMR, and NER can repair base damage such 
as base mismatches, AFB1-DNA adducts, DNA pyrimidine dimers, and DNA 
damage induced by irradiation and anticancer drugs. SSBR can repair SSB that 
is a severe DNA damage, if not repaired quickly, will disrupt genic transcription 
and replication and ultimately results in lethal DNA damage [40]. DSBR pathway 
involves in homologous recombination (HR), single-strand annealing (SSA), 
and nonhomologous end joining (NHEJ). HR pathway can repair DSBs through 
an accurate repair method using the undamaged homologous chromosome or 
sister-chromatid as DNA repair temple; whereas NHEJ and SSA pathways are 
nonhomologous repair methods and usually lead to essential mutagenesis, so far 
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DRR DRR Abnormal of DRR Effects on hepatocarcinoma Ref# 
pathway pathway 
gene/ 
proteins 

hOGG1 BER Ser to Cys at codon 326 Increased hepatocarcinoma risk [51] 

XRCC1 BER and 
SSBR 

Arg to His at codon 280 
Arg to Gln at codon 399 
Arg to Trp at codon 194 

(1) Increasing individuals’ susceptibility to 
HBV infection 
(2) Increasing individuals’ susceptibility to 
hepatocarcinoma 
(3) Increasing amount of AFB1-DNA 
adducts in liver tissues 

[52–56] 

(4) Increasing amount of adducts 
(including AFB1-DNA and AFB1-albumin 
adducts) in the peripheral WBCs 
(5) Increasing the frequency of TP53M 
(6) Increasing MVD 

XRCC3 DSBR Thr to Met at codon 241 
rs1799796 A > G 

(1) Increasing individuals’ susceptibility to 
hepatocarcinoma 
(2) Increasing amount of AFB1-DNA 
adducts in liver tissues 

[57–59] 

(3) Increasing amount of adducts 
(including AFB1-DNA and AFB1-albumin 
adducts) in the peripheral WBCs 
(4) Increasing the frequency of TP53M 
(5) Associating with hepatocarcinoma 
clinicopathological features 
(6) Increasing MVD 

XRCC4 DSBR rs28383151 G > A 
Ala to Ser at codon 247 

(1) Increasing individuals’ susceptibility to 
hepatocarcinoma 
(2) Increasing amount of AFB1-DNA 
adducts in liver tissues 

[20, 21, 
60–63] 

(3) Increasing amount of adducts 
(including AFB1-DNA and AFB1-albumin 
adducts) in the peripheral WBCs 
(4) Increasing the frequency of TP53M 
(5) Associating with hepatocarcinoma 
clinicopathological features 
(6) Increasing MVD 

XRCC5 DSBR rs16855458 C > A 
rs9288516 T > A 

(1) Increasing individuals’ susceptibility to 
HBV infection 

[64–69] 

XRCC5 expression (2) Increasing individuals’ susceptibility to 
hepatocarcinoma 
(3) Associating with biological actions of 
hepatocarcinoma cells, such as increasing 
XRCC5 expression inhibiting cancer cells 
proliferation 
(4) Functioning as a tumor suppressor 
by inducing S-phase arrest in a TP53-
dependent pathway 

XRCC6 DSBR XRCC6 expression (1) Increasing individuals’ susceptibility to [70–73] 
hepatocarcinoma 
(2) Decreasing Toll-like receptor 4 (TLR4) 
against hepatocarcinogenesis 
(3) Increasing DNA damage, and 
promoting programmed cell death in 
TLR4-deficient livers 
(4) Early diagnostic value for 
hepatocarcinoma 
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DRR DRR Abnormal of DRR Effects on hepatocarcinoma Ref# 
pathway pathway 
gene/ 
proteins 

XRCC7 DSBR rs7003908 T > G (1) Increasing individuals’ susceptibility to [21, 74, 75] 
AFB1 exposure 
(2) Increasing individuals’ susceptibility to 
hepatocarcinoma 
(3) Increasing amount of AFB1-DNA 
adducts in liver tissues 
(4) Increasing amount of adducts 
(including AFB1-DNA and AFB1-albumin 
adducts) in the peripheral WBCs 
(5) Increasing the frequency of TP53M 
(6) Interacting with AFB1 exposure during 
hepatocarcinogenesis 
(7) Increasing MVD 

DNA-
PKcs 

TP53 

XPC 

DSBR 

DRR 
pathway 

NER 

Amount in liver tissues 

Genic mutations such 
as TP53M, Arg to His at 
codon 273, Arg to His at 
codon 175, Cys to Tyr at 
codon 135, and Arg to 
Trp at codon 248 

XPC expression 
Lys to Gln at codon 939 

Implying hepatocarcinoma-specificity 

1. Implying individuals’ AFB1 exposure 
2.Associating with hepatocarcinoma risk 
3. Increasing individuals’ susceptibility to 

hepatocarcinoma 
4.Decreasing DRR potential and increas-

ing DNA damage 

(1) Increasing individuals’ susceptibility to 
hepatocarcinoma 
(2) Increasing amount of AFB1-DNA 
adducts in liver tissues 
(3) Increasing amount of adducts 
(including AFB1-DNA and AFB1-albumin 
adducts) in the peripheral WBCs 
(4) Increasing the frequency of TP53M and 
decreasing DRR potential 
(5) Associating with hepatocarcinoma 
clinicopathological features 
(6) Increasing XPC expression 
(7) Increasing MVD 

[76] 

[40, 45,
 77, 78] 

[21, 79–81] 

XPD NER Lys to Gln at codon 751 (1) Increasing individuals’ susceptibility to 
hepatocarcinoma 
(2) Increasing amount of AFB1-DNA 
adducts in liver tissues 
(3) Increasing amount of adducts 
(including AFB1-DNA and AFB1-albumin 
adducts) in the peripheral WBCs 
(4) Increasing the frequency of TP53M and 
decreasing DRR potential 
(5) Interacting with gender during 
hepatocarcinoma 
(6) Increasing MVD 

[21, 82] 

