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Preface

Thermodynamics is used to describe the engineering processes of various
disciplines such as chemical, environmental, and mechanical engineering.
Fundamentally, thermodynamics deals with heat and temperature to mechanical
work and energy from a macroscopic viewpoint. Statistical mechanics explains
macroscopic behaviors of a thermodynamic system using entropy S, energy E, 
matter number N, temperature T, chemical potential μ, volume V, and pressure P, 
and the thermodynamic second law relates the internal E, V, and N. In statistical
mechanics, an ensemble denotes a set of three independent variables to be used to
characterize a system of interest, and ensembles are classified into isothermal (for
constant temperature) and adiabatic (equivalent to isentropic, i.e., of constant
entropy) ones. Popular isothermal ensembles include canonical (NVT), grand
canonical (μVT), and isothermal/isobaric (NPT) ensembles. A representative
adiabatic ensemble is a microcanonical ensemble using N, V, and E as primary
variables, which is less popular for statistical simulations due to the inconvenient
constraint of fixed energy value. Theoretically, eight ensembles (four isothermal
and four adiabatic) can be made, but in principle only seven ensembles are avail-
able, because the last isothermal ensembles use only intensive variables of μ, P, 
and T, which are not enough to decide a system scale. More importantly, an
ensemble presumes an equilibrium state of an isolated system, which does not
allow mass and heat exchange to the surroundings.

Other sub-branches of theoretical physics are linked to statistical mechanics
through thermodynamic variables: classical mechanics through temperature T, 
fluid mechanics through pressure P, and chemistry through chemical potential μ. 
Although equilibrated systems can be fully analyzed using a thermodynamic
ensemble, most of the engineering processes consist of open systems through
which mass, heat, and momentum can be exchanged from the system interior
to surroundings. In principle an open system can reach a steady state, which
is irreversible or of non-equilibrium. The steady state can be mathematically
represented as ∂/∂t 0 װ, which means no physical quantities associated with
the system explicitly change with time. In equilibrium, the entropy is already
maximized and therefore it remains constant. In the steady state, changing rates
of physical variables can be constant so that entropy steadily increases with
respect to time. If the system of interest is open, the energy usually dissipates
and hence entropy increases. Energy dissipation occurs due not only to the open-
ness of the system but also to an incomplete conversion of a type of energy to the
other type. The inelastic nature of materials within the system converts kinetic
energy to thermal energy, often lost to the surrounding environment. To accu-
rately analyze an engineering process, understanding underlying phenomena
using irreversible thermal balance equations is essential. In this vein, this book
covers various aspects of irreversible statistical mechanics and non-equilibrium
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Chapter 1

Nonequilibrium Statistical
Operator
Gerd Röpke

Abstract

Nonequilibrium statistical physics is concerned with a fundamental problem
in physics, the phenomenon of irreversibility, which is not rigorously solved yet.
Different approaches to the statistical mechanics of nonequilibrium processes are
based on empirical assumptions, but a rigorous, first principle theory is missing. An
important contribution to describe irreversible behavior starting from reversible
Hamiltonian dynamics was given by Zubarev, who invented the method of the
nonequilibrium statistical operator (NSO). We discuss, in particular, the extended
von Neumann equation and the entropy concept in this approach. The method of
NSO proved to be a general and universal approach to different nonequilibrium
phenomena. Typical applications are the quantum master equation, kinetic theory,
and linear response theory which are outlined and illustrated solving standard
examples for reaction and transport processes. Some open questions are emphasized.

Keywords: Zubarev method, NSO, quantum master equation, kinetic equations,
linear response theory

1. Introduction: irreversible processes

1.1 Irreversibility and arrow of time

Irreversibility belongs to the unsolved fundamental problems in recent physics.
Nonequilibrium processes are omnipresent in our daily experience. However, a
fundamental, microscopic description of such processes is missing yet.

Our microscopic description of physical phenomena is expressed by equations of
motion, well known in mechanics, electrodynamics, quantum mechanics, and field
theory. We model a physical system, we determine the degrees of freedom and the
forces, and we introduce a Lagrangian. The equations of motion are differential
equations. If we know the initial state, the future of the system can be predicted
solving the equations of motion. Anything is determined. The equations of motion
are invariant with respect to time reversion. The time evolution is reversible. No
arrow of time is selected out, nothing happens what is not prescribed by the initial
state.

This picture was created by celestial dynamics. It is very successful, very pre-
sumptuous, and many processes are described with high precision. However, it is in
contradiction to daily experience. We know birth and death, decay, destruction,
and many other phenomena that are irreversible, selecting out the arrow of time.
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A qualitative new discipline in physics is thermodynamics. It considers not a
model but any real system. The laws of thermodynamics define new quantities, the
state variables. The second law determines the entropy S as state variable (and the
temperature T) via

dS ¼ 1
T
δQ reversible (1)

where δQ is the heat imposed to the system within a reversible process, together
with the third law which fixes the value S T ¼ 0ð Þ ¼ 0 independent on other state
variables. For irreversible processes holds

dS
dt

>
δQ
T

: (2)

In particular, for isolated system, δQ ¼ 0, irreversible processes are possible so
that dS=dt>0. Typical examples are friction that transforms mechanical energy to
thermal energy, temperature equilibration without production of mechanical work,
diffusion processes to balance concentration gradients. An arrow of time is selected
out, time reversion describes a phenomenon which is not possible. How can irre-
versible evolution in time be obtained from the fundamental microscopic equations
of motion which are reversible in time?

For equilibrium thermodynamics, a microscopic approach is given by statistical
physics. Additional concepts are introduced such as probability and distribution
function, ensembles in thermodynamic equilibrium, and information theory. New
thermodynamic quantities are introduced, basically the entropy, which have no
direct relation to mechanical quantities describing the equation of motion. How-
ever, nonequilibrium processes are described in a phenomenological way, and no
fundamental solution of the problem of irreversibility is found until now. A sub-
stantial step to develop a theory of irreversible evolution is the Zubarev method of
the nonequilibrium statistical operator (NSO) [1–6] to be described in the following
section. It is a consistent theory to describe different nonequilibrium processes what
is indispensable for a basic approach.

1.2 Langevin equation

To give an example for a microscopic approach to a nonequilibrium process, let
us consider the Brownian motion. A particle suspended in a liquid, moving with
velocity vmedium, experiences a friction force Ffric tð Þ,

d
dt

v tð Þ ¼ 1
m
Ffric tð Þ ¼ �γ v tð Þ � vmedium½ �, (3)

with the coefficient of friction γ. The solution

v tð Þ ¼ v t0ð Þe�γ t�t0ð Þ þ vmedium 1� e�γ t�t0ð Þ
h i

(4)

describes the relaxation from the initial state v t0ð Þ at t0 to the final state vmedium
for t� t0 ! ∞. Independent of the initial state, the particle rests in equilibrium
with the medium. In the general case not considered here, an external force can be
added.

As it is well known, this simple relaxation behavior cannot be correct because it
does not describe the Brownian motion, showing the existence of fluctuations also
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in thermal equilibrium. This problem was solved with the Langevin equation:
instead of the trajectory v tð Þ as solution of a differential equation, the stochastic
process V tð Þ is considered. It obeys the stochastic differential equation

d
dt

V tð Þ ¼ �γ V tð Þ � vrel tð Þ½ � þ R tð Þ: (5)

The random acceleration R tð Þ (or the stochastic force mR tð Þ) is a stochastic
process, which is characterized by special properties. For instance, white noise is a
Gaussian process that is characterized by the mean value R tð Þh i ¼ 0 and the auto-
correlation function

Ri t1ð ÞRj t2ð Þ� � ¼ φij t2 � t1ð Þ ¼ 2Dδijδ t2 � t1ð Þ: (6)

D is the diffusion coefficient. An interesting result is the Einstein relation
(fluctuation-dissipation theorem, FDT)

D
γ
¼ kBT

m
(7)

which relates the friction coefficient γ (dissipation) to the fluctuations φ in the
system (stochastic forces), characterized by the parameter D; see [5] for more
details.

1.3 Von Neumann equation

Within statistical mechanics, the thermodynamic state of an ensemble of many-
particle systems at time t is described by the statistical operator ρ tð Þ. We assume
that the time evolution of the quantum state of the system is given by the Hamilto-
nian Ht which may contain time-dependent external fields. The von Neumann
equation follows as equation of motion for the statistical operator,

∂

∂t
ρ tð Þ þ i

ℏ
Ht; ρ tð Þ½ � ¼ 0: (8)

The von Neumann equation describes reversible dynamics. The equation of
motion is based on the Schrödinger equation. Time inversion and conjugate com-
plex means that the first term on the left-hand side as well as the second one change
the sign, since i ! �i and both the Hamiltonian and the statistical operator are
Hermitean. However, the von Neumann equation is not sufficient to determine ρ tð Þ
because it is a first-order differential equation, and an initial value ρ t0ð Þ at time t0 is
necessary to specify a solution. This problem emerges clearly in equilibrium.

1.4 Thermodynamic equilibrium and entropy

By definition, in thermodynamic equilibrium, the thermodynamic state of the
system is not changing with time. Both, Ht and ρ tð Þ, are not depending on t so that

∂

∂t
ρeq tð Þ ¼ 0: (9)

The solution of the von Neumann equation in thermodynamic equilibrium

becomes trivial, i
ℏ H; ρeq

h i
¼ 0: The time-independent statistical operator ρeq
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commutes with the Hamiltonian. We conclude that ρeq depends only on constants
of motion Cn that commute with H. But, the von Neumann equation is not suffi-
cient to determine how ρeq depends on constants of motion Cn. We need a new
additional principle, not included in Hamiltonian dynamics.

Equilibrium statistical mechanics is based on the following principle to deter-
mine the statistical operator ρeq: consider the functional (information entropy)

Sinf ρ½ � ¼ �Tr ρln ρf g (10)

for arbitrary ρ that is consistent with the given conditions Tr ρf g ¼ 1
(normalization) and

Tr ρCnf g ¼ Cnh i (11)

(self-consistency conditions). Respecting these conditions, we vary ρ and deter-
mine the maximum of the information entropy for the optimal distribution ρeq so
that δSinf ½ ρeq� ¼ 0. As it is well-known, the method of Lagrange multipliers can
be used to account for the self-consistency conditions (11). The corresponding
maximum value for Sinf ρ½ �

Seq ρeq

h i
¼ �kBTr ρeqln ρeq

n o
(12)

is the equilibrium entropy of the system at given constraints Cnh i and kB is the
Boltzmann constant. The solution of this variational principle leads to the Gibbs
ensembles for thermodynamic equilibrium, see also Section 4.

As an example, we consider an open system which is in thermal contact and
particle exchange with reservoirs. The corresponding equilibrium statistical opera-
tor has to obey the given constraints: normalization Tr ρf g ¼ 1, thermal contact with
the bath so that Tr ρHf g ¼ U (internal energy), particle exchange with a reservoir
so that for the particle number operator Nc of species c, the average is given by
Tr ρNcf g ¼ ncΩ, where Ω denotes the volume of the system (we do not use V to
avoid confusion with the potential), and nc is the particle density of species c.
Looking for the maximum of the information entropy functional with these
constraints, one obtains the grand canonical distribution

ρeq ¼
e�β H�∑cμcNcð Þ

Tre�β H�∑cμcNcð Þ : (13)

The normalization is explicitly accounted for by the denominator (partition
function). The second condition means that the energy of a system in heat contact
with a thermostat fluctuates around an averaged value Hh i ¼ U ¼ uΩ with the
given density of internal energy u. This condition is taken into account by the
Lagrange multiplier β that must be related to the temperature, a more detailed
discussion leads to β ¼ 1= kBTð Þ. Similarly, the contact with the particle reservoir
fixes the particle density nc, introduced by the Lagrange multiplier μc, which has the
meaning of the chemical potential of species c.

Within the variational approach, the Lagrange parameters β, μc have to be elim-
inated. This leads to the equations of state ( …h ieq ¼ Trfρeq…g) which relate, e.g.,
the chemical potentials μc to the particle densities nc,

Hh ieq ¼ U Ω; β; μcð Þ, Nch ieq ¼ Ωnc T; μcð Þ: (14)

6

Non-Equilibrium Particle Dynamics

The entropy Seq Ω; β; μð Þ follows from Eq. (12). The dependence of extensive
quantities on the volume Ω is trivial for homogeneous systems. After a thermody-
namic potential is calculated, all thermodynamic variables are derived in a consis-
tent manner. The method to construct statistical ensembles from the maximum of
entropy at given conditions, which take into account the different contacts with the
surrounding bath, is well accepted in equilibrium statistical mechanics and is
applied successfully to different phenomena, including phase transitions.

Can we extend the definition of equilibrium entropy (12) also for ρ tð Þ that
describes the evolution in nonequilibrium? Time evolution is given by an unitary
transformation that leaves the trace invariant. Thus, the expression Tr ρ tð Þln ρ tð Þf g
is constant for a solution ρ tð Þ of the von Neumann equation

d
dt

Tr ρ tð Þln ρ tð Þf g½ � ¼ 0: (15)

The entropy for a system in nonequilibrium, however, may increase with time,
according to the second law of thermodynamics. The equations of motion, includ-
ing the Schrödinger equation and the Liouville-von Neumann equation, describe
reversible motion and are not appropriate to describe irreversible processes. There-
fore, the entropy concept (12) elaborated in equilibrium statistical physics together
with the Liouville-von Neumann equation cannot be used as fundamental approach
to nonequilibrium statistical physics.

2. The method of nonequilibrium statistical operator (NSO)

After the laws of thermodynamics have been formulated in the nineteenth
century, in particular, the definition of entropy for systems in thermodynamic
equilibrium and the increase of intrinsic entropy in nonequilibrium processes, a
microscopic approach to nonequilibrium evolution was first given by Ludwig
Boltzmann who formulated the kinetic theory of gases [7] using the famous
Stoßzahlansatz. The question how irreversible evolution in time can be obtained
from reversible microscopic equations has been arisen immediately and was
discussed controversially.

The rigorous derivation of the kinetic equations from a microscopic description
of a system was given only a long time afterward by Bogoliubov [8] introducing a
new additional theorem, the principle of weakening of initial correlation.

2.1 Construction of the Zubarev NSO

A generalization of this principle has been given by Zubarev [1, 2], who
invented the method of the nonequilibrium statistical operator (NSO). This
approach has been applied to various problems in nonequilibrium statistical phys-
ics, see [3, 4] and may be considered as a unified, fundamental approach to
nonequilibrium systems which includes different theories such as quantum master
equations, kinetic theory, and linear response theory to be outlined below. An
exhaustive review of the Zubarev NSO method and its manifold applications cannot
be given here, see [1–5].

In the first step, we interrogate the concept of thermodynamic equilibrium. This
is an idealization, because slow processes are always possible. As example, we may
take the nuclear decay of long-living isotopes, hindered chemical reactions, or the
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commutes with the Hamiltonian. We conclude that ρeq depends only on constants
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Seq ρeq

h i
¼ �kBTr ρeqln ρeq

n o
(12)
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Tre�β H�∑cμcNcð Þ : (13)
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6

Non-Equilibrium Particle Dynamics

The entropy Seq Ω; β; μð Þ follows from Eq. (12). The dependence of extensive
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is constant for a solution ρ tð Þ of the von Neumann equation

d
dt

Tr ρ tð Þln ρ tð Þf g½ � ¼ 0: (15)

The entropy for a system in nonequilibrium, however, may increase with time,
according to the second law of thermodynamics. The equations of motion, includ-
ing the Schrödinger equation and the Liouville-von Neumann equation, describe
reversible motion and are not appropriate to describe irreversible processes. There-
fore, the entropy concept (12) elaborated in equilibrium statistical physics together
with the Liouville-von Neumann equation cannot be used as fundamental approach
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2. The method of nonequilibrium statistical operator (NSO)

After the laws of thermodynamics have been formulated in the nineteenth
century, in particular, the definition of entropy for systems in thermodynamic
equilibrium and the increase of intrinsic entropy in nonequilibrium processes, a
microscopic approach to nonequilibrium evolution was first given by Ludwig
Boltzmann who formulated the kinetic theory of gases [7] using the famous
Stoßzahlansatz. The question how irreversible evolution in time can be obtained
from reversible microscopic equations has been arisen immediately and was
discussed controversially.

The rigorous derivation of the kinetic equations from a microscopic description
of a system was given only a long time afterward by Bogoliubov [8] introducing a
new additional theorem, the principle of weakening of initial correlation.

2.1 Construction of the Zubarev NSO

A generalization of this principle has been given by Zubarev [1, 2], who
invented the method of the nonequilibrium statistical operator (NSO). This
approach has been applied to various problems in nonequilibrium statistical phys-
ics, see [3, 4] and may be considered as a unified, fundamental approach to
nonequilibrium systems which includes different theories such as quantum master
equations, kinetic theory, and linear response theory to be outlined below. An
exhaustive review of the Zubarev NSO method and its manifold applications cannot
be given here, see [1–5].

In the first step, we interrogate the concept of thermodynamic equilibrium. This
is an idealization, because slow processes are always possible. As example, we may
take the nuclear decay of long-living isotopes, hindered chemical reactions, or the
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long-time relaxation of glasses. Concepts introduced for equilibrium have to be
generalized to nonequilibrium. An example is the thermodynamics of irreversible
processes.

2.1.1 The relevant statistical operator

A solution of the problem to combine equilibrium thermodynamics and
nonequilibrium processes was proposed by Zubarev [1, 2]. To characterize the
nonequilibrium state of a system, we introduce the set of relevant observables Bnf g
extending the set of conserved quantities Cnf g. At time t, the observed values Bnh it
have to be reproduced by the statistical operator ρ tð Þ, i.e.,

Tr ρ tð ÞBnf g ¼ Bnh it: (16)

However, these conditions are not sufficient to fix ρ tð Þ, and we need an addi-
tional principle to find the correct one in between many possible distributions
which all fulfill the conditions (16). We ask for the most probable distribution at
time t, where the information entropy has a maximum value (see Section 4)

δ Tr ρrel tð Þln ρrel tð Þf g½ � ¼ 0 (17)

with the self-consistency conditions

Tr ρrel tð ÞBnf g ¼ Bnh it (18)

and Tr ρrel tð Þf g ¼ 1. Once more, we use Lagrange multipliers λn tð Þ to account for
the self-consistency conditions (18). Since the averages are, in general, time depen-
dent, the corresponding Lagrange multipliers are now time-dependent functions as
well. We find the generalized Gibbs distribution

ρrel tð Þ ¼ e
�Φ tð Þ�∑

n
λn tð ÞBn

, Φ tð Þ ¼ ln Tr e
�∑

n
λn tð ÞBn

� �
, (19)

where the Lagrange multipliers λn tð Þ (thermodynamic parameters) are deter-
mined by the self-consistency conditions (18). Φ tð Þ is the Massieux-Planck func-
tion, needed for normalization purposes and playing the role of a thermodynamic
potential. Generalizing the equilibrium case, Eq. (12), we can consider the relevant
entropy in nonequilibrium

Srel tð Þ ¼ �kB Tr ρrel tð Þ ln ρrel tð Þf g: (20)

Relations similar to the relations known from equilibrium thermodynamics can
be derived. In particular, the production of entropy results as

∂Srel tð Þ
∂t

¼ ∑
n
λn tð Þ _Bn

� �t
(21)

as known from the thermodynamics of irreversible processes. In contrast to
Eq. (15), this expression can have a positive value so that Srel tð Þ can increase with time.

The relevant statistical operator ρrel tð Þ is not the wanted nonequilibrium statisti-
cal operator ρ tð Þ because it does not obey the Liouville-von Neumann equation.
Also, Srel tð Þ is not the thermodynamic entropy because it is based on the arbitrary
choice of the set Bnf g of relevant observables, and not all possible variables are
correctly reproduced. As example, we consider below the famous Boltzmann
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entropy that is based on the single-particle distribution function, but does not take
higher order correlation functions into account.

2.2 The Zubarev solution of the initial value problem

The solution of the problem how to find the missing signatures of ρ tð Þ not
already described by ρrel tð Þwas found by Zubarev [1, 2] generalizing the Bogoliubov
principle of weakening of initial correlations [8]. He proposed to use the relevant
statistical operator ρrel t0ð Þ at some initial time t0 as initial condition to construct
ρ tð Þ,

ρt0 tð Þ ¼ U t; t0ð Þρrel t0ð ÞU† t; t0ð Þ: (22)

The unitary time evolution operator U t; t0ð Þ is the solution of the differential
equation

iℏ
∂

∂t
U t; t0ð Þ ¼ HtU t; t0ð Þ, (23)

with the initial condition U t0; t0ð Þ ¼ 1. This unitary operator is known from the
solution of the Schrödinger equation. If the Hamiltonian is not time dependent, we
have

U t; t0ð Þ ¼ e�
i
ℏH t�t0ð Þ: (24)

If the Hamiltonian is time dependent, the solution is given by a time-ordered
exponent.

Now, it is easily shown that ρt0 tð Þ is a solution of the von Neumann equation. All
missing correlations not contained in ρrel t0ð Þ are formed dynamically during the
time evolution of the system. However, incorrect initial correlations contained in
ρrel t0ð Þ may survive for a finite time interval t� t0, and the self-consistency condi-
tions (18) valid at t0 are not automatically valid also at t.

To get rid of these incorrect initial correlations, according to the Bogoliubov
principle of weakening of initial correlations, one can consider the limit t0 ! �∞.
According to Zubarev, it is more efficient to average over the initial time so that no
special time instant t0 is singled out. This is of importance, for instance, if there are
long-living oscillations determined by the initial state. According to Abel’s theorem,
see [1–4], the limit t0 ! �∞ can be replaced by the limit ϵ ! þ0 in the expression

ρϵ tð Þ ¼ ϵ

ðt

�∞

eϵ t1�tð ÞU t; t1ð Þρrel t1ð ÞU† t; t1ð Þdt1: (25)

This averaging over different initial time instants means a mixing of phases so
that long-living oscillations are damped out. Finally, we obtain the nonequilibrium
statistical operator as

ρNSO tð Þ ¼ lim
ϵ!0

ρϵ tð Þ: (26)

This way, ρrel t1ð Þ for all times �∞< t1 < t serves as initial condition to solve the
Liouville-von Neumann equation, according to the Bogoliubov principle of
weakening of initial correlations. The missing correlations are formed dynamically
during the time evolution of the system. The more information about the
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long-time relaxation of glasses. Concepts introduced for equilibrium have to be
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extending the set of conserved quantities Cnf g. At time t, the observed values Bnh it
have to be reproduced by the statistical operator ρ tð Þ, i.e.,
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However, these conditions are not sufficient to fix ρ tð Þ, and we need an addi-
tional principle to find the correct one in between many possible distributions
which all fulfill the conditions (16). We ask for the most probable distribution at
time t, where the information entropy has a maximum value (see Section 4)

δ Tr ρrel tð Þln ρrel tð Þf g½ � ¼ 0 (17)

with the self-consistency conditions

Tr ρrel tð ÞBnf g ¼ Bnh it (18)

and Tr ρrel tð Þf g ¼ 1. Once more, we use Lagrange multipliers λn tð Þ to account for
the self-consistency conditions (18). Since the averages are, in general, time depen-
dent, the corresponding Lagrange multipliers are now time-dependent functions as
well. We find the generalized Gibbs distribution
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where the Lagrange multipliers λn tð Þ (thermodynamic parameters) are deter-
mined by the self-consistency conditions (18). Φ tð Þ is the Massieux-Planck func-
tion, needed for normalization purposes and playing the role of a thermodynamic
potential. Generalizing the equilibrium case, Eq. (12), we can consider the relevant
entropy in nonequilibrium

Srel tð Þ ¼ �kB Tr ρrel tð Þ ln ρrel tð Þf g: (20)

Relations similar to the relations known from equilibrium thermodynamics can
be derived. In particular, the production of entropy results as

∂Srel tð Þ
∂t

¼ ∑
n
λn tð Þ _Bn

� �t
(21)

as known from the thermodynamics of irreversible processes. In contrast to
Eq. (15), this expression can have a positive value so that Srel tð Þ can increase with time.

The relevant statistical operator ρrel tð Þ is not the wanted nonequilibrium statisti-
cal operator ρ tð Þ because it does not obey the Liouville-von Neumann equation.
Also, Srel tð Þ is not the thermodynamic entropy because it is based on the arbitrary
choice of the set Bnf g of relevant observables, and not all possible variables are
correctly reproduced. As example, we consider below the famous Boltzmann
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entropy that is based on the single-particle distribution function, but does not take
higher order correlation functions into account.

2.2 The Zubarev solution of the initial value problem

The solution of the problem how to find the missing signatures of ρ tð Þ not
already described by ρrel tð Þwas found by Zubarev [1, 2] generalizing the Bogoliubov
principle of weakening of initial correlations [8]. He proposed to use the relevant
statistical operator ρrel t0ð Þ at some initial time t0 as initial condition to construct
ρ tð Þ,

ρt0 tð Þ ¼ U t; t0ð Þρrel t0ð ÞU† t; t0ð Þ: (22)

The unitary time evolution operator U t; t0ð Þ is the solution of the differential
equation

iℏ
∂

∂t
U t; t0ð Þ ¼ HtU t; t0ð Þ, (23)

with the initial condition U t0; t0ð Þ ¼ 1. This unitary operator is known from the
solution of the Schrödinger equation. If the Hamiltonian is not time dependent, we
have

U t; t0ð Þ ¼ e�
i
ℏH t�t0ð Þ: (24)

If the Hamiltonian is time dependent, the solution is given by a time-ordered
exponent.

Now, it is easily shown that ρt0 tð Þ is a solution of the von Neumann equation. All
missing correlations not contained in ρrel t0ð Þ are formed dynamically during the
time evolution of the system. However, incorrect initial correlations contained in
ρrel t0ð Þ may survive for a finite time interval t� t0, and the self-consistency condi-
tions (18) valid at t0 are not automatically valid also at t.

To get rid of these incorrect initial correlations, according to the Bogoliubov
principle of weakening of initial correlations, one can consider the limit t0 ! �∞.
According to Zubarev, it is more efficient to average over the initial time so that no
special time instant t0 is singled out. This is of importance, for instance, if there are
long-living oscillations determined by the initial state. According to Abel’s theorem,
see [1–4], the limit t0 ! �∞ can be replaced by the limit ϵ ! þ0 in the expression

ρϵ tð Þ ¼ ϵ

ðt
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eϵ t1�tð ÞU t; t1ð Þρrel t1ð ÞU† t; t1ð Þdt1: (25)

This averaging over different initial time instants means a mixing of phases so
that long-living oscillations are damped out. Finally, we obtain the nonequilibrium
statistical operator as

ρNSO tð Þ ¼ lim
ϵ!0

ρϵ tð Þ: (26)

This way, ρrel t1ð Þ for all times �∞< t1 < t serves as initial condition to solve the
Liouville-von Neumann equation, according to the Bogoliubov principle of
weakening of initial correlations. The missing correlations are formed dynamically
during the time evolution of the system. The more information about the
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nonequilibrium state are used to construct the relevant statistical operator, the less
dynamical formation of the correct correlations in ρ tð Þ is needed. The limit
t0 ! �∞ is less active to produce the remaining missing correlating. The past that is
of relevance, given by the relaxation time τ, becomes shorter, if the relevant (long-
living) correlations are already correctly implemented. The limit ε ! þ0 has to be
performed after the thermodynamic limit, see below.

2.3 Discussion of the Zubarev NSO approach

2.3.1 The extended Liouville-von Neumann equation

The nonequilibrium statistical operator ρϵ tð Þ, Eq. (25), obeys the extended von
Neumann equation

∂ρϵ tð Þ
∂t

þ i
ℏ

Ht; ρϵ tð Þ½ � ¼ �ϵ ρϵ tð Þ � ρrel tð Þð Þ: (27)

as can be seen after simple derivation with respect to time. In contrast to the von
Neumann equation (8), a source term arises on the right-hand side that becomes
infinitesimal small in the limit ϵ ! þ0. This source term breaks the time inversion
symmetry, so that for any finite value of ϵ, the solution ρϵ tð Þ describes in general an
irreversible evolution with time.

The source term can be interpreted in the following way:

1. The source term implements the “initial condition” in the equation of motion
as expressed by ρrel tð Þ. Formally, the source term looks like a relaxation
process. In addition to the internal dynamics, the system evolves toward the
relevant distribution.

2. The construction of the source term is such that the time evolution of the
relevant variables is not affected by the source term (we use the invariance of
the trace with respect to cyclic permutations),

∂

∂t
Bnh it ¼ Tr

∂ρϵ tð Þ
∂t

Bn

� �
¼ �Tr

i
ℏ

Ht; ρϵ tð Þ½ �Bn

� �
¼ i

ℏ
Ht;Bn½ �

� �t

¼ _Bn
� �t

: (28)

The source term cancels because of the self-consistency conditions (18). Thus,
the time evolution of the relevant observables satisfies the dynamical equations of
motion according to the Hamiltonian Ht.

3. The value of ϵ has to be small enough, ϵ≪ 1=τ, so that all relaxation processes
to establish the correct correlations, i.e., the correct distribution of the
irrelevant observables, can be performed. However, ℏϵ has to be large
compared to the energy difference of neighbored energy eigenstates of the
system so that mixing is possible. For a system of many particles, the density of
energy eigenvalues is high so that we can assume a quasi-continuum. This is
necessary to allow for dissipation. The van Hove limit means that the limit
ϵ ! þ0 has to be performed after the thermodynamic limit.

4.Differential equations can have degenerated solutions. For instance, we know
the retarded and advanced solution of the wave equation that describes the
emission of electromagnetic radiation. An infinitesimal small perturbation can
destroy this degeneracy and select out a special solution, here the retarded one.
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Similar problems are known for systems (magnetism) where the ground state
has a lower symmetry than the Hamiltonian.

5. Any real system is in contact with the surroundings. The intrinsic dynamics
described by the Hamiltonian Ht is modified due to the coupling of the open
system to the bath. Within the quantum master equation approach, we can
approximate the influence term describing the coupling to the bath by a
relaxation term such as the source term. At present, we consider the source
term as a purely mathematical tool to select the retarded solution of the von
Neumann equation, and physical results are obtained only after performing the
limit ϵ ! 0.

2.3.2 Selection of the set of relevant observables

The Zubarev method to solve the initial value problem for the Liouville-von
Neumann equation is based on the selection of the set Bnf g of relevant observables
which characterize the nonequilibrium state. The corresponding relevant statistical
operator ρrel tð Þ is some approximation to ρ tð Þ. According to the Bogoliubov principle
of weakening of initial correlations, the missing correlations to get ρ tð Þ are produced
dynamically. This process, the dynamical formation of the missing correlations,
needs some relaxation time τ. If we would take instead of ρrel tð Þ the exact (but
unknown) solution ρ tð Þ, the relaxation time τ is zero. The Liouville-von Neumann
equation, which is a first-order differential equation with respect to time, describes
a Markov process.

There is no rigorous prescription how to select the set of relevant observables
Bnf g. The more relevant observables are selected so that their averages with ρrel tð Þ

reproduce already the correctly known averages Bnh it, see Eq. (18), the less the
effort to produce the missing correlations dynamically, and the less relaxation time
τ is needed. Taking into account that usually perturbation theory is used to treat the
dynamical time evolution (23), a lower order of perturbation theory is then suffi-
cient. We discuss this issue in Section 3.

In conclusion, the selection of the set of relevant observables is arbitrary, as a
minimum the constants of motion Cn have to be included because their relaxation
time is infinite, their averages cannot be produced dynamically. The resulting
ρNSO tð Þ (26) should not depend on the (arbitrary) choice of relevant observables
Bnf g if the limit ε ! 0 is correctly performed. However, usually perturbation the-

ory is applied, so that the result will depend on the selection of the set of relevant
observables. The inclusion of long-living correlations into Bnf g allows to use lower
order perturbation expansions to obtain acceptable results.

2.3.3 Entropy of the nonequilibrium state

An intricate problem is the definition of entropy for the nonequilibrium state. In
nonequilibrium, entropy is produced, as investigated in the phenomenological
approach to the thermodynamics of irreversible processes, considering currents
induced by the generalized forces.

Such a behavior occurs for the relevant entropy defined by the relevant
distribution (20),

Srel tð Þ ¼ �kBTr ρrel tð Þln ρrel tð Þf g: (29)

A famous example that shows the increase of the relevant entropy with time is
the Boltzmann H theorem where the relevant observables to define the
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nonequilibrium state are used to construct the relevant statistical operator, the less
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t0 ! �∞ is less active to produce the remaining missing correlating. The past that is
of relevance, given by the relaxation time τ, becomes shorter, if the relevant (long-
living) correlations are already correctly implemented. The limit ε ! þ0 has to be
performed after the thermodynamic limit, see below.

2.3 Discussion of the Zubarev NSO approach

2.3.1 The extended Liouville-von Neumann equation

The nonequilibrium statistical operator ρϵ tð Þ, Eq. (25), obeys the extended von
Neumann equation
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ℏ
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as can be seen after simple derivation with respect to time. In contrast to the von
Neumann equation (8), a source term arises on the right-hand side that becomes
infinitesimal small in the limit ϵ ! þ0. This source term breaks the time inversion
symmetry, so that for any finite value of ϵ, the solution ρϵ tð Þ describes in general an
irreversible evolution with time.

The source term can be interpreted in the following way:

1. The source term implements the “initial condition” in the equation of motion
as expressed by ρrel tð Þ. Formally, the source term looks like a relaxation
process. In addition to the internal dynamics, the system evolves toward the
relevant distribution.

2. The construction of the source term is such that the time evolution of the
relevant variables is not affected by the source term (we use the invariance of
the trace with respect to cyclic permutations),

∂

∂t
Bnh it ¼ Tr

∂ρϵ tð Þ
∂t

Bn

� �
¼ �Tr

i
ℏ

Ht; ρϵ tð Þ½ �Bn

� �
¼ i

ℏ
Ht;Bn½ �

� �t

¼ _Bn
� �t

: (28)

The source term cancels because of the self-consistency conditions (18). Thus,
the time evolution of the relevant observables satisfies the dynamical equations of
motion according to the Hamiltonian Ht.

3. The value of ϵ has to be small enough, ϵ≪ 1=τ, so that all relaxation processes
to establish the correct correlations, i.e., the correct distribution of the
irrelevant observables, can be performed. However, ℏϵ has to be large
compared to the energy difference of neighbored energy eigenstates of the
system so that mixing is possible. For a system of many particles, the density of
energy eigenvalues is high so that we can assume a quasi-continuum. This is
necessary to allow for dissipation. The van Hove limit means that the limit
ϵ ! þ0 has to be performed after the thermodynamic limit.

4.Differential equations can have degenerated solutions. For instance, we know
the retarded and advanced solution of the wave equation that describes the
emission of electromagnetic radiation. An infinitesimal small perturbation can
destroy this degeneracy and select out a special solution, here the retarded one.
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Similar problems are known for systems (magnetism) where the ground state
has a lower symmetry than the Hamiltonian.

5. Any real system is in contact with the surroundings. The intrinsic dynamics
described by the Hamiltonian Ht is modified due to the coupling of the open
system to the bath. Within the quantum master equation approach, we can
approximate the influence term describing the coupling to the bath by a
relaxation term such as the source term. At present, we consider the source
term as a purely mathematical tool to select the retarded solution of the von
Neumann equation, and physical results are obtained only after performing the
limit ϵ ! 0.

2.3.2 Selection of the set of relevant observables

The Zubarev method to solve the initial value problem for the Liouville-von
Neumann equation is based on the selection of the set Bnf g of relevant observables
which characterize the nonequilibrium state. The corresponding relevant statistical
operator ρrel tð Þ is some approximation to ρ tð Þ. According to the Bogoliubov principle
of weakening of initial correlations, the missing correlations to get ρ tð Þ are produced
dynamically. This process, the dynamical formation of the missing correlations,
needs some relaxation time τ. If we would take instead of ρrel tð Þ the exact (but
unknown) solution ρ tð Þ, the relaxation time τ is zero. The Liouville-von Neumann
equation, which is a first-order differential equation with respect to time, describes
a Markov process.

There is no rigorous prescription how to select the set of relevant observables
Bnf g. The more relevant observables are selected so that their averages with ρrel tð Þ

reproduce already the correctly known averages Bnh it, see Eq. (18), the less the
effort to produce the missing correlations dynamically, and the less relaxation time
τ is needed. Taking into account that usually perturbation theory is used to treat the
dynamical time evolution (23), a lower order of perturbation theory is then suffi-
cient. We discuss this issue in Section 3.

In conclusion, the selection of the set of relevant observables is arbitrary, as a
minimum the constants of motion Cn have to be included because their relaxation
time is infinite, their averages cannot be produced dynamically. The resulting
ρNSO tð Þ (26) should not depend on the (arbitrary) choice of relevant observables
Bnf g if the limit ε ! 0 is correctly performed. However, usually perturbation the-

ory is applied, so that the result will depend on the selection of the set of relevant
observables. The inclusion of long-living correlations into Bnf g allows to use lower
order perturbation expansions to obtain acceptable results.

2.3.3 Entropy of the nonequilibrium state

An intricate problem is the definition of entropy for the nonequilibrium state. In
nonequilibrium, entropy is produced, as investigated in the phenomenological
approach to the thermodynamics of irreversible processes, considering currents
induced by the generalized forces.

Such a behavior occurs for the relevant entropy defined by the relevant
distribution (20),

Srel tð Þ ¼ �kBTr ρrel tð Þln ρrel tð Þf g: (29)

A famous example that shows the increase of the relevant entropy with time is
the Boltzmann H theorem where the relevant observables to define the
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nonequilibrium state are the occupation numbers of the single-particle states, i.e.,
the distribution function, see Section 3.2 for discussion.

Note that the increase of entropy cannot be solved this way. It is related to so-
called coarse graining. The information about the state is reduced because the
degrees of freedom to describe the system are reduced. This may be an averaging in
phase space over small cells. The loss of information then gives the increase of
entropy. This procedure is artificial, anthropomorphic, depending on our way to
describe the details of a process.

The method of nonequilibrium statistical operator ρNSO tð Þ allows to extend
the set of relevant observables arbitrarily so that the choice of the set of relevant
observables seems to be irrelevant. All missing correlations are produced dynami-
cally. We can start with any set of relevant operators, but have to wait for a
sufficient long time to get the correct statistical operator, or to go to very small ϵ.
A possible definition of the entropy would be

SNSO tð Þ ¼ �kBTr ρNSO tð Þln ρNSO tð Þf g: (30)

The destruction of the reversibility of the von Neumann equation (27) is
connected with the source term on the right-hand side that produces the mixing by
averaging over the past in Eq. (25). This source term is responsible for the entropy
production. At present, there is no proof that the entropy SNSO tð Þ will increase also
in the limit ϵ ! þ0.

3. Applications

The NSO method is a fundamental step in deriving equations of evolution to
describe nonequilibrium phenomena. It can be shown that any currently used
description can be deduced from this approach. We give three typical examples, the
quantum master equations, see [9, 10], kinetic theory, see [11], and linear response
theory, see [12]. In all of these applications, we have to define the set of relevant
observables, and to eliminate the Lagrange parameters determined by the self-
consistency conditions. We shortly outline these applications, for a more exhaustive
presentation see [3–5].

3.1 Quantum master equation

3.1.1 Open systems

The main issue is that any physical system cannot be completely separated from
the surroundings, so that the isolated system is only a limiting case of the open
system which is in contact with a bath. More general, we subdivide the degrees of
freedom of the total system into the relevant degrees of freedom which describe the
system S under consideration, and the irrelevant part describing the bath B. Exam-
ples are a harmonic oscillator coupled to a bath consisting of harmonic oscillators,
such as an oscillating molecule interacting with phonons or photons, or radiation
from a single atom embedded in the bath consisting of photons, see below.

The Hamiltonian H of the open system can be decomposed

H ¼ HS þHB þHint: (31)

The system Hamiltonian acts only in the Hibert space of the system states
leaving the bath states unchanged. It is expressed in terms of the system observables
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Aν. The bath Hamiltonian acts only in the Hilbert space of the bath states leaving the
system states unchanged. It is expressed in terms of the bath observables Bμ. Both
sets of operators are assumed to be hermitean and independent so that Aν;Bμ

� � ¼ 0.
We project out the relevant part of the nonequilibrium statistical operator ρ tð Þ

ρs tð Þ ¼ TrBρ tð Þ (32)

where the trace over the bath can be performed after the eigenstates of the bath
are introduced. The operator TrB means the trace over the quantum states of the
heat bath. If we have no further information, we construct the relevant statistical
operator taking the equilibrium distribution ρB ¼ ρeq (13) for the irrelevant degrees
of freedom,

ρrel tð Þ ¼ ρs tð ÞρB: (33)

3.1.2 Born-Markov approximation

Starting with the extended Liouville-von Neumann equation (27), we perform
the trace TrB over the variables of the bath (see Eq. (32)),

∂

∂t
ρs tð Þ �

1
iℏ

Hs; ρs tð Þ½ � ¼ 1
iℏ

TrB Hint; ρ tð Þ½ � (34)

since the remaining terms disappear and 1
iℏTrB HBρ tð Þ � ρ tð ÞHBð Þ ¼ 0 because of

cyclic invariance of the trace TrB. To obtain a closed equation for ρs tð Þ, the full
nonequilibrium statistical operator ρ tð Þ occurring on the right-hand side has to be
eliminated.

For this, we calculate the time evolution of the irrelevant part of the statistical
operator Δρ tð Þ ¼ ρ tð Þ � ρrel tð Þ,

∂

∂t
Δρ tð Þ ¼ ∂

∂t
ρ tð Þ � ∂

∂t
ρs tð Þ

� �
ρB (35)

inserting the time evolution for ρ tð Þ (8) and ρs tð Þ (34) given above:

∂

∂t
þ ε

� �
Δρ tð Þ ¼ 1

iℏ
H; ρ tð Þ½ � � 1

iℏ
Hs; ρs tð Þ½ �ρB � ρB

1
iℏ

TrB Hint; ρ tð Þ½ �: (36)

We eliminate ρ tð Þ ¼ Δρ tð Þ þ ρs tð ÞρB and collect all terms with Δρ tð Þ on the
left-hand side. We can assume that Hinth iB ¼ TrB HintρBð Þ ¼ 0 because the heat
bath do not exert external forces on the system (if not, replace Hs by Hs þ Hinth iB
and Hint by Hint � Hinth iB) so that also TrB Hint; ρB½ �ð Þρs tð Þ ¼ 0 and the last term
�ρB

1
iℏTrB HintρBf gρs tð Þ þ ρBρs tð Þ 1

iℏTrB ρBHintf g vanishes. Also, the term
1
iℏ HB; ρs tð ÞρB½ � disappears since HB; ρB½ � ¼ 0.

We obtain

∂

∂t
þ ε

� �
Δρ tð Þ � 1

iℏ
Hs þHint þHBð Þ;Δρ tð Þ½ � þ ρB

1
iℏ

TrB Hint;Δρ tð Þ½ � ¼ 1
iℏ

Hint; ρs tð ÞρB½ �:

(37)

The deviation Δρ tð Þ vanishes when Hint ! 0. In lowest order with respect to
Hint, the solution is found as

13

Nonequilibrium Statistical Operator
DOI: http://dx.doi.org/10.5772/intechopen.84707



nonequilibrium state are the occupation numbers of the single-particle states, i.e.,
the distribution function, see Section 3.2 for discussion.

Note that the increase of entropy cannot be solved this way. It is related to so-
called coarse graining. The information about the state is reduced because the
degrees of freedom to describe the system are reduced. This may be an averaging in
phase space over small cells. The loss of information then gives the increase of
entropy. This procedure is artificial, anthropomorphic, depending on our way to
describe the details of a process.

The method of nonequilibrium statistical operator ρNSO tð Þ allows to extend
the set of relevant observables arbitrarily so that the choice of the set of relevant
observables seems to be irrelevant. All missing correlations are produced dynami-
cally. We can start with any set of relevant operators, but have to wait for a
sufficient long time to get the correct statistical operator, or to go to very small ϵ.
A possible definition of the entropy would be

SNSO tð Þ ¼ �kBTr ρNSO tð Þln ρNSO tð Þf g: (30)

The destruction of the reversibility of the von Neumann equation (27) is
connected with the source term on the right-hand side that produces the mixing by
averaging over the past in Eq. (25). This source term is responsible for the entropy
production. At present, there is no proof that the entropy SNSO tð Þ will increase also
in the limit ϵ ! þ0.

3. Applications

The NSO method is a fundamental step in deriving equations of evolution to
describe nonequilibrium phenomena. It can be shown that any currently used
description can be deduced from this approach. We give three typical examples, the
quantum master equations, see [9, 10], kinetic theory, see [11], and linear response
theory, see [12]. In all of these applications, we have to define the set of relevant
observables, and to eliminate the Lagrange parameters determined by the self-
consistency conditions. We shortly outline these applications, for a more exhaustive
presentation see [3–5].

3.1 Quantum master equation

3.1.1 Open systems

The main issue is that any physical system cannot be completely separated from
the surroundings, so that the isolated system is only a limiting case of the open
system which is in contact with a bath. More general, we subdivide the degrees of
freedom of the total system into the relevant degrees of freedom which describe the
system S under consideration, and the irrelevant part describing the bath B. Exam-
ples are a harmonic oscillator coupled to a bath consisting of harmonic oscillators,
such as an oscillating molecule interacting with phonons or photons, or radiation
from a single atom embedded in the bath consisting of photons, see below.

The Hamiltonian H of the open system can be decomposed

H ¼ HS þHB þHint: (31)

The system Hamiltonian acts only in the Hibert space of the system states
leaving the bath states unchanged. It is expressed in terms of the system observables

12

Non-Equilibrium Particle Dynamics

Aν. The bath Hamiltonian acts only in the Hilbert space of the bath states leaving the
system states unchanged. It is expressed in terms of the bath observables Bμ. Both
sets of operators are assumed to be hermitean and independent so that Aν;Bμ
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operator taking the equilibrium distribution ρB ¼ ρeq (13) for the irrelevant degrees
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eliminated.
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inserting the time evolution for ρ tð Þ (8) and ρs tð Þ (34) given above:

∂

∂t
þ ε

� �
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iℏ
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1
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We eliminate ρ tð Þ ¼ Δρ tð Þ þ ρs tð ÞρB and collect all terms with Δρ tð Þ on the
left-hand side. We can assume that Hinth iB ¼ TrB HintρBð Þ ¼ 0 because the heat
bath do not exert external forces on the system (if not, replace Hs by Hs þ Hinth iB
and Hint by Hint � Hinth iB) so that also TrB Hint; ρB½ �ð Þρs tð Þ ¼ 0 and the last term
�ρB

1
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iℏTrB ρBHintf g vanishes. Also, the term
1
iℏ HB; ρs tð ÞρB½ � disappears since HB; ρB½ � ¼ 0.

We obtain

∂

∂t
þ ε

� �
Δρ tð Þ � 1

iℏ
Hs þHint þHBð Þ;Δρ tð Þ½ � þ ρB

1
iℏ

TrB Hint;Δρ tð Þ½ � ¼ 1
iℏ
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(37)

The deviation Δρ tð Þ vanishes when Hint ! 0. In lowest order with respect to
Hint, the solution is found as
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Δρ tð Þ ¼
ðt

�∞

dt0 e�ε t�t0ð Þe
1
i ℏ t�t0ð Þ HsþHBð Þ 1

iℏ
Hint; ρs t

0ð ÞρB½ �e� 1
i ℏ t�t0ð Þ HsþHBð Þ: (38)

Inserting the solution (38) into the equation of motion of ρs tð Þ (34), a closed
equation of evolution is obtained eliminating ρ tð Þ. In the lowest (second) order
with respect to the interaction considered here, memory effects are neglected.
We can use the unperturbed dynamics to replace ρs t0ð Þ ¼ e�

1
i ℏ t�t0ð ÞHsρs tð Þe 1

i ℏ t�t0ð ÞHs and
Hint τð Þ ¼ e�

1
i ℏτ HsþHBð ÞHinte

1
i ℏτ HsþHBð Þ so that after a shift of the integration variable

∂

∂t
ρs tð Þ �

1
iℏ

Hs; ρs tð Þ½ � ¼ � 1
ℏ2

ð0

�∞

dτ eετTrB Hint; Hint τð Þ; ρs tð ÞρB½ �½ � ¼ D ρs tð Þ½ �: (39)

This result is described as quantum master equation in Born approximation. For
higher orders of Hint see [4, 5].

