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Preface

Almost 99 percent of matter in the universe exists in a plasma state, as in the form
of the Sun, stars, lightning, welding arcs, interplanetary and interstellar space, and
in neon and fluorescent tubes. Plasma is an electrically conducting medium in
which there are roughly equal numbers of neutral and positively and negatively
charged particles.

This book introduces topics of plasma physics and presents related applied research.
Several chapters deal with basic concepts in plasma physics, nonequilibrium plasma
modeling, space plasma applications, and plasma diagnostics. The book also gives
an overview of the linear and nonlinear aspects of plasma physics. As such, it is a
useful resource for many young researchers and students in the field.

The first chapter provides an introduction to plasma physics, occurrence of plasma
in universe, types of plasma, plasma quasi-neutrality, plasma frequency, Debye
shielding, and waves in plasma. It also discusses stable and unstable plasma oscilla-
tions with the help of two fluids, also called plasma hydrodynamics.

Chapter 2 discusses the technological application of plasma physics in the field of
electric propulsion. These devices have much greater exhaust velocities, longer
lifetime, and greater thrust density than chemical propulsion devices. The chapter
discusses different types of plasma propulsion devices by providing mathematical
formulations. It also presents the current status of the research on Hall thrusters.

Chapter 3 discusses the interaction of microwave electric fields with plasma. It also
gives the dispersion relations of electrostatic and electromagnetic waves. The
spatio-temporal evolution pattern of microwave-radiated plasma parameters high-
light the role of these electric fields in power coupling processes.

Chapter 4 deals with the design of smart plasma antennas to achieve high gain and
reconfigurable beam width without physically moving the antenna. It also reports
on the generation of microwaves and their reflection from plasma.

Chapter 5 explains the principles of the diagnostic technique for a test charge in
Lorentzian dusty plasma with the help of space-time Fourier transformations.
Finally, Chapter 6 deals with the theory of nonlinear waves in plasma to obtain
the Korteweg-de Vries (KDV) equation by using the Reductive Perturbation
Technique.

We are grateful to our authors Rostomyan, Mallick, Bandyopadhyay, R. Kumar,
Theodore Anderson, S. Ali, Y. Al-Hadeethi, Laxmikanta Mandi, Kaushik Roy, and
Prasanta Chatterjee. I especially thank Mr. Anil Joshi, who always gave me good
advice and helped on several occasions. Special thanks to my parents, sisters,
grandfather, and wife Rajvinder Kaur for her cooperation in my life and for sharing
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the responsibility of family affairs so that I could spend my time for this book. I
gratefully acknowledge the technical support provided by the publisher IntechOpen
for bringing out this book in a very short time.

Dr. Sukhmander Singh
Assistant Professor,

Department of Physics,
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Chapter 1

Introduction: Plasma Parameters
and Simplest Models
Eduard Vardges Rostomyan

Abstract

Plasma is ionized gas (partially or fully). Overwhelming majority of matter in
the universe is in plasma state (stars, Sun, etc.). Basic parameters of plasma state are
given briefly as well as classification of plasma types: classic-quantum, ideal-
nonideal, etc. Differences between plasma and neutral gas are presented. Plasma
properties are determined by long distance electrostatic forces. If spatial dimensions
of a system of charged particles exceed the so-called Debye radius, the system may
be considered as plasma, that is, a medium with qualitatively new properties. The
expressions for Debye radius for classical and quantum plasma are carried out. Basic
principles of plasma description are presented. It is shown that plasma is a subject to
specific electrostatic (or Langmuir) oscillations and instabilities. Simplest plasma
models are given briefly: the model of “test” particle and model of two (electron
and ion) fluids. As an example, Buneman instability is presented along with quali-
tative analysis of its complicate dispersion relation. Such analysis is typical in
plasma theory. It allows to easily obtain the growth rate.

Keywords: plasma, quasi-neutrality, Langmuir frequency, Debye length, simplest
plasma models, unstable plasma oscillations

1. Introduction

Everyone knows the three states of matter: solids, liquids, and gases. Plasma is
often called the fourth state of matter; bear in mind that with increasing tempera-
ture, the following transitions take place: solids-liquids-gases-plasma. Under the last
transition, atoms lose electrons. Plasma consists (along with neutral atoms) of
charged particles: electrons and positively charged ions (single and/or multiple
ionized). This definition of plasma is far from complete. The complete definition of
plasma is, in fact, impossible. It must cover a very wide range of phenomena in a
wide variety of conditions.

Plasma is very common in the universe. Most of the substance in it (more than
99%) is in plasma state. Media consisting of ionized atoms is found almost every-
where. The upper layers of the Earth’s and stellar atmospheres, interstellar medium,
etc. actually are in plasma state. Stellar plasma is another widespread example. In
the plasma of stars, in particular the Sun, reactions of the synthesis of light ele-
ments, the so-called thermonuclear reactions, provide a huge release of energy and
plasma heating. Currently, scientists from many countries around the world are
studying the possibility of creating such a high-temperature plasma in terrestrial
conditions, setting the task of implementing controlled thermonuclear fusion and
providing humanity with an inexhaustible supply of energy.
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There are two fundamentally different approaches to the implementation of
controlled thermonuclear fusion. The first approach is obtaining the reactions in the
so-called magnetic traps. Hot plasma should not come in contact with the walls of the
chamber, as this will lead to its actual destruction. The confinement of the plasma
by a magnetic field, in theory, should prevent the contact of the plasma with the walls
of the chamber, since the magnetic field bends the trajectory of charged particles.
However, despite tremendous efforts, the task of plasma confining has not been
completely solved yet. Special configurations of magnetic field, magnetic traps help
only partially. Plasma is an unstable medium in which small perturbations increase
and destroy its given state. Instabilities are intrinsic for plasma. It turned out that any
nonequilibrium initial distribution of particles is unstable. Below we show how insta-
bility follows from general electrodynamical consideration and give an example.

The second approach is the very quick heating of plasma up to thermonuclear
temperatures. The reaction itself and energy removal also take place quickly. These
processes recur very fast, and confinement of such plasma is not needed. This approach
is called inertial fusion. It was proposed when very fast heating of plasma becomes
possible by using intense laser beams and/or high-current relativistic electron beams.

The development of these studies is associated with the rebirth of the concept of
plasma, which arises upon the investigations of gas-discharge processes. The processes
in gas-discharge plasma have also been intensively studied. The studies were associated
with the development of the needs of classical and quantum electronics, for which gas-
discharge appliances play an important role. Finally, solid-state plasma should be
noted: electron plasma of metals and electron–hole plasma of semiconductors.

The listed series can be continued almost unlimitedly, speaking about plasma in
magnetohydrodynamic and thermionic converters of thermal energy into electrical
energy, about plasma in solutions of electrolytes, etc. However, the above examples
are sufficient to make sure the extremely wide prevalence of plasma in nature and
the importance of studying its properties.

A vast literature has been grown to describe plasma state (see, e.g., [1–7]
and many others). Our further presentation is based on the principles of plasma
electrodynamics considering plasma as a continuous medium with a large number
of free charged carriers.

2. Plasma parameters

Plasma is an ionized gas consisting of free electrons and various types of ions and
neutrals. First of all, it is necessary to know the charge eα and concentration nα of
plasma components (here the index takes different values corresponding to the
types of particles in the plasma, α ¼ e for electrons, α ¼ i1, i2 … for ions of various
types, and α ¼ n for neutrals). All plasma particles are in chaotic motion, but full
thermodynamic equilibrium is absent. Usually each component has its own tem-
perature Tα, which is also necessary to know.

In solid-state and semiconductor plasma, the conception of temperature should
be given more accurately. If the Fermi energy EFα of α-type particles exceeds their
thermal energy

EFα ¼ 3π2ð Þ2=3ℏ2n2=3α

2mα
>>Tα (1)

(heremα is the mass of the particle, and ℏ is the Planck constant), quantum effects
should be accounted. In this case the Maxwell’s distribution function does not describe
the behavior of charged particles. It should be described by Fermi distribution func-
tion, and the EFα (1) plays the role of temperature. In this case plasma is degenerate.
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If neutrals are absent, plasma is fully ionized. In the opposite case, plasma is partially
ionized, and it is necessary to know the level of plasma ionization. This is the ratio of
neutrals’ density to the density of charged particles (or to the full density of plasma).

An important characteristic peculiarity of plasma state is a very wide range of
values of these (and other) parameters. For example, plasma in some stars (white
dwarfs) has a density of 1025–1026 cm�3, but in the interstellar space, plasma has a
density of 1–10 cm�3. The ratio is 1026. The ratio of other parameter values is a bit
less. This leads to important consequences. In the example above, different
approaches may be required to describe the plasma inside the stars and in the
interstellar space. The most interesting cases will be mentioned below.

An important condition for plasma existence is its quasi-neutrality. The condi-
tion of quasi-neutrality has the form

X
α

eαnα ≈0 (2)

where the summation is made over all types of charged particles α ¼ e, i1, i2, i3 …
When it is violated, strong electric fields arise, which restore plasma quasi-
neutrality. Violations of quasi-neutrality are possible only in spatial and temporal
scales, small in comparison with the characteristic plasma scales. The temporal
characteristic scale of plasma is determined by its proper oscillations, but the spatial
scale is determined by the length of plasma shielding (Debye length; see below).

2.1 Plasma oscillations

2.1.1 Langmuir frequency

Plasma, as a medium with a large number of free charged particles, is a subject to
oscillations. Consider in detail the oscillations of uniform electron plasma. Ions are
heavy (immobile) and serve for charge neutralization. Let a small displacement of
an electron layer relative to the ions take place (see Figure 1). We denote the
displacement vector by X. The density of the uncompensated electron charge at the
displacement X may be found from the continuity equation:

ρ ¼ ∇neeX ¼ nee∇X (3)

Figure 1.
Oscillations of the electron layer.
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This charge creates an electric field E, the value of which may be determined
from Poisson’s equation:

∇ � E ¼ 4πρ ¼ 4πne ej j∇ �X (4)

Hence, we can write (given that for X ¼ 0, we have E ¼ 0)

E ¼ 4πneeX (5)

Thus, the field E is parallel to the displacement of electrons and acts on each
electron with a force

F ¼ �eE ¼ �4πnee2X (6)

tending to return the electron to its original equilibrium position. As a result, we
have the equation of motion of an electron in the form

m
d2X
dt2

¼ �eE ¼ �4πnee2X (7)

This equation describes the oscillations of plasma electrons near the equilibrium
position (X ¼ 0) with a frequency

ω ¼ ωLe ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4πnee2

m

r
, (8)

which is known as the electron Langmuir frequency. If one uses MKS units, the
expression for electron Langmuir frequency is

ωLe ¼
ffiffiffiffiffiffiffiffiffi
nee2

ε0m

s
(9)

where ε0 is the dielectric permittivity of vacuum.Violations of plasma quasi-
neutrality are possible onlyon a temporal scale, small in comparisonwith time τ � 1=ωLe.

2.2 Gas parameter. Debye length

The behavior of an ionized gas is determined by long-distance electrostatic
forces. These forces significantly influence on the plasma behavior and, actually,
determine its parameters. First of all it is necessary to find out under what condi-
tions a system of electrostatically interacting particles can be considered as a gas.
The main peculiarity of a gas is the following: its particles interact during very small
time intervals only (during collisions); the rest time every particle moves indepen-
dently on others. At distances exceeding the size of the gas molecules, there is no
interaction (its potential is equal to zero). Or, in other words, the potential energy
of a particle is much lesser than their kinetic energy. In this case, the ratio of the
distance, at which the interaction between the particles is significant to the average
distance between particles, is small [8]:

ΛG ¼ a
rh i ≈ an1=3 << 1 (10)

(here a is the molecule size, rh i is the average distance between particles, and n is
the density). The condition (10) also holds for the interaction of electrons with
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neutrals and ions with neutrals. However, if we consider long-distance interaction
between charge particles, the parameter ΛG (gas-like parameter) requires rethink-
ing. Its physical meaning becomes slightly different. The gas approximation is valid
if the energy of the interaction between particles U rh ið Þ is smaller than the average
thermal energy T of the particles itself, i.e.

U rh ið Þ≈ e2

rh i <<T (11)

In other words, the following parameter, determining the plasma state

ΛG ! ΛP ¼ U rh ið Þ
T

≈
e2= rh i
T

≈
e2n1=3

T
<< 1 (12)

must be small. The first condition (for a neutral gas) means that in a sphere with a
radius equal to the radius of interaction, there are few particles. The meaning of a
similar condition for plasma is the opposite. To prove this we, first of all, determine
the interaction radius in plasma. For the determination we consider in detail the
potential of a test particle in plasma. Let a particle with a charge q be placed at the
point r ¼ 0. We intend to find its potential φ from Poisson’s equation. Assuming,
for simplicity, that the charge of the single type of singly charged ions is not
changed by the test particle (i.e., ei ¼ �e), we can write Poisson’s equation in the form

Δφ ¼ �4πqδ rð Þ � 4πe ne exp
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is the so-called Debye radius. It shows the distance, in which the Coulomb forces
are acting in plasma. Outside of the Debye radius, the interaction between charged
particles is exponentially small and may be neglected. Comparative characteristics
of the two curves are given in Figure 2. Curve (a) presents Debye potential, and
curve (b) presents the vacuum potential � 1=r.

The electrostatic forces are, in fact, shielded. Now we can compare the average
distance between charged particles with the Debye radius and make sure that the
number of particles in the Debye sphere is large. For a simple case of plasma with
singly charged ions and Te ≈Ti ≈T, we have

rDn1=3 ¼ n1=3
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This condition is essentially the opposite of analogous condition for gas (10). In a
gas, the particles generally do not interact. The interaction takes place only at very
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ffiffiffiffiffiffiffiffiffi
nee2

ε0m

s
(9)

where ε0 is the dielectric permittivity of vacuum.Violations of plasma quasi-
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short intervals during collisions. In plasma, on the contrary, particles experience
an interaction almost always. But, at the same time, the interaction is weak. It does
not outrage their movement.

Debye radius, in particular, for electrons is

rDe ¼ vTe
ωLe

¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Te

4πnee2

r
(17)

For the quasi-neutrality of plasma, it is necessary that its characteristic dimen-
sions L be much larger than the Debye radius L>> rD. Moreover, under this condi-
tion a system of charged particles can be considered as plasma, i.e., a material
medium with qualitatively new properties. Otherwise, it is a simple collection of
individual charged particles, to which vacuum electrodynamics is applicable.

2.3 Degenerate plasma

It remains to determine the gas-like parameter for degenerate plasma as well as
to answer the question of whether is there in quantum plasma Debye screening. For
this we first recall that the expression for average energy of the particles, which is
valid both for classical and quantum cases, may be written in the following form:

Eh i ¼ T if T >EF

EF if EF >T

�
(18)

i.e., in the quantum case, the average energy of the state is equal to Fermi energy
EF (see (1)). The gas-like parameter for degenerate plasma may be obtained if we
replace T ! EF in the expression (12). It becomes

Λ Dð Þ
P ¼ e2n1=3

EF
<< 1 (19)

Now we show that in quantum (degenerate) plasma of metals, shielding of
electrostatic field also takes place and derives an expression for characteristic length
for the Debye radius in degenerate plasma.

Figure 2.
Comparative characteristic of the two curves. Curve (a) presents Debye potential, and curve (b) presents the
vacuum potential.
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The energy of free electrons is p2=2m. In the presence of a field with the
potential Φ rð Þ, it is p2=2mþΦ rð Þ. As a result, Fermi particles become distributed
uniformly in the spherical layer between pmin ¼ ffiffiffiffiffiffiffiffiffiffiffiffi

2meΦ
p

and pmax ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p2 þ 2meΦ

p
.

Given this circumstance, one can find the expression for the electron density:

ne ¼ n0e 1þ eΦ
EFe

� �3=2

, (20)

where n0e is the density in the absence of a field (which coincides with the
density of the neutralizing ion background). Now it is not difficult to write Poisson’s
equation for the potential of the test particle placed at the point r ¼ 0, and the
charge of which is q. The equation is

ΔΦ ¼ �4πqδ rð Þ � 4πen0e 1þ eΦ
EFe

� �3=2

� 1

" #
(21)

The solution of this equation in the limit of weak fields, eΦj j<<EFe, gives the
shielded Coulomb potential:

Φ rð Þ ¼ q
r
exp � r

rDe

� �
(22)

with a Debye radius rDe, the expression for which is

rDe ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
EFe

6πe2n0e

r
(23)

The gas parameter for plasma (12) is similar to condition (10) for neutral gas in the
following sense. Both of these conditions are fulfilled better for fewer densities of plasma
and neutral gas. The better the gas condition is satisfied, themore ideal is plasma. For
degenerate plasma (inwhich particles need quantumdescription), in the contrary, the
gas condition depends on density inversely, i.e., with the increase in density, the ideality
becomes better (see (19). AsEF � n2=3, it turns out that with the increase in density, the
average energy ofCoulomb interaction increases slower. As a resultΛ Dð Þ

G � n�1=3. So, the
denser the degeneratemetal component, the better gas condition is fulfilled for it.

The diagram below presents the areas of the charge carriers’ degeneracy and
areas of the gas approximation applicability.
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The degeneracy condition for electron plasma has the form EF >T (EF; see (1)).
In the diagram lnnvs lnT, this condition gives line 1 dividing the region of the
degenerate plasma from the nondegenerate (classical) state. The condition for the
applicability of the gas approximation in a nondegenerate state is ΛP ¼ e2n1=3

T << 1.
In the same diagram, the condition ΛP ¼ 1 gives line 2. In the degenerate state, the

condition for applicability of gas approximation is Λ Dð Þ
P ¼ e2n1=3=EF << 1, in which EF

does not depend on T. In these conditions Λ Dð Þ
P ¼ 1 gives line 3 passing through the

point, where lines 1 (EF ¼ T) and 2 (ΛP ¼ 1) intersect. Therefore, region I is the
region of a nondegenerate plasma with weak interaction (the gas approximation is
applicable). Region II is the region in which the plasma is nondegenerate with strong
interaction, i.e., classic fluid. In region III, the plasma is degenerate with strong
interaction, i.e., quantum fluid. Both in region II and region III, the gas approxima-
tion is not applicable. Finally, region IV of the parameter variations characterizes
degenerate plasma with a weak interaction (gas approximation is applicable).

In conclusion, we give an estimate of the applicability conditions for the gas approx-
imation (10) and (12) for various plasmas. First of all, we note that the size of atoms
andmolecules is of order a � 10�7–10�8 cm and the condition for gas approximation
(10) is satisfied up to n< 1021–1022 cm�3, i.e., in gases at normal temperature up to a
pressure of hundred atmospheres. It is obvious that in gas plasma both in the ionosphere
and in the laboratory, this condition is fulfilled perfectly, with a large margin.

A somewhat different situation holds for the condition of gas approximation in
plasma (12). In the ionosphere plasma, where ne�106–107 cm�3 and Te ≈ 104 K, we
haveΛP ≈ 10�4 << 1, i.e., the condition is well satisfied. In ordinary gas-discharge
fluorescent lamps, as well as in discharges used in laboratory experiments, where
ne≈ 1010–1014 cm�3 andTe� 104–105 K, the value ofΛP << 1. However, at the discharge
in dense gases used in the light sources for laser pumping, as a rule,ne≪ 1018–1019 cm�3,
and Te≪ 1–10 eV. HerewithΛP ≈0:1–0.5, which indicates a significant violation of the
applicability condition for the gas approximation and a significant manifestation of the
properties of non-ideal plasma or, as one says, liquid effects.

In a thermonuclear plasma, in facilities with magnetic confinement,
ne ≈ 1014–1015 cm�3, and Te ≈ Ti ≈ 108 K. As a result, we have ΛP ≈ 10�5 << 1, i.e.,
the ideality of plasma is guaranteed. However, in the inertial thermonuclear reac-
tors, where experimentators strive to obtain plasma with ne � ni � 1024–1025 cm�3

at the temperature of T ≈ 108 K, it turns out that ΛP ≥0:01 and may be even more.
This, apparently, will require a consideration of weakly non-ideal plasma, especially
in conditions of pollution (the presence of multiply charged ions).

Finally, a brief summary on ideality of plasma in solids is presented. Even in good
conductors, such as copper, where ne≈ 5 • 1022 cm�3 andEF� 1 eV,we haveΛP �
Λ Dð Þ
p � 1, i.e., plasma ofmetals is always non-ideal, and it ismore correct to consider it as

electron liquid.Nevertheless, it turns out that the application of the gas approximation to
metals leads to good results from the point of view of the comparisonwith experiments.
As for the electron–hole plasma of semiconductors, they are not degenerate at normal
temperature, due to the small density of the carriers. For this reason, the condition of gas
approximation (19) iswell satisfied. Exceptions can occur only at very low temperatures.

3. Plasma description

3.1 Self-consistent approach

The main feature of plasma and plasma-like media, such as gas plasma, plasma
of metals, semimetals, and semiconductors, is the presence of a large number of free

10

Selected Topics in Plasma Physics

charge carriers. Here we present general principles of their description as a contin-
uous media. The term “plasma-like media”was first introduced in [6] (see also [7]),
the authors of which understood such seemingly different states of matter as an
ionized gas, or actually plasma; metals, semiconductors, and even molecular
colloidal crystals and electrolytes may be described based on similar principles – the
principles of electrodynamics of plasma-like media. In this section we briefly
formulate these principles.

A self-consistent interaction of the electromagnetic field and charge carriers
takes place in plasma-like media. Field equations are the equations of Maxwell in
which the current and the charge must be represented by a sum over all carriers
(charged particles) in the plasma:

∇� B ¼ 1
c
∂E
∂t

þ 4π
c
j ¼ 1

c
∂E
∂t

þ 4π
c

X
α

nαvαeα

∇� E ¼ � 1
c
∂

∂t
B

∇E ¼ 4πρ ¼ 4π
X

nαeα; ∇B ¼ 0

(24)

where E is the electric field strength, B is the magnetic induction, and nα, eα, and
vα are the density, charge, and the velocity of α-th carrier α ¼ e, i1, i2, i3 … :.

The equations for fields are written in this form (i.e., in terms of E and B),
because these quantities have direct physical meaning: they determine the Lorentz
force Fn that acts on n-th carrier of α type (it may be an electron or ion of arbitrary
type):

Fn ¼ eα Eþ 1
c
vn � B½ �

� �
(25)

According to charge conservation law, the continuity equation must be
satisfied for electrons and all types of ions, i.e., for α ¼ e, i1, i2, … The continuity
equation is

∂nα
∂t

þ ∇ nαvαð Þ ¼ 0 (26)

Here and in consideration below, we do not take into account the processes of
ionization and recombination.

Eqs. (24)–(26) describe the self-consistent interaction between electromagnetic
fields and statistically large numbers of charged particles (plasma). According to
the set, electromagnetic fields determine the motion of charged particles. In its turn,
the same electromagnetic fields are induced by moving plasma particles.

If the plasma (or plasma-like media) are in external fields (electric E0 and/or
magnetic B0), the equations must be written in somewhat other form. External
fields should be singled out. If the external fields are excited by external current j0
and charge ρ0 densities, the set (24) should be written as

∇� B ¼ 1
c
∂E
∂t

þ 4π
c

j0 þ j
� � ¼ 1

c
∂E
∂t

þ 4π
c

j0 þ
X
α

nαvαeα

( )

∇E ¼ 4π ρþ ρ0ð Þ ¼ 4π
X

nαeα þ 4πρ0

∇B ¼ 0; ∇� E ¼ � 1
c
∂

∂t
B

(27)
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The external current j0 and charge density ρ0 do not depend on the processes in
plasma. Their values, along with E0 and B0, satisfy Maxwell’s equations. These fields
also influence on the motion of plasma particles. The expression for Lorentz force
looks like (25)

Fn ¼ eα Eþ 1
c
vn � B½ �

� �
(28)

However, here fields E and B are induced by external charge and current also.
An important conclusion follows from the sets (24) and (27). Only one addi-

tional vector quantity appears in the field equations – the current in the plasma j
(the charge density may be expressed in terms of j by solving the continuity
equation):

j ¼ j Eð Þ ¼
X
α

nαeαvα (29)

In this expression v ¼ v Eð Þ. The expression (29) shows that the current, induced
in plasma, depends on velocities vα which are found independently (e.g., from equa-
tions of motion).1 In the following, we will consider linear phenomena only. This
implies linear dependence j Eð Þ, which is true, if the fields are comparatively small. It is
to the point to note that in spite of our (and most other) consideration, nonlinear
effects reveal themselves, first of all, in plasma and plasma-like media. Under linear
consideration in isotropic media (media with no preferred directions), we actually
have proportional dependence of the plasma current on the electric field or

j ¼ σE (30)

This dependence represents Ohm’s law for plasma, and σ is plasma conductivity
for the considered case of isotropic plasma. However, if the plasma is in the external
field, it loses the isotropy, and the relationship between j and E becomes much more
complicated.

3.2 Waves in plasma and plasma-like media

The most important solutions of formulated set of equations are the solutions in
the form of traveling waves, i.e., the solutions that depend on space coordinate r
and time t as

� exp �iωtþ ikrð Þ (31)

Solutions of this type are the simplest solutions. In this case the initial equations
may be essentially simplified. In (24) derivations may be replaced by multiplication:

∂

∂t
! �iω ∇ � ∂

∂r
! ik (32)

1 The expression for current j in plasma depends on the model, which is chosen for plasma description

(see examples below). If one explores the most complete kinetic consideration, the expression for the

plasma current changes and becomes

j ¼P
α
eα
Ð
vdvf α vð Þ

where f α vð Þ is the distribution function for α-type plasma particles.
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And the initial set reduces to a set of linear algebraic equations:

kE½ � ¼ ω

c
B; i kB½ � ¼ 4π

c
j� i

ω

c
E

ikE ¼ 4πρ; kB ¼ 0
(33)

Any other, more complicate, solution of the initial equations in linear theory can
be presented as a superposition of the simplest solutions with various amplitudes.
As follows from the general principle of electrodynamics, this superposition is also a
solution of the initial set. This emphasizes the importance of consideration of the
solutions in the form of traveling waves.

The motions and continuity equations also may be reduced to algebraic form.
Here we present the reduced form of continuity equation only as the motion equa-
tions for plasma particles depend on the model, chosen for plasma description (see
below):

ωρ ¼ kj (34)

So, the initial equations (consisting of Maxwell’s, continuity, and motion equa-
tions) reduce to linear algebraic set. The condition for the existence of nonzero
solutions of the set is called dispersion relation. It, actually, presents a certain relation
between frequency ω and components of wave vector k. This relation helps deter-
mine ω for the given k and, vice versa, to determine k (one of its components) if ω
and other components of k are given. These statements of the problem are called
initial and boundary problems accordingly. These statements are widely used in
plasma physics. Herewith in plasma many cases are encountered, in which solution
of the initial problem gives complex frequency ω ¼ ω0 þ iω00 for real k. In this case
the real part of the frequency Reω ¼ ω0 shows the frequency of the wave, but the
imaginary part shows (depending on its sign) either the increasing of the wave’s
amplitude if ω00 >0 or decreasing if ω00 <0 in accordance to

exp �iωtð Þ ¼ exp ω00tð Þ exp �iω0tþ ikrf g (35)

The solution of the boundary problem should be interpreted in the same
manner. If the solution of the problem gives a complex component of the wave
vector k, its imaginary part shows either amplification of the given wave in a given
direction or its quenching.

3.3 Electrostatic waves in plasma

Plasma is a medium, where propagation of specific, electrostatic (or plasma)
waves is possible. These waves have no oscillating magnetic field. These waves are
also called space charge or Langmuir waves. In the waves electric field is parallel to
its propagation direction k║E. Oscillations of plasma particles also are parallel to the
propagation direction, i.e., the waves are purely longitudinal. These waves play the
most important role in plasma and strongly influence on its stability, much more
than the usual electromagnetic waves (propagation of which in plasma is also
possible).

The explicit expression for plasma conductivity σ helps to obtain the dispersion
relation for longitudinal waves. When we consider solutions of Maxwell’s equations
in the form of traveling waves, the conductivity σ depends on frequency ω and
wave vector k, i.e., σ � σ ω,kð Þ. The dispersion relation for electrostatic waves in
plasma can be expressed in terms of σ ω,kð Þ. It has the following form:
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1þ i
4π
ω

σ ω,kð Þ � ε ω,kð Þ ¼ 0 (36)

where ε ω,kð Þ is the well-known dielectric permittivity of the given media.
Propagation of usual electromagnetic waves in plasma is also possible. The

dispersion relation for this case is

k2 ¼ ω2

c2
ε ω,kð Þ (37)

In a particular case of vacuum, this expression gives propagation of usual vac-
uum electromagnetic waves. For vacuum ε ω,kð Þ � 1, and the dispersion relation
(37) takes a familiar look, ω ¼ kc.

For further development of the properties of plasma-like media, it is necessary
to specify the plasma models.

4. The simplest plasma models

Each model of plasma specifies how its particles interact with the electromag-
netic field, as well as specifies the behavior of plasma particles inside and between
plasma species. Here we consider the simplest models only, leaving aside the most
rigorous kinetic consideration. On examples of simple models, we show how the
models work as well as some of their advantages and disadvantages.

4.1 One-particle model

We begin with the model of one, “average” (or test) particle. In this model
particles interact via electromagnetic field, and the interaction, in fact, is weak (it
weakly perturbs the motion of the particles). Collisions inside and between species
are also taken into account. This model describes the oscillatory properties of gas-
discharge and ionosphere plasma well enough. In particular, the model was suc-
cessfully used for the description of radio-frequency wave propagation through the
ionosphere [9].

The initial set of equations in the model of “average” particle includes Newton
equations for the “average” electron and for “average” ion along with equations for
electromagnetic field and continuity equation:

d
dt

ve ¼ e
m

Eþ 1
c
ve � B½ �

� �
� νenve � νei ve � við Þ

d
dt

vi ¼ ei
M

Eþ 1
c
vi � B½ �

� �
� νinvi � νie vi � veð Þ

(38)

Here ve and vi are the velocities of electrons and ions; m and M are their masses;
νen, νei and νin, νie are the frequencies of their collisions, which determine the friction
forces inhibiting their motion; νen is the frequency of collisions of electrons with
neutral atoms (molecules) and νei with ions, respectively; and for ions, this is νin and
νie. According to Newton’s third law, mνei ¼ Mνie. A similar system of equations is
also used to describe the dynamics of solid-state plasma, but in this case the mean-
ing of the collision frequencies differs from the abovementioned. The frequencies,
actually, are the inverse lifetimes of electrons and holes, respectively.
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First we show how this model works on the simplest example of plasma
oscillations, as well as how easy the Langmuir frequency follows from this model.
Consider pure electron plasma. Ions are heavy and immobile. They serve only for
neutralization of electrons’ charge. Upon derivation of equations, which describe
plasma oscillations, one should recall that we consider linear plasma phenomena.
This means that the equations should be linearized, i.e., we consider small pertur-
bations of physical quantities from their basic (equilibrium) state. For example,
the density of electrons is considered as ne ¼ ne0 þ n0e where n0e << ne0, and in the
resulting expressions we retain the first-order terms only and neglect the terms of
second-order smallness (multiplication of the first-order terms). We also take into
account that the Langmuir oscillations are potential and use Poisson’s equation
instead of a full set of Maxwell’s equations. For one more simplification, we consider
one-dimensional case: let electrons oscillate along the z axis. All this leads to the
following: the initial equations (motion, Poisson’s, and continuity) are reduced to
simple form presented below:

∂

∂t
ve0 ¼ eE

m
� νeive0;

∂

∂t
n0e ¼ �n0e

∂

∂z
ve0;

∂

∂z
E ¼ 4πen0e (39)

Here ve0 is the velocity of electrons, e and m are their charge and mass, νei is the
frequency of electron-ion collisions, and t is the time.

For the solutions of (39) that depend on z and t in the form exp �iωtþ ikzð Þ,
we have the equations

�i ωþ iνeð Þve0 ¼ eE
m

; ωn0e � ikn0eve0 ¼ 0; ikE ¼ 4πen0e (40)

Thus, we arrive to the set of simple algebraic equations, from which the
following expression for plasma current results

j ¼ ene0ve0 ¼ i
e2n0e
m

E � σE, σ ¼ i
e2n0e
m

(41)

From (41) one can easily obtain the corresponding expression for dielectric
permittivity as well as the dispersion relation, which is

ε ¼ 1� ω2
p

ω ωþ iνeið Þ ¼ 0 (42)

If νei <<ω (realizes in most cases), the relation (42) leads to ω ¼ �ωp, i.e., we
have free plasma oscillations. If one takes into account plasma collisions, he obtains
small negative imaginary correction to the frequency: ωp ! ωp � iνe=2. This shows
the decay of the oscillations. The decay takes place as a result of collisions.

Obtained results on plasma oscillations and their decay coincide to experimental
data. In fact, the model of “average” particle describes plasma well in the considered
range of frequencies. Namely this model was used by Langmuir to describe the
oscillatory properties of gas-discharge plasma. Also the model was successfully used
especially for describing the propagation of radio-frequency waves through the
ionosphere [9]. Thereby, the model of “average” particle is justified for high-
frequency range. However, in the opposite limit of low frequencies, this model does
not lead to reasonable results. That is why, new, more complicate models have been
explored.
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4.2 Two-fluid hydrodynamic: relative electron-ion motion

The idea to consider plasma as a system consisting of electron and ion fluids
arose long time ago. In this model plasma species are described by hydrodynamic
equation and interact through the electromagnetic field and through the collisions.
The interaction leads to various effects. In particular instability can follow from the
interaction. The general theory of plasma instabilities shows that instability is a
result of thermodynamically nonequilibrium initial distribution of plasma
components.

The initial equations describing electron and ion fluids and their interaction are
somewhat more complex than the previous case of “average” particle. They contain
additional terms that follow from classical hydrodynamics:

d
dt

ve � ∂

∂t
þ ve∇ð Þ

� �
ve ¼ �∇ neTeð Þ

mne
þ e
m

Eþ 1
c
ve � B½ �

� �
� νenve � νei ve � við Þ

d
dt

vi � ∂

∂t
þ vi∇ð Þ

� �
vi ¼ �∇ niTið Þ

Mni
þ ei
M

Eþ 1
c
vi � B½ �

� �
� νinvi � νie vi � veð Þ

(43)

Herem andM are electron and ion mass, Te, Ti, and ne, ni are their temperatures
and densities. Other denotations coincide to the previous case of “average” particle
above.

The equations describing the electron and ion fluid motion (43) should be
supplemented by Maxwell’s and continuity equations. Equations for Te and Ti

(energy balance equations or equations for heat) are also needed. Specific forms of
these equations depend on the physical meaning of the problem, which is consid-
ered. For simplicity, it may be assumed as Te,Ti ¼ const. These assumptions greatly
simplify further analysis.

Here we briefly consider a simple example of two-fluid model. In order to show
the role of ions and how this role can lead to instability, we consider a case in which
electron fluid moves relative to ions in rest. Let u be the constant velocity of moving
electrons. Neutrals are absent. The initial equations of electron and ion fluids (43)
and Maxwell’s and continuity equations after linearization are reduced to the fol-
lowing set of equations (we assume Te,Ti = 0 and consider the potential oscillation
in one-dimensional system and choose the z axis along u):

∂

∂t
þ u

∂

∂z

� �
ve0 ¼ eE

m
� νeive0;

∂

∂t
vi0 ¼ eiE

M

∂

∂t
þ u

∂

∂z

� �
ne0 ¼ �n0e

∂

∂z
ve0;

∂

∂t
ni0 ¼ �n0i

∂

∂z
vi0

∂

∂z
E ¼ 4π ene0 þ eini0ð Þ

(44)

Here ve0 and vi0 are the perturbations of electron and ion fluid velocities accord-
ingly, n0e and n0i are the perturbations of their densities, n0e and n0i are their
unperturbed densities, νei is the frequency of electron-ion collisions, and E is the
electric field. We look for solutions of the set (44) in the form of waves propagating
along the z axis � exp �iωtþ ikzð Þ. In this case the equations (44) are reduced
to algebraic set. If one performs further steps (determination of induced plasma
current, finding plasma conductivity and dielectric permittivity) by analogy to the
previous case, he arrives to the expression for dielectric permittivity of considered
system, which, in this case, consists of three terms:
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ε ¼ 1þ Δεe þ Δεi (45)

Here the second and third terms are electron and ion contributions in the
dielectric permittivity:

Δεe ¼ � ω2
Le

ω� kuð Þ ω� kuþ iνeið Þ ; Δεi ¼ �ω2
Li

ω2 (46)

but the first term is, in fact, the vacuum unit. In (46) ωLe ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4πe2n0e=m

p
and

ωLi ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4πe2i n0i=M

p
are the electron and ion Langmuir frequencies. The dispersion

relation of the considered system

1� ω2
Le

ω� kuð Þðω� kuþ iνeiÞ �
ω2
Li

ω2 ¼ 0 (47)

is an algebraic equation of the fourth order. Despite the solutions of the fourth-
order equations are known (see any reference book on mathematics, e.g., [10]), they
are not suitable for our purposes. Very cumbersome expressions with many radicals
cannot give physical information, and we choose another way of finding the solutions
of (47) and their analysis. The way presented below is typical for plasma theory.

For the analysis we first consider the case of the ion’s absence, i.e., if there are
streaming electrons only. The dispersion relation is of the second order, with the
solution

ω� ¼ ku� ωLe (48)

This solution represents the waves in the electron stream: fast (+) and slow
(�) beam waves. An important fact is that the energy of the slow beam wave is
negative [11]. This means that for excitation of the slow wave in the electron
beam, one should withdraw energy, but not put energy into the beam. This circum-
stance plays an important role in theory of streaming instabilities. It lies on the basis
of explanation of physical meaning of the most well-known plasma instabilities,
beam-plasma instability, as well as the meaning of dissipative beam instabilities. In
the last case, dissipation leads not to quenching of the oscillations (as one expects) but
to their amplification. The matter is in the following: dissipation serves as a channel
for energy withdrawal for excitation of the beam negative-energy wave.

Continuing the analysis of the dispersion relation (47), one can easily see its
important peculiarity, which appears as a result of the inequality ωLi <<ωLe; ions
play a role under small ω only:

ωLi >>ω ! 0 (49)

In the opposite case, the contribution of the ions in (47) results in small correc-
tions to the roots that describe the proper oscillations of streaming electron (48).
However, if the condition (49) holds, two additional roots of (46) (from a total of
four) are approximately equal:

ω ¼ � ωLiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� ω2

Le

k2u2

q (50)

This expression shows that the instability (caused by the presence of ions) exists if
ku<ωLe. In this case the imaginary part of the root (growth rate of unstable oscilla-
tions) attains its maximum if ku≈ωLe. The instability in this case is called resonance
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The interaction leads to various effects. In particular instability can follow from the
interaction. The general theory of plasma instabilities shows that instability is a
result of thermodynamically nonequilibrium initial distribution of plasma
components.

The initial equations describing electron and ion fluids and their interaction are
somewhat more complex than the previous case of “average” particle. They contain
additional terms that follow from classical hydrodynamics:

d
dt
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þ ve∇ð Þ

� �
ve ¼ �∇ neTeð Þ

mne
þ e
m

Eþ 1
c
ve � B½ �

� �
� νenve � νei ve � við Þ

d
dt
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∂t
þ vi∇ð Þ

� �
vi ¼ �∇ niTið Þ

Mni
þ ei
M

Eþ 1
c
vi � B½ �

� �
� νinvi � νie vi � veð Þ

(43)

Herem andM are electron and ion mass, Te, Ti, and ne, ni are their temperatures
and densities. Other denotations coincide to the previous case of “average” particle
above.

The equations describing the electron and ion fluid motion (43) should be
supplemented by Maxwell’s and continuity equations. Equations for Te and Ti

(energy balance equations or equations for heat) are also needed. Specific forms of
these equations depend on the physical meaning of the problem, which is consid-
ered. For simplicity, it may be assumed as Te,Ti ¼ const. These assumptions greatly
simplify further analysis.

Here we briefly consider a simple example of two-fluid model. In order to show
the role of ions and how this role can lead to instability, we consider a case in which
electron fluid moves relative to ions in rest. Let u be the constant velocity of moving
electrons. Neutrals are absent. The initial equations of electron and ion fluids (43)
and Maxwell’s and continuity equations after linearization are reduced to the fol-
lowing set of equations (we assume Te,Ti = 0 and consider the potential oscillation
in one-dimensional system and choose the z axis along u):
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(44)

Here ve0 and vi0 are the perturbations of electron and ion fluid velocities accord-
ingly, n0e and n0i are the perturbations of their densities, n0e and n0i are their
unperturbed densities, νei is the frequency of electron-ion collisions, and E is the
electric field. We look for solutions of the set (44) in the form of waves propagating
along the z axis � exp �iωtþ ikzð Þ. In this case the equations (44) are reduced
to algebraic set. If one performs further steps (determination of induced plasma
current, finding plasma conductivity and dielectric permittivity) by analogy to the
previous case, he arrives to the expression for dielectric permittivity of considered
system, which, in this case, consists of three terms:
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ε ¼ 1þ Δεe þ Δεi (45)

Here the second and third terms are electron and ion contributions in the
dielectric permittivity:

Δεe ¼ � ω2
Le

ω� kuð Þ ω� kuþ iνeið Þ ; Δεi ¼ �ω2
Li

ω2 (46)

but the first term is, in fact, the vacuum unit. In (46) ωLe ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4πe2n0e=m

p
and

ωLi ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4πe2i n0i=M

p
are the electron and ion Langmuir frequencies. The dispersion

relation of the considered system

1� ω2
Le

ω� kuð Þðω� kuþ iνeiÞ �
ω2
Li

ω2 ¼ 0 (47)

is an algebraic equation of the fourth order. Despite the solutions of the fourth-
order equations are known (see any reference book on mathematics, e.g., [10]), they
are not suitable for our purposes. Very cumbersome expressions with many radicals
cannot give physical information, and we choose another way of finding the solutions
of (47) and their analysis. The way presented below is typical for plasma theory.

