
Enhanced Expert Systems
Edited by Petrică Vizureanu

Edited by Petrică Vizureanu

The theoretical approach of this book is to develop a primary survey of the knowledge
representation model, providing convergence of classical operations research and modern

knowledge engineering. This convergence creates new opportunities for complicated
problems of formalization and solution by integrating the best features of mathematical

programming or constraint programming.

This book explains in six chapters that expert systems are products in the field of computer
science that attempt to perform as intelligent software. What is outstanding for expert
systems is the applicability area and the solving of different problems in many fields or

industrial branches.

Published in London, UK

© 2018 IntechOpen
© barbol88 / iStock

ISBN 978-1-83881-885-2

Enhanced Expert System
s

Enhanced Expert Systems
Edited by Petrică Vizureanu

Published in London, United Kingdom

Supporting open minds since 2005

Enhanced Expert Systems
http://dx.doi.org/10.5772/intechopen.79092
Edited by Petrică Vizureanu

Contributors
Mirko Perkusich, João Nunes, Luiz Antonio Silva, Kyller Gorgônio, Hyggo Almeida, Angelo Perkusich,
Igor Sheremet, Marcia Oliveira, Adler Neves, Monica Ferreira Silva Lopes, Amal Saki Malehi, Mina
Jahangiri, Petrică Vizureanu

© The Editor(s) and the Author(s) 2019
The rights of the editor(s) and the author(s) have been asserted in accordance with the Copyright,
Designs and Patents Act 1988. All rights to the book as a whole are reserved by INTECHOPEN LIMITED.
The book as a whole (compilation) cannot be reproduced, distributed or used for commercial or
non-commercial purposes without INTECHOPEN LIMITED’s written permission. Enquiries concerning
the use of the book should be directed to INTECHOPEN LIMITED rights and permissions department
(permissions@intechopen.com).
Violations are liable to prosecution under the governing Copyright Law.

Individual chapters of this publication are distributed under the terms of the Creative Commons
Attribution 3.0 Unported License which permits commercial use, distribution and reproduction of
the individual chapters, provided the original author(s) and source publication are appropriately
acknowledged. If so indicated, certain images may not be included under the Creative Commons
license. In such cases users will need to obtain permission from the license holder to reproduce
the material. More details and guidelines concerning content reuse and adaptation can be found at
http://www.intechopen.com/copyright-policy.html.

Notice
Statements and opinions expressed in the chapters are these of the individual contributors and not
necessarily those of the editors or publisher. No responsibility is accepted for the accuracy of
information contained in the published chapters. The publisher assumes no responsibility for any
damage or injury to persons or property arising out of the use of any materials, instructions, methods
or ideas contained in the book.

First published in London, United Kingdom, 2019 by IntechOpen
IntechOpen is the global imprint of INTECHOPEN LIMITED, registered in England and Wales,
registration number: 11086078, The Shard, 25th floor, 32 London Bridge Street
London, SE19SG – United Kingdom
Printed in Croatia

British Library Cataloguing-in-Publication Data
A catalogue record for this book is available from the British Library

Additional hard and PDF copies can be obtained from orders@intechopen.com

Enhanced Expert Systems
Edited by Petrică Vizureanu
p. cm.
Print ISBN 978-1-83881-885-2
Online ISBN 978-1-83881-886-9
eBook (PDF) ISBN 978-1-83881-887-6

Selection of our books indexed in the Book Citation Index
in Web of Science™ Core Collection (BKCI)

Interested in publishing with us?
Contact book.department@intechopen.com

Numbers displayed above are based on latest data collected.
For more information visit www.intechopen.com

4,300+
Open access books available

151
Countries delivered to

12.2%
Contributors from top 500 universities

Our authors are among the

Top 1%
most cited scientists

116,000+
International authors and editors

125M+
Downloads

We are IntechOpen,
the world’s leading publisher of

Open Access books
Built by scientists, for scientists

Meet the editor

Petrică Vizureanu was born on October 17, 1967, in Bârlad,
Romania. He has an MSc in Heating Equipment (1992) and a
PhD (1999), both from “Gh. Asachi” Technical University, Iasi.
He has been an assistant (1993–1999), lecturer (1999–2002),
and assistant professor (2002–2009) at “Gh. Asachi” Technical
University, Iasi, Romania. Currently, he is a professor (2009–) at
“Gh. Asachi” Technical University, Iasi, Romania. His research

activities include expert systems for heating system programming, computer-assist-
ed design for heating equipment, heating equipment for materials processing, heat
transfer, biomaterials, and geopolymers. He has published more than 110 papers in
international journals and conferences (proceedings) and 28 books.

Contents

Preface III

Chapter 1 1
Introductory Chapter: Enhanced Expert System - A Long-Life Solution
by Petrică Vizureanu

Chapter 2 7
Issues in the Probability Elicitation Process of Expert-Based Bayesian Networks
by João Nunes, Mirko Barbosa, Luiz Silva, Kyller Gorgônio, Hyggo Almeida
and Angelo Perkusich

Chapter 3 27
Classic and Bayesian Tree-Based Methods
by Amal Saki Malehi and Mina Jahangiri

Chapter 4 53
Automatic Mapping of Student 3D Profiles in Software Metrics for Temporal
Analysis of Programming Learning and Scoring Rubrics
by Márcia Gonçalves de Oliveira, Ádler Oliveira Silva Neves
and Mônica Ferreira Silva Lopes

Chapter 5 69
Multiset-Based Knowledge Representation for the Assessment and
Optimization of Large-Scale Sociotechnical Systems
by Igor Sheremet

Chapter 6 87
Unitary Multiset Grammars an Metagrammars Algorithmics and Application
by Igor Sheremet

Contents

Preface XIII

Chapter 1 1
Introductory Chapter: Enhanced Expert System - A Long-Life Solution
by Petrică Vizureanu

Chapter 2 7
Issues in the Probability Elicitation Process of Expert-Based Bayesian Networks
by João Nunes, Mirko Barbosa, Luiz Silva, Kyller Gorgônio, Hyggo Almeida
and Angelo Perkusich

Chapter 3 27
Classic and Bayesian Tree-Based Methods
by Amal Saki Malehi and Mina Jahangiri

Chapter 4 53
Automatic Mapping of Student 3D Profiles in Software Metrics for Temporal
Analysis of Programming Learning and Scoring Rubrics
by Márcia Gonçalves de Oliveira, Ádler Oliveira Silva Neves
and Mônica Ferreira Silva Lopes

Chapter 5 69
Multiset-Based Knowledge Representation for the Assessment and
Optimization of Large-Scale Sociotechnical Systems
by Igor Sheremet

Chapter 6 87
Unitary Multiset Grammars an Metagrammars Algorithmics and Application
by Igor Sheremet

Preface

In developing nonlinear expert system simulation models, the proper selection of
input variables is a challenging problem. Therefore, a false combination of input
variables could prevent the simulation model from achieving the optimal solution.
The presented methodology in this book is an applicable approach to input variable
selection in multi-input simulators of expert systems (ES).

Large-scale ES usually have a hierarchical structure, including personnel and
various technical devices, which consume various material, financial, and informa-
tion resources, as well as energy. As a result, they produce new resources (objects),
which are delivered to other similar systems. The main features of ES are large
dimensionality and high volatility of their structures, equipment, consumed/
produced objects, and, above all, operation logics and dynamics. In this way, ES
are dedicated to a new knowledge representation model, providing convergence of
classical operations research and modern knowledge engineering.

As a theoretical approach, this book develops a primary survey of the knowledge
representation model, providing convergence of classical operations research and
modern knowledge engineering. This convergence creates new opportunities for
complicated problems of formalization and solution by integrating the best features
of mathematical programming or constraint programming.

This book is a review of classic and Bayesian classification and regression tree
approaches with an emphasis on Bayesian approaches, as a first comprehensive
review of Bayesian classification and regression trees. Bayesian trees have advan-
tages in comparison to classic tree-based approaches. But Bayesian tree approaches
investigate different tree structures with different splitting variables, splitting rules,
and tree sizes, so these models can explore the tree space more than classic tree
approaches.

Also presented are three semiautomatic methods, found in an exploratory study
through a literature review that reduces the burden for experts. These methods
help to minimize the effects of human biases by reducing the parameters that are
required to construct complete node probability tables. These methods are highly
reliable on the input data elicited from experts and present one of many probability
elicitation techniques as an example, which can improve the input data needed by
the semiautomatic methods and reduce the garbage in/garbage out effect.

The book presents an online system for a 3D representation of programming
students’ profiles on software metrics that quantify effort and quality of program-
ming from the analysis of source codes. The advantages of this system are enabling
the analysis of where the learning difficulties begin, the monitoring of how a class
evolves along a course, and informing assessment criteria through the dynamic
composition of rubric representations. The system proposed presents itself as a
relevant tool to assist teachers regarding decisions of an evaluative process, assisting
students from the beginning to the end of a course.

Preface

In developing nonlinear expert system simulation models, the proper selection of
input variables is a challenging problem. Therefore, a false combination of input
variables could prevent the simulation model from achieving the optimal solution.
The presented methodology in this book is an applicable approach to input variable
selection in multi-input simulators of expert systems (ES).

Large-scale ES usually have a hierarchical structure, including personnel and
various technical devices, which consume various material, financial, and informa-
tion resources, as well as energy. As a result, they produce new resources (objects),
which are delivered to other similar systems. The main features of ES are large
dimensionality and high volatility of their structures, equipment, consumed/
produced objects, and, above all, operation logics and dynamics. In this way, ES
are dedicated to a new knowledge representation model, providing convergence of
classical operations research and modern knowledge engineering.

As a theoretical approach, this book develops a primary survey of the knowledge
representation model, providing convergence of classical operations research and
modern knowledge engineering. This convergence creates new opportunities for
complicated problems of formalization and solution by integrating the best features
of mathematical programming or constraint programming.

This book is a review of classic and Bayesian classification and regression tree
approaches with an emphasis on Bayesian approaches, as a first comprehensive
review of Bayesian classification and regression trees. Bayesian trees have advan-
tages in comparison to classic tree-based approaches. But Bayesian tree approaches
investigate different tree structures with different splitting variables, splitting rules,
and tree sizes, so these models can explore the tree space more than classic tree
approaches.

Also presented are three semiautomatic methods, found in an exploratory study
through a literature review that reduces the burden for experts. These methods
help to minimize the effects of human biases by reducing the parameters that are
required to construct complete node probability tables. These methods are highly
reliable on the input data elicited from experts and present one of many probability
elicitation techniques as an example, which can improve the input data needed by
the semiautomatic methods and reduce the garbage in/garbage out effect.

The book presents an online system for a 3D representation of programming
students’ profiles on software metrics that quantify effort and quality of program-
ming from the analysis of source codes. The advantages of this system are enabling
the analysis of where the learning difficulties begin, the monitoring of how a class
evolves along a course, and informing assessment criteria through the dynamic
composition of rubric representations. The system proposed presents itself as a
relevant tool to assist teachers regarding decisions of an evaluative process, assisting
students from the beginning to the end of a course.

XIV

This book has six chapters and explains that expert systems are products in the
field of computer science that attempt to perform as intelligent software. What is
remarkable for expert systems is the applicability area and the solving of different
issues in many fields or industrial branches.

Petrică Vizureanu
Gheorghe Asachi Technical University of Iași,

Romania

1

Chapter 1

Introductory Chapter: Enhanced
Expert System - A Long-Life
Solution
Petrică Vizureanu

1. Introduction

What is the definition of an expert system? An expert system belongs to a field
of artificial intelligence, and it is a computer program or a software, which can
do the same task of a human expert. It can give reliable advice in a specific area of
expertise (its domain)and get new conclusions about difficult activities to exam-
ine [1]. An expert system can explain its reasoning everytime and is able to interact
with a user in the same way that you might consult a human expert. Also, an expert
system can be defined as a software program that can outline reasoned conclusions
from an amount of knowledge in a specific domain and aims to develop “smart”
programs and applications.

The human experts are not 100% reliable in different domains, which can be
taken into consideration the advantages and benefits of all accomplished things, but
they may disagree with each other or forget to take into account a crucial parameter
before making a decision. A human expert can have unsurpassed knowledge in the
field and can gain as much knowledge as possible, but be hopeless explaining that
to someone else. Human experts cannot be available all the time; i.e., (i) in a small
company, the expert on some area can be ill or on holiday; (ii) your doctor may not
be able to see you until next week; and (iii) a human expert can move to another
company (taking his expertise with him) or retire.

An expert system does not get tired. An expert system (properly programmed)
should be 100% reliable and can combine the expertise of several experts. An
expert system should be realized to explain and justify all advices it gives. Although
an expert system can be expensive to develop, once it is there, its running costs
should be low, so there will be economic benefits for the company. An expert system
is always available. You can take it with you if you have a notebook or Internet con-
nection, so you could consult an expert system over the Internet. Once the knowl-
edge has been programmed/inserted into the system, it will not be lost if the human
expert leaves or dies [2].

Problems with expert systems: limited domain; systems are not always up to
date and do not learn, has no “common sense” and experts are needed to setup and
maintain the system.

Many applications of expert systems are very well known: Prospector—used by
geologists to identify sites for drilling or mining; PUFF—medical system for diagno-
sis of respiratory conditions; Design Advisor—gives advice to designers of processor
chips; MYCIN—medical system for diagnosing blood disorders (first used in 1979);
LITHIAN—gives advice to archeologists examining stone tools; and DENDRAL—
used to identify the structure of chemical compounds (first used in 1965).

1

Chapter 1

Introductory Chapter: Enhanced
Expert System - A Long-Life
Solution
Petrică Vizureanu

1. Introduction

What is the definition of an expert system? An expert system belongs to a field
of artificial intelligence, and it is a computer program or a software, which can
do the same task of a human expert. It can give reliable advice in a specific area of
expertise (its domain)and get new conclusions about difficult activities to exam-
ine [1]. An expert system can explain its reasoning everytime and is able to interact
with a user in the same way that you might consult a human expert. Also, an expert
system can be defined as a software program that can outline reasoned conclusions
from an amount of knowledge in a specific domain and aims to develop “smart”
programs and applications.

The human experts are not 100% reliable in different domains, which can be
taken into consideration the advantages and benefits of all accomplished things, but
they may disagree with each other or forget to take into account a crucial parameter
before making a decision. A human expert can have unsurpassed knowledge in the
field and can gain as much knowledge as possible, but be hopeless explaining that
to someone else. Human experts cannot be available all the time; i.e., (i) in a small
company, the expert on some area can be ill or on holiday; (ii) your doctor may not
be able to see you until next week; and (iii) a human expert can move to another
company (taking his expertise with him) or retire.

An expert system does not get tired. An expert system (properly programmed)
should be 100% reliable and can combine the expertise of several experts. An
expert system should be realized to explain and justify all advices it gives. Although
an expert system can be expensive to develop, once it is there, its running costs
should be low, so there will be economic benefits for the company. An expert system
is always available. You can take it with you if you have a notebook or Internet con-
nection, so you could consult an expert system over the Internet. Once the knowl-
edge has been programmed/inserted into the system, it will not be lost if the human
expert leaves or dies [2].

Problems with expert systems: limited domain; systems are not always up to
date and do not learn, has no “common sense” and experts are needed to setup and
maintain the system.

Many applications of expert systems are very well known: Prospector—used by
geologists to identify sites for drilling or mining; PUFF—medical system for diagno-
sis of respiratory conditions; Design Advisor—gives advice to designers of processor
chips; MYCIN—medical system for diagnosing blood disorders (first used in 1979);
LITHIAN—gives advice to archeologists examining stone tools; and DENDRAL—
used to identify the structure of chemical compounds (first used in 1965).

Enhanced Expert Systems

2

Main components of an expert system: (i) the knowledge base is the collection
of facts and rules which describe all the knowledge about the problem domain;
(ii) the inference engine is the part of the system that chooses which facts and rules
to apply when trying to solve the user’s query; and (iii) the user interface is the part
of the system that takes in the user’s query in a readable form and passes it to the
inference engine. It then displays the results to the user [3].

Figure 1.
General description for human expert vs. expert system.

Figure 2.
Main elements of an expert system.

3

Introductory Chapter: Enhanced Expert System - A Long-Life Solution
DOI: http://dx.doi.org/10.5772/intechopen.85704

An expert system behaves similar to a human expert in a field or area. Also,
they can be used to solve problems in various fields or disciplines, and can assist in
problem solving, but the goal is not to replace the experts, but to provide users an
effective tool thereby relieving experts of routine tasks.

An expert system has some capabilities: (i) superior problem solving—only
solvable problems, (ii) ability to save and apply knowledge and experience to
problems, (iii) reduced time for complex problems, and (iv) looks at problems from
a variety of perspectives.

An expert system has five basic components: knowledge base, inference engine,
explanation component, user interface, and acquisition component.

Knowledge base contains the factual and empirical knowledge of experts in a
particular subject area and all the facts, rules and procedures, which are important
for problem solving.

Inference engine simulates the problem-solving strategy of a human expert,
represents the logical unit by means of which conclusions are drawn from the
knowledge base according to a defined problem-solving method, controls the

Figure 3.
Logical flow inside an expert system.

Figure 4.
Forward-chaining technique for an expert system.

Figure 5.
Backward-chaining technique for an expert system.

Enhanced Expert Systems

2

Main components of an expert system: (i) the knowledge base is the collection
of facts and rules which describe all the knowledge about the problem domain;
(ii) the inference engine is the part of the system that chooses which facts and rules
to apply when trying to solve the user’s query; and (iii) the user interface is the part
of the system that takes in the user’s query in a readable form and passes it to the
inference engine. It then displays the results to the user [3].

Figure 1.
General description for human expert vs. expert system.

Figure 2.
Main elements of an expert system.

3

Introductory Chapter: Enhanced Expert System - A Long-Life Solution
DOI: http://dx.doi.org/10.5772/intechopen.85704

An expert system behaves similar to a human expert in a field or area. Also,
they can be used to solve problems in various fields or disciplines, and can assist in
problem solving, but the goal is not to replace the experts, but to provide users an
effective tool thereby relieving experts of routine tasks.

An expert system has some capabilities: (i) superior problem solving—only
solvable problems, (ii) ability to save and apply knowledge and experience to
problems, (iii) reduced time for complex problems, and (iv) looks at problems from
a variety of perspectives.

An expert system has five basic components: knowledge base, inference engine,
explanation component, user interface, and acquisition component.

Knowledge base contains the factual and empirical knowledge of experts in a
particular subject area and all the facts, rules and procedures, which are important
for problem solving.

Inference engine simulates the problem-solving strategy of a human expert,
represents the logical unit by means of which conclusions are drawn from the
knowledge base according to a defined problem-solving method, controls the

Figure 3.
Logical flow inside an expert system.

Figure 4.
Forward-chaining technique for an expert system.

Figure 5.
Backward-chaining technique for an expert system.

Enhanced Expert Systems

4

execution, which questions to ask and in what order, and simulates the problem-
solving process of human experts. Functions of the inference engine are to
determine which actions are to be executed between individual parts of the expert
system, how they are executed, and in what sequence, to determine how and when
the rules will be processed and to control the dialog with the user [4].

Explanation component has the role to explain the problem-solving strategy to
the user. The solutions must be reproducible by the user and engineer but can only
be verified by the human expert: which facts were asked for? why? which facts were
vital? and can go as far as, how would the conclusion change if some facts would
change?

User interface employs natural language for dialogs with the user whenever
possible. Questions posed such as “how should questions be answered by the user?”,
“how will system responses to these questions will be formulated?”, and “what info
is to be graphical?” must be easy to use, erroneous errors kept to a minimum, and
questions and answers must be understandable.

Acquisition component provides support for structuring and implementation
of the knowledge in the knowledge base; hence, it is very important because it
allows the engineer to concentrate less on the programming. Knowledge data should
be easy to enter, easy to understand methods of representing all info in knowledge
base, syntax checks, and access to programming language.

People involved with expert systems are domain expert (a person who pos-
sesses the skill and knowledge to solve a specific problem in a manner superior to
others), knowledge engineer (a person who designs, builds, and tests an expert sys-
tem), and end-user (an individual or group who will be using the expert system).

Two main inference techniques are used: forward chaining and backward
chaining.

Forward chaining is about the knowledge base searched for rules that match the
known facts, and the action part of these rules is performed. The process continues
until a goal is reached and puts the symptoms together to reach a conclusion that an
ex. doctor has diagnosed in a patient.

Backward chaining starts from a goal, the conclusion. All the rules that contain
this conclusion are then checked to determine whether the conditions of these
rules have been satisfied. Ex. doctor has an end idea of what is wrong with the
patient, though they must prove it by going from the diagnosis and finding the
symptoms.

Expert systems have applications, in example, for automatic mapping profiles
in software metrics for temporal analysis of programming learning and scoring
rubrics. Also, these can be dedicated to a new knowledge representation model,
providing convergence of classical operations research and modern knowledge
engineering or to a mathematical model that graphically and numerically represents
the probabilistic relationships between random variables.

5

© 2019 The Author(s). Licensee IntechOpen. This chapter is distributed under the terms
of the Creative Commons Attribution License (http://creativecommons.org/licenses/
by/3.0), which permits unrestricted use, distribution, and reproduction in any medium,
provided the original work is properly cited.

Introductory Chapter: Enhanced Expert System - A Long-Life Solution
DOI: http://dx.doi.org/10.5772/intechopen.85704

Author details

Petrică Vizureanu
Technical University of Iasi, Romania

*Address all correspondence to: peviz2002@yahoo.com

Enhanced Expert Systems

4

execution, which questions to ask and in what order, and simulates the problem-
solving process of human experts. Functions of the inference engine are to
determine which actions are to be executed between individual parts of the expert
system, how they are executed, and in what sequence, to determine how and when
the rules will be processed and to control the dialog with the user [4].

Explanation component has the role to explain the problem-solving strategy to
the user. The solutions must be reproducible by the user and engineer but can only
be verified by the human expert: which facts were asked for? why? which facts were
vital? and can go as far as, how would the conclusion change if some facts would
change?

User interface employs natural language for dialogs with the user whenever
possible. Questions posed such as “how should questions be answered by the user?”,
“how will system responses to these questions will be formulated?”, and “what info
is to be graphical?” must be easy to use, erroneous errors kept to a minimum, and
questions and answers must be understandable.

Acquisition component provides support for structuring and implementation
of the knowledge in the knowledge base; hence, it is very important because it
allows the engineer to concentrate less on the programming. Knowledge data should
be easy to enter, easy to understand methods of representing all info in knowledge
base, syntax checks, and access to programming language.

People involved with expert systems are domain expert (a person who pos-
sesses the skill and knowledge to solve a specific problem in a manner superior to
others), knowledge engineer (a person who designs, builds, and tests an expert sys-
tem), and end-user (an individual or group who will be using the expert system).

Two main inference techniques are used: forward chaining and backward
chaining.

Forward chaining is about the knowledge base searched for rules that match the
known facts, and the action part of these rules is performed. The process continues
until a goal is reached and puts the symptoms together to reach a conclusion that an
ex. doctor has diagnosed in a patient.

Backward chaining starts from a goal, the conclusion. All the rules that contain
this conclusion are then checked to determine whether the conditions of these
rules have been satisfied. Ex. doctor has an end idea of what is wrong with the
patient, though they must prove it by going from the diagnosis and finding the
symptoms.

Expert systems have applications, in example, for automatic mapping profiles
in software metrics for temporal analysis of programming learning and scoring
rubrics. Also, these can be dedicated to a new knowledge representation model,
providing convergence of classical operations research and modern knowledge
engineering or to a mathematical model that graphically and numerically represents
the probabilistic relationships between random variables.

5

© 2019 The Author(s). Licensee IntechOpen. This chapter is distributed under the terms
of the Creative Commons Attribution License (http://creativecommons.org/licenses/
by/3.0), which permits unrestricted use, distribution, and reproduction in any medium,
provided the original work is properly cited.

Introductory Chapter: Enhanced Expert System - A Long-Life Solution
DOI: http://dx.doi.org/10.5772/intechopen.85704

Author details

Petrică Vizureanu
Technical University of Iasi, Romania

*Address all correspondence to: peviz2002@yahoo.com

6

Enhanced Expert Systems

References

[1] https://torry.aberdeen.sch.uk

[2] http://www.duncanrig.s-lanark.sch.uk

[3] http://www.test-me.co.uk

[4] Kalogirou SA. Artificial intelligence
for the modeling and control of
combustion processes: A review.
Progress in Energy and Combustion
Science. 2003;29(6):515-566

Chapter 2

Issues in the Probability Elicitation
Process of Expert-Based Bayesian
Networks
João Nunes, Mirko Barbosa, Luiz Silva, Kyller Gorgônio,
Hyggo Almeida and Angelo Perkusich

Abstract

A major challenge in constructing a Bayesian network (BN) is defining the node
probability tables (NPT), which can be learned from data or elicited from domain
experts. In practice, it is common not to have enough data for learning, and elicita-
tion from experts is the only option. However, the complexity of defining NPT
grows exponentially, making their elicitation process costly and error-prone. In this
research, we conducted an exploratory study through a literature review that iden-
tified the main issues related to the task of probability elicitation and solutions to
construct large-scale NPT while reducing the exposure to these issues. In this
chapter, we present in detail three semiautomatic methods that reduce the burden
for experts. We discuss the benefits and drawbacks of these methods, and present
directions on how to improve them.

Keywords: Bayesian networks, probability elicitation, node probability table,
expert systems, artificial intelligence

1. Introduction

Bayesian network (BN) is a mathematical model that graphically and numeri-
cally represents the probabilistic relationships between random variables through
the Bayes theorem. This technique is becoming popular to aid in decision-making in
several domains due to the evolution of the computational capacity that makes
possible the calculation of complex BN [1]. Some examples of BN application areas
are: software development project management [2, 3]; large-scale engineering pro-
jects [4]; and the prediction of success in innovation projects [5].

On the other hand, there are open challenges related to the construction of BN.
One of these challenges is to build the node probability tables (NPT). In cases where
there are databases with enough information for the problem in question, it is
possible to automate the process of constructing NPT through batch learning [6].
Unfortunately, in practice, in most cases, there is not enough data. That is, it is
necessary to collect expert data and manually define the NPT [1].

Furthermore, experts can often understand and identify key relationships that
data alone may fail to discover [7]. Therefore, the concept of smart data is defined
by [7]: a method that supports data engineering and knowledge engineering

7

6

Enhanced Expert Systems

References

[1] https://torry.aberdeen.sch.uk

[2] http://www.duncanrig.s-lanark.sch.uk

[3] http://www.test-me.co.uk

[4] Kalogirou SA. Artificial intelligence
for the modeling and control of
combustion processes: A review.
Progress in Energy and Combustion
Science. 2003;29(6):515-566

Chapter 2

Issues in the Probability Elicitation
Process of Expert-Based Bayesian
Networks
João Nunes, Mirko Barbosa, Luiz Silva, Kyller Gorgônio,
Hyggo Almeida and Angelo Perkusich

Abstract

A major challenge in constructing a Bayesian network (BN) is defining the node
probability tables (NPT), which can be learned from data or elicited from domain
experts. In practice, it is common not to have enough data for learning, and elicita-
tion from experts is the only option. However, the complexity of defining NPT
grows exponentially, making their elicitation process costly and error-prone. In this
research, we conducted an exploratory study through a literature review that iden-
tified the main issues related to the task of probability elicitation and solutions to
construct large-scale NPT while reducing the exposure to these issues. In this
chapter, we present in detail three semiautomatic methods that reduce the burden
for experts. We discuss the benefits and drawbacks of these methods, and present
directions on how to improve them.

Keywords: Bayesian networks, probability elicitation, node probability table,
expert systems, artificial intelligence

1. Introduction

Bayesian network (BN) is a mathematical model that graphically and numeri-
cally represents the probabilistic relationships between random variables through
the Bayes theorem. This technique is becoming popular to aid in decision-making in
several domains due to the evolution of the computational capacity that makes
possible the calculation of complex BN [1]. Some examples of BN application areas
are: software development project management [2, 3]; large-scale engineering pro-
jects [4]; and the prediction of success in innovation projects [5].

On the other hand, there are open challenges related to the construction of BN.
One of these challenges is to build the node probability tables (NPT). In cases where
there are databases with enough information for the problem in question, it is
possible to automate the process of constructing NPT through batch learning [6].
Unfortunately, in practice, in most cases, there is not enough data. That is, it is
necessary to collect expert data and manually define the NPT [1].

Furthermore, experts can often understand and identify key relationships that
data alone may fail to discover [7]. Therefore, the concept of smart data is defined
by [7]: a method that supports data engineering and knowledge engineering

7

approaches with emphasis on applying causal knowledge and real-world facts to
develop models.

In this context, it is necessary to manually elicit data from experts to define the
NPT. However, given that the complexity of defining NPT increases exponentially,
for large-scale BN, it becomes impracticable to manually define all the probability
functions that compose each NPT [1]. In addition, experts often have time con-
straints and are rarely interested in manually defining NPT, partially because it is
necessary to work with many probabilistic distributions for long periods [8].

In addition, other factors may compromise the process of probability elicitation
to construct the NPT, such as commonly used heuristics. Some well know heuristics
used to reduce the cognitive effort in probability assessment task may lead the
expert towards biased judgment of probability, leading to systematic errors. More-
over, the experts are hardly able to keep mutually consistent distributions during
the NPT definition [1]. In addition, factors such as boredom and fatigue are enough
to make the criteria deviate during probability assessment [8], when in fact, it
should be uniformly applied throughout the whole elicitation process.

A solution to solve this problem has been proposed by [1], which will be
referenced herein as the ranked nodes method (RNM). Its goal is to define the NPT
of the parent nodes and then generate the NPT of the child nodes. Ref. [1] intro-
duces the concept of ranked nodes, ordinal random variables represented on a
monotonically ordered continuous scale. A fundamental feature of this method is
that mathematical expressions generate the child node’s NPT. These expressions
define the central tendency of the child node for each combination of states of the
parent nodes and have as input a set of weights of the parent nodes, which quan-
tifies the relative strengths of their influence on the child node, and a variance
parameter.

Another approach was proposed by [8], which will be referenced here as the
weighted sum algorithm (WSA). This method uses well know heuristics in its favor,
more precisely, the availability [9] heuristic and the simulation [10] heuristic. The
main focus of this method is to assemble part of the NPT from experts by asking
questions that comprehend cases that are easy to recall by experts, which is likely to
be associated to more realistic probabilities. In the WSA, the remainder of the NPT
is generated using interpolation techniques.

A systematic approach to generate NPT of nodes with multiple parents is pro-
posed in [11]. This approach is an adaptation of the analytic hierarchy process
(AHP) method for the task of probability elicitation and semiautomatic generation
of NPT, in which the expert needs only to make the assessment of probabilities
conditioned on single parents. In this approach, the probability assessment is indi-
rect by means of paired state judgments and the NPT is generated through the
calculation of the product of the probabilities of the child node conditioned on
single parents.

The three methods stated above reduce the burden for experts and allow the
construction of complex BN in which manual elicitation of the NPT is unfeasible
and, generally, there is not enough data to use batch learning. The reduced number
of parameters to generate the NPT and consequently, reduced number of questions
to ask the experts, makes it easier for the facilitator (e.g., BN expert) to deal with
heuristics and possible biases during the NPT construction process. These methods
can yet be extended with elaborate probability elicitation techniques (i.e., to
improve its input).

Therefore, the objective of this research is to assess in detail three semiau-
tomatic methods to generate NPT. We identified these methods in an explor-
atory study through a literature review. Additionally, we present heuristics that
must be acknowledged during probability assessment for NPT construction and

8

Enhanced Expert Systems

discuss extensions to these methods. It is our understanding that these methods
can yet benefit from elaborate probability elicitation techniques. Such tech-
niques can add additional overhead when manually defining the NPT, but this
overhead is hugely reduced with semiautomatic methods (i.e., given the
reduced number of questions to ask the experts) making them a viable choice to
improve the method’s input.

This chapter is organized as follows. Section 2 presents an introduction to BN.
Section 3 presents common heuristics which should be acknowledged and consid-
ered during the probability elicitation process. Section 4 presents a probability
elicitation technique which can extend some of the semiautomatic methods. Section
5 presents three semiautomatic methods to generate NPT. Section 6 presents our
conclusions and future works.

2. Background

Bayesian networks are graph models used to represent knowledge about an
uncertain domain [12]. The Bayesian network, B, is a directed acyclic graph that
represents a joint probability distribution over a set of random variables V [13]. The
network is defined by the pair B ¼ G; θf g, where G ¼ V;Eð Þ is a directed acyclic
graph with nodes V representing random variables and edges E representing the
direct dependencies between these variables. θ is the set of probability functions
(i.e., node probability table) which contains the parameter θvi∣πi ¼ PB við jπiÞ for
each vi in Vi conditioned by πi, the set of parameters of Vi in G. Eq. (1) portraits the
joint probability distribution defined by B over V. An example of a BN is depicted in
Figure 1.

PB V1;…;Vnð Þ ¼
Yn
i¼1

PB Vijπið Þ ¼
Yn
i¼1

θVi ∣πi (1)

In the above example, the probability of a person having cancer is calculated
according to two variables: “Relatives had cancer” (Y1) and “Smoke” (Y2). The
ellipses represent the nodes and the arrows represent the arcs. Even though the arcs
represent the causal connection’s direction between the variables, information can
propagate in any direction [14]. Hence, the direction of the arrows indicates the
dependency to define the probability functions. In this example, it is assumed that
all the variables are Booleans. Since the node “Cancer” is pointed out by Y1 and Y2,
the probability function is composed of probabilities for all possible combinations of
states of Y1 and Y2.

Figure 1.
BN example.

9

Issues in the Probability Elicitation Process of Expert-Based Bayesian Networks
DOI: http://dx.doi.org/10.5772/intechopen.81602

approaches with emphasis on applying causal knowledge and real-world facts to
develop models.

In this context, it is necessary to manually elicit data from experts to define the
NPT. However, given that the complexity of defining NPT increases exponentially,
for large-scale BN, it becomes impracticable to manually define all the probability
functions that compose each NPT [1]. In addition, experts often have time con-
straints and are rarely interested in manually defining NPT, partially because it is
necessary to work with many probabilistic distributions for long periods [8].

In addition, other factors may compromise the process of probability elicitation
to construct the NPT, such as commonly used heuristics. Some well know heuristics
used to reduce the cognitive effort in probability assessment task may lead the
expert towards biased judgment of probability, leading to systematic errors. More-
over, the experts are hardly able to keep mutually consistent distributions during
the NPT definition [1]. In addition, factors such as boredom and fatigue are enough
to make the criteria deviate during probability assessment [8], when in fact, it
should be uniformly applied throughout the whole elicitation process.

A solution to solve this problem has been proposed by [1], which will be
referenced herein as the ranked nodes method (RNM). Its goal is to define the NPT
of the parent nodes and then generate the NPT of the child nodes. Ref. [1] intro-
duces the concept of ranked nodes, ordinal random variables represented on a
monotonically ordered continuous scale. A fundamental feature of this method is
that mathematical expressions generate the child node’s NPT. These expressions
define the central tendency of the child node for each combination of states of the
parent nodes and have as input a set of weights of the parent nodes, which quan-
tifies the relative strengths of their influence on the child node, and a variance
parameter.

Another approach was proposed by [8], which will be referenced here as the
weighted sum algorithm (WSA). This method uses well know heuristics in its favor,
more precisely, the availability [9] heuristic and the simulation [10] heuristic. The
main focus of this method is to assemble part of the NPT from experts by asking
questions that comprehend cases that are easy to recall by experts, which is likely to
be associated to more realistic probabilities. In the WSA, the remainder of the NPT
is generated using interpolation techniques.

A systematic approach to generate NPT of nodes with multiple parents is pro-
posed in [11]. This approach is an adaptation of the analytic hierarchy process
(AHP) method for the task of probability elicitation and semiautomatic generation
of NPT, in which the expert needs only to make the assessment of probabilities
conditioned on single parents. In this approach, the probability assessment is indi-
rect by means of paired state judgments and the NPT is generated through the
calculation of the product of the probabilities of the child node conditioned on
single parents.

The three methods stated above reduce the burden for experts and allow the
construction of complex BN in which manual elicitation of the NPT is unfeasible
and, generally, there is not enough data to use batch learning. The reduced number
of parameters to generate the NPT and consequently, reduced number of questions
to ask the experts, makes it easier for the facilitator (e.g., BN expert) to deal with
heuristics and possible biases during the NPT construction process. These methods
can yet be extended with elaborate probability elicitation techniques (i.e., to
improve its input).

Therefore, the objective of this research is to assess in detail three semiau-
tomatic methods to generate NPT. We identified these methods in an explor-
atory study through a literature review. Additionally, we present heuristics that
must be acknowledged during probability assessment for NPT construction and

8

Enhanced Expert Systems

discuss extensions to these methods. It is our understanding that these methods
can yet benefit from elaborate probability elicitation techniques. Such tech-
niques can add additional overhead when manually defining the NPT, but this
overhead is hugely reduced with semiautomatic methods (i.e., given the
reduced number of questions to ask the experts) making them a viable choice to
improve the method’s input.

This chapter is organized as follows. Section 2 presents an introduction to BN.
Section 3 presents common heuristics which should be acknowledged and consid-
ered during the probability elicitation process. Section 4 presents a probability
elicitation technique which can extend some of the semiautomatic methods. Section
5 presents three semiautomatic methods to generate NPT. Section 6 presents our
conclusions and future works.

2. Background

Bayesian networks are graph models used to represent knowledge about an
uncertain domain [12]. The Bayesian network, B, is a directed acyclic graph that
represents a joint probability distribution over a set of random variables V [13]. The
network is defined by the pair B ¼ G; θf g, where G ¼ V;Eð Þ is a directed acyclic
graph with nodes V representing random variables and edges E representing the
direct dependencies between these variables. θ is the set of probability functions
(i.e., node probability table) which contains the parameter θvi∣πi ¼ PB við jπiÞ for
each vi in Vi conditioned by πi, the set of parameters of Vi in G. Eq. (1) portraits the
joint probability distribution defined by B over V. An example of a BN is depicted in
Figure 1.

PB V1;…;Vnð Þ ¼
Yn
i¼1

PB Vijπið Þ ¼
Yn
i¼1

θVi ∣πi (1)

In the above example, the probability of a person having cancer is calculated
according to two variables: “Relatives had cancer” (Y1) and “Smoke” (Y2). The
ellipses represent the nodes and the arrows represent the arcs. Even though the arcs
represent the causal connection’s direction between the variables, information can
propagate in any direction [14]. Hence, the direction of the arrows indicates the
dependency to define the probability functions. In this example, it is assumed that
all the variables are Booleans. Since the node “Cancer” is pointed out by Y1 and Y2,
the probability function is composed of probabilities for all possible combinations of
states of Y1 and Y2.

Figure 1.
BN example.

9

Issues in the Probability Elicitation Process of Expert-Based Bayesian Networks
DOI: http://dx.doi.org/10.5772/intechopen.81602

2.1 NPT’s complexity

A challenge in constructing a BN is defining the NPT, which can be learned from
data or elicited from domain experts. In practice, it is common not to have enough
data for learning and elicitation from experts is the only option. However, the
complexity of defining NPT grows exponentially, which makes the elicitation pro-
cess costly and error-prone.

Let us consider the following example shown in Figure 2. In this BN, we want to
assess Teamwork efficiency of a group of people that works collectively to achieve
certain goals. Teamwork is directly influenced by Autonomy (i.e., self-management
ability and shared leadership); Cohesion (i.e., the capacity of being in close agree-
ment and work well together); and Collaboration (i.e., the ability to communicate
and coordinate). This example will be used throughout this chapter.

To elicit all the probabilities needed to construct the NPT of the child node
Teamwork, a facilitator (e.g., BN expert) has to ask 53 questions to the expert, a
question for each P vijπið Þ. As we can see, the complexity of performing this task
grows exponentially as the number of parents increases, making it quite expensive
and error-prone.

Methods to address this problem were proposed. Noisy-OR and Noisy-MAX are
two popular ones. However, the disadvantage of Noisy-OR is that it only applies to
Boolean nodes. According to [1], the disadvantage of Noisy-MAX is that it does not
model the extent of relationships required for large-scale BN. In this chapter, we
present methods found in the literature that are applicable to a larger range of BN.

3. Heuristics in probability

The quantification process of a BN consists in converting expert knowledge,
acquired through personal experiences, into probabilistic knowledge by eliciting a
large number of subjective probabilities that reflect the expert’s belief at a given
moment about something. Probability assessment can be described as the task of
quantifying the chances of an event occur, using percentages. However, as the
degree of complexity increases, it becomes increasingly difficult to size the proba-
bility of occurrence of each of the possible events in a given scenario.

For instance, we may have a hunch as to who will be the winner of a particular
tournament at a particular time, but we will never know for sure the exact proba-
bility since the number of factors that can influence the event goes beyond our
reach. Apart from that, epistemic uncertainties (e.g., lack of knowledge about all

Figure 2.
BN example adapted from [15] where a child node Teamwork is influenced by three parent nodes: Autonomy
(Y1), Cohesion (Y2), and Collaboration (Y3). Each node has five ordinal states: very low (VL), low (L),
median (M), high (H), very high (VH).

10

Enhanced Expert Systems

the participants in the tournament) and aleatory uncertainties (e.g., possibility of a
team losing a player) play an important role in probability assessment. Nonetheless,
if asked, one is capable of making an evaluation and give a quick answer. How do
people manage to judge the probability of highly uncertain events?

According to [16], people make use of a limited number of heuristics, mental
shortcuts, to reduce the complexity of judging the probability of an uncertain event.
These mental shortcuts reduce the cognitive effort required to judge the probability
of such events. However, they can lead to biases that result in systematic errors. In
[16], three commonly used heuristics are presented: representativeness; availability;
and anchoring.

The representative heuristic [16] describes the process by which people use the
similarity of two events to estimate the degree to which one event is representative
of another. It is used to answer questions such as: What is the probability that an
event A originates from a process B? What is the probability of a process B gener-
ating event A? That is, if A is highly representative of B, the probability of A
generating B is considered high. Conversely, if A is not representative of B, the
probability of A originating from B is low.

Consider the following example adapted from [16]: “Steve is very shy and with-
drawn, has little interest in people, or in the real world. He has need for order and
organization, and a passion for details”. Based on this description, what is Steven’s
most likely profession? Farmer or Librarian? You probably thought of a librarian.
That happens because the probability of Steve’s profession be a librarian is evalu-
ated by the degree to which he is representative, or similar to, the stereotype of a
librarian. However, several other factors that should have a significant effect on
probability, like the prior probability, or base-rate frequency of the outcomes have
no effect on representativeness. For example, the fact that there are many more
farmers than librarians should be considered in this case, but it is neglected.

The availability heuristic [9, 16] is related to the judgment of probability of
events occurring based on the ease with which we retrieve instances of these events
in our mind. For example, to evaluate the likelihood that a person under the age of
30 years will suffer a heart attack, people usually do a quick search in their memory
for cases they know of young people who have suffered a heart attack. This heuris-
tic is useful because instances of larger classes are easier to remember than instances
of smaller classes. However, the availability is affected by factors other than the
frequency of events or probability. One may overestimate the probability of a
young person getting cancer based on how recent an instance of such an event has
occurred in his life, for example.

Anchoring and adjustment heuristic [16] occur when people judge probabilities
based on an initial value, which is adjusted until the final response is reached. The
problem with this heuristic is that the adjustments are usually insufficient. In other
words, the expert assessment is likely to fluctuate around the initial anchor pro-
vided. It is important noting that, an anchor may be embedded in the formulation of
a question to the domain expert (i.e., when a starting point is given), but it can also
be the result of an incomplete computation.

In short, heuristics are mental shortcuts that reduce the cognitive effort in the
task of reasoning about the probability of events with uncertainty. Although useful,
it has its disadvantages that must be considered in the knowledge elicitation pro-
cess. Therefore, it is imperative to acknowledge the possible biases derived from
heuristics during the process of probability assessment, explicitly informing the
experts of their existence and adopting appropriate methods to reduce their effects.

The number of probabilities to be elicited to construct an NPT may inevitably
fall under some bias considering the effort needed from the experts. The semiauto-
matic methods reduce the number of questions to be asked to the expert or entirely

11

Issues in the Probability Elicitation Process of Expert-Based Bayesian Networks
DOI: http://dx.doi.org/10.5772/intechopen.81602

2.1 NPT’s complexity

A challenge in constructing a BN is defining the NPT, which can be learned from
data or elicited from domain experts. In practice, it is common not to have enough
data for learning and elicitation from experts is the only option. However, the
complexity of defining NPT grows exponentially, which makes the elicitation pro-
cess costly and error-prone.

Let us consider the following example shown in Figure 2. In this BN, we want to
assess Teamwork efficiency of a group of people that works collectively to achieve
certain goals. Teamwork is directly influenced by Autonomy (i.e., self-management
ability and shared leadership); Cohesion (i.e., the capacity of being in close agree-
ment and work well together); and Collaboration (i.e., the ability to communicate
and coordinate). This example will be used throughout this chapter.

To elicit all the probabilities needed to construct the NPT of the child node
Teamwork, a facilitator (e.g., BN expert) has to ask 53 questions to the expert, a
question for each P vijπið Þ. As we can see, the complexity of performing this task
grows exponentially as the number of parents increases, making it quite expensive
and error-prone.

Methods to address this problem were proposed. Noisy-OR and Noisy-MAX are
two popular ones. However, the disadvantage of Noisy-OR is that it only applies to
Boolean nodes. According to [1], the disadvantage of Noisy-MAX is that it does not
model the extent of relationships required for large-scale BN. In this chapter, we
present methods found in the literature that are applicable to a larger range of BN.

3. Heuristics in probability

The quantification process of a BN consists in converting expert knowledge,
acquired through personal experiences, into probabilistic knowledge by eliciting a
large number of subjective probabilities that reflect the expert’s belief at a given
moment about something. Probability assessment can be described as the task of
quantifying the chances of an event occur, using percentages. However, as the
degree of complexity increases, it becomes increasingly difficult to size the proba-
bility of occurrence of each of the possible events in a given scenario.

For instance, we may have a hunch as to who will be the winner of a particular
tournament at a particular time, but we will never know for sure the exact proba-
bility since the number of factors that can influence the event goes beyond our
reach. Apart from that, epistemic uncertainties (e.g., lack of knowledge about all

Figure 2.
BN example adapted from [15] where a child node Teamwork is influenced by three parent nodes: Autonomy
(Y1), Cohesion (Y2), and Collaboration (Y3). Each node has five ordinal states: very low (VL), low (L),
median (M), high (H), very high (VH).

10

Enhanced Expert Systems

the participants in the tournament) and aleatory uncertainties (e.g., possibility of a
team losing a player) play an important role in probability assessment. Nonetheless,
if asked, one is capable of making an evaluation and give a quick answer. How do
people manage to judge the probability of highly uncertain events?

According to [16], people make use of a limited number of heuristics, mental
shortcuts, to reduce the complexity of judging the probability of an uncertain event.
These mental shortcuts reduce the cognitive effort required to judge the probability
of such events. However, they can lead to biases that result in systematic errors. In
[16], three commonly used heuristics are presented: representativeness; availability;
and anchoring.

The representative heuristic [16] describes the process by which people use the
similarity of two events to estimate the degree to which one event is representative
of another. It is used to answer questions such as: What is the probability that an
event A originates from a process B? What is the probability of a process B gener-
ating event A? That is, if A is highly representative of B, the probability of A
generating B is considered high. Conversely, if A is not representative of B, the
probability of A originating from B is low.

Consider the following example adapted from [16]: “Steve is very shy and with-
drawn, has little interest in people, or in the real world. He has need for order and
organization, and a passion for details”. Based on this description, what is Steven’s
most likely profession? Farmer or Librarian? You probably thought of a librarian.
That happens because the probability of Steve’s profession be a librarian is evalu-
ated by the degree to which he is representative, or similar to, the stereotype of a
librarian. However, several other factors that should have a significant effect on
probability, like the prior probability, or base-rate frequency of the outcomes have
no effect on representativeness. For example, the fact that there are many more
farmers than librarians should be considered in this case, but it is neglected.

The availability heuristic [9, 16] is related to the judgment of probability of
events occurring based on the ease with which we retrieve instances of these events
in our mind. For example, to evaluate the likelihood that a person under the age of
30 years will suffer a heart attack, people usually do a quick search in their memory
for cases they know of young people who have suffered a heart attack. This heuris-
tic is useful because instances of larger classes are easier to remember than instances
of smaller classes. However, the availability is affected by factors other than the
frequency of events or probability. One may overestimate the probability of a
young person getting cancer based on how recent an instance of such an event has
occurred in his life, for example.

Anchoring and adjustment heuristic [16] occur when people judge probabilities
based on an initial value, which is adjusted until the final response is reached. The
problem with this heuristic is that the adjustments are usually insufficient. In other
words, the expert assessment is likely to fluctuate around the initial anchor pro-
vided. It is important noting that, an anchor may be embedded in the formulation of
a question to the domain expert (i.e., when a starting point is given), but it can also
be the result of an incomplete computation.

In short, heuristics are mental shortcuts that reduce the cognitive effort in the
task of reasoning about the probability of events with uncertainty. Although useful,
it has its disadvantages that must be considered in the knowledge elicitation pro-
cess. Therefore, it is imperative to acknowledge the possible biases derived from
heuristics during the process of probability assessment, explicitly informing the
experts of their existence and adopting appropriate methods to reduce their effects.

The number of probabilities to be elicited to construct an NPT may inevitably
fall under some bias considering the effort needed from the experts. The semiauto-
matic methods reduce the number of questions to be asked to the expert or entirely

11

Issues in the Probability Elicitation Process of Expert-Based Bayesian Networks
DOI: http://dx.doi.org/10.5772/intechopen.81602

removes the need of direct evaluation of probabilities during the construction of the
NPT, which makes it easier for the facilitator and the expert to deal with these
heuristics during the elicitation process, seizing the benefits of the heuristics and
reducing their possible negative effects.

4. Probability elicitation methods

The process of probability elicitation can be supported by a variety of techniques
designed to aid experts when they find it hard to express their degrees of belief with
numbers. These methods are based on setting-controlled situations in which proba-
bility assessments can be inferred from the expert’s behaviors [17]. In this section,
we describe the use of probability scales with visual aids to make probability
assessment easier for experts. However, it is worth noting, visual aids like proba-
bility scales (i.e., which uses numbers) still tend to be biased.

It is our understanding that the use of visual elements such as probability scales
can improve the input quality of semiautomatic methods (i.e., the ones which needs
probability distributions as input), but indirect methods, which we do not discuss
here, may improve the input quality as well. Several methods for indirect elicitation
of probabilities have been developed. Some well know methods are: the odds
method; the bid method; the lottery method; the probability-wheel method; among
others [17, 18], these methods allow the extraction of probabilities without have to
explicitly mention probabilities, so to speak.

Both direct and indirect methods can be incorporated at some degree into semi-
automatic methods. The purpose of this section is to show one of these techniques
which can extend semiautomatic methods, as an example. Also, different tech-
niques may produce different results, so we encourage readers to check a compre-
hensive review of issues related to the probability elicitation task which has a
section dedicated for direct and indirect methods [17].

4.1 Probability scale

A probability scale is composed of a line that can be arranged vertically or
horizontally with discrete numerical anchors which denotes the probabilities. It is a
direct probability assessment method. To assess a probability, the experts mark a
position on the scale. The probability value is given by the marking distance to the
zero point of the scale. An example of a numerical probability scale can be seen in
Figure 3.

There is no standard scale. For instance, anchors may vary in distance and values
according to the domain, and lines can be arranged in different positions. Moreover,
during probability assessment, one can use both numerical and verbal anchors. In
[19] it is proposed a double scale that combines numbers and textual descriptions of
probability to aid in the communication of probabilities. According to [19], verbal
descriptions commonly used by people to express probabilities are directly related
to the numerical values of the probabilities itself. In Figure 4, we can see an
example of a double scale arranged in the vertical position with numerical and
verbal anchors.

Figure 3.
Probability scale with numerical anchors.

12

Enhanced Expert Systems

The advantage of using a scale is that it allows for the domain experts to think in
terms of visual proportion rather than in terms of precise numbers. However, it is
important to consider bias that may be introduced using probability scales. For
example, let us say an expert is requested to indicate several assessments on a single
line. In such a case, he is likely to introduce bias towards esthetically distributed
marks. This bias is known as the spacing effect [17] and can be easily avoided by
using a separate scale for each probability. Another bias that may be introduced by
the use of probability scales is the tendency of people to use the middle of the scale.
This bias is known as the centering effect [17].

Furthermore, scales can be used in combination with other components that
may help in the task of probability assessment. In [20], a method is presented for
elicitation of a large number of conditional probabilities in short time. This method
was used to build a real-world BN for the diagnosis of esophageal cancer with more
than 4000 conditional probabilities. This BN predicted the correct cancer stage for
85% of the patients [21]. The main idea of this method is to present to the expert a
figure with a double scale and a text fragment for each conditional probability. An
example of combining probability scales with other components can be seen in
Figure 5.

Figure 4.
Probability scale with numbers and words.

13

Issues in the Probability Elicitation Process of Expert-Based Bayesian Networks
DOI: http://dx.doi.org/10.5772/intechopen.81602

removes the need of direct evaluation of probabilities during the construction of the
NPT, which makes it easier for the facilitator and the expert to deal with these
heuristics during the elicitation process, seizing the benefits of the heuristics and
reducing their possible negative effects.

4. Probability elicitation methods

The process of probability elicitation can be supported by a variety of techniques
designed to aid experts when they find it hard to express their degrees of belief with
numbers. These methods are based on setting-controlled situations in which proba-
bility assessments can be inferred from the expert’s behaviors [17]. In this section,
we describe the use of probability scales with visual aids to make probability
assessment easier for experts. However, it is worth noting, visual aids like proba-
bility scales (i.e., which uses numbers) still tend to be biased.

It is our understanding that the use of visual elements such as probability scales
can improve the input quality of semiautomatic methods (i.e., the ones which needs
probability distributions as input), but indirect methods, which we do not discuss
here, may improve the input quality as well. Several methods for indirect elicitation
of probabilities have been developed. Some well know methods are: the odds
method; the bid method; the lottery method; the probability-wheel method; among
others [17, 18], these methods allow the extraction of probabilities without have to
explicitly mention probabilities, so to speak.

Both direct and indirect methods can be incorporated at some degree into semi-
automatic methods. The purpose of this section is to show one of these techniques
which can extend semiautomatic methods, as an example. Also, different tech-
niques may produce different results, so we encourage readers to check a compre-
hensive review of issues related to the probability elicitation task which has a
section dedicated for direct and indirect methods [17].

4.1 Probability scale

A probability scale is composed of a line that can be arranged vertically or
horizontally with discrete numerical anchors which denotes the probabilities. It is a
direct probability assessment method. To assess a probability, the experts mark a
position on the scale. The probability value is given by the marking distance to the
zero point of the scale. An example of a numerical probability scale can be seen in
Figure 3.

There is no standard scale. For instance, anchors may vary in distance and values
according to the domain, and lines can be arranged in different positions. Moreover,
during probability assessment, one can use both numerical and verbal anchors. In
[19] it is proposed a double scale that combines numbers and textual descriptions of
probability to aid in the communication of probabilities. According to [19], verbal
descriptions commonly used by people to express probabilities are directly related
to the numerical values of the probabilities itself. In Figure 4, we can see an
example of a double scale arranged in the vertical position with numerical and
verbal anchors.

Figure 3.
Probability scale with numerical anchors.

12

Enhanced Expert Systems

The advantage of using a scale is that it allows for the domain experts to think in
terms of visual proportion rather than in terms of precise numbers. However, it is
important to consider bias that may be introduced using probability scales. For
example, let us say an expert is requested to indicate several assessments on a single
line. In such a case, he is likely to introduce bias towards esthetically distributed
marks. This bias is known as the spacing effect [17] and can be easily avoided by
using a separate scale for each probability. Another bias that may be introduced by
the use of probability scales is the tendency of people to use the middle of the scale.
This bias is known as the centering effect [17].

Furthermore, scales can be used in combination with other components that
may help in the task of probability assessment. In [20], a method is presented for
elicitation of a large number of conditional probabilities in short time. This method
was used to build a real-world BN for the diagnosis of esophageal cancer with more
than 4000 conditional probabilities. This BN predicted the correct cancer stage for
85% of the patients [21]. The main idea of this method is to present to the expert a
figure with a double scale and a text fragment for each conditional probability. An
example of combining probability scales with other components can be seen in
Figure 5.

Figure 4.
Probability scale with numbers and words.

13

Issues in the Probability Elicitation Process of Expert-Based Bayesian Networks
DOI: http://dx.doi.org/10.5772/intechopen.81602

On the left side is a text fragment describing the conditional probability to be
assessed. On the right side, we have the double scale proposed in [19]. The text
fragment is stated in terms of likelihood rather than frequency which circumvents
the need for mathematical notation of the conditional probability. According to
[21], the frequency format has been reported to be less liable to lead to biases and
experts may experience considerable difficulty understanding conditional proba-
bilities in mathematical notation. Conversely, such an approach may be less intui-
tive for domains in which it is difficult to imagine 100 occurrences of a rare event.

Nonetheless, in [20], the fragments of text and associated scales are grouped up
accordingly to the conditional probability distribution. In so doing, domain experts
can assess probabilities from the same conditional probability distribution simulta-
neously. In other words, the centering effect is avoided by presenting all the related
probabilities (i.e., from the same probability distribution) at once for the expert to
assess. This approach considerable reduces the number of mental changes during
the probability elicitation process. In regards to the spacing effect, the proposed
method avoids it by using a separated scale for each probability.

5. Semiautomatic methods

In this section, we present three methods to generate NPT that ease the burden
for experts during the quantification process of a BN. These methods allow the
construction of large-scale BN. The first is the RNM, which completely eliminates
the need for direct probability assessment. The second is the WSA, which is based
on two heuristics and needs only part of the NPT to be elicited from the expert. The
third is an adaptation of the analytic hierarchy process (AHP) which reduces the
cognitive effort, biases and inaccuracies from estimating probabilities to all combi-
nations of states of multiple parents at a time. From now on, we will reference the
latter as simply AHP. These three methods attack the magnitude problem of build-
ing NPT.

5.1 RNM

In [1], the ranked nodes method (RNM) is presented. In this chapter, it is
introduced the concept of ranked nodes, ordinal random variables represented on a

Figure 5.
Text fragment combined with a double scale for probability assessment.

14

Enhanced Expert Systems

continuous scale ordered monotonically in the interval [0, 1]. For example, for the
ordinal scale [“Low”, “Medium”, “High”], “Low” is represented by the interval
[0, 1/3], “Medium”, by the interval [1/3, 2/3], and “High”, by the interval [2/3, 1].
This concept is based on the doubly truncated Normal (TNormal) distribution.

A normal distribution is made of four parameters: μ, mean (i.e., central ten-
dency); σ2, variance (i.e., uncertainty about the central tendency); a, the lower
bound (i.e., 0); and, b, upper bound (i.e., 1). With a normal distribution, it is
possible to model a variety of curves (i.e., relationships) as a uniform distribution,
achieved when σ2 ¼ ∞, and highly skewed distributions, achieved when σ2 ¼ 0. In
Figure 6, we show an example of TNormal with same μ but different σ2.

In this method, μ is defined by a weighted function of the parent nodes. There
are four function types: weighted mean (WMEAN) Eq. (2), weighted minimum
(WMIN) Eq. (3), weighted maximum (WMAX) Eq. (4) and a mix of both MIN and
MAX functions (MIXMINMAX) Eq. (5). In practice, these functions define the
central tendency of the child node for the combination of parent nodes states. The
weight of each parent node, which quantifies the relative strengths of the influences
of the parents on the child node, must be defined by a constant w in which w∈ℕ.

WMEAN z1; k;…; zn; k;w1;…;wnð Þ ¼ ∑n
i¼1wi ∗ zi, k
∑n

i¼1wi
(2)

WMIN z1; k;…; zn; k;w1;…;wnð Þ ¼
min

i ¼ 1,…, n

wi ∗ zi, kþ∑n
j6¼1zj, k

wi þ n� 1

()
(3)

WMAX z1; k;…; zn; k;w1;…;wnð Þ ¼
max

i ¼ 1,…, n

wi ∗ zi, kþ∑n
j6¼1zj, k

wi þ n� 1

()
(4)

MIXMINMAX z1; k;…; zn; k;wmin;wmaxð Þ ¼WMIN ∗ min
i¼1,…,n zi; kf g þWMAX ∗ max

i¼1,…,n zi; kf g
WMIN þWMAX

(5)

Fenton et al. [1] do not present the details to, in practice, implement the solu-
tion. Despite presenting the mixture functions, there is no information regarding
the algorithms used to generate and mix TNormal, define samples size and define a
conventional NPT given the calculated TNormals. The latter enables the integration
of ranked nodes with other types of nodes such as Boolean and continuous, which
brings more modeling flexibility.

In [22], it is proposed a probabilistic algorithm for this purpose, comp-
osed of two main steps: (i) generate samples for the parent nodes and

Figure 6.
Examples of TNormal.

15

Issues in the Probability Elicitation Process of Expert-Based Bayesian Networks
DOI: http://dx.doi.org/10.5772/intechopen.81602

On the left side is a text fragment describing the conditional probability to be
assessed. On the right side, we have the double scale proposed in [19]. The text
fragment is stated in terms of likelihood rather than frequency which circumvents
the need for mathematical notation of the conditional probability. According to
[21], the frequency format has been reported to be less liable to lead to biases and
experts may experience considerable difficulty understanding conditional proba-
bilities in mathematical notation. Conversely, such an approach may be less intui-
tive for domains in which it is difficult to imagine 100 occurrences of a rare event.

Nonetheless, in [20], the fragments of text and associated scales are grouped up
accordingly to the conditional probability distribution. In so doing, domain experts
can assess probabilities from the same conditional probability distribution simulta-
neously. In other words, the centering effect is avoided by presenting all the related
probabilities (i.e., from the same probability distribution) at once for the expert to
assess. This approach considerable reduces the number of mental changes during
the probability elicitation process. In regards to the spacing effect, the proposed
method avoids it by using a separated scale for each probability.

5. Semiautomatic methods

In this section, we present three methods to generate NPT that ease the burden
for experts during the quantification process of a BN. These methods allow the
construction of large-scale BN. The first is the RNM, which completely eliminates
the need for direct probability assessment. The second is the WSA, which is based
on two heuristics and needs only part of the NPT to be elicited from the expert. The
third is an adaptation of the analytic hierarchy process (AHP) which reduces the
cognitive effort, biases and inaccuracies from estimating probabilities to all combi-
nations of states of multiple parents at a time. From now on, we will reference the
latter as simply AHP. These three methods attack the magnitude problem of build-
ing NPT.

5.1 RNM

In [1], the ranked nodes method (RNM) is presented. In this chapter, it is
introduced the concept of ranked nodes, ordinal random variables represented on a

Figure 5.
Text fragment combined with a double scale for probability assessment.

