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Preface

Multi-criteria optimization problems naturally arise in practice when there is no
single criterion for measuring the quality of a feasible solution, a solution that
satisfies the restrictions of the problem. Since different criteria are contradictory, it
is difficult and often impossible to find a single feasible solution that is good for all
the criteria, that is, the problem cannot be addressed as a common optimization
problem (with a single objective criterion). Hence, some compromise is unavoid-
able for the solution of multi-criteria optimization problems. A commonly accepted
such compromise is to look for a Pareto-optimal frontier of the feasible solutions
(i.e., a set of feasible solutions that are not dominated by any other feasible solution
with respect to any of the given criteria). Although this is a reasonable compromise,
it has two drawbacks. Firstly, finding a Pareto-optimal frontier is often computa-
tionally intractable, and secondly, a practitioner may be interested in solutions with
some priory given (acceptable) value for each of the objective functions, not in just
a set of the non-dominated feasible solutions. Hence, other effective optimality
measures for the multi-criteria optimization problems are possible. Theoretical
explorations of possible generalizations, relaxations and variations of standard
Pareto-optimality principles may lead to robust, and at the same time, flexible and
practical measures for multi-criteria optimization (with a “fair balance” for all the
given objective criteria). In this book, besides the traditional Pareto-optimality
approach (Section 1), we suggest one new alternative approach for the generation
of an admissible solution to a multi-criteria optimization problem (Section 2). The
book also presents two overview chapters on the existing solution methods for two
real-life, multi-criteria optimization problems (Section 3).

The first chapter in Section 1 addresses multi-criteria problems that arise in game
theory when each player has their own goal that does not coincide with the goal of
the other players. The strategy of each player is measured by its payoff function,
which value depends not only on the decisions made by the player but also on the
decisions of the remaining players. To optimize their goal, the player needs to take
into account possible actions of the other players. A game is traditionally referred to
as noncooperative if different players cannot coordinate their actions between each
other. For a noncooperative game, it is commonly accepted that the Nash equilib-
rium gives a reasonable solution for all the players, the so-called Nash equilibrium
strategy profile. As the authors observe, two different profiles from the set of a
Nash equilibrium strategy profiles might not be “equally good,” that is, there may
exist two different Nash equilibrium strategy profiles such that the payoffs of each
player in the first strategy profile are strictly greater than the corresponding payoffs
in the second one. Therefore, it is natural to look for a Nash equilibrium strategy
that is Pareto optimal with respect to the rest of the Nash equilibrium strategies. The
authors, in light of their earlier relevant results, expand their line of research in this
direction and suggest new solution methods.

The second chapter of Section 1 considers the Pareto-optimality setting for a
bi-criteria machine-scheduling problem. Broadly speaking, the scheduling
problems deal with a set of jobs or orders that are to be performed by a set of
resources or machines. There is a basic, traditional resource restriction that a machine
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can handle at most one job at a time, and there may be additional restrictions on the
ways of how the jobs can be scheduled on the machines, which define a set of feasible
solutions. Moreover, we have one or more objective functions defined on the set of
feasible solutions that are to be minimized or maximized, as in any other discrete
optimization problem. This chapter considers a single-machine environment and
aims to minimize two objective functions: the maximum job lateness and the maxi-
mum job completion time. Since the problem of finding the Pareto-optimal set of
feasible solutions for this bi-criteria problem is NP-hard, the authors consider a
special case when a polynomial-time solution is possible.

The second section consists of a chapter that introduces an alternative optimality
measure for multi-criteria optimization problems. The new approach is motivated
by the observation that, in practical circumstances, there may exist different toler-
ance/requirements to the quality of the desired solution for different objective
criteria. In other words, for some objective criteria, solutions that are far away from
an optimal one can be acceptable, whereas for some other criteria, near-optimal
solutions are required. Hence, a uniform homogeneous Pareto-optimality approach
may not be good from the point of view of the practical needs, and the computa-
tional point of view, since most Pareto-optimality problems are known to be
intractable. Even if the Pareto-optimal set of feasible solutions is created, it may not
be computationally efficient to choose an appropriate solution from the Pareto-
optimal set of feasible solutions. The multi-threshold optimization setting suggested
in this chapter takes into account different requirements for different objective
criteria. Hence, a single feasible solution with an admissible value for each objective
function can be generated with the computational cost, inferior to the cost of
finding the corresponding Pareto-optimal feasible set.

The last section consists of two survey chapters. The first overviews the multi-
criteria optimization problems that arise in construction projects. In such projects,
there are different contradictory criteria and it is a challenging question to meet all
of them. Hence, multi-criteria optimization methods are applied for the solution of
such problems. The chapter surveys the solution methods including different meta-
heuristic and genetic algorithms and integer programming methods. The last chap-
ter overviews some work that relates a practical problem of measuring an expert's
credibility in evaluation of the importance of different criteria with the multi-
criteria optimization problems. In particular, the situation when different criteria
may have different importance (which is represented by the corresponding
weights) is considered. Common methods for determining the relative importance
of each criteria and the corresponding feasible solutions are briefly described.

Nodari Vakhania
Centro de Investigación en Ciencias,

UAEM,
Mexico

Frank Werner
Otto-von-Guericke University,

Germany
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Chapter 1

Pareto Optimality and Equilibria
in Noncooperative Games
Vladislav Zhukovskiy and Konstantin Kudryavtsev

Abstract

This chapter considers the Nash equilibrium strategy profiles that are Pareto
optimal with respect to the rest of the Nash equilibrium strategy profiles. The
sufficient conditions for the existence of such pure strategy profiles are established.
These conditions employ the Germeier convolutions of the payoff functions. For the
noncooperative games with compact strategy sets and continuous payoff functions,
the existence of the Pareto-optimal Nash equilibria (PoNE) in mixed strategies is
proven.

Keywords: Pareto optimality, Nash equilibrium, Pareto-optimal Nash equilibrium,
noncooperative game, Germeier convolution

1. Introduction

In 1949, J. Nash, a Princeton University graduate at that time and a famous
American mathematician and economist as we know him today, suggested the
notion of an equilibrium solution for a noncooperative game [1] lately called “the
Nash equilibrium strategy profile.” Since then, this equilibrium is widely used in
economics, sociology, military sciences, and other spheres of human activity.
Moreover, 45 years later J. Nash, J. Harshanyi, and R. Selten were awarded the
Nobel Prize “for the pioneering analysis of equilibria in the theory of noncoopera-
tive games.”

However, as shown by Example 1, the set of the Nash equilibrium strategy
profiles has a negative property: there may exist two Nash equilibrium strategy
profiles such that the payoffs of each player in the first strategy profile are strictly
greater than the corresponding payoffs in the second one. In 2013, the authors
emphasized this fact in a series of papers [2, 3] while exploring the existence of a
guaranteed equilibrium solution for a noncooperative game under uncertainty.
Particularly, these papers were focused on the Nash equilibrium strategy profile
that is Pareto optimal with respect to the rest of the Nash equilibrium strategy
profiles, thereby eliminating the above shortcoming. And the following question
arises immediately. How can such an equilibrium (the so-called Pareto equilibrium
strategy profile) be found? Our idea is to use the sufficient conditions (Theorem 1)
reducing Nash equilibrium strategy profile design to saddle point calculation in a
special Germeier convolution of the payoff functions. As an application, this
chapter establishes the existence of the Pareto-optimal Nash equilibrium (PoNE)
strategy profile in the class of mixed strategies (see Assertion 1). Similar results
were obtained by the authors for the Pareto-optimal Berge equilibrium in [4].
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Note that two approaches can be adopted to perform formalization of the Pareto
unimprovable Nash equilibrium. According to the first approach, Pareto optimality
is required on the set of all strategy profiles in the game. The second approach
dictates to find the Pareto-optimal equilibrium on the set of all Nash equilibria.
Generally, the first approach implies construction of all Nash equilibrium strategy
profiles with subsequent check belonging to the Pareto boundary of the strategy
profile set of the game (see [5]). Numerical algorithms realizing this approach were
suggested for the bimatrix games in [5], for some two-player normal-form games in
[6] and the monograph ([7], pp. 92–93), as well as for the linear two-player posi-
tional games with cylindrical terminal payoff functions in [8]. In the case of
nonlinear differential games with convex terminal payoff functions, the publication
[9] obtained the sufficient conditions under which the unimprovable equilibrium
strategy profile on the set of Nash equilibria (the second approach) is Pareto opti-
mal on the whole strategy profile set of the game.

This chapter adheres to the second approach, suggesting an algorithm that yields
the Pareto-optimal strategy profile among all Nash equilibria.

2. Internally instable set of Nash equilibrium strategy profiles

As is well known, the game theory is used in modeling interactions in econom-
ics, sociology, political science, and many other areas. Game theory is the mathe-
matical study of conflict, in which a decision-maker’s success in making choices
depends on the choice of others. In contrast to the decision-making theory, in game
theory, several decision-makers act simultaneously. These decision-makers are
called players. Their actions are called pure strategies. Each of the players seeks to
achieve their own goals that do not coincide with the goals of other players. A
measure of a player’s approach of a goal is estimated by his payoff function. The
realized value of the player’s payoff function is called his payoff. At the same time,
the player’s payoff function depends not only on his choice but also on the choice of
all other players. Therefore, when making a decision, the player is forced to focus
not only on his own interests but also on the possible actions of the other players. If
the players cannot coordinate their actions, the game is called a noncooperative
game. The basic concept of a solution in a noncooperative game theory is the Nash
equilibrium.

Consider a noncooperative game (NG) of N players in the class of pure strategies
(a non-antagonistic game)

Γ ¼ N; Xif gi∈ N; f i xð Þ� �
i∈ N

D E
, (1)

where N ¼ 1; 2;…;Nf g is the set of players’ serial numbers; each player i chooses
and applies his own pure strategy xi ∈ Xi ⊆Rni , forming no coalition with the others,
which induces a strategy profile x ¼ x1;…; xNð Þ∈ X ¼Qi∈ N Xi ⊆Rn n ¼ð n1þ
…þ nNÞ; for each i∈ N, a payoff function f i xð Þ is defined on the strategy profile set
X, which gives the payoff of player i. In addition, denote f ¼ f 1;…; f N

� �
and

x zik Þ ¼ x1;…; xi�1; zi; xiþ1;…; xNð Þð .
Definition 1. A strategy profile xe ¼ xe1;…; xeN

� �
∈ X is called a Nash equilibrium

in the game (1) if

max
xi ∈ Xi

f i x
e xik Þ ¼ f i x

eð Þ i∈ Nð Þ:�
(2)

The set of all xef g in game (1) will be designated by Xe.
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Now, consider internal instability of Xe. A subset X ∗ ⊆Rn is internally instable if
there exist at least two strategy profiles x jð Þ ∈ X ∗ j ¼ 1; 2ð Þ such that

f x 1ð Þ
� �

, f x 1ð Þ
� �h i

⇔ f i x 1ð Þ
� �

, f i x 1ð Þ
� �

 ∀i∈ N
h i

, (3)

internally stable otherwise.
Example 1. Consider a two-player NG of the form

1; 2f g; Xi ¼ �1; 1½ �f gi¼1,2; f i xð Þ ¼ �x2i þ 2x1x2
� �

i¼1,2

D E
: (4)

A strategy profile xe ¼ xe1; x
e
2

� �
∈ �1; 1½ �2 is a Nash equilibrium in game (4) if

�x21 þ 2x1xe2 ≤ � xei
� �2 þ 2xe1x

e
2, � x22 þ 2xe1x2 ≤ � xei

� �2 þ 2xe1x
e
2 ∀x1, x2 ∈ �1; 1½ �,

which is equivalent to

� x1 � xe2
� �2 ≤ � xe1 � xe2

� �2, � xe1 � x2
� �2 ≤ � xe1 � xe2

� �2
:

Therefore, we have Xe ¼ α; αð Þ ∀α∈ �1; 1½ �j gf and
f i X

eð Þ ¼ ∪xe ∈ Xe f i x
eð Þ ¼ ∪α∈ �1;1½ � α2; α2ð Þ in game (4). Consequently, the set Xe is

internally instable in game (4); as for x 1ð Þ ¼ 0;0ð Þ and x 2ð Þ ¼ 1; 1ð Þ, it follows that
f i x

1ð Þ� � ¼ 0, f i x
2ð Þ� � ¼ 1 i ¼ 1; 2ð Þ (see Eq. (3)).

Note 1. In the antagonistic setting of game (1) (N ¼ 1; 2f g and f 1 xð Þ ¼ �f 2 xð Þ),
the equality f 1 x 1ð Þ� � ¼ f 1 x 2ð Þ� �

holds for any two saddle points x jð Þ ∈ X j ¼ 1; 2ð Þ by
the saddle point equivalence. Hence, the saddle point set is always internally stable
in the antagonistic game. Note that a saddle point is a Nash equilibrium strategy
profile in the antagonistic setting of game (1).

Note 2. In the non-antagonistic setting of game (1), the internal instability effect
vanishes if there exist a unique Nash equilibrium strategy profile in (1).

Associate the following auxiliary N-criterion problem with game (1):

Γv ¼ Xe; f i xð Þ� �
i∈ N

D E
, (5)

where the set Xe of alternatives x coincides with the set of Nash equilibrium
strategy profiles xe in game (1) and the ith criterion f i xð Þ is the payoff function of
player i.

Definition 2. An alternative xP ∈ Xe is Pareto optimal (efficient) in problem (5)
if ∀x∈ Xe the system of inequalities

f i xð Þ≥ f i x
P� �

i∈ Nð Þ

is infeasible, with at least one being a strict inequality. Designate by XP the set
of all xP

� �
.

According to Definition 2, the set XP satisfies the inclusion XP ⊆Xe and is
internally stable.

The following statement is obvious: if for all x∈ Xe we have

X
i∈ N

f i xð Þ≤
X
i∈ N

f i x
P� �
, (6)

then xP gives the Pareto-optimal alternative in problem (5).
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the players cannot coordinate their actions, the game is called a noncooperative
game. The basic concept of a solution in a noncooperative game theory is the Nash
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Consider a noncooperative game (NG) of N players in the class of pure strategies
(a non-antagonistic game)

Γ ¼ N; Xif gi∈ N; f i xð Þ� �
i∈ N

D E
, (1)

where N ¼ 1; 2;…;Nf g is the set of players’ serial numbers; each player i chooses
and applies his own pure strategy xi ∈ Xi ⊆Rni , forming no coalition with the others,
which induces a strategy profile x ¼ x1;…; xNð Þ∈ X ¼Qi∈ N Xi ⊆Rn n ¼ð n1þ
…þ nNÞ; for each i∈ N, a payoff function f i xð Þ is defined on the strategy profile set
X, which gives the payoff of player i. In addition, denote f ¼ f 1;…; f N

� �
and

x zik Þ ¼ x1;…; xi�1; zi; xiþ1;…; xNð Þð .
Definition 1. A strategy profile xe ¼ xe1;…; xeN

� �
∈ X is called a Nash equilibrium

in the game (1) if

max
xi ∈ Xi

f i x
e xik Þ ¼ f i x

eð Þ i∈ Nð Þ:�
(2)

The set of all xef g in game (1) will be designated by Xe.
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Now, consider internal instability of Xe. A subset X ∗ ⊆Rn is internally instable if
there exist at least two strategy profiles x jð Þ ∈ X ∗ j ¼ 1; 2ð Þ such that

f x 1ð Þ
� �

, f x 1ð Þ
� �h i

⇔ f i x 1ð Þ
� �

, f i x 1ð Þ
� �

 ∀i∈ N
h i

, (3)

internally stable otherwise.
Example 1. Consider a two-player NG of the form

1; 2f g; Xi ¼ �1; 1½ �f gi¼1,2; f i xð Þ ¼ �x2i þ 2x1x2
� �

i¼1,2

D E
: (4)

A strategy profile xe ¼ xe1; x
e
2

� �
∈ �1; 1½ �2 is a Nash equilibrium in game (4) if

�x21 þ 2x1xe2 ≤ � xei
� �2 þ 2xe1x

e
2, � x22 þ 2xe1x2 ≤ � xei

� �2 þ 2xe1x
e
2 ∀x1, x2 ∈ �1; 1½ �,

which is equivalent to

� x1 � xe2
� �2 ≤ � xe1 � xe2

� �2, � xe1 � x2
� �2 ≤ � xe1 � xe2

� �2
:

Therefore, we have Xe ¼ α; αð Þ ∀α∈ �1; 1½ �j gf and
f i X

eð Þ ¼ ∪xe ∈ Xe f i x
eð Þ ¼ ∪α∈ �1;1½ � α2; α2ð Þ in game (4). Consequently, the set Xe is

internally instable in game (4); as for x 1ð Þ ¼ 0;0ð Þ and x 2ð Þ ¼ 1; 1ð Þ, it follows that
f i x

1ð Þ� � ¼ 0, f i x
2ð Þ� � ¼ 1 i ¼ 1; 2ð Þ (see Eq. (3)).

Note 1. In the antagonistic setting of game (1) (N ¼ 1; 2f g and f 1 xð Þ ¼ �f 2 xð Þ),
the equality f 1 x 1ð Þ� � ¼ f 1 x 2ð Þ� �

holds for any two saddle points x jð Þ ∈ X j ¼ 1; 2ð Þ by
the saddle point equivalence. Hence, the saddle point set is always internally stable
in the antagonistic game. Note that a saddle point is a Nash equilibrium strategy
profile in the antagonistic setting of game (1).

Note 2. In the non-antagonistic setting of game (1), the internal instability effect
vanishes if there exist a unique Nash equilibrium strategy profile in (1).

Associate the following auxiliary N-criterion problem with game (1):

Γv ¼ Xe; f i xð Þ� �
i∈ N

D E
, (5)

where the set Xe of alternatives x coincides with the set of Nash equilibrium
strategy profiles xe in game (1) and the ith criterion f i xð Þ is the payoff function of
player i.

Definition 2. An alternative xP ∈ Xe is Pareto optimal (efficient) in problem (5)
if ∀x∈ Xe the system of inequalities

f i xð Þ≥ f i x
P� �

i∈ Nð Þ

is infeasible, with at least one being a strict inequality. Designate by XP the set
of all xP

� �
.

According to Definition 2, the set XP satisfies the inclusion XP ⊆Xe and is
internally stable.

The following statement is obvious: if for all x∈ Xe we have

X
i∈ N

f i xð Þ≤
X
i∈ N

f i x
P� �
, (6)

then xP gives the Pareto-optimal alternative in problem (5).
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3. Sufficient conditions of Pareto-optimal equilibrium

Get back to game (1), associating it with the N-criterion problem (5).
Definition 3. A strategy profile x ∗ ∈ X is called a Pareto-optimal Nash equilib-

rium for game (1) if x ∗ is a Nash equilibrium in (1) (Definition 1) and a Pareto
optimum in (5) (Definition 2).

Note 3. Two classes of games where the Pareto equilibrium strategy profiles exist
in pure strategies were presented in ([7], pp. 91–92) and, in the case of differential
games, in [9–12].

Note 4. Within Example 1, we have two Pareto equilibrium strategy profiles,
namely, x ∗ ¼ 1; 1ð Þ and x ∗ ∗ ¼ �1;�1ð Þ.

Based on (2) and (5), introduce N þ 1 scalar functions defined by

φi x; zð Þ ¼ f i z xikð Þ � f i zð Þ  i∈ Nð Þ,
φNþ1 x; zð Þ ¼

X
r∈ N

f r xð Þ �
X
r∈ N

f r zð Þ, (7)

where z ¼ z1;…; zNð Þ, zi ∈ Xi i∈ Nð Þ, z∈ X, x∈ X. The Germeier convolution
([13], p. 43) of the scalar functions (7) has the form

φ x; zð Þ ¼ max
j¼1,…,Nþ1

φj x; zð Þ: (8)

In addition, associate the following antagonistic game with game (1) and the N-
criterion problem (5):

X;Z ¼ X;φ x; zð Þh i: (9)

In this game, player 1 and his opponent choose their strategies x∈ X and z∈ X to
maximize and minimize, respectively, the payoff function φ x; zð Þ described by (7)
and (8).

A saddle point xo; z ∗ð Þ∈ X2 of game (9) is defined by the chain of inequalities

φ x; z ∗ð Þ≤φ x0; z ∗� �
≤φ x0; z
� �

∀x, z∈ X: (10)

In game (9), the saddle points are given by the minimax strategy z ∗

min
z∈ X

max
x∈ X

φ x; zð Þ ¼ max
x∈ X

φ x; z ∗ð Þ
� �

and the maximin strategy x0

max
x∈ X

min
z∈ X

φ x; zð Þ ¼ min
z∈ X

φ x0; z
� �� �

:

The following statement defines a sufficient condition for the existence of a PoNE
strategy profile in game (1).

Theorem 1. If a saddle point xo; z ∗ð Þ exists in the antagonistic game (9) (i.e., the
condition (10) holds), then the minimax strategy z ∗ is a PoNE strategy profile for
game (1) [14].

Proof. Let z ¼ x0 for the right-hand inequality in (10). Using (7) and (8), we have

φ x0; x0
� � ¼ max

j¼1,…,Nþ1
φj x

0; x0
� � ¼ 0:
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By (10), for all x∈ X it follows that

0≥ φ x; z ∗ð Þ ¼ max
j¼1,…,Nþ1

φj x; z
∗ð Þ ¼ 0:

Therefore, for all x∈ X, the following chain of implications is true:

0≥ max
j¼1,…,Nþ1

φj x; z
∗ð Þ≥ φj x; z

∗ð Þ
� �

  )

) φj x; z
∗ð Þ≤0  j ¼ 1;…;N;N þ 1ð Þ

h i
 )7ð Þ

)7ð Þ
f j z

∗ xikð Þ � f j z
∗ð Þ≤0 ∀xi ∈ Xi i∈ Nð Þ

h in
∧

∧
X
r∈ N

f r xð Þ �
X
r∈ N

f r z
∗ð Þ≤0 ∀x∈ Xe

" #)
)

) max
xi ∈ Xi

f j z
∗ xikð Þ ¼ f j z

∗ð Þ  i∈ Nð Þ
� �

∧
�

∧ max
x∈ Xe

X
i∈ N

f i xð Þ ¼
X
i∈ N

f i z
∗ð Þ

" #)
)2ð Þ, 6ð Þ

z ∗ ∈ Xe½ �∧ z ∗ ∈ XP� �� �
:

This chain involves the inclusion Xe ⊆X: □
Remark 1. Theorem 1 substantiates the following design method of the PoNE

strategy profile x ∗ in game (1).
Step 1. Using the payoff functions f i xð Þ i∈ Nð Þ from (1) and the vectors

z ¼ z1;…; zNð Þ, zi ∈ Xi and x ¼ x1;…; xNð Þ, xi ∈ Xi i∈ Nð Þ, construct the
functionφ x; zð Þ by formulas (7) and (8).

Step 2. Find the saddle point xo; ; z ∗ð Þ of antagonistic game (9). Then z ∗ is the
Pareto equilibrium solution of game (1).

As far as the authors know, numerical calculation methods of the saddle
point xo; z ∗ð Þ for the Germeier convolution

φ x; zð Þ ¼ max
j¼1,…,Nþ1

φj x; zð Þ

have not been developed yet. However, they are vital to construct the Nash
equilibrium strategy profiles that are Pareto optimal (see Theorem 1). This is a new
trend in equilibrium programming; in the authors’ opinion, it can be developed
using the mathematical apparatus of Germeier convolution optimization maxj φj xð Þ
proposed by Dem’yanov [15].

Remark 2. The results of operations research ([16], p. 54) yield the following
statement that is crucial to prove the existence of a PoNE strategy profile in the class
of mixed strategies in game (1) (see the forthcoming section). If Xi ∈ compRni and
f i �ð Þ∈ C Xð Þ i∈ Nð Þ in game (1), then the Germeier convolution φ x; zð Þ ¼
maxj¼1,…,Nþ1 φj x; zð Þ from (7) and (8) is continuous on X � X.

4. Existence of PoNE strategy profile in mixed strategies

That game (1) admits a PoNE strategy profile in the class of pure strategies (see
Definition 3) is rather a miracle. This equilibrium may exist only for special payoff
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∧
�
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functions, strategy sets, and numbers of players. Therefore, adhering to the
approach associated with E. Borel [17], J. von Neumann [18], Nash [1], and their
followers, we establish the existence of the PoNE strategy profile of game (1) in the
class of mixed strategies under standard game theory restrictions (i.e., compact
strategy sets and continuous payoff functions).

And so, suppose that in game (1) the sets Xi of the pure strategies xi are compact
sets in Rni (are closed and bounded), whereas the payoff function f i xð Þ of each
player i i∈ Nð Þ is continuous on the set of pure strategy profiles X.

Consider the mixed strategy extension of game (1). To this end, construct the Borel
σ-algebra B Xið Þ on each compact set Xi i∈ Nð Þ and probability measures νi �ð Þ on
B Xið Þ (i.e., nonnegative scalar functions defined on the elements of B Xið Þ that are
countably additive and normalized to unity on Xi). Denote by νif g the whole set of
such measures; the measure νi �ð Þ proper is called the mixed strategy of player i i∈ Nð Þ
in game (1). Next, for game (1) construct the mixed strategy profiles, that is, the
multiplicative measures

ν dxð Þ ¼ ν1 dx1ð Þ…νN dxNð Þ,

and designate by νf g the set of such strategy profiles. And finally, find the
mathematical expectations

f i νð Þ ¼
ð

X

f i xð Þν dxð Þ  i∈ Nð Þ: (11)

As a result, the game Γ from (1) is associated with its mixed strategy extension

~Γ ¼ N; νif gi∈ N; f i νð Þ� �
i∈ N

D E
:

In the noncooperative game ~Γ, we have the following elements:
νi �ð Þ∈ νif g as the mixed strategy of player i.
ν �ð Þ∈ νf g as the mixed strategy profile.
f i νð Þ as the payoff function of player i defined by (11).
Further exposition involves the vector z ¼ z1;…; zNð Þ∈ X with zi ∈ Xi i∈ Nð Þ,

and, of course, the vector x ¼ x1;…; xNð Þ∈ X, as well as the mixed strategy profiles
ν �ð Þ, μ �ð Þ∈ νf g and the mathematical expectations

f i νð Þ ¼
ð

X

f i xð Þν dxð Þ, f i μð Þ ¼
ð

X

f i zð Þμ dzð Þ,

f i μ νikð Þ ¼
ð

X1

⋯
ð

Xi�1

ð

Xi

ð

Xiþ1

⋯
ð

XN

f i xð ÞμN dzNð Þ…

…μiþ1 dziþ1ð Þνi dxið Þμi�1 dzi�1ð Þ…μ1 dz1ð Þ:

(12)

Once again, we underline that xi, zi ∈ Xi i∈ Nð Þ and x, z∈ X.
The following notion of the Nash equilibrium strategy profile ν e �ð Þ∈ νf g in

mixed strategies in original game (1) answers to Definition 1 of the Nash equilib-
rium strategy profile xe ∈ X in pure strategies in the same game (1).

Definition 4. A strategy profile ν e �ð Þ∈ νf g is called a Nash equilibrium for the
game ~Γ if

f i ν
e νik Þ≤ f i ν

eð Þ ∀νi �ð Þ∈ νif g  i∈ Nð Þ;�
(13)
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throughout the paper, ν e �ð Þ∈ νf g will be also called the Nash equilibrium strat-
egy profile in mixed strategies for game (1).

By the Glicksberg theorem [19], there exists a Nash equilibrium strategy profile
in mixed strategies in game (1) under Xi ∈ compRni and f i �ð Þ∈ C Xð Þ i∈ Nð Þ. Denote
by N the set of such profiles ν ef g.

Associate the following N-criterion problem with the game ~Γ

~Γυ ¼ N; f i νð Þ� �
i∈ N

D E
: (14)

In (14), a decision-maker chooses a strategy profile ν �ð Þ∈ N to simultaneously
maximize all components of the vector criterion f νð Þ ¼ f 1 νð Þ;…; f N νð Þ� �

. The notion
of the Pareto optimal strategy profile is conventional (see below).

Definition 5. A strategy profile νP �ð Þ∈ N is called Pareto optimal for the
N-criterion problem ~Γυ from (14) if for any ν �ð Þ∈ N the system of inequalities

f i νð Þ≥ f i ν
P� �
  i∈ Nð Þ

is infeasible, with at least one inequality being strict.
The following statement represents an analog of (6): if for all ν �ð Þ∈ N we have

X
i∈ N

f i νð Þ≤
X
i∈ N

f i ν
P� �
, (15)

then the mixed strategy profile νP �ð Þ∈ N is Pareto optimal in the problem ~Γυ

from (14).
Combining Definition 4 with Definition 5 leads to.
Definition 6. A strategy profile ν ∗ �ð Þ∈ νf g is called a Pareto-optimal Nash

equilibrium strategy profile in mixed strategies for game (1) if ν ∗ �ð Þ is a Nash
equilibrium in ~Γ (according to Definition 4), and ν ∗ �ð Þ is Pareto optimal in the
multicriterion problem ~Γυ (according to Definition 5).

Now, we prove the existence of a Nash equilibrium strategy profile in mixed
strategies that is Pareto optimal with respect to the rest Nash equilibrium strategy
profiles.

Assertion 1. Consider the noncooperative game (1) where:

1. The pure strategy set Xi of each player i is a nonempty compact set in Rni

i∈ Nð Þ.

2. The payoff function f i xð Þ of player i i∈ Nð Þ is continuous on the strategy
profile set X.

Then there exists a PoNE strategy profile in mixed strategies in game (1).
Proof. Using formulas (7) and (8), construct the scalar function

φ x; zð Þ ¼ max
j¼1,…,Nþ1

φj x; zð Þ,

where

φi x; zð Þ ¼ f i z xikð Þ � f i zð Þ i∈ Nð Þ,
φNþ1 x; zð Þ ¼

X
r∈ N

f r xð Þ �
X
r∈ N

f r zð Þ,
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ð

X
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ð

X

f i zð Þμ dzð Þ,
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ð

X1

⋯
ð

Xi�1

ð

Xi

ð

Xiþ1

⋯
ð

XN

f i xð ÞμN dzNð Þ…

…μiþ1 dziþ1ð Þνi dxið Þμi�1 dzi�1ð Þ…μ1 dz1ð Þ:

(12)

Once again, we underline that xi, zi ∈ Xi i∈ Nð Þ and x, z∈ X.
The following notion of the Nash equilibrium strategy profile ν e �ð Þ∈ νf g in
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rium strategy profile xe ∈ X in pure strategies in the same game (1).

Definition 4. A strategy profile ν e �ð Þ∈ νf g is called a Nash equilibrium for the
game ~Γ if

f i ν
e νik Þ≤ f i ν

eð Þ ∀νi �ð Þ∈ νif g  i∈ Nð Þ;�
(13)
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throughout the paper, ν e �ð Þ∈ νf g will be also called the Nash equilibrium strat-
egy profile in mixed strategies for game (1).

By the Glicksberg theorem [19], there exists a Nash equilibrium strategy profile
in mixed strategies in game (1) under Xi ∈ compRni and f i �ð Þ∈ C Xð Þ i∈ Nð Þ. Denote
by N the set of such profiles ν ef g.
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~Γυ ¼ N; f i νð Þ� �
i∈ N

D E
: (14)
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. The notion
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f i νð Þ≥ f i ν
P� �
  i∈ Nð Þ

is infeasible, with at least one inequality being strict.
The following statement represents an analog of (6): if for all ν �ð Þ∈ N we have

X
i∈ N

f i νð Þ≤
X
i∈ N

f i ν
P� �
, (15)

then the mixed strategy profile νP �ð Þ∈ N is Pareto optimal in the problem ~Γυ

from (14).
Combining Definition 4 with Definition 5 leads to.
Definition 6. A strategy profile ν ∗ �ð Þ∈ νf g is called a Pareto-optimal Nash

equilibrium strategy profile in mixed strategies for game (1) if ν ∗ �ð Þ is a Nash
equilibrium in ~Γ (according to Definition 4), and ν ∗ �ð Þ is Pareto optimal in the
multicriterion problem ~Γυ (according to Definition 5).

Now, we prove the existence of a Nash equilibrium strategy profile in mixed
strategies that is Pareto optimal with respect to the rest Nash equilibrium strategy
profiles.

Assertion 1. Consider the noncooperative game (1) where:

1. The pure strategy set Xi of each player i is a nonempty compact set in Rni

i∈ Nð Þ.

2. The payoff function f i xð Þ of player i i∈ Nð Þ is continuous on the strategy
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X
r∈ N

f r xð Þ �
X
r∈ N

f r zð Þ,
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According to the construction procedure and Remark 2, the function φ x; zð Þ is
defined and continuous on the product of compact sets X � X.

Define the auxiliary antagonistic game

Γa ¼ I; IIf g;X;Z ¼ X;φ x; zð Þh i,

where players I and II seek to maximize and minimize, respectively, the function
φ x; zð Þ continuous on X � Z Z ¼ Xð Þ by choosing their strategies x∈ X and z∈ X.

Now, apply a special case of the Glicksberg theorem [19] to the game Γa, as the
saddle point in this game coincides with the Nash equilibrium strategy profile in the
two-player noncooperative game

Γ2 ¼ I; IIf g; X;Z ¼ Xf g; f I x; zð Þ ¼ φ x; zð Þ; f II x; zð Þ ¼ �φ x; zð Þ� �� �
:

In this game, player I seeks to maximize f I x; zð Þ ¼ φ x; zð Þ by choosing his strat-
egy x∈ X, whereas player II tries to maximize f II x; zð Þ ¼ �φ x; zð Þ The sets X and
X ¼ Z in game Γ2 are compact, while the payoff functions f I x; zð Þ and f II x; zð Þ are
continuous on X � Z; hence, by the Glicksberg theorem, there exists a Nash equi-
librium strategy profile ν e; μ ∗ð Þ in the mixed extension Γ2:

~Γ2 ¼ I; IIf g; νf g; μf g; f i ν; μð Þ ¼
ð

X

ð

X

f i x; zð Þν dxð Þμ dzð Þ
8<
:

9=
;

i¼I, II

* +
:

In addition, ν e; μ ∗ð Þ is simultaneously a saddle point of the mixed extension of
the game Γa :

~Γa ¼ I; IIf g; νf g; μf g;φ ν; μð Þ ¼
ð

X

ð

X

φ x; zð Þν dxð Þμ dzð Þ
* +

:

Thus, according to the Glicksberg theorem, there exists a pair ν e; μ ∗ð Þ
representing a saddle point of φ ν; μð Þ, that is,

φ ν; μ ∗ð Þ≤φ ν e; μ ∗ð Þ≤φ ν e; μð Þ, ∀ν �ð Þ, μ �ð Þ∈ νf g: (16)

Letting μ ¼ ν e in the right inequality of (16) gives φ ν e; ν eð Þ ¼ 0 and so,
∀ν �ð Þ∈ νf g formula (16) implies

0≥ φ ν; μ ∗ð Þ ¼
ð

X

ð

X

max
j¼1,…,Nþ1

φj x; zð Þν dxð Þμ ∗ dzð Þ: (17)

It was established in [3] that

max
j¼1,…,Nþ1

ð

X

ð

X

φj x; zð Þν dxð Þμ dzð Þ≤
ð

X

ð

X

max
j¼1,…,Nþ1

φj x; zð Þν dxð Þμ dzð Þ: (18)

Note that this property has an analog: the maximum of the sum of functions does
not exceed the sum of their maxima. It follows from (17) and (18) that

max
j¼1,…,Nþ1

ð

X

ð

X

φj x; zð Þν dxð Þμ ∗ dzð Þ≤0 ∀ν �ð Þ∈ νf g,
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and then surely for each j ¼ 1,…, N,N þ 1, we have

ð

X

ð

X

φj x; zð Þν dxð Þμ ∗ dzð Þ≤0 ∀ν �ð Þ∈ νf g: (19)

Next, taking into account the normalized mixed strategies and the normalized
mixed strategy profiles, that is, the conditions

ð

X

νi dxið Þ ¼ 1,
ð

X

μi dzið Þ ¼ 1 i∈ Nð Þ,
ð

X

ν dxð Þ ¼ 1,
ð

X

μ dzð Þ ¼ 1 (20)

that hold ∀νi �ð Þ∈ νif g, μi �ð Þ∈ μif g, ν �ð Þ∈ νf g, μ �ð Þ∈ μf g, we distinguish between
two cases, namely, j∈ N and j ¼ N þ 1. For each of these cases, it is necessary to
refine inequalities (19).