For the analysis we first consider the case of the ion’s absence, i.e., if there are
streaming electrons only. The dispersion relation is of the second order, with the
solution

ω� ¼ ku� ωLe (48)

This solution represents the waves in the electron stream: fast (+) and slow
(�) beam waves. An important fact is that the energy of the slow beam wave is
negative [11]. This means that for excitation of the slow wave in the electron
beam, one should withdraw energy, but not put energy into the beam. This circum-
stance plays an important role in theory of streaming instabilities. It lies on the basis
of explanation of physical meaning of the most well-known plasma instabilities,
beam-plasma instability, as well as the meaning of dissipative beam instabilities. In
the last case, dissipation leads not to quenching of the oscillations (as one expects) but
to their amplification. The matter is in the following: dissipation serves as a channel
for energy withdrawal for excitation of the beam negative-energy wave.

Continuing the analysis of the dispersion relation (47), one can easily see its
important peculiarity, which appears as a result of the inequality ωLi <<ωLe; ions
play a role under small ω only:

ωLi >>ω ! 0 (49)

In the opposite case, the contribution of the ions in (47) results in small correc-
tions to the roots that describe the proper oscillations of streaming electron (48).
However, if the condition (49) holds, two additional roots of (46) (from a total of
four) are approximately equal:

ω ¼ � ωLiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� ω2

Le

k2u2

q (50)

This expression shows that the instability (caused by the presence of ions) exists if
ku<ωLe. In this case the imaginary part of the root (growth rate of unstable oscilla-
tions) attains its maximum if ku≈ωLe. The instability in this case is called resonance
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instability. If the two conditions (ω ! 0 and ku≈ωLe) are realized, one can at once
calculate the roots of the dispersion relation (47), if he rewrites it in the form

ω
∂ Δεeð Þ
∂ω

� �

ω!0
¼ ω2

Li

ω2 (51)

From this expression the growth rate of resonant instability follows. It is

δBn ¼
ffiffiffi
3

p

24=3
ωLe Z2 m

M

� �1=3
(52)

In the given case, the growth rate is of the same order as the frequency of the
unstable oscillations in plasma. This instability was first discovered by Buneman
[12]. It (as well as other low-frequency instabilities) plays an important role in
many scenarios in space physics and geophysics. The physical essence of this insta-
bility lies in the fact that the proper space charge oscillations of moving electrons
(beam slow wave) in the frame, associated with the ions in rest due to the Doppler
effect, experience red shift, and this greatly reduced frequency becomes close to the
proper frequency of ions. Actually the instability is due to the resonance of the
negative-energy wave with the ion oscillations.

The models of plasma that have been considered above are very simplified.
In spite of this, we have seen that the models describe some phenomena in plasma
well enough. For more detailed consideration, one should use the most complete
kinetic consideration.
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Chapter 2

Hall Thruster: An Electric
Propulsion through Plasmas
Sukhmander Singh

Abstract

The chapter discussed the technological application of plasma physics in space
science. The plasma technology is using laser-plasma fusion, inertial fusion,
Terahertz wave generation and welding of metals. In this chapter, the application of
plasma physics in the field of electric propulsion and types has been discussed.
These devices have much higher exhaust velocities, longer life time, high thrust
density than chemical propulsion devices and useful for space missions with regard
to the spacecraft station keeping, rephrasing and orbit topping applications. The
mathematical relation has been derived to obtain the performance parameters of the
propulsion devices.

Keywords: electric propulsion, Hall thruster, impulse, exhaust velocity

1. Overview of propulsion devices and rocket equation

Electric propulsion (EP) devices use electric power to produce thrust. These
devices have much higher exhaust velocities than chemical propulsion devices.
Therefore, EP devices require much less propellant mass than chemical systems for
a given space task. Here first we have overview of different thrusters and their basic
mechanism based on type of propellant used to get the thrust.

The motion of any propulsion devices is given by Newton’s 3rd Law of action
and equal, opposite reaction which forms the basis for the motivation for the study
of electric propulsion. The rocket equation states that a device can accelerate to a
desired final velocity by reaction against an expelled propellant stream [1].

Consider a rocket of mass m, which expels an infinitely small unit of fuel dm at

an exhaust velocity U
!

ex. The exhaust velocity U
!

ex is almost constant and it is a fixed
property of the propellant [2]. Conservation of linear momentum requires that the
spacecraft experience a small change in velocity dυ!, such that

m
dυ!

dt
þU

!
ex
dm
dt

¼ 0 (1)

Integrating by setting appropriate limits in mass and velocity yields

ðυf

υi

dυ!

U
!

ex

þ U
!

ex

ðmf

mi

dm
m

¼ 0 (2)
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After simplification, we get

ln
mf

mi

� �
¼ � υf � υi

U
!

ex

¼ �Δυ
!

U
!

ex

(3)

The above rocket equation provides the relationship between the mission velocity
and the mass of propellantmp ¼ mi �mf required for a given mission. It is clear that

a higher dυ! demands more propellant. Unfortunately, the mass ratio cannot be
increased so much to avoid payloads problems in space mission, therefore for a given

mass fraction, the exhaust velocity U
!

ex of the propellant needs to be the order of dυ!

and the higher the propellant exit velocity, the less propellant mass is required.

2. Thrust, impulse and efficiency

The performance of thrusters is usually characterized by a number of parame-
ters. A first quantity relevant to thruster performance is the thrust T, which is the
total force undergone by the rocket. The specific impulse is used to compare the
efficiencies of different type of propulsion systems [2]. The performance parameter
is the specific impulse Isp, defined below

Isp ¼ T
_mpg

(4)

Here _mp is the mass flow rate and g is the acceleration due to gravity. The
specific impulse has the dimension of time and is a measure for the effective
lifetime of the thruster, when lifting its own propellant from the earth’s surface.

For the case of a constant mass flow rate the thrust is also constant as

T ¼ _mpU
!

ex, (5)

and the specific impulse simplifies to

Isp ¼ U
!

ex

g
(6)

Finally, the rocket equation turned into

mf

mi
¼ e

�Δ υ
!

gIsp (7)

The rocket equation is equally applicable to all type of propulsion systems.
Therefore high specific impulse related to better efficiency for a propellant. Based
on the acceleration of gases for propulsion, electrical thrusters have been classified
into three main categories.

2.1 Electrothermal thrusters

In electrothermal thrusters, the hot gas is expanded through a nozzle without
ionizing it. When it is being passed through a thin nozzle, the thermal energy of gas
gets converted into kinetic energy and produce a thrust.
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2.2 Electromagnetic thrusters

In electromagnetic thrusters an inert gas is used as a propellant and it is ionized
by heating to produce plasma. Then these ionized gas (charged particles) are accel-
eration by electromagnetic force to generate thrust.

2.3 Electrostatic thrusters

In electrostatic thrusters only ions are accelerated by applying direct electric
field at the exit side of the thruster to produce thrust.

3. Hall thruster operation

Hall effect thrusters (HETs) were originally developed in United States and
Russia about 60 years ago, and the first working devices were reported in U.S. in the
early 1960s. Now a days, most of the countries using the Hall thruster technology in
their space mission. Unlike chemicals and electric rockets, the propulsive thrust in a
Hall thruster is achieved by an ionized inert gas (Xenon) which has high atomic
number and low ionization potential. For this Xenon is mostly used. In a Hall
thruster, the propellant is ionized and then accelerated by electrostatic forces.

Figure 1 shows the internal parts of a plasma Hall thruster. Generally, the
discharge channel is cylindrical shape made up with metallic material. The magnetic
field of the order of 150 Gauss is applied to produce closed drift of electrons inside
the channel. The applied magnetic field which is strong enough so that the electrons
get magnetized, i.e. they are able to gyrate within the discharge channel, but the
ions remain unaffected due to their Larmor radius much larger than the dimension

of the thruster. Thus the electrons remain effectively trapped in azimuthally E
! � B

!

drifts around the annular channel and slowly diffuse towards the anode. This
azimuthal drift current of the electrons is referred to as the Hall current. The
propellant enters from the left side of the channel via anode and gets ionized
through hollow cathode of the device. The electric field of strength �1000 V/m gets

Figure 1.
Schematic diagram of a typical Hall plasma thruster.
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generated inside the discharge channel along the axial direction of the device [3]. In
addition, these kind of devices have implication in partially ionized plasmas (toka-
maks), in ionosphere (base of the solar photosphere), in protoplanetary discs,
circum nuclear discs in active galactic nuclei and neutron stars. Hall thruster has
high thrust resolution, it is being used for the adjustment of the location of the
satellite onboard.

4. Spacecraft issues

The first issue is that the divergence angle of these devices is about 60°, which
relatively large and cause problem related to erosion of the channel walls and outer
surfaces of the thruster. The erosion of the walls decreases the lifetime of the device.
This channel usually has a length of the order of centimeters. In addition, densities
in the channel are typically in the range between 1017 and 1018 m�3 for the plasma,
and 1018 and 1020 m�3 for the neutral gas [4]. The plasma in a Hall thruster does not
stay uniform and an inhomogeneous plasma immersed in the external electric and
magnetic fields is not in the thermodynamically equilibrium state, this deviation in
general is a source of plasma instabilities. The amplitudes of the waves and insta-
bilities are attributed by the density scale lengths of plasma and magnetic field and
other parameters. These waves/oscillation and instabilities may affect the efficiency
of the device, hence forth research on studies on oscillation/instabilities always
attracted the investigators.

5. Types of Hall plasma thruster

Two types of Hall thrusters have been developed: a thruster with closed electron
drift and extended acceleration zone or stationary plasma thruster and a thruster
with a very short acceleration channel or thruster with anode layer.

In Table 1, typical values of some of the pertinent properties are listed at the
thruster exit for the SPT-100.

5.1 Dielectric wall thruster or stationary plasma thruster

Such thrusters have a wall made up of dielectric of boron nitride or silicon
carbide and extended channel compared to its width. The role of the wall is that the
collisions of the electrons and ions with the wall generate low energy secondary
electrons. These secondary electrons keep tending the electron temperature low in
the discharge plasma. By reducing the discharge electron energy, a smooth and
continuous variation in plasma potential between the anode and the cathode is

Property Value Property Value

Inner diameter 60 mm Neutral velocity �300 m/s

Outer diameter 100 mm Electron temperature 5–10 eV

Plasma density �1017/m3 Ion temperature 1–5 eV

Neutral density �1018/m3 Neutral temperature 0.9 eV

Ion velocity �104 m/s Debye length �10�5 m

Collision mean free �1 m

Table 1.
Typical plasma parameters for Hall Thrusters.
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obtained. Since the dielectric walls are not conductive, charge builds up along the
length of the acceleration channel that leads to a variable potential profile along its
length.

5.2 Thruster with anode layer

Thruster with anode layer also developed in Russia has a narrow acceleration
zone associated with the narrow electric field region near the anode. This geometry
considerably shortens the electric field region in the channel, where the ion accel-
eration occurs. However, this configuration does not change the basic ion genera-
tion or acceleration method. The channel wall made up of conductor, which is
usually also a part of the magnetic circuit, is biased negatively (usually cathode
potential) to repel electrons in the ionization region and to reduce electron-power
losses. This reduces the loss caused by the ion and electron collisions with the walls.
Since the walls are conductive, a constant potential (same as that of the cathode) is
observed along the entire wall. Very high electron temperatures, i.e. more than
50 eV, are typically observed in such thrusters [1].

6. Review of status of current research and development in the subject

The range of the oscillations lies from few kHz to MHz in the acceleration
channel of the thrusters and has been given in Table 2. Rayleigh-Taylor (RT)
instability takes place when a lighter fluid supports a heavy fluid. The plasma in the
Hall thruster possesses Rayleigh-Taylor instability, resistive instability, transit time
instability, electromagnetic instability and sheath instabilities [5–11]. These systems
are rampant with plasma instabilities and fluctuations, many of which are respon-
sible for performance, driving electron transport across magnetic field lines and
contributing to propellant ionization. Over the last decade several studies have been
carried out with HET to characterize the low frequency azimuthal and axial oscilla-
tions and optimizing magnetic field profile for a wide range of operating conditions
for better efficiency and performance. Singh and Malik [10, 11], investigated that
temperature of the ion and drift velocity profiles of the electron modifies the
conditions for Rayleigh type instability under the effects of thermal motions of ions.

The plasma resistivity induces resistive instabilities (electrostatic and electro-
magnetic) [6–9] associated with azimuthal and axial directions. High-frequency
(1–10 MHz) instabilities have been studied in the Hall-effect thruster [6–9], where
it was found that these instabilities have the highest level near the thruster exit
plane. These oscillations in the Hall thruster determine the efficiency of the system
and may affect the divergence of the ion beam and electron transport across the

Range (kHz) Type Driving mechanism

10–20 Loop or circuit oscillations Magnetic field, discharge voltage and electron
wall collision frequency

5–25 Rotating spokes Ionization process

20–60 Azimuthal modes or drift instability Gradient of density and magnetic field

70–500 Transient time oscillations Plasma density gradient and low ionization

0.5–5 MHz Azimuthal waves Drift velocity of plasma species

Table 2.
Range and classification of oscillations in a Hall Thrusters.
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generated inside the discharge channel along the axial direction of the device [3]. In
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satellite onboard.
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Property Value Property Value

Inner diameter 60 mm Neutral velocity �300 m/s

Outer diameter 100 mm Electron temperature 5–10 eV

Plasma density �1017/m3 Ion temperature 1–5 eV

Neutral density �1018/m3 Neutral temperature 0.9 eV

Ion velocity �104 m/s Debye length �10�5 m

Collision mean free �1 m

Table 1.
Typical plasma parameters for Hall Thrusters.
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obtained. Since the dielectric walls are not conductive, charge builds up along the
length of the acceleration channel that leads to a variable potential profile along its
length.

5.2 Thruster with anode layer

Thruster with anode layer also developed in Russia has a narrow acceleration
zone associated with the narrow electric field region near the anode. This geometry
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losses. This reduces the loss caused by the ion and electron collisions with the walls.
Since the walls are conductive, a constant potential (same as that of the cathode) is
observed along the entire wall. Very high electron temperatures, i.e. more than
50 eV, are typically observed in such thrusters [1].
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contributing to propellant ionization. Over the last decade several studies have been
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magnetic field. Smolyakov et al. reported that sheath instabilities has a vital role in
anomalous transport phenomena in Hall plasma thruster [12, 13].

7. Ion stream speed study for electrostatic thruster

Let us consider a Hall thruster having potential difference between anode and
virtual cathode is Φ Volt and ions density (mass) n (M). The mass flow of propel-

lant of ions of mass M through an area A is given by _mp ¼ nMAU
!

ex.
The thrust is also constant as

T ¼ _mpU
!

ex, (8)

Substituting the value of mass flow rate, the thrust per unit area

T
A
¼ nMU

!
ex

� �
U
!

ex ¼ Ji
q
MU

!
ex (9)

where Ji the current density of ions.
From the definition of work energy theorem, that the kinetic energy of each ion

should equal to the work done in moving the charge across a potential drop. That is

1
2
MU

!2

ex ¼ qΦ (10)

Or

U
!

ex ¼ Ispg ¼
ffiffiffiffiffiffiffiffiffi
2qΦ
M

r
(11)

Thus the specific impulse or exhaust velocity of the ions depends on the poten-
tial drop developed across the anode and cathode and to the mass of the ion.

8. Conclusions

The E
! � B

!
configurations of fields are used to confine electrons, increasing the

electron residence time and allowing ionization and plasma sustainment. The mag-
netron sputtering used in material science for ion implantation is also based on the

same E
! � B

!
drift. The primary concern of the study to enhance the lifetime and

performance of the Hall thruster by studying the instabilities that takes place in the
channel and optimization of profile of the magnetic field which is the main param-
eter in respect to the erosion of the channel walls.
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Chapter 3

Evolution of Microwave Electric
Field on Power Coupling to Plasma
during Ignition Phase
Chinmoy Mallick, Mainak Bandyopadhyay and Rajesh Kumar

Abstract

During the gas ignition process, the plasma and the microwave electric fields are
evolved with time together in the plasma volume. The spatio-temporal evolution
pattern of microwave-radiated plasma parameters is reported here, highlighting the
role of these electric fields on power coupling processes. Evolutions of electric field
and so power coupling processes are calculated using the finite element method
(FEM). It is observed that the main power coupling mechanism is electron cyclo-
tron resonance (ECR) method; however, with the evolution of plasma, the mode
shifts from ECR to off-ECR-type heating with time. Off-ECR heating in the form of
upper hybrid resonance (UHR) method, electrostatic (ES) ion acoustic wave
heating method is important heating mechanisms during highly dense plasma con-
dition, when density is above critical density for launched frequency, 2.45 GHz. The
conclusions on the shifting of heating mechanisms are also drawn based on the 3D
maps of spatio-temporal plasma density and hot electron temperature evolution.

Keywords: microwave plasma simulation, COMSOL multi-physics,
magnetized plasma evolution, ECR, off-resonance, ion source, electrostatic heating,
electric field evolution, hot electron temperature, experimental validation

1. Introduction

Gaseous particles are ionized to bring them in the form of plasma through the
various heating techniques. One of the popular heating techniques is the injection of
high frequency microwaves (MW) to a cylindrical cavity that has comparable
dimension to the injected MW wavelength. The MW plasma generated by the
continuous or pulse feeding of the MW is used in the applications of industrial and
accelerator fields for the material science and nuclear applications, respectively. In
both of the feeding cases, the plasma is basically produced due to the power
absorption by the electrons from the space-time dependent electric field of the MW.
The spatio-temporal dynamics and also the steady-state behaviors of the plasma are
governed by the ways the MW are coupled to the plasma sustained inside a cavity.
The behavioral pattern of the electric field during the plasma evolution can help us
to comment on the different MW coupling ways/mechanisms that are involved in
the formation of plasma particles and their confinement scenarios. By mastering the
basic concepts on those different coupling mechanisms, the coupling efficiency and
so the performance of that particular plasma source can be optimized. Performance
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optimization for this kind of plasma source is indispensable as these are involved in
various kinds of applications as mentioned above. One of the important plasma
devices is the microwave ion sources that are operated in continuous as well as pulse
mode to extract the ion beam during the transient and steady state periods of
plasma loading conditions [1–5]. The beam qualities are influenced by the MW
coupling mechanisms as they are involved in deciding the plasma parameters dur-
ing the extraction of a particular instant of the plasma evolution time. Several
studies have already reported the electric field evolution during few 10 s of micro-
second range when the plasma density was increasing in the very similar plasma
device. The electric field was dropped by about more than 50% within a span of few
microseconds after the MW launch (t = 0 s) into the cavity [6–11].

Since the electric fields can affect the different power coupling mechanisms dur-
ing the gas ignition moment (ns to μs), the spatio-temporal plasma parameters are
influenced significantly especially in the low pressure regime. Many researchers have
used the kinetic models like PIC/MCC or even the hybrid fluid/PIC to obtain more
precise results in the MW plasma discharge. But they failed to estimate the hot
electron dynamics efficiently in lower pressure condition, as these models demand
intensive computational hardware due to its particle approach. Therefore, the current
chapter presents the electric field evolution and its impact on the plasma parameter
build-up during low pressure plasma state. Here, the model used is based on the finite
element method (FEM) that gives more appropriate results for the transient plasma
parameters through fluid modeling approach and time-dependent, partial differential
equation solver (TDPDE) using fewer computer resources [11]. The different MW-
plasma coupling mechanisms (ECR, UHR and electric field polarity reversal associ-
ated with ES wave heating) during the plasma density evolution after the MW launch
(t = 0 s) can be understood from the behaviors of electric fields.

2. Basic theory of microwave plasma interaction

The study on the propagation and interactions of the microwave with the plasma
is important to optimize the performance of any plasma devices like the microwave
ion sources. The microwave propagation in the plasma is affected by the dielectric
prosperities of the plasma medium. The dielectric property, i.e., the permittivity or
the refractive index of the plasma, depends on the external magnetic field distribu-
tion that is used to confine the plasma particles and also the electrostatic fields that
are present in the plasma. Therefore, the microwave while propagating in different
directions within the plasma encounters different values of the refractive index as
well as the permittivity that makes the magnetized plasma to be anisotropic and
inhomogeneous, respectively. To generate a high plasma density, which is one of
the primary requirements in some microwave plasma devices, viz., the microwave
discharge ion source (MDIS) or electron cyclotron resonance ion sources (ECRIS),
an optimum coupling of the microwave energy through the different interaction
mechanisms to the plasma medium is necessary. The microwave propagation and
the coupling mechanisms are also influenced by the boundary conditions present in
the plasma devices and the geometrical shape of the plasma device. In most cases,
the dimension of the plasma reactor used for the purpose of ion sources lie in the
comparable range of the launched microwave wavelength. This means the micro-
wave electromagnetic field propagation within the ion source reactor (or cavity) is
guided by the boundary conditions and the geometrical shape of the ion source
cavity. So, the microwave electromagnetic field coupling to the plasma is affected if
the cavity geometry is perturbed. Due to the modification of the cavity geometry,
the resonating properties of the cavity resonator are no longer dominated by the
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fundamental cavity resonant mode. The cavity can resonate with some additional
resonating frequencies including the fundamental one. The additional resonating
frequencies can lie near to the fundamental one. Due to this reason, if the micro-
wave is launched to the modified cavity, the total microwave field is shared among
the cavity resonant modes including the fundamental one and contributes to the
power coupling to the plasma.

From the electromagnetic theory of a resonant cavity, only particular cavity
resonant modes can exist having fixed frequencies that are given by [12, 13]

f ¼ 1
2π

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r2π2

l2
þ h2

s
(1)

where r, l and h are the integer, the length of the plasma cavity and the
eigenvalues of the cavity, respectively. The eigenvalues are obtained from the
solution of the equations gives by:

∇2
t Hz0 þ h2Hz0 ¼ 0 (2)

∇2
t Ez0 þ h2Ez0 (3)

A theoretical calculation for the cavity resonant modes from the eigenvalue
equations for the electromagnetic field [12, 13] is performed from the empty and
completely closed cavity. By considering a simplest cylindrical cavity of radius r and
the length ‘d’ that is filled with a dielectric constant εr and the relative permittivity
μr, the resonant frequencies allowed by the cavity that can be determined from the
eigenvalue equations are shown below from the TE and TM modes:

f TEnml ¼
c

2π
ffiffiffiffiffiffiffiffi
μrεr

p
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
P0
nm

r

� �2

þ lπ
d

� �2
s

(4)

f TEnml ¼
c

2π
ffiffiffiffiffiffiffiffi
μrεr

p
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Pnm

r

� �2

þ lπ
d

� �2
s

(5)

Here, Pnm and P0
nm are, respectively, the zeros of order m of the Bessel functions

of order n and its first derivative. The indices represent the three-dimensional
electromagnetic field patterns for each cavity resonant mode.

2.1 Microwave propagation in plasmas

In case of magnetized plasma, the microwave propagation is influenced by the
plasma particle dynamics. As the plasma particle dynamics are represented by the
particle velocity, the thermal velocity of the plasma particles should be considered
when the microwave propagation in plasma is discussed. If the thermal velocity of
the plasma particles is negligible with respect to the phase velocity of the micro-
wave, i.e., vthermal ≪ vphase, this approximation is useful for determining the disper-
sion of the microwave in a magnetized plasma. This approximation also known as
‘cold plasma’ is not applicable to the locations where the microwave encounters
resonance in the magnetized plasma. On the other hand, if the temperature of the
plasma particles is high enough that makes the velocity of the particle to be relativ-
istic (also called as ‘warm plasma’), the influence of the plasma particles cannot be
neglected while determining the microwave propagation. In that case, the damping
of the microwave field is greatly influenced by the plasma particles.
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fundamental cavity resonant mode. The cavity can resonate with some additional
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power coupling to the plasma.

From the electromagnetic theory of a resonant cavity, only particular cavity
resonant modes can exist having fixed frequencies that are given by [12, 13]

f ¼ 1
2π

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r2π2

l2
þ h2

s
(1)

where r, l and h are the integer, the length of the plasma cavity and the
eigenvalues of the cavity, respectively. The eigenvalues are obtained from the
solution of the equations gives by:

∇2
t Hz0 þ h2Hz0 ¼ 0 (2)

∇2
t Ez0 þ h2Ez0 (3)

A theoretical calculation for the cavity resonant modes from the eigenvalue
equations for the electromagnetic field [12, 13] is performed from the empty and
completely closed cavity. By considering a simplest cylindrical cavity of radius r and
the length ‘d’ that is filled with a dielectric constant εr and the relative permittivity
μr, the resonant frequencies allowed by the cavity that can be determined from the
eigenvalue equations are shown below from the TE and TM modes:

f TEnml ¼
c

2π
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μrεr

p
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
P0
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þ lπ
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� �2
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(4)
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þ lπ
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(5)

Here, Pnm and P0
nm are, respectively, the zeros of order m of the Bessel functions

of order n and its first derivative. The indices represent the three-dimensional
electromagnetic field patterns for each cavity resonant mode.

2.1 Microwave propagation in plasmas

In case of magnetized plasma, the microwave propagation is influenced by the
plasma particle dynamics. As the plasma particle dynamics are represented by the
particle velocity, the thermal velocity of the plasma particles should be considered
when the microwave propagation in plasma is discussed. If the thermal velocity of
the plasma particles is negligible with respect to the phase velocity of the micro-
wave, i.e., vthermal ≪ vphase, this approximation is useful for determining the disper-
sion of the microwave in a magnetized plasma. This approximation also known as
‘cold plasma’ is not applicable to the locations where the microwave encounters
resonance in the magnetized plasma. On the other hand, if the temperature of the
plasma particles is high enough that makes the velocity of the particle to be relativ-
istic (also called as ‘warm plasma’), the influence of the plasma particles cannot be
neglected while determining the microwave propagation. In that case, the damping
of the microwave field is greatly influenced by the plasma particles.
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For the un-magnetized plasma case in which the plasma is considered to be
isotropic and the condition, vthermal ≪ vphase is satisfied, the plasma fluid equation is
written as:

∂~v
∂t

¼ q~E (6)

If the microwave electric field (~E) and the velocity (~v) are assumed to be varying
with eiωt, the plasma dielectric constant can be easily shown as:

ϵ ¼ ϵ0 1� ω2
pe

ω2

 !
(7)

where the ωpe is the electron plasma frequency that is also obtained from the
electron density by the relation:

ωpe ¼
ffiffiffiffiffiffiffiffiffiffi
nee2

ϵ0me

s
(8)

where me, e and ϵ0 are the electron mass, charge and electrical permittivity in
vacuum condition, respectively. So the electrical permittivity in plasma is affected
by the plasma density. As the electrical permittivity has to be positive in ideal case,
the plasma density has to be lower than the corresponding microwave frequency
that is launched externally to energize the plasma particles. Therefore, in case of
homogeneous and isotropic plasma, it is not possible to raise the plasma density
beyond certain level that is known as the critical density, which is written as

ncritical ¼ ω2
pe

ϵ0me
nee2

� �
. The density below and above the critical density is referred to be

underdense and overdense plasma. So the critical density is the main limitation in
the un-magnetized plasma for the microwave propagation. The dispersion for the
wave in magnetized plasma is written as:

ω2 � ω2
pe ¼ k2c2 (9)

In the overdense plasma, if ω<ωpe, the propagation k-vector 0k0 becomes
imaginary that means the complete reflection of the incoming microwave from the
plasma. Therefore, if the microwave propagation is assumed to be propagating in
the x-direction in the overdense plasma, the electric field of the microwave can be
written as:

~E ¼ ~E0e ik:~r�ωtð Þ ¼ ~E0e ikx�ωtð Þ ¼ e
x
δe�iωt (10)

So, before encountering the overdense plasma, the electric field becomes an
evanescent wave as its magnitude decays exponentially within a distance of

approximately the skin depth value; (δ) = c=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ω2
pe � ω2

q�
).

Under the externally applied magnetic field, the dielectric constant for the
anisotropic plasma becomes a tensor quantity. It means the microwave propagation
becomes dependent on the plasma dielectric properties while propagating in various
directions with respect to the externally applied magnetic field. If the magnetic field
is oriented axially (~B ¼ B0~z) in a cylindrical plasma chamber, the plasma can act as a
dielectric with current ~J and also the Maxwell’s equations can be rewritten as:
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~∇� ~B ¼ μ0 ~J þ ε0
∂~E
∂t

� �
¼ μ0

∂~D
∂t

(11)

Now if the plasma motion follows the eiωt dependence and the plasma conduc-
tivity tensor is related with the current as σ

¼
. ~E ¼ ~J, the relation between ~D and ~E is

obtained as:

~D ¼ ε0 I
¼
þ i
ε0ω

σ
¼

� �
~E (12)

where the symbol I
¼
represents an identity tensor. In short, the parameter ~D can

also be written as ~D ¼ ε0 ϵr
¼ ~E, where the effective dielectric tensor ϵ

¼
is represented

as ϵ0 I
¼
þ i

ε0ω
σ
¼� �

. The plasma conductivity tensor is evaluated from the fluid plasma

approach. Therefore, the fluid equation in case of ‘cold plasma’ approximation is
rewritten by neglecting the collisional and pressure term and the magnetic field
term is considered as:

mi
∂~v
∂t

¼ e ~Eþ ~v� ~B
� �

(13)

The solution to this equation brings out the relation between the velocity (~v) and
the electric field of the microwave. As ~J ¼ ne~v, the final expression for the effective
dielectric tensor ϵ

¼
can be shown in a determinant form as:

ϵ
¼¼ ϵ0

S �iD 0

iD S 0

0 0 P

��������

��������
� ϵ0 ϵr

¼
(14)

where S, D and P can be written in terms of three different kinds of frequencies:

S ¼ 1� ω2
pe

ω2
1

1�ωc

� �h i
, D = [� ω2

pe

ω2
ωc
ω(

1
1�ωc

Þ� and P = 1� ω2
pe

ω2 .

The wave equation can be derived from the Maxwell’s curl equation for the
electric field by following the standard procedure that shows

~∇� ~∇� ~E ¼ � ∂~∇� ~B
∂t

¼ � 1
c2

ϵ
¼
:
∂
2~E
∂t2

(15)

The above equation is rewritten by assuming the ei~k:~r dependence of the electric
field as:

~k� ~k� ~Eþ ω2

c2
ϵ
¼
:~E ¼ 0 (16)

The equation can be represented in matrix form by assuming the angle between
the wave vector and magnetic field to be ‘θ’ and denoting the vector ~N ¼ c

ω
~k.

S�N2 cos 2θ �iD N2cosθsinθ

iD S�N2 0

N2cosθsinθ 0 P�N2 sin 2θ

2
664

3
775

Ex

Ey

Ez

2
64

3
75 ¼ 0 (17)
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The solution to these equations can exist if the determinant is zero. This condi-
tion brings out the dispersion relation of the microwave in the plasma. By making
the determinant to be zero, two solutions are obtained that are written as:

N2
O,X ¼ 2x 1� xð Þ

2 1� xð Þ � y2 sin 2θ �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
y4 sin 4θ � 4y2 1� xð Þ2 cos 2θ

q (18)

where the symbols ‘O’ and ‘X’ correspond to the ordinary microwave and
extraordinary microwave, respectively. The notations x and y in Eq. (18) represent
the electron density scale and magnetic field scale respectively and are denoted as:

x ¼ ω2
pe

ω2 ∝ ne and y ¼ ωc
ω ∝B0:

From the solutions, the microwave propagation and damping properties can be
explained considering the values of the electron density, magnetic field and the angle
of propagation. By the definition, the refractive index Nð Þ has to be positive for
enabling the microwave to propagate in plasma. The two different values for the
refractive index N = 0 and N =∞ imply the cut-off and the resonance conditions for
the microwave, respectively. From Eq. (18), three different types of cut-offs can be
obtained by puttingN = 0 that depends on the plasma parameters. Three cut-offs are:

(1) ω ¼ ωpe; this cut-off is also known as ‘O’ cut-off; (2) ω ¼ ωR ¼
0:5

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ω2
c þ 4ω2

pe

q
þ ωc; this cut-off is also called upper or R cut-off frequency that

occurs both above ωpe and ωc; and (3) ω ¼ ωL ¼ 0:5
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ω2
c þ 4ω2

pe

q
� ωc; it is also called

the lower cut-off or L cut-off for the microwave. Based on the local plasma density
values and magnetic field values in the plasma volume, “ordinary waves” have ‘O’
cut-off region, and extra-ordinary waves have two cut-offs, R cut-off, and L cut-off
regions, from where corresponding waves are reflected back. To satisfy resonance
condition (N =∞), it is found from Eq. (18) that the term Pcos2θ þ S sin 2θ has to be
zero. It gives the resonance angle in terms of the plasma parameters that are given by:

cos 2θ ¼ xþ y2 � 1
xy2

(19)

It is clear that the wave can resonate at the resonance angle (θ) that is decided by
the angle of microwave propagation with respect to the magnetic field. From
Eq. (18), it is also confirmed that only the extraordinary wave can have the reso-
nances. From Eq. (19), the resonance angles for the extraordinary wave are deter-
mined by the plasma density and the magnetic field. For example, if the resonance
angle is set to be zero, it is verified that the resonance takes place at ω ¼ ωRF ¼ ωc.
This means the microwave matches the larmour frequency of the electrons that are
gyrating around the magnetic field lines. It is also known as electron cyclotron
resonance (ECR). Again, for the resonance angle, θ = 90°, another type of resonance
can occur when xþ y2 � 1 = 0, and this condition yields the resonance frequency to

be ω ¼ ωRF ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ω2
c þ ω2

pe

q
. This type of resonance is known as upper hybrid reso-

nance (UHR) applicable to the wave (e.g., extraordinary wave) that is propagat-
ing perpendicularly with respect to the magnetic field. The resonance of the
ordinary wave can also be understood from Eq. (18). It can be seen from one of the
solutions obtained from Eq. (19) that another resonance can exist in the region
where x, y ≥ 1. This is the forbidden region for the ordinary wave, which is the ‘O’

cut-off region. Therefore, the ordinary-type microwave can reach this resonance
only by tunneling through this cut-off region.
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To visualize the cut-offs and resonances for the different types of microwaves in a
better way, the dispersion plots are shown in a single diagram, also known as
Clemmow-Mullaly-Allis (CMA) diagram. Figure 1 is applicable to the ‘cold plasma’
approximation case as discussed before. In the CMA diagram, the x- and y-axes repre-
sent the plasma density and the magnetic field, respectively. It means that for a given
launch microwave frequency, a point on the diagram dictates the experimental situa-
tion that is characterized by a particular plasma density and the magnetic field. The
diagram is divided into two regions: underdense and overdense plasma regions that are
based upon the launch microwave frequency. The boundaries shown in the diagram
correspond to the cut-off and resonances for the different types of microwaves.

The polarization of the electric field of the microwaves also plays important role
on the damping of microwave power into the plasma. From Eq. (17), the relation
between the x- and y-components of the electric field can be found out to under-
stand the polarization in the plane perpendicular to the magnetic field. The relation
is obtained from Eq. (17) as:

iEx

Ey
¼ N2 � S

D
(20)

Eq. (20) indicates that the waves become circularly polarized and linearly polar-
ized when the cut-off condition (N2 ¼ 0) and the resonance condition (N2 ¼ ∞) are
satisfied respectively. The waves are circularly and linearly polarized, respectively.
However, it is confirmed that the ordinary waves are left hand polarized and the
extraordinary waves are right hand polarized. The electric field of the right hand
polarized waves and the electrons gyrating across the magnetic rotate in the same
direction. Therefore, if the microwave-launched frequency matches the electron
gyration frequency, electrons observe a constant electric field at the resonance loca-
tion and are resonantly accelerated by the electric field. It is known as electron

Figure 1.
The CMA diagram shows the propagation of microwave launched from high and low magnetic field side. The
arrow bend implies the cut-off region and the mode conversion region near the upper hybrid resonance location.
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nance (UHR) applicable to the wave (e.g., extraordinary wave) that is propagat-
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To visualize the cut-offs and resonances for the different types of microwaves in a
better way, the dispersion plots are shown in a single diagram, also known as
Clemmow-Mullaly-Allis (CMA) diagram. Figure 1 is applicable to the ‘cold plasma’
approximation case as discussed before. In the CMA diagram, the x- and y-axes repre-
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direction. Therefore, if the microwave-launched frequency matches the electron
gyration frequency, electrons observe a constant electric field at the resonance loca-
tion and are resonantly accelerated by the electric field. It is known as electron

Figure 1.
The CMA diagram shows the propagation of microwave launched from high and low magnetic field side. The
arrow bend implies the cut-off region and the mode conversion region near the upper hybrid resonance location.

39

Evolution of Microwave Electric Field on Power Coupling to Plasma during Ignition Phase
DOI: http://dx.doi.org/10.5772/intechopen.92011



cyclotron resonance heating (ECR). It is to be noted that only in the ECR heating
mechanism the energy is transferred directly from the microwave to the gaseous
electrons. As the electrons gain sufficient energy by resonance, they ionize the neutral
gases and thus form plasma. There are also other mechanisms for energy transfer
from the microwave to the plasma. But the direct energy transfer is not possible in
these cases. In fact, the energy is shared among the microwave and the plasma
oscillation modes by means of collisional absorption or non-linear phenomenon. The
plasma oscillation modes are excited by the ‘O’ and ‘X’ modes of microwaves. A
detailed description of the energy damping mechanisms is discussed below.

2.2 Electron cyclotron resonance (ECR)

As discussed above, the ECR heating is an attractive tool in direct energy trans-
ferring to the plasma specifically in the ion source applications. The working principle
of ECR mechanism is based on the frequency matching condition in which the
microwave frequency with same polarization matches with electron cyclotron
motion. It looks pretty much simpler in a qualitative approximation. But in case of
quantification, it appears to be a non-deterministic method. It means along with the
frequency, the phase difference between the microwave and electron motion also
plays important role in energy transferring through ECR mechanism. Under fre-
quency matching condition, if the phase difference between the microwave and the
electron motion is in the same phase, then the electrons are accelerated by the
microwave electric field. On the other hand, if it is 180° out of phase, the electrons are
decelerated. Practically, the temporal phase difference between the microwave and
the electron motion is a random phenomenon. So, it becomes necessary to take an
average energy gain temporally of the electrons for several microwave periods. It is
demonstrated by several groups worldwide that the average temporal energy gain of
the electrons has positive value if the averaging calculation is performed irrespective
of the phase difference between the microwave and the electron cyclotron motion. It
has been proved that the net energy gain is related non-linearly to the microwave
electric field (∝E2). In ECR heating-based plasma, the collisions in plasma can play
important role on the confinement of the plasma particles, thermalizing the plasma
particles, and also on the ionization rate. The collision properties of plasma are
determined by two physical parameters: mean free path (λmean ¼ 1

nσ) and collision
frequency (? = nσv). Here, σv is the product between cross-section and the velocity of
plasma particles that is determined from the velocity distribution function (Maxwel-
lian type). The particle confinement time is inversely proportional to the collision
frequency. A contradiction arises from these two relations. The plasma can have a
temperature even in collision-less case and follow the Maxwellian distribution. In
collision-less case, the particle does not collide with each other and so there is no
thermalization. But in ECR case, the kinetic energy of electrons increases, but there
would be low temperature of the plasma. It suggests that there must be other mech-
anisms that are involved for the solution of this contradiction.

In most of the ECR ion source plasmas, the plasma is collision-less. But in other
ion sources operating at microwave discharge, where the temperature of the plasma
is comparatively lower and the pressure is also higher, a complete collision-less
approximation is not valid. The other heating mechanisms that are involved in the
collisional absorption condition must be taken into account. Considering the colli-
sional term in the equation of motion,
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Here, ωc denotes the collision frequency. Then the dispersion relation is
modified as:
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Here, Z ¼ ωc
ω . It can be observed that there is collisional term present in the

modified dispersion equation of the wave propagation. This collisional term limits
the attainable energy during the ECR heating unlike the collision-less case, as
discussed before.

2.3 Wave propagation in warm plasma condition

Although the cold plasma approximation is not valid for the wave dispersion in
the region very close to the cut-off, the effect of warm plasma condition cannot be
ignored. This is because the wavelength in the latter case is not negligible com-
pared to the scale length of the plasma parameters [14]. At the resonance, where
the refractive index is infinity, the wavelength becomes equivalent to the electron
larmor radius. So, the finite larmor parameter effect is not negligible and has to be
considered. The larmor radius can be written as ѓ ¼ 0:5ðk2⟂v2thÞ=ω2

c where k⟂
denotes the perpendicular component of the wave vector with respect to the
magnetic field (Z-direction). For the non-relativistic case assuming the
Maxwellian distribution function, the distance of frequency from the nth cyclo-
tron harmonic resonance in terms of the Doppler shift unit is written as ξn ¼
ωþ nωcð Þ= kzj jv2th. Here kz represents the z-component of the wave vector. The
dielectric tensor is expressed as:
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This dielectric tensor coming from warm plasma approximation has few new
features that affect the wave propagation unlike the cold plasma approximation
case. It can be seen from Eq. (23) that the dielectric tensor is not only a function of
ωpe and ω but also a function of the plasma temperature and the k-vector compo-
nents. So, the dispersion relation yields a new kind of solution that is called
electrostatic wave.

2.4 Electrostatic wave

Usually, the electric field of an electrostatic wave does not change with time.
This fact is known from the derivation of the electrostatic field from a scalar
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cyclotron resonance heating (ECR). It is to be noted that only in the ECR heating
mechanism the energy is transferred directly from the microwave to the gaseous
electrons. As the electrons gain sufficient energy by resonance, they ionize the neutral
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microwave electric field. On the other hand, if it is 180° out of phase, the electrons are
decelerated. Practically, the temporal phase difference between the microwave and
the electron motion is a random phenomenon. So, it becomes necessary to take an
average energy gain temporally of the electrons for several microwave periods. It is
demonstrated by several groups worldwide that the average temporal energy gain of
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determined by two physical parameters: mean free path (λmean ¼ 1

nσ) and collision
frequency (? = nσv). Here, σv is the product between cross-section and the velocity of
plasma particles that is determined from the velocity distribution function (Maxwel-
lian type). The particle confinement time is inversely proportional to the collision
frequency. A contradiction arises from these two relations. The plasma can have a
temperature even in collision-less case and follow the Maxwellian distribution. In
collision-less case, the particle does not collide with each other and so there is no
thermalization. But in ECR case, the kinetic energy of electrons increases, but there
would be low temperature of the plasma. It suggests that there must be other mech-
anisms that are involved for the solution of this contradiction.