14

Enhanced Expert Systems

continuous scale ordered monotonically in the interval [0, 1]. For example, for the
ordinal scale [“Low”, “Medium”, “High”], “Low” is represented by the interval
[0, 1/3], “Medium”, by the interval [1/3, 2/3], and “High”, by the interval [2/3, 1].
This concept is based on the doubly truncated Normal (TNormal) distribution.

A normal distribution is made of four parameters: μ, mean (i.e., central ten-
dency); σ2, variance (i.e., uncertainty about the central tendency); a, the lower
bound (i.e., 0); and, b, upper bound (i.e., 1). With a normal distribution, it is
possible to model a variety of curves (i.e., relationships) as a uniform distribution,
achieved when σ2 ¼ ∞, and highly skewed distributions, achieved when σ2 ¼ 0. In
Figure 6, we show an example of TNormal with same μ but different σ2.

In this method, μ is defined by a weighted function of the parent nodes. There
are four function types: weighted mean (WMEAN) Eq. (2), weighted minimum
(WMIN) Eq. (3), weighted maximum (WMAX) Eq. (4) and a mix of both MIN and
MAX functions (MIXMINMAX) Eq. (5). In practice, these functions define the
central tendency of the child node for the combination of parent nodes states. The
weight of each parent node, which quantifies the relative strengths of the influences
of the parents on the child node, must be defined by a constant w in which w∈ℕ.

WMEAN z1; k;…; zn; k;w1;…;wnð Þ ¼ ∑n
i¼1wi ∗ zi, k
∑n

i¼1wi
(2)

WMIN z1; k;…; zn; k;w1;…;wnð Þ ¼
min

i ¼ 1,…, n

wi ∗ zi, kþ∑n
j6¼1zj, k

wi þ n� 1

()
(3)

WMAX z1; k;…; zn; k;w1;…;wnð Þ ¼
max

i ¼ 1,…, n

wi ∗ zi, kþ∑n
j6¼1zj, k

wi þ n� 1

()
(4)

MIXMINMAX z1; k;…; zn; k;wmin;wmaxð Þ ¼WMIN ∗ min
i¼1,…,n zi; kf g þWMAX ∗ max

i¼1,…,n zi; kf g
WMIN þWMAX

(5)

Fenton et al. [1] do not present the details to, in practice, implement the solu-
tion. Despite presenting the mixture functions, there is no information regarding
the algorithms used to generate and mix TNormal, define samples size and define a
conventional NPT given the calculated TNormals. The latter enables the integration
of ranked nodes with other types of nodes such as Boolean and continuous, which
brings more modeling flexibility.

In [22], it is proposed a probabilistic algorithm for this purpose, comp-
osed of two main steps: (i) generate samples for the parent nodes and

Figure 6.
Examples of TNormal.

15

Issues in the Probability Elicitation Process of Expert-Based Bayesian Networks
DOI: http://dx.doi.org/10.5772/intechopen.81602

(ii) construct the NPT. In step (ii), for each possible combination of values for
the parent nodes (i.e., each column of the NPT), the samples defined in the
previous step are mixed given a function selected by the user and a TNormal
is generated using the resulting mix and a variance defined by the user. An
overview of the algorithm is shown in Figure 7.

As already mentioned, a ranked node is conceptually represented by an ordinal
scale, which is mapped to the continuous interval [0, 1]. Thus, it is represented as
a set of uniform distributions. For an ordinal scale with three values (e.g., “Bad”,
“Moderate” and “Good”): U 0; 1ð Þ ¼ pbad ∗U 0; 1=3ð Þ∪ pmoderate ∗
U 1=3; 2=3ð Þ∪ pgood ∗U 2=3; 1ð Þ, where p is the density of the distribution.

For the example shown in Figure 8, the set of uniform distributions is composed
of the union of three uniform distributions: U 0; 1ð Þ ¼ 54:7 ∗U 0; 1=3ð Þ∪ 36:5 ∗
U 1=3; 2=3ð Þ∪ 8:80 ∗U 2=3; 1ð Þ. Numerically, this union is calculated using samples.
Considering a sample size of 10,000, to represent the NPT of the example shown in
Figure 8, it is necessary to collect 5700 random samples from U 0; 1=3ð Þ, 3650
random samples from U 1=3; 2=3ð Þ and 880 random samples from U 2=3; 1ð Þ.

Figure 7 shows that the algorithm is composed of four collections: repository½�,
a vector to store the samples of base states for the parent nodes; parents k½ �, a vector
to store references to the parent nodes of each child node, in which k is the number
of parents; states m½ �, a vector to store the states of each node, in which m is the
number of possible values for the child node given the combination states of its
parents; and distribution m½ �, a vector to store the resulting distribution for each
possible combination of states of the parent nodes.

The repository strategy is used for optimization purposes. First, it is registered in
memory (i.e., in repository½�) distributions that represent the base states, which are
states with hard evidence (i.e., a node has 100% of chance for a given state). For
instance, for a node composed of the states [“Bad”, “Moderate”, “Good”], are
registered samples for: 100% “Bad”, 100% “Moderate” and 100% “Good”, which
respectively has μ ¼ 1=6, μ ¼ 1=2 and μ ¼ 5=6. For this purpose, samples from a
uniform distribution with the limits defined given the thresholds of the scale are
collected.

For instance, for 100% “Good”, it is collected samples of a uniform distribution
limited in the interval [2/3, 1]. In [22] it is empirically defined that using a sample
size of 10,000 is enough to guarantee a margin of error less than 0.1%. Each sample

Figure 7.
Overview of the algorithm.

16

Enhanced Expert Systems

is registered with meta-data regarding its configuration (i.e., number of states
and μ). The data in repository½� is used to generate samples for a node. Therefore, the
samples for a base state are only generated once and reused later. The next step
consists of, for each combination of the parent nodes, mix the TNormal using
equidistant samples, randomly selected for each parent node. The samples are
mixed using one of the given functions (e.g., WMEAN, WMIN, WMAX or
MIXMINMAX) and the defined variance.

To mix the distributions, a random element from each sample of the parents is
removed and used to calculate a resulting element using a given function. For
instance, consider node A with two parents B and C. If we are calculating the
probabilities of A for the combination “Low”-“High” and the selected function is
WMEAN with equal weights, if the values removed in an iteration were 0.1 and 0.7,
the resulting value would be 0.4. This step must be repeated until the collections of
samples are empty.

Afterwards, the set of calculated elements and the given σ are used as input to
generate a TNormal. The resulting distribution is converted to an ordinal scale and
represents a column in the NPT of the child node (i.e., in the given example, the
column for the combination “Low”-“High”). At the end of this step, all the possible
combinations of states of the parent nodes are evaluated and the NPT for the child
node is completed.

Accordingly, the inputs to generate the NPT of a child node are: a weighted
expression capable of generating curves equivalent to distributions expected by the
experts; a set of weights of the parent nodes; and a value for σ2. To determine the
weighted expression one can ask the experts to assess the mode of the child node for
different combinations of the extreme states of the parent nodes [23]. For instance,
let us consider the Bayesian network shown in Figure 8 along with the mode
assessments of the experts in Table 1.

Figure 8.
Conversion from ordinal to continuous scale.

17

Issues in the Probability Elicitation Process of Expert-Based Bayesian Networks
DOI: http://dx.doi.org/10.5772/intechopen.81602

(ii) construct the NPT. In step (ii), for each possible combination of values for
the parent nodes (i.e., each column of the NPT), the samples defined in the
previous step are mixed given a function selected by the user and a TNormal
is generated using the resulting mix and a variance defined by the user. An
overview of the algorithm is shown in Figure 7.

As already mentioned, a ranked node is conceptually represented by an ordinal
scale, which is mapped to the continuous interval [0, 1]. Thus, it is represented as
a set of uniform distributions. For an ordinal scale with three values (e.g., “Bad”,
“Moderate” and “Good”): U 0; 1ð Þ ¼ pbad ∗U 0; 1=3ð Þ∪ pmoderate ∗
U 1=3; 2=3ð Þ∪ pgood ∗U 2=3; 1ð Þ, where p is the density of the distribution.

For the example shown in Figure 8, the set of uniform distributions is composed
of the union of three uniform distributions: U 0; 1ð Þ ¼ 54:7 ∗U 0; 1=3ð Þ∪ 36:5 ∗
U 1=3; 2=3ð Þ∪ 8:80 ∗U 2=3; 1ð Þ. Numerically, this union is calculated using samples.
Considering a sample size of 10,000, to represent the NPT of the example shown in
Figure 8, it is necessary to collect 5700 random samples from U 0; 1=3ð Þ, 3650
random samples from U 1=3; 2=3ð Þ and 880 random samples from U 2=3; 1ð Þ.

Figure 7 shows that the algorithm is composed of four collections: repository½�,
a vector to store the samples of base states for the parent nodes; parents k½ �, a vector
to store references to the parent nodes of each child node, in which k is the number
of parents; states m½ �, a vector to store the states of each node, in which m is the
number of possible values for the child node given the combination states of its
parents; and distribution m½ �, a vector to store the resulting distribution for each
possible combination of states of the parent nodes.

The repository strategy is used for optimization purposes. First, it is registered in
memory (i.e., in repository½�) distributions that represent the base states, which are
states with hard evidence (i.e., a node has 100% of chance for a given state). For
instance, for a node composed of the states [“Bad”, “Moderate”, “Good”], are
registered samples for: 100% “Bad”, 100% “Moderate” and 100% “Good”, which
respectively has μ ¼ 1=6, μ ¼ 1=2 and μ ¼ 5=6. For this purpose, samples from a
uniform distribution with the limits defined given the thresholds of the scale are
collected.

For instance, for 100% “Good”, it is collected samples of a uniform distribution
limited in the interval [2/3, 1]. In [22] it is empirically defined that using a sample
size of 10,000 is enough to guarantee a margin of error less than 0.1%. Each sample

Figure 7.
Overview of the algorithm.

16

Enhanced Expert Systems

is registered with meta-data regarding its configuration (i.e., number of states
and μ). The data in repository½� is used to generate samples for a node. Therefore, the
samples for a base state are only generated once and reused later. The next step
consists of, for each combination of the parent nodes, mix the TNormal using
equidistant samples, randomly selected for each parent node. The samples are
mixed using one of the given functions (e.g., WMEAN, WMIN, WMAX or
MIXMINMAX) and the defined variance.

To mix the distributions, a random element from each sample of the parents is
removed and used to calculate a resulting element using a given function. For
instance, consider node A with two parents B and C. If we are calculating the
probabilities of A for the combination “Low”-“High” and the selected function is
WMEAN with equal weights, if the values removed in an iteration were 0.1 and 0.7,
the resulting value would be 0.4. This step must be repeated until the collections of
samples are empty.

Afterwards, the set of calculated elements and the given σ are used as input to
generate a TNormal. The resulting distribution is converted to an ordinal scale and
represents a column in the NPT of the child node (i.e., in the given example, the
column for the combination “Low”-“High”). At the end of this step, all the possible
combinations of states of the parent nodes are evaluated and the NPT for the child
node is completed.

Accordingly, the inputs to generate the NPT of a child node are: a weighted
expression capable of generating curves equivalent to distributions expected by the
experts; a set of weights of the parent nodes; and a value for σ2. To determine the
weighted expression one can ask the experts to assess the mode of the child node for
different combinations of the extreme states of the parent nodes [23]. For instance,
let us consider the Bayesian network shown in Figure 8 along with the mode
assessments of the experts in Table 1.

Figure 8.
Conversion from ordinal to continuous scale.

17

Issues in the Probability Elicitation Process of Expert-Based Bayesian Networks
DOI: http://dx.doi.org/10.5772/intechopen.81602

First, let us consider the rows 1 and 4, where all the parent nodes are in the
highest and lowest states respectively. As can be seen in Table 1, when o all the
parent nodes are in the lowest or highest states, the mode of the child node is also
the lowest or highest state. Such a probability distribution can be obtained by any of
the weighted expressions.

Now, let us consider the row 1 as the initial state, rows 2, 6 and 8 indicate that
when the state of a single parent node shifts from lowest to highest state the mode
of the child node shifts towards the highest state. Similarly, consider row 4 as the
initial state, rows 3, 5 and 7 indicate that when the state of a single parent node
shifts from highest to lowest state, the mode of the child node also shifts towards
the lowest state.

However, it is quite clear that the shift effect is stronger when it occurs from the
lowest to highest state. Hence, Table 1 reveals that the mode of the child node is
inclined to go more towards the highest than lowest states which makes theWMAX
function more suitable to express the distribution expected by the experts.

The process to determine the weights of the parent nodes and the variance
parameter is not as straightforward as to determine the weighted expression. There
is no guideline in the literature, as far as we know, to aid in this task. Nonetheless,
one can use the mode assessments in Table 1 as a starting point to define the weight
of the parent nodes. For instance, considering WMAX is the most suitable function
to express the probability distribution, let us examine the rows in which the states
shift from lowest to highest in Table 1.

Finally, let us consider row 1 as the initial state, rows 2, 6 and 8 indicate that the
parent nodes have different strengths of influence on the child node. That is, when
the parent node Autonomy shifts from lowest to highest state the mode of Teamwork
slightly shifts towards highest states, however, the shift is higher when the state
changes in the parent node Collaboration, as can be seen, if one compares rows 2
and 6. A similar effect is observed when comparing rows 6 and 8. Hence, it is
derived from Table 1 the following constraint: Autonomy weight <Collaboration
weight <Cohesion weight. Nevertheless, trial and error are yet necessary to discover
suitable values for the weights and the variance parameter.

This method solves the magnitude problem of constructing NPT in complex
Bayesian networks. On the other hand, a drawback to this method is that the
domain context needs to fit a pattern that can be modeled by one of the
weighted expressions. This solution has been validated through case studies in
different real-world domains, such as human resources management in

Row Parents Teamwork

Autonomy Cohesion Collaboration VL L M H VH

1 VL VL VL X

2 VL VL VH X

3 VL VH VH X

4 VH VH VH X

5 VH VH VL X

6 VH VL VL X

7 VH VL VH X

8 VL VH VL X

Table 1.
Mode assessments for teamwork, checkmarks indicate the mode assessment of the expert.

18

Enhanced Expert Systems

software projects [24], software quality forecasting [25], air traffic control [26]
and operational management [27].

5.2 WSA

In [8] the WSA method is proposed. This work introduced the concept of
compatible parental configuration. The availability heuristic and the simulation
heuristic are the base for this concept. As previously stated, the availability heuristic
operates under the assumption that is easier to remember events that are more
likely to occur. The simulation heuristic, in turn, operates according to which
people determine the probability of an event based on how easy it is to simulate it
mentally.

To formally define the concept of compatible parental configuration, we take as
a basis the work of [28]. Superscript is used to represent the states of a node and
subscript to differentiate the parent-nodes. Therefore, consider that for Yi is
assigned an arbitrary state yvi , that is, Yi ¼ yvi , since Yj is another parent node, such
that Yj is considered compatible with Yi ¼ yvi only when Yj is in the state ywj which is
most likely, according to the expert’s knowledge, to coexist with Yi ¼ yvi . Hence, we
use the notation Comp Yi ¼ yvi

� �
to represent the set of states that are compatible

with Yi ¼ yvi for all parent nodes.

Comp Yi ¼ yvi
� � ¼ ywj ; ∀j 6¼ i

n ���maxw¼1… Yjj jP ywj j yvi Þ
� o

(6)

The compatible parental configurations are captured during the elicitation pro-
cess by asking the domain experts to choose off the top of their head a plausible
combination of states for each Comp Yi ¼ yvi

� �
, which, theoretically, are easier to

simulate and therefore, prone to more realistic probabilities. Hence, it is elicited
from experts the probability distributions for all compatible parental configuration
and relative weights. The NPT is calculated using a weighted sum algorithm [8]
which takes these probability distributions and weights as input. The input data of
the algorithm is obtained from the experts’ knowledge, as follows:

1. relative weight (between zero and one) for each parent node, denoting its
degree of influence on the child node w1,…, wn;

2. k1 þ…þ kn probability distributions of X for compatible parental
configurations.

p xljyv11 , yv22 ,…, yvnn
� � ¼ ∑

n

i¼1
wjp xl
� ��Comp Yj ¼ yvjj

� �
(7)

where w is the relative weight of the parent node, l ¼ 0, 1,…, m and
vj ¼ 1, 2,…, kj. A constraint must be observed: the sum of all the relative weights
(i.e., of all parent nodes) must be exactly one. A weight equal to zero indicates that
the parent node has no influence on the child node and therefore can be omitted
from the relation. Conversely, a relative weight equal to one indicates that the
parent node is the only determinant of the conditional probabilities on the child
node.

For instance, let us consider the Bayesian network shown in Figure 2 where we
wish to assess teamwork. For the sake of simplicity let us say that all the parents
have the states “Low”, “Medium” and “High” instead of the five states from the
original example. With WSA 3 � 3 distributions are needed to construct a complete
NPT against 33 in case of manual elicitation. Starting with the parent Y1, let us say

19

Issues in the Probability Elicitation Process of Expert-Based Bayesian Networks
DOI: http://dx.doi.org/10.5772/intechopen.81602

First, let us consider the rows 1 and 4, where all the parent nodes are in the
highest and lowest states respectively. As can be seen in Table 1, when o all the
parent nodes are in the lowest or highest states, the mode of the child node is also
the lowest or highest state. Such a probability distribution can be obtained by any of
the weighted expressions.

Now, let us consider the row 1 as the initial state, rows 2, 6 and 8 indicate that
when the state of a single parent node shifts from lowest to highest state the mode
of the child node shifts towards the highest state. Similarly, consider row 4 as the
initial state, rows 3, 5 and 7 indicate that when the state of a single parent node
shifts from highest to lowest state, the mode of the child node also shifts towards
the lowest state.

However, it is quite clear that the shift effect is stronger when it occurs from the
lowest to highest state. Hence, Table 1 reveals that the mode of the child node is
inclined to go more towards the highest than lowest states which makes theWMAX
function more suitable to express the distribution expected by the experts.

The process to determine the weights of the parent nodes and the variance
parameter is not as straightforward as to determine the weighted expression. There
is no guideline in the literature, as far as we know, to aid in this task. Nonetheless,
one can use the mode assessments in Table 1 as a starting point to define the weight
of the parent nodes. For instance, considering WMAX is the most suitable function
to express the probability distribution, let us examine the rows in which the states
shift from lowest to highest in Table 1.

Finally, let us consider row 1 as the initial state, rows 2, 6 and 8 indicate that the
parent nodes have different strengths of influence on the child node. That is, when
the parent node Autonomy shifts from lowest to highest state the mode of Teamwork
slightly shifts towards highest states, however, the shift is higher when the state
changes in the parent node Collaboration, as can be seen, if one compares rows 2
and 6. A similar effect is observed when comparing rows 6 and 8. Hence, it is
derived from Table 1 the following constraint: Autonomy weight <Collaboration
weight <Cohesion weight. Nevertheless, trial and error are yet necessary to discover
suitable values for the weights and the variance parameter.

This method solves the magnitude problem of constructing NPT in complex
Bayesian networks. On the other hand, a drawback to this method is that the
domain context needs to fit a pattern that can be modeled by one of the
weighted expressions. This solution has been validated through case studies in
different real-world domains, such as human resources management in

Row Parents Teamwork

Autonomy Cohesion Collaboration VL L M H VH

1 VL VL VL X

2 VL VL VH X

3 VL VH VH X

4 VH VH VH X

5 VH VH VL X

6 VH VL VL X

7 VH VL VH X

8 VL VH VL X

Table 1.
Mode assessments for teamwork, checkmarks indicate the mode assessment of the expert.

18

Enhanced Expert Systems

software projects [24], software quality forecasting [25], air traffic control [26]
and operational management [27].

5.2 WSA

In [8] the WSA method is proposed. This work introduced the concept of
compatible parental configuration. The availability heuristic and the simulation
heuristic are the base for this concept. As previously stated, the availability heuristic
operates under the assumption that is easier to remember events that are more
likely to occur. The simulation heuristic, in turn, operates according to which
people determine the probability of an event based on how easy it is to simulate it
mentally.

To formally define the concept of compatible parental configuration, we take as
a basis the work of [28]. Superscript is used to represent the states of a node and
subscript to differentiate the parent-nodes. Therefore, consider that for Yi is
assigned an arbitrary state yvi , that is, Yi ¼ yvi , since Yj is another parent node, such
that Yj is considered compatible with Yi ¼ yvi only when Yj is in the state ywj which is
most likely, according to the expert’s knowledge, to coexist with Yi ¼ yvi . Hence, we
use the notation Comp Yi ¼ yvi

� �
to represent the set of states that are compatible

with Yi ¼ yvi for all parent nodes.

Comp Yi ¼ yvi
� � ¼ ywj ; ∀j 6¼ i

n ���maxw¼1… Yjj jP ywj j yvi Þ
� o

(6)

The compatible parental configurations are captured during the elicitation pro-
cess by asking the domain experts to choose off the top of their head a plausible
combination of states for each Comp Yi ¼ yvi

� �
, which, theoretically, are easier to

simulate and therefore, prone to more realistic probabilities. Hence, it is elicited
from experts the probability distributions for all compatible parental configuration
and relative weights. The NPT is calculated using a weighted sum algorithm [8]
which takes these probability distributions and weights as input. The input data of
the algorithm is obtained from the experts’ knowledge, as follows:

1. relative weight (between zero and one) for each parent node, denoting its
degree of influence on the child node w1,…, wn;

2. k1 þ…þ kn probability distributions of X for compatible parental
configurations.

p xljyv11 , yv22 ,…, yvnn
� � ¼ ∑

n

i¼1
wjp xl
� ��Comp Yj ¼ yvjj

� �
(7)

where w is the relative weight of the parent node, l ¼ 0, 1,…, m and
vj ¼ 1, 2,…, kj. A constraint must be observed: the sum of all the relative weights
(i.e., of all parent nodes) must be exactly one. A weight equal to zero indicates that
the parent node has no influence on the child node and therefore can be omitted
from the relation. Conversely, a relative weight equal to one indicates that the
parent node is the only determinant of the conditional probabilities on the child
node.

For instance, let us consider the Bayesian network shown in Figure 2 where we
wish to assess teamwork. For the sake of simplicity let us say that all the parents
have the states “Low”, “Medium” and “High” instead of the five states from the
original example. With WSA 3 � 3 distributions are needed to construct a complete
NPT against 33 in case of manual elicitation. Starting with the parent Y1, let us say

19

Issues in the Probability Elicitation Process of Expert-Based Bayesian Networks
DOI: http://dx.doi.org/10.5772/intechopen.81602

that the domain expert subjectively interprets the compatible parental configura-
tions as an equivalence relation as follows:

Comp Y1 ¼ sð Þf g � Comp Y2 ¼ sð Þf g � Comp Y3 ¼ sð Þf g, for s ¼ l, m, h (8)

When the domain expert provides 3 probability distributions over the node Y1

then all 3 � 3 distributions for compatible parental configurations are obtained. To
generate the NPT, the expert must assign relative weights to the parents to quantify
the relative strengths of their influence on the child node. Let us say that the expert
interprets Autonomy and Cohesion as having the same influence strength on the child
node, and Collaboration as three times more important than Cohesion or Autonomy.
Hence, assigning the following weights: w1 ¼ :2, w2 ¼ :2, w3 ¼ :6.

With the weights and 3 probability distributions over the node Y1 as inputs, the
weighted sum algorithm calculates all the 33 distributions required to populate the
NPT. On the other hand, let us say that Eq. (8) is not satisfied, then all the 3 � 3
probability distributions must be elicited.

In such a case, the probability of Teamwork (X) = “Low” conditioned to Auton-
omy (Y1) = “Low”, Cohesion (Y2) = “Medium”, and Collaboration (Y3) = “High”would
be given by:

p X ¼ lð jY1 ¼ l, Y2 ¼ m,Y3 ¼ hÞ ¼ w1p X ¼ l∣ Comp Y1 ¼ lð Þf gð
þw2p X ¼ l∣ Comp Y2 ¼ mð Þf gð
þw3p X ¼ l∣ Comp Y3 ¼ hð Þf gð

(9)

This summarizes the WSA method, for an in-depth description please check [8].
Unfortunately, [8] do not describe how to deal with situations where the expert
cannot select a single compatible parental configuration. Hence, an extension to this
method is proposed by [29] to deal with such situations by averaging the probabil-
ities of valid compatible parental configurations that experts might select.

5.3 AHP

Although the direct assessment of probabilities in the construction of NPT is
feasible for small Bayesian networks and relatively simple domains, for medium to
large networks the complexity and burden for experts grows substantially. As the
number of parents and states increase, the more difficult it becomes for experts to
reason about conditional probabilities with multiple parents and multiple combina-
tions of states at once, and the more susceptible it becomes to biases and inaccura-
cies [11].

In [11] it is proposed a systematic approach for generating conditional probabil-
ities of nodes with multiple parents. It is an adaptation of the AHP method for the
task of probability elicitation and semiautomatic generation of NPT where the
expert only needs to provide probability assessments (i.e., indirect) conditioned on
single parents. In this approach, the probability assessments are extracted from
pairwise judgments of the states. The NPT is generated through the product of the
probabilities of the child node conditioned on single parents.

Before using the proposed method [11] it is required to define an agreed upon
scale to perform the pairwise judgments over the states of the node. Saaty’s scale
[30] can be used for this purpose or a custom one can be created. A good example of
how to obtain a scale can be consulted in [19] in which four successive experiments
were performed to generate a scale with numbers and words. The Saaty’s scale has
nine values as seen in Table 2.

20

Enhanced Expert Systems

For a better understanding of the method, we substitute the original terminology
used in the AHP for terms more appropriate to the probability context. Thus, the
term attribute is replaced by event and the term importance is replaced by likelihood.
To obtain prior probabilities pairwise comparisons of all states of the node are
performed. Since each state is compared to every other state we can assemble a
comparison matrix. In Figure 9 we see an example of a comparison matrix used to
define prior probabilities of a node.

In the above matrix, aij i ¼ 1; 2;…; n; j ¼ 1; 2;…; nð Þ is specified by the question
“comparing the state xsi with xsj , which is more likely and how more likely?”. Once
we have filled the values for aij we can find the values of aji by calculating the
inverse of aij, i.e., 1=aij. The final result is a reciprocal matrix with all elements in the
diagonal equal to 1, that is, aii ¼ 1 for all i.

The relative priority of xsi is obtained from the maximum eigenvector
ω ¼ ω1;ω2,…;ωnð ÞT of the matrix aij

� �
n x n and the consistency of the matrix is the

consistency ratio CR ¼ CI=RI, where CI is the consistency index, defined by
(λmax � nÞ= n� 1ð Þ where λmax is the maximum eigenvalue corresponding to ω, and
RI is the random index given by Table 3. A comparison matrix with CR less than
0.10 is considered acceptable [11]. Although [31] has observed that this threshold
may be inappropriate for the purpose of evaluating probabilities. Since the sum of

Scale Definition Explanation

1 Equal likely Event A and evet B are equal likely

2 Weak or slight

3 Moderate more likely Event A is moderate more likely than event B

4 Moderate plus

5 Strong more likely Event A is Strong more likely than event B

6 Strong plus

7 Very strong more likely Event A is very strong more likely than event B

8 Very, very strong

9 Extremely more likely Event A is extremely more likely than event B

Table 2.
Scale for the pairwise comparisons.

Figure 9.
Comparison matrix for prior probability elicitation of a node X.

n 1 2 3 4 5 6 7 8 9

RI 0 0 0.58 0.90 1.12 1.24 1.32 1.41 1.45

Table 3.
Random consistency index where n is the number of states.

21

Issues in the Probability Elicitation Process of Expert-Based Bayesian Networks
DOI: http://dx.doi.org/10.5772/intechopen.81602

that the domain expert subjectively interprets the compatible parental configura-
tions as an equivalence relation as follows:

Comp Y1 ¼ sð Þf g � Comp Y2 ¼ sð Þf g � Comp Y3 ¼ sð Þf g, for s ¼ l, m, h (8)

When the domain expert provides 3 probability distributions over the node Y1

then all 3 � 3 distributions for compatible parental configurations are obtained. To
generate the NPT, the expert must assign relative weights to the parents to quantify
the relative strengths of their influence on the child node. Let us say that the expert
interprets Autonomy and Cohesion as having the same influence strength on the child
node, and Collaboration as three times more important than Cohesion or Autonomy.
Hence, assigning the following weights: w1 ¼ :2, w2 ¼ :2, w3 ¼ :6.

With the weights and 3 probability distributions over the node Y1 as inputs, the
weighted sum algorithm calculates all the 33 distributions required to populate the
NPT. On the other hand, let us say that Eq. (8) is not satisfied, then all the 3 � 3
probability distributions must be elicited.

In such a case, the probability of Teamwork (X) = “Low” conditioned to Auton-
omy (Y1) = “Low”, Cohesion (Y2) = “Medium”, and Collaboration (Y3) = “High”would
be given by:

p X ¼ lð jY1 ¼ l, Y2 ¼ m,Y3 ¼ hÞ ¼ w1p X ¼ l∣ Comp Y1 ¼ lð Þf gð
þw2p X ¼ l∣ Comp Y2 ¼ mð Þf gð
þw3p X ¼ l∣ Comp Y3 ¼ hð Þf gð

(9)

This summarizes the WSA method, for an in-depth description please check [8].
Unfortunately, [8] do not describe how to deal with situations where the expert
cannot select a single compatible parental configuration. Hence, an extension to this
method is proposed by [29] to deal with such situations by averaging the probabil-
ities of valid compatible parental configurations that experts might select.

5.3 AHP

Although the direct assessment of probabilities in the construction of NPT is
feasible for small Bayesian networks and relatively simple domains, for medium to
large networks the complexity and burden for experts grows substantially. As the
number of parents and states increase, the more difficult it becomes for experts to
reason about conditional probabilities with multiple parents and multiple combina-
tions of states at once, and the more susceptible it becomes to biases and inaccura-
cies [11].

In [11] it is proposed a systematic approach for generating conditional probabil-
ities of nodes with multiple parents. It is an adaptation of the AHP method for the
task of probability elicitation and semiautomatic generation of NPT where the
expert only needs to provide probability assessments (i.e., indirect) conditioned on
single parents. In this approach, the probability assessments are extracted from
pairwise judgments of the states. The NPT is generated through the product of the
probabilities of the child node conditioned on single parents.

Before using the proposed method [11] it is required to define an agreed upon
scale to perform the pairwise judgments over the states of the node. Saaty’s scale
[30] can be used for this purpose or a custom one can be created. A good example of
how to obtain a scale can be consulted in [19] in which four successive experiments
were performed to generate a scale with numbers and words. The Saaty’s scale has
nine values as seen in Table 2.

20

Enhanced Expert Systems

For a better understanding of the method, we substitute the original terminology
used in the AHP for terms more appropriate to the probability context. Thus, the
term attribute is replaced by event and the term importance is replaced by likelihood.
To obtain prior probabilities pairwise comparisons of all states of the node are
performed. Since each state is compared to every other state we can assemble a
comparison matrix. In Figure 9 we see an example of a comparison matrix used to
define prior probabilities of a node.

In the above matrix, aij i ¼ 1; 2;…; n; j ¼ 1; 2;…; nð Þ is specified by the question
“comparing the state xsi with xsj , which is more likely and how more likely?”. Once
we have filled the values for aij we can find the values of aji by calculating the
inverse of aij, i.e., 1=aij. The final result is a reciprocal matrix with all elements in the
diagonal equal to 1, that is, aii ¼ 1 for all i.

The relative priority of xsi is obtained from the maximum eigenvector
ω ¼ ω1;ω2,…;ωnð ÞT of the matrix aij

� �
n x n and the consistency of the matrix is the

consistency ratio CR ¼ CI=RI, where CI is the consistency index, defined by
(λmax � nÞ= n� 1ð Þ where λmax is the maximum eigenvalue corresponding to ω, and
RI is the random index given by Table 3. A comparison matrix with CR less than
0.10 is considered acceptable [11]. Although [31] has observed that this threshold
may be inappropriate for the purpose of evaluating probabilities. Since the sum of

Scale Definition Explanation

1 Equal likely Event A and evet B are equal likely

2 Weak or slight

3 Moderate more likely Event A is moderate more likely than event B

4 Moderate plus

5 Strong more likely Event A is Strong more likely than event B

6 Strong plus

7 Very strong more likely Event A is very strong more likely than event B

8 Very, very strong

9 Extremely more likely Event A is extremely more likely than event B

Table 2.
Scale for the pairwise comparisons.

Figure 9.
Comparison matrix for prior probability elicitation of a node X.

n 1 2 3 4 5 6 7 8 9

RI 0 0 0.58 0.90 1.12 1.24 1.32 1.41 1.45

Table 3.
Random consistency index where n is the number of states.

21

Issues in the Probability Elicitation Process of Expert-Based Bayesian Networks
DOI: http://dx.doi.org/10.5772/intechopen.81602

all elements in ω is 1 and the ith element ωi represents the relative importance of
the state xsi , ωi is now interpreted as the prior probability of the state xsi , that is,
P xsið Þ ¼ ωi.

Similarly, to obtain the probabilities of a node X with a single parent Y we
estimate P xsi ; jysjð Þ . In Figure 10 we see the resulting matrix when node Y ¼ ysj :

In the above matrix apq p ¼ 1; 2;…; n; q ¼ 1; 2;…; nð Þ is specified by questions
such as “if the node Y is in the ysj state, comparing the states xsi and xsj of the child
node X, which one is more likely and how more likely? “. After obtaining
ωij i ¼ 1;…; nð Þ we have P X ¼ xsi jY ¼ ysjð Þ ¼ ωij. The number of matrices needed to
obtain ωij i ¼ 1; 2;…; n; j ¼ 1; 2;…;mð Þ is equal to the number of states of Y. The
obtained results compose the NPT of a child node X conditioned to the states of a
parent Y, as shown in Figure 11.

The approach to generate the conditional probabilities for multi-parent nodes is
based on [32], which states that when a node A in a Bayesian network has two
parents B and C, its conditional probability in B and C can be approximated by
P AjB,Cð Þ ¼ ∝P AjBð ÞP AjCð Þ where ∝ is a normalizing factor that ensures that
∝∑a∈AP ajB,Cð Þ ¼ 1. Hence, to generate the complete NPT Eq. (10) is applied:

P X ¼ xsið jY1 ¼ ysi1 , Y2 ¼ ysi2 ,…, Yk ¼ ysikÞ ¼ ∝
Yk
j¼1

P X ¼ xsi jYj ¼ ysij
� �

(10)

This approach focuses on easing the burden for experts by automatically
generating probabilistic distributions of nodes with multiple parents, and conse-
quently, the complete NPT through the calculation of the product of the proba-
bilities conditioned on single parents. Thus, the expert assesses the probabilities
of a particular child node conditioned to each of its parents, one at a time, and
these probabilities are combined to get the node’s conditional probability condi-
tional on all its parents.

Figure 10.
Comparison matrix of a node X conditioned on a single parent Y in the state ysj .

Figure 11.
Resulting NPT for a single parent node.

22

Enhanced Expert Systems

In [31] a similar method is proposed, also based on the AHP, which allow the
quantitative evaluation of the inconsistency of experts in the task of probability
assessment. The difference of the proposed methods is that in [11] the magnitude
problem to construct NPT is reduced with a semiautomatic approach for the gener-
ation of the NPT and the cognitive effort is reduced because the experts only need
to evaluate, indirectly, probabilistic distributions conditioned on a single parent at a
time, whereas in [31] the effort is even greater than the direct elicitation of proba-
bilities. Nonetheless, it is our understanding that the method proposed in [31] can
somewhat extend other methods such as the WSA, without causing too much
overhead. However, further studies are needed to confirm this.

6. Conclusion

Despite recent popularity, the construction of BN is still a challenging task. One
of the main obstacles refers to defining the NPT for large-scale BN. It is possible to
automate this process using batch learning, but it requires a database with enough
information. In practice, this is not common. The other option is to elicit data from
experts, which is unfeasible in most cases due to the number of probabilities
required. A third option is to use semiautomatic methods that given an input (i.e.,
elicited from experts) generates the NPT.

In this chapter, we present three semiautomatic methods, found in an explor-
atory study through a literature review. These methods help, to a certain extent, to
minimize the effects of human biases by reducing the parameters that are required
to construct complete NPT. However, these methods are highly reliable on the input
data elicited from experts. Therefore, flawed input necessarily produces nonsense
output. For this reason, we present one of many probability elicitation techniques as
an example, which can improve the input data needed by the semiautomatic
methods and reduce the garbage in/garbage out effect.

The biggest problem with elaborated probability elicitation techniques is
undoubtedly its cost, which is often greater than the direct elicitation of probabili-
ties. Thus, these methods are not well suited for the construction of large-scale BN,
despite been useful to deal with well know biases. However, it is our understanding
that the cost to use elaborated probability elicitation techniques is drastically
reduced when only is needed to elicit a small fraction of data of what would be
necessary for manual definition of NPT. Therefore, the combination of semiauto-
matic methods and elaborated probability elicitation techniques might help building
more reliable BN.

For example, let us consider the WSA method that uses a partial elicited NPT to
generate a complete one using the concept of compatible parental configurations,
weights of the parents and a weighted sum algorithm. Once the compatible parental
configurations have been chosen, its probabilities can be elicited using a sophisti-
cated probability elicitation technique with a rather small overhead. In one way, the
probability elicitation technique becomes feasible and, theoretically, the input of
the semiautomatic method is improved.

Nonetheless, it is evident that some methods may benefit more from elabo-
rated probability elicitation techniques than others. However, it is still possible
to use these techniques even in a method such as RNM. For example, the expert
can inform the probabilities rather than the mode of each probabilistic distri-
bution of the combination of extreme states (see Table 1). We believe that
studies must be carried out to check if combining elaborated probability elici-
tation techniques with semiautomatic method can indeed improve the con-
struction of large-scale BN.

23

Issues in the Probability Elicitation Process of Expert-Based Bayesian Networks
DOI: http://dx.doi.org/10.5772/intechopen.81602

all elements in ω is 1 and the ith element ωi represents the relative importance of
the state xsi , ωi is now interpreted as the prior probability of the state xsi , that is,
P xsið Þ ¼ ωi.

Similarly, to obtain the probabilities of a node X with a single parent Y we
estimate P xsi ; jysjð Þ . In Figure 10 we see the resulting matrix when node Y ¼ ysj :

In the above matrix apq p ¼ 1; 2;…; n; q ¼ 1; 2;…; nð Þ is specified by questions
such as “if the node Y is in the ysj state, comparing the states xsi and xsj of the child
node X, which one is more likely and how more likely? “. After obtaining
ωij i ¼ 1;…; nð Þ we have P X ¼ xsi jY ¼ ysjð Þ ¼ ωij. The number of matrices needed to
obtain ωij i ¼ 1; 2;…; n; j ¼ 1; 2;…;mð Þ is equal to the number of states of Y. The
obtained results compose the NPT of a child node X conditioned to the states of a
parent Y, as shown in Figure 11.

The approach to generate the conditional probabilities for multi-parent nodes is
based on [32], which states that when a node A in a Bayesian network has two
parents B and C, its conditional probability in B and C can be approximated by
P AjB,Cð Þ ¼ ∝P AjBð ÞP AjCð Þ where ∝ is a normalizing factor that ensures that
∝∑a∈AP ajB,Cð Þ ¼ 1. Hence, to generate the complete NPT Eq. (10) is applied:

P X ¼ xsið jY1 ¼ ysi1 , Y2 ¼ ysi2 ,…, Yk ¼ ysikÞ ¼ ∝
Yk
j¼1

P X ¼ xsi jYj ¼ ysij
� �

(10)

This approach focuses on easing the burden for experts by automatically
generating probabilistic distributions of nodes with multiple parents, and conse-
quently, the complete NPT through the calculation of the product of the proba-
bilities conditioned on single parents. Thus, the expert assesses the probabilities
of a particular child node conditioned to each of its parents, one at a time, and
these probabilities are combined to get the node’s conditional probability condi-
tional on all its parents.

Figure 10.
Comparison matrix of a node X conditioned on a single parent Y in the state ysj .

Figure 11.
Resulting NPT for a single parent node.

22

Enhanced Expert Systems

In [31] a similar method is proposed, also based on the AHP, which allow the
quantitative evaluation of the inconsistency of experts in the task of probability
assessment. The difference of the proposed methods is that in [11] the magnitude
problem to construct NPT is reduced with a semiautomatic approach for the gener-
ation of the NPT and the cognitive effort is reduced because the experts only need
to evaluate, indirectly, probabilistic distributions conditioned on a single parent at a
time, whereas in [31] the effort is even greater than the direct elicitation of proba-
bilities. Nonetheless, it is our understanding that the method proposed in [31] can
somewhat extend other methods such as the WSA, without causing too much
overhead. However, further studies are needed to confirm this.

6. Conclusion

Despite recent popularity, the construction of BN is still a challenging task. One
of the main obstacles refers to defining the NPT for large-scale BN. It is possible to
automate this process using batch learning, but it requires a database with enough
information. In practice, this is not common. The other option is to elicit data from
experts, which is unfeasible in most cases due to the number of probabilities
required. A third option is to use semiautomatic methods that given an input (i.e.,
elicited from experts) generates the NPT.

In this chapter, we present three semiautomatic methods, found in an explor-
atory study through a literature review. These methods help, to a certain extent, to
minimize the effects of human biases by reducing the parameters that are required
to construct complete NPT. However, these methods are highly reliable on the input
data elicited from experts. Therefore, flawed input necessarily produces nonsense
output. For this reason, we present one of many probability elicitation techniques as
an example, which can improve the input data needed by the semiautomatic
methods and reduce the garbage in/garbage out effect.

The biggest problem with elaborated probability elicitation techniques is
undoubtedly its cost, which is often greater than the direct elicitation of probabili-
ties. Thus, these methods are not well suited for the construction of large-scale BN,
despite been useful to deal with well know biases. However, it is our understanding
that the cost to use elaborated probability elicitation techniques is drastically
reduced when only is needed to elicit a small fraction of data of what would be
necessary for manual definition of NPT. Therefore, the combination of semiauto-
matic methods and elaborated probability elicitation techniques might help building
more reliable BN.

For example, let us consider the WSA method that uses a partial elicited NPT to
generate a complete one using the concept of compatible parental configurations,
weights of the parents and a weighted sum algorithm. Once the compatible parental
configurations have been chosen, its probabilities can be elicited using a sophisti-
cated probability elicitation technique with a rather small overhead. In one way, the
probability elicitation technique becomes feasible and, theoretically, the input of
the semiautomatic method is improved.

Nonetheless, it is evident that some methods may benefit more from elabo-
rated probability elicitation techniques than others. However, it is still possible
to use these techniques even in a method such as RNM. For example, the expert
can inform the probabilities rather than the mode of each probabilistic distri-
bution of the combination of extreme states (see Table 1). We believe that
studies must be carried out to check if combining elaborated probability elici-
tation techniques with semiautomatic method can indeed improve the con-
struction of large-scale BN.

23

Issues in the Probability Elicitation Process of Expert-Based Bayesian Networks
DOI: http://dx.doi.org/10.5772/intechopen.81602

Author details

João Nunes*, Mirko Barbosa, Luiz Silva, Kyller Gorgônio, Hyggo Almeida
and Angelo Perkusich
Federal University of Campina Grande, Paraíba, Brazil

*Address all correspondence to: joaobatista@copin.ufcg.edu.br

© 2018 TheAuthor(s). Licensee IntechOpen. This chapter is distributed under the terms
of theCreativeCommonsAttribution License (http://creativecommons.org/licenses/
by/3.0),which permits unrestricted use, distribution, and reproduction in anymedium,
provided the original work is properly cited.

24

Enhanced Expert Systems

References

[1] Fenton NE, Neil M, Caballero JG.
Using ranked nodes to model qualitative
judgments in Bayesian networks. IEEE
Transactions on Knowledge and Data
Engineering. 2007;19(10):1420-1432

[2] Perkusich M et al. A procedure to
detect problems of processes in software
development projects using Bayesian
networks. Expert Systems with
Applications. 2015;42(1):437-450

[3] Perkusich M et al. Assisting the
continuous improvement of scrum
projects using metrics and bayesian
networks. Journal of Software:
Evolution and Process. 2017;29(6):e1835

[4] Lee E, Park Y, Shin JG. Large
engineering project risk management
using a Bayesian belief network. Expert
Systems with Applications. 2009;36(3):
5880-5887

[5] De Melo ACV, Sanchez AJ. Software
maintenance project delays prediction
using Bayesian networks. Expert Systems
with Applications. 2008;34(2):908-919

[6] Heckerman D. A tutorial on learning
with Bayesian networks. In: Learning in
Graphical Models. Dordrecht: Springer;
1998. pp. 301-354

[7] Constantinou A, Fenton N. Towards
smart-data: Improving predictive
accuracy in long-term football team
performance. Knowledge-Based
Systems. 2017;124:93-104

[8] Das B. Generating conditional
probabilities for Bayesian networks:
Easing the knowledge acquisition
problem. arXiv preprint cs/0411034;
2004

[9] Tversky A, Kahneman D.
Availability: A heuristic for judging
frequency and probability. Cognitive
Psychology. 1973;5(2):207-232

[10] Kahneman D, Tversky A. The
Simulation Heuristic. No. TR-5.
Stanford Univ CA Dept of Psychology;
1981

[11] Chin K-S et al. Assessing new
product development project risk by
Bayesian network with a systematic
probability generation methodology.
Expert Systems with Applications.
2009;36(6):9879-9890

[12] Ben-Gal I. Bayesian networks.
Encyclopedia of statistics in quality and
reliability. 2008;1

[13] Friedman N, Geiger D, Goldszmidt
M. Bayesian network classifiers.
Machine Learning. 1997;29(2–3):
131-163

[14] Pearl J, Russell S. Bayesian
networks. In: Handbook of Brain Theory
and Neural Networks. Cambridge, MA,
USA: MIT Press. 1998:149-153

[15] Freire A et al. A Bayesian networks-
based approach to assess and improve
the teamwork quality of agile teams.
Information and Software Technology.
2018;100:119-132

[16] Tversky A, Kahneman D. Judgment
under uncertainty: Heuristics and
biases. Science. 1974;185(4157):
1124-1131

[17] Renooij S. Probability elicitation for
belief networks: Issues to consider. The
Knowledge Engineering Review. 2001;
16(3):255-269

[18] Chesley GR. Subjective probability
elicitation techniques: A performance
comparison. Journal of Accounting
Research. 1978;16(2):225-241

[19] Renooij S,WittemanC. Talking
Probabilities: Communicating
Probabilistic InformationwithWords

25

Issues in the Probability Elicitation Process of Expert-Based Bayesian Networks
DOI: http://dx.doi.org/10.5772/intechopen.81602

Author details

João Nunes*, Mirko Barbosa, Luiz Silva, Kyller Gorgônio, Hyggo Almeida
and Angelo Perkusich
Federal University of Campina Grande, Paraíba, Brazil

*Address all correspondence to: joaobatista@copin.ufcg.edu.br

© 2018 TheAuthor(s). Licensee IntechOpen. This chapter is distributed under the terms
of theCreativeCommonsAttribution License (http://creativecommons.org/licenses/
by/3.0),which permits unrestricted use, distribution, and reproduction in anymedium,
provided the original work is properly cited.

24

Enhanced Expert Systems

References

[1] Fenton NE, Neil M, Caballero JG.
Using ranked nodes to model qualitative
judgments in Bayesian networks. IEEE
Transactions on Knowledge and Data
Engineering. 2007;19(10):1420-1432

[2] Perkusich M et al. A procedure to
detect problems of processes in software
development projects using Bayesian
networks. Expert Systems with
Applications. 2015;42(1):437-450

[3] Perkusich M et al. Assisting the
continuous improvement of scrum
projects using metrics and bayesian
networks. Journal of Software:
Evolution and Process. 2017;29(6):e1835

[4] Lee E, Park Y, Shin JG. Large
engineering project risk management
using a Bayesian belief network. Expert
Systems with Applications. 2009;36(3):
5880-5887

[5] De Melo ACV, Sanchez AJ. Software
maintenance project delays prediction
using Bayesian networks. Expert Systems
with Applications. 2008;34(2):908-919

[6] Heckerman D. A tutorial on learning
with Bayesian networks. In: Learning in
Graphical Models. Dordrecht: Springer;
1998. pp. 301-354

[7] Constantinou A, Fenton N. Towards
smart-data: Improving predictive
accuracy in long-term football team
performance. Knowledge-Based
Systems. 2017;124:93-104

[8] Das B. Generating conditional
probabilities for Bayesian networks:
Easing the knowledge acquisition
problem. arXiv preprint cs/0411034;
2004

[9] Tversky A, Kahneman D.
Availability: A heuristic for judging
frequency and probability. Cognitive
Psychology. 1973;5(2):207-232

[10] Kahneman D, Tversky A. The
Simulation Heuristic. No. TR-5.
Stanford Univ CA Dept of Psychology;
1981

[11] Chin K-S et al. Assessing new
product development project risk by
Bayesian network with a systematic
probability generation methodology.
Expert Systems with Applications.
2009;36(6):9879-9890

[12] Ben-Gal I. Bayesian networks.
Encyclopedia of statistics in quality and
reliability. 2008;1

[13] Friedman N, Geiger D, Goldszmidt
M. Bayesian network classifiers.
Machine Learning. 1997;29(2–3):
131-163

[14] Pearl J, Russell S. Bayesian
networks. In: Handbook of Brain Theory
and Neural Networks. Cambridge, MA,
USA: MIT Press. 1998:149-153

[15] Freire A et al. A Bayesian networks-
based approach to assess and improve
the teamwork quality of agile teams.
Information and Software Technology.
2018;100:119-132

[16] Tversky A, Kahneman D. Judgment
under uncertainty: Heuristics and
biases. Science. 1974;185(4157):
1124-1131

[17] Renooij S. Probability elicitation for
belief networks: Issues to consider. The
Knowledge Engineering Review. 2001;
16(3):255-269

[18] Chesley GR. Subjective probability
elicitation techniques: A performance
comparison. Journal of Accounting
Research. 1978;16(2):225-241

[19] Renooij S,WittemanC. Talking
Probabilities: Communicating
Probabilistic InformationwithWords

25

Issues in the Probability Elicitation Process of Expert-Based Bayesian Networks
DOI: http://dx.doi.org/10.5772/intechopen.81602

andNumbers. International Journal of
ApproximateReasoning. 1999;22:169-194

[20] Van Der Gaag LC et al. How to elicit
many probabilities. In: Proceedings of
the Fifteenth Conference on Uncertainty
in Artificial Intelligence. San Francisco,
CA, USA: Morgan Kaufmann Publishers
Inc. 1999. pp. 647-654

[21] Van Der Gaag LC et al. Probabilities
for a probabilistic network: A case study
in oesophageal cancer. Artificial
Intelligence in Medicine. 2002;25(2):
123-148

[22] Nunes Joao et al. An algorithm to
define the node probability functions of
Bayesian networks based on ranked
nodes. International Journal of
Engineering Trends and Technology
(IJETT). 2017;52(3):151-157

[23] Laitila P, Virtanen K. Improving
construction of conditional probability
tables for ranked nodes in Bayesian
networks. IEEE Transactions on
Knowledge and Data Engineering. 2016;
28(7):1691-1705

[24] Fenton N et al. Making resource
decisions for software projects. In:
Proceedings of the 26th International
Conference on Software Engineering.
IEEE Computer Society; 2004.
pp. 397-406

[25] Fenton N et al. Predicting software
defects in varying development
lifecycles using Bayesian nets.
Information and Software Technology.
2007;49(1):32-43

[26] Neil M, Malcolm B, Shaw R.
Modelling an air traffic control
environment using Bayesian belief
networks. In: 21st International System
Safety Conference; Ottawa, Ontario,
Canada. p. 2003

[27] Neil M, Fenton N, Tailor M. Using
Bayesian networks to model expected

and unexpected operational losses. Risk
Analysis. 2005;25(4):963-972

[28] Mendes E et al. Towards improving
decision making and estimating the
value of decisions in value-based
software engineering: The VALUE
framework. Software Quality Journal.
2018;26(2):607-656

[29] Baker S, Mendes E. Assessing the
weighted sum algorithm for automatic
generation of probabilities in Bayesian
networks. In: Information and
Automation (ICIA), 2010 IEEE
International Conference on. IEEE;
2010. pp. 867-873

[30] Saaty TL. How to make a decision:
The analytic hierarchy process.
Interfaces. 1994;24(6):19-43

[31] Monti S, Carenini G. Dealing with
the expert inconsistency in probability
elicitation. IEEE Transactions on
Knowledge and Data Engineering.
2000;12(4):499-508

[32] Kim J, Pearl J. A computational
model for causal and diagnostic
reasoning in inference systems. In:
International Joint Conference on
Artificial Intelligence. San Francisco,
CA, USA: Morgan Kaufmann Publishers
Inc. 1983;1:190-193

26

Enhanced Expert Systems

27

Chapter 3

Classic and Bayesian Tree-Based
Methods
Amal Saki Malehi and Mina Jahangiri

Abstract

Tree-based methods are nonparametric techniques and machine-learning meth-
ods for data prediction and exploratory modeling. These models are one of valuable
and powerful tools among data mining methods and can be used for predicting
different types of outcome (dependent) variable: (e.g., quantitative, qualitative, and
time until an event occurs (survival data)). Tree model is called classification tree/
regression tree/survival tree based on the type of outcome variable. These methods
have some advantages over against traditional statistical methods such as generalized
linear models (GLMs), discriminant analysis, and survival analysis. Some of these
advantages are: without requiring to determine assumptions about the functional
form between outcome variable and predictor (independent) variables, invariant to
monotone transformations of predictor variables, useful for dealing with nonlinear
relationships and high-order interactions, deal with different types of predictor vari-
able, ease of interpretation and understanding results without requiring to have sta-
tistical experience, robust to missing values, outliers, and multicollinearity. Several
classic and Bayesian tree algorithms are proposed for classification and regression
trees, and in this chapter, we provide a review of these algorithms and appropriate
criteria for determining the predictive performance of them.

Keywords: classic classification trees, Bayesian classification trees, classic regression
trees, Bayesian regression trees

1. Introduction

Different parametric traditional models are proposed for predicting different
types of outcome variable (e.g., (quantitative, qualitative, and survival data)) and
exploratory modeling. These parametric models are: generalized linear models
(GLMs) [1], discriminant analysis [2], and survival analysis [3]. Also, different
nonparametric methods are proposed for data prediction and some of these meth-
ods are: classic and Bayesian tree-based methods, support vector machines [4], arti-
ficial neural networks [5], multivariate adaptive regression splines [6], K-nearest
neighbor [7], Bayesian networks [8], and generalized additive models (GAMs) [9].

Classic and Bayesian tree-based methods are defined as machine-learning
methods for data prediction and exploratory modeling. These methods are super-
vised methods and are one of powerful and most popular tools for classification and
prediction. These methods have some good advantages over traditional statistical
methods and these advantages are [10–12]:

andNumbers. International Journal of
ApproximateReasoning. 1999;22:169-194

[20] Van Der Gaag LC et al. How to elicit
many probabilities. In: Proceedings of
the Fifteenth Conference on Uncertainty
in Artificial Intelligence. San Francisco,
CA, USA: Morgan Kaufmann Publishers
Inc. 1999. pp. 647-654

[21] Van Der Gaag LC et al. Probabilities
for a probabilistic network: A case study
in oesophageal cancer. Artificial
Intelligence in Medicine. 2002;25(2):
123-148

[22] Nunes Joao et al. An algorithm to
define the node probability functions of
Bayesian networks based on ranked
nodes. International Journal of
Engineering Trends and Technology
(IJETT). 2017;52(3):151-157

[23] Laitila P, Virtanen K. Improving
construction of conditional probability
tables for ranked nodes in Bayesian
networks. IEEE Transactions on
Knowledge and Data Engineering. 2016;
28(7):1691-1705

[24] Fenton N et al. Making resource
decisions for software projects. In:
Proceedings of the 26th International
Conference on Software Engineering.
IEEE Computer Society; 2004.
pp. 397-406

[25] Fenton N et al. Predicting software
defects in varying development
lifecycles using Bayesian nets.
Information and Software Technology.
2007;49(1):32-43

[26] Neil M, Malcolm B, Shaw R.
Modelling an air traffic control
environment using Bayesian belief
networks. In: 21st International System
Safety Conference; Ottawa, Ontario,
Canada. p. 2003

[27] Neil M, Fenton N, Tailor M. Using
Bayesian networks to model expected

and unexpected operational losses. Risk
Analysis. 2005;25(4):963-972

[28] Mendes E et al. Towards improving
decision making and estimating the
value of decisions in value-based
software engineering: The VALUE
framework. Software Quality Journal.
2018;26(2):607-656

[29] Baker S, Mendes E. Assessing the
weighted sum algorithm for automatic
generation of probabilities in Bayesian
networks. In: Information and
Automation (ICIA), 2010 IEEE
International Conference on. IEEE;
2010. pp. 867-873

[30] Saaty TL. How to make a decision:
The analytic hierarchy process.
Interfaces. 1994;24(6):19-43

[31] Monti S, Carenini G. Dealing with
the expert inconsistency in probability
elicitation. IEEE Transactions on
Knowledge and Data Engineering.
2000;12(4):499-508

[32] Kim J, Pearl J. A computational
model for causal and diagnostic
reasoning in inference systems. In:
International Joint Conference on
Artificial Intelligence. San Francisco,
CA, USA: Morgan Kaufmann Publishers
Inc. 1983;1:190-193

26

Enhanced Expert Systems

27

Chapter 3

Classic and Bayesian Tree-Based
Methods
Amal Saki Malehi and Mina Jahangiri

Abstract

Tree-based methods are nonparametric techniques and machine-learning meth-
ods for data prediction and exploratory modeling. These models are one of valuable
and powerful tools among data mining methods and can be used for predicting
different types of outcome (dependent) variable: (e.g., quantitative, qualitative, and
time until an event occurs (survival data)). Tree model is called classification tree/
regression tree/survival tree based on the type of outcome variable. These methods
have some advantages over against traditional statistical methods such as generalized
linear models (GLMs), discriminant analysis, and survival analysis. Some of these
advantages are: without requiring to determine assumptions about the functional
form between outcome variable and predictor (independent) variables, invariant to
monotone transformations of predictor variables, useful for dealing with nonlinear
relationships and high-order interactions, deal with different types of predictor vari-
able, ease of interpretation and understanding results without requiring to have sta-
tistical experience, robust to missing values, outliers, and multicollinearity. Several
classic and Bayesian tree algorithms are proposed for classification and regression
trees, and in this chapter, we provide a review of these algorithms and appropriate
criteria for determining the predictive performance of them.

Keywords: classic classification trees, Bayesian classification trees, classic regression
trees, Bayesian regression trees

1. Introduction

Different parametric traditional models are proposed for predicting different
types of outcome variable (e.g., (quantitative, qualitative, and survival data)) and
exploratory modeling. These parametric models are: generalized linear models
(GLMs) [1], discriminant analysis [2], and survival analysis [3]. Also, different
nonparametric methods are proposed for data prediction and some of these meth-
ods are: classic and Bayesian tree-based methods, support vector machines [4], arti-
ficial neural networks [5], multivariate adaptive regression splines [6], K-nearest
neighbor [7], Bayesian networks [8], and generalized additive models (GAMs) [9].

Classic and Bayesian tree-based methods are defined as machine-learning
methods for data prediction and exploratory modeling. These methods are super-
vised methods and are one of powerful and most popular tools for classification and
prediction. These methods have some good advantages over traditional statistical
methods and these advantages are [10–12]:

Enhanced Expert Systems

28

• easy to interpret due to display result as graphically;

• understanding result without requiring to have statistical experience;

• deal with high-dimensional dataset and large dataset;

• without requiring to determine assumptions about the functional form of
the data;

• deal with nonlinear relationships and high-order interactions;

• invariant to monotone transformations of predictor variables;

• robust to missing values;

• robust to outliers;

• robust to multicollinearity;

• extract homogeneous subgroups of observations.

Tree-based methods have been used in different sciences such as medical studies and
epidemiologic studies [13–17]. In these studies, tree models are used for determining risk
factors of diseases and identifying high-risk and low-risk subgroups of patients. Tree
methods can determine subgroups of patients that need to different diagnostic tests or
treatment strategies, indeed these methods are useful for subgroup analysis [18, 19].

Several classic and Bayesian tree algorithms are proposed for classification trees,
regression trees, and survival trees. These tree algorithms classify observations into
a finite homogeneous subgroups based on predictor variables. Tree model is called
classification tree, regression tree, and survival tree, if the outcome variable is a
quantitative variable, qualitative variable, and survival data, respectively. Tree-
based methods extract homogeneous subgroups of data by a recursively partition-
ing process and then fit a constant model or a parametric model such as linear
regression, Poisson regression, and logistic regression for data prediction within
these subgroups. Finally, this process is displayed graphically like a tree structure
and this advantage is one of the attractive properties of tree models [20].

In this chapter, we review classic and Bayesian classification and regression tree
approaches. Owing to space limitation, Bayesian approaches are discussed more,
because this chapter provides the first comprehensive review of Bayesian classifica-
tion and regression trees.

We begin with a discussion of the steps for tree generating of classic classifica-
tion and regression trees in Section 2. We mention classic classification trees on
Section 3. Section 4 provides a review on classic regression trees. Section 5 contains
a discussion of treed generalized linear models. A review of Bayesian classification
and regression trees is provided in Section 6. Appropriate criteria for determining
the predictive performance of tree-based methods are mentioned in Section 7, and
Section 8 presents the conclusion.

2. Classic classification and regression trees

In a dataset with an outcome variable Y and P-vector of predictor variables as
X = { x 1 , … , x p } , recursive partitioning process of tree generating for classic tree

29

Classic and Bayesian Tree-Based Methods
DOI: http://dx.doi.org/10.5772/intechopen.83380

algorithms has several main steps and these steps are: tree growing step, stopping
the tree growth step, and tree pruning step. Some of the tree algorithms use two
steps (tree growing and stopping the tree growth) for tree generating. These steps
are as follows:

2.1 Tree growing

Tree growing step is the first step for tree generating and this step is performed
using a binary recursive partitioning process based on a splitting function that this
binary tree subdivides the predictor variable space. Tree growth begins at the root
node and this node is the top-most node in the tree and includes all observations
in the learning dataset. Tree grows by either splitting or not splitting each node of
tree (each node contains a subset of learning dataset) into two child nodes or left
and right daughter nodes using splitting rules for classifying observations into
homogeneous subgroups in terms of outcome variable. Splitting rules for clas-
sifying observations are selected using some splitting functions. Binary recursive
partitioning process continues until none of the nodes can split or stopping rule
of tree growth is reached. We will mention these stopping rules. Binary recursive
partitioning process splits each node of tree into only two nodes, but some of tree
algorithms can generate multiway splits [20].

