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Chapter 1

Introductory Chapter: Frontier
Research on Integral Equations
and Recent Results
Francisco Bulnes

“Mathematics knows no races or geographic boundaries; for mathematics, the cultural
world is one country”

- David Hilbert

1. General discussion

The themes of recent research are focused on nonlinear integral equations [1],
the new numerical and adaptive methods of resolution of integral equations [2], the
generalization of Fredholm integral equations [3] of second kind, integral equations
in time scales and the spectral densities [3, 4], operator theories for nonsymmetric
and symmetric kernels [1, 5], extension problems to Banach algebras to kernels of
integral equations [5–7], singular integral equations [10], special treatments to solve
Fredholm integral equations of first and second kinds, nondegenerate kernels [3, 6]
and symbols of integral equations [7], topological methods for the resolution of
integral equations and representation problems of operators of integral equations.

Now, well, the field of the integral equations is not finished yet, not much less with
the integral equations for which the Fredholm theorem is worth [fredholm], nor with
the completely continuous operators, since there exist other integral equations devel-
oped of the Hilbert theory respect to the Fredholm discussion, and studies on singular
integral equations, also by Hilbert, Wiener and others [8]. Arise numerical and
approximate methods on the big vastness that give the Banach algebras, even using
probabilistic measures to solve some integral equations in the ambit of distributions
and stochastic process. Likewise, there arise integral equations in which the proper
values are corresponded to linearly independent infinite proper functions. Such is the
case, for example, of the Lalesco-Picard integral equation:

ω tð Þ � λ

ðþ∞

�∞
e� t�sj jω sð Þds ¼ f tð Þ, (1)

in which the kernel e� t�sj j is not of L2class and gives a continuous spectra, or
even, we consider nonlinear integral equations, etc., that represent the last and
recent studies on integral equations after of their study considering extensions of
the Banach algebras to integral operators that can define to this proposit, for exam-
ple, to singular integral equations.

Likewise, as special case, for their important theory, we can treat the singular
integral equations of Cauchy. This theory was created almost immediately after the
Fredholm theory, and their beginning is given in the “Lecons de Mécanique

3
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Céleste” by Poincaré and Fichot [9], and to the Hilbert works on contour and
boundary problems of the analytic functions theory.

A possible treatment, bringing the Cauchy ideas together with Banach algebras,
is the consideration of the Calkin algebra B Xð Þ

K Xð Þ , on a Banach space X, likewise as the
operators of subalgebras of this special Banach algebra (e.g., the algebra of the
bounded operators B Xð Þ, and K Xð Þ, the ideal of compact operators) [10]. For
example, consider the bounded operators in a Banach space with closed range and
with kernel and co-kernel of finite dimension. These are called Fredholm operators
and are the operators that give invertible elements of the Calkin algebra. The
operators of the Calkin algebra radical are called Reisz operators and can be char-

acterized spectrally and in terms of the dimensions of Rec λI � Tð Þk
� �

,

ker λI � Tð Þk
� �

, etc. Very questions on these algebras are motive of modern

research. However, also the integral equations research has developed more the
functional analysis, considering the function theory, integral transforms and the
Kernels study in a wide form.

For other side, a general resolution method to the singular integral equations
cannot be given in detail on the effective resolution of these equations, because is
followed the research on a general methods to this integral equations class through
certain special functions and integral transforms, which are of diverse and varied
nature [5, 11]. In fact, the resolution of singular integrals considering the Hilbert
transform and the Fourier transform [11] has been in the last years strongly
researched. Here we only consider the intimate relation between this singular inte-
gral equations theory with the analytic functions theory and special functions
related with the regularity and completeness of the solutions required.

One of the new developments on nonlinear integral equations are followed to
the Hammerstein integral equations [12], which is written as

ω tð Þ þ
ðb
a
K t; sð Þf s;ω sð Þð Þds ¼ 0, a≤ t≤ b (2)

where K t; sð Þ and f t; sð Þ are given functions, while ω tð Þ is the unknown function.
Hammerstein considered for K t; sð Þ, a symmetric and positive Fredholm kernel.
This last condition establishes that all their eigenvalues are positive. Thus, the
function f t; sð Þ is continuous and satisfies f t; sð Þj j≤ C1 sj j þ C2,where C1 and C2 are
positive constants and C1 is smaller than the first eigenvalue of the
kernel K t; sð Þ; then, the Hammerstein integral equation has at least one continuous
solution. Also are considered certain observations on the no decreasing of the
function f t; sð Þ, on s, considering fix t, from the interval a; bð Þ:The Hammerstein’s
equation cannot have more than one solution. This property holds also if
f t; sð Þ satisfies the condition

f t; s1ð Þ � f t; s2ð Þj j≤ C s1 � s2j j, (3)

where the positive constant C is smaller than the first eigenvalue of the kernel
K t; sð Þ: A solution of the Hammerstein equation may be constructed by the method of
successive approximation. In regard to this point, many approximation methods are
designed to solve these integral equations and other nonlinear integral equations. Also
of interest are the recent developments on Hammerstein-Volterra integral equations:

f tð Þ ¼ ω tð Þ þ
ðt
0
K t; sð Þf s;ω sð Þð Þds, 0≤ t≤ 1 (4)

4
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In the aspect of the linear integral equations has been important the study of the
Volterra integral equations on time scale, where have more importance the initial
value problems with unbounded domains. Likewise, the development on the
alternate form of a linear integral equation is given as:

f tð Þ ¼ ω tð Þ þ
ðt
a
B t; sð Þωσ sð Þds, t∈ IT (5)

where B t; sð Þ is a kernel that comes of a Banach algebra, and ωσ, arises naturally
of changing dynamics problems, for example the economic dynamics. Some aspects
in their prospective can be extended to the nonlinear case.

Other studies go on to develop generalizations of integral equations of Fredholm
type using Weyl fractional integral operators and the kernel as product of certain
generalized functions of special functions such as the H functions and the
I functions. This establishes new techniques in function theory and functional
analysis relating some integral transforms such as the Mellin transform [13].

Other developments start the probabilistic methods searching the obtaining of a
solution of some integral equations of the second kind and Volterra integral equa-
tion, thinking in stochastic phenomena where is necessary determine an aleatory
behavior.
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Chapter 2

Contraction Mappings and
Applications
Nawab Hussain and Iram Iqbal

Abstract

The aim of the chapter is to find the existence results for the solution of non-
homogeneous Fredholm integral equations of the second kind and non-linear
matrix equations by using the fixed point theorems. Here, we derive fixed point
theorems for two different type of contractions. Firstly, we utilize the concept of
manageable functions to define multivalued α∗ � η∗ manageable contractions and
prove fixed point theorems for such contractions. After that, we use these fixed
point results to find the solution of non-homogeneous Fredholm integral equations
of the second kind. Secondly, we introduce weak F contractions named as α-
F -weak-contraction to prove fixed point results in the setting of metric spaces and
by using these results we find the solution for non-linear matrix equations.

Keywords: contraction mapping, fixed point, integral equations,
matrix equations, manageable function

1. Introduction

Let H nð Þ denote the set of all n� n Hermitian matrices, P nð Þ the set of all n� n
Hermitian positive definite matrices, S nð Þ the set of all n� n positive semidefinite
matrices. Instead of X ∈P nð Þ we will write X.0. Furthermore, X ≥0 means
X ∈ S nð Þ. Also we will use X ≥Y X ≤Yð Þ instead of X � Y ≥0 Y � X ≥0ð Þ. The sym-
bol k:k denotes the spectral norm, that is,

kAk ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
λþ A∗Að Þ

q
,

where λþ A∗Að Þ is the largest eigenvalue of A∗A. We denote by :k k1 the Ky Fan
norm defined by

Ak k1 ¼ ∑
n

i¼1
si Að Þ,

where si Að Þ, i ¼ 1,…, n, are the singular values of A. Also,

Ak k1 ¼ tr A∗Að Þ1=2
� �

,

which is tr Að Þ for (Hermitian) nonnegative matrices. Then the set H nð Þ
endowed with this norm is a complete metric space. Moreover, H nð Þ is a partially

9
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1. Introduction

Let H nð Þ denote the set of all n� n Hermitian matrices, P nð Þ the set of all n� n
Hermitian positive definite matrices, S nð Þ the set of all n� n positive semidefinite
matrices. Instead of X ∈P nð Þ we will write X.0. Furthermore, X ≥0 means
X ∈ S nð Þ. Also we will use X ≥Y X ≤Yð Þ instead of X � Y ≥0 Y � X ≥0ð Þ. The sym-
bol k:k denotes the spectral norm, that is,

kAk ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
λþ A∗Að Þ

q
,

where λþ A∗Að Þ is the largest eigenvalue of A∗A. We denote by :k k1 the Ky Fan
norm defined by

Ak k1 ¼ ∑
n

i¼1
si Að Þ,

where si Að Þ, i ¼ 1,…, n, are the singular values of A. Also,

Ak k1 ¼ tr A∗Að Þ1=2
� �

,

which is tr Að Þ for (Hermitian) nonnegative matrices. Then the set H nð Þ
endowed with this norm is a complete metric space. Moreover, H nð Þ is a partially
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ordered set with partial order≼, where X ≼Y⇔Y ≼X. In this section, denote
d X;Yð Þ ¼ Y � Xk k1 ¼ tr Y � Xð Þ. Now, consider the non-linear matrix equation

X ¼ Q þ ∑
m

i¼1
A∗

i γ Xð ÞAi, (1)

where Q is a positive definite matrix, Ai, i ¼ 1,…, m, are arbitrary n� nmatrices
and γ is a mapping from H nð Þ to H nð Þ which maps P nð Þ into P nð Þ. Assume that γ is
an order-preserving mapping (γ is order preserving if A,B∈H nð Þ with A≼B
implies that γ Að Þ≼ γ Bð Þ). There are various kinds of problems in control theory,
dynamical programming, ladder networks, etc., where the matrix equations plays a
crucial role. Matrix Eq. (1) have been studied by many authors see [1–3].

At the same time, integral equations have been developed to solve boundary
value problems for both ordinary and partial differential equations and play a very
important role in nonlinear analysis. Many problems of mathematical physics, the-
ory of elasticity, viscodynamics fluid and mixed problems of mechanics of contin-
uous media reduce to the Fredholm integral Eq. A rich literature on existence of
solutions for nonlinear integral equations, which contain particular cases of impor-
tant integral and functional equations can be found, for example, see [4–14]. An
important technique to solve integral equations is to construct an iterative proce-
dure to generate approximate solutions and find their limit, a host of attractive
methods have been proposed for the approximate solutions of Fredholm integral
equations of the second kind, see [15–19]. We consider a non-homogeneous
Fredholm integral equation of second kind of the form

z rð Þ ¼
ðc
b
B r; s; z sð Þð Þdsþ g rð Þ, (2)

where t∈ b; c½ �, B : b; c½ � � b; c½ � � IRn ! IRn and g : IRn ! IRn.
An advancement in this direction is to find the solution of such mathematical

models by using fixed point theorems. In this technique, we generate a sequence by
iterative procedure for some self-map T and then look for a fixed point of T, that is
actually the solution of given mathematical model. The simplest case is when T is a
contraction mapping, that is a self-mapping satisfying

d Tx;Tyð Þ≤ kd x; yð Þ,
where k ∈ 0; 1½ Þ. The contraction mapping principle [20] guarantees that a con-

traction mapping of a complete metric space to itself has a unique fixed point which
may be obtained as the limit of an iteration scheme defined by repeated images
under the mapping of an arbitrary starting point in the space. The multivalued
version of contraction mapping principle can be found in [21]. In general, fixed
point theorems allow us to obtain existence theorems concerning investigated
functional-operator equations.

In this chapter, we prove the existence of solution for matrix Eq. (1) and integral
Eq. (2) by using newly developed fixed point theorems.

2. Background material from fixed point theory

Let X be a set of points, a distance function on X is a map d : X � X ! 0;∞½ Þ
that is symmetric, and satisfies d i; ið Þ ¼ 0 for all i ∈X . The distance is said to be a
metric if the triangle inequality holds, i.e.,
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d i; jð Þ≤ d i; kð Þ þ d k; jð Þ,
for all i, j, k∈X and X ; dð Þ is called metric space.
Denote by 2X , the family of all nonempty subsets of X , CL Xð Þ, the family of all

nonempty and closed subsets of X , CB Xð Þ, the family of all nonempty, closed, and
bounded subsets of X and K Xð Þ, the family of all nonempty compact subsets of X .
It is clear that, K Xð Þ⊆CB Xð Þ⊆CL Xð Þ⊆ 2X , let

H A;Bð Þ ¼ max sup
x∈A

D x;Bð Þ; sup
y∈B

D y;Að Þ
( )

,

where D x;Bð Þ ¼ inf d x; yð Þ : y∈Bf g. Then H is called generalized Pompeiu
Hausdorff distance on CL Xð Þ. It is well known thatH is a metric on CB Xð Þ, which is
called Pompeiu Hausdorff metric induced by d.

If T : X ! X is a single valued self-mapping on X , then T is said to have a fixed
point x if T x ¼ x and if T : X ! 2X is multivalued mapping, then T is said to
have a fixed point x if x∈ T x. We denote by Fix Tf g, the set of all fixed points of
mapping T.

Definition 2.1 [22] Let T : X ! 2X be a multivalued map on a metric space
X ; dð Þ, α, η : X � X ! IRþ be two functions where η is bounded, then T is an α∗-
admissible mapping with respect to η, if

α y; zð Þ≥ η y; zð Þ implies that α∗ T y; T zð Þ≥ η∗ T y; T zð Þ, y, z∈X ,

where

α∗ A;Bð Þ ¼ inf
y∈A, z∈B

α y; zð Þ, η∗ A;Bð Þ ¼ sup
y∈A, z∈B

η y; zð Þ:

Further, Definition 2.1 is generalized in the following way.
Definition 2.2 [23] Let T : X ! 2X be a multivalued map on a metric space

X ; dð Þ, α, η : X � X ! 0;∞½ Þ be two functions. We say that T is generalized α∗-
admissible mapping with respect to η, if

α y; zð Þ≥ η y; zð Þ implies that α u; vð Þ≥ η u; vð Þ, for all u∈Ty, v∈Tz:

If η y; zð Þ ¼ 1 for all y, z∈X , then T is said to be generalized α∗-admissible
mapping.

3. Some fixed point results

Consistent with Du and Khojasteh [24], we denote by dManðIRÞ, the set of all
manageable functions ϑ : IR� IR ! IR fulfilling the following conditions:

ϑ1ð Þ ϑ t; sð Þ, s� t for all s, t.0;
ϑ2ð Þ for any bounded sequence tnf g⊂ 0;þ∞ð Þ and any nondecreasing sequence

snf g⊂ 0;þ∞ð Þ, it holds that

lim
n!∞

sup
tn þ ϑ tn; snð Þ

sn
, 1: (3)

Example 3.1 [24] Let r∈ 0; 1½ Þ. Then ϑr : IR� IR ! IR defined by ϑr t; sð Þ ¼ rs� t is
a manageable function.
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Example 3.2 Let ϑ : IR� IR ! IR defined by

ϑ t; sð Þ ¼ ψ sð Þ � t if t; sð Þ∈ 0;þ∞½ Þ � 0;þ∞½ Þ,
f t; sð Þ otherwise,

�

where ψ : 0;þ∞½ Þ ! 0;þ∞½ Þ satisfying ∑∞
n¼1ψ

n tð Þ,þ∞ for all t.0 and

f : IR� IR ! IR is any function. Then ϑ t; sð Þ∈ dManðIRÞ. Indeed, by using Lemma 1 of
[25], we have for any s, t.0, ϑ t; sð Þ ¼ ψ sð Þ � t, s� t, so, ϑ1ð Þ holds. Let
tnf g⊂ 0;þ∞ð Þ be a bounded sequence and let snf g⊂ 0;þ∞ð Þ be a nonincreasing

sequence. Then limn!∞sn ¼ infn∈ INsn ¼ a for some a∈ 0;þ∞½ Þ, we get

lim
n!∞

sup
tn þ ϑ tn; snð Þ

sn
¼ lim

n!∞
sup

ψ snð Þ
snð Þ , lim

n!∞

snð Þ
snð Þ ¼ 1,

so, ϑ2ð Þ is also satisfied.
Definition 3.3 Let X ; dð Þ be a metric space and T : X ! 2X be a closed valued

mapping. Let α, η : X � X ! IRþ be two functions and ϑ∈ dManðIRÞ. Then T is called
a multivalued α∗ � η∗-manageable contraction with respect to ϑ if for all y, z∈X

α∗ T y; T zð Þ≥ η∗ T y; T zð Þ implies ϑ H T y; T zð Þ; d y; zð Þð Þ≥0: (4)

Now we prove first result of this section.
Theorem 3.4 Let X ; dð Þ be a complete metric space and let T : X ! 2X be a closed

valued map satisfying following conditions:

1. T is α∗-admissible map with respect to η;

2.T is α∗ � η∗ manageable contraction with respect to ϑ;

3. there exists z0 ∈X and z1 ∈ T z0 such that α z0; z1ð Þ≥ η z0; z1ð Þ;

4. for a sequence znf g⊂X , limn!∞ znf g ¼ x and α zn; znþ1ð Þ≥ η zn; znþ1ð Þ for all
n∈ IN, implies α zn; xð Þ≥ η zn; xð Þ for all n∈ IN.

Then Fix Tf g 6¼ ∅.
Proof. Let z1 ∈ T z0 be such that α z0; z1ð Þ≥ η z0; z1ð Þ. Since T is α∗-admissible map

with respect to η, then α∗ T z0; T z1ð Þ≥ η∗ T z0; T z1ð Þ. Therefore, from (4) we have

ϑ H T z0; T z1ð Þ; d z0; z1ð Þð Þ≥0: (5)

If z1 ¼ z0, then z0 ∈ Fix Tf g, also if z1 ∈ T z1, then z1 ∈Fix Tf g. So, we adopt that
z0 6¼ z1 and z1 ∉ T z1. Thus 0, d z1; T z1ð Þ≤H T z0; T z1ð Þ. Define λ : IR� IR ! IR by

λ t; sð Þ ¼
tþ ϑ t; sð Þ

s
if t, s.0

0 otherwise:

8<
: (6)

By ϑ1ð Þ, we know that

0, λ t; sð Þ, 1 for all t, s.0: (7)

Also note that if ϑ t; sð Þ≥0, then
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0, t≤ sλ t; sð Þ: (8)

So, from (5) and (7), we get

0, λ H T z0; T z1ð Þ; d z0; z1ð Þð Þ, 1: (9)

Let

ε1 ¼ 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
λ H T z0; T z1ð Þ; d z0; z1ð Þð Þp � 1

 !
d z1; T z1ð Þ: (10)

Since d z1; T z1ð Þ.0. So, by using (9), we get ε1 .0 and

d z1; T z1ð Þ, d z1; T z1ð Þ þ ε1

¼ 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
λ H T z0; T z1ð Þ; dðz0; z1Þð Þp

 !
d z1; T z1ð Þ:

(11)

This implies that there exists z2 ∈ T z1 such that

d z1; z2ð Þ, 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
λ H T z0; T z1ð Þ; d z0; z1ð Þð Þp

 !
d z1; T z1ð Þ: (12)

By induction, we form a sequence znf g in X satisfying for each n∈ IN,
zn ∈ T zn�1, zn 6¼ zn�1, zn ∉ T zn, α∗ zn�1; znð Þ≥ η∗ zn�1; znð Þ,

0, d xn; T xnð Þ≤H T zn�1; T znð Þ, (13)

ϑ H T zn�1; T znð Þ; d zn�1; znð Þð Þ≥0, (14)

and

d zn; znþ1ð Þ ,
1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

λ H T zn�1; T znð Þ; d zn�1; znð Þð Þp
 !

d zn; T znð Þ, (15)

by taking

εn ¼ 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
λ H T zn�1; T znð Þ; d zn�1; znð Þð Þp � 1

 !
d zn; T znð Þ: (16)

By using (7), (8), (13), and (15), we get for each n∈ IN

d zn; T znð Þ≤ d zn�1; znð Þλ H T zn�1; T znð Þ; dðzn�1; znÞð Þ≤ d zn�1; znð Þ, (17)

this implies that d zn; T znð Þf gn∈ IN is a bounded sequence. By combining (15) and
(17), for each n∈ IN, we get

d zn; znþ1ð Þ, ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
λ H T zn�1; T znð Þ; dðzn�1; znÞð Þp� �

d zn�1; znð Þ: (18)

Which means that d zn�1; znð Þf gn∈ IN is a monotonically decreasing sequence of
non-negative reals and so it must be convergent. So, let limn!∞d zn; znþ1ð Þ ¼ c≥0.
From ϑ2ð Þ, we get
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zn ∈ T zn�1, zn 6¼ zn�1, zn ∉ T zn, α∗ zn�1; znð Þ≥ η∗ zn�1; znð Þ,

0, d xn; T xnð Þ≤H T zn�1; T znð Þ, (13)

ϑ H T zn�1; T znð Þ; d zn�1; znð Þð Þ≥0, (14)
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d zn; znþ1ð Þ ,
1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

λ H T zn�1; T znð Þ; d zn�1; znð Þð Þp
 !

d zn; T znð Þ, (15)

by taking

εn ¼ 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
λ H T zn�1; T znð Þ; d zn�1; znð Þð Þp � 1

 !
d zn; T znð Þ: (16)
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d zn; znþ1ð Þ, ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
λ H T zn�1; T znð Þ; dðzn�1; znÞð Þp� �

d zn�1; znð Þ: (18)

Which means that d zn�1; znð Þf gn∈ IN is a monotonically decreasing sequence of
non-negative reals and so it must be convergent. So, let limn!∞d zn; znþ1ð Þ ¼ c≥0.
From ϑ2ð Þ, we get
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lim
n!∞

supλ H T zn; T znð Þ; d zn�1; znð Þð Þ, 1: (19)

Now, if c.0, then by taking the limn!∞ sup in (18) and using (19), we have

c≤
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
lim
n!∞

sup λ H T zn�1; T znð Þ; d zn�1; znð Þð Þ
q

c, c: (20)

This contradiction shows that c ¼ 0. Hence, limn!∞ d zn; znþ1ð Þ ¼ 0. Next, we
prove that znf gn∈ IN is a Cauchy sequence in X . Let, for each n∈ IN,

σn ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
λ H T zn�1; T znð Þ; d zn�1; znð Þð Þ

p
, (21)

then from Eq. (9), we have σn ∈ 0; 1ð Þ. By (18), we obtain

d zn; znþ1ð Þ, σnd zn�1; znð Þ: (22)

(19) implies that limn!∞ σn , 1, so there exists γ ∈ 0; 1½ Þ and n0 ∈ IN, such that

σn ≤ γ for all n∈ IN, n≥ n0: (23)

For any n≥ n0, since σn ∈ 0; 1ð Þ for all n∈ IN and γ ∈ 0; 1½ Þ, (22, 23) implies that

d zn; znþ1ð Þ, σnd zn�1; znð Þ, σnσn�1d zn�2; zn�1ð Þ⋯≤ γn�n0þ1d z0; z1ð Þ: (24)

Put βn ¼ γn�n0þ1

1�γ

� �
d z0; z1ð Þ, n∈ IN. For m, n∈ IN with m. n≥ n0, we have from

(24) that

d zn; zmð Þ≤ ∑
m�1

j¼n
d zj; zjþ1
� �

, βn: (25)

Since γ ∈ 0; 1½ Þ, limn!∞βn ¼ 0. Hence limn!∞sup d zn; zmð Þ : m. nf g ¼ 0. This
shows that znf g is a Cauchy sequence in X . Completeness of X ensures the existence
of z∈X such that zn ! z as n ! ∞. Now, since α zn; zð Þ≥ η zn; zð Þ for all n∈ IN,
α∗ T zn; T zð Þ≥ η∗ T zn; T zð Þ, and so from (4), we have ϑ H T zn; T zð Þ; d zn; zð Þð Þ≥0.
Then from (7, 8), we have

H T zn; T zð Þ≤ λ H T zn; T zð Þ; dðzn; zÞð Þd zn; zð Þ, d zn; zð Þ: (26)

Since 0, d z; T zð Þ≤H T zn; T zð Þ þ d zn; zð Þ, so by using (26), we get

0, d z; T zð Þ, 2d zn; zð Þ: (27)

Letting limit n ! ∞ in above inequality, we get d z; T zð Þ ¼ 0. Hence z∈Fix Tf g.
□

Let Δ Fð Þ be the set of all functions F : IRþ ! IR satisfying following conditions:
F 1ð Þ F is strictly increasing;
F 2ð Þ for all sequence αnf g⊆Rþ, limn!∞ αn ¼ 0 if and only if

limn!∞F αnð Þ ¼ �∞;
F 3ð Þ there exist 0, k, 1 such that limn!0þαkF αð Þ ¼ 0,
Δ F∗ð Þ, if F also satisfies the following:
F4ð Þ F infAð Þ ¼ infF Að Þ for all A⊂ 0;∞ð Þ with inf  A.0,
Definition 3.5 [27] Let X ; dð Þ be a metric space. A mapping T : X ! X is said to

be F -contraction of there exists τ.0 such that
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d T x; T yð Þ.0 implies τ þ F d T x; T yð Þð Þ≤F d x; yð Þð Þ:
Theorem 3.6 [26] Let X ; dð Þ be a complete metric space and let T : X ! X be an

F-contraction. Then T has a unique fixed point x∗ ∈X and for every x0 ∈X a sequence
Tnx0n∈ IN is convergent to x∗.

Definition 3.7 ([27]). Let X ; dð Þ be a metric space and T : X ! CB Xð Þ be a
mapping. Then T is a multivalued F -contraction, if F ∈Δ Fð Þ and there exists τ.0
such that for all x, y∈X ,

H T x; T yð Þ.0 ) τ þ F H T x; T yð Þð Þ≤F d x; yð Þð Þ:
Theorem 3.8 ([27]). Let X ; dð Þ be a complete metric space and T : X ! K Xð Þ be a

multivalued F-contraction, then T has a fixed point in X .
Theorem 3.9 ([27]). Let X ; dð Þ be a complete metric space and T : X ! C Xð Þ be a

multivalued F-contraction. Suppose F ∈Δ F∗ð Þ, then T has a fixed point in X .
For more in this direction, see, [28–31]. Here, we give the concept of

multivalued α-F-weak-contractions and prove some fixed point results.
Definition 3.10 Let T : X ! 2X be a multivalued mapping on a metric space

X ; dð Þ, then T is said to be an multivalued α-F-weak-contraction on X , if there
exists σ.0, τ : 0;∞ð Þ ! σ;∞ð Þ, F ∈Δ Fð Þ and α : X � X ! 0;þ∞½ Þ such that for
all z∈X , y∈Fz

σ with D z; T zð Þ.0 satisfying

τ d z; yð Þð Þ þ F α z; yð ÞD y; T yð Þð Þ≤F M z; yð Þð Þ, (28)

where,

M z; yð Þ ¼ max d z; yð Þ;Dðz; T zÞ;Dðy; T yÞ;D y; T zð Þ þD z; T yð Þ
2

;

�

D y; T yð Þ 1þD z; T zð Þ½ �
1þ d z; yð Þ ;

D y; T zð Þ 1þD z; T yð Þ½ �
1þ d z; yð Þ

�
: (29)

and

F z
σ ¼ y∈ T z : F d z; yð Þð Þ≤F D z; T zð Þð Þ þ σf g:

Note that F z
σ 6¼ ∅ in both cases when F ∈Δ Fð Þ and F ∈Δ F∗ð Þ [32].

Definition 3.11 Let T : X ! P Xð Þ be a multivalued mapping on a metric space
X ; dð Þ, then T is said to be an multivalued α-F-contraction on X , if there exists
σ.0, τ : 0;∞ð Þ ! σ;∞ð Þ, F ∈Δ Fð Þ and α : X � X ! 0;þ∞½ Þ such that for all
z∈X , y∈Fz

σ with D z; T zð Þ.0 satisfying

τ d z; yð Þð Þ þ F α z; yð ÞD y; T yð Þð Þ≤F d x; yð Þð Þ, (30)

Theorem 3.12 Let X ; dð Þ be a complete metric space and T : X ! K Xð Þ be an
multivalued α-F-weak-contraction satisfying the following assertions:

1. T is multivalued α-orbital admissible mapping;

2. the map z ! D z; T zð Þ is lower semi-continuous;

3. there exists z0 ∈X and z1 ∈ T z0 such that α z0; z1ð Þ≥ 1;

4. τ satisfies limt!sþ infτ tð Þ. σ for all s≥0.
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(24) that
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, βn: (25)

Since γ ∈ 0; 1½ Þ, limn!∞βn ¼ 0. Hence limn!∞sup d zn; zmð Þ : m. nf g ¼ 0. This
shows that znf g is a Cauchy sequence in X . Completeness of X ensures the existence
of z∈X such that zn ! z as n ! ∞. Now, since α zn; zð Þ≥ η zn; zð Þ for all n∈ IN,
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Letting limit n ! ∞ in above inequality, we get d z; T zð Þ ¼ 0. Hence z∈Fix Tf g.
□

Let Δ Fð Þ be the set of all functions F : IRþ ! IR satisfying following conditions:
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F-contraction. Then T has a unique fixed point x∗ ∈X and for every x0 ∈X a sequence
Tnx0n∈ IN is convergent to x∗.

Definition 3.7 ([27]). Let X ; dð Þ be a metric space and T : X ! CB Xð Þ be a
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such that for all x, y∈X ,
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For more in this direction, see, [28–31]. Here, we give the concept of

multivalued α-F-weak-contractions and prove some fixed point results.
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X ; dð Þ, then T is said to be an multivalued α-F-weak-contraction on X , if there
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�
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�
: (29)

and

F z
σ ¼ y∈ T z : F d z; yð Þð Þ≤F D z; T zð Þð Þ þ σf g:

Note that F z
σ 6¼ ∅ in both cases when F ∈Δ Fð Þ and F ∈Δ F∗ð Þ [32].

Definition 3.11 Let T : X ! P Xð Þ be a multivalued mapping on a metric space
X ; dð Þ, then T is said to be an multivalued α-F-contraction on X , if there exists
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Theorem 3.12 Let X ; dð Þ be a complete metric space and T : X ! K Xð Þ be an
multivalued α-F-weak-contraction satisfying the following assertions:

1. T is multivalued α-orbital admissible mapping;

2. the map z ! D z; T zð Þ is lower semi-continuous;

3. there exists z0 ∈X and z1 ∈ T z0 such that α z0; z1ð Þ≥ 1;
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Then T has a fixed point in X .
Proof. Let z0 ∈X , since T z∈K Xð Þ for every z∈X , the set Fz

σ is non-empty for
any σ.0, then there exists z1 ∈ Fz0

σ and by hypothesis α z0; z1ð Þ≥ 1. Assume that
z1 ∉ T z1, otherwise z1 is the fixed point of T . Then, since T z1 is closed,
D z1; T z1ð Þ.0, so, from (28), we have

τ d z0; z1ð Þð Þ þ F α z0; z1ð ÞD z1; T z1ð Þð Þ≤F M z0; z1ð Þð Þ, (31)

where

M z0; z1ð Þ ¼ max d z0; z1ð Þ;Dðz0; T z0Þ;Dðz1; T z1Þ;D z1; T z0ð Þ þD z0; T z1ð Þ
2

;

�

D z1; T z1ð Þ 1þD z0; T z0ð Þ½ �
1þ d z0; z1ð Þ ;

D z1; T z0ð Þ 1þD z0; T z1ð Þ½ �
1þ d z0; z1ð Þ

�
: (32)

Since T z0 and T z1 are compact, so we have

M z0; z1ð Þ ¼ max d z0; z1ð Þ; dðz0; z1Þ; dðz1; z2Þ; d z1; z1ð Þ þ d z0; z2ð Þ
2

;

�

d z1; z2ð Þ 1þ d z0; z1ð Þ½ �
1þ d z0; z1ð Þ ;

d z1; z1ð Þ 1þ d z0; z2ð Þ½ �
1þ d z0; z1ð Þ

�

¼ max d z0; z1ð Þ; dðz1; z2Þ; d z0; z2ð Þ
2

� �
: (33)

Since d z0;z2ð Þ
2 ≤ d z0;z1ð Þþd z1;z2ð Þ

2 ≤max d z0; z1ð Þ; d z1; z2ð Þf g, it follows that

M z0; z1ð Þ≤max d z0; z1ð Þ; d z1; z2ð Þf g: (34)

Suppose that d z0; z1ð Þ, d z1; z2ð Þ, then (31) implies that

τ d z0; z1ð Þð Þ þ F D z1; T z1ð Þð Þ≤ τ d z0; z1ð Þð Þ þ F α z0; z1ð ÞD z1; T z1ð Þð Þ
≤F d z1; z2ð Þð Þ,

(35)

consequently,

τ d z0; z1ð Þð Þ þ F d z1; z2ð Þð Þ≤F d z1; z2ð Þð Þ, (36)

or, F d z1; z2ð Þð Þ≤F d z1; z2ð Þð Þ � τ d z0; z1ð Þð Þ, which is a contradiction. Hence
M d z0; z1ð Þð Þ≤ d z0; z1ð Þ, therefore by using F1ð Þ, (31) implies that

τ d z0; z1ð Þð Þ þ F α z0; z1ð Þd z1; z2ð Þð Þ≤F d z0; z1ð Þð Þ: (37)

On continuing recursively, we get a sequence znf gn∈ IN in X , where znþ1 ∈Fzn
σ ,

znþ1 ∉ T znþ1, α zn; znþ1ð Þ≥ 1, M zn; znþ1ð Þ≤ d zn; znþ1ð Þ and

τ d zn; znþ1ð Þð Þ þ F D znþ1; T znþ1ð Þð Þ≤F d zn; znþ1ð Þð Þ: (38)

Since znþ1 ∈Fzn
σ and T zn and T znþ1 are compact, we have

τ d zn; znþ1ð Þð Þ þ F d znþ1; znþ2ð Þð Þ≤F d zn; znþ1ð Þð Þ (39)

and
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F d zn; znþ1ð Þð Þ≤F d zn; znþ1ð Þð Þ þ σ: (40)

Combining (39) and (40) gives

F d znþ1; znþ2ð Þð Þ≤F d zn; znþ1ð Þð Þ þ σ � τ d zn; znþ1ð Þð Þ (41)

Let dn ¼ d zn; znþ1ð Þ for n∈ IN, then dn .0 and from (41) dnf g is decreasing.
Therefore, there exists δ≥0 such that limn!∞dn ¼ δ. Now let δ.0. From (41), we get

F dnþ1ð Þ≤F dnð Þ þ σ � τ dnð Þ≤F dn�1ð Þ þ 2σ � τ dnð Þ � τ dn�1ð Þ⋯
≤F d0ð Þ þ nσ � τ dnð Þ � τ dn�1ð Þ �⋯� τ d0ð Þ:

(42)

Let τ dpn
� � ¼ min τ d0ð Þ; τ d1ð Þ;⋯; τ dnð Þf g for all n∈ IN. From (42), we get

F dnþ1ð Þ≤F d0ð Þ þ n σ � τ dpn
� �� �

: (43)

From (38), we also get

F D znþ1; T znþ1ð Þð Þ≤F D z0; T z0ð Þð Þ þ n σ � τ dpn
� �� �

: (44)

Now consider the sequence τ dpn
� �� �

. We distinguish two cases.
Case 1. For each n∈ IN, there ism. n such that τ dpn

� �
. τ dpm
� �

. Then we obtain a

subsequence dpnk

n o
of dpn
� �

with τ dpnk

� �
. τ dpnkþ1

� �
for all k. Since dpnk ! δþ, we

deduce that limk!∞infτ dpnk

� �
. σ. Hence F dnk

� �
≤F d0ð Þ þ n σ � τ dpnk

� �� �
for all

k. Consequently, limk!∞F dnk
� � ¼ �∞ and by F 2ð Þ, we obtain limk!∞dpnk Þ ¼ 0,

which contradicts that limn!∞dn .0.