Rad50 NER Rad50 hook domain Strongly influencing Mre11 complex-
dependent DRR signaling, tissue 
homeostasis, and tumorigenesis 

[83] 

Nbs1 NER Rs1805794 C > G 
Mutations in Nbs1 

(1) Increasing hepatocarcinoma risk 
(2) Associating with TP53 inactivation 

[84–87] 

PARP-1 BER DRR potential (1) Modifying biological actions of 
hepatocarcinoma cells 
(2) A novel promising diagnostic marker 
for hepatocarcinoma 

[88–90] 
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DRR DRR Abnormal of DRR Effects on hepatocarcinoma Ref# 
pathway pathway 
gene/ 
proteins 

Rad10 NER rs11615 C > T (1) Increasing hepatocarcinoma risk [91–93] 
ERCC1–4533 G > A (2) The amount of ERCC1 expression in 
ERCC1–8092 C > A tissues with hepatocarcinoma decreases 

cancer cells’ sensitivity on anti-cancer 
drugs 
(3) Predicting the outcome of 
hepatocarcinoma patients receiving 
TACE treatment 

ATM HR and Ser to Ala at codon 
ENEJ 1981 

Ser to Ala at codon 
1893 
Ser to Ala at codon 
367 
Ser to Ala at codon 
2996 
Autophosphorylation 
at codon 1981 Ser 

(1) The functional deficiency in [94–100] 
radioresistant DNA synthesis and 
substrate phosphorylation such as TP53, 
Chk2, Nbs1, and SMCI 
(2) Increasing cells’ sensitivity to risk 
factors and risk factors-induced DNA 
damage such as adduct formation and 
chromosome aberrations 
(3)The functional dysregulation for 
G2/M checkpoint 
(4) Extending activations of DNA 
damage signaling pathways to reach S 
phase arrest in hepatocarcinoma cells 
(5) Leading to ATM unable to be released 
from other ATM 
molecules, and increasing gene mutation 
risk 

Abbreviations: hOGG1, human oxoguanine glycosylase 1; XRCC1, X-ray repair cross complementing 1; BER, base 
excision repair; SSBR, single-strand break repair; HBV, hepatitis B virus; XRCC3, X-ray repair cross complementing 
3; AFB1, aflatoxin B1; DSBR, double-strand break repair; WBC, white blood cell; TP53M, hot-spot mutation at 
codon 249 of TP53 gene; DNA-PKcs, DNA-activated protein kinase catalytic subunit; XRCC4, X-ray repair cross 
complementing 4; XRCC5, X-ray repair cross complementing 5; XRCC6, X-ray repair cross complementing 6; XRCC7, 
X-ray repair cross complementing 7; XPC, xeroderma pigmentosum, complementation group C; XPD, xeroderma 
pigmentosum, complementation group D; NER, nucleotide excision repair; PARP-1, poly(ADP-ribose) polymerase 1; 
ATM, Ataxia telangiectasia mutated kinase. 

Table 4. 
The association between abnormal DRR potential and hepatocarcinogenesis. 

as to induce chromosomal aberrations, abnormal cell cycle, and/or uncontrolled 
cell proliferation [50]. During DRR pathways, DNA repair genes play a central 
role [4]. Dysregulation of DRR caused by DNA repair genic mutations or low 
DNA repair capacity will increase hepatocarcinoma risk. Table 4 summarized 
the effects of abnormal DRR in hepatocarcinogenesis. This evidence shows that 
dysregulation of DRR resulting from mutations in DNA repair genes and corre-
sponding dysfunctions may promote hepatocarcinogenesis through the following 
pathways: (1) increasing individuals’ susceptibility to risk factors such as hepatitis 
virus infection and AFB1 exposure [40, 60, 101]; (2) increasing individuals’ 
susceptibility to cancer [45]; (3) increasing amount of carcinogens-DNA adducts 
in liver tissues [40]; (4) increasing amount of adducts (such as AFB1-DNA and 
AFB1-albumin adducts) in the peripheral WBCs and affecting immune reaction 
[61]; (5) increasing the frequency of tumor suppressor genes or oncogenes like 
Ras and TP53M [40, 47, 52, 61, 79]; and (6) interacting with risk factors during 
hepatocarcinogenesis [23]. Thus, the potential of DRR pathways should play an 
important function for hepatocarcinogenesis. 
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4. Hepatocarcinoma angiogenesis induced by DRR 

Risk factors induced DNA damages and dysregulated DRRs are regarded as 
molecular events [4]. In human, risk factors for hepatocarcinoma can manifest 
acute and chronic DNA damage. Acute and noticeable DNA damages often lead 
to severe chromosome aberration and even cell death, whereas chronic DNA 
damages are the earliest molecular change in hepatocytes and ultimately result in 
hepatocarcinoma [40]. In the past decades, angiogenesis induced by dysregula-
tion of DRR pathways may act as a vital role in the process of hepatocarcinoma. 
Evidence from epidemiological and clinicopathological studies has shown that 
higher potential of angiogenesis is in the liver of patients with chronic DNA 
damage and low DRR capacity [40, 102–105]. For example, Pastukh et al. [102] 
investigated the association between recruitment of DNA repair enzymes involv-
ing in BER pathway and VEGF expression via a chromatin immunoprecipitation 
technique. They found that hypoxia-induced reactive oxygen species (ROS) 
stress caused promoter base modifications targeted to hypoxic response elements 
(HREs) and increased VEGF expression. During this modification, 8-oxoguanine 
(8-oxodG, an oxidative DNA damage product) in VEGF promoter was temporally 
correlated with binding of human 8-oxodG glycosylase 1 (hOGG1, a BER repair 
enzyme), HIF-1α, redox effector factor-1, endonuclease one, and breaks in DNA 
strands. If 8-oxodG was decreased in the promoter region of VEGF, VEGF expres-
sion would downregulate [102]. Recent molecular epidemiological studies have 
further proved that genetic variants in hOGG1 genes increase hepatocarcinoma 
risk and modify the prognosis of this malignancy [103–105]. Collectively, these 
data suggest that increasing ROS like 8-oxodG resulting from low DRR capacity 
may promote angiogenesis. 

