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Preface

Polynomials are well known for their evincing properties and wide applicability in
interdisciplinary areas of science. The problems arising in physical sciences and
engineering are mathematically framed in terms of differential equations. Most of
them can only be solved using special polynomials. Special polynomials and
orthogonal polynomials provide new means of analysis for solving large classes of
differential equations often encountered in physical problems. In particular,
sequences of special polynomials play a fundamental role in applied mathematics.
Such sequences can be described in various ways, for example, by orthogonality
conditions, as solutions to differential equations, by generating functions, by recur-
rence relations and by operational formulas.

Written by leading researchers and mathematicians, this book provides an overview
of the current research in the field of polynomials. Topics include but are not
limited to the following:

• The modern umbral calculus (binomial, Appell, and Sheffer polynomial
sequences)

• Orthogonal polynomials, matrix orthogonal polynomials, multiple orthogonal
polynomials, and orthogonal polynomials of several variables

• Matrix and determinant approach to special polynomial sequences

• Applications of special polynomial sequences in approximation theory and in
boundary value problems

• Number theory and special functions

• Asymptotic methods in orthogonal polynomials

• Fractional calculus and special functions

• Symbolic computations and special functions

This timely book will help fill a gap in the literature on the theory of polynomials
and related fields. We hope it will promote further research and development in this
important area.
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Chapter 1

Cyclotomic and Littlewood
Polynomials Associated to
Algebras
José-Antonio de la Peña

Abstract

Let A be a finite dimensional algebra over an algebraically closed field k.
Assume A is a basic connected and triangular algebra with n pairwise non-isomorphic
simple modules. We consider the Coxeter transformation ϕA Tð Þ as the automorphism
of the Grothendieck group K0 Að Þ induced by the Auslander-Reiten translation τ in
the derived category Db modAð Þ of the module category modA of finite dimensional
left A-modules. In this paper we study the Mahler measureM χAð Þ of the Coxeter
polynomial χA of certain algebras A. We consider in more detail two cases: (a) A is
said to be cyclotomic if all eigenvalues of χA are roots of unity; (b) A is said to be of
Littlewood type if all coefficients of χA are�1,0 or 1. We find criteria in order thatA is
of one of those types. In particular, we establish new records according to
Mossingshoff’s list of Record Mahler measures of polynomials q with 1<M qð Þ as small
as possible, ordered by their number of roots outside the unit circle.

Keywords: finite dimensional algebra, coxeter transformation, derived category,
accessible algebra, characteristic polynomial, cyclotomic polynomial, littlewod type

1. Introduction

Assume throughout the paper that K is an algebraically closed field. We assume
thatA is a triangular finite dimensional basic K-algebra, that is, of the formA ¼ KQ=I,
where I is an ideal of the path algebra KQ for Q a quiver without oriented cycles.
In particular, A has finite global dimension. The Coxeter transformation ϕA is the
automorphism of the Grothendieck group K0 Að Þ induced by the Auslander-Reiten
translation τ in the derived category Db Að Þ see [1]. The characteristic polynomial χA
of ϕA is called the Coxeter polynomial χA of A, or simply χA see [15, 17]. It is a monic
self-reciprocal polynomial, therefore it is χA ¼ a0 þ a1T þ a2T2 þ…þ an�2Tn�2þ
an�1Tn�1 þ anTn ∈Z T½ �, with ai ¼ an�i for 0≤ i≤ n, and a0 ¼ 1 ¼ an.

Consider the roots λ1,…, λn of χA, the so called spectrum of A. There is a number
of measures associated to the absolute values ∣λ∣ for λ in the spectrum Spec ϕAð Þ of
A. For instance, the spectral radius of A is defined as ρA ¼ max jλj : λ∈ Spec ϕAð Þf g
and the Mahler measure of χA defined as M χAð Þ ¼ max 1;

Q
∣λ∣> 1jλj

n o
. Recently,

some explorations on the relations of the Mahler measure M χAð Þ and properties of
the algebra A have been initiated.

For a one-point extension A ¼ B N½ �, we show thatM χBð Þ≤M χAð Þ. The strongest
statements and examples will be given for the class of accessible algebras. We say

3
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that an algebra A is accessible from B if there is a sequence B ¼ B1, B2,…, Bs ¼ A of
algebras such that each Biþ1 is a one-point extension (resp. coextension) of Bi for
some exceptional Bi-moduleMi. As a special case, a K-algebra A is called accessible if
A is accessible from the one vertex algebra K.

We say that A is of cyclotomic type if the eigenvalues of ϕA lie on the unit circle.
Many important finite dimensional algebras are known to be of cyclotomic type:
hereditary algebras of finite or tame representation type, canonical algebras, some
extended canonical algebras and many others. On the other hand, there are well-
known classes of algebras with a mixed behavior with respect to cyclotomicity. For
instance, in Section 6 below we consider the class of Nakayama algebras. Let N n; rð Þ
be the quotient obtained from the linear quiver with n vertices

•!
x

•!
x

⋯•!
x

•

with relations xr ¼ 0. The Nakayama algebras N n; 2ð Þ are easily proven to be of
cyclotomic type, while those of the form N n; 3ð Þ are of cyclotomic type as conse-
quence of lengthly considerations in [18]. The case r ¼ 4 is more representative:
N n;4ð Þ is of cyclotomic type for all 0≤ n≤ 100 except for n ¼ 10; 22; 30;42; 50;
62; 70; 82 and 90. Clearly, if A is of cyclotomic type then ∣Tr ϕAð Þk∣ ≤ n, for k≥0.
We show the following theorem.

Theorem 1: Let M be an unimodular n� n-matrix. The following are equivalent:

a.M is of cyclotomic type;

b.for every positive integer 0≤ k≤ n, we have ∣Tr Mk� �
∣ ≤ n.

We also consider algebras A of Littlewood type where χA has all its coefficients in
the set �1;0; 1f g. Among other structure results, we prove.

Proposition. The closure P of the set P of roots of Littlewood polynomials, equals the
set R of roots of Littlewood series.

Our results make use of well established techniques in the representation theory of
algebras, as well as results from the theory of polynomials and transcendental number
theory, where Mahler measure has its usual habitat. We stress here the natural
context of these investigations on the largely unexplored overlapping area of these
important subjects. Hence, rather than a comprehensive study we understand our
work as a preliminary exploration where examples are most valuable.

2. Measures for polynomials

2.1 Self-reciprocal polynomials

A polynomial p zð Þ of degree n is said to be self-reciprocal if p zð Þ ¼ znp 1=zð Þ. The
following table displays the number a nð Þ of polynomials p of degree n (for small n)
with p 0ð Þ non-zero, b nð Þ is the number of such polynomials which are additionally
self-reciprocal, and c nð Þ is the number of those which are self-reciprocal and where
p �1ð Þ is the square of an integer.

n 1 2 3 4 5 6 7 8 9 10 11 12 15 20 25

a nð Þ 2 6 10 24 38 78 118 224 330 584 838 1420 4514 30,532 152,170

b nð Þ 1 5 5 19 19 59 59 165 165 419 419 1001 2257 20,399 76,085

c nð Þ 1 3 5 12 19 34 59 99 165 244 419 598 2257 12,526 76,085

4
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Indeed, there is an efficient algorithm to determine such polynomials of given
degree n, based on a quadratic bound for n≤4f nð Þ2 in terms of Euler totient
function, f nð Þ.

Cyclotomic polynomials Φn and their products are a natural source for self-
reciprocal polynomials. Clearly, Φ1 zð Þ ¼ z� 1 is not self-reciprocal, but all
remaining Φn (with n≥ 2) are. Hence, exactly the polynomials z� 1ð Þ2kQn≥ 2Φ

en
n

with natural numbers k and en are self-reciprocal with spectral radio one and
without eigenvalue zero.

It is not a coincidence that in the above tables we have b nð Þ ¼ c nþ 1ð Þ for n even
and b nð Þ ¼ c nð Þ for n odd. Indeed, if p is self-reciprocal of odd degree then
p �1ð Þ ¼ 0, hence p zð Þ ¼ zþ 1ð Þq zð Þ where q is also self-reciprocal.

2.2 Mahler measure

Let A be a finite dimensional K-algebra with finite global dimension. The
Grothendieck group K0 Að Þ of the category modA of finite dimensional (right)
A-modules, formed with respect to short exact sequences, is naturally isomorphic to
the Grothendieck group of the derived category, formed with respect to exact
triangles.

The Coxeter transformation ϕA is the automorphism of the Grothendieck group
K0 Að Þ induced by the Auslander-Reiten translation τ. The characteristic polynomial
χA Tð Þ of ϕA is called the Coxeter polynomial χA Tð Þ of A, or simply χA. It is a monic
self-reciprocal polynomial, therefore it is χA Tð Þ ¼ a0 þ a1T þ a2T2 þ…þ
an�2Tn�2 þ an�1Tn�1 þ anTn ∈Z T½ �, with ai ¼ an�i for 0≤ i≤ n, and a0 ¼ 1 ¼ an.

Consider the roots λ1 Að Þ,…, λn Að Þ of χA, the so called spectrum of A. In [15], a
measure for polynomials was introduced. Namely, the Mahler measure of χA is
M χAð Þ ¼ max 1;

Qn
i¼1 jλij

� �
. By a celebrated result of Kronecker [9], see also [7,

Prop. 1.2.1], a monic integral polynomial p, with p 0ð Þ 6¼ 0, hasM pð Þ ¼ 1 if and only
if p factorizes as product of cyclotomic polynomials. As observed in [18], A is of
cyclotomic type if and only if M χAð Þ ¼ 1, that is, χA Tð Þ factorizes as product of
cyclotomic polynomials.

2.3 Spectral radius one, periodicity

If the spectrum of A lies in the unit disk, then all roots of χA lie on the unit circle,
hence A has spectral radius ρA ¼ 1. Clearly, for fixed degree there are only finitely
many monic integral polynomials with this property.

The following finite dimensional algebras are known to produce Coxeter
polynomials of spectral radius one:

1. hereditary algebras of finite or tame representation type;

2. all canonical algebras;

3. (some) extended canonical algebras;

4.generalizing (2), (some) algebras which are derived equivalent to categories of
coherent sheaves.

We put vn ¼ 1þ xþ x2 þ…þ xn�1. Note that vn has degree n� 1. There are
several reasons for this choice: first of all vn 1ð Þ ¼ n, second this normalization yields
convincing formulas for the Coxeter polynomials of canonical algebras and
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hereditary stars, third representing a Coxeter polynomial — for spectral radius
one — as a rational function in the vn‘s relates to a Poincaré series, naturally
attached to the setting.

Dynkin type Star symbol v-factorization Cyclotomic factorization Coxeter number

An n½ � vnþ1
Q

d∣n, d> 1 Φd nþ 1

Dn 2; 2; n� 2½ � v2 v2vn�2ð Þ
v2vn�2ð Þvn�1 v2 n�1ð Þ Φ2

Y
d∣2 n� 1ð Þ

d 6¼ 1, d 6¼ n� 1

Φd 2 n� 1ð Þ

E6 2; 3; 3½ � v2v3 v3ð Þ
v3ð Þv4v6 v12

Φ3Φ12 12

E7 2; 3; 4½ � v2v3 v4ð Þ
v4ð Þv6v9 v18

Φ2Φ18 18

E8 2; 3; 5½ � v2v3v5
v6v10v15

v30 Φ30 30

In the column ‘v-factorization’, we have added some extra terms in the nomina-
tor and denominator which obviously cancel.

Inspection of the table shows the following result:
Proposition. Let k be an algebraically closed field and A be a connected, hereditary

k-algebra which is representation-finite. Then the Coxeter polynomial χA determines A
up to derived equivalence. □

2.4 Triangular algebras

Nearly all algebras considered in this survey are triangular. By definition, a finite
dimensional algebra is called triangular if it has triangular matrix shape

A1 M12 ⋯ M1n

0 A2 ⋯ M2n

⋱ ⋮
0 0 ⋯ An

2
6664

3
7775

where the diagonal entries Ai are skew-fields and the off-diagonal entries Mij,
j> i, are Ai, Aj-bimodules. Each triangular algebra has finite global dimension.

Proposition. Let A be a triangular algebra over an algebraically closed field K. Then
χA �1ð Þ is the square of an integer.

Proof. Let C be the Cartan matrix of A with respect to the basis of indecompos-
able projectives. Since A is triangular and K is algebraically closed, we get detC ¼ 1,
yielding

χA ¼ xI þ C�1Ct
�� �� ¼ C�1

�� �� � xCþ Ctj j ¼ Ct þ xCj j:

Hence χA �1ð Þ is the determinant of the skew-symmetric matrix S ¼ Ct � C.
Using the skew-normal form of S, see [16, Theorem IV.1], we obtain S0 ¼ UtSU for
some U ∈GLn Zð Þ, where S0 is a block-diagonal matrix whose first block is the zero

matrix of a certain size and where the remaining blocks have the shape
0 mi

�mi 0

� �

with integers mi. The claim follows. □
Which self-reciprocal polynomials of spectral radius one are Coxeter polynomials?

The answer is not known. If arbitrary base fields are allowed, we conjecture that all
self-reciprocal polynomials are realizable as Coxeter polynomials of triangular
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algebras. Restricting to algebraically closed fields, already the request that χA �1ð Þ
is a square discards many self-reciprocal polynomials, for instance the
cyclotomic polynomials Φ4, Φ6, Φ8, Φ10. Moreover, the polynomial f ¼ x3 þ 1,
which is the Coxeter polynomial of the non simply-laced Dynkin diagram B3,
does not appear as the Coxeter polynomial of a triangular algebra over an
algebraically closed field, despite of the fact that f �1ð Þ ¼ 0 is a square. Indeed,
the Cartan matrix

1 a b
0 1 c
0 0 1

2
64

3
75

yields the Coxeter polynomial f ¼ x3 þ αx2 þ αxþ 1, where α ¼ abc� a2 � b2�
c2 þ 3. The equation a2 þ b2 þ c2 � abc ¼ 3 ofHurwitz-Markov type does not have an
integral solution. (Use that reductionmodulo 3 only yields the trivial solution in F3.)

2.5 Relationship with graph theory

Given a (non-oriented) graph Δ, its characteristic polynomial κΔ is defined as the
characteristic polynomial of the adjacency matrix MΔ of Δ. Observe that, since MΔ
is symmetric, all its eigenvalues are real numbers. For general results on graph
theory and spectra of graphs see [4].

There are important interactions between the theory of graph spectra and the
representation theory of algebras, due to the fact that if C is the Cartan matrix of

A ¼ K Δ
!h i

, then MΔ is determined by the symmetrization Cþ Ct of C, since

MΔ ¼ Cþ Ct � 2I. We shall see that information on the spectra of MΔ provides
fundamental insights into the spectral analysis of the Coxeter matrix ΦA and the
structure of the algebra A.

A fundamental fact for a hereditary algebra A ¼ K Δ
!h i

, when Δ
!
is a bipartite

quiver, that is, every vertex is a sink or source, is that Spec ΦAð Þ⊂S1∪Rþ. This was
shown as a consequence of the following important identity.

Proposition. [2] Let A ¼ K Δ
!h i

be a hereditary algebra with Δ
!
a bipartite quiver

without oriented cycles. Then χA x2ð Þ ¼ xnκΔ xþ x�1ð Þ, where n is the number of vertices

of Δ
!
and κΔ is the characteristic polynomial of the underlying graph Δ of Δ

!
.

Proof. Since Δ
!
is bipartite, we may assume that the first m vertices are sources

and the last n�m vertices are sinks. Then the adjacency matrix A of Δ and the
Cartan matrix C of A, in the basis of simple modules, take the form: A ¼ N þNt,
C ¼ In �N, where

N ¼ 0 D
0 0

� �

for certain m�m-matrix D. Since N2 ¼ 0, then C�1 ¼ In þN. Therefore

det x2In �ΦA
� � ¼ det x2In þ In �Nð Þ In þNð Þt� �

det In �Ntð Þ
¼ det x2In � x2Nt þ In �Nð Þ� �

¼ xndet xþ x�1
� �

In � xNt � x�1N
� �

¼ xndet xþ x�1
� �

In � A
� �

:

□
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The above result is important since it makes the spectral analysis of bipartite
quivers and their underlying graphs almost equivalent. Note, however, that the
representation theoretic context is much richer, given the categorical context
behind the spectral analysis of quivers. The representation theory of bipartite
quivers may thus be seen as a categorification of the class of graphs, allowing
a bipartite structure.

Constructions in graph theory. Several simple constructions in graph theory
provide tools to obtain in practice the characteristic polynomial of a graph. We
recall two of them (see [4] for related results):

a. Assume that a is a vertex in the graph Δ with a unique neighbor b and
Δ0(resp.Δ00) is the full subgraph ofΔwith verticesΔ0\ af g (resp.Δ0\ a; bf g), then

κΔ ¼ xκΔ0 � κΔ00

b.Let Δi be the graph obtained by deleting the vertex i in Δ. Then the first
derivative of κΔ is given by

κ0Δ ¼ ∑
i
κΔi

The above formulas can be used inductively to calculate the characteristic poly-
nomial of trees and other graphs. They immediately imply the following result that
will be used often to calculate Coxeter polynomials of algebras.

Proposition. Let A ¼ K Δ
!h i

be a bipartite hereditary algebra. The following holds:

i. Let a be a vertex in the graph Δ with a unique neighbor b. Consider the algebras B
and C obtained as quotients of A modulo the ideal generated by the vertices a and
a, b, respectively. Then

χA ¼ xþ 1ð ÞχB � xχC

ii. The first derivative of the Coxeter polynomial satisfies:

2xχA
0 ¼ nχA þ x� 1ð Þ∑

i
χA ið Þ

where A ið Þ ¼ K Δ
!
\ if g

h i
is an algebra obtained from A by ‘killing’ a vertex i.

Proof. Use the corresponding results for graphs and A’Campo’s formula for the
algebras A and its quotients A ið Þ. □

3. Important classes of algebras

In this section we give the definitions and main properties of such classes of finite
dimensional algebras where information on their spectral properties is available.

3.1 Hereditary algebras

Let A be a finite dimensional K-algebra. For simplicity we assume A ¼ K Δ
!h i

=I

for a quiver Δ
!
without oriented cycles and I an ideal of the path algebra. The

following facts about the Coxeter transformation ΦA of A are fundamental:

8
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i. Let S1,…, Sn be a complete system of pairwise non-isomorphic simple A-
modules, P1,…, Pn the corresponding projective covers and I1,…, In the
injective envelopes. Then ϕA is the automorphism of K0 Að Þ defined by
ΦA Pi½ � ¼ � Ii½ �, where X½ � denotes the class of a module X in K0 Að Þ.

ii. For a hereditary algebra A ¼ K Δ
!h i

, the spectral radius ρA ¼ ρΦA
determines

the representation type of A in the following manner:

a.A is representation-finite if 1 ¼ ρA is not a root of the Coxeter
polynomial χA.

b.A is tame if 1 ¼ ρA ∈Roots χAð Þ.

c.A is wild if 1< ρA. Moreover, if A is wild connected, Ringel [20] shows
that the spectral radius ρA is a simple root of χA. Then Perron-Frobenius
theory yields a vector yþ ∈K0 Að Þ⊗ ZR with positive coordinates such
that ΦAyþ ¼ ρA yþ. Since χA is self reciprocal, there is a vector
y� ∈K0 Að Þ⊗ ZR with positive coordinates such that ΦAy� ¼ ρ�1A y�. The
vectors yþ, y� play an important role in the representation theory of

A ¼ K Δ
!h i

, see [5, 17].

Explicit formulas, special values. We are discussing various instances where an
explicit formula for the Coxeter polynomial is known.

star quivers. Let A be the path algebra of a hereditary star p1;…; pt
� �

with respect
to the standard orientation, see

Since the Coxeter polynomial χA does not depend on the orientation of A we will
denote it by χ p1;…;pt½ �. It follows from [11, prop. 9.1] or [2] that

χ p1;…; pt½ � ¼
Yt
i¼1

vpi xþ 1ð Þ � x ∑
t

i¼1

vpi�1
vpi

 !
: (1)

In particular, we have an explicit formula for the sum of coefficients of
χ ¼ χ p1;…;pt½ � as follows:

χ 1ð Þ ¼
Yt
i¼1

pi 2� ∑
t

i¼1
1� 1

pi

� �� �
: (2)

This special value of χ has a specific mathematical meaning: up to the factorQt
i¼1 pi this is just the orbifold-Euler characteristic of a weighted projective line X of

weight type p1;…; pt
� �

. Moreover,

1. χ 1ð Þ>0 if and only if the star p1;…; pt
� �

is of Dynkin type, correspondingly the
algebra A is representation-finite.
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2. χ 1ð Þ ¼ 0 if and only if the star p1;…; pt
� �

is of extended Dynkin type,
correspondingly the algebra A is of tame (domestic) type.

3. χ 1ð Þ<0 if and only if p1;…; pt
� �

is not Dynkin or extended Dynkin,
correspondingly the algebra A is of wild representation type.

The above deals with all the Dynkin types and with the extended Dynkin dia-
grams of type ~Dn, n≥4, and ~En, n ¼ 6; 7; 8. To complete the picture, we also
consider the extended Dynkin quivers of type ~An (n≥ 2) restricting, of course, to
quivers without oriented cycles. Here, the Coxeter polynomial depends on the
orientation: If p (resp. q) denotes the number of arrows in clockwise (resp. anti-
clockwise) orientation (p, q≥ 1, pþ q ¼ nþ 1), that is, the quiver has type A p; qð Þ,
the Coxeter polynomial χ is given by

χ p; qð Þ ¼ x� 1ð Þ2 vpvq: (3)

Hence χ 1ð Þ ¼ 0, fitting into the above picture.
The next table displays the v-factorization of extended Dynkin quivers.

Extended Dynkin type Star symbol Weight symbol Coxeter polynomial

~Ap,q
— p; qð Þ x� 1ð Þ2vp vq

~Dn, n≥4 [2,2,n-2] 2; 2; n� 2ð Þ x� 1ð Þ2v22vn�2
~E6

3; 3; 3½ � 2; 3; 3ð Þ x� 1ð Þ2v2v23
~E7

2; 4; 4½ � 2; 3;4ð Þ x� 1ð Þ2v2v3v4
~E8

2; 3; 6½ � 2; 3; 5ð Þ x� 1ð Þ2v2v3v5

Remark: As is shown by the above table, proposition 2.3 extends to the tame
hereditary case. That is, the Coxeter polynomial of a connected, tame hereditary
K-algebra A (remember, K is algebraically closed) determines the algebra A up to
derived equivalence. This is no longer true for wild hereditary algebras, not even
for trees.

3.2 Canonical algebras

Canonical algebras were introduced by Ringel [19]. They form a key class to
study important features of representation theory. In the form of tubular canonical
algebras they provide the standard examples of tame algebras of linear growth.
Up to tilting canonical algebras are characterized as the connected K-algebras with
a separating exact subcategory or a separating tubular one-parameter family
(see [12]). That is, the module category mod� Λ accepts a separating tubular family
T ¼ Tλð Þλ∈P1K , where Tλ is a homogeneous tube for all λ with the exception of
t tubes Tλ1 ,…, Tλt with Tλi of rank pi (1≤ i≤ t).

Canonical algebras constitute an instance, where the explicit form of the Coxeter
polynomial is known, see [11] or [10].

Proposition. Let Λ be a canonical algebra with weight and parameter data (p,λ).
Then the Coxeter polynomial of Λ is given by

□χΛ ¼ x� 1ð Þ2
Yt
i¼1

vpi : (4)
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The Coxeter polynomial therefore only depends on the weight sequence p.
Conversely, the Coxeter polynomial determines the weight sequence — up to
ordering.

3.3 Incidence algebras of posets

Let X be a finite partially ordered set (poset). The incidence algebra KX is
the K-algebra spanned by elements exy for the pairs x≤ y in X, with
multiplication defined by exyezw ¼ δyzexw. Finite dimensional right modules over
KX can be identified with commutative diagrams of finite dimensional K-vector
spaces over the Hasse diagram of X, which is the directed graph whose vertices
are the points of X, with an arrow from x to y if x< y and there is no z∈X
with x< z< y.

We recollect the basic facts on the Euler form of posets and refer the reader to
[6] for details. The algebra KX is of finite global dimension, hence its Euler form
is well-defined and non-degenerate. Denote by CX, ΦX the matrices of the bilinear
form and the corresponding Coxeter transformation with respect to the basis of
the simple KX-modules.

The incidence matrix of X, denoted 1X, is the X � X matrix defined by 1Xð Þxy ¼ 1
if x≤ y and otherwise 1Xð Þxy ¼ 0. By extending the partial order on X to a linear
order, we can always arrange the elements of X such that the incidence matrix is
uni-triangular. In particular, 1X is invertible over Z. Recall that the Möbius function
μX : X � X ! Z is defined by μX x; yð Þ ¼ 1Xð Þ�1xy .

Lemma. a. CX ¼ 1�1X .

b. Let x, y∈X. Then ΦXð Þxy ¼ �∑z:z≥ xμX y; zð Þ.

Proposition. If X and Y are posets, then CX�Y ¼ CX ⊗CY and ΦX�Y ¼ �ΦX ⊗ΦY.

4. Cyclotomic polynomials and polynomials of Littlewood type

4.1 Cyclotomic polynomials

We recall some facts about cyclotomic polynomials.
The n-cyclotomic polynomial Φn Tð Þ is inductively defined by the formula

Tn � 1 ¼
Y
d∣n

Φd Tð Þ: (5)

The Möbius function is defined as follows:

μ nð Þ ¼ 0 if n is divisible by a square

�1ð Þr if n ¼ p1,… pr is a factorization into distinct primes:

�

A more explicit expression for the cyclotomic polynomials is given by

Φn Tð Þ ¼
Y

1≤ d< n
d∣n

vn=d Tð Þμ dð Þ (6)

for n≥ 2, where vn ¼ 1þ T þ T2 þ…þ Tn�1.
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� �
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The Coxeter polynomial therefore only depends on the weight sequence p.
Conversely, the Coxeter polynomial determines the weight sequence — up to
ordering.
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is well-defined and non-degenerate. Denote by CX, ΦX the matrices of the bilinear
form and the corresponding Coxeter transformation with respect to the basis of
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Lemma. a. CX ¼ 1�1X .

b. Let x, y∈X. Then ΦXð Þxy ¼ �∑z:z≥ xμX y; zð Þ.

Proposition. If X and Y are posets, then CX�Y ¼ CX ⊗CY and ΦX�Y ¼ �ΦX ⊗ΦY.

4. Cyclotomic polynomials and polynomials of Littlewood type

4.1 Cyclotomic polynomials

We recall some facts about cyclotomic polynomials.
The n-cyclotomic polynomial Φn Tð Þ is inductively defined by the formula

Tn � 1 ¼
Y
d∣n

Φd Tð Þ: (5)
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�
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for n≥ 2, where vn ¼ 1þ T þ T2 þ…þ Tn�1.
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4.2 Hereditary stars

A path algebra KΔ is said to be of Dynkin type if the underlying graph ∣Δ∣ of Δ
is one of the ADE-series, that is, of type, An,Dn, for some n≥ 1 or Ek, for k ¼ 6; 7; 8.

There are various instances where an explicit formula for the Coxeter polyno-
mial is known.

Let A be the path algebra of a hereditary star p1;…; pt
� �

with respect to the
standard orientation, see [13].

Since the Coxeter polynomial χA does not depend on the orientation of A we will
denote it by χ p1;…;pt½ �. It follows that

χ p1;…;pt½ � ¼
Yt
i¼1

vpi T þ 1ð Þ � T ∑
t

j¼1

vpj�1
vpj

 !
:

In particular, we have an explicit formula for the sum of coefficients of χ p1;…;pt½ �
as follows:

∑
n

i¼0
ai ¼ χ p1;…;pt½ � 1ð Þ ¼

Yt
i¼1

pi 2� ∑
t

i¼1
1� 1

pi

� �� �
:

4.3 Wild algebras

Let c be the real root of the polynomial T3 � T � 1, approximately c ¼ 1:325. As
observed in [21], a wild hereditary algebra A associated to a graph Δ without
multiple arrows has spectral radius ρA > c unless Δ is one of the following graphs:

In these cases, for m≥ 8

c> ρ 2;4;5½ � > ρ 2;3;m½ � > ρ 2;3;7½ � ¼ μ0

where μ0 ¼ 1:176280… is the real root of the Coxeter polynomial

T10 þ T9 � T7 � T6 � T5 � T4 � T3 þ T þ 1

associated to any hereditary algebra whose underlying graph is 2; 3; 7½ �. Observe
that in these cases, the Mahler measure of the algebra equals the spectral radius.

4.4 Lehmer polynomial

In 1933, D. H. Lehmer found that the polynomial

T10 þ T9 � T7 � T6 � T5 � T4 � T3 þ T þ 1
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has Mahler measure μ0 ¼ 1:176280…, and he asked if there exist any smaller
values exceeding 1. In fact, the polynomial above is the Coxeter polynomial of the
hereditary algebra whose underlying graph 2; 3; 7½ � is depicted below.

We say that a matrix M is of Mahler type (resp. strictly Mahler type) if either
M Mð Þ ¼ 1 or M Mð Þ≥ μ0 (resp. M Mð Þ> μ0). Earlier this year, Jean-Louis Verger-
Gaugry announced a proof of Lehmer’s conjecture, see https://arxiv.org/pdf/
1709.03771.pdf. The key result (Theorem 5.28, p. 122) is a Dobrowolski type
minoration of the Mahler Measure M βð Þ. Experts are still reading the arguments,
but there is no conclusive opinion.

4.5 Happel’s trace formula

In [8], Happel shows that the trace of the Coxeter matrix can be expressed as
follows:

�Tr ϕAð Þ ¼ ∑
∞

k¼0
�1ð ÞkdimKHk Að Þ (7)

where Hk Að Þ denotes the k-th Hochschild cohomology group. In particular, if
the Hochschild cohomology ring H ∗ Að Þ is trivial, that is, Hi Að Þ ¼ 0 for i>0 and
H0 Að Þ ¼ K, then Tr ϕAð Þ ¼ �1.

For an algebra A and a left A-module N we call

A N½ � ¼ A 0

N K

� �

the one-point extension of A by N. This construction provides an order of vertices
to deal with triangular algebras, that is, algebras KQ=I, where I is an ideal of the path
algebra KQ for Q a quiver without oriented cycles.

4.6 One-point extensions

Let B be an algebra and M a B-module. Consider the one-point extension
A ¼ B N½ �. In [19] it is shown the Coxeter transformations of A and B are related by

ϕA ¼
ϕB �CT

Bn
T

�nϕB nCT
Bn

T � 1

 !
(8)

where CB is the Cartan matrix of B which satisfies ϕB ¼ �C�TB CB and n is the
class of N in the Grothendieck group K0 Bð Þ. In case A ¼ B N½ � with N an exceptional
module, it follows that

Tr ϕAð Þ ¼ Tr ϕBð Þ
We recall that the Euler quadratic form is defined as qA xð Þ ¼ xCt

Ax
t. Assume that

A ¼ B M½ � for an algebra B and an indecomposable moduleM. In many cases, we get
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that qA mð Þ>0, for m the dimension vector ofM (for instance, ifM is preprojective,
or if qA coincides with the Tits form of A...)

Proposition. Let A be an accessible algebra, such that qA mð Þ>0 for m the dimension
vector of M, where A ¼ B M½ � for certain algebra B and an indecomposable module M.
Then the following happens:

a. Tr ϕAð Þ≥ � 1;

b. if Tr ϕBð Þ ¼ �1 and qB mð Þ ¼ 1, then Tr ϕAð Þ ¼ �1.

Proof. Assume that A ¼ B M½ � for an algebra B and an indecomposable module M
such that qA mð Þ>0 for m the dimension vector of M. Then B is also accessible. By
induction hypothesis, Tr ϕBð Þ≥ � 1. Then

Tr ϕAð Þ ¼ Tr ϕBð Þ þ mCT
Bm

T � 1
� �

≥ � 1þ mCT
Bm

T � 1
� � ¼ �1þ qB mð Þ � 1

� �
≥ � 1

This shows (a).
For (b) assume that Tr ϕBð Þ ¼ �1 and qB mð Þ ¼ 1, then

Tr ϕAð Þ ¼ Tr ϕBð Þ þ mCT
Bm

T � 1
� � ¼ �1þ mCT

Bm
T � 1

� � ¼ �1þ qB mð Þ � 1
� � ¼ �1

□

4.7 Strongly accessible algebras

Theorem: A finite dimensional accessible algebra A then it is strongly accessible if
and only if Tr ϕAð Þ ¼ �1.

Proof. Assume A is strongly accessible from A0. Since qA mð Þ≥ 1, for A ¼ B M½ � a
one-point extension of the subcategory B of A by the exceptional module M (since
then qA mð Þ ¼ dimKEndA Mð Þ). By the Proposition above

Tr ϕAð Þ ¼ Tr ϕAn�1

� � ¼ … ¼ Tr ϕA0

� � ¼ �1
Conversely, assume that Tr ϕAð Þ ¼ �1 and write A ¼ B M½ � as a one-point

extension of the subcategory B of A by the module M. We shall prove that M is
exceptional.

�1 ¼ Tr ϕAð Þ ¼ Tr ϕBð Þ þ mCT
Bm

T � 1
� �

≥ � 1þ mCT
Bm

T � 1
� � ¼ �1þ qB mð Þ � 1

� �
≥ � 1

Equality holds and qB mð Þ ¼ 1, since M is indecomposable, it follows that the
extension ring of M is trivial. □

4.8 Stable matrices

The following statement is Theorem 1 for stable matrices.
Proposition. Suppose M is a stable unimodular n� n-matrix. Let χM ¼ c0 þ c1Tþ

c2T2 þ…þ cn�2Tn�2 þ cn�1Tn�1 þ cnTn be its characteristic polynomial.
Suppose that 0<TrMk ≤m for p≤ k≤ pþ n� 1 and certain integers 1≤ p and m.
Then 0<TrMk ≤m for all integers p≤ k.
In particular, M is of cyclotomic type.
Proof. Consider the coefficients c0, c1,…cn of χM. Since M is stable then

cn ¼ 1, cn�1 <0, cn�2 >0 and the signs alternate until we meet a j with cjc0 <0.
Cayley-Hamilton theorem states that χM Mð Þ ¼ 0. Then
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0 ¼ c01n þ c1Mþ c2M2 þ…þ cn�1Mn�1 þ cnMn

Then

c01n þ c2M2 þ…þ c2mM2m ¼ c1Mþ c3M3 þ…þ c2m�1M2m�1 þ c2 mþrð Þ�1M2 mþrð Þ�1

Let c>0 be the common value of the trace of this matrix.
Write n ¼ 2mþ r for r ¼ 0 or 1. Consider the matrices

P ¼ 1
c

c01n þ c2M2 þ…þ c2mM2m� �

Q ¼ � 1
c

c1Mþ c3M3 þ…þ c2m�1M2m�1 þ c2 mþrð Þ�1M2 mþrð Þ�1
� �� �

so that we get two expressions of P as positive linear combinations of powers ofM.
Suppose that n ¼ 2mþ 1. By hypothesis we have Tr Pð Þ≤ n. Moreover, since

cn ¼ 1 then

Tr Mnð Þ≤Tr Qð Þ ¼ Tr Pð Þ≤ n

The claim follows by induction.
Otherwise, n ¼ 2m. The claim follows similarly. □

4.9 Theorem 1

Proof of Theorem 1. Observe that M ¼ ϕA is a real unimodular matrix. One
implication of the Theorem was shown before. Suppose that ∣Tr Mk� �

∣ ≤ n or equiv-
alently, �n≤Tr Mk� �

≤ n for 0≤ k≤ n. The Proposition above yields that M is
cyclotomic. □

4.10 Polynomials of Littlewood type

An integral self-reciprocal polynomial p tð Þ ¼ p0 þ p1tþ…þ pn�1t
n�1 þ pnt

n is
of Littlewood type if every coefficient non-zero pi has modulus 1. A polynomial p tð Þ
of Littlewood type with all pi 6¼ 0, for i ¼ 0, 1,…, n, is said to be Littlewood.

Lemma. If z is a root of a polynomial of Littlewood type, then

1=2< ∣z∣< 2

Proof. Suppose z is a root of a polynomial of Littlewood type. Then

1 ¼ ϵ1zþ ϵ2z2 þ…þ ϵnzn

for some ϵi ∈ �1;0; 1f g.
If ∣z∣< 1 then 1≤ ∣z∣þ zj j2 þ…þ zj jn < ∣z∣= 1� jzjð Þ so ∣z∣> 1=2. Since z is the root

of a polynomial of Littlewood type if and only if z�1 is, then 1=2< ∣z∣< 2.
Moreover, if ∣z∣> 1, then 1=∣z∣< 1 and 1=2< 1=∣z∣< 2. Hence 1=2< ∣z∣< 2. □

4.11 Littlewood series

Definition. A Littlewood series is a power series all of whose coefficients are
1,0 or �1.

Let P ¼ z∈C : zf is the root of some Littlewood polynomial g.
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Remarks:

a. Littlewood series converge for ∣z∣< 1.

b. A point z∈Cwith ∣z∣< 1 lies in P if and only if some Littlewood series vanishes
at this point.

c. A Littlewood polynomial is not a Littlewood series. But any Littlewood poly-
nomial, say p zð Þ ¼ a0 þ…þ adzd yields a Littlewood series having the same roots z
with ∣z∣< 1: indeed, consider the series

P zð Þ ¼ p zð Þ= 1� zdþ1
� � ¼ a0 þ…þ adzd þ a0zdþ1 þ…þ adz2dþ1 þ a0z2dþ2 þ…

Thus P⊂R, where R is the set of roots of Littlewood series. We shall show the
Proposition at the Introduction.

Proof. Let L be the set of Littlewood series. Then L ¼ �1;0; 1f gℕ, so with the
product topology it is homeomorphic to the Cantor set. Choose 0< r< 1. Let F be
the space of finite multisets of points z with ∣z∣< r, modulo the equivalence relation
generated by S ffi S∪X when ∣X∣ ¼ r .

Claim. Any Littlewood series has finitely many roots in the disc ∣z∣ ≤ r. The
map f : L! F sending a Littlewood series to its multiset of roots in this disc
is continuous.

Since L is compact, the image of f is closed. From this we can show that R, the
set of roots of Littlewood series, is closed. Since Littlewood polynomials are densely
included in L and f is continuous, we get that P, the set of roots of Littlewood
polynomials, is dense in R. It follows that P ¼ R, as we wanted to show. □

5. An example

5.1 Construction

For m a natural number and let n ¼ 3þ 6m. Let Rn be an algebra formed by n
commutative squares. Consider the one-point extension Am ¼ Rn Pn½ � with Pn the
unique indecomposable projective Rn-module of K-dimension 2. Observe that Am
(resp. Cn�1) is given by the following quiver with nþ 1 vertices and commutative
relations (resp. n� 1 vertices and relations):

We claim:

a. χAm
¼ Tn þ Tn�1 � T3 χAm�1 þ T þ 1, for all n≥ 1. As consequence, the algebras

Am and Cn are of Littlewood type;

b.the number of eigenvalues of ϕAm
not lying in the unit disk is at least m;

c.M χAm

� �
≤ 8.

16

Polynomials - Theory and Application

Proof. (a): Consider m≥ 1, n ¼ 3þ 6m and the algebra Bn ¼ R3þ6m such that
Am ¼ Bn Pn½ � and the perpendicular category P⊥

n in Db Bnð Þ is derived equivalent to
mod Cn�1ð Þ where Cn�1 is a proper quotient of an algebra derived equivalent to
R2þ6m. Therefore

χAmþ1 ¼ T þ 1ð ÞχRnþ6 � TχCnþ5

¼ T þ 1ð Þ Tnþ6 þ Tnþ5 þ T þ 1
� �� T3 T þ 1ð ÞχRn

� TχCnþ5

We shall calculate χC2þ6m . Observe that C2þ6m is tilting equivalent to the
one-point extension R1þ6m P1½ �. Hence

χC2þ6m ¼  T þ 1ð ÞχR1þ6m � TχR6m
¼ T2þ6m þ T1þ6m � T3 T þ 1ð ÞχR1þ6 m�1ð Þ � T χR6 m�1ð Þ

n o

þ T þ 1 ¼ T2þ6m þ T1þ6m � T3χC2þ6 m�1ð Þ þ T þ 1

which implies

χAmþ1 ¼  T þ 1ð Þ Tnþ6 þ Tnþ5 þ T þ 1
� �� T3 T þ 1ð ÞχRn

� T Tnþ5 þ Tnþ4 þ T þ 1
� �

� T3TχCn�1 ¼ Tnþ7 þ Tnþ6 � T3χAm
þ T þ 1

as claimed.
As consequence of formula (a) we observe the following:

(a0) L χAm

� � ¼ 4mþ 5.

(b) By induction, we shall construct polynomials rm representing χAm
.

For m ¼ 0, we have χA0
¼ T4 þ T3 þ T2 þ T þ 1, which is represented by the

polynomial r0 ¼ T4 � 3T2 þ 1.
Observe that Tn�1 þ 1

� � ¼ vn � Tvn�2 then Tn þ Tn�1 þ T þ 1 ¼
T þ 1ð Þ Tn�1 þ 1

� �
is represented by wn ¼ T un�1 � un�3ð Þ.

For n ¼ 4þ 6m, we define rm ¼ wn � T3rm�1. We verify by induction on m that
rm represents χAm

:

χAm
T2� � ¼ T2 þ 1

� �
T2n�2 þ 1
� �� T6 χAm�1 T2� �

¼ Tnwn T þ T�1
� �� T6Tn�6 rm�1 T þ T�1

� � ¼ Tn rm T þ T�1
� �

For instance.

r1 ¼ w10 � T3r0 ¼ T T9 � 8T7 þ 21T5 � 20T3 þ 5T
� �� T7 � 6T5 þ 10T3 � 4T

� �� �

� T3 T4 � 3T2 þ 1
� �

¼ T10 � 9T8 � T7 þ 27T6 þ 3T5 � 30T4 � T3 þ 9T2

which has ξ r1ð Þ ¼ 4 changes of sign in the sequence of coefficients. According to
Descartes rule of signs, r1 has at most ξ r1ð Þ ¼ 4 positive real roots. Since r1 represents
χA1

, then χA1
has at most 2ξ r1ð Þ ¼ 8 roots in the unit circle. That is, χA1

has at least 2
roots z with ∣z∣ 6¼ 1.

We shall prove, by induction, that rm has at most ξ rmð Þ ¼ 2 mþ 1ð Þ positive real
roots. Indeed, write

rm ¼ Tn � n� 1ð ÞTn�2 � T3qm þ n� 1ð ÞT2
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for some polynomial qm of degree n� 6 with signs of its coefficients
þ��þþ��⋯� so that ξ qm

� � ¼ 2m. Then

rmþ1 ¼ wnþ6 � T3rm ¼ Tunþ5 � Tunþ3 � T3rm

an addition of three polynomials with signs of coefficients given as follows:

þ 0 � 0 þ 0 � 0 ⋯ þ 0 0

� 0 þ 0 � 0 ⋯ þ 0 0

� þ þ � � ⋯ 0 0 0

Hence rmþ1 ¼ Tnþ6 � nþ 5ð ÞTnþ4 � T3qmþ1 þ nþ 5ð ÞT2 where the polynomial
qmþ1 of degree n has signs of its coefficients þ��þþ��⋯� so that
ξ qmþ1
� � ¼ ξ qm

� �þ 2 ¼ 2 mþ 1ð Þ. Hence ξ rmð Þ ¼ 2þ ξ qm
� � ¼ 2 mþ 1ð Þ.

By the Lemma below, χAm
has at most 4 mþ 1ð Þ roots in the unit circle. Equiva-

lently, χAm
has at least 4þ 6m� 4 mþ 1ð Þ ¼ 2m roots outside the unit circle. Hence

χAm
has at least m roots z satisfying ∣z∣> 1.
Lemma. Let q be a polynomial representing the polynomial p. Assume q accepts at

most s positive real roots, then p has at most 2 s roots in the unit circle.
Proof. Let μ1,…, μs be the positive real roots of q. Let z ¼ aþ ib be a root of pwith

a2 þ b2 ¼ 1. Consider w ¼ cþ id a complex number with w2 ¼ z. Then
0 ¼ p zð Þ ¼ wnq wþw�1ð Þ where wþw�1 ¼ cþ idð Þ þ c� idð Þ ¼ 2c. Then 2c ¼ ϵλj
for some ϵ∈ 1;�1f g and 1≤ j≤ s. Hence

z ¼ w2 ¼ 1
2
λ2j � 1

� �
þ i 2ϵλj

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� λ2j

q� �

can be selected in two different ways. □
(c) For n ¼ 6mþ 4 we have χAm

¼ Tn þ Tn�1 � T3 χAm�1 þ T þ 1. Then

χAm
¼ ξm þ �1ð Þm�1T2mþ4χ10,where ξm ¼ Tn þ Tn�1 � T3 ξm�1 þ T þ 1

for m≥ 2 and ξ1 ¼ 0.
We observe that ξm is a product of cyclotomic polynomials. Indeed, since

ξm �1ð Þ ¼ 0 we can write

ξm ¼ T þ 1ð Þσm and σm ¼ Tn�1 � T3σm�1 þ 1

for m≥ 2 and σ1 ¼ 0.
Recall Φ2s�1 ¼ Ts�1 þ Ts�2 þ…T þ 1 and Φ2s Tð Þ ¼ Φs �Tð Þ. Moreover,

Φ3p Tð Þ ¼ Φp T3� �
, if p is a power of 2. Altogether this yields

Φ6 22 mþ1ð Þ�1ð Þ Tð Þ ¼ Φ2 22 mþ1ð Þ�1ð Þ T3� � ¼ Φ22 mþ1ð Þ�1 �T3� �

¼ T6mþ3 � T6m þ…� T3 þ 1 ¼ σm

hence

ξm ¼ Φ2Φ6 22 mþ1ð Þ�1ð Þ
confirming the claim.
We estimate the Mahler measure of χAm

¼ ξm þ �1ð Þm�1T2mþ4χA10
. Write

χAm
¼ f m þ gm, where f m is the cyclotomic summand. Observe that

L gm
� � ¼ L χA10

� � ¼ 8 and apply Lemma (3.4) with M f m
� � ¼ 1 to get
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M χAm

� �
≤M f m

� �
L gm
� � ¼ 8

With the help of computer programs we calculate more accurate values of the
Mahler measure of some of the above examples:

No. vertices No. roots outside unit disk Mahler measure

178 29 1:28368024451292

184 30 1:28327850483340

190 31 1:28386917621114

196 32 1:28395305512596

Comparing with the list of Record Mahler measures by roots outside the unit circle in
Mossinghoff’s web page we see:

i. for the entry 29 the Mahler measure is the same in both tables;

ii. the entries 30 and 31 have a smaller Mahler measure in our table, establishing
new records;

iii. the entry 32 of our table seems to be new. Further entries could be
calculated.

6. Coefficients of Coxeter polynomials

6.1 Derived tubular algebras

There are interesting invariants associated to the Coxeter polynomial of a trian-
gular algebra A ¼ k Δ½ �=I. For instance, the evaluation of the Coxeter polynomial
χA �1ð Þ ¼ m2 for some integer m. Clearly, this number is a derived invariant. A
simple argument yields that m ¼ 0 in case Δ has an odd number of vertices. In [14],
it was shown that for a representation-finite accessible algebra A with gl.dim A≤ 2
the invariant χA �1ð Þ equals zero or one. The criterion was applied to show that a
canonical algebra is derived equivalent to a representation-finite algebra if and only
if it has weight type 2; p; pþ kð Þ, where p≥ 2 and k≥0. In particular, the tubular
canonical algebra of type 3; 3; 3ð Þ is not derived equivalent to a representation-finite
algebra, while the tubular algebras of type 2;4;4ð Þ or 2; 3; 6ð Þ are.

6.2 Strong towers

Recall from [14] that a strong tower T ¼ A0 ¼ k;A1;…;An ¼ Að Þ of access to A
satisfies that Aiþ1 ¼ Ai Mi½ � or Mi½ �Ai for some exceptional module Mi in such a way
that, in case Aiþ1 ¼ Ai Mi½ � (resp. Aiþ1 ¼ Mi½ �Ai), the perpendicular category M⊥

i
(resp. ⊥Mi) ofMi in modAi is equivalent to modCi�1 for some accessible algebra Ci�1,
i ¼ 1,…, n� 1. In the extension situation the perpendicular category M⊥

i (resp. ⊥Mi

in the coextension situation) in Db modAið Þ is equivalent to Db modCi�1ð Þ and Biis
derived equivalent to a one-point (co-)extension of Ci�1. An algebra Ci as above is
called an i-th perpendicular restriction of the tower T, observe that it is well-defined
only up to derived equivalence. We denote by si the number of connected compo-
nents of the algebra Ci; in particular, s1 ¼ 1.
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There are many examples of strongly accessible algebras, that is, algebras derived
equivalent to algebras with a strong tower of access. The following are some
instances:

a. A canonical algebra C of weight p1;…; pt
� �

is strongly accessible if and only if
t ¼ 3, in that case, C is derived-equivalent to a representation-finite algebra if
and only if the weight type does not dominate 3; 3; 3ð Þ.

b.The following sequence of poset algebras defines strong towers of access:

6.3 Towering numbers

Consider a strong tower T ¼ A0 ¼ k;A1;…;An ¼ Að Þ of access to A such
that Aiþ1 is an one-point (co)extension of Ai by Mi and Ci�1 the
corresponding i-th perpendicular restriction of T. Let Ci�1 have si�1 connected
components, i ¼ 2,…, n� 1. Define the first towering number of T as the sum
sT Að Þ ¼ ∑n�2

i¼1 si.
Theorem. Let A be a strongly accessible algebra with n vertices, then the first

towering number sT Að Þ ¼ ∑n�2
i¼1 si of T is a derived invariant, that is, depends only on the

derived class of A. It is sT Að Þ ¼ n� 1� a2, where a2 is the coefficient of the quadratic
term in the Coxeter polynomial of A.

Proof. Assume A ¼ An and B ¼ An�1 such that A ¼ B M½ � for M an exceptional
B-module and let C ¼ Cn�2 be the algebra such that modC is derived equivalent to
the perpendicular category M⊥ formed in Db modBð Þ. Then
χA tð Þ ¼ 1þ tð ÞχB tð Þ � tχC tð Þ. Write χB tð Þ ¼ 1þ tþ∑n�3

i¼2 bit
i þ tn�2 þ tn�1 and

χC tð Þ ¼ 1þ∑n�3
i¼1 cit

i þ tn�2. By induction hypothesis we may assume that
s Bð Þ ¼ n� 2� b2. Then a2 ¼ b2 þ 1� c1. Moreover, since C is a direct sum accessi-
ble algebras, then c1 ¼ ∑n�2

i¼0 �1ð ÞidimkHi Cð Þ ¼ dimkH0 Cð Þ ¼ sn�2. Hence
a2 ¼ n� 1� s Bð Þ � sn�2 ¼ n� 1� s Að Þ. □

Corollary. Let T ¼ A1 ¼ k;…;An ¼ Að Þ be a strong tower of access to A. Let
A ¼ B M½ � for B ¼ An�1 with M exceptional and C a perpendicular restriction of B via
M. Consider the Coxeter polynomials χA tð Þ ¼ 1þ tþ a2t2 þ…þ an�2tn�2 þ tn�1 þ tn

and χB tð Þ ¼ 1þ tþ b2t2 þ…þ bn�3tn�3 þ tn�2 þ tn�1, then a2 ≤ b2, with equality if
and only if C is connected. In particular, a2 ≤ 1.

Proof. First recall that for a connected accessible algebra the linear term of the
Coxeter polynomial has coefficient 1. Let
χC tð Þ ¼ 1þ c1tþ c2t2 þ…þ cn�4tn�4 þ cn�3tn�3 þ tn�2 be the Coxeter polynomial of
C. If C is the direct sum of connected accessible algebras C1,…, Cs, then c1 ¼ s.
Therefore, a2 ¼ b2 þ b1 � c1 ¼ b2 � s� 1ð Þ≤ b2. By induction hypothesis, we get
a2 ≤ 1. □

Let A be the algebra given by the following quiver with relation γβα ¼ 0:
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which is derived equivalent to the quiver algebra B with the zero relation as
depicted in the second diagram. Clearly, A ¼ A0 M½ �, where A0 is a quiver algebra of
type A4 and M is an indecomposable module with M⊥ the category of modules of
the disconnected quiver •! • •, that is s3 Að Þ ¼ 2. Moreover s2 Að Þ ¼ s2 A0ð Þ ¼ 1 and
s Að Þ ¼ 4. On the other hand B ¼ N½ �B0 such that B0 is not hereditary. A calculation
yields s3 Bð Þ ¼ 1 and s2 Bð Þ ¼ s2 B0ð Þ ¼ 2, obviously implying that s Bð Þ ¼ 4.

Some properties of the invariant s:

i. Let A and B be accessible algebras and A be accessible from B, then
s Bð Þ≤ s Að Þ. Equality holds exactly when A ¼ B.

ii. Let A be an accessible schurian algebra (that is for every couple of vertices i, j,
dimk A i; jð Þ≤ 1), then for every convex subcategory B we have s Bð Þ≤ s Að Þ.

6.4 Totally accessible algebras

An accessible algebra A with n ¼ 2rþ r0 vertices, and r0 ∈ 0; 1f g, is said to be
totally accessible if there is a family of (not necessarily connected) algebras
C nð Þ ¼ A0, C n�2ð Þ, C n�4ð Þ,…, C r0ð Þ satisfying:

a.A is derived equivalent to A0;

b.for each 0≤ i ¼ n� 2j≤ n, there is a strong tower T jð Þ ¼ C j;1ð Þ ¼ k;…;C j;ið Þ ¼
�

C ið ÞÞ of access to C ið Þ;

c.C i�2ð Þ is an i� 1-th perpendicular restriction of T jð Þ, that is, C ið Þ is a one-point
(co)extension of C j;i�1ð Þ by a module Ni�1 and C i�2ð Þ is a perpendicular
restriction of C j;i�1ð Þ via Ni�1.

The tower T jð Þ is said to be a j-th derivative of the tower T 0ð Þ.
Examples that we have encountered of totally accessible algebras are:

i. Hereditary tree algebras: since for any conneceted hereditary tree algebra A
with at least 3 vertices, there is an arrow a! bwith a a source (or dually a sink)
and A ¼ B Pb½ � such that the perpendicular restriction of B via Pb is the algebra
hereditary tree algebra C obtained from A by deleting the vertices a, b.

ii. Accessible representation-finite algebras A with gl.dim A≤ 2, since then the
perpendicular restrictions of any strong tower (which exists by [14]) satisfy
the same set of conditions.

iii. Certain canonical algebras: for instance the tame canonical algebra A of
weight type 2;4;4ð Þ is an extension A ¼ B M½ � of a hereditary algebra B of
extended Dynkin type 2;4;4½ � by a module M in a tube of rank 4, then the
perpendicular restriction of B via M is the hereditary algebra C of extended
Dynkin type 3; 3; 3½ �, see for example [?](10.1). Since C is totally accessible, so
A is. Moreover s Að Þ ¼ 8.

iv. Let A be an accessible algebra of the form A ¼ B M½ � for an algebra B and an
exceptional module M and let C the perpendicular restriction of B via M. If A
is totally accessible, then B and C are totally accessible.
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i¼2 bit
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i þ tn�2. By induction hypothesis we may assume that
s Bð Þ ¼ n� 2� b2. Then a2 ¼ b2 þ 1� c1. Moreover, since C is a direct sum accessi-
ble algebras, then c1 ¼ ∑n�2

i¼0 �1ð ÞidimkHi Cð Þ ¼ dimkH0 Cð Þ ¼ sn�2. Hence
a2 ¼ n� 1� s Bð Þ � sn�2 ¼ n� 1� s Að Þ. □

Corollary. Let T ¼ A1 ¼ k;…;An ¼ Að Þ be a strong tower of access to A. Let
A ¼ B M½ � for B ¼ An�1 with M exceptional and C a perpendicular restriction of B via
M. Consider the Coxeter polynomials χA tð Þ ¼ 1þ tþ a2t2 þ…þ an�2tn�2 þ tn�1 þ tn

and χB tð Þ ¼ 1þ tþ b2t2 þ…þ bn�3tn�3 þ tn�2 þ tn�1, then a2 ≤ b2, with equality if
and only if C is connected. In particular, a2 ≤ 1.

Proof. First recall that for a connected accessible algebra the linear term of the
Coxeter polynomial has coefficient 1. Let
χC tð Þ ¼ 1þ c1tþ c2t2 þ…þ cn�4tn�4 þ cn�3tn�3 þ tn�2 be the Coxeter polynomial of
C. If C is the direct sum of connected accessible algebras C1,…, Cs, then c1 ¼ s.
Therefore, a2 ¼ b2 þ b1 � c1 ¼ b2 � s� 1ð Þ≤ b2. By induction hypothesis, we get
a2 ≤ 1. □

Let A be the algebra given by the following quiver with relation γβα ¼ 0:
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which is derived equivalent to the quiver algebra B with the zero relation as
depicted in the second diagram. Clearly, A ¼ A0 M½ �, where A0 is a quiver algebra of
type A4 and M is an indecomposable module with M⊥ the category of modules of
the disconnected quiver •! • •, that is s3 Að Þ ¼ 2. Moreover s2 Að Þ ¼ s2 A0ð Þ ¼ 1 and
s Að Þ ¼ 4. On the other hand B ¼ N½ �B0 such that B0 is not hereditary. A calculation
yields s3 Bð Þ ¼ 1 and s2 Bð Þ ¼ s2 B0ð Þ ¼ 2, obviously implying that s Bð Þ ¼ 4.

Some properties of the invariant s:

i. Let A and B be accessible algebras and A be accessible from B, then
s Bð Þ≤ s Að Þ. Equality holds exactly when A ¼ B.

ii. Let A be an accessible schurian algebra (that is for every couple of vertices i, j,
dimk A i; jð Þ≤ 1), then for every convex subcategory B we have s Bð Þ≤ s Að Þ.

6.4 Totally accessible algebras

An accessible algebra A with n ¼ 2rþ r0 vertices, and r0 ∈ 0; 1f g, is said to be
totally accessible if there is a family of (not necessarily connected) algebras
C nð Þ ¼ A0, C n�2ð Þ, C n�4ð Þ,…, C r0ð Þ satisfying:

a.A is derived equivalent to A0;

b.for each 0≤ i ¼ n� 2j≤ n, there is a strong tower T jð Þ ¼ C j;1ð Þ ¼ k;…;C j;ið Þ ¼
�

C ið ÞÞ of access to C ið Þ;

c.C i�2ð Þ is an i� 1-th perpendicular restriction of T jð Þ, that is, C ið Þ is a one-point
(co)extension of C j;i�1ð Þ by a module Ni�1 and C i�2ð Þ is a perpendicular
restriction of C j;i�1ð Þ via Ni�1.

The tower T jð Þ is said to be a j-th derivative of the tower T 0ð Þ.
Examples that we have encountered of totally accessible algebras are:

i. Hereditary tree algebras: since for any conneceted hereditary tree algebra A
with at least 3 vertices, there is an arrow a! bwith a a source (or dually a sink)
and A ¼ B Pb½ � such that the perpendicular restriction of B via Pb is the algebra
hereditary tree algebra C obtained from A by deleting the vertices a, b.

ii. Accessible representation-finite algebras A with gl.dim A≤ 2, since then the
perpendicular restrictions of any strong tower (which exists by [14]) satisfy
the same set of conditions.

iii. Certain canonical algebras: for instance the tame canonical algebra A of
weight type 2;4;4ð Þ is an extension A ¼ B M½ � of a hereditary algebra B of
extended Dynkin type 2;4;4½ � by a module M in a tube of rank 4, then the
perpendicular restriction of B via M is the hereditary algebra C of extended
Dynkin type 3; 3; 3½ �, see for example [?](10.1). Since C is totally accessible, so
A is. Moreover s Að Þ ¼ 8.

iv. Let A be an accessible algebra of the form A ¼ B M½ � for an algebra B and an
exceptional module M and let C the perpendicular restriction of B via M. If A
is totally accessible, then B and C are totally accessible.
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The following results extend some of the features observed in the examples
above.