In most of the ECR ion source plasmas, the plasma is collision-less. But in other
ion sources operating at microwave discharge, where the temperature of the plasma
is comparatively lower and the pressure is also higher, a complete collision-less
approximation is not valid. The other heating mechanisms that are involved in the
collisional absorption condition must be taken into account. Considering the colli-
sional term in the equation of motion,

me
∂~v
∂t

¼ e ~Eþ ~v� ~B
� ��meωc~v (21)

40

Selected Topics in Plasma Physics

Here, ωc denotes the collision frequency. Then the dispersion relation is
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the attainable energy during the ECR heating unlike the collision-less case, as
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2.3 Wave propagation in warm plasma condition

Although the cold plasma approximation is not valid for the wave dispersion in
the region very close to the cut-off, the effect of warm plasma condition cannot be
ignored. This is because the wavelength in the latter case is not negligible com-
pared to the scale length of the plasma parameters [14]. At the resonance, where
the refractive index is infinity, the wavelength becomes equivalent to the electron
larmor radius. So, the finite larmor parameter effect is not negligible and has to be
considered. The larmor radius can be written as ѓ ¼ 0:5ðk2⟂v2thÞ=ω2
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This dielectric tensor coming from warm plasma approximation has few new
features that affect the wave propagation unlike the cold plasma approximation
case. It can be seen from Eq. (23) that the dielectric tensor is not only a function of
ωpe and ω but also a function of the plasma temperature and the k-vector compo-
nents. So, the dispersion relation yields a new kind of solution that is called
electrostatic wave.

2.4 Electrostatic wave

Usually, the electric field of an electrostatic wave does not change with time.
This fact is known from the derivation of the electrostatic field from a scalar
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potential (~E ¼ �~∇V), which makes ~∇� ~E to be zero. However, the time-dependent
electric field is sometimes denoted as electrostatic wave as it obeys ~E ¼ �~∇V
relation. So a concrete example for calling an electric field to be electrostatic is the
k-vector direction of electrostatic wave with respect to its electric field. If the k-
vector is parallel to the electric field, it is called as an electrostatic wave. It means
~∇� ~E ¼ ~k� ~E that makes the ∂~B

∂t component to be zero. Therefore, the electrostatic
wave does not have any magnetic field component.

A commonly occurred electrostatic wave in a warm plasma condition is named
as the Langmuir wave [16]. The Langmuir wave is the main constituent of un-
magnetized plasma that appears together with the ion-acoustic wave (IAW). In case
of magnetized plasma, electrostatic waves are also present. In this case, if the
electrons are displaced by some force, an electric field builds up to restore the
electrons back to their initial position to maintain the plasma quasi-neutrality
condition. Due to the very low inertia, the electrons will show an overshoot and
oscillate around an equilibrium position. The frequency of oscillations is
equivalent to the electron plasma frequency of the plasma. The dispersion relation
of the Langmuir wave is written as [16]:

ω2
L ¼ ω2

pe þ
3
2
k2v2th (24)

As the electron plasma oscillates very fast compared to the massive ions present
in plasma, the massive ion motion is considered to be fixed in the GHz frequency
scale (Langmuir frequency range). Although the frequency of the massive ion
motion is very low compared to the Langmuir wave, the massive ions part will take
part in the oscillations due to the electric field build-up. This low-frequency
oscillations fall usually in the range of ion-acoustic wave frequency. The ion wave
dispersion is obtained from the fluid equation as,

ωIAW

kion
¼ kB Te þ γiTið Þ=Mif g1=2 (25)

Usually, the plasma oscillations in the ion-acoustic frequency range lie in
between few kHz to tens of MHz.

There exists another kind of electrostatic wave in magnetized plasma, which is
known as electron Bernstein waves (EBW). EBW exist in warm plasma conditions
when the electron temperature has finite value. It is known that the superposition of
the static magnetic field with the oscillating electric field of the plasma waves can
make the electron orbit to be elliptical [17, 18]. Now, if the magnetic field is
increased further, the electron orbit will become a circular one as the Lorentz force
dominates the electrostatic component [17, 18]. The presence of EBW makes the
electron gyrophase to organize in such a manner that the space charge distribution
in plasma obtains a minima and maxima in the direction perpendicular to the
externally applied magnetic field. It was shown [19] that the space charge accumu-
lation is periodic. The charge accumulation propagates with a wavelength that is
four times the electron larmor radius [19]. As the wavelength of the EBW is much
lower than the length of a typical Langmuir probe tip, used for the plasma charac-
terization, the Langmuir probe is unable to detect the EBW wave directly [20]. The
dispersion of electron Bernstein wave (EBW) can be written as:

k2⟂
2ω2

pe=v
2
th
¼ 2ω2
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Here k⟂, vth, and In represent k-vector perpendicular component, electron ther-
mal velocity and the Bessel’s function, respectively. From Eq. (26), it can be seen
that the k-vector becomes infinite at the cyclotron harmonic, i.e., ω2

MW ¼ n2ω2
c .

Therefore, the EBW waves can have resonance at the harmonics of the cyclotron
resonance frequencies. In microwave ion source, the resonance absorption of the
EBW is possible at the harmonics of the cyclotron frequencies of the ECR magnetic
field (BECRÞ value.

2.5 Mode conversion theory

In microwave-generated magnetized plasma, the presence of plasma density
gradient and the variation of the magnetic field make the wave propagation and its
energy absorption unpredictable. It is difficult to estimate the wave trajectory from
the simple linear uniform plasma theory [21]. It is natural that the wave would cross
the boundaries shown in the CMA diagram by travelling up or down depending on
the magnetic field variation and plasma density distribution. Inhomogeneous and
anisotropic plasma can exhibit a wide variety of possibilities for the cut-off, reso-
nance, cut-off-resonance and/or the back-to-back cut-off pairs. In inhomogeneous
plasma, two or more waves can coexist that propagates in the plasma having density
gradient. Although their polarization and propagation vector are different from one
another, they can exhibit identical characteristics at some particular plasma regions
having particular plasma loading conditions. At those particular scenarios, the
waves can remain no longer distinguishable and therefore can convert into another.
The mode conversion theory deals with establishing resonance characteristic in
inhomogeneous plasma considering two different waves present in the plasma by
taking into account the wave reflection, cut-off, resonance and absorption condi-
tions. As the microwaves that are present in the microwave ion source plasma is
dominated by the ordinary- and extraordinary-type microwave, the mode conver-
sion theory is mainly focused upon considering the cut-off-resonance pair condition
in plasma. The X mode microwave is unable to propagate the dense plasma because
it is reflected at R cut-off. On the other hand, O-mode microwave is able to propa-
gate in the dense plasma, where it converts into the X mode microwave under
certain condition that is obtained from Eq. (18). As per CMA diagram, the X mode
can have resonance at the UHR region. Therefore, before entering the UHR region,
the launched microwave can convert into the X mode based on the following
mechanisms:

• If the X mode microwave is launched from the high magnetic field side, the X
mode will not see the R cut-off (see Figure 1). It will propagate toward the
UHR zone where it can convert into an EBW and an ion wave as per the
literature. This method is known as X-B conversion process.

• Another method in generating the EBW and ion wave is the O-X-B mode
conversion process. In this process, the O mode microwave launched from the
vacuum side crosses the R cut-off and converts into a slow X mode after
tunneling through the evanescent layer. The generated slow X mode is then
converted into an EBW and an ion wave near the UHR layer.

In microwave ion source plasma under mirror magnetic field configuration,
there can coexist two types of components (O and X modes) of the launched
microwave. The ion source cavity acts as a resonator having comparable cavity
dimension with respect to the launch microwave wavelength. Therefore, different
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potential (~E ¼ �~∇V), which makes ~∇� ~E to be zero. However, the time-dependent
electric field is sometimes denoted as electrostatic wave as it obeys ~E ¼ �~∇V
relation. So a concrete example for calling an electric field to be electrostatic is the
k-vector direction of electrostatic wave with respect to its electric field. If the k-
vector is parallel to the electric field, it is called as an electrostatic wave. It means
~∇� ~E ¼ ~k� ~E that makes the ∂~B

∂t component to be zero. Therefore, the electrostatic
wave does not have any magnetic field component.

A commonly occurred electrostatic wave in a warm plasma condition is named
as the Langmuir wave [16]. The Langmuir wave is the main constituent of un-
magnetized plasma that appears together with the ion-acoustic wave (IAW). In case
of magnetized plasma, electrostatic waves are also present. In this case, if the
electrons are displaced by some force, an electric field builds up to restore the
electrons back to their initial position to maintain the plasma quasi-neutrality
condition. Due to the very low inertia, the electrons will show an overshoot and
oscillate around an equilibrium position. The frequency of oscillations is
equivalent to the electron plasma frequency of the plasma. The dispersion relation
of the Langmuir wave is written as [16]:
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Usually, the plasma oscillations in the ion-acoustic frequency range lie in
between few kHz to tens of MHz.

There exists another kind of electrostatic wave in magnetized plasma, which is
known as electron Bernstein waves (EBW). EBW exist in warm plasma conditions
when the electron temperature has finite value. It is known that the superposition of
the static magnetic field with the oscillating electric field of the plasma waves can
make the electron orbit to be elliptical [17, 18]. Now, if the magnetic field is
increased further, the electron orbit will become a circular one as the Lorentz force
dominates the electrostatic component [17, 18]. The presence of EBW makes the
electron gyrophase to organize in such a manner that the space charge distribution
in plasma obtains a minima and maxima in the direction perpendicular to the
externally applied magnetic field. It was shown [19] that the space charge accumu-
lation is periodic. The charge accumulation propagates with a wavelength that is
four times the electron larmor radius [19]. As the wavelength of the EBW is much
lower than the length of a typical Langmuir probe tip, used for the plasma charac-
terization, the Langmuir probe is unable to detect the EBW wave directly [20]. The
dispersion of electron Bernstein wave (EBW) can be written as:

k2⟂
2ω2

pe=v
2
th
¼ 2ω2

c

X∞
n¼1

n2
e�bIn bð Þ

ω2
MW � n2ω2

c
(26)

42

Selected Topics in Plasma Physics

Here k⟂, vth, and In represent k-vector perpendicular component, electron ther-
mal velocity and the Bessel’s function, respectively. From Eq. (26), it can be seen
that the k-vector becomes infinite at the cyclotron harmonic, i.e., ω2

MW ¼ n2ω2
c .

Therefore, the EBW waves can have resonance at the harmonics of the cyclotron
resonance frequencies. In microwave ion source, the resonance absorption of the
EBW is possible at the harmonics of the cyclotron frequencies of the ECR magnetic
field (BECRÞ value.

2.5 Mode conversion theory

In microwave-generated magnetized plasma, the presence of plasma density
gradient and the variation of the magnetic field make the wave propagation and its
energy absorption unpredictable. It is difficult to estimate the wave trajectory from
the simple linear uniform plasma theory [21]. It is natural that the wave would cross
the boundaries shown in the CMA diagram by travelling up or down depending on
the magnetic field variation and plasma density distribution. Inhomogeneous and
anisotropic plasma can exhibit a wide variety of possibilities for the cut-off, reso-
nance, cut-off-resonance and/or the back-to-back cut-off pairs. In inhomogeneous
plasma, two or more waves can coexist that propagates in the plasma having density
gradient. Although their polarization and propagation vector are different from one
another, they can exhibit identical characteristics at some particular plasma regions
having particular plasma loading conditions. At those particular scenarios, the
waves can remain no longer distinguishable and therefore can convert into another.
The mode conversion theory deals with establishing resonance characteristic in
inhomogeneous plasma considering two different waves present in the plasma by
taking into account the wave reflection, cut-off, resonance and absorption condi-
tions. As the microwaves that are present in the microwave ion source plasma is
dominated by the ordinary- and extraordinary-type microwave, the mode conver-
sion theory is mainly focused upon considering the cut-off-resonance pair condition
in plasma. The X mode microwave is unable to propagate the dense plasma because
it is reflected at R cut-off. On the other hand, O-mode microwave is able to propa-
gate in the dense plasma, where it converts into the X mode microwave under
certain condition that is obtained from Eq. (18). As per CMA diagram, the X mode
can have resonance at the UHR region. Therefore, before entering the UHR region,
the launched microwave can convert into the X mode based on the following
mechanisms:

• If the X mode microwave is launched from the high magnetic field side, the X
mode will not see the R cut-off (see Figure 1). It will propagate toward the
UHR zone where it can convert into an EBW and an ion wave as per the
literature. This method is known as X-B conversion process.

• Another method in generating the EBW and ion wave is the O-X-B mode
conversion process. In this process, the O mode microwave launched from the
vacuum side crosses the R cut-off and converts into a slow X mode after
tunneling through the evanescent layer. The generated slow X mode is then
converted into an EBW and an ion wave near the UHR layer.

In microwave ion source plasma under mirror magnetic field configuration,
there can coexist two types of components (O and X modes) of the launched
microwave. The ion source cavity acts as a resonator having comparable cavity
dimension with respect to the launch microwave wavelength. Therefore, different
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types of propagating modes can coexist in the presence of plasma. This makes it
difficult to identify which mechanism is actually allowing the X mode to reach the
UHR region. However, it is possible to estimate this mode conversion efficiency.
For the case of X mode microwave, the refractive index is written as:

c2k2

ω2 ¼ 1� ω2
pe

ω2

ω2 � ω2
pe

ω2 � ω2
UHR

(27)

Let us suppose the X mode wave sees cut-off at the electron plasma frequency,
ωpe1. The wave cut-off condition yields

ω2
pe1

ω2 ¼ 1� ωc

ω
(28)

After reflection at the cut-off, the wave propagates in the inhomogeneous and
anisotropic plasma in the location where it will find a resonance (refractive index =
∞). The resonance is called upper hybrid resonance where electron plasma fre-
quency is ωpe2. The corresponding Eq. (27) becomes then

ω2
pe1

ω2 ¼ 1� ω2
c

ω2 (29)

By dividing Eq. (28) by Eq. (29), one gets

ω2
pe2

ω2
pe1

¼ 1þ ωc

ω
¼ ne2

ne1
≈ 1þ Δx

L
(30)

where Δx and L denote the distance between the cut-off and the upper hybrid
resonance layer and the length parameter, respectively. From Eq. (30), one obtains

Δx ¼ ωc

ω
L (31)

Now, for the wavelength λ≪L, the Δx will be many times the wavelength. So
the wave will not be able to reach the upper hybrid resonance point. The mode
conversion efficiency is determined by the penetration depth of the wave into the
plasma. The effective mode conversion can be achieved when the parameter L is
comparable to the wavelength, λ. In another way, from Eq. (31), it is also seen that
mode conversion can be improved if the magnetic field is reduced.

If a strong electromagnetic field is present in the ion source cavity, the plasma
particle follows the relation vE ≤ vthe; vE ¼ eE=mω, where vE,E, e,m and vthe are
wave phase velocity, electric field intensity, electron charge, electron mass and
electron thermal velocity, respectively. This condition leads to plasma parameters to
vary with time. In effect, the non-linear effect such as parametric instability comes
into play. Off-course, the parametric decay happens above certain threshold value
of the electric field and the microwave energy is shared among the plasma waves
and the microwave through the non-linear interaction phenomenon.

2.6 Parametric decay

As the plasma parameters vary with time under the conditions of intense electric
field of the microwave, the corresponding velocity becomes close to the electron
thermal velocity. It is known that the X mode electric field accumulates near the
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UHR region with time due to its propagation from the cut-off region to the UHR
region. The accumulated electric field will be able to share some part of its energy
through non-linear interactions to the oscillating modes present in the plasma. This
non-linear energy coupling between the X mode microwave and the oscillation
modes is known as parametric instability. It is demonstrated that the X mode
through this type of instability couples energy to the Bernstein wave and ion wave
near the UHR region. The Xmode normally contains the longitudinal component of
the electric field (TM type). Considering the x-component of the X mode propaga-
tion from Eq. (17), the dispersion of X mode wave can be written as follows:

ω2 � ω2
UHR

� �
Ex þ i

ω2
peωc

ω
Ey ¼ 0 (32)

From Eq. (11), as the Xmode approaches the UHR, the term ω2 � ω2
UHR ! 0 and

so Ey would be zero. Therefore, the component Ex will remain non-zero at the UHR,
which is directed in the direction of propagation of Xmode. This means the Xmode
at the UHR becomes electrostatic. The X mode microwave that becomes an electro-
static wave at the UHRmatches with the Bernstein wave and the ion wave. With the
two oscillation modes that are coupled with the X mode electric field (E0), the
motion of one of the modes (Bernstein wave) can be expressed in terms of the
simple harmonic oscillator.

d2x1
dt2

þ ω2
1x1 ¼ C1x2E0 cosω0t (33)

Here the motion of the first oscillator (amplitude x1 and the resonant frequency
ω1) is driven by the time-dependent electric field of the X mode and the amplitude
(x2Þ of the second oscillator. The equation of the motion for the second oscillator x2 is:

d2x2
dt2

þ ω2
2x2 ¼ C2x1E0 cosω0t (34)

Let us assume, X1 ¼ x1 cosω0t and X2 ¼ x2 cosω00t. In the absence of any non-
linear interaction, it can be expressed as ω0 ¼ ω1,ω00 ¼ ω2 and ω0 ¼ ω1. But in the
presence of non-linear interaction, this is incorrect. For the case of non-linear
interaction, as the driving terms cause frequency shifting, the frequency ω2 is
approximately equal to ω00. However, in the absence of non-linear interaction, the
solution from the system of coupled Eqs. (33) and (34) is obtained as:

ω00 ¼ ω0 � ω0 (35)

Now if ω0 is small such that both values of ω00 lie within the bandwidth of
oscillator, x2, there exist two oscillators: x2 ω0 þ ω0ð Þ and x2 ω0 � ω0ð Þ. Under this
assumption, solving the coupled Eqs. (33) and (34), the following frequency
matching condition is arrived:

ω0 ffi ω2 � ω1 (36)

As the oscillators are waves, the ‘?t’ term is replaced by ‘(?t-~k:~r). Following this,
a new matching condition of k-vector is reached, ~k0 ¼ ~k2 � ~k1.

The frequency and k-vector matching conditions correspond to the energy con-
servation and momentum conservation following the quantum mechanics theory. It
is proved that [15] the X mode generates two waves through parametric decay: a
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types of propagating modes can coexist in the presence of plasma. This makes it
difficult to identify which mechanism is actually allowing the X mode to reach the
UHR region. However, it is possible to estimate this mode conversion efficiency.
For the case of X mode microwave, the refractive index is written as:

c2k2

ω2 ¼ 1� ω2
pe

ω2

ω2 � ω2
pe

ω2 � ω2
UHR

(27)

Let us suppose the X mode wave sees cut-off at the electron plasma frequency,
ωpe1. The wave cut-off condition yields

ω2
pe1

ω2 ¼ 1� ωc

ω
(28)

After reflection at the cut-off, the wave propagates in the inhomogeneous and
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By dividing Eq. (28) by Eq. (29), one gets
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L
(30)

where Δx and L denote the distance between the cut-off and the upper hybrid
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Δx ¼ ωc

ω
L (31)

Now, for the wavelength λ≪L, the Δx will be many times the wavelength. So
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UHR region with time due to its propagation from the cut-off region to the UHR
region. The accumulated electric field will be able to share some part of its energy
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ω2 � ω2
UHR

� �
Ex þ i

ω2
peωc

ω
Ey ¼ 0 (32)

From Eq. (11), as the Xmode approaches the UHR, the term ω2 � ω2
UHR ! 0 and
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ω0 ffi ω2 � ω1 (36)

As the oscillators are waves, the ‘?t’ term is replaced by ‘(?t-~k:~r). Following this,
a new matching condition of k-vector is reached, ~k0 ¼ ~k2 � ~k1.

The frequency and k-vector matching conditions correspond to the energy con-
servation and momentum conservation following the quantum mechanics theory. It
is proved that [15] the X mode generates two waves through parametric decay: a
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high-frequency Bernstein wave and a low-frequency ion wave following the fre-
quency matching condition. This leads to the generation of secondary peaks around
the launched microwave frequency, which is called as sideband. Therefore, the
simultaneous presence of the sideband peaks around the launched frequency sig-
nifies the parametric decay near the mode conversion region.

The parametric decay occurs above a certain threshold value, which actually
depends on the damping rate of the oscillator. If the damping rates Γ1 and Γ2 for
two oscillators x1 and x2, respectively, are introduced in Eqs. (33) and (34), one can
conclude that the lowest threshold occurs at the exact frequency matching condi-
tion. The corresponding threshold electric field is obtained as [19]:

C1C2E2
0threshold ¼ 4ω1ω2Γ1Γ2 (37)

2.7 Damping of electrostatic and electromagnetic energy

Electrostatic waves generated in the plasma through the parametric decay insta-
bility can damp their energy to the plasma particles and thus increase the plasma
density. When the phase velocity of the electrostatic wave becomes comparable to the
thermal velocity of the plasma particles, the energy is transferred from the wave to
the plasma particles and is known as Landau damping mechanism. In microwave ion
source plasma, density can be increased 2–3 times more than the ECR heating
mechanisms through the off-resonance heating mechanism. For this reason, the off-
resonance condition is used to create favorable conditions of the upper hybrid reso-
nance heating. Under certain plasma temperature, the electrostatic wave can transfer
energy resonantly to the plasma particles if the wave phase velocity matches the
plasma particle velocity. In some cases, the plasma particle velocity can be higher than
the wave phase velocity. Under this condition, the plasma particle can transfer energy
to the wave. The Landau damping mechanism follows the equation written below:

Im
ω

ωpe

� �
¼ �0:2

ffiffiffi
π

p ωpe

kvth

� �3

e�12k2λ2D (38)

The exponential term on the right hand side represents that the Landau damping
will be small for small value of kλD. The Landau damping phenomenon is applicable
for both case of electrons and ions. The electrostatic wave whose frequency falls in
the range of electrons can heat the electrons only in the parallel direction with
respect to the magnetic field. In case of electrostatic ion wave, such restriction does
not apply. This is because the electrons are strongly magnetized and so will not be
able to move across the magnetic field.

In case of a compact microwave plasma device where the microwave wavelength
becomes comparable to the device dimension, the cavity resonant mode can also
play crucial role in damping the electromagnetic energy to the plasma particles. The
presence of multiple cavity modes in the plasma can produce modulated wave due
to the interaction between each pairs of the cavity resonant modes. The generated
modulated wave propagates in the plasma and damps its energy to the plasma
particles where the frequency of the modulated wave matches the local plasma
frequency of the plasma particles.

3. Simulation modeling of MW interaction in plasma

For the MW interaction modeling during the plasma evolution, a schematic of
the computational domain is shown in Figure 2. The computational domain consists
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of a microwave coupled reactor, which is a cylindrical plasma cavity. A MW of
frequency 2.45 GHz is injected into the microwave coupled reactor through a ridge
waveguide port (on the left side of Figure 2) to ionize the gaseous particles, thus
forming the plasma that is confined under the mirror magnetic field configuration.
The reactor has dimension of 107-mm and 88-mm diameter. The microwave power
is fed into a cavity resonator through a tapered waveguide. The waveguide is
tapered by embedding four ridge sections having different ridge length, ridge gap
and ridge width on the inner sidewalls of the waveguide. The ridge dimensions are
optimized from the analytical calculation as well as from the electromagnetic simu-
lation. The mirror magnetic field is created by using two pairs of ring magnets that
surround the microwave coupled reactor [22]. On the right side of the microwave
coupled reactor (Figure 2), the ion beam extraction system is attached through a
5-mm hole on the wall of the reactor. The similar computational domain is used in
the experimental set-up (Section 5) to validate the simulated data. Here, the finite
element method (FEM)-based COMSOL model is used [22].

The MW propagation and the plasma evolution are assumed to be decoupled to
each other during the simulation modeling in the temporal scale [10]. The MW
electric fields ( ̃EÞ are averaged for some MW periods before putting their value in
the plasma model and the resultant field is given as input to the plasma model. The
electron’s momentum equation is time integrated along with Maxwell’s equations
for some MW periods until the MW model of the FEM gets a periodic solution of
the equation to transfer an average power to the particles over such a period. The
FEM model continues this process until it gets a steady state solution for at least
�103 (ω=νm �103) MW periods. Here, ω is MW frequency and νm is electron’s
momentum transfer frequency. Since the electrons stay in the ECR zone for a very
short time (transit time) duration, it causes non-local kinetic effects. This results in
the de-phasing between the velocity and field oscillations that becomes very diffi-
cult to describe using the fluid model. This problem is resolved by introducing the
effective collision frequency νeffð Þ in the simulation to converge the solution. In the
low pressure condition, for the collision-less heating, νeff has to be in the order of
inverse transit time for the electrons [10].

Figure 2.
Simulation domain of the MW ion source.

47

Evolution of Microwave Electric Field on Power Coupling to Plasma during Ignition Phase
DOI: http://dx.doi.org/10.5772/intechopen.92011



high-frequency Bernstein wave and a low-frequency ion wave following the fre-
quency matching condition. This leads to the generation of secondary peaks around
the launched microwave frequency, which is called as sideband. Therefore, the
simultaneous presence of the sideband peaks around the launched frequency sig-
nifies the parametric decay near the mode conversion region.

The parametric decay occurs above a certain threshold value, which actually
depends on the damping rate of the oscillator. If the damping rates Γ1 and Γ2 for
two oscillators x1 and x2, respectively, are introduced in Eqs. (33) and (34), one can
conclude that the lowest threshold occurs at the exact frequency matching condi-
tion. The corresponding threshold electric field is obtained as [19]:

C1C2E2
0threshold ¼ 4ω1ω2Γ1Γ2 (37)

2.7 Damping of electrostatic and electromagnetic energy

Electrostatic waves generated in the plasma through the parametric decay insta-
bility can damp their energy to the plasma particles and thus increase the plasma
density. When the phase velocity of the electrostatic wave becomes comparable to the
thermal velocity of the plasma particles, the energy is transferred from the wave to
the plasma particles and is known as Landau damping mechanism. In microwave ion
source plasma, density can be increased 2–3 times more than the ECR heating
mechanisms through the off-resonance heating mechanism. For this reason, the off-
resonance condition is used to create favorable conditions of the upper hybrid reso-
nance heating. Under certain plasma temperature, the electrostatic wave can transfer
energy resonantly to the plasma particles if the wave phase velocity matches the
plasma particle velocity. In some cases, the plasma particle velocity can be higher than
the wave phase velocity. Under this condition, the plasma particle can transfer energy
to the wave. The Landau damping mechanism follows the equation written below:
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The exponential term on the right hand side represents that the Landau damping
will be small for small value of kλD. The Landau damping phenomenon is applicable
for both case of electrons and ions. The electrostatic wave whose frequency falls in
the range of electrons can heat the electrons only in the parallel direction with
respect to the magnetic field. In case of electrostatic ion wave, such restriction does
not apply. This is because the electrons are strongly magnetized and so will not be
able to move across the magnetic field.

In case of a compact microwave plasma device where the microwave wavelength
becomes comparable to the device dimension, the cavity resonant mode can also
play crucial role in damping the electromagnetic energy to the plasma particles. The
presence of multiple cavity modes in the plasma can produce modulated wave due
to the interaction between each pairs of the cavity resonant modes. The generated
modulated wave propagates in the plasma and damps its energy to the plasma
particles where the frequency of the modulated wave matches the local plasma
frequency of the plasma particles.

3. Simulation modeling of MW interaction in plasma

For the MW interaction modeling during the plasma evolution, a schematic of
the computational domain is shown in Figure 2. The computational domain consists
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of a microwave coupled reactor, which is a cylindrical plasma cavity. A MW of
frequency 2.45 GHz is injected into the microwave coupled reactor through a ridge
waveguide port (on the left side of Figure 2) to ionize the gaseous particles, thus
forming the plasma that is confined under the mirror magnetic field configuration.
The reactor has dimension of 107-mm and 88-mm diameter. The microwave power
is fed into a cavity resonator through a tapered waveguide. The waveguide is
tapered by embedding four ridge sections having different ridge length, ridge gap
and ridge width on the inner sidewalls of the waveguide. The ridge dimensions are
optimized from the analytical calculation as well as from the electromagnetic simu-
lation. The mirror magnetic field is created by using two pairs of ring magnets that
surround the microwave coupled reactor [22]. On the right side of the microwave
coupled reactor (Figure 2), the ion beam extraction system is attached through a
5-mm hole on the wall of the reactor. The similar computational domain is used in
the experimental set-up (Section 5) to validate the simulated data. Here, the finite
element method (FEM)-based COMSOL model is used [22].

The MW propagation and the plasma evolution are assumed to be decoupled to
each other during the simulation modeling in the temporal scale [10]. The MW
electric fields ( ̃EÞ are averaged for some MW periods before putting their value in
the plasma model and the resultant field is given as input to the plasma model. The
electron’s momentum equation is time integrated along with Maxwell’s equations
for some MW periods until the MW model of the FEM gets a periodic solution of
the equation to transfer an average power to the particles over such a period. The
FEM model continues this process until it gets a steady state solution for at least
�103 (ω=νm �103) MW periods. Here, ω is MW frequency and νm is electron’s
momentum transfer frequency. Since the electrons stay in the ECR zone for a very
short time (transit time) duration, it causes non-local kinetic effects. This results in
the de-phasing between the velocity and field oscillations that becomes very diffi-
cult to describe using the fluid model. This problem is resolved by introducing the
effective collision frequency νeffð Þ in the simulation to converge the solution. In the
low pressure condition, for the collision-less heating, νeff has to be in the order of
inverse transit time for the electrons [10].

Figure 2.
Simulation domain of the MW ion source.
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In case of MWmodel, the equations for the electric field are solved in frequency
domain while keeping the other parameters in time domain. In the beginning, the
FEM model started from the Maxwell’s equations in order to justify the modeling
approach. The MW electric fields are changing with time at a frequency of ω=2π .
During the plasma evolution, the total electric field (E) value in the μs time zone is
regarded as a resultant quantity (or total) that comes from the superposition
between the MW and ambipolar-type electric field of the plasma. The modification
of the resultant electric field follows the equation that is given below:

∇� μ�1 ∇� Eð Þ � k20 ɛr � iσ
ωɛ0

� �
E ¼ 0 (39)

The notations used in the above equations k0, εr, σ and E are the vacuum
wavenumber, relative permittivity, the total electric field and the plasma conduc-
tivity in full tensor form, respectively. This plasma conductivity is a function of
plasma density, collision frequency and B-field. So, all types of total electric field
components are possible to estimate as the FEM model can determine the above
parameters for some particular plasma loading conditions during its evolution. The
model also considers that the ̃E-field evolution in the sub-nanosecond region is well
separated from the total E-field quantity. This means the total E-field changing
during the μs region is composed of the MW electric field and the ambipolar electric
field.

For representing the MW propagation in an infinite space, the perfectly matched
layers (PML) are introduced in the computational domain as shown in Figure 1.
The present FEM model considers the electron transport properties to follow the
Boltzmann distribution function. The distribution is an integro-differential equa-
tion in phase space (r, u) that cannot be solved efficiently. For this reason, the FEM
model assumes the plasma as a fluid following the drift diffusion approximation.
The assumption is adapted from the Boltzmann equation that is multiplied by some
weighing function and then integrated the resulted function over the velocity space.
This exercise yields completely three-dimensional and time dependent equations
[10, 23]. During the modeling, FEM assumes that ion motion is negligible with
respect to the electron motion in the timescale (ns) of MW. Additionally, the
electron density is constant spatially within the ECR surface. The Debye length is
also assumed to be much smaller than the interaction length of the MW. The
average value of the electron velocity on the microwave timescale is obtained from
the assumption of Maxwellian distribution function and from the first derivative of
the Boltzmann equation. The following drift-diffusion equations are shown that are
used to compute the electron density and electron energy density:t

∂ne
∂t

þ ∇: �ne μe:Eð Þ �De:∇ne½ � ¼ Re (40)

∂nɛ
∂t

þ ∇: �nɛ μɛ:Eð Þ �Dɛ:∇nɛ½ � þ E:Γe ¼ Rɛ (41)

The term in Eq. (42) is E:Γe = eneve � Eambipolar – Π. This is a heating term E:Γe that
comprises two components. The first component means the electrons are getting
energy through the ambipolar field during the plasma evolution. The second com-
ponent (Π) signifies the MW absorption power (ne ve � ~E

� �
) that is carried by the

electrons in the plasma. The other terms ne, ve,Re,Γe, μe, με,E,De, nɛ,Rɛ,Γε, nɛ and
Dɛ are the electron density, average electron velocity, the source term of the
electrons, electron flux, the mobility of the electrons (4 � 104 m2/(Vs)), electron
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energy mobility, total electric field, electron diffusivity, electron energy density,
energy loss/gain from inelastic collisions, electron energy flux, electron energy
mobility and electron energy diffusivity, respectively. Some of the terms described
above, the electron’s diffusivity, mobility and energy diffusivity, are estimated
following the relations that are given below:

De ¼ μeTe; με ¼ 5=3ð Þμe and Dɛ ¼ μεTe (42)

The above written electron transport properties represent full tensor parameters
in which the tensor term electron mobility is influenced by the magnetic field. The
electron mobility without the magnetic field � 1� 1025=Nn

� �
and with the mag-

netic field is the known parameters. Here, Nn represents the neutral density of the
gaseous particles. The electron source term in Eq. (40) is obtained from the relevant
plasma chemistry that is expressed below with the help of the rate coefficients Re =PM

j¼1x jk jNnne. The presented symbols M, x j and k j represent the number of
reactions, the mole fraction of a specific species and the rate co-efficient for the
reaction j, respectively [10]. The energy loss terms as shown in Eq. (41) is written
for all the reactions as Rɛ =

PM
j¼1x jk jNnneΔε j. The notation Δεj denotes the energy

loss that occurs from the reaction j. The energy source and the loss terms are
calculated inherently in the FEM model. The rate coefficients mentioned in the
above expressions are taken from the cross-section data as per the relation kk =
γ
Ð∞
0 εσk εð Þf εð Þdε, where γ is 2q=með Þ1=2. In this expression, the symbols me, ε, σk and

f are represented as the mass of electron, energy of electron, cross-section for the
reaction and the electron energy distribution function (Maxwellian) for the
electrons, respectively.

The description for the boundary conditions taken during the plasma simulation
is as follows. The plasma chamber wall is kept at ground potential. The reflections,
secondary emission and also the thermal emission from the electrons are assumed to
be negligible at the wall boundaries. In effect of that the electron flux and electron
energy flux at wall boundary can be written as n:Γe = (12 ve,thneÞ and n:Γε = (56 ve,thneÞ,
respectively. In addition, the heavy plasma particle losses at the boundary walls and
their migration are considered to be originating from only the surface reactions and
ambipolar electric field, respectively. A fixed power is maintained that is absorbed by
the plasma (Pabsorbed). This is done by re-adjusting the normalization factor (α)
during the moment of the plasma evolution (ns to μs). The normalization of the
plasma absorbed power follows the relation Pabsorbed ¼ α∭ nePset dV: Here, Pset �
�e ~ve:~E
� �

t is represented as the average set power applied to the cylindrical plasma
cavity. This normalization helps in convergence of the solution and avoids any dis-
proportionate absorption of the power by the plasma. Here, a fixed plasma absorbed
power of 70W is chosen to benchmark its results with the experimental findings that
are reported taking the boundary conditions [23, 24] similar to the computation
system and the operating conditions.

In the MW-plasma simulation model, the instant of MW launch is taken as
reference (t = 0 s) when the MW is launched into the cavity. The MW is launched in
right (R) hand mode (R mode is extraordinary type) using the four step ridge
waveguide. This makes the ~E-field intensity to be maximum in the center of the
cavity that is propagating in parallel to the externally applied magnetic field
[25, 26]. As soon as the MW is launched, it continues to interact with the gas
particles on their propagation timescales (ns). To understand and visualize the
profile modification of the electrical field from the start of MW launch to the steady
state plasma generation and also their impact on the power coupling to the plasma
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In case of MWmodel, the equations for the electric field are solved in frequency
domain while keeping the other parameters in time domain. In the beginning, the
FEM model started from the Maxwell’s equations in order to justify the modeling
approach. The MW electric fields are changing with time at a frequency of ω=2π .
During the plasma evolution, the total electric field (E) value in the μs time zone is
regarded as a resultant quantity (or total) that comes from the superposition
between the MW and ambipolar-type electric field of the plasma. The modification
of the resultant electric field follows the equation that is given below:
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The notations used in the above equations k0, εr, σ and E are the vacuum
wavenumber, relative permittivity, the total electric field and the plasma conduc-
tivity in full tensor form, respectively. This plasma conductivity is a function of
plasma density, collision frequency and B-field. So, all types of total electric field
components are possible to estimate as the FEM model can determine the above
parameters for some particular plasma loading conditions during its evolution. The
model also considers that the ̃E-field evolution in the sub-nanosecond region is well
separated from the total E-field quantity. This means the total E-field changing
during the μs region is composed of the MW electric field and the ambipolar electric
field.

For representing the MW propagation in an infinite space, the perfectly matched
layers (PML) are introduced in the computational domain as shown in Figure 1.
The present FEM model considers the electron transport properties to follow the
Boltzmann distribution function. The distribution is an integro-differential equa-
tion in phase space (r, u) that cannot be solved efficiently. For this reason, the FEM
model assumes the plasma as a fluid following the drift diffusion approximation.
The assumption is adapted from the Boltzmann equation that is multiplied by some
weighing function and then integrated the resulted function over the velocity space.
This exercise yields completely three-dimensional and time dependent equations
[10, 23]. During the modeling, FEM assumes that ion motion is negligible with
respect to the electron motion in the timescale (ns) of MW. Additionally, the
electron density is constant spatially within the ECR surface. The Debye length is
also assumed to be much smaller than the interaction length of the MW. The
average value of the electron velocity on the microwave timescale is obtained from
the assumption of Maxwellian distribution function and from the first derivative of
the Boltzmann equation. The following drift-diffusion equations are shown that are
used to compute the electron density and electron energy density:t
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∂nɛ
∂t
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The term in Eq. (42) is E:Γe = eneve � Eambipolar – Π. This is a heating term E:Γe that
comprises two components. The first component means the electrons are getting
energy through the ambipolar field during the plasma evolution. The second com-
ponent (Π) signifies the MW absorption power (ne ve � ~E
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) that is carried by the

electrons in the plasma. The other terms ne, ve,Re,Γe, μe, με,E,De, nɛ,Rɛ,Γε, nɛ and
Dɛ are the electron density, average electron velocity, the source term of the
electrons, electron flux, the mobility of the electrons (4 � 104 m2/(Vs)), electron
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energy mobility, total electric field, electron diffusivity, electron energy density,
energy loss/gain from inelastic collisions, electron energy flux, electron energy
mobility and electron energy diffusivity, respectively. Some of the terms described
above, the electron’s diffusivity, mobility and energy diffusivity, are estimated
following the relations that are given below:

De ¼ μeTe; με ¼ 5=3ð Þμe and Dɛ ¼ μεTe (42)

The above written electron transport properties represent full tensor parameters
in which the tensor term electron mobility is influenced by the magnetic field. The
electron mobility without the magnetic field � 1� 1025=Nn
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and with the mag-

netic field is the known parameters. Here, Nn represents the neutral density of the
gaseous particles. The electron source term in Eq. (40) is obtained from the relevant
plasma chemistry that is expressed below with the help of the rate coefficients Re =PM

j¼1x jk jNnne. The presented symbols M, x j and k j represent the number of
reactions, the mole fraction of a specific species and the rate co-efficient for the
reaction j, respectively [10]. The energy loss terms as shown in Eq. (41) is written
for all the reactions as Rɛ =
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loss that occurs from the reaction j. The energy source and the loss terms are
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above expressions are taken from the cross-section data as per the relation kk =
γ
Ð∞
0 εσk εð Þf εð Þdε, where γ is 2q=með Þ1=2. In this expression, the symbols me, ε, σk and

f are represented as the mass of electron, energy of electron, cross-section for the
reaction and the electron energy distribution function (Maxwellian) for the
electrons, respectively.

The description for the boundary conditions taken during the plasma simulation
is as follows. The plasma chamber wall is kept at ground potential. The reflections,
secondary emission and also the thermal emission from the electrons are assumed to
be negligible at the wall boundaries. In effect of that the electron flux and electron
energy flux at wall boundary can be written as n:Γe = (12 ve,thneÞ and n:Γε = (56 ve,thneÞ,
respectively. In addition, the heavy plasma particle losses at the boundary walls and
their migration are considered to be originating from only the surface reactions and
ambipolar electric field, respectively. A fixed power is maintained that is absorbed by
the plasma (Pabsorbed). This is done by re-adjusting the normalization factor (α)
during the moment of the plasma evolution (ns to μs). The normalization of the
plasma absorbed power follows the relation Pabsorbed ¼ α∭ nePset dV: Here, Pset �
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t is represented as the average set power applied to the cylindrical plasma
cavity. This normalization helps in convergence of the solution and avoids any dis-
proportionate absorption of the power by the plasma. Here, a fixed plasma absorbed
power of 70W is chosen to benchmark its results with the experimental findings that
are reported taking the boundary conditions [23, 24] similar to the computation
system and the operating conditions.

In the MW-plasma simulation model, the instant of MW launch is taken as
reference (t = 0 s) when the MW is launched into the cavity. The MW is launched in
right (R) hand mode (R mode is extraordinary type) using the four step ridge
waveguide. This makes the ~E-field intensity to be maximum in the center of the
cavity that is propagating in parallel to the externally applied magnetic field
[25, 26]. As soon as the MW is launched, it continues to interact with the gas
particles on their propagation timescales (ns). To understand and visualize the
profile modification of the electrical field from the start of MW launch to the steady
state plasma generation and also their impact on the power coupling to the plasma
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with time, total breakdown time is split into some discrete values such as 10 ns,
�67 ns, �158 ns, 452 ns, 630 ns, �2 μs, 2.5 μs, 3 μs, �5 μs, �8 μs, �20 μs, �40 μs,
250 μs and 300 μs. The simulation is exercised with an argon gas. The initial
conditions for the calculation of the plasma parameter evolution are plasma density
(1 � 1012 m�3) and plasma temperature (�4 eV). These parameters are used
initially to estimate the plasma conductivity σ. Then the electric field is estimated by
putting the above initial conditions in Eq. (39). The estimated field values are later
utilized to find out the temporal variation of different plasma parameters and so
electric field components’ self-consistency.