Case 2. There is n0 ∈ IN such that τ dpn0

� �
. τ dpm
� �

for all m. n0. Then

F dmð Þ≤F d0ð Þ þm σ � τ dpn0

� �� �
for all m. n0. Hence limm!∞F dmð Þ ¼ �∞, so

limm!∞dm ¼ 0, which contradicts that limm!∞dm .0. Thus,

lim
n!∞

dn ¼ 0:

From F 3ð Þ, there exists 0, r, 1 such that limn!∞ dnð ÞrF dnð Þ ¼ 0. By (43), we
get for all n∈ IN

dnð ÞrF dnð Þ � dnð ÞrF d0ð Þ≤ dnð Þrn σ � τ d� pn
� �� �

≤0: (45)

Letting n ! ∞ in (45), we obtain limn!∞n dnð Þr ¼ 0. This implies that there exists
n1 ∈ IN such that n dnð Þr ≤ 1, or, dn ≤ 1

n1=r, for all n. n1. Next, form. n≥ n1 we have

d zn; zmð Þ≤ ∑
m�1

i¼n
d zi; ziþ1ð Þ≤ ∑

m�1

i¼n

1

i1=k
,

since 0, k, 1,∑m�1
i¼n

1
i1=k

converges. Therefore, d zn; zmð Þ ! 0 asm, n ! ∞. Thus,
znf g is a Cauchy sequence. Since X is complete, there exists z∗ ∈X such that zn ! z∗

as n ! ∞. From Eqs. (44) and F2ð Þ, we have limn!∞D zn; T znð Þ ¼ 0. Since
z ! D z; T zð Þ is lower semi-continuous, then

0≤D z;Tzð Þ≤ lim
n!∞

inf  D zn; T znð Þ ¼ 0:
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Then T has a fixed point in X .
Proof. Let z0 ∈X , since T z∈K Xð Þ for every z∈X , the set Fz

σ is non-empty for
any σ.0, then there exists z1 ∈ Fz0

σ and by hypothesis α z0; z1ð Þ≥ 1. Assume that
z1 ∉ T z1, otherwise z1 is the fixed point of T . Then, since T z1 is closed,
D z1; T z1ð Þ.0, so, from (28), we have

τ d z0; z1ð Þð Þ þ F α z0; z1ð ÞD z1; T z1ð Þð Þ≤F M z0; z1ð Þð Þ, (31)

where

M z0; z1ð Þ ¼ max d z0; z1ð Þ;Dðz0; T z0Þ;Dðz1; T z1Þ;D z1; T z0ð Þ þD z0; T z1ð Þ
2

;

�

D z1; T z1ð Þ 1þD z0; T z0ð Þ½ �
1þ d z0; z1ð Þ ;

D z1; T z0ð Þ 1þD z0; T z1ð Þ½ �
1þ d z0; z1ð Þ

�
: (32)

Since T z0 and T z1 are compact, so we have

M z0; z1ð Þ ¼ max d z0; z1ð Þ; dðz0; z1Þ; dðz1; z2Þ; d z1; z1ð Þ þ d z0; z2ð Þ
2

;

�

d z1; z2ð Þ 1þ d z0; z1ð Þ½ �
1þ d z0; z1ð Þ ;

d z1; z1ð Þ 1þ d z0; z2ð Þ½ �
1þ d z0; z1ð Þ

�

¼ max d z0; z1ð Þ; dðz1; z2Þ; d z0; z2ð Þ
2

� �
: (33)

Since d z0;z2ð Þ
2 ≤ d z0;z1ð Þþd z1;z2ð Þ

2 ≤max d z0; z1ð Þ; d z1; z2ð Þf g, it follows that

M z0; z1ð Þ≤max d z0; z1ð Þ; d z1; z2ð Þf g: (34)

Suppose that d z0; z1ð Þ, d z1; z2ð Þ, then (31) implies that

τ d z0; z1ð Þð Þ þ F D z1; T z1ð Þð Þ≤ τ d z0; z1ð Þð Þ þ F α z0; z1ð ÞD z1; T z1ð Þð Þ
≤F d z1; z2ð Þð Þ,

(35)

consequently,

τ d z0; z1ð Þð Þ þ F d z1; z2ð Þð Þ≤F d z1; z2ð Þð Þ, (36)

or, F d z1; z2ð Þð Þ≤F d z1; z2ð Þð Þ � τ d z0; z1ð Þð Þ, which is a contradiction. Hence
M d z0; z1ð Þð Þ≤ d z0; z1ð Þ, therefore by using F1ð Þ, (31) implies that

τ d z0; z1ð Þð Þ þ F α z0; z1ð Þd z1; z2ð Þð Þ≤F d z0; z1ð Þð Þ: (37)

On continuing recursively, we get a sequence znf gn∈ IN in X , where znþ1 ∈Fzn
σ ,

znþ1 ∉ T znþ1, α zn; znþ1ð Þ≥ 1, M zn; znþ1ð Þ≤ d zn; znþ1ð Þ and

τ d zn; znþ1ð Þð Þ þ F D znþ1; T znþ1ð Þð Þ≤F d zn; znþ1ð Þð Þ: (38)

Since znþ1 ∈Fzn
σ and T zn and T znþ1 are compact, we have

τ d zn; znþ1ð Þð Þ þ F d znþ1; znþ2ð Þð Þ≤F d zn; znþ1ð Þð Þ (39)

and
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F d zn; znþ1ð Þð Þ≤F d zn; znþ1ð Þð Þ þ σ: (40)

Combining (39) and (40) gives

F d znþ1; znþ2ð Þð Þ≤F d zn; znþ1ð Þð Þ þ σ � τ d zn; znþ1ð Þð Þ (41)

Let dn ¼ d zn; znþ1ð Þ for n∈ IN, then dn .0 and from (41) dnf g is decreasing.
Therefore, there exists δ≥0 such that limn!∞dn ¼ δ. Now let δ.0. From (41), we get

F dnþ1ð Þ≤F dnð Þ þ σ � τ dnð Þ≤F dn�1ð Þ þ 2σ � τ dnð Þ � τ dn�1ð Þ⋯
≤F d0ð Þ þ nσ � τ dnð Þ � τ dn�1ð Þ �⋯� τ d0ð Þ:

(42)

Let τ dpn
� � ¼ min τ d0ð Þ; τ d1ð Þ;⋯; τ dnð Þf g for all n∈ IN. From (42), we get

F dnþ1ð Þ≤F d0ð Þ þ n σ � τ dpn
� �� �

: (43)

From (38), we also get

F D znþ1; T znþ1ð Þð Þ≤F D z0; T z0ð Þð Þ þ n σ � τ dpn
� �� �

: (44)

Now consider the sequence τ dpn
� �� �

. We distinguish two cases.
Case 1. For each n∈ IN, there ism. n such that τ dpn

� �
. τ dpm
� �

. Then we obtain a

subsequence dpnk

n o
of dpn
� �

with τ dpnk

� �
. τ dpnkþ1

� �
for all k. Since dpnk ! δþ, we

deduce that limk!∞infτ dpnk

� �
. σ. Hence F dnk

� �
≤F d0ð Þ þ n σ � τ dpnk

� �� �
for all

k. Consequently, limk!∞F dnk
� � ¼ �∞ and by F 2ð Þ, we obtain limk!∞dpnk Þ ¼ 0,

which contradicts that limn!∞dn .0.

Case 2. There is n0 ∈ IN such that τ dpn0

� �
. τ dpm
� �

for all m. n0. Then

F dmð Þ≤F d0ð Þ þm σ � τ dpn0

� �� �
for all m. n0. Hence limm!∞F dmð Þ ¼ �∞, so

limm!∞dm ¼ 0, which contradicts that limm!∞dm .0. Thus,

lim
n!∞

dn ¼ 0:

From F 3ð Þ, there exists 0, r, 1 such that limn!∞ dnð ÞrF dnð Þ ¼ 0. By (43), we
get for all n∈ IN

dnð ÞrF dnð Þ � dnð ÞrF d0ð Þ≤ dnð Þrn σ � τ d� pn
� �� �

≤0: (45)

Letting n ! ∞ in (45), we obtain limn!∞n dnð Þr ¼ 0. This implies that there exists
n1 ∈ IN such that n dnð Þr ≤ 1, or, dn ≤ 1

n1=r, for all n. n1. Next, form. n≥ n1 we have

d zn; zmð Þ≤ ∑
m�1

i¼n
d zi; ziþ1ð Þ≤ ∑

m�1

i¼n

1

i1=k
,

since 0, k, 1,∑m�1
i¼n

1
i1=k

converges. Therefore, d zn; zmð Þ ! 0 asm, n ! ∞. Thus,
znf g is a Cauchy sequence. Since X is complete, there exists z∗ ∈X such that zn ! z∗

as n ! ∞. From Eqs. (44) and F2ð Þ, we have limn!∞D zn; T znð Þ ¼ 0. Since
z ! D z; T zð Þ is lower semi-continuous, then

0≤D z;Tzð Þ≤ lim
n!∞

inf  D zn; T znð Þ ¼ 0:
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Thus, T has a fixed point. □
In the following theorem we take C Xð Þ instead of K Xð Þ, then we need to take

F ∈Δ F∗ð Þ in Definition 3.10.
Theorem 3.13 Let X ; dð Þ be a complete metric space and T : X ! C Xð Þ be an

multivalued α-F-weak-contraction with F ∈Δ F∗ð Þ satisfying all the assertions of Theo-
rem 3.12. Then T has a fixed point in X .

Proof. Let z0 ∈X , since T z∈C Xð Þ for every z∈X and F ∈Δ F∗ð Þ, the set Fz
σ is

non-empty for any σ.0, then there exists z1 ∈Fz0
σ and by hypothesis α z0; z1ð Þ≥ 1.

Assume that z1 ∉ T z1, otherwise z1 is the fixed point of T . Then, since T z1 is closed,
D z1; T z1ð Þ.0, so, from (28), we have

τ d z0; z1ð Þð Þ þ α z0; z1ð ÞF D z1; T z1ð Þð Þ≤F M z0; z1ð Þð Þ, (46)

where

M z0; z1ð Þ ¼ max d z0; z1ð Þ;Dðz0; T z0Þ;Dðz1; T z1Þ;D z1; T z0ð Þ þD z0; T z1ð Þ
2

;

�

D z1; T z1ð Þ 1þD z0; T z0ð Þ½ �
1þ d z0; z1ð Þ ;

D z1; T z0ð Þ 1þD z0; T z1ð Þ½ �
1þ d z0; z1ð Þ

�
: (47)

The rest of the proof can be completed as in the proof of Theorem 3.12 by
considering the closedness of T z, for all z∈X . □

Theorem 3.14 Let X ; dð Þ be a complete metric space, T : X ! K Xð Þ be a continu-
ous mapping and F ∈Δ Fð Þ. Assume that the following assertions hold:

1. T is generalized α∗-admissible mapping;

2. there exists z0 ∈X and z1 ∈ T z0 such that α z0; z1ð Þ≥ 1;

3. there exists τ : 0;∞ð Þ ! 0;∞ð Þ such that

lim
t!sþ

inf  τ tð Þ.0 for all s≥0

and for all z∈X with H T z; T yð Þ.0, there exist a function
α : X � X ! �∞f g∪ 0;þ∞ð Þ satisfying

τ d z; yð Þð Þ þ α z; yð ÞF H T z; T yð Þð Þ≤F M z; yð Þð Þ, (48)

where M z; yð Þ is defined in (29).
Then T has a fixed point in X .
Proof. By following the steps in the proof of Theorem 3.12, we get the required

result. □
Note that Theorem 3.14 cannot be obtained from Theorem 3.12, because in

Theorem 3.12, σ cannot be equal to zero.
Theorem 3.15 Let X ; dð Þ be a complete metric space, T : X ! C Xð Þ be a continuous

mapping and F ∈Δ F∗ð Þ satisfying all assertions of Theorem 3.14. Then T has a fixed
point in X .

From Theorems 3.14 and 3.15, we get the following fixed point result for single
valued mappings:

Theorem 3.16 Let X ; dð Þ be a complete metric space, T : X ! X be a continuous
mapping and F ∈Δ Fð Þ. Assume that the following assertions hold:

1. T is α-admissible mapping;
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2. there exists z0, z1 ∈X such that α z0; z1ð Þ≥ 1;

3. there exists τ : 0;∞ð Þ ! 0;∞ð Þ such that

lim
t!sþ

inf  τ tð Þ.0 for all s≥0

and for all z∈X with d T z; T yð Þ.0, there exist a function
α : X � X ! �∞f g∪ 0;þ∞ð Þ satisfying

τ d z; yð Þð Þ þ α z; yð ÞF d T z; T yð Þð Þ≤F m z; yð Þð Þ, (49)

where

m z; yð Þ ¼ max d z; yð Þ; dðz; T zÞ; dðy; T yÞ; d y; T zð Þ þ d z; T yð Þ
2

;

�

d y; T yð Þ 1þ d z; T zð Þ½ �
1þ d z; yð Þ ;

d y; T zð Þ 1þ d z; T yð Þ½ �
1þ d z; yð Þ

�
: (50)

Then T has a fixed point in X .
Now, let X ; d; ≼ð Þ be a partially ordered metric space. Recall that T : X ! 2X is

monotone increasing if T y≼ T z for all y, z∈X , for which y≼ z (see [33]). There are
many applications in differential and integral equations of monotone mappings in
ordered metric spaces (see [34–36] and references therein).

Theorem 3.17 Let X ; d; ≼ð Þ be a complete partially ordered metric space and let
T : X ! 2X be a closed valued mapping satisfying the following assertions for all y, z∈X
with y≼ z:

1. T is monotone increasing;

2.ϑ H T y; T zð Þ; d y; zð Þð Þ≥0;

3. there exists z0 ∈X and z1 ∈ T z0 such that z0 ≼ z1;

4.for a sequence znf g⊂X , limn!∞ znf g ¼ z and zn ≼ znþ1 for all n∈ IN, we have
zn ≼ z for all n∈ IN.

Then Fix Tf g 6¼ ∅.
Proof. Define α, η : X � X ! 0;∞½ Þ by

α y; zð Þ ¼ 1 y≼ z
0 otherwise

η y; zð Þ ¼
1
2

y≼ z

0 otherwise,

8<
:

8<
:

then for y, z∈X with y≼ z, α y; zð Þ≥ η y; zð Þ implies
α∗ T y; T zð Þ ¼ 1. 1

2 ¼ η∗ T y; T zð Þ and α∗ T y; T zð Þ ¼ η∗ T y; T zð Þ ¼ 0 otherwise. Thus,
all the conditions of Theorem 3.4 are satisfied and hence T has a fixed point. □

In case of single valued mapping Theorem 3.17 reduced to the following:
Theorem 3.18 Let X ; d; ≼ð Þ be a complete partially ordered metric space and let

T : X ! X be a self-map fulfilling the following assertions:

1. T is monotone increasing;
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Thus, T has a fixed point. □
In the following theorem we take C Xð Þ instead of K Xð Þ, then we need to take

F ∈Δ F∗ð Þ in Definition 3.10.
Theorem 3.13 Let X ; dð Þ be a complete metric space and T : X ! C Xð Þ be an

multivalued α-F-weak-contraction with F ∈Δ F∗ð Þ satisfying all the assertions of Theo-
rem 3.12. Then T has a fixed point in X .

Proof. Let z0 ∈X , since T z∈C Xð Þ for every z∈X and F ∈Δ F∗ð Þ, the set Fz
σ is

non-empty for any σ.0, then there exists z1 ∈Fz0
σ and by hypothesis α z0; z1ð Þ≥ 1.

Assume that z1 ∉ T z1, otherwise z1 is the fixed point of T . Then, since T z1 is closed,
D z1; T z1ð Þ.0, so, from (28), we have

τ d z0; z1ð Þð Þ þ α z0; z1ð ÞF D z1; T z1ð Þð Þ≤F M z0; z1ð Þð Þ, (46)

where

M z0; z1ð Þ ¼ max d z0; z1ð Þ;Dðz0; T z0Þ;Dðz1; T z1Þ;D z1; T z0ð Þ þD z0; T z1ð Þ
2

;

�

D z1; T z1ð Þ 1þD z0; T z0ð Þ½ �
1þ d z0; z1ð Þ ;

D z1; T z0ð Þ 1þD z0; T z1ð Þ½ �
1þ d z0; z1ð Þ

�
: (47)

The rest of the proof can be completed as in the proof of Theorem 3.12 by
considering the closedness of T z, for all z∈X . □

Theorem 3.14 Let X ; dð Þ be a complete metric space, T : X ! K Xð Þ be a continu-
ous mapping and F ∈Δ Fð Þ. Assume that the following assertions hold:

1. T is generalized α∗-admissible mapping;

2. there exists z0 ∈X and z1 ∈ T z0 such that α z0; z1ð Þ≥ 1;

3. there exists τ : 0;∞ð Þ ! 0;∞ð Þ such that

lim
t!sþ

inf  τ tð Þ.0 for all s≥0

and for all z∈X with H T z; T yð Þ.0, there exist a function
α : X � X ! �∞f g∪ 0;þ∞ð Þ satisfying

τ d z; yð Þð Þ þ α z; yð ÞF H T z; T yð Þð Þ≤F M z; yð Þð Þ, (48)

where M z; yð Þ is defined in (29).
Then T has a fixed point in X .
Proof. By following the steps in the proof of Theorem 3.12, we get the required

result. □
Note that Theorem 3.14 cannot be obtained from Theorem 3.12, because in

Theorem 3.12, σ cannot be equal to zero.
Theorem 3.15 Let X ; dð Þ be a complete metric space, T : X ! C Xð Þ be a continuous

mapping and F ∈Δ F∗ð Þ satisfying all assertions of Theorem 3.14. Then T has a fixed
point in X .

From Theorems 3.14 and 3.15, we get the following fixed point result for single
valued mappings:

Theorem 3.16 Let X ; dð Þ be a complete metric space, T : X ! X be a continuous
mapping and F ∈Δ Fð Þ. Assume that the following assertions hold:

1. T is α-admissible mapping;
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2. there exists z0, z1 ∈X such that α z0; z1ð Þ≥ 1;

3. there exists τ : 0;∞ð Þ ! 0;∞ð Þ such that

lim
t!sþ

inf  τ tð Þ.0 for all s≥0

and for all z∈X with d T z; T yð Þ.0, there exist a function
α : X � X ! �∞f g∪ 0;þ∞ð Þ satisfying

τ d z; yð Þð Þ þ α z; yð ÞF d T z; T yð Þð Þ≤F m z; yð Þð Þ, (49)

where

m z; yð Þ ¼ max d z; yð Þ; dðz; T zÞ; dðy; T yÞ; d y; T zð Þ þ d z; T yð Þ
2

;

�

d y; T yð Þ 1þ d z; T zð Þ½ �
1þ d z; yð Þ ;

d y; T zð Þ 1þ d z; T yð Þ½ �
1þ d z; yð Þ

�
: (50)

Then T has a fixed point in X .
Now, let X ; d; ≼ð Þ be a partially ordered metric space. Recall that T : X ! 2X is

monotone increasing if T y≼ T z for all y, z∈X , for which y≼ z (see [33]). There are
many applications in differential and integral equations of monotone mappings in
ordered metric spaces (see [34–36] and references therein).

Theorem 3.17 Let X ; d; ≼ð Þ be a complete partially ordered metric space and let
T : X ! 2X be a closed valued mapping satisfying the following assertions for all y, z∈X
with y≼ z:

1. T is monotone increasing;

2.ϑ H T y; T zð Þ; d y; zð Þð Þ≥0;

3. there exists z0 ∈X and z1 ∈ T z0 such that z0 ≼ z1;

4.for a sequence znf g⊂X , limn!∞ znf g ¼ z and zn ≼ znþ1 for all n∈ IN, we have
zn ≼ z for all n∈ IN.

Then Fix Tf g 6¼ ∅.
Proof. Define α, η : X � X ! 0;∞½ Þ by

α y; zð Þ ¼ 1 y≼ z
0 otherwise

η y; zð Þ ¼
1
2

y≼ z

0 otherwise,

8<
:

8<
:

then for y, z∈X with y≼ z, α y; zð Þ≥ η y; zð Þ implies
α∗ T y; T zð Þ ¼ 1. 1

2 ¼ η∗ T y; T zð Þ and α∗ T y; T zð Þ ¼ η∗ T y; T zð Þ ¼ 0 otherwise. Thus,
all the conditions of Theorem 3.4 are satisfied and hence T has a fixed point. □

In case of single valued mapping Theorem 3.17 reduced to the following:
Theorem 3.18 Let X ; d; ≼ð Þ be a complete partially ordered metric space and let

T : X ! X be a self-map fulfilling the following assertions:

1. T is monotone increasing;
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2.ϑ d T y; T zð Þ; d y; zð Þð Þ≥0;

3. there exists z0 ∈X and z1 ¼ T z0 such that z0 ≼ z1;

4. for a sequence znf g⊂X , limn!∞ znf g ¼ z and zn ≼ znþ1 for all n∈ IN, we have
zn ≼ z for all n∈ IN.

for all y, z∈X with y≼ z and ϑ∈ dManðIRÞ. Then Fix Tf g 6¼ ∅.
Definition 3.19 Let T : X ! 2X be a multivalued mapping on a partially ordered

metric space X ; d; ≼ð Þ, then T is said to be an ordered F -τ-contraction on X , if
there exists σ.0 and τ : 0;∞ð Þ ! σ;∞ð Þ, F ∈Δ Fð Þ such that for all z∈X , y∈F z

σ

with z≼ y and D z; T zð Þ.0 satisfying

τ d z; yð Þð Þ þ F D y; T yð Þð Þ≤F M z; yð Þð Þ, (51)

where,

M z; yð Þ ¼ max d z; yð Þ;Dðz; T zÞ;Dðy; T yÞ;D y; T zð Þ þD z; T yð Þ
2

;

�

D y; T yð Þ 1þD z; T zð Þ½ �
1þ d z; yð Þ ;

D y; T zð Þ 1þD z; T yð Þ½ �
1þ d z; yð Þ

�
: (52)

Theorem 3.20 Let X ; d; ≼ð Þ be a complete partially ordered metric space and
T : X ! K Xð Þ be an ordered F-τ-contraction satisfying the following assertions:

1. T is monotone increasing;

2. the map z ! D z; T zð Þ is lower semi-continuous;

3. there exists z0 ∈X and z1 ∈ T z0 such that z0 ≼ z1;

4. τ satisfies

lim
t!sþ

inf  τ tð Þ. σ for all s≥0

Then T has a fixed point in X .
Proof. By using the similar arguments as in the proof of Theorem 3.17 and using

Theorem 3.12, we get the result. □
Theorem 3.21 Let X ; d; ≼ð Þ be a complete partially ordered metric space and

T : X ! C Xð Þ be an ordered F-τ-contraction with F ∈Δ F∗ð Þ satisfying all the asser-
tions of Theorem 3.20. Then T has a fixed point in X .

Theorem 3.22 Let X ; d; ≼ð Þ be a complete partially ordered metric space,
T : X ! K Xð Þ be a continuous mapping and F ∈Δ Fð Þ. Assume that the following
assertions hold:

1. T is monotone increasing;

2. there exists z0 ∈X and z1 ∈ T z0 such that z0 ≼ z1;

3. there exists τ : 0;∞ð Þ ! 0;∞ð Þ such that

lim
t!sþ

inf  τ tð Þ.0 for all s≥0
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and for all z, y∈X with z≼ y and H T z; T yð Þ.0 satisfying

τ d z; yð Þð Þ þ F H T z; T yð Þð Þ≤F M z; yð Þð Þ, (53)

where M z; yð Þ is defined in (52).
Then T has a fixed point in X .
Proof. By defining α : X � X ! 0;∞½ Þ as in the proof of Theorem 3.17 and by

using Theorem (3.14), we get the required result. □
Theorem 3.23 Let X ; d; ≼ð Þ be a complete partially ordered metric space,

T : X ! C Xð Þ be a continuous mapping and F ∈Δ F∗ð Þ satisfying all assertions of
Theorem 3.22. Then T has a fixed point in X .

From Theorems 3.22 and 3.23, we get the following fixed point result for single
valued mapping.

Theorem 3.24 Let X ; d; ≼ð Þ be a complete partially ordered metric space,
T : X ! X be a continuous mapping and F ∈Δ Fð Þ. Assume that the following asser-
tions hold:

1. T is monotone increasing;

2. there exists z0, z1 ∈X such that z0 ≼ z1;

3. there exists τ : 0;∞ð Þ ! 0;∞ð Þ such that

lim
t!sþ

inf  τ tð Þ.0 for all s≥0

and for all z, y∈X with z≼ y and d T z; T yð Þ.0 satisfying

τ d z; yð Þð Þ þ F d T z; T yð Þð Þ≤F m z; yð Þð Þ, (54)

where

m z; yð Þ ¼ max d z; yð Þ; dðz; T zÞ; dðy; T yÞ; d y; T zð Þ þ d z; T yð Þ
2

;

�

d y; T yð Þ 1þ d z; T zð Þ½ �
1þ d z; yð Þ ;

d y; T zð Þ 1þ d z; T yð Þ½ �
1þ d z; yð Þ

�
: (55)

Then T has a fixed point in X .

4. Existence of solution

In this section, by using the fixed point results proved in the previous section,
we obtain the existence of the solution of integral Eq. (2) and matrix Eq. (1).

4.1 Solution of Fredholm integral equation of second kind

Let ≪ be a partial order relation on IRn. Define T : X ! X by

T z rð Þ ¼
ðc
b
B r; s; z sð Þð Þdsþ g rð Þ, r∈ a; b½ �: (56)

Theorem 4.1 Let X ¼ C b; c½ �; IRnð Þ with the usual spermium norm. Suppose that
1. B : b; c½ � � b; c½ � � IRn ! IRn and g : IRn ! IRn are continuous;
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2.ϑ d T y; T zð Þ; d y; zð Þð Þ≥0;

3. there exists z0 ∈X and z1 ¼ T z0 such that z0 ≼ z1;

4. for a sequence znf g⊂X , limn!∞ znf g ¼ z and zn ≼ znþ1 for all n∈ IN, we have
zn ≼ z for all n∈ IN.

for all y, z∈X with y≼ z and ϑ∈ dManðIRÞ. Then Fix Tf g 6¼ ∅.
Definition 3.19 Let T : X ! 2X be a multivalued mapping on a partially ordered

metric space X ; d; ≼ð Þ, then T is said to be an ordered F -τ-contraction on X , if
there exists σ.0 and τ : 0;∞ð Þ ! σ;∞ð Þ, F ∈Δ Fð Þ such that for all z∈X , y∈F z

σ

with z≼ y and D z; T zð Þ.0 satisfying

τ d z; yð Þð Þ þ F D y; T yð Þð Þ≤F M z; yð Þð Þ, (51)

where,

M z; yð Þ ¼ max d z; yð Þ;Dðz; T zÞ;Dðy; T yÞ;D y; T zð Þ þD z; T yð Þ
2

;

�

D y; T yð Þ 1þD z; T zð Þ½ �
1þ d z; yð Þ ;

D y; T zð Þ 1þD z; T yð Þ½ �
1þ d z; yð Þ

�
: (52)

Theorem 3.20 Let X ; d; ≼ð Þ be a complete partially ordered metric space and
T : X ! K Xð Þ be an ordered F-τ-contraction satisfying the following assertions:

1. T is monotone increasing;

2. the map z ! D z; T zð Þ is lower semi-continuous;

3. there exists z0 ∈X and z1 ∈ T z0 such that z0 ≼ z1;

4. τ satisfies

lim
t!sþ

inf  τ tð Þ. σ for all s≥0

Then T has a fixed point in X .
Proof. By using the similar arguments as in the proof of Theorem 3.17 and using

Theorem 3.12, we get the result. □
Theorem 3.21 Let X ; d; ≼ð Þ be a complete partially ordered metric space and

T : X ! C Xð Þ be an ordered F-τ-contraction with F ∈Δ F∗ð Þ satisfying all the asser-
tions of Theorem 3.20. Then T has a fixed point in X .

Theorem 3.22 Let X ; d; ≼ð Þ be a complete partially ordered metric space,
T : X ! K Xð Þ be a continuous mapping and F ∈Δ Fð Þ. Assume that the following
assertions hold:

1. T is monotone increasing;

2. there exists z0 ∈X and z1 ∈ T z0 such that z0 ≼ z1;

3. there exists τ : 0;∞ð Þ ! 0;∞ð Þ such that

lim
t!sþ

inf  τ tð Þ.0 for all s≥0
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and for all z, y∈X with z≼ y and H T z; T yð Þ.0 satisfying

τ d z; yð Þð Þ þ F H T z; T yð Þð Þ≤F M z; yð Þð Þ, (53)

where M z; yð Þ is defined in (52).
Then T has a fixed point in X .
Proof. By defining α : X � X ! 0;∞½ Þ as in the proof of Theorem 3.17 and by

using Theorem (3.14), we get the required result. □
Theorem 3.23 Let X ; d; ≼ð Þ be a complete partially ordered metric space,

T : X ! C Xð Þ be a continuous mapping and F ∈Δ F∗ð Þ satisfying all assertions of
Theorem 3.22. Then T has a fixed point in X .

From Theorems 3.22 and 3.23, we get the following fixed point result for single
valued mapping.

Theorem 3.24 Let X ; d; ≼ð Þ be a complete partially ordered metric space,
T : X ! X be a continuous mapping and F ∈Δ Fð Þ. Assume that the following asser-
tions hold:

1. T is monotone increasing;

2. there exists z0, z1 ∈X such that z0 ≼ z1;

3. there exists τ : 0;∞ð Þ ! 0;∞ð Þ such that

lim
t!sþ

inf  τ tð Þ.0 for all s≥0

and for all z, y∈X with z≼ y and d T z; T yð Þ.0 satisfying

τ d z; yð Þð Þ þ F d T z; T yð Þð Þ≤F m z; yð Þð Þ, (54)

where

m z; yð Þ ¼ max d z; yð Þ; dðz; T zÞ; dðy; T yÞ; d y; T zð Þ þ d z; T yð Þ
2

;

�

d y; T yð Þ 1þ d z; T zð Þ½ �
1þ d z; yð Þ ;

d y; T zð Þ 1þ d z; T yð Þ½ �
1þ d z; yð Þ

�
: (55)

Then T has a fixed point in X .

4. Existence of solution

In this section, by using the fixed point results proved in the previous section,
we obtain the existence of the solution of integral Eq. (2) and matrix Eq. (1).

4.1 Solution of Fredholm integral equation of second kind

Let ≪ be a partial order relation on IRn. Define T : X ! X by

T z rð Þ ¼
ðc
b
B r; s; z sð Þð Þdsþ g rð Þ, r∈ a; b½ �: (56)

Theorem 4.1 Let X ¼ C b; c½ �; IRnð Þ with the usual spermium norm. Suppose that
1. B : b; c½ � � b; c½ � � IRn ! IRn and g : IRn ! IRn are continuous;
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2. there exists a continuous function p : b; c½ � � b; c½ � ! b; c½ � such that

B r; s; uð Þ � B r; s; vð Þj j≤ p r; sð Þ∣u� v∣, (57)

for each r, s∈ b; c½ � and u, v∈ IRn with u≪ v.
3. supr∈ b;c½ �

Ð c
b p r; sð Þds ¼ q≤ 1

4;
4. there exists z0 ∈X and z1 ∈ T z0 such that z0 ≼ z1;
5. for a sequence znf g⊂X , limn!∞ znf g ¼ z and zn ≼ znþ1 for all n∈ IN, we have
zn ≼ z for all n∈ IN.