3.1.3 Rotating wave approximation and Lindblad form

We assume that the interaction has the form

Hint ¼ ∑
α
Aα ⊗Bα: (40)

We use the interaction picture that coincides at t0 with the Schrödinger picture,

O intð Þ t� t0ð Þ ¼ ei HSþHBð Þ t�t0ð Þ=ℏOe�i HSþHBð Þ t�t0ð Þ=ℏ (41)

for any operator O. In particular, we denote

D intð Þ ρS tð Þ½ � t� t0ð Þ ¼ ei HSþHBð Þ t�t0ð Þ=ℏD ρS tð Þ½ �e�i HSþHBð Þ t�t0ð Þ=ℏ,

ρ intð Þ
S t; t� t0ð Þ ¼ eiHS t�t0ð Þ=ℏρS tð Þe�iHS t�t0ð Þ=ℏ

(42)

(note that HB commutes with ρS tð Þ which is defined in the Hilbert space HS).
Then, the dynamical evolution of the system is given by

∂

∂t
ρ intð Þ
S t; t� t0ð Þ ¼ D intð Þ ρS tð Þ½ � t� t0ð Þ: (43)

On the left-hand side, we cancel HB because it commutes with the system vari-
ables. The right-hand side, the influence term, has the form (note that ρB commutes
with HB)

D intð Þ ρS tð Þ½ � t� t0ð Þ ¼ � 1
ℏ2

ðt

�∞

dt0 e�ε t�t0ð ÞTrB H intð Þ
int t� t0ð Þ; H intð Þ

int t0 � t0ð Þ; ρ intð Þ
S t; t� t0ð Þ

h ih i
ρB:

(44)

In zeroth order of interaction, ρ intð Þ
S t; t� t0ð Þ ¼ eiHS t�t0ð Þ=ℏρS tð Þe�iHS t�t0ð Þ=ℏ is not

depending on t because the derivative with respect to t vanishes. This fact has
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already been used when in the Markov approximation ρS t0ð Þ is replaced by ρS tð Þ.
This corresponds to the Heisenberg picture where the state of the system does not
change with time. The time dependence of averages is attributed to the temporal
changes of the observables.

To include the interaction, we characterize the dynamics of the system
observable A introducing the spectral decomposition with respect to the (discrete)
eigenstates ∣ϕni ofHS. We introduce the eigen-energies Es

n of the system S according
to HS∣ϕni ¼ Es

n∣ϕni, and with
Ð∞
�∞ exp ikx½ �dx ¼ 2πδ kð Þ,

A ωð Þ ¼
ð∞
�∞

dteiω t�t0ð ÞeiHS t�t0ð Þ=ℏAe�iHS t�t0ð Þ=ℏ ¼ A† �ωð Þ

¼ 2πℏ∑
nm

∣ϕn〉 ϕnjAjϕmh i〈ϕm∣δ Es
n � Es

m þ ℏω
� � (45)

(the index α in (40) is dropped). In interaction picture (A commutes with the
bath observables) we have eiHS t�t0ð Þ=ℏAe�iHS t�t0ð Þ=ℏ ¼ Ð∞�∞ dω= 2πð Þ exp �iω t� t0ð Þ½ �
�A ωð Þ: Now, we find for the influence term

D intð Þ ρS tð Þ½ � t� t0ð Þ ¼ � 1
ℏ2

ðt

�∞

dt0
ð∞
�∞

dω
2π

ð∞
�∞

dω0

2π
eε t0�tð Þe�iω0 t0�tð Þe�i ωþω0ð Þ t�t0ð Þ

� B t0 � tð ÞBh iB½A ωð Þ; ρ intð Þ
S ðt; t� t0ÞA ω0ð Þ� þ BB t0 � tð Þh iB½A ω0ð Þρ intð Þ

S ðt; t� t0Þ;A ωð Þ�
n o

(46)

with the time-dependent bath operators B t0 � tð Þ ¼ exp iHB t0 � tð Þ=ℏ½ �B
exp �iHB t0 � tð Þ=ℏ½ �.

We can perform the integral over t0 that concerns the bath observables. The bath
enters via equilibrium auto-correlation functions of the time-dependent bath oper-
ators Bα τð Þ. We introduce the Laplace transform of the bath correlation function
(the response function of the bath)

Γ ωð Þ ¼
ð∞
0
dτei ωþiϵð Þτ=ℏTrB ρBB

† τð ÞB� � ¼ 1
2
γ ωð Þ þ i

1
ℏ
S ωð Þ (47)

that is a matrix Γαβ ωð Þ if the observable B has several components. We find in
short notation

D intð Þ ρS tð Þ½ � t� t0ð Þ ¼ �
ð∞
�∞

dω
2π

ð∞
�∞

dω″
2π

ei ω″�ωð Þ t�t0ð Þ

� Γ2 ω″ð Þ A ωð Þ; ρ intð Þ
S ðt; t� t0ÞA† ω″ð Þ

h i
þ Γ1 ω″ð Þ A† ω″ð Þρ intð Þ

S ðt; t� t0Þ;A ωð Þ
h in o (48)

after the transformation ω0 ! �ω″ and using Eq. (45). Note that this expression
for the influence term is real because the second contribution is the Hermitean
conjugated of the first contribution. Using symmetry properties, all correlation
functions of bath variables are related to Γ ωð Þ.

The expression ρ intð Þ
S t; t� t0ð Þ ¼ eiHS t�t0ð Þ=ℏρS tð Þe�iHS t�t0ð Þ=ℏ is not depending on

time t because in the Heisenberg picture (we consider the lowest order of interac-
tion) the state of the system does not depend on time. Oscillations with ei ω�ω″ð Þ t�t0ð Þ

occur that vanish for ω″ ¼ ω. The rotating wave approximation (RWA) takes into
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Δρ tð Þ ¼
ðt

�∞

dt0 e�ε t�t0ð Þe
1
i ℏ t�t0ð Þ HsþHBð Þ 1

iℏ
Hint; ρs t

0ð ÞρB½ �e� 1
i ℏ t�t0ð Þ HsþHBð Þ: (38)
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Hint τð Þ ¼ e�

1
i ℏτ HsþHBð ÞHinte

1
i ℏτ HsþHBð Þ so that after a shift of the integration variable

∂

∂t
ρs tð Þ �

1
iℏ

Hs; ρs tð Þ½ � ¼ � 1
ℏ2

ð0

�∞
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n∣ϕni, and with
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ð∞
�∞

dteiω t�t0ð ÞeiHS t�t0ð Þ=ℏAe�iHS t�t0ð Þ=ℏ ¼ A† �ωð Þ

¼ 2πℏ∑
nm

∣ϕn〉 ϕnjAjϕmh i〈ϕm∣δ Es
n � Es

m þ ℏω
� � (45)

(the index α in (40) is dropped). In interaction picture (A commutes with the
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with the time-dependent bath operators B t0 � tð Þ ¼ exp iHB t0 � tð Þ=ℏ½ �B
exp �iHB t0 � tð Þ=ℏ½ �.

We can perform the integral over t0 that concerns the bath observables. The bath
enters via equilibrium auto-correlation functions of the time-dependent bath oper-
ators Bα τð Þ. We introduce the Laplace transform of the bath correlation function
(the response function of the bath)

Γ ωð Þ ¼
ð∞
0
dτei ωþiϵð Þτ=ℏTrB ρBB

† τð ÞB� � ¼ 1
2
γ ωð Þ þ i

1
ℏ
S ωð Þ (47)

that is a matrix Γαβ ωð Þ if the observable B has several components. We find in
short notation

D intð Þ ρS tð Þ½ � t� t0ð Þ ¼ �
ð∞
�∞

dω
2π

ð∞
�∞

dω″
2π

ei ω″�ωð Þ t�t0ð Þ

� Γ2 ω″ð Þ A ωð Þ; ρ intð Þ
S ðt; t� t0ÞA† ω″ð Þ

h i
þ Γ1 ω″ð Þ A† ω″ð Þρ intð Þ

S ðt; t� t0Þ;A ωð Þ
h in o (48)

after the transformation ω0 ! �ω″ and using Eq. (45). Note that this expression
for the influence term is real because the second contribution is the Hermitean
conjugated of the first contribution. Using symmetry properties, all correlation
functions of bath variables are related to Γ ωð Þ.

The expression ρ intð Þ
S t; t� t0ð Þ ¼ eiHS t�t0ð Þ=ℏρS tð Þe�iHS t�t0ð Þ=ℏ is not depending on

time t because in the Heisenberg picture (we consider the lowest order of interac-
tion) the state of the system does not depend on time. Oscillations with ei ω�ω″ð Þ t�t0ð Þ

occur that vanish for ω″ ¼ ω. The rotating wave approximation (RWA) takes into
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account only contributions with ω″ ¼ ω that are not depending on t0. Oscillations
with ei ω�ω0ð Þ t�t0ð Þ,ω0 � ω 6¼ 0 exhibit a phase, depending on t0. Any process of
dephasing will damp down these oscillations.

In the case of a discrete spectrum, the spectral function (45) can be used,
and the integrals over ω,ω″ are replaced by sums over the eigenstates ∣ϕni of the
system S:

D intð Þ ρS tð Þ½ � t� t0ð Þ ¼ � 1
ℏ2 ∑

nn0,mm0
e Es

n�Es
n0�Es

mþEs
m0ð Þ t�t0ð Þ=ℏΓ Es

n � Es
m

� �
=ℏ

� �

� jϕn〉 ϕnjAjϕmh i〈ϕmje Es
m�Es

m0ð Þ t�t0ð Þ=ℏρS tð Þjϕm0〉〈ϕm0 jAjϕn0〉〈ϕn0 j
h

�jϕm0〉 ϕm0 jAjϕn0h i〈ϕn0 jϕn〉〈ϕnjAjϕm〉〈ϕmje Es
m�Es

m0ð Þ t�t0ð Þ=ℏρS tð Þ
i
þ h:c:

(49)

The rotating wave approximation means that n ¼ n0, m ¼ m0 so that

D intð Þ ρS tð Þ½ � t� t0ð Þ ¼ � 1
ℏ2 ∑

n,m
Γ Es

n � Es
m

� �
=ℏ

� �

� jϕn〉 ϕnjAjϕmh i〈ϕmjρS tð Þjϕm〉〈ϕmjAjϕn〉〈ϕnj � jϕm〉〈ϕmjAjϕn〉〈ϕnjAjϕm〉〈ϕmjρS tð Þ½ � þ h:c:

(50)

The generalization to a more complex coupling to a bath (40) is straightforward,
leading to matrices. More difficult is the discussion if the spectral function A ωð Þ is
continuous, see [5]. Going back to the Schrödinger picture we have

D ρS tð Þ½ � ¼
ð
dω∑

αβ
Γαβ ωð Þ Aβ ωð ÞρS tð ÞA†

α ωð Þ � A†
α ωð ÞAβ ωð ÞρS tð Þ� �þ h:c: (51)

The influence term D ρS tð Þ½ � cannot be given in the form of a commutator of an
effective Hamiltonian with ρS tð Þ that characterizes the Hamiltonian dynamics. Only
a part can be separated that contributes to the reversible Hamiltonian dynamics,
whereas the remaining part describes irreversible evolution in time and is denoted
as dissipator D0 ρS tð Þ½ �.

With Γαβ ωð Þ ¼ γαβ ωð Þ=2þ iSαβ ωð Þ, we introduce the Hermitian operator
Hinfl ¼

Ð
dω∑αβSαβ ωð ÞA†

α ωð ÞAβ ωð Þ and obtain the quantum master equation

∂

∂t
ρS tð Þ � 1

iℏ
HS; ρS tð Þ½ � � 1

iℏ
Hinfl; ρS tð Þ½ � ¼ D

0
ρS tð Þ½ �: (52)

The dissipator has the form

D0 ρS tð Þ½ � ¼
ð
dω∑

αβ
γαβ ωð Þ Aβ ωð ÞρS tð ÞA†

α ωð Þ � 1
2

A†
α ωð ÞAβ ωð Þ; ρS tð Þ� �� �

(53)

where A;Bf g ¼ ABþ BA denotes the anticommutator. The influence
Hamiltonian Hinfl commutes with the system Hamiltonian, HS;Hinfl½ � ¼ 0, because
the operator A†

α ωð ÞAβ ωð Þ commutes with HS. It is often called the Lamb shift
Hamiltonian since it leads to a shift of the unperturbed energy levels influenced by
the coupling of the system to the reservoir, similar to the Lamb shift in QED. The
Lindblad form follows by diagonalization of the matrices γαβ ωð Þ,
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D0 ρS tð Þ½ � ¼ ∑
k

γk AkρS tð ÞA†
k �

1
2

A†
kAk; ρS tð Þ� �� �

: (54)

3.1.4 Example: harmonic oscillator in a bath

A typical example is the absorption or emission of light. An isolated atom (e.g.,
hydrogen) is usually treated with the Schrödinger equation which gives the well-
known energy eigenvalues and the corresponding eigenstates. However, this is not
correct, and the finite (natural) linewidth indicate that the energetically sharp
eigenstates have not an infinite life-time. The coupling to the environment, the
electromagnetic field (even in the vacuum at T ¼ 0) leads to transitions and a finite
life-time. The electromagnetic field which is considered as bath can be represented
as a system of harmonic oscillators (for each mode of the field), and the interaction
with the atomic system is (dipole approximation, dipole moment D ¼ er)

Hint ¼ �er � E ¼ �D � E: (55)

We discuss this phenomenon of radiation in a simplified version [5]. We con-
sider a one-dimensional harmonic oscillator with the eigen-frequency ω0,

HS ¼ 1
2m

p2 þmω2
0

2
x2 ¼ ℏω0 a†aþ 1

2

� �
, (56)

with the creation a† ¼ mω0=2ℏð Þ1=2x� i= 2ℏmω0ð Þ1=2p and destruction operator
a ¼ mω0=2ℏð Þ1=2xþ i= 2ℏmω0ð Þ1=2p ( a; a†½ � ¼ 1). The discrete eigenstates ∣ϕni of HS

are the well-known harmonic oscillator states, with eigen-energies
Es
n ¼ ℏω0 nþ 1=2ð Þ. The matrix elements of the construction operators are
ϕnjajϕn0h i ¼ ffiffiffi

n
p

δn0�1,n and its adjoint complex. In interaction picture, the equations of
motion are da† tð Þ=dt ¼ iω0a† tð Þ, da tð Þ=dt ¼ �iω0a tð Þ. The spectral representation
reads

a† ωð Þ ¼ 2π∑
n

ffiffiffiffiffiffiffiffiffiffiffi
nþ 1

p
∣ϕnþ1i〈ϕnjδ ωþ ω0ð Þ, a ωð Þ ¼ 2π∑

n

ffiffiffi
n

p jϕn�1i ϕn∣δ ω� ω0ð Þ:h

(57)

At this moment, we do not specify the bath any more in detail. Suppose we have
the solutions ∣ni of the energy eigenvalue problem HB∣mi ¼ EB,m∣mi, then we can
construct the statistical operator for the canonical distribution as

ρ0B,mm0 ¼ m0jρBjmh i ¼ δmm0
1
Z
e�EB,m=kBT, Z ¼ ∑

m
e�EB,m=kBT: (58)

We introduce a weak coupling between the system and the bath

Hint ¼ �exE ¼ λ a† þ a
� �

B, (59)

where the operator B acts only on the variables of the bath and commutes with
a and a†. In interaction picture we have

H intð Þ
int t� t0ð Þ ¼ λ a†eiω0 t�t0ð Þ þ ae�iω0 t�t0ð Þ

� �
B t� t0ð Þ: (60)

The influence term is calculated as given above. With the response function of
the bath Γ ωð Þ (47) we find
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effective Hamiltonian with ρS tð Þ that characterizes the Hamiltonian dynamics. Only
a part can be separated that contributes to the reversible Hamiltonian dynamics,
whereas the remaining part describes irreversible evolution in time and is denoted
as dissipator D0 ρS tð Þ½ �.
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where A;Bf g ¼ ABþ BA denotes the anticommutator. The influence
Hamiltonian Hinfl commutes with the system Hamiltonian, HS;Hinfl½ � ¼ 0, because
the operator A†

α ωð ÞAβ ωð Þ commutes with HS. It is often called the Lamb shift
Hamiltonian since it leads to a shift of the unperturbed energy levels influenced by
the coupling of the system to the reservoir, similar to the Lamb shift in QED. The
Lindblad form follows by diagonalization of the matrices γαβ ωð Þ,
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k

γk AkρS tð ÞA†
k �

1
2

A†
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: (54)

3.1.4 Example: harmonic oscillator in a bath

A typical example is the absorption or emission of light. An isolated atom (e.g.,
hydrogen) is usually treated with the Schrödinger equation which gives the well-
known energy eigenvalues and the corresponding eigenstates. However, this is not
correct, and the finite (natural) linewidth indicate that the energetically sharp
eigenstates have not an infinite life-time. The coupling to the environment, the
electromagnetic field (even in the vacuum at T ¼ 0) leads to transitions and a finite
life-time. The electromagnetic field which is considered as bath can be represented
as a system of harmonic oscillators (for each mode of the field), and the interaction
with the atomic system is (dipole approximation, dipole moment D ¼ er)

Hint ¼ �er � E ¼ �D � E: (55)

We discuss this phenomenon of radiation in a simplified version [5]. We con-
sider a one-dimensional harmonic oscillator with the eigen-frequency ω0,

HS ¼ 1
2m
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2
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with the creation a† ¼ mω0=2ℏð Þ1=2x� i= 2ℏmω0ð Þ1=2p and destruction operator
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are the well-known harmonic oscillator states, with eigen-energies
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n ¼ ℏω0 nþ 1=2ð Þ. The matrix elements of the construction operators are
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n
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δn0�1,n and its adjoint complex. In interaction picture, the equations of
motion are da† tð Þ=dt ¼ iω0a† tð Þ, da tð Þ=dt ¼ �iω0a tð Þ. The spectral representation
reads

a† ωð Þ ¼ 2π∑
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ffiffiffiffiffiffiffiffiffiffiffi
nþ 1

p
∣ϕnþ1i〈ϕnjδ ωþ ω0ð Þ, a ωð Þ ¼ 2π∑

n

ffiffiffi
n

p jϕn�1i ϕn∣δ ω� ω0ð Þ:h

(57)

At this moment, we do not specify the bath any more in detail. Suppose we have
the solutions ∣ni of the energy eigenvalue problem HB∣mi ¼ EB,m∣mi, then we can
construct the statistical operator for the canonical distribution as

ρ0B,mm0 ¼ m0jρBjmh i ¼ δmm0
1
Z
e�EB,m=kBT, Z ¼ ∑

m
e�EB,m=kBT: (58)

We introduce a weak coupling between the system and the bath

Hint ¼ �exE ¼ λ a† þ a
� �

B, (59)

where the operator B acts only on the variables of the bath and commutes with
a and a†. In interaction picture we have

H intð Þ
int t� t0ð Þ ¼ λ a†eiω0 t�t0ð Þ þ ae�iω0 t�t0ð Þ

� �
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The influence term is calculated as given above. With the response function of
the bath Γ ωð Þ (47) we find
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∂

∂t
ρS tð Þ � 1

iℏ
HS; ρS tð Þ½ � � 1

iℏ
½ðS ω0ð Þa†aþ S �ω0ð Þaa†, ρS tð Þ�

¼ γ ω0ð Þ aρS tð Þa† � 1
2

a†a; ρS tð Þ� �� �
þ γ �ω0ð Þ a†ρS tð Þa� 1

2
aa†; ρS tð Þ� �� �

:
(61)

The curly brackets in the dissipator denote the anticommutator. There are
eight additional terms containing aa or a†a†. In interaction picture, they are
proportional to e�2iω0 t�t0ð Þ and are dropped within the rotating wave approximation.
For a bath in thermal equilibrium, using eigenstates the detailed balance relation
is easily proven,

γ �ω0ð Þ ¼ γ ω0ð Þe�ℏω0=kBT: (62)

The evolution equations for the averages a†h it ¼ TrS ρSa†f g, a†ah it ¼ TrS ρSa†af g
are immediately calculated as

d
dt

a†
� �t ¼ TrS

∂

∂t
ρS tð Þa†

� �
¼ iω0

0 �
1
2
γ ω0ð Þ � γ �ω0ð Þ½ �

� �
a†
� �t (63)

with the renormalized frequency ω0
0 ¼ ω0 þ S ω0ð Þ þ S �ω0ð Þ½ �=ℏ. The solution is

a†
� �t ¼ a†

� �t0e iω00�γ ω0ð Þ=2þγ �ω0ð Þ=2½ � t�t0ð Þ: (64)

Similar expressions are obtained for ah it. We find for the occupation number
nh it ¼ a†ah it ¼ pn tð Þ

d
dt

a†a
� �t ¼ γ �ω0ð Þ � γ ω0ð Þ � γ �ω0ð Þ½ � a†a� �t (65)

with the solution

a†a
� �t ¼ a†a

� �t0e� γ ω0ð Þ�γ �ω0ð Þ½ � t�t0ð Þ þ γ �ω0ð Þ
γ ω0ð Þ � γ �ω0ð Þ 1� e� γ ω0ð Þ�γ �ω0ð Þ½ � t�t0ð Þ

h i
: (66)

The asymptotic behavior t� t0 ! ∞ is determined by the properties of the bath,

γ �ω0ð Þ
γ ω0ð Þ � γ ω0ð Þ ¼

1
e�ℏω0=kBT � 1

¼ nB ω0ð Þ, (67)

the system relaxes to the thermal equilibrium distribution that is independent on
the initial distribution a†ah it0 .

3.1.5 Electromagnetic field

As example for the response function of the bath, we give the result for the
blackbody radiation (Maxwell field)

Γij ωð Þ ¼
ð∞
0
dτei ωþiϵð Þτ Ei τð ÞEj 0ð Þ� �

B ¼ δij
1
2
γ ωð Þ þ iS ωð Þ

� �
(68)

with
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γ ωð Þ ¼ 4ω3

3ℏc3
1þ nB ωð Þ½ �, S ωð Þ ¼ 2

3πℏc3
P
ð∞
0
dωkω

3
k
1þ nB ωkð Þ
ω� ωk

þ nB ωkð Þ
ωþ ωk

� �
:

(69)

Note that the Planck distribution satisfies nB �ωð Þ ¼ � 1þ nB ωð Þ½ � such that
γ ωð Þ ¼ 4ω3 1þ nB ωð Þ½ �= 3ℏc3ð Þ for ω>0 and γ ωð Þ ¼ 4 ωj j3nB jωjð Þ= 3ℏc3ð Þ for ω<0.

The resulting quantum optical master equation which, e.g., describes the cou-
pling of atoms to the radiation field Hint ¼ �D � E in dipole approximation,

∂

∂t
ρS tð Þ � 1

iℏ
HS; ρS tð Þ½ � � 1

iℏ
Hinfl; ρS tð Þ½ � ¼ D0 ρS tð Þ½ �, (70)

has the Lindblad form. The influence Hamiltonian
Hinfl ¼

Ð
dωℏS ωð ÞD† ωð Þ �D ωð Þ leads to a renormalization of the system Hamilto-

nian HS that is induced by the vacuum fluctuations of the radiation field (Lamb
shift) and by the thermally induced processes (Stark shift). The dissipator of the
quantum master equation reads

D0 ρS tð Þ½ � ¼
ð∞
0
dω

4ω3

3ℏc3
1þ nB ωð Þ½ � D ωð ÞρS tð ÞD† ωð Þ � 1

2

(
D† ωð ÞD ωð Þ; ρS tð Þ

)" #

þ
ð∞
0
dω

4ω3

3ℏc3
nB ωð Þ D† ωð ÞρS tð ÞD ωð Þ � 1

2

(
D ωð ÞD† ωð Þ; ρS tð Þ

)" #
,

(71)

where the integral over the negative frequencies has been transformed into
positive frequencies. This result can be interpreted in a simple way. The application
of the destruction operator D ωð Þ on a state of the system lowers its energy by the
amount ℏω and describes the emission of a photon. The transition rate
4ω3

3ℏc3 1þ nB ωð Þ½ � contains the spontaneous emission as well as the thermal emission of
photons. The term D† ωð Þ gives the creation of excitations with transition rate
4ω3

3ℏc3 nB ωð Þ describing the absorption of photons.

3.1.6 The Pauli equation

We consider a system whose state is described by the observable A, and which
takes the value a. This can be a set of numbers in the classical case that describe the
degrees of freedom we use as relevant variables. In the quantum case, this is a set
of relevant observables that describe the state of the system. The eigenvalue a
corresponds to a state vector ∣ai in the Hilbert space.

At time t, we expect a probability distribution p1 a; tð Þ to find the system in state
a, if the property A is measured. The change of the probability p1 a; tð Þ with time is
described by a master equation or balance equation

d
dt

p1 a; tð Þ ¼ ∑
a0 6¼a

waa0p1 a0; tð Þ �wa0ap1 a; tð Þ� �
: (72)

In the context of the time evolution of a physical system, this master equation is
also denoted as Pauli equation. We derive it from a microscopical approach using
perturbation theory. The statistical operator ρ tð Þ follows the von Neumann equation
of motion (8) with the Hamiltonian
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∂

∂t
ρS tð Þ � 1

iℏ
HS; ρS tð Þ½ � � 1

iℏ
½ðS ω0ð Þa†aþ S �ω0ð Þaa†, ρS tð Þ�

¼ γ ω0ð Þ aρS tð Þa† � 1
2

a†a; ρS tð Þ� �� �
þ γ �ω0ð Þ a†ρS tð Þa� 1
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:
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P
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dωkω

3
k
1þ nB ωkð Þ
ω� ωk

þ nB ωkð Þ
ωþ ωk

� �
:

(69)

Note that the Planck distribution satisfies nB �ωð Þ ¼ � 1þ nB ωð Þ½ � such that
γ ωð Þ ¼ 4ω3 1þ nB ωð Þ½ �= 3ℏc3ð Þ for ω>0 and γ ωð Þ ¼ 4 ωj j3nB jωjð Þ= 3ℏc3ð Þ for ω<0.

The resulting quantum optical master equation which, e.g., describes the cou-
pling of atoms to the radiation field Hint ¼ �D � E in dipole approximation,

∂

∂t
ρS tð Þ � 1

iℏ
HS; ρS tð Þ½ � � 1

iℏ
Hinfl; ρS tð Þ½ � ¼ D0 ρS tð Þ½ �, (70)

has the Lindblad form. The influence Hamiltonian
Hinfl ¼

Ð
dωℏS ωð ÞD† ωð Þ �D ωð Þ leads to a renormalization of the system Hamilto-

nian HS that is induced by the vacuum fluctuations of the radiation field (Lamb
shift) and by the thermally induced processes (Stark shift). The dissipator of the
quantum master equation reads

D0 ρS tð Þ½ � ¼
ð∞
0
dω

4ω3

3ℏc3
1þ nB ωð Þ½ � D ωð ÞρS tð ÞD† ωð Þ � 1

2

(
D† ωð ÞD ωð Þ; ρS tð Þ

)" #

þ
ð∞
0
dω

4ω3

3ℏc3
nB ωð Þ D† ωð ÞρS tð ÞD ωð Þ � 1

2

(
D ωð ÞD† ωð Þ; ρS tð Þ

)" #
,

(71)

where the integral over the negative frequencies has been transformed into
positive frequencies. This result can be interpreted in a simple way. The application
of the destruction operator D ωð Þ on a state of the system lowers its energy by the
amount ℏω and describes the emission of a photon. The transition rate
4ω3

3ℏc3 1þ nB ωð Þ½ � contains the spontaneous emission as well as the thermal emission of
photons. The term D† ωð Þ gives the creation of excitations with transition rate
4ω3

3ℏc3 nB ωð Þ describing the absorption of photons.

3.1.6 The Pauli equation

We consider a system whose state is described by the observable A, and which
takes the value a. This can be a set of numbers in the classical case that describe the
degrees of freedom we use as relevant variables. In the quantum case, this is a set
of relevant observables that describe the state of the system. The eigenvalue a
corresponds to a state vector ∣ai in the Hilbert space.

At time t, we expect a probability distribution p1 a; tð Þ to find the system in state
a, if the property A is measured. The change of the probability p1 a; tð Þ with time is
described by a master equation or balance equation

d
dt

p1 a; tð Þ ¼ ∑
a0 6¼a

waa0p1 a0; tð Þ �wa0ap1 a; tð Þ� �
: (72)

In the context of the time evolution of a physical system, this master equation is
also denoted as Pauli equation. We derive it from a microscopical approach using
perturbation theory. The statistical operator ρ tð Þ follows the von Neumann equation
of motion (8) with the Hamiltonian
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H ¼ H0 þ λH0 (73)

where the solution of the eigenvalue problem for H0 is known, H0∣ni ¼ En∣ni.
The probabilities to find the system in the state ∣ni are given by the diagonal
elements of ρ tð Þ in this representation,

p1 n; tð Þ ¼ njρ tð Þjnh i: (74)

First, we consider the special case λ ¼ 0, where the von Neumann equation is
easily solved:

ρnm tð Þ ¼ njρ tð Þjmh i ¼ e�iωnm t�t0ð Þρnm t0ð Þ, ℏωnm ¼ En � Em (75)

if ρnm t0ð Þ is given. The nondiagonal elements ρnm tð Þ, n 6¼ m are oscillating. The
periodic time dependence of the density matrix that arises in the nondiagonal
elements has nothing to do with any time evolution or irreversibility. It expresses
the coherences in the system. The diagonal elements

ρnn tð Þ ¼ p1 n; tð Þ ¼ njρ tð Þjnh i (76)

do not change with time and can be considered as conserved quantities if λ ¼ 0.
To find the initial distribution, we consider the probabilities as relevant observ-

ables that describe the nonequilibrium state at t0. If there are no further information
on coherence, the relevant statistical operator is diagonal,

ρrel t0ð Þ ¼ ∑
n
p1 n; t0ð Þ∣n〉〈n∣ ¼ ∑

n
p1 n; t0ð ÞPn: (77)

We introduced the projection operator Pn ¼ ∣ni n∣h . The solution is ρ tð Þ ¼ ρrel t0ð Þ.
The case λ ¼ 0 is a trivial case, nothing happens.

Now, we consider a small perturbation as expressed by the parameter λ.
As before, we consider the probabilities as relevant observables that describe
the system in nonequilibrium. We project the diagonal part of the statistical
operator,

ρrel tð Þ ¼ diag ρ tð Þ½ � ¼ Dnρ tð Þ ¼ ∑
n
Pnρ tð ÞPn: (78)

The difference ρirrel tð Þ ¼ ρ tð Þ � ρrel tð Þ ¼ 1�Dnð Þρ is the irrelevant part of the
full statistical operator.

The problem to obtain the time evolution of the probabilities p1 n; tð Þ is
solved if we find an equation of evolution for ρrel tð Þ. We use the method of the
nonequilibrium statistical operator and start with the extended von Neumann
equation (27). For the projection, we obtain (Dn is linear and commutes with ∂=∂t)

∂

∂t
ρrel tð Þ ¼

1
iℏ

Dn λH0; ρirrel tð Þ½ �: (79)

We assumed that H0 is diagonal with ρrel tð Þ so that the commutator vanishes.
Furthermore, the diagonal elements of the commutator of a diagonal matrix with an
arbitrary matrix disappear. For the irrelevant part we have

∂

∂t
ρirrel tð Þ þ ϵρirrel tð Þ �

1
iℏ

1� Dnð Þ H; ρirrel tð Þ½ � ¼ 1
iℏ

1� Dnð Þ λH0; ρrel tð Þ½ �: (80)
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On the right-hand side, we can drop the projector Dn. Its action disappears
because ρrel is diagonal. It is seen that ρirrel tð Þ is of the order λ.

In the remaining projection 1�Dnð Þ H0; ρirrel tð Þ
� �þ 1�Dnð Þ H0; ρirrel tð Þ½ �, the

second contribution is of second order in λ and will be dropped here because we
consider only the lowest order in λ (ρirrel tð Þ is also of the order λ). This is denoted as
Born approximation. We have

∂

∂t
ρirrel tð Þ þ ερirrel tð Þ �

1
iℏ

H0; ρirrel tð Þ
� � ¼ 1

iℏ
λH0; ρrel tð Þ½ �: (81)

The solution is simple by integration,

ρirrel tð Þ ¼
1
iℏ

ðt
�∞

eε t1�tð Þe
i
ℏH

0 t1�tð Þ λH0; ρrel t1ð Þ½ �e� i
ℏH

0 t1�tð Þdt1: (82)

The proof is given by insertion.
With this expression for ρirrel tð Þ, we find a closed equation for ρrel tð Þ,

∂

∂t
ρrel tð Þ ¼ � λ2

ℏ2 Dn

ðt
�∞

eε t1�tð Þ H0; e
i
ℏH

0 t1�tð Þ H0; ρrel t1ð Þ½ �e� i
ℏH

0 t1�tð Þ
h i

dt1: (83)

This result describes a memory effect. The change of ρrel tð Þ is determined by the
values ρrel t1ð Þ at all previous times t1 ≤ t. In the Markov approximation, we replace
ρrel t1ð Þ by ρrel tð Þ so that memory effects are neglected. This is justified in the limit
λ ! 0 because then ρrel tð Þ changes only slowly with time. Then

∂

∂t
ρrel tð Þ ¼ � λ2

ℏ2 Dn

ðt
�∞

eε t1�tð Þ H0; e
i
ℏH

0 t1�tð ÞH0e�
i
ℏH

0 t1�tð Þ; ρrel tð Þ
h ih i

dt1: (84)

This expression has similar structure as the QME (39) an can be treated in the
same way. The right-hand side Dρrel tð Þ is related to the dissipator after subtracting
the Lamb shift contribution.

Explicit expressions for the time evolution of the density matrix are obtained by
projection on the basis ∣ni. With the matrix elements njρrel tð Þjmh i ¼ δn,mp1 n; tð Þ as
well as njH0jm� � ¼ δn,mEn and njH0jmh i ¼ H0

nm we have

d
dt

p1 n; tð Þ ¼ � λ2

ℏ2 ∑
m
H0

nmH
0
mn p1 n; tð Þ � p1 m; tð Þ� �

�
ðt
�∞

eε t1�tð Þ e
i
ℏ Em�Enð Þ t1�tð Þ þ e�

i
ℏ Em�Enð Þ t1�tð Þ

h i
dt1: (85)

Performing the integral over t1, we find [with the Dirac identity
limϵ!þ0

1
xþiϵ � P 1

x � iπδ xð Þ] the Pauli equation

d
dt

p1 n; tð Þ ¼ ∑
n0 6¼n

wnn0p1 n0; tð Þ � wn0np1 n; tð Þ� �
: (86)

The transition rates are given by Fermi’s Golden rule,

wnm ¼ lim
ϵ!0

λ2

ℏ2 H0
nm

�� ��2 1
iωnm þ ϵ

þ 1
�iωnm þ ϵ

� �
¼ 2πλ2

ℏ
H0

nm

�� ��2δ En � Emð Þ: (87)
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H ¼ H0 þ λH0 (73)

where the solution of the eigenvalue problem for H0 is known, H0∣ni ¼ En∣ni.
The probabilities to find the system in the state ∣ni are given by the diagonal
elements of ρ tð Þ in this representation,

p1 n; tð Þ ¼ njρ tð Þjnh i: (74)

First, we consider the special case λ ¼ 0, where the von Neumann equation is
easily solved:
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if ρnm t0ð Þ is given. The nondiagonal elements ρnm tð Þ, n 6¼ m are oscillating. The
periodic time dependence of the density matrix that arises in the nondiagonal
elements has nothing to do with any time evolution or irreversibility. It expresses
the coherences in the system. The diagonal elements

ρnn tð Þ ¼ p1 n; tð Þ ¼ njρ tð Þjnh i (76)

do not change with time and can be considered as conserved quantities if λ ¼ 0.
To find the initial distribution, we consider the probabilities as relevant observ-

ables that describe the nonequilibrium state at t0. If there are no further information
on coherence, the relevant statistical operator is diagonal,

ρrel t0ð Þ ¼ ∑
n
p1 n; t0ð Þ∣n〉〈n∣ ¼ ∑
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p1 n; t0ð ÞPn: (77)

We introduced the projection operator Pn ¼ ∣ni n∣h . The solution is ρ tð Þ ¼ ρrel t0ð Þ.
The case λ ¼ 0 is a trivial case, nothing happens.

Now, we consider a small perturbation as expressed by the parameter λ.
As before, we consider the probabilities as relevant observables that describe
the system in nonequilibrium. We project the diagonal part of the statistical
operator,

ρrel tð Þ ¼ diag ρ tð Þ½ � ¼ Dnρ tð Þ ¼ ∑
n
Pnρ tð ÞPn: (78)

The difference ρirrel tð Þ ¼ ρ tð Þ � ρrel tð Þ ¼ 1�Dnð Þρ is the irrelevant part of the
full statistical operator.

The problem to obtain the time evolution of the probabilities p1 n; tð Þ is
solved if we find an equation of evolution for ρrel tð Þ. We use the method of the
nonequilibrium statistical operator and start with the extended von Neumann
equation (27). For the projection, we obtain (Dn is linear and commutes with ∂=∂t)

∂

∂t
ρrel tð Þ ¼

1
iℏ

Dn λH0; ρirrel tð Þ½ �: (79)

We assumed that H0 is diagonal with ρrel tð Þ so that the commutator vanishes.
Furthermore, the diagonal elements of the commutator of a diagonal matrix with an
arbitrary matrix disappear. For the irrelevant part we have

∂

∂t
ρirrel tð Þ þ ϵρirrel tð Þ �

1
iℏ

1� Dnð Þ H; ρirrel tð Þ½ � ¼ 1
iℏ

1� Dnð Þ λH0; ρrel tð Þ½ �: (80)

20

Non-Equilibrium Particle Dynamics

On the right-hand side, we can drop the projector Dn. Its action disappears
because ρrel is diagonal. It is seen that ρirrel tð Þ is of the order λ.

In the remaining projection 1�Dnð Þ H0; ρirrel tð Þ
� �þ 1�Dnð Þ H0; ρirrel tð Þ½ �, the

second contribution is of second order in λ and will be dropped here because we
consider only the lowest order in λ (ρirrel tð Þ is also of the order λ). This is denoted as
Born approximation. We have

∂

∂t
ρirrel tð Þ þ ερirrel tð Þ �

1
iℏ

H0; ρirrel tð Þ
� � ¼ 1

iℏ
λH0; ρrel tð Þ½ �: (81)

The solution is simple by integration,

ρirrel tð Þ ¼
1
iℏ

ðt
�∞

eε t1�tð Þe
i
ℏH

0 t1�tð Þ λH0; ρrel t1ð Þ½ �e� i
ℏH

0 t1�tð Þdt1: (82)

The proof is given by insertion.
With this expression for ρirrel tð Þ, we find a closed equation for ρrel tð Þ,

∂

∂t
ρrel tð Þ ¼ � λ2

ℏ2 Dn

ðt
�∞

eε t1�tð Þ H0; e
i
ℏH

0 t1�tð Þ H0; ρrel t1ð Þ½ �e� i
ℏH

0 t1�tð Þ
h i

dt1: (83)

This result describes a memory effect. The change of ρrel tð Þ is determined by the
values ρrel t1ð Þ at all previous times t1 ≤ t. In the Markov approximation, we replace
ρrel t1ð Þ by ρrel tð Þ so that memory effects are neglected. This is justified in the limit
λ ! 0 because then ρrel tð Þ changes only slowly with time. Then

∂

∂t
ρrel tð Þ ¼ � λ2

ℏ2 Dn

ðt
�∞

eε t1�tð Þ H0; e
i
ℏH

0 t1�tð ÞH0e�
i
ℏH

0 t1�tð Þ; ρrel tð Þ
h ih i

dt1: (84)

This expression has similar structure as the QME (39) an can be treated in the
same way. The right-hand side Dρrel tð Þ is related to the dissipator after subtracting
the Lamb shift contribution.

Explicit expressions for the time evolution of the density matrix are obtained by
projection on the basis ∣ni. With the matrix elements njρrel tð Þjmh i ¼ δn,mp1 n; tð Þ as
well as njH0jm� � ¼ δn,mEn and njH0jmh i ¼ H0

nm we have

d
dt

p1 n; tð Þ ¼ � λ2

ℏ2 ∑
m
H0

nmH
0
mn p1 n; tð Þ � p1 m; tð Þ� �

�
ðt
�∞

eε t1�tð Þ e
i
ℏ Em�Enð Þ t1�tð Þ þ e�

i
ℏ Em�Enð Þ t1�tð Þ

h i
dt1: (85)

Performing the integral over t1, we find [with the Dirac identity
limϵ!þ0

1
xþiϵ � P 1

x � iπδ xð Þ] the Pauli equation

d
dt

p1 n; tð Þ ¼ ∑
n0 6¼n

wnn0p1 n0; tð Þ � wn0np1 n; tð Þ� �
: (86)

The transition rates are given by Fermi’s Golden rule,

wnm ¼ lim
ϵ!0

λ2

ℏ2 H0
nm

�� ��2 1
iωnm þ ϵ

þ 1
�iωnm þ ϵ

� �
¼ 2πλ2

ℏ
H0

nm

�� ��2δ En � Emð Þ: (87)
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3.1.7 Properties of the Pauli equation

The transition rate wnm obeys the condition of detailed balance, wmn ¼ wnm, the
inverse transition has the same rate. This follows because H0 is hermitean,

njH0jmh i ¼ mjH0þjnh i ∗ ¼ mjH0jnh i ∗ : (88)

An important property is that it describes irreversible evolution with time. For the
relevant entropy Srel tð Þ ¼ �kB∑np1 n; tð Þ ln p1 n; tð Þ we find

dSrel tð Þ
dt

¼ �kB ∑
n
∑
m
wnm p1 m; tð Þ � p1 n; tð Þ� �

ln p1 n; tð Þ� �� kB ∑
n

p1 n; tð Þ
p1 n; tð Þ

∂p1 n; tð Þ
∂t

¼ 1
2
kB ∑

n
∑
m
wnm p1 n; tð Þ � p1 m; tð Þ� �

ln p1 n; tð Þ� �� ln p1 m; tð Þ� �� �
≥0:

(89)

We used d
dt∑np1 n; tð Þ ¼ d

dt 1 ¼ 0 and interchanged n with m in the half
of the expression. Since ln x is a monotonic function of x, the relation
x1 � x2ð Þ ln x1 � ln x2ð Þ≥0 holds. Considering states n,m where transitions are
possible, equilibrium (dSrel tð Þ=dt ¼ 0) occurs if p1 m; tð Þ ¼ p1 n; tð Þ; else Srel tð Þ
increases with time. Equipartition corresponds to the microcanonical ensemble in
equilibrium.

3.1.8 Example: transition rates

We consider transitions between eigenstates of H0 owing to interaction. A
typical case is the collisions expressed by a†k1a

†
k2
ak02ak01 between the (momentum)

eigenstates ∣ki of H0. This is discussed in the following section on kinetic theory.
Another example is minimal coupling known from QFT between a Dirac fermionic
field (electron) and the Maxwell bosonic field (photons), with
(Ek ¼ ℏ2k2=2m,ωq ¼ c∣q∣)

H0 ¼ ∑
k
Eka

†
kak þ∑

q
ℏωqb

†
qbq (90)

(spin and polarization variables are not indicated separately), and the interaction

Hint ¼ ∑
k, k0, q

v kk0; q
� �

a†k0akb
†
q þ h:c: (91)

The transition rates (87) are calculated between the initial state ∣ni ¼ ∣ki, energy
En ¼ Ek, and the final state ∣mi ¼ ∣k0,qi, energy Em ¼ Ek0 þ ℏωq for emission in the
vacuum state. For absorption, the corresponding process can be given. For free
particles ∣ki ¼ ∣k, σi, the matrix element v k; σ;k0; σ0;q

� �
∝ δk0þq,k must fulfill

momentum conservation. Together with the conservation of energy in Eq. (87), the
second-order transition rate vanishes. Only in fourth order, different contributions
(Compton scattering, pair creation) are possible. If considering an radiating atom,
the electrons are moving in orbits around the nucleus, ∣ki ¼ ∣nlm, σi. Momentum
conservation is not required, and the standard expressions (Fermi’s Golden rule)
for absorption and emission of light by an atom are obtained. The corresponding

22

Non-Equilibrium Particle Dynamics

rate equation (86) describes natural line width, detailed balance, and thermal
equilibrium as stationary solution.

3.1.9 Conclusions

Quantum master equations and the Pauli equation are fundamental expressions
to describe nonequilibrium phenomena, such as one-step processes of excitation
and deexcitation, two-level systems, nuclear decay, chemical reactions, and also
conductivity where electrons are scattered by ions, etc. A basic assumption is the
subdivision into a system and a bath. In Born-Markov approximation, correlations
between system and bath (back-reactions) are neglected. Projection to diagonal
elements of the reduced density matrix or the Rotating wave approximation lead to
irreversible equations of evolution (dissipator) as derived by Zwanzig, Lindblad,
Kossakowski, and others. Further developments of the theory are, e.g., the
Nakajima-Zwanzig equation or the Quantum Fokker-Planck equation [4]. A funda-
mental problem is the subdivision in relevant (system) and irrelevant (bath)
degrees of freedom. If correlations between the system and bath become relevant,
the corresponding degrees of freedom of the bath must be included in the set of
system variables.

3.2 Kinetic theory

Historically, nonequilibrium statistical physics was first developed as the kinetic
theory of gases [7] by Boltzmann. We start with classical systems to explain the
problem to be solved in kinetic theory. The more general case of quantum systems
contains no additional complications, but the concepts become more evident in the
classical limit. We give results for both cases, the general quantum case and the
classical limit. Reduced distribution functions are considered as the relevant
observables. Closed equations of evolution are obtained describing irreversible
processes.

3.2.1 The Liouville equation

The standard treatment of a classical dynamical system can be given in terms of
the Hamilton canonical equations. In classical mechanics, we have generalized
coordinates and canonic conjugated momenta describing the state of the system,
e.g., a point in the 6N-dimensional phase space (Γ-space) in the case of N point
masses. The 6N degrees of freedom r1;p1…rN ;pN

� �
define the microstate of the

system. The evolution of a particular system with time is given by a trajectory in the
phase space. Depending on the initial conditions different trajectories are taken.

Within statistical physics, instead of a special system, an ensemble of identical
systems is considered, consisting of the same constituents and described by the
same Hamiltonian, but at different initial conditions (microstates), which are com-
patible with the values of a given set of relevant observables characterizing the
macrostate of the system. The probability of the realization of a macrostate by a
special microstate, i.e., a point in the 6N-dimensional phase space (Γ-space), is
given by the N-particle distribution function f N ri;pi; t

� �
which is normalized,

ð
dΓf N ri;pi; t

� � ¼ 1; dΓ ¼ dNrdNp
N!h3N

¼ d3Nxd3Np
N!h3N

: (92)

In nonequilibrium, the N-particle distribution function depends on the time t.
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p1 n; tð Þ
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n
∑
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The transition rates (87) are calculated between the initial state ∣ni ¼ ∣ki, energy
En ¼ Ek, and the final state ∣mi ¼ ∣k0,qi, energy Em ¼ Ek0 þ ℏωq for emission in the
vacuum state. For absorption, the corresponding process can be given. For free
particles ∣ki ¼ ∣k, σi, the matrix element v k; σ;k0; σ0;q
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∝ δk0þq,k must fulfill

momentum conservation. Together with the conservation of energy in Eq. (87), the
second-order transition rate vanishes. Only in fourth order, different contributions
(Compton scattering, pair creation) are possible. If considering an radiating atom,
the electrons are moving in orbits around the nucleus, ∣ki ¼ ∣nlm, σi. Momentum
conservation is not required, and the standard expressions (Fermi’s Golden rule)
for absorption and emission of light by an atom are obtained. The corresponding
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rate equation (86) describes natural line width, detailed balance, and thermal
equilibrium as stationary solution.

3.1.9 Conclusions

Quantum master equations and the Pauli equation are fundamental expressions
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subdivision into a system and a bath. In Born-Markov approximation, correlations
between system and bath (back-reactions) are neglected. Projection to diagonal
elements of the reduced density matrix or the Rotating wave approximation lead to
irreversible equations of evolution (dissipator) as derived by Zwanzig, Lindblad,
Kossakowski, and others. Further developments of the theory are, e.g., the
Nakajima-Zwanzig equation or the Quantum Fokker-Planck equation [4]. A funda-
mental problem is the subdivision in relevant (system) and irrelevant (bath)
degrees of freedom. If correlations between the system and bath become relevant,
the corresponding degrees of freedom of the bath must be included in the set of
system variables.

3.2 Kinetic theory

Historically, nonequilibrium statistical physics was first developed as the kinetic
theory of gases [7] by Boltzmann. We start with classical systems to explain the
problem to be solved in kinetic theory. The more general case of quantum systems
contains no additional complications, but the concepts become more evident in the
classical limit. We give results for both cases, the general quantum case and the
classical limit. Reduced distribution functions are considered as the relevant
observables. Closed equations of evolution are obtained describing irreversible
processes.

3.2.1 The Liouville equation

The standard treatment of a classical dynamical system can be given in terms of
the Hamilton canonical equations. In classical mechanics, we have generalized
coordinates and canonic conjugated momenta describing the state of the system,
e.g., a point in the 6N-dimensional phase space (Γ-space) in the case of N point
masses. The 6N degrees of freedom r1;p1…rN ;pN

� �
define the microstate of the

system. The evolution of a particular system with time is given by a trajectory in the
phase space. Depending on the initial conditions different trajectories are taken.