Proposition. a. Assume that A is a totally accessible algebra, then χA �1ð Þ∈ 0; 1f g.
b. Assume that A is an accessible but not totally accessible algebra

with gl.dim A≤ 2, then one of the following conditions hold:

i. for every exceptional B-module such that A ¼ B M½ � and any perpendicular
restriction C of B via M, then C is not accessible;

ii. there exists a homological epimorphism ϕ : A! B such that χB �1ð Þ> 1.

Proof. (a): Consider the perpendicular restriction C of B via M, such that
χA tð Þ ¼ 1þ tð ÞχB tð Þ � tχC tð Þ. Therefore χA �1ð Þ ¼ χC �1ð Þ and moreover, C is totally
accessible. Then by induction hypothesis, χA �1ð Þ ¼ χC mð Þ �1ð Þ for a totally accessible
algebra C mð Þ with number of vertices m ¼ 1 or m ¼ 2. Clearly, C mð Þ is either k, k⊕ k
or hereditary of type A2, which yields the desired result.

(b): Assume A is an accessible algebra with gl.dim A≤ 2 and such that for every
homological epimorphism ϕ : A! B we have χB �1ð Þ∈ 0; 1f g. Let A ¼ B M½ � for an
accessible algebra B and an exceptional B-module M such that C is a perpendicular
restriction of B via M. Since gl.dim A≤ 2 then there is a homological epimorphism
A! C and gl.dim C≤ 2. Observe that for every homological epimorphism
ψ : B! B0 (resp. ψ : C! C0) there is a homological epimorphism ϕ : A! B0 (resp.
ϕ : A! C0), hence χB0 �1ð Þ (resp. χC0 �1ð Þ) is 0 or 1. By induction hypothesis, B is
totally accessible. Moreover if C is accessible, then the induction hypothesis yields
that C is totally accessible and also A is totally accessible, a contradiction. Therefore
C is not accessible. □

7. On the quadratic coefficient of the Coxeter polynomial of a totally
accessible algebra

7.1 Derived algebras of linear type

Recall that an extended canonical algebra of weight type p1;…; pt
� �

is a one-point
extension of the canonical algebra of weight type p1;…; pt

� �
by an indecomposable

projective module. As in (1.3), the extended canonical algebras of type p1; p2; p3
� �

is
strongly accessible. Moreover, the extended canonical algebra A of type 3; 4; 5h i
(with 12 points) has Coxeter polynomial 1þ tþ t2 þ…þ t12 which is also the
Coxeter polynomial of a linear hereditary algebra H with 12 vertices. Clearly A and
H are not derived equivalent.

The following generalizes a result of Happel who considers the case of Coxeter
polynomials associated to hereditary algebras [8].

Theorem 1. Let A be a totally accessible algebra with n vertices and let
χA tð Þ ¼ ∑n

i¼0ait
i be the Coxeter polynomial of A. The following are equivalent:

i. a2 ¼ 1;

ii. let T ¼ A1 ¼ k;…;An�1;An ¼ Að Þ be a strong tower of access to A and Ci the i-th
perpendicular restriction of T, for all 1≤ i≤ n� 2, then the algebras Ci are
connected;

iii.A is derived equivalent to a quiver algebra of type An.
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Proof. (i)⇔ (ii): Let T ¼ A1 ¼ k;…;An ¼ Að Þ be a strong tower of access to A. In
case each Ci is connected, then s Að Þ ¼ n� 2, that is a2 ¼ 1. If a2 ¼ 1, then
n� 2 ¼ sT Að Þ ¼ ∑n�2

i¼1 si with each si ≥ 1. (i) ⇔ (iii): We know that an algebra A
derived equivalent to a quiver algebra of type An has χA tð Þ ¼ ∑n

i¼0t
i, in particular,

a2 ¼ 1. Assume that an accessible algebra A has the quadratic coefficient of its
Coxeter polynomial a2 ¼ 1. Let A ¼ B M½ � for an accessible algebra B ¼ An�1 and an
exceptional module M. Since B is also totally accessible with a tower
T0 ¼ A1 ¼ k;…;An�1 ¼ Bð Þ satisfying (ii), then the quadratic coefficient of the
Coxeter polynomial of B is b2 ¼ 1 and we may assume that B is derived equivalent to
a quiver algebra of type An�1. In particular, B is representation-finite with a
preprojective component P such that the orbit graph O Pð Þτ is of type An�1 (recall
that the orbit graph has vertices the τ-orbits in the quiver P with Auslander-Reiten
translation τ and there is an edge between the orbit of X and the orbit of Y if there is
some numbers a, b and an irreducible morphism τaX ! τbY). Observe that for any
X in Db modAð Þ not in the orbit ofM, there is some translation τaX belonging toM⊥,
implying that in case Mτ has two neighbors in the orbit graph then M⊥ is not
connected, that is sn�2 > 1 and a2 ¼ n� 1� s Að Þ≤0, a contradiction. Therefore, Mτ

has just one neighbor in O Pð Þτ, hence A is derived of type An. □

7.2 Theorem 2

Consider a tower A1,…, An ¼ A of accessible algebras where Aiþ1 is a one-point
(co)extension of Ai by the indecomposable Mi and Ci is such that M⊥

i is derived

equivalent to Db modCið Þ. Assume that C jð Þ
i , for 1≤ j≤ si, are the connected compo-

nents of the category Ci. Consider the corresponding Coxeter polynomials:

χAi
tð Þ ¼ 1þ tþ ∑

i�2

j¼2
a ið Þ
j tj þ ti�1 þ ti,

χCi
tð Þ ¼ 1þ sitþ ∑

ni�2

r¼2
ci, rtr þ sitni�1 þ tni ,

χC jð Þ
i

tð Þ ¼ 1þ tþ ∑
ni, j�2

s¼2
c jð Þ
i, st

s þ tni, j�1 þ tni, j ,

where clearly, ∑si
j¼1ni, j ¼ ni.

Lemma. (α) For every 1≤ j≤ i� 2, we have a ið Þ
j ≤ 1.

(αα) For every 1≤ j≤ i� 2, we have a ið Þ
j ≤ ci, j and a ið Þ

j ≤ a i�1ð Þ
j .

Proof. We shall check that (α) implies (αα), then we show that (a’) holds by
induction on j.

Indeed, assume that (α) holds and proceed to show (αα) by induction on j. If

j ¼ 0, 1, then a ið Þ
j ¼ 1 ¼ a ið Þ

i�j. Assume that 2≤ j≤ i� 2 and a ið Þ
j ≤ ci, j and a ið Þ

j ≤ a i�1ð Þ
j .

Then

a ið Þ
jþ1 ¼ a i�1ð Þ

jþ1 þ a i�1ð Þ
j � cj, i�1

� �
≤ a i�1ð Þ

jþ1 ≤…≤ a jþ1ð Þ
jþ1 ¼ 1:

Let 0≤ j≤ i� 2. If j ¼ 0, 1 we have a ið Þ
0 ¼ 1 ¼ ci,0 and a ið Þ

1 ≤ s1 Að Þ ¼ ci,1. Moreover

a ið Þ
1 ¼ a i�1ð Þ

1 . Assume (α) holds for j≥ 2, then.
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The following results extend some of the features observed in the examples
above.

Proposition. a. Assume that A is a totally accessible algebra, then χA �1ð Þ∈ 0; 1f g.
b. Assume that A is an accessible but not totally accessible algebra

with gl.dim A≤ 2, then one of the following conditions hold:

i. for every exceptional B-module such that A ¼ B M½ � and any perpendicular
restriction C of B via M, then C is not accessible;

ii. there exists a homological epimorphism ϕ : A! B such that χB �1ð Þ> 1.

Proof. (a): Consider the perpendicular restriction C of B via M, such that
χA tð Þ ¼ 1þ tð ÞχB tð Þ � tχC tð Þ. Therefore χA �1ð Þ ¼ χC �1ð Þ and moreover, C is totally
accessible. Then by induction hypothesis, χA �1ð Þ ¼ χC mð Þ �1ð Þ for a totally accessible
algebra C mð Þ with number of vertices m ¼ 1 or m ¼ 2. Clearly, C mð Þ is either k, k⊕ k
or hereditary of type A2, which yields the desired result.

(b): Assume A is an accessible algebra with gl.dim A≤ 2 and such that for every
homological epimorphism ϕ : A! B we have χB �1ð Þ∈ 0; 1f g. Let A ¼ B M½ � for an
accessible algebra B and an exceptional B-module M such that C is a perpendicular
restriction of B via M. Since gl.dim A≤ 2 then there is a homological epimorphism
A! C and gl.dim C≤ 2. Observe that for every homological epimorphism
ψ : B! B0 (resp. ψ : C! C0) there is a homological epimorphism ϕ : A! B0 (resp.
ϕ : A! C0), hence χB0 �1ð Þ (resp. χC0 �1ð Þ) is 0 or 1. By induction hypothesis, B is
totally accessible. Moreover if C is accessible, then the induction hypothesis yields
that C is totally accessible and also A is totally accessible, a contradiction. Therefore
C is not accessible. □

7. On the quadratic coefficient of the Coxeter polynomial of a totally
accessible algebra

7.1 Derived algebras of linear type

Recall that an extended canonical algebra of weight type p1;…; pt
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is a one-point
extension of the canonical algebra of weight type p1;…; pt

� �
by an indecomposable

projective module. As in (1.3), the extended canonical algebras of type p1; p2; p3
� �

is
strongly accessible. Moreover, the extended canonical algebra A of type 3; 4; 5h i
(with 12 points) has Coxeter polynomial 1þ tþ t2 þ…þ t12 which is also the
Coxeter polynomial of a linear hereditary algebra H with 12 vertices. Clearly A and
H are not derived equivalent.

The following generalizes a result of Happel who considers the case of Coxeter
polynomials associated to hereditary algebras [8].

Theorem 1. Let A be a totally accessible algebra with n vertices and let
χA tð Þ ¼ ∑n

i¼0ait
i be the Coxeter polynomial of A. The following are equivalent:

i. a2 ¼ 1;

ii. let T ¼ A1 ¼ k;…;An�1;An ¼ Að Þ be a strong tower of access to A and Ci the i-th
perpendicular restriction of T, for all 1≤ i≤ n� 2, then the algebras Ci are
connected;

iii.A is derived equivalent to a quiver algebra of type An.
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Proof. (i)⇔ (ii): Let T ¼ A1 ¼ k;…;An ¼ Að Þ be a strong tower of access to A. In
case each Ci is connected, then s Að Þ ¼ n� 2, that is a2 ¼ 1. If a2 ¼ 1, then
n� 2 ¼ sT Að Þ ¼ ∑n�2

i¼1 si with each si ≥ 1. (i) ⇔ (iii): We know that an algebra A
derived equivalent to a quiver algebra of type An has χA tð Þ ¼ ∑n

i¼0t
i, in particular,

a2 ¼ 1. Assume that an accessible algebra A has the quadratic coefficient of its
Coxeter polynomial a2 ¼ 1. Let A ¼ B M½ � for an accessible algebra B ¼ An�1 and an
exceptional module M. Since B is also totally accessible with a tower
T0 ¼ A1 ¼ k;…;An�1 ¼ Bð Þ satisfying (ii), then the quadratic coefficient of the
Coxeter polynomial of B is b2 ¼ 1 and we may assume that B is derived equivalent to
a quiver algebra of type An�1. In particular, B is representation-finite with a
preprojective component P such that the orbit graph O Pð Þτ is of type An�1 (recall
that the orbit graph has vertices the τ-orbits in the quiver P with Auslander-Reiten
translation τ and there is an edge between the orbit of X and the orbit of Y if there is
some numbers a, b and an irreducible morphism τaX ! τbY). Observe that for any
X in Db modAð Þ not in the orbit ofM, there is some translation τaX belonging toM⊥,
implying that in case Mτ has two neighbors in the orbit graph then M⊥ is not
connected, that is sn�2 > 1 and a2 ¼ n� 1� s Að Þ≤0, a contradiction. Therefore, Mτ

has just one neighbor in O Pð Þτ, hence A is derived of type An. □

7.2 Theorem 2

Consider a tower A1,…, An ¼ A of accessible algebras where Aiþ1 is a one-point
(co)extension of Ai by the indecomposable Mi and Ci is such that M⊥

i is derived

equivalent to Db modCið Þ. Assume that C jð Þ
i , for 1≤ j≤ si, are the connected compo-

nents of the category Ci. Consider the corresponding Coxeter polynomials:

χAi
tð Þ ¼ 1þ tþ ∑

i�2

j¼2
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χCi
tð Þ ¼ 1þ sitþ ∑

ni�2

r¼2
ci, rtr þ sitni�1 þ tni ,

χC jð Þ
i

tð Þ ¼ 1þ tþ ∑
ni, j�2

s¼2
c jð Þ
i, st

s þ tni, j�1 þ tni, j ,

where clearly, ∑si
j¼1ni, j ¼ ni.

Lemma. (α) For every 1≤ j≤ i� 2, we have a ið Þ
j ≤ 1.

(αα) For every 1≤ j≤ i� 2, we have a ið Þ
j ≤ ci, j and a ið Þ

j ≤ a i�1ð Þ
j .

Proof. We shall check that (α) implies (αα), then we show that (a’) holds by
induction on j.

Indeed, assume that (α) holds and proceed to show (αα) by induction on j. If

j ¼ 0, 1, then a ið Þ
j ¼ 1 ¼ a ið Þ

i�j. Assume that 2≤ j≤ i� 2 and a ið Þ
j ≤ ci, j and a ið Þ

j ≤ a i�1ð Þ
j .

Then

a ið Þ
jþ1 ¼ a i�1ð Þ

jþ1 þ a i�1ð Þ
j � cj, i�1

� �
≤ a i�1ð Þ

jþ1 ≤…≤ a jþ1ð Þ
jþ1 ¼ 1:

Let 0≤ j≤ i� 2. If j ¼ 0, 1 we have a ið Þ
0 ¼ 1 ¼ ci,0 and a ið Þ

1 ≤ s1 Að Þ ¼ ci,1. Moreover

a ið Þ
1 ¼ a i�1ð Þ

1 . Assume (α) holds for j≥ 2, then.

23

Cyclotomic and Littlewood Polynomials Associated to Algebras
DOI: http://dx.doi.org/10.5772/intechopen.82309



a ið Þ
jþ1 ¼ a i�1ð Þ

jþ1 þ a i�1ð Þ
j � cj, i�1

� �
≤ a i�1ð Þ

jþ1 ,

a ið Þ
jþ1 � ci, jþ1 ¼ a ið Þ

jþ2 � a i�1ð Þ
jþ2 ≤0: □

Theorem 2. Let A be a totally accessible algebra with Coxeter polynomial
χA tð Þ ¼ 1þ tþ a2t2 þ…þ an�2tn�2 þ tn�1 þ tn, then:

a. aj ≤ 1, for every 2≤ j≤ n� 2;

b.if for some 2≤ j≤ n� 2, we have aj ¼ 1 then A is derived equivalent to a hereditary
algebra of type An.

Proof. Keep the notation as in (4.1). Then (a) is the case i ¼ n of the Lemma
above.

We shall prove (b) by induction on n the number of vertices of A. Let j ¼ 2 and
assume a2 ¼ 1, then (3.1) implies that A is derived equivalent to An. Consider now
2< j< n� 2 and assume that aj ¼ 1, we get:

1 ¼ a nð Þ
j ¼ a n�1ð Þ

j þ a n�1ð Þ
j�1 � cn�1, j�1

� �
≤ a n�1ð Þ

j ≤ 1

The last inequality due to (a), hence a n�1ð Þ
j ¼ 1. Induction hypothesis yields that

An�1 is derived equivalent to An�1 and its Auslander-Reiten quiver consists of a

preprojective component P. In particular, a n�1ð Þ
2 ¼ 1, which implies that

sn�3 An�1ð Þ ¼ 1, that is, A ¼ An�1 M½ � for some exceptional moduleM such thatM⊥ is
derived equivalent to modC for a connected algebra C, that is, s Að Þ ¼ n� 2 and by
(3.1), A ¼ B M½ � is derived equivalent to a hereditary algebra of type An. □

7.3 Examples

If A is a representation-finite accessible algebra with gl.dim A≤ 2, then A is
totally accessible. On the other hand the algebra B with quiver:

1!x 2!x 3!x 4… !x 11!x 12

and x3 ¼ 0 is representation-finite and accessible (but not gl.dim B≤ 2). The
Coxeter polynomial of B is:

χB tð Þ ¼ 1þ t� t3 � t4 þ t6 � t8 � t9 þ t11 þ t12:

Then observe that the 6-th coefficient is 1 but the algebra B is not derived
equivalent to Dynkin type A12.

8. On the traces of Coxeter matrices

Let A be an algebra such that not all roots of χA are roots of unity. By the result of
Kronecker [36], not all of the spectrum of A lies in the unit disk. Equivalently, the
spectral radius ρA ¼ max jλj : λ eigenvalue  of ϕAf g> 1. Arrange the eigenvalues of
ϕA so that μ1, μ2,…, μn have absolute values ρA ¼ r1 > r2 >…> rs and multiplicities
m1,…, ms, respectively. Therefore s≥ 2 and
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∣detϕA∣ ¼ rm1
1 rm2

2 …rms
s ¼ 1:

We define the critical power κ Að Þ as the minimal k such that

∣Tr ϕk
A

� �
∣> n

Since r1 is a simple eigenvalue of ϕA, then it follows that κ Að Þ is well defined due
to the existence of k satisfying the following chain of inequalities:

∣Tr ϕk
A

� �
∣ ¼ ∣ ∑

n

j¼1
μkj ∣ ≥ rkm1

1 � ∑
s

j¼2
rkmj

j ≥ rk1 � n� 1ð Þrk2 > n:

The following is a reformulation of Theorem 2.
Theorem. Let A be an algebra such that not all roots of χA are roots of unity. We

have κ Að Þ≤ n:
Proof. Indeed, suppose that A is not of cyclotomic type and κ Að Þ> n, that is,

∣Tr ϕk
A

� �
∣ ≤ n for all 0≤ k≤ n. Observe that M ¼ ϕA is a unimodular matrix and

therefore, Theorem 2 implies that M is of cyclotomic type, which yields a contra-
diction. □

Remark:We consider explicitly the case n ¼ 2 in the above Theorem. Obvi-
ously, the Cartan matrix of A is of the form

C ¼ 1 a
0 1

� �
ϕA ¼ �C�1CT ¼ a2 � 1 a

�a �1

� �

for some a≥ 1. Then ϕA has the indicated shape. If A is not cyclotomic, then a≥ 3
and Tr ϕ2

A

� � ¼ a2 � 2ð Þ2 � 2> 2.

9. Stability of a real matrix

9.1 Stability of matrices and the Lyapunov criterion

Let M be a real invertible n� n-matrix with eigenvalues λj ¼ rjei θj , for some
numbers θj ∈ 0; 2π½ Þ and j ¼ 1,…, n. We will say thatM is stable (resp. semi-stable) if
the real part Re ei θj

� � ¼ cos θj of the argument of the eigenvalue λj is positive (resp.
non-negative), for every j ¼ 1,…, n. The following is well-known, we sketch a proof
for the sake of completeness.

Proposition. Let M be a stable (resp. semi-stable) n� n-matrix. Then the charac-
teristic polynomial χM ¼ Tn þ an�1Tn�1 þ…þ a1T þ a0 has coefficients satisfying
�1ð Þn�jaj >0 (resp. ≥0), for j ¼ 0, 1,…, n;

Proof. Observe that �1ð Þnp �Tð Þ is the product of polynomials T � α with α∈R
and T � αþ iβð Þð Þ T � α� iβð Þð Þ ¼ T2 � 2αT þ α2 þ β2

� �
with 0 6¼ β, α∈R. Stability

(resp. semi-stability) implies that α<0 (resp. α≤0) above. Therefore, �1ð Þnp �Tð Þ
is product of polynomials with positive coefficients. □

Remark: In most of the literature the stability concept we use goes by the name
of positive stability, while the stability name is used also as Hurwitz stability, or
Lyapunov stability.

The system of differential equations

y0 tð Þ ¼ �My tð Þ
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is said to be stable if for every vector d ¼ d1;…; dnð Þ, the solution v tð Þ ¼ e�tMd of
the above system has the property that limt!∞ v tð Þ ¼ 0.

We recall here the celebrated.
Lyapunov criterion: The system y0 tð Þ ¼ �My tð Þ is stable if and only if M is a

stable matrix, equivalently there is a real positive definite matrix P such that

MTPþ PM ¼ In:

It is not hard to see that givenM, the corresponding P is unique. A proof
of the criterion and its equivalence to other stability conditions are considered in [13].

9.2 Semi-stable powers

Let μ1,…, μn be the eigenvalues of the real matrix M with μj ¼ ρje2πiθj in polar

form. Observe that μkj , for j ¼ 1,…, n, are the eigenvalues of Mk and

TrMk ¼ ∑
n

j¼1
ρkj cos kθj

� �
≤ ∑

n

j¼1
∣μkj k cos kθj

� �
∣

Lemma. For a positive integer k≥ 1 the following assertions are equivalent:
a. Mk is a semi-stable matrix;

b. Tr Mk� � ¼ ∑n
j¼1 μj
���
���
k
∣ cos kθj

� �
∣.

Proof. IfMk is a semi-stable matrix, then μk ¼ ρkj cos kθj
� �þ i sin kθj

� �� �
has

cos kθj
� �

≥0. SinceM is a real matrix then Tr Mk� � ¼ ∑n
j¼1 ρ

k
j cos kθj

� �
≥0. Therefore

Tr Mk� � ¼ ∑
n

j¼1
ρkj ∣ cos kθj

� �
∣:

Assume that Tr Mk� � ¼ ∑n
j¼1 λj
�� ��k∣ cos kθj

� �
∣. Since ∣λkj ∣ ≥ ρkj cos kθj

� �
for

j ¼ 1,…, n, adding up, we get

Tr Mk� �
≥ ∑

n

j¼1
ρkj cos kθj

� � ¼ Tr Mk� �

Hence we have equalities ∣λkj k cos kθj
� �

∣ ¼ ρkj cos kθj
� �

for j ¼ 1,…, n. Then Mk is
semi-stable. □

We say that k is a stable power (resp. semi-stable power) of M if Mk is a stable
(resp. semi-stable) matrix.

10. Nakayama algebras

10.1 Cyclotomic Nakayama algebras

As a well-understood example the representation theory of the Nakayama alge-
bras stands appart. Let N n; rð Þ be the quotient obtained from the linear quiver with
n vertices with radical radA of nilpotency index r.

For instance, for A ¼ N 6; 3ð Þ the Cartan matrix C and Coxeter matrix ϕ are:
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C ¼

1 0 0 0 0 0

1 1 0 0 0 0
1 1 1 0 0 0

0 1 1 1 0 0

0 0 1 1 1 0
0 0 0 1 1 1

0
BBBBBBBB@

1
CCCCCCCCA

and ϕ ¼

�1 1 0 �1 1 1

�1 0 1 �1 0 1
�1 0 0 0 0 0

0 �1 0 0 0 0

0 0 �1 0 0 0
0 0 0 �1 1 0

0
BBBBBBBB@

1
CCCCCCCCA

whose characteristic polynomial is cyclotomic as we know from [18] or might be
verified calculating Tr ϕk

B

� �
≤ n, for 1≤ k≤ 72 and applying the criterion of Theorem

1. Indeed, for.

k ¼ TrχkA ¼
11 �1
1; 2; 5; 7; 9; 10; 13; 14; 17 ¼ 1
3; 6; 15 ¼ 2
4; 8; 16 ¼ 3
12 ¼ 6

Starting with k ¼ 17 the sequence of traces repeats cyclically. Therefore,
Tr χkA
� �

≤ 6 for all 0≤ k. Then N 6; 3ð Þ is of cyclotomic type.

10.2 An example

We recall in some length the argument given in [18] for the cyclotomicity of
N n; 3ð Þ, for all n≥ 1.

Consider the algebra R2n with 2n vertices and whose quiver is given as

with all commutative relations. The corresponding Coxeter polynomial

χR2n
¼ χAn

⊗ χA2
¼ vnþ1 ⊗ v3

is a product of cyclotomic polynomials, therefore χR2n
is a cyclotomic polyno-

mial. In fact R2n ¼ An ⊗A2, where As is the hereditary algebra associated to the
linear quiver 1! 2! ⋯! s.

For 2mþ 1 odd, we consider.

The following holds for the sequence of algebras Rn and its Coxeter polynomials
χRn

:

a.Rn is derived equivalent to N n; 3ð Þ.
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b.χRn
¼ Tn þ Tn�1 � T3 χRn�6 þ T þ 1, for all n≥ 6;

c.M χRn

� � ¼ 1.

Observe that the sequence of algebras Rnð Þ forms an interlaced tower of algebras,
that is, it is a sequence of triangular algebras R1,…, Rn, such that Rs is a basic algebra
with s simple modules and, among others, the condition

χRsþ1 ¼ T þ 1ð ÞχRs
� TχRs�1

is satisfied for s ¼ 1,…, n� 1. Moreover, Asþ1 is a one-point extension (or
coextension) of an accessible algebra As by an exceptional As- module Ms such that
the perpendicular category M⊥

s formed in the derived category is triangular equiv-
alent to mod As�1ð Þ, for s ¼ mþ 1,…, n� 1.

The following was shown in [18]: Consider an interlaced tower of algebras
Am,…, An with m≤ n� 2. If SpecϕAn

is contained in the union of the unit circle and the
semi-ray of positive real numbers then either all Ai are of cyclotomic type or
M χAm

� �
<M χAn

� �
. In the latter case, M χAn

� �
<
Qn�1

s¼m M χAs

� �
.

Since we know that M χR2n

� � ¼ 1, for all n≥0, we conclude that M χRn

� � ¼ 1, for
all n≥0. That is the Nakayama algebras of the form N n; 3ð Þ are of cyclotomic type.

10.3 Non-cyclotomic Nakayama algebras

Calculation of Trϕk
A for A ¼ N n; rð Þ and k in intervals, for data sets n; r; kð Þ, yield

interesting information. Namely,

a.Many Nakayama algebras are of cyclotomic type;

b.Not all Nakayama algebras are of cyclotomic type. The case r ¼ 4 illustrates
this claim:

N n;4ð Þ is of cyclotomic type for all 0≤ n≤ 100 except for
n ¼ 10; 22; 30;42; 50; 62; 70; 82 and 90

c. A canonical algebra C of weight p1;…; pt
� �

is strongly accessible if and only if
t ¼ 3, in that case, C is derived-equivalent to a representation-finite algebra if
and only if the weight type does not dominate 3; 3; 3ð Þ.
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Chapter 2

New Aspects of Descartes’ Rule
of Signs
Vladimir Petrov Kostov and Boris Shapiro

Abstract

Below, we summarize some new developments in the area of distribution of
roots and signs of real univariate polynomials pioneered by R. Descartes in the
middle of the seventeenth century.

Keywords: real univariate polynomial, sign pattern, admissible pair, Descartes’ rule
of signs, Rolle’s theorem

2010 Mathematics Subject Classication: Primary 26C10; Secondary 30C15

1. Introduction

The classical Descartes’ rule of signs claims that the number of positive roots of a
real univariate polynomial is bounded by the number of sign changes in the
sequence of its coefficients and it coincides with the latter number modulo 2. It
was published in French (instead of the usual at that time Latin) as a small portion
of Sur la construction de problèmes solides ou plus que solide which is the third book of
Descartes’ fundamental treatise La Géométrie which, in its turn, is an appendix to
his famous Discours de la méthode. It is in the latter chef d’oeuvre that Descartes
developed his analytic approach to geometric problems leaving practically all proofs
and details to an interested reader. This interested reader turned out to be Frans van
Schooten, a professor of mathematics at Leiden who together with his students
undertook a tedious work of making Descartes’ writings understandable, translat-
ing and publishing them in the proper language, that is, Latin. (For the electronic
version of this book, see [13].) Mathematical achievements of Descartes form a
small fraction of his overall scientific and philosophical legacy, and Descartes’ rule
of signs is a small but important fraction of his mathematical heritage.

Descartes’ rule of signs has been studied and generalized by many authors over
the years; one of the earliest can be found in [7], see also [4, 11]. (For some recent
contributions, see [1, 2, 6, 10, 12, 14], to mention a few.)

In the present survey, we summarize a relatively new development in this area
which, to the best of our knowledge, was initiated only in the 1990s (see [12]).

For simplicity, we consider below only real univariate polynomials with all
nonvanishing coefficients. For a polynomial P≔∑d

j¼0ajx
j with fixed signs of its

coefficients, Descartes’ rule of signs tells us what possible values the number of its
real positive roots can have. For P as above, we define the sequence of � signs of

To René Descartes, a polymath in philosophy and science.
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length dþ 1 which we call the sign pattern (SP for short) of P, namely, we say that a
polynomial P with all nonvanishing coefficients defines the sign pattern σ≔ sdð , sd�1,
…, s0Þ if sj ¼ sgn aj. Since the roots of the polynomials P and �P are the same, we
can, without loss of generality, assume that the first sign of a SP is always a þ.

It is true that for a given SP with c sign changes (and hence with p ¼ d� c sign
preservations), there always exist polynomials P defining this sign pattern and
having exactly pos positive roots, where pos ¼ 0, 2,…, c if c is even and
pos ¼ 1, 3,…, c if c is odd (see, e.g., [1, 3]). (Observe that we do not impose any
restriction on the number of negative roots of these polynomials.)

One can apply Descartes’ rule of signs to the polynomial �1ð ÞdP �xð Þ which has
p sign changes and c sign preservations in the sequence of its coefficients and
whose leading coefficient is positive. The roots of �1ð ÞdP �xð Þ are obtained from
the roots of P xð Þ by changing their sign. Applying the above result of [1] to
�1ð ÞdP �xð Þ, one obtains the existence of polynomials P with exactly neg negative
roots, where neg ¼ 0, 2,…, p if p is even and neg ¼ 1, 3,…, p if p is odd. (Here again
we impose no requirement on the number of positive roots.)

A natural question apparently for the first time raised in [12] is whether one
can freely combine these two results about the numbers of positive and negative
roots. Namely, given a SP σ with c sign changes and p ¼ d� c sign preservations,
we define its admissible pair (AP for short) as pos; negð Þ, where pos ≤ c, neg ≤ p,
and the differences c� pos and p� neg are even. For the SP σ as above, we call
c; pð Þ the Descartes’ pair of σ. The main question under consideration in this
paper is as follows.

Problem 1. Given a couple (SP, AP), does there exist a polynomial of degree d with
this SP and having exactly pos positive and exactly neg negative roots (and hence exactly
d� pos� negð Þ=2 complex conjugate pairs)?

If such a polynomial exists, then we say that it realizes a given couple (SP, AP).
The present paper discusses the current status of knowledge in this realization
problem.

Example 1. For d ¼ 4 and for the sign pattern σ0 ≔ þ;�;�;�;þð Þ, the following
pairs and only them are admissible: 2; 2ð Þ, 2;0ð Þ, 0; 2ð Þ, and 0;0ð Þ. The first of them
is the Descartes’ pair of σ0.

It is clear that if a couple (SP, AP) is realizable, then it can be realized by a
polynomial with all simple roots, because the property of having nonvanishing
coefficients is preserved under small perturbations of the roots.

In this short survey, we present what is currently known about Problem 1. After
the pioneering observations of Grabiner [12] which started this line of research,
important contributions to Problem 1 have been made by Albouy and Fu [1] who, in
particular, described all non-realizable combinations of the numbers of positive and
negative roots and respective sign patterns up to degree 6. Our results on this topic
which we summarize below can be found in [5, 8, 9] and [15–19]. On the other hand,
we find it surprising that such a natural classical question has not deserved any
attention in the past, and we hope that this survey will help to change the situation.
The current status of Problem 1 is not very satisfactory in spite of the complete
results in degrees up to 8 as well as several series of non-realizable cases in all degrees.
There is still no general conjecture describing all non-realizable cases. It might
happen that the answer to Problem 1 in sufficiently high degrees is very complicated.

On the other hand, besides Problem 1 as it is stated, there is a significant number
of related basic questions which can be posed in connection to the latter Problem
and are still waiting for their researchers. (Very few of them are listed in Section 5.)
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One should also add that there is a number of completely different directions
in which mathematicians are trying to extend Descartes’ rule of signs. They
include, for example, rule of signs for other univariate analytic functions inclu-
ding exponential functions, trigonometric functions and orthogonal polyno-
mials, multivariate Descartes’ rule of signs, tropical rule of signs, rule of signs in
the complex domain, etc. (see, e.g., [6, 10, 14]) and references therein. But we
think that Problem 1 is the closest one to the original investigations by Des-
cartes himself.

The structure of this chapter is as follows. In Section 2, we provide the informa-
tion about the solution of Problem 1 in degrees up to 11. In Section 3, we present
several infinite series of non-realizable couples (SP, AP). Finally, in Section 4 we
discuss two generalizations of Problem 1 and their partial solutions.

2. Solution of the realization problem 1 in small degrees

2.1 Natural Z2 � Z2-action and degrees d ¼ 1, 2, and 3

Let us start with the following useful observation.
To shorten the list of cases (SP, AP) under consideration, we can use the

following Z2 � Z2-action whose first generator acts by.

P xð Þ↦ �1ð ÞdP �xð Þ, (1)

and the second one acts by

P xð Þ↦ PR xð Þ ≔ xdP 1=xð Þ=P 0ð Þ: (2)

Obviously, the first generator exchanges the components of the AP. Concerning
the second generator, to obtain the SP defined by the polynomial PR, one has to read
the SP defined by P xð Þ backward. The roots of PR are the reciprocals of these of P
which implies that both polynomials have the same numbers of positive and nega-
tive roots. Therefore, the SPs which they define have the same AP.

Remark 1. A priori the length of an orbit of any Z2 � Z2-action could be 1, 2,
or 4, but for the above action, orbits of length 1 do not exist since the second
components of the SPs defined by the polynomials P xð Þ and �1ð ÞdP �xð Þ are always
different. When an orbit of length 2 occurs and d is even, then both SPs are
symmetric w.r.t. their middle points (hence their last component equal þ).
Similarly, when d is odd, then one of the two SPs is symmetric w.r.t. its middle
(with the last component equal to þ), and the other one is antisymmetric. Thus, its
last components equal �.

It is obvious that all pairs or quadruples (SP, AP) constituting a given orbit are
simultaneously (non-)realizable.

As a warm-up exercise, let us consider degrees d ¼ 1, 2 and 3. In these
cases, the answer to Problem 1 is positive. We give the list of SPs, with the
respective values c and p of their APs and examples of polynomials realizing
the couples (SP, AP). In order to shorten the list, we consider only SPs begin-
ning with two þ signs; the cases when these signs are þ;�ð Þ are realized by the
respective polynomials �1ð ÞdP �xð Þ. All quadratic factors in the table below have
no real roots.
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d SP c p AP P
1 þ;þð Þ 0 1 0; 1ð Þ xþ 1

2 þ;þ;þð Þ 0 2 0; 2ð Þ x2 þ 3xþ 2 ¼ xþ 1ð Þ xþ 2ð Þ
0;0ð Þ x2 þ xþ 1

þ;þ;�ð Þ 1 1 1; 1ð Þ x2 þ x� 2 ¼ x� 1ð Þ xþ 2ð Þ
3 þ;þ;þ;þð Þ 0 3 0; 3ð Þ x3 þ 6x2 þ 11xþ 6 ¼ xþ 1ð Þ xþ 2ð Þ xþ 3ð Þ

0; 1ð Þ x3 þ 3x2 þ 4xþ 2 ¼ xþ 1ð Þ x2 þ 2xþ 2ð Þ
þ;þ;þ;�ð Þ 1 2 1; 2ð Þ x3 þ 2x2 þ x� 6 ¼ x� 1ð Þ xþ 2ð Þ xþ 3ð Þ

1;0ð Þ x3 þ 5x2 þ 4x� 10 ¼ x� 1ð Þ x2 þ 6xþ 10ð Þ
þ;þ;�;þð Þ 2 1 2; 1ð Þ x3 þ x2 � 24xþ 36 ¼ xþ 6ð Þ x� 2ð Þ x� 3ð Þ

0; 1ð Þ x3 þ 2x2 � 19xþ 30 ¼ xþ 6ð Þ x2 � 4xþ 5ð Þ
þ;þ;�;�ð Þ 1 2 1; 2ð Þ x3 þ x2 � 4x� 4 ¼ x� 2ð Þ xþ 1ð Þ xþ 2ð Þ

1;0ð Þ x3 þ 2x2 � 3x� 10 ¼ x� 2ð Þ x2 þ 4xþ 5ð Þ
Example 2. For d ¼ 4, an example of an orbit of length 2 is given by the couples

þ;�;�;�;þð Þ; 2; 2ð Þð Þ and þ;þ;�;þ;þð Þ; 2; 2ð Þð Þ:
Here, both SPs are symmetric w.r.t. its middle.
For d ¼ 5, such an example is given by the couples

þ;�;�;�;�;þð Þ; 2; 3ð Þð Þ and þ;þ;�;þ;�;�ð Þ; 3; 2ð Þð Þ:
The first of the SPs is symmetric, and the second one is antisymmetric w.r.t.

their middles.
Finally, for d ¼ 3, the following four couples (SP, AP)

þ;þ;þ;�ð Þ; 1; 2ð Þð Þ; þ;�;þ;þð Þ; 2; 1ð Þð Þ;
þ;�;�;�ð Þ; 1; 2ð Þð Þ; þ;þ;�;þð Þ; 2; 1ð Þð Þ:

constitute one orbit for d ¼ 3. In this example all admissible pairs are Descartes’
pairs.

2.2 Degrees d ≥ 4

It turns out that for d ≥ 4, it is no longer true that all couples (SP, AP) are
realizable by polynomials of degree d. Namely, the following result can be found
in [12]:

Theorem 1. The only couples (SP, AP) which are non-realizable by univariate
polynomials of degree 4 are

þ;�;�;�;þð Þ; 0; 2ð Þð Þ and þ;þ;�;þ;þð Þ; 2;0ð Þð Þ:
It is clear that these two cases constitute one orbit of the Z2 � Z2-action of

length 2 (the SPs are the same when read the usual way and backward).
Proof. The argument showing non-realizability in Theorem 1 is easy. Namely, if a

polynomial

P ≔ x4 þ a3x3 þ a2x2 þ a1xþ a0
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realizes the second of these couples and has two positive roots α, β and no
negative roots, then for any u ∈ α; βð Þ, the values of the monomials x4, a2x2, and a0
are the same at u and �u, while the monomials a3x3 and a1x are positive at u and
negative at �u. Hence, P �uð Þ,P uð Þ,0. As P 0ð Þ.0 and limx!�∞P xð Þ ¼ þ∞, the
polynomial P has two negative roots as well—a contradiction.

For d ¼ 4, realizability of all other couples (SP, AP) can be proven by producing
explicit examples.

Remark 2. In [19] a geometric illustration of the non-realizability of the two
cases mentioned in Theorem 1 is proposed. Namely, one considers the family of
polynomials Q ≔ x4 þ x3 þ ax2 þ bxþ c and the discriminant set

Δ≔ a; b; cð Þ∈R3 jRes Q ;Q 0ð Þ ¼ 0
� �

,

where Res Q ;Q 0ð Þ is the resultant of the polynomials Q and Q 0. The hypersur-
face Δ ¼ 0 partitions R3 into three open domains, in which the polynomial Q has
0, 1, or 2 complex conjugate pairs of roots, respectively. These domains intersect
the 8 open orthants of R3 defined by the coordinate system a; b; cð Þ, and in each of
these intersections, the polynomial Q has one and the same number of positive,
negative, and complex roots, as well as the same signs of its coefficients. The non-
realizability of the couple þ;þ;�;þ;þð Þ; 2;0ð Þð Þ can be interpreted as the fact that
the corresponding intersection is empty. Pictures of discriminant sets allow to
construct easily the numerical examples mentioned in the proof of Theorem 1.

It remains to be noticed that for α.0 and β.0, the polynomials P xð Þ and
βP αxð Þ have one and the same numbers of positive, negative, and complex roots.
Therefore, it suffices to consider the family of polynomials Q in order to cover all
SPs beginning with þ;þð Þ. The ones beginning with þ;�ð Þ will be covered by the
family Q �xð Þ.

For degrees d ¼ 5 and 6, the following result can be found in [1].
Theorem 2. (1) The only two couples (SP, AP) which are non-realizable by uni-

variate polynomials of degree 5 are:

þ;�;�;�;�;þð Þ; 0; 3ð Þð Þ and þ;þ;�;þ;�;�ð Þ; 3;0ð Þð Þ:
(2) For degree d ¼ 6, up to the above Z2 � Z2-action, the only non-realizable couples

(SP, AP) are:

þ;�;�;�;�;�;þð Þ; 0; 2ð Þð Þ; þ;�;�;�;�;�;þð Þ; 0;4ð Þð Þ;
þ;�;þ;�;�;�;þð Þ; 0; 2ð Þð Þ; þ;þ;�;�;�;�;þð Þ; 0;4ð Þð Þ:

The two cases of Part (1) of Theorem 2 also form an orbit of the Z2 � Z2-action
of length 2. Each of the first two cases of Part (2) defines an orbit of length 2, while
each of the last two cases defines an orbit of length 4.

For d ¼ 7, the following theorem is contained in [8].
Theorem 3. For univariate polynomials of degree 7, among their 1472 possible

couples (SP, AP) (up to the Z2 � Z2-action), exactly the following 6 are non-realizable:

þ;þ;�;�;�;�;�;þð Þ; 0; 5ð Þð Þ; þ;þ;�;�;�;�;þ;þð Þ; 0; 5ð Þð Þ;
þ;�;�;�;�;þ;�;þð Þ; 0; 3ð Þð Þ; þ;þ;þ;�;�;�;�;þð Þ; 0; 5ð Þð Þ;
þ;�;�;�;�;�;�;þð Þ; 0; 3ð Þð Þ; þ;�;�;�;�;�;�;þð Þ; 0; 5ð Þð Þ:

The lengths of the respective orbits in these 6 cases are 4, 2, 4, 4, 2, and 2.
The case d ¼ 8 has been partially solved in [8] and completely in [16]:
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d SP c p AP P
1 þ;þð Þ 0 1 0; 1ð Þ xþ 1

2 þ;þ;þð Þ 0 2 0; 2ð Þ x2 þ 3xþ 2 ¼ xþ 1ð Þ xþ 2ð Þ
0;0ð Þ x2 þ xþ 1

þ;þ;�ð Þ 1 1 1; 1ð Þ x2 þ x� 2 ¼ x� 1ð Þ xþ 2ð Þ
3 þ;þ;þ;þð Þ 0 3 0; 3ð Þ x3 þ 6x2 þ 11xþ 6 ¼ xþ 1ð Þ xþ 2ð Þ xþ 3ð Þ

0; 1ð Þ x3 þ 3x2 þ 4xþ 2 ¼ xþ 1ð Þ x2 þ 2xþ 2ð Þ
þ;þ;þ;�ð Þ 1 2 1; 2ð Þ x3 þ 2x2 þ x� 6 ¼ x� 1ð Þ xþ 2ð Þ xþ 3ð Þ

1;0ð Þ x3 þ 5x2 þ 4x� 10 ¼ x� 1ð Þ x2 þ 6xþ 10ð Þ
þ;þ;�;þð Þ 2 1 2; 1ð Þ x3 þ x2 � 24xþ 36 ¼ xþ 6ð Þ x� 2ð Þ x� 3ð Þ

0; 1ð Þ x3 þ 2x2 � 19xþ 30 ¼ xþ 6ð Þ x2 � 4xþ 5ð Þ
þ;þ;�;�ð Þ 1 2 1; 2ð Þ x3 þ x2 � 4x� 4 ¼ x� 2ð Þ xþ 1ð Þ xþ 2ð Þ

1;0ð Þ x3 þ 2x2 � 3x� 10 ¼ x� 2ð Þ x2 þ 4xþ 5ð Þ
Example 2. For d ¼ 4, an example of an orbit of length 2 is given by the couples

þ;�;�;�;þð Þ; 2; 2ð Þð Þ and þ;þ;�;þ;þð Þ; 2; 2ð Þð Þ:
Here, both SPs are symmetric w.r.t. its middle.
For d ¼ 5, such an example is given by the couples

þ;�;�;�;�;þð Þ; 2; 3ð Þð Þ and þ;þ;�;þ;�;�ð Þ; 3; 2ð Þð Þ:
The first of the SPs is symmetric, and the second one is antisymmetric w.r.t.

their middles.
Finally, for d ¼ 3, the following four couples (SP, AP)

þ;þ;þ;�ð Þ; 1; 2ð Þð Þ; þ;�;þ;þð Þ; 2; 1ð Þð Þ;
þ;�;�;�ð Þ; 1; 2ð Þð Þ; þ;þ;�;þð Þ; 2; 1ð Þð Þ:

constitute one orbit for d ¼ 3. In this example all admissible pairs are Descartes’
pairs.

2.2 Degrees d ≥ 4

It turns out that for d ≥ 4, it is no longer true that all couples (SP, AP) are
realizable by polynomials of degree d. Namely, the following result can be found
in [12]:

Theorem 1. The only couples (SP, AP) which are non-realizable by univariate
polynomials of degree 4 are

þ;�;�;�;þð Þ; 0; 2ð Þð Þ and þ;þ;�;þ;þð Þ; 2;0ð Þð Þ:
It is clear that these two cases constitute one orbit of the Z2 � Z2-action of

length 2 (the SPs are the same when read the usual way and backward).
Proof. The argument showing non-realizability in Theorem 1 is easy. Namely, if a

polynomial

P ≔ x4 þ a3x3 þ a2x2 þ a1xþ a0
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realizes the second of these couples and has two positive roots α, β and no
negative roots, then for any u ∈ α; βð Þ, the values of the monomials x4, a2x2, and a0
are the same at u and �u, while the monomials a3x3 and a1x are positive at u and
negative at �u. Hence, P �uð Þ,P uð Þ,0. As P 0ð Þ.0 and limx!�∞P xð Þ ¼ þ∞, the
polynomial P has two negative roots as well—a contradiction.

For d ¼ 4, realizability of all other couples (SP, AP) can be proven by producing
explicit examples.

Remark 2. In [19] a geometric illustration of the non-realizability of the two
cases mentioned in Theorem 1 is proposed. Namely, one considers the family of
polynomials Q ≔ x4 þ x3 þ ax2 þ bxþ c and the discriminant set

Δ≔ a; b; cð Þ∈R3 jRes Q ;Q 0ð Þ ¼ 0
� �

,

where Res Q ;Q 0ð Þ is the resultant of the polynomials Q and Q 0. The hypersur-
face Δ ¼ 0 partitions R3 into three open domains, in which the polynomial Q has
0, 1, or 2 complex conjugate pairs of roots, respectively. These domains intersect
the 8 open orthants of R3 defined by the coordinate system a; b; cð Þ, and in each of
these intersections, the polynomial Q has one and the same number of positive,
negative, and complex roots, as well as the same signs of its coefficients. The non-
realizability of the couple þ;þ;�;þ;þð Þ; 2;0ð Þð Þ can be interpreted as the fact that
the corresponding intersection is empty. Pictures of discriminant sets allow to
construct easily the numerical examples mentioned in the proof of Theorem 1.

It remains to be noticed that for α.0 and β.0, the polynomials P xð Þ and
βP αxð Þ have one and the same numbers of positive, negative, and complex roots.
Therefore, it suffices to consider the family of polynomials Q in order to cover all
SPs beginning with þ;þð Þ. The ones beginning with þ;�ð Þ will be covered by the
family Q �xð Þ.

For degrees d ¼ 5 and 6, the following result can be found in [1].
Theorem 2. (1) The only two couples (SP, AP) which are non-realizable by uni-

variate polynomials of degree 5 are:

þ;�;�;�;�;þð Þ; 0; 3ð Þð Þ and þ;þ;�;þ;�;�ð Þ; 3;0ð Þð Þ:
(2) For degree d ¼ 6, up to the above Z2 � Z2-action, the only non-realizable couples

(SP, AP) are:

þ;�;�;�;�;�;þð Þ; 0; 2ð Þð Þ; þ;�;�;�;�;�;þð Þ; 0;4ð Þð Þ;
þ;�;þ;�;�;�;þð Þ; 0; 2ð Þð Þ; þ;þ;�;�;�;�;þð Þ; 0;4ð Þð Þ:

The two cases of Part (1) of Theorem 2 also form an orbit of the Z2 � Z2-action
of length 2. Each of the first two cases of Part (2) defines an orbit of length 2, while
each of the last two cases defines an orbit of length 4.

For d ¼ 7, the following theorem is contained in [8].
Theorem 3. For univariate polynomials of degree 7, among their 1472 possible

couples (SP, AP) (up to the Z2 � Z2-action), exactly the following 6 are non-realizable:

þ;þ;�;�;�;�;�;þð Þ; 0; 5ð Þð Þ; þ;þ;�;�;�;�;þ;þð Þ; 0; 5ð Þð Þ;
þ;�;�;�;�;þ;�;þð Þ; 0; 3ð Þð Þ; þ;þ;þ;�;�;�;�;þð Þ; 0; 5ð Þð Þ;
þ;�;�;�;�;�;�;þð Þ; 0; 3ð Þð Þ; þ;�;�;�;�;�;�;þð Þ; 0; 5ð Þð Þ:

The lengths of the respective orbits in these 6 cases are 4, 2, 4, 4, 2, and 2.
The case d ¼ 8 has been partially solved in [8] and completely in [16]:
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Theorem 4. For degree d ¼ 8, among the 3648 possible couples (SP, AP) (up to the
Z2 � Z2-action), exactly the following 19 are non-realizable:

þ;þ;�;�;�;�;�;þ;þð Þ; 0; 6ð Þð Þ; þ;þ;�;�;�;�;�;�;þð Þ; 0; 6ð Þð Þ;
þ;þ;þ;�;�;�;�;�;þð Þ; 0; 6ð Þð Þ; þ;þ;þ;þ;�;�;�;�;þð Þ; 0; 6ð Þð Þ;
þ;�;þ;�;�;�;þ;�;þð Þ; 0; 2ð Þð Þ; þ;�;þ;�;þ;�;�;�;þð Þ; 0; 2ð Þð Þ;
þ;�;þ;�;�;�;�;�;þð Þ; 0; 2ð Þð Þ; þ;�;þ;�;�;�;�;�;þð Þ; 0;4ð Þð Þ;
ð þ;�;�;�;þ;�;�;�;þð Þ, 0; 2ð Þ; þ;�;�;�;þ;�;�;�;þð Þ; 0;4ð Þð Þ;
þ;�;�;�;�;�;�;�;þð Þ; 0; 2ð Þð Þ; ð þ;�;�;�;�;�;�;�;þð Þ, 0;4ð Þ;
þ;�;�;�;�;�;�;�;þð Þ; 0; 6ð Þð Þ; þ;þ;þ;�;�;�;�;þ;þð Þ; 0; 6ð Þð Þ;
þ;�;�;�;�;þ;�;�;þð Þ; 0;4ð Þð Þ; þ;�;�;�;�;�;�;þ;þð Þ; 0;4ð Þð Þ;
þ;�;þ;þ;�;�;�;�;þð Þ; 0;4ð Þð Þ; þ;�;þ;�;�;�;�;þ;þð Þ; 0;4ð Þð Þ;
þ;�;�;�;�;þ;�;þ;þð Þ; 0;4ð Þð Þ:

The lengths of the respective orbits are 2, 4, 4, 4, 2, 4, 4, 4, 2, 2, 2, 2, 2, 4, 4, 4, 4,
4, and 4.

Remark 3. As we see above, for d ¼ 4, 5, 6, 7, and 8, up to the Z2 � Z2-action,
the numbers of non-realizable cases are 1, 1, 4, 6, and 19, respectively. The fact that
these numbers increase more when d ¼ 5 and d ¼ 7 than when d ¼ 4 and d ¼ 6
could be related to the fact that the maximal possible number of complex conjugate
pairs of roots of a real univariate degree d polynomial is d=2½ �. This number
increases w.r.t. d� 1ð Þ=2½ � when d is even and does not increase when d is odd.

Observe that for d ≤ 8, all examples of couples (SP, AP) which are non-
realizable are with APs of the form ν;0ð Þ or 0; νð Þ and ν∈N. Initially, we thought
that this is always the case. However, recently it was proven that, for higher
degrees, this fact is no longer true (see [17]):

Theorem 5. For d ¼ 11, the following couple (SP, AP)

þ;�;�;�;�;�;þ;þ;þ;þ;þ;�ð Þ; 1; 8ð Þð Þ
is non-realizable. The Descartes’ pair in this case equals 3; 8ð Þ.
There is a strong evidence that for d ¼ 9, the similar couple (SP, AP)

þ;�;�;�;�;þ;þ;þ;þ;�ð Þ; 1; 6ð Þð Þ
is also non-realizable. (Its Descartes’ pair equals 3; 6ð Þ.) If this were true,

then 9 would be the smallest degree with an example of a non-realizable couple
(SP, AP) for which both components of the AP are nonzero. When studying the
cases d ¼ 8 and d ¼ 11 (see [16] and [17]), discriminant sets have been consid-
ered (see Remark 2).

Summarizing the above, we have to admit that the information in low degrees
available at the moment does not allow us to formulate a consistent conjecture
describing all non-realizable couples in an arbitrary degree which we could consider
as sufficiently well motivated.

3. Series of examples of (non-)realizable couples (SP, AP)

In this section we present a series of couples (non-)realizable for infinitely many
degrees. We decided to include those proofs of the statements formulated below
which are short and instructive.
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3.1 Some examples of realizability and a concatenation lemma

Our first examples of realizability deal with polynomials with the minimal pos-
sible number of real roots:

Proposition 1. For d even, any SP whose last component is a þ (resp. is a �) is
realizable with the AP 0;0ð Þ (resp. 1; 1ð Þ). For d odd, any SP whose last component is
a þ (resp. is a �) is realizable with the AP 0; 1ð Þ (resp. 1;0ð Þ).

Proof. Indeed, for any given SP, it suffices to choose any polynomial defining this
SP and to increase (resp. decrease) its constant term sufficiently much if the latter is
positive (resp. negative). The resulting polynomial will have the required number
of real roots. □

Our next example deals with hyperbolic polynomials, that is, real polynomials
with all real roots. Several topics concerning hyperbolic polynomials are developed
in [18].

Proposition 2. Any SP is realizable with its Descartes’ pair.
Proposition 2 will follow from the following concatenation lemma whose proof

can be found in [8].
Lemma 1. Suppose that monic polynomials P1 and P2, of degrees d1 and d2 resp.,

realize the SPs þ; σ̂1ð Þ and þ; σ̂2ð Þ, where σ̂ j are the SPs defined by Pj in which the firstþ
is deleted. Then:

1. If the last position of σ̂1 is a þ, then for any ε.0 small enough, the polynomial
εd2P1 xð ÞP2 x=εð Þ realizes the SP þ; σ̂1; σ̂2ð Þ and the AP pos1 þ pos2; neg1 þ neg2

� �
.

2. If the last position of σ̂1 is a �, then for any ε.0 small enough, the polynomial
εd2P1 xð ÞP2 x=εð Þ realizes the SP þ; σ̂1;�σ̂2ð Þ and the AP pos1 þ pos2; neg1 þ neg2

� �
:

(Here �σ̂2 is the SP obtained from σ̂2 by changing each þ by a � and vice versa.)

The concatenation lemma allows to deduce the realizability of couples (SP, AP)
with higher values of d from that of couples with smaller d in which cases explicit
constructions are usually easier to obtain. On the other hand, non-realizability of
special cases cannot be concluded using this lemma.

Example 3. Denote by τ the last entry of the SP σ̂1. We consider the cases

P2 xð Þ ¼ x� 1, xþ 1, x2 þ 2xþ 2, x2 � 2xþ 2 with

pos2; neg2
� � ¼ 1;0ð Þ, 0; 1ð Þ, 0;0ð Þ, 0;0ð Þ resp:

When τ ¼ þ, then one has, respectively,

σ̂2 ¼ �ð Þ, þð Þ, þ;þð Þ, �;þð Þ,

and the SP of εd2P1 xð ÞP2 x=εð Þ equals

þ; σ̂1;�ð Þ, þ; σ̂1;þð Þ, þ; σ̂1;þ;þð Þ, þ; σ̂1;�;þð Þ:
When τ ¼ �, then one has, respectively,

σ̂2 ¼ þð Þ, �ð Þ, �;�ð Þ, þ;�ð Þ,

and the SP of εd2P1 xð ÞP2 x=εð Þ equals

þ; σ̂1;þð Þ, þ; σ̂1;�ð Þ, þ; σ̂1;�;�ð Þ, þ; σ̂1;þ;�ð Þ:
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Theorem 4. For degree d ¼ 8, among the 3648 possible couples (SP, AP) (up to the
Z2 � Z2-action), exactly the following 19 are non-realizable:

þ;þ;�;�;�;�;�;þ;þð Þ; 0; 6ð Þð Þ; þ;þ;�;�;�;�;�;�;þð Þ; 0; 6ð Þð Þ;
þ;þ;þ;�;�;�;�;�;þð Þ; 0; 6ð Þð Þ; þ;þ;þ;þ;�;�;�;�;þð Þ; 0; 6ð Þð Þ;
þ;�;þ;�;�;�;þ;�;þð Þ; 0; 2ð Þð Þ; þ;�;þ;�;þ;�;�;�;þð Þ; 0; 2ð Þð Þ;
þ;�;þ;�;�;�;�;�;þð Þ; 0; 2ð Þð Þ; þ;�;þ;�;�;�;�;�;þð Þ; 0;4ð Þð Þ;
ð þ;�;�;�;þ;�;�;�;þð Þ, 0; 2ð Þ; þ;�;�;�;þ;�;�;�;þð Þ; 0;4ð Þð Þ;
þ;�;�;�;�;�;�;�;þð Þ; 0; 2ð Þð Þ; ð þ;�;�;�;�;�;�;�;þð Þ, 0;4ð Þ;
þ;�;�;�;�;�;�;�;þð Þ; 0; 6ð Þð Þ; þ;þ;þ;�;�;�;�;þ;þð Þ; 0; 6ð Þð Þ;
þ;�;�;�;�;þ;�;�;þð Þ; 0;4ð Þð Þ; þ;�;�;�;�;�;�;þ;þð Þ; 0;4ð Þð Þ;
þ;�;þ;þ;�;�;�;�;þð Þ; 0;4ð Þð Þ; þ;�;þ;�;�;�;�;þ;þð Þ; 0;4ð Þð Þ;
þ;�;�;�;�;þ;�;þ;þð Þ; 0;4ð Þð Þ:

The lengths of the respective orbits are 2, 4, 4, 4, 2, 4, 4, 4, 2, 2, 2, 2, 2, 4, 4, 4, 4,
4, and 4.

Remark 3. As we see above, for d ¼ 4, 5, 6, 7, and 8, up to the Z2 � Z2-action,
the numbers of non-realizable cases are 1, 1, 4, 6, and 19, respectively. The fact that
these numbers increase more when d ¼ 5 and d ¼ 7 than when d ¼ 4 and d ¼ 6
could be related to the fact that the maximal possible number of complex conjugate
pairs of roots of a real univariate degree d polynomial is d=2½ �. This number
increases w.r.t. d� 1ð Þ=2½ � when d is even and does not increase when d is odd.

Observe that for d ≤ 8, all examples of couples (SP, AP) which are non-
realizable are with APs of the form ν;0ð Þ or 0; νð Þ and ν∈N. Initially, we thought
that this is always the case. However, recently it was proven that, for higher
degrees, this fact is no longer true (see [17]):

Theorem 5. For d ¼ 11, the following couple (SP, AP)

þ;�;�;�;�;�;þ;þ;þ;þ;þ;�ð Þ; 1; 8ð Þð Þ
is non-realizable. The Descartes’ pair in this case equals 3; 8ð Þ.
There is a strong evidence that for d ¼ 9, the similar couple (SP, AP)

þ;�;�;�;�;þ;þ;þ;þ;�ð Þ; 1; 6ð Þð Þ
is also non-realizable. (Its Descartes’ pair equals 3; 6ð Þ.) If this were true,

then 9 would be the smallest degree with an example of a non-realizable couple
(SP, AP) for which both components of the AP are nonzero. When studying the
cases d ¼ 8 and d ¼ 11 (see [16] and [17]), discriminant sets have been consid-
ered (see Remark 2).

Summarizing the above, we have to admit that the information in low degrees
available at the moment does not allow us to formulate a consistent conjecture
describing all non-realizable couples in an arbitrary degree which we could consider
as sufficiently well motivated.