Case 1: j∈ N. Using (7) and (20) for each i∈ N, inequality (19) is reduced to
the form

ð

X

ð

X

f i z xikð Þ � f i zð Þ� �
ν dxð Þμ ∗ dzð Þ ¼

ð

X

ð

Xi

f i z xikð Þ � f i zð Þ� �
νi dxið Þμ ∗ dzð Þ ¼

¼
ð

X

ð

X

f i z xikð Þνi dxið Þμ ∗ dzð Þ �
ð

X

f i zð Þμ ∗ dzð Þ
ð

Xi

νi dxið Þ ¼12ð Þ, 20ð Þ

¼12ð Þ, 20ð Þ
ð

X1

…

ð

Xi�1

ð

Xi

ð

Xiþ1

…

ð

XN

f i z1;…; zi�1; xi; ziþ1;…; zNð Þμ ∗
N dzNð Þ…

2
64

…μ ∗
iþ1 dziþ1ð Þνi dxið Þμ ∗

i�1 dzi�1ð Þ…μ ∗
1 dz1ð Þ�� f i μ

∗ð Þ ¼
¼ f i μ

∗ νikð Þ � f i μ
∗ð Þ≤0 ∀νi �ð Þ∈ νif g:

In combination with (13), this result gives the inclusion μ ∗ �ð Þ∈ N, that is, the
mixed strategy profile μ ∗ �ð Þ is a Nash equilibrium for the game (1) by Definition 4.

Case 2: j ¼ N þ 1: Here inequality (19) acquires the form

ð

X

ð

X

φNþ1 x; zð Þν dxð Þμ ∗ dzð Þ ¼7ð Þ
ð

X

ð

X

X
i∈ N

f i xð Þν dxð Þμ ∗ dzð Þ �
ð

X

ð

X

X
i∈ N

f i xð Þν dxð Þμ ∗ dzð Þ ¼

¼
ð

X

X
i∈ N

f i xð Þν dxð Þ
ð

X

μ ∗ dzð Þ �
ð

X

X
i∈ N

f i zð Þμ ∗ dzð Þ
ð

X

ν dxð Þ ¼20ð Þ

¼20ð ÞX
i∈ N

ð

X

f i xð Þν dxð Þ �
X
i∈ N

ð

X

f i zð Þμ ∗ dzð Þ ¼12ð ÞX
i∈ N

f i νð Þ �
X
i∈ N

f i μ
∗ð Þ≤0 ∀ν �ð Þ∈ N,

in as much as N⊆ νf g. This immediately yields (15) for νP ¼ μ ∗ , that is, the
strategy profile μ ∗ �ð Þ is Pareto optimal for the N-criterion problem ~Γυ from (14) by
Definition 5.

This outcome and the inclusion μ ∗ �ð Þ∈ N conclude the proof. □
Note 5. Another proof of Assertion 1 can be found in ([3], pp. 13–15).
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5. Conclusions

Vorob’ev, the founder of game theory in Russia, believed that its subject [20] is
answering the following three questions:

1.What is the optimality of a given game?

2.Does an optimal solution exist?

3.How can it be found?

For the many-player noncooperative games, the answer to the first question is
the PoNE strategy profile.

The answer to the second question is given by Assertion 1: if the strategy sets are
compact and the payoff functions are continuous, then a Pareto equilibrium strat-
egy profile exists in the class of mixed strategies.

As turned out, the answer to the third question is not so simple. At first glance,
one should just construct the Germeier convolution of the payoff functions using
formulas (7) and (8) and find the saddle point (10); then the minimax strategy
entering the saddle point is the PoNE strategy profile. This equilibrium design
method is dictated by Theorem 1, actually being the basic result of the present
paper. However, the issues of saddle point construction for the Germeier convolu-
tions have not been developed so far. The usage of specific numerical algorithms
and their complexity still remain under investigated. Further research by the
authors and, hopefully, by the readers will endeavor to improve the situation.
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Chapter 2

Polynomial Algorithm for
Constructing Pareto-Optimal
Schedules for Problem
1∣r j∣Lmax,Cmax

Alexander A. Lazarev and Nikolay Pravdivets

Abstract

In this chapter, we consider the single machine scheduling problem with given
release dates, processing times, and due dates with two objective functions. The first
one is to minimize the maximum lateness, that is, maximum difference between
each job due date and its actual completion time. The second one is to minimize
the maximum completion time, that is, to complete all the jobs as soon as possible.
The problem is NP-hard in the strong sense.We provide a polynomial time algorithm
for constructing a Pareto-optimal set of schedules on criteria of maximum lateness
and maximum completion time, that is, problem 1∣r j∣Lmax,Cmax, for the subcase of
the problem: d1 ≤ d2 ≤…≤ dn; d1 � r1 � p1 ≥ d2 � r2 � p2 ≥…≥ dn � rn � pn.

Keywords: single machine scheduling, two-criteria scheduling, Pareto-set, Pareto-
optimality, minimization of maximum lateness, minimization of maximum
completion time, polynomial time algorithm

1. Introduction

We consider a classical scheduling problem on a single machine. A release time
of each job is predefined and represents the minimum possible start time of the job.
When constructing schedules, we consider two objective functions. The first one is
to minimize the maximum lateness, that is, maximum difference between each job
due date and its actual completion time. The second one is to minimize the maxi-
mum completion time, that is, to complete all the jobs as soon as possible. The
problem is NP-hard in the strong sense [1]. We provide a polynomial time algo-
rithm for constructing a Pareto-optimal set of schedules on criteria of maximum
lateness and maximum completion time, that is, problem 1∣r j∣Lmax,Cmax, for the
subcase of the problem when due dates are: d1 ≤ d2 ≤…≤ dn; d1 � r1 � p1 ≥ d2 �
r2 � p2 ≥…≥ dn � rn � pn. Example of a problem case that meets these constraints
will be the case when all jobs have the same time for processing before due date.

2. Statement of the problem 1∣r j∣Lmax,Cmax

We consider single machine scheduling problem, where a set of n jobs N ¼
1, 2,…, nf g has to be processed on a single machine. Each job we is numbered, that
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is, the entry “job j” is equivalent to the entry “job numbered j.” Simultaneous
executing of jobs or preemptions of the processing of a job are prohibited. For jobs
j∈N, value r j is the minimum possible start time, p j ≥0 is a processing time of job j
and d j is a due date of job j.

The schedule is represented by a set π ¼ s jj j∈N
� �

of start times of each job. By
τ, we denote the permutation of j1,…, jn

� �
elements of the set N. A set of all

different schedules of jobs from the set N is denoted by Π Nð Þ. Schedule π is called
feasible if s j πð Þ≥ r j, ∀j∈N. We denote the completion time of job j∈N in schedule π
as C j πð Þ. Difference L j πð Þ ¼ C j πð Þ � d j, j∈N, denotes lateness of job j in the
schedule π. Maximum lateness of jobs of the set N under the schedule π is

Lmax πð Þ ¼ max
j∈N

C j πð Þ � d j
� �

: (1)

We denote the completion time of all jobs of the set N in schedule π as

Cmax πð Þ ¼ max
j∈N

C j πð Þ:

The problem is to find the optimal schedule π ∗ with the smallest value of the
maximum lateness:

L ∗
max ¼ min

π ∈Π Nð Þ
Lmax πð Þ ¼ Lmax π ∗ð Þ: (2)

For any arbitrary set of jobs M⊆N we also denote:

rM ¼ min
j∈M

r j, dM ¼ max
j∈M

d j, pM ¼
X
j∈M

p j: (3)

In the standard notation of Graham et al. [2], this problem is denoted as 1∣r j∣Lmax.
Intensive work on the solution of this problem has continued since the early 50s of
the 20th century. Lenstra et al. [1] showed that the general case of the problem
1∣r j∣Lmax is NP-hard in the strong sense.

Potts [3] introduced an iterative version of extended Jackson rule (IJ) [4] and

proved that
Lmax πIJð Þ

L ∗
max

≤ 3
2. Hall and Shmoys [5] modified the iterative version and

created an algorithm (MIJ) that guarantees the evaluation
Lmax πMIJð Þ

L ∗
max

≤ 4
3. They also

presented two approximation schemes that guarantee finding ε-approximate solu-

tion in O n log nþ n 1=εð ÞO 1=ε2ð Þ� �
and O n=εð ÞO 1=εð Þ

� �
operations. Mastrolilli [6]

introduced an improved approximation scheme with complexity of

O nþ 1=εð ÞO 1=εð Þ
� �

operations.

A number of polynomially solvable cases of the problem were found, starting
with Jackson’s early result [4] for the case r j ¼ 0, j∈N, when the solution is a
schedule in which jobs are ordered by nondecreasing due dates (by rule EDD). Such
a schedule is also be optimal for the case when the release times and due dates are
associated (ri ≤ r j ⇔ di ≤ d j, ∀i, j∈N).

Schedule is constructed according to the extended Jackson rule (Schrage
schedule): on the next place in the schedule we select a released non-ordered job
with the minimum due date; if there are no such jobs, then we select the job with
the minimum release time among the unscheduled jobs.
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If process times of all jobs are equal, the complexity can be reduced to O n log nð Þ
[7]. Vakhania generalized this result [8] considering the case when the processing
times of some jobs are restricted to either p or 2p. An algorithm with complexity of
O n2 log n log pð Þ was suggested.

A case when job processing times are mutually divisible is considered in [9].
Author suggest a polynomial-time algorithm with a complexity of
O n3 log n log 2pmax

� �
operations for solving this case.

Special cases 1∣prec; r j∣Cmax, 1∣prec; p j ¼ p; r j∣Lmax and 1∣prec; r j; pmtn∣Lmax with
precedence constraints for jobs have been addressed in works of Lawler [10],
Simons [11], Baker et al. [12]. Hoogeveen [13] proposed a polynomial algorithm for
the special case when job parameters satisfy the constraints d j � p j � A≤ r j ≤ d j �
A, ∀j∈N, for some constant A. A pseudo-polynomial algorithm for the NP-hard
case when release times and due dates are in the reversed order (d1 ≤…≤ dn and
r1 ≥…≥ rn) was developed in [14].

We denote by LA
j πð Þ and CA

j πð Þ the lateness and completion time of job j∈N in

schedule π, for instance, A with job parameters rAj , p
A
j , d

A
j

n o
, j∈N. Respectively,

LA
max πð Þ ¼ max

j∈N
LA

j πð Þ is a maximum lateness of the schedule π for instance A.

This paper deals with a problem with two objective functions Lmax and Cmax,
which in general case can be referred as 1∣r j∣Lmax,Cmax. This problem was consid-
ered in [15], where authors consider some dominance properties and conditions
when the Pareto-optimal set can be formed in polynomial time.

Definition 1.1 For any instance A of the problem, each permutation τ of the jobs
of the setN is uniquely defines early schedule πAτ . In the early schedule, each job j∈N
starts immediately after the end of the previous job in the corresponding permuta-
tion. If the completion time of the previous job is less than the release time of the
current job, then the beginning of the current job is equal to its release time. That is,
if τ ¼ j1, j2,…, jn

� �
, then πAτ ¼ s j1 , s j2 ,…, s jn

� �
, where

s j1 ¼ rAj1 , s jk ¼ max s jk�1
þ pAjk�1

, rAjk

n o
, k ¼ 2,…, n: (4)

Early schedules play an important role in our construction, since it is sufficient
to check all early schedules to find the optimal schedule of any problem instance.

By τA we denote the optimal permutation and πA we denote the optimal schedule
for instance A. Only early optimal schedules are be considered, that is, πA ¼ πAτA .

We denote by Π Nð Þ the set of all permutations of jobs of the set N, and by ΠA
the set of feasible schedules for instance A.

3. Problem 1∣di ≤d j,di � ri � pi ≥d j � r j � p j∣Lmax,Cmax

This section deals with the problem of constructing a Pareto-optimal set by
criteria Cmax and Lmax, that is, problem 1∣r j∣Lmax, Cmax. We suggest an algorithm for
constructing a set of schedules Φ N, tð Þ ¼ π01, π

0
2,…, π0m

� �
for which

Cmax π01
� �

<Cmax π02
� �

<…<Cmax π0m
� �

, (5)

Lmax π01
� �

>Lmax π02
� �

>…>Lmax π0m
� �

: (6)
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There is no schedule π such that Cmax πð Þ≤Cmax π0i
� �

and Lmax πð Þ≤Lmax π0i
� �

,
at least one of the inequalities is strict for some i, i ¼ 1,…,m. It is shown
that m≤ n.

3.1 Problem properties

We denote the precedence of the jobs i and j in schedule π as i ! jð Þπ . We also
introduce

r j tð Þ ¼ max r j, t
� �

; (7)

r N, tð Þ ¼ min
j∈N

r j tð Þ
� �

: (8)

In cases when its obvious how many jobs we mean, we write r tð Þ instead of
r N, tð Þ.

We assume that the job parameters satisfy the following constraints:

d1 ≤…≤ dn, d1 � r1 � p1 ≥…≥ dn � rn � pn: (9)

For example, these constraints correspond to the case when d j ¼ r j þ p j þ z,
j ¼ 1,…, n, where z is a constant, that is, when all jobs have the same time for
processing before due date. A problem with similar constraints but for a single
objective function (Lmax) is considered in [16].

We assume that ∣N∣> 1 and t is the time when the machine is ready. From the set
N, we find two jobs f ¼ f N, tð Þ and s ¼ s N, tð Þ in the following way:

f N, tð Þ ¼ arg min
j∈N

d jjr j tð Þ ¼ r N, tð Þ� �
, (10)

s N, tð Þ ¼ arg min
j∈Nn ff g

d jjr j tð Þ ¼ r Nnf , tð Þ� �
, (11)

where f ¼ f N, tð Þ. If N ¼ if g, then we set f N, tð Þ ¼ i, s N, tð Þ ¼ 0, ∀t. We also
define d0 ¼ þ∞, f ∅, tð Þ ¼ 0, s ∅, tð Þ ¼ 0, ∀t. For jobs f and s the following properties
are true.

Lemma 1.1 If the jobs of the set N satisfy (4), then for any schedule π ∈Π Nð Þ for
all j∈Nn ff g, for which j ! fð Þπ

L j πð Þ<L f πð Þ (12)

is true, and for all j∈Nn f , sf g, satisfying the condition j ! sð Þπ,

L j πð Þ<Ls πð Þ, (13)

where f ¼ f N, tð Þ and s ¼ s N, tð Þ, is also true.
Proof: For each job j such that j ! fð Þπ, completion time C j πð Þ<C f πð Þ. If

d j ≥ d f , then obviously

L j πð Þ ¼ C j πð Þ � d j <C f πð Þ � d f ¼ L f πð Þ, (14)

therefore (12) is valid.
If for job j∈N, j ! fð Þπ, then d j < d f . Then r j > r f . If r j ≤ r f , then r j tð Þ≤ r f tð Þ

and r f tð Þ ¼ r tð Þ, as follows from (7) and (10). Then r j tð Þ ¼ r f tð Þ ¼ r tð Þ and d j < d f ,
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but this contradicts the definition of job f (10). Therefore, r j > r f . Its obvious that
C j πð Þ � p j <C f πð Þ � p f and, since r j > r f ,

C j πð Þ � p j � r j <C f πð Þ � p f � r f , (15)

C j πð Þ � C f πð Þ< p j þ r j � p f � r f : (16)

Since d j < d f , then (from (9)) d j � r j � p j ≥ d f � r f � p f or d j � d f ≥ r j þ p j �
r f � p f , so C j πð Þ � C f πð Þ< p j þ r j � p f � r f ≤ d j � d f . Then, L j π, tð Þ<L f π, tð Þ for
each job j, j ! fð Þπ.

The inequality (13) can be proved in a similar way.
For each job j satisfying the condition j ! sð Þπ, we have C j πð Þ<Cs πð Þ. If d j ≥ ds,

then L j π, tð Þ ¼ C j πð Þ � d j <Cs πð Þ � ds ¼ Ls π, tð Þ, therefore (13) is true.
Let for the job j∈Nn ff g, j ! sð Þπ, d j < ds, then r j > rs. Indeed, if we assume

that r j ≤ rs, then r j tð Þ≤ rs tð Þ (it follows from (7)). In addition, rs tð Þ≥ r tð Þ for any job
s according to definitions (8) and (11). If rs tð Þ ¼ r tð Þ, then for the jobs j and swe can
write r j tð Þ ¼ rs tð Þ ¼ r tð Þ and d j < ds, which contradicts the definition (11) of job
s N, tð Þ. If rs tð Þ> r tð Þ, that is, rs > r tð Þ, then there is no job i∈Nn f , sf g, for which
rs > ri > r tð Þ. Therefore, for the jobs j and s we get r j tð Þ ¼ rs tð Þ and d j < ds, which
contradicts the definition (11) of job s N, tð Þ. Therefore, r j > rs:

Since C j πð Þ≤Cs πð Þ � ps and p j >0, then C j πð Þ � p j <Cs πð Þ � ps and since r j > rs,
therefore C j πð Þ � p j � r j <Cs πð Þ � ps � rs and

C j πð Þ � Cs πð Þ< p j þ r j � ps � rs: (17)

Since d j < ds, then from (9) we have d j � r j � p j ≥ ds � rs � ps or

C j πð Þ � Cs πð Þ< p j þ r j � ps � rs ≤ d j � ds: (18)

Hence, L j πð Þ<Ls πð Þ for each job j∈Nn ff g, j ! sð Þπ.
Theorem 1.1 If conditions (9) are true for jobs in the subset N0 ⊆N, then at any

time t0 ≥ t and any early schedule π ∈Π N0ð Þ there exists π0 ∈Π N0ð Þ such that

Lmax π0, t0ð Þ≤Lmax π, t0ð Þ, and Cmax π0, t0ð Þ≤Cmax π, t0ð Þ (19)

and one of the jobs f ¼ f N0, t0ð Þ or s ¼ s N0, t0ð Þ is at the first position in schedule
π0. If d f ≤ ds, then job f is at the first position in schedule π0.

Proof: Let π ¼ π1, f , π2, s, π3ð Þ, where π1, π2 and π3 are partial schedules of π.
Then, we construct a schedule π0 ¼ f , π1, π2, s, π3ð Þ. From the definitions (7), (8),
(10) we get r f t0ð Þ≤ r j t0ð Þ, j∈N0, hence Cmax f , π1ð Þ, t0ð Þ≤Cmax π1, fð Þ, t0ð Þ and

Cmax π0, t0ð Þ≤Cmax π, t0ð Þ, and (20)

L j π
0, t0ð Þ≤L j π, t0ð Þ, ∀j∈ π2, s, π3ð Þf g: (21)

From the lemma 1.1 we have

L j π
0, t0ð Þ<Ls π

0, t0ð Þ, ∀j∈ π1f g∪ π2f g: (22)

Obviously, the following inequality is true for job f
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There is no schedule π such that Cmax πð Þ≤Cmax π0i
� �

and Lmax πð Þ≤Lmax π0i
� �

,
at least one of the inequalities is strict for some i, i ¼ 1,…,m. It is shown
that m≤ n.

3.1 Problem properties

We denote the precedence of the jobs i and j in schedule π as i ! jð Þπ . We also
introduce

r j tð Þ ¼ max r j, t
� �

; (7)

r N, tð Þ ¼ min
j∈N

r j tð Þ
� �

: (8)

In cases when its obvious how many jobs we mean, we write r tð Þ instead of
r N, tð Þ.

We assume that the job parameters satisfy the following constraints:

d1 ≤…≤ dn, d1 � r1 � p1 ≥…≥ dn � rn � pn: (9)

For example, these constraints correspond to the case when d j ¼ r j þ p j þ z,
j ¼ 1,…, n, where z is a constant, that is, when all jobs have the same time for
processing before due date. A problem with similar constraints but for a single
objective function (Lmax) is considered in [16].

We assume that ∣N∣> 1 and t is the time when the machine is ready. From the set
N, we find two jobs f ¼ f N, tð Þ and s ¼ s N, tð Þ in the following way:

f N, tð Þ ¼ arg min
j∈N

d jjr j tð Þ ¼ r N, tð Þ� �
, (10)

s N, tð Þ ¼ arg min
j∈Nn ff g

d jjr j tð Þ ¼ r Nnf , tð Þ� �
, (11)

where f ¼ f N, tð Þ. If N ¼ if g, then we set f N, tð Þ ¼ i, s N, tð Þ ¼ 0, ∀t. We also
define d0 ¼ þ∞, f ∅, tð Þ ¼ 0, s ∅, tð Þ ¼ 0, ∀t. For jobs f and s the following properties
are true.

Lemma 1.1 If the jobs of the set N satisfy (4), then for any schedule π ∈Π Nð Þ for
all j∈Nn ff g, for which j ! fð Þπ

L j πð Þ<L f πð Þ (12)

is true, and for all j∈Nn f , sf g, satisfying the condition j ! sð Þπ,

L j πð Þ<Ls πð Þ, (13)

where f ¼ f N, tð Þ and s ¼ s N, tð Þ, is also true.
Proof: For each job j such that j ! fð Þπ, completion time C j πð Þ<C f πð Þ. If

d j ≥ d f , then obviously

L j πð Þ ¼ C j πð Þ � d j <C f πð Þ � d f ¼ L f πð Þ, (14)

therefore (12) is valid.
If for job j∈N, j ! fð Þπ, then d j < d f . Then r j > r f . If r j ≤ r f , then r j tð Þ≤ r f tð Þ

and r f tð Þ ¼ r tð Þ, as follows from (7) and (10). Then r j tð Þ ¼ r f tð Þ ¼ r tð Þ and d j < d f ,

18

Multicriteria Optimization - Pareto-Optimality and Threshold-Optimality

but this contradicts the definition of job f (10). Therefore, r j > r f . Its obvious that
C j πð Þ � p j <C f πð Þ � p f and, since r j > r f ,

C j πð Þ � p j � r j <C f πð Þ � p f � r f , (15)

C j πð Þ � C f πð Þ< p j þ r j � p f � r f : (16)

Since d j < d f , then (from (9)) d j � r j � p j ≥ d f � r f � p f or d j � d f ≥ r j þ p j �
r f � p f , so C j πð Þ � C f πð Þ< p j þ r j � p f � r f ≤ d j � d f . Then, L j π, tð Þ<L f π, tð Þ for
each job j, j ! fð Þπ.

The inequality (13) can be proved in a similar way.
For each job j satisfying the condition j ! sð Þπ, we have C j πð Þ<Cs πð Þ. If d j ≥ ds,

then L j π, tð Þ ¼ C j πð Þ � d j <Cs πð Þ � ds ¼ Ls π, tð Þ, therefore (13) is true.
Let for the job j∈Nn ff g, j ! sð Þπ, d j < ds, then r j > rs. Indeed, if we assume

that r j ≤ rs, then r j tð Þ≤ rs tð Þ (it follows from (7)). In addition, rs tð Þ≥ r tð Þ for any job
s according to definitions (8) and (11). If rs tð Þ ¼ r tð Þ, then for the jobs j and swe can
write r j tð Þ ¼ rs tð Þ ¼ r tð Þ and d j < ds, which contradicts the definition (11) of job
s N, tð Þ. If rs tð Þ> r tð Þ, that is, rs > r tð Þ, then there is no job i∈Nn f , sf g, for which
rs > ri > r tð Þ. Therefore, for the jobs j and s we get r j tð Þ ¼ rs tð Þ and d j < ds, which
contradicts the definition (11) of job s N, tð Þ. Therefore, r j > rs:

Since C j πð Þ≤Cs πð Þ � ps and p j >0, then C j πð Þ � p j <Cs πð Þ � ps and since r j > rs,
therefore C j πð Þ � p j � r j <Cs πð Þ � ps � rs and

C j πð Þ � Cs πð Þ< p j þ r j � ps � rs: (17)

Since d j < ds, then from (9) we have d j � r j � p j ≥ ds � rs � ps or

C j πð Þ � Cs πð Þ< p j þ r j � ps � rs ≤ d j � ds: (18)

Hence, L j πð Þ<Ls πð Þ for each job j∈Nn ff g, j ! sð Þπ.
Theorem 1.1 If conditions (9) are true for jobs in the subset N0 ⊆N, then at any

time t0 ≥ t and any early schedule π ∈Π N0ð Þ there exists π0 ∈Π N0ð Þ such that

Lmax π0, t0ð Þ≤Lmax π, t0ð Þ, and Cmax π0, t0ð Þ≤Cmax π, t0ð Þ (19)

and one of the jobs f ¼ f N0, t0ð Þ or s ¼ s N0, t0ð Þ is at the first position in schedule
π0. If d f ≤ ds, then job f is at the first position in schedule π0.

Proof: Let π ¼ π1, f , π2, s, π3ð Þ, where π1, π2 and π3 are partial schedules of π.
Then, we construct a schedule π0 ¼ f , π1, π2, s, π3ð Þ. From the definitions (7), (8),
(10) we get r f t0ð Þ≤ r j t0ð Þ, j∈N0, hence Cmax f , π1ð Þ, t0ð Þ≤Cmax π1, fð Þ, t0ð Þ and

Cmax π0, t0ð Þ≤Cmax π, t0ð Þ, and (20)

L j π
0, t0ð Þ≤L j π, t0ð Þ, ∀j∈ π2, s, π3ð Þf g: (21)

From the lemma 1.1 we have

L j π
0, t0ð Þ<Ls π

0, t0ð Þ, ∀j∈ π1f g∪ π2f g: (22)

Obviously, the following inequality is true for job f
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L f π0, t0ð Þ≤L f π, t0ð Þ: (23)

From (20)–(23) we get Cmax π0, t0ð Þ≤Cmax π, t0ð Þ and Lmax π0, t0ð Þ≤Lmax π, t0ð Þ.
Let π ¼ π1, s, π2, f , π3ð Þ, that is, job s is before job f . Construct a schedule π0 ¼

s, π1, π2, f , π3ð Þ. Further proof may be repeated as for job f . The first part of the
theorem is proved.

Let us assume d f ≤ ds and the schedule π ¼ π1, s, π2, f , π3ð Þ. Then, we construct a
schedule π0 ¼ f , π11, π12, π3ð Þ, where π11, π12 are schedules of jobs of the sets

j∈N0 : j∈ π1, s, π2ð Þf g, d j < d f
� �

and j∈N0 : j∈ π1, s, π2ð Þf g, d j ≥ d f
� �

. Jobs in π11
and π12 are ordered according to nondecreasing release times r j. From ds ≥ d f we
can conclude that s∈ π12f g.

For each job j∈ π11f g we have d j < d f . Of (9) we get d j � r j � p j ≥ d f � r f � p f ,
hence r j þ p j < r f þ p f , ∀j∈ π11f g, and Cmax f , π11ð Þ, t0ð Þ ¼ r f t0ð Þ þ p f þ

P
j∈ π11f gp j.

Since jobs in schedule π12f g are sorted by nondecreasing release times, then
Cmax f , π11, π12ð Þ, t0ð Þ≤Cmax π1, s, π2, fð Þ, t0ð Þ. As a result

Cmax π0, t0ð Þ≤Cmax π, t0ð Þ, and (24)

L j π
0, t0ð Þ≤L j π, t0ð Þ, ∀j∈ π3f g: (25)

Job j∈ π12f g satisfies d j ≥ d f and C j π0, t0ð Þ≤C f π, t0ð Þ, which means

L j π
0, t0ð Þ≤L f π, t0ð Þ, ∀j∈ π12f g: (26)

Since s∈ π12f g, then

Ls π
0, t0ð Þ≤L f π, t0ð Þ: (27)

From the lemma 1.1

L j π
0, t0ð Þ≤Ls π

0, t0ð Þ, ∀j∈ π11f g: (28)

Moreover, it is obvious that

L f π0, t0ð Þ≤L f π, t0ð Þ: (29)

From inequalities (24)–(29) it follows that Cmax π0, t0ð Þ≤Cmax π, t0ð Þ and
Lmax π0, t0ð Þ≤Lmax π, t0ð Þ, the theorem is proved.

We call a schedule π0 ∈Π Nð Þ effective if there is no schedule π ∈Π Nð Þ such that
Lmax πð Þ≤Lmax π0ð Þ and Cmax πð Þ≤Cmax π0ð Þ, that is, at least one inequality would be
strict.

Thus, when constraints (9) are satisfied for jobs from the set N, then there is an
effective schedule π0, in which either the job f ¼ f N, tð Þ, or s ¼ s N, tð Þ is present.
Moreover, if d f ≤ ds, then there is an effective schedule π0 with a priority of job f .

We define the set of schedules Ω N, tð Þ as a subset of Π Nð Þ consisting of n!
schedules. Schedule π ¼ i1, i2,…, inð Þ belongs to Ω N, tð Þ if we choose job ik, k ¼
1, 2,…, n as f k ¼ f Nk�1,Cik�1

� �
or sk ¼ s Nk�1,Cik�1

� �
, where Nk�1 ¼

Nn i1, i2,…, ik�1f g, Cik�1 ¼ Cik�1 πð Þ and N0 ¼ N, Ci0 ¼ t. For d f k ≤ dsk it is true that
ik ¼ f k, so if d f k > dsk , then ik ¼ f k or ik ¼ sk. Its obvious that the set of schedules
Ω N, tð Þ contains at most 2n schedules.that is, p2i > y≥ p2i�1.

20

Multicriteria Optimization - Pareto-Optimality and Threshold-Optimality

Example 1.1

n ¼ 2m, t≤ r1 < r2 <…< rn,

r2i�1 < r2i þ p2i < r2i�1 þ p2i�1, 1≤ i≤m,

r2i�1 þ p2i�1 þ p2i < r2iþ1 < r2i þ p2i þ p2i�1 < r2iþ2, 1≤ i≤m� 1,

r2i�1 þ p2i�1 þ p2i � d2i�1 > y, 1≤ i≤m� 1,

r2i þ p2i þ p2i�1 � d2i ≤ y:

8>>>>>><
>>>>>>:

The set Ω N, tð Þ contains 2m schedules. The value of y is used below in the text.
The optimal solution of the problem 1∣r j, d j ¼ r j þ p j,Lmax ≤ y∣Cmax is π ∗ ¼
2, 1, 4, 3,…, n, n� 1ð Þ:

Theorem 1.2 If for the jobs of the subset N0 ⊆N, ∣N0∣ ¼ n0, is true (9), then at any
time t0 ≥ t and any schedule π ∈Π N0ð Þ exists a schedule π0 ∈Ω N0, t0ð Þ such that

Lmax π0, t0ð Þ≤Lmax π, t0ð Þ and Cmax π0, t0ð Þ≤Cmax π, t0ð Þ: (30)

Proof: Let π ¼ j1, j2,…, jn0
� �

be an arbitrary schedule. We denote the first l jobs
of the schedule π as πl, l ¼ 0, 1, 2,…, n0, where π0 is an empty schedule, and πl ¼
jlþ1,…, jn0

� �
, then π ¼ πl, πlð Þ. We introduce Nl ¼ N0n πlf g and Cl ¼ Cmax πl, t0ð Þ.

Suppose for some l, 0≤ l< n0, πl is the largest initial partial the schedule of some
schedule from Ω N0, t0ð Þ. If j1 6¼ f N0, t0ð Þ and j1 6¼ s N0, t0ð Þ, then πl ¼ π0, l ¼ 0, then
the largest partial schedule is empty. Let us say f ¼ f Nl,Clð Þ and s ¼ s Nl,Clð Þ. If
d f > ds, then jlþ1 6¼ f and jlþ1 6¼ s, moreover when d f ≤ ds, then jlþ1 6¼ f , since πlþ1 is
not an initial schedule of some schedule from Ω N0, t0ð Þ.

According to the theorem 1.1 for the jobs of the set πlf g, πl ∈Π Nlð Þ, there is a
schedule π0l starting at time Cl, for which Lmax π0l,Cl

� �
≤Lmax πl,Clð Þ,

Cmax π0l,Cl
� �

≤Cmax πl,Clð Þ, and π0l
� �

1 ¼ f or sð Þ, moreover, with d f ≤ ds, true
π0l
� �

1 ¼ f , where σ½ �k is the job in the k-th place in schedule σ. Hence,
Lmax πl, π0l

� �
, t0

� �
≤Lmax πl, πlð Þ, t0ð Þ and Cmax πl, π0l

� �
, t0

� �
≤Cmax πl, πlð Þ, t0ð Þ.

Let us denote π0 ¼ πl, π0l
� �

. A feature of schedule π0 is that the first lþ 1 jobs are
the same as first lþ 1 jobs of some schedule from the set Ω N0, t0ð Þ, and
Lmax π0, t0ð Þ≤Lmax π, t0ð Þ, Cmax π0, t0ð Þ≤Cmax π, t0ð Þ.

After no more than n0 sequential conversions (since schedule length n0 ≤ n) of
the original randomly selected schedule π we come to schedule π0 ∈Ω N0, t0ð Þ, for
which Lmax π0, t0ð Þ≤Lmax π, t0ð Þ and Cmax π0, t0ð Þ≤Cmax π, t0ð Þ. The theorem is proved.

We form the following partial schedule ω N, tð Þ ¼ i1, i2,…, ilð Þ. For each job
ik, k ¼ 1, 2,…, l, we have ik ¼ f k and d f k ≤ dsk , where f k ¼ f Nk�1,Ck�1ð Þ and sk ¼
s Nk�1,Ck�1ð Þ. For f ¼ f Nl,Clð Þ and s ¼ s Nl,Clð Þ inequality d f > ds is true. In case
when d f > ds for f ¼ f N, tð Þ and s ¼ s N, tð Þ, then ω N, tð Þ ¼ ∅. So ω N, tð Þ is the
“maximum” schedule, during the construction of which job (like f ) for the next
place of the schedule can be uniquely selected. We can construct a schedule ω N, tð Þ
for set of jobs N starting at time t using the algorithm 1.1.

Algorithm 1.1 for constructing schedule ω N, tð Þ.
1: Initial step. Let ω ¼ ∅.
2: Main step. Find the jobs f ≔ f N, tð Þ and s≔ s N, tð Þ;
3: if d f ≤ ds then
4: ω≔ ω, fð Þ
5: else
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L f π0, t0ð Þ≤L f π, t0ð Þ: (23)

From (20)–(23) we get Cmax π0, t0ð Þ≤Cmax π, t0ð Þ and Lmax π0, t0ð Þ≤Lmax π, t0ð Þ.
Let π ¼ π1, s, π2, f , π3ð Þ, that is, job s is before job f . Construct a schedule π0 ¼

s, π1, π2, f , π3ð Þ. Further proof may be repeated as for job f . The first part of the
theorem is proved.

Let us assume d f ≤ ds and the schedule π ¼ π1, s, π2, f , π3ð Þ. Then, we construct a
schedule π0 ¼ f , π11, π12, π3ð Þ, where π11, π12 are schedules of jobs of the sets

j∈N0 : j∈ π1, s, π2ð Þf g, d j < d f
� �

and j∈N0 : j∈ π1, s, π2ð Þf g, d j ≥ d f
� �

. Jobs in π11
and π12 are ordered according to nondecreasing release times r j. From ds ≥ d f we
can conclude that s∈ π12f g.

For each job j∈ π11f g we have d j < d f . Of (9) we get d j � r j � p j ≥ d f � r f � p f ,
hence r j þ p j < r f þ p f , ∀j∈ π11f g, and Cmax f , π11ð Þ, t0ð Þ ¼ r f t0ð Þ þ p f þ

P
j∈ π11f gp j.

Since jobs in schedule π12f g are sorted by nondecreasing release times, then
Cmax f , π11, π12ð Þ, t0ð Þ≤Cmax π1, s, π2, fð Þ, t0ð Þ. As a result

Cmax π0, t0ð Þ≤Cmax π, t0ð Þ, and (24)

L j π
0, t0ð Þ≤L j π, t0ð Þ, ∀j∈ π3f g: (25)

Job j∈ π12f g satisfies d j ≥ d f and C j π0, t0ð Þ≤C f π, t0ð Þ, which means

L j π
0, t0ð Þ≤L f π, t0ð Þ, ∀j∈ π12f g: (26)

Since s∈ π12f g, then

Ls π
0, t0ð Þ≤L f π, t0ð Þ: (27)

From the lemma 1.1

L j π
0, t0ð Þ≤Ls π

0, t0ð Þ, ∀j∈ π11f g: (28)

Moreover, it is obvious that

L f π0, t0ð Þ≤L f π, t0ð Þ: (29)

From inequalities (24)–(29) it follows that Cmax π0, t0ð Þ≤Cmax π, t0ð Þ and
Lmax π0, t0ð Þ≤Lmax π, t0ð Þ, the theorem is proved.

We call a schedule π0 ∈Π Nð Þ effective if there is no schedule π ∈Π Nð Þ such that
Lmax πð Þ≤Lmax π0ð Þ and Cmax πð Þ≤Cmax π0ð Þ, that is, at least one inequality would be
strict.