Within statistical physics, instead of a special system, an ensemble of identical
systems is considered, consisting of the same constituents and described by the
same Hamiltonian, but at different initial conditions (microstates), which are com-
patible with the values of a given set of relevant observables characterizing the
macrostate of the system. The probability of the realization of a macrostate by a
special microstate, i.e., a point in the 6N-dimensional phase space (Γ-space), is
given by the N-particle distribution function f N ri;pi; t

� �
which is normalized,

ð
dΓf N ri;pi; t

� � ¼ 1; dΓ ¼ dNrdNp
N!h3N

¼ d3Nxd3Np
N!h3N

: (92)

In nonequilibrium, the N-particle distribution function depends on the time t.
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The macroscopic properties can be evaluated as averages of the microscopic
quantities a ri;pi

� �
with respect to the distribution function f N ri;pi; t

� �
:

Ah it ¼
ð
dΓa ri;pi

� �
f N ri;pi; t
� �

: (93)

In addition to these so-called mechanical properties there exist also thermal
properties, such as entropy, temperature, and chemical potential. Instead of a
dynamical variable, they are related to the distribution function. For example, the
equilibrium entropy is given by

Seq ¼ �kB
ð
dΓf N ri;pi; t

� �
ln f N ri;pi; t

� �
(94)

We derive an equation of motion for the distribution function f N ri;pi; t
� �

, the
Liouville equation, see [5]:

d f N
d t

¼ ∂f N
∂t

þ ∑
N

i¼1

∂f N
∂ri

_ri þ ∂f N
∂pi

_pi

� �
¼ 0: (95)

We shortly remember the quantum case. Instead of theN-particle distribution
function f N tð Þ, the statistical operator ρ tð Þ is used to indicate the probability of amicro-
state in a givenmacrostate. The equation ofmotion is the vonNeumann equation (8).
Both equations are closely related and denoted as Liouville-von Neumann equation.

3.2.2 Classical reduced distribution functions

To evaluate averages, instead of the N-particle distribution function
f N r1;…; rN ;p1;…;pN; t
� �

often reduced s-particle distribution functions

f s r1;…;ps; t
� � ¼

ð
d3rsþ1…d3pN

N � sð Þ!h3 N�sð Þ f N r1;…;pN ; t
� �

(96)

are sufficient. Examples are the particle density, the Maxwell distribution of the
particle velocities, and the pair correlation function.

We are interested in the equations of motion for the reduced distribution func-
tions. For classical systems, one finds a hierarchy of equations. From the Liouville
equation, Eq. (95) without external potential,

d f N
d t

¼ ∂f N
∂t

þ∑
N

i
vi
∂f N
∂ri

�∑
N

i 6¼j

∂Vij

∂ri

∂f N
∂pi

¼ 0 (97)

we obtain the equation of motion for the reduced distribution function f s
through integration over the 3 N � sð Þ other variables:

d f s
d t

¼ ∂f s
∂t

þ ∑
s

i¼1
vi
∂f s
∂ri

�∑
s

i 6¼j

∂Vij

∂ri

∂f s
∂pi

¼ ∑
s

i¼1

ð
d3rsþ1d

3psþ1

h3
∂Vi, sþ1

∂ri

∂f sþ1 r1…psþ1; t
� �
∂pi

:

(98)

This hierarchy of equations is called BBGKY hierarchy, standing for Bogoliubov,
Born, Green, Kirkwood, and Young.
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The equation of motion (98) for the reduced distribution function f s is not
closed because on the right-hand side the higher order distribution function f sþ1
appears. In its turn, f sþ1 obeys a similar equation that contains f sþ2, etc. This
structure of a system of equations is denoted as hierarchy. To obtain a kinetic
equation that is a closed equation for the reduced distribution function, one has to
truncate the BBGKY hierarchy, expressing the higher order distribution function
f sþ1 by the lower order distribution functions f 1;…; f s

� �
.

3.2.3 Quantum statistical reduced distributions

In the quantum case, the distribution function f N is replaced by the statistical
operator ρ that describes the state of the system, and the equation of motion is the
von Neumann equation (8). The quantum statistical reduced density matrix is
defined as average over creation and annihilation operators,

ρs r1;…; r0s; t
� � ¼ Tr ρ tð Þψ† r1ð Þ…ψ† rsð Þψ r0s

� �
…ψ r01
� �� �

: (99)

It is related to correlation functions, the Wigner function, Green functions,
dynamical structure factor, and others.

We consider the equations of motion for reduced distribution functions. For the
single-particle density matrix in momentum representation, we have

ρ1 p;p0; tð Þ ¼ Tr ρ tð Þψ† pð Þψ p0ð Þ� �
: (100)

Derivation with respect to time gives

∂

∂t
ρ1 p;p0; tð Þ ¼ 1

iℏ
Tr H; ρ½ �ψ† pð Þψ p0ð Þ� � ¼ 1

iℏ
Tr ρ ψ† pð Þψ p0ð Þ;H� �� �

: (101)

Similar as for the BBGKY hierarchy, we obtain in general a hierarchy of equa-
tions of the form

∂ρs tð Þ
∂t

¼ function of ρs tð Þ; ρsþ1 tð Þ� �
: (102)

Like in the classical case, we have to truncate this chain of equations. For
example, in the Boltzmann equation for f 1 tð Þ, the higher order distribution function
f 2 tð Þ is replaced by a product of single-particle distribution functions f 1 tð Þ.

3.2.4 Stoßzahlansatz and Boltzmann equation

To evaluate the averages of single-particle properties such as particle current
or kinetic energy, only the single-particle distribution must be known. Then,
the single-particle distribution contains the relevant information, the higher
distributions are irrelevant and will be integrated over.

We are looking for an equation of motion for the single-particle distribution
function f 1 r;p; tð Þ, taking into account short range interactions and binary
collisions. For the total derivative with respect to time we find, see Eq. (95),

df 1
dt

¼ ∂

∂t
f 1 þ _r

∂

∂r
f 1 þ _p

∂

∂p
f 1 ¼

∂

∂t
f 1 þ v

∂

∂r
f 1 þ F

∂

∂p
f 1 ¼ 0:
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distributions are irrelevant and will be integrated over.
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function f 1 r;p; tð Þ, taking into account short range interactions and binary
collisions. For the total derivative with respect to time we find, see Eq. (95),
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The crucial point in this equation is the force F. It is the sum of external forces
Fext acting on the system under consideration and all forces resulting from the
interaction Vij ri; rj

� �
between the constituents of the system.

Before discussing the derivation of kinetic equations using the method of the
nonequilibrium statistical operator, we give a phenomenological approach using
empirical arguments. To describe the change in the distribution function f 1 due to
collisions among particles, we write

∂

∂t
f 1 ¼

∂

∂t
f 1

� �

D
þ ∂

∂t
f 1

� �

St
, (103)

where the drift term contains the external force,

∂

∂t
f 1

� �

D
¼ �v

∂

∂r
f 1 � Fext ∂

∂p
f 1 (104)

and the internal interactions are contained in the collision term ∂

∂t f 1
� �

St for
which, from the BBGKY hierarchy (98), an exact expression has already been given:

∂

∂t
f 1

� �

St
¼
ð
d3r0d3p0

h3
∂V r; r0ð Þ

∂r
∂

∂p
f 2 rp; r0p0; tð Þ: (105)

Collisions or interactions among particles occur due to the interaction potential
V r; r0ð Þ, which depends on the coordinates of the two colliding partners. For every
particle, one has to sum over collisionwith all partners in the system. In this way, we
have an equation for the single-particle distribution function, but it is not closed because
the right-hand side contains the two-particle distribution function f 2 rp; r0p0; tð Þ.

As an approximation, similar to the master equation, we assume a balance
between gain and loss:

∂f 1
∂t

� �

St
¼ G� L: (106)

With some phenomenological considerations [5], we can find the collision term as

∂f 1
∂t

� �

St
¼
ð
d3v2

ð
dΩ

dσ
dΩ

∣v1 � v2∣ f 1 r; v01; t
� �

f 1 r; v02; t
� �� f 1 r; v1; tð Þf 1 r; v2; tð Þ� �

,

(107)

where we have introduced the differential cross section

dσ
dΩ

¼ b ϑð Þ
sin ϑ

db ϑð Þ
dϑ

����
����: (108)

Inserting expression (108) into Eq. (103), we obtain a kinetic equation only for
the single-particle distribution, the Boltzmann equation.

3.2.5 Derivation of the Boltzmann equation from the nonequilibrium statistical operator

The relevant observable to describe the nonequilibrium state of the system is the
single-particle distribution function. First, we consider classical mechanics where the
single-particle distribution function is f 1 r;p; tð Þ.
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We can write the single-particle distribution as an average (93) of a microscopic
(dynamic) variable, the single-particle density

f 1 r;p; tð Þ ¼ n1 r1;…;pN; r;p
� �� �t, n1 r1;p1;…; rN;pN ; r;p

� � ¼ ℏ3 ∑
N

i¼1
δ3 r� rið Þδ3 p� pi

� �
:

(109)

The self-consistency conditions (18) are realized with the Lagrange
parameter F1 r;p; tð Þ. The relevant distribution Frel reads (see (19) and replace∑n

by
Ð
d3rd3p=h3)

Frel r1;…;pN; t
� � ¼ exp �Φ tð Þ � ∑

N

i¼1
F1 ri;pi; t
� �� �

, Φ tð Þ ¼ ln
ð
exp �∑

N

i¼1
F1 ri;pi; t
� �� �

dΓ:

(110)

The constraints f 1 r;p; tð Þ � Ð Frel r1;…;pN ; t
� �

n1 r1;…;pN ; r;p
� �

dΓ are solved
according to

f 1 r;p; tð Þ ¼ h3N e�F1 r;p;tð Þ
ð
e�F1 r;p;tð Þd3r d3p

� ��1

, F1 r;p; tð Þ ¼ �ln f 1 r;p; tð Þ:

(111)

This means, we can eliminate the Lagrange parameters F1 r;p; tð Þ that are
expressed in terms of the given distribution function f 1 r;p; tð Þ. The relevant
distribution is

Frel r1;…;pN; t
� � ¼ 1

Zrel

Y
j

f 1 rj;pj; t
� �

, Zrel ¼
ðY

j

f 1 rj;pj; t
� �

dΓN ¼ NN

N!
≈ eN :

(112)

The Boltzmann entropy is then

Srel tð Þ ¼ �kB ln Frelh it ¼ �kB
ð
f 1 r;p; tð Þln f 1 r;p; tð Þ

e
d3r d3p

h3
: (113)

Below, we show that it increases with time for nonequilibrium distributions.
The relevant distribution can be used to derive the collision term (107), for

details see [3]. We will switch over to the quantum case where the presentation is
more transparent.

In the quantum case, we consider the single-particle density matrix. In the case of
a homogeneous system (n1 rð Þ ¼ n), ρ1 p;p0ð Þ is diagonal. The set of relevant observ-
ables are the occupation number operators np

� �
,

np
� �t ¼ f 1 p; tð Þ: (114)

Considering these mean values as given, we construct the relevant statistical
operator as

ρrel tð Þ ¼ e�Φ tð Þ�∑pF1 p;tð Þnp , Φ tð Þ ¼ ln Tre�∑pF1 p;tð Þnp : (115)
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The Lagrange parameters F1 p; tð Þ are obtained from the self-consistency
conditions (114) similar to Eq. (111);

f 1 p; tð Þ ¼
Tr e�∑p0 F1 p0;tð Þnp0np
n o

Tr e�∑p0 F1 p0;tð Þnp0
n o ¼

Q
i ∑ni e

�F1 pi;tð Þni 1þ δpi,p ni � 1ð Þ� �
Q

i ∑ni e
�F1 pi;tð Þni (116)

so that

f 1 p; tð Þ ¼ 1
eF1 p;tð Þ � 1

;
þ : Fermions

� : Bosons

� �
, F1 p; tð Þ ¼ ln 1∓ f 1 p; tð Þ� �� ln f 1 p; tð Þ:

(117)

As in the classical case, also in the quantum case, the Lagrange parameters can be
eliminated explicitly.

We now derive the Boltzmann equation for the quantum case, see [3]. With the
statistical operator (Eq. (25) after integration by parts)

ρ tð Þ ¼ ρrel tð Þ �
ðt
�∞

eϵ t1�tð Þ d
dt1

e�
i
ℏHðt�t1ρrel t1ð Þei

ℏHðt�t1
n o

dt1, (118)

With _np ¼ i
ℏ H; np
� �

, we get the time derivative of the single-particle distribution
function

∂

∂t
f 1 p; tð Þ ¼ Tr ρrel tð Þ _np

� ��
ð0

�∞

eϵt
0
Tr _np

d
dt0

e
i
ℏHt0ρrel tþ t0ð Þe� i

ℏHt0
h i� �

dt0: (119)

Because the trace is invariant with respect to cyclic permutations and ρrel tð Þ
commutes with np, see (115),

Tr ρrel tð Þ _np
� � ¼ i

ℏ
Tr ρrel H; np

� �� � ¼ i
ℏ
Tr H np; ρrel

� �� � ¼ 0, (120)

and Eq. (119) can be written as

∂f 1
∂t

¼ 1
ℏ2

ð0

�∞

dt0 eϵt
0
Tr H; np

� �
e

i
ℏHt0 H; ρrel½ �e� i

ℏHt0
n o

, (121)

if we neglect the explicit time dependence of ρrel tð Þ (no memory effects, the
collision term is local in space and time). Next, we introduce two more integrations
via delta functions to get rid of the time dependence in the trace:

∂f 1
∂t

¼ 1
ℏ2

ð∞

�∞

dE
ð∞

�∞

dE0
ð0

�∞

dt0 e ϵþ i
ℏ E�E0ð Þ½ �t0Tr V; np

� �
δ E�Hð Þ V; ρrel½ �δ E0 �Hð Þ� �

:

(122)

(We take into account that the kinetic energy in H commutes with np so that
only the potential energy V remains.) This equation can be expressed by so-called T
matrices, T ¼ V þ V 1

E�H T,
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∂f 1
∂t

¼ π

ℏ

ð
dETr T; np

� �
δ E�H0� �

T; ρrel½ �δ E�H0� �� �
, (123)

For further treatment, we choose the approximation of binary collisions, that
means that only two particles change their momentums during a collision. In second
quantization, the T matrix is then

T ≈ ∑
p1,p2,p10p20

a†p1
a†p2

t p1;p2;p
0
1;p

0
2

� �
ap0

2
ap0

1
δ p1 þ p2 � p0

1 � p0
2

� �
, (124)

with the two-particle T matrix t p1;p2;p
0
1;p

0
2

� �
. With this T matrix, we find the

collision term (time t is dropped)

∂f 1 p1

� �
∂t

� �

St
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p2p
0
1p

0
2

w p1 p2 p
0
1 p2

� �
f 1 p0

1

� �
f 1 p0

2

� �
1∓ f 1 p1

� �� �
1∓ f 1 p2

� �� ��

�f 1 p1

� �
f 1 p2

� �
1∓ f 1 p0

1

� �� �
1∓ f 1 p0

2

� �� �� (125)

with the transition probability rate

w p1 p2 p
0
1 p

0
2

� � ¼ 2π
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t p1 p2 p
0
1 p

0
2

� �
∓ t p1 p2 p

0
2 p

0
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� ��� ��2δ Ep1
þ Ep2

� Ep0
1
� Ep0

2

� �
δ p1 þ p2 � p0

1 � p0
2

� �
,

(126)

which leads to the quantum statistical Boltzmann equation.

3.2.6 Properties of the Boltzmann equation

The Boltzmann equation is a nonlinear integro-differential equation for the
single-particle distribution function in the classical case. In the quantum case, we
can use the density matrix or the Wigner function to characterize the
nonequilibrium state of the system. The Boltzmann equation is valid in low-density
limit (only binary collisions). At higher densities also three-body collisions, etc.,
must be taken into account. Further density effects such as the formation of quasi
particles and bound states have to be considered. The collision term is approximated
to be local in space and time, no gradients in the density and no memory in time is
considered. The assumption of molecular chaos means that correlations are
neglected, the two-particle distribution function is replaced by the product of
single-particle distribution functions.

The increase of entropy (Boltzmann H theorem) can be proven. In terms of the
relevant statistical operator, the entropy is

Srel ¼ kB ∑
p

∓ 1þ f 1 pð Þ� �
ln 1∓ f 1 pð Þ� �� f 1 pð Þ ln f 1 pð Þ� �

: (127)

The change with time follows from

dSrel
dt

¼ �kB ∑
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þ kB ∑
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2
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� 1

f 1 p1
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�f 1 p1
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The Lagrange parameters F1 p; tð Þ are obtained from the self-consistency
conditions (114) similar to Eq. (111);

f 1 p; tð Þ ¼
Tr e�∑p0 F1 p0;tð Þnp0np
n o

Tr e�∑p0 F1 p0;tð Þnp0
n o ¼

Q
i ∑ni e

�F1 pi;tð Þni 1þ δpi,p ni � 1ð Þ� �
Q

i ∑ni e
�F1 pi;tð Þni (116)

so that

f 1 p; tð Þ ¼ 1
eF1 p;tð Þ � 1

;
þ : Fermions

� : Bosons

� �
, F1 p; tð Þ ¼ ln 1∓ f 1 p; tð Þ� �� ln f 1 p; tð Þ:

(117)

As in the classical case, also in the quantum case, the Lagrange parameters can be
eliminated explicitly.

We now derive the Boltzmann equation for the quantum case, see [3]. With the
statistical operator (Eq. (25) after integration by parts)

ρ tð Þ ¼ ρrel tð Þ �
ðt
�∞

eϵ t1�tð Þ d
dt1

e�
i
ℏHðt�t1ρrel t1ð Þei

ℏHðt�t1
n o

dt1, (118)

With _np ¼ i
ℏ H; np
� �

, we get the time derivative of the single-particle distribution
function

∂

∂t
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0
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Because the trace is invariant with respect to cyclic permutations and ρrel tð Þ
commutes with np, see (115),

Tr ρrel tð Þ _np
� � ¼ i

ℏ
Tr ρrel H; np
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Tr H np; ρrel

� �� � ¼ 0, (120)

and Eq. (119) can be written as
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if we neglect the explicit time dependence of ρrel tð Þ (no memory effects, the
collision term is local in space and time). Next, we introduce two more integrations
via delta functions to get rid of the time dependence in the trace:

∂f 1
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¼ 1
ℏ2

ð∞
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dE
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ℏ E�E0ð Þ½ �t0Tr V; np
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δ E�Hð Þ V; ρrel½ �δ E0 �Hð Þ� �

:

(122)

(We take into account that the kinetic energy in H commutes with np so that
only the potential energy V remains.) This equation can be expressed by so-called T
matrices, T ¼ V þ V 1

E�H T,
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∂f 1
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¼ π

ℏ

ð
dETr T; np

� �
δ E�H0� �

T; ρrel½ �δ E�H0� �� �
, (123)

For further treatment, we choose the approximation of binary collisions, that
means that only two particles change their momentums during a collision. In second
quantization, the T matrix is then

T ≈ ∑
p1,p2,p10p20

a†p1
a†p2

t p1;p2;p
0
1;p

0
2

� �
ap0

2
ap0

1
δ p1 þ p2 � p0
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2

� �
, (124)

with the two-particle T matrix t p1;p2;p
0
1;p

0
2

� �
. With this T matrix, we find the

collision term (time t is dropped)
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0
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with the transition probability rate
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which leads to the quantum statistical Boltzmann equation.

3.2.6 Properties of the Boltzmann equation

The Boltzmann equation is a nonlinear integro-differential equation for the
single-particle distribution function in the classical case. In the quantum case, we
can use the density matrix or the Wigner function to characterize the
nonequilibrium state of the system. The Boltzmann equation is valid in low-density
limit (only binary collisions). At higher densities also three-body collisions, etc.,
must be taken into account. Further density effects such as the formation of quasi
particles and bound states have to be considered. The collision term is approximated
to be local in space and time, no gradients in the density and no memory in time is
considered. The assumption of molecular chaos means that correlations are
neglected, the two-particle distribution function is replaced by the product of
single-particle distribution functions.

The increase of entropy (Boltzmann H theorem) can be proven. In terms of the
relevant statistical operator, the entropy is

Srel ¼ kB ∑
p

∓ 1þ f 1 pð Þ� �
ln 1∓ f 1 pð Þ� �� f 1 pð Þ ln f 1 pð Þ� �

: (127)

The change with time follows from
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We interchange indices 1 $ 2, 10 $ 20; furthermore 1 $ 10, 2 $ 20; and
1 $ 20, 2 $ 10, use the symmetries of w p1p2p

0
1p

0
2

� �
and x1 � x2ð Þ ln x1 � ln x2ð Þ≥0

because ln x is a monotonous function of x. We obtain 4 dSrel
dt ≥0, the Boltzmann

(relevant) entropy can increase.
The collision integral guarantees conservation of total momentum, particle

number, and kinetic energy. However, the total energy including the interaction
part is not conserved. The equilibrium solution f 01 pð Þ follows from dSrel

dt ¼ 0:

1

f 01 pð Þ ∓ 1

 !
1

f 01 p1

� � ∓ 1

 !
� 1

f 01 p0ð Þ ∓ 1

 !
1

f 01 p0
1

� � ∓ 1

 !
¼ 0: (129)

If f 01 pð Þ depends only on energy, we find the well-known result for ideal
quantum gases,

1

f 01 pð Þ ∓ 1 ¼ eβ Ep�μð Þ, f 01 pð Þ ¼ eβ Ep�μð Þ � 1
h i�1

: (130)

In the classical limit, we have f 01 pð Þ ¼ e�β Ep�μð Þ with eβμ ¼ N
Ω

2πℏ2
mkBT

� �3=2
1

2sþ1ð Þ,

where s denotes the spin of the particle.

3.2.7 Beyond the Boltzmann kinetic equation

In deriving the Boltzmann equation, different approximations have been
performed: only binary collisions are considered, three-particle, and higher order
collisions are neglected. Memory effects and spatial inhomogeneities have been
neglected. The single-particle distribution was considered as relevant observable in
the Markov approximation. These approximations can be compared with the Born-
Markov approximation discussed in context with the quantum master equation.
Instead of the Born approximation that is possible for weak interactions, the binary
collision approximation is possible in the low-density limit, where three- and higher
order collisions are improbable.

In the case of thermal equilibrium, the Boltzmann entropy Srel (127) coincides
with the entropy of the ideal (classical or quantum) gas. The equilibrium solution of
the Boltzmann equation leads to the entropy of the ideal gas and gives not the
correct equation of state for an interacting system that are derived from the Gibbs
entropy (Φ ¼ lnZ is the Matthieu-Planck function)

Seq ¼ �kB
ð
dΓ Φþ βHð Þ exp �Φ� βH½ �, (131)

see Eq. (13). This deficit of the Boltzmann equation arises because binary
collisions are considered where the kinetic energy of the asymptotic states is
conserved. Only the single-particle distribution is a relevant observable and is
correctly reproduced. It can be improved if the total energy, which is conserved,
is considered as a relevant observable. Alternatively, we can also include the
two-particle distribution function in the set of relevant observables. An important
example is the formation of bound states as a signature of strong correlations in the
system. Then, the momentum distribution of bound states has to be included in
the set of relevant observables.
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3.2.8 The linearized Boltzmann equation

Different approximations are known to obtain solutions of the Boltzmann
equation, see [4, 5]. A serious problem in solving the Boltzmann equation is its
nonlinearity as we have terms of the form f 1 p1; t

� �
f 1 p2; t
� �

. Special cases that allow
for linearization are two-component systems with a large difference in the masses
or concentration. Linearization is also possible in the case where the deviation from
some equilibrium distribution is small. As an application, we consider the calcula-
tion of electrical conductivity in plasmas.

We investigate a plasma of ions and electrons under the influence of an external
electric field Eext. For simplicity, we assume Eext to be homogeneous and indepen-
dent of time (statical conductivity σ). For moderate fields, we await a linear behav-
ior of the plasma following Ohm’s Law:

jel ¼ σE: (132)

[Note that in Eq. (132) E is not the external field, but the effective electric field
in the medium (the plasma), being the superposition of the external field Eext and
the polarization field εP]. jel is the average electric current defined via the single-
particle distribution function f 1

jel ¼
1
Ω

∑
N

i
eivi

� �
¼ ∑

s
es
ð
d3vv f 1 v; sð Þ ¼ ∑

s

es
ms

ð
d3p
2πℏð Þ3 pf 1 p; sð Þ: (133)

Here, we have kept the index s for the different sorts. In the following, we will
skip this index as we only consider electrons being responsible for the electric current.

We recall the Boltzmann equation

p
m

∂

∂r
f 1 þ eE

∂

∂p
f 1 þ

∂

∂t
f 1

� �

St
¼ 0, (134)

m is the electron mass and �e the electron charge. The first term in this equation
vanishes because of homogeneity of the system. For the collision term, we take
the expression Eq. (125) in the generalized form for quantum systems. After the
distribution function of the collision partner has been replaced by the equilibrium
distribution, we have

∂

∂t
f 1

� �

St
¼
ð
d3p0Ω
2πℏð Þ3 f 1 p0ð Þwpp0 1� f 1 pð Þ� �� f 1 pð Þwp0p 1� f 1 p0ð Þ� �� �

, (135)

where wpp0 is the transition rate from the momentum state p to the state p0. The
quantum behavior of the collisions is taken into account via the Pauli blocking
factors 1� f 1 pð Þ� �

.

3.2.9 Example: conductivity of the Lorentz plasma

In the Lorentz plasma model, the electron-electron collisions are neglected, and
only electron-ion collisions are considered, interaction potential Vei rð Þ. In the adia-
batic approximation where the ions are regarded as fixed at positions Ri (elastic
collisions), the interaction part of the Hamiltonian reads

H0 ¼ ∑
i
Vei r� Rið Þ: (136)
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We interchange indices 1 $ 2, 10 $ 20; furthermore 1 $ 10, 2 $ 20; and
1 $ 20, 2 $ 10, use the symmetries of w p1p2p

0
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� �
and x1 � x2ð Þ ln x1 � ln x2ð Þ≥0

because ln x is a monotonous function of x. We obtain 4 dSrel
dt ≥0, the Boltzmann

(relevant) entropy can increase.
The collision integral guarantees conservation of total momentum, particle

number, and kinetic energy. However, the total energy including the interaction
part is not conserved. The equilibrium solution f 01 pð Þ follows from dSrel
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If f 01 pð Þ depends only on energy, we find the well-known result for ideal
quantum gases,

1

f 01 pð Þ ∓ 1 ¼ eβ Ep�μð Þ, f 01 pð Þ ¼ eβ Ep�μð Þ � 1
h i�1

: (130)

In the classical limit, we have f 01 pð Þ ¼ e�β Ep�μð Þ with eβμ ¼ N
Ω

2πℏ2
mkBT

� �3=2
1

2sþ1ð Þ,

where s denotes the spin of the particle.

3.2.7 Beyond the Boltzmann kinetic equation

In deriving the Boltzmann equation, different approximations have been
performed: only binary collisions are considered, three-particle, and higher order
collisions are neglected. Memory effects and spatial inhomogeneities have been
neglected. The single-particle distribution was considered as relevant observable in
the Markov approximation. These approximations can be compared with the Born-
Markov approximation discussed in context with the quantum master equation.
Instead of the Born approximation that is possible for weak interactions, the binary
collision approximation is possible in the low-density limit, where three- and higher
order collisions are improbable.

In the case of thermal equilibrium, the Boltzmann entropy Srel (127) coincides
with the entropy of the ideal (classical or quantum) gas. The equilibrium solution of
the Boltzmann equation leads to the entropy of the ideal gas and gives not the
correct equation of state for an interacting system that are derived from the Gibbs
entropy (Φ ¼ lnZ is the Matthieu-Planck function)

Seq ¼ �kB
ð
dΓ Φþ βHð Þ exp �Φ� βH½ �, (131)

see Eq. (13). This deficit of the Boltzmann equation arises because binary
collisions are considered where the kinetic energy of the asymptotic states is
conserved. Only the single-particle distribution is a relevant observable and is
correctly reproduced. It can be improved if the total energy, which is conserved,
is considered as a relevant observable. Alternatively, we can also include the
two-particle distribution function in the set of relevant observables. An important
example is the formation of bound states as a signature of strong correlations in the
system. Then, the momentum distribution of bound states has to be included in
the set of relevant observables.
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3.2.8 The linearized Boltzmann equation

Different approximations are known to obtain solutions of the Boltzmann
equation, see [4, 5]. A serious problem in solving the Boltzmann equation is its
nonlinearity as we have terms of the form f 1 p1; t

� �
f 1 p2; t
� �

. Special cases that allow
for linearization are two-component systems with a large difference in the masses
or concentration. Linearization is also possible in the case where the deviation from
some equilibrium distribution is small. As an application, we consider the calcula-
tion of electrical conductivity in plasmas.

We investigate a plasma of ions and electrons under the influence of an external
electric field Eext. For simplicity, we assume Eext to be homogeneous and indepen-
dent of time (statical conductivity σ). For moderate fields, we await a linear behav-
ior of the plasma following Ohm’s Law:

jel ¼ σE: (132)

[Note that in Eq. (132) E is not the external field, but the effective electric field
in the medium (the plasma), being the superposition of the external field Eext and
the polarization field εP]. jel is the average electric current defined via the single-
particle distribution function f 1

jel ¼
1
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eivi
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ð
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ð
d3p
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Here, we have kept the index s for the different sorts. In the following, we will
skip this index as we only consider electrons being responsible for the electric current.

We recall the Boltzmann equation
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∂
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∂

∂t
f 1

� �
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¼ 0, (134)

m is the electron mass and �e the electron charge. The first term in this equation
vanishes because of homogeneity of the system. For the collision term, we take
the expression Eq. (125) in the generalized form for quantum systems. After the
distribution function of the collision partner has been replaced by the equilibrium
distribution, we have

∂

∂t
f 1
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St
¼
ð
d3p0Ω
2πℏð Þ3 f 1 p0ð Þwpp0 1� f 1 pð Þ� �� f 1 pð Þwp0p 1� f 1 p0ð Þ� �� �

, (135)

where wpp0 is the transition rate from the momentum state p to the state p0. The
quantum behavior of the collisions is taken into account via the Pauli blocking
factors 1� f 1 pð Þ� �

.

3.2.9 Example: conductivity of the Lorentz plasma

In the Lorentz plasma model, the electron-electron collisions are neglected, and
only electron-ion collisions are considered, interaction potential Vei rð Þ. In the adia-
batic approximation where the ions are regarded as fixed at positions Ri (elastic
collisions), the interaction part of the Hamiltonian reads

H0 ¼ ∑
i
Vei r� Rið Þ: (136)
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In Born approximation (or time-dependent perturbation theory), the transition
rate is given by Fermi’s Golden rule:

wp0p ¼ 2π
ℏ

H0
p0p

���
���
2
δ Ep � Ep0
� � ¼ wpp0 ; Ep ¼ p2=2m: (137)

To solve the Boltzmann equation Eq. (135), we make use of the ansatz

f 1 pð Þ ¼ f 01 Ep
� �þΦ pð Þdf

0
1 Ep
� �

dEp
kBT ¼ f 01 Ep

� �
1þΦ pð Þ 1� f 01 Ep

� �� �� �
: (138)

For equilibrium distributions, we have the detailed balance condition

wpp0 f 01 Ep0
� �

1� f 01 Ep
� �� � ¼ wp0pf

0
1 Ep
� �

1� f 01 Ep0
� �� �

: (139)

Insertion of Eq. (138) into the Boltzmann equation Eq. (135) yields with Eq. (139)

e
mkBT

E � p f 01 Ep
� �

1� f 01 Ep
� �� � ¼

ð
d3p0Ω
2πℏð Þ3 wpp0 f 01 Ep0

� �
1� f 01 Ep

� �� �
Φ p0ð Þ �Φ pð Þ½ �,

(140)

where we have neglect terms with higher order of E and have used the fact that
Φ pð Þ∝E. With the definition of the relaxation time tensor τ̂ pð Þ, according to
Φ pð Þ ¼ e= mkBTð ÞE � τ̂ pð Þ � p, the equation reads

eE � p ¼
ð
d3p0Ω
2πℏð Þ3 wpp0

f 01 Ep0
� �

f 01 Ep
� � eE � τ̂ p0ð Þ � p0 � τ̂ pð Þ � pð Þ, (141)

eE ¼ E=E. The electric current density Eq. (133) depends only on the deviation
of the distribution function since f 01 is an even function in p (isotropy). We obtain
by insertion of Eq. (138) into Eq. (133)

jel ¼
e
Ω
2
ð
d3pΩ
2πℏð Þ3

p
m
Φ pð Þf 01 Ep

� �
1� f 01 Ep

� �� �
: (142)

The conductivity σ is the proportionality factor between the current density and
the effective field E:

σ ¼ e2

m2kBT
2
ð

d3p
2πℏð Þ3 pz τ̂ pð Þ � pð Þz f 01 Ep

� �
1� f 01 Ep

� �� �
: (143)

We have derived an analytical expression for the conductivity of a Lorentz
plasma in terms of the relaxation time tensor τ̂ pð Þ. For isotropic systems, τ̂ ij ¼ τδij,
the well-known Ziman formula στ ¼ τne2=m for the conductivity results.

The solution of Eq. (141) for a momentum-dependent relaxation time is

τ Ep
� � ¼

ð
d3p0Ω
2πℏð Þ3 wpp0 1� cos ϑð Þ

( )�1

(144)

as can be verified by insertion. Now, the conductivity reads with Eq. (137)
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σ ¼ 2e2

m2kBTΩ

ð
d3pp2zf

0
1 Ep
� �

1� f 01 Ep
� �� � 2π

ℏ

ð
d3p0 Hp0p

�� ��2δ Ep � Ep0
� �

1� cos ϑð Þ
� ��1

: (145)

Considering the screened interaction potential (Debye potential)
VD

ei rð Þ ¼ e2
4πϵ0∣r∣ e

�κ∣r∣ with the Debye screening parameter κ2 ¼ e2N= ϵ0kBTΩð Þ, the
evaluation can be performed. With

Λ pð Þ ¼
ð2p=ℏ

0

1

q2 þ κ2ð Þ2 q
3dq ¼ ln

ffiffiffiffiffiffiffiffiffiffiffi
1þ b

p
� 1
2

b
1þ b

, b ¼ 4p2kBTΩϵ0
e2ℏ2N

, (146)

we finally obtain for the conductivity [5].

σ ¼ 25=2 kBTð Þ3=2 4πϵ0ð Þ2
π3=2m1=2e2Λ

; Λ≈Λ p2=2m ¼ 3kBT=2
� �

: (147)

3.2.10 Conclusions

The method of the nonequilibrium statistical operator gives not only the deriva-
tion of the Boltzmann equation (quantal and classical), but indicates also possible
improvements such as conservation of total energy, inclusion of bound state for-
mation, hydrodynamic equations, etc.

The solution of the general Boltzmann equation is not simple, in addition to
numerical simulations different approximations have been worked out. For the
linearized Boltzmann equation, the relaxation time approximation can be used
for elastic scattering, but for the general case (inclusion of electron-electron colli-
sions in a plasma), the Kohler variational principle [11] can be applied. Landau-
Vlasov equations for mean-field effects as well as Fokker-Planck equations for the
collision term have been investigated.

The basic assumption to derive the Boltzmann equation is the selection of the
single-particle distribution as relevant observable. Correlations are neglected and
have to be built up in higher orders of approximation or extending the set of
relevant observables. The most appropriate systems for kinetic theory are dilute
gases where the collision time is short compared with the time of free flight.
Irreversibility is owing to the Stoßzahlansatz for the intrinsic interaction.

3.3 Linear response theory

A third example, which allows the explicit elimination of the Lagrange multi-
pliers to fulfill the self-consistency conditions, is a system near to thermodynamic
equilibrium which is under the influence of mechanical (external forces) or ther-
modynamic (gradients of temperature, pressure, chemical potentials, etc.) pertur-
bations. As response, currents appear in the system. Assuming linearity for small
perturbations, transport coefficients are defined. Fluctuations in equilibrium are
considered as a nonequilibrium state which relaxes to equilibrium, see Eq. (7).

3.3.1 Response to an external field

We consider a system under the influence of external (time dependent) fields
acting on the particles, see [4, 11–16],

Ht ¼ HS þHt
F, (148)
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In Born approximation (or time-dependent perturbation theory), the transition
rate is given by Fermi’s Golden rule:
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���
���
2
δ Ep � Ep0
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To solve the Boltzmann equation Eq. (135), we make use of the ansatz
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0
1 Ep
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dEp
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1þΦ pð Þ 1� f 01 Ep

� �� �� �
: (138)
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1 Ep
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1� f 01 Ep0
� �� �
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Insertion of Eq. (138) into the Boltzmann equation Eq. (135) yields with Eq. (139)
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where we have neglect terms with higher order of E and have used the fact that
Φ pð Þ∝E. With the definition of the relaxation time tensor τ̂ pð Þ, according to
Φ pð Þ ¼ e= mkBTð ÞE � τ̂ pð Þ � p, the equation reads
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eE ¼ E=E. The electric current density Eq. (133) depends only on the deviation
of the distribution function since f 01 is an even function in p (isotropy). We obtain
by insertion of Eq. (138) into Eq. (133)
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The conductivity σ is the proportionality factor between the current density and
the effective field E:
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We have derived an analytical expression for the conductivity of a Lorentz
plasma in terms of the relaxation time tensor τ̂ pð Þ. For isotropic systems, τ̂ ij ¼ τδij,
the well-known Ziman formula στ ¼ τne2=m for the conductivity results.

The solution of Eq. (141) for a momentum-dependent relaxation time is

τ Ep
� � ¼

ð
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(144)

as can be verified by insertion. Now, the conductivity reads with Eq. (137)
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Considering the screened interaction potential (Debye potential)
VD

ei rð Þ ¼ e2
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we finally obtain for the conductivity [5].
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; Λ≈Λ p2=2m ¼ 3kBT=2
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3.2.10 Conclusions

The method of the nonequilibrium statistical operator gives not only the deriva-
tion of the Boltzmann equation (quantal and classical), but indicates also possible
improvements such as conservation of total energy, inclusion of bound state for-
mation, hydrodynamic equations, etc.

The solution of the general Boltzmann equation is not simple, in addition to
numerical simulations different approximations have been worked out. For the
linearized Boltzmann equation, the relaxation time approximation can be used
for elastic scattering, but for the general case (inclusion of electron-electron colli-
sions in a plasma), the Kohler variational principle [11] can be applied. Landau-
Vlasov equations for mean-field effects as well as Fokker-Planck equations for the
collision term have been investigated.

The basic assumption to derive the Boltzmann equation is the selection of the
single-particle distribution as relevant observable. Correlations are neglected and
have to be built up in higher orders of approximation or extending the set of
relevant observables. The most appropriate systems for kinetic theory are dilute
gases where the collision time is short compared with the time of free flight.
Irreversibility is owing to the Stoßzahlansatz for the intrinsic interaction.

3.3 Linear response theory

A third example, which allows the explicit elimination of the Lagrange multi-
pliers to fulfill the self-consistency conditions, is a system near to thermodynamic
equilibrium which is under the influence of mechanical (external forces) or ther-
modynamic (gradients of temperature, pressure, chemical potentials, etc.) pertur-
bations. As response, currents appear in the system. Assuming linearity for small
perturbations, transport coefficients are defined. Fluctuations in equilibrium are
considered as a nonequilibrium state which relaxes to equilibrium, see Eq. (7).

3.3.1 Response to an external field

We consider a system under the influence of external (time dependent) fields
acting on the particles, see [4, 11–16],

Ht ¼ HS þHt
F, (148)
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where HS denotes the system Hamiltonian, containing all kinetic energies of the
particles as well as the full interaction part. The second part Ht

F describes the
coupling of the system to the external fields hj:

Ht
F ¼ �∑

j
hje�iωtAj: (149)

We characterize the nonequilibrium state by the set Bnf g of relevant observ-
ables. In the following, we assume that the equilibrium expectation values of the
nonequilibrium fluctuations disappear, Bnh ieq ¼ 0 (else, we have to subtract the
equilibrium values).

Treating the conserved observables explicitly, we write the relevant statistical
operator ρrel in the form (H ¼ HS �∑cμcNc)

ρrel tð Þ ¼ e
�Φ tð Þ�β H�∑

n
Fn tð ÞBn

� �
, Φ tð Þ ¼ ln Tr e

�β H�∑
n
Fn tð ÞBn

� �( )
, (150)

where the Lagrange multipliers are divided into the equilibrium parameters β, μ
and the generalized response parameters Fn tð Þ, coupled to the corresponding
observables. All Lagrange parameters are determined by the given mean values of
these observables. In particular, we have the self-consistency conditions (18)

Bnh itrel ¼ Tr ρrel tð ÞBnf g ¼ Tr ρ tð ÞBnf g ¼ Bnh it (151)

or

Tr ρirrel tð ÞBnf g ¼ 0, ρirrel tð Þ ¼ ρ tð Þ � ρrel tð Þ: (152)

The corresponding self-consistency condition for N and HS lead to the well-
known equations of state for the temperature 1=β and the chemical potential μ. Φ tð Þ
is the Massieu-Planck functional that normalizes ρrel tð Þ.

We consider the limit of weak external fields. Compared with the equilibrium
distribution (13), we expect that the changes of the state of the system are also
weak. We characterize the nonequilibrium state by the set Bnf g of relevant observ-
ables and assume that the averages

Bnh it ¼ Tr ρ tð ÞBnf g∝ hje�iωt (153)

are proportional to the external fields (linear response).
The basic assumption of LRT is that the average values Bnh it of the additional

observables, which characterize the response of the system, are proportional to the
external fields. Because these external fields are arbitrarily weak, we expand all
quantities with respect to the fields up to first order. If the fluctuations Bnh it are
proportional to these fields, we have also Fn ∝ hj. Below, we derive linear equations
that relate the response of the system to the causing external fields.

In the linear regime, we await the response parameters Fn tð Þ to exhibit the same
time dependence as the external fields:

Fn tð Þ ¼ Fne�iωt: (154)

Here, we have harmonic fields hje�iωt, but the formulation rests general
as we can always express arbitrary time dependences by means of a Fourier
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transformation. Within the linear regime, the superposition of different compo-
nents of the field gives the superposition of the corresponding responses. The
treatment of spatial dependent external forces is also possible. As a specific advan-
tage of the Zubarev method, thermodynamic forces such as gradients of tempera-
ture or chemical potentials can be treated [4, 5, 15, 16].

3.3.2 Elimination of the Lagrange multipliers

The main problem is to eliminate the Lagrange multipliers, the generalized
response parameters Fn tð Þ. As in the case of kinetic theory, this is also possible
explicitly in the case of linear response theory (LRT). With the operator relation

eAþB ¼ eA þ Ð
1

0
dλeλ AþBð ÞBe 1�λð ÞA, we get for the relevant statistical operator (150) up

to first order of the nonequilibrium fluctuations Bnf g

ρrel tð Þ ¼ ρeq þ β

ð1

0

dλ∑
n
Fn tð Þ Bn iℏβλð Þρeq: (155)

Here, we made use of the modified-Heisenberg picture O τð Þ ¼
exp iHτ=ℏð ÞOexp �iHτ=ℏð Þ with τ ! iℏβλ replacing in the exponents HS by
H ¼ HS �∑cμcNc. We want to calculate expectation values of macroscopic relevant
variables that commute with the particle number operator Nc so that we can use
both H and HS synonymously. (Mention that also the Massieu-Planck functional
Φ tð Þ has to be expanded so that the fluctuations around the equilibrium averages

Bn � Bnh ieq
n o

appear).

3.3.3 Linearization of the NSO

All terms have to be evaluated in such a way, that the total expression rests of
order O hð Þ. For expressions (25) and (26), we find after integration by parts

ρϵ tð Þ ¼ ρrel tð Þ �
ðt

�∞

dt1eϵ t1�tð ÞU t; t1ð Þ i
ℏ

HS þHt1
F

� �
; ρrel t1ð Þ� �þ ∂

∂t1
ρrel t1ð Þ

� �
U† t; t1ð Þ:

(156)

Since HS commutes with ρeq (equilibrium!), the curly bracket is of orderO hð Þ. In
particular, we have for the first term the time derivative in the Heisenberg picture,

i
ℏ

HS; β

ð1

0

dλ∑
n
Fn t1ð ÞBn iλβℏð Þρeq

2
4

3
5 ¼ β

ð1

0

dλ∑
n
Fn tið Þ _Bn iλβℏð Þρeq: (157)

For the second term of the integral in Eq. (156), we use Kubo’s identity

B; eA
� � ¼

ð1

0

dλ eλA B;A½ �e 1�λð ÞA: (158)

so that
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where HS denotes the system Hamiltonian, containing all kinetic energies of the
particles as well as the full interaction part. The second part Ht

F describes the
coupling of the system to the external fields hj:

Ht
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j
hje�iωtAj: (149)

We characterize the nonequilibrium state by the set Bnf g of relevant observ-
ables. In the following, we assume that the equilibrium expectation values of the
nonequilibrium fluctuations disappear, Bnh ieq ¼ 0 (else, we have to subtract the
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Treating the conserved observables explicitly, we write the relevant statistical
operator ρrel in the form (H ¼ HS �∑cμcNc)
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where the Lagrange multipliers are divided into the equilibrium parameters β, μ
and the generalized response parameters Fn tð Þ, coupled to the corresponding
observables. All Lagrange parameters are determined by the given mean values of
these observables. In particular, we have the self-consistency conditions (18)

Bnh itrel ¼ Tr ρrel tð ÞBnf g ¼ Tr ρ tð ÞBnf g ¼ Bnh it (151)

or

Tr ρirrel tð ÞBnf g ¼ 0, ρirrel tð Þ ¼ ρ tð Þ � ρrel tð Þ: (152)

The corresponding self-consistency condition for N and HS lead to the well-
known equations of state for the temperature 1=β and the chemical potential μ. Φ tð Þ
is the Massieu-Planck functional that normalizes ρrel tð Þ.

We consider the limit of weak external fields. Compared with the equilibrium
distribution (13), we expect that the changes of the state of the system are also
weak. We characterize the nonequilibrium state by the set Bnf g of relevant observ-
ables and assume that the averages

Bnh it ¼ Tr ρ tð ÞBnf g∝ hje�iωt (153)

are proportional to the external fields (linear response).
The basic assumption of LRT is that the average values Bnh it of the additional

observables, which characterize the response of the system, are proportional to the
external fields. Because these external fields are arbitrarily weak, we expand all
quantities with respect to the fields up to first order. If the fluctuations Bnh it are
proportional to these fields, we have also Fn ∝ hj. Below, we derive linear equations
that relate the response of the system to the causing external fields.

In the linear regime, we await the response parameters Fn tð Þ to exhibit the same
time dependence as the external fields:

Fn tð Þ ¼ Fne�iωt: (154)

Here, we have harmonic fields hje�iωt, but the formulation rests general
as we can always express arbitrary time dependences by means of a Fourier
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transformation. Within the linear regime, the superposition of different compo-
nents of the field gives the superposition of the corresponding responses. The
treatment of spatial dependent external forces is also possible. As a specific advan-
tage of the Zubarev method, thermodynamic forces such as gradients of tempera-
ture or chemical potentials can be treated [4, 5, 15, 16].

3.3.2 Elimination of the Lagrange multipliers

The main problem is to eliminate the Lagrange multipliers, the generalized
response parameters Fn tð Þ. As in the case of kinetic theory, this is also possible
explicitly in the case of linear response theory (LRT). With the operator relation

eAþB ¼ eA þ Ð
1

0
dλeλ AþBð ÞBe 1�λð ÞA, we get for the relevant statistical operator (150) up

to first order of the nonequilibrium fluctuations Bnf g

ρrel tð Þ ¼ ρeq þ β

ð1

0

dλ∑
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Fn tð Þ Bn iℏβλð Þρeq: (155)

Here, we made use of the modified-Heisenberg picture O τð Þ ¼
exp iHτ=ℏð ÞOexp �iHτ=ℏð Þ with τ ! iℏβλ replacing in the exponents HS by
H ¼ HS �∑cμcNc. We want to calculate expectation values of macroscopic relevant
variables that commute with the particle number operator Nc so that we can use
both H and HS synonymously. (Mention that also the Massieu-Planck functional
Φ tð Þ has to be expanded so that the fluctuations around the equilibrium averages

Bn � Bnh ieq
n o

appear).

3.3.3 Linearization of the NSO

All terms have to be evaluated in such a way, that the total expression rests of
order O hð Þ. For expressions (25) and (26), we find after integration by parts

ρϵ tð Þ ¼ ρrel tð Þ �
ðt
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ℏ
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∂t1
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U† t; t1ð Þ:
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Since HS commutes with ρeq (equilibrium!), the curly bracket is of orderO hð Þ. In
particular, we have for the first term the time derivative in the Heisenberg picture,
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0
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For the second term of the integral in Eq. (156), we use Kubo’s identity
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i
ℏ

Ht1
F ; ρeq

h i
¼ �βe�iωt1

ð1

0

dλ∑
j
hj _A j iλβℏð Þρeq: (159)

The last term in the curly bracket can be rewritten as

∂

∂t1
ρrel ¼ β

ð1

0

dλ∑
n

_Fn t1ð ÞBn iλβℏð Þρeq: (160)

Because we restrict ourselves to the order O hð Þ, for the time evolution operator
we have U t; t1ð Þ≃ e�iHS t�t1ð Þ=ℏ:

After linearization with respect to the external fields hj and the response param-
eters Fn, finally we have

ρϵ tð Þ ¼ ρrel tð Þ � βe�iωt
ð0

�∞

dt1 e�izt1
ð1

0

dλ �∑
j
hj _Aj iλβℏþ t1ð Þρeq

"

þ∑
n

Fn _Bn iλβℏþ t1ð Þρeq � iωFnBn iλβℏþ t1ð Þρeq
� ��

(161)

(z ¼ ωþ iϵ). Here, we used that hj tð Þ and Fn tð Þ, Eq. (154), are proportional to
e�iωt.