3. Series of examples of (non-)realizable couples (SP, AP)

In this section we present a series of couples (non-)realizable for infinitely many
degrees. We decided to include those proofs of the statements formulated below
which are short and instructive.
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3.1 Some examples of realizability and a concatenation lemma

Our first examples of realizability deal with polynomials with the minimal pos-
sible number of real roots:

Proposition 1. For d even, any SP whose last component is a þ (resp. is a �) is
realizable with the AP 0;0ð Þ (resp. 1; 1ð Þ). For d odd, any SP whose last component is
a þ (resp. is a �) is realizable with the AP 0; 1ð Þ (resp. 1;0ð Þ).

Proof. Indeed, for any given SP, it suffices to choose any polynomial defining this
SP and to increase (resp. decrease) its constant term sufficiently much if the latter is
positive (resp. negative). The resulting polynomial will have the required number
of real roots. □

Our next example deals with hyperbolic polynomials, that is, real polynomials
with all real roots. Several topics concerning hyperbolic polynomials are developed
in [18].

Proposition 2. Any SP is realizable with its Descartes’ pair.
Proposition 2 will follow from the following concatenation lemma whose proof

can be found in [8].
Lemma 1. Suppose that monic polynomials P1 and P2, of degrees d1 and d2 resp.,

realize the SPs þ; σ̂1ð Þ and þ; σ̂2ð Þ, where σ̂ j are the SPs defined by Pj in which the firstþ
is deleted. Then:

1. If the last position of σ̂1 is a þ, then for any ε.0 small enough, the polynomial
εd2P1 xð ÞP2 x=εð Þ realizes the SP þ; σ̂1; σ̂2ð Þ and the AP pos1 þ pos2; neg1 þ neg2

� �
.

2. If the last position of σ̂1 is a �, then for any ε.0 small enough, the polynomial
εd2P1 xð ÞP2 x=εð Þ realizes the SP þ; σ̂1;�σ̂2ð Þ and the AP pos1 þ pos2; neg1 þ neg2

� �
:

(Here �σ̂2 is the SP obtained from σ̂2 by changing each þ by a � and vice versa.)

The concatenation lemma allows to deduce the realizability of couples (SP, AP)
with higher values of d from that of couples with smaller d in which cases explicit
constructions are usually easier to obtain. On the other hand, non-realizability of
special cases cannot be concluded using this lemma.

Example 3. Denote by τ the last entry of the SP σ̂1. We consider the cases

P2 xð Þ ¼ x� 1, xþ 1, x2 þ 2xþ 2, x2 � 2xþ 2 with

pos2; neg2
� � ¼ 1;0ð Þ, 0; 1ð Þ, 0;0ð Þ, 0;0ð Þ resp:

When τ ¼ þ, then one has, respectively,

σ̂2 ¼ �ð Þ, þð Þ, þ;þð Þ, �;þð Þ,

and the SP of εd2P1 xð ÞP2 x=εð Þ equals

þ; σ̂1;�ð Þ, þ; σ̂1;þð Þ, þ; σ̂1;þ;þð Þ, þ; σ̂1;�;þð Þ:
When τ ¼ �, then one has, respectively,

σ̂2 ¼ þð Þ, �ð Þ, �;�ð Þ, þ;�ð Þ,

and the SP of εd2P1 xð ÞP2 x=εð Þ equals

þ; σ̂1;þð Þ, þ; σ̂1;�ð Þ, þ; σ̂1;�;�ð Þ, þ; σ̂1;þ;�ð Þ:
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Proof of Proposition 2. We will use induction on the degree d of the polynomial.
For d ¼ 1, the SP þ;�ð Þ (resp. þ;þð Þ) is realizable with the AP 1;0ð Þ (resp. 0; 1ð Þ)
by the polynomial x� 1 (resp. xþ 1).

For d ¼ 2, we apply Lemma 1. Set P1 ≔ xþ 1 and P2 ≔ x� 1. Then, for ε.0
small enough, the polynomials

εP1 xð ÞP2 x=εð Þ ¼ xþ 1ð Þ x� εð Þ ¼ x2 þ 1� εð Þx� ε and

εP2 xð ÞP1 x=εð Þ ¼ x� 1ð Þ xþ εð Þ ¼ x2 þ �1þ εð Þx� ε

define the SPs þ;þ;�ð Þ and þ;�;�ð Þ, respectively, and realize themwith the AP
1; 1ð Þ. In the sameway, one can concatenate P1 (resp. P2) with itself to realize the SP
þ;þ;þð Þwith the AP 0; 2ð Þ (resp. the SP þ;�;þð Þwith theAP 2;0ð Þ). These are all
possible cases ofmonic hyperbolic degree 2 polynomialswithnonvanishing coefficients.

For d ≥ 2, in order to realize a SP σ with its Descartes’ pair c; pð Þ, we represent σ
in the form σ†; u; vð Þ, where u and v are the last two components of σ and σ† is the SP
obtained from σ by deleting u and v. Then, we choose P1 to be a monic polynomial
realizing the SP σ†; uð Þ:

i. With the AP c� 1; pð Þ, and we set P2 ≔ x� 1, if u ¼ �v.

ii. With the AP c; p� 1ð Þ, and we set P2 ≔ xþ 1, if u ¼ v. □

Our next result discusses (non-)realizability for polynomials with only two sign
changes (see [8, 9]).

Proposition 3. Consider a sign pattern σ with 2 sign changes, consisting of m consec-
utive pluses followed by n consecutive minuses and then by q consecutive pluses, where
mþ nþ q ¼ dþ 1: Then:

i. For the pair 0; d� 2ð Þ, this sign pattern is not realizable if

κ≔
d�m� 1

m
� d� q� 1

q
≥ 4; (3)

ii. The sign pattern σ is realizable with any pair of the form 2; vð Þ, except in the case
when d and m are even, n ¼ 1 (hence q is even), and v ¼ 0.

Certain results about realizability are formulated in terms of the ratios between
the quantities pos, neg, and d. The following proposition is proven in [8].

Proposition 4. For a given couple (SP, AP), if min pos; negð Þ. d� 4ð Þ=3½ �, then
this couple is realizable.

3.2 The even and the odd series

Suppose that the degree d is even. Then, the following result holds (see Proposi-
tion 4 in [8]):

Proposition 5. Consider the SPs satisfying the following three conditions:

i. Their last entry (i.e., the sign of the constant term) is a þ.

ii. The signs of all odd monomials are þ.

iii. Among the remaining signs of even monomials, there are exactly ℓ ≥ 1 signs �
(at arbitrary positions).
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Then, for any such SP, the APs 2;0ð Þ, 4;0ð Þ,…, 2ℓ;0ð Þ, and only they, are non-
realizable.

Suppose now that the degree d ≥ 5 is odd. For 1 ≤ k ≤ d� 3ð Þ=2, denote by σk
the SP beginning with two pluses followed by k pairs �;þð Þ and then by d� 2k� 1
minuses. Its Descartes’ pair of σk equals 2kþ 1; d� 2k� 1ð Þ. The following propo-
sition is proven in [19].

Theorem 6. (1) The SP σk is not realizable with any of the pairs 3;0ð Þ, 5;0ð Þ,…,
2kþ 1;0ð Þ; (2) The SP σk is realizable with the pair 1;0ð Þ; (3) The SP σk is realizable
with any of the APs 2ℓþ 1; 2rð Þ, ℓ ¼ 0, 1,…, k, and r ¼ 1, 2,…, d� 2k� 1ð Þ=2.

One can observe that Cases (1), (2), and (3) exhaust all possible APs pos; negð Þ.

4. Similar realization problems

In this section, we consider realization problems similar or motivated by Prob-
lem 1. A priori it is hard to tell which of these or similar problems might have a
reasonable answer.

4.1 D-Sequences

Consider a real polynomial P of degree d and its derivative. By Rolle’s theorem, if
P has exactly r real roots (counted with multiplicity), then the derivative P0 has
r� 1þ 2ℓ real roots (counted with multiplicity), where ℓ∈N ∪ 0. It is possible that
P0 has more real roots than P. For example, for d ¼ 2 and P ¼ x2 þ 1, one gets
P
0 ¼ 2x which has a real root at 0, while P has no real roots at all. For d ¼ 3, the

polynomial P ¼ x3 þ 3x2 � 8xþ 10 ¼ xþ 5ð Þð x� 1ð Þ2 þ 1Þ has one negative root
and one complex conjugate pair, while its derivative P0 ¼ 3x2 þ 6x� 8 has one
positive and one negative root.

Now, for j ¼ 0, …, and d� 1, denote by rj and cj the numbers of real roots and
complex conjugate pairs of roots of the polynomial P jð Þ (both counted with multi-
plicity). These numbers satisfy the conditions

rj ≤ rjþ1 þ 1, rj þ 2cj ¼ d� j: (4)

Definition 1. A sequence r0; 2c0ð Þ, r1; 2c1ð Þ,…,ð rd�1; 2cd�1ð ÞÞ satisfying condi-
tions (4) will be called a D-sequence of length d. We say that a given D-sequence of
length d is realizable if there exists a real polynomial P of degree d with this D-
sequence, where for j ¼ 0,…, d� 1, all roots of P jð Þ are distinct.

Example 4. One has rd�1 ¼ 1 and cd�1 ¼ 0. Clearly, one has either rd�2 ¼ 2,
cd�2 ¼ 0 or rd�2 ¼ 0, cd�2 ¼ 1. For small values of d, one has the following D-
sequences and respective polynomials realizing them:

d ¼ 1 1;0ð Þ x
d ¼ 2 2;0ð Þ; 1;0ð Þð Þ x2 � 1

0; 2ð Þ; 1;0ð Þð Þ x2 þ 1

d ¼ 3 3;0ð Þ; 2;0ð Þ; 1;0ð Þð Þ x3 � x
1; 2ð Þ; 0; 2ð Þ; 1;0ð Þð Þ x3 þ x
1; 2ð Þ; 2;0ð Þ; 1;0ð Þð Þ x3 þ 10x2 þ 26x:

The following question where a positive answer to which can be found in [15]
seems very natural.

Problem 2. Is it true that for any d∈N, any D-sequence is realizable?
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Proof of Proposition 2. We will use induction on the degree d of the polynomial.
For d ¼ 1, the SP þ;�ð Þ (resp. þ;þð Þ) is realizable with the AP 1;0ð Þ (resp. 0; 1ð Þ)
by the polynomial x� 1 (resp. xþ 1).

For d ¼ 2, we apply Lemma 1. Set P1 ≔ xþ 1 and P2 ≔ x� 1. Then, for ε.0
small enough, the polynomials

εP1 xð ÞP2 x=εð Þ ¼ xþ 1ð Þ x� εð Þ ¼ x2 þ 1� εð Þx� ε and

εP2 xð ÞP1 x=εð Þ ¼ x� 1ð Þ xþ εð Þ ¼ x2 þ �1þ εð Þx� ε

define the SPs þ;þ;�ð Þ and þ;�;�ð Þ, respectively, and realize themwith the AP
1; 1ð Þ. In the sameway, one can concatenate P1 (resp. P2) with itself to realize the SP
þ;þ;þð Þwith the AP 0; 2ð Þ (resp. the SP þ;�;þð Þwith theAP 2;0ð Þ). These are all
possible cases ofmonic hyperbolic degree 2 polynomialswithnonvanishing coefficients.

For d ≥ 2, in order to realize a SP σ with its Descartes’ pair c; pð Þ, we represent σ
in the form σ†; u; vð Þ, where u and v are the last two components of σ and σ† is the SP
obtained from σ by deleting u and v. Then, we choose P1 to be a monic polynomial
realizing the SP σ†; uð Þ:

i. With the AP c� 1; pð Þ, and we set P2 ≔ x� 1, if u ¼ �v.

ii. With the AP c; p� 1ð Þ, and we set P2 ≔ xþ 1, if u ¼ v. □

Our next result discusses (non-)realizability for polynomials with only two sign
changes (see [8, 9]).

Proposition 3. Consider a sign pattern σ with 2 sign changes, consisting of m consec-
utive pluses followed by n consecutive minuses and then by q consecutive pluses, where
mþ nþ q ¼ dþ 1: Then:

i. For the pair 0; d� 2ð Þ, this sign pattern is not realizable if

κ≔
d�m� 1

m
� d� q� 1

q
≥ 4; (3)

ii. The sign pattern σ is realizable with any pair of the form 2; vð Þ, except in the case
when d and m are even, n ¼ 1 (hence q is even), and v ¼ 0.

Certain results about realizability are formulated in terms of the ratios between
the quantities pos, neg, and d. The following proposition is proven in [8].

Proposition 4. For a given couple (SP, AP), if min pos; negð Þ. d� 4ð Þ=3½ �, then
this couple is realizable.

3.2 The even and the odd series

Suppose that the degree d is even. Then, the following result holds (see Proposi-
tion 4 in [8]):

Proposition 5. Consider the SPs satisfying the following three conditions:

i. Their last entry (i.e., the sign of the constant term) is a þ.

ii. The signs of all odd monomials are þ.

iii. Among the remaining signs of even monomials, there are exactly ℓ ≥ 1 signs �
(at arbitrary positions).
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Then, for any such SP, the APs 2;0ð Þ, 4;0ð Þ,…, 2ℓ;0ð Þ, and only they, are non-
realizable.

Suppose now that the degree d ≥ 5 is odd. For 1 ≤ k ≤ d� 3ð Þ=2, denote by σk
the SP beginning with two pluses followed by k pairs �;þð Þ and then by d� 2k� 1
minuses. Its Descartes’ pair of σk equals 2kþ 1; d� 2k� 1ð Þ. The following propo-
sition is proven in [19].

Theorem 6. (1) The SP σk is not realizable with any of the pairs 3;0ð Þ, 5;0ð Þ,…,
2kþ 1;0ð Þ; (2) The SP σk is realizable with the pair 1;0ð Þ; (3) The SP σk is realizable
with any of the APs 2ℓþ 1; 2rð Þ, ℓ ¼ 0, 1,…, k, and r ¼ 1, 2,…, d� 2k� 1ð Þ=2.

One can observe that Cases (1), (2), and (3) exhaust all possible APs pos; negð Þ.

4. Similar realization problems

In this section, we consider realization problems similar or motivated by Prob-
lem 1. A priori it is hard to tell which of these or similar problems might have a
reasonable answer.

4.1 D-Sequences

Consider a real polynomial P of degree d and its derivative. By Rolle’s theorem, if
P has exactly r real roots (counted with multiplicity), then the derivative P0 has
r� 1þ 2ℓ real roots (counted with multiplicity), where ℓ∈N ∪ 0. It is possible that
P0 has more real roots than P. For example, for d ¼ 2 and P ¼ x2 þ 1, one gets
P
0 ¼ 2x which has a real root at 0, while P has no real roots at all. For d ¼ 3, the

polynomial P ¼ x3 þ 3x2 � 8xþ 10 ¼ xþ 5ð Þð x� 1ð Þ2 þ 1Þ has one negative root
and one complex conjugate pair, while its derivative P0 ¼ 3x2 þ 6x� 8 has one
positive and one negative root.

Now, for j ¼ 0, …, and d� 1, denote by rj and cj the numbers of real roots and
complex conjugate pairs of roots of the polynomial P jð Þ (both counted with multi-
plicity). These numbers satisfy the conditions

rj ≤ rjþ1 þ 1, rj þ 2cj ¼ d� j: (4)

Definition 1. A sequence r0; 2c0ð Þ, r1; 2c1ð Þ,…,ð rd�1; 2cd�1ð ÞÞ satisfying condi-
tions (4) will be called a D-sequence of length d. We say that a given D-sequence of
length d is realizable if there exists a real polynomial P of degree d with this D-
sequence, where for j ¼ 0,…, d� 1, all roots of P jð Þ are distinct.

Example 4. One has rd�1 ¼ 1 and cd�1 ¼ 0. Clearly, one has either rd�2 ¼ 2,
cd�2 ¼ 0 or rd�2 ¼ 0, cd�2 ¼ 1. For small values of d, one has the following D-
sequences and respective polynomials realizing them:

d ¼ 1 1;0ð Þ x
d ¼ 2 2;0ð Þ; 1;0ð Þð Þ x2 � 1

0; 2ð Þ; 1;0ð Þð Þ x2 þ 1

d ¼ 3 3;0ð Þ; 2;0ð Þ; 1;0ð Þð Þ x3 � x
1; 2ð Þ; 0; 2ð Þ; 1;0ð Þð Þ x3 þ x
1; 2ð Þ; 2;0ð Þ; 1;0ð Þð Þ x3 þ 10x2 þ 26x:

The following question where a positive answer to which can be found in [15]
seems very natural.

Problem 2. Is it true that for any d∈N, any D-sequence is realizable?
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4.2 Sequences of admissible pairs

Now, we are going to formulate a problem which is a refinement of both
Problems 1 and 2.

Recall that for a real polynomial P of degree d, the signs of its coefficients aj
define the sign patterns σ0, σ1,…, σd�1 corresponding to P and to all its deriva-
tives of order ≤ d� 1 since the SP σj is obtained from σj�1 by deleting the last
component. We denote by ck; pk

� �
and posk; negk

� �
the Descartes’ and admissible

pairs for the SPs σk, k ¼ 0,…, d� 1. The following restrictions follow from
Rolle’s theorem:

poskþ1 ≥ posk � 1 , negkþ1 ≥ negk � 1

and poskþ1 þ negkþ1 ≥ posk þ negk � 1:
(5)

It is always true that

poskþ1 þ negkþ1 þ 3� posk � negk ∈ 2N: (6)

Definition 2. Given a sign pattern σ0 of length dþ 1, suppose that for
k ¼ 0,…, d� 1, the pair posk; negk

� �
satisfies the conditions

posk ≤ ck, ck � posk ∈ 2Z,

negk ≤ pk, pk � negk ∈ 2Z,

and sgn ak ¼ �1ð Þposk :
(7)

as well as the inequalities (5)–(6). Then, we say that

pos0; neg0
� �

;…; posd�1; negd�1
� �� �

(8)

is a sequence of admissible pairs (SAPs). In other words, it is a sequence of pairs
admissible for the sign pattern σ0 in the sense of these conditions. We say that a
given couple (SP, SAP) is realizable if there exists a polynomial P whose coefficients
have signs given by the SP σ0, and such that for k ¼ 0,…, d� 1, the polynomial P kð Þ

has exactly posk positive and negk negative roots, all of them being simple. Complex
roots are also supposed to be distinct.

Remark 4. If one only knows the SAP 8ð Þ, the SP σ0 can be restituted by the
formula

σ0 ¼ þ; �1ð Þposd�1 ; �1ð Þposd�2 ;…; �1ð Þpos0ð Þ:
Nevertheless, in order to make comparisons with Problem 1 more easily, we

consider couples (SP, SAP) instead of just SAPs. But for a given SP, there are, in
general, several possible SAPs which is illustrated by the following example.

Example 5. Consider the SP of length dþ 1 with all pluses. For d ¼ 2 and 3, there
are, respectively, two and three possible SAPs:

0; 2ð Þ; 0; 1ð Þð Þ , 0;0ð Þ; 0; 1ð Þð Þ , for d ¼ 2

and

0; 3ð Þ; 0; 2ð Þ; 0; 1ð Þð Þ , 0; 1ð Þ; 0; 2ð Þ; 0; 1ð Þð Þ , 0; 1ð Þ; 0;0ð Þ; 0; 1ð Þð Þ for d ¼ 3:
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For d ¼ 4; 5; 6; 7; 8; 9; 10, the numbers A dð Þ of SAPs compatible with the SP of
length dþ 1 having all pluses are

7, 12, 30, 55, 143, 273, and 728,

respectively. One can show that A dð Þ ≥ 2A d� 1ð Þ, if d ≥ 2 is even, and
A dð Þ ≥ 3A d� 1ð Þ=2, if d ≥ 3 is odd (see [5]).

Example 6. There are two couples (SP, SAP) corresponding to the couple (SP,
AP) C≔ þ;þ;�;þ;þð Þð , 0; 2ð ÞÞ; we also say that the couple C can be extended into
these couples (SP, SAP). These are

ð þ;þ;�;þ;þð Þ , 0; 2ð Þ , 2; 1ð Þ , 1; 1ð Þ , 0; 1ð Þ Þ and

ð þ;þ;�;þ;þð Þ , 0; 2ð Þ , 0; 1ð Þ , 1; 1ð Þ , 0; 1ð Þ Þ :

Indeed, by Rolle’s theorem, the derivative of a polynomial realizing the couple C
has at least one negative root. By conditions (7), this derivative (whose degree
equals 3) has an even number of positive roots. This yields just two possibilities for
pos1; neg1
� �

, namely, 2; 1ð Þ and 0; 1ð Þ. The second derivative is a quadratic polyno-
mial with positive leading coefficient and negative constant term. Hence, it has a
positive and a negative root. The realizability of the above two couples (SP, SAP) is
proven in [5].

Our final realization problem is as follows:
Problem 3. For a given degree d, which couples (SP, SAP) are realizable?
Remarks 1. (1) This problem is a refinement of Problem 1, because one con-

siders the APs of the derivatives of all orders and not just the one of the polynomial
itself (see Remark 4). Therefore, if a given couple (SP, AP) is non-realizable, then
all couples (SP, SAP) corresponding to it in the sense of Example 6 are automati-
cally non-realizable.

(2) Obviously, Problem 3 is a refinement of Problem 2—in the latter case, one
does not take into account the signs of the real roots of the polynomial and its
derivatives.

(3) When we deal with couples (SP, SAP), we can use the Z2-action defined by
(1). Therefore, it suffices to consider the cases of SPs beginning with þ;þð Þ. The
generator (2.2) of the Z2 � Z2-action cannot be used, because when the derivatives
of a polynomial are involved, the polynomial loses its last coefficients. Due to this
circumstance, the two ends of the SP cannot be treated equally.

The following proposition is proven in [5]:
Proposition 6. For any given SP of length dþ 1 and d ≥ 1, there exists a unique

SAP such that pos0 þ neg0 ¼ d. This SAP is realizable. For the given SP, this pair
pos0; neg0
� �

is its Descartes’ pair.
Example 7. For even d, consider the SP with all pluses. Any hyperbolic polyno-

mial with all negative and distinct roots realizes this SP with SAP

0; dð Þ; 0; d� 1ð Þ;…; 0; 1ð Þð Þ:
One can choose such a polynomial P with all d� 1 distinct critical values. Hence,

in the family of polynomials Pþ t and t.0, one encounters polynomials realizing
this SP with any of the SAPs

0; d� 2ℓð Þ; 0; d� 1ð Þ; 0; d� 2ð Þ;…; 0; 1ð Þð Þ, ℓ ¼ 0, 1, … d=2:

In the same way, for odd d, the SP þ;þ;…;þ;�ð Þ is realizable with the SAP
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4.2 Sequences of admissible pairs

Now, we are going to formulate a problem which is a refinement of both
Problems 1 and 2.

Recall that for a real polynomial P of degree d, the signs of its coefficients aj
define the sign patterns σ0, σ1,…, σd�1 corresponding to P and to all its deriva-
tives of order ≤ d� 1 since the SP σj is obtained from σj�1 by deleting the last
component. We denote by ck; pk

� �
and posk; negk

� �
the Descartes’ and admissible

pairs for the SPs σk, k ¼ 0,…, d� 1. The following restrictions follow from
Rolle’s theorem:

poskþ1 ≥ posk � 1 , negkþ1 ≥ negk � 1

and poskþ1 þ negkþ1 ≥ posk þ negk � 1:
(5)

It is always true that

poskþ1 þ negkþ1 þ 3� posk � negk ∈ 2N: (6)

Definition 2. Given a sign pattern σ0 of length dþ 1, suppose that for
k ¼ 0,…, d� 1, the pair posk; negk

� �
satisfies the conditions

posk ≤ ck, ck � posk ∈ 2Z,

negk ≤ pk, pk � negk ∈ 2Z,

and sgn ak ¼ �1ð Þposk :
(7)

as well as the inequalities (5)–(6). Then, we say that

pos0; neg0
� �
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(8)

is a sequence of admissible pairs (SAPs). In other words, it is a sequence of pairs
admissible for the sign pattern σ0 in the sense of these conditions. We say that a
given couple (SP, SAP) is realizable if there exists a polynomial P whose coefficients
have signs given by the SP σ0, and such that for k ¼ 0,…, d� 1, the polynomial P kð Þ

has exactly posk positive and negk negative roots, all of them being simple. Complex
roots are also supposed to be distinct.

Remark 4. If one only knows the SAP 8ð Þ, the SP σ0 can be restituted by the
formula

σ0 ¼ þ; �1ð Þposd�1 ; �1ð Þposd�2 ;…; �1ð Þpos0ð Þ:
Nevertheless, in order to make comparisons with Problem 1 more easily, we

consider couples (SP, SAP) instead of just SAPs. But for a given SP, there are, in
general, several possible SAPs which is illustrated by the following example.

Example 5. Consider the SP of length dþ 1 with all pluses. For d ¼ 2 and 3, there
are, respectively, two and three possible SAPs:

0; 2ð Þ; 0; 1ð Þð Þ , 0;0ð Þ; 0; 1ð Þð Þ , for d ¼ 2

and
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For d ¼ 4; 5; 6; 7; 8; 9; 10, the numbers A dð Þ of SAPs compatible with the SP of
length dþ 1 having all pluses are
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respectively. One can show that A dð Þ ≥ 2A d� 1ð Þ, if d ≥ 2 is even, and
A dð Þ ≥ 3A d� 1ð Þ=2, if d ≥ 3 is odd (see [5]).

Example 6. There are two couples (SP, SAP) corresponding to the couple (SP,
AP) C≔ þ;þ;�;þ;þð Þð , 0; 2ð ÞÞ; we also say that the couple C can be extended into
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Indeed, by Rolle’s theorem, the derivative of a polynomial realizing the couple C
has at least one negative root. By conditions (7), this derivative (whose degree
equals 3) has an even number of positive roots. This yields just two possibilities for
pos1; neg1
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, namely, 2; 1ð Þ and 0; 1ð Þ. The second derivative is a quadratic polyno-
mial with positive leading coefficient and negative constant term. Hence, it has a
positive and a negative root. The realizability of the above two couples (SP, SAP) is
proven in [5].

Our final realization problem is as follows:
Problem 3. For a given degree d, which couples (SP, SAP) are realizable?
Remarks 1. (1) This problem is a refinement of Problem 1, because one con-

siders the APs of the derivatives of all orders and not just the one of the polynomial
itself (see Remark 4). Therefore, if a given couple (SP, AP) is non-realizable, then
all couples (SP, SAP) corresponding to it in the sense of Example 6 are automati-
cally non-realizable.

(2) Obviously, Problem 3 is a refinement of Problem 2—in the latter case, one
does not take into account the signs of the real roots of the polynomial and its
derivatives.

(3) When we deal with couples (SP, SAP), we can use the Z2-action defined by
(1). Therefore, it suffices to consider the cases of SPs beginning with þ;þð Þ. The
generator (2.2) of the Z2 � Z2-action cannot be used, because when the derivatives
of a polynomial are involved, the polynomial loses its last coefficients. Due to this
circumstance, the two ends of the SP cannot be treated equally.

The following proposition is proven in [5]:
Proposition 6. For any given SP of length dþ 1 and d ≥ 1, there exists a unique

SAP such that pos0 þ neg0 ¼ d. This SAP is realizable. For the given SP, this pair
pos0; neg0
� �

is its Descartes’ pair.
Example 7. For even d, consider the SP with all pluses. Any hyperbolic polyno-

mial with all negative and distinct roots realizes this SP with SAP

0; dð Þ; 0; d� 1ð Þ;…; 0; 1ð Þð Þ:
One can choose such a polynomial P with all d� 1 distinct critical values. Hence,

in the family of polynomials Pþ t and t.0, one encounters polynomials realizing
this SP with any of the SAPs

0; d� 2ℓð Þ; 0; d� 1ð Þ; 0; d� 2ð Þ;…; 0; 1ð Þð Þ, ℓ ¼ 0, 1, … d=2:

In the same way, for odd d, the SP þ;þ;…;þ;�ð Þ is realizable with the SAP
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1; d� 1ð Þ; 0; d� 1ð Þ; 0; d� 2ð Þ; …; 0; 1ð Þð Þ
by some hyperbolic polynomial Rwith all distinct roots and critical values. In the

family of polynomials R� s and s.0, one encounters polynomials realizing this SP
with any of the SAPs

1; d� 1� 2ℓð Þ; 0; d� 1ð Þ; 0; d� 2ð Þ; …; 0; 1ð Þð Þ, ℓ ¼ 0, 1, … d� 1ð Þ=2:
For d ≤ 5, the following exhaustive answer to Problem 3 is given in [5]:

A. For d ¼ 1, 2, and 3, all couples (SP, SAP) are realizable.

B. For d ¼ 4, the couple (SP, SAP)

þ;þ;�;þ;þð Þ; 2;0ð Þ; 2; 1ð Þ; 1; 1ð Þ; 0; 1ð Þð Þ,
and only it (up to the Z2-action), is non-realizable. Its non-realizability follows

from one of the couples (SP, AP) C† ≔ þ;þ;�;þ;þð Þ; 2;0ð Þð Þ (see Theorem 1).
One can observe that the couple C† can be uniquely extended into a couple (SP,

SAP). Indeed, the first derivative has a positive constant term hence an even
number of positive roots. This number is positive by Rolle’s theorem. Hence, the AP
of the first derivative is 2; 1ð Þ. In the same way, one obtains the APs 1; 1ð Þ and 0; 1ð Þ
for the second and third derivatives, respectively.

C. For d ¼ 5, the following couples (SP, SAP), and only they, are non-realizable:

ð þ;þ;�;þ;þ;þð Þ , 2; 1ð Þ , 2;0ð Þ , 2; 1ð Þ , 1; 1ð Þ , 0; 1ð Þ Þ,
ð þ;þ;�;þ;þ;þð Þ , 0; 1ð Þ , 2;0ð Þ , 2; 1ð Þ , 1; 1ð Þ , 0; 1ð Þ Þ,
ð þ;þ;�;þ;þ;�ð Þ , 3;0ð Þ , 2;0ð Þ , 2; 1ð Þ , 1; 1ð Þ , 0; 1ð Þ Þ,
ð þ;þ;�;þ;þ;�ð Þ , 1;0ð Þ , 2;0ð Þ , 2; 1ð Þ , 1; 1ð Þ , 0; 1ð Þ Þ,
ð þ;þ;�;þ;�;�ð Þ , 3;0ð Þ , 3; 1ð Þ , 2; 1ð Þ , 1; 1ð Þ , 0; 1ð Þ Þ:

The non-realizability of the first four of them follows from that of the couple C†.
The last one is implied by part (1) of Theorem 2; it is true that the couple (SP, AP)
þ;þ;�;þ;�;�ð Þ; 3;0ð Þð Þ extends in a unique way into a couple (SP, SAP), and this

is the fifth of the five such couples cited above.
One of the methods used in the study of couples (SP, AP) or (SP, SAP) is the

explicit construction of polynomials with multiple roots which define a given SP.
Such constructions are not difficult to carry out because one has to use families of
polynomials with fewer parameters. Once a polynomial with multiple roots is
constructed, one has to justify the possibility to deform it continuously into a nearby
polynomial with all distinct roots. Multiple roots can give rise to complex conjugate
pairs of roots. An example of such a construction is the following lemma from [5].

Lemma 2. Consider the polynomials S≔ xþ 1ð Þ3 x� að Þ2 and T≔ xþ að Þ2 x� 1ð Þ3
and a.0. Their coefficients of x4 are positive if and only if, respectively, a, 3=2 and
a. 3=2. The coefficients of the polynomial S define the SP

þ;þ;þ;þ;�;þð Þ for a∈ 0; 3� ffiffiffi
6
p� �

=3
� �

,

þ;þ;þ;�;�;þð Þ for a∈ 3� ffiffiffi
6
p� �

=3; 3� ffiffiffi
6
p� �

,

þ;þ;�;�;�;þð Þ for a∈ 3� ffiffiffi
6
p

; 2=3
� �

and

þ;þ;�;�;þ;þð Þ for a∈ 2=3; 3=2ð Þ :
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þ;þ;�;þ;þ;�ð Þ for a∈ 3=2; 3þ ffiffiffi
6
p� �

=3
� �

,

þ;þ;�;�;þ;�ð Þ for a∈ 3þ ffiffiffi
6
p� �

=3; 3þ ffiffiffi
6
p� �

and

þ;þ;þ;�;þ;�ð Þ for a. 3þ ffiffiffi
6
p

:

5. Outlook

1. Our first open question deals with the limit of the ratio between the quantities
R dð Þ of all realizable and A dð Þ of all possible cases of couples (SP, AP) as
d! ∞. In principle, one does not have to take into account the Z2 � Z2-action
in order not to face the problem of the two different possible lengths of orbits
(2 and 4).

A priori, for d ≥ 4, one has R dð Þ=A dð Þ∈ 0; 1ð Þ. It would be interesting to
find out whether this ratio has a limit as d! ∞ and, if “yes,” whether this
limit is 0 and 1 or belongs to 0; 1ð Þ. In the latter case, it would be interesting
to find the exact value.

A less ambitious open problem is to find an interval α; β½ �⊂ 0; 1ð Þ to which
this ratio belongs for any d∈N, d ≥ 4, or at least for d sufficiently large.

2. A related problem would be to find sufficient conditions for realizability based
on the ratios between the quantities pos, neg, and d. On the one hand, when the
ratios pos=d and neg=d are both large enough, one has realizability (see
Proposition 4). On the other hand, in all examples of non-realizability known
up to now, one of the quantities pos and neg is either 0 or is very small
compared to the other one. Thus, it would be interesting to understand the
role of these ratios for the (non)-realizability of the couples (SP, AP).

3.Our third open question is about the realizability of couples (SP, SAP). For
d ≤ 5, the non-realizability of all non-realizable couples (SP, SAP) results from
the non-realizability of the corresponding couples (SP, AP). In principle, one
could imagine a situation in which there exists a couple (SP, AP) extending
into several couples (SP, SAP) some of which are realizable and the remaining
are not. Whether, for d ≥ 6, such couples (SP, AP) exist or not is unknown at
present.

4.Our final natural and important question deals with the topology of
intersections of the set of real univariant polynomials with a given number of
real roots with orthants in the coefficient space (which means fixing the signs
of the coefficients). It is well known that the set of monic univariate
polynomials of a given degree and with a given number of real roots is
contractible. When we cut this set with the union of coordinate hyperplanes
(coordinates being the coefficients of polynomials), then it splits into a number
of connected components. In each such connected component, the number of
positive and negative roots is fixed. But, in principle, it can happen that
different connected components correspond to the same pair (pos, neg). Could
this really happen? Are all such connected components contractible, or they
can have some nontrivial topology?
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Chapter 3

Obtaining Explicit Formulas and
Identities for Polynomials Defined
by Generating Functions of the
Form F tð Þx � G tð Þα
Dmitry Kruchinin, Vladimir Kruchinin and Yuriy Shablya

Abstract

In this chapter, we study properties of polynomials defined by generating func-
tions of the form A t; x; αð Þ= F tð Þx �G tð Þα. Based on the Lagrange inversion
theorem and the theorem of logarithmic derivative for generating functions, we
obtain new properties related to the compositional inverse generating functions of
those polynomials. Also we study the composition of generating functions R tA tð Þð Þ,
where A tð Þ is the generating function of the form F tð Þx �G tð Þα. We apply those
results for obtaining explicit formulas and identities for such polynomials as the
generalized Bernoulli, generalized Euler, Frobenius-Euler, generalized Sylvester,
generalized Laguerre, Abel, Bessel, Stirling, Narumi, Peters, Gegenbauer, and
Meixner polynomials.

Keywords: polynomial, identity, generating function, composita, composition,
compositional inverse

1. Introduction

Generating functions are a powerful tool for solving problems in number theory,
combinatorics, algebra, probability theory, and other fields of mathematics. One of
the advantages of generating functions is that an infinite number sequence can be
represented in a form of a single expression. Many authors have studied generating
functions and their properties and found applications for them (for instance,
Comtet [1], Flajolet and Sedgewick [2], Graham et al. [3], Robert [4], Stanley [5],
and Wilf [6]).

Generating functions have an important role in the study of polynomials. Vast
investigations related to the generating functions for many polynomials can be
found in many books and articles (e.g., see [7–17]).

A special place in this area is occupied by research in the field of obtaining new
identities for polynomials and special numbers with using their generating func-
tions. Interesting results in the field of obtaining new identities for polynomials can
be found in some recent works by Simsek [18–20], Kim et al. [21, 22], and Ryoo
[23–25].

Another trend in study of polynomials is getting new representation and explicit
formulas for those polynomials. For instance, Qi has recently established explicit
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functions and their properties and found applications for them (for instance,
Comtet [1], Flajolet and Sedgewick [2], Graham et al. [3], Robert [4], Stanley [5],
and Wilf [6]).

Generating functions have an important role in the study of polynomials. Vast
investigations related to the generating functions for many polynomials can be
found in many books and articles (e.g., see [7–17]).

A special place in this area is occupied by research in the field of obtaining new
identities for polynomials and special numbers with using their generating func-
tions. Interesting results in the field of obtaining new identities for polynomials can
be found in some recent works by Simsek [18–20], Kim et al. [21, 22], and Ryoo
[23–25].

Another trend in study of polynomials is getting new representation and explicit
formulas for those polynomials. For instance, Qi has recently established explicit
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formulas for the generalized Motzkin numbers in [26] and the central Delannoy
numbers in [27]. One can find interesting results in papers of Srivastava [28, 29],
Cenkci [30], and Boyadzhiev [31].

In this chapter, we obtain some interesting properties of polynomials defined by
generating functions of the form F tð Þx �G tð Þα. As an application, we give some new
identities for the Bernoulli, Euler, Frobenius-Euler, Sylvester, Laguerre, Abel,
Bessel, Stirling, Narumi, Peters, Gegenbauer, and Meixner polynomials.

According to Stanley [32], ordinary generating functions are defined as follows:

Definition 1. An ordinary generating function of the sequence anð Þn≥0 is the formal
power series

A xð Þ= a0 þ a1xþ a2x2 þ…= ∑
n≥0

anxn: (1)

Kruchinin et al. [33–35] introduced the mathematical notion of the composita of a
given generating function, which can be used for calculating the coefficients of a
composition of generating functions.

Definition 2. The composita of the generating function F xð Þ= ∑n >0 f nx
n is the

function with two variables

FΔ n; kð Þ= ∑
πk∈Cn

f λ1 f λ2⋯ f λk , (2)

where Cn is the set of all compositions of an integer n and πk is the composition n
into k parts such that ∑k

i= 1λi = n.
Using the expression of the composita of a given generating function FΔ n; kð Þ,

we can get powers of the generating function F xð Þ:

F xð Þð Þk = ∑
n≥ k

FΔ n; kð Þxn: (3)

Compositae also can be used for calculating the coefficients of generating func-
tions obtained by addition, multiplication, composition, reciprocation, and compo-
sitional inversion of generating functions (for details see [33–35]).

By the reciprocal generating function we mean the following [6]:

Definition 1. A reciprocal generating function A xð Þ of a generating function
B xð Þ= ∑n≥0bnx

n is a power series such that satisfies the following condition:

A xð ÞB xð Þ= 1: (4)

By the compositional inverse generating function we mean the following:

Definition 2. A compositional inverse F xð Þ of generating function
F xð Þ= ∑n >0 f nx

n with f 1ð Þ 6¼ 0 is a power series such that satisfies the following
condition:

F F xð Þ
� �

= x: (5)

Also the compositional inverse can be written as F �1½ � xð Þ or F xð Þ = RevF.
For example, we will use the following formulas:
If we consider the composition A xð Þ= R F xð Þð Þ= ∑n≥0 anx

n of generating func-
tions R xð Þ= ∑n≥0 rnx

n and F xð Þ= ∑n >0 f nx
n, then we can get the values of the

coefficients an by using the following formula ([35], Eq. (17)):
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an =
r0, forn= 0;

∑
n

k= 1
FΔ n; kð Þrk, otherwise:

8<
: (6)

If we consider the composition A xð Þ= R F xð Þð Þ= ∑n >0 anx
n of generating func-

tions R xð Þ= ∑n >0 rnx
n and F xð Þ= ∑n >0 f nx

n, then we can get the values of the
composita AΔ n; kð Þ by using the following formula ([35]):

AΔ n; kð Þ= ∑
n

m= k
FΔ n;mð ÞRΔ m; kð Þ: (7)

2. Main results

Let us consider a special case of generating functions that can be presented as the
product of the powers of generating functions F tð Þx � G tð Þα. For such generating
functions, we obtain several properties, which are given in the following theorem:

Theorem 1. If A tð Þ is a generating function of the following form:

A tð Þ= F tð Þx � G tð Þα = ∑
n≥0

An x; αð Þtn, (8)

then:

1. For the composition of generating functions D tð Þ= C B tð Þð Þ= ∑n≥0 Bntn, where
B tð Þ= tA tð Þ and C tð Þ= ∑n≥0 Cntn, we have

Dn = Dn x; αð Þ= ∑
n

k= 1
An�k kx; kαð ÞCk, D0 = C0; (9)

2.For the compositional inverse generating function B tð Þ of B tð Þ= tA tð Þ, we have

B tð Þ= ∑
n >0

1
n
An�1 �nx;�nαð Þtn; (10)

3.We have the following identities

∑
n

m= k
An�m mx;mαð Þ k

m
Am�k �mx;�mαð Þ= δn,k (11)

and

∑
n

m= k

m
n
An�m �nx;�nαð ÞAm�k kx; kαð Þ= δn,k, (12)

where δn,k is the Kronecker delta.
Proof. First we get the k-th power of the generating function B tð Þ= tA tð Þ

B tð Þð Þk = tA tð Þð Þk = tk F tð Þð Þxk G tð Þð Þαk =
= tk ∑

n≥0
An kx; kαð Þtn = ∑

n≥ k
An�k kx; kαð Þtn:

Hence, the composita of B tð Þ= tA tð Þ is
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According to Stanley [32], ordinary generating functions are defined as follows:

Definition 1. An ordinary generating function of the sequence anð Þn≥0 is the formal
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A xð Þ= a0 þ a1xþ a2x2 þ…= ∑
n≥0

anxn: (1)

Kruchinin et al. [33–35] introduced the mathematical notion of the composita of a
given generating function, which can be used for calculating the coefficients of a
composition of generating functions.

Definition 2. The composita of the generating function F xð Þ= ∑n >0 f nx
n is the

function with two variables

FΔ n; kð Þ= ∑
πk∈Cn

f λ1 f λ2⋯ f λk , (2)

where Cn is the set of all compositions of an integer n and πk is the composition n
into k parts such that ∑k

i= 1λi = n.
Using the expression of the composita of a given generating function FΔ n; kð Þ,

we can get powers of the generating function F xð Þ:

F xð Þð Þk = ∑
n≥ k

FΔ n; kð Þxn: (3)

Compositae also can be used for calculating the coefficients of generating func-
tions obtained by addition, multiplication, composition, reciprocation, and compo-
sitional inversion of generating functions (for details see [33–35]).

By the reciprocal generating function we mean the following [6]:

Definition 1. A reciprocal generating function A xð Þ of a generating function
B xð Þ= ∑n≥0bnx

n is a power series such that satisfies the following condition:

A xð ÞB xð Þ= 1: (4)

By the compositional inverse generating function we mean the following:

Definition 2. A compositional inverse F xð Þ of generating function
F xð Þ= ∑n >0 f nx

n with f 1ð Þ 6¼ 0 is a power series such that satisfies the following
condition:

F F xð Þ
� �

= x: (5)

Also the compositional inverse can be written as F �1½ � xð Þ or F xð Þ = RevF.
For example, we will use the following formulas:
If we consider the composition A xð Þ= R F xð Þð Þ= ∑n≥0 anx

n of generating func-
tions R xð Þ= ∑n≥0 rnx

n and F xð Þ= ∑n >0 f nx
n, then we can get the values of the

coefficients an by using the following formula ([35], Eq. (17)):
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an =
r0, forn= 0;

∑
n

k= 1
FΔ n; kð Þrk, otherwise:

8<
: (6)

If we consider the composition A xð Þ= R F xð Þð Þ= ∑n >0 anx
n of generating func-

tions R xð Þ= ∑n >0 rnx
n and F xð Þ= ∑n >0 f nx

n, then we can get the values of the
composita AΔ n; kð Þ by using the following formula ([35]):

AΔ n; kð Þ= ∑
n

m= k
FΔ n;mð ÞRΔ m; kð Þ: (7)

2. Main results

Let us consider a special case of generating functions that can be presented as the
product of the powers of generating functions F tð Þx � G tð Þα. For such generating
functions, we obtain several properties, which are given in the following theorem:

Theorem 1. If A tð Þ is a generating function of the following form:

A tð Þ= F tð Þx � G tð Þα = ∑
n≥0

An x; αð Þtn, (8)

then:

1. For the composition of generating functions D tð Þ= C B tð Þð Þ= ∑n≥0 Bntn, where
B tð Þ= tA tð Þ and C tð Þ= ∑n≥0 Cntn, we have

Dn = Dn x; αð Þ= ∑
n

k= 1
An�k kx; kαð ÞCk, D0 = C0; (9)

2.For the compositional inverse generating function B tð Þ of B tð Þ= tA tð Þ, we have

B tð Þ= ∑
n >0

1
n
An�1 �nx;�nαð Þtn; (10)

3.We have the following identities

∑
n

m= k
An�m mx;mαð Þ k

m
Am�k �mx;�mαð Þ= δn,k (11)

and

∑
n

m= k

m
n
An�m �nx;�nαð ÞAm�k kx; kαð Þ= δn,k, (12)

where δn,k is the Kronecker delta.
Proof. First we get the k-th power of the generating function B tð Þ= tA tð Þ

B tð Þð Þk = tA tð Þð Þk = tk F tð Þð Þxk G tð Þð Þαk =
= tk ∑

n≥0
An kx; kαð Þtn = ∑

n≥ k
An�k kx; kαð Þtn:

Hence, the composita of B tð Þ= tA tð Þ is
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BΔ n; kð Þ= An�k kx; kαð Þ: (13)

Using Eqs. (6) and (13), we get Eq. (9).
According to [36], the composita of the compositional inverse generating func-

tion A tð Þ of A tð Þ= ∑n >0 ant
n is

A
Δ
n; kð Þ= k

n
RΔ 2n� k; nð Þ, (14)

where RΔ n; kð Þ is the composita of the generating function R tð Þ= t2
A tð Þ.

For getting the composita of the compositional inverse generating function B tð Þ
of B tð Þ= tA tð Þ, we need to know the composita of the generating function

R tð Þ= t2

B tð Þ =
t2

tA tð Þ =
t

A tð Þ : (15)

Then we get the k-th power of the generating function R tð Þ= t
A tð Þ

R tð Þð Þk = t
A tð Þ
� �k

= tk F tð Þð Þ�xk G tð Þð Þ�αk =

= tk ∑
n≥0

An �kx;�kαð Þtn = ∑
n≥ k

An� k �kx;�kαð Þtn:
(16)

Hence, the composita of Eq. (15) is

RΔ n; kð Þ= An� k �kx;�kαð Þ: (17)

Using Eqs. (14) and (17), we get

BΔ n; kð Þ= k
n
RΔ 2n� k; nð Þ= k

n
A2n� k� n �nx;�nαð Þ= k

n
An� k �nx;�nαð Þ: (18)

For k= 1, we get Eq. (10).
Applying Eq. (7) for the composition C tð Þ= B B tð Þ� �

= t, we get

CΔ n; kð Þ= ∑
n

m= k
B
Δ
n;mð ÞBΔ m; kð Þ=

= ∑
n

m= k

m
n
An�m �nx;�nαð ÞAm�k kx; kαð Þ= δn,k:

(19)

Applying Eq. (7) for the composition D tð Þ= B B tð Þð Þ= x, we get

DΔ n; kð Þ= ∑
n

m= k
BΔ n;mð ÞBΔ m; kð Þ=

= ∑
n

m= k
An�m mx;mαð Þ k

m
Am�k �mx;�mαð Þ= δn,k:

(20)

□
As an application of Theorem 1, we present several examples of its usage for

such polynomials as the Bernoulli, Euler, Frobenius-Euler, Sylvester, Laguerre,
Abel, Bessel, Stirling, Narumi, Peters, Gegenbauer, and Meixner.
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2.1 Generalized Bernoulli polynomials

The generalized Bernoulli polynomials are defined by the following generating
function [37, 38]:

B t; x; αð Þ= ext
t

et � 1

� �α
= etð Þx t

et � 1

� �α
= ∑

n≥0
B αð Þ
n xð Þ t

n

n!
, (21)

where

B αð Þ
n xð Þ= ∑

n

i= 0

n!
nþ ið Þ!

nþ α

n� i

� �
iþ α� 1

i

� �
∑
i

j= 0
�1ð Þj i

j

� �
xþ jð Þnþ i: (22)

According to Eq. (13), the composita for the generating function
D tð Þ= tB t; x; αð Þ is

DΔ n; kð Þ= B kαð Þ
n�k kxð Þ
n� kð Þ! : (23)

The triangular form of this composita is

1
2x� α

2
1

12x2 � 12αxþ 3α2 � α

24
2x� α 1

8x3 � 12αx2 þ 6α2 � 2αð Þx� α3 þ α2

48
24x2 � 24αxþ 6a2 � α

12
6x� 3α

2
1

Using Eq. (17), the composita for the compositional inverse generating function
D tð Þ of D tð Þ= tB t; x; αð Þ is

D
Δ
n; kð Þ= k

n
B �nαð Þ
n�k �nxð Þ
n� kð Þ! : (24)

The triangular form of this composita is

1
�2xþ α

2
1

36x2 � 36αxþ 9a2 þ α

24
�2xþ α 1

�32 x3 þ 48αx2 � 24α2 þ 2αð Þxþ 4α3 þ α2

12
48x2 � 48αxþ 12α2 þ α

12
�6xþ 3α

2
1

Also we can get the following new identities for the generalized Bernoulli
polynomials:

∑
n

m= k

m
n
B �nαð Þ
n�m �nxð Þ
n�mð Þ!

B kαð Þ
m�k kxð Þ
m� kð Þ! = δn,k (25)

and
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BΔ n; kð Þ= An�k kx; kαð Þ: (13)

Using Eqs. (6) and (13), we get Eq. (9).
According to [36], the composita of the compositional inverse generating func-

tion A tð Þ of A tð Þ= ∑n >0 ant
n is

A
Δ
n; kð Þ= k

n
RΔ 2n� k; nð Þ, (14)

where RΔ n; kð Þ is the composita of the generating function R tð Þ= t2
A tð Þ.

For getting the composita of the compositional inverse generating function B tð Þ
of B tð Þ= tA tð Þ, we need to know the composita of the generating function

R tð Þ= t2

B tð Þ =
t2

tA tð Þ =
t

A tð Þ : (15)

Then we get the k-th power of the generating function R tð Þ= t
A tð Þ

R tð Þð Þk = t
A tð Þ
� �k

= tk F tð Þð Þ�xk G tð Þð Þ�αk =

= tk ∑
n≥0

An �kx;�kαð Þtn = ∑
n≥ k

An� k �kx;�kαð Þtn:
(16)

Hence, the composita of Eq. (15) is

RΔ n; kð Þ= An� k �kx;�kαð Þ: (17)

Using Eqs. (14) and (17), we get

BΔ n; kð Þ= k
n
RΔ 2n� k; nð Þ= k

n
A2n� k� n �nx;�nαð Þ= k

n
An� k �nx;�nαð Þ: (18)

For k= 1, we get Eq. (10).
Applying Eq. (7) for the composition C tð Þ= B B tð Þ� �

= t, we get

CΔ n; kð Þ= ∑
n

m= k
B
Δ
n;mð ÞBΔ m; kð Þ=

= ∑
n

m= k

m
n
An�m �nx;�nαð ÞAm�k kx; kαð Þ= δn,k:

(19)

Applying Eq. (7) for the composition D tð Þ= B B tð Þð Þ= x, we get

DΔ n; kð Þ= ∑
n

m= k
BΔ n;mð ÞBΔ m; kð Þ=

= ∑
n

m= k
An�m mx;mαð Þ k

m
Am�k �mx;�mαð Þ= δn,k:

(20)

□
As an application of Theorem 1, we present several examples of its usage for

such polynomials as the Bernoulli, Euler, Frobenius-Euler, Sylvester, Laguerre,
Abel, Bessel, Stirling, Narumi, Peters, Gegenbauer, and Meixner.
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2.1 Generalized Bernoulli polynomials

The generalized Bernoulli polynomials are defined by the following generating
function [37, 38]:

B t; x; αð Þ= ext
t

et � 1

� �α
= etð Þx t

et � 1

� �α
= ∑

n≥0
B αð Þ
n xð Þ t

n

n!
, (21)

where

B αð Þ
n xð Þ= ∑

n

i= 0

n!
nþ ið Þ!

nþ α

n� i

� �
iþ α� 1

i

� �
∑
i

j= 0
�1ð Þj i

j

� �
xþ jð Þnþ i: (22)

According to Eq. (13), the composita for the generating function
D tð Þ= tB t; x; αð Þ is

DΔ n; kð Þ= B kαð Þ
n�k kxð Þ
n� kð Þ! : (23)

The triangular form of this composita is

1
2x� α

2
1

12x2 � 12αxþ 3α2 � α

24
2x� α 1

8x3 � 12αx2 þ 6α2 � 2αð Þx� α3 þ α2

48
24x2 � 24αxþ 6a2 � α

12
6x� 3α

2
1

Using Eq. (17), the composita for the compositional inverse generating function
D tð Þ of D tð Þ= tB t; x; αð Þ is

D
Δ
n; kð Þ= k

n
B �nαð Þ
n�k �nxð Þ
n� kð Þ! : (24)

The triangular form of this composita is

1
�2xþ α

2
1

36x2 � 36αxþ 9a2 þ α

24
�2xþ α 1

�32 x3 þ 48αx2 � 24α2 þ 2αð Þxþ 4α3 þ α2

12
48x2 � 48αxþ 12α2 þ α

12
�6xþ 3α

2
1

Also we can get the following new identities for the generalized Bernoulli
polynomials:

∑
n

m= k

m
n
B �nαð Þ
n�m �nxð Þ
n�mð Þ!

B kαð Þ
m�k kxð Þ
m� kð Þ! = δn,k (25)

and
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∑
n

m= k

B mαð Þ
n�m mxð Þ
n�mð Þ!

k
m
B �mαð Þ
m�k �mxð Þ
m� kð Þ! = δn,k: (26)

2.2 Generalized Euler polynomials

The generalized Euler polynomials are defined by the following generating
function [37]:

E t; x; αð Þ= ext
2

et þ 1

� �α

= etð Þx 2
et þ 1

� �α

= ∑
n≥0

E αð Þ
n xð Þ t

n

n!
, (27)

where

E αð Þ
n xð Þ= ∑

n

i= 0

1
2i

iþ α� 1

i

� �
∑
i

j= 0
�1ð Þ j i

j

� �
xþ jð Þn: (28)

According to Eq. (13), the composita for the generating function
D tð Þ= tE t; x; αð Þ is

DΔ n; kð Þ= E kαð Þ
n�k kxð Þ
n� kð Þ! : (29)

The triangular form of this composita is

1
2x� α

2
1

4x2 � 4αxþ α2 � α

8
2x� α 1

8x3 � 12αx2 þ 6α2 � 6αð Þx� α3 þ 3α2

48
8x2 � 8αxþ 2a2 � α

4
6x� 3α

2
1

Using Eq. (17), the composita for the compositional inverse generating function
D tð Þ of D tð Þ= tE t; x; αð Þ is

D
Δ
n; kð Þ= k

n
E �nαð Þ
n�k �nxð Þ
n� kð Þ! : (30)

The triangular form of this composita is

1
�2xþ α

2
1

12x2 � 12αxþ 3a2 þ α

8
�2xþ α 1

�32x3 þ 48αx2 � 24α2 þ 6αð Þxþ 4α3 þ 3α2

12
16x2 � 16αxþ 4α2 þ α

4
�6xþ 3α

2
1

Also we can get the following new identities for the generalized Euler polynomials:

∑
n

m= k

m
n
E �nαð Þ
n�m �nxð Þ
n�mð Þ!

E kαð Þ
m�k kxð Þ
m� kð Þ! = δn,k (31)
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and

∑
n

m= k

E mαð Þ
n�m mxð Þ
n�mð Þ!

k
m
E �mαð Þ
m�k �mxð Þ
m� kð Þ! = δn,k: (32)

2.3 Frobenius-Euler polynomials

The Frobenius-Euler polynomials are defined by the following generating
function [39]:

H t; x; α; λð Þ= ext
1� λ

et � λ

� �α

= etð Þx 1� λ

et � λ

� �α

= ∑
n≥0

H αð Þ
n x; λð Þ t

n

n!
, (33)

where

H αð Þ
n x; λð Þ= ∑

n

i= 0

1

1� λð Þi
iþ α� 1

i

� �
∑
i

j= 0
�1ð Þ j i

j

� �
xþ jð Þn: (34)

According to Eq. (13), the composita for the generating function
D tð Þ= tH t; x; α; λð Þ is

DΔ n; kð Þ= H kαð Þ
n�k kx; λð Þ
n� kð Þ! : (35)

The triangular form of this composita is

1

λ� 1ð Þxþ α

λ� 1
1

λ2 � 2λþ 1
� �

x2 þ 2λ� 2ð Þαxþ α2 þ λα

2λ2 � 4λþ 2
2λ� 2ð Þxþ 2α

λ� 1
1

Using Eq. (17), the composita for the compositional inverse generating function
D tð Þ of D tð Þ= tH t; x; α; λð Þ is

D
Δ
n; kð Þ= k

n
H �nαð Þ

n�k �nx; λð Þ
n� kð Þ! : (36)

The triangular form of this composita is

1

� λ� 1ð Þxþ α

λ� 1
1

3λ2 � 6λþ 3
� �

x2 þ 6λ� 6ð Þαxþ 3α2 � λα

2λ2 � 4λþ 2
� 2λ� 2ð Þxþ 2α

λ� 1
1

Also we can get the following new identities for the Frobenius-Euler polynomials:

∑
n

m= k

m
n
H �nαð Þ

n�m �nx; λð Þ
n�mð Þ!

H kαð Þ
m�k kx; λð Þ
m� kð Þ! = δn,k (37)
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∑
n

m= k

B mαð Þ
n�m mxð Þ
n�mð Þ!

k
m
B �mαð Þ
m�k �mxð Þ
m� kð Þ! = δn,k: (26)

2.2 Generalized Euler polynomials

The generalized Euler polynomials are defined by the following generating
function [37]:

E t; x; αð Þ= ext
2

et þ 1

� �α

= etð Þx 2
et þ 1

� �α

= ∑
n≥0

E αð Þ
n xð Þ t

n

n!
, (27)

where

E αð Þ
n xð Þ= ∑

n

i= 0

1
2i

iþ α� 1

i

� �
∑
i

j= 0
�1ð Þ j i

j

� �
xþ jð Þn: (28)

According to Eq. (13), the composita for the generating function
D tð Þ= tE t; x; αð Þ is

DΔ n; kð Þ= E kαð Þ
n�k kxð Þ
n� kð Þ! : (29)

The triangular form of this composita is

1
2x� α

2
1

4x2 � 4αxþ α2 � α

8
2x� α 1

8x3 � 12αx2 þ 6α2 � 6αð Þx� α3 þ 3α2

48
8x2 � 8αxþ 2a2 � α

4
6x� 3α

2
1

Using Eq. (17), the composita for the compositional inverse generating function
D tð Þ of D tð Þ= tE t; x; αð Þ is

D
Δ
n; kð Þ= k

n
E �nαð Þ
n�k �nxð Þ
n� kð Þ! : (30)

The triangular form of this composita is

1
�2xþ α

2
1

12x2 � 12αxþ 3a2 þ α

8
�2xþ α 1

�32x3 þ 48αx2 � 24α2 þ 6αð Þxþ 4α3 þ 3α2

12
16x2 � 16αxþ 4α2 þ α

4
�6xþ 3α

2
1

Also we can get the following new identities for the generalized Euler polynomials:

∑
n

m= k

m
n
E �nαð Þ
n�m �nxð Þ
n�mð Þ!