Studies from high HBV and HCV infection and high AFB1 exposure area also 
display that the degrees of DNA damages are positively associated with MVD in 
tumor tissues from hepatocarcinoma [20, 55, 75, 79, 82]. For example, Lu et al. [20] 
investigated the effects of XRCC4 expression in tumor tissues on clinicopathologi-
cal features and prognosis of hepatocarcinoma and found that decreasing XRCC4 
expression was related to low DRR capacity, causing the formation of DNA adducts 
and TP53M. The dysregulation of XRCC4 may promote tumor proliferation and 
increase MVD. Several other studies further show that the low DRR capacity 
resulting from significant mutations in coding region of DNA repair genes (such as 
XRCC4, XRCC1, XPC, XPD, and XRCC7) increases MVD (Table 4) [21, 40, 52, 55, 
59, 61, 62, 79, 80, 82]. Results from Lu et al. [20] and our studies [61, 62] showed 
that genetic alterations in the coding regions of XRCC4 gene (including Ala to Ser 
at codon 247 and Thr to Ala at codon 56) can decrease levels of XRCC4 protein 
expression and cause increasing amount of AFB1-DNA adducts and mutative 
frequency of TP53 gene in tissues with hepatocarcinoma. They also found that the 
amount of AFB1-induced DNA adducts, including 8,9-dihydro-8-(N7-guanyl)-9-
hydroxy-AFB1 (AFB1-N7-Gua) and formamidopyridine AFB1 adduct (AFB1-FAPy), 
was positively associated with the number of microvessels (a biomarker for angio-
genesis). Results from our studies [79, 106, 107] furthermore displayed that three 
low DNA repair markers related to AFB1, including tumor risk, TP53M frequency, 
and AFB1-FAPy adduct amount, were significantly correlated with the number of 
microvessels in liver tissues. These individuals with high AFB1-FAPy adduct level 
in liver tissues had an increasing risk of high MVD than those low adduct level 
(OR = 1.68, 95% CI = 1.45–2.87) [106]. Liu et al. [108] and Wang et al. [109] further 
proved that the upregulation of microRNA-429 and microRNA-24 expression in 
tissues with hepatocarcinoma not only increased the amount of AFB1-DNA adducts 
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and the number of microvessels but also grew tumor metastasis risk via vessels 
and shorted patients’ survival. Recent evidence has shown that microRNA-24/ 
microRNA-429 can modify the capacity of DDR via controlling Nbs1 (a regula-
tor of DRR) [110, 111] and angiogenesis via regulating the crosstalk between the 
pro-contractile transforming growth factor-β/bone morphogenetic protein (TGF-β/ 
BMP) signal (inducing a quiescent ‘contractile’ phenotype) and the pro-synthetic 
platelet-derived growth factor (PDGF) signal (causing a proliferative ‘synthetic’ 
phenotype) [112, 113]. This suggests that microRNA-24/microRNA-429 may play an 
important regulative role between DRR capacity and angiogenesis. Taken together, 
this evidence proves that low DRR-induced MVD augmentation is regulated by the 
amount of DNA damage. 

Evidence from in vitro and in vivo studies further shows that dysregulation of 
DRRs and signaling to cell cycle checkpoints (CCCs) may modify hepatocarcinoma 
angiogenesis. CCCs involving in DRRs mainly encompass G1/S and G2/M checkpoint 
[114]. During G1/S checkpoint, both ATR and ATM act as central activators for DRR 
via inducing the phosphorylation of p53 protein which can activate p21 (a Cdk inhibi-
tor). ATM/TP53/P21 pathway also plays an important function controlling G2/M 
procession [114]. The dysregulation of these factors and signal pathways can change 
the status of angiogenesis [115–119]. For example, Qin et al. [115] found that E2F1, 
an important cell cycle regulator, can modify angiogenesis via controlling VEGF 
expression by p53-dependent way. In this control model, deficient phenotype of E2F1 
will result in VEGF overexpression, while its positive phenotype decreases VEGF 
expression [115]. Factors controlling cell shape and cytosol can regulate the cycle of 
vessel endothelial cells and angiogenesis [116, 117]. In mice model with the deficiency 
of BCL-2 (an important regulatory factor in DDRs), cells featured increasing DNA 
damage [118]; the inhibition of BCL-2 will result in the arrest of cells in S phrase and 
suppression of tumor angiogenesis [119]. In an integrated genomic study (including 5 
hepatocarcinoma patients with hepatitis D visus [HDV] and 7 HDV-positive cirrhosis 
cases), Diaz et al. [120] investigated the association between HDV-related hepato-
carcinoma and potential signal pathways involved in DNA damage and repair and 
cell cycle and found significant interactions of DDR/cell cycle-related genes, such as 
BRCA1, BARD1, CDK1, CDKN2C, CCNA2, CCNB1, CCNE2, GSK3B, H2AFX, MSH2, 
NPM1, PRKDC, and TOP2A. Results from the t-SNP (t-distributed stochastic neigh-
bor embedding analyses) further exhibited that HUS1, BRCA1, BARD1, GADD45, 
DNA-damage-induced 14-3-3σ, and MSH2 gene involving in DRRs valuably scored 
with regulatory genes (such as ATM, TP53, NO, and epidermal growth factor), which 
involve in G2/M checkpoint and angiogenesis [120]. The dysregulation of HUS1 
and corresponding genotoxin-activated checkpoint complex (also termed as Rad9-
Rad1-Hus1complex) will cause abnormal DRR capacity and cell cycle in response 
to DNA damage and promote the alteration of hematogenous metastatic phenotype 
for hepatocarcinoma [121, 122]. The genetic alterations and abnormal expression of 
BRCA1 and GADD45 (two important regulatory factors in DRR and apoptosis path-
ways) in hepatocytes can also change TP53-dependent CCCs and VEGF expression 
[123, 124]. Altogether, these studies have proved that the dysregulation of DDRs can 
cause the abnormal regulation of CCCs and change the status of hepatocarcinoma 
angiogenesis. 