We multiply this equation by Bm, take the trace and use the self-consistency
relation (151). We obtain a set of linear equations for the thermodynamically
conjugated parameters Fn (response parameters):

∑
n

Bm; _Bn
� �

z � iω Bm;Bnh iz
n o

Fn ¼ ∑
j

Bm; _A j
� �

zhj, (162)

with the Kubo scalar product (the particle number commutes with the observables)

A jBð Þ ¼
ð1

0

dλTr Ae�λβHBeλβH ρeq

n o
¼
ð1

0

dλTr AB iλβℏð Þρeq
n o

, (163)

and its Laplace transform, the thermodynamic correlation function

A;Bh iz ¼
ð0

�∞

dt e�izt A jB tð Þð Þ ¼
ð∞

0

dt eizt A tð Þ jBð Þ: (164)

The linear system of equations (162) has the form

∑
n
PmnFn ¼ ∑

j
Dmjhj (165)

to determine the response parameters Fn, the number of equations coincides
with the number of variables to be determined. The coefficients of this linear
system of equations are given by equilibrium correlation functions. We emphasize
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that in the classical limit the relations become more simple because the variables
commute, and we have not additional integrals expanding the exponential.

We can solve this linear system of equations (162) using Cramers rule. The
response parameters Fn are found to be proportional to the external fields hj with
coefficients that are ratios of two determinants. The matrix elements are given by
equilibrium correlation functions. This way, the self-consistency conditions are
solved, and the Lagrange multipliers can be eliminated. The nonequilibrium prob-
lem is formally solved. The second problem, the evaluation of equilibrium correla-
tion functions, can be solved by different methods such as numerical simulations,
quantum statistical perturbation theories such as thermodynamic Green functions
and Feynman diagrams, path integral methods, etc. Using partial integration, we
show the relation

�iz A;Bh iz ¼ A jBð Þ þ _A;B
� �

z ¼ A jBð Þ � A; _B
� �

z: (166)

Then, the generalized linear response equations (162) can be rewritten in the
short form (165) with the matrix elements

Pmn ¼ Bmj _Bn
� �þ _Bm; _Bn

� �
ωþiϵ � iω BmjBnð Þ � iω _Bm;Bn

� �
ωþiϵ, (167)

Dmj ¼ Bmj _Aj
� �þ _Bm; _Aj

� �
ωþiϵ: (168)

that can be interpreted as generalized transition rates (collision integral,
left-hand side) and the influence of external forces (drift term, right-hand side of
Eq. (165)).

Having the response parameters Fn to our disposal, we can evaluate averages of
the relevant observables, see Eq. (151),

Bnh it ¼ Bnh itrel ¼ �β∑
m
FmeiωtNmn, Nmn ¼ BmjBnð Þ: (169)

Eliminating Fm, these average fluctuations Bnh it are proportional to the fields
hje�iωt.

3.3.4 Force-force correlation function and static (dc) conductivity

As an example for the generalized linear response theory, we calculate the
conductivity of a plasma of charged particles (electrons and ions) that is exposed to
a static homogeneous electric field in x-direction: ω ¼ 0, E ¼ Eex,

HF ¼ �eEX, X ¼ ∑
Ne

i
xi: (170)

Instead of hj, we have only one constant external field E. For the treatment of
arbitrary ω to obtain the dynamical (optical) conductivity see [11, 13, 16, 17]. The
conjugated variable A from Eq. (149) that couples the system to the external field is
A ¼ eX. The time derivative follows as _A ¼ e=mð ÞP, with P ¼ ∑Ne

i px, i denoting the
total momentum in x direction.

For simplicity, the ions are considered here as fixed in space because of the large
mass ratio (adiabatic approximation). Then, the transport of charge is owing to the
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∂

∂t1
ρrel ¼ β

ð1

0

dλ∑
n

_Fn t1ð ÞBn iλβℏð Þρeq: (160)

Because we restrict ourselves to the order O hð Þ, for the time evolution operator
we have U t; t1ð Þ≃ e�iHS t�t1ð Þ=ℏ:

After linearization with respect to the external fields hj and the response param-
eters Fn, finally we have

ρϵ tð Þ ¼ ρrel tð Þ � βe�iωt
ð0

�∞

dt1 e�izt1
ð1

0

dλ �∑
j
hj _Aj iλβℏþ t1ð Þρeq

"

þ∑
n

Fn _Bn iλβℏþ t1ð Þρeq � iωFnBn iλβℏþ t1ð Þρeq
� ��

(161)

(z ¼ ωþ iϵ). Here, we used that hj tð Þ and Fn tð Þ, Eq. (154), are proportional to
e�iωt.

We multiply this equation by Bm, take the trace and use the self-consistency
relation (151). We obtain a set of linear equations for the thermodynamically
conjugated parameters Fn (response parameters):

∑
n

Bm; _Bn
� �

z � iω Bm;Bnh iz
n o

Fn ¼ ∑
j

Bm; _A j
� �

zhj, (162)

with the Kubo scalar product (the particle number commutes with the observables)

A jBð Þ ¼
ð1

0

dλTr Ae�λβHBeλβH ρeq

n o
¼
ð1

0

dλTr AB iλβℏð Þρeq
n o

, (163)

and its Laplace transform, the thermodynamic correlation function

A;Bh iz ¼
ð0

�∞

dt e�izt A jB tð Þð Þ ¼
ð∞

0

dt eizt A tð Þ jBð Þ: (164)

The linear system of equations (162) has the form

∑
n
PmnFn ¼ ∑

j
Dmjhj (165)

to determine the response parameters Fn, the number of equations coincides
with the number of variables to be determined. The coefficients of this linear
system of equations are given by equilibrium correlation functions. We emphasize
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that in the classical limit the relations become more simple because the variables
commute, and we have not additional integrals expanding the exponential.

We can solve this linear system of equations (162) using Cramers rule. The
response parameters Fn are found to be proportional to the external fields hj with
coefficients that are ratios of two determinants. The matrix elements are given by
equilibrium correlation functions. This way, the self-consistency conditions are
solved, and the Lagrange multipliers can be eliminated. The nonequilibrium prob-
lem is formally solved. The second problem, the evaluation of equilibrium correla-
tion functions, can be solved by different methods such as numerical simulations,
quantum statistical perturbation theories such as thermodynamic Green functions
and Feynman diagrams, path integral methods, etc. Using partial integration, we
show the relation

�iz A;Bh iz ¼ A jBð Þ þ _A;B
� �

z ¼ A jBð Þ � A; _B
� �

z: (166)

Then, the generalized linear response equations (162) can be rewritten in the
short form (165) with the matrix elements

Pmn ¼ Bmj _Bn
� �þ _Bm; _Bn

� �
ωþiϵ � iω BmjBnð Þ � iω _Bm;Bn

� �
ωþiϵ, (167)

Dmj ¼ Bmj _Aj
� �þ _Bm; _Aj

� �
ωþiϵ: (168)

that can be interpreted as generalized transition rates (collision integral,
left-hand side) and the influence of external forces (drift term, right-hand side of
Eq. (165)).

Having the response parameters Fn to our disposal, we can evaluate averages of
the relevant observables, see Eq. (151),

Bnh it ¼ Bnh itrel ¼ �β∑
m
FmeiωtNmn, Nmn ¼ BmjBnð Þ: (169)

Eliminating Fm, these average fluctuations Bnh it are proportional to the fields
hje�iωt.

3.3.4 Force-force correlation function and static (dc) conductivity

As an example for the generalized linear response theory, we calculate the
conductivity of a plasma of charged particles (electrons and ions) that is exposed to
a static homogeneous electric field in x-direction: ω ¼ 0, E ¼ Eex,

HF ¼ �eEX, X ¼ ∑
Ne

i
xi: (170)

Instead of hj, we have only one constant external field E. For the treatment of
arbitrary ω to obtain the dynamical (optical) conductivity see [11, 13, 16, 17]. The
conjugated variable A from Eq. (149) that couples the system to the external field is
A ¼ eX. The time derivative follows as _A ¼ e=mð ÞP, with P ¼ ∑Ne

i px, i denoting the
total momentum in x direction.

For simplicity, the ions are considered here as fixed in space because of the large
mass ratio (adiabatic approximation). Then, the transport of charge is owing to the
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motion of the electrons. In general, the ions can also be treated as moving charged
particles that contribute to the current.

A stationary state will be established in the plasma where the electrons are
accelerated by the external field, but loose energy (and momentum) due to
collisions with the ions. This nonequilibrium state is characterized by an electrical
current that is absent in thermal equilibrium. We can take the electric current
density jel ¼ e=mΩð ÞP ¼ e=Ωð Þ _X as a relevant observable that characterizes the
nonequilibrium state. Instead, we take the total momentum B ¼ P ¼ m _X. The
generalized linear response equations (165) and (167) read

F _PjP� �þ _P; _P
� �

iϵ
� � ¼ e

m
E PjPð Þ þ P; _P

� �
iϵ

n o
, (171)

The term _PjP� � ¼ P;P½ �h ieq vanishes as can be shown with Kubo’s identity, see
Eq. (158). With the Kubo identity, we also evaluate the Kubo scalar product

PjPð Þ ¼ m
ð1

0

dλ _X �iℏβλð ÞP� �
eq ¼ � im

ℏβ
Tr ρeq X;P½ �
n o

¼ mN
β

: (172)

The solution for response parameter F is

F ¼ e
m
E
mN=β þ P; _P

� �
iϵ

_P; _P
� �

iϵ

: (173)

With Eq. (169) we have

jel
� � ¼ e

mΩ
Ph irel ¼

eβ
mΩ

F PjPð Þ ¼ σdcE: (174)

The resistance R in the static limit follows as

R ¼ 1
σdc

¼ Ωβ
e2N2

_P; _P
� �

iϵ

1þ P; _P
� �

iϵβ=mN
: (175)

3.3.5 Ziman formula for the Lorentz plasma

To evaluate the resistance R, we have to calculate the correlation functions
_P; _P
� �

iϵ and P; _P
� �

iϵ. For this, we have to specify the system Hamiltonian HS, which
reads for the Lorentz plasma model (136)

HS ¼ H0 þHint ¼ ∑
p
Epa†pap þ ∑

p, q
Vqa

†
pþqap, Ep ¼ ℏ2p2

2m
: (176)

We consider the ions at fixed positions Ri so that V rð Þ ¼ ∑iVei r� Rið Þ. The
Fourier transform Vq depends for isotropic systems only on the modulus q ¼ ∣q∣
and will be specified below. A realistic plasma Hamiltonian should consider also
moving ions and the electron-electron interaction so that we have a two-component
plasma Hamiltonian with pure Coulomb interaction between all constituents.
This has been worked out [14], but is not the subject of our present work so that we
restrict ourselves mainly to the simple Lorentz model.

The force _P on the electrons follows from the x component of the total
momentum (p is the wave-number vector)
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P ¼ ∑
p
ℏpx a

†
pap, HS;P½ � ¼ � ∑

p, q
Vqℏqx a

†
pþqap: (177)

We calculate the force-force correlation function (only x component)

_P; _P
� �

iϵ ¼
ð0

�∞

dteϵt
ð1

0

dλ
i
ℏ

HS;P t� iλβℏð Þ½ � i
ℏ

HS;P½ �
� �

eq
(178)

in Born approximation with respect to Vq. In lowest order, the force-force corre-
lation function is of second order so that in the time evolution exp i=ℏð ÞHS t� iλβℏð Þ½ �
the contribution Hint of interaction to HS, Eq. (176), can be dropped as well as in the
statistical operator. The averages are performed with the noninteracting ρ0. The
product of the two commutators is evaluated using Wick’s theorem. One obtains

_P; _P
� �

iϵ ¼ � ∑
p,p0, q, q0

ð0

�∞

dteϵt
ð1

0

dλe
i
ℏ Ep�Epþqð Þ t�iℏβλð ÞVqVq0qxq

0
x a†pþqapa

†
p0þq0ap0

D E
eq

¼ ∑
p, q

Vq
�� ��2δ Ep � Epþq

� �
f p 1� f p
� �

πℏq2x:

(179)

Because the x direction can be arbitrarily chosen in an isotropic system, we

replace q2x ¼ q2x þ q2y þ q2z
� �

=3 ¼ q2=3 if the remaining contributions to the

integrand are not depending on the direction in space.
Evaluating Eq. (175) in Born approximation, the correlation function

P; _P
� �

iϵ β=mNð Þ can be neglected in relation to 1 because it contains the interaction
strength. For the resistance, this term contributes only to higher orders of the
interaction.

The force-force correlation function (179) is further evaluated using the

relations � 1
β

df Epð Þ
dEp

¼ f p 1� f p
� �

and δ Ep � Epþq
� � ¼ m

ℏ2qp
δ cos θ � q

2p

� �
. The q

integration has to be performed in the limits 0≤ q≤ 2p. Finally the resistance can be
calculated by inserting the previous expressions Eqs. (172) and (179) into Eq. (175)
so that the Ziman-Faber formula is obtained,

R ¼ m2Ω3

12π3ℏ3e2N2

ð∞

0

dE pð Þ �df Eð Þ
dE

� � ð2p

0

dqq3 Vq
�� ��2: (180)

The expression for the resistance depends on the special form of the potential
Vq. For a pure Coulomb potential e2= Ωϵ0q2ð Þ, the integral diverges logarithmically
as typical for Coulomb integrals. The divergency at very small values of q is
removed if screening due to the plasma is taken into account. Within a many-
particle approach, in static approximation the Coulomb potential is replaced by the
Debye potential (146). The evaluation yields

σdc ¼ 3
4
ffiffiffiffiffi
2π

p kBð Þ3=2 4πϵ0ð Þ2
m1=2e2

1
Λ ptherm
� � (181)

where the Coulomb logarithm is approximated by the value of the average p,
with ℏ2p2therm=2m ¼ 3kBT=2. In the low-density limit, the asymptotic behavior of
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motion of the electrons. In general, the ions can also be treated as moving charged
particles that contribute to the current.

A stationary state will be established in the plasma where the electrons are
accelerated by the external field, but loose energy (and momentum) due to
collisions with the ions. This nonequilibrium state is characterized by an electrical
current that is absent in thermal equilibrium. We can take the electric current
density jel ¼ e=mΩð ÞP ¼ e=Ωð Þ _X as a relevant observable that characterizes the
nonequilibrium state. Instead, we take the total momentum B ¼ P ¼ m _X. The
generalized linear response equations (165) and (167) read

F _PjP� �þ _P; _P
� �

iϵ
� � ¼ e

m
E PjPð Þ þ P; _P

� �
iϵ

n o
, (171)

The term _PjP� � ¼ P;P½ �h ieq vanishes as can be shown with Kubo’s identity, see
Eq. (158). With the Kubo identity, we also evaluate the Kubo scalar product

PjPð Þ ¼ m
ð1

0

dλ _X �iℏβλð ÞP� �
eq ¼ � im

ℏβ
Tr ρeq X;P½ �
n o
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β

: (172)

The solution for response parameter F is

F ¼ e
m
E
mN=β þ P; _P

� �
iϵ

_P; _P
� �
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: (173)

With Eq. (169) we have

jel
� � ¼ e

mΩ
Ph irel ¼

eβ
mΩ

F PjPð Þ ¼ σdcE: (174)

The resistance R in the static limit follows as

R ¼ 1
σdc

¼ Ωβ
e2N2

_P; _P
� �

iϵ

1þ P; _P
� �

iϵβ=mN
: (175)

3.3.5 Ziman formula for the Lorentz plasma

To evaluate the resistance R, we have to calculate the correlation functions
_P; _P
� �

iϵ and P; _P
� �

iϵ. For this, we have to specify the system Hamiltonian HS, which
reads for the Lorentz plasma model (136)

HS ¼ H0 þHint ¼ ∑
p
Epa†pap þ ∑

p, q
Vqa

†
pþqap, Ep ¼ ℏ2p2

2m
: (176)

We consider the ions at fixed positions Ri so that V rð Þ ¼ ∑iVei r� Rið Þ. The
Fourier transform Vq depends for isotropic systems only on the modulus q ¼ ∣q∣
and will be specified below. A realistic plasma Hamiltonian should consider also
moving ions and the electron-electron interaction so that we have a two-component
plasma Hamiltonian with pure Coulomb interaction between all constituents.
This has been worked out [14], but is not the subject of our present work so that we
restrict ourselves mainly to the simple Lorentz model.

The force _P on the electrons follows from the x component of the total
momentum (p is the wave-number vector)
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P ¼ ∑
p
ℏpx a

†
pap, HS;P½ � ¼ � ∑

p, q
Vqℏqx a

†
pþqap: (177)

We calculate the force-force correlation function (only x component)

_P; _P
� �

iϵ ¼
ð0

�∞

dteϵt
ð1

0

dλ
i
ℏ

HS;P t� iλβℏð Þ½ � i
ℏ

HS;P½ �
� �

eq
(178)

in Born approximation with respect to Vq. In lowest order, the force-force corre-
lation function is of second order so that in the time evolution exp i=ℏð ÞHS t� iλβℏð Þ½ �
the contribution Hint of interaction to HS, Eq. (176), can be dropped as well as in the
statistical operator. The averages are performed with the noninteracting ρ0. The
product of the two commutators is evaluated using Wick’s theorem. One obtains

_P; _P
� �

iϵ ¼ � ∑
p,p0, q, q0

ð0

�∞

dteϵt
ð1

0

dλe
i
ℏ Ep�Epþqð Þ t�iℏβλð ÞVqVq0qxq

0
x a†pþqapa

†
p0þq0ap0

D E
eq

¼ ∑
p, q

Vq
�� ��2δ Ep � Epþq

� �
f p 1� f p
� �

πℏq2x:

(179)

Because the x direction can be arbitrarily chosen in an isotropic system, we

replace q2x ¼ q2x þ q2y þ q2z
� �

=3 ¼ q2=3 if the remaining contributions to the

integrand are not depending on the direction in space.
Evaluating Eq. (175) in Born approximation, the correlation function

P; _P
� �

iϵ β=mNð Þ can be neglected in relation to 1 because it contains the interaction
strength. For the resistance, this term contributes only to higher orders of the
interaction.

The force-force correlation function (179) is further evaluated using the

relations � 1
β

df Epð Þ
dEp

¼ f p 1� f p
� �

and δ Ep � Epþq
� � ¼ m

ℏ2qp
δ cos θ � q

2p

� �
. The q

integration has to be performed in the limits 0≤ q≤ 2p. Finally the resistance can be
calculated by inserting the previous expressions Eqs. (172) and (179) into Eq. (175)
so that the Ziman-Faber formula is obtained,

R ¼ m2Ω3

12π3ℏ3e2N2

ð∞

0

dE pð Þ �df Eð Þ
dE

� � ð2p

0

dqq3 Vq
�� ��2: (180)

The expression for the resistance depends on the special form of the potential
Vq. For a pure Coulomb potential e2= Ωϵ0q2ð Þ, the integral diverges logarithmically
as typical for Coulomb integrals. The divergency at very small values of q is
removed if screening due to the plasma is taken into account. Within a many-
particle approach, in static approximation the Coulomb potential is replaced by the
Debye potential (146). The evaluation yields

σdc ¼ 3
4
ffiffiffiffiffi
2π

p kBð Þ3=2 4πϵ0ð Þ2
m1=2e2

1
Λ ptherm
� � (181)

where the Coulomb logarithm is approximated by the value of the average p,
with ℏ2p2therm=2m ¼ 3kBT=2. In the low-density limit, the asymptotic behavior of
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the Coulomb logarithm Λ is given by � 1=2ð Þln n. However, this result for σdc is not
correct and can only be considered as an approximation, as discussed below con-
sidering the virial expansion of the resistivity.

3.3.6 Different sets of relevant observables

After fully linearizing the statistical operator (161) with (155), we have for the
electrical current density

jel
� � ¼ e

mΩ
Ph i ¼ eβ

mΩ
∑
n

PjBnð Þ � P; _Bn
� �

iϵ
� �

Fn þ P;Ph iiϵ
e
m
E

� �
¼ σdcE: (182)

After deriving the Ziman formula from the force-force correlation function in
the previous section, we investigate the question to select an appropriate set of
relevant observables Bnf g.

3.3.7 Kubo formula

The most simple choice of relevant observables is the empty set. There are no
response parameters to be eliminated. According Eq. (182), the Kubo formula

σKubodc ¼ e2β
m2Ω

P;Ph iirrediϵ (183)

follows [18, 19]. The index “irred” denotes the irreducible part of the correlation
function, because the conductivity is not describing the relation between the current
and the external field, but the internal field.Wewill not discuss this in the present
work. A similar expression can also be given for the dynamical, wave-number vector-
dependent conductivity σ q;ω

� �
which is related to other quantities such as the response

function, the dielectric function, or the polarization function, see [5, 11, 16, 17].
Equation (183) is a fluctuation-dissipation theorem; equilibrium fluctuations of the
current density are related to a dissipative property, the electrical conductivity.

The idea to relate the conductivity with the current-current auto-correlation
function in thermal equilibrium looks very appealing because the statistical operator
is known. The numerical evaluation by simulations can be performed for any densi-
ties and degeneracy. However, the Kubo formula (183) is not appropriate for pertur-
bation theory. In the lowest order of interaction, we have the result σKubo,0dc ¼ ne2=mϵ
(conservation of total momentum) which diverges in the limit ϵ ! 0.

3.3.8 Force-force correlation function

The electrical current can be considered as a relevant variable to characterize the
nonequilibrium state, when a charged particle system is affected by an electrical field.
We can select the total momentum as the relevant observable, Bn ! P. Now, the
character of Eq. (182) is changed. According the response equation (162), we have

� P; _P
� �

iϵF þ P;Ph iiϵ
e
m
E ¼ 0 (184)

so that these contributions compensate each other. As a relevant variable, the
averaged current density is determined by the response parameter F which follows
from the solution of the response equation (184). We obtain the inverse conductiv-
ity, the resistance, as a force-force auto-correlation, see Eq. (175). Now,
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perturbation theory can be applied, and in Born approximation a standard result of
transport theory is obtained, the Ziman formula (180). We conclude that the use of
relevant observables gives a better starting point for perturbation theory. In con-
trast to the Kubo formula that starts from thermal equilibrium as initial state, the
correct current is already reproduced in the initial state and must not be created by
the dynamical evolution.

However, despite the excellent results using the Ziman formula in solid and liquid
metalswhere the electrons are strongly degenerated,we cannot conclude that the result
(181) for the conductivity is already correct for low-density plasmas (nondegenerate
limit if T remains constant) in the lowest order of perturbation theory considered here.
The prefactor 3= 4

ffiffiffiffiffi
2π

p� �
is wrong. If we go to the next order of interaction, divergent

contributions arise. These divergences can be avoided performing a partial summation,
that will also change the coefficients in Eq. (181)which are obtained in the lowest order
of the perturbation expansion. The divergent contributions can also be avoided
extending the set of relevant observables Bnf g, see below.

3.3.9 Higher moments of the single-particle distribution function

Besides the electrical current, also other deviations from thermal equilibrium
can occur in the stationary nonequilibrium state, such as a thermal current. In
general, for homogeneous systems, we can consider a finite set of moments of the
single-particle distribution function

Pn ¼ ∑
p
ℏpx βEp
� �n=2a†pap (185)

as set of relevant observables Bnf g. It can be shown that with increasing number
of moments the result

σdc ¼ s
kBð Þ3=2 4πϵ0ð ÞÞ2

m1=2e2
1

Λ ptherm
� � (186)

is improved, as can be shown with the Kohler variational principle, see [11, 15].
The value s ¼ 3= 4

ffiffiffiffiffi
2π

p� �
obtained from the single moment approach is increasing to

the limiting value s ¼ 25=2=π3=2. For details see [5, 15, 16], where also other thermo-
electric effects in plasmas are considered.

3.3.10 Single-particle distribution function and the general form of the linearized
Boltzmann equation

Kinetic equations are obtained if the occupation numbers nν of single-(quasi-)
particle states ∣νi is taken as the set of relevant observables Bnf g. The single-particle
state ν is described by a complete set of quantum numbers, e.g., the momentum,
the spin and the species in the case of a homogeneous multi-component plasma.
In thermal equilibrium, the averaged occupation numbers of the quasiparticle states

are given by the Fermi or Bose distribution function, nνh ieq ¼ f 0ν ¼ Tr ρeqnν

n o
.

These equilibrium occupation numbers are changed under the influence of the
external field. We consider the deviation Δnν ¼ nν � f 0ν as relevant observables.
They describe the fluctuations of the occupation numbers. The response
equations, which eliminate the corresponding response parameters Fν, have the
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the Coulomb logarithm Λ is given by � 1=2ð Þln n. However, this result for σdc is not
correct and can only be considered as an approximation, as discussed below con-
sidering the virial expansion of the resistivity.

3.3.6 Different sets of relevant observables

After fully linearizing the statistical operator (161) with (155), we have for the
electrical current density
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After deriving the Ziman formula from the force-force correlation function in
the previous section, we investigate the question to select an appropriate set of
relevant observables Bnf g.

3.3.7 Kubo formula

The most simple choice of relevant observables is the empty set. There are no
response parameters to be eliminated. According Eq. (182), the Kubo formula

σKubodc ¼ e2β
m2Ω

P;Ph iirrediϵ (183)

follows [18, 19]. The index “irred” denotes the irreducible part of the correlation
function, because the conductivity is not describing the relation between the current
and the external field, but the internal field.Wewill not discuss this in the present
work. A similar expression can also be given for the dynamical, wave-number vector-
dependent conductivity σ q;ω

� �
which is related to other quantities such as the response

function, the dielectric function, or the polarization function, see [5, 11, 16, 17].
Equation (183) is a fluctuation-dissipation theorem; equilibrium fluctuations of the
current density are related to a dissipative property, the electrical conductivity.

The idea to relate the conductivity with the current-current auto-correlation
function in thermal equilibrium looks very appealing because the statistical operator
is known. The numerical evaluation by simulations can be performed for any densi-
ties and degeneracy. However, the Kubo formula (183) is not appropriate for pertur-
bation theory. In the lowest order of interaction, we have the result σKubo,0dc ¼ ne2=mϵ
(conservation of total momentum) which diverges in the limit ϵ ! 0.

3.3.8 Force-force correlation function

The electrical current can be considered as a relevant variable to characterize the
nonequilibrium state, when a charged particle system is affected by an electrical field.
We can select the total momentum as the relevant observable, Bn ! P. Now, the
character of Eq. (182) is changed. According the response equation (162), we have

� P; _P
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E ¼ 0 (184)

so that these contributions compensate each other. As a relevant variable, the
averaged current density is determined by the response parameter F which follows
from the solution of the response equation (184). We obtain the inverse conductiv-
ity, the resistance, as a force-force auto-correlation, see Eq. (175). Now,

40

Non-Equilibrium Particle Dynamics

perturbation theory can be applied, and in Born approximation a standard result of
transport theory is obtained, the Ziman formula (180). We conclude that the use of
relevant observables gives a better starting point for perturbation theory. In con-
trast to the Kubo formula that starts from thermal equilibrium as initial state, the
correct current is already reproduced in the initial state and must not be created by
the dynamical evolution.

However, despite the excellent results using the Ziman formula in solid and liquid
metalswhere the electrons are strongly degenerated,we cannot conclude that the result
(181) for the conductivity is already correct for low-density plasmas (nondegenerate
limit if T remains constant) in the lowest order of perturbation theory considered here.
The prefactor 3= 4
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is wrong. If we go to the next order of interaction, divergent

contributions arise. These divergences can be avoided performing a partial summation,
that will also change the coefficients in Eq. (181)which are obtained in the lowest order
of the perturbation expansion. The divergent contributions can also be avoided
extending the set of relevant observables Bnf g, see below.

3.3.9 Higher moments of the single-particle distribution function

Besides the electrical current, also other deviations from thermal equilibrium
can occur in the stationary nonequilibrium state, such as a thermal current. In
general, for homogeneous systems, we can consider a finite set of moments of the
single-particle distribution function

Pn ¼ ∑
p
ℏpx βEp
� �n=2a†pap (185)

as set of relevant observables Bnf g. It can be shown that with increasing number
of moments the result

σdc ¼ s
kBð Þ3=2 4πϵ0ð ÞÞ2

m1=2e2
1

Λ ptherm
� � (186)

is improved, as can be shown with the Kohler variational principle, see [11, 15].
The value s ¼ 3= 4

ffiffiffiffiffi
2π

p� �
obtained from the single moment approach is increasing to

the limiting value s ¼ 25=2=π3=2. For details see [5, 15, 16], where also other thermo-
electric effects in plasmas are considered.

3.3.10 Single-particle distribution function and the general form of the linearized
Boltzmann equation

Kinetic equations are obtained if the occupation numbers nν of single-(quasi-)
particle states ∣νi is taken as the set of relevant observables Bnf g. The single-particle
state ν is described by a complete set of quantum numbers, e.g., the momentum,
the spin and the species in the case of a homogeneous multi-component plasma.
In thermal equilibrium, the averaged occupation numbers of the quasiparticle states

are given by the Fermi or Bose distribution function, nνh ieq ¼ f 0ν ¼ Tr ρeqnν

n o
.

These equilibrium occupation numbers are changed under the influence of the
external field. We consider the deviation Δnν ¼ nν � f 0ν as relevant observables.
They describe the fluctuations of the occupation numbers. The response
equations, which eliminate the corresponding response parameters Fν, have the

41

Nonequilibrium Statistical Operator
DOI: http://dx.doi.org/10.5772/intechopen.84707



structure of a linear system of coupled Boltzmann equations for the quasiparticles,
see [11]

e
m
E � Pjnνð Þ þ P; _nνh iiϵ
� � ¼ ∑

ν0
Fν0Pν0ν, (187)

with Pν0ν ¼ _nν0 jΔnνð Þ þ _nν0 ; _nνh iiϵ. The response parameters Fν are related to the
averaged occupation numbers as

f ν tð Þ ¼ Tr ρ tð Þnνf g ¼ f 0ν þ β∑
ν0
Fν0 Δnν0 jΔnνð Þ: (188)

The general form of the linear Boltzmann equation (187) can be compared with
the expression obtained from kinetic theory. The left-hand side can be interpreted
as the drift term, where self-energy effects are included in the correlation function
P; _nνh iiϵ. Because the operators nν are commuting, from the Kubo identity follows
_nν0 jnνð Þ ¼ 1=ℏβð Þ nν0 ;nν½ �h i ¼ 0. In the general form, the collision operator is

expressed in terms of equilibrium correlation functions of fluctuations that can be
evaluated by different many-body techniques. In particular, for the Lorentz model
the result (186) with s ¼ 25=2=π3=2 is obtained [5, 15, 16].

3.3.11 Two-particle distribution function, bound states

Even more information is included if we also consider the nonequilibrium two-
particle distributions. As an example, we mention the Debye-Onsager relaxation
effect, see [5, 14]. Another important case is the formation of bound states. It seems
naturally to consider the bound states as new species and to include the occupation
numbers (more precisely, the density matrix) of the bound particle states in the set
of relevant observables [20, 21]. It needs a long memory time to produce bound
states from free states dynamically in a low-density system, because bound states
cannot be formed in binary collisions, a third particle is needed to fulfill the
conservation laws.

The inclusion of initial correlation to improve the kinetic theory, in particular to
fulfill the conservation of total energy, is an important step worked out during the
last decades, see [22] where further references are given. Other approaches to
include correlations in the kinetic theory are given, e.g., in [23, 24].

3.3.12 Conclusions

Transport coefficients are expressed in terms of correlation functions in
equilibrium. The evaluation can be performed numerically (molecular-dynamic
simulations), or using quantum statistical methods such as perturbation theory and
the technique of Green functions. The generalized linear response theory has solved
problems owing to the evaluation of correlation functions. Perturbation expansions
are improved if higher orders are considered. The treatment of singular terms that
appear in perturbation expansions is quite complex. Alternatively, the set of
relevant observables can be extended. Examples are the virial expansion of the
conductivity [14] or the hopping conductivity [5, 12].

It is not clear whether the rigorous evaluation of the correlation functions (i.e.,
the limit ϵ ! 0 only after full summation of the perturbation expansion) will give
nontrivial results for the conductivity. For instance, arguments can be given that
the exact evaluation of the force-force correlation function to calculate the
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resistance leads to a vanishing result, and the correlation function of stochastic
forces must be considered, in analogy to the corresponding term in the Langevin
equation [6, 25]. A related projection operator technique was used by Mori [26] for
the memory-function approach.

There are close relation to other approaches, such as kinetic theory or quantum
master equations, where the response function of the bath is considered. Irrevers-
ibility is not inherent in the equilibrium correlation functions, but in the assumption
that a nonequilibrium state is considered as a fluctuation in equilibrium with a
prescribed value of the relevant quantity. Other degrees of freedom are forced to
adopt the distribution of thermal equilibrium.

4. Concluding remarks

4.1 Information theory

The method of nonequilibrium statistical operator (NSO) to describe irrevers-
ible processes is based on a very general concept of entropy, the Shannon informa-
tion entropy (10). This concept is not restricted to dynamical properties like energy,
particle numbers, momentum, etc., occurring in physics, but may be applied also to
other properties occurring, e.g., in economics, financial market, and game theory.
The generalized Gibbs distributions (13) and (19) are obtained if the averages of a
given set of observables are known. Other statistical ensembles may be
constructed, where the values of some observables have a given distribution. For
instance, the canonical ensemble follows if the particle numbers are fixed, and the
microcanonical ensemble has in addition a fixed energy in the interval ΔE around E,
see [1, 2]. There exist alternative concepts of entropy to valuate a probability
distribution which are not discussed here.

In physics, we have a dynamical evolution that forms the equilibrium distribu-
tion for ergodic systems, and any initial distribution that is compatible with the
values of the conserved quantities can be used to produce the correct equilibrium
distribution. The main problem is the microscopic approach to evaluate the
dynamical averages, which can be done using quantum statistical methods such as
Green function theory or path integral calculations, or, alternatively, numerical
simulations of the microscopic equations of motion such as molecular dynamics.
In more general, complex systems, we do not know the exact dynamics of the time
evolution. However, we can observe time-dependent correlation functions which
reflect the time evolution, and properties such as the fluctuation-dissipation theo-
rem are not related to a specific dynamical model for the complex system. The most
interesting issue of the NSO method is the selection of the set of relevant observ-
ables to describe a nonequilibrium process. The better the choice of the set of
relevant observables is, for which a dynamical model for the time evolution can be
found, the less influence is produced by the irrelevant observables which may be
described by time-dependent correlation functions.

4.2 Hydrodynamics

An important application is the description of hydrodynamic processes and its
relation to kinetic theory. The NSO method allows to treat this problem, selecting
the single-particle distribution as well as the hydrodynamic variables as set of
relevant observables. This approach has been worked out in [23]. A more general
presentation is found in [4], and transport processes in multi-component fluids and
superfluid systems are investigated. Until now, a rigorous theory of turbulence is
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include correlations in the kinetic theory are given, e.g., in [23, 24].
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are improved if higher orders are considered. The treatment of singular terms that
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relevant observables can be extended. Examples are the virial expansion of the
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ibility is not inherent in the equilibrium correlation functions, but in the assumption
that a nonequilibrium state is considered as a fluctuation in equilibrium with a
prescribed value of the relevant quantity. Other degrees of freedom are forced to
adopt the distribution of thermal equilibrium.
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4.1 Information theory

The method of nonequilibrium statistical operator (NSO) to describe irrevers-
ible processes is based on a very general concept of entropy, the Shannon informa-
tion entropy (10). This concept is not restricted to dynamical properties like energy,
particle numbers, momentum, etc., occurring in physics, but may be applied also to
other properties occurring, e.g., in economics, financial market, and game theory.
The generalized Gibbs distributions (13) and (19) are obtained if the averages of a
given set of observables are known. Other statistical ensembles may be
constructed, where the values of some observables have a given distribution. For
instance, the canonical ensemble follows if the particle numbers are fixed, and the
microcanonical ensemble has in addition a fixed energy in the interval ΔE around E,
see [1, 2]. There exist alternative concepts of entropy to valuate a probability
distribution which are not discussed here.

In physics, we have a dynamical evolution that forms the equilibrium distribu-
tion for ergodic systems, and any initial distribution that is compatible with the
values of the conserved quantities can be used to produce the correct equilibrium
distribution. The main problem is the microscopic approach to evaluate the
dynamical averages, which can be done using quantum statistical methods such as
Green function theory or path integral calculations, or, alternatively, numerical
simulations of the microscopic equations of motion such as molecular dynamics.
In more general, complex systems, we do not know the exact dynamics of the time
evolution. However, we can observe time-dependent correlation functions which
reflect the time evolution, and properties such as the fluctuation-dissipation theo-
rem are not related to a specific dynamical model for the complex system. The most
interesting issue of the NSO method is the selection of the set of relevant observ-
ables to describe a nonequilibrium process. The better the choice of the set of
relevant observables is, for which a dynamical model for the time evolution can be
found, the less influence is produced by the irrelevant observables which may be
described by time-dependent correlation functions.

4.2 Hydrodynamics

An important application is the description of hydrodynamic processes and its
relation to kinetic theory. The NSO method allows to treat this problem, selecting
the single-particle distribution as well as the hydrodynamic variables as set of
relevant observables. This approach has been worked out in [23]. A more general
presentation is found in [4], and transport processes in multi-component fluids and
superfluid systems are investigated. Until now, a rigorous theory of turbulence is
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not available, but hydrodynamic fluctuations and turbulent flow have been
considered using the NSO method [4].

4.3 The limit ϵ ! 0

It is the source term of the extended von Neumann equation (27) that introduces
irreversible behavior. Different choices for the set of relevant observables are
elected for different applications, in particular quantum master equations, kinetic
theory, and linear response theory. It is claimed that this choice of the set of
relevant observables is only a technical issue and has no influence on the result, only
if the limit ε ! 0 is correctly performed in the final result.

However, calculations are not performed this way. For instance, the limit ε ! 0
is performed already in a finite order of perturbation theory. The self-consistency
conditions (18) guarantee that a finite source term will not influence the Hamilto-
nian dynamics of the relevant observables. A closer investigation of a finite source
term and its influence on the nonequilibrium evolution would be of interest.

4.4 Heat production and entropy

A serious problem is that irreversibility is connected with the production of
entropy [6]. For instance, in the case of electrical conductivity, heat is produced. In
principle, we have to consider an open system coupled to a bath that absorbs the
produced heat. In the Zubarev NSO method considered here, it is the right-hand of
the extended von Neumann equation (27) that contains the source term.We impose
the stationary conditions so that ρrel, in particular T, are not explicitly depending on
time. Then, the source term acts like an additional process describing the coupling
to a bath without specifying the microscopic process. The parameter ϵ now has the
meaning of a relaxation time, and is no longer arbitrarily small but is of the order E2.

From a systematic microscopic point of view, one can introduce a process into
the system Hamiltonian which describes the cooling of the system via the coupling
to a bath, as known from the quantum master equations for open systems. Phonons
related to the motion of ions can be absorbed by the bath, but one can calculate the
electrical conductivity also for (infinitely) heavy ions so that the scattering of the
electrons, accelerated by the field, is elastic. Collisions of electrons with the bath
may help, but an interesting process to reduce the energy is radiation. Electrons
which are accelerated during the collisions emit bremsstrahlung. This heat transfers
the gain of energy of electrons, which are moving in the external field, to the
surroundings.

4.5 Open systems: coupling to the radiation field

A general approach to scattering theory was given by Gell-Mann and Goldberger
[27] (see also [1, 2]) to incorporate the boundary condition into the Schrödinger
equation. The equation of motion in the potential V rð Þ reads

∂

∂t
ψϵ r; tð Þ þ i

ℏ
Hψϵ r; tð Þ ¼ �ϵ ψϵ r; tð Þ � ψ t̂

rel r; tð Þ
h i

: (189)

With H ¼ H0 þ V, the relevant state is an eigenstate ∣pi of H0 which changes its
value at the scattering time t̂ where the asymptotic state ∣p0i is formed. As known
from the Langevin equation, one can consider ψϵ r; tð Þ ¼ ϱ1=2 exp iS=ℏð Þ as a sto-
chastic process [5] related to a stochastic potential V r; tð Þ; Eq. (189) appears as an
average. The relaxation term is related to the fluctuations of V r; tð Þ. The average
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Hamiltonian dynamics is realized by the self-consistency conditions for ψ t̂
rel r; tð Þ,

see Eq. (28).
An interesting example is the electrical conductivity. In the stationary case

which is homogeneous in time, the system remains near thermodynamic equilib-
rium as long as the electrical field is weak so that the produced heat can be exported.
We have to consider an open system. If the conductor is embedded in vacuum, heat
export is given by radiation. Bremsstrahlung is emitted during the collision of
charged particles. Emission of photons can be considered as a measuring process to
localize the charged particle during the collision process. The time evolution of the
system is considered as a stochastic process, see also [6].
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Chapter 2

The Boundary Element Method
for Fluctuating Active Colloids
William E. Uspal

Abstract

The boundary element method (BEM) is a computational method particularly
suited to solution of linear partial differential equations (PDEs), including the
Laplace and Stokes equations, in complex geometries. The PDEs are formulated as
boundary integral equations over bounding surfaces, which can be discretized for
numerical solution. This manuscript reviews application of the BEM for simulation
of the dynamics of “active” colloids that can self-propel through liquid solution. We
introduce basic concepts and model equations for both catalytically active colloids
and the “squirmer” model of a ciliated biological microswimmer. We review the
foundations of the BEM for both the Laplace and Stokes equations, including the
application to confined geometries, and the extension of the method to include
thermal fluctuations of the colloid. Finally, we discuss recent and potential applica-
tions to research problems concerning active colloids. The aim of this review is to
facilitate development and adoption of boundary element models that capture the
interplay of deterministic and stochastic effects in the dynamics of active colloids.

Keywords: active colloids, Brownian dynamics, boundary element method

1. Introduction

Over the past 15 years, significant effort has been invested in the development of
synthetic micro- and nano-sized colloids capable of self-propulsion in liquid solu-
tion [1–3]. These “active colloids” have myriad potential applications in drug deliv-
ery [4, 5], sensing [6], microsurgery [7], and programmable materials assembly [8].
Furthermore, they provide well-controlled model systems for study of materials
systems maintained out of thermal equilibrium by continuous dissipation of free
energy. In this context, and in comparison with driven systems (e.g., sheared
suspensions), a unique aspect of active colloids is that energy is injected into the
system at the microscopic scale of a single particle, instead of through macroscopic
external fields or at the boundaries of the system. As a consequence of this, novel
collective behaviors are possible, including motility-induced phase separation [9],
mesoscopic “active turbulence” [10], and formation of dynamic “living crystals”
and clusters [11, 12]. Furthermore, since living systems can be regarded as self-
organized non-equilibrium materials systems, study of active colloids could yield
insight into fundamental principles of living systems, and open a path towards
development of biomimetic “dissipative materials” capable of homeostasis [13],
self-repair [14], goal-directed behavior [15, 16], and other aspects of life.
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Paradigmatic examples of synthetic active colloids include bimetallic Janus rods
[17] and Janus spheres consisting of a spherical core with a hemispherical coating of a
catalytic material [18]. In both cases, self-propulsion is driven by catalytic decompo-
sition of a chemical “fuel” available in the liquid solution. For instance, for gold/
platinum Janus rods, both ends of the rod are involved in the electrochemical
decomposition of hydrogen peroxide into water and oxygen: hydrogen peroxide is
oxidized at the platinum anode and reduced at the gold cathode. In this reaction
process, a hydrogen ion gradient is established between the anode and cathode. The
resulting gradient in electrical charge creates an electric field in the vicinity of the rod.
The electric field exerts a force on the diffuse layer of ions surrounding the colloid
surface, resulting in motion of the suspending fluid relative to the colloid surface.
Viewed in a stationary reference frame, the final result is “self-electrophoretic”
motion of the colloid in direction of the platinum end. For Janus spheres (e.g.,
platinum on silica or platinum on polystyrene), the mechanism of motion is still a
subject of debate. Since the core material is inert and insulating, it was originally
thought that these particles move by neutral self-diffusiophoresis in a self-generated
oxygen gradient. Diffusiophoresis is similar to electrophoresis in that motion is driven
by interfacial molecular forces. Briefly, in diffusiophoresis, the colloid surface and
solute molecules interact through some molecular potential. This interaction poten-
tial, in conjunction with a gradient of solute concentration along the surface of the
colloid, leads to the pressure gradient in a thin film surrounding the colloid, and
therefore fluid flow within the film relative to the colloid surface. Following initial
studies on chemically active Janus spheres, subsequent studies revealed a dependence
of the Janus particle speed on the concentration of added salt [19], suggesting that a
self-electrophoretic mechanism may be implicated in motion of the colloid.
Golestanian and co-workers proposed that dependence of the rate of catalysis on
thickness of the deposited catalyst can lead to different regions of the catalyst acting
as anode and cathode [20]. More recently, it was proposed that if one of the redox
reactions is reaction-limited and the other is diffusion-limited, the anodic or cathodic
character of a point on the catalytic surface will depend on the local curvature of the
surface [21]. Regardless of the detailed molecular mechanism of motion, a key point
is that interfacial flows drive self-propulsion of chemically active colloids. A second
key point is that particles need to have an intrinsic asymmetry (e.g., from the Janus
character of their material composition) in order to exhibit directed motion.

These findings have motivated development of theoretical and numerical con-
cepts for modeling the interfacially driven self-propulsion of active colloids. Moti-
vated by classical work on phoresis in thermodynamic gradients [22, 23], an
influential continuum framework for modeling neutral self-diffusiophoresis was
established in Ref. 24, and will be reviewed below. This basic framework can be
modified or extended to account for electrochemical effects [25], multicomponent
diffusion [26], reactions in the bulk solution [27], and confinement [28–34]. An
emerging area of study within this framework is autonomous navigation and “taxis”
of chemically active colloids in ambient fields and complex geometries, including
chemotaxis in chemical gradients [35] and rheotaxis in confined flows [15, 36].
Theoretical research on synthetic active colloids has also found common ground
with an older strand of research on locomotion of biological microswimmers. Here,
an important point of contact is again the idea of interfacial flow [37]. For a quasi-
spherical microswimmer that is “carpeted” with a layer of cilia, the effect of the
periodic, time-dependent, metachronal motion of the cilia can be modeled as a
period-averaged interfacial flow. This “squirmer” model of locomotion was intro-
duced by Lighthill [38] and refined by Blake [39]. More recent work has explored
collective motion of suspensions of squirmers [40] and squirmer motion in con-
fined geometries [41].
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These theoretical frameworks are deterministic, and do not directly address the
role of thermal fluctuations. For instance, for the model of a chemically active
colloid in Ref. 42, diffusion of the chemical reaction product (i.e., the solute) into
the surrounding solution is modeled with the Laplace equation, which has a smooth
and unique solution for a given set of boundary conditions describing surface
catalysis. Implicit in the use of the Laplace equation are the assumptions that, on the
timescale of Janus particle motion, the solute diffuses very fast, and that fluctua-
tions of the solute distribution average out to be negligible. Likewise, fluctuations of
the surrounding fluid are neglected, i.e., the deterministic Stokes equation is used to
model the fluid in lieu of the fluctuating Stokes equation. On the other hand,
micron-sized active Janus particles are observed in experiments to exhibit
“enhanced diffusion”: directed motion on short timescales t < τr and random walk
behavior on long timescales t≫ τr. For the latter, the effective diffusion coefficient
Deff is enhanced relative to the “bare” diffusion coefficient D0 of an inactive colloid,
i.e., Deff ≫D0. The reason for this behavior is that the orientation of the particle is
free to fluctuate, and the particle changes its direction of motion by rotational
diffusion over the timescale τr ¼ D�1

r , where Dr is the rotational diffusion coeffi-
cient of the particle [18]. Therefore, thermal fluctuations qualitatively affect the
motion of even a micron-sized catalytic Janus particle in unbounded, uniform
solution. For a catalytic Janus particle in an ambient field or in confinement, ther-
mal fluctuations affect whether and for how long the particle can align with the
ambient field [42, 43] or stay near confining surfaces [34, 44]. Overall, a full
theoretical understanding of the behavior of micron-sized active colloids requires
modeling thermal fluctuations.

Moreover, as part of the general drive towards miniaturization, recent experi-
mental efforts have sought to fabricate and characterize nano-sized chemically
active colloids [45–47]. On the theoretical side, new questions arise when the size of
the colloid becomes comparable to the size of the various molecules participating in
the catalytic reaction. These questions include: When is using a continuum model
appropriate [48]? Can a catalytic particle still display (time- and ensemble-
averaged) directed motion when the particle and the surrounding chemical field are
fluctuating on similar timescales? Relatedly, can a spherical colloid with a catalytic
surface of uniform composition exhibit enhanced diffusion when nano-sized [49]?
Can a fluctuating, nano-sized Janus particle effectively follow an ambient chemical
gradient, i.e., exhibit chemotaxis [35]? These questions also connect with the
burgeoning literature on chemotaxis of biological enzymes [50].