The present FEM model uses different solvers sequentially to compute the
magnetic field distribution first throughout the computational domain. Then the
solvers related to the frequency-transient analysis are used to calculate the MW-
plasma parameters. A complete computational flowchart for the magnetic field as
well as the MW-plasma is depicted in Figure 3. The typical number of degrees of
freedom that is used for solving the magnetic field is approximately 54,525. The
FEM magnetostatic model uses the equation-based mesh adaptation technique to
generate the extremely fine mesh size on the ECR surfaces. The mesh element has

Figure 3.
Simulation flowchart of MW plasma interaction in COMSOL Multiphysics.
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minimum and maximum size for the magnetic field and microwave-plasma calcu-
lations are 0.2 mm and 2.4 mm, respectively. The effect of the different edges that
are involved in the computational domain is taken into account by keeping the
maximum and minimum mesh element size at 0.5 mm and 0.0055 mm, respec-
tively. The magnetic field estimated is used in the MW-plasma model to estimate
the tensor plasma parameters. For the case of MW-plasma simulation, the number
of degrees of freedom used for the solution is approximately 47,005.

Due to the dephasing as discussed above, the current FEM model uses the
concept of effective collision frequency (νeff) to describe the sudden phase
decoherence. In the dephasing situation, the phase relationship between velocity
and the electric field oscillation is destroyed in the temporal scale due to which the
electrons experience a large field variation in the ECR surface. The accelerating
electric field transfers energy to the electrons that are residing on the ECR surface
only for a small time duration in the time range of resonant cyclotron motion of the
electrons. The electrons also experience spatial density variations while oscillating
across the ECR surface. A large density variation across the ECR surface also gener-
ates the radial ambipolar electric field on the resonance surface and so there is a
possibility of de-phasing that can happen at the resonance zone.

As the phase de-coherence may happen between electron gyro motion and the
MW oscillatory ̃E-field, the electrons get accelerated and deccelerated
assymetrically. This temporal asymmetry of acceleration and decceleration in
opposite cycle are responsible for transferring an effective energy to the electrons.
The effective collision frequency νeff is estimated using the relation νeff ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
veω=δB

p
,

where ve is the electron thermal speed and δB is the gradient of magnetic field. The
value of νeff is few orders more than that of actual collisional frequency that an
electron encounters with the gaseous particles. However, it is to be noted that the
effect of νeff is insignificant on the power absorption profile. Instead it helps in
overcoming the numerical instability. For obtaining a steady-state solution, the
number of MW periods has to be in the order of ω/νeff. This makes computation less
rigorous than the case of actual collisions, if considered.

The evolution of the radial (Er) and axial (Ez) components of the electric fields
during the plasma evolution plays an important role in the MW coupling to the
plasma and so the plasma parameters as discussed above. To support these facts, the

Figure 4.
Magnetic (B) field contour inside the quadrant section of the plasma chamber, which has cylindrical axis
symmetry. The B-field is also simulated using COMSOL software. The narrow contour area near 0.088 T line is
the ECR zone (corresponding to 0.0875 T). The span of ECR zone is around z = �24 mm and r = �28 mm.
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minimum and maximum size for the magnetic field and microwave-plasma calcu-
lations are 0.2 mm and 2.4 mm, respectively. The effect of the different edges that
are involved in the computational domain is taken into account by keeping the
maximum and minimum mesh element size at 0.5 mm and 0.0055 mm, respec-
tively. The magnetic field estimated is used in the MW-plasma model to estimate
the tensor plasma parameters. For the case of MW-plasma simulation, the number
of degrees of freedom used for the solution is approximately 47,005.

Due to the dephasing as discussed above, the current FEM model uses the
concept of effective collision frequency (νeff) to describe the sudden phase
decoherence. In the dephasing situation, the phase relationship between velocity
and the electric field oscillation is destroyed in the temporal scale due to which the
electrons experience a large field variation in the ECR surface. The accelerating
electric field transfers energy to the electrons that are residing on the ECR surface
only for a small time duration in the time range of resonant cyclotron motion of the
electrons. The electrons also experience spatial density variations while oscillating
across the ECR surface. A large density variation across the ECR surface also gener-
ates the radial ambipolar electric field on the resonance surface and so there is a
possibility of de-phasing that can happen at the resonance zone.

As the phase de-coherence may happen between electron gyro motion and the
MW oscillatory ̃E-field, the electrons get accelerated and deccelerated
assymetrically. This temporal asymmetry of acceleration and decceleration in
opposite cycle are responsible for transferring an effective energy to the electrons.
The effective collision frequency νeff is estimated using the relation νeff ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
veω=δB
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,

where ve is the electron thermal speed and δB is the gradient of magnetic field. The
value of νeff is few orders more than that of actual collisional frequency that an
electron encounters with the gaseous particles. However, it is to be noted that the
effect of νeff is insignificant on the power absorption profile. Instead it helps in
overcoming the numerical instability. For obtaining a steady-state solution, the
number of MW periods has to be in the order of ω/νeff. This makes computation less
rigorous than the case of actual collisions, if considered.

The evolution of the radial (Er) and axial (Ez) components of the electric fields
during the plasma evolution plays an important role in the MW coupling to the
plasma and so the plasma parameters as discussed above. To support these facts, the

Figure 4.
Magnetic (B) field contour inside the quadrant section of the plasma chamber, which has cylindrical axis
symmetry. The B-field is also simulated using COMSOL software. The narrow contour area near 0.088 T line is
the ECR zone (corresponding to 0.0875 T). The span of ECR zone is around z = �24 mm and r = �28 mm.
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evolution of the different components of the electric fields and correspondingly the
plasma parameters is shown in the results and discussion section given below to
study their effects on the plasma parameters. To understand the resonance zone in
the plasma chamber, the required magnetic field contours are shown in Figure 4.

4. Results and discussion

This section of the chapter shows the temporal behavior of the electric fields,
power deposition and the corresponding variation of plasma density and hot elec-
tron temperature from the start of MW launch to the steady state condition.

4.1 Behaviors of total electric field ( Ej j) during plasma evolution

Figure 5(a) and (b) shows the evolution of the radial profiles of the total electric
field taken on the different axial locations for two time instances, 3 μs and 20 μs,
after the MW launch. The radial profiles show the total electric field intensity to be
more near the MW launching port (z = �40 mm). As one moves toward the
extraction (z = �60 mm), its values is decreased because of the plasma shielding
effect.

A sharp change in the E-field is shown in Figure 5(a) at the time, t = �3 μs near
the 2.45 GHz ECR surface (r ≈ 23 mm) for the planes, z = �20 mm. The strong
inhomogeneity in the E-field implies the absorption of the MW power at the same
locations [27]. The power absorption location is also dependent on the magnetic
field profile as well within the cylindrical cavity. Another figure, Figure 5(b) shows
the radial E-field pattern across the different planes for time, t = 20 μs. The inho-
mogeneous part of the E-field profile looks similar to Figure 5(a) for the case of
z = �20 mm plane. But the intensity of the E-field is being reduced with time due to
the plasma shielding. One can observe that the inhomogeneous part of the E-field is
shifted toward the off-ECR regime (r ≈ 28 mm) from the ECR surface with the
increase of time. Therefore, the power absorption region is being shifted from the
ECR zone to the off-ECR zone. This effect is visible in the power deposition location
throughout the cylindrical cavity in Figure 6. Figure 5(a–d) shows the
corresponding shifting of the power deposition location from the ECR zone to the
off-ECR zone or UHR zone with time. As the plasma reaches steady state during the
time, t = 20 μs, the evolution of the plasma density and temperature is shown in
Figure 7.

Figure 5.
(a) Total electric field ( Ej j) magnitude during gas ignition time of �3 μs, (b) total electric field ( Ej j)
magnitude during gas ignition time of �20 μs.

52

Selected Topics in Plasma Physics

4.2 Time evolution of plasma with power deposition

Figure 6a shows that the MW power is being deposited exactly on the ECR
(�0.0875 T) surface corresponding to the launch MW frequency of 2.45 GHz when
the plasma density is low. But as time passes (see Figure 6b–d), the power deposi-
tion location gets shifted in the off-ECR or upper hybrid resonance (UHR) regime.
The UHR zone is a region where the two conditions ne < ncrit and B < BECR are
satisfied [26–28]. The term ncrit represents the critical density for the MW fre-
quency, 2.45 GHz that is 7:4� 1016 m�3. If one can compare Figures 6(c) and 7(a),
one can visualize that the plasma density (�1.3 � 1017 m�3) crosses the critical
density from �2.5 μs onwards and the plasma density that is above the critical
density is denoted as overdense plasma. So as the overdense plasma is achieved, the
electrons get accelerated by less amount of MW energy on the ECR surface. Corre-
spondingly, the plasma bulk temperature increases from the start of MW launch
(t = 0 s) to the instant of �630 ns. It is evident from Figure 7a that the plasma bulk
electron temperature increases and becomes steady near a value of �80 eV. Then
the plasma bulk temperature decreases in a faster way with further increase of time.
Hence, one can conclude that heating through ECR process is being ceased to occur
with the further increase in time. The causes to increase the absorbed power density
is expected to be highest (�5 � 107 W/m3) on the ECR surface during the time,
t = 630 ns.

Figure 6.
Power deposition density at different time steps for 70W of absorbed power. (a) t = 10 ns, peak power density is
6.6 � 104 W/m3, (b) t = 630 ns, peak power density is 1.43 � 107 W/m3, (c) t = 2.5 μs, peak power density is
5.12 � 106 W/m3 and (d) t = �40 μs, peak power density is 1.67 � 107 W/m3.
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plasma parameters is shown in the results and discussion section given below to
study their effects on the plasma parameters. To understand the resonance zone in
the plasma chamber, the required magnetic field contours are shown in Figure 4.
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after the MW launch. The radial profiles show the total electric field intensity to be
more near the MW launching port (z = �40 mm). As one moves toward the
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effect.

A sharp change in the E-field is shown in Figure 5(a) at the time, t = �3 μs near
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ECR zone to the off-ECR zone. This effect is visible in the power deposition location
throughout the cylindrical cavity in Figure 6. Figure 5(a–d) shows the
corresponding shifting of the power deposition location from the ECR zone to the
off-ECR zone or UHR zone with time. As the plasma reaches steady state during the
time, t = 20 μs, the evolution of the plasma density and temperature is shown in
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4.2 Time evolution of plasma with power deposition

Figure 6a shows that the MW power is being deposited exactly on the ECR
(�0.0875 T) surface corresponding to the launch MW frequency of 2.45 GHz when
the plasma density is low. But as time passes (see Figure 6b–d), the power deposi-
tion location gets shifted in the off-ECR or upper hybrid resonance (UHR) regime.
The UHR zone is a region where the two conditions ne < ncrit and B < BECR are
satisfied [26–28]. The term ncrit represents the critical density for the MW fre-
quency, 2.45 GHz that is 7:4� 1016 m�3. If one can compare Figures 6(c) and 7(a),
one can visualize that the plasma density (�1.3 � 1017 m�3) crosses the critical
density from �2.5 μs onwards and the plasma density that is above the critical
density is denoted as overdense plasma. So as the overdense plasma is achieved, the
electrons get accelerated by less amount of MW energy on the ECR surface. Corre-
spondingly, the plasma bulk temperature increases from the start of MW launch
(t = 0 s) to the instant of �630 ns. It is evident from Figure 7a that the plasma bulk
electron temperature increases and becomes steady near a value of �80 eV. Then
the plasma bulk temperature decreases in a faster way with further increase of time.
Hence, one can conclude that heating through ECR process is being ceased to occur
with the further increase in time. The causes to increase the absorbed power density
is expected to be highest (�5 � 107 W/m3) on the ECR surface during the time,
t = 630 ns.
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Figure 7.
(a) Temporal evolution of electron density and temperature during plasma formation time at point (r = 0,
z =�28mm)with gas pressure, 2� 10�3 mbar. (b) Temporal variation of MW electric field and plasma generated
ambipolar electric field, the two main constituents of total electric field. (c) Radial profile of plasma density at three
different time instants (t = �2 μs, �5 μs and 85 μs), at two axial locations during evolution of the plasma.
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Correspondingly, the plasma density also reaches above the critical density. The
decrease in the plasma bulk temperature and the corresponding increase of the
plasma density even above the critical density are attributed to be occurring from
the off-ECR or ES surface wave heating mechanisms [29, 30]. In other words,
although the plasma density is approaching steady state (Figure 7a), the tempera-
ture is not yet stabilized during that time.

To confirm the off-resonance or electrostatic heating methods as discussed
above, the evolution of the MW electric field and the electrostatic electric field is
shown simultaneously in Figure 7(b). The radial distribution of the two types of the
electric field is given in that figure for two discrete time instants and the
corresponding plasma densities. One can observe that the MW electric field is
significant throughout the cavity and is more than the electrostatic electric field for
the time, t = 500 ns. For another instance, t = 2 μs, the electrostatic electric field
becomes more than the MW electric field throughout the cavity. The electrostatic
field is even more in the upper hybrid resonance locations than the MW field as
shown in Figure 7(b). This evidence confirms that the electrostatic heating is being
taking place at the UHR region where the magnetic field and plasma density satisfy
the above-mentioned conditions [28]. To visualize the plasma density pattern due
to these electric field behaviors, the radial distribution of the density is shown in
Figure 7(c) for different time instances (i.e., 2, 5 and 85 μs) and axial planes on the
cylindrical cavity during the plasma evolution. The plane z = �28 mm on the cavity
is situated near the MW launching port. Figure 7(c) shows the plasma density to be
more at the central location (z = 0 mm) than the location z =�28 mm that is located
toward the MW launch side.

From the above-mentioned results (Figures 6 and 7), it can be commented that
the power is absorbed by the ECR mechanism especially in the plasma condition
where the density is below (underdense plasma) the critical density and slightly
above the critical density (overdense plasma). If one notices the plasma parameters
for the underdense conditions, one can observe that the density remains below the
critical density from the time, t = t = 45 ns to t = 110 ns. In this case, the plasma
electrons are magnetized and hence are following the magnetic field lines. The field
free zones that are located near (r, z) = (0, 0) are being filled by the plasma particles
because of the diffusion processes. Due to the ECR heating, the electron tempera-
ture is being increased in the field free zones in the underdense plasma situation, t
< 110 ns. As the magnetic field lines are stronger (B� 2300–2600 G) near the radial
locations of the cavity, i.e., in the gaps of the two pairs of ring magnets, the plasma
bulk electron temperature exhibits a sharp gradient in those regions. The maximum
plasma bulk electron temperature achievable is �85 eV that occurs during the time,
t = 280 ns. The high energy part of the plasma bulk electrons is being concentrated
completely in the same gap as mentioned before during this time.

It is observed that the plasma bulk electron temperature increases in the radial
direction at the regions mainly in between the two pairs of the ring magnets with
the increase in time from t = 280 ns to 730 ns [22]. Therefore, it can be summarized
that with the increase in plasma density (or time, t = �45 ns to t = �280 ns) from
underdense to overdense state, the plasma bulk temperature is increased by an
amount of �80 eV mainly in the radial direction near the region, 24 mm < r
< 40 mm, �25 mm < z < 25 mm. This is because the ECR surfaces lie in those
regions. The continuous heating through ECR in this location causes the high energy
part of the plasma electron temperature to be concentrated on the same location
even in the overdense plasma state during the time t = 730 ns.

The anisotropic behavior of the plasma bulk electron temperature even in the
overdense plasma signifies the ECR heating [31, 32]. With further increase of time
after the MW launch, i.e., near t = 2000 ns, the plasma bulk temperature (Te) is
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Correspondingly, the plasma density also reaches above the critical density. The
decrease in the plasma bulk temperature and the corresponding increase of the
plasma density even above the critical density are attributed to be occurring from
the off-ECR or ES surface wave heating mechanisms [29, 30]. In other words,
although the plasma density is approaching steady state (Figure 7a), the tempera-
ture is not yet stabilized during that time.

To confirm the off-resonance or electrostatic heating methods as discussed
above, the evolution of the MW electric field and the electrostatic electric field is
shown simultaneously in Figure 7(b). The radial distribution of the two types of the
electric field is given in that figure for two discrete time instants and the
corresponding plasma densities. One can observe that the MW electric field is
significant throughout the cavity and is more than the electrostatic electric field for
the time, t = 500 ns. For another instance, t = 2 μs, the electrostatic electric field
becomes more than the MW electric field throughout the cavity. The electrostatic
field is even more in the upper hybrid resonance locations than the MW field as
shown in Figure 7(b). This evidence confirms that the electrostatic heating is being
taking place at the UHR region where the magnetic field and plasma density satisfy
the above-mentioned conditions [28]. To visualize the plasma density pattern due
to these electric field behaviors, the radial distribution of the density is shown in
Figure 7(c) for different time instances (i.e., 2, 5 and 85 μs) and axial planes on the
cylindrical cavity during the plasma evolution. The plane z = �28 mm on the cavity
is situated near the MW launching port. Figure 7(c) shows the plasma density to be
more at the central location (z = 0 mm) than the location z =�28 mm that is located
toward the MW launch side.

From the above-mentioned results (Figures 6 and 7), it can be commented that
the power is absorbed by the ECR mechanism especially in the plasma condition
where the density is below (underdense plasma) the critical density and slightly
above the critical density (overdense plasma). If one notices the plasma parameters
for the underdense conditions, one can observe that the density remains below the
critical density from the time, t = t = 45 ns to t = 110 ns. In this case, the plasma
electrons are magnetized and hence are following the magnetic field lines. The field
free zones that are located near (r, z) = (0, 0) are being filled by the plasma particles
because of the diffusion processes. Due to the ECR heating, the electron tempera-
ture is being increased in the field free zones in the underdense plasma situation, t
< 110 ns. As the magnetic field lines are stronger (B� 2300–2600 G) near the radial
locations of the cavity, i.e., in the gaps of the two pairs of ring magnets, the plasma
bulk electron temperature exhibits a sharp gradient in those regions. The maximum
plasma bulk electron temperature achievable is �85 eV that occurs during the time,
t = 280 ns. The high energy part of the plasma bulk electrons is being concentrated
completely in the same gap as mentioned before during this time.

It is observed that the plasma bulk electron temperature increases in the radial
direction at the regions mainly in between the two pairs of the ring magnets with
the increase in time from t = 280 ns to 730 ns [22]. Therefore, it can be summarized
that with the increase in plasma density (or time, t = �45 ns to t = �280 ns) from
underdense to overdense state, the plasma bulk temperature is increased by an
amount of �80 eV mainly in the radial direction near the region, 24 mm < r
< 40 mm, �25 mm < z < 25 mm. This is because the ECR surfaces lie in those
regions. The continuous heating through ECR in this location causes the high energy
part of the plasma electron temperature to be concentrated on the same location
even in the overdense plasma state during the time t = 730 ns.

The anisotropic behavior of the plasma bulk electron temperature even in the
overdense plasma signifies the ECR heating [31, 32]. With further increase of time
after the MW launch, i.e., near t = 2000 ns, the plasma bulk temperature (Te) is
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decreased to �10–12 eV. This range lies close to the thermal electron temperature.
Therefore, the reduction of the high energy component of the plasma bulk temper-
ature can be argued as the minimal occurrence of ECR heating process and corre-
spondingly the initiation of the electrostatic heating mechanisms in the same time
frame [29–31, 33]. The plasma reaches steady state after 2000 ns (2 μs) (Figure 7a).
At the saturation, the plasma density is approximately 2 times more (�1.3 �
1017 m�3) than the critical density. During the same instant of time, the plasma
electron temperature and its gradient reduce in the location where the magnetic
field is relatively lower.

In order to investigate the different coupling mechanisms involved during the
plasma evolution process and their impacts on the plasma parameters, the behav-
ioral pattern of the different components of the electric field (Er and Ez) is shown in
Figures 8–10. The power coupling mechanisms are ECR, UHR and polarity reversal
related to ES heating. The particular type of coupling mechanism is understood
from the electric field evolution pattern throughout the cavity. The electric field
characters can be useful to characterize the plasma parameters based on the theo-
retical and experimental proofs. The proofs say the higher the plasma density, the
more the power absorbed by the plasma.

4.3 Er-field evolution with time

In Figure 8(a–c), the radial electric field (Er) variations are shown for three
different z-planes of the cylindrical cavity. The figures also show the evolution of
the Er-field profile at different time instances after the MW launching. Figure 8(a)
gives the Er profile close to the ECR surface (z = �28 mm), which is also near to the
MW launch point (z = �60 mm). Another figure (Figure 8(b)) shows the Er-field
profile along the central plane (z = 0) of the cavity, whereas Figure 8(c) gives the
Er-field evolution along the plane z = 28 mm that is close to the ion beam extraction
point.

In all the figures, a strong inhomogeneity in the Er-field profile signifies the
power absorption locations. Taking a time instant t = 67 ns in all the figures, the
presence of the Er-field throughout the cavity can be visualized since the plasma
density at this time has not reached above the critical density. As the plasma density
crosses the critical density with advancement of time (>500 ns), the Er-field profile
is being modified following the density evolution pattern. The inhomogeneity in the
Er-field profile is more pronounced in Figure 8(b) than in the case of other figures.
The difference in the radial variation of the Er-field comes from the variation of
resonance magnetic field contour as shown in Figure 3. The strong inhomogeneous
part of Er-field initially very near the ECR surface indicates that the electrons are
accelerated by the ECR phenomenon. Then after >2 μs, this inhomogeneous part

gets shifted toward the UHR fUHR ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
fpe

2 þ fce
2� �q� �

regions where the MW

frequency matches the fUHR . The Er-field value after �2 μs at r = 0 mm and
z = �28 mm location is negligible and so the plasma density reached overdense
state, whereas for some regions (UHR regions), as shown in Figure 8(a), the Er-
field component is showing significant intensity. The high value of Er-field, near the
location (B < BECR), represents that the plasma is still underdense in this region
during time t = �3 μs.

Therefore, the dual conditions (B < BECR and ne < ncrit) are satisfied for the
UHR heating process. This phenomenon is also being reflected in Figure 7(a) and
(b) as discussed earlier. Figure 7(b) shows the electrostatic electric field to grow
with the plasma density and correspondingly the MW electric field decreases after
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500 ns. The electrostatic electric field, the component of the total electric field, is
getting increased due to the increase of the plasma ambipolar potential. So this gives
a clear evidence of power transferring from MW coupling to the electrostatic wave
coupling to the plasma. Since the electrostatic wave does not face any density

Figure 8.
Er-field evolution and its pattern during plasma generation (a) r =�28 mm, (b) r = 0 mm and (c) r = 28 mm.
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decreased to �10–12 eV. This range lies close to the thermal electron temperature.
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barrier, it is capable of penetrating the core dense plasma and transferring the
energy through damping to the plasma particles. As demonstrated by other groups
[23, 28], this change in the power coupling mode from the electromagnetic to
electrostatic case is a signature of the UHR heating. Due to the heating at UHR, the
plasma electron temperature and also the density are possible to enhance further.

It can be observed in Figure 8 that the magnitude of the Er-field at time t = 67 ns
(Figure 8) is greater than 7 kV/m along different z-planes within the cavity near the
ECR locations. This intensity is sufficient for creating ionization in the Argon
gaseous particles. In the later instant (�2 μs) of time, the magnitude of Er-field
changes in between 3.75 kV/m and 0.15 kV/m on the ECR regions. This type of
nonlinearity in the Er-field has also been demonstrated by Hopwood et al. [4]
before. The power coupling phenomena involved during the plasma evolution can

Figure 10.
Spatio-temporal evolution of Ez-field profile obtained along the axis of the cylindrical cavity. A sharp change in
the two places for both the figures implies the power absorption locations that can be checked with Figure 5
described above. (a) r = 0 mm, (b) r = 28 mm.

Figure 9.
(a) Propagation and mode conversion of MW ~E-field corresponding to an ordinary (O)-type resonant mode are
shown and (b) Phase angle (≈ tan �1 Im ~E

� �
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� �� �Þ of MW ~E-field.
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also be transmitted into the extracted ion beam performance in terms of spike or
instabilities. It was experimentally demonstrated by Ropponen et al. [1] that a sharp
transient in the ion current density during the preglow mode can cause a sharp fall
in the high energy component of the plasma electron temperature.

Since the inhomogeneous part of Er-field is shifting toward the off-resonance
locations as shown in Figure 8(b), it can also produce high-energy electrons there if
certain conditions are satisfied as per Gammino et al. [34]. The conditions say the
MW electric field has to be above a certain transition value for being capable to
energize the electrons that also depend on the magnetic field gradient present in the
same location.

The generated high-energy electrons can interact with the slow extraordinary-
type microwave and produce the cyclotron range instability in the plasma [1]. It was
also proved experimentally by Mansfeld et al. [35] that the extracted ion beam
current from the microwave ion source can gain oscillation due to the presence of
cyclotron-type instability of plasma during the afterglow operation mode. The slow
extraordinary mode microwave is produced from the mode conversion of ordinary-
type microwave near the UHR region. As the mode conversion layer is present in
the present plasma cavity, the ordinary mode microwave crosses the evanescent
layer and some part of its energy is converted into the slow X mode. Since the
plasma is confined in the cavity under mirror magnetic field configuration, the
injected MW will have two components, extraordinary mode and ordinary mode.
Figure 9(a) shows the MW ordinary mode is propagating toward the overdense
plasma region from the underdense launching point. At some point, it will encoun-
ter a cut-off corresponding to the ordinary-type MW. At the cut-off, some part of
the ordinary mode MW energy is evanescently transformed into a slow extraordi-
nary mode following the CMA diagram concepts. For that reason, a bend in the MW
propagation in the slow extraordinary (X) mode is seen in the electric field simula-
tion (Figure 9b). This slow X mode then propagates toward the UHR region and
hence the electric field is being accumulated there, as shown in Figure 9(a). The
accumulation of the electric field at this location increases its intensity at some
plasma condition and can cross the corresponding parametric decay threshold con-
dition. The parametric decay of the slow X mode near the UHR region can generate
ion- and electron-type electrostatic waves as per the literature [36].

As a supportive evidence of the generation of electrostatic ion wave, Figure 8(b)
shows that the inhomogeneous part of the Er-field is shifting toward the off-
resonance region with a velocity of 1250–1500 m/s. This range of velocities falls in
the range of ion acoustic speed. Based on the published reports [37], the electric
field propagating perpendicularly with respect to the external magnetic field as in
the present case (Figure 9a) encounters the UHR layer in the overdense plasma
state. In the present computation, the ordinary mode (O mode) electric field after
converting into the slow extraordinary mode (X mode) shows a bending in the
perpendicular direction and reaches the UHR region. This is known as ‘O – slow X’
conversion process that is responsible for generating ion waves and makes the
inhomogeneous electric field to shift at the same ion acoustic speed [38].

4.4 Ez-field evolution in plasma with time

The spatio-temporal evolution of the axial component (Ez) of the electric field is
shown in Figure 10 throughout the cylindrical cavity along the planes r = 0 mm and
28 mm, respectively. It is seen that only a portion of single wavelength of the wave
electric field is present that has significant intensity throughout the plasma cavity
after the immediate instant (67 ns) of MW launching. The magnitude of the Ez field
becomes almost zero throughout the cavity as soon as the plasma starts creating
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also be transmitted into the extracted ion beam performance in terms of spike or
instabilities. It was experimentally demonstrated by Ropponen et al. [1] that a sharp
transient in the ion current density during the preglow mode can cause a sharp fall
in the high energy component of the plasma electron temperature.

Since the inhomogeneous part of Er-field is shifting toward the off-resonance
locations as shown in Figure 8(b), it can also produce high-energy electrons there if
certain conditions are satisfied as per Gammino et al. [34]. The conditions say the
MW electric field has to be above a certain transition value for being capable to
energize the electrons that also depend on the magnetic field gradient present in the
same location.

The generated high-energy electrons can interact with the slow extraordinary-
type microwave and produce the cyclotron range instability in the plasma [1]. It was
also proved experimentally by Mansfeld et al. [35] that the extracted ion beam
current from the microwave ion source can gain oscillation due to the presence of
cyclotron-type instability of plasma during the afterglow operation mode. The slow
extraordinary mode microwave is produced from the mode conversion of ordinary-
type microwave near the UHR region. As the mode conversion layer is present in
the present plasma cavity, the ordinary mode microwave crosses the evanescent
layer and some part of its energy is converted into the slow X mode. Since the
plasma is confined in the cavity under mirror magnetic field configuration, the
injected MW will have two components, extraordinary mode and ordinary mode.
Figure 9(a) shows the MW ordinary mode is propagating toward the overdense
plasma region from the underdense launching point. At some point, it will encoun-
ter a cut-off corresponding to the ordinary-type MW. At the cut-off, some part of
the ordinary mode MW energy is evanescently transformed into a slow extraordi-
nary mode following the CMA diagram concepts. For that reason, a bend in the MW
propagation in the slow extraordinary (X) mode is seen in the electric field simula-
tion (Figure 9b). This slow X mode then propagates toward the UHR region and
hence the electric field is being accumulated there, as shown in Figure 9(a). The
accumulation of the electric field at this location increases its intensity at some
plasma condition and can cross the corresponding parametric decay threshold con-
dition. The parametric decay of the slow X mode near the UHR region can generate
ion- and electron-type electrostatic waves as per the literature [36].

As a supportive evidence of the generation of electrostatic ion wave, Figure 8(b)
shows that the inhomogeneous part of the Er-field is shifting toward the off-
resonance region with a velocity of 1250–1500 m/s. This range of velocities falls in
the range of ion acoustic speed. Based on the published reports [37], the electric
field propagating perpendicularly with respect to the external magnetic field as in
the present case (Figure 9a) encounters the UHR layer in the overdense plasma
state. In the present computation, the ordinary mode (O mode) electric field after
converting into the slow extraordinary mode (X mode) shows a bending in the
perpendicular direction and reaches the UHR region. This is known as ‘O – slow X’
conversion process that is responsible for generating ion waves and makes the
inhomogeneous electric field to shift at the same ion acoustic speed [38].

4.4 Ez-field evolution in plasma with time

The spatio-temporal evolution of the axial component (Ez) of the electric field is
shown in Figure 10 throughout the cylindrical cavity along the planes r = 0 mm and
28 mm, respectively. It is seen that only a portion of single wavelength of the wave
electric field is present that has significant intensity throughout the plasma cavity
after the immediate instant (67 ns) of MW launching. The magnitude of the Ez field
becomes almost zero throughout the cavity as soon as the plasma starts creating

59

Evolution of Microwave Electric Field on Power Coupling to Plasma during Ignition Phase
DOI: http://dx.doi.org/10.5772/intechopen.92011



after the MW launching. Therefore, the Ez field does not play any significant role in
accelerating the electrons, and if this would happen, the electrons losses will occur
in the axial direction. Figure 10(a–b) evidences that the Ez field becomes almost
zero everywhere except near the ECR surface after �8 μs. The Ez-field magnitude
shows minimum values where the plasma density is of maximum values.

It can be observed in Figure 10(a) that the polarity in the inhomogeneous part
of the electric field is getting opposite for two different time instances, 20 and 85 μs.
The reversal in the polarity of electric field occurs near the ECR surface. The
polarity reversal is caused by the ambipolar field produced from the plasma density
gradient. The plasma density gradient is computed from the electron momentum
equation using drift-diffusion approach in the present FEM model [38]. The
shifting of the inhomogeneous part of the electric field is in the inward direction.
The speed of displacement of the inhomogeneous part of the electric field is esti-
mated in the range of �103 m/s that lies in the range of ion sound speed. Similar
shifting at the same velocity is also observed before in Figure 8(b) corresponding to
the Er-plots. These observations indicate that the plasma density gradient near the
ECR surface is accompanied by the generation of ion acoustic waves that are
electrostatic in nature [39, 40]. Hence, the electric field polarity reversal associated
with electrostatic ion wave heating is being initiated during this period of the
plasma evolution after the microwave launch.

5. Validation with experiment

Experiments are performed to cross-check the above-mentioned plasma param-
eters obtained during the gas ignition moment. The present section of the chapter
provides the details of the experimental methods, analysis of the experimental
results and also a comparative study of the experimental data with the simulation.

5.1 Methods of experiment

Experiments are carried out in a microwave ion source system that has similar
system configuration, magnetic field distribution, MW conditions and also the
operating conditions. The simulated temporal plasma parameters, such as the
plasma density and hot electron temperature, are validated with the experiment
[23]. In the present experiment, MW-plasma reactor of the experimental set-up is a
cylindrical cavity (Figure 11) of 107-mm length and 88-mm diameter. The plasma
in the reactor is generated by coupling microwave through the electron cyclotron
resonance (ECR) heating as well as off-ECR heating methods, as discussed before.
The complete experimental set-up consists of a cylindrical cavity, microwave sys-
tem, ion beam extraction system and two pairs of ring magnets (each magnet has
pole strength �1.38 T) assembly [23]. The plasma cavity/reactor is surrounded by
two pairs of ring magnets to generate a mirror-type magnetic field to confine the
plasma inside the cavity.

To generate plasma, the MW is produced by a magnetron (power: 0–2 kW,
make: Richardson Electronics, Model no. NL10250-7), which is operated either in
continuous or in pulsed mode. MW power is fed to the reactor through a combina-
tion of a four-step ridged waveguide, a HV break and vacuum window assembly,
an impedance tuner unit, directional coupler and an isolator with water dummy
load (Figure 11). The plasma impedance is matched by a 3-stub tuner to get
maximum ~E-field at the center of the MW-plasma reactor. MW is coupled to the
cylindrical plasma reactor by a four-step ridged waveguide (WR 284) [23]. The
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impedance of WR284 waveguide (four-step ridge waveguide) having 220-mm
length is made comparable to the typical plasma impedance by embedding four
ridge sections on both the inner side walls of it. The ridge sections of different
lengths but same width (48 mm) are placed consecutively at the broader walls of
the waveguide. As shown in Figure 11, the ridge waveguide is mechanically
connected to one side of a high voltage (HV) break cum vacuum window, made of
Teflon having a dimension of 35 mm diameter and 6 mm thickness, whose other
side is connected to the ion source cavity (Figure 11). The other side of the cavity is
connected to the conventional pierce geometry-based 3-grid extraction system,
housed in a drift duct vacuum chamber that consists of a plasma grid, an extraction
grid and a grounded grid (Figure 11). The ion source is evacuated by a combination
of Turbo Molecular Pump, which is backed by a dry-scroll rotary pump, connected
to the drift duct vacuum chamber in the downstream side of the extraction system.
The gas feed system comprises a needle valve, mass flow controller and the required
gas cylinder. In the present experiment, nitrogen gas is used because of availability.
Other gases, like argon or hydrogen, can also be used. The experiment is carried out
for the MW power in the range of 50–700 W and gas pressure in the range of
1 � 10�3 mbar to 1 � 10�4 mbar. The Langmuir probe (LP) diagnostics is used to
characterize the plasma parameters within the pressure range varying from 2�
10�4 to 1� 10�3 mbar [23].

All the MW power ranges mentioned throughout the chapter are considered as
set power. The difference of forward and reflected power is considered to be
plasma-absorbed power. MW reflection varies from 5 to 10% within the above set
power range. These ranges of plasma reflection with similar experimental set-ups
and operating environments are reported in [10]. The accuracy at low set power
levels of magnetron is tested by repeated measurements of its output power (for-
ward) before the experiment is performed. An extra component, named isolator
with water-cooled dummy load (make: National Electronics, Model: 2722-162-
10311, isolation: 26 dB, reflection rating: 6.5 kW) is placed in the experimental set-
up (not shown in Figure 11) before the HV break. The power and carrier frequency
signals are measured by microwave spectrum analyzer (model: FSH8, make:
ROHDE & SCHWARZ, band: 100 Hz–8 GHz) at the directional coupler port.
Signals are attenuated by 60 dB (� 106, power ratio) at the directional coupler ports

Figure 11.
Schematic view of the experimental system.
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before coming to microwave spectrum analyzer through the high frequency
(0–40 GHz), low loss and low VSWR cable of length �1 m.

To generate plasma in the low power range, magnetron’s low power testing is
required. In the present experiment, low power testing ensures the variation of full
width at half maximum of 2.45 GHz frequency is within 5–12 MHz (within the
specified � 25 MHz bandwidth as per Sairem data). Also, the set power fluctuations
are within 2–5% as shown in Figure 12(a), which is considered to be stable operat-
ing conditions. After performing the inverse Fourier transform of the MW spec-
trum analyzer data, a graph of detected MW power vs. time is shown in Figure 12
(b) to verify the power levels at the first few milliseconds for the comparison of
plasma parameters with the simulated data. The rise time of the pulse is obtained
as �2.2 μs.

The magnetron’s output (set power) in the low power range is checked in time
scale prior to the Langmuir probe diagnostic [23]. The response of the magnetron
set power at 2.45 GHz frequency is recorded at the directional coupler port by a
microwave spectrum analyzer (SA) circuitry. The circuitry consists of a high fre-
quency cable, a band pass filter, and spectrum analyzer and FSH4 View software.

Figure 12.
(a) Percentage error of the magnetron set power fluctuations. Data for 280 W have been benchmarked with the
Sairem company data and (b) variation of the detected MW power vs. time for the set power of 200 W.

62

Selected Topics in Plasma Physics

The magnetron’s pulse response at a fixed set power, 200 W, is obtained by taking
the inverse Fourier transform of the microwave spectrum analyzer data. The mag-
netron’s rise time is �2.2 μs. This exercise of measuring the pulse response of a
particular set power can help to pick up the temporal values at different set power
levels following the pulse response of magnetron [23].

To compare the simulated hot electron temperature and density, their parame-
ters are noted down at different instant of time during the plasma evolution. Taking
the time instant to be same as that of the simulation, the set power values are noted
down in an experimental datasheet. Then, a single Langmuir probe measures the
plasma floating potential at the noted set power values as mentioned above [23].
The Langmuir probe measurement is performed in steady state plasma condition.
Since the real-time measurement of the plasma parameter requires in the ns-time
scale very sophisticated and expensive hardware that has faster time responses
(ns range), steady state Langmuir probe measurements are performed to avoid
those expensive diagnostics.

5.2 Comparison of experimental results with simulation

The line plots are shown in Figure 13(a) for the simulated hot Te. The simulated
data point lies in a region that is very close to the experimental data points. The
simulated hot Te is approximately 78 eV at 70 W of plasma absorbed power during
time t = 600 ns. One can also observe that the set power for the magnetron reaches
50 W at the same time instant. The measurement of the hot Te by a Langmuir probe
diagnostic at the same set power level shows it to be � 72 eV. Similarly, the hot Te
was measured for two other power levels, 70 and 130 W. The hot Te at these two
power levels are � 36 and 28 eV, respectively. Hence, the experimental results fit
well with the simulated values described above [23]. On the other hand, the exper-
imental data for the plasma density are also shown in Figure 13(b). The plasma
densities for the above set power levels are observed to be�1.8–2 times less than the
simulated data. The deviation of the measured plasma density from the simulated
values is caused due to the difference in the absorbed power that is absorbed by the
plasma in both the cases (experiment and simulation). The experimental results for
the plasma density are shown in Figure 13(b) for three different set powers. The
measured plasma density (�1.1 �1017m�3Þ at set power of 200 W agrees well with
the simulated plasma density (�1.3 �1017m�3Þ.

Figure 13.
(a) Simulated temporal hot Te variation along with experimental data, taken at discrete set power values.
Plasma-absorbed power during simulated hot Te evolution is fixed at 70 W. Experimental set powers 50, 70
and 130 W correspond to plasma-absorbed powers at 40, 50 and 70 W, respectively [14]. Pulse rise of set
power is also shown to verify the power levels during the ns to few μs periods. (b) Simulated temporal plasma
density variation along with experimental results, obtained at the same set power values.

63

Evolution of Microwave Electric Field on Power Coupling to Plasma during Ignition Phase
DOI: http://dx.doi.org/10.5772/intechopen.92011



before coming to microwave spectrum analyzer through the high frequency
(0–40 GHz), low loss and low VSWR cable of length �1 m.

To generate plasma in the low power range, magnetron’s low power testing is
required. In the present experiment, low power testing ensures the variation of full
width at half maximum of 2.45 GHz frequency is within 5–12 MHz (within the
specified � 25 MHz bandwidth as per Sairem data). Also, the set power fluctuations
are within 2–5% as shown in Figure 12(a), which is considered to be stable operat-
ing conditions. After performing the inverse Fourier transform of the MW spec-
trum analyzer data, a graph of detected MW power vs. time is shown in Figure 12
(b) to verify the power levels at the first few milliseconds for the comparison of
plasma parameters with the simulated data. The rise time of the pulse is obtained
as �2.2 μs.

The magnetron’s output (set power) in the low power range is checked in time
scale prior to the Langmuir probe diagnostic [23]. The response of the magnetron
set power at 2.45 GHz frequency is recorded at the directional coupler port by a
microwave spectrum analyzer (SA) circuitry. The circuitry consists of a high fre-
quency cable, a band pass filter, and spectrum analyzer and FSH4 View software.

Figure 12.
(a) Percentage error of the magnetron set power fluctuations. Data for 280 W have been benchmarked with the
Sairem company data and (b) variation of the detected MW power vs. time for the set power of 200 W.
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The magnetron’s pulse response at a fixed set power, 200 W, is obtained by taking
the inverse Fourier transform of the microwave spectrum analyzer data. The mag-
netron’s rise time is �2.2 μs. This exercise of measuring the pulse response of a
particular set power can help to pick up the temporal values at different set power
levels following the pulse response of magnetron [23].

To compare the simulated hot electron temperature and density, their parame-
ters are noted down at different instant of time during the plasma evolution. Taking
the time instant to be same as that of the simulation, the set power values are noted
down in an experimental datasheet. Then, a single Langmuir probe measures the
plasma floating potential at the noted set power values as mentioned above [23].
The Langmuir probe measurement is performed in steady state plasma condition.
Since the real-time measurement of the plasma parameter requires in the ns-time
scale very sophisticated and expensive hardware that has faster time responses
(ns range), steady state Langmuir probe measurements are performed to avoid
those expensive diagnostics.

