
Weather Forecasting
Edited by Muhammad Saifullah

Edited by Muhammad Saifullah

Weather warnings are important because governments use them to protect life and 
property. In addition, predicting temperature and precipitation is important for 

agriculture. As such, weather forecasting is an integral part of meeting targets 2 and 13 
of the United Nations’ Sustainable Development Goals: zero hunger and climate action, 
respectively. This book presents recent developments in scientific research on weather 
and climate in the extreme environments of Asian, African, and European regions. It 

provides in-depth case studies from Pakistan, the United States, Vietnam, Nigeria, and 
Africa. The global and inter-disciplinary results of these studies help us to understand 

and address the grand challenges of weather as well as its impact on society.

Published in London, UK 

©  2021 IntechOpen 
©  Ralwel / iStock

ISBN 978-1-83968-053-3

W
eather Forecasting





Weather Forecasting
Edited by Muhammad Saifullah

Published in London, United Kingdom





Supporting open minds since 2005



Weather Forecasting
http://dx.doi.org/10.5772/intechopen.78861
Edited by Muhammad Saifullah

Contributors
Cong Thanh, Tran Tan Tien, Dao Nguyen Quynh Hoa, Emmanuel P. Paul Agbo, Luis Alberiko Gil-Alana, 
Toju Esther Babalola, Philip Gbenro Oguntunde, Ayodele Ebenezer Ajayi, Francis Omowonuola Akinluyi, 
Muhammad Saifullah, Muhammad Waqas, Sarfraz Hashim, Mohsin Khan, Muhammad Adnan, Rana Muhammad 
Adnan, Shiyin Liu, Yasir Latif, Mudassar Iqbal, Sher Muhammad

© The Editor(s) and the Author(s) 2021
The rights of the editor(s) and the author(s) have been asserted in accordance with the Copyright, 
Designs and Patents Act 1988. All rights to the book as a whole are reserved by INTECHOPEN LIMITED. 
The book as a whole (compilation) cannot be reproduced, distributed or used for commercial or 
non-commercial purposes without INTECHOPEN LIMITED’s written permission. Enquiries concerning 
the use of the book should be directed to INTECHOPEN LIMITED rights and permissions department 
(permissions@intechopen.com).
Violations are liable to prosecution under the governing Copyright Law.

Individual chapters of this publication are distributed under the terms of the Creative Commons 
Attribution 3.0 Unported License which permits commercial use, distribution and reproduction of 
the individual chapters, provided the original author(s) and source publication are appropriately 
acknowledged. If so indicated, certain images may not be included under the Creative Commons 
license. In such cases users will need to obtain permission from the license holder to reproduce 
the material. More details and guidelines concerning content reuse and adaptation can be found at 
http://www.intechopen.com/copyright-policy.html.

Notice
Statements and opinions expressed in the chapters are these of the individual contributors and not 
necessarily those of the editors or publisher. No responsibility is accepted for the accuracy of 
information contained in the published chapters. The publisher assumes no responsibility for any 
damage or injury to persons or property arising out of the use of any materials, instructions, methods 
or ideas contained in the book.

First published in London, United Kingdom, 2021 by IntechOpen
IntechOpen is the global imprint of INTECHOPEN LIMITED, registered in England and Wales, 
registration number: 11086078, 5 Princes Gate Court, London, SW7 2QJ, United Kingdom
Printed in Croatia

British Library Cataloguing-in-Publication Data
A catalogue record for this book is available from the British Library

Additional hard and PDF copies can be obtained from orders@intechopen.com

Weather Forecasting
Edited by Muhammad Saifullah
p. cm.
Print ISBN 978-1-83968-053-3
Online ISBN 978-1-83968-054-0
eBook (PDF) ISBN 978-1-83968-055-7



Selection of our books indexed in the Book Citation Index 
in Web of Science™ Core Collection (BKCI)

Interested in publishing with us? 
Contact book.department@intechopen.com

Numbers displayed above are based on latest data collected. 
For more information visit www.intechopen.com

5,500+ 
Open access books available

156
Countries delivered to

12.2%
Contributors from top 500 universities

Our authors are among the

Top 1%
most cited scientists

135,000+
International authors and editors

165M+ 
Downloads

We are IntechOpen,
the world’s leading publisher of 

Open Access books
Built by scientists, for scientists

BOOK
CITATION

INDEX

 

CL
AR

IVATE ANALYTICS

IN D E X E D





Meet the editor

Dr. Muhammad Saifullah has research experience in the field of 
agricultural water resources and climate change. He obtained a 
Ph.D. from Hohai University, China. He is the recipient of two 
researcher awards from the Ministry of Education, China, as 
well as a second-place award from the Yellow River Institute of 
Hydraulic Research. He has published peer-reviewed interna-
tional research articles and investigated different international 

and national research projects. Dr. Saifullah worked as an assistant professor at the 
University of Agriculture Faisalabad and the University of Faisalabad, Pakistan. 
Then, he worked as a researcher at the Institute of International Rivers and Eco-se-
curity, Yunnan University, China. Currently, he is an assistant professor in the 
Department of Agricultural Engineering, Muhammad Nawaz Shareef University of 
Agriculture, Multan, Pakistan.



Contents

Preface XI

Section 1
Weather Forecasting 1

Chapter 1 3
The Role of Statistical Methods and Tools for Weather Forecasting 
and Modeling
by Emmanuel P. Agbo

Chapter 2 23
Evaluating the Performance of Different Artificial Intelligence Techniques 
for Forecasting: Rainfall and Runoff Prospective
by Muhammad Waqas, Muhammad Saifullah, Sarfraz Hashim,  
Mohsin Khan and Sher Muhammad

Chapter 3 39
Application of Kalman Filter and Breeding Ensemble Technique to Forecast 
the Tropical Cyclone Activity
by Cong Thanh, Dao Nguyen Quynh Hoa and Tran Tan Tien

Chapter 4 59
Prediction of Relative Humidity in a High Elevated Basin of Western 
Karakoram by Using Different Machine Learning Models
by Muhammad Adnan, Rana Muhammad Adnan, Shiyin Liu,  
Muhammad Saifullah, Yasir Latif and Mudassar Iqbal

Section 2
Weather and Climate Change 79

Chapter 5 81
Time Trends and Persistence in the Snowpack Percentages by Watershed 
in Colorado
by Luis Alberiko Gil-Alana

Chapter 6 91
Future Climate Change Impacts on River Discharge Seasonality for Selected 
West African River Basins
by Toju Esther Babalola, Philip Gbenro Oguntunde, Ayodele Ebenezer Ajayi  
and Francis Omowonuola Akinluyi



Contents

Preface XIII

Section 1
Weather Forecasting 1

Chapter 1 3
The Role of Statistical Methods and Tools for Weather Forecasting 
and Modeling
by Emmanuel P. Agbo

Chapter 2 23
Evaluating the Performance of Different Artificial Intelligence Techniques 
for Forecasting: Rainfall and Runoff Prospective
by Muhammad Waqas, Muhammad Saifullah, Sarfraz Hashim,  
Mohsin Khan and Sher Muhammad

Chapter 3 39
Application of Kalman Filter and Breeding Ensemble Technique to Forecast 
the Tropical Cyclone Activity
by Cong Thanh, Dao Nguyen Quynh Hoa and Tran Tan Tien

Chapter 4 59
Prediction of Relative Humidity in a High Elevated Basin of Western 
Karakoram by Using Different Machine Learning Models
by Muhammad Adnan, Rana Muhammad Adnan, Shiyin Liu,  
Muhammad Saifullah, Yasir Latif and Mudassar Iqbal

Section 2
Weather and Climate Change 79

Chapter 5 81
Time Trends and Persistence in the Snowpack Percentages by Watershed 
in Colorado
by Luis Alberiko Gil-Alana

Chapter 6 91
Future Climate Change Impacts on River Discharge Seasonality for Selected 
West African River Basins
by Toju Esther Babalola, Philip Gbenro Oguntunde, Ayodele Ebenezer Ajayi  
and Francis Omowonuola Akinluyi



Preface

Weather forecasting is the process of using atmosphere, land, ocean, and 
 meteorology data to project the weather of a given location. Forecasting mainly 
depends on precipitation, atmospheric pressure, relative humidity, sunshine 
hours, and cloud cover. Nowadays, it relies on model-based numerical calculations. 
However, human efforts to select the appropriate forecast model are also involved, 
necessitating that the meteorologist have knowledge of model performance and 
biases. The uncertainty in weather forecasting is due to the complicated nature of 
the atmosphere, complex calculations, and lack of understanding of the atmosphere 
and related processes. The use of statistical models, artificial intelligence tech-
niques, machine learning models, the Kalman filter, and other advanced methods 
help meteorologists reduce errors in weather predictions. 

Weather warnings are important because governments use them to protect life and 
property. In addition, predicting temperature and precipitation is important for 
agriculture. According to the United Nations’ Sustainable Development Goals for 
2030, weather forecasting is integral to meeting targets 2 and 13: zero hunger and 
climate action, respectively. 

This book presents recent developments in scientific research on weather and 
climate in the context of currently ongoing processes in the extreme environments 
of Asian, African, and European regions. It provides in-depth case studies from 
Pakistan, the United States, Vietnam, Nigeria, and Africa. The global and inter-
disciplinary results of these studies help us to understand and address the grand 
challenges of weather as well as its impact on society.

Weather forecasting and climate change have to be carefully considered and moni-
tored in order to educate for advancement in weather forecasting and to implement 
strategies of resilience, adaptation, and mitigation for meeting the SDGs. 

Dr. Muhammad Saifullah
Assistant Professor,

Department of Agricultural Engineering, 
MNS University of Agriculture Multan,

Multan, Punjab, Pakistan
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Chapter 1

The Role of Statistical Methods
and Tools for Weather Forecasting
and Modeling
Emmanuel P. Agbo

Abstract

The need to understand the role of statistical methods for the forecasting of
climatological parameters cannot be trivialized. This study gives an in depth review
on the different variations of the Mann-Kendall (M-K) trend test and how they can
be applied, regression techniques (Simple and Multiple), the Angstrom-Prescott
model for solar radiation, etc. The study then goes ahead to apply some of them
with data obtained from the Nigerian Meteorological Agency (NiMet), and apply-
ing tools like the python programming language andWolframMathematica. Results
show that the maximum ambient temperature for Calabar is increasing (Z = 2.52)
significantly after the calculated p-value <0.05 (significant level). The seasonal
M-K test was also applied for the dry and wet seasons and both were found to be
increasing (Z = 3.23 and Z = 4.04 respectively) after their calculated p-values
<0.05. The relationship between refractivity and other meteorological parameters
relating to it was discerned using partial differential equations giving the gradient of
each with refractivity; this was compared with results from the correlation matrix
to show that the water vapor contents of the atmosphere contributes significantly to
the variation of refractivity. Multiple linear regression has also been adopted to give
an accurate model for the prediction of refractivity in the region after the residual
error between the calculated refractivity and predicted refractivity was minimal.

Keywords: meteorology, forecasting, python programming, climate,
Mann-Kendall, multiple linear regression

1. Introduction

The importance of statistical modeling and forecasting of time series data, etc.,
cannot be overemphasized. The benefits ranges from easy interpretability arising
from visualization of results to the removal of the mysticism factor for the layman.
The word ‘forecasting’ has to do with predicting the future based on data from the
past and present. This is regularly done by the analysis of trends.

A routine example might be the estimation of temperature trends for some
specified future date. Compared to forecasting, prediction can be seen as a term
which is more general.

Forecasting methods have been applied in different areas ranging from clima-
tology, finance, foreign exchange, etc. This has been applied in different regions of
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the world for better prediction and simulation. The key distinction in Information
and Communication Technology (ICT) is the fact that with this technology, we can
make predictions and simulations from previously obtained data. This is true and
can be applied for every area while paying attention to the rules that govern them.

In this study we will be applying some statistical methods which can be adopted
for the forecasting of climatic (weather) parameters in different regions of the world.

It is important to note that the predictability of the atmosphere is not perfect,
this brings into context the fact that although statistical methods are necessary,
results obtained are not totally accurate which is why room for errors (uncer-
tainties) are given, albeit, a trend can be observed [1]. Statistical methods have been
applied in the study of different regions for example, Daniel S. Wilks in [1] but-
tressed on the use of these methods on the analyses of different regions that do not
necessarily have the same climatic condition. This brings into context the fact that
laws are true irrespective of the region, i.e. neglecting all other factors that have
little contribution to weather, the same methods can be applied in different regions
to yield accurate results.

Analysis of trends can be useful in depicting and predicting the changing
patterns and erraticism of some climatic parameters. This analysis gives a proper
knowledge about the changing conditions of the climate and its effects, by the
evaluation of meteorological parameters.

A data scientist using any tool or software for modeling and forecasting is
particularly interested in the progression of these parameters (meteorological) as a
function of time(t) f tð Þ. The designers of navigation or monitoring systems cannot
trivialize the importance of forecasting as this is a very important part of their
system. The spatial and temporal changes of atmospheric parameters calls for the
adoption of this analysis to discern the effects of some meteorological parameters on
some variables; for example, see [2].

A very popular software for any data scientist that is willing to understand the
nitty-gritty of weather forecasting is Python Programming. This paper will explain
in detail the setup processes for this to help the layman get started. A dataset of
temperature trend in Calabar, Nigeria will be used at the end of this chapter to test
the processes explained for better visualization.

The applicability of results from forecasting cannot be underestimated because
this is great information for people that depend on weather conditions like farmers,
surfers, and event planners, etc. The accurate prediction of atmospheric parameters
can go a long way in positively affecting the financials of the informed, as money
can be saved by avoiding unnecessary cost during trying times [3]. Natural disasters
like Tsunami can be predicted with the correlation of meteorological parameters,
harnessing information as explained previously and then incorporating this infor-
mation through machine learning into the design of forecasting systems.

We delve deeper into a review of statistical methods like the M-K test and its
different variations, the Angstrom-Prescott model for the estimation of solar radia-
tion, linear regression techniques, with a deep look into multiple linear regression
which will be applied in predicting refractivity after obtaining the coefficients of
the variables. Results will be obtained and explained.

2. Review of statistical tests/methodology

With the shift going on in the world of technology, the implementation of some
time series forecasting methods will be explained as well as their python imple-
mentation techniques. We often use forecasting models on time series data for the
estimation of future trends of meteorological parameters.

4
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2.1 Statistical test for trend (Mann-Kendall trend test)

One of the most important and widely applied test for trends involving time series
is the Mann-Kendall trend test. It is mostly used for environmental and hydrological
data. The test is non parametric and does not necessitate the data conforming to a
particular distribution, similarly, the sensitivity of the test due to an inhomogeneous
series resulting to abrupt breaks is very low [4]. The null hypothesis Ho which says
that there is no monotonic trend in the series, is tested against the alternative
hypothesisH1 which says that there is a trend in the series. The test is applied to cases
where a range of data xiis in agreement with the equation below;

xi ¼ f tið Þ þ εi (1)

f tið Þis a function of time and εi are the range residuals with zero mean.
The Mann-Kendall test statistic S is calculated using the formula

S ¼
Xn�1

k¼1

Xn

j¼k¼1

sgn x j � xk
� �

(2)

where;

sgn x j � xk
� � ¼

þ1; if x j � xk
� �

>0

0; if x j � xk
� � ¼ 0

�1; if x j � xk
� �

<0

8>><
>>:

(3)

n in Eq. (2) is the number of data values in the studied series. The advantage of
this test is that it can handle the situation where data values are incomplete with
respect to the number of years or months, etc. [4]

In the case where n is greater than or equal to 10 (10 and above), we adopt the
normal approximation (Z).

To find the variance of S, ‘VAR(S)’, we compute Eq. (4) below.

VAR Sð Þ ¼ 1
18

n n� 1ð Þ 2nþ 5ð Þ �
Xg

p¼1

tp tp � 1
� �

2tp þ 5
� �" #

(4)

From the equation, the number of data values is represented by n, the number of
equal of tied groups is represented by g, and the number of data values in the pth

group is represented by tp.
We now use the results from VAR(S) to find the test statistic Z

Z ¼

S� 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
VAR Sð Þp ; S>0

0; S ¼ 0

Sþ 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
VAR Sð Þp ; S<0

8>>>>>><
>>>>>>:

(5)

A decreasing trend can be discerned from results of Eq. (5) when the value of Z
is negative and an increasing trend when Z is positive (Table 1).

The significance of an increasing or decreasing trend is observed when the
p-value of the series is lower than the significance level ∝ð Þ, in this case, we can say
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there is a trend observed trend in the series [5]. The adoption of different significant
levels with respect to the number of given data values n is given in Table 1.

The classification of this probability/significance level is important because
results can be confused to be entirely true. We need to understand that the signif-
icance level of say 0.05, means that there is a 5% probability that a mistake will be
made while rejecting the null hypothesis Ho. Similarly, a significance level of 0.01
means that there is a 1% probability that a mistake will be made while rejecting Ho:

2.2 Regression analysis

The two easiest ways to forecast time series data by observation are the simple
regression and the moving average, they both depend on historical data. The former
demands mere observation of the previous trend and drawing up an extrapolation
from there; this can be somewhat less accurate. The moving average has been used for
forecasting meteorological data like rainfall (See reference [6]). Analyzing with
regression has to do with the relationship one variable which is dependent has with one
or more independent variables.We use them to check for models showing the strength
of relationship between the variables and any possible future relationships [1].

2.2.1 Simple linear regression

This regression variation is based on the assumption that the two variables
(dependent and independent variable) show a linear relationship between the
intercept and the slope, similarly, there is no residual error in this regression and the
value is constant across all observations.

Y ¼ �mX � cþ e (6)

Y is the dependent variable.
X is the independent variable.
m is the value of the slope.
c is the intercept.
e is the residual error.
The regression is depicted by a straight line describing the Eq. (6) above (Figure 1).

2.2.2 Multiple linear regression

This model is similar to that of simple linear regression, but the only exception is
that it has multiple independent variables, unlike that of simple linear regression
which has just the one. This can be represented by Eq. (7);

Y ¼ �m1X1 �m2X2 �m3X3 � cþ e (7)

Significance level (∝Þ Required n

0.1 (10%) ≥ 4

0.05 (5%) ≥ 5

0.01 (1%) ≥ 6

0.001 (10%) ≥ 7

Table 1.
Significance level (∝Þ required for given numbers of data.
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Y is the dependent variable.
X1,X2,X3 are the independent variables.
m1,m2,m3 are the values of the slopes.
c is the intercept.
e is the residual error.
One thing to note about multiple linear regression is that the independent

variables must not be collinear, i.e., they do not have to have a high correlation
coefficient between each other, else there will be difficulty in assessing the
relationship between the dependent and independent variables.

We also need to take note that before multiple linear regression is performed on
range of data values, a linear relationship must exist between each independent
variable and the dependent variable. The amount of residual error must be almost
constant at each point in the model. The multiple linear regression will be applied to
study and predict refractivity trend in Calabar, Nigeria. This was done with the
‘statsmodel’ package in python programming and results have been displayed in
section 2.5.

A perfect meteorological equation that this regression technique can be applied
to is the refractivity equation recommended by the International Telecommunica-
tion Union (ITU) shown in Eq. (8);

N ¼ 77:6
P
T
þ 3:73� 105 e

T2 N � unitsð Þ (8)

P is the Atmospheric Pressure (hPa).
e is the Atmospheric Vapor Pressure (hPa).
T is the Absolute Temperature (K).
Eq. (8) shows the relationship between refractivity (dependent variable) and

meteorological parameters (ambient temperature, atmospheric pressure, and vapor
pressure) which are all independent variables.

This has been applied in [7] modeling the meteorological parameters for the
accurate determination of refractivity. These meteorological parameters (Ambient
Temperature, Atmospheric Pressure and Relative Humidity) have been obtained
from the Nigeria meteorological Agency (NiMet), Calabar.

Results have been presented in section 2.5. From Eq. (8), we obtain the
atmospheric vapor pressure e from the relation;

Figure 1.
Schematic illustration of simple linear regression. The regression line, Y ¼ �mX þ cþ e, is chosen as the one
minimizing some measure of the vertical differences (the residuals) between the points and the line. The residual
e is the difference between the data point and the regression line.
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e ¼ esH
100

hPað Þ (9)

es is the saturated vapor pressure (hPa) calculated from;

es ¼ 6:11 exp
17:26 T � 273:16ð Þ

T � 35:87

� �
hPað Þ (10)

2.3 Review of the application of simple linear regression analysis in climatology
(the Angstrom-Prescott model)

The linear regression technique can be applied to find the relationships between
an independent variable and the dependent variable. We can see the explanation of
this from Eq. (6).

One major example of the benefits of linear regression is the estimation of the
Angstrom-Prescott coefficients of the Angstrom-Prescott model for a particular
region as this relates to solar radiation. The Angstrom-Prescott model is given by [8];

H
H0

¼ aþ b
n
N

(11)

where the monthly average daily extraterrestrial radiation is given by H0, H is
the monthly average daily global radiation in Wh/m2/day. n is the actual sunshine
duration in a day for a particular region (hours), N is the monthly mean length of
the day in hours. The Angstrom-Prescott empirical coefficients are given by a and b.
The linear regression technique has been adopted by Srivastava and Pandey [8] to
find by a and b. Comparing Eq. (6) to Eq. (9) we have that;

H
H0

¼ Y variableð Þ
n
N

¼ X variableð Þ
b ¼ m ¼ slope
a ¼ c ¼ Y intercept

(12)

This shows that if we have the variables ‘ HH0
and n

N’, we can get the values of a and
b, from our Y intercept and slope respectively. Getting these constant values for
specific regions will help us forecast future trends.

For better understanding, the extraterrestrial radiation H0 is given by the
equation [9];

H0 ¼ 24� 3600� ISC
π

� 1þ 0:33 cos
360� d
365

� �� �

� cosϕ cos δ sinωþ πω

180
sinϕ sin δ

h i
(13)

Here, ISC is the solar constant with a value of 1367 W/m2, d represents the day of
the year (from January 1st to December 31st); taking January 1st as 1 and December
31st as 365 or 366 (in the case of a leap year). The latitude of the study location, the
declination angle and the sunset hour angle are represented by ϕ, δ, and ω respec-
tively. ω ¼ cos �1 � tanϕ tan δð Þ. The declination angle can be obtained from [9].

δ ¼ 23:45 sin 360
284þ d
365

� �� �
(14)
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The monthly mean length of the day (in hours) can be obtained from [9].

N ¼ 2ω
15

(15)

The above equations can be applied to estimate the coefficients using linear
regression. By this we can use these coefficients to predict solar radiation for a given
region.

We know that the declination angle ranges from �23:5≤ δ≤ þ 23:5. From
Figure 2, we can see that the declination angle is 0 ° C at the Verbal and Autumnal
Equinox, while the angles are �23.5 and + 23.5 at the summer and winter solstice
respectively. It is easy to see why this has a huge effect on the variation of Global
solar radiation.

Klein in 1977 [10] recommended average days of the various months and
corresponding angle of declination as in Table 2.

2.4 Calculus in climatology

Applying calculus in environmental science is important in predicting a lot
of things. It can be applied to understand the impacts of parameters on the variations
of other parameters that they relate to. It is important to know that calculus is the
‘mathematical study continuous change’so this can be applied in climatology to
discern the impacts of some parameters on the “continuous change” of others [11–13].

Writing the refractivity equation in terms of relative humidity H, by substitut-
ing (10) into (9), and the into (8), we have;

N ¼ 77:6
P
T
þ 3:73� 105

6:11 exp 17:26 T�273:16ð Þ
T�35:87

� �
� 0:01H

T2 N � unitsð Þ (16)

Similarly, obtaining refractivity in terms of the saturated vapor pressure es using
Eq. (8) and (9) gives;

N ¼ 77:6
P
T
þ 3:73� 105 esH

100T2 N � unitsð Þ (17)

Now applying partial differentials to the equations for refractivity; Eqs. (8), (16),
and (17), we obtain partial differentials relating each parameter to refractivity;

Figure 2.
Yearly variation of declination angle δ with respect to the days of the year.
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∂N
∂P

¼ 77:6
T

∂N
∂T

¼ � 77:6
P
T2 þ 7:46� 105 e

T3

� �

∂N
∂H

¼
22790:3 exp

17:26 �273:16þ Tð Þ
�35:87 þ T

� �

T2

∂N
∂e

¼ 3:73� 105

T2

∂N
∂es

¼ 3:73� 103 �H
T2

(18)

From monthly Temperature, Humidity and Atmospheric pressure data obtained
for 2005–2018 from the archives of the Nigerian meteorological agency (NiMet)
Calabar, the atmospheric vapor pressure and the saturated vapor pressure can be
obtained by applying these parameters in Eqs. (9) and (10) (Figure 3).