In tree growing process, nodes that split are called internal node and otherwise are
called terminal node. Each internal node includes a subset of dataset and all internal
nodes in tree are parent of their subnodes. Each sample of learning dataset is placed in
one of the terminal nodes of tree, and the tree size is equal to the number of terminal
nodes of tree. Each node of tree is splitted based on a splitting rule for classifying
observations into left and right daughter nodes. If chosen splitting rule is based on a
quantitative predictor variable, then observations divide based on { x i ≤ s } or { x i > s }
into left and right nodes, respectively (s: an observed value of quantitative predictor
variable). If chosen splitting rule is based on a qualitative predictor variable, then
observations divide based on { x i ∈ C} or { x i ∉ C} into left and right nodes, respectively
(C: a category subset of qualitative predictor variable). Many splitting rules can be in
each node and all possible splitting rules must be checked for determining best split-
ting rule using a goodness of fit criterion. This criterion shows the degree of homoge-
neity in the daughter nodes, and homogeneity is computed using a splitting function
and best splitting rule has the highest goodness of fit criterion [20].

Several splitting functions are proposed for classification trees and some of them
are [21]: Entropy, Information Gain, Gini Index, Error Classification, Gain Ratio,
Marshal Correction, Chi-square, Twoing, Distance Measure [22], Kolmogorov-
Smirnov [23, 24], and AUC-splitting [25]. Also, several studies compared the
performance of splitting functions [21, 26, 27].

In tree growing process, a predicted value is assigned to each node. Data pre-
diction in classification trees such as C4.5 [28], CART [29], CHAID [30], FACT
[31], QUEST [32], CRUISE [33], and GUIDE [34] is based on fitting a constant
model like the proportion of the categories of outcome variable at each node of
tree. CRUISE algorithm also can fit bivariate linear discriminant models [35] and
GUIDE algorithm also can fit kernel density model and nearest neighbor model at
each node of tree [34]. All mentioned classification trees except C4.5 tree algorithm
accept user-defined misclassification cost, and all except CHAID and C4.5 methods
accept user-defined class prior probabilities.

Data prediction in regression trees such as AID [36], M5 [37], CART [29], and
GUIDE [38] is based on fitting a constant model like the mean of outcome variable
at each node of tree. M5 also can fit linear regression model and GUIDE can fit
models such as linear regression model and polynomial model.

Enhanced Expert Systems

28

• easy to interpret due to display result as graphically;

• understanding result without requiring to have statistical experience;

• deal with high-dimensional dataset and large dataset;

• without requiring to determine assumptions about the functional form of
the data;

• deal with nonlinear relationships and high-order interactions;

• invariant to monotone transformations of predictor variables;

• robust to missing values;

• robust to outliers;

• robust to multicollinearity;

• extract homogeneous subgroups of observations.

Tree-based methods have been used in different sciences such as medical studies and
epidemiologic studies [13–17]. In these studies, tree models are used for determining risk
factors of diseases and identifying high-risk and low-risk subgroups of patients. Tree
methods can determine subgroups of patients that need to different diagnostic tests or
treatment strategies, indeed these methods are useful for subgroup analysis [18, 19].

Several classic and Bayesian tree algorithms are proposed for classification trees,
regression trees, and survival trees. These tree algorithms classify observations into
a finite homogeneous subgroups based on predictor variables. Tree model is called
classification tree, regression tree, and survival tree, if the outcome variable is a
quantitative variable, qualitative variable, and survival data, respectively. Tree-
based methods extract homogeneous subgroups of data by a recursively partition-
ing process and then fit a constant model or a parametric model such as linear
regression, Poisson regression, and logistic regression for data prediction within
these subgroups. Finally, this process is displayed graphically like a tree structure
and this advantage is one of the attractive properties of tree models [20].

In this chapter, we review classic and Bayesian classification and regression tree
approaches. Owing to space limitation, Bayesian approaches are discussed more,
because this chapter provides the first comprehensive review of Bayesian classifica-
tion and regression trees.

We begin with a discussion of the steps for tree generating of classic classifica-
tion and regression trees in Section 2. We mention classic classification trees on
Section 3. Section 4 provides a review on classic regression trees. Section 5 contains
a discussion of treed generalized linear models. A review of Bayesian classification
and regression trees is provided in Section 6. Appropriate criteria for determining
the predictive performance of tree-based methods are mentioned in Section 7, and
Section 8 presents the conclusion.

2. Classic classification and regression trees

In a dataset with an outcome variable Y and P-vector of predictor variables as
X = { x 1 , … , x p } , recursive partitioning process of tree generating for classic tree

29

Classic and Bayesian Tree-Based Methods
DOI: http://dx.doi.org/10.5772/intechopen.83380

algorithms has several main steps and these steps are: tree growing step, stopping
the tree growth step, and tree pruning step. Some of the tree algorithms use two
steps (tree growing and stopping the tree growth) for tree generating. These steps
are as follows:

2.1 Tree growing

Tree growing step is the first step for tree generating and this step is performed
using a binary recursive partitioning process based on a splitting function that this
binary tree subdivides the predictor variable space. Tree growth begins at the root
node and this node is the top-most node in the tree and includes all observations
in the learning dataset. Tree grows by either splitting or not splitting each node of
tree (each node contains a subset of learning dataset) into two child nodes or left
and right daughter nodes using splitting rules for classifying observations into
homogeneous subgroups in terms of outcome variable. Splitting rules for clas-
sifying observations are selected using some splitting functions. Binary recursive
partitioning process continues until none of the nodes can split or stopping rule
of tree growth is reached. We will mention these stopping rules. Binary recursive
partitioning process splits each node of tree into only two nodes, but some of tree
algorithms can generate multiway splits [20].

In tree growing process, nodes that split are called internal node and otherwise are
called terminal node. Each internal node includes a subset of dataset and all internal
nodes in tree are parent of their subnodes. Each sample of learning dataset is placed in
one of the terminal nodes of tree, and the tree size is equal to the number of terminal
nodes of tree. Each node of tree is splitted based on a splitting rule for classifying
observations into left and right daughter nodes. If chosen splitting rule is based on a
quantitative predictor variable, then observations divide based on { x i ≤ s } or { x i > s }
into left and right nodes, respectively (s: an observed value of quantitative predictor
variable). If chosen splitting rule is based on a qualitative predictor variable, then
observations divide based on { x i ∈ C} or { x i ∉ C} into left and right nodes, respectively
(C: a category subset of qualitative predictor variable). Many splitting rules can be in
each node and all possible splitting rules must be checked for determining best split-
ting rule using a goodness of fit criterion. This criterion shows the degree of homoge-
neity in the daughter nodes, and homogeneity is computed using a splitting function
and best splitting rule has the highest goodness of fit criterion [20].

Several splitting functions are proposed for classification trees and some of them
are [21]: Entropy, Information Gain, Gini Index, Error Classification, Gain Ratio,
Marshal Correction, Chi-square, Twoing, Distance Measure [22], Kolmogorov-
Smirnov [23, 24], and AUC-splitting [25]. Also, several studies compared the
performance of splitting functions [21, 26, 27].

In tree growing process, a predicted value is assigned to each node. Data pre-
diction in classification trees such as C4.5 [28], CART [29], CHAID [30], FACT
[31], QUEST [32], CRUISE [33], and GUIDE [34] is based on fitting a constant
model like the proportion of the categories of outcome variable at each node of
tree. CRUISE algorithm also can fit bivariate linear discriminant models [35] and
GUIDE algorithm also can fit kernel density model and nearest neighbor model at
each node of tree [34]. All mentioned classification trees except C4.5 tree algorithm
accept user-defined misclassification cost, and all except CHAID and C4.5 methods
accept user-defined class prior probabilities.

Data prediction in regression trees such as AID [36], M5 [37], CART [29], and
GUIDE [38] is based on fitting a constant model like the mean of outcome variable
at each node of tree. M5 also can fit linear regression model and GUIDE can fit
models such as linear regression model and polynomial model.

Enhanced Expert Systems

30

2.2 Stopping the tree growth step

Stopping the tree growth step is the second step for tree generating. Tree growth
is continued until it is possible, and several rules are proposed for stopping the tree
growth and we mention some of them [29, 39]:

• There is only one observation in the terminal nodes.

• All observations in the terminal nodes are belong to a category of outcome
variable.

• Node splitting is impossible, because all observations in each of terminal nodes
have the same distribution of predictor variables.

• Determining a user-specified minimum threshold for goodness-of-fit criterion
of splitting rules.

• There is the number of observations less than a user-specified minimum
threshold in the terminal nodes.

• Determining a user-specified maximum for depth of tree.

2.3 Tree pruning step

Tree pruning step is the third step for tree generating and this step is one of
the main steps for tree generating. Tree algorithm produces a large maximal tree
or saturated tree (the nodes of this tree cannot split any further, because terminal
nodes have one observation or observations are belong to a category of outcome
variable within each terminal node) and then prunes it to avoid overfitting. In this
step, a sequence of trees is generated and each tree in this sequence is an extension
of previous trees. Finally, an optimal tree is selected among the trees of sequence
based on having lowest cost of misclassification (for classification tree) and lowest
estimated prediction error (for regression tree) [29].

Several methods are proposed for tree pruning and some of these methods
are [39, 40]: cost-complexity pruning, reduced error pruning, pessimistic error
pruning, minimum error pruning, error-based pruning, critical value pruning,
and minimum description length pruning [41]. Also, several studies compared the
performance of pruning methods [39, 40].

3. Classic classification trees

Several classic classification tree approaches are proposed to classify observa-
tions, and data prediction in a dataset contains a qualitative outcome variable Y
with K categories or classes and P-vector of predictor variables as X = { x 1 , … , x p } .
We review some of these classification tree algorithms and these algorithms are:
THAID, CHAID, CART, ID3, FACT, C4.5, QUEST, CRUISE, and GUIDE. Also,
we only checked software programs such as SPSS, STATISTICA, TANAGRA,
WEKA, CART, and R for being these tree methods and available software
programs are mentioned for each model. Owing to space limitation, we only
mention the name of other classification tree algorithms and these algorithms
are: SLIQ [42], SPRINT [43], RainForest [44], OC1 [45], T1 [46], CAL5 [47, 48],
and CTREE [49].

31

Classic and Bayesian Tree-Based Methods
DOI: http://dx.doi.org/10.5772/intechopen.83380

3.1 THAID (theta automatic interaction detector)

THAID classification tree algorithm is developed by Messenger and Mandell
in 1972 and is the first published classification tree algorithm [50]. This tree
algorithm only deals with qualitative predictor variables and uses a greedy search
approach for tree generating. Splitting function in THAID algorithm is based
on the number of cases in categories of outcome variable, and splitting rule for
node splitting is selected based on minimizing the total impurity of new two
daughter nodes. THAID method does not use any pruning method, and tree
growth is continued until decrease in impurity is higher than a minimum user-
specified limit.

3.2 CHAID (chi-square automatic interaction detector) and exhaustive CHAID

CHAID classification tree algorithm is developed by Kass in 1980 and this
algorithm is a descendant of THAID tree algorithm [30]. This algorithm can
generate multiway splits and tree-growing process including three steps: merging,
splitting, and stopping. Also, continuous predictor variables must be categorized,
because CHAID only accepts qualitative predictor variables in tree generating
process. CHAID algorithm uses significance tests with a Bonferroni correction as
splitting function, and best splitting rule is selected based on having lowest signifi-
cance probability. This tree algorithm generates biased splits and deals with miss-
ing values. CHAID algorithm is implemented in these software programs: SPSS,
STATISTICA, and R (CHAID package).

Exhaustive CHAID algorithm is proposed by Biggs et al. in 1991 and this algo-
rithm is an improved CHAID method. The splitting and stopping steps of this
algorithm are the same as the CHAID algorithm, and it just changed to improve
merging [51].

3.3 CART (classification and regression trees)

The classic CART model was developed by Breiman et al. in 1984 and this model
is a binary tree algorithm [29]. CART algorithm is one of the best known classic
classification and regression trees for data mining. CART algorithm generates a
classification tree using a binary recursive partitioning, and tree generating process
in this algorithm contains four steps: (1) tree growing: tree growth is based on a
greedy search algorithm that CART algorithm grows tree by sequentially choosing
splitting rules. This classification tree algorithm provides three splitting functions
for choosing splitting rules, and these splitting functions are: entropy, Gini index,
and twoing. (2) tree growing process continues until none of the nodes can split,
and a large maximal tree is generated. (3) tree pruning: CART uses cost-complexity
pruning method for tree pruning to avoid overfitting and to obtain “right-sized”
trees. This pruning method generates several subtrees or a sequence of pruned
trees, and each tree in this sequence is an extension of the previous trees. (4) best
tree selection: CART uses independent test dataset or cross-validation to estimate
the prediction error (misclassification cost) of each tree and then selects the best
tree from sequence of trees with lowest estimated prediction error.

CART can generate linear combination splits and uses surrogate splits for
dealing with missing values, and also, these surrogate splits are used to measure an
importance score for predictor variables. This best known classic tree algorithm suf-
fers from some problems such as greediness, instability, and bias in split rule selec-
tion [52]. CART is available at these software programs: CART, R (rpart package),
SPSS, STATISTICA, WEKA, and TANAGRA.

Enhanced Expert Systems

30

2.2 Stopping the tree growth step

Stopping the tree growth step is the second step for tree generating. Tree growth
is continued until it is possible, and several rules are proposed for stopping the tree
growth and we mention some of them [29, 39]:

• There is only one observation in the terminal nodes.

• All observations in the terminal nodes are belong to a category of outcome
variable.

• Node splitting is impossible, because all observations in each of terminal nodes
have the same distribution of predictor variables.

• Determining a user-specified minimum threshold for goodness-of-fit criterion
of splitting rules.

• There is the number of observations less than a user-specified minimum
threshold in the terminal nodes.

• Determining a user-specified maximum for depth of tree.

2.3 Tree pruning step

Tree pruning step is the third step for tree generating and this step is one of
the main steps for tree generating. Tree algorithm produces a large maximal tree
or saturated tree (the nodes of this tree cannot split any further, because terminal
nodes have one observation or observations are belong to a category of outcome
variable within each terminal node) and then prunes it to avoid overfitting. In this
step, a sequence of trees is generated and each tree in this sequence is an extension
of previous trees. Finally, an optimal tree is selected among the trees of sequence
based on having lowest cost of misclassification (for classification tree) and lowest
estimated prediction error (for regression tree) [29].

Several methods are proposed for tree pruning and some of these methods
are [39, 40]: cost-complexity pruning, reduced error pruning, pessimistic error
pruning, minimum error pruning, error-based pruning, critical value pruning,
and minimum description length pruning [41]. Also, several studies compared the
performance of pruning methods [39, 40].

3. Classic classification trees

Several classic classification tree approaches are proposed to classify observa-
tions, and data prediction in a dataset contains a qualitative outcome variable Y
with K categories or classes and P-vector of predictor variables as X = { x 1 , … , x p } .
We review some of these classification tree algorithms and these algorithms are:
THAID, CHAID, CART, ID3, FACT, C4.5, QUEST, CRUISE, and GUIDE. Also,
we only checked software programs such as SPSS, STATISTICA, TANAGRA,
WEKA, CART, and R for being these tree methods and available software
programs are mentioned for each model. Owing to space limitation, we only
mention the name of other classification tree algorithms and these algorithms
are: SLIQ [42], SPRINT [43], RainForest [44], OC1 [45], T1 [46], CAL5 [47, 48],
and CTREE [49].

31

Classic and Bayesian Tree-Based Methods
DOI: http://dx.doi.org/10.5772/intechopen.83380

3.1 THAID (theta automatic interaction detector)

THAID classification tree algorithm is developed by Messenger and Mandell
in 1972 and is the first published classification tree algorithm [50]. This tree
algorithm only deals with qualitative predictor variables and uses a greedy search
approach for tree generating. Splitting function in THAID algorithm is based
on the number of cases in categories of outcome variable, and splitting rule for
node splitting is selected based on minimizing the total impurity of new two
daughter nodes. THAID method does not use any pruning method, and tree
growth is continued until decrease in impurity is higher than a minimum user-
specified limit.

3.2 CHAID (chi-square automatic interaction detector) and exhaustive CHAID

CHAID classification tree algorithm is developed by Kass in 1980 and this
algorithm is a descendant of THAID tree algorithm [30]. This algorithm can
generate multiway splits and tree-growing process including three steps: merging,
splitting, and stopping. Also, continuous predictor variables must be categorized,
because CHAID only accepts qualitative predictor variables in tree generating
process. CHAID algorithm uses significance tests with a Bonferroni correction as
splitting function, and best splitting rule is selected based on having lowest signifi-
cance probability. This tree algorithm generates biased splits and deals with miss-
ing values. CHAID algorithm is implemented in these software programs: SPSS,
STATISTICA, and R (CHAID package).

Exhaustive CHAID algorithm is proposed by Biggs et al. in 1991 and this algo-
rithm is an improved CHAID method. The splitting and stopping steps of this
algorithm are the same as the CHAID algorithm, and it just changed to improve
merging [51].

3.3 CART (classification and regression trees)

The classic CART model was developed by Breiman et al. in 1984 and this model
is a binary tree algorithm [29]. CART algorithm is one of the best known classic
classification and regression trees for data mining. CART algorithm generates a
classification tree using a binary recursive partitioning, and tree generating process
in this algorithm contains four steps: (1) tree growing: tree growth is based on a
greedy search algorithm that CART algorithm grows tree by sequentially choosing
splitting rules. This classification tree algorithm provides three splitting functions
for choosing splitting rules, and these splitting functions are: entropy, Gini index,
and twoing. (2) tree growing process continues until none of the nodes can split,
and a large maximal tree is generated. (3) tree pruning: CART uses cost-complexity
pruning method for tree pruning to avoid overfitting and to obtain “right-sized”
trees. This pruning method generates several subtrees or a sequence of pruned
trees, and each tree in this sequence is an extension of the previous trees. (4) best
tree selection: CART uses independent test dataset or cross-validation to estimate
the prediction error (misclassification cost) of each tree and then selects the best
tree from sequence of trees with lowest estimated prediction error.

CART can generate linear combination splits and uses surrogate splits for
dealing with missing values, and also, these surrogate splits are used to measure an
importance score for predictor variables. This best known classic tree algorithm suf-
fers from some problems such as greediness, instability, and bias in split rule selec-
tion [52]. CART is available at these software programs: CART, R (rpart package),
SPSS, STATISTICA, WEKA, and TANAGRA.

Enhanced Expert Systems

32

3.4 ID3 (Iterative Dichotomiser 3)

ID3 classification tree algorithm is proposed by Quinlan in 1986 [53]. This
algorithm uses a greedy algorithm using information gain as splitting function
and this splitting function is based on entropy splitting criterion and best splitting
rule has highest information gain. ID3 does not use any pruning methods, and tree
growth process is continued until all observations in the terminal nodes are belong
to a category of outcome variable and/or best information gain is near to zero.
This algorithm only deals with qualitative predictor variables (if dataset contains
quantitative predictor variables, they must be categorized). Also, ID3 algorithm
cannot impute missing values, and this method like CART model suffers from selec-
tion bias, because ID3 algorithm favors the predictor variables with more values for
node splitting of tree. ID3 is implemented in these software programs: WEKA and
TANAGRA.

3.5 FACT (Fast and Accurate Classification Tree)

FACT classification tree algorithm was introduced by Loh and Vanichsetakul in
1988 [31]. In this algorithm, variable selection for node splitting based on quan-
titative predictor variable is based on having the largest F-statistics of analysis of
variance (ANOVA), and then, linear discriminant analysis is used to determine
split point for this variable. FACT model transforms qualitative predictor variables
into ordered variables in two steps (first step: these variables are transformed into
dummy vectors, second step: these vectors are projected onto the largest discrimi-
nant coordinate). FACT generates unbiased splits when dataset contains only
quantitative predictor variables. Also, it, unlike other classification tree methods
(C4.5, CART, QUEST, GUIDE and CRUISE), does not use any pruning methods,
and tree growing is stopped when stopping rule is reached. FACT can deal with
missing values and missing values of quantitative and qualitative predictor vari-
ables are imputed at each node by the means and modes of the non-missing values,
respectively.

3.6 C4.5

C4.5 classification tree algorithm is developed by Quinlan in 1993 and this
algorithm is an extension of ID3 tree algorithm [28]. This algorithm uses a greedy
algorithm using gain ratio as splitting function and generates biased splits. C4.5,
unlike ID3 method, deals with quantitative and qualitative predictor variables and
also, deals with missing values. In this tree method, split of quantitative predictor
variable is binary split and split of qualitative predictor variable is multiway split
(a branch is created for each category of qualitative predictor variable). Pruning
method used in this algorithm is error-based pruning method. C4.5 is available at
these software programs: R (Rweka package), WEKA, TANAGRA, and also can
obtain from: http://www.rulequest.com/Personal/. Also, J4.8 tree algorithm is Java
implementation of the C4.5 algorithm in WEKA software.

3.7 QUEST (Quick, Unbiased, and Efficient Statistical Tree)

Quest classification tree algorithm is developed by Loh and Shih in 1997, and
this model generates binary splits [32]. This method, unlike other classification
algorithms such as CART and THAID, does not use exhaustive search algorithm
(because these algorithms suffer from variable selection bias) and so improves
computational cost and variable selection bias. Quest tree method uses statistical

33

Classic and Bayesian Tree-Based Methods
DOI: http://dx.doi.org/10.5772/intechopen.83380

test for selecting variable splitting and then variable with smallest significance
probability is selected to split node of tree. This method uses F-statistics of analysis
of variance (ANOVA) for quantitative predictor variables and chi-square test for
qualitative predictor variables. After determining variable, an exhaustive search
is implemented to find the best split point and QUEST method uses quadratic
discriminant analysis for selecting split point. For determining split point of a
qualitative variable, values of this variable must be transforming like method used
in FACT algorithm.

Quest like CART can generate linear combination splits and uses cost-complex-
ity pruning method for tree pruning. Missing values of quantitative and qualitative
predictor variable are imputed at each node by the means and modes of the non-
missing values, respectively. Software for QUEST algorithm can be obtained from:
www.stat.wisc.edu/~loh/.

3.8 CRUISE (Classification Rule with Unbiased Interaction Selection and
Estimation)

CRUISE tree algorithm was introduced by Kim and Loh in 2001, and this
algorithm, unlike other classification tree algorithms (CART and QUEST), gener-
ates multiway splits [33]. CRUISE method is free of selection bias and can detect
local interactions. Two methods of variable selection are used in this tree model
and these methods are: 1D (similar to the method used in QUEST method) and
2D. CRUISE method like CART and QUEST can generate linear combination splits
and uses cost-complexity pruning method for tree pruning. Also, a bivariate linear
discriminant model can fit instead of constant model in each node of tree [35].
CRUISE uses several methods for imputing missing values in the learning dataset
and dataset used for tree pruning. Software for CRUISE algorithm can be obtained
from: www.stat.wisc.edu/~loh/.

3.9 GUIDE (Generalized, Unbiased, Interaction Detection, and Estimation)

GUIDE tree algorithm was introduced by Loh in 2009, and this method is an
evolution of FACT, QUEST, and CRUISE algorithms and improves the weaknesses
of these algorithms [34]. It like QUEST and CRUISE generates unbiased binary
splits and can perform splits on combinations of two predictor variables at a time.
Also, GUIDE like QUEST and CRUISE methods performs the two-step approach
based on significance tests for splitting each node. GUIDE uses a chi-squared test of
independence of each independent variable versus dependent variable on the data
in the node and computes its significance probability. It chooses the variable associ-
ated with the smallest significance probability and finds a split point that minimizes
the sum of Gini indexes and uses it to split the node into two daughter nodes.

GUIDE method uses cost-complexity pruning method for tree pruning (this
method is used in other tree algorithms such CART, QUEST, and CRUISE). It deals
with missing values and assigns them as a separate category. Also, this tree method
can compute importance score for predictor variables and can use nearest neighbor
model and bivariate kernel density instead of constant model in the nodes of tree.
Software for GUIDE algorithm can be obtained from: www.stat.wisc.edu/~loh/.

3.10 Classification tree algorithms for ordinal outcome variable

Several tree methods are proposed for predicting an ordinal outcome variable.
Twoing splitting function is extended by Breiman et al. for using classification
tree for ordinal outcome variable [29] and also Piccarreta extended Gini-Simpson

Enhanced Expert Systems

32

3.4 ID3 (Iterative Dichotomiser 3)

ID3 classification tree algorithm is proposed by Quinlan in 1986 [53]. This
algorithm uses a greedy algorithm using information gain as splitting function
and this splitting function is based on entropy splitting criterion and best splitting
rule has highest information gain. ID3 does not use any pruning methods, and tree
growth process is continued until all observations in the terminal nodes are belong
to a category of outcome variable and/or best information gain is near to zero.
This algorithm only deals with qualitative predictor variables (if dataset contains
quantitative predictor variables, they must be categorized). Also, ID3 algorithm
cannot impute missing values, and this method like CART model suffers from selec-
tion bias, because ID3 algorithm favors the predictor variables with more values for
node splitting of tree. ID3 is implemented in these software programs: WEKA and
TANAGRA.

3.5 FACT (Fast and Accurate Classification Tree)

FACT classification tree algorithm was introduced by Loh and Vanichsetakul in
1988 [31]. In this algorithm, variable selection for node splitting based on quan-
titative predictor variable is based on having the largest F-statistics of analysis of
variance (ANOVA), and then, linear discriminant analysis is used to determine
split point for this variable. FACT model transforms qualitative predictor variables
into ordered variables in two steps (first step: these variables are transformed into
dummy vectors, second step: these vectors are projected onto the largest discrimi-
nant coordinate). FACT generates unbiased splits when dataset contains only
quantitative predictor variables. Also, it, unlike other classification tree methods
(C4.5, CART, QUEST, GUIDE and CRUISE), does not use any pruning methods,
and tree growing is stopped when stopping rule is reached. FACT can deal with
missing values and missing values of quantitative and qualitative predictor vari-
ables are imputed at each node by the means and modes of the non-missing values,
respectively.

3.6 C4.5

C4.5 classification tree algorithm is developed by Quinlan in 1993 and this
algorithm is an extension of ID3 tree algorithm [28]. This algorithm uses a greedy
algorithm using gain ratio as splitting function and generates biased splits. C4.5,
unlike ID3 method, deals with quantitative and qualitative predictor variables and
also, deals with missing values. In this tree method, split of quantitative predictor
variable is binary split and split of qualitative predictor variable is multiway split
(a branch is created for each category of qualitative predictor variable). Pruning
method used in this algorithm is error-based pruning method. C4.5 is available at
these software programs: R (Rweka package), WEKA, TANAGRA, and also can
obtain from: http://www.rulequest.com/Personal/. Also, J4.8 tree algorithm is Java
implementation of the C4.5 algorithm in WEKA software.

3.7 QUEST (Quick, Unbiased, and Efficient Statistical Tree)

Quest classification tree algorithm is developed by Loh and Shih in 1997, and
this model generates binary splits [32]. This method, unlike other classification
algorithms such as CART and THAID, does not use exhaustive search algorithm
(because these algorithms suffer from variable selection bias) and so improves
computational cost and variable selection bias. Quest tree method uses statistical

33

Classic and Bayesian Tree-Based Methods
DOI: http://dx.doi.org/10.5772/intechopen.83380

test for selecting variable splitting and then variable with smallest significance
probability is selected to split node of tree. This method uses F-statistics of analysis
of variance (ANOVA) for quantitative predictor variables and chi-square test for
qualitative predictor variables. After determining variable, an exhaustive search
is implemented to find the best split point and QUEST method uses quadratic
discriminant analysis for selecting split point. For determining split point of a
qualitative variable, values of this variable must be transforming like method used
in FACT algorithm.

Quest like CART can generate linear combination splits and uses cost-complex-
ity pruning method for tree pruning. Missing values of quantitative and qualitative
predictor variable are imputed at each node by the means and modes of the non-
missing values, respectively. Software for QUEST algorithm can be obtained from:
www.stat.wisc.edu/~loh/.

3.8 CRUISE (Classification Rule with Unbiased Interaction Selection and
Estimation)

CRUISE tree algorithm was introduced by Kim and Loh in 2001, and this
algorithm, unlike other classification tree algorithms (CART and QUEST), gener-
ates multiway splits [33]. CRUISE method is free of selection bias and can detect
local interactions. Two methods of variable selection are used in this tree model
and these methods are: 1D (similar to the method used in QUEST method) and
2D. CRUISE method like CART and QUEST can generate linear combination splits
and uses cost-complexity pruning method for tree pruning. Also, a bivariate linear
discriminant model can fit instead of constant model in each node of tree [35].
CRUISE uses several methods for imputing missing values in the learning dataset
and dataset used for tree pruning. Software for CRUISE algorithm can be obtained
from: www.stat.wisc.edu/~loh/.

3.9 GUIDE (Generalized, Unbiased, Interaction Detection, and Estimation)

GUIDE tree algorithm was introduced by Loh in 2009, and this method is an
evolution of FACT, QUEST, and CRUISE algorithms and improves the weaknesses
of these algorithms [34]. It like QUEST and CRUISE generates unbiased binary
splits and can perform splits on combinations of two predictor variables at a time.
Also, GUIDE like QUEST and CRUISE methods performs the two-step approach
based on significance tests for splitting each node. GUIDE uses a chi-squared test of
independence of each independent variable versus dependent variable on the data
in the node and computes its significance probability. It chooses the variable associ-
ated with the smallest significance probability and finds a split point that minimizes
the sum of Gini indexes and uses it to split the node into two daughter nodes.

GUIDE method uses cost-complexity pruning method for tree pruning (this
method is used in other tree algorithms such CART, QUEST, and CRUISE). It deals
with missing values and assigns them as a separate category. Also, this tree method
can compute importance score for predictor variables and can use nearest neighbor
model and bivariate kernel density instead of constant model in the nodes of tree.
Software for GUIDE algorithm can be obtained from: www.stat.wisc.edu/~loh/.

3.10 Classification tree algorithms for ordinal outcome variable

Several tree methods are proposed for predicting an ordinal outcome variable.
Twoing splitting function is extended by Breiman et al. for using classification
tree for ordinal outcome variable [29] and also Piccarreta extended Gini-Simpson

Enhanced Expert Systems

34

criterion for this case [54]. Archer proposed a package in R software (rpartOrdinal
package) and this package contains some splitting functions for tree generating for
predicting an ordinal outcome variable [55]. Also, Galimberti et al. developed a
package in R software (rpartScore package) that overcomes some problems of rpar-
tOrdinal package [56]. Tutz and Hechenbichler extended ensemble tree methods
such as bagging and boosting for analyzing an ordinal outcome variable [57]. For
study about other approaches, refer to Refs. [49, 57–60].

3.11 Classification tree algorithms for imbalanced datasets

In an imbalanced dataset, one of the classes of outcome variable has fewer
samples than other classes and this class is rare. In real applications such as medi-
cal diagnosis studies, this rare class is the interest for analyzing. Due to the skew
distribution of classes, most classification tree algorithms predict all samples of rare
class as a class with more samples. Indeed, these models are not robust to unbalance
between classes and have good diagnostic performances only on the class with more
samples. Several remedies have been proposed to solve this problem for using clas-
sification tree algorithms on the imbalanced datasets. Some of these remedies are:
sampling methods (undersampling, oversampling, and synthetic minority overs-
ampling technique (SMOTE)), cost-sensitive learning, class confidence proportion
decision tree [61], and Hellinger distance decision trees [62]. Ganganwar in 2012
provides a review of classification algorithms for imbalanced datasets [63].

4. Classic regression trees

Several classic regression trees are proposed to classify observations, and data
prediction in a dataset contains a quantitative outcome variable Y and P-vector of
predictor variables as X = { x 1 , … , x p } . We review some of these regression tree algo-
rithms and these algorithms are AID, CART, M5, and GUIDE. Also, we only checked
software programs such as SPSS, STATISTICA, TANAGRA, WEKA, CART, and
R for being these tree algorithms, and available software programs are mentioned
for each model. Owing to space limitation, we only mention the reference of other
classification tree algorithms and refer to references for study about other regression
tree approaches [49, 64, 65]. Also, for Poisson regression trees, refer to Refs. [66–69].

4.1 AID (automatic interaction detector)

AID regression tree algorithm is proposed by Morgan and Sonquist in 1963,
and this algorithm is the first published regression tree algorithm [36]. It generates
binary splits and piecewise constant models. This algorithm uses a greedy search for
tree generating and a splitting rule is selected based on minimizing the total sum of
the square errors. AID suffers from bias in variable selection and this method does
not use any pruning method and tree growing is stopped when the reduction in
total sum of the square errors is less than a predetermined value.

4.2 CART

CART algorithm considers both classification and regression trees, and tree-
generating process in CART algorithm for generating a regression tree is like
classification tree [29]. But another splitting function is used to choosing splitting
rules of regression tree, and this function is least squares deviation. Also, CART
algorithm for selecting best regression subtree uses independent test dataset or

35

Classic and Bayesian Tree-Based Methods
DOI: http://dx.doi.org/10.5772/intechopen.83380

cross-validation to estimate the prediction error (sum of squared differences
between the observations and predictions) of each tree to select the best tree from
sequence of trees with lowest estimated prediction error. CART algorithm for
regression tree generating like classification tree uses surrogate splits for imput-
ing missing values and can generate linear combination splits. CART is available
at these software programs: CART, R (rpart package), STATISTICA, WEKA, and
TANAGRA.

4.3 M5

M5 tree algorithm is proposed by Quinlan in 1992 and this algorithm like AID and
CART methods generates a piecewise constant model and then fits a linear regression
model in nodes of tree [37]. M5 improves the prediction accuracy of tree algorithm
using linear regression model at nodes and deals with missing values. Also, this
method like CART algorithm uses least-squares deviation as splitting function and
can generate multiway splits. In M5, smoothing technique is used after tree pruning,
and this technique improves the accuracy predictions. Wang and Witten in 1996
proposed M5′ tree algorithm, and this method is based on M5 method [70]. This
method is available at these software programs: WEKA and R (RWeka package).

4.4 GUIDE

GUIDE method is introduced by Loh in 2002, and it generates unbiased binary
splits [38]. This method uses a regression model at each node of tree and calculates
the residuals. Then, residuals are transformed to a binary variable based on the sign
of them (positive or negative), and algorithm is followed like algorithm used for
classification tree. This tree method like method used for classification tree uses
missing value category and can compute importance score for predictor variables.
GUIDE can fit models such as linear regression model and polynomial model
instead of constant model in the nodes of tree. Software for GUIDE method can be
obtained from: www.stat.wisc.edu/~loh/.

5. Treed generalized linear models

Some of tree-based methods such as CART, QUEST, C4.5, and CHAID fit a con-
stant model in the nodes of tree, thus a large tree is generated, and this tree has hard
interpretation. Treed models, unlike conventional tree models, partition data into
subsets and then fit a parametric model such as linear regression, Poisson regres-
sion, and logistic regression instead of using constant models (mean or proportion)
for data prediction. Treed models generate smaller trees in comparison to tree mod-
els. Also, treed models can be a good alternative for traditional parametric models
such as GLMs, when these parametric models cannot estimate relationship between
outcome variable and predictor variables across a dataset. Several tree algorithms
are developed that fit parametric models into terminal nodes, and to study these
algorithms, refer to Refs. [71–77].

6. Bayesian classification and regression trees

The classic CART algorithm was developed by Breiman et al. in 1984, and this
model is one of the best known classic classification and regression trees for data min-
ing. But this algorithm suffers from some problems such as greediness, instability, and

Enhanced Expert Systems

34

criterion for this case [54]. Archer proposed a package in R software (rpartOrdinal
package) and this package contains some splitting functions for tree generating for
predicting an ordinal outcome variable [55]. Also, Galimberti et al. developed a
package in R software (rpartScore package) that overcomes some problems of rpar-
tOrdinal package [56]. Tutz and Hechenbichler extended ensemble tree methods
such as bagging and boosting for analyzing an ordinal outcome variable [57]. For
study about other approaches, refer to Refs. [49, 57–60].

3.11 Classification tree algorithms for imbalanced datasets

In an imbalanced dataset, one of the classes of outcome variable has fewer
samples than other classes and this class is rare. In real applications such as medi-
cal diagnosis studies, this rare class is the interest for analyzing. Due to the skew
distribution of classes, most classification tree algorithms predict all samples of rare
class as a class with more samples. Indeed, these models are not robust to unbalance
between classes and have good diagnostic performances only on the class with more
samples. Several remedies have been proposed to solve this problem for using clas-
sification tree algorithms on the imbalanced datasets. Some of these remedies are:
sampling methods (undersampling, oversampling, and synthetic minority overs-
ampling technique (SMOTE)), cost-sensitive learning, class confidence proportion
decision tree [61], and Hellinger distance decision trees [62]. Ganganwar in 2012
provides a review of classification algorithms for imbalanced datasets [63].

4. Classic regression trees

Several classic regression trees are proposed to classify observations, and data
prediction in a dataset contains a quantitative outcome variable Y and P-vector of
predictor variables as X = { x 1 , … , x p } . We review some of these regression tree algo-
rithms and these algorithms are AID, CART, M5, and GUIDE. Also, we only checked
software programs such as SPSS, STATISTICA, TANAGRA, WEKA, CART, and
R for being these tree algorithms, and available software programs are mentioned
for each model. Owing to space limitation, we only mention the reference of other
classification tree algorithms and refer to references for study about other regression
tree approaches [49, 64, 65]. Also, for Poisson regression trees, refer to Refs. [66–69].

4.1 AID (automatic interaction detector)

AID regression tree algorithm is proposed by Morgan and Sonquist in 1963,
and this algorithm is the first published regression tree algorithm [36]. It generates
binary splits and piecewise constant models. This algorithm uses a greedy search for
tree generating and a splitting rule is selected based on minimizing the total sum of
the square errors. AID suffers from bias in variable selection and this method does
not use any pruning method and tree growing is stopped when the reduction in
total sum of the square errors is less than a predetermined value.

4.2 CART

CART algorithm considers both classification and regression trees, and tree-
generating process in CART algorithm for generating a regression tree is like
classification tree [29]. But another splitting function is used to choosing splitting
rules of regression tree, and this function is least squares deviation. Also, CART
algorithm for selecting best regression subtree uses independent test dataset or

35

Classic and Bayesian Tree-Based Methods
DOI: http://dx.doi.org/10.5772/intechopen.83380

cross-validation to estimate the prediction error (sum of squared differences
between the observations and predictions) of each tree to select the best tree from
sequence of trees with lowest estimated prediction error. CART algorithm for
regression tree generating like classification tree uses surrogate splits for imput-
ing missing values and can generate linear combination splits. CART is available
at these software programs: CART, R (rpart package), STATISTICA, WEKA, and
TANAGRA.

4.3 M5

M5 tree algorithm is proposed by Quinlan in 1992 and this algorithm like AID and
CART methods generates a piecewise constant model and then fits a linear regression
model in nodes of tree [37]. M5 improves the prediction accuracy of tree algorithm
using linear regression model at nodes and deals with missing values. Also, this
method like CART algorithm uses least-squares deviation as splitting function and
can generate multiway splits. In M5, smoothing technique is used after tree pruning,
and this technique improves the accuracy predictions. Wang and Witten in 1996
proposed M5′ tree algorithm, and this method is based on M5 method [70]. This
method is available at these software programs: WEKA and R (RWeka package).

4.4 GUIDE

GUIDE method is introduced by Loh in 2002, and it generates unbiased binary
splits [38]. This method uses a regression model at each node of tree and calculates
the residuals. Then, residuals are transformed to a binary variable based on the sign
of them (positive or negative), and algorithm is followed like algorithm used for
classification tree. This tree method like method used for classification tree uses
missing value category and can compute importance score for predictor variables.
GUIDE can fit models such as linear regression model and polynomial model
instead of constant model in the nodes of tree. Software for GUIDE method can be
obtained from: www.stat.wisc.edu/~loh/.

5. Treed generalized linear models

Some of tree-based methods such as CART, QUEST, C4.5, and CHAID fit a con-
stant model in the nodes of tree, thus a large tree is generated, and this tree has hard
interpretation. Treed models, unlike conventional tree models, partition data into
subsets and then fit a parametric model such as linear regression, Poisson regres-
sion, and logistic regression instead of using constant models (mean or proportion)
for data prediction. Treed models generate smaller trees in comparison to tree mod-
els. Also, treed models can be a good alternative for traditional parametric models
such as GLMs, when these parametric models cannot estimate relationship between
outcome variable and predictor variables across a dataset. Several tree algorithms
are developed that fit parametric models into terminal nodes, and to study these
algorithms, refer to Refs. [71–77].

6. Bayesian classification and regression trees

The classic CART algorithm was developed by Breiman et al. in 1984, and this
model is one of the best known classic classification and regression trees for data min-
ing. But this algorithm suffers from some problems such as greediness, instability, and

Enhanced Expert Systems

36

bias in split rule selection. CART generates a tree by using a greedy search algorithm,
and this search algorithm has disadvantages such as: limit the exploration of tree
space, dependence future splits to previous splits, generate optimistic error rates, and
the inability of the search to find a global optimum [78]. CART has instability prob-
lem, because by resampling or drawing bootstrap samples from dataset may generate
tree with different splits [79]. The splitting method in CART model is biased toward
predictor variables with many distinct values and more missing values [80, 81].

Several tree models are suggested to solve these problems and these remedial
models are ensemble of trees such as Random Forests [82], Bagging [83], Boosting
[84], Multiboost [85], and LogitBoost [86] (for solving instability problem), tree
algorithms such as CRUISE [33, 35], QUEST [32], GUIDE [34], CTREE [49], and
LOTUS [71] (for solving bias in split rule selection problem), and Bayesian tree
approaches and evtree algorithm [78] are suggested to solve greediness problem
of CART. Also, Bayesian tree approaches can quantify uncertainty, and these
approaches explore the tree space more than classic approaches.

Several Bayesian approaches are proposed for tree-based methods [87–98].
In these Bayesian tree approaches like classic tree approaches, a model is called
Bayesian classification trees if the outcome variable is a qualitative variable. Also,
a model is called Bayesian regression trees if the outcome variable is a quantitative
variable. The method of data prediction in these Bayesian approaches is like classic
approaches. The method of data prediction for Bayesian classification trees is based
on fitting a constant model like the proportion of the outcome variable in the termi-
nal nodes. Data prediction in Bayesian regression tree is based on fitting a constant
model like the mean of the outcome variable in the terminal nodes.

Classic tree approaches use only observations for data analysis, but Bayesian
approaches combine prior information with observations. Bayesian tree approaches
define prior distributions on the components of classic tree approaches and then
utilize stochastic search algorithms through Markov chain Monte Carlo (MCMC)
algorithms or deterministic search algorithms for exploring tree space [87–98].

Bayesian tree approaches have materials such as prior distribution function,
posterior distribution function, data likelihood function, marginal likelihood func-
tion, stochastic search algorithm or deterministic search algorithm for exploring
tree space, stopping rule of simulation algorithm (if stochastic search algorithms
are used to simulate from posterior distribution and explore tree space) and criteria
for identify good trees (if model produces several trees). In this section, we review
Bayesian tree approaches and also mention the results of published papers based on
using these Bayesian algorithms for data analysis.

6.1 BUNTINE’s Bayesian classification tree approach

The first Bayesian tree approach for classification tree model was proposed by
Buntine in 1992. This proposed approach offers a full Bayesian analysis for clas-
sification tree model by using a deterministic search algorithm instead of using a
stochastic search algorithm [87]. This model like other classic tree models uses a
splitting function for tree growth using Bayesian statistics with similar performance
to splitting methods such as Information Gain and Gini. Buntine also like traditional
tree models, in order to prevent overfitting model, used Bayesian smoothing and
averaging techniques instead of pruning the tree.

In this Bayesian approach, prior distributions are defined on the tree space and
data distribution in the terminal nodes of tree (similar priors distributions use for
data distribution in the terminal nodes unlike prior distributions considered on
the tree space). Buntine showed the superior performance of Bayesian approach in
comparison to classic tree algorithms such as CART model of Breiman et al. and C4

37

Classic and Bayesian Tree-Based Methods
DOI: http://dx.doi.org/10.5772/intechopen.83380

model of Quinlan et al. [99] on several datasets [87]. This Bayesian approach may be
obtained from: http://ksvanhorn.com/bayes/free-bayes-software.html.

6.2 CGM’s Bayesian CART approach

CGM (Chipman, George, McCulloch) proposed a Bayesian approach for CART
model by defining prior distributions on the two components of CART model
(Θ, T) in 1998, and these components are a binary tree T with 𝒦𝒦 terminal nodes and
parameter set Θ = (θ 1 , θ 2 , … , θ 𝒦𝒦) [89, 91–93]. Indeed, they define prior distributions
on tree structure and parameters in terminal nodes. In this approach, following
equation is established for joint posterior distribution of components according to
Bayes’ theorem:

 P (Θ , T) = p (Θ | T) p (T) (1)

where p (T) and p (Θ ∣ T) show the prior distribution for the tree and parameters
in terminal nodes given the tree, respectively. In this approach, a similar tree-
generating stochastic process is used for p(T) of both classification and regression
tree models [89], and this recursive stochastic process for tree growth includes the
following steps:

• Start from T that includes only a root node (terminal node η).

• Slit terminal node η with probability P SPLIT = α (1 + d η) −β (d η shows the depth
of the node η . α parameter is the base probability of tree growth by splitting
a current node, and β parameter determines the rate at which the propensity
to split decreases as the tree gets larger). α and β parameters control the shape
and size of the tree and these parameters provide a penalty to avoid overfitting
tree.

• If terminal node η splits, then a splitting rule ρ is assigned to this node accord-
ing to the distribution P RULE (discrete uniform distribution is used for selecting
predictor variable to split the terminal node η and splitting threshold for this
selected variable)

• Let T as newly created tree from step 3 and run steps 2 and 3 on this tree with η
equal to the newly created child nodes.

In this approach, the posterior distribution function p(T|X, y) is computed
with combining the marginal likelihood function p(Y|X, T) and tree prior p(T) as
follows:

 p (T | X, y) ∝ p (y | X, T) p (T) (2)

 p (y | X, T) = ∫ p (y | X, Θ, Τ) p (Θ| T) dΘ (3)

p (y | X, Θ, Τ) in Eq. (3) shows the data likelihood function.
A stochastic search algorithm is used for finding good models and simulating

from relation (2) by using a MCMC algorithm such as Metropolis-Hastings algo-
rithm. This Metropolis-Hastings algorithm simulates a Markov chain sequence of
trees namely T 0 , T 1 , T 2 , …, and this algorithm starts with an initial tree T 0 , then
iteratively simulates the transitions from T i to T i+1 by two steps as shown below:

Enhanced Expert Systems

36

bias in split rule selection. CART generates a tree by using a greedy search algorithm,
and this search algorithm has disadvantages such as: limit the exploration of tree
space, dependence future splits to previous splits, generate optimistic error rates, and
the inability of the search to find a global optimum [78]. CART has instability prob-
lem, because by resampling or drawing bootstrap samples from dataset may generate
tree with different splits [79]. The splitting method in CART model is biased toward
predictor variables with many distinct values and more missing values [80, 81].

Several tree models are suggested to solve these problems and these remedial
models are ensemble of trees such as Random Forests [82], Bagging [83], Boosting
[84], Multiboost [85], and LogitBoost [86] (for solving instability problem), tree
algorithms such as CRUISE [33, 35], QUEST [32], GUIDE [34], CTREE [49], and
LOTUS [71] (for solving bias in split rule selection problem), and Bayesian tree
approaches and evtree algorithm [78] are suggested to solve greediness problem
of CART. Also, Bayesian tree approaches can quantify uncertainty, and these
approaches explore the tree space more than classic approaches.

Several Bayesian approaches are proposed for tree-based methods [87–98].
In these Bayesian tree approaches like classic tree approaches, a model is called
Bayesian classification trees if the outcome variable is a qualitative variable. Also,
a model is called Bayesian regression trees if the outcome variable is a quantitative
variable. The method of data prediction in these Bayesian approaches is like classic
approaches. The method of data prediction for Bayesian classification trees is based
on fitting a constant model like the proportion of the outcome variable in the termi-
nal nodes. Data prediction in Bayesian regression tree is based on fitting a constant
model like the mean of the outcome variable in the terminal nodes.

Classic tree approaches use only observations for data analysis, but Bayesian
approaches combine prior information with observations. Bayesian tree approaches
define prior distributions on the components of classic tree approaches and then
utilize stochastic search algorithms through Markov chain Monte Carlo (MCMC)
algorithms or deterministic search algorithms for exploring tree space [87–98].

Bayesian tree approaches have materials such as prior distribution function,
posterior distribution function, data likelihood function, marginal likelihood func-
tion, stochastic search algorithm or deterministic search algorithm for exploring
tree space, stopping rule of simulation algorithm (if stochastic search algorithms
are used to simulate from posterior distribution and explore tree space) and criteria
for identify good trees (if model produces several trees). In this section, we review
Bayesian tree approaches and also mention the results of published papers based on
using these Bayesian algorithms for data analysis.

6.1 BUNTINE’s Bayesian classification tree approach

The first Bayesian tree approach for classification tree model was proposed by
Buntine in 1992. This proposed approach offers a full Bayesian analysis for clas-
sification tree model by using a deterministic search algorithm instead of using a
stochastic search algorithm [87]. This model like other classic tree models uses a
splitting function for tree growth using Bayesian statistics with similar performance
to splitting methods such as Information Gain and Gini. Buntine also like traditional
tree models, in order to prevent overfitting model, used Bayesian smoothing and
averaging techniques instead of pruning the tree.

In this Bayesian approach, prior distributions are defined on the tree space and
data distribution in the terminal nodes of tree (similar priors distributions use for
data distribution in the terminal nodes unlike prior distributions considered on
the tree space). Buntine showed the superior performance of Bayesian approach in
comparison to classic tree algorithms such as CART model of Breiman et al. and C4

37

Classic and Bayesian Tree-Based Methods
DOI: http://dx.doi.org/10.5772/intechopen.83380

model of Quinlan et al. [99] on several datasets [87]. This Bayesian approach may be
obtained from: http://ksvanhorn.com/bayes/free-bayes-software.html.

6.2 CGM’s Bayesian CART approach

CGM (Chipman, George, McCulloch) proposed a Bayesian approach for CART
model by defining prior distributions on the two components of CART model
(Θ, T) in 1998, and these components are a binary tree T with 𝒦𝒦 terminal nodes and
parameter set Θ = (θ 1 , θ 2 , … , θ 𝒦𝒦) [89, 91–93]. Indeed, they define prior distributions
on tree structure and parameters in terminal nodes. In this approach, following
equation is established for joint posterior distribution of components according to
Bayes’ theorem:

 P (Θ , T) = p (Θ | T) p (T) (1)

where p (T) and p (Θ ∣ T) show the prior distribution for the tree and parameters
in terminal nodes given the tree, respectively. In this approach, a similar tree-
generating stochastic process is used for p(T) of both classification and regression
tree models [89], and this recursive stochastic process for tree growth includes the
following steps:

• Start from T that includes only a root node (terminal node η).

• Slit terminal node η with probability P SPLIT = α (1 + d η) −β (d η shows the depth
of the node η . α parameter is the base probability of tree growth by splitting
a current node, and β parameter determines the rate at which the propensity
to split decreases as the tree gets larger). α and β parameters control the shape
and size of the tree and these parameters provide a penalty to avoid overfitting
tree.

• If terminal node η splits, then a splitting rule ρ is assigned to this node accord-
ing to the distribution P RULE (discrete uniform distribution is used for selecting
predictor variable to split the terminal node η and splitting threshold for this
selected variable)

• Let T as newly created tree from step 3 and run steps 2 and 3 on this tree with η
equal to the newly created child nodes.

In this approach, the posterior distribution function p(T|X, y) is computed
with combining the marginal likelihood function p(Y|X, T) and tree prior p(T) as
follows:

 p (T | X, y) ∝ p (y | X, T) p (T) (2)

 p (y | X, T) = ∫ p (y | X, Θ, Τ) p (Θ| T) dΘ (3)

p (y | X, Θ, Τ) in Eq. (3) shows the data likelihood function.
A stochastic search algorithm is used for finding good models and simulating

from relation (2) by using a MCMC algorithm such as Metropolis-Hastings algo-
rithm. This Metropolis-Hastings algorithm simulates a Markov chain sequence of
trees namely T 0 , T 1 , T 2 , …, and this algorithm starts with an initial tree T 0 , then
iteratively simulates the transitions from T i to T i+1 by two steps as shown below:

Enhanced Expert Systems

38

1. Generate a candidate value T ∗ with probability distribution q(T i , T ∗).

2. Set T i+1 = T ∗ with probability below:

 α (T i , T ∗) = min { q (T ∗ , T i) ________
q (T i , T ∗)

 p (Y | X, T ∗) p (T ∗) ______________
p (Y | X, T i) p (T i)

 , 1} (4)

Else, set T i+1 = T i .
In this simulation algorithm, q(T, T ∗) generates T ∗ from T by randomly select-

ing among four steps. These steps are GROW step, PRUNE step, CHANGE step,
and SWAP step. This simulation algorithm is run with multiple restarts instead of
a single long chain for reasons such as convergence of the posterior distribution
or simulation chain, to avoid wasting long time waiting in areas of trees with high
posterior distribution function, and generate a wide variety of different trees. Also,
the stopping criterion of simulation algorithm is based on that the chain became
trapped in a local posterior model.

This Bayesian approach unlike classic CART model does not generate a single
tree, thus good trees for classification tree are selected based on criteria such as
having lowest misclassification and largest marginal likelihood function. Also,
good trees for regression tree are determined based on having the largest mar-
ginal likelihood function and lowest residual sums of squares. CGM by
using simulation showed that stochastic search algorithm can find better trees
than a greedy tree algorithm. They indicated that the Bayesian classification
approach has lower misclassification rate than CART model and they also used
Bayesian model averaging for improving prediction accuracy of Bayesian clas-
sification trees [89].

6.3 DMS’S Bayesian CART approach

DMS (Denison, Mallick, Smith) in 1998 proposed a Bayesian approach for the
CART model, and this approach is quite similar to Bayesian approach of CGM with
just minor differences [88]. In this approach, prior distributions are defined over
the splitting node (S), splitting variable (V), splitting rule (R), tree size (𝒦𝒦), and
parameters of data distribution in terminal nodes (ѱ).

In this Bayesian approach, joint distribution of model parameters is defined as
follows (p (𝒦𝒦): prior distribution for size of tree, p (θ k | 𝒦𝒦) : prior distribution for
parameter set θ k = { R k , S k , V k , ѱ k } given 𝒦𝒦 (tree size), p (y | 𝒦𝒦, θ k) : data likelihood
function):

 p (𝒦𝒦, θ k , y) = p(𝒦𝒦) p (θ k | 𝒦𝒦) p (y | 𝒦𝒦, θ k) (5)

This Bayesian approach puts a prior distribution over the tree size to avoid over-
fitting data and uses a truncated Poisson distribution with parameter 𝜆𝜆 (𝜆𝜆 shows the
expected number of nodes in the tree and a weakly informative is used prior for tree
size by setting 𝜆𝜆 equal to 10) for p (𝒦𝒦) as follows:

 p (𝒦𝒦) ∝ λ 𝒦𝒦 _______
 (e λ − 1) 𝒦𝒦 !

 (6)

Also, p (θ k | 𝒦𝒦) in Eq. (5) is defined as follows:

 p (θ k | 𝒦𝒦) = p (R k | V k , S k , 𝒦𝒦) p (V k | S k , 𝒦𝒦) p (S k | 𝒦𝒦) p (ѱ  k | V, S, 𝒦𝒦) (7)

39

Classic and Bayesian Tree-Based Methods
DOI: http://dx.doi.org/10.5772/intechopen.83380

So, prior for this Bayesian approach is defined as follows:

 p (θ k | 𝒦𝒦) p (𝒦𝒦) = p (R k | V k , S k , 𝒦𝒦) p (V k | S k , 𝒦𝒦)
p (S k | 𝒦𝒦) p (ѱ k | V, S, 𝒦𝒦) p (𝒦𝒦) (8)

In this approach, Bayesian analysis of tree size 𝒦𝒦 and parameter set θ k is as
follows:

 p (θ k , 𝒦𝒦 | y) = p (𝒦𝒦 | y) p (θ k | 𝒦𝒦, y) (9)

Also, simulation from the above equation is done by using MCMC algorithms to
find good trees and Reversible Jump MCMC algorithm is used to simulate from this
equation [100]. This simulation algorithm is performed for a single long chain with
a burn-in period to explore the tree space. In this simulation algorithm, trees cannot
have sample size less than 5 in the terminal nodes and also cannot have size higher
than 6 in during burn-in period of simulation chain of posterior distribution.
Reversible Jump MCMC algorithm used by DMS to simulate from Eq. (9) includes
four steps: BIRTH (GROW), DEATH (PRUNE), VARIABLE, and SPLITTING
RULE. In this simulation algorithm, BIRTH step, DEATH step, VARIABLE step,
and Splitting RULE step are randomly chosen with probability b 𝒦𝒦 , d 𝒦𝒦 , V 𝒦𝒦 , and R 𝒦𝒦 ,
respectively, and algorithm is as follows:

1. Stating with an initial tree.

2. Set 𝒦𝒦 to the tree size in the present tree.

3. Generate u ~U [0, 1]

4. Go to step type determined by u (a step type is determined based on following
conditions):
if (u ≤ B 𝒦𝒦), then go to BIRTH step
else if (b 𝒦𝒦 ≤ 𝑢𝑢 ≤ b 𝒦𝒦 + d 𝒦𝒦), then go to DEATH step
else if (b 𝒦𝒦 + d 𝒦𝒦 ≤ 𝑢𝑢 ≤ b 𝒦𝒦 + d 𝒦𝒦 + V 𝒦𝒦), then go to VARIABLE step
else, go to RULE step

Then, acceptance probability (α) of each step that changes tree (𝒦𝒦, θ) to tree
(𝒦𝒦 ∗ , θ ∗) as follows (𝒦𝒦 die shows the number of possible locations for a death in the
current tree):

 BIRTH step : α = min {1, (likelihood ratio) × (𝒦𝒦 die + 1) _______ 𝒦𝒦 } (10)

 DEATH step : α = min {1, (likelihood ratio) × 𝒦𝒦 _______ (𝒦𝒦 die + 1) } (11)

 VARIABLE and RULE steps : α = min {1, (likelihood ratio) } (12)

if (u ≤ α), then proposed tree to accept, else reject.
The stopping criterion of the above simulation algorithm is based on the stability

of the posterior distribution and it can be assessed by drawing a plot of iterations of
chain against sampled parameter values. This Bayesian approach, unlike CART, does
not produce a tree using stochastic search algorithm. Thus, good classification trees
are selected based on criteria such as misclassification rate, deviance (−2log p (y | 𝒦𝒦, θ k)),
and posterior probability, and good classification trees have lowest misclassification

Enhanced Expert Systems

38

1. Generate a candidate value T ∗ with probability distribution q(T i , T ∗).

2. Set T i+1 = T ∗ with probability below:

 α (T i , T ∗) = min { q (T ∗ , T i) ________
q (T i , T ∗)

 p (Y | X, T ∗) p (T ∗) ______________
p (Y | X, T i) p (T i)

 , 1} (4)

Else, set T i+1 = T i .
In this simulation algorithm, q(T, T ∗) generates T ∗ from T by randomly select-

ing among four steps. These steps are GROW step, PRUNE step, CHANGE step,
and SWAP step. This simulation algorithm is run with multiple restarts instead of
a single long chain for reasons such as convergence of the posterior distribution
or simulation chain, to avoid wasting long time waiting in areas of trees with high
posterior distribution function, and generate a wide variety of different trees. Also,
the stopping criterion of simulation algorithm is based on that the chain became
trapped in a local posterior model.

This Bayesian approach unlike classic CART model does not generate a single
tree, thus good trees for classification tree are selected based on criteria such as
having lowest misclassification and largest marginal likelihood function. Also,
good trees for regression tree are determined based on having the largest mar-
ginal likelihood function and lowest residual sums of squares. CGM by
using simulation showed that stochastic search algorithm can find better trees
than a greedy tree algorithm. They indicated that the Bayesian classification
approach has lower misclassification rate than CART model and they also used
Bayesian model averaging for improving prediction accuracy of Bayesian clas-
sification trees [89].

6.3 DMS’S Bayesian CART approach

DMS (Denison, Mallick, Smith) in 1998 proposed a Bayesian approach for the
CART model, and this approach is quite similar to Bayesian approach of CGM with
just minor differences [88]. In this approach, prior distributions are defined over
the splitting node (S), splitting variable (V), splitting rule (R), tree size (𝒦𝒦), and
parameters of data distribution in terminal nodes (ѱ).

In this Bayesian approach, joint distribution of model parameters is defined as
follows (p (𝒦𝒦): prior distribution for size of tree, p (θ k | 𝒦𝒦) : prior distribution for
parameter set θ k = { R k , S k , V k , ѱ k } given 𝒦𝒦 (tree size), p (y | 𝒦𝒦, θ k) : data likelihood
function):

 p (𝒦𝒦, θ k , y) = p(𝒦𝒦) p (θ k | 𝒦𝒦) p (y | 𝒦𝒦, θ k) (5)

This Bayesian approach puts a prior distribution over the tree size to avoid over-
fitting data and uses a truncated Poisson distribution with parameter 𝜆𝜆 (𝜆𝜆 shows the
expected number of nodes in the tree and a weakly informative is used prior for tree
size by setting 𝜆𝜆 equal to 10) for p (𝒦𝒦) as follows:

 p (𝒦𝒦) ∝ λ 𝒦𝒦 _______
 (e λ − 1) 𝒦𝒦 !