5.2 Comparison of experimental results with simulation

The line plots are shown in Figure 13(a) for the simulated hot Te. The simulated
data point lies in a region that is very close to the experimental data points. The
simulated hot Te is approximately 78 eV at 70 W of plasma absorbed power during
time t = 600 ns. One can also observe that the set power for the magnetron reaches
50 W at the same time instant. The measurement of the hot Te by a Langmuir probe
diagnostic at the same set power level shows it to be � 72 eV. Similarly, the hot Te
was measured for two other power levels, 70 and 130 W. The hot Te at these two
power levels are � 36 and 28 eV, respectively. Hence, the experimental results fit
well with the simulated values described above [23]. On the other hand, the exper-
imental data for the plasma density are also shown in Figure 13(b). The plasma
densities for the above set power levels are observed to be�1.8–2 times less than the
simulated data. The deviation of the measured plasma density from the simulated
values is caused due to the difference in the absorbed power that is absorbed by the
plasma in both the cases (experiment and simulation). The experimental results for
the plasma density are shown in Figure 13(b) for three different set powers. The
measured plasma density (�1.1 �1017m�3Þ at set power of 200 W agrees well with
the simulated plasma density (�1.3 �1017m�3Þ.

Figure 13.
(a) Simulated temporal hot Te variation along with experimental data, taken at discrete set power values.
Plasma-absorbed power during simulated hot Te evolution is fixed at 70 W. Experimental set powers 50, 70
and 130 W correspond to plasma-absorbed powers at 40, 50 and 70 W, respectively [14]. Pulse rise of set
power is also shown to verify the power levels during the ns to few μs periods. (b) Simulated temporal plasma
density variation along with experimental results, obtained at the same set power values.
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6. Conclusion

The evolution of the spatial and temporal plasma parameters are presented in
the current chapter during the gas ignition process made by injecting the 2.45 GHz
microwave to an ion source cavity. The simulated results supported by the experi-
ment confirm that the plasma parameters are influenced significantly by the electric
fields during the plasma ignition period. Due to the shifting of the microwave
coupling mechanisms to the plasma, the plasma density and the hot fraction of the
electron temperature are also getting affected during the plasma generation period.
The initial rise of the hot fraction of the plasma electron temperature from the start
of microwave interaction into the plasma is argued to be caused by the electron
cyclotron resonance heating phenomenon. After certain instant of microwave
launch, the slight increase in the plasma density and the decrease in the plasma
electron temperature are proved to be happening from the electrostatic heating
mechanism. The electrostatic heating near the upper hybrid resonance region
causes to shift the inhomogeneous part of the electric field at the velocity of the ion
acoustic speed when the plasma density reaches above the critical density
corresponding to the launch microwave, 2.45 GHz.

The experimental plasma parameters are obtained in an experimental set-up that
has similar system configuration and the operating environment as that of the
simulation. The comparison shows a reasonable agreement with the simulated
results. The plasma density especially in the overdense plasma condition is found to
be agreeing more in the overdense plasma than in the underdense plasma condition.
During plasma evolution after the microwave launch, the microwave coupling
mechanisms are modified following the corresponding electric field (electrostatic
and electromagnetic) distribution pattern throughout the ion source cavity. Ini-
tially, the electron cyclotron resonance heating comes into play to ionize the gas-
eous particle and generate plasma that contains the maximum fraction of the high-
energy electrons in the ion source plasma. Then, as the density reaches in the
overdense condition, the coupling mechanisms are the electrostatic wave heating in
the ion acoustic frequency range. As the electrostatic wave does not suffer any
density cut-off, the density is increased further above the critical density. Simulta-
neously, the polarity of the axial electric field is reversed near the electron cyclotron
resonance region signifying the creation of the plasma density gradient due to the
generation of strong ambipolar electric field near the resonance region. In future, it
is intended to study the different power coupling mechanisms in the overdense
plasma state that are caused due to the heating at the cyclotron harmonics by the
generated electrostatic waves in the present experimental device.
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Chapter 4

Plasma Antennas
Theodore Anderson

Abstract

We have demonstrated that one or two plasma tubes can be used to focus,
spread, and steer antenna beams. We have also shown that we can simulate convex
and concave plasma lenses by using cylindrical plasma tubes. Focusing by a plasma
is useful because it can be used to increase the gain of an antenna, and to quickly
reconfigure the beamwidth as needed without physically moving the antenna. With
this technology, there is no need for phased arrays to steer and focus an antenna
beam. Beam steering with a plasma allows tuning to different frequencies which is a
difficult task for standard antennas. Our experimental results with 44 GHz showed
a dramatic improvement in beam steering and focusing characteristics compared to
beam focusing and steering at 24 GHz. The shorter wavelength compared to the
spatial variation in plasma density over the radius of the plasma tube, the easier it is
to steer and focus antenna beams. These results have been incorporated in a new
smart plasma antenna design.

Keywords: plasma antenna, antenna beam focusing, antenna beam steering,
physics of refraction through a plasma

1. Introduction

Plasma antennas use partially or fully ionized gas as the conducting medium
instead of metal to create an antenna. The advantages of plasma antennas are that
they are highly reconfigurable and can be turned on and off. Hence research to
reduce the power required to ionize the gas at various plasma densities is important
and this has been achieved by various techniques including pulsing techniques. The
power requirements for plasma antenna operation continue to decrease.

The same geometric resonances apply to plasma antennas as metal antennas.
Plasma antennas of the same shape, length, and frequency of corresponding metal
antennas will have the same radiation patterns. Plasma antennas have the advantage
of reconfigurability.

High frequency antennas can transmit and receive through lower frequency
plasma antennas eliminating or reducing co-site interference. Because of this prin-
ciple, higher frequency plasma antennas can be nested inside lower frequency
plasma antennas and the higher frequency plasma antennas can transmit and
receive through the lower frequency plasma antennas. Higher frequency plasma
antenna arrays can transmit and receive through lower frequency plasma antenna
arrays. Co-site interference occurs when larger frequency antennas block or par-
tially block the radiation patterns of smaller higher frequency antennas. With
plasma antennas, co-site interference can be reduced or eliminated. The interfer-
ence among plasma antennas can be reduced or eliminated by turning all the plasma
antennas off (extinguishing the plasma) except the plasma antennas that are

71



Chapter 4

Plasma Antennas
Theodore Anderson

Abstract

We have demonstrated that one or two plasma tubes can be used to focus,
spread, and steer antenna beams. We have also shown that we can simulate convex
and concave plasma lenses by using cylindrical plasma tubes. Focusing by a plasma
is useful because it can be used to increase the gain of an antenna, and to quickly
reconfigure the beamwidth as needed without physically moving the antenna. With
this technology, there is no need for phased arrays to steer and focus an antenna
beam. Beam steering with a plasma allows tuning to different frequencies which is a
difficult task for standard antennas. Our experimental results with 44 GHz showed
a dramatic improvement in beam steering and focusing characteristics compared to
beam focusing and steering at 24 GHz. The shorter wavelength compared to the
spatial variation in plasma density over the radius of the plasma tube, the easier it is
to steer and focus antenna beams. These results have been incorporated in a new
smart plasma antenna design.

Keywords: plasma antenna, antenna beam focusing, antenna beam steering,
physics of refraction through a plasma

1. Introduction

Plasma antennas use partially or fully ionized gas as the conducting medium
instead of metal to create an antenna. The advantages of plasma antennas are that
they are highly reconfigurable and can be turned on and off. Hence research to
reduce the power required to ionize the gas at various plasma densities is important
and this has been achieved by various techniques including pulsing techniques. The
power requirements for plasma antenna operation continue to decrease.

The same geometric resonances apply to plasma antennas as metal antennas.
Plasma antennas of the same shape, length, and frequency of corresponding metal
antennas will have the same radiation patterns. Plasma antennas have the advantage
of reconfigurability.

High frequency antennas can transmit and receive through lower frequency
plasma antennas eliminating or reducing co-site interference. Because of this prin-
ciple, higher frequency plasma antennas can be nested inside lower frequency
plasma antennas and the higher frequency plasma antennas can transmit and
receive through the lower frequency plasma antennas. Higher frequency plasma
antenna arrays can transmit and receive through lower frequency plasma antenna
arrays. Co-site interference occurs when larger frequency antennas block or par-
tially block the radiation patterns of smaller higher frequency antennas. With
plasma antennas, co-site interference can be reduced or eliminated. The interfer-
ence among plasma antennas can be reduced or eliminated by turning all the plasma
antennas off (extinguishing the plasma) except the plasma antennas that are

71



transmitting and/or receiving. This is not possible with metal antennas. A general
rule is that when an incident electromagnetic wave upon a plasma antenna is such
that the frequency of the incident electromagnetic wave is greater than the plasma
frequency of the plasma, the incident electromagnetic wave passes through the
plasma without attenuation. If the incident electromagnetic wave has a frequency
much less than the plasma frequency, the plasma behaves similar to a metal. The
frequency at which plasma behaves like a metal or a dielectric is reconfigurable. The
plasma frequency is a natural frequency of the plasma and it is a measure of the
amount of ionization in the plasma. It is defined and used throughout this book.
Both plasma antennas and metal antennas increase in size as the frequencies they
operate goes down to maintain geometric resonance and high efficiency. However
as the frequency of operation of the plasma antenna decreases, the density of the
plasma needed to operate the plasma antenna also goes down. A rule of thumb is
that the plasma frequency should be about twice the operating frequency of the
plasma antenna. Hence the plasma frequency goes down as the frequency of the
plasma antenna goes down. As the plasma frequency decreases, the plasma antenna
becomes transparent to a greater bandwidth of electromagnetic waves. In short as
the plasma antenna increases in size, the RCS of the plasma antenna goes down
whereas for the corresponding metal antenna, the RCS goes up as the metal antenna
increases in size. This gives the plasma antenna some great advantages at low
frequencies over the corresponding metal antenna. In addition plasma antennas do
not receive electromagnetic noise greater than the plasma frequency since these
frequencies pass through the plasma antenna.

Related to plasma antennas, plasma frequency selective surfaces, plasma wave-
guides, and plasma co-axial cables have been developed. Unlike metal frequency
selective surfaces, plasma frequency selective surfaces have the properties of
reconfigurable filtering of electromagnetic waves. This could have tremendous
advantages to radome design. Plasma frequency selective surfaces can be
reconfigured by varying the plasma density, varying the shape of the elements, or
tuning any number of the plasma FSS elements on or off. Plasma wave guides and
plasma co-axial cables can be stealth like plasma antennas, and they can operate at
low frequencies, and be invisible at high frequencies. Plasma waveguides and co-
axial cables can be feeds for plasma antennas. Plasma feeds as well as the plasma
antennas have reconfigurable impedances. If the impedance of the plasma antenna
is changed, the impedance of the plasma antenna feeds can be changed to maintain
impedance matching.

Thermal noise in a plasma antenna is less than the thermal noise in a metal
antenna at the higher frequencies. Higher frequencies mean that there is a point in
the RF spectrum in which the thermal noise of plasma antennas is equal to the
thermal noise of metal antennas. At higher frequencies than this point, the plasma
antenna thermal noise decreases drastically compared to a metal antenna. Below
this point the thermal noise of the plasma antenna is greater than a metal antenna.
For a fluorescent tube which has been built as a plasma antenna, the point where the
thermal noise of the plasma antenna is equal to the metal antenna is about 1 GHz.
This point can be decreased in frequency by decreasing the plasma density and/or
gas pressure. The plasma in the plasma antennas are inert gases that operate at
energies and frequencies in which Ramsauer Townsend Effects apply.

Ramsauer Townsend Effects mean that the electrons in the plasma diffract
around the ions and neutral atoms in the plasma. This means that the collision rate
of the unbound electrons in the plasma with ions and neutral atoms is small and
much smaller than in a metal. This phenomenon contributes to the lower thermal
noise plasma antennas have over corresponding metal antennas.
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Satellite plasma antennas benefit from the lower thermal noise at the frequencies
they operate. Ground based satellite antennas point at space where the thermal
noise is about 5° K. A low thermal noise, high data rate satellite plasma antenna
system is possible with low noise plasma feeds and a low noise receiver. Satellite
plasma antennas can operate in the reflective or refractive mode. Satellite plasma
antennas need not be parabolic but can be flat or conformal and effectively para-
bolic. The effective plasma parabolic dish antenna is part of the scope of future
work. Electromagnetic waves reflecting off of a bank of plasma tubes get phase
shifted as a function of the plasma density in the tube. This becomes an effective
phase array except that the phase shifts are determined by the plasma density. If the
plasma density in the tubes is computer controlled, the reflected beam can be
steered or focused even when the bank of tubes is flat or conformal. In the refrac-
tive mode, the refraction of electromagnetic waves depends upon the density of the
plasma. In the refractive mode, steering and focusing can be computer controlled
even when the bank of tubes is flat. This eliminates the problem of the blind spot
and feed losses caused by the feed horn and receiver in front of a metal satellite
antenna.

Pulsing techniques instead of applying continuous energy were developed to
increase the plasma density and decrease the amount of energy to maintain the
plasma.

In the history of antennas, it has been difficult to develop low frequency direc-
tional and electronically steerable antennas that fit on land vehicles and aircraft.
Low frequency means the wavelength is on the order or larger than the vehicle.
With plasma antennas this is possible with multipole expansions of clusters of
plasma antennas that are all within a wavelength of each other. This depends on the
ability of turning plasma antennas on or off (extinguishing the plasma) to create
reconfigurable multipoles of plasma antennas that can be rotated in time creating
directional and steerable antenna beams. This is not possible with metal antennas
because they cannot be turned on and off.

Several groups have done work in using numerical techniques to plot plasma
antenna radiation patterns. Zhou et al. [1] used FDTD Method techniques.
Bogachev et al. [2] predicted radiation patterns for plasma asymmetrical dipole
antenna. Zhivko Kiss’ovski [3] calculated the radiation pattern of miniaturized
plasma antennas. Golazari et al. [4] did measurements and simulations of a loop
plasma antenna in UHF band Barro et al. [5] did simulations to get the radiation
patterns of cylindrical plasma antennas. Kumar et al. [6] have done simulations of a
plasma antenna array. Melazzi et al. [7] have developed a plasma antenna numerical
code called ADAMANT. An overview of experimental and numerical research is
Anderson et al. [8]. Mansutti et al. [9] have done numerical work on metal-plasma
L band antenna.

The phase speed of electromagnetic waves in a plasma is given by:

Where the plasma frequency is given by:
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In this paper, we are experimenting in the region where the antenna frequency is
greater than the plasma frequency:

ω>ωp

In this region refraction and not reflection takes place.
The phase speed of electromagnetic waves in a plasma is greater than in free

space. The greater the density of the plasma the greater the phase speed. Since the
plasma density can be reconfigured, the steering and focusing of antenna beams by
the physics of refraction through a plasma is reconfigurable [10, 11]. The amount of
refraction through a plasma depends on the path length through a plasma and the
change in plasma density over that path length [12]. This physical process can also
be considered as a plasma lens [13].

Refraction in a plasma depends on:

1.Plasma density

2.Path length

3.Gradient of plasma density

We have very good results at 24 GHz and above using COTS plasma tubes. We
made custom plasma tubes with larger diameter and refraction that worked well at
10 GHz.

At 24 GHz, two plasma tubes were used to get antenna beam focusing and one
plasma tube was used to get antenna beam spreading. Antenna beam steering was
achieved with one and two plasma tubes at 24 GHz. In another case our beam
steering experiments from using the physics of refraction through a plasma were
done at 44 GHz.

2. Focusing antenna beams with the physics of refraction through
plasma

In the following sections we show our work on antenna beam focusing, beam
spreading, and beam steering using refraction of RF waves in a plasma. This is our
first iteration of the plasma lens work and it can only improve. We found it was
easier to show the lensing effects of plasma at 24 GHz since the size and shape of
COTS plasma tubes are amenable to a 24 GHz. These effects all scale according to
wavelength, but cylindrical annular rings of plasma are the best way to control the
plasma density variations of plasma to optimize the engineering effects of plasma
refraction to control beam focusing, beam spreading, and beam steering.

We have demonstrated the ability to use a plasma for manipulation of a micro-
wave signals by focusing a wide beam into a more narrow beam and also by steering
the beam.

Figure 1 shows the experimental set-up for beam steering and lensing. A
narrow-beam 24 GHz signal is directed into the side of two 1.5 inch diameter plasma
tubes which focuses the antenna beam into higher directivity, gain, and range.

This change in velocity of the signal inside the plasma results in a lensing effect if
the beam passes through varying lengths of plasma similar to light passing through
glass of varying thickness to make a lens. But there is an important and interesting
difference between an ordinary lens made of glass or plastic and a plasma lens: The
glass lens slows-down the signal while a plasma lens speeds-up the signal. Therefore
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a convex glass lens focuses a signal to a point while a convex plasma diverges the
signal similar to a concave glass lens that diverges the signal while a concave plasma
lens focuses to a point.

We have built converging and diverging plasma lenses using plasma tubes as
shown in Figures 1 and 2. A single plasma tube with the beam passing through its
diameter acts as a diverging plasma lens (Figures 2 and 3) and two plasma tubes
side-by-side form a converging (focusing) lens (Figures 1 and 4).

We have built the “concave” set-up for beam shown in Figure 1, and Figure 4 is
a 24 GHz, 5 mW Gunn diode is used as the microwave source with the signal

Figure 2.
Schematic for experimental setup for antenna beam spreading with tubes with plasma in one COTS
(commercial off the shelf) tubes.

Figure 1.
Schematic for experimental setup of antenna beam focusing with tubes with plasma using two COTS
(commercial off the shelf) tubes.
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radiating from the open waveguide, which gives a directional but unfocused micro-
wave output. This setup allows us to focus the beam in the forward direction
resulting in a gain of 2 (3 dB). This can be seen in Figure 5.

Figure 3.
Schematic showing antenna beam spreading with one 3-inch diameter custom made plasma tube at 10 GHz.

Figure 4.
Plasma focusing experimental setup from a different angle. Gunn diode 24 GHz transmitter with fluorescent
tubes used for plasma beam focus.
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We are the only group utilizing a pulsed high voltage power supply to give a
much higher average plasma density and much lower average power to ionize the
gas into plasma. This ability to tune the focusing of a RF beam is very useful because
the same lensing structure can be used with different frequencies and to vary focal
length as needed.

3. Steering antenna beams with the physics of refraction through
plasma

We have done microwave beam steering using a cylindrical plasma tube. Those
tests were done using fluorescents lamps with a diameter of 1.5 in (3.8 cm); and
with a 24 GHz microwave beam. A shortcoming of the set-up was that the 24 GHz
signal has a wavelength of 1.25 cm, which is 1/3 the diameter of the tube. For a
properly working lens, the wavelength should be small compared to the physical
dimensions of the lens, or in our case the plasma tube.

This work involved using a much higher frequency (44 GHz, 0.68 cm) and there-
fore shorter wavelength. This wavelength is a factor of 5.6 smaller than the 3.8 cm tube
diameter which should result in a more ideal lensing action. Our testing has confirmed
this and has shown significantly narrower beam steering and less signal loss.

Of course all the dimensions scales with wavelengths used so going down to
lower frequencies requires larger diameter tubes or other shaped plasma containers.
This is why it is important to make custom made plasma tubes or other geometries.

Figure 6 is a schematic for the experimental setup, and Figures 7 and 8 are
photos of the setup. A 33–50 GHz HP Microwave Signal Generator is used to
generate the incident microwave beam. The plasma tube (fluorescent lamp) is
placed �1 inch in front of the open-ended waveguide, and an aluminum shield is
placed against the side the tube to ensure that most of the microwave signal goes

Figure 5.
24 GHz beam focus with plasma. Red line is with no plasma. Blue line is with plasma. Note that the plasma
focus increases beam amplitude by a factor of two compared to no plasma (�3 dB gain). A crystal waveguide
detector was used as a receiver. Amplitude numbers are relative voltage readings from the crystal detector.
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through the plasma and is not bypassed to the side of the tube. A 33–50 GHz
microwave horn with HP crystal detector is placed on a rotating arm that is scanned
in an arc around the plasma tube by an antenna rotator. The arm places the horn

Figure 6.
Schematic for antenna beam steering using one COTS tube with plasma.

Figure 7.
Plasma beam steering experiment. Antenna rotator with holder (green) and receiver horn/detector is in the
foreground. The oscilloscope used to monitor the signal waveform is on top of the HP signal generator. The solid
state pulsing circuit is to the right of the signal generator.
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receiver about 16 inches from the plasma tube. This corresponds to 60 wavelengths
between the steering plasma tube and the detector and clearly qualifies as far field.

In order to generate a plasma with a density high enough to interact with RF
signals in microwave frequencies, we use short current pulses (�1 μs) that quickly
ionize the plasma; then rely on the plasma ions rather slowly migrating to the wall
of the plasma tube. Using this technique (developed by Dr. Theodore Anderson and
the late Professor Igor Alexeff) we generate a much higher average density plasma
with a low average current and power.

Our high current pulses have so far had a period of 1 ms. With this time
separation between pulses, the plasma density decays by about a factor of two

Figure 8.
Fluorescent plasma tube is located in front of the output waveguide on the HP signal generator. Aluminum
shield on left of tube prevents stray RF from bypassing the plasma. High voltage pulser is on the right.

Figure 9.
Beam steering (44 GHz) for two different plasma ionizing currents. Blue line: 5 A peak. Red line: 8 A peak. A
crystal waveguide detector is used as a receiver. Amplitude numbers are relative voltage readings from the
crystal detector.
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before the next pulse comes to refresh the plasma back to peak density. This has not
caused a problem with the smart antenna because we are using the plasma to totally
block the RF signal, like a shutter. But lensing and beam steering require a plasma of
a specific density to get a consistent beam deflection angle.

We are avoiding this problem by recording the received microwave signal
immediately after the current pulse; therefore measurements are taken at a constant
plasma density, which is also the maximum density before significant decay of
density occurs.

Our recent experimental results with 44 GHz show dramatic improvement in
beam deflection characteristics compared to previous testing at 24 GHz. The shorter
wavelength compared to tube dimensions has clearly resulted in cleaner and more
consistent beam steering.

Figure 9 shows beam deflection at two peak ionization currents. The blue curve
shows about 26 deflection with a current of 5 A peak. The red curve shows about
50 deflection with a current of 8 A peak.

Figure 10.
Plasma beam steering. Beam is steered �45° clockwise. Blue line: No plasma. Red line: 8 A peak ionizing
current. A crystal waveguide detector is used as a receiver. Amplitude numbers are relative voltage readings
from the crystal detector.

Figure 11.
Beam steering for two different plasma ionizing currents. Blue line: 3 A peak. Red line: 8 A peak. A crystal
waveguide detector is used as a receiver. Amplitude numbers are relative voltage readings from the crystal
detector.
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Figure 9 demonstrates that we can vary the angle of deflection by changing
plasma ionizing current; but the most striking result shown in Figure 9 is the very
narrow beam-width of the deflected signals. This is quite surprising. Figure 10
shows the 50 deflected beam (red line) along-side the un-deflected beam with no
plasma. The incident un-deflected beam has a much wider beam-width compared
to the deflected beam with plasma turned on.

Figure 11 shows the beam deflection (blue line) with a lower peak plasma
current of 3 A with a beam deflection of 15°. For comparison the 50° beam deflec-
tion with 8 A peak is shown in red.

4. Pulsed plasma antenna circuitry

A plasma antenna operating in the microwave frequency range requires higher
operating currents (Greater than �1A) and consequently can overheat when used
continuously. Our plasma antennas are able to work CW at high frequencies
(>1 GHz) because of a concept invented by Igor Alexeff and Theodore Anderson
that uses fast high-current pulses; instead of DC current.

The plasma initiates quickly in less than a microsecond, but when plasma ioniz-
ing current is turned off, the ions take about a millisecond to recombine with
electrons. Therefore plasma density stays high for almost a millisecond even though
the ionizing current is no longer on. We use an even short pulse width (�1 μs), and
therefore less power is required to run the antenna.

We developed a pulsed voltage doubler circuit, allowing us to use a lower
voltage DC power supply for the input power to the pulsing circuit using a modified
Marx Generator. A Marx Generator is a pulsed voltage multiplier. A series of
capacitors was charged in parallel and then discharged in series through spark gaps.

Figure 12 shows a two stage voltage doubler circuit. We have built and tested a
modified Marx Generator that replaces the spark gaps with an IGBT electronic
switch.

Keeping the second spark gap in the circuit results in a faster rise time than in
our previous pulsing circuits. The voltage doubler allows the use of a lower voltage
DC power supply than would otherwise be required.

A simple non-voltage multiplying IGBT pulsing driver circuit is shown in
Figure 13. A CMOS timer IC is used to generate short 1 μs pulses with a repetition
time of 750 μs. An IXYS brand 2500 V IGBT is the high voltage switch. This pulsing
arrangement allows us to use a factor of 750 less DC current and power from the DC
power supply.

We have been driving our plasma antenna tube with the fast, high-current
pulses described here to allow operation at higher frequencies than is possible with
CW current. Our pulsing circuit had required that the both electrodes of the plasma
tube operate at high voltage; with the positive electrode at constant maximum DC
voltage (2–3 kV). We have modified the circuit to allow the negative electrode to
remain grounded while a positive 1 μs pulse is applied to the anode electrode. This
change offers several advantages:

Improved electrical safety because one electrode remains grounded and the
other electrode is supplied with short pulses. Less capacitive loss in the current leads
allowing the use of faster pulses; since one electrode is grounded and can be
attached to a ground plane.

Eliminating the need for a negative lead wire means less high voltage wiring.
Lower EMI caused by high current pulses in wiring.

Grounding one side of the plasma tube requires that the high voltage switcher
(IGBT) be able to float up and down in voltage with the tube’s anode. To do this we
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Figure 12.
1000 V DC to 2000 V pulse circuit using modified Marx generator with spark gaps in the top photo and with
an electronic switch and spark gap in the bottom figure. Two electronic switches was also built but not shown.

Figure 13.
Basic pulsing circuit. A DC power supply charges the capacitor, the IGBT pulsing circuit switching delivers short
�1 μs pulses to the plasma tube.
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have electrically isolated the switcher by using a battery to power the electronics
and by potting the IGBT and electronics in epoxy.

Figure 14 shows our first prototype with steel-filled epoxy; not the best choice
of epoxy but one that is working quite well so far. Potting the circuit is advanta-
geous for airplane and aerospace applications, providing mechanical ruggedness as
well as electrical isolation. Epoxy has much higher thermal conductivity than air,
but not as good as a metal heat sink. The steel filled epoxy has about a factor of 10
higher thermal conductivity than air. Highly thermally conductive epoxies can have
a factor of 100 higher conductivity than air. Potting in epoxy in our case allowed
operation without an additional metal heat sink, saving space and eliminating the
need for electrical isolation between the IGBT and a metal heat sink. We tested the
ruggedness of our epoxy-potted circuit by dropping it on a concrete floor from a
height of 6 ft. without damage to the circuit.

We ran the circuit shown in Figure 13 (with no additional heat sink) with peak
current of 20 A and a pulse period of 1000 μs.

After ½ hour of operation, the epoxy and IGBT were warm to the touch but with
no indication of over-heating.

5. Power, current, and voltage requirements in pulsing excitations

The plasma antenna requires a relatively high voltage, low current power
supply.

Short pulses are applied to the terminals of the plasma tube. Peak current is
about 1 A with 5 μs pulse width and a time between pulses of about 1 ms.

This duty cycle of 1/200 results in an average power of about 5 W.
Overall average power drain from the battery driving the plasma antenna will be

much less than 5 W. Two standard 9 V batteries and/or one 6 V.75 AH SLA battery
can operate a plasma antenna. The smart plasma antenna can operate on a 12 V car
battery which is enough voltage to ionize the plasma in 12 tubes and run the
computer.

The power losses of the supply voltage connected to the plasma antenna are
because the VSWR numbers in many cases indicate a very good match between the
feeds and antennas.

Anyone trying to build a plasma antenna according should consult a licensed
electrical safety expert before proceeding. After consulting a licensed electrical
safety expert, proceed as follows. Use a three-wire grounded power cord and

Figure 14.
Prototype pulsing circuit potted in epoxy. High voltage leads are at top and bottom, and the battery connection is
on the right.
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securely attach the green ground wire to the metal enclosure. Install an appropri-
ately sized fuse or circuit breaker to protect from short circuits or overloads. Always
unplug the unit before modifying or working inside.

6. Conclusions

We have demonstrated that one or two plasma tubes can be used to focus,
spread, and steer antenna beams. We have also shown that we can simulate convex
and concave plasma lenses by using cylindrical plasma tubes. Focusing by a plasma
is useful because it can be used to increase the gain of an antenna, and to quickly
reconfigure the beamwidth as needed without physically moving the antenna. With
this technology, there is no need for phased arrays. Beam steering with a plasma
allows tuning to different frequencies which is a difficult task for standard anten-
nas. Our experimental results with 44 GHz showed a dramatic improvement in
beam steering and focusing characteristics compared to beam focusing and steering
at 24 GHz. The shorter wavelength compared to the spatial variation in plasma
density over the radius of the plasma tube, the easier it is to steer and focus antenna
beams. These results have been incorporated in a new smart plasma antenna design
which appears in another paper.

Driving the plasma with short high-current pulses allows CW operation at
higher frequencies with a minimum amount of ionization power and higher plasma
densities. Circuits for pulse forming and voltage multiplication are presented. The
maximum frequency that a plasma antenna can operate CW has previously been
limited by the high DC current needed to ionize the plasma. We minimize the
average ionization power and increase the plasma density by using fast current
pulsing with a short duty cycle. The average current is much lower but the average
plasma density remains high than in the DC mode.

Author details

Theodore Anderson
Haleakala R&D, Inc., Brookfield, Massachusetts, USA

*Address all correspondence to: tedanderson@haleakala-research.com

©2020TheAuthor(s). Licensee IntechOpen. This chapter is distributed under the terms
of theCreativeCommonsAttribution License (http://creativecommons.org/licenses/
by/3.0),which permits unrestricted use, distribution, and reproduction in anymedium,
provided the original work is properly cited.

84

Selected Topics in Plasma Physics

References

[1] Zhou J, Fang J, Lu Q, Liu F. Research
on radiation characteristic of plasma
antenna through FDTD method.
Scientific World Journal. 2014;2014:
290148. DOI: 10.1155/2014/290148

[2] Bogachev NN, Gusein-Zade NG,
Nefedov VI. Radiation pattern and
radiation Spectrum of the plasma
asymmetrical dipole antenna. Plasma
Physics Reports. 2019;45(4):372-375

[3] Kiss’ovski Z, Vachkov V. Model of a
miniature plasma antenna. International
Journal of Engineering and Advanced
Technology (IJEAT). 2015;4(6):
2249-8958

[4] Golazari SS, Amiri N, Kashani FH.
Design, simulation andmeasurement of
loop plasma antenna in UHF band. In:
24th Telecommunications Forum
(TELFOR). Belgrad; 2016

[5] Barro OA. Mohammed Himdi, and
Olivier Lafond, reconfigurable
cylindrical plasma antenna. Progress In
Electromagnetics Research (PIER) M.
2018;66:65-72

[6] Kumar R, Kumar P. Study of array
plasma antenna parameters. AIP
Advances. 2018;8:045306. DOI:
10.1063/1.5018660

[7] Melazzi D, Lancellotti V, De Carlo P,
Manente M, Pavarin D, Anderson T.
Numerical investigation into the
performance of two reconfigurable
gaseous plasma antennas. EuCAP 2014
Symposium Journal; 2014

[8] Anderson T, Melazzi D,
Lancellotti V. An overview of
experimental and numerical results on
plasma antenna arrays. EuCAP 2015
Symposium Journal; 2015

[9] Giulia M, Paolo R, Mohammad
Abdul H, Federico B, Capobianco AD,
De Carlo P, et al. Design of a

reconfigurable metal-plasma L-band
transmit-array antenna. IEEE
International Symposium on Antennas
and Propagation and USNC-URSI Radio
Science Meeting - AP-S/URSI 2019
Symposium Journal; 2019

[10] Anderson T. Plasma Antennas.
Artech House. 2011:187-193

[11] Anderson T. Plasma Antennas.
Artech House. 2011:177-185

[12] Anderson T. Plasma devices for
steering and focusing antenna beams.
U.S. Patent Issue Number: 8,384,602

[13] Linardakis P, Borg G, Martin N.
Plasma-based lens for microwave beam
steering. Electronics Letters. 2006;
42(8):444-446

85

Plasma Antennas
DOI: http://dx.doi.org/10.5772/intechopen.91944



securely attach the green ground wire to the metal enclosure. Install an appropri-
ately sized fuse or circuit breaker to protect from short circuits or overloads. Always
unplug the unit before modifying or working inside.

6. Conclusions

We have demonstrated that one or two plasma tubes can be used to focus,
spread, and steer antenna beams. We have also shown that we can simulate convex
and concave plasma lenses by using cylindrical plasma tubes. Focusing by a plasma
is useful because it can be used to increase the gain of an antenna, and to quickly
reconfigure the beamwidth as needed without physically moving the antenna. With
this technology, there is no need for phased arrays. Beam steering with a plasma
allows tuning to different frequencies which is a difficult task for standard anten-
nas. Our experimental results with 44 GHz showed a dramatic improvement in
beam steering and focusing characteristics compared to beam focusing and steering
at 24 GHz. The shorter wavelength compared to the spatial variation in plasma
density over the radius of the plasma tube, the easier it is to steer and focus antenna
beams. These results have been incorporated in a new smart plasma antenna design
which appears in another paper.

Driving the plasma with short high-current pulses allows CW operation at
higher frequencies with a minimum amount of ionization power and higher plasma
densities. Circuits for pulse forming and voltage multiplication are presented. The
maximum frequency that a plasma antenna can operate CW has previously been
limited by the high DC current needed to ionize the plasma. We minimize the
average ionization power and increase the plasma density by using fast current
pulsing with a short duty cycle. The average current is much lower but the average
plasma density remains high than in the DC mode.

Author details

Theodore Anderson
Haleakala R&D, Inc., Brookfield, Massachusetts, USA

*Address all correspondence to: tedanderson@haleakala-research.com

©2020TheAuthor(s). Licensee IntechOpen. This chapter is distributed under the terms
of theCreativeCommonsAttribution License (http://creativecommons.org/licenses/
by/3.0),which permits unrestricted use, distribution, and reproduction in anymedium,
provided the original work is properly cited.

84

Selected Topics in Plasma Physics

References

[1] Zhou J, Fang J, Lu Q, Liu F. Research
on radiation characteristic of plasma
antenna through FDTD method.
Scientific World Journal. 2014;2014:
290148. DOI: 10.1155/2014/290148

[2] Bogachev NN, Gusein-Zade NG,
Nefedov VI. Radiation pattern and
radiation Spectrum of the plasma
asymmetrical dipole antenna. Plasma
Physics Reports. 2019;45(4):372-375

[3] Kiss’ovski Z, Vachkov V. Model of a
miniature plasma antenna. International
Journal of Engineering and Advanced
Technology (IJEAT). 2015;4(6):
2249-8958

[4] Golazari SS, Amiri N, Kashani FH.
Design, simulation andmeasurement of
loop plasma antenna in UHF band. In:
24th Telecommunications Forum
(TELFOR). Belgrad; 2016

[5] Barro OA. Mohammed Himdi, and
Olivier Lafond, reconfigurable
cylindrical plasma antenna. Progress In
Electromagnetics Research (PIER) M.
2018;66:65-72

[6] Kumar R, Kumar P. Study of array
plasma antenna parameters. AIP
Advances. 2018;8:045306. DOI:
10.1063/1.5018660

[7] Melazzi D, Lancellotti V, De Carlo P,
Manente M, Pavarin D, Anderson T.
Numerical investigation into the
performance of two reconfigurable
gaseous plasma antennas. EuCAP 2014
Symposium Journal; 2014

[8] Anderson T, Melazzi D,
Lancellotti V. An overview of
experimental and numerical results on
plasma antenna arrays. EuCAP 2015
Symposium Journal; 2015

[9] Giulia M, Paolo R, Mohammad
Abdul H, Federico B, Capobianco AD,
De Carlo P, et al. Design of a

reconfigurable metal-plasma L-band
transmit-array antenna. IEEE
International Symposium on Antennas
and Propagation and USNC-URSI Radio
Science Meeting - AP-S/URSI 2019
Symposium Journal; 2019

[10] Anderson T. Plasma Antennas.
Artech House. 2011:187-193

[11] Anderson T. Plasma Antennas.
Artech House. 2011:177-185

[12] Anderson T. Plasma devices for
steering and focusing antenna beams.
U.S. Patent Issue Number: 8,384,602

[13] Linardakis P, Borg G, Martin N.
Plasma-based lens for microwave beam
steering. Electronics Letters. 2006;
42(8):444-446

85

Plasma Antennas
DOI: http://dx.doi.org/10.5772/intechopen.91944



Section 5

Plasma Diagnostic Methods

87



Section 5

Plasma Diagnostic Methods

87



Chapter 5

Plasma Diagnostic Methods: Test
Charge Response in Lorentzian
Dusty Plasmas
Shahid Ali and Yas Al-Hadeethi

Abstract

Different plasma diagnostic methods are briefly discussed, and the framework
of a test charge technique is effectively used as diagnostic tool for investigating
interaction potentials in Lorentzian plasma, whose constituents are the
superthermal electrons and ions with negatively charged dust grains. Applying the
space-time Fourier transformations to the linearized coupled Vlasov-Poisson
equations, a test charge potential is derived with a modified response function due
to energetic ions and electrons. For a test charge moving much slower than the dust-
thermal speed, there appears a short-range Debye-Hückel (DH) potential decaying
exponentially with distance and a long-range far-field (FF) potential as the inverse
cube of the distance from test charge. The FF potentials exhibit more localized
shielding curves for low-Kappas, and smaller effective shielding length is observed
in dusty plasma compared to electron-ion plasma. However, a wakefield (WF)
potential is formed behind the test charge when it resonates with dust-acoustic
oscillations, whereas a fast moving test charge leads to the Coulomb potential
having no shielding around. It is revealed that superthermality and plasma param-
eters significantly alter the DH, FF, and WF potentials in space plasmas of Saturn’s
E-ring, where power-law distributions can be used for energetic electrons and ions
in contrast to Maxwellian dust grains.

Keywords: kinetic model, test charge technique, DA waves, superthermal tails,
dynamical shielding

1. Plasma diagnostic methods

To understand a plasma state and its characteristics, numerous experimental
techniques, mechanisms, devices, theoretical models, and computational packages
have been developed as diagnostic tools for measuring the plasma parameters such
as the plasma electron density and temperature [1, 2] as well as their spatial profiles
and dynamics. These diagnostic techniques are used to adequately describe both
low-temperature and high energy density plasmas. In some situations, the mea-
surements by these techniques cause perturbations in plasmas and are termed as
active diagnostic techniques, while passive ones do not perturb plasmas. Based on
the degree of ionization, the plasmas can broadly be classified into cold and hot
plasma states, which accordingly demand for various types of diagnostics to
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E-ring, where power-law distributions can be used for energetic electrons and ions
in contrast to Maxwellian dust grains.
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1. Plasma diagnostic methods

To understand a plasma state and its characteristics, numerous experimental
techniques, mechanisms, devices, theoretical models, and computational packages
have been developed as diagnostic tools for measuring the plasma parameters such
as the plasma electron density and temperature [1, 2] as well as their spatial profiles
and dynamics. These diagnostic techniques are used to adequately describe both
low-temperature and high energy density plasmas. In some situations, the mea-
surements by these techniques cause perturbations in plasmas and are termed as
active diagnostic techniques, while passive ones do not perturb plasmas. Based on
the degree of ionization, the plasmas can broadly be classified into cold and hot
plasma states, which accordingly demand for various types of diagnostics to
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precisely estimate the plasma parameters for optimal understanding of the physics
of plasmas. This includes both theoretical and experimental findings. The most
common techniques for cold and hot plasmas (Te ≥ few keV) are the Langmuir
probes in the form of planar, cylindrical, or spherical electrodes in plasmas with a
goal to monitor the plasma parameters. The probes can be of several types, namely,
single and/or double probes, which are used for density, temperature, and floating
potential measurements. Emissive and magnetic probes work more efficiently for
plasma potential measurement and wave field amplitude and phase diagnostics,
respectively, while the Rogowski for antenna current measurements. There are many
complications, for example, the plasma potential and density can fluctuate or drift
during the time of probe measurements. In some complications, since the probe
draws a large amount of currents from a plasma and perturbs the initial state of the
plasma, it may lead to the erroneous measurements; even then, the Langmuir probe
diagnostics are widely used and this is because of the fact that they are relatively
simple to use, cheap, and give reliable values of important plasma parameters.

On the other hand, in certain plasma sources like tokamak plasmas, strong
currents are generated, which give rise to various kinds of magnetohydrodynamic
(MHD) instabilities. For this, a magnetic probe is used, which is beneficial espe-
cially for measuring either local magnetic fields or its fluctuations not only in
tokamaks but also in laser-produced plasmas (LPP). Furthermore, the amplitude of
current flowing into the plasma can be estimated by integrating the induced mag-
netic field around the plasma column by utilizing the so-called Rogowski coil.
However, in some plasmas (especially high temperature), it is not feasible to utilize
material probes for determining the plasma parameter like plasma electron density.
Therefore, a nonperturbing approach is needed to diagnose the plasma. In such a
scenario, the electromagnetic spectrum is utilized. But the electromagnetic wave
intensity must be low enough to the level that it will not result in plasma perturba-
tion. For probing the high-density plasmas, a lower wavelength is required as a
probe. This justifies the utilization of infrared radiation in tokamak and ultraviolet
radiation for measuring the plasma electron density in LPP. The variation of the
polarizing angle involving the beam probe in the presence of magnetic field can also
be used for diagnostics of tokamak plasmas.

Interestingly, the evaluation of appropriate plasma parameters may be carried
out by spectroscopy of emitted radiations as used generally from the beginning of
plasma physics. This technique for emission measurements has been particularly
making significant contributions over the past five decades for the fact that plasmas
produced for nuclear fusion research exhibit intense emission in the X-ray region.
Astrophysical applications further justify the wide interest in X-ray emission from
plasmas. The phase soft X-ray (so defined due to their low penetrating power)
indicates electromagnetic radiations with a wavelength in range 1Å≤ λ≤ 300Å (or,
in terms of photon energy hv, 300 eV≤ hν≤ 10 keV). Hard X-rays below 1 Å are
occasionally produced in plasmas for highly accelerated electrons, like runaway
electrons in tokamak plasmas and suprathermal electrons in LPP [3]. The charac-
teristics of soft X-ray spectra like line intensities, line profiles, and continuum
intensities can be investigated to determine the electron densities by Stark broad-
ening, while the ion densities from the absolute radiation intensities and ion tem-
peratures using the Doppler broadening of spectral lines [2].