2.5 Python implementation for Mann-Kendall trend test

With the python software installed, the next step will be installing an IDE
(integrated development environment). The easiest IDE to use is the Jupyter Note-
book. This IDE displays results as you code.

We will walk you through the processes for analyzing data by using the data for
Calabar in the south of Nigeria, collected from the archives of the Nigeria meteoro-
logical agency (NiMet). Research has been done in this area in climatology [14–18],
but with the application of python and the Mann-Kendall test can give more mean-
ing to time series data.

Month Date Day of the year (d) declination angle (δ)

January 17 17 �20.9

February 16 47 �13

March 16 75 �2.4

April 15 105 9.4

May 15 135 18.8

June 11 162 23.1

July 17 198 21.2

August 16 228 13.5

September 15 258 2.2

October 15 288 9.6

November 14 318 �18.9

December 10 344 �23

Table 2.
Recommended average days for various months and their corresponding declination angles [10].
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We need to install the python package for the Mann-Kendall test called
‘pymannkendall’. To install this package, the following python packages are required;

• Numpy

• Scipy

For handling and cleaning data we need the ‘pandas’ package, and for data
visualization we need the ‘matplotlib’ package.

We want to analyze maximum ambient temperature data for 20 years in Calabar.
In the Jupyter notebook, the first step will be to import the respective packages.

We must also note that for our examples in the Appendices, we stored the excel file
containing the data used for the analysis in the same folder as the python file for
easy reference.

Appendix A shows the process of importing the installed packages required for
the analysis into the workspace.

Before we perform theMann-Kendall test, we need to import the excel file titled
‘Temperature’ inwhich the table is stored, in a sheet namecalled ‘MAX’. SeeAppendix B.

Appendix C shows how the Mann-Kendall original test is performed after
importing the packages and data. We assigned the name of the imported data file
as ‘Max’ and set the significance level ∝ð Þ to the default 5% (0.05); this can be adjusted
by the user to his/her preference. Results were obtained and displayed in Appendix C.

We now perform the seasonal M-K test for the dry season variation, we import
the excel file titled ‘Temperature’, the date column will be an index column. The
sheet name of the excel file in which the data is stored is called ‘dry’. This imple-
mentation can be seen from Appendix D.

Appendix E shows the seasonal M-K test python implementation for the dry
season variation. By setting the significance level ∝ð Þ to the default 5% (0.05), and
the period to 4, which stands for the 4 months of the dry season in the study area
(November to February), we have satisfied the criteria for the seasonal M-K test.

Figure 3.
Map of study area showing Calabar as a coastal area (left) and the exact location of the Nigerian
meteorological agency (NiMet) where the data was obtained (right).
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For the wet season variation, the excel file titled ‘Temperature’ will be imported
and the date will be an index column. The sheet name is called ‘wet’. Appendix F
shows the implementation code for this importation.

We can now perform the seasonalMann-Kendall test on thewet season data.Appen-
dix G shows this. The SeasonalMann-Kendall test of the imported file we assigned the
name ‘wet’ has been achieved by setting the significance level ∝ð Þ to the default 5%
(0.05); this can be adjusted by the user to his preference.We also set the period to 8,
which stands for the 8months of thewet season in the study area (March to October).

There are other variations of the Mann-Kendall test along with their python
implementation [19]. These can be used depending on the data obtained and the
aim of the test.

1.Hamed and Rao Modified MK Test (hamed_rao_modification_test): This test
addresses serial correlation issues

2.Yue and Wang Modified MK Test (yue_wang_modification_test): This is also a
variance correction method for considered serial autocorrelation proposed by
Yue, S., &Wang, C. Y. (2004). User can also set their desired significant n
lags for the calculation.

3.ModifiedMK test using Pre-Whiteningmethod (pre_whitening_modification_test):
This test pre-whitens the time series before applying the trend test

4.Modified MK test using Trend Free Pre-Whitening method
(trend_free_pre_whitening_modification_test): This test removes the trend
component from the series before pre-whitening and the applying the trend
test

5.Multivariate MK Test (multivariate_test): As the name implies, this test is for
multivariate (multiple) parameters. This can be used for monthly data, where
each month can be considered as a parameter.

6.Regional MK Test (regional_test): As the name implies, this calculates the
trend at a regional scale

7.Correlated Multivariate MK Test (correlated_multivariate_test): Unlike the
Multivariate MK test, this test is also a multivariate mk test, but the
parameters are correlated.

8.Correlated Seasonal MK Test (correlated_seasonal_test): This test is similar to
the seasonal MK test, but in this is used when the time series is significantly
correlated with previous seasons/months

9.Partial MK Test (partial_test): Due to the fact that in some studies, many
factors can affect the dependent parameters, so we overcome this by
inputting one dependent parameter and an independent parameter.

10.Theil-Sen’s Slope Estimator (sens_slope): This test method proposed by Theil
(1950) and Sen (1968) [20] is applied to estimate the magnitude of the
monotonic trend.

11.Seasonal Theil-Sen’s Slope Estimator (seasonal_sens_slope): This test method
considers the seasonal effect of the Theil-Sen’s Slope Estimator.
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3. Results and discussion

3.1 Results

3.2 Discussion

For the annual variation in Figure 4, results show that there is a trend in the
series as the p-value is less than the significance level (0.05). The positive Z value
(observed from Appendix C) shows that the series is increasing. We can conclude
that the maximum ambient temperature variation is increasing, and it is doing so
with significance, the slope of the trend can be observed from the results in
Appendix C.

Figure 4.
Mann-Kendall trend of maximum ambient temperature.

Figure 5.
Seasonal trend of maximum ambient temperature for dry and wet season.
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For the dry season variation observed in Figure 5, results show that there is a
trend in the series. The positive Z value of the dry season trend observed from
Appendix E shows that the series is increasing. We can conclude that the maximum
temperature variation in the dry season is increasing significantly as the calculated
p-value is less than the significance level (0.05), the slope of the trend can be
observed from results in Appendix E.

For the wet season variation observed also in Figure 5, results show that there is
a trend in the series. The positive Z value from Appendix G shows that the series
is increasing. We can conclude that the maximum temperature variation in the
dry season is increasing significantly as the calculated p-value is less than the
significance level (0.05), the slope of the trend can be observed from the results in
Appendix G.

These results are in agreement with Agbo et al. [2] for the same region.

3.2.1 Relationship between refractivity and meteorological parameters

To understand the relationship between refractivity and all parameters relating
to it, we adopt Eq. (18) by substituting obtained and calculated data.

From the data obtained at the Nigerian Meteorological Agency (NiMet) Calabar,
and adopting Eq. (9) and (10) we obtain the total annual values for the meteoro-
logical parameters as;

P = 1005.97 hPa; H = 85.71%; T = 300.28 K; e = 30.71 hPa; es = 35.94 hPa.
Substituting these values into the equations in Eq. (18), we obtain;

∂N
∂P

¼ 0:258425

∂N
∂T

¼ �0:0196183

∂N
∂H

¼ 1:48436

∂N
∂e

¼ 4:13672

∂N
∂es

¼ 3:62832

(19)

Results from the gradients of the differential equations in Eq. (19) show that the
vapor pressure and saturated vapor pressure contributes more to the variation of
refractivity. The relative humidity similarly has a high gradient; this can be physi-
cally explained by relating the water vapor content of the atmosphere to the varia-
tion of refractivity.

The correlation plot of refractivity and all other meteorological parameters is
shown in Figure 6. Results agree with that of the differential equations in Eq. (19).
As seen in Eq. (19), the correlation plot showed that the atmospheric vapor pressure
and relative humidity had high positive relationships with refractivity. The satu-
rated vapor pressure however has a low correlation coefficient compared to the high
gradient in Eq. (19); this can be interpreted thus; that the variation of the saturated
vapor pressure has a relatively high contribution to the variation of refractivity, but
the saturated vapor pressure does not have a similar trend to that of refractivity.

3.2.2 Application of multiple linear regression in climatology

Multiple linear regression has been applied to relate refractivity with obtained
meteorological parameters. The goal is to obtain an equation that relates refractivity

14

Weather Forecasting



to meteorological parameters through Multiple Linear Regression (MLG). Using
Eq. (8) to calculate refractivity, we show results in Table 3. As part of the condi-
tions for carrying out multiple linear regression, we have to test for collinearity

Figure 6.
Correlation matrix of atmospheric parameters and refractivity.

Year Pressure Temperature Humidity Refractivity (N)

2005 1005.15 300.23 87.15 388.88

2006 1005.38 300.17 85.38 385.73

2007 1005.50 300.10 84.84 384.74

2008 1005.44 300.21 86.00 387.11

2009 1005.83 300.29 83.36 383.75

2010 1005.46 300.71 83.26 385.62

2011 1005.80 300.12 87.49 388.83

2012 1005.75 300.44 87.97 391.57

2013 1005.74 300.03 87.07 387.69

2014 1005.92 299.79 85.15 383.38

2015 1006.55 300.03 85.68 385.83

2016 1006.97 300.70 85.69 389.73

2017 1007.09 300.58 86.33 389.90

2018 1007.02 300.52 84.58 386.84

Table 3.
Data of obtained meteorological parameters and refractivity.
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between the independent variables. We see from the correlation matrix in Figure 6
that the independent variables are not collinear, hence this satisfies the criteria for
carrying out MLG.

From our analysis we obtain the coefficients (slopes) of the variables (meteoro-
logical parameters) and the intercept from Table 4 to form the equation below;

Refractivity Nð Þ ¼ 1:53Humidityþ 0:17Pressureþ 5:68Temperature� 1617:97 (20)

The above equation can be used to accurately predict the variation of refractiv-
ity, given the values of the meteorological parameters. Table 4 shows these results
obtained from the multiple linear regression. The values for the predicted refrac-
tivity (Predicted N) was gotten from Eq. (20) by substituting the values of the
meteorological parameters. This equation is more straight forward that the equation
recommended by ITU as all the variables and coefficients are all linear with respect
to refractivity.

Figure 7 shows the trend of refractivity calculated from Eq. (8) with that of
predicted refractivity, calculated from Eq. (20). The residual error seen from
Table 5 shows relatively constant values (in agreement with our MLG conditions),
and a small deviation from the original values of refractivity.

From Table 4 probability values (p-values) of the parameters are all less than
the significance level (5% = 0.05; 95% confidence level), this shows that the varia-
tion agrees with the alternative hypothesis and shows a trend relating the indepen-
dent variables to the dependent variables.

C Se t Stat P-value Lower 95% Upper 95%

Intercept 1617.97 51.05 �31.69 2.30 � 10�11 �1731.72 �1504.23

Pressure 0.17 0.05 3.25 8.75 � 10�03 0.05 0.28

Temperature 5.68 0.13 44.90 7.22 � 10�13 5.39 5.96

Humidity 1.53 0.02 68.62 1.05 � 10�14 1.48 1.58

Table 4.
Output of themultiple linear regression showing the coefficients (C) of eachparameter and their standard error (Se).

Figure 7.
Comparison plot of annual refractivity and predicted refractivity.
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Results from Figure 7 show the minimal error between the predicted refractivity
and the calculated refractivity. Table 5 shows the values for both as well as the
residual error between them. This shows that the error is small and thus, Eq. (20)
can be adopted for the prediction of refractivity for the study area. This equation
can be modified and refractivity N can be gotten in terms of other parameters like
the saturated vapor pressure and the atmospheric vapor pressure.

4. Conclusion

There are myriads of ways in which weather can be forecasted and this arises
from the understanding of basic meteorological parameters and how they behave in
the atmosphere; and also from the understanding of the role of statistics in climate
research [21]. Research in this area has been reviewed to give a better understand-
ing of the different techniques for analyzing trends; which include, Linear Regres-
sion (Multiple and Simple), the Mann-Kendall trend test [22, 23] (to test for trends
in a time series variation), the Angstrom-Prescott model for estimating solar radia-
tion as well as the python implementation of some various techniques.

The multiple linear regression technique was applied to model an equation to
accurately predict the trend for refractivity in the study location, the simple linear
regression technique has been explained as well as accurate methods for its appli-
cation in the predicting/estimation of the Angstrom-Prescott coefficients. These
coefficients can be gotten for specific regions and can be accurately applied to
predict solar radiation in that region.

Results from the multiple linear regression gave an accurate model for the
prediction of refractivity in the region after the residual error between the calcu-
lated refractivity and predicted refractivity was minimal.

The Mann-Kendall original and seasonal test has been applied to analyze the
maximum temperature in Calabar, Nigeria for the annual and seasonal (dry and wet

Year N Predicted N Residuals

2005 388.88 388.87 0.005

2006 385.73 385.85 �0.121

2007 384.74 384.69 0.056

2008 387.11 387.09 0.025

2009 383.75 383.54 0.204

2010 385.62 385.72 �0.109

2011 388.83 388.89 �0.060

2012 391.57 391.45 0.124

2013 387.69 387.74 �0.048

2014 383.38 383.45 �0.074

2015 385.83 385.74 0.091

2016 389.73 389.65 0.076

2017 389.90 389.97 �0.072

2018 386.84 386.93 �0.095

Table 5.
Residual output derived from the results of the coefficients, showing the predicted refractivity values compared
to the refractivity values to give the residuals.
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season) variation respectively, and results show that the annual, dry season and wet
season had increasing variations (after having positive Kendall Z-values of 2.52,
3.23, 4.04 respectively) and they were all increasing significantly at 5% (0.05) level
of significance after their p-values were all less than 0.05 agreeing with Agbo and
Ekpo [23].

The relationship between refractivity and other meteorological parameters
relating to it was discerned using partial differential equations giving the gradient of
each with refractivity; this was compared with results from the correlation matrix
to show that the water vapor contents of the atmosphere contributes significantly to
the variation of refractivity.
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A. Appendices

A.1 Appendix A

Input:
import numpy as np
import pandas as pd
import pymannkendall as mk
import matplotlib.pyplot as plt
%matplotlib inline
from pandas import ExcelWriter
from pandas import ExcelFile
from matplotlib.figure import Figure

This will import the above installed packages into the workspace.

A.2 Appendix B

Max = pd.read_excel(“Temperature.xlsx”, ‘MAX’ index_col= ‘YEAR’)
The excel file titled ‘Temperature’ will be imported and the data will be an index

column. The sheet name is called ‘MAX’.
We can now perform the Mann-Kendall test

A.3 Appendix C

Input
mk.original_test(Max, alpha=0.05)
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Output
Mann_Kendall_Test(trend=‘increasing’, h=True,
p=0.011793457077065028, z=2.518264946676251,
Tau=0.5164835164835165, s=47.0, var_s=333.6666666666667,
slope=0.06763844012453053, intercept=303.5218288324476)

A.4 Appendix D

dry=pd.read_excel(“Temperature data.xlsx”, ‘Sheet2’, index_col= ‘YEAR’)
The excel file titled ‘Temperature’ will be imported and the data will be an index

column. The sheet name is called ‘dry’.
We can now perform the Mann-Kendall test

A.5 Appendix E

Input
mk.seasonal_test(dry, alpha=0.05, period=4)

Output
Seasonal_Mann_Kendall_Test(trend=‘increasing’, h=True,
p=0.001232892414896325, z=3.231159219618304,
Tau=0.3269230769230769, s=119.0, var_s=1333.6666666666667,
slope=0.08467049808428379, intercept=305.1036046113848)

A.6 Appendix F

wet=pd.read_excel(“Temperature data.xlsx”, ‘Sheet3’, index_col=
‘YEAR’)

The excel file titled ‘Temperature’ will be imported and the data will be an index
column. The sheet name is called ‘wet’.

We can now perform the Mann-Kendall test

A.7 Appendix G

Input
mk.seasonal_test(wet, alpha=0.05, period=8).

Output
Seasonal_Mann_Kendall_Test(trend=‘increasing’, h=True,
p=5.126153098378161e-05, z=4.049799512953561,
Tau=0.28846153846153844, s=210.0, var_s=2663.3333333333335,
slope=0.05741935483871145, intercept=302.85004032258064)

19

The Role of Statistical Methods and Tools for Weather Forecasting and Modeling
DOI: http://dx.doi.org/10.5772/intechopen.96854



Author details

Emmanuel P. Agbo1,2,3

1 Cross River University of Technology, Calabar, Cross River State, Nigeria

2 Lafarge Africa PLC, Mfamosing Plant, Akamkpa, Cross River State, Nigeria

3 Osun State University, Osogbo, Osun State, Nigeria

*Address all correspondence to: emmanuelpaulagbo@gmail.com

©2021 TheAuthor(s). Licensee IntechOpen. This chapter is distributed under the terms
of theCreativeCommonsAttribution License (http://creativecommons.org/licenses/
by/3.0),which permits unrestricted use, distribution, and reproduction in anymedium,
provided the original work is properly cited.

20

Weather Forecasting



References

[1] Statistical weather forecasting. In.
Daniel S. Wilks S, editor. Elsevier:
International Geophysics; 1995.
pp. 159-232. DOI: 10.1016/S0074-6142
(06)80042-2

[2] Agbo EP, Ettah EB, Eno EE. The
impacts of meteorological parameters
on the seasonal, monthly, and annual
variation of radio refractivity. Indian
Journal of Physics. 2021; 95: 195-207.
DOI: 10.1007/s12648-020-01711-9

[3] Datta A, Si S, Biswas S. Complete
Statistical Analysis to Weather
Forecasting. In: Das A., Nayak J.,
Naik B., Pati S., Pelusi D. (eds)
Computational Intelligence in Pattern
Recognition. Advances in Intelligent
Systems and Computing, 2020. vol. 999.
Springer. Singapore. DOI: 10.1007/
978-981-13-9042-5_65

[4] Alhaji UU, Yusuf AS, Edet CO,
Oche CO, Agbo EP. Trend analysis of
temperature in Gombe state using Mann
Kendall Trend test. Journal of Scientific
Research and Reports. 2018;20(1):1-9.
DOI: 10.9734/JSRR/2018/42029

[5] Agbo EP, Ekpo CM, Edet CO.
Analysis of the effects of meteorological
parameters on radio refractivity,
equivalent potential temperature and
field strength via Mann-Kendall test.
Theoretical and Applied Climatology.
2021 Feb; 143 (3): 1437-1456. DOI:
10.1007/s00704-020-03464-1

[6] Akrami SA, El-Shafie A, Naseri M,
Santo CAG. Rainfall data analyzing
using moving average (MA) model and
wavelet multi-resolution intelligent
model for noise evaluation to improve
the forecasting accuracy. Neural
Comput & Applic. 2014;25:1853-1861.
DOI: 10.1007/s00521-014-1675-0

[7] Ajileye OO, Popoola OS, Kayode FF,
Rabiu AB. Meteorological models for
determination of surface radio

refractivity over Nigeria. Current
Journal of Applied Science and
Technology. 2019;36(3):1-15. DOI:
10.9734/CJAST/2019/v36i330235

[8] Srivastava RC, Pandey H. Estimating
Angstrom-Prescott coefficients for India
and developing a correlation between
sunshine hours and global solar
radiation for India. International
Scholarly Research Notices. 2013;2013

[9] Razmjoo A, Heibati SM, Ghadimi M,
Qolipour M, Nasab JR. Using Angstrom-
Prescott (A-P) Method for Estimating
Monthly Global Solar Radiation in
Kashan. J Fundam Renewable Energy
Appl. 2016: 6(5). DOI: 10.4172/
2090-4541.1000214

[10] Klein SA. Calculation of monthly
average insolation on tilted surfaces.
Solar Energy. 1977;19(4):325-329

[11] Ustrnul Z, Czekierda D. Application
of GIS for the development of
climatological air temperature maps: an
example from Poland. Meteorological
Applications: A journal of forecasting,
practical applications, training
techniques and modelling. 2005 Mar;12
(1):43-50

[12] Testud J, Chong M. Three-
dimensional wind field analysis from
dual-Doppler radar data. Part I:
Filtering, interpolating and
differentiating the raw data. Journal of
Applied Meteorology and Climatology.
1983 Jul 1;22(7):1204-1215

[13] Błażejczyk KR, Matzarakis AN.
Assessment of bioclimatic
differentiation of Poland based on the
human heat balance. Geographia
Polonica. 2007;80(1):63-82

[14] Agbo EP, Ekpo CM. Trend Analysis
of the Variations of Ambient
Temperature Using Mann-Kendall Test

21

The Role of Statistical Methods and Tools for Weather Forecasting and Modeling
DOI: http://dx.doi.org/10.5772/intechopen.96854



and Sen’s Estimate in Calabar. Southern
Nigeria.

[15] Edet CO, Eno EE, Ettah EB,
Kamgba FA. Seasonal Variation of Radio
Refractivity in Calabar, Nigeria.
measurements. 2017 Jun;6(6).

[16] Edet CO, Eno EE, Ettah EB.
Monthly Variation of Radio Refractivity
in Calabar, Nigeria. International
Journal of Scientific Research
Engineering & Technology. IJSRET:
ISSN; 2017. pp. 2278-0882

[17] Edet CO, Eno EE, Ettah EB. Effects
of Variations in Meteorological
Parameters of Atmospheric Pressure.
Relative Humidity and Temperature on
Radio Refractivity in Calabar.

[18] Kamgba FA, Edet CO, Njok AO.
Effects of some meteorological
parameters on wind energy potential in
Calabar, Nigeria. Asian journal of
physical and chemical. sciences. 2017
Nov 16:1-7

[19] Hussain M. Mahmud I.
pyMannKendall: a python package for
non-parametric Mann Kendall family of
trend tests. Journal of Open Source
Software. 2019;4(39):1556. DOI:
10.21105/joss.01556

[20] Sen PK. Estimates of the regression
coefficient based on Kendall's tau.
Journal of the American statistical
association. 1968 Dec 1;63(324):
1379-1389

[21] Zwiers FW, Storch HV. On the role
of statistics in climate research.
International Journal of Climatology.
2004;24:665-680. DOI: 10.1002/
joc.1027

[22] Agbo EP, Ekpo CM, Edet CO. Trend
Analysis of Meteorological Parameters,
Tropospheric Refractivity, Equivalent
Potential Temperature for a
Pseudoadiabatic Process and Field
Strength Variability. Using Mann

Kendall Trend Test and Sens Estimate.
arXiv preprint arXiv. 2020 Oct 9;2010:
04575

[23] Agbo EP, Ekpo CM. Trend Analysis
of the Variations of Ambient
Temperature Using Mann-Kendall Test
and Sen’s Estimate in Calabar, Southern
Nigeria. InJournal of Physics:
Conference Series 2021 Jan (Vol. 1734,
No. 1, p. 012016). IOP Publishing. . DOI:
10.1088/1742-6596/1734/1/012016

22

Weather Forecasting



Chapter 2

Evaluating the Performance of
Different Artificial Intelligence
Techniques for Forecasting:
Rainfall and Runoff Prospective
Muhammad Waqas, Muhammad Saifullah, Sarfraz Hashim,
Mohsin Khan and Sher Muhammad

Abstract

The forecasting plays key role for the water resources planning. Most suitable
technique is Artificial intelligence techniques (AITs) for different parameters of
weather forecasting and generated runoff. The study compared AITs (RBF-SVM
and M5 model tree) to understand the rainfall runoff process in Jhelum River Basin,
Pakistan. The rainfall and runoff of Jhelum river used from 1981 to 2012. The
Different rainfall and runoff dataset combinations were used to train and test AITs.
The data record for the period 1981–2001 used for training and then testing. After
training and testing, modeled runoff and observed data was evaluated using R2,
NRMSE, COE and MSE. During the training, the dataset C2 and C3 were found to
be 0.71 for both datasets using M5 model. Similar results were found for dataset of
C3 using RBF-SVM. Over all, C3 and C7 were performed best among all the dataset.
The M5 model tree was performed better than other applied techniques. GEP has
also exhibited good results to understand rainfall runoff process. The RBF-SVM
performed less accurate as compare to other applied techniques. Flow duration
curve (FDCs) were used to compare the modeled and observed dataset of Jhelum
River basin. For High flow and medium high flows, GEP exhibited well. M5 model
tree displayed the better results for medium low and low percentile flows. RBF-
SVM exhibited better for low percentile flows. GEP were found the accurate and
highly efficient DDM among the AITs applied techniques. This study will help
understand the complex rainfall runoff process, which is stochastic process.
Weather forecasting play key role in water resources management and planning.