Detailed molecular mechanisms of DRR dysregulation promoting hepatocarci-
noma angiogenesis have still not been fully understood. Several possible pathways 
may play some important roles. First, DNA damage agents induce NO synthase 
and increase the expression of VEGF and HGF [125, 126]. Second, DNA damage 
agents like AFB1 cause the mutations of such genes as TP53, ras, and DNA repair 
genes. Activation of oncogenes and inactivation of tumor suppression genes and 
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DNA repair genes lead to uncontrolled expression of genes involving in angiogen-
esis such as VEGF and Ang-1/2 [5, 6]. Third, genetic alterations in DRR pathways 
may alter the microenvironment of tumor and promote angiogenesis [127–129]. 
Fourth, the abnormal DRRs may accelerate the accumulation of DNA damages 
and trigger the dysregulation of angiogenesis-related genes and the progression of 
hepatocarcinoma. Finally, some metabolic products (such as AFBO) or nucleotide 
sequences (HBx) of DNA agents can bind to genomic DNA of hepatocytes and 
may increase the activation of VEGF HREs [22, 40, 41, 45]. Taken together, under 
the conditions of low DRR capacity and/or chronic risk factors, DNA damages will 
accumulate in hepatocytes and ultimately induce hepatocarcinogenesis and tumor 
angiogenesis. 

5. Summary and further direction 

Abnormal angiogenesis and DNA damages/DRRs are two important pathophysi-
ological events in the process of hepatocarcinogenesis. Recently, it has become a 
growing evidence of DNA damage and repair and angiogenesis in hepatocarcino-
genesis. Low DRR capacity resulting genetic or obtained alterations may lead to the 
accumulation of DNA damages and induce angiogenesis and ultimately promote 
hepatocarcinoma development. The main challenge for this field is the explana-
tions of molecular basis and regulative signal pathways of DNA damages/DRRs 
interacting with angiogenesis during hepatocarcinogenesis. A better understanding 
of hypervascular feature and corresponding mechanisms of hepatocarcinoma on 
the basis of DNA damage/DRR pathway may be helpful for the medical researchers 
and clinic doctors exploring and validating hepatocarcinogenesis but also for them 
designing safe and efficient antiangiogenic drugs. 
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Abbreviations 

AFB1 aflatoxin B1 
Ang-2 angiopoietin-2 
ATM ataxia telangiectasia mutated kinase 
BER base excision repair 
bFGF basic fibroblast growth factor 
DNA-PKcs DNA-activated protein kinase catalytic subunit 
DSBR double-strand break repair 
DRR DNA damage repair response 
G-CSF granulocyte colony-stimulating factor 
HBV hepatitis B virus 
HCV hepatitis C virus 
MVD microvessel density 
NER nucleotide excision repair 
HGF hepatocyte growth factor 
hOGG1 human oxoguanine glycosylase 1 
IL-8 interleukin-8 
PARP-1 poly(ADP-ribose) polymerase 1 
SSBR single-strand break repair 
TEMs TIE2-expressing monocytes/macrophages 
TP53M hot-spot mutation at codon 249 of TP53 gene 
VEGF vascular endothelial growth factor 
XRCC1 X-ray repair cross complementing 1 
XRCC3 X-ray repair cross complementing 3 
XRCC4 X-ray repair cross complementing 4 
XRCC5 X-ray repair cross complementing 5 
XRCC6 X-ray repair cross complementing 6 
XRCC7 X-ray repair cross complementing 7 
XPC xeroderma pigmentosum, complementation group C 
XPD xeroderma pigmentosum, complementation group D 
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Chapter 10

Natural Drugs in DNA Repair
Thulasi G. Pillai, Cherupally K. Krishnan Nair
and P. Uma Devi

Abstract

Natural products have been used in medicine right from the ancient civilisa-
tion. Natural products are used in many types of diseases, together with chemo-
therapy and radiotherapy. Many products are used against cancer. Many diseases
are genetically derived. The drugs which have the capacity to act at genome level
gains significant importance in any disease scenario. The genetic information
essential for the identity and function of eukaryotic cells exist in DNA and during
the lifetime of the cell DNA can be repeatedly damaged due to different factors.
The stability and the fidelity of the replication process are meant to be the most
remarkable features of the genetic material. The stability can be affected at any
time. Compound which can enhance the DNA repair are applicable in many
disease condition. Our study was focussed on the DNA repair enhancing property
of a glucan from the macro fungi Ganoderma lucidum. Comet assay and chromo-
somal aberrations in mouse bone marrow were used as end points of study. Glucan
was found to have DNA repair enhancing property in human lymphocytes.