Then the integral Eq. (2) has a solution in X .
Proof. Let X ¼ C b; c½ �; IRnð Þ and kzk ¼ maxr∈ b;c½ �∣z rð Þ∣, for z∈C a; b½ �ð Þ. Consider a

partial order defined on X by

y, z∈C b; c½ �; IRnð Þ, y≼ z if and only if y rð Þ≪ z rð Þ, for r∈ b; c½ �: (58)

Then X ; k:k; ≼ð Þ is a complete partial ordered metric space and for any increas-
ing sequence znf g in X converging to z∈X , we have zn rð Þ≪ z rð Þ for any r∈ b; c½ �
(see [36]). By using Eq. (56), conditions (2, 3) and taking ϑ r; sð Þ ¼ 1

2 s� r for all
y, z∈X with y≼ z, we obtain

∣T y rð Þ � T z rð Þ∣ ¼ Ð c
b Bðr; s; y sð ÞÞds� Ð cb Bðr; s; z sð ÞÞds�� ��

≤
Ð c
b ∣B r; s; y sð Þð Þ � B r; s; z sð Þð Þ∣ds

≤
Ð c
b p r; sð Þ∣y sð Þ � z sð Þ∣ds

≤
1
4
ky� zk:

This implies that

1
2
ky� zk � kT y� T zk ≥

1
2
ky� zk � 1

4
ky� zk ¼ 1

4
ky� zk:

So ϑ d T y; T zð Þ; d y; zð Þð Þ≥0 for all y, z∈X with y≼ z. Hence all the conditions of
Theorem 3.18 are satisfied. Therefore T has a fixed point, consequently, integral
Eq. (2) has a solution in X . □

4.2 Solution of non-linear matrix equation

Theorem 4.2 Let γ : H nð Þ ! H nð Þ be an order-preserving mapping which maps
P nð Þ into P nð Þ and Q ∈P nð Þ. Assume that there exists a positive number N for which
∑m

i¼1AiA∗
i ≺NIn and ∑m

i¼1A
∗
i γ Qð ÞAi≻0 such that for all X ≼Y we have

d γ Xð Þ; γ Yð Þð Þ≤ 1
N
m Y;Xð Þe�

2þd X;Yð Þ
2d X;Yð Þ

� �
, (59)

where

m X;Yð Þ ¼ max d X;Yð Þ; dðX; T XÞ; dðY; T YÞ; d Y; T Yð Þ þ d X; T Xð Þ
2

;

�

d Y; T Yð Þ 1þ d X; T Xð Þ½ �
1þ d X;Yð Þ ;

d Y; T Xð Þ 1þ d X; T Yð Þ½ �
1þ d X;Yð Þ

�
:

Then (1) has a solution in P nð Þ.
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Proof. Define T : H nð Þ ! H nð Þ and F : IRþ ! IR by

T Xð Þ ¼ Q þ ∑
m

i¼1
A∗

i γ Xð ÞAi (60)

and F rð Þ ¼ ln r respectively. Then a fixed point of T is a solution of (1). Let
X, Y ∈H nð Þ with X ≼Y, then γ Xð Þ≼ γ yð Þ. So, for d X;Yð Þ.0 and τ tð Þ ¼ 1

t þ 1
2, we

have

d TX;TYð Þ ¼ T Y � T Xk k1
¼ tr T Y � T Xð Þ
¼ ∑

m

i¼1
tr AiA∗

i γ Yð Þ � γ Xð Þð Þ� �

¼ tr ∑
m

i¼1
AiA∗

i

� �
γ Yð Þ � γ Xð Þð Þ

� �

≤ ∑
m

i¼1
AiA∗

i

����
����

����
���� γ Yð Þ � γ Xð Þk k1

≤
∑
m

i¼1
AiA∗

i

����
����

����
����

N
m Y;Xð Þe�

2þ Y�Xk k1
2 Y�Xk k1

� �

,m Y;Xð Þe�
2þ Y�Xk k1
2 Y�Xk k1

� �
,

and so,

ln T Y � T Xk k1
� �

, ln m Y;Xð Þe�
2þ Y�Xk k1
2 Y�Xk k1

� � !
¼ ln m X;Yð Þð Þ � 2þ Y � Xk k1

2 Y � Xk k1
:

This implies that

1
Y � Xk k1

þ 1
2
þ ln T Y � T Xk k1

� �
, ln m X;Yð Þð Þ:

Consequently,

τ d X;Yð Þð Þ þ F d TX;TYð Þð Þ,F m X;Yð Þð Þ:
Also, from ∑m

i¼1A
∗
i γ Qð ÞAi≻0, we have Q ≼ T Qð Þ. Thus, by using Theorem 3.24,

we conclude that T has a fixed point and hence (1) has a solution in P nð Þ. □
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2. there exists a continuous function p : b; c½ � � b; c½ � ! b; c½ � such that

B r; s; uð Þ � B r; s; vð Þj j≤ p r; sð Þ∣u� v∣, (57)

for each r, s∈ b; c½ � and u, v∈ IRn with u≪ v.
3. supr∈ b;c½ �

Ð c
b p r; sð Þds ¼ q≤ 1

4;
4. there exists z0 ∈X and z1 ∈ T z0 such that z0 ≼ z1;
5. for a sequence znf g⊂X , limn!∞ znf g ¼ z and zn ≼ znþ1 for all n∈ IN, we have
zn ≼ z for all n∈ IN.

Then the integral Eq. (2) has a solution in X .
Proof. Let X ¼ C b; c½ �; IRnð Þ and kzk ¼ maxr∈ b;c½ �∣z rð Þ∣, for z∈C a; b½ �ð Þ. Consider a

partial order defined on X by

y, z∈C b; c½ �; IRnð Þ, y≼ z if and only if y rð Þ≪ z rð Þ, for r∈ b; c½ �: (58)

Then X ; k:k; ≼ð Þ is a complete partial ordered metric space and for any increas-
ing sequence znf g in X converging to z∈X , we have zn rð Þ≪ z rð Þ for any r∈ b; c½ �
(see [36]). By using Eq. (56), conditions (2, 3) and taking ϑ r; sð Þ ¼ 1

2 s� r for all
y, z∈X with y≼ z, we obtain

∣T y rð Þ � T z rð Þ∣ ¼ Ð c
b Bðr; s; y sð ÞÞds� Ð cb Bðr; s; z sð ÞÞds�� ��

≤
Ð c
b ∣B r; s; y sð Þð Þ � B r; s; z sð Þð Þ∣ds

≤
Ð c
b p r; sð Þ∣y sð Þ � z sð Þ∣ds

≤
1
4
ky� zk:

This implies that

1
2
ky� zk � kT y� T zk ≥

1
2
ky� zk � 1

4
ky� zk ¼ 1

4
ky� zk:

So ϑ d T y; T zð Þ; d y; zð Þð Þ≥0 for all y, z∈X with y≼ z. Hence all the conditions of
Theorem 3.18 are satisfied. Therefore T has a fixed point, consequently, integral
Eq. (2) has a solution in X . □

4.2 Solution of non-linear matrix equation

Theorem 4.2 Let γ : H nð Þ ! H nð Þ be an order-preserving mapping which maps
P nð Þ into P nð Þ and Q ∈P nð Þ. Assume that there exists a positive number N for which
∑m

i¼1AiA∗
i ≺NIn and ∑m

i¼1A
∗
i γ Qð ÞAi≻0 such that for all X ≼Y we have

d γ Xð Þ; γ Yð Þð Þ≤ 1
N
m Y;Xð Þe�

2þd X;Yð Þ
2d X;Yð Þ

� �
, (59)

where

m X;Yð Þ ¼ max d X;Yð Þ; dðX; T XÞ; dðY; T YÞ; d Y; T Yð Þ þ d X; T Xð Þ
2

;

�

d Y; T Yð Þ 1þ d X; T Xð Þ½ �
1þ d X;Yð Þ ;

d Y; T Xð Þ 1þ d X; T Yð Þ½ �
1þ d X;Yð Þ

�
:

Then (1) has a solution in P nð Þ.
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Proof. Define T : H nð Þ ! H nð Þ and F : IRþ ! IR by

T Xð Þ ¼ Q þ ∑
m

i¼1
A∗

i γ Xð ÞAi (60)

and F rð Þ ¼ ln r respectively. Then a fixed point of T is a solution of (1). Let
X, Y ∈H nð Þ with X ≼Y, then γ Xð Þ≼ γ yð Þ. So, for d X;Yð Þ.0 and τ tð Þ ¼ 1

t þ 1
2, we

have

d TX;TYð Þ ¼ T Y � T Xk k1
¼ tr T Y � T Xð Þ
¼ ∑

m

i¼1
tr AiA∗

i γ Yð Þ � γ Xð Þð Þ� �

¼ tr ∑
m

i¼1
AiA∗

i

� �
γ Yð Þ � γ Xð Þð Þ

� �

≤ ∑
m

i¼1
AiA∗

i

����
����

����
���� γ Yð Þ � γ Xð Þk k1

≤
∑
m

i¼1
AiA∗

i

����
����

����
����

N
m Y;Xð Þe�

2þ Y�Xk k1
2 Y�Xk k1

� �

,m Y;Xð Þe�
2þ Y�Xk k1
2 Y�Xk k1

� �
,

and so,

ln T Y � T Xk k1
� �

, ln m Y;Xð Þe�
2þ Y�Xk k1
2 Y�Xk k1

� � !
¼ ln m X;Yð Þð Þ � 2þ Y � Xk k1

2 Y � Xk k1
:

This implies that

1
Y � Xk k1

þ 1
2
þ ln T Y � T Xk k1

� �
, ln m X;Yð Þð Þ:

Consequently,

τ d X;Yð Þð Þ þ F d TX;TYð Þð Þ,F m X;Yð Þð Þ:
Also, from ∑m

i¼1A
∗
i γ Qð ÞAi≻0, we have Q ≼ T Qð Þ. Thus, by using Theorem 3.24,

we conclude that T has a fixed point and hence (1) has a solution in P nð Þ. □
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Chapter 3

A Probabilistic Interpretation of
Nonlinear Integral Equations
Isamu Dôku

Abstract

We study a probabilistic interpretation of solutions to a class of nonlinear inte-
gral equations. By considering a branching model and defining a star-product, we
construct a tree-based star-product functional as a probabilistic solution of the
integral equation. Although the original integral equation has nothing to do with a
stochastic world, some probabilistic technique enables us not only to relate the
deterministic world with the stochastic one but also to interpret the equation as a
random quantity. By studying mathematical structure of the constructed func-
tional, we prove that the function given by expectation of the functional with
respect to the law of a branching process satisfies the original integral equation.

Keywords: nonlinear integral equation, branching model, tree structure,
star-product, probabilistic solution

AMS classification: Primary 45G10; Secondary 60 J80, 60 J85, 60 J57

1. Introduction

This chapter treats a topic on probabilistic representations of solutions to a
certain class of deterministic nonlinear integral equations. Indeed, this is a short
review article to introduce the star-product functional and a probabilistic construc-
tion of solutions to nonlinear integral equations treated in [1]. The principal parts
for the existence and uniqueness of solutions are taken from [1] with slight modifi-
cation. Since the nonlinear integral equations which we handle are deterministic,
they have nothing to do with random world. Hence, we assume that an integral
formula may hold, which plays an essential role in connecting a deterministic world
with a random one. Once this relationship has been established, we begin with
constructing a branching model and we are able to construct a star-product func-
tional based upon the model. At the end we prove that the function provided by the
expectation of the functional with respect to the law of a branching process in
question solves the original integral equations (see also [2–4]).

More precisely, in this chapter we consider the deterministic nonlinear integral
equation of the type:

eλt xj j2u t; xð Þ ¼ u0 xð Þ þ λ

2

ðt
0
ds eλs xj j2

ð
p s; x; y; uð Þn x; yð Þdy

þ λ

2

ðt
0
eλs xj j2 f s; xð Þds:

(1)
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One of the reasons why we are interested in this kind of integral equations
consists in its importance in applicatory fields, especially in mathematical physics.
For instance, in quantum physics or applied mathematics, a variety of differential
equations have been dealt with by many researchers (e.g., [5, 6]), and in most cases,
their integral forms have been discussed more than their differential forms on a
practical basis. There can be found plenty of integral equations similar to Eq. (1)
appearing in mathematical physics.

The purpose of this article is to provide with a quite general method of giving a
probabilistic interpretation to deterministic equations. Any deterministic represen-
tation of the solutions to Eq. (1) has not been known yet in analysis. The main
contents of the study consist in derivation of the probabilistic representation of the
solutions to Eq. (1). Our mathematical model is a kind of generalization of the
integral equations that were treated in [7], and our kernel appearing in Eq. (1) is
given in a more abstract setting. We are aiming at establishment of new probabilis-
tic representations of the solutions.

This paper is organized as follows: In Section 2 we introduce notations which are
used in what follows. In Section 3 principal results are stated, where we refer the
probabilistic representation of the solutions to a class of deterministic nonlinear
integral equations in question. Section 4 deals with branching model and its treelike
structure. Section 5 treats construction of star-product functional based upon those
tree structures of branching model described in the previous section. The proof of
the main theoremwill be stated in Sections 6 and 7. Section 6 provides with the proof
of existence of the probabilistic solutions to the integral equations. We also consider
∗-product functional, which is a sister functional of the star-product functional. This
newly presented functionals play an essential role in governing the behaviors of star-
product functionals via control inequality. Section 7 deals with the proof of unique-
ness for the constructed solutions, in terms of the martingale theory [8].

We think that it would not be enough to derive simply explicit representations
of probabilistic solutions to the equations, but it is extremely important to make use
of the formulae practically in the problem of computations. We hope that our result
shall be a trigger to further development on the study in this direction.

2. Notations

Let D0 ≔R3 0f g and Rþ ≔ 0;∞½ Þ. For every α, β∈C3, the symbol α � β means the
inner product, and we define ex ≔ x=∣x∣ for every x∈D0. We consider the following
deterministic nonlinear integral equation:

eλt xj j2u t; xð Þ ¼ u0 xð Þ þ λ

2

ðt
0
ds eλs xj j2

ð
p s; x; y; uð Þn x; yð Þdy

þ λ

2

ðt
0
eλs xj j2 f s; xð Þs, for ∀ t; xð Þ∈Rþ �D0:

(2)

Here, u � u t; xð Þ is an unknown function: Rþ �D0 ! C3, λ.0, and
u0 : D0 ! C3 are the initial data such that u t; xð Þjt¼0 ¼ u0 xð Þ. Moreover, f t; xð Þ:
Rþ �D0 ! C3 is a given function satisfying f t; xð Þ= xj j2 ¼: ~f ∈L1 Rþð Þ for each
x∈D0. The integrand p in Eq. (2) is actually given by

p t; x; y; uð Þ ¼ u t; yð Þ � ex u t; x� yð Þ � ex u t; x� yð Þ � exð Þf g: (3)
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Suppose that the integral kernel n x; yð Þ is bounded and measurable with respect
to x� y. On the other hand, we consider a Markov kernel K: D0 ! D0 �D0.
Namely, for every z∈D0, Kz x; yð Þ lies in the space P D0 �D0ð Þ of all probability
measures on a product space D0 �D0. When the kernel k is given by
k x; yð Þ ¼ i xj j�2n x; yð Þ, then we define Kz as a Markov kernel satisfying that for any
positive measurable function h ¼ h x; yð Þ on D0 �D0,

ðð
h x; yð ÞKz x; yð Þ ¼

ð
h x; z� xð Þk x; zð Þdx: (4)

Moreover, we assume that for every measurable functions f , g.0 on Rþ,

ð
h jzjð Þν zð Þ

ð
g jxjð ÞKz x; yð Þ ¼

ð
g jzjð Þν zð Þ

ð
h jyjð ÞKz dx;dyð Þ (5)

holds, where the measure ν is given by ν dzð Þ ¼ zj j�3dz.
The equality (Eq. (4)) is not only a simple integral transform formula. In fact, in

the analytical point of view, it merely says that the double integral with respect to
Kz is changed into a single integral with respect to x just after the execution of
iterative integration of h x; yð Þ with respect to the second parameter y. However, our
point here consists in establishing a great bridge between a deterministic world and
a stochastic world. The validity of the assumed equality (Eq. (5)) means that a sort
of symmetry in a wide sense may be posed on our kernel K.

3. Main results

In this section we shall introduce our main results, which assert the existence
and uniqueness of solutions to the nonlinear integral equation. That is to say, we
derive a probabilistic representation of the solutions to Eq. (2) by employing the
star-product functional. As a matter of fact, the solution u t; xð Þ can be expressed as
the expectation of a star-product functional, which is nothing but a probabilistic
solution constructed by making use of the below-mentioned branching particle
systems and branching models. Let

M u0;fh i
⋆ ωð Þ ¼

Y
⋆ x ~m½ �Ξm1

m2:m3
u0; f½ � ωð Þ, (6)

be a probabilistic representation in terms of tree-based star-product functional
with weight u0; fð Þ (see Section 5 for the details of the definition). On the other
hand, M U;Fh i

∗ ωð Þ denotes the associated ∗-product functional with weight U;Fð Þ,
which is indexed by the nodes xmð Þ of a binary tree. Here, we suppose that
U ¼ U xð Þ (resp. F ¼ F t; xð Þ) is a nonnegative measurable function on D0 (resp.
Rþ �D0), respectively, and also that F �; xð Þ∈L1 Rþð Þ for each x. Indeed, in con-
struction of the ∗-product functional, the product in question is taken as ordinary
multiplication ∗ instead of the star-product ★ in the definition of star-product
functional.

Theorem 1. Suppose that ∣u0 xð Þ∣⩽U xð Þ for every x and ∣ ~f t; xð Þ∣⩽F t; xð Þ for every
t, x and also that for some T.0 (T. . 1, sufficiently large)

ET,x M U;Fh i
∗ ωð Þ� �

<∞, a:e:� x (7)
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holds. Then, there exists a u0; fð Þ-weighted tree-based star ★-product functional

M u0;fh i
★ ωð Þ, indexed by a set of node labels accordingly to the tree structure which a

binary critical branching process ZKx tð Þ determines. Furthermore, the function

u t; xð Þ ¼ Et,x M u0;fh i
★ ωð Þ

h i
(8)

gives a unique solution to the integral equation (Eq. (2)). Here, Et,x denotes the
expectation with respect to a probability measure Pt,x as the time-reversed law of ZKx tð Þ.

4. Branching model and its associated treelike structure

In this section we consider a continuous time binary critical branching process
ZKx tð Þ on D0 [9], whose branching rate is given by a parameter λ xj j2, whose
branching mechanism is binary with equiprobability, and whose descendant
branching particle behavior is determined by the kernel Kx (cf. [10]). Next, taking
notice of the tree structure which the process ZKx tð Þ determines, we denote the
space of marked trees

ω ¼ t; tmð Þ; xmð Þ; ηmð Þ;m∈Vð Þ (9)

by Ω (see [11]). We also consider the time-reversed law of ZKx tð Þ being a
probability measure on Ω as Pt,x ∈P Ωð Þ. Here, t denotes the birth time of common
ancestor, and the particle xm dies when ηm ¼ 0, while it generates two descendants
xm1, xm2 when ηm ¼ 1. On the other hand,

V ¼ ⋃
ℓ≥0

1; 2f gℓ

is a set of all labels, namely, finite sequences of symbols with length ℓ, which
describe the whole tree structure given [12]. For ω∈Ω we denote by N ωð Þ the
totality of nodes being the branching points of tree; let Nþ ωð Þ be the set of all nodes
m being a member of V \ N ωð Þ, whose direct predecessor lies in N ωð Þ and which
satisfies the condition tm ωð Þ.0, and let N� ωð Þ be the same set as described above
but satisfying tm ωð Þ⩽0. Finally, we put

N ωð Þ ¼ Nþ ωð Þ∪N� ωð Þ: (10)

5. Star-product functional

This section treats a tree-based star-product functional. First of all, we denote by
the symbol Projz �ð Þ a projection of the objective element onto its orthogonal part of
the z component in C3, and we define a ★-product of β, γ for z∈D0 as

β★ z½ �γ ¼ �i β � ezð ÞProjz γð Þ: (11)

Notice that this product ★ is noncommutative. This property will be the key
point in defining the star-product functional below, especially as far as the unique-
ness of functional is concerned. We shall define Θm ωð Þ for each ω∈Ω realized as
follows. When m∈Nþ ωð Þ, then Θm ωð Þ ¼ ~f tm ωð Þ; xm ωð Þð Þ, while
Θm ωð Þ ¼ u0 xm ωð Þð Þ if m∈N� ωð Þ. Then, we define
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Ξm1
m2:m3

ωð Þ � Ξm1
m2,m3

u0; f½ � ωð Þ≔Θm2 ωð Þ★ xm1½ �Θm3 ωð Þ, (12)

whereas for the product order in the star-product ★, when we write m≺m0

lexicographically with respect to the natural order ≺, the term Θm labeled by m
necessarily occupies the left-hand side, and the other Θm0

labeled by m0 occupies the
right-hand side by all means. And besides, as abuse of notation, we write

Ξ∅
m,∅ ωð Þ � Ξ∅

m,∅ u0; f½ � ωð Þ≔Θm ωð Þ, (13)

especially when m∈V is a label of single terminal point in the restricted tree
structure in question.

Under these circumstances, we consider a random quantity which is obtained by
executing the star-product ★ inductively at each node in N ωð Þ, we call it a tree-
based ★-product functional, and we express it symbolically as

M★ u0;fh i ωð Þ ¼ Π★ x ~m½ �Ξm1
m2�m3

u0; f½ � ωð Þ, (14)

where m1 ∈N ωð Þ and m2, m3 ∈N ωð Þ, and by the symbol
Q★ (as a product

relative to the star-product), we mean that the star-products ★’s should be
succeedingly executed in a lexicographical manner with respect to x ~m such that
~m ∈N ωð Þ∩ j ~mj ¼ ℓ� 1gf when ∣m1∣ ¼ ℓ. At any rate it is of the extreme importance
that once a branching pattern ω ∈Ωð Þ is realized, its tree structure is uniquely
determined, and there can be found the unique explicit representation of the

corresponding star-product functional M u0;fh i
★ ωð Þ.

Example 2. Let us consider a typical realization ω∈Ω. Suppose that we have
N ω2ð Þ ¼ ϕ; 1; 2; 11; 12; 22f g, Nþ ω2ð Þ ¼ 21; 112; 221f g, and
N� ω2ð Þ ¼ 111; 121; 122; 222f g. This case is nothing but an all-the-members partici-
pating type of game. For the case of particle located at x111 and x112 (with nodes of
the level ∣m∣ ¼ ℓ ¼ 3) with its pivoting node x11, we have

Ξ11
111;112 ω2ð Þ ¼ Θ111 ω2ð Þ★ x11½ �Θ112 ω2ð Þ

¼ u0 x111 ω2ð Þð Þ★ x11½ �~f t112 ω2ð Þ; x112 ω2ð Þð Þ:
Similarly, for the pair of particles x121 and x122, we have

Ξ12
121;122 ω2ð Þ ¼ Θ121 ω2ð Þ★ x12½ �Θ122 ω2ð Þ

¼ u0 x121 ω2ð Þð Þ★ x12½ �u0 x122 ω2ð Þð Þ:
For the pair of particles x221 and x222, we also have

Ξ22
221;222 ω2ð Þ ¼ Θ221 ω2ð Þ★ x22½ �Θ222 ω2ð Þ

¼ ~f t221 ω2ð Þ; x221 ω2ð Þð Þ★ x22½ �u0 x222 ω2ð Þð Þ:
Next, when we take a look at the groups of particles with nodes of the level

∣m∣ ¼ ℓ ¼ 2. For instance, as to a pair of particles located at x11 and x12 with its
pivoting node x1, we get an expression

Ξ1
11,12 ω2ð Þ ¼ Θ11 ω2ð Þ★ x1½ �Θ12 ω2ð Þ

¼ Ξ11
111;112 ω2ð Þ★ x1½ �Ξ12

121;122 ω2ð Þ

¼ u0 x111ð Þ★ x11½ � ~f ðt112; x112Þ
� �

★ x1½ � u0 x121ð Þ★ x12½ �u0 x122ð Þ� �
:
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holds. Then, there exists a u0; fð Þ-weighted tree-based star ★-product functional

M u0;fh i
★ ωð Þ, indexed by a set of node labels accordingly to the tree structure which a

binary critical branching process ZKx tð Þ determines. Furthermore, the function

u t; xð Þ ¼ Et,x M u0;fh i
★ ωð Þ

h i
(8)

gives a unique solution to the integral equation (Eq. (2)). Here, Et,x denotes the
expectation with respect to a probability measure Pt,x as the time-reversed law of ZKx tð Þ.

4. Branching model and its associated treelike structure

In this section we consider a continuous time binary critical branching process
ZKx tð Þ on D0 [9], whose branching rate is given by a parameter λ xj j2, whose
branching mechanism is binary with equiprobability, and whose descendant
branching particle behavior is determined by the kernel Kx (cf. [10]). Next, taking
notice of the tree structure which the process ZKx tð Þ determines, we denote the
space of marked trees

ω ¼ t; tmð Þ; xmð Þ; ηmð Þ;m∈Vð Þ (9)

by Ω (see [11]). We also consider the time-reversed law of ZKx tð Þ being a
probability measure on Ω as Pt,x ∈P Ωð Þ. Here, t denotes the birth time of common
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xm1, xm2 when ηm ¼ 1. On the other hand,

V ¼ ⋃
ℓ≥0

1; 2f gℓ

is a set of all labels, namely, finite sequences of symbols with length ℓ, which
describe the whole tree structure given [12]. For ω∈Ω we denote by N ωð Þ the
totality of nodes being the branching points of tree; let Nþ ωð Þ be the set of all nodes
m being a member of V \ N ωð Þ, whose direct predecessor lies in N ωð Þ and which
satisfies the condition tm ωð Þ.0, and let N� ωð Þ be the same set as described above
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N ωð Þ ¼ Nþ ωð Þ∪N� ωð Þ: (10)

5. Star-product functional

This section treats a tree-based star-product functional. First of all, we denote by
the symbol Projz �ð Þ a projection of the objective element onto its orthogonal part of
the z component in C3, and we define a ★-product of β, γ for z∈D0 as

β★ z½ �γ ¼ �i β � ezð ÞProjz γð Þ: (11)

Notice that this product ★ is noncommutative. This property will be the key
point in defining the star-product functional below, especially as far as the unique-
ness of functional is concerned. We shall define Θm ωð Þ for each ω∈Ω realized as
follows. When m∈Nþ ωð Þ, then Θm ωð Þ ¼ ~f tm ωð Þ; xm ωð Þð Þ, while
Θm ωð Þ ¼ u0 xm ωð Þð Þ if m∈N� ωð Þ. Then, we define
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whereas for the product order in the star-product ★, when we write m≺m0

lexicographically with respect to the natural order ≺, the term Θm labeled by m
necessarily occupies the left-hand side, and the other Θm0

labeled by m0 occupies the
right-hand side by all means. And besides, as abuse of notation, we write
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m,∅ u0; f½ � ωð Þ≔Θm ωð Þ, (13)

especially when m∈V is a label of single terminal point in the restricted tree
structure in question.

Under these circumstances, we consider a random quantity which is obtained by
executing the star-product ★ inductively at each node in N ωð Þ, we call it a tree-
based ★-product functional, and we express it symbolically as

M★ u0;fh i ωð Þ ¼ Π★ x ~m½ �Ξm1
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u0; f½ � ωð Þ, (14)

where m1 ∈N ωð Þ and m2, m3 ∈N ωð Þ, and by the symbol
Q★ (as a product

relative to the star-product), we mean that the star-products ★’s should be
succeedingly executed in a lexicographical manner with respect to x ~m such that
~m ∈N ωð Þ∩ j ~mj ¼ ℓ� 1gf when ∣m1∣ ¼ ℓ. At any rate it is of the extreme importance
that once a branching pattern ω ∈Ωð Þ is realized, its tree structure is uniquely
determined, and there can be found the unique explicit representation of the

corresponding star-product functional M u0;fh i
★ ωð Þ.

Example 2. Let us consider a typical realization ω∈Ω. Suppose that we have
N ω2ð Þ ¼ ϕ; 1; 2; 11; 12; 22f g, Nþ ω2ð Þ ¼ 21; 112; 221f g, and
N� ω2ð Þ ¼ 111; 121; 122; 222f g. This case is nothing but an all-the-members partici-
pating type of game. For the case of particle located at x111 and x112 (with nodes of
the level ∣m∣ ¼ ℓ ¼ 3) with its pivoting node x11, we have

Ξ11
111;112 ω2ð Þ ¼ Θ111 ω2ð Þ★ x11½ �Θ112 ω2ð Þ

¼ u0 x111 ω2ð Þð Þ★ x11½ �~f t112 ω2ð Þ; x112 ω2ð Þð Þ:
Similarly, for the pair of particles x121 and x122, we have

Ξ12
121;122 ω2ð Þ ¼ Θ121 ω2ð Þ★ x12½ �Θ122 ω2ð Þ

¼ u0 x121 ω2ð Þð Þ★ x12½ �u0 x122 ω2ð Þð Þ:
For the pair of particles x221 and x222, we also have

Ξ22
221;222 ω2ð Þ ¼ Θ221 ω2ð Þ★ x22½ �Θ222 ω2ð Þ

¼ ~f t221 ω2ð Þ; x221 ω2ð Þð Þ★ x22½ �u0 x222 ω2ð Þð Þ:
Next, when we take a look at the groups of particles with nodes of the level

∣m∣ ¼ ℓ ¼ 2. For instance, as to a pair of particles located at x11 and x12 with its
pivoting node x1, we get an expression

Ξ1
11,12 ω2ð Þ ¼ Θ11 ω2ð Þ★ x1½ �Θ12 ω2ð Þ

¼ Ξ11
111;112 ω2ð Þ★ x1½ �Ξ12
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Therefore, it follows by a similar argument that the explicit representation of
star-product functional for ω2 is given by

M u0;fh i
★ ω2ð Þ ¼ u0 x111ð Þ★ x11½ � ~f ðt112; x112Þ

� �
★ x1½ � u0 x121ð Þ★ x12½ �u0 x122ð Þ� �n o

★ xϕ½ � ~f t21; x21ð Þ★ x2½ � u0 x221ð Þ★ x22½ �u0 x222ð Þ� �n o

6. The ∗-product functional and existence

In this section we first begin with constructing a U;Fð Þ-weighted tree-based
∗-product functional M U;Fh i

∗ ωð Þ, which is indexed by the nodes xmð Þ of a binary tree.
Recall that U ¼ U xð Þ (resp. F ¼ F t; xð Þ) is a nonnegative measurable function on D0

(resp. Rþ �D0), respectively, and also that F �; xð Þ∈L1 Rþð Þ for each x. Moreover, in
construction of the functional, the product is taken as ordinary multiplication ∗

instead of the star-product ★.
In what follows we shall give an outline of the existence in Theorem 1. We need

the following lemma, which is essentially important for the proof.
Lemma 3. For 0⩽ t⩽T and x∈D0, the function V t; xð Þ ¼ Et,x M U;Fh i

∗ ωð Þ� �
satisfies

eλt xj j2V t; xð Þ ¼ U xð Þ þ Ð t0 ds
xj j2
2

eλs xj j2 F s; xð Þ þ
ð
V s; yð ÞVðs; zÞKxðdy; zÞ

�
:

�
(15)

Proof of Lemma 3. By making use of the conditional expectation, we may
decompose V t; xð Þ as follows:

V t; xð Þ ¼ Et,x MU,F
∗ ωð Þ� �

¼ Et,x M U;Fh i
∗ ωð Þ; tϕ ⩽0

� �þ Et,x M U;Fh i
∗ ωð Þ; tϕ .0

� �

¼ Et,x MU,F
∗ ωð Þ; tϕ ⩽0

� �þ Et,x M U;Fh i
∗ ωð Þ; tϕ .0; ηϕ ¼ 0

� �

þ Et,x M U;Fh i
∗ ωð Þ; tϕ .0; ηϕ ¼ 1

� �
:

(16)

We are next going to take into consideration an equivalence between the events
tϕ ⩽0 and T∉ 0; t½ �. Indeed, as to the first term in the third line of Eq. (16), since the
condition tϕ ⩽0 implies that T never lies in an interval 0; t½ �, and since
m ¼ ϕ∈N� ωð Þ leads to a nonrandom expression

M∗ ¼ Θϕ ¼ U xð Þ,
the tree-based ∗-product functional is allowed to possess a simple representation:

Et,x M U;Fh i
∗ ; tϕ ⩽0

� � ¼ Et,x M U;Fh i
∗ � 1 tϕ ⩽ ⩽0f g

h i
¼ U xð Þ � Pt,x tϕ ⩽0

� �

¼ U xð Þ � P T∉ 0; t½ �ð Þ ¼ U xð Þ � P T ∈ t;∞ð Þð Þ

¼ U xð Þ
ð∞
t
f T sð Þds ¼ U xð Þ

ð∞
t
λ xj j2e�λs xj j2ds

¼ U xð Þ � exp �λt xj j2
n o

:

(17)

As to the third term, we need to note the following matters. A particle generates
two offsprings or descendants x1, x2 with probability 1

2 under the condition ηϕ ¼ 1;
since tϕ .0, when the branching occurs at tϕ ¼ s, then, under the conditioning
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operation at tϕ, the Markov property [13] guarantees that the lower tree structure
below the first-generation branching node point x1 is independent to that below the
location x2 with realized ω∈Ω; hence, a tree-based ∗-product functional branched
after time s is also probabilistically independent of the other tree-based ∗-product
functional branched after time s, and besides the distributions of x1 and x2 are
totally controlled by the Markov kernel Kx. Therefore, an easy computation pro-
vides with an impressive expression:

Et,x M U;Fh i
∗ ; tϕ .0; ηϕ ¼ 1

� � ¼ 1
2

ðt
0
dsλ xj j2e�λ xj j2 t�sð Þ�

� ÐÐ Es,x1 M∗½ � � Es,x2 M∗½ �Kx dx1;dx2ð Þ:
Note that as for the second term, it goes almost similarly as the computation of

the above-mentioned third one. Finally, summing up we obtain

V t; xð Þ ¼ Et,x M U;Fh i
∗ ωð Þ� �

¼ U xð Þr�λt xj j2 þ Ð t0
λ xj j2
2

e�λ xj j2 t�sð ÞF s; xð Þd s

þ Ð t0
λ xj j2
2

e�λ xj j2 t�sð Þ
ðð

V s; yð ÞV s; zð ÞKx dy; dzð Þds:

(18)

On this account, if we multiply both sides of Eq. (18) by exp λt xj j2
n o

, then the

required expression Eq. (15) in Lemma 3 can be derived, which completes the
proof. □

By a glance at the expression Eq. (15) obtained in Lemma 3, it is quite obvious
that, for each x∈D0, the mapping 0;T½ �∍t↦eλ xj j2tV t; xð Þ∈Rþ is a nondecreasing
function. Taking the above fact into consideration, we can deduce with ease that

Et,x M U;Fh i
∗ ωð Þ� �

<∞ (19)

holds for ∀t∈ 0;T½ � and x∈Ec, where the measurable set Ec denotes the totality
of all the elements x in D0 such that ET,x M U;Fh i

∗
� �

<∞ holds for a.e.‐x, namely, it is
the same condition Eq. (7) appearing in the assertion of Theorem 1. Another
important aspect for the proof consists in establishment of the M∗-control
inequality, which is a basic property of the star-product ★. That is to say, we have.