E kαð Þ
m�k kxð Þ
m� kð Þ! = δn,k (31)
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and

∑
n

m= k

E mαð Þ
n�m mxð Þ
n�mð Þ!

k
m
E �mαð Þ
m�k �mxð Þ
m� kð Þ! = δn,k: (32)

2.3 Frobenius-Euler polynomials

The Frobenius-Euler polynomials are defined by the following generating
function [39]:

H t; x; α; λð Þ= ext
1� λ

et � λ

� �α

= etð Þx 1� λ

et � λ

� �α

= ∑
n≥0

H αð Þ
n x; λð Þ t

n

n!
, (33)

where

H αð Þ
n x; λð Þ= ∑

n

i= 0

1

1� λð Þi
iþ α� 1

i

� �
∑
i

j= 0
�1ð Þ j i

j

� �
xþ jð Þn: (34)

According to Eq. (13), the composita for the generating function
D tð Þ= tH t; x; α; λð Þ is

DΔ n; kð Þ= H kαð Þ
n�k kx; λð Þ
n� kð Þ! : (35)

The triangular form of this composita is

1

λ� 1ð Þxþ α

λ� 1
1

λ2 � 2λþ 1
� �

x2 þ 2λ� 2ð Þαxþ α2 þ λα

2λ2 � 4λþ 2
2λ� 2ð Þxþ 2α

λ� 1
1

Using Eq. (17), the composita for the compositional inverse generating function
D tð Þ of D tð Þ= tH t; x; α; λð Þ is

D
Δ
n; kð Þ= k

n
H �nαð Þ

n�k �nx; λð Þ
n� kð Þ! : (36)

The triangular form of this composita is

1

� λ� 1ð Þxþ α

λ� 1
1

3λ2 � 6λþ 3
� �

x2 þ 6λ� 6ð Þαxþ 3α2 � λα

2λ2 � 4λþ 2
� 2λ� 2ð Þxþ 2α

λ� 1
1

Also we can get the following new identities for the Frobenius-Euler polynomials:

∑
n

m= k

m
n
H �nαð Þ

n�m �nx; λð Þ
n�mð Þ!

H kαð Þ
m�k kx; λð Þ
m� kð Þ! = δn,k (37)
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and

∑
n

m= k

H mαð Þ
n�m mx; λð Þ
n�mð Þ!

k
m
H �mαð Þ

m�k �mx; λð Þ
m� kð Þ! = δn,k: (38)

2.4 Generalized Sylvester polynomials

The generalized Sylvester polynomials are defined by the following generating
function [40]:

F t; x; αð Þ= 1� tð Þ�xeαxt = eαt

1� t

� �x

= ∑
n≥0

Fn x; αð Þtn, (39)

where

Fn x; αð Þ= ∑
n

i= 0

αxð Þn�i
n� ið Þ!

iþ x� 1

i

� �
: (40)

According to Eq. (13), the composita for the generating function
D tð Þ= tF t; x; αð Þ is

DΔ n; kð Þ= Fn�k kx; αð Þ: (41)

The triangular form of this composita is

1

αþ 1ð Þx 1
α2 þ 2αþ 1ð Þx2 þ x

2
2αþ 2ð Þx 1

α3 þ 3α2 þ 3αþ 1ð Þx3 þ 3αþ 3ð Þx2 þ 2x
6

2α2 þ 4αþ 2ð Þx2 þ x 3αþ 3ð Þx 1

Using Eq. (17), the composita for the compositional inverse generating function
D tð Þ of D tð Þ= tF t; x; αð Þ is

D
Δ
n; kð Þ= k

n
Fn�k �nx; αð Þ: (42)

The triangular form of this composita is

1

� αþ 1ð Þx 1

3α2 þ 6αþ 3ð Þx2 � x
2

� 2αþ 2ð Þx 1

� 8α3 þ 24α2 þ 24αþ 8ð Þx3 � 6αþ 6ð Þx2 þ x
3

4α2 þ 8αþ 4ð Þx2 � x � 3αþ 3ð Þx 1

Also we can get the following new identities for the generalized Sylvester poly-
nomials:

∑
n

m= k

m
n
Fn�m �nx; αð ÞFm�k kx; αð Þ= δn,k (43)
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and

∑
n

m= k
Fn�m mx; αð Þ k

m
Fm�k �mx; αð Þ= δn,k: (44)

2.5 Generalized Laguerre polynomials

The generalized Laguerre polynomials are defined by the following generating
function [8]:

L t; x; αð Þ= 1� tð Þ�α�1e xt
t�1 = e

t
t�1

� �x 1
1� t

� �αþ1
= ∑

n≥0
L αð Þ
n xð Þtn, (45)

where

L αð Þ
n xð Þ= ∑

n

i= 0

�xð Þi
i!

nþ α

n� i

� �
: (46)

According to Eq. (13), the composita for the generating function
D tð Þ= tL t; x; αð Þ is

DΔ n; kð Þ= L kαþk�1ð Þ
n�k kxð Þ: (47)

The triangular form of this composita is

1

�xþ αþ 1 1
x2 � 2αþ 4ð Þxþ α2 þ 3αþ 2

2
�2xþ 2αþ 2 1

Using Eq. (17), the composita for the compositional inverse generating function
D tð Þ of D tð Þ= tL t; x; αð Þ is

D
Δ
n; kð Þ= k

n
L �nα�n�1ð Þ
n�k �nxð Þ: (48)

The triangular form of this composita is

1

x� α� 1 1
3x2 � 6αþ 4ð Þxþ 3α2 þ 5αþ 2

2
2x� 2α� 2 1

Also we can get the following new identities for the generalized Laguerre poly-
nomials:

∑
n

m= k

m
n
L �nα�n�1ð Þ
n�m �nxð ÞL kαþk�1ð Þ

m�k kxð Þ= δn,k (49)

and

∑
n

m= k
L mαþm�1ð Þ
n�m mxð Þ k

m
L �mα�m�1ð Þ
m�k �mxð Þ= δn,k: (50)
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and

∑
n

m= k

H mαð Þ
n�m mx; λð Þ
n�mð Þ!

k
m
H �mαð Þ

m�k �mx; λð Þ
m� kð Þ! = δn,k: (38)
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The generalized Sylvester polynomials are defined by the following generating
function [40]:

F t; x; αð Þ= 1� tð Þ�xeαxt = eαt

1� t

� �x

= ∑
n≥0

Fn x; αð Þtn, (39)

where

Fn x; αð Þ= ∑
n

i= 0

αxð Þn�i
n� ið Þ!

iþ x� 1

i

� �
: (40)

According to Eq. (13), the composita for the generating function
D tð Þ= tF t; x; αð Þ is

DΔ n; kð Þ= Fn�k kx; αð Þ: (41)

The triangular form of this composita is

1

αþ 1ð Þx 1
α2 þ 2αþ 1ð Þx2 þ x

2
2αþ 2ð Þx 1

α3 þ 3α2 þ 3αþ 1ð Þx3 þ 3αþ 3ð Þx2 þ 2x
6

2α2 þ 4αþ 2ð Þx2 þ x 3αþ 3ð Þx 1

Using Eq. (17), the composita for the compositional inverse generating function
D tð Þ of D tð Þ= tF t; x; αð Þ is

D
Δ
n; kð Þ= k

n
Fn�k �nx; αð Þ: (42)

The triangular form of this composita is

1

� αþ 1ð Þx 1

3α2 þ 6αþ 3ð Þx2 � x
2

� 2αþ 2ð Þx 1

� 8α3 þ 24α2 þ 24αþ 8ð Þx3 � 6αþ 6ð Þx2 þ x
3

4α2 þ 8αþ 4ð Þx2 � x � 3αþ 3ð Þx 1

Also we can get the following new identities for the generalized Sylvester poly-
nomials:

∑
n

m= k

m
n
Fn�m �nx; αð ÞFm�k kx; αð Þ= δn,k (43)
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and

∑
n

m= k
Fn�m mx; αð Þ k

m
Fm�k �mx; αð Þ= δn,k: (44)

2.5 Generalized Laguerre polynomials

The generalized Laguerre polynomials are defined by the following generating
function [8]:

L t; x; αð Þ= 1� tð Þ�α�1e xt
t�1 = e

t
t�1

� �x 1
1� t

� �αþ1
= ∑

n≥0
L αð Þ
n xð Þtn, (45)

where

L αð Þ
n xð Þ= ∑

n

i= 0

�xð Þi
i!

nþ α

n� i

� �
: (46)

According to Eq. (13), the composita for the generating function
D tð Þ= tL t; x; αð Þ is

DΔ n; kð Þ= L kαþk�1ð Þ
n�k kxð Þ: (47)

The triangular form of this composita is

1

�xþ αþ 1 1
x2 � 2αþ 4ð Þxþ α2 þ 3αþ 2

2
�2xþ 2αþ 2 1

Using Eq. (17), the composita for the compositional inverse generating function
D tð Þ of D tð Þ= tL t; x; αð Þ is

D
Δ
n; kð Þ= k

n
L �nα�n�1ð Þ
n�k �nxð Þ: (48)

The triangular form of this composita is

1

x� α� 1 1
3x2 � 6αþ 4ð Þxþ 3α2 þ 5αþ 2

2
2x� 2α� 2 1

Also we can get the following new identities for the generalized Laguerre poly-
nomials:

∑
n

m= k

m
n
L �nα�n�1ð Þ
n�m �nxð ÞL kαþk�1ð Þ

m�k kxð Þ= δn,k (49)

and

∑
n

m= k
L mαþm�1ð Þ
n�m mxð Þ k

m
L �mα�m�1ð Þ
m�k �mxð Þ= δn,k: (50)
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2.6 Abel polynomials

The Abel polynomials are defined by the following generating function [8, 41]:

A t; x; αð Þ= e
W αtð Þx

α = e
W αtð Þ

α

� �x
= ∑

n≥0
An x; αð Þ t

n

n!
, (51)

where W tð Þ is the Lambert W function and

An x; αð Þ= x x� αnð Þn�1: (52)

According to Eq. (13), the composita for the generating function
D tð Þ= tA t; x; αð Þ is

DΔ n; kð Þ= An�k kx; αð Þ
n� kð Þ! : (53)

The triangular form of this composita is

1

x 1

x2 � 2αx
2

2x 1

x3 � 6αx2 þ 9α2x
6

2x2 � 2αx 3x 1

x4 � 12αx3 þ 48α2x2 � 64α3x
24

4x3 � 12αx2 þ 9α2x
3

9x2 � 6αx
2

4x 1

Using Eq. (17), the composita for the compositional inverse generating function
D tð Þ of D tð Þ= tA t; x; αð Þ is

DΔ n; kð Þ= k
n
An�k �nx; αð Þ

n� kð Þ! : (54)

The triangular form of this composita is

1

�x 1

3x2 þ 2αx
2

�2x 1

� 16x3 þ 24αx2 þ 9α2x
6

4x2 þ 2αx �3x 1

125x4 þ 300αx3 þ 240α2x2 þ 64α3x
24

� 25x3 þ 30αx2 þ 9α2x
3

15x2 þ 6αx
2

�4x 1

Also we can get the following new identities for the Abel polynomials:

∑
n

m= k

m
n
An�m �nx; αð Þ

n�mð Þ!
Am�k kx; αð Þ

m� kð Þ! = δn,k (55)

and
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∑
n

m= k

An�m mx; αð Þ
n�mð Þ!

k
m
Am�k �mx; αð Þ

m� kð Þ! = δn,k: (56)

2.7 Bessel polynomials

The Bessel polynomials are defined by the following generating function [8]:

B t; xð Þ= ex 1� ffiffiffiffiffiffiffi1�2tpð Þ = e1�
ffiffiffiffiffiffiffi
1�2tp� �x

= ∑
n≥0

Bn xð Þ t
n

n!
, (57)

where

Bn xð Þ=
1, n= 0;

∑
n

k= 1

2n� k� 1ð Þ!
n� kð Þ! k� 1ð Þ!

xk

2n�k
, n >0:

8><
>:

(58)

According to Eq. (13), the composita for the generating function D tð Þ= tB t; xð Þ is

DΔ n; kð Þ= Bn�k kxð Þ
n� kð Þ! : (59)

The triangular form of this composita is

1

2 1

x2 þ x
2

2x 1

x3 þ 3x2 þ 3x
6

2x2 þ x 3x 1

x4 þ 6x3 þ 15x2 þ 15x
24

4x3 þ 6x2 þ 3x
3

9x2 þ 3x
2

4x 1

Using Eq. (17), the composita for the compositional inverse generating function
D tð Þ of D tð Þ= tB t; xð Þ is

DΔ n; kð Þ= k
n
Bn�k �nxð Þ

n� kð Þ! : (60)

The triangular form of this composita is

1

�x 1

3x2 � x
2

�2x 1

� 16x3 � 12x2 þ 3x
6

4x2 � x �3x 1

125x4 � 150x3 þ 75x2 � 15x
24

� 25x3 � 15x2 þ 3x
3

15x2 � 3x
2

�4x 1

Also we can get the following new identities for the Bessel polynomials:
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2.6 Abel polynomials

The Abel polynomials are defined by the following generating function [8, 41]:

A t; x; αð Þ= e
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α = e
W αtð Þ

α

� �x
= ∑

n≥0
An x; αð Þ t

n

n!
, (51)

where W tð Þ is the Lambert W function and

An x; αð Þ= x x� αnð Þn�1: (52)

According to Eq. (13), the composita for the generating function
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n� kð Þ! : (53)
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1

x 1

x2 � 2αx
2

2x 1

x3 � 6αx2 þ 9α2x
6
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24
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3

9x2 � 6αx
2

4x 1
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n
An�k �nx; αð Þ
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The triangular form of this composita is

1

�x 1

3x2 þ 2αx
2

�2x 1

� 16x3 þ 24αx2 þ 9α2x
6

4x2 þ 2αx �3x 1

125x4 þ 300αx3 þ 240α2x2 þ 64α3x
24

� 25x3 þ 30αx2 þ 9α2x
3

15x2 þ 6αx
2

�4x 1

Also we can get the following new identities for the Abel polynomials:

∑
n

m= k

m
n
An�m �nx; αð Þ

n�mð Þ!
Am�k kx; αð Þ

m� kð Þ! = δn,k (55)

and
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∑
n

m= k

An�m mx; αð Þ
n�mð Þ!

k
m
Am�k �mx; αð Þ

m� kð Þ! = δn,k: (56)

2.7 Bessel polynomials

The Bessel polynomials are defined by the following generating function [8]:

B t; xð Þ= ex 1� ffiffiffiffiffiffiffi1�2tpð Þ = e1�
ffiffiffiffiffiffiffi
1�2tp� �x

= ∑
n≥0

Bn xð Þ t
n

n!
, (57)

where

Bn xð Þ=
1, n= 0;

∑
n

k= 1

2n� k� 1ð Þ!
n� kð Þ! k� 1ð Þ!

xk

2n�k
, n >0:

8><
>:

(58)

According to Eq. (13), the composita for the generating function D tð Þ= tB t; xð Þ is
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n� kð Þ! : (59)

The triangular form of this composita is

1

2 1

x2 þ x
2

2x 1

x3 þ 3x2 þ 3x
6

2x2 þ x 3x 1

x4 þ 6x3 þ 15x2 þ 15x
24

4x3 þ 6x2 þ 3x
3

9x2 þ 3x
2

4x 1

Using Eq. (17), the composita for the compositional inverse generating function
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DΔ n; kð Þ= k
n
Bn�k �nxð Þ

n� kð Þ! : (60)
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1

�x 1

3x2 � x
2

�2x 1

� 16x3 � 12x2 þ 3x
6

4x2 � x �3x 1

125x4 � 150x3 þ 75x2 � 15x
24
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�4x 1
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∑
n

m= k

m
n
Bn�m �nxð Þ
n�mð Þ!

Bm�k kxð Þ
m� kð Þ! = δn,k (61)

and

∑
n

m= k

Bn�m mxð Þ
n�mð Þ!

k
m
Bm�k �mxð Þ

m� kð Þ! = δn,k: (62)

2.8 Stirling polynomials

The Stirling polynomials are defined by the following generating function [8, 42]:

S t; xð Þ= t
1� e�t
� �x

= ∑
n≥0

Sn xð Þ t
n

n!
, (63)

where

Sn xð Þ= ∑
n

i= 0

xþ i
i

� �
∑
i

j= 0

j!
nþ jð Þ! �1ð Þnþj i

j

� �
nþ j
j

� �
: (64)

According to Eq. (13), the composita for the generating function D tð Þ= tS t; xð Þ is

DΔ n; kð Þ= Sn�k kxþ k� 1ð Þ: (65)

The triangular form of this composita is

1
xþ 1
2

1

3x2 þ 5xþ 2
24

xþ 1 1

x3 þ 2x2 þ x
48

6x2 þ 11xþ 5
12

3xþ 3
2

1

15x4 þ 30x3 þ 5x2 � 18x� 8
5760

2x3 þ 5x2 þ 4xþ 1
12

9x2 þ 17xþ 8
8

2xþ 2 1

Using Eq. (17), the composita for the compositional inverse generating function
D tð Þ of D tð Þ= tS t; xð Þ is

DΔ n; kð Þ= k
n
Sn�k �nx� n� 1ð Þ: (66)

The triangular form of this composita is

1

� xþ 2
2

1

9x2 þ 19xþ 10
24

�x� 1 1

�4x3 þ 13x2 þ 14xþ 5
12

12x2 þ 25xþ 13
12

� 3xþ 3
2

1

1875x4 þ 8250x3 þ 13525x2 þ 9798xþ 2648
5760

� 25x3 þ 80x2 þ 85xþ 30
24

15x2 þ 31xþ 16
8

�2x� 2 1

Also we can get the following new identities for the Stirling polynomials:
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∑
n

m= k

m
n
Sn�m �nx� n� 1ð ÞSm�k kxþ k� 1ð Þ= δn,k (67)

and

∑
n

m= k
Sn�m mxþm� 1ð Þ k

m
Sm�k �mx�m� 1ð Þ= δn,k: (68)

2.9 Narumi polynomials

The Narumi polynomials are defined by the following generating function [8]:

S t; x; αð Þ= t
ln 1þ tð Þ
� �α

1þ tð Þx = 1þ tð Þx t
ln 1þ tð Þ
� �α

= ∑
n≥0

Sn x; αð Þ t
n

n!
, (69)

where

Sn x; αð Þ= n! ∑
n

i= 0

x
n� i

� �
∑
i

j= 0

jþ α� 1

j

� �
∑
j

l= 0
�1ð Þl j

l

� �
l!

lþ ið Þ!
lþ i
l

� �
: (70)

According to Eq. (13), the composita for the generating function
D tð Þ= tS t; x; αð Þ is

DΔ n; kð Þ= Sn�k kx; kαð Þ
n� kð Þ! : (71)

The triangular form of this composita is

1
2xþ α

2
1

12x2 þ 12α� 12ð Þxþ 3α2 � 5α
24

2xþ α 1

8x3 þ 12α� 24ð Þx2 þ 6α2 � 22αþ 16ð Þxþ α3 � 5α2 þ 6α
48

24x2 þ 24α� 12ð Þxþ 6α2 � 5α
12

6xþ 3α
2

1

Using Eq. (17), the composita for the compositional inverse generating function
D tð Þ of D tð Þ= tS t; x; αð Þ is

D
Δ
n; kð Þ= k

n
Sn�k �nx;�nαð Þ

n� kð Þ! : (72)

The triangular form of this composita is

1

� 2xþ α

2
1

36x2 þ 36αþ 12ð Þxþ 9α2 � 5α
24

�2x� α 1

� 64x3 96αþ 48ð Þx2 þ 48α2 þ 44αþ 8ð Þxþ 8α3 þ 10α2 þ 3α
24

48x2 þ 48αþ 12ð Þxþ 12α2 þ 5α
12

� 6xþ 3α
2

1

Also we can get the following new identities for the Narumi polynomials:

∑
n

m= k

m
n
Sn�m �nx;�nαð Þ

n�mð Þ!
Sm�k kx; kαð Þ

m� kð Þ! = δn,k (73)
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∑
n

m= k

m
n
Bn�m �nxð Þ
n�mð Þ!

Bm�k kxð Þ
m� kð Þ! = δn,k (61)

and

∑
n

m= k

Bn�m mxð Þ
n�mð Þ!

k
m
Bm�k �mxð Þ

m� kð Þ! = δn,k: (62)
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S t; xð Þ= t
1� e�t
� �x

= ∑
n≥0

Sn xð Þ t
n

n!
, (63)

where
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n

i= 0

xþ i
i

� �
∑
i
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j!
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j

� �
nþ j
j

� �
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l
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l
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24
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24
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m
n
Sn�m �nx;�nαð Þ

n�mð Þ!
Sm�k kx; kαð Þ

m� kð Þ! = δn,k (73)

61

Obtaining Explicit Formulas and Identities for Polynomials Defined by Generating Functions…
DOI: http://dx.doi.org/10.5772/intechopen.82370



and

∑
n

m= k

Sn�m mx;mαð Þ
n�mð Þ!

k
m
Sm�k �mx;�mαð Þ

m� kð Þ! = δn,k: (74)

2.10 Peters polynomials

The Peters polynomials are defined by the following generating function [8]:

S t; x; μ; λð Þ= 1þ 1þ tð Þλ
� ��μ

1þ tð Þx = 1þ tð Þx 1

1þ 1þ tð Þλ
 !μ

= ∑
n≥0

Sn x; μ; λð Þ t
n

n!
,

(75)

where

Sn x; μ; λð Þ= n! ∑
n

i= 0

x
n� i

� �
∑
i

j= 0

1
2 jþμ

jþ μ� 1

j

� �
∑
j

l= 0
�1ð Þl j

l

� �
lλ
i

� �
: (76)

According to Eq. (13), the composita for the generating function
D tð Þ= tS t; x; μ; λð Þ is

DΔ n; kð Þ= Sn�k kx; kμ; λð Þ
n� kð Þ! : (77)

The triangular form of this composita is

2�μ

2�μ�1 2x� λμð Þ 2�2μ

2�μ�3 4x2 � 4λμþ 4ð Þxþ λ2μ2 � λ2μþ 2λμ
� �

2�2μ 2x� λμð Þ 2�3μ

Using Eq. (17), the composita for the compositional inverse generating function
D tð Þ of D tð Þ= tS t; x; μ; λð Þ is

D
Δ
n; kð Þ= k

n
Sn�k �nx;�nμ; λð Þ

n� kð Þ! : (78)

The triangular form of this composita is

2μ

22μ�1 �2xþ λμð Þ 22μ

23μ�3 12x2 þ 4� 12λμð Þxþ 3λ2μ2 þ λ2μ� 2λμ
� �

23μ λμ� 2xð Þ 23μ

Also we can get the following new identities for the Peters polynomials:

∑
n

m= k

m
n
Sn�m �nx;�nμ; λð Þ

n�mð Þ!
Sm�k kx; kμ; λð Þ

m� kð Þ! = δn,k (79)

and

∑
n

m= k

Sn�m mx;mμ; λð Þ
n�mð Þ!

k
m
Sm�k �mx;�mμ; λð Þ

m� kð Þ! = δn,k: (80)
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2.11 Gegenbauer polynomials

TheGegenbauer polynomials are defined by the following generating function [43]:

C t; x; αð Þ= 1� 2xtþ t2
� ��α

=
1

1� 2xtþ t2

� �α

= ∑
n≥0

C αð Þ
n xð Þtn, (81)

where

C αð Þ
n xð Þ= ∑

n

i= 0
�1ð Þn�i i

n� i

� �
iþ α� 1

i

� �
2xð Þ2i�n: (82)

According to Eq. (13), the composita for the generating function D tð Þ= tC t; x; αð Þ
is

DΔ n; kð Þ= C kαð Þ
n�k xð Þ: (83)

The triangular form of this composita is

1

2αx 1

2α2 þ 2αð Þx2 � α 4αx 1

4α3 þ 12α2 þ 8αð Þx3 � 6α2 þ 6αð Þx
3

8α2 þ 4αð Þx2 � 2α 6αx 1

Using Eq. (17), the composita for the compositional inverse generating function
D tð Þ of D tð Þ= tC t; x; αð Þ is

DΔ n; kð Þ= k
n
C �nαð Þ
n�k xð Þ: (84)

The triangular form of this composita is

1

�2αx 1

6α2 � 2αð Þx2 þ α �4αx 1

64α3 � 48α2 þ 8αð Þx3 þ 24α2 � 6αð Þx
3

16α2 � 4αð Þx2 þ 2α �6αx 1

Also we can get the following new identities for the Gegenbauer polynomials:

∑
n

m= k

m
n
C �nαð Þ
n�m xð ÞC kαð Þ

m�k xð Þ= δn,k (85)

and

∑
n

m= k
C mαð Þ
n�m xð Þ k

m
C �mαð Þ
m�k xð Þ= δn,k: (86)

2.12 Meixner polynomials of the first kind

The Meixner polynomials of the first kind are defined by the following generat-
ing function [8, 44]:
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∑
n

m= k
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n�mð Þ!

k
m
Sm�k �mx;�mαð Þ

m� kð Þ! = δn,k: (74)
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The Peters polynomials are defined by the following generating function [8]:

S t; x; μ; λð Þ= 1þ 1þ tð Þλ
� ��μ

1þ tð Þx = 1þ tð Þx 1

1þ 1þ tð Þλ
 !μ

= ∑
n≥0

Sn x; μ; λð Þ t
n

n!
,

(75)

where

Sn x; μ; λð Þ= n! ∑
n

i= 0

x
n� i

� �
∑
i

j= 0

1
2 jþμ

jþ μ� 1

j

� �
∑
j

l= 0
�1ð Þl j

l

� �
lλ
i

� �
: (76)

According to Eq. (13), the composita for the generating function
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D
Δ
n; kð Þ= k

n
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23μ λμ� 2xð Þ 23μ

Also we can get the following new identities for the Peters polynomials:

∑
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m
n
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and
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k
m
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m� kð Þ! = δn,k: (80)

62

Polynomials - Theory and Application

2.11 Gegenbauer polynomials

TheGegenbauer polynomials are defined by the following generating function [43]:

C t; x; αð Þ= 1� 2xtþ t2
� ��α

=
1

1� 2xtþ t2

� �α

= ∑
n≥0

C αð Þ
n xð Þtn, (81)

where

C αð Þ
n xð Þ= ∑

n

i= 0
�1ð Þn�i i

n� i

� �
iþ α� 1

i

� �
2xð Þ2i�n: (82)
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m
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M t; x; β; cð Þ= 1� t
c

� �x
1� tð Þ�x�β = c� t

c 1� tð Þ
� �x 1

1� t

� �β

= ∑
n≥0

Mn x; β; cð Þ t
n

n!
,

(87)

where

Mn x; β; cð Þ= �1ð Þnn! ∑
n

i= 0

x
i

� � �x� β

n� i

� �
c�i: (88)

According to Eq. (13), the composita for the generating function
D tð Þ= tM t; x; β; cð Þ is

DΔ n; kð Þ= Mn�k kx; kβ; cð Þ
n� kð Þ! : (89)

The triangular form of this composita is

1
c� 1ð Þxþ βc

c
1

c2 � 2cþ 1ð Þx2 þ 2β þ 1ð Þc2 � 2βc� 1ð Þxþ β2 þ β
� �

c2

2c2
2c� 2ð Þxþ 2βc

c
1

Using Eq. (17), the composita for the compositional inverse generating function
D tð Þ of D tð Þ= tM t; x; β; cð Þ is

D
Δ
n; kð Þ= k

n
Mn�k �nx;�nβ; cð Þ

n� kð Þ! : (90)

The triangular form of this composita is

1
1� cð Þx� βc

c
1

3c2 � 6cþ 3ð Þx2 þ 6β � 1ð Þc2 � 6βcþ 1ð Þxþ 3β2 � β
� �

c2

2c2
2� 2cð Þx� 2βc

c
1

Also we can get the following new identities for the Meixner polynomials of the
first kind:

∑
n

m= k

m
n
Mn�m �nx;�nβ; cð Þ

n�mð Þ!
Mm�k kx; kβ; cð Þ

m� kð Þ! = δn,k (91)

and

∑
n

m= k

Mn�m mx;mβ; cð Þ
n�mð Þ!

k
m
Mm�k �mx;�mβ; cð Þ

m� kð Þ! = δn,k: (92)

3. Conclusions and future developments

In this chapter, we find new explicit formulas and identities for such polyno-
mials as the generalized Bernoulli, generalized Euler, Frobenius-Euler, generalized
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Sylvester, generalized Laguerre, Abel, Bessel, Stirling, Narumi, Peters, Gegenbauer,
and Meixner polynomials that are defined by generating functions of the form
A t; x; αð Þ= F tð Þx � G tð Þα.

A lot of studies have recently showed that polynomials are a solution for practi-
cal problems related to modeling, quantum mechanics, and other areas. So a study
of obtaining explicit formulas and representations of polynomials will be important
and influential. Also the further research can be conducted to find practical means
of obtained properties.
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n�mð Þ!

k
m
Mm�k �mx;�mβ; cð Þ

m� kð Þ! = δn,k: (92)

3. Conclusions and future developments

In this chapter, we find new explicit formulas and identities for such polyno-
mials as the generalized Bernoulli, generalized Euler, Frobenius-Euler, generalized
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Sylvester, generalized Laguerre, Abel, Bessel, Stirling, Narumi, Peters, Gegenbauer,
and Meixner polynomials that are defined by generating functions of the form
A t; x; αð Þ= F tð Þx � G tð Þα.

A lot of studies have recently showed that polynomials are a solution for practi-
cal problems related to modeling, quantum mechanics, and other areas. So a study
of obtaining explicit formulas and representations of polynomials will be important
and influential. Also the further research can be conducted to find practical means
of obtained properties.
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Chapter 4

Polynomials with Symmetric
Zeros
Ricardo Vieira

Abstract

Polynomials whose zeros are symmetric either to the real line or to the unit circle
are very important in mathematics and physics. We can classify them into three
main classes: the self-conjugate polynomials, whose zeros are symmetric to the real
line; the self-inversive polynomials, whose zeros are symmetric to the unit circle;
and the self-reciprocal polynomials, whose zeros are symmetric by an inversion with
respect to the unit circle followed by a reflection in the real line. Real self-reciprocal
polynomials are simultaneously self-conjugate and self-inversive so that their zeros
are symmetric to both the real line and the unit circle. In this survey, we present a
short review of these polynomials, focusing on the distribution of their zeros.

Keywords: self-inversive polynomials, self-reciprocal polynomials, Pisot and
Salem polynomials, Möbius transformations, knot theory, Bethe equations

1. Introduction

In this work, we consider the theory of self-conjugate (SC), self-reciprocal (SR),
and self-inversive (SI) polynomials. These are polynomials whose zeros are sym-
metric either to the real line R or to the unit circle S ¼ z∈C : jzj ¼ 1f g. The basic
properties of these polynomials can be found in the books of Marden [1],
Milovanović et al. [2], and Sheil-Small [3]. Although these polynomials are very
important in both mathematics and physics, it seems that there is no specific review
about them; in this work, we present a bird’s eye view to this theory, focusing on the
zeros of such polynomials. Other properties of these polynomials (e.g., irreducibil-
ity, norms, analytical properties, etc.) are not covered here due to short space,
nonetheless, the interested reader can check many of the references presented in
the bibliography to this end.

2. Self-conjugate, self-reciprocal, and self-inversive polynomials

We begin with some definitions:
Definition 1. Let p zð Þ ¼ p0 þ p1zþ⋯þ pn�1z

n�1 þ pnz
n be a polynomial of

degree n with complex coefficients. We shall introduce three polynomials, namely
the conjugate polynomial p zð Þ, the reciprocal polynomial p ∗ zð Þ, and the inversive
polynomial p† zð Þ, which are, respectively, defined in terms of p zð Þ as follows:

p zð Þ ¼ p0 þ p1zþ⋯þ pn�1z
n�1 þ pnz

n,
p ∗ zð Þ ¼ pn þ pn�1zþ⋯þ p1z

n�1 þ p0z
n,

p† zð Þ ¼ pn þ pn�1zþ⋯þ p1z
n�1 þ p0z

n,
(1)
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2. Self-conjugate, self-reciprocal, and self-inversive polynomials

We begin with some definitions:
Definition 1. Let p zð Þ ¼ p0 þ p1zþ⋯þ pn�1z

n�1 þ pnz
n be a polynomial of

degree n with complex coefficients. We shall introduce three polynomials, namely
the conjugate polynomial p zð Þ, the reciprocal polynomial p ∗ zð Þ, and the inversive
polynomial p† zð Þ, which are, respectively, defined in terms of p zð Þ as follows:

p zð Þ ¼ p0 þ p1zþ⋯þ pn�1z
n�1 þ pnz

n,
p ∗ zð Þ ¼ pn þ pn�1zþ⋯þ p1z

n�1 þ p0z
n,

p† zð Þ ¼ pn þ pn�1zþ⋯þ p1z
n�1 þ p0z

n,
(1)
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where the bar means complex conjugation. Notice that the conjugate, reciprocal,
and inversive polynomials can also be defined without making reference to the
coefficients of p zð Þ:

p zð Þ ¼ p zð Þ, p ∗ zð Þ ¼ znp 1=zð Þ, p† zð Þ ¼ znp 1=zð Þ: (2)

From these relations, we plainly see that if ζ1,…, ζn are the zeros of a complex
polynomial p zð Þ of degree n, then, the zeros of p zð Þ are ζ1 ,…, ζn , the zeros of p ∗ zð Þ
are 1=ζ1,…, 1=ζn, and finally, the zeros of p† zð Þ are 1=ζ1 ,…, 1=ζn . Thus, if p zð Þ has k
zeros on R, l zeros on the upper half-plane Cþ ¼ z∈C : Im zð Þ.0f g, andm zeros in
the lower half-plane C� ¼ z∈C : Im zð Þ,0f g so that kþ lþm ¼ n, then p zð Þ will
have the same number k of zeros on R, l zeros in C� and m zeros in Cþ. Similarly, if
p zð Þ has k zeros on S, l zeros inside S and m zeros outside S, so that kþ lþm ¼ n,
then both p ∗ zð Þ as p† zð Þwill have the same number k of zeros on S, l zeros outside S
and m zeros inside S.

These properties encourage us to introduce the following classes of polynomials:
Definition 2. A complex polynomial p zð Þ is called1 self-conjugate (SC), self-

reciprocal (SR), or self-inversive (SI) if, for any zero ζ of p zð Þ, the complex-conjugate
ζ, the reciprocal 1=ζ, or the reciprocal of the complex-conjugate 1=ζ is also a zero of
p zð Þ, respectively.

Thus, the zeros of any SC polynomial are all symmetric to the real line R, while
the zeros of the any SI polynomial are symmetric to the unit circle S. The zeros of
any SR polynomial are obtained by an inversion with respect to the unit circle
followed by a reflection in the real line. From this, we can establish the following:

Theorem 1. If p zð Þ is an SC polynomial of odd degree, then it necessarily has at least
one zero on R. Similarly, if p zð Þ is an SR or SI polynomial of odd degree, then it
necessarily has at least one zero on S.

Proof. From Definition 2 it follows that the number of non-real zeros of an SC
polynomial p zð Þ can only occur in (conjugate) pairs; thus, if p zð Þ has odd degree,
then at least one zero of it must be real. Similarly, the zeros of p† zð Þ or p ∗ zð Þ that
have modulus different from 1 can only occur in (inversive or reciprocal) pairs as
well; thus, if p zð Þ has odd degree then at least one zero of it must lie on S. □

Theorem 2. The necessary and sufficient condition for a complex polynomial p zð Þ to
be SC, SR, or SI is that there exists a complex number ω of modulus 1 so that one of the
following relations, respectively, holds:

p zð Þ ¼ ωp zð Þ, p zð Þ ¼ ωp ∗ zð Þ, p zð Þ ¼ ωp† zð Þ: (3)

Proof. It is clear in view of (1) and (2) that these conditions are sufficient. We
need to show, therefore, that these conditions are also necessary. Let us suppose
first that p zð Þ is SC. Then, for any zero ζ of p zð Þ the complex-conjugate number ζ is
also a zero of it. Thus, we can write

1 The reader should be aware that there is no standard in naming these polynomials. For instance, what

we call here self-inversive polynomials are sometimes called self-reciprocal polynomials. What we mean
positive self-reciprocal polynomials are usually just called self-reciprocal or yet palindrome polynomials

(because their coefficients are the same whether they are read from forwards or backwards), as well as,
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p zð Þ ¼ ωp zð Þ, (4)

with ω ¼ pn=pn so that ∣ω∣ ¼ pn=pn
�� �� ¼ 1. Now, let us suppose that p zð Þ is SR.

Then, for any zero ζ of p zð Þ, the reciprocal number 1=ζ is also a zero of it; thus,

p zð Þ ¼ pn
Yn
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¼ ωp ∗ zð Þ,

(5)

with ω ¼ �1ð Þn= ζ1…ζnð Þ ¼ pn=p0; now, for any zero ζ of p zð Þ (which is neces-
sarily different from zero if p zð Þ is SR), there will be another zero whose value is 1=ζ
so that ζ1…ζnj j ¼ 1, which implies ∣ω∣ ¼ 1. The proof for SI polynomials is analogous
and will be concealed; it follows that ω ¼ pn=p0 in this case. □

Now from (1), (2) and (3), we can conclude that the coefficients of an SC, an SR,
and an SI polynomial of degree n satisfy, respectively, the following relations:

pk ¼ ωpk, pk ¼ ωpn�k, pk ¼ ωpn�k , ∣ω∣ ¼ 1, 0⩽ k⩽ n: (6)

We highlight that any real polynomial is SC—in fact, many theorems which are
valid for real polynomials are also valid for, or can be easily extended to, SC poly-
nomials.

There also exist polynomials whose zeros are symmetric with respect to both
the real line R and the unit circle S. A polynomial p zð Þ with this double symmetry
is, at the same time, SC and SI (and, hence, SR as well). This is only possible if all
the coefficients of p zð Þ are real, which implies that ω ¼ �1. This suggests the
following additional definitions:

Definition 3. A real self-reciprocal polynomial p zð Þ that satisfies the relation
p zð Þ ¼ ωznp 1=zð Þ will be called a positive self-reciprocal (PSR) polynomial if ω ¼ 1
and a negative self-reciprocal (NSR) polynomial if ω ¼ �1.

Thus, the coefficients of any PSR polynomial p zð Þ ¼ p0 þ⋯þ pnz
n of degree n

satisfy the relations pk ¼ pn�k for 0⩽ k⩽ n, while the coefficients of any NSR
polynomial p zð Þ of degree n satisfy the relations pk ¼ �pn�k for 0⩽ k⩽ n; this last
condition implies that the middle coefficient of an NSR polynomial of even degree is
always zero.

Some elementary properties of PSR and NSR polynomials are the following: first,
notice that, if ζ is a zero of any PSR or NSR polynomial p zð Þ of degree n⩾4, then the
three complex numbers 1=ζ, ζ and 1=ζ are also zeros of p zð Þ. In particular, the
number of zeros of such polynomials which are neither in S or in R is always a
multiple of 4. Besides, any NSR polynomial has z ¼ 1 as a zero and p zð Þ= z� 1ð Þ is
PSR; further, if p zð Þ has even degree then z ¼ �1 is also a zero of it and p zð Þ= z2 � 1ð Þ
is a PSR polynomial of even degree. In a similar way, any PSR polynomial p zð Þ of
odd degree has z ¼ �1 as a zero and p zð Þ= zþ 1ð Þ is also PSR. The product of two
PSR, or two NSR, polynomials is PSR, while the product of a PSR polynomial with
an NSR polynomial is NSR. These statements follow directly from the definitions of
such polynomials.

We also mention that any PSR polynomial of even degree (say, n ¼ 2m) can be
written in the following form:

p zð Þ ¼ zm p0 zm þ 1
zm

� �
þ p1 zm�1 þ 1

zm�1

� �
þ⋯þ pm�1 zþ 1

z

� �� �
þ pm, (7)
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and inversive polynomials can also be defined without making reference to the
coefficients of p zð Þ:

p zð Þ ¼ p zð Þ, p ∗ zð Þ ¼ znp 1=zð Þ, p† zð Þ ¼ znp 1=zð Þ: (2)

From these relations, we plainly see that if ζ1,…, ζn are the zeros of a complex
polynomial p zð Þ of degree n, then, the zeros of p zð Þ are ζ1 ,…, ζn , the zeros of p ∗ zð Þ
are 1=ζ1,…, 1=ζn, and finally, the zeros of p† zð Þ are 1=ζ1 ,…, 1=ζn . Thus, if p zð Þ has k
zeros on R, l zeros on the upper half-plane Cþ ¼ z∈C : Im zð Þ.0f g, andm zeros in
the lower half-plane C� ¼ z∈C : Im zð Þ,0f g so that kþ lþm ¼ n, then p zð Þ will
have the same number k of zeros on R, l zeros in C� and m zeros in Cþ. Similarly, if
p zð Þ has k zeros on S, l zeros inside S and m zeros outside S, so that kþ lþm ¼ n,
then both p ∗ zð Þ as p† zð Þwill have the same number k of zeros on S, l zeros outside S
and m zeros inside S.

These properties encourage us to introduce the following classes of polynomials:
Definition 2. A complex polynomial p zð Þ is called1 self-conjugate (SC), self-

reciprocal (SR), or self-inversive (SI) if, for any zero ζ of p zð Þ, the complex-conjugate
ζ, the reciprocal 1=ζ, or the reciprocal of the complex-conjugate 1=ζ is also a zero of
p zð Þ, respectively.

Thus, the zeros of any SC polynomial are all symmetric to the real line R, while
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any SR polynomial are obtained by an inversion with respect to the unit circle
followed by a reflection in the real line. From this, we can establish the following:
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need to show, therefore, that these conditions are also necessary. Let us suppose
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satisfy the relations pk ¼ pn�k for 0⩽ k⩽ n, while the coefficients of any NSR
polynomial p zð Þ of degree n satisfy the relations pk ¼ �pn�k for 0⩽ k⩽ n; this last
condition implies that the middle coefficient of an NSR polynomial of even degree is
always zero.

Some elementary properties of PSR and NSR polynomials are the following: first,
notice that, if ζ is a zero of any PSR or NSR polynomial p zð Þ of degree n⩾4, then the
three complex numbers 1=ζ, ζ and 1=ζ are also zeros of p zð Þ. In particular, the
number of zeros of such polynomials which are neither in S or in R is always a
multiple of 4. Besides, any NSR polynomial has z ¼ 1 as a zero and p zð Þ= z� 1ð Þ is
PSR; further, if p zð Þ has even degree then z ¼ �1 is also a zero of it and p zð Þ= z2 � 1ð Þ
is a PSR polynomial of even degree. In a similar way, any PSR polynomial p zð Þ of
odd degree has z ¼ �1 as a zero and p zð Þ= zþ 1ð Þ is also PSR. The product of two
PSR, or two NSR, polynomials is PSR, while the product of a PSR polynomial with
an NSR polynomial is NSR. These statements follow directly from the definitions of
such polynomials.

We also mention that any PSR polynomial of even degree (say, n ¼ 2m) can be
written in the following form:
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an expression that is obtained by using the relations pk ¼ p2m�k, 0⩽ k⩽ 2m, and
gathering the terms of p zð Þ with the same coefficients. Furthermore, the expression
Zs zð Þ ¼ zs þ z�sð Þ for any integer s can be written as a polynomial of degree s in the
new variable x ¼ zþ 1=z (the proof follows easily by induction over s); thus, we can
write p zð Þ ¼ zmq xð Þ, where q xð Þ ¼ q0 þ⋯þ qmx

m is such that the coefficients
q0,…, qm are certain functions of p0,…, pm. From this we can state the following:

Theorem 3. Let p zð Þ be a PSR polynomial of even degree n ¼ 2m. For each pair ζ
and 1=ζ of self-reciprocal zeros of p zð Þ that lie on S, there is a corresponding zero ξ of the
polynomial q xð Þ, as defined above, in the interval �2; 2½ � of the real line.

Proof. For each zero ζ of p xð Þ that lie on S, write ζ ¼ eiθ for some θ∈R. Thereby,
as q xð Þ ¼ q zþ 1=zð Þ ¼ p zð Þ=zm, it follows that ξ ¼ ζ þ 1=ζ ¼ 2 cos θ will be a zero of
q xð Þ. This shows us that ξ is limited to the interval �2; 2½ � of the real line. Finally,
notice that the reciprocal zero 1=ζ of p zð Þ is mapped to the same zero ξ of q xð Þ. □

Finally, remembering that the Chebyshev polynomials of first kind, Tn zð Þ, are
defined by the formula Tn

1
2 zþ z�1ð Þ� � ¼ 1

2 zn þ z�nð Þ for z∈C, it follows as well that
q xð Þ, and hence any PSR polynomial, can be written as a linear combination of
Chebyshev polynomials:

q xð Þ ¼ 2 p0Tm xð Þ þ p1Tm�1 xð Þ þ⋯þ pm�1T1 xð Þ þ 1
2
pmT0 xð Þ

� �
: (8)

3. How these polynomials are related to each other?

In this section, we shall analyze how SC, SR, and SI polynomials are related to
each other. Let us begin with the relationship between the SR and SI polynomials,
which is actually very simple: indeed, from (1), (2), and (3) we can see that each
one is nothing but the conjugate polynomial of the other, that is

p† zð Þ ¼ p ∗ zð Þ ¼ p ∗ zð Þ, and p ∗ zð Þ ¼ p† zð Þ ¼ p† zð Þ: (9)

Thus, if p zð Þ is an SR (SI) polynomial, then p zð Þ will be SI (SR) polynomial.
Because of this simple relationship, several theorems which are valid for SI poly-
nomials are also valid for SR polynomials and vice versa.

The relationship between SC and SI polynomials is not so easy to perceive. A
way of revealing their connection is to make use of a suitable pair of Möbius trans-
formations, that maps the unit circle onto the real line and vice versa, which is often
called Cayley transformations, defined through the formulas:

M zð Þ ¼ z� ið Þ= zþ ið Þ, and W zð Þ ¼ �i zþ 1ð Þ= z� 1ð Þ: (10)

This approach was developed in [4], where some algorithms for counting the
number of zeros that a complex polynomial has on the unit circle were also formu-
lated.

It is an easy matter to verify thatM zð Þmaps R onto SwhileW zð Þmaps S onto R.
Besides, M zð Þ maps the upper (lower) half-plane to the interior (exterior) of S,
while W zð Þmaps the interior (exterior) of S onto the upper (lower) half-plane.
Notice that W zð Þ can be thought as the inverse of M zð Þ in the Riemann sphere
C∞ ¼ C∪ ∞f g, if we further assume that M �ið Þ ¼ ∞, M ∞ð Þ ¼ 1, W 1ð Þ ¼ ∞, and
W ∞ð Þ ¼ �i.
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Given a polynomial p zð Þ of degree n, we define two Möbius-transformed
polynomials, namely

Q zð Þ ¼ zþ ið Þnp M zð Þð Þ, and T zð Þ ¼ z� 1ð Þnp W zð Þð Þ: (11)

The following theorem shows us how the zeros of Q zð Þ and T zð Þ are related with
the zeros of p zð Þ:

Theorem 4. Let ζ1,…, ζn denote the zeros of p zð Þ and η1,…, ηn the respective zeros of
Q zð Þ. Provided p 1ð Þ 6¼ 0, we have that η1 ¼W ζ1ð Þ,…, ηn ¼W ζnð Þ. Similarly, if
τ1,…τn are the zeros of T zð Þ, then we have τ1 ¼ M ζ1ð Þ,…, τn ¼ M ζnð Þ, provided that
p �ið Þ 6¼ 0.

Proof. In fact, inverting the expression for Q zð Þ and evaluating it in any zero ζk
of p zð Þ we get that p ζkð Þ ¼ �i=2ð Þn ζk � 1ð ÞnQ W ζkð Þð Þ ¼ 0 for 0⩽ k ⩽ n. Provided
that z ¼ 1 is not a zero of p zð Þwe get that ηk ¼W ζkð Þ is a zero of Q zð Þ. The proof for
the zeros of T zð Þ is analogous. □

This result also shows that Q zð Þ and T zð Þ have the same degree as p zð Þ whenever
p 1ð Þ 6¼ 0 or p �ið Þ 6¼ 0, respectively. In fact, if p zð Þ has a zero at z ¼ 1 of multiplicity
m then Q zð Þ will be a polynomial of degree n�m, the same being true for T zð Þ if
p zð Þ has a zero of multiplicity m at z ¼ �i. This can be explained by the fact that the
points z ¼ 1 and z ¼ �i are mapped to infinity by W zð Þ and M zð Þ, respectively.

The following theorem shows that the set of SI polynomials are isomorphic to
the set of SC polynomials:

Theorem 5. Let p zð Þ be an SI polynomial. Then, the transformed polynomial
Q zð Þ ¼ zþ ið Þnp M zð Þð Þ is an SC polynomial. Similarly, if p zð Þ is an SC polynomial,
then T zð Þ ¼ z� 1ð Þnp W zð Þð Þ will be an SI polynomial.

Proof. Let ζ and 1=ζ be two inversive zeros an SI polynomial p zð Þ. Then,
according to Theorem 4, the corresponding zeros of Q zð Þ will be:

W ζð Þ ¼ �i ζ þ 1
ζ � 1

¼ η and W
1
ζ

� �
¼ �i 1=ζ þ 1

1=ζ � 1
¼ i

ζ þ 1
ζ � 1

¼W ζð Þ ¼ η:

(12)

Thus, any pair of zeros of p zð Þ that are symmetric to the unit circle are mapped
in zeros of Q zð Þ that are symmetric to the real line; because p zð Þ is SI, it follows that
Q zð Þ is SC. Conversely, let ζ and ζ be two zeros of an SC polynomial p zð Þ; then the
corresponding zeros of T zð Þ will be:

M ζð Þ ¼ ζ � i
ζ þ i

¼ τ and M ζ
� � ¼ ζ � i

ζ þ i
¼ � 1=ζ þ i

1=ζ � i
¼ 1M ζð Þ ¼ 1

τ
: (13)

Thus, any pair of zeros of p zð Þ that are symmetric to the real line are mapped in
zeros of T zð Þ that are symmetric to the unit circle. Because p zð Þ is SC, it follows that
T zð Þ is SI. □

We can also verify that any SI polynomial with ω ¼ 1 is mapped to a real polyno-
mial throughM zð Þ and any real polynomial is mapped to an SI polynomial with
ω ¼ 1 throughW zð Þ. Thus, the set of SI polynomials with ω ¼ 1 is isomorphic to the
set of real polynomials. Besides, an SI polynomial with ω 6¼ 1 can be transformed into
another one with ω ¼ 1 by performing a suitable uniform rotation of its zeros. It can
also be shown that the action of the Möbius transformation over a PSR polynomial
leads to a real polynomial that has only even powers. See [4] for more.
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an expression that is obtained by using the relations pk ¼ p2m�k, 0⩽ k⩽ 2m, and
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p 1ð Þ 6¼ 0 or p �ið Þ 6¼ 0, respectively. In fact, if p zð Þ has a zero at z ¼ 1 of multiplicity
m then Q zð Þ will be a polynomial of degree n�m, the same being true for T zð Þ if
p zð Þ has a zero of multiplicity m at z ¼ �i. This can be explained by the fact that the
points z ¼ 1 and z ¼ �i are mapped to infinity by W zð Þ and M zð Þ, respectively.

The following theorem shows that the set of SI polynomials are isomorphic to
the set of SC polynomials:

Theorem 5. Let p zð Þ be an SI polynomial. Then, the transformed polynomial
Q zð Þ ¼ zþ ið Þnp M zð Þð Þ is an SC polynomial. Similarly, if p zð Þ is an SC polynomial,
then T zð Þ ¼ z� 1ð Þnp W zð Þð Þ will be an SI polynomial.

Proof. Let ζ and 1=ζ be two inversive zeros an SI polynomial p zð Þ. Then,
according to Theorem 4, the corresponding zeros of Q zð Þ will be:

W ζð Þ ¼ �i ζ þ 1
ζ � 1

¼ η and W
1
ζ

� �
¼ �i 1=ζ þ 1

1=ζ � 1
¼ i

ζ þ 1
ζ � 1

¼W ζð Þ ¼ η:

(12)

Thus, any pair of zeros of p zð Þ that are symmetric to the unit circle are mapped
in zeros of Q zð Þ that are symmetric to the real line; because p zð Þ is SI, it follows that
Q zð Þ is SC. Conversely, let ζ and ζ be two zeros of an SC polynomial p zð Þ; then the
corresponding zeros of T zð Þ will be:

M ζð Þ ¼ ζ � i
ζ þ i

¼ τ and M ζ
� � ¼ ζ � i

ζ þ i
¼ � 1=ζ þ i

1=ζ � i
¼ 1M ζð Þ ¼ 1

τ
: (13)

Thus, any pair of zeros of p zð Þ that are symmetric to the real line are mapped in
zeros of T zð Þ that are symmetric to the unit circle. Because p zð Þ is SC, it follows that
T zð Þ is SI. □

We can also verify that any SI polynomial with ω ¼ 1 is mapped to a real polyno-
mial throughM zð Þ and any real polynomial is mapped to an SI polynomial with
ω ¼ 1 throughW zð Þ. Thus, the set of SI polynomials with ω ¼ 1 is isomorphic to the
set of real polynomials. Besides, an SI polynomial with ω 6¼ 1 can be transformed into
another one with ω ¼ 1 by performing a suitable uniform rotation of its zeros. It can
also be shown that the action of the Möbius transformation over a PSR polynomial
leads to a real polynomial that has only even powers. See [4] for more.
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4. Zeros location theorems

In this section, we shall discuss some theorems regarding the distribution of the
zeros of SC, SR, and SI polynomials on the complex plane. Some general theorems
relying on the number of zeros that an arbitrary complex polynomial has inside, on,
or outside S are also discussed. To save space, we shall not present the proofs of
these theorems, which can be found in the original works. Other related theorems
can be found in Marden’s book [1].

4.1 Polynomials that do not necessarily have symmetric zeros

The following theorems are classics (see [1] for the proofs):
Theorem 6. (Rouché). Let q zð Þ and r zð Þ be polynomials such that ∣q zð Þ∣, ∣r zð Þ∣

along all points of S. Then, the polynomial p zð Þ ¼ q zð Þ þ r zð Þ has the same number of
zeros inside S as the polynomial r zð Þ, counted with multiplicity.

Thus, if a complex polynomial p zð Þ ¼ p0 þ⋯þ pkz
k þ⋯þ pnz

n of degree n is
such that pk

�� ��. p0 þ⋯þ pk�1 þ pkþ1 þ⋯þ pn
�� ��, then p zð Þ will have exactly k

zeros inside S, counted with multiplicity.
Theorem 7. (Gauss and Lucas) The zeros of the derivative p0 zð Þ of a polynomial

p zð Þ lie all within the convex hull of the zeros of the p zð Þ.
Thereby, if a polynomial p zð Þ has all its zeros on S, then all the zeros of p0 zð Þ will

lie in or on S. In particular, the zeros of p0 zð Þ will lie on S if, and only if, they are
multiple zeros of p zð Þ.

Theorem 8. (Cohn) A necessary and sufficient condition for all the zeros of a
complex polynomial p zð Þ to lie on S is that p zð Þ is SI and that its derivative p0 zð Þ does not
have any zero outside S.

Cohn introduced his theorem in [5]. Bonsall and Marden presented a simpler
proof of Conh’s theorem in [6] (see also [7]) and applied it to SI polynomials—in
fact, this was probably the first paper to use the expression “self-inversive.” Other
important result of Cohn is the following: all the zeros of a complex polynomial
p zð Þ ¼ pnz

n þ⋯þ p0 will lie on S if, and only if, ∣pn∣ ¼ ∣p0∣ and all the zeros of p zð Þ
do not lie outside S.

Restricting ourselves to polynomials with real coefficients, Eneström and
Kakeya [8–10] independently presented the following theorem:

Theorem 9. (Eneström and Kakeya) Let p zð Þ be a polynomial of degree n with
real coefficients. If its coefficients are such that 0, p0 ⩽ p1 ⩽ ⋯⩽ pn�1 ⩽ pn, then all the
zeros of p zð Þ lie in or on S. Likewise, if the coefficients of p zð Þ are such that
0, pn ⩽ pn�1 ⩽ ⋯⩽ p1 ⩽ p0, then all the zeros of p zð Þ lie on or outside S.

The following theorems are relatively more recent. The distribution of the zeros
of a complex polynomial regarding the unit circle S was presented by Marden in [1]
and slightly enhanced by Jury in [11]:

Theorem 10. (Marden and Jury) Let p zð Þ be a complex polynomial of degree n
and p ∗ zð Þ its reciprocal. Construct the sequence of polynomials Pj zð Þ ¼ ∑n�j

k¼0Pj,kzk such
that P0 zð Þ ¼ p zð Þ and Pjþ1 zð Þ ¼ pj,0Pj zð Þ � pj,n�jP

∗
j zð Þ for 0⩽ j⩽ n� 1 so that we

have the relations pjþ1,k ¼ pj,0pj,k � pj,n�jpj,n�j�k . Let δj denote the constant terms of the
polynomials Pj zð Þ, i.e., δj ¼ pj,0 and Δk ¼ δ1⋯δk. Thus, if N of the products Δk are
negative and n�N of the products Δk are positive so that none of them are zero, then p zð Þ
has N zeros inside S, n�N zeros outside S and no zero on S. On the other hand, if
Δk 6¼ 0 for some k, n but Pkþ1 zð Þ ¼ 0, then p zð Þ has either n� k zeros on S or n� k
zeros symmetric to S. It has additionally N zeros inside S and k�N zeros outside S.
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A simple necessary and sufficient condition for all the zeros of a complex poly-
nomial to lie on S was presented by Chen in [12]:

Theorem 11. (Chen) A necessary and sufficient condition for all the zeros of a
complex polynomial p zð Þ of degree n to lie on S is that there exists a polynomial q zð Þ of
degree n�m whose zeros are all in or on S and such that p zð Þ ¼ zmq zð Þ þ ωq† zð Þ for
some complex number ω of modulus 1.

We close this section by mentioning that there exist many other well-known
theorems regarding the distribution of the zeros of complex polynomials. We can
cite, for example, the famous rule of Descartes (the number of positive zeros of a real
polynomial is limited from above by the number of sign variations in the ordered
sequence of its coefficients), the Sturm Theorem (the exact number of zeros that a
real polynomial has in a given interval a; bð � of the real line is determined by the
formula N ¼ var S bð Þ½ � � var S að Þ½ �, where var S ξð Þ½ �means the number of sign vari-
ations of the Sturm sequence S xð Þ evaluated at x ¼ ξ) and Kronecker Theorem (if all
the zeros of a monic polynomial with integer coefficients lie on the unit circle, then
all these zeros are indeed roots of unity), see [1] for more. There are still other
important theorems relying on matrix methods and quadratic forms that were
developed by several authors as Cohn, Schur, Hermite, Sylvester, Hurwitz, Krein,
among others, see [13].

4.2 Real self-reciprocal polynomials

Let us now consider real SR polynomials. The theorems below are usually
applied to PSR polynomials, but some of them can be extended to NSR polynomials
as well.

An analog of Eneström-Kakeya theorem for PSR polynomials was found by
Chen in [12] and then, in a slightly stronger version, by Chinen in [14]:

Theorem 12. (Chen and Chinen) Let p zð Þ be a PSR polynomial of degree n that is
written in the form p zð Þ ¼ p0 þ p1zþ⋯þ pkz

k þ pkz
n�k þ pk�1z

n�kþ1 þ⋯þ p0z
n

and such that 0, pk , pk�1 ,⋯, p1 , p0. Then all the zeros of p zð Þ are on S.
Going in the same direction, Choo found in [15] the following condition:
Theorem 13. (Choo) Let p zð Þ be a PSR polynomial of degree n and such that its

coefficients satisfy the following conditions: npn ⩾ n� 1ð Þpn�1 ⩾⋯⩾ kþ 1ð Þpkþ1 .0

and kþ 1ð Þpkþ1 ⩾ ∑k
j¼0 jþ 1ð Þpjþ1 � jpj
���

��� for 0⩽ k⩽ n� 1. Then, all the zeros of p zð Þ
are on S.