In this chapter, we review the boundary element approach to modeling the
motion of active colloids. This is a “hydrodynamic” approach that resolves the
detailed geometry and surface chemistry of the colloids, the velocity of the sur-
rounding solution, and the distribution of chemical species within the solution
[30, 40, 51–57]. The advantage of such an approach—in comparison with, for
instance, the active Brownian particle model—is that it can resolve the detailed
microscopic physics of how a colloid couples to ambient fields and other features of
the surrounding micro-environment. In addition, we discuss how thermal fluctua-
tions can be included within the approach. The aim of this review is to facilitate
development and adoption of models that capture the interplay of deterministic and
stochastic effects within an integrated framework.

2. Theory

As a starting point, we review the basic deterministic theoretical framework for
understanding the motion of active colloids [24]. This is a continuum approach that
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coarse-grains the interfacial flow that drives colloid motion, discussed above, as a
“slip velocity” boundary condition for the velocity of the suspending fluid.

We consider a suspension ofN active colloids in an unbounded liquid solution. The
position of each colloid α, with α∈ 1; 2;…;Nf g, is described in a stationary reference
frame by a vector xα. The solution is modeled as an incompressible Newtonian fluid
with dynamic viscosity μ. The solution is governed by the Stokes equation,

�∇Pþ μ∇2u ¼ 0, (1)

where P xð Þ is the pressure at a position x in the solution, and u xð Þ is the velocity
of the solution. The velocity obeys the incompressibility condition,

∇ � u ¼ 0, (2)

and the boundary condition

u xsð Þ ¼ Uα þΩα � xs � xαð Þ þ vs,α xsð Þ, xs ∈Sα, (3)

whereSα is the surface of colloid α,xs ∈Sα is a position onSα, andUα andΩα are the
translational and rotational velocities, respectively, of colloid α. The quantity vs,α xsð Þ is
the slip velocity on the surface of colloid α, which is either prescribed (for a squirmer)
or determined by the distribution of chemical species in solution (for a chemically
active colloid). The form of vs,α xsð Þ for the two types of particles will be discussed in
detail below. Additionally, far away from theN particles, the fluid velocity vanishes:

u jxj ! ∞ð Þ ¼ 0: (4)

In order to close this system of equations, we require 6N more equations,
corresponding to the 6N unknown components of Uα and Ωα. The net force and
torque on each colloid vanishes:

ð

Sα

σ � n̂ dSþ Fext,α ¼ 0, (5)

ð

Sα

xs � xαð Þ � σ � n̂ dSþ Text,α ¼ 0, (6)

where the integrals are performed over the surface Sα of each colloid α, and
Fext,α and Text,α are, respectively, the net external force and net external torque on
the colloid. The stress tensor is given by

σ ¼ �PIþ μ ∇uþ ∇uð ÞT
� �

, (7)

where the pressure P xð Þ is determined by the incompressibility condition.
Practitioners of Stokesian Dynamics may notice some similarity between Eq. 3

and the boundary condition for an inert or passive sphere in an ambient flow field.
If vs,α xsð Þ could be expressed as an effective ambient flow field at the position of
particle α, the tools of Stokesian dynamics could be straightforwardly applied to
simulation of active suspensions. This analogy will be developed in the Appendix.

2.1 The squirmer model: prescribed surface slip

The “squirmer” model was originally introduced by Lighthill to describe the
time-averaged motion of ciliated quasi-spherical micro-organisms [38]. Lighthill’s
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formulation was subsequently corrected and extended by Blake [39]. The basic
motivating idea of the squirmer model is that the periodic, metachronal motion of
the carpet of cilia on the surface of the micro-organism drives, over the course of
one period and in the vicinity of the microswimmer surface, net flow from the
“forward” or “leading” pole of the micro-organism to the “rear” pole (see Figure 1,
left). This interfacial flow drives flow in the surrounding bulk fluid, leading to
directed motion of the micro-organism towards the forward end. The squirmer
model captures some essential features of the self-propulsion of micro-organisms,
including the hydrodynamic interactions between micro-organisms, and between
an individual micro-organism and confining surfaces.

The slip velocity on the surface of a spherical squirmer α is specified by fiat and
does not depend on the configuration of the suspension. It is given as [41]:

vs,α xsð Þ ¼ ∑
n
Bn,αVn cos θð Þ êθp,α , (8)

where

Vn xð Þ � 2
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� x2

p

n nþ 1ð Þ
dPn xð Þ
dx

: (9)

The unit vector êθp,α is defined in following manner (see Figure 1, left). The

squirmer has an axis of symmetry, and a propulsion direction d̂α oriented along this
axis. We define the body-frame polar angle θp,α at a point xs on the surface of

squirmer α as the angle between d̂α and a vector xs � xα from the center of the
squirmer xα to xs. The unit vector êθp,α is oriented in the direction of increasing θp,α,
i.e., locally tangent to the squirmer surface along a longitudinal line.

Figure 1.
The two types of microswimmer considered in this chapter. In the spherical “squirmer” model (left), the slip
velocity on the surface of the particle is specified by fiat and fixed (in a frame co-moving and co-rotating with
the particle) for all time. For an axisymmetric distribution of surface slip, the particle moves in the direction of
the green arrow, i.e., opposite to the (surface-averaged) direction of the slip velocity. For a Janus particle
(right), a fraction of the particle surface (black) catalyzes a reaction involving various molecular species
diffusing in the surrounding solution. The resulting anisotropic distribution of product molecules or “solute”
(green spheres) drives a phoretic slip velocity (purple) in an interfacial layer surrounding the particle. For a
repulsive interaction between the solute and the particle surface, the slip is towards high concentration of solute,
and the particle moves in the direction of the green arrow.
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(right), a fraction of the particle surface (black) catalyzes a reaction involving various molecular species
diffusing in the surrounding solution. The resulting anisotropic distribution of product molecules or “solute”
(green spheres) drives a phoretic slip velocity (purple) in an interfacial layer surrounding the particle. For a
repulsive interaction between the solute and the particle surface, the slip is towards high concentration of solute,
and the particle moves in the direction of the green arrow.
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The squirming mode amplitudes Bn,α, which can potentially vary from squirmer
to squirmer, are fixed a priori and do not depend on the configuration of the
suspension. The set of amplitudes determine the detailed form of the flow field in
vicinity of the particle. Furthermore, the lowest order squirming mode B1 deter-
mines the velocity of an isolated squirmer in unbounded solution: Ufs,α ¼ 2=3ð ÞB1,α.
According to our definition of dα and θp,α, we require that B1,α>0. Simulations of
squirmers typically truncate Eq. 8 to n≤ 2 or n≤ 3. The justification for this is that
the contributions of the higher order squirming modes to the flow around the
squirmer decay rapidly with distance from the squirmer.

2.2 Chemically active colloids: diffusiophoretic slip from chemical gradients

For chemically active colloids, the slip velocity on the surface of a colloid
is driven by interfacial molecular forces. The molecular physics of phoresis and
self-phoresis is reviewed in detail elsewhere [2, 23, 58]; here, we provide a brief
summary. Consider a “Janus” colloid with a surface composed of two different
materials. In the presence of molecular “fuel” diffusing in the surrounding
solution, one of the two Janus particle materials catalyzes the decomposition
of the fuel into molecular reaction products. A paradigmatic example of this
reaction is the decomposition of hydrogen peroxide by platinum into water and
oxygen:

H2O2 !
Pt
H2Oþ 1

2
O2: (10)

(This equation is a severe simplification of the actual reaction scheme, which
most likely involves charged and complex intermediates [20, 27]; nevertheless,
proceeding from it, we can capture some essential features of self-phoresis.) If the
reaction is reaction-limited—i.e., hydrogen peroxide is plentifully available in solu-
tion, and diffuses quickly relatively to the reaction rate—then we can approximate
the production of oxygen with zero order kinetics:

�D ∇c � n̂½ �jx¼xs ¼ κ xsð Þ, (11)

where D is the diffusion coefficient of oxygen, c xð Þ is the number density of
oxygen, and κ xsð Þ is the rate of oxygen production on the surface of the particle.
(The validity of assumption of reaction-limited kinetics is quantified by the
Damköhler number Da ¼ κ0R=D, where κ0 is a characteristic reaction rate; we
assume Da≪ 1.) Furthermore, we assume that the Péclet number Pe � U0R=D is
very small, where U0 is a characteristic particle velocity and R is the particle radius.
Accordingly, we can make a quasi-steady approximation for the diffusion of oxygen
in the solution:

∇2c ¼ 0: (12)

Finally, we assume that

c jxj ! ∞jð Þ ¼ c∞, (13)

where c∞ is a constant. Eqs. 11, 12, and 13 specify a boundary value problem
(BVP) for the distribution of oxygen in the fluid domain containing the N active
particles. This problem can be solved numerically, e.g., by the boundary element
method, as will be outlined in a later section.
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Accordingly, each Janus particle will be surrounded by an anisotropic “cloud” of
oxygen molecules (“solute”), with the oxygen concentration highest near the cata-
lytic cap (see Figure 1, right). Now we suppose that the oxygen molecules interact
with the surface of the colloid through some molecular interaction potential with
range δ≪R [23]. Each colloid is surrounded by an interfacial layer of thickness � δ
in which the molecular interaction of the solute and the colloid is significant.
Outside of this layer, the solute freely diffuses in the solution. We can regard c xð Þ as
the bulk concentration, i.e., the concentration outside the interfacial layer. Near a
location xs on the surface of the colloid, the interfacial layer concentration is
enhanced or depleted, according to the attractive or repulsive character of the
molecular interaction, relative to c xþ

s

� �
. Here, the plus sign emphasizes that c xþ

s

� �
is

evaluated outside the interfacial layer. Moreover, since δ≪R, the interfacial layer
concentration can locally, in the direction locally normal to the colloid surface, relax
to a Boltzmann (i.e., equilibrium) distribution governed by the molecular interac-
tion potential Φ. (The timescale for this local relaxation is much faster than the
characteristic timescale for colloid motion R=U0.) Accordingly, the local pressure
P x�

s ; η
� �

can be calculated from Φ and c xþ
s

� �
, where η is a coordinate defined at xs

that is locally normal to the colloid surface.
These notions can be made mathematically rigorous through the theory of

matched asymptotics. However, for the purpose of this discussion, the essential idea
is that the bulk concentration c xð Þ determines the pressure in the interfacial layer in
the vicinity of a point xs on the colloid surface. Moreover, c xð Þ varies over the length
scale R of the colloid. Accordingly, within the interfacial layer, the pressure varies
over the size of the colloid, driving flow within the interfacial layer. From the
perspective of the outer solution for the flow field, this interfacial flow looks like a
slip velocity:

vs,α xsð Þ ¼ �b xsð Þ∇kc: (14)

Here, the surface gradient operator is defined as ∇k � I� n̂n̂ð Þ � ∇. The
material-dependent parameter b xsð Þ encapsulates the details of the molecular inter-
action between the solute and the surface material, and can be calculated from the
molecular potential Φ [23]. Since the surface of the Janus colloid comprises different
materials, b depends on the location on the colloid surface. In fact, a spatial varia-
tion of b over the surface of colloid is a necessary condition to obtain phoretic
rotation of a colloid near a wall [30] or chemotactic alignment with a gradient of
“fuel” molecules [35].

2.3 Lorentz reciprocal theorem

The Lorentz reciprocal theorem relates the fluid stresses σ; σ0ð Þ and velocity
fields u;u0ð Þ of two solutions to the Stokes equation within the same domain V:

ð

S
u � σ 0 � n̂ dS ¼

ð

S
u0 � σ � n̂ dS, (15)

where S is the boundary of V. For the N active particles in unbounded solution,
S ¼ ∪N

α¼1Sα.
This theorem can be used to simplify the problem specified above for the veloc-

ities of N active particles. We designate that problem as the “unprimed” problem.
Additionally, we specify that Fext,α ¼ 0 and τext,α ¼ 0 for all α. (Since the Stokes
equation is linear, the contributions of the external forces and torques to the
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The squirming mode amplitudes Bn,α, which can potentially vary from squirmer
to squirmer, are fixed a priori and do not depend on the configuration of the
suspension. The set of amplitudes determine the detailed form of the flow field in
vicinity of the particle. Furthermore, the lowest order squirming mode B1 deter-
mines the velocity of an isolated squirmer in unbounded solution: Ufs,α ¼ 2=3ð ÞB1,α.
According to our definition of dα and θp,α, we require that B1,α>0. Simulations of
squirmers typically truncate Eq. 8 to n≤ 2 or n≤ 3. The justification for this is that
the contributions of the higher order squirming modes to the flow around the
squirmer decay rapidly with distance from the squirmer.

2.2 Chemically active colloids: diffusiophoretic slip from chemical gradients

For chemically active colloids, the slip velocity on the surface of a colloid
is driven by interfacial molecular forces. The molecular physics of phoresis and
self-phoresis is reviewed in detail elsewhere [2, 23, 58]; here, we provide a brief
summary. Consider a “Janus” colloid with a surface composed of two different
materials. In the presence of molecular “fuel” diffusing in the surrounding
solution, one of the two Janus particle materials catalyzes the decomposition
of the fuel into molecular reaction products. A paradigmatic example of this
reaction is the decomposition of hydrogen peroxide by platinum into water and
oxygen:

H2O2 !
Pt
H2Oþ 1

2
O2: (10)

(This equation is a severe simplification of the actual reaction scheme, which
most likely involves charged and complex intermediates [20, 27]; nevertheless,
proceeding from it, we can capture some essential features of self-phoresis.) If the
reaction is reaction-limited—i.e., hydrogen peroxide is plentifully available in solu-
tion, and diffuses quickly relatively to the reaction rate—then we can approximate
the production of oxygen with zero order kinetics:

�D ∇c � n̂½ �jx¼xs ¼ κ xsð Þ, (11)

where D is the diffusion coefficient of oxygen, c xð Þ is the number density of
oxygen, and κ xsð Þ is the rate of oxygen production on the surface of the particle.
(The validity of assumption of reaction-limited kinetics is quantified by the
Damköhler number Da ¼ κ0R=D, where κ0 is a characteristic reaction rate; we
assume Da≪ 1.) Furthermore, we assume that the Péclet number Pe � U0R=D is
very small, where U0 is a characteristic particle velocity and R is the particle radius.
Accordingly, we can make a quasi-steady approximation for the diffusion of oxygen
in the solution:

∇2c ¼ 0: (12)

Finally, we assume that

c jxj ! ∞jð Þ ¼ c∞, (13)

where c∞ is a constant. Eqs. 11, 12, and 13 specify a boundary value problem
(BVP) for the distribution of oxygen in the fluid domain containing the N active
particles. This problem can be solved numerically, e.g., by the boundary element
method, as will be outlined in a later section.
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Accordingly, each Janus particle will be surrounded by an anisotropic “cloud” of
oxygen molecules (“solute”), with the oxygen concentration highest near the cata-
lytic cap (see Figure 1, right). Now we suppose that the oxygen molecules interact
with the surface of the colloid through some molecular interaction potential with
range δ≪R [23]. Each colloid is surrounded by an interfacial layer of thickness � δ
in which the molecular interaction of the solute and the colloid is significant.
Outside of this layer, the solute freely diffuses in the solution. We can regard c xð Þ as
the bulk concentration, i.e., the concentration outside the interfacial layer. Near a
location xs on the surface of the colloid, the interfacial layer concentration is
enhanced or depleted, according to the attractive or repulsive character of the
molecular interaction, relative to c xþ

s

� �
. Here, the plus sign emphasizes that c xþ

s

� �
is

evaluated outside the interfacial layer. Moreover, since δ≪R, the interfacial layer
concentration can locally, in the direction locally normal to the colloid surface, relax
to a Boltzmann (i.e., equilibrium) distribution governed by the molecular interac-
tion potential Φ. (The timescale for this local relaxation is much faster than the
characteristic timescale for colloid motion R=U0.) Accordingly, the local pressure
P x�

s ; η
� �

can be calculated from Φ and c xþ
s

� �
, where η is a coordinate defined at xs

that is locally normal to the colloid surface.
These notions can be made mathematically rigorous through the theory of

matched asymptotics. However, for the purpose of this discussion, the essential idea
is that the bulk concentration c xð Þ determines the pressure in the interfacial layer in
the vicinity of a point xs on the colloid surface. Moreover, c xð Þ varies over the length
scale R of the colloid. Accordingly, within the interfacial layer, the pressure varies
over the size of the colloid, driving flow within the interfacial layer. From the
perspective of the outer solution for the flow field, this interfacial flow looks like a
slip velocity:

vs,α xsð Þ ¼ �b xsð Þ∇kc: (14)

Here, the surface gradient operator is defined as ∇k � I� n̂n̂ð Þ � ∇. The
material-dependent parameter b xsð Þ encapsulates the details of the molecular inter-
action between the solute and the surface material, and can be calculated from the
molecular potential Φ [23]. Since the surface of the Janus colloid comprises different
materials, b depends on the location on the colloid surface. In fact, a spatial varia-
tion of b over the surface of colloid is a necessary condition to obtain phoretic
rotation of a colloid near a wall [30] or chemotactic alignment with a gradient of
“fuel” molecules [35].

2.3 Lorentz reciprocal theorem

The Lorentz reciprocal theorem relates the fluid stresses σ; σ0ð Þ and velocity
fields u;u0ð Þ of two solutions to the Stokes equation within the same domain V:

ð

S
u � σ 0 � n̂ dS ¼

ð

S
u0 � σ � n̂ dS, (15)

where S is the boundary of V. For the N active particles in unbounded solution,
S ¼ ∪N

α¼1Sα.
This theorem can be used to simplify the problem specified above for the veloc-

ities of N active particles. We designate that problem as the “unprimed” problem.
Additionally, we specify that Fext,α ¼ 0 and τext,α ¼ 0 for all α. (Since the Stokes
equation is linear, the contributions of the external forces and torques to the
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velocities of the particles can be calculated separately, using standard methods, and
superposed with the contributions from activity to obtain the complete velocities.)
We consider 6N “primed” problems, indexed by j ¼ 1, 2,…, 6N. For problem j ¼ α,
particle α is exposed to an external force with magnitude F0

ext in the x̂ direction.

Each particle has unknown translational and rotational velocities U0 jð Þ
α and Ω0 jð Þ

α , and
the velocity field u0 jð Þ is subject to no-slip boundary conditions on each particle:

u0 jð Þ xsð Þ ¼ U0 jð Þ
α þΩ0 jð Þ

α � xs � xαð Þ, xs ∈Sα, (16)

Additionally, the flow field vanishes far away from the particles, i.e.,
u0 jð Þ jxj ! ∞ð Þ ¼ 0. The unprimed problem and primed problem α are schematically
illustrated in Figure 2. Similarly, for problems j ¼ αþ 1 and j ¼ αþ 2, particle α is
exposed to an external force with magnitude in the ŷ and ẑ directions, respectively,
with no-slip boundary conditions likewise holding on each particle, and the flow
field vanishing far away from the particles. For problems j ¼ αþ 3, j ¼ αþ 4, and
j ¼ αþ 5, particle α is exposed to a torque with magnitude τ0ext in the x̂, ŷ, and ẑ
directions, respectively, with the same boundary conditions. Each “primed” prob-

lem j can be solved for 6N unknown velocity components U0 jð Þ
α and Ω0 jð Þ

α .
For problem j, we substitute Eqs. 3 and 16 into Eq. 15 for u and u0 ¼ u0 jð Þ to

obtain:

∑
α

ð

Sα

Uα þΩα � xs � xαð Þ þ vs,α xsð Þ½ � � σ0 jð Þ � n̂ dS ¼ (17)

∑
α

ð

Sα

U0
α jð Þ þΩ0

α jð Þ � xs � xαð Þ� � � σ � n̂ dS: (18)

It can be shown that the right hand side of this equation vanishes. Consider the
term involving U0

α jð Þ. For each integral over Sα, U0
α jð Þ is a constant and can be

moved out of the integral,

U0
α jð Þ �

ð

Sα

σ � n̂ dS, (19)

Figure 2.
Illustration of the “unprimed” problem for the velocities of N active particles, and the “primed” problem α for
the velocities of N inert particles when particle α is exposed to a force with magnitude F0

ext in the x̂ direction.
Similarly, in primed problems αþ 1 and α þ 2, particle α is exposed to a force with magnitude F0

ext in the ŷ
direction and the ẑ direction, respectively. Moreover, in primed problems α þ 3, α þ 4, and αþ 5, particle α is
exposed to torques with magnitude τ0ext in the x̂, ŷ, and ẑ directions, respectively. Note that the primed and the
6N unprimed problems all have the same geometry, i.e., the same configuration of N spheres.
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but the integral is simply the force Fα on particle α. Since the particles are free of
external forces, Fα ¼ 0. Likewise, the term involving Ω0

α jð Þ can be rearranged as

Ω0
α jð Þ �

ð

Sα

xs � xαð Þ � σ � n̂ dS, (20)

but the integral is the torque τα ¼ 0 on particle α.
Rearranging the left hand side of Eq. 17, we obtain a set of 6N equations j:

∑
α

Uα � F0 jð Þ
α þΩα � τ0 jð Þ

α

� �
¼ �∑

α

ð

Sα

vs � σ0 jð Þ � n̂ dS , j ¼ 1,…, 6N : (21)

These 6N equations can be written in matrix form:

R �V ¼ b, (22)

where b is a vector containing the 6N integrals associated with the right hand
side of Eq. 21, V is vector of all 6N velocity components Uα;Ωαð ÞT, and R is the
grand resistance matrix for N spheres at positions xα. Note that the arbitrary
magnitudes F0

ext and τ0ext have been divided out of Eq. 22.
The advantage of the reciprocal theorem approach is that if we solve the

“primed” problem for a given set of particle positions xα, we can easily compute the
set V of 6N velocities for any set of slip velocities vs,α. This, for instance, facilitates
studying how various choices for b xsð Þ or Bn,α affect particle motion. Additionally,
the “primed” problem for the resistance matrixR and stresses σ0 jð Þ in a system of N
spheres is a standard problem in microhydrodynamics. An interesting open ques-
tion is whether this approach is numerically more stable than directly solving for the
6N particle velocities in the presence of the force-free and torque-free constraints.

2.3.1 Proof of Lorentz reciprocal theorem

We provide a short proof of Eq. 15, following the lines of Ref. 59 because some
intermediate results will be useful later in the chapter. We recall that the rate of
strain tensor eij is defined as

eij ¼ 1
2

∂ui
∂xj

þ ∂uj
∂xi

� �
, (23)

and that, in index notation, the stress tensor is

σij ¼ �Pδij þ 2μeij (24)

We consider the quantity σ0ijeij:

σ0ijeij ¼ �P0δij þ 2μeij0
� �

eij

¼ �P0eii þ 2μe0ijeij

¼ 2μe0ijeij,

(25)

where we have used ∇ � u ¼ 0 to eliminate eii, and we assume the Einstein
convention for summation over repeated indices. Similarly, we can obtain
σije0ij ¼ 2μe0ijeij, so that

57

The Boundary Element Method for Fluctuating Active Colloids
DOI: http://dx.doi.org/10.5772/intechopen.86738



velocities of the particles can be calculated separately, using standard methods, and
superposed with the contributions from activity to obtain the complete velocities.)
We consider 6N “primed” problems, indexed by j ¼ 1, 2,…, 6N. For problem j ¼ α,
particle α is exposed to an external force with magnitude F0

ext in the x̂ direction.

Each particle has unknown translational and rotational velocities U0 jð Þ
α and Ω0 jð Þ

α , and
the velocity field u0 jð Þ is subject to no-slip boundary conditions on each particle:

u0 jð Þ xsð Þ ¼ U0 jð Þ
α þΩ0 jð Þ

α � xs � xαð Þ, xs ∈Sα, (16)

Additionally, the flow field vanishes far away from the particles, i.e.,
u0 jð Þ jxj ! ∞ð Þ ¼ 0. The unprimed problem and primed problem α are schematically
illustrated in Figure 2. Similarly, for problems j ¼ αþ 1 and j ¼ αþ 2, particle α is
exposed to an external force with magnitude in the ŷ and ẑ directions, respectively,
with no-slip boundary conditions likewise holding on each particle, and the flow
field vanishing far away from the particles. For problems j ¼ αþ 3, j ¼ αþ 4, and
j ¼ αþ 5, particle α is exposed to a torque with magnitude τ0ext in the x̂, ŷ, and ẑ
directions, respectively, with the same boundary conditions. Each “primed” prob-

lem j can be solved for 6N unknown velocity components U0 jð Þ
α and Ω0 jð Þ

α .
For problem j, we substitute Eqs. 3 and 16 into Eq. 15 for u and u0 ¼ u0 jð Þ to

obtain:
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term involving U0

α jð Þ. For each integral over Sα, U0
α jð Þ is a constant and can be

moved out of the integral,
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Illustration of the “unprimed” problem for the velocities of N active particles, and the “primed” problem α for
the velocities of N inert particles when particle α is exposed to a force with magnitude F0

ext in the x̂ direction.
Similarly, in primed problems αþ 1 and α þ 2, particle α is exposed to a force with magnitude F0

ext in the ŷ
direction and the ẑ direction, respectively. Moreover, in primed problems α þ 3, α þ 4, and αþ 5, particle α is
exposed to torques with magnitude τ0ext in the x̂, ŷ, and ẑ directions, respectively. Note that the primed and the
6N unprimed problems all have the same geometry, i.e., the same configuration of N spheres.
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but the integral is simply the force Fα on particle α. Since the particles are free of
external forces, Fα ¼ 0. Likewise, the term involving Ω0

α jð Þ can be rearranged as

Ω0
α jð Þ �

ð

Sα

xs � xαð Þ � σ � n̂ dS, (20)

but the integral is the torque τα ¼ 0 on particle α.
Rearranging the left hand side of Eq. 17, we obtain a set of 6N equations j:

∑
α

Uα � F0 jð Þ
α þΩα � τ0 jð Þ

α

� �
¼ �∑

α

ð

Sα

vs � σ0 jð Þ � n̂ dS , j ¼ 1,…, 6N : (21)

These 6N equations can be written in matrix form:

R �V ¼ b, (22)

where b is a vector containing the 6N integrals associated with the right hand
side of Eq. 21, V is vector of all 6N velocity components Uα;Ωαð ÞT, and R is the
grand resistance matrix for N spheres at positions xα. Note that the arbitrary
magnitudes F0

ext and τ0ext have been divided out of Eq. 22.
The advantage of the reciprocal theorem approach is that if we solve the

“primed” problem for a given set of particle positions xα, we can easily compute the
set V of 6N velocities for any set of slip velocities vs,α. This, for instance, facilitates
studying how various choices for b xsð Þ or Bn,α affect particle motion. Additionally,
the “primed” problem for the resistance matrixR and stresses σ0 jð Þ in a system of N
spheres is a standard problem in microhydrodynamics. An interesting open ques-
tion is whether this approach is numerically more stable than directly solving for the
6N particle velocities in the presence of the force-free and torque-free constraints.

2.3.1 Proof of Lorentz reciprocal theorem

We provide a short proof of Eq. 15, following the lines of Ref. 59 because some
intermediate results will be useful later in the chapter. We recall that the rate of
strain tensor eij is defined as

eij ¼ 1
2

∂ui
∂xj

þ ∂uj
∂xi

� �
, (23)

and that, in index notation, the stress tensor is

σij ¼ �Pδij þ 2μeij (24)

We consider the quantity σ0ijeij:

σ0ijeij ¼ �P0δij þ 2μeij0
� �

eij

¼ �P0eii þ 2μe0ijeij

¼ 2μe0ijeij,

(25)

where we have used ∇ � u ¼ 0 to eliminate eii, and we assume the Einstein
convention for summation over repeated indices. Similarly, we can obtain
σije0ij ¼ 2μe0ijeij, so that
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σ0ijeij ¼ σije0ij: (26)

We can also manipulate σ0ijeij as follows:

σ0ijeij ¼
1
2
σ0ij

∂ui
∂xj

þ 1
2
σ0ij

∂uj
∂xi

: (27)

Swapping the two indices in the last term,

σ0ijeij ¼
1
2
σ0ij

∂ui
∂xj

þ 1
2
σ0ji

∂ui
∂xj

: (28)

But σ0ij ¼ σ0ji, giving

σ0ijeij ¼ σ0ij
∂ui
∂xj

¼ ∂

∂xj
σ0ij ui
� �

� ∂σ0ij
∂xj

 !
,

(29)

so that

∂

∂xj
σ0ijui
� �

� ∂σ0ij
∂xj

 !
ui ¼ ∂

∂xj
σiju0i
� �� ∂σij

∂xj

� �
u0i: (30)

If there are no point forces applied to the fluid in determination of u0 and u, then
∇ � σ ¼ 0 and ∇ � σ0 ¼ 0, and we obtain

∇ � u � σ0ð Þ ¼ ∇ � u0 � σð Þ: (31)

Integrating both sides over the volume V and applying the divergence theorem,
we obtain Eq. 15.

2.4 Boundary integral formulation of the Laplace equation

Even with the aid of the Lorentz reciprocal theorem, it is necessary to solve the
Stokes and (for self-phoretic particles) Laplace equations in a fluid domain
containing the active particles as interior boundaries. For most configurations of the
suspension, an analytical solution is intractable, and a numerical approach is
required. Many numerical methods (e.g., the Finite Element Method) discretize and
solve the governing partial differential equations in the three-dimensional fluid
domain. This can be computationally intensive. Moreover, if the domain is
unbounded in one or more dimensions, the computational domain must be trun-
cated. Typically, the computational domain must be large in order to accurately
approximate an unbounded solution, and significant computational effort must be
expended on calculating the flow, pressure, and concentration fields far away from
the particles.

An alternative approach proceeds from the following insight: a linear boundary
value problems can be reformulated as a boundary integral equation (BIE) on the
domain boundaries [51, 60]. Furthermore, the boundary integral equation can be
discretized for numerical solution, yielding a dense linear system of coupled bound-
ary element equations in the form of A � q ¼ b. One significant advantage of the
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boundary element method is that it requires discretization of only bounding surfaces;
for instance, to represent an unbounded system of N particles, one need only mesh
the surfaces of the N spheres. As a disadvantage, the coefficient matrix A is typi-
cally fully populated and non-symmetric; therefore, for a system of Nelm elements,
the required computer memory scales as O N2

elm

� �
, and the required computation

time scales as O N3
elm

� �
.

In order to obtain the BIE for the Laplace equation, we first consider the diver-
gence theorem:

ð

V
∇ �AdV ¼ �

ð

S
A � n̂ dS, (32)

where the volume integral on the left hand side is carried out over the entire
solution domain V, and the surface integral on the right hand side is carried out over
all boundaries S. We include a negative sign on the right hand side of the equation
because we define n̂ to point into the solution domain (see Figure 3). If A ¼ ϕ∇ψ ,
where ϕ xð Þ and ψ xð Þ are scalar fields, then the divergence term
∇ �A ¼ ϕ∇2ψ þ ∇ϕ � ∇ψ , and we obtain Green’s first identity:

ð

V
ϕ∇2ψ þ ∇ϕ � ∇ψ� �

dV ¼ �
ð

S
ϕ∇ψ � n̂ dS: (33)

We can also write Green’s first identity for A ¼ ψ∇ϕ:
ð

V
ψ∇2ϕþ ∇ψ � ∇ϕ� �

dV ¼ �
ð

S
ψ∇ϕ � n̂ dS: (34)

Subtracting Eq. 34 from Eq. 33, we obtain Green’s second identity:

Figure 3.
Schematic illustration of the geometry for development of the boundary integral equations for the Laplace and
stokes equations. The fluid domain is denoted by V, the solid domain by Vp, and the interior of particle α by
Vp,α, where Vp ¼ ∪N

α¼1Vp,α. The solid and fluid domains are separated by the particle surfaces Sα, with
S ¼ ∪N

α¼1 Sα. The observation point x0 can occur in V, in V, or on S; we show x0 in V.
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σ0ijeij ¼ σije0ij: (26)

We can also manipulate σ0ijeij as follows:

σ0ijeij ¼
1
2
σ0ij

∂ui
∂xj

þ 1
2
σ0ij

∂uj
∂xi

: (27)

Swapping the two indices in the last term,

σ0ijeij ¼
1
2
σ0ij

∂ui
∂xj

þ 1
2
σ0ji

∂ui
∂xj

: (28)

But σ0ij ¼ σ0ji, giving

σ0ijeij ¼ σ0ij
∂ui
∂xj

¼ ∂

∂xj
σ0ij ui
� �

� ∂σ0ij
∂xj

 !
,

(29)

so that

∂

∂xj
σ0ijui
� �

� ∂σ0ij
∂xj

 !
ui ¼ ∂

∂xj
σiju0i
� �� ∂σij

∂xj

� �
u0i: (30)

If there are no point forces applied to the fluid in determination of u0 and u, then
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2.4 Boundary integral formulation of the Laplace equation

Even with the aid of the Lorentz reciprocal theorem, it is necessary to solve the
Stokes and (for self-phoretic particles) Laplace equations in a fluid domain
containing the active particles as interior boundaries. For most configurations of the
suspension, an analytical solution is intractable, and a numerical approach is
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ary element equations in the form of A � q ¼ b. One significant advantage of the
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boundary element method is that it requires discretization of only bounding surfaces;
for instance, to represent an unbounded system of N particles, one need only mesh
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elm

� �
, and the required computation

time scales as O N3
elm

� �
.
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S ¼ ∪N

α¼1 Sα. The observation point x0 can occur in V, in V, or on S; we show x0 in V.

59

The Boundary Element Method for Fluctuating Active Colloids
DOI: http://dx.doi.org/10.5772/intechopen.86738



ð

V
ϕ∇2ψ � ψ∇2ϕ
� �

dV ¼ �
ð

S
ϕ∇ψ � ψ∇ϕð Þ � n̂ dS: (35)

Now, we let ϕ ¼ c xð Þ, with ∇2c ¼ 0. Furthermore, we let ψ ¼ G x;x0ð Þ, where
the Green’s function G x;x0ð Þ satisfies Poisson’s equation:

∇2G x;x0ð Þ þ δ x� x0ð Þ ¼ 0: (36)

We obtain:

ð

V
c xð Þ∇2G x;x0ð ÞdV ¼ �

ð

S
c xð Þ∇G x;x0ð Þ �G x;x0ð Þ∇c xð Þ½ � � n̂ dS: (37)

We have not yet specified the location of the pole x0. If x0 is located in the
domain V, then, using the properties of the Dirac delta function, we obtain an
integral representation of the concentration field c x0ð Þ at a point x0 ∈V:

c x0ð Þ ¼
ð

S
c xð Þ∇G x;x0ð Þ �G x;x0ð Þ∇c xð Þ½ � � n̂ dS: (38)

Using the divergence theorem, can show that ∇2 1
∣x�x0∣

� �
¼ �4πδ x� x0ð Þ, so that

G x;x0ð Þ ¼ 1
4π∣x� x0∣

: (39)

We recall from electrostatics that G x;x0ð Þ represents the electrostatic potential
at x from a point charge of unit strength located at x0. Within the context of the
steady diffusion equation ∇2c ¼ 0, it has a different physical interpretation: it can
be regarded as the steady concentration c xð Þ at a point x due to a point-like, steady
source of concentration, continuously injected into the system, located at x0 and
with unit strength (i.e., unit number density flux per unit time). One can take
derivatives of G x;x0ð Þ with respect to x0 to obtain higher order multipole singular-
ities. For instance, we can obtain the Green’s function Gdp x;x0ð Þ for a source/sink
dipole located at x0 as

Gdp x;x0ð Þ � ∇x0G x;x0ð Þ ¼ x� x0ð Þ
4π x� x0j j3 : (40)

As Gdp x;x0ð Þ is a vector quantity, we obtain a scalar contribution to c xð Þ by
multiplying with a dipole vector d; the magnitude and direction of d specify the
strength and orientation of the dipole.

By inspection, the Green’s function obeys the symmetry property G x;x0ð Þ =
G x0;xð Þ, so we can rewrite Eq. 38 as

c x0ð Þ ¼
ð

S
c xð Þ∇G x0;xð Þ �G x0;xð Þ∇c xð Þ½ � � n̂ dS: (41)

Interestingly, we have obtained an expression for c x0ð Þ in the solution domain in
terms of the values of c xð Þ and ∇c xð Þ � n̂ on the domain boundaries. Note that this is
not a solution to a boundary value problem for c x0ð Þ, since a BVP specifies only one
of the quantities c xð Þ and ∇c xð Þ � n̂ on the domain boundaries. Specifically, for the
problem of a system of catalytic particles outlined above, we only know ∇c xð Þ � n̂
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a priori. Eq. 41 has an interesting physical interpretation: c x0ð Þ can be regarded as
the concentration due to a distribution of monopoles (i.e., point sources of mass
flux) with strength�∇c xð Þ � n̂ on the boundaries, plus a distribution of point dipoles
(i.e., infinitesimally separated pairs of mass sources and sinks) with strength c xð Þ
and orientation n̂ on the boundaries.

We still have two other options for where to place x0: inside the boundary S
(i.e., outside the solution domain V) or somewhere on the boundary S. If we place
x0 inside S, then the integral on the left hand side of Eq. 37 vanishes:

ð

S
c xð Þ∇G x;x0ð Þ �G x;x0ð Þ∇c xð Þ½ � � n̂ dS ¼ 0: (42)

Placing x0 on the boundary requires some care in how to handle the Dirac delta
function on the left hand side of Eq. 37. If we regard the Dirac delta as the limit of a
sequence of distributions, then it is clear that a factor of one half should arise when
we integrate over V:

1
2
c x0ð Þ ¼

ð

S
c xð Þ∇G x;x0ð Þ �G x;x0ð Þ∇c xð Þ½ � � n̂ dS: (43)

This is a boundary integral equation (BIE) because the left hand side is the
concentration c x0ð Þ at a point on the boundary, while the right hand side is an
integral of c xð Þ and ∇c xð Þ � n̂ over the same boundary. A boundary value problem
typically specifies one of these two quantities on the boundary; the other can be
obtained with Eq. 43.

In the boundary element method, the boundary integral equation is discretized for
numerical solution. Here, we briefly summarize the method, and direct the reader
to consult the useful and comprehensive book of Pozrikidis for further information
[51]. Each particle is represented as a meshed, closed surface. The meshing only
needs to be done once; for a dynamical simulation, no remeshing during the simu-
lation is required, even if the particles move relative to each other. The concentra-
tion c and its normal derivative ∇c � n̂ are assumed to be uniform over element i. For
a point x0 on the surface, we obtain the boundary integral equation:

1
2
c x0ð Þ ¼ ∑

Nelm

i¼1
ci
ð

Si

∇G x;x0ð Þ � n̂ dS
� �

� ∇c � n̂ð Þi
ð

Si

G x;x0ð Þ dS
� �� �

: (44)

Choosing x0 as the midpoint xj of element j, we can write Nelm equations:

1
2
cj ¼ ∑

Nelm

i¼1
ci

ð

Si

∇G x;xj
� � � n̂ dS

� �
� ∇c � n̂ð Þi

ð

Si

G x;xj
� �

dS
� �� �

: (45)

The Nelm equations can be written in matrix form:

Aij � 1
2
δij

� �
cj ¼ Bij ∇c � n̂ð Þj, (46)

where

Aij �
ð

Si

∇G x;xj
� � � n̂ dS (47)

and
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We have not yet specified the location of the pole x0. If x0 is located in the
domain V, then, using the properties of the Dirac delta function, we obtain an
integral representation of the concentration field c x0ð Þ at a point x0 ∈V:
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We recall from electrostatics that G x;x0ð Þ represents the electrostatic potential
at x from a point charge of unit strength located at x0. Within the context of the
steady diffusion equation ∇2c ¼ 0, it has a different physical interpretation: it can
be regarded as the steady concentration c xð Þ at a point x due to a point-like, steady
source of concentration, continuously injected into the system, located at x0 and
with unit strength (i.e., unit number density flux per unit time). One can take
derivatives of G x;x0ð Þ with respect to x0 to obtain higher order multipole singular-
ities. For instance, we can obtain the Green’s function Gdp x;x0ð Þ for a source/sink
dipole located at x0 as

Gdp x;x0ð Þ � ∇x0G x;x0ð Þ ¼ x� x0ð Þ
4π x� x0j j3 : (40)

As Gdp x;x0ð Þ is a vector quantity, we obtain a scalar contribution to c xð Þ by
multiplying with a dipole vector d; the magnitude and direction of d specify the
strength and orientation of the dipole.

By inspection, the Green’s function obeys the symmetry property G x;x0ð Þ =
G x0;xð Þ, so we can rewrite Eq. 38 as

c x0ð Þ ¼
ð

S
c xð Þ∇G x0;xð Þ �G x0;xð Þ∇c xð Þ½ � � n̂ dS: (41)

Interestingly, we have obtained an expression for c x0ð Þ in the solution domain in
terms of the values of c xð Þ and ∇c xð Þ � n̂ on the domain boundaries. Note that this is
not a solution to a boundary value problem for c x0ð Þ, since a BVP specifies only one
of the quantities c xð Þ and ∇c xð Þ � n̂ on the domain boundaries. Specifically, for the
problem of a system of catalytic particles outlined above, we only know ∇c xð Þ � n̂
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a priori. Eq. 41 has an interesting physical interpretation: c x0ð Þ can be regarded as
the concentration due to a distribution of monopoles (i.e., point sources of mass
flux) with strength�∇c xð Þ � n̂ on the boundaries, plus a distribution of point dipoles
(i.e., infinitesimally separated pairs of mass sources and sinks) with strength c xð Þ
and orientation n̂ on the boundaries.

We still have two other options for where to place x0: inside the boundary S
(i.e., outside the solution domain V) or somewhere on the boundary S. If we place
x0 inside S, then the integral on the left hand side of Eq. 37 vanishes:

ð

S
c xð Þ∇G x;x0ð Þ �G x;x0ð Þ∇c xð Þ½ � � n̂ dS ¼ 0: (42)

Placing x0 on the boundary requires some care in how to handle the Dirac delta
function on the left hand side of Eq. 37. If we regard the Dirac delta as the limit of a
sequence of distributions, then it is clear that a factor of one half should arise when
we integrate over V:

1
2
c x0ð Þ ¼

ð

S
c xð Þ∇G x;x0ð Þ �G x;x0ð Þ∇c xð Þ½ � � n̂ dS: (43)

This is a boundary integral equation (BIE) because the left hand side is the
concentration c x0ð Þ at a point on the boundary, while the right hand side is an
integral of c xð Þ and ∇c xð Þ � n̂ over the same boundary. A boundary value problem
typically specifies one of these two quantities on the boundary; the other can be
obtained with Eq. 43.

In the boundary element method, the boundary integral equation is discretized for
numerical solution. Here, we briefly summarize the method, and direct the reader
to consult the useful and comprehensive book of Pozrikidis for further information
[51]. Each particle is represented as a meshed, closed surface. The meshing only
needs to be done once; for a dynamical simulation, no remeshing during the simu-
lation is required, even if the particles move relative to each other. The concentra-
tion c and its normal derivative ∇c � n̂ are assumed to be uniform over element i. For
a point x0 on the surface, we obtain the boundary integral equation:

1
2
c x0ð Þ ¼ ∑

Nelm

i¼1
ci
ð

Si

∇G x;x0ð Þ � n̂ dS
� �

� ∇c � n̂ð Þi
ð

Si

G x;x0ð Þ dS
� �� �

: (44)

Choosing x0 as the midpoint xj of element j, we can write Nelm equations:

1
2
cj ¼ ∑

Nelm

i¼1
ci

ð

Si

∇G x;xj
� � � n̂ dS

� �
� ∇c � n̂ð Þi

ð

Si

G x;xj
� �

dS
� �� �

: (45)

The Nelm equations can be written in matrix form:

Aij � 1
2
δij

� �
cj ¼ Bij ∇c � n̂ð Þj, (46)

where

Aij �
ð

Si

∇G x;xj
� � � n̂ dS (47)

and
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Bij �
ð

Si

G x;xj
� �

dS: (48)

Given either a specification of either cj (Dirichlet boundary conditions) or
∇c � n̂ð Þj (Neumann boundary conditions), the algebraic system in Eq. 46 can be
solved numerically with standard methods.

A certain difficulty becomes apparent when we consider the element Bii: the
evaluation point xi lies within the element of integration, and therefore the integral
contains the singularity of Eq. 39. We are saved from a potentially disastrous
situation by the fact that the integral is carried out over an area. Nevertheless, this
singular integral has to be handled with care. Further technical information, as well
as a wealth of practical details concerning implementation of the BEM, is available
in Ref. [51].

As a further note, issues with singular integrals have motivated development
of regularized boundary element methods, which use a regularized Green’s function,
i.e., a Green’s function with the singularity “smeared out” over a finite size ε
[52, 54, 61].

2.5 Boundary integral formulation of the Stokes equation

A similar approach can be taken for the Stokes equation [51, 59]. Recall that the
Stokes equation is:

∇ � σ ¼ �∇Pþ μ∇2u ¼ 0: (49)

We can define a Green’s function G x;x0ð Þ as the solution u xð Þ � G x;x0ð Þ � F to
the Stokes equation with a body point force F located at x0:

�∇Pþ μ∇2uþ Fδ x� x0ð Þ ¼ 0, (50)

or

∇ � σ ¼ �Fδ x� x0ð Þ: (51)

It can be shown that the Green’s function is

Gij x;x0ð Þ ¼ 1
8πμr

δij þ
~xi~xj

r2

� �
, (52)

where r � ∣x� x0∣ and where ~xj � xj � x0, j. Eq. 52 is commonly called the Oseen
tensor or “Stokeslet”. The fluid pressure in response to the point force is given by
P xð Þ � P x;x0ð Þ � F, where

P j ¼
~xj

4πr3
: (53)

The stress in the fluid is given by σ � Σ x;x0ð Þ � F, where

Σijk ¼ �3
~xi~xj~xk

4πr5
: (54)

Now we wish to apply Eq. 30. We specify the “primed” fields u0 and σ0 as the
fields due to a point force F at x0 in unbounded fluid. For the “unprimed” fields u
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and σ, we specify that they are fields of interest in the domain V bounded by S (see
Figure 3). Furthermore, V is free of body forces, so that ∇ � σ ¼ 0. We obtain:

∂

∂xj
uiΣijkFk
� �� ui

∂

∂xj
ΣijkFk
� � ¼ ∂

∂xj
σijGikFk
� �

(55)

Fk
∂

∂xj
uiΣijk
� �þ uiFiδ x� x0ð Þ ¼ Fk

∂

∂xj
Gikσij
� �

(56)

We integrate both sides over the domain V:

ð

V
ukFkδ x� x0ð ÞdV ¼ Fk

ð
∂

∂xj
Gikσij
� �� ∂

∂xj
uiΣijk
� �� �

dV (57)

Now we apply the divergence theorem:

Fk

ð

V
ukδ x� x0ð ÞdV ¼ �Fk

ð

S
Gik x;x0ð Þσij � uiΣijk x;x0ð Þ� �

nj dS, (58)

where the negative sign appears because of our convention that n̂ points into V.
We note that Gik x;x0ð Þ ¼ Gik x0;xð Þ and Σijk x;x0ð Þ ¼ �Σijk x0;xð Þ. Additionally, the
choice of Fk was arbitrary. We can therefore write:

ð

V
ukδ x� x0ð ÞdV ¼ �

ð

S
Gik x0;xð Þσij þ uiΣijk x0;xð Þ� �

nj dS: (59)

If we choose to place x0 in V, we obtain a boundary integral representation for
uk x0ð Þ:

uk x0ð Þ ¼ �
ð

S
Gik x0;xð Þσij xð Þ þ Σijk x0;xð Þui xð Þ� �

nj dS: (60)

As with Eq. 41, the boundary integral representation for the flow field has an
interesting physical interpretation. The first term on the right hand side of Eq. 60
can be regarded as a “single layer potential” due to a distribution of point forces
with strength σ � n̂ over the surface of the particle. The second term on the right
hand side is the “double layer potential.” Detailed examination of this term reveals
that it can be decomposed into the superposition of the flow due to a distribution
u � n̂ of point sources and sinks of fluid mass, plus the flow to a distribution of point
force dipoles [59].

If we place x0 outside V, i.e., inside the space Vp enclosed by the particles, we
obtain

�
ð

S
Gik x0;xð Þσij xð Þ þ Σijk x0;xð Þui xð Þ� �

nj dS ¼ 0: (61)

Finally, if we place x0 on the boundary S, we obtain a boundary integral
equation:

1
2
uk x0ð Þ ¼ �

ð

S
Gik x0;xð Þσij xð Þ þ Σijk x0;xð Þui xð Þ� �

nj dS: (62)

For rigid body motion, including the 6N “primed” problems for the Lorentz
reciprocal theorem, the double layer can be eliminated from the boundary integral
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Bij �
ð

Si

G x;xj
� �

dS: (48)
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solved numerically with standard methods.

A certain difficulty becomes apparent when we consider the element Bii: the
evaluation point xi lies within the element of integration, and therefore the integral
contains the singularity of Eq. 39. We are saved from a potentially disastrous
situation by the fact that the integral is carried out over an area. Nevertheless, this
singular integral has to be handled with care. Further technical information, as well
as a wealth of practical details concerning implementation of the BEM, is available
in Ref. [51].