Lemma 4. (M∗-control inequality) The following inequality

∣M u0;fh i
★ ωð Þ∣⩽M U;Fh i

∗ ωð Þ: (20)

holds Pt,x-a.s.
This inequality enables us to govern the behavior of the star-product functional

with a very complicated structure by that of the ∗-product functional with a rather
simplified structure. In fact, the M∗-control inequality yields immediately from a
simple fact:

∣w★ x½ �v∣⩽ ∣w∣ � ∣v∣ for every w, v∈C3 and every x∈D0:

Next, we are going to derive the space of solutions to Eq. (2). If we define

u t; xð Þ≔ Et,x M u0;fh i
⋆ ωð Þ

h i
, on Ec,

0, otherwise,

(
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Therefore, it follows by a similar argument that the explicit representation of
star-product functional for ω2 is given by

M u0;fh i
★ ω2ð Þ ¼ u0 x111ð Þ★ x11½ � ~f ðt112; x112Þ

� �
★ x1½ � u0 x121ð Þ★ x12½ �u0 x122ð Þ� �n o

★ xϕ½ � ~f t21; x21ð Þ★ x2½ � u0 x221ð Þ★ x22½ �u0 x222ð Þ� �n o

6. The ∗-product functional and existence

In this section we first begin with constructing a U;Fð Þ-weighted tree-based
∗-product functional M U;Fh i

∗ ωð Þ, which is indexed by the nodes xmð Þ of a binary tree.
Recall that U ¼ U xð Þ (resp. F ¼ F t; xð Þ) is a nonnegative measurable function on D0

(resp. Rþ �D0), respectively, and also that F �; xð Þ∈L1 Rþð Þ for each x. Moreover, in
construction of the functional, the product is taken as ordinary multiplication ∗

instead of the star-product ★.
In what follows we shall give an outline of the existence in Theorem 1. We need

the following lemma, which is essentially important for the proof.
Lemma 3. For 0⩽ t⩽T and x∈D0, the function V t; xð Þ ¼ Et,x M U;Fh i

∗ ωð Þ� �
satisfies

eλt xj j2V t; xð Þ ¼ U xð Þ þ Ð t0 ds
xj j2
2

eλs xj j2 F s; xð Þ þ
ð
V s; yð ÞVðs; zÞKxðdy; zÞ

�
:

�
(15)

Proof of Lemma 3. By making use of the conditional expectation, we may
decompose V t; xð Þ as follows:

V t; xð Þ ¼ Et,x MU,F
∗ ωð Þ� �

¼ Et,x M U;Fh i
∗ ωð Þ; tϕ ⩽0

� �þ Et,x M U;Fh i
∗ ωð Þ; tϕ .0

� �

¼ Et,x MU,F
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� �þ Et,x M U;Fh i
∗ ωð Þ; tϕ .0; ηϕ ¼ 0

� �

þ Et,x M U;Fh i
∗ ωð Þ; tϕ .0; ηϕ ¼ 1

� �
:

(16)

We are next going to take into consideration an equivalence between the events
tϕ ⩽0 and T∉ 0; t½ �. Indeed, as to the first term in the third line of Eq. (16), since the
condition tϕ ⩽0 implies that T never lies in an interval 0; t½ �, and since
m ¼ ϕ∈N� ωð Þ leads to a nonrandom expression

M∗ ¼ Θϕ ¼ U xð Þ,
the tree-based ∗-product functional is allowed to possess a simple representation:

Et,x M U;Fh i
∗ ; tϕ ⩽0

� � ¼ Et,x M U;Fh i
∗ � 1 tϕ ⩽ ⩽0f g

h i
¼ U xð Þ � Pt,x tϕ ⩽0

� �

¼ U xð Þ � P T∉ 0; t½ �ð Þ ¼ U xð Þ � P T ∈ t;∞ð Þð Þ

¼ U xð Þ
ð∞
t
f T sð Þds ¼ U xð Þ

ð∞
t
λ xj j2e�λs xj j2ds

¼ U xð Þ � exp �λt xj j2
n o

:

(17)

As to the third term, we need to note the following matters. A particle generates
two offsprings or descendants x1, x2 with probability 1

2 under the condition ηϕ ¼ 1;
since tϕ .0, when the branching occurs at tϕ ¼ s, then, under the conditioning
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operation at tϕ, the Markov property [13] guarantees that the lower tree structure
below the first-generation branching node point x1 is independent to that below the
location x2 with realized ω∈Ω; hence, a tree-based ∗-product functional branched
after time s is also probabilistically independent of the other tree-based ∗-product
functional branched after time s, and besides the distributions of x1 and x2 are
totally controlled by the Markov kernel Kx. Therefore, an easy computation pro-
vides with an impressive expression:

Et,x M U;Fh i
∗ ; tϕ .0; ηϕ ¼ 1

� � ¼ 1
2

ðt
0
dsλ xj j2e�λ xj j2 t�sð Þ�

� ÐÐ Es,x1 M∗½ � � Es,x2 M∗½ �Kx dx1;dx2ð Þ:
Note that as for the second term, it goes almost similarly as the computation of

the above-mentioned third one. Finally, summing up we obtain

V t; xð Þ ¼ Et,x M U;Fh i
∗ ωð Þ� �

¼ U xð Þr�λt xj j2 þ Ð t0
λ xj j2
2

e�λ xj j2 t�sð ÞF s; xð Þd s

þ Ð t0
λ xj j2
2

e�λ xj j2 t�sð Þ
ðð

V s; yð ÞV s; zð ÞKx dy; dzð Þds:

(18)

On this account, if we multiply both sides of Eq. (18) by exp λt xj j2
n o

, then the

required expression Eq. (15) in Lemma 3 can be derived, which completes the
proof. □

By a glance at the expression Eq. (15) obtained in Lemma 3, it is quite obvious
that, for each x∈D0, the mapping 0;T½ �∍t↦eλ xj j2tV t; xð Þ∈Rþ is a nondecreasing
function. Taking the above fact into consideration, we can deduce with ease that

Et,x M U;Fh i
∗ ωð Þ� �

<∞ (19)

holds for ∀t∈ 0;T½ � and x∈Ec, where the measurable set Ec denotes the totality
of all the elements x in D0 such that ET,x M U;Fh i

∗
� �

<∞ holds for a.e.‐x, namely, it is
the same condition Eq. (7) appearing in the assertion of Theorem 1. Another
important aspect for the proof consists in establishment of the M∗-control
inequality, which is a basic property of the star-product ★. That is to say, we have.

Lemma 4. (M∗-control inequality) The following inequality

∣M u0;fh i
★ ωð Þ∣⩽M U;Fh i

∗ ωð Þ: (20)

holds Pt,x-a.s.
This inequality enables us to govern the behavior of the star-product functional

with a very complicated structure by that of the ∗-product functional with a rather
simplified structure. In fact, the M∗-control inequality yields immediately from a
simple fact:

∣w★ x½ �v∣⩽ ∣w∣ � ∣v∣ for every w, v∈C3 and every x∈D0:

Next, we are going to derive the space of solutions to Eq. (2). If we define

u t; xð Þ≔ Et,x M u0;fh i
⋆ ωð Þ

h i
, on Ec,

0, otherwise,

(
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then u t; xð Þ is well defined on the whole space D0 under the assumptions of the
main theorem (Theorem 1). Moreover, it follows from the M∗-control inequality
(Eq. (20)) that

∣u t; xð Þ∣⩽V t; xð Þ on 0;T½ � �D0: (21)

On this account, from Eq. (15) in Lemma 3, by finiteness of the expectation of
tree-based ∗-product functional M U;Fh i

∗ ωð Þ, by the M∗-control inequality, and from
Eq. (21), it is easy to see that

ðT
0
ds
ð
∣u s; yð Þ∣ � ∣u s; zð Þ∣Kx dy;dzð Þ <∞ for x∈Ec: (22)

Hence, taking Eq. (22) into consideration, we define the space D of solutions to
Eq. (2) as follows:

D≔
�
φ : Rþ �D0 ! C3; φ is continuous in t

and measurable such thatÐ∞
0 ds

Ð
eλ xj j2s∣φ s; yð Þ∣ � ∣ s; zð Þ∣Kx dy;dzð Þ <∞

holdsa:e:� x
�

(23)

By employing the Markov property [13] with respect to time tϕ and by a similar
technique as in the proof of Lemma 3, we may proceed in rewriting and calculating
the expectation for ∀t.0 and x∈Ec:

u t; xð Þ ¼ Et,x M u0;fh i
★ ωð Þ

h i

¼ Et,x M u0;fh i
★ ωð Þ; tϕ ⩽0

h i
þ Et,x M u0;fh i

★ ωð Þ tϕ .0
h i

¼ Et,x M u0;fh i
★ ωð Þ; tϕ ⩽0

h i
þ Et,x M u0;fh i

★ ωð Þ tϕ .0; ηϕ ¼ 0
h i

þ Et,x M u0;fh i
★ ωð Þ tϕ .0 ηϕ ¼ 1

h i

¼ e�t xj j2u0 xð Þ þ Ð t0 s xj j2e� t�sð Þ xj j2

� 1
2

~f s; xð Þ þ
ðð

Es,x1 M★½ �★ x½ �Es,x2 M★½ �Kxðdx1;dx2Þ
� �

:

(24)

Furthermore, we may apply the integral equality Eq. (4) in the assumption on
the Markov kernel for Eq. (24) to obtain

Et,x M u0;fh i
★ ωð Þ

h i
¼ e�λt xj j2u0 xð Þ þ

ðt
0
dsλ xj j2e�λ t�sð Þ xj j2

� 1
2

~f s; xð Þ þ
ðð

Es,x1 M★½ �★ x½ �Es,x2 M★½ �Kxðdx1;dx2Þ
� �

¼ e�λt xj j2u0 xð Þ þ
ðt
0
ds λ xj j2e�λ t�sð Þ xj j2

� 1
2

~f s; xð Þ þ
ðð

uðs; yÞ★ x½ �uðs; zÞKxðdy;dzÞ
� �

¼ e�λt xj j2 u0 xð Þ þ λ
2

ðt
0
eλs xj j2 f ðs; xÞds þ λ

2

ðt
0
ds
ð
eλs xj j2p s; x; y; uð Þnðx; yÞdy

�
,

�

(25)
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because in the above last equality we need to rewrite its double integral
relative to the space parameters into a single integral. Finally, we attain that

u t; xð Þ ¼ Et,x M u0;fh i
★ ωð Þ

h i
satisfies the integral equation Eq. (2), and this u t; xð Þ is a

solution lying in the space D. This completes the proof of the existence.

7. Uniqueness

First of all, note that we can choose a proper measurable subset F0 ⊂D0 with
m Fc

0

� � ¼ m D0 \ F0ð Þ ¼ 0 (meaning that its complement Fc
0 is a null set with respect

to Lebesgue measure m xð Þ), such that

Et,x M U;Fh i
∗ ωð Þ� �

<∞ on F0 (26)

and

ðT
0
d s
ðð

eλ xj j2s∣u s; yð Þ∣ � ∣u s; zð Þ∣Kx dy;dzð Þ, for ∀T.0,

is convergent for a.e.-x ∈ F0ð Þ, and u t; xð Þ satisfies the nonlinear integral equa-
tion (Eq. (2)) for a.e.‐x∈ F0. Suggested by the argument in [7], we adopt here a
martingale method in order to prove the uniqueness of the solutions to Eq. (2). The
leading philosophy for the proof of uniqueness consists in extraction of the martin-
gale part from the realized tree structure and in representation of the solution u in
terms of martingale language. In so doing, we need to construct a martingale term
from the given functional and to settle down the required σ-algebra with respect to
which its constructed term may become a martingale. Let Ωþ be the set of all the
elements ω's corresponding to time tm ωð Þ.0 for the label m. Next, we consider a
kind of the notion like n-section of the set of labels for n∈N0 ≔N∪ 0f g. We define
several families of Ω in what follows, in order to facilitate the extraction of its

martingale part from our star-product functional M u0;fh i
★ ωð Þ. For each realized tree

ω, ~N n ωð Þ is the totality of the labels

m∈ ⋃
0⩽ℓ⩽ n

1; 2f gℓ

satisfying tm ωð Þ.0 and ηm ωð Þ ¼ 1. Namely, this family ~N n ωð Þ is a subset of
labels restricted up to the nth generation and limited to the nodes related to
branching at positive time. Moreover, let ~Nn ωð Þ be the set of labels lying in
N \ ~N n ωð Þ whose direct predecessor belongs to ~N n ωð Þ. By convention, we define
~Nn ωð Þ ¼ ∅f g if ~N n ωð Þ ¼ ∅. We shall introduce a new family ~N

cut
n ωð Þ of cutoff

labels, which is determined by the set of labels m∈V whose direct predecessor
belongs to ~N n ωð Þ and has length ∣m∣ ¼ n, and we call this family ~N

cut
n ωð Þ the cutoff

part of ~Nn ωð Þ, while �Nnnct ωð Þ is the non-cutoff part of ~Nn ωð Þ, which is defined by

�Nnnct ωð Þ≔ ~Nn ωð Þ \  ~Ncut
n ωð Þ: (27)

We are now in a position to introduce a new class Mn, u0;f ;uh i
★ ωð Þ of ★-product

functional, which should be called the n-section of the star-product functional. In
fact, by taking the above argument in Example 2 into account, we can define its
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�
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0 ds

Ð
eλ xj j2s∣φ s; yð Þ∣ � ∣ s; zð Þ∣Kx dy;dzð Þ <∞

holdsa:e:� x
�

(23)
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because in the above last equality we need to rewrite its double integral
relative to the space parameters into a single integral. Finally, we attain that
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satisfies the integral equation Eq. (2), and this u t; xð Þ is a

solution lying in the space D. This completes the proof of the existence.
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tion (Eq. (2)) for a.e.‐x∈ F0. Suggested by the argument in [7], we adopt here a
martingale method in order to prove the uniqueness of the solutions to Eq. (2). The
leading philosophy for the proof of uniqueness consists in extraction of the martin-
gale part from the realized tree structure and in representation of the solution u in
terms of martingale language. In so doing, we need to construct a martingale term
from the given functional and to settle down the required σ-algebra with respect to
which its constructed term may become a martingale. Let Ωþ be the set of all the
elements ω's corresponding to time tm ωð Þ.0 for the label m. Next, we consider a
kind of the notion like n-section of the set of labels for n∈N0 ≔N∪ 0f g. We define
several families of Ω in what follows, in order to facilitate the extraction of its

martingale part from our star-product functional M u0;fh i
★ ωð Þ. For each realized tree

ω, ~N n ωð Þ is the totality of the labels
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0⩽ℓ⩽ n

1; 2f gℓ

satisfying tm ωð Þ.0 and ηm ωð Þ ¼ 1. Namely, this family ~N n ωð Þ is a subset of
labels restricted up to the nth generation and limited to the nodes related to
branching at positive time. Moreover, let ~Nn ωð Þ be the set of labels lying in
N \ ~N n ωð Þ whose direct predecessor belongs to ~N n ωð Þ. By convention, we define
~Nn ωð Þ ¼ ∅f g if ~N n ωð Þ ¼ ∅. We shall introduce a new family ~N

cut
n ωð Þ of cutoff

labels, which is determined by the set of labels m∈V whose direct predecessor
belongs to ~N n ωð Þ and has length ∣m∣ ¼ n, and we call this family ~N

cut
n ωð Þ the cutoff

part of ~Nn ωð Þ, while �Nnnct ωð Þ is the non-cutoff part of ~Nn ωð Þ, which is defined by

�Nnnct ωð Þ≔ ~Nn ωð Þ \  ~Ncut
n ωð Þ: (27)

We are now in a position to introduce a new class Mn, u0;f ;uh i
★ ωð Þ of ★-product

functional, which should be called the n-section of the star-product functional. In
fact, by taking the above argument in Example 2 into account, we can define its
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n-section as follows. In fact, if the label m is a member of the cutoff family ~N
cut
n ωð Þ,

the input data of the functional attached tom is given by u tp mð Þ ωð Þ; xm ωð Þ� �
instead of

the usual initial data u0 xm ωð Þð Þ or ~f tm ωð Þ; xm ωð Þð Þ, where p mð Þ indicates the direct
ancestorm0 ofm having length n. On the other hand, ifm lies in the non-cutoff family
�Nnnct ωð Þ, then the input data of the functional attached to m is completely the same
as before with no change, that is, we use u0 xmð Þ if tm ⩽0 and use ~f tm; xmð Þ if tm .0.

In such a way, we can construct a new★-product functionalMn, u0;f ;uh i
★ ωð Þ by the

almost sure procedure, and we call it the n-section★-product functional. Similarly,
we can also define the corresponding n-section★-product functionalMn, U;F;Vh i

∗ ωð Þ.
Simply enough, to get the ∗-product counterpart, we have only to replace those
functions u0,~f and u by U, F and V in the definition of★-product functional. As
easily imagined, we can also derive an n-section version ofMn

∗-control inequality:
Lemma 5. (Mn

∗-control inequality) The following inequality

∣Mn, u0;f ;uh i
★ ωð Þ∣⩽Mn, U;F;Vh i

∗ ωð Þ (28)

holds Pt,x-a.s.
because of the domination property: ∣u t; xð Þ∣⩽V t; xð Þ for 0;T½ � �D0,

∣u0 xð Þ∣⩽U xð Þ for ∀x, ∣~f t; xð Þ∣⩽F t; xð Þ for ∀t, x, and a simple inequality
∣w★ x½ �v∣⩽ ∣w∣ � ∣v∣ for ∀w, v∈C3 and ∀x∈D0.

Let us now introduce a filtration F nf g for n∈N0 on Ωþ, according to the
discussion in Example 2. As a matter of fact, we define

F n ≔ σ ~N n ωð Þ; tm; xmð Þ;m∈ ~N n ωð Þ∪ �N
nct
n ωð Þ; ηmð Þ;m∈ ~N

cut

n ωð Þ
� �

(29)

for each n∈N0. Notice that ~N n ωð Þ itself determines the other two families
~N

cut
n ωð Þ and �Nnnct ωð Þ. Then, it is readily observed that both functionals

Mn, u0;f ;uh i
★ ωð Þ and Mn, U;F;Vh i

∗ ωð Þ are F n-adapted.
Lemma 6. For each n∈N0, the equality

Mn, U;F;Vh i
∗ ωð Þ ¼ Et,x M U;Fh i

∗ ωð ÞjF n
� �

(30)

holds Pt,x-a.s. for every t∈ 0;T½ � and every x∈F0.
Proof. By its construction, we can conclude the equality of Eq. (30) from the

strong Markov property [13] applied at times tmð Þs for m∈V of length n on the set

m∈ ~N n ωð Þ
n o

∈ Fn. □
Moreover, an application of Lemma 6 with the n-section Mn

∗-control inequality

(Eq. (28)) shows the Pt,x-integrability of Mn, u0;f ;uh i
★ ωð Þ for every t∈ 0;T½ � and every

x∈F0. Actually, it proves to be true that a martingale part, in question, extracted by
the star-product functional relative to those n-section families, is given by the n-
section ★-product functional Mn, u0;f ;uh i

★ ωð Þ.
Lemma 7. The n-section Mn, u0;f ;uh i

★ ωð Þ of ★-product functional with weight
functions u0 and f is an F nf g-martingale [8].

Proof. When we set ¼ Et,x Mn
★ ωð ÞjFn

� �
, then ξn turns out to be a F nf g-

martingale, since

Et,x ξnjFn�1½ � ¼ Et,x Et,x Mn
★jFn

� �
Fn�1j � ¼ Et,x Mn

★
� ��

n�1

h i
¼ ξn�1
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by virtue of the inclusion property of the σ-algebras. Consequently, it suffices to
show that

Et,x M u0;fh i
★ ωð ÞjFn

h i
¼ Mn, u0;f ;uh i

★ ωð Þ (31)

holds a.s. By employing the representation formula (Eq. (8)), an conditioning
argument leads to Eq. (31), because the establishment is verified by the Markov

property applied at tm and on the event m∈ ~N ng
n

being Fn-measurable. □
Finally, the uniqueness yields from the following assertion.
Proposition 8.When u t; xð Þ is a solution to the nonlinear integral equation (Eq. (2)),

then we have

u t; xð Þ ¼ Et,x M u0;fh i
★ ωð Þ

h i
(32)

holds for every t∈ 0;T½ � and for a.e.‐x.
Proof. Our proof is technically due to a martingale method. We need the follow-

ing lemma.

Lemma 9. Let Mn, u0;f ;uh i
★ ωð Þ be the n-section of ★-product functional, and let u t; xð Þ

be a solution of the nonlinear integral equation (Eq. (2)). Then, we have the following
identity: for each n∈N0

u t; xð Þ ¼ Et,x Mn, u0;f ;uh i
★ ωð Þ

h i
(33)

holds for every t 0⩽ t⩽Tð Þ and every x∈F0.

Proof of Lemma 9. Recall that Mn, u0;f ;uh i
★ ωð Þ is a martingale relative to Fnf g. For

n ¼ 0, it follows from the identity (Eq. (31)) and by the martingale property that

Et,x M0, u0;f ;uh i
★ ωð Þ

h i
¼ Et,x Et,x M u0;fh i

★ ωð ÞjF0

h ih i

¼ Et,x M u0;fh i
★ ωð Þ

h i
¼ u t; xð Þ:

(34)

Next, for the case n ¼ 1, by the same reason, we can get

Et,x M1, u0;f ;uh i
★ ωð Þ

h i
¼ Et,x Et,x M u0;fh i

★ ωð ÞjF 1

h ih i

¼ Et,x M u0;fh i
★ ωð Þ

h i
¼ u t; xð Þ:

(35)

We resort to the mathematical induction with respect to n∈N0. If we assume
the identity (Eq. (33)) for the case of n, then the case of nþ 1 reads at once

Et,x Mnþ1, u0;f ;uh i
★ ωð Þ

h i
¼ Et,x Et,x Mnþ1, u0;f ;uh i

★ ωð ÞjF n

h ih i

¼ Et,x Mn, u0;f ;uh i
★ ωð Þ

h i
¼ u t; xð Þ,

(36)

where we made use of the martingale property in the first equality and
employed the hypothesis of induction in the last identity. This concludes the
assertion. □
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we can also define the corresponding n-section★-product functionalMn, U;F;Vh i

∗ ωð Þ.
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by virtue of the inclusion property of the σ-algebras. Consequently, it suffices to
show that
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Proof of Lemma 9. Recall that Mn, u0;f ;uh i
★ ωð Þ is a martingale relative to Fnf g. For
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Next, for the case n ¼ 1, by the same reason, we can get
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the identity (Eq. (33)) for the case of n, then the case of nþ 1 reads at once
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where we made use of the martingale property in the first equality and
employed the hypothesis of induction in the last identity. This concludes the
assertion. □
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To go back to the proof of Proposition 8. We define an Fn-measurable event An

as the set of ω∈Ωþ such that ~N n ωð Þ contains some label m of length n. From the
definition, it holds immediately that

M u0;fh i
★ ωð Þ ¼ Mn, u0;f ;uh i

★ ωð Þ on Ωþ An: (37)

Hence, for every x∈ F0 and 0⩽ t⩽T and ∀n∈N0, we may apply Lemma 9 for
the expression below with the identity (Eq. (31)) to obtain

∣u t; xð Þ � Et,x M u0;fh i
★ ωð Þ

h i
∣

¼ ∣Et,x Mn, u0;f ;uh i
★ ωð Þ

h i
� Et,x M u0;fh i

★ ωð Þ
h i

∣

⩽ ∣Et,x Mn, u0;f ;uh i
★ ωð Þ �M u0;fh i

★ ωð Þ;An

h i
∣

þ∣Et,x Mn, u0;f ;uh i
★ ωð Þ �M u0;fh i

★ ωð Þ;Ac
n

h i
∣

¼ ∣Et,x Mn, u0;f ;uh i
★ ωð Þ �M u0;fh i

★ ωð Þ
� �

� 1An

h i
∣

(38)

where the symbol Et,x X ωð Þ;A½ � denotes the integral of X ωð Þ over a measurable
event A with respect to the probability measure Pt,x dωð Þ, namely,

Et,x X ωð Þ;A½ � ¼ Et,x X ωð Þ � 1A½ � ¼
ð

A
X ωð ÞPt,x dωð Þ:

Furthermore, we continue computing

38ð Þ⩽ ∣Et,x Mn, u0;f ;uh i
★ ωð Þ1An

h i
∣þ ∣Et,x M u0;fh i

★ ωð Þ1An

h i
∣

¼ ∣Et,x Et,x M u0;fh i
★ ωð ÞjFn

h i
1An

h i
∣þ ∣Et,x M u0;fh i

★ ωð Þ1An

h i
∣

¼ 2∣Et,x M u0;fh i
★ ωð Þ1An

h i
∣:

(39)

Since ∩nAn ¼ ∅ by the binary critical tree structure [12], and since we have an
natural estimate

∣M u0;fh i
★ ωð Þ1An ωð Þ∣ <M U;Fh i

★ ωð Þ, a:s:

and lim
n!∞

M u0;fh i
★ ωð Þ1An ωð Þ ¼ 0, a:s:

(40)

it follows by the bounded convergence theorem of Lebesgue that

lim
n!∞

∣Et,x M u0;fh i
★ ωð Þ1An

h i
∣ ¼ 0: (41)

Consequently, from Eq. (39) and Eq. (41), we readily obtain

∣u t; xð Þ � Et,x M u0;fh i
★ ωð Þ

h i
∣ ! 0 as n ! ∞ð Þ (42)

holds for every t; xð Þ∈ 0;T½ � � F0. Thus, we attain that u t; xð Þ ¼ Et,x M u0;fh i
★ ωð Þ

h i
,

a.e.‐x∈F0. This finishes the proof of Proposition 8. □
Concurrently, this completes the proof of the uniqueness.
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Chapter 4

Computation of Two-Dimensional
Fourier Transforms for Noisy
Band-Limited Signals
Weidong Chen

Abstract

The computation of the two-dimensional Fourier transform by the sampling
points creates an ill-posed problem. In this chapter, we will cover this problem for
the band-limited signals in the noisy case. We will present a regularized algorithm
based on the two-dimensional Shannon Sampling Theorem, the two-dimensional
Fourier series, and the regularization method. First, we prove the convergence
property of the regularized solution according to the maximum norm. Then an error
estimation is given according to the L2-norm. The convergence property of the
regularized Fourier series is given in theory, and some examples are given to
compare the numerical results of the regularized Fourier series with the numerical
results of the Fourier series.

Keywords: Fourier transform, band-limited signal, ill-posedness, regularization

AMS subject classifications: 65T40, 65R20, 65R30, 65R32

1. Introduction

The two-dimensional Fourier transform is widely applied in many fields [1–9].
In this chapter, the ill-posedness of the problem for computing two-dimensional
Fourier transform is analyzed on a pair of spaces by the theory and examples in
detail. A two-dimensional regularized Fourier series is presented with the proof of
the convergence property and some experimental results.

First, we describe the band-limited signals.

Definition. For two positive Ω1, Ω2 ∈ R, a function f ∈L2 R2� �
is said to be band-

limited if

f̂ ω1;ω2ð Þ ¼ 0, ∀ ω1;ω2ð Þ∈R2\ �Ω1;Ω1½ � � �Ω2;Ω2½ �:

Here f̂ is the Fourier transform of:

F fð Þ ω1;ω2ð Þ ¼ f̂ ω1;ω2ð Þ ¼
ð∞
�∞

ð∞
�∞

f t1; t2ð Þeit1ω1þit2ω2dt1dt2, ω1;ω2ð Þ∈R2: (1)

We will consider the problem of computing f̂ ω1;ω2ð Þ from f t1; t2ð Þ.
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For band-limited signals, we have the following sampling theorem [4, 10, 11].
For the two-dimensional band-limited function above, we have

f t1; t2ð Þ ¼ ∑
∞

n1¼�∞
∑
∞

n2¼�∞
f n1H1; n2H2ð Þ sinΩ1 t1 � n1H1ð Þ

Ω1 t1 � n1H1ð Þ
sinΩ2 t2 � n2H2ð Þ
Ω2 t2 � n2H2ð Þ , (2)

where H1 ≔ π=Ω1 and H2 ≔ π=Ω2.
Calculating the Fourier transform of f t1; t2ð Þ by the formula (2), we have the

formula which is same as the Fourier series

f̂ ω1;ω2ð Þ ¼ H1H2 ∑
∞

n1¼�∞
∑
∞

n2¼�∞
f n1H1; n2H2ð Þein1H1ω1þin2H2ω2PΩ ω1;ω2ð Þ, (3)

where PΩ ω1;ω2ð Þ ¼ 1 �Ω1;Ω1½ �� �Ω2;Ω2½ � (ω1, ω2) is the characteristic function of
�Ω1;Ω1½ � � �Ω2;Ω2½ �.

In many practical problems, the samples f n1H1; n2H2ð Þf g are noisy:

f n1H1; n2H2ð Þ ¼ f T n1H1; n2H2ð Þ þ η n1H1; n2H2ð Þ, (4)

where η n1H1; n2H2ð Þf g is the noise

∣η n1H1; n2H2ð Þ∣ ≤ δ, (5)

and f T ∈L2 is the exact band-limited signal.
The noise in the two-dimensional case is discussed in [5, 6], and the Tikhonov

regularization method is used. However, there is too much computation in the
Tikhonov regularization method since the solution of an Euler equation is required.

The ill-posedness in the one-dimensional case is considered in [12, 13]. The
regularized Fourier series

f̂ α ωð Þ ¼ H ∑
∞

n¼�∞

f nHð ÞeinHω

1þ 2παþ 2πα n1H1ð Þ2 PΩ ωð Þ

in [12] is given based on the regularized Fourier transform

Fα f½ � ¼
ð∞
�∞

f tð Þeiωtdt
1þ 2παþ 2παt2

in [14]. The regularized Fourier transform was found by finding the minimizer
of the Tikhonov’s smoothing functional.

In this chapter, we will find a reliable algorithm for this ill-posed problem using
a two-dimensional regularized Fourier series. In Section 2, the ill-posedness is
discussed in the two-dimensional case. In Section 3, the regularized Fourier series
and the proof of the convergence property are given. The bias and variance of
regularized Fourier series are given in Section 4. The algorithm and the experimen-
tal results of numerical examples are given in Section 5. Finally, the conclusion is
given in Section 6.

2. The ill-posedness

Wewill first study the ill-posedness of the problem (3) in the noisy case (4). The
concept of ill-posed problems was introduced in [15]. Here we borrow the following
definition from it.
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Definition 2.1 Assume A: D ! U is an operator in which D and U are metric
spaces with distances ρD ∗; ∗ð Þ and ρU ∗; ∗ð Þ, respectively. The problem

Az ¼ u: (6)

of determining a solution z in the space D from the “initial data” u in the space U
is said to be well-posed on the pair of metric spaces D;Uð Þ in the sense of
Hadamard if the following three conditions are satisfied:

i. For every element u∈U, there exists a solution z in the space D; in other
words, the mapping A is surjective.

ii. The solution is unique; in other words, the mapping A is injective.

iii. The problem is stable in the spaces D;Uð Þ: ∀∈>0,∃δ>0, such that

ρU u1; u2ð Þ < δ ) ρD z1; z2ð Þ < ∈ :

In other words, the inverse mapping A�1 is uniformly continuous. Problems that
violate any of the three conditions are said to be ill-posed.
In this section, we discuss the ill-posedness of Af̂ ¼ f on the pair of Banach

spaces (L2 �Ω1;Ω1½ � � �Ω2;Ω2½ �, l∞(Z2)), where f̂ ω1;ω2ð Þ is given by the Fourier
series in Eq. (3).

The operator A in Eq. (6) is defined by the following formula:

Af̂ ¼ f , (7)

where ¼ f n1H1; n2H2ð Þ: n1∊Z;n2∊Zf g.
As usual, l∞ is the space a nð Þ : n∊Z2� �

of bounded sequences. The norm of l∞ is
defined by

ak kl∞ ¼ sup
n∈Z2

a nð Þj j,

where

i. The existence condition is not satisfied.

ii. The uniqueness condition is satisfied.

iii. The stability condition is not satisfied. The proof is similar to the proof
in [10].

3. The regularized Fourier series

Based on the one-dimensional regularized Fourier series in [12], we construct
the two-dimensional regularized Fourier series:

f̂ α ω1;ω2ð Þ ¼

H1H2 ∑
∞

n1¼�∞
∑
∞

n2¼�∞

f n1H1; n2H2ð Þein1H1ω1þin2H2ω2

1þ 2παþ 2πα n1H1ð Þ2
h i

1þ 2παþ 2πα n2H2ð Þ2
h iPΩ ω1;ω2ð Þ,

(8)
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where f n1H1; n2H2ð Þ is given in (4). We will give the convergence property of
the regularized Fourier series in this section.

Lemma 3.1

F
1

1þ 2παþ 2παt2
sinΩ t� nHð Þ
Ω t� nHð Þ

� �
¼ H

1þ 2παþ 2πα nHð Þ2 e
inHω � H

4πaα
�1ð Þn ea ω�Ωð Þ

a� inH
þ e�a ωþΩð Þ

aþ inH

� �
,

(9)

where a≔
ffiffiffiffiffiffiffiffiffiffi
1þ2πα
2πα

q
.

Proof.

F
1

1þ 2παþ 2παt2
sinΩ t� nHð Þ
Ω t� nHð Þ

� �
¼ 1

2π
F

1
1þ 2παþ 2παt2

� �
∗F

sinΩ t� nHð Þ
Ω t� nHð Þ

� �

¼ 1
2π

1
2aα

e�a ωj j∗ HeiωnHPΩ ωð Þ� � ¼ H
1

4πaα

ð∞

�∞

e�a uj jeinH ω�uð Þ1 ω�Ω;ωþΩ½ � uð Þdu

¼ H
1

4πaα
einHω

ðωþΩ

ω�Ω
e�a∣u∣�inHudu ¼ H

1
4πaα

einHω
ð0
ω�Ω

eau�inHuduþ
ðωþΩ

0
e�au�inHudu

� �

¼ H
1

4πaα
einHω 1

a� inH
� e a�inHð Þ ω�Ωð Þ

a� inH
þ 1
aþ inH

� e� aþinHð Þ ωþΩð Þ

aþ inH

� �

¼ H
1

4πaα
einHω 1

a� inH
þ 1
aþ inH

� �
�H

1
4πaα

einHω e a�inHð Þ ω�Ωð Þ

a� inH
þ e� aþinHð Þ ωþΩð Þ

aþ inH

� �

¼ H
1

2πα
einHω

a2 þ nHð Þ2 �H
1

4πaα
einHω �1ð Þn ea ω�Ωð Þ�inHω

a� inH
þ e�a ωþΩð Þ�inHω

aþ inH

� �

¼ H
einHω

1þ 2παþ 2πα nHð Þ2 �H
1

4πaα
�1ð Þn ea ω�Ωð Þ

a� inH
þ e�a ωþΩð Þ

aþ inH

� �
:

Lemma 3.2 For any band-limited function g t1; t2ð Þ and
ω1;ω2ð Þ∈ �Ω1;Ω1½ � � �Ω2;Ω2½ �

ð∞
�∞

ð∞
�∞

g t1; t2ð Þeit1ω1þit2ω2dt1dt2
1þ 2παþ 2παt21
� �

1þ 2παþ 2παt22
� �

¼ H1H2 ∑
∞

n1¼�∞
∑
∞

n2¼�∞
g n1H1; n2H2ð Þ ein1H1ω1þin2H2ω2

½1þ 2παþ 2πα n1H1Þ2ð �½1þ 2παþ 2πα n2H2Þ2ð �

�H1H2 ∑
∞

n1¼�∞
∑
∞

n2¼�∞
g n1H1; n2H2ð Þ ein1H1ω1

1þ 2παþ 2πα n1H1ð Þ2
�1ð Þn2
4πaα

ea ω2�Ω2ð Þ

a� in2H2
þ e�a ω2þΩ2ð Þ

aþ in2H2

� �" #

�H1H2 ∑
∞

n1¼�∞
∑
∞

n2¼�∞
g n1H1; n2H2ð Þ ein2H2ω2

1þ 2παþ 2πα n2H2ð Þ2
�1ð Þn1
4πaα

ea ω1�Ω1ð Þ

a� in1H1
þ e�a ω1þΩ1ð Þ

aþ in1H1

� �" #

þH1H2 ∑
∞

n1¼�∞
∑
∞

n2¼�∞
g n1H1; n2H2ð Þ �1ð Þn1þn2

4πaαð Þ2
ea ω1�Ω1ð Þ

a� in1H1
þ e�a ω1þΩ1ð Þ

aþ in1H1

� �
� ea ω2�Ω2ð Þ

a� in2H2
þ e�a ω2þΩ2ð Þ

aþ in2H2

� �
:

(10)
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Proof. By the sampling theorem

I≔
ð∞
�∞

ð∞
�∞

g t1; t2ð Þeit1ω1þit2ω2dt1dt2
1þ 2παþ 2παt21
� �

1þ 2παþ 2παt22
� �

¼
ð∞
�∞

ð∞
�∞

eit1ω1þit2ω2

1þ 2παþ 2παt21
� �

1þ 2παþ 2παt22
� �

� ∑
∞

n1¼�∞
∑
∞

n2¼�∞
g n1H1; n2H2ð Þ sinΩ1 t1 � n1H1ð Þ

Ω1 t1 � n1H1ð Þ
sinΩ2 t2 � n2H2ð Þ
Ω2 t2 � n2H2ð Þ dt1dt2

¼ ∑
∞

n1¼�∞
∑
∞

n2¼�∞
g n1H1; n2H2ð Þ

ð∞
�∞

1
1þ 2παþ 2παt21

sinΩ1 t1 � n1H1ð Þ
Ω1 t1 � n1H1ð Þ eit1ω1dt1

�
ð∞
�∞

1
1þ 2παþ 2παt22

sinΩ2 t2 � n2H2ð Þ
Ω2 t2 � n2H2ð Þ eit2ω2dt2

By Lemma 3.1 and the FOIL method, Eq. (10) is true.