Keywords: natural products, Ganoderma lucidum, glucan, mushroom, DNA repair

1. Introduction

The word ‘Natural’ has gained tremendous importance in the twenty-first
century. Products obtained from nature are known to be natural. The Father of
Medicine, Hippocrates has quoted that ‘Let your food be our medicine and medicine
be our food’. The incorporation of medicinal herbs and extract as food has been
practiced long ago. In the present scenario, herbals are seen as potential medicine
for a variety of diseases often viewed to super cede the pharmacological efficacy of
allopathic drugs [1]. Natural products has become an extremely valuable commod-
ity for the world today. The developing countries miss the modern medicine as they
cannot afford it. Natural drugs were already there is use in Chinese medicine, Indian
Ayurveda, Arabic Unani medicine and various other indigenous medicine. The two
most important classics describing about more than 700 botanicals along with their
classification, pharmacological and therapeutic properties are Charak Samhita and 
Sushrut Samhita (100–500 BC) [2, 3]. Recent reports have substantiated the general 
belief that traditional medicine is affordable as compared to modern medicine [4]. 
Natural products play a major role as ‘drugs’ and as ‘lead structures’ for the develop-
ment of synthetic molecules [5]. Ancient people were fully aware of rich potential 
of herbs for curing different types of ailments. The twentieth century made invalu-
able contributions to the domain of medical sciences. The discovery of the fascinat-
ing molecule, DNA double helix and completion of human genome project were
marvellous achievements that had no parallel.
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Different modalities of DNA repair mechanisms are offered by natural drugs 
in mammalian system like base excision repair (BER), nucleotide excision repair 
(NER), mismatch repair (MMR), SSB repair, which includes BER and DNA-
PK-mediated ligation; DSB repair, which includes NHEJ and HR; inter-strand 
cross-link repair and DPCs (DNA-protein cross links) repair. The drugs act even 
as a biological catalyst where the rate of the repair process is enhanced [6]. An 
important cell pathology determinant is the rate of DNA repair. Shortened lifespan 
and increased cancer incidence has been observed in experimental animals with 
genetic deficiencies in DNA repair. Mice deficient in the dominant NHEJ pathway 
and in telomere maintenance mechanisms get lymphoma and infections more 
often, and consequently have shorter lifespans than wild-type mice [7]. Mice with 
deficient key repair mechanisms and DNA helices unwinding transcription protein 
have premature onset of aging-related diseases and shortening of lifespan [8]. Few 
natural products with DNA protective activity are phenolic compounds, essential 
oils, alkaloids, caratenoids, glutathione and glucans. Polyphenols and phenolic 
compounds have the capacity to donate electrons and scavenge free radicals [9, 10]. 

Phenolic compounds have the capacity to donate electrons and directly scavenge 
free radicals [9, 10]. The extracts of Geranium sanguineum are rich with polyphenol 
compounds are found to exhibit anti-mutagenic and free radical scavenging capaci-
ties [11, 12]. Essential oils, are antioxidants. The essential oil from ginger is a natural 
antioxidant [13]. Alkaloids, are antioxidants. Carotenoids are lipophilic compounds. 
Lycopene present in tomatoes and other red fruits like red carrots, red bell peppers, 
watermelons, and papayas has good antioxidant capacity [14]. Glutathione is a free 
radical scavenger by either reacting directly with free radical molecules or by acting 
as proton donor for protection of active molecules as DNA [15]. Glucan is an impor-
tant carbohydrate from plants, bacteria and fungi. It is discussed in detail here due 
to their diverse activity. Somehow the antioxidant activity is related to DNA repair 
mechanism as most of the compound which can repair DNA damage are found 
possess antioxidant capacity. 

Macro fungi are distinguished as important natural resources with therapeu-
tic potential. Studies were conducted on the glucan isolated from the medicinal 
mushroom and the macrofungi, Ganoderma lucidum. Ganoderma is popularly 
known as ‘The mushroom of longevity and immortality’1. Ganoderma lucidum, 
commonly known as reishi, a mushroom like fungus which grows on logs or tree 
stumps is one of the most popular medicinal mushrooms in China, Japan and the 
United States (Figure 1). It has a shiny, hard, asymmetrical cap that ranges in colour 
from yellow to black. Species of the genus Ganoderma P. Karst (Ganodermatales) 
are important wood decaying mushrooms occurring throughout the world, mainly 
on tropical trees. Over 250 species of this mushrooms are known. The fruiting 

Figure 1. 
Ganoderma lucidum growing in wild. 
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bodies of Ganoderma lucidum contain a variety of chemical substances. The 
polysaccharides of G. lucidum are the other major source of its biological activity 
and therapeutic use. This mushroom has attracted great attention owing to its 
antitumor and hypoglycemic activities [16]. Many fungal polysaccharides have 
been reported to be active in humans. More than 180 chemical substances have been 
isolated from Ganoderma, which include polysaccharides, triterpenes, nucleosides, 
ergosterols, fatty acids, proteins, peptides and trace elements. Ganoderma has been 
extensively used as mushroom of immortality in China and other Asian countries. 
Ganoderma has been reported to have numerous pharmacological effects including 
immunomodulating, anti-inflammatory, analgesic, anticancer, anti-lipidemic and 
hepatoprotective antihypertensive effects [8, 17]. It is widely accepted that pharma-
cological effects of Ganoderma depends on its colour, on the stage of development 
and the environment in which it grows. The fruiting bodies of Ganoderma lucidum, 
commonly known as reishi have long been prescribed in Chinese medicine as a tonic 
and sedative [18]. In Chinese folklore reishi has been regarded as a panacea for all 
types of diseases, perhaps owing to its demonstrated efficacy as a popular medicine. 
Ganoderma is also used in treating conditions of the nervous system. The ability of 
bioactive polysaccharides and polysaccharide-bound proteins to modulate immune 
cells can be due to the structural diversity and variability of these macromolecules. 
The bioactive glucanes and proteoglucans isolated from medicinal mushrooms 
are the most promising class of immunoceutics. Unlike proteins and nucleic acids, 
polysaccharides contain repetitive structural features which are polymers of mono-
saccharide residues joined to each other by glycosidic linkages. Glucan appear to 
be beneficial to humans with impaired immune systems, and those suffering from 
infectious diseases and cancer, as well as in helping patient recovery from chemo-
therapy and radiotherapy. 

The basic mechanism of DNA replication, recombination and DNA repair are 
conserved throughout evolution. The complementarity of strands of DNA and the 
double stranded nature of DNA plays the major role in all the process. Damage to DNA 
by physical, chemical and biological factors influences the extraordinary accuracy of 
the entire process. At each cell division a handful of error is introduced per billion bp. 
Treatment modalities for cancer like chemo and radiotherapy affect DNA in many 
ways. Drugs of natural origin are capable of increasing the rate of DNA repair. The 
chapter will focus on the natural drugs and their influence on DNA repair mechanism. 
In the hierarchy of targets of reproductive death, DNA must be surely placed at the 
top, though membrane damage should be considered as the second important target 
with eukaryotic cells which contain their DNA in the nucleus, little lethal damage is 
observed as long as the radiation is absorbed only by the outer membrane and cyto-
plasm. There is a drastic increase as soon as the ionizing radiation reaches the nucleus 
and hence DNA. The DNA damages produced by ionizing radiation can be intra- or 
inter-strand cross linking and single and double strand breaks (Figures 2 and 3). The 
cellular reactions include halt in cell cycle, advancement at cell cycle checkpoints and 
the stimulation of DNA repair. An unrepaired or misrepaired DNA damage can result 
in genetic or genomic variability, changes in cellular individuality and role, cell death, 
and in multi-cellular organisms, neoplastic transformation. 