 (6)

Also, p (θ k | 𝒦𝒦) in Eq. (5) is defined as follows:

 p (θ k | 𝒦𝒦) = p (R k | V k , S k , 𝒦𝒦) p (V k | S k , 𝒦𝒦) p (S k | 𝒦𝒦) p (ѱ  k | V, S, 𝒦𝒦) (7)

39

Classic and Bayesian Tree-Based Methods
DOI: http://dx.doi.org/10.5772/intechopen.83380

So, prior for this Bayesian approach is defined as follows:

 p (θ k | 𝒦𝒦) p (𝒦𝒦) = p (R k | V k , S k , 𝒦𝒦) p (V k | S k , 𝒦𝒦)
p (S k | 𝒦𝒦) p (ѱ k | V, S, 𝒦𝒦) p (𝒦𝒦) (8)

In this approach, Bayesian analysis of tree size 𝒦𝒦 and parameter set θ k is as
follows:

 p (θ k , 𝒦𝒦 | y) = p (𝒦𝒦 | y) p (θ k | 𝒦𝒦, y) (9)

Also, simulation from the above equation is done by using MCMC algorithms to
find good trees and Reversible Jump MCMC algorithm is used to simulate from this
equation [100]. This simulation algorithm is performed for a single long chain with
a burn-in period to explore the tree space. In this simulation algorithm, trees cannot
have sample size less than 5 in the terminal nodes and also cannot have size higher
than 6 in during burn-in period of simulation chain of posterior distribution.
Reversible Jump MCMC algorithm used by DMS to simulate from Eq. (9) includes
four steps: BIRTH (GROW), DEATH (PRUNE), VARIABLE, and SPLITTING
RULE. In this simulation algorithm, BIRTH step, DEATH step, VARIABLE step,
and Splitting RULE step are randomly chosen with probability b 𝒦𝒦 , d 𝒦𝒦 , V 𝒦𝒦 , and R 𝒦𝒦 ,
respectively, and algorithm is as follows:

1. Stating with an initial tree.

2. Set 𝒦𝒦 to the tree size in the present tree.

3. Generate u ~U [0, 1]

4. Go to step type determined by u (a step type is determined based on following
conditions):
if (u ≤ B 𝒦𝒦), then go to BIRTH step
else if (b 𝒦𝒦 ≤ 𝑢𝑢 ≤ b 𝒦𝒦 + d 𝒦𝒦), then go to DEATH step
else if (b 𝒦𝒦 + d 𝒦𝒦 ≤ 𝑢𝑢 ≤ b 𝒦𝒦 + d 𝒦𝒦 + V 𝒦𝒦), then go to VARIABLE step
else, go to RULE step

Then, acceptance probability (α) of each step that changes tree (𝒦𝒦, θ) to tree
(𝒦𝒦 ∗ , θ ∗) as follows (𝒦𝒦 die shows the number of possible locations for a death in the
current tree):

 BIRTH step : α = min {1, (likelihood ratio) × (𝒦𝒦 die + 1) _______ 𝒦𝒦 } (10)

 DEATH step : α = min {1, (likelihood ratio) × 𝒦𝒦 _______ (𝒦𝒦 die + 1) } (11)

 VARIABLE and RULE steps : α = min {1, (likelihood ratio) } (12)

if (u ≤ α), then proposed tree to accept, else reject.
The stopping criterion of the above simulation algorithm is based on the stability

of the posterior distribution and it can be assessed by drawing a plot of iterations of
chain against sampled parameter values. This Bayesian approach, unlike CART, does
not produce a tree using stochastic search algorithm. Thus, good classification trees
are selected based on criteria such as misclassification rate, deviance (−2log p (y | 𝒦𝒦, θ k)),
and posterior probability, and good classification trees have lowest misclassification

Enhanced Expert Systems

40

rate, deviance, and largest posterior probability. Also, good regression trees have
largest posterior probability and lowest residual sum of squares. DMS indicated that
Bayesian approach provides richer output and superior performance than classic
CART model [88].

6.4 CGM’s hierarchical priors for Bayesian regression tree shrinkage approach

CGM, 2000 proposed a Bayesian approach for regression tree with mean-shift
model based on computational strategy of CGM’s Bayesian approach in 1998. Unlike
the Bayesian approach (1998), it can assume dependence of parameters in the ter-
minal nodes. Indeed, hierarchical priors are used for these parameters and therefore
shrunk trees are generated [90]. Hierarchical priors have some advantages such as:
shrinkage is used in the stochastic search algorithm unlike proposed methods for
tree shrinkage (because these methods use shrinkage after searching tree), fitting
a larger tree to the dataset without overfitting and improve predictions. CGM by
using simulation showed the superior performance of new Bayesian approach
for regression tree with mean-shift model in comparison to Bayesian approach of
CGM in 1998, CART model, and tree shrinkage methods of Hastie and Pregibon
[90, 101].

6.5 WTW’S Bayesian CART approach

WTW (Wu, Tjelmeland, West), 2007 proposed a Bayesian approach for CART
model based on the computational strategy of Bayesian approach of CGM (1998)
[95]. In this approach, prior distributions define on the tree, splitting variables,
splitting thresholds, and parameters in the terminal nodes. This Bayesian approach
like approaches of CGM [89, 90, 92, 93] simulates from the posterior distribution
by using the Metropolis-Hastings algorithm. The steps used in simulation algorithm
of WTW include GROW step and PRUNE step, CHANGE step, SWAP step, and
RESTRUCTURE (RADICAL) step (first three steps are similar to steps of simula-
tion algorithm in Bayesian approaches of CGM). RESTRUCTURE step creates large
changes in the structure of tree, but tree size is unchanged. There are some advan-
tages by adding this step to simulation algorithm of posterior distribution such as:
improving the convergence of the MCMC algorithm, elimination of the need for
restarts of the simulation algorithm unlike Bayesian approaches of CGM, and large
changes in the structure of tree without change in tree size.

In this approach, convergence diagnostics of simulation algorithm are based
on plots such as: plots of iteration number against log posterior distribution, log
marginal likelihood function, number of terminal nodes, and number of times that
a particular predictor variable is shown as a splitting variable in the tree. WTW
showed the superior performance of Bayesian approach in comparison to CART
model and that the Bayesian approach had a lower misclassification rate than the
CART model [95].

6.6 OML’S Bayesian CART approach

OML (O’Leary, Mengersen, Low Choy), 2008, proposed a Bayesian approach
for CART model by extending the Bayesian approach of DMS. These two Bayesian
approaches have differences such as the stopping rule of the simulation algorithm or
convergence diagnostic plots, criteria for identifying good trees and prior distribu-
tions considered for parameters in the terminal nodes [88, 96, 98].

The stopping criterion of simulation chain in OML’S Bayesian classification
trees approach has two steps. The first step includes the plot of iterations against

41

Classic and Bayesian Tree-Based Methods
DOI: http://dx.doi.org/10.5772/intechopen.83380

accuracy measures (false and positive negative rate and misclassification rate),
log posterior, log likelihood, and tree size. If these plots show stability in men-
tioned items, then in second step, structure of component trees (variables and
splitting rules at each splitting node) examines in the set of good trees and if this
structure was stabilized and/or the same trees were in this set, then convergence
has occurred for this simulation chain; otherwise, iterations must be increased
until convergence.

The set of good trees in this Bayesian classification tree approach is determined
based on the accuracy measures computed from the confusion matrix of Fielding
and Bell [102]. Good trees have lowest misclassification rate and false positive and
negative rate (or using highest sensitivity and specificity instead of lowest false
positive and negative rate) [96, 98, 103]. After convergence of simulation chain,
two or three trees are selected as the best trees among set of good trees based on
criteria such as modal structure of tree (same size tree with the same variables and
splitting rules), lowest misclassification rate, false negative and positive rate
and deviance, highest posterior probability and likelihood, using expert judgment
and biological interpretability [96, 98, 103].

The stopping rule of simulation algorithm for regression tree like classification
tree includes two steps. In the first step, plot of iterations are drawn against posterior
probability, residual sum of squares, and deviance. If these abovementioned items are
stable, then structure of component trees examines in the set of good trees and if this
structure was stabilized, convergence has been occurred for this simulation chain.
Also, set of good trees for regression tree is selected based on having the highest pos-
terior probability and likelihood, lowest residual sum of squares, and deviance [98].

OML compared the Bayesian classification trees with the classic CART model on
an ecological dataset and concluded that Bayesian approach has smaller false posi-
tive rate, misclassification rate, and deviance than CART model, while the CART
model has lower false negative rate, but this model had higher false positive rate
[96]. They, in 2008, indicated that this Bayesian approach had a lower false negative
rate in comparison to Bayesian approach of DMS, but approach of DMS had a lower
false positive rate and misclassification rate [96].

OML in 2009 compared predictive performance of random forests with the
Bayesian classification trees on the three datasets and they concluded that the best
tree selected with Bayesian classification trees has higher sensitivity and bet-
ter accuracy in comparison to random forests. They expressed that the Bayesian
approach may have better performance than random forests in determining
important predictor variables in datasets with a large number of noise predictor
variables. OML also indicated that the Bayesian classification tree approach unlike
random forests is not biased toward assignment of observations to the largest class
of outcome variable in predicting data [103].

OML and Hu in 2011 compared the performance of Bayesian classification trees
with the CART of Breiman et al., and they concluded that the Bayesian approach
has higher sensitivity and specificity in comparison to CART. They also investigated
overfitting of the Bayesian approach by using cross-validation method, and this
approach did not show any evidence of overfitting [98].

6.7 OMML’S expert elicitation for Bayesian classification tree approach

OMML (O’Leary, Mengersen, Murray, Low Choy), 2008, proposed a Bayesian
classification tree approach based on the computational strategy of Bayesian clas-
sification tree approach of OML and by using informative priors [96, 97]. In this
Bayesian approach, informative priors are used to define Dirichlet distributions for
splitting node, splitting variable, and splitting rule as follows:

Enhanced Expert Systems

40

rate, deviance, and largest posterior probability. Also, good regression trees have
largest posterior probability and lowest residual sum of squares. DMS indicated that
Bayesian approach provides richer output and superior performance than classic
CART model [88].

6.4 CGM’s hierarchical priors for Bayesian regression tree shrinkage approach

CGM, 2000 proposed a Bayesian approach for regression tree with mean-shift
model based on computational strategy of CGM’s Bayesian approach in 1998. Unlike
the Bayesian approach (1998), it can assume dependence of parameters in the ter-
minal nodes. Indeed, hierarchical priors are used for these parameters and therefore
shrunk trees are generated [90]. Hierarchical priors have some advantages such as:
shrinkage is used in the stochastic search algorithm unlike proposed methods for
tree shrinkage (because these methods use shrinkage after searching tree), fitting
a larger tree to the dataset without overfitting and improve predictions. CGM by
using simulation showed the superior performance of new Bayesian approach
for regression tree with mean-shift model in comparison to Bayesian approach of
CGM in 1998, CART model, and tree shrinkage methods of Hastie and Pregibon
[90, 101].

6.5 WTW’S Bayesian CART approach

WTW (Wu, Tjelmeland, West), 2007 proposed a Bayesian approach for CART
model based on the computational strategy of Bayesian approach of CGM (1998)
[95]. In this approach, prior distributions define on the tree, splitting variables,
splitting thresholds, and parameters in the terminal nodes. This Bayesian approach
like approaches of CGM [89, 90, 92, 93] simulates from the posterior distribution
by using the Metropolis-Hastings algorithm. The steps used in simulation algorithm
of WTW include GROW step and PRUNE step, CHANGE step, SWAP step, and
RESTRUCTURE (RADICAL) step (first three steps are similar to steps of simula-
tion algorithm in Bayesian approaches of CGM). RESTRUCTURE step creates large
changes in the structure of tree, but tree size is unchanged. There are some advan-
tages by adding this step to simulation algorithm of posterior distribution such as:
improving the convergence of the MCMC algorithm, elimination of the need for
restarts of the simulation algorithm unlike Bayesian approaches of CGM, and large
changes in the structure of tree without change in tree size.

In this approach, convergence diagnostics of simulation algorithm are based
on plots such as: plots of iteration number against log posterior distribution, log
marginal likelihood function, number of terminal nodes, and number of times that
a particular predictor variable is shown as a splitting variable in the tree. WTW
showed the superior performance of Bayesian approach in comparison to CART
model and that the Bayesian approach had a lower misclassification rate than the
CART model [95].

6.6 OML’S Bayesian CART approach

OML (O’Leary, Mengersen, Low Choy), 2008, proposed a Bayesian approach
for CART model by extending the Bayesian approach of DMS. These two Bayesian
approaches have differences such as the stopping rule of the simulation algorithm or
convergence diagnostic plots, criteria for identifying good trees and prior distribu-
tions considered for parameters in the terminal nodes [88, 96, 98].

The stopping criterion of simulation chain in OML’S Bayesian classification
trees approach has two steps. The first step includes the plot of iterations against

41

Classic and Bayesian Tree-Based Methods
DOI: http://dx.doi.org/10.5772/intechopen.83380

accuracy measures (false and positive negative rate and misclassification rate),
log posterior, log likelihood, and tree size. If these plots show stability in men-
tioned items, then in second step, structure of component trees (variables and
splitting rules at each splitting node) examines in the set of good trees and if this
structure was stabilized and/or the same trees were in this set, then convergence
has occurred for this simulation chain; otherwise, iterations must be increased
until convergence.

The set of good trees in this Bayesian classification tree approach is determined
based on the accuracy measures computed from the confusion matrix of Fielding
and Bell [102]. Good trees have lowest misclassification rate and false positive and
negative rate (or using highest sensitivity and specificity instead of lowest false
positive and negative rate) [96, 98, 103]. After convergence of simulation chain,
two or three trees are selected as the best trees among set of good trees based on
criteria such as modal structure of tree (same size tree with the same variables and
splitting rules), lowest misclassification rate, false negative and positive rate
and deviance, highest posterior probability and likelihood, using expert judgment
and biological interpretability [96, 98, 103].

The stopping rule of simulation algorithm for regression tree like classification
tree includes two steps. In the first step, plot of iterations are drawn against posterior
probability, residual sum of squares, and deviance. If these abovementioned items are
stable, then structure of component trees examines in the set of good trees and if this
structure was stabilized, convergence has been occurred for this simulation chain.
Also, set of good trees for regression tree is selected based on having the highest pos-
terior probability and likelihood, lowest residual sum of squares, and deviance [98].

OML compared the Bayesian classification trees with the classic CART model on
an ecological dataset and concluded that Bayesian approach has smaller false posi-
tive rate, misclassification rate, and deviance than CART model, while the CART
model has lower false negative rate, but this model had higher false positive rate
[96]. They, in 2008, indicated that this Bayesian approach had a lower false negative
rate in comparison to Bayesian approach of DMS, but approach of DMS had a lower
false positive rate and misclassification rate [96].

OML in 2009 compared predictive performance of random forests with the
Bayesian classification trees on the three datasets and they concluded that the best
tree selected with Bayesian classification trees has higher sensitivity and bet-
ter accuracy in comparison to random forests. They expressed that the Bayesian
approach may have better performance than random forests in determining
important predictor variables in datasets with a large number of noise predictor
variables. OML also indicated that the Bayesian classification tree approach unlike
random forests is not biased toward assignment of observations to the largest class
of outcome variable in predicting data [103].

OML and Hu in 2011 compared the performance of Bayesian classification trees
with the CART of Breiman et al., and they concluded that the Bayesian approach
has higher sensitivity and specificity in comparison to CART. They also investigated
overfitting of the Bayesian approach by using cross-validation method, and this
approach did not show any evidence of overfitting [98].

6.7 OMML’S expert elicitation for Bayesian classification tree approach

OMML (O’Leary, Mengersen, Murray, Low Choy), 2008, proposed a Bayesian
classification tree approach based on the computational strategy of Bayesian clas-
sification tree approach of OML and by using informative priors [96, 97]. In this
Bayesian approach, informative priors are used to define Dirichlet distributions for
splitting node, splitting variable, and splitting rule as follows:

Enhanced Expert Systems

42

 p (S k | 𝒦𝒦) = Dir (S k | α S 1 , … , α S k) (13)

 p (V k | S k , 𝒦𝒦) = Dir (V k | α V 1 , … , α V k) (14)

 p (R k | V k , S k , 𝒦𝒦) = Dir (R k | α R 1 , … , α R k) (15)

In Bayesian approach of OML, there was no prior information about split-
ting node, splitting variable, splitting rule, and hyperparameters in the Dirichlet
distributions of above equations. So, these hyperparameters were set equal to 1
and uniform non-informative priors used for splitting node, splitting variable,
and splitting rule [96, 98, 103]. In this new approach, an expert is subjected with
three questions (ordering, grading, and weighting) about splitting node, splitting
variable, splitting rule, and tree size for defining informative priors. Then, existing
hyperparameters in the relations (13), (14) and (15) are determined by following
the result of a question. Three questions are used for size of the tree to determine λ
in relation (6). DMS and OML used a weakly informative prior for tree size by set-
ting λ = 10 [88, 96, 98, 103]. But OMML unlike DMS and OML used an informative
prior for size of the tree [96, 97].

O’Leary et al. in 2008 investigated sensitivity to the choice of the hyperparam-
eters of informative priors for tree size, splitting nodes, splitting variables, and
splitting rules in classification trees and they concluded that posterior distribution
is relatively robust to these priors except for extreme choices of them [96, 97].

OMML by simulation indicated that the best tree of Bayesian classification
trees based on the informative priors has lower false negative rate in comparison
to the best tree of Bayesian classification trees based on the non-informative priors
[96, 97]. They also indicated the superior performance of Bayesian classification
trees based on the informative priors in comparison to proposed expert elicitation
approaches for Bayesian logistic regression model [97, 104–107].

6.8 Other approaches for Bayesian classification and regression trees

Pratola like Wu et al. proposed new Metropolis-Hastings proposals for Bayesian
regression trees for improving the convergence of the MCMC algorithm [108].
CGM, 2003, proposed Bayesian treed GLMs by extending CGM’s Bayesian approach
(1998) [91]. Gramacy and Lee developed Bayesian treed Gaussian process models
for a continuous outcome by combining standard Gaussian processes with treed
partitioning [109]. Other Bayesian approaches are also proposed for tree-based
models that we mention in the references. Refer to the Refs. [110–112] for
other Bayesian tree approaches of CGM. Also, Chipman et al. review advance
models for Bayesian treed methods and refer to the Ref. [113]. For study about other
tree-based Bayesian approach, refer to Refs. [114–118]. Also, Refs. [119, 120] are
proposed Bayesian approaches for ensemble trees.

7. Criteria for determining the predictive performance of classification
and regression trees

Predictive performance of classification tree models can compare using accuracy
measures such as [17, 121]: sensitivity, specificity, false positive rate, false negative
rate, positive predictive value, negative predictive value, positive likelihood ratio,

43

Classic and Bayesian Tree-Based Methods
DOI: http://dx.doi.org/10.5772/intechopen.83380

negative likelihood ratio, accuracy, Youden’s index , diagnostic odds ratio (DOR),
F-measure, and area under curve (AUC). Sensitivity, specificity, positive and nega-
tive predictive values, Youden’s index, and accuracy have values between 0 and 1,
and when these criteria are near to 1, then classification tree algorithm has better
predictive performance. Also, false positive and false negative rates are between
0 and 1, and when these values are near to 0, then classification tree algorithm
has better predictive performance. Classification tree models with positive likeli-
hood ratio >10, negative likelihood ratio <0.1, and high diagnostic odds ratio have
good predictive performance. AUC shows an overall performance measure and is
between 0 and 1. Higher value shows an overall good performance measure, and a
perfect diagnostic performance has an AUC equal to 1.

Predictive performance of regression tree algorithms can compare using criteria
such as [122, 123]: Pearson correlation coefficient, root mean-squared error (RMSE),
relative error (RE), mean error (ME), mean absolute errors (MAE), and bias.

8. Conclusion

Bayesian tree has some advantages in comparison to classic tree-based
approaches. Classic CART model cannot explore the space of the tree fully and
the result of tree is only locally optimal due to using greedy search algorithm. But
Bayesian tree approaches investigate different tree structures with different split-
ting variables, splitting rules, and tree sizes, so these models can explore the tree
space more than classic tree approaches. Indeed, Bayesian approaches are remedies
for solving this problem of CART model. Also, CART is biased toward predictor
variables with many distinct values, and Bayesian tree models can be a remedial
for solving this problem. Because Bayesian approaches proposed by CGM, DMS,
OML, and WTW utilize uniform distribution for selecting splitting node, splitting
variables, and splitting rules, thus these approaches generate unbiased splits or have
not any bias toward predictor variables with more splits. These approaches unlike
classic tree approaches generate several trees that this advantage makes researchers
to select the best tree based on study aim. Because in some studies, sensitivity is
important for researcher and in other studies, specificity is important.

Some authors compared Bayesian approaches with classic tree approaches such
as CART and random forests of Breiman and others models. Results of most papers
indicated that Bayesian approach tends to present that the Bayesian method is
superior to all other competitors. This can be for a variety of reasons: publication
bias (methods that do not demonstrate superior performance typically do not get
published), choice of examples that demonstrate superiority of their method, or
more careful use of their method than the competing methods. Studies that may
give more reliable comparisons would be ones in which there is no new method, and
the paper is devoted to a comparison of existing approaches. For study about some
of these papers, refer to Refs. [124–127].

According to empirical results, we can conclude that Bayesian approaches have
better performance in comparison to classic CART model. Also, despite some
advantages for Bayesian tree approaches in comparison with classic tree models,
the number of published articles based on using Bayesian tree approaches for data
analysis is low. One of the major reasons for this problem can be related to lack
of user-friendly software and or need to have programming knowledge. On the
other hand, the number of published papers based on employing CART model,
random forests, and other classic tree models is many and one of the reasons for
this frequency can be several software programs such as CART, SPSS, TANAGRA,
STATISTICA, R, and WEKA.

Enhanced Expert Systems

42

 p (S k | 𝒦𝒦) = Dir (S k | α S 1 , … , α S k) (13)

 p (V k | S k , 𝒦𝒦) = Dir (V k | α V 1 , … , α V k) (14)

 p (R k | V k , S k , 𝒦𝒦) = Dir (R k | α R 1 , … , α R k) (15)

In Bayesian approach of OML, there was no prior information about split-
ting node, splitting variable, splitting rule, and hyperparameters in the Dirichlet
distributions of above equations. So, these hyperparameters were set equal to 1
and uniform non-informative priors used for splitting node, splitting variable,
and splitting rule [96, 98, 103]. In this new approach, an expert is subjected with
three questions (ordering, grading, and weighting) about splitting node, splitting
variable, splitting rule, and tree size for defining informative priors. Then, existing
hyperparameters in the relations (13), (14) and (15) are determined by following
the result of a question. Three questions are used for size of the tree to determine λ
in relation (6). DMS and OML used a weakly informative prior for tree size by set-
ting λ = 10 [88, 96, 98, 103]. But OMML unlike DMS and OML used an informative
prior for size of the tree [96, 97].

O’Leary et al. in 2008 investigated sensitivity to the choice of the hyperparam-
eters of informative priors for tree size, splitting nodes, splitting variables, and
splitting rules in classification trees and they concluded that posterior distribution
is relatively robust to these priors except for extreme choices of them [96, 97].

OMML by simulation indicated that the best tree of Bayesian classification
trees based on the informative priors has lower false negative rate in comparison
to the best tree of Bayesian classification trees based on the non-informative priors
[96, 97]. They also indicated the superior performance of Bayesian classification
trees based on the informative priors in comparison to proposed expert elicitation
approaches for Bayesian logistic regression model [97, 104–107].

6.8 Other approaches for Bayesian classification and regression trees

Pratola like Wu et al. proposed new Metropolis-Hastings proposals for Bayesian
regression trees for improving the convergence of the MCMC algorithm [108].
CGM, 2003, proposed Bayesian treed GLMs by extending CGM’s Bayesian approach
(1998) [91]. Gramacy and Lee developed Bayesian treed Gaussian process models
for a continuous outcome by combining standard Gaussian processes with treed
partitioning [109]. Other Bayesian approaches are also proposed for tree-based
models that we mention in the references. Refer to the Refs. [110–112] for
other Bayesian tree approaches of CGM. Also, Chipman et al. review advance
models for Bayesian treed methods and refer to the Ref. [113]. For study about other
tree-based Bayesian approach, refer to Refs. [114–118]. Also, Refs. [119, 120] are
proposed Bayesian approaches for ensemble trees.

7. Criteria for determining the predictive performance of classification
and regression trees

Predictive performance of classification tree models can compare using accuracy
measures such as [17, 121]: sensitivity, specificity, false positive rate, false negative
rate, positive predictive value, negative predictive value, positive likelihood ratio,

43

Classic and Bayesian Tree-Based Methods
DOI: http://dx.doi.org/10.5772/intechopen.83380

negative likelihood ratio, accuracy, Youden’s index , diagnostic odds ratio (DOR),
F-measure, and area under curve (AUC). Sensitivity, specificity, positive and nega-
tive predictive values, Youden’s index, and accuracy have values between 0 and 1,
and when these criteria are near to 1, then classification tree algorithm has better
predictive performance. Also, false positive and false negative rates are between
0 and 1, and when these values are near to 0, then classification tree algorithm
has better predictive performance. Classification tree models with positive likeli-
hood ratio >10, negative likelihood ratio <0.1, and high diagnostic odds ratio have
good predictive performance. AUC shows an overall performance measure and is
between 0 and 1. Higher value shows an overall good performance measure, and a
perfect diagnostic performance has an AUC equal to 1.

Predictive performance of regression tree algorithms can compare using criteria
such as [122, 123]: Pearson correlation coefficient, root mean-squared error (RMSE),
relative error (RE), mean error (ME), mean absolute errors (MAE), and bias.

8. Conclusion

Bayesian tree has some advantages in comparison to classic tree-based
approaches. Classic CART model cannot explore the space of the tree fully and
the result of tree is only locally optimal due to using greedy search algorithm. But
Bayesian tree approaches investigate different tree structures with different split-
ting variables, splitting rules, and tree sizes, so these models can explore the tree
space more than classic tree approaches. Indeed, Bayesian approaches are remedies
for solving this problem of CART model. Also, CART is biased toward predictor
variables with many distinct values, and Bayesian tree models can be a remedial
for solving this problem. Because Bayesian approaches proposed by CGM, DMS,
OML, and WTW utilize uniform distribution for selecting splitting node, splitting
variables, and splitting rules, thus these approaches generate unbiased splits or have
not any bias toward predictor variables with more splits. These approaches unlike
classic tree approaches generate several trees that this advantage makes researchers
to select the best tree based on study aim. Because in some studies, sensitivity is
important for researcher and in other studies, specificity is important.

Some authors compared Bayesian approaches with classic tree approaches such
as CART and random forests of Breiman and others models. Results of most papers
indicated that Bayesian approach tends to present that the Bayesian method is
superior to all other competitors. This can be for a variety of reasons: publication
bias (methods that do not demonstrate superior performance typically do not get
published), choice of examples that demonstrate superiority of their method, or
more careful use of their method than the competing methods. Studies that may
give more reliable comparisons would be ones in which there is no new method, and
the paper is devoted to a comparison of existing approaches. For study about some
of these papers, refer to Refs. [124–127].

According to empirical results, we can conclude that Bayesian approaches have
better performance in comparison to classic CART model. Also, despite some
advantages for Bayesian tree approaches in comparison with classic tree models,
the number of published articles based on using Bayesian tree approaches for data
analysis is low. One of the major reasons for this problem can be related to lack
of user-friendly software and or need to have programming knowledge. On the
other hand, the number of published papers based on employing CART model,
random forests, and other classic tree models is many and one of the reasons for
this frequency can be several software programs such as CART, SPSS, TANAGRA,
STATISTICA, R, and WEKA.

Enhanced Expert Systems

44

© 2019 The Author(s). Licensee IntechOpen. This chapter is distributed under the terms
of the Creative Commons Attribution License (http://creativecommons.org/licenses/
by/3.0), which permits unrestricted use, distribution, and reproduction in any medium,
provided the original work is properly cited.

Author details

Amal Saki Malehi* and Mina Jahangiri
Faculty of Public Health, Department of Biostatistics and Epidemiology, Ahvaz
Jundishapur University of Medical Sciences, Ahvaz, Iran

*Address all correspondence to: amalsaki@gmail.com

Bayesian tree approaches need more research, because these approaches unlike
CART and random forests cannot impute missing values. These approaches also
cannot create linear combination splits like other tree algorithms (CART, QUEST,
and CRUISE), even though interpretation of these splits is hard, but results
indicated that tree methods with these splits have superior prediction accuracy in
comparison to tree with univariate splits [128].

45

Classic and Bayesian Tree-Based Methods
DOI: http://dx.doi.org/10.5772/intechopen.83380

[1] Agresti A. Categorical Data Analysis.
Hoboken, NJ: John Wiley & Sons; 2003

[2] Huberty CJ, Olejnik S. Applied
MANOVA and Discriminant Analysis.
Hoboken, NJ: John Wiley & Sons; 2006

[3] Klein JP, Moeschberger ML. Survival
Analysis: Techniques for Censored and
Truncated Data. New York: Springer
Science & Business Media; 2006

[4] Moguerza JM, Muñoz A. Support
vector machines with applications.
Statistical Science. 2006;21(3):322-336

[5] Garson GD. Neural Networks: An
Introductory Guide for Social Scientists.
London: Sage; 1998

[6] Friedman JH, Roosen CB. An
Introduction to Multivariate Adaptive
Regression Splines. Thousand Oaks, CA:
Sage Publications; 1995

[7] Duda RO, Hart PE, Stork DG. Pattern
classification and scene analysis. New
York: Wiley; 1973

[8] Friedman N, Geiger D, Goldszmidt
M. Bayesian network classifiers.
Machine Learning. 1997;29(2-3):131-163

[9] Hastie TJ. Generalized additive
models. Statistical Models in S.
Routledge; 2017. pp. 249-307

[10] De’ath G, Fabricius KE.
Classification and regression trees:
A powerful yet simple technique for
ecological data analysis. Ecology.
2000;81(11):3178-3192

[11] Lemon SC, Roy J, Clark
MA, Friedmann PD, Rakowski
W. Classification and regression
tree analysis in public health:
Methodological review and
comparison with logistic regression.
Annals of Behavioral Medicine.
2003;26(3):172-181

[12] Speybroeck N, Berkvens D,
Mfoukou-Ntsakala A, Aerts M,
Hens N, Van Huylenbroeck G, et al.
Classification trees versus multinomial
models in the analysis of urban farming
systems in Central Africa. Agricultural
Systems. 2004;80(2):133-149

[13] Marshall RJ. The use of classification
and regression trees in clinical
epidemiology. Journal of Clinical
Epidemiology. 2001;54(6):603-609

[14] Nelson LM, Bloch DA, Longstreth
W, Shi H. Recursive partitioning for the
identification of disease risk subgroups:
A case-control study of subarachnoid
hemorrhage. Journal of Clinical
Epidemiology. 1998;51(3):199-209

[15] Camp NJ, Slattery ML. Classification
tree analysis: A statistical tool to
investigate risk factor interactions with
an example for colon cancer (United
States). Cancer Causes & Control.
2002;13(9):813-823

[16] El-Solh AA, Sikka P, Ramadan
F. Outcome of older patients with
severe pneumonia predicted by
recursive partitioning. Journal of
the American Geriatrics Society.
2001;49(12):1614-1621

[17] Jahangiri M, Khodadi E, Rahim
F, Saki N, Saki Malehi A. Decision-
tree-based methods for differential
diagnosis of β-thalassemia trait from
iron deficiency anemia. Expert Systems.
2017;34(3):e12201

[18] Loh WY, He X, Man M. A
regression tree approach to identifying
subgroups with differential treatment
effects. Statistics in Medicine.
2015;34(11):1818-1833

[19] Li C, Glüer C-C, Eastell R,
Felsenberg D, Reid DM, Roux C, et al.
Tree-structured subgroup analysis
of receiver operating characteristic

References

Enhanced Expert Systems

44

© 2019 The Author(s). Licensee IntechOpen. This chapter is distributed under the terms
of the Creative Commons Attribution License (http://creativecommons.org/licenses/
by/3.0), which permits unrestricted use, distribution, and reproduction in any medium,
provided the original work is properly cited.

Author details

Amal Saki Malehi* and Mina Jahangiri
Faculty of Public Health, Department of Biostatistics and Epidemiology, Ahvaz
Jundishapur University of Medical Sciences, Ahvaz, Iran

*Address all correspondence to: amalsaki@gmail.com

Bayesian tree approaches need more research, because these approaches unlike
CART and random forests cannot impute missing values. These approaches also
cannot create linear combination splits like other tree algorithms (CART, QUEST,
and CRUISE), even though interpretation of these splits is hard, but results
indicated that tree methods with these splits have superior prediction accuracy in
comparison to tree with univariate splits [128].

45

Classic and Bayesian Tree-Based Methods
DOI: http://dx.doi.org/10.5772/intechopen.83380

[1] Agresti A. Categorical Data Analysis.
Hoboken, NJ: John Wiley & Sons; 2003

[2] Huberty CJ, Olejnik S. Applied
MANOVA and Discriminant Analysis.
Hoboken, NJ: John Wiley & Sons; 2006

[3] Klein JP, Moeschberger ML. Survival
Analysis: Techniques for Censored and
Truncated Data. New York: Springer
Science & Business Media; 2006

[4] Moguerza JM, Muñoz A. Support
vector machines with applications.
Statistical Science. 2006;21(3):322-336

[5] Garson GD. Neural Networks: An
Introductory Guide for Social Scientists.
London: Sage; 1998

[6] Friedman JH, Roosen CB. An
Introduction to Multivariate Adaptive
Regression Splines. Thousand Oaks, CA:
Sage Publications; 1995

[7] Duda RO, Hart PE, Stork DG. Pattern
classification and scene analysis. New
York: Wiley; 1973

[8] Friedman N, Geiger D, Goldszmidt
M. Bayesian network classifiers.
Machine Learning. 1997;29(2-3):131-163

[9] Hastie TJ. Generalized additive
models. Statistical Models in S.
Routledge; 2017. pp. 249-307

[10] De’ath G, Fabricius KE.
Classification and regression trees:
A powerful yet simple technique for
ecological data analysis. Ecology.
2000;81(11):3178-3192

[11] Lemon SC, Roy J, Clark
MA, Friedmann PD, Rakowski
W. Classification and regression
tree analysis in public health:
Methodological review and
comparison with logistic regression.
Annals of Behavioral Medicine.
2003;26(3):172-181

[12] Speybroeck N, Berkvens D,
Mfoukou-Ntsakala A, Aerts M,
Hens N, Van Huylenbroeck G, et al.
Classification trees versus multinomial
models in the analysis of urban farming
systems in Central Africa. Agricultural
Systems. 2004;80(2):133-149

[13] Marshall RJ. The use of classification
and regression trees in clinical
epidemiology. Journal of Clinical
Epidemiology. 2001;54(6):603-609

[14] Nelson LM, Bloch DA, Longstreth
W, Shi H. Recursive partitioning for the
identification of disease risk subgroups:
A case-control study of subarachnoid
hemorrhage. Journal of Clinical
Epidemiology. 1998;51(3):199-209

[15] Camp NJ, Slattery ML. Classification
tree analysis: A statistical tool to
investigate risk factor interactions with
an example for colon cancer (United
States). Cancer Causes & Control.
2002;13(9):813-823

[16] El-Solh AA, Sikka P, Ramadan
F. Outcome of older patients with
severe pneumonia predicted by
recursive partitioning. Journal of
the American Geriatrics Society.
2001;49(12):1614-1621

[17] Jahangiri M, Khodadi E, Rahim
F, Saki N, Saki Malehi A. Decision-
tree-based methods for differential
diagnosis of β-thalassemia trait from
iron deficiency anemia. Expert Systems.
2017;34(3):e12201

[18] Loh WY, He X, Man M. A
regression tree approach to identifying
subgroups with differential treatment
effects. Statistics in Medicine.
2015;34(11):1818-1833

[19] Li C, Glüer C-C, Eastell R,
Felsenberg D, Reid DM, Roux C, et al.
Tree-structured subgroup analysis
of receiver operating characteristic

References

Enhanced Expert Systems

46

curves for diagnostic tests. Academic
Radiology. 2012;19(12):1529-1536

[20] Zhang H, Singer BH. Recursive
Partitioning and Applications. New York:
Springer Science & Business Media; 2010

[21] Buntine W, Niblett T. A further
comparison of splitting rules for
decision-tree induction. Machine
Learning. 1992;8(1):75-85

[22] De Mántaras RL. A distance-based
attribute selection measure for decision
tree induction. Machine Learning.
1991;6(1):81-92

[23] Friedman JH. A recursive
partitioning decision rule for
nonparametric classification.
IEEE Transactions on Computers.
1977;4:404-408

[24] Rounds E. A combined
nonparametric approach to feature
selection and binary decision
tree design. Pattern Recognition.
1980;12(5):313-317

[25] Ferri C, Flach P, Hernández-Orallo
J, editors. Learning decision trees using
the area under the ROC curve. ICML;
2002;2:139-146

[26] Mingers J. An empirical comparison
of selection measures for decision-
tree induction. Machine Learning.
1989;3(4):319-342

[27] Shih Y-S. Families of splitting
criteria for classification trees. Statistics
and Computing. 1999;9(4):309-315

[28] Quinlan JR. C4.5: Programs for
Machine Learning. San Mateo, CA:
Morgan Kaufmann; 1993

[29] Breiman L, Friedman J, Stone
CJ, Olshen RA. Classification and
Regression Trees. CRC press; 1984

[30] Kass GV. An exploratory technique
for investigating large quantities of

categorical data. Applied Statistics.
1980;29(2):119-127

[31] Loh W-Y, Vanichsetakul N. Tree-
structured classification via generalized
discriminant analysis. Journal of the
American Statistical Association.
1988;83(403):715-725

[32] Loh W-Y, Shih Y-S. Split selection
methods for classification trees.
Statistica Sinica. 1997:815-840

[33] Kim H, Loh W-Y. Classification trees
with unbiased multiway splits. Journal
of the American Statistical Association.
2001;96(454):589-604

[34] Loh W-Y. Improving the
precision of classification trees.
The Annals of Applied Statistics.
2009;3(4):1710-1737

[35] Kim H, Loh W-Y. Classification
trees with bivariate linear
discriminant node models. Journal of
Computational and Graphical Statistics.
2003;12(3):512-530

[36] Morgan JN, Sonquist JA. Problems
in the analysis of survey data,
and a proposal. Journal of the
American Statistical Association.
1963;58(302):415-434

[37] Quinlan JR, editor. Learning with
continuous classes. In: 5th Australian
Joint Conference on Artificial
Intelligence. World Scientific; 1992

[38] Loh W-Y. Regression tress with
unbiased variable selection and
interaction detection. Statistica Sinica.
2002;12:361-386

[39] Esposito F, Malerba D, Semeraro
G, Kay J. A comparative analysis of
methods for pruning decision trees. IEEE
Transactions on Pattern Analysis and
Machine Intelligence. 1997;19(5):476-491

[40] Mingers J. An empirical comparison
of pruning methods for decision

47

Classic and Bayesian Tree-Based Methods
DOI: http://dx.doi.org/10.5772/intechopen.83380

tree induction. Machine Learning.
1989;4(2):227-243

[41] Quinlan JR, Rivest RL. Inferring
decision trees using the minimum
description lenght principle.
Information and Computation.
1989;80(3):227-248

[42] Mehta M, Agrawal R, Rissanen J,
editors. SLIQ: A fast scalable classifier
for data mining. In: International
Conference on Extending Database
Technology. Springer; 1996

[43] Shafer J, Agrawal R, Mehta M,
editors. SPRINT: A scalable parallel
classi er for data mining. In: Proc
1996 Int Conf Very Large Data Bases.
Citeseer; 1996

[44] Gehrke J, Ramakrishnan R, Ganti
V. RainForest—A framework for fast
decision tree construction of large
datasets. Data Mining and Knowledge
Discovery. 2000;4(2-3):127-162

[45] Murthy SK, Kasif S, Salzberg S. A
system for induction of oblique decision
trees. Journal of Artificial Intelligence
Research. 1994;2:1-32

[46] Holte RC. Very simple classification
rules perform well on most commonly
used datasets. Machine Learning.
1993;11(1):63-90

[47] Müller W, Wysotzki F. Automatic
construction of decision trees for
classification. Annals of Operations
Research. 1994;52(4):231-247

[48] Müller W, Wysotzki F. The
decision-tree algorithm CAL5 based
on a statistical approach to its splitting
algorithm. Machine Learning and
Statistics: The Interface. 1997. pp. 45-65

[49] Hothorn T, Hornik K, Zeileis A.
Unbiased recursive partitioning: A
conditional inference framework.
Journal of Computational and Graphical
Statistics. 2006;15(3):651-674

[50] Messenger R, Mandell L. A modal
search technique for predictive nominal
scale multivariate analysis. Journal of
the American Statistical Association.
1972;67(340):768-772

[51] Biggs D, De Ville B, Suen E. A
method of choosing multiway
partitions for classification and decision
trees. Journal of Applied Statistics.
1991;18(1):49-62

[52] Gray JB, Fan G. Classification tree
analysis using TARGET. Computational
Statistics and Data Analysis.
2008;52(3):1362-1372

[53] Quinlan JR. Induction of
decision trees. Machine Learning.
1986;1(1):81-106

[54] Piccarreta R. Classification trees
for ordinal variables. Computational
Statistics. 2008;23(3):407-427

[55] Archer KJ. rpartOrdinal: An R
package for deriving a classification
tree for predicting an ordinal response.
Journal of Statistical Software. 2010;34:7

[56] Galimberti G, Soffritti G, Maso
MD. Classification trees for ordinal
responses in R: The rpartScore package.
Journal of Statistical Software.
2012;47(i10)

[57] Tutz G, Hechenbichler
K. Aggregating classifiers with
ordinal response structure. Journal of
Statistical Computation and Simulation.
2005;75(5):391-408

[58] Kramer S, Widmer G, Pfahringer
B, De Groeve M. Prediction of
ordinal classes using regression
trees. Fundamenta Informaticae.
2001;47(1-2):1-13

[59] Archer K, Mas V. Ordinal response
prediction using bootstrap aggregation,
with application to a high-throughput
methylation data set. Statistics in
Medicine. 2009;28(29):3597-3610

Enhanced Expert Systems

46

curves for diagnostic tests. Academic
Radiology. 2012;19(12):1529-1536

[20] Zhang H, Singer BH. Recursive
Partitioning and Applications. New York:
Springer Science & Business Media; 2010

[21] Buntine W, Niblett T. A further
comparison of splitting rules for
decision-tree induction. Machine
Learning. 1992;8(1):75-85

[22] De Mántaras RL. A distance-based
attribute selection measure for decision
tree induction. Machine Learning.
1991;6(1):81-92

[23] Friedman JH. A recursive
partitioning decision rule for
nonparametric classification.
IEEE Transactions on Computers.
1977;4:404-408

[24] Rounds E. A combined
nonparametric approach to feature
selection and binary decision
tree design. Pattern Recognition.
1980;12(5):313-317

[25] Ferri C, Flach P, Hernández-Orallo
J, editors. Learning decision trees using
the area under the ROC curve. ICML;
2002;2:139-146

[26] Mingers J. An empirical comparison
of selection measures for decision-
tree induction. Machine Learning.
1989;3(4):319-342

[27] Shih Y-S. Families of splitting
criteria for classification trees. Statistics
and Computing. 1999;9(4):309-315

[28] Quinlan JR. C4.5: Programs for
Machine Learning. San Mateo, CA:
Morgan Kaufmann; 1993

[29] Breiman L, Friedman J, Stone
CJ, Olshen RA. Classification and
Regression Trees. CRC press; 1984

[30] Kass GV. An exploratory technique
for investigating large quantities of

categorical data. Applied Statistics.
1980;29(2):119-127

[31] Loh W-Y, Vanichsetakul N. Tree-
structured classification via generalized
discriminant analysis. Journal of the
American Statistical Association.
1988;83(403):715-725

[32] Loh W-Y, Shih Y-S. Split selection
methods for classification trees.
Statistica Sinica. 1997:815-840

[33] Kim H, Loh W-Y. Classification trees
with unbiased multiway splits. Journal
of the American Statistical Association.
2001;96(454):589-604

[34] Loh W-Y. Improving the
precision of classification trees.
The Annals of Applied Statistics.
2009;3(4):1710-1737

[35] Kim H, Loh W-Y. Classification
trees with bivariate linear
discriminant node models. Journal of
Computational and Graphical Statistics.
2003;12(3):512-530

[36] Morgan JN, Sonquist JA. Problems
in the analysis of survey data,
and a proposal. Journal of the
American Statistical Association.
1963;58(302):415-434

[37] Quinlan JR, editor. Learning with
continuous classes. In: 5th Australian
Joint Conference on Artificial
Intelligence. World Scientific; 1992

[38] Loh W-Y. Regression tress with
unbiased variable selection and
interaction detection. Statistica Sinica.
2002;12:361-386

[39] Esposito F, Malerba D, Semeraro
G, Kay J. A comparative analysis of
methods for pruning decision trees. IEEE
Transactions on Pattern Analysis and
Machine Intelligence. 1997;19(5):476-491

[40] Mingers J. An empirical comparison
of pruning methods for decision

47

Classic and Bayesian Tree-Based Methods
DOI: http://dx.doi.org/10.5772/intechopen.83380

tree induction. Machine Learning.
1989;4(2):227-243

[41] Quinlan JR, Rivest RL. Inferring
decision trees using the minimum
description lenght principle.
Information and Computation.
1989;80(3):227-248

[42] Mehta M, Agrawal R, Rissanen J,
editors. SLIQ: A fast scalable classifier
for data mining. In: International
Conference on Extending Database
Technology. Springer; 1996

[43] Shafer J, Agrawal R, Mehta M,
editors. SPRINT: A scalable parallel
classi er for data mining. In: Proc
1996 Int Conf Very Large Data Bases.
Citeseer; 1996

[44] Gehrke J, Ramakrishnan R, Ganti
V. RainForest—A framework for fast
decision tree construction of large
datasets. Data Mining and Knowledge
Discovery. 2000;4(2-3):127-162

[45] Murthy SK, Kasif S, Salzberg S. A
system for induction of oblique decision
trees. Journal of Artificial Intelligence
Research. 1994;2:1-32

[46] Holte RC. Very simple classification
rules perform well on most commonly
used datasets. Machine Learning.
1993;11(1):63-90

[47] Müller W, Wysotzki F. Automatic
construction of decision trees for
classification. Annals of Operations
Research. 1994;52(4):231-247

[48] Müller W, Wysotzki F. The
decision-tree algorithm CAL5 based
on a statistical approach to its splitting
algorithm. Machine Learning and
Statistics: The Interface. 1997. pp. 45-65

[49] Hothorn T, Hornik K, Zeileis A.
Unbiased recursive partitioning: A
conditional inference framework.
Journal of Computational and Graphical
Statistics. 2006;15(3):651-674

[50] Messenger R, Mandell L. A modal
search technique for predictive nominal
scale multivariate analysis. Journal of
the American Statistical Association.
1972;67(340):768-772

[51] Biggs D, De Ville B, Suen E. A
method of choosing multiway
partitions for classification and decision
trees. Journal of Applied Statistics.
1991;18(1):49-62

[52] Gray JB, Fan G. Classification tree
analysis using TARGET. Computational
Statistics and Data Analysis.
2008;52(3):1362-1372

[53] Quinlan JR. Induction of
decision trees. Machine Learning.
1986;1(1):81-106

[54] Piccarreta R. Classification trees
for ordinal variables. Computational
Statistics. 2008;23(3):407-427

[55] Archer KJ. rpartOrdinal: An R
package for deriving a classification
tree for predicting an ordinal response.
Journal of Statistical Software. 2010;34:7

[56] Galimberti G, Soffritti G, Maso
MD. Classification trees for ordinal
responses in R: The rpartScore package.
Journal of Statistical Software.
2012;47(i10)

[57] Tutz G, Hechenbichler
K. Aggregating classifiers with
ordinal response structure. Journal of
Statistical Computation and Simulation.
2005;75(5):391-408

[58] Kramer S, Widmer G, Pfahringer
B, De Groeve M. Prediction of
ordinal classes using regression
trees. Fundamenta Informaticae.
2001;47(1-2):1-13

[59] Archer K, Mas V. Ordinal response
prediction using bootstrap aggregation,
with application to a high-throughput
methylation data set. Statistics in
Medicine. 2009;28(29):3597-3610

Enhanced Expert Systems

48

[60] Wheeler DC, Archer KJ, Burstyn
I, Yu K, Stewart PA, Colt JS, et al.
Comparison of ordinal and nominal
classification trees to predict ordinal
expert-based occupational exposure
estimates in a case-control study.
Annals of Occupational Hygiene.
2014;59(3):324-335

[61] Liu W, Chawla S, Cieslak DA,
Chawla NV, editors. A robust decision
tree algorithm for imbalanced data
sets. In: Proceedings of the 2010 SIAM
International Conference on Data
Mining. SIAM; 2010

[62] Cieslak DA, Hoens TR, Chawla NV,
Kegelmeyer WP. Hellinger distance
decision trees are robust and skew-
insensitive. Data Mining and Knowledge
Discovery. 2012;24(1):136-158

[63] Ganganwar V. An overview of
classification algorithms for imbalanced
datasets. International Journal of
Emerging Technology and Advanced
Engineering. 2012;2(4):42-47

[64] Yang L, Liu S, Tsoka S,
Papageorgiou LG. A regression
tree approach using mathematical
programming. Expert Systems with
Applications. 2017;78:347-357

[65] Su X, Wang M, Fan J. Maximum
likelihood regression trees. Journal of
Computational and Graphical Statistics.
2004;13(3):586-598

[66] Choi Y, Ahn H, Chen JJ. Regression
trees for analysis of count data with
extra Poisson variation. Computational
Statistics and Data Analysis.
2005;49(3):893-915

[67] Therneau TM, Atkinson EJ. An
Introduction to Recursive Partitioning
using the RPART Routines. Technical
Report 61. 1997. Available from: http://
www.mayo.edu/hsr/techrpt/61.pdf

[68] Loh W-Y. Regression tree models
for designed experiments. Institute

of Mathematical Statistics. 2006. pp.
210-228

[69] Lee S-K, Jin S. Decision tree
approaches for zero-inflated count
data. Journal of Applied Statistics.
2006;33(8):853-865

[70] Wang Y, Witten IH. Induction of
Model Trees for Predicting Continuous
Classes; 1996

[71] Chan K-Y, Loh W-Y. LOTUS: An
algorithm for building accurate and
comprehensible logistic regression
trees. Journal of Computational
and Graphical Statistics.
2004;13(4):826-852

[72] Zeileis A, Hothorn T, Hornik
K. Model-based recursive partitioning.
Journal of Computational and Graphical
Statistics. 2008;17(2):492-514

[73] Chaudhuri P, Lo W-D, Loh W-Y,
Yang C-C. Generalized regression trees.
Statistica Sinica. 1995;5:641-666

[74] Chaudhuri P, Huang M-C, Loh
W-Y, Yao R. Piecewise-polynomial
regression trees. Statistica Sinica.
1994;4:143-167

[75] Alexander WP, Grimshaw
SD. Treed regression. Journal of
Computational and Graphical Statistics.
1996;5(2):156-175

[76] Karalič A, editor. Employing linear
regression in regression tree leaves.
In: Proceedings of the 10th European
Conference on Artificial Intelligence.
John Wiley & Sons, Inc; 1992

[77] Landwehr N, Hall M, Frank
E. Logistic model trees. Machine
Learning. 2005;59(1-2):161-205

[78] Grubinger T, Zeileis A, Pfeiffer
KP. evtree: Evolutionary Learning of
Globally Optimal Classification and
Regression Trees in R. Working Papers
in Economics and Statistics; 2011

49

Classic and Bayesian Tree-Based Methods
DOI: http://dx.doi.org/10.5772/intechopen.83380

[79] Breiman L. Statistical modeling:
The two cultures (with comments and
a rejoinder by the author). Statistical
Science. 2001;16(3):199-231

[80] Loh WY. Tree-structured
classifiers. Wiley Interdisciplinary
Reviews: Computational Statistics.
2010;2(3):364-369

[81] Loh WY. Classification and
regression trees. Wiley Interdisciplinary
Reviews: Data Mining and Knowledge
Discovery. 2011;1(1):14-23

[82] Breiman L. Random forests.
Machine Learning. 2001;45(1):5-32

[83] Breiman L. Bagging predictors.
Machine Learning. 1996;24(2):123-140

[84] Freund Y, Schapire RE. Experiments
with a New Boosting Algorithm. ICML.
1996;96:148-156

[85] Webb GI. Multiboosting: A
technique for combining boosting
and wagging. Machine Learning.
2000;40(2):159-196

[86] Friedman J, Hastie T, Tibshirani
R. Additive logistic regression: A
statistical view of boosting (with
discussion and a rejoinder by the
authors). The Annals of Statistics.
2000;28(2):337-407

[87] Buntine W. Learning classification
trees. Statistics and Computing.
1992;2(2):63-73

[88] Denison DG, Mallick BK, Smith
AF. A bayesian CART algorithm.
Biometrika. 1998;85(2):363-377

[89] Chipman HA, George EI,
McCulloch RE. Bayesian CART
model search. Journal of the
American Statistical Association.
1998;93(443):935-948

[90] Chipman H, McCulloch RE.
Hierarchical priors for Bayesian CART

shrinkage. Statistics and Computing.
2000;10(1):17-24

[91] Chipman H, George E, McCulloch
R. Bayesian treed generalized
linear models. Bayesian Statistics.
2003;7:323-349

[92] Chipman HA, George EI, McCulloch
RE. Bayesian treed models. Machine
Learning. 2002;48(1-3):299-320

[93] Moe WW, Chipman H, George EI,
McCulloch RE. A Bayesian Treed Model
of Online Purchasing Behavior Using
in-Store Navigational Clickstream.
Revising for 2nd Review at Journal of
Marketing Research; 2002

[94] Pittman J, Huang E, Nevins J,
Wang Q , West M. Bayesian analysis
of binary prediction tree models for
retrospectively sampled outcomes.
Biostatistics. 2004;5(4):587-601

[95] Wu Y, Tjelmeland H, West
M. Bayesian CART: Prior specification
and posterior simulation. Journal of
Computational and Graphical Statistics.
2007;16(1):44-66

[96] O’Leary RA. Informed Statistical
Modelling of Habitat Suitability for
Rare and Threatened Species (Doctoral
dissertation, Queensland University of
Technology). 2008

[97] O’Leary RA, Murray JV, Low Choy
SJ, Mengersen KL. Expert elicitation
for Bayesian classification trees. Journal
of Applied Probability and Statistics.
2008;3(1):95-106

[98] Hu W, O'Leary RA, Mengersen K,
Choy SL. Bayesian classification and
regression trees for predicting incidence
of cryptosporidiosis. PLoS One.
2011;6(8):e23903

[99] Quinlan JR, Compton PJ, Horn
K, Lazarus L, editors. Inductive
knowledge acquisition: A case study. In:
Proceedings of the Second Australian

Enhanced Expert Systems

48

[60] Wheeler DC, Archer KJ, Burstyn
I, Yu K, Stewart PA, Colt JS, et al.
Comparison of ordinal and nominal
classification trees to predict ordinal
expert-based occupational exposure
estimates in a case-control study.
Annals of Occupational Hygiene.
2014;59(3):324-335

[61] Liu W, Chawla S, Cieslak DA,
Chawla NV, editors. A robust decision
tree algorithm for imbalanced data
sets. In: Proceedings of the 2010 SIAM
International Conference on Data
Mining. SIAM; 2010

[62] Cieslak DA, Hoens TR, Chawla NV,
Kegelmeyer WP. Hellinger distance
decision trees are robust and skew-
insensitive. Data Mining and Knowledge
Discovery. 2012;24(1):136-158

[63] Ganganwar V. An overview of
classification algorithms for imbalanced
datasets. International Journal of
Emerging Technology and Advanced
Engineering. 2012;2(4):42-47

[64] Yang L, Liu S, Tsoka S,
Papageorgiou LG. A regression
tree approach using mathematical
programming. Expert Systems with
Applications. 2017;78:347-357

[65] Su X, Wang M, Fan J. Maximum
likelihood regression trees. Journal of
Computational and Graphical Statistics.
2004;13(3):586-598

[66] Choi Y, Ahn H, Chen JJ. Regression
trees for analysis of count data with
extra Poisson variation. Computational
Statistics and Data Analysis.
2005;49(3):893-915

[67] Therneau TM, Atkinson EJ. An
Introduction to Recursive Partitioning
using the RPART Routines. Technical
Report 61. 1997. Available from: http://
www.mayo.edu/hsr/techrpt/61.pdf

[68] Loh W-Y. Regression tree models
for designed experiments. Institute

of Mathematical Statistics. 2006. pp.
210-228

[69] Lee S-K, Jin S. Decision tree
approaches for zero-inflated count
data. Journal of Applied Statistics.
2006;33(8):853-865

[70] Wang Y, Witten IH. Induction of
Model Trees for Predicting Continuous
Classes; 1996

[71] Chan K-Y, Loh W-Y. LOTUS: An
algorithm for building accurate and
comprehensible logistic regression
trees. Journal of Computational
and Graphical Statistics.
2004;13(4):826-852

[72] Zeileis A, Hothorn T, Hornik
K. Model-based recursive partitioning.
Journal of Computational and Graphical
Statistics. 2008;17(2):492-514

[73] Chaudhuri P, Lo W-D, Loh W-Y,
Yang C-C. Generalized regression trees.
Statistica Sinica. 1995;5:641-666

[74] Chaudhuri P, Huang M-C, Loh
W-Y, Yao R. Piecewise-polynomial
regression trees. Statistica Sinica.
1994;4:143-167

[75] Alexander WP, Grimshaw
SD. Treed regression. Journal of
Computational and Graphical Statistics.
1996;5(2):156-175

[76] Karalič A, editor. Employing linear
regression in regression tree leaves.
In: Proceedings of the 10th European
Conference on Artificial Intelligence.
John Wiley & Sons, Inc; 1992

[77] Landwehr N, Hall M, Frank
E. Logistic model trees. Machine
Learning. 2005;59(1-2):161-205

[78] Grubinger T, Zeileis A, Pfeiffer
KP. evtree: Evolutionary Learning of
Globally Optimal Classification and
Regression Trees in R. Working Papers
in Economics and Statistics; 2011

49

Classic and Bayesian Tree-Based Methods
DOI: http://dx.doi.org/10.5772/intechopen.83380

[79] Breiman L. Statistical modeling:
The two cultures (with comments and
a rejoinder by the author). Statistical
Science. 2001;16(3):199-231

[80] Loh WY. Tree-structured
classifiers. Wiley Interdisciplinary
Reviews: Computational Statistics.
2010;2(3):364-369

[81] Loh WY. Classification and
regression trees. Wiley Interdisciplinary
Reviews: Data Mining and Knowledge
Discovery. 2011;1(1):14-23

[82] Breiman L. Random forests.
Machine Learning. 2001;45(1):5-32

[83] Breiman L. Bagging predictors.
Machine Learning. 1996;24(2):123-140

[84] Freund Y, Schapire RE. Experiments
with a New Boosting Algorithm. ICML.
1996;96:148-156

[85] Webb GI. Multiboosting: A
technique for combining boosting
and wagging. Machine Learning.
2000;40(2):159-196

[86] Friedman J, Hastie T, Tibshirani
R. Additive logistic regression: A
statistical view of boosting (with
discussion and a rejoinder by the
authors). The Annals of Statistics.
2000;28(2):337-407

[87] Buntine W. Learning classification
trees. Statistics and Computing.
1992;2(2):63-73

[88] Denison DG, Mallick BK, Smith
AF. A bayesian CART algorithm.
Biometrika. 1998;85(2):363-377

[89] Chipman HA, George EI,
McCulloch RE. Bayesian CART
model search. Journal of the
American Statistical Association.
1998;93(443):935-948

[90] Chipman H, McCulloch RE.
Hierarchical priors for Bayesian CART

shrinkage. Statistics and Computing.
2000;10(1):17-24

[91] Chipman H, George E, McCulloch
R. Bayesian treed generalized
linear models. Bayesian Statistics.
2003;7:323-349

[92] Chipman HA, George EI, McCulloch
RE. Bayesian treed models. Machine
Learning. 2002;48(1-3):299-320

[93] Moe WW, Chipman H, George EI,
McCulloch RE. A Bayesian Treed Model
of Online Purchasing Behavior Using
in-Store Navigational Clickstream.
Revising for 2nd Review at Journal of
Marketing Research; 2002

[94] Pittman J, Huang E, Nevins J,
Wang Q , West M. Bayesian analysis
of binary prediction tree models for
retrospectively sampled outcomes.
Biostatistics. 2004;5(4):587-601

[95] Wu Y, Tjelmeland H, West
M. Bayesian CART: Prior specification
and posterior simulation. Journal of
Computational and Graphical Statistics.
2007;16(1):44-66

[96] O’Leary RA. Informed Statistical
Modelling of Habitat Suitability for
Rare and Threatened Species (Doctoral
dissertation, Queensland University of
Technology). 2008

[97] O’Leary RA, Murray JV, Low Choy
SJ, Mengersen KL. Expert elicitation
for Bayesian classification trees. Journal
of Applied Probability and Statistics.
2008;3(1):95-106

[98] Hu W, O'Leary RA, Mengersen K,
Choy SL. Bayesian classification and
regression trees for predicting incidence
of cryptosporidiosis. PLoS One.
2011;6(8):e23903

[99] Quinlan JR, Compton PJ, Horn
K, Lazarus L, editors. Inductive
knowledge acquisition: A case study. In:
Proceedings of the Second Australian

Enhanced Expert Systems

50

Conference on Applications of Expert
Systems. Addison-Wesley Longman
Publishing Co., Inc; 1987

[100] Green PJ. Reversible jump Markov
chain Monte Carlo computation
and Bayesian model determination.
Biometrika. 1995;82(4):711-732

[101] Hastie T, Pregibon D. Shrinking
trees. AT & T Bell Laboratories
Technical Report; 1990

[102] Fielding AH, Bell JF. A review
of methods for the assessment of
prediction errors in conservation
presence/absence models.
Environmental Conservation.
1997;24(01):38-49

[103] O’Leary R, Francis R, Carter
K, Firth M, Kees U, de Klerk N. A
Comparison of Bayesian Classification
Trees and Random Forest to Identify
Classifiers for Childhood Leukaemia.
Proc. 18th World IMACS Congr.
Int. Congr. Modell. Simul. Modell.
Simul. Soc. Aust. NZ Int. Assoc.
Math. Comput. Simul.(MODSIM09).
2009:4276-4282

[104] O’Leary RA, Choy SL, Murray JV,
Kynn M, Denham R, Martin TG, et al.
Comparison of three expert elicitation
methods for logistic regression
on predicting the presence of the
threatened brush-tailed rock-wallaby
Petrogale penicillata. Environmetrics.
2009;20(4):379-398

[105] Kynn M. Eliciting Expert
Knowledge for Bayesian Logistic
Regression in Species Habitat Modelling;
2005

[106] Denham R, Mengersen K.
Geographically assisted expert
elicitation for species’ distribution
models. Bayesian Analysis.
2007;2(1):99-136

[107] O’Leary R, Mengersen K, Murray
J, Low Choy S, editors. Comparison

of four expert elicitation methods:
For Bayesian logistic regression and
classification trees. In: 18th World Imacs
Congress and Modsim09 International
Congress on Modelling and Simulation.
Modelling and Simulation Society of
Australia and New Zealand; 2009

[108] Pratola MT. Efficient Metropolis-
Hastings proposal mechanisms for
Bayesian regression tree models.
Bayesian Analysis. 2016;11(3):885-911

[109] Gramacy RB, Lee HKH. Bayesian
treed Gaussian process models with
an application to computer modeling.
Journal of the American Statistical
Association. 2008;103(483):1119-1130

[110] Chipman HA, George EI,
McCulloch RE. Bayesian ensemble
learning. Advances in Neural
Information Processing Systems.
2007;19:265

[111] Chipman HA, George EI,
McCulloch RE. BART: Bayesian additive
regression trees. The Annals of Applied
Statistics. 2010;4:266-298

[112] Pratola MT, Chipman HA,
Gattiker JR, Higdon DM, McCulloch
R, Rust WN. Parallel Bayesian
additive regression trees. Journal of
Computational and Graphical Statistics.
2014;23(3):830-852