Lemma 3.3 For each arbitrarily small c>0 and ω∈ �Ωþ c;Ω� c½ �,

∑
∞

n¼�∞

ea ω�Ωð Þ

a� inH
þ e�a ωþΩð Þ

aþ inH

����
����
2

¼ O
e�2ac

a

� �
: (11)

Proof. By the inequality ∣aþ b∣2 ≤ 2 ∣a∣2 þ ∣b∣2
� �

,

∑
∞

n¼�∞

ea ω�Ωð Þ

a� inH
þ e�a ωþΩð Þ

aþ inH

����
����
2

≤ 2 ∑
∞

n¼�∞

ea ω�Ωð Þ

a� inH

����
����
2

þ e�a ωþΩð Þ

aþ inH

����
����
2" #

≤ 4 ∑
∞

n¼�∞

e�2ac

a2 þ nHð Þ2 ≤
4
H
e�2ac

ð∞
�∞

dx
a2 þ x2

þ 4
a2

e�2ac ¼ 4πe�2ac

Ha
þ 4
a2

e�2ac:

Lemma 3.4 For each arbitrarily small c>0 and ω1;ω2ð Þ∈ �Ω1 þ c;Ω1 � c½ ��
�Ω2 þ c;Ω2 � c½ �,

∑
∞

n1¼�∞
∑
∞

n2¼�∞
g n1H1; n2H2ð Þ �1ð Þn1þn2

4πaαð Þ2
ea ω1�Ω1ð Þ

a� in1H1
þ e�a ω1þΩ1ð Þ

aþ in1H1

� �

ea ω2�Ω2ð Þ

a� in2H2
þ e�a ω2þΩ2ð Þ

aþ in2H2

� �
, ¼ O ae�2acð Þ:

(12)

for α ! þ0 and g that is Ω-band-limited.

Proof. By the Cauchy inequality,

∑
∞

n1¼�∞
∑
∞

n2¼�∞
g n1H1; n2H2ð Þ ea ω1�Ω1ð Þ

a� in1H1
þ e�a ω1þΩ1ð Þ

aþ in1H1

� �
ea ω2�Ω2ð Þ

a� in2H2
þ e�a ω2þΩ2ð Þ

aþ in2H2

� ������

�����
2

≤ ∑
∞

n1¼�∞
∑
∞

n2¼�∞
g n1H1; n2H2ð Þj j2

∑
∞

n1¼�∞
∑
∞

n2¼�∞

ea ω1�Ω1ð Þ

a� in1H1
þ e�a ω1þΩ1ð Þ

aþ in1H1

� �
ea ω2�Ω2ð Þ

a� in2H2
þ e�a ω2þΩ2ð Þ

aþ in2H2

� �����
����
2

,
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where f n1H1; n2H2ð Þ is given in (4). We will give the convergence property of
the regularized Fourier series in this section.

Lemma 3.1

F
1

1þ 2παþ 2παt2
sinΩ t� nHð Þ
Ω t� nHð Þ

� �
¼ H

1þ 2παþ 2πα nHð Þ2 e
inHω � H

4πaα
�1ð Þn ea ω�Ωð Þ

a� inH
þ e�a ωþΩð Þ

aþ inH

� �
,

(9)

where a≔
ffiffiffiffiffiffiffiffiffiffi
1þ2πα
2πα

q
.

Proof.

F
1

1þ 2παþ 2παt2
sinΩ t� nHð Þ
Ω t� nHð Þ

� �
¼ 1

2π
F

1
1þ 2παþ 2παt2

� �
∗F

sinΩ t� nHð Þ
Ω t� nHð Þ

� �

¼ 1
2π

1
2aα

e�a ωj j∗ HeiωnHPΩ ωð Þ� � ¼ H
1

4πaα

ð∞

�∞

e�a uj jeinH ω�uð Þ1 ω�Ω;ωþΩ½ � uð Þdu

¼ H
1

4πaα
einHω

ðωþΩ

ω�Ω
e�a∣u∣�inHudu ¼ H

1
4πaα

einHω
ð0
ω�Ω

eau�inHuduþ
ðωþΩ

0
e�au�inHudu

� �

¼ H
1

4πaα
einHω 1

a� inH
� e a�inHð Þ ω�Ωð Þ

a� inH
þ 1
aþ inH

� e� aþinHð Þ ωþΩð Þ

aþ inH

� �

¼ H
1

4πaα
einHω 1

a� inH
þ 1
aþ inH

� �
�H

1
4πaα

einHω e a�inHð Þ ω�Ωð Þ

a� inH
þ e� aþinHð Þ ωþΩð Þ

aþ inH

� �

¼ H
1

2πα
einHω

a2 þ nHð Þ2 �H
1

4πaα
einHω �1ð Þn ea ω�Ωð Þ�inHω

a� inH
þ e�a ωþΩð Þ�inHω

aþ inH

� �

¼ H
einHω

1þ 2παþ 2πα nHð Þ2 �H
1

4πaα
�1ð Þn ea ω�Ωð Þ

a� inH
þ e�a ωþΩð Þ

aþ inH

� �
:

Lemma 3.2 For any band-limited function g t1; t2ð Þ and
ω1;ω2ð Þ∈ �Ω1;Ω1½ � � �Ω2;Ω2½ �

ð∞
�∞

ð∞
�∞

g t1; t2ð Þeit1ω1þit2ω2dt1dt2
1þ 2παþ 2παt21
� �

1þ 2παþ 2παt22
� �

¼ H1H2 ∑
∞

n1¼�∞
∑
∞

n2¼�∞
g n1H1; n2H2ð Þ ein1H1ω1þin2H2ω2

½1þ 2παþ 2πα n1H1Þ2ð �½1þ 2παþ 2πα n2H2Þ2ð �

�H1H2 ∑
∞

n1¼�∞
∑
∞

n2¼�∞
g n1H1; n2H2ð Þ ein1H1ω1

1þ 2παþ 2πα n1H1ð Þ2
�1ð Þn2
4πaα

ea ω2�Ω2ð Þ

a� in2H2
þ e�a ω2þΩ2ð Þ

aþ in2H2

� �" #

�H1H2 ∑
∞

n1¼�∞
∑
∞

n2¼�∞
g n1H1; n2H2ð Þ ein2H2ω2

1þ 2παþ 2πα n2H2ð Þ2
�1ð Þn1
4πaα

ea ω1�Ω1ð Þ

a� in1H1
þ e�a ω1þΩ1ð Þ

aþ in1H1

� �" #

þH1H2 ∑
∞

n1¼�∞
∑
∞

n2¼�∞
g n1H1; n2H2ð Þ �1ð Þn1þn2

4πaαð Þ2
ea ω1�Ω1ð Þ

a� in1H1
þ e�a ω1þΩ1ð Þ

aþ in1H1

� �
� ea ω2�Ω2ð Þ

a� in2H2
þ e�a ω2þΩ2ð Þ

aþ in2H2

� �
:

(10)
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Proof. By the sampling theorem

I≔
ð∞
�∞

ð∞
�∞

g t1; t2ð Þeit1ω1þit2ω2dt1dt2
1þ 2παþ 2παt21
� �

1þ 2παþ 2παt22
� �

¼
ð∞
�∞

ð∞
�∞

eit1ω1þit2ω2

1þ 2παþ 2παt21
� �

1þ 2παþ 2παt22
� �

� ∑
∞

n1¼�∞
∑
∞

n2¼�∞
g n1H1; n2H2ð Þ sinΩ1 t1 � n1H1ð Þ

Ω1 t1 � n1H1ð Þ
sinΩ2 t2 � n2H2ð Þ
Ω2 t2 � n2H2ð Þ dt1dt2

¼ ∑
∞

n1¼�∞
∑
∞

n2¼�∞
g n1H1; n2H2ð Þ

ð∞
�∞

1
1þ 2παþ 2παt21

sinΩ1 t1 � n1H1ð Þ
Ω1 t1 � n1H1ð Þ eit1ω1dt1

�
ð∞
�∞

1
1þ 2παþ 2παt22

sinΩ2 t2 � n2H2ð Þ
Ω2 t2 � n2H2ð Þ eit2ω2dt2

By Lemma 3.1 and the FOIL method, Eq. (10) is true.

Lemma 3.3 For each arbitrarily small c>0 and ω∈ �Ωþ c;Ω� c½ �,

∑
∞

n¼�∞

ea ω�Ωð Þ

a� inH
þ e�a ωþΩð Þ

aþ inH

����
����
2

¼ O
e�2ac

a

� �
: (11)

Proof. By the inequality ∣aþ b∣2 ≤ 2 ∣a∣2 þ ∣b∣2
� �

,

∑
∞

n¼�∞

ea ω�Ωð Þ

a� inH
þ e�a ωþΩð Þ

aþ inH

����
����
2

≤ 2 ∑
∞

n¼�∞

ea ω�Ωð Þ

a� inH

����
����
2

þ e�a ωþΩð Þ

aþ inH

����
����
2" #

≤ 4 ∑
∞

n¼�∞

e�2ac

a2 þ nHð Þ2 ≤
4
H
e�2ac

ð∞
�∞

dx
a2 þ x2

þ 4
a2

e�2ac ¼ 4πe�2ac

Ha
þ 4
a2

e�2ac:

Lemma 3.4 For each arbitrarily small c>0 and ω1;ω2ð Þ∈ �Ω1 þ c;Ω1 � c½ ��
�Ω2 þ c;Ω2 � c½ �,

∑
∞

n1¼�∞
∑
∞

n2¼�∞
g n1H1; n2H2ð Þ �1ð Þn1þn2

4πaαð Þ2
ea ω1�Ω1ð Þ

a� in1H1
þ e�a ω1þΩ1ð Þ

aþ in1H1

� �

ea ω2�Ω2ð Þ

a� in2H2
þ e�a ω2þΩ2ð Þ

aþ in2H2

� �
, ¼ O ae�2acð Þ:

(12)

for α ! þ0 and g that is Ω-band-limited.

Proof. By the Cauchy inequality,

∑
∞

n1¼�∞
∑
∞

n2¼�∞
g n1H1; n2H2ð Þ ea ω1�Ω1ð Þ

a� in1H1
þ e�a ω1þΩ1ð Þ

aþ in1H1

� �
ea ω2�Ω2ð Þ

a� in2H2
þ e�a ω2þΩ2ð Þ

aþ in2H2

� ������

�����
2

≤ ∑
∞

n1¼�∞
∑
∞

n2¼�∞
g n1H1; n2H2ð Þj j2

∑
∞

n1¼�∞
∑
∞

n2¼�∞

ea ω1�Ω1ð Þ

a� in1H1
þ e�a ω1þΩ1ð Þ

aþ in1H1

� �
ea ω2�Ω2ð Þ

a� in2H2
þ e�a ω2þΩ2ð Þ

aþ in2H2

� �����
����
2

,
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where ∑∞
n1¼�∞∑

∞
n2¼�∞ g n1H1; n2H2ð Þj j2 is bounded by Parseval equality, and

∑
∞

n1¼�∞
∑
∞

n2¼�∞

ea ω1�Ω1ð Þ

a� in1H1
þ e�a ω1þΩ1ð Þ

aþ in1H1

� �
ea ω2�Ω2ð Þ

a� in2H2
þ e�a ω2þΩ2ð Þ

aþ in2H2

� �����
����
2

¼ ∑
∞

n1¼�∞

ea ω1�Ω1ð Þ

a� in1H1
þ e�a ω1þΩ1ð Þ

aþ in1H1

� �����
����
2

∑
∞

n2¼�∞

ea ω1�Ω1ð Þ

a� in1H1
þ e�a ω1þΩ1ð Þ

aþ in1H1

� �����
����
2

:

By Lemma 3.3, Eq. (12) is true.
Lemma 3.5

∑
∞

n¼�∞

1

1þ 2παþ 2πα nHð Þ2
�����

�����
2

¼ O
1ffiffiffi
α

p
� �

: (13)
Proof.

∑
∞

n¼�∞

1

1þ 2παþ 2πα nHð Þ2
�����

�����
2

≤
1

1þ 2πα

����
����
2

þ ∑
n6¼0

1

1þ 2παþ 2πα nHð Þ2
�����

�����
2

,

where

∑
n 6¼0

1

1þ 2παþ 2πα nHð Þ2
�����

�����
2

≤ 2∑
∞

n¼1

1

1þ 2παþ 2πα nHð Þ2
h i2 ≤

2
H

ð∞
0

dx

1þ 2παþ 2παx2ð Þ2 ¼ O
1ffiffiffi
α

p
� �

:

So

∑
∞

n¼�∞

1

1þ 2παþ 2πα nHð Þ2
�����

�����
2

¼ O
1ffiffiffi
α

p
� �

:

Lemma 3.6 For each arbitrarily small c>0 and
ω1;ω2ð Þ∈ �Ω1 þ c;Ω1 � c½ � � �Ω2 þ c;Ω2 � c½ �,

∑
∞

n1¼�∞
∑
∞

n2¼�∞
g n1H1; n2H2ð Þ ein1H1ω1

1þ 2παþ 2πα n1H1ð Þ2
�1ð Þn2
4πaα

ea ω2�Ω2ð Þ

a� in2H2
þ e�a ω2þΩ2ð Þ

aþ in2H2

� �" #

¼ O a
1
2e�ac

� �
,

(14)

for α ! þ0 and g that is Ω-band-limited.
Proof. By Cauchy inequality,

∑
∞

n1¼�∞
∑
∞

n2¼�∞
g n1H1; n2H2ð Þ ein1H1ω1

1þ 2παþ 2πα n1H1ð Þ2
" #

ea ω2�Ω2ð Þ

a� in2H2
þ e�a ω2þΩ2ð Þ

aþ in2H2

� ������

�����
2

≤ ∑
∞

n1¼�∞
∑
∞

n2¼�∞
g n1H1; n2H2ð Þj j2

∑
∞

n1¼�∞
∑
∞

n2¼�∞

ein1H1ω1

1þ 2παþ 2πα n1H1ð Þ2
" #

ea ω2�Ω2ð Þ

a� in2H2
þ e�a ω2þΩ2ð Þ

aþ in2H2

� ������

�����
2

,
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where ∑∞
n1¼�∞∑

∞
n2¼�∞ g n1H1; n2H2ð Þj j2 is bounded by the Parseval equality, and

∑
∞

n1¼�∞
∑
∞

n2¼�∞

ein1H1ω1

1þ 2παþ 2πα n1H1ð Þ2
" #

ea ω2�Ω2ð Þ

a� in2H2
þ e�a ω2þΩ2ð Þ

aþ in2H2

� ������

�����
2

¼ ∑
∞

n1¼�∞

ein1H1ω1

1þ 2παþ 2πα n1H1ð Þ2
�����

�����
2

∑
∞

n2¼�∞

ea ω2�Ω2ð Þ

a� in2H2
þ e�a ω2þΩ2ð Þ

aþ in2H2

� �����
����
2

:

By Lemma 3.3 and Lemma 3.5 Eq. (14) is true.
Lemma 3.7

∑
∞

n1¼�∞
∑
∞

n2¼�∞

η n1H1; n2H2ð Þ
1þ 2παþ 2πα n1H1ð Þ2½ � 1þ 2παþ 2πα n2H2ð Þ2½ �
����

���� ¼ O
δ

α

� �
(15)

for δ ! þ0 and α ! þ0, where η and δ are given in (4) and (5) in Section 1.
Proof.

∑
∞

n¼�∞

1

1þ 2παþ 2πα nH1ð Þ2
�����

�����≤
1

1þ 2πα

����
����þ ∑

n6¼0

1

1þ 2παþ 2πα nH1ð Þ2
�����

�����,

where

∑
n6¼0

1

1þ 2παþ 2πα nH1ð Þ2
�����

�����≤ 2∑
∞

n¼1

1

1þ 2παþ 2πα nH1ð Þ2

≤
2
H1

ð∞
0

dx
1þ 2παþ 2παx2

¼ O
1ffiffiffi
α

p
� �

:

So

∑
∞

n¼�∞

1

1þ 2παþ 2πα nH1ð Þ2
�����

����� ¼ O 1=
ffiffiffi
α

p� �
:

For the same reason,

∑
∞

n¼�∞

1

1þ 2παþ 2πα nH2ð Þ2
�����

����� ¼ O
1ffiffiffi
α

p
� �

:

So Eq. (15) is true.

Theorem 3.1 Suppose f T ∈L1 R2� �
∩L2 R2� �

is band-limited. For each arbitrarily
small c>0, if we choose α ¼ α δð Þ such that α δð Þ ! 0 and δ=α δð Þ ! 0 as δ ! 0,
then f̂ α ω1;ω2ð Þ ! f̂ T ω1;ω2ð Þ uniformly in ω1;ω2ð Þ∈ �Ω1 þ c;Ω1 � c½ ��
�Ω2 þ c;Ω2 � c½ � as δ ! 0.
Proof. By Lemma 3.2, Lemma 3.4 and Lemma 3.6, we have

H1H2 ∑
∞

n1¼�∞
∑
∞

n2¼�∞

f T n1H1; n2H2ð Þ
½1þ 2παþ 2πα n1H1Þ2ð �½1þ 2παþ 2πα n2H2Þ2ð � e

in1H1ω1þin2H2ω2

¼
ð∞
�∞

ð∞
�∞

f T t1; t2ð Þeit1ω1þit2ω2dt1dt2
1þ 2παþ 2παt21
� �

1þ 2παþ 2παt22
� �þO a

1
2e�ac

� �
:
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where ∑∞
n1¼�∞∑

∞
n2¼�∞ g n1H1; n2H2ð Þj j2 is bounded by Parseval equality, and

∑
∞

n1¼�∞
∑
∞

n2¼�∞

ea ω1�Ω1ð Þ

a� in1H1
þ e�a ω1þΩ1ð Þ

aþ in1H1

� �
ea ω2�Ω2ð Þ

a� in2H2
þ e�a ω2þΩ2ð Þ

aþ in2H2

� �����
����
2

¼ ∑
∞

n1¼�∞

ea ω1�Ω1ð Þ

a� in1H1
þ e�a ω1þΩ1ð Þ

aþ in1H1

� �����
����
2

∑
∞

n2¼�∞

ea ω1�Ω1ð Þ

a� in1H1
þ e�a ω1þΩ1ð Þ

aþ in1H1

� �����
����
2

:

By Lemma 3.3, Eq. (12) is true.
Lemma 3.5

∑
∞

n¼�∞

1

1þ 2παþ 2πα nHð Þ2
�����

�����
2

¼ O
1ffiffiffi
α

p
� �

: (13)
Proof.

∑
∞

n¼�∞

1

1þ 2παþ 2πα nHð Þ2
�����

�����
2

≤
1

1þ 2πα

����
����
2

þ ∑
n6¼0

1

1þ 2παþ 2πα nHð Þ2
�����

�����
2

,

where

∑
n 6¼0

1

1þ 2παþ 2πα nHð Þ2
�����

�����
2

≤ 2∑
∞

n¼1

1

1þ 2παþ 2πα nHð Þ2
h i2 ≤

2
H

ð∞
0

dx

1þ 2παþ 2παx2ð Þ2 ¼ O
1ffiffiffi
α

p
� �

:

So

∑
∞

n¼�∞

1

1þ 2παþ 2πα nHð Þ2
�����

�����
2

¼ O
1ffiffiffi
α

p
� �

:

Lemma 3.6 For each arbitrarily small c>0 and
ω1;ω2ð Þ∈ �Ω1 þ c;Ω1 � c½ � � �Ω2 þ c;Ω2 � c½ �,

∑
∞

n1¼�∞
∑
∞

n2¼�∞
g n1H1; n2H2ð Þ ein1H1ω1

1þ 2παþ 2πα n1H1ð Þ2
�1ð Þn2
4πaα

ea ω2�Ω2ð Þ

a� in2H2
þ e�a ω2þΩ2ð Þ

aþ in2H2

� �" #

¼ O a
1
2e�ac

� �
,

(14)

for α ! þ0 and g that is Ω-band-limited.
Proof. By Cauchy inequality,

∑
∞

n1¼�∞
∑
∞

n2¼�∞
g n1H1; n2H2ð Þ ein1H1ω1

1þ 2παþ 2πα n1H1ð Þ2
" #

ea ω2�Ω2ð Þ

a� in2H2
þ e�a ω2þΩ2ð Þ

aþ in2H2

� ������

�����
2

≤ ∑
∞

n1¼�∞
∑
∞

n2¼�∞
g n1H1; n2H2ð Þj j2

∑
∞

n1¼�∞
∑
∞

n2¼�∞

ein1H1ω1

1þ 2παþ 2πα n1H1ð Þ2
" #

ea ω2�Ω2ð Þ

a� in2H2
þ e�a ω2þΩ2ð Þ

aþ in2H2

� ������

�����
2

,
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where ∑∞
n1¼�∞∑

∞
n2¼�∞ g n1H1; n2H2ð Þj j2 is bounded by the Parseval equality, and

∑
∞

n1¼�∞
∑
∞

n2¼�∞

ein1H1ω1

1þ 2παþ 2πα n1H1ð Þ2
" #

ea ω2�Ω2ð Þ

a� in2H2
þ e�a ω2þΩ2ð Þ

aþ in2H2

� ������

�����
2

¼ ∑
∞

n1¼�∞

ein1H1ω1

1þ 2παþ 2πα n1H1ð Þ2
�����

�����
2

∑
∞

n2¼�∞

ea ω2�Ω2ð Þ

a� in2H2
þ e�a ω2þΩ2ð Þ

aþ in2H2

� �����
����
2

:

By Lemma 3.3 and Lemma 3.5 Eq. (14) is true.
Lemma 3.7

∑
∞

n1¼�∞
∑
∞

n2¼�∞

η n1H1; n2H2ð Þ
1þ 2παþ 2πα n1H1ð Þ2½ � 1þ 2παþ 2πα n2H2ð Þ2½ �
����

���� ¼ O
δ

α

� �
(15)

for δ ! þ0 and α ! þ0, where η and δ are given in (4) and (5) in Section 1.
Proof.

∑
∞

n¼�∞

1

1þ 2παþ 2πα nH1ð Þ2
�����

�����≤
1

1þ 2πα

����
����þ ∑

n6¼0

1

1þ 2παþ 2πα nH1ð Þ2
�����

�����,

where

∑
n6¼0

1

1þ 2παþ 2πα nH1ð Þ2
�����

�����≤ 2∑
∞

n¼1

1

1þ 2παþ 2πα nH1ð Þ2

≤
2
H1

ð∞
0

dx
1þ 2παþ 2παx2

¼ O
1ffiffiffi
α

p
� �

:

So

∑
∞

n¼�∞

1

1þ 2παþ 2πα nH1ð Þ2
�����

����� ¼ O 1=
ffiffiffi
α

p� �
:

For the same reason,

∑
∞

n¼�∞

1

1þ 2παþ 2πα nH2ð Þ2
�����

����� ¼ O
1ffiffiffi
α

p
� �

:

So Eq. (15) is true.

Theorem 3.1 Suppose f T ∈L1 R2� �
∩L2 R2� �

is band-limited. For each arbitrarily
small c>0, if we choose α ¼ α δð Þ such that α δð Þ ! 0 and δ=α δð Þ ! 0 as δ ! 0,
then f̂ α ω1;ω2ð Þ ! f̂ T ω1;ω2ð Þ uniformly in ω1;ω2ð Þ∈ �Ω1 þ c;Ω1 � c½ ��
�Ω2 þ c;Ω2 � c½ � as δ ! 0.
Proof. By Lemma 3.2, Lemma 3.4 and Lemma 3.6, we have

H1H2 ∑
∞

n1¼�∞
∑
∞

n2¼�∞

f T n1H1; n2H2ð Þ
½1þ 2παþ 2πα n1H1Þ2ð �½1þ 2παþ 2πα n2H2Þ2ð � e

in1H1ω1þin2H2ω2

¼
ð∞
�∞

ð∞
�∞

f T t1; t2ð Þeit1ω1þit2ω2dt1dt2
1þ 2παþ 2παt21
� �

1þ 2παþ 2παt22
� �þO a

1
2e�ac

� �
:
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Therefore,

f̂ α ω1;ω2ð Þ � f̂ T ω1;ω2ð Þ ¼ H1H2 ∑
∞

n1¼�∞
∑
∞

n2¼�∞

fT n1H1;n2H2ð Þ þ η n1H1;n2H2ð Þ½ �ein1H1ω1þin2H2ω2

½1þ 2παþ 2πα n1H1Þ2ð �½1þ 2παþ 2πα n2H2Þ2ð � PΩ ω1;ω2ð Þ � f̂ T ω1;ω2ð Þ

¼ H1H2 ∑
∞

n1¼�∞
∑
∞

n2¼�∞

f T n1H1; n2H2ð Þein1H1ω1þin2H2ω2

1þ 2παþ 2πα n1H1ð Þ2½ � 1þ 2παþ 2πα n2H2ð Þ2½ �PΩ ω1;ω2ð Þ � f̂ T ω1;ω2ð Þ

þH1H2 ∑
∞

n1¼�∞
∑
∞

n2¼�∞

η n1H1; n2H2ð Þ
1þ 2παþ 2πα n1H1ð Þ2½ � 1þ 2παþ 2πα n2H2ð Þ2½ � e

in1H1ω1þin2H2ω2PΩ ω1;ω2ð Þ

¼
ð∞

�∞

ð∞

�∞

f T t1; t2ð Þeit1ω1þit2ω2dt1dt2
1þ 2παþ 2παt21
� �

1þ 2παþ 2παt22
� ��

ð∞

�∞

ð∞

�∞

f T t1; t2ð Þeit1ω1þit2ω2dt1dt2

2
4

3
5PΩ ω1;ω2ð Þ

þH1H2 ∑
∞

n1¼�∞
∑
∞

n2¼�∞

η n1H1; n2H2ð Þein1H1ω1þin2H2ω2

1þ 2παþ 2πα n1H1ð Þ2
h i

1þ 2παþ 2πα n2H2ð Þ2
h iPΩ ω1;ω2ð Þ þO a

1
2e�ac

� �
:

This implies

f̂ α ω1;ω2ð Þ � f̂ Tðω1;ω2Þ
���

���

≤
ð∞
�∞

ð∞
�∞

4παþ 2παt21 þ 2παt22 þ 2παþ 2παt21
� �

2παþ 2παt22
� �

1þ 2παþ 2παt21
� �

1þ 2παþ 2παt22
� � f T t1; t2ð Þeit1ω1þit2ω2dt1dt2

�����

�����

þH1H2 ∑
∞

n1¼�∞
∑
∞

n2¼�∞

η n1H1; n2H2ð Þ
½1þ 2παþ 2πα n1H1Þ2ð �½1þ 2παþ 2πα n2H2Þ2ð � e

in1H1ω1þin2H2ω2

�����

�����
þO a

1
2e�ac

� �

where

∑
∞

n1¼�∞
∑
∞

n2¼�∞

η n1H1; n2H2ð Þ
1þ 2παþ 2πα n1H1ð Þ2
h i

1þ 2παþ 2πα n2H2ð Þ2
h i ein1H1ω1þin2H2ω2

������

������
¼ O

δ

α

� �
:

For any ε>0, there exists M>0 such that

ð ð

∣t1∣≥M or ∣t2∣≥M
fT t1; t2ð Þ�� ��dt1dt2 < ε:

Then

ð∞
�∞

ð∞
�∞

4παþ 2παt21 þ 2παt22 þ 2παþ 2παt21
� �

2παþ 2παt22
� �

1þ 2παþ 2παt21
� �

1þ 2παþ 2παt22
� � f T t1; t2ð Þeit1ω1þit2ω2dt1dt2

�����

�����

≤
ðð

∣t1∣ ≤M and ∣t2∣ ≤M

4παþ 2παt21 þ 2παt22 þ 2παþ 2παt21
� �

2παþ 2παt22
� �

1þ 2παþ 2παt21
� �

1þ 2παþ 2παt22
� � f T t1; t2ð Þeit1ω1þit2ω2dt1dt2

�������

�������

þ
ðð

∣t1 ∣≥M or ∣t2∣≥M

4παþ 2παt21 þ 2παt22 þ 2παþ 2παt21
� �

2παþ 2παt22
� �

1þ 2παþ 2παt21
� �

1þ 2παþ 2παt22
� � f T t1; t2ð Þeit1ω1þit2ω2dt1dt2

�������

�������
,

where
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ðð

∣t1∣≥M or ∣t2∣≥M

4παþ 2παt21 þ 2παt22 þ 2παþ 2παt21
� �

2παþ 2παt22
� �

1þ 2παþ 2παt21
� �

1þ 2παþ 2παt22
� � f T t1; t2ð Þeit1ω1þit2ω2dt1dt2

�������

�������

≤
ðð

∣t1∣≥M or ∣t2∣≥M

fT t1; t2ð Þ�� ��dt1dt2 < ε

and

ðð

∣t1∣ ≤M and ∣t2∣ ≤M

4παþ 2παt21 þ 2παt22 þ 2παþ 2παt21
� �

2παþ 2παt22
� �

1þ 2παþ 2παt21
� �

1þ 2παþ 2παt22
� � f T t1; t2ð Þeit1ω1þit2ω2dt1dt2

�������

�������
! 0

as α ! 0.

4. Error analysis

In last section we have proved the convergence property of the regularized
Fourier series under the condition f T ∈L1 R2� �

. In this section, we give the error
analysis of the regularized Fourier series according to the L2-norm for the func-
tions f T ∈L2 R2� �

. The bound of the variance of the regularized Fourier series is
presented.

By Lemma 3.5, we have next lemma.

Lemma 4.1

∑
∞

n1¼�∞
∑
∞

n2¼�∞

η n1H1; n2H2ð Þ
1þ 2παþ 2πα n1H1ð Þ2½ � 1þ 2παþ 2πα n2H2ð Þ2½ �
����

����
2

¼ O δ2
� �þO

δ2

α

� �

for δ ! þ0 and α ! þ0, where η and δ are given in Eq. (4) and Eq. (5) in
Section 1.

Theorem 4.1 Suppose f T ∈L2 R2� �
is band-limited. If we choose α ¼ α δð Þ such

that α δð Þ ! 0 and δ2=α δð Þ ! 0 as δ ! 0, then f̂ α ω1;ω2ð Þ ! f̂ T ω1;ω2ð Þ in
L2 �Ω1;Ω1½ � � �Ω2;Ω2½ � as δ ! 0.

Proof.

f̂ α ω1;ω2ð Þ � f̂ T ω1;ω2ð Þ

¼ H1H2 ∑
∞

n1¼�∞
∑
∞

n2¼�∞

f T n1H1; n2H2ð Þ þ η n1H1; n2H2ð Þ� �
ein1H1ω1þin2H2ω2

1þ 2παþ 2πα n1H1ð Þ2
h i

1þ 2παþ 2πα n2H2ð Þ2
h iPΩ ω1;ω2ð Þ � f̂ T ω1;ω2ð Þ

¼ �H1H2 ∑
∞

n1¼�∞
∑
∞

n2¼�∞

4παþ 2πα n1H1ð Þ2 þ 2πα n2H2ð Þ2 þ 2παþ 2πα n1H1ð Þ2
� �

2παþ 2πα n2H2ð Þ2
� �

1þ 2παþ 2πα n1H1ð Þ2
h i

1þ 2παþ 2πα n2H2ð Þ2
h i
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Therefore,

f̂ α ω1;ω2ð Þ � f̂ T ω1;ω2ð Þ ¼ H1H2 ∑
∞

n1¼�∞
∑
∞

n2¼�∞

fT n1H1;n2H2ð Þ þ η n1H1;n2H2ð Þ½ �ein1H1ω1þin2H2ω2

½1þ 2παþ 2πα n1H1Þ2ð �½1þ 2παþ 2πα n2H2Þ2ð � PΩ ω1;ω2ð Þ � f̂ T ω1;ω2ð Þ

¼ H1H2 ∑
∞

n1¼�∞
∑
∞

n2¼�∞

f T n1H1; n2H2ð Þein1H1ω1þin2H2ω2

1þ 2παþ 2πα n1H1ð Þ2½ � 1þ 2παþ 2πα n2H2ð Þ2½ �PΩ ω1;ω2ð Þ � f̂ T ω1;ω2ð Þ

þH1H2 ∑
∞

n1¼�∞
∑
∞

n2¼�∞

η n1H1; n2H2ð Þ
1þ 2παþ 2πα n1H1ð Þ2½ � 1þ 2παþ 2πα n2H2ð Þ2½ � e

in1H1ω1þin2H2ω2PΩ ω1;ω2ð Þ

¼
ð∞

�∞

ð∞

�∞

f T t1; t2ð Þeit1ω1þit2ω2dt1dt2
1þ 2παþ 2παt21
� �

1þ 2παþ 2παt22
� ��

ð∞

�∞

ð∞

�∞

f T t1; t2ð Þeit1ω1þit2ω2dt1dt2

2
4

3
5PΩ ω1;ω2ð Þ

þH1H2 ∑
∞

n1¼�∞
∑
∞

n2¼�∞

η n1H1; n2H2ð Þein1H1ω1þin2H2ω2

1þ 2παþ 2πα n1H1ð Þ2
h i

1þ 2παþ 2πα n2H2ð Þ2
h iPΩ ω1;ω2ð Þ þO a

1
2e�ac

� �
:

This implies

f̂ α ω1;ω2ð Þ � f̂ Tðω1;ω2Þ
���

���

≤
ð∞
�∞

ð∞
�∞

4παþ 2παt21 þ 2παt22 þ 2παþ 2παt21
� �

2παþ 2παt22
� �

1þ 2παþ 2παt21
� �

1þ 2παþ 2παt22
� � f T t1; t2ð Þeit1ω1þit2ω2dt1dt2

�����

�����

þH1H2 ∑
∞

n1¼�∞
∑
∞

n2¼�∞

η n1H1; n2H2ð Þ
½1þ 2παþ 2πα n1H1Þ2ð �½1þ 2παþ 2πα n2H2Þ2ð � e

in1H1ω1þin2H2ω2

�����

�����
þO a

1
2e�ac

� �

where

∑
∞

n1¼�∞
∑
∞

n2¼�∞

η n1H1; n2H2ð Þ
1þ 2παþ 2πα n1H1ð Þ2
h i

1þ 2παþ 2πα n2H2ð Þ2
h i ein1H1ω1þin2H2ω2

������

������
¼ O

δ

α

� �
:

For any ε>0, there exists M>0 such that

ð ð

∣t1∣≥M or ∣t2∣≥M
fT t1; t2ð Þ�� ��dt1dt2 < ε:

Then

ð∞
�∞

ð∞
�∞

4παþ 2παt21 þ 2παt22 þ 2παþ 2παt21
� �

2παþ 2παt22
� �

1þ 2παþ 2παt21
� �

1þ 2παþ 2παt22
� � f T t1; t2ð Þeit1ω1þit2ω2dt1dt2

�����

�����

≤
ðð

∣t1∣ ≤M and ∣t2∣ ≤M

4παþ 2παt21 þ 2παt22 þ 2παþ 2παt21
� �

2παþ 2παt22
� �

1þ 2παþ 2παt21
� �

1þ 2παþ 2παt22
� � f T t1; t2ð Þeit1ω1þit2ω2dt1dt2

�������

�������

þ
ðð

∣t1 ∣≥M or ∣t2∣≥M

4παþ 2παt21 þ 2παt22 þ 2παþ 2παt21
� �

2παþ 2παt22
� �

1þ 2παþ 2παt21
� �

1þ 2παþ 2παt22
� � f T t1; t2ð Þeit1ω1þit2ω2dt1dt2

�������

�������
,

where
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ðð

∣t1∣≥M or ∣t2∣≥M

4παþ 2παt21 þ 2παt22 þ 2παþ 2παt21
� �

2παþ 2παt22
� �

1þ 2παþ 2παt21
� �

1þ 2παþ 2παt22
� � f T t1; t2ð Þeit1ω1þit2ω2dt1dt2

�������

�������

≤
ðð

∣t1∣≥M or ∣t2∣≥M

fT t1; t2ð Þ�� ��dt1dt2 < ε

and

ðð

∣t1∣ ≤M and ∣t2∣ ≤M

4παþ 2παt21 þ 2παt22 þ 2παþ 2παt21
� �

2παþ 2παt22
� �

1þ 2παþ 2παt21
� �

1þ 2παþ 2παt22
� � f T t1; t2ð Þeit1ω1þit2ω2dt1dt2

�������

�������
! 0

as α ! 0.