As a further note, issues with singular integrals have motivated development
of regularized boundary element methods, which use a regularized Green’s function,
i.e., a Green’s function with the singularity “smeared out” over a finite size ε
[52, 54, 61].

2.5 Boundary integral formulation of the Stokes equation

A similar approach can be taken for the Stokes equation [51, 59]. Recall that the
Stokes equation is:

∇ � σ ¼ �∇Pþ μ∇2u ¼ 0: (49)

We can define a Green’s function G x;x0ð Þ as the solution u xð Þ � G x;x0ð Þ � F to
the Stokes equation with a body point force F located at x0:

�∇Pþ μ∇2uþ Fδ x� x0ð Þ ¼ 0, (50)

or

∇ � σ ¼ �Fδ x� x0ð Þ: (51)

It can be shown that the Green’s function is

Gij x;x0ð Þ ¼ 1
8πμr

δij þ
~xi~xj

r2

� �
, (52)

where r � ∣x� x0∣ and where ~xj � xj � x0, j. Eq. 52 is commonly called the Oseen
tensor or “Stokeslet”. The fluid pressure in response to the point force is given by
P xð Þ � P x;x0ð Þ � F, where

P j ¼
~xj

4πr3
: (53)

The stress in the fluid is given by σ � Σ x;x0ð Þ � F, where

Σijk ¼ �3
~xi~xj~xk

4πr5
: (54)

Now we wish to apply Eq. 30. We specify the “primed” fields u0 and σ0 as the
fields due to a point force F at x0 in unbounded fluid. For the “unprimed” fields u

62

Non-Equilibrium Particle Dynamics

and σ, we specify that they are fields of interest in the domain V bounded by S (see
Figure 3). Furthermore, V is free of body forces, so that ∇ � σ ¼ 0. We obtain:

∂

∂xj
uiΣijkFk
� �� ui

∂

∂xj
ΣijkFk
� � ¼ ∂

∂xj
σijGikFk
� �

(55)

Fk
∂

∂xj
uiΣijk
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We integrate both sides over the domain V:
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Now we apply the divergence theorem:
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where the negative sign appears because of our convention that n̂ points into V.
We note that Gik x;x0ð Þ ¼ Gik x0;xð Þ and Σijk x;x0ð Þ ¼ �Σijk x0;xð Þ. Additionally, the
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If we choose to place x0 in V, we obtain a boundary integral representation for
uk x0ð Þ:
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As with Eq. 41, the boundary integral representation for the flow field has an
interesting physical interpretation. The first term on the right hand side of Eq. 60
can be regarded as a “single layer potential” due to a distribution of point forces
with strength σ � n̂ over the surface of the particle. The second term on the right
hand side is the “double layer potential.” Detailed examination of this term reveals
that it can be decomposed into the superposition of the flow due to a distribution
u � n̂ of point sources and sinks of fluid mass, plus the flow to a distribution of point
force dipoles [59].

If we place x0 outside V, i.e., inside the space Vp enclosed by the particles, we
obtain
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Finally, if we place x0 on the boundary S, we obtain a boundary integral
equation:

1
2
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For rigid body motion, including the 6N “primed” problems for the Lorentz
reciprocal theorem, the double layer can be eliminated from the boundary integral
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equation as follows [59]. Consider extending the volume filled by “fluid” to Vp.
Within Vp, the flow field u is simply the flow field uRBM for rigid body motion, since
it must obey no-slip on the surface S. Now we apply Eq. 59 for the field uRBM inside
Vp and x0 ∈V, noting that we must use a normal n̂0 ¼ �n̂ pointing into Vp:

�
ð

S
Gik x0;xð ÞσRBMij xð Þ þ Σijk x0;xð ÞuRBMi xð Þ
h i

n0j dS ¼ 0: (63)

For rigid body motion, there is no shear stress and the pressure is uniform,
i.e., σRBMij xð Þn̂0 ¼ �p0n̂

0. The first term is simply the integral of Gik x0;xð Þ � n̂0 over
the surface S for x0 ∈V, which vanishes identically by incompressibility. This
leaves:

�
ð

S
Σijk x0;xð ÞuRBMi xð Þ� �

n0j dS ¼ 0: (64)

Examining Eq. 62, we note that u xð ), i.e., the flow velocity in V, is equal to uRBM

on S. Therefore, we conclude:

uk x0ð Þ ¼ �
ð

S
Gik x0;xð Þσij xð Þ� �

nj dS, x0 ∈V: (65)

In order to obtain a single-layer boundary integral equation for x0 ∈S, note that
the jump discontinuity responsible for the factor of 1=2 in Eq. 62 is strictly from the
double-layer potential [59]. The contribution of the single layer potential to the
velocity field is continuous across S. We obtain:

uk x0ð Þ ¼ �
ð

S
Gik x0;xð Þσij xð Þ� �

nj dS, x0 ∈S: (66)

This single layer boundary integral equation can be discretized and solved
numerically in a similar manner as the Laplace equation; Ref. 51 provides a com-
prehensive account.

2.6 Active suspensions in confined geometries

In the preceding, we considered a suspension of N particles in an unbounded
three-dimensional geometry. However, the presence of confining boundaries can
have a significant effect on the dynamics of a suspension. It is possible to include a
solid surface by explicitly meshing it and including it as a “fixed” or immobile
particle in the calculations [53]. This approach is typically necessary for solid sur-
faces with corners or complex topography. One disadvantage of this approach is
that an infinite surface (e.g., an infinite planar wall) must be truncated and
included as a finite size object. Care must be taken that the mesh is sufficiently fine
near the particles, so that, for instance, the concentration and flow fields do not
“leak” through a solid wall, but also that the mesh is sufficiently coarse far away
from the particles, so that computation time is tractable.

A second, “mesh-free” approach is suitable for confining geometries with high
symmetry, such as an infinite planar wall [39], an interface between two fluids with
different viscosities [62], a fluid domain bounded by a solid wall and a free interface
[63], or even two infinite planar walls. Additionally, it can be suitable if the domain
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is periodic in two or three dimensions. In this approach, the Green’s functions for
the Laplace and Stokes equations are replaced with Green’s functions that obey the
desired boundary conditions on the bounding surfaces. The Green’s function in the
confined geometry can often be constructed by the method of images.

2.7 Thermal fluctuations

So far, we have considered the deterministic contributions to the 6N compo-
nents of velocity for a suspension of N particles. However, as outlined in the
Introduction, the interplay of these deterministic contributions and the stochastic
Brownian forces on the particles is important—and in some problems, such as the
long-time behavior of an active colloid, it is absolutely essential.

One approach to include Brownian forces on an active particle, the hybrid
boundary element/Brownian dynamics method, simply calculates them separately and
superposes them with the deterministic contributions. Using the Itô convention for
stochastic differential equations, this superposition is expressed by the overdamped
Langevin equation for the generalized, 6N-component coordinate q:

dq
dt

¼ Vþ kBT ∇ �Mð Þ þ
ffiffiffiffiffiffiffiffiffiffiffi
2kBT

p
B �W, (67)

where V is the deterministic contribution of activity to the generalized velocity
Uα;Ωαð ÞT, i.e., the solution to the problem outlined above; M is the grand mobility
matrix M ¼ R�1; B satisfies B � BT ¼ M; and W is a collection of independent
Wiener processes. Discretizing time in steps of Δt, one can write a generalized
displacement Δq as the following Euler-Maruyama equation [34, 64]:

Δq ¼ VΔtþ kBT ∇ �Mð ÞΔtþ
ffiffiffiffiffiffiffiffiffiffiffi
2kBT

p
B � Δw, (68)

where Δw is a stochastic variable with Δwh i ¼ 0 and ΔwiΔwj
� � ¼ δijΔt. The

stochastic drift term ∇ �Mð Þ is a consequence of having a configuration-dependent
mobility tensor in the framework of the Itô interpretation.

The update of the orientation of each particle α should respect the constraint
that ∣dα∣ ¼ 1 and avoid any errors arising from application of (non-commuting)
rotation matrices in arbitrary order to dα. There are robust algorithms for rigid body
motion that represent the orientations of the particles with quaternions [65], Euler
angles [66], or rotation matrices that transform between body-fixed and global
reference frames [67].

The stochastic drift term in Eq. 68 can present some difficulty for numerical
calculations [66]. For some simple situations, such as a single spherical colloid near
a planar wall [34, 42], solutions for the configuration dependence of the mobility
tensor are available in the literature [68, 69]. Alternatively, Eq. 67 can be discretized
and solved via Fixman’s midpoint method to avoid calculation of the drift term [70].

This approach assumes that that the colloid and the fluid are not fluctuating on
the same timescale, i.e., the fluid velocity is integrated out as a fast variable. Addi-
tionally, for self-phoretic particles, this approach necessarily neglects fluctuations
of the chemical field c xð Þ in the fluid domain V.

A recently developed variation of the boundary element method for Stokes flow,
the fluctuating boundary element method, does not make this post hoc superposition of
deterministic and Brownian contributions to particle motion. Rather, fluctuations
are directly incorporated into boundary integral equation via a random velocity
field on the boundary S [71].
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3. Discussion and conclusions

The boundary element method is emerging as a powerful and important method
for numerical simulation in the field of synthetic active colloids [30, 52, 54–57]. This
new area of application follows many years of fruitful application to modeling
biological microswimmers, including with the squirmer model [40, 53]. For active
colloids, a major advantage of the boundary element approach is that it can resolve
the microscopic details of phoretic self-propulsion, including the chemical and flow
fields generated by an active colloid, the surface chemistry and shape of the colloid,
and the microscopic physics of how the colloid can couple to ambient fields and
confining surfaces.

A few examples serve to illustrate the utility of the approach. Ref. [30] considers
the dynamics of a spherical active Janus colloid near a planar wall. The colloid can
“sense” and respond to the wall through self-generated chemical and hydrodynamic
fields. Specifically, the wall provides a no-flux boundary condition for the solute
concentration, and a no-slip boundary condition for the flow field. By confining the
solute, the wall enriches the concentration of solute in the space between the
particle and the wall, breaking the axial symmetry of the concentration field.
Concerning the flow, the flow created by the particle scatters off the wall and back
to the particle. These effects are captured by the boundary element method,
including their dependence on the size of the catalytic cap and the spatial variation
in the surface mobility b over the surface of the particle. As another example, Ref.
[43] considers the dynamics of a photo-active spherical Janus colloid. The catalytic
cap of the colloid is only active when exposed to incident light. This self-shadowing
effect, in conjunction with the spatial variation of b on the surface of the colloid,
leads to phototaxis (rotation of the cap towards the light) or anti-phototaxis
(rotation of the cap away from the light.) Notably, this work uses the hybrid
BEM/BD method to calculate the distribution of particle orientations as a
function of illumination intensity and particle surface chemistry. Concerning the
interaction of multiple particles, Ref. 57 uses the regularized BEM to calculate the
dynamics of multiple isotropic spherical colloids. Interestingly, a group of N ¼ 5
particles can form a stable cluster with broken rotational symmetry. This broken
symmetry allows propulsion of the whole cluster. Finally, concerning shape, the
BEM has been used to model toroidal [54] and spherocylindrical [72] self-phoretic
particles.

However, some caveats are in order. For the hybrid boundary element/Brownian
dynamics method discussed in this work, neither the fluctuations of the suspending
fluid nor of the chemical field(s) are explicitly resolved. For self-phoretic particles
in the ångstrom to nanometer size range, the particles, the solute, and the solvent
fluctuate on similar timescales. Additionally, the validity of the continuum
description of the surrounding solution is questionable. Molecular and mesoscopic
simulation methods that resolve discrete solute and solvent particles may be more
appropriate in this size range [48]. As a second caveat, boundary element methods
are most suited to solution of linear governing PDEs, such as the Laplace and Stokes
equations. Introducing nonlinearity in the governing equations (e.g., for a solution
with nonlinear rheology or nonlinear bulk reaction kinetics) leads to the appearance
of volume integrals in the boundary integral formulation. Thirdly and relatedly, the
boundary element method is not as easily extensible as other methods (e.g., the
finite element method) for inclusion of more complicated multiphysics. Finally,
there is a caveat specific to active colloids. Much remains unknown about the
reaction kinetics for self-phoretic particles. The boundary element method can have
many free microscopic parameters (e.g., the values of the surface mobility b on
different surfaces); this raises the danger of overfitting to experimental results.
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As a potential direction of research, we suggest developing a hybrid computa-
tional method combining the advantages of BEM and Stokesian Dynamics (SD).
Stokesian dynamics is a method for simulating the dynamics of colloidal suspen-
sions [73–76]. Far-field hydrodynamic interactions are included in SD, truncated at
the level of the stresslet (i.e., the first moment of the stress on the surface of a
particle, which produces a hydrodynamic disturbance decaying as � 1=r2.) Near-
field hydrodynamic interactions are typically included via lubrication forces acting
between particle pairs. Due to these approximations, Stokesian dynamics is com-
putationally much cheaper than BEM, allowing access to collective dynamics, the
rheology of dense suspensions, etc. On the other hand, SD does not typically resolve
the microscopic details of individual particles, such as shape or heterogeneous
surface chemistry. A hybrid BEM-SD method could combine the detailed micro-
scopic resolution of BEM for near-field interactions with the ability of SD to capture
many-body phenomena driven by far-field interactions. (This hybrid approach
would bear some similarity to the fast multipole method.) In the Appendix at the
end of this chapter, we develop a starting point for including interfacial flows vs xð Þ
within the standard SD formalism for spherical particles.

As a second potential research direction, one could consider deformable active
particles using the BEM. The boundary element method for Stokes flow has been
coupled to methods to model particle elasticity, including the finite element
method, in order to study the deformation of fluid-filled capsules [77] and elastic
particles in shear flow [78], as well as the deformation of blood cells squeezing
through constrictions [79].

The boundary element method could also be used to investigate questions
touching upon fundamental nonequilibrium statistical mechanics. For instance, do
nonequilibrium steady states of squirmers or self-phoretic particles (e.g., stable
clusters of catalytic particles [57]) minimize the rate of entropy production [80]?
When do hydrodynamic interactions suppress or enhance motility-induced phase
separation and other nonequilibrium phase transitions? Does the pressure of an
active suspension on a boundary obey an equation of state when hydrodynamic and
phoretic interactions with the boundary are considered [76, 81]?

In any case, we anticipate that the boundary element method will continue to
find successful application in the microswimmers field. A few potential problems
include: modeling the collision dynamics and scattering of two or more non-
spherical active colloids [72, 82]; the interaction of an active colloid and a passive
colloid, possibly including the formation of dimeric bound states for cargo trans-
port; and further exploration of motion near bounding surfaces and interfaces,
especially fluid/fluid interfaces.

A. Faxén laws and connection to Stokesian dynamics

Consider an inert (non-active) sphere of radius R in an ambient flow field u∞ xð Þ.
The sphere has translational velocity U and rotational velocity Ω. The flow field u
can be written as u xð Þ ¼ u∞ xð Þ þ uD xð Þ, where uD xð Þ is the velocity disturbance
created by the presence of the sphere. The boundary condition for uD xð Þ on the
sphere surface S is

uD xsð Þ ¼ UþΩ� xs � x0ð Þ � u∞ xsð Þ, xs ∈S: (69)

Additionally, uD jxj ! ∞ð Þ ! 0. Taking the sphere position to be x0 ¼ 0, we can
expand the ambient flow field around the sphere center as:
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u∞i xð Þ ¼ u∞i 0ð Þ þ ∂u∞i
∂xj
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Now we recall the definitions of the (symmetric) rate of strain tensor eij,

eij ¼ 1
2

∂ui
∂xj

þ ∂uj
∂xi

� �
, (71)

and the (anti-symmetric) vorticity tensor

Wij ¼ 1
2

∂ui
∂xj

� ∂uj
∂xi

� �
, (72)

The vorticity tensor can be related to the vorticity vector w ¼ ∇� u by

W ¼ 1
2
ε �w: (73)

Here, ε is the Levi-Civita tensor. The first derivative in Eq. 70 can be
decomposed into symmetric and anti-symmetric contributions:

∂u∞i
∂xj

¼ e∞ij þW∞
ij : (74)

Using the Lorentz reciprocal theorem, one can obtain Faxén’s law for the drag
force on the sphere (see Ref. [59] for details):

Fdrag ¼ 6πμR 1þ R2

6
∇2

� �
u∞ x0ð Þ � U

� �
: (75)

(In our shorthand notation, the Laplacian is first applied to u∞ xð Þ and then
evaluated at x0.) One can also obtain Faxén law for the drag torque:

τdrag ¼ 8πμR3 ω∞ x0ð Þ �Ωð Þ, (76)

where the angular velocity of the fluid ω � 1
2w. Finally, there is a Faxén law for

the stresslet [59, 83, 84]

S ¼ 20
3
πμR3 1þ R2

10
∇2

� �
e∞ x0ð Þ, (77)

where S is defined as an integral over the particle surface

Sij ¼
ð

1
2

xjσiknk þ xiσjknk
� �� 1

3
xkσklnlð Þδij � μ uinj þ ujni

� �� �
dS: (78)

So far we have only presented standard results, but now we raise the following
question. Consider an active sphere with a slip velocity vs xð Þ. Comparing the
boundary conditions in Eq. 3 and Eq. 69, can we construct an ambient linear
flow field

u∞ xð Þ ¼ u∞ 0ð Þ þ e∞ � xþ ω∞ � x (79)
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with u∞ xsð Þ ¼ �vs xsð Þ on S? Constructing an effective flow field would allow us
to obtain Fdrag, τdrag, and S by Faxén laws, without having to solve the complete
hydrodynamic problem posed in Section II. Moreover, an understanding of how
vs xð Þ determines Fdrag, τdrag, and S would pave the way towards development of a
hybrid BEM-Stokesian Dynamics scheme, since these quantities are central to SD.

As our starting point, we write the Taylor expansion of u∞ xð Þ:

u∞i xð Þ ¼ u∞i 0ð Þ þ ∂u∞i
∂xj

����
x¼0

xj: (80)

To obtain u∞i 0ð Þ, we integrate both sides of Eq. 80 over the surface of the sphere:

ð
u∞i xð ÞdS ¼

ð
u∞i 0ð ÞdSþ

ð
∂u∞i
∂xj

����
x¼0

xj dS: (81)

We identify u∞
i xð Þ on the surface of the sphere as �vs xsð Þ. The second integral

on the right hand side of Eq. 81 vanishes, giving

u∞ 0ð Þ ¼ � 1
4πR2

ð
vs xsð ÞdS: (82)

Using Eq. 75, we obtain

Fdrag ¼ 6πμR � 1
4πR2

ð
vs xsð ÞdS�U

� �
: (83)

If we consider a force-free swimmer, Fdrag ¼ 0, giving the result:

U ¼ � 1
4πR2

ð
vs xsð ÞdS: (84)

This equation is one of the major results obtained in Ref. 37 by use of the Lorentz
reciprocal theorem. However, our rederivation and interpretation in terms of an
effective ambient flow field u∞ is (to our knowledge) novel. To obtain the vorticity
associated with u∞, we multiply Eq. 80 by εlmixm and integrate over the sphere
surface:

ð
εlmixmu∞i xð ÞdS ¼

ð
u∞i 0ð Þεlmi xmdSþ

ð
∂u∞i
∂xj

����
x¼0

εlmi xm xj dS: (85)

The first integral on the right hand side of Eq. 85 vanishes. For the second
integral on the right hand side, we use the identity

ð
xmxj dS ¼ 4πR4

3
δjm: (86)

We obtain:

ð
εlmi xmu∞i xð ÞdS ¼ 4πR4

3
εlji

∂u∞i
∂xj

����
x¼0

(87)

�
ð
x� vs xsð ÞdS ¼ 4πR4

3
∇� u∞

����
x¼0

¼ 8πR4

3
ω∞ 0ð Þ, (88)
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so that

ω∞ 0ð Þ ¼ � 3
8πR4

ð
x� vs xsð ÞdS: (89)

Using Eq. 76, we obtain:

τdrag ¼ 8πμR3 � 3
8πR4

ð
x� vs xsð ÞdS�Ω

� �
: (90)

For a torque-free swimmer, τdrag ¼ 0, and we obtain a second major result from
Ref. [37]:

Ω ¼ � 3
8πR4

ð
x� vs xsð ÞdS: (91)

Finally, we consider how to obtain the stresslet S. We multiply Eq. 80 by xm and
integrate over the surface of the sphere:

ð
u∞i xð ÞxmdS ¼

ð
u∞i 0ð ÞxmdSþ

ð
∂u∞i
∂xj

����
x¼0

xmxj dS: (92)

The first integral on the right hand vanishes, giving

ð
u∞i xð ÞxmdS ¼ 4πR4

3
∂u∞i
∂xm

����
x¼0

: (93)

Swapping the indices i and m, we can also write:

ð
u∞m xð Þxi dS ¼ 4πR4

3
∂u∞m
∂xi

����
x¼0

: (94)

Adding these two equations and dividing by two, we obtain

1
2

ð
u∞i xð Þxm þ u∞m xð Þxi
� �

dS ¼ 4πR4

3
e∞im 0ð Þ: (95)

Accordingly,

e∞im 0ð Þ ¼ � 3
8πR4

ð
vs, i xð Þxm þ vs,m xð Þxi½ �dS: (96)

Using the Faxén Law in Eq. 77, we obtain:

S ¼ � 5μ
2R

ð
vs xsð Þxþ xvs xsð Þ½ �dS: (97)

This is the major result obtained in Ref. 84 via the Lorentz reciprocal theorem.
As before, this manuscript provides a novel alternative derivation and interpreta-
tion of Eq. 97 in terms of an effective ambient flow field. (Note that, due to the
linearity of the Stokes equation, our approach is easily extended to model active
particles in a real ambient flow field.)
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Fundamentals of Irreversible
Thermodynamics for Coupled
Transport
Albert S. Kim

Abstract

Engineering phenomena occur in open systems undergoing irreversible, non-
equilibrium processes for coupled mass, energy, and momentum transport. The
momentum transport often becomes a primary or background process, on which
driving forces of physical gradients govern mass and heat transfer rates. Although
in the steady state no physical variables have explicit variation with time, entropy
increases with time as long as the systems are open. The degree of irreversibility can
be measured by the entropy-increasing rate, first proposed by L. Onsager. This book
conceptually reorganizes the entropy and its rate in broader aspects. Diffusion is
fully described as an irreversible, i.e., entropy increasing, phenomenon using four
different physical pictures. Finally, an irreversible thermodynamic formalism using
effective driving forces is established as an extension to the Onsager’s reciprocal
theorem, which was applied to core engineering phenomena of fundamental
importance: solute diffusion and thermal flux. In addition, the osmotic and thermal
fluxes are explained in the unified theoretical framework.

Keywords: irreversible thermodynamics, non-equilibrium thermodynamics,
Onsager’s reciprocal theorem, entropy rate, diffusion pictures, irreversible
transport equation

1. Introduction

This chapter contributes to a comprehensive explanation of the steady-state
thermodynamics of irreversible processes with detailed theoretical derivations and
examples. The origin and definitions of entropy are described, irreversible thermo-
dynamics for a steady state is revisited based on Onsager’s reciprocal theorem, and
thermal and solute diffusion phenomena are recapitulated as examples of single-
component irreversible thermodynamic processes.

1.1 Thermodynamic states

In fundamental and applied sciences, thermodynamics (or statistical mechanics)
plays an important role in understanding macroscopic behaviors of a thermodynamic
system using microscopic properties of the system. Thermodynamic systems have
three classifications based on their respective transport conditions at interfaces.
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three classifications based on their respective transport conditions at interfaces.

77



An open system allows energy and mass transfer across its interface, a closed
system allows transfer of energy only, but preventing mass transfer, and, finally, an
isolated system allows no transport across its interface.

Transfer phenomenon of mass and energy are represented using the concept of
flux, which is defined as a rate of passing a physical variable of interest across a unit
cross-sectional area per unit time. If the flux is constant, input and output rates of a
physical quantity within a finite volume are equal, and the density remains constant
because a net accumulation within the systems is zero. If the flux varies spatially,
specifically J ¼ J x; y; zð Þ, then its density within the specified volume changes with
time, i.e., ρ ¼ ρ tð Þ. This balance is defined as the equation of continuity:

∂ρ

∂t
þ ∇ � J ¼ 0 (1)

Many engineering processes occur in an open environment, having specific mass
and energy transfer phenomena as practical goals. An exception is a batch reaction,
where interfacial transport is blocked and a transient variation of the internal
system is of concern. If the internal characteristic of the open system changes with
time, the system moves toward a transient, non-equilibrium state. However, the
transiency is subject to the human perception of the respective time scale. If engi-
neering system performance is averaged over a macroscopic time scale, such as
hours, days, and weeks, the time-averaged performance is a primary concern as
those quantities can be compared with experimental data. Instead of transiency, the
time to reach a steady state becomes more important in operating engineering
processes because a steady-state operation is usually sought. Usually, the time to
reach a steady state is much shorter than the standard operation time in a
steady state.

1.2 Time scale and transiency

In theoretical physics, statistical mechanics and fluid dynamics are not fully
unified, and non-equilibrium thermodynamics is unsolved in theoretical physics. It
is often assumed that the fluid flow is not highly turbulent, and a steady state is
reached with a fully developed flow field. The thermodynamic characteristics are
maintained within the steady flow, and the static equilibrium is assumed to be valid
within small moving fluid elements. In such a situation, each fluid element can be
qualitatively analogous to a microstate of the thermodynamic ensemble.

Nevertheless, a conflict between the thermodynamics and fluid dynamics stems
from the absence of a clear boundary between the static equilibrium for isolated
systems and the steady state of open systems. In principle, the steady state belongs
to the non-equilibrium state although the partial differentials of any physical quan-
tities are assumed to be zero (i.e., ∂=∂t ¼ 0). A density does not change with time,
but the flux exists as finite and constant in time and space. The time scale of particle
motion can be expressed using the particle relaxation time defined as τp ¼ m=β,
where m and β exist as particle mass and Stokes’ drag coefficient, respectively.
The time scale for the fluid flow can be evaluated as the characteristic length
divided by the mean flow speed, but the particle relaxation time scale is much
shorter than the flow time scale. Therefore, the local equilibrium may be applied
without significant deviation from the real thermodynamic state.

In engineering, various dimensionless numbers are often used to characterize a
system of interest. The Reynolds (Re) and Péclet (Pe) numbers indicate ratios of the
convective transport to viscous momentum and diffusive heat/mass transport in a
fluid, respectively. The Nusselt and Sherwood numbers represent ratios of the
diffusion length scale as compared to the boundary layer thickness of the thermal
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and mass diffusion phenomenon, respectively. The Prandtl and Schmidt numbers
represent ratios of momentum as compared to thermal and mass diffusivities,
respectively. Other dimensionless numbers include the Biot number (Bi) (for both
heat and mass transfer), the Knudsen number (Kn) (molecular mean free path to
system length scale), the Grashof (Gr) number (natural buoyancy to viscous forces),
and the Rayleigh number (natural convective to diffusive heat/mass transfer).

Note that all the dimensionless numbers described here implicitly assume the
presence of fluid flow in open systems because they quantify the relative signifi-
cance of energy, momentum, and mass transport. The static equilibrium approxi-
mation (SEA) must be appropriate if the viscous force is dominant within a fluid
region, preventing transient system fluctuation, as the non-equilibrium thermody-
namics is not fully established in theoretical physics and steady-state thermody-
namics requires experimental observations to determine thermodynamic
coefficients between driving forces and generated fluxes.

1.3 Statistical ensembles

Thermodynamics often deals with macroscopic, measurable phenomena of sys-
tems of interest, consisting of objects (e.g., molecules or particles) within a volume.
Statistical mechanics is considered as a probabilistic approach to study the micro-
scopic aspects of thermodynamic systems using microstates and ensembles and to
explain the macroscopic behavior of the respective systems.

Seven variables exist within statistical mechanics (i.e., temperature T, pressure P,
and particle number N, which are conjugated to entropy S, volume V, chemical
potential μ, and finally energy E of various forms). The thermodynamic ensemble
uses the first and second laws of thermodynamics and provides constraints of having
three out of the six variables (excluding E) remaining constant. The other three
conjugate variables are theoretically calculated or experimentally measured. Statisti-
cal ensembles are either isothermal (for constant temperature) or adiabatic (of zero
heat exchanged at interfaces). The adiabatic category includes NVE
(microcanonical), NPH, μVL, and μPR ensembles, and isothermal ensembles possess
NVT (canonical), NPT (isobaric-isothermal or Gibbs), and μVT (grand canonical).
Here, ensembles of NVE and NPH are called microcanonical and isenthalpic, and
those of NVT, μVT, and NPT are called canonical, grand canonical, and isothermal-
isobaric, respectively. Within statistical mechanical theories and simulations, canon-
ical ensembles are most widely used, followed by grand canonical and isothermal-
isobaric ensembles. The adiabatic ensembles are equivalent to isentropic ensembles
(of constant entropy) and are represented asNVS,NPS, μVS and μPS instead ofNVE,
NPH, μVL, and μPR, respectively. Non-isothermal ensembles often represent
entropy S as a function of a specific energy form, of which details can be found
elsewhere [1].

2. Entropy revisited

2.1 Thermodynamic laws

Thermodynamic laws can be summarized as follows:

• The zeroth law: For thermodynamic systems of A, B, and C, if A ¼ C and
B ¼ C, then A ¼ B.

• The first law: The internal energy change ΔU is equal to the energy added to
the system Q, subtracted by work done by the system W (i.e., ΔU ¼ Q �W).
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In engineering, various dimensionless numbers are often used to characterize a
system of interest. The Reynolds (Re) and Péclet (Pe) numbers indicate ratios of the
convective transport to viscous momentum and diffusive heat/mass transport in a
fluid, respectively. The Nusselt and Sherwood numbers represent ratios of the
diffusion length scale as compared to the boundary layer thickness of the thermal
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and mass diffusion phenomenon, respectively. The Prandtl and Schmidt numbers
represent ratios of momentum as compared to thermal and mass diffusivities,
respectively. Other dimensionless numbers include the Biot number (Bi) (for both
heat and mass transfer), the Knudsen number (Kn) (molecular mean free path to
system length scale), the Grashof (Gr) number (natural buoyancy to viscous forces),
and the Rayleigh number (natural convective to diffusive heat/mass transfer).

Note that all the dimensionless numbers described here implicitly assume the
presence of fluid flow in open systems because they quantify the relative signifi-
cance of energy, momentum, and mass transport. The static equilibrium approxi-
mation (SEA) must be appropriate if the viscous force is dominant within a fluid
region, preventing transient system fluctuation, as the non-equilibrium thermody-
namics is not fully established in theoretical physics and steady-state thermody-
namics requires experimental observations to determine thermodynamic
coefficients between driving forces and generated fluxes.

1.3 Statistical ensembles

Thermodynamics often deals with macroscopic, measurable phenomena of sys-
tems of interest, consisting of objects (e.g., molecules or particles) within a volume.
Statistical mechanics is considered as a probabilistic approach to study the micro-
scopic aspects of thermodynamic systems using microstates and ensembles and to
explain the macroscopic behavior of the respective systems.

Seven variables exist within statistical mechanics (i.e., temperature T, pressure P,
and particle number N, which are conjugated to entropy S, volume V, chemical
potential μ, and finally energy E of various forms). The thermodynamic ensemble
uses the first and second laws of thermodynamics and provides constraints of having
three out of the six variables (excluding E) remaining constant. The other three
conjugate variables are theoretically calculated or experimentally measured. Statisti-
cal ensembles are either isothermal (for constant temperature) or adiabatic (of zero
heat exchanged at interfaces). The adiabatic category includes NVE
(microcanonical), NPH, μVL, and μPR ensembles, and isothermal ensembles possess
NVT (canonical), NPT (isobaric-isothermal or Gibbs), and μVT (grand canonical).
Here, ensembles of NVE and NPH are called microcanonical and isenthalpic, and
those of NVT, μVT, and NPT are called canonical, grand canonical, and isothermal-
isobaric, respectively. Within statistical mechanical theories and simulations, canon-
ical ensembles are most widely used, followed by grand canonical and isothermal-
isobaric ensembles. The adiabatic ensembles are equivalent to isentropic ensembles
(of constant entropy) and are represented asNVS,NPS, μVS and μPS instead ofNVE,
NPH, μVL, and μPR, respectively. Non-isothermal ensembles often represent
entropy S as a function of a specific energy form, of which details can be found
elsewhere [1].

2. Entropy revisited

2.1 Thermodynamic laws

Thermodynamic laws can be summarized as follows:

• The zeroth law: For thermodynamic systems of A, B, and C, if A ¼ C and
B ¼ C, then A ¼ B.

• The first law: The internal energy change ΔU is equal to the energy added to
the system Q, subtracted by work done by the system W (i.e., ΔU ¼ Q �W).
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• The second law: An element of irreversible heat transferred, δQ, is a product of
the temperature T and the increment of its conjugate variable S (i.e., δQ ¼ TdS).

• The third law: As T ! 0, S ! constant, and S ¼ kB lnΩ, where Ω is the
number of microstates.

The entropy S is defined in the second thermodynamic laws, and its fundamen-
tal property is described in the third law, linking the macroscopic element of
irreversible heat transferred (i.e., δQÞ and the microstates of the system.

Suppose you have N objects (e.g., people) and need to position them in a
straight line consisting of the same number of seats. The first and second objects
have N and N � 1 choices, respectively; similarly, the third one has N � 2; the
fourth one has N � 3 choices; and so on. The total number of ways of this experi-
ment is as follows:

N � N � 1ð Þ � N � 2ð Þ � N � 3ð Þ �⋯ � 2 � 1 ¼ N! (2)

Example 1: In a car, there are four seats including a driver’s. Three guests will occupy the same number
of seats. How many different configurations are available? There are three people, A, B, and C, and three
seats, S1, S2, and S3. If A can chose a seat first, then A has three choices. Then, B and C have, in a sequence,
two and one choices. Then, the total number of possible configurations are 3 � 2 � 1 ¼ 3! ¼ 6.

Next, when the N objects are divided into two groups. Group 1 and group 2 can
containN1 andN2 objects, respectively. Then, the total number of the possible ways
to place N objects into two groups is

N!

N1!N2!

which is equal to the number of combinations of N objects taking N1objects
at a time

CN
N1

¼ N!

N1! N �N1ð Þ! (3)

For example, consider the following equation of a binomial expansion

xþ yð Þ3 ¼ 1 � x3 þ 3x2yþ 3xy2 þ 1 � y3 ¼ ∑
3

n¼0
anxny3�n (4)

where a0 ¼ a3 ¼ 1 and a1 ¼ a2 ¼ 3. For the power of N, the equation exists as

x1 þ x2ð ÞN ¼ ∑
N1¼0

∑
N2¼0

N!

N1!N2!
xN1
1 xN2

2 ¼ ∑
N

k¼0
Ck
Nx

k
1x

N�k
2 (5)

where N1 þN2 ¼ N and

Ck
N ¼ N!

k! N � kð Þ! ¼ CN�k
N (6)

If we add x3 with a constraint condition of N ¼ ∑3
k¼1Nk, then

x1 þ x2 þ x3ð ÞN ¼ ∑
N1¼0

∑
N2¼0

∑
N3¼0

N!

N1!N2!N3!
xN1
1 xN2

2 xN3
3 (7)

80

Non-Equilibrium Particle Dynamics

where the coefficient of the polynomial expansion can be written as follows:

N!

N1!N2!N3!
¼ N!Q3

k¼1 Nk!
(8)

using the product notation of

y1 � y2 � y3 �⋯ � ym ¼
Ym

k¼1

yk (9)

Example 2: Imagine that we have three containers and ten balls. Each container has enough room to

hold all ten balls. Let Ni (for i ¼ 1� 3) be the number of balls in ith container. How many different
configurations are available to put ten balls into the three containers? If N1 ¼ 2, N2 ¼ 3, and N3 ¼ 5, then
the equation is with the answer being 2520:

N!

N1!N2!N3!
¼ 10!

2!3!5!
¼ 3628800

2ð Þ 6ð Þ 120ð Þ ¼ 2520 (10)

satisfying N ¼ N1 þN2 þN3 ¼ 10:

2.2 Definitions

2.2.1 Boltzmann’s entropy

A thermodynamic system is assumed to have a number of small micro-systems.
Say that there are N micro-systems and m ≤Nð Þ thermodynamic states. This
situation is similar to N ¼ 10ð Þ balls in m ¼ 3ð Þ containers. The number of balls in
container 1, 2, and 3 is N1, N2, and N3, respectively. Then the total number of
different configurations of micro-systems in m micro-states is defined as

ΩN ¼ N!Qm
k¼1 Nk!

(11)

Boltzmann proposed a representation of entropy of the entire ensemble as

SB ¼ kB lnΩN (12)

2.2.2 Gibbs entropy

The Gibbs entropy can be written using Ω, as

S
kB

¼ lnΩN ¼ ln
N!Qm

k¼0 Nk!
¼ lnN!� ∑

m

k¼0
lnNk!

and using Stirling’s formula as

lnN! ¼ N lnN=e

for a large N ≫ 1ð Þ, to derive
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S
kB

≃N ln N=eð Þ � ∑
m

k¼0
Nk ln N=eð Þ ¼ �N ∑

m

k¼0

Nk

N

� �
� ln Nk

N

� �

Finally, we have

S ¼ �kBN ∑
m

k¼0
pk ln pk

where pk ¼ Nk=N exists as the probability of finding the system in thermody-
namic state k. Gibbs introduced a form of entropy as

sG ¼ �kB ∑
m

k¼0
pk ln pk

which is equal to the system entropy per object or particle, denoted as

sG ¼ S
N

¼ �kB ∑
m

k¼0
pk ln pk

2.2.3 Shannon’s entropy

In information theory, Shannon’s entropy is defined as [2]

SSh ¼ �∑
i
pi log bpi (13)

As the digital representation of integers is binary, the base b is often set as two.
Note that Shannon’s entropy is identical to Gibbs entropy, if Boltzmann’s constant
kB is discarded and the natural logarithm ln ¼ log e is replaced by log 2. Entropy
only takes into account the probability of observing a specific event, so the infor-
mation it encapsulates is information about the underlying probability distribution,
not the meaning of the events themselves. Example 3 deals with tossing a coin or
a dice and how the entropy S increases with respect to the number of available
outcomes.

Example 3: Let’s consider two conventional examples, i.e., a coin and a dice. Their Gibbs entropy values
(i.e., entropy per object) are

scoin
kB

¼ � ∑
2

k¼1
pk ln pk ¼ � ∑

2

k¼1

1
2
� ln 1

2

� �
¼ ln 2 ¼ 0:6931

sdice
kB

¼ � ∑
6

k¼1
� 1
6
ln

1
6
¼ ln 6 ¼ 1:791

The system entropies of the coin and the dice are

Scoin=kB ¼ 2� 0:6931 ¼ 1:386

Sdice=kB ¼ 6� 1:791 ¼ 10:750

and their ratio is

Sdice
Scoin

¼ 6� ln 6
2� ln 2

¼ 3 � ln 2 � 3
ln 2

¼ 3� 2:5850 ¼ 7:754>3

where three indicates the ratio of the number of available cases of a dice (6) to that of a coin (2). The
entropy ratio, 7.754, is higher than the ratio of available states, 3.
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3. Diffusion: an irreversible phenomenon

Diffusion refers to a net flow of matter from a region of high concentration to a
region of low concentration, which is an entropy-increasing process, from a more
ordered to a less ordered state of molecular locations. For example, when a lump of
sugar is added to a cup of coffee for a sweeter taste, the solid cube of sugar
dissolves, and the molecules spread out until evenly distributed. This change from a
localized to a more even distribution exists as a spontaneous and, more importantly,
irreversible process. In other words, diffusion occurs by itself without external
driving forces. In addition, once diffusion occurs, it is not possible for the molecular
distribution to return to its original undiffused state. If diffusion does not occur
spontaneously, then there is no natural mixing, and one may have a bitter coffee
taste and sweet sugar taste in an unmixed liquid phase. In general, diffusion is
closely related to mixing and demixing (separation) within a plethora of
engineering applications. Why does diffusion occur, and how do we understand the
spontaneous phenomena? A key stands as the entropy-changing rate from one
static equilibrium to the other. Before discussing diffusion as an irreversible
phenomenon, however, the following section includes several pictures so as to
create a better understanding of diffusion phenomenon as one of the irreversible
thermodynamic processes.

3.1 Mutual diffusion

Diffusion is often driven by the concentration gradient referred to as ∇c, typically
in a finite volume, temperature, and pressure. As temperature increases, molecules
gain kinetic energy and diffuse more actively in order to position evenly within the
volume. A general driving force for isothermal diffusion exists as a gradient of the
chemical potential ∇μ between regions of higher and lower concentrations.

As shown in Figure 1, diffusion of solute molecules after removing the mid-wall
is spontaneous. Initially, two equal-sized rectangular chambers A and B are sepa-
rated by an impermeable wall between them. The thickness of the mid-wall is
negligible in comparison to the box length; in each chamber of A and B, the same
amount of water is contained. Chamber A contains seawater of salt concentration
35,000 ppm, and chamber B contains fresh water of zero salt concentration. If the
separating wall is removed slowly enough not to disturb the stationary solvent
medium but fast enough to initialize a sharp concentration boundary between the

Figure 1.
Diffusion in a rectangular container consisting of two equal-sized chambers A and B (a) before and (b) after
the mid-wall is removed.
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3. Diffusion: an irreversible phenomenon

Diffusion refers to a net flow of matter from a region of high concentration to a
region of low concentration, which is an entropy-increasing process, from a more
ordered to a less ordered state of molecular locations. For example, when a lump of
sugar is added to a cup of coffee for a sweeter taste, the solid cube of sugar
dissolves, and the molecules spread out until evenly distributed. This change from a
localized to a more even distribution exists as a spontaneous and, more importantly,
irreversible process. In other words, diffusion occurs by itself without external
driving forces. In addition, once diffusion occurs, it is not possible for the molecular
distribution to return to its original undiffused state. If diffusion does not occur
spontaneously, then there is no natural mixing, and one may have a bitter coffee
taste and sweet sugar taste in an unmixed liquid phase. In general, diffusion is
closely related to mixing and demixing (separation) within a plethora of
engineering applications. Why does diffusion occur, and how do we understand the
spontaneous phenomena? A key stands as the entropy-changing rate from one
static equilibrium to the other. Before discussing diffusion as an irreversible
phenomenon, however, the following section includes several pictures so as to
create a better understanding of diffusion phenomenon as one of the irreversible
thermodynamic processes.

3.1 Mutual diffusion

Diffusion is often driven by the concentration gradient referred to as ∇c, typically
in a finite volume, temperature, and pressure. As temperature increases, molecules
gain kinetic energy and diffuse more actively in order to position evenly within the
volume. A general driving force for isothermal diffusion exists as a gradient of the
chemical potential ∇μ between regions of higher and lower concentrations.

As shown in Figure 1, diffusion of solute molecules after removing the mid-wall
is spontaneous. Initially, two equal-sized rectangular chambers A and B are sepa-
rated by an impermeable wall between them. The thickness of the mid-wall is
negligible in comparison to the box length; in each chamber of A and B, the same
amount of water is contained. Chamber A contains seawater of salt concentration
35,000 ppm, and chamber B contains fresh water of zero salt concentration. If the
separating wall is removed slowly enough not to disturb the stationary solvent
medium but fast enough to initialize a sharp concentration boundary between the

Figure 1.
Diffusion in a rectangular container consisting of two equal-sized chambers A and B (a) before and (b) after
the mid-wall is removed.

83

Fundamentals of Irreversible Thermodynamics for Coupled Transport
DOI: http://dx.doi.org/10.5772/intechopen.86607



two concentration regions, then the concentration in B increases as much as that in
A decreases because mass is neither created nor annihilated inside the container.
This spontaneous mixing continues until both concentrations become equal and,
hence, reach a thermodynamic equilibrium consisting of a half-seawater/half-fresh
water concentration throughout the entire box. Diffusion occurs wherever and
whenever the concentration gradient exists, and diffusive solute flux is represented
using Fick’s law as follows [3, 4]:

Js ¼ �D
dc
dx

in 1�D (14)

or

Js ¼ �D∇c in 3�D (15)

where D is diffusion coefficient (also often called diffusivity) of a unit of m2=s.
A length scale of diffusion can be estimated by

ffiffiffiffiffiffiffiffi
Dδt

p
where δt is a representative

time interval. In molecular motion, δt can be interpreted as a time duration required
for a molecule to move as much as a mean free path (i.e., a statistical averaged
distance between two consecutive collisions).

3.2 Stokes-Einstein diffusivity

When the solute concentration is low so that interactions between solutes are
negligible, the diffusion coefficient, known as the Stokes-Einstein diffusivity, may
be given by

D0 ¼ kBT
6πηa

(16)

where kB is the Boltzmann constant, η is the solvent viscosity1, and a is the
(hydrodynamic) radius of solute particles. Stokes derived hydrodynamic force that
a stationary sphere experiences when it is positioned in an ambient flow [5]:

FH ¼ 6πηav (17)

where v represents a uniform fluid velocity, which can be interpreted as the
velocity of a particle relative to that of an ambient fluid. FH is linearly proportional
to v, and its proportionality 6πηa is the denominator of the right-hand side of
Eq. (16). Einstein used the transition probability of molecules from one site to the
another, and Langevin considered the molecular collisions as random forces acting
on a solute (see Section 3.3 for details). Einstein and Langevin independently
derived the same equation as (16) of which the general form can be rewritten as

D0 ¼ kBT
2dð Þπη (18)

where d is the spatial dimension of the diffusive system (i.e., d ¼ 1, 2, and3 for
1D, 2D, and 3D spaces).

1 Greek symbol μ is also often used for viscosity in fluid mechanics literature. In this book, chemical

potential is denoted as μ.
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3.3 Diffusion pictures

Several pictures of diffusion phenomena are discussed in the following section,
which give probabilistic and deterministic viewpoints. If one considers an ideal
situation where there exists only one salt molecule in a box filled with solvent (e.g.,
water) of finite T, P, and V. Since the sole molecule exists, there is no concentration
gradient. Mathematically, the concentration is infinite at the location of the mole-
cule and absolutely zero anywhere else: c ¼ V�1δ r� r0ð Þ where r0 is an initial
position of the solute and r is an arbitrary location within the volume. However, the
following question arises. Why does a single molecule diffuse without experiencing
any collisions in the absence of other molecules? The answer is that the solvent
medium consists of a number of (water) molecules having a size of an order of
O 10�10� �

m. The salt molecule will suffer a tremendous number of collisions with
solvent molecules of a certain kinetic energy at temperature T. Since each of these
collisions can be thought of as producing a jump of the molecule, the molecule must
be found at a distance from its initial position where the diffusion started. In this
case, the molecule undergoes Brownian motion. Note that the single molecule
collides only with solvent molecules while diffusing, which exists as a type of
diffusion called self-diffusion.

3.3.1 Self-diffusion and random walk

A particle initially located at r0 has equal probabilities of 1/6 to move in
�x;�y;�zð Þ directions. For mathematical simplicity, we restrict ourselves to 1D
random walk of a dizzy individual, who moves to the right or to the left with a 50:50
chance. Initially (at time t ¼ 0), the individual is located at x0 ¼ 0 and starts
moving in a direction represented by Δx ¼ �l where þl and �l indicate the right
and left distances that the individual travels with an equal probability, respectively.
At the next step, t1 ¼ t0 þ Δt ¼ Δt, the individual’s location is found at

x1 ¼ x0 þ Δx1 ¼ Δx1 (19)

where Δx1 can beþl or�l. At the time of the second step, t2 ¼ t1 þ Δt ¼ 2Δt, the
position is

x2 ¼ x1 þ Δx2 ¼ Δx1 þ Δx2 (20)

where Δx2 ¼ �l. At tn ¼ nΔt (n≫ 1), the position may be expressed as

xn ¼ Δx1 þ Δx2 þ⋯þ Δxn�1 þ Δxn ¼ ∑
n

i¼1
Δxi (21)

If there are a number of dizzy individuals and we can determine an average for
their seemingly random movements, then

xnh i ¼ ∑
n

i¼1
Δxih i ¼ n Δxh i ¼ 0 (22)

because Δx has a 50:50 chance of þl and �l:

Δxh i ¼ þlð Þ 1
2
þ �lð Þ 1

2
¼ 0 (23)

Now let us calculate a mean of x2:
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two concentration regions, then the concentration in B increases as much as that in
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dc
dx
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ffiffiffiffiffiffiffiffi
Dδt

p
where δt is a representative
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D0 ¼ kBT
6πηa

(16)
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FH ¼ 6πηav (17)
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D0 ¼ kBT
2dð Þπη (18)

where d is the spatial dimension of the diffusive system (i.e., d ¼ 1, 2, and3 for
1D, 2D, and 3D spaces).