[113] Chipman H, George EI, Gramacy
RB, McCulloch R. Bayesian treed
response surface models. Wiley
Interdisciplinary Reviews: Data
Mining and Knowledge Discovery.
2013;3(4):298-305

[114] Angelopoulos N, Cussens J, editors.
Tempering for Bayesian C&RT. In:
Proceedings of the 22nd International
Conference on Machine Learning. ACM;
2005

[115] Schetinin V, Fieldsend JE, Partridge
D, Krzanowski WJ, Everson RM, Bailey
TC, et al. The Bayesian Decision Tree

51

Classic and Bayesian Tree-Based Methods
DOI: http://dx.doi.org/10.5772/intechopen.83380

Technique with A Sweeping Strategy.
arXiv preprint cs/0504042; 2005

[116] Lakshminarayanan B, Roy D,
Teh YW, editors. Top-down particle
filtering for Bayesian decision trees. In:
International Conference on Machine
Learning. 2013

[117] Lakshminarayanan B, Roy D,
Teh YW, editors. Particle Gibbs for
Bayesian additive regression trees. In:
Artificial Intelligence and Statistics.
2015

[118] Taddy MA, Gramacy RB,
Polson NG. Dynamic trees for
learning and design. Journal of the
American Statistical Association.
2011;106(493):109-123

[119] Duan LL, Clancy JP, Szczesniak
RD. Bayesian ensemble trees (BET)
for clustering and prediction in
heterogeneous data. Journal of
Computational and Graphical Statistics.
2016;25(3):748-761

[120] Quadrianto N, Ghahramani Z. A
very simple safe-Bayesian random
forest. IEEE Transactions on Pattern
Analysis and Machine Intelligence.
2015;37(6):1297-1303

[121] Šimundić A-M. Measures of
diagnostic accuracy: Basic definitions.
Medical and biological Sciences.
2008;22(4):61-65

[122] Etemad-Shahidi A, Mahjoobi
J. Comparison between M5′ model
tree and neural networks for
prediction of significant wave height
in Lake Superior. Ocean Engineering.
2009;36(15-16):1175-1181

[123] Taghizadeh-Mehrjardi R, Dehghani
S, Sahebjalal E. Comparison of multiple
linear regression and regression tree
for prediction of saturated hydraulic
conductivity and macroscopic capillary
length (Î±*). ProEnvironment/
ProMediu. 2013;6(13)

[124] Chen M, Cho J, Zhao H. Detecting
epistatic SNPs associated with complex
diseases via a Bayesian classification
tree search method. Annals of Human
Genetics. 2011;75(1):112-121

[125] Freeman AM, Lamon EC, Stow
CA. Nutrient criteria for lakes, ponds,
and reservoirs: A Bayesian TREED
model approach. Ecological Modelling.
2009;220(5):630-639

[126] Lamon EC, Malve O, Pietiläinen
O-P. Lake classification to enhance
prediction of eutrophication endpoints
in Finnish lakes. Environmental
Modelling and Software.
2008;23(7):938-947

[127] Lamon EC, Stow CA. Bayesian
methods for regional-scale
eutrophication models. Water Research.
2004;38(11):2764-2774

[128] Lim T-S, Loh W-Y, Shih Y-S. A
comparison of prediction accuracy,
complexity, and training time of
thirty-three old and new classification
algorithms. Machine Learning.
2000;40(3):203-228

Enhanced Expert Systems

50

Conference on Applications of Expert
Systems. Addison-Wesley Longman
Publishing Co., Inc; 1987

[100] Green PJ. Reversible jump Markov
chain Monte Carlo computation
and Bayesian model determination.
Biometrika. 1995;82(4):711-732

[101] Hastie T, Pregibon D. Shrinking
trees. AT & T Bell Laboratories
Technical Report; 1990

[102] Fielding AH, Bell JF. A review
of methods for the assessment of
prediction errors in conservation
presence/absence models.
Environmental Conservation.
1997;24(01):38-49

[103] O’Leary R, Francis R, Carter
K, Firth M, Kees U, de Klerk N. A
Comparison of Bayesian Classification
Trees and Random Forest to Identify
Classifiers for Childhood Leukaemia.
Proc. 18th World IMACS Congr.
Int. Congr. Modell. Simul. Modell.
Simul. Soc. Aust. NZ Int. Assoc.
Math. Comput. Simul.(MODSIM09).
2009:4276-4282

[104] O’Leary RA, Choy SL, Murray JV,
Kynn M, Denham R, Martin TG, et al.
Comparison of three expert elicitation
methods for logistic regression
on predicting the presence of the
threatened brush-tailed rock-wallaby
Petrogale penicillata. Environmetrics.
2009;20(4):379-398

[105] Kynn M. Eliciting Expert
Knowledge for Bayesian Logistic
Regression in Species Habitat Modelling;
2005

[106] Denham R, Mengersen K.
Geographically assisted expert
elicitation for species’ distribution
models. Bayesian Analysis.
2007;2(1):99-136

[107] O’Leary R, Mengersen K, Murray
J, Low Choy S, editors. Comparison

of four expert elicitation methods:
For Bayesian logistic regression and
classification trees. In: 18th World Imacs
Congress and Modsim09 International
Congress on Modelling and Simulation.
Modelling and Simulation Society of
Australia and New Zealand; 2009

[108] Pratola MT. Efficient Metropolis-
Hastings proposal mechanisms for
Bayesian regression tree models.
Bayesian Analysis. 2016;11(3):885-911

[109] Gramacy RB, Lee HKH. Bayesian
treed Gaussian process models with
an application to computer modeling.
Journal of the American Statistical
Association. 2008;103(483):1119-1130

[110] Chipman HA, George EI,
McCulloch RE. Bayesian ensemble
learning. Advances in Neural
Information Processing Systems.
2007;19:265

[111] Chipman HA, George EI,
McCulloch RE. BART: Bayesian additive
regression trees. The Annals of Applied
Statistics. 2010;4:266-298

[112] Pratola MT, Chipman HA,
Gattiker JR, Higdon DM, McCulloch
R, Rust WN. Parallel Bayesian
additive regression trees. Journal of
Computational and Graphical Statistics.
2014;23(3):830-852

[113] Chipman H, George EI, Gramacy
RB, McCulloch R. Bayesian treed
response surface models. Wiley
Interdisciplinary Reviews: Data
Mining and Knowledge Discovery.
2013;3(4):298-305

[114] Angelopoulos N, Cussens J, editors.
Tempering for Bayesian C&RT. In:
Proceedings of the 22nd International
Conference on Machine Learning. ACM;
2005

[115] Schetinin V, Fieldsend JE, Partridge
D, Krzanowski WJ, Everson RM, Bailey
TC, et al. The Bayesian Decision Tree

51

Classic and Bayesian Tree-Based Methods
DOI: http://dx.doi.org/10.5772/intechopen.83380

Technique with A Sweeping Strategy.
arXiv preprint cs/0504042; 2005

[116] Lakshminarayanan B, Roy D,
Teh YW, editors. Top-down particle
filtering for Bayesian decision trees. In:
International Conference on Machine
Learning. 2013

[117] Lakshminarayanan B, Roy D,
Teh YW, editors. Particle Gibbs for
Bayesian additive regression trees. In:
Artificial Intelligence and Statistics.
2015

[118] Taddy MA, Gramacy RB,
Polson NG. Dynamic trees for
learning and design. Journal of the
American Statistical Association.
2011;106(493):109-123

[119] Duan LL, Clancy JP, Szczesniak
RD. Bayesian ensemble trees (BET)
for clustering and prediction in
heterogeneous data. Journal of
Computational and Graphical Statistics.
2016;25(3):748-761

[120] Quadrianto N, Ghahramani Z. A
very simple safe-Bayesian random
forest. IEEE Transactions on Pattern
Analysis and Machine Intelligence.
2015;37(6):1297-1303

[121] Šimundić A-M. Measures of
diagnostic accuracy: Basic definitions.
Medical and biological Sciences.
2008;22(4):61-65

[122] Etemad-Shahidi A, Mahjoobi
J. Comparison between M5′ model
tree and neural networks for
prediction of significant wave height
in Lake Superior. Ocean Engineering.
2009;36(15-16):1175-1181

[123] Taghizadeh-Mehrjardi R, Dehghani
S, Sahebjalal E. Comparison of multiple
linear regression and regression tree
for prediction of saturated hydraulic
conductivity and macroscopic capillary
length (Î±*). ProEnvironment/
ProMediu. 2013;6(13)

[124] Chen M, Cho J, Zhao H. Detecting
epistatic SNPs associated with complex
diseases via a Bayesian classification
tree search method. Annals of Human
Genetics. 2011;75(1):112-121

[125] Freeman AM, Lamon EC, Stow
CA. Nutrient criteria for lakes, ponds,
and reservoirs: A Bayesian TREED
model approach. Ecological Modelling.
2009;220(5):630-639

[126] Lamon EC, Malve O, Pietiläinen
O-P. Lake classification to enhance
prediction of eutrophication endpoints
in Finnish lakes. Environmental
Modelling and Software.
2008;23(7):938-947

[127] Lamon EC, Stow CA. Bayesian
methods for regional-scale
eutrophication models. Water Research.
2004;38(11):2764-2774

[128] Lim T-S, Loh W-Y, Shih Y-S. A
comparison of prediction accuracy,
complexity, and training time of
thirty-three old and new classification
algorithms. Machine Learning.
2000;40(3):203-228

53

Chapter 4

Automatic Mapping of Student
3D Profiles in Software Metrics
for Temporal Analysis of
Programming Learning and
Scoring Rubrics
Márcia Gonçalves de Oliveira, Ádler Oliveira Silva Neves
and Mônica Ferreira Silva Lopes

Abstract

The purpose of this chapter is to present an online system for a 3D representa-
tion of programming students’ profiles on software metrics that quantify effort and
quality of programming from the analysis of source codes. In this representation,
each student profile is a three-dimensional vector represented by a set of program-
ming solutions developed by a student and mapped on 348 metrics of software
during a programming course. Applying this profile representation, we developed a
system with the following functionalities: generation of student’s timelines to verify
the evolution of metrics in a sequence of programming solutions over a course, dif-
ferent visualizations of these variables, automatic selection of representative codes
for composition of rubrics with less effort of evaluation and selection of metrics
that more influence in scores attributed by teachers. The advantages of this system
are to enable the analysis of where the learning difficulties begin, the monitoring of
how a class evolves along a course and the dynamic composition of rubric represen-
tations to inform assessment criteria. The system proposed therefore presents itself
as a relevant tool to assist teachers about decisions of an evaluative process, allowing
in fact to assist students from the beginning to the end of a course.

Keywords: learning analysis, programming, software metrics, learning profiles

1. Introduction

Analysis of programming learning for purposes of assisting and qualifying a
learning process from beginning to end represents an onerous task to programming
practice, since the practice of assisted programming spends time and effort in
activities, assessment, especially when there is the application of a lot of exercises
and there are many students in a class. Thus, applying learning analysis that makes
it possible to compare programming solutions developed by different students and
to verify how a student’s solution evolve over time represent a real challenge for the
evaluation of programming.

53

Chapter 4

Automatic Mapping of Student
3D Profiles in Software Metrics
for Temporal Analysis of
Programming Learning and
Scoring Rubrics
Márcia Gonçalves de Oliveira, Ádler Oliveira Silva Neves
and Mônica Ferreira Silva Lopes

Abstract

The purpose of this chapter is to present an online system for a 3D representa-
tion of programming students’ profiles on software metrics that quantify effort and
quality of programming from the analysis of source codes. In this representation,
each student profile is a three-dimensional vector represented by a set of program-
ming solutions developed by a student and mapped on 348 metrics of software
during a programming course. Applying this profile representation, we developed a
system with the following functionalities: generation of student’s timelines to verify
the evolution of metrics in a sequence of programming solutions over a course, dif-
ferent visualizations of these variables, automatic selection of representative codes
for composition of rubrics with less effort of evaluation and selection of metrics
that more influence in scores attributed by teachers. The advantages of this system
are to enable the analysis of where the learning difficulties begin, the monitoring of
how a class evolves along a course and the dynamic composition of rubric represen-
tations to inform assessment criteria. The system proposed therefore presents itself
as a relevant tool to assist teachers about decisions of an evaluative process, allowing
in fact to assist students from the beginning to the end of a course.

Keywords: learning analysis, programming, software metrics, learning profiles

1. Introduction

Analysis of programming learning for purposes of assisting and qualifying a
learning process from beginning to end represents an onerous task to programming
practice, since the practice of assisted programming spends time and effort in
activities, assessment, especially when there is the application of a lot of exercises
and there are many students in a class. Thus, applying learning analysis that makes
it possible to compare programming solutions developed by different students and
to verify how a student’s solution evolve over time represent a real challenge for the
evaluation of programming.

Enhanced Expert Systems

54

Although there are already several solutions for representing and comparing
programming students’ profiles [1, 2], there are few solutions for a temporal analy-
sis of the learning of these students during a programming course.

A more recent proposal to analyze programming learning aims to map source
codes into software metrics that quantify effort and quality of programming
[3]. Through these metrics, for each programming activity, it is possible to
compare student’s solutions under different variables to identify classes of solu-
tions, common learning difficulties, good practices of programming and even
plagiarism.

Although the proposal of [3] makes it possible to compare student profiles
of a class in each programming activity, it is laborious for a teacher through this
instrument to verify how these evaluation metrics evolve over time, that is, to each
activity of a course, for each student. This type of monitoring allows the program-
ming teacher to identify in which students develop better in their learning processes
and where students begin to present learning difficulties.

In order to meet this need by offering programming teachers an instrument to
monitor the learning process of their students, this chapter extends the proposal of
[3] generating 3D views of student profiles mapped into selected software metrics.
These metrics characterize each student’s efficiency, style, and programming effort
with each programming solution they develop over a course.

In addition to the 3D representation to analyze learning, this system selects
dynamically programming solution samples for a teacher to score until finding
a representative set of rubric representations to inform evaluation criteria. This
functionality may contribute later to generate a representative set of programs to
train automatic assessment system of programming exercises.

Another feature of this system that is still in the testing phase is the prediction of
students’ performances in an activity based on their history of solving activities or
the solutions of that same activity developed by other students.

The main contribution of this chapter is, therefore, offering a tool to support
evaluation, decision-making in the field of programming, enabling teachers
to analyze and monitor their students’ learning for each programming activ-
ity under a wide range of variables, anticipating a predictable future of poor
performance.

In order to present the fundamentals and the functionalities of the proposed
system, this chapter is organized in the following order. Section 2 presents the
related work. Section 3 describes the system architecture with 3D representations
of profiles and the selection of rubric representations. Section 4 highlights reports
of application of our system in a programming distance course. Section 5 concludes
this work highlighting the main results, future work and final considerations.

2. Static analysis of programming

Static analysis is an automatic assessment approach to programming learning
based on analysis of code. Through static analysis, it is possible to analyze effort,
complexity, efficiency and quality of programming [4–6].

The main advantages of static analysis are lower cost, less reliance on the
teacher’s reference solution and the possibility of offering an evaluation closer
to human evolution, although many programming teachers have prioritize the
dynamic analysis, which is an analysis based on the correct and efficient execution
of programs. Static analysis can therefore be used in the analysis of programming
codes for the following purposes:

55

Automatic Mapping of Student 3D Profiles in Software Metrics for Temporal Analysis…
DOI: http://dx.doi.org/10.5772/intechopen.81754

• Effort measurement and coding complexity [4]

• Prediction of performance [7, 8]

• Programming style analysis [5, 9]

• Evaluation by software metrics [3, 10]

• Recognition of signs of plagiarism [3]

• Recognition of rubrics [11]

• Recommendation of activities [1]

• Programming proficiency analysis [12]

• Analysis of learning difficulties and good programming practices [3].

Among the technological solutions of programming learning analysis based on
static analysis already proposed, we highlight: the metrics of Halstead and McCabe
[4, 5, 13], the evaluation of programming skills by software metrics [10], the rec-
ommendation system of activities according to learning difficulties [1], the analysis
of difficulties by software metrics [3], the evaluation of how programming students
learn from the analysis of their programming codes [14] and the programming
proficiency analysis of SCALE system [12].

2.1 The evolution of static analysis strategies of programming

The main static analysis strategies of programming developed from the 1960s to the
present day were based on software evaluation metrics that evolved from the purposes
of measuring codes and software quality for educational purposes of diagnosing learn-
ing difficulties and evaluating difficulties, skills and even programming skills.

In the 1970s and 1980s, the software metrics were used to analyze programming
codes for the purposes of estimating effort, complexity and programming style.
Thus, some developed strategies were associated the programming process with the
psychological complexity to evaluate performance in programming without neces-
sarily having the concern to help those who had more difficulties [4, 9].

During the 90s until the year 2010, strategies of static analysis based on metrics for
learning analysis, but in times when the Intelligent Tutoring Systems (ITS) were high, it
was sought to represent the model or profile of a student, focusing more on his learning.

In more recent research on programming learning analysis, in addition to having
a concern to better understand the students’ learning profiles, there have been
attempts to remedy learning difficulties [3]. Other trends in programming learning
analysis are proficiency assessment [12], prediction of performances [15] and the
classification of profiles by learning levels [2].

2.2 Related works

The main related works to our proposal are the assessment system based on the
software metrics of [3], the instruments of visualization of programming students’
profiles of [16], the recognition strategy of profiles by source code analysis metrics
of [2], the selection model of features of [17], the system of recognition of rubrics

Enhanced Expert Systems

54

Although there are already several solutions for representing and comparing
programming students’ profiles [1, 2], there are few solutions for a temporal analy-
sis of the learning of these students during a programming course.

A more recent proposal to analyze programming learning aims to map source
codes into software metrics that quantify effort and quality of programming
[3]. Through these metrics, for each programming activity, it is possible to
compare student’s solutions under different variables to identify classes of solu-
tions, common learning difficulties, good practices of programming and even
plagiarism.

Although the proposal of [3] makes it possible to compare student profiles
of a class in each programming activity, it is laborious for a teacher through this
instrument to verify how these evaluation metrics evolve over time, that is, to each
activity of a course, for each student. This type of monitoring allows the program-
ming teacher to identify in which students develop better in their learning processes
and where students begin to present learning difficulties.

In order to meet this need by offering programming teachers an instrument to
monitor the learning process of their students, this chapter extends the proposal of
[3] generating 3D views of student profiles mapped into selected software metrics.
These metrics characterize each student’s efficiency, style, and programming effort
with each programming solution they develop over a course.

In addition to the 3D representation to analyze learning, this system selects
dynamically programming solution samples for a teacher to score until finding
a representative set of rubric representations to inform evaluation criteria. This
functionality may contribute later to generate a representative set of programs to
train automatic assessment system of programming exercises.

Another feature of this system that is still in the testing phase is the prediction of
students’ performances in an activity based on their history of solving activities or
the solutions of that same activity developed by other students.

The main contribution of this chapter is, therefore, offering a tool to support
evaluation, decision-making in the field of programming, enabling teachers
to analyze and monitor their students’ learning for each programming activ-
ity under a wide range of variables, anticipating a predictable future of poor
performance.

In order to present the fundamentals and the functionalities of the proposed
system, this chapter is organized in the following order. Section 2 presents the
related work. Section 3 describes the system architecture with 3D representations
of profiles and the selection of rubric representations. Section 4 highlights reports
of application of our system in a programming distance course. Section 5 concludes
this work highlighting the main results, future work and final considerations.

2. Static analysis of programming

Static analysis is an automatic assessment approach to programming learning
based on analysis of code. Through static analysis, it is possible to analyze effort,
complexity, efficiency and quality of programming [4–6].

The main advantages of static analysis are lower cost, less reliance on the
teacher’s reference solution and the possibility of offering an evaluation closer
to human evolution, although many programming teachers have prioritize the
dynamic analysis, which is an analysis based on the correct and efficient execution
of programs. Static analysis can therefore be used in the analysis of programming
codes for the following purposes:

55

Automatic Mapping of Student 3D Profiles in Software Metrics for Temporal Analysis…
DOI: http://dx.doi.org/10.5772/intechopen.81754

• Effort measurement and coding complexity [4]

• Prediction of performance [7, 8]

• Programming style analysis [5, 9]

• Evaluation by software metrics [3, 10]

• Recognition of signs of plagiarism [3]

• Recognition of rubrics [11]

• Recommendation of activities [1]

• Programming proficiency analysis [12]

• Analysis of learning difficulties and good programming practices [3].

Among the technological solutions of programming learning analysis based on
static analysis already proposed, we highlight: the metrics of Halstead and McCabe
[4, 5, 13], the evaluation of programming skills by software metrics [10], the rec-
ommendation system of activities according to learning difficulties [1], the analysis
of difficulties by software metrics [3], the evaluation of how programming students
learn from the analysis of their programming codes [14] and the programming
proficiency analysis of SCALE system [12].

2.1 The evolution of static analysis strategies of programming

The main static analysis strategies of programming developed from the 1960s to the
present day were based on software evaluation metrics that evolved from the purposes
of measuring codes and software quality for educational purposes of diagnosing learn-
ing difficulties and evaluating difficulties, skills and even programming skills.

In the 1970s and 1980s, the software metrics were used to analyze programming
codes for the purposes of estimating effort, complexity and programming style.
Thus, some developed strategies were associated the programming process with the
psychological complexity to evaluate performance in programming without neces-
sarily having the concern to help those who had more difficulties [4, 9].

During the 90s until the year 2010, strategies of static analysis based on metrics for
learning analysis, but in times when the Intelligent Tutoring Systems (ITS) were high, it
was sought to represent the model or profile of a student, focusing more on his learning.

In more recent research on programming learning analysis, in addition to having
a concern to better understand the students’ learning profiles, there have been
attempts to remedy learning difficulties [3]. Other trends in programming learning
analysis are proficiency assessment [12], prediction of performances [15] and the
classification of profiles by learning levels [2].

2.2 Related works

The main related works to our proposal are the assessment system based on the
software metrics of [3], the instruments of visualization of programming students’
profiles of [16], the recognition strategy of profiles by source code analysis metrics
of [2], the selection model of features of [17], the system of recognition of rubrics

Enhanced Expert Systems

56

with dimensionality reduction of [11] and the study of [18] involving the discovery
of longitudinal patterns.

PCodigo II is an online system of automatic mapping of students’ profiles in
software metrics to analyze programming learning [3]. In addition to profiling
mapping in 348 software metrics, PCodigo II has massive execution, similar profile
graphing, information visualization, and plagiarism analysis capabilities.

The first applications of PCodigo II of [3] in real programming exercises demon-
strate the effectiveness of this system for the diagnostic assessment of programming
learning. Thus applying PCodigo II in real programming exercises it was shown
that teachers, taking into account what the metrics say, can recognize the learning
difficulties, good programming practices and classes of learning profiles of a whole
class in a fast, detailed and holistic way.

The chapter of [16] presents some information visualization instruments in
a multidimensional perspective to help teachers in the analysis of programming
learning with mapping of profiles on software metrics. Through generated visual-
izations, we can analyze and compare profiles under different variables to recognize
learning difficulties and classes of solutions from similar characteristics.

The strategy of profile recognition by static analysis of codes based on metrics of
[2] aims to infer profiles of programmers from analysis of their Java code, classify
them according to skills and continually evaluate their progress in the practice of
programming in a course. The detected profiles are a novice, advanced beginner,
proficient and expert.

Some metrics used in this strategy are a number of sentences, conditional con-
trol and repetition structures, types of data, classes, operators, lines of code, and
other code. The advantage of this strategy in relation to our system is to classify and
qualify students. However, we automatically select the most appropriate metrics to
evaluate each type of programming solution.

For an automatic selection of evaluation variables, we highlight the selection
model of the characteristics of [17], which combines clustering techniques and
algorithm to create a feature map by selecting relevant terms in the texts of the
groups of notes of the evaluation of a teacher. In our proposal, the relevant char-
acteristics, that is, the most important metrics for each programming solution, we
can visualize through heat maps comparing different solutions from five or more
software metrics.

Regarding the composition of rubrics, a strategy to highlight is the proposal of
[11], which is based on clustering and Principal Component Analysis techniques to
recognize, from solutions developed by students, examples of solutions that repre-
sent, in a rubric scheme, the scores attributed by a teacher. This work complements
these proposals by generating a ranking of samples of programming solutions for a
teacher to score until finding the best set of rubric representations with a diversity
of marks awarded.

According to [18], to understand how learning unfolds in the over time, it is
necessary to move to a new learning perspective in which the units of analysis are
separate but interrelated learning events.

Following this idea, the study of [18] investigates and validates longitudinal
patterns in online participation as a measure to differentiate student performances.

The proposal of the system of this work, based on the study of [18], seeks to
understand how programming learning unfolds and analyze longitudinal patterns.

In this way, following this proposal, in relation to the other Works Presented, we
advanced in the 3D representation of profiles of programming students, in the view
of characteristics represented by software metrics over time and the composition of
rubrics from a ranking of selected solutions automatically for a teacher to score.

57

Automatic Mapping of Student 3D Profiles in Software Metrics for Temporal Analysis…
DOI: http://dx.doi.org/10.5772/intechopen.81754

3. 3D representation system of programming students’ profiles

The system of representation of profiles presented in this chapter is an evolu-
tion of PCodigo II, a software developed by which, by software metrics that quanti-
fies effort and quality of programming, recognizes possible learning difficulties,
good programming practices and until strong evidence of plagiarism among
programs [3].

Thus our system extends the students’ profiles representation of PCodigo II in a
temporal dimension, selects more relevant metrics and allows the automatic selec-
tion of representative examples from a set of source codes for composition of rubric
representation.

Figure 1 shows the system’s architecture proposed in a scheme of inputs, pro-
cessing and outputs come an integration of our system to the 1.0 and 3. x versions of
Moodle virtual learning environment.

According to Figure 1, for version 1.9 of Moodle, the system receives as input
a backup of Moodle’s Compacted Classroom (in .zip, .rar, .gz or .tgz formats). For
version 3. x of Moodle, the system is accessed through Teacher’s Credentials to access
a distance programming course of Moodle.

The course data imported from Moodle are as follows: student listing, activity
listing, activity notes and Submissions, that are files of programming exercises.
These data are then extracted by the Extracting and Preprocessing module and
Submissions containing source codes that were written in C, C++, Java or Python
languages are mapped to vectors whose dimensions are software metrics that quan-
tify effort and quality of programming [3]. The submitted C programs are mapped
on 348 software metrics and the Python programs, in 42 metrics.

Each vector representation on software metrics of a student’s programming solu-
tion we call Learning State. Then, after generating Learning States of a programming
class, the system gathers these representations in a Cognitive Matrix for analysis and
comparison of programs written by students [3].

In order to analyze solutions in a generic way, we have reduced each Learning
State to five metrics: Maintainability, Cyclomatic Complexity, Indentation, Laconism
and Modularization. They are described as follows:

• Maintainability represents the student’s ability to write durable and adaptable
code to new needs.

• Cyclomatic Complexity informs the complexity of a programming code that is
the number of paths of a method [Curtis et al. 1979].

• Indentation metric characterizes the instructions of a program within structures
and functions.

• Laconism expresses the capacity to express itself in a few words that in pro-
gramming is measured by the number of tokens per line of code.

• Modularization informs organizational capacity of the parts of a functional or
data module.

Then, bringing together the cognitive matrices for each programming solution
of a course, a 3D Representation of Learning Profiles of a programming class. The
same procedure is performed for a Reduced Matrix. This timeline formed by a set of
Learning States of a student over a course is called Learning Profile.

Enhanced Expert Systems

56

with dimensionality reduction of [11] and the study of [18] involving the discovery
of longitudinal patterns.

PCodigo II is an online system of automatic mapping of students’ profiles in
software metrics to analyze programming learning [3]. In addition to profiling
mapping in 348 software metrics, PCodigo II has massive execution, similar profile
graphing, information visualization, and plagiarism analysis capabilities.

The first applications of PCodigo II of [3] in real programming exercises demon-
strate the effectiveness of this system for the diagnostic assessment of programming
learning. Thus applying PCodigo II in real programming exercises it was shown
that teachers, taking into account what the metrics say, can recognize the learning
difficulties, good programming practices and classes of learning profiles of a whole
class in a fast, detailed and holistic way.

The chapter of [16] presents some information visualization instruments in
a multidimensional perspective to help teachers in the analysis of programming
learning with mapping of profiles on software metrics. Through generated visual-
izations, we can analyze and compare profiles under different variables to recognize
learning difficulties and classes of solutions from similar characteristics.

The strategy of profile recognition by static analysis of codes based on metrics of
[2] aims to infer profiles of programmers from analysis of their Java code, classify
them according to skills and continually evaluate their progress in the practice of
programming in a course. The detected profiles are a novice, advanced beginner,
proficient and expert.

Some metrics used in this strategy are a number of sentences, conditional con-
trol and repetition structures, types of data, classes, operators, lines of code, and
other code. The advantage of this strategy in relation to our system is to classify and
qualify students. However, we automatically select the most appropriate metrics to
evaluate each type of programming solution.

For an automatic selection of evaluation variables, we highlight the selection
model of the characteristics of [17], which combines clustering techniques and
algorithm to create a feature map by selecting relevant terms in the texts of the
groups of notes of the evaluation of a teacher. In our proposal, the relevant char-
acteristics, that is, the most important metrics for each programming solution, we
can visualize through heat maps comparing different solutions from five or more
software metrics.

Regarding the composition of rubrics, a strategy to highlight is the proposal of
[11], which is based on clustering and Principal Component Analysis techniques to
recognize, from solutions developed by students, examples of solutions that repre-
sent, in a rubric scheme, the scores attributed by a teacher. This work complements
these proposals by generating a ranking of samples of programming solutions for a
teacher to score until finding the best set of rubric representations with a diversity
of marks awarded.

According to [18], to understand how learning unfolds in the over time, it is
necessary to move to a new learning perspective in which the units of analysis are
separate but interrelated learning events.

Following this idea, the study of [18] investigates and validates longitudinal
patterns in online participation as a measure to differentiate student performances.

The proposal of the system of this work, based on the study of [18], seeks to
understand how programming learning unfolds and analyze longitudinal patterns.

In this way, following this proposal, in relation to the other Works Presented, we
advanced in the 3D representation of profiles of programming students, in the view
of characteristics represented by software metrics over time and the composition of
rubrics from a ranking of selected solutions automatically for a teacher to score.

57

Automatic Mapping of Student 3D Profiles in Software Metrics for Temporal Analysis…
DOI: http://dx.doi.org/10.5772/intechopen.81754

3. 3D representation system of programming students’ profiles

The system of representation of profiles presented in this chapter is an evolu-
tion of PCodigo II, a software developed by which, by software metrics that quanti-
fies effort and quality of programming, recognizes possible learning difficulties,
good programming practices and until strong evidence of plagiarism among
programs [3].

Thus our system extends the students’ profiles representation of PCodigo II in a
temporal dimension, selects more relevant metrics and allows the automatic selec-
tion of representative examples from a set of source codes for composition of rubric
representation.

Figure 1 shows the system’s architecture proposed in a scheme of inputs, pro-
cessing and outputs come an integration of our system to the 1.0 and 3. x versions of
Moodle virtual learning environment.

According to Figure 1, for version 1.9 of Moodle, the system receives as input
a backup of Moodle’s Compacted Classroom (in .zip, .rar, .gz or .tgz formats). For
version 3. x of Moodle, the system is accessed through Teacher’s Credentials to access
a distance programming course of Moodle.

The course data imported from Moodle are as follows: student listing, activity
listing, activity notes and Submissions, that are files of programming exercises.
These data are then extracted by the Extracting and Preprocessing module and
Submissions containing source codes that were written in C, C++, Java or Python
languages are mapped to vectors whose dimensions are software metrics that quan-
tify effort and quality of programming [3]. The submitted C programs are mapped
on 348 software metrics and the Python programs, in 42 metrics.

Each vector representation on software metrics of a student’s programming solu-
tion we call Learning State. Then, after generating Learning States of a programming
class, the system gathers these representations in a Cognitive Matrix for analysis and
comparison of programs written by students [3].

In order to analyze solutions in a generic way, we have reduced each Learning
State to five metrics: Maintainability, Cyclomatic Complexity, Indentation, Laconism
and Modularization. They are described as follows:

• Maintainability represents the student’s ability to write durable and adaptable
code to new needs.

• Cyclomatic Complexity informs the complexity of a programming code that is
the number of paths of a method [Curtis et al. 1979].

• Indentation metric characterizes the instructions of a program within structures
and functions.

• Laconism expresses the capacity to express itself in a few words that in pro-
gramming is measured by the number of tokens per line of code.

• Modularization informs organizational capacity of the parts of a functional or
data module.

Then, bringing together the cognitive matrices for each programming solution
of a course, a 3D Representation of Learning Profiles of a programming class. The
same procedure is performed for a Reduced Matrix. This timeline formed by a set of
Learning States of a student over a course is called Learning Profile.

Enhanced Expert Systems

58

Learning Profile shows how a set of student’s assessment variables evolves
over a course. Thus, through the analysis of profiles of learning it is possible to
understand main learning difficulties of students and to reorient teaching with
formative assessment actions in order to anticipate the predictable future of poor
performances.

3.1 Selection of metrics

The Reduced Matrix generation process is performed by Selection of Metrics
module (see Figure 1) using the Recursive Feature Elimination (RFE) method of the
Scikit-Learn library [19] and a linear regression algorithm. The inputs of Selection
of Metrics are the grades of some programming solutions and the Cognitive Matrix
mapped on 348 software metrics generated by PCodigo II [3]. The Selection of Metrics
returns the metrics most related to the grading pattern through a metric ranking.

3.2 Timeline of programming solutions

The timeline consists of a vector representation of the five fundamental met-
rics or selected metrics most closely related to a teacher’s grade from each course
programming exercise. This representation contributes to the analysis of how the
evaluation metrics evolve for each student during a course and to generate a train-
ing set from to predict future exercise performance from history of exercises and
performances associated with them.

3.3 Clusters analysis and composition of rubrics

A hierarchical approach we have used s to form clusters of similar solutions. In
this way, a representative would be selected from each of these clusters to receive a
teacher’s grade and that grade would be reproduced for the other standards in the
same cluster.

Unlike PCodigo II [3], in which clustering is performed with a previously
defined number of clusters, a dendrogram based on centroid was generated, from
which can be extracted the amount of clusters required, which, in this work, was

Figure 1.
Architecture of the 3D representation system of students’ profiles.

59

Automatic Mapping of Student 3D Profiles in Software Metrics for Temporal Analysis…
DOI: http://dx.doi.org/10.5772/intechopen.81754

placed as half of the samples from the algorithm BFS (Breadth-first search) tree,
where the depth is given by the distance noted on each edge, that is Euclidean
Distance.

According to Figure 1, for Composition of Rubrics with the purpose of assisting
teacher’s programming exercises, we have developed an automatic selection of
representative samples of codes and metrics more related to the marks assigned by a
teacher to this small set of representative codes.

In order to select this small set of representative codes, we have used a hierarchi-
cal representation of clusters by Selection Dendrogram with Euclidean Distance
similarity measure. In Selection Dendrogram, the first samples marked yellow are the
samples selected from Correction Ranking, that is a list automatically generated to
indicate the best correction sequence of programming exercises so that the teacher
can score a smaller set of samples of programs that represents the diversity of marks.

Through this representation, a search in depth not aware of plagiarism is per-
formed starting with the more atypical samples and accumulating distances (from
root to node) which are expressed at each node of the dendrogram. Then, after the
selected samples are scored by a teacher and the metrics that most impact the grades
assigned by him are verified to analyze possible correction inconsistencies.

3.4 Prediction of performance

In order to begin the performance prediction experiments, we have chosen two
prediction methods: based on cluster analysis and based on previous performance
histories.

In prediction based on cluster analysis, we used the selection ranking that selects
representative samples of the Dendrogram Selection subgraphs to form a training
set of the prediction model based on linear regression with 50% examples of a set
of punctuated programming solutions by a teacher. The other 50% are predicted
automatically by prediction model with reference based on diversity of the scores
assigned by a teacher to the training set examples.

In the prediction of performances based on a history of previous performances,
through a time series generated from the 3D representation (students × activities ×
metrics), a regressor model of each metric is trained and a regressor of metrics for
grades, then the metrics of the next exercise are predicted as well as your grade. In
this case, the training set is represented by the solutions solved by the same student
along the course and the note to be predicted is the next solution to the history
samples of that set.

4. Experiments and results

The first experiments of the system functionalities proposed in this chapter
were in a Moodle’s classroom of a distance course of C Programming Language in
Brazil. Through the access credentials of a programming teacher, we obtained a
zipped copy of the classroom from this course to the processing of learning analysis
from students’ codes. Next, all C programming code files were extracted along the
programming distance course by about 25 programming students.

After the generation of 3D representations of learning profiles (Activities ×
Students × Metrics), gathering 10 activities, 25 students and 348 metrics of software,
we use this information to generate the following results and views:

• For each activity, the list of metrics that were considered the most relevant to
assign marks.

Enhanced Expert Systems

58

Learning Profile shows how a set of student’s assessment variables evolves
over a course. Thus, through the analysis of profiles of learning it is possible to
understand main learning difficulties of students and to reorient teaching with
formative assessment actions in order to anticipate the predictable future of poor
performances.

3.1 Selection of metrics

The Reduced Matrix generation process is performed by Selection of Metrics
module (see Figure 1) using the Recursive Feature Elimination (RFE) method of the
Scikit-Learn library [19] and a linear regression algorithm. The inputs of Selection
of Metrics are the grades of some programming solutions and the Cognitive Matrix
mapped on 348 software metrics generated by PCodigo II [3]. The Selection of Metrics
returns the metrics most related to the grading pattern through a metric ranking.

3.2 Timeline of programming solutions

The timeline consists of a vector representation of the five fundamental met-
rics or selected metrics most closely related to a teacher’s grade from each course
programming exercise. This representation contributes to the analysis of how the
evaluation metrics evolve for each student during a course and to generate a train-
ing set from to predict future exercise performance from history of exercises and
performances associated with them.

3.3 Clusters analysis and composition of rubrics

A hierarchical approach we have used s to form clusters of similar solutions. In
this way, a representative would be selected from each of these clusters to receive a
teacher’s grade and that grade would be reproduced for the other standards in the
same cluster.

Unlike PCodigo II [3], in which clustering is performed with a previously
defined number of clusters, a dendrogram based on centroid was generated, from
which can be extracted the amount of clusters required, which, in this work, was

Figure 1.
Architecture of the 3D representation system of students’ profiles.

59

Automatic Mapping of Student 3D Profiles in Software Metrics for Temporal Analysis…
DOI: http://dx.doi.org/10.5772/intechopen.81754

placed as half of the samples from the algorithm BFS (Breadth-first search) tree,
where the depth is given by the distance noted on each edge, that is Euclidean
Distance.

According to Figure 1, for Composition of Rubrics with the purpose of assisting
teacher’s programming exercises, we have developed an automatic selection of
representative samples of codes and metrics more related to the marks assigned by a
teacher to this small set of representative codes.

In order to select this small set of representative codes, we have used a hierarchi-
cal representation of clusters by Selection Dendrogram with Euclidean Distance
similarity measure. In Selection Dendrogram, the first samples marked yellow are the
samples selected from Correction Ranking, that is a list automatically generated to
indicate the best correction sequence of programming exercises so that the teacher
can score a smaller set of samples of programs that represents the diversity of marks.

Through this representation, a search in depth not aware of plagiarism is per-
formed starting with the more atypical samples and accumulating distances (from
root to node) which are expressed at each node of the dendrogram. Then, after the
selected samples are scored by a teacher and the metrics that most impact the grades
assigned by him are verified to analyze possible correction inconsistencies.

3.4 Prediction of performance

In order to begin the performance prediction experiments, we have chosen two
prediction methods: based on cluster analysis and based on previous performance
histories.

In prediction based on cluster analysis, we used the selection ranking that selects
representative samples of the Dendrogram Selection subgraphs to form a training
set of the prediction model based on linear regression with 50% examples of a set
of punctuated programming solutions by a teacher. The other 50% are predicted
automatically by prediction model with reference based on diversity of the scores
assigned by a teacher to the training set examples.

In the prediction of performances based on a history of previous performances,
through a time series generated from the 3D representation (students × activities ×
metrics), a regressor model of each metric is trained and a regressor of metrics for
grades, then the metrics of the next exercise are predicted as well as your grade. In
this case, the training set is represented by the solutions solved by the same student
along the course and the note to be predicted is the next solution to the history
samples of that set.

4. Experiments and results

The first experiments of the system functionalities proposed in this chapter
were in a Moodle’s classroom of a distance course of C Programming Language in
Brazil. Through the access credentials of a programming teacher, we obtained a
zipped copy of the classroom from this course to the processing of learning analysis
from students’ codes. Next, all C programming code files were extracted along the
programming distance course by about 25 programming students.

After the generation of 3D representations of learning profiles (Activities ×
Students × Metrics), gathering 10 activities, 25 students and 348 metrics of software,
we use this information to generate the following results and views:

• For each activity, the list of metrics that were considered the most relevant to
assign marks.

Enhanced Expert Systems

60

• For a class as a whole, a list of selected metrics from 348 metrics, that were
considered the most relevant to assign marks.

• Dendrogram automatically generated on all the metrics that make up the
student profile.

• Dendrogram automatically generated on all the metrics that make up the
student profile, after normalization to values between 0 and 1.

• A heat map for each activity with selected metrics that best represent each
activity.

• A heat map for each activity with the metrics that best represent the marking
criterion for the class as a whole.

• A heat map for each student (historical in time) with the metrics that best
represent the correction criterion for the class as a whole.

• A heat map for each activity with five metrics representing skills and difficul-
ties programming.

• A heat map for each student (historical in time) with five metrics representing
the students’ programming skills and difficulties.

• Prediction of student grades, where grades are assigned to submissions that are
similar to each other.

One of the activities we use for this experiment was applied in a C programming
distance course and contains the following statement:

Write a program to get the number of P points of three teams in a football champion-
ship, according to the following mathematical expression:

 𝘗𝘗 = 5𝘎𝘎𝘎𝘎 − 𝘎𝘎𝘎𝘎 + 3𝘝𝘝𝘝𝘝 + 2𝘝𝘝𝘝𝘝 + 𝘌𝘌

In this formula, GP is the number of positive goals, GN is the number of goals taken,
VF is the number of wins away from home, VC is the number of victories at home and E
is the number of draws. The output of this program must show, according to the number
of points obtained by a team, the champion and the runner-up of a championship.

We chose this activity for learning analysis because the use of logical expressions
and conditional and repetitive control structures allows us to differentiate the solutions
in order to recognize which solutions show difficulties to construct logical expres-
sions in control structures. In this way, a good solution of this activity will present few
comparisons and a few lines of programming code. On the other hand, a solution with
several comparisons, instructions and control structures built into the arrangement
evidences programming effort and difficulties to construct logical sentences.

In Figure 2, using this activity as an example of results 1 and 2, and views 5, 6, we
highlight two modes of analysis of programming solutions of our system for a program-
ming activity: first, from software metrics Maintainability, Cyclomatic Complexity,
Indentation, Laconism and Modularization and from metrics that were considered the
most relevant for the attribution of marks, that is, the Reduced Matrix metrics.

61

Automatic Mapping of Student 3D Profiles in Software Metrics for Temporal Analysis…
DOI: http://dx.doi.org/10.5772/intechopen.81754

In graphs of Figure 2, the columns indicate students’ solutions and columns,
metrics. In each column, the white color (scale 1) indicates the highest value and
the black color (scale 0), the smallest value of a metric. The interpretation of
whether the higher value is better depends on the level of information of each
code. However, the teacher can perform this interpretation comparing value of the
best solutions and the worst solution. In this way, it would have an instrument to

Figure 2.
Analysis of solutions by software metrics.

Enhanced Expert Systems

60

• For a class as a whole, a list of selected metrics from 348 metrics, that were
considered the most relevant to assign marks.

• Dendrogram automatically generated on all the metrics that make up the
student profile.

• Dendrogram automatically generated on all the metrics that make up the
student profile, after normalization to values between 0 and 1.

• A heat map for each activity with selected metrics that best represent each
activity.

• A heat map for each activity with the metrics that best represent the marking
criterion for the class as a whole.

• A heat map for each student (historical in time) with the metrics that best
represent the correction criterion for the class as a whole.

• A heat map for each activity with five metrics representing skills and difficul-
ties programming.

• A heat map for each student (historical in time) with five metrics representing
the students’ programming skills and difficulties.

• Prediction of student grades, where grades are assigned to submissions that are
similar to each other.

One of the activities we use for this experiment was applied in a C programming
distance course and contains the following statement:

Write a program to get the number of P points of three teams in a football champion-
ship, according to the following mathematical expression:

 𝘗𝘗 = 5𝘎𝘎𝘎𝘎 − 𝘎𝘎𝘎𝘎 + 3𝘝𝘝𝘝𝘝 + 2𝘝𝘝𝘝𝘝 + 𝘌𝘌

In this formula, GP is the number of positive goals, GN is the number of goals taken,
VF is the number of wins away from home, VC is the number of victories at home and E
is the number of draws. The output of this program must show, according to the number
of points obtained by a team, the champion and the runner-up of a championship.

We chose this activity for learning analysis because the use of logical expressions
and conditional and repetitive control structures allows us to differentiate the solutions
in order to recognize which solutions show difficulties to construct logical expres-
sions in control structures. In this way, a good solution of this activity will present few
comparisons and a few lines of programming code. On the other hand, a solution with
several comparisons, instructions and control structures built into the arrangement
evidences programming effort and difficulties to construct logical sentences.

In Figure 2, using this activity as an example of results 1 and 2, and views 5, 6, we
highlight two modes of analysis of programming solutions of our system for a program-
ming activity: first, from software metrics Maintainability, Cyclomatic Complexity,
Indentation, Laconism and Modularization and from metrics that were considered the
most relevant for the attribution of marks, that is, the Reduced Matrix metrics.

61

Automatic Mapping of Student 3D Profiles in Software Metrics for Temporal Analysis…
DOI: http://dx.doi.org/10.5772/intechopen.81754

In graphs of Figure 2, the columns indicate students’ solutions and columns,
metrics. In each column, the white color (scale 1) indicates the highest value and
the black color (scale 0), the smallest value of a metric. The interpretation of
whether the higher value is better depends on the level of information of each
code. However, the teacher can perform this interpretation comparing value of the
best solutions and the worst solution. In this way, it would have an instrument to

Figure 2.
Analysis of solutions by software metrics.

Enhanced Expert Systems

62

evaluate which indicators characterize good programming solutions and those that
express the most difficulties.

According to Figure 2, in the first graph, high value of Complexity, low value
of Indentation and high value of Laconism differentiate al_00017 solution, that is
indicated by the red arrow in Figure 2, from too much and stand out as a poor
solution. In the second graph, however, according to the assessment criteria based
on three metrics related to a teacher’s mark, this solution follows the pattern of the
others and is therefore not indicated as a bad solution.

In Figure 3, where there is an example of view 9, we highlight how the five
major metrics evolve each exercise for a same student over a course. It is observed
that this student, indicated in the first line of the graph by a green arrow, has a
predominance of the black color in his programming solution, indicating low
values, and meaning good performances in the easiest exercises. On the other
hand, in the last exercise by a red arrow he did, the colors appear lighter, indicat-
ing more complex activities and more difficulties. That more evident when, from
this exercise that has higher Complexity value, the student stopped delivering the
activities of programming, as it is noticed in the black color indicating a lack of
performance in the following activities. We see in this visualization the potential
of the tool to enable a teacher to recognize where a student began to demonstrate
difficulties.

The graph of Figure 4 is the ranking view for a teacher to assign marks to activi-
ties with the least effort of correcting. This graph is a dendrogram that presents
the hierarchy of developed solutions for a programming activity represented by
software metrics normalized to values between 0 and 1. Distances are marked in
gray and pink.

The graph of Figure 5 is a ranking view for a teacher to assign marks to activi-
ties with the least effort of correcting. This graph is a dendrogram that presents the
hierarchy of developed solutions for a programming activity. Distances are marked
in gray and pink, and the selected samples are marked in yellow.

According to Figure 5, first selecting the samples of greater dissimilarity, the
teacher punctuates the most different ones and then some of the more similar ones.

As this teacher follows the ranking of samples suggested by the system, he
himself can identify how far he can correct to obtain a minimum set of representa-
tion of the diversity of the solutions developed for composition of rubrics and, in
the future, for to train automatic assessment exercises of programming exercises
with a set of examples of teachers’ marks. In this case, we consider 50% for training
and 50% for testing of the prediction model.

Figure 6 presents our first prediction results performed at a distance learning
C programming. In this graph, we present performance results of all the program-
ming solutions developed by a student (al_00009) throughout a programming
course. In the presentation of these results, for each submitted programming
solution, we compared the grade given by a teacher with the grades predicted by our
system from a history of activities previously solved by that same student and from
solutions of other students of class in that same activity based on nearest neighbor
methods. This process of performance analysis is performed for all students of the
distance learning course through our system.

According to the graph of Figure 6, it is observed that the prediction of a
student’s performance in an activity based on a history of exercises solved by that
student and in the solutions of that exercise developed by other students still
present themselves divergent from the assigned marks by a teacher, although in
higher performances these approaches approximate the evaluation of a teacher.

63

Automatic Mapping of Student 3D Profiles in Software Metrics for Temporal Analysis…
DOI: http://dx.doi.org/10.5772/intechopen.81754

In addition, the predictive results of these approaches approximate as the history of
solved exercises used increases. Thus, we present good expectations to advance in
the studies of these methods to predict the performance of programming students.

In conclusion, with some examples of the results generated by the system of
this chapter, we shown the potential of this tool for programming teachers to
accompany the process of learning their students from the beginning to the end of
a course from a broad or reduced set of metrics and with less teachers’ evaluation
effort.

Figure 3.
Evolution of metrics for each activity.

Enhanced Expert Systems

62

evaluate which indicators characterize good programming solutions and those that
express the most difficulties.

According to Figure 2, in the first graph, high value of Complexity, low value
of Indentation and high value of Laconism differentiate al_00017 solution, that is
indicated by the red arrow in Figure 2, from too much and stand out as a poor
solution. In the second graph, however, according to the assessment criteria based
on three metrics related to a teacher’s mark, this solution follows the pattern of the
others and is therefore not indicated as a bad solution.

In Figure 3, where there is an example of view 9, we highlight how the five
major metrics evolve each exercise for a same student over a course. It is observed
that this student, indicated in the first line of the graph by a green arrow, has a
predominance of the black color in his programming solution, indicating low
values, and meaning good performances in the easiest exercises. On the other
hand, in the last exercise by a red arrow he did, the colors appear lighter, indicat-
ing more complex activities and more difficulties. That more evident when, from
this exercise that has higher Complexity value, the student stopped delivering the
activities of programming, as it is noticed in the black color indicating a lack of
performance in the following activities. We see in this visualization the potential
of the tool to enable a teacher to recognize where a student began to demonstrate
difficulties.

The graph of Figure 4 is the ranking view for a teacher to assign marks to activi-
ties with the least effort of correcting. This graph is a dendrogram that presents
the hierarchy of developed solutions for a programming activity represented by
software metrics normalized to values between 0 and 1. Distances are marked in
gray and pink.

The graph of Figure 5 is a ranking view for a teacher to assign marks to activi-
ties with the least effort of correcting. This graph is a dendrogram that presents the
hierarchy of developed solutions for a programming activity. Distances are marked
in gray and pink, and the selected samples are marked in yellow.

According to Figure 5, first selecting the samples of greater dissimilarity, the
teacher punctuates the most different ones and then some of the more similar ones.

As this teacher follows the ranking of samples suggested by the system, he
himself can identify how far he can correct to obtain a minimum set of representa-
tion of the diversity of the solutions developed for composition of rubrics and, in
the future, for to train automatic assessment exercises of programming exercises
with a set of examples of teachers’ marks. In this case, we consider 50% for training
and 50% for testing of the prediction model.

Figure 6 presents our first prediction results performed at a distance learning
C programming. In this graph, we present performance results of all the program-
ming solutions developed by a student (al_00009) throughout a programming
course. In the presentation of these results, for each submitted programming
solution, we compared the grade given by a teacher with the grades predicted by our
system from a history of activities previously solved by that same student and from
solutions of other students of class in that same activity based on nearest neighbor
methods. This process of performance analysis is performed for all students of the
distance learning course through our system.

According to the graph of Figure 6, it is observed that the prediction of a
student’s performance in an activity based on a history of exercises solved by that
student and in the solutions of that exercise developed by other students still
present themselves divergent from the assigned marks by a teacher, although in
higher performances these approaches approximate the evaluation of a teacher.

63

Automatic Mapping of Student 3D Profiles in Software Metrics for Temporal Analysis…
DOI: http://dx.doi.org/10.5772/intechopen.81754

In addition, the predictive results of these approaches approximate as the history of
solved exercises used increases. Thus, we present good expectations to advance in
the studies of these methods to predict the performance of programming students.

In conclusion, with some examples of the results generated by the system of
this chapter, we shown the potential of this tool for programming teachers to
accompany the process of learning their students from the beginning to the end of
a course from a broad or reduced set of metrics and with less teachers’ evaluation
effort.

Figure 3.
Evolution of metrics for each activity.

Enhanced Expert Systems

64

Figure 6.
Timeline with prediction of performance in programming.

Figure 4.
Dendrogram of solutions of a programming activity represented on normalized software metrics (without
grades).

Figure 5.
Dendrogram of solutions of a programming activity selected from a correction ranking (with grades).

65

© 2018 The Author(s). Licensee IntechOpen. This chapter is distributed under the terms
of the Creative Commons Attribution License (http://creativecommons.org/licenses/
by/3.0), which permits unrestricted use, distribution, and reproduction in any medium,
provided the original work is properly cited.

Automatic Mapping of Student 3D Profiles in Software Metrics for Temporal Analysis…
DOI: http://dx.doi.org/10.5772/intechopen.81754

Author details

Márcia Gonçalves de Oliveira*, Ádler Oliveira Silva Neves
and Mônica Ferreira Silva Lopes
Federal Institute of Espírito Santo, Vitória, Espírito Santo, Brazil

*Address all correspondence to: marcia.oliveira@ifes.edu.br

5. Conclusion

The system proposed in this chapter was presented as a relevant tool to assist
teachers in their evaluation decisions, enabling them to assist the learning process
of their students in each programming exercise.

For this, our system can recognize where the learning difficulties begin, moni-
tor how students evolve along a course, generate rubric representation and, soon,
predict future performances of programming students.

These possibilities of learning analysis contribute a lot to reducing teachers’
efforts in the onerous task of evaluating programming exercises so that they can
better track the learning process of students and reorient their formative actions.

Some future works from this research are using samples indicated for manual
correction as training references of a semi-automatic programming evaluation
system and improving our strategy to predict performances in activities from the
timeline of solved programming exercises or from students’ solutions that solved
exercises similar to the one we intend to predict a grade.

Through this work we offer, therefore, a multidimensional and the clinical
analysis tool to help teachers in their formative assessment actions and students to
be better assisted in their difficulties and skills in the practice of programming.

Enhanced Expert Systems

64

Figure 6.
Timeline with prediction of performance in programming.

Figure 4.
Dendrogram of solutions of a programming activity represented on normalized software metrics (without
grades).

Figure 5.
Dendrogram of solutions of a programming activity selected from a correction ranking (with grades).

65

© 2018 The Author(s). Licensee IntechOpen. This chapter is distributed under the terms
of the Creative Commons Attribution License (http://creativecommons.org/licenses/
by/3.0), which permits unrestricted use, distribution, and reproduction in any medium,
provided the original work is properly cited.

Automatic Mapping of Student 3D Profiles in Software Metrics for Temporal Analysis…
DOI: http://dx.doi.org/10.5772/intechopen.81754

Author details

Márcia Gonçalves de Oliveira*, Ádler Oliveira Silva Neves
and Mônica Ferreira Silva Lopes
Federal Institute of Espírito Santo, Vitória, Espírito Santo, Brazil

*Address all correspondence to: marcia.oliveira@ifes.edu.br

5. Conclusion

The system proposed in this chapter was presented as a relevant tool to assist
teachers in their evaluation decisions, enabling them to assist the learning process
of their students in each programming exercise.

For this, our system can recognize where the learning difficulties begin, moni-
tor how students evolve along a course, generate rubric representation and, soon,
predict future performances of programming students.

These possibilities of learning analysis contribute a lot to reducing teachers’
efforts in the onerous task of evaluating programming exercises so that they can
better track the learning process of students and reorient their formative actions.

Some future works from this research are using samples indicated for manual
correction as training references of a semi-automatic programming evaluation
system and improving our strategy to predict performances in activities from the
timeline of solved programming exercises or from students’ solutions that solved
exercises similar to the one we intend to predict a grade.

Through this work we offer, therefore, a multidimensional and the clinical
analysis tool to help teachers in their formative assessment actions and students to
be better assisted in their difficulties and skills in the practice of programming.

66

Enhanced Expert Systems

[1] De Oliveira MG, Marques Ciarelli
P, Oliveira E. Recommendation of
programming activities by multi-label
classification for a formative assessment
of students. Expert Systems With
Applications. 2013;40(16):6641-6651

[2] Ferreira Novais D, Varanda Pereira
MJ, Rangel Henriques P. Profile
detection through source code
static analysis. Drops-Idn/6014.
2016;51(9):1-9

[3] Neves A, Reblin L, França H, Lopes
M, Oliveira M, Oliveira E. Mapeamento
Automático de Perfis de Estudantes
em Métricas de Software para Análise
de Aprendizagem de Programação. In
Brazilian Symposium on Computers
in Education (Simpósio Brasileiro
de Informática na Educação-SBIE).
2017;28(1):1337

[4] Curtis B, Sheppard SB, Milliman
P, Borst MA, Love T. Measuring
the psychological complexity of
software maintenance tasks with the
Halstead and McCabe metrics. IEEE
Transactions on Software Engineering.
1979;5(2):96-104

[5] Berry RE, Meekings BAE. A
style analysis of C programs.
Communications of the ACM.
1985;28:80-88

[6] Khirulnuzam AR, Ahmad S,
Nordin J. The Design of an Automated
C Programming Assessment Using
Pseudo-code Comparison Technique.
National Conference on Software
Engineering and Computer Systems.
2007;1-10

[7] Xu S, Chee YS. Transformation-
based diagnosis of student programs for
programming tutoring systems. IEEE
Transactions on Software Engineering.
2003;29:360-384

[8] Naude KA, Greyling JH, Vogts
D. Marking student programs using
graph similarity. Computers in
Education. 2010;54(2):545-561

[9] Rees MJ. Automatic assessment aids
for Pascal programs. SIGPLAN Notices.
1982;17(10):33-42

[10] Hung S, Kwok L, Chung A. New
metrics for automated programming
assessment. In: Proceedings of the IFIP
WG34/SEARCC (SRIG on Education
and Training) Working Conference
on Software Engineering Education.
Amsterdam, The Netherlands:
North-Holland Publishing Co.; 1993.
pp. 233-243

[11] de Oliveira MG, Reblin LL, de
Souza MB, Oliveira E. Automatic
recognition of rubric representations
in programming exercises clusters.
Brazilian Journal of Computers in
Education. 2018;26(02):60

[12] Kumar V, Boulanger D, Seanosky
J, Panneerselvam K, Somasundaram
TS, et al. Competence analytics.
Journal of Computers in Education.
2014;1(4):251-270

[13] Halstead MH. Elements of
Software Science (Operating and
Programming Systems Series).
New York, NY, USA: Elsevier Science
Inc.; 1977

[14] Blikstein P, Worsley M, Piech C,
Sahami M, Cooper S, Koller D.
Programming pluralism: Using learning
analytics to detect patterns in the
learning of computer programming.
The Journal of the Learning Sciences.
2014;23(4):561-599

[15] Oliveira MG, Monroy NAJ,
Zandonade E, Oliveira E. Análise de
componentes latentes da aprendizagem

References

67

Automatic Mapping of Student 3D Profiles in Software Metrics for Temporal Analysis…
DOI: http://dx.doi.org/10.5772/intechopen.81754

de programaçao para mapeamento
e classificaçao de perfis. In Brazilian
Symposium on Computers in Education
(Simpósio Brasileiro de Informática na
Educação-SBIE). 2014;25(1):134-143

[16] Oliveira M, França H, Neves A,
Lopes M, Silva AC. Instrumentos
de Visualização da Informação para
Avaliação Diagnóstica em Curso de
Programação a Distância. In: Anais do
Workshop de Informática na Escola.
October 2017;23(1):452

[17] Spalenza M, Oliveira E, Oliveira
M, Nogueira M. Uso de Mapa de
Características na Avaliação de Textos
Curtos nos Ambientes Virtuais de
Aprendizagem. In: Brazilian Symposium
on Computers in Education (Simpósio
Brasileiro de Informática na Educação-
SBIE). 2016. p. 1165. Available from:
http://www.br-ie.org/pub/index.php/
sbie/article/view/6802

[18] Tang H, Xing W, Pei B. Time
really matters: Understanding the
temporal dimension of online learning
using educational data mining.
Journal of Educational Computing
Research:0735633118784705. Available
from: https://journals.sagepub.com/
doi/pdf/10.1177/0735633118784705?c
asa_token=gYB8xtamE-AAAAAA:byyb
5nlAyEnPrkI8u7gAtJNjn5Il4hysSOTAmS
GBB1DLTCkjPJ3kqYm8Qy7iFTo3AHSfa
59mDuAK5Q

[19] Pedregosa F, Varoquaux G,
Gramfort A, Michel V, Thirion B, Grisel
O, et al. Scikit-learn: Machine learning
in python. Journal of Machine Learning
Research. 2011;12:2825-2830. Available
from: http://dl.acm.org/citation.
cfm?id=2078195%5Cnhttp://arxiv.org/
abs/1201.0490

66

Enhanced Expert Systems

[1] De Oliveira MG, Marques Ciarelli
P, Oliveira E. Recommendation of
programming activities by multi-label
classification for a formative assessment
of students. Expert Systems With
Applications. 2013;40(16):6641-6651

[2] Ferreira Novais D, Varanda Pereira
MJ, Rangel Henriques P. Profile
detection through source code
static analysis. Drops-Idn/6014.
2016;51(9):1-9

[3] Neves A, Reblin L, França H, Lopes
M, Oliveira M, Oliveira E. Mapeamento
Automático de Perfis de Estudantes
em Métricas de Software para Análise
de Aprendizagem de Programação. In
Brazilian Symposium on Computers
in Education (Simpósio Brasileiro
de Informática na Educação-SBIE).
2017;28(1):1337

[4] Curtis B, Sheppard SB, Milliman
P, Borst MA, Love T. Measuring
the psychological complexity of
software maintenance tasks with the
Halstead and McCabe metrics. IEEE
Transactions on Software Engineering.
1979;5(2):96-104

[5] Berry RE, Meekings BAE. A
style analysis of C programs.
Communications of the ACM.
1985;28:80-88

[6] Khirulnuzam AR, Ahmad S,
Nordin J. The Design of an Automated
C Programming Assessment Using
Pseudo-code Comparison Technique.
National Conference on Software
Engineering and Computer Systems.
2007;1-10

[7] Xu S, Chee YS. Transformation-
based diagnosis of student programs for
programming tutoring systems. IEEE
Transactions on Software Engineering.
2003;29:360-384

[8] Naude KA, Greyling JH, Vogts
D. Marking student programs using
graph similarity. Computers in
Education. 2010;54(2):545-561

[9] Rees MJ. Automatic assessment aids
for Pascal programs. SIGPLAN Notices.
1982;17(10):33-42

[10] Hung S, Kwok L, Chung A. New
metrics for automated programming
assessment. In: Proceedings of the IFIP
WG34/SEARCC (SRIG on Education
and Training) Working Conference
on Software Engineering Education.
Amsterdam, The Netherlands:
North-Holland Publishing Co.; 1993.
pp. 233-243

[11] de Oliveira MG, Reblin LL, de
Souza MB, Oliveira E. Automatic
recognition of rubric representations
in programming exercises clusters.
Brazilian Journal of Computers in
Education. 2018;26(02):60

[12] Kumar V, Boulanger D, Seanosky
J, Panneerselvam K, Somasundaram
TS, et al. Competence analytics.
Journal of Computers in Education.
2014;1(4):251-270

[13] Halstead MH. Elements of
Software Science (Operating and
Programming Systems Series).
New York, NY, USA: Elsevier Science
Inc.; 1977

[14] Blikstein P, Worsley M, Piech C,
Sahami M, Cooper S, Koller D.
Programming pluralism: Using learning
analytics to detect patterns in the
learning of computer programming.
The Journal of the Learning Sciences.
2014;23(4):561-599

[15] Oliveira MG, Monroy NAJ,
Zandonade E, Oliveira E. Análise de
componentes latentes da aprendizagem

References

67

Automatic Mapping of Student 3D Profiles in Software Metrics for Temporal Analysis…
DOI: http://dx.doi.org/10.5772/intechopen.81754

de programaçao para mapeamento
e classificaçao de perfis. In Brazilian
Symposium on Computers in Education
(Simpósio Brasileiro de Informática na
Educação-SBIE). 2014;25(1):134-143

[16] Oliveira M, França H, Neves A,
Lopes M, Silva AC. Instrumentos
de Visualização da Informação para
Avaliação Diagnóstica em Curso de
Programação a Distância. In: Anais do
Workshop de Informática na Escola.
October 2017;23(1):452

[17] Spalenza M, Oliveira E, Oliveira
M, Nogueira M. Uso de Mapa de
Características na Avaliação de Textos
Curtos nos Ambientes Virtuais de
Aprendizagem. In: Brazilian Symposium
on Computers in Education (Simpósio
Brasileiro de Informática na Educação-
SBIE). 2016. p. 1165. Available from:
http://www.br-ie.org/pub/index.php/
sbie/article/view/6802

[18] Tang H, Xing W, Pei B. Time
really matters: Understanding the
temporal dimension of online learning
using educational data mining.
Journal of Educational Computing
Research:0735633118784705. Available
from: https://journals.sagepub.com/
doi/pdf/10.1177/0735633118784705?c
asa_token=gYB8xtamE-AAAAAA:byyb
5nlAyEnPrkI8u7gAtJNjn5Il4hysSOTAmS
GBB1DLTCkjPJ3kqYm8Qy7iFTo3AHSfa
59mDuAK5Q

[19] Pedregosa F, Varoquaux G,
Gramfort A, Michel V, Thirion B, Grisel
O, et al. Scikit-learn: Machine learning
in python. Journal of Machine Learning
Research. 2011;12:2825-2830. Available
from: http://dl.acm.org/citation.
cfm?id=2078195%5Cnhttp://arxiv.org/
abs/1201.0490

Chapter 5

Multiset-Based Knowledge
Representation for the Assessment
and Optimization of Large-Scale
Sociotechnical Systems
Igor Sheremet

Abstract

This chapter is dedicated to a new knowledge representation model, providing
convergence of classical operations research and modern knowledge engineering.
Kernel of the introduced model is the recursively generated multisets, selected
according to the predefined restrictions and optimization criteria. Sets of multisets
are described by the so-called multiset grammars (MGs), being projection of a
conceptual background of well-known string-generating grammars on the
multisets universum. Syntax and semantics of MGs and their practice-oriented
development—unitary multiset grammars and metagrammars—are considered.