4. Error analysis

In last section we have proved the convergence property of the regularized
Fourier series under the condition f T ∈L1 R2� �

. In this section, we give the error
analysis of the regularized Fourier series according to the L2-norm for the func-
tions f T ∈L2 R2� �

. The bound of the variance of the regularized Fourier series is
presented.

By Lemma 3.5, we have next lemma.

Lemma 4.1

∑
∞

n1¼�∞
∑
∞

n2¼�∞

η n1H1; n2H2ð Þ
1þ 2παþ 2πα n1H1ð Þ2½ � 1þ 2παþ 2πα n2H2ð Þ2½ �
����

����
2

¼ O δ2
� �þO

δ2

α

� �

for δ ! þ0 and α ! þ0, where η and δ are given in Eq. (4) and Eq. (5) in
Section 1.

Theorem 4.1 Suppose f T ∈L2 R2� �
is band-limited. If we choose α ¼ α δð Þ such

that α δð Þ ! 0 and δ2=α δð Þ ! 0 as δ ! 0, then f̂ α ω1;ω2ð Þ ! f̂ T ω1;ω2ð Þ in
L2 �Ω1;Ω1½ � � �Ω2;Ω2½ � as δ ! 0.

Proof.

f̂ α ω1;ω2ð Þ � f̂ T ω1;ω2ð Þ

¼ H1H2 ∑
∞

n1¼�∞
∑
∞

n2¼�∞

f T n1H1; n2H2ð Þ þ η n1H1; n2H2ð Þ� �
ein1H1ω1þin2H2ω2

1þ 2παþ 2πα n1H1ð Þ2
h i

1þ 2παþ 2πα n2H2ð Þ2
h iPΩ ω1;ω2ð Þ � f̂ T ω1;ω2ð Þ

¼ �H1H2 ∑
∞

n1¼�∞
∑
∞

n2¼�∞

4παþ 2πα n1H1ð Þ2 þ 2πα n2H2ð Þ2 þ 2παþ 2πα n1H1ð Þ2
� �

2παþ 2πα n2H2ð Þ2
� �

1þ 2παþ 2πα n1H1ð Þ2
h i

1þ 2παþ 2πα n2H2ð Þ2
h i
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�f T n1H1; n2H2ð Þein1H1ω1þin2H2ω2PΩ ω1;ω2ð Þ
þH1H2 ∑

∞

n1¼�∞
∑
∞

n2¼�∞

η n1H1; n2H2ð Þ
1þ 2παþ 2πα n1H1ð Þ2
h i

1þ 2παþ 2πα n2H2ð Þ2
h i

ein1H1ω1þin2H2ω2PΩ ω1;ω2ð Þ:
Let

S ω1;ω2ð Þ≔ ∑
∞

n1¼�∞
∑
∞

n2¼�∞

4παþ 2πα n1H1ð Þ2 þ 2πα n2H2ð Þ2 þ 2παþ 2πα n1H1ð Þ2
� �

2παþ 2πα n2H2ð Þ2
� �

1þ 2παþ 2πα n1H1ð Þ2
h i

1þ 2παþ 2πα n2H2ð Þ2
h i

�f T n1H1; n2H2ð Þein1H1ω1þin2H2ω2PΩ ω1;ω2ð Þ:
Then

f̂ α ω1;ω2ð Þ � f̂ T ω1;ω2ð Þ
���

���
2

L2
≤ 2H2

1H
2
2 S ω1;ω2ð Þk k2 þ 2H2

1H
2
2

∑
∞

n1¼�∞
∑
∞

n2¼�∞

η n1H1; n2H2ð Þ
1þ 2παþ 2πα n1H1ð Þ2
h i

1þ 2παþ 2πα n2H2ð Þ2
h i ein1H1ω1þin2H2ω2PΩ ω1;ω2ð Þ

������

������

2

,

where

∑
∞

n1¼�∞
∑
∞

n2¼�∞

η n1H1; n2H2ð Þ
1þ 2παþ 2πα n1H1ð Þ2
h i

1þ 2παþ 2πα n2H2ð Þ2
h i ein1H1ω1þin2H2ω2PΩ ω1;ω2ð Þ

������

������

2

¼ ∑
∞

n1¼�∞
∑
∞

n2¼�∞

η n1H1; n2H2ð Þ
1þ 2παþ 2πα n1H1ð Þ2
h i

1þ 2παþ 2πα n2H2ð Þ2
h i

������

������

2

¼ O
δ2

α

� �

by Lemma 4.1 and

S ω1;ω2ð Þk k2 ¼ ∑
∞

n1¼�∞
∑
∞

n2¼�∞

4παþ 2πα n1H1ð Þ2 þ 2πα n2H2ð Þ2 þ 2παþ 2πα n1H1ð Þ2
� �

2παþ 2πα n2H2ð Þ2
� �

1þ 2παþ 2πα n1H1ð Þ2
h i

1þ 2παþ 2πα n2H2ð Þ2
h i

� f T n1H1; n2H2ð Þ�� ��2:
For every ε>0, there exists N>0 such that

∑
∣n1∣≥N

∑
or ∣n2∣≥N

f T n1H1; n2H2ð Þ�� ��2 < ϵ,

since
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∑
∞

n1¼�∞
∑
∞

n2¼�∞

4παþ 2πα n1H1ð Þ2 þ 2πα n2H2ð Þ2 þ 2παþ 2πα n1H1ð Þ2
� �

2παþ 2πα n2H2ð Þ2
� �

1þ 2παþ 2πα n1H1ð Þ2
h i

1þ 2παþ 2πα n2H2ð Þ2
h i

� f T n1H1; n2H2ð Þ�� ��2 ¼ ∑
∣n1∣ ≤N

∑
and ∣n2∣ ≤N

4παþ 2πα n1H1ð Þ2 þ 2πα n2H2ð Þ2 þ 2παþ 2πα n1H1ð Þ2
� �

2παþ 2πα n2H2ð Þ2
� �

1þ 2παþ 2πα n1H1ð Þ2
h i

1þ 2παþ 2πα n2H2ð Þ2
h i

� f T n1H1; n2H2ð Þ�� ��2 þ ∑
∣n1∣>N

∑
or ∣n2∣>N

4παþ 2πα n1H1ð Þ2 þ 2πα n2H2ð Þ2 þ 2παþ 2πα n1H1ð Þ2
� �

2παþ 2πα n2H2ð Þ2
� �

1þ 2παþ 2πα n1H1ð Þ2
h i

1þ 2παþ 2πα n2H2ð Þ2
h i

� f T n1H1; n2H2ð Þ�� ��2,

where

∑
∣n1∣>N

∑
or ∣n2∣>N

4παþ 2πα n1H1ð Þ2 þ 2πα n2H2ð Þ2 þ 2παþ 2πα n1H1ð Þ2
� �

2παþ 2πα n2H2ð Þ2
� �

1þ 2παþ 2πα n1H1ð Þ2
h i

1þ 2παþ 2πα n2H2ð Þ2
h i

� f T n1H1; n2H2ð Þ�� ��2

≤ ∑
∣n1∣≥N

∑
or ∣n2∣≥N

f T n1H1; n2H2ð Þ�� ��2 < ε

and
∑

∣n1∣ ≤N
∑

and ∣n2∣ ≤N

4παþ 2πα n1H1ð Þ2 þ 2πα n2H2ð Þ2 þ 2παþ 2πα n1H1ð Þ2
� �

2παþ 2πα n2H2ð Þ2
� �

1þ 2παþ 2πα n1H1ð Þ2
h i

1þ 2παþ 2πα n2H2ð Þ2
h i

f T n1H1; n2H2ð Þ�� ��2 ! 0

as α ! 0.

Therefore, f̂ α ω1;ω2ð Þ � f̂ T ω1;ω2ð Þ
���

���
2

L2
! 0.

Theorem 4.2 Suppose f T ∈L2 R2� �
is band-limited. If the noise in Eq. (4) is

white noise such that E η n1H1; n2H2ð Þ½ � ¼ 0 and Var η n1H1; n2H2ð Þ½ � ¼ σ2, then the

bias f̂ T ω1;ω2ð Þ � E f̂ α ω1;ω2ð Þ
h i

! 0 in L2 �Ω1;Ω1½ � � �Ω2;Ω2½ � as α ! 0 and

Var f̂ α ω1;ω2ð Þ
h i

¼ O σ2
� �þO σ2=α

� �
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�f T n1H1; n2H2ð Þein1H1ω1þin2H2ω2PΩ ω1;ω2ð Þ
þH1H2 ∑

∞

n1¼�∞
∑
∞

n2¼�∞

η n1H1; n2H2ð Þ
1þ 2παþ 2πα n1H1ð Þ2
h i

1þ 2παþ 2πα n2H2ð Þ2
h i

ein1H1ω1þin2H2ω2PΩ ω1;ω2ð Þ:
Let

S ω1;ω2ð Þ≔ ∑
∞

n1¼�∞
∑
∞

n2¼�∞

4παþ 2πα n1H1ð Þ2 þ 2πα n2H2ð Þ2 þ 2παþ 2πα n1H1ð Þ2
� �

2παþ 2πα n2H2ð Þ2
� �

1þ 2παþ 2πα n1H1ð Þ2
h i

1þ 2παþ 2πα n2H2ð Þ2
h i

�f T n1H1; n2H2ð Þein1H1ω1þin2H2ω2PΩ ω1;ω2ð Þ:
Then

f̂ α ω1;ω2ð Þ � f̂ T ω1;ω2ð Þ
���

���
2

L2
≤ 2H2

1H
2
2 S ω1;ω2ð Þk k2 þ 2H2

1H
2
2

∑
∞

n1¼�∞
∑
∞

n2¼�∞

η n1H1; n2H2ð Þ
1þ 2παþ 2πα n1H1ð Þ2
h i

1þ 2παþ 2πα n2H2ð Þ2
h i ein1H1ω1þin2H2ω2PΩ ω1;ω2ð Þ

������

������

2

,

where

∑
∞

n1¼�∞
∑
∞

n2¼�∞

η n1H1; n2H2ð Þ
1þ 2παþ 2πα n1H1ð Þ2
h i

1þ 2παþ 2πα n2H2ð Þ2
h i ein1H1ω1þin2H2ω2PΩ ω1;ω2ð Þ

������

������

2

¼ ∑
∞

n1¼�∞
∑
∞

n2¼�∞

η n1H1; n2H2ð Þ
1þ 2παþ 2πα n1H1ð Þ2
h i

1þ 2παþ 2πα n2H2ð Þ2
h i

������

������

2

¼ O
δ2

α

� �

by Lemma 4.1 and

S ω1;ω2ð Þk k2 ¼ ∑
∞

n1¼�∞
∑
∞

n2¼�∞

4παþ 2πα n1H1ð Þ2 þ 2πα n2H2ð Þ2 þ 2παþ 2πα n1H1ð Þ2
� �

2παþ 2πα n2H2ð Þ2
� �

1þ 2παþ 2πα n1H1ð Þ2
h i

1þ 2παþ 2πα n2H2ð Þ2
h i

� f T n1H1; n2H2ð Þ�� ��2:
For every ε>0, there exists N>0 such that

∑
∣n1∣≥N

∑
or ∣n2∣≥N

f T n1H1; n2H2ð Þ�� ��2 < ϵ,

since
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∑
∞

n1¼�∞
∑
∞

n2¼�∞

4παþ 2πα n1H1ð Þ2 þ 2πα n2H2ð Þ2 þ 2παþ 2πα n1H1ð Þ2
� �

2παþ 2πα n2H2ð Þ2
� �

1þ 2παþ 2πα n1H1ð Þ2
h i

1þ 2παþ 2πα n2H2ð Þ2
h i

� f T n1H1; n2H2ð Þ�� ��2 ¼ ∑
∣n1∣ ≤N

∑
and ∣n2∣ ≤N

4παþ 2πα n1H1ð Þ2 þ 2πα n2H2ð Þ2 þ 2παþ 2πα n1H1ð Þ2
� �

2παþ 2πα n2H2ð Þ2
� �

1þ 2παþ 2πα n1H1ð Þ2
h i

1þ 2παþ 2πα n2H2ð Þ2
h i

� f T n1H1; n2H2ð Þ�� ��2 þ ∑
∣n1∣>N

∑
or ∣n2∣>N

4παþ 2πα n1H1ð Þ2 þ 2πα n2H2ð Þ2 þ 2παþ 2πα n1H1ð Þ2
� �

2παþ 2πα n2H2ð Þ2
� �

1þ 2παþ 2πα n1H1ð Þ2
h i

1þ 2παþ 2πα n2H2ð Þ2
h i

� f T n1H1; n2H2ð Þ�� ��2,

where

∑
∣n1∣>N

∑
or ∣n2∣>N

4παþ 2πα n1H1ð Þ2 þ 2πα n2H2ð Þ2 þ 2παþ 2πα n1H1ð Þ2
� �

2παþ 2πα n2H2ð Þ2
� �

1þ 2παþ 2πα n1H1ð Þ2
h i

1þ 2παþ 2πα n2H2ð Þ2
h i

� f T n1H1; n2H2ð Þ�� ��2

≤ ∑
∣n1∣≥N

∑
or ∣n2∣≥N

f T n1H1; n2H2ð Þ�� ��2 < ε

and
∑

∣n1∣ ≤N
∑

and ∣n2∣ ≤N

4παþ 2πα n1H1ð Þ2 þ 2πα n2H2ð Þ2 þ 2παþ 2πα n1H1ð Þ2
� �

2παþ 2πα n2H2ð Þ2
� �

1þ 2παþ 2πα n1H1ð Þ2
h i

1þ 2παþ 2πα n2H2ð Þ2
h i

f T n1H1; n2H2ð Þ�� ��2 ! 0

as α ! 0.

Therefore, f̂ α ω1;ω2ð Þ � f̂ T ω1;ω2ð Þ
���

���
2

L2
! 0.

Theorem 4.2 Suppose f T ∈L2 R2� �
is band-limited. If the noise in Eq. (4) is

white noise such that E η n1H1; n2H2ð Þ½ � ¼ 0 and Var η n1H1; n2H2ð Þ½ � ¼ σ2, then the

bias f̂ T ω1;ω2ð Þ � E f̂ α ω1;ω2ð Þ
h i

! 0 in L2 �Ω1;Ω1½ � � �Ω2;Ω2½ � as α ! 0 and

Var f̂ α ω1;ω2ð Þ
h i

¼ O σ2
� �þO σ2=α

� �
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if α σð Þ ! 0 and σ2=α σð Þ ! 0 as σ ! 0.

Proof. We can calculate

f̂ T ω1;ω2ð Þ � E f̂ α ω1;ω2ð Þ
h i���

���
2

L2
¼ H2

1H
2
2 � ∑

∞

n1¼�∞
∑
∞

n2¼�∞

4παþ 2πα n1H1ð Þ2 þ 2πα n2H2ð Þ2 þ 2παþ 2πα n1H1ð Þ2
� �

2παþ 2πα n2H2ð Þ2
� �

1þ 2παþ 2πα n1H1ð Þ2
h i

1þ 2παþ 2πα n2H2ð Þ2
h i

� f T n1H1; n2H2ð Þ�� ��2

and

Var f̂ α ω1;ω2ð Þ
h i

¼ ∑
∞

n1¼�∞
∑
∞

n2¼�∞

σ2

1þ 2παþ 2πα n1H1ð Þ2
h i2

1þ 2παþ 2πα n2H2ð Þ2
h i2 :

By the proof of Theorem 4.1, we can see that f̂ T ω1;ω2ð Þ � E f̂ α ω1;ω2ð Þ
h i

! 0 in

L2 �Ω1;Ω1½ � � �Ω2;Ω2½ � as α ! 0 and Var f̂ α �ω1;ω1½ �ð Þ
h i

¼ O σ2ð Þ þ O σ2=αð Þ.

5. The algorithm and experimental results

In this section, we give the algorithm and an example to show that the regular-
ized Fourier series is more effective in controlling noise than the Fourier series.

In practical computation, we choose a large integer N and use the next formula
in computation:

Figure 1.
The exact Fourier transform in Example 2.
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f̂ α ω1;ω2ð Þ ¼

H1H2 ∑
N

n1¼�N
∑
N

n2¼�N

f n1H1; n2H2ð Þein1H1ω1þin2H2ω2

1þ 2παþ 2πα n1H1ð Þ2
h i

1þ 2παþ 2πα n2H2ð Þ2
h iPΩ ω1;ω2ð Þ:

Example 1. Suppose

f T t1; t2ð Þ ¼ 1� cos t1
πt21

1� cos t2
πt22

:

Figure 2.
The numerical results by Fourier series in Example 2.

Figure 3.
The numerical results by the regularized Fourier series in Example 2.
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if α σð Þ ! 0 and σ2=α σð Þ ! 0 as σ ! 0.

Proof. We can calculate

f̂ T ω1;ω2ð Þ � E f̂ α ω1;ω2ð Þ
h i���

���
2

L2
¼ H2

1H
2
2 � ∑

∞

n1¼�∞
∑
∞

n2¼�∞

4παþ 2πα n1H1ð Þ2 þ 2πα n2H2ð Þ2 þ 2παþ 2πα n1H1ð Þ2
� �

2παþ 2πα n2H2ð Þ2
� �

1þ 2παþ 2πα n1H1ð Þ2
h i

1þ 2παþ 2πα n2H2ð Þ2
h i

� f T n1H1; n2H2ð Þ�� ��2

and

Var f̂ α ω1;ω2ð Þ
h i

¼ ∑
∞

n1¼�∞
∑
∞

n2¼�∞

σ2

1þ 2παþ 2πα n1H1ð Þ2
h i2

1þ 2παþ 2πα n2H2ð Þ2
h i2 :

By the proof of Theorem 4.1, we can see that f̂ T ω1;ω2ð Þ � E f̂ α ω1;ω2ð Þ
h i

! 0 in

L2 �Ω1;Ω1½ � � �Ω2;Ω2½ � as α ! 0 and Var f̂ α �ω1;ω1½ �ð Þ
h i

¼ O σ2ð Þ þ O σ2=αð Þ.

5. The algorithm and experimental results

In this section, we give the algorithm and an example to show that the regular-
ized Fourier series is more effective in controlling noise than the Fourier series.

In practical computation, we choose a large integer N and use the next formula
in computation:

Figure 1.
The exact Fourier transform in Example 2.
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f̂ α ω1;ω2ð Þ ¼

H1H2 ∑
N

n1¼�N
∑
N

n2¼�N

f n1H1; n2H2ð Þein1H1ω1þin2H2ω2

1þ 2παþ 2πα n1H1ð Þ2
h i

1þ 2παþ 2πα n2H2ð Þ2
h iPΩ ω1;ω2ð Þ:

Example 1. Suppose

f T t1; t2ð Þ ¼ 1� cos t1
πt21

1� cos t2
πt22

:
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The numerical results by the regularized Fourier series in Example 2.
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Then

f̂ T ω1;ω2ð Þ ¼ 1� ω1j jð Þ 1� ω2j jð ÞPΩ ω1;ω2ð Þ,

where Ω1 ¼ 1 and Ω2 ¼ 1.
We add the white noise that is uniformly distributed in �0:0005;0:0005½ � and

choose N ¼ 20. The exact Fourier transform is in Figure 1. The result of the Fourier
series is in Figure 2. The result of the regularized Fourier series with α ¼ 0:001 is in
Figure 3.

6. Conclusion

The problem of computing the two-dimensional Fourier transform is highly ill-
posed. Noise can give rise to large errors if the Fourier series formula is used. The
regularized two-dimensional Fourier series is presented. The convergence property
is proved and tested by some examples. The convergence property and numerical
results show that the regularized two-dimensional Fourier series is excellent in
computation in noisy cases. The algorithm will be useful in image processing and
multi-dimensional signal processing. The method will be of interest to: engineers
who want higher precision in the gauging and design of function generators and
analyzers; the electronic or electrical rectification industry; and also to the mathe-
matics community for computing methods and the improvement of mathematics
programs on signals and systems, for example, Simulink; and others since many
problems in engineering involve noise.
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Then
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where Ω1 ¼ 1 and Ω2 ¼ 1.
We add the white noise that is uniformly distributed in �0:0005;0:0005½ � and
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series is in Figure 2. The result of the regularized Fourier series with α ¼ 0:001 is in
Figure 3.

6. Conclusion

The problem of computing the two-dimensional Fourier transform is highly ill-
posed. Noise can give rise to large errors if the Fourier series formula is used. The
regularized two-dimensional Fourier series is presented. The convergence property
is proved and tested by some examples. The convergence property and numerical
results show that the regularized two-dimensional Fourier series is excellent in
computation in noisy cases. The algorithm will be useful in image processing and
multi-dimensional signal processing. The method will be of interest to: engineers
who want higher precision in the gauging and design of function generators and
analyzers; the electronic or electrical rectification industry; and also to the mathe-
matics community for computing methods and the improvement of mathematics
programs on signals and systems, for example, Simulink; and others since many
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Chapter 5

Electro-magnetic Simulation
Based on the Integral Form of
Maxwell’s Equations
Naofumi Kitsunezaki

Abstract

Algorithms for a computational method of electromagnetics based on the
integral form of Maxwell’s equations are introduced. The algorithms are supported
by the lowest- and next-to-the-lowest-order approximations of integrals over a cell
surface and edge of the equations. The method supported by the lowest-order
approximation of the integrals coincides with the original finite-difference time-
domain (FDTD) method, a well-known computational method of electromagnetics
based on the differential form of Maxwell’s equations. The method supported by the
next-to-the-lowest-order approximation can be considered a correction to the
FDTD method. Numerical results of an electromagnetic wave propagating in a
two-dimensional slab waveguide using the original and the corrected FDTD
methods are also shown to compare them with an analytical result. In addition, the
results of the corrected FDTD method are also shown to be more accurate and
reliable than those of the original FDTD method.

Keywords: Maxwell’s equations, integral form, finite-difference time-domain
method, the lowest-order approximation, next-to-the-lowest-order approximation,
computational method

1. Introduction

Maxwell’s equations are considered the fundamental equations of an electro-
magnetic field. They consist of laws of Faraday, Ampére-Maxwell, and Gauss for
magnetic and electric flux densities

∂tB ¼ �∇� E, (1)

∂tD ¼ ∇�H � i, (2)

∇ � B ¼ 0, (3)

∇ �D ¼ ρ, (4)

where E andH are electric and magnetic fields, respectively,D and B are electric
and magnetic flux densities, respectively, i is current density, ρ is charge density,
∂t f is the time derivative of field f , ∇�A is the rotation of vector field A, ∇ �A
is the divergence of vector A, and ρ is the electric charge density. Taking the

63



Chapter 5

Electro-magnetic Simulation
Based on the Integral Form of
Maxwell’s Equations
Naofumi Kitsunezaki

Abstract

Algorithms for a computational method of electromagnetics based on the
integral form of Maxwell’s equations are introduced. The algorithms are supported
by the lowest- and next-to-the-lowest-order approximations of integrals over a cell
surface and edge of the equations. The method supported by the lowest-order
approximation of the integrals coincides with the original finite-difference time-
domain (FDTD) method, a well-known computational method of electromagnetics
based on the differential form of Maxwell’s equations. The method supported by the
next-to-the-lowest-order approximation can be considered a correction to the
FDTD method. Numerical results of an electromagnetic wave propagating in a
two-dimensional slab waveguide using the original and the corrected FDTD
methods are also shown to compare them with an analytical result. In addition, the
results of the corrected FDTD method are also shown to be more accurate and
reliable than those of the original FDTD method.

Keywords: Maxwell’s equations, integral form, finite-difference time-domain
method, the lowest-order approximation, next-to-the-lowest-order approximation,
computational method

1. Introduction

Maxwell’s equations are considered the fundamental equations of an electro-
magnetic field. They consist of laws of Faraday, Ampére-Maxwell, and Gauss for
magnetic and electric flux densities

∂tB ¼ �∇� E, (1)

∂tD ¼ ∇�H � i, (2)

∇ � B ¼ 0, (3)

∇ �D ¼ ρ, (4)

where E andH are electric and magnetic fields, respectively,D and B are electric
and magnetic flux densities, respectively, i is current density, ρ is charge density,
∂t f is the time derivative of field f , ∇�A is the rotation of vector field A, ∇ �A
is the divergence of vector A, and ρ is the electric charge density. Taking the

63



divergence of both sides of Eq. (2) and using Eq. (4), law of charge conservation
is derived:

∂tρþ ∇ � i ¼ 0: (5)

Maxwell’s equations combined with law of Lorentz are the foundation of
electronics, optics, and electric circuits used to understand the physical structure
dependence of an electromagnetic field distribution, the interaction between the
structure and field, and other relevant characteristics. However, situations having
analytical solutions of them are rare. Thus, computational method of electromag-
netics is important.

For computational methods of electromagnetics, there are two major types, time
domain and frequency domain. In a time-domain method, time is discretized. The
field distribution of a particular time step is determined by Maxwell’s equations and
by the distribution of the previous time step. In a frequency-domain method, the
time derivative is replaced by iω, where i is the imaginary unit and ω is the angular
frequency. Thus, Maxwell’s equations are solved. A user chooses a method by
considering the analysis object, calculation accuracy, specifications of his or her
computer, and other relevant factors.

The finite-difference time-domain (FDTD) method is a time-domain method
used to analyze high-frequency electromagnetic phenomena in optical devices,
antennae, and similar devices [1]. Its algorithm is based on the laws of Faraday (1),
Ampére-Maxwell (2), and charge conservation (5). In the FDTD method, Gauss’s
laws (3) and (4) are not considered except for the initial condition. The reason can
be easily understood by taking divergence of both sides of Eq. (1) and (2), and
combining the charge conservation law (5) yields

∂t∇ � B ¼ 0, (6)

∂t ∇ �D� ρð Þ ¼ 0, (7)

the time derivatives of Eq. (3) and (4), respectively. This means that Gauss’s
laws of electric and magnetic flux densities are always satisfied when they are
initially satisfied.

In the next section, an algorithm of the original FDTD method is shown. Next, a
corrected algorithm of the FDTD method based on the integral form of Maxwell’s
equations is shown [2, 3]. Then, a numerical result of the propagation of electro-
magnetic waves in a two-dimensional slab waveguide is shown. In the subsequent
section, the accuracy of the original and corrected FDTD methods is compared
by showing the differences between the computational and analytical methods.
The analytical method is shown in the appendix. The last section is devoted to
conclusions.

2. Algorithm of the FDTD Method

The FDTD method is a computational method for analyzing the space-time
dependence of electromagnetic fields by discretizing space-time variables. This
method utilizes a dual lattice called a Yee lattice [1].

Figure 1 shows the Yee lattice. In the figure, there are two cubes called cells.
The component parallel to the edge of the electric field is at the center of each
edge of a yellow cell. The component perpendicular to the surface of the magnetic
field is at the center of each surface of the cell. The cyan cell is placed in such a
manner that the component parallel to the edge of the magnetic field is at the center
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of its edge, and the component normal to the surface of the electric field is at the
center of its surface.

The yellow cell is used to calculate the magnetic field at time t ¼ t0 þ Δt using
the magnetic field at t ¼ t0 and the electric field at t ¼ t0 þ 1

2Δt by applying Eq. (1),
where t0 is a particular time and Δt is the time step. Let us now consider the top
surface of the cell. At the center of the surface whose coordinates are x0; y0; z0

� �
,

Eq. (1) becomes

∂tBz t; x0; y0; z0
� � ¼ �∂xEy t; x0; y0; z0

� �þ ∂yEx t; x0; y0; z0
� �

, (8)

where the variables x, y, and z of B and E represent the x-, y-, and z-components
of the B and E fields, respectively, and ∂x and ∂y represent the partial derivatives
in the x- and y-directions, respectively. Replacing the partial derivatives by the
central differences yields

∂tBz t; x0; y0; z0
� � ¼ Bz t0 þ Δt; x0; y0; z0

� �� Bz t0; x0; y0; z0
� �

Δt
þO Δtð Þ2, (9)

∂xEy t; x0; y0; z0
� � ¼ Ey t0 þ 1

2Δt; x0 þ 1
2Δx; y0; z0

� �� Ey t0 þ 1
2Δt; x0 � 1

2Δx; y0; z0
� �

Δx
þO Δyð Þ2,
(10)

∂yEx t; x0; y0; z0
� � ¼ Ex t0 þ 1

2Δt; x0; y0 þ 1
2Δy; z0

� �� Ex t0 þ 1
2Δt; x0; y0 � 1

2Δy; z0
� �

Δy
þ O Δxð Þ2,

(11)

where t ¼ t0 þ 1
2Δt. Then, Bz t0 þ Δt; x0; y0; z0

� �
are derived from Eqs. (9), (10),

and (11) as the following:

Figure 1.
Yee lattice used in the FDTD method.
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Bz t0 þ Δt; x0; y0; z0
� � ¼ Bz t0; x0; y0; z0

� �þ Δt �
Ey t0 þ 1

2
Δt; x0 þ 1

2
Δx; y0; z0

� �

Δx

2
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þ
Ey t0 þ 1

2
Δt; x0 � 1

2
Δx; y0; z0

� �

Δx
þ
Ex t0 þ 1

2
Δt; x0; y0 þ

1
2
Δy; z0

� �

Δy

�
Ex t0 þ 1

2
Δt; x0; y0 �

1
2
Δy; z0

� �

Δy
þ O Δx;Δyð Þ2

3
775þ O Δtð Þ3:

(12)

where O Δx;Δyð Þ2 means ∑mþn≥ 2,m,n≥ 2O Δxð Þm Δyð Þnð Þ. Bx and By at t ¼ t0 þ Δt
can also be derived similarly. Usually, the H field can be derived from the B field.
For example, in vacuum, air, or a dielectric

H ¼ 1
μ0

B, (13)

where μ0 is the vacuum permeability with the value 4π � 10�7 Vs=Am½ �. In a
magnetic material, the relationship between H and B often becomes nontrivial, but
this is beyond the scope of this book. However, in small H and B regions, it can be
approximated by the following equation:

H ¼ 1
μ
B, (14)

where μ depends on the material. Often, a value

μ∗ ¼ μ

μ0
, (15)

called the relative permeability is used. In an optical wavelength region, μ0 is 1.
The cyan cell is used to calculate the electric field at t ¼ t0 þ 1

2Δt using the
electric field at t ¼ t0 � 1

2Δt and the magnetic field at t ¼ t� Δt applying Eq. (2)
representing Ampére-Maxwell’s law. Let us consider the right-hand surface of
the cell. At the center of the surface whose coordinates are x1; y1; z1

� �
, Eq. (2)

becomes

∂tDy t; x1; y1; z1
� � ¼ ∂zHx t; x1; y1; z1

� �� ∂xHz t; x1; y1; z1
� �� iy t; x1; y1; z1

� �
: (16)

Replacing partial derivatives with central differences yields

∂tDy t; x1; y1; z1
� � ¼ Dy t0 þ Δt; x1; y1; z1

� ��Dy t0; x1; y1; z1
� �

Δt
þ O Δtð Þ2, (17)

∂xHz t; x1; y1; z1
� � ¼ Hz t0 þ 1

2Δt; x1 þ 1
2Δx; y1; z1

� ��Hz t0 þ 1
2Δt; x1 � 1

2Δx; y1; z1
� �

Δx
þ O Δxð Þ2,

(18)
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∂zHx t; x1; y1; z1
� � ¼ Hx t0 þ 1

2Δt; x1; y1; z1 þ 1
2Δz

� ��Hx t0 þ 1
2Δt; x1; y1; z1 � 1

2Δz
� �

Δz
þO Δzð Þ2,

(19)

where t ¼ t0. Then, Dy t0; x1; y1; z1
� �

is derived as follows:

Dy t0 þ 1
2
Δt; x1; y1; z1

� �
¼ Dy t0 � 1

2
; x1; y1; z1

� �
þ Δt

Hx t0; x1; y1; z1 þ
1
2
Δz

� �

Δz

2
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�
Hx t0; x1; y1; z1 �

1
2
Δz

� �

Δz
�
Hz t0; x1 þ 1

2
Δx; y1; z1

� �

Δx
þ
Hz t0; x1 � 1

2
Δx; y1; z1

� �

Δx

�iy t0; x1; y1; z1
� �þ OðΔx;ΔzÞ2

#
þ O Δtð Þ3:

(20)

Dx and Dz at t ¼ t0 þ Δt can also be derived similarly. Typically, the E field can
be derived from the D flux density. For example, in vacuum, air, or magnetic
material

E ¼ 1
ε0

D, (21)

where ε0 is the vacuum permittivity, whose value is 8:85418782� 10�12 As=Vm½ �.
In a dielectric material, the relationship between E and D often becomes nontrivial,
but this is beyond the scope of this book. However, in small E and D regions, it
can be approximated by

E ¼ 1
ε
D, (22)

where ε depends on the material. Often a value

ε∗ ¼ ε

ε0
, (23)

called the relative permittivity and a value

n ¼ ffiffiffiffiffi
ε∗

p
, (24)

called the index, is used.
Figure 2 shows the algorithm of the FDTD method for the case in which

Eqs. (14) and (22) are satisfied. Initially, distributions of the E and H fields are
given which in turn satisfy Eqs. (3) and (4). When the E field distribution at
t ¼ t0 � Δt=2 and the H field distribution at t ¼ t0 are known, the E field
at t ¼ t0 þ Δt=2 is calculated using Eqs. (20) and (22), given the E field at
t ¼ t0 � Δt=2 and the H field at t ¼ t0. The H field at t ¼ t0 þ Δt is calculated using
Eqs. (12) and (14), given the H field at t ¼ t0, having determined the E field at
t ¼ t0 þ Δt=2. If the time t is less than tfin, then the time becomes tþ Δt and the flow
repeats. If the time t exceeds tfin, the algorithm terminates.
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called the relative permeability is used. In an optical wavelength region, μ0 is 1.
The cyan cell is used to calculate the electric field at t ¼ t0 þ 1

2Δt using the
electric field at t ¼ t0 � 1

2Δt and the magnetic field at t ¼ t� Δt applying Eq. (2)
representing Ampére-Maxwell’s law. Let us consider the right-hand surface of
the cell. At the center of the surface whose coordinates are x1; y1; z1

� �
, Eq. (2)

becomes

∂tDy t; x1; y1; z1
� � ¼ ∂zHx t; x1; y1; z1

� �� ∂xHz t; x1; y1; z1
� �� iy t; x1; y1; z1

� �
: (16)

Replacing partial derivatives with central differences yields

∂tDy t; x1; y1; z1
� � ¼ Dy t0 þ Δt; x1; y1; z1

� ��Dy t0; x1; y1; z1
� �

Δt
þ O Δtð Þ2, (17)

∂xHz t; x1; y1; z1
� � ¼ Hz t0 þ 1

2Δt; x1 þ 1
2Δx; y1; z1

� ��Hz t0 þ 1
2Δt; x1 � 1

2Δx; y1; z1
� �

Δx
þ O Δxð Þ2,

(18)
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∂zHx t; x1; y1; z1
� � ¼ Hx t0 þ 1

2Δt; x1; y1; z1 þ 1
2Δz

� ��Hx t0 þ 1
2Δt; x1; y1; z1 � 1

2Δz
� �

Δz
þO Δzð Þ2,

(19)

where t ¼ t0. Then, Dy t0; x1; y1; z1
� �

is derived as follows:

Dy t0 þ 1
2
Δt; x1; y1; z1

� �
¼ Dy t0 � 1

2
; x1; y1; z1

� �
þ Δt

Hx t0; x1; y1; z1 þ
1
2
Δz

� �

Δz

2
664

�
Hx t0; x1; y1; z1 �

1
2
Δz

� �

Δz
�
Hz t0; x1 þ 1

2
Δx; y1; z1

� �

Δx
þ
Hz t0; x1 � 1

2
Δx; y1; z1

� �

Δx

�iy t0; x1; y1; z1
� �þ OðΔx;ΔzÞ2

#
þ O Δtð Þ3:

(20)

Dx and Dz at t ¼ t0 þ Δt can also be derived similarly. Typically, the E field can
be derived from the D flux density. For example, in vacuum, air, or magnetic
material

E ¼ 1
ε0

D, (21)

where ε0 is the vacuum permittivity, whose value is 8:85418782� 10�12 As=Vm½ �.
In a dielectric material, the relationship between E and D often becomes nontrivial,
but this is beyond the scope of this book. However, in small E and D regions, it
can be approximated by

E ¼ 1
ε
D, (22)

where ε depends on the material. Often a value

ε∗ ¼ ε

ε0
, (23)

called the relative permittivity and a value

n ¼ ffiffiffiffiffi
ε∗

p
, (24)

called the index, is used.
Figure 2 shows the algorithm of the FDTD method for the case in which

Eqs. (14) and (22) are satisfied. Initially, distributions of the E and H fields are
given which in turn satisfy Eqs. (3) and (4). When the E field distribution at
t ¼ t0 � Δt=2 and the H field distribution at t ¼ t0 are known, the E field
at t ¼ t0 þ Δt=2 is calculated using Eqs. (20) and (22), given the E field at
t ¼ t0 � Δt=2 and the H field at t ¼ t0. The H field at t ¼ t0 þ Δt is calculated using
Eqs. (12) and (14), given the H field at t ¼ t0, having determined the E field at
t ¼ t0 þ Δt=2. If the time t is less than tfin, then the time becomes tþ Δt and the flow
repeats. If the time t exceeds tfin, the algorithm terminates.
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3. Integral form of Maxwell’s equation and a correction
to the FDTD method

The FDTD method is a numerical method for solving Maxwell’s equations using
a computer. Any computer can have a finite number of degrees of freedom because
it has a finite memory size. In contrast, an electromagnetic field in continuum space
has infinitely many degrees of freedom, because the field exists at every point of the
space–time continuum. Therefore, Maxwell’s equations must be suitably approxi-
mated for us to be able to calculate them using a computer. The algorithm shown in
the previous section appears to be suitable for this purpose, because only finitely
many degrees of freedom are used to calculate an electromagnetic field distribution
if the calculation area is compact.