The particle measurement method is another scheme for investigating the char-
acteristics of plasmas by using the beam of fast particles. It has received much
attention in the studies of inertial confinement fusion and energy deposition
in a medium driven by cluster-ion and fast heavy-ion beams, as well as in plasma
accelerators and low-temperature laboratory plasmas.
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2. Dusty plasma and test charge technique

The most common ingredient of astrospace plasmas is the dust component in
addition to electrons and ions, found everywhere in earth atmospheres, in comets,
in planetary rings, in interstellar clouds, in interplanetary space, in interstellar
medium, etc. Dust grains may exist in the form of ice particles, metallic and dielec-
tric materials, and are highly charged species due to different charging processes.
For instance, the absorption of ambient electrons and ions on dust grain surface may
lead to the negatively charged dust grains, while thermionic and secondary electron
emissions as well as ultraviolet photoionization give rise to positively charged dust
grains. Thus, a multispecies dusty plasma can be assumed as more complex plasma
than conventional electron-ion plasma, for dust size, mass, and charge variations.
Being an abundant component of the space and industrial plasmas [4, 5], dusty
plasma has always attracted lots of interests for studying new distinct features of
plasma modes [6, 7] with a static and dynamic background of dust grains both
analytically and experimentally [8–10]. Numerous linear and nonlinear [viz., soli-
tons, shocks, vortices, etc.] dusty modes and associated instabilities are investigated
using the frameworks of perturbative and nonperturbative schemes.

The behavior of charged particles in plasmas can be described by the well-
known fluid and kinetic theories [4, 11], essentially helpful for studying the basic
properties of plasma waves and instabilities, depending strongly on the observed
phenomena. Laboratory plasmas have effectively been modeled by fluid descrip-
tion, where charged fluids of plasma species are assumed in temporal and spatial
configurations. But, it has been observed that fluid theory does not account for
velocity space coordinate and is insufficient to study the wave phenomena in non-
equilibrium plasmas, where particle distributions show significant deviations from
the equilibrium states. Hence, fluid theory is unable to explain the wave-particle
interactions that could lead to collisionless Landau damping phenomenon and many
other interesting features of collective modes and instabilities. Conversely, kinetic
theory adequately describes the physical phenomena in real time and phase space
configurations, providing all information about plasma waves, instabilities, plasma
equilibrium, Landau damping rate, etc.

Test charge techniques [12, 13] can be utilized to study the shielding of test
charges in collisional [14] and turbulent [15] plasmas, the electric field [16], and far-
field potential of a test charge in a nonuniform magnetoplasma [17], the wake-field
excitations in charge fluctuating dusty plasmas [18], the two-body correlations [19],
the energy loss of test charges [20], etc. If a test particle is projected into the plasma
with a constant speed, its charge density is coupled with the plasma charge density
by the space charge effects. Consequently, the test charge is screened by a cloud of
opposite sign charges leading to the short-range Debye-Hückel (DH) potential. Of
course, the speed of test charge significantly matters in plasmas when it is consid-
ered with respect to thermal speeds of plasma species. The interaction potentials and
energy loss of charged particles have been recognized in many research areas, for
example, in ion-cluster interaction with condensed matter [21, 22], in inertial con-
finement fusion [23–25], in particle acceleration [26], in low-temperature laboratory
plasmas [27, 28], and in dense plasmas for heavy-ion energy deposition [29].

Montgomery et al. [13] employed the test charge technique to obtain far-field
potential distribution around a test charge, which decays as the inverse cube of the
distance from test charge in electron-ion Maxwellian plasmas. Subsequent investi-
gations of shielded potentials have been phenomenally influenced by the ionic
motion [30], electron-electron collisions [14, 31], and plasma turbulence [15]. The
electrostatic potential [32] due to small and large test charge velocities has been
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precisely estimate the plasma parameters for optimal understanding of the physics
of plasmas. This includes both theoretical and experimental findings. The most
common techniques for cold and hot plasmas (Te ≥ few keV) are the Langmuir
probes in the form of planar, cylindrical, or spherical electrodes in plasmas with a
goal to monitor the plasma parameters. The probes can be of several types, namely,
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simple to use, cheap, and give reliable values of important plasma parameters.

On the other hand, in certain plasma sources like tokamak plasmas, strong
currents are generated, which give rise to various kinds of magnetohydrodynamic
(MHD) instabilities. For this, a magnetic probe is used, which is beneficial espe-
cially for measuring either local magnetic fields or its fluctuations not only in
tokamaks but also in laser-produced plasmas (LPP). Furthermore, the amplitude of
current flowing into the plasma can be estimated by integrating the induced mag-
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However, in some plasmas (especially high temperature), it is not feasible to utilize
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probe. This justifies the utilization of infrared radiation in tokamak and ultraviolet
radiation for measuring the plasma electron density in LPP. The variation of the
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Interestingly, the evaluation of appropriate plasma parameters may be carried
out by spectroscopy of emitted radiations as used generally from the beginning of
plasma physics. This technique for emission measurements has been particularly
making significant contributions over the past five decades for the fact that plasmas
produced for nuclear fusion research exhibit intense emission in the X-ray region.
Astrophysical applications further justify the wide interest in X-ray emission from
plasmas. The phase soft X-ray (so defined due to their low penetrating power)
indicates electromagnetic radiations with a wavelength in range 1Å≤ λ≤ 300Å (or,
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occasionally produced in plasmas for highly accelerated electrons, like runaway
electrons in tokamak plasmas and suprathermal electrons in LPP [3]. The charac-
teristics of soft X-ray spectra like line intensities, line profiles, and continuum
intensities can be investigated to determine the electron densities by Stark broad-
ening, while the ion densities from the absolute radiation intensities and ion tem-
peratures using the Doppler broadening of spectral lines [2].

The particle measurement method is another scheme for investigating the char-
acteristics of plasmas by using the beam of fast particles. It has received much
attention in the studies of inertial confinement fusion and energy deposition
in a medium driven by cluster-ion and fast heavy-ion beams, as well as in plasma
accelerators and low-temperature laboratory plasmas.
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investigated to display the excitation of long-range wakefields in Maxwellian
plasmas. Shivamoggi and Mulser [33] examined the effects of magnetic field, colli-
sions, and plasma inhomogeneity on the potential due to slowly and rapidly moving
test charges [17, 34], and Lakshmi et al. [35] discussed the Debye shielding phe-
nomenon in a dusty plasma by considering the Boltzmannian electrons and ions
with cold negative dust grains. It was revealed that plasma parameters significantly
alter the characteristics of small and large amplitude potentials. Later, Shukla [36]
reported the FF potential for a slowly moving test charge in a Maxwellian dusty
plasma and showed the impact of dust-charge variation on the dipole-like FF
potential. Moreover, oscillatory wake-field can be excited behind the test charge
[37] in a collisionless unmagnetized plasma with Maxwellian electrons and ions.
Nambu et al. [38] extended this work to dusty plasmas and explained the resonant
phenomenon of DA waves with a test charge, resulting in the long-range WF
potential. Later, Shukla and Rao [39] analyzed the WF, DH, and FF potentials of
test charge in a colloidal Maxwellian plasma accounting for the streaming ions and
dust grains. It was found that external magnetic field and ion-streaming effects
[40, 41] strongly affect the positive/negative potential regions in plasmas. To
explore the effects of two-body correlations, dust-charge perturbations and dust-
neutral collisions, various geometries have been designed for propagating test
charges [18–20] in an unmagnetized Maxwellian dusty plasma. In all above
investigations, the plasma particles are described by the Maxwellian distribution
function.

The shielding phenomenon is one of the main objectives of this chapter to unfold
many intrinsic properties of the Lorentzian space dusty plasma, which discerns it
from the standard Maxwellian plasmas. It plays a key role in setting up the basic
criteria for Lorentzian dusty plasmas. Any plasma medium can physically be polar-
ized by the test charge to give rise to perfect screening if thermal agitations are
absent in the plasma system. Conversely, an imperfect shielding occurs if the
plasma particles get enough thermal energy to escape from the edge of screening
cloud. The interaction potentials caused by the test charge are not only strongly
influenced by different test charge speeds in comparison with the thermal speeds
but also lead to the possibility of dust crystallization and dust coagulation in space
Lorentzian dusty plasmas.

3. Power-law Lorentzian distribution function (df)

In some circumstances, the behavior of plasma particles cannot be described by
the usual Maxwellian distribution function (df) but often modeled by the power-
law df. When all or some of the plasma particles move faster than their thermal
speeds, the plasma particles are known as superthermal/suprathermal species,
showing high energy and velocity tails in the distribution. They are mostly acceler-
ated by wave-particle interactions, modulational instabilities and Langmuir turbu-
lence [42], beam-plasma interactions [43], solar wind where type III solar radio
emissions occurs [44], intense microwave-plasma interactions [45], ionospheric
heating experiments [46], etc. Recognizing the role of superthermal energetic
particles in plasmas, the wave dynamics and instabilities need to be re-investigated
with a power-law df that gives a better fit to empirical data from space plasmas.
A 3D isotropic Kappa-df [47] for superthermal particles can be expressed as

f Ks0 vsð Þ ¼ Aκs 1þ v2s
κsθ

2
Ts

 !�κs�1

: (1)
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The normalization constant and effective thermal speed are denoted by Aκs ¼
ns0π�3=2κ�3=2

s θ�3
Ts Γ κs þ 1ð Þ=Γ κs � 1=2ð Þ and θTs ¼ 2 κs � 3=2ð Þ=κsf g1=2 Ts=msð Þ1=2,

respectively. The symbol Γ indicates the Gamma function, and vs and ns0 are the
velocity and equilibrium number density, whereas Ts (ms) stands for the tempera-
ture (mass) of the sth species (s ¼ e for electrons and i for positive ions). The
effective thermal speed θTs is always realistic in the limit κs > 3=2, where κs is the
spectral index showing the deviation from the Maxwellian df. Figure 1 displays the
normalized Kappa-df [as given by Eq. (1)] for the electrons as function of normal-
ized electron speed with varying κe-index both in 2D and contour plots. See that
superthermal electrons exhibit high energy tails at κe ¼ 2, 4, and 10 in distribution
curves, which tend to the Maxwell-Boltzmann distribution curve for κe ! ∞:
Therefore superthermality effects are only significant for low values of Kappa, and
for its infinite values, the Kappa-df exactly converges to the Maxwell-df

viz:, f Ks0 vsð Þ ! fMs0 vsð Þ
h i

: It may be noted from contours (see Figure 1(b)) that

light-colored regions correspond to more electrons at low speeds, and while moving
toward the dense-colored regions, the number of electrons decreases but compara-
tively has high speeds. In 1968, for the first time, Vasyliunas [47] pointed out the
implications of Kappa-df by fitting empirical data from solar wind and showed the
significance of low values of electron spectral index, that is, κs¼e � 2� 4: The effects
of high energy tails have significantly modified the dispersive properties of waves
and instabilities [48, 49] in Lorentzian plasmas. Recently, Ali and Eliasson [50]
investigated the impact of suprathermal hot electrons on the electrostatic potential
of slowly moving test charge in a two-temperature electron plasma and extended
the model for Lorentzian dusty plasmas [51].

4. Kinetic model for Lorentzian dusty plasmas

To compute the potential distributions around a test charge, we consider a
collisionless Lorentzian dusty plasma, containing the suprathermal electrons and
ions with negatively charged dust grains following the Maxwell-df. The plasma is
also assumed to be field-free in the sense that there is no external electric or magnetic
field (viz., E0 ¼ 0 ¼ B0Þ, so that the equilibrium electrostatic potential ϕ0 ¼ 0: The
quasi-neutrality condition at equilibrium demands ne0 ¼ ni0 � Zd0nd0, where Zd0

Figure 1.
Kappa-df against the electron speed for different values of kappa index both in 2D and in contour plots. In (a),
the solid-black, dotted-blue, dashed-green, and solid-red curves correspond to κe ¼ 2, 4, 10, and κe ! ∞,
respectively. However, in (b), the light colors indicate more number of electrons and vice versa for dense colors.
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being the equilibrium dust-charge state and n j0 denote the particle number densities
of the jth species [ j equals s ¼ e, ið Þ for Kappa-distributed electrons and ions while
j ¼ d for negatively charged dust grains]. In this model, all the dust grains are
assumed to be spherical in shape with constant size of radius rd and mass md.

The Lorentzian dusty plasma in the presence of a test charge can be described by
the following linearized coupled set of Vlasov-Poisson equations:

∂t þ vd � ∇ð Þ f d1 þ
qd0
md

E1 � ∇vd f
M
d0 ¼ 0, (2)

∂t þ vs � ∇ð Þ f s1 þ
qs
ms

E1 � ∇vs f
K
s0 ¼ 0, (3)

and

∇2ϕ1 þ 4π
X
s¼e, i

ρs þ ρd þ ρT

 !
¼ 0, (4)

where E1 ¼ �∇ϕ1ð Þ is the induced electric field with perturbed potential ϕ1,
qd0 ¼ �Zd0eð Þ is the charge of the negative dust grains, and qs ¼ �e, eð Þ being the
charge of electrons and positive ions. ρd ¼ qd0

Ð
f d1dvd, ρs ¼ qs

Ð
f s1dvs, and ρT ¼

qTδ r� vTtð Þ identify the dust-charge density, electron-ion charge densities, and test
charge density, respectively. The symbol δ stands for a 3D Dirac’s delta function,
and fMd0 vdð Þ and f Ks0 vsð Þ are the Maxwell-df and Kappa-df with their perturbed parts
f d1 r,vd, tð Þ and f s1 r,vs, tð Þ, such that ∣ f d1∣ ≪ fMd0 and ∣ f s1∣ ≪ f Ks0. Also note that
test particle has a charge qT which moves with a constant velocity vT along the
z-axis in a Lorentzian dusty plasma.

Taking space–time Fourier analysis of Eqs. (2), (3), and (4), we obtain the
Fourier transformed potential in this form

k2D k,ωð Þϕ1 k,ωð Þ ¼ 8π2qTδ ω� k � vTð Þ: (5)

The modified longitudinal dielectric constant can be defined by

D k,ωð Þ ¼ 1þ
X
s

ω2
ps

k2

ð
k � ∇vs f

K
s0 vsð Þ

ω� k � vsð Þ dvs þ
ω2
pd

k2

ð
k � ∇vd f

M
d0 vdð Þ

ω� k � vdð Þ dvd, (6)

where ω kð Þ being the angular frequency (wave number) and ωpj ¼

4πq2jn j0=m j

� �1=2
is the plasma oscillation frequency. It is important to mention that

if Lorentzian dusty plasma does not contain any test charge, viz., qT ¼ 0, then
Eq. (5) simply implies that D k,ωð Þ ¼ 0, showing a modified linear dispersion
relation of electrostatic waves to account for superthermal electrons and ions.
However, the inverse Fourier analysis of Eq. (5) leads to the standard form of
electrostatic potential due to a test charge in a dusty plasma [11, 32].

ϕ1 r, tð Þ ¼ qT
2π2

ð
dk
k2

exp ik � r� vTtð Þ½ �
D k,k � vTð Þ : (7)

The dielectric constant in terms of dielectric susceptibilities

viz:, D ¼ 1þPs¼e,i χs þ χd

� �
can be expressed as
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where λDs ¼ θTs=
ffiffiffi
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p
ωps
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and λDd ¼ vTd=ωpd

� �
are the Debye shielding lengths

associated with the electron-ion effective speed θTs and dust thermal speed vTd ¼
Td=mdð Þ1=2: The standard plasma dispersion functions for Kappa-distributed elec-
trons and ions [48] and for Maxwellian dust grains [52], respectively, can be given by

Zκs Csð Þ ¼ 1ffiffiffi
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with their corresponding arguments Cs ¼ k � vT=
ffiffiffi
2
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kj jθTs and Cd ¼ k �

vT=
ffiffiffi
2

p
kj jvTd:

To proceed further, we shall consider two limiting cases of Eq. (8) by imposing
certain limitations on the test charge speed in comparison with the thermal and
acoustic speeds and simplify the interaction potentials [as given by Eq. (7)] in
Lorentzian dusty plasmas.

4.1 Slow moving test charge response

For a slow test charge propagation in a Lorentzian dusty plasma, we assume that
test charge speed vTð Þ is much slower than the dust thermal speed vTdð Þ: As a result,
the test charge is shielded by all the plasma species, for example, electrons, ions,
and dust grains. Since mass of the dust grains is larger than the mass of electrons
and ions, therefore the dust thermal speed is much smaller than the electron and ion
thermal speeds. Thus, imposing the inequalities vT ≪ vTd⋘θTs, we consider only
small argument expansions, that is, ∣Cs∣ ≪ 1 and ∣Cd∣ ≪ 1, in the plasma dispersion
functions to obtain a simplified expression for dielectric constant. The inverse of the
latter eventually yields the following result

D�1 ≃
k2λ2Dκ

k2λ2Dκ þ 1
� i

μvT
vTd

π

2

� �1=2 k2λ4Dκ

λ2Dd k2λ2Dκ þ 1
� �2 : (9)

The modified effective Debye length λDκ can be simplified in this form

λDκ ¼ λ0 cκe
ne0
n0

þ cκi
Te

Ti
þ Z2

d0
nd0
n0

Te

Td

� ��1=2

, (10)

with superthermality parameters attributed to electrons and ions as

cκe ¼ 2κe � 1
2κe � 3

and cκi ¼ 2κi � 1
2κi � 3

:

The usual Debye length in electron-ion plasma is denoted by λ0 ¼ Te=4πn0e2ð Þ1=2
with n0 ¼ ni0 � ne0 þ Zd0nd0 and μ ¼ cos θkð Þ representing the angle between the
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being the equilibrium dust-charge state and n j0 denote the particle number densities
of the jth species [ j equals s ¼ e, ið Þ for Kappa-distributed electrons and ions while
j ¼ d for negatively charged dust grains]. In this model, all the dust grains are
assumed to be spherical in shape with constant size of radius rd and mass md.

The Lorentzian dusty plasma in the presence of a test charge can be described by
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 !
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where E1 ¼ �∇ϕ1ð Þ is the induced electric field with perturbed potential ϕ1,
qd0 ¼ �Zd0eð Þ is the charge of the negative dust grains, and qs ¼ �e, eð Þ being the
charge of electrons and positive ions. ρd ¼ qd0

Ð
f d1dvd, ρs ¼ qs

Ð
f s1dvs, and ρT ¼

qTδ r� vTtð Þ identify the dust-charge density, electron-ion charge densities, and test
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is the plasma oscillation frequency. It is important to mention that

if Lorentzian dusty plasma does not contain any test charge, viz., qT ¼ 0, then
Eq. (5) simply implies that D k,ωð Þ ¼ 0, showing a modified linear dispersion
relation of electrostatic waves to account for superthermal electrons and ions.
However, the inverse Fourier analysis of Eq. (5) leads to the standard form of
electrostatic potential due to a test charge in a dusty plasma [11, 32].
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the test charge is shielded by all the plasma species, for example, electrons, ions,
and dust grains. Since mass of the dust grains is larger than the mass of electrons
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thermal speeds. Thus, imposing the inequalities vT ≪ vTd⋘θTs, we consider only
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vectors k and vT. For Maxwellian plasmas, the superthermality parameters cκe,i ! 1
as long as κe,i ! ∞, implying that the effective shielding length exactly coincides
with the earlier result [35] for static cold dust grains. It may be noticed from Eq. (9)
that the inverse of dielectric constant is significantly influenced by the dust Landau
damping rate [13]. The importance of the latter was first pointed out [13] in 1968,
and it was suggested that if a test charge moves slowly in comparison to the dust
thermal speed, the dust Landau damping term appearing in Eq. (9) cannot be
ignored. For a static test charge, we set vT ¼ 0 and insert Eq. (9) into Eq. (7) to derive
the short-range DH potential [53, 54] in the form ϕDH ¼ qT= rj j� �

exp � rj j=λDκð Þ,
where rj j ¼ ρ2 þ ξ2

� �1=2
is the distance from the test charge to an observer in terms of

radial and axial distances ρ and ξ ¼ zð Þ, respectively.
For numerical analyses, we can choose the data from the dusty plasma near

Saturn’s E ring, cited in Refs. [55–58] and many references therein. The data essen-
tially corresponds to the Radio and Plasma Wave Science (RPWS) instruments
onboard the Cassini spacecraft, containing the plasma parameters, such as
nd0 ¼ 0:1cm�3, ne0 ¼ 70cm�3, Zd0 ¼ 300, Td ¼ Te=10, Ti ¼ Te=2, and
Te ¼ 4:642� 105K: The computation further helps us in finding the magnitude of
the effective shielding length λDκ ¼ 15:649cmð Þ at the near-Maxwellian electrons
and ions with κi,e ¼ 100. The impact of superthermal tails in the electron and ion
distributions only appear at lower values of the Kappa that may result into the
reduction of the shielding length λDκ ≈ 15:4787cm for fixed κi ¼ 1:6 and κe ¼ 100,
as well as λDκ ≈ 15:5888cm with κe ¼ 1:6 and κi ¼ 100. Thus, we notice from
Table 1 that for infinite values of the spectral indices, that is, κe,i ! ∞, the
superthermality parameters cκe,ið Þ tend to unity, implying that the effective
shielding length exactly coincides with the previous results [35] for static cold
dust grains. However, the variation due to superthermal electrons and ions is
shown in three different combinations (see Table 1) to affect the normalized
values of the effective Debye length and DH potential almost 4 digits beyond the
decimal point. At lower Kappa-values, the impact is relatively enhanced and in
turn, suprathermal ions more efficiently modify the effective shielding length and
DH potential as compared to suprathermal electrons because the ions may take

Table 1.
The electron and ion Kappa-indices affect the values of the effective Debye length and DH potential at fixed
values of r = 0.2, η = 10�3, and Zd0 = 300.
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more time to attain the Maxwellian equilibrium due to their larger mass compared
to electrons.

The effect of dust concentration [denoted through the parameter η ¼ nd0=n0ð Þ] is
shown on the contours of normalized effective shielding length [as given by
Eq. (10)] in Figure 2 for (a) η ¼ 0 and (b) η ¼ 10�3 as function of electron-to-ion
temperature ratio in the range 1≤Te=Ti ≤ 6 and electron spectral index 1:6≤ κe ≤ 5
at near-Maxwellian ions κi ¼ 100. Since the speed of the test charge is much lower
than the dust thermal speed (viz., vT ≪ vTd), the test charge is therefore screened by
all the plasma species, viz., the electrons, ions, and dust grains, hence effectively
modifying the shielding length. The effective shielding length is shown to be
decreased in the dusty plasma in comparison with traditional electron-ion plasma
and is strongly influenced by the suprathermal tails of electrons. The impact of the
superthermal electrons at lower Kappa values is more effective in the case of
electron-ion plasma than dusty plasma. In the plots, one can easily observe that
light-colored regions correspond to higher values of the effective shielding length
while dense-colored regions determine the lower values of the shielding length.
However, in Figure 2(c) and (d), a reduction in the effective shielding length is
revealed by the influence of suprathermal ions at near-Maxwellian electrons

Figure 2.
Contours represent the effective shielding length ~λDκ ¼ λDκ=λ0

� �
against the temperature ratio (Te=Ti) and

electron spectral index κeð Þ for (a) η ¼ nd0=n0ð Þ � 0 (electron-ion plasma) and (b) η ¼ 10�3 (dusty plasma)
with κi ¼ 100 and Zd0 ¼ 300: contours in (c) and (d) vary for ~λDκ against the temperature ratio (Te=Ti) and
ion spectral index κið ) for (c) η ¼ 0 (electron-ion plasma) and (d) η ¼ 10�3 (dusty plasma) with κe ¼ 100
and Zd0 ¼ 300: Other parameters are mentioned in Section 1.4.1.
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vectors k and vT. For Maxwellian plasmas, the superthermality parameters cκe,i ! 1
as long as κe,i ! ∞, implying that the effective shielding length exactly coincides
with the earlier result [35] for static cold dust grains. It may be noticed from Eq. (9)
that the inverse of dielectric constant is significantly influenced by the dust Landau
damping rate [13]. The importance of the latter was first pointed out [13] in 1968,
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dust grains. However, the variation due to superthermal electrons and ions is
shown in three different combinations (see Table 1) to affect the normalized
values of the effective Debye length and DH potential almost 4 digits beyond the
decimal point. At lower Kappa-values, the impact is relatively enhanced and in
turn, suprathermal ions more efficiently modify the effective shielding length and
DH potential as compared to suprathermal electrons because the ions may take
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more time to attain the Maxwellian equilibrium due to their larger mass compared
to electrons.

The effect of dust concentration [denoted through the parameter η ¼ nd0=n0ð Þ] is
shown on the contours of normalized effective shielding length [as given by
Eq. (10)] in Figure 2 for (a) η ¼ 0 and (b) η ¼ 10�3 as function of electron-to-ion
temperature ratio in the range 1≤Te=Ti ≤ 6 and electron spectral index 1:6≤ κe ≤ 5
at near-Maxwellian ions κi ¼ 100. Since the speed of the test charge is much lower
than the dust thermal speed (viz., vT ≪ vTd), the test charge is therefore screened by
all the plasma species, viz., the electrons, ions, and dust grains, hence effectively
modifying the shielding length. The effective shielding length is shown to be
decreased in the dusty plasma in comparison with traditional electron-ion plasma
and is strongly influenced by the suprathermal tails of electrons. The impact of the
superthermal electrons at lower Kappa values is more effective in the case of
electron-ion plasma than dusty plasma. In the plots, one can easily observe that
light-colored regions correspond to higher values of the effective shielding length
while dense-colored regions determine the lower values of the shielding length.
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revealed by the influence of suprathermal ions at near-Maxwellian electrons
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against the temperature ratio (Te=Ti) and

electron spectral index κeð Þ for (a) η ¼ nd0=n0ð Þ � 0 (electron-ion plasma) and (b) η ¼ 10�3 (dusty plasma)
with κi ¼ 100 and Zd0 ¼ 300: contours in (c) and (d) vary for ~λDκ against the temperature ratio (Te=Ti) and
ion spectral index κið ) for (c) η ¼ 0 (electron-ion plasma) and (d) η ¼ 10�3 (dusty plasma) with κe ¼ 100
and Zd0 ¼ 300: Other parameters are mentioned in Section 1.4.1.
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κe ¼ 100: It may be noted that due to the variation of electron-to-ion temperature
ratio against the ion spectral index, the magnitudes of effective shielding length
become smaller at lower values of κi than the case of κe: However, the effective
shielding length approaches to the maximum value in the limit Te ≃Ti and
decreases by enhancing the electron-to-ion temperature ratios.

4.2 Short-range DH and long-range FF potentials

To study short and long-range shielded potentials of a slowly moving test charge
along the z-axis in a Lorentzian dusty plasma, we use Eq. (9) into Eq. (7) and spherical
polar coordinates, as vT ¼ 0, 0, vTð Þ, k ¼ k sin θk cosφk, k sin θk sinφk, k cos θkð Þ,
and r ¼ r sin θr cosφr, r sin θr sinφr, r cos θrð Þ to finally obtain the total potential
ϕ1 r, tð Þ ¼ ϕDH þ ϕFF½ � as

ϕ1 r, tð Þ ¼ qT
r

exp � r
λDκ

� �
þ 2

ffiffiffi
2

p
qTffiffiffi
π

p
r

vT
vTd

ξλDκ

λ2Dd

λ3Dκ

r3
(11)

The first part of Eq. (11) corresponds to the short-range Debye-Hückel (DH)
potential, which accounts for the short distances between the test charge and
observer, whereas the second part represents the long-range far-field potential in
the limit r≫ λDκ decaying as the inverse cube of the distance to the test charge. Here

r ¼ ρ2 þ ξ2
� �1=2

is the distance from the test charge to observer with radial and axial
positions ρ and ξ ¼ z� vTtð Þ, respectively. When κe,i ! ∞, the effective Debye
length λDκ approaches to λD with cκe,i ¼ 1, and consequently Eq. (11) exactly
coincides with the earlier result [36] in the limit cos γð Þ ¼ ξ=r, having null dust-
charge fluctuations. In Figure 3, the magnitude of the effective shielding length
varies against the specific ranges of the electron concentration μeð Þ and dust con-
centration ηð Þ for changing the (a) electron-to-ion temperature ratios Te

Ti
¼ 1, 2, 4, 8ð Þ

at near-Maxwellian electrons and ions κe,i ¼ 100 and (b) electron-to-dust tempera-
ture ratios Te

Td
¼ 10, 15, 20, 25ð Þ with fixed Te

Ti
¼ 2 for Kappa-distributed electrons and

ions (i.e., κe,i ¼ 1:6), respectively. Note that for an electron-ion plasma, the effec-
tive shielding length is approached to unity [35] as the maximum value for isother-
mal case Te

Ti
¼ 1 (black dotted curve) (see Figure 3(a)), which then decreases with

respect to the electron concentration. For non-isothermal values, that is, Te
Ti
¼ 2

Figure 3.
The shielding length ~λDκ ¼ λDκ=λ0ð Þ against the electron and dust concentrations μe, ηð Þ for varying the
temperature ratios Te

Ti
, Te
Td

� �
in (a) an electron-ion Maxwellian plasma and (b) superthermal dusty plasma,

respectively.
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(blue dashed curve), 4 (red solid curve), and 8 (black solid curve), the strength of
the effective shielding however reduces in terms of fraction showing no more
dominant impact of the electron concentration. In the presence of dust component,
the effective shielding length is reduced as compared to the electron-ion plasma and
clearly depends on the electron-to-dust temperature ratios Te

Td
¼ 10, 15, 20, 25ð Þ at

Zd0 ¼ 300, as can be seen in Figure 3(b).
The variation of the normalized DH potential ~ϕDH caused by a slowly moving

test charge is displayed against the normalized axial distance ~ξ for varying the dust
concentration η ¼ 10�3, 1:2� 10�3, and 1:4� 10�3 in Figure 4 for (a) non-
Maxwellian electrons and ions, as well as (b) near-Maxwellian electrons and ions.
The DH potentials fastly reduce with a variation of dust concentration and attain
large magnitudes in the near-Maxwellian case at κe,i ¼ 100 compared to non-
Maxwellian case at κe,i ¼ 1:6:

Figure 5 exhibits how suprathermal electrons and ions modify the profiles of
long-range FF potential (~ϕFFÞ caused by a slow test charge moving with speed vT ¼
0:02vTd. For small values of electron spectral index κe ¼ 1:6, 1:8ð Þ, the shielded FF
potentials are more localized than the case at near-Maxwellian electrons for κe ¼
100 (see the red solid curve in Figure 5(a)). However, the magnitudes of the FF
potential are comparatively decreased in Figure 5(b) because of the strong contri-
bution of suprathermal ions.

Figure 4.
The DH potential ~ϕDH ¼ ϕDH= qT=λ0

� �� �
vs. the axial distance ~ξ ¼ ξ=λ0ð Þ for different dust concentrations η ¼

10�3 (black dotted curve), 1:2� 10�3 (blue dashed curve), and 1:4� 10�3 (red solid curve) at Zd0 ¼ 200
and ~ρ ¼ 0 with (a) κe,i ¼ 1:6 and (b) κe,i ¼ 100:

Figure 5.
The FF potential ~ϕFF ¼ ϕFF= qT=λ0

� �� �
vs. ~ξ for varying (a) κe ¼ 1:6 (black dotted curve), 1.8 (blue dashed

curve), and 100 (red solid curve) with κi ¼ 100, and (b) κi ¼ 1:6 (black dotted curve), 1.8 (blue dashed
curve), and 100 (red solid curve) with κe ¼ 100: other values are η ¼ 10�4, ρ ¼ 0, and Zd0 ¼ 300.
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κe ¼ 100: It may be noted that due to the variation of electron-to-ion temperature
ratio against the ion spectral index, the magnitudes of effective shielding length
become smaller at lower values of κi than the case of κe: However, the effective
shielding length approaches to the maximum value in the limit Te ≃Ti and
decreases by enhancing the electron-to-ion temperature ratios.

4.2 Short-range DH and long-range FF potentials

To study short and long-range shielded potentials of a slowly moving test charge
along the z-axis in a Lorentzian dusty plasma, we use Eq. (9) into Eq. (7) and spherical
polar coordinates, as vT ¼ 0, 0, vTð Þ, k ¼ k sin θk cosφk, k sin θk sinφk, k cos θkð Þ,
and r ¼ r sin θr cosφr, r sin θr sinφr, r cos θrð Þ to finally obtain the total potential
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The first part of Eq. (11) corresponds to the short-range Debye-Hückel (DH)
potential, which accounts for the short distances between the test charge and
observer, whereas the second part represents the long-range far-field potential in
the limit r≫ λDκ decaying as the inverse cube of the distance to the test charge. Here

r ¼ ρ2 þ ξ2
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is the distance from the test charge to observer with radial and axial
positions ρ and ξ ¼ z� vTtð Þ, respectively. When κe,i ! ∞, the effective Debye
length λDκ approaches to λD with cκe,i ¼ 1, and consequently Eq. (11) exactly
coincides with the earlier result [36] in the limit cos γð Þ ¼ ξ=r, having null dust-
charge fluctuations. In Figure 3, the magnitude of the effective shielding length
varies against the specific ranges of the electron concentration μeð Þ and dust con-
centration ηð Þ for changing the (a) electron-to-ion temperature ratios Te

Ti
¼ 1, 2, 4, 8ð Þ

at near-Maxwellian electrons and ions κe,i ¼ 100 and (b) electron-to-dust tempera-
ture ratios Te

Td
¼ 10, 15, 20, 25ð Þ with fixed Te

Ti
¼ 2 for Kappa-distributed electrons and

ions (i.e., κe,i ¼ 1:6), respectively. Note that for an electron-ion plasma, the effec-
tive shielding length is approached to unity [35] as the maximum value for isother-
mal case Te

Ti
¼ 1 (black dotted curve) (see Figure 3(a)), which then decreases with

respect to the electron concentration. For non-isothermal values, that is, Te
Ti
¼ 2

Figure 3.
The shielding length ~λDκ ¼ λDκ=λ0ð Þ against the electron and dust concentrations μe, ηð Þ for varying the
temperature ratios Te

Ti
, Te
Td

� �
in (a) an electron-ion Maxwellian plasma and (b) superthermal dusty plasma,

respectively.
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(blue dashed curve), 4 (red solid curve), and 8 (black solid curve), the strength of
the effective shielding however reduces in terms of fraction showing no more
dominant impact of the electron concentration. In the presence of dust component,
the effective shielding length is reduced as compared to the electron-ion plasma and
clearly depends on the electron-to-dust temperature ratios Te

Td
¼ 10, 15, 20, 25ð Þ at

Zd0 ¼ 300, as can be seen in Figure 3(b).
The variation of the normalized DH potential ~ϕDH caused by a slowly moving

test charge is displayed against the normalized axial distance ~ξ for varying the dust
concentration η ¼ 10�3, 1:2� 10�3, and 1:4� 10�3 in Figure 4 for (a) non-
Maxwellian electrons and ions, as well as (b) near-Maxwellian electrons and ions.
The DH potentials fastly reduce with a variation of dust concentration and attain
large magnitudes in the near-Maxwellian case at κe,i ¼ 100 compared to non-
Maxwellian case at κe,i ¼ 1:6:

Figure 5 exhibits how suprathermal electrons and ions modify the profiles of
long-range FF potential (~ϕFFÞ caused by a slow test charge moving with speed vT ¼
0:02vTd. For small values of electron spectral index κe ¼ 1:6, 1:8ð Þ, the shielded FF
potentials are more localized than the case at near-Maxwellian electrons for κe ¼
100 (see the red solid curve in Figure 5(a)). However, the magnitudes of the FF
potential are comparatively decreased in Figure 5(b) because of the strong contri-
bution of suprathermal ions.

Figure 4.
The DH potential ~ϕDH ¼ ϕDH= qT=λ0

� �� �
vs. the axial distance ~ξ ¼ ξ=λ0ð Þ for different dust concentrations η ¼

10�3 (black dotted curve), 1:2� 10�3 (blue dashed curve), and 1:4� 10�3 (red solid curve) at Zd0 ¼ 200
and ~ρ ¼ 0 with (a) κe,i ¼ 1:6 and (b) κe,i ¼ 100:

Figure 5.
The FF potential ~ϕFF ¼ ϕFF= qT=λ0

� �� �
vs. ~ξ for varying (a) κe ¼ 1:6 (black dotted curve), 1.8 (blue dashed

curve), and 100 (red solid curve) with κi ¼ 100, and (b) κi ¼ 1:6 (black dotted curve), 1.8 (blue dashed
curve), and 100 (red solid curve) with κe ¼ 100: other values are η ¼ 10�4, ρ ¼ 0, and Zd0 ¼ 300.
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4.3 Resonating test charge response

To examine the resonant interaction of a test charge with DA waves, we first
simply derive the dielectric constant of the DA waves using the limit
vTd ≪ω=k≪ θTe, θTi in Eq. (8). We therefore consider the small and large argument
expansions Cs ≪ 1 and Cd ≫ 1 of the plasma dispersion functions. On DA scales,
the inertia is mainly provided by the negatively charged dust grains and restoring
force by the pressures of superthermal inertialess electrons and ions for maintaining
the propagation of DA waves. In typical laboratory plasmas, the frequency of DA
waves is often below the dust plasma oscillation frequency in the range of 1–100 Hz.
Thus, the modified dielectric constant for a Lorentzian dusty plasma takes the
following form

D k,k � vTð Þ ¼ 1þ 1

k2λ02D
�

ω2
pd

k � vTð Þ2 : (12)

The effective Debye length now gets a new form λ0D ¼ λ0=
ffiffiffiffiffi
Bκ

p
with Bκ ¼

cκe ne0n0 þ cκi Te
Ti
. Note that dust-charge fluctuations are also ignored here because the

characteristic damping rate attributed to dust charge fluctuations is much smaller
than the collisional and Landau damping rates. The reciprocal of Eq. (12) can be
simplified as

D�1 ¼ k2λ20
Bκ þ k2λ20

1þ ω2
D

k � vTð Þ2 � ω2
D

( )
, (13)

with

ωD ¼ kCD

Bκ þ k2λ20
� �1=2 : (14)

This is the DA resonance frequency with DA speed CD ¼ ωpdλ0
� �

. For long
wavelength limit kλ0 ≪Bκ, the DA frequency reduces to ωD ¼ kCD=

ffiffiffiffiffi
Bκ

p
in the

Lorentzian dusty plasma, while in the short wavelength limit kλ0 ≫Bκ, the fre-
quency simply approaches to the dust plasma oscillation frequency ωD ≃ωpd. The

factor ω2
D= k � vTð Þ2 � ω2

D

n o
in Eq. (13) identifies the dynamical effects of dust

grains, which may lead to an oscillatory WF potential strongly depending upon
whether the product k � vT is smaller or larger than ωD.

4.4 Short-range DH and long-range WF potentials

For static or slowly moving test charge in a Lorentzian dusty plasma, its poten-
tial distributions are found spherically symmetric both in the axial and radial direc-
tions. Consequently, the DH and FF shielded potentials are appropriately solved
with spherical polar coordinates. However, if the test charge moves with finite
speed in a specific direction along the z-axis, the resonant interaction of test charge
with the DA wave leads to the asymmetric distribution of potential in the form of
WF behind the test charge. The plasma model is then preferably solved in cylindri-
cal coordinates. Thus, following the standard techniques [37, 38, 40] for DH and
WF potentials, we make use of Eq. (13) into Eq. (7) to finally arrive at

100

Selected Topics in Plasma Physics

ϕ1 r, tð Þ ¼ qT
r

exp � r
ffiffiffiffiffi
Bκ

p
λ0

� �
þ 2qT

ξ
1þ C2

D

Bκv2T

� �
Bκ � C2

D

v2T

� ��1

cos
ωpdξffiffiffiffiffi
Bκ

p
vT

� �
,

(15)

where ξ ¼ r∥ � vTt
� �

is the axial distance between the test charge and observer.
The first part on the right hand side of Eq. (15) shows the contribution of modified
DH potential and the second part corresponds to oscillatory WF potential account-
ing for the suprathermal electrons and ions in a Lorentzian dusty plasma. For
vT >CD and cos ωpdξ=vT

ffiffiffiffiffi
Bκ

p� �
<0, the WF potential becomes attractive [40] and

dominates over the repulsive DH potential because the latter decreases rapidly
beyond the shielding cloud. An oscillatory WF potential ~ϕWF ¼ ϕWFλ0=qT

� �
of a test

charge moving with speed vT ¼ 0:2CD is shown along the axial direction ~ξ as a
function of spectral indices κe and κi in Figure 6(a) and (b), respectively. Observe
that the amplitude of the WF potential increases as the superthermal indices κe and
κi increase at fixed η ¼ 10�3 and Zd0 ¼ 300. Moreover, the wakefield damps behind
the test charge a bit earlier as shown in Figure 6(b) due to the strong dependence of
suprathermal ions on the effective shielding length in comparison with the
suprathermal electrons. The impact of electron-to-ion temperature ratio is also
examined on the profiles of WF and DH potentials as a function of axial distance ~ξ

Figure 6.
The normalized WF potential ~ϕWF as a function of ~ξ for varying the spectral indices as (a) 1:8≤ κe < 5 with
fixed vT ¼ 0:2CD and κi ¼ 100, and (b) 1:8≤ κi < 5 with vT ¼ 0:2CD and κe ¼ 100.