Lakatos discussed the separation of the zeros on the unit circle of PSR poly-
nomials in [16]; she also found several sufficient conditions for their zeros to be all
on S. One of the main theorems is the following:

Theorem 14. (Lakatos) Let p zð Þ be a PSR polynomial of degree n. 2. If
pn
�� ��⩾∑n�1

k¼1 pn � pk
�� ��, then all the zeros of p zð Þ lie on S. Moreover, the zeros of p zð Þ are

all simple, except when the equality takes place.
For PSR polynomials of odd degree, Lakatos and Losonczi [17] found a stronger

version of this result:
Theorem 15. (Lakatos and Losonczi) Let p zð Þ be a PSR polynomial of odd degree,

say n ¼ 2mþ 1. If p2mþ1
�� ��⩾ cos 2 ϕmð Þ∑2m

k¼1 p2mþ1 � pk
�� ��, where ϕm ¼ π= 4 mþ 1ð Þ½ �,

then all the zeros of p zð Þ lie on S. The zeros are simple except when the equality is strict.
Theorem 14 was generalized further by Lakatos and Losonczi in [18]:
Theorem 16. (Lakatos and Losonczi) All zeros of a PSR polynomial p zð Þ of degree

n. 2 lie on S if the following conditions hold: pn þ r
�� ��⩾∑n�1

k¼1 pk � pn þ r
�� ��, pnr⩾0, and

pn
�� ��⩾ rj j, for r∈R.
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zeros inside S, counted with multiplicity.
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Thereby, if a polynomial p zð Þ has all its zeros on S, then all the zeros of p0 zð Þ will

lie in or on S. In particular, the zeros of p0 zð Þ will lie on S if, and only if, they are
multiple zeros of p zð Þ.

Theorem 8. (Cohn) A necessary and sufficient condition for all the zeros of a
complex polynomial p zð Þ to lie on S is that p zð Þ is SI and that its derivative p0 zð Þ does not
have any zero outside S.

Cohn introduced his theorem in [5]. Bonsall and Marden presented a simpler
proof of Conh’s theorem in [6] (see also [7]) and applied it to SI polynomials—in
fact, this was probably the first paper to use the expression “self-inversive.” Other
important result of Cohn is the following: all the zeros of a complex polynomial
p zð Þ ¼ pnz

n þ⋯þ p0 will lie on S if, and only if, ∣pn∣ ¼ ∣p0∣ and all the zeros of p zð Þ
do not lie outside S.

Restricting ourselves to polynomials with real coefficients, Eneström and
Kakeya [8–10] independently presented the following theorem:

Theorem 9. (Eneström and Kakeya) Let p zð Þ be a polynomial of degree n with
real coefficients. If its coefficients are such that 0, p0 ⩽ p1 ⩽ ⋯⩽ pn�1 ⩽ pn, then all the
zeros of p zð Þ lie in or on S. Likewise, if the coefficients of p zð Þ are such that
0, pn ⩽ pn�1 ⩽ ⋯⩽ p1 ⩽ p0, then all the zeros of p zð Þ lie on or outside S.

The following theorems are relatively more recent. The distribution of the zeros
of a complex polynomial regarding the unit circle S was presented by Marden in [1]
and slightly enhanced by Jury in [11]:

Theorem 10. (Marden and Jury) Let p zð Þ be a complex polynomial of degree n
and p ∗ zð Þ its reciprocal. Construct the sequence of polynomials Pj zð Þ ¼ ∑n�j

k¼0Pj,kzk such
that P0 zð Þ ¼ p zð Þ and Pjþ1 zð Þ ¼ pj,0Pj zð Þ � pj,n�jP
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j zð Þ for 0⩽ j⩽ n� 1 so that we

have the relations pjþ1,k ¼ pj,0pj,k � pj,n�jpj,n�j�k . Let δj denote the constant terms of the
polynomials Pj zð Þ, i.e., δj ¼ pj,0 and Δk ¼ δ1⋯δk. Thus, if N of the products Δk are
negative and n�N of the products Δk are positive so that none of them are zero, then p zð Þ
has N zeros inside S, n�N zeros outside S and no zero on S. On the other hand, if
Δk 6¼ 0 for some k, n but Pkþ1 zð Þ ¼ 0, then p zð Þ has either n� k zeros on S or n� k
zeros symmetric to S. It has additionally N zeros inside S and k�N zeros outside S.
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A simple necessary and sufficient condition for all the zeros of a complex poly-
nomial to lie on S was presented by Chen in [12]:

Theorem 11. (Chen) A necessary and sufficient condition for all the zeros of a
complex polynomial p zð Þ of degree n to lie on S is that there exists a polynomial q zð Þ of
degree n�m whose zeros are all in or on S and such that p zð Þ ¼ zmq zð Þ þ ωq† zð Þ for
some complex number ω of modulus 1.

We close this section by mentioning that there exist many other well-known
theorems regarding the distribution of the zeros of complex polynomials. We can
cite, for example, the famous rule of Descartes (the number of positive zeros of a real
polynomial is limited from above by the number of sign variations in the ordered
sequence of its coefficients), the Sturm Theorem (the exact number of zeros that a
real polynomial has in a given interval a; bð � of the real line is determined by the
formula N ¼ var S bð Þ½ � � var S að Þ½ �, where var S ξð Þ½ �means the number of sign vari-
ations of the Sturm sequence S xð Þ evaluated at x ¼ ξ) and Kronecker Theorem (if all
the zeros of a monic polynomial with integer coefficients lie on the unit circle, then
all these zeros are indeed roots of unity), see [1] for more. There are still other
important theorems relying on matrix methods and quadratic forms that were
developed by several authors as Cohn, Schur, Hermite, Sylvester, Hurwitz, Krein,
among others, see [13].

4.2 Real self-reciprocal polynomials

Let us now consider real SR polynomials. The theorems below are usually
applied to PSR polynomials, but some of them can be extended to NSR polynomials
as well.

An analog of Eneström-Kakeya theorem for PSR polynomials was found by
Chen in [12] and then, in a slightly stronger version, by Chinen in [14]:

Theorem 12. (Chen and Chinen) Let p zð Þ be a PSR polynomial of degree n that is
written in the form p zð Þ ¼ p0 þ p1zþ⋯þ pkz

k þ pkz
n�k þ pk�1z

n�kþ1 þ⋯þ p0z
n

and such that 0, pk , pk�1 ,⋯, p1 , p0. Then all the zeros of p zð Þ are on S.
Going in the same direction, Choo found in [15] the following condition:
Theorem 13. (Choo) Let p zð Þ be a PSR polynomial of degree n and such that its

coefficients satisfy the following conditions: npn ⩾ n� 1ð Þpn�1 ⩾⋯⩾ kþ 1ð Þpkþ1 .0

and kþ 1ð Þpkþ1 ⩾ ∑k
j¼0 jþ 1ð Þpjþ1 � jpj
���

��� for 0⩽ k⩽ n� 1. Then, all the zeros of p zð Þ
are on S.

Lakatos discussed the separation of the zeros on the unit circle of PSR poly-
nomials in [16]; she also found several sufficient conditions for their zeros to be all
on S. One of the main theorems is the following:

Theorem 14. (Lakatos) Let p zð Þ be a PSR polynomial of degree n. 2. If
pn
�� ��⩾∑n�1

k¼1 pn � pk
�� ��, then all the zeros of p zð Þ lie on S. Moreover, the zeros of p zð Þ are

all simple, except when the equality takes place.
For PSR polynomials of odd degree, Lakatos and Losonczi [17] found a stronger

version of this result:
Theorem 15. (Lakatos and Losonczi) Let p zð Þ be a PSR polynomial of odd degree,

say n ¼ 2mþ 1. If p2mþ1
�� ��⩾ cos 2 ϕmð Þ∑2m

k¼1 p2mþ1 � pk
�� ��, where ϕm ¼ π= 4 mþ 1ð Þ½ �,

then all the zeros of p zð Þ lie on S. The zeros are simple except when the equality is strict.
Theorem 14 was generalized further by Lakatos and Losonczi in [18]:
Theorem 16. (Lakatos and Losonczi) All zeros of a PSR polynomial p zð Þ of degree

n. 2 lie on S if the following conditions hold: pn þ r
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Other conditions for all the zeros of a PSR polynomial to lie on S were presented
by Kwon in [19]. In its simplest form, Kown’s theorem can be enunciated as follows:

Theorem 17. (Kwon) Let p zð Þ be a PSR polynomial of even degree n⩾ 2 whose
leading coefficient pn is positive and p0 ⩽ p1 ⩽ ⋯⩽ pn. In this case, all the zeros of p zð Þ
will lie on S if, either pn=2 ⩾∑n

k¼0 pk � pn=2
���

���, or p 1ð Þ⩾0 and pn ⩾ 1
2∑

n�1
k¼1 pk � pn=2
���

���.
Modified forms of this theorem hold for PSR polynomials of odd degree and for

the case where the coefficients of p zð Þ do not have the ordination above—see [19]
for these cases. Kwon also found conditions for all but two zeros of p zð Þ to lie on S in
[20], which is relevant to the theory of Salem polynomials—see Section 5.

Other interesting results are the following: Konvalina and Matache [21] found
conditions under which a PSR polynomial has at least one non-real zero on S. Kim
and Park [22] and then Kim and Lee [23] presented conditions for which all the
zeros of certain PSR polynomials lie on S (some open cases were also addressed by
Botta et al. in [24]). Suzuki [25] presented necessary and sufficient conditions,
relying on matrix algebra and differential equations, for all the zeros of PSR poly-
nomials to lie on S. In [26] Botta et al. studied the distribution of the zeros of PSR
polynomials with a small perturbation in their coefficients. Real SR polynomials of
height 1—namely, special cases of Littlewood, Newman, and Borwein polynomials—
were studied by several authors, see [27–35] and references therein.2 Zeros of the
so-called Ramanujan Polynomials and generalizations were analyzed in [37–39].
Finally, the Galois theory of PSR polynomials was studied in [40] by Lindstrøm,
who showed that any PSR polynomial of degree less than 10 can be solved by
radicals.

4.3 Complex self-reciprocal and self-inversive polynomials

Let us consider now the case of complex SR polynomials and SI polynomials.
Here, we remark that many of the theorems that hold for SI polynomials either also
hold for SR polynomials or can be easily adapted to this case (the opposite is also
true).

Theorem 18. (Cohn) An SI polynomial p zð Þ has as many zeros outside S as does its
derivative p0 zð Þ.

This follows directly from Cohn’s Theorem 8 for the case where p zð Þ is SI.
Besides, we can also conclude from this that the derivative of p zð Þ has no zeros on S
except at the multiple zeros of p zð Þ. Furthermore, if an SI polynomial p zð Þ of degree
n has exactly k zeros on S, while its derivative has exactly l zeros in or on S, both
counted with multiplicity, then n ¼ 2 lþ 1ð Þ � k.

O’Hara and Rodriguez [41] showed that the following conditions are always
satisfied by SI polynomials whose zeros are all on S:

Theorem 19. (O’Hara and Rodriguez) Let p zð Þ be an SI polynomial of degree n

whose zeros are all on S. Then, the following inequality holds:∑n
j¼0 pj
���
���
2
⩽ p zð Þk k2, where

p zð Þk k denotes the maximum modulus of p zð Þ on the unit circle; besides, if this inequality
is strict then the zeros of p zð Þ are rotations of nth roots of unity. Moreover, the following
inequalities are also satisfied: akj j⩽ 1

2 p zð Þk k if k 6¼ n=2 and akj j⩽
ffiffi
2
p
2 p zð Þk k for

k ¼ n=2.
Schinzel in [42], generalized Lakatos Theorem 14 for SI polynomials:

2 The zeros of such polynomials present a fractal behavior, as was first discovered by Odlyzko and

Poonen in [36].
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Theorem 20. (Schinzel) Let p zð Þ be an SI polynomial of degree n. If the inequality

pn
�� ��⩾ infa,b∈C:∣b∣¼1∑

n
k¼0 apk � bn�kpn
���

���, then all the zeros of p zð Þ lie on S. These zero are
simple whenever the equality is strict.

In a similar way, Losonczi and Schinzel [43] generalized theorem 15 for the
SI case:

Theorem 21. (Losonczi and Schinzel) Let p zð Þ be an SI polynomial of odd degree,

i.e., n ¼ 2mþ 1. If p2mþ1
�� ��⩾ cos 2 ϕmð Þinfa,b∈C:∣b∣¼1∑

2mþ1
k¼1 apk � b2mþ1�kp2mþ1

���
���, where

ϕm ¼ π= 4 mþ 1ð Þ½ �, then all the zeros of p zð Þ lie on S. The zeros are simple except when
the equality is strict.

Another sufficient condition for all the zeros of an SI polynomial to lie on S was
presented by Lakatos and Losonczi in [44]:

Theorem 22. (Lakatos and Losonczi) Let p zð Þ be an SI polynomial of degree n
and suppose that the inequality pn

�� ��⩾ 1
2∑

n�1
k¼1 pk
�� �� holds. Then, all the zeros of p zð Þ lie on

S. Moreover, the zeros are all simple except when an equality takes place.
In [45], Lakatos and Losonczi also formulated a theorem that contains as special

cases many of the previous results:
Theorem 23. (Lakatos and Losonczi) Let p zð Þ ¼ p0 þ⋯þ pnz

n be an SI poly-
nomial of degree n⩾ 2 and a, b, and c be complex numbers such that a 6¼ 0, ∣b∣ ¼ 1, and

c=pn ∈R, 0⩽ c=pn ⩽ 1. If pn þ c
�� ��⩾ ap0 � bnpn

�� ��þ∑n�1
k¼1 apk � bn�k c� pn

� ����
���þ

apn � pn
�� ��, then, all the zeros of p zð Þ lie on S. Moreover, these zeros are simple if the
inequality is strict.

In [46], Losonczi presented the following necessary and sufficient conditions for
all the zeros of a (complex) SR polynomial of even degree to lie on S:

Theorem 24. (Losonczi) Let p zð Þ be a monic complex SR polynomial of even
degree, say n ¼ 2m. Then, all the zeros of p zð Þ will lie on S if, and only if, there exist real
numbers α1,…, α2m, all with moduli less than or equal to 2, that satisfy the inequalities:

pk ¼ �1ð Þk∑ k=2½ �
l¼0

m� kþ 2l
l

� �
σ2mk�2l α1;…; α2mð Þ, 0⩽ k⩽ m, where σ2mk α1;…; α2mð Þ

denotes the kth elementary symmetric function in the 2m variables α1,…, α2m.
Losonczi, in [46], also showed that if all the zeros of a complex monic reciprocal

polynomial are on S, then its coefficients are all real and satisfy the inequality

pn
�� ��⩽ n

k

� �
for 0⩽ k⩽ n.

The theorems above give conditions for all the zeros of SI or SR polynomials to
lie on S. In many cases, however, we need to verify if a polynomial has a given
number of zeros (or none) on the unit circle. Considering this problem, Vieira in [47]
found sufficient conditions for an SI polynomial of degree n to have a determined
number of zeros on the unit circle. In terms of the length, L p zð Þ½ � ¼ p0

�� ��þ⋯þ pn
�� ��

of a polynomial p zð Þ of degree n, this theorem can be stated as follows:
Theorem 25. (Vieira) Let p zð Þ be an SI polynomial of degree n. If the inequality

pn�m
�� ��⩾ 1

4
n

n�m
� �

L p zð Þ½ �, m, n=2, holds true, then p zð Þ will have exactly n� 2m zeros
on S; besides, all these zeros are simple when the inequality is strict. Moreover, p zð Þ will
have no zero on S if, for n even and m ¼ n=2, the inequality pm

�� ��. 1
2L p zð Þ½ � is satisfied.

The case m ¼ 0 corresponds to Lakatos and Losonczi Theorem 14 for all the
zeros of p zð Þ to lie on S. The necessary counterpart of this theorem was considered
by Stankov in [48], with an application to the theory of Salem numbers—see
Section 5.1.

Other results on the distribution of zeros of SI polynomials include the following:
Sinclair and Vaaler [49] showed that a monic SI polynomial p zð Þ of degree n
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Other conditions for all the zeros of a PSR polynomial to lie on S were presented
by Kwon in [19]. In its simplest form, Kown’s theorem can be enunciated as follows:

Theorem 17. (Kwon) Let p zð Þ be a PSR polynomial of even degree n⩾ 2 whose
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will lie on S if, either pn=2 ⩾∑n

k¼0 pk � pn=2
���

���, or p 1ð Þ⩾0 and pn ⩾ 1
2∑

n�1
k¼1 pk � pn=2
���

���.
Modified forms of this theorem hold for PSR polynomials of odd degree and for

the case where the coefficients of p zð Þ do not have the ordination above—see [19]
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4.3 Complex self-reciprocal and self-inversive polynomials
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Theorem 19. (O’Hara and Rodriguez) Let p zð Þ be an SI polynomial of degree n

whose zeros are all on S. Then, the following inequality holds:∑n
j¼0 pj
���
���
2
⩽ p zð Þk k2, where

p zð Þk k denotes the maximum modulus of p zð Þ on the unit circle; besides, if this inequality
is strict then the zeros of p zð Þ are rotations of nth roots of unity. Moreover, the following
inequalities are also satisfied: akj j⩽ 1

2 p zð Þk k if k 6¼ n=2 and akj j⩽
ffiffi
2
p
2 p zð Þk k for

k ¼ n=2.
Schinzel in [42], generalized Lakatos Theorem 14 for SI polynomials:

2 The zeros of such polynomials present a fractal behavior, as was first discovered by Odlyzko and

Poonen in [36].
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Theorem 20. (Schinzel) Let p zð Þ be an SI polynomial of degree n. If the inequality

pn
�� ��⩾ infa,b∈C:∣b∣¼1∑

n
k¼0 apk � bn�kpn
���

���, then all the zeros of p zð Þ lie on S. These zero are
simple whenever the equality is strict.

In a similar way, Losonczi and Schinzel [43] generalized theorem 15 for the
SI case:
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i.e., n ¼ 2mþ 1. If p2mþ1
�� ��⩾ cos 2 ϕmð Þinfa,b∈C:∣b∣¼1∑

2mþ1
k¼1 apk � b2mþ1�kp2mþ1

���
���, where

ϕm ¼ π= 4 mþ 1ð Þ½ �, then all the zeros of p zð Þ lie on S. The zeros are simple except when
the equality is strict.
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Theorem 22. (Lakatos and Losonczi) Let p zð Þ be an SI polynomial of degree n
and suppose that the inequality pn

�� ��⩾ 1
2∑

n�1
k¼1 pk
�� �� holds. Then, all the zeros of p zð Þ lie on

S. Moreover, the zeros are all simple except when an equality takes place.
In [45], Lakatos and Losonczi also formulated a theorem that contains as special

cases many of the previous results:
Theorem 23. (Lakatos and Losonczi) Let p zð Þ ¼ p0 þ⋯þ pnz

n be an SI poly-
nomial of degree n⩾ 2 and a, b, and c be complex numbers such that a 6¼ 0, ∣b∣ ¼ 1, and

c=pn ∈R, 0⩽ c=pn ⩽ 1. If pn þ c
�� ��⩾ ap0 � bnpn

�� ��þ∑n�1
k¼1 apk � bn�k c� pn

� ����
���þ

apn � pn
�� ��, then, all the zeros of p zð Þ lie on S. Moreover, these zeros are simple if the
inequality is strict.
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pk ¼ �1ð Þk∑ k=2½ �
l¼0

m� kþ 2l
l

� �
σ2mk�2l α1;…; α2mð Þ, 0⩽ k⩽ m, where σ2mk α1;…; α2mð Þ

denotes the kth elementary symmetric function in the 2m variables α1,…, α2m.
Losonczi, in [46], also showed that if all the zeros of a complex monic reciprocal

polynomial are on S, then its coefficients are all real and satisfy the inequality

pn
�� ��⩽ n

k

� �
for 0⩽ k⩽ n.
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number of zeros (or none) on the unit circle. Considering this problem, Vieira in [47]
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n

n�m
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on S; besides, all these zeros are simple when the inequality is strict. Moreover, p zð Þ will
have no zero on S if, for n even and m ¼ n=2, the inequality pm

�� ��. 1
2L p zð Þ½ � is satisfied.

The case m ¼ 0 corresponds to Lakatos and Losonczi Theorem 14 for all the
zeros of p zð Þ to lie on S. The necessary counterpart of this theorem was considered
by Stankov in [48], with an application to the theory of Salem numbers—see
Section 5.1.

Other results on the distribution of zeros of SI polynomials include the following:
Sinclair and Vaaler [49] showed that a monic SI polynomial p zð Þ of degree n
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satisfying the inequalities Lr p zð Þ½ �⩽ 2þ 2r n� 1ð Þ1�r or Lr p zð Þ½ �⩽ 2þ 2r l� 2ð Þ1�r,
where r⩾ 1, Lr p zð Þ½ � ¼ p0

�� ��r þ⋯þ pn
�� ��r, and l is the number of non-null terms of

p zð Þ, has all their zeros on S; the authors also studied the geometry of SI polynomials
whose zeros are all on S. Choo and Kim applied Theorem 11 to SI polynomials in
[50]. Hypergeometric polynomials with all their zeros on S were considered in
[51, 52]. Kim [53] also obtained SI polynomials which are related to Jacobi poly-
nomials. Ito and Wimmer [54] studied SI polynomial operators in Hilbert space
whose spectrum is on S.

5. Where these polynomials are found?

In this section, we shall briefly discuss some important or recent applications of
the theory of polynomials with symmetric zeros. We remark, however, that our
selection is by no means exhaustive: for example, SR and SI polynomials also find
applications in many fields of mathematics (e.g., information and coding theory
[55], algebraic curves over a finite field and cryptography [56], elliptic functions
[57], number theory [58], etc.) and physics (e.g., Lee-Yang theorem in statistical
physics [59], Poincaré Polynomials defined on Calabi-Yau manifolds of superstring
theory [60], etc.).

5.1 Polynomials with small Mahler measure

Given a monic polynomial p zð Þ of degree n, with integer coefficients, the Mahler
measure of p zð Þ, denoted by M p zð Þ½ �, is defined as the product of the modulus of all
those zeros of p zð Þ that lie in the exterior of S [61]. That is

M p zð Þ½ � ¼
Yn
i¼1

max 1; ζij jf g, (14)

where ζ1,…, ζn are the zeros
3 of p zð Þ. Thus, if a monic integer polynomial p zð Þ

has all its zeros in or on the unit circle, we have M p zð Þ½ � ¼ 1; in particular, all
cyclotomic polynomials (which are PSR polynomials whose zeros are the primitive
roots of unity, see [1]) have Mahler measure equal to 1. In a sense, the Mahler
measure of a polynomial p zð Þ measures how close it is to the cyclotomic polyno-
mials. Therefore, it is natural to raise the following:

Problem 1. (Mahler) Find the monic, integer, non-cyclotomic polynomial with the
smallest Mahler measure.

This is an 80-year-old open problem of mathematics. Of course, we can expect
that the polynomials with the smallest Mahler measure be among those with only
a few number of zeros outside S, in particular among those with only one zero
outside S. A monic integer polynomial that has exactly one zero outside S is called a
Pisot polynomial and its unique zero of modulus greater than 1 is called its Pisot
number [62]. A breakthrough towards the solution of Mahler’s problem was given
by Smyth in [63]:

Theorem 26. (Smyth) The Pisot polynomial S zð Þ ¼ z3 � z� 1 is the polynomial
with smallest Mahler measure among the set of all monic, integer, and non-SR poly-
nomials. Its Mahler measure is given by the value of its Pisot number, which is,

3 The Mahler measure of a monic integer polynomial p zð Þ can also be defined without making reference

to its zeros through the formula M p zð Þ½ � ¼ exp
Ð 1
0 log p e2πit

� �� �
dt

n o
—see [61].
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ffiffiffiffiffi
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s
≈ 1:32471795724: (15)

The Mahler problem is, however, still open for SR polynomials. A monic integer
SR polynomial with exactly two (real and positive) zeros (say, ζ and 1=ζ) not lying
on S is called a Salem polynomial [62, 64]. It can be shown that a Pisot polynomial
with at least one zero on S is also a Salem polynomial. The unique positive zero
greater than one of a Salem polynomial is called its Salem number, which also equals
the value of its Mahler measure. A Salem number s is said to be small if s, σ; up to
date, only 47 small Salem numbers are known [65, 66] and the smallest known one
was found about 80 years ago by Lehmer [67]. This gave place to the following:

Conjecture 1. (Lehmer) The monic integer polynomial with the smallest Mahler
measure is the Lehmer polynomial L zð Þ ¼ z10 þ z9 � z7 � z6 � z5 � z4 � z3 þ zþ 1,
a Salem polynomial whose Mahler measure is Λ ≈ 1:17628081826, known as Lehmer’s
constant.

The proof of this conjecture is also an open problem. To be fair, we do not even
know if there exists a smallest Salem number at all. This is the content of another
problem raised by Lehmer:

Problem 2. (Lehmer) Answer whether there exists or not a positive number ϵ such
that the Mahler measure of any monic, integer, and non-cyclotomic polynomial p zð Þ
satisfies the inequality M p zð Þ½ �. 1þ ϵ.

Lehmer’s polynomial also appears in connection with several fields of mathe-
matics. Many examples are discussed in Hironaka’s paper [68]; here we shall only
present an amazing identity found by Bailey and Broadhurst in [69] in their works
on polylogarithm ladders: if λ is any zero of the aforementioned Lehmer’s polyno-
mial L zð Þ, then,

λ315 � 1
� �

λ210 � 1
� �

λ126 � 1
� �2

λ90 � 1
� �

λ3 � 1
� �3

λ2 � 1
� �5

λ� 1ð Þ3

λ630 � 1
� �

λ35 � 1
� �

λ15 � 1
� �2

λ14 � 1
� �2

λ5 � 1
� �6

λ68
¼ 1: (16)

5.2 Knot theory

A knot is a closed, non-intersecting, one-dimensional curve embedded on R3

[70]. Knot theory studies topological properties of knots as, for example, criteria
under which a knot can be unknot, conditions for the equivalency between knots,
the classification of prime knots, etc.; see [70] for the corresponding definitions. In
Figure 1, we plotted all prime knots up to six crossings.

One of the most important questions in knot theory is to determine whether or
not two knots are equivalent. This, however, is not an easy task. A way of attacking
this question is to look for abstract objects—mainly the so-called knot invariants—
rather than to the knots themselves. A knot invariant is a (topologic, combinatorial,
algebraic, etc.) quantity that can be computed for any knot and that is always the
same for equivalents knots.4 An important class of knot invariants is constituted by
the so-called Knot Polynomials. Knot polynomials were introduced in 1928 by Alex-
ander [71]. They consist in polynomials with integer coefficients that can be written
down for every knot. For about 60 years since its creation, Alexander polynomials
were the only known kind of knot polynomial. It was only in 1985 that Jones [72]

4 We remark, however, that different knots can have the same knot invariant. Up to date, we do not

know whether there exists a knot invariant that distinguishes all non-equivalent knots from each other

(although there do exist some invariants that distinguish every knot from the trivial knot). Thus, until

now the concept of knot invariants only partially solves the problem of knot classification.
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where ζ1,…, ζn are the zeros
3 of p zð Þ. Thus, if a monic integer polynomial p zð Þ

has all its zeros in or on the unit circle, we have M p zð Þ½ � ¼ 1; in particular, all
cyclotomic polynomials (which are PSR polynomials whose zeros are the primitive
roots of unity, see [1]) have Mahler measure equal to 1. In a sense, the Mahler
measure of a polynomial p zð Þ measures how close it is to the cyclotomic polyno-
mials. Therefore, it is natural to raise the following:

Problem 1. (Mahler) Find the monic, integer, non-cyclotomic polynomial with the
smallest Mahler measure.

This is an 80-year-old open problem of mathematics. Of course, we can expect
that the polynomials with the smallest Mahler measure be among those with only
a few number of zeros outside S, in particular among those with only one zero
outside S. A monic integer polynomial that has exactly one zero outside S is called a
Pisot polynomial and its unique zero of modulus greater than 1 is called its Pisot
number [62]. A breakthrough towards the solution of Mahler’s problem was given
by Smyth in [63]:

Theorem 26. (Smyth) The Pisot polynomial S zð Þ ¼ z3 � z� 1 is the polynomial
with smallest Mahler measure among the set of all monic, integer, and non-SR poly-
nomials. Its Mahler measure is given by the value of its Pisot number, which is,

3 The Mahler measure of a monic integer polynomial p zð Þ can also be defined without making reference

to its zeros through the formula M p zð Þ½ � ¼ exp
Ð 1
0 log p e2πit
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dt
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78

Polynomials - Theory and Application

σ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
2
þ 1
2

ffiffiffiffiffi
23
27

r
3

s
þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
2
� 1
2

ffiffiffiffiffi
23
27

r
3

s
≈ 1:32471795724: (15)

The Mahler problem is, however, still open for SR polynomials. A monic integer
SR polynomial with exactly two (real and positive) zeros (say, ζ and 1=ζ) not lying
on S is called a Salem polynomial [62, 64]. It can be shown that a Pisot polynomial
with at least one zero on S is also a Salem polynomial. The unique positive zero
greater than one of a Salem polynomial is called its Salem number, which also equals
the value of its Mahler measure. A Salem number s is said to be small if s, σ; up to
date, only 47 small Salem numbers are known [65, 66] and the smallest known one
was found about 80 years ago by Lehmer [67]. This gave place to the following:

Conjecture 1. (Lehmer) The monic integer polynomial with the smallest Mahler
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a Salem polynomial whose Mahler measure is Λ ≈ 1:17628081826, known as Lehmer’s
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The proof of this conjecture is also an open problem. To be fair, we do not even
know if there exists a smallest Salem number at all. This is the content of another
problem raised by Lehmer:

Problem 2. (Lehmer) Answer whether there exists or not a positive number ϵ such
that the Mahler measure of any monic, integer, and non-cyclotomic polynomial p zð Þ
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5.2 Knot theory

A knot is a closed, non-intersecting, one-dimensional curve embedded on R3

[70]. Knot theory studies topological properties of knots as, for example, criteria
under which a knot can be unknot, conditions for the equivalency between knots,
the classification of prime knots, etc.; see [70] for the corresponding definitions. In
Figure 1, we plotted all prime knots up to six crossings.

One of the most important questions in knot theory is to determine whether or
not two knots are equivalent. This, however, is not an easy task. A way of attacking
this question is to look for abstract objects—mainly the so-called knot invariants—
rather than to the knots themselves. A knot invariant is a (topologic, combinatorial,
algebraic, etc.) quantity that can be computed for any knot and that is always the
same for equivalents knots.4 An important class of knot invariants is constituted by
the so-called Knot Polynomials. Knot polynomials were introduced in 1928 by Alex-
ander [71]. They consist in polynomials with integer coefficients that can be written
down for every knot. For about 60 years since its creation, Alexander polynomials
were the only known kind of knot polynomial. It was only in 1985 that Jones [72]

4 We remark, however, that different knots can have the same knot invariant. Up to date, we do not

know whether there exists a knot invariant that distinguishes all non-equivalent knots from each other

(although there do exist some invariants that distinguish every knot from the trivial knot). Thus, until

now the concept of knot invariants only partially solves the problem of knot classification.
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came up with a new kind of knot polynomials—today known as Jones polynomials—
and since then other kinds were discovered as well, see [70].

What is interesting for us here is that the Alexander polynomials are PSR poly-
nomials of even degree (say, n ¼ 2m) and with integer coefficients.5 Thus, they
have the following general form:

Δ tð Þ ¼ δ0 þ δ1zþ⋯þ δm�1tm�1 þ δmtm þ δm�1tmþ1 þ⋯þ δ1t2m�1 þ δ0t2m, (17)

where δi ∈N, 0⩽ i⩽ m. In Table 1, we present the δm�1Alexander polynomials
for the prime knots up to six crossings.

Knots theory finds applications in many fields of mathematics in physics—see
[70]. In mathematics, we can cite a very interesting connection between Alexander
polynomials and the theory of Salem numbers: more precisely, the Alexander poly-
nomial associated with the so-called Pretzel Knot P �2; 3; 7ð Þ is nothing but the
Lehmer polynomial L zð Þ introduced in Section 5.1; it is indeed the Alexander poly-
nomial with the smallest Mahler measure [73]. In physics, knot theory is connected
with quantum groups and it also can be used to one construct solutions of the Yang-
Baxter equation [74] through a method called baxterization of braid groups.

5.3 Bethe equations

Bethe equations were introduced in 1931 by Hans Bethe [75], together with his
powerful method—the so-called Bethe Ansatz Method—for solving spectral prob-
lems associated with exactly integrable models of statistical mechanics. They consist
in a system of coupled and non-linear equations that ensure the consistency of the

Figure 1.
A table of prime knots up to six crossings. In the Alexander-Briggs notation these knots are, in order, 01, 31, 41,
51, 52, 61, 62, and 63.

Knot Alexander polynomial Δ tð Þ Knot Alexander polynomial Δ tð Þ
01 1 52 2� 3t þ 2t2

31 1� tþ t2 61 2� 5t þ 2t2

41 1� 3t þ t2 62 1� 3t þ 3t2 � 3t3 þ t4

51 1� t þ t2 � t3 þ t4 63 1� 3tþ 5t2 � 3t3 þ t4

Table 1.
Alexander polynomials for prime knots up to six crossings.

5 Alexander polynomials can also be defined as Laurent polynomials, see [70].
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Bethe Ansatz. In fact, for the XXZ Heisenberg spin chain, the Bethe Equations
consist in a coupled system of trigonometric equations; however, after a change of
variables is performed, we can write them in the following rational form:

xLi ¼ �1ð ÞN�1
YN

k¼1, k 6¼i
 
xixk � 2Δxi þ 1
xixk � 2Δxk þ 1

, 1⩽ i⩽ N, (18)

where L ∈ N is the length of the chain, N ∈ N is the excitation number and Δ ∈ R
is the so-called spectral parameter. A solution of (18) consists in a (non-ordered) set
X ¼ x1;…; xNf g of the unknowns x1,…, xN so that (18) is satisfied. Notice that the
Bethe equations satisfy the important relation xL1x

L
2⋯xLN ¼ 1, which suggests an

inversive symmetry of their zeros.
In [76], Vieira and Lima-Santos showed that the solutions of (18), for N ¼ 2 and

arbitrary L, are given in terms of the zeros of certain SI polynomials. In fact, (18)
becomes a system of two coupled algebraic equations for N ¼ 2, namely,

xL1 ¼ �
x1x2 � 2Δx1 þ 1
x1x2 � 2Δx2 þ 1

, and xL2 ¼ �
x1x2 � 2Δx2 þ 1
x1x2 � 2Δx1 þ 1

: (19)

Now, from the relation xL1x
L
2 ¼ 1 we can eliminate one of the unknowns in (19)

—for instance, by setting x2 ¼ ωa=x1, where ωa ¼ exp 2πia=Lð Þ, 1⩽ a⩽ L, are the
roots of unity of degree L. Replacing these values for x2 into (19), we obtain the
following polynomial equations fixing x1:

pa zð Þ ¼ 1þ ωað ÞzL � 2ΔωazL�1 � 2Δzþ 1þ ωað Þ ¼ 0, 1⩽ a⩽ L: (20)

We can easily verify that the polynomial pa zð Þ is SI for each value of a. They also
satisfy the relations pa zð Þ ¼ zLp ωa=zð Þ, 1⩽ a⩽ L, which means that the solutions of
(19) have the general form X ¼ ζ;ωa=ζf g for ζ any zero of pa zð Þ. In [76], the
distribution of the zeros of the polynomials pa zð Þ was analyzed through an applica-
tion of Vieira’s Theorem 25. It was shown that the exact behavior of the zeros of the
polynomials pa zð Þ, for each a, depends on two critical values of Δ, namely

Δ 1ð Þ
a ¼

1
2
ωa þ 1j j, and Δ 2ð Þ

a ¼
1
2

L
L� 2

� �
ωa þ 1j j, (21)

as follows: if ∣Δ∣⩽ Δ 1ð Þ
a , then all the zeros of pa zð Þ are on S; if ∣Δ∣⩾Δ 2ð Þ

a , then all the
zeros of pa zð Þ but two are on S; (see [76] for the case Δ 1ð Þ

a , ∣Δ∣,Δ 2ð Þ
a andmore details).

Finally, we highlight that the polynomial pa zð Þ becomes a Salem polynomial for
a ¼ L and integer values of Δ. This was one of the first appearances of Salem poly-
nomials in physics.

5.4 Orthogonal polynomials

An infinite sequence P ¼ Pn zð Þf gn∈N of polynomials Pn zð Þ of degree n is said to
be an orthogonal polynomial sequence on the interval l; rð Þ of the real line if there
exists a function w xð Þ, positive in l; rð Þ∈R, such that

ðr
l
Pm zð ÞPn zð Þw zð Þdz ¼ Kn, m ¼ n,

0, m 6¼ n,

�
m, n∈N, (22)

where K0, K1, etc. are positive numbers. Orthogonal polynomial sequences on
the real line have many interesting and important properties—see [77].
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came up with a new kind of knot polynomials—today known as Jones polynomials—
and since then other kinds were discovered as well, see [70].

What is interesting for us here is that the Alexander polynomials are PSR poly-
nomials of even degree (say, n ¼ 2m) and with integer coefficients.5 Thus, they
have the following general form:

Δ tð Þ ¼ δ0 þ δ1zþ⋯þ δm�1tm�1 þ δmtm þ δm�1tmþ1 þ⋯þ δ1t2m�1 þ δ0t2m, (17)

where δi ∈N, 0⩽ i⩽ m. In Table 1, we present the δm�1Alexander polynomials
for the prime knots up to six crossings.
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powerful method—the so-called Bethe Ansatz Method—for solving spectral prob-
lems associated with exactly integrable models of statistical mechanics. They consist
in a system of coupled and non-linear equations that ensure the consistency of the

Figure 1.
A table of prime knots up to six crossings. In the Alexander-Briggs notation these knots are, in order, 01, 31, 41,
51, 52, 61, 62, and 63.

Knot Alexander polynomial Δ tð Þ Knot Alexander polynomial Δ tð Þ
01 1 52 2� 3t þ 2t2

31 1� tþ t2 61 2� 5t þ 2t2

41 1� 3t þ t2 62 1� 3t þ 3t2 � 3t3 þ t4

51 1� t þ t2 � t3 þ t4 63 1� 3tþ 5t2 � 3t3 þ t4

Table 1.
Alexander polynomials for prime knots up to six crossings.

5 Alexander polynomials can also be defined as Laurent polynomials, see [70].
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Bethe Ansatz. In fact, for the XXZ Heisenberg spin chain, the Bethe Equations
consist in a coupled system of trigonometric equations; however, after a change of
variables is performed, we can write them in the following rational form:

xLi ¼ �1ð ÞN�1
YN

k¼1, k 6¼i
 
xixk � 2Δxi þ 1
xixk � 2Δxk þ 1

, 1⩽ i⩽ N, (18)

where L ∈ N is the length of the chain, N ∈ N is the excitation number and Δ ∈ R
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Very recently, Vieira and Botta [78, 79] studied the action of Möbius transfor-
mations over orthogonal polynomial sequences on the real line. In particular, they
showed that the infinite sequence T ¼ Tn zð Þf gn∈N of the Möbius-transformed
polynomials Tn zð Þ ¼ z� 1ð ÞnPn W zð Þð Þ, where W zð Þ ¼ �i zþ 1ð Þ= z� 1ð Þ, is an SI
polynomial sequence with all their zeros on the unit circle S—see Table 2 for an
example. We highlight that the polynomials Tn zð Þ∈ T also have properties similar
to the original polynomials Pn zð Þ∈P as, for instance, they satisfy an orthogonality
condition on the unit circle and a three-term recurrence relation, their zeros lie all
on S and are simple, for n⩾ 1 the zeros of Tn zð Þ interlaces with those of Tnþ1 zð Þ and
so on—see [78, 79] for more details.

6. Conclusions

In this work, we reviewed the theory of self-conjugate, self-reciprocal, and self-
inversive polynomials. We discussed their main properties, how they are related to
each other, the main theorems regarding the distribution of their zeros and some
applications of these polynomials both in physics and mathematics. We hope that
this short review suits for a compact introduction of the subject, paving the way for
further developments in this interesting field of research.
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Hermite polynomials Möbius-transformed Hermite polynomials

H0 zð Þ ¼ 1 H0 zð Þ ¼ 1

H1 zð Þ ¼ 2z H1 zð Þ ¼ �2i� 2iz

H2 zð Þ ¼ �2þ 4z2 H2 zð Þ ¼ �6� 4z� 6z2

H3 zð Þ ¼ �12zþ 8z3 H3 zð Þ ¼ �20iþ 12izþ 12iz2 þ 20iz3

H4 zð Þ ¼ 12� 48z2 þ 16z4 H4 zð Þ ¼ 76þ 16zþ 72z2 þ 16z3 þ 76z4

Table 2.
Hermite and Möbius-transformed Hermite polynomials, up to 4th degree.
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Chapter 5

A Numerical Investigation on
the Structure of the Zeros of the
Q-Tangent Polynomials
Jung Yoog Kang and Cheon Seoung Ryoo

Abstract

We introduce q-tangent polynomials and their basic properties including
q-derivative and q-integral. By using Mathematica, we find approximate roots of
q-tangent polynomials. We also investigate relations of zeros between q-tangent
polynomials and classical tangent polynomials.

Keywords: q-tangent polynomials, q-derivative, q-integral, Newton dynamical
system, fixed point

2000 Mathematics Subject Classification: 11B68, 11B75, 12D10

1. Introduction

For a long time, studies on q-difference equations appeared in intensive works
especially by F. H. Jackson [1, 2], R. D. Carmichael [3], T. E. Mason [4], and other
authors [5–26]. An intensive and somewhat surprising interest in q-numbers
appeared in many areas of mathematics and applications including q-difference
equations, special functions, q-combinatorics, q-integrable systems, variational
q-calculus, q-series, and so on. In this paper, we introduce some basic definitions
and theorems (see [1–26]).

For any n∈C, the q-number is defined by

n½ �q ¼
1� qn

1� q
, ∣q∣ < 1: (1)

Definition 1.1. [1, 2, 9, 13] The q-derivative operator of any function f is defined by

Dq f xð Þ ¼ f xð Þ � f qxð Þ
1� qð Þx , x 6¼ 0, (2)

and Dq f 0ð Þ ¼ f 0 0ð Þ. We can prove that f is differentiable at 0, and it is clear that
Dqxn ¼ n½ �qxn�1.

Definition 1.2. [1, 2, 9, 13, 17] We define the q-integral as

ðb
0
f xð Þdqx ¼ 1� qð Þb ∑

∞

j¼0
q jf q jb
� �

: (3)
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If this function, f(x), is differentiable on the point x, the q-derivative in Defini-
tion 1.1 goes to the ordinary derivative in the classical analysis when q! 1.

Definition 1.3. [5, 17, 18, 21] The Gaussian binomial coefficients are defined by

m
r

� �

q
¼ m

r

� �

q
¼

0 if r >m

1� qmð Þ 1� qm�1ð Þ⋯ 1� qm�rþ1ð Þ
1� qð Þ 1� q2ð Þ⋯ 1� qrð Þ if r≤m

,

8><
>:

(4)

where m and r are non-negative integers. For r ¼ 0 the value is 1 since the
numerator and the denominator are both empty products. Like the classical binomial
coefficients, the Gaussian binomial coefficients are center-symmetric. There are
analogues of the binomial formula, and this definition has a number of properties.

Theorem 1.4. Let n, k be non-negative integers. Then we get.

i. Yn�1

k¼0
1þ qkt
� � ¼ ∑

n

k¼0
q

k
2

� �
n
k

� �

q
tk, (5)

ii.
Qn�1
k¼0

1
1�qktð Þ ¼ ∑

∞

k¼0

nþ k� 1

k

� �

q
tk:

Definition 1.5. [5, 26] Let z be any complex number with ∣z∣ < 1. Two forms of
q-exponential functions are defined by

eq zð Þ ¼ ∑
∞

n¼0

zn

n½ �q!
, eq�1 zð Þ ¼ ∑

∞

n¼0

zn

n½ �q�1 !
¼ ∑

∞

n¼0
q

n
2

� �
zn

n½ �q!
: (6)

Bernoulli, Euler, and Genocchi polynomials have been studied extensively by
many mathematicians(see [22–25]). In 2013, C. S. Ryoo introduced tangent
polynomials and he developed several properties of these polynomials (see
[22, 23]). The tangent numbers are closely related to Euler numbers.

Definition 1.6. [22–25] Tangent numbers Tn and tangent polynomials Tn xð Þ are
defined by means of the generating functions

∑
∞

n¼0
Tn

tn

n!
¼ 2

e2t þ 1
¼ 2 ∑

∞

m¼0
�1ð Þme2mt,

∑
∞

n¼0
Tn

tn

n!
¼ 2

e2t þ 1
etx ¼ 2 ∑

∞

m¼0
�1ð Þme 2mþxð Þt:

(7)

Theorem 1.7. For any positive integer n, we have

Tn xð Þ ¼ �1ð ÞnTn 2� xð Þ: (8)

Theorem 1.8. For any positive integer m ¼ oddð Þ, we have

Tn xð Þ ¼ mn ∑
m�1

i¼0
�1ð ÞiTn

2iþ x
m

� �
, n∈Zþ: (9)

Theorem 1.9. For n∈Zþ, we have

Tn xþ yð Þ ¼ ∑
n

k¼0

n
k

� �
Tk xð Þyn�k: (10)

90

Polynomials - Theory and Application

The main aim of this paper is to extend tangent numbers and polynomials, and
study some of their properties. Our paper is organized as follows: In Section 2, we
define q-tangent polynomials and find some properties of these polynomials. We
consider q-tangent polynomials in two parameters and establish some relations
between q-tangent polynomials and q-Euler or Bernoulli polynomials. In Section 3,
we observe approximate roots distributions of q-tangent polynomials and demon-
strate interesting phenomenon.

2. Some properties of the q-tangent polynomials

In this section we define the q-tangent numbers and polynomials and establish
some of their basic properties. we shall also study the q-tangent polynomials
involving two parameters. We shall find some important relations between these
polynomials and q-other polynomials.

Definition 2.1. For x, q∈C, we define q-tangent polynomials as

∑
∞

n¼0
T n,q xð Þ tn

n½ �q!
¼

2½ �q
eq 2tð Þ þ 1

eq txð Þ, ∣t∣ <
π

2
: (11)

From Definition 2.1, it follows that

∑
∞

n¼0
T n,q 0ð Þ tn

n½ �q!
¼ ∑

∞

n¼0
T n,q

tn

n½ �q!
¼

2½ �q
eq 2tð Þ þ 1

, (12)

where T n,q is q-tangent number. If q! 1, then it reduces to the classical tangent
polynomial(see [22–25]).

Theorem 2.2. Let x, q∈C. Then, the following hold.

i:  T n,q þ ∑
n

k¼0

n
k

� �

q
2n�kT k,q ¼

2½ �q if n ¼ 0

0 if n 6¼ 0
,

(
(13)

ii:  T n,q xð Þ þ ∑
n

k¼0

n
k

� �

q
2n�kT k,q xð Þ ¼ 2½ �qxn:

Proof. From the Definition 2.1, we have

2½ �q ¼ 1þ eq 2tð Þ� �
∑
∞

n¼0
T n,q

tn

n!

¼ ∑
∞

n¼0
T n,q þ ∑

n

k¼0

n

k

" #

q

2n�kT k,q

0
@

1
A tn

n!
:

(14)

Now comparing the coefficients of tn we find (i). For (ii) we use the relation

2½ �qeq txð Þ ¼ 1þ eq 2tð Þ� �
∑
∞

n¼0
T n,q xð Þ tn

n½ �q!

¼ ∑
∞

n¼0
T n,q xð Þ þ ∑

n

k¼0

n

k

" #

q

2n�kT k,q xð Þ
0
@

1
A tn

n!
,

(15)

and again compare the coefficients of tn. ☐
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If this function, f(x), is differentiable on the point x, the q-derivative in Defini-
tion 1.1 goes to the ordinary derivative in the classical analysis when q! 1.

Definition 1.3. [5, 17, 18, 21] The Gaussian binomial coefficients are defined by

m
r

� �

q
¼ m

r

� �

q
¼

0 if r >m

1� qmð Þ 1� qm�1ð Þ⋯ 1� qm�rþ1ð Þ
1� qð Þ 1� q2ð Þ⋯ 1� qrð Þ if r≤m

,

8><
>:

(4)

where m and r are non-negative integers. For r ¼ 0 the value is 1 since the
numerator and the denominator are both empty products. Like the classical binomial
coefficients, the Gaussian binomial coefficients are center-symmetric. There are
analogues of the binomial formula, and this definition has a number of properties.

Theorem 1.4. Let n, k be non-negative integers. Then we get.

i. Yn�1

k¼0
1þ qkt
� � ¼ ∑

n

k¼0
q

k
2

� �
n
k

� �

q
tk, (5)

ii.
Qn�1
k¼0

1
1�qktð Þ ¼ ∑

∞

k¼0

nþ k� 1

k

� �

q
tk:

Definition 1.5. [5, 26] Let z be any complex number with ∣z∣ < 1. Two forms of
q-exponential functions are defined by

eq zð Þ ¼ ∑
∞

n¼0

zn

n½ �q!
, eq�1 zð Þ ¼ ∑

∞

n¼0

zn

n½ �q�1 !
¼ ∑

∞

n¼0
q

n
2

� �
zn

n½ �q!
: (6)

Bernoulli, Euler, and Genocchi polynomials have been studied extensively by
many mathematicians(see [22–25]). In 2013, C. S. Ryoo introduced tangent
polynomials and he developed several properties of these polynomials (see
[22, 23]). The tangent numbers are closely related to Euler numbers.

Definition 1.6. [22–25] Tangent numbers Tn and tangent polynomials Tn xð Þ are
defined by means of the generating functions

∑
∞

n¼0
Tn

tn

n!
¼ 2

e2t þ 1
¼ 2 ∑

∞

m¼0
�1ð Þme2mt,

∑
∞

n¼0
Tn

tn

n!
¼ 2

e2t þ 1
etx ¼ 2 ∑

∞

m¼0
�1ð Þme 2mþxð Þt:

(7)

Theorem 1.7. For any positive integer n, we have

Tn xð Þ ¼ �1ð ÞnTn 2� xð Þ: (8)

Theorem 1.8. For any positive integer m ¼ oddð Þ, we have

Tn xð Þ ¼ mn ∑
m�1

i¼0
�1ð ÞiTn

2iþ x
m

� �
, n∈Zþ: (9)

Theorem 1.9. For n∈Zþ, we have

Tn xþ yð Þ ¼ ∑
n

k¼0

n
k

� �
Tk xð Þyn�k: (10)
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The main aim of this paper is to extend tangent numbers and polynomials, and
study some of their properties. Our paper is organized as follows: In Section 2, we
define q-tangent polynomials and find some properties of these polynomials. We
consider q-tangent polynomials in two parameters and establish some relations
between q-tangent polynomials and q-Euler or Bernoulli polynomials. In Section 3,
we observe approximate roots distributions of q-tangent polynomials and demon-
strate interesting phenomenon.

2. Some properties of the q-tangent polynomials

In this section we define the q-tangent numbers and polynomials and establish
some of their basic properties. we shall also study the q-tangent polynomials
involving two parameters. We shall find some important relations between these
polynomials and q-other polynomials.

Definition 2.1. For x, q∈C, we define q-tangent polynomials as

∑
∞

n¼0
T n,q xð Þ tn

n½ �q!
¼

2½ �q
eq 2tð Þ þ 1

eq txð Þ, ∣t∣ <
π

2
: (11)

From Definition 2.1, it follows that

∑
∞

n¼0
T n,q 0ð Þ tn

n½ �q!
¼ ∑

∞

n¼0
T n,q

tn

n½ �q!
¼

2½ �q
eq 2tð Þ þ 1

, (12)

where T n,q is q-tangent number. If q! 1, then it reduces to the classical tangent
polynomial(see [22–25]).

Theorem 2.2. Let x, q∈C. Then, the following hold.

i:  T n,q þ ∑
n

k¼0

n
k

� �

q
2n�kT k,q ¼

2½ �q if n ¼ 0

0 if n 6¼ 0
,

(
(13)

ii:  T n,q xð Þ þ ∑
n

k¼0

n
k

� �

q
2n�kT k,q xð Þ ¼ 2½ �qxn:

Proof. From the Definition 2.1, we have

2½ �q ¼ 1þ eq 2tð Þ� �
∑
∞

n¼0
T n,q

tn

n!

¼ ∑
∞

n¼0
T n,q þ ∑

n

k¼0

n

k

" #

q

2n�kT k,q

0
@

1
A tn

n!
:

(14)

Now comparing the coefficients of tn we find (i). For (ii) we use the relation

2½ �qeq txð Þ ¼ 1þ eq 2tð Þ� �
∑
∞

n¼0
T n,q xð Þ tn

n½ �q!

¼ ∑
∞

n¼0
T n,q xð Þ þ ∑

n

k¼0

n

k

" #

q

2n�kT k,q xð Þ
0
@

1
A tn

n!
,

(15)

and again compare the coefficients of tn. ☐
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Theorem 2.3. Let n be a non-negative integer. Then, the following holds

T n,q xð Þ ¼ ∑
n

k¼0

n
k

� �

q
T n�k,qxk: (16)

Proof. From the definition of the q-exponential function, we have

∑
∞

n¼0
T n,q xð Þ tn

n½ �q!
¼

2½ �q
eq 2tð Þ þ 1

eq txð Þ ¼ ∑
∞

n¼0
T n,q

tn

n½ �q!
∑
∞

n¼0
xn

tn

n½ �q!

¼ ∑
∞

n¼0
∑
n

k¼0

n

k

" #

q

T n�k,q xð Þxk
0
@

1
A tn

n½ �q!
:

(17)

The required relation now follows on comparing the coefficients of tn on both
sides. ☐

Theorem 2.4. Let n be a non-negative integer. Then, the following holds

T n,q ¼ ∑
n

k¼0

n
k

� �

q
�1ð Þn�kq

n� k
2

� �

T k,q xð Þxn�k: (18)

Proof. From the property of q-exponential function, it follows that

∑
∞

n¼0
T n,q

tn

n½ �q!
¼

2½ �q
eq 2 tð Þ þ 1

eq txð Þeq1 �txð Þ

¼ ∑
∞

n¼0
T n,q xð Þ tn

n½ �q!
∑
∞

n¼0
q

n

2

 !

�1ð Þnxn tn

n½ �q!

¼ ∑
∞

n¼0
∑
n

k¼0

n

k

" #

q

�1ð Þn�kq
n� k

2

 !

T k,q xð Þxn�k
0
@

1
A tn

n½ �q!
:

(19)

The required relation now follows immediately. ☐

In what follows, we consider q-derivative of eq txð Þ. Using the Mathematical
Induction, we find.

i:  k ¼ 1 : D 1ð Þ
q eq txð Þ ¼ ∑

∞

n¼1
xn�1

tn

n� 1½ �q!
: (20)

ii:  k ¼ i : D ið Þ
q eq txð Þ ¼ ∑

∞

n¼i
xn�i

tn

n� i½ �q!
:

If (ii) is true, then it follows that.

iii:  k ¼ iþ 1 : D iþ1ð Þ
q eq txð Þ ¼ D 1ð Þ

q;x ∑
∞

n¼i
xn�i

tn

n� i½ �q!

 !

¼ ∑
∞

n¼iþ1
xn� iþ1ð Þ tn

n� iþ 1ð Þ½ �q!

¼ tiþ1eq txð Þ:

(21)

We are now in the position to prove the following theorem.
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Theorem 2.5. For k∈N, the following holds

D kð Þ
q T n,q xð Þ ¼

n½ �q!
n� k½ �q!

T n�k,q xð Þ: (22)

Proof. Considering q-derivative of eq txð Þ, we find

D iþ1ð Þ
q ∑

∞

n¼0
T n,q xð Þ tn

n½ �q!
¼ ∑

∞

n¼0
D iþ1ð Þ

q T n,q xð Þ tn

n½ �q!

¼
2½ �q

eq 2tð Þ þ 1
D iþ1ð Þ

q eq txð Þ

¼ tiþ1
2½ �q

eq 2tð Þ þ 1
eq txð Þ

¼ ∑
∞

n¼0
nþ iþ 1ð Þ½ �q⋯ nþ 2½ �q nþ 1½ �q

� T n,q xð Þ t nþiþ1

nþ iþ 1ð Þ½ �q!

¼ ∑
∞

n¼0

n½ �q
nþ iþ 1ð Þ½ �q!

T n� iþ1ð Þ, q xð Þ tn

n½ �q!
,

(23)

which immediately gives the required result. ☐

Theorem 2.6. Let a, b be any real numbers. Then, we have

ðb
a
T n,q xð Þdqx ¼ ∑

nþ1

k¼0

1
nþ 1½ �q

T nþ1, q bð Þ � T nþ1, q að Þ� �
: (24)

Proof. From Theorem 2.3, we find

ðb
a
T n,q xð Þdqx ¼

ðb
a
∑
n

k¼0

n

k

2
4
3
5
q

T k,qxn�kdqx

¼ ∑
n

k¼0

n

k

2
4
3
5
q

T k,q
1

n� kþ 1½ �q
xn�kþ1

�������

b

a

¼ ∑
nþ1

k¼0

T nþ1, q bð Þ � T nþ1, q að Þ
nþ 1½ �q

:

(25)

☐

Definition 2.7. For x, y∈C, we define q-tangent polynomial with two
parameters as

∑
∞

n¼0
T n,q x; yð Þ tn

n½ �q!
¼

2½ �q
eq 2tð Þ þ 1

eq txð Þeq tyð Þ, ∣t∣ <
π

2
: (26)

From the Definition 2.7, it is clear that
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Theorem 2.3. Let n be a non-negative integer. Then, the following holds

T n,q xð Þ ¼ ∑
n

k¼0

n
k

� �

q
T n�k,qxk: (16)

Proof. From the definition of the q-exponential function, we have

∑
∞

n¼0
T n,q xð Þ tn

n½ �q!
¼

2½ �q
eq 2tð Þ þ 1

eq txð Þ ¼ ∑
∞

n¼0
T n,q

tn

n½ �q!
∑
∞

n¼0
xn

tn

n½ �q!

¼ ∑
∞

n¼0
∑
n

k¼0

n

k

" #

q

T n�k,q xð Þxk
0
@

1
A tn

n½ �q!
:

(17)

The required relation now follows on comparing the coefficients of tn on both
sides. ☐

Theorem 2.4. Let n be a non-negative integer. Then, the following holds

T n,q ¼ ∑
n

k¼0

n
k

� �

q
�1ð Þn�kq

n� k
2

� �

T k,q xð Þxn�k: (18)

Proof. From the property of q-exponential function, it follows that

∑
∞

n¼0
T n,q

tn

n½ �q!
¼

2½ �q
eq 2 tð Þ þ 1

eq txð Þeq1 �txð Þ

¼ ∑
∞

n¼0
T n,q xð Þ tn

n½ �q!
∑
∞

n¼0
q

n

2

 !

�1ð Þnxn tn

n½ �q!

¼ ∑
∞

n¼0
∑
n

k¼0

n

k

" #

q

�1ð Þn�kq
n� k

2

 !

T k,q xð Þxn�k
0
@

1
A tn

n½ �q!
:

(19)

The required relation now follows immediately. ☐

In what follows, we consider q-derivative of eq txð Þ. Using the Mathematical
Induction, we find.

i:  k ¼ 1 : D 1ð Þ
q eq txð Þ ¼ ∑

∞

n¼1
xn�1

tn

n� 1½ �q!
: (20)

ii:  k ¼ i : D ið Þ
q eq txð Þ ¼ ∑

∞

n¼i
xn�i

tn

n� i½ �q!
:

If (ii) is true, then it follows that.

iii:  k ¼ iþ 1 : D iþ1ð Þ
q eq txð Þ ¼ D 1ð Þ

q;x ∑
∞

n¼i
xn�i

tn

n� i½ �q!

 !

¼ ∑
∞

n¼iþ1
xn� iþ1ð Þ tn

n� iþ 1ð Þ½ �q!

¼ tiþ1eq txð Þ:

(21)

We are now in the position to prove the following theorem.
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Theorem 2.5. For k∈N, the following holds

D kð Þ
q T n,q xð Þ ¼

n½ �q!
n� k½ �q!

T n�k,q xð Þ: (22)

Proof. Considering q-derivative of eq txð Þ, we find

D iþ1ð Þ
q ∑

∞

n¼0
T n,q xð Þ tn

n½ �q!
¼ ∑

∞

n¼0
D iþ1ð Þ

q T n,q xð Þ tn

n½ �q!

¼
2½ �q

eq 2tð Þ þ 1
D iþ1ð Þ

q eq txð Þ

¼ tiþ1
2½ �q

eq 2tð Þ þ 1
eq txð Þ

¼ ∑
∞

n¼0
nþ iþ 1ð Þ½ �q⋯ nþ 2½ �q nþ 1½ �q

� T n,q xð Þ t nþiþ1

nþ iþ 1ð Þ½ �q!