Keywords: systems analysis, operations research, knowledge engineering,
digital economy, multisets, recursive multisets, multiset grammars, unitary
multiset grammars and multimetagrammars, sociotechnical systems assessment
and optimization

1. Introduction

Large-scale sociotechnical systems (STS) usually have hierarchical structure,
including personnel and various technical devices, which, in turn, consume various
material, financial, information resources, as well as energy. As a result, they pro-
duce new resources (objects), which are delivered to other similar systems. Main
features of such STS are large dimensionality and high volatility of their
structures, equipment, consumed/produced objects, and at all, operation logics
and dynamics [1–5].

Knowledge and data representation models, used in STS, provide comparatively
easy and comfortable management of very large knowledge and data bases with
dynamic structures and content [6–10]. These model bases are objects other than
matrices, vectors, and graphs, traditionally used in operations research and systems
analysis [11–14], and they are much more convenient for practical problem
consideration. But, on the other hand, aforementioned models in general case do
not incorporate strict theoretical background and fundamental algorithmics, com-
pared with, for example, mathematical programming, which provides strictly
optimal solutions for decision-makers. So, practically all decision-support software
in the considered STS is based on various heuristics, which correctness and

69

Chapter 5

Multiset-Based Knowledge
Representation for the Assessment
and Optimization of Large-Scale
Sociotechnical Systems
Igor Sheremet

Abstract

This chapter is dedicated to a new knowledge representation model, providing
convergence of classical operations research and modern knowledge engineering.
Kernel of the introduced model is the recursively generated multisets, selected
according to the predefined restrictions and optimization criteria. Sets of multisets
are described by the so-called multiset grammars (MGs), being projection of a
conceptual background of well-known string-generating grammars on the
multisets universum. Syntax and semantics of MGs and their practice-oriented
development—unitary multiset grammars and metagrammars—are considered.

Keywords: systems analysis, operations research, knowledge engineering,
digital economy, multisets, recursive multisets, multiset grammars, unitary
multiset grammars and multimetagrammars, sociotechnical systems assessment
and optimization

1. Introduction

Large-scale sociotechnical systems (STS) usually have hierarchical structure,
including personnel and various technical devices, which, in turn, consume various
material, financial, information resources, as well as energy. As a result, they pro-
duce new resources (objects), which are delivered to other similar systems. Main
features of such STS are large dimensionality and high volatility of their
structures, equipment, consumed/produced objects, and at all, operation logics
and dynamics [1–5].

Knowledge and data representation models, used in STS, provide comparatively
easy and comfortable management of very large knowledge and data bases with
dynamic structures and content [6–10]. These model bases are objects other than
matrices, vectors, and graphs, traditionally used in operations research and systems
analysis [11–14], and they are much more convenient for practical problem
consideration. But, on the other hand, aforementioned models in general case do
not incorporate strict theoretical background and fundamental algorithmics, com-
pared with, for example, mathematical programming, which provides strictly
optimal solutions for decision-makers. So, practically all decision-support software
in the considered STS is based on various heuristics, which correctness and

69

adequacy are not proved usually in the mathematical sense. As a consequence,
quality of the adopted decisions, based on such heuristics, in many cases may be far
of optimal.

This chapter is dedicated to a primary survey of the developed knowledge repre-
sentation model, providing convergence of classical operations research and modern
knowledge engineering. This convergence creates new opportunities for complicated
problem formalization and solution by integrating best features of mathematical
programming (strict optimal solution search in solution space, defined by goal func-
tions and boundary conditions) and constraint programming [15–17] (natural and
easily updated top-down representation of logic of the decision-making in various
situations). Kernel of the considered model is multisets (MS)—relatively long ago
known and in the last 20 years intensively applied object of classical mathematics
[18–29]. This background is generalized to the recursively generated, or, for short,
recursive multisets (RMS) by introduction of so-called multiset grammars, or, again
for short, multigrammars (MGs), which were described by the author in [30, 31].
Last, in turn, are peculiar “projection” of the conceptual basis of classical formal
grammars by Chomsky [32, 33], operating strings of symbols, to the multisets
universum in such a way, that MGs provide generation of one multiset from another
and selection (filtration) of those, which satisfy necessary integral conditions:
boundary restrictions and/or optimality criteria.

MGs may be considered as prolog-like constraint programming language for
solution of problems in operations research and systems analysis areas. Taking into
account relative novelty of the multigrammatical approach and absence of any
substantial associations with mathematical constructions presented lower, we
introduce main content of the chapter by short informal description of the main
elements of this approach in Section 2. Basic formal definitions are presented in
Section 3. Section 4 is dedicated to multiset grammars, while Section 5—to detailed
consideration of the so-called unitary multigrammars (UMGs) and unitary
multimetagrammars (UMMGs), which are main tool of the aforementioned prob-
lem formalization and solution.

2. Informal description

Let us consider a company, which consists of director, three departments, and
one separate laboratory. This fact may be simply represented as follows:

company! 1 � director, 3 � department, 1 � laboratory: (1)

In this notation, a whole structure of the company, detailed to employee posi-
tions, may be described in such a way:

department! 1 � head� department, 3 � laboratory,
laboratory ! 1 � head� laboratory, 2 � analyst, 3 � assistant: (2)

This set of constructions is of the form:

a! n1 � a1,…, nm � am (3)

describes following set, created by multiplying and summarizing quantities of
identical positions:

1 � director; 3 � head� department; 10 � head� laboratory; 20 � analyst; 30 � assistantf g,
(4)

70

Enhanced Expert Systems

where ni � ai means there are ni positions of type ai in this company.
Let us join to the company structure knowledge about employees’ month salary,

represented in the same unified manner:

director! 10000 � eur,
head‐department! 5000 � eur,
head‐laboratory! 3000 � eur,
analyst! 1500 � eur,
assistant! 500 � eur:

(5)

After applying to the joined set of constructions just the same multiplying-
summarizing procedure, we may obtain resulting set containing the only element
{100,000�eur}, which defines company’s total financial resource, necessary for
employees’ provision a month.

Presented knowledge representation concerns systems analysis, that is,
obtaining integral parameters of the system given its structure and local parameters.

Consider more sophisticated task-relating systems design and concerning devel-
opment of company structure given its integral parameters. Goal is to determine
rational quantity of departments and laboratories in the department, as well as
quantities of analysts and assistants in one laboratory. Total salary is no more than
120,000 eur, quantity of analysts in one laboratory may be from 1 to 3, while
corresponding quantity of assistants may be from 2 to 6. Total quantity of
employees must be maximal. There may be three different variants of company
structure: (1) three departments and one laboratory; (2) two departments and three
laboratories; and (3) four departments. Corresponding set of constructions is as
follows:

company! 1 � director, 3 � department, 1 � laboratory, (6)

company! 1 � director, 2 � department, 1 � laboratory, (7)

company! 1 � director, 4 � department, (8)

department! 1 � head‐department, m � laboratory, (9)

laboratory! 1 � head‐laboratory, n � analyst, l � assistant: (10)

Constructions, defining employees’ salary, and other aforementioned restric-
tions are as follows (for definiteness, let us take that quantity of laboratories in one
department does not exceed five):

director! 1 � employee, 10000 � eur, (11)

head‐department! 1 � employee, 5000 � eur, (12)

head‐laboratory! 1 � employee, 3000 � eur, (13)

analyst! 1 � employee, 1500 � eur, (14)

assistant! 1 � employee, 500 � eur, (15)

employee ¼ max, (16)

eur≤ 120000, (17)

1≤m≤ 5, (18)

1≤ n≤ 3, (19)

1≤ l≤ 6: (20)

71

Multiset-Based Knowledge Representation for the Assessment and Optimization of Large-Scale…
DOI: http://dx.doi.org/10.5772/intechopen.81698

adequacy are not proved usually in the mathematical sense. As a consequence,
quality of the adopted decisions, based on such heuristics, in many cases may be far
of optimal.

This chapter is dedicated to a primary survey of the developed knowledge repre-
sentation model, providing convergence of classical operations research and modern
knowledge engineering. This convergence creates new opportunities for complicated
problem formalization and solution by integrating best features of mathematical
programming (strict optimal solution search in solution space, defined by goal func-
tions and boundary conditions) and constraint programming [15–17] (natural and
easily updated top-down representation of logic of the decision-making in various
situations). Kernel of the considered model is multisets (MS)—relatively long ago
known and in the last 20 years intensively applied object of classical mathematics
[18–29]. This background is generalized to the recursively generated, or, for short,
recursive multisets (RMS) by introduction of so-called multiset grammars, or, again
for short, multigrammars (MGs), which were described by the author in [30, 31].
Last, in turn, are peculiar “projection” of the conceptual basis of classical formal
grammars by Chomsky [32, 33], operating strings of symbols, to the multisets
universum in such a way, that MGs provide generation of one multiset from another
and selection (filtration) of those, which satisfy necessary integral conditions:
boundary restrictions and/or optimality criteria.

MGs may be considered as prolog-like constraint programming language for
solution of problems in operations research and systems analysis areas. Taking into
account relative novelty of the multigrammatical approach and absence of any
substantial associations with mathematical constructions presented lower, we
introduce main content of the chapter by short informal description of the main
elements of this approach in Section 2. Basic formal definitions are presented in
Section 3. Section 4 is dedicated to multiset grammars, while Section 5—to detailed
consideration of the so-called unitary multigrammars (UMGs) and unitary
multimetagrammars (UMMGs), which are main tool of the aforementioned prob-
lem formalization and solution.

2. Informal description

Let us consider a company, which consists of director, three departments, and
one separate laboratory. This fact may be simply represented as follows:

company! 1 � director, 3 � department, 1 � laboratory: (1)

In this notation, a whole structure of the company, detailed to employee posi-
tions, may be described in such a way:

department! 1 � head� department, 3 � laboratory,
laboratory ! 1 � head� laboratory, 2 � analyst, 3 � assistant: (2)

This set of constructions is of the form:

a! n1 � a1,…, nm � am (3)

describes following set, created by multiplying and summarizing quantities of
identical positions:

1 � director; 3 � head� department; 10 � head� laboratory; 20 � analyst; 30 � assistantf g,
(4)

70

Enhanced Expert Systems

where ni � ai means there are ni positions of type ai in this company.
Let us join to the company structure knowledge about employees’ month salary,

represented in the same unified manner:

director! 10000 � eur,
head‐department! 5000 � eur,
head‐laboratory! 3000 � eur,
analyst! 1500 � eur,
assistant! 500 � eur:

(5)

After applying to the joined set of constructions just the same multiplying-
summarizing procedure, we may obtain resulting set containing the only element
{100,000�eur}, which defines company’s total financial resource, necessary for
employees’ provision a month.

Presented knowledge representation concerns systems analysis, that is,
obtaining integral parameters of the system given its structure and local parameters.

Consider more sophisticated task-relating systems design and concerning devel-
opment of company structure given its integral parameters. Goal is to determine
rational quantity of departments and laboratories in the department, as well as
quantities of analysts and assistants in one laboratory. Total salary is no more than
120,000 eur, quantity of analysts in one laboratory may be from 1 to 3, while
corresponding quantity of assistants may be from 2 to 6. Total quantity of
employees must be maximal. There may be three different variants of company
structure: (1) three departments and one laboratory; (2) two departments and three
laboratories; and (3) four departments. Corresponding set of constructions is as
follows:

company! 1 � director, 3 � department, 1 � laboratory, (6)

company! 1 � director, 2 � department, 1 � laboratory, (7)

company! 1 � director, 4 � department, (8)

department! 1 � head‐department, m � laboratory, (9)

laboratory! 1 � head‐laboratory, n � analyst, l � assistant: (10)

Constructions, defining employees’ salary, and other aforementioned restric-
tions are as follows (for definiteness, let us take that quantity of laboratories in one
department does not exceed five):

director! 1 � employee, 10000 � eur, (11)

head‐department! 1 � employee, 5000 � eur, (12)

head‐laboratory! 1 � employee, 3000 � eur, (13)

analyst! 1 � employee, 1500 � eur, (14)

assistant! 1 � employee, 500 � eur, (15)

employee ¼ max, (16)

eur≤ 120000, (17)

1≤m≤ 5, (18)

1≤ n≤ 3, (19)

1≤ l≤ 6: (20)

71

Multiset-Based Knowledge Representation for the Assessment and Optimization of Large-Scale…
DOI: http://dx.doi.org/10.5772/intechopen.81698

As seen, along with already introduced “detailing” constructions, there are
additional constructions, defining sets of values of variables, having places in the
first ones, as well as conditions, determining optimization criterion (there may be
several such criteria), and bounds of quantities of some objects in the resulting sets.
Evidently, due to presence of alternatives in the description of company structure
(there are three such alternatives) and variables in some of “detailing” construc-
tions, there may be more than one resulting set like Eq. (4). These sets are of the
form x � employee; y � eurf g, where x is the quantity of employees, while y—total
salary, corresponding to this variant. Conditions (16)–(20) provide selection of
those sets, which satisfy them in the described sense. In general, Eqs. (16)–(20) may
be interpreted as a query, determining subset of all possible variants, described by
Eqs. (6)–(15).

To “mark” “detailing” constructions, used while resulting set creation, one can
add to their “bodies” elements like 1 � variant‐i, for example,

company! 1 � variant‐1, 1 � director, 3 � department, 1 � laboratory, (21)

company! 1 � variant‐2, 1 � director, 2 � department, 3 � laboratory, (22)

company! 1 � variant‐3, 1 � director, 4 � department: (23)

If so, then resulting sets will be of the form:

1 � variant‐i; x � employee; y � eurf g: (24)

To implant to these sets values of variables, it is sufficient to represent them in
resulting sets in “usual” form j � v, where v is variable and j is its value, so considered
example will lead us to sets like:

1 � variant‐i; x � employee; y � eur; i �m; j � n; k � lf g: (25)

As seen, shortly introduced by this example knowledge and query representa-
tion language, being easy to understand and to use, allows formalization of
multicriterial optimization problems, for years associated with mathematical pro-
gramming. On the other hand, “detailing” constructions have form of productions
(rules), far and wide used in knowledge engineering and being common back-
ground of prolog-like declarative (nonprocedural) knowledge representation
[34–36]. As will be shown lower, such constructions may be used not only for
structuring, but in many other cases, enabling description of various systems
behavior and interaction, as well as their mutual impacts. For such reasons, this
informally described technique is taken as a basis for the description of the devel-
oped mathematical toolkit considered thoroughly in the following sections.

3. Basic operations on multisets

Classical set theory is based on the concept of set as unordered assembly of
elements, different from one another. Theory of multisets assumes presence of
equal (“indistinguishable”) elements:

v ¼ a1,…, a1|fflfflfflfflffl{zfflfflfflfflffl}
n1 times

;…; ai,…, ai|fflfflfflffl{zfflfflfflffl}
ni times

;…; am,…, am|fflfflfflfflfflffl{zfflfflfflfflfflffl}
nm times

8<
:

9=
; (26)

72

Enhanced Expert Systems

Expression (26) is recorded as:

v ¼ n1 � a1;…; nm � amf g, (27)

where v is called multiset, a1,…, am—objects, n1,…, nm—multiplicities of these
objects, and n1 � a1,…, nm � am—multiobjects. Following Eq. (27), one may consider
v as set of multiobjects; also, from substantial point of view, set a1;…; amf g and
multiset 1 � a1;…; 1 � amf g are equivalent. Empty multiset, as well as empty set, is
designated as ∅f g. Multiplicity of object may be zero, what is equivalent to absence
of this object in the multiset:

n1 � a1;…; nm � am;0 � amþ1f g ¼ n1 � a1;…; nm � amf g: (28)

Fact that object a or multiobject n � a belongs to multiset v (“enters v”) is
designated by one and the same symbol ∈ : a∈ v, n � a∈ v. Set β vð Þ ¼ ajn � a∈ vf g is
called basis of multiset v.

There are five main operations on multisets, used lower: join, intersection,
addition, subtraction, and multiplication by constant [26, 27].

Consider two multisets:

v ¼ n1 � a1;…; nm � amf g,
v0 ¼ n01 � a01;…; n0m0 � a0m0

� �
:

(29)

Result of their join (recorded as ∪) is multiset.

v⋃v0 ¼ ⋃
a∈ a1;…; amf g∩ a01;…; a0m0

� �
n � a∈ v

n0 � a∈ v

max n; n0ð Þ � af g

0
BBBBBBBBBB@

1
CCCCCCCCCCA

∪

∪ ⋃
a∈ a1;…; a0m0
� �� a01;…; a0m0

� �
n�a∈ v

n�af g

0
BBB@

1
CCCA∪

∪ ⋃
a0 ∈ a01;…; a0m

� �� a1;…; amf g
n0 �a0 ∈ v

n0 �a0f g

0
BBB@

1
CCCA,

(30)

where ∪,∩ and� designate operations of set-theoretical join, intersection, and
subtraction of two sets correspondingly, while ⋃ designates operation of set-
theoretical join of sets determined by underwritten conditions.

Result of v, v0 multisets intersection (recorded as ⋂) is multiset.

v⋂v0 ¼ ⋃
a∈ a1;…; amf g∩ a01;…; a0m0

� �
n � a∈ v
n0 � a∈ v

min n, n0ð Þ � af g

0
BBBBBBBBB@

1
CCCCCCCCCA

: (31)

73

Multiset-Based Knowledge Representation for the Assessment and Optimization of Large-Scale…
DOI: http://dx.doi.org/10.5772/intechopen.81698

As seen, along with already introduced “detailing” constructions, there are
additional constructions, defining sets of values of variables, having places in the
first ones, as well as conditions, determining optimization criterion (there may be
several such criteria), and bounds of quantities of some objects in the resulting sets.
Evidently, due to presence of alternatives in the description of company structure
(there are three such alternatives) and variables in some of “detailing” construc-
tions, there may be more than one resulting set like Eq. (4). These sets are of the
form x � employee; y � eurf g, where x is the quantity of employees, while y—total
salary, corresponding to this variant. Conditions (16)–(20) provide selection of
those sets, which satisfy them in the described sense. In general, Eqs. (16)–(20) may
be interpreted as a query, determining subset of all possible variants, described by
Eqs. (6)–(15).

To “mark” “detailing” constructions, used while resulting set creation, one can
add to their “bodies” elements like 1 � variant‐i, for example,

company! 1 � variant‐1, 1 � director, 3 � department, 1 � laboratory, (21)

company! 1 � variant‐2, 1 � director, 2 � department, 3 � laboratory, (22)

company! 1 � variant‐3, 1 � director, 4 � department: (23)

If so, then resulting sets will be of the form:

1 � variant‐i; x � employee; y � eurf g: (24)

To implant to these sets values of variables, it is sufficient to represent them in
resulting sets in “usual” form j � v, where v is variable and j is its value, so considered
example will lead us to sets like:

1 � variant‐i; x � employee; y � eur; i �m; j � n; k � lf g: (25)

As seen, shortly introduced by this example knowledge and query representa-
tion language, being easy to understand and to use, allows formalization of
multicriterial optimization problems, for years associated with mathematical pro-
gramming. On the other hand, “detailing” constructions have form of productions
(rules), far and wide used in knowledge engineering and being common back-
ground of prolog-like declarative (nonprocedural) knowledge representation
[34–36]. As will be shown lower, such constructions may be used not only for
structuring, but in many other cases, enabling description of various systems
behavior and interaction, as well as their mutual impacts. For such reasons, this
informally described technique is taken as a basis for the description of the devel-
oped mathematical toolkit considered thoroughly in the following sections.

3. Basic operations on multisets

Classical set theory is based on the concept of set as unordered assembly of
elements, different from one another. Theory of multisets assumes presence of
equal (“indistinguishable”) elements:

v ¼ a1,…, a1|fflfflfflfflffl{zfflfflfflfflffl}
n1 times

;…; ai,…, ai|fflfflfflffl{zfflfflfflffl}
ni times

;…; am,…, am|fflfflfflfflfflffl{zfflfflfflfflfflffl}
nm times

8<
:

9=
; (26)

72

Enhanced Expert Systems

Expression (26) is recorded as:

v ¼ n1 � a1;…; nm � amf g, (27)

where v is called multiset, a1,…, am—objects, n1,…, nm—multiplicities of these
objects, and n1 � a1,…, nm � am—multiobjects. Following Eq. (27), one may consider
v as set of multiobjects; also, from substantial point of view, set a1;…; amf g and
multiset 1 � a1;…; 1 � amf g are equivalent. Empty multiset, as well as empty set, is
designated as ∅f g. Multiplicity of object may be zero, what is equivalent to absence
of this object in the multiset:

n1 � a1;…; nm � am;0 � amþ1f g ¼ n1 � a1;…; nm � amf g: (28)

Fact that object a or multiobject n � a belongs to multiset v (“enters v”) is
designated by one and the same symbol ∈ : a∈ v, n � a∈ v. Set β vð Þ ¼ ajn � a∈ vf g is
called basis of multiset v.

There are five main operations on multisets, used lower: join, intersection,
addition, subtraction, and multiplication by constant [26, 27].

Consider two multisets:

v ¼ n1 � a1;…; nm � amf g,
v0 ¼ n01 � a01;…; n0m0 � a0m0

� �
:

(29)

Result of their join (recorded as ∪) is multiset.

v⋃v0 ¼ ⋃
a∈ a1;…; amf g∩ a01;…; a0m0

� �
n � a∈ v

n0 � a∈ v

max n; n0ð Þ � af g

0
BBBBBBBBBB@

1
CCCCCCCCCCA

∪

∪ ⋃
a∈ a1;…; a0m0
� �� a01;…; a0m0

� �
n�a∈ v

n�af g

0
BBB@

1
CCCA∪

∪ ⋃
a0 ∈ a01;…; a0m

� �� a1;…; amf g
n0 �a0 ∈ v

n0 �a0f g

0
BBB@

1
CCCA,

(30)

where ∪,∩ and� designate operations of set-theoretical join, intersection, and
subtraction of two sets correspondingly, while ⋃ designates operation of set-
theoretical join of sets determined by underwritten conditions.

Result of v, v0 multisets intersection (recorded as ⋂) is multiset.

v⋂v0 ¼ ⋃
a∈ a1;…; amf g∩ a01;…; a0m0

� �
n � a∈ v
n0 � a∈ v

min n, n0ð Þ � af g

0
BBBBBBBBB@

1
CCCCCCCCCA

: (31)

73

Multiset-Based Knowledge Representation for the Assessment and Optimization of Large-Scale…
DOI: http://dx.doi.org/10.5772/intechopen.81698

Result of v, v0 multisets addition (recorded as bold þ) is multiset.

vþv0 ¼ ⋃
a∈ a1;…; amf g∩ a01;…; a0m0

� �
n � a∈ v

n0 � a∈ v

nþ n0ð Þ � af g

0
BBBBBBBBBB@

1
CCCCCCCCCCA

∪

∪ ⋃
a∈ a1;…; amf g � a01;…; a0m0

� �
n�a∈ v

n�af g

0
BBB@

1
CCCA∪

∪ ⋃
a0 ∈ a01;…; a0m0

� �� a1;…; amf g
n0�a∈ v0

n0 �af g

0
BBB@

1
CCCA:

(32)

Result of v0 multiset subtraction from vmultiset (recorded as bold�) is multiset.

v� v0 ¼ ⋃
a∈ a1;…; amf g∩ a01;…; a0m0

� �
n � a∈ v

n0 � a∈ v0

n>n0

n� n0ð Þ � af g

0
BBBBBBBBBBBBBBBB@

1
CCCCCCCCCCCCCCCCA

∪

∪ ⋃
a∈ a1;…; amf g � a01;…; a0m0

� �
n�a∈ v

n�af g

0
BBB@

1
CCCA:

(33)

At last, result of vmultiset multiplication by integer number n (recorded as v∗n)
is multiset.

v∗n ¼ n� n1ð Þ � a1;…; n� nmð Þ � amf g (34)

(here integers’ usual multiplication is recorded as �)
There are also two basic relations on multisets: inclusion (⊆) and strict

inclusion (⊂).
Multiset v is included to multiset v0, that is, v⊆v0, if

∀n � a∈ vð Þ ∃n0 � a∈ v0ð Þ n≤ n0ð Þ½ �, (35)

and multiset v is strictly included to multiset v0, that is, v⊂v0, if v⊆v0& v 6¼v0:
Example 1. Let v1 ¼ 3 ∙ analyst; 2 ∙ assistantf g, v2 ¼ 4 ∙ assistant; 1 ∙ directorf g, then

74

Enhanced Expert Systems

v1∪v2 ¼ 3 � analyst;4 � assistant; 1 � directorf g,
v1∩v2 ¼ 2 � assistantf g,
v1þv2 ¼ 3 � analyst; 6 � assistant; 1 � directorf g,
v2 � v1 ¼ 2 � assistantf g,
v1∗2 ¼ 6 � analyst;4 � assistantf g,
1 � analyst; 2 � assistantf g⊂v1,
4 � assistant; 1 � directorf g⊆v2: ∎

All defined operations are known from widespread sources (e.g., aforemen-
tioned [26, 27]). At the same time, filtering operations, defined lower, operate sets
of multisets (SMS), creating subsets of these sets by selection of multisets, which
satisfy some conditions, being operands of these operations.

There are two types of conditions: boundary and optimizing.
Boundary condition may be elementary or concatenated (for short,

“chain”). Elementary boundary condition (EBC) may have one of the following
forms:

nρa, (36)

aρn, (37)

aρa0, (38)

where a and a0 are the objects, n is the integer number, and ρ∈ , ;¼; ≤f g.
Chain boundary condition (CBC) is constructed from elementary by writing them
sequentially:

e1ρ1e2ρ2…eiρieiþ1…emρmemþ1, (39)

where e1,…, emþ1 are the objects or nonnegative integers, while ρ1,…, ρm are the
symbols of relations (, , ¼ , ≤).

EBC semantics is following. Let V be set of multisets, and v∈V. Multiset v
satisfies EBC nρa, if n � a∈V, and nρn is true. Similarly, v satisfies EBC aρn, if nρn is
also true. At last, v satisfies EBC aρa

0
, if n � a∈ v, n0 � a0 ∈ v, and nρn

0
is true. There is

one addition to all listed definitions, concerning particular case, when
n � a∉ v n

0 � a∉ v
� �

, which is equivalent to n ¼ 0 n
0 ¼ 0

� �
.

CBC semantics is defined as follows. CBC (39) is replaced by CBC sequence

e1ρ1e2, e2ρ2e3,…, eiρieiþ1,…, emρmemþ1, (40)

and v∈V is considered satisfying CBC (39), if it satisfies all EBC having place in
Eq. (40).

Result of application of boundary condition b to SMS V is recorded as V↓b.
Example 2. Let V ¼ v1; v2f g, where v1 ¼ 5 � analyst; 3 � assistant; 1 � directorf g,

v2 ¼ 2 � assistant;4 � director; 3 � employeef g, and boundary conditions are 2≤
analyst≤ 4, assistant, employee, 1≤ director≤ assistant≤ 3, and analyst ¼
assistant, 5: Table 1 contains result of application of listed boundary conditions toV.∎

Optimizing condition has form a = opt, where a is the object, and
opt∈ min;maxf g. Semantics of this construction is following. Multiset v∈V sat-
isfies condition a ¼ min, if for every v0 ∈V, such that v 6¼ v0, multiplicity n in
multiobject n � a∈ v is not greater, than multiplicity n0 in multiobject n0 � a∈ v0, that
is, n≤ n0. Similarly, v∈V satisfies condition a ¼ max, if for every v0 ∈V, such that
v 6¼ v0, multiplicity n in multiobject n � a∈ v is not less, than multiplicity n0 in

75

Multiset-Based Knowledge Representation for the Assessment and Optimization of Large-Scale…
DOI: http://dx.doi.org/10.5772/intechopen.81698

Result of v, v0 multisets addition (recorded as bold þ) is multiset.

vþv0 ¼ ⋃
a∈ a1;…; amf g∩ a01;…; a0m0

� �
n � a∈ v

n0 � a∈ v

nþ n0ð Þ � af g

0
BBBBBBBBBB@

1
CCCCCCCCCCA

∪

∪ ⋃
a∈ a1;…; amf g � a01;…; a0m0

� �
n�a∈ v

n�af g

0
BBB@

1
CCCA∪

∪ ⋃
a0 ∈ a01;…; a0m0

� �� a1;…; amf g
n0�a∈ v0

n0 �af g

0
BBB@

1
CCCA:

(32)

Result of v0 multiset subtraction from vmultiset (recorded as bold�) is multiset.

v� v0 ¼ ⋃
a∈ a1;…; amf g∩ a01;…; a0m0

� �
n � a∈ v

n0 � a∈ v0

n>n0

n� n0ð Þ � af g

0
BBBBBBBBBBBBBBBB@

1
CCCCCCCCCCCCCCCCA

∪

∪ ⋃
a∈ a1;…; amf g � a01;…; a0m0

� �
n�a∈ v

n�af g

0
BBB@

1
CCCA:

(33)

At last, result of vmultiset multiplication by integer number n (recorded as v∗n)
is multiset.

v∗n ¼ n� n1ð Þ � a1;…; n� nmð Þ � amf g (34)

(here integers’ usual multiplication is recorded as �)
There are also two basic relations on multisets: inclusion (⊆) and strict

inclusion (⊂).
Multiset v is included to multiset v0, that is, v⊆v0, if

∀n � a∈ vð Þ ∃n0 � a∈ v0ð Þ n≤ n0ð Þ½ �, (35)

and multiset v is strictly included to multiset v0, that is, v⊂v0, if v⊆v0& v 6¼v0:
Example 1. Let v1 ¼ 3 ∙ analyst; 2 ∙ assistantf g, v2 ¼ 4 ∙ assistant; 1 ∙ directorf g, then

74

Enhanced Expert Systems

v1∪v2 ¼ 3 � analyst;4 � assistant; 1 � directorf g,
v1∩v2 ¼ 2 � assistantf g,
v1þv2 ¼ 3 � analyst; 6 � assistant; 1 � directorf g,
v2 � v1 ¼ 2 � assistantf g,
v1∗2 ¼ 6 � analyst;4 � assistantf g,
1 � analyst; 2 � assistantf g⊂v1,
4 � assistant; 1 � directorf g⊆v2: ∎

All defined operations are known from widespread sources (e.g., aforemen-
tioned [26, 27]). At the same time, filtering operations, defined lower, operate sets
of multisets (SMS), creating subsets of these sets by selection of multisets, which
satisfy some conditions, being operands of these operations.

There are two types of conditions: boundary and optimizing.
Boundary condition may be elementary or concatenated (for short,

“chain”). Elementary boundary condition (EBC) may have one of the following
forms:

nρa, (36)

aρn, (37)

aρa0, (38)

where a and a0 are the objects, n is the integer number, and ρ∈ , ;¼; ≤f g.
Chain boundary condition (CBC) is constructed from elementary by writing them
sequentially:

e1ρ1e2ρ2…eiρieiþ1…emρmemþ1, (39)

where e1,…, emþ1 are the objects or nonnegative integers, while ρ1,…, ρm are the
symbols of relations (, , ¼ , ≤).

EBC semantics is following. Let V be set of multisets, and v∈V. Multiset v
satisfies EBC nρa, if n � a∈V, and nρn is true. Similarly, v satisfies EBC aρn, if nρn is
also true. At last, v satisfies EBC aρa

0
, if n � a∈ v, n0 � a0 ∈ v, and nρn

0
is true. There is

one addition to all listed definitions, concerning particular case, when
n � a∉ v n

0 � a∉ v
� �

, which is equivalent to n ¼ 0 n
0 ¼ 0

� �
.

CBC semantics is defined as follows. CBC (39) is replaced by CBC sequence

e1ρ1e2, e2ρ2e3,…, eiρieiþ1,…, emρmemþ1, (40)

and v∈V is considered satisfying CBC (39), if it satisfies all EBC having place in
Eq. (40).

Result of application of boundary condition b to SMS V is recorded as V↓b.
Example 2. Let V ¼ v1; v2f g, where v1 ¼ 5 � analyst; 3 � assistant; 1 � directorf g,

v2 ¼ 2 � assistant;4 � director; 3 � employeef g, and boundary conditions are 2≤
analyst≤ 4, assistant, employee, 1≤ director≤ assistant≤ 3, and analyst ¼
assistant, 5: Table 1 contains result of application of listed boundary conditions toV.∎

Optimizing condition has form a = opt, where a is the object, and
opt∈ min;maxf g. Semantics of this construction is following. Multiset v∈V sat-
isfies condition a ¼ min, if for every v0 ∈V, such that v 6¼ v0, multiplicity n in
multiobject n � a∈ v is not greater, than multiplicity n0 in multiobject n0 � a∈ v0, that
is, n≤ n0. Similarly, v∈V satisfies condition a ¼ max, if for every v0 ∈V, such that
v 6¼ v0, multiplicity n in multiobject n � a∈ v is not less, than multiplicity n0 in

75

Multiset-Based Knowledge Representation for the Assessment and Optimization of Large-Scale…
DOI: http://dx.doi.org/10.5772/intechopen.81698

multiobject n0 � a∈ v0, that is, n≥n0. If a∉ v a0 ∉ vð Þ, we consider n � a∈ v n0 � a∈ vð Þ,
where n ¼ 0 n0 ¼ 0ð Þ.

Filter is join of boundary F ≤ and optimizing Fopt subfilters:

F ¼ F ≤ ∪ Fopt, (41)

where F ≤ is set of boundary conditions, and Fopt is set of optimizing conditions.
Result of filtration of set of multisets V by filter F is denoted as V↓F and is defined
by expression

V↓F ¼ V↓F ≤ð Þ↓Fopt (42)

where

F ≤ ¼ c1;…; ckf g, (43)

Fopt ¼ opt1;…; optl
� �

, (44)

V↓F ≤ ¼ ⋂
k

i¼1
V↓cið Þ ¼ V 0, (45)

V 0↓Fopt ¼ ⋂
l

j¼1
V 0↓optj
� �

, (46)

and c1,…, ck are EBC. As seen, set V is filtered by boundary conditions, so there
are selected multisets, satisfying all of these conditions, and intermediate result V 0 is
then filtered by optimizing conditions, so, that multisets, satisfying all of them, are
included to the final result.

Example 3. Consider set V ¼ v1; v2; v3; v4f g, where

v1 ¼ 3 � analyst; 2 � assistant; 2 � employeef g,
v2 ¼ 6 � assistant; 2 � directorf g,
v3 ¼ 1 � analyst; 3 � assistant; 5 � director; 2 � employeef g,
v4 ¼ 1 � analyst; 2 � assistant; 2 � employeef g:

Let F ¼ 1≤ analyst≤ 3; 2≤ director≤ employee; analyst ¼ min; assistant ¼ maxf g:
Then, according to Eqs. (41)–(46),

V↓F ¼ V↓F ≤ð Þ↓Fopt,

where

F ≤ ¼ 1≤ analyst≤ 3; 2≤ director≤ employeef g,
Fopt ¼ assistant ¼ min; employee ¼ maxf g:

condition V↓condition

2≤ analyst≤4 v2f g
assistant, employee v2f g
1≤ director≤ assistant≤ 3 v1f g
analyst ¼ assistant, 5 ∅f g

Table 1.
Results of application of boundary conditions.

76

Enhanced Expert Systems

Filtration is performed as follows:

V↓ 1≤ analyst≤ 3f g ¼ v1; v3; v4f g,
V↓ 2≤ director≤ 4f g ¼ v1; v2; v4f g,
V↓F ≤ ¼ v1; v4f g,
v1; v4f g↓ assistant ¼ minf g ¼ v1f g,
v1; v4f g↓ employee ¼ maxf g ¼ v1; v4f g,

V↓F ¼ v1f g∩ v1; v4f g ¼ v1f g: ∎

Due to commutativity of set-theoretic join and intersection operations, filtration
inside subfilters may be executed in the arbitrary order.

4. Multiset grammars

As mentioned higher, multiset grammars are tool, providing generation of one
multisets from another, or, what is the same, generation sets of multisets.

By analogy with classical grammars, operating strings of symbols [32, 33], we
shall define multigrammar as a couple.

S ¼ v0;Rh i, (47)

where v0 is a multiset called kernel, while R, called scheme, is finite set of the so-
called rules, which are used for generation of new multisets from already generated.
Rule has the form:

v! v0, (48)

where v (left part of the rule) and v0 (right part of the rule) are multisets, and
v 6¼ ∅f g: Semantics of rule is as follows. Let v be multiset; with that we shall speak,
that rule (48) is applicable to v, if v⊆ v, and result of its application is a multiset.

v0 ¼ v�vþv0: (49)

Speaking informally, if v includes v, then the last is replaced by v0. Application of

rule r∈R to multiset v is denoted as v)r v0 , and any sequence v)r …)r
0
v0 is called

generation chain.
Set of multisets, defined by MGs S ¼ v0;Rh i, is denoted as VS. Iterative repre-

sentation of MG semantics, that is, SMS VS generation by application of MG S, is the
following:

V 0ð Þ ¼ v0f g, (50)

V iþ1ð Þ ¼ V ið Þ∪ ⋃
v∈V ið Þ

⋃
r∈R

π v; rð Þ
 !

, (51)

VS ¼ V ∞ð Þ, (52)

where

π v; v! v0ð Þ ¼ v�vþv0f g, if v⊆ v,
∅f g otherwise:

�
(53)

77

Multiset-Based Knowledge Representation for the Assessment and Optimization of Large-Scale…
DOI: http://dx.doi.org/10.5772/intechopen.81698

multiobject n0 � a∈ v0, that is, n≥n0. If a∉ v a0 ∉ vð Þ, we consider n � a∈ v n0 � a∈ vð Þ,
where n ¼ 0 n0 ¼ 0ð Þ.

Filter is join of boundary F ≤ and optimizing Fopt subfilters:

F ¼ F ≤ ∪ Fopt, (41)

where F ≤ is set of boundary conditions, and Fopt is set of optimizing conditions.
Result of filtration of set of multisets V by filter F is denoted as V↓F and is defined
by expression

V↓F ¼ V↓F ≤ð Þ↓Fopt (42)

where

F ≤ ¼ c1;…; ckf g, (43)

Fopt ¼ opt1;…; optl
� �

, (44)

V↓F ≤ ¼ ⋂
k

i¼1
V↓cið Þ ¼ V 0, (45)

V 0↓Fopt ¼ ⋂
l

j¼1
V 0↓optj
� �

, (46)

and c1,…, ck are EBC. As seen, set V is filtered by boundary conditions, so there
are selected multisets, satisfying all of these conditions, and intermediate result V 0 is
then filtered by optimizing conditions, so, that multisets, satisfying all of them, are
included to the final result.

Example 3. Consider set V ¼ v1; v2; v3; v4f g, where

v1 ¼ 3 � analyst; 2 � assistant; 2 � employeef g,
v2 ¼ 6 � assistant; 2 � directorf g,
v3 ¼ 1 � analyst; 3 � assistant; 5 � director; 2 � employeef g,
v4 ¼ 1 � analyst; 2 � assistant; 2 � employeef g:

Let F ¼ 1≤ analyst≤ 3; 2≤ director≤ employee; analyst ¼ min; assistant ¼ maxf g:
Then, according to Eqs. (41)–(46),

V↓F ¼ V↓F ≤ð Þ↓Fopt,

where

F ≤ ¼ 1≤ analyst≤ 3; 2≤ director≤ employeef g,
Fopt ¼ assistant ¼ min; employee ¼ maxf g:

condition V↓condition

2≤ analyst≤4 v2f g
assistant, employee v2f g
1≤ director≤ assistant≤ 3 v1f g
analyst ¼ assistant, 5 ∅f g

Table 1.
Results of application of boundary conditions.

76

Enhanced Expert Systems

Filtration is performed as follows:

V↓ 1≤ analyst≤ 3f g ¼ v1; v3; v4f g,
V↓ 2≤ director≤ 4f g ¼ v1; v2; v4f g,
V↓F ≤ ¼ v1; v4f g,
v1; v4f g↓ assistant ¼ minf g ¼ v1f g,
v1; v4f g↓ employee ¼ maxf g ¼ v1; v4f g,

V↓F ¼ v1f g∩ v1; v4f g ¼ v1f g: ∎

Due to commutativity of set-theoretic join and intersection operations, filtration
inside subfilters may be executed in the arbitrary order.

4. Multiset grammars

As mentioned higher, multiset grammars are tool, providing generation of one
multisets from another, or, what is the same, generation sets of multisets.

By analogy with classical grammars, operating strings of symbols [32, 33], we
shall define multigrammar as a couple.

S ¼ v0;Rh i, (47)

where v0 is a multiset called kernel, while R, called scheme, is finite set of the so-
called rules, which are used for generation of new multisets from already generated.
Rule has the form:

v! v0, (48)

where v (left part of the rule) and v0 (right part of the rule) are multisets, and
v 6¼ ∅f g: Semantics of rule is as follows. Let v be multiset; with that we shall speak,
that rule (48) is applicable to v, if v⊆ v, and result of its application is a multiset.

v0 ¼ v�vþv0: (49)

Speaking informally, if v includes v, then the last is replaced by v0. Application of

rule r∈R to multiset v is denoted as v)r v0 , and any sequence v)r …)r
0
v0 is called

generation chain.
Set of multisets, defined by MGs S ¼ v0;Rh i, is denoted as VS. Iterative repre-

sentation of MG semantics, that is, SMS VS generation by application of MG S, is the
following:

V 0ð Þ ¼ v0f g, (50)

V iþ1ð Þ ¼ V ið Þ∪ ⋃
v∈V ið Þ

⋃
r∈R

π v; rð Þ
 !

, (51)

VS ¼ V ∞ð Þ, (52)

where

π v; v! v0ð Þ ¼ v�vþv0f g, if v⊆ v,
∅f g otherwise:

�
(53)

77

Multiset-Based Knowledge Representation for the Assessment and Optimization of Large-Scale…
DOI: http://dx.doi.org/10.5772/intechopen.81698

As seen, function (53) implements application of rule v! v0 to multiset v as
described higher. As a result of i + 1-th step of generation, new SMS is formed by
application of all rules r∈R to all multisets v∈V ið Þ, and it is joined to SMS V ið Þ. If
multiset v0 is generated from multiset v by some sequence of such steps, it is

denoted as v)∗ v0 .
VS is fixed point of the described process, that is, VS ¼ V ið Þ, where i! ∞. If for

some finite i V ið Þ ¼ V iþ1ð Þ, then VS ¼ V ið Þ, and VS is finite. In the introduced
notation,

VS ¼ vjv0)
∗
v

n o
: (54)

VS includes subset Vs⊆Vs of the so-called terminal multisets (TMS) v∈Vs such
that π v; rð Þ ¼ ∅f g for all r∈R, that is, no one multiset may be generated from
terminal multiset. Set VS is called final; final set consists of terminal multisets only.

Example 4. Let S ¼ v0;Rh i, where v0 ¼ 3 � eur;4 � usdf g,
R ¼ r1; r2f g, where
r1 is 2 � eur; 1 � usdf g ! 1 � eur; 1 � gbpf g,
r2 is 1 � eur; 2 � usdf g ! 1 � eur; 2 � gbpf g.
As seen,

v0 ¼ 3 � eur; 4 � usdf g)r1 2 � eur; 3 � usd; 1 � gbpf g)r1 1 � eur; 2 � usd; 2 � gbpf g)r2 1 � usd; 4 � gbpf g,

2 � eur; 3 � usd; 1 � gbpf g)r2 1 � a1; 2 � usd; 3 � gbpf g)r2 1 � usd; 5 � gbpf g,
3 � eur; 4 � usdf g)r2 2 � eur; 3 � usd; 2 � gbpf g)r1 1 � eur; 2 � usd; 3 � gbpf g)r2 1 � usd; 5 � gbpf g,

2 � eur; 3 � usd; 2 � gbpf g)r2 1 � eur; 2 � usd;4 � gbpf g)r2 1 � usd; 6 � gbpf g

(for short, identical parts of different generation chains are omitted). So

Vs ¼ 1 � eur;4 � gbpf g; 1 � usd; 5 � gbpf g; 1 � usd; 6 � gbpf gf g ∎:

By analogy with classical string-generating grammars, multigrammars may be
context-sensitive and context-free (CF). In the last one, left parts of all rules have
form 1 � af g, while in the first, there are no any limitations on both parts of rules,
excluding, that left part must be nonempty multiset.

5. Unitary multiset grammars and metagrammars

Start point for unitary multigrammars (UMGs), developed on the considered
basis, is simplified representation of CF rules: instead of

1 � af g ! n1 � a1;…; nm � amf g (55)

they are written as:

a! n1 � a1,…, nm � am: (56)

Construction (56) is called unitary rule (UR), object a—its head, and unordered
sequence (list) n1 � a1,…, nm � am—its body.

Let us consider UMG formal definition and illustrating example. Unitary
multigrammar is couple S ¼ a0;Rh i, where a is the so-called title object, and R, as in
multigrammars, is scheme—set of unitary rules (56).

78

Enhanced Expert Systems

Iterative representation of UMG semantics, i.e., generation of SMS VS, where
S ¼ a0;Rh i, is following:

V 0ð Þ ¼ 1 � a0f g, (57)

V iþ1ð Þ ¼ V ið Þ∪ ⋃
v∈V ið Þ

⋃
r∈R

π v; rð Þf g, (58)

VS ¼ V ∞ð Þ, (59)

VS ¼ vjv∈VS & β vð Þ⊆As
� �

, (60)

where

π v; a! n1 � a1;…; nm � amh ið Þ ¼ v� n � af gþn∗ n1 � a1;…; nm � amf g, if n � a∈ v,
∅f g otherwise:

�

(61)

Here, As is set of the so-called terminal objects, such that a∈As, if and only if R
does not include URs, which head is a (i.e., a has place only in the UR bodies). As is
subset of set As of all objects, having places in scheme R of UMG S. Multiset,
generated by UMG S, all objects of which are terminal, is also called terminal
multiset (as seen, this notion of TMS does not contradict to the defined higher
regarding MGs). In Eq. (61), UR a! n1 � a1,⋯, nm � am is written in the angle
brackets for unambiguity.

As seen, Eq. (59) defines VS—set of all multisets, generated by UMG S,—while
Eq. (60) by condition β vð Þ⊆As provides selection of VS—set of terminal multisets
(STMS)—from VS.

Example 5. Consider unitary multigrammar S ¼ company;Rh i, where R includes
following unitary rules:

company! 3 � group, 2 � analyst,
company! 3 � analyst,
group! 1 � analyst,
group! 2 � analyst:

According to Eqs. (57)–(61),

VS ¼ 1 � companyf g; 3 � group; 2 � analystf g; 3 � analystf g; 5 � analystf g; 8 � analystf gf g,
VS ¼ 3 � analystf g; 5 � analystf g; 8 � analystf gf g: ∎

Filtering unitary multigrammars (FUMGs) are UMG generalization, providing
generation of terminal multisets and selection those of them, which satisfy condi-
tions, assembled to filters, which were described higher in Section 3.

FUMGs are triple S ¼ a0;R;Fh i, where a0, R, and F have the same sense, as
above, and set of terminal multisets, generated by S, is defined as follows:

VS ¼ V a0;Rh i↓F, (62)

that is, set of terminal multisets, generated by S, is result of filtering STMS,
generated by UMGs a0;Rh i, by filter F.

Example 6. Let S ¼ company;R;Fh i, where R is as in Example 5, while
F ¼ analyst>3; analyst ¼ minf g. Then, according to Eqs. (57)–(62),

79

Multiset-Based Knowledge Representation for the Assessment and Optimization of Large-Scale…
DOI: http://dx.doi.org/10.5772/intechopen.81698

As seen, function (53) implements application of rule v! v0 to multiset v as
described higher. As a result of i + 1-th step of generation, new SMS is formed by
application of all rules r∈R to all multisets v∈V ið Þ, and it is joined to SMS V ið Þ. If
multiset v0 is generated from multiset v by some sequence of such steps, it is

denoted as v)∗ v0 .
VS is fixed point of the described process, that is, VS ¼ V ið Þ, where i! ∞. If for

some finite i V ið Þ ¼ V iþ1ð Þ, then VS ¼ V ið Þ, and VS is finite. In the introduced
notation,

VS ¼ vjv0)
∗
v

n o
: (54)

VS includes subset Vs⊆Vs of the so-called terminal multisets (TMS) v∈Vs such
that π v; rð Þ ¼ ∅f g for all r∈R, that is, no one multiset may be generated from
terminal multiset. Set VS is called final; final set consists of terminal multisets only.

Example 4. Let S ¼ v0;Rh i, where v0 ¼ 3 � eur;4 � usdf g,
R ¼ r1; r2f g, where
r1 is 2 � eur; 1 � usdf g ! 1 � eur; 1 � gbpf g,
r2 is 1 � eur; 2 � usdf g ! 1 � eur; 2 � gbpf g.
As seen,

v0 ¼ 3 � eur; 4 � usdf g)r1 2 � eur; 3 � usd; 1 � gbpf g)r1 1 � eur; 2 � usd; 2 � gbpf g)r2 1 � usd; 4 � gbpf g,

2 � eur; 3 � usd; 1 � gbpf g)r2 1 � a1; 2 � usd; 3 � gbpf g)r2 1 � usd; 5 � gbpf g,
3 � eur; 4 � usdf g)r2 2 � eur; 3 � usd; 2 � gbpf g)r1 1 � eur; 2 � usd; 3 � gbpf g)r2 1 � usd; 5 � gbpf g,

2 � eur; 3 � usd; 2 � gbpf g)r2 1 � eur; 2 � usd;4 � gbpf g)r2 1 � usd; 6 � gbpf g

(for short, identical parts of different generation chains are omitted). So

Vs ¼ 1 � eur;4 � gbpf g; 1 � usd; 5 � gbpf g; 1 � usd; 6 � gbpf gf g ∎:

By analogy with classical string-generating grammars, multigrammars may be
context-sensitive and context-free (CF). In the last one, left parts of all rules have
form 1 � af g, while in the first, there are no any limitations on both parts of rules,
excluding, that left part must be nonempty multiset.

5. Unitary multiset grammars and metagrammars

Start point for unitary multigrammars (UMGs), developed on the considered
basis, is simplified representation of CF rules: instead of

1 � af g ! n1 � a1;…; nm � amf g (55)

they are written as:

a! n1 � a1,…, nm � am: (56)

Construction (56) is called unitary rule (UR), object a—its head, and unordered
sequence (list) n1 � a1,…, nm � am—its body.

Let us consider UMG formal definition and illustrating example. Unitary
multigrammar is couple S ¼ a0;Rh i, where a is the so-called title object, and R, as in
multigrammars, is scheme—set of unitary rules (56).

78

Enhanced Expert Systems

Iterative representation of UMG semantics, i.e., generation of SMS VS, where
S ¼ a0;Rh i, is following:

V 0ð Þ ¼ 1 � a0f g, (57)

V iþ1ð Þ ¼ V ið Þ∪ ⋃
v∈V ið Þ

⋃
r∈R

π v; rð Þf g, (58)

VS ¼ V ∞ð Þ, (59)

VS ¼ vjv∈VS & β vð Þ⊆As
� �

, (60)

where

π v; a! n1 � a1;…; nm � amh ið Þ ¼ v� n � af gþn∗ n1 � a1;…; nm � amf g, if n � a∈ v,
∅f g otherwise:

�

(61)

Here, As is set of the so-called terminal objects, such that a∈As, if and only if R
does not include URs, which head is a (i.e., a has place only in the UR bodies). As is
subset of set As of all objects, having places in scheme R of UMG S. Multiset,
generated by UMG S, all objects of which are terminal, is also called terminal
multiset (as seen, this notion of TMS does not contradict to the defined higher
regarding MGs). In Eq. (61), UR a! n1 � a1,⋯, nm � am is written in the angle
brackets for unambiguity.

As seen, Eq. (59) defines VS—set of all multisets, generated by UMG S,—while
Eq. (60) by condition β vð Þ⊆As provides selection of VS—set of terminal multisets
(STMS)—from VS.

Example 5. Consider unitary multigrammar S ¼ company;Rh i, where R includes
following unitary rules:

company! 3 � group, 2 � analyst,
company! 3 � analyst,
group! 1 � analyst,
group! 2 � analyst:

According to Eqs. (57)–(61),

VS ¼ 1 � companyf g; 3 � group; 2 � analystf g; 3 � analystf g; 5 � analystf g; 8 � analystf gf g,
VS ¼ 3 � analystf g; 5 � analystf g; 8 � analystf gf g: ∎

Filtering unitary multigrammars (FUMGs) are UMG generalization, providing
generation of terminal multisets and selection those of them, which satisfy condi-
tions, assembled to filters, which were described higher in Section 3.

FUMGs are triple S ¼ a0;R;Fh i, where a0, R, and F have the same sense, as
above, and set of terminal multisets, generated by S, is defined as follows:

VS ¼ V a0;Rh i↓F, (62)

that is, set of terminal multisets, generated by S, is result of filtering STMS,
generated by UMGs a0;Rh i, by filter F.

Example 6. Let S ¼ company;R;Fh i, where R is as in Example 5, while
F ¼ analyst>3; analyst ¼ minf g. Then, according to Eqs. (57)–(62),

79

Multiset-Based Knowledge Representation for the Assessment and Optimization of Large-Scale…
DOI: http://dx.doi.org/10.5772/intechopen.81698

VS ¼ 3 � analystf g; 5 � a2f ganalyst; 8 � analystf gf g↓ analyst>3f gð Þ↓ analyst ¼ minf g
¼ 5 � analystf g; 8 � analystf gf gð Þ↓ analyst ¼ minf g ¼ 5 � analystf gf g: ∎
Filtering unitary multigrammars are, in turn, basis for unitary multiset

metagrammars, or, for short, multimetagrammars, which are considered at all the
rest part of the chapter and are main toolkit for the description and solution of the
optimization problems, mentioned in the introduction.

Unitary multimetagrammar S is, as higher, triple a0;R;Fh i, where a0 is the title
object, and R is the scheme, containing unitary rules and so-called unitary metarules
(UMR), while F is the filter. Consider UMMG syntax and semantics.

Unitary metarule has the form:

a! μ1 � a1,…, μm � am, (63)

where μi is the positive integer number, as in UMGs/FUMGs, or variable γ ∈Γ,
where Γ is the universum of variables. When μi is γi ∈Γ, then it is called
multiplicity-variable (MV). As seen, unitary rule is the simplest particular case of
unitary metarule with all multiplicities μ1,…, μm being constants. As in URs, object a
in Eq. (55) is called head, while μ1 � a1,…, μm � am—body of metarule.

Filter F is set of conditions, which may be of the following forms:

n≤ a≤ n0, (64)

a ¼ opt, (65)

n≤ γ ≤ n0, (66)

where opt∈ max;minf g. As seen, boundary condition (64) and optimizing con-
dition (65) are the same, as in FUMG filters, while boundary condition (65), called
variable declaration, defines set of values (domain) of variable γ and is denoted
lower as N γð Þ. If F includes subfilter FΓ ¼ n1 ≤ γ1 ≤ n01;…; nl ≤ γl ≤ n0l

� �
, containing

boundary conditions of form (66), then every combination of variable values
n1 ∈N γ1ð Þ,…, nl ∈N γlð Þ provides creation of one unitary multigrammar by substi-
tution of n1,…, nl to all unitary metarules, having places in scheme R, instead of
multiplicities-variables being in their bodies; unitary rules, already having place in
R, are transferred to new scheme, denoted R◦ n1;…; nlh i, without any transforma-
tions. Every such UMGs generates set of terminal multisets, after what all these
STMS are joined, and resulting set is filtered by filter F ¼ F � FΓ, containing all
“FUMG-like” conditions (From the described, it is obvious nature of “multimet-
agrammar” notion—in mathematical logic, or “metamathematics,” “metalanguage”
is language, used for description of another language, so “multimetagrammar” is
“unitary-like” multigrammar, used for description of other unitary
multigrammars by means of unitary metarules, variables-multiplicities, and
boundary conditions, defining their domains.). As may be seen from this informal
description, UMMGs are simple unified tool for compact representation of sets
of FUMGs (for practically valuable problems, containing very large numbers of
elements—millions and greater).

Coming back to Section 2, one can see that Eqs. (6)–(20) are set of
elements of unitary metamultigrammar: Eqs. (6)–(8) and Eqs. (11)–(15) are
unitary rules, Eqs. (9)–(10) are unitary metarules, Eq. (16) is optimizing con-
dition, Eq. (17) is boundary condition, while Eqs. (18)–(20) are variable decla-
rations. As seen,

N mð Þ ¼ 1; 2; 3; 4; 5f g, (67)

80

Enhanced Expert Systems

N nð Þ ¼ 1; 2; 3f g, (68)

N lð Þ ¼ 1; 2; 3; 4; 5; 6f g, (69)

so, this one UMMG, consisting of 15 lines, replaces 5� 3� 5 ¼ 75 filtering uni-
tary multigrammars, each scheme consisting of 10 lines.

Let us now give strict definition of unitary multimetagrammar notion. UMMG
S ¼ a0;R;Fh i defines set of terminal multisets VS in such a way:

VS ¼ ⋃
S∈ S∗

VS

0
@

1
A↓F, (70)

S∗ ¼ ⋃
n01

γ1 ∈ n1
… ⋃

n0l

γl ∈ nl
a0;R◦ γ1;…; γlh ih if g, (71)

R◦ n1;…; nlh i ¼ r◦ n1;…; nlh ijr∈Rf g, (72)

F ¼ F � FΓ, (73)

FΓ ¼ ⋃
l

i¼1
ni ≤ γi ≤ n0i
� �

, (74)

and, at last, if r is a μ1 � a1,…, μm � am, then r◦ n1;…; nlh i is unitary rule.

a μ1◦ n1;…; nlh ið Þ � a1,…, μm◦ n1;…; nlh ið Þ � am, (75)

where

μi◦ n1;…; nlh i ¼ μi, if μi ∈N,
nj, if μi is γj ∈Γ:

(
(76)

As seen, according to Eqs. (75) and (76), all multiplicities-variables of unitary
metarule a μ1 � a1,…, μm � am are replaced by their corresponding values from the
tuple n1;…; nlh i, while all multiplicities-constants (elements of positive integer
numbers set N) remain unchanged. Evidently, if all μ1,…, μm are constants, that is,
if unitary metarule is UR, it remains unchanged.

Let us note, that multiplicities-variables area of actuality is whole UMMG scheme,
that is, if there are n > 1 occurrences of one and the same variable γ in different
unitary metarules (and, of course, in one and the same unitary metarule), they all are
substituted by one and the same value from the applied sequence n1;…; nlh i.