Keywords: Forecasting, Jhelum River, GEP, flow duration curve, RBF-SVM

1. Introduction

A long scientific challenge is weather forecasting. Accurate weather forecasting
has a direct social and economic impact on the community [1]. Recently, Artificial
Neural Networks are using for weather forecasting. The crucial parameter for
weather forecasting is rainfall, which also generates runoff in watersheds area. This
process is one of the fundamental factors in weather forecasting. The different
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approaches exist from physically, conceptual, modeling and artificial intelligence
techniques (AITs) [2].

The rainfall-runoff process plays a vital role in sustainable water resources
management. Pakistan economy depends on Agriculture. Water resources are cru-
cial for agriculture, and most of the population livelihood depends on agriculture.
Water storage is necessary, and the urban population’s rapid growth [3, 4]. The
efficient and precise modeling of the rainfall-runoff process is crucial in planning
water resources management [5]. Urban water management, runoff forecasting,
weather forecasting and irrigation system is become the current challenge due to
the uncertainty of weather forecasting. Rainfall and geographical characteristics
have importance to forecasting accurately rainfall-runoff process. Rainfall-runoff
considers the diverse process and AIT used to transform rainfall into runoff [6].
Similar, the transformation of precipitation into runoff investigated in the science
of hydrology by different researchers [7, 8], and runoff is a complex process [9].
During the forecasting mechanism of runoff, it becomes an essential issue in
hydrology and water resources management.

Rainfall and other metrological parameter play a crucial role during the forecasting
of weather, which is essential for runoff generation [10]. The rainfall-runoff process
is non-linear. Simple AITs cannot model this non-linear process due to several hydro-
logical variables such as evaporation, infiltration, rainfall intensity, watershed char-
acteristics, and surface and groundwater interaction. During the last few decades,
Artificial Neural Network (ANN), genetic programming (GP), Support vector
machines (SVMs), Decision Trees (DTs), and adoptive Neuro-Fuzzy Inferences Sys-
tem (ANFIS) are considered most efficient in hydrology and water resources. Several
researchers applied AITs to forecast rainfall-runoff [11–16]. American Society of Civil
Engineering task committee applied ANNs in hydrology [17, 18]. ANNs and various
algorithms were applied in a different region of the world [6, 19–22].

Many studies revealed that ANNs have some limitations and drawbacks in order
to predict streamflow. These include stopping criteria, over fitting issue, low learn-
ing speed, back propagation problem, and some human intervention like learning
epochs and learning rate [23]. Thus, there is a need to develop some approaches to
overcome these problems and generate better results as compared with ANNs.

After 2000, Support vector machines SVMs, a new kernel-based approach,
become famous and got advantages over ANN. In this study, SVM and DTs were
used for rainfall-runoff modeling. Firstly, SVMwas first developed after inspired by
statistical machine learning theories (SMLTs) for complex problems like classifica-
tion and regression [24, 25] emphasized the obstacles in rainfall-runoff prediction
to recognize the best model and its relevant parameters. The modified form of SVM
is the least square support vector machine (LS-SVM) which decrease the computa-
tional problem [26, 27]. In many types of research, SVM is used for different
forecasting scenarios [28–30]. In this regard, several researchers applied the SVM.
[31] publicized that in rainfall-runoff forecasting using past daily dataset using SVM
and ANNs. The SVM found most efficient technique than ANN. [32] used the SVM
technique using monthly time scale data for statistical downscaling of rainfall
intensity. SVM model was successfully engaged and predicted daily rainfall [33].
Another DDM is [34] M5 model tree, and M5 model tree is DDM technique which
uses divide and conquers method to split the dataset into subsets, which enable the
system to distribute the multi-dimensional variables and automatically build a
model on the inclusive quality benchmarks [34, 35] used SVM with RBF kernel
function and polynomial functions to model the suspended sediment load of a basin
Iran, which exposed that SVM with RBF function gives the most accurate modeling.
In recent years, different hydrological components predicted by many researchers
using M5 model tree such as; sedimentation transportation and estimation [36],
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rainfall-runoff prediction [37], prediction of flood events [38], monthly pan evap-
oration prediction [39], Modeling oblique load-carrying capacity [40] and Modeling
algal a typical proliferation [41].

As mentioned above several ATIs were engaged for rainfall-runoff process fore-
casting but still there are some techniques which have not yet been evaluated such
as RBF-SVM and the model tree M5. Himalayan rivers especially Jhelum River basin
initiating primarily from >4000 masl, withstand tremendous amount of inhabitants
downstream. Though, Jhelum River basin is very data limited, and hydrological data
for hydro-meteorological factors is accessible mainly from the areas below 2000
masl. Since the high level of anthropological need on these rivers, it is essential to
progress strategies and tactics based on the hydrology of these rivers [42–45].
Therefore, these AITs will be very necessary for forecasting of hydrological param-
eters especially rainfall-runoff processes. These AITs are actually need of this region
where data management and acquiring of hydrological data is adamant.

Keeping the previous studies on modeling of rainfall-runoff processes in mind,
this study was arranged in such a way for different employee AITs to achieve the
primary objectives of this research as 1) to calibrate and validate the AITs (GEP,
BRF-SVM and M5 model tree) for the modeling of the rainfall-runoff process; 2) to
evaluate the best input combination for the applied AITs. To achieve these objec-
tives, hydrological data of rainfall and runoff were employed to model this process.
To evaluate models performances, some statistical evaluation parameters, i.e.
determination coefficient (R2), coefficient of efficiency (COE), mean squared error
(MSE), and normalized root mean square error (NRMSE), were used.

The input selection process for data-driven rainfall-runoff models is critical
because input vectors determine the structure of the model and, hence, can influ-
ence model results. This chapter is arranged as follows. Section 1 “Introduction and
Review literature” where all previously employed and selected methodology is
discussed. Section 2, “Rainfall-Runoff forecasting”, includes study area and data
acquisition, which elaborates a brief summary description of the study area and
dataset comprising nine gauges and runoff on past thirty years daily rainfall data
dataset and Model fitness criterion, Trend analysis tests. Section 3,” Methodology”,
summaries proposed AITs (RBF-SVM and M5 model tree). Section 4, “Results and
Discussions”, describes the analysis results of outputs of different applied AITs for
modeling rainfall-runoff process and trend analysis of rainfall in different rainy
seasons. Section 5, “Conclusion”, accomplishes the study.

2. Materials and methods

2.1 Study area

The geographical Jhelum River basin situated at 33.14°N and 73.64°E. The
drainage area of the basin is 33,867 km2. It originates from Pir Panjale from the
North-Western Part of the great Himalayan range and gets significant contributions
to the flow from its tributaries. Kunhar and Neelum River fall in Jhelum River at
Muzaffarabad. Poonch and Kanshi join the Jhelum at Mangla reservoir [46]. It is the
Trans Boundary River between Pakistan and India. 56% of the area of the rivers
occurred in India [47]. Jhelum River basin lays 25% under maximum snow accu-
mulation. The dataset for the basin was collected from the Surface Water Hydrol-
ogy Project (SWHP) from 1981 to 2012. It is mainly affected by monsoon rainfall.
During the summer season, rain shadow of the Himalayas range makes Eastern
Himalayan chronicles [48–50]. The rainfall station and flow station are shown in
Figure 1. Western disturbance starts from December, and the moon soon starts
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from June to September in every year [51]. The rainfall decreases from the northern
part to the eastern region. The annual rainfall found to vary from 70—135% [52, 53].
Astor station also considered as previous researchers used for analysis [54].

2.2 Auto-correlation function (ACF) and partial auto-correlation function
(PACF)

For the selection of proper input combinations of rainfall and runoff, the
autocorrelation function (ACF) [55] and Cross-correlation function (CCF) [56]
were employed for runoff data and rainfall-runoff data, respectively, with a 95%
confidence level. From the Tables 1 and 2, it can be seen that the cross-relation in
the rainfall and runoff dataset is poor, which may be an issue for modeling of
rainfall-runoff phenomenon [57]. So, the partial autocorrelation was used
between these two input variables. It is concluded from the results shown in Table 1
that three lag times of rainfall and runoff datasets will be efficient for the
modeling process. Based on results, the following input combinations were used in
this study;

1.C1 Q(t-1)

2.C2 Q(t-2)

3.C3 Q(t-3)

4.C4 Q(t-2), Q(t-1), P(t-1), Pt

5.C5 Q(t-2), Q(t-1), P(t-2), P(t-1), Pt

6.C6 Q(t-3), Q(t-2), Q(t-1), Pt

Figure 1.
Study area.
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7.C7 Q(t-3), Q(t-2), Q(t-1), P(t-3), P(t-2), P(t-1), Pt

Where Q is discharge (m3/sec), P is precipitation (mm), and it is Time (sec).
There we created different time lags of Q and P to test and train the models, i.e. (t),
(t-1), (t-2) and (t-3). These parameters are arranged to create different input
combinations C1, C2, C3, C4, C5, C6 and C7, which are used for testing and training
AI techniques to get better results.

2.3 Support vector machine (SVM)

A brief description of the SVM has been mentioned in this study, whereas the
theory SVM [24] was discussed by many researchers in detailed, i.e. [28–30].
According to [24] in the SVM technique, independent variable x helps estimate the
dependent variable y. The relationship between x and y was determined by the
given function like other regression scenarios;

f xð Þ ¼ f xð Þ:wT:Ø xð Þ þ bð Þ (1)

f y
� � ¼ f xð Þ þ noiseÞ (2)

where Ø is kernel function which can be defined as; it takes to input information
and changes it into the desired shape. Various SVM algorithms practice diverse sorts
of kernel functions. There are many kinds of these functions. i.e. sigmoid, polyno-
mial, non-linear, linear, and RBF. b is a constant, w is the coefficient of vector, w
and b are the constraints of the regression function. In contrast, noise is elaborated
by error tolerance (e). During the training of the SVM model, a process of associa-
tion of successive optimization of the error function in which can be achieved.
There are two kinds of SVM models based on the error function, such as e-SVM
(Regression I) and t-SVM (Regression II) [58]. In this study, BRF Regression, I is

Partial Auto-Correlation Function (PACF)

Input
Variable

Coefficients Standard
Error

t Stat P-
value

Lower
95%

Upper
95%

Lower
95.0%

Upper
95.0%

Qobs 89224.45 30235.64 2.95 0.00 29953.86 148495.05 29953.86 148495.05

P(t) �1449.13 3534.18 �0.41 0.68 �8377.14 5478.88 �8377.14 5478.88

P(t-1) �840.46 3838.46 �0.22 0.83 �8364.94 6684.02 �8364.94 6684.02

P(t-2) �239.51 3838.46 �0.06 0.95 �7764.01 7284.99 �7764.01 7284.99

P(t-3) �1139.05 3534.17 �0.32 0.75 �8067.04 5788.94 �8067.04 5788.94

Table 1.
Partial auto-correlation function (PACF) between rainfall and runoff data.

Auto-correlation Function of Runoff Data

Input Combinations Training Data Testing Data Whole Data

Qobs, Qt-1 0.6785 0.9148 0.6785

Qobs, Qt-2 0.3194 0.8721 0.3194

Qobs, Qt-3 0.0008 0.8529 0.0008

Table 2.
Auto-correlation between runoff and rainfall data.
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engaged because for prediction like rainfall-runoff purposes. [59, 60] proposed that
the training time of SVM decreased by selecting the automatic RBF kernel function
because it efficiently selected the proper kernel function constraints. As compared
to V-fold validation is consumed less Time and more efficient. Let consider (xij)
j = 1… … . Ni Rd. is the dataset of i, and Ni is the number of training samples of i
class. Whereas i = 1,2,3… ...L and L is the number of classes in the dataset, then
RBF is;

K x, x‵, σð Þ ¼ exp : � IIx� x‵II1=2
2 σ1=2

� �
(3)

K is a kernel function, (x‵, σ) are elements of Rd and σ element of R-0 which is
corresponding constraints. It has two major possessions, i. the cosine value of
training dataset ≥1, and it must be more than 0. ii. The norm in the dataset must be
1 [61] shown in Figure 2.

As in this study, RBF based kernel is used, so the following expression is used to
calculate the mean of values;

b σð Þ ¼ 1PL
i¼1

PL
i¼1,J 6¼1NiNj

XL
i¼1

XL

i¼1, J 6¼1

XL

l¼1

XL

k¼1

k xl ið Þ,xk jð Þ, σð Þ (4)

Therefore, b(σ) is calculated in a pattern that (σ) is must be greater than 0 but
not less or 0. The σ can be calculated in SVM based on RBF kernel function by
solving the given steps;

1.To determine the best constraint, the given expression is optimized.

Figure 2.
Working layout of RBF based kernel support vector machine.
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2.Applying the RBF kernel function further utilizes the V-fold cross validation to
determine the best constraint (penalty constraint).

Min σð Þ J σð Þ ¼ 1� σð Þ þ b σð Þ (5)

Based on [66] theory of RBF kernel-based SVM, the technique is employed in
this research for rainfall-runoff modeling.

2.4 M5 model tree

In the M5 model tree machine learning technique, the following principle
converted the space into the area and made the linear regression model. The model’s
outcome is shown in the modular model, committee machine, with linear models
specially designed on appropriate subsets of input space. This design is not innova-
tive. Fusion of specialized technique (“local” model) is passed down in modeling.
The finding can clear analogy among Model Trees (MTs), and a combo of linear
models utilized in dynamic hydrology since the 1970s- evident paper on multilinear
techniques is by [62]. Model tree M5, based on the information theory principle,
will have divided multi-dimensional space and create the models automatically
based on quality criterion. The number of models can also be varying in number.
Computational intelligence techniques combined the numerous models and possi-
bly the combination theory and data-driven outcomes are supporters in hydrology.
(example [63], in the fuzzy system, combined hydrological techniques). Computa-
tional requirement for model tree raises rapidly with dimensionality [34]. Model
tree tackles the task efficiently with high dimension-up to hundreds of attributes.
The main advantage of tree models instead of the regression model is that they are
smaller than regression trees. The strength of the decision is clear, and regression
parameters do not normally involve various variables. M5 algorithm is used for
inducing a model tree, which works as shown in.

Suppose collection T of example training is available. Each example is catego-
rized by the values of non-variable set of attributes and has target value. Goal is to
build a model with associated target values of training and their input attributes.
The efficiency of the model will be calculated by the accuracy, which is forecasting
that targets unknown cases shown in Figure 3.

Figure 3.
Working layout of M5 model tree.
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2.5 Model performance

Different performance evaluation criteria were used to evaluate the
reliability of AITs of the rainfall-runoff process [22, 64] 1) Co-efficient of
determination (R2) [65]; (2) Normalized root mean square error (NRMSE) [66]; (3)
Nash-Sutcliffe Coefficient of efficiency (COE) [67] (4) Mean square error (MSE)
[68] were used.

R2 ¼ n Σxyð Þ � Σxð Þ Σyð Þffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
n Σx2� Σx2ð Þ½ � Σy2� Σy2ð Þ½ �p (6)

NRMSE ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPN

i¼1
Qobs�Qpreð Þ2

q

N

σ
(7)

COE ¼ 1�
PN

i¼1 Qobs� Qpreð Þ2PN
i¼1 Qobs�Qmeanð Þ2 (8)

MSE ¼
PN

i¼1 Qobs�Qpreð Þ2
N

(9)

Where, Qobs and Qpre are the observed and predicted flows, respectively, while
Qmean is the mean of observed flows. R2 tells us how the fit line of regression
approaches the actual data in regression. Value 1 illustrates that the line efficiently
fits the real data.

3. Results and discussions

3.1 Rainfall forecasting

Flow Duration Curves (FDCs) were employed to evaluate the applied AITs
against the percent of Time. FDCs for all input combinations (C1, C2, C3, C4, C5,
C6 and C7) showed a good relationship with applied AITs in both training and
testing seasons. To understand the behavior of applied AITs with the Jhelum River
basin, the FDCs analysis was executed at nine rainfall stations for the modeling of
the rainfall-runoff process as the runoff data was collected from the Mangla reser-
voir from time duration 1981–2012, the behavior of all techniques necessary to
understand throughout the catchment.

The observed hydrographs of low, medium and high percentile flow extracted by
the AITs (GEP, RBF-SVM and M5 Model Tree) to access the capability. [52, 69, 70]
revealed that the FDCs exposed the relationship between the observed and modeled
percentile flow and exceedance probability in the designated time duration. From 1 to
10%, the flow is considered high, 11–89% the flow is medium while, 90–100% the
flow is referred to as low flows, which can be clearly seen from.

Furthermore, the percentile flows from 11 to 49%, and 50–89% are considered
high medium and low medium flows. The outcomes of FDCs exposed that the GEP
was better AIT for high flows and medium-high flows, and it better bonds with FDC
of observed flow. Whereas the FDC of the M5 Model Tree better bonds with
medium-low and low percentile flows.While RBF-SVM better bonded with the FDCs
of low percentile flows. GEP was compared to other AITs was found more accurate
DDM and found highly efficient. RBF-SVM these trends are shown in Figure 4.
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Figure 4.
Flow duration curve (FDC) of observed and simulated daily streamflow in all rivers for various combination
C1, C2, C3, C4, C5, C6 and C7 are labeled as A, B, C, D, E, F, and G respectively of Mangla watershed for
the time periods 1981–2012.
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In RBF kernel-based SVM modeling, the functionality and importance of input
combinations were achieved by adjusting the model parameters Gamma, C and P.
In other words, the successful application of the RBF-SVM model dependent on
accurate determinations of these model parameters. Figure 5 and Table 3 show the
output results of different input combinations regarding model evaluation perfor-
mance criterion. It can be clearly seen that RBF-SVM has potential and explicit good
performances in training and testing durations of rainfall-runoff modeling. Fur-
thermore, all input combinations employed in this research showed good perfor-
mance. R2, COE, MSE and NRMSE for the training period were found 0.99, 1.00,
21245.92 and 820420.17m3/sec with input C3 and 0.99, 1.00, 21475.00 and
825413.21 m3/sec respectively with input C6. But input combinations C2 and C4
were found poor combination during training of model with results 0.16, 1.00,
�16623.59, 833046.88 m3/sec and 0.11, 1.00, 980.10, 988371.24 m3/sec respectively.
The behavior of RBF-SVM found poor in both cases due to which showed deprived
results. By examining the model evaluation parameters in testing periods, it can be
seen that the RBF-SVM model performed and obtain better prediction accuracy. R2,
COE, MSE and NRMSE for the testing duration were found 1.00, 1.00, 188.52 and
1437.96 m3/sec with C1 and 1.00, 1.00, 147.81 and 1128.49 m3/sec with input C5,
respectively.

.

Figure 5.
Hydrographs of RBF-SVM model for overall training and testing rainfall and runoff datasets of Mangla
watershed.

Training Input Combinations/Model
Fitness Criteria

C1 C2 C3 C4 C5 C6 C7

R2 0.97 0.16 0.99 0.16 0.11 0.99 0.98

COE 1.00 1.00 1.00 1.00 1.00 1.00 1.00

MSE 10366 �8311 10622 �1703 490 10737 10409

NRMSE 401115 416523 410210 452420 494185 412706 414639

Testing R2 1.00 1.00 1.00 1.00 1.00 1.00 1.00

COE 1.00 1.00 1.00 1.00 1.00 1.00 1.00

MSE 94 131 154 121 73 137 96

NRMSE 718 654 691 588 564 613 555

The bold values shows efficient results of model evaluation parameters.

Table 3.
Training and testing outcomes of statistics of RBF-SVM model with different input combinations.
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3.2 M5 model tree

The outcomes of training and testing of the M5 Model Tree for the rainfall-
runoff process confirms the fact that it has the potential of identifying the relation-
ship between both hydrological variables of a catchment. This statement was con-
firmed by the model evaluation criteria with low values of NRMSE and high values
of R2 and COE for the validation and testing of the dataset, which suggests the best
model fit. The visualization of Table 4 shows that the M5 Model Tree has the
capability to reproduced well by the model with different rainfall-runoff input
combinations. The training results indicate that the prediction of Q(t-2) and Q(t-3)
quite well for the rainfall-runoff process having results of R2, COE, MSE and
NRMSE, 0.71, 1.00, 0.00, 757158.18 m3/sec and 0.71, 1.00, 0.00, 757158.18 m3/sec
respectively. During testing of the model, the model evaluation parameters R2,
COE, MSE and NRMSE results are found as 1.00, 1.00, 0.00, 887.52 m3/sec with
input C7, which means that the M5 model tree explicit good results in testing with
both rainfall and runoff combinations. The modeling error for the verification of the
results indicates high values of R2 and COE and low values of NRMSE, demonstrat-
ing the good M5 model tree performance.

4. Conclusion

The study compared AITs (RBF-SVM and M5 model tree) to understand the
rainfall-runoff process in the Jhelum River Basin. Different rainfall and runoff
dataset combinations were used to train and test AITs. After training and testing,
modeled runoff and observed data was evaluated using R2, NRMSE, COE and MSE.
The conclusion of this study as following:

• Different datasets were analyzed to achieve the target, such as C1, C2, C3, C4,
C5, C6 and C7 with lagged past daily rainfall and runoff. Overall, C3 and C7
were performed best among all the dataset. These two datasets showed
efficient and accurate results in the training and testing phases.

• The M5 model tree was performed better than other applied techniques.
GEP has also exhibited good results to understand the rainfall runoff process.

Training Input C1 C2 C3 C4 C5 C6 C7

R2 0.70 0.71 0.71 0.65 0.65 0.65 0.65

COE 1.00 1.00 1.00 1.00 1.00 1.00 1.00

MSE 0.00 0.00 0.00 0.00 0.00 0.00 0.00

NRMSE 378605 378579 378552 378596 378596 378570 378570

Testing R2 1.00 1.00 0.99 1.00 0.99 0.99 1.00

COE 1.00 1.00 1.00 1.00 1.00 1.00 1.00

MSE 0.00 0.00 0.00 0.00 0.00 0.00 0.00

NRMSE 719 662 683 555 612 698 443

The bold values shows efficient results of model evaluation parameters.

Table 4.
Training and testing outcomes of statistics of M5 model tree with different input combinations.
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The RBF-SVM performed less accurate as compared to other applied
techniques.

• Flow duration curve (FDCs) were used to compare the modeled and observed
dataset of the Jhelum River basin. For High flow and medium-high flows, GEP
exhibited well. M5 model tree displayed better results for medium-low and low
percentile flows. RBF-SVM exhibited better for low percentile flows. GEP was
found the accurate and highly efficient DDM among the AITs applied
techniques.

• This study will help understand the complex rainfall-runoff process, which is a
stochastic process. Streamflow, weather forecasting plays a key role in water
resources management and planning.
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Chapter 3

Application of Kalman Filter and
Breeding Ensemble Technique to
Forecast the Tropical Cyclone
Activity
Cong Thanh, Dao Nguyen Quynh Hoa and Tran Tan Tien

Abstract

Tropical cyclone (TC) is one of the major meteorology disasters, as they lead to
deaths, destroy the infrastructure and the environment. Therefore, how to improve the
predictability of TC’s activities, such as formation, track, and intensity, is very impor-
tant and is considered an important task for current operational predicting TC centers
inmany countries. However, predicting TC’s activities has remained a big challenge for
meteorologists due to our incomplete understanding of the multiscale interaction of
TCs with the ambient environment and the limitation of numerical weather forecast
tools. Hence, this chapter will exhibit some techniques to improve the ability to predict
the formation and track of TCs using an ensemble prediction system. Particularly, the
Local Ensemble Transform Kalman Filter (LETKF) scheme and its implementation in
theWRFModel, as well as the Vortex tracking method that has been applied for the
forecast of TCs formation, will be presented in subSection 1. Application of Breeding
Ensemble to Tropical Cyclone Track Forecasts using the Regional Atmospheric Model-
ing System (RAMS) model will be introduced in subSection 2.