Note that Eqs. (12) and (20) are exact on a Yee lattice only after taking a zero
cell size limit. This appears to cause no problem, but, there is an example in
elementary particle physics showing that the discretized continuum theory is dif-
ferent from the original continuum theory [4]. In this example, a fermion in
discretized quantum field theory generates nonphysical fermionic degrees of free-
dom. This problem is called fermion doubling. In essence, this phenomenon is
caused by replacing differentials with differences as in Eqs. (9)–(10) and (17)–(19).

Figure 2.
Flow of the FDTD algorithm.
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An algorithm in which differentials are not replaced with differences must be
considered in order to avoid such problems.

As a result of Stokes’ theorem, Faraday’s and Ampére-Maxwell’s laws in Eqs. (1)
and (2) can be written in an integral form as

d
dt

Z

S

da � B ¼ �
Z

∂S

ds � E, (25)

d
dt

Z

S

da �D ¼
Z

∂S

ds �H �
Z

S

da � i, (26)

where S is a compact and connected surface, ∂S is the boundary curve of the
surface, da is a surface element normal to the surface, and ds is a line element
parallel to the curve. Moreover, integrating both sides of Eq. (25) over t from t ¼ t0
to t0 þ Δt and those of Eq. (26) over t from t ¼ t0 � Δt=2 to t0 þ Δt=2 yields

Z

S

da � B t0 þ Δt; x; y; zð Þ ¼
Z

S

da � B t0; x; y; zð Þ �
Zt0þΔt

t0

dt
Z

∂S

ds � E t; x; y; zð Þ, (27)

Z

S

da �D t0 þ Δt=2; x; y; zð Þ ¼
Z

S

da �D t0 � Δt=2; x; y; zð Þ

þ
Zt0þΔt=2

t0�Δt=2

dt
Z

∂S

ds �H t; x; y; zð Þ �
Z

S

da � i t; x; y; zð Þ
2
4

3
5:

(28)

Note that no derivative is used in Eqs. (27) and (28), with the result that
problems such as fermion doubling cannot occur. Our problem is how to approxi-
mate the integrals in Eqs. (27) and (28).

In general, when f is analytical in a region including ξ0 � Δξ=2≤ ξ≤ ξ0 þ Δξ=2,
the following relationship is satisfied:

Zξ0þΔξ=2

ξ0�Δξ=2

dξ f ξð Þ ¼
Zξ0þΔξ=2

ξ0�Δξ=2

dξ ∑
∞

n¼0

1
n!
dnf ξ0ð Þ
dξn

ξ� ξ0ð Þn, (29)

and when g is analytical in a region including ξ0 � Δξ=2≤ ξ≤ ξ0 þ Δξ=2 and
η0 � Δη=2≤ η≤ η0 þ Δη=2, the following relationship is satisfied:

Zξ0þΔξ=2

ξ0�Δξ=2

dξ
Zη0þΔη=2

η0�Δη=2

dηg ξ; ηð Þ ¼
Zξ0þΔξ=2

ξ0�Δξ=2

dξ
Zη0þΔη=2

η0�Δη=2

dη ∑
∞

m,n¼0

1
m!n!

∂
mþng ξ0; η0ð Þ
∂ξm∂ηn

ξ� ξ0ð Þm η� η0ð Þn:

(30)

The lowest-order approximations of Eqs. (29) and (30) are, respectively,

Zξ0þΔξ=2

ξ0�Δξ=2

dξ f ξð Þ ¼ f ξ0ð ÞΔξþO Δξð Þ3, (31)
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An algorithm in which differentials are not replaced with differences must be
considered in order to avoid such problems.

As a result of Stokes’ theorem, Faraday’s and Ampére-Maxwell’s laws in Eqs. (1)
and (2) can be written in an integral form as

d
dt

Z

S

da � B ¼ �
Z

∂S

ds � E, (25)

d
dt

Z

S

da �D ¼
Z

∂S

ds �H �
Z

S

da � i, (26)

where S is a compact and connected surface, ∂S is the boundary curve of the
surface, da is a surface element normal to the surface, and ds is a line element
parallel to the curve. Moreover, integrating both sides of Eq. (25) over t from t ¼ t0
to t0 þ Δt and those of Eq. (26) over t from t ¼ t0 � Δt=2 to t0 þ Δt=2 yields

Z

S

da � B t0 þ Δt; x; y; zð Þ ¼
Z

S

da � B t0; x; y; zð Þ �
Zt0þΔt

t0

dt
Z

∂S

ds � E t; x; y; zð Þ, (27)

Z

S

da �D t0 þ Δt=2; x; y; zð Þ ¼
Z

S

da �D t0 � Δt=2; x; y; zð Þ

þ
Zt0þΔt=2

t0�Δt=2

dt
Z

∂S

ds �H t; x; y; zð Þ �
Z

S

da � i t; x; y; zð Þ
2
4

3
5:

(28)

Note that no derivative is used in Eqs. (27) and (28), with the result that
problems such as fermion doubling cannot occur. Our problem is how to approxi-
mate the integrals in Eqs. (27) and (28).

In general, when f is analytical in a region including ξ0 � Δξ=2≤ ξ≤ ξ0 þ Δξ=2,
the following relationship is satisfied:

Zξ0þΔξ=2

ξ0�Δξ=2

dξ f ξð Þ ¼
Zξ0þΔξ=2

ξ0�Δξ=2

dξ ∑
∞

n¼0

1
n!
dnf ξ0ð Þ
dξn

ξ� ξ0ð Þn, (29)

and when g is analytical in a region including ξ0 � Δξ=2≤ ξ≤ ξ0 þ Δξ=2 and
η0 � Δη=2≤ η≤ η0 þ Δη=2, the following relationship is satisfied:

Zξ0þΔξ=2

ξ0�Δξ=2

dξ
Zη0þΔη=2

η0�Δη=2

dηg ξ; ηð Þ ¼
Zξ0þΔξ=2

ξ0�Δξ=2

dξ
Zη0þΔη=2

η0�Δη=2

dη ∑
∞

m,n¼0

1
m!n!

∂
mþng ξ0; η0ð Þ
∂ξm∂ηn

ξ� ξ0ð Þm η� η0ð Þn:

(30)

The lowest-order approximations of Eqs. (29) and (30) are, respectively,

Zξ0þΔξ=2

ξ0�Δξ=2

dξ f ξð Þ ¼ f ξ0ð ÞΔξþO Δξð Þ3, (31)
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Zξ0þΔξ=2

ξ0�Δξ=2

dξ
Zη0þΔη=2

η0�Δη=2

dη g ξ; ηð Þ ¼ g ξ0; η0ð ÞΔξΔηþ O Δξ;Δηð Þ4
� �

: (32)

An algorithm for the FDTD method supported by the lowest-order approxima-
tion of the integral form of Maxwell’s equations is derived by applying Eqs. (31) and
(32) to Eqs. (27) and (28). When S is the top surface of the yellow cell in Figure 1,
Eq. (27) is approximated as

Bz t0 þ Δt; x0; y0; z0
� �

ΔxΔy ¼ Bz t0; x0; y0; z0
� �

ΔxΔy� Ey tþ Δt=2; x0 þ Δx=2; y0; z0
� �

Δy
�

� Ex tþ Δt=2; x0; y0 þ Δy=2; z0
� �

Δx� Ey tþ Δt=2; x0 � Δx=2; y0; z0
� �

Δy

þ Ex tþ Δt=2; x0; y0 � Δy=2; z0
� �

Δx
�
Δtþ O Δtð Þ3,

(33)

where x0; y0; z0
� �

is the center coordinates of the surface. Comparison of
Eq. (12) with Eq. (33) reveals that they are essentially the same.

When S is the right surface of the cyan cell in Figure 1, Eq. (28) can be approx-
imated as

Dy t0 þ Δt=2; x1; y1; z1
� �

ΔxΔz ¼ Dy t0 � Δt=2; x1; y1; z1
� �

ΔxΔzþ Hx t0; x1; y1; z1 þ Δz=2
� �

Δx
�

�Hz t0; x1 þ Δx=2; y1; z1
� �

Δz�Hx t0; x1; y1; z1 � Δz=2
� �

ΔxþHz t0; x1 � Δx=2; y1; z1
� �

Δz

�iy t0; x1; y1; z1
� �

ΔxΔz
�
ΔtþO Δtð Þ3,

(34)

where x1; y1; z1
� �

is the center coordinates of the surface. Comparison of Eq. (20)
with Eq. (34) reveals that they are essentially the same. Therefore, the original
FDTD method, which is based on the differential form of Maxwell’s equations, is
the same as the FDTD method supported by the lowest-order approximation of the
integral form of those equations.

Next, an algorithm for the FDTD method supported by the next-to-the-lowest-
order approximation of the integral form of Maxwell’s equation is derived. In this
case, the next-to-the-lowest-order approximation is applied only in the spatial
directions, and the lowest-order approximation is applied in the time direction.
Hereafter, the FDTD method supported by the next-to-the-lowest-order approxi-
mation of integrals is called the corrected FDTD method.

In general, the next-to-the-lowest-order approximations of Eqs. (29) and (30)
are, respectively,

Zξ0þΔξ=2

ξ0�Δξ=2

dξ f ξð Þ ¼ f ξ0ð ÞΔξþ 1
24

d2f ξ0ð Þ
dξ2

Δξð Þ3 þO Δξð Þ5, (35)

Zξ0þΔξ=2

ξ0�Δξ=2

dξ
Zη0þΔη=2

η0�Δη=2

dηg ξ; ηð Þ ¼ g ξ0; η0ð ÞΔξΔηþ 1
24

∂
2g ξ; ηð Þ
∂ξ2

Δξð Þ3Δηþ ∂
2g ξ; ηð Þ
∂η2

Δξ Δηð Þ3
� �

þO Δξ;Δηð Þ6:
(36)

When S is the top surface of the yellow cell in Figure 1, Eq. (27) is approximated
by applying Eqs. (35) and (36) to yield
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Bz t0 þ Δt; x0; y0; z0
� �

ΔxΔyþ 1
24

∂
2
xBz t0 þ Δt; x0; y0; z0
� �

Δxð Þ3Δy
h

þ ∂
2
yBz t0 þ Δt; x0; y0; z0
� �

Δx Δyð Þ3
i

¼ Bz t0; x0; y0; z0
� �

ΔxΔyþ 1
24

∂
2
xBz t0; x0; y0; z0
� �

Δxð Þ3Δyþ ∂
2
yBz t0; x0; y0; z0
� �

Δx Δyð Þ3
h i

� Ey tþ Δt=2; x0 þ Δx=2; y0; z0
� �

Δyþ 1
24

∂
2
yEyðtþ Δt=2; x0 þ Δx=2; y0; z0Þ Δyð Þ3

�

�Ex tþ Δt=2; x0; y0 þ Δy=2; z0
� �

Δx� 1
24

∂
2
xEx tþ Δt=2; x0; y0 þ Δy=2; z0
� �

Δxð Þ3

�Ey tþ Δt=2; x0 � Δx=2; y0; z0
� �

Δy� 1
24

∂
2
yEy tþ Δt=2; x0 � Δx=2; y0; z0
� �

Δyð Þ3

þEx tþ Δt=2; x0; y0 � Δy=2; z0
� �

Δxþ 1
24

∂
2
xExðtþ Δt=2; x0; y0 � Δy=2; z0Þ Δxð Þ3

�
Δtþ O Δtð Þ3:

(37)

When S is the right-hand surface of the cyan cell in Figure 1, Eq. (28) is
approximated by applying Eqs. (35) and (36) to yield

Dy t0 þ Δt=2; x1; y1; z1
� �

ΔxΔzþ 1
24

∂
2
xDy t0 þ Δt=2; x1; y1; z1
� �

Δxð Þ3Δy
h

þ ∂
2
yDy t0 þ Δt=2; x1; y1; z1
� �

Δx Δyð Þ3
i

¼ Dy t0 � Δt=2; x1; y1; z1
� �

ΔxΔzþ 1
24

∂
2
xDy t0 � Δt=2; x1; y1; z1
� �

Δxð Þ3Δy
h

þ ∂
2
yDy t0 � Δt=2; x1; y1; z1
� �

Δx Δyð Þ3
i

þ Hx t0; x1; y1; z1 þ Δz=2
� �

Δxþ 1
24

∂
2
xHxðt0; x1; y1; z1 þ Δz=2Þ Δxð Þ3

�

�Hz t0; x1 þ Δx=2; y1; z1
� �

Δz� 1
24

∂
2
zHz t0; x1 þ Δx=2; y1; z1
� �

Δzð Þ3

�Hx t0; x1; y1; z1 � Δz=2
� �

Δx� 1
24

∂
2
xHx t0; x1; y1; z1 � Δz=2

� �
Δxð Þ3

þHz t0; x1 � Δx=2; y1; z1
� �

Δzþ 1
24

∂
2
zHz t0; x1 � Δx=2; y1; z1
� �

Δzð Þ3

�iy t0; x1; y1; z1
� �

ΔxΔz� 1
24

∂
2
xiyðt0; x1; y1; z1Þ Δxð Þ2Δz

� 1
24

∂
2
ziyðt0; x1; y1; z1ÞΔx Δzð Þ2

�
ΔtþO Δtð Þ3:

(38)

There are second derivatives in Eqs. (37) and (38), but they are not calculated
in the FDTD method. Therefore, the second derivatives are determined from
the calculated electromagnetic field. To determine the second derivatives, the
relationship
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Zξ0þΔξ=2

ξ0�Δξ=2

dξ
Zη0þΔη=2

η0�Δη=2

dη g ξ; ηð Þ ¼ g ξ0; η0ð ÞΔξΔηþ O Δξ;Δηð Þ4
� �

: (32)

An algorithm for the FDTD method supported by the lowest-order approxima-
tion of the integral form of Maxwell’s equations is derived by applying Eqs. (31) and
(32) to Eqs. (27) and (28). When S is the top surface of the yellow cell in Figure 1,
Eq. (27) is approximated as

Bz t0 þ Δt; x0; y0; z0
� �

ΔxΔy ¼ Bz t0; x0; y0; z0
� �

ΔxΔy� Ey tþ Δt=2; x0 þ Δx=2; y0; z0
� �

Δy
�

� Ex tþ Δt=2; x0; y0 þ Δy=2; z0
� �

Δx� Ey tþ Δt=2; x0 � Δx=2; y0; z0
� �

Δy

þ Ex tþ Δt=2; x0; y0 � Δy=2; z0
� �

Δx
�
Δtþ O Δtð Þ3,

(33)

where x0; y0; z0
� �

is the center coordinates of the surface. Comparison of
Eq. (12) with Eq. (33) reveals that they are essentially the same.

When S is the right surface of the cyan cell in Figure 1, Eq. (28) can be approx-
imated as

Dy t0 þ Δt=2; x1; y1; z1
� �

ΔxΔz ¼ Dy t0 � Δt=2; x1; y1; z1
� �

ΔxΔzþ Hx t0; x1; y1; z1 þ Δz=2
� �

Δx
�

�Hz t0; x1 þ Δx=2; y1; z1
� �

Δz�Hx t0; x1; y1; z1 � Δz=2
� �

ΔxþHz t0; x1 � Δx=2; y1; z1
� �

Δz

�iy t0; x1; y1; z1
� �

ΔxΔz
�
ΔtþO Δtð Þ3,

(34)

where x1; y1; z1
� �

is the center coordinates of the surface. Comparison of Eq. (20)
with Eq. (34) reveals that they are essentially the same. Therefore, the original
FDTD method, which is based on the differential form of Maxwell’s equations, is
the same as the FDTD method supported by the lowest-order approximation of the
integral form of those equations.

Next, an algorithm for the FDTD method supported by the next-to-the-lowest-
order approximation of the integral form of Maxwell’s equation is derived. In this
case, the next-to-the-lowest-order approximation is applied only in the spatial
directions, and the lowest-order approximation is applied in the time direction.
Hereafter, the FDTD method supported by the next-to-the-lowest-order approxi-
mation of integrals is called the corrected FDTD method.

In general, the next-to-the-lowest-order approximations of Eqs. (29) and (30)
are, respectively,

Zξ0þΔξ=2

ξ0�Δξ=2

dξ f ξð Þ ¼ f ξ0ð ÞΔξþ 1
24

d2f ξ0ð Þ
dξ2

Δξð Þ3 þO Δξð Þ5, (35)

Zξ0þΔξ=2

ξ0�Δξ=2

dξ
Zη0þΔη=2

η0�Δη=2

dηg ξ; ηð Þ ¼ g ξ0; η0ð ÞΔξΔηþ 1
24

∂
2g ξ; ηð Þ
∂ξ2

Δξð Þ3Δηþ ∂
2g ξ; ηð Þ
∂η2

Δξ Δηð Þ3
� �

þO Δξ;Δηð Þ6:
(36)

When S is the top surface of the yellow cell in Figure 1, Eq. (27) is approximated
by applying Eqs. (35) and (36) to yield
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¼ Bz t0; x0; y0; z0
� �

ΔxΔyþ 1
24

∂
2
xBz t0; x0; y0; z0
� �

Δxð Þ3Δyþ ∂
2
yBz t0; x0; y0; z0
� �

Δx Δyð Þ3
h i

� Ey tþ Δt=2; x0 þ Δx=2; y0; z0
� �

Δyþ 1
24

∂
2
yEyðtþ Δt=2; x0 þ Δx=2; y0; z0Þ Δyð Þ3

�

�Ex tþ Δt=2; x0; y0 þ Δy=2; z0
� �

Δx� 1
24

∂
2
xEx tþ Δt=2; x0; y0 þ Δy=2; z0
� �

Δxð Þ3

�Ey tþ Δt=2; x0 � Δx=2; y0; z0
� �

Δy� 1
24

∂
2
yEy tþ Δt=2; x0 � Δx=2; y0; z0
� �

Δyð Þ3

þEx tþ Δt=2; x0; y0 � Δy=2; z0
� �

Δxþ 1
24

∂
2
xExðtþ Δt=2; x0; y0 � Δy=2; z0Þ Δxð Þ3

�
Δtþ O Δtð Þ3:

(37)

When S is the right-hand surface of the cyan cell in Figure 1, Eq. (28) is
approximated by applying Eqs. (35) and (36) to yield

Dy t0 þ Δt=2; x1; y1; z1
� �

ΔxΔzþ 1
24

∂
2
xDy t0 þ Δt=2; x1; y1; z1
� �

Δxð Þ3Δy
h

þ ∂
2
yDy t0 þ Δt=2; x1; y1; z1
� �

Δx Δyð Þ3
i

¼ Dy t0 � Δt=2; x1; y1; z1
� �

ΔxΔzþ 1
24

∂
2
xDy t0 � Δt=2; x1; y1; z1
� �

Δxð Þ3Δy
h

þ ∂
2
yDy t0 � Δt=2; x1; y1; z1
� �

Δx Δyð Þ3
i

þ Hx t0; x1; y1; z1 þ Δz=2
� �

Δxþ 1
24

∂
2
xHxðt0; x1; y1; z1 þ Δz=2Þ Δxð Þ3

�

�Hz t0; x1 þ Δx=2; y1; z1
� �

Δz� 1
24

∂
2
zHz t0; x1 þ Δx=2; y1; z1
� �

Δzð Þ3

�Hx t0; x1; y1; z1 � Δz=2
� �

Δx� 1
24

∂
2
xHx t0; x1; y1; z1 � Δz=2

� �
Δxð Þ3

þHz t0; x1 � Δx=2; y1; z1
� �

Δzþ 1
24

∂
2
zHz t0; x1 � Δx=2; y1; z1
� �

Δzð Þ3

�iy t0; x1; y1; z1
� �

ΔxΔz� 1
24

∂
2
xiyðt0; x1; y1; z1Þ Δxð Þ2Δz

� 1
24

∂
2
ziyðt0; x1; y1; z1ÞΔx Δzð Þ2

�
ΔtþO Δtð Þ3:

(38)

There are second derivatives in Eqs. (37) and (38), but they are not calculated
in the FDTD method. Therefore, the second derivatives are determined from
the calculated electromagnetic field. To determine the second derivatives, the
relationship
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f ξ0 þ Δξð Þ þ f ξ0 � Δξð Þ ¼ 2f ξð Þ þ d2f ξ0ð Þ
dξ2

Δξð Þ2 þO Δξð Þ4, (39)

for any function f is applied. Applying Eq. (39) to Eq. (37) yields

5
6
Bz t0 þ Δt; x0; y0; z0
� �þ 1

24
Bz t0 þ Δt; x0 þ Δx; y0; z0
� �þ Bzðt0 þ Δt; x0 � Δx; y0; z0Þ

��

þBz t0 þ Δt; x0; y0 þ Δy; z0
� �þ Bzðt0 þ Δt; x0; y0 � Δy; z0Þ

��
xΔy

¼ 5
6
Bz t0; x0; y0; z0
� �þ 1

24
Bz t0; x0 þ Δx; y0; z0
� �þ Bzðt0; x0 � Δx; y0; z0Þ

��

þBzðt0; x0; y0 þ Δy; z0Þ þ Bzðt0; x0; y0 � Δy; z0Þ
��
ΔxΔy

� 11
12

Ey tþ Δt=2; x0 þ Δx=2; y0; z0
� �þ 1

24
Ey tþ Δt=2; x0 þ Δx=2; y0 þ Δy; z0
� ����

þEyðtþ Δt=2; x0 þ Δx=2; y0 � Δy; z0Þ
��
Δy� 11

12
Ex tþ Δt=2; x0; y0 þ Δy=2; z0
� ��

þ 1
24

Ex tþ Δt=2; x0 þ Δx; y0 þ Δy=2; z0
� �þ Exðtþ Δt=2; x0 � Δx; y0 þ Δy=2; z0Þ

� ��
Δx

� 11
12

Ey tþ Δt=2; x0 � Δx=2; y0; z0
� �þ 1

24
ðEyðtþ Δt=2; x0 � Δx=2; y0 þ Δy; z0Þ

�

þEyðtþ Δt=2; x0 � Δx=2; y0 � Δy; z0ÞÞ
�
Δyþ 11

12
Ex tþ Δt=2; x0; y0 � Δy=2; z0
� ��

þ 1
24

Ex tþ Δt=2; x0 þ Δx; y0 � Δy=2; z0
� �þ Exðtþ Δt=2; x0 � Δx; y0 � Δy=2; z0Þ

� ��
Δx
�
Δt

þO Δtð Þ3:
(40)

Applying Eq. (39) to Eq. (38) yields

5
6
Dy t0 þ Δt=2; x1; y1; z1
� �þ 1

24
ðDyðt0 þ Δt=2; x1 þ Δx; y1; z1Þ þ Dyðt0 þ Δt=2; x1 � Δx; y1; z1Þ

�

þDy t0 þ Δt=2; x1; y1; z1 þ Δz
� �þ Dyðt0 þ Δt=2; x1; y1; z1 � ΔzÞÞ

�
ΔxΔz

¼ 5
6
Dy t0 � Δt=2; x1; y1; z1
� �þ 1

24
ðDyðt0 � Δt=2; x1 þ Δx; y1; z1Þ þDyðt0 � Δt=2; x1 � Δx; y1; z1Þ

�

þDy t0 � Δt=2; x1; y1; z1 þ Δz
� �þ Dyðt0 � Δt=2; x1; y1; z1 � ΔzÞÞ

�
ΔxΔz

þ 11
12

Hx t0; x1; y1; z1 þ Δz=2
� �þ 1

24
ðHxðt0; x1 þ Δx; y1; z1 þ Δz=2Þ þHxðt0; x1 � Δx; y1; z1 þ Δz=2ÞÞ

� �
Δx

�

� 11
12

Hz t0; x1 þ Δx=2; y1; z1
� �þ 1

24
Hz t0; x1 þ Δx=2; y1; z1 þ Δz
� �þHzðt0; x1 þ Δx=2; y1; z1 � ΔzÞ� �� �

Δz

� 11
12

Hx t0; x1; y1; z1 � Δz=2
� �þ 1

24
Hx t0; x1 þ Δx; y1; z1 � Δz=2
� �þHxðt0; x1 � Δx; y1; z1 � Δz=2Þ� �� �

Δx

þ 11
12

Hz t0; x1 � Δx=2; y1; z1
� �þ 1

24
Hz t0; x1 � Δx=2; y1; z1 þ Δz
� �þHzðt0; x1 � Δx=2; y1; z1 � ΔzÞ� �� �

Δz

� 5
6
iy t0; x1; y1; z1
� �þ 1

24
iy t0; x1 þ Δx; y1; z1
� �þ iyðt0; x1 � Δx; y1; z1Þ þ iyðt0; x1; y1; z1 þ ΔzÞ��

þiyðt0; x1; y1; z1 � ΔzÞÞ
�
ΔxΔz

�
Δtþ O Δtð Þ3:

(41)
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Note that points xi � Δx; yi; zi
� �

and xi; yi; zi � Δz
� �

are at adjacent cells to the
cell including xi; yi; zi

� �
. Therefore, all terms in Eqs. (40) and (41) are fields defined

on the Yee lattice. However, in contrast to the original FDTD method, the left-hand
sides (LHSs) of these equations are a linear combination of fields at five points.
Therefore, it is impossible to directly determine the values of fields at new times
using these equations.

The LHSs of Eqs. (40) and (41) can be written symbolically as

∑
m,n

σ x0; y0; x0 þmΔx; y0 þ nΔy
� �

Bz t0 þ Δt; x0 þmΔx; y0 þ nΔy; z0
� �

, (42)

∑
m,n

σ x1; z1; x1 þmΔx; y1; z1 þ nΔz
� �

Dy tþ Δt=2; x1 þmΔx; y1; z1 þ nΔz
� �

, (43)

where

σ ξ; η; ξþmΔξ; ηþ nΔηð Þ ¼ 5
6
δm,0δn,0 þ 1

24
δm,1δn,0 þ δm,�1δn,0 þ δm,0δn,1 þ δm,0δn,�1ð Þ,

(44)

and δp,q is the Kronecker delta defined as

δp,q ¼
1 p ¼ qð Þ
0 p 6¼ qð Þ

�
: (45)

The inverse operator “σ�1” is defined as

∑
p, q

σ ξ; η; ξþ pΔξ; ηþ qΔηð Þσ�1 ξþ pΔξ; ηþ qΔη; ξþmΔξ; ηþ nΔηð Þ ¼ δm,0δn,0:

(46)

Using σ�1 enables Eq. (40) to be rewritten as

Bz t0 þ Δt; x0; y0; z0
� �

ΔxΔy ¼ Bz t0; x0; y0; z0
� �

ΔxΔy� ∑
m,n

σ�1 x0; y0; x0 þmΔx; y0 þ nΔy
� �

� 11
12

Eyðt0 þ Δt=2; x0 þ mþ 1
2

� �
Δx; y0 þ nΔy; z0Þ � Eyðt0 þ Δt=2; x0 þ m� 1

2

� �
Δx; y0 þ nΔy; z0Þ

� ��
Δy

�

� Eyðt0 þ Δt=2; x0 þmΔx; y0 þ nþ 1
2

� �
Δy; z0Þ � Eyðt0 þ Δt=2; x0 þmΔx; y0 þ n� 1

2

� �
Δy; z0Þ

� �
Δx
�

þ 1
24

Eyðt0 þ Δt=2; x0 þ mþ 1
2

� �
Δx; y0 þ nþ 1ð ÞΔy; z0Þ þ Eyðt0 þ Δt=2; x0 þ mþ 1

2

� �
Δx; y0 þ n� 1ð ÞΔy; z0Þ

��

� Eyðt0 þ Δt=2; x0 þ m� 1
2

� �
Δx; y0 þ nþ 1ð ÞΔy; z0Þ � Eyðt0 þ Δt=2; x0 þ m� 1

2

� �
Δx; y0 þ n� 1ð ÞΔy; z0Þ

�
Δy

� Exðt0 þ Δt=2; x0 þ mþ 1ð ÞΔx; y0 þ nþ 1
2

� �
Δy; z0Þ þ Exðt0 þ Δt=2; x0 þ mþ 1ð ÞΔx; y0 þ n� 1

2

� �
Δy; z0

! 