Example 7. Let us consider UMMG S ¼ , company, R, F>, where scheme R
contains following three unitary metarules:

company! 2 � group, γ1 � analyst,
group! 3 � analyst, γ2 � assistant,
group! γ1 � analyst, γ2 � assistant,

and filter F includes following conditions, the first being boundary, the second—
optimizing, while the last two—variable declarations:

2≤ analyst≤ 6,
assistant ¼ min,
0≤ γ1 ≤ 1,
2≤ γ2 ≤ 3:

81

Multiset-Based Knowledge Representation for the Assessment and Optimization of Large-Scale…
DOI: http://dx.doi.org/10.5772/intechopen.81698

VS ¼ 3 � analystf g; 5 � a2f ganalyst; 8 � analystf gf g↓ analyst>3f gð Þ↓ analyst ¼ minf g
¼ 5 � analystf g; 8 � analystf gf gð Þ↓ analyst ¼ minf g ¼ 5 � analystf gf g: ∎
Filtering unitary multigrammars are, in turn, basis for unitary multiset

metagrammars, or, for short, multimetagrammars, which are considered at all the
rest part of the chapter and are main toolkit for the description and solution of the
optimization problems, mentioned in the introduction.

Unitary multimetagrammar S is, as higher, triple a0;R;Fh i, where a0 is the title
object, and R is the scheme, containing unitary rules and so-called unitary metarules
(UMR), while F is the filter. Consider UMMG syntax and semantics.

Unitary metarule has the form:

a! μ1 � a1,…, μm � am, (63)

where μi is the positive integer number, as in UMGs/FUMGs, or variable γ ∈Γ,
where Γ is the universum of variables. When μi is γi ∈Γ, then it is called
multiplicity-variable (MV). As seen, unitary rule is the simplest particular case of
unitary metarule with all multiplicities μ1,…, μm being constants. As in URs, object a
in Eq. (55) is called head, while μ1 � a1,…, μm � am—body of metarule.

Filter F is set of conditions, which may be of the following forms:

n≤ a≤ n0, (64)

a ¼ opt, (65)

n≤ γ ≤ n0, (66)

where opt∈ max;minf g. As seen, boundary condition (64) and optimizing con-
dition (65) are the same, as in FUMG filters, while boundary condition (65), called
variable declaration, defines set of values (domain) of variable γ and is denoted
lower as N γð Þ. If F includes subfilter FΓ ¼ n1 ≤ γ1 ≤ n01;…; nl ≤ γl ≤ n0l

� �
, containing

boundary conditions of form (66), then every combination of variable values
n1 ∈N γ1ð Þ,…, nl ∈N γlð Þ provides creation of one unitary multigrammar by substi-
tution of n1,…, nl to all unitary metarules, having places in scheme R, instead of
multiplicities-variables being in their bodies; unitary rules, already having place in
R, are transferred to new scheme, denoted R◦ n1;…; nlh i, without any transforma-
tions. Every such UMGs generates set of terminal multisets, after what all these
STMS are joined, and resulting set is filtered by filter F ¼ F � FΓ, containing all
“FUMG-like” conditions (From the described, it is obvious nature of “multimet-
agrammar” notion—in mathematical logic, or “metamathematics,” “metalanguage”
is language, used for description of another language, so “multimetagrammar” is
“unitary-like” multigrammar, used for description of other unitary
multigrammars by means of unitary metarules, variables-multiplicities, and
boundary conditions, defining their domains.). As may be seen from this informal
description, UMMGs are simple unified tool for compact representation of sets
of FUMGs (for practically valuable problems, containing very large numbers of
elements—millions and greater).

Coming back to Section 2, one can see that Eqs. (6)–(20) are set of
elements of unitary metamultigrammar: Eqs. (6)–(8) and Eqs. (11)–(15) are
unitary rules, Eqs. (9)–(10) are unitary metarules, Eq. (16) is optimizing con-
dition, Eq. (17) is boundary condition, while Eqs. (18)–(20) are variable decla-
rations. As seen,

N mð Þ ¼ 1; 2; 3; 4; 5f g, (67)

80

Enhanced Expert Systems

N nð Þ ¼ 1; 2; 3f g, (68)

N lð Þ ¼ 1; 2; 3; 4; 5; 6f g, (69)

so, this one UMMG, consisting of 15 lines, replaces 5� 3� 5 ¼ 75 filtering uni-
tary multigrammars, each scheme consisting of 10 lines.

Let us now give strict definition of unitary multimetagrammar notion. UMMG
S ¼ a0;R;Fh i defines set of terminal multisets VS in such a way:

VS ¼ ⋃
S∈ S∗

VS

0
@

1
A↓F, (70)

S∗ ¼ ⋃
n01

γ1 ∈ n1
… ⋃

n0l

γl ∈ nl
a0;R◦ γ1;…; γlh ih if g, (71)

R◦ n1;…; nlh i ¼ r◦ n1;…; nlh ijr∈Rf g, (72)

F ¼ F � FΓ, (73)

FΓ ¼ ⋃
l

i¼1
ni ≤ γi ≤ n0i
� �

, (74)

and, at last, if r is a μ1 � a1,…, μm � am, then r◦ n1;…; nlh i is unitary rule.

a μ1◦ n1;…; nlh ið Þ � a1,…, μm◦ n1;…; nlh ið Þ � am, (75)

where

μi◦ n1;…; nlh i ¼ μi, if μi ∈N,
nj, if μi is γj ∈Γ:

(
(76)

As seen, according to Eqs. (75) and (76), all multiplicities-variables of unitary
metarule a μ1 � a1,…, μm � am are replaced by their corresponding values from the
tuple n1;…; nlh i, while all multiplicities-constants (elements of positive integer
numbers set N) remain unchanged. Evidently, if all μ1,…, μm are constants, that is,
if unitary metarule is UR, it remains unchanged.

Let us note, that multiplicities-variables area of actuality is whole UMMG scheme,
that is, if there are n > 1 occurrences of one and the same variable γ in different
unitary metarules (and, of course, in one and the same unitary metarule), they all are
substituted by one and the same value from the applied sequence n1;…; nlh i.

Example 7. Let us consider UMMG S ¼ , company, R, F>, where scheme R
contains following three unitary metarules:

company! 2 � group, γ1 � analyst,
group! 3 � analyst, γ2 � assistant,
group! γ1 � analyst, γ2 � assistant,

and filter F includes following conditions, the first being boundary, the second—
optimizing, while the last two—variable declarations:

2≤ analyst≤ 6,
assistant ¼ min,
0≤ γ1 ≤ 1,
2≤ γ2 ≤ 3:

81

Multiset-Based Knowledge Representation for the Assessment and Optimization of Large-Scale…
DOI: http://dx.doi.org/10.5772/intechopen.81698

According to Eqs. (70)–(76), this UMMG defines four UMGs:

S0,2 ¼ , company, R◦,0, 2>>,
S0,3 ¼ , company, R◦,0, 3>>,
S1,2 ¼ , company, R◦, 1, 2>>,
S1,3 ¼ , company, R◦, 1, 3>>,

where

R◦,0, 2> ¼ f, company! 2 � group>,
, group! 3 � analyst, 2 � assistant>, , group1 ! 2 � assistant>g,

R◦,0, 3> ¼ f, company! 2 � group>,
, group! 3 � analyst, 3 � assistant>, , group! 3 � assistant>g,

R◦, 1, 2> ¼ f, company! 2 � group, 1 � analyst>,
, group! 3 � analyst, 2 � assistant>, , group! 1 � analyst, 2 � assistant>g,

R◦, 1, 3> ¼ f, company! 2 � group, 1 � analyst>,
, group! 3 � analyst, 3 � assistant>, , group! 1 � analyst, 3 � assistant>g,

(URs are represented in angle brackets for unambiguity). These UMGs define,
respectively, following sets of terminal multisets:

VS0,2 ¼ 6 � analyst;4 � assistantf g; 4 � assistantf gf g,
VS0,3 ¼ 6 � analyst; 6 � assistantf g; 6 � assistantf gf g,
VS1,2 ¼ 7 � analyst;4 � assistantf g; 3 � analyst;4 � assistantf gf g,
VS1,3 ¼ 7 � analyst; 6 � assistantf g; 3 � analyst; 6 � assistantf gf g,
VS ¼ VS0,2∪VS0,3∪VS1,2∪VS1,3

� �
↓ 2≤ analyst≤ 6f gÞ↓ assistant ¼ minf g

¼ 6 � analyst;4 � assistantf g, 6 � analyst; 6 � assistantf g, 6 � assistantf g,
3 � analyst;4 � assistantf g, 3 � analyst; 6 � assistantf g↓ assistant ¼ minf g

¼ 6 � analyst;4 � assistantf g; 3 � analyst;4 � assistantf gf g: ∎

As may be seen, Eqs. (64)–(66) define boundary conditions, concerning objects
and variables, and optimizing conditions, concerning only objects, that is why from
both theoretical and practical points of view, it is reasonable to extend UMMG
filters by optimizing conditions, relating variables. By analogy with Eq. (65), such
conditions will have the form:

γ ¼ opt: (77)

This form defines optimality of the generated terminal multisets through
multiplicity-variable values, used while these TMS generation. Eq. (77) semantics is
quite clear: select those TMS, which are generated by the help of value of variable γ,
which (value) is minimal (maximal) among all other TMS, generated by γ applica-
tion. As seen, Eq. (77) extends optimality definition from only multiplicities-
constants, having places in TMS, to also multiplicities-variables, having places in
unitary metarules, applied while TMS generation.

Most simple formal definition of the verbally described sense of Eq. (77) opti-
mizing condition may be as follows. Let us introduce l auxiliary terminal objects
γ1,…, γl corresponding variables γ1,…, γl, having places in UMMG S ¼ a0;R;Fh i,
i.e., unitary metarules and boundary condition (66). After that, let us add one new
unitary metarule:

82

Enhanced Expert Systems

a00 ! 1 � a0, γ1 � γ1,…, γk � γl (78)

to scheme R, thus creating scheme R0, which contains Eq. (78) and all elements
of R, and substituting all optimizing conditions of the form γ ¼ opt by γ ¼ opt in
filter F, thus converting them to the “canonical” form (65)—remember, γ is object
not variable and, more, terminal object, because there is no any UR or UMR with
head γ in R. Obtained filter will be denoted as F0.

As seen now, UMMG S0 ¼ a00;R
0;F0

� �
generates terminal multisets of the form:

ni1 � ai1 ;…; nik � aik ; n1 � γ1;…; nl � γl
� �

, (79)

where

ni1 � ai1 ;…; nil � ail
� �

∈VS, (80)

and TMS (79) will be selected to VS0 , if and only if TMS (80) satisfies all
conditions, entering F and concerning terminal objects ai1 ,…, aik , as well as TMS
n1 � γ1;…; nl � γlf g satisfies all optimizing conditions of the form γi ¼ opt∈F0,

corresponding γi ¼ opt∈F:.
It is not difficult to define VS by subtracting from all v0 ∈VS0 multisets of the

form n1 � γ1;…; nl � γlf g, but from the practical point of view, it is more useful to
consider not VS but VS0 as a result of application of unitary multimetagrammar S: it
is clear that all v0 ∈VS0 contain values n1,…, nl of variables γ1,…, γl as terminal
objects γ1,…, γl multiplicities, which computation is often main purpose of the
mentioned application.

Example 8. As may be seen, problem, described in Section 2, is to obtain m
quantity of laboratories, as well as n and l quantities of analysts and assistants,
respectively, in one laboratory. Although Eqs. (18)–(20) do not contain optimizing
conditions of the form γ ¼ opt, generating TMS like

100 � employee; 115000 � eur; 3 �m; 2 � n; 5 � lf g (81)

is much more useful than TMS like {100�employee, 115,000�eur} because of
Eq. (81) with greater informativity (here, we use m, n, l instead of n,m, l). ∎

So we shall use VS0 as a result of S ¼ a0;R;Fh i unitary multimetagrammar appli-
cation, even if R does not include variable-containing optimizing conditions.

To finish with syntax and semantics of UMGs/UMMGs, let us note that class of
unitary multigrammars is strict subclass of filtering unitary multiset grammars
(UMGs ⊂ FUMGs): every UMGs is FUMGs with empty filter. From the other side,
FUMGs are strict subclass of unitary multiset metagrammars (UMGs ⊂ FUMGs):
every FUMGs is UMMGs without variable multiplicities and corresponding variable
declarations inside filter.

UMG/UMMG algorithmics and applications are considered in the separate
chapter of this book.

83

Multiset-Based Knowledge Representation for the Assessment and Optimization of Large-Scale…
DOI: http://dx.doi.org/10.5772/intechopen.81698

According to Eqs. (70)–(76), this UMMG defines four UMGs:

S0,2 ¼ , company, R◦,0, 2>>,
S0,3 ¼ , company, R◦,0, 3>>,
S1,2 ¼ , company, R◦, 1, 2>>,
S1,3 ¼ , company, R◦, 1, 3>>,

where

R◦,0, 2> ¼ f, company! 2 � group>,
, group! 3 � analyst, 2 � assistant>, , group1 ! 2 � assistant>g,

R◦,0, 3> ¼ f, company! 2 � group>,
, group! 3 � analyst, 3 � assistant>, , group! 3 � assistant>g,

R◦, 1, 2> ¼ f, company! 2 � group, 1 � analyst>,
, group! 3 � analyst, 2 � assistant>, , group! 1 � analyst, 2 � assistant>g,

R◦, 1, 3> ¼ f, company! 2 � group, 1 � analyst>,
, group! 3 � analyst, 3 � assistant>, , group! 1 � analyst, 3 � assistant>g,

(URs are represented in angle brackets for unambiguity). These UMGs define,
respectively, following sets of terminal multisets:

VS0,2 ¼ 6 � analyst;4 � assistantf g; 4 � assistantf gf g,
VS0,3 ¼ 6 � analyst; 6 � assistantf g; 6 � assistantf gf g,
VS1,2 ¼ 7 � analyst;4 � assistantf g; 3 � analyst;4 � assistantf gf g,
VS1,3 ¼ 7 � analyst; 6 � assistantf g; 3 � analyst; 6 � assistantf gf g,
VS ¼ VS0,2∪VS0,3∪VS1,2∪VS1,3

� �
↓ 2≤ analyst≤ 6f gÞ↓ assistant ¼ minf g

¼ 6 � analyst;4 � assistantf g, 6 � analyst; 6 � assistantf g, 6 � assistantf g,
3 � analyst;4 � assistantf g, 3 � analyst; 6 � assistantf g↓ assistant ¼ minf g

¼ 6 � analyst;4 � assistantf g; 3 � analyst;4 � assistantf gf g: ∎

As may be seen, Eqs. (64)–(66) define boundary conditions, concerning objects
and variables, and optimizing conditions, concerning only objects, that is why from
both theoretical and practical points of view, it is reasonable to extend UMMG
filters by optimizing conditions, relating variables. By analogy with Eq. (65), such
conditions will have the form:

γ ¼ opt: (77)

This form defines optimality of the generated terminal multisets through
multiplicity-variable values, used while these TMS generation. Eq. (77) semantics is
quite clear: select those TMS, which are generated by the help of value of variable γ,
which (value) is minimal (maximal) among all other TMS, generated by γ applica-
tion. As seen, Eq. (77) extends optimality definition from only multiplicities-
constants, having places in TMS, to also multiplicities-variables, having places in
unitary metarules, applied while TMS generation.

Most simple formal definition of the verbally described sense of Eq. (77) opti-
mizing condition may be as follows. Let us introduce l auxiliary terminal objects
γ1,…, γl corresponding variables γ1,…, γl, having places in UMMG S ¼ a0;R;Fh i,
i.e., unitary metarules and boundary condition (66). After that, let us add one new
unitary metarule:

82

Enhanced Expert Systems

a00 ! 1 � a0, γ1 � γ1,…, γk � γl (78)

to scheme R, thus creating scheme R0, which contains Eq. (78) and all elements
of R, and substituting all optimizing conditions of the form γ ¼ opt by γ ¼ opt in
filter F, thus converting them to the “canonical” form (65)—remember, γ is object
not variable and, more, terminal object, because there is no any UR or UMR with
head γ in R. Obtained filter will be denoted as F0.

As seen now, UMMG S0 ¼ a00;R
0;F0

� �
generates terminal multisets of the form:

ni1 � ai1 ;…; nik � aik ; n1 � γ1;…; nl � γl
� �

, (79)

where

ni1 � ai1 ;…; nil � ail
� �

∈VS, (80)

and TMS (79) will be selected to VS0 , if and only if TMS (80) satisfies all
conditions, entering F and concerning terminal objects ai1 ,…, aik , as well as TMS
n1 � γ1;…; nl � γlf g satisfies all optimizing conditions of the form γi ¼ opt∈F0,

corresponding γi ¼ opt∈F:.
It is not difficult to define VS by subtracting from all v0 ∈VS0 multisets of the

form n1 � γ1;…; nl � γlf g, but from the practical point of view, it is more useful to
consider not VS but VS0 as a result of application of unitary multimetagrammar S: it
is clear that all v0 ∈VS0 contain values n1,…, nl of variables γ1,…, γl as terminal
objects γ1,…, γl multiplicities, which computation is often main purpose of the
mentioned application.

Example 8. As may be seen, problem, described in Section 2, is to obtain m
quantity of laboratories, as well as n and l quantities of analysts and assistants,
respectively, in one laboratory. Although Eqs. (18)–(20) do not contain optimizing
conditions of the form γ ¼ opt, generating TMS like

100 � employee; 115000 � eur; 3 �m; 2 � n; 5 � lf g (81)

is much more useful than TMS like {100�employee, 115,000�eur} because of
Eq. (81) with greater informativity (here, we use m, n, l instead of n,m, l). ∎

So we shall use VS0 as a result of S ¼ a0;R;Fh i unitary multimetagrammar appli-
cation, even if R does not include variable-containing optimizing conditions.

To finish with syntax and semantics of UMGs/UMMGs, let us note that class of
unitary multigrammars is strict subclass of filtering unitary multiset grammars
(UMGs ⊂ FUMGs): every UMGs is FUMGs with empty filter. From the other side,
FUMGs are strict subclass of unitary multiset metagrammars (UMGs ⊂ FUMGs):
every FUMGs is UMMGs without variable multiplicities and corresponding variable
declarations inside filter.

UMG/UMMG algorithmics and applications are considered in the separate
chapter of this book.

83

Multiset-Based Knowledge Representation for the Assessment and Optimization of Large-Scale…
DOI: http://dx.doi.org/10.5772/intechopen.81698

Author details

Igor Sheremet
Financial University under the Government of Russian Federation, Moscow, Russia

*Address all correspondence to: sheremet@rfbr.ru

©2018 TheAuthor(s). Licensee IntechOpen. This chapter is distributed under the terms
of theCreativeCommonsAttribution License (http://creativecommons.org/licenses/
by/3.0),which permits unrestricted use, distribution, and reproduction in anymedium,
provided the original work is properly cited.

84

Enhanced Expert Systems

References

[1]Whitten JL, Bentley LD. Introduction
to Systems Analysis and Design.
New York: McGraw-Hill Irwin; 2006.
p. 640

[2] Bentley LD, Whitten JL. Systems
Analysis and Design for the Global
Enterprise. New York: McGraw-Hill
Irwin; 2007. p. 160

[3] Blanchard BS, Fabrycky WJ. Systems
Engineering and Analysis. Englewood
Cliffs, NJ: Prentice-Hall; 2010. p. 723

[4] Lasdon SL. Optimization Theory for
Large Systems. NY: Dover Publications;
2013. p. 560

[5] Tilly S, Rosenblatt HJ. System
Analysis and Design. Boston, MA:
Cengage Learning; Ebook-dl.com. 2016.
p. 572

[6] Sainter P, Oldham K, Larkin A,
Murton A, Brimble R. Product
knowledge management within
knowledge-based engineering system. –
In: Proceedings of ASME 2000 Design
Engineering Technical Conference. –
Baltimore, Maryland: ASME, 2000.
pp. 1-8

[7] Akerkar R, Sajja P. Knowledge-Based
Systems. Sudbury, MA: Jones and
Bartlett Publishers; 2010. p. 350

[8] Kendal SL, Green M. An
Introduction to Knowledge Engineering.
London: Springer; 2007. p. 300

[9] Pannu A. Artificial intelligence and
its application in different areas.
International Journal of Engineering and
Innovative Technology. 2015;4(4):79-84

[10] Cross TB. The Uses of Artificial
Intelligence in Business. New York:
Prentice Hall; TECHtionary.com. 2017.
p. 271

[11] Gass SI, Assad AA. An Annotated
Timeline of Operations Research: An
Informal History. NY: Kluwer Academic
Publishers; 2005. p. 213

[12] Franks B. The Analytics Revolution:
How to Improve Your Business by
Making Analytics Operational in the
Big Data Era. New York: John Wiley &
Sons; 2014. p. 307

[13] Hillier SF, Lieberman GJ.
Introduction to Operations Research.
Boston, MA: McGraw Hill; 2014. p. 1237

[14] Taha HA. Operations Research: An
Introduction. London: Pearson; 2016.
p. 838

[15] Marriott K, Stucky PG.
Programming with Constraints: An
Introduction. Cambridge, MA: MIT
Press; 2003. p. 420

[16] Apt K. Principles of Constraint
Programming. Cambridge, UK:
Cambridge University Press; 2003.
p. 420

[17] Frunkwirth T, Abdennadher S.
Essentials of Constraint Programming.
Berlin: Springer Verlag; 2003. p. 398

[18] Lake J. Sets, fuzzy sets, multisets
and functions. Journal of the London
Mathematical Society. 1976;12:323-326

[19] Hickman JL. A note on the concept
of multiset. Bulletin of the Australian
Mathematical Society. 1980;22:211-217.
DOI: 10.1017/5000497270000650X

[20] Meyer RK, McRobbie MA. Multisets
and relevant implication. I, II.
Australasian Journal of Philosophy.
1982;60:107-139. DOI: 10.1080/
00048408212340551

[21] Banatre J-P, Le Metayer D.
Programming by multiset

85

Multiset-Based Knowledge Representation for the Assessment and Optimization of Large-Scale…
DOI: http://dx.doi.org/10.5772/intechopen.81698

Author details

Igor Sheremet
Financial University under the Government of Russian Federation, Moscow, Russia

*Address all correspondence to: sheremet@rfbr.ru

©2018 TheAuthor(s). Licensee IntechOpen. This chapter is distributed under the terms
of theCreativeCommonsAttribution License (http://creativecommons.org/licenses/
by/3.0),which permits unrestricted use, distribution, and reproduction in anymedium,
provided the original work is properly cited.

84

Enhanced Expert Systems

References

[1]Whitten JL, Bentley LD. Introduction
to Systems Analysis and Design.
New York: McGraw-Hill Irwin; 2006.
p. 640

[2] Bentley LD, Whitten JL. Systems
Analysis and Design for the Global
Enterprise. New York: McGraw-Hill
Irwin; 2007. p. 160

[3] Blanchard BS, Fabrycky WJ. Systems
Engineering and Analysis. Englewood
Cliffs, NJ: Prentice-Hall; 2010. p. 723

[4] Lasdon SL. Optimization Theory for
Large Systems. NY: Dover Publications;
2013. p. 560

[5] Tilly S, Rosenblatt HJ. System
Analysis and Design. Boston, MA:
Cengage Learning; Ebook-dl.com. 2016.
p. 572

[6] Sainter P, Oldham K, Larkin A,
Murton A, Brimble R. Product
knowledge management within
knowledge-based engineering system. –
In: Proceedings of ASME 2000 Design
Engineering Technical Conference. –
Baltimore, Maryland: ASME, 2000.
pp. 1-8

[7] Akerkar R, Sajja P. Knowledge-Based
Systems. Sudbury, MA: Jones and
Bartlett Publishers; 2010. p. 350

[8] Kendal SL, Green M. An
Introduction to Knowledge Engineering.
London: Springer; 2007. p. 300

[9] Pannu A. Artificial intelligence and
its application in different areas.
International Journal of Engineering and
Innovative Technology. 2015;4(4):79-84

[10] Cross TB. The Uses of Artificial
Intelligence in Business. New York:
Prentice Hall; TECHtionary.com. 2017.
p. 271

[11] Gass SI, Assad AA. An Annotated
Timeline of Operations Research: An
Informal History. NY: Kluwer Academic
Publishers; 2005. p. 213

[12] Franks B. The Analytics Revolution:
How to Improve Your Business by
Making Analytics Operational in the
Big Data Era. New York: John Wiley &
Sons; 2014. p. 307

[13] Hillier SF, Lieberman GJ.
Introduction to Operations Research.
Boston, MA: McGraw Hill; 2014. p. 1237

[14] Taha HA. Operations Research: An
Introduction. London: Pearson; 2016.
p. 838

[15] Marriott K, Stucky PG.
Programming with Constraints: An
Introduction. Cambridge, MA: MIT
Press; 2003. p. 420

[16] Apt K. Principles of Constraint
Programming. Cambridge, UK:
Cambridge University Press; 2003.
p. 420

[17] Frunkwirth T, Abdennadher S.
Essentials of Constraint Programming.
Berlin: Springer Verlag; 2003. p. 398

[18] Lake J. Sets, fuzzy sets, multisets
and functions. Journal of the London
Mathematical Society. 1976;12:323-326

[19] Hickman JL. A note on the concept
of multiset. Bulletin of the Australian
Mathematical Society. 1980;22:211-217.
DOI: 10.1017/5000497270000650X

[20] Meyer RK, McRobbie MA. Multisets
and relevant implication. I, II.
Australasian Journal of Philosophy.
1982;60:107-139. DOI: 10.1080/
00048408212340551

[21] Banatre J-P, Le Metayer D.
Programming by multiset

85

Multiset-Based Knowledge Representation for the Assessment and Optimization of Large-Scale…
DOI: http://dx.doi.org/10.5772/intechopen.81698

transformation. Communications of the
ACM. 1993;36:98-111. DOI: 10.1145/
151233.151242

[22] Marriott K. Constraint multiset
grammars. In: Proceedings of IEEE
Symposium on Visual Languages. IEEE
Computer Society Press; 1994.
pp. 118-125. DOI: 10.1109/VL.1994.
363633

[23] Marriott K. Parsing visual languages
with constraint multiset grammars. In:
Programming Languages:
Implementation, Logic and Programs.
Lecture Notes in Computer Science. Vol.
1292. New York: Springer; 1996. p. 419

[24] Marriott K, Meyer B. On the
classification of visual languages by
grammar hierarchies. Journal of Visual
Languages and Computing. 1997;8:
375-402. DOI: 10.1006/jvlc.1997.0053

[25] Calude CS, Paun G, Rozenberg G,
Salomaa A. Multisets Processing:
Mathematical, Computer Science and
Molecular Computing Points of View.
Lecture Notes in Computer Science. Vol.
2235. NY: Springer; 2001. p. 359. DOI:
10.1007/3-540-45523-X

[26] Petrovsky AB. Main Notions of the
Multisets Theory. Moscow: URSS; 2002.
p. 80. (In Russian)

[27] Petrovsky AB. Sets and Multisets
Spaces. Moscow: URSS; 2003. p. 248. (In
Russian)

[28] Singh D, Ibrahim AM, Yohanna T,
Singh JN. An overview of applications of
multisets. Novi Sad Journal of
Mathematics. 2007;37:37-92

[29] Red’ko VN, Bui DB, Grishko Yu A.
Modern state of multisets theory from
the entity point of view. Cybernetics
and Systems Analysis. 2015;51:171-178

[30] Sheremet I. A. Recursive Multisets
and Their Applications. – Moscow:
Nauka; 2010. p. 293. (In Russian)

[31] Sheremet IA. Recursive Multisets
and Their Applications. Berlin: NG
Verlag; 2011. p. 249

[32] Chomsky N. Syntactic Structures.
The Hague: Mouton de Gruyter; 2002.
p. 118

[33] Meduna A. Formal Languages and
Computation: Models and their
Application. New York: CRC Press;
2014. p. 233

[34] Wallace M. Constraint logic
programming. In: Computational Logic:
Logic Programming and Beyond.
Lecture Notes in Computer Science.
New York: Springer; Vol. 2407. 2002.
pp. 512-556

[35] Bratko I. Prolog Programming for
Artificial Intelligence. NY: Addison-
Wesley; 2012. p. 696

[36] Diaz D. GNU Prolog. www.gprolog.
org. 2018. p. 238

86

Enhanced Expert Systems

Chapter 6

Unitary Multiset Grammars
an Metagrammars Algorithmics
and Application
Igor Sheremet

Abstract

The chapter is dedicated to the algorithmics of unitary multiset grammars and
metagrammars. Their application to some actual problems from the area of large-
scale sociotechnical systems (STS) assessment and optimization is also considered:
estimation of capabilities of the producing STS; amounts of resources, necessary to
such STS for various orders completion; assessment of STS sustainability/vulnerabil-
ity to various destructive impacts (natural disasters, technogenic catastrophes,
mutual sanctions, etc.); and STS profit maximization, as well as works optimal distri-
bution among non-antagonistic competing STS, operating in the market economy.

Keywords: systems analysis, operations research, knowledge engineering, digital
economy, multisets recursive multisets, multiset grammars, unitary multiset
grammars and multimetagrammars, sociotechnical systems assessment and
optimization

1. Introduction

Unitary multiset grammars (UMG) and multimetagrammars (UMMG) are
knowledge representation model, providing convergence of classical operations
research and modern knowledge engineering. The main area of UMG/UMMG
application is assessment and optimization of large-scale sociotechnical systems
(STS). Syntax and semantics of multigrammars are described in the first part of this
work, being separate chapter of this book. Section 2 of this chapter contains primary
description of UMG/UMMG-improved algorithmics, providing generation of ter-
minal multisets (TMS), reduced by unperspective branches cutoff at the maximal
early steps of generation. Such branches do not lead to the TMS, satisfying all
conditions, entering filter of UMG/UMMG. Section 3 is dedicated to UMG/UMMG
application to some actual problems from the STS assessment area (estimation of
producing STS capabilities and resources, necessary to such systems for various
orders completion, as well as assessment of STS sustainability and vulnerability to
various destructive impacts, such as natural disasters, technogenic catastrophes,
mutual sanctions, etc.). In Section 4, optimization problems, related to STS, are
considered (their profit maximization and works’ optimal distribution among non-
antagonistic competing STS in the market economy). Conclusion contains list of
directions of further development of multigrammatical approach.

87

transformation. Communications of the
ACM. 1993;36:98-111. DOI: 10.1145/
151233.151242

[22] Marriott K. Constraint multiset
grammars. In: Proceedings of IEEE
Symposium on Visual Languages. IEEE
Computer Society Press; 1994.
pp. 118-125. DOI: 10.1109/VL.1994.
363633

[23] Marriott K. Parsing visual languages
with constraint multiset grammars. In:
Programming Languages:
Implementation, Logic and Programs.
Lecture Notes in Computer Science. Vol.
1292. New York: Springer; 1996. p. 419

[24] Marriott K, Meyer B. On the
classification of visual languages by
grammar hierarchies. Journal of Visual
Languages and Computing. 1997;8:
375-402. DOI: 10.1006/jvlc.1997.0053

[25] Calude CS, Paun G, Rozenberg G,
Salomaa A. Multisets Processing:
Mathematical, Computer Science and
Molecular Computing Points of View.
Lecture Notes in Computer Science. Vol.
2235. NY: Springer; 2001. p. 359. DOI:
10.1007/3-540-45523-X

[26] Petrovsky AB. Main Notions of the
Multisets Theory. Moscow: URSS; 2002.
p. 80. (In Russian)

[27] Petrovsky AB. Sets and Multisets
Spaces. Moscow: URSS; 2003. p. 248. (In
Russian)

[28] Singh D, Ibrahim AM, Yohanna T,
Singh JN. An overview of applications of
multisets. Novi Sad Journal of
Mathematics. 2007;37:37-92

[29] Red’ko VN, Bui DB, Grishko Yu A.
Modern state of multisets theory from
the entity point of view. Cybernetics
and Systems Analysis. 2015;51:171-178

[30] Sheremet I. A. Recursive Multisets
and Their Applications. – Moscow:
Nauka; 2010. p. 293. (In Russian)

[31] Sheremet IA. Recursive Multisets
and Their Applications. Berlin: NG
Verlag; 2011. p. 249

[32] Chomsky N. Syntactic Structures.
The Hague: Mouton de Gruyter; 2002.
p. 118

[33] Meduna A. Formal Languages and
Computation: Models and their
Application. New York: CRC Press;
2014. p. 233

[34] Wallace M. Constraint logic
programming. In: Computational Logic:
Logic Programming and Beyond.
Lecture Notes in Computer Science.
New York: Springer; Vol. 2407. 2002.
pp. 512-556

[35] Bratko I. Prolog Programming for
Artificial Intelligence. NY: Addison-
Wesley; 2012. p. 696

[36] Diaz D. GNU Prolog. www.gprolog.
org. 2018. p. 238

86

Enhanced Expert Systems

Chapter 6

Unitary Multiset Grammars
an Metagrammars Algorithmics
and Application
Igor Sheremet

Abstract

The chapter is dedicated to the algorithmics of unitary multiset grammars and
metagrammars. Their application to some actual problems from the area of large-
scale sociotechnical systems (STS) assessment and optimization is also considered:
estimation of capabilities of the producing STS; amounts of resources, necessary to
such STS for various orders completion; assessment of STS sustainability/vulnerabil-
ity to various destructive impacts (natural disasters, technogenic catastrophes,
mutual sanctions, etc.); and STS profit maximization, as well as works optimal distri-
bution among non-antagonistic competing STS, operating in the market economy.

Keywords: systems analysis, operations research, knowledge engineering, digital
economy, multisets recursive multisets, multiset grammars, unitary multiset
grammars and multimetagrammars, sociotechnical systems assessment and
optimization

1. Introduction

Unitary multiset grammars (UMG) and multimetagrammars (UMMG) are
knowledge representation model, providing convergence of classical operations
research and modern knowledge engineering. The main area of UMG/UMMG
application is assessment and optimization of large-scale sociotechnical systems
(STS). Syntax and semantics of multigrammars are described in the first part of this
work, being separate chapter of this book. Section 2 of this chapter contains primary
description of UMG/UMMG-improved algorithmics, providing generation of ter-
minal multisets (TMS), reduced by unperspective branches cutoff at the maximal
early steps of generation. Such branches do not lead to the TMS, satisfying all
conditions, entering filter of UMG/UMMG. Section 3 is dedicated to UMG/UMMG
application to some actual problems from the STS assessment area (estimation of
producing STS capabilities and resources, necessary to such systems for various
orders completion, as well as assessment of STS sustainability and vulnerability to
various destructive impacts, such as natural disasters, technogenic catastrophes,
mutual sanctions, etc.). In Section 4, optimization problems, related to STS, are
considered (their profit maximization and works’ optimal distribution among non-
antagonistic competing STS in the market economy). Conclusion contains list of
directions of further development of multigrammatical approach.

87

2. Algorithmics of unitary multigrammars and multimetagrammars

Let us begin from filtering unitary multigrammars (FUMG).
From the computational complexity point of view, definition (58) from the first

part of this work may be without loss of generated TMS transformed to

V iþ1ð Þ ¼ V ið Þ ∪ ∪
v∈V ið Þ

a! n1 � a1;⋯; nm � amh i∈R

∪
n�a∃∈ v

v� n � af gþn∗ n1 � a1;⋯; nm � amf gf g

0
BBBB@

1
CCCCA

(1)

where ∃∈ means selection of any one multiobject n � a from the multiset v
instead of repeating such selection for all multiobjects n � a∈ v . This provides
essential reduction of the computational complexity of TMS generation [1] and is
basic for all algorithms, described lower in this section.

As may be seen, sufficiently valuable part of multisets, generated by FUMG
unitary rules (UR) application, may be eliminated after few generation steps,
because all the following steps do not lead to TMS, satisfying FUMG filter boundary
conditions, or have no opportunity for further optimization over terminal multisets,
generated earlier, if concerning optimizing conditions. So essence of general
approach, which is described further, is to apply filter to every new generated
multiset (not only terminal) and to cut off those multisets, which are not perspec-
tive in the aforementioned sense. Thus we apply well known and widely used in
operations research “branches and bounds” scheme to TMS generation. Of course,
filter application to generated nonterminal multisets cannot be identical to filter
application to terminal multisets; that is why some additional considerations are
necessary.

Let us take the definition of TMS generation logic (57)–(61) from the first part
of the work as a basis and construct rather simple and transparent procedure-
function terminal multisets generation (TMSG), providing reduced generation of
set of terminal multisets, defined by FUMG.

We shall use the following variables in the TMSG body:

1. v, which value is current generated multiset.

2.R, which value is set of unitary rules (FUMG scheme), applied to multisets in
order to generate new multisets.

3.F, which value is FUMG filter used for selection of terminal multisets to the
resulting set V.

4.V, accumulating terminal multisets, satisfying filter F, while generation.

5. FT, which value is set of triples <a, opt, l>, each corresponding to optimizing
condition a ¼ opt∈ F, where a is object, opt∈ max;minf g, and l is current
value of object a multiplicity obtained after previous generation steps.

6.Couples <a, w> and <a, c>, which are representations of unitary rule
a n1 � a1,…, nm � am, where w as well as c is multiset n1 � a1;…; nm � amf g.

In TMSG body, F, FT, and V are global variables, which are available from all
subfunction calls while generation is executed. Note F is read-only variable, while V
and FT are updated (read-write) variables. All other variables are local and are used

88

Enhanced Expert Systems

in the area of their functions in such a way that every new function call operates its
own values of these variables.

TMSG body is the following:
TMSG: procedure (v, R, F) returns (V);

variables F, V, FT global; variables v, R local;
v≔ ∅f g;FT≔ ∅f g;
/* initial values of optimized multiplicities settings */
do a ¼ opt∈F;
case opt:

{min : if k≤ a≤ k0 ∈F
then FT : ∪ a;min; k0

� �� �
;

else FT : ∪ a;min;MAXh if g;
max : if k≤ a≤ k0 ∈F

then FT : ∪ a;max; kh if g;
else FT : ∪ a;max;0h if g;

};
end F;
/*main part: generation function G call */
call G(v, R);
/*function G body*/
G: procedure (v, R);

if v is terminal multiset
then {call FILTER(v);
return;};

/*v is non-terminal multiset, and following operators provide selection of
unperspective multisets and redundant generation cut-off */
do n � a∈ v where a is terminal object;

if k≤ a≤ k0 ∈F & n>k0 /* n already exceeds higher bound */
then return;

if a;min; lh i∈FT
then if l<n /* current minimized multiplicity of object a is already
lower than n, which cannot decrease */

then return;
end v;
/* branch is perspective, so new multisets are generated */
select n � a∃∈ v where a is non-terminal object;
do a;wh i∈R ; /* all non-terminal object a alternatives */

call G v� n � af g þ n∗w,Rð Þ;
end aw;
end;

end G;
FILTER: procedure (v); /* generated TMS v filtration */
variables v, x local;

do n � a∈ v ;
if k≤ a≤ k0 ∈ F

then if n < kð Þ∨ n>k0
� �

/* n is out of k; k0
� �

*/
then return;

if a;min; lh i∈ FT
then if l<n /* n is greater than already stored min value */

then return;
if a;max; lh i∈FT

then if l>n /* n is less than already stored max value */

89

Unitary Multiset Grammars an Metagrammars Algorithmics and Application
DOI: http://dx.doi.org/10.5772/intechopen.82713

2. Algorithmics of unitary multigrammars and multimetagrammars

Let us begin from filtering unitary multigrammars (FUMG).
From the computational complexity point of view, definition (58) from the first

part of this work may be without loss of generated TMS transformed to

V iþ1ð Þ ¼ V ið Þ ∪ ∪
v∈V ið Þ

a! n1 � a1;⋯; nm � amh i∈R

∪
n�a∃∈ v

v� n � af gþn∗ n1 � a1;⋯; nm � amf gf g

0
BBBB@

1
CCCCA

(1)

where ∃∈ means selection of any one multiobject n � a from the multiset v
instead of repeating such selection for all multiobjects n � a∈ v . This provides
essential reduction of the computational complexity of TMS generation [1] and is
basic for all algorithms, described lower in this section.

As may be seen, sufficiently valuable part of multisets, generated by FUMG
unitary rules (UR) application, may be eliminated after few generation steps,
because all the following steps do not lead to TMS, satisfying FUMG filter boundary
conditions, or have no opportunity for further optimization over terminal multisets,
generated earlier, if concerning optimizing conditions. So essence of general
approach, which is described further, is to apply filter to every new generated
multiset (not only terminal) and to cut off those multisets, which are not perspec-
tive in the aforementioned sense. Thus we apply well known and widely used in
operations research “branches and bounds” scheme to TMS generation. Of course,
filter application to generated nonterminal multisets cannot be identical to filter
application to terminal multisets; that is why some additional considerations are
necessary.

Let us take the definition of TMS generation logic (57)–(61) from the first part
of the work as a basis and construct rather simple and transparent procedure-
function terminal multisets generation (TMSG), providing reduced generation of
set of terminal multisets, defined by FUMG.

We shall use the following variables in the TMSG body:

1. v, which value is current generated multiset.

2.R, which value is set of unitary rules (FUMG scheme), applied to multisets in
order to generate new multisets.

3.F, which value is FUMG filter used for selection of terminal multisets to the
resulting set V.

4.V, accumulating terminal multisets, satisfying filter F, while generation.

5. FT, which value is set of triples <a, opt, l>, each corresponding to optimizing
condition a ¼ opt∈ F, where a is object, opt∈ max;minf g, and l is current
value of object a multiplicity obtained after previous generation steps.

6.Couples <a, w> and <a, c>, which are representations of unitary rule
a n1 � a1,…, nm � am, where w as well as c is multiset n1 � a1;…; nm � amf g.

In TMSG body, F, FT, and V are global variables, which are available from all
subfunction calls while generation is executed. Note F is read-only variable, while V
and FT are updated (read-write) variables. All other variables are local and are used

88

Enhanced Expert Systems

in the area of their functions in such a way that every new function call operates its
own values of these variables.

TMSG body is the following:
TMSG: procedure (v, R, F) returns (V);

variables F, V, FT global; variables v, R local;
v≔ ∅f g;FT≔ ∅f g;
/* initial values of optimized multiplicities settings */
do a ¼ opt∈F;
case opt:

{min : if k≤ a≤ k0 ∈F
then FT : ∪ a;min; k0

� �� �
;

else FT : ∪ a;min;MAXh if g;
max : if k≤ a≤ k0 ∈F

then FT : ∪ a;max; kh if g;
else FT : ∪ a;max;0h if g;

};
end F;
/*main part: generation function G call */
call G(v, R);
/*function G body*/
G: procedure (v, R);

if v is terminal multiset
then {call FILTER(v);
return;};

/*v is non-terminal multiset, and following operators provide selection of
unperspective multisets and redundant generation cut-off */
do n � a∈ v where a is terminal object;

if k≤ a≤ k0 ∈F & n>k0 /* n already exceeds higher bound */
then return;

if a;min; lh i∈FT
then if l<n /* current minimized multiplicity of object a is already
lower than n, which cannot decrease */

then return;
end v;
/* branch is perspective, so new multisets are generated */
select n � a∃∈ v where a is non-terminal object;
do a;wh i∈R ; /* all non-terminal object a alternatives */

call G v� n � af g þ n∗w,Rð Þ;
end aw;
end;

end G;
FILTER: procedure (v); /* generated TMS v filtration */
variables v, x local;

do n � a∈ v ;
if k≤ a≤ k0 ∈ F

then if n < kð Þ∨ n>k0
� �

/* n is out of k; k0
� �

*/
then return;

if a;min; lh i∈ FT
then if l<n /* n is greater than already stored min value */

then return;
if a;max; lh i∈FT

then if l>n /* n is less than already stored max value */

89

Unitary Multiset Grammars an Metagrammars Algorithmics and Application
DOI: http://dx.doi.org/10.5772/intechopen.82713

then return;
end na;
/* correction min/max values by new terminal multiset*/
x≔0; /* flag “no values corrected” */
do a; opt; lh i∈FT

do n � a∈ v ;
if l 6¼ n /* at least one value corrected */

then FT : � a; opt; lh if g∪ a; opt; nh if g; =∗replacement∗=x≔ 1f g;
=∗flag reset∗=

end na;
end opt;
if x=0 /* no values corrected */

then V : ∪ vf g; /* one more TMS added to the accumulated set */
else V≔ vf g; /* replacement of earlier accumulated set */

end FILTER;
end TMSG
Let us comment on the represented procedure-function TMSG.
As seen, it contains prefix, which provides V and FT variable values initializa-

tion. FT value is set of triples, each corresponding to one optimizing condition,
entering filter F. If there is boundary condition k≤ a≤ k0 ∈ F, then initial value of
object a multiplicity would be k0 in the case condition is a ¼ min, and k otherwise.
Both values correspond to the worst cases. If there is not any boundary condition
with the same object a, where a ¼ opt∈F, then, obviously, the worst case for
a ¼ min is MAX (the largest possible multiplicity for the considered problem),
while for a ¼ max, it is 0. After prefix execution, there is unique operation,
returning result of recursive procedure G call with input values v and R, passed
without any changes from TMSG call itself.

Procedure G is core of the described algorithm; it implements the main part of
generation and consists of three sections.

First section corresponds to that case, when v is terminal multiset, and all that is
necessary here is to apply FUMG filter to v, what is really done by procedure
FILTER call with v input data. After this call, processing of TMS v is terminated.

If v is not terminal multiset, it is clear that v contains one or more nonterminal
objects, which may be used for generation continuation. The last is performed by
the second section of G in such a way that multiset v is checked, where it is
perspective in the above sense or it may be eliminated from generation, because all
TMS, generated from v, would not satisfy F. For this purpose, all terminal
multiobjects are checked by two selection criteria:

1. If in terminal multiobject n � amultiplicity n already exceeds upper bound k0 of
boundary condition k≤ a≤ k0 ∈F . (it’s obvious that while following generation
steps, object a multiplicity would only increase or in the utmost case remain
unchangeable).

2. If mentioned multiplicity is greater than value l already having place in the
triple a;min; lh i∈ FT (again it’s obvious that the following steps would not
decrease this multiplicity, so all TMS generated from V would not satisfy
optimizing filter a ¼ min).

(There may be more sophisticated and efficient criteria for earlier recognition
and cutting off unperspective generation branches [2, 3], but chapter volume limits
make their description impossible). If one of the checked conditions is not satisfied,
further generation from multiset v is terminated by return from G without any
operation.

90

Enhanced Expert Systems

The third section of G corresponds to nonterminal multiset, which was not
eliminated, being perspective, so generation is continued by all possible
branches, corresponding to unitary rules with the same head, in full accordance
with UMG semantics and improvement (1), by G recursive calls with new
input data.

Function FILTER with unique input (multiset v) implements check of all
conditions, having place in filter F. This is done by the first do-end loop for all
terminal multiobjects, entering v. If one of these checks failed, return from
FILTER is performed without any additional actions. If all checks were successful,
second section is executed. It begins from the installation of flag variable x to 0
value; that means no min/max values in the accumulating variable FT were
replaced (i.e., v has no multiobjects n � a with value n more or less over already
having place in FT). After that, do-end loop for all FT elements is executed. If
multiplicity n of object a in TMS v is not equal to value l in the considered element
a; opt; lh i∈FT; that means n is less (when opt ¼ min) or greater (when opt ¼ max)
than l, so l must be replaced by n, and flag x must get value 1 (at least one
replacement was done). The third section of function FILTER operates according
to variable x value. If x = 0 (i.e., all optimized multiplicities in v are equal to
already obtained in the previous generation steps), then v is joined to the resulting
set V as new element. If x = 1 (i.e., at least one multiplicity was replaced, so v is
“better” than earlier created and stored terminal multisets), then previous value
of V is replaced by one-element set {v}.

As seen, the described algorithm due to its simplicity may be implemented easily
on every available software/hardware environment. Correctness of this algorithm is
confirmed by the following statement [2, 3].

Statement. Let S ¼ a0;R;Fh i, and TMSG 1 � a0f g;R;Fð Þ is result of TMSG call.
Then

TMSG 1 � a0f g;R;Fð Þ ¼ VS: ▪ (2)

(Note TMSG operates only elementary boundary conditions aρn, not EBC aρa0,
neither CBC. TMSG generalization is not associated with any difficulties).

Let us describe now the main idea of algorithmics of generation sets of TMS,
defined by unitary multimetagrammars.

As shown in [2, 3], all multisets, generated by any UMMG, have form

v ¼ Cai1 � ai1 ;…;Caim � aim
n o

, (3)

where every Caij is so-called variables-containing multiplicity (VCM), being

polynom of variables-multiplicities, having places in unitary metarules, used while
generation of multiset v. In the general case, object a VCM is

Ca ¼ nai þ ∑
NCa

i¼1
nai � γi1

� �lai1 �… � γimi

� �laimi , (4)

where NCa is number of monoms, each being product of all occurrences of
variables-multiplicities and constants-multiplicities, having places in one genera-
tion branch, leading to object a.

If filter F of UMMG contains boundary conditions

k1 ≤ ai1 ≤ k01,
:…

kl ≤ ail ≤ k0l

(5)

91

Unitary Multiset Grammars an Metagrammars Algorithmics and Application
DOI: http://dx.doi.org/10.5772/intechopen.82713

then return;
end na;
/* correction min/max values by new terminal multiset*/
x≔0; /* flag “no values corrected” */
do a; opt; lh i∈FT

do n � a∈ v ;
if l 6¼ n /* at least one value corrected */

then FT : � a; opt; lh if g∪ a; opt; nh if g; =∗replacement∗=x≔ 1f g;
=∗flag reset∗=

end na;
end opt;
if x=0 /* no values corrected */

then V : ∪ vf g; /* one more TMS added to the accumulated set */
else V≔ vf g; /* replacement of earlier accumulated set */

end FILTER;
end TMSG
Let us comment on the represented procedure-function TMSG.
As seen, it contains prefix, which provides V and FT variable values initializa-

tion. FT value is set of triples, each corresponding to one optimizing condition,
entering filter F. If there is boundary condition k≤ a≤ k0 ∈ F, then initial value of
object a multiplicity would be k0 in the case condition is a ¼ min, and k otherwise.
Both values correspond to the worst cases. If there is not any boundary condition
with the same object a, where a ¼ opt∈F, then, obviously, the worst case for
a ¼ min is MAX (the largest possible multiplicity for the considered problem),
while for a ¼ max, it is 0. After prefix execution, there is unique operation,
returning result of recursive procedure G call with input values v and R, passed
without any changes from TMSG call itself.

Procedure G is core of the described algorithm; it implements the main part of
generation and consists of three sections.

First section corresponds to that case, when v is terminal multiset, and all that is
necessary here is to apply FUMG filter to v, what is really done by procedure
FILTER call with v input data. After this call, processing of TMS v is terminated.

If v is not terminal multiset, it is clear that v contains one or more nonterminal
objects, which may be used for generation continuation. The last is performed by
the second section of G in such a way that multiset v is checked, where it is
perspective in the above sense or it may be eliminated from generation, because all
TMS, generated from v, would not satisfy F. For this purpose, all terminal
multiobjects are checked by two selection criteria:

1. If in terminal multiobject n � amultiplicity n already exceeds upper bound k0 of
boundary condition k≤ a≤ k0 ∈F . (it’s obvious that while following generation
steps, object a multiplicity would only increase or in the utmost case remain
unchangeable).

2. If mentioned multiplicity is greater than value l already having place in the
triple a;min; lh i∈ FT (again it’s obvious that the following steps would not
decrease this multiplicity, so all TMS generated from V would not satisfy
optimizing filter a ¼ min).

(There may be more sophisticated and efficient criteria for earlier recognition
and cutting off unperspective generation branches [2, 3], but chapter volume limits
make their description impossible). If one of the checked conditions is not satisfied,
further generation from multiset v is terminated by return from G without any
operation.

90

Enhanced Expert Systems

The third section of G corresponds to nonterminal multiset, which was not
eliminated, being perspective, so generation is continued by all possible
branches, corresponding to unitary rules with the same head, in full accordance
with UMG semantics and improvement (1), by G recursive calls with new
input data.

Function FILTER with unique input (multiset v) implements check of all
conditions, having place in filter F. This is done by the first do-end loop for all
terminal multiobjects, entering v. If one of these checks failed, return from
FILTER is performed without any additional actions. If all checks were successful,
second section is executed. It begins from the installation of flag variable x to 0
value; that means no min/max values in the accumulating variable FT were
replaced (i.e., v has no multiobjects n � a with value n more or less over already
having place in FT). After that, do-end loop for all FT elements is executed. If
multiplicity n of object a in TMS v is not equal to value l in the considered element
a; opt; lh i∈FT; that means n is less (when opt ¼ min) or greater (when opt ¼ max)
than l, so l must be replaced by n, and flag x must get value 1 (at least one
replacement was done). The third section of function FILTER operates according
to variable x value. If x = 0 (i.e., all optimized multiplicities in v are equal to
already obtained in the previous generation steps), then v is joined to the resulting
set V as new element. If x = 1 (i.e., at least one multiplicity was replaced, so v is
“better” than earlier created and stored terminal multisets), then previous value
of V is replaced by one-element set {v}.

As seen, the described algorithm due to its simplicity may be implemented easily
on every available software/hardware environment. Correctness of this algorithm is
confirmed by the following statement [2, 3].

Statement. Let S ¼ a0;R;Fh i, and TMSG 1 � a0f g;R;Fð Þ is result of TMSG call.
Then

TMSG 1 � a0f g;R;Fð Þ ¼ VS: ▪ (2)

(Note TMSG operates only elementary boundary conditions aρn, not EBC aρa0,
neither CBC. TMSG generalization is not associated with any difficulties).

Let us describe now the main idea of algorithmics of generation sets of TMS,
defined by unitary multimetagrammars.

As shown in [2, 3], all multisets, generated by any UMMG, have form

v ¼ Cai1 � ai1 ;…;Caim � aim
n o

, (3)

where every Caij is so-called variables-containing multiplicity (VCM), being

polynom of variables-multiplicities, having places in unitary metarules, used while
generation of multiset v. In the general case, object a VCM is

Ca ¼ nai þ ∑
NCa

i¼1
nai � γi1

� �lai1 �… � γimi

� �laimi , (4)

where NCa is number of monoms, each being product of all occurrences of
variables-multiplicities and constants-multiplicities, having places in one genera-
tion branch, leading to object a.

If filter F of UMMG contains boundary conditions

k1 ≤ ai1 ≤ k01,
:…

kl ≤ ail ≤ k0l

(5)

91

Unitary Multiset Grammars an Metagrammars Algorithmics and Application
DOI: http://dx.doi.org/10.5772/intechopen.82713

as well as optimizing conditions

aj1 ¼ opt1,
:…

ajt ¼ optt,
(6)

they induce l inequalities

k1 ≤Cai1 ≤ k01,
:…

kl ≤Cail
≤ k0l,

(7)

and t goal functions

Caj1 ! optj1 ,
:…

Cajt ! optjt :
(8)

Domain of every variable γ, having place in polynoms Cai1 ,…, Cail
, Cj1 ,…, Cjt , is

defined by boundary condition

kγ ≤ γ ≤ k0γ ∈F: (9)

As seen from (3)–(9), set of terminal multisets, generated in the UMMG case,
corresponds to set of solutions of multicriterial problem of discrete polynomial
programming. There are well-known approaches to such problems’ consideration
[4, 5], but their common feature is they provide search of any one of the solutions,
not all multi-element solutions set, if it exists. Proposed UMMG TMS generation
algorithmics [2, 3] is initially oriented to UMMG semantic precise implementation
and combines mixed computation and interval analysis techniques [6–9] with
global optimization based on theory [10–13]. Aforementioned algorithmics pro-
vides multidirectional reduction of redundant generation branches by procedure,
similar to TMSG, and extended by splitting of intervals, defined by boundary
conditions, which describe variable domains, to subintervals, until the last become
points. Every such step is accompanied by the estimation of lower and upper
bounds of VCMs, containing variable, which current domain is splitted, so if both
bounds of at least one VCM are out of interval, defined by corresponding object
multiplicity bounds, having place in UMMG filter, then created interval is elimi-
nated, and generation branch is terminated.

As TMSG, another powerful tool of unperspective branches early recognition
and cutoff is comparison of mentioned lower and upper bound estimates with
already obtained values of optimized multiplicities. If corresponding optimizing
condition is a = min, and current value of object a multiplicity, obtained as a result
of previous steps execution, is n, then when lower bound estimate of VCM of a is n,
and already n>n, so further generation by this branch, which leads only to growth
of VCM (or it remains unchangeable in the best case), is senseless, and branch may
be terminated. Similarly, if optimizing condition is a = max, and current value of
corresponding multiplicity is n, while VCM upper bound estimate is n0 < n, then
further generation by this branch will not lead to object a multiplicity increase, and
branch may be terminated.

VCM generation is based on unified representation of polynoms in (4) form as
sets of multisets: Ca is represented as

92

Enhanced Expert Systems

va ¼ na0 � γ0
� �

; na1 � γ0; ea11 � γ11;…; ea1m1
� γ1m1

n o
;…; nak � γ0; eak1 � γk1 ;…; eakmk

� γkmk

n on o
,

(10)

where k ¼ NCa, γ
i
j are objects, corresponding to variables, while γ0 is fictive

object, corresponding to constants, having place in polynom. For example, polynom

Ca ¼ 5þ 3 � γ1ð Þ2 � γ2ð Þ4 þ γ2ð Þ5 � γ3 (11)

is represented by multiset

va ¼ 5 � γ0f g; 3 � γ0; 2 � γ1;4 � γ3f g; 1 � γ0; 5 � γ2; 1 � γ3f gf g: (12)

This representation is sufficiently flexible, and it is the basis of implementation
of mixed computation in the multisets case; the core of this implementation is
polynoms multiplication and addition.

More detailed description of algorithmics, providing efficient generation of sets
of terminal multisets, defined by unitary multimetagrammars, needs separate
survey.

Implementation issues, related with the proposed knowledge representation
model, are described in [1, 14].

However, presented formal definitions of syntax, semantics, and algorithmics of
UMG/UMMG are, in our opinion, sufficient for consideration of their pragmatics,
that is, their application to various practical problems.

3. Assessment of the producing sociotechnical systems

Multigrammatical paradigm and UMG/UMMG toolkit are sufficiently general
and simple to formalize and solve a lot of practical problems from various areas of
operations research and systems analysis. Techniques, shortly described in Section 2
of the first part of this work, is one of the many possible to apply. Some more
examples from hierarchical sociotechnical systems assessment and design
concerned reader may find in [2, 3], where one may find also description of
multigrammatical emulation of well-known classical problems of optimization the-
ory: shortest path, traveling salesman, maximal flow, maximal pair matching, opti-
mal assignments problems, and transport problem as well as integer linear
programming problem. (Note that in [2, 3], there is also analysis of interconnec-
tions between multigrammars’ family and known computational models, such as
Petri nets, vectors addition, substitution systems, etc.).

Lower in this section, we shall consider problems, associated with the producing
(manufacturing) STS, being most complicated for modeling.

Let us introduce the following structural interpretation of unitary rules.
We shall understand UR

a! n1 � a1,…, nm � am (13)

as follows: object a consists of n1 objects a1,…, nm objects am .
In turn, technological interpretation of unitary rules is generalization of the

structural one and is as follows: production of one object (unit of resource) a
requires n1 objects (units of resource) a1,…, nm objects (units of resource) am: One
may consider (13) as a black box, representing producing device or manufacturing
facility (factory, plant, etc.), containing a lot of such devices, working coopera-
tively. Set R of such URs represents technological base (TB) of some social group,

93

Unitary Multiset Grammars an Metagrammars Algorithmics and Application
DOI: http://dx.doi.org/10.5772/intechopen.82713

as well as optimizing conditions

aj1 ¼ opt1,
:…

ajt ¼ optt,
(6)

they induce l inequalities

k1 ≤Cai1 ≤ k01,
:…

kl ≤Cail
≤ k0l,

(7)

and t goal functions

Caj1 ! optj1 ,
:…

Cajt ! optjt :
(8)

Domain of every variable γ, having place in polynoms Cai1 ,…, Cail
, Cj1 ,…, Cjt , is

defined by boundary condition

kγ ≤ γ ≤ k0γ ∈F: (9)

As seen from (3)–(9), set of terminal multisets, generated in the UMMG case,
corresponds to set of solutions of multicriterial problem of discrete polynomial
programming. There are well-known approaches to such problems’ consideration
[4, 5], but their common feature is they provide search of any one of the solutions,
not all multi-element solutions set, if it exists. Proposed UMMG TMS generation
algorithmics [2, 3] is initially oriented to UMMG semantic precise implementation
and combines mixed computation and interval analysis techniques [6–9] with
global optimization based on theory [10–13]. Aforementioned algorithmics pro-
vides multidirectional reduction of redundant generation branches by procedure,
similar to TMSG, and extended by splitting of intervals, defined by boundary
conditions, which describe variable domains, to subintervals, until the last become
points. Every such step is accompanied by the estimation of lower and upper
bounds of VCMs, containing variable, which current domain is splitted, so if both
bounds of at least one VCM are out of interval, defined by corresponding object
multiplicity bounds, having place in UMMG filter, then created interval is elimi-
nated, and generation branch is terminated.

As TMSG, another powerful tool of unperspective branches early recognition
and cutoff is comparison of mentioned lower and upper bound estimates with
already obtained values of optimized multiplicities. If corresponding optimizing
condition is a = min, and current value of object a multiplicity, obtained as a result
of previous steps execution, is n, then when lower bound estimate of VCM of a is n,
and already n>n, so further generation by this branch, which leads only to growth
of VCM (or it remains unchangeable in the best case), is senseless, and branch may
be terminated. Similarly, if optimizing condition is a = max, and current value of
corresponding multiplicity is n, while VCM upper bound estimate is n0 < n, then
further generation by this branch will not lead to object a multiplicity increase, and
branch may be terminated.

VCM generation is based on unified representation of polynoms in (4) form as
sets of multisets: Ca is represented as

92

Enhanced Expert Systems

va ¼ na0 � γ0
� �

; na1 � γ0; ea11 � γ11;…; ea1m1
� γ1m1

n o
;…; nak � γ0; eak1 � γk1 ;…; eakmk

� γkmk

n on o
,

(10)

where k ¼ NCa, γ
i
j are objects, corresponding to variables, while γ0 is fictive

object, corresponding to constants, having place in polynom. For example, polynom

Ca ¼ 5þ 3 � γ1ð Þ2 � γ2ð Þ4 þ γ2ð Þ5 � γ3 (11)

is represented by multiset

va ¼ 5 � γ0f g; 3 � γ0; 2 � γ1;4 � γ3f g; 1 � γ0; 5 � γ2; 1 � γ3f gf g: (12)

This representation is sufficiently flexible, and it is the basis of implementation
of mixed computation in the multisets case; the core of this implementation is
polynoms multiplication and addition.

More detailed description of algorithmics, providing efficient generation of sets
of terminal multisets, defined by unitary multimetagrammars, needs separate
survey.

Implementation issues, related with the proposed knowledge representation
model, are described in [1, 14].

However, presented formal definitions of syntax, semantics, and algorithmics of
UMG/UMMG are, in our opinion, sufficient for consideration of their pragmatics,
that is, their application to various practical problems.