Keywords: The WRF-LETKF system, Ensemble forecast technique, Breeding
Ensemble, data assimilation system, Tropical cyclone forecast

1. Introduction

1.1 The forecast of TCs formation using the ensemble Kalman filter

Among several approaches for real-time monitoring and forecasting of TC forma-
tion, direct numerical products from global and regional weather prediction models
appear to be the most reliable at present, despite their inherent limitations and
uncertainties (e.g., see [1, 2]). The skillful performance of TC formation forecasts by
numerical models has been well documented in many previous studies [3–8]. This
achievement of numerical models is attributed to a variety of advanced research on
upgrading parameterizations of physics, resolution, computational resources, and
data assimilation schemes [1, 9]. Among several different assimilation schemes, the
ensemble Kalman filter (EnKF) has been extensively applied to many practical prob-
lems in recent years due to its straightforward implementation for TC forecast appli-
cations [10–16]. The use of EnKF for TC forecasting applications is increasingly
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popular, given the current availability of real-time flight reconnaissance data that
allows direct assimilation of airborne observations without the need of a bogus vortex
(e.g., see [10, 14–16]). In essence, the development of EnKF addressed the problem
when using variational assimilation schemes in which the background covariance
matrix is allowed to be time-dependent. Hence, the model would adapt better with
fast-evolving and complicated dynamical systems such as TCs or mesoscale convec-
tive systems [12, 17–19]. There is an efficient method of implementing an Ensemble
Kalman Filter (EnKF), which was called a Local Ensemble Transform Kalman Filter
(LETKF) scheme.

1.2 Data assimilation system

In this section, the LETKF algorithm proposed by Ott et al. [20] and Hunt et al.
[21] is adopted and implemented for the WRF Model. The primary usage of the
LETKF algorithm is utilizing the background ensemble matrix as an operator to
transform state vectors from a model space spanned by the model grid points within
a local patch to an ensemble space spanned by ensemble members. The procedures
for calculating matrix and generating the ensemble analyses are executed in this low
dimension ensemble space at every single grid point. In this sense, the LETKF
scheme allows the ensemble space to be performed locally and in parallel efficiently
for practical problems, especially when carrying out a large-volume of data (e.g.,
see [8, 11, 12, 22–25]).

With its promising capability, LETKF has been implemented in the WRF Model
(V3.6, hereafter referred to as the WRF-LETKF system). With an aim to practical
forecasting applications, all the observations utilizing in the WRF – LETKF scheme
are preprocessing in a quality control taken by the WRF data assimilation (WRFDA)
component. In addition, the WRFDA component also generates lateral boundary
conditions for each ensemble member once obtained the analysis update. Hence, each
ensemble member possesses its own boundary dynamically consistent with its own
updated initial conditions. More details in the WRF-LETKF design can be found in
[12, 24]. The focal point here is how the ensembles with and without augmented
observations perform. In this regard, the relative differences in the output among
these ensembles can derive the main effects of additional augmented observations.

To begin the ensemble system, a first-guess background is generated in a cold-
start ensemble by first using 3DVAR scheme to produce an analysis from a GFS
initial condition. Random perturbations with standard deviations of 1 ms�1 for the
wind field, 1 K for temperature, and 1 � 10�3 kgkg�1 for specific humidity at all
model grid points are then added to the 3DVAR-generated analyses for the cold-
start ensemble. The 3DVAR-generated analyses as initial conditions for 12-h run-
ning in a manner that the outputs from these 12-h integrations can be subsequently
used as a warm-start background for the LETKF ensemble assimilation in the next
cycle. Note that these random perturbations are added only for the first cold-start
cycle to create a background ensemble. All subsequent warm-run cycles use the
WRF-LETKF 12-h forecasts as a background ensemble and so no additional random
noises are necessary. The newly generated analysis perturbation ensemble at each
cycle is then added to the GFS analysis to produce the next ensemble initial
conditions when run in the cycling mode as described in [26].

1.3 The LETKF algorithm

To get a better understanding of the LETKF algorithm mentioned in the previ-
ous sub-section. A brief description of this LETKF algorithm that developed by Kieu
et al. [12] has been presented below:
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Assume that give a background ensemble {xb ið Þ: i = 1, 2, … , k}, where k is the
number of ensemble members (assuming that the analysis is taken one at a time, so
the time index is not included). According to Hunt et al. [21], an ensemble mean �x b

and an ensemble perturbation matrix Xb are defined respectively as:

�xb ¼ 1
k

Xk
i¼1

xb ið Þ:

Xb ¼ xb 1ð Þ � �xb,xb 2ð Þ � �xb, … ,xb kð Þ � �xb
n o

: (1)

Let x = �xb + Xbw, where w is a local vector in the ensemble space, the local cost
function to be minimized in the ensemble space is given by:

ĵ wð Þ ¼ k� 1ð ÞwT I � Xb� �T
Xb Xb� �Th i�1

Xb
� �

wþ J xb þXbw
� �

, (2)

Where J[xb þXbw] is the cost function in the model space. If one defines the
null space of Xb as N = {v|Xbv ¼ 0}, then the cost function Ĵ(w) is divided into two
parts: one containing the component of w in N (the first term in Eq. (2)), and the
second depending on the components of w that are orthogonal to N. By requiring
that the mean analysis state �wa is orthogonal to N such that the cost function Ĵ(w) is
minimized, the mean analysis state and its corresponding analysis error covariance
matrix in the ensemble space can be found as:

�wa ¼ P̂
a
Yb� �T

R�1 y0–H �xb� �� �
(3)

P̂
a ¼ k� 1ð ÞIþ Yb� �T

R�1Yb
h i�1

, (4)

Where Yb� H(xb ið Þ � �xb) is the ensemble matrix of background perturbations
valid at the observation locations, and R is the observational error covariance
matrix. By noting that the analysis error covariance matrix Pa in the model space

and P̂
a
in the ensemble space have a simple connection of Pa = XbP̂

a
Xb� �T

, the
analysis ensemble perturbation matrix Xa can be chosen as follows:

Xa ¼ Xb k� 1ð ÞP̂a
h i1=2

: (5)

The analysis ensemble xa is finally obtained as:

xa ið Þ ¼ �xb þ Xb �wa þ k� 1ð ÞP̂a ið Þh i1=2� �
: (6)

Detailed handling of more general nonlinear and synchronous observations in
LETKF can be found in [21]. It should be noticed that the above formulas are only
valid without model errors. To take into account the model errors, Hunt et al. [21]
suggested that a multiplicative factor should be introduced in Eq. (4) (specifically,
the first factor on the right hand side of Eq. (4)). This simple additional multiplica-
tive inflation is easy to implement in the scheme, and has been shown to be efficient
in many applications of the LETKF (e.g., see [25, 27, 28]).
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1.4 Vortex tracking method

Constructing a suitable vortex-tracking algorithm is a must-have procedure to
detect the formation of a newly developed TC center in all ensemble members since
their outputs are diverse. A good detection scheme allows one to define and verify
the location and the timing of TC formation centers. This step is crucial in every TC
formation study, due to the difficulties in capturing the incoherent structure of
tropical cyclones at the early genesis stages. More precisely, one cannot apply
general criteria such as a midlevel warm-core anomaly, maximum vorticity center
for the tropical disturbances as for mature TCs. Instead, the early formation of a
tropical depression is often imprinted by the existence of an upper-level cold core
and/or a weak surface low pressure rather than a midlevel warm core (see, e.g.,
[29, 30]). Thus, very few conditions can be practically applied to detect a formation
center during the genesis stage. To detect TC formation centers for real-time fore-
cast, a simple scheme has been built upon standard conditions related to the maxi-
mum surface wind and the minimum central pressure, as follows:

First, the minimum sea level pressure Pmin within the study area is searched at
every model grid point of each ensemble member output at each forecast lead time.
Any location with Pmin < 1004 hPa will be noted down as a potential candidate
for TC formation location at that forecast lead time for that particular ensemble
member.

Second, once a possible location of TC formation is defined, the maximum 10-m
wind speed Vmax in an area of 40 � 40 surrounding the minimum pressure center is
checked and recorded. A TC formation center will be marked if the condition
Vmax ≥ 10 ms�1 is satisfied. It is noteworthy that this value is considerably smaller
than the global definition of a tropical depression wind speed (�17 ms�1), due to
the relatively coarse 27�/9-km resolution configuration of WRF-LETKF system.
Visualizing verification of each TC circulation center detected based on this thresh-
old proves that these criteria can properly identify the center of tropical cyclone like
vortex during the genesis stage. Therefore, this threshold for Vmax is used for all
genesis analyses. In fact, these criteria of tracking TC formation centers are some-
what intuitive and require further verification. However, this approach is accept-
able in evaluating the augmented observational data impacts on TC formation
forecasts among ensemble forecasts. As long as the tracking scheme remains certain
in all analyses, the comparison of TC formation forecasts should answer the ques-
tion about the performance of augmented observations in ensemble forecasts.

1.4.1 Example 1

The WRF-LETKF (WRF V3.6) system has been applied to study the formation
of Typhoon Wutip. With target is to evaluate the sensitivity of TC formation
forecast to different types of augmented observations. The WRF-LETKF system is
designed in such a way that all observations are subject to quality control by the
WRF data assimilation (WRFDA) component before used by the LETKF algorithm
(More details about the implementation of the WRF-LETKF design can be found in
[12, 22]. There is a total of 21 ensemble members was made (due to limited compu-
tational and storage resources) and all ensemble experiments are integrated for
three days starting from 1200 UTC 23 September, which is approximately 48 h
before a tropical depression precursor of Wutip was first reported in the TC vital
record at 1200 UTC 25 September. The multiple physical schemes have been used in
categorizing among ensemble experiments are 1) two cumulus parameterization
schemes including the Betts–Miller–Janjic´ (BMJ) cumulus parameterization and
the Kain–Fritsch with shallow convection schemes, 2) three planetary boundary
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layer (PBL) parameterization schemes including the Yonsei University, the Mellor–
Yamada–Janjic´, and the simple Medium-Range Forecast (MRF) schemes, 3) three
microphysical schemes including the WSM 3 microphysics, the Kessler, and the Lin
et al. schemes; and 4) two longwave radiative schemes including the Dudhia and
the Goddard schemes for both longwave and shortwave radiations. The cold start
cycle is therefore initialized at 0000 UTC 23 September to generate a background
ensemble for the first-guess cycle at 1200 UTC 23 September. Afterwards, the
subsequent cycles are implemented at every 6 h from 1200 UTC 23 September to
1200 UTC 26 September.

The augmented observational data used in the WRF-LETKF assimilation scheme
include two main sources. The first is the satellite data (CIMSS-AMV) derived
atmospheric motion vector (AMV) data maintained by the Cooperative Institute for
Meteorological Satellite Studies (CIMSS), University of Wisconsin [21, 31–34] due to
this data covers a large area where TC genesis may take place. The second source of
local augmented observations in the domain of influence to Vietnam’s coastal region
(DOIV) is also used, including 96 aviation routine weather (METAR) reports from
routine scheduled observations, 31 ship/buoy (SHIP/BUOY) station reports, 59
enhanced sounding stations (SOUND), and 404 surface synoptic observations
(SYNOP) reports of weather observations during the 0000 UTC 24 September–0000
UTC 27 September period.

Results show critical impacts of the (CIMSS-AMV) data in improving the large –
scale environment favorable or hostile to the formation of Typhoon Wutip among
ensemble members, which is dynamically controlled by monsoon trough. The
results show the optimality of data impacts at cycle 36 h prior to Wutip’s observed
formation and decrease as forecast cycles are closer to formation period. In contrast,
the data assimilation with only surface and local station data proves that these
source data are not enough to help describe the strength of monsoon trough due to
their scattered distributions (Figures 1–3).

By choosing Typhoon Wutip as a case study, it was demonstrated that the initial
conditions for tropical cyclogeneses in large-scale monsoon trough environment are
sensitive to augmented observations. It could allow a range of outcomes for timing
and location predictability of TC formation, especially at 36-hr cycle ensemble. Our
results could present the importance of augmented observations, especially the

Figure 1.
Boxplots of the timing for Wutip formation for three consecutive cycles 1200 UTC 23 Sep, 0000 UTC 24 Sep,
and 1200 UTC 24 Sep, corresponding to 48, 36, and 24 h prior to the formation of Wutip depression for (a)
the WRF-LETKF, (b) assimilation without the CIMSS-AMV data (NAMV), and (c) the GFS initial data
[hereafter to as no data assimilation (NDA) ensemble]. The bold cross denotes the actual time that Wutip first
became a tropical depression at 1200 UTC 25 Sep [35].
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satellite AMV data, for the prediction of TC formation at certain lead times that are
vital for operational TC forecasts. This case study is typical for TC formation in the
WPAC basin, but not representative and may not be applied to other tropical
cyclogenesis pathways. While WRF-LETKF has been utilized in forecasting tropical
cyclogenesis in the marsupial paradigm of African Easterly Wave [36, 37], it has not
been focused in the physical mechanisms of TCs formation in the BIEN DONG
basin before. Wutip’s formation is strongly rooted in the monsoon trough, as most
of the tropical cyclones in the BIEN DONG form within this pattern per year. The
performance of WRF-LETKF with augmented observations in this case study has

Figure 2.
Distribution of the location of the Wutip’s formation centers as forecast by the WRF-LETKF (triangle), the
assimilation without the CIMSS-AMV data ensemble (circle), and no data assimilation ensemble (cross) for
(a) 48-, (b) 36-, and (c) 24-h cycles. Color symbols denote the ensemble means of corresponding forecasts [35].

Figure 3.
Ensemble mean distance errors between the forecasted and observed location of Wutip’s formation reported at
1200 UTC 25 Sep for three cycles of 48, 36, and 24 h obtained from the WRF-LETKF forecast (black), NDA
forecast (stripe), and NAMV forecasts (light shaded) [35].
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innovated to the upcoming studies in more properly general examination when
designing future observing systems.

2. Application of breeding ensemble to tropical cyclone track forecasts

2.1 Background

With limited range of predictability at the convective scale and short timescale
and the complex variation of nature, predicting tropical cyclone (TC) tracks and
intensity is one specific example that demonstrates vividly the sensitivity of
numerical models to uncertainties in the atmosphere [26, 38, 39]. The inherent
uncertainties associated with our current incomplete understanding of model phys-
ical processes or numerical approximations often lead to large errors in track and
intensity forecast, especially at the lead times longer 3 days or under circumstances
interacting with uneven terrain or complicated vortex mergers [40–42]. Currently,
the US Joint Typhoon Warning Center (JTWC) showed that the official track errors
in the North Western Pacific (WPAC) basin are as high as 220 km at 3-day estima-
tion and 450 km at 5-day estimation. Likewise, the intensity forecast errors make no
headway since no significant update was taken at all forecast ranges during the last
30 years. The recent effort to calculate uncertainty in TC forecasts is based on the
ensemble prediction systems. Generally, there are 3 major special techniques to
develop an ensemble forecast system include: (1) use the different initial conditions
obtained from a posterior analysis error distribution (the Monte-Carlo ensembles)
for one specific model, (2) Use a single initial condition for multiple different
prediction models; and (3) use combine both dissimilar initial conditions and dif-
ferent prediction models.

The breeding ensemble approach in the first direction was first implemented in
the operational Global Forecasting System (GFS) at the National Center for Envi-
ronmental Prediction (NCEP, by Toth and Kalnay in 1993 and 1997 [43, 44], here-
inafter TK93 and TK97, respectively) in 1993, and then became more popular and
more applied in practice. The breeding method continuously employed previous
cycles to calculate the fastest growing instabilities and then normalized these errors
vectors into the so-called the bred vectors. This procedure could allow projecting
the fastest growing modes onto the calculated bred vectors in a shade of perturba-
tions in each breeding cycle. Likewise, a similar ensemble forecasting technique
generating singular vectors instead of bred vectors is implemented in the European
Center for medium-term weather forecast (ECMWF) in early 1992 [45, 46].
Although theoretically, the fastest growing modes should be projected onto bred
vectors (at the far limit of the backward Lyapunov vectors), the experimental
results retrieved from the TK93’s breeding method indicate that the produced TC
ensemble tracks could be very similar to each other, i.e., the spread of the system
was relatively narrow (Figure 4). One possible explanation for such small ensemble
dispersion is because the bred vectors collapsed into a similar dominant direction
after several cycles, which is not an uncommon issue (e.g., see [48, 49]). The
singular vectors display the fastest growing modes in terms of orthogonal directions
within a short-range interval (via a tangential linear model). In contrast, the bred
vectors are some extent equivalent to the leading Lyapunov vectors in a nonlinear
finite-amplitude method [43, 50]. This method allows the bred vectors collapsing
afterwards, and becoming linearly independent (non-orthogonal) in the presence of
the lower dimension attractor [48, 51].

By consider both the spatial–temporal variations of the scaling vector at each
cycle, the bred vectors could capture the local growing directions and thus allow for
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larger ensemble spread [44, 52]. However, fast convective instabilities still quickly
saturate after several breeding cycles, especially within the region where the atmo-
spheric dynamics are complicated [53, 54]. Unfortunately, the TCs system act as
such complicated phenomenon with multi-scale interactions. It is expected that the
instability within the storm’s inner-core should behave differently as compared to
the outer environmental region. Previous studies (see [55– 57] indicated that per-
turbations inside the TC inner-core area often develop and propagate rapidly in the
manner of vortex Rossby waves with typical time scale of 12–24 h. Contrarily, the
large-scale environmental related-perturbations propagate in a much smaller time
scale, often manifested in terms of gravity waves and mesoscale clustering along
the most unstable regions [58]. Representing the interaction between the faster
storm-scale instabilities and slower large-scale environment is a big challenge in
constructing an ensemble breeding system for TC forecasts. Hence, this section
presented a new TC breeding approach that could help improve this challenge.

2.2 TC breeding method

Though the first breeding method presented by TK93 could capture the trend of
fastest-growing during a finite time window, the real world TCs have a finite life
cycle. Due to the high-resolution regional modeling required large computation, TC
predicting models are typically spark off only when their TCs are already first
reported in the warning centers, because it is a challenge to conserve a continuous
ensemble of breeding cycles with taking much computational capacity for a long
time. Therefore, TK93’s breeding scheme could not instantaneously acquire

Figure 4.
Schematic design of the TC-breeding ensemble technique: a) illustration of generating environmental bred
vectors and TC bred vectors during a warm start cycle (from 24 h to 18 h before the target forecast date) b)
illustration of making six pairs of lagged-averaged forecast (LAF) vectors for the first cold start cycle used in the
TC-breeding ensemble [47].

46

Weather Forecasting



directions of most unstable modes during the earliest cycles. Moreover, utilizing
only single re-scaling factor for both storm inner-core region and ambient environ-
ment with distinguished spatio-temporal scales does not enclose all mesoscale
unstable nodes associated with TC vortex dynamics for which perturbations at
different spatial–temporal scales grow at different rates [59]. Hence, it is
necessary to change the rescaling factors following both the flow and the scales of
instabilities [13].

Since our TC-breeding approach is focus on characterizing not only the
storm-scale but also the large-scale unstable modes and their mutual interaction,
there are two different scaling factors for these scale modes separately.

In the TK93’s breeding extended design for TC predicting (hereafter known as
the TC-breeding method or TCB), steps to make the TC-bred seeds as follows:

Step 1. Remove the GFS original vortex and insert a bogus vortex into the GFS
initial condition to obtain a new first guess xa. In which, the bogus vortex is
dynamical constructed based on the observed minimum sea-level pressure and
maximum surface wind, using the Australian Bureau of Meteorology’s Tropical
Cyclone Limited Area Prediction System (TC-LAPS) package. This step is essential
due to the weaknesses of the original GFS vortex in coarse resolution;

Step 2: adding and subtract a bred seeds di (i = 1,2,… ,6), then we have 6 first
guess x1ai = xa + di (positive sector) and x2ai = xa - di (negative sector)

Step 3: Run 6-hour lead time forecasts for both positive and negative sectors
Step 4: Separate 6-h forecasts (operators Sm and Sv) of positive sector (x1fi) and

negative sector (x2fi) from the previous breeding ensemble forecasts into an envi-
ronmental component Smx1fi and Sm x2fi) and a vortex component (Svx1fi and Sv

x2fi, Figure 4a).
Step 5: Find difference (operator H, Figure 4a) of each set of bred vector pairs

(or seeds) from previous 6-h cycles to obtain environmental bred vectors

mi ¼ Sm pf
i � nf

i

� �
and the TC bred vectors vi ¼ Sv pf

i � nf
i

� �
;

Step 6: normalize the environmental bred vectors (by using a normalizing
operator Cm) to obtain a new set of normalized bred vector Cmmi., then use an
orthogonal operator T to obtain an orthogonal set of environmental bred vectors
TCmmi. Here, the environmental re-scaling operator Cm acting on a vector v is
defined as:

Cmv � Λ
v

∣ vj j∣ , (7)

With the scaling factor for the environmental perturbations given by

Λ ¼ 1
2Γ

ð

D

ð

z
U02 þ V 02 þ Cp

T
T02

� �
dzdS

� �1
2

, (8)

And the norm ||.|| taken to be the energy norm as follows:

vj jj j2 ¼ 1
2Γ

ð

D

ð

z
u02 þ v02 þ Cp

T0
T02

� �
dzdS

� �1
2

,

where Γ is the normalized factor proportional to the model domain volume,
Cp = 1006 J kg�1 K�1; T0 = 300 K), D is the model domain area after the model
vortex was filtered, U0 ¼ V 0 ¼ 1:8 ms�1, and T0 ¼ 0:7K. These values are
established in the study of Saito et al. [13], which are also consistent with the
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previous estimation by Wang and Bishop [60]; Repeat step 6 for the TC bred
vectors with operator Cx to obtain a set of orthogonal TC bred vectors TCxvi.

Step 7. Make a new pairs of breeding members by adding/subtracting the
environmental and TC bred components into the analysis xa, i.e.,
x1ai = xa + TCmmi + TCxvi and x2ai = xa - TCmmi - TCxvi.

Step 8: Run 6-hour lead time forecasts of all positive and negative pair to serve as
the first guess for the next analysis cycle;

Step 9. Repeat step 1–9 for the next analysis cycle;
Noted that the above steps are taken only for the warm-start mode in which the

ensemble breeding forecasts in the analysis procedure has been available since the
previous. For the cold start cycle at which the “INVEST” information for a tropical
depression is first issued, it is apparent that the bred vectors are unknown yet,
therefore the ensemble initialization requires a different procedure.

One can do the cold-start in countless ways, for example using a random Gauss-
ian noise with a prescribed error distribution, or directly use of the global GFS
ensemble forecasts. For simplicity, the approach uses the 6-h difference from pre-
vious GFS short-range forecasts for all of the cold-start ensembles. This approach,
known as lagged-averaged forecasts (LAF) from Kalnay [58], can quickly capture
the most unstable modes in the model, thus allowing the breeding ensemble to
speed up the dynamically representation to the environment. The combination of
these short-range forecasts can generate a predefined number of seeds from which
the breeding ensemble can be obtained. Consider, for example, a configuration of
the breeding ensemble experiments requires a total of six bred vectors. Those bred
vectors are initialized by taking six 6-h differences of the previous -36 h, �24 h,
�18 h, �12 h, and -6 h forecasts that are all taken from the cold start ensemble
(Figure 4b). The control forecast preprocessed directly from the GFS analysis then
adds/subtracts the given bred vectors to create an ensemble of total 13 members for
subsequent ensemble forecasts.

2.2.1 Example 2

The TC Breeding method has been implemented the Regional Atmospheric
Modeling System (RAMS, version 6.0) model to forecast the TC track in the
WPAC basin. In this study, the model domain is a region limited by 5°S–35°N and
100–150°E. This domain is sufficiently large to cover most of the tropical cyclone
that formed in the WPAC basin and part of the Tibetan plateau that affects the
large-scale steering flow of the TC tracks in the WPAC basin. The model
integration time is 60s, and the experimental maximum lead times were up to
5 days (120 h). The convection parameterization schemes used among all
experiments included a Kuo scheme, a Kain–Fristch scheme (original) and the
new Kain–Fristch scheme (modified version). Initial data for model input were
taken from the National Center for Environmental Prediction (NCEP) Global
Forecast System (GFS) operational forecast with resolution of 1° � 1°. A set of
14 tropical cyclones between 2009 and 2011 in the WPAC basin were chosen for
testing the TCB method (Table 1).