Humanities use of mushrooms extends as early to 5000 B.C. About 2000 species 
of edible mushrooms are known all over the world. The total production of the 
edible mushroom is about 3.75 million tonnes. However they are rich source of high 
quality protein, vitamins and minerals. The average protein content is 10–40% 
on dry weight basis and low in fat content. Extracts and powders of mushrooms 
(mycelia and sporocarps) in the form of sugar coated tablets are being marketed on 
commercial scale for treatment of diseases such as diabetes, cancer, etc. Medicinal 
macro fungi modulate immune system and possess antitumor, antimicrobial, 
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Figure 2. 
Effect of radiation on cell. 

Figure 3. 
Different types of damages in cell after radiation exposure. 

anti-inflammatory activities. Attempts are done to explore the use of mushrooms 
and their metabolites for the treatment of a variety of human ailments [19]. More 
than 100 medicinal mushrooms have been identified. 
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Ganoderma lucidum, commonly known as reishi, the mushroom of immortality 
is one of the most popular medicinal mushrooms. The fruiting bodies of Ganoderma 
lucidum contain a variety of chemical substances including polysaccharides, triter-
penes, nucleosides, ergosterols, fatty acids, proteins, peptides and trace elements. 
The polysaccharides of G. lucidum are the other major source of its biological activ-
ity and therapeutic use. This mushroom has attracted great attention owing to its 
antitumor and hypoglycemic activities [6]. Many fungal glucan have been reported 
to be active in humans. 

2. Materials and methods 

2.1 Animals 

Swiss albino mice, were kept for a week under environmentally controlled 
conditions with access to standard food and water. Recommendations of the ethical 
Committee for the Purpose of Control and Supervision of Experiments on Animals 
(CPCSEA) instituted by the Animal Welfare Division of the Government of India 
were followed. 

2.2 Irradiation 

Gamma cell facility of Bhabha Atomic Research Centre, Trombay was used for 
irradiation. Whole body irradiation to mice was given to unanesthetized animals, 
which were kept in well-ventilated Perspex boxes and was exposed at a dose rate of 
1 Gy/min. Ex vivo irradiation of human peripheral leukocytes was done in Junior 
Theratron unit with a dose rate of approximately 0.4 Gy/min. Chemicals were 
obtained from Sigma Chemicals (St. Louis, Missouri) and purchased from Merck 
India Ltd., Mumbai. 

3. Methods 

3.1 Isolation of glucan 

Ganoderma lucidum were collected from Southern parts of India. The poly-
saccharides were isolated from the fruiting bodies by the method of Mizuno 
[20]. Purification of the compound was done by ion-exchange chromatography. 
Qualitative confirmation was done by anthrone [21] and phenol sulphuric acid 
reagent [22]. Further characterization of the compound was done by IR and NMR, 
mass spectra, gel filtration and acid hydrolysis. 

3.2 Comet assay 

Comet assay was performed by the method of Singh with modifications [23]. 
DNA damage in blood leukocytes was estimated. Ten microliters of heparinised 
whole blood, is mixed with 200 μl of low melting point agarose at 37°C and layered 
on frosted slides pre-coated with 200 μl high melting point agarose. The slides were 
pre-chilled in lysing solution and the standard protocol was followed [24]. 

CASP software was used for the quantitation of the DNA strand breaks of the 
stored images by which the percentage DNA in tail, tail length, tail moment, and 
olive tail moment [25]. The tail length of comet specifies the extent of damage as 
the smaller molecules move faster on the agarose gel. The longer tails of the comets 
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indicate that the strand breaks are more frequent. The tail moment normalizes the 
difference in the size of the nucleus studied, which is product of the percent DNA 
in the tail of the comet and tail length. Calculation of olive tail moment distance of 
centre of gravity of DNA is considered rather than usual tail length. 

3.3 Metaphase preparation 

Six groups of six animals each were used. At 22 h after irradiation all the ani-
mals were injected i.p. with 0.025 colchicine and sacrificed 2 h later by cervical 
dislocation. Bone marrow from the femur was aspirated, washed in saline, treated 
hypotonically (0.565% KCl), at 37°C for 30 min, fixed in 3:1::methanol:acetic acid, 
spread on clean slides and stained with 4% Giemsa [26]. 

The aberrations were scored with the help of a light microscope. Per animal 
500 metaphases were scored. Chromatid breaks, chromosome breaks, fragments, 
rings and dicentrics as well as cells showing polyploidy and severely damaged 
cells (SDC), cells with 10 or more aberrations of any type, the different types of 
aberrations were scored. In ‘chromosome type’ aberration, breaks involved both 
the chromatids and in ‘chromatid type’ aberration involved only one chromatid. 
Fragments are those deleted portion having no apparent relation to any particular 
chromosome [27]. Data are mean ± (S.E). 

3.4 Treatment of animals 

Group I—double distilled water (DDW). 
Group II—300 mg/kg body wt. of amifostine i.p. (30 min prior to irradiation). 
Group III—20 mg/kg body wt. of glucan orally (5 min after irradiation). 
Group IV—DDW + 4 Gy radiation (RT). 
Group V—300 mg/kg body wt. of amifostine (30 min before irradiation) + RT 4 Gy. 
Group VI—RT 4 Gy + 20 mg/kg body wt. glucan orally (5 min after irradiation). 