Figure 7.
The WF and DH potentials are shown against the axial distance ~ξ for changing temperature ratios (a) Te/Ti =2
(black dotted curve), 2.5 (blue dashed curve), and 3 (red solid curve), and (b) Te/Ti =2 (black dotted curve),
2.5 (blue dashed curve), and 3 (red solid curve), respectively. Other common parameters are κe,i ¼ 1:6,
vT ¼ 0:2CD, η ¼ 10�3, and Zd0 ¼ 100.
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4.3 Resonating test charge response

To examine the resonant interaction of a test charge with DA waves, we first
simply derive the dielectric constant of the DA waves using the limit
vTd ≪ω=k≪ θTe, θTi in Eq. (8). We therefore consider the small and large argument
expansions Cs ≪ 1 and Cd ≫ 1 of the plasma dispersion functions. On DA scales,
the inertia is mainly provided by the negatively charged dust grains and restoring
force by the pressures of superthermal inertialess electrons and ions for maintaining
the propagation of DA waves. In typical laboratory plasmas, the frequency of DA
waves is often below the dust plasma oscillation frequency in the range of 1–100 Hz.
Thus, the modified dielectric constant for a Lorentzian dusty plasma takes the
following form

D k,k � vTð Þ ¼ 1þ 1

k2λ02D
�

ω2
pd

k � vTð Þ2 : (12)

The effective Debye length now gets a new form λ0D ¼ λ0=
ffiffiffiffiffi
Bκ

p
with Bκ ¼

cκe ne0n0 þ cκi Te
Ti
. Note that dust-charge fluctuations are also ignored here because the

characteristic damping rate attributed to dust charge fluctuations is much smaller
than the collisional and Landau damping rates. The reciprocal of Eq. (12) can be
simplified as

D�1 ¼ k2λ20
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1þ ω2
D
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( )
, (13)

with

ωD ¼ kCD

Bκ þ k2λ20
� �1=2 : (14)

This is the DA resonance frequency with DA speed CD ¼ ωpdλ0
� �

. For long
wavelength limit kλ0 ≪Bκ, the DA frequency reduces to ωD ¼ kCD=

ffiffiffiffiffi
Bκ

p
in the

Lorentzian dusty plasma, while in the short wavelength limit kλ0 ≫Bκ, the fre-
quency simply approaches to the dust plasma oscillation frequency ωD ≃ωpd. The

factor ω2
D= k � vTð Þ2 � ω2

D

n o
in Eq. (13) identifies the dynamical effects of dust

grains, which may lead to an oscillatory WF potential strongly depending upon
whether the product k � vT is smaller or larger than ωD.

4.4 Short-range DH and long-range WF potentials

For static or slowly moving test charge in a Lorentzian dusty plasma, its poten-
tial distributions are found spherically symmetric both in the axial and radial direc-
tions. Consequently, the DH and FF shielded potentials are appropriately solved
with spherical polar coordinates. However, if the test charge moves with finite
speed in a specific direction along the z-axis, the resonant interaction of test charge
with the DA wave leads to the asymmetric distribution of potential in the form of
WF behind the test charge. The plasma model is then preferably solved in cylindri-
cal coordinates. Thus, following the standard techniques [37, 38, 40] for DH and
WF potentials, we make use of Eq. (13) into Eq. (7) to finally arrive at
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ϕ1 r, tð Þ ¼ qT
r

exp � r
ffiffiffiffiffi
Bκ

p
λ0

� �
þ 2qT

ξ
1þ C2

D

Bκv2T

� �
Bκ � C2

D

v2T

� ��1

cos
ωpdξffiffiffiffiffi
Bκ

p
vT

� �
,

(15)

where ξ ¼ r∥ � vTt
� �

is the axial distance between the test charge and observer.
The first part on the right hand side of Eq. (15) shows the contribution of modified
DH potential and the second part corresponds to oscillatory WF potential account-
ing for the suprathermal electrons and ions in a Lorentzian dusty plasma. For
vT >CD and cos ωpdξ=vT

ffiffiffiffiffi
Bκ

p� �
<0, the WF potential becomes attractive [40] and

dominates over the repulsive DH potential because the latter decreases rapidly
beyond the shielding cloud. An oscillatory WF potential ~ϕWF ¼ ϕWFλ0=qT

� �
of a test

charge moving with speed vT ¼ 0:2CD is shown along the axial direction ~ξ as a
function of spectral indices κe and κi in Figure 6(a) and (b), respectively. Observe
that the amplitude of the WF potential increases as the superthermal indices κe and
κi increase at fixed η ¼ 10�3 and Zd0 ¼ 300. Moreover, the wakefield damps behind
the test charge a bit earlier as shown in Figure 6(b) due to the strong dependence of
suprathermal ions on the effective shielding length in comparison with the
suprathermal electrons. The impact of electron-to-ion temperature ratio is also
examined on the profiles of WF and DH potentials as a function of axial distance ~ξ

Figure 6.
The normalized WF potential ~ϕWF as a function of ~ξ for varying the spectral indices as (a) 1:8≤ κe < 5 with
fixed vT ¼ 0:2CD and κi ¼ 100, and (b) 1:8≤ κi < 5 with vT ¼ 0:2CD and κe ¼ 100.

Figure 7.
The WF and DH potentials are shown against the axial distance ~ξ for changing temperature ratios (a) Te/Ti =2
(black dotted curve), 2.5 (blue dashed curve), and 3 (red solid curve), and (b) Te/Ti =2 (black dotted curve),
2.5 (blue dashed curve), and 3 (red solid curve), respectively. Other common parameters are κe,i ¼ 1:6,
vT ¼ 0:2CD, η ¼ 10�3, and Zd0 ¼ 100.
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with fixed radial distance ρ ¼ 0:54λ0 and vT ¼ 0:2CD as can be seen in
Figure 7(a) and (b), respectively. It is important to examine that electron-to-ion
temperature ratio suppresses the magnitudes of the WF and DH potentials at low
values of κe,i ¼ 1:6 in the Lorentzian dusty plasma (Figures 6 and 7).

4.5 Fast moving test charge response

In this case, the test charge is assumed to be moving much faster than all the
plasma species (viz., the electrons, ions and negatively charged dust grains). Con-
sequently, Eq. (6) can be expressed in 1D form to finally arrive at D k,k:vTð Þ≃ 1 in
the limits vT∣ ≫ ku j and ω ¼ k:vT. Thus, the test charge potential (7) simply leads
to the Coulomb potential

ϕ1 r, tð Þ ¼ ϕC � qT
r
: (16)

It is now clear that if the test charge is moving very fast, then there is no
shielding around it in the Lorentzian dusty plasma.

5. Conclusion

To conclude, we have briefly discussed different plasma diagnostic techniques
and specifically investigated the novel features of interaction potentials caused by
a test charge moving with constant velocity vT along the z-axis in a collisionless
unmagnetized Lorentzian dusty plasma. For this purpose, the linearized coupled
Vlasov-Poisson equations are employed to model suprathermal electrons and ions
with Kappa-df, as well as negatively charged dust grains with Maxwell-df, respec-
tively. After applying the space-time Fourier transformations, an electrostatic
potential is obtained with a modified dielectric constant. For taking the test charge
speed much smaller than the dust thermal speed in a Lorentzian dusty plasma, we
then express the total potential distribution in terms of short-range Debye-Hückel
(DH) and long-range far-field potentials. The DH potential exponentially decays
with distance, whereas FF potential decreases as the inverse cube of the distance.
Both the potentials are substantially influenced by the plasma and superthermality
parameters. However, a resonating test charge with DA oscillations introduces the
long-range WF potential excitations behind the test charge in Lorentzian dusty
plasmas. A Coulomb potential is obtained when the test charge is moving very fast
compared to plasma species, and there is no shielding around it in the Lorentzian
dusty plasma.

Vladimirov and Nambu [40] have already utilized the idea of WF potential for
making new materials by attracting the same polarity dust grains in dusty plasmas.
The physics of attractive forces between the negatively charged dust grains is
completely analogous to that of Cooper pairing of electrons in superconductors
[59]. The dust particle physically polarizes the plasma medium and creates attrac-
tive potential regions, where positive ions from collective interaction of DA waves
can be focused. This may in turn lead to the possibility for dust crystallization and
dust coagulation in both laboratory and space dusty plasmas.
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with fixed radial distance ρ ¼ 0:54λ0 and vT ¼ 0:2CD as can be seen in
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with Kappa-df, as well as negatively charged dust grains with Maxwell-df, respec-
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speed much smaller than the dust thermal speed in a Lorentzian dusty plasma, we
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with distance, whereas FF potential decreases as the inverse cube of the distance.
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Chapter 6

Approximate Analytical Solution
of Nonlinear Evolution Equations
Laxmikanta Mandi, Kaushik Roy and Prasanta Chatterjee

Abstract

Analytical solitary wave solution of the dust ion acoustic waves (DIAWs) is
studied in the frame-work of Korteweg-de Vries (KdV), damped force Korteweg-de
Vries (DFKdV), damped force modified Korteweg-de Vries (DFMKdV) and
damped forced Zakharov-Kuznetsov (DFZK) equations in an unmagnetized colli-
sional dusty plasma consisting of negatively charged dust grain, positively charged
ions, Maxwellian distributed electrons and neutral particles. Using reductive per-
turbation technique (RPT), the evolution equations are obtained for DIAWs.

Keywords: solitary wave, soliton, KdV, DKdV, DFZK

1. Introduction

In the field of physics and applied mathematics research getting an exact solu-
tion of a nonlinear partial differential equation is very important. The elaboration of
many complex phenomena in fluid mechanics, plasma physics, optical fibers, biol-
ogy, solid-state physics, etc. is possible if analytical solutions can be obtained. Most
of the differential equation arises in these field has no explicit solution as popularly
known. This problem creates hindrances in the study of nonlinear phenomena and
makes it time-consuming in the research of nonlinear models in the plasma and
other science. However recent researches in nonlinear differential equations have
seen the development of many approximate analytical solutions of partial and
ordinary differential equations.

The history behind the discovery of soliton is not only interesting but also
significant. In 1834 a Scottish scientist and engineer—John Scott-Russell first
noticed the solitary water wave on the Edinburgh Glasgow Canal. In 1844 [1] in
“Report on Waves” he accounted his examinations to the British Association. He
wrote “I was observing the motion of a boat which was rapidly drawn along a
narrow channel by a pair of horses, when the boat suddenly stopped not so the mass
of water in the channel which it had put in motion; it accumulated round the prow
of the vessel in a state of violent agitation, then suddenly leaving it behind, rolled
forward with great velocity, assuming the form of a large solitary elevation, a
rounded, smooth and well defined heap of water, which continued its course along
the channel apparently without change of form or diminution of speed. I followed it
on horseback and overtook it still rolling on at a rate of some eight or nine miles an
hour, preserving its original figure some thirty feet long and a foot to a foot and a
half in height. Its height gradually diminished and after a chase of one or two miles I
lost it in the windings of the channel. Such in the month of August 1834 was my first
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chance interview with that singular and beautiful phenomenon which I have called
the Wave of Translation.” He coined the word “solitary wave.” The solitary wave is
called so because it often occurs as a single entity and is localized. The most
important characteristics of solitary waves were unearthed after thorough study
along with extensive wave-tank experiments. The following are the properties of
solitary waves:

(a) These localized bell-shaped waves travel with enduring form and velocity.
The speed of these waves are given by c2 ¼ g hþ að Þ, where g, a, h are respectively
represent the acceleration of the gravity, amplitude of the wave and the
undisturbed depth of the water. (b) Solitary waves can cross each other without any
alteration.

John Scott-Russell’s study created a stir in the scientific community. His study
not only initiated a debate with the prevailing knowledge of the theories of waves
but also challenged the antecedent knowledge of waves. The previous study claimed
that a periodic wave of finite amplitude and permanent shape are feasible only in
deep water unlike Russell’s observation that the permanent profile is also possible in
shallow water. Finally the stable form of solitary waves was received in scientific
community with the aid of nonlinearity and dispersion. An ideal equilibrium
between nonlinearity and dispersion can generate such waves.

Diederik Johannes Korteweg in 1895 [2] along with his PhD student Gustav De
Vries obtained an equation from the primary equation of hydrodynamics. This
equation explains shallow water waves where the existence of solitary waves was
mathematically recognized. This equation is called KdV equation which is of the
form ∂u

∂t þ Au ∂u
∂x þ B ∂

3u
∂x3 ¼ 0. One of the most popular equations of soliton theory, this

equation helps in explaining primary ideas that lie behind the soliton concept.
Martin Zabusky and Norman Kruskal [3] in 1965 solved KdV equation numerically
and noticed that the localized waves retain their shape and momentum in collisions.
These waves were known as “solitons.” Soliton are solitary waves with the signifi-
cant property that the solitons maintain the form asymptotically even when it
experiences a collision. The fundamental “microscopic” properties of the soliton
interaction; (i) the interaction does not change the soliton amplitudes; (ii) after the
interaction, each soliton gets an additional phase shift; (iii) the total phase shift of a
soliton acquired during a certain time interval can be calculated as a sum of the
elementary phase shifts in pair wise collisions of this soliton with other solitons
during this time interval is of importance. Solitons are mainly used in fiber optics,
optical computer etc. which has really generated a stir in today’s scientific commu-
nity. The conventional signal dispensation depends on linear system and linear
systems. After all in this case nonlinear systems create more well-organized algo-
rithms. The optical soliton is comparatively different from KdV solitons. Unlike the
KdV soliton that illustrates the wave in a solitary wave, the optical soliton in fibers is
the solitary wave of an envelope of a light wave. In this regard, the optical soliton in
a fiber is treated as an envelope soliton.

This chapter will discuss the analytical solitary wave solution of the KdV and
KdV-like equations. In the study of nonlinear dispersive waves, these equations are
generally seen. The KdV equation, a generic equation, is important in the study of
weakly nonlinear long waves. This equation consists of a single humped wave
characterized by several unique properties. The Soliton solutions of the KdV
equation have been quite popular but it also not devoid of problems. The problems
not only restrict to dispersion but also dissipation and interestingly these are not
dominated by the KdV equation. The standard KdV equation fails to explain the
development of small-amplitude solitary waves in case the particles collide in a
plasma system. KdV equation with an additional damping term or the damped
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Korteweg-de Vries (DKdV) equation becomes handy in explaining this issue of
elaborating the character of the wave. But in the presence of any critical physical
situation (critical point) nonlinearity of the KdV equation disappears and the
amplitude of the waves reaches infinity. To control this situation, a new nonlinear
partial differential equation has to be derived that can explain the system at that
critical point. This is known as the modified Korteweg-de Vries (MKdV) equation.
In the presence of collisions, this equation is not also adequate and a damped MKdV
equation is necessary. Also in the presence of force source term then the equation
will be further modified and become DFKdV/DFMKdV.

2. The Korteweg-de Vries equation

Now we will derive the KdV equation from a classic plasma model, in which we
consider a collision-free unmagnetized plasma consists of electrons and ions, in
which ions are mobile and electrons obey the Maxwell distribution. The basic
equation will be given as:

∂Ni

∂T
þ ∂NiUi

∂X
¼ 0 (1)

∂Ui

∂T
þ Ui

∂Ui

∂X
¼ � e

mi

∂ψ

∂X
(2)

ε0
∂
2ψ

∂X2 ¼ e Ne �Nið Þ (3)

where the electrons obey Maxwell distribution, i.e., Ne ¼ en0e
eϕ

KBTe . Ni, Ne, Ui, mi
are the ion density, electron density, ion velocity and ion mass, respectively. ψ is the
electrostatic potential, KB is the Boltzmann constant, Te is the electron temperature
and e is the charge of the electrons.

To write Eqs. (1)–(3) in dimensionless from we introduce the following dimen-
sionless variables

x ¼ X
λD

, t ¼ ωpT,ϕ ¼ eψ
KTe

, ni ¼ Ni

n0
, ui ¼ Ui

cs
, (4)

where λD ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ε0KBTe=n0e2

p
is the Debye length, cs ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
KBTe=mi

p
is the ion

acoustic speed, ωpi ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
n0e2=ε0mi

p
is the ion plasma frequency and n0 is the

unperturbed density of ions and electrons. Hence using (4) in (1)–(3) we obtain the
normalized set of equations as

∂ni
∂t

þ ∂ niuið Þ
∂x

¼ 0 (5)

∂ui
∂t

þ ui
∂ui
∂x

¼ � ∂ϕ

∂x
(6)

∂
2ϕ

∂x2
¼ eϕ � ni (7)

To linearized (5)–(7), let us write the dependent variable as sum of equilibrium
and perturbed parts, so that we write ni ¼ 1þ ni, ui ¼ ui,ϕ ¼ ϕ. Putting ni ¼ 1þ ni
where the values of parameters at equilibrium position is given by n1 ¼ 1, u1 ¼ 0
and ϕi ¼ 0 in Eq. (5), we get
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chance interview with that singular and beautiful phenomenon which I have called
the Wave of Translation.” He coined the word “solitary wave.” The solitary wave is
called so because it often occurs as a single entity and is localized. The most
important characteristics of solitary waves were unearthed after thorough study
along with extensive wave-tank experiments. The following are the properties of
solitary waves:

(a) These localized bell-shaped waves travel with enduring form and velocity.
The speed of these waves are given by c2 ¼ g hþ að Þ, where g, a, h are respectively
represent the acceleration of the gravity, amplitude of the wave and the
undisturbed depth of the water. (b) Solitary waves can cross each other without any
alteration.

John Scott-Russell’s study created a stir in the scientific community. His study
not only initiated a debate with the prevailing knowledge of the theories of waves
but also challenged the antecedent knowledge of waves. The previous study claimed
that a periodic wave of finite amplitude and permanent shape are feasible only in
deep water unlike Russell’s observation that the permanent profile is also possible in
shallow water. Finally the stable form of solitary waves was received in scientific
community with the aid of nonlinearity and dispersion. An ideal equilibrium
between nonlinearity and dispersion can generate such waves.

Diederik Johannes Korteweg in 1895 [2] along with his PhD student Gustav De
Vries obtained an equation from the primary equation of hydrodynamics. This
equation explains shallow water waves where the existence of solitary waves was
mathematically recognized. This equation is called KdV equation which is of the
form ∂u

∂t þ Au ∂u
∂x þ B ∂

3u
∂x3 ¼ 0. One of the most popular equations of soliton theory, this

equation helps in explaining primary ideas that lie behind the soliton concept.
Martin Zabusky and Norman Kruskal [3] in 1965 solved KdV equation numerically
and noticed that the localized waves retain their shape and momentum in collisions.
These waves were known as “solitons.” Soliton are solitary waves with the signifi-
cant property that the solitons maintain the form asymptotically even when it
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nity. The conventional signal dispensation depends on linear system and linear
systems. After all in this case nonlinear systems create more well-organized algo-
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This chapter will discuss the analytical solitary wave solution of the KdV and
KdV-like equations. In the study of nonlinear dispersive waves, these equations are
generally seen. The KdV equation, a generic equation, is important in the study of
weakly nonlinear long waves. This equation consists of a single humped wave
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equation have been quite popular but it also not devoid of problems. The problems
not only restrict to dispersion but also dissipation and interestingly these are not
dominated by the KdV equation. The standard KdV equation fails to explain the
development of small-amplitude solitary waves in case the particles collide in a
plasma system. KdV equation with an additional damping term or the damped
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Korteweg-de Vries (DKdV) equation becomes handy in explaining this issue of
elaborating the character of the wave. But in the presence of any critical physical
situation (critical point) nonlinearity of the KdV equation disappears and the
amplitude of the waves reaches infinity. To control this situation, a new nonlinear
partial differential equation has to be derived that can explain the system at that
critical point. This is known as the modified Korteweg-de Vries (MKdV) equation.
In the presence of collisions, this equation is not also adequate and a damped MKdV
equation is necessary. Also in the presence of force source term then the equation
will be further modified and become DFKdV/DFMKdV.

2. The Korteweg-de Vries equation

Now we will derive the KdV equation from a classic plasma model, in which we
consider a collision-free unmagnetized plasma consists of electrons and ions, in
which ions are mobile and electrons obey the Maxwell distribution. The basic
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∂T
þ ∂NiUi

∂X
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∂Ui

∂T
þ Ui

∂Ui

∂X
¼ � e

mi

∂ψ

∂X
(2)

ε0
∂
2ψ

∂X2 ¼ e Ne �Nið Þ (3)

where the electrons obey Maxwell distribution, i.e., Ne ¼ en0e
eϕ

KBTe . Ni, Ne, Ui, mi
are the ion density, electron density, ion velocity and ion mass, respectively. ψ is the
electrostatic potential, KB is the Boltzmann constant, Te is the electron temperature
and e is the charge of the electrons.

To write Eqs. (1)–(3) in dimensionless from we introduce the following dimen-
sionless variables

x ¼ X
λD

, t ¼ ωpT,ϕ ¼ eψ
KTe

, ni ¼ Ni

n0
, ui ¼ Ui
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, (4)

where λD ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ε0KBTe=n0e2

p
is the Debye length, cs ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
KBTe=mi

p
is the ion

acoustic speed, ωpi ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
n0e2=ε0mi

p
is the ion plasma frequency and n0 is the

unperturbed density of ions and electrons. Hence using (4) in (1)–(3) we obtain the
normalized set of equations as

∂ni
∂t

þ ∂ niuið Þ
∂x

¼ 0 (5)

∂ui
∂t

þ ui
∂ui
∂x

¼ � ∂ϕ

∂x
(6)

∂
2ϕ

∂x2
¼ eϕ � ni (7)

To linearized (5)–(7), let us write the dependent variable as sum of equilibrium
and perturbed parts, so that we write ni ¼ 1þ ni, ui ¼ ui,ϕ ¼ ϕ. Putting ni ¼ 1þ ni
where the values of parameters at equilibrium position is given by n1 ¼ 1, u1 ¼ 0
and ϕi ¼ 0 in Eq. (5), we get
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∂

∂t
1þ nið Þ þ ∂

∂x
ui þ niuið Þ ¼ 0 (8)

neglecting the nonlinear term ∂ niuið Þ
∂x from (8), we get

∂ni
∂t

þ ∂ui
∂x

¼ 0 (9)

which is the linearized form of Eq. (5).
Putting ui ¼ ui,ϕ ¼ ϕ in Eq. (6), we get

∂ui
∂t

þ ui
∂ui
∂x

¼ � ∂ϕ

∂x
(10)

Neglecting the nonlinear term from (10), we get

∂ui
∂t

þ ∂ϕ

∂x
¼ 0 (11)

This is the linearized form of Eq. (6).
Putting ni ¼ 1þ ni,ϕ ¼ ϕ in Eq. (7), we get

∂
2ϕ

∂x
¼ 1þ ϕ� 1� ni

) ∂
2ϕ

∂x
¼ ϕ� ni

(12)

Hence Eqs. (9), (11), (12) are the linearized form of Eq. (5)–(7) respectively.
To get dispersion relation for low frequency wave let us assume that the pertur-

bation is proportional to ei kx�ωtð Þ and of the form

n ¼ n0ei kx�ωtð Þ (13)

u ¼ u0ei kx�ωtð Þ (14)

ϕ ¼ ϕ0e
i kx�ωtð Þ (15)

So,

∂n
∂t

¼ �in0ωei kx�ωtð Þ (16)

∂n
∂x

¼ ikn0ei kx�ωtð Þ (17)

∂u
∂t

¼ �iu0ωei kx�ωtð Þ (18)

∂u
∂x

¼ iku0ei kx�ωtð Þ (19)

∂ϕ

∂x
¼ ikϕ0e

i kx�ωtð Þ (20)

∂
2ϕ

∂x2
¼ ikð Þ2ϕ0e

i kx�ωtð Þ (21)
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Putting these value in Eqs. (9), (11) and (12), we get,

�iωn0 þ iku0 ¼ 0 (22)

�iωu0 þ ikϕ0 ¼ 0 (23)

n0 � k2 þ 1
� �

ϕ0 ¼ 0 (24)

Since the system (22)–(24) is a system of linear homogeneous equation so for
nontrivial solutions we have

�iω ik 0

0 �iω ik
1 0 � k2 þ 1

� �

�������

�������
¼ 0 (25)

) �i2ω2 k2 þ 1
� �þ i2k2 ¼ 0

) ω2 k2 þ 1
� � ¼ �i2k2

) ω2 ¼ k2

k2 þ 1
� �

This is the dispersion relation.
For small k, i.e., for weak dispersion we can expand as

ω ¼ k 1þ k2
� ��1

2

¼ k� 1
2
K3 þ⋯

(26)

The phase velocity as

Vp ¼ ω

k
¼ 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1þ k2
� �q (27)

so that Vp ! 1 as k ! 0 and Vp ! 0 as k ! ∞. The group velocity Vg ¼ dw
dk is

given by

Vg ¼ 1

1þ k2
� �3=2 (28)

In this case, we have Vg <Vp for all k>0. The group velocity is more important
as energy of a medium transfer with this velocity.

For long-wave as k ! 0, the leading order approximation is ω ¼ k,
corresponding to non-dispersive acoustic waves with phase speed ω=k ¼ 1. Hence
this speed is the same as the speed of the ion-acoustic waves cs. The long wave
dispersion is weak, i.e., kλD < < 1. This means that the wavelength is much larger
than the Debye length. In these long waves, the electrons oscillate with the ions. The
inertia of the wave is provided by the ions and the restoring pressure force by the
electrons. At the next order in k, we find that

ω ¼ k� 1
2
k3 þ O k5

� �
as k ! 0 (29)
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∂
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ui þ niuið Þ ¼ 0 (8)

neglecting the nonlinear term ∂ niuið Þ
∂x from (8), we get

∂ni
∂t

þ ∂ui
∂x

¼ 0 (9)

which is the linearized form of Eq. (5).
Putting ui ¼ ui,ϕ ¼ ϕ in Eq. (6), we get
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þ ui
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∂x
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Neglecting the nonlinear term from (10), we get
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þ ∂ϕ
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¼ 0 (11)

This is the linearized form of Eq. (6).
Putting ni ¼ 1þ ni,ϕ ¼ ϕ in Eq. (7), we get

∂
2ϕ

∂x
¼ 1þ ϕ� 1� ni

) ∂
2ϕ

∂x
¼ ϕ� ni

(12)

Hence Eqs. (9), (11), (12) are the linearized form of Eq. (5)–(7) respectively.
To get dispersion relation for low frequency wave let us assume that the pertur-

bation is proportional to ei kx�ωtð Þ and of the form

n ¼ n0ei kx�ωtð Þ (13)

u ¼ u0ei kx�ωtð Þ (14)

ϕ ¼ ϕ0e
i kx�ωtð Þ (15)

So,
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∂t
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∂x
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∂
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¼ ikð Þ2ϕ0e

i kx�ωtð Þ (21)
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Putting these value in Eqs. (9), (11) and (12), we get,

�iωn0 þ iku0 ¼ 0 (22)

�iωu0 þ ikϕ0 ¼ 0 (23)

n0 � k2 þ 1
� �

ϕ0 ¼ 0 (24)

Since the system (22)–(24) is a system of linear homogeneous equation so for
nontrivial solutions we have

�iω ik 0

0 �iω ik
1 0 � k2 þ 1

� �

�������

�������
¼ 0 (25)

) �i2ω2 k2 þ 1
� �þ i2k2 ¼ 0

) ω2 k2 þ 1
� � ¼ �i2k2

) ω2 ¼ k2

k2 þ 1
� �

This is the dispersion relation.
For small k, i.e., for weak dispersion we can expand as

ω ¼ k 1þ k2
� ��1

2

¼ k� 1
2
K3 þ⋯

(26)

The phase velocity as

Vp ¼ ω

k
¼ 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1þ k2
� �q (27)

so that Vp ! 1 as k ! 0 and Vp ! 0 as k ! ∞. The group velocity Vg ¼ dw
dk is

given by

Vg ¼ 1

1þ k2
� �3=2 (28)

In this case, we have Vg <Vp for all k>0. The group velocity is more important
as energy of a medium transfer with this velocity.

For long-wave as k ! 0, the leading order approximation is ω ¼ k,
corresponding to non-dispersive acoustic waves with phase speed ω=k ¼ 1. Hence
this speed is the same as the speed of the ion-acoustic waves cs. The long wave
dispersion is weak, i.e., kλD < < 1. This means that the wavelength is much larger
than the Debye length. In these long waves, the electrons oscillate with the ions. The
inertia of the wave is provided by the ions and the restoring pressure force by the
electrons. At the next order in k, we find that

ω ¼ k� 1
2
k3 þ O k5

� �
as k ! 0 (29)
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The O k5
� �

correction corresponds to weak KdV type long wave dispersion. For
short wave (k ! ∞), the frequency ω ¼ 1, corresponding to the ion plasma fre-
quency ωpi ¼ cs

λD
. Hence the ions oscillate in the fixed background of electrons.

Now the phase of the waves can be written as

kx� ωt ¼ k x� tð Þ þ 1
2
k3t (30)

Here k x� tð Þ and k3t have same dynamic status (dimension) in the phase.
Assuming k to be small order of ε1=2, ε being a small parameter measuring the
weakness of the dispersion, Here x� tð Þ is the traveling wave form and time t is the
linear form.

Let us consider a new stretched coordinates ξ,τ such that

ξ ¼ ε1=2 x� λtð Þ, τ ¼ ε3=2t (31)

where ε is the strength of nonlinearity and λ is the Mach number (phase velocity
of the wave). ε may be termed as the size of the perturbation. Let the variables be
perturbed from the stable state in the following way (considering ni ¼ 1, ui ¼ 0,
ϕ ¼ 0 and ne ¼ eϕ ¼ e0 ¼ 1 at equilibrium)

ni ¼ 1þ εn 1ð Þ
i þ ε2n 2ð Þ

i þ ε3n 3ð Þ
i þ⋯, (32)

ui ¼ 0þ εu 1ð Þ
i þ ε2u 2ð Þ

i þ ε3u 3ð Þ
i þ⋯, (33)

ϕ ¼ 0þ εϕ 1ð Þ þ ε2ϕ 2ð Þ þ ε3ϕ 3ð Þ þ⋯: (34)

where x and t are function of ξ and τ so partial derivatives with respect to x and t
can be transform into partial derivative in terms of ξ and τ so

∂

∂x
¼ ∂

∂ξ

∂ξ

∂x
þ ∂

∂τ

∂τ

∂x
, ) ∂

∂x
¼ ε

1
2
∂

∂ξ
(35)

∂

∂t
¼ ∂

∂ξ

∂ξ

∂t
þ ∂

∂τ

∂τ

∂t
, ) ∂

∂t
¼ �ε

1
2
∂

∂ξ
þ ε

3
2
∂

∂τ
(36)

∂
2

∂x2
¼ ∂

∂x
ε
1
2
∂

∂ξ

� �
, ) ∂

2

∂x2
¼ ε

∂
2

∂ξ2
(37)

We can express (5)–(7) in terms of ξ and τ as

ε3=2
∂ni
∂τ

� ε1=2λ
∂ni
∂ξ

þ ε1=2
∂ niuið Þ
∂ξ

¼ 0 (38)

ε3=2
∂ui
∂τ

� ε1=2λ
∂ui
∂ξ

þ ε1=2ui
∂ui
∂x

¼ �ε1=2
∂ϕ

∂x
(39)

ε
∂
2ϕ

∂ξ2
¼ eϕ � ni (40)

Substituting the Eqs. (31)–(34) in Eqs. (38)–(40) and collecting the lowest order
O ε3=2
� �

terms we get

�λ
∂n 1ð Þ

i

∂ξ
þ ∂u 1ð Þ

i

∂ξ
¼ 0, (41)
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�λ
∂u 1ð Þ

i

∂ξ
¼ ∂ϕ 1ð Þ

∂ξ
, (42)

ϕ 1ð Þ � n 1ð Þ
i ¼ 0: (43)

Integrating Eqs. (41)–(43) and all the variables tend to zero as ξ ! ∞. We get

n 1ð Þ
i ¼ u 1ð Þ

i

λ
, (44)

u 1ð Þ
i ¼ ϕ 1ð Þ

λ
, (45)

ϕ 1ð Þ ¼ n 1ð Þ
i : (46)

From Eq. (44)–(46) we get the phase velocity as

λ2 ¼ �1 (47)

Substituting the Eqs.(31)–(34) in Eqs. (38)–(40) and collecting order O ε5=2
� �

,
we get

∂n 1ð Þ
i

∂τ
� λ

∂n 2ð Þ
i

∂ξ
þ ∂n 1ð Þ

i u 1ð Þ
i

∂ξ
þ ∂u 2ð Þ

i

∂ξ
¼ 0, (48)

∂u 1ð Þ
i

∂τ
� λ

∂u 2ð Þ
i

∂ξ
þ u 1ð Þ

i
∂u 1ð Þ

i

∂ξ
¼ � ∂ϕ 2ð Þ

∂ξ2
, (49)

∂ϕ 1ð Þ

∂ξ2
¼ ϕ 2ð Þ þ 1

2
ϕ 1ð Þ
� �2

� n 1ð Þ
i : (50)

Differentiating Eq. (50) With respect to ξ and substituting for ∂n 2ð Þ
i
∂ξ from Eq. (48)

and for ∂u 2ð Þ
i
∂ξ from Eq. (49), we finally obtain

∂ϕ 1ð Þ

∂τ
þ ϕ 1ð Þ ∂ϕ

1ð Þ

∂ξ
þ 1
2
∂
3ϕ 1ð Þ

∂ξ3
¼ 0: (51)

Eq. (51) is known as KdV equation. ϕ 1ð Þ ∂ϕ 1ð Þ
∂ξ is the nonlinear term and 1

2
∂
3ϕ 1ð Þ

∂ξ3
is

the dispersive terms. Only nonlinearity can impose energy into the wave and the
wave breaks but in presence of both nonlinearity and dispersive a stable wave
profile is possible.

The steady-state solution of this KdV equation is obtained by transforming the
independent variables ξ and τ to η ¼ ξ� u0τ where u0 is a constant velocity
normalized by cs.

The steady state solution of the KdV Eq. (51) can be written as

ϕ 1ð Þ ¼ ϕmsech
2 η

Δ

� �
(52)

where ϕm ¼ 3u0 and Δ are the amplitude and width of the solitary waves. It is
clear that height, width and speed of the pulse propotional to u0, 1ffiffiffiffi

u0
p , and u0

respectively. As ϕm the amplitude is equal to 3u0 so u0 specify the energy of the
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The O k5
� �

correction corresponds to weak KdV type long wave dispersion. For
short wave (k ! ∞), the frequency ω ¼ 1, corresponding to the ion plasma fre-
quency ωpi ¼ cs

λD
. Hence the ions oscillate in the fixed background of electrons.

Now the phase of the waves can be written as

kx� ωt ¼ k x� tð Þ þ 1
2
k3t (30)

Here k x� tð Þ and k3t have same dynamic status (dimension) in the phase.
Assuming k to be small order of ε1=2, ε being a small parameter measuring the
weakness of the dispersion, Here x� tð Þ is the traveling wave form and time t is the
linear form.

Let us consider a new stretched coordinates ξ,τ such that

ξ ¼ ε1=2 x� λtð Þ, τ ¼ ε3=2t (31)

where ε is the strength of nonlinearity and λ is the Mach number (phase velocity
of the wave). ε may be termed as the size of the perturbation. Let the variables be
perturbed from the stable state in the following way (considering ni ¼ 1, ui ¼ 0,
ϕ ¼ 0 and ne ¼ eϕ ¼ e0 ¼ 1 at equilibrium)

ni ¼ 1þ εn 1ð Þ
i þ ε2n 2ð Þ

i þ ε3n 3ð Þ
i þ⋯, (32)

ui ¼ 0þ εu 1ð Þ
i þ ε2u 2ð Þ

i þ ε3u 3ð Þ
i þ⋯, (33)

ϕ ¼ 0þ εϕ 1ð Þ þ ε2ϕ 2ð Þ þ ε3ϕ 3ð Þ þ⋯: (34)

where x and t are function of ξ and τ so partial derivatives with respect to x and t
can be transform into partial derivative in terms of ξ and τ so

∂

∂x
¼ ∂

∂ξ

∂ξ

∂x
þ ∂

∂τ

∂τ

∂x
, ) ∂

∂x
¼ ε

1
2
∂

∂ξ
(35)

∂

∂t
¼ ∂

∂ξ

∂ξ

∂t
þ ∂

∂τ

∂τ

∂t
, ) ∂

∂t
¼ �ε

1
2
∂

∂ξ
þ ε

3
2
∂

∂τ
(36)

∂
2

∂x2
¼ ∂

∂x
ε
1
2
∂

∂ξ

� �
, ) ∂

2

∂x2
¼ ε

∂
2

∂ξ2
(37)

We can express (5)–(7) in terms of ξ and τ as
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ε
∂
2ϕ
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¼ eϕ � ni (40)

Substituting the Eqs. (31)–(34) in Eqs. (38)–(40) and collecting the lowest order
O ε3=2
� �

terms we get
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∂n 1ð Þ

i

∂ξ
þ ∂u 1ð Þ

i

∂ξ
¼ 0, (41)

116

Selected Topics in Plasma Physics

�λ
∂u 1ð Þ

i

∂ξ
¼ ∂ϕ 1ð Þ

∂ξ
, (42)

ϕ 1ð Þ � n 1ð Þ
i ¼ 0: (43)
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i

∂τ
� λ

∂n 2ð Þ
i

∂ξ
þ ∂n 1ð Þ

i u 1ð Þ
i

∂ξ
þ ∂u 2ð Þ

i

∂ξ
¼ 0, (48)

∂u 1ð Þ
i

∂τ
� λ

∂u 2ð Þ
i

∂ξ
þ u 1ð Þ

i
∂u 1ð Þ

i

∂ξ
¼ � ∂ϕ 2ð Þ

∂ξ2
, (49)

∂ϕ 1ð Þ

∂ξ2
¼ ϕ 2ð Þ þ 1

2
ϕ 1ð Þ
� �2

� n 1ð Þ
i : (50)

Differentiating Eq. (50) With respect to ξ and substituting for ∂n 2ð Þ
i
∂ξ from Eq. (48)

and for ∂u 2ð Þ
i
∂ξ from Eq. (49), we finally obtain

∂ϕ 1ð Þ

∂τ
þ ϕ 1ð Þ ∂ϕ

1ð Þ

∂ξ
þ 1
2
∂
3ϕ 1ð Þ

∂ξ3
¼ 0: (51)

Eq. (51) is known as KdV equation. ϕ 1ð Þ ∂ϕ 1ð Þ
∂ξ is the nonlinear term and 1

2
∂
3ϕ 1ð Þ

∂ξ3
is

the dispersive terms. Only nonlinearity can impose energy into the wave and the
wave breaks but in presence of both nonlinearity and dispersive a stable wave
profile is possible.

The steady-state solution of this KdV equation is obtained by transforming the
independent variables ξ and τ to η ¼ ξ� u0τ where u0 is a constant velocity
normalized by cs.

The steady state solution of the KdV Eq. (51) can be written as

ϕ 1ð Þ ¼ ϕmsech
2 η

Δ

� �
(52)

where ϕm ¼ 3u0 and Δ are the amplitude and width of the solitary waves. It is
clear that height, width and speed of the pulse propotional to u0, 1ffiffiffiffi

u0
p , and u0

respectively. As ϕm the amplitude is equal to 3u0 so u0 specify the energy of the
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solitary waves. So the larger the energy, the greater the speed, larger the amplitude
and narrower the width (Figure 1).

3. Damped force KdV equation

Let us consider an unmagnetized collisional dusty plasma that contains cold
inertial ions, stationary dusts with negative charge and Maxwellian electrons. The
normalized ion fluid equations which include the equation of continuity, equation
of momentum balance and Poisson’s equation, governing the DIAWs, are given by

∂ni
∂t

þ ∂ niuið Þ
∂x

¼ 0, (53)

∂ui
∂t

þ ui
∂ui
∂x

¼ � ∂ϕ

∂x
� νidui, (54)

∂
2ϕ

∂x2
¼ 1� μð Þne � nþ μ, (55)

where n j (j = i,e for ion, electron), ui,ϕ are the number density, ion fluid
velocity and the electrostatic wave potential respectively. Here μ ¼ Zdnd0

n0
, νid is the

dust ion collisional frequency and the term S x, tð Þ [4, 5], is a charged density
source arising from experimental conditions for a single definite purpose.
n0,Zd, nd0 are the

3.1 Normalization

ni ! ni
n0

, ui ! ui
Cs

,ϕ ! eϕ
KBTe

, x ! x
λD

, t ! ωpit (56)

Figure 1.
Solitary wave solution of Eq. (52) for the parameter value t ¼ 1, u0 ¼ 0:2.
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where Cs ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
KBTe
mi

� �r� �
is the ion acoustic speed, Te as electron temperature, KB

as Boltzmann constant, e as magnitude of electron charge and mi as mass of ions.

λD ¼ Te
4πne0e2

� �1
2

� �
is the Debye length and ωpi ¼ 4πne0e2

mi

� �1
2

� �
as ion-plasma fre-

quency.
The normalized electron density is given by

ne ¼ eϕ: (57)

3.2 Phase velocity and nonlinear evolution equation

We introduced the same stretched coordinates use in Eq.(31). The expansion of
the dependent variables also considered as (32)–(34) with

νid � ε3=2νid0: (58)

S � ε2S2: (59)

Substituting (31)–(34) and (58)–(59) along with stretching coordinates into
Eqs. (53)–(55) and equating the coefficients of lowest order of ε, we get the phase
velocity as

λ ¼ 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� μð Þp : (60)

Taking the coefficients of next higher order of ε, we obtain the damped force
KdV equation

∂ϕ 1ð Þ

∂τ
þ Aϕ 1ð Þ ∂ϕ

1ð Þ

∂ξ
þ B

∂
3ϕ 1ð Þ

∂ξ3
þ Cϕ 1ð Þ ¼ B

∂S2
∂ξ

, (61)

where A ¼ 3�λ2

2λ , B ¼ λ3

2 ,C ¼ νid0
2 .

It has been noticed that the behavior of nonlinear waves changes significantly in
the presence of external periodic force. It is paramount to note that the source term
or forcing term due to the presence of space debris in plasmas may be of different
kind, for example, Gaussian forcing term [4], hyperbolic forcing term [4], (in the
form of sech2 ξ, τð Þ and sech4 ξ, τð Þ functions) and trigonometric forcing term [6] (in
the form of sin ξ, τð Þ and cos ξ, τð Þ functions). Motivated by these work we assume

that S2 is a linear function of ξ such as S2 ¼ f 0ξ
B cos ωτð Þ þ P, where P is some

constant and f 0, ω denote the strength and the frequency of the source respectively.
Put the expression of S2 in Eq. (61) we get,

∂ϕ 1ð Þ

∂τ
þ Aϕ 1ð Þ ∂ϕ

1ð Þ

∂ξ
þ B

∂
3ϕ 1ð Þ

∂ξ3
þ Cϕ 1ð Þ1 ¼ f 0 cos ωτð Þ, (62)

which is termed as damped and forced KdV (DFKdV) equation.
In absence of C and f 0, i.e., for C ¼ 0 and f 0 ¼ 0 the Eq.(62) takes the form of

well-known KdV equation with the solitary wave solution

ϕ1 ¼ ϕmsech
2 ξ�Mτ

W

� �
, (63)
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which is termed as damped and forced KdV (DFKdV) equation.
In absence of C and f 0, i.e., for C ¼ 0 and f 0 ¼ 0 the Eq.(62) takes the form of
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where ϕm ¼ 3M
A and W ¼ 2

ffiffiffiffi
B
M

q
, with M as the Mach number.