A series of 120 h forecasts for all storms in Table 1 were conducted, using the
aforementioned TC-breeding technique. The retrospective experiments include six
positive/negative pairs and a control forecast (total 13 members). Here, the control
forecasts are just the integrated results from the RAMS model with initial conditions
where the original GFS forecasts adding a bogus vortex to make sure the model
storm intensity was equivalent to the reality. The experiments used the default
mode of the TC-LAPS package in which the constructed bogus vortex that had the
horizontal resolution of 1° � 1°, and the isobaric vertical coordinates with 26
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pressure levels as 1000, 975, 950, 925, 850, 800, 750, 700, 650, 600, 550, 500, 450,
400, 350, 300, 250, 200, 150, 100, 70, 50, 30, 20, and 10 h Pa. The variables to
characterize the bogus vortex included sea level pressure (P), horizontal wind
components (U, V), temperature (T), geopotential height (H), and relative humid-
ity (RH). The cycles of all breeding ensemble were every 12 h, using the TCB
method described above. Besides, for convenience, the domain of storm-scale per-
turbation was also fixed with enclosing area of 1000 km � 1000 km, centered at the
vortex location. Three perturbed state variables in the model at the breeding cycles
included the horizontal winds and potential temperature at all pressure levels.
These cycles (12-h interval) are suitable enough to capture both the fast-growing
weather signals at the micro- to meso- scale and the slower baroclinic modes at
larger scales.

Results indicated that TCB method helps reduce the track errors. The improve-
ment is approximately 10% reduction in the track forecast errors at the 4- to 5- day
lead times as compared to deterministic forecasts integrated from GFS derived-
initial conditions. While the improvement is not significant at shorter lead time (1–3
lead times, Figure 5).

Besides, the major difference between this TCB method and the original
approach of TK93 is the dissimilarity in treatment of perturbations between large-
scale environments and storm-scale inner-core, which are then orthogonalized in
different manners. For the environmental perturbations in all experiments, a vol-
ume limited by [100–150°E] � [5°S–35°N] � [1000–10 h Pa] is chosen. In facts, the
domain size does not have significant impact on the magnitude of EBVs, when it is
important for the TBVs in some aspects. That is because storms do not always have
a fixed size, thus the use of a predefined domain with a constant radius of 1000 km
may not fully characterize the storm-scale TC-like vortex. One can design a suitable

No Name Start date End date

2009

1 CHANHOM 18z02052009 00z09052009

2 LINFA 06z17062009 12z22062009

3 GONI 00z30072009 12z09082009

4 MUJIGAE 12z08092009 00z12092009

5 KETSANA 00z25092009 06z30092009

6 PARMA 18z28092009 18z28092009

7 MIRINAE 18z26102009 12z02112009

2010

8 CONSON 18z11072010 18z17072010

9 CHANTHU 00z18072010 06z23072010

2011

10 HAIMA 00z19062011 18z24062011

11 NOCKTEN 06z25072011 15z30072011

12 NESAT 00z24092011 12z30092011

13 NALGAE 00z28092011 06z05102011

14 WASHI 00z15122011 18z19122011

Table 1.
List of storms between 2009 and 2011 in the WPAC basin used in this study.
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adaptive storm domain to optimize the effectiveness of the TCB method. However,
with a coarse resolution of 30 km, the adaptive approach cannot capture the true
detailed TC inner-core structure. For more simplicity of the experiment design in
this study, the filtering domain has a fixed horizontal radius of 1000 km in all
experiments with a warning that this constant size could be a caveat for very broad
TCs. It should be noted also that the control analysis would add or subtract the bred
vectors, and a potential drift of the control run from the actual states may shift the
entire ensemble further from the truth after several cycles. However, with the

Figure 5.
Track forecast distance errors between the TK93’s original breeding ensemble (striped column) forecasts and the
deterministic control forecasts (gray columns) for 2009–2011 seasons using the RAMS model [47].
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integration lead time of only 12 h at each cycle from the control forecast using the
GFS forecasts, such a drift is not a big issue and the ensemble thus always maintains
their close trajectory to the truth at every initial time.

Sensitivity experiments showed that the best results with �30 ensemble mem-
bers are adequate to construct a TCB technique. By gradually increasing the number
of ensemble members, the rate of reducing track error per newly added member
becomes saturated after reaching the number of 30 ensemble members (Figure 6).
This saturation of the track errors could link to the maximum information that the
orthogonalization of the bred vectors to be obtained after the system reaches its
noise level. Otherwise, adding more ensemble member could provide no further
benefit to the system, it could even slow down the computation. It should be noted
that the 30-km resolution of all ensemble experiments does not fully verify the
necessity of separating the treatments for the storm-scale bred vectors and the
large-scale bred vectors in distinguished manners. Theoretically, one could design
the experiments with higher resolution to further assess the sensitivity of the
breeding ensemble technique for more precise experiments, but this would require
a large amount of computational and storage resources beyond our current capabil-
ity. Although this minor problem about resolution, the overall track forecast
improvement with the TCB approach suggests that this approach could somehow
shed light on ensemble TC track forecast, especially under the circumstances where
the observational information is not enough to execute more complex data assimi-
lation steps in real-time forecasting systems.

3. Conclusions

This chapter has presented several techniques to improve the predictive quality
of tropical cyclone formation and trajectory. For the forecast of TCs formation, the
LETKF algorithm and its implementation in the WRF model and the Vortex track-
ing method have been introduced. Results in example 1 show that due to a better
approach in capturing the real world monsoon trough by assimilating augmented

Figure 6.
Rate of track forecast error base on the number of the ensemble members for forecast ranges: The 24-h
(diamond), 48-h (circle), 72-h (triangle), 96-h (times), and 120-h (square). The reducing rate is determined
as the difference of the track errors when adding newly member to the system at each lead time [56].
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observations available during the early stages of TCWutip, the WRF-LETKF model
had provided better forecasts about the formation location and timing of typhoon
Wutip in comparison to the forecasts that used initial conditions directly from GFS
global model. Besides, the results from this study also show the CIMSS-AMV data
played a vital role in improving the information of the large-scale environment
required for TC formation that one should consider for real-time TC forecasts. For
the tropical cyclone track forecasts, a breeding ensemble technique is introduced.
This technique is developed based on the original breeding method (TK93). Exper-
iments with 14 TCs (Table 1) in example showed a promising reduction of track
forecast errors by using the TCB technique, especially at 4–5 days forecast range.

However, both the track forecasts by TCB method and the control forecasts are
similar in the patterns of cross- and along track forecast errors. This indicated that
model inherent errors also are a significant contributor to the track forecast errors
that the TCB method is unable to eliminate. Sensitivity experiments of adding
gradually each ensemble members exhibit further that the increasing number of
members could reduce the track forecast errors, but reduction rate saturates when
the number reaches 30 dues to the inefficiency of the TCB method in orthogonaliz-
ing bred vectors. However, while the TCB method cannot eliminate model inherent
errors related to inadequate representation of sub-grid scales when using only
parameterizations of physical processes in the RAMS model or the inefficient model
resolution, this method could somehow optimize the use of the breeding ensemble
technique for tropical cyclone track forecasts in real-time forecasting systems which
do not require high computational resources.
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a High Elevated Basin of Western
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Abstract

Accurate and reliable prediction of relative humidity is of great importance in all
fields concerning global climate change. The current study has employed Multivar-
iate Adaptive Regression Spline (MARS) and M5 Tree (M5T) models to predict the
relative humidity in the Hunza River basin, Pakistan. Both the models provided the
best prediction for the input scenario S6 (RHt-1, RHt-2, RHt-3, Tt-1, Tt-2, Tt-3).
The statistical analysis displayed that the MARS model provided a better prediction
of relative humidity as compared to M5T at all meteorological stations, especially, at
Ziarat followed by Khunjerab and Naltar. The values of root mean square error
(RMSE), mean absolute error (MAE), and coefficient of determination (R2) were
(5.98%, 5.43%, and 0.808) for Khunjerab; (6.58%, 5.08%, and 0.806) for Naltar;
and (5.86%, 4.97%, 0.815) for Ziarat during the testing of MARS model whereas,
the values were (6.14%, 5.56%, and 0.772) for Khunjerab; (6.19%, 5.58% and 0.762)
for Naltar and (6.08%, 5.46%, 0.783) for Ziarat during the testing of M5T model.
Both the models performed slightly better in training as compared to the testing
stage. The current study encourages future research to be conducted at high altitude
basins for the prediction of other meteorological variables using machine learning
tools.

Keywords: relative humidity, MARS, M5T, Hunza, machine learning

1. Introduction

The relative humidity is defined as the amount of water vapor in the air in
comparison with the full saturation [1, 2]. Being the important indicator of precip-
itation forecasting, its prediction plays a significant part in improving the accuracy
of weather forecasting [3]. The relative humidity changes with respect to change in
saturated vapor pressure which further depends on wind speed, solar radiation,
pressure, temperature, and moisture content in the air [1]. The relative humidity is
a function of temperature and is regarded as a sensitive parameter in the field of
science [4]. Relative humidity plays a vital role in plant growth, agricultural and
industrial production and in the prevention and control of air pollution [5];
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economic stability of a region, water systems and also in managing renewable and
solar energy systems [1, 6], weather and climate [7, 8]. Moreover, it has also an
impact on ozone concentration and adaptive thermal comfort [9]. Keeping in view
the importance of relative humidity, the research on its prediction is increasingly
important [7].

The relative humidity is an important aspect of the hydrological phase [8] and
has a role in alpine hydrology, especially, in a cold and dry climate; any change in
temperature and humidity causes larger variations in the ablation of glaciers [10].
The warm environment glaciers are subjected to be influenced more by the change
in relative humidity. Few other studies e.g. [11–13] also observed that tropical
glaciers are sensitive to subtle changes in relative humidity, precipitation, and
cloudiness. Relative humidity and clouds play an important role in the energy
balance of glaciers by controlling the number of outgoing longwave radiation.
Moreover, relative humidity and wind speed influence the turbulent latent heat flux
which supplies all energy for sublimation and thus they indirectly control the
equilibrium line altitude (ELA) [14]. Another study conducted by [15] observed
that relative humidity has an effect on evaporation and there is an inverse relation
between them. Evaporation further controls the water balance of closed lakes in
hilly areas and evapotranspiration, especially, in irrigated agricultural areas.

Regardless of relative humidity is an important component of hydrology, mete-
orology, and climate, only a few studies are available for its prediction. A study
conducted by [1] used artificial neural networks (ANNs) and genetic expression
programming (GEP) models for the prediction of relative humidity as a function of
three meteorological variables: wind speed, temperature, and pressure in two Cali-
fornian gauging stations. They observed that both the models can successfully
predict one-year relative humidity data into the future. Another study done by [5]
predicted relative humidity by establishing time series models such as Extreme
Gradient Boosting (XGBoost), Seasonal Auto-Regressive Integrated Moving Aver-
age (SARIMA), and Holt-Winters (HW). The XGBoost was found more accurate
because of its robust capability to resist a fitting. The study conducted by [3] found
that the performance of an autoregressive integrated moving average (ARIMA)
model is better than the Long Short-Term Memory (LSTM) Network for the pre-
diction of relative humidity. On contrary, [8] observed that the LSTM network is
capable of predicting complex univariate relative humidity time series with robust
no-stationarity. However, Least Square Support Vector Machine (LSSVM) and
Adaptive Network-Based Fuzzy Inference System (ANFIS) models were used by
[2] for prediction of relative humidity in terms of dry bulb temperature and wet
bulb depression and found satisfactory.

Another study conducted by [16] proposed four ANNs models to predict the
relative humidity and temperature in a swine livestock warehouse located in Puerto
Gaitan–Meta. They observed that the models used in the study are suitable for the
prediction of humidity in barns not equipped with humidity sensors. However, [17]
used an improved backpropagation (BP) neural network for the prediction of
indoor relative humidity and temperature every 10 min and 6–72 hours in advance
based on a cloud database in Chongqing, China. Both temperature and humidity
predictions have a strong correlation with the observed data. Similarly, another
study conducted by [18] used BP neural network for the prediction of one day
ahead mean air temperature and relative humidity of greenhouse located in the sub-
humid sub-tropical regions of India. The results displayed that the BP neural net-
work model provided the best prediction for inside temperature and relative
humidity. However, a study done by [19] used daily minimum air temperature (Tn)
downscaled from INMCM4 general circulation model (GCM) to predict the relative
humidity for climate change studies but relative humidity predictions were poor in
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few months especially in March, July, August, and October. Moreover, a study
conducted by [20] proposed a Functional Link Neural Network (FLNN) which
comprises of a single layer of tunable weight trained with the Modified Cuckoo
Search algorithm (MCS) for prediction of daily temperature and relative humidity.
It was observed that FNN when trained with MCS produced less prediction error.
Further, an attempt has been made for the prediction of relative humidity and
temperature at different locations inside tobacco dryer by [21] by using a fitting
ANN model. Another study performed by [22] also used different ANN models to
successfully forecast indoor relative humidity and temperature in the education
building of Izmir, Turkey.

Formerly, no attempt has been made for the prediction of relative humidity in
the alpine catchment where there is an issue of data scarcity. The current study is
unique because it uses two machine learning models such as MARS and M5T to
predict the relative humidity in the Hunza basin (glaciated basin), Pakistan. MARS
model was selected because it requires a short training process and has the ability to
model complex nonlinear processes deprived of strong model assumptions as com-
pared to ANNs models [23, 24] whereas the M5T model was selected because of its
small computation cost and ease in large data treatment as compared to support
vector machine (SVM) and ANN [25, 26]. In previous studies, mostly these models
were used for the prediction of runoff in poorly gauged basins. A study conducted
by [27] suggested that the MARS method is capable of predicting short-term runoff
forecast in mountainous watersheds whereas MARS was successfully used for the
prediction of streamflows with inadequate data input in the mountainous catch-
ment by [28]. Similarly, the M5T model was found useful in the prediction of
streamflows of several tributaries by [29] and it was observed that predictions are
good in rainless periods. Another study conducted by [30] found the M5T algorithm
reliable in the prediction of streamflows. Several other studies also encouraged the
researchers to use MARS and M5T models for the prediction of runoff e.g. [31–37].
Apart from runoff prediction, MARS and M5T models were also used for the
prediction of evapotranspiration (ET) and Pan Evaporation (Ep). A study
conducted by [38] compared the performance of M5T, MARS along with calibrated
Hargreaves-Samani (CHS), MLP, and Stephens-Stewart (SS) models and observed
that MARS performed better in the prediction of Ep. Another study conducted by
[39] found that the M5T model outperformed compared to Ritchie Equation for the
prediction of ET. Similarly, [40] successfully predicted reference evapotranspira-
tion by using M5T and ANN models.

2. Study area

Hunza is a glaciated sub-catchment of the Upper Indus Basin (UIB) and is
located in the western Karakoram Himalayan region of Pakistan (Figure 1). The
basin lies within the extent of 74°020–75°480E and 35°540–37°05 0N and encompasses
13,671 km2 of the catchment area.

The elevation of the basin ranged from 1391 to 7850 m. About 20% catchment
area of the basin is covered by glaciers [41] and there are 110 glacial lakes in the
basin [42]. It is the main tributary of the Indus Basin Irrigation System (IBIS) and it
contributes about 12% of UIB streamflows upstream of Tarbela dam [43]. The
climate of the Hunza basin is arid to semi-arid and is normally categorized by two
seasons, October to March as winter and April to September as summer. The
weather conditions vary within the basin. At low altitudes, weather is hot whereas
at high altitudes winters are cold and there are extensive variations in temperature
extremes [44]. The mean total annual precipitation varies with respect to altitude;
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low altitude station such as Naltar (2858 m) receives more precipitation i.e. 660 mm
as compared to high altitude station Khunjerab (4730 m) which receives 165 mm of
precipitation. The meteorological station installed in between Naltar and Khunjerab
(i.e. Ziarat, 3669 m) receives 292 mm of precipitation [45, 46].

The temporal variations in meteorological variables of Khunjerab station (using
data of 1995–2009) are displayed in Table 1. Table 1 shows that the maximum
temperature varies between �11.1°C (January) to 11.6°C (July) whereas minimum
temperature varies from �21.3°C (January) to 1.3°C (July). The maximum relative
humidity in the basin varies from 59% (March) to 91% (August) while minimum
relative humidity varies from 23% (March) to 52% (December). The daily solar
radiation in the Hunza basin varies from 2563 (December) to 5148 (May) watt/m2.

Figure 1.
Location map of the study area.

Month Maximum
Temperature

(°C)

Minimum
Temperature

(°C)

Maximum
Relative

Humidity (%)

Minimum
Relative

Humidity (%)

Solar
Radiation
(watt/m2)

January �11.1 �21.3 62 30 2933

February �11.0 �19.7 77 34 3500

March �4.5 �16.9 59 23 4394

April 0.2 �9.7 78 30 4750

May 5.5 �4.6 81 26 5148

June 7.7 �1.3 87 44 5102

July 11.6 1.3 86 38 4858

August 10.5 �0.3 91 34 4711

September 4.6 �4.5 86 27 4227

October 0.8 �10.4 78 35 4003

November �5.8 �16.1 68 39 3452

December �11.0 �18.9 80 52 2563

Table 1.
Monthly average variations in meteorological variables of Khunjerab (1995–2012).
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3. Material and methods

3.1 Topography

The Advanced Spaceborne Thermal Emission and Reflection Radiometer
(ASTER), Global Digital Elevation Model (GDEM) was used to delineate the catch-
ment boundary of the Hunza basin. The Hunza basin was delineated using ASTER
GDEM v3 data in Arc GIS. The data was acquired from the website: https://lpdaac.
usgs.gov/tools/data-pool/. The format of the downloaded tiles was Geo-TIFF and
has the gridding resolution i.e. (30 m) and tile structure (1°x 1°).

3.2 Meteorological data

There are four meteorological stations in the Hunza River basin such as Hunza,
Naltar, Khunjerab, and Ziarat (Table 2). The Hunza meteorological station was
installed by the Pakistan Meteorological Department (PMD) and the record is
available from 2007 to onward whereas the other three stations were installed and
managed by Water and Power Development Authority (WAPDA) and the record is
available from 1995 to onward. The current study has employed daily data of
temperature, precipitation, solar radiation, and relative humidity of Ziarat, Naltar,
and Khunjerab meteorological stations. The required data of the aforementioned
stations were acquired from the Surface Water Hydrology Project of the Water and
Power Development Authority (SWHP-WAPDA), Pakistan from 1995 to 2009
(Table 2).

3.3 Machine learning models

The current study has employed two machine learning models such as M5 Tree
and MARS for the prediction of relative humidity at three meteorological stations of
the Hunza basin. Their detailed description is given below:

3.3.1 M5 tree model

The M5T model was first introduced by [47]. Model trees simplify the theories
of regression trees and there are constant values at their leaves [48]. M5T model is
established in relation to a binary decision tree where linear regression functions are
placed in the terminal node (leaf) and a relationship is developed between depen-
dent and independent variables through it [49]. Model development involves two
stages; the first stage involves in creation of a decision tree by using a split criterion

Meteorological
Station

Latitude
(DD)

Longitude
(DD)

Elevation (m) Data Agency

Hunza 36.320 74.640 2374 P, Tmax, Tmin,
RH, SR

PMD

Naltar 36.216 74.266 2858 — SWHP-WAPDA

Khunjerab 36.850 75.400 4730 — SWHP-WAPDA

Ziarat 36.830 74.430 3669 — SWHP-WAPDA

Note: DD = Degree decimal; P= Precipitation; Tmax= Maximum temperature; Tmin= Minimum temperature;
RH = Relative humidity; SR = Solar radiation.

Table 2.
List of meteorological stations in the Hunza basin.
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whereas in the second stage overgrown tree is pruned for designing the model tree
[25]. The splitting stage in the M5T model is composed of regression function at the
leaves instead of class labels and continuous numerical attributes can be estimated
through it [36]. The splitting criterion for the M5T model procedure is based on the
standard deviation reduction (SDR) function achieved in every node. This criterion
points out the error in that node and the minimum expected error is calculated by
the model because of testing each attribute in that node [50, 51]. The SDR in the
M5T model can be calculated by the following Equation [47]:

SDR ¼ sd Mð Þ �
X Mij j

Mj j sd Mið Þ (1)

Where SDR specifies the standard deviation reduction and sd indicates standard
deviation; M specifies a set of examples that reaches the node; whereas Mi signifies
the subset of examples that have the ith outcome of the potential set.

Because of the splitting or branching process, data in child nodes (smaller nodes)
have less SD than parent nodes (greater nodes). The division process often results in
producing a large tree-like structure which causes overfitting and this issue can be
resolved by pruning back the tree [52], for instance by substituting a subtheme with
a leaf. Pruning the overgrown tree and substitution of subthemes with linear
regression functions are performed in the second stage of model designing. This
method of producing the model tree separates the parameter space into subspaces
and builds in each of them a linear regression model.

3.3.2 MARS algorithm

MARS model was first developed by [53]. Its working procedure involved
establishing a relationship among a set of input variables and the target-dependent
that involve connections with less number of variables [54]. MARS produces flexible
models to facilitate the solution space to be divided into several intervals of indepen-
dent parameters whereas individual splines are fit to each interval [53]. This method
is non-parametric and non-linear and it involves a forward-backward procedure to
predict a continuous dependent parameter in high-dimensional data [55]. No
assumptions have beenmade about the fundamental functional relationships between
independent and dependent variables by the MARS model. In MARS, the splines are
connected smoothly together to form piecewise curves which are also known as basis
functions (BFs), and these form a flexible model which is capable of handling both
linear and non-linear behavior [54]. Two stages are involved in setting up the MARS
model which includes forward (constructing the model) and backward (a pruning
procedure) stages. In the first stage (forward), to define a pair of BFs candidates,
knots are placed within the range of each predictor variable. To produce a maximum
reduction in sum-of-squares residual error, the model adjusts the knot and its
corresponding pair of BFs in each step. This process of adding BFs lasts and generally
a very complex and overfitted model is produced. However, the overfitted model is
pruned by deleting the less important redundant BFs in the backward stage [54, 55].

The MARS model f(X) is generally expressed by the following equation;

f xð Þ ¼ δo þ
XM
m¼1

δmhm Xð Þ (2)

Where δo and δm denote the coefficients which are calculated by the least sum of
squared errors from splines functions, whereas hm Xð Þ represents the spline
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functions, and M denotes the number of functions. The pruning stage improves the
forecasting accuracy of the model and M is determined during this phase [55].

3.4 Model setup

The current study compares the accuracy of two machine learning methods such
as MARS and M5Tree, for the prediction of daily relative humidity using different
input data combinations of precipitation, temperature, and relative humidity. These
machine learning models were applied on three meteorological stations such as
Khunjerab, Naltar, and Ziarat one by one. The flowchart of the current study is
displayed in Figure 2. Each model was applied on these stations separately with
different input data combinations for the prediction of relative humidity (RH). Ten
input data combinations were developed for each meteorological station by each
model to decide the best input data combination for the prediction of relative
humidity. Initially, three preceding relative humidity (RH) input combinations
such as (i) RHt-1, (ii) RHt-1 and RHt-2, and (iii) RHt-1, RHt-2, and RHt-3 were
tried to both the models to predict current RH (RHt). After that, three precipitation
(i.e. (i) Pt-1, (ii) Pt-1, Pt-2, (iii) Pt-1,Pt-2,Pt-3) and temperature inputs (i.e. (i) Tt-
1, (ii) Tt-1,Tt-2, (iii) Tt-1,Tt-2,Tt-3) combinations were separately added to the
best RH combination whereas in the last input combination (10th); best tempera-
ture and precipitation inputs were added together with the best RH input combina-
tion to see the combine effect of both parameters on model’s accuracy in predicting
relative humidity.

The current analysis involves daily data of precipitation, temperature, and rela-
tive humidity from 1995 to 2009. About 75% of input data i.e. from 1995 to 2006
was used for training whereas 25% of input data i.e. from 2007 to 2009 was used for
testing in both machine learning models for prediction of relative humidity.

Figure 2.
Flowchart of the study.
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However, [8] used only two-year data i.e. 2008 to 2009 for training the LSTM
model which might not be enough for reliable predictions.

3.5 Models evaluation criteria

The models’ accuracy in relative humidity prediction against observed data was
evaluated using the following statistics which are normally used in the related
literature. The statistics include R2, RMSE, and MAE as shown in Eqs. (3)-(5).