4. Results and discussion 

The compound isolated from G. lucidum answered anthrone and phenol sulph-
uric tests giving typical colour reactions indicating the presence of carbohydrates. 
From the IR spectrum, pyranoid form was suggested to be present due to the 
presence of three absorption bands at 1153.4, 1091.6 and 1029.9 cm−1. In the HNMR 
spectrum H−1 signals were observed at less than 4.8 ppm (4.762, 4.683, 4.667, 4.658, 
4.402 ppm), which suggest that component sugars have beta configuration. From 
gel filtration chromatography, the molecular weight of the compound was found to 
be 1.5 × 106 Daltons. From the acid hydrolysis treatment for the detection of mono-
saccharides, the sugars present in the compound were found to be glucose, mannose 
and rhamnose. The compound was identified to be beta-glucan. 

4.1 DNA repair enhancement 

The repair process in lymphocytes was found to be enhanced by the glucan 
at 50 μg/ml concentration. The percent DNA, tail length, tail moment and olive 
tail moment was reduced significantly. At 2 Gy 0 min, the comet parameters 
increased. Fifteen minutes after irradiation the comet parameters were reduced. 
The presence of glucan reduced the comet parameters further. After 2 h of 
irradiation the comet parameters were reduced by the glucan to the control level 
(Figure 4 and Table 1). 
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Figure 4. 
DNA repair enhancement by glucan in human lymphocytes (comet assay). Untreated: (a) control; (c) 2 Gy 
0 min; (e) 2 Gy 15 min; (g) 2 Gy 30 min; (i) 2 Gy 45 min; (k) 2 Gy 60 min; (m) 2 Gy 120 min. Treated with 
glucan: (b) control; (d) 2 Gy 0 min; (f) 2 Gy 15 min; (h) 2 Gy 30 min; (j)2 Gy 45 min; (l) 2 Gy 60 min; 
(n) 2 Gy 120 min. 

Treatment (per 500 Fragments Chromatid Chromosome Rings Dicentrics 
cells) break break 

DDW (control) 6.3 ± 2.5 0.16 ± 2.5 0 0 0 

Amifostine (alone) 8.0 ± 1.7 2.3 ± 0.3 0 0 0 

Glucan (alone) 7.3 ± 0.8 1.0 ± 0.5 0 0 0 

RT 4 Gy (alone) 384.1 ± 16.4g 13 ± 2.3g 8.5 ± 1.5g 3.8 ± 0.6g 11.3 ± 1.6g 

RT 4 Gy + amifostine 31.5 ± 4.0a,i 9.5 ± 1.8e 2.3 ± 0.4b,i 0.8 ± 0.4b 2.1 ± 0.4a,i 

RT 4 Gy + glucan 38.6 ± 4.6a 8.1 ± 0.7e,k 2.8 ± 0.4a 0.8 ± 0.3b 1.3 ± 0.4a 

Datas are mean ± S.E. n = 6. 
aP < 0.0001. 
bP < 0.001. 
cP < 0.01. 
dP < 0.05. 
eMarginally significant, compared to RT alone. 
fP < 0.05 compared to RT + amifostine. 
gP < 0.0001 compared to DDW. 
hP < 0.001 compared to amifostine alone. 
iP < 0.01 compared to amifostine alone. 
jP < 0.05 compared to amifostine alone.
kP < 0.0001 compared to glucan alone. 
lP < 0.001 compared to glucan alone. 

Table 1. 
Effect of G. lucidum glucan and amifostine on the induction of different chromosomal aberrations in mouse 
bone marrow after whole body γ-irradiation (4 Gy). 

4.2 Chromosomal aberrations 

Sham treated control showed 1% aberrant cells. Compared to control glucan 
or amifostine alone did not induce any significant changes. There was significant 
increase in the percentage of aberrant cells treated with radiation. Treatment with 
glucan after irradiation and amifostine before irradiation resulted in significant 
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Figure 5. 
Different types of chromosomal aberrations in mouse bone marrow. F, fragments; CD, chromatid break; CB, 
chromosome break; PN, pulverisation; SDC, severe damaged cell; PP, polyploidy; D, dicentrics; R, rings. 

decrease in the percentage of aberrant cells and number of aberrations per cell 
compared to the group which received radiation alone. A decrease in all types of 
aberrations, as well as polyploidy and cells with pulverisation was observed. The 
number of severe damaged cells (SDC) significantly reduced to about 1.5 times 
after glucan treatment. The number of cells with multiple and complex damage was 
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Treatment Polyploidy SDC Pulverised 
cells 

DDW (control) 0 0 0 

Amifostine (alone) (300 mg/kg body wt.) 0.6 ± 0.66 0 0 

Glucan (alone) (20 mg/kg body wt.) 0 0 0 

RT 4 Gy (alone) 4.8 ± 0.60g 14 ± 1.3g 10.6 ± 1.3g 

RT 4 Gy + amifostine (300 mg/kg body wt.) 0.83 ± 0.40a 3.6 ± 0.71a,i 1.6 ± 0.33a,j 

RT 4 Gy + glucan 20 mg/kg body wt.) 0.5 ± 0.22a 2.0 ± 0a,f 1.5 ± 0.22a,l 

Datas are mean ± S.E. n = 6. 
aP < 0.0001. 
bP < 0.001. 
cP < 0.01. 
dP < 0.05. 
eMarginally significant, compared to RT alone. 
fP < 0.05 compared to RT + amifostine. 
gP < 0.0001 compared to DDW. 
hP < 0.001 compared to amifostine alone. 
iP < 0.01 compared to amifostine alone. 
jP < 0.05 compared to amifostine alone.
kP < 0.0001 compared to glucan alone. 
lP < 0.001 compared to glucan alone. 

Table 2. 
Effect of G. lucidum polysaccharides and amifostine on the induction of polyploidy, SDC and pulverization in 
mouse bone marrow after whole body γ-irradiation (4 Gy). 