Thus, when constraints (9) are satisfied for jobs from the set N, then there is an
effective schedule π0, in which either the job f ¼ f N, tð Þ, or s ¼ s N, tð Þ is present.
Moreover, if d f ≤ ds, then there is an effective schedule π0 with a priority of job f .

We define the set of schedules Ω N, tð Þ as a subset of Π Nð Þ consisting of n!
schedules. Schedule π ¼ i1, i2,…, inð Þ belongs to Ω N, tð Þ if we choose job ik, k ¼
1, 2,…, n as f k ¼ f Nk�1,Cik�1

� �
or sk ¼ s Nk�1,Cik�1

� �
, where Nk�1 ¼

Nn i1, i2,…, ik�1f g, Cik�1 ¼ Cik�1 πð Þ and N0 ¼ N, Ci0 ¼ t. For d f k ≤ dsk it is true that
ik ¼ f k, so if d f k > dsk , then ik ¼ f k or ik ¼ sk. Its obvious that the set of schedules
Ω N, tð Þ contains at most 2n schedules.that is, p2i > y≥ p2i�1.
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Example 1.1

n ¼ 2m, t≤ r1 < r2 <…< rn,

r2i�1 < r2i þ p2i < r2i�1 þ p2i�1, 1≤ i≤m,

r2i�1 þ p2i�1 þ p2i < r2iþ1 < r2i þ p2i þ p2i�1 < r2iþ2, 1≤ i≤m� 1,

r2i�1 þ p2i�1 þ p2i � d2i�1 > y, 1≤ i≤m� 1,

r2i þ p2i þ p2i�1 � d2i ≤ y:

8>>>>>><
>>>>>>:

The set Ω N, tð Þ contains 2m schedules. The value of y is used below in the text.
The optimal solution of the problem 1∣r j, d j ¼ r j þ p j,Lmax ≤ y∣Cmax is π ∗ ¼
2, 1, 4, 3,…, n, n� 1ð Þ:

Theorem 1.2 If for the jobs of the subset N0 ⊆N, ∣N0∣ ¼ n0, is true (9), then at any
time t0 ≥ t and any schedule π ∈Π N0ð Þ exists a schedule π0 ∈Ω N0, t0ð Þ such that

Lmax π0, t0ð Þ≤Lmax π, t0ð Þ and Cmax π0, t0ð Þ≤Cmax π, t0ð Þ: (30)

Proof: Let π ¼ j1, j2,…, jn0
� �

be an arbitrary schedule. We denote the first l jobs
of the schedule π as πl, l ¼ 0, 1, 2,…, n0, where π0 is an empty schedule, and πl ¼
jlþ1,…, jn0

� �
, then π ¼ πl, πlð Þ. We introduce Nl ¼ N0n πlf g and Cl ¼ Cmax πl, t0ð Þ.

Suppose for some l, 0≤ l< n0, πl is the largest initial partial the schedule of some
schedule from Ω N0, t0ð Þ. If j1 6¼ f N0, t0ð Þ and j1 6¼ s N0, t0ð Þ, then πl ¼ π0, l ¼ 0, then
the largest partial schedule is empty. Let us say f ¼ f Nl,Clð Þ and s ¼ s Nl,Clð Þ. If
d f > ds, then jlþ1 6¼ f and jlþ1 6¼ s, moreover when d f ≤ ds, then jlþ1 6¼ f , since πlþ1 is
not an initial schedule of some schedule from Ω N0, t0ð Þ.

According to the theorem 1.1 for the jobs of the set πlf g, πl ∈Π Nlð Þ, there is a
schedule π0l starting at time Cl, for which Lmax π0l,Cl

� �
≤Lmax πl,Clð Þ,

Cmax π0l,Cl
� �

≤Cmax πl,Clð Þ, and π0l
� �

1 ¼ f or sð Þ, moreover, with d f ≤ ds, true
π0l
� �

1 ¼ f , where σ½ �k is the job in the k-th place in schedule σ. Hence,
Lmax πl, π0l

� �
, t0

� �
≤Lmax πl, πlð Þ, t0ð Þ and Cmax πl, π0l

� �
, t0

� �
≤Cmax πl, πlð Þ, t0ð Þ.

Let us denote π0 ¼ πl, π0l
� �

. A feature of schedule π0 is that the first lþ 1 jobs are
the same as first lþ 1 jobs of some schedule from the set Ω N0, t0ð Þ, and
Lmax π0, t0ð Þ≤Lmax π, t0ð Þ, Cmax π0, t0ð Þ≤Cmax π, t0ð Þ.

After no more than n0 sequential conversions (since schedule length n0 ≤ n) of
the original randomly selected schedule π we come to schedule π0 ∈Ω N0, t0ð Þ, for
which Lmax π0, t0ð Þ≤Lmax π, t0ð Þ and Cmax π0, t0ð Þ≤Cmax π, t0ð Þ. The theorem is proved.

We form the following partial schedule ω N, tð Þ ¼ i1, i2,…, ilð Þ. For each job
ik, k ¼ 1, 2,…, l, we have ik ¼ f k and d f k ≤ dsk , where f k ¼ f Nk�1,Ck�1ð Þ and sk ¼
s Nk�1,Ck�1ð Þ. For f ¼ f Nl,Clð Þ and s ¼ s Nl,Clð Þ inequality d f > ds is true. In case
when d f > ds for f ¼ f N, tð Þ and s ¼ s N, tð Þ, then ω N, tð Þ ¼ ∅. So ω N, tð Þ is the
“maximum” schedule, during the construction of which job (like f ) for the next
place of the schedule can be uniquely selected. We can construct a schedule ω N, tð Þ
for set of jobs N starting at time t using the algorithm 1.1.

Algorithm 1.1 for constructing schedule ω N, tð Þ.
1: Initial step. Let ω ¼ ∅.
2: Main step. Find the jobs f ≔ f N, tð Þ and s≔ s N, tð Þ;
3: if d f ≤ ds then
4: ω≔ ω, fð Þ
5: else
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6: algorithm stops;
7: end if
8: Let N≔Nn ff g, t≔ r f tð Þ þ p f and go to the next main step.

Lemma 1.2 The complexity of the algorithm 1.1 for finding the schedule ω N, tð Þ
is at most O n log nð Þ operations for any N and any t.

Proof: At each iteration of the algorithm 1.1 we find two jobs: f ¼ f N, tð Þ and
s ¼ s N, tð Þ. If jobs are ordered by release times r j (and, accordingly, time r tð Þ is for
O 1ð Þ operations), then to find two jobs (f and s) you need O log nð Þ operations. Total
number of iterations is not more than n. Thus, constructing a schedule ω N, tð Þ
requires O n log nð Þ operations.

The main step of algorithm 1.1 is finding the jobs f and s and it requires at least
O log nð Þ operations. Obviously, the number of iterations of the algorithm is O(n),
therefore, the complexity of the algorithm 1.1 of O n log nð Þ operations is the mini-
mum possible for constructing the schedule ω N, tð Þ.

Lemma 1.3 If for jobs of the set N conditions (9) are true, then any schedule
π ∈Ω N, tð Þ starts with the schedule ω N, tð Þ.

Proof: If ω N, tð Þ ¼ ∅, that is, d f > ds, where f ¼ f N, tð Þ, s ¼ s N, tð Þ, the state-
ment of the lemma is true, since any schedule starts from empty.

Let ω N, tð Þ ¼ i1, i2,…, ilð Þ, l>0, and so for each ik, k ¼ 1, 2,…, l, we have ik ¼ f k
and d f k ≤ dsk , where f k ¼ f Nk�1,Ck�1ð Þ and sk ¼ s Nk�1,Ck�1ð Þ. For f ¼ f Nl,Clð Þ
and s ¼ s Nl,Clð Þ it is true that d f > ds. As seen from the definition of the set of
schedules Ω N, tð Þ all schedules in this subset start with a partial schedule ω N, tð Þ.

Let us use the following notation ω1 N, tð Þ ¼ f ,ω N0, t0ð Þð Þ and ω2 N, tð Þ ¼
s,ω N00, t00
� �� �

, where f ¼ f N, tð Þ, s ¼ s N, tð Þ,N0 ¼ Nn ff g,N00 ¼ Nn sf g, t0 ¼
r f tð Þ þ p f , t

00 ¼ rs tð Þ þ ps. Obviously, the algorithm for finding ω1 (as well as ω2)
requires O n log nð Þ operations, as much as the algorithm for constructing ω N, tð Þ.

Consequence 1.1 from Lemma 1.3. If the jobs of the set N satisfy conditions (9),
then each schedule π ∈Ω N, tð Þ starts either with ω1 N, tð Þ, or with ω2 N, tð Þ.

Theorem 1.3 If the jobs of the set N satisfy conditions (9), then for any schedule
π ∈Ω N, tð Þ it is true that i ! jð Þπ for any i∈ ω1 N, tð Þ� �

and j∈Nn ω1 N, tð Þ� �
.

Proof: In the case ω1 N, tð Þ� � ¼ N statement of the theorem is obviously true.
Let ω1 N, tð Þ� � 6¼ N. Further in in the proof we use the notation ω1 ¼ ω1 N, tð Þ.

If f ¼ f N, tð Þ and s ¼ s N, tð Þ are such that d f ≤ ds, then all schedules from the set
Ω N, tð Þ begin with a partial schedule ω N, tð Þ ¼ ω1, therefore the statement of the
theorem is also true.

Consider the case of d f > ds. All schedules from set Ω N, tð Þ starting with job f
have partial schedule ω N, tð Þ ¼ ω1.

Let us choose any arbitrary schedules π ∈Ω N, tð Þ with job s comes first, π1 ¼ s,
and any schedule ∣ω1∣ ¼ l, l< n, containing l jobs. Let πl ¼ j1, j2,…, jl

� �
be a partial

schedule of schedule π containing l jobs, where j1 ¼ s. We need to prove that
πlf g ¼ ω1

� �
. Let us assume the contrary that there is a job j∈ πlf g, but j ∉ ω1

� �
.

For case j ! fð Þπ we need to check two subcases. If d j < d f , then from (9) we
have d j � r j � p j ≥ d f � r f � p f , therefore r j þ p j < r f þ p f . Then job j is included

in schedule ω1 according to the definition of ω N, tð Þ and ω1, but by our assumption
j ∉ ω1
� �

. If d j ≥ d f , then from the fact that π ∈Ω N, tð Þ follows f ! jð Þπ, but this
contradicts j ! fð Þπ . Therefore, j∈ ω1

� �
.

The other case is f ! jð Þπ. Then for each job i∈ ω1
� �

, for which i ∉ πlf g,
conditions ri < ri þ pi ≤Cmax ω1ð Þ< rslþ1 ≤ r j are true, because j ∉ ω1

� �
,
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where slþ1 ¼ s Nn ω1
� �

,Cmax ω1ð Þ� �
. Jobs slþ1 and j were not ordered in schedule ω1,

therefore, Cmax ω1ð Þ< rslþ1 ≤ r j. Besides, di ≤ d j. If di > d j, then ri þ pi ≥ r j þ p j, but
ri þ pi < r j is true. Hence i ! jð Þπl , since π ¼ πl, πlð Þ∈Ω N, tð Þ, but it contradicts our
guess that i ∉ πlf g and j∈ πlf g.

Therefore, our assumption is not true and ω1
� � ¼ πlf g. The theorem is proved.

Therefore, jobs of the set ω1 N, tð Þ� �
precede jobs of the set Nn ω1 N, tð Þ� �

for any
schedule from the set Ω N, tð Þ, including the optimal schedule.

3.2 Performance problem with constraint on maximum lateness

The problem 1∣di ≤ d j, di � ri � pi ≥ d j � r j � p j;Lmax ≤ y∣Cmax consists of the
following. We need to find schedule θ for any y with Cmax θð Þ ¼
min Cmax πð Þ : Lmax πð Þ≤ yf g. If Lmax πð Þ> y for any π ∈Π Nð Þ, then θ ¼ ∅.

Lemma 1.4 The complexity of algorithm 1.2 does not exceed O n2 log nð Þ
operations.

Proof: At each iteration of the main step of the algorithm 1.2 we find the
schedules ω1 and, if necessary, ω2 in O n log nð Þ operations. Since ω1 and ω2 consist
of at least one job, then at each iteration of the algorithm we either add one or mere
jobs to the schedule θ, or assume θ ¼ ∅ and stop. Therefore, the total number of
steps of the algorithm is at most n. Thus, algorithm 1.2 requires O n2 log nð Þ
operations.

Algorithm 1.2 for solving the problem 1∣di ≤ d j, di � ri � pi ≥ d j � r j �
p j;Lmax ≤ y∣Cmax.

1: Initial step. Let θ≔ω N, tð Þ, t0 ≔ t;
2: Main step.
3: if Lmax θ, t0ð Þ> y then
4: θ≔∅ and the algorithm stops.
5: end if
6: Find N0 ≔Nn θf g, t0 ≔Cmax θð Þ and ω1 N0, t0ð Þ,ω2 N0, t0ð Þ.
7: if N0 ¼ ∅ then
8: the algorithm stops.
9: else
10: if Lmax ω1, t0ð Þ≤ y then
11: θ≔ θ,ω1ð Þ and go to next step;
12: end if
13: if Lmax ω1, t0ð Þ> y and Lmax ω2, t0ð Þ≤ y then
14: θ≔ θ,ω2ð Þ and go to next step;
15: end if
16: if Lmax ω1, t0ð Þ> y and Lmax ω2, t0ð Þ> y then
17: θ≔∅ and the algorithm stops.
18: end if
19: end if

The problem 1∣di ≤ d j, di � ri � pi ≥ d j � r j � p j;Lmax ≤ y∣Cmax cannot be solved

in less than O n2 log nð Þ operations because there exists (Example 1.1). The optimal
schedule for this example is π ∗ ¼ 2, 1, 4, 3,…, n, n� 1ð Þ. To find this schedule, we
need O n2 log nð Þ operations.
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6: algorithm stops;
7: end if
8: Let N≔Nn ff g, t≔ r f tð Þ þ p f and go to the next main step.

Lemma 1.2 The complexity of the algorithm 1.1 for finding the schedule ω N, tð Þ
is at most O n log nð Þ operations for any N and any t.

Proof: At each iteration of the algorithm 1.1 we find two jobs: f ¼ f N, tð Þ and
s ¼ s N, tð Þ. If jobs are ordered by release times r j (and, accordingly, time r tð Þ is for
O 1ð Þ operations), then to find two jobs (f and s) you need O log nð Þ operations. Total
number of iterations is not more than n. Thus, constructing a schedule ω N, tð Þ
requires O n log nð Þ operations.

The main step of algorithm 1.1 is finding the jobs f and s and it requires at least
O log nð Þ operations. Obviously, the number of iterations of the algorithm is O(n),
therefore, the complexity of the algorithm 1.1 of O n log nð Þ operations is the mini-
mum possible for constructing the schedule ω N, tð Þ.

Lemma 1.3 If for jobs of the set N conditions (9) are true, then any schedule
π ∈Ω N, tð Þ starts with the schedule ω N, tð Þ.

Proof: If ω N, tð Þ ¼ ∅, that is, d f > ds, where f ¼ f N, tð Þ, s ¼ s N, tð Þ, the state-
ment of the lemma is true, since any schedule starts from empty.

Let ω N, tð Þ ¼ i1, i2,…, ilð Þ, l>0, and so for each ik, k ¼ 1, 2,…, l, we have ik ¼ f k
and d f k ≤ dsk , where f k ¼ f Nk�1,Ck�1ð Þ and sk ¼ s Nk�1,Ck�1ð Þ. For f ¼ f Nl,Clð Þ
and s ¼ s Nl,Clð Þ it is true that d f > ds. As seen from the definition of the set of
schedules Ω N, tð Þ all schedules in this subset start with a partial schedule ω N, tð Þ.

Let us use the following notation ω1 N, tð Þ ¼ f ,ω N0, t0ð Þð Þ and ω2 N, tð Þ ¼
s,ω N00, t00
� �� �

, where f ¼ f N, tð Þ, s ¼ s N, tð Þ,N0 ¼ Nn ff g,N00 ¼ Nn sf g, t0 ¼
r f tð Þ þ p f , t

00 ¼ rs tð Þ þ ps. Obviously, the algorithm for finding ω1 (as well as ω2)
requires O n log nð Þ operations, as much as the algorithm for constructing ω N, tð Þ.

Consequence 1.1 from Lemma 1.3. If the jobs of the set N satisfy conditions (9),
then each schedule π ∈Ω N, tð Þ starts either with ω1 N, tð Þ, or with ω2 N, tð Þ.

Theorem 1.3 If the jobs of the set N satisfy conditions (9), then for any schedule
π ∈Ω N, tð Þ it is true that i ! jð Þπ for any i∈ ω1 N, tð Þ� �

and j∈Nn ω1 N, tð Þ� �
.

Proof: In the case ω1 N, tð Þ� � ¼ N statement of the theorem is obviously true.
Let ω1 N, tð Þ� � 6¼ N. Further in in the proof we use the notation ω1 ¼ ω1 N, tð Þ.

If f ¼ f N, tð Þ and s ¼ s N, tð Þ are such that d f ≤ ds, then all schedules from the set
Ω N, tð Þ begin with a partial schedule ω N, tð Þ ¼ ω1, therefore the statement of the
theorem is also true.

Consider the case of d f > ds. All schedules from set Ω N, tð Þ starting with job f
have partial schedule ω N, tð Þ ¼ ω1.

Let us choose any arbitrary schedules π ∈Ω N, tð Þ with job s comes first, π1 ¼ s,
and any schedule ∣ω1∣ ¼ l, l< n, containing l jobs. Let πl ¼ j1, j2,…, jl

� �
be a partial

schedule of schedule π containing l jobs, where j1 ¼ s. We need to prove that
πlf g ¼ ω1

� �
. Let us assume the contrary that there is a job j∈ πlf g, but j ∉ ω1

� �
.

For case j ! fð Þπ we need to check two subcases. If d j < d f , then from (9) we
have d j � r j � p j ≥ d f � r f � p f , therefore r j þ p j < r f þ p f . Then job j is included

in schedule ω1 according to the definition of ω N, tð Þ and ω1, but by our assumption
j ∉ ω1
� �

. If d j ≥ d f , then from the fact that π ∈Ω N, tð Þ follows f ! jð Þπ, but this
contradicts j ! fð Þπ . Therefore, j∈ ω1

� �
.

The other case is f ! jð Þπ. Then for each job i∈ ω1
� �

, for which i ∉ πlf g,
conditions ri < ri þ pi ≤Cmax ω1ð Þ< rslþ1 ≤ r j are true, because j ∉ ω1

� �
,
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where slþ1 ¼ s Nn ω1
� �

,Cmax ω1ð Þ� �
. Jobs slþ1 and j were not ordered in schedule ω1,

therefore, Cmax ω1ð Þ< rslþ1 ≤ r j. Besides, di ≤ d j. If di > d j, then ri þ pi ≥ r j þ p j, but
ri þ pi < r j is true. Hence i ! jð Þπl , since π ¼ πl, πlð Þ∈Ω N, tð Þ, but it contradicts our
guess that i ∉ πlf g and j∈ πlf g.

Therefore, our assumption is not true and ω1
� � ¼ πlf g. The theorem is proved.

Therefore, jobs of the set ω1 N, tð Þ� �
precede jobs of the set Nn ω1 N, tð Þ� �

for any
schedule from the set Ω N, tð Þ, including the optimal schedule.

3.2 Performance problem with constraint on maximum lateness

The problem 1∣di ≤ d j, di � ri � pi ≥ d j � r j � p j;Lmax ≤ y∣Cmax consists of the
following. We need to find schedule θ for any y with Cmax θð Þ ¼
min Cmax πð Þ : Lmax πð Þ≤ yf g. If Lmax πð Þ> y for any π ∈Π Nð Þ, then θ ¼ ∅.

Lemma 1.4 The complexity of algorithm 1.2 does not exceed O n2 log nð Þ
operations.

Proof: At each iteration of the main step of the algorithm 1.2 we find the
schedules ω1 and, if necessary, ω2 in O n log nð Þ operations. Since ω1 and ω2 consist
of at least one job, then at each iteration of the algorithm we either add one or mere
jobs to the schedule θ, or assume θ ¼ ∅ and stop. Therefore, the total number of
steps of the algorithm is at most n. Thus, algorithm 1.2 requires O n2 log nð Þ
operations.

Algorithm 1.2 for solving the problem 1∣di ≤ d j, di � ri � pi ≥ d j � r j �
p j;Lmax ≤ y∣Cmax.

1: Initial step. Let θ≔ω N, tð Þ, t0 ≔ t;
2: Main step.
3: if Lmax θ, t0ð Þ> y then
4: θ≔∅ and the algorithm stops.
5: end if
6: Find N0 ≔Nn θf g, t0 ≔Cmax θð Þ and ω1 N0, t0ð Þ,ω2 N0, t0ð Þ.
7: if N0 ¼ ∅ then
8: the algorithm stops.
9: else
10: if Lmax ω1, t0ð Þ≤ y then
11: θ≔ θ,ω1ð Þ and go to next step;
12: end if
13: if Lmax ω1, t0ð Þ> y and Lmax ω2, t0ð Þ≤ y then
14: θ≔ θ,ω2ð Þ and go to next step;
15: end if
16: if Lmax ω1, t0ð Þ> y and Lmax ω2, t0ð Þ> y then
17: θ≔∅ and the algorithm stops.
18: end if
19: end if

The problem 1∣di ≤ d j, di � ri � pi ≥ d j � r j � p j;Lmax ≤ y∣Cmax cannot be solved

in less than O n2 log nð Þ operations because there exists (Example 1.1). The optimal
schedule for this example is π ∗ ¼ 2, 1, 4, 3,…, n, n� 1ð Þ. To find this schedule, we
need O n2 log nð Þ operations.
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We denote by θ N, t, yð Þ the schedule constructed by algorithm 1.2 starting at
time t from the jobs of the set N with the maximum lateness not more than y. If
N ¼ ∅, then θ ∅, t, yð Þ ¼ ∅ for any t and y.

Theorem 1.4 Let the jobs of the set N satisfy conditions (9). If the algorithm 1.2
constructs the schedule θ N, t, yð Þ 6¼ ∅, then Cmax θð Þ ¼
min Cmax πð Þ : Lmax πð Þ≤ y, π ∈Π Nð Þf g. If, as a result of the algorithm 1.2 the sched-
ule will not be generated, that is, θ N, t, yð Þ ¼ ∅, then Lmax πð Þ> y for each π ∈Π Nð Þ.

Proof: In case if for schedule π ∈Π Nð Þ condition Lmax πð Þ≤ y is true, then
according to Theorem 1.2 there is a schedule π0 ∈Ω N, tð Þ such that Lmax π0ð Þ≤Lmax πð Þ
≤ y and Cmax π0ð Þ≤Cmax πð Þ. Therefore, the required schedule θ contains in set Ω N, tð Þ.

According to Lemma 1.3, all schedules of the set Ω N, tð Þ start with ω N, tð Þ. Let us
take θ0 ¼ ω N, tð Þ.

After k, k≥0 main steps of the algorithm 1.2 we got the schedule θk and N0 ¼
Nn θkf g, t0 ¼ Cmax θkð Þ. Let us assume that there is an optimal by the criterion of
maximum completion time (Cmax) schedule θ starting with θk. According to
Theorem 1.2, there is an optimal extension of the schedule θk among the schedules
from the set Ω N0, t0ð Þ.

Let θkþ1 ¼ θk,ω1 N0, t0ð Þð Þ, that is, Lmax θkþ1ð Þ≤ y. According to Theorem 1.3, for
schedule ω1, ω1 ¼ ω1 N0, t0ð Þ, there is no artificial idle times of the machine and all
schedules from the set Ω N0, t0ð Þ start with jobs of the set ω1 N0, t0ð Þ� �

. Therefore,
ω1 N0, t0ð Þ is the best by the criterion of Cmax among all feasible by maximum
lateness (Lmax) extensions of the partial schedule θk.

If θkþ1 ¼ θk,ω2 N0, t0ð Þð Þ, that is, Lmax ω1, t0ð Þ> y, and Lmax ω2, t0ð Þ≤ y. All sched-
ules of the set Ω N0, t0ð Þ start with either schedule ω1 N0, t0ð Þ or ω2 N0, t0ð Þ. As
Lmax ω1, t0ð Þ> y, then the only suitable extension is ω2 N0, t0ð Þ.

Thus, at each main step of the algorithm, we choose the fastest continuation of
the partial schedule θk among all those allowed by the maximum lateness. After no
more than n main steps of the algorithm, the required schedule is constructed.

Let us assume that after the kþ 1 steps of the algorithm Lmax ω1, t0ð Þ> y and
Lmax ω2, t0ð Þ> y. If schedule θ could exist, that is, θ 6¼ ∅, then θ would start with θk.
Then for any schedule π ∈Π N0, t0ð Þ there would exist a schedule π0 ∈Ω N0, t0ð Þ such
that Lmax π, t0ð Þ≥Lmax π0, t0ð Þ≥Lmax ω1, t0ð Þ> y or Lmax π, t0ð Þ≥Lmax π0, t0ð Þ≥
Lmax ω2, t0ð Þ> y. Therefore θ ¼ ∅.

Repeating our proof as many times as the main step of algorithm 1.2 (no more
than n), we come to the truth of the statement of the theorem.

3.3 Algorithm for constructing a set of Pareto schedules by criteria Cmax and
Lmax

Let us develop an algorithm for constructing a set of Pareto schedules Φ N, tð Þ ¼
π01, π

0
2,…, π0m

� �
, m≤ n, by criteria Cmax and Lmax according to conditions (5)–(6).

Schedule π0m is a solution to problem 1∣r j∣Lmax if (9) is true.

Algorithm 1.3 for constructing a set of Pareto schedules by criteria Cmax and Lmax.

1: Initial step. Y≔ þ∞, π ∗ ≔ω N, tð Þ, Φ≔∅, m≔0, N0 ≔Nn π ∗f g and
t0 ≔Cmax π ∗ð Þ.

2: if N0 ¼ ∅ then
3: Φ≔Φ∪ π ∗ð Þ,m≔ 1 and the algorithm stops.
4: end if
5: Main step.
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6: if Lmax ω1, t0ð Þ≤Lmax π ∗ð Þ then
7: π ∗ ≔ π ∗ ,ω1ð Þ, where ω1 ¼ ω1 N0, t0ð Þ and go to the next step;
8: end if
9: if Lmax ω1, t0ð Þ>Lmax π ∗ð Þ then
10: if Lmax ω1, t0ð Þ< y then
11: find θ ¼ θ N0, t0, y0ð Þ using algorithm 1.2, where y0 ¼ Lmax ω1, t0ð Þ;
12: if θ ¼ ∅ then
13: π ∗ ≔ π ∗ ,ω1ð Þ and go to the next step;
14: else
15: π0 ≔ π ∗ , θð Þ
16: if Cmax π0m

� �
<Cmax π0ð Þ then

17: m≔mþ 1, π0m ≔ π0, Φ≔Φ∪ π0m
� �

, y ¼ Lmax π0m
� �

;
18: else
19: π0m ¼ π0 and go to next step;
20: end if
21: end if
22: if Lmax ω1, t0ð Þ≥ y then
23: find ω2 ¼ ω2 N0, t0ð Þ;
24: if Lmax ω2, t0ð Þ< y then
25: π ∗ ¼ π ∗ ,ω2ð Þ and go to the next step;
26: else
27: π ∗ ¼ πm0 and the algorithm stops.
28: end if
29: end if
30: end if
31: end if

As a result of the algorithm 1.3, a set of schedules Φ N, tð Þ is constructed, for the
set of jobs N starting at time t, for which inequality 1≤ ∣Φ N, tð Þ∣ ≤ n true. We should
note that the set Φ N, tð Þ for Example 1.1 consists of two schedules, although set
Ω N, tð Þ consists of 2n

2 schedules:

π10 ¼ 1, 2, 3, 4,…, n� 1, nð Þ, (31)

π20 ¼ 2, 1, 4, 3,…, n, n� 1ð Þ: (32)

Lemma 1.5 The complexity of the algorithm 1.3 does not exceed O n3 log nð Þ
operations.

Proof: At each iteration of the main step of the algorithm 1.3 we find schedules
ω1 and, if necessary, ω2, which requires O n log nð Þ operations according to lemma
1.2, and also schedule θ in O n2 log nð Þ operations. As ω1 and ω2 consist of at least one
job, then at any iteration of the algorithm one or more jobs are added to the
schedule π ∗ , or the algorithm stops at last schedule π0. Therefore, the total number
of iterations is at most n. Thus, it takes no more than O n3 log nð Þ operations to
execute algorithm 1.3.

Theorem 1.5 If case if (9) is true for each job of the set N, then the schedule π ∗ ,
constructed by algorithm 1.3, is optimal according to the criterion Lmax. Moreover,
for any schedule π ∈Π Nð Þ there exists a schedule π0 ∈Φ N, tð Þ such that
Lmax π0ð Þ≤Lmax πð Þ and Cmax π0ð Þ≤Cmax πð Þ.

Proof: According to Theorem 1.2, there exists an optimal (by Lmax) schedule
from set Ω N, tð Þ. According to Lemma 1.3, all schedules of the set Ω N, tð Þ start with
a partial schedule ω N, tð Þ.
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We denote by θ N, t, yð Þ the schedule constructed by algorithm 1.2 starting at
time t from the jobs of the set N with the maximum lateness not more than y. If
N ¼ ∅, then θ ∅, t, yð Þ ¼ ∅ for any t and y.

Theorem 1.4 Let the jobs of the set N satisfy conditions (9). If the algorithm 1.2
constructs the schedule θ N, t, yð Þ 6¼ ∅, then Cmax θð Þ ¼
min Cmax πð Þ : Lmax πð Þ≤ y, π ∈Π Nð Þf g. If, as a result of the algorithm 1.2 the sched-
ule will not be generated, that is, θ N, t, yð Þ ¼ ∅, then Lmax πð Þ> y for each π ∈Π Nð Þ.

Proof: In case if for schedule π ∈Π Nð Þ condition Lmax πð Þ≤ y is true, then
according to Theorem 1.2 there is a schedule π0 ∈Ω N, tð Þ such that Lmax π0ð Þ≤Lmax πð Þ
≤ y and Cmax π0ð Þ≤Cmax πð Þ. Therefore, the required schedule θ contains in set Ω N, tð Þ.

According to Lemma 1.3, all schedules of the set Ω N, tð Þ start with ω N, tð Þ. Let us
take θ0 ¼ ω N, tð Þ.

After k, k≥0 main steps of the algorithm 1.2 we got the schedule θk and N0 ¼
Nn θkf g, t0 ¼ Cmax θkð Þ. Let us assume that there is an optimal by the criterion of
maximum completion time (Cmax) schedule θ starting with θk. According to
Theorem 1.2, there is an optimal extension of the schedule θk among the schedules
from the set Ω N0, t0ð Þ.

Let θkþ1 ¼ θk,ω1 N0, t0ð Þð Þ, that is, Lmax θkþ1ð Þ≤ y. According to Theorem 1.3, for
schedule ω1, ω1 ¼ ω1 N0, t0ð Þ, there is no artificial idle times of the machine and all
schedules from the set Ω N0, t0ð Þ start with jobs of the set ω1 N0, t0ð Þ� �

. Therefore,
ω1 N0, t0ð Þ is the best by the criterion of Cmax among all feasible by maximum
lateness (Lmax) extensions of the partial schedule θk.

If θkþ1 ¼ θk,ω2 N0, t0ð Þð Þ, that is, Lmax ω1, t0ð Þ> y, and Lmax ω2, t0ð Þ≤ y. All sched-
ules of the set Ω N0, t0ð Þ start with either schedule ω1 N0, t0ð Þ or ω2 N0, t0ð Þ. As
Lmax ω1, t0ð Þ> y, then the only suitable extension is ω2 N0, t0ð Þ.

Thus, at each main step of the algorithm, we choose the fastest continuation of
the partial schedule θk among all those allowed by the maximum lateness. After no
more than n main steps of the algorithm, the required schedule is constructed.

Let us assume that after the kþ 1 steps of the algorithm Lmax ω1, t0ð Þ> y and
Lmax ω2, t0ð Þ> y. If schedule θ could exist, that is, θ 6¼ ∅, then θ would start with θk.
Then for any schedule π ∈Π N0, t0ð Þ there would exist a schedule π0 ∈Ω N0, t0ð Þ such
that Lmax π, t0ð Þ≥Lmax π0, t0ð Þ≥Lmax ω1, t0ð Þ> y or Lmax π, t0ð Þ≥Lmax π0, t0ð Þ≥
Lmax ω2, t0ð Þ> y. Therefore θ ¼ ∅.

Repeating our proof as many times as the main step of algorithm 1.2 (no more
than n), we come to the truth of the statement of the theorem.

3.3 Algorithm for constructing a set of Pareto schedules by criteria Cmax and
Lmax

Let us develop an algorithm for constructing a set of Pareto schedules Φ N, tð Þ ¼
π01, π

0
2,…, π0m

� �
, m≤ n, by criteria Cmax and Lmax according to conditions (5)–(6).

Schedule π0m is a solution to problem 1∣r j∣Lmax if (9) is true.

Algorithm 1.3 for constructing a set of Pareto schedules by criteria Cmax and Lmax.

1: Initial step. Y≔ þ∞, π ∗ ≔ω N, tð Þ, Φ≔∅, m≔0, N0 ≔Nn π ∗f g and
t0 ≔Cmax π ∗ð Þ.

2: if N0 ¼ ∅ then
3: Φ≔Φ∪ π ∗ð Þ,m≔ 1 and the algorithm stops.
4: end if
5: Main step.
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6: if Lmax ω1, t0ð Þ≤Lmax π ∗ð Þ then
7: π ∗ ≔ π ∗ ,ω1ð Þ, where ω1 ¼ ω1 N0, t0ð Þ and go to the next step;
8: end if
9: if Lmax ω1, t0ð Þ>Lmax π ∗ð Þ then
10: if Lmax ω1, t0ð Þ< y then
11: find θ ¼ θ N0, t0, y0ð Þ using algorithm 1.2, where y0 ¼ Lmax ω1, t0ð Þ;
12: if θ ¼ ∅ then
13: π ∗ ≔ π ∗ ,ω1ð Þ and go to the next step;
14: else
15: π0 ≔ π ∗ , θð Þ
16: if Cmax π0m

� �
<Cmax π0ð Þ then

17: m≔mþ 1, π0m ≔ π0, Φ≔Φ∪ π0m
� �

, y ¼ Lmax π0m
� �

;
18: else
19: π0m ¼ π0 and go to next step;
20: end if
21: end if
22: if Lmax ω1, t0ð Þ≥ y then
23: find ω2 ¼ ω2 N0, t0ð Þ;
24: if Lmax ω2, t0ð Þ< y then
25: π ∗ ¼ π ∗ ,ω2ð Þ and go to the next step;
26: else
27: π ∗ ¼ πm0 and the algorithm stops.
28: end if
29: end if
30: end if
31: end if

As a result of the algorithm 1.3, a set of schedules Φ N, tð Þ is constructed, for the
set of jobs N starting at time t, for which inequality 1≤ ∣Φ N, tð Þ∣ ≤ n true. We should
note that the set Φ N, tð Þ for Example 1.1 consists of two schedules, although set
Ω N, tð Þ consists of 2n

2 schedules:

π10 ¼ 1, 2, 3, 4,…, n� 1, nð Þ, (31)

π20 ¼ 2, 1, 4, 3,…, n, n� 1ð Þ: (32)

Lemma 1.5 The complexity of the algorithm 1.3 does not exceed O n3 log nð Þ
operations.

Proof: At each iteration of the main step of the algorithm 1.3 we find schedules
ω1 and, if necessary, ω2, which requires O n log nð Þ operations according to lemma
1.2, and also schedule θ in O n2 log nð Þ operations. As ω1 and ω2 consist of at least one
job, then at any iteration of the algorithm one or more jobs are added to the
schedule π ∗ , or the algorithm stops at last schedule π0. Therefore, the total number
of iterations is at most n. Thus, it takes no more than O n3 log nð Þ operations to
execute algorithm 1.3.

Theorem 1.5 If case if (9) is true for each job of the set N, then the schedule π ∗ ,
constructed by algorithm 1.3, is optimal according to the criterion Lmax. Moreover,
for any schedule π ∈Π Nð Þ there exists a schedule π0 ∈Φ N, tð Þ such that
Lmax π0ð Þ≤Lmax πð Þ and Cmax π0ð Þ≤Cmax πð Þ.