¼ ∑
∞

n¼0

n½ �q
nþ iþ 1ð Þ½ �q!

T n� iþ1ð Þ, q xð Þ tn

n½ �q!
,

(23)

which immediately gives the required result. ☐

Theorem 2.6. Let a, b be any real numbers. Then, we have

ðb
a
T n,q xð Þdqx ¼ ∑

nþ1

k¼0

1
nþ 1½ �q

T nþ1, q bð Þ � T nþ1, q að Þ� �
: (24)

Proof. From Theorem 2.3, we find

ðb
a
T n,q xð Þdqx ¼

ðb
a
∑
n

k¼0

n

k

2
4
3
5
q

T k,qxn�kdqx

¼ ∑
n

k¼0

n

k

2
4
3
5
q

T k,q
1

n� kþ 1½ �q
xn�kþ1

�������

b

a

¼ ∑
nþ1

k¼0

T nþ1, q bð Þ � T nþ1, q að Þ
nþ 1½ �q

:

(25)

☐

Definition 2.7. For x, y∈C, we define q-tangent polynomial with two
parameters as

∑
∞

n¼0
T n,q x; yð Þ tn

n½ �q!
¼

2½ �q
eq 2tð Þ þ 1

eq txð Þeq tyð Þ, ∣t∣ <
π

2
: (26)

From the Definition 2.7, it is clear that
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∑
∞

n¼0
T n,q x;0ð Þ tn

n½ �q!
¼ ∑

∞

n¼0
T n,q xð Þ tn

n½ �q!
¼

2½ �q
eq 2 tð Þ þ 1

eq txð Þ,

∑
∞

n¼0
T n,q 0;0ð Þ tn

n½ �q!
¼ ∑

∞

n¼0
T n,q

tn

n½ �q!
¼ 2½ �q

eq 2tð Þ þ 1
,

(27)

where T n,q is q-tangent number. We also note that the original tangent number,
T n,

lim
q!1

∑
∞

n¼0
T n,q

tn

n½ �q!
¼ ∑

∞

n¼0
Tn

tn

n!
¼ 2

e2t þ 1
, (28)

where q! 1.
Theorem 2.8. Let x, y be any complex numbers. Then, the following hold.

i:  T n,q x; yð Þ ¼ ∑
n

k¼0

n
k

� �

q
T n�k,q xð Þyk, (29)

ii:  T n,q x; yð Þ ¼ ∑
n

l¼0

n
k

� �

q
T n�l, q ∑

l

k¼0

l
k

� �

q
xl�kyk:

Proof. From the Definition 2.7, we have

∑
∞

n¼0
T n,q x; yð Þ tn

n½ �q!
¼ 2½ �q

eq 2tð Þ þ 1
eq txð Þeq tyð Þ

¼ ∑
∞

n¼0
T n,q xð Þ tn

n½ �q!
∑
∞

n¼0
yn

tn

n½ �q!
:

(30)

Using Cauchy’s product and the method of coefficient comparison in the above
relation, we find (i). Next, we transform q-tangent polynomials in two parameters as

∑
∞

n¼0
T n,q x; yð Þ tn

n½ �q!
¼

2½ �q
eq 2tð Þ þ 1

eq txð Þeq tyð Þ

¼ ∑
∞

n¼0
T n,q

tn

n½ �q!
∑
∞

n¼0
xn

tn

n½ �q!
∑
∞

n¼0
yn

tn

n½ �q!
:

(31)

Now following same procedure as in (i), we obtain (ii). ☐

Theorem 2.9. Setting y ¼ 2 in q-tangent polynomials with two parameters, the
following relation holds

2½ �qxn ¼ T n,q x; 2ð Þ þ T n,q xð Þ: (32)

Proof. Using q-tangent polynomials and its polynomials with two parameters, we
have

∑
∞

n¼0
T n,q x; 2ð Þ tn

n½ �q!
þ ∑

∞

n¼0
T n,q xð Þ tn

n½ �q!
¼

2½ �qeq 2tð Þ
eq 2tð Þ þ 1

eq txð Þ þ
2½ �q

eq 2tð Þ þ 1
eq txð Þ

¼ 2½ �qeq txð Þ
(33)

Now from the definition of q-exponential function, the required relation
follows. ☐
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Theorem 2.9 is interesting as it leads to the relation

xn ¼ T n,q x; 2ð Þ þ T n,q xð Þ
2½ �q

: (34)

Theorem 2.10. Let qj j < 1. Then, the following holds

T n,q xð Þ ¼ ∑
n

k¼0

n
k

� �

q
�1ð ÞkT k, 1q

2ð Þxn�k: (35)

Proof. To prove the relation, we note that

e1
q
�2tð Þ ¼ Eq �2tð Þ, (36)

where Eq tð Þ ¼ eq�1 tð Þ. Using the above equation we can represent the q-tangent
polynomials as

∑
∞

n¼0
T n,q xð Þ tn

n½ �q!
¼

2½ �q
eq 2tð Þ þ 1

eq txð Þ

¼
2½ �q

1þ Eq �2tð Þ Eq �2tð Þeq txð Þ

¼ 2½ �q
e1
q
�2tð Þ þ 1

e1
q
�2tð Þeq txð Þ

¼ ∑
∞

n¼0
T n, 1q

2ð Þ �tð Þ
n

n½ �q!
∑
∞

n¼0
xn

tn

n½ �q!

¼ ∑
∞

n¼0
∑
n

k¼0

n

k

2
4
3
5
q

�1ð ÞkTk, 1q
2ð Þxn�k

8><
>:

9>=
>;

tn

n½ �q!
,

(37)

which leads to the required relation immediately. ☐
Now we shall find relations between q-tangent polynomials and others

polynomials. For this, first we introduce well known polynomials by using
q-numbers.

Definition 2.11. We define q-Euler polynomials, En,q xð Þ, and q-Bernoulli
polynomials, Bn,q xð Þ, as

∑
∞

n¼0
En,q xð Þ tn

n½ �q!
¼

2½ �q
eq tð Þ þ 1

eq txð Þ, ∣t∣ < π,

∑
∞

n¼0
Bn,q xð Þ tn

n½ �q!
¼ t

eq tð Þ � 1
eq txð Þ, ∣t∣ < 2π:

(38)

Theorem 2.12. For x, y∈C, the following relation holds

T n,q x; yð Þ ¼ 1
2½ �q

∑
n

l¼0

n
k

� �

q

T n�l, q xð Þ
ml þ ∑

n�l

k¼0

n� l
k

� �

q

T k,q xð Þ
mn�k

 !
El,q myð Þ: (39)

Proof. Transforming q-tangent polynomials containing two parameters, we find
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∑
∞

n¼0
T n,q x;0ð Þ tn

n½ �q!
¼ ∑

∞

n¼0
T n,q xð Þ tn

n½ �q!
¼

2½ �q
eq 2 tð Þ þ 1

eq txð Þ,

∑
∞

n¼0
T n,q 0;0ð Þ tn

n½ �q!
¼ ∑

∞

n¼0
T n,q

tn

n½ �q!
¼ 2½ �q

eq 2tð Þ þ 1
,

(27)

where T n,q is q-tangent number. We also note that the original tangent number,
T n,

lim
q!1

∑
∞

n¼0
T n,q

tn

n½ �q!
¼ ∑

∞

n¼0
Tn

tn

n!
¼ 2

e2t þ 1
, (28)

where q! 1.
Theorem 2.8. Let x, y be any complex numbers. Then, the following hold.

i:  T n,q x; yð Þ ¼ ∑
n

k¼0

n
k

� �

q
T n�k,q xð Þyk, (29)

ii:  T n,q x; yð Þ ¼ ∑
n

l¼0

n
k

� �

q
T n�l, q ∑

l

k¼0

l
k

� �

q
xl�kyk:

Proof. From the Definition 2.7, we have

∑
∞

n¼0
T n,q x; yð Þ tn

n½ �q!
¼ 2½ �q

eq 2tð Þ þ 1
eq txð Þeq tyð Þ

¼ ∑
∞

n¼0
T n,q xð Þ tn

n½ �q!
∑
∞

n¼0
yn

tn

n½ �q!
:

(30)

Using Cauchy’s product and the method of coefficient comparison in the above
relation, we find (i). Next, we transform q-tangent polynomials in two parameters as

∑
∞

n¼0
T n,q x; yð Þ tn

n½ �q!
¼

2½ �q
eq 2tð Þ þ 1

eq txð Þeq tyð Þ

¼ ∑
∞

n¼0
T n,q

tn

n½ �q!
∑
∞

n¼0
xn

tn

n½ �q!
∑
∞

n¼0
yn

tn

n½ �q!
:

(31)

Now following same procedure as in (i), we obtain (ii). ☐

Theorem 2.9. Setting y ¼ 2 in q-tangent polynomials with two parameters, the
following relation holds

2½ �qxn ¼ T n,q x; 2ð Þ þ T n,q xð Þ: (32)

Proof. Using q-tangent polynomials and its polynomials with two parameters, we
have

∑
∞

n¼0
T n,q x; 2ð Þ tn

n½ �q!
þ ∑

∞

n¼0
T n,q xð Þ tn

n½ �q!
¼

2½ �qeq 2tð Þ
eq 2tð Þ þ 1

eq txð Þ þ
2½ �q

eq 2tð Þ þ 1
eq txð Þ

¼ 2½ �qeq txð Þ
(33)

Now from the definition of q-exponential function, the required relation
follows. ☐
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Theorem 2.9 is interesting as it leads to the relation

xn ¼ T n,q x; 2ð Þ þ T n,q xð Þ
2½ �q

: (34)

Theorem 2.10. Let qj j < 1. Then, the following holds

T n,q xð Þ ¼ ∑
n

k¼0

n
k

� �

q
�1ð ÞkT k, 1q

2ð Þxn�k: (35)

Proof. To prove the relation, we note that

e1
q
�2tð Þ ¼ Eq �2tð Þ, (36)

where Eq tð Þ ¼ eq�1 tð Þ. Using the above equation we can represent the q-tangent
polynomials as

∑
∞

n¼0
T n,q xð Þ tn

n½ �q!
¼

2½ �q
eq 2tð Þ þ 1

eq txð Þ

¼
2½ �q

1þ Eq �2tð Þ Eq �2tð Þeq txð Þ

¼ 2½ �q
e1
q
�2tð Þ þ 1

e1
q
�2tð Þeq txð Þ

¼ ∑
∞

n¼0
T n, 1q

2ð Þ �tð Þ
n

n½ �q!
∑
∞

n¼0
xn

tn

n½ �q!

¼ ∑
∞

n¼0
∑
n

k¼0

n

k

2
4
3
5
q

�1ð ÞkTk, 1q
2ð Þxn�k

8><
>:

9>=
>;

tn

n½ �q!
,

(37)

which leads to the required relation immediately. ☐
Now we shall find relations between q-tangent polynomials and others

polynomials. For this, first we introduce well known polynomials by using
q-numbers.

Definition 2.11. We define q-Euler polynomials, En,q xð Þ, and q-Bernoulli
polynomials, Bn,q xð Þ, as

∑
∞

n¼0
En,q xð Þ tn

n½ �q!
¼

2½ �q
eq tð Þ þ 1

eq txð Þ, ∣t∣ < π,

∑
∞

n¼0
Bn,q xð Þ tn

n½ �q!
¼ t

eq tð Þ � 1
eq txð Þ, ∣t∣ < 2π:

(38)

Theorem 2.12. For x, y∈C, the following relation holds

T n,q x; yð Þ ¼ 1
2½ �q

∑
n

l¼0

n
k

� �

q

T n�l, q xð Þ
ml þ ∑

n�l

k¼0

n� l
k

� �

q

T k,q xð Þ
mn�k

 !
El,q myð Þ: (39)

Proof. Transforming q-tangent polynomials containing two parameters, we find
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2½ �q
eq 2 tð Þ þ 1

eq txð Þeq tyð Þ ¼
2½ �q

eq t
m

� �þ 1
eq tyð Þ

 !
eq t

m

� �þ 1
2½ �q

 !
2½ �q

eq 2tð Þ þ 1
eq txð Þ

 !
: (40)

Thus, for the relation between q-tangent polynomials of two parameters and
q-Euler polynomials, we have

∑
∞

n¼0
T n,q x; yð Þ tn

n½ �q!

¼ ∑
∞

n¼0
En,q myð Þ tn

mn n½ �q!
∑
∞

n¼0
T n,q xð Þ tn

n½ �q!
∑
∞

n¼0

1
2½ �q

tn

mn n½ �q!
þ 1

2½ �q

 !

¼ 1
2½ �q

∑
∞

n¼0
∑
n

l¼0

n

l

" #

q

El,q myð Þ∑
n�l

k¼0

n� l

k

" #

q

T k,q xð Þ
mn�k

tn

n½ �q!

þ 1
2½ �q

∑
∞

n¼0
∑
n

l¼0

n

l

" #

q

El,q myð Þ T n�l, q xð Þ
ml

tn

n½ �q!
,

(41)

which on comparing the coefficients immediately gives the required relation. ☐

Corollary 2.13. From Theorem 2.12, the following hold.

i:  T n,q x; yð Þ ¼ 1
2½ �q

∑
n

l¼0

n
l

� �

q

T n�l, q xð Þ
ml þ ∑

n�l

k¼0

n� l
k

� �

q

T k,q xð Þ
mn�k

 !
El,q myð Þ: (42)

ii:  T n x; yð Þ ¼ 1
2
∑
n

l¼0

n
l

� �
T n�l xð Þ

ml þ ∑
n�l

k¼0

n� l
k

� �
T k xð Þ
mn�k

� �
El myð Þ:

Theorem 2.14. For x, y∈C, the following relation holds

T n�1, q x; yð Þ ¼ 1
n½ �q

∑
n

l¼0

n
k

� �

q
∑
n�l

k¼0

n� l
k

� �

q

T k,q xð Þ
mn�k �

T n�l, q xð Þ
ml

 !
Bl,q myð Þ: (43)

Proof. We note that

2½ �q
eq 2tð Þ þ 1

eq txð Þeq tyð Þ ¼ t
eq t

m

� �� 1
eq tyð Þ

 !
eq t

m

� �� 1
t

� � 2½ �q
eq 2tð Þ þ 1

eq txð Þ
 !

: (44)

Thus as in Theorem 2.12, we have

∑
∞

n¼0
T n,q x; yð Þ tn

n½ �q!

¼ ∑
∞

n¼0

tn�1

mn n½ �q!
� 1

t

 !
∑
∞

n¼0
Bn,q myð Þ tn

mn n½ �q!
∑
∞

n¼0
T n,q xð Þ tn

n½ �q!

¼ ∑
∞

n¼0
∑
n

l¼0

n

l

" #

q

∑
n�l

k¼0

n� l

k

" #

q

T k,q xð Þ
mn�k Bl,q myð Þ

0
@

1
A tn�1

n½ �q!

�∑
∞

n¼0
∑
n

l¼0

n

l

" #

q

T n�l,q xð Þ
ml Bl,q myð Þ

0
@

1
A tn�1

n½ �q!
:

(45)
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The required relation now follows on comparing the coefficients. ☐

Corollary 2.15. From the Theorem 2.14, the following relations hold.

i:  T n�1, q x; yð Þ ¼ 1
n½ �q

∑
n

l¼0

n
l

� �

q
∑
n�l

k¼0

n� l
k

� �

q

T k,q xð Þ
mn�k �

T n�l, q xð Þ
ml

 !
Bl,q myð Þ: (46)

ii:  T n�1 x; yð Þ ¼ 1
n
∑
n

l¼0

n
l

� �
∑
n�l

k¼0

n� l
k

� �
T k xð Þ
mn�k �

T n�l xð Þ
ml

� �
Bl myð Þ:

3. The observation of scattering zeros of the q-tangent polynomials

In this section, we will find the approximate structure and shape of the roots
according to the changes in n and q. We will extend this to identify the fixed points
and try to understand the structure of the composite function using the Newton
method.

The first five q-tangent polynomials are:

T 0,q xð Þ ¼ 1þ q
2

,

T 1, q xð Þ ¼ 1
2

1þ qð Þ �1þ xð Þ,

T 2,q xð Þ ¼ 1
2

1þ qð Þ 1þ q �1þ xð Þ þ x� x2
� �

,

T 3, q xð Þ ¼ 1
2

1þ qð Þ �1þ q 2� �2þ qð Þqð Þ � xþ q3x� 1þ qþ q2
� �

x2 þ x3
� �

,

T 4, q xð Þ ¼ 1
2

1þ qð Þð �1þ qð Þ 1þ qð Þ 1þ �4þ qð Þqð Þ 1þ qþ q2
� �

� 1þ qð Þ2 1þ �3þ qð Þqð Þ 1þ q2ð Þx
þ �1þ qð Þ 1þ q2ð Þ 1þ qþ q2ð Þx2 � 1þ qð Þ 1þ q2ð Þx3 þ x4Þ:

(47)

Using Mathematica, we will examine the approximate movement of the roots. In
Figure 1, the x-axis means the numbers of real zeros and the y-axis means the
numbers of complex zeros in the q-tangent polynomials. When it moves from left to
right, it changes to n = 30, 40, 50, and when it is fixed at q = 0.1, the approximate
shape of the root appears to be almost circular. The center is identified as the origin,
and it has 2.0 as an approximate root, which is unusual.

Figure 2 shows the shape of the approximate roots when n is changed to the
above conditions and fixed at q = 0.5.

Figure 1.
Zeros of T n,0:1 xð Þ for n = 30, 40, 50.
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2½ �q
eq 2 tð Þ þ 1

eq txð Þeq tyð Þ ¼
2½ �q

eq t
m

� �þ 1
eq tyð Þ

 !
eq t

m

� �þ 1
2½ �q

 !
2½ �q

eq 2tð Þ þ 1
eq txð Þ

 !
: (40)

Thus, for the relation between q-tangent polynomials of two parameters and
q-Euler polynomials, we have

∑
∞

n¼0
T n,q x; yð Þ tn

n½ �q!

¼ ∑
∞

n¼0
En,q myð Þ tn

mn n½ �q!
∑
∞

n¼0
T n,q xð Þ tn

n½ �q!
∑
∞

n¼0

1
2½ �q

tn

mn n½ �q!
þ 1

2½ �q

 !

¼ 1
2½ �q

∑
∞

n¼0
∑
n

l¼0

n

l

" #

q

El,q myð Þ∑
n�l

k¼0

n� l

k

" #

q

T k,q xð Þ
mn�k

tn

n½ �q!

þ 1
2½ �q

∑
∞

n¼0
∑
n

l¼0

n

l

" #

q

El,q myð Þ T n�l, q xð Þ
ml

tn

n½ �q!
,

(41)

which on comparing the coefficients immediately gives the required relation. ☐

Corollary 2.13. From Theorem 2.12, the following hold.

i:  T n,q x; yð Þ ¼ 1
2½ �q

∑
n

l¼0

n
l

� �

q

T n�l, q xð Þ
ml þ ∑

n�l

k¼0

n� l
k

� �

q

T k,q xð Þ
mn�k

 !
El,q myð Þ: (42)

ii:  T n x; yð Þ ¼ 1
2
∑
n

l¼0

n
l

� �
T n�l xð Þ

ml þ ∑
n�l

k¼0

n� l
k

� �
T k xð Þ
mn�k

� �
El myð Þ:

Theorem 2.14. For x, y∈C, the following relation holds

T n�1, q x; yð Þ ¼ 1
n½ �q

∑
n

l¼0

n
k

� �

q
∑
n�l

k¼0

n� l
k

� �

q

T k,q xð Þ
mn�k �

T n�l, q xð Þ
ml

 !
Bl,q myð Þ: (43)

Proof. We note that

2½ �q
eq 2tð Þ þ 1

eq txð Þeq tyð Þ ¼ t
eq t

m

� �� 1
eq tyð Þ

 !
eq t

m

� �� 1
t

� � 2½ �q
eq 2tð Þ þ 1

eq txð Þ
 !

: (44)

Thus as in Theorem 2.12, we have

∑
∞

n¼0
T n,q x; yð Þ tn

n½ �q!

¼ ∑
∞

n¼0

tn�1

mn n½ �q!
� 1

t

 !
∑
∞

n¼0
Bn,q myð Þ tn

mn n½ �q!
∑
∞

n¼0
T n,q xð Þ tn

n½ �q!

¼ ∑
∞

n¼0
∑
n

l¼0

n

l

" #

q

∑
n�l

k¼0

n� l

k

" #

q

T k,q xð Þ
mn�k Bl,q myð Þ

0
@

1
A tn�1

n½ �q!

�∑
∞

n¼0
∑
n

l¼0

n

l

" #

q

T n�l,q xð Þ
ml Bl,q myð Þ

0
@

1
A tn�1

n½ �q!
:

(45)
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The required relation now follows on comparing the coefficients. ☐

Corollary 2.15. From the Theorem 2.14, the following relations hold.

i:  T n�1, q x; yð Þ ¼ 1
n½ �q

∑
n

l¼0

n
l

� �

q
∑
n�l

k¼0

n� l
k

� �

q

T k,q xð Þ
mn�k �

T n�l, q xð Þ
ml

 !
Bl,q myð Þ: (46)

ii:  T n�1 x; yð Þ ¼ 1
n
∑
n

l¼0

n
l

� �
∑
n�l

k¼0

n� l
k

� �
T k xð Þ
mn�k �

T n�l xð Þ
ml

� �
Bl myð Þ:

3. The observation of scattering zeros of the q-tangent polynomials

In this section, we will find the approximate structure and shape of the roots
according to the changes in n and q. We will extend this to identify the fixed points
and try to understand the structure of the composite function using the Newton
method.

The first five q-tangent polynomials are:

T 0,q xð Þ ¼ 1þ q
2

,

T 1, q xð Þ ¼ 1
2

1þ qð Þ �1þ xð Þ,

T 2,q xð Þ ¼ 1
2

1þ qð Þ 1þ q �1þ xð Þ þ x� x2
� �

,

T 3, q xð Þ ¼ 1
2

1þ qð Þ �1þ q 2� �2þ qð Þqð Þ � xþ q3x� 1þ qþ q2
� �

x2 þ x3
� �

,

T 4, q xð Þ ¼ 1
2

1þ qð Þð �1þ qð Þ 1þ qð Þ 1þ �4þ qð Þqð Þ 1þ qþ q2
� �

� 1þ qð Þ2 1þ �3þ qð Þqð Þ 1þ q2ð Þx
þ �1þ qð Þ 1þ q2ð Þ 1þ qþ q2ð Þx2 � 1þ qð Þ 1þ q2ð Þx3 þ x4Þ:

(47)

Using Mathematica, we will examine the approximate movement of the roots. In
Figure 1, the x-axis means the numbers of real zeros and the y-axis means the
numbers of complex zeros in the q-tangent polynomials. When it moves from left to
right, it changes to n = 30, 40, 50, and when it is fixed at q = 0.1, the approximate
shape of the root appears to be almost circular. The center is identified as the origin,
and it has 2.0 as an approximate root, which is unusual.

Figure 2 shows the shape of the approximate roots when n is changed to the
above conditions and fixed at q = 0.5.

Figure 1.
Zeros of T n,0:1 xð Þ for n = 30, 40, 50.
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In Figure 2, the shape of the root changes to an ellipse, unlike the q = 0.1
condition, and the widening phenomenon appears when the real number is 0.5. In
addition, like the previous Figure 1, we can see that it has a common approximate
root at 2.0. In the following Figure 3, n of the far-left figure is 30, and it increases by
10 while moving to the right, and the far-right figure shows the shape of the root
when n = 50 and is fixed at q = 0.9.

In Figure 3, the roots have a general tangent polynomial shape with similar
properties (see [22–25]). If each approximate root obtained in the previous step is
piled up according to the value of n, it will appear as shown in Figure 4. The left
Figure 4 is q = 0.1 with n from 1 to 50. The middle Figure 4 is q = 0.5 with n from 1
to 50. The right Figure 4 is q = 0.9 with n from 1 to 50.

Let f : D! D be a complex function, with D as a subset of C. We define the
iterated maps of the complex function as the following:

f r : z0 ↦ f ðf ð⋯ðf|fflfflfflfflffl{zfflfflfflfflffl}
r

z0ð Þ⋯ÞÞÞ (48)

Figure 2.
Zeros of T n;0:5 xð Þ for n = 30, 40, 50.

Figure 3.
Zeros of T n;0:9 xð Þ for n = 30, 40, 50.

Figure 4.
Zeros of T n,q xð Þ for q = 0.1, 0.5, 0.9, 1 ≤ n ≤ 50.

98

Polynomials - Theory and Application

The iterates of f are the functions f , f ∘ f , f ∘ f ∘ f ,…, which are denoted
f 1, f 2, f 3,… If z∈C, and then the orbit of z0 under f is the sequence
< z0, f z0ð Þ, f f z0ð Þð Þ,⋯ > .

We consider the Newton’s dynamical system as follows [12, 15, 20]:

C∞ : R xð Þ ¼ x� T xð Þ
T 0 xð Þ

� �
: (49)

R is called the Newton iteration function of T . It can be considered that the fixed
points of R are the zeros of T and all the fixed points of R are attracting. R may also
have one or more attracting cycles.

For x∈C, we consider T 4, q xð Þ, and then this polynomial has four distinct com-
plex numbers, ai i ¼ 1; 2; 3;4ð Þ such that T 4, q aið Þ ¼ 0. Using a computer, we obtain
the approximate zeros (Table 1) as follows:

In Newton’s method, the generalized expectation is that a typical orbit {R(x)}
will converge to one of the roots of T 4, q xð Þ for x0 ∈C. If we choose x0, which is
sufficiently close to ai, then this proves that

lim
r!∞

R x0ð Þ ¼ ai, for i ¼ 1; 2; 3; 4: (50)

When it is given a point x0 in the complex plane, we want to determine whether
the orbit of x0 under the action of R(x) converges to one of the roots of the
equation. The orbit of x0 under the action of R also appears by calculating until 30
iterations or the absolute difference value of the last two iterations is within 10�6.

The output in Figure 5 is the last calculated orbit value. We construct a function,
which assigns one of four colors for each point according to the outcome of R in the
plane. If an orbit of x0 for q = 0.1 converges to�0.672809, �0.0821877 � 0.710388i,
�0.0821877 + 0.710388i and 1.94818, then we denote the red, blue, yellow, and
sky-blue, respectively(the left figure). For example, the yellow region for the left
figure represents the part of the basin of attraction of a3 = �0.0821877 + 0.710388i.

i q = 0.1 q = 0.5 q = 0.9

1 �0.672809 �0.581881 � 0.412941i �1.10249
2 �0.0821877 � 0.710388i �0.581881 + 0.412941i �0.158841
3 �0.0821877 + 0.710388i 0.907024 1.84004

4 1.94818 2.13174 2.86029

Table 1.
Approximate zeros of T 4,q xð Þ.

Figure 5.
Orbit of x0 under the action of R for T 4, q xð Þ for q = 0.1, 0.5, 0.9.
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In Figure 2, the shape of the root changes to an ellipse, unlike the q = 0.1
condition, and the widening phenomenon appears when the real number is 0.5. In
addition, like the previous Figure 1, we can see that it has a common approximate
root at 2.0. In the following Figure 3, n of the far-left figure is 30, and it increases by
10 while moving to the right, and the far-right figure shows the shape of the root
when n = 50 and is fixed at q = 0.9.

In Figure 3, the roots have a general tangent polynomial shape with similar
properties (see [22–25]). If each approximate root obtained in the previous step is
piled up according to the value of n, it will appear as shown in Figure 4. The left
Figure 4 is q = 0.1 with n from 1 to 50. The middle Figure 4 is q = 0.5 with n from 1
to 50. The right Figure 4 is q = 0.9 with n from 1 to 50.

Let f : D! D be a complex function, with D as a subset of C. We define the
iterated maps of the complex function as the following:

f r : z0 ↦ f ðf ð⋯ðf|fflfflfflfflffl{zfflfflfflfflffl}
r

z0ð Þ⋯ÞÞÞ (48)

Figure 2.
Zeros of T n;0:5 xð Þ for n = 30, 40, 50.

Figure 3.
Zeros of T n;0:9 xð Þ for n = 30, 40, 50.

Figure 4.
Zeros of T n,q xð Þ for q = 0.1, 0.5, 0.9, 1 ≤ n ≤ 50.
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The iterates of f are the functions f , f ∘ f , f ∘ f ∘ f ,…, which are denoted
f 1, f 2, f 3,… If z∈C, and then the orbit of z0 under f is the sequence
< z0, f z0ð Þ, f f z0ð Þð Þ,⋯ > .

We consider the Newton’s dynamical system as follows [12, 15, 20]:

C∞ : R xð Þ ¼ x� T xð Þ
T 0 xð Þ

� �
: (49)

R is called the Newton iteration function of T . It can be considered that the fixed
points of R are the zeros of T and all the fixed points of R are attracting. R may also
have one or more attracting cycles.

For x∈C, we consider T 4, q xð Þ, and then this polynomial has four distinct com-
plex numbers, ai i ¼ 1; 2; 3;4ð Þ such that T 4, q aið Þ ¼ 0. Using a computer, we obtain
the approximate zeros (Table 1) as follows:

In Newton’s method, the generalized expectation is that a typical orbit {R(x)}
will converge to one of the roots of T 4, q xð Þ for x0 ∈C. If we choose x0, which is
sufficiently close to ai, then this proves that

lim
r!∞

R x0ð Þ ¼ ai, for i ¼ 1; 2; 3; 4: (50)

When it is given a point x0 in the complex plane, we want to determine whether
the orbit of x0 under the action of R(x) converges to one of the roots of the
equation. The orbit of x0 under the action of R also appears by calculating until 30
iterations or the absolute difference value of the last two iterations is within 10�6.

The output in Figure 5 is the last calculated orbit value. We construct a function,
which assigns one of four colors for each point according to the outcome of R in the
plane. If an orbit of x0 for q = 0.1 converges to�0.672809, �0.0821877 � 0.710388i,
�0.0821877 + 0.710388i and 1.94818, then we denote the red, blue, yellow, and
sky-blue, respectively(the left figure). For example, the yellow region for the left
figure represents the part of the basin of attraction of a3 = �0.0821877 + 0.710388i.

i q = 0.1 q = 0.5 q = 0.9

1 �0.672809 �0.581881 � 0.412941i �1.10249
2 �0.0821877 � 0.710388i �0.581881 + 0.412941i �0.158841
3 �0.0821877 + 0.710388i 0.907024 1.84004

4 1.94818 2.13174 2.86029

Table 1.
Approximate zeros of T 4,q xð Þ.

Figure 5.
Orbit of x0 under the action of R for T 4, q xð Þ for q = 0.1, 0.5, 0.9.
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If we use T 3;0:1 xð Þ to draw a figure using the Newton method, we can obtain
Figure 6. The picture on the left shows three roots, and the colors are blue, red, and
ivory in the counterclockwise direction. When we examine the area closely, we can
see that it converges to an approximate value in each color area. The convergence
value in the blue area is �0:379202þ 0:523651i, that in the red area is
�0:379202� 0:523651i, and that in the ivory area is 1.8684. We can also see that it
shows self-similarity at the boundary point as divided into three areas. The figure
on the right is obtained by 2-times iterated q-tangent polynomials, T 2

3;0:1 xð Þ, and the
area is divided into nine colors “gray (x ¼ 2:31831), scarlet
(x ¼ 1:76736þ 0:216319i), light brown (x ¼ 0:137247 þ 0:59473i), sky blue
(x ¼ �0:604153þ 1:19884i), blue (x ¼ �0:794606þ 0:378411i), red
(x ¼ �0:794606� 0:378411i), ivory (x ¼ �0:604153� 1:19884i), green
(x ¼ 0:137247 � 0:59473i), and navy blue (x ¼ 1:76736� 0:216319i) in the
counterclockwise direction. This also shows self-similarity at the boundary.

In Figure 7, we express the coloring for T 2
3;0:1 xð Þ.

Conjecture 3.1. The q-tangent polynomials always have self-similarity at the
boundary.

We know that the fixed point is divided as follows. Suppose that the complex
function f is analytic in a region D of C, and f has a fixed point at z0 ∈D. Then z0 is
said to be (see [6, 16, 20]):

an attracting fixed point if ∣ f 0 z0ð Þ∣ < 1;
a repelling fixed point if ∣ f 0 z0ð Þ∣ > 1;
a neutral fixed point if ∣ f 0 z0ð Þ∣ ¼ 1.

For example, T 3;0:1 xð Þ has three points satisfying T 3;0:1 xð Þ ¼ x.
That is, x0 ¼ �0:967484, � 0:33466; 2:41214. Since

d
dt

T 3;0:1 �0:967484ð Þ
����

���� ¼ 0< 1,
d
dt

T 3;0:1 �0:33466ð Þ
����

���� ¼ 0< 1 (51)

Figure 6.
Orbit of x0 under the action of R for T 3,0:1 xð Þ, T 2

3;0:1 xð Þ.

Figure 7.
Palette for escaping points.
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Theorem 3.2. T 3;0:1 xð Þ for q = 0.1 has two attracting fixed points.
Using Mathematica, we can separate the numerical results for fixed points of

T n;0:1 xð Þ. From Table 2, we know that T n;0:1 xð Þ have no neutral fixed point for
1≤ n≤4. We can also reach Conjecture 3.3.

Degree n Attractor Repellor Neutral

1 0 1 0

2 1 1 0

3 2 1 0

4 1 3 0

5 1 4 0

Table 2.
Numbers of fixed points of T n;0:1 xð Þ.

r RT r
3;0:1 xð Þ RFT r

3;0:1 xð Þ

1 3 2

2 3 2

3 3 2

4 23 2

5 2 2

6 1 1

Table 3.
The numbers of RT r

3;0:1 xð Þ and RFT r
3;0:1 xð Þ for 1≤ r≤ 6.

Figure 8.
Stacks of fixed point of T r

3,0:1 xð Þ for 1 ≤ r ≤ 6.
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Conjecture 3.3. The q-tangent polynomials for n≥2 have at least one attracting
fixed point except for infinity.

In Table 3, we denote RT r
n,q xð Þ as the numbers of real zeros for rth iteration and

RFT r
n,q xð Þ as the numbers of attracting fixed point on real number. From this table,

we can know that number of real fixed points of T r
3, q xð Þ are less than two. Here, we

can suggest Conjecture 3.4.
Conjecture 3.4. The q-tangent polynomials that are iterated, T r

3;0:1 xð Þ, have real
fixed point, α ¼ �0:33466.

In the top-left of Figure 8, we can see the forms of 3D structure related to stacks
of fixed points of T r

3;0:1 xð Þ for 1≤ r≤ 6. When we look at the top-left of Figure 8 in
the below position, we can draw the top-right figure. The bottom-left of Figure 8
shows that image and n-axes exist but not real axis in three dimensions. In three
dimensions, the bottom-right of Figure 8 is the right orthographic viewpoint for
the top-left figure,-that is, there exist real and n-axes but there is no image axis
(Figure 8).

4. Conclusion

We can see that when q comes closer to 0, the approximate shape of the roots
become increasingly more circular. Also in this situation, we can observe scattering
of zeros in q-tangent polynomials around 2 in three-dimension. When q comes
closer to 1, it has properties that are more symmetrical. We can also assume that the
property that appears when iterating T n,q xð Þ has self-similarity. By iterating, we
can conjecture some properties about fixed points. This property warrants further
study so that we can create a new property.
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Chapter 6

Investigation and Synthesis
of Robust Polynomials in
Uncertainty on the Basis
of the Root Locus Theory
Nesenchuk Alla

Abstract

The root locus method is proposed in the chapter for searching intervals of
uncertainty for coefficients of the given (source) polynomial with constant or
interval coefficients under perturbations, which ensures its robust stability regard-
less of whether the given polynomial is Hurwitz or not. The method is based on
introduction and application of the “extended root locus” notion. Polynomial
adjustment is performed by setting up each one of its coefficients separately and
sequentially and determining permissible values of coefficient variation intervals
(intervals of uncertainty). The effect of each coefficient variation upon the polyno-
mial root dynamics (behavior) is considered and analyzed separately, and this
influence could be observed in the root locus portraits. Root locus method is thus
generalized to the cases when the number of polynomial variable coefficients is
arbitrary. The root locus parameter distribution diagram along the asymptotic sta-
bility bound is introduced and applied for observing the roots behavior regularities.
On this basis, the stability conditions are derived, and analytical and graphic-ana-
lytical methods are worked out for calculating intervals of variation for the 4th
order polynomial family parameters ensuring its robust stability. It also allows to
extract Hurwitz subfamilies from the non-Hurwitz families of interval polynomials
and to determine whether there exists at least one stable polynomial in the unstable
polynomial family.

Keywords: polynomial, dynamic system, uncertainty, stability, robustness,
root locus portrait, extended root locus, root locus parameter function

1. Introduction

As it is emphasized in [1, 2], the tasks of analysis and synthesis of control
processes occurring in dynamic systems of different physical nature, operating in
conditions of substantial plant parametric uncertainty, including the engineering
ones, are currently the most urgent and challenging within the framework of the
control theory. Among these tasks, one could mention the problem of flux control
for the electric motor vector control systems operating in uncertainty because the
flux control quality strongly affects the electromagnetic torque and speed control
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for the electric motor vector control systems operating in uncertainty because the
flux control quality strongly affects the electromagnetic torque and speed control
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quality, and thus the drive power efficiency. For this reason, of great importance
are the tasks of stability investigation and parametric synthesis of robust control
systems (their characteristic polynomials) for the plants which parameters vary
within the given or unknown intervals of values.

In the area of investigation and synthesis of dynamic system characteristic poly-
nomials, there exists a lot of approaches and methods. For the first time, the
necessary and sufficient conditions for systems up to the 3-rd order were formu-
lated by James Maxwell in 1868. Later appeared the stability criteria of Routh–
Hurwitz, Mikhajlov, Nyquist, and Bode, which made it possible to check stability of
the systems of order n. The frequency Nyquist criterion was the first one that could
be used for synthesis by estimation of the system degree of stability. Among the
modern methods of synthesis [1, 2] together with the frequency ones, the root locus
and state-space methods could be listed. In his book [1], Jurgen Ackermann gives, in
particular, the algebraic approach to uncertainty considering different, including
the nonlinear, types of the coefficient functions and generating stability regions in
the parameter space of real physical parameters of the system (polynomial). The
main results in the area of the frequency approach to analysis and synthesis of
robust dynamic (control) systems are given in [3], where the stability of uncertain
polynomials, including interval ones, is also considered.

The methods for analysis and synthesis of polynomial families represent a sepa-
rate group. One of the most effective solutions for the task of interval polynomial
family investigation within the algebraic approach has been proposed by
Kharitonov [4], where in the general case, the task of polynomial stability analysis is
reduced to consideration of only four specific polynomials of the whole family
with constant coefficients. In [3, 5], the frequency criteria of Hurwitz robust stabil-
ity are considered, which allow to define the coefficient perturbation sweep for the
nominally stable polynomial and various types of uncertainties. Hurwitz robust
stability is also investigated in [6–10]. In [6], the maximal deviation intervals of
perturbed Hurwitz polynomial coefficients assuring strict Hurwitz property are
determined on the basis of the algebraic method worked out using Kharitonov’s
polynomials [4]. The similar task is solved in [7] but using the Hermite-Biler
theorem, which allows to reduce twice the power of investigated polynomial. The
way for calculation of perturbed polynomial coefficients’ maximal limit values that
guarantee sector stability is given in [8]. The linear dependence of coefficient
perturbation is considered by Bartlett, et al. for a class of polynomial families
generated by convex polytopes in the coefficient space [9]. Here the so-called edge
theorem was proved assuring derivation of the stability analysis task to investiga-
tion of root location for the finite number of the parametric families. The edge
theorem allows to analyze both stability and quality characteristics of the family.
A combination of the stochastic and worst-case approaches to the problem of
uncertainty is proposed in [10]. It certainly widens the scope of types of treatable
uncertainties and reduces conservatism. However, it works properly only in the
cases permitting an arbitrarily small probability of specification violation. Thus,
to the specific extent, it still bears the drawbacks of the stochastic approach to
control, which guarantees only the “average” performance.

An analog of Kharitonov theorem [11] was formulated for the unstable interval
polynomials’ homogeneous classes of equivalence. Criteria of existence of such
classes of equivalence were obtained. Based on the new interval polynomial stability
criterion and Lyapunov theorem, a robust optimal proportional-integral-derivative
(PID) controller is proposed in paper [12] to carry out design for different plants
that contain perturbations of multiple parameters. A new stability criterion of the
interval polynomial is presented to determine whether the interval polynomial
belongs to Hurwitz polynomial or not. Time-delay systems involving multiple
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imaginary roots (MIRs) and their stability analysis, which becomes much more
complicated than that in the case with only simple imaginary roots, are treated in
[13]. For a class of time-delay systems, it was proved that the invariance between
the multiple imaginary roots and the simple imaginary roots holds for any multi-
plicity as well as for the degenerate cases. In paper [14], monic complex polyno-
mials are identified with the sets of their roots instead of being identified with the
vectors of their coefficients. A proof is given that the space of Hurwitz polynomials
of degree n with positive (resp. negative) coefficients is contractible and also that
the space of monic (Schur or Hurwitz) aperiodic polynomials is contractible. A
computational method to verify the stability of a convex combination of polyno-
mials is considered in [15] and aimed at the robust stability analysis of a linear
system. A simple algebraic test (a matrix inequality) for the stability of the segment
of polynomials determined by the given two Hurwitz stable polynomials is pro-
posed. Kučera gives a survey [16] where he navigates the area of the polynomial
approach in the control system design technique. Such areas as parameterization of
stabilizing controllers, called Youla–Kučera parameterization, are explained; the
results on reference tracking, disturbance elimination, pole placement, deadbeat
control, robust stabilization, and some others are described.

Of great interest are the problems of ensuring system stability and quality being
solved in the modern statements of the problem [2] as tasks of guaranteeing system
robustness, which could be solved by application of the root locus approach. The
basic benefit of this approach is that its application itself, by its nature, implies
parametric variations (i.e., uncertainty). The root locus approach is a powerful
method used for the system synthesis [2] and is notable for its descriptiveness
ensuring both calculation of the system robust parameters’ values and possibility of
detailed overview of the dynamic properties variation changes, the system response
to uncertainties that is particularly important when investigating systems with
uncertain and in particular interval parameters.

Root locus approach to the problem is considered in [17–23]. Paper [17] gives
a solution for a compensator synthesis on the basis of the root locus method
application. The task of a stable characteristic polynomial synthesis for the
interval dynamic system (IDS) by setting up coefficients of the given (initial)
unstable one for the case of location of its root locus initial point (where the
variable parameter is equal to zero) family within the left half-plane is solved in
[21], where the stability is attained via simple setting up the interval of the free
term variation.

The above analyzed literature covers various approaches to the uncertainty
treatment. However, most of the theoretical works are focused on the tasks of
robust stability analysis. The methods for synthesis are not that widely represented,
often suffer from complexity and in most cases are enough narrow, which means
that they certainly provide instruments for system synthesis, but they are mostly
“closed on themselves,” which means that they do not provide the complete picture
in the sense of showing up what is happening “under cover,” which is especially
important for the qualitative robust system (polynomials) synthesis. The root locus
approach is rarely applied even though it represents the dynamic picture of the
system response to uncertainties in the most comprehensive way and thus seems to
be the most suitable one to deal with uncertainties.

As for polynomial families, the root locus approach gives us the transparent
picture of root dynamics making it possible to see as if from the inside, for example,
what subfamilies constitute the whole family of uncertain polynomials in terms
of their configuration and stability or some other dynamic indicators bearing
significant information about the system behavior and thus leading the way for its
investigation and synthesis.
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In this work, the root locus methods are described for calculating intervals of
uncertainty for coefficients of the given (initial) stable or unstable polynomial with
coefficients subject to perturbations, which ensure its robust stability. The proposed
methods are based on introduction and application of the notions “extended root
locus,” “diagram of the root locus parameter function values distribution along the
stability bound” and can be used for both synthesis of interval stable polynomials by
setting up (adjusting) the unstable ones and analysis of the polynomial behavior
under coefficient perturbations. The influence of every coefficient upon the poly-
nomial behavior could be observed.

The work further develops results represented in the papers of Anderson [22]
and Kharitonov [4] where they consider the issues of analysis and synthesis of
robust interval polynomial families.

2. The problem formulation

Define a polynomial like

gn sð Þ ¼ sn þ a1sn–1 þ…þ an–1sþ an, (1)

where aj are given (initial) values of real polynomial coefficients, j = 1, 2, …, n.
In the event of coefficient perturbations, a vector of coefficients of (1),

a = (a1,…, an-1, an), belongs to some connected set A ⊂ Rn, a ∈ A; n is a degree of the
polynomial (integer value); s is a complex variable, s = σ + iω.

Suppose that coefficients of (1) vary within the following intervals:

aj ≤ aj ≤ aj, j ¼ 1, n: (2)

where aj and aj are the minimal and maximal limit values of closed interval
(2) of coefficients aj variation correspondingly. Polynomial (1) can be both,
non-Hurwitz or Hurwitz one.

After substituting s = σ + iω, write the root locus and parameter equations [18]
correspondingly:

v σ;ωð Þ ¼ 0, and (3)

an ¼ u σ;ωð Þ, (4)

where u(σ,ω) and v(σ,ω) are the real functions of two independent variables
σ and ω.

The root locus method represents a powerful and effective tool for stable and
qualitative polynomial synthesis and analysis. However, as it is known, this
method allows to consider polynomials with only a single variable coefficient
(parameter) and cannot be applied in the cases when all coefficients are uncertain.
Therefore, the task is to generalize the root locus method for the cases when the
number of variable coefficients is arbitrary and thus to solve the problem of inves-
tigation of the uncertain polynomial dynamics and working out methods for
synthesis of the robustly stable uncertain (interval) polynomial by setting up the
given polynomial (non-Hurwitz or Hurwitz) with constant/variable coefficients
and determining intervals of all its coefficients (stability intervals) assuring its
robust stability.
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3. Root locus portraits of uncertain polynomials

Definition 1. The algebraic equation coefficient or the parameter of the dynamic
system, described by this algebraic equation, which is being varied in a definite way
for generating the root locus, when it is assumed that all the rest coefficients
(parameters) are constant, is called the root locus parameter or free parameter.

If the root locus parameter is aj, it is named the root locus relative to parameter
(coefficient) aj.

Definition 2. The root locus relative to the algebraic equation free term is called
the free root locus.

Definition 3. Points, where the root locus branches begin and where the root
locus parameter is equal to zero are called the root locus initial points.

Definition 4. The family P of root loci of interval polynomial (1) with coeffi-
cients varying within (2) name as the interval polynomial root locus portrait (interval
polynomial root locus) or interval dynamic system root locus portrait (interval dynamic
system root locus).

Let us along with the parameter an vary also parameter an-1 of (1). Thus, we
generate a (free) root locus field Fk (k = 1. 2, …) in the plane s of system roots, which
could also be named a two-parameter root locus field or a (interval) root locus subfamily.
Parameter an-1 used for the field generation is named a root locus field parameter.

It is evident that the root locus Eq. (3) represents also the equation of level lines
of the free root locus field Fk. Root locus portrait P is then represented by the family
of root locus fields,

P ¼ Fk j k ¼ 1; 2;…f g (5)

that represents the infinite set of root locus fields and therefore possesses their
properties, and from the mathematical point of view, all root locus fields of P
feature the same qualities. Therefore, the portrait P can be investigated as a single
root locus field Fk.

Hereinafter the term “root locus” is used in the sense of “Teodorchik – Ewans
free root locus” [18].

4. Polynomial analysis and synthesis based on the extended root locus

4.1 Extended root locus

Introduce the following system of polynomials:

En ¼

sþ a1 ¼ g1 sð Þ 6:1ð Þ
s2 þ a1sþ a2 ¼ g2 sð Þ 6:2ð Þ
…

si þ a1si�1 þ…þ ai�1sþ ai ¼ gi sð Þ 6:ið Þ
…

sn�1 þ…þ an�2sþ an�1 ¼ gn�1 sð Þ 6: n� 1ð Þð Þ
sn þ a1sn�1 þ…þ an�1sþ an ¼ gn sð Þ 6:nð Þ

;

8>>>>>>>>>>><
>>>>>>>>>>>:

(6)

where

gi sð Þ ¼ si þ a1si�1 þ…þ ai1sþ ai, (7)
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gi�1 sð Þ ¼ gi sð Þ–ai
� �

=s; (8)

i–sequential number of the polynomial in (6), which is equal to its degree,
i ¼ 1, n; aj—coefficients, j ¼ 1, i.

Every polynomial (8) of (i�1) degree is generated from the i-degree polynomial
supposed that ai = 0. Polynomials of (6) have common coefficients, but not com-
mon roots.

Definition 5. System of polynomials (6) name as the extension of polynomial (1)
or extended polynomial.

Definition 6. Complete set of extension (6) root loci name as the extended root
loci of (1).

Extension En of polynomial gn(s) could be represented by the finite set of poly-
nomials,

En ¼ gi sð Þ
� �

: (9)

Statement 1. In case of variation of any coefficient aj,j ¼ 1, i� 1ð Þ, of polyno-
mial gi(s) (7) within the specific interval, aj ≤ aj ≤ aj, every initial point of its free
root locus (excluding the point located at the origin) moves along its unique trajec-
tory, representing itself one of the branches of polynomial gi�1(s) (8) root locus,
generated relative to this coefficient, and its current position is determined at a
point corresponding to the current value of aj.

Proof. As at initial points of polynomial (6) free root locus the free term aj is
equal to zero, it is evident that (8) represents the equation of initial points of the

free root locus of (6), that is, when varying aj j ¼ 1, i� 1ð Þ
� �

, the root locus of (8)

relative to aj represents the geometric place of initial points of the root locus of (7).
Therefore, every initial point of the free root locus of (7) at fixed aj coincides in the
complex plane s with one of the polynomial (8) roots at the given value of aj. It is
evident, that while varying aj, this root (and hence, this initial point) moves in the
complex plane s, generating one of the (i – 1) branches (trajectories) of the root loci
of (8) relative to aj. Thus, the statement has been proved.

Definition 7. Name gi�1(s) (8) as the originative polynomial relative to gi(s) (7)
and the root locus of (8)—the originative root locus of polynomial (7) free root loci.

Every (i�1)-th polynomial of (6) is the originative one relative to i-th polyno-
mial (6).

Consequence 1. In case of continuous variation of the polynomial gi(s)
coefficient aj, j ¼ 1, n� 1ð Þ, every branch of this polynomial root locus, initiated at
the specific initial point, migrates continuously along the corresponding branch of
the originative root locus relative to aj-1, being the trajectory of this initial point,
correspondingly in direction of increase or decrease of the originative root loci
parameter aj.

Consequence 2. If polynomial gi-1(s) being the originative one for the polyno-
mial gi(s) is asymptotically stable, all initial points of polynomial gi(s) free root
locus, excluding zero one, are located in the left half-plane s:

∀si�1μ Re si�1μ <0! Re piμ <0
h i

, (10)

si�1μ ¼ piμ, (11)

where siμ—roots of gi(s); piμ—initial points of polynomial gi(s) free root locus; μ—
root (initial point) sequential number, μ ¼ 1, i� 1.
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Further in the text, polynomial gi-1(s) free root locus is referred to as the origi-
native one relative to that of gi(s) and gi(s) free root locus—as the originated one
relative to that of gi-1(s).

Statement 1 is illustrated by Figures 1 and 2. Initial points here are designated by
signs “x” (crosses) and letters “p” with the lower indexes, designating the point
sequential numbers, and upper indexes, designating the sequential numbers of the
corresponding root locus. The root locus sequential number is indicated by a digit
next to its corresponding branch.

Figure 1.
Polynomial (1) root locus portrait (field) at n = 3, 5 ≤ а2 ≤ 45: (a) originated portrait and (b) originated
portrait combined with its originative root locus (n = 2).

Figure 2.
Free root locus portrait (field) for polynomial g4(s) = s4 + 10 s3 + 35 s2 + a3s + a4, 100 ≤ а3 ≤ 5 combined with
its originative root locus (n = 3).
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point corresponding to the current value of aj.

Proof. As at initial points of polynomial (6) free root locus the free term aj is
equal to zero, it is evident that (8) represents the equation of initial points of the

free root locus of (6), that is, when varying aj j ¼ 1, i� 1ð Þ
� �

, the root locus of (8)

relative to aj represents the geometric place of initial points of the root locus of (7).
Therefore, every initial point of the free root locus of (7) at fixed aj coincides in the
complex plane s with one of the polynomial (8) roots at the given value of aj. It is
evident, that while varying aj, this root (and hence, this initial point) moves in the
complex plane s, generating one of the (i – 1) branches (trajectories) of the root loci
of (8) relative to aj. Thus, the statement has been proved.

Definition 7. Name gi�1(s) (8) as the originative polynomial relative to gi(s) (7)
and the root locus of (8)—the originative root locus of polynomial (7) free root loci.

Every (i�1)-th polynomial of (6) is the originative one relative to i-th polyno-
mial (6).

Consequence 1. In case of continuous variation of the polynomial gi(s)
coefficient aj, j ¼ 1, n� 1ð Þ, every branch of this polynomial root locus, initiated at
the specific initial point, migrates continuously along the corresponding branch of
the originative root locus relative to aj-1, being the trajectory of this initial point,
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parameter aj.

Consequence 2. If polynomial gi-1(s) being the originative one for the polyno-
mial gi(s) is asymptotically stable, all initial points of polynomial gi(s) free root
locus, excluding zero one, are located in the left half-plane s:

∀si�1μ Re si�1μ <0! Re piμ <0
h i

, (10)

si�1μ ¼ piμ, (11)

where siμ—roots of gi(s); piμ—initial points of polynomial gi(s) free root locus; μ—
root (initial point) sequential number, μ ¼ 1, i� 1.
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Further in the text, polynomial gi-1(s) free root locus is referred to as the origi-
native one relative to that of gi(s) and gi(s) free root locus—as the originated one
relative to that of gi-1(s).

Statement 1 is illustrated by Figures 1 and 2. Initial points here are designated by
signs “x” (crosses) and letters “p” with the lower indexes, designating the point
sequential numbers, and upper indexes, designating the sequential numbers of the
corresponding root locus. The root locus sequential number is indicated by a digit
next to its corresponding branch.

Figure 1.
Polynomial (1) root locus portrait (field) at n = 3, 5 ≤ а2 ≤ 45: (a) originated portrait and (b) originated
portrait combined with its originative root locus (n = 2).

Figure 2.
Free root locus portrait (field) for polynomial g4(s) = s4 + 10 s3 + 35 s2 + a3s + a4, 100 ≤ а3 ≤ 5 combined with
its originative root locus (n = 3).
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4.2 Synthesis of stable interval polynomials based on the extended root locus

Consider Eq. (3) in the sense of four following possible cases: n is uneven,
(n – 1)/2 is even/uneven, n is even, and n/2 is even/uneven. The root locus param-
eter equations (as it is in the general form see (4)) are composed in the same way.

Specify the set Aþi of ai values at the cross points of polynomial (7) root locus
positive branches with axis ω:

Aþi ¼ aþi l; l ¼ 1, nþi
n o

, (12)

where nþi is a number of cross points.
Statement 2. If all initial points of polynomial (7) root locus, excluding a single

one at the origin, are located in the left half-plane s, and this polynomial is asymp-
totically stabile, when the following condition holds:

0 < ai < infAþi : (13)

Proof. Based on the root locus properties [2, 18] and expressions (10) and (11),
it can be stated, that provided all initial points of polynomial (7) root locus are
located in the left half-plane s (excluding the initial point at the origin), the specific
number ni of root locus branches (ni = i � 2 when i is even and ni = i � 1 when i is
uneven), initiating at these points, cross the stability bound iω striving along the
asymptotes directed to the right half-plane. As the rest of the root locus branches
does not cross the stability bound, they are completely stable. For positive branches,
crossing the stability bound, specify the set

Si ¼ Silf g ¼ 0; aþi l
� �� �

(14)

of intervals Sil of values ai within the segments from the initial point pil (where
ai = 0) of every branch up to its cross point with axis iω. Thus, the maximal possible
interval of ai values, ensuring stability of (6), is equal to

Simax ¼ ∩
Sil ⊂ Si

Sil ¼ infSi ¼ 0; infAþi
� �

, (15)

that proofs the statement being considered.
For the 4-th degree polynomial represented in Figure 2, the interval

Simax ¼ 0; a4 tð Þð Þ.
Theorem 1. For ensuring asymptotic stability of regular or interval polynomial

(1), it is enough to.

a. find among polynomials of extension (6), the stable polynomial of degree i = k
being the closest one to n;

b.set up sequentially every coefficient aj of (1), beginning with aj = ak + 1, within
interval (k + 1) < j ≤ n by setting up the free term ai of the corresponding i-th
polynomial of extension (5) as per condition (13) assuming i = j.

Proof. If polynomial gi(s) = gk(s) is stable, then on the basis of Consequence 2 of
Statement 1 (expressions (10) and (11)), the stability of gi+1(s) can be ensured by
simple application of condition (13). Thus, stability of all polynomials gi(s) is
sequentially ensured beginning with the polynomial of degree i = k + 1 up to the
polynomial of degree i = n inclusive, that is, for i ¼ kþ 1ð Þ, n. Thus, Theorem 1 has
been proved.
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An algorithm for the robustly stable regular or interval polynomial synthesis is
given below.

Step 1. Composing the extension En (6) of the given initial nominal polynomial
gn(s) (1).

Step 2. Sequential check for stability of the extension polynomials, beginning
with the polynomial of degree n, until finding the stable polynomial of degree i = k.

In case of synthesis of the whole interval polynomial, begin the procedure with
the 1-st degree polynomial, i = k = 1, specifying interval of a1 according to the
appropriate requirements or arbitrarily.

Step 3. Transfer to the polynomial of the next higher degree, i = k + 1.
Step 4. Calculating coordinates ωþil of cross points of the polynomial gi(s) free

root locus positive branches with the axis iω by solving its appropriate root locus
Eq. (3).

Cross points ωþil generate on the axis iω a so-called “crossing domain” Wþ
i :

ωþil ∈Wþ
i (16)

Properties of this domain and behavior of the interval root locus portrait at the
stability bound iω have been investigated in [18]. On the basis of the fact, that every
function of (3) represents continuous differentiable function (steadily increasing/
decreasing function), it has been found in [18] that for ensuring stability of the
whole interval family, it is required to calculate the parameter ai ¼ aþil (13) values at
only two extreme “dominating points”:

ωþimin ∈ infWþ
i ,ω

þ
imin ∈ supWþ

i , (17)

by solving the corresponding Eq. (3) after substituting preliminarily into
this equation, the appropriate combination [18] of the limit values of each
coefficient, from a1 to ai�1, which have been calculated already in this algorithm
when generating the originative polynomial gi�1(s). For finding two coordinates
(17), two different combinations of coefficients should be substituted into the
root locus equation and thus two different equations should be solved.

Step 5. Determining the value of infAþi (12) for polynomial gi(s) by calculating
minimal values a

0 ¼ a
00
imin ωþi min
� �

and a
00 ¼ aþi min ωþi max

� �
of coefficient ai

correspondingly at points ωþi min and ωþi max solving twice Eq. (4) for polynomial
gi(s) at the stability bound:

ai ¼ u ωð Þ, (18)

after substituting previously into (18) the corresponding combinations of
coefficients (from a1 to ai�1) [18]. Thus,

infAþi ¼ min a0a″ð Þ ¼ ai, (19)

where ai is the upper limit of ai variation interval. The required interval (13) is:
0 < ai < ai:

Step 6. If the last polynomial of extension (6), that is, that of degree n, has
been already processed (i = n), the calculation is considered finished. Otherwise
proceed to step 3.

4.3 Example

Synthesis of the interval polynomial of the 3-rd degree.
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(1), it is enough to.
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being the closest one to n;
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polynomial of extension (5) as per condition (13) assuming i = j.
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Statement 1 (expressions (10) and (11)), the stability of gi+1(s) can be ensured by
simple application of condition (13). Thus, stability of all polynomials gi(s) is
sequentially ensured beginning with the polynomial of degree i = k + 1 up to the
polynomial of degree i = n inclusive, that is, for i ¼ kþ 1ð Þ, n. Thus, Theorem 1 has
been proved.
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An algorithm for the robustly stable regular or interval polynomial synthesis is
given below.

Step 1. Composing the extension En (6) of the given initial nominal polynomial
gn(s) (1).