Time Olive tail moment without glucan Olive tail moment with glucan 

0 Gy 0 min 3.9444 ± 0.2582 3.677 ± 0.2362 

2 Gy 0 min 26.1602 ± 0.5566 26.001 ± 0.3345 

2 Gy 15 min 15.6947 ± 0.5193 15.0996 ± 0.7832 

2 Gy 30 min 10.0415 ± 0.5287 7.9954 ± 0.57714 

2 Gy 45 min 7.2821 ± 0.5541 6.1824 ± 0.5673 

2 Gy 60 min 7.5109 ± 0.5966 4.4504 ± 0.3189 

2 Gy 120 min 6.2424 ± 0.3847 3.6330 ± 0.3214 

Table 3. 
Effect of glucan on enhancement of DNA repair in human lymphocytes after 2 Gy gamma irradiation (comet assay). 

significantly decreased by glucan post-treatment indicating that the former may 
help in the repair of the DNA breaks (Figure 5, Tables 2 and 3). 

The lifespan of cells to radiation leading to a loss of cell viability can be greatly 
influenced by the ability of cells to repair injured DNA. The hazard in mammals 
exposed to ionizing radiation is to the haemopoetic system. Radiation induced 
damage to DNA can temporarily affect DNA replication allowing repair to happen 
involving a well-coordinated event of DNA repair enzymes such as DNA repair 
polymerase, DNA ligase and PARP [28]. The factors that influence the response of 
living cells to radiation are the DNA repair status, the physiological state of cells, the 
presence of oxygen and chemicals as well as pre and post-irradiation treatments [29]. 

By examining the comet parameters of human peripheral blood leucocytes the 
effect of polysaccharides on DNA repair was ascertained. Through the initial 30 min, 
most of the DNA repair processes were completed. The presence of polysaccharide 
boosted the process of DNA repair. The comet parameters were more at 30 min 
post-irradiation, in irradiated control and polysaccharide treated group which can 
be attributed to the commencement of excision repair process [30]. After 45 min 
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there was not much difference in the comet parameters, in control group. The comet 
parameters kept on reducing in the presence of polysaccharides and at 120 min 
the comet parameters were almost similar to the unirradiated control. Re-joining 
of DNA strand breaks by most cell types is known to be a rapid process within few 
seconds-minutes [31] and this kinetics are seen in comet assay too. In freshly isolated 
lymphocytes repair by Hydrogen peroxide induced breaks takes place very slowly 
which can be due to the additional DNA breakage as a result of quick exposure to 
atmospheric oxygen in the repair incubation period [32]. At the same time repair of 
endonuclease III- or FPG-sensitive sites (i.e., oxidized purine and pyrimidines) by 
base excision repair, is much slower process, taking few hours [33]. 

Background levels of DNA damage in normal cells, the variation in DNA repair 
capacity within human populations, and the regulation of DNA repair at the 
molecular level within the nucleus can be monitored by comet assay [34]. 

5. Conclusion 

The integrity of DNA molecule at structural level has to be protected and 
preserved for the effectual transmission of the genetic information contained to 
progeny. Distinctions in the arrangement of nucleotides or changes in the configu-
ration of bases or sugars, in the double helix of DNA can impede the replication or 
transcription of genome. 

Multilation to DNA molecule is the crucial factor for cell death. Mechanisms 
of repair of damaged DNA molecules play a vital role in cell survival. No medicine 
has been invented that could successively be applied in DNA damage. Our study 
indicates that the polysaccharides from G. lucidum enhance the repair process. 

5.1 Advances in area of DNA repair 

Prevention is better than cure and cancer induction is greatly influenced 
by nutrition. The unaffordable discovery cost and failures at the completion of 
discovery pipeline makes medicines arbitrary to the developing countries. Newer 
technologies like reverse pharmacology, systems biology which are charming give 
innovation opportunities based on investigational wisdom and universal viewpoint 
of translation medicine. Chemotherapy and SSRI revolutionised longevity and 
quality of life in therapeutics. The Human Genome Project opened understanding 
towards personalised medicine. Glucan from G. lucidum possess immunomodulat-
ing activities and regulate a number of undiscovered cellular genes. New studies are 
needed to unravel these molecular targets giving insights into the interactions of the 
fungi like G. lucidum with our body system and provide strategies for the discovery 
of effective and safe approaches for drugs from natural sources. 

Glucan was isolated from the mushroom Ganoderma lucidum, a basidiomycete 
white rot macro fungus that has been used extensively for therapeutic use in China 
and Japan for years. The compound was characterised by different chromatographic 
techniques, done by IR, NMR, and paper chromatography, gel filtration chromatog-
raphy and spectroscopic techniques like infra-red spectrum and nuclear magnetic 
resonance spectrum. 

The molecular weight of the isolated glucan was 1.6 × 106 Daltons. The rate 
of DNA repair in the presence and absence of the compound was determined. 
Comet assay was performed using the method of Singh in human lymphocytes. 
Chromosomal aberration was studied in mouse bone marrow. After radiation 
exposure, the comet parameters, percent DNA, tail length, tail moment and olive 
tail moment were changed in the presence of glucan. Chromosomal aberrations and 
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individual aberrations were also reduced by glucan. The result of present investiga-
tion reveals the potential application of glucan from G. lucidum in increasing the 
rate of DNA repair which makes it useful in medical scenario. 

The path of science is always fascinating giving deep intuitions with new 
technologies. The term ‘DNA repair’ gained more significance in last decade. The 
beautiful discoveries in essential mechanisms of DNA repair extended Nobel 
prize in Chemistry in 2015 to T. Lindahl, P. Modrich and A. Sancar. Their discov-
ery defined three pathways that essentially correct DNA damage, protecting the 
integrity of genetic code assuring perfect replication through generations allowing 
correct cell division. The mechanisms behind base excision repair, mismatch repair 
and nucleotide excision repair was explained. Since then the number of drugs and 
targeted pathways has increased remarkably. The DNA repair enzyme was declared 
as the molecule of the year in 1994. Though the studies from model organisms serve 
as a basis to elucidate of repair mechanism, the utilisation of cutting edge technol-
ogy has channelled in a new era of DNA repair research. The DNA repair pathways 
have also become better understood. The accessibility of a wide-ranging spectrum 
of drugs with known molecular targets will provide the rationale to use those drugs 
in relation to various disease conditions and to combine DNA damaging agents with 
the appropriate DNA repairing agent. The journey of DNA repair continues. Our 
current research is carried out in this direction. 
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