Proof: According to Theorem 1.2, there exists an optimal (by Lmax) schedule
from set Ω N, tð Þ. According to Lemma 1.3, all schedules of the set Ω N, tð Þ start with
a partial schedule ω N, tð Þ.
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Let π0 ¼ ω N, tð Þ. After k, k≥0, main steps of algorithm 1.3 we have a partial
schedule πk. Suppose there is an optimal (by Lmax) schedule starting with πk. We
denote N0 ¼ Nn πkf g and t0 ¼ Cmax πkð Þ.

If πkþ1 ¼ πk,ω1ð Þ, where ω1 ¼ ω1 N0t0ð Þ, then either Lmax ω1, t0ð Þ≤Lmax πkð Þ, or
Lmax πkð Þ<Lmax ω1, t0ð Þ< y, that is, current value of the criterion and the maximum
lateness will “appear” on next steps of the algorithm 1.3. That is, θ N0, t0, y0ð Þ ¼ ∅,
where y0 ¼ Lmax ω1, t0ð Þ. If θ ¼ θ N0, t0, y0ð Þ 6¼ ∅, then we improve the current maxi-
mum lateness value: π0 ¼ πk, θð Þ and y ¼ Lmax π0ð Þ ¼ Lmax ω1, t0ð Þ. The schedule π0 is
added to the set of schedules Φ N, tð Þ. Moreover, according to Theorem 1.3 jobs of
set ω1
� �

precede jobs of set N0n ω1
� �

. Thus, the schedule ω1alert(without artificial
idle times of the machine) would be the best continuation for πk.

If πkþ1 ¼ πk,ω2ð Þ, where ω2 ¼ ω2 N0, t0ð Þ, that is, according to algorithm 1.3
Lmax ω2, t0ð Þ<Lmax π0ð Þ≤Lmax ω1, t0ð Þ. In this case the continuation ω2 is “better” than
ω1. Hence, the partial schedule πkþ1 is a part of some optimal schedule.

Repeating our proof no more than n times, we come to optimality (for Lmax) of
the schedule π ∗ .

The set of schedules Φ N, tð Þ contains at most n schedules, since at each main step
of the algorithm in the set Φ N, tð Þ at most one schedule is “added,” and this step is
executed no more than n times.

Suppose there is a schedule π ∈Π Nð Þ, π ∉ Φ N, tð Þ, such that either
Cmax πð Þ≤Cmax π0ð Þ and Lmax πð Þ≥Lmax π0ð Þ, or Cmax πð Þ≥Cmax π0ð Þ and
Lmax πð Þ≤Lmax π0ð Þ for each schedule π0 ∈Φ N, tð Þ. Moreover, in each pair of inequal-
ities at least one inequality is strict. According to Theorem 1.1, there is a schedule
π00 ∈Ω N, tð Þ such that Lmax π00

� �
≤Lmax πð Þ and Cmax π00

� �
≤Cmax πð Þ. If π00 ∈Φ N, tð Þ.

Thus, it becomes obvious that our assumption is not correct. Let
π00 ∈Ω N, tð ÞnΦ N, tð Þ. Algorithm 1.3 shows that the structure of each schedule

π0 ∈Φ N, tð Þ can be represented as a sequence of partial schedules π0 ¼
ω0
0,ω

0
1,ω

0
2,…,ω0

k0

� �
, where ω0

0 ¼ ω N, tð Þ, and ω0
i is either ω

1 N0
i,C

0
i

� �
, or ω2 N0

i,C
0
i

� �
,

and N0
i ¼ Nn ω0

0,…,ω0
i�1

� �
, C0

i ¼ Cmax ω0
0,…,ω0

i�1

� �
, t

� �
, i ¼ 1, 2,…, k0. The schedule

π00 has the same structure according to the definition of the set Ω N, tð Þ, that is,
π ¼ ω00

0,ω
00
1,ω

00
2,…,ω00

k0 0
� �

, possibly k00 6¼ k0, where ω00
0 ¼ ω0

0 ¼ ω N, tð Þ,ω00
i is equal

to either ω1 N00
i,C

00
i

� �
, or ω2 N00

i,C
00
i

� �
, a N00

i ¼ Nn ω00
0,…,ω00

i�1

� �
,

C00
i ¼ Cmax ω00

0,…,ω00
i�1

� �
, t

� �
, i ¼ 1, 2,…, k00.

We assume that the first k partial schedules π00 and π0 are equal, that is, ω00
i ¼

ω0
i ¼ ωi, i ¼ 0, 1,…, k� 1,ω00

k 6¼ ω0
k: If y ¼ Lmax ω0,…,ωk�1ð Þ, let us construct a

schedule θ using algorithm 1.2, θ ¼ θ Nk,Ck, yð Þ: If θ ¼ ∅, then according to algo-
rithm 1.3, ω0

k ¼ ω1 Nk,Ckð Þ. Because of ω00
k 6¼ ω0

k, schedule ω
00
k ¼ ω2 Nk,Ckð Þ: Objec-

tive function value (Lmax) can be reached on a job from the set Nk, since θ ¼ ∅: The
whole structure of the algorithm 1.3 construct in such a way that up to the “critical”
job (according to Lmax) order the jobs as “tightly” as possible, therefore we complete
the schedule ω1, after which Cmax π0ð Þ≤Cmax π00

� �
and Lmax π0ð Þ≤Lmax π00

� �
. If θ 6¼ ∅,

then for schedules π0 and π00 Cmax π0ð Þ≤Cmax π00
� �

and Lmax π0ð Þ ¼ Lmax π00
� �

. Thus, for
any schedule π00 ∈Ω N, tð ÞnΦ N, tð Þ exists schedule π0 ∈Φ N, tð Þ such that
Cmax π0ð Þ≤Cmax π00

� �
and Lmax π0ð Þ≤Lmax π00

� �
. Hence, for any schedule π ∈Π Nð Þ

there exists schedule π0 ∈Φ N, tð Þ such that Lmax π0ð Þ≤Lmax πð Þ and
Cmax π0ð Þ≤Cmax πð Þ. The theorem is proved.

Figure 1 schematically shows the considered schedule.
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For the set of schedules Φ N, tð Þ ¼ π01, π
0
2,…, π0m

� �
, m≤ n, we conditions (5)–(6)

are true.
The schedule π01 is optimal in terms of speed (Cmax), and π0m is optimal in terms

of the maximum lateness (by Lmax) if the jobs of the set N satisfy the conditions (9).

4. Conclusions

Single machine scheduling problem with given release dates and two objective
functions is considered in this chapter, which is NP-hard in the strong sense.
A number of new polynomially and pseudo-polynomially solvable subcases of the
problem were found. For a case when

d1 ≤…≤ dn, d1 � r1 � p1 ≥…≥ dn � rn � pn, (33)

an algorithm for constructing a Pareto-optimal set of schedules by criteria Cmax

and Lmax is developed. It is proved that the complexity of the algorithm does not
exceed O n3 log nð Þ operations.

An experimental study of the algorithm showed that it can be used to construct
optimal schedules (by Lmax) even for instances not satisfying the conditions (33).
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Figure 1.
The set of Pareto-optimal schedules.
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Let π0 ¼ ω N, tð Þ. After k, k≥0, main steps of algorithm 1.3 we have a partial
schedule πk. Suppose there is an optimal (by Lmax) schedule starting with πk. We
denote N0 ¼ Nn πkf g and t0 ¼ Cmax πkð Þ.

If πkþ1 ¼ πk,ω1ð Þ, where ω1 ¼ ω1 N0t0ð Þ, then either Lmax ω1, t0ð Þ≤Lmax πkð Þ, or
Lmax πkð Þ<Lmax ω1, t0ð Þ< y, that is, current value of the criterion and the maximum
lateness will “appear” on next steps of the algorithm 1.3. That is, θ N0, t0, y0ð Þ ¼ ∅,
where y0 ¼ Lmax ω1, t0ð Þ. If θ ¼ θ N0, t0, y0ð Þ 6¼ ∅, then we improve the current maxi-
mum lateness value: π0 ¼ πk, θð Þ and y ¼ Lmax π0ð Þ ¼ Lmax ω1, t0ð Þ. The schedule π0 is
added to the set of schedules Φ N, tð Þ. Moreover, according to Theorem 1.3 jobs of
set ω1
� �

precede jobs of set N0n ω1
� �

. Thus, the schedule ω1alert(without artificial
idle times of the machine) would be the best continuation for πk.

If πkþ1 ¼ πk,ω2ð Þ, where ω2 ¼ ω2 N0, t0ð Þ, that is, according to algorithm 1.3
Lmax ω2, t0ð Þ<Lmax π0ð Þ≤Lmax ω1, t0ð Þ. In this case the continuation ω2 is “better” than
ω1. Hence, the partial schedule πkþ1 is a part of some optimal schedule.

Repeating our proof no more than n times, we come to optimality (for Lmax) of
the schedule π ∗ .

The set of schedules Φ N, tð Þ contains at most n schedules, since at each main step
of the algorithm in the set Φ N, tð Þ at most one schedule is “added,” and this step is
executed no more than n times.

Suppose there is a schedule π ∈Π Nð Þ, π ∉ Φ N, tð Þ, such that either
Cmax πð Þ≤Cmax π0ð Þ and Lmax πð Þ≥Lmax π0ð Þ, or Cmax πð Þ≥Cmax π0ð Þ and
Lmax πð Þ≤Lmax π0ð Þ for each schedule π0 ∈Φ N, tð Þ. Moreover, in each pair of inequal-
ities at least one inequality is strict. According to Theorem 1.1, there is a schedule
π00 ∈Ω N, tð Þ such that Lmax π00

� �
≤Lmax πð Þ and Cmax π00

� �
≤Cmax πð Þ. If π00 ∈Φ N, tð Þ.

Thus, it becomes obvious that our assumption is not correct. Let
π00 ∈Ω N, tð ÞnΦ N, tð Þ. Algorithm 1.3 shows that the structure of each schedule

π0 ∈Φ N, tð Þ can be represented as a sequence of partial schedules π0 ¼
ω0
0,ω

0
1,ω

0
2,…,ω0

k0

� �
, where ω0

0 ¼ ω N, tð Þ, and ω0
i is either ω

1 N0
i,C

0
i

� �
, or ω2 N0

i,C
0
i

� �
,

and N0
i ¼ Nn ω0

0,…,ω0
i�1

� �
, C0

i ¼ Cmax ω0
0,…,ω0

i�1

� �
, t

� �
, i ¼ 1, 2,…, k0. The schedule

π00 has the same structure according to the definition of the set Ω N, tð Þ, that is,
π ¼ ω00

0,ω
00
1,ω

00
2,…,ω00

k0 0
� �

, possibly k00 6¼ k0, where ω00
0 ¼ ω0

0 ¼ ω N, tð Þ,ω00
i is equal

to either ω1 N00
i,C

00
i

� �
, or ω2 N00

i,C
00
i

� �
, a N00

i ¼ Nn ω00
0,…,ω00

i�1

� �
,

C00
i ¼ Cmax ω00

0,…,ω00
i�1

� �
, t

� �
, i ¼ 1, 2,…, k00.

We assume that the first k partial schedules π00 and π0 are equal, that is, ω00
i ¼

ω0
i ¼ ωi, i ¼ 0, 1,…, k� 1,ω00

k 6¼ ω0
k: If y ¼ Lmax ω0,…,ωk�1ð Þ, let us construct a

schedule θ using algorithm 1.2, θ ¼ θ Nk,Ck, yð Þ: If θ ¼ ∅, then according to algo-
rithm 1.3, ω0

k ¼ ω1 Nk,Ckð Þ. Because of ω00
k 6¼ ω0

k, schedule ω
00
k ¼ ω2 Nk,Ckð Þ: Objec-

tive function value (Lmax) can be reached on a job from the set Nk, since θ ¼ ∅: The
whole structure of the algorithm 1.3 construct in such a way that up to the “critical”
job (according to Lmax) order the jobs as “tightly” as possible, therefore we complete
the schedule ω1, after which Cmax π0ð Þ≤Cmax π00

� �
and Lmax π0ð Þ≤Lmax π00

� �
. If θ 6¼ ∅,

then for schedules π0 and π00 Cmax π0ð Þ≤Cmax π00
� �

and Lmax π0ð Þ ¼ Lmax π00
� �

. Thus, for
any schedule π00 ∈Ω N, tð ÞnΦ N, tð Þ exists schedule π0 ∈Φ N, tð Þ such that
Cmax π0ð Þ≤Cmax π00

� �
and Lmax π0ð Þ≤Lmax π00

� �
. Hence, for any schedule π ∈Π Nð Þ

there exists schedule π0 ∈Φ N, tð Þ such that Lmax π0ð Þ≤Lmax πð Þ and
Cmax π0ð Þ≤Cmax πð Þ. The theorem is proved.

Figure 1 schematically shows the considered schedule.
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For the set of schedules Φ N, tð Þ ¼ π01, π
0
2,…, π0m

� �
, m≤ n, we conditions (5)–(6)

are true.
The schedule π01 is optimal in terms of speed (Cmax), and π0m is optimal in terms

of the maximum lateness (by Lmax) if the jobs of the set N satisfy the conditions (9).

4. Conclusions

Single machine scheduling problem with given release dates and two objective
functions is considered in this chapter, which is NP-hard in the strong sense.
A number of new polynomially and pseudo-polynomially solvable subcases of the
problem were found. For a case when

d1 ≤…≤ dn, d1 � r1 � p1 ≥…≥ dn � rn � pn, (33)

an algorithm for constructing a Pareto-optimal set of schedules by criteria Cmax

and Lmax is developed. It is proved that the complexity of the algorithm does not
exceed O n3 log nð Þ operations.

An experimental study of the algorithm showed that it can be used to construct
optimal schedules (by Lmax) even for instances not satisfying the conditions (33).
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Figure 1.
The set of Pareto-optimal schedules.
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Chapter 3

A Brief Look at Multi-Criteria
Problems: Multi-Threshold
Optimization versus
Pareto-Optimization
Nodari Vakhania and Frank Werner

Abstract

Multi-objective optimization problems are important as they arise in many
practical circumstances. In such problems, there is no general notion of optimality,
as there are different objective criteria which can be contradictory. In practice,
often there is no unique optimality criterion for measuring the solution quality. The
latter is rather determined by the value of the solution for each objective criterion.
In fact, a practitioner seeks for a solution that has an acceptable value of each of
the objective functions and, in practice, there may be different tolerances to the
quality of the delivered solution for different objective functions: for some
objective criteria, solutions that are far away from an optimal one can be acceptable.
Traditional Pareto-optimality approach aims to create all non-dominated feasible
solutions in respect to all the optimality criteria. This often requires an inadmissible
time. Besides, it is not evident how to choose an appropriate solution from the
Pareto-optimal set of feasible solutions, which can be very large. Here we propose a
new approach and call it multi-threshold optimization setting that takes into
account different requirements for different objective criteria and so is more flexi-
ble and can often be solved in a more efficient way.

Keywords: multi-critneria optimization, optimal solution, Pareto-optimization,
multi-threshold optimization, scheduling algorithm, time complexity

1. Introduction

Multi-objective optimization problems are important as they arise in many
practical circumstances. In such problems, there is no general notion of optimality,
as there are different objective criteria which are often contradictory: an optimal
solution for one criterion may be far away from an optimal one for some other
criterion. Thus for many such real-life problems, there is no unique optimality
criterion for measuring the solution quality. The latter is rather determined by the
value of the solution for each objective criterion. In fact, a practitioner is not
interested, generally, in optimizing a particular objective criterion, but he rather
seeks for a solution that has an acceptable value of each of the objective functions.
Furthermore, in practice, there may exist different tolerances to the quality of the
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delivered solution for different objective functions. In particular, for some objective
criteria, solutions far away from an optimal one can be acceptable. Such solutions
can often be obtained by relatively low computational efforts even for intractable
problems.

Taking into account these considerations, here we propose a new approach and
call it multi-threshold optimization setting that takes into account different
requirements for different objective criteria, in contrary to a traditional Pareto-
optimality approach. The Pareto-optimality concept, named after an Italian scientist
Vilfredo Pareto, is a traditionally used compromise to address a complicated multi-
objective scenario. It looks for a so-called Pareto-optimal frontier of the feasible
solutions consisting of those solutions that are not dominated by any other feasible
solution (with respect to any of the given objective functions). This often requires
an inadmissible time: finding the Pareto-optimal frontier often remains an intracta-
ble (NP-hard) problem. This is always the case if at least one of the corresponding
single-criterion problems is NP-hard. Finding the Pareto-optimal set of solutions
may be NP-hard even if none of the single-criterion problem is NP-hard. Besides, it
is not evident how to choose an appropriate solution from the Pareto-optimal set of
feasible solutions, which can be very large. The multi-threshold optimization
approach is more flexible since it takes into account different requirements for
different objective criteria: in practice, some objective criteria can be more critical
than the other ones, and hence there may exist different degrees of tolerance for the
deviation of the objective value of different criteria from the optimal objective value
of the corresponding single-criterion problems.

The multi-threshold optimization problem seeks for a feasible schedule whose
objective values are acceptable for a given particular application for all objective
functions; in particular, they do not exceed (for minimization problems) or are
no smaller (for maximization problems) than the components of a threshold
vector specified by the practitioner whose ith component is some threshold value
for the ith objective function. As we observe, depending on the components of the
above vector, it might be possible to solve the multi-threshold optimization prob-
lem in a low-degree polynomial time even if all the corresponding single-criterion
problems are NP-hard. A threshold vector with specific threshold values for each
objective function is supposed to have a direct practical meaning. For practically
useful values of the threshold vector, the multi-threshold optimization problem
might be solved in a low-degree polynomial time by a kit of heuristic algorithms,
each one being designed for one of the corresponding single-criterion problems.
If the kit of heuristic algorithms fails to find a feasible solution respecting the
threshold vector, then the heuristics for NP-hard single-criterion problems can be
replaced by implicit enumeration algorithms. In fact, the replacement can be
accomplished step by step, starting from the most critical heuristics. This kind of
approach may be more practical since some objective criteria can be optimized
easier than other ones. Besides, as already noted, the practitioner may not be
interested, in general, in the minimization of each objective function but rather in
a solution of an acceptable quality for every objective function: in practice, there
may be different tolerances to the quality of the delivered solution for each
objective function, and different objective functions might be optimized with quite
different costs.

Thus our approach may lead to more efficient and practical solution of a multi-
criteria problem than the corresponding Pareto-optimal setting. In the following
sections, we give a brief comparative analysis of the Pareto-optimization approach
with our multi-threshold optimization approach illustrating its advantage on
single-machine scheduling problems.
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2. Multi-criteria optimization problems

For an extensive description of multi-criteria optimization problems and the
solution methods, the reader may have a look on a book by T’kindt and Billaut [1]
and a survey paper [2] by the same authors.

Discrete optimization problems have emerged in the late 1940s of the last cen-
tury due to the rapid growth of the industry and new rising demands in efficient
solution methods. Modeled in mathematical language, such an optimization prob-
lem has a finite set of so-called feasible solutions; each feasible solution is deter-
mined by a set of mathematically formulated restrictions that naturally arise in
practice. The quality of a feasible solution is measured by an objective function,
whose domain is the whole set of feasible solutions. Ideally, one aims to
determine a feasible solution that gives an extremal (minimal or maximal) value
to the objective function, a so-called optimal solution. Since the number of feasible
solutions is typically finite, theoretically, finding an optimal solution is trivial: just
enumerate all the feasible solutions calculating for each of the value of the
objective function and select any one with the optimal objective value. The main
issue here is that a complete enumeration of all feasible solutions is mostly
impossible in practice.

There are two distinct classes of combinatorial optimization problems, the class
P of polynomially solvable ones and the intractable NP-hard problems. For a
problem from the class P, there exists an efficient (polynomial in the size of the
problem) algorithm, whereas no such algorithm exists for an NP-hard problem (the
number of feasible solutions of an NP-hard optimization problem grows exponen-
tially with the size of the input). It is widely believed that it is very unlikely that an
NP-hard problem can be solved in polynomial time. Hence, it is natural to develop
approximation solution methods.

Multi-criteria optimization problems are optimization problems with two or
more different objective criteria. For the majority of such problems, there exists no
single solution which optimizes (minimizes or maximizes) all the objective func-
tions. In this sense, different objectives are contradictory, and hence, it is not
straightforward to understand which feasible solution to the problem is optimal:
a multi-criteria optimization problem typically has no optimal solution. In this
situation, one may look for a solution which attains an acceptable value for each
objective function or a solution which is not dominated by any other solution, in
the sense that there is no other feasible solution which attains better objective values
for all objective functions. We shall refer to the first and second versions of the
multi-criteria optimization problem as multi-threshold optimization and Pareto-
optimization versions and define them more formally below.

Let the k objective functions over the set F of feasible solutions of a given
multi-criteria optimization problem be f 1, … , f k. Since these functions might be
mutually contradictory, there may exist no feasible solution minimizing/
maximizing all objective functions simultaneously. Without loss of generality, let us
consider from now on the minimization version of our multi-criteria optimization
problem.

Let F ∗
i be the optimal value for a single-criterion problem with the objective to

minimize function f i, and let Ai be some threshold value for the objective function
f i, i ¼ 1, … , k.

In the multi-threshold optimization version, we look for a feasible solution σ

such that f i σð Þ≤Ai for each i ¼ 1, … , k.
A commonly used dominance relation for the Pareto-optimization version is

defined as follows.
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A solution σ1 ∈F dominates a solution σ2 ∈F if f i σ1ð Þ< f i σ2ð Þ for i ¼ 1, … , k; in
fact, we allow ≤ instead of < for all values of i except one requiring to have at least
one strict inequality.

Now σ ∈F is a Pareto-optimal solution if no other solution from the set F
dominates the solution σ. We shall refer to the set of all such feasible solutions as
Pareto-optimal set. Forming a Pareto-optimal set of feasible solutions may be not
easy. For instance, let, for k ¼ 2, f 1 σ1ð Þ≤ f 1 σ2ð Þ; then solution σ2 is dominated by
solution σ1 if f 2 σ1ð Þ< f 2 σ2ð Þ. This condition can be verified in polynomial time for
any pair of solutions σ1 and σ2 (given that the corresponding optimization problem
is from the class NP). However, whenever the number of feasible solutions grows
exponentially with the length of the input (which is the case for NP-hard prob-
lems), the explicit evaluation of all possible pairs of feasible solutions (which is
unavoidable for finding a dominant solution) would lead us to an exponential-time
performance. In particular, if one of the single-criterion problems is NP-hard,
finding a Pareto-optimal set for the multi-objective setting will take an exponential
time.

Theorem 1 The problem of finding a Pareto-optimal set of feasible solutions for
a multi-objective optimization problem with the objective functions f 1, … , f k is NP-
hard if one of the corresponding single-criterion problems is NP-hard.

Proof. We basically reformulate the above reasoning. Consider a bi-criteria
optimization problem with k ¼ 2. Consider the set SA of feasible solutions with
f 1 σð Þ ¼ A for all σ ∈ SA and some threshold value A of function f 1 (without loss of
generality assume that SA 6¼ Ø). A Pareto-optimal solution from the set SA must
attain the minimum possible value of function f 2 as otherwise it will be dominated
by one that attains this value. Then we arrive at a single-criterion optimization
problem with the objective function f 2, which is NP-hard.

From the first glance, the multi-threshold optimization version of a multi-
criteria optimization problem may seem to be easier than the Pareto-optimality
version. This is, in part, correct, but considering a threshold vector with arbitrary
components, in general, we will also arrive at an intractable problem as the decision
version of an NP-hard single-criterion optimization problem is NP-complete. In
particular, suppose that we are given a single-criterion optimization problem with
the objective to minimize the function f i (i∈ 1, … , kf g). If this problem is NP-hard,
then its decision version, given a threshold value A of function f i, if there is a
feasible solution σ ∈F with f i σð Þ≤A, is NP-complete. Hence, if one of the single-
criterion optimization problems is NP-hard, then the multi-threshold optimization
version of the corresponding multi-criteria optimization problem is also NP-hard.

At the same time, finding a Pareto-optimal set of feasible solutions may be NP-
hard even if none of the single-criterion problem is NP-hard, i.e., they are solvable
in polynomial time. Can the multi-threshold optimization version of a multi-criteria
optimization problem be solved in polynomial time, if all the corresponding single-
criterion optimization problems are polynomial? In other words, suppose that the
single-criterion problem of finding a feasible solution attaining the minimum value
of the objective function f i for i ¼ 1, … , k can be solved in polynomial time. Then
clearly, the decision version that seeks for a feasible solution σ ∈F with f i σð Þ≤A is
also polynomially solvable.

Unlike the Pareto-optimization problem, the multi-threshold optimization
problem may be solvable in polynomial time even if all the corresponding single-
criterion problems are NP-hard; whether it is solvable in polynomial time or not
essentially depends on the particular threshold vector A ¼ A1, … ,Ak� �

. As we shall
argue in the next sections, depending on the particular threshold values for each
objective function, it might be possible to solve the multi-threshold optimization
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problem in a low-degree polynomial time even if all the corresponding single-
criterion problems are NP-hard. The given threshold values for each objective
function may have a direct practical meaning. For practically useful values of the
threshold vector A, the corresponding instance of the multi-threshold optimization
problem might be solved in a low-degree polynomial time though it may be
NP-hard, in general (for an arbitrary threshold vector, see Section 3).

3. Some basic single-criterion scheduling problems

In the rest of this chapter, we illustrate the Pareto-optimality and the multi-
threshold optimization approaches for scheduling problems. For recent developments
in multi-criteria optimization for scheduling problems, the reader is referred to a
recent survey by Nagar et al. [3] and Parveen and Ullah [4] and for some earlier
works approximately until the year 2005 to the earlier cited work by T’kindt and
Billaut [1].

The scheduling problems arise in various practical circumstances. Examples of
such problems are job shop problems in industry, scheduling of information and
computational processes, and traffic scheduling and servicing of cargo trains, ships,
and airplanes. There are scheduling problems of diverse types and different com-
plexities. Saying generally, one deals with two primary notions: job (or task) and
machine (or processor). A job is a part of the whole work to be done; a machine is the
means for the performance of a job. A common restriction in scheduling problems is
that a machine cannot handle more than one job at a time. Each job j is characterized
by its processing time pj, i.e., it needs this prescribed time on a machine. A job may
have other parameters as well, which may yield additional restrictions and/or can be
employed by an objective function. For instance, the release time rj of job j is the
time moment when job j becomes available (it cannot be scheduled before that
time). The due date dj of job j is the desirable completion time for job j (there may
exist a penalty for the late or for the early completion of that job). A job preemption
might be allowed, i.e., it might be split into portions, each portion being assigned
at a different time interval to the machine(s). A (feasible) schedule assigns each job j
to the machine(s) at the specified time moment(s) no less than rj with the total
duration of pj so that no two jobs are assigned to the machine at any time moment
(i.e., the job execution intervals cannot overlap in time). A job is late (on time,
respectively) if it is completed after (at or before, respectively) its due date.

In the single-machine scheduling problems, there is a single machine on which
all the jobs are to be scheduled. The majority of single-machine single-criterion
scheduling problems are NP-hard, although there are polynomially solvable cases as
well. For instance, if the objective function is the maximum job completion time
called the makespan and denoted by Cmax, then the problem of minimizing Cmax,
commonly abbreviated by 1kCmax according to the standard Graham’s notation for
scheduling problems, is straightforwardly solvable if each job j has a single param-
eter pj (the processing time): schedule the jobs in any order without creating
machine idle time before the first scheduled job and between any pair of jobs. It is
very easy to see that this list scheduling algorithm gives an optimal solution. If each
job j has also a release time rj (the problem 1∣rj∣Cmax), then scheduling the jobs in
any order may not be good, but still there is a very simple greedy way to arrange
them optimally: just order the jobs with non-decreasing release times and iteratively
assign the next job from the list to the machine at the completion time of the
previously assigned job or at the release time of the former job, whichever
magnitude is larger.
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At the same time, finding a Pareto-optimal set of feasible solutions may be NP-
hard even if none of the single-criterion problem is NP-hard, i.e., they are solvable
in polynomial time. Can the multi-threshold optimization version of a multi-criteria
optimization problem be solved in polynomial time, if all the corresponding single-
criterion optimization problems are polynomial? In other words, suppose that the
single-criterion problem of finding a feasible solution attaining the minimum value
of the objective function f i for i ¼ 1, … , k can be solved in polynomial time. Then
clearly, the decision version that seeks for a feasible solution σ ∈F with f i σð Þ≤A is
also polynomially solvable.

Unlike the Pareto-optimization problem, the multi-threshold optimization
problem may be solvable in polynomial time even if all the corresponding single-
criterion problems are NP-hard; whether it is solvable in polynomial time or not
essentially depends on the particular threshold vector A ¼ A1, … ,Ak� �

. As we shall
argue in the next sections, depending on the particular threshold values for each
objective function, it might be possible to solve the multi-threshold optimization
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problem in a low-degree polynomial time even if all the corresponding single-
criterion problems are NP-hard. The given threshold values for each objective
function may have a direct practical meaning. For practically useful values of the
threshold vector A, the corresponding instance of the multi-threshold optimization
problem might be solved in a low-degree polynomial time though it may be
NP-hard, in general (for an arbitrary threshold vector, see Section 3).

3. Some basic single-criterion scheduling problems

In the rest of this chapter, we illustrate the Pareto-optimality and the multi-
threshold optimization approaches for scheduling problems. For recent developments
in multi-criteria optimization for scheduling problems, the reader is referred to a
recent survey by Nagar et al. [3] and Parveen and Ullah [4] and for some earlier
works approximately until the year 2005 to the earlier cited work by T’kindt and
Billaut [1].

The scheduling problems arise in various practical circumstances. Examples of
such problems are job shop problems in industry, scheduling of information and
computational processes, and traffic scheduling and servicing of cargo trains, ships,
and airplanes. There are scheduling problems of diverse types and different com-
plexities. Saying generally, one deals with two primary notions: job (or task) and
machine (or processor). A job is a part of the whole work to be done; a machine is the
means for the performance of a job. A common restriction in scheduling problems is
that a machine cannot handle more than one job at a time. Each job j is characterized
by its processing time pj, i.e., it needs this prescribed time on a machine. A job may
have other parameters as well, which may yield additional restrictions and/or can be
employed by an objective function. For instance, the release time rj of job j is the
time moment when job j becomes available (it cannot be scheduled before that
time). The due date dj of job j is the desirable completion time for job j (there may
exist a penalty for the late or for the early completion of that job). A job preemption
might be allowed, i.e., it might be split into portions, each portion being assigned
at a different time interval to the machine(s). A (feasible) schedule assigns each job j
to the machine(s) at the specified time moment(s) no less than rj with the total
duration of pj so that no two jobs are assigned to the machine at any time moment
(i.e., the job execution intervals cannot overlap in time). A job is late (on time,
respectively) if it is completed after (at or before, respectively) its due date.

In the single-machine scheduling problems, there is a single machine on which
all the jobs are to be scheduled. The majority of single-machine single-criterion
scheduling problems are NP-hard, although there are polynomially solvable cases as
well. For instance, if the objective function is the maximum job completion time
called the makespan and denoted by Cmax, then the problem of minimizing Cmax,
commonly abbreviated by 1kCmax according to the standard Graham’s notation for
scheduling problems, is straightforwardly solvable if each job j has a single param-
eter pj (the processing time): schedule the jobs in any order without creating
machine idle time before the first scheduled job and between any pair of jobs. It is
very easy to see that this list scheduling algorithm gives an optimal solution. If each
job j has also a release time rj (the problem 1∣rj∣Cmax), then scheduling the jobs in
any order may not be good, but still there is a very simple greedy way to arrange
them optimally: just order the jobs with non-decreasing release times and iteratively
assign the next job from the list to the machine at the completion time of the
previously assigned job or at the release time of the former job, whichever
magnitude is larger.
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Minimizing the makespan becomes more complicated with even two machines
or if each job j has an additional job parameter called the delivery time qj, which is an
extra amount of time needed for job j for its full completion once it is already
completed on the machine (the delivery of each job is accomplished independently
of the machine immediately after its completion on the machine). Thus, job j will
take pj time on the machine and then an additional time qj for its full completion
(during which another job might be assigned to the machine). Then the maximum
job completion time in the schedule σ (the makespan) is:

Cmax σð Þ ¼ max
j∈ σ

sj σð Þ þ pj þ qj
n o

: (1)

The objective is to find a feasible schedule in which the maximum job comple-
tion time is the minimum possible one.

If there are no job release times, i.e., all jobs are released simultaneously (the
problem 1∣qj∣Cmax), then the makespan can be minimized by the well-known
Jackson heuristic [5]: first arranging the jobs in a non-increasing order of their
delivery times and then scheduling them without leaving machine idle times, simi-
larly as we did for the above versions. With job release times, however, the problem
1∣rj, qj∣Cmax becomes strongly NP-hard. Besides the Cmax criterion, there are a
number of other commonly used objective functions for scheduling problems. For
instance, if for every job j its due date dj is given, then several objective criteria can
be used to measure the solution quality.

The lateness of a job j in a schedule σ:

Lj σð Þ ¼ dj � sj σð Þ þ pj
� �

(2)

(note that sj σð Þ þ pj is the completion time of job j in the schedule σ). One of the
most commonly used due date oriented objective functions is the maximum job
lateness

Lmax σð Þ ¼ max
j∈ σ

Lj: (3)

The objective is to find a feasible schedule σ in which the maximum job lateness
Lmax is the minimum possible one. This problem 1∣rj∣Lmax is, in fact, equivalent to
the abovementioned one 1∣rj, qj∣Cmax with job delivery times, and hence, it is also
strongly NP-hard [6].

Another common due date-oriented objective function is the number of late jobs
(the ones completed after their due date)

X
j∈ σ

Uj σð Þ, (4)

where Uj σð Þ is a 0–1 function taking the value 1 if job j is late in the schedule σ
and the value 0 otherwise. The objective here is to find a feasible schedule with the
minimum possible value

P
j∈ σUj σð Þ, equivalently, one maximizing the through-

put, i.e., the number of jobs completed by their due dates (this model is motivated
by applications in real-time overloaded systems, where the job due dates are crucial
in a way that if a job is late, then it might rather be postponed for an undefined
period of time in favor of other jobs which might be completed on time). Similarly
to the above problems, if all jobs are simultaneously released, then the problem
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1kPUj is polynomially solvable (by the algorithm of Moore and Hodgson); how-
ever, with job release times, the problem 1∣rj∣

P
Uj is again strongly NP-hard.

Hoogeveen [7] has considered the no machine idle time version in a bi-criteria
setting. Instead of minimizing the lateness, he has introduced the so-called target
start time sj of a job j: sj is the desirable starting time for job j, similarly as the due
date dj is the desirable completion time for the job j. Together with the minimization
of the maximum job lateness, the minimization of the maximum job promptness
(the difference between the target and real start times of that job) can be consid-
ered. The above reference gives an algorithm that finds a Pareto-optimal set of
feasible solutions for this bi-criteria scheduling problem.

4. Basic multi-criteria scheduling problems

We can combine the objective functions described in the previous section and
obtain the corresponding multi-criteria scheduling problems. We consider these
multi-criteria problems from the point of view of multi-threshold optimization and
Pareto-optimization approaches.

We start by considering a bi-criteria problem with two objective functions, Cmax
and Lmax obtained from the single-criterion problems 1∣rj∣Cmax and 1∣rj∣Lmax,
respectively (note that in the first problem, no job delivery times are given).

With the Pareto-optimization approach, we need to solve two relevant prob-
lems: (1) among all feasible schedules with a given maximum job lateness, find one
with the minimum makespan, and (2) vice versa, among all feasible schedules with
a given makespan, find one with the minimummaximum job lateness. Both of these
problems are strongly NP-hard [6].

With the multi-threshold (bi-threshold) optimization approach, we are given
two threshold values A1 and A2 on the functions Cmax and Lmax, respectively. We
would like to know if there exists a feasible schedule σ such that

Cmax σð Þ≤A1 (5)

Lmax σð Þ≤A2: (6)

As to condition (5), let us first construct a feasible schedule σ0 in which the jobs
are arranged in a non-decreasing order of their release times and are scheduled in
this order without leaving unavoidable machine idle time. Recall that the schedule
σ0 (obtained in this way in O n log nð Þ time) is optimal for the problem 1∣rj∣Cmax.
Hence, if Cmax σ0ð Þ>A1, then there exists no (bi-threshold optimal) schedule σ with
Cmax σð Þ≤A1 and we return a “no” answer. Otherwise, we know that there exists a
feasible schedule σ0 with Cmax σð Þ≤A1. In fact, if Cmax σ0ð Þ ¼ A1, then there are many
such feasible schedules (we may introduce idle time intervals of a required total
length in the schedule σ arbitrarily between neighboring jobs in different ways
obtaining different feasible schedules satisfying inequality (5)). Let us denote the
set of these feasible schedules by SA1 .