Step 2. Sequential check for stability of the extension polynomials, beginning
with the polynomial of degree n, until finding the stable polynomial of degree i = k.
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appropriate requirements or arbitrarily.
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Step 4. Calculating coordinates ωþil of cross points of the polynomial gi(s) free

root locus positive branches with the axis iω by solving its appropriate root locus
Eq. (3).

Cross points ωþil generate on the axis iω a so-called “crossing domain” Wþ
i :
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i (16)

Properties of this domain and behavior of the interval root locus portrait at the
stability bound iω have been investigated in [18]. On the basis of the fact, that every
function of (3) represents continuous differentiable function (steadily increasing/
decreasing function), it has been found in [18] that for ensuring stability of the
whole interval family, it is required to calculate the parameter ai ¼ aþil (13) values at
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þ
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this equation, the appropriate combination [18] of the limit values of each
coefficient, from a1 to ai�1, which have been calculated already in this algorithm
when generating the originative polynomial gi�1(s). For finding two coordinates
(17), two different combinations of coefficients should be substituted into the
root locus equation and thus two different equations should be solved.

Step 5. Determining the value of infAþi (12) for polynomial gi(s) by calculating
minimal values a
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and a
00 ¼ aþi min ωþi max
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of coefficient ai

correspondingly at points ωþi min and ωþi max solving twice Eq. (4) for polynomial
gi(s) at the stability bound:

ai ¼ u ωð Þ, (18)

after substituting previously into (18) the corresponding combinations of
coefficients (from a1 to ai�1) [18]. Thus,

infAþi ¼ min a0a″ð Þ ¼ ai, (19)

where ai is the upper limit of ai variation interval. The required interval (13) is:
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Step 6. If the last polynomial of extension (6), that is, that of degree n, has
been already processed (i = n), the calculation is considered finished. Otherwise
proceed to step 3.
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Synthesis of the interval polynomial of the 3-rd degree.
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Consider polynomial family

g03 sð Þ ¼ s3 þ a1s2 þ a2sþ a3, (20)

where аj ∈ [aj, aj], j ∈ {1,2,3}; а1 ∈ [10, 15], а2 ∈ [25, 35], а3 ∈ [350, 450].
Step 1. Compose the extended polynomial (6) for (20):

sþ a1 ¼ 0 21:1ð Þ
s2 þ a1sþ a2 ¼ 0 21:2ð Þ
s3 þ a1s2 þ a2sþ a3 ¼ 0 21:3ð Þ

:

8><
>:

(21)

Step 2. As coefficients of polynomials (21.1) and (21.2) are positive, then both
families of these polynomials are asymptotically stable (i = k = 2), and therefore, on
the basis of Consequence 2 of Statement 1, the root loci family of (21.3) initial points
is located in the left half-pane. Thus, for making stable, the polynomial (21.3) uses
Statement 2 and Theorem 1.

Step 3. Transfer to the polynomial of the next higher degree, i = 2 + 1 = 3.
Step 4. Calculating coordinates (16) of the “dominating points” for polynomial

g3(s). For this purpose, consider the appropriate root locus (3) and parameter (18)
equations:

ω3–a2ω ¼ 0, (22)

and parameter function (18) at the stability bound:

a1ω2 ¼ a3 ¼ f p ωð Þ: (23)

Find the 1-st order derivative of (23) and equate it zero:

f p
0 ωð Þ ¼ 2a1ω ¼ 0: (24)

On the basis of (23) and (24), it can be stated that the character of parameter
(23) distribution along the axis σ is steadily increasing and the single extreme point
is located at the origin. Thus, there exists the only one extreme point:

ωþ3 min ¼ � ffiffiffiffiffi
a2
p ¼ �5, (25)

where function (23) gets the minimal value of the set Aþ3 (see Eq. (12)).
Step 5. Determine infAþ3 (12) for g3(s) using (23), (25):

infAþ3 ¼ aþ3 min ωþ3 min
� � ¼ a1 � ωþ3 min

� �2 ¼ 10 � 52 ¼ 250: Thus,0 < a3 < 250:
Step 6. As i = 3 = n, the algorithm is considered finished.
Thus, coefficient intervals for the resulting robustly stable polynomial ĝ3 sð Þ are

as follows:
а1 ∈ [10, 15], а2 ∈ [25, 35], а3 ∈ (0, 250).

5. Investigation of behavior at the stability bound and synthesis
of interval polynomial families: root locus parameter function
distribution diagram

Consider a dynamic system described by the family of interval characteristic
polynomials [4, 18, 20, 22] like.
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g4 sð Þ ¼ s4 þ a1s3 þ a2s2 þ a3sþ a4: (26)

Coefficients of Eq. (26) to be real, positive, and variable within the intervals

aj ≤ aj ≤ aj, j ¼ 1, …, 4, a0 ¼ 1: (27)

Substitute s ¼ σ þ iω ¼ iω (σ ¼ 0) into (26) and rewrite:

ω4 � a1ω3i� a2ω2 þ a3ω iþ a4 ¼ 0 (28)

and on the base of (28), write the root locus equation [18, 20] at the stability
boundary:

�a1ω3 þ a3ω ¼ 0 (29)

and the parameter equation (parameter function) [18, 20] at the stability
boundary:

f ωð Þ ¼ �ω4 þ a2ω2 ¼ a4: (30)

5.1 Crossing region of the polynomial root locus portrait

Functions (29) and (30) imply properties of analyticity and continuity and,
thus, the points where axis iω is crossed by the branches of the root locus family P
(5), given the condition.

0 < аj < þ∞, (31)

constitute on the stability boundary, axis iω, a specific crossing region, DP
ω.

Definition 8. The region at the asymptotic stability boundary iω of the interval
system root locus portrait P, described by characteristic polynomial (26), where the
given portrait parameter function (30) values family is located, name the crossing
region DP

ω of the root locus portrait P.
The region DP

ω is a continuous one and, thus, each root locus field Fk (5) and each
branch bki, i ¼ 1, 2,… of the field root loci generate specific subregions, corre-
spondingly subregion DF

ωk and continuous subregion Db
ωi, within the above speci-

fied region DP
ω.

Over the symmetry of the portrait hereinafter, the only upper half-plane s is
considered.

5.2 Majorant and minorant of the extremum region

Obtain the extremum parameter function values within DF
ωk⊂DP

ω. To do so, it is
necessary to carry out investigation of this function for extremum. It is evident that
the majorant parameter function (majorant) can be obtained through rewriting
Eq. (30):

a4max ¼ �ω4 þ a2ω2: (32)

Take the first-order derivative of (32) and set it to zero:

�4ω3 þ 2a2ω ¼ 0: (33)
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g4 sð Þ ¼ s4 þ a1s3 þ a2s2 þ a3sþ a4: (26)

Coefficients of Eq. (26) to be real, positive, and variable within the intervals
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and the parameter equation (parameter function) [18, 20] at the stability
boundary:
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(5), given the condition.
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region DP

ω of the root locus portrait P.
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branch bki, i ¼ 1, 2,… of the field root loci generate specific subregions, corre-
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ωk and continuous subregion Db
ωi, within the above speci-

fied region DP
ω.

Over the symmetry of the portrait hereinafter, the only upper half-plane s is
considered.

5.2 Majorant and minorant of the extremum region

Obtain the extremum parameter function values within DF
ωk⊂DP

ω. To do so, it is
necessary to carry out investigation of this function for extremum. It is evident that
the majorant parameter function (majorant) can be obtained through rewriting
Eq. (30):
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Take the first-order derivative of (32) and set it to zero:
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After solving Eq. (33), obtain three points of extremum for the majorant
parameter function for the field when a2 ¼ a2:

ωemax ¼ 0, a4emax ¼ 0; ωemax ¼ �
ffiffiffiffiffi
a2
2

r
, a4emax ¼ �ω4

emax
þ a2 � ω2

emax
: (34)

Rewrite (30) for determination of a minorant parameter function (or a
minorant):

a4min ¼ �ω4 þ a2ω
2: (35)

In the same way obtain three points of extremum for the minorant, when
a2 ¼ a2:

ωemin ¼ 0, a4emin ¼ 0; ωemin ¼ �
ffiffiffiffiffi
a2
2

r
, a4emin ¼ �ω4

emin
þ a2 � ω2

emin
: (36)

Evidently, for n = 4, Eqs. (32) and (35) are the majorant and the minorant for the
whole portrait.

Definition 9. Extremum region De
ω of the interval system root locus portrait

described by the characteristic polynomial (26) is a region [0, ωemax] at the system
asymptotic stability boundary iω where the given portrait parameter function (30)
extremum values, a4emax (34) and a4emin (36), family is located provided all coeffi-
cients аj vary within limits (31).

5.3 Diagram of the parameter function distribution along the stability
boundary

Figure 3 represents the character (diagram) of the parameter function (30)
distribution along the boundary of stability by its majorant (32) and minorant (35).
For better understanding and descriptiveness, the diagram in Figure 3 is shown by
strait lines, although it constitutes curves. Region DP

ω constitutes three subregions
(see Figure 3):

Figure 3.
A diagram for distribution of the interval system root locus portrait parameter function along the asymptotic
stability boundary.
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• Dω
+ where the parameter function is getting increased (increase region);

• Dω� where the parameter function is getting decreased (decrease region);

• Dωс where increase and decrease regions combine (mixed region).

Analyze the region Zω with the interval z
0
; z
00� �
⊆ Zω where the initial points of

the root locus portrait migrate through the stability boundary to the right half-
plane. In the diagram, zero points z’, z” are mapped by points z1, z2.

Within interval [0, z’], covering completely region Dω
+ and partly region Dω

c

(Dω
þ ⊂ 0; z

0� �
, 0; z

0� �
∩ Dω

c), only the positive branches cross the stability bound-
ary, and here the whole family Z of initial points is located in the left half-plane L,

Z ⊂L: (37)

But specific pieces of the positive branches are situated within the right
half-plane. For this reason, in some cases, the unstable polynomials could have been
found within the whole family (26). However, there certainly could always be
found the intervals (27) of stability where the whole family is stable. Name the
interval [0, z’] the system stability region.

The interval [z’, z”] covers some piece of the region Dω
с and some of the region

Dω
�, z

0
; z
00� �
∩ Dω

c, z
0
; z
00� �
∩ Dω

�. In this case, axis iω is crossed by combination of
both positive and negative branches, and the root locus portrait certainly includes
a series of initial points, and thus the whole branches, that have migrated over the
boundary to the right half-plane. Therefore, this case always gives us the family
(26) that includes combination of stable and unstable polynomials. Name the inter-
val [z’, z”] the system instability region.

If the interval [z”, ∞] completely belongs to the region Dω
�,

z″∞½ �⊂Dω
�, (38)

only the negative branches cross the stability boundary iω, and the family Z
together with the corresponding positive branches are located in the right half-pane,

Z ⊂R: (39)

No stable polynomial could be found in (26). This region name the system
complete instability region.

5.4 Real crossing region of the portrait

Specify the region DR
ω where the branches of the given real root locus portrait

cross the stability boundary. To find its limits, consider Eq. (29) and determine the
values of its roots. When ω>0.

ωmax ¼
ffiffiffiffiffiffiffi
a3
a1

s
,ωmin ¼

ffiffiffiffiffiffiffi
a3
a1

r
, (40)

where ωmax, ωmin represent the real crossing region.
Definition 10. The region [ωmin,ωmax] at the stability boundary iω, where

the polynomial (26) root locus portrait branches migrate through to the right
half-plane, name the real crossing region DR

ω of the system root locus portrait:

ωmin;ωmax½ �⊆ DR
ω: (41)
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After solving Eq. (33), obtain three points of extremum for the majorant
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ffiffiffiffiffi
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2

r
, a4emax ¼ �ω4

emax
þ a2 � ω2

emax
: (34)
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2

r
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emin
þ a2 � ω2

emin
: (36)
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Figure 3.
A diagram for distribution of the interval system root locus portrait parameter function along the asymptotic
stability boundary.
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• Dω
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5.5 Graphic-analytical stability conditions for interval polynomials

Define below three possible ways of the real crossing region location and the
corresponding stability conditions.

5.5.1 Real crossing region belongs to the increase region Dω
+

DR
ω ⊂Dω

þ: (42)

In this case ωmax <ωemin .
Statement 3. When the dynamic system root locus portrait, described by

polynomial (26), satisfies relationship (42), the whole family Z of the portrait initial
points is located in the left half-plane L,

Z ⊂L: (43)

Then, define the set S of the root locus portrait Р branches’ intervals si:

S ¼ si ¼ 0; a4 ωið Þ½ �; i ¼ 1; 2;…f g: (44)

a4(ωi) represents the parameter function (30) at points with the coordinates ωi;
S ⊂ Р and S ⊂ L (40). Thus, from (42) and (43) obtain:

∩
∞

i¼1
si ¼ inf S ¼ 0; a4 ωminð Þ� �

, (45)

where a4 ωminð Þ—function (30) minimal value at point ωmin (40). Hence,

∀ a4 ∈ a4; a4
� �

a4 ∈ 0; a4 ωminð Þ� � ! a4 ∈ S&P⊂L
� �

, (46)

∀ a4 ∈ a4; a4
� �

a4 ∉ 0; a4 ωminð Þ� � ! a4 ∉ S&P⊄L
� �

: (47)

The following statement can be formulated on the basis of expressions
(42) and (47).

Statement 4. The dynamic system, described by the interval characteristic
polynomial family (26) and satisfying expression (42), is asymptotically stable if

a4 < a4 ωminð Þ: (48)

Definition 11. One or more stable polynomials with constant coefficients within
the family (26) that guarantee stability of the whole family name the dominating
polynomials.

From Statement 4 and the previous conclusions, the following stability condition
goes.

Stability condition 1. The asymptotic stability of the interval system family,
described by the root locus portrait Р (5) satisfying expression (42), is guaranteed if
polynomial

s4 þ a1s3 þ a2s
2 þ a3sþ a4 ¼ 0 (49)

of the family is stable. Polynomial (49) represents the dominating one.
Stability is verified using the Stability condition 1. The polynomial parameters

are calculated with application of the Statement 4.
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5.5.2 Real crossing region belongs to the decrease region Dω
�

DR
ω ⊂Dω

�: (50)

It happens in case if ωmin ≥ωemax .
The above made conclusions allow to formulate the following statement.
Statement 5. If the interval system root locus portrait P satisfies condition (50),

the whole family Z of its initial points satisfies Eq. (39), and the system is
asymptotically unstable.

5.5.3 Real crossing region completely or partially belongs to the mixed region Dω
с

DR
ω ⊂Dω

c ∨ DR
ω ∩ Dω

c: (51)

We have this when the following conditions are not satisfied: ωmax <ωemin ,
ωmin ≥ωemax.

For this case

P ¼ Pþ þ P�, (52)

We have already discussed the increase part of (52), when P� = ∅. Hence, this
section considers the decrease part, P�. Consider first the family Z of the root locus
portrait P�.

Statement 6. If condition (51) holds, family Z of initial points of the dynamic
system root locus portrait, described by characteristic polynomial (26), can be
located in both left half-plane L and right half-plane R, that is, the following options
of Z location may take place:

Z ⊂L, (53)

Z ⊂ Lþ Rð Þ, (54)

Z ⊂R: (55)

Evidently, options (54) and (55) take place when

DR
ω ⊂Dω

� (56)

or DR
ω ∩Dω

�: (57)

As options (54)–(57) deliberately indicate instability of the system in whole,
consider below only option (53) of the system poles location,

ωmax <ω z0ð Þ, (58)

where ω(z0) is coordinate ω at point z0 (Figure 3).
In this case proceed just as in (44)–(47) but only substituting ωmax instead

of ωmin.
Statement 7. The asymptotic stability of the dynamic system, described by

polynomial family (26) and satisfying expression (51), is ensured when the
following condition holds:

a4 <min a4 ωminð Þ; a4 ωmaxð Þ� �
: (59)

From condition (59) follows that the system asymptotic stability for part Р� of
portrait (52), provided that condition (53) holds, is defined by the value of
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a4 ωmaxð Þ. Therefore, for checking stability of Р� (52), it is enough to check the
only one following dominating polynomial of (26):

s4 þ a1s
3 þ a2s

2 þ a3sþ a4 ¼ 0: (60)

Because in this case, the portrait represents the compound one (52), check the
stability by checking both polynomials, (49) and (60).

Stability condition 2. If the interval dynamic system root locus portrait Р (52),
describing the family of characteristic polynomials (26), satisfies expression (51),
the system asymptotic stability is ensured when the following dominating
polynomials

s4 þ a1s3 þ a2s
2 þ a3sþ a4 ¼ 0, (61)

s4 þ a1s
3 þ a2s

2 þ a3sþ a4 ¼ 0 (62)

of family (26) are both stable.
From the results obtained above also goes that in case (51) the system asymp-

totic stability can be verified by only a single polynomial of (26) having constant
coefficients. The equation to choose depends of condition (49) verification results.
If the verification shows that min a4 ωminð Þ; a4 ωmaxð Þ� � ¼ a4 ωminð Þ, then Eq. (61) is
applied for the stability check. If it shows that min a4 ωminð Þ; a4 ωmaxð Þ� � ¼ a4 ωmaxð Þ,
then the stability is verified by (62).

To determine the coefficients of (26), ensuring satisfaction of expressions (53)
and (58), Eqs. (30) and (31) are applied. Thus, coefficients а1 and а3 must satisfy
the inequality:

ffiffiffiffiffiffiffi
a3
a1

s
<ω z

0
� �

, a3 < a1ω
2 z

0
� �

: (63)

To verify the system stability, the stability conditions 1 and 2 are used. For
calculation of the system (polynomial) parameters, expressions (48), (49) and (63)
are used.

Figure 4.
Dynamics of the interval system root locus portrait at the asymptotic stability boundary.
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Polynomial stability could be estimated graphically directly from the plots
(see Figures 3 and 4).

5.6 Example

Coefficients of the given polynomial (26): a1 ∈ 5; 10½ �, a2 ∈ 5; 10½ �,
a3 ∈ 5; 10½ �, a4 ∈ 5; 10½ �:

Extremum region: De
ω: ωe min = 3,16; ωe max = 5,92; a4e min = 100,04;

a4e max = 1223,96.
Real region: DR

ω: ωmin = 2; ωmax = 7,1; a4 ωminð Þ= 64; a4 ωmaxð Þ= � 1532,97.
[z’, z”]: ω(z’) = 4,47; ω(z”) = 8,37.
In Figure 4, the above indicated regions are shown. The points, corresponding

to the dominating polynomials (61), (62), are designated by r’ and r”. The real
crossing region in this case completely covers the extremum region,
De

ω ⊂DR
ω, r

0
; r
00� �
⊆ DR

ω.
It is evident that the given polynomial family in whole is unstable. Within region

Zω = [z’, z”], there exist poles that have migrated to the right half-plane (see (54)),
which is confirmed by the negative value of the parameter a4 ωmaxð ÞI.

Dominating polynomials of the family are the following:

s4 þ 10s3 þ 20s2 þ 40sþ 30 ¼ 0: (64)

s4 þ 5s3 þ 20s2 þ 250sþ 30 ¼ 0: (65)

Polynomials stability check shows that polynomial (6), which root loci crosses
the stability boundary at point a4 ωminð Þ, is stable, and polynomial (66), which root
loci crosses the stability boundary at point a4 ωmaxð Þ, has two roots with positive real
parts.

Extraction of the stable polynomial subfamily of the given unstable family:
The stable root locus family, satisfying conditions (58) and (59), should cross the

stability boundary within the region bounded by interval [r’, z’] as in this case all
initial points of the root locus family are located in the left half-plane (53) (see
Section 5.5).

To calculate the maximal value of а3 that defines the stable subfamily within the
given root locus portrait, apply formula (63):

a3 < a1 � 4,472, a3 < 99, 9: (66)

Based on (66), accept a3 ¼ 80.
Based on (59), accept: a4 < a4 ωminð Þ, a4 ¼ 60 and write the dominating poly-

nomials:

s4 þ 10s3 þ 20s2 þ 40sþ 60 ¼ 0,

s4 þ 5s3 þ 20s2 þ 80sþ 60 ¼ 0:

As per stability condition 2, the root locus portrait subfamily having new mod-
ified values of а3 and а4 (a3 ¼ 80,a4 ¼ 60) is asymptotically stable.

6. Conclusions and future developments

A method has been worked out for synthesis of asymptotically stable regular or
interval polynomial from the given Hurwitz or non-Hurwitz source polynomial
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Zω = [z’, z”], there exist poles that have migrated to the right half-plane (see (54)),
which is confirmed by the negative value of the parameter a4 ωmaxð ÞI.

Dominating polynomials of the family are the following:
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with constant/interval coefficients by setting up coefficients of the given one. The
root locus approach is used. The task is solved by introduction of notions of the
“extended polynomial” (“generalized polynomial”) and the polynomial “extended
root locus,” which allows to obtain a descriptive picture of the polynomial root
dynamics under coefficient variations and to disclose on this basis the cause of
instability. The intervals of uncertainty for each coefficient being set up are speci-
fied along the root locus branches.

The above described method based on the “extended root locus” notion is new
and allows to extend the application sphere of the root locus method, which is
traditionally considered to be the method of system synthesis by only a single
parameter (coefficient) variation and with only one variable parameter (coeffi-
cient), in both directions: system synthesis by many parameter variations and
system synthesis with many parameter variations.

Investigation of the fourth power dynamic system behavior in conditions of the
interval parameter variations has also been carried out on the basis of root locus
portraits and introduction of the notion of the “diagram of the root locus parameter
function values distribution along the stability bound.” Behavior regularities for
interval system root locus portraits at the stability boundary have been formulated.
On this basis, the stability conditions have been derived, and graphic-analytical
method has been worked out for calculating intervals of parameter variation ensur-
ing the system robust stability.

In continuation of the results of Anderson [22] and Kharitonov [4] in this work,
it is proved that for the 4th power interval system family asymptotic stability
analysis, it is enough to use the only one polynomial of this kind. It is also shown,
how to find and extract the stable families from the unstable ones.

The above discussed topic is certainly worth further investigation in the light of
continuous progress of both theory and technology. When speaking of the practical
implementations, it could be noted that most of the control system synthesis tasks,
especially those in the area of robust control, are currently still being solved in a
somewhat “local domestic” way, when a designer each time tries to invent a
solution to be suitable for the specific application experiencing the lack of more
generalized methods. Besides this, a great deal of existing robust control methods
share and suffer complexity. In this connection, further in-depth investigation of
the uncertain polynomials’ root locus portraits seems helpful, especially the analysis
of its composition in terms of configurations variety, constituting subfamilies,
placement of various root domains within the prescribed regions in the complex
plane and, of course, dynamics. They also could be distinguished for their undoubted
descriptiveness.

Polynomial equation approach in the design technique [16], and root locus
technique in particular, is descriptive, clear, and easy to use and computerize and
thus could be helpful in many application areas including the areas of industry,
biology, medicine, etc. It can be used for proper parameterization of robust drive
controllers, for example, in the area of railway traffic control, in particular for the
cases of tackling the problems of breaking and skidding.
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Chapter 7

Pricing Basket Options by
Polynomial Approximations
Pablo Olivares

Abstract

In this paper, we use polynomial approximations in terms of Taylor,
Chebyshev, and cubic splines to compute the price of basket options. The paper
extends the use of a similar pricing technique applied under a multivariate Black-
Scholes model to a framework where the dynamic of the underlying assets is
described by dependent exponential Levy processes generated by a combination
of Brownian motions and compound Poisson processes. This model captures some
empirical features of the asset dynamics such as common and idiosyncratic ran-
dom jumps. The approach is implemented in the context of spread options and a
multivariate Merton model, i.e., a jump diffusion with Gaussian jumps. Our find-
ings show that, within the range of parameters analyzed, polynomial approxima-
tions are comparable in accuracy to a standard Monte Carlo approach with a
considerable reduction in computational effort. Among the three expansions,
cubic splines show the best performance.

Keywords: Taylor approximations, Chebyshev polynomials, cubic splines, basket
options, spread options, jump-diffusion model

1. Introduction

We study the pricing of basket contracts under a multivariate jump-diffusion
process. The paper extends the use of a similar pricing technique applied under a
multivariate Black-Scholes model, see [1], to a framework where the dynamic of the
underlying assets is described by dependent exponential Levy processes generated
by a combination of Brownian motions and compound Poisson processes. This
model captures some empirical features of the asset dynamics such as common and
idiosyncratic random jumps. The dependence between assets is reflected in both the
covariance structure of the Brownian motion and the joint probability law of the
common jump sizes.

For such class of models, no pricing closed-form formula is available. In single-
asset contracts, well-established numerical methods have proven to be effective,
but their extensions to several dimensions reveal important instabilities and a costly
computational effort. Our paper introduces a novel approach based on polynomial
approximations of the conditional price. It is, in the framework considered, less
time demanding than a standard Monte Carlo approach to achieve similar results.
Moreover, the use of Chebyshev polynomials and cubic splines improves the con-
vergence over previous attempts based on Taylor expansions.
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We consider a pricing methodology consisting in a two-step procedure. First,
conditioning on d� 1 out of the total number of d assets, we find the price of a
payoff based on a single asset with a more complex conditional distribution.

Secondly, we consider some expansions of the conditional price, given either in
terms of Taylor, Chebyshev, or cubic spline polynomials, allowing to write the
corresponding price as a linear combination of mixed exponential-power moments.

This approach is implemented in the context of spread options and a multi-
variate Merton model, that is, a jump diffusion with Gaussian jumps. Our find-
ings show that, within the range of parameters analyzed, polynomial
approximations are comparable in accuracy to a standard Monte Carlo approach
with a considerable reduction in computational effort. Among the three expan-
sions, cubic splines show the best performance.

The use of a Taylor expansion to pricing has been considered in the pioneering
work of [2] for a vanilla European option and in [3, 4] for spread contracts under a
bivariate Black-Scholes model. See also [5]. A Chebyshev expansion has been
recently considered in [6]. Applications under a multivariate jump-diffusion model
have been less explored. Our paper intends to fill this gap.

Although a comparison with alternative approaches is beyond the scope
of this paper, it is worth noticing the existence of pricing methods based on
Fourier or Hilbert transforms. For example, for spread contracts under a
different class of Levy processes, a Fast Fourier transform method can be found
in [7]. See also [8] for expansions in terms of Fourier series and [9] for Hilbert
transforms.

The organization of the paper is as follows: in Section 2, we introduce the model
and obtain the pricing expressions for basket contracts under the approximations.
In Section 3, we specialize the three expansions in the case of spreads contracts. In
Section 4, we discuss the implementation of the methods and present our numerical
findings. Finally in Section 5, we present conclusions. Proofs are deferred to the
appendix.

2. Pricing under jump-diffusion models

Let Ω;A; F tð Þt ≥ 0;P
� �

be a filtered probability space. We define the filtration
FXt ≔ σ Xs;0 ≤ s ≤ tð Þ as the σ-algebra generated by the random variables
Xs;0 ≤ s ≤ tf g completed in the usual way. Denote by Q an equivalent martingale

measure (EMM), respectively, by EQ, φX, and MX the expectation, characteristic,
and moment-generating functions of a random variable X underQ. The function f X
is its probability density function.

By r we denote the (constant) interest rate, A ∘B is the componentwise product
between matrices A and B, and A0 represents the transpose of matrix
A ¼ aij

� �
1 ≤ i, j ≤ d, while diag Að Þ is a vector with components aiið Þ1 ≤ i ≤ d. The symbol

δij is the usual Kronecker’s number. The vector ~Y is created from the vector Y after
eliminating the first component. For a function f with domain in Rd and a vector
L ¼ l1; l2;…; ldð Þ with lk ∈N, the symbol DL f represents the mixed partial derivative
of the function f differentiated lk times w.r.t. the k-th variable.

For vectors v ¼ v1; v2;…; vdð Þ and n ¼ n1; n2;…; ndð Þ, we set v! ¼Qd
k¼1 vk and

νn ¼Qd
k¼1 v

nk
k .

We introduce the following convenient notations. For a 1� nþ 1ð Þ vector Va,
b∈R, and n∈N
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bin n;Va; bð Þ ¼ ∑
n

m¼0

n

m

0
@

1
AVamb

n�m

PVa ¼ 1;Va1;…;Vann
� �

Also, for a differentiable function f , we set the vector DVf ¼ f ;D1 f ;…;Dn f
� �

.
The d-dimensional process of spot prices is denoted by Stð Þt ≥ 0, while Ytð Þt ≥ 0 is

the corresponding log-price process. They are related by

S jð Þ
t ¼ S jð Þ

0 exp Y jð Þ
t

� �
, j ¼ 1, 2,…, d (1)

We analyze European basket options whose payoff at maturity T, for a strike
price K, are given by

h STð Þ ¼ ∑
d

j¼1
wjS

jð Þ
T � K

 !

þ

where wj
� �

1 ≤ j ≤ d are some deterministic weights and xþ ¼ max x;0ð Þ.
Furthermore, for the log-prices, we assume a multidimensional jump-diffusion

dynamics under Q given by

dYt ¼ μdtþ Σ
1
2dBt þ dZt (2)

where Btð Þt ≥ 0 is a multivariate Brownian motion with independent components
and μ ¼ r� 1

2 diag Σð Þ �m. The matrix Σ ¼ σjl
� �

j, l is symmetric, positive definite,

while Σ1
2 is such that Σ1

2 Σ1
2

� �0
¼ Σ. The value m is the compensator of a compound

Poisson process m ¼ logφZ1
�ið Þ.

We define two sequences of independent and identically distributed 1� d-
dimensional random vectors Xkð Þk∈N and X0, kð Þk∈N. The components of the ran-
dom vectors in the first sequence are independent.

The process Ztð Þt ≥ 0 is a d-variate compound Poisson process, independent of
Btð Þt ≥ 0 such that

Z jð Þ
t ¼ ∑

N jð Þ
t

k¼1
X jð Þ

k þ ∑
N 0ð Þ

t

k¼1
X jð Þ

0, k, j ¼ 1,…, d

where Ntð Þt ≥ 0 ¼ N 0ð Þ
t ;N 1ð Þ

t ;…;N dð Þ
t

� �
t ≥ 0

is a vector of independent Poisson

processes with respective intensities λj.

The processes N jð Þ
t

� �
t ≥ 0

and N 0ð Þ
t

� �
t ≥ 0

correspond, respectively, to idiosyn-

cratic and common jumps of the j-th underlying asset on the interval 0; t½ �. Their
jump sizes are X jð Þ

k and X jð Þ
0,k.

For the sake of concreteness, we assume Gaussian jumps, i.e., we assume for any
k∈N that Xk � N μJ;DJ

� �
, where DJ is a diagonal matrix with components

DJ j; lð Þ ¼ δjl σ
jð Þ
J

� �2
and X0, k � N μ0, J ;Σ0, J

� �
, with Σ0, J a matrix of components

Σ0, J j; lð Þ ¼ σ j, l
0 . The compensator across each dimension takes the form
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n

m¼0

n

m

0
@

1
AVamb

n�m

PVa ¼ 1;Va1;…;Vann
� �

Also, for a differentiable function f , we set the vector DVf ¼ f ;D1 f ;…;Dn f
� �

.
The d-dimensional process of spot prices is denoted by Stð Þt ≥ 0, while Ytð Þt ≥ 0 is

the corresponding log-price process. They are related by

S jð Þ
t ¼ S jð Þ

0 exp Y jð Þ
t

� �
, j ¼ 1, 2,…, d (1)

We analyze European basket options whose payoff at maturity T, for a strike
price K, are given by

h STð Þ ¼ ∑
d

j¼1
wjS

jð Þ
T � K

 !

þ

where wj
� �

1 ≤ j ≤ d are some deterministic weights and xþ ¼ max x;0ð Þ.
Furthermore, for the log-prices, we assume a multidimensional jump-diffusion

dynamics under Q given by

dYt ¼ μdtþ Σ
1
2dBt þ dZt (2)

where Btð Þt ≥ 0 is a multivariate Brownian motion with independent components
and μ ¼ r� 1

2 diag Σð Þ �m. The matrix Σ ¼ σjl
� �

j, l is symmetric, positive definite,

while Σ1
2 is such that Σ1

2 Σ1
2

� �0
¼ Σ. The value m is the compensator of a compound

Poisson process m ¼ logφZ1
�ið Þ.

We define two sequences of independent and identically distributed 1� d-
dimensional random vectors Xkð Þk∈N and X0, kð Þk∈N. The components of the ran-
dom vectors in the first sequence are independent.

The process Ztð Þt ≥ 0 is a d-variate compound Poisson process, independent of
Btð Þt ≥ 0 such that

Z jð Þ
t ¼ ∑

N jð Þ
t

k¼1
X jð Þ

k þ ∑
N 0ð Þ

t

k¼1
X jð Þ

0, k, j ¼ 1,…, d

where Ntð Þt ≥ 0 ¼ N 0ð Þ
t ;N 1ð Þ

t ;…;N dð Þ
t

� �
t ≥ 0

is a vector of independent Poisson

processes with respective intensities λj.

The processes N jð Þ
t

� �
t ≥ 0

and N 0ð Þ
t

� �
t ≥ 0

correspond, respectively, to idiosyn-

cratic and common jumps of the j-th underlying asset on the interval 0; t½ �. Their
jump sizes are X jð Þ

k and X jð Þ
0,k.

For the sake of concreteness, we assume Gaussian jumps, i.e., we assume for any
k∈N that Xk � N μJ;DJ

� �
, where DJ is a diagonal matrix with components

DJ j; lð Þ ¼ δjl σ
jð Þ
J

� �2
and X0, k � N μ0, J ;Σ0, J

� �
, with Σ0, J a matrix of components

Σ0, J j; lð Þ ¼ σ j, l
0 . The compensator across each dimension takes the form
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mj ¼ λj exp μ
jð Þ
J þ

1
2

σ
jð Þ
J

� �2� �
� 1

� �
þ λ0 exp μ

jð Þ
0, J þ

1
2

σ
jj
0

� �2� �
� 1

� �
, j ¼ 1, 2,…d

Let CJD denote the price of a European basket option with payoff h STð Þ under
the model given by Eqs. (1) and (2).

First, we write the price of the basket contract in terms of its conditional price
when the number of jumps and d� 1 underlying assets are fixed. Results are given
in Theorem 1 below.

Notice that, for any k∈Ndþ1

pk ¼ P NT ¼ kð Þ ¼
exp �∑d

j¼0λjT
� �Qd

j¼0 λ
kj
j T

∑d
j¼0kj

k!
(3)

We also introduce the vector μ kð Þ with components

μj kð Þ ¼ μjT þ kjμ
jð Þ

J þ k0μ
jð Þ

0, J j ¼ 1, 2,…, d:

Theorem 1. Let CJD be the price of a European basket contract with maturity T,
strike price K, and payoff h YTð Þ, under a model given by Eqs. (1) and (2). See proof in
Appendix A.2.

In addition assume Xk � N μJ ;DJ
� �

and X0,k � N μ0, J;Σ0, J
� �

for any k∈N, where

DJ is a d� d diagonal matrix with components DJ j; lð Þ ¼ δjl σ
jð Þ
J

� �2
and Σ 0ð Þ

J is also a

d� d matrix with components Σ0, J j; lð Þ ¼ σ
j, l
0 .

Then, we have
CJD ¼ ∑

k∈Ndþ1
C kð Þpk (4)

where for any k∈Ndþ1

C kð Þ :¼ w1 exp
1
2
σ2 kð ÞT

� �
EQ exp μ ~YT;NTÞ

� �
C ~YT;NTÞ=NT ¼ k
� ���

(5)

C y; kð Þ ¼ e�rTEQ S 1ð Þ
0 exp r� 1

2
σ2 NTð Þ

� �
T

���

þ  σ NTð Þ
ffiffiffiffi
T
p

ZÞÞ � Kð~YT ;NTÞ
�

þ
=NT ¼ k, ~YT ¼ y

� (6)

with Z a standard normal random variable independent of NT and ~YT.
Also

K y; kð Þ ¼ exp r� 1
2
σ2 kð Þ

� �
T � μ y; kð Þ

� �
K
w1
� ∑

d

j¼2

wj

w1
S jð Þ
0 exp y jð Þ

� �" #
, for y∈Rd�1

μ y; kð Þ ¼ μ1 kð Þ þ Σ1~Y kð ÞΣ�1~Y kð Þ y� ~μ kð Þð Þ0

σ kð Þ ¼ 1
T

σ11 kð Þ � Σ1~Y kð ÞΣ�1~Y kð ÞΣ01~Y kð Þ
��

Here σjl kð Þ is the j; lð Þ component of the matrix:

ΣY kð Þ ¼ ΣT þDJ ∘DN þ k0Σ0, J and

DN j; lð Þ ¼ δjlN
jð Þ
T

Σ1~Y kð Þ ¼ σ12 kð Þ; σ13 kð Þ;…; σ1, d�1 kð Þð Þ0
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Remark 2. Notice that when K y; kð Þ is nonnegative, C y; kð Þ is the well-known Black-

Scholes price of a call option with maturity at T.0, volatility
ffiffiffiffiffiffiffiffiffi
σ kð Þp

, spot price S 1ð Þ
0 ,

and strike price K y; kð Þ. A sufficient condition for K y; kð Þ to be positive is w1 ≥ 0 while
wj ≤ 0, 2 ≤ j ≤ d. It is the case of spreads and crack spreads. When K y; kð Þ is negative, it
does not have the meaning of a strike price anymore.

Remark 3. The values μ y; kð Þ and σ kð Þ are, respectively, the mean and variance of
the first asset after conditioning on a value y of the remaining assets and the certain
number of jumps k.

For any fixed k∈Ndþ1, we approximate the conditional price C y; kð Þ on the
variable y by a suitable polynomial. In particular we consider Taylor, Chebyshev
polynomials and cubic splines.

Approximations based on the three expansions are discussed below.
(i) An order n Taylor approximation of C y; kð Þ around y∗ ∈Rd�1 is described

by

CT y; y∗; k; nð Þ ¼ ∑
n

l¼0
∑

L∈Rl

DLC y∗; kð Þ
L!

y� y∗ð ÞL (7)

with L ¼ l1; l2;…; ld�1ð Þ, where the second sum is taken on the set

Rl ¼ L∈Nd�1=l1 þ l2 þ…þ ld�1 ¼ l; 0 ≤ lj ≤ l
� �

:

Notice the existence of the derivatives of any order in the functions K yð Þ and
C y; kð Þ.

(ii) An approximation based on Chebyshev polynomials is given as follows:
In a region D⊂Rd�1, we consider an expansion of order n ¼ n1; n2;…; nd�1ð Þ of

the function C y; kð Þ as

CCh y; k; nð Þ ¼ 1
2
ĉ0 kð Þ1D yð Þ þ ∑

l∈Bn

ĉl kð ÞTD
l yð Þ1D yð Þ

¼ 1
2
ĉ0 kð Þ1D yð Þ þ ∑

l∈Bn

∑
m∈Cl

ĉl kð Þbm, lyl�2m1D yð Þ
(8)

where the sums are taken over the sets

Bn ¼ l∈Nd�1=0 ≤ l ≤ nj; j ¼ 1; 2;…; d� 1:
� �

Cl ¼ m∈Nd�1=0 ≤ mj ≤
lj
2

� �
; j ¼ 1; 2;…; d� 1

� �

Here TD
l

� �
l∈Bn

is a family of d� 1-dimensional Chebyshev polynomials with
degrees l∈Bn defined in the region D, while the quantities ĉl kð Þ are suitable
approximations of the corresponding Chebyshev coefficients cl kð Þ, computed using
the trapezoidal rule.

Notice that, by the orthogonality of the polynomials, the coefficients in the
expansion are cl kð Þ ¼ ,C, TD

l .W , where , f , g.W is the scalar product of func-
tions f and g, conveniently weighted by a function W. See, for example, [10] for a
general account on Chebyshev polynomials.

For convenience, we write the Chebyshev polynomials in terms of powers of
their variables, where bm, l are the coefficients of this expansion.

In particular, for a rectangular region D ¼ a; b½ �d�1 and valued vectors
a ¼ a1; a2;…; ad�1ð Þ and b ¼ b1; b2;…; bd�1ð Þ, we write
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mj ¼ λj exp μ
jð Þ
J þ

1
2

σ
jð Þ
J

� �2� �
� 1

� �
þ λ0 exp μ

jð Þ
0, J þ

1
2

σ
jj
0

� �2� �
� 1

� �
, j ¼ 1, 2,…d

Let CJD denote the price of a European basket option with payoff h STð Þ under
the model given by Eqs. (1) and (2).

First, we write the price of the basket contract in terms of its conditional price
when the number of jumps and d� 1 underlying assets are fixed. Results are given
in Theorem 1 below.

Notice that, for any k∈Ndþ1

pk ¼ P NT ¼ kð Þ ¼
exp �∑d

j¼0λjT
� �Qd

j¼0 λ
kj
j T

∑d
j¼0kj

k!
(3)

We also introduce the vector μ kð Þ with components

μj kð Þ ¼ μjT þ kjμ
jð Þ

J þ k0μ
jð Þ

0, J j ¼ 1, 2,…, d:

Theorem 1. Let CJD be the price of a European basket contract with maturity T,
strike price K, and payoff h YTð Þ, under a model given by Eqs. (1) and (2). See proof in
Appendix A.2.

In addition assume Xk � N μJ ;DJ
� �

and X0,k � N μ0, J;Σ0, J
� �

for any k∈N, where

DJ is a d� d diagonal matrix with components DJ j; lð Þ ¼ δjl σ
jð Þ
J

� �2
and Σ 0ð Þ

J is also a

d� d matrix with components Σ0, J j; lð Þ ¼ σ
j, l
0 .

Then, we have
CJD ¼ ∑

k∈Ndþ1
C kð Þpk (4)

where for any k∈Ndþ1

C kð Þ :¼ w1 exp
1
2
σ2 kð ÞT

� �
EQ exp μ ~YT;NTÞ

� �
C ~YT;NTÞ=NT ¼ k
� ���

(5)

C y; kð Þ ¼ e�rTEQ S 1ð Þ
0 exp r� 1

2
σ2 NTð Þ

� �
T

���

þ  σ NTð Þ
ffiffiffiffi
T
p

ZÞÞ � Kð~YT ;NTÞ
�

þ
=NT ¼ k, ~YT ¼ y

� (6)

with Z a standard normal random variable independent of NT and ~YT.
Also

K y; kð Þ ¼ exp r� 1
2
σ2 kð Þ

� �
T � μ y; kð Þ

� �
K
w1
� ∑

d

j¼2

wj

w1
S jð Þ
0 exp y jð Þ

� �" #
, for y∈Rd�1

μ y; kð Þ ¼ μ1 kð Þ þ Σ1~Y kð ÞΣ�1~Y kð Þ y� ~μ kð Þð Þ0

σ kð Þ ¼ 1
T

σ11 kð Þ � Σ1~Y kð ÞΣ�1~Y kð ÞΣ01~Y kð Þ
��

Here σjl kð Þ is the j; lð Þ component of the matrix:

ΣY kð Þ ¼ ΣT þDJ ∘DN þ k0Σ0, J and

DN j; lð Þ ¼ δjlN
jð Þ
T

Σ1~Y kð Þ ¼ σ12 kð Þ; σ13 kð Þ;…; σ1, d�1 kð Þð Þ0
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Remark 2. Notice that when K y; kð Þ is nonnegative, C y; kð Þ is the well-known Black-

Scholes price of a call option with maturity at T.0, volatility
ffiffiffiffiffiffiffiffiffi
σ kð Þp

, spot price S 1ð Þ
0 ,

and strike price K y; kð Þ. A sufficient condition for K y; kð Þ to be positive is w1 ≥ 0 while
wj ≤ 0, 2 ≤ j ≤ d. It is the case of spreads and crack spreads. When K y; kð Þ is negative, it
does not have the meaning of a strike price anymore.

Remark 3. The values μ y; kð Þ and σ kð Þ are, respectively, the mean and variance of
the first asset after conditioning on a value y of the remaining assets and the certain
number of jumps k.

For any fixed k∈Ndþ1, we approximate the conditional price C y; kð Þ on the
variable y by a suitable polynomial. In particular we consider Taylor, Chebyshev
polynomials and cubic splines.

Approximations based on the three expansions are discussed below.
(i) An order n Taylor approximation of C y; kð Þ around y∗ ∈Rd�1 is described

by

CT y; y∗; k; nð Þ ¼ ∑
n

l¼0
∑

L∈Rl

DLC y∗; kð Þ
L!

y� y∗ð ÞL (7)

with L ¼ l1; l2;…; ld�1ð Þ, where the second sum is taken on the set

Rl ¼ L∈Nd�1=l1 þ l2 þ…þ ld�1 ¼ l; 0 ≤ lj ≤ l
� �

:

Notice the existence of the derivatives of any order in the functions K yð Þ and
C y; kð Þ.

(ii) An approximation based on Chebyshev polynomials is given as follows:
In a region D⊂Rd�1, we consider an expansion of order n ¼ n1; n2;…; nd�1ð Þ of

the function C y; kð Þ as

CCh y; k; nð Þ ¼ 1
2
ĉ0 kð Þ1D yð Þ þ ∑

l∈Bn

ĉl kð ÞTD
l yð Þ1D yð Þ

¼ 1
2
ĉ0 kð Þ1D yð Þ þ ∑

l∈Bn

∑
m∈Cl

ĉl kð Þbm, lyl�2m1D yð Þ
(8)

where the sums are taken over the sets

Bn ¼ l∈Nd�1=0 ≤ l ≤ nj; j ¼ 1; 2;…; d� 1:
� �

Cl ¼ m∈Nd�1=0 ≤ mj ≤
lj
2

� �
; j ¼ 1; 2;…; d� 1

� �

Here TD
l

� �
l∈Bn

is a family of d� 1-dimensional Chebyshev polynomials with
degrees l∈Bn defined in the region D, while the quantities ĉl kð Þ are suitable
approximations of the corresponding Chebyshev coefficients cl kð Þ, computed using
the trapezoidal rule.

Notice that, by the orthogonality of the polynomials, the coefficients in the
expansion are cl kð Þ ¼ ,C, TD

l .W , where , f , g.W is the scalar product of func-
tions f and g, conveniently weighted by a function W. See, for example, [10] for a
general account on Chebyshev polynomials.

For convenience, we write the Chebyshev polynomials in terms of powers of
their variables, where bm, l are the coefficients of this expansion.

In particular, for a rectangular region D ¼ a; b½ �d�1 and valued vectors
a ¼ a1; a2;…; ad�1ð Þ and b ¼ b1; b2;…; bd�1ð Þ, we write
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TD yð Þ≔Ta,b
l yð Þ ¼ T�1,1l �1þ 2

y� a
b� a

� �

Hence, for d ¼ 2

CCh y; kð Þ ¼ 1
2
ĉ0 kð Þ1D yð Þ

þ∑
n

l¼1
  ∑

l
2½ �

m¼0
b� að Þ2m�lĉl kð Þbm, l 2y� aþ bð Þð Þl�2m1D yð Þ

(9)

See, for example, [11] for specific expressions of bm, l in one dimension.
(iii) Approximation by cubic splines.
On a rectangular region D ¼ a; b½ �d�1, we consider an approximation based on

cubic splines given by

Cspl y; kð Þ ¼ ∑
N

j¼1
∑

l∈B3

αj, l kð Þ y� bj�1
� �l1Dj yð Þ (10)

where bj is some point on a (d � 1)-dimensional grid b0; b1…; bNf g with N þ 1
points in D.

The local coefficients αj, l kð Þ are determined by imposing the conditions

C yj; k
� �

¼ zjk, j, k ¼ 1,…, N þ 1. The family of sets Dj; j ¼ 0; 1;…;N
� �

is a partition

of D. Notice that the coefficients αj, l kð Þ depend on the particular rectangle in the
grid. See [12] for a general account on multivariate splines.

In the case of d ¼ 2, splines used to approximate the conditional price become
one-dimensional polynomials. Additional conditions on the derivatives to smoothen

these curves are imposed, namely, Dl
�C yj; k
� �

¼ Dl
þC yj; k
� �

, j ¼ 1, 2,…, N, l ¼ 1, 2,

where Dl
�C yj; k
� �

and Dl
þC yj; k
� �

are, respectively, the derivatives from the left

and the right of the function C y; kð Þ at point y ¼ yj. Moreover, for end points in the

grid, D2 y0; k
� � ¼ D2 yN; k

� � ¼ 0.
In order to approximate the prices, we replace the functionC y; kð Þ by its respective

expansions. The conditional prices on the event NT ¼ k½ � are estimated by approxi-
mating the corresponding conditional expected values. Substituting the approxima-
tions of conditional prices into Eq. (4), we obtain, after truncation, estimates of the
price of the basket contract, under the jump-diffusion model described by Eqs. (1) and
(2). They are denoted, respectively, by CT

JD y∗ð Þ, CCh
JD , and Cspl

JD.
Notice that these estimates depend on the mixing exponential-power moments

of the log-prices. The latter can be computed from its conditional moment-
generating function under the selected EMM. Hence, for a vector X and a Borel set
D, we define

MX u; kð Þ ¼ EQ exp uXð Þ=NT ¼ k½ �
MX u; k;Dð Þ ¼ EQ exp uXð Þ1D Xð Þ=NT ¼ k½ �

In particular when D ¼ a; b½ �d�1, we write MX u; k;Dð Þ ¼MX u; k; a; bð Þ.
Concrete expressions of these approximations under a two-dimensional Gauss-

ian model are shown in Theorem 4.
As it is well known, the conditional mixed exponential-power moments of a

random vector X are related to the partial derivatives of the corresponding
moment-generating function Indeed, for ν∈Nd�1, we have
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DνMX u; k;Dð Þ ¼ EQ exp uXð ÞXν1D Xð Þ=NT ¼ k½ �, u∈Rd�1

In order to simplify notations, we introduce the following quantities:

A1 kð Þ ¼ 1
2
σ2 kð ÞT þ μ1 kð Þ � Σ1~Y kð ÞΣ�1~Y kð Þ~μ kð Þ0

A2 kð Þ ¼ A1 kð Þ þ Σ1~Y kð ÞΣ�1~Y kð Þy∗

A3 kð Þ ¼ A1 kð Þ þ 1
2

aþ bð ÞΣ1~Y kð ÞΣ�1~Y kð Þ

and the set

Ndþ1
M ¼ k ¼ k0; k1;…; kdð Þ=kj ¼ 0; 1;…;Mj; j ¼ 0; 1;…; d

� �

Theorem 4. Let CJD be the price of a European basket contract with maturity T,
strike price K, and payoff h YTð Þ under a model given by Eqs. (1) and (2). In addition
assume Xk � N μJ;DJ

� �
and X0, k � N μ0, J ;Σ0, J

� �
for any k∈N, where DJ is a d� d

diagonal matrix with components DJ j; lð Þ ¼ δjl σ
jð Þ
J

� �2
. Let Σ 0ð Þ

J be a d� d matrix with

components Σ0, J j; lð Þ ¼ σ
j, l
0 .

Then, its n-th-order approximation around y∗ ∈Rd�1 in terms of Taylor polynomials
is given by

CT
JD y∗ð Þ ¼ w1 ∑

k∈Ndþ1
M

  ∑
n

l¼0
  ∑
L∈Rl

exp A2 kð Þð ÞD
LC y∗; kð Þ

L!
DLM~YT�y∗ Σ1~Y kð ÞΣ�1~Y kð Þ; k

� �
pk

(11)

for some truncation vector M∈Ndþ1.
The n-th-order Chebyshev approximation on a region D ¼ a; b½ �d�1 is

CCh
JD ¼

w1

2
∑

k∈Ndþ1
M

ĉ0 kð ÞK1ða; b; kÞ½

þ w1 ∑
k∈Ndþ1

M

  ∑
l∈Bn

  ∑
m∈Cl

exp A3 kð Þð Þĉl kð Þbm, l b� að Þ2m�l

Dl�2mM~VT
ð1
2
Σ1~Y kð ÞΣ�1~Y kð Þ; k;� b� að Þ; b� aÞ�pk

(12)

where ~VT ¼ 2~YT � aþ bð Þ and K1 a; b; nð Þ ¼ exp A1 kð Þð ÞM~YT

Σ1~Y kð ÞΣ�1~Y kð Þ; k; a; b
� �

.

The n-th-order approximation by cubic splines on the region D ¼ a; b½ �d�1 is given by

Cspl
JD ¼ w1 ∑

k∈Ndþ1
M

exp
1
2
σ2 kð ÞT

� ��

∑
N

j¼1
∑

l∈B3

exp Σ1~Y kð ÞΣ�1~Y kð Þbj�1
� �

αj, l kð Þ

DmM~Y�bj�1 Σ1~Y kð ÞΣ�1~Y kð Þ; k;DjÞ
� i

pk

(13)

Remark 5. The point y∗ around which the Taylor expansion is taken, in general,
depends on k.
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See, for example, [11] for specific expressions of bm, l in one dimension.
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are, respectively, the derivatives from the left

and the right of the function C y; kð Þ at point y ¼ yj. Moreover, for end points in the

grid, D2 y0; k
� � ¼ D2 yN; k

� � ¼ 0.
In order to approximate the prices, we replace the functionC y; kð Þ by its respective

expansions. The conditional prices on the event NT ¼ k½ � are estimated by approxi-
mating the corresponding conditional expected values. Substituting the approxima-
tions of conditional prices into Eq. (4), we obtain, after truncation, estimates of the
price of the basket contract, under the jump-diffusion model described by Eqs. (1) and
(2). They are denoted, respectively, by CT

JD y∗ð Þ, CCh
JD , and Cspl

JD.
Notice that these estimates depend on the mixing exponential-power moments

of the log-prices. The latter can be computed from its conditional moment-
generating function under the selected EMM. Hence, for a vector X and a Borel set
D, we define

MX u; kð Þ ¼ EQ exp uXð Þ=NT ¼ k½ �
MX u; k;Dð Þ ¼ EQ exp uXð Þ1D Xð Þ=NT ¼ k½ �

In particular when D ¼ a; b½ �d�1, we write MX u; k;Dð Þ ¼MX u; k; a; bð Þ.
Concrete expressions of these approximations under a two-dimensional Gauss-

ian model are shown in Theorem 4.
As it is well known, the conditional mixed exponential-power moments of a

random vector X are related to the partial derivatives of the corresponding
moment-generating function Indeed, for ν∈Nd�1, we have
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DνMX u; k;Dð Þ ¼ EQ exp uXð ÞXν1D Xð Þ=NT ¼ k½ �, u∈Rd�1

In order to simplify notations, we introduce the following quantities:

A1 kð Þ ¼ 1
2
σ2 kð ÞT þ μ1 kð Þ � Σ1~Y kð ÞΣ�1~Y kð Þ~μ kð Þ0

A2 kð Þ ¼ A1 kð Þ þ Σ1~Y kð ÞΣ�1~Y kð Þy∗

A3 kð Þ ¼ A1 kð Þ þ 1
2

aþ bð ÞΣ1~Y kð ÞΣ�1~Y kð Þ

and the set

Ndþ1
M ¼ k ¼ k0; k1;…; kdð Þ=kj ¼ 0; 1;…;Mj; j ¼ 0; 1;…; d

� �

Theorem 4. Let CJD be the price of a European basket contract with maturity T,
strike price K, and payoff h YTð Þ under a model given by Eqs. (1) and (2). In addition
assume Xk � N μJ;DJ

� �
and X0, k � N μ0, J ;Σ0, J

� �
for any k∈N, where DJ is a d� d

diagonal matrix with components DJ j; lð Þ ¼ δjl σ
jð Þ
J

� �2
. Let Σ 0ð Þ

J be a d� d matrix with

components Σ0, J j; lð Þ ¼ σ
j, l
0 .

Then, its n-th-order approximation around y∗ ∈Rd�1 in terms of Taylor polynomials
is given by

CT
JD y∗ð Þ ¼ w1 ∑

k∈Ndþ1
M

  ∑
n

l¼0
  ∑
L∈Rl

exp A2 kð Þð ÞD
LC y∗; kð Þ

L!
DLM~YT�y∗ Σ1~Y kð ÞΣ�1~Y kð Þ; k

� �
pk

(11)

for some truncation vector M∈Ndþ1.
The n-th-order Chebyshev approximation on a region D ¼ a; b½ �d�1 is

CCh
JD ¼

w1

2
∑

k∈Ndþ1
M

ĉ0 kð ÞK1ða; b; kÞ½

þ w1 ∑
k∈Ndþ1

M

  ∑
l∈Bn

  ∑
m∈Cl

exp A3 kð Þð Þĉl kð Þbm, l b� að Þ2m�l

Dl�2mM~VT
ð1
2
Σ1~Y kð ÞΣ�1~Y kð Þ; k;� b� að Þ; b� aÞ�pk

(12)

where ~VT ¼ 2~YT � aþ bð Þ and K1 a; b; nð Þ ¼ exp A1 kð Þð ÞM~YT

Σ1~Y kð ÞΣ�1~Y kð Þ; k; a; b
� �

.

The n-th-order approximation by cubic splines on the region D ¼ a; b½ �d�1 is given by

Cspl
JD ¼ w1 ∑

k∈Ndþ1
M

exp
1
2
σ2 kð ÞT

� ��

∑
N

j¼1
∑

l∈B3

exp Σ1~Y kð ÞΣ�1~Y kð Þbj�1
� �

αj, l kð Þ

DmM~Y�bj�1 Σ1~Y kð ÞΣ�1~Y kð Þ; k;DjÞ
� i

pk

(13)

Remark 5. The point y∗ around which the Taylor expansion is taken, in general,
depends on k.
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3. Approximating the price of spread contracts

Spread contracts are the most common basket derivatives. In this case the payoff

is written as h STð Þ ¼ S 1ð Þ
T � S 2ð Þ

T � K
� �

þ
.

Hence for d ¼ 2, conditionally on Y 2ð Þ
T ¼ y

h i
∩ NT ¼ k½ �, the log-prices of the first

asset are normally distributed, i.e., Y 1ð Þ
T � N μ y; kð Þ; σ2 kð Þð Þ, with

μ y; kð Þ ¼ μ1 kð Þ þ
ffiffiffiffiffiffiffiffiffiffiffiffiffi
σ11 kð Þ
σ22 kð Þ

s
ρ kð Þ y� μ2 kð Þð Þ

σ2 kð Þ ¼ 1
T

σ11 kð Þ � σ212 kð Þ
σ22 kð Þ

� �
¼ 1

T
1� ρ kð Þð Þ2
h i

σ11 kð Þ

where

ρ kð Þ ¼ σ12 kð Þffiffiffiffiffiffiffiffiffiffiffiffiffi
σ11 kð Þp ffiffiffiffiffiffiffiffiffiffiffiffiffi

σ22 kð Þp

is the conditional correlation coefficient between the two assets.
A result about the derivatives of the moment-generating function of a

constrained standard normal random variable Z on the interval �∞; bð Þ is needed.
To this end we have

DmMZ
ffiffiffiffiffiffiffiffiffiffiffiffiffi
σ11 kð Þp

ρ kð Þ; k;�∞; b
� � ¼ exp

1
2
σ11 kð Þ ρ kð Þð Þ2

� �

bin m; μV �∞; b� ffiffiffiffiffiffiffiffiffiffiffiffiffi
σ11 kð Þp

ρ kð Þ� �
;
ffiffiffiffiffiffiffiffiffiffiffiffiffi
σ11 kð Þp

ρ kð Þ� � (14)

where μ m; a; bð Þ ¼ μ m;�∞; bð Þ � μ m;�∞; að Þ ¼ Ð ba zmf Z zð Þ dz is the m-th
moment of a standard normal random variable constrained to the interval a; bð Þ and
μV a; bð Þ is a vector with components μ j; a; bð Þ, j ¼ 0, 1,…, m .

By integration by parts, the later can be calculated recursively as

μ 0; a; bð Þ ¼ N bð Þ �N að Þ
μ 1; a; bð Þ ¼ f Z að Þ � f Z bð Þ
μ m; a; bð Þ ¼ m� 1ð Þμ m� 2; a; bð Þ þ am�1f Z að Þ � bm�1f Z bð ÞÞ, m ≥ 2

For a Taylor expansion, derivatives of the moment-generating function and
constrained moment-generating function for the second component of the
log-prices are computed as follows:

DlMY 2ð Þ
T �y∗

ffiffiffiffiffiffiffiffiffiffiffiffiffi
σ11 kð Þ
σ22 kð Þ

s
ρ kð Þ; k

 !
¼ exp

ffiffiffiffiffiffiffiffiffiffiffiffiffi
σ11 kð Þ
σ22 kð Þ

s
ρ kð Þ μ2 kð Þ � y∗ð Þ

 !

bin l;PV
ffiffiffiffiffiffiffiffiffiffiffiffiffi
σ22 kð Þp� �

1 ∘DV MZ
ffiffiffiffiffiffiffiffiffiffiffiffiffi
σ11 kð Þp

ρ kð Þ� �� �
; μ2 kð Þ � y∗

� �

Now, combining the expressions above with Eq. (11), we have

CT
JD y∗ð Þ ¼ w1 ∑

k∈N3
M

exp
1
2
σ kð ÞT þ μ1 kð Þ

� �
∑
n

l¼0

l

m

 !
DlC y∗; kð Þ

l!