R2 ¼ 1�
1
n

Pn
i¼1 RHi � RH

� �2
1
n

Pn
i¼1 rhi � rh

� �2 (3)

RMSE ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPN

i¼1 RHiO � RHiMð Þ2
N

s
(4)

MAE ¼
PN

i¼1 RHiO � RHiMj j
N

(5)

Where rh indicates the observed mean relative humidity; RH is the mean of the
predicted relative humidity RHi; N signifies the number of data points. Moreover,
RHiO is observed relative humidity and RHiM is modeled relative humidity. Previous
studies such as [56–61] suggested that a single statistical indicator cannot examine
well the prediction accuracy of soft computing models. Therefore, the current study
used three statistical indicators to judge the model prediction accuracy with confi-
dence. When the error distributions of the models are normal and uniform in that
case the use of error statistics such as RMSE and MAE is more suitable. For an ideal
model, the values of RMSE and MAE should equal to 0, whereas, R2 should equal to
1. The model having relatively small values of MAE and RMSE as compared to other
models is considered the best model.

4. Results and discussions

4.1 Performance evaluation of MARS model in predicting relative humidity

The performance evaluation statistics of the MARS model for the prediction of
relative humidity at Khunjerab, Naltar, and Ziarat are presented in Tables 3–5,
respectively. The MARS model performed excellent for the prediction of relative
humidity at all meteorological stations both during training and testing processes
especially, it provided the best predictions for the 6th scenario (S6) of input data
combination which is highlighted in bold. The RMSE, MAE, and R2 values during
the training (5.58%, 4.51%, 0.852) and testing (5.98%, 5.43%, 0.808) stages for
Khunjerab meteorological station are displayed in Table 3. The MARS model
performed better during training as compared to testing at Khunjerab. However,
the MARS model did not perform well for the S1, S2, and S3 scenarios. Our study
results were found better than the study conducted by [1]. They described that GEP
and ANNs models can predict relative humidity reliably at two Californian stations
(RMSE= 10.7%, MAE= 7.6% and R2 = 0.73) during training; and (RMSE= 10.1%,
MAE= 7.5% and R2 = 0.714) during testing stage in the case of GEP model. How-
ever, ANN model produced better results as compared to GEP such as (RMSE=
7.8%, MAE= 3.6% and R2 = 0.826) during training, and (RMSE= 8.2%, MAE= 4.1%
and R2 = 0.751) during testing stage.
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Similarly, the MARS model provided the best prediction of relative humidity for
the S6 input data scenario at Naltar both during training and testing stages as shown
in Table 4. The RMSE, MAE and R2 values for the best input parameter combination
were 5.63%, 4.53%, and 0.826 respectively, during training whereas 6.58%, 5.08%,
and 0.806, were during testing (Table 4). The MARS model did not perform well for
S1, S2, and S3 input combinations. However, a study conducted by [5] observed that
the XGBoost model provided the best prediction of relative humidity (MAE= 2.29%)
as compared to SARIMA (MAE= 2.97%) and HW additive (MAE= 2.74%).

Scenario Input Combinations Training Testing

RMSE
(%)

MAE
(%)

R2 RMSE
(%)

MAE
(%)

R2

S1 RHt-1 11.00 8.49 0.480 13.59 10.51 0.381

S2 RHt-1, RHt-2 10.88 8.39 0.491 13.58 10.51 0.385

S3 RHt-1, RHt-2, RHt-3 10.86 8.36 0.493 13.53 10.45 0.388

S4 RHt-1, RHt-2, RHt-3,Tt-1 5.78 4.64 0.823 6.43 5.62 0.782

S5 RHt-1, RHt-2, RHt-3,Tt-1,Tt-2 5.64 4.57 0.831 6.12 5.57 0.801

S6 RHt-1, RHt-2, RHt-3,Tt-1,Tt-2,Tt-3 5.58 4.51 0.852 5.98 5.43 0.808

S7 RHt-1, RHt-2, RHt-3,Pt-1 9.76 7.62 0.602 11.67 8.75 0.532

S8 RHt-1, RHt-2, RHt-3,Pt-1,Pt-2 9.16 7.28 0.643 10.87 8.38 0.544

S9 RHt-1, RHt-2, RHt-3,Pt-1,Pt-2,Pt-3 9.08 7.19 0.649 10.73 8.29 0.552

S10 RHt-1, RHt-2, RHt-3,Pt-1,Pt-2,Pt-3, Tt-
1,Tt-2,Tt-3

6.21 5.13 0.802 6.03 5.53 0.803

Bold values represent the best input data combination.

Table 3.
The statistical evaluation of the MARS model at Khunjerab.

Scenario Input Combinations Training Testing

RMSE
(%)

MAE
(%)

R2 RMSE
(%)

MAE
(%)

R2

S1 RHt-1 11.42 8.95 0.588 14.22 10.69 0.499

S2 RHt-1, RHt-2 11.09 8.65 0.612 13.99 10.31 0.518

S3 RHt-1, RHt-2, RHt-3 11.02 8.61 0.616 13.98 10.32 0.517

S4 RHt-1, RHt-2, RHt-3,Tt-1 5.84 4.73 0.812 6.84 5.34 0.783

S5 RHt-1, RHt-2, RHt-3,Tt-1,Tt-2 5.76 4.62 0.818 6.73 5.25 0.792

S6 RHt-1, RHt-2, RHt-3,Tt-1,Tt-2,Tt-3 5.63 4.53 0.826 6.58 5.08 0.806

S7 RHt-1, RHt-2, RHt-3,Pt-1 10.24 7.63 0.673 11.73 8.36 0.624

S8 RHt-1, RHt-2, RHt-3,Pt-1,Pt-2 10.08 7.46 0.692 11.29 8.07 0.645

S9 RHt-1, RHt-2, RHt-3,Pt-1,Pt-2,Pt-3 9.36 7.13 0.724 10.76 7.93 0.663

S10 RHt-1, RHt-2, RHt-3,Pt-1,Pt-2,Pt-3,
Tt-1,Tt-2,Tt-3

5.71 4.71 0.815 6.74 5.18 0.796

Bold values represent the best input data combination.

Table 4.
The statistical evaluation of the MARS model at Naltar.
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However, the MARS model performed the best (RMSE= 5.86, MAE= 4.97%, R2 =
0.815) for prediction of relative humidity at Ziarat for the S6 input combination
during the testing stage as shown in Table 5. The MARS model also performed
fairly well during training stage (RMSE= 5.26%, MAE= 4.59%, R2 = 0.833) for S6
input combination. The MARS model provided a poor prediction of relative
humidity for S1, S2, and S3 input scenarios (Table 5). Overall, the MARS model
performed fairly well at Khunjerab (R2= 0.852) and showed slightly low perfor-
mance at Naltar (R2 =0.826) for the S6 input combination during the training stage
(Tables 3–5).

The MARS model performance was also evaluated by drawing scatter plots.
The scatter plots had been drawn between observed and predicted relative humidity
from 2007 to 2009 on daily data as displayed in Figure 3. Scatter plots also
displayed that the MARS model outperformed for prediction of relative humidity at

Scenario Input Combinations Training Testing

RMSE
(%)

MAE
(%)

R2 RMSE
(%)

MAE
(%)

R2

S1 RHt-1 11.29 8.58 0.530 14.75 10.90 0.420

S2 RHt-1, RHt-2 11.17 8.49 0.540 14.73 10.86 0.424

S3 RHt-1, RHt-2, RHt-3 11.12 8.46 0.544 14.77 10.89 0.421

S4 RHt-1, RHt-2, RHt-3,Tt-1 5.73 4.92 0.801 6.13 5.23 0.792

S5 RHt-1, RHt-2, RHt-3,Tt-1,Tt-2 5.58 4.76 0.813 6.02 5.06 0.807

S6 RHt-1, RHt-2, RHt-3,Tt-1,Tt-2,Tt-3 5.26 4.59 0.833 5.86 4.97 0.815

S7 RHt-1, RHt-2, RHt-3,Pt-1 10.03 7.13 0.624 12.75 8.34 0.542

S8 RHt-1, RHt-2, RHt-3,Pt-1,Pt-2 9.75 6.48 0.687 11.78 8.07 0.568

S9 RHt-1, RHt-2, RHt-3,Pt-1,Pt-2,Pt-3 9.48 6.29 0.698 11.38 7.84 0.597

S10 RHt-1, RHt-2, RHt-3,Pt-1,Pt-2,Pt-3,
Tt-1,Tt-2,Tt-3

5.38 4.68 0.820 5.94 5.02 0.812

Bold values represent the best input data combination.

Table 5.
The statistical evaluation of the MARS model at Ziarat.

Figure 3.
Scatter plots between observed and predicted relative humidity by using MARS model at (a) Khunjerab;
(b) Naltar and (c) Ziarat.
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all meteorological stations, especially, at Ziarat with R2 = 0.815 for the S6 input
combination during the testing stage (Figure 3).

4.2 Performance evaluation of M5T model in predicting relative humidity

The performance evaluation of the M5T model for the prediction of relative
humidity at Khunjerab, Naltar, and Ziarat is displayed in Tables 6–8, respectively.
The M5T model also performed well for the prediction of relative humidity at all

Scenario Input Combinations Training Testing

RMSE
(%)

MAE
(%)

R2 RMSE
(%)

MAE
(%)

R2

S1 RHt-1 11.08 8.56 0.476 13.64 10.54 0.378

S2 RHt-1, RHt-2 10.94 8.45 0.486 13.61 10.53 0.382

S3 RHt-1, RHt-2, RHt-3 10.90 8.41 0.491 13.56 10.49 0.391

S4 RHt-1, RHt-2, RHt-3,Tt-1 6.71 5.76 0.758 6.94 6.32 0.726

S5 RHt-1, RHt-2, RHt-3,Tt-1,Tt-2 6.62 5.64 0.765 6.89 6.13 0.748

S6 RHt-1, RHt-2, RHt-3,Tt-1,Tt-2,Tt-3 5.94 5.08 0.796 6.14 5.56 0.772

S7 RHt-1, RHt-2, RHt-3,Pt-1 9.79 7.68 0.598 11.77 8.82 0.529

S8 RHt-1, RHt-2, RHt-3,Pt-1,Pt-2 9.20 7.32 0.639 10.92 8.44 0.541

S9 RHt-1, RHt-2, RHt-3,Pt-1,Pt-2,Pt-3 9.13 7.24 0.642 10.83 8.36 0.548

S10 RHt-1, RHt-2, RHt-3,Pt-1,Pt-2,Pt-3,
Tt-1,Tt-2,Tt-3

6.43 5.32 0.772 6.23 5.81 0.752

Bold values represent the best input data combination.

Table 6.
The statistical evaluation of the M5T model at Khunjerab.

Scenario Input Combinations Training Testing

RMSE
(%)

MAE
(%)

R2 RMSE
(%)

MAE
(%)

R2

S1 RHt-1 11.12 8.57 0.476 13.68 10.58 0.378

S2 RHt-1, RHt-2 10.92 8.45 0.486 13.62 10.54 0.381

S3 RHt-1, RHt-2, RHt-3 10.89 8.38 0.491 13.57 10.48 0.384

S4 RHt-1, RHt-2, RHt-3,Tt-1 6.76 5.79 0.752 6.90 6.36 0.721

S5 RHt-1, RHt-2, RHt-3,Tt-1,Tt-2 6.58 5.61 0.760 6.81 6.18 0.742

S6 RHt-1, RHt-2, RHt-3,Tt-1,Tt-2,Tt-3 5.82 5.12 0.791 6.19 5.58 0.762

S7 RHt-1, RHt-2, RHt-3,Pt-1 9.84 7.67 0.598 11.76 8.79 0.529

S8 RHt-1, RHt-2, RHt-3,Pt-1,Pt-2 9.28 7.38 0.638 10.96 8.48 0.541

S9 RHt-1, RHt-2, RHt-3,Pt-1,Pt-2,Pt-3 9.11 7.23 0.646 10.77 8.32 0.550

S10 RHt-1, RHt-2, RHt-3,Pt-1,Pt-2,Pt-3,
Tt-1,Tt-2,Tt-3

6.52 5.46 0.767 6.37 5.94 0.758

Bold values represent the best input data combination.

Table 7.
The statistical evaluation of the M5T model at Naltar.
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meteorological stations both during training and testing stages; however, it pro-
vided the best predictions of relative humidity for the 6th input data combination
(S6) at all stations which are highlighted in bold. Overall, the M5T model perfor-
mance was slightly lower as compared to MARS. The M5T model also performed
better during training as compared to testing at all meteorological stations. How-
ever, the M5T model provided the best prediction of relative humidity at Ziarat as
compared to Naltar and Khunjerab (Table 8). However, the M5T model did not
perform well for the prediction of relative humidity for the S1, S2, and S3 scenarios
with R2<0.50 at all meteorological stations (Tables 6–8). A previous study
conducted by [8] observed that the LSTM model is capable of forecasting complex
univariate relative humidity time series. On contrary, [3] suggested that ARIMA
can provide a better prediction of relative humidity as compared to LSTM.

At Khunjerab station, the M5T model performed well (RMSE= 5.94%, MAE =
5.08%, R2= 0.796) in case of S6 input combination during model training stage
whereas it displayed low prediction performance (RMSE= 6.14%, MAE= 5.56%, R2=
0.772) during testing stage as shown in Table 6. Similarly, the M5T model did not
perform well for the S1, S2, and S3 scenarios (R2 <0.50). Similarly, at Naltar
station, the M5T model performed reasonably well (RMSE= 5.82%, MAE= 5.12%,
R2= 0.791) for S6 input combination during training stage whereas it exhibited a
slightly low performance (RMSE= 6.19%, MAE= 5.58%, R2= 0.762) during testing
stage as presented in Table 7.

However, the M5T model provided the best prediction of relative humidity at the
Ziarat station for the S6 input combination (Table 8). The M5T model performed
better during training (RMSE= 5.74%, MAE= 5.04%, R2= 0.796) as compared to
testing (RMSE= 6.08%, MAE= 5.46%, R2= 0.783) stage as displayed in Table 8.

The M5T model performance was also evaluated by drawing scatter plots. The
scatter plots were drawn between observed and predicted relative humidity from
2007 to 2009 on daily data as displayed in Figure 4. Scatter plots showed that, the
M5T model can also predict relative humidity fairly well at all meteorological
stations, especially, at Ziarat (R2= 0.782) for the S6 input combination during the
testing stage (Figure 4).

Scenario Input Combinations Training Testing

RMSE
(%)

MAE
(%)

R2 RMSE
(%)

MAE
(%)

R2

S1 RHt-1 11.12 8.54 0.476 13.64 10.56 0.378

S2 RHt-1, RHt-2 10.95 8.43 0.487 13.61 10.54 0.381

S3 RHt-1, RHt-2, RHt-3 10.92 8.39 0.491 13.58 10.49 0.384

S4 RHt-1, RHt-2, RHt-3,Tt-1 6.67 5.70 0.758 6.82 6.27 0.728

S5 RHt-1, RHt-2, RHt-3,Tt-1,Tt-2 6.47 5.52 0.764 6.72 6.10 0.752

S6 RHt-1, RHt-2, RHt-3,Tt-1,Tt-2,Tt-3 5.74 5.04 0.796 6.08 5.46 0.783

S7 RHt-1, RHt-2, RHt-3,Pt-1 9.79 7.66 0.599 11.72 8.78 0.530

S8 RHt-1, RHt-2, RHt-3,Pt-1,Pt-2 9.20 7.32 0.640 10.90 8.42 0.541

S9 RHt-1, RHt-2, RHt-3,Pt-1,Pt-2,Pt-3 9.12 7.21 0.645 10.78 8.32 0.550

S10 RHt-1, RHt-2, RHt-3,Pt-1,Pt-2,Pt-3,
Tt-1,Tt-2,Tt-3

6.26 5.16 0.800 6.08 5.58 0.778

Bold values represent the best input data combination.

Table 8.
The statistical evaluation of the M5T model at Ziarat.
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4.3 Time variations of the observed and predicted relative humidity by MARS
and M5T models

Time variations of the observed and predicted relative humidity by MARS and
M5T model at Khunjerab, Naltar, and Ziarat meteorological stations are displayed in
Figures 5–7. Time variations plots have been drawn by using the best-predicted
data of relative humidity (i.e. S6 scenario). The daily data has been drawn from
2007 to 2009. Figure 5 showed that both the models captured time-series variations
of predicted relative humidity very well with reference to observed data at
Khunjerab station but slightly underestimated the values from 900 to 1100 days.
Moreover, these models slightly underestimated the low and high values of
predicted relative humidity with reference to observed data at few points through-
out the time series. Overall, the MARS model performed better as compared to M5T
for the prediction of daily relative humidity data at Khunjerab.

The MARS and M5T models also captured time-series variation of relative
humidity superbly with respect to observed data at Naltar station for the S6 input

Figure 4.
Scatter plots between observed and predicted relative humidity by using the M5T model at (a) Khunjerab;
(b) Naltar and (c) Ziarat.

Figure 5.
Time variation of the observed and predicted relative humidity by MARS and M5T model at Khunjerab station.
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combination as displayed in Figure 6. Both the models slightly underestimated the
predicted relative humidity from 850 days to 1100. Moreover, these models slightly
underestimated the predictions of low and high values of relative humidity at some
points throughout the study period. Overall, the MARS model provided better
predictions of relative humidity as compared to M5T at Naltar (Figure 6).

However, both the machine learning models provided the best prediction of
relative humidity at Ziarat which is a mid-altitude meteorological station as shown in
Figure 7. Both the models captured the temporal variations of relative humidity very
well throughout the period with reference to observed data for the S6 input combi-
nation. Furthermore, the models underestimated the low and high values of predicted
relative humidity with reference to observed data. The MARS model predicted low
and high values of relative humidity fairly well but it slightly underestimated the
values at few points throughout the study period. Overall, the MARS model provided
better predictions of relative humidity as compared to M5T at Ziarat (Figure 7).

5. Conclusions

Relative humidity has an important impact on plant growth, human health,
industry, weather, and climate. Any change in temperature and relative humidity

Figure 7.
Time variation of the observed and predicted relative humidity by MARS and M5T model at Ziarat station.

Figure 6.
Time variation of the observed and predicted relative humidity by MARS and M5T model at Naltar station.
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may result in droughts, heatwaves, floods, and hurricanes. Thus the relative
humidity is one of the important factors to measure environmental changes. Keep-
ing in view the importance of relative humidity, the current study has attempted to
predict the relative humidity in a high elevated alpine basin (Hunza) of western
Karakoram by using the MARS and M5T machine learning models. The current
study is novel in that respect that previously nobody tried to predict the relative
humidity in a high elevation alpine basin.

Statistical analysis of the model outputs suggested that both the models pro-
duced reliable predictions of relative humidity at Khunjerab, Naltar, and Ziarat
meteorological stations of the Hunza basin during both training and testing stages.
Out of 10 input data combinations of temperature, precipitation, and relative
humidity, the 6th combination (i.e. RHt-1, RHt-2, RHt-3, Tt-1, Tt-2, Tt-3) produced
the best results for each station by each model. The statistical indicators confirmed
the excellent performance of both the models at all stations. For the MARS model,
RMSE, MAE, and R2 values ranged from 5.26–5.63%, 4.51–4.59%, and 0.826–0.856,
respectively, during the training stage while they ranged from 5.86–6.58%, 4.97–
5.43%, and 0.806–0.815, respectively, during the testing stage. However, in the case
of the M5T model, the RMSE, MAE, and R2 values ranged from 5.74–5.94%, 5.04–
2.12%, and 0.791–0.796, respectively, during the training stage whereas the values
ranged from 6.08–6.19%, 5.46–5.58%, and 0.762–0.783, respectively, during the
testing stage of M5T model. Both the models showed poor performance such as (R2

<0.50) in the case of S1, S2, and S3 input combinations at all stations. Moreover, it
was observed that both the models performed better in training as compared to the
testing stage. Both the models outperformed at Ziarat as compared to other stations.
Overall, the MARS model performed better than M5T at all stations. The current
study is important and it will provide a baseline for future studies to predict the
other meteorological variables such as temperature, wind speed, solar radiation, and
evapotranspiration by using machine learning tools in high altitude and remote
basins which face the issue of data scarcity.
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Chapter 5

Time Trends and Persistence in
the Snowpack Percentages by
Watershed in Colorado
Luis Alberiko Gil-Alana

Abstract

In this paper we investigate the time trend coefficients in snowpack percentages
by watershed in Colorado, US, allowing for the possibility of long range dependence
or long memory processes. Nine series corresponding to the following watersheds
are examined: Arkansas, Colorado, Gunnison, North Platte, Rio Grande, South
Platte, San Juan-Animas-Dolores-San Miguel, Yampa &White and Colorado State-
wide, based on annual data over the last eighty years. The longest series start in 1937
and all end in 2019. The results indicate that most of the series display a significant
decline over time, showing negative time trend coefficients, and thus supporting
the hypothesis of climate change and global warming. Nevertheless, there is no
evidence of a long memory pattern in the data.

Keywords: snowpack percentages, time trends, long memory, Colorado, watersheds

1. Introduction

It is a well known fact that temperatures have been increasing during the last
50 years not only at global level but also at specific locations all over the world. In
this paper we examine the statistical properties of nine time series corresponding to
the snowpack percentages in watersheds in Colorado, US. Using annual data dating
back to 1937, we are interested in the long memory feature of the data along with
the time trend coefficients to check if the snowpack percentages have been declin-
ing in the last eighty years as a consequence of the effects of global warming. In
addition, we test this hypothesis under the assumption that the underlying series
display a long memory property, a feature that is very common in climatological
data. As far as we know there are no previous works dealing with the statistical
modeling of snow packs with time series data. Our results, using fractional integra-
tion, show no evidence of long memory, and the time trend coefficients of the snow
packs are statistically significantly negative in the majority of the series examined,
supporting thus the global warming hypothesis.

The standard approach to test for significant trends in time series is to consider a
linear regression model of the following form:

yt ¼ αþ β tþ xt, (1)

where a significant slope coefficient for β implies the presence of a trend (posi-
tive or negative, depending on the sign of the coefficient). However, in order to get
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consistent estimates of the unknown coefficients in (1), this set-up implicitly
assumes that the error term, xt must be well behaved and more specifically, it must
be integrated of order 0 or I(0). This is a standard regularity condition and indicates
that the infinite sum of its autocovariance values should be finite. This condition,
however, is not always satisfied. If that sum is infinite, the series is said to be long
memory, a feature widely observed in time series in many different disciplines
including geophysical and climatological series, e.g., Beran [1], Percival et al. [2],
Gil-Alana [3, 4], Ercan et al. [5], Graves et al. [6], etc.

In this article, this long memory feature is incorporated in our set-up bymeans of
using a fractional integration model, which is described in the following section, and
that is used to describe the error term x(t) in (1). Based on that, we test for the presence
of significant time trends in the snowpack percentages at Colorado’s watersheds.

The rest of the paper is structured as follows. Section 2 briefly describes the main
idea of long memory or long range dependence processes and also presents the
series under examination. Section 3 is devoted to the empirical results, while Section
4 concludes the manuscript.

2. Methodology and data: long memory

Given a covariance stationary process {x(t), t = 0, �1, … } we say that it is short
memory or integrated of order 0 (and denoted as x(t) � I(0)) if the infinite sum of
its autocovariances, defined as γ(u) = Cov(x(t), x(t + u)) is finite, i.e.,

X∞
u¼�∞

γ uð Þ<∞: (2)

Within this category, we can include the white noise process but also the stan-
dard stationary AutoRegressive Moving Average (ARMA) type of models. This
latter category allows for some type of dependence between the observations and is
named “weak” (dependence) in the sense that the autocorrelations decay exponen-
tially fast. However, many time series show higher degrees of dependence and
belong to a category denominated as “long memory”, characterized because the
infinite sum of the autocovariances is infinite, i.e.,

X∞
u¼�∞

γ uð Þ ¼ ∞: (3)

This long memory feature has been observed in time series data referring to
many different disciplines, including economics and finance [7–9], energy [10–13],
tourism [14, 15], environmental issues [16] and climatology [3, 17–19] among many
others.

A very simple model, very popular among econometricians, and satisfying the
above property (3) is the fractionally integrated or I(d, d > 0) model, which is
expressed as:

1� Lð Þdx tð Þ ¼ u tð Þ, t ¼ 1, 2, :… , (4)

where L is the lag-operator, ie., Lkx(t) = x(t-k), d can be any real positive value,
and u(t) is I(0) or short memory as defined above. In this context, x(t) displays the
property of long memory if d > 0. Using a Binomial expansion, the polynomial in
the left-hand side in (4) can be expressed as:
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1� Lð Þd ¼ 1� dLþ d d� 1ð Þ
2

L2 � d d� 1ð Þ d� 2ð Þ
6

L3 þ :… (5)

and x(t) in (4) can then be expressed as:

x tð Þ ¼ dx t� 1ð Þ � d d� 1ð Þ
2

x t� 2ð Þ þ d d� 1ð Þ d� 2ð Þ
6

x t� 3ð Þ þ :… þ ε tð Þ (6)

and higher the value of d is, the higher the level of association between the
observations is. A wide range of possibilities can be examined depending on the
value of d in the real range. Examples are.

i. anti-persistence, if d < 0,

ii. short memory, if d = 0,

iii. stationary long memory processes, if 0 < d < 0.5,

iv. nonstationary long memory mean reverting patterns, if 0.5 ≤ d < 1,

v. unit root processes, if d = 1, and

vi. explosive patterns with d > 1.