Now it remains to verify condition (6), i.e., we wish to know if, among all
schedules from the set SA1 , there is one satisfying condition (6). In general, it may
take an exponential time to answer this question for an arbitrary value A2 since
the corresponding decision problem is NP-complete. At the same time, it also might
be possible to obtain an answer in polynomial time, depending on the value of A2.
The easiest way is to construct a greedy solution σ00 to the problem obtained, for
instance, by the earlier mentioned Jackson heuristic. It is well-known that the
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Minimizing the makespan becomes more complicated with even two machines
or if each job j has an additional job parameter called the delivery time qj, which is an
extra amount of time needed for job j for its full completion once it is already
completed on the machine (the delivery of each job is accomplished independently
of the machine immediately after its completion on the machine). Thus, job j will
take pj time on the machine and then an additional time qj for its full completion
(during which another job might be assigned to the machine). Then the maximum
job completion time in the schedule σ (the makespan) is:

Cmax σð Þ ¼ max
j∈ σ

sj σð Þ þ pj þ qj
n o

: (1)

The objective is to find a feasible schedule in which the maximum job comple-
tion time is the minimum possible one.

If there are no job release times, i.e., all jobs are released simultaneously (the
problem 1∣qj∣Cmax), then the makespan can be minimized by the well-known
Jackson heuristic [5]: first arranging the jobs in a non-increasing order of their
delivery times and then scheduling them without leaving machine idle times, simi-
larly as we did for the above versions. With job release times, however, the problem
1∣rj, qj∣Cmax becomes strongly NP-hard. Besides the Cmax criterion, there are a
number of other commonly used objective functions for scheduling problems. For
instance, if for every job j its due date dj is given, then several objective criteria can
be used to measure the solution quality.

The lateness of a job j in a schedule σ:

Lj σð Þ ¼ dj � sj σð Þ þ pj
� �

(2)

(note that sj σð Þ þ pj is the completion time of job j in the schedule σ). One of the
most commonly used due date oriented objective functions is the maximum job
lateness

Lmax σð Þ ¼ max
j∈ σ

Lj: (3)

The objective is to find a feasible schedule σ in which the maximum job lateness
Lmax is the minimum possible one. This problem 1∣rj∣Lmax is, in fact, equivalent to
the abovementioned one 1∣rj, qj∣Cmax with job delivery times, and hence, it is also
strongly NP-hard [6].

Another common due date-oriented objective function is the number of late jobs
(the ones completed after their due date)

X
j∈ σ

Uj σð Þ, (4)

where Uj σð Þ is a 0–1 function taking the value 1 if job j is late in the schedule σ
and the value 0 otherwise. The objective here is to find a feasible schedule with the
minimum possible value

P
j∈ σUj σð Þ, equivalently, one maximizing the through-

put, i.e., the number of jobs completed by their due dates (this model is motivated
by applications in real-time overloaded systems, where the job due dates are crucial
in a way that if a job is late, then it might rather be postponed for an undefined
period of time in favor of other jobs which might be completed on time). Similarly
to the above problems, if all jobs are simultaneously released, then the problem
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1kPUj is polynomially solvable (by the algorithm of Moore and Hodgson); how-
ever, with job release times, the problem 1∣rj∣

P
Uj is again strongly NP-hard.

Hoogeveen [7] has considered the no machine idle time version in a bi-criteria
setting. Instead of minimizing the lateness, he has introduced the so-called target
start time sj of a job j: sj is the desirable starting time for job j, similarly as the due
date dj is the desirable completion time for the job j. Together with the minimization
of the maximum job lateness, the minimization of the maximum job promptness
(the difference between the target and real start times of that job) can be consid-
ered. The above reference gives an algorithm that finds a Pareto-optimal set of
feasible solutions for this bi-criteria scheduling problem.

4. Basic multi-criteria scheduling problems

We can combine the objective functions described in the previous section and
obtain the corresponding multi-criteria scheduling problems. We consider these
multi-criteria problems from the point of view of multi-threshold optimization and
Pareto-optimization approaches.

We start by considering a bi-criteria problem with two objective functions, Cmax
and Lmax obtained from the single-criterion problems 1∣rj∣Cmax and 1∣rj∣Lmax,
respectively (note that in the first problem, no job delivery times are given).

With the Pareto-optimization approach, we need to solve two relevant prob-
lems: (1) among all feasible schedules with a given maximum job lateness, find one
with the minimum makespan, and (2) vice versa, among all feasible schedules with
a given makespan, find one with the minimummaximum job lateness. Both of these
problems are strongly NP-hard [6].

With the multi-threshold (bi-threshold) optimization approach, we are given
two threshold values A1 and A2 on the functions Cmax and Lmax, respectively. We
would like to know if there exists a feasible schedule σ such that

Cmax σð Þ≤A1 (5)

Lmax σð Þ≤A2: (6)

As to condition (5), let us first construct a feasible schedule σ0 in which the jobs
are arranged in a non-decreasing order of their release times and are scheduled in
this order without leaving unavoidable machine idle time. Recall that the schedule
σ0 (obtained in this way in O n log nð Þ time) is optimal for the problem 1∣rj∣Cmax.
Hence, if Cmax σ0ð Þ>A1, then there exists no (bi-threshold optimal) schedule σ with
Cmax σð Þ≤A1 and we return a “no” answer. Otherwise, we know that there exists a
feasible schedule σ0 with Cmax σð Þ≤A1. In fact, if Cmax σ0ð Þ ¼ A1, then there are many
such feasible schedules (we may introduce idle time intervals of a required total
length in the schedule σ arbitrarily between neighboring jobs in different ways
obtaining different feasible schedules satisfying inequality (5)). Let us denote the
set of these feasible schedules by SA1 .

Now it remains to verify condition (6), i.e., we wish to know if, among all
schedules from the set SA1 , there is one satisfying condition (6). In general, it may
take an exponential time to answer this question for an arbitrary value A2 since
the corresponding decision problem is NP-complete. At the same time, it also might
be possible to obtain an answer in polynomial time, depending on the value of A2.
The easiest way is to construct a greedy solution σ00 to the problem obtained, for
instance, by the earlier mentioned Jackson heuristic. It is well-known that the
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schedule σ00 minimizes the function Cmax. Hence, if Lmax σ00
� �

≤A2, then we return
the schedule σ00 with a “yes” answer. Otherwise, the answer may be “yes” or may
also be “no.” In this case, we need more costly calculations to seek for a feasible
schedule σ from the set SA1 with Lmax σð Þ≤A2. This may take an exponential time
(as the second single-criterion problem 1∣rj∣Lmax is NP-hard).

Combining the objective function Cmax with
P

jUj, we obtain another bi-criteria
problem from the single-criterion problems 1∣rj∣Cmax and 1∣rj∣

P
jUj, respectively.

With the Pareto-optimization approach, we need to solve two relevant prob-
lems: (1) among all feasible schedules with a given maximum job lateness, find one
with the minimum makespan, and (2) vice versa, among all feasible schedules with
a given makespan, find one with the minimum number of late jobs. Both of these
problems remain strongly NP-hard.

With the bi-threshold optimization approach, we are given two threshold values
A1 and A3 on the functions Cmax and

P
jUj, respectively. We would like to know if

there exists a feasible schedule σ satisfying inequality (1) and the following
inequality:

X
j

Uj σð Þ≤A3: (7)

Condition (5) can be treated as above. As to condition (7), we need to verify if,
among all schedules from the set SA1 , there is one satisfying this condition. As for
condition (6), in general, it may take an exponential time to verify condition (7)
for an arbitrary value A3, since the corresponding decision problem with a single
objective function

P
jUj is NP-complete [8]. But it again might be possible to obtain

an answer in polynomial time. Instead of Jackson’s heuristic that we used for con-
dition (6), now we use an extended version of the algorithm of Moore and Hodgson
for the problem 1kPUj. Recall that the latter algorithm is designed for simulta-
neously released jobs. It sorts all jobs in a non-decreasing order of their due dates
and includes them in this order whenever the last included job completes by its due
date. Otherwise, from the last block of the continuously scheduled jobs (there will
be only one such block for simultaneously released jobs), it discards a longest job
and repeats the same step until all jobs are considered in this way. Note that all the
included jobs are completed on time. Finally, it adds the discarded jobs at the end of
the resultant partial schedule in any order without leaving machine idle times (these
jobs are late).

We modify the above algorithm by considering the jobs in the order as they
are released, but order each group of currently released jobs similarly by non-
decreasing due dates and accomplish the same steps for each such group of the
already released jobs. Although the modified algorithm, in general, does not guar-
antee optimality, it may typically deliver a near-optimal solution to the version
1∣rj∣

P
Uj with job release times. Let us denote the schedule delivered by the

extended Moore and Hodgson algorithm by σ‴. It can be readily verified that the
schedule σ‴ minimizes the function Cmax. Hence, if

P
jUj σ‴ð Þ≤A2, then we return

the schedule σ‴ with a “yes” answer. Otherwise, the answer may be “yes” or may
also be “no.” In this case, we need more costly calculations to seek for a feasible
schedule σ from the set SA1 with

P
jUj σð Þ≤A2, which, similarly as for the earlier

bi-criteria problem, may take an exponential time.
Finally, combining all the three objective functions Cmax, Lmax, and

P
jUj,

we obtain a more complicated three-criteria scheduling problem. Finding
the Pareto-optimal set of feasible solutions obviously remains NP-hard. The
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by-threshold problem gets also less accessible but still more flexible than the Pareto-
optimality version, again essentially depending on the threshold values. We again
consider the three conditions (5), (6), and (7) that come from the corresponding
single-criterion problems and the set of feasible schedules SA1 yielded by inequality
(1). Using the fact that both schedules σ00 and σ‴ are from the set SA1 , it will suffice
to verify whether

X
j

Uj σ
00ð Þ≤A3 (8)

or

Lmax σ‴ð Þ≤A2: (9)

Intuitively, it is clear that the closer is A3 to n (the total number of jobs) and
the larger is A2, the more probable it is that these inequalities will hold. Hence, the
by-threshold problem will be solved in O n log nð Þ time (remind that the time
complexity of all the three heuristics that we use for the creation of the schedules σ0,
σ00, and σ‴ is O n log nð Þ). If any of the conditions (6), (7), (8), or (9) is not satisfied,
then an implicit enumeration algorithm that generates feasible schedules respecting
the thresholds A2 and A3 can be applied.

5. Conclusions

We have seen that a multi-threshold optimization problem may solve practical
multi-criteria problems in polynomial time while delivering a solution with an
acceptable quality for a given threshold vector, which reflects real needs of a
particular real-life application. We have compared the multi-threshold optimization
problem with the Pareto-optimization problem for three basic multi-criteria
scheduling problems on a single machine. It is clear that, in many multi-criteria
applications, a practitioner may not be interested in a Pareto-optimal set of feasible
solutions: an analysis of the set of Pareto-optimal solutions containing all non-
dominated feasible solutions might be beyond the interest and capacity of the
practitioner. In practice, a feasible solution that attains some threshold value for
each objective function is required. For instance, take an automobile manufacturing
and the three objective functions Cmax, Lmax, and

P
jUj considered in the previous

section. Clearly, the manufacturer is interested in minimizing the total production
time Cmax, whereas he imposes a maximum possible lateness in the production of
each car (which might be far above the minimum possible lateness), and there is a
maximum admissible number of cars whose production might be late and be
delayed for an infinitive amount of time (according to the current demand on the
product). Two heuristic algorithms that we have considered in the previous section,
in practice, may well deliver such solutions while minimizing the total production
time. It is well-known that Jackson’s heuristic, in practice, delivers near-optimal
solutions with a value of the objective function close to the optimum [9]. At the
same time, if the threshold for the criterion

P
jUj is not too small, the solution

delivered by the heuristic may also satisfy the threshold condition for that criterion.
In fact, it might be possible to combine Jackson’s heuristic with Moore and
Hodgson’s one in such a way that the resultant heuristic would provide a solution
with the desired thresholds for both objective functions with some high probability.
The construction of such heuristics that deliver a solution respecting the threshold
vector for two or more objective criteria is an interesting line for further research.
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schedule σ00 minimizes the function Cmax. Hence, if Lmax σ00
� �

≤A2, then we return
the schedule σ00 with a “yes” answer. Otherwise, the answer may be “yes” or may
also be “no.” In this case, we need more costly calculations to seek for a feasible
schedule σ from the set SA1 with Lmax σð Þ≤A2. This may take an exponential time
(as the second single-criterion problem 1∣rj∣Lmax is NP-hard).

Combining the objective function Cmax with
P

jUj, we obtain another bi-criteria
problem from the single-criterion problems 1∣rj∣Cmax and 1∣rj∣

P
jUj, respectively.

With the Pareto-optimization approach, we need to solve two relevant prob-
lems: (1) among all feasible schedules with a given maximum job lateness, find one
with the minimum makespan, and (2) vice versa, among all feasible schedules with
a given makespan, find one with the minimum number of late jobs. Both of these
problems remain strongly NP-hard.

With the bi-threshold optimization approach, we are given two threshold values
A1 and A3 on the functions Cmax and

P
jUj, respectively. We would like to know if

there exists a feasible schedule σ satisfying inequality (1) and the following
inequality:

X
j

Uj σð Þ≤A3: (7)

Condition (5) can be treated as above. As to condition (7), we need to verify if,
among all schedules from the set SA1 , there is one satisfying this condition. As for
condition (6), in general, it may take an exponential time to verify condition (7)
for an arbitrary value A3, since the corresponding decision problem with a single
objective function

P
jUj is NP-complete [8]. But it again might be possible to obtain

an answer in polynomial time. Instead of Jackson’s heuristic that we used for con-
dition (6), now we use an extended version of the algorithm of Moore and Hodgson
for the problem 1kPUj. Recall that the latter algorithm is designed for simulta-
neously released jobs. It sorts all jobs in a non-decreasing order of their due dates
and includes them in this order whenever the last included job completes by its due
date. Otherwise, from the last block of the continuously scheduled jobs (there will
be only one such block for simultaneously released jobs), it discards a longest job
and repeats the same step until all jobs are considered in this way. Note that all the
included jobs are completed on time. Finally, it adds the discarded jobs at the end of
the resultant partial schedule in any order without leaving machine idle times (these
jobs are late).

We modify the above algorithm by considering the jobs in the order as they
are released, but order each group of currently released jobs similarly by non-
decreasing due dates and accomplish the same steps for each such group of the
already released jobs. Although the modified algorithm, in general, does not guar-
antee optimality, it may typically deliver a near-optimal solution to the version
1∣rj∣

P
Uj with job release times. Let us denote the schedule delivered by the

extended Moore and Hodgson algorithm by σ‴. It can be readily verified that the
schedule σ‴ minimizes the function Cmax. Hence, if

P
jUj σ‴ð Þ≤A2, then we return

the schedule σ‴ with a “yes” answer. Otherwise, the answer may be “yes” or may
also be “no.” In this case, we need more costly calculations to seek for a feasible
schedule σ from the set SA1 with

P
jUj σð Þ≤A2, which, similarly as for the earlier

bi-criteria problem, may take an exponential time.
Finally, combining all the three objective functions Cmax, Lmax, and

P
jUj,

we obtain a more complicated three-criteria scheduling problem. Finding
the Pareto-optimal set of feasible solutions obviously remains NP-hard. The
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by-threshold problem gets also less accessible but still more flexible than the Pareto-
optimality version, again essentially depending on the threshold values. We again
consider the three conditions (5), (6), and (7) that come from the corresponding
single-criterion problems and the set of feasible schedules SA1 yielded by inequality
(1). Using the fact that both schedules σ00 and σ‴ are from the set SA1 , it will suffice
to verify whether

X
j
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00ð Þ≤A3 (8)

or

Lmax σ‴ð Þ≤A2: (9)

Intuitively, it is clear that the closer is A3 to n (the total number of jobs) and
the larger is A2, the more probable it is that these inequalities will hold. Hence, the
by-threshold problem will be solved in O n log nð Þ time (remind that the time
complexity of all the three heuristics that we use for the creation of the schedules σ0,
σ00, and σ‴ is O n log nð Þ). If any of the conditions (6), (7), (8), or (9) is not satisfied,
then an implicit enumeration algorithm that generates feasible schedules respecting
the thresholds A2 and A3 can be applied.

5. Conclusions

We have seen that a multi-threshold optimization problem may solve practical
multi-criteria problems in polynomial time while delivering a solution with an
acceptable quality for a given threshold vector, which reflects real needs of a
particular real-life application. We have compared the multi-threshold optimization
problem with the Pareto-optimization problem for three basic multi-criteria
scheduling problems on a single machine. It is clear that, in many multi-criteria
applications, a practitioner may not be interested in a Pareto-optimal set of feasible
solutions: an analysis of the set of Pareto-optimal solutions containing all non-
dominated feasible solutions might be beyond the interest and capacity of the
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We have illustrated the multi-threshold optimization approach on a few single-
machine scheduling problems, though the approach can obviously be applied, in
general, for different kinds of multi-objective optimization problems.
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Chapter 4

Overview of Multi-Objective
Optimization Approaches in
Construction Project Management
Ibraheem Alothaimeen and David Arditi

Abstract

The difficulties that are met in construction projects include budget issues,
contractual time constraints, complying with sustainability rating systems, meeting
local building codes, and achieving the desired quality level, to name but a few.
Construction researchers have proposed and construction practitioners have used
optimization strategies to meet various objectives over the years. They started out
by optimizing one objective at a time (e.g., minimizing construction cost) while
disregarding others. Because the objectives of construction projects often conflict
with each other, single-objective optimization does not offer practical solutions as
optimizing one objective would often adversely affect the other objectives that are
not being optimized. They then experimented with multi-objective optimization.
The many multi-objective optimization approaches that they used have their own
advantages and drawbacks when used in some scenarios with different sets of
objectives. In this chapter, a review is presented of 16 multi-objective optimization
approaches used in 55 research studies performed in the construction industry and
that were published in the period 2012–2016. The discussion highlights the
strengths and weaknesses of these approaches when used in different scenarios.

Keywords: construction project management, multi-objective optimization,
evolutionary algorithms, swarm intelligence algorithms, analytic network process,
nature-based algorithms, Hungarian algorithm, mixed-integer nonlinear
programming, hybrid approaches

1. Introduction

The main objective of the construction industry is to directly and indirectly
provide people’s daily needs. Mostly, a construction project involves the use of
different resources (e.g., machinery, materials, manpower, etc.) to produce the
final product (e.g., a building, a bridge, a water distribution system, etc.) that
serves the targeted users’ needs. The difficulties that are met in construction pro-
jects include budget limitations, contractual time constraints, safety and health
issues, sustainability ratings, local building codes, the desired level of quality, to
name but a few. Consequently, a construction project has multiple objectives
including maximum productivity, minimum cost, minimum duration, specified
quality, safety, and sustainability. Making decisions is difficult when one wants to
reach the optimal solution for a combination of objectives.
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Construction practitioners have been using single-objective optimization strate-
gies to meet the desired level of construction objectives. However, because the
multiple objectives of construction projects often conflict with each other, single-
objective optimization does not offer practical solutions, as optimizing one objective
would often adversely affect the other objectives that are not being optimized. As a
result, some projects fail to meet some of the objectives. In order to avoid such
failures, researchers have developed tools that can help efficiently manage con-
struction projects and achieve the required objectives. These tools include many
multi-objective optimization approaches, each of which has its own advantages and
drawbacks when used in some scenarios with different sets of objectives.

A review is presented in this chapter of the various multi-objective optimization
approaches used in recent studies in the construction industry to highlight the
strengths and weaknesses of these approaches when used in different scenarios.

2. Overview

A total of 55 studies that applied multi-objective optimization methods in the
construction industry are reviewed in this chapter. To avoid overlapping and
redundancy of reviews with Evins’ work [1], the review in this chapter includes
only the recent studies which were published in the period late 2012 to early 2016.
Evins [1] covered the period of 1990 to late 2012 and conducted a review of the
studies that applied optimization methods in sustainable building design.

The 55 studies are reviewed relative to (1) the optimization method, (2) the
project phase, (3) the optimization problem, (4) the type and number of targeted
objectives, (5) the example used to test a model, and (6) the comparison with other
methods when applicable.

The number of optimization methods found in the review of the 55 papers was
16. These 16 methods and their usage frequency are presented in Figure 1, which
shows that NSGA-II is the most used method (14 times) followed by a hybrid
method (12 times) which pairs two or more methods for the optimization process.
The acronyms in this figure are spelled out in Table 1.

Figure 1.
Frequency of methods used in literature.
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These optimization methods were used to tackle different numbers of objectives
at a time. The number of objectives that was simultaneously optimized ranged
between 2 and 7. The most common number of objectives in a study was 2 or 3
objectives (27 and 24 times, respectively) distributed by methods as shown in
Table 1. The least common number of objectives considered in a study was 4, 6, and
7 (one time each). It should be noted that one of the 55 papers used two optimiza-
tion methods, i.e., NSGA-II and PSO. Therefore, the total number of methods used
in the 55 papers is 56.

As expected, the large majority of the studies optimized two or three objectives
that concern most practitioners. The number of times the objectives were used is
presented in Table 2. Among the objectives used in the 55 papers, cost was the
mostly optimized, accounting for 93% (51 times) of the total number of studies,
duration was the second most optimized objective accounting for 42% (23 times),
and the energy and environment category was the third most optimized with 31%
(17 times). The rating system score was used only 3 times, i.e., in only 5% of the
studies, which represents the least optimized objective.

3. Multi-objective optimization methods used in recent
construction-related studies

3.1 Genetic algorithms (GA)

GA is one of the popular evolutionary algorithms used by researchers. GA uses
the concept of chromosomes to present the possible solutions in these chromo-
somes’strings [2]. The different aspects of each solution are positioned into the slots

Optimization method Number of objectives

2 3 4 5 6 7

Genetic algorithms (GA) 2 3 — — — —

Differential evolution (DE) 1 3 — — — —

Strength Pareto evolutionary algorithm (SPEA) — 1 — — — —

Non-dominated sorting genetic algorithm-II (NSGA-II) 8 6 — — — —

Niched Pareto genetic algorithm (NPGA) — 1 — — — —

Multi-objective genetic algorithm (MOGA) 1 — — — 1 1

Particle swarm optimization (PSO) 3 3 — 2 — —

Ant colony optimization (ACO) 1 — — — — —

Analytic network process (ANP) — — 1 — — —

Shuffled frog-leaping algorithm (SFLA) — 1 — — — —

Simulated annealing algorithm (SA) 1 — — — — —

Plant growth simulation algorithm (PGSA) 1 — — — — —

Hungarian algorithm (HA) 1 — — — — —

Mixed-integer nonlinear programming (MINLP) 2 — — — — —

Hybrid methods 6 6 — — — —

Total (56 methods) 27 24 1 2 1 1

Table 1.
Number of objectives used in the literature.
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which form the string [3]. A new set of solutions are found by the crossover
between two strings (parent strings), and the new strings (children) will inherit the
best features of the parent strings.

In construction-related fields, GA has been applied in many multi-objective
optimization problems. For example:

• GA was used to improve sustainability in housing units. Karatas and El-Rayes
[4] used GA in a single-family housing unit to optimize operational
environmental performance, social quality of life, and life cycle cost. They used
33 decision variables in the model and computed in 47.5 hours 210 near-
optimal solutions within a large search space of configurations and decisions
(more than 2.6 quadrillion).

• GA was used to solve conflicting objectives in construction scheduling. For
instance, Agrama [5] used GA to optimize building schedules. The author
analyzed a 5-storey building and used nine scenarios for the weights of three
objectives: project duration, total actual crews, and total interruptions for all
activities. The model was implemented in Excel (Evolver) and solved by GA.
In addition, it was found that the model performs consistently and can be used
with both the critical path and line of balance methods. Moreover, the results
obtained were identical to those in the literature but required less time and
effort. Alternatively, Aziz et al. [6] introduced a method that combines CPM
with GA to optimize the utilization of resources for mega construction projects
in terms of time, cost, and quality. An 18-activity schedule was tested using the
proposed method. To avoid complexity, the five decision variables which were
construction materials, crew formation, crew overtime policy, machinery
efficiency, and contractor class were all combined into a single decision
variable called resource utilization. In this test, 305 optimal solutions were
identified. Additionally, the results showed that the model outperformed the
approach used by Feng et al. [7] with the same case example.

• GA was used in managing site operations. For example, in material logistics,
Said and El-Rayes [8] presented an example of a 10-storey building consisting
of 107 activities with four temporary facilities. The aim of the model was to
minimize total construction logistics costs (Eq. (1)) and minimize project
schedule criticality (Eq. (2)).

Objective Number of times objective used in studies

Cost 51

Duration 23

Quality 7

Resources 7

Energy and environment 17

Thermal 13

Safety 6

Rating system score 3

Other 23

Table 2.
Number of times the objectives were used in the 55 studies.

50

Multicriteria Optimization - Pareto-Optimality and Threshold-Optimality

Min TLC ¼ OCþ FCþ SCþ LC (1)

Min SCI ¼ 1
N0 �

XN0

i¼1

CIi ¼ 1
N0 �

XN0

i¼1

SSi � ESi
TFi

(2)

where,TLC = total logistics costs; OC = ordering cost; FC = financing cost;
SC = stock-out cost; LC = layout cost; SCI = schedule criticality index; N0 = number
of noncritical activities; CIi = criticality index of activity i; SSi = scheduled start time
of activity i; ESi = early start time of activity i; and TFi = total float of activity i.

Because the search space is large and the problem is complex, the authors
justified the use of a GA model that involves 152 decision variables and 462
constraints. The model generated 361 optimal solutions. For equipment manage-
ment problems, Xu et al. [9] proposed dynamic programming-based GA because
they believed it would be capable of solving this type of problem more efficiently
than traditional methods. The goal of the method was to minimize the project’s
total cost and maximize equipment operations such that in case of equipment
failure there would be an equipment available. Moreover, to make the method
more reliable, the failure rate of the equipment was considered a fuzzy variable.
An actual hydropower project in China was selected to test the model. Under the
same environment, the proposed algorithm performed better in searching than the
standard GA.

In summary, there is evidence that GA can optimize different objectives in the
construction industry in the field of scheduling, sustainability, and site operation.

3.2 Differential evolution (DE)

The DE approach is efficient and has low algorithmic complexity. There is also
some evidence of its effectiveness in tackling problems of continuous optimiza-
tion with different types of constraints and functions [10]. The members of the
population in DE use floating-points which identify each member’s direction and
distance [11]. Therefore, the main concept behind the DE approach is that it
creates a new population member with a vector that has the difference between
two members’ vectors; that process is done by the mutation and crossover
processes [12].

DE has proved its effectiveness in complex planning and scheduling problems by
optimizing cost and time in addition to quality, environmental impact, or resources.
For example:

• Narayanan and Suribabu [13] applied DE to assist contractors in optimizing
their plans for subcontracting in terms of cost, time and quality. To examine
the model, they used a 7-activity and an 18-activity project. By comparison, the
DE model generated better solutions than ant colony optimization (ACO) for
cost in the first case, and for cost and time in the second case.

• Alternatively, Cheng and Tran [14] used a two-phase DE model on a 37-
activity warehouse project to minimize total project cost and duration, while
accounting for resource constraints. In the first phase, a multiple objective
DE model was used to find the optimal tradeoff between time and cost in
construction activities. Based on the solution obtained in the first phase, the
best schedule was found within resource constraints in the second phase.
A comparison of the results showed that the developed model outperformed
three evolutionary algorithms: DE, particle swarm optimization (PSO) and
NSGA-II.
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• Subsequently, Cheng and Tran [15] proposed opposition-based multi-objective
DE. The aim was to optimize construction products in terms of cost, time and
environmental impact. The model used opposition-based learning to increase
precision and convergence speed. A tunnel project consisting of 25 activities
was used to test the model. The proposed model was superior compared to
NSGA-II, PSO, and DE algorithms. The exact approach also outperformed
these algorithms in a similar study conducted by Cheng and Tran [16].

• The goal of the Cheng and Tran [16] study was to minimize project time
(Eq. (3)), project cost (Eq. (4)), and the utilization of resources (Eqs. (5) and
(6)) in overtime shifts.

Min T ¼
Xl
n¼1

TSn
n ¼ MaxⱯn ESn þDnð Þ (3)

Min C ¼
XN
n¼1

CostSnn (4)

Min LHEN ¼ LHEþ LHN 1þWð Þ if SS ¼ 3 three� shift systemð Þ (5)

Min LHNE ¼ LHE if SS ¼ 2 two� shift systemð Þ (6)

where in Eq. (3), TSn
n is the duration of the activity n{n = 1, 2,…, l} on the critical

path for a specific option of resources (Sn); l is the total number of critical activities
on a specific critical path; ESn is the earliest start of activity n; Dn is the duration of
activity n. In Eq. (4), CostSnn is the total cost which includes direct and indirect cost
of activity n for a specific option of resources (Sn); N is the total number of
activities. In Eqs. (5) and (6), LHE is the total number of evening shift work hours
and LHN is the total number of night shift work hours. Because risks faced in night
shiftwork are typically higher than in other shifts, W is the defined weight that
represents the relative importance of minimizing LHN.

A 15-activity and a 60-activity project were used to test the model. In just one
run, the model was capable of finding Pareto-optimal solutions to solve the objec-
tives of the problem.

It can be concluded that the DE algorithm is capable of optimizing several
objectives of time, cost, resource utilization, and environmental impact. Moreover,
as DE and its variations successfully optimized those objectives, they also surpassed
ACO, PSO, and NSGA-II in construction scheduling optimization.

3.3 Strength Pareto evolutionary algorithm (SPEA)

SPEA works by archiving the non-dominated solutions found in the Pareto-front
at every iteration. Then, based on the number of solutions it dominates, each
solution in the archive is ranked with a strength rate [10, 17].

In dealing with scheduling problems, SPEA was proposed by Elazouni and Abido
[18] to optimize the three conflicting objectives of maximizing profit and minimiz-
ing required finance and resource idle days. The study used two examples from the
literature to test the efficiency and scalability of the model. In the first example, the
model was tested for its effectiveness in solving a 9-activity project. The model
confirmed its robustness by achieving 50 identical solutions. By searching these
solutions using a fuzzy based method, the top ones were selected. In the second
example, an 18-activity project was used to assess the model’s scalability.
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Four solutions (maximum profit, minimum finance, minimum resource idle days,
and the top compromised solution) were drawn from the 48 solutions obtained in
the Pareto-optimal front. Clustering the Pareto solutions set was used to keep it
within a manageable size. Nevertheless, because of the clustering, this method may
result in the loss of some extreme Pareto solutions.

By optimizing the construction objectives of profit and resources, SPEA has
verified its efficiency in the scheduling field. However, the clustering method
proposed by Elazouni and Abido [18] should be avoided when using SPEA in order
to avoid the elimination of some extreme Pareto solutions. New clustering
approaches should be explored in upcoming studies.

3.4 Non-dominated sorting genetic algorithm-II (NSGA-II)

One of the most powerful tools of genetic algorithms is NSGA-II. It uses the non-
dominated sorting for the solutions in the population. The non-dominated solutions
are ranked at every iteration, and are excluded from the population in every itera-
tion afterwards. In addition, in each ranked-solution set, the solutions are compared
to each other by their crowding formation. In the crowding step, the position of a
single solution is measured by its distance from the adjacent solutions’ points, and
based on its distance, the solution is assigned with a rank, as the best ranks start
from the shortest distance to the longest one [10].

NSGA-II has been used to solve multi-objective problems aimed at the optimal-
ity of energy consumption and sustainability in buildings. For instance:

• Eliades et al. [19] used NSGA-II to optimally select the installation locations for
indoor air quality sensors, in terms of number of sensors, and average and
worst-case impact damage while considering the building’s usage in the
parameters. A simple 5-room building and a 14-room house were studied to
illustrate the performance of the proposed model, with 5 and 2310
contamination scenarios, respectively. Grid and random sampling were used to
construct the contamination scenarios, and the multi-zone building program
CONTAM simulated them.

• In zero-energy-building (ZEB), Hamdy et al. [20] used a modified version of
NSGA-II to find solutions for the optimal cost and nearly zero energy building
performance with respect to the guidelines of European directives for the
energy performance of buildings. Due to the large number of combinations,
the solution space was divided into three stages. The total number of
combinations (179, 712) in the first stage were searched in 800 runs.

• Huws and Jankovic [21] took into account future weather changes that could
affect retrofitting strategies. These weather changes may eventually unsettle
the performance of zero-carbon buildings by increasing the carbon emissions
or cost, or in some cases a combination of these may create thermal discomfort.
For that reason and to achieve optimal solutions for retrofit, environmental,
social, and economic constraints were considered in optimizing the objectives
of minimizing cost, CO2, and thermal discomfort. A simple 60 m2 box model
was created using the DesignBuilder program. DesignBuilder and JEPlus were
used to perform the optimization process. NSGA-II within JEPlus was used for
its capability of searching a large solutions space, and to avoid being stuck in a
local suboptimum. The results indicated that there is an applicable alternative
for both current and future weather.
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• Subsequently, Cheng and Tran [15] proposed opposition-based multi-objective
DE. The aim was to optimize construction products in terms of cost, time and
environmental impact. The model used opposition-based learning to increase
precision and convergence speed. A tunnel project consisting of 25 activities
was used to test the model. The proposed model was superior compared to
NSGA-II, PSO, and DE algorithms. The exact approach also outperformed
these algorithms in a similar study conducted by Cheng and Tran [16].

• The goal of the Cheng and Tran [16] study was to minimize project time
(Eq. (3)), project cost (Eq. (4)), and the utilization of resources (Eqs. (5) and
(6)) in overtime shifts.
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where in Eq. (3), TSn
n is the duration of the activity n{n = 1, 2,…, l} on the critical

path for a specific option of resources (Sn); l is the total number of critical activities
on a specific critical path; ESn is the earliest start of activity n; Dn is the duration of
activity n. In Eq. (4), CostSnn is the total cost which includes direct and indirect cost
of activity n for a specific option of resources (Sn); N is the total number of
activities. In Eqs. (5) and (6), LHE is the total number of evening shift work hours
and LHN is the total number of night shift work hours. Because risks faced in night
shiftwork are typically higher than in other shifts, W is the defined weight that
represents the relative importance of minimizing LHN.

A 15-activity and a 60-activity project were used to test the model. In just one
run, the model was capable of finding Pareto-optimal solutions to solve the objec-
tives of the problem.

It can be concluded that the DE algorithm is capable of optimizing several
objectives of time, cost, resource utilization, and environmental impact. Moreover,
as DE and its variations successfully optimized those objectives, they also surpassed
ACO, PSO, and NSGA-II in construction scheduling optimization.

3.3 Strength Pareto evolutionary algorithm (SPEA)

SPEA works by archiving the non-dominated solutions found in the Pareto-front
at every iteration. Then, based on the number of solutions it dominates, each
solution in the archive is ranked with a strength rate [10, 17].

In dealing with scheduling problems, SPEA was proposed by Elazouni and Abido
[18] to optimize the three conflicting objectives of maximizing profit and minimiz-
ing required finance and resource idle days. The study used two examples from the
literature to test the efficiency and scalability of the model. In the first example, the
model was tested for its effectiveness in solving a 9-activity project. The model
confirmed its robustness by achieving 50 identical solutions. By searching these
solutions using a fuzzy based method, the top ones were selected. In the second
example, an 18-activity project was used to assess the model’s scalability.
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Four solutions (maximum profit, minimum finance, minimum resource idle days,
and the top compromised solution) were drawn from the 48 solutions obtained in
the Pareto-optimal front. Clustering the Pareto solutions set was used to keep it
within a manageable size. Nevertheless, because of the clustering, this method may
result in the loss of some extreme Pareto solutions.

By optimizing the construction objectives of profit and resources, SPEA has
verified its efficiency in the scheduling field. However, the clustering method
proposed by Elazouni and Abido [18] should be avoided when using SPEA in order
to avoid the elimination of some extreme Pareto solutions. New clustering
approaches should be explored in upcoming studies.