� �
μ2 kð Þ � y∗ð Þl�m

bin l;PV
ffiffiffiffiffiffiffiffiffiffiffiffiffi
σ22 kð Þp� �

1 ∘DV MZ
ffiffiffiffiffiffiffiffiffiffiffiffiffi
σ11 kð Þp

ρ kð Þ� �� �
; μ2 kð Þ � y∗

� �
pk

(15)
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Next, we obtain the Taylor approximations up to third order. By elementary
calculation we can compute the derivatives of the function C y; kð Þ with respect to y.

First, notice that, from the Black-Scholes pricing formula:

C y; kð Þ ¼ S 1ð Þ
0 N d1 K y; kð Þð Þ � K y; kð Þe�rTN d2 K y; kð Þð Þð�

where

d1 K y; kð Þð Þ ¼
log

S 1ð Þ
0

K y; kð Þ

 !
þ rþ σ kð Þ

2

� �
T

σ kð Þ ffiffiffiffiTp

d2 K y; kð Þð Þ ¼ d1 K y; kð Þð Þ � σ kð Þ ffiffiffiffiTp

andN :ð Þ is the cumulative distribution function of a standard normal distribution.
Hence

D1C y; kð Þ ¼ � 1ffiffiffiffiffiffiffiffiffiffiffiffi
σ kð ÞTp T1 y; kð ÞA y; kð Þ

where

T1 y; kð Þ ¼ D1K y; kð Þ
K y; kð Þ

A y; kð Þ ¼ S 1ð Þ
0 f Z d1 K y; kð Þð Þð Þ þ σ kð Þ ffiffiffiffiTp e�rTK y; kð ÞN d2 K y; kð Þð Þð Þ
�e�rTK y; kð Þf Z d2 K y; kð Þð Þð Þ

Higher derivatives can be calculated recursively.

DnC y; kð Þ ¼ � 1ffiffiffiffiffiffiffiffiffiffiffiffi
σ kð ÞTp ∑

n�1

l¼0

n� 1

l

� �
DlT1 y; kð ÞDn�l�1A y; kð Þ

Concrete expressions for second- and third-order derivatives are shown in the
appendix.

Regarding the approximation based on Chebyshev polynomials, we first com-

pute the moment-generating function of the random variables Y 2ð Þ
T and V 2ð Þ

T
constrained to the interval a; bð Þ. To this end we denote

~b ¼ b� μ2 kð Þffiffiffiffiffiffiffiffiffiffiffiffiffi
σ22 kð Þp , ~a ¼ a� μ2 kð Þffiffiffiffiffiffiffiffiffiffiffiffiffi

σ22 kð Þp (16)

Notice that, taking into account Eq. (14),

DmMZ
ffiffiffiffiffiffi
σ11
p

ρ kð Þ; ~a; ~b
� �

¼ exp
1
2
σ11 kð Þ ρ kð Þð Þ2

� �

bin m; μ m1; ~a �
ffiffiffiffiffiffiffiffiffiffiffiffiffi
σ11 kð Þp

ρ kð Þ; ~b � ffiffiffiffiffiffiffiffiffiffiffiffiffi
σ11 kð Þp

ρ kð ÞÞ; ffiffiffiffiffiffiffiffiffiffiffiffiffi
σ11 kð Þp

ρ kð Þ
� �� (17)

Moreover

MY 2ð Þ
T

ffiffiffiffiffiffiffiffiffiffiffiffiffi
σ11 kð Þ
σ22 kð Þ

s
ρ kð Þ; k;�∞; b

 !
¼ exp

ffiffiffiffiffiffiffiffiffiffiffiffiffi
σ11 kð Þ
σ22 kð Þ

s
ρ kð Þμ2 kð Þ þ 1

2
σ11 kð Þ ρ kð Þð Þ2

 !

N ~b � ffiffiffiffiffiffiffiffiffiffiffiffiffi
σ11 kð Þp

ρ kð Þ
� �
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3. Approximating the price of spread contracts

Spread contracts are the most common basket derivatives. In this case the payoff

is written as h STð Þ ¼ S 1ð Þ
T � S 2ð Þ

T � K
� �

þ
.

Hence for d ¼ 2, conditionally on Y 2ð Þ
T ¼ y

h i
∩ NT ¼ k½ �, the log-prices of the first

asset are normally distributed, i.e., Y 1ð Þ
T � N μ y; kð Þ; σ2 kð Þð Þ, with

μ y; kð Þ ¼ μ1 kð Þ þ
ffiffiffiffiffiffiffiffiffiffiffiffiffi
σ11 kð Þ
σ22 kð Þ

s
ρ kð Þ y� μ2 kð Þð Þ

σ2 kð Þ ¼ 1
T

σ11 kð Þ � σ212 kð Þ
σ22 kð Þ

� �
¼ 1

T
1� ρ kð Þð Þ2
h i

σ11 kð Þ

where

ρ kð Þ ¼ σ12 kð Þffiffiffiffiffiffiffiffiffiffiffiffiffi
σ11 kð Þp ffiffiffiffiffiffiffiffiffiffiffiffiffi

σ22 kð Þp

is the conditional correlation coefficient between the two assets.
A result about the derivatives of the moment-generating function of a

constrained standard normal random variable Z on the interval �∞; bð Þ is needed.
To this end we have

DmMZ
ffiffiffiffiffiffiffiffiffiffiffiffiffi
σ11 kð Þp

ρ kð Þ; k;�∞; b
� � ¼ exp

1
2
σ11 kð Þ ρ kð Þð Þ2

� �

bin m; μV �∞; b� ffiffiffiffiffiffiffiffiffiffiffiffiffi
σ11 kð Þp

ρ kð Þ� �
;
ffiffiffiffiffiffiffiffiffiffiffiffiffi
σ11 kð Þp

ρ kð Þ� � (14)

where μ m; a; bð Þ ¼ μ m;�∞; bð Þ � μ m;�∞; að Þ ¼ Ð ba zmf Z zð Þ dz is the m-th
moment of a standard normal random variable constrained to the interval a; bð Þ and
μV a; bð Þ is a vector with components μ j; a; bð Þ, j ¼ 0, 1,…, m .

By integration by parts, the later can be calculated recursively as

μ 0; a; bð Þ ¼ N bð Þ �N að Þ
μ 1; a; bð Þ ¼ f Z að Þ � f Z bð Þ
μ m; a; bð Þ ¼ m� 1ð Þμ m� 2; a; bð Þ þ am�1f Z að Þ � bm�1f Z bð ÞÞ, m ≥ 2

For a Taylor expansion, derivatives of the moment-generating function and
constrained moment-generating function for the second component of the
log-prices are computed as follows:

DlMY 2ð Þ
T �y∗

ffiffiffiffiffiffiffiffiffiffiffiffiffi
σ11 kð Þ
σ22 kð Þ

s
ρ kð Þ; k

 !
¼ exp

ffiffiffiffiffiffiffiffiffiffiffiffiffi
σ11 kð Þ
σ22 kð Þ

s
ρ kð Þ μ2 kð Þ � y∗ð Þ

 !

bin l;PV
ffiffiffiffiffiffiffiffiffiffiffiffiffi
σ22 kð Þp� �

1 ∘DV MZ
ffiffiffiffiffiffiffiffiffiffiffiffiffi
σ11 kð Þp

ρ kð Þ� �� �
; μ2 kð Þ � y∗

� �

Now, combining the expressions above with Eq. (11), we have

CT
JD y∗ð Þ ¼ w1 ∑

k∈N3
M

exp
1
2
σ kð ÞT þ μ1 kð Þ

� �
∑
n

l¼0

l

m

 !
DlC y∗; kð Þ

l!

� �
μ2 kð Þ � y∗ð Þl�m

bin l;PV
ffiffiffiffiffiffiffiffiffiffiffiffiffi
σ22 kð Þp� �

1 ∘DV MZ
ffiffiffiffiffiffiffiffiffiffiffiffiffi
σ11 kð Þp

ρ kð Þ� �� �
; μ2 kð Þ � y∗

� �
pk

(15)
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Next, we obtain the Taylor approximations up to third order. By elementary
calculation we can compute the derivatives of the function C y; kð Þ with respect to y.

First, notice that, from the Black-Scholes pricing formula:

C y; kð Þ ¼ S 1ð Þ
0 N d1 K y; kð Þð Þ � K y; kð Þe�rTN d2 K y; kð Þð Þð�

where

d1 K y; kð Þð Þ ¼
log

S 1ð Þ
0

K y; kð Þ

 !
þ rþ σ kð Þ

2

� �
T

σ kð Þ ffiffiffiffiTp

d2 K y; kð Þð Þ ¼ d1 K y; kð Þð Þ � σ kð Þ ffiffiffiffiTp

andN :ð Þ is the cumulative distribution function of a standard normal distribution.
Hence

D1C y; kð Þ ¼ � 1ffiffiffiffiffiffiffiffiffiffiffiffi
σ kð ÞTp T1 y; kð ÞA y; kð Þ

where

T1 y; kð Þ ¼ D1K y; kð Þ
K y; kð Þ

A y; kð Þ ¼ S 1ð Þ
0 f Z d1 K y; kð Þð Þð Þ þ σ kð Þ ffiffiffiffiTp e�rTK y; kð ÞN d2 K y; kð Þð Þð Þ
�e�rTK y; kð Þf Z d2 K y; kð Þð Þð Þ

Higher derivatives can be calculated recursively.

DnC y; kð Þ ¼ � 1ffiffiffiffiffiffiffiffiffiffiffiffi
σ kð ÞTp ∑

n�1

l¼0

n� 1

l

� �
DlT1 y; kð ÞDn�l�1A y; kð Þ

Concrete expressions for second- and third-order derivatives are shown in the
appendix.

Regarding the approximation based on Chebyshev polynomials, we first com-

pute the moment-generating function of the random variables Y 2ð Þ
T and V 2ð Þ

T
constrained to the interval a; bð Þ. To this end we denote

~b ¼ b� μ2 kð Þffiffiffiffiffiffiffiffiffiffiffiffiffi
σ22 kð Þp , ~a ¼ a� μ2 kð Þffiffiffiffiffiffiffiffiffiffiffiffiffi

σ22 kð Þp (16)

Notice that, taking into account Eq. (14),

DmMZ
ffiffiffiffiffiffi
σ11
p

ρ kð Þ; ~a; ~b
� �

¼ exp
1
2
σ11 kð Þ ρ kð Þð Þ2

� �

bin m; μ m1; ~a �
ffiffiffiffiffiffiffiffiffiffiffiffiffi
σ11 kð Þp

ρ kð Þ; ~b � ffiffiffiffiffiffiffiffiffiffiffiffiffi
σ11 kð Þp

ρ kð ÞÞ; ffiffiffiffiffiffiffiffiffiffiffiffiffi
σ11 kð Þp

ρ kð Þ
� �� (17)

Moreover

MY 2ð Þ
T

ffiffiffiffiffiffiffiffiffiffiffiffiffi
σ11 kð Þ
σ22 kð Þ

s
ρ kð Þ; k;�∞; b

 !
¼ exp

ffiffiffiffiffiffiffiffiffiffiffiffiffi
σ11 kð Þ
σ22 kð Þ

s
ρ kð Þμ2 kð Þ þ 1

2
σ11 kð Þ ρ kð Þð Þ2

 !

N ~b � ffiffiffiffiffiffiffiffiffiffiffiffiffi
σ11 kð Þp

ρ kð Þ
� �
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Hence

DνMV 2ð Þ
T

1
2

ffiffiffiffiffiffiffiffiffiffiffiffiffi
σ11 kð Þ
σ22 kð Þ

s
ρ kð Þ; k;� b� að Þ; b� a

 !

¼ exp
1
2

ffiffiffiffiffiffiffiffiffiffiffiffiffi
σ11 kð Þ
σ22 kð Þ

s
ρ kð Þ 2μ2 kð Þ � a� bð Þ

 !
G ν; kð Þ

where

G ν; kð Þ ¼ bin ν;MZ
ffiffiffiffiffiffiffiffiffiffiffiffiffi
σ11 kð Þ

p
ρ kð Þ; k; ~a; ~bÞ ∘PV 2σ

1
2
22 kð Þ1

� �
; 2μ2 kð Þ � a� b

� ��

Then, combining Eq. (12) with the results above, we get

CCh k; nð Þ ¼ w1

2
ĉ0 kð ÞK1 a; b; kð Þ

þ w1 exp
1
2
σ kð ÞT þ μ1 kð Þ

� �
∑
n

l¼1
∑
l
2½ �

m¼0
ĉl kð Þbm, lK a; b; l;mð ÞG l� 2m; kð Þ

Finally, the n-th-order Chebyshev approximation is given by

CCh
JD ¼ ∑

k∈N3
M

CCh k; nð Þpk

Similarly for a cubic spline approximation, we specialize Eq. (13) with
D ¼ a; bð Þ, Dj ¼ bj�1; bj

� �
, b0 ¼ a, bNþ1 ¼ b. Therefore, we have

Cspl
JD ¼ w1 ∑

k∈Ndþ1
M

exp
1
2
σ kð ÞT þ μ1 kð Þ

� ��

∑
N

j¼1
∑
3

l¼0
αj, l kð Þ σ22 kð Þð Þ l2binðl;DVMZð

ffiffiffiffiffiffiffiffiffiffiffiffiffi
σ11 kð Þ

p
ρ kð Þ; ~bj�1; ~bjÞ;�~bj�1Þ

#
pk

(18)

where ~bj is defined as ~b in Eq. (16) but replacing b by bj.

4. Numerical results

We implement the results from the previous section to price spread contracts and
show that the approximations considered above produce accurate price values when
compared with a standard Monte Carlo approach, at a lesser computational effort.

To this end we consider the following benchmark set of parameters:
The contract specifications consist a strike price of K ¼ $1, maturity T ¼ 1 year,

spot prices S 1ð Þ
0 ¼ $100, S 2ð Þ

0 ¼ $96, and a fix interest rate of 3%.
Volatilities corresponding to the diffusion part of both assets are σ1 ¼ 10% and

σ2 ¼ 30%, while the correlation coefficient between the two Brownian noises is
ρ ¼ 0:3. Regarding the jump part, we consider an average intensity of the common
jumps equal to λ0 ¼ 3 jumps per year and idiosyncratic intensities λ1 ¼ λ2 ¼ 2
jumps per year for the respective assets, while jump sizes have means equal to zero;
volatilities of common jump sizes are σ0,1 ¼ 1%, σ0,2 ¼ 5%, with a linear
correlation ρJ ¼ 0:5. Volatilities of the idiosyncratic jumps are taken as σJ,1 ¼ 10%
and σJ,2 ¼ 20%.
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Although these values are somehow arbitrary, they have been selected to produce
reasonable asset prices in connection with contracts based on crude oil prices. It is
worth noting that there is not a general agreement about the range of the parameters
in a jump-diffusion model. Indeed theymay depend on the market into consideration.

In Table 1 prices of spread contracts under different methods are shown. Prices
are obtained using Taylor and cubic splines approximations and contrasted with a
Monte Carlo approach. For the latter we carry 107 repetitions to achieve stable
results, with a relative average error of 0.1%. In addition, 95% Monte Carlo confi-
dence intervals and running times are provided. Implementation is done on a
Surface Pro 4 i7 computer, using MATLAB language.

The efficiency of the Monte Carlo method can be improved by considering only
the simulation of a single asset with the corresponding conditional probability and
then computing the discounted average of the conditional Black-Scholes price. It
reduces the computational time by half, still considerably higher than those based on
polynomial expansions. Chebyshev polynomial approximation is discussed in [1].

The expansions also require repetitive evaluations of conditional prices, which
turn out to be given by simple Black-Scholes closed formulas.

For a Taylor approach of order n, evaluations in the order of nM3 are needed,
whereM is the maximum truncation level in the number of jumps. In a Chebyshev
approach of the same order about n2NM3, evaluations of the conditional price should
be performed, when a grid of N points is used in a trapezoidal approximation of the
corresponding integrals. In a cubic splines approximation 3NM3. Here N is also the
number of points in the grid where the polynomial coefficients are adjusted.

For a theoretical analysis of the error using Taylor and Chebyshev expansions,
although in different contexts, see [13] for Taylor and [6] for Chebyshev cases.

In Figure 1a, a graph of conditional prices in function of log-price values of the
first asset (blue line) with average number of jumps equal to k0 ¼ 3 and k1 ¼ k2 ¼ 2

MC Taylor (f.o) Taylor (s.o.) Spl.

Price 14.7784 10.2980 14.29068 14.8842

Interval 14:7683; 14:7885ð Þ — — —

Run time 624.312 1.68806 1.68806 54.1720

In row three the average computer time (in seconds) for different pricing methods is shown.

Table 1.
Prices obtained using the benchmark parameter set and Monte Carlo, first- and second-order Taylor, and cubic
spline approximations.

Figure 1.
(a) Conditional price (blue curve) as function of log-price values and its Taylor approximations up to third
order around the average. (b) Conditional price vs. its cubic spline approximation.

141

Pricing Basket Options by Polynomial Approximations
DOI: http://dx.doi.org/10.5772/intechopen.82383



Hence

DνMV 2ð Þ
T

1
2

ffiffiffiffiffiffiffiffiffiffiffiffiffi
σ11 kð Þ
σ22 kð Þ

s
ρ kð Þ; k;� b� að Þ; b� a

 !

¼ exp
1
2

ffiffiffiffiffiffiffiffiffiffiffiffiffi
σ11 kð Þ
σ22 kð Þ

s
ρ kð Þ 2μ2 kð Þ � a� bð Þ

 !
G ν; kð Þ

where

G ν; kð Þ ¼ bin ν;MZ
ffiffiffiffiffiffiffiffiffiffiffiffiffi
σ11 kð Þ

p
ρ kð Þ; k; ~a; ~bÞ ∘PV 2σ

1
2
22 kð Þ1

� �
; 2μ2 kð Þ � a� b

� ��

Then, combining Eq. (12) with the results above, we get

CCh k; nð Þ ¼ w1

2
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where ~bj is defined as ~b in Eq. (16) but replacing b by bj.

4. Numerical results

We implement the results from the previous section to price spread contracts and
show that the approximations considered above produce accurate price values when
compared with a standard Monte Carlo approach, at a lesser computational effort.

To this end we consider the following benchmark set of parameters:
The contract specifications consist a strike price of K ¼ $1, maturity T ¼ 1 year,

spot prices S 1ð Þ
0 ¼ $100, S 2ð Þ

0 ¼ $96, and a fix interest rate of 3%.
Volatilities corresponding to the diffusion part of both assets are σ1 ¼ 10% and

σ2 ¼ 30%, while the correlation coefficient between the two Brownian noises is
ρ ¼ 0:3. Regarding the jump part, we consider an average intensity of the common
jumps equal to λ0 ¼ 3 jumps per year and idiosyncratic intensities λ1 ¼ λ2 ¼ 2
jumps per year for the respective assets, while jump sizes have means equal to zero;
volatilities of common jump sizes are σ0,1 ¼ 1%, σ0,2 ¼ 5%, with a linear
correlation ρJ ¼ 0:5. Volatilities of the idiosyncratic jumps are taken as σJ,1 ¼ 10%
and σJ,2 ¼ 20%.
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Although these values are somehow arbitrary, they have been selected to produce
reasonable asset prices in connection with contracts based on crude oil prices. It is
worth noting that there is not a general agreement about the range of the parameters
in a jump-diffusion model. Indeed theymay depend on the market into consideration.

In Table 1 prices of spread contracts under different methods are shown. Prices
are obtained using Taylor and cubic splines approximations and contrasted with a
Monte Carlo approach. For the latter we carry 107 repetitions to achieve stable
results, with a relative average error of 0.1%. In addition, 95% Monte Carlo confi-
dence intervals and running times are provided. Implementation is done on a
Surface Pro 4 i7 computer, using MATLAB language.

The efficiency of the Monte Carlo method can be improved by considering only
the simulation of a single asset with the corresponding conditional probability and
then computing the discounted average of the conditional Black-Scholes price. It
reduces the computational time by half, still considerably higher than those based on
polynomial expansions. Chebyshev polynomial approximation is discussed in [1].

The expansions also require repetitive evaluations of conditional prices, which
turn out to be given by simple Black-Scholes closed formulas.

For a Taylor approach of order n, evaluations in the order of nM3 are needed,
whereM is the maximum truncation level in the number of jumps. In a Chebyshev
approach of the same order about n2NM3, evaluations of the conditional price should
be performed, when a grid of N points is used in a trapezoidal approximation of the
corresponding integrals. In a cubic splines approximation 3NM3. Here N is also the
number of points in the grid where the polynomial coefficients are adjusted.

For a theoretical analysis of the error using Taylor and Chebyshev expansions,
although in different contexts, see [13] for Taylor and [6] for Chebyshev cases.

In Figure 1a, a graph of conditional prices in function of log-price values of the
first asset (blue line) with average number of jumps equal to k0 ¼ 3 and k1 ¼ k2 ¼ 2

MC Taylor (f.o) Taylor (s.o.) Spl.

Price 14.7784 10.2980 14.29068 14.8842

Interval 14:7683; 14:7885ð Þ — — —

Run time 624.312 1.68806 1.68806 54.1720

In row three the average computer time (in seconds) for different pricing methods is shown.

Table 1.
Prices obtained using the benchmark parameter set and Monte Carlo, first- and second-order Taylor, and cubic
spline approximations.

Figure 1.
(a) Conditional price (blue curve) as function of log-price values and its Taylor approximations up to third
order around the average. (b) Conditional price vs. its cubic spline approximation.
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is shown. The remaining three curves represent the first-order (green), second-
order (red), and third-order (magenta) Taylor polynomials around the average

value y∗ ¼ EQ Y 2ð Þ
T

� �
. In Figure 1b, conditional prices and its cubic spline approxi-

mation are shown. At this scale both are indistinguishable. Notice that, although the
Taylor approximation is excellent in a neighborhood of the expansion point, there
are significant deviations for values far from the mean. These deviations, under the
assumption of normality of the jump sizes, result to be infrequent; therefore, they
do not impact the global error, but might be significant when other probability
distributions, in particular heavy-tailed ones, or even normal jumps with higher
volatilities, are taken into account. Instead of local approximations, as the case of
Taylor polynomial expansion, uniform approximations on a given interval may
reduce the error. Expansions based on orthogonal basis, e.g., Chebyshev or varying
coefficients as in the case of cubic splines, are suggested. Notice that the function
C y; kð Þ is continuous in y for any value of k; therefore, Weierstrass’ theorem of
uniform convergence applies. Curiously, the convergence of Bernstein polynomials,
applied in the original proof of the theorem, is remarkably slow.

Figure 2 shows the differences between the conditional price and the cubic
spline for different values of the underlying price. Truncation values were selected
as a ¼ �1 and b ¼ 1. Generally speaking the choice of these values depends on the
probability distribution of the underlying asset. In practice it requires an explor-
atory study of the available data. On the other hand, the larger the interval, the
more accurate is the approximation but also is the computational effort. Moreover,
we have found that the results are sensible to this choice, though rather robust to
the number of splines and the truncation values.

Truncation values for the number of jumps, denoted in the paper byM0,M1 and
M2, should cover most of the jump probability distribution pk; k∈N3� �

. An effi-
cient way of choosing these values consists in starting to evaluate the sum at a point
close to where the maximum value of the pk’s is attained, namely,

k ¼ k0; k1; k2ð Þ ¼ λ0T � 1½ �þ; λ1T � 1½ �þ; λ2T � 1½ �þ
� �

Figure 2.
Curve representing the difference between conditional price and cubic spline approximation for the benchmark
parameters.
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where x½ �þ represents the maximum of the integer part of x and zero, then
adding expression (18) for points j ¼ j0; j1; j2

� �
over the set

NM kð Þ ¼ k0 þ j0; k1 þ j1; k2 þ j2
� �

∈N3= kl �Ml

2

� �

þ
≤ jl ≤ kl þMl

2
; l ¼ 0; 1; 2

� �

until ∑kpk ≥ δ, where δ is a predetermined value close to one.
In Figure 3 we show the probability distribution pk; k∈N3� �

, for k2 ¼ 5 varying
k0 and k1. We observe probabilities become negligible after certain values of k0; k1ð Þ
with a peak around the center of the distribution. For the benchmark parameter set
truncation values M0 ¼ 15,M1 ¼ 10,M2 ¼ 10 capture 99.67% of the probability
mass.

5. Conclusions and future developments

The paper establishes a methodology over the use of polynomial approximations
based on Taylor, Chebyshev, and cubic splines to the price of basket contracts. This
approach produces accurate results at a lesser computational effort than a standard
Monte Carlo technique. The claim is supported by numerical evidence in the case of
spread options, under a bivariate jump-diffusion model with a complex Gaussian
jump structure that allows to capture the dependence between assets.

The study needs to be extended to different parameter values to corroborate the
results in a wider scope. Moreover, optimal choices in the numerical implementa-
tion, for example, the order of the polynomials, the number of points in the grid,
and truncation levels, require a further study.

Sensitivities with respect to the parameters in the model and the contract, i.e.,
maturity, strike, interest rate, correlation, etc., can be easily calculated with a
straightforward adaptation of the current method. It is enough to approximate the
corresponding derivatives instead.

A natural question is how to adapt our method when a non-Gaussian joint
distribution of the jump sizes is considered. In this setting, the conditional

Figure 3.
Probabilities pk to observe k ¼ k0; k1ð Þ jumps when k2 ¼ 5. Truncation values M0 ¼ 15,M1 ¼ 10,M2 ¼ 10
capture 99.67% of the probability distribution in the number of jumps.
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k0 and k1. We observe probabilities become negligible after certain values of k0; k1ð Þ
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corresponding derivatives instead.
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distribution of the jump sizes is considered. In this setting, the conditional

Figure 3.
Probabilities pk to observe k ¼ k0; k1ð Þ jumps when k2 ¼ 5. Truncation values M0 ¼ 15,M1 ¼ 10,M2 ¼ 10
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probability distribution is generally unknown; nonetheless, the use of a copula
approach to capture the dependence may provide some insight.
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A. Appendix

A.1 Taylor implementation up to third order

After computing the second and third derivatives of C y; kð Þ and the
corresponding derivatives of the moment-generating function of Z, we can com-
pute Taylor approximations up to third order around the point y∗ as
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A.2 Proof of Theorem 1

From Eq. (2) written in its integral form

YT ¼ μT þ Σ
1
2BT þ ZT
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it is easy to see that

EQ YT=NTð Þ ¼ μT þ ~NT ∘ μJ þN 0ð Þ
T μ0, J ¼ μj ~NT
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Then, conditionally on NT, we have
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Hence, the price is expressed as
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Taking into account Eq. (19), again conditioning on the events ~YT ¼ y

and NT ¼ k, it is well known that Y 1ð Þ
T has a univariate normal distribution

with mean and variance given, respectively, by μ y; kð Þ and σ2 kð ÞT. See, for exam-
ple, [14].
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probability distribution is generally unknown; nonetheless, the use of a copula
approach to capture the dependence may provide some insight.
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Hence, we can write, on the set ~Y ¼ y∩NT ¼ k��
:

Y 1ð Þ
T ¼ μ y; kð Þ þ σ kð Þ

ffiffiffiffi
T
p

Z
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Then, replacing the expression above in Eq. (21), we have
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� �

þ=ℱ
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� i
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� ihh
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2
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� �
T þ μð~YT; kÞÞEQ S 1ð Þ

0 exp r� 1
2
σ2 NTð Þ

� �
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� ����
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2 NTð Þ� �
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� �
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�
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�

¼ w1 exp
1
2
σ2 kð ÞT

� �
EQ exp μ ~YT ;NTÞ

� �
Cð~YT ;NTÞ=NT ¼ k���

(22)

Eq. (4) easily follows after replacing Eq. (22) into Eq. (20).

A.3 Proof of Theorem 4

In Eq. (6) we replace the function C y; kð Þ by its Taylor expansion given in
Eq. (7).

Then, the Taylor approximation of C kð Þ is

CT y∗; kð Þ ¼ w1 exp
1
2
σ2 kð ÞT

� �
EQ exp μ ~YT;NT

� �� �
CTð~YT; y
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� �

¼ w1∑
n

l¼0
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� �
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h i
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n
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∑
Rl

DLC y∗; kð Þ
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DLM~YT�y∗ Σ1~Y kð ÞΣ�1~Y kð Þ; kÞ
�

Eq. (11) follows after replacing C kð Þ in Eq. (20) by the expression above and
truncating at point M.

After replacing Eq. (9) into Eq. (22), we have
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ĉl kð ÞEQ exp Σ1~Y NTð ÞΣ�1~Y NTð Þ~YTÞTD
l

~YT
� �

=NT ¼ k
i�h

¼ w1

2
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b� a
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1D ~YT
� �# "

Eq. (12) easily follows.
Finally, by similar arguments,

Cspl
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� �

∑
N
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1Dj
~YT
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¼ w1 exp
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2
σ2 kð ÞT

� �

∑
N

j¼1
∑

l∈B3

exp Σ1~Y kð ÞΣ~Y�1 kð Þcj
� �

αj, l kð ÞDlM~Y�cj Σ1~Y kð ÞΣ~Y�1 kð Þ; k;Dj

� �

from which (13) follows.
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ĉ0 kð ÞK1 k; a; bð Þ þw1 exp A1 kð Þð Þ ∑

l∈Bn

∑
m∈Cl
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Chapter 8

The Orthogonal Expansion in
Time-Domain Method for Solving
Maxwell Equations Using
Paralleling-in-Order Scheme
Zheng-Yu Huang, Zheng Sun and Wei He

Abstract

The orthogonal expansion in time-domain method is a new kind of uncondi-
tionally stable finite-difference time-domain (FDTD) method for solving the
Maxwell equation efficiently. Generally, it can be implemented by two schemes:
marching-on-in-order and paralleling-in-order, which, respectively, use weighted
Laguerre polynomials and associated Hermite functions as temporal expansions and
testing functions. This chapter summarized paralleling-in-order-based FDTD
method using associated Hermite functions and Legendre polynomials. And a com-
parison from theoretical analysis to numerical examples is shown. The LD integral
transfer matrix can be considered as a “dual” transformation for AH differential
matrix, which gives a possible way to find more potential orthogonal basis function
to implement a paralleling-in-order scheme. In addition, the differences with these
two orthogonal functions are also analyzed. From the numerical results, we can see
their agreements in some general cases while differing in some cases such as
shielding analysis with the long-time response requirement.

Keywords: associated Hermite, finite-difference time-domain (FDTD),
Legendre polynomials, paralleling-in-order, unconditionally stable

1. Introduction

To overcome the numerical stability constraints of conventional finite-
difference time-domain (FDTD) method [1, 2], many unconditionally stable
methods to reduce or eliminate requirements of the stability condition have been
proposed and developed, such as alternating-direction implicit method [2, 3] and
locally one-dimensional schemes [3], explicit and unconditionally stable FDTD
method [4], and orthogonal expansions in time domain [5–8]. For the orthogonal
expansions schemes, field-versus-time variations in the FDTD space lattice are
expanded using an appropriate set of orthogonal temporal basis and testing func-
tions, such as weighted Laguerre polynomials (WLP) and associated Hermite (AH)
functions, which leads to two different solution schemes: marching-on-in-order and
paralleling-in-order, respectively. Both of them appear to be promising according to
the reported work where the computational time can be reduced to at least 10% of
the conventional FDTD scheme [1]. Recently, the Legendre (LD) polynomials are
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explored as another possible orthogonal expansion incorporated with FDTD to form
a paralleling-in-order-based unconditionally stable FDTD method. Based on it, in
this chapter, we made a comparison investigation for these two new methods,
which are AH FDTD method and LD FDTD method, especially focused on their
differences. Through a numerical example, we validate their effectiveness when
compared with the conventional FDTD method and summarized the characteristics
of the two methods.

2. Formulation for paralleling-in-order scheme: AH and LD functions

2.1 2D Maxwell’s equations in time domain

The 2D time-domain Maxwell’s equations with the TEz wave case in lossy
medium are considered:

ε
∂Ex r; tð Þ

∂t
þ σeEx r; tð Þ ¼ ∂Hz r; tð Þ

∂y
� Jx r; tð Þ (1)

μ
∂Hz r; tð Þ

∂t
þ σmHz r; tð Þ ¼ ∂Ex r; tð Þ

∂y
� ∂Ey r; tð Þ

∂x
�Mz r; tð Þ (2)

ε
∂Ey r; tð Þ

∂t
þ σeEy r; tð Þ ¼ � ∂Hz r; tð Þ

∂x
� Jy r; tð Þ (3)

where ε, μ, σe, and σm are the permittivity, the permeability, the electric con-
ductivity, and the magnetic loss of the medium, respectively. Eξ r; tð Þ and Jξ r; tð Þ
(ξ ¼ x, y) are the electric field component and the electric current densities,
respectively. Hz r; tð Þ and Mz r; tð Þ are the magnetic field component and magnetic
current densities, respectively.

2.2 The differential and integral transfer matrices to deal with the partial
differential term in Maxwell’s equations

2.2.1 The associated Hermite function

Associated Hermite function is defined as

ϕn tð Þ ¼ 2nn!π1=2
� ��1=2

e�t
2=2Hn tð Þ

� �
, n ¼ 0; 1…ð Þ (4)

where Hn tð Þ ¼ �1ð Þnet2 dn
dtn e�t

2
� �

is Hermite polynomials. Although it is not

causal, it can be transformed into causal form by virtue of a proper translating and
scaling parameters and then used to span the causal electromagnetic responses. The

transformed basis function is ϕn ~tð Þ ¼ 2nn!σπ1=2
� ��1=2

e�~t
2=2Hn ~tð Þ

n o
, where

transformed time variable ~t ¼ t� Tf
� �

=σ. And Tf is a translating parameter and σ is
a scaling parameter. By controlling these two parameters, the time-frequency sup-
port of the AH functions ϕn ~tð Þ� �

space can be changed flexibly. So, arbitrary locally
time-supported functions can be spanned by these transformed basis functions,
including the causal electromagnetic responses.

From [7], if a causal function u r; tð Þ, such as the electric or magnetic field
function, can be expanded by
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u r; tð Þ ¼ ∑
∞

n¼0
un rð Þϕn ~tð Þ (5)

we can deduce the first derivative of u x; tð Þ with respect to

∂

∂t
u r; tð Þ ¼ 1

σ
∑
∞

n¼0
unþ1 rð Þ

ffiffiffiffiffiffiffiffiffiffiffi
nþ 1
2

r
� un�1 rð Þ

ffiffiffi
n
2

r !
ϕn ~tð Þ (6)

Then, the Q-tuple AH domain coefficients for u r; tð Þ and _u r; tð Þ from (5) and (6)

can be obtained as U ¼ U0⋯UQ�1� �T
and _U ¼ _U0⋯ _UQ�1� �T

. And, we can readily
obtain the relationship between Uand _U as

_U ¼ αU (7)

where

α ¼
ffiffiffi
2
p

2λ

ffiffiffi
1
p

� ffiffiffi
1
p ffiffiffi

2
p

� ffiffiffi
2
p

⋱

⋱
ffiffiffiffiffiffiffiffiffiffiffiffi
Q � 1
p

� ffiffiffiffiffiffiffiffiffiffiffiffi
Q � 1
p

2
66666664

3
77777775
Q�Q

(8)

By using (8), the partial differential term in Maxwell’s equations can readily be
dealt with, and finally, a five-point banded matrix equation for Hz component can
be obtained [9].

2.2.2 The associated Legendre polynomial

We expand all the temporal quantities in terms of the associated Legendre
polynomial given by [10]:

Pq tð Þ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffi
2qþ 1

2

r
Lq 2

t
l
� 1

� �
, t∈ 0; l½ � (9)

where l is the time support for analyzing a causal response and Lq is the Legen-
dre polynomial with order q, which are orthogonal in the interval [�1,1] satisfying
the following recurrence relation:

Lqþ1 tð Þ ¼ 2qþ 1
qþ 1

tLq tð Þ � q
qþ 1

Lq�1 tð Þ, (10)

and L0 tð Þ ¼ 0, L1 tð Þ ¼ t. Given a time-support field function u r; tð Þ, it can be
expanded by (9) as

u r; tð Þ ¼ ∑
∞

q¼0
uq rð ÞPq tð Þ (11)

where uq rð Þ is the q-th expanding coefficients, and it can be calculated by

uq rð Þ ¼
ðþ∞

�∞
u r; tð ÞPq tð Þdt (12)
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time-supported functions can be spanned by these transformed basis functions,
including the causal electromagnetic responses.

From [7], if a causal function u r; tð Þ, such as the electric or magnetic field
function, can be expanded by
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u r; tð Þ ¼ ∑
∞

n¼0
un rð Þϕn ~tð Þ (5)

we can deduce the first derivative of u x; tð Þ with respect to

∂

∂t
u r; tð Þ ¼ 1

σ
∑
∞

n¼0
unþ1 rð Þ

ffiffiffiffiffiffiffiffiffiffiffi
nþ 1
2

r
� un�1 rð Þ

ffiffiffi
n
2

r !
ϕn ~tð Þ (6)

Then, the Q-tuple AH domain coefficients for u r; tð Þ and _u r; tð Þ from (5) and (6)

can be obtained as U ¼ U0⋯UQ�1� �T
and _U ¼ _U0⋯ _UQ�1� �T

. And, we can readily
obtain the relationship between Uand _U as

_U ¼ αU (7)

where

α ¼
ffiffiffi
2
p

2λ

ffiffiffi
1
p

� ffiffiffi
1
p ffiffiffi

2
p

� ffiffiffi
2
p

⋱

⋱
ffiffiffiffiffiffiffiffiffiffiffiffi
Q � 1
p

� ffiffiffiffiffiffiffiffiffiffiffiffi
Q � 1
p

2
66666664

3
77777775
Q�Q

(8)

By using (8), the partial differential term in Maxwell’s equations can readily be
dealt with, and finally, a five-point banded matrix equation for Hz component can
be obtained [9].

2.2.2 The associated Legendre polynomial

We expand all the temporal quantities in terms of the associated Legendre
polynomial given by [10]:

Pq tð Þ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffi
2qþ 1

2

r
Lq 2

t
l
� 1

� �
, t∈ 0; l½ � (9)

where l is the time support for analyzing a causal response and Lq is the Legen-
dre polynomial with order q, which are orthogonal in the interval [�1,1] satisfying
the following recurrence relation:

Lqþ1 tð Þ ¼ 2qþ 1
qþ 1

tLq tð Þ � q
qþ 1

Lq�1 tð Þ, (10)

and L0 tð Þ ¼ 0, L1 tð Þ ¼ t. Given a time-support field function u r; tð Þ, it can be
expanded by (9) as

u r; tð Þ ¼ ∑
∞

q¼0
uq rð ÞPq tð Þ (11)

where uq rð Þ is the q-th expanding coefficients, and it can be calculated by

uq rð Þ ¼
ðþ∞

�∞
u r; tð ÞPq tð Þdt (12)
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From the intrinsic features of Legendre function, the differential relationship
can be described as

Pq tð Þ ¼ 1

2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2qþ 3ð Þ 2qþ 1ð Þp P

0
qþ1 tð Þ � 1

2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2qþ 1ð Þ 2q� 1ð Þp P

0
q�1 tð Þ (13)

If the field derivative of u r; tð Þ to t is expanded as

u
0
r; tð Þ ¼ ∑

∞

q¼0
u 1ð Þ
q rð ÞPq tð Þ (14)

where u 1ð Þ
q rð Þ is q-th expanding coefficients for u

0
r; tð Þ, then incorporated with

(13), it can be deduced as

u
0
r; tð Þ ¼ ∑

∞

q¼0

l
2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2qþ 1ð Þ 2q� 1ð Þp u 1ð Þ

q�1 rð Þ � l
2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2qþ 3ð Þ 2qþ 1ð Þp u 1ð Þ

qþ1 rð Þ
 !

Pq tð Þ
 !0

(15)

Connecting (15) and (11), we can get

uq rð Þ ¼ l
2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2qþ 1ð Þ 2q� 1ð Þp u 1ð Þ

q�1 rð Þ � l
2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2qþ 3ð Þ 2qþ 1ð Þp u 1ð Þ

qþ1 rð Þ (16)

When assembling uq rð Þ� �
q¼0,1⋯Q�1 as a Q-tuple U and u 1ð Þ

q rð Þ
n o

q¼0,1⋯Q�1
as

U 1ð Þ, a matrix-multiply relationship can be obtained from (16) as the following:

U ¼ αLU 1ð Þ (17)

where αL is integral matrix.

αL ¼ l
2

‐1= ffiffiffiffiffiffiffiffi
1 � 3p

1=
ffiffiffiffiffiffiffiffi
1 � 3p ‐1= ffiffiffiffiffiffiffiffi

3 � 5p

1=
ffiffiffiffiffiffiffiffi
3 � 5p

⋱
⋱ ‐1= ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2Q � 3ð Þ 2Q � 1ð Þp

1=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2Q � 3ð Þ 2Q � 1ð Þp

2
6666664

3
7777775
Q�Q

(18)

Alternatively, Eq. (17) can be rewritten as.

U 1ð Þ ¼ α�1L U (19)

2.3 From time domain to orthogonal domain and reconstruction

When the differential or integral transfer matrices are obtained, the time-
domain Maxwell equation can be transformed directly into AH or LD domain. Here,
let us set LD as an example to illustrate the later formulation.

Similar to the paralleling-in-order-based AH FDTD method, we can apply a Q-
tuple-domain transformation for LD FDTD method to (1)–(3) and discretize them
as the following:

αe i; jð ÞExji, j ¼ Hzji, j �Hzji, j�1
� �

=Δyj � Jxji, j (20)
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αe i; jð ÞEy
��
i, j ¼ � Hzji, j �Hzji�1, j

� �
=Δxi � Jy

���
i, j

(21)

αm i; jð ÞHz
��
i, j ¼ Exji, jþ1 � Exji, j

� �
=Δyj � Ey

��
iþ1, j � Ey

��
i, j

� �
=Δxi �Mzji, j (22)

where

αe i; jð Þ ¼ εji, jα�1L þ σeji, jI (23)

αm i; jð Þ ¼ μmji, jα�1L þ σmji, jI (24)

where Exji, j, Ey
��
i, j, Hzji, j, Jxji, j, Jy

���
i, j
, and Mzji, j are Q-tuple representations of

fields and sources, respectively. And, I is the Q-dimensional identity matrix. By
assembling (20)–(22) and eliminating the electric field components, a five-diagonal
banded matrix equation for Hz component can be obtained:

al i; jð ÞHzji�1, j þ ar iþ1; jð ÞHzjiþ1, j þ am i; jð ÞHzji, j þ ad i; jð ÞHzji, j�1 þ au i; jþ1ð ÞHzji, jþ1 ¼ bi, j

(25)

where

au i; jþ1ð Þ ¼ �α�1e i; jþ1ð Þ=Δyjþ1=Δyj (26)

ad i; jð Þ ¼ �α�1e i; jð Þ=Δyj=Δyj (27)

al i; jð Þ ¼ �α�1e i; jð Þ=Δxi=Δxi (28)

ar iþ1; jð Þ ¼ �α�1e iþ1; jð Þ=Δxiþ1=Δxi (29)

am i; jð Þ ¼ � ar iþ1; jð Þ þ al i; jð Þ þ au i; jþ1ð Þ þ ad i; jð Þ þ αm i; jð Þ
� �

(30)

bi, j ¼ � α�1m i; jþ1ð Þ Jx
���
i, jþ1
� α�1m i; jð Þ Jx

���
i, j

� �
=Δyþ α�1m iþ1; jð Þ Jy

���
iþ1, j
� α�1m i; jð Þ Jy

���
i, j

� �
=Δx�Mzji, j

(31)

By using eigenvalue transformation from αLX ¼ XV, where X and V are the
eigenvector matrix and diagonal matrix composed of eigenvalues λq

� �
, respec-

tively, Eq. (25) can be changed to the paralleling-in-order solution. For the q-th
decoupled equation, we have

A 1=λq
� �

H∗
z

��q ¼ b∗jq (32)

where A �ð Þ is a banded sparse matrix, with the similar form as from AH FDTD
method, and b∗jqis the transformed variables from bji, j ¼ Xb∗ji, j. Finally, we can
obtain a paralleling-in-order scheme to calculate all of the expanding coefficients of
electromagnetic fields, and then the time-domain responses can be reconstructed
from (11).

3. Comparison for the two methods

The above formula can be regarded and classified as a uniform OF differential
transfer matrix transformation. Therefore, as long as the LD differential matrix is
replaced by the AH domain differential transfer matrix, the FDTD algorithm based
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From the intrinsic features of Legendre function, the differential relationship
can be described as
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Connecting (15) and (11), we can get
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When assembling uq rð Þ� �
q¼0,1⋯Q�1 as a Q-tuple U and u 1ð Þ
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U 1ð Þ, a matrix-multiply relationship can be obtained from (16) as the following:

U ¼ αLU 1ð Þ (17)

where αL is integral matrix.
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Alternatively, Eq. (17) can be rewritten as.

U 1ð Þ ¼ α�1L U (19)

2.3 From time domain to orthogonal domain and reconstruction

When the differential or integral transfer matrices are obtained, the time-
domain Maxwell equation can be transformed directly into AH or LD domain. Here,
let us set LD as an example to illustrate the later formulation.

Similar to the paralleling-in-order-based AH FDTD method, we can apply a Q-
tuple-domain transformation for LD FDTD method to (1)–(3) and discretize them
as the following:

αe i; jð ÞExji, j ¼ Hzji, j �Hzji, j�1
� �

=Δyj � Jxji, j (20)
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αe i; jð ÞEy
��
i, j ¼ � Hzji, j �Hzji�1, j

� �
=Δxi � Jy

���
i, j

(21)

αm i; jð ÞHz
��
i, j ¼ Exji, jþ1 � Exji, j

� �
=Δyj � Ey

��
iþ1, j � Ey

��
i, j

� �
=Δxi �Mzji, j (22)

where

αe i; jð Þ ¼ εji, jα�1L þ σeji, jI (23)

αm i; jð Þ ¼ μmji, jα�1L þ σmji, jI (24)

where Exji, j, Ey
��
i, j, Hzji, j, Jxji, j, Jy

���
i, j
, and Mzji, j are Q-tuple representations of

fields and sources, respectively. And, I is the Q-dimensional identity matrix. By
assembling (20)–(22) and eliminating the electric field components, a five-diagonal
banded matrix equation for Hz component can be obtained:

al i; jð ÞHzji�1, j þ ar iþ1; jð ÞHzjiþ1, j þ am i; jð ÞHzji, j þ ad i; jð ÞHzji, j�1 þ au i; jþ1ð ÞHzji, jþ1 ¼ bi, j

(25)

where
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���
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���
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���
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(31)

By using eigenvalue transformation from αLX ¼ XV, where X and V are the
eigenvector matrix and diagonal matrix composed of eigenvalues λq

� �
, respec-

tively, Eq. (25) can be changed to the paralleling-in-order solution. For the q-th
decoupled equation, we have

A 1=λq
� �

H∗
z

��q ¼ b∗jq (32)

where A �ð Þ is a banded sparse matrix, with the similar form as from AH FDTD
method, and b∗jqis the transformed variables from bji, j ¼ Xb∗ji, j. Finally, we can
obtain a paralleling-in-order scheme to calculate all of the expanding coefficients of
electromagnetic fields, and then the time-domain responses can be reconstructed
from (11).

3. Comparison for the two methods

The above formula can be regarded and classified as a uniform OF differential
transfer matrix transformation. Therefore, as long as the LD differential matrix is
replaced by the AH domain differential transfer matrix, the FDTD algorithm based
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on the LD orthogonal basis function, LD FDTD, including the parallel solution AH
FDTD algorithm [9], and the alternate direction efficient calculation [11] can be
easily realized. The implementation of the program only requires a simple modifi-
cation.

Table 1 gives a comparison of the relevant properties of the LD FDTD method
and the AH FDTDmethod. It can be seen that the two methods can be considered as
a “dual” system, because the AH differential matrix is the basic element of the AH
FDTD method and the LD integration matrix is also the basic element of the LD
FDTD method. This gives us a revelation that is it possible that any orthogonal basis
function can construct a differential or integral transfer matrix and then easily
implement a paralleling-in-order scheme similar like AH FDTD algorithm? The
answer might be NOT. Such as the Laguerre FDTD method, as introduced before,
cannot be calculated in parallel. However, it is undeniable that there may be more
basis functions that can implement the paralleling-in-order scheme. If any, we can
collectively call these methods as the AH series unconditionally stable FDTD
method.

4. Numerical verification

4.1 An infinitely large lossy dielectric plate

As AH or LD FDTD method shares with almost the same program, a 1-D
program is set for a general verification. Figure 1 shows the simulation results when
a uniform plane wave penetrates an infinitely large lossy dielectric plate. The figure
includes the electric field waveforms calculated by the AH FDTD method and the
LD FDTD method and their relative errors with respect to the conventional FDTD
method. It can be seen that the time-domain waveforms of both can be consistent
with the results of the FDTD method and the relative errors are basically the same,

AH FDTD LD FDTD

Differential transfer matrix Integral transfer matrix

U 1ð Þ ¼ αU U ¼ αLU 1ð Þ

α lð Þ ¼
ffiffi
2
p
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ffiffiffi
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⋱
⋱ ‐1= ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
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∂t α! jω
Ð
dt αL ! 1
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TQ≈2l
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
πQ=1:7

p þ 1:8
� �

FQ≈
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
πQ=1:7

p þ 1:8
2πl

! l; Qð Þ

8><
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Scale factor l = TQ
Finite order of Q

With time-frequency Homomorphism Without time-frequency
Homomorphism

Antisymmetry
Eigenvalue conjugate symmetry

Antisymmetry
Eigenvalue conjugate symmetry

A λq
� �

Hq ¼ Jq A 1=λq
� �

Hq ¼ Jq

Table 1.
LD comparison of LD FDTD method and AH FDTD method.
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only differing in the initial part. Therefore, in general, when the order of the two
basic functions is the same and the parameters are selected reasonably, the accuracy
is basically the same, and the efficiency is almost the same.

4.2 An nonuniform parallel plate waveguide with a slot

However, the two methods also have the differences when simulating the long-
time response applications, such as the example in [12]. The numerical example is
set as a TEz wave propagation in a parallel plate waveguide, as shown in Figure 2. It
is with a PEC slot of the thickness 0.2 mm and the distance 0.2 mm and a partly
filled dielectric material of the thickness 0.8 mm with the dielectric medium
parameters given as two cases: case I, ε = 11 ε0, μ = μ0, σe = 0.003 S/m, and
σm = 0 Ω/m; case II, ε = 2 ε0, μ = μ0, σe = 30,000 S/m, and σm = 0 Ω/m. There are
140 � 8 uniform cells (Δx ¼ Δy=0.1 mm) in the computational domain. A Gaussian
pulse sinusoidally modulated is used as the electric current source profile:

Jy tð Þ ¼ exp � t� tcð Þ=tdð Þ2
� �

sin 2πf c t� tcð Þ� �
(33)

where td= 1= 2f c
� �

, tc= 4td, and f c= 12 GHz. And the total simulation time is set as
l = 1.28 ns for case I and l = 12.8 ns for case II; then it leads to the marching-in-on-
time steps for N = 6000 and N = 60,000, respectively. And the number of orders for
LD functions is chosen as 80 and 300, respectively, to obtain a good approximation
of field components.

The Ey electric field responses at measurement point p1 and p2, located at the
center of the slot and behind the medium, respectively, are calculated, which are
both in agreement with the conventional FDTD method as shown in
Figures 2 and 3. For comparison, the AH FDTD method is also used in these two
cases. One can find the good results in Figure 3, but the errors come out in Figure 4
for AH FDTD method when the same number of orthogonal functions (Q = 80 for
case I or 300 for case II) is used as LD FDTD method. However, when Q reaches
800, the results from AH FDTD method can achieve a comparable accuracy with
the ones from LD FDTD method. One should note that for case II the waveform at
point p2 has larger amplitude attenuation and longer delay than the result at point
p1 due to the high dielectric medium located between them.

Figure 1.
Comparison of calculation results between AH FDTD method and HR FDTD method when simulating an
infinitely large lossy dielectric plate. (a) Time-domain waveform. (b) Relative error.
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on the LD orthogonal basis function, LD FDTD, including the parallel solution AH
FDTD algorithm [9], and the alternate direction efficient calculation [11] can be
easily realized. The implementation of the program only requires a simple modifi-
cation.

Table 1 gives a comparison of the relevant properties of the LD FDTD method
and the AH FDTDmethod. It can be seen that the two methods can be considered as
a “dual” system, because the AH differential matrix is the basic element of the AH
FDTD method and the LD integration matrix is also the basic element of the LD
FDTD method. This gives us a revelation that is it possible that any orthogonal basis
function can construct a differential or integral transfer matrix and then easily
implement a paralleling-in-order scheme similar like AH FDTD algorithm? The
answer might be NOT. Such as the Laguerre FDTD method, as introduced before,
cannot be calculated in parallel. However, it is undeniable that there may be more
basis functions that can implement the paralleling-in-order scheme. If any, we can
collectively call these methods as the AH series unconditionally stable FDTD
method.

4. Numerical verification

4.1 An infinitely large lossy dielectric plate

As AH or LD FDTD method shares with almost the same program, a 1-D
program is set for a general verification. Figure 1 shows the simulation results when
a uniform plane wave penetrates an infinitely large lossy dielectric plate. The figure
includes the electric field waveforms calculated by the AH FDTD method and the
LD FDTD method and their relative errors with respect to the conventional FDTD
method. It can be seen that the time-domain waveforms of both can be consistent
with the results of the FDTD method and the relative errors are basically the same,
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Table 1.
LD comparison of LD FDTD method and AH FDTD method.
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only differing in the initial part. Therefore, in general, when the order of the two
basic functions is the same and the parameters are selected reasonably, the accuracy
is basically the same, and the efficiency is almost the same.

4.2 An nonuniform parallel plate waveguide with a slot

However, the two methods also have the differences when simulating the long-
time response applications, such as the example in [12]. The numerical example is
set as a TEz wave propagation in a parallel plate waveguide, as shown in Figure 2. It
is with a PEC slot of the thickness 0.2 mm and the distance 0.2 mm and a partly
filled dielectric material of the thickness 0.8 mm with the dielectric medium
parameters given as two cases: case I, ε = 11 ε0, μ = μ0, σe = 0.003 S/m, and
σm = 0 Ω/m; case II, ε = 2 ε0, μ = μ0, σe = 30,000 S/m, and σm = 0 Ω/m. There are
140 � 8 uniform cells (Δx ¼ Δy=0.1 mm) in the computational domain. A Gaussian
pulse sinusoidally modulated is used as the electric current source profile:

Jy tð Þ ¼ exp � t� tcð Þ=tdð Þ2
� �

sin 2πf c t� tcð Þ� �
(33)

where td= 1= 2f c
� �

, tc= 4td, and f c= 12 GHz. And the total simulation time is set as
l = 1.28 ns for case I and l = 12.8 ns for case II; then it leads to the marching-in-on-
time steps for N = 6000 and N = 60,000, respectively. And the number of orders for
LD functions is chosen as 80 and 300, respectively, to obtain a good approximation
of field components.

The Ey electric field responses at measurement point p1 and p2, located at the
center of the slot and behind the medium, respectively, are calculated, which are
both in agreement with the conventional FDTD method as shown in
Figures 2 and 3. For comparison, the AH FDTD method is also used in these two
cases. One can find the good results in Figure 3, but the errors come out in Figure 4
for AH FDTD method when the same number of orthogonal functions (Q = 80 for
case I or 300 for case II) is used as LD FDTD method. However, when Q reaches
800, the results from AH FDTD method can achieve a comparable accuracy with
the ones from LD FDTD method. One should note that for case II the waveform at
point p2 has larger amplitude attenuation and longer delay than the result at point
p1 due to the high dielectric medium located between them.

Figure 1.
Comparison of calculation results between AH FDTD method and HR FDTD method when simulating an
infinitely large lossy dielectric plate. (a) Time-domain waveform. (b) Relative error.
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Figure 2.
The geometry configuration for a 2D parallel plate waveguide with a PEC slot and a partly filled dielectric
medium [12].

Figure 3.
The calculated results of transient electric field Ey for the case of I [12].

Figure 4.
The calculated results of transient electric field Ey for the case of II [12].
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Tables 2 and 3 show the comparison of the computational resources. We can see
that the simulation takes much more time for the FDTD method compared with
proposed method, especially for the case of II, while the trade-off for the proposed
method is that it consumes more memory than conventional FDTDmethod, which is
similar to the AH FDTD method. In addition, from Table 3, we can find the advan-
tages compared with AH FDTD method that the proposed method can use relative
smaller memory storage and slightly fewer CPU times to get a readily results.

5. Conclusions and future developments

The paralleling-in-order-based unconditionally stable FDTD methods are intro-
duced using associated Hermite and Legendre polynomials in this chapter. The
direct Q-tuple-domain transformation for time-domain Maxwell equation is
guaranteed by using the integral matrix and differential matrix for Legendre func-
tion and associated Hermite functions that are introduced from the intrinsic integral
or differential features for these orthogonal functions. Normally, the integral matrix
of Legendre function can be considered as an inverse relationship from the differ-
ential operator, similar to the AH differential matrix. From this view, we can
consider them as a uniform algorithm organized from the paralleling-in-order solu-
tion scheme. In addition, this chapter also detailed the different properties and the
formula with these two methods theoretically and tested by numerical examples.
Numerical examples for 1D and 2D cases validate their effectiveness and show LD
FDTD with a better performance than AH FDTD method, in long-time simulation
applications. In the next step, the more general paralleling-in-order scheme should
be summarized, and then find or construct other possible orthogonal functions for
their specific applications.
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Δt (ps) Memory (MB) CPU time (s)

FDTD (N = 60,000) 0.21 1.8 30.8

AH FDTD (Q = 300) 21 11.8 1.55

AH FDTD (Q = 800) 21 28.9 1.95

LD FDTD (Q = 300) 21 11.8 1.55

Table 3.
The comparison of computational resources for the case of II [12].

Δt (ps) Memory (MB) CPU time (s)

FDTD (N = 6000) 0.21 1.8 2.97

AH FDTD (Q = 80) 21 2.9 1.32

LD FDTD (Q = 80) 21 2.9 1.32

Table 2.
The comparison of computational resources for the case of I [12].
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Figure 3.
The calculated results of transient electric field Ey for the case of I [12].

Figure 4.
The calculated results of transient electric field Ey for the case of II [12].
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Tables 2 and 3 show the comparison of the computational resources. We can see
that the simulation takes much more time for the FDTD method compared with
proposed method, especially for the case of II, while the trade-off for the proposed
method is that it consumes more memory than conventional FDTDmethod, which is
similar to the AH FDTD method. In addition, from Table 3, we can find the advan-
tages compared with AH FDTD method that the proposed method can use relative
smaller memory storage and slightly fewer CPU times to get a readily results.

5. Conclusions and future developments

The paralleling-in-order-based unconditionally stable FDTD methods are intro-
duced using associated Hermite and Legendre polynomials in this chapter. The
direct Q-tuple-domain transformation for time-domain Maxwell equation is
guaranteed by using the integral matrix and differential matrix for Legendre func-
tion and associated Hermite functions that are introduced from the intrinsic integral
or differential features for these orthogonal functions. Normally, the integral matrix
of Legendre function can be considered as an inverse relationship from the differ-
ential operator, similar to the AH differential matrix. From this view, we can
consider them as a uniform algorithm organized from the paralleling-in-order solu-
tion scheme. In addition, this chapter also detailed the different properties and the
formula with these two methods theoretically and tested by numerical examples.
Numerical examples for 1D and 2D cases validate their effectiveness and show LD
FDTD with a better performance than AH FDTD method, in long-time simulation
applications. In the next step, the more general paralleling-in-order scheme should
be summarized, and then find or construct other possible orthogonal functions for
their specific applications.
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