1 Greek symbol μ is also often used for viscosity in fluid mechanics literature. In this book, chemical

potential is denoted as μ.
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3.3 Diffusion pictures
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O 10�10� �
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Now let us calculate a mean of x2:
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x2n
� � ¼ Δx1 þ⋯Δxnð Þ � Δx1 þ⋯Δxnð Þh i

¼ 〈Δx21 þ Δx1 � Δx2 þ⋯þ Δx1 � Δxn
þ Δx2 � Δx1 þ Δx22 þ⋯þ Δx2 � Δxn
þ⋯

þ Δxn � Δx1 þ Δxn � Δx2 þ⋯þ Δx2n〉

(24)

and in a concise form

x2n
� � ¼ ∑

i 6¼j
Δxi � Δxj

* +
þ ∑

n

k¼1
Δx2k

� �
¼ 0þ nΔx2 ¼ nl2 (25)

because ∑i 6¼jΔxi � Δxj
D E

¼ 0 and Δx2k
� � ¼ Δxð Þ2 ¼ l2. In the calculation of off-

diagonal terms, Δxi � Δxj can have four possible values with equal chance of þ;þð Þ,
þ;�ð Þ, �;þð Þ, and �;�ð Þ. The products of the two elements in the parenthesis are
þ, �, �, and þ with equal probability of 25%. Therefore, a sum of them is zero.
Because n is the number of time steps, it can be replaced by t=Δt where t is the total
elapsed time. The diffusion coefficient in one-dimensional space was derived in the
previous section as D ¼ l2=2Δt. Then, the mean of squared distance at time t is
calculated as

x2 tð Þ� � ¼ 2Dt (26)

and the root-mean-square distance is

xrms ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2 tð Þh i

p
¼

ffiffiffiffiffiffiffiffi
2Dt

p
(27)

Note that xrms is proportional to t1=2 in the random walk, as compared to the
constant velocity case x ¼ vt∝t1. Then, the diffusivity for 1D is explicitly

D ¼ x2rms

2t
¼ nl2

2nΔt
¼ l2

2Δt
(28)

3.3.2 Einstein’s picture

The concentration C x; tð Þ after an infinitesimal time duration δt from t within a
range dx between x and xþ dx is calculated as [6]

C x; tþ δtð Þdx ¼ dx
ðþ∞

�∞
C x� y; tð ÞΦ yð Þdy (29)

where Φ is the transition probability for a linear displacement y and the right-
hand side indicates the amount of adjacent solutes that move into the small region
dx. The probability distribution satisfies

ðþ∞

�∞
Φ yð Þdy ¼ 1 (30)

and we assume that Φ is a short ranged, even function, meaning that it is non-
zero for small ∣y∣ and symmetric, Φ �yð Þ ¼ Φ yð Þ. In this case, we approximate the
integrand of Eq. (29) as
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C x� y; tð Þ ¼ C x; tð Þ � ∂C
∂x

yþ 1
2!
∂
2C
∂x2

y2 þ⋯ (31)

and substitute Eq. (31) with Eq. (29). We finally derive the so-called diffusion
equation:

∂C
∂t

¼ DB
∂
2C
∂x2

(32)

where the diffusivity is defined as

DB ¼ y2
� �
2!δt

(33)

where y2
� �

is the mean value of y2, calculated as

y2
� � ¼

ðþ∞

�∞
y2Φ yð Þdy (34)

Within this calculation, we used

C x; tþ δtð Þ ¼ C x; tð Þ þ ∂C
∂t

δtþ⋯ (35)

and

yh i ¼
ðþ∞

�∞
yΦ yð Þdy ¼ 0 (36)

because yΦ is an odd function. Mathematically, Einstein’s picture uses short-
ranged transition probability function, which does not need to be specifically
known, and Taylor’s expansion for a small time interval and short displacement.
Conditions required for Eq. (32) are as follows: (i) transition distance is longer than
the size of molecule, dx≥O að Þ, and (ii) time interval δt is long enough to measure
dx after a tremendous number of collisions with solvent molecules, satisfying
δt≫ τp, where τp is the particle relaxation time (see Langevin’s picture).

3.3.3 Langevin’s picture

Let us consider a particle of mass m, located at x tð Þ with velocity v � dx=dt at
time t. For simplicity, we shall treat the problem of diffusion in one dimension. It
would be hopeless to deterministically trace all the collisions of this particle with a
number of solvent molecules in series. However, these collisions can be regarded as
a net force A tð Þ effective in determining the time dependence of the molecule’s
position x tð Þ. Newton’s second law of motion can be written in the following form
[7, 8]:

m
dv
dt

¼ �βvþ A tð Þ (37)

which is called Langevin’s equation. In Eq. (37), A tð Þ is assumed to be randomly
and rapidly fluctuating. We multiply x on both sides of Eq. (37) to give
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∂
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and
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because yΦ is an odd function. Mathematically, Einstein’s picture uses short-
ranged transition probability function, which does not need to be specifically
known, and Taylor’s expansion for a small time interval and short displacement.
Conditions required for Eq. (32) are as follows: (i) transition distance is longer than
the size of molecule, dx≥O að Þ, and (ii) time interval δt is long enough to measure
dx after a tremendous number of collisions with solvent molecules, satisfying
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Let us consider a particle of mass m, located at x tð Þ with velocity v � dx=dt at
time t. For simplicity, we shall treat the problem of diffusion in one dimension. It
would be hopeless to deterministically trace all the collisions of this particle with a
number of solvent molecules in series. However, these collisions can be regarded as
a net force A tð Þ effective in determining the time dependence of the molecule’s
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mx
dv
dt

¼ �βxvþ xA tð Þ (38)

and take a time average of both sides during an interval τ, defined as

⋯h i ¼ 1
τ

ðtþτ

t
⋯ð Þdt (39)

Then, we have after a much longer time than the particle relaxation time τ:

m x
dv
dt

� �
¼ �β xvh i þ xA tð Þh i (40)

Because the random fluctuating force A tð Þ is independent of the particle position
x tð Þ, we calculate

xAh i ¼ xh i Ah i ¼ xh i � 0 ¼ 0 (41)

For further derivation, we use the following identities:

dx2

dt
¼ 2x _x ¼ 2xv (42)

d2x2

dt2
¼ d

dt
2x _xð Þ ¼ 2v2 þ 2xv (43)

to provide

m
1
2
d2x2

dt2
� v2

* +
¼ �β

1
2
dx2

dt

� �
(44)

We let z ¼ dx2=dt
� �

and rewrite Eq. (44):

m
dz
dt

¼ �β z� 2kBT
β

� �
(45)

because the kinetic energy of this particle is equal to the thermal energy:

1
2
mv2 ¼ 1

2
kBT (46)

where kB is the Boltzmann constant. Note that the origin of the particle motion
exists as the number of its collisions with solvent molecules at temperature T: If we
take an initial condition of z ¼ 0 indicating either position or velocity is initially
zero, then we obtain

z tð Þ ¼ 2kBT
β

1� e�t=τp
� �

¼ d x2
� �
dt

(47)

where τp ¼ m=β is the particle relaxation time. One more integration with
respect to time yields
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x2
� � ¼ 2kBT

β

ðt
0

1� e�t0=τp
� �

dt0

¼ 2kBTτp
β

t
τp

þ e�t=τp � 1
� � (48)

If t≫ τp, then t=τp in the rectangular parenthesis is dominant:

x2
� � ¼ 2kBT

β
t � 2DBt (49)

Stokes’ law of Eq. (17) indicates β ¼ 6πηa, and, therefore, the diffusion coeffi-
cient of Brownian motion or Stokes-Einstein diffusivity is

DB ¼ kBT
6πηa

(50)

identical to Eq. (16). The root-mean-square distance is

xrms ¼
ffiffiffiffiffiffiffiffiffi
x2h i

p
¼

ffiffiffiffiffiffiffiffiffiffi
2DBt

p
(51)

which is proportional to
ffiffi
t

p
. Note that xh i ¼ 0. From an arbitrary time t, the

particle drifts for an interval Δt, where Δt≫ τp, and then

xrms Δtð Þ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2 tþ Δtð Þh i � x2 tð Þh i

p
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2DBΔt

p
(52)

Then, the time step Δt is of a macroscopic scale in that one can appreciate the
movement of the particle of an order of particle radius. For a short time t≪ τp, the
mean-square distance of Eq. (48) is approximated as xrms ¼ vrmst, indicating a
constant velocity motion.

Einstein’s and Langevin’s pictures provide identical results for xrms and DB as
related to Stokes’ law. On one hand, if a particle is translating with a constant
velocity, its distance from the initial location is linearly proportional to the elapsed
time; on the other hand, if particle is diffusing, its root-mean-square distance is
proportional to

ffiffi
t

p
.

3.3.4 Gardiner’s picture

In Langevin’s Eq. (37), the randomly fluctuating force can be written as

A tð Þ ¼ αf tð Þ (53)

where f satisfies

f tð Þh i ¼ 1
Tp

ðTp

0
f tð Þdt ¼ 0 for Tp ≫ τp (54)

and

f i tð Þf j tð Þ
D E

¼ δijδ t� t0ð Þ (55)

Relationships between parameters are
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t

p
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p
(52)

Then, the time step Δt is of a macroscopic scale in that one can appreciate the
movement of the particle of an order of particle radius. For a short time t≪ τp, the
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p
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β ¼ 6πμap (56)

α ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffi
2βkBT

p
¼

ffiffiffiffiffiffiffiffiffiffiffi
2D�1

B

q
kBT (57)

DB ¼ kBT
β

(58)

(See the next section for the Brownian diffusivity DB.) As such, we assume that

f tð Þdt ¼ dW tð Þ (59)

where dW is the Ito-Wiener process [9, 10], satisfying

dWh i ¼ 0 (60)

dWð Þh i2 ¼ dt (61)

Then, we can obtain the stochastic differential equation (SDE) as

mdv ¼ F xð Þ � βv½ �dtþ αdW (62)

The relationship between x, v, and t can be obtained as follows [11]:

dx ¼ vdt (63)

dv ¼ F xð Þ
m

� v
τp

� �
dtþ α

m
dW (64)

Note that Eq. (63) is free from the fundamental restriction of Langevin’s equation
(i.e., τp ≪dt) by introducing the Ito-Wiener process in Eq. (64). The time interval dt
can be arbitrarily chosen to improve calculation speed and/or numerical accuracy.

Eq. (63) uses the basic definition of velocity as a time derivative of the position
in the classical mechanics, and Eq. (64) represents the randomly fluctuating force
using the Ito-Weiner process, dW. If we keep Langevin’s picture, then these two
equations should have forms of

dx ¼ vdtþ
ffiffiffiffiffiffiffiffiffi
2DB

p
dW (65)

dv ¼ F xð Þ
m

� v
τp

� �
dt (66)

where the random fluctuation disappears in the force balance and appears as a
drift displacement,

ffiffiffiffiffiffiffiffiffi
2DB

p
dW. Let C xð Þ be the concentration of particles near the

position x of a specific particle. Note that x is not a fixed point in Eulerian space but
a moving coordinate of a particle being tracked. An infinitesimal change of C is

dC xð Þ ¼ C
0
dxþ 1

2!
C″dx2 þ⋯ (67)

where

C0 ¼ ∂C
∂x

(68)

C″ ¼ ∂
2C
∂x2

(69)

The first term of Eq. (67) is
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C0dx ¼ C0 vdtþ
ffiffiffiffiffiffiffiffiffi
2DB

p
dW

� �
≈C0 vdt (70)

using Eq. (60) of the time average, which implies that the diffusion time
scale already satisfies the restricted condition of dt≫ τp. The second term of
Eq. (67) is

C″ dxð Þ2 ¼ C″ vdtþ
ffiffiffiffiffiffiffiffiffi
2DB

p
dW

� �2
≈C″2DBdt (71)

after dropping the second order term of dt and the first order term of dW.
Substitution of Eqs. (70) and (71) with Eq. (67) gives

dC xð Þ ¼ C0vdtþ C″DBdt (72)

and therefore

∂C
∂t

¼ DB
∂
2C
∂x2

þ v
∂C
∂x

(73)

which looks similar to the conventional convective diffusion equation with the
sign of v reversed. Eq. (73) indicates that a group of identical particles of mass m
undergoes convective and diffusive transport in the Eulerian space. A particle in the
group is located at the position x at time t, moving with velocity v. This specific
particle observes the concentration C of other particles nearby its position x.
Therefore, Eq. (73) exists as the convective diffusion equation in the Lagrangian
picture. If the particle moves with velocity v in a stationary fluid, then the motion is
equivalent to particles that perform only diffusive motion within a fluid moving
with�v. To emphasize the fluid velocity, we replace vwith�u; then the Lagrangian
convective diffusion Eq. (73) becomes the original (Eulerian) convection-diffusion
equation:

∂C
∂t

¼ DB
∂
2C
∂x2

� u
∂C
∂x

(74)

which can be directly obtained by replacing Eq. (65) by

dx ¼ �udtþ
ffiffiffiffiffiffiffiffiffi
2DB

p
dW (75)

4. Dissipation rates

4.1 Energy consumption per time

In classical mechanics, work done due to an infinitesimal displacement of a
particle dr under the influence of force field F is

dW ¼ F � dr (76)

The time differentiation of Eq. (76) provides an energy consumption rate (i.e.,
power represented by P) as a dot product of the particle velocity v and the applied
force F:
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DB ¼ kBT
β

(58)
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� v
τp

� �
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m
dW (64)
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2DB
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dt (66)
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_W ¼ dW
dt

¼ v � F (77)

For an arbitrary physical quantity Q, variation rate of its density can be
represented as

1
V
dQ
dt

¼ 1
V
dr
dt

� ∇Q ¼ v � ∇q (78)

where V is the constant system volume and q ¼ Q=V is a volumetric density of
Q or named specific Q . Eq. (78) indicates that a density changing rate of Q is equal
to q operated by v � ∇. If we replace Q by the internal energy of the system, then the
specific energy consumption rate is expressed as

_W ¼ 1
V
dW
dt

¼ v � ∇w ¼ v
Ac

� ∇w0 (79)

where w and w0 are specific work done and work done per length, respectively,
and Ac is the cross-sectional area normal to∇w0. For a continuous media, ∇w0 causes
transport phenomena in a non-equilibrium state, and v=Ac is generated as propor-
tional to a flux. A changing rate can be quantified as a product of a driving force and
a flux, as implicated from Eq. (77).

Let us consider a closed system possessing ξ1 and ξ2, as some thermodynamic
quantities characterizing the system state. The values of ξi at a state of equilibrium are
denoted ξ01 and ξ02 and values outside equilibrium ξ01 and ξ02. Within a static equilib-
rium, the entropy represented by S of the system is maintained as the maximum. For
a system away from the static equilibrium, the generalized driving force is defined as

Xk ¼ ∇
∂S
∂ξk

� �
(80)

which is obviously zero for all k at the static equilibrium. A flux Jj of ξj is defined as

Jj ¼
1
Ac

dξj
dt

¼
_ξj
Ac

¼ ∑
k
LjkXk (81)

which assumes that Jj represents a linear combination of all the existing driving
forces Xk. We take Onsager’s symmetry principle [12, 13], which indicates that the
kinetic coefficient Ljk for all j and k are symmetrical such as

Ljk ¼ Lkj (82)

The entropy production rate per unit volume, or the specific entropy production
rate, is defined as

σ ¼ ds
dt

(83)

where s ¼ S=V. We expand the specific entropy s with respect to infinitesimal
changes of ξk as an independent variable:

σ ¼ ∑
k

dξk
dt

∂s
∂ξk

¼ ∑
k

AcJkð Þ � 1
Ac

∂S
∂ξk

� �
¼ ∑

k
JkXk (84)
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which represents the changing rate of the specific entropy as a dot project of flux
J and driving forceX. The subscript k in Eq. (84) is for physical quantities on which
the respective entropy depends. For mathematical simplicity, a new quantity is
defined as Yk ¼ TXk, where T is the absolute temperature in Kelvin to have

Tσ ¼ ∑
k
JkYk (85)

Note that Tσ has a physical dimension equal to that of the specific power. An
inverse relationship of Eq. (81) is

Xk ¼ ∑
l
RklJl (86)

where Rkl represents an inverse matrix of Ljk, i.e., RklLjk ¼ δlj, which can be
proven by substituting Eq. (86) with Eq. (81):

Jj ¼ ∑
k
LjkXk ¼ ∑

l
∑
k
LjkRkl

� �
Jl ¼ ∑

l
δjlJl ¼ Jj (87)

Substitution of Eq. (86) to Eq. (84) represents σ in terms of flux J

σ ¼ ∑
j, k

JjRjkJk ¼ JjRj Jh i (88)

where Jh j and Jj i exist as the row and column vectors of J, respectively, and R
represents the generalized resistance matrix. A partial derivative of σ with respect
to an arbitrary flux Ji is equal to twice the generalized driving force:

∂σ

∂Ji
¼ ∑

j, k
δijRjkJk þ JjRjkδik
h i

¼ ∑
k

RikJk½ � þ∑
j

JjRji

h i
¼ 2Xi (89)

In this case, the specific entropy dissipation rate σ is presented using the flux and
σ differential with the flux by substituting Eq. (89) with Eq. (84):

σ ¼ 1
2
∑
k
Jk

∂σ

∂Jk
(90)

which indicates that the specific entropy increases with respect to the flux and
proves that the systems is away from a pure, static equilibrium state.

4.2 Effective driving forces

The second thermodynamic law represents the infinitesimal entropy change in
the microcanonical ensemble:

dS ¼ 1
T
dEþ P

T
dV �∑

i

μi
T

� �
dNi (91)

where E represents the internal energy, P represents the system pressure within
a volume V, and μi and Ni are the chemical potential and the mole number of
species i, respectively. Eq. (91) implies the entropy S ¼ S E;V;Nið Þ as a function of
the internal energy E, the volume V, and the number of species i Ni.This gives
ξ1 ¼ E, ξ2 ¼ V, and ξi ¼ Ni (i ¼ 3 for water and i ¼ 4 for solute). The driving forces
Xi are particularly calculated as
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X1 ¼ Xq ¼ ∇
∂S
∂E

� �

V,Ns

¼ ∇
1
T

� �
(92)

X2 ¼ Xv ¼ ∇
∂S
∂V

� �

E,Ns

¼ ∇
P
T

� �
(93)

X3 ¼ Xs ¼ ∇
∂S
∂Ns

� �

E,V
¼ ∇ � μs

T

� �
(94)

where subscripts q, v, and s of X indicates heat, volume of solvent, and solute,
respectively. In Eq. (92), entropy S is differentiated by energy E, keeping V, and Ns
invariant, which are applied to Eqs. (93) and (94). Eq. (94) indicates that the driving
force is a negative gradient of the chemical potential divided by the ambient temper-
ature. Within the isothermal-isobaric ensemble, Gibbs free energy is defined as

G ¼ H � TS (95)

where H ¼ Eþ PVð Þ is enthalpy. If the solute concentration is diluted (i.e.,
Nw ≫Ns), it is referred to as a weak solution. As such, the overall chemical potential
can be approximated as

μ ¼ ∂G
∂N

¼ G
Nw þNs

≃
G
Nw

¼ μw ¼ H � ST (96)

where H and S represent molar enthalpy and entropy, respectively. An infini-
tesimal change of Gibbs free energy is, in particular, written as

dG ¼ �SdT þ VdPþ μsdNs (97)

which is equivalent to

d
G
Nw

� �
≃ dμw ¼ �SdT þ VdPþ μsdc (98)

where V is a molar volume of the system, μs is the solute chemical potential, and
c ¼ Ns=Nw is the molar fraction of solute molecules. The gradient of the solvent
chemical potential was rewritten as a linear combination of gradients of tempera-
ture, pressure, and molar solute fraction:

∇μw ¼ �S∇T þ V∇Pþ μs∇c (99)

where the following mathematical identity was used

∇
μk
T

¼ μk∇
1
T

� �
þ 1
T

∇μkð Þ (100)

In general, fluxes of heat, solvent volume, and solute molecules are intrinsically
coupled to their driving forces, such as

Jq
Jv
Js

2
64

3
75 ¼

Lqq Lqv Lqs

Lqv Lvv Lvs

Lqs Lvs Lss

2
64

3
75

Xq

Xv

Xs

2
64

3
75 (101)

where Onsager’s reciprocal relationship, Lij ¼ Lji, is employed.
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4.3 Applications

4.3.1 Solute diffusion

The primary driving force for the solute transport is Xs ¼ �∇ μs=Tð Þ, if temper-
ature and pressure gradients are not significant in solute transport. We consider the
diffusive flux of solute only in an isothermal and isobaric process and neglect terms
of Lqs and Lvs:

Js ¼ �Lss∇
μs
T

¼ �Lss

T
∇μs (102)

which is equivalent to Fick’s law of

Js ¼ �D∇c (103)

whereD [m2/s] is a solute diffusion coefficient. If Eq. (102) is expressed in terms
of concentration gradient, we have

Jss ¼ �Lss

T
∂μs
∂c

� �
∇c (104)

By Eqs. (103) and (104), one can find

Lss

T
∂μs
∂c

� �

T
¼ D (105)

Then, the entropy-changing rate based on the solute transport is calculated as

σs ¼ JsXs ¼ Lss

T2 ∇μsð Þ2 ¼ D=T
∂μs=∂cð ÞT

∇μsð Þ2 (106)

Next, we consider the Stokes-Einstein diffusivity:

DSE ¼ kBT
3πηdp

(107)

where kB is Boltzmann constant, η is the solvent viscosity, and dp is the diameter
of a particle diffusing within the solvent medium. The phenomenological coeffi-
cient Lqq is represented as

Lss ¼ DSET
∂μs=∂cð ÞT

¼ kBT
3πηdp

� T ∂μs
∂c

� ��1

T
(108)

For weakly interacting solutes, the solute chemical potential is

μ ¼ μ0 þRT ln a (109)

where μ0 is generally a function of T and P, which are constant in this equation,
R is the gas constant, and a is the solute activity. For a dilute solution, the activity
represented by a is often approximated as the concentration c (i.e., a≃ c). The
proportionality between Lss and DSE is
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T
∂μs
∂c

� ��1

T
¼ T

1
RT=c

¼ c
R

(110)

which leads to

Lss ¼ kBT
3πηdp

c
R

¼ NATc
3πηdp

(111)

where NA is the Avogadro constant.
For a dilute isothermal solution, we represent the entropy-changing rate as

σs ¼ DR
∇cð Þ2
c

¼ R
D
J2ss
c

(112)

for an isothermal and isobaric process. Assuming that D is not a strong function
of c, Eq. (112) indicates that the diffusive entropy rate σs is unconditionally positive
(as expected), increases with the diffusive flux, and decreases with the concentra-
tion c. Within this analysis, c is defined as molar or number fraction of solute
molecules to the solvent. For a dilute solution, conversion of c to a solute mass or
mole number per unit volume is straightforward.

4.3.2 Thermal flux

The thermal flux consists of conductive and convective transports, proportional
to ∇T and ∇P, respectively. Neglecting the solute diffusion in Eq. (101), the
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The substitution of Eq. (113) into (114) gives
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or

�T2 Jq=β
Jv=γ

� �
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� �
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� �
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Subtracting the first row by the second row of Eq. (116) provides
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γ
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β
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Through physical interpretation, one can conclude that

β

γ
¼ ~h (119)

where ~h represents the system enthalpy as a function of temperature. Finally,
the coupled heat transfer equation is

Jq ¼ �κq∇T þ ~hJv (120)

where

κq ¼ α� β
~h
T2 (121)

is the thermal conductivity.

5. Concluding remarks

In this chapter, we investigated diffusion phenomenon as an irreversible pro-
cess. By thermodynamic laws, entropy always increases as a system of interest
evolves in a non-equilibrium state. The entropy-increasing rate per unit volume is a
measure of how fast the system changes from the current to a more disordered
state. Entropy concept is explained from the basic mathematics using several
examples. Diffusion phenomenon is explained using (phenomenological) Fick’s law,
and more fundamental theories were summarized, which theoretically derive the
diffusion coefficient and the convection-diffusion equation. Finally, the dissipation
rate, i.e., entropy-changing rate per volume, is revisited and obtained in detail. The
coupled, irreversible transport equation in steady state is applied to solute diffusion
in an isothermal-isobaric process and heat transfer that is consisting of the conduc-
tive and convective transport due to the temperature gradient and fluid flow,
respectively. As engineering processes are mostly open in the steady state, the
theoretical approaches discussed in this chapter may be a starting point of the future
development in irreversible thermodynamics and statistical mechanics.
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which leads to
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c
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(111)

where NA is the Avogadro constant.
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Chapter 4

Using the Principles of
Nonequilibrium Thermodynamics
for the Analysis of Phase
Transformations in Iron-Carbon
Alloys
Bobyr Sergiy Volodimyrovych

Abstract

Using the principles of nonequilibrium thermodynamics, a technique has been
developed for calculating diffusion flows during phase transformations in iron-
carbon alloys. Expressions for the calculation of cross coefficients, driving forces,
and flows in Onsager equations for the model thermodynamic system are given;
examples of the use of the developed technique are given for the processes of
graphitization and the formation of carbides in chromium steel during tempering.
The nonequilibrium thermodynamics analysis of the eutectoid transformation is
executed into carbon steel. Onsager’s equations of motion are built for the model
thermodynamics system describing eutectoid transformation. The basic kinetic
parameters of process are growth rate of perlite and between inter-plates distance
for the stationary process of eutectoid transformation. We founded dependencies of
basic kinetic parameters of process from the size of supercooling. A nonequilibrium
thermodynamic model of the austenite nondiffusion transformation in iron and
alloys based on it is developed, taking into account internal stresses in the system.
Onsager motion equations are found for a model thermodynamic system describing
a nondiffusion transformation and kinetic equations for changing deformations and
growth rates of the α-phase. A scheme of austenitic nondiffusion transformations is
constructed, including normal and martensitic transformations, as limiting cases.

Keywords: nonequilibrium thermodynamics, the iron-based alloys, transformation
of austenite, diffusion, equations of motion, nondiffusion transformation

1. Introduction

The study of phase transformations is one of the most important problems in the
physics of metals [1–3]. Phase transformations are divided into diffusion and
nondiffusion [1]. If the kinetics of phase transformation in steels and cast irons is
determined by the diffusion of carbon, this allows them to be attributed to conver-
sions controlled by diffusion [1–4]. Such transformations in iron-carbon alloys
include pearlitic transformation of austenite, and transformations occurring during
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tempering, graphitization of undoped cementite, separation of carbides in alloyed
steels, and others [4–6].

When the rate of transformation of austenite is determined by the rate at which
the interface separates, differing only in its crystalline structure, the transformation
is called nondiffusion [1]. Kinetically, the normal polymorphic and martensitic
transformations of austenite are distinguished. When the temperature of the nor-
mal transformation decreases, its velocity first increases and then decreases. The
kinetics of the martensitic transformation is characterized by a very high rate of
growth of individual crystals and the maximum space velocity at the initial moment
of transformation under isothermal conditions.

In addition to martensite, at least two other structural components are known,
which are formed with a shear (“martensitic”) morphology of crystal formation—
ferrite side-plates and acicular ferrite. They can also be attributed, with some
simplifying assumptions, to the products of the nondiffusion transformation of
austenite. In addition, in some alloys martensitic and normal transformations occur
at the same temperature [1]. The consistent theory of nondiffusion transformations
should explain this phenomenon. Thus, the theoretical description of the processes
of phase transformations in iron-carbon alloys is a complex and urgent task of
modern metal physics.

Nonequilibrium thermodynamics provides the necessary apparatus for analyz-
ing the processes of phase transformations in iron-carbon alloys [7–9]. In the
general case, the thermodynamic equations of motion have the form [7]:

Ji ¼ ∑
N

к¼1
LikXk i ¼ 1; ::;Nð Þ, (1)

where Ji are flows, Xk are the thermodynamic forces, Lik = Lki are the Onsager
kinetic coefficients [9], and i, k are the charge numbers (transfer substrates).

The main driving forces of phase transformations in nonequilibrium thermody-
namics are gradients of the chemical potentials of their components [6–9]. When
discontinuous systems are considered, the finite differences of chemical potentials
(�Δμi,) as the transition from a metastable state to a stable state are used as
thermodynamic forces [10, 11]. Equations of nonequilibrium thermodynamics were
first used in the physics of metals to describe the process of graphitization of
nonalloyed iron-carbon alloys [6, 11].

As is known, unalloyed cementite in iron-carbon alloys at normal pressure is a
metastable phase, its activity in phases with it in equilibrium exceeds the solubility
of graphite, a stable phase [11]. Therefore, at a sufficiently high temperature,
graphitization of such alloys takes place, that is, phase transition from metastable to
stable equilibrium. Despite the seeming simplicity of this process, its theoretical
description is a complex task.

If two values are used as charges of the graphitization process-carbon and iron
concentrations, then, according to (1), the equations of motion take the form:

J1 ¼ L11Х1 þ L12Х2 (2)

J2 ¼ L21Х1 þ L22Х2, (3)

where J1 is the carbon flow characterizing the rate of the graphitization process,
J2 is the flow of iron, and X1 = (�ΔμFe) and X2 = (�ΔμC) are the thermodynamic
forces of iron and carbon. The potential drop has a “þ” sign as it increases, and the
flow is directed toward a decrease in the potential, so the expressions for the forces
contain the sign “�.”
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The main question that must be solved when using the Onsager Eqs. (1)–(3) is
the values of the cross coefficients.

In [5], for the first time on the basis of a special variational procedure, an
expression for the cross coefficients in the Onsager equations was proposed in the
form:

L21 ¼ L12 ¼ �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
L11 � L22

p
, (4)

and the sign–before the root is chosen on the basis that the observed flux of iron
with respect to the flow of carbon had a negative sign.

As shown in [6, 11], in the complex process with two flows, an increase in the
potential of one of the charges is observed, that is, one process is “leading,” and the
other is “driven.” The “driven” process in itself, i.e., in isolation from the “lead,” is
not possible, since thermodynamically not beneficial. In the system of Eqs. (2) and
(3), the thermodynamic force (�ΔμFe) is negative and inhibits the process as a whole,
the diffusion of iron is a forced process, and the leading one is the diffusion of carbon.

Thus, the graphitization process must be accompanied by a very intensive
transfer of a solid solution (mainly iron), which makes it possible for the phase with
a low-density graphite to grow in it. The authors of [6, 11] assumed that the factor
contributing to graphitization is the pressure that arises in the austenite matrix
under the action of graphite inclusions that expand it. However, in [12], considering
the mechanism of graphitization of cast irons during thermocyclic treatment,
K.P. Bunin with AA. Baranov came to the conclusion that the absolute value of the
contact pressures is an order of magnitude less than the necessary for the dislocation
creep mechanism under the influence of contact pressure. Since graphite films in
pores cannot possess super strong properties, the evacuation of matrix atoms is
apparently carried out by another mechanism.

In [5], using nonequilibrium thermodynamic methods, it was shown that under
the conditions of the system’s striving for dynamic equilibrium, the concentration
of vacancies in graphite inclusion becomes less than the vacancy concentration at
the γ-phase-graphite boundary. This can occur as a result of approaching the
γ-phase boundary—graphite of austenitic vacancies. In this case, the thermody-
namic force (�Δμ0v) prevents the graphitization, and the reduced graphitization
force (�Δμ*С) decreases to zero and can even take a negative value.

Thus, the goal of this paper is to show how the methods of nonequilibrium
thermodynamics can be used fruitfully to solve the theoretical problems of metal
physics, namely, the analysis of phase transformations. Let us further consider the
application of the principles of nonequilibrium thermodynamics to the analysis of
specific cases of phase transformations in iron-carbon alloys.

2. Formation of carbides in chrome steel during tempering

Consider the process of separation of carbides in a low-carbon steel system of
iron-carbon-chromium with 0.15% carbon and about 5% chromium at 600°C. In
this model system, there are two phases—the doped α-phase (F) and carbides (K),
in which carbon, iron, chromium, and vacancies flows (Figure 1). As charges, we
will use four quantities—the concentrations of carbon, iron, chromium, and vacan-
cies. The flow of vacancies in the carbide phase will be assumed to be equal to the
flow of vacancies in the ferrite.

In the absence of a change in the volume of the system, for flows in the doped α
phase, condition [13] is fulfilled:
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cies. The flow of vacancies in the carbide phase will be assumed to be equal to the
flow of vacancies in the ferrite.

In the absence of a change in the volume of the system, for flows in the doped α
phase, condition [13] is fulfilled:
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JFe þ JCr þ Jv ¼ 0, (5)

so one of the threads (in our case—Jv) is a dependent quantity. According to (1),
the thermodynamic equations for flows in the carbide phase take the form:

JFe ¼ �L11ΔμFe � L12Δμc � L13ΔμCr (6)

JС ¼ �L21ΔμFe � L22Δμc � L23ΔμCr (7)

JCr ¼ �L31ΔμFe � L32Δμc � L33ΔμCr, (8)

where JFe, JС, and JCr are the flows of iron, carbon, and chromium, respectively.
Based on the general principles of nonequilibrium thermodynamics, we can find

the values of the thermodynamic forces �ΔμFe, ΔμCr, and �ΔμС, as well as the
values of the kinetic coefficients L12, L13, and L23, as it was previously performed in
[5] for a system with two flows. In the conditions of complete equilibrium, ΔμFe = 0,
ΔμС = 0, and ΔμCr = 0. However, for a linear thermodynamic system, there is also
the possibility of dynamic equilibrium, in which all the flows are 0, but some
thermodynamic forces in the system are not equal to zero (there are their varia-
tions) [5, 7].

Let us consider this possibility for a triple thermodynamic system. From
Eqs. (6)–(8), it follows that near equilibrium, in the presence of variations of
thermodynamic forces, the following conditions must be fulfilled:

JFe ¼ 0 ) L11δμFe þ L12δμС þ L13δμCr ¼ 0, (9)

JС ¼ 0 ) L21δμFe þ L22δμС þ L13δμCr ¼ 0, (10)

JСr ¼ 0 ) L31δμFe þ L32δμC þ L33δμСr ¼ 0, (11)

where the index δμ denotes the coordinated variations of the thermodynamic
forces that ensure the dynamic equilibrium of the system. It follows from the
system of Eqs. (9)–(11) that the expressions for the flows of iron, chromium, and
carbon are connected: the cross rates L12, L13, and L23 in expressions for the flows
must have values such that the determinant of the matrix A composed of the
coefficients of this system was equal to 0. In this case, the values of the flows of iron
and chromium can significantly increase due to cross-kinetic coefficients in com-
parison with the independent diffusion of these elements [7, 16].

Figure 1.
Scheme of the process of carbides formation in chromium steel.
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Let us find the expressions for the cross coefficients, which make it possible to
obtain a nontrivial solution of the system of Eqs. (9)–(11). From the first Eq. (9), we
establish a connection between the variations of forces:

δμFe ¼ � L12=L11ð ÞδμС � L13=L11ð ÞδμCr: (12)

Substituting (12) into Eqs. (10) and (11), we find

JС ¼ L22 � L2
12=L11

� �
δμС þ L23 � L12L13=L11ð ÞδμCr ¼ 0, (13)

JСr ¼ L32 � L13L12=L11ð ÞδμС þ L33 � L2
13=L11

� �
δμСr ¼ 0, (14)

For independent variations δμС and δμСr, the linear system of Eqs. (13) and (14)
is compatible if the coefficients of δμС and δμСr are equal to 0, from which we
immediately find the relation between Onsager’s kinetic coefficients:

Lik ¼ Lki ¼ �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Lii � Lkk

p
, i, k ¼ 1…3 (15)

and the sign before the root is selected based on the sign (direction) of the flows
under consideration (see Figure 1). The considered procedure of variation allows us
to find cross rates in the Onsager equations after the direct kinetic coefficients are
calculated. In this case, the established connection (15) is satisfied for systems not
very far from equilibrium and for the real system is approximate.

3. Calculation of thermodynamic forces and kinetic coefficients

Let us find the values of the thermodynamic forces and kinetic coefficients for
the steel of the Fe-C-Cr system with 0.15% C at 600°C. We will assume that in a
solid α-solution, there is chromium with a concentration of СCr = 0.05 and a carbon
with a concentration of СC = 0.007, an iron concentration of СFe = 0.943. In
cementite-type carbide, chromium is found with a mass fraction of �20% (with a
concentration of СCr = 0.2) and carbon with a carbon concentration of 0.25, an iron
concentration in the carbide C’Fe = 0.55.

It is known from the experimental data that carbon is removed very rapidly
(approximately 1 minute) from the α-solution of alloyed steel at a temperature of
550–650°C and, consequently, the formation of carbide inclusions is primarily due
to carbon diffusion [14].

The thermodynamic force for carbon can be calculated from the formula [11]:

�ΔμС ¼ �RT ln
аКС
аαС

, (16)

where аαС is the thermodynamic activity of carbon in α-solution, аКС is the
thermodynamic activity of carbon in cementite, R is the universal gas constant, and
T is the temperature of the alloy.

The change in the thermodynamic activity of carbon in the alloy upon doping
with component i can be found by the method of [15, 16] from the equation:

ln аС=аС0ð Þ ¼ βi Ni, (17)

where βi is the coefficient of the element’s influence on the thermodynamic
activity of carbon in the alloy, Ni is the content of the element in the alloy in atomic
fractions, and аС0 is the thermodynamic activity of carbon for the alloy in the
standard state.
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Let us find the expressions for the cross coefficients, which make it possible to
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establish a connection between the variations of forces:
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is compatible if the coefficients of δμС and δμСr are equal to 0, from which we
immediately find the relation between Onsager’s kinetic coefficients:
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ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
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and the sign before the root is selected based on the sign (direction) of the flows
under consideration (see Figure 1). The considered procedure of variation allows us
to find cross rates in the Onsager equations after the direct kinetic coefficients are
calculated. In this case, the established connection (15) is satisfied for systems not
very far from equilibrium and for the real system is approximate.

3. Calculation of thermodynamic forces and kinetic coefficients

Let us find the values of the thermodynamic forces and kinetic coefficients for
the steel of the Fe-C-Cr system with 0.15% C at 600°C. We will assume that in a
solid α-solution, there is chromium with a concentration of СCr = 0.05 and a carbon
with a concentration of СC = 0.007, an iron concentration of СFe = 0.943. In
cementite-type carbide, chromium is found with a mass fraction of �20% (with a
concentration of СCr = 0.2) and carbon with a carbon concentration of 0.25, an iron
concentration in the carbide C’Fe = 0.55.

It is known from the experimental data that carbon is removed very rapidly
(approximately 1 minute) from the α-solution of alloyed steel at a temperature of
550–650°C and, consequently, the formation of carbide inclusions is primarily due
to carbon diffusion [14].

The thermodynamic force for carbon can be calculated from the formula [11]:

�ΔμС ¼ �RT ln
аКС
аαС

, (16)

where аαС is the thermodynamic activity of carbon in α-solution, аКС is the
thermodynamic activity of carbon in cementite, R is the universal gas constant, and
T is the temperature of the alloy.

The change in the thermodynamic activity of carbon in the alloy upon doping
with component i can be found by the method of [15, 16] from the equation:

ln аС=аС0ð Þ ¼ βi Ni, (17)

where βi is the coefficient of the element’s influence on the thermodynamic
activity of carbon in the alloy, Ni is the content of the element in the alloy in atomic
fractions, and аС0 is the thermodynamic activity of carbon for the alloy in the
standard state.
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We will assume that for our steel in the standard state аαС0 =а
К
С0 = аС0, i.e.,

unalloyed cementite in steel with 0.15%, C is stable and in equilibrium with the
solid solution at a tempering temperature of 600°C [13]. Using this condition and
Eqs. (16) and (17), we find:

ln аКС=а
α
С

� � ¼ βКCr N
К
Cr � βαCr N

α
Cr (18)

The value of βi is calculated through the interfacial distribution coefficient of the
alloying element Ki = Ni (K)/Ni (α) and the atomic fraction of carbon in the alloy
Nc [15, 16]:

βi ¼ � Ki� 1ð Þ þ Nc Кð Þ � KiNc αð Þð Þ
Ki� 1ð ÞNcþ Nc Кð Þ � KiNc αð Þð Þ : (19)

With a slight error for low-alloyed alloys, we can take Nc (K) = 0.25,
Nc (α) ≈ 0.001—the carbon content in the undoped phases of steel, taken from the
Fe-C state diagram.

Using the coefficient of chromium distribution between the α-phase and the
carbide KCr, equal to 4, we find the equations for calculating the coefficients of
influence βCr:

βСr = �3.246/(3,0Nc + 0.246),

whence βαСr = �12.16 and βКСr = �3.26.
Then from expressions (16)–(18), one can find the values.

ln аКС=а
α
С

� � ¼ �0:6085þ 0:652 ¼ �0:0425 and� ΔμС ¼ 308:47 Joule: (21)

The work done in the diffusion of carbon from the α-phase to cementite is
positive. For the diffusion of iron, it is not possible to calculate the difference of
thermodynamic potentials, since the coefficient of iron activity in carbide is
unknown. However, from the experimental data and the thermodynamics of the
process, it is known that diffusion of carbon is the leading one, the diffusion of
chromium accompanies the diffusion of carbon, and the diffusion of iron is forced,
since it is directed toward increasing the concentration of iron.

With this in mind, we find the values of the kinetic coefficients Lii in the
Onsager equations.

As is known [8, 13], the kinetic coefficients Lii are related to the diffusion
coefficients Di by the relation:

Lii ¼ СiDi=RT, (22)

where C1 is the concentration of iron in the alloy (0.943), C2 is the concentration
of carbon in the alloy (0.007), and C3 is the concentration of chromium in the alloy
(0.05).

Dependences of the diffusion coefficients of chromium and carbon in doped
chromium ferrite on the temperature have the form [14, 17]:

Dα
С ¼ 0, 177 exp

�88230
RT

� �
см2=сек, (23)

Dα
Fe ¼ 2, 910�4 exp

�251000
RT

� �
см2=сек, (24)
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Dα
Сr ¼ 3,05 exp

�358000
RT

� �
см2=сек: (25)

At a temperature of 600° C:
D1 = Dα

Fe ≈ 3.03�10�19 cm2/s, D2 = Dα
C ≈ 1.02 10�6 cm2/s, and D3 = Dα

Cr ≈ 1.38
10�21 cm2/s.

Using relations (23)–(25) and (15), we find the values of the kinetic coefficients
for our system:

L11 = 0.394 � 10�22, L22 = 0.984 � 10�13, L12 = �1.97 � 10�17, L33 =
0.95 � 10�26, L13 = �0.611 � 10�24, and

L23 = 0.306 � 10�19. Consequently, the system of Eqs. (6)–(8) takes the form:

JFe ¼ 0:394� 10�22 �ΔμFeð Þ � 1:97 � 10�17 �ΔμСð Þ � 0:611� 10�24 �Δμсrð Þ,
(26)

JС ¼ �1:97 � 10�17 �ΔμFeð Þ þ 0:984� 10�13 �ΔμСð Þ þ 0:306� 10�19 �ΔμCrð Þ,
(27)

JСr ¼ �0:611� 10�24 �ΔμFeð Þ þ 0:306� 10�19 �ΔμСð Þ þ 0:95� 10�26 �ΔμCrð Þ: (28)

It follows from Eqs. (26)–(28) that the values of iron and chromium fluxes
increase substantially due to the cross-ratios L12 and L32 of a significant thermody-
namic force (�ΔμC). The value of the carbon flux having a positive sign is deter-
mined mainly by the intrinsic coefficient L22. The thermodynamic forces of iron
and chromiummake an insignificant contribution to the fluxes, because of the small
value of the kinetic coefficients and their influence can be neglected. Then, as direct
calculations show:

JFe = � 6.08 � 10�15, JC = 3.04 � 10�11, JCr = 0.94 � 10�17, and
JV = 6.07 � 10�15 cm2/s.
It was established in [18] that during the tempering period, a certain amount of

nanoparticles of special chromium carbide with a size of �100 nm can be formed in
the steel, which were detected experimentally.

4. The nonequilibrium thermodynamics analysis of the eutectoid
transformation

In [19], a generalization of the equations characterizing the growth of the pearl-
ite colony is proposed, based on the application of nonequilibrium thermodynamic
methods.

To this end, Eq. (19) from [20], which characterizes the growth rate of a perlite
colony, is represented as:

dX
dt

¼ Dх С
0
ф–С

0
ц

� �
= С

0
ф–Сф

� �
þ С

0
ф–С

0
ц

� �
= Сц–С

0
ц

� �h i
=Δ ¼ Dх=Δð Þ �Δφð Þ, (29)

where Dx is the carbon diffusion coefficient in austenite along the x axis at a
given temperature T, Δ is the thickness of a layer of austenite with different con-
centration of carbon, C’Φ and С’y is the carbon concentration in the austenite near
the ferrite and cementite plates, respectively, at a temperature T (Figure 2), Сy is
the carbon content in cementite (�6.67%), CΦ is the carbon content in the ferrite at
a given temperature T, and �Δφ is the thermodynamic force of perlite lateral
growth. It is determined by the carbon concentrations in ferrite and cementite and
has a dimensionless value.
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ln аКС=а
α
С

� � ¼ βКCr N
К
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α
Cr (18)

The value of βi is calculated through the interfacial distribution coefficient of the
alloying element Ki = Ni (K)/Ni (α) and the atomic fraction of carbon in the alloy
Nc [15, 16]:

βi ¼ � Ki� 1ð Þ þ Nc Кð Þ � KiNc αð Þð Þ
Ki� 1ð ÞNcþ Nc Кð Þ � KiNc αð Þð Þ : (19)

With a slight error for low-alloyed alloys, we can take Nc (K) = 0.25,
Nc (α) ≈ 0.001—the carbon content in the undoped phases of steel, taken from the
Fe-C state diagram.

Using the coefficient of chromium distribution between the α-phase and the
carbide KCr, equal to 4, we find the equations for calculating the coefficients of
influence βCr:

βСr = �3.246/(3,0Nc + 0.246),

whence βαСr = �12.16 and βКСr = �3.26.
Then from expressions (16)–(18), one can find the values.

ln аКС=а
α
С

� � ¼ �0:6085þ 0:652 ¼ �0:0425 and� ΔμС ¼ 308:47 Joule: (21)

The work done in the diffusion of carbon from the α-phase to cementite is
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process, it is known that diffusion of carbon is the leading one, the diffusion of
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since it is directed toward increasing the concentration of iron.

With this in mind, we find the values of the kinetic coefficients Lii in the
Onsager equations.

As is known [8, 13], the kinetic coefficients Lii are related to the diffusion
coefficients Di by the relation:

Lii ¼ СiDi=RT, (22)

where C1 is the concentration of iron in the alloy (0.943), C2 is the concentration
of carbon in the alloy (0.007), and C3 is the concentration of chromium in the alloy
(0.05).

Dependences of the diffusion coefficients of chromium and carbon in doped
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Dα
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At a temperature of 600° C:
D1 = Dα

Fe ≈ 3.03�10�19 cm2/s, D2 = Dα
C ≈ 1.02 10�6 cm2/s, and D3 = Dα
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Using relations (23)–(25) and (15), we find the values of the kinetic coefficients
for our system:

L11 = 0.394 � 10�22, L22 = 0.984 � 10�13, L12 = �1.97 � 10�17, L33 =
0.95 � 10�26, L13 = �0.611 � 10�24, and
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It follows from Eqs. (26)–(28) that the values of iron and chromium fluxes
increase substantially due to the cross-ratios L12 and L32 of a significant thermody-
namic force (�ΔμC). The value of the carbon flux having a positive sign is deter-
mined mainly by the intrinsic coefficient L22. The thermodynamic forces of iron
and chromiummake an insignificant contribution to the fluxes, because of the small
value of the kinetic coefficients and their influence can be neglected. Then, as direct
calculations show:

JFe = � 6.08 � 10�15, JC = 3.04 � 10�11, JCr = 0.94 � 10�17, and
JV = 6.07 � 10�15 cm2/s.
It was established in [18] that during the tempering period, a certain amount of

nanoparticles of special chromium carbide with a size of �100 nm can be formed in
the steel, which were detected experimentally.

4. The nonequilibrium thermodynamics analysis of the eutectoid
transformation

In [19], a generalization of the equations characterizing the growth of the pearl-
ite colony is proposed, based on the application of nonequilibrium thermodynamic
methods.

To this end, Eq. (19) from [20], which characterizes the growth rate of a perlite
colony, is represented as:

dX
dt

¼ Dх С
0
ф–С

0
ц

� �
= С

0
ф–Сф

� �
þ С

0
ф–С

0
ц

� �
= Сц–С

0
ц

� �h i
=Δ ¼ Dх=Δð Þ �Δφð Þ, (29)

where Dx is the carbon diffusion coefficient in austenite along the x axis at a
given temperature T, Δ is the thickness of a layer of austenite with different con-
centration of carbon, C’Φ and С’y is the carbon concentration in the austenite near
the ferrite and cementite plates, respectively, at a temperature T (Figure 2), Сy is
the carbon content in cementite (�6.67%), CΦ is the carbon content in the ferrite at
a given temperature T, and �Δφ is the thermodynamic force of perlite lateral
growth. It is determined by the carbon concentrations in ferrite and cementite and
has a dimensionless value.
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The second equation characterizing our system—the heat balance Eqs. (23)–(25)
from [20]–is written in the form:

CγdТ=dt ¼ α ΔТ � qγ=Δð Þ dХ=dt (30)

where α is the heat transfer coefficient, C is the specific heat, ΔТ is the temper-
ature difference between the sample (T) and the cooling medium, q is the specific
amount of heat released during the formation of perlite, and γ is the density of steel.