3.4 Non-dominated sorting genetic algorithm-II (NSGA-II)

One of the most powerful tools of genetic algorithms is NSGA-II. It uses the non-
dominated sorting for the solutions in the population. The non-dominated solutions
are ranked at every iteration, and are excluded from the population in every itera-
tion afterwards. In addition, in each ranked-solution set, the solutions are compared
to each other by their crowding formation. In the crowding step, the position of a
single solution is measured by its distance from the adjacent solutions’ points, and
based on its distance, the solution is assigned with a rank, as the best ranks start
from the shortest distance to the longest one [10].

NSGA-II has been used to solve multi-objective problems aimed at the optimal-
ity of energy consumption and sustainability in buildings. For instance:

• Eliades et al. [19] used NSGA-II to optimally select the installation locations for
indoor air quality sensors, in terms of number of sensors, and average and
worst-case impact damage while considering the building’s usage in the
parameters. A simple 5-room building and a 14-room house were studied to
illustrate the performance of the proposed model, with 5 and 2310
contamination scenarios, respectively. Grid and random sampling were used to
construct the contamination scenarios, and the multi-zone building program
CONTAM simulated them.

• In zero-energy-building (ZEB), Hamdy et al. [20] used a modified version of
NSGA-II to find solutions for the optimal cost and nearly zero energy building
performance with respect to the guidelines of European directives for the
energy performance of buildings. Due to the large number of combinations,
the solution space was divided into three stages. The total number of
combinations (179, 712) in the first stage were searched in 800 runs.

• Huws and Jankovic [21] took into account future weather changes that could
affect retrofitting strategies. These weather changes may eventually unsettle
the performance of zero-carbon buildings by increasing the carbon emissions
or cost, or in some cases a combination of these may create thermal discomfort.
For that reason and to achieve optimal solutions for retrofit, environmental,
social, and economic constraints were considered in optimizing the objectives
of minimizing cost, CO2, and thermal discomfort. A simple 60 m2 box model
was created using the DesignBuilder program. DesignBuilder and JEPlus were
used to perform the optimization process. NSGA-II within JEPlus was used for
its capability of searching a large solutions space, and to avoid being stuck in a
local suboptimum. The results indicated that there is an applicable alternative
for both current and future weather.
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• In sustainability for low-income housing, Marzouk and Metawie [22]
incorporated NSGA-II with BIM to assist the Egyptian government find
solutions that best optimize those objectives. The BIM model was created
using Revit. The model was defined based on the quantities and properties of
the materials extracted from the BIM model. These quantities helped to find
the different solutions in terms of project cost, duration and maximum LEED
points. Construction productivity and cost were determined using a 44-
activitiy low-income housing building. Moreover, LEED points were calculated
through five credits chosen from the materials and resources category.

• Kasinalis et al. [23] studied the improvement of indoor environment while
reducing the energy consumption in climate adaptive building shells, and
quantified the impact of using seasonal adaptation façade on those objectives.
The example of an office zone model was used to evaluate the approach. The
combination of daylight and energy simulations were utilized with NSGA-II to
perform multi-objective optimization on that example. The optimization
process considered six design parameters for the façade. The results showed
that using a seasonal adaptation façade with these parameters is more efficient
than a non-adaptive façade, since it can save up to 18% of energy consumption
and enhance the quality of the indoor environment.

• Inyim et al. [24] approached the problem of building components and material
selection by using (SimulEICon) a BIM tool that simulates the environmental
impact in buildings. The optimization process of time, cost and CO2 emissions
was performed by NSGA-II. The case study was an actual zero net energy
house. The model considered 16 activities and 185 building components. It was
found that some of the combinations of components suggested by SimulEICon
matched the original component combinations used in the existing house.
However, SimulEICon lacked the ability to account for more than three
objectives.

• Carreras et al. [25] introduced an approach for selecting the thickness of
insulation material for building shells. The objective of the study was to select
the best option for the insulation that optimizes the costs (Eq. (7)) and
environmental impacts (Eq. (8)) associated with energy consumption.

Min Costtotal ¼ Costcub þ Costelec_n (7)

Min Imptotal ¼ Impcub þ Impelec (8)

where Costtotal is the total cost, Costcub is the cost of the materials used; Costelec_n
is the cost of the electricity consumed over the operational phase (n years); Imptotal
is the total environmental impact; Impcub is the total impact of the materials used;
and Impelec is the impact of the consumed electricity over the operational phase.

The authors used the example of a cubicle without insulation to compare the
different results collected from using two cases of insulation. In the first case,
similar thicknesses were used over the cubicle, while in the second case, different
thicknesses were considered. Three materials were considered in the insulation
selection process (polyurethane, mineral wool, and polystyrene). From the results,
the polyurethane insulation was the least costly solution, whereas the optimal envi-
ronmental impact solution was mineral wool insulation. The proposed methodology
could improve the costs and environmental impacts by almost 40% when compared
to a non-insulated cubicle.
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Site operations and planning problems were also tackled using NSGA-II.
For instance:

• Fallah-Mehdipour et al. [26] applied NSGA-II to solve two tradeoff problems,
time-cost and time-cost-quality, respectively. To validate the proposed
method, an 18-activity and a 7-activity work schedule were utilized.
Additionally, multi-objective PSO was applied. The results showed that NSGA-
II was superior to multi-objective PSO.

• In managing and storing materials in a construction site, Said and El-Rayes
[27] presented an automated module, which imports its data from BIM
files and historical schedule data. A module in the system was named
construction logistics planning (CLP) and aimed to minimize the cost of
logistics and the criticality of the schedule. These objectives were optimized
by tackling four decision variables using NSGA-II. An application model of
a 10-storey building project was used to apply the optimization process.
The automated system generated better results compared to using CLP
alone. A total of 361 optimal solutions were produced within 65 hours.
Unlike CLP, which considered the utilization of exterior site space and
disregarded the interior one, the system generated the solutions accounting
for both spaces.

• In site operations, Parente et al. [28] proposed NSGA-II to optimize the
allocation of compaction equipment within the criteria of cost and time
associated with earthworks in large infrastructure projects. Additionally, linear
programming was used for the allocation of the remaining equipment such as
trucks and excavators. The proposed method which uses an actual construction
site as a case study proved to be superior to the S-metric selection evolutionary
algorithm as well as manual allocation.

NSGA-II was used to find solutions in problems involving upgrade plans for
water networks and slum areas. For example:

• Creaco et al. [29] divided the construction phases of a water network upgrade
into four phases, considering the different phases of upgrades to the water
network in a 100-year plan of possible upgrades. NSGA-II was used with a
model of six network nodes and eight pipe laying locations to find the optimal
solutions within the two objective functions: maximizing the minimum
pressure and minimizing the cost, while the pipe diameters are acting as the
decision variables. The proposed approach provided better results than the
studies that used single phasing, by giving the optimal solution for maintaining
the water distribution and pressure quality through the time of upgrade phases.
In a similar study, Creaco et al. [30] proposed the use of NSGA-II while
considering an additional factor to the study, which was the uncertainty of
water demand. The authors determined the uncertainty using a probabilistic
approach. Based on an example with 26 network nodes and 31 pipe laying
locations. The probabilistic approach was compared with the deterministic
approach used by Creaco et al. [29]. The results revealed that the solutions
obtained by the probabilistic approach had higher costs than the solutions of
the deterministic approach, especially in the first phase. However, the
probabilistic solutions generated better results in terms of costs when the
comparison was about the worst-case scenario.
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• In sustainability for low-income housing, Marzouk and Metawie [22]
incorporated NSGA-II with BIM to assist the Egyptian government find
solutions that best optimize those objectives. The BIM model was created
using Revit. The model was defined based on the quantities and properties of
the materials extracted from the BIM model. These quantities helped to find
the different solutions in terms of project cost, duration and maximum LEED
points. Construction productivity and cost were determined using a 44-
activitiy low-income housing building. Moreover, LEED points were calculated
through five credits chosen from the materials and resources category.

• Kasinalis et al. [23] studied the improvement of indoor environment while
reducing the energy consumption in climate adaptive building shells, and
quantified the impact of using seasonal adaptation façade on those objectives.
The example of an office zone model was used to evaluate the approach. The
combination of daylight and energy simulations were utilized with NSGA-II to
perform multi-objective optimization on that example. The optimization
process considered six design parameters for the façade. The results showed
that using a seasonal adaptation façade with these parameters is more efficient
than a non-adaptive façade, since it can save up to 18% of energy consumption
and enhance the quality of the indoor environment.

• Inyim et al. [24] approached the problem of building components and material
selection by using (SimulEICon) a BIM tool that simulates the environmental
impact in buildings. The optimization process of time, cost and CO2 emissions
was performed by NSGA-II. The case study was an actual zero net energy
house. The model considered 16 activities and 185 building components. It was
found that some of the combinations of components suggested by SimulEICon
matched the original component combinations used in the existing house.
However, SimulEICon lacked the ability to account for more than three
objectives.

• Carreras et al. [25] introduced an approach for selecting the thickness of
insulation material for building shells. The objective of the study was to select
the best option for the insulation that optimizes the costs (Eq. (7)) and
environmental impacts (Eq. (8)) associated with energy consumption.

Min Costtotal ¼ Costcub þ Costelec_n (7)

Min Imptotal ¼ Impcub þ Impelec (8)

where Costtotal is the total cost, Costcub is the cost of the materials used; Costelec_n
is the cost of the electricity consumed over the operational phase (n years); Imptotal
is the total environmental impact; Impcub is the total impact of the materials used;
and Impelec is the impact of the consumed electricity over the operational phase.

The authors used the example of a cubicle without insulation to compare the
different results collected from using two cases of insulation. In the first case,
similar thicknesses were used over the cubicle, while in the second case, different
thicknesses were considered. Three materials were considered in the insulation
selection process (polyurethane, mineral wool, and polystyrene). From the results,
the polyurethane insulation was the least costly solution, whereas the optimal envi-
ronmental impact solution was mineral wool insulation. The proposed methodology
could improve the costs and environmental impacts by almost 40% when compared
to a non-insulated cubicle.
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Site operations and planning problems were also tackled using NSGA-II.
For instance:

• Fallah-Mehdipour et al. [26] applied NSGA-II to solve two tradeoff problems,
time-cost and time-cost-quality, respectively. To validate the proposed
method, an 18-activity and a 7-activity work schedule were utilized.
Additionally, multi-objective PSO was applied. The results showed that NSGA-
II was superior to multi-objective PSO.

• In managing and storing materials in a construction site, Said and El-Rayes
[27] presented an automated module, which imports its data from BIM
files and historical schedule data. A module in the system was named
construction logistics planning (CLP) and aimed to minimize the cost of
logistics and the criticality of the schedule. These objectives were optimized
by tackling four decision variables using NSGA-II. An application model of
a 10-storey building project was used to apply the optimization process.
The automated system generated better results compared to using CLP
alone. A total of 361 optimal solutions were produced within 65 hours.
Unlike CLP, which considered the utilization of exterior site space and
disregarded the interior one, the system generated the solutions accounting
for both spaces.

• In site operations, Parente et al. [28] proposed NSGA-II to optimize the
allocation of compaction equipment within the criteria of cost and time
associated with earthworks in large infrastructure projects. Additionally, linear
programming was used for the allocation of the remaining equipment such as
trucks and excavators. The proposed method which uses an actual construction
site as a case study proved to be superior to the S-metric selection evolutionary
algorithm as well as manual allocation.

NSGA-II was used to find solutions in problems involving upgrade plans for
water networks and slum areas. For example:

• Creaco et al. [29] divided the construction phases of a water network upgrade
into four phases, considering the different phases of upgrades to the water
network in a 100-year plan of possible upgrades. NSGA-II was used with a
model of six network nodes and eight pipe laying locations to find the optimal
solutions within the two objective functions: maximizing the minimum
pressure and minimizing the cost, while the pipe diameters are acting as the
decision variables. The proposed approach provided better results than the
studies that used single phasing, by giving the optimal solution for maintaining
the water distribution and pressure quality through the time of upgrade phases.
In a similar study, Creaco et al. [30] proposed the use of NSGA-II while
considering an additional factor to the study, which was the uncertainty of
water demand. The authors determined the uncertainty using a probabilistic
approach. Based on an example with 26 network nodes and 31 pipe laying
locations. The probabilistic approach was compared with the deterministic
approach used by Creaco et al. [29]. The results revealed that the solutions
obtained by the probabilistic approach had higher costs than the solutions of
the deterministic approach, especially in the first phase. However, the
probabilistic solutions generated better results in terms of costs when the
comparison was about the worst-case scenario.
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• In uneven ground levels of slum areas, El-Anwar and Abdel Aziz [31] used an
example of nine-zone slum area with a population of 2770 families to select the
optimal upgrade plan. The optimization process involved three objectives:
maximization of benefit of proposed upgrading projects, minimization of costs
and socioeconomic disruption for the families. Due to its superiority over other
GAs in solving multi-objective problems, NSGA-II was selected to solve the
problem in which it generated 2000 solutions in less than 1 minute.
Nevertheless, the time schedules module was not included in the model hence
affecting its robustness.

• Brownlee and Wright [32] analyzed the relationship between design objectives
and the effectiveness of design variables on the design objectives by using
NSGA-II. They sorted the objectives by simple ranking. The approach was
performed on a five-zone building with only two design objectives. The
objectives to be minimized were total annual energy use and capital cost, and
the design variables were 52 in total. Forty-nine solutions were generated using
NSGA-II. However, the proposed approach failed to discriminate the distance
variables which are the variables that measure the sets from the true Pareto-
optimal set from the floating variables which are the variables that have no
effect on the objective function.

As the above-cited studies show, the NSGA-II proved its capability in optimizing
for scheduling, urban planning, infrastructure, sustainability, energy and environ-
mental design, and resource management. In addition to its superiority over other
GAs, NSGA-II has also outperformed other methods in some fields. One of those is
the multi-objective PSO applied to scheduling problems.

3.5 Niched Pareto genetic algorithm (NPGA)

The tournament selection among a population’s individuals and Pareto domi-
nance are the two basic ideas of NPGA’s process. The selection process is based on
the dominance of two randomly selected individuals from the population. To
determine which individual of these two is dominant over the other, another set of
individuals are picked and used to go against the two competing individuals, to
examine the level of the two competing individuals in dominating each individual
of the set. The winning criterion is defined by Pareto-front dominance. Therefore,
one of the two competing individuals is selected if the other is dominated by one of
the individuals in the set [33, 34].

Kim et al. [35] used NPGA to optimize cost, time and resource utilization. They
optimized the three objectives at the same time. To test the performance of the
method, they conducted two case studies. The first case had 11 activities, and
measured the method’s efficiency in solving the tradeoff problem between cost and
time. In addition to the objectives in the first case, the second case extended the
examination of the approach by including the resource-leveling index as an objec-
tive. The results showed that this method could provide decision makers with
different solutions to enable them selecting the one that meets their preferences.

3.6 Multi-objective genetic algorithm (MOGA)

MOGA is an advanced version of traditional GA. The difference between MOGA
and GA is the individual fitness assignment, while the remaining steps are followed
as in GA. In MOGA, ranking is assigned for each individual in the population. The
rank is assigned based on individual’s dominance, if the individual is not dominated
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by another individual in the population then it is assigned with the rank of one. But
if an individual is dominated by other individuals then it is assigned with a rank
corresponding to the total number of dominating individuals plus one [36].

• MOGA has shown its capabilities in achieving optimal structural design. For
example, Richardson et al. [37] tackled the design problem of an x-bracing
structural system for a building façade. Minimizing the cost of the bracing
connections and the effectiveness of the bracings were the objectives under the
multi-objective topology optimization process (Eq. (9)).

min
x

f xð Þ ¼ f 1; f 2
� �

(9)

where f1 is the cost objective function expressed in Eq. (10), x is the variable
vector of length n, and f2 is the relative tier deflection objective function expressed
in Eq. (11).

Min f1 ¼
Xn
i¼1

ai:xi (10)

Min f 2 ¼ max
∣d1∣
h1

;
∣d2 � d1∣

h2
;
∣d3 � d2∣

h3

� �
(11)

where ai is a weighting coefficient related to the grouping of components based
on symmetry; xi is the topology variable associated with bracing(s) i; hj is the height
of tier j; and dj is the measured deflection of tier j from rest position.

While the constraints change as the design progresses, the proposed approach
dynamically adapts to those constraints. Museum façades were picked to test the
performance of the optimization method.

• In reducing the energy consumed and environmental impact in buildings,
Baglivo et al. [38] have used an improved version of MOGA (MOGA-II) on
combinations of sustainable building materials for external walls of zero energy
buildings, to achieve the best optimal solutions in balancing the life cycle cost
and energy consumption. The materials were tested according to their thermal
characteristics based on the Mediterranean climate. The assessment of material
combinations was carried on six thermal-related objectives. The study
concluded that the best selection of materials for external walls was by placing
the insulation coating on the external side of the wall, while placing the high
internal capacity material on the interior side. Similarly, Baglivo et al. [39] have
conducted a study that added one more objective to the same six objectives.

3.7 Particle swarm optimization (PSO)

The pattern of flocking birds and fish was the inspiration of PSO. In PSO, a set of
solutions is called swarm, while a solution is called particle [26]. The particles are
positioned in a D-dimensional search space. In each step, every particle changes its
velocity to move toward the best solution and toward the global best solution [40].

Different issues of construction engineering and management were tackled by
PSO. Some studies proposed PSO to solve site planning problems. For instance:

• Xu and Li [41] proposed permutation-based PSO to solve the planning problem
of a dynamic construction site layout, in which ordinal numbers assigned to the
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• In uneven ground levels of slum areas, El-Anwar and Abdel Aziz [31] used an
example of nine-zone slum area with a population of 2770 families to select the
optimal upgrade plan. The optimization process involved three objectives:
maximization of benefit of proposed upgrading projects, minimization of costs
and socioeconomic disruption for the families. Due to its superiority over other
GAs in solving multi-objective problems, NSGA-II was selected to solve the
problem in which it generated 2000 solutions in less than 1 minute.
Nevertheless, the time schedules module was not included in the model hence
affecting its robustness.

• Brownlee and Wright [32] analyzed the relationship between design objectives
and the effectiveness of design variables on the design objectives by using
NSGA-II. They sorted the objectives by simple ranking. The approach was
performed on a five-zone building with only two design objectives. The
objectives to be minimized were total annual energy use and capital cost, and
the design variables were 52 in total. Forty-nine solutions were generated using
NSGA-II. However, the proposed approach failed to discriminate the distance
variables which are the variables that measure the sets from the true Pareto-
optimal set from the floating variables which are the variables that have no
effect on the objective function.

As the above-cited studies show, the NSGA-II proved its capability in optimizing
for scheduling, urban planning, infrastructure, sustainability, energy and environ-
mental design, and resource management. In addition to its superiority over other
GAs, NSGA-II has also outperformed other methods in some fields. One of those is
the multi-objective PSO applied to scheduling problems.

3.5 Niched Pareto genetic algorithm (NPGA)

The tournament selection among a population’s individuals and Pareto domi-
nance are the two basic ideas of NPGA’s process. The selection process is based on
the dominance of two randomly selected individuals from the population. To
determine which individual of these two is dominant over the other, another set of
individuals are picked and used to go against the two competing individuals, to
examine the level of the two competing individuals in dominating each individual
of the set. The winning criterion is defined by Pareto-front dominance. Therefore,
one of the two competing individuals is selected if the other is dominated by one of
the individuals in the set [33, 34].

Kim et al. [35] used NPGA to optimize cost, time and resource utilization. They
optimized the three objectives at the same time. To test the performance of the
method, they conducted two case studies. The first case had 11 activities, and
measured the method’s efficiency in solving the tradeoff problem between cost and
time. In addition to the objectives in the first case, the second case extended the
examination of the approach by including the resource-leveling index as an objec-
tive. The results showed that this method could provide decision makers with
different solutions to enable them selecting the one that meets their preferences.

3.6 Multi-objective genetic algorithm (MOGA)

MOGA is an advanced version of traditional GA. The difference between MOGA
and GA is the individual fitness assignment, while the remaining steps are followed
as in GA. In MOGA, ranking is assigned for each individual in the population. The
rank is assigned based on individual’s dominance, if the individual is not dominated
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by another individual in the population then it is assigned with the rank of one. But
if an individual is dominated by other individuals then it is assigned with a rank
corresponding to the total number of dominating individuals plus one [36].

• MOGA has shown its capabilities in achieving optimal structural design. For
example, Richardson et al. [37] tackled the design problem of an x-bracing
structural system for a building façade. Minimizing the cost of the bracing
connections and the effectiveness of the bracings were the objectives under the
multi-objective topology optimization process (Eq. (9)).

min
x

f xð Þ ¼ f 1; f 2
� �

(9)

where f1 is the cost objective function expressed in Eq. (10), x is the variable
vector of length n, and f2 is the relative tier deflection objective function expressed
in Eq. (11).

Min f1 ¼
Xn
i¼1

ai:xi (10)

Min f 2 ¼ max
∣d1∣
h1

;
∣d2 � d1∣

h2
;
∣d3 � d2∣

h3

� �
(11)

where ai is a weighting coefficient related to the grouping of components based
on symmetry; xi is the topology variable associated with bracing(s) i; hj is the height
of tier j; and dj is the measured deflection of tier j from rest position.

While the constraints change as the design progresses, the proposed approach
dynamically adapts to those constraints. Museum façades were picked to test the
performance of the optimization method.

• In reducing the energy consumed and environmental impact in buildings,
Baglivo et al. [38] have used an improved version of MOGA (MOGA-II) on
combinations of sustainable building materials for external walls of zero energy
buildings, to achieve the best optimal solutions in balancing the life cycle cost
and energy consumption. The materials were tested according to their thermal
characteristics based on the Mediterranean climate. The assessment of material
combinations was carried on six thermal-related objectives. The study
concluded that the best selection of materials for external walls was by placing
the insulation coating on the external side of the wall, while placing the high
internal capacity material on the interior side. Similarly, Baglivo et al. [39] have
conducted a study that added one more objective to the same six objectives.

3.7 Particle swarm optimization (PSO)

The pattern of flocking birds and fish was the inspiration of PSO. In PSO, a set of
solutions is called swarm, while a solution is called particle [26]. The particles are
positioned in a D-dimensional search space. In each step, every particle changes its
velocity to move toward the best solution and toward the global best solution [40].

Different issues of construction engineering and management were tackled by
PSO. Some studies proposed PSO to solve site planning problems. For instance:

• Xu and Li [41] proposed permutation-based PSO to solve the planning problem
of a dynamic construction site layout, in which ordinal numbers assigned to the

57

Overview of Multi-Objective Optimization Approaches in Construction Project Management
DOI: http://dx.doi.org/10.5772/intechopen.88185



particles were used to present the potential solutions. The objectives
considered in the problem were the layout cost and the environmental and
safety accidents. Since the study accounted for uncertainty, fuzzy random
variables were included in the model. The model used the example of 14
temporary facilities in a hydropower project to evaluate its efficiency. The
proposed approach proved to be more realistic than existing traditional
approaches.

• Xu and Song [42] approached the problem of unequal-area departments in
dynamic temporary facility layout using position-based adaptive PSO. By using
the facilities’ coordinates as base for its model, the optimization process aimed
at minimizing the total distance between adjacent facilities and the resulting
costs associated with rearrangement and transportation, in which the
transportation costs were considered as fuzzy random variables. The modified
PSO was evaluated through a case study of a large-scale hydropower
construction project. The proposed method showed better performance in
obtaining optimal solutions when compared to standard PSO and GA.

• Li et al. [43] proposed a modified PSO to achieve optimal solutions for dynamic
construction site layout and security planning. The study approached the
problem using the Stackelberg Game theory, in which the construction
manager (the leader) must set up the layout and secure the facilities, then the
attacker (the follower) has to create the maximum possible economic damage
to the facilities. Bi-level multi-objective PSO was proposed to solve the
problem. The method was implemented in a hydropower construction project
to test its performance. The proposed method outperformed GA in achieving
optimal solutions.

PSO has also been used in tackling different objectives in the maintenance of
deteriorating structures. For example:

• Yang et al. [44] approached the problem of life cycle maintenance planning for
deteriorating bridges using PSO with Monte Carlo simulation (MCS). Cost,
safety and condition levels were the main objectives in the maintenance
problem. Uncertainties in the maintenance cost, work effects of maintenance,
and the structure’ deterioration rate were also accounted for in the study.
Parallel programming was used to minimize the computing time to solve the
problem. Yang et al. [44] considered three paradigms in the programming
process, namely master-slave, island, and diffusion. In each paradigm, the
computers have a different set up to run MCS in parallel. From the analysis, the
island paradigm surpassed the other two in terms of solution quality. By
comparison, the multi-objective PSO algorithm outperformed NSGA-II.

• Chiu and Lin [45] proposed PSO to achieve the optimal strategies in
maintaining reinforced concrete buildings. The authors considered five
objectives in the study, which are life cycle cost, failure possibility, spalling
possibility, maintenance rationality, and maintenance times. Assessment
models of probabilistic effects were employed to observe the effects of
maintenance strategies on the damage index. The four processes of analysis of
deterioration, assessment of seismic performance, forming maintenance
strategies, and multi-objective optimization were performed in the proposed
maintenance strategy. The evaluation was completed using a case study of a
four-story reinforced concrete school building.
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Some researchers used PSO to tackle different design objectives and constraints
to achieve optimal sustainable design solutions. For instance:

• Decker et al. [46] have proposed a PSO algorithm to reach better design
solutions in timber buildings. In addition to architectural, energy and
environmental constraints, the study added structural constraints. The
optimization process was in terms of energy needs, thermal discomfort, floor
vibration, CO2 emissions, and embodied energy. To minimize computing time,
the simulation model was transformed using a metamodeling procedure. A
three-story office building was used as a case study to validate the proposed
approach.

• Chou and Le [47] used PSO in combination with MCS to attain the optimal
solutions for building designs in terms of minimizing duration (Eq. (12)), cost
(Eq. (13)), and CO2 emissions (Eq. (14)).

Min Fdur ¼ ESfin þ
Xn
i¼1

ESi (12)

Min Fcost ¼
Xn
i¼1

Wi:COSTi (13)

Min FCO2 ¼
Xn
i¼1

Wi:FCi (14)

where Fdur, Fcost, and FCO2 represent project duration, project cost, and CO2

emissions, respectively; ESfin is the early start of the finish activity; ESi is the
early start of activity i; COSTi is the unit cost of activity i; n is the number of
activities; and FCi is the amount of CO2 emitted to complete a unit of work of
activity i.

In addition to PSO, a probabilistic method was applied to handle the uncer-
tainties associated with the objectives of the study. The case study of a 12-activity
roadway pavement project was used to evaluate the performance of the proposed
method.

In sum, PSO proved its effectiveness in tackling the multi-objective optimization
problems in different construction engineering and management areas such as site
planning, maintenance of a structure, and sustainability issues. It was found that
PSO’s performance was superior compared to traditional approaches such as GA
and advanced approaches such as NSGA-II.

3.8 Ant colony optimization (ACO)

The stimulus in discovering the ACO algorithm was the movement of ants and
their trails of pheromones when searching for food. In the ACO process, each
solution is connected to a route that is searched by an ant. Each solution’s quality is
evaluated by the quantity of pheromones that were deposited on the route by ants.
The amount of pheromone left on a route indicates the closeness to the optimal
solution. The chance of finding the shortest route increases for an ant as the amount
of pheromone on a route increases [48].

The proximity and number of construction facilities and other resources on a
construction site could contribute to an increase in cost and safety issues. Ning and
Lam [49] developed a modified ACO model to tackle safety and cost problems
within a site layout of irregular shape. The model was aimed to minimizing safety/
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costs associated with rearrangement and transportation, in which the
transportation costs were considered as fuzzy random variables. The modified
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problem using the Stackelberg Game theory, in which the construction
manager (the leader) must set up the layout and secure the facilities, then the
attacker (the follower) has to create the maximum possible economic damage
to the facilities. Bi-level multi-objective PSO was proposed to solve the
problem. The method was implemented in a hydropower construction project
to test its performance. The proposed method outperformed GA in achieving
optimal solutions.

PSO has also been used in tackling different objectives in the maintenance of
deteriorating structures. For example:

• Yang et al. [44] approached the problem of life cycle maintenance planning for
deteriorating bridges using PSO with Monte Carlo simulation (MCS). Cost,
safety and condition levels were the main objectives in the maintenance
problem. Uncertainties in the maintenance cost, work effects of maintenance,
and the structure’ deterioration rate were also accounted for in the study.
Parallel programming was used to minimize the computing time to solve the
problem. Yang et al. [44] considered three paradigms in the programming
process, namely master-slave, island, and diffusion. In each paradigm, the
computers have a different set up to run MCS in parallel. From the analysis, the
island paradigm surpassed the other two in terms of solution quality. By
comparison, the multi-objective PSO algorithm outperformed NSGA-II.

• Chiu and Lin [45] proposed PSO to achieve the optimal strategies in
maintaining reinforced concrete buildings. The authors considered five
objectives in the study, which are life cycle cost, failure possibility, spalling
possibility, maintenance rationality, and maintenance times. Assessment
models of probabilistic effects were employed to observe the effects of
maintenance strategies on the damage index. The four processes of analysis of
deterioration, assessment of seismic performance, forming maintenance
strategies, and multi-objective optimization were performed in the proposed
maintenance strategy. The evaluation was completed using a case study of a
four-story reinforced concrete school building.
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Some researchers used PSO to tackle different design objectives and constraints
to achieve optimal sustainable design solutions. For instance:

• Decker et al. [46] have proposed a PSO algorithm to reach better design
solutions in timber buildings. In addition to architectural, energy and
environmental constraints, the study added structural constraints. The
optimization process was in terms of energy needs, thermal discomfort, floor
vibration, CO2 emissions, and embodied energy. To minimize computing time,
the simulation model was transformed using a metamodeling procedure. A
three-story office building was used as a case study to validate the proposed
approach.

• Chou and Le [47] used PSO in combination with MCS to attain the optimal
solutions for building designs in terms of minimizing duration (Eq. (12)), cost
(Eq. (13)), and CO2 emissions (Eq. (14)).
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where Fdur, Fcost, and FCO2 represent project duration, project cost, and CO2

emissions, respectively; ESfin is the early start of the finish activity; ESi is the
early start of activity i; COSTi is the unit cost of activity i; n is the number of
activities; and FCi is the amount of CO2 emitted to complete a unit of work of
activity i.

In addition to PSO, a probabilistic method was applied to handle the uncer-
tainties associated with the objectives of the study. The case study of a 12-activity
roadway pavement project was used to evaluate the performance of the proposed
method.

In sum, PSO proved its effectiveness in tackling the multi-objective optimization
problems in different construction engineering and management areas such as site
planning, maintenance of a structure, and sustainability issues. It was found that
PSO’s performance was superior compared to traditional approaches such as GA
and advanced approaches such as NSGA-II.

3.8 Ant colony optimization (ACO)

The stimulus in discovering the ACO algorithm was the movement of ants and
their trails of pheromones when searching for food. In the ACO process, each
solution is connected to a route that is searched by an ant. Each solution’s quality is
evaluated by the quantity of pheromones that were deposited on the route by ants.
The amount of pheromone left on a route indicates the closeness to the optimal
solution. The chance of finding the shortest route increases for an ant as the amount
of pheromone on a route increases [48].

The proximity and number of construction facilities and other resources on a
construction site could contribute to an increase in cost and safety issues. Ning and
Lam [49] developed a modified ACO model to tackle safety and cost problems
within a site layout of irregular shape. The model was aimed to minimizing safety/
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environmental concerns by reducing the occurrence of accidents (Eq. (15)) as well
as minimizing the total handling cost between facilities by reducing the cost associ-
ated with resource exchanges among facilities (Eq. (16)).

Min f 1 ¼ min
Xn
i¼1

Xn
j¼1

Xn

l¼1

Xn

k¼1

Sijdklxikxjl (15)

Min f 2 ¼ min
Xn
i¼1

Xn
j¼1

Xn

l¼1

Xn

k¼1

Cijdklxikxjl (16)

where Sij is the closeness relationship value for safety/environmental concerns
between facilities i and j; Cij is the total closeness relationship value for the total
handling cost between facilities i and j; dkl is the distance between facilities k and l;
xik means when facility i is assigned to location k; and xjl means when facility j is
assigned to location l.

The optimization process started by dividing the site layout into a grid. The grid
units were selected based upon the dimensions of the facilities. Then, the ACO
model was used to assign the different facilities on the site grid. To test the sound-
ness of the model, a residential project composed of four buildings was selected. The
proposed grid strategy reduced the complexity of the computational process.

3.9 Analytic network process (ANP)

Like the analytic hierarchy process, decision makers utilize ANP to solve multi-
criteria decision problems. The AHP uses a one-way top-down hierarchal process
for its components such as goals, criteria, and alternatives [50]. The ANP which is a
generalized version of AHP uses a network for some problems when their compo-
nents have interdependencies between them. The flow in the ANP’s network is open
and allows any component to interact with another regardless of their levels, which
is not possible in AHP [51].

Liang and Wey [52] proposed an ANP model to optimally select government
projects by accounting for the limitation of resources along with uncertainties and
socioeconomic factors. In order to test the model’s effectiveness, seven projects in a
nation-wide highway improvement project were used as an example. In the exam-
ple, construction costs were determined by probability distributions and seven
criteria were used to evaluate the projects. Moreover, since the model involves the
use of multiple criteria, ANP was combined with MCS to make the selection of
projects based on the solutions achieved by solving the multi-objective problems.
ANP ranking was used to rank each project based on its value of priority among
other projects. A cost-benefit approach was used to optimize the selection of pro-
jects based on the existing budget plan and the allocation of remaining budget to
fund a project in full. The four objectives within these two problems were minimi-
zation of cost (Eq. (17)) and the number of project managers (Eq. (18)), and the
maximization of project ranking (Eq. (19)) and the number of completed projects
(Eq. (20)).

Minimize modified mean absolute deviation of cost ¼ Min

Pn
i¼1
Pm

j¼1 y
þ
ij

nm
(17)

Minimize number of project managers ¼ Min
Xn
i¼1

PMNOixi (18)
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Maximize project ranking ¼ Max
Xn
i¼1

RANKixi (19)

Maximize number of completed projects ¼ Max
Xn
i¼1

xi (20)

where n is the number of projects; m is the number of scenarios; yþij is the
positive deviation of the cost of the scenario from the expected cost of the project;
RANKi is the ranking given to project i based on the ANP computation; xi is a binary
variable which has a value of 1 if project i is selected, and 0 otherwise; and PMNOi is
the number of project managers needed to complete project i.

3.10 Shuffled frog-leaping algorithm (SFLA)

The SFLA idea is based on frogs’ behavior in their search to locate the largest
quantities of food [53]. A single solution is represented by one frog [54, 55]. The
frogs are divided into groups (memeplexes). Each memeplex of frogs performs a
local search, and every frog has an idea which is affected by other frogs’ ideas to
improve the quality of the local search [56]. A shuffling process is performed to
allow the memeplexes in exchanging information between them and create new
memeplexes to ultimately improve their quality of search [53, 54, 56].

Improving the quality of the final product with limited resources is the ultimate
goal of construction managers and planners. Time, cost, and resources play impor-
tant roles in achieving this goal. Ashuri and Tavakolan [57] concurrently optimized
three objectives: the duration expressed by sum of the durations of activities on the
critical path, the project cost including direct and indirect costs, and resource
allocation variations expressed in Eq. (21).

Min SSRð Þ ¼ min
XTD

k¼1

XS
n¼1

R2
n,d

 !
(21)

where Rn,d is the number of the nth resource with n = 1, 2, … , S that is planned
for use in day d with d = 1, 2, … ,TD of the project duration.

To solve these problems, they used the SFLA model. In order to find feasible
solutions to the problem at hand, the model accounts for the reallocation of
resources and for activity interruptions and splitting. In addition, the authors made
use of the advantages of PSO and the shuffling complex evolution algorithm, which
helped the model achieve better solutions and converge more rapidly. A 7-activity
and an 18-activity project were utilized to assess the efficiency of the model. Delphi
was the coding environment for the model. Due to the complexity of the problem,
the solutions obtained were near-optimal. However, the proposed model generated
better solutions than other algorithms used prior to the study.

3.11 Simulated annealing algorithm (SA)

SA inherits its method from the movements of atoms within a material during
the process of heating and then slowly cooling down [58]. In the optimization
problem, the physical system’s characteristics resemble the actual annealing process
[10]. Talbi [10] listed the characteristics of physical annealing with their
corresponding characteristics of the optimization problem. In physical annealing,
temperature and speed of cooling down play important roles on the strength of
metals. Deficiencies (metastable states) occur when cooling down speed is fast or
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environmental concerns by reducing the occurrence of accidents (Eq. (15)) as well
as minimizing the total handling cost between facilities by reducing the cost associ-
ated with resource exchanges among facilities (Eq. (16)).