In this case, it is well established that

I ¼
ð∞
�∞

ϕ2
1 dξ, (64)

is a conserved. For small values of C and f 0, let us assume that the solution of
Eq. (62) is of the form

ϕ1 ¼ ϕm τð Þsech2 x�M τð Þτ
W τð Þ

� �
, (65)

where M τð Þ is an unknown function of τ and ϕm τð Þ ¼ 3M τð Þ
A , W τð Þ ¼ 2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
B=M τð Þp

.
Differentiating Eq. (64) with respect to τ and using Eq. (62), one can obtain

dI
dτ

þ 2CI ¼ 2 f 0 cos ωτð Þ
ð∞
�∞

ϕ1 dξ,

) dI
dτ

þ 2CI ¼ 24 f 0
ffiffiffi
B

p

A

ffiffiffiffiffiffiffiffiffiffiffi
M τð Þ

p
cos ωτð Þ:

(66)

Again,

I ¼
ð∞
�∞

ϕ2
1 dξ,

I ¼
ð∞
�∞

ϕm
2 τð Þsech4 ξ�M τð Þτ

W τð Þ
� �

dξ,

I ¼ 24
ffiffiffi
B

p

A2 M3=2 τð Þ: (67)

Using Eq. (66) and (67) the expression of M τð Þ is obtained as

M τð Þ ¼ M� 8ACf 0
16C2 þ 9ω2

� �
e�

4
3Cτ þ 6Af 0

16C2 þ 9ω2

4
3
Ccos ωτð Þ þ ωsin ωτð Þ

� �
:

Therefore, the solution of the Eq. (62) is

ϕ1 ¼ ϕm τð Þsech2 ξ�M τð Þτ
W τð Þ

� �
, (68)

where ϕm τð Þ ¼ 3M τð Þ
A and W τð Þ ¼ 2

ffiffiffiffiffiffiffiffi
B

M τð Þ
q

. The effect of the parameters, i.e., ion

collision frequency parameter νid0ð Þ, strength of the external force f 0
� �

on the
solitary wave solution of the damp force KdV Eq. (62) have been numerically
studied. In Figure 2, the soliton solution of (62) is plotted from (63)in the absence
of external periodic force and damping.

In Figure 3, the soliton solution of the damp force KdV equation is plotted from
Eq. (65) for different values of the strength of the external periodic force f 0

� �
. The

values of other parameters are M0 ¼ 0:2,ω ¼ 1, τ ¼ 1, μ ¼ 0:2, νid0 ¼ 0:01. It is
observed that the solution produces solitary waves and the amplitude of the solitary
waves increases as the value of the parameter f 0 increases. In Figure 4, damp force
KdV equation is plotted from Eq. (65) for different values of the dust ion collision
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frequency parameter (νid0). The values of other parameters are M0 ¼ 0:2,ω ¼ 1,
τ ¼ 1, μ ¼ 0:2, f 0 ¼ 0:01. It is observed that the solution produces solitary waves
and the amplitude of the solitary waves decreases as the value of the parameter νid0
increases and width of the solitary waves increases for increasing value of νid0.

Figure 2.
Solitary wave solution of Eq. (62) in the absence of damping(νid0 ¼ 0) and external force( f 0 ¼ 0) with the
parameter value M0 ¼ 0:2,ω ¼ 1, τ ¼ 1, μ ¼ 0:2.

Figure 3.
Variation of solitary wave from Eq. (62) for the different values of f 0 with M0 ¼ 0:2,ω ¼ 1, τ ¼ 1, μ ¼ 0:2,
νid0 ¼ 0:01.
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4. Damped KdV Burgers equation

To obtain damped KdV Burgers equation we considered an unmagnetized colli-
sional dusty plasma which contains cold inertial ions, stationary dusts with negative
charge and Maxwellian distributed electrons. The normalized ion fluid equations
are as follows

∂ni
∂t

þ ∂ niuið Þ
∂x

¼ 0, (69)

∂ui
∂t

þ ui
∂ui
∂x

¼ � ∂ϕ

∂x
þ η

∂
2ui
∂x2

� νidui, (70)

∂
2ϕ

∂x2
¼ 1� μð Þne � ni þ μ, (71)

ne ¼ eϕ, (72)

where ni, ne, ui,ϕ, are the number density of ions, the number density of elec-
trons, the ion fluid velocity and the electrostatic wave potential, respectively.

Here normalization is taken as follows

ni ! ni
n0

, ui ! ui
Cs

,ϕ ! eϕ
KBTe

, x ! x
λD

, t ! ωpit

Cs ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
KBTe
mi

� �r� �
is the ion acoustic speed, Te as electron temperature, KB as

Boltzmann constant and mi as mass of ions, e as magnitude of electron charge.

λD ¼ Te
4πne0e2

� �1
2

� �
is the Debye length and ωpi ¼ mi

4πne0e2

� �1
2

� �
as ion-plasma

Figure 4.
Variation of solitary wave from Eq. (62) for the different values of collisional frequency νid0 with M0 ¼ 0:2,
ω ¼ 1, τ ¼ 1, μ ¼ 0:2, f 0 ¼ 0:01.
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frequency. Here, νid is the dust-ion collisional frequency and μ ¼ n0e
n0i
, where n0e and

n0i are the unperturbed number densities of electrons and ions, respectively.

4.1 Perturbation

To obtain damped KdV burger we introduced the same stretched coordinates
use in Eq.(31). The expansion of the dependent variables are also considered same
as (32)–(34) with

η ¼ ε1=2η0, (73)

νid � ε3=2νid0: (74)

4.2 Phase velocity and nonlinear evolution equation

Substituting the above expansions (32)-(34) and (73)–(74) along with stretching
coordinates (31) into Eqs. (69)–(71) and equating the coefficients of lowest order of
ε, the phase velocity is obtained as

λ ¼ 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� μð Þp : (75)

Taking the coefficients of next higher order of ε, we obtain the DKdVB equation

∂ϕ 1ð Þ

∂τ
þ Aϕ 1ð Þ ∂ϕ

1ð Þ

∂ξ
þ B

∂
3ϕ 1ð Þ

∂ξ3
þ C

∂
2ϕ 1ð Þ

∂ξ2
þDϕ 1ð Þ ¼ 0, (76)

where A ¼ 3�λ2

2λ , B ¼ v3
2 , C ¼ � η10

2 and D ¼ νid0
2 .

In absence of C and D, i.e., for C ¼ 0 and D ¼ 0 the Eq.(76) takes the form of
well-known KdV equation with the solitary wave solution

ϕ1 ¼ ϕmsech
2 ξ�M0τ

W

� �
, (77)

where amplitude of the solitary waves ϕm ¼ 3M0
A and width of the solitary waves

W ¼ 2
ffiffiffiffiffi
B
M0

q
, with M0 is the speed of the ion-acoustic solitary waves or Mach

number.
It is well established for the KdV equation that,

I ¼
ð∞
�∞

ϕ2
1 dξ, (78)

is a conserved quantity [7].
For small values of C and D, let us assume that amplitude, width and velocity of

the dust ion acoustic waves are dependent on τ and the slow time dependent
solution of Eq. (76) is of the form

ϕ 1ð Þ ¼ ϕm τð Þsech2 ξ�M τð Þτ
W τð Þ

� �
, (79)

where the amplitude ϕm τð Þ ¼ 3M τð Þ
A , width W τð Þ ¼ 2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
B=M τð Þp

and velocity M τð Þ
have to be determined.
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, where n0e and

n0i are the unperturbed number densities of electrons and ions, respectively.
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have to be determined.
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Differentiating Eq. (78) with respect to τ and using Eq. (76), one can obtain

dI
dτ

þ 2DI ¼ 2C
ð∞
�∞

∂ϕ1

∂ξ

� �2

dξ,

) dI
dτ

þ 2DI ¼ 2C� 24
5
M5=2 τð Þ
A2

ffiffiffi
B

p :

(80)

where,

ð∞
�∞

∂ϕ1

∂ξ

� �2

dξ ¼ 24
5
M5=2 τð Þ
A2

ffiffiffi
B

p (81)

and

I ¼
ð∞
�∞

ϕ2
1 dξ,

I ¼
ð∞
�∞

ϕm
2 τð Þsech4 ξ�M τð Þτ

W τð Þ
� �

dξ,

I ¼ 24
ffiffiffi
B

p

A2 M3=2 τð Þ:

(82)

Substituting Eq. (81) and (82) into Eq. (80), we obtain

dM τð Þ
dτ

þ PM τð Þ ¼ QM2 τð Þ, (83)

which is the Bernoulli’s equation, where P ¼ 4
3D and Q ¼ 4

15
C
B.

The solution of the Eq. (83) is

M τð Þ ¼ PM0

M0Q 1� ePτð Þ þ PePτ

Therefore, the slow time dependence form of the ion acoustic solitary wave
solution of the DKdVB Eq. (76) is given by (79)where.

M τð Þ ¼ PM0
M0Q 1�ePτð ÞþPePτ

and M 0ð Þ ¼ M0 for τ ¼ 0.

5. Damped force MKdV equation

Let us consider an unmagnetized collisional dusty plasma that contains cold
inertial ions, stationary dusts with negative charge and Maxwellian distributed
electrons. The normalized ion fluid equations which include the equation of conti-
nuity, equation of momentum balance and Poisson’s equation, governing the
DIAWs, are given by

∂ni
∂t

þ ∂ niuið Þ
∂x

¼ 0, (84)

∂ui
∂t

þ ui
∂ui
∂x

¼ � ∂ϕ

∂x
� νidu, (85)

∂
2ϕ

∂x2
¼ 1� μð Þne � ni þ μþ S x, tð Þ (86)
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where n j (j = i,e for ion, electron), ui,ϕ are the number density, ion fluid
velocity and the electrostatic wave potential respectively. Here μ ¼ Zdnd0

n0
, νid is the

dust-ion collisional frequency and the term S x, tð Þ [4, 5], is a charged density source
arising from experimental conditions for a single definite purpose. n0,Zd, nd0 are
the normalization:

ni ! ni
n0

, ui ! ui
Cs

,ϕ ! eϕ
KBTe

, x ! x
λD

, t ! ωpit (87)

where Cs ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
KBTe
mi

� �r� �
is the ion acoustic speed, Te as electron temperature, KB

as Boltzmann constant, e as magnitude of electron charge and mi as mass of ions.

λD ¼ Te
4πne0e2

� �1
2

� �
is the Debye length and ωpi ¼ 4πne0e2

mi

� �1
2

� �
as ion-plasma fre-

quency.
The normalized q-nonextensive electron number density takes the form [8]:

ne ¼ ne0 1þ q� 1ð Þϕf g
qþ1

2 q�1ð Þ (88)

Phase velocity and nonlinear evolution equation
We introduced the same stretched coordinates use in Eq. (31). The expansion of

the dependent variables also considered same as (32)–(34) and (58)–(59).
Substituting (31)–(34) and (58)–(59) along with stretching coordinates into
Eqs. (84)–(86) and equating the coefficients of lowest order of ε, we get the phase
velocity as

λ ¼ 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a 1� μð Þp , (89)

with a ¼ qþ1
2 . Now taking the coefficients of next higher order of ε [i.e., coeffi-

cient of ε5=2 from Eqs. (84) and (85) and coefficient of ε2 from Eq. (86)], we obtain
the DFKdV equation

∂ϕ 1ð Þ

∂τ
þ Aϕ 1ð Þ ∂ϕ

1ð Þ

∂ξ
þ B

∂
3ϕ 1ð Þ

∂ξ3
þ Cϕ 1ð Þ ¼ B

∂S2
∂ξ

, (90)

where A ¼ 3
2λ � bλ

a

� �
, B ¼ λ3

2 and C ¼ νid0
2 , with b ¼ qþ1ð Þ 3�qð Þ

8 .
Now at the certain values, for example q ¼ 0:6 and μ ¼ 0:5, there is a critical

point at which A ¼ 0, which imply the infinite growth of the amplitude of the
DIASW solution as nonlinearity goes to zero. Therefore, at the critical point at
which A ¼ 0 the stretching (31) is not valid. For describing the evolution of the
nonlinear system at or near the critical point we introduce the new stretched
coordinate as

ξ ¼ ε x� λtð Þ, τ ¼ ε3t, (91)

and expand of the dependent variables same as Eqs. (32)–(34) with

νid � ε3νid0, (92)

S � ε3S2: (93)
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Differentiating Eq. (78) with respect to τ and using Eq. (76), one can obtain
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where,
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(82)

Substituting Eq. (81) and (82) into Eq. (80), we obtain

dM τð Þ
dτ

þ PM τð Þ ¼ QM2 τð Þ, (83)

which is the Bernoulli’s equation, where P ¼ 4
3D and Q ¼ 4

15
C
B.

The solution of the Eq. (83) is

M τð Þ ¼ PM0

M0Q 1� ePτð Þ þ PePτ

Therefore, the slow time dependence form of the ion acoustic solitary wave
solution of the DKdVB Eq. (76) is given by (79)where.

M τð Þ ¼ PM0
M0Q 1�ePτð ÞþPePτ

and M 0ð Þ ¼ M0 for τ ¼ 0.

5. Damped force MKdV equation

Let us consider an unmagnetized collisional dusty plasma that contains cold
inertial ions, stationary dusts with negative charge and Maxwellian distributed
electrons. The normalized ion fluid equations which include the equation of conti-
nuity, equation of momentum balance and Poisson’s equation, governing the
DIAWs, are given by

∂ni
∂t

þ ∂ niuið Þ
∂x

¼ 0, (84)

∂ui
∂t

þ ui
∂ui
∂x

¼ � ∂ϕ

∂x
� νidu, (85)

∂
2ϕ

∂x2
¼ 1� μð Þne � ni þ μþ S x, tð Þ (86)
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where n j (j = i,e for ion, electron), ui,ϕ are the number density, ion fluid
velocity and the electrostatic wave potential respectively. Here μ ¼ Zdnd0

n0
, νid is the

dust-ion collisional frequency and the term S x, tð Þ [4, 5], is a charged density source
arising from experimental conditions for a single definite purpose. n0,Zd, nd0 are
the normalization:

ni ! ni
n0

, ui ! ui
Cs

,ϕ ! eϕ
KBTe

, x ! x
λD

, t ! ωpit (87)

where Cs ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
KBTe
mi

� �r� �
is the ion acoustic speed, Te as electron temperature, KB

as Boltzmann constant, e as magnitude of electron charge and mi as mass of ions.

λD ¼ Te
4πne0e2

� �1
2

� �
is the Debye length and ωpi ¼ 4πne0e2

mi

� �1
2

� �
as ion-plasma fre-

quency.
The normalized q-nonextensive electron number density takes the form [8]:

ne ¼ ne0 1þ q� 1ð Þϕf g
qþ1

2 q�1ð Þ (88)

Phase velocity and nonlinear evolution equation
We introduced the same stretched coordinates use in Eq. (31). The expansion of

the dependent variables also considered same as (32)–(34) and (58)–(59).
Substituting (31)–(34) and (58)–(59) along with stretching coordinates into
Eqs. (84)–(86) and equating the coefficients of lowest order of ε, we get the phase
velocity as

λ ¼ 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a 1� μð Þp , (89)

with a ¼ qþ1
2 . Now taking the coefficients of next higher order of ε [i.e., coeffi-

cient of ε5=2 from Eqs. (84) and (85) and coefficient of ε2 from Eq. (86)], we obtain
the DFKdV equation

∂ϕ 1ð Þ

∂τ
þ Aϕ 1ð Þ ∂ϕ

1ð Þ

∂ξ
þ B

∂
3ϕ 1ð Þ

∂ξ3
þ Cϕ 1ð Þ ¼ B

∂S2
∂ξ

, (90)

where A ¼ 3
2λ � bλ

a

� �
, B ¼ λ3

2 and C ¼ νid0
2 , with b ¼ qþ1ð Þ 3�qð Þ

8 .
Now at the certain values, for example q ¼ 0:6 and μ ¼ 0:5, there is a critical

point at which A ¼ 0, which imply the infinite growth of the amplitude of the
DIASW solution as nonlinearity goes to zero. Therefore, at the critical point at
which A ¼ 0 the stretching (31) is not valid. For describing the evolution of the
nonlinear system at or near the critical point we introduce the new stretched
coordinate as

ξ ¼ ε x� λtð Þ, τ ¼ ε3t, (91)

and expand of the dependent variables same as Eqs. (32)–(34) with

νid � ε3νid0, (92)

S � ε3S2: (93)
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Now substituting Eq. (32)–(34) and (91)–(93) into the basic Eqs. (84)–(86) and
equating the coefficients of lowest order of ε, [i.e., coefficients of ε2 from Eq. (84)
and (85) and coefficients of ε from Eq. (86)], we obtain the following relations:

n 1ð Þ
i ¼ u 1ð Þ

i

λ
, (94)

u 1ð Þ
i ¼ ϕ 1ð Þ

λ
, (95)

n 1ð Þ
i ¼ a 1� μð Þϕ 1ð Þ: (96)

Equating the coefficients of next higher order of ε, [i.e., coefficients of ε3 from
Eq. (84) and (85) and coefficients of ε from Eq. (86)],we obtain the following
relations:

n 2ð Þ
i ¼ 1

λ
u 2ð Þ
i þ n 1ð Þ

i u 1ð Þ
i

� �
(97)

∂u 1ð Þ
i

∂ξ
¼ 1

λ
u 1ð Þ
i

∂u 1ð Þ
i

∂ξ
þ ∂ϕ 2ð Þ

∂ξ

 !
(98)

n 2ð Þ
i ¼ a 1� μð Þ aϕ 2ð Þ þ b ϕ 1ð Þ

� �2� �
(99)

Equating the coefficients of next higher order of ε, [i.e., coefficients of ε4 from
Eq. (84) and (85) and coefficients of ε from Eq. (86)], we obtain the following
relations:

∂n 1ð Þ
i

∂τ
� λ

∂n 3ð Þ
i

∂ξ
þ ∂u 3ð Þ

i

∂ξ
þ
∂ n 1ð Þ

i u 2ð Þ
i

� �

∂ξ
þ
∂ n 2ð Þ

i u 1ð Þ
i

� �

∂ξ
¼ 0 (100)

∂u 1ð Þ
i

∂τ
� λ

∂u 3ð Þ
i

∂ξ
þ ∂ϕ 3ð Þ

∂ξ
þ
∂ u 1ð Þ

i u 2ð Þ
i

� �

∂ξ
þ νid0u

1ð Þ
i ¼ 0 (101)

∂
2ϕ 1ð Þ

∂ξ2
¼ 1� μð Þ aϕ 3ð Þ þ 2bϕ 1ð Þϕ 2ð Þ þ c ϕ 1ð Þ

� �3� �
� n 3ð Þ

i þ S2 (102)

where a ¼ 1þqð Þ
2 , b ¼ 1þqð Þ 3�qð Þ

8 and c ¼ 1þqð Þ 3�qð Þ 5�3qð Þ
48 .

From Eq. (94)–(96), one can obtain the Phase velocity as λ2 ¼ 1
a 1�μð Þ and from

Eqs. (94)–(102), one can obtain the following nonlinear evaluation equation as:

∂ϕ 1ð Þ

∂τ
þ A1 ϕ 1ð Þ

� �2 ∂ϕ 1ð Þ

∂ξ
þ B1

∂
3ϕ 1ð Þ

∂ξ3
þ C1ϕ

1ð Þ ¼ B1
∂S2
∂ξ

, (103)

where A1 ¼ 15
4λ3

� 3λ3c 1�μð Þ
2 , B1 ¼ λ3

2 and C1 ¼ νid0
2 .

It has been noticed that the behavior of nonlinear waves changes significantly in
the presence of external periodic force. For simplicity, we assume that S2 is a linear
function of ξ such as S2 ¼ f 0ξ cos ωτð Þ þ P, where P is some constant and f 0, ω
denote the strength and the frequency of the source respectively. Put the expression
of S2 in the Eq. (103) we get,
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∂ϕ 1ð Þ

∂τ
þ A1 ϕ 1ð Þ

� �2 ∂ϕ 1ð Þ

∂ξ
þ B1

∂
3ϕ 1ð Þ

∂ξ3
þ C1ϕ

1ð Þ ¼ B1 f 0 cos ωτð Þ: (104)

Such a form of this source function is observed in experimental situations or
conditions for a particular device. Eq. (104) is termed as damped force modified
Korteweg-de Varies (DFMKdV) equation.

In absence of C1 and f 0, i.e., for C1 ¼ 0 and f 0 ¼ 0 the Eq.(104) takes the form
of well-known MKdV equation.

The slow time dependence form of the ion acoustic waves solution of the
DFMKdV Eq. (104) is given by,

ϕ 1ð Þ ¼ ϕm τð Þsech ξ�M τð Þτ
W τð Þ

� �
, (105)

where M τð Þ is given by equation

M τð Þ ¼ π f 0B1
ffiffiffiffiffiffiffiffiffiffiffi
A1=6

p
2

ω

ω2 þ 4C2
1

 !
sin ωτð Þ þ 2C1

ω
cos ωτð Þ

� �"

þ
ffiffiffiffiffi
M

p
� π f 0B1

ffiffiffiffiffiffiffiffiffiffiffiffiffi
A1=24

p 2C1

ω2 þ 4C2
1

 !( )
e�νid0τ�2:

The amplitude and width are as follows:

ϕm τð Þ ¼ 1ffiffiffiffi
A

p
ffiffiffi
6

p π f 0B1
ffiffiffiffiffiffiffiffiffiffiffi
A1=6

p
2

ω

ω2 þ 4C2
1

 !
sin ωτð Þ þ 2C1

ω
cos ωτð Þ

� �" 

þ
ffiffiffiffiffi
M

p
� π f 0B1

ffiffiffiffiffiffiffiffiffiffiffiffiffi
A1=24

p 2C1

ω2 þ 4C2
1

 !( )
e�νid0τ

#!

W τð Þ ¼
ffiffiffiffiffi
B1

p
W1 þW2

where

W1 ¼ π f 0B1
ffiffiffiffiffiffiffiffiffiffiffi
A1=6

p
2

ω

ω2 þ 4C2
1

 !
sin ωτð Þ þ 2C1

ω
cos ωτð Þ

� �

W2 ¼
ffiffiffiffiffi
M

p
� π f 0B1

ffiffiffiffiffiffiffiffiffiffiffiffiffi
A1=24

p 2C1

ω2 þ 4C2
1

 !( )
e�νid0τ

6. Damped force Zakharov-Kuznetsov equation

Let us consider a plasma model [9] consisting of cold ions, Maxwellian electrons
in the presence of dust particles and the external static magnetic field B ¼ ŷB0 along
the y-axis. The normalized continuity, momentum and Poisson’s equations are as
follows

∂n
∂t

þ ∂ nuð Þ
∂x

þ ∂ nvð Þ
∂y

þ ∂ nwð Þ
∂z

¼ 0, (106)
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Now substituting Eq. (32)–(34) and (91)–(93) into the basic Eqs. (84)–(86) and
equating the coefficients of lowest order of ε, [i.e., coefficients of ε2 from Eq. (84)
and (85) and coefficients of ε from Eq. (86)], we obtain the following relations:

n 1ð Þ
i ¼ u 1ð Þ

i

λ
, (94)

u 1ð Þ
i ¼ ϕ 1ð Þ

λ
, (95)

n 1ð Þ
i ¼ a 1� μð Þϕ 1ð Þ: (96)

Equating the coefficients of next higher order of ε, [i.e., coefficients of ε3 from
Eq. (84) and (85) and coefficients of ε from Eq. (86)],we obtain the following
relations:

n 2ð Þ
i ¼ 1

λ
u 2ð Þ
i þ n 1ð Þ

i u 1ð Þ
i

� �
(97)

∂u 1ð Þ
i

∂ξ
¼ 1

λ
u 1ð Þ
i

∂u 1ð Þ
i

∂ξ
þ ∂ϕ 2ð Þ

∂ξ

 !
(98)

n 2ð Þ
i ¼ a 1� μð Þ aϕ 2ð Þ þ b ϕ 1ð Þ

� �2� �
(99)

Equating the coefficients of next higher order of ε, [i.e., coefficients of ε4 from
Eq. (84) and (85) and coefficients of ε from Eq. (86)], we obtain the following
relations:

∂n 1ð Þ
i

∂τ
� λ

∂n 3ð Þ
i

∂ξ
þ ∂u 3ð Þ

i

∂ξ
þ
∂ n 1ð Þ

i u 2ð Þ
i

� �

∂ξ
þ
∂ n 2ð Þ
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i

� �
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where a ¼ 1þqð Þ
2 , b ¼ 1þqð Þ 3�qð Þ

8 and c ¼ 1þqð Þ 3�qð Þ 5�3qð Þ
48 .

From Eq. (94)–(96), one can obtain the Phase velocity as λ2 ¼ 1
a 1�μð Þ and from

Eqs. (94)–(102), one can obtain the following nonlinear evaluation equation as:

∂ϕ 1ð Þ

∂τ
þ A1 ϕ 1ð Þ

� �2 ∂ϕ 1ð Þ

∂ξ
þ B1

∂
3ϕ 1ð Þ

∂ξ3
þ C1ϕ

1ð Þ ¼ B1
∂S2
∂ξ

, (103)

where A1 ¼ 15
4λ3

� 3λ3c 1�μð Þ
2 , B1 ¼ λ3

2 and C1 ¼ νid0
2 .

It has been noticed that the behavior of nonlinear waves changes significantly in
the presence of external periodic force. For simplicity, we assume that S2 is a linear
function of ξ such as S2 ¼ f 0ξ cos ωτð Þ þ P, where P is some constant and f 0, ω
denote the strength and the frequency of the source respectively. Put the expression
of S2 in the Eq. (103) we get,
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∂τ
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� �2 ∂ϕ 1ð Þ

∂ξ
þ B1

∂
3ϕ 1ð Þ

∂ξ3
þ C1ϕ

1ð Þ ¼ B1 f 0 cos ωτð Þ: (104)

Such a form of this source function is observed in experimental situations or
conditions for a particular device. Eq. (104) is termed as damped force modified
Korteweg-de Varies (DFMKdV) equation.

In absence of C1 and f 0, i.e., for C1 ¼ 0 and f 0 ¼ 0 the Eq.(104) takes the form
of well-known MKdV equation.

The slow time dependence form of the ion acoustic waves solution of the
DFMKdV Eq. (104) is given by,

ϕ 1ð Þ ¼ ϕm τð Þsech ξ�M τð Þτ
W τð Þ

� �
, (105)

where M τð Þ is given by equation

M τð Þ ¼ π f 0B1
ffiffiffiffiffiffiffiffiffiffiffi
A1=6

p
2

ω

ω2 þ 4C2
1

 !
sin ωτð Þ þ 2C1

ω
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þ
ffiffiffiffiffi
M

p
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 !( )
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The amplitude and width are as follows:
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p
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p
W1 þW2

where

W1 ¼ π f 0B1
ffiffiffiffiffiffiffiffiffiffiffi
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p
2

ω
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 !
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ω
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ffiffiffiffiffi
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p
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6. Damped force Zakharov-Kuznetsov equation

Let us consider a plasma model [9] consisting of cold ions, Maxwellian electrons
in the presence of dust particles and the external static magnetic field B ¼ ŷB0 along
the y-axis. The normalized continuity, momentum and Poisson’s equations are as
follows

∂n
∂t

þ ∂ nuð Þ
∂x

þ ∂ nvð Þ
∂y

þ ∂ nwð Þ
∂z

¼ 0, (106)
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∂u
∂t

þ u
∂

∂x
þ v

∂

∂y
þw

∂

∂z

� �
u ¼ � ∂ϕ

∂x
� Ωi

ωpi
w, (107)

∂v
∂t

þ u
∂

∂x
þ v

∂

∂y
þ w

∂

∂z

� �
v ¼ � ∂ϕ

∂y
� νidv, (108)

∂w
∂t

þ u
∂

∂x
þ v

∂

∂y
þ w

∂

∂z

� �
w ¼ � ∂ϕ

∂z
þ Ωi

ωpi
u, (109)

∂
2ϕ

∂x2
þ ∂

2ϕ

∂y2
þ ∂

2ϕ

∂z2
¼ δ1 þ δ2ne � n (110)

The normalized electron density is given by

ne ¼ eϕ, (111)

where n, ne, ui ¼ u, v,wð Þ,Te,mi, e,ϕ,Ωi,ωpi, νid and λD are the ion number
density, electron number density, ion velocity, electron temperature, ion mass,
electron charge, electrostatic potential, ion cyclotron frequency, ion plasma fre-
quency, dust ion collision frequency and Debye length respectively.

Here the normalization is done as follows:

n ! n
n0

, ne ! ne
ne0

, ui ! ui
Cs

,ϕ ! eϕ
Te

, x ! x
λD

, t ! ωpit

Here δ1 ¼ nd0
ni0

, δ2 ¼ ne0
ni0

with the condition δ1 þ δ2 ¼ 1. λD ¼ Te
4πne0e2

� �1=2
,

ω�1
pi ¼ mi

4πne0e2

� �1=2
,Cs ¼

ffiffiffiffi
Te
mi

q
.

To obtain the DFZK equation we introduce the new stretched coordinates as

ξ ¼ ε1=2x

ζ ¼ ε1=2 x� λtð Þ,
η ¼ ε1=2y,

τ ¼ ε3=2t

(112)

where ε is the strength of nonlinearity and λ is the phase velocity of waves. The
expression of the dependent variables as follows:

n ¼ 1þ εn1 þ ε2n2 þ⋯ (113)

u ¼ 0þ ε3=2u1 þ ε2u2 þ⋯ (114)

v ¼ 0þ εv1 þ ε2v2 þ⋯ (115)

w ¼ 0þ ε3=2w1 þ ε2w2 þ⋯ (116)

ϕ ¼ 0þ εϕ1 þ ε2ϕ2 þ⋯ (117)

νid � ε3=2νid0 (118)

S x, y, zð Þ � ε2S2 x, y, zð Þ (119)

Substituting the equations (112)-(119) into the system of Eqs. (106)-(110)
equating the coefficient of ε, we get
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ϕ1 ¼
n1
δ2

: (120)

Equating the coefficient of ε3=2, we get

n1 ¼ v1
λ

(121)

w1 ¼ �ωpi

Ωi

∂ϕ1

∂ξ
, (122)

v1 ¼ ϕ1

λ
, (123)

u1 ¼
ωpi

Ωi

∂ϕ1

∂η
: (124)

Considering the coefficient of ε2, the following relationships are obtained

w2 ¼ λ
ωpi

Ωi

∂u1
∂ζ

, (125)

u2 ¼ �λ
ωpi

Ωi

∂w1

∂ζ
, (126)

∂
2ϕ1

∂ξ2
þ ∂

2ϕ1

∂ζ2
þ ∂

2ϕ1

∂η2
¼ δ1 1� ϕ2 þ

ϕ2
1

2

� �
� n2 þ S2: (127)

Comparing the coefficients of ε5=2, we obtain

∂n1
∂τ

� λ
∂n2
∂ζ

þ ∂u2
∂ξ

þ ∂

∂ζ
n1v1ð Þ þ ∂v2

∂ζ
þ ∂w2

∂η
¼ 0 (128)

∂v1
∂τ

� λ
∂v2
∂ζ

þ v1
∂v1
∂ζ

þ ∂ϕ2

∂ζ
� νid0v1 ¼ 0: (129)

Using the relationships (120)–(124), one can obtain the linear dispersion
relation as

1� λ2δ2 ¼ 0 (130)

Expressing all the perturbed quantities in terms of ϕ1 from Eq. (125)–(129), the
damped forced ZK equation is obtained as

∂ϕ1

∂τ
þ Aϕ1

∂ϕ1

∂ζ
þ B

∂
3ϕ1

∂ζ3
þDϕ1 þ C

∂

∂ζ

∂
2ϕ1

∂ξ2
þ ∂

2ϕ1

∂η2

� �
þ B

∂S2
∂ζ

¼ 0 (131)

where

A ¼ 3
2λ

� λ

2
, B ¼ λ

2δ2
, C ¼ λ

2δ2
1þ ω2

pi

Ω2
i

 !
, D ¼ νid0

2
:

Choudhury et al. [5] studied analytical electron acoustic solitary wave (EASW)
solution in the presence of periodic force for an unmagnetized plasma consisting of
cold electron fluid, superthermal hot electrons and stationary ions. Motivated by the

these works, here we consider the source term as S2 ¼ f 0
B eζ þ fξþ gηð Þ cos ωτð Þ,
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∂u
∂t

þ u
∂

∂x
þ v

∂

∂y
þw

∂

∂z

� �
u ¼ � ∂ϕ

∂x
� Ωi

ωpi
w, (107)

∂v
∂t

þ u
∂

∂x
þ v

∂

∂y
þ w

∂

∂z

� �
v ¼ � ∂ϕ

∂y
� νidv, (108)

∂w
∂t

þ u
∂

∂x
þ v

∂

∂y
þ w

∂

∂z

� �
w ¼ � ∂ϕ

∂z
þ Ωi

ωpi
u, (109)

∂
2ϕ

∂x2
þ ∂

2ϕ

∂y2
þ ∂

2ϕ

∂z2
¼ δ1 þ δ2ne � n (110)

The normalized electron density is given by

ne ¼ eϕ, (111)

where n, ne, ui ¼ u, v,wð Þ,Te,mi, e,ϕ,Ωi,ωpi, νid and λD are the ion number
density, electron number density, ion velocity, electron temperature, ion mass,
electron charge, electrostatic potential, ion cyclotron frequency, ion plasma fre-
quency, dust ion collision frequency and Debye length respectively.

Here the normalization is done as follows:

n ! n
n0

, ne ! ne
ne0

, ui ! ui
Cs

,ϕ ! eϕ
Te

, x ! x
λD

, t ! ωpit

Here δ1 ¼ nd0
ni0

, δ2 ¼ ne0
ni0

with the condition δ1 þ δ2 ¼ 1. λD ¼ Te
4πne0e2

� �1=2
,

ω�1
pi ¼ mi

4πne0e2

� �1=2
,Cs ¼

ffiffiffiffi
Te
mi

q
.

To obtain the DFZK equation we introduce the new stretched coordinates as

ξ ¼ ε1=2x

ζ ¼ ε1=2 x� λtð Þ,
η ¼ ε1=2y,

τ ¼ ε3=2t

(112)

where ε is the strength of nonlinearity and λ is the phase velocity of waves. The
expression of the dependent variables as follows:

n ¼ 1þ εn1 þ ε2n2 þ⋯ (113)

u ¼ 0þ ε3=2u1 þ ε2u2 þ⋯ (114)

v ¼ 0þ εv1 þ ε2v2 þ⋯ (115)

w ¼ 0þ ε3=2w1 þ ε2w2 þ⋯ (116)

ϕ ¼ 0þ εϕ1 þ ε2ϕ2 þ⋯ (117)

νid � ε3=2νid0 (118)

S x, y, zð Þ � ε2S2 x, y, zð Þ (119)

Substituting the equations (112)-(119) into the system of Eqs. (106)-(110)
equating the coefficient of ε, we get
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ϕ1 ¼
n1
δ2

: (120)

Equating the coefficient of ε3=2, we get

n1 ¼ v1
λ

(121)

w1 ¼ �ωpi

Ωi

∂ϕ1

∂ξ
, (122)

v1 ¼ ϕ1

λ
, (123)

u1 ¼
ωpi

Ωi

∂ϕ1

∂η
: (124)

Considering the coefficient of ε2, the following relationships are obtained

w2 ¼ λ
ωpi

Ωi

∂u1
∂ζ

, (125)

u2 ¼ �λ
ωpi

Ωi

∂w1

∂ζ
, (126)

∂
2ϕ1

∂ξ2
þ ∂

2ϕ1

∂ζ2
þ ∂

2ϕ1

∂η2
¼ δ1 1� ϕ2 þ

ϕ2
1

2

� �
� n2 þ S2: (127)

Comparing the coefficients of ε5=2, we obtain

∂n1
∂τ

� λ
∂n2
∂ζ

þ ∂u2
∂ξ

þ ∂

∂ζ
n1v1ð Þ þ ∂v2

∂ζ
þ ∂w2

∂η
¼ 0 (128)

∂v1
∂τ

� λ
∂v2
∂ζ

þ v1
∂v1
∂ζ

þ ∂ϕ2

∂ζ
� νid0v1 ¼ 0: (129)

Using the relationships (120)–(124), one can obtain the linear dispersion
relation as

1� λ2δ2 ¼ 0 (130)

Expressing all the perturbed quantities in terms of ϕ1 from Eq. (125)–(129), the
damped forced ZK equation is obtained as

∂ϕ1

∂τ
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∂ϕ1

∂ζ
þ B

∂
3ϕ1
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A ¼ 3
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2
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, C ¼ λ

2δ2
1þ ω2

pi

Ω2
i

 !
, D ¼ νid0
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:

Choudhury et al. [5] studied analytical electron acoustic solitary wave (EASW)
solution in the presence of periodic force for an unmagnetized plasma consisting of
cold electron fluid, superthermal hot electrons and stationary ions. Motivated by the

these works, here we consider the source term as S2 ¼ f 0
B eζ þ fξþ gηð Þ cos ωτð Þ,
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where f 0 and ω denote the strength and frequency of the source term respectively.
Then Eq. (131) is of the form,

∂ϕ1

∂τ
þ Aϕ1

∂ϕ1

∂ζ
þ B

∂
3ϕ1

∂ζ3
þDϕ1 þ C

∂

∂ζ

∂
2ϕ1

∂ξ2
þ ∂

2ϕ1

∂η2

� �
¼ F0 cos ωτð Þ (132)

where F0 ¼ � ef 0
B . To find the analytical solution of Eq. (132), we transform the

damped-forced ZK equation to the KdV equation. We introduce new variable:

ξ ¼ lζ þmξþ nηð Þ, (133)

where l, m, n are the direction cosines of the line of wave propagation, with
l2 þm2 þ n2 ¼ 1. Substituting Eqs. (133) into the Eq. (132), we get

∂ϕ1

∂τ
þ Alϕ1

∂ϕ1

∂ξ
þ Bl3

∂
3ϕ1

∂ξ3
þ Cl m2 þ n2

� � ∂3ϕ1

∂ξ3
þDϕ1 ¼ F0 cos ωτð Þ

) ∂ϕ1

∂τ
þ Pϕ1

∂ϕ1

∂ξ
þ Q

∂
3ϕ1

∂ξ3
þDϕ1 ¼ F0 cos ωτð Þ

(134)

where, P ¼ Al, Q ¼ Bl3 þ Cl m2 þ n2ð Þ,
The analytical solitary wave solution of the Eq. (134) as obtained in (68), is

ϕ1 ¼ ϕm τð Þsech2 ξ�M τð Þτ
W τð Þ

� �
(135)

where ϕm τð Þ ¼ 3M τð Þ
P and W τð Þ ¼ 2

ffiffiffiffiffiffiffiffi
Q

M τð Þ
q

, with

M τð Þ ¼ M� 8PF0

16D2 þ 9ω2

� �
e�

4
3Dτ þ 6PF0

16D2 þ 9ω2

4
3
Dcos ωτð Þ þ ωsin ωτð Þ

� �
: (136)

7. Conclusions

It is clear from the structure of the solitary wave solution of the DFKdV,
DFMKdV and DFZK that the soliton amplitude and width depends on the
nonlinearity and dispersion of the evolution equations, which are the function of
different plasma parameter involve in the consider plasma system. Also evident
from the structure of the approximate analytical solution that the amplitude and the
width of the soliton depends on the Mach number M τð Þð Þ which involve the forcing
term F0 cos ωτð Þ and the damping parameter. Thus the amplitude and the width of
the solitary wave structure changes with the different plasma parameters. Also they
are changes with the change of strength of external force F0, frequency of the
external force ω and the collisional frequency between the different plasma species.
The effect of these parameter can be studied through numerical simulation.
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where f 0 and ω denote the strength and frequency of the source term respectively.
Then Eq. (131) is of the form,

∂ϕ1

∂τ
þ Aϕ1

∂ϕ1

∂ζ
þ B

∂
3ϕ1

∂ζ3
þDϕ1 þ C

∂

∂ζ

∂
2ϕ1

∂ξ2
þ ∂

2ϕ1

∂η2

� �
¼ F0 cos ωτð Þ (132)
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B . To find the analytical solution of Eq. (132), we transform the

damped-forced ZK equation to the KdV equation. We introduce new variable:

ξ ¼ lζ þmξþ nηð Þ, (133)

where l, m, n are the direction cosines of the line of wave propagation, with
l2 þm2 þ n2 ¼ 1. Substituting Eqs. (133) into the Eq. (132), we get
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where, P ¼ Al, Q ¼ Bl3 þ Cl m2 þ n2ð Þ,
The analytical solitary wave solution of the Eq. (134) as obtained in (68), is

ϕ1 ¼ ϕm τð Þsech2 ξ�M τð Þτ
W τð Þ
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(135)

where ϕm τð Þ ¼ 3M τð Þ
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7. Conclusions

It is clear from the structure of the solitary wave solution of the DFKdV,
DFMKdV and DFZK that the soliton amplitude and width depends on the
nonlinearity and dispersion of the evolution equations, which are the function of
different plasma parameter involve in the consider plasma system. Also evident
from the structure of the approximate analytical solution that the amplitude and the
width of the soliton depends on the Mach number M τð Þð Þ which involve the forcing
term F0 cos ωτð Þ and the damping parameter. Thus the amplitude and the width of
the solitary wave structure changes with the different plasma parameters. Also they
are changes with the change of strength of external force F0, frequency of the
external force ω and the collisional frequency between the different plasma species.
The effect of these parameter can be studied through numerical simulation.
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