This specification is clearly more general than the standard methods used in the
literature and that are based only on integer degrees of differentiation, i.e., d = 0 for
stationarity and d = 1 for unit root or nonstationarity.

The series examined refer to the snowpack percentages in seven watersheds in
Colorado, US, (see, Figure 1) namely, Arkansas, Colorado, Gunnison, North Platte,
Rio Grande, San Juan-Animas-Dolores-and-San Miguel, South Platte, Yampa &

Figure 1.
Watersheds in Colorado, US. The different colors represent the different areas under study.
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White and Colorado Statewide, using annual data. The starting year changes from
one watershed to another and all of them end in 2019. The source of the data is the
USDA (United States Department of Agriculture), Natural Resources Conservation
Service Colorado (https://www.nrcs.usda.gov). All values use medians calculated
from the most recent normal period between 1981 and 2010 For each basin we use
data for the months of March, April and May, which are the months that present
complete datasets for the whole period examined.

Table 1 displays the time series examined along with the acronym and the
starting and ending years for each series. We observe that the long series are those
referring to North Platte and Colorado Statewide (with data starting in 1937) and
followed by South Platte and Colorado (starting in 1938), while the shortest one
refers to San Juan, Animas, Dolores and San Miguel, starting in 1973.

The objective in this paper is twofold. First, to determine if long memory holds
in the snowpack data examined, and second, to see if there is a decline in the time
evolution of the data as a consequence of climate warming. Thus, in order to
examine these two issues together, we consider the following model

y tð Þ ¼ αþ β tþ x tð Þ; 1� Lð Þdx tð Þ ¼ u tð Þ, (7)

where y(t) refers to the observed data, the snowpack percentages, α and β are
unknown parameters referring respectively to a constant and a linear time trend,
and the regressions errors x(t) are supposed to be I(d). Therefore, there are two
main parameters in the above specification: β, related with the evolution over time
of the series, and d, dealing with the short/memory feature of the data.

In the following section we display the estimated coefficients of d in Eq. (7) (along
with their corresponding 95% confidence intervals) under three potential set-ups. The
results presented in the second column in the table refer to the case where we impose
α = β = 0 in (7); thus, no deterministic terms are included in the model. The results in
column 3 refer to the model with an intercept, i.e. imposing β = 0 in (7). Finally, the
last column reports the results where α and β are estimated from the data along with d.

We have marked the most appropriate case for each series in Table 2 in bold.
This selection has been made based on the significance of the estimated coefficients
in the d-differenced process, noting that the two equations in (7) can be expressed
in a single one as:

~y tð Þ ¼ α~1 tð Þ þ β~t tð Þ þ u tð Þ, (8)

Watershed Acronym Starting year Ending year n. of observ.

Arkansas ARK 1950 2019 70

Colorado COL 1938 2019 82

Gunnison GUN 1941 2019 79

North Platte NPB 1937 2019 83

Rio Grande RIO 1950 2019 70

San Juan … SJ 1973 2019 47

South Platte SPB 1938 2019 82

Yampa & White YAM 1952 2019 68

Colorado statewide YAM 1937 2019 83

San Juan … refers to San Juan, Animas, Dolores and San Miguel.

Table 1.
Time series under examination.

84

Weather Forecasting



where

~y tð Þ ¼ 1� Lð Þdy tð Þ, (9)

~1 tð Þ ¼ 1� Lð Þd1, (10)

~t tð Þ ¼ 1� Lð Þdt, (11)

and noting that u(t) in (8) is I(0) by assumption, standard t-values hold here.

3. Results

We observe in Table 2 that the time trend is required in 15 out of the 27 cases
presented, while for the remaining 12, an intercept is sufficient to describe the
deterministic part of the model. Of these 12 cases where only an intercept is
required, five correspond to the month of March, another five occur in May and
only two in April. Thus, the time trend is required in more than half of the series
examined and as we will show below the coefficients are significantly negative in all
cases implying that the snow packs are decreasing with time.

Watershed Month No terms An intercept A linear time trend

ARKANSAS BASIN March 0.47 (0.20, 0.73) 0.02 (�0.13, 0.27) �0.16 (�0.40, 0.21)

April 0.47 (0.20, 0.74) �0.02 (�0.15, 0.18) �0.28 (�0.47, 0.03)

May �0.06 (�0.13, 0.48) �0.08 (�0.25, 0.18) �0.11 (�0.29, 0.17)

COLORADO
BASIN

March �0.05 (�0.08, 0.08) 0.24 (�0.41, 0.01) �0.28 (�0.48, 0.00)

April 0.08 (�0.08, 0.15) �0.12 (�0.23, 0.06) �0.25 (�0.40, �0.02)

May �0.07 (�0.11, 0.35) �0.19 (�0.36, 0.06) �0.19 (�0.37, 0.05)

GUNNISON BASIN March �0.06 (�0.11, 0.46) 0.28 (�0.47, 0.00) �0.28 (�0.48, 0.00)

April �0.08 (�0.13, 0.41) �0.11 (�0.23, 0.08) �0.20 (�0.35, 0.02)

May �0.07 (�0.13, 0.29) �0.11 (�0.26, 0.13) �0.12 (�0.27, 0.12)

NORTH PLATTE
BASIN

March �0.03 (�0.06, 0.46) 0.10 (�0.22, 0.09) �0.10 (�0.22, 0.09)

April 0.09 (�0.08, 0.56) �0.05 (�0.17, 0.07) �0.11 (�0.21, 0.04)

May �0.06 (�0.10, 0.33) �0.09 (�0.20, 0.06) �0.13 (�0.25, 0.03)

RIO GRANDE
BASIN

March �0.13 (�0.21, 0.35) �0.25 (�0.32, �0.06) �0.51 (�0.73, �0.22)

April �0.08 (�0.12, 0.37) �0.12 (�0.24, 0.05) �0.17 (�0.29, 0.02)

May �0.02 (�0.10, 0.21) �0.03 (�0.15, 0.16) �0.04 (�0.16, 0.15)

SAN JUAN,
ANIMAS,
DOLORES AND
SAN MIGUEL

March �0.16 (�0.20,�0.07) �0.27 (�0.44, 0.02) �0.53 (�0.82, �0.09)

April 0.00 (�0.23, 0.47) 0.00 (�0.13, 0.21) �0.44 (�0.73, �0.02)

May �0.25 (�0.30, 0.51) 0.10 (�0.04, 0.31) �0.39 (�0.67, 0.07)

SOUTH PLATTE
BASIN

March �0.06 (�0.10, 0.40) �0.09 (�0.22, 0.10) �0.15 (�0.31, 0.07)

April 0.28 (0.15, 0.44) 0.04 (�0.06, 0.17) �0.16 (�0.31, 0.06)

May 0.27 (�0.12, 0.48) 0.03 (�0.09, 0.21) �0.16 (�0.35, 0.12)

YAMPA & WHITE
BASIN

March 0.23 (�0.04, 0.53) 0.18 (�0.31, 0.04) �0.37 (�0.63, �0.05)

April 0.04 (�0.21, 0.51) �0.03 (�0.13, 0.12) �0.40 (�0.56, �0.14)

May �0.06 (�0.33, 0.48) �0.01 (�0.14, 0.18) �0.22 (�0.41, 0.08)
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Watershed Month No terms An intercept A linear time trend

COLORADO
STATEWIDE
BASIN

March �0.04 (�0.09, 0.37) �0.19 (�0.33, 0.04) �0.21 (�0.37, 0.03)

April 0.05 (�0.12, 0.45) �0.04 (�0.14, 0.12) �0.18 (�0.32, 0.02)

May �0.07 (�0.17, 0.36) �0.06 (�0.19, 0.14) �0.15 (�0.30, 0.08)

The values in parenthesis refer to the 95% confidence bands; in bold, the selected model for each series according to the
deterministic terms.

Table 2.
Estimates of the differencing parameter.

Watershed Month No terms An intercept A linear time
trend

ARKANSAS BASIN March �0.16 (�0.40, 0.21) 120.30 (27.37) �0.338 (�2.96)

April �0.28 (�0.47, 0.03) 119.72 (43.53) �0.348 (�4.65)

May �0.08 (�0.25, 0.18) 104.66 (29.77) —

COLORADO BASIN March 0.24 (�0.41, 0.01) 103.06 (102.35) —

April �0.25 (�0.40, �0.02) 112.66 (48.55) �0.153 (�2.86)

May �0.19 (�0.36, 0.06) 105.17 (57.61) —

GUNNISON BASIN March 0.28 (�0.47, 0.00) 106.76 (102.99) —

April �0.20 (�0.35, 0.02) 114.57 (34.43) �0.185 (�2.38)

May �0.11 (�0.26, 0.13) 108.27 (30.54) —

NORTH PLATTE BASIN March 0.10 (�0.22, 0.09) 104.10 (58.55) —

April �0.05 (�0.17, 0.07) 106.25 (54.47) —

May �0.09 (�0.20, 0.06) 106.45 (47.14) —

RIO GRANDE BASIN March �0.51 (�0.73, �0.22) 112.80 (64.88) �0.263 (�5.05)

April �0.12 (�0.24, 0.05) 99.769 (36.79) —

May �0.03 (�0.15, 0.16) 92.624 (14.40) —

SAN JUAN, ANIMAS,
DOLORES AND SAN
MIGUEL

March �0.53 (�0.82, �0.09) 115.59 (44.98) �0.461 (�4.03)

April �0.44 (�0.73, �0.02) 126.23 (38.08) �1.005 (�7.06)

May �0.39 (�0.67, 0.07) 176.66 (26.53) �2.556 (�9.12)

SOUTH PLATTE BASIN March �0.09 (�0.22, 0.10) 110.33 (49.03) —

April �0.16 (�0.31, 0.06) 123.95 (34.76) �0.337 (�4.26)

May �0.16 (�0.35, 0.12) 129.15 (26.99) �0.391 (�3.68)

YAMPA & WHITE BASIN March �0.37 (�0.63, �0.05) 114.18 (57.22) �0.225 (�3.88)

April �0.40 (�0.56, �0.14) 123.11 (71.75) �0.441 (�8.73)

May �0.22 (�0.41, 0.08) 134.97 (22.75) �0.663 (�4.09)

COLORADO
STATEWIDE BASIN

March �0.19 (�0.33, 0.04) 105.51 (83.54) —

April �0.18 (�0.32, 0.02) 115.49 (38.53) �0.222 (�3.35)

May �0.15 (�0.30, 0.08) 119.25 (22.40) �0.267 (�2.30)

The values in parenthesis in the last two colums are their corresponding t-values.

Table 3.
Estimated coefficients of the selected models.
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Table 3 displays the estimated coefficients of the selected models in Table 2. If
we first focus on the values of d, we observe that there is no evidence of long
memory behavior in any single case, since the confidence intervals include the value
0 in all cases examined. There are 21 series where the I(0) hypothesis of short
memory cannot be rejected and in the remaining 6, anti-persistence (d < 0) is
detected. The series showing anti-persistence are Colorado (April), Rio Grange
(March) and San Juan … and Yampa &White (in March and April). Anti-
persistence is not as frequent as persistence, though some examples can be found in
the literature [20, 21]. Anti-persistent behavior exhibits prolonged damped oscilla-
tions with the spectral density function showing a zero value at the origin [22].

If we look now at the time trend coefficients the first noticeable feature is that all
the significant coefficients are negative, supporting the hypothesis of a decline in
the snowpack percentage in a number of cases. The highest coefficients refer to the
cases of San Juan, Animas, Dolores and San Miguel in May (with an estimated time
trend coefficient of �2.556) and in April (�1.005). Other high significant negative
coefficients are those of Yampa &White (in May, �0.663, and April, �0.441) and
San Juan … in March (�0.461). All these cases support the hypothesis of a
decreasing trend in the snow packs in various Colorado’s watersheds, which might
be a consequence of the global warming climate hypothesis.

As a robustness method, we also employ alternative parametric and
semiparametric methods of estimating the differencing parameter in the context of
fractional integration, including among other Sowell’s [23] maximum likelihood
estimation method, the classical semiparametric Geweke and Porter-Hudak’s [24]
approach and the most recent developed method in Shimotsu [25] and the results
support our conclusions in all cases, finding evidence of short memory and negative
time trend coefficients in most of the series examined.

4. Conclusions

We have examined nine time series in this paper corresponding to snowpack
percentages in Colorado, investigating if there has been a significant decline over
time in the series in the context of long memory processes. For this purpose, we
have tested for the significance of the time trend coefficient in a model where the
regression errors are fractionally integrated or integrated of order d. Long memory
occurs then if d is a positive value.

Our results indicate that there is no evidence of long memory behavior since all
the orders of integration are close to zero or below it, implying short memory or
anti-persistence behavior. Focusing on the time trend coefficients, these are signif-
icant in 15 of the 27 series examined, and in all these cases, they are found to be
significantly negative, supporting thus the hypothesis of a decline in the amount of
snow in Colorado watersheds probably as a consequence of global climate warming.

Future work should focus on alternative modeling approaches including for
example non-linear structures which are clearly related with long memory and
fractional integration models [26]. Thus, non-linear deterministic terms like those
based on Chebyshev polynomials in time [27] or Fourier transforms [28], in both
cases based on I(d) models, can also be implemented on these or on similar data.
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Chapter 6

Future Climate Change Impacts 
on River Discharge Seasonality for 
Selected West African River Basins
Toju Esther Babalola, Philip Gbenro Oguntunde, 
Ayodele Ebenezer Ajayi and Francis Omowonuola Akinluyi

Abstract

The changing climate is a concern to sustainable water resources. This study 
examined climate change impacts on river discharge seasonality in two West 
African river basins; the Niger river basin and the Hadejia-Jama’are Komadugu-Yobe 
Basin (HJKYB). The basins have their gauges located within Nigeria and cover the 
major climatic settings. Here, we set up and validated the hyper resolution global 
hydrological model PCR-GLOBWB for these rivers. Time series plots as well five 
performance evaluation metrics such as Kling–Gupta efficiency (KGE),); the ratio 
of RMSE-observations standard deviation (RSR); per cent bias (PBIAS); the Nash–
Sutcliffe Efficiency criteria (NSE); and, the coefficient of determination (r2), were 
employed to verify the PCR-GLOBWB simulation capability. The validation results 
showed from satisfactory to very good on individual rivers as specified by PBIAS 
(−25 to 0.8), NSE (from 0.6 to 0.8), RSR (from 0.62 to 0.4), r2 (from 0.62 to 0.88), 
and KGE (from 0.69 to 0.88) respectively. The impact assessment was performed 
by driving the model with climate projections from five global climate models 
for the representative concentration pathways (RCPs) 4.5 and 8.5. We examined 
the median and range of expected changes in seasonal discharge in the far future 
(2070–2099). Our results show that the impacts of climate change cause a reduction 
in discharge volume at the beginning of the high flow period and an increase in 
discharge towards the ending of the high flow period relative to the historical period 
across the selected rivers. In the Niger river basin, at the Lokoja gauge, projected 
decreases added up to 512 m3/s under RCP 4.5 (June to July) and 3652 m3/s under 
RCP 8.5 (June to August). The three chosen gauges at the HJKYB also showed simi-
lar impacts. At the Gashua gauge, discharge volume increased by 371 m3/s (RCP8.5) 
and 191 m3/s (RCP4.5) from August to November. At the Bunga gauge, a reduction/
increase of -91 m3/s/+84 m3/s (RCP 8.5) and -40 m3/s/+31 m3/s/(RCP 4.5) from 
June to July/August to October was simulated. While at the Wudil gauge, a reduc-
tion/increase in discharge volumes of −39/+133 m3/s (RCP8.5) and −40/133 m3/s 
(RCP 4.5) from June to August/September to December is projected. This decrease 
is explained by a delayed start of the rainy season. In all four rivers, projected river 
discharge seasonality is amplified under the high-end emission scenario (RCP8.5). 
This finding supports the potential advantages of reduced greenhouse gas emissions 
for the seasonal river discharge regime. Our study is anticipated to provide useful 
information to policymakers and river basin development authorities, leading to 
improved water management schemes within the context of changing climate and 
increasing need for agricultural expansion.
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1. Introduction

Many regions worldwide have experienced modifications in their hydrological 
regimes due to changing global climate [1]. The changing climate significantly 
impacts the availability and quantity of water in individual river basins and, on a 
global scale, has long been an international concern [2]. Freshwater availability 
in West Africa is paramount to economic development and social well-being [3]. 
In most West African countries, agriculture is the crucial sector supporting about 
60% of the region’s population [4]. Agriculture production in Nigeria and other 
West African countries depends majorly on water availability. Most importantly, 
wetlands watersheds contribute in diverse ways to the livelihoods of millions of 
people in this region [5, 6]. However, due to climate change, West Africa is already 
experiencing sea-level rise with severe coastline erosion, increased temperatures, 
unpredictable rainfall, dwindling water resources and many more. Accordingly, 
it is critical to examine future consequences of climate change on river discharge 
seasonality for a more explicit and quantitative understanding of the available water 
for various functions. Knowledge about river discharge seasonality is necessary for 
understanding important interannual hydrological dynamics [7].

There exist intricate interactions between streamflow and other climate vari-
ables (e.g. precipitation, temperature, and evapotranspiration) in a catchment  
[8, 9]. Therefore, the effects of climate change on streamflow across a given region 
are often assessed using hydrological models forced with global climate models [10]. 
Many studies that have examined climate change impacts on discharge seasonal-
ity globally can be found in the literature. Dettinger and Diaz [11]; explored on a 
global scale, the seasonality and variability of streamflow. They concluded that 
local seasonal cycles of necessary climatic inputs influence streamflow seasonality. 
On a regional scale, Aich et al. [12] compared the impacts of climate change on 
streamflow regimes in four large African river basins and found visible impacts 
of climate change on high and low flows and mean discharges. Eisner et al. [13] 
investigated climate change impacts on streamflow seasonality, over eleven large 
river basins, using an ensemble of hydrological and climate models. They found 
an increasing/decreasing tendency for high and low flows in many of the basins. 
Hirpa et al. [14] estimated the response of future streamflow in the greater Horn 
of Africa, using a distributed hydrological model driven by an ensemble of climate 
models. The study found a reduction in streamflow in the major rivers in Ethiopia 
and increasing streamflow projections in the equatorial zone towards ending of 
the century. WaleWorqlul et al. [15] found that climate change would significantly 
influence the hydrology of two subbasins in the upper Nile in Ethiopia. Li and 
Jin [16] in their study also found increasing streamflow variability attributed to 
increasing rainfall variability in the Jing River of China. Ficklin et al. [17], in their 
study, projected an arid-conditions by the 2080s for many subbasins in the Upper 
Colorado River Basin of the southwestern United States when they investigated the 
impacts of Climate Change on Streamflow and hydrology of the basin. Vano et al. 
[18] identified seasons susceptible to future climate change in the Pacific Northwest 
using the Variable Infiltration Capacity hydrology mode forced with an ensemble 
of ten global climate models. These studies and many others all show that climate 
change plays an increasingly important role in river discharge seasonal flow; hence, 
it is crucial to know how the climate changes would affect seasonal variations of a 
basin’s streamflow.
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The vulnerability of most West African countries to climate change originates 
from high reliance on climate-based economic activities and large populations in 
coastal urban areas [19]. Climate change may undoubtedly modify the river flow 
regime of most West African basins. It may cause a temporary increase of flow in 
some places or reduce river flows in other areas [20]. Few studies have addressed cli-
mate change impacts on the seasonal river discharge regime in West Africa, especially 
over Nigeria. Ayeni et al. [20] assessed the impacts of climate changes on three basins 
of southwestern Nigeria for the period (1961–2007), using the Pitman rainfall-runoff 
model forced with CSIRO Mark3.5, MIROC3.2-medres and UKMO-HadCM3 GCMs. 
Ndulue and Mbajiorgu [21] quantified the hydrological changes due to climate 
impacts and land use in the Upper Ebonyi river watershed, south-eastern Nigeria, for 
the present period (1985–2014) and the future period (2020–2030 and 2040–2050), 
using the SWAT forced with the CSIRO-Mk3–6-0 climate model.

The availability of observation data has limited research in this region; the 
majority of the river basins are ungauged [21]. Also, studies in west African tend 
to be fragmentary [22], as they use different; climate models; bias correction 
approach, emission pathways; meteorological forcings; period considered (future 
and historical). Furthermore, as water availability is critical to economic and social 
well-being, it is vital to understand the relationship between climate change and 
streamflow and how it will affect streamflow to establish appropriate adaptation 
policies. These reasons, coupled with the region’s high vulnerability, have made it 
crucial to provide reliable future projections for river discharge seasonality.

This study, therefore, aims to assess the climate change impacts on far-future 
river discharge seasonality. We used the PCR-GLOBWB model, forced with five 
consistent climate models, considering two future emission scenarios (RCP4.5 and 
RCP 8.5). This study is anticipated to provide useful information to policymakers 
and river basin development authorities, leading to the improvement of water man-
agement within the context of climate change. Our study will also help concerned 
river basin authorities to improve water management and future socio-economic 
development for river basins in Nigeria.

2. Study area

Two river basins, with at least five consecutive hydrological years record, over 
the period 1958–2015 were selected. River selection are from Global Runoff Data 
Center (GRDC)’s [23] available collection of West African basins. Gauges of the 
rivers are located in North-central and North-east (Figure 1) of Nigeria. Besides, 
the location of the gauges covers the vast tropical savannah climatic region, which 
covers most of the country (west to centre Nigeria) and the Arid climatic region 
found in the North [24]. Climate change impacts in Nigeria has been identified as 
disastrous due to the country’s vulnerability and deficient coping capability [25]. 
The consequences are evidenced in rising temperature, variable precipitation, sea-
level rise and flooding, desertification and drought, altered water resources, and 
biodiversity loss [26]. Moreover, the ecological system, agricultural systems, and 
livelihoods that these basins support are susceptible to the reality of climate change. 
The selected basins are briefly described in Table 1.

The Niger river basin: is the longest catchment in West Africa. The Niger water-
shed stretches over an expanse of terrain that spans ten west African countries, cover-
ing an area of around 2,156,000 km2, with nearly 1,270,000 km2 hydrologically active 
[27]. The Niger river comprises of different hydrographic regions uniquely identified 
by drainage and hydrological characteristics. The Guinea highland is the river source, 
flowing to the Sahara into Mali through the Inner Delta. From  
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the Inner Delta, it flows southeast, and join with its major tributary, River Benue and 
eventually enters the Atlantic Ocean by the Niger Delta within Nigeria [28]. 28.3% 
(424,500 km2), of the hydrologically active basin falls within Nigeria (the lower 
Niger) and stretches over 20 of the country’s 36 states. Within Nigeria, the Niger river 
constitutes two major rivers (the Niger and Benue) and more than half of its major 
rivers. Approximately 60% of the Nigerian population lives in the basin area. 71% of 
over 100 million people inhabiting the Niger basin live in Nigeria [28]. Agriculture, 
particularly rain-fed agriculture, supports most of the inhabitants’ livelihood and 
is therefore susceptible to impacts of climate variability. The gauging station on the 
Niger river in this study is Lokoja at the confluence of the river Niger and Benue.

The Hadejia-Jama’are Komadugu-Yobe Basin (HJKYB) is a combined basin 
of the Komadugu-Yobe river and the Hadejia-Jama’are River System located in the 
north-east part of Nigeria. The Hadejia and Jama’are river are the two main rivers of 
this basin that meet at the Hadejia Nguru Wetlands (HNW) to form the Komadugu-
Yobe Basin [29]. The Hadejia river has its source in the Kano highlands, while the 
Jama’are river rises from the Jos plateau in Nigeria. The combined catchment of the 

Figure 1. 
Study area map.