Min f 1 ¼ min
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Xn
j¼1

Xn

l¼1

Xn

k¼1

Sijdklxikxjl (15)

Min f 2 ¼ min
Xn
i¼1

Xn
j¼1

Xn

l¼1

Xn

k¼1

Cijdklxikxjl (16)

where Sij is the closeness relationship value for safety/environmental concerns
between facilities i and j; Cij is the total closeness relationship value for the total
handling cost between facilities i and j; dkl is the distance between facilities k and l;
xik means when facility i is assigned to location k; and xjl means when facility j is
assigned to location l.

The optimization process started by dividing the site layout into a grid. The grid
units were selected based upon the dimensions of the facilities. Then, the ACO
model was used to assign the different facilities on the site grid. To test the sound-
ness of the model, a residential project composed of four buildings was selected. The
proposed grid strategy reduced the complexity of the computational process.

3.9 Analytic network process (ANP)

Like the analytic hierarchy process, decision makers utilize ANP to solve multi-
criteria decision problems. The AHP uses a one-way top-down hierarchal process
for its components such as goals, criteria, and alternatives [50]. The ANP which is a
generalized version of AHP uses a network for some problems when their compo-
nents have interdependencies between them. The flow in the ANP’s network is open
and allows any component to interact with another regardless of their levels, which
is not possible in AHP [51].

Liang and Wey [52] proposed an ANP model to optimally select government
projects by accounting for the limitation of resources along with uncertainties and
socioeconomic factors. In order to test the model’s effectiveness, seven projects in a
nation-wide highway improvement project were used as an example. In the exam-
ple, construction costs were determined by probability distributions and seven
criteria were used to evaluate the projects. Moreover, since the model involves the
use of multiple criteria, ANP was combined with MCS to make the selection of
projects based on the solutions achieved by solving the multi-objective problems.
ANP ranking was used to rank each project based on its value of priority among
other projects. A cost-benefit approach was used to optimize the selection of pro-
jects based on the existing budget plan and the allocation of remaining budget to
fund a project in full. The four objectives within these two problems were minimi-
zation of cost (Eq. (17)) and the number of project managers (Eq. (18)), and the
maximization of project ranking (Eq. (19)) and the number of completed projects
(Eq. (20)).

Minimize modified mean absolute deviation of cost ¼ Min

Pn
i¼1
Pm

j¼1 y
þ
ij
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Xn
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Maximize number of completed projects ¼ Max
Xn
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xi (20)

where n is the number of projects; m is the number of scenarios; yþij is the
positive deviation of the cost of the scenario from the expected cost of the project;
RANKi is the ranking given to project i based on the ANP computation; xi is a binary
variable which has a value of 1 if project i is selected, and 0 otherwise; and PMNOi is
the number of project managers needed to complete project i.

3.10 Shuffled frog-leaping algorithm (SFLA)

The SFLA idea is based on frogs’ behavior in their search to locate the largest
quantities of food [53]. A single solution is represented by one frog [54, 55]. The
frogs are divided into groups (memeplexes). Each memeplex of frogs performs a
local search, and every frog has an idea which is affected by other frogs’ ideas to
improve the quality of the local search [56]. A shuffling process is performed to
allow the memeplexes in exchanging information between them and create new
memeplexes to ultimately improve their quality of search [53, 54, 56].

Improving the quality of the final product with limited resources is the ultimate
goal of construction managers and planners. Time, cost, and resources play impor-
tant roles in achieving this goal. Ashuri and Tavakolan [57] concurrently optimized
three objectives: the duration expressed by sum of the durations of activities on the
critical path, the project cost including direct and indirect costs, and resource
allocation variations expressed in Eq. (21).

Min SSRð Þ ¼ min
XTD

k¼1

XS
n¼1

R2
n,d

 !
(21)

where Rn,d is the number of the nth resource with n = 1, 2, … , S that is planned
for use in day d with d = 1, 2, … ,TD of the project duration.

To solve these problems, they used the SFLA model. In order to find feasible
solutions to the problem at hand, the model accounts for the reallocation of
resources and for activity interruptions and splitting. In addition, the authors made
use of the advantages of PSO and the shuffling complex evolution algorithm, which
helped the model achieve better solutions and converge more rapidly. A 7-activity
and an 18-activity project were utilized to assess the efficiency of the model. Delphi
was the coding environment for the model. Due to the complexity of the problem,
the solutions obtained were near-optimal. However, the proposed model generated
better solutions than other algorithms used prior to the study.

3.11 Simulated annealing algorithm (SA)

SA inherits its method from the movements of atoms within a material during
the process of heating and then slowly cooling down [58]. In the optimization
problem, the physical system’s characteristics resemble the actual annealing process
[10]. Talbi [10] listed the characteristics of physical annealing with their
corresponding characteristics of the optimization problem. In physical annealing,
temperature and speed of cooling down play important roles on the strength of
metals. Deficiencies (metastable states) occur when cooling down speed is fast or
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the temperature at the start is not high enough [59]. That means carefully setting up
the temperature and cooling down speed is essential in escaping the local optimum
—metastable state in physical annealing—and reaching the global optimum. A
solution that is generated after an iteration is used, if feasible, to generate a new
solution, but if the solution is infeasible, it is accepted only if it meets the probabil-
ity criterion [10, 60]. The probability increases in obtaining an optimal or near-
optimal solution when the annealing is slowed down [61].

To optimally design and construct a water distribution network, Marques et al.
[62] proposed a model that used the SA algorithm combined with the EPANET
hydraulic simulator. The objective was to minimize the cost of construction and
operation including the initial and future costs, and to minimize violations in
pressure as expressed in Eq. (22).

Min TPV ¼
XNS

s¼1

XNTI

t¼1

XNDC

d¼1

XNN

n¼1

max 0; Pdesmin,n,d � Pn,d, t, sð Þf g (22)

where TPV is the total pressure violations; NS is the number of scenarios; NTI is
the number of periods into which the planning horizon is subdivided; NDC is the
number of demand conditions considered for the design; NN is the number of
nodes; Pdesmin,n,d is the minimum desirable pressure at node n for demand condition
d; and Pn,d,t,s is the pressure at node n at demand condition d for time interval t and
in scenario s.

Eight scenarios were accounted for varying between three possible patterns of
growth in the area: expansion, no expansion, and depopulation in a 60-year period.
They split the 60-year duration of the plan into 320-year stages, and structured
them into a decision tree to show the probability of the paths in each scenario.
They used a 17-node distribution network to illustrate the model’s efficiency.
The decision variables included cost, diameters of pipes (eight diameters were
considered), and carbon emissions produced during construction and operation
(in terms of tons). The value of the objective function was not noticeably affected
by the decision variable of carbon emission costs.

3.12 Plant growth simulation algorithm (PGSA)

The PGSA imitates the growth process of trees. The model’s formulation for the
optimization process in PGSA is based on the growth of plants [63]. It begins at the
root then moves toward the light source (global optimum solution) to grow the
branches [64]. A probability model is employed to form new branches which are
used to guide the objective function toward the optimal solution [65].

To better minimize the losses and costs caused by an attack to the construction
site and to increase the safety precautions to counter these attacks, Li et al. [66]
used a bi-level model. The objectives of reducing attack-related cost and increasing
facility productivity were considered at the upper level, in which the secured
facilities were constrained by cost. The attacker, on the other hand, has the objec-
tive of reducing facility productivity, which is considered in the lower level. The
formulation of the objective functions is as follows:
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where D is the resource supply rate; zj is 1 when facility j is secured and 0
otherwise; sj is 1 when facility j is attacked and 0 otherwise; θij is the weight of
demand’s importance; 0 ≤ θij ≤ 1; dij is 1 when demand of facility i is served by
facility j and 0 otherwise; pk is the occurrence probabilities of the kth degree attack,
k ∈ {1, … , 5}; and μrijk is the mean value of the fill rate of facility j to facility i when
facility j is attacked.
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where C is the economic loss of defender;Mj is the cost of securing facility j; and
μcjk is the mean value of the economic loss when facility j is attacked.

Because integer programming made the problem complicated, the authors pro-
posed PGSA. The model was applied on an actual hydropower project. Fifty runs
were executed to achieve the optimal solution in less than 4 minutes. Even though
the proposed model efficiently solved the problem, it did not top the list of algo-
rithms. This study was the first study to apply PGSA on the problem of construction
site security.

3.13 Hungarian algorithm (HA)

The Hungarian algorithm is a modified form of the primal-dual algorithm that is
used to solve network flows. In assignment problems, the Hungarian algorithm
changes the weights in a matrix to locate the optimal assignment. Eventually, a new
matrix is obtained in which the optimal assignment is identified [67].

El-Anwar and Chen [68] proposed a modified Hungarian algorithm to solve
post-disaster temporary housing problems. They considered the problem as an
integer problem. An earthquake simulation example was used to examine the
model’s efficiency. The number of decision variables was determined by multiply-
ing the housing alternatives (178) with the number displaced families (5000).
Throughout the 13 temporary housing problems, a varying number of decision
variables were considered. In terms of the running time, the Hungarian algorithm
has shown superiority over integer programming. In the example, the running time
for integer programming increased exponentially as the number of decision vari-
ables increased, and ran out of memory in case more than 24,000 decision variables
were used. The Hungarian algorithm, on the other hand, solved all the problems
with the maximum number of decision variables (890,000).

3.14 Mixed-integer nonlinear programming (MINLP)

MINLP is an optimization problem in which the variables are constrained to
continuous (e.g., costs, dimensions, mass, etc.) and integer values (typically binary
0 and 1), and the solution space and the objective functions are represented by
nonlinear functions [69–71]. To solve complex problems that involve nonlinearity
and mixed-integers, MINLP utilizes the combination of mixed-integer program-
ming (MIP) and nonlinear programming (NLP) [72]. Thus, in solving MINLP
problems, the approach is not considered a direct problem solver. The methods used
to solve MINLP optimization problems include: branch and bound method, benders
decomposition, and outer approximation algorithm [73].

• Fan and Xia [74] used MINLP to reduce energy consumption in residential
buildings. The objectives of the study were to increase the energy savings and
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the temperature at the start is not high enough [59]. That means carefully setting up
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pressure as expressed in Eq. (22).
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the number of periods into which the planning horizon is subdivided; NDC is the
number of demand conditions considered for the design; NN is the number of
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d; and Pn,d,t,s is the pressure at node n at demand condition d for time interval t and
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They split the 60-year duration of the plan into 320-year stages, and structured
them into a decision tree to show the probability of the paths in each scenario.
They used a 17-node distribution network to illustrate the model’s efficiency.
The decision variables included cost, diameters of pipes (eight diameters were
considered), and carbon emissions produced during construction and operation
(in terms of tons). The value of the objective function was not noticeably affected
by the decision variable of carbon emission costs.

3.12 Plant growth simulation algorithm (PGSA)

The PGSA imitates the growth process of trees. The model’s formulation for the
optimization process in PGSA is based on the growth of plants [63]. It begins at the
root then moves toward the light source (global optimum solution) to grow the
branches [64]. A probability model is employed to form new branches which are
used to guide the objective function toward the optimal solution [65].

To better minimize the losses and costs caused by an attack to the construction
site and to increase the safety precautions to counter these attacks, Li et al. [66]
used a bi-level model. The objectives of reducing attack-related cost and increasing
facility productivity were considered at the upper level, in which the secured
facilities were constrained by cost. The attacker, on the other hand, has the objec-
tive of reducing facility productivity, which is considered in the lower level. The
formulation of the objective functions is as follows:
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where D is the resource supply rate; zj is 1 when facility j is secured and 0
otherwise; sj is 1 when facility j is attacked and 0 otherwise; θij is the weight of
demand’s importance; 0 ≤ θij ≤ 1; dij is 1 when demand of facility i is served by
facility j and 0 otherwise; pk is the occurrence probabilities of the kth degree attack,
k ∈ {1, … , 5}; and μrijk is the mean value of the fill rate of facility j to facility i when
facility j is attacked.
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where C is the economic loss of defender;Mj is the cost of securing facility j; and
μcjk is the mean value of the economic loss when facility j is attacked.

Because integer programming made the problem complicated, the authors pro-
posed PGSA. The model was applied on an actual hydropower project. Fifty runs
were executed to achieve the optimal solution in less than 4 minutes. Even though
the proposed model efficiently solved the problem, it did not top the list of algo-
rithms. This study was the first study to apply PGSA on the problem of construction
site security.

3.13 Hungarian algorithm (HA)

The Hungarian algorithm is a modified form of the primal-dual algorithm that is
used to solve network flows. In assignment problems, the Hungarian algorithm
changes the weights in a matrix to locate the optimal assignment. Eventually, a new
matrix is obtained in which the optimal assignment is identified [67].

El-Anwar and Chen [68] proposed a modified Hungarian algorithm to solve
post-disaster temporary housing problems. They considered the problem as an
integer problem. An earthquake simulation example was used to examine the
model’s efficiency. The number of decision variables was determined by multiply-
ing the housing alternatives (178) with the number displaced families (5000).
Throughout the 13 temporary housing problems, a varying number of decision
variables were considered. In terms of the running time, the Hungarian algorithm
has shown superiority over integer programming. In the example, the running time
for integer programming increased exponentially as the number of decision vari-
ables increased, and ran out of memory in case more than 24,000 decision variables
were used. The Hungarian algorithm, on the other hand, solved all the problems
with the maximum number of decision variables (890,000).

3.14 Mixed-integer nonlinear programming (MINLP)

MINLP is an optimization problem in which the variables are constrained to
continuous (e.g., costs, dimensions, mass, etc.) and integer values (typically binary
0 and 1), and the solution space and the objective functions are represented by
nonlinear functions [69–71]. To solve complex problems that involve nonlinearity
and mixed-integers, MINLP utilizes the combination of mixed-integer program-
ming (MIP) and nonlinear programming (NLP) [72]. Thus, in solving MINLP
problems, the approach is not considered a direct problem solver. The methods used
to solve MINLP optimization problems include: branch and bound method, benders
decomposition, and outer approximation algorithm [73].

• Fan and Xia [74] used MINLP to reduce energy consumption in residential
buildings. The objectives of the study were to increase the energy savings and
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economic benefits within budget limitations. The example of a 69-year old
house was used to test the model, in which the retrofitting plan included the
insulation materials for the roof and external walls, windows, and the
installation of solar panels. The model proved to be effective in minimizing the
energy consumed by the building; from the results obtained, in a 10-year
period, the house could save around 288.44 MWh.

• Karmellos et al. [75] also used MINLP to optimize the energy used by a
building. The minimization of energy consumption every year and the cost of
investments were the two main objectives in the optimization process. To test
the model’s soundness, the energy consumption in two houses was
investigated. The first case involved a new house located in the UK while the
second case was an existing house located in Greece. Fifty-four decision
variables were accounted for in the model, which represented different
building components including electrical appliances, building envelope, and
lighting and energy systems. The model was effective in solving the
optimization problem of and building energy. It was found that energy
consumption goes down when investments in energy efficiency are increased.

3.15 Hybrid approaches

One way in approaching complex optimization problems is to combine two or
more techniques together in order to overcome the deficiencies that one or some of
them may possess. This approach could affect the overall quality of the solution in
an optimization problem. The hybridization of methods has shown its efficacy in
accomplishing optimization quality in construction. Hybrid methods have different
operational characteristics in tackling optimization problems. While some hybrid
methods work by carrying the entire solution process as a single novel technique,
others work in tandem whereby one method works on some steps of the solution
process and the other steps are completed by another method.

NSGA-II was hybridized with other approaches to solve optimization problems
in construction planning, scheduling, energy conservation, transportation, and
environmental design. For example:

• Mungle et al. [76] used fuzzy clustering-based genetic algorithm (FCGA) to
find optimal solutions for the trade-off problem of time, cost and quality
within the construction tasks. The method hybridized the fuzzy clustering
approach with NSGA-II. In addition, AHP was utilized to measure the
construction activities’ quality. To evaluate the model’s efficiency, a highway
construction project was selected as an example. The authors used the example
in three cases with different number of activities, i.e., eighteen, twelve, and
seven-activity networks, in which the proposed approach was compared to
other methods. The results of the comparison showed that FCGA surpassed
MOPSO, MOGA and SPEA-II in terms of diversity as well as the speed and
degree of convergence.

• Monghasemi et al. [77] proposed an approach that combines NSGA-II with
MOGA to solve a discrete problem of cost, time, and quality in construction
project scheduling. An 18-activity highway construction project was used to
examine the proposed model. MOGA was utilized to search the large size of 3.6
billion solutions and obtain near true optimal solutions. Shannon’s entropy
method was used to assign normalized weights to the three objectives in the
obtained solutions. These weights were used to rank the solutions by
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performing the evidential reasoning method, which assist decision makers in
assessing each solution in terms of performance.

• Brownlee and Wright [78] proposed modified approaches of NSGA-II on a
simulation-based optimization problem for building energy. The minimization
of energy usage and construction cost were the two objectives in the
optimization process. The aim of the study was to find an approach that
surpasses the basic NSGA-II in terms of convergence rate and solution quality.
The study used a middle floor from a commercial office building in three
different cities to test the proposed model. The authors merged NSGA-II with
two other approaches, namely radial basis function networks and deterministic
infeasibility sorting. These approaches enabled the model to prevent the
elimination of infeasible solutions and to keep them in the population. The
objectives were represented by 50 decision variables (30 continuous, 8 integers
and 12 categorical) and 18 inequality constraints. Moreover, the optimization
runs were limited to 5000 completed within almost a day by six parallel
simulations. The model was found superior to the basic NSGA-II in two of the
three building examples.

• Xu et al. [79] proposed a multi-objective bi-level PSO (MOBLPSO) to optimize
the minimum cost network flow of construction material transportation in
terms of duration and cost. In the upper level of the model, the time to
transport materials in addition to direct costs were minimized by the
contractor by selecting the most convenient routes for transporting materials.
Depending on the decisions made in the model’s upper level, every
transporter’s flow of material in those routes were considered by the
transportation manager to reduce the costs of transportation. Because of the
complexity of the problem the PSO approach was hybridized with two other
methods, one in each level. In the upper level, PSO was integrated with Pareto
Archived Evolution Strategy (PAES) to keep the best position for the solutions
up to date. In the lower level, PSO used passive congregation to prevent the
convergence from happening too early. The case of an actual hydropower
construction project was utilized to examine the model’s soundness. The model
outperformed multi-objective bi-level genetic algorithms (MOBLGA) and the
multi-objective bi-level simulated annealing algorithm (MOBLSA).

• Xu et al. [80] conducted a similar study to the one mentioned above, but in this
study the cost and duration of transportation were considered as fuzzy random
variables. A fuzzy random simulation-based constraint checking procedure
was coupled with MOBLPSO to solve the transportation assignment problem
which was used to control the flow of materials within a given period. The road
network of an existing hydropower project was used for the evaluation of the
model. With accounting for uncertainties, the model showed its efficiency and
capability of solving the transportation problem.

• Zhang et al. [81] proposed immune genetic PSO (IGPSO) which couples
immune genetic algorithm with PSO. The approach was used to tackle the
trade-off problem of time-cost-quality in construction, and accounting for
bonus and penalty. The hybrid method in the research obtained its
characteristics from three methods: (1) from the immune algorithm, whereby
the hybrid method inherits the immune selection and the memory recognition;
(2) from the genetic algorithm, which implements mutation and crossover;
and (3) by limiting the particles’ maximum velocity using the constriction
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economic benefits within budget limitations. The example of a 69-year old
house was used to test the model, in which the retrofitting plan included the
insulation materials for the roof and external walls, windows, and the
installation of solar panels. The model proved to be effective in minimizing the
energy consumed by the building; from the results obtained, in a 10-year
period, the house could save around 288.44 MWh.

• Karmellos et al. [75] also used MINLP to optimize the energy used by a
building. The minimization of energy consumption every year and the cost of
investments were the two main objectives in the optimization process. To test
the model’s soundness, the energy consumption in two houses was
investigated. The first case involved a new house located in the UK while the
second case was an existing house located in Greece. Fifty-four decision
variables were accounted for in the model, which represented different
building components including electrical appliances, building envelope, and
lighting and energy systems. The model was effective in solving the
optimization problem of and building energy. It was found that energy
consumption goes down when investments in energy efficiency are increased.

3.15 Hybrid approaches

One way in approaching complex optimization problems is to combine two or
more techniques together in order to overcome the deficiencies that one or some of
them may possess. This approach could affect the overall quality of the solution in
an optimization problem. The hybridization of methods has shown its efficacy in
accomplishing optimization quality in construction. Hybrid methods have different
operational characteristics in tackling optimization problems. While some hybrid
methods work by carrying the entire solution process as a single novel technique,
others work in tandem whereby one method works on some steps of the solution
process and the other steps are completed by another method.

NSGA-II was hybridized with other approaches to solve optimization problems
in construction planning, scheduling, energy conservation, transportation, and
environmental design. For example:

• Mungle et al. [76] used fuzzy clustering-based genetic algorithm (FCGA) to
find optimal solutions for the trade-off problem of time, cost and quality
within the construction tasks. The method hybridized the fuzzy clustering
approach with NSGA-II. In addition, AHP was utilized to measure the
construction activities’ quality. To evaluate the model’s efficiency, a highway
construction project was selected as an example. The authors used the example
in three cases with different number of activities, i.e., eighteen, twelve, and
seven-activity networks, in which the proposed approach was compared to
other methods. The results of the comparison showed that FCGA surpassed
MOPSO, MOGA and SPEA-II in terms of diversity as well as the speed and
degree of convergence.

• Monghasemi et al. [77] proposed an approach that combines NSGA-II with
MOGA to solve a discrete problem of cost, time, and quality in construction
project scheduling. An 18-activity highway construction project was used to
examine the proposed model. MOGA was utilized to search the large size of 3.6
billion solutions and obtain near true optimal solutions. Shannon’s entropy
method was used to assign normalized weights to the three objectives in the
obtained solutions. These weights were used to rank the solutions by
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performing the evidential reasoning method, which assist decision makers in
assessing each solution in terms of performance.

• Brownlee and Wright [78] proposed modified approaches of NSGA-II on a
simulation-based optimization problem for building energy. The minimization
of energy usage and construction cost were the two objectives in the
optimization process. The aim of the study was to find an approach that
surpasses the basic NSGA-II in terms of convergence rate and solution quality.
The study used a middle floor from a commercial office building in three
different cities to test the proposed model. The authors merged NSGA-II with
two other approaches, namely radial basis function networks and deterministic
infeasibility sorting. These approaches enabled the model to prevent the
elimination of infeasible solutions and to keep them in the population. The
objectives were represented by 50 decision variables (30 continuous, 8 integers
and 12 categorical) and 18 inequality constraints. Moreover, the optimization
runs were limited to 5000 completed within almost a day by six parallel
simulations. The model was found superior to the basic NSGA-II in two of the
three building examples.

• Xu et al. [79] proposed a multi-objective bi-level PSO (MOBLPSO) to optimize
the minimum cost network flow of construction material transportation in
terms of duration and cost. In the upper level of the model, the time to
transport materials in addition to direct costs were minimized by the
contractor by selecting the most convenient routes for transporting materials.
Depending on the decisions made in the model’s upper level, every
transporter’s flow of material in those routes were considered by the
transportation manager to reduce the costs of transportation. Because of the
complexity of the problem the PSO approach was hybridized with two other
methods, one in each level. In the upper level, PSO was integrated with Pareto
Archived Evolution Strategy (PAES) to keep the best position for the solutions
up to date. In the lower level, PSO used passive congregation to prevent the
convergence from happening too early. The case of an actual hydropower
construction project was utilized to examine the model’s soundness. The model
outperformed multi-objective bi-level genetic algorithms (MOBLGA) and the
multi-objective bi-level simulated annealing algorithm (MOBLSA).

• Xu et al. [80] conducted a similar study to the one mentioned above, but in this
study the cost and duration of transportation were considered as fuzzy random
variables. A fuzzy random simulation-based constraint checking procedure
was coupled with MOBLPSO to solve the transportation assignment problem
which was used to control the flow of materials within a given period. The road
network of an existing hydropower project was used for the evaluation of the
model. With accounting for uncertainties, the model showed its efficiency and
capability of solving the transportation problem.

• Zhang et al. [81] proposed immune genetic PSO (IGPSO) which couples
immune genetic algorithm with PSO. The approach was used to tackle the
trade-off problem of time-cost-quality in construction, and accounting for
bonus and penalty. The hybrid method in the research obtained its
characteristics from three methods: (1) from the immune algorithm, whereby
the hybrid method inherits the immune selection and the memory recognition;
(2) from the genetic algorithm, which implements mutation and crossover;
and (3) by limiting the particles’ maximum velocity using the constriction
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factor in PSO, which speeds up the convergence in initial steps. In addition, the
study used a PERT network instead of CPM for the schedule. The model was
applied on the 19 activities of a three-floor office building, and proved its
effectiveness in solving the trade-off problem.

• In the trade-off problem, some researchers used the double-loop technique, in
which the internal loop executes the simulation, while the external loop carries
out the optimization process. However, this technique uses MCS and can
sometimes take days to finish the process. Therefore, Yang et al. [82] proposed
a procedure that combines the double-loop into one, and used MCS and
support vector regression (SVR) with PSO to expedite the process of obtaining
optimal solutions for the time-cost trade-off problem. MCS was set to assess
the initial solutions’ objective values, and a decision function gained by SVR
promptly assesses the solutions obtained by PSO for their objective values.
SVR’s direct assessment contributed in shortening the search time of MCS. To
test the model, an 18-activity project was utilized as an example. The results
obtained showed that the proposed method was superior compared to the
methods that used the double loop.

• Futrell et al. [83] used PSO coupled with Hooke Jeeves and the generic
optimization program (GenOpt) to optimize the performance of daylighting
and thermal systems in buildings. Hooke Jeeves was utilized to fine-tune the
best solution found in the PSO algorithm by locally searching it. The case study
of a classroom design was utilized to evaluate the proposed approach. The
classroom was tested on windows facing north, south, west, and east. It was
found that there was no significant conflict between the optimization
objectives when the windows were facing south, west, or east, but there was a
significant conflict between those objectives in the case of windows
facing north.

• Yahya and Saka [84] used multi-objective artificial bee colony (ABC) with the
Levy flights algorithm to find the ideal layout for a construction site. Levy
flight which uses a random walk pattern searches food locations found by ABC
to locate new solutions. The objective functions of the study were the reduction
of the facilities’ total handling cost, and minimization of environmental and
safety risks. Two practical study cases were used to assess the proposed model.
The first case was a residential project consisting of four high-rise buildings,
and the second case was a three-floor private hospital. The first case which was
a dynamic site layout was taken from Ning et al.’s [85] study, in which they
applied a modified ACO. From the results, the model succeeded in optimizing
the site layout problems. By comparison, the method proposed by Yahya
and Saka [84] surpassed the plain-ABC and the modified ACO used by
Ning et al. [85].

• Tran et al. [86] tackled the trade-off problem of time, cost, and quality using
the combination of multi-objective ABC with DE. DE was included to use its
crossover mutation operators to optimize the stages of exploration and
exploitation. A study case of a construction project consisting of 60 activities
was used to test the model. The result proved the model’s efficacy in the trade-
off problem. The approach was also compared against four other approaches
that were used to solve the trade-off problem. The proposed method
outperformed multi-objective ABC, multi-objective DE, multi-objective PSO,
and NSGA-II.
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• Marzouk et al. [87] presented a hybrid approach that combined ACO with
system dynamics to optimize the selection of sustainable materials. The aim of
the study was the maximization of LEED credits and the minimization of cost.
The authors employed a study case of a two-floor residential building to
validate the efficacy of the model. From the achieved results, the model proved
its capability in accomplishing the two objectives of the problem.

• In building maintenance planning, Wang and Xia [88] used a predictive
control model and DE algorithm to achieve the optimal retrofitting plan that
lowers energy consumption. The study’s first objective aimed at increasing a
project’s internal rate of return. The study’s second objective was to increase
energy savings while accounting for the sustainability period. The authors
tackled the optimization of the maintenance plan in two instances. They
started by solving the optimization problem without the assumption of
uncertainties. They then solved the problem with uncertainties, in which the
predictive control model was utilized. To check the approach’s validity, a case
study that involved the retrofitting of an office building consisting of 50 stories
was considered. The results showed that the proposed approach was effective
in finding the optimal maintenance plan.

The complexity of the problems in construction projects makes objective opti-
mization usually difficult using a single approach. Hybrid techniques are effective
and useful in generating optimal solutions in complex optimization problems. In
some studies, these hybrid methods have outperformed some methods in their basic
and variant forms. In scheduling for example, they were superior to multi-objective
PSO, multi-objective ABC, multi-objective DE, MOGA, SPEA-II, and NSGA-II. In
material logistics, they surpassed multi-objective bi-level GA and multi-objective
bi-level SA. In site planning, they outperformed the basic form of ABC and one of
the ACO variants. Finally, in sustainability, they were superior to NSGA-II.

4. Conclusion

This review included 55 papers that were published in refereed journals and
conference proceedings published in the years 2012–2016. The authors of these
papers conducted studies using various multi-objective optimization methods in the
construction industry. There were 16 methods used in these studies in which some
of the authors justify their picks on multiple factors (e.g., construction project type,
project size, number of objectives, number of constraints, convergence rate, prob-
lem complexity such as constraints’ nonlinearity with discontinuity and continuity,
etc.). Moreover, some methods were found to be more efficient than others in some
studies. For example, in water network planning, Creaco et al. [30] showed that
their NSGA-II using a probabilistic approach was superior to NSGA-II used by
Creaco et al. [29] in an earlier study in which they used a deterministic approach.
The GA proposed by Aziz et al. [6] in a scheduling problem outperformed the GA
utilized by Feng et al. [7] for the same case study. Fallah-Mehdipour et al. [26]
concluded that NSGA-II has performed better than multi-objective PSO in solving a
scheduling problem. Most of the time, it is difficult to guarantee the performance of
a method until it is compared with another method.

The most common number of objectives used in the literature is two and three.
As expected, cost and duration were the most targeted objectives as cost and
duration are important objectives for all construction practitioners. The quality
objective has also drawn the interest of researchers as they sometimes include it in
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factor in PSO, which speeds up the convergence in initial steps. In addition, the
study used a PERT network instead of CPM for the schedule. The model was
applied on the 19 activities of a three-floor office building, and proved its
effectiveness in solving the trade-off problem.

• In the trade-off problem, some researchers used the double-loop technique, in
which the internal loop executes the simulation, while the external loop carries
out the optimization process. However, this technique uses MCS and can
sometimes take days to finish the process. Therefore, Yang et al. [82] proposed
a procedure that combines the double-loop into one, and used MCS and
support vector regression (SVR) with PSO to expedite the process of obtaining
optimal solutions for the time-cost trade-off problem. MCS was set to assess
the initial solutions’ objective values, and a decision function gained by SVR
promptly assesses the solutions obtained by PSO for their objective values.
SVR’s direct assessment contributed in shortening the search time of MCS. To
test the model, an 18-activity project was utilized as an example. The results
obtained showed that the proposed method was superior compared to the
methods that used the double loop.

• Futrell et al. [83] used PSO coupled with Hooke Jeeves and the generic
optimization program (GenOpt) to optimize the performance of daylighting
and thermal systems in buildings. Hooke Jeeves was utilized to fine-tune the
best solution found in the PSO algorithm by locally searching it. The case study
of a classroom design was utilized to evaluate the proposed approach. The
classroom was tested on windows facing north, south, west, and east. It was
found that there was no significant conflict between the optimization
objectives when the windows were facing south, west, or east, but there was a
significant conflict between those objectives in the case of windows
facing north.

• Yahya and Saka [84] used multi-objective artificial bee colony (ABC) with the
Levy flights algorithm to find the ideal layout for a construction site. Levy
flight which uses a random walk pattern searches food locations found by ABC
to locate new solutions. The objective functions of the study were the reduction
of the facilities’ total handling cost, and minimization of environmental and
safety risks. Two practical study cases were used to assess the proposed model.
The first case was a residential project consisting of four high-rise buildings,
and the second case was a three-floor private hospital. The first case which was
a dynamic site layout was taken from Ning et al.’s [85] study, in which they
applied a modified ACO. From the results, the model succeeded in optimizing
the site layout problems. By comparison, the method proposed by Yahya
and Saka [84] surpassed the plain-ABC and the modified ACO used by
Ning et al. [85].

• Tran et al. [86] tackled the trade-off problem of time, cost, and quality using
the combination of multi-objective ABC with DE. DE was included to use its
crossover mutation operators to optimize the stages of exploration and
exploitation. A study case of a construction project consisting of 60 activities
was used to test the model. The result proved the model’s efficacy in the trade-
off problem. The approach was also compared against four other approaches
that were used to solve the trade-off problem. The proposed method
outperformed multi-objective ABC, multi-objective DE, multi-objective PSO,
and NSGA-II.
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• Marzouk et al. [87] presented a hybrid approach that combined ACO with
system dynamics to optimize the selection of sustainable materials. The aim of
the study was the maximization of LEED credits and the minimization of cost.
The authors employed a study case of a two-floor residential building to
validate the efficacy of the model. From the achieved results, the model proved
its capability in accomplishing the two objectives of the problem.

• In building maintenance planning, Wang and Xia [88] used a predictive
control model and DE algorithm to achieve the optimal retrofitting plan that
lowers energy consumption. The study’s first objective aimed at increasing a
project’s internal rate of return. The study’s second objective was to increase
energy savings while accounting for the sustainability period. The authors
tackled the optimization of the maintenance plan in two instances. They
started by solving the optimization problem without the assumption of
uncertainties. They then solved the problem with uncertainties, in which the
predictive control model was utilized. To check the approach’s validity, a case
study that involved the retrofitting of an office building consisting of 50 stories
was considered. The results showed that the proposed approach was effective
in finding the optimal maintenance plan.

The complexity of the problems in construction projects makes objective opti-
mization usually difficult using a single approach. Hybrid techniques are effective
and useful in generating optimal solutions in complex optimization problems. In
some studies, these hybrid methods have outperformed some methods in their basic
and variant forms. In scheduling for example, they were superior to multi-objective
PSO, multi-objective ABC, multi-objective DE, MOGA, SPEA-II, and NSGA-II. In
material logistics, they surpassed multi-objective bi-level GA and multi-objective
bi-level SA. In site planning, they outperformed the basic form of ABC and one of
the ACO variants. Finally, in sustainability, they were superior to NSGA-II.

4. Conclusion

This review included 55 papers that were published in refereed journals and
conference proceedings published in the years 2012–2016. The authors of these
papers conducted studies using various multi-objective optimization methods in the
construction industry. There were 16 methods used in these studies in which some
of the authors justify their picks on multiple factors (e.g., construction project type,
project size, number of objectives, number of constraints, convergence rate, prob-
lem complexity such as constraints’ nonlinearity with discontinuity and continuity,
etc.). Moreover, some methods were found to be more efficient than others in some
studies. For example, in water network planning, Creaco et al. [30] showed that
their NSGA-II using a probabilistic approach was superior to NSGA-II used by
Creaco et al. [29] in an earlier study in which they used a deterministic approach.
The GA proposed by Aziz et al. [6] in a scheduling problem outperformed the GA
utilized by Feng et al. [7] for the same case study. Fallah-Mehdipour et al. [26]
concluded that NSGA-II has performed better than multi-objective PSO in solving a
scheduling problem. Most of the time, it is difficult to guarantee the performance of
a method until it is compared with another method.

The most common number of objectives used in the literature is two and three.
As expected, cost and duration were the most targeted objectives as cost and
duration are important objectives for all construction practitioners. The quality
objective has also drawn the interest of researchers as they sometimes include it in
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trade-off problems with cost and/or duration. However, quality has not been opti-
mized in any other set of objectives than three-objective optimization problems.
The energy and environment category is an important candidate in the optimization
process, as it came after cost and duration objectives based on the number of times
it was optimized. That may be the result of efforts to optimally construct sustain-
able buildings and lower the depletion of natural resources.