�Exðt0 þ Δt=2; x0 þ m� 1ð ÞΔx; y0 þ nþ 1
2

� �
Δy; z0Þ � Exðt0 þ Δt=2; x0 þ m� 1ð ÞΔx; y0

þ n� 1
2

� �
Δy; z0Þ

�
Δx
�
Δt
�
þO Δtð Þ3:

(47)
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f ξ0 þ Δξð Þ þ f ξ0 � Δξð Þ ¼ 2f ξð Þ þ d2f ξ0ð Þ
dξ2

Δξð Þ2 þO Δξð Þ4, (39)

for any function f is applied. Applying Eq. (39) to Eq. (37) yields

5
6
Bz t0 þ Δt; x0; y0; z0
� �þ 1

24
Bz t0 þ Δt; x0 þ Δx; y0; z0
� �þ Bzðt0 þ Δt; x0 � Δx; y0; z0Þ

��

þBz t0 þ Δt; x0; y0 þ Δy; z0
� �þ Bzðt0 þ Δt; x0; y0 � Δy; z0Þ

��
xΔy

¼ 5
6
Bz t0; x0; y0; z0
� �þ 1

24
Bz t0; x0 þ Δx; y0; z0
� �þ Bzðt0; x0 � Δx; y0; z0Þ

��

þBzðt0; x0; y0 þ Δy; z0Þ þ Bzðt0; x0; y0 � Δy; z0Þ
��
ΔxΔy

� 11
12

Ey tþ Δt=2; x0 þ Δx=2; y0; z0
� �þ 1

24
Ey tþ Δt=2; x0 þ Δx=2; y0 þ Δy; z0
� ����

þEyðtþ Δt=2; x0 þ Δx=2; y0 � Δy; z0Þ
��
Δy� 11

12
Ex tþ Δt=2; x0; y0 þ Δy=2; z0
� ��

þ 1
24

Ex tþ Δt=2; x0 þ Δx; y0 þ Δy=2; z0
� �þ Exðtþ Δt=2; x0 � Δx; y0 þ Δy=2; z0Þ

� ��
Δx

� 11
12

Ey tþ Δt=2; x0 � Δx=2; y0; z0
� �þ 1

24
ðEyðtþ Δt=2; x0 � Δx=2; y0 þ Δy; z0Þ

�

þEyðtþ Δt=2; x0 � Δx=2; y0 � Δy; z0ÞÞ
�
Δyþ 11

12
Ex tþ Δt=2; x0; y0 � Δy=2; z0
� ��

þ 1
24

Ex tþ Δt=2; x0 þ Δx; y0 � Δy=2; z0
� �þ Exðtþ Δt=2; x0 � Δx; y0 � Δy=2; z0Þ

� ��
Δx
�
Δt

þO Δtð Þ3:
(40)

Applying Eq. (39) to Eq. (38) yields

5
6
Dy t0 þ Δt=2; x1; y1; z1
� �þ 1

24
ðDyðt0 þ Δt=2; x1 þ Δx; y1; z1Þ þ Dyðt0 þ Δt=2; x1 � Δx; y1; z1Þ

�

þDy t0 þ Δt=2; x1; y1; z1 þ Δz
� �þ Dyðt0 þ Δt=2; x1; y1; z1 � ΔzÞÞ

�
ΔxΔz

¼ 5
6
Dy t0 � Δt=2; x1; y1; z1
� �þ 1

24
ðDyðt0 � Δt=2; x1 þ Δx; y1; z1Þ þDyðt0 � Δt=2; x1 � Δx; y1; z1Þ

�

þDy t0 � Δt=2; x1; y1; z1 þ Δz
� �þ Dyðt0 � Δt=2; x1; y1; z1 � ΔzÞÞ

�
ΔxΔz

þ 11
12

Hx t0; x1; y1; z1 þ Δz=2
� �þ 1

24
ðHxðt0; x1 þ Δx; y1; z1 þ Δz=2Þ þHxðt0; x1 � Δx; y1; z1 þ Δz=2ÞÞ

� �
Δx

�

� 11
12

Hz t0; x1 þ Δx=2; y1; z1
� �þ 1

24
Hz t0; x1 þ Δx=2; y1; z1 þ Δz
� �þHzðt0; x1 þ Δx=2; y1; z1 � ΔzÞ� �� �

Δz

� 11
12

Hx t0; x1; y1; z1 � Δz=2
� �þ 1

24
Hx t0; x1 þ Δx; y1; z1 � Δz=2
� �þHxðt0; x1 � Δx; y1; z1 � Δz=2Þ� �� �

Δx

þ 11
12

Hz t0; x1 � Δx=2; y1; z1
� �þ 1

24
Hz t0; x1 � Δx=2; y1; z1 þ Δz
� �þHzðt0; x1 � Δx=2; y1; z1 � ΔzÞ� �� �

Δz

� 5
6
iy t0; x1; y1; z1
� �þ 1

24
iy t0; x1 þ Δx; y1; z1
� �þ iyðt0; x1 � Δx; y1; z1Þ þ iyðt0; x1; y1; z1 þ ΔzÞ��

þiyðt0; x1; y1; z1 � ΔzÞÞ
�
ΔxΔz

�
Δtþ O Δtð Þ3:

(41)
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Note that points xi � Δx; yi; zi
� �

and xi; yi; zi � Δz
� �

are at adjacent cells to the
cell including xi; yi; zi

� �
. Therefore, all terms in Eqs. (40) and (41) are fields defined

on the Yee lattice. However, in contrast to the original FDTD method, the left-hand
sides (LHSs) of these equations are a linear combination of fields at five points.
Therefore, it is impossible to directly determine the values of fields at new times
using these equations.

The LHSs of Eqs. (40) and (41) can be written symbolically as

∑
m,n

σ x0; y0; x0 þmΔx; y0 þ nΔy
� �

Bz t0 þ Δt; x0 þmΔx; y0 þ nΔy; z0
� �

, (42)

∑
m,n

σ x1; z1; x1 þmΔx; y1; z1 þ nΔz
� �

Dy tþ Δt=2; x1 þmΔx; y1; z1 þ nΔz
� �

, (43)

where

σ ξ; η; ξþmΔξ; ηþ nΔηð Þ ¼ 5
6
δm,0δn,0 þ 1

24
δm,1δn,0 þ δm,�1δn,0 þ δm,0δn,1 þ δm,0δn,�1ð Þ,

(44)

and δp,q is the Kronecker delta defined as

δp,q ¼
1 p ¼ qð Þ
0 p 6¼ qð Þ

�
: (45)

The inverse operator “σ�1” is defined as

∑
p, q

σ ξ; η; ξþ pΔξ; ηþ qΔηð Þσ�1 ξþ pΔξ; ηþ qΔη; ξþmΔξ; ηþ nΔηð Þ ¼ δm,0δn,0:

(46)

Using σ�1 enables Eq. (40) to be rewritten as

Bz t0 þ Δt; x0; y0; z0
� �

ΔxΔy ¼ Bz t0; x0; y0; z0
� �

ΔxΔy� ∑
m,n

σ�1 x0; y0; x0 þmΔx; y0 þ nΔy
� �

� 11
12

Eyðt0 þ Δt=2; x0 þ mþ 1
2

� �
Δx; y0 þ nΔy; z0Þ � Eyðt0 þ Δt=2; x0 þ m� 1

2

� �
Δx; y0 þ nΔy; z0Þ

� ��
Δy

�

� Eyðt0 þ Δt=2; x0 þmΔx; y0 þ nþ 1
2

� �
Δy; z0Þ � Eyðt0 þ Δt=2; x0 þmΔx; y0 þ n� 1

2

� �
Δy; z0Þ

� �
Δx
�

þ 1
24

Eyðt0 þ Δt=2; x0 þ mþ 1
2

� �
Δx; y0 þ nþ 1ð ÞΔy; z0Þ þ Eyðt0 þ Δt=2; x0 þ mþ 1

2

� �
Δx; y0 þ n� 1ð ÞΔy; z0Þ

��

� Eyðt0 þ Δt=2; x0 þ m� 1
2

� �
Δx; y0 þ nþ 1ð ÞΔy; z0Þ � Eyðt0 þ Δt=2; x0 þ m� 1

2

� �
Δx; y0 þ n� 1ð ÞΔy; z0Þ

�
Δy

� Exðt0 þ Δt=2; x0 þ mþ 1ð ÞΔx; y0 þ nþ 1
2

� �
Δy; z0Þ þ Exðt0 þ Δt=2; x0 þ mþ 1ð ÞΔx; y0 þ n� 1

2

� �
Δy; z0

! 

�Exðt0 þ Δt=2; x0 þ m� 1ð ÞΔx; y0 þ nþ 1
2

� �
Δy; z0Þ � Exðt0 þ Δt=2; x0 þ m� 1ð ÞΔx; y0

þ n� 1
2

� �
Δy; z0Þ

�
Δx
�
Δt
�
þO Δtð Þ3:

(47)
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In addition, Eq. (40) can also be rewritten as

Dy t0 þ Δt=2; x1; y1; z1
� �

ΔxΔz ¼ Dy t0 � Δt=2; x1; y1; z1
� �þ iyðt0; x1; y1; z1Þ

� �
ΔxΔz

þ ∑
m,n

σ�1 x1; z1; x1 þmΔx; z1 þ nΔzð Þ

� 11
12

Hxðt0; x1 þmΔx; y1; z1 þ nþ 1
2

� �
ΔzÞ �Hxðt0; x1þ

�
mΔx; y

��
1; z1 þ n� 1

2

� �
ΔzÞ
�
Δx

� Hzðt0; x1 þ mþ 1
2

� �
Δx; y1; z1 þ nΔzÞ �Hzðt0; x1 þ m� 1

2

� �
Δx; y1; z1 þ nΔzÞ

� �
Δz
�

þ 1
24

Hxðt0; x1 þ mþ 1ð ÞΔx; y1; z1 þ nþ 1
2

� �
ΔzÞ þHxðt0; x1 þ m� 1ð ÞΔx; y1; z1 þ nþ 1

2

� �
Δz

� ��
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Then, the algorithm of the corrected FDTD method, which is supported by the
next-to-the-lowest-order approximation, can be obtained by using Eqs. (48) and
(47) repeatedly.

4. Numerical results

In this section, numerical results of electromagnetic wave transmission in a two-
dimensional slab waveguide based on the original and corrected FDTD methods are
compared with the analytical result.

Figure 3 shows the slab waveguide used in the computational methods, and
Figure 4 shows its calculation domain. This system consists of core and cladding

Figure 3.
Slab waveguide used in numerical calculation.
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regions whose indices are nco and ncl, respectively. The core region is extended
infinitely in the y- and z-directions and has width d in the x-direction. The cladding
region is the rest of space. An electromagnetic wave propagates in the z-direction,
and its electromagnetic field is assumed to have no y dependence. Because the
system has no y dependence, it is essentially a two-dimensional system. An analyt-
ical solution is known and is derived in the appendix. The solution is
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z t; x; y; zð Þ ¼ 0, (54)

Figure 4.
Calculation domain.
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where “anl” indicates that this is an analytical solution. u and w satisfy

w ¼ ncl
nco

� �2

u tan uð Þ, (55)

v2 ¼ u2 þw2 ¼ n2co � n2cl
� �

d2π2

λ2
, (56)

where λ is the wavelength in a vacuum, ω is the angular frequency, and β is the
propagation constant. The propagation constant is the propagation directional
component of wave number vector and calculated as

β ¼
2π

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
n2cow2 þ n2clu

2
q

vλ
: (57)

v defined by Eq. (56) is called the V-parameter, which is determined by the
parameters defining the system. u and w are determined using Figure 5. In the
figure, red curves represent Eq. (55) which is symmetric under the parity transfor-
mation x↦� x as

Hy t;�x; y; zð Þ ¼ Hy t; x; y; zð Þ: (58)

Brown curves represent

w ¼ � n2cl
n2co

u cot uð Þ, (59)

which is antisymmetric under the parity transformations x↦� x as

Hy t;�x; y; zð Þ ¼ �Hy t; x; y; zð Þ: (60)

Figure 5.
Graphs of Eqs. (55), (59), and (56) to determine u and w.
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The blue curve shows Eq. (56). At each intersection of curves Eqs. (55) and (56),
there is an independent symmetric mode satisfying Eq. (58), and at each of the curves
Eq. (59) and (56), there is an independent antisymmetric mode satisfying Eq. (60).
The mode with the lowest u is called fundamental mode. The number of modes of the
system is determined by V and increases by one with respect to each π=2.

In the computational methods, the system parameters are set with the wave-
length λ as 0:30m, the core width d as 0:30m, the same with the wavelength, the
core index nco as 2:0, and the cladding index ncl as 1:0. The lengths of the cell edges
Δx and Δz are both λ=20, and the time step Δt is 10�12 s. With these parameter
values, the parameter values of the analytical solution in Eqs. (49)–(54) can be
derived as

u ¼ 1:50, (61)

w ¼ 5:23, (62)

v ¼ 5:44, (63)

βλ

2π
¼ 1:94, (64)

where the LHS of Eq. (64) is called the effective index, a value between ncl and
nco. These parameter values show that the solution is the fundamental mode. A
magnetic field is excited at z ¼ 0 as

Hy t; x;0;0ð Þ ¼
h0 cos

2ux
d

� �
sin ωtð Þ ∣x∣ ≤

d
2

h0sign xð Þ cos uð Þe�w 2jxj�dð Þ
d sin ωtð Þ ∣x∣ >

d
2

8>>><
>>>:

, (65)

with the parameter values in Eqs. (61) and (62).
Figures 6–14 are numerical and analytical results at times at which the ωt values

are integer multiples of 2π. In these figures, violet curves represent Hy=h0, and
green curves represent core and cladding regions. The region in which the value is
0.5 is the core region with index 2.0, and the region in which the value is �0.5 is the
cladding region with index 1.0. In the figures, time goes downward. The time values
are 1:0, 5:0, 10:0, and 20:0 ns. The left-hand column is calculated using the original

Figure 6.
Hy calculated using original FDTD method at t ¼ 1:0� 10�9 second.
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Eq. (59) and (56), there is an independent antisymmetric mode satisfying Eq. (60).
The mode with the lowest u is called fundamental mode. The number of modes of the
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Figure 8.
Hy analytically calculated at t ¼ 1:0� 10�9 second.

Figure 9.
Hy calculated using original FDTD method at t ¼ 5:0� 10�9 second.

Figure 7.
Hy calculated using corrected FDTD method at t ¼ 1:0� 10�9 second.
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Figure 11.
Hy analytically calculated at t ¼ 5:0� 10�9 second.

Figure 12.
Hy calculated using original FDTD method at t ¼ 1:0� 10�8 second.

Figure 10.
Hy calculated using corrected FDTD method at t ¼ 5:0� 10�9 second.
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FDTD method, the middle column is calculated using the corrected FDTD method,
and the right-hand column is the analytical solution wherein the region

ωt < βz, (66)

Hz is zero. Moreover, the differences in the results between the FDTD calcula-
tions and those of the analytical ones make it clear that ∣Hy=h0∣ at some points
exceeds one in the FDTD calculations, even though the values at any point are equal
to or less than 1 in the analytical results. However, the differences in the calculation
results between the original and corrected FDTD methods are unclear. This indi-
cates that it is impossible to conclude whether the corrected FDTD method is better
than the original one using these figures.

To compare the accuracy and reliability of the original and corrected FDTD
methods, we use a function err tð Þ defined as

err tð Þ ¼
∑p, q

Hnum
y t;pΔx;0;qΔzð Þ�Hanl

y t;pΔx;0;qΔzð Þ
n pΔx;0;qΔzð Þ2

∑p, q
Hanl

y t;pΔx;0;qΔzð Þ2
n pΔx;0;qΔzð Þ2

, (67)

Figure 14.
Hy analytically calculated at t ¼ 1:0� 10�8 second.

Figure 13.
Hy calculated using corrected FDTD method at t ¼ 1:0� 10�8 second.
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which shows the error between the FDTD and the analytical calculations at each
time. In Eq. (67), the denominator of the right-hand side is proportional to the
power of the propagating electromagnetic wave passing through the x� y plane per
unit length of the y-direction.

Figure 15 shows the err functions of the original and corrected FDTD methods
defined by Eq. (67). As shown in the figure, almost every time except for less than
0.14 ns, the err function of the corrected FDTD method is less than that of the
original. This means that the corrected method is more accurate than that of the
original. In addition, when the time is greater than 6 ns, both curves begin to
oscillate. The amplitude of the oscillation of the corrected FDTD method is
clearly less than that of the original. This indicates that the corrected method is
more reliable.

5. Conclusion

In this chapter, a higher-order correction to the original FDTD method
supported by the next-to-the-lowest-order approximation of the integral form of
Maxwell’s equation was shown. The essence of this method is the approximation of
integrals over a cell surface and edge using discretized electric and magnetic fields.

The results of numerical calculations of an electromagnetic wave propagating in
a two-dimensional slab waveguide using the corrected and original FDTD methods
and analysis were also shown. The differences between the corrected and original
FDTD methods were compared using the err function, and the corrected method
was found to be more accurate and reliable than the original.
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err tð Þ of the original and corrected FDTD methods.
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A. Appendix

A.1 Analytical results of two-dimensional slab waveguide
The analytic solution of an electromagnetic wave in a slab waveguide shown in

Figure 3 is provided in various textbooks regarding optical waveguides and related
fields [5–8]. In this appendix, the analytical results of Eqs. (49)–(54) are derived in
accordance with these references.

A propagating electromagnetic wave with no y-dependence in the z-direction
with angular frequency ω and propagation constant β, the wave number in the
z-direction, is written as

E t; x; y; zð Þ ¼ e xð Þei ωt�βzð Þ, (68)

H t; x; y; zð Þ ¼ h xð Þei ωt�βzð Þ: (69)

Maxwell’s equations in dielectrics using Eqs. (13) and (22) become

iμ0ωhx xð Þ ¼ �iβey xð Þ (70)

iμ0ωhy xð Þ ¼ iβex xð Þ þ ∂xez xð Þ, (71)

iμ0ωhz xð Þ ¼ �∂xey xð Þ, (72)

in xð Þ2ε0ωex xð Þ ¼ iβhy xð Þ, (73)

in xð Þ2ε0ωey xð Þ ¼ �iβhx xð Þ � ∂xhz xð Þ, (74)

in xð Þ2ε0ωez xð Þ ¼ ∂xhy xð Þ, (75)

wheren xð Þ is the index distribution shown inFigure 16. As shown inEqs. (70)–(75),
there are two closed equation classes. The first class contains Eqs. (70), (72), and (74),
which have components of electric andmagnetic fields transverse to the propagation
direction and a longitudinal component of themagnetic field in that direction. The
second class contains Eqs. (71), (73), and (75), which have components of electric and
magnetic fields transversed to the propagation direction and a longitudinal component
of the electric field in that direction. Solution to the first class comprise the transverse
electric (TE)mode because the electric field has only a component transversed to the
propagation direction, and solution to the second class comprises the transverse mag-
netic (TM)mode because themagnetic field has only a component transversed to that
direction. In Section 4, numerical and analytical results ofHy are shown, and they are
TMmodes.

Hereafter, our discussion is limited to the TM mode. Then, Eqs. (71), (73), and
(75) are rewritten as

∂
2
xhy xð Þ ¼ � 2πn xð Þ

λ

� �2

� β2
" #

hy xð Þ, (76)

ex xð Þ ¼ β

n xð Þ2ε0ω
hy xð Þ, (77)
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ez xð Þ ¼ 1

in xð Þ2ε0ω
∂xhy xð Þ: (78)

The discontinuity of n xð Þ at x ¼ �d=2 and x ¼ d=2, shown in Figure 16, requires
that the boundary condition at x ¼ �d=2 be considered. Because of the integral
form of Maxwell’s equations, the components of electric and magnetic fields parallel
to the boundary surface of the indices are continuous, and the components of the
electric and magnetic flux densities normal to the surface are continuous. Conse-
quently, Hy xð Þ and ∂xhy xð Þ in Eqs. (76)–(78) are continuous.

Solving Eq. (76) requires considering the following three cases:

1. ∣β∣ < ncl

2.ncl ≤ ∣β∣ < nco

3.nco ≤ ∣β∣

In case 1, the solutions of Eq. (76) are

hy xð Þ ¼

Q cos Pxð Þ jxj≤ d=2ð Þ

Q cos
Pd
2

� �
cos

Qd
2

� �
þ P sin

Pd
2

� �
sin

Qd
2

� �� �
cos Qxð Þ

� P sin
Pd
2

� �
cos

Qd
2

� �
� Q cos

Pd
2

� �
sin

Qd
2
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sin Qxð Þ

2
66664

3
77775

jxj≥ d=2ð Þ

8>>>>>>><
>>>>>>>:

,

(79)

and

Figure 16.
Index distribution of the slab waveguide.
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A. Appendix

A.1 Analytical results of two-dimensional slab waveguide
The analytic solution of an electromagnetic wave in a slab waveguide shown in

Figure 3 is provided in various textbooks regarding optical waveguides and related
fields [5–8]. In this appendix, the analytical results of Eqs. (49)–(54) are derived in
accordance with these references.

A propagating electromagnetic wave with no y-dependence in the z-direction
with angular frequency ω and propagation constant β, the wave number in the
z-direction, is written as

E t; x; y; zð Þ ¼ e xð Þei ωt�βzð Þ, (68)

H t; x; y; zð Þ ¼ h xð Þei ωt�βzð Þ: (69)

Maxwell’s equations in dielectrics using Eqs. (13) and (22) become

iμ0ωhx xð Þ ¼ �iβey xð Þ (70)

iμ0ωhy xð Þ ¼ iβex xð Þ þ ∂xez xð Þ, (71)

iμ0ωhz xð Þ ¼ �∂xey xð Þ, (72)

in xð Þ2ε0ωex xð Þ ¼ iβhy xð Þ, (73)

in xð Þ2ε0ωey xð Þ ¼ �iβhx xð Þ � ∂xhz xð Þ, (74)

in xð Þ2ε0ωez xð Þ ¼ ∂xhy xð Þ, (75)

wheren xð Þ is the index distribution shown inFigure 16. As shown inEqs. (70)–(75),
there are two closed equation classes. The first class contains Eqs. (70), (72), and (74),
which have components of electric andmagnetic fields transverse to the propagation
direction and a longitudinal component of themagnetic field in that direction. The
second class contains Eqs. (71), (73), and (75), which have components of electric and
magnetic fields transversed to the propagation direction and a longitudinal component
of the electric field in that direction. Solution to the first class comprise the transverse
electric (TE)mode because the electric field has only a component transversed to the
propagation direction, and solution to the second class comprises the transverse mag-
netic (TM)mode because themagnetic field has only a component transversed to that
direction. In Section 4, numerical and analytical results ofHy are shown, and they are
TMmodes.

Hereafter, our discussion is limited to the TM mode. Then, Eqs. (71), (73), and
(75) are rewritten as

∂
2
xhy xð Þ ¼ � 2πn xð Þ

λ

� �2

� β2
" #

hy xð Þ, (76)

ex xð Þ ¼ β

n xð Þ2ε0ω
hy xð Þ, (77)
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ez xð Þ ¼ 1

in xð Þ2ε0ω
∂xhy xð Þ: (78)

The discontinuity of n xð Þ at x ¼ �d=2 and x ¼ d=2, shown in Figure 16, requires
that the boundary condition at x ¼ �d=2 be considered. Because of the integral
form of Maxwell’s equations, the components of electric and magnetic fields parallel
to the boundary surface of the indices are continuous, and the components of the
electric and magnetic flux densities normal to the surface are continuous. Conse-
quently, Hy xð Þ and ∂xhy xð Þ in Eqs. (76)–(78) are continuous.

Solving Eq. (76) requires considering the following three cases:

1. ∣β∣ < ncl

2.ncl ≤ ∣β∣ < nco

3.nco ≤ ∣β∣

In case 1, the solutions of Eq. (76) are

hy xð Þ ¼

Q cos Pxð Þ jxj≤ d=2ð Þ

Q cos
Pd
2

� �
cos

Qd
2

� �
þ P sin

Pd
2

� �
sin

Qd
2

� �� �
cos Qxð Þ

� P sin
Pd
2
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cos
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2
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� Q cos

Pd
2

� �
sin

Qd
2

� �� �
sin Qxð Þ

2
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3
77775

jxj≥ d=2ð Þ

8>>>>>>><
>>>>>>>:

,
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Figure 16.
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hy xð Þ ¼

Q sin Pxð Þ jxj≤ d=2ð Þ

sign xð Þ Q sin
Pd
2

� �
cos

Qd
2

� �
� P cos

Pd
2

� �
sin

Qd
2

� �� �
cos Qxð Þ

�

þ P cos
Pd
2

� �
cos

Qd
2

� �
þ Q sin

Pd
2

� �
sin

Qd
2

� �� �
sin Qxð Þ

�

2
66664

3
77775

jxj≥ d=2ð Þ,

8>>>>>>>><
>>>>>>>>:

(80)

where

P ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2πnco
λ

� �2

� β2

s
, (81)

Q ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2πncl
λ

� �2

� β2

s
: (82)

However, this solution does not show electromagnetic wave propagation in the
z-direction but shows a reflection and transmission problem of the film when the
incident angle is less than the critical angle. Let us discuss this in more detail. When
∣x∣ ≤ d=2, Hy t; x; y; zð Þ is a linear combination of

ei ωt�Px�βzð Þ, and ei ωtþPx�βzð Þ, (83)

a plane wave whose wavenumber is P;0; βð Þ and �P;0; βð Þ, respectively. When
∣x∣ > d=2, Hy t; x; y:zð Þ is a linear combination of

ei ωt�Qx�βzð Þ, and ei ωtþQx�βzð Þ, (84)

a plane wave whose wavenumbers are Q ;0; βð Þ and �Q;0; βð Þ, respectively.
Therefore, with a suitable linear combination of Eqs. (79) and (80), the solution
becomes that a plane wave with wavenumber P;0; βð Þ is incident from the
x < � d=2 region to be reflected and transmitted by a film of the ∣x∣ ≤ d=2 region
with a reflected wave propagated in the x < � d=2 region and a transmitted wave
propagated in the x> d=2 region. Therefore, this solution is not what we want.

In case 2, the solutions of Eq. (76) are

hy xð Þ ¼
cos Pxð Þ ∣x∣ ≤ d=2

cos
Pd
2

� �
e�Q2∣x∣�d

d

8<
: , (85)

where

P ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2πnco
λ

� �2

� β2

s
, (86)

Q ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
β2 � 2πncl

λ

� �2
s

, (87)

Qd
2

¼ ncl
nco

� �2 Pd
2

tan
Pd
2

� �
, (88)
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and

hy xð Þ ¼
sin Pxð Þ ∣x∣ ≤ d=2

sign xð Þ sin Pd
2

� �
e�Q2∣x∣�d

d ∣x∣ > d=2

8<
: , (89)

where

Qd
2

¼ � ncl
nco

� �2 Pd
2

cot
Pd
2

� �
: (90)

Defining

u ¼ Pd
2
, (91)

w ¼ Qd
2

, (92)

yields Eqs. (53), (55), (56), and (59). This is the solution we want.
In case 3, the solutions of Eq. (76) are

hy xð Þ ¼
cosh Pxð Þ ∣x∣ ≤ d=2

cosh
Pd
2

� �
e�Q jxj�d=2ð Þ ∣x∣ > d=2

8<
: , (93)

where

P ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
β2 � 2πnco

λ

� �2
s

, (94)

Q ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
β2 � 2πncl

λ

� �2
s

, (95)

Q ¼ P tanh
Pd
2

� �
, (96)

and

hy xð Þ ¼
sinh Pxð Þ ∣x∣ ≤ d=2

sign xð Þ sinh Pd
2

� �
e�Q jxj�d=2ð Þ ∣x∣ > d=2

8<
: , (97)

where

Q ¼ �P coth
Pd
2

� �
: (98)

As a result of Eqs. (94) and (95),

�P2 þ Q2 ¼ 2πnco
λ

� �2

� 2πncl
λ

� �2

, (99)
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where
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, (81)

Q ¼
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s
: (82)

However, this solution does not show electromagnetic wave propagation in the
z-direction but shows a reflection and transmission problem of the film when the
incident angle is less than the critical angle. Let us discuss this in more detail. When
∣x∣ ≤ d=2, Hy t; x; y; zð Þ is a linear combination of

ei ωt�Px�βzð Þ, and ei ωtþPx�βzð Þ, (83)

a plane wave whose wavenumber is P;0; βð Þ and �P;0; βð Þ, respectively. When
∣x∣ > d=2, Hy t; x; y:zð Þ is a linear combination of

ei ωt�Qx�βzð Þ, and ei ωtþQx�βzð Þ, (84)

a plane wave whose wavenumbers are Q ;0; βð Þ and �Q;0; βð Þ, respectively.
Therefore, with a suitable linear combination of Eqs. (79) and (80), the solution
becomes that a plane wave with wavenumber P;0; βð Þ is incident from the
x < � d=2 region to be reflected and transmitted by a film of the ∣x∣ ≤ d=2 region
with a reflected wave propagated in the x < � d=2 region and a transmitted wave
propagated in the x> d=2 region. Therefore, this solution is not what we want.

In case 2, the solutions of Eq. (76) are

hy xð Þ ¼
cos Pxð Þ ∣x∣ ≤ d=2

cos
Pd
2

� �
e�Q2∣x∣�d

d

8<
: , (85)

where

P ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
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� β2
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, (86)

Q ¼
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and

hy xð Þ ¼
sin Pxð Þ ∣x∣ ≤ d=2

sign xð Þ sin Pd
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e�Q2∣x∣�d

d ∣x∣ > d=2
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: , (89)

where
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� �2 Pd
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cot
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� �
: (90)

Defining

u ¼ Pd
2
, (91)

w ¼ Qd
2

, (92)

yields Eqs. (53), (55), (56), and (59). This is the solution we want.
In case 3, the solutions of Eq. (76) are

hy xð Þ ¼
cosh Pxð Þ ∣x∣ ≤ d=2

cosh
Pd
2
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e�Q jxj�d=2ð Þ ∣x∣ > d=2
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: , (93)

where

P ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
β2 � 2πnco

λ
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, (94)

Q ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
β2 � 2πncl
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, (95)

Q ¼ P tanh
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� �
, (96)

and

hy xð Þ ¼
sinh Pxð Þ ∣x∣ ≤ d=2

sign xð Þ sinh Pd
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� �
e�Q jxj�d=2ð Þ ∣x∣ > d=2

8<
: , (97)

where

Q ¼ �P coth
Pd
2

� �
: (98)

As a result of Eqs. (94) and (95),

�P2 þ Q2 ¼ 2πnco
λ

� �2

� 2πncl
λ

� �2

, (99)
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is satisfied. When P is pure imaginary and Q is real, the solution reduces to case
2. There is a possibility that Q is neither real nor purely imaginary. However, such a
solution must be attenuated when z becomes large. Mathematically, there can be a
divergent solution when z becomes large, but such a solution cannot conserve
energy. Therefore, such a solution is not what we want.

Author details

Naofumi Kitsunezaki
Amashiro Science, Nagoya, Japan

*Address all correspondence to: n.kitsunezaki@amashiro-science.jp

© 2018 TheAuthor(s). Licensee IntechOpen. This chapter is distributed under the terms
of theCreativeCommonsAttribution License (http://creativecommons.org/licenses/
by/3.0),which permits unrestricted use, distribution, and reproduction in anymedium,
provided the original work is properly cited.

86

Recent Advances in Integral Equations

References

[1] Yee K. Numerical solution of initial
boundary value problems involving
Maxwell’s equations in isotropic media.
IEEE Transactions on Antennas and
Propagation. 1966;14:302-307. DOI:
10.1109/TAP.1966.1138693

[2] Kitsunezaki N, Okabe A. Higher-
order correction to the FDTD method
based on the integral form of Maxwell’s
equations. Computer Physics
Communications. 2014;185:1582-1588.
DOI: 10.1016/j.cpc.2014.02.022

[3] Kitsunezaki N. Higher-order
Correction to the Finite-Difference
Time-Domain Method Based on the
Integral Form of Maxwell’s Equations.
In: BIT’s 4th Annual Global Congress of
Knowledge Economy; 19–21 September
2017; Qingdao, Dalian: BIT Group
Global Ltd.; 2017. p. 096

[4] Nielsen HN, Ninomiya M. A no-go
theorem for regularizing chiral
fermions. Physics Letters. 1981;B105:
219-223. DOI: 10.1016/0370-2693(81)
91026-1

[5] Marcuse D. Light Transmission
Optics. 2nd ed. New York: Van Nostrand
Reinhold Company Inc; 1982. 534 p.
ISBN: 0-442-26309-0

[6] Haus HA. Waves and Fields in
Optoelectronics. Prentice Hall:
Englewood Criffs; 1983. 402 p. ISBN:
0-139-460-535

[7] Buch JA. Fundamentals of Optical
Fibers. Hoboken: Wiley; 2004. 332 p.
ISBN: 0-471-221-910

[8] Okamoto K. Fundamentals of Optical
Waveguides. San Diego: Academic
Press; 2006. 561 p. ISBN: 0-12-525096-7

87

Electro-magnetic Simulation Based on the Integral Form of Maxwell’s Equations
DOI: http://dx.doi.org/10.5772/intechopen.81338



is satisfied. When P is pure imaginary and Q is real, the solution reduces to case
2. There is a possibility that Q is neither real nor purely imaginary. However, such a
solution must be attenuated when z becomes large. Mathematically, there can be a
divergent solution when z becomes large, but such a solution cannot conserve
energy. Therefore, such a solution is not what we want.

Author details

Naofumi Kitsunezaki
Amashiro Science, Nagoya, Japan

*Address all correspondence to: n.kitsunezaki@amashiro-science.jp

© 2018 TheAuthor(s). Licensee IntechOpen. This chapter is distributed under the terms
of theCreativeCommonsAttribution License (http://creativecommons.org/licenses/
by/3.0),which permits unrestricted use, distribution, and reproduction in anymedium,
provided the original work is properly cited.

86

Recent Advances in Integral Equations

References

[1] Yee K. Numerical solution of initial
boundary value problems involving
Maxwell’s equations in isotropic media.
IEEE Transactions on Antennas and
Propagation. 1966;14:302-307. DOI:
10.1109/TAP.1966.1138693

[2] Kitsunezaki N, Okabe A. Higher-
order correction to the FDTD method
based on the integral form of Maxwell’s
equations. Computer Physics
Communications. 2014;185:1582-1588.
DOI: 10.1016/j.cpc.2014.02.022

[3] Kitsunezaki N. Higher-order
Correction to the Finite-Difference
Time-Domain Method Based on the
Integral Form of Maxwell’s Equations.
In: BIT’s 4th Annual Global Congress of
Knowledge Economy; 19–21 September
2017; Qingdao, Dalian: BIT Group
Global Ltd.; 2017. p. 096

[4] Nielsen HN, Ninomiya M. A no-go
theorem for regularizing chiral
fermions. Physics Letters. 1981;B105:
219-223. DOI: 10.1016/0370-2693(81)
91026-1

[5] Marcuse D. Light Transmission
Optics. 2nd ed. New York: Van Nostrand
Reinhold Company Inc; 1982. 534 p.
ISBN: 0-442-26309-0

[6] Haus HA. Waves and Fields in
Optoelectronics. Prentice Hall:
Englewood Criffs; 1983. 402 p. ISBN:
0-139-460-535

[7] Buch JA. Fundamentals of Optical
Fibers. Hoboken: Wiley; 2004. 332 p.
ISBN: 0-471-221-910

[8] Okamoto K. Fundamentals of Optical
Waveguides. San Diego: Academic
Press; 2006. 561 p. ISBN: 0-12-525096-7

87

Electro-magnetic Simulation Based on the Integral Form of Maxwell’s Equations
DOI: http://dx.doi.org/10.5772/intechopen.81338



Recent Advances in  
Integral Equations

Edited by Francisco Bulnes

Edited by Francisco Bulnes

Integral equations are functional equations in which an unknown function appears 
under an integral sign. This can involve aspects of function theory and their integral 
transforms when the unknown function appears with a functional non-degenerated 

kernel under the integral sign. The close relation between differential and integral 
equations does that  in some functional analysis, and function theory problems may be 

formulated either way. This book establishes the fundamentals of integral equations 
and considers some deep research aspects on integral equations of first and second kind, 
operator theory applied to integral equations, methods to solve some nonlinear integral 
equations, and singular integral equations, among other things. This is the first volume 
on this theme, hoping that other volumes of this important functional analysis theme 

and operator theory to formal functional equations will be realized in the future.

Published in London, UK 

©  2019 IntechOpen 
©  Egemen Ilbeyli / iStock

ISBN 978-1-83880-658-3

Recent A
dvances in Integral Equations

ISBN 978-1-83880-659-0