3. Assessment of the producing sociotechnical systems

Multigrammatical paradigm and UMG/UMMG toolkit are sufficiently general
and simple to formalize and solve a lot of practical problems from various areas of
operations research and systems analysis. Techniques, shortly described in Section 2
of the first part of this work, is one of the many possible to apply. Some more
examples from hierarchical sociotechnical systems assessment and design
concerned reader may find in [2, 3], where one may find also description of
multigrammatical emulation of well-known classical problems of optimization the-
ory: shortest path, traveling salesman, maximal flow, maximal pair matching, opti-
mal assignments problems, and transport problem as well as integer linear
programming problem. (Note that in [2, 3], there is also analysis of interconnec-
tions between multigrammars’ family and known computational models, such as
Petri nets, vectors addition, substitution systems, etc.).

Lower in this section, we shall consider problems, associated with the producing
(manufacturing) STS, being most complicated for modeling.

Let us introduce the following structural interpretation of unitary rules.
We shall understand UR

a! n1 � a1,…, nm � am (13)

as follows: object a consists of n1 objects a1,…, nm objects am .
In turn, technological interpretation of unitary rules is generalization of the

structural one and is as follows: production of one object (unit of resource) a
requires n1 objects (units of resource) a1,…, nm objects (units of resource) am: One
may consider (13) as a black box, representing producing device or manufacturing
facility (factory, plant, etc.), containing a lot of such devices, working coopera-
tively. Set R of such URs represents technological base (TB) of some social group,

93

Unitary Multiset Grammars an Metagrammars Algorithmics and Application
DOI: http://dx.doi.org/10.5772/intechopen.82713

possessing represented by this set producing (manufacturing) equipment. If R
contains l > 1 URs with identical head and different bodies, this means that one and
the same object may be produced in l various ways (by l various devices, or by one
and the same device, but by various methods, or by l various facilities). Objects,
having places in URs, may be manufactured devices, their blocks, spare parts, chips,
pieces of connecting cables, various measured resources involved (necessary
amounts of electrical energy, liquids, solid materials, etc. “down to ore”), as well as
time and money. Manufactured devices may be, in turn, manufacturing (“means of
production”) and may be used further in production processes/chains.

Unitary multigrammars provide most natural “top-down” way of formal
description of technological base of arbitrary producing STS, as well as deep struc-
ture of manufactured objects of any level of structural complexity (obviously, these
two entities are interconnected closely). “Additivity” of multigrammatical knowl-
edge bases (KB), being consequence of their “granularity” (due to unitary rules and
metarules as knowledge representation atoms), provides creating and updating KB
in near real time. Since now we shall use notations “multigrammatical knowledge
base” and “scheme of UMG/UMMG” as synonyms.

Example 1. Consider car, consisting of body, engine, transmission, four wheels,
and fuel cistern. Car body, in turn, consists of frame, front and back glasses, engine
cover, baggage place, and two first and two second doors. Engine includes motor,
cooling system, and accumulator. All the said may be represented by the following
set of unitary rules in the structural interpretation:

car! 1 � body, 1 � engine, 1 � transmission, 4 � wheel, 1 � fuel‐cisterm,
body! 1 � frame, 1 � front‐glass, 1 � back‐glass, 1 � engine‐cover, 1 � baggage‐place,

2 � first‐door, 2 � back‐door,
engine! 1 �motor, 1 � cooling‐system, 1 � accumulator: ▪
As it is easy to see, all terminal objects may become nonterminal after joining to

this set of new URs, detailing them down to undivided spare parts. If to follow
technological interpretation, then every UR reflects assembling operation,
implemented by corresponding segment of manufacturing facility: one such seg-
ment is assembling car of the listed components, another segment - body, etc.

To take into account cost of any operation executed (obviously, it is “added
value” in K. Marx terminology), as well as time interval necessary for its execution, it
is sufficient to include to UR bodies multiobjects like n � e and m � t,where e and t
are fixed-name objects being cost and time measurement units (e.g., usd and sec).
There may be recalculation of both to another unit by including to the KB additional
rules, reflecting currencies interrelations and different time scales, for example,

eur! 1:15 � usd, (14)

hour! 60 �mnt, (15)

mnt! 60 � sec (16)

(rational multiplicities’ appearance along with integer ones, considered higher,
does not bring any principal transformations and difficulties into MG semantics and
algorithmics [2, 3]). Both cost and time may be defined in “compound” units, that is,
UR body may contain three multiobjects, 3 � hour, 23 �min, 15 � sec , that after appli-
cation of URs (14)–(16) will be transformed to one multiobject, 10953 � sec .

Considering time intervals description in unitary rules, we must take into
account that, unlike cost, time is not fully additive resource, because producing
devices may operate in parallel. That’s why time is additive resource only regarding

94

Enhanced Expert Systems

separate device, and typical form of “local time” description is multiobject
n � t� xh i, where x may be manufacturing device name as well as assembled tech-
nical object name, while t is time measurement unit (here angle brackets are used
for syntactical unambiguity).

Example 2. Let us consider the following cost and time parameters, implanted to
URs from example 1. Let cost of one car assembling is 3000 USD; body, 2000 USD;
and engine, 6000 USD; time interval necessary for one car assembling is
28 minutes, body, 21 minutes; and engine, 63 minutes. Then URs from Example 1
may be rewritten in the following way:

car! 28 � mnt� carh i, 3000 � usd, 1 � body, 1 � engine, 1 � transmission, 4 �wheel,
1 � fuel‐cisterm,

body! 21 � mnt� bodyh i, 2000 � usd, 1 � front‐glass, 1 � back‐glass, 1 � engine‐cover, 1 � baggage‐place,
2 � first‐door, 2 � back‐door,

engine! 60 � mnt� engineh i, 6000 � usd, 1 �motor, 1 � cooling‐system, 1 � accumulator: ▪

If we have knowledge base, prepared as shown above, then it may be used to
estimate resources amounts, necessary to complete any order by means of techno-
logical base, defined by R. Order may be represented as multiset

q ¼ m1 � b1;…;mk � bkf g, (17)

which means customer needs m1 objects b1,…, mk objects bk:
Then, as it is easy to see, resources collection, necessary to complete this order, is

terminal multiset v being element of set of TMS VSq , where

Sq ¼ aq;Rq
� �

, (18)

Rq ¼ R∪ aq ! m1 � b1;…;mk � bk
� �� �

(19)

(unitary rule, having place in (19), is in angle brackets for unambiguity). If
unitary multigrammar Sq generates one-element SMS, that is, VSq

�� �� ¼ 1, there is
unique variant of aforementioned resources collection. Otherwise, VSq

�� ��>1, and
there are various ways of some objects’ assembling, each consuming its own
resources collection.

Example 3. Let q ¼ 3 � carf g: Then Rq consists of all URs from Example 2 and
unitary rule

order! 3 � car, (20)

that is, order is to assemble three cars. According to (17)–(19),

VSq ¼ 84 � mnt‐carh i; 63 � mnt‐bodyh i; 180 � mnt‐engineh i; 27000 � usd,ff
3 � transmission, 12 � wheel, 3 � fuel‐cistern, 3 � front‐glass, 3 � back‐glass,
3 � engine‐cover, 3 � baggage‐place, 6 � first‐door, 6 � back‐door,
3 �motor; 3 � cooling‐system; 3 � accumulatorgg:

That means order completion requires spare parts from external suppliers as
well as money and time for assembling segments of manufacturing facility in
amounts, being multiplicities of corresponding objects, having places in VSq . There
is the only one variant of resources set necessary for order completion. ▪

If it is necessary to evaluate (estimate) total cost of order completion, then it is
sufficient to join to the KB R unitary rules, defining costs of all necessary spare parts

95

Unitary Multiset Grammars an Metagrammars Algorithmics and Application
DOI: http://dx.doi.org/10.5772/intechopen.82713

possessing represented by this set producing (manufacturing) equipment. If R
contains l > 1 URs with identical head and different bodies, this means that one and
the same object may be produced in l various ways (by l various devices, or by one
and the same device, but by various methods, or by l various facilities). Objects,
having places in URs, may be manufactured devices, their blocks, spare parts, chips,
pieces of connecting cables, various measured resources involved (necessary
amounts of electrical energy, liquids, solid materials, etc. “down to ore”), as well as
time and money. Manufactured devices may be, in turn, manufacturing (“means of
production”) and may be used further in production processes/chains.

Unitary multigrammars provide most natural “top-down” way of formal
description of technological base of arbitrary producing STS, as well as deep struc-
ture of manufactured objects of any level of structural complexity (obviously, these
two entities are interconnected closely). “Additivity” of multigrammatical knowl-
edge bases (KB), being consequence of their “granularity” (due to unitary rules and
metarules as knowledge representation atoms), provides creating and updating KB
in near real time. Since now we shall use notations “multigrammatical knowledge
base” and “scheme of UMG/UMMG” as synonyms.

Example 1. Consider car, consisting of body, engine, transmission, four wheels,
and fuel cistern. Car body, in turn, consists of frame, front and back glasses, engine
cover, baggage place, and two first and two second doors. Engine includes motor,
cooling system, and accumulator. All the said may be represented by the following
set of unitary rules in the structural interpretation:

car! 1 � body, 1 � engine, 1 � transmission, 4 � wheel, 1 � fuel‐cisterm,
body! 1 � frame, 1 � front‐glass, 1 � back‐glass, 1 � engine‐cover, 1 � baggage‐place,

2 � first‐door, 2 � back‐door,
engine! 1 �motor, 1 � cooling‐system, 1 � accumulator: ▪
As it is easy to see, all terminal objects may become nonterminal after joining to

this set of new URs, detailing them down to undivided spare parts. If to follow
technological interpretation, then every UR reflects assembling operation,
implemented by corresponding segment of manufacturing facility: one such seg-
ment is assembling car of the listed components, another segment - body, etc.

To take into account cost of any operation executed (obviously, it is “added
value” in K. Marx terminology), as well as time interval necessary for its execution, it
is sufficient to include to UR bodies multiobjects like n � e and m � t,where e and t
are fixed-name objects being cost and time measurement units (e.g., usd and sec).
There may be recalculation of both to another unit by including to the KB additional
rules, reflecting currencies interrelations and different time scales, for example,

eur! 1:15 � usd, (14)

hour! 60 �mnt, (15)

mnt! 60 � sec (16)

(rational multiplicities’ appearance along with integer ones, considered higher,
does not bring any principal transformations and difficulties into MG semantics and
algorithmics [2, 3]). Both cost and time may be defined in “compound” units, that is,
UR body may contain three multiobjects, 3 � hour, 23 �min, 15 � sec , that after appli-
cation of URs (14)–(16) will be transformed to one multiobject, 10953 � sec .

Considering time intervals description in unitary rules, we must take into
account that, unlike cost, time is not fully additive resource, because producing
devices may operate in parallel. That’s why time is additive resource only regarding

94

Enhanced Expert Systems

separate device, and typical form of “local time” description is multiobject
n � t� xh i, where x may be manufacturing device name as well as assembled tech-
nical object name, while t is time measurement unit (here angle brackets are used
for syntactical unambiguity).

Example 2. Let us consider the following cost and time parameters, implanted to
URs from example 1. Let cost of one car assembling is 3000 USD; body, 2000 USD;
and engine, 6000 USD; time interval necessary for one car assembling is
28 minutes, body, 21 minutes; and engine, 63 minutes. Then URs from Example 1
may be rewritten in the following way:

car! 28 � mnt� carh i, 3000 � usd, 1 � body, 1 � engine, 1 � transmission, 4 �wheel,
1 � fuel‐cisterm,

body! 21 � mnt� bodyh i, 2000 � usd, 1 � front‐glass, 1 � back‐glass, 1 � engine‐cover, 1 � baggage‐place,
2 � first‐door, 2 � back‐door,

engine! 60 � mnt� engineh i, 6000 � usd, 1 �motor, 1 � cooling‐system, 1 � accumulator: ▪

If we have knowledge base, prepared as shown above, then it may be used to
estimate resources amounts, necessary to complete any order by means of techno-
logical base, defined by R. Order may be represented as multiset

q ¼ m1 � b1;…;mk � bkf g, (17)

which means customer needs m1 objects b1,…, mk objects bk:
Then, as it is easy to see, resources collection, necessary to complete this order, is

terminal multiset v being element of set of TMS VSq , where

Sq ¼ aq;Rq
� �

, (18)

Rq ¼ R∪ aq ! m1 � b1;…;mk � bk
� �� �

(19)

(unitary rule, having place in (19), is in angle brackets for unambiguity). If
unitary multigrammar Sq generates one-element SMS, that is, VSq

�� �� ¼ 1, there is
unique variant of aforementioned resources collection. Otherwise, VSq

�� ��>1, and
there are various ways of some objects’ assembling, each consuming its own
resources collection.

Example 3. Let q ¼ 3 � carf g: Then Rq consists of all URs from Example 2 and
unitary rule

order! 3 � car, (20)

that is, order is to assemble three cars. According to (17)–(19),

VSq ¼ 84 � mnt‐carh i; 63 � mnt‐bodyh i; 180 � mnt‐engineh i; 27000 � usd,ff
3 � transmission, 12 � wheel, 3 � fuel‐cistern, 3 � front‐glass, 3 � back‐glass,
3 � engine‐cover, 3 � baggage‐place, 6 � first‐door, 6 � back‐door,
3 �motor; 3 � cooling‐system; 3 � accumulatorgg:

That means order completion requires spare parts from external suppliers as
well as money and time for assembling segments of manufacturing facility in
amounts, being multiplicities of corresponding objects, having places in VSq . There
is the only one variant of resources set necessary for order completion. ▪

If it is necessary to evaluate (estimate) total cost of order completion, then it is
sufficient to join to the KB R unitary rules, defining costs of all necessary spare parts

95

Unitary Multiset Grammars an Metagrammars Algorithmics and Application
DOI: http://dx.doi.org/10.5772/intechopen.82713

and other external (“outsourced”) resources. These URs may have form a! n � e,
where a is terminal object from R, while e is monetary unit, used for cost calcula-
tion. As may be seen, if one would eliminate from URs time-defining multiobjects,
then e becomes unique terminal object of the created scheme R0, and set of terminal

multisets generated by UMG S0 ¼ aq;R0q
D E

would contain one-element TMS of form

n � ef g, where n is total cost of order completion, corresponding to one of its variants
(as was said higher, there may be more than one such variant).

Example 4. Let us add to the KB from Example 3 the following unitary rules,
defining prices of car the outsourced elements:

transmission! 100 � usd,
wheel ! 50 � usd,

…

accumulator! 10 � usd:
As seen, new UMG provides generation of one-element set

84 � mnt‐carh i; 63 � mnt‐bodyh i; 180 � mnt‐engineh i;X � usdgg,ff
where X is total cost of order completion, that is, three car assembling.
If multiobjects 28 � mnt‐carh i, 21 � mnt‐bodyh i and 60 � mnt‐engineh i are elimi-

nated from UR set presented in Example 10, then obtained UMG will generate one-
element set {{X �usd}}. ▪

In practice every STS, which is capable to complete input orders and manufac-
ture some output production, possesses usually not only technological base but also
resource base (RB). For this reason, assessment of STS capability to orders
completion requires comparison of two resources collections—being in system’s
ownership and necessary. In multigrammatical paradigm, this problem is solved
quite simply.

Let R be technological base, while multiset v ¼ m1 � b1;…;mk � bk
� �

is resource
base of the system, that is, STS possesses m1 objects b1,…, mk objects bk: As it is easy
to see, order q ¼ m1 � b1;…;ml � blf gmay be completed by this system, if there exists
multiset v∈VSq such that

v⊆ v, (21)

that is, collection of resources, belonging to the STS, is sufficient for order q
completion by one of the implementable ways. In this case order completion is
possible. Otherwise, that is, if there is no one multiset v∈V satisfying (21), then
system is not able to complete q.

Example 5. Let KB from Example 2 be STS technological base, while

v ¼ 6 � transmission, 10 �wheel, 2 � fuel‐cistern, 7 � front‐glass,f
9 � back‐glass, 180 � mnt‐carh i, 240 � mnt‐bodyh i, 600 � mnt‐engineh i,
1000000 � eur, 500000 � usdg

is its resource base. As may be seen, this resource base is not sufficient for order
q = {3 � car} from Example 11 completion, because condition (21) is not satisfied: there
are objects, entering all v∈VSq , which do not enter v at all (motor, accumulator, etc.).
At the same time multiplicities of some terminal objects are less than it is necessary

for order q completion 2 � fuel‐cistern∈ v while 3 � fuel‐cistern∈ v∈VSq

� �
. ▪

96

Enhanced Expert Systems

After recognition of system’s inability to complete order q, there may be two
questions:

1.What amount of resources must be acquired by the system to complete the
order?

2.What part of order may be completed, given resources, owned by STS?

The answer to the first question is obvious: if v∈VSq, and v is not subset of v,
then additional amount of resources, necessary for order completion, is v–v: Thus
variants of necessary resources acquisition are elements of set of terminal multisets

ΔVSq ¼ v�vjv∈VSq

n o
: (22)

The answer to the second question concerned reader may find in [1], where the
so-called reverse multigrammars are used for this problem solution.

One more area of useful application of UMG/UMMG is assessment of
sociotechnical systems sustainability/vulnerability to various destructive
impacts, which was in details considered in [1]. The main result of this work is as
follows.

Let Rq be scheme, corresponding to technological base of the system and order q
in the sense (17)–(19); v is total resource of this system (resource base, joined with
multiset representation of technological base, as it was suggested in [1]), and Δv is
impact, destructing some part of the aforementioned total resource. We shall call
STS with technological base R and total resource v sustainable to impact Δv while
completing order q, if

∃v∈VSq

� �
v⊆v� Δv: (23)

That is, despite impact there is at least one way of order completion. Otherwise,
if there is no one TMS v∈VSq , satisfying (23), considered STS is vulnerable to
impact Δv.

4. Optimization problems

Another important issue to be discussed here is profit optimization in produc-
tion economy (POPE). We shall consider it not only because of its practical value
but also in order to illustrate techniques of UMG/UMMG application to the
multigrammatical representation and solution of classical optimization problems.

POPE is formulated as follows [15]. Let there be n products, manufactured by
STS, xi is amount of i-th product, and ci is its price. Profit, which producing STS
would obtain, is

C ¼ ∑
m

i¼1
ci � xi: (24)

To produce one unit of i-th product, the system needs respective resources,
namely, aij units of the j-th resource, where j ¼ 1,…, n, and n is total number of
different resources, consumed by the system for production. There are b1, …, bn
amount of resources available, and the problem is to maximize profit C under
restrictions

97

Unitary Multiset Grammars an Metagrammars Algorithmics and Application
DOI: http://dx.doi.org/10.5772/intechopen.82713

and other external (“outsourced”) resources. These URs may have form a! n � e,
where a is terminal object from R, while e is monetary unit, used for cost calcula-
tion. As may be seen, if one would eliminate from URs time-defining multiobjects,
then e becomes unique terminal object of the created scheme R0, and set of terminal

multisets generated by UMG S0 ¼ aq;R0q
D E

would contain one-element TMS of form

n � ef g, where n is total cost of order completion, corresponding to one of its variants
(as was said higher, there may be more than one such variant).

Example 4. Let us add to the KB from Example 3 the following unitary rules,
defining prices of car the outsourced elements:

transmission! 100 � usd,
wheel ! 50 � usd,

…

accumulator! 10 � usd:
As seen, new UMG provides generation of one-element set

84 � mnt‐carh i; 63 � mnt‐bodyh i; 180 � mnt‐engineh i;X � usdgg,ff
where X is total cost of order completion, that is, three car assembling.
If multiobjects 28 � mnt‐carh i, 21 � mnt‐bodyh i and 60 � mnt‐engineh i are elimi-

nated from UR set presented in Example 10, then obtained UMG will generate one-
element set {{X �usd}}. ▪

In practice every STS, which is capable to complete input orders and manufac-
ture some output production, possesses usually not only technological base but also
resource base (RB). For this reason, assessment of STS capability to orders
completion requires comparison of two resources collections—being in system’s
ownership and necessary. In multigrammatical paradigm, this problem is solved
quite simply.

Let R be technological base, while multiset v ¼ m1 � b1;…;mk � bk
� �

is resource
base of the system, that is, STS possesses m1 objects b1,…, mk objects bk: As it is easy
to see, order q ¼ m1 � b1;…;ml � blf gmay be completed by this system, if there exists
multiset v∈VSq such that

v⊆ v, (21)

that is, collection of resources, belonging to the STS, is sufficient for order q
completion by one of the implementable ways. In this case order completion is
possible. Otherwise, that is, if there is no one multiset v∈V satisfying (21), then
system is not able to complete q.

Example 5. Let KB from Example 2 be STS technological base, while

v ¼ 6 � transmission, 10 �wheel, 2 � fuel‐cistern, 7 � front‐glass,f
9 � back‐glass, 180 � mnt‐carh i, 240 � mnt‐bodyh i, 600 � mnt‐engineh i,
1000000 � eur, 500000 � usdg

is its resource base. As may be seen, this resource base is not sufficient for order
q = {3 � car} from Example 11 completion, because condition (21) is not satisfied: there
are objects, entering all v∈VSq , which do not enter v at all (motor, accumulator, etc.).
At the same time multiplicities of some terminal objects are less than it is necessary

for order q completion 2 � fuel‐cistern∈ v while 3 � fuel‐cistern∈ v∈VSq

� �
. ▪

96

Enhanced Expert Systems

After recognition of system’s inability to complete order q, there may be two
questions:

1.What amount of resources must be acquired by the system to complete the
order?

2.What part of order may be completed, given resources, owned by STS?

The answer to the first question is obvious: if v∈VSq, and v is not subset of v,
then additional amount of resources, necessary for order completion, is v–v: Thus
variants of necessary resources acquisition are elements of set of terminal multisets

ΔVSq ¼ v�vjv∈VSq

n o
: (22)

The answer to the second question concerned reader may find in [1], where the
so-called reverse multigrammars are used for this problem solution.

One more area of useful application of UMG/UMMG is assessment of
sociotechnical systems sustainability/vulnerability to various destructive
impacts, which was in details considered in [1]. The main result of this work is as
follows.

Let Rq be scheme, corresponding to technological base of the system and order q
in the sense (17)–(19); v is total resource of this system (resource base, joined with
multiset representation of technological base, as it was suggested in [1]), and Δv is
impact, destructing some part of the aforementioned total resource. We shall call
STS with technological base R and total resource v sustainable to impact Δv while
completing order q, if

∃v∈VSq

� �
v⊆v� Δv: (23)

That is, despite impact there is at least one way of order completion. Otherwise,
if there is no one TMS v∈VSq , satisfying (23), considered STS is vulnerable to
impact Δv.

4. Optimization problems

Another important issue to be discussed here is profit optimization in produc-
tion economy (POPE). We shall consider it not only because of its practical value
but also in order to illustrate techniques of UMG/UMMG application to the
multigrammatical representation and solution of classical optimization problems.

POPE is formulated as follows [15]. Let there be n products, manufactured by
STS, xi is amount of i-th product, and ci is its price. Profit, which producing STS
would obtain, is

C ¼ ∑
m

i¼1
ci � xi: (24)

To produce one unit of i-th product, the system needs respective resources,
namely, aij units of the j-th resource, where j ¼ 1,…, n, and n is total number of
different resources, consumed by the system for production. There are b1, …, bn
amount of resources available, and the problem is to maximize profit C under
restrictions

97

Unitary Multiset Grammars an Metagrammars Algorithmics and Application
DOI: http://dx.doi.org/10.5772/intechopen.82713

∑
m

i¼1
aijxi ≤ bj, (25)

where j ¼ 1,…, n:
This problem may be represented by unitary multiset metagrammar

S ¼ < q, R, F>, which scheme R contains one unitary metarule

q! x1 � u1,…, xm � um, (26)

where x1,…, xm are variables, and m unitary rules

ui ! ai1 � e1,…, ain � en, ci � e, (27)

where i ¼ 1,…, m, and aij is nonzero amount of j-th resource, needed for i-th
product, while ci is its price. Filter F contains n boundary conditions

ej ≤ bj, (28)

where j ¼ 1,…, n, as well as one optimizing condition

e ¼ max, (29)

along with m variable declarations

0≤ xi ≤Mi, (30)

where i ¼ 1,…, m and Mi is maximal amount of i-th product, which may be
manufactured by the system. As seen, terminal objects e1,…, en are measurement
units of corresponding resources, while terminal object e is price measurement unit.
Nonterminal objects u1,…, um represent products, and UMR (26) along with opti-
mizing condition (29) represents order, while n URs (27) represent STS technolog-
ical base. STS resource base, as it was introduced higher, is represented by boundary
conditions (28).

As may be seen, set of POPE solutions is

VS ¼ v1;…; vtf g, (31)

where

l1 � e1;…; ln � en;C � e; p1 � x1;…; pm � xm
� �

∈VS (32)

means that maximal profit is C and it is gotten when STS produces p1 units of the
first product, …, pm units of the m-th product. In general case

VS
�� ��>1, (33)

so there may be t>1 solutions of the specific POPE.
Example 6. Let POPE is

2x1 þ 3x2 ! max

under restrictions

3x1 þ 2x2 ≤ 10

5x1 þ 3x2 ≤ 18:

98

Enhanced Expert Systems

That means STS is producing two products, which prices are 2 and 3, respec-
tively, and there is resource base, containing 10 units of the first resource and
18 units of the second. To produce one unit of the first product, STS needs 3 units of
the first resource and 5 units of the second, while producing of one unit of the
second product needs 2 units of the first resource and 3 units of the second resource.

According to (26)–(30), scheme R of the corresponding UMMG S ¼ < q, R, F>
includes UMR

q! x1 � u1, x2 � u2,
as well as two URs:

u1 ! 3 � e1, 5 � e1, 2 � e,
u2 ! 2 � e1, 3 � e2, 3 � e:

Filter F contains two boundary conditions

e1 ≤ 10,

e2 ≤ 18,

one optimizing condition

e ¼ max,

as well as two variables declarations:

0≤ x1 ≤ 10,

0≤ x2 ≤ 10,

where 10 is maximal amount of any product, which may be produced by STS.
As seen,

VS ¼ 10 � e1; 16 � e2; 10 � e; 2 � x1; 2 � x2f gf g,
which means STS would get maximal profit of 10 units, producing 2 units of

both products and, spending for that purpose, 10 units of the first resource and
16 units of the second resource. ▪

Let us note that classical matrix–vector POPE modeling is limiting set of the
considered cases to the simplest two-level structures of the manufactured objects
(“object-component”), represented by unitary rules like (27). In practice, all such
objects have much more complicated, multilevel heterogeneous hierarchical struc-
ture, that is clearly illustrated by the previous Examples 1–3, concerning car
manufacturing.

UMMG application provides natural representation of the POPE problem in the
most general formulation. Namely, it is sufficient to join to set of URs, describing
technological base of the STS, the only UMR like (26). Similarly, to represent
resource base of the STS, filter of the created UMMG would contain boundary
conditions like (28); it is important that absence of some resource e in the RB must
be represented by boundary condition e = 0; otherwise any generated TMS,
containing multiobject n � e, where n > 0, may enter one of the solutions, and this
contradicts reality. The goal of STS is defined by the optimizing condition like (29),
and domains of variables, having place in the aforementioned UMR, are defined by
variable declarations like (30). If it is necessary to maximize profit, taking into
account expenses for some resources acquisition, it is very convenient to use

99

Unitary Multiset Grammars an Metagrammars Algorithmics and Application
DOI: http://dx.doi.org/10.5772/intechopen.82713

∑
m

i¼1
aijxi ≤ bj, (25)

where j ¼ 1,…, n:
This problem may be represented by unitary multiset metagrammar

S ¼ < q, R, F>, which scheme R contains one unitary metarule

q! x1 � u1,…, xm � um, (26)

where x1,…, xm are variables, and m unitary rules

ui ! ai1 � e1,…, ain � en, ci � e, (27)

where i ¼ 1,…, m, and aij is nonzero amount of j-th resource, needed for i-th
product, while ci is its price. Filter F contains n boundary conditions

ej ≤ bj, (28)

where j ¼ 1,…, n, as well as one optimizing condition

e ¼ max, (29)

along with m variable declarations

0≤ xi ≤Mi, (30)

where i ¼ 1,…, m and Mi is maximal amount of i-th product, which may be
manufactured by the system. As seen, terminal objects e1,…, en are measurement
units of corresponding resources, while terminal object e is price measurement unit.
Nonterminal objects u1,…, um represent products, and UMR (26) along with opti-
mizing condition (29) represents order, while n URs (27) represent STS technolog-
ical base. STS resource base, as it was introduced higher, is represented by boundary
conditions (28).

As may be seen, set of POPE solutions is

VS ¼ v1;…; vtf g, (31)

where

l1 � e1;…; ln � en;C � e; p1 � x1;…; pm � xm
� �

∈VS (32)

means that maximal profit is C and it is gotten when STS produces p1 units of the
first product, …, pm units of the m-th product. In general case

VS
�� ��>1, (33)

so there may be t>1 solutions of the specific POPE.
Example 6. Let POPE is

2x1 þ 3x2 ! max

under restrictions

3x1 þ 2x2 ≤ 10

5x1 þ 3x2 ≤ 18:

98

Enhanced Expert Systems

That means STS is producing two products, which prices are 2 and 3, respec-
tively, and there is resource base, containing 10 units of the first resource and
18 units of the second. To produce one unit of the first product, STS needs 3 units of
the first resource and 5 units of the second, while producing of one unit of the
second product needs 2 units of the first resource and 3 units of the second resource.

According to (26)–(30), scheme R of the corresponding UMMG S ¼ < q, R, F>
includes UMR

q! x1 � u1, x2 � u2,
as well as two URs:

u1 ! 3 � e1, 5 � e1, 2 � e,
u2 ! 2 � e1, 3 � e2, 3 � e:

Filter F contains two boundary conditions

e1 ≤ 10,

e2 ≤ 18,

one optimizing condition

e ¼ max,

as well as two variables declarations:

0≤ x1 ≤ 10,

0≤ x2 ≤ 10,

where 10 is maximal amount of any product, which may be produced by STS.
As seen,

VS ¼ 10 � e1; 16 � e2; 10 � e; 2 � x1; 2 � x2f gf g,
which means STS would get maximal profit of 10 units, producing 2 units of

both products and, spending for that purpose, 10 units of the first resource and
16 units of the second resource. ▪

Let us note that classical matrix–vector POPE modeling is limiting set of the
considered cases to the simplest two-level structures of the manufactured objects
(“object-component”), represented by unitary rules like (27). In practice, all such
objects have much more complicated, multilevel heterogeneous hierarchical struc-
ture, that is clearly illustrated by the previous Examples 1–3, concerning car
manufacturing.

UMMG application provides natural representation of the POPE problem in the
most general formulation. Namely, it is sufficient to join to set of URs, describing
technological base of the STS, the only UMR like (26). Similarly, to represent
resource base of the STS, filter of the created UMMG would contain boundary
conditions like (28); it is important that absence of some resource e in the RB must
be represented by boundary condition e = 0; otherwise any generated TMS,
containing multiobject n � e, where n > 0, may enter one of the solutions, and this
contradicts reality. The goal of STS is defined by the optimizing condition like (29),
and domains of variables, having place in the aforementioned UMR, are defined by
variable declarations like (30). If it is necessary to maximize profit, taking into
account expenses for some resources acquisition, it is very convenient to use

99

Unitary Multiset Grammars an Metagrammars Algorithmics and Application
DOI: http://dx.doi.org/10.5772/intechopen.82713

representation of prices of the acquired resources, as it was illustrated by Example
4, but with negative multiplicities (such techniques are described in [2, 3]), that is,
as to URs from Example 4,

transmission! ‐100 � usd,
wheel ! ‐50 � usd,

…

accumulator! ‐10 � usd:
To cut off generated TMS with nonpositive multiplicities of object e (such TMS

correspond to unprofitable variants), it is sufficient to join to UMMG filter one more
boundary condition e > 0. However, the use of negative multiplicities leads to some
corrections in UMG/UMMG algorithmics, which would be considered separately.

All the said higher in this section is very close to the Leontief model and other
“input–output” models of mathematic economy, developed on the matrix–vector
algebra basis [16]. As may be seen, transfer to the UMG/UMMG basis makes such
modeling much more flexible and closer to the reality. That is why we consider
multigrammatical paradigm as very perspective for the development of various
issues in the future digital economy [17, 18], first of all, planning and scheduling in
the cyberphysical industry, integrated with deeply robotized logistics [19, 20].
However, application of the described here approach to the core areas of digital
economy (Industry 4.0) needs separate publications.

Concerning implementation issues, it would be aptly to say that multisets
processing is very promising area for application of non-conventional computing
paradigms [21, 22].

Now let us spend some place of this section for multiset modeling of competi-
tions and works distribution in the concurrent environment, typical for market
economy.

The main tool of the last is the so-called variative unitary multigrammars and
multimetagrammars, which schemes include unitary rules (metarules) with the
same head and different bodies. UMG/UMMG variativity provides representation
of coexistence of various subjects able to complete one and the same order. We
assume these subjects are non-antagonistic, that is, they all are ready to execute any
part of the total work.

There may be at least three possible approaches to multigrammatical modeling
of competitions:

1. “The winner takes it all.”

2. Splitting order among various subjects.

3. “The winner coalition takes it all” (combination of two previous).

Let us consider the first approach.
Let R be set of unitary rules containing, among others, k URs with one and the

same head and different bodies:

a n11 � a11,…, n1m1
� a1m1

,
…

a nk1 � ak1 ,…, nkmk
� akmk

:

(34)

where i-th alternative corresponds to i-th subject of considered technological
base, able to produce object a, consuming for that purpose

100

Enhanced Expert Systems

ni1 objects ai1,…, nimi
objects aimi

: To simplify and unify recognition of variant
implemented, let us introduce k terminal objects s1,…, sk, being names of
corresponding subjects, and replace set (34) by

a 1 � s1, n11 � a11,…, n1m1
� a1m1

,
…

a 1 � sk, nk1 � ak1,…, nkmk
� akmk

:

(35)

Let q ¼ n � af g, and Rq is set of URs, containing UR

aq ! n � a, (36)

k URs (35), and all unitary rules from set R, excluding (35). Consider UMG
Sq ¼ aq;Rq

� �
. As seen, VSq is set of terminal multisets, each corresponding to some

variant of order q completion. If we establish filter Fq to select one and only one
element of VSq , transforming UMG Sq to FUMG Sq ¼ aq;Rq;Fq

� �
, this element

will be

n � si;mi
1 � b

i
1;…;mi

li � b
i
li

n o
, (37)

where multiobject n � si corresponds to n operation cycles of subject si during

order q completion and every multiobject mi
j � b

i
j corresponds to mi

j terminal objects

b
i
j, required for these cycles’ implementation. In this context, filter Fq may contain

boundary conditions, defining required resources limits, as well as optimizing con-

ditions, defining some of terminal object b
i
j multiplicities as minimal (e.g., cost,

electrical energy, or fuel consumed) or maximal (e.g., some integral parameters of
quality of produced objects or given services). If subject si becomes the only winner,
it takes all order to complete.

Example 7. Let us consider following unitary rules:

car! 1 � first, 30 � mnt‐carh i, 2800 � usd, 1 � accessories� set,
car! 1 � second, 40 � mnt‐carh i, 2700 � usd, 1 � accessories� set,
car! 1 � third, 45 � mnt‐carh i, 2500 � usd, 1 � accessories� set:

These URs being joined with URs, detailing nonterminal object accessories set
from R, describe competition of three car manufacturers (first, second, and third),
assembling cars from one and the same accessories but differing by the time spent
for this operation and its cost. If we consider FUMG Sq ¼ aq;R;F

� �
, where

q ¼ 3 � carf g and F ¼ usd ¼ minf g, then

VSq ¼ 1 � third;X � usd; 135 � mnt � carh i;…f gf g,

which corresponds to the choice of the third manufacturer. If
F ¼ usd ¼ min; mnt‐carh i ¼ minf g, then

VSq ¼ ∅f g,

because no one of the possible order executors is optimal by time and cost
simultaneously. ▪

As it is well known from practice, approach, described higher, may be not
rational from various points of view, especially, when capabilities of no one of the

101

Unitary Multiset Grammars an Metagrammars Algorithmics and Application
DOI: http://dx.doi.org/10.5772/intechopen.82713

representation of prices of the acquired resources, as it was illustrated by Example
4, but with negative multiplicities (such techniques are described in [2, 3]), that is,
as to URs from Example 4,

transmission! ‐100 � usd,
wheel ! ‐50 � usd,

…

accumulator! ‐10 � usd:
To cut off generated TMS with nonpositive multiplicities of object e (such TMS

correspond to unprofitable variants), it is sufficient to join to UMMG filter one more
boundary condition e > 0. However, the use of negative multiplicities leads to some
corrections in UMG/UMMG algorithmics, which would be considered separately.

All the said higher in this section is very close to the Leontief model and other
“input–output” models of mathematic economy, developed on the matrix–vector
algebra basis [16]. As may be seen, transfer to the UMG/UMMG basis makes such
modeling much more flexible and closer to the reality. That is why we consider
multigrammatical paradigm as very perspective for the development of various
issues in the future digital economy [17, 18], first of all, planning and scheduling in
the cyberphysical industry, integrated with deeply robotized logistics [19, 20].
However, application of the described here approach to the core areas of digital
economy (Industry 4.0) needs separate publications.

Concerning implementation issues, it would be aptly to say that multisets
processing is very promising area for application of non-conventional computing
paradigms [21, 22].

Now let us spend some place of this section for multiset modeling of competi-
tions and works distribution in the concurrent environment, typical for market
economy.

The main tool of the last is the so-called variative unitary multigrammars and
multimetagrammars, which schemes include unitary rules (metarules) with the
same head and different bodies. UMG/UMMG variativity provides representation
of coexistence of various subjects able to complete one and the same order. We
assume these subjects are non-antagonistic, that is, they all are ready to execute any
part of the total work.

There may be at least three possible approaches to multigrammatical modeling
of competitions:

1. “The winner takes it all.”

2. Splitting order among various subjects.

3. “The winner coalition takes it all” (combination of two previous).

Let us consider the first approach.
Let R be set of unitary rules containing, among others, k URs with one and the

same head and different bodies:

a n11 � a11,…, n1m1
� a1m1

,
…

a nk1 � ak1 ,…, nkmk
� akmk

:

(34)

where i-th alternative corresponds to i-th subject of considered technological
base, able to produce object a, consuming for that purpose

100

Enhanced Expert Systems

ni1 objects ai1,…, nimi
objects aimi

: To simplify and unify recognition of variant
implemented, let us introduce k terminal objects s1,…, sk, being names of
corresponding subjects, and replace set (34) by

a 1 � s1, n11 � a11,…, n1m1
� a1m1

,
…

a 1 � sk, nk1 � ak1,…, nkmk
� akmk

:

(35)

Let q ¼ n � af g, and Rq is set of URs, containing UR

aq ! n � a, (36)

k URs (35), and all unitary rules from set R, excluding (35). Consider UMG
Sq ¼ aq;Rq

� �
. As seen, VSq is set of terminal multisets, each corresponding to some

variant of order q completion. If we establish filter Fq to select one and only one
element of VSq , transforming UMG Sq to FUMG Sq ¼ aq;Rq;Fq

� �
, this element

will be

n � si;mi
1 � b

i
1;…;mi

li � b
i
li

n o
, (37)

where multiobject n � si corresponds to n operation cycles of subject si during

order q completion and every multiobject mi
j � b

i
j corresponds to mi

j terminal objects

b
i
j, required for these cycles’ implementation. In this context, filter Fq may contain

boundary conditions, defining required resources limits, as well as optimizing con-

ditions, defining some of terminal object b
i
j multiplicities as minimal (e.g., cost,

electrical energy, or fuel consumed) or maximal (e.g., some integral parameters of
quality of produced objects or given services). If subject si becomes the only winner,
it takes all order to complete.

Example 7. Let us consider following unitary rules:

car! 1 � first, 30 � mnt‐carh i, 2800 � usd, 1 � accessories� set,
car! 1 � second, 40 � mnt‐carh i, 2700 � usd, 1 � accessories� set,
car! 1 � third, 45 � mnt‐carh i, 2500 � usd, 1 � accessories� set:

These URs being joined with URs, detailing nonterminal object accessories set
from R, describe competition of three car manufacturers (first, second, and third),
assembling cars from one and the same accessories but differing by the time spent
for this operation and its cost. If we consider FUMG Sq ¼ aq;R;F

� �
, where

q ¼ 3 � carf g and F ¼ usd ¼ minf g, then

VSq ¼ 1 � third;X � usd; 135 � mnt � carh i;…f gf g,

which corresponds to the choice of the third manufacturer. If
F ¼ usd ¼ min; mnt‐carh i ¼ minf g, then

VSq ¼ ∅f g,

because no one of the possible order executors is optimal by time and cost
simultaneously. ▪

As it is well known from practice, approach, described higher, may be not
rational from various points of view, especially, when capabilities of no one of the

101

Unitary Multiset Grammars an Metagrammars Algorithmics and Application
DOI: http://dx.doi.org/10.5772/intechopen.82713

competitors (subjects s1,…, skÞ are not sufficient for the whole order completion. In
this case, more rational may be the second approach when order is splitted between
non-antagonistic (cooperating) competitors in such a way that the total amount of
objects produced is distributed among subjects s1,…, sk. This techniques may be
modeled by unitary multimetagrammar Sq, which scheme Rq includes unitary
metarule

aq ! γ1 � b1,…, γk � bk, (38)

and unitary rules

b1 ! 1 � a, n11 � a11,…, n1l1 � a1l1 ,
…

bk ! 1 � a, nk1 � ak1,…, nklk � aklk ,
(39)

as well as all URs, having place in the scheme, constructed higher by application
of the first approach, excluding (34). Filter Fq contains boundary condition

a ¼ n, (40)

which is directly induced by order q ¼ n � af g and boundary conditions, defining
domains of variables γ1,…, γk:

0≤ γi ≤ n: (41)

As seen, terminal multisets, generated by UMMG S ¼ aq;Rq;Fq
� �

, have form

n � a; n1 � γ1;…; nk � γk;mi
1 � b

i
1;…;mi

li � b
i
li

n o
, (42)

where, according to (38)–(40),

∑
k

i¼1
ni ¼ n, (43)

and thus values n1,…, nk are parts of order q ¼ n � af g, distributed among sub-
jects s1,…, sk, respectively: s1 will produce n1 objects a, s2 � n2 objects a, up to sk,
which will produce nk objects a.

Example 8. Let us transform set R from Example 7 to the following:

order ! γ1 � first, γ2 � second, γ3 � third,

first ! 1 � car, 2800 � usd, 2800 � usd‐1, 1 � accessories‐set,

second! 1 � car, 2500 � usd, 2500 � usd‐2, 1 � accessories‐set,

third ! 1 � car, 2200 � usd, 2200 � usd‐3, 1 � accessories‐set:
If order q ¼ 10 � carf g, then Fq ¼ car ¼ 10;0≤ γ1 ≤ 10;0≤ γ2 ≤ 10;0≤ γ3 ≤ 10f g

∪ F0q, where F0q may contain boundary and optimizing conditions, selecting
terminal multisets, for example, F0q ¼ usd ¼ min; usd‐1≥ 2800; usd‐2≥ 5000;f
usd‐3≥ 6600g: According to such Fq, set of terminal multisets, generated by UMMG
Sq ¼ aq;Rq;Fq

� �
, may contain element of the form f10 � car, 25600 � usd,

14000 � usd‐1, 5000 � usd‐2, 6600 � usd‐3, 5 � γ1, 2 � γ2, 3 � γ3,…g,

102

Enhanced Expert Systems

which corresponds to splitting order q in such a way that five cars would be
assembled by the first manufacturer, two by the second, and three by the third. ▪

Let us underline once more that time is not additive resource in relation to
parallel processes; it is additive only regarding one device (manufacturing unit).
Consideration of multisets with time-containing multiobjects is separate direction
of the multigrammatical approach and needs special tool, which is called temporal
multiset grammars (TMG), announced in [1] . This branch concerns problems,
addressed by the classical theory of scheduling [23, 24].

The third possible case of competitions (“the winner coalition takes it all”) may
be considered by the concerned reader on his (her) own.

5. Conclusion

Presented primary survey of multigrammatical knowledge representation along
with brief consideration of its possible applications is, of course, only a background
for future development, which most valuable directions may be:

1.MG/UMG/UMMG extension by features, necessary for “single-time-scale”
modeling of manufacturing and logistical processes and their optimal control,
that is critically needed for the developed digital economy (Industry 4.0)

2.Development of algorithmics for local correction of solutions (generated sets of
TMS) while UMG/UMMG local correction in the sense [25], which is necessary
for the aforementioned control in hard real-time and highly volatile
environment

3. Further development of MG/UMG/UMMG improved algorithmics and its
software/hardware implementation in high-parallel general-purpose
computing environments

4.Development of specialized high-parallel computing environments, initially
oriented to MG/UMG/UMMG algorithmics implementation

5. Development of quantum, neural and molecular algorithmics for MG/UMG/
UMMG toolkit implementation in corresponding computer environments

6.MG/UMG/UMMG pragmatics expansion to new problem areas and
convergence with other known knowledge/data engineering paradigms (first
of all, multiagent systems [15, 26, 27])

Some of the listed directions are already developed by the author and his col-
leagues; some are waiting their time, being targeted to the creation of unified
framework for the intellectual (knowledge-based) digital economy. This way is
leading us to the Big Knowledge paradigm being generalization of the Big Data one,
which is already everyday reality. The author will be glad, if this paper will be of
any interest for some scholars working in the related areas.

Acknowledgements

The author is grateful to Prof. Fred Roberts for useful discussions and support,
and to Prof. Jeffrey Ullman, whose useful remarks on the primary version of this

103

Unitary Multiset Grammars an Metagrammars Algorithmics and Application
DOI: http://dx.doi.org/10.5772/intechopen.82713

competitors (subjects s1,…, skÞ are not sufficient for the whole order completion. In
this case, more rational may be the second approach when order is splitted between
non-antagonistic (cooperating) competitors in such a way that the total amount of
objects produced is distributed among subjects s1,…, sk. This techniques may be
modeled by unitary multimetagrammar Sq, which scheme Rq includes unitary
metarule

aq ! γ1 � b1,…, γk � bk, (38)

and unitary rules

b1 ! 1 � a, n11 � a11,…, n1l1 � a1l1 ,
…

bk ! 1 � a, nk1 � ak1,…, nklk � aklk ,
(39)

as well as all URs, having place in the scheme, constructed higher by application
of the first approach, excluding (34). Filter Fq contains boundary condition

a ¼ n, (40)

which is directly induced by order q ¼ n � af g and boundary conditions, defining
domains of variables γ1,…, γk:

0≤ γi ≤ n: (41)

As seen, terminal multisets, generated by UMMG S ¼ aq;Rq;Fq
� �

, have form

n � a; n1 � γ1;…; nk � γk;mi
1 � b

i
1;…;mi

li � b
i
li

n o
, (42)

where, according to (38)–(40),

∑
k

i¼1
ni ¼ n, (43)

and thus values n1,…, nk are parts of order q ¼ n � af g, distributed among sub-
jects s1,…, sk, respectively: s1 will produce n1 objects a, s2 � n2 objects a, up to sk,
which will produce nk objects a.

Example 8. Let us transform set R from Example 7 to the following:

order ! γ1 � first, γ2 � second, γ3 � third,

first ! 1 � car, 2800 � usd, 2800 � usd‐1, 1 � accessories‐set,

second! 1 � car, 2500 � usd, 2500 � usd‐2, 1 � accessories‐set,

third ! 1 � car, 2200 � usd, 2200 � usd‐3, 1 � accessories‐set:
If order q ¼ 10 � carf g, then Fq ¼ car ¼ 10;0≤ γ1 ≤ 10;0≤ γ2 ≤ 10;0≤ γ3 ≤ 10f g

∪ F0q, where F0q may contain boundary and optimizing conditions, selecting
terminal multisets, for example, F0q ¼ usd ¼ min; usd‐1≥ 2800; usd‐2≥ 5000;f
usd‐3≥ 6600g: According to such Fq, set of terminal multisets, generated by UMMG
Sq ¼ aq;Rq;Fq

� �
, may contain element of the form f10 � car, 25600 � usd,

14000 � usd‐1, 5000 � usd‐2, 6600 � usd‐3, 5 � γ1, 2 � γ2, 3 � γ3,…g,

102

Enhanced Expert Systems

which corresponds to splitting order q in such a way that five cars would be
assembled by the first manufacturer, two by the second, and three by the third. ▪

Let us underline once more that time is not additive resource in relation to
parallel processes; it is additive only regarding one device (manufacturing unit).
Consideration of multisets with time-containing multiobjects is separate direction
of the multigrammatical approach and needs special tool, which is called temporal
multiset grammars (TMG), announced in [1] . This branch concerns problems,
addressed by the classical theory of scheduling [23, 24].

The third possible case of competitions (“the winner coalition takes it all”) may
be considered by the concerned reader on his (her) own.

5. Conclusion

Presented primary survey of multigrammatical knowledge representation along
with brief consideration of its possible applications is, of course, only a background
for future development, which most valuable directions may be:

1.MG/UMG/UMMG extension by features, necessary for “single-time-scale”
modeling of manufacturing and logistical processes and their optimal control,
that is critically needed for the developed digital economy (Industry 4.0)

2.Development of algorithmics for local correction of solutions (generated sets of
TMS) while UMG/UMMG local correction in the sense [25], which is necessary
for the aforementioned control in hard real-time and highly volatile
environment

3. Further development of MG/UMG/UMMG improved algorithmics and its
software/hardware implementation in high-parallel general-purpose
computing environments

4.Development of specialized high-parallel computing environments, initially
oriented to MG/UMG/UMMG algorithmics implementation

5. Development of quantum, neural and molecular algorithmics for MG/UMG/
UMMG toolkit implementation in corresponding computer environments

6.MG/UMG/UMMG pragmatics expansion to new problem areas and
convergence with other known knowledge/data engineering paradigms (first
of all, multiagent systems [15, 26, 27])

Some of the listed directions are already developed by the author and his col-
leagues; some are waiting their time, being targeted to the creation of unified
framework for the intellectual (knowledge-based) digital economy. This way is
leading us to the Big Knowledge paradigm being generalization of the Big Data one,
which is already everyday reality. The author will be glad, if this paper will be of
any interest for some scholars working in the related areas.

Acknowledgements

The author is grateful to Prof. Fred Roberts for useful discussions and support,
and to Prof. Jeffrey Ullman, whose useful remarks on the primary version of this

103

Unitary Multiset Grammars an Metagrammars Algorithmics and Application
DOI: http://dx.doi.org/10.5772/intechopen.82713

work contributed to its essential upgrade. A significant incentive for the
development of the proposed approach was its positive assessment by Prof. Noam
Chomsky, which early works on syntactic structures formed a conceptual
background of the described mathematical toolkit.

Author details

Igor Sheremet
Financial University under the Government of Russian Federation, Moscow, Russia

*Address all correspondence to: sheremet@rfbr.ru

©2018 TheAuthor(s). Licensee IntechOpen. This chapter is distributed under the terms
of theCreativeCommonsAttribution License (http://creativecommons.org/licenses/
by/3.0),which permits unrestricted use, distribution, and reproduction in anymedium,
provided the original work is properly cited.

104

Enhanced Expert Systems

References

[1] Sheremet I. Multiset analysis of
consequences of natural disasters
impacts on large-scale industrial
systems. Data Science Journal. 17(4):
1-17. DOI: 10.5334/dsj-2018-004

[2] Sheremet IA. Recursive Multisets and
Their Applications. Moscow: Nauka;
2010. p. 293. (In Russian)

[3] Sheremet IA. Recursive Multisets and
Their Applications. Berlin: NG Verlag;
2011. p. 249

[4] Lasdon SL. Optimization Theory for
Large Systems. NY: Dover Publications;
2013. p. 560

[5] Hemmecke R, Koppe M, Lee J,
Weismantel R. Nonlinear Integer
Programming. In: 50 Years of Integer
Programming 1958–2008: The Early
Years and State-of-the-Art Surveys.
NY: Springer-Verlag; 2009. pp. 1-57.
DOI: 10.1007/978-3-540-68279-0-15

[6] Ershov AP. On the partial
computation principle. Information
Processing Letters. 1977;2(2):38-41

[7] Bjorner D, Ershov AP, Jones ND,
editors. Partial Evaluation and Mixed
Computation. North Holland:
Amsterdam; 1988. p. 625

[8] Itkin VE. An algebra of mixed
computation. Theoretical Computer
Science. 1991;90(1):81-93

[9] Lloyd JW, Shepherdson JC. Partial
evaluation in logic programming.
Journal of Logic Programing. 1991;11
(3–4):217-242. DOI: 10.1016/0743-1066
(91)90027–M

[10] Hansen E. Global optimization
using interval analysis—The one-
dimensional case. Journal of
Optimization Theory and Applications.
1979;29:331-334

[11] Hansen E. Global Optimization
Using Interval Analysis. NY: Marcel
Dekker; 1992. p. 284

[12] Hansen E, Walster GW. Global
Optimization Using Interval Analysis.
NY: Marcel Dekker; 2004. p. 530

[13] Fiedler M, Nedoma J, Ramik J, Rohn
J, Zimmerman K. Linear Optimization
Problems with Inexact Data.
NY: Springer; 2006. p. 227

[14] Sheremet IA. Augmented Post
Systems: The Mathematical Framework
for Knowledge and Data Engineering in
Network-Centric Environment. Berlin:
EANS; 2013. p. 395

[15] Shoham Y, Leyton-Brown K.
Multiagent Systems. Algorithmic,
Game-Theoretic, and Logical
Foundations. Cambridge, UK:
Cambridge University Press; 2009.
p. 532

[16] Bjerkholt O, Kuzz HD. Introduction:
The history of input-output analysis,
Leontief’s path and alternative tracks.
Economic Systems Research. 2006;
18(4):331-333. DOI: 10.1080/
09535310601030850

[17] Schwab K. The Fourth Industrial
Revolution. What It Means and How to
Respond. Foreign Affairs. December 12,
2015. Available from: https://foreignaffa
irs.com/articles/2015-12-12/fourth-ind
ustrial-revolution

[18] Baller S, Dutta S, Lanvin B, editors.
The Global Information Technology
Report 2016. Innovating in the Digital
Economy. Geneve: WEF and INSEAD;
2016. p. 62

[19] Colombo AW, Bangemann T,
Karnouskos T, Delsing J, Stluka P,
Harrison R, et al. Industrial
Cloud-Based Cyber-Physical Systems:

105

Unitary Multiset Grammars an Metagrammars Algorithmics and Application
DOI: http://dx.doi.org/10.5772/intechopen.82713

work contributed to its essential upgrade. A significant incentive for the
development of the proposed approach was its positive assessment by Prof. Noam
Chomsky, which early works on syntactic structures formed a conceptual
background of the described mathematical toolkit.

Author details

Igor Sheremet
Financial University under the Government of Russian Federation, Moscow, Russia

*Address all correspondence to: sheremet@rfbr.ru

©2018 TheAuthor(s). Licensee IntechOpen. This chapter is distributed under the terms
of theCreativeCommonsAttribution License (http://creativecommons.org/licenses/
by/3.0),which permits unrestricted use, distribution, and reproduction in anymedium,
provided the original work is properly cited.

104

Enhanced Expert Systems

References

[1] Sheremet I. Multiset analysis of
consequences of natural disasters
impacts on large-scale industrial
systems. Data Science Journal. 17(4):
1-17. DOI: 10.5334/dsj-2018-004

[2] Sheremet IA. Recursive Multisets and
Their Applications. Moscow: Nauka;
2010. p. 293. (In Russian)

[3] Sheremet IA. Recursive Multisets and
Their Applications. Berlin: NG Verlag;
2011. p. 249

[4] Lasdon SL. Optimization Theory for
Large Systems. NY: Dover Publications;
2013. p. 560

[5] Hemmecke R, Koppe M, Lee J,
Weismantel R. Nonlinear Integer
Programming. In: 50 Years of Integer
Programming 1958–2008: The Early
Years and State-of-the-Art Surveys.
NY: Springer-Verlag; 2009. pp. 1-57.
DOI: 10.1007/978-3-540-68279-0-15

[6] Ershov AP. On the partial
computation principle. Information
Processing Letters. 1977;2(2):38-41

[7] Bjorner D, Ershov AP, Jones ND,
editors. Partial Evaluation and Mixed
Computation. North Holland:
Amsterdam; 1988. p. 625

[8] Itkin VE. An algebra of mixed
computation. Theoretical Computer
Science. 1991;90(1):81-93

[9] Lloyd JW, Shepherdson JC. Partial
evaluation in logic programming.
Journal of Logic Programing. 1991;11
(3–4):217-242. DOI: 10.1016/0743-1066
(91)90027–M

[10] Hansen E. Global optimization
using interval analysis—The one-
dimensional case. Journal of
Optimization Theory and Applications.
1979;29:331-334

[11] Hansen E. Global Optimization
Using Interval Analysis. NY: Marcel
Dekker; 1992. p. 284

[12] Hansen E, Walster GW. Global
Optimization Using Interval Analysis.
NY: Marcel Dekker; 2004. p. 530

[13] Fiedler M, Nedoma J, Ramik J, Rohn
J, Zimmerman K. Linear Optimization
Problems with Inexact Data.
NY: Springer; 2006. p. 227

[14] Sheremet IA. Augmented Post
Systems: The Mathematical Framework
for Knowledge and Data Engineering in
Network-Centric Environment. Berlin:
EANS; 2013. p. 395

[15] Shoham Y, Leyton-Brown K.
Multiagent Systems. Algorithmic,
Game-Theoretic, and Logical
Foundations. Cambridge, UK:
Cambridge University Press; 2009.
p. 532

[16] Bjerkholt O, Kuzz HD. Introduction:
The history of input-output analysis,
Leontief’s path and alternative tracks.
Economic Systems Research. 2006;
18(4):331-333. DOI: 10.1080/
09535310601030850

[17] Schwab K. The Fourth Industrial
Revolution. What It Means and How to
Respond. Foreign Affairs. December 12,
2015. Available from: https://foreignaffa
irs.com/articles/2015-12-12/fourth-ind
ustrial-revolution

[18] Baller S, Dutta S, Lanvin B, editors.
The Global Information Technology
Report 2016. Innovating in the Digital
Economy. Geneve: WEF and INSEAD;
2016. p. 62

[19] Colombo AW, Bangemann T,
Karnouskos T, Delsing J, Stluka P,
Harrison R, et al. Industrial
Cloud-Based Cyber-Physical Systems:

105

Unitary Multiset Grammars an Metagrammars Algorithmics and Application
DOI: http://dx.doi.org/10.5772/intechopen.82713

The IMC-AESOP Approach. NY:
Springer Verlag; 2014. p. 245

[20] Lee J, Bagheri B, Hung-An K. A
cyber-physical systems architecture for
Industry 4.0-based manufacturing
systems. Manufacturing Letters. 2015;3:
18-23. DOI: 10.1016/j.mfglet.2014.12.001

[21] Montanaro A. Quantum algorithms:
An overview. npj Quantum
Information. 2015;2:15023. DOI:
10.1038/npjqi.2015.23

[22] Farhi E, Goldstone J, Gutmann S.
A quantum approximate optimization
algorithm applied to a bonded
occurrence constraint problem. In:
Quantum Physics. Report MIT-CTP/
4628. NY: Cornell University, 2015.
arXiv: 1412.6062

[23] Conway RW, Maxwell WL, Miller
LW. Theory of Scheduling. Mineola,
NY: Dover Publications; 2003. p. 304

[24] Leung JY-T, editor. Handbook of
Scheduling: Algorithms, Models, and
Performance Analysis. NY: Chapman &
Hall/CRC; 2004. p. 1224

[25] Sheremet IA. Intelligent Software
Environments for Computerized
Information Processing Systems.
Moscow: Nauka; 1994. p. 544.
(In Russian)

[26] Wooldridge M. An Introduction to
Multi-Agent Systems. Chichester,
England: John Wiley & Sons; 2009.
p. 460

[27] Salamon T. Design of Agent-Based
Models. Repin-Zivolin: Brukner
Publishing; 2011. p. 220

106

Enhanced Expert Systems

The IMC-AESOP Approach. NY:
Springer Verlag; 2014. p. 245

[20] Lee J, Bagheri B, Hung-An K. A
cyber-physical systems architecture for
Industry 4.0-based manufacturing
systems. Manufacturing Letters. 2015;3:
18-23. DOI: 10.1016/j.mfglet.2014.12.001

[21] Montanaro A. Quantum algorithms:
An overview. npj Quantum
Information. 2015;2:15023. DOI:
10.1038/npjqi.2015.23

[22] Farhi E, Goldstone J, Gutmann S.
A quantum approximate optimization
algorithm applied to a bonded
occurrence constraint problem. In:
Quantum Physics. Report MIT-CTP/
4628. NY: Cornell University, 2015.
arXiv: 1412.6062

[23] Conway RW, Maxwell WL, Miller
LW. Theory of Scheduling. Mineola,
NY: Dover Publications; 2003. p. 304

[24] Leung JY-T, editor. Handbook of
Scheduling: Algorithms, Models, and
Performance Analysis. NY: Chapman &
Hall/CRC; 2004. p. 1224

[25] Sheremet IA. Intelligent Software
Environments for Computerized
Information Processing Systems.
Moscow: Nauka; 1994. p. 544.
(In Russian)

[26] Wooldridge M. An Introduction to
Multi-Agent Systems. Chichester,
England: John Wiley & Sons; 2009.
p. 460

[27] Salamon T. Design of Agent-Based
Models. Repin-Zivolin: Brukner
Publishing; 2011. p. 220

106

Enhanced Expert Systems

Enhanced Expert Systems
Edited by Petrică Vizureanu

Edited by Petrică Vizureanu

The theoretical approach of this book is to develop a primary survey of the knowledge
representation model, providing convergence of classical operations research and modern

knowledge engineering. This convergence creates new opportunities for complicated
problems of formalization and solution by integrating the best features of mathematical

programming or constraint programming.

This book explains in six chapters that expert systems are products in the field of computer
science that attempt to perform as intelligent software. What is outstanding for expert
systems is the applicability area and the solving of different problems in many fields or

industrial branches.

Published in London, UK

© 2018 IntechOpen
© barbol88 / iStock

ISBN 978-1-83881-885-2

Enhanced Expert System
s

ISBN 978-1-83881-887-6

	Enhanced Expert Systems
	Contents
	Preface
	Chapter1
Introductory Chapter: Enhanced Expert System - A Long-Life Solution ă
	Chapter2
Issues in the Probability Elicitation Process of Expert-Based Bayesian Networks
	Chapter3
Classic and BayesianTree-Based Methods
	Chapter4
Automatic Mapping of Student 3D Profiles in Software Metrics forTemporal Analysis of Programming Learning and Scoring Rubrics
	Chapter5
Multiset-Based Knowledge Representation for the Assessment and Optimization of Large-Scale Sociotechnical Systems
	Chapter6
Unitary Multiset Grammars an Metagrammars Algorithmics and Application