Among the multi-objective methods used in the literature, NSGA-II was the
most used method. NSGA-II has proven its capability in solving optimization prob-
lems in different fields of construction. In addition to its popularity among
researchers, NSGA-II has many advantages that make it suitable for many types of
optimization problems such as obtaining diverse solutions in Pareto-front, low
computational complexity, solving problems that involve nonlinearity and
discontinuity.
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Chapter 5

On the Practical Consideration of
Evaluators’ Credibility in
Evaluating Relative Importance of
Criteria for Some Real-Life
Multicriteria Problems: An
Overview
Maznah Mat Kasim

Abstract

A multicriteria (MC) problem usually consists of a set of predetermined alter-
natives or subjects to be analyzed, which is prescribed under a finite number of
criteria. MC problems are found in various applications to solve various area prob-
lems. There are three goals in solving the problems: ranking, sorting or grouping the
alternatives according to their overall scores. Most of MC methods require the
criteria weights to be combined mathematically with the quality of the criteria in
finding the overall score of each alternative. This chapter provides an overview on
the practical consideration of evaluators’ credibility or superiority in calculating the
criteria weights and overall scores of the alternatives. In order to show how the
degree of credibility of evaluators can be practically considered in solving a real
problem, a numerical example of evaluation of students’ academic performance is
available in the Appendix at the end of the chapter. The degree of credibility of
teachers who participated in weighting the academic subjects was determined
objectively, and the rank-based criteria weighting methods were used in the exam-
ple. Inclusion of the degree of credibility of evaluators who participated in solving
multicriteria problems would make the results more realistic and accurate.

Keywords: multicriteria problem, credibility, weights, subjective, aggregation

1. Introduction

Multicriteria decision-making (MCDM) is now considered as one discipline of
knowledge, which has been expanding very fast in its own domain. Basically, it is
about how to make decision when the undertaken issue is surrounded with a
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Multicriteria Problems: An
Overview
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criteria or attributes. If the number of alternatives is finite and known, the task is to
select the best or the optimal alternative, to rank the alternatives according to their
overall quality or performance, or to sort or group the alternatives based on certain
measurements or values. In this case, the MC problem is usually called as a
multiattribute decision-making (MADM) problem, and the alternatives are pre-
scribed under a finite number of criteria or attributes [1]. The MADM methods are
utilized to handle discrete MCDM problems [2]. This chapter focuses on MADM
problems or more generally MCDM problems, where this type of problem has a
finite number of predetermined alternatives, which is described by several criteria
or attributes. MCDM problems can be found in various sectors.

1.1 Examples of multicriteria decision-making problems

Selection problems are really of an MCDM type, a simple problem that we are
facing almost every day, for example, when we want to select a dress or a shirt to
wear. A decision to choose which dress or shirt is based on certain attributes or
factors, such as for what function (office, leisure, and business), color preference,
and style or fashion. Here, the types of dress/cloth are the alternatives, while all
factors that become the basis of evaluation are the attributes. Another example is
when we want to choose the best location to set up projects such as housing,
industrial, agricultural activities, recreation center, hoteling, and so on. Many fac-
tors or criteria that may be conflicting with each other should be considered by the
decision-makers. Selecting the best candidate for various positions that can be
conducted in many settings such as face-to-face interviews or online test is also an
MCDM problem since the selection will be based on certain requirements. Selecting
employees in different organizations with different scope of jobs with different
requirements imposed by the related organization can also be categorized as an
MCDM problem.

Another example is about selection of the best supplier of a manufacturing
firm [3, 4], selection of the best personal computer [5], and selection of a suitable
e-learning system [6] to be implemented in an educational institution. These
studies focused on selecting the best alternative from a finite number of
alternatives that were prescribed under a few evaluation criteria. These studies
have the same main issue that is the relative importance or the weights of the
evaluation criteria toward the overall performance of the alternatives under study.
The studies provide ways to find weights subjectively and how to aggregate the
weights when a group of decision-makers were involved in judging the importance
of the criteria.

In addition, conducting an evaluation of a program, for example, is usually done
after identifying the aspects of the program to evaluate. We may have many pro-
grams to be evaluated under several aspects of evaluations with the involvement of
one evaluator or a group of evaluators. In a different situation, it may be only one
program to be evaluated under several aspects and may be evaluated by one or
many evaluators. Besides, many other evaluation situations are usually performed
with the presence of many criteria such as evaluation of students, evaluation of
employees’ performance, evaluation of learning approaches [7], and evaluation of
students’ performance [8]. In relation to the study about the evaluation of students’
academic performance in primary schools, five academic subjects were assumed to
have different contribution toward the overall performance of the students. A few
experienced teachers were asked to evaluate the degree of importance of the sub-
jects. The resulting weights of the academic subjects were incorporated in finding
the overall academic performance of the students in year six in one selected primary
school in the northern part of Malaysia. For the purpose of illustrating the practical
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consideration of the credibility of the evaluators, the problem of evaluation of
students’ academic performance is extended by considering the credibility of the
teachers who participated in weighting the academic subjects. The detailed discus-
sion is available in the Appendix at the end of the chapter.

1.2 Credibility of the evaluators

Referring to those examples of MCDM scenarios, decision-maker(s) or evaluator
(s) are involved in many stages of the evaluation process in searching for the
optimal solution. As all MCDM problems have two main components, the alterna-
tives and the criteria or attributes, the decision-maker(s) or the evaluator(s) would
involve in at least two situations: deciding the quality of each alternative based on
each of the criteria and also finding the relative importance of the criteria toward
the overall performance of the alternatives. As what is usually arose in solving
MCDM problems, criteria are contributing at different level of importance and
should become a concern to the decision-maker(s) or evaluator(s). The criteria or
attributes of the units to be analyzed should not be assumed to have same contri-
bution toward the overall quality of the alternatives.

Besides having a challenge in finding the suitable evaluator(s) or decision-
maker(s), since they might come with different background and experience, they
also come with different levels of superiority or credibility that should be taken into
consideration. This issue should be thought seriously because the results may be
misleading if those who are involved in doing the evaluation or judgment do not
have enough experience or less credible to give judgment regarding the MCDM
problem under study. Moreover, the results may differ among the evaluators if the
evaluators are at different levels of superiority [9]. Therefore, the credibility of
expert(s) or evaluator(s) or decision-maker(s) who are involved in assessing qual-
ity of the alternatives or relative importance of attributes should be taken into
consideration.

Webster’s New World College Dictionary defines credibility as the quality of
being trustworthy or believable. Credibility is also interpreted by good reputation,
reputation, honor, and the presence of someone who stands out in the professional
community [10]. Meanwhile, professionalism refers to competence or skill
expected of a professional. In other words, a professional is someone who is skilled,
reliable, and entirely responsible for carrying out their duties and profession [11].
This definition of professionalism has a resemblance to the term of credibility so
that the two are like two sides of a coin that cannot be separated. For the purpose of
assessment or evaluation, professionalism and credibility are the competencies of
assessors in carrying out their functions and roles well, full of commitment, trust-
worthiness, and accountability.

It is normal that the assessors have different levels of credibility, and their
credibility should be considered together with their assessments or evaluations. This
chapter provides an overview of the current work on how the credibility of the
decision-maker(s) or evaluator(s) could be considered especially on evaluating the
importance of the criteria or attributes of any MCDM under investigation, how to
quantify the credibility of those people, and how that quantitative values could be
incorporated in finding the overall score of the alternatives. This issue falls under
the concept of group decision-making and extends it with the consideration of the
degree of superiority or credibility of the decision-maker(s) or evaluator(s). By
deliberation of different relative importance of the attributes plus the different level
of credibility or superiority of those who are involved in finding the optimal solu-
tion of the MCDM problem, the solution of the problem would be more realistic,
accurate, and representative of the true setting of the problem.
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In achieving the objective of the writing, the chapter is organized as follows. The
next section describes the basic notations for this chapter. Section 3 discusses the
concept of weights and the related methods, particularly the rank-based weighting
method. Section 4 discusses on the aggregation of criteria weights and the values of
criteria. Section 5 explains how to aggregate the credibility of the evaluators who are
involved in weighting or finding weights or relative importance of the criteria.
Furthermore, Section 5 also illustrates two approaches to aggregate the degree of
credibility of evaluators in finding the relative importance in order to find the
overall performance of the alternatives and their rankings. Section 6 suggests a few
ways to quantify the credibility of the evaluators. The conclusion of the chapter is in
Section 7, which is followed by a list of all references of the chapter. A numerical
example is provided in the Appendix at the end of the chapter.

2. Basic notation

Let A ¼ A1, … ,Anf g be a set of n alternatives that are prescribed under m
criteria, C ¼ C1, … ,Cmf g, and xij be a value of alternative i, under criterion j, where
i ¼ 1, … , n and j ¼ 1, … ,m. Let w ¼ w1, … ,wmf g be the weight of the criteria with
conditions that 0≤w j ≤ 1 and

Pm
j¼1w j ¼ 1. This information can be illustrated as a

decision matrix as shown in Figure 1.
In relation to the numerical example in the Appendix, the students are the

alternatives, while the academic subjects are the criteria. So, A ¼ A1, … ,A10f g
represents a set of 10 students that are prescribed under five academic subjects,
C ¼ C1, … ,C5f g, and xij is the score of student i, under academic subject j, where
i ¼ 1, … , 10 and j ¼ 1, … , 5. The weights of the criteria, w ¼ w1, … ,w5f g, obviously
refer to the relative importance of the academic subjects toward the composite or
final score of each student.

3. Weights of criteria

In finding the relative importance of the criteria or simply the weights of the
criteria, w ¼ w1, … ,wmf g, there are many methods available in literature which are
classified into two main approaches, objective methods and subjective methods

Figure 1.
A multiattribute problem as a decision matrix.
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[12]. The objective methods are data-driven methods where quality values of the
criteria should be available prior to the evaluation of criteria‘s relative importance.
Based on the criteria’s values, proxy measures such as standard deviation, correla-
tion, variance, range, coefficient of variation, and entropy [13–17] would represent
the criteria weights to be calculated. In relation to the concept of entropy, it was
introduced in the communication theory, usually refers to uncertainty. The mea-
sure of entropy is often used to quantify the information or message. However, the
entropy measure has become the proxy measures of criterion weights in MCDM
domain. In other words, these objective methods produce weights of criteria based
on the intrinsic information of the criteria. These methods do not require evaluators
to do the criteria weighting. No further discussion is included in this chapter
because objective weights are not the focus of the chapter.

3.1 Rank-based weighting methods

This subsection focuses on the discussion of rank-based weighting methods
[18, 19] as these methods are used in this chapter in the illustration of practical
consideration of evaluators’ credibility in evaluating relative importance of criteria
for some real-life multicriteria problems. These methods are very easy to use but
have good impact [20]. Three popular rank-based methods are rank-sum (RS), rank
reciprocal (RR), and rank order centroid (ROC). The mathematical representations
of the three methods are as follows.

Suppose r j be a ranking of criterion j given by an evaluator where r j is an integer
number with possible values from 1 to m. The smaller value of r j means that the
ranking of that criterion is higher and more important than the other criteria. The
value of r ¼ r1, … , rmf g can be transformed into w ¼ w1, … ,wmf g by using any of
the following formula for RS, RR, and ROC, respectively. It should be noted that the
sum of weights of the criteria is usually equal to one:

w j rsð Þ ¼
2 mþ 1� r j
� �
m m� 1ð Þ (1)

w j rrð Þ ¼
1=r jPm
j¼11=r j

(2)

w j rocð Þ ¼ 1
m

Xm

k¼1

1
rk

� I rk > r j
� �

(3)

where I rk > r j
� � ¼ 1 if rk ≥ r j

0 ifrk < r j

�
.

Referring to the numerical example in the Appendix, there are five criteria
representing five academic subjects; r j is a ranking of academic subjectj where r j is
an integer number with possible values from 1 to 5, while the value of r ¼
r1, … , r5f g represents ranks of academic subjects 1 to 5 that can be transformed into

weights of academic subjects 1 to 5, w ¼ w1, … ,w5f g, respectively.
Many studies were conducted to study the performance of these rank-based

methods as criteria weighting methods. For example, a simulation experiment was
conducted on investigating the performance of the three rank-based weighting
methods (RS, RR, RS) and equal weights (EW) where the data was generated on a
random basis [16]. Three performance measures of the methods were “hit rate,”
“average value loss,” and “average proportion of maximum value range achieved.”
The results show that the ROC was found to be the best technique in most cases an
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in every measure. Another study on these three rank-based weighting techniques
and EW concludes that the rank-based methods have higher correlations with the
so-called true weights than EW [21].

A study is also done where EW, RS, and ROC methods were compared to direct
rating and ratio weight methods [22]. Basically, the direct rating method is a simple
type of weighting approach in which the decision-maker or the evaluator must rate
all the criteria according to their importance. The evaluator can directly quantify
their preference of the criteria. The rating does not constrain the decision-maker’s
responses since it is possible for the evaluator to alter the importance of one crite-
rion without adjusting the weight of another [23]. The comparison was conducted
under a condition that the evaluators’ judgments of the criteria weights are not
certain and subject to random errors. The results show that the direct rating tends to
give better quality of decision results when the uncertainty is set as small, while
ROC provides comparable results to the ratio weights when a large degree of error is
placed. Please note that the ratio weight method requires the evaluators firstly rank
the related criteria based on their importance. The evaluators should allocate certain
value such as 10 for the least important attribute, and the rest of attributes are
judged as multiples of 10. The weight of a criterion is obtained by dividing the
criterion’s weight with the sum of all attributes’ weights.

The superiority of ROC over other rank-based methods is also subsequently
confirmed in different simulation conditions [24]. An investigation on RS, RR, and
ROC weighting methods was also carried out by changing the number of criteria
from two to seven [25]. It is found that ROC gives the largest gap between the
weights of the most important criterion and the least. RS provides the flattest
weight function in the linear form. For RR, the weight of the most important one
descends most aggressively to that of the second highest weight value, and then, the
function continues to move flatter. In relation to rank-based weighting methods,
another rank-based method was proposed [26]. This new rank-based method is
called as generalized sum of ranks (GRS). Further investigation was carried out
where the performance of GRS was compared to RS, RR, and ROC using a simula-
tion experiment. The result of the investigation shows that GRS has a similar
performance to ROC.

Based on the previous discussion, it can be concluded that the three rank-based
weighting methods, RS, RR, and ROC, are having good features especially the ROC
method. Therefore, these rank-based methods are used in the current study to
illustrate how to include the degree of credibility of the evaluators who are involved
in ranking the importance of the criteria. Furthermore, converting the ranks into
weight values is not difficult, and the related formula is given as in Equations (1),
(2), and (3).

3.2 Other subjective weighting methods

Other subjective weighting methods are analytic hierarchy process (AHP)
[4, 27, 28], swing methods [29, 30], graphical weighting (GW) method [31], and
Delphi method [32]. The AHP technique was introduced in 1980 [33]. It is a very
popular MC approach, and it is done by conducting pairwise comparison of the
importance of each pair of criteria. A prioritization procedure is implemented to
draw a corresponding priority vector, where this priority vector represents the
criteria weights. Thus, if the judgments are consistent, all prioritization proce-
dures would give the same results. At the same time, if the judgments are incon-
sistent, prioritization procedures will provide different priority vectors [34].
Nevertheless, AHP is widely criticized for being such a tedious process, especially
when there are a significant number of criteria or alternatives.
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For the swing method, the evaluator must identify an alternative with the worst
consequences on all attribute. The evaluator(s) can change one of the criteria from
the worst consequence to the best. Then, the evaluator(s) is asked to choose the
criteria that he/she would most prefer to modify from its worst to its best level, the
criterion with the most chosen swing is the most important, and 100 points is
allocated to the most important criterion.

The GW method begins with a horizontal line that is marked with a series of
number, such as (9-7-5-3-1-3-5-7-9). The evaluator is expected to place a mark that
represents the relative importance of a criterion on the horizontal line with the basis
that a criterion is either more, equally, or less important than another criterion by a
factor of 1–9. Then, a decision matrix is built as a pairwise comparison matrix. A
quantitative weight for a criterion can be calculated by taking the sum of each row,
and then the scores are normalized to obtain an overall weight vector. The GW
method enables the evaluators to express preferences in a purely visual way. How-
ever, GW is sometimes criticized, since it allows evaluator(s) to assign weights in a
more relaxed manner.

A Delphi subjective weighting method [35] requires one focus group of evalua-
tors to evaluate the relative importance of the criteria. Each evaluator remains
nameless to each other that can reduce the risk of personal effects or individual bias.
The evaluation is conducted in more than one round until the group ends with a
consensus of opinions on the relative importance of the criteria under study. The
main advantage of this method is that the method avoids confrontation of the
experts [36]. However, to pool up such a focus group is quite costly and timely.

4. Aggregation of criteria weights and values of criteria

Finding the final score of each alternative is very important since the final scores
of the alternatives are required to rank the alternatives. Basically, those alternatives
with higher scores should be positioned at higher rankings and vice versa. In order
to find the overall or composite or final values of each alternative, the criteria
weights should be aggregated with each alternative’s values of the corresponding
criteria. There are many aggregation methods available in literature. The section
focuses on simple additive weighted average (SAW) method as the chapter uses
SAW in the numerical example (in the Appendix at the end of the chapter). Fur-
thermore, SAWmethod is a very well-established method and very easy to use [16].

4.1 Simple additive weighted average (SAW) method

The mathematical equation for SAW is given as follows:

Score Ai ¼
Xm
j¼1

w jxij (4)

Score Ai is the overall score of alternative i. Based on Score Ai, where i ¼ 1, … , n,
the n alternatives could be ranked, selected, or sorted with the condition that the
alternatives with the higher overall scores should be ranked at higher positions.
Referring to the numerical example in the Appendix, Score Ai represents the overall
score of student i, where i = 1, … , 10.

SAW is an old method, and MacCrimmon is one of the first researchers that
summarized this method in 1968 [37]. As a well-established method, it is used
widely [38] in solving MC problems, particularly for the evaluation of alternatives.
Basically, this method is the same as the simple arithmetic average method, but
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in every measure. Another study on these three rank-based weighting techniques
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instead of having the same weight values for the criteria, SAW method uses mostly
distinct weights values of the criteria. As given in Eq. (4), the overall performance
of each alternative is obtained by multiplying the rating of each alternative on each
criterion by the weight assigned to the criterion and then summing these products
over all criteria [15]. The best alternative is the one that obtained the highest score
and will be selected or ranked at the first position. Many recent studies used the
SAW method, for example, in [39–41], and a review on its applications is also
available [42].

Besides SAW or also known as weighted sum method (WSM), there is another
average technique, called weighted product model (WPM) or simple geometric
weighted (SGW) or simple geometric average method. In WPM, the overall per-
formance of each alternative is determined by raising the rating of the alternative to
the power of the criterion weight and then multiplying these products over all
criteria [15]. However, WPM is a little bit complex as compared to SAW sinceWPM
involves power and multiplications.

4.2 Other aggregation methods

AHP [14], technique for order preference by similarity to ideal solution
(TOPSIS), and VlseKriterijumska Optimizacija Kompromisno Resenje (VIKOR) [43]
are also popular aggregation methods in solving MC problems. As previously men-
tioned in Section 3.2, AHP is built under the concept of pairwise comparison either
in finding the criteria weights or criteria values of the alternatives. The aggregation
of criteria weights and the criteria values obtained by AHP is sometimes done by
using the SAW or SGW methods.

AHP and TOPSIS are two different aggregation methods. TOPSIS assigns the
best alternative that relies on the concepts of compromise solution, where the best
alternative is the one that has the shortest distance from the ideal solution and the
farthest distance from the negative ideal solution [44]. In other words, alternatives
are prioritized according to their distances from positive ideal solutions and nega-
tive ideal solutions, and the Euclidean distance approach is utilized to evaluate the
relative closeness of the alternatives to the ideal solutions. There is a series of steps
of TOPSIS, but this method starts with the weighted normalization of all perfor-
mance values against each criterion. Some recent applications of the TOPSIS
method are available [45–48].

VIKOR method [49] is quite similar to TOPSIS method, but there are some
important differences, and one of the differences is about the normalization
process. TOPSIS uses the vector linearization where the normalized value could
be different for different evaluation unit of a certain criterion, while VIKOR
uses linear normalization where the normalized value does not depend on the
evaluation unit of a criterion. VIKOR has also been used in many real-world
MCDM problems such as mobile banking services [50] digital music service plat-
forms [51], military airport location selection [52], concrete bridge projects [53],
risk evaluation of construction projects [54], maritime transportation [55], and
energy management [56].

5. Inclusion of credibility of evaluators in solving multicriteria
problems

This section discusses how credibility can be included practically in solving MC
problems. Suppose the evaluators are requested to evaluate the relative importance
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of the criteria based on rank-based weighting methods as explained in Section 3.1.
Suppose there is a panel of p evaluators, and let rlj be rank of criterion j, evaluated
by evaluator l, where l ¼ 1, … , p. In order to include the credibility of the evalua-
tors, let us introduce a new set of values that represents the different credibility of
the evaluators. Let ul be the degree of credibility of evaluator l, where 0≤ ul ≤ 1, andPp

l¼1u
l ¼ 1. There are two approaches [57] where the degree of credibility of the

evaluators could be attached in finding the overall scores. The first approach is in
calculating the final weight of criteria as given in Figure 1, and the second approach
is in computing the overall performance of the alternatives as given in Figure 2.

For the first approach as portrayed in Figure 2, the degree of credibility of the
evaluators is attached to the resulted weights from the ranks of criteria by using any
of the equations, Eq. (1), Eq. (2), or Eq. (3). So, here there are p sets of weights of
the criteria, and the average of that p weights for each criterion is calculated by
summing up all weights for that criteria and divide the sum with the total number
of evaluators. So now, there is only one set of weights that can be aggregated with
the values of alternatives for each corresponding criterion as given in Eq. (4). There
is only one set of overall performance of all n alternatives.

For the second approach, the criteria weights obtained from each evaluator are
kept, and then each set of weights is aggregated with the quality values of each
alternative. So, here there are p sets of overall values of the alternatives. In order to
get the final overall score of the alternatives, the average of the p scores for each
alternative should be calculated. The ranking or sorting of the alternatives or
selecting the best alternative is done based on the average of that p overall scores of
each individual alternative. The following section provides some suggestion on how
to quantify the credibility of the evaluators.

Referring to the numerical example in the Appendix, there were three evaluators
involved in ranking the importance of the five academic subjects, and the number
of students is 10. So, rlj is the rank of academic subject j , with j = 1,… ,5, evaluated

by evaluator l, where l ¼ 1, … , 3, and n = 10, while ul represents the degree of
credibility of evaluator l, where 0≤ ul ≤ 1, and

P3
l¼1u

l ¼ 1.

6. Quantification of credibility of evaluators

Credibility is synonym to professionalism, integrity, trustworthiness, authority,
and believability. A study focuses on how to assess the credibility of expert wit-
nesses [58]. A 41-item measure was constructed based on the ratings by a panel of
judges, and a factor analysis yielded that credibility is a product of four factors:
likeability, trustworthiness, believability, and intelligence. Another study concerns
about the credibility of information in digital era [59]. Credibility is said to have two
main components: trustworthiness and expertise. However, the authors conclude
that the relation among youth, digital media, and credibility today is sufficiently
complex to resist simple explanations, and their study represents a first step toward
mapping that complexity and providing a basis for future work that seeks to find
explanations.

Figure 2.
Approach 1.
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of TOPSIS, but this method starts with the weighted normalization of all perfor-
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method are available [45–48].
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important differences, and one of the differences is about the normalization
process. TOPSIS uses the vector linearization where the normalized value could
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uses linear normalization where the normalized value does not depend on the
evaluation unit of a criterion. VIKOR has also been used in many real-world
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energy management [56].
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This section discusses how credibility can be included practically in solving MC
problems. Suppose the evaluators are requested to evaluate the relative importance

84

Multicriteria Optimization - Pareto-Optimality and Threshold-Optimality

of the criteria based on rank-based weighting methods as explained in Section 3.1.
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by evaluator l, where l ¼ 1, … , p. In order to include the credibility of the evalua-
tors, let us introduce a new set of values that represents the different credibility of
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evaluators could be attached in finding the overall scores. The first approach is in
calculating the final weight of criteria as given in Figure 1, and the second approach
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Referring to the numerical example in the Appendix, there were three evaluators
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of students is 10. So, rlj is the rank of academic subject j , with j = 1,… ,5, evaluated
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It can be argued that the degree of credibility of evaluators or judges or decision-
makers can be determined subjectively or objectively, where the former one can be
done by using certain construct as proposed in [58] or can be determined based on
certain objective or exact measures such as years of experience, salary scale, or
amount of salary. The quantification of the degree of credibility opens a new
potential area of research as there are very few researches done especially on
finding the suitable objective proxy measures of the degree of credibility.

Finding the degree of credibility subjectively requires more time and much
harder as it involves a construct or an instrument which would be used as a rating
mechanism to obtain the degree of credibility. Meanwhile, finding the degree of
credibility based on objective information is simpler and easier to do. As an illus-
tration on how to quantify the credibility objectively, suppose there are three
experts with their basic salaries in a simple ratio of 1:2:3. So, this ratio can be
converted as 0.167:0.333:0.500, so that the sum of credibility of the evaluators is
equal to 1. These values can be used to represent the degree of credibility of the
evaluators or experts 1, 2, and 3, respectively. It should be noted that the sum of the
degrees of credibility of the three evaluators is equal to one to make the future
calculation simple while easier for interpretation of the values. Here, evaluator 3 is
the most credible one since he/she has the highest salary among the three, and it is a
usual practice that those who are higher in terms of expertise usually are paid
higher. The same computation can be used for the years of experience or
salary scale.

The numerical example in the Appendix extends the problem of evaluating
students’ academic performance which is discussed earlier in the Introduction.
Here, the credibility of the teachers who were asked to assess the relative impor-
tance of the five subjects was considered. In order to incorporate the degree of
credibility of the teachers, a new set of values is introduced to represent these
different degrees of credibility. The example shows two ways of calculations on
how the credibility values could be included in finding the overall scores of the
alternatives. As expected, the overall scores and the overall ranking are different as
compared to overall scores of not considering the different credibility of the
teachers. The details and the step-by-step methodology are also included in the
Appendix.

7. Conclusion

This chapter provides an overview on the practical consideration of evaluators’
credibility in evaluating relative importance of criteria for some real-life
multicriteria problems. Credibility of the evaluators who are involved in solving any
multicriteria problem should be included in calculating the overall scores of the
alternatives or the units of analysis. This chapter demonstrates how the credibility
of evaluators who participated in finding the criteria weights can be combined with
the criteria weights and the quality of the criteria of the alternatives. Rank-based
criteria weighting methods are used as an illustration in a numerical example of
evaluation of students’ academic performance problem at the end of the chapter.
However, other criteria subjective weighting methods are also possible to be used
but with caution especially at the stage of aggregation of criteria weights and
criteria values. It may exist only one approach to do the aggregation due to the
underpinning concepts of the aggregation methods. The chapter uses simple addi-
tive weighted average method as the aggregation method since the method is very
well established. The use of other aggregation techniques is also plausible. The
chapter also suggests a few practical proxy measures of the credibility but is still
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very limited. More researches should be conducted to find ways of measuring the
credibility of evaluators or experts either subjectively or objectively. Inclusion of
the credibility of evaluators in solving multicriteria problems is realistic since the
evaluators come from different backgrounds and levels of experience. Quantifica-
tion of the evaluators’ credibility subjectively or objectively opens a new insight in
group decision-making field. Furthermore, the credibility of the evaluators should
also be considered in other multicriteria problems in other areas, so that the results
are more practical and accurate.

Appendix: A numerical example

Mr. Zachariah is a class teacher of 10 excellent students in one of the best
primary schools of a country. The 10 students were already given the final marks of
five main academic subjects by their respective teachers as in Table 1.
Mr. Zachariah must rank the students according to their performance because these
students will be given awards and recognition on their graduation day.

Suppose three experienced teachers, Edward, Mary, and Foong, were asked to
evaluate the relative importance of the five academic subjects with their degree of
credibility as discussed in previous section, that is, the salary ratio of the three
teachers is 0167: 0.333: 0.500. The rank-based technique is used to analyze the
ranking of importance of the academic subjects given by these three teachers by
using Eq. (1).

The results are given in Table 2. Column 2 displays the ranking of the criteria
evaluated by teacher 1, and column 3 shows the corresponding criteria weights as
analyzed by Eq. (1), while columns 4 and 5 and columns 6 and 7 show the respective
results by teachers 2 and 3, respectively. The second last column of the table
summarizes the criteria weights when the teachers are of same credibility. The
values were computed as the simple arithmetic average of the corresponding crite-
rion, while the last column has the final weights that were calculated as the simple
arithmetic average as well but with consideration of the different degree of credi-
bility according to Approach 1 as given in Figure 2. Please note that the both sets of
final weights are already summed to one. So, the normalization process to guarantee
the sum of weights is one and is not necessary.

Native language English language Mathematics Science History

Student 1, A1 0.25 0.34 0.12 0.36 0.45

A2 0.33 0.54 0.22 0.44 0.76

A3 0.43 0.65 0.57 0.42 0.91

A4 0.55 0.32 0.37 0.67 0.53

A5 0.27 0.66 0.57 0.82 0.61

A6 0.67 0.56 0.46 0.46 0.31

A7 0.58 0.87 0.39 0.27 0.43

A8 0.32 0.76 0.41 0.37 0.51

A9 0.91 0.36 0.47 0.45 0.45

A10 0.12 0.33 0.81 0.75 0.32

Table 1.
Ten students assessed under five academic subjects.
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group decision-making field. Furthermore, the credibility of the evaluators should
also be considered in other multicriteria problems in other areas, so that the results
are more practical and accurate.

Appendix: A numerical example

Mr. Zachariah is a class teacher of 10 excellent students in one of the best
primary schools of a country. The 10 students were already given the final marks of
five main academic subjects by their respective teachers as in Table 1.
Mr. Zachariah must rank the students according to their performance because these
students will be given awards and recognition on their graduation day.

Suppose three experienced teachers, Edward, Mary, and Foong, were asked to
evaluate the relative importance of the five academic subjects with their degree of
credibility as discussed in previous section, that is, the salary ratio of the three
teachers is 0167: 0.333: 0.500. The rank-based technique is used to analyze the
ranking of importance of the academic subjects given by these three teachers by
using Eq. (1).

The results are given in Table 2. Column 2 displays the ranking of the criteria
evaluated by teacher 1, and column 3 shows the corresponding criteria weights as
analyzed by Eq. (1), while columns 4 and 5 and columns 6 and 7 show the respective
results by teachers 2 and 3, respectively. The second last column of the table
summarizes the criteria weights when the teachers are of same credibility. The
values were computed as the simple arithmetic average of the corresponding crite-
rion, while the last column has the final weights that were calculated as the simple
arithmetic average as well but with consideration of the different degree of credi-
bility according to Approach 1 as given in Figure 2. Please note that the both sets of
final weights are already summed to one. So, the normalization process to guarantee
the sum of weights is one and is not necessary.

Native language English language Mathematics Science History

Student 1, A1 0.25 0.34 0.12 0.36 0.45

A2 0.33 0.54 0.22 0.44 0.76

A3 0.43 0.65 0.57 0.42 0.91

A4 0.55 0.32 0.37 0.67 0.53

A5 0.27 0.66 0.57 0.82 0.61

A6 0.67 0.56 0.46 0.46 0.31

A7 0.58 0.87 0.39 0.27 0.43

A8 0.32 0.76 0.41 0.37 0.51

A9 0.91 0.36 0.47 0.45 0.45

A10 0.12 0.33 0.81 0.75 0.32

Table 1.
Ten students assessed under five academic subjects.
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Now, in order to find the overall performance of each student, for example, the
overall performance of student 1 without consideration of credibility of teachers in
evaluating the relative importance of the academic subjects, it is simply done by
multiplying row 2 of Table 1 with its corresponding criteria weights in the second
last column of Table 2 by using Eq. (4) as follows:

Score A1 ¼
X5
j¼1

wjx1j

¼ 0:289ð Þ 0:25ð Þ þ 0:2ð Þ 0:34ð Þ þ 0:267ð Þ 0:12ð Þ þ 0:067ð Þ 0:36ð Þ
þ 0:178ð Þ 0:45ð Þ

¼ 0:277

The same process is performed to find the overall scores of student 1, if the
credibility of the teachers in finding weights of the criteria is considered but the
weights in last column of Table 2 is used, instead.

Score A1 ¼
X5
j¼1

wjx1j

¼ 0:278ð Þ 0:25ð Þ þ 0:2ð Þ 0:34ð Þ þ 0:3ð Þ 0:12ð Þ þ 0:067ð Þ 0:36ð Þ
þ 0:156ð Þ 0:45ð Þ

¼ 0:244

Table 3 gives the overall scores and the corresponding final rankings of all
students based on average criteria weights with the same (SC) and different (DC)
credibility of the teachers. The overall scores are all different, while the rankings are
different especially for ranks 8 and 9 and 4 and 5.

Table 4 summarizes three individual overall score of the three different teachers
without consideration of their credibility, while the second last column and the last
column are the average overall scores of the three overall scores and its
corresponding rankings, respectively.

Table 5 shows the three overall scores by consideration of the credibility of
teachers in finding the academic subjects’ weights, and the average overall scores of
the three overall scores. The ranking of the students is based on the average overall
scores in column 5 of the table. Here, Approach 2 as in Figure 3 is used to find the
final overall scores of the students.

To make the comparison easier, Table 6 summarizes the overall scores and their
corresponding rankings of the students with SC and DC of the teachers when
calculating the academic subjects’ weights based on Approach 2.

Teacher 1
(0.167)

Teacher 2
(0.333)

Teacher 3
(0.500)

Final weight same
credibility (SC)

Final weight
different credibility

(DF)
r1 w1 r2 w2 r3 w3

Native language 1 0.333 2 0.267 2 0.267 0.289 0.278

English language 3 0.200 3 0.200 3 0.200 0.200 0.200

Mathematics 4 0.133 1 0.333 1 0.333 0.267 0.300

Science 5 0.067 5 0.067 5 0.067 0.067 0.067

History 2 0.267 4 0.133 4 0.133 0.178 0.156

Table 2.
Criteria weights of five academic subjects evaluated by three teachers with the same and different credibility by
using rank-sum weighting technique.
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As the two sets of the overall scores are different, all rankings based on both sets
of the overall scores are the same except for ranks 8 and 9. There is not much
different in the overall rankings since the MC problem that is considered here is

A1 A2 A3 A4 A5 A6 A7 A8 A9 A10

SC Score 0.277 0.427 0.597 0.461 0.526 0.514 0.540 0.470 0.571 0.424

Rank 10 8 1 7 4 5 3 6 2 9

DC Score 0.244 0.408 0.592 0.439 0.518 0.540 0.550 0.462 0.561 0.422

Rank 10 9 1 7 5 4 3 6 2 8

Table 3.
Overall scores and ranking of students with average criteria weights evaluated by teachers of the same and
different credibility based on Approach 1.

Score A1
i Score A2

i Score A3
i Score AAV

i Ranking

A1 0.311 0.259 0.259 0.276 10

A2 0.479 0.400 0.400 0.426 8

A3 0.620 0.584 0.584 0.596 1

A4 0.483 0.449 0.449 0.460 7

A5 0.515 0.530 0.530 0.525 4

A6 0.510 0.516 0.516 0.514 5

A7 0.552 0.534 0.534 0.540 3

A8 0.474 0.467 0.467 0.469 6

A9 0.588 0.561 0.561 0.570 2

A10 0.349 0.461 0.461 0.424 9

Table 4.
Same credibility: four different sets of overall scores and final ranking of the 10 students based on average
overall scores.

u1ScoreA1
i u2Score A2

i u3Score A3
i Score AAV

i Ranking

A1 0.052 0.086 0.129 0.089 10

A2 0.080 0.133 0.200 0.138 9

A3 0.104 0.194 0.292 0.197 1

A4 0.081 0.150 0.225 0.152 7

A5 0.086 0.176 0.265 0.176 4

A6 0.085 0.172 0.258 0.172 5

A7 0.092 0.178 0.267 0.179 3

A8 0.079 0.155 0.233 0.156 6

A9 0.098 0.187 0.281 0.189 2

A10 0.058 0.153 0.230 0.147 8

Table 5.
Different credibility: four different sets of overall scores and final ranking of the 10 students based on average
overall scores.
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only a small scale problem with only 10 alternatives and 5 criteria. However, the
two sets of overall values are totally different. There may be much more differences
in terms of rankings if a bigger MC problem with more alternatives and more
criteria is considered. The final ranking of the students obtained by consideration of
the different credibility of the teachers should be selected as the practical and valid
results.
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Figure 3.
Approach 2.

A1 A2 A3 A4 A5 A6 A7 A8 A9 A10

SC Score 0.276 0.426 0.596 0.460 0.525 0.514 0.540 0.469 0.570 0.424

Rank 10 8 1 7 4 5 3 6 2 9
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Table 6.
Two different set of overall scores of the students by averaging overall performance of the students and their
corresponding rankings based on Approach 2.
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