River Basin Niger Hadejia-Jama’are Komadugu-Yobe Basin

River name Niger Hadejia Jama’are Yobe

Gauge station Lokoja Wudil Bunga Gashua

Area (km2) 2,156,000 16,380 7977 62,150

GRDC number 1,834,101 1,837,410 1,837,255 1,837,107

Annual precipitation 
(1971–2000) (mm)

1403 950 909 414

Mean temperature 
(1971–2000) (°C)

26.7 25.9 25.7 27.9

Koppen-Geiger climate 
classification

Tropical 
Savannah (Aw)

Tropical 
Savannah (Aw)

Tropical 
Savannah (Aw)

Arid Steppe hot 
(Bsh)

Table 1. 
Description of selected rivers and gauges.



95

Future Climate Change Impacts on River Discharge Seasonality for Selected West African River…
DOI: http://dx.doi.org/10.5772/intechopen.99426

HJKYB discharges into Lake Chad, and it is the major recharge into the lake from 
Nigeria. The HJKYB is one of the essential basins in Nigeria that support over 15 
million people, which mostly rely on agriculture, fishing, livestock rearing, and 
water supply [30] for their livelihoods. An essential part of the HJKYB is the HNW 
which was the pride and joy of the north-eastern part of Nigeria for many years. 
The research site on the HJKYB is at the Gashua gauge station on the Komadugu-
Yobe River, Bunga gauging station on the Jama’are River, and the Wudil on the 
Hadejia river.

2.1 Methods

2.1.1 The PCRaster global water balance model

The PCR-GLOBWB is a large scale hydrological model, which incorporates 
human activities into hydrology [31]. Global simulation of hydrology is daily and at 
a spatial resolution of 5 arcmin (0.08o at the equator). In this study, our focus is on 
river basins in West Africa, specifically for gauging stations located within Nigeria. 
The PCR-GLOBWB simulates water stored in two top soil layers S1 and S2; one 
bottom groundwater reservoir S3 for each grid cell and time step. The model also 
simulates; water movement between the atmosphere and layer of topsoil (precipita-
tion, evaporation, transpiration, and snowmelt); among the soil; in between the 
soil and the active layer of groundwater and estimates interception by canopy and 
snow storage. Distinct land cover types (forest, grassland, irrigated paddy field, 
irrigated non-paddy field, and open water), soil types, and elevation are consid-
ered to determine sub-grid variability. The Improved ARNO scheme is used in the 
model to estimate the fraction of the area of saturated soil [32]. Precipitation can 
be intercepted, evaporated, or infiltrated into the soil layers. The excess surface 
runoff (Qdr), second soil layer (interflow) runoff (Qsf), and groundwater (base-
flow) runoff (Qbf) make up the runoff from each cell. To obtain the river discharge 
(Qchannel), Specific runoff from each cell is gathered and then routed through the 
drainage network following the travel-time solution of [33]. At each time step, the 
model simulates (i) livestock, household irrigation and industrial water demand, 
(ii) water withdrawn from surface water, groundwater and desalinisation. For 
this work, we adopted the guideline of standard parameterisation of [31] of PCR-
GLOBWB, which is based on available global datasets.

2.2 Data

2.2.1 Forcing datasets

Datasets, as described in [34], is followed and repeated in this study. The meteo-
rological datasets required to drive the model are precipitation, temperature, and 
reference potential evapotranspiration. We obtained these data from the CRU TS 3.2 
[34]. These data were processed by interpolating station observation past time-series 
to a global grid resolution of 0.50. Due to the daily resolution of PCR-GLOBWB, 
the monthly CRU TS 3.2 data were downscaled to daily resolution with ERA 40 
(1958–1978, [35]) and ERA-Interim (1979–2015, [36]). ERA 40 and ERA-I had been 
spatially downscaled from their initial spatial resolutions of 1.2o and 0.7° to 0.5° in 
the resampling scheme of the European Centre for Medium-Range Weather Forecasts 
(ECMWF). This downscaling was done by first allotting the larger values ERA40 and 
ERA-I to the middle of the cells and then interpolating spatially to the higher resolu-
tion of 0.5°. Firstly, downscaling of precipitation was done by temporarily assigning 
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a threshold of 0.1 mm day−1 to the daily time series of ERA, thereby estimating the 
number of days with rain and eliminating the drizzle effect. The rainfall quantity 
below this threshold was proportionally allocated to the rainy days. Thereafter, CRU 
monthly precipitation was reproduced by multiplicative scaling of the daily rainfall 
totals. Also, monthly reference potential evaporation, estimated from the CRU 
dataset with Penman-Monteith, was scaled using multiplicative scaling and down-
scaled to daily data using a daily temperature-based ET product derived from daily 
ERA temperatures. An additive scaling method was used for air temperature (see [31] 
for more details). For this work, standard parameterisation guideline, as provided in 
[31], was adopted. We used available global datasets, including vegetation, geological 
information, and soil properties, to parameterise the model and simulate discharge at 
daily time steps over the selected river basins (from 1958 to 2015). Monthly averages 
were used to report the output from the Model.

2.2.2 Discharge data

Streamflow observation data for the selected river basins were retrieved from 
the Global Runoff Data Centre (GRDC) [23] to compare with the hydrological 
model simulated discharge.

2.2.3 Climate scenarios

We used the output of GCMs from the first phase of the ISI-MIP [37], which 
has five GCMs from the CMIP5 archive. GCMs from the CMIP5 archive [38]. In 
the framework of the ISIMIP, five GCMs simulations were bi-linearly downscaled 
spatially to a 0.5° × 0.5° grid for the period of 1950–2099 [39]. The five GCMs 
are GFDL-ESM2M, HadGEM2-ES, IPSL-CM5A-LR, MIROC-ESM-CHEM, and 
NorESM1-M. The GCMs were selected because of their wide application for model-
ling, predicting climate extremes, and investigating physical climate processes over 
West Africa [12, 40–42]. Again, the availability of ensemble member bias-corrected 
using an established approach to facilitate climate change impact assessments [43], 
guided our selection.

2.3 Validation

Station records from GRDC for the majority of the rivers in West Africa have 
missing values. Validation of PCR-GLOBWB for the selected river systems was 
limited to four gauging stations, where we could get a minimum of 5 hydrological 
years. Five performance evaluation metrics were used to evaluate discharge simu-
lated at the selected gauging stations [44, 45]. These statistics are the Kling–Gupta 
efficiency (KGE); the Nash–Sutcliffe Efficiency criteria (NSE); the coefficient of 
determination (r2) per cent bias (PBIAS); and the ratio of RMSE-observations 
standard deviation (RSR). The performance ratings for quantitative statistics are 
presented in Table 2.

2.4 Method of analyses

For the analyses, we used discharge climatologies, i.e. long-term average 
monthly river discharge of each river. Projected daily discharge from five climate 
models was averaged to monthly climatologies and analysed for two periods, the 
reference (1971–2000) and the far-future period (2070–2099). Absolute changes 
between Reference and far future conditions was computed for each climate model 
historical (1971–2000).
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2.5 Seasonality index (SI)

The seasonality of river discharge volumes shows the extent of variation in 
monthly discharge magnitude throughout the year. In this study, we used SI, 
developed by [46]. SI is the summation of the absolute changes of the monthly river 
discharge volumes from the mean monthly discharge, divided by the total annual 
river discharge of a given year. It is given as:
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where Xn is the mean discharge of the nth month, and R is the mean annual dis-
charge. SI varies from zero (all months having equal discharge distribution) to 1.83 
(the discharge occurs in one month). A seasonal pattern in the discharge regime is 
established when SI is 0.6 and above. A region with high SI would be susceptible to 
drought because a high SI value in an area translates to the high variability of water 
resources and the shortage with respect to time. The classification of the degree of 
SI values is presented in Table 3.

2.6 Results

2.6.1 PCR-GLOBWB validation

PCR-GLOBWB models’ validation results in terms of five metrics are presented 
in Table 4 and Figure 2 for the gauges. Overall, the performance of the PCR-
GLOBWB on the monthly time step for validation periods was satisfactory. As 
seen in Figure 2, the hydrographs monthly flow pattern was well reproduced, close 
agreement in discharge distribution is seen in accord with performance statistics. 
The PCR-GLOBWB model performance was adequate in all basins, displaying 
very good to satisfactory values, established on ratings detailed in [44, 45]. Table 5 
sums up the five performance metrics values obtained for validation periods in each 
study basin. Concerning KGE values, the best model fit was found for the Hadejia 
(0.88) and Yobe (0.87) basins. The Niger, Hadejia, and Yobe river have very good 
NSE (0.8, 0.79, and 0.79), RSR (0.4, 0.45, and 0.4), and r2 (0.88, 0.79, and 0.82) 
values, while Jamaare has satisfactory values (NSE = 0.6, RSR = 0.62, r2 = 0.62). The 
highest PBIAS values reaching −18 to −25% were obtained in the Niger and Jamaare 
river. The PCR-GLOBWB model mostly reproduced well the flow dynamics of the 

Performance 
Ratings

r2 NSE RSR PBIAS KGE

Very good 0.75 < 2r ≤ 1 0.75 < NSE 
≤

0 ≤ RSR ≤ 
0.5

PBIAS < ±10 0.9 ≤ KGE 
≤ 1

Good 0.65 < 2r  ≤ 0.75 0.65< NSE 
≤ 0.75

0.5 < RSR 
≤ 0.6

±10 ≤ PBIAS 
< ±15

0.75 ≤ 
KGE < 0.9

Satisfactory 0.5< 2r ≤ 0.65 0.5< NSE 
≤0.65

0.6 < RSR 
≤ 0.7

±15 ≤ PBIAS 
< ±25

0.5 ≤ KGE 
< 0.75

Unsatisfactory 2r ≤ 0.5 NSE ≤ 0.5 RSR > 0.7 PBIAS ≥ ±25 KGE < 0.5

Table 2. 
Overview of monthly performance ratings [45].
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River Validation period KGE NSE R2 RSR PBIAS %

Niger 1979–1989 0.73 0.8 0.88 0.4 −25

Jama’are 1966–1975 0.69 0.6 0.62 0.62 −18

Yobe 1978–1983 0.87 0.79 0.82 0.4 6.68

Hadejia 1982–1989 0.88 0.79 0.79 0.45 0.8

Table 4. 
Model’s validation performance for the river basins.

Seasonality 
Index

Regime

< 0.19 Very equable (discharge equally spread all over moths)

0.20–0.39 Equable, but with a definite wetter period

0.40–0.59 Rather seasonal with a short drier period

0.60–0.79 Seasonal

0.80–0.99 Marked seasonal with a long dry period

1.00–1.19 Most discharge in < 3 months

>1.20 Extreme discharge, with almost all discharges in 1–2 months

Table 3. 
Classification of seasonality index (SI).

Figure 2. 
Hydrographs for the different validation period of the four rivers (a) Niger (b) Yobe (c) Jamaare (d) Hadejia. 
Red line is PCR-GLOBWB and Black line is Observed.
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observed but displayed some disparity. Peak values overestimation was also seen in 
most cases for the river basins. The overestimation of flow can be attributed to the 
CRU TS 32.1, forcing input data. CRU Precipitation across Africa is of low quality 
due to sparse CRU stations and limited data assimilated during the reanalysis of 
ERA-40 [47]. As a result, of the temporal and spatial disparity in station density, 
the datasets are subjected to uncertainties; this uncertainty explains the overesti-
mation of the stations’ hydrographs. However, CRU TS 3.2 is a preferred data as it 
based on observation. Using another meteorological dataset may reduce the overes-
timation, but at the cost of the temporal variability, because no other datasets cover 
a long period of 1958–2015.

2.6.2 Historical discharge representation

Simulated discharge of the PCR-GLOBWB driven with five climate models was 
compared with CRU observed discharge to check the model’s performance for the 
reference period (Figure 3). Figure 3 shows the agreement between CRU observed 
discharge and the climate models is good for the Niger and Hadejia, yet there are 
some differences in representing high flow periods. For the Yobe and Jamaare rivers, 

Reference-period RCP4.5 RCP8.5

Niger 0.56 (0.51–0.59) 0.58 (0.48–0.62) 0.61 (0.45–0.63)

Yobe 1.05 (1.03–1.18) 1.09 (0.97–1.30) 1.03 (0.98–1.30)

Jamaare 1.07 (1.04–1.09) 1.14 (0.97–1.22) 1.12 (0.96–1.25)

Hadejia 0.89 (0.85–0.91) 0.86 (0.68–0.92) 0.87 (0.69–0.93)

Table 5. 
Seasonality index (SI) of climate models median discharge climatologies for reference and projected far-future 
periods under RC4.6 and RCP8.5. Minimum and maximum values of the climate models’ combinations are 
shown in brackets.

Figure 3. 
The long-term mean annual dynamics of river discharge simulated with PCR-GLOBWB driven by the five 
climate models outputs over the reference period 1971–2000 for the four case study rivers.
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the seasonal pattern of observed discharge dynamics was well captured; how-
ever, the results differ more distinctly in the representation of high flow periods. 
Nonetheless, these results are still agreeable, considering the small absolute num-
bers of discharge in these basins.

2.6.3 Evaluation of climate trends in the basins

Figure 4 presents the seasonal dynamics of precipitation and Figure 5 of 
temperature for the reference and far future periods as illustrated by the median 
under RCP4.5 and RCP8.5 scenarios. Increasing temperature is projected in all study 
basins all year round under both scenarios, plus higher increases under the RCP8.5 
compared to the RCP4.5. The highest increase in temperature is observed for the 

Figure 4. 
Long-term monthly precipitation for the reference and far-future time slices as indicated by the climate models 
median of the climate projections under RCP 4.5 and RCP 8.5.

Figure 5. 
Long-term monthly temperature for the reference and far-future time slices as indicated by the climate models 
median of the climate projections under RCP 4.5 and RCP 8.5.
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Yobe River, reaching about 38°C in the month of may (RCP 8.5). Considering the 
precipitation dynamics in the Lokoja gauge of the Niger River located in central 
Nigeria, a moderate decrease at the beginning of the rainy season (from March 
to July), under both RCPs, is observed. Additionally, increasing precipitation is 
projected in Niger from July to November. A similar trend of a moderate reduc-
tion in rainfall at the start of the rainy season (June–July) is also observed for the 
Jama’are and Hadejia rivers. At the same time, an eventual increase is seen from 
July to November in the latter part of the year. The increase is from July to October 
in the Yobe, Jamaare, and Hadejia under both scenarios. Increasing precipitation is 
projected from June to November at Gashua (Yobe river). Biasutti [48] discovered 
decreasing rainfall in the start months (June–July) and increased rainfall in the end 
months (September–October), signifying a delay of the rainy season in West Africa. 
Refs. [49–51] also found a late beginning of the rainy season across Sahelian Africa 
because of a decrease in precipitation in July and August.

2.6.4 The seasonality index

As explained previously, we quantified climate change impacts on the monthly 
concentration and seasonal variation of discharge volumes. Table 5 presents the 
SI of the five GCMs median considering the reference period climate and far-
future climate under RCP4.5 and RCP8.5. As seen from the table, variations in SI 
between reference-period and end-century regimes are overall small. Over the 
Niger basin, the annual discharge volume under the RCP8.5 is seasonal compared 
with the reference period. For the Yobe and Jamaare rivers, the future annual river 
discharge volumes would be concentrated in less than three months. Annual SI over 
the HJKYRB river for the reference and Far-future period shows similar seasonal 
variability regimes of marked seasonality with a long dry period. The two basins 
generally receive most of the precipitation during the wet season; therefore, annual 
discharge occurs during the high-flow period.

2.6.5 Climate change impacts on seasonal discharge variation

Multi-model median monthly river discharge climatologies for the reference and 
far-future conditions under scenarios are presented in Figure 6.

Figure 6. 
Monthly streamflow climatologies projected for reference (1971–2000) and far-future (2070–2099) periods. The 
solid lines represent the ensemble median of all climate models combinations, while the colours represent the 
range from the 5th to 95th percentile.
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2.6.5.1 Niger Basin at the Lokoja gauge station

The multi-model median reveals a reduction in the river discharge at the start of 
the high flow period. Total projected decreases added up to 512 m3/s under RCP 4.5 
(June to July) and 3652 m3/s under RCP 8.5 from June to August. The most reduction 
in discharge volume (2101 m3/s) occurs in August under RCP8.5, corresponding to 
about 58% of the total decrease for the three months. Eisner et al. [13] showed that 
under RCP8.5, the Niger basin shows declining discharge at the onset of the rainy 
season, with the highest loss 37 per cent occurring in August. When looking under 
the RCP 4.5 (Figure 6), discharge volume is expected to increase from August. The 
most significant increase under the moderate end scenario is shown in September 
and October, which considerably adds up to about +5565 m3/s (+52%) volume to 
the total increase in discharge volume. Figures 7 and 8 show that MIROC-ESM-
CHEM hydrological simulation under both scenarios results in considerable volume 
increases all through the year caused by a related rise in precipitation, particularly 
towards the end of the rain period (August to September). Figures 7 and 8 also 
reveal that the other four hydrological simulations show contrasting change 
direction (decrease and increase) notably from August to November based on the 
individual climate model. The conflicting trend of change of each climate model 
cancels out in the multi-model median.

2.6.5.2 Hadejia-Jama’are Komadugu-Yobe Basin (HJKYB)

2.6.5.2.1 Yobe river at Gashua gauge station

Precipitation pattern influences river discharge seasonality in the Yobe river. 
Although the broad seasonal change signal at the Gashua gauge is unaltered 
by climate change, the climate models median show, considerable increases in 
river discharge volumes from August to November (Figure 6). Discharge vol-
ume increased by + 371 m3/s under RCP8.5 and + 191 m3/s under RCP4.5 for the 
four-month period, amounting to about +87% (RCP4.5) and +90% (RCP4.5) of 
the total increased volumes. Generally, this increase in discharge arises from two 
climate models (Figures 7 and 8): the MIROC-ESM-CHEM and HADGEM-ES 
result in increased precipitation in the rainy season (July to October). 

Figure 7. 
Absolute change in discharge climatology projected under RCP8.5 for each GCM.
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Hydrological projections of NORESM and IPSL-CM5A-LR show minor changes 
from the reference period, while the GFDL decreases the discharge volume 
(Figures 7 and 8).

2.6.5.2.2 Jamaare river at the Bunga gauge station

The precipitation change pattern mainly influences the Jamaare river discharge 
regime. Figure 6 reveals a one-month shift and decreases in discharge volumes from 
May to July at the start of the high flow season under both scenarios. The expected 
decrease in precipitation amounts explains this decrease in discharge volume 
(Figure 4). Under the RCP8.5, a reduction of 32 mm in precipitation for June to 
July translates to a reduction of -91 m3/s (−24%). For the moderate end scenario, 
a decrease of 11 mm in precipitation results in decreasing discharge volume of 
-40 ms/s (−14%). An increase in discharge volume is shown from August to 
October in the latter part of the year. Projected increases in discharge volumes from 
August–October amount to +84 m3/s (+13%) under RCP8.5 and +31 m3/3 (+4%) 
for RCP4.5. In absolute terms, under both RCPs, (in Figures 7 and 8), discharge 
response of the high flow season (June to October) is conflicting, having projected 
decreasing and increasing trend dependent on the GCM.

2.6.5.2.3 Hadejia river at Wudil gauge station

The hydrograph for the Hadejia river presents the peak monthly streamflow 
shifting from August to September for two scenarios (Figure 6). This shift is 
likely linked to a delayed start of precipitation. The climate model median projects 
a reduction in discharge volumes from June to August amounting to −39 m3/s 
(−15%) under RCP8.5 and −40 m3/s (−15%) under RCP 4.5. An increase in river 
discharge volumes is shown from September to December under both RCPs, which 
is related to increasing precipitation. For the RCP 8.5, the cumulative increase of 
discharge volume is from September to December amounts to 133 m3/s (38%) for 
RCP8.5 and 80 m3/s (23%) for RCP4.5. When considering the individual GCMs, 
Three out of the five climate models show increasing volumes in discharge in the 
peak flow period for RCP8.5 (Figure 8). The largest increase is found for MIROC 
(Figures 7 and 8); however, the signal of change depends on the Individual model.

Figure 8. 
Absolute change in discharge climatology projected under RCP4.5 for each GCM.
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In all four rivers, hydrological simulations of the MIROC climate model reveal 
the highest discharge compared to the other four climate models in all cases.

2.7 Discussion

The evaluation of climate change’s hydrological consequences often necessitates 
using a hydrological model forced with GCMs under various emission scenarios 
[52]. This study established the use of the PCR-GLOBWB model for two West 
African river basins; the Niger river basin and the Hadejia-Jama’are Komadugu-Yobe 
Basin (HJKYB). The monthly streamflow simulation results of the gauge stations of 
the two river basins were validated against observed discharge (GRDC) using five 
performance evaluation metrics were. The output of GCMs from the first phase of 
the ISI-MIP was adopted to investigate the response of streamflow seasonality to 
climate change. The PCR-GLOBWB was shown to be very applicable over the two 
basins. Its PBIAS, NSE, RSR, r2 and KGE values ranged from −25 to 0.8, 0.6 to 0.8, 
0.62 to 0.4, 0.62–0.88, and 0.69 to 0.88, respectively, which were within the  
acceptable limits [45], as shown in Table 2.

According to the results of the multi-model median regarding climate change, 
climate change impacted the temporal pattern of future river discharge in the river 
basins. The late start of the rainy season concluded in this work has been reported by 
previous studies [13, 48–50, 53]. Streamflow of the three rivers in combined HJKYB, 
the Yobe, Jamaare and the Hadejia, is controlled by precipitation. Genthon et al. [54] 
reported the climatic influence on discharge in this basin. Across the two basins, 
our findings indicate that climate change exacerbates the seasonality pattern already 
present. The basins influenced by precipitation exhibit a continuous increase in 
streamflow volumes during the later part of the high-flow season. In the Niger basin, 
climate change significantly affects the volume of streamflow seasonality (indicated 
by SI). In the four rivers, projected river discharge seasonality is amplified under the 
high-end emission scenario (RCP8.5); our findings support decisions on the poten-
tial advantages of reduced greenhouse gas emissions for the streamflow dynamics. 
It must be stressed that our analysis focused exclusively on the effects of climate 
change on streamflow regimes. Population expansion and economic development 
envisaged for the future are expected to raise human demand for water resources, 
potentially intensifying their interference with the streamflow regime. The conse-
quences of these could outweigh the climatic changes examined in this study.

3. Conclusions

This study assessed of climate change impacts on the seasonal river discharge in 
two rivers in West Africa, including the Niger, and the Hadejia-Jama’are Komadugu-
Yobe Basin (HJKYB). For this analysis, we set up and validated the PCR-GLOBWB 
model at the selected gauging stations of each river basin. Climate change impacts 
on river discharge seasonality were examined with five bias-corrected GCMs, 
collected from the “ISIMIP” project framework. The PCR-GLOBWB model valida-
tion performance was satisfactory in its performance for all statistics at each of 
the basins (Table 5). The five bias-corrected GCMs were then used to force PCR-
GLOBWB in the reference and far-future period. Based on our results, Climate 
change will influence the seasonal regime of discharge of the selected rivers, i.e., 
the timing and the magnitude of flows. The findings of this study reveal that there 
are little differences in SI between the present and the far-future. However, climate 
change will affect the temporal seasonality pattern. At the gauges of the Niger, Yobe, 
and Jamaare rivers, decreasing discharge volumes when the high-flow period begins 
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(typically May–July) is expected in the far future. This is explained by the delayed 
start of the raining season. All four rivers steadily project increasing river discharge 
at the end of the high-flow season (typically August–November) during the peak-
flow period. In this basins, increased precipitation amounts result in a projected 
increase in discharge volumes.

Adequate storage has to be made for the increased high-flow season; other-
wise, water scarcity may disturb agricultural production regardless of the overall 
increases in annual water availability. Even though increased discharge volumes can 
be considered advantageous to agricultural productivity, this can only be achievable 
when there are provisions to store excess flow for later use. When there are no/suffi-
cient existent storage structures, much of the additional flow is lost. Increased high 
flow may destroy croplands through flooding. Increased discharge volumes could 
lead to floods and destroy crops over a vast expanse of land. Excess water could 
reduce plant development, delay farm operations, make the soil soggy and unwork-
able. The projected increased discharge for the HJRB could help revive the currently 
shrinking Lake Chad basin. The findings of this study show that climate change 
will significantly impact the hydrological regimes of the two basins examined, with 
significant consequences for water resource planning and management. Finally, the 
methods used in this study may prove helpful for future research examining the 
effects of climate change on the hydrology of different regions.
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