If two quantities are used as charges for the eutectoid transformation of
austenite-the temperature of the sample T and the thickness of the plates of perlite
X, then, according to (4), the Onsager motion equations must have symmetric
forms (2) and (3),

where J1 = � dХ/dt is the flow of the pearlitic layer (with increasing absolute
value of the thermodynamic growth force of perlite, the flow increases in absolute
value), and J2 = � CγdТ/dt is the heat flow in the sample (with a drop in sample
temperature, the flow is positive), Х1 = (�Δφ), Х2 = (�ΔТ/Т) is the thermodynamic
forces of perlite growth and temperature [14].

In order for Eq. (29) to correspond to Eq. (2), it must contain an additional term
L12 (�ΔТ/Т); with the value of the coefficient L11 = (Dх/Δ):

J1 ¼ Dх=Δð Þ �Δφð Þ þ L12 �ΔТ=Тð Þ (31)

where L12 is a cross ratio whose value is not yet known. Thus, we introduce (we
assume) an additional dependence of the growth rate of the perlite layer not only on
the carbon concentrations in the phases but also on the temperature.

Substituting expression (34) into the energy balance Eq. (33), we find the
expression for the heat flow J2:

Figure 2.
Carbon distribution in the austenite-perlite system [20].
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J2 ¼ qγ=Δð Þ Dх=Δð Þ �Δφð Þ þ L12 �ΔТ=Тð Þð Þ � αТ �ΔТ=Тð Þ
¼ qγDх=Δ

2� � �Δφð Þ þ qγL12=Δ—αТ
� � �ΔТ=Тð Þ

(32)

Relating Eqs. (3) and (32) to each other, we obtain:

L21 ¼ qγDх=Δ2 (33)

Using for the kinetic coefficients, the Onsager reciprocity relations Lik = Lki [9],
we find that

L12 ¼ L21 ¼ qγDх=Δ2, (34)

whereas

L22 ¼ q2γ2Dх=Δ3 � αТ : (35)

The system of Eqs. (31) and (32) takes the form:

J1 ¼ Dх=Δð Þ �Δφð Þ þ qγDх=Δ2 �ΔТ=Тð Þ (36)

J2 ¼ qγDх=Δ2� � �Δφð Þ þ q2γ2Dх=Δ3–αТ
� � �ΔТ=Тð Þ: (37)

In accordance with (36), the perlite growth rate is affected not only by the
concentration thermodynamic force, but also by the temperature difference
between the sample and the environment. Let us further consider the phase trans-
formation of austenite under special conditions of steady growth of the pearlite
colony, when it can be assumed that ΔT ≈ сonst, dТ/dt ≈ 0. In this case, Eq. (37)
takes the following form:

J2 ¼ qγDх=Δ2� � �Δφð Þ þ q2γ2Dх=Δ3–αТ
� � �ΔТ=Тð Þ ¼ 0: (38)

For small ΔT, we can write approximately, as was done in [20]:

Δφ ¼ кΔТ=Т , (39)

where k is the proportionality coefficient.
By analogy with the previously obtained solutions [21], we introduce the fol-

lowing notation:

Δ0 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
кqγDx=αТ

q
; (40)

where Δl ¼ qγ=k is the characteristic parameter of the system: (41)

Eq. (38) can now be represented in the form:

Δ3 � Δ0
2Δ� Δ0

2Δl ¼ 0 (42)

For Δl = 0, as expected, the solution of Eq. (31) Δ = Δ0. We obtain a well-known
solution for the pearlite transformation of austenite [20]. In the real domain, there
is one solution of Eq. (44). For small Δl (<0.5), the root Xk is in the region close to 1
(Xk ! D0), with increasing Δl (in units of D0), the root value increases. For large
values of Δl, the root of Xk is approximately equal to

Хk≈
ffiffiffiffiffiffiffiffiffiffiffiffiffi
Δl=Δ0

3
p

: (43)
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The second equation characterizing our system—the heat balance Eqs. (23)–(25)
from [20]–is written in the form:

CγdТ=dt ¼ α ΔТ � qγ=Δð Þ dХ=dt (30)

where α is the heat transfer coefficient, C is the specific heat, ΔТ is the temper-
ature difference between the sample (T) and the cooling medium, q is the specific
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austenite-the temperature of the sample T and the thickness of the plates of perlite
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value of the thermodynamic growth force of perlite, the flow increases in absolute
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the carbon concentrations in the phases but also on the temperature.

Substituting expression (34) into the energy balance Eq. (33), we find the
expression for the heat flow J2:

Figure 2.
Carbon distribution in the austenite-perlite system [20].
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J2 ¼ qγ=Δð Þ Dх=Δð Þ �Δφð Þ þ L12 �ΔТ=Тð Þð Þ � αТ �ΔТ=Тð Þ
¼ qγDх=Δ
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� � �ΔТ=Тð Þ

(32)
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The between interplate distance of perlite for a stationary growth process is
found from the formula:

S0 ¼ 2Хк� Δ0 ¼ 2кХk
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ΔlDx=αТ

p
: (44)

Using Eqs. (36) and (43), (44), we also find an improved expression for the
perlite growth rate for an isothermal transformation

dX
dt

¼ kDx
S0

ΔT
T

1þ 2Δl
S0

� �
(45)

The formula (45) is a more precise expression for determining the growth rate of
perlite in the eutectoid transformation, than the expression obtained earlier by the
authors of [20].

We use the well-known dependence of the diffusion coefficient on tempera-
ture [17]:

D = A exp.(�Q/RT),

где Q is the activation energy, (Q ≈ 134 кJ/mol), and R is a constant (R = 8314 J/
(mol�К)).

After substituting the known values of the steel parameters and taking into
account that to 2.0, we find the calculated dependence of the perlite growth rate on
the supercooling value of the alloy (Figure 3). In this figure, the dependence of the
perlite growth rate on the supercooling value, calculated according to Zener’s for-
mula (1) [22, 23], is given for comparison.

Figure 3.
Dependence of the perlite growth rate on the supercooling value, calculated from formula (47) of the present
work (Vp1) and Zener’s formula (1) [22, 23] (Vp2).
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According to the constructed model, the perlite growth rate in the direction of
the X axis has a maximum value at supercooling ΔТ = 140.0°С. The perlite growth
rate calculated according to Zener’s formula has a theoretical maximum value at
overcooling ΔТ = 96.0°С. Consequently, the theoretical expressions (31) and (32)
make it possible to describe with greater accuracy the maximum and the course of
the experimental curve for the perlite formation rate presented in [3, 24] for high-
purity eutectoid steel.

The expression for perlite growth rate obtained in this section has a significant
value at supercooling of 300–400°С, thereby determining the possibility of perlite
formation in this temperature range. Indeed, the formation of perlite in carbon
steels in the temperature range 375–325°С was revealed in [24].

The calculated dependence of the between interplate distance of perlite by
formula (46) on the magnitude of the supercooling of steel is shown in Figure 4.
The same figure shows the experimental points from [24].

A fairly good agreement of the calculated dependence with the results of the
latest experiments is observed, which indicates the adequacy of the proposed
model.

5. Application of the positions of nonequilibrium thermodynamics to
the analysis of the nondiffusion transformation of austenite

Martensite is the basis of hardened steel, so studying the mechanism and kinetics
of its transformation is still of extreme interest for the theory and practice of heat
treatment.

In the works of G.V. Kurdyumov and coworkers, the martensitic transformation
is considered as the usual phase transformation in a one-component system, further
complicated by the influence of a strong interatomic interaction, which leads to the
development of significant stresses in the martensite crystal and matrix [25].

In accordance with the alternative mechanism, the martensitic transformation
takes place by means of an instantaneous shift of atomic planes that does
not require thermal activation and is not associated with thermodynamic transfor-
mation stimuli [1], [26]. In this case, the stress initiating the transformation is
believed to be the stresses arising from the sharp cooling of the sample
(quenching) [26].

Figure 4.
The calculated dependence of the between interplate distance of perlite on the magnitude of the supercooling of
steel ( —experimental points from [24], p. 122, —calculated points).
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make it possible to describe with greater accuracy the maximum and the course of
the experimental curve for the perlite formation rate presented in [3, 24] for high-
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The expression for perlite growth rate obtained in this section has a significant
value at supercooling of 300–400°С, thereby determining the possibility of perlite
formation in this temperature range. Indeed, the formation of perlite in carbon
steels in the temperature range 375–325°С was revealed in [24].

The calculated dependence of the between interplate distance of perlite by
formula (46) on the magnitude of the supercooling of steel is shown in Figure 4.
The same figure shows the experimental points from [24].

A fairly good agreement of the calculated dependence with the results of the
latest experiments is observed, which indicates the adequacy of the proposed
model.

5. Application of the positions of nonequilibrium thermodynamics to
the analysis of the nondiffusion transformation of austenite

Martensite is the basis of hardened steel, so studying the mechanism and kinetics
of its transformation is still of extreme interest for the theory and practice of heat
treatment.

In the works of G.V. Kurdyumov and coworkers, the martensitic transformation
is considered as the usual phase transformation in a one-component system, further
complicated by the influence of a strong interatomic interaction, which leads to the
development of significant stresses in the martensite crystal and matrix [25].

In accordance with the alternative mechanism, the martensitic transformation
takes place by means of an instantaneous shift of atomic planes that does
not require thermal activation and is not associated with thermodynamic transfor-
mation stimuli [1], [26]. In this case, the stress initiating the transformation is
believed to be the stresses arising from the sharp cooling of the sample
(quenching) [26].
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Considering the martensitic transformation as a thermally activated process,
B.Ya. Lyubov used the equations of normal transformation obtained on the basis of
the positions of nonequilibrium thermodynamics to describe his kinetics [3].

Changes in a complex or composite system under constant external conditions
can be described as the process of increasing entropy. The rate of increase of
entropy σ can be represented as the sum of the flux products and the corresponding
forces for all transfer substrates in an amount of N [7–10]:

σ ¼ dS
dt

irrev ¼ ∑
N

к¼1
JkXk k ¼ 1; ::;Nð Þ, (47)

In the general case, the flows can be represented in the form (1).
The irreversible change in the entropy dSirrev is equal to the sum of entropy

changes in the system and the environment:

dSirrev ¼ dSþ dSe (48)

Under isothermal conditions, when the released heat is absorbed by the envi-
ronment and the temperature remains constant:

dSe = � dQ/T, dQ = dU + PdV

dSirrev ¼ dS– dUaþ PdVð ÞT�1 ¼ TdS–dU–PdVð ÞT�1: (49)

Since dU + PdV–TdS = dG, and if we take into account the low compressibility of
bodies in the condensed state and relatively small pressures, then.

dS
dt

irrev ¼ �Т�1 dG
dt

≈ � Т�1 dF
dt

, (50)

where F is the free energy of the system.
The change in free energy in a system with a variable number of particles and

internal stresses can be represented in the form [3], p. 142:

dF ¼ dFεþ dFn ¼ σikdεik þ φldnl, (51)

where dFε is the change in free energy in the system related to internal stresses,
dFn is the change in the free energy in the system, determined by the variable
number of particles of type l, σik is the stress tensor, εik is the strain tensor of the
system, φl is the chemical potential of the lth element of the system, and nl is the
number of particles of the lst element of the system per unit volume, l = 1, N.

We now introduce some simplifying assumptions. First, for the nondiffusion
transformation of austenite, only one kind of particles, the α-phase of iron nα, will
be taken into account. Approximately, this is also true for alloys of iron with close
elements (nickel, chromium, cobalt). Of course, φ is some effective (averaged)
chemical potential of the atoms of the alloy.

Secondly, we assume that the deformation of the system is a triaxial
compression-expansion, and in the expression for dFε, only the diagonal compo-
nents of stress and strain tensors are taken into account:

σik ¼ εik ¼ 0, i 6¼ k:σii¼ σ, εii–ε (52)

The change in internal energy can then be represented as:
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dF ¼ 3σdεþ φdnα (53)

but the change in entropy:

dS
dt irrev ¼ �Т�1 3σ

dεα
dt

þ φ
dεα
dt

� �
: (54)

Thus, in our system, in addition to the particle flow from the γ phase to the α-phase
of J1 = dnα/dt, we will also take into account the change in the strain of the sample
with time J2 = dε/dt. These flows are related to the driving forces by the Eq. (1).

If, as charges of the process of nondiffusion transformation of austenite, the two
quantities are the concentration of α-phase particles and the strain value, then,
according to (1), the equations of motion take the form:

J1 ¼ L11Х1 þ L12Х2 (55)

J2 ¼ L21Х1 þ L22Х2, (56)

where X1 = Δφ is the thermodynamic force for iron, the change in the chemical
potential at the transition of particles from the γ-phase to the α-phase, and X2 = Δσ
is the change in the internal stress during the transition from the γ-phase to the
α-phase.

The system of Eqs. (55) and (56) describes the contribution of stresses and
deformations to the nondiffusion transformation of austenite. However, we do not
yet know the coefficients of the equations in it. We now find expressions for the
coefficients of the system of Eqs. (55) and (56). The coefficient L11 characterizes the
normal transformation:

J1 ¼
dnα
dt

¼ L11 φγ–φα

� �
(57)

In the normal kinetics of the phase transformation, the formation of the center
(particle) of the α-phase occurs through separate (independent) acts of detachment
of particles from the γ-phase and the attachment of atoms to the ferrite center. If we
consider the process of formation of an α-phase close to the process of self-diffusion
of iron in the γ-phase, then the coefficient L11 has the form [13]:

L11 ¼ Dγ

RT
(58)

where Dγ is the self-diffusion coefficient of iron in the γ-phase (or the effective
coefficient of self-diffusion in the γ-phase of the alloy),T is the transformation
temperature, and R is the gas constant [27].

The self-diffusion coefficient of iron is taken in the usual notation [17]:

Dγ ¼ D0e�
U
kT ¼ 4:58 � 10�4ехр �252;000=RTð Þ (59)

where D0 is a multiplier and U is the activation energy of diffusion.
The coefficient L22 characterizes the direct relationship:

J2 ¼
dεα
dt

¼ L22 σγ–σα
� �

: (60)

Let σγ = 0. Let us take into account that for triaxial compression stretching [28]:
where σα is the stress in the α phase and σγ is the stress in the γ phase.
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dF ¼ 3σdεþ φdnα (53)

but the change in entropy:
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dεα
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þ φ
dεα
dt
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Thus, in our system, in addition to the particle flow from the γ phase to the α-phase
of J1 = dnα/dt, we will also take into account the change in the strain of the sample
with time J2 = dε/dt. These flows are related to the driving forces by the Eq. (1).

If, as charges of the process of nondiffusion transformation of austenite, the two
quantities are the concentration of α-phase particles and the strain value, then,
according to (1), the equations of motion take the form:

J1 ¼ L11Х1 þ L12Х2 (55)
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where X1 = Δφ is the thermodynamic force for iron, the change in the chemical
potential at the transition of particles from the γ-phase to the α-phase, and X2 = Δσ
is the change in the internal stress during the transition from the γ-phase to the
α-phase.

The system of Eqs. (55) and (56) describes the contribution of stresses and
deformations to the nondiffusion transformation of austenite. However, we do not
yet know the coefficients of the equations in it. We now find expressions for the
coefficients of the system of Eqs. (55) and (56). The coefficient L11 characterizes the
normal transformation:

J1 ¼
dnα
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In the normal kinetics of the phase transformation, the formation of the center
(particle) of the α-phase occurs through separate (independent) acts of detachment
of particles from the γ-phase and the attachment of atoms to the ferrite center. If we
consider the process of formation of an α-phase close to the process of self-diffusion
of iron in the γ-phase, then the coefficient L11 has the form [13]:

L11 ¼ Dγ
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where Dγ is the self-diffusion coefficient of iron in the γ-phase (or the effective
coefficient of self-diffusion in the γ-phase of the alloy),T is the transformation
temperature, and R is the gas constant [27].

The self-diffusion coefficient of iron is taken in the usual notation [17]:

Dγ ¼ D0e�
U
kT ¼ 4:58 � 10�4ехр �252;000=RTð Þ (59)

where D0 is a multiplier and U is the activation energy of diffusion.
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J2 ¼
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� �
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Let σγ = 0. Let us take into account that for triaxial compression stretching [28]:
where σα is the stress in the α phase and σγ is the stress in the γ phase.
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Let σγ = 0. Let us take into account that for triaxial compression-stretching [28]:

σα ¼ E
3 1‐2μð Þ

ΔV
V

¼ E
1‐2μ εα, (61)

where E is the modulus of elasticity of steel (�2.17�105 МPa) and μ is the Poisson
ratio (� 0.26).

Then, expression (60) can be transformed as follows:

dεα
dt

¼ L22σα ¼ L22
E

1‐2μ εα ¼
v
L
ε, (62)

where the following values are entered:
v is the propagation velocity of the microdeformation in sample (�1000 m/с)

[3] and L is the characteristic distance over which the microdeformation of the
shear is propagated (the size of the martensitic strips or plates). At the initial stage
of the formation of the shear structure, it has a magnitude of the order of the
diameter of the austenite grain (� 100 μm), and then decreases with decreasing
temperature [1].

From Eq. (62), we find that the coefficient L22 is equal to:

L22 ¼ v 1‐2μð Þ
LЕ

: (63)

The cross-coefficients L12 = L21 for a nonequilibrium thermodynamic system are
found with sufficient accuracy by the formulas proposed in [5]:

L12 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffi
L11L22

p
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Dγ

RT
v 1‐2μð Þ
LЕ

r
(64)

Thus, we obtained simple differential equations for a nonequilibrium thermo-
dynamic system describing the nondiffusion transformation of austenite taking into
account the influence of internal stresses.

Let us write the equations of motion of our system in the form:

dnα
dt

¼ L11Δφþ L12σγ–L12σα: (65)

dεα
dt

¼ L21Δφþ L22σγ–L22σα: (66)

We first transform Eq. (66) taking into account expression (62). We have:

dεα
dt

þ vεα=L ¼ L21Δφþ L22σγ, (67)

where εα is the magnitude of deformations of the α-phase. The differential
Eq. (66) with constant coefficients (temperature) has a solution:

εα ¼
L21Δφþ L22σγ
� �

1‐2μð Þ
L22Е

1� e�
v
Lt

� �
: (68)

This kinetic equation describes the change in the magnitude of the deformation
of the α-phase in time. At t = 0, εα = 0. When the time is counted, a fast (� 10�6 s)
process of transition to deformation occurs:
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εα ¼ εγ þ Δεα ¼ εγ þ L21Δφ 1‐2μð Þ
L22Е

: (69)

Eq. (69) shows that the residual deformation of the α-phase after the transient
process consists of the deformation of the austenite εγ and the additional deforma-
tion Δεα. This additional deformation determines the change in the volume of the
sample as γ ! α-transformation:

ΔVγ!α

Vγ
¼ 3nαΔεα: (70)

Then, substituting expression (53) into Eq. (51.1), we find:

dnα
dt

¼ L11Δφþ L12σγ �
L12 L21Δφþ L22σγ
� �

L22
1� e�

v
Lt

� � ¼ L11Δφþ L12σγ�
L11Δφþ L12σγ
� �

1� e¼
v
Lt

� � ¼ L11Δφþ L12σγ
� �

e�
v
Lt:

(71)

It can be concluded from expression (71) that the growth rate of α-phase parti-
cles depends on the stresses in the γ-phase. The greater the value of tensile stresses
in the γ phase, the higher the growth rate of ferrite particles. The rate of growth of
the α-phase particles at a constant temperature very rapidly (exponentially)
decreases in time, determining the incompleteness of the transformation.

Integration of Eq. (71) with time-independent coefficients L11 and L12 allows us
to obtain the kinetic equation for nα:

nα¼
L11Δφþ L12σγ
� �

L
v

1� e�
v
Lt

� �
: (72)

In accordance with Eq. (72), the amount of α-phase formed depends not only on
the thermodynamic force Δφ, but also on the magnitude of the stresses in the
γ-phase.

6. Scheme of the nondiffusion transformation of austenite based on the
constructed model.

Before discussing the equations obtained, we introduce some more useful rela-
tions characterizing the γ ! α transformation. With the γ ! α transformation, the
effective atomic volume of the iron lattice changes in the sample under consider-
ation, characterized by ΔVγ ! α and the relative volume change ΔVγ!α

Vγ
. According to

the data of [3]:

ΔVγ!α ¼ 0:268� 1:62∗10�4Т , sm3=mol (73)

We will assume that with the formation of the α-phase, the relative change in
volume is determined by the additional deformation: ΔVγ!α

Vγ
= 3Δεα, and the com-

pressive stress arising in the α-phase has the value.

σα ¼ E
1‐2μΔεα: (74)

When the alloy sample is cooled by ΔT, a deformation occurs in its surface layer:
εγ � αΔТ and the tensile stress σγ corresponding to this deformation:
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Let σγ = 0. Let us take into account that for triaxial compression-stretching [28]:

σα ¼ E
3 1‐2μð Þ

ΔV
V

¼ E
1‐2μ εα, (61)

where E is the modulus of elasticity of steel (�2.17�105 МPa) and μ is the Poisson
ratio (� 0.26).

Then, expression (60) can be transformed as follows:

dεα
dt

¼ L22σα ¼ L22
E

1‐2μ εα ¼
v
L
ε, (62)

where the following values are entered:
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L22 ¼ v 1‐2μð Þ
LЕ

: (63)

The cross-coefficients L12 = L21 for a nonequilibrium thermodynamic system are
found with sufficient accuracy by the formulas proposed in [5]:

L12 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffi
L11L22

p
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Dγ

RT
v 1‐2μð Þ
LЕ

r
(64)

Thus, we obtained simple differential equations for a nonequilibrium thermo-
dynamic system describing the nondiffusion transformation of austenite taking into
account the influence of internal stresses.

Let us write the equations of motion of our system in the form:

dnα
dt

¼ L11Δφþ L12σγ–L12σα: (65)

dεα
dt

¼ L21Δφþ L22σγ–L22σα: (66)
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dεα
dt

þ vεα=L ¼ L21Δφþ L22σγ, (67)
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εα ¼
L21Δφþ L22σγ
� �

1‐2μð Þ
L22Е

1� e�
v
Lt

� �
: (68)

This kinetic equation describes the change in the magnitude of the deformation
of the α-phase in time. At t = 0, εα = 0. When the time is counted, a fast (� 10�6 s)
process of transition to deformation occurs:
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εα ¼ εγ þ Δεα ¼ εγ þ L21Δφ 1‐2μð Þ
L22Е

: (69)

Eq. (69) shows that the residual deformation of the α-phase after the transient
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Vγ
¼ 3nαΔεα: (70)
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dnα
dt
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L12 L21Δφþ L22σγ
� �

L22
1� e�

v
Lt

� � ¼ L11Δφþ L12σγ�
L11Δφþ L12σγ
� �

1� e¼
v
Lt

� � ¼ L11Δφþ L12σγ
� �

e�
v
Lt:

(71)

It can be concluded from expression (71) that the growth rate of α-phase parti-
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6. Scheme of the nondiffusion transformation of austenite based on the
constructed model.
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ation, characterized by ΔVγ ! α and the relative volume change ΔVγ!α
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. According to

the data of [3]:
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volume is determined by the additional deformation: ΔVγ!α
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σγ ¼ E
1‐2μ αΔТ : (75)

Comparing the values of thermodynamic forces among themselves, it is possible
to classify the types of nondiffusion transformation according to the kinetic crite-
rion. As shown in [1], p. 208, for small deviations of the system from equilibrium,
the growth of crystals is more likely, controlled by self-diffusion, at large–coopera-
tive growth. The same phase transition in a single-component system under differ-
ent external conditions can take place with an independent (or slightly dependent)
temperature growth rate (martensitic kinetics) and with a rate that exponentially
depends on the temperature at an activation energy close to the activation energy of
self-diffusion (normal kinetics). The parameter characterizing the deviation of the
system from equilibrium is the supercooling of the alloy ΔT = Ac3�T, where Ac3 is
the temperature of the end α ! γ of the conversion upon heating, and T is the
transformation temperature. The transformation scheme for the constructed model
is shown in Figure 5.

Ac1 is the temperature of the beginning of α ! γ transformation when the alloy
is heated and Mni is the temperature of the onset of the formation of isothermal
martensite upon supercooling of the alloy. Mn is the temperature of the onset of
athermal martensite formation upon supercooling of the alloy. Mk is the tempera-
ture of the end of martensite formation upon supercooling of the alloy.

Thus, for small

ΔT : L11Δφ.L12σα .L12σγ, (76)

then the growth of α-phase crystals is determined by self-diffusion by the nor-
mal mechanism. However, as follows from Eq. (72), in this case too, the contribu-
tion of deformations (and stresses) to the conversion kinetics is very significant. In
order that the condition (76) is satisfied, it is necessary that the stress level in the γ-
and α-phases be small; for the α-phase, this is possible only in the case of relaxation
of internal stresses in the alloy at high temperature by the mechanism of recrystal-
lization.

With increasing supercooling of the alloy, the thermodynamic stimulus and the
rate of normal transformation increase.

For a larger

ΔТ : L11Δφ�L12σα .L12σγ (77)

Figure 5.
Scheme of nondiffusion transformations from the constructed model.

118

Non-Equilibrium Particle Dynamics

The existing thermal stresses in the γ phase (75) contribute to the formation of
the α-phase by the shear mechanism, and the stresses arising in the α-phase com-
pensate thermal stresses in the γ-phase. With a certain amount of α-phase, the stress
equals σα = σγ arises and the further formation of the α-phase occurs according to
the normal mechanism with the relaxation of the arising stresses by recrystalliza-
tion. Consequently, the condition (77) corresponds to the transformation of the
γ-phase by a mixed mechanism, and also to the formation of a ferrite side plates
(Widmanstätten), followed by the release of the α-phase by the normal mecha-
nism [1].

With a certain supercooling of ΔTi, stress compensation occurs only when the
γ-phase is completely transformed into ferrite by a shearing mechanism. In this case:

L11Δφ�L12σα, σα¼σγ

The temperature corresponding to this supercooling is the starting point for the
formation of the isothermal martensite Mni (Figure 5). Below the point Mni, the
formation of the α-phase occurs by a shearing mechanism. However, the normal
component of the process still has a significant value, affecting the morphology of
the resulting precipitates. When supercooling a greater ΔTi, L11Δφ < L12σα, σα < σγ

At temperatures below Mni, isothermal martensite or acicular ferrite is formed
with a “reticular” or acicular morphology of precipitates. Finally, for large ΔT
(below Мna):

L11Δφ ≪ L12σγ, (78)

Inequality (78) determines the condition for the formation of “athermal” mar-
tensite, when the normal component does not affect the formation of the shear
structure. The main effect on the rate of the γ ! α transformation, in accordance
with expression (71), is due to thermal stresses in the γ phase. Thus, the constructed
model of the nondiffusion austenite transformations allows us to consider the
normal and martensitic transformations, as limiting cases.

7. Conclusions

Based on the possibility of dynamic equilibrium, expressions are found for
calculating the cross-kinetic coefficients of a thermodynamic system consisting of
two and three components. The values of the thermodynamic force for diffusion of
carbon, kinetic coefficients and flows of a thermodynamic system describing the
kinetics of carbide precipitation during the tempering of chromium steel are calcu-
lated. It has been established that the values of iron and chromium fluxes increase
substantially due to the cross ratios and the significant magnitude of the thermody-
namic force (�ΔμC).

Analysis of the eutectoid transformation of austenite using the relations of
nonequilibrium thermodynamics allowed us to generalize the equations of motion
of the system obtained earlier by the authors of [20] and to find more accurate
theoretical expressions for the perlite growth rate and its between interplate dis-
tance on the magnitude of the supercooling of steel. According to the constructed
model, the perlite growth rate in the direction of the X axis has a maximum value at
supercooling ΔТ = 140.0°С. The perlite growth rate calculated according to Zener’s
formula has a theoretical maximum value at overcooling ΔТ = 96.0°С. Conse-
quently, the theoretical expressions (31) and (32) make it possible to describe with
greater accuracy the maximum and the course of the experimental curve for the
perlite formation for high-purity eutectoid steel.
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The temperature corresponding to this supercooling is the starting point for the
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component of the process still has a significant value, affecting the morphology of
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structure. The main effect on the rate of the γ ! α transformation, in accordance
with expression (71), is due to thermal stresses in the γ phase. Thus, the constructed
model of the nondiffusion austenite transformations allows us to consider the
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Based on the possibility of dynamic equilibrium, expressions are found for
calculating the cross-kinetic coefficients of a thermodynamic system consisting of
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carbon, kinetic coefficients and flows of a thermodynamic system describing the
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lated. It has been established that the values of iron and chromium fluxes increase
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theoretical expressions for the perlite growth rate and its between interplate dis-
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The application of nonequilibrium thermodynamics to the analysis of the
nondiffusion transformation of austenite made it possible to obtain a system of
equations for the thermodynamic system and to generalize the results obtained
earlier by B.Ya. Lyubov the equations for a normal transformation. The theoretical
expression for the growth rate of the α-phase, obtained in this paper, takes into
account the influence of stresses on the process of austenite transformation. It is
shown that the rate of growth of α-phase particles at a constant temperature very
rapidly (exponentially) decreases in time, determining the incompleteness of the
transformation. According to the constructed model, a scheme of nondiffusion
austenite transformations was developed, including normal and martensitic trans-
formations, as limiting cases.

Thus, the use of the principles of nonequilibrium thermodynamics makes it
possible to obtain completely new results in the analysis of phase transformations in
iron-carbon alloys.
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Chapter 5

Variational Principle for
Nonequilibrium Steady States
Tested by Molecular Dynamics
Simulation of Model Liquid
Crystal Systems
Sten Sarman, Yonglei Wang and Aatto Laaksonen

Abstract

The purpose of the work presented in this chapter is to test a recently proven
variational principle according to which the irreversible energy dissipation rate is
minimal in the linear regime of a nonequilibrium steady state. This test is carried out
by performing molecular dynamics simulations of liquid crystals subject to velocity
gradients and temperature gradients. Since the energy dissipation rate varies with the
orientation of the director of the liquid crystal relative to these gradients and is
minimal at certain orientations, this is a stringent test of the variational principle.
More particularly, a nematic liquid crystal model based on the Gay-Berne potential,
which can be regarded as a Lennard-Jones fluid generalized to elliptical molecular
cores, is studied under planar Couette flow, planar elongational flow, and under a
temperature gradient. It is found that the director of a nematic liquid crystal
consisting of rod-like molecules lies in the vorticity plane at an angle of about 20° to
the stream lines in the planar Couette flow. In the elongational flow, it is parallel to
the elongation direction, and it is perpendicular to the temperature gradient in a heat
flow. These orientations are the ones where the irreversible energy dissipation rate is
minimal, so that the variational principle is fulfilled in these three cases.

Keywords: liquid crystals, nonequilibrium molecular dynamics simulation, shear
flow, elongational flow, heat conduction, alignment phenomena, minimal energy
dissipation rate

1. Introduction

For a system in thermodynamic equilibrium, there is a variational principle
according to which the free energy is minimal, that is, the Helmholtz free energy
when the volume, temperature, and number of particles are constant, Gibbs free
energy when the pressure, temperature, and number of particles are constant, etc.
On the other hand, for systems driven away from equilibrium by an external
dissipative field such as a velocity gradient, temperature gradient, chemical poten-
tial gradient or an electrical potential gradient doing irreversible work that is
converted to heat, there has not been any variational principle to date. However, a
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theorem originally proposed by Ilya Prigogine stating that a quantity, known as the
irreversible energy dissipation rate, _wirr, is minimal in the linear regime of a
nonequilibrium steady state has recently been proven [1]. This quantity is defined
as the irreversible work per unit time and unit volume that is done by a dissipative
external field on the system [2]. Thus, there is a variational principle for
nonequilibrium steady states.

This theorem is not only of basic scientific interest but also of technological and
practical interest since shear fields, temperature gradients, concentration gradients,
or chemical potential gradients and electrical potential gradients are common
examples of external dissipative fields that are ubiquitous in industrial applications
and in everyday life. For example, in a lubricated bearing, a planar Couette flow
arises in the lubricant in the narrow space between two surfaces rotating at differ-
ent angular velocities, and _wirr is equal to the product of the shear rate and the shear
stress. Another example is the heat flow between a hot region and a cold region such
as the inside and the outside of a building. Then, _wirr is equal to the product of the
heat flow and the temperature gradient. Still another example is an electric heating
element where an electric potential difference or voltage drives an electric current,
and _wirr is equal to the product of the voltage and the current. Finally, chemical
potential gradients arise when various substances are mixed and they begin to
diffuse, and _wirr is equal to the product of the chemical potential gradients and the
matter currents.

One way of testing this principle is to perform molecular dynamics simulations
of microscopic model systems, but then it is hard to find a suitable model system
that is easy to analyze. However, liquid crystals are particularly interesting for this
purpose because the transport properties and thereby _wirr depend on the orientation
relative to the streamlines or the temperature gradient, and at certain orientations,
_wirr is minimal. Thus, it can be determined whether these orientations actually are
attained by the liquid crystal. Moreover, it is possible to orient the liquid crystal in
an experimental measurement by applying an electric or magnetic field and in
molecular dynamics simulations by applying a constraint torque. This means that
_wirr can be measured or calculated as a function of the orientation relative to the
dissipative field.

The simplest kind of liquid crystal is the nematic liquid crystal [3, 4]. It consists
of rod-like or plate-like molecules oriented in a certain direction—the director—but
there is no translational order, see Figure 1. A nematic liquid crystal cannot support
shear stresses, so it is by definition a liquid, but it can support torques, which is the
basis for various orientation phenomena relative to external fields. A special case of
a nematic liquid crystal is the cholesteric liquid crystal, where the director rotates in
space around an axis perpendicular to itself—the cholesteric axis or the optical axis.
The spatial rotation period or the pitch is of the order of 1 μm or about 500
molecular diameters. A cholesteric liquid crystal is different from its mirror image,
and it is formed by chiral molecules.

There is some theoretical and experimental evidence indicating that the director
comes to rest in an orientation where the irreversible energy dissipation rate is
minimal in accordance with the variational principle. More specifically, such orien-
tation phenomena have been observed in simulations of shear flow or planar
Couette flow [5, 6], in experimental measurements of the viscosity [7] in this flow
geometry, and in simulations of planar elongational flow [8]. In the latter case, it is
actually possible to prove that the energy dissipation rate must be either minimal or
maximal in a steady state in the linear or Newtonian regime by using the linear
phenomenological relations between the velocity gradient and the shear stress.

In the case of a nematic liquid crystal subject to a temperature gradient, there are
quite a few early experimental works [9–14] that might imply that the director of a
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liquid crystal consisting of rod-like molecules orients perpendicularly to this gradi-
ent. This means that the heat flow is minimized, since the heat conductivity is
minimal in this orientation. Unfortunately, the results of these works are not wholly
conclusive because the underlying experiments are very hard to carry out. On the
other hand, molecular dynamics simulation of nematic phases of calamitic and
discotic soft ellipsoids [15–17] clearly show that the directors orient perpendicularly
and parallel, respectively, to the temperature gradient, so that the heat flow and
thereby _wirr are minimized. However, one system, where the director definitely
orients perpendicularly to the temperature gradient, is the cholesteric liquid crystal,
where the cholesteric axis orients parallel to the temperature gradient, so that the
director becomes perpendicular to this gradient, and the heat flow is minimized
[3, 4, 18–20], which is in agreement with the variational principle.

This chapter is organized in the following way: in Section 2, the basic theory is
outlined, and in Sections 3, 4, and 5, molecular dynamics simulation results and
experimental measurements on the director orientation and the irreversible energy
dissipation rate are presented and discussed for shear flow or planar Couette flow,
planar elongational flow and heat conduction, respectively. In Section 6, the effects
of the thermostat are discussed, and finally in Section 7, there is a conclusion. Some
background theory is given in the Appendices.

2. Basic theory

2.1 Order parameter, director, and director angular velocity

In order to describe transport properties of a liquid crystal, we must first define
the order parameter, the director, and the director angular velocity. In an axially
symmetric system such as a nematic or a smectic A liquid crystal, the order param-
eter, S, is given by the largest eigenvalue of the order tensor,

Q ¼ 3
2

1
N

∑
N

i¼1
ûiûi � 1

3
1

� �
, (1)

Figure 1.
A nematic phase of the Gay-Berne fluid undergoing planar Couette flow. The velocity gradient is directed in the
vertical direction and the streamlines are directed in the horizontal direction. Note that the director forms an
angle with streamlines of about 18°.
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where N is the number of particles, and ûi; 1≤i≤Nf g is some characteristic
vector of the molecule; in the case of bodies of revolution, it can be taken to
be parallel to the axis of revolution but in a more realistic all atom model
some other vector in the molecule has to be defined as ûi, and 1 is the unit
second rank tensor. When the molecules are perfectly aligned in the same
direction, the order parameter is equal to unity, and when the orientation is
completely random, it is equal to zero. The eigenvector corresponding to the
order parameter is defined as the director, n, and it is a measure of the average
orientation of the molecules in the system. The order tensor can also be
expressed as

Q ¼ 3
2
S nn� 1

3
1

� �
: (2)

The director angular velocity is given by Ω ¼ n� _n. In a macroscopic system,
the order tensor and the order parameter are functions of the position in space,
but in a small system such as a simulation cell with dimensions of the order of
some ten molecular lengths, there is only one director and one order parameter for
the whole system.

2.2 Director constraint algorithm

Since the molecules studied in the work presented in this chapter are
modeled by the Gay-Berne potential, which can be regarded as a Lennard-Jones
potential generalized to elliptical molecular cores, see Appendix 2, they are rigid
bodies. Therefore, the Euler equations are applied in angular space. Moreover,
since the purpose often is to find the stable orientations of the director relative
to an external dissipative field, it is interesting to calculate the torque exerted
on the liquid crystal, when the director attains various fixed angles relative to
this field. This can be done by adding Gaussian constraints to the Euler equa-
tions [21],

I _ωi ¼ Γi þ λx
∂Ωx

∂ωi
þ λy

∂Ωy

∂ωi
, (3)

where I is the moment of inertia around the axes perpendicular to the axis of
revolution, ωi is the angular velocity of molecule i, Γi is the torque exerted on
molecule i by the other molecules, Ωx and Ωy are the x- and y-components of the
director angular velocity, and λx and λy are Gaussian constraint multipliers keeping
the x- and y-components of the director angular acceleration equal to zero. These
multipliers are determined in such a way that the director angular acceleration
becomes a constant of motion. Then if the initial director angular acceleration and
angular velocity are equal to zero, the director will remain fixed in space for all
subsequent times and the time averages of the constraint multipliers will be equal to
the torque exerted on the director by the external field. Finally, note that the
difference between the director angular velocity, Ω, and the molecular angular
velocities ωi; 1≤i≤Nf g; the director angular velocity can be regarded as the angular
velocity of the average orientation of the molecules. If the director angular velocity
is constrained to be zero by applying Eq. (3), the molecular angular velocities are
still nonzero and the right hand side of Eq. (3) is nonzero. The Gaussian constraint
simply forces the molecules to rotate in such a way that average orientation stays
the same.
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3. Shear flow

3.1 The SLLOD equations of motion for shear flow

In order to study shear flow and to calculate the viscosity and director alignment
angles relative to the streamlines, it is convenient to apply the SLLOD equations of
motion [22]. The name SLLOD stems from the similarity to the Dolls equation of
motion derived from the Dolls tensor Hamiltonian. They are synthetic equations of
motion that can be used to calculate the viscosity in the linear regime. On the other
hand, the idea behind the SLLOD equations of motion is very simple: The velocity
of the molecules is divided into the streaming velocity and the thermal velocity. The
thermal velocity is related to the temperature, and the streaming velocity is the
macroscopic external velocity. The SLLOD equations of motion are an exact
description of adiabatic planar Couette flow and a very good approximation of shear
flow at constant temperature both in the linear and nonlinear regime. The SLLOD
equations are expressed in the following way:

_ri ¼ pi

m
þ γrziex (4a)

and

_pi ¼ Fi � γpziex � αpi, (4b)

where ri and pi are the position and peculiar momentum, that is, the momentum
relative to the streaming velocity, of molecule i,m is the molecular mass, γ ¼ ∂ux=∂z
is the shear rate, that is, there is a streaming velocity ux in the x-direction varying
linearly in the z-direction, see Figure 2, ex is the unit vector in the x-direction, Fi is
the force exerted on molecule i by the other molecules, and α is a thermostatting
multiplier given by the constraint that the linear peculiar kinetic energy is a con-
stant of motion,

α ¼ ∑N
i¼1 Fi � pi � γpixpiz
� �

∑N
i¼1p

2
i

: (5)

Figure 2.
Planar Couette flow or shear flow arises when there is a streaming velocity in the x-direction, varying linearly in
the z-direction, u ¼ γzex, where γ ¼ ∂ux=∂z is the shear rate or velocity gradient. The expression for the relation
between the velocity gradient and the pressure tensor becomes simpler by using a director-based coordinate
system e1; e2; e3ð Þ, where the director n points in the e3-direction, obtained by rotating the ordinary laboratory-
based coordinate system e1; e2; e3ð Þ with an angle θ around the ey ¼ e2-axis. Reproduced from Ref. [6] with the
permission of AIP Publishing.

127

Variational Principle for Nonequilibrium Steady States Tested by Molecular Dynamics…
DOI: http://dx.doi.org/10.5772/intechopen.80977



where N is the number of particles, and ûi; 1≤i≤Nf g is some characteristic
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This expression is obtained by applying Gauss’s principle of least constraint [22].
This principle is essentially the same as the Lagrange’s method for handling
constraints. However, Gauss’s principle is more general in that it in addition to
constraints involving the molecular coordinates also allows handling of some con-
straints involving the molecular velocities. This is very useful because it makes it
possible to keep the kinetic energy constant whereby the temperature also will be
constant. It is possible to show that the ensemble averages of the phase functions
and the time correlation functions are essentially canonical when a Gaussian ther-
mostat is applied.

3.2 Shear flow of nematic liquid crystals

In a nematic liquid crystal undergoing shear flow, the alignment angle, θ,
between the director and the streamlines is determined by a mechanical stability
criterion, namely, that the antisymmetric pressure must be zero when no external
torques act on the system, that is, that the torques exerted by the vorticity and the
strain rate cancel out. This makes it possible to derive a relationship between the
alignment angle and the viscosity coefficients in the Newtonian regime by using the
linear relation between the pressure tensor and the strain rate, see Refs. [3, 4, 23]
and Appendix 1,

pa2
� � ¼ �~γ1

γ

4
� ~γ2

γ

4
cos 2θ ¼ 0, (6)

where ~γ1 is the twist viscosity, ~γ2 is the cross coupling coefficient between
the antisymmetric pressure and the strain rate, and pa2

� �
is the antisymmetric

pressure in the vorticity direction perpendicular to the streamlines and perpen-
dicular to the velocity gradient. The angular brackets denote that the pressure
tensor is the ensemble average of a phase function. Then, if pa2

� �
is equal to

zero, we obtain

cos 2θ0 ¼ �~γ1=~γ2, (7)

for the preferred alignment angle, θ0, provided that the ratio ~γ1=~γ2j
�� is less

than one. Then the liquid crystal is said to be flow stable. This condition is
fulfilled in many liquid crystals, and θ0 is between 10 and 20° both in real
systems and in simplified coarse grained model systems such as the soft ellip-
soid fluid, see Refs. [5–7], Figure 1, and Appendix 2. Note, however, that for
some systems, often near the nematic-smectic A phase transition, the ratio
~γ1=~γ2j
�� is greater than one. This means that there is no orientation angle where
the antisymmetric pressure is zero, so that no steady state is attained. Then the
liquid crystal is said to be flow unstable and the director will rotate forever
[3, 4, 23, 24].

The connection with the variational principle can be made by using the fact
that there is an algebraic expression for the irreversible energy dissipation rate,
_wirr, of a flow stable nematic liquid crystal, given by the dyadic product of the
symmetric traceless pressure, P, and the traceless strain rate, ∇u,

_wirr ¼ �P : ∇u ¼ ηþ ~η1
6
þ ~η3

2
sin 22θ þ ~η2

2
cos 2θ

� �
γ2, (8)
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where the definitions of the viscosity coefficients, η, ~η1, ~η2, and ~η3, and the
derivation are given in Appendix 1. If the values of the various viscosity coefficients
are inserted, it is found that the functional dependence of _wirr on θ is similar to that
given in Figure 3. This function (8) has been obtained by shear flow simulations
applying the SLLOD equations of motion [22] to a nematic phase of calamitic soft
ellipsoids, see Refs. [5, 6]. The energy dissipation rate is low close to the preferred
alignment angle and high when the director is perpendicular to the streamlines
and parallel to the velocity gradient. Then, if we study the distribution of the
director, we find that it is centered close to the minimum of _wirr. This minimum
has also been observed in simulations of shearing nematic phases of discotic soft
ellipsoids [5] and when experimentally measured, viscosity coefficients are inserted
in the Eqs. (7) and (8) and the resulting alignment angle is determined [7]. Thus the
system seems to select the alignment angle that minimizes the irreversible energy
dissipation rate in accordance with the variational principle. This also means that
the energy dissipation rate (8) must be minimal at the preferred alignment angle,
θ0, given by Eq. (7). Thus, the derivative of the function (8) with respect to θ must
be zero for θ0, giving an additional relation between the viscosity coefficients and
the alignment angle,

cos 2θ0� ¼ ~η2
2~η3

(9)

or

2~η3~γ1 þ ~η2~γ2 ¼ 0, (10)

where θ0 has been eliminated by using Eq. (7). The Eqs. (7) and (9) do not
coincide but they must still give the same value of θ0. This provides an important
cross check for the correctness of the simulation algorithms and experimental
methods used to determine the viscosity coefficients and for the computer pro-
grams used to run the simulations.

Figure 3.
The irreversible energy dissipation rate, _wirr, Eq. (8), due to the strain rate of a nematic liquid crystal phase of
calamitic soft ellipsoids as a function of the director alignment angle, θ, is obtained by using the Gaussian
constraint algorithm (3) to fix the director at various angles relative to the streamlines. The preferred alignment
angle attained when no constraints are applied is equal to about 20° which is close to the minimum of _wirr.
Reproduced from Ref. [6] with the permission of AIP Publishing.
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� �
γ2, (8)
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4. Planar elongational flow

4.1 The SLLOD equations of motion for planar elongational flow

A planar irrotational elongational flow arises when an incompressible liquid
expands in the x-direction and contracts in the z-direction, see Figure 4.
Then, the velocity field and the strain rate are given by u ¼ γ xex � zezð Þ and
∇u ¼ ∇u ¼ γ exex � ezezð Þ. Planar elongational flow can be studied by applying
a special version of the SLLOD equations of motion. Then the problem is that,
if the simulation cell is elongated in the x-direction and contracted in the z-
direction, the simulation can only continue until the width in the z-direction
is equal to twice the range of the interaction potential. However, if the angle
between the elongation direction and the x-axis is set to an angle, φ, the
periodic lattice of originally quadratic simulation cells is gradually deformed
to a lattice of cells shaped like parallelograms. Then, it can be shown that for a
special value of this angle, φ0, the lattice of parallelograms can be remapped
onto the original quadratic lattice after a certain time period, so that the simu-
lation becomes continuous, that is, the Kraynik-Reinelt boundary conditions,
see Figure 5 and Refs. [8, 25–28] for details. Then, if the angle between the
elongation direction and the x-axis is equal to φ0, the velocity gradient becomes
∇u ¼ γ e0xe

0
x � e0ze

0
z

� �
, where e0x ¼ ex cosφ0 � ez sinφ0 and e0z ¼ ex sinφ0 þ ey cosφ0

are the elongation and contraction directions. Inserting this gradient in the
SLLOD equations of motion gives,

_ri ¼ pi

m
þ ri � ∇u ¼ pi

m
þ γri � e0xe

0
x � e0ze

0
z

� �
(11a)

and

_pi ¼ Fi � pi � ∇u� αpi � β ¼ Fi � γpi � e0xe
0
x � e0ze

0
z

� �� αpi � β, (11b)

where ri and pi are the position and peculiarmomentum, that is, themomentum
relative to themacroscopic streaming velocity, ofmolecule i, Fi is the force exerted on
molecule i by the othermolecules,m is themolecularmass,u is the streaming velocity, γ
is the strain rate,α is a thermosttingmultiplier and β is a constraintmultiplier used to
conserve the linearmomentum.

Figure 4.
Schematic representation of a nematic phase of a soft ellipsoid fluid undergoing irrotational extensional flow.
The system is elongated in the horizontal direction and contracted in the vertical direction while the volume is
constant. The molecules tend to be aligned in the elongation direction.
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4.2 Planar elongational flow of nematic liquid crystals

The director alignment angle is in the first place determined by the mechanical
stability in the same way as in shear flow whereby the antisymmetric pressure must
be zero. In the linear or Newtonian regime, the alignment angle can be found by
using the following relation between the antisymmetric pressure and the strain rate,
see Appendix 1,

pa2
� � ¼ �~γ2

γ

2
sin 2θ, (12)

where θ denotes the angle between the director and the elongation direction, and
~γ2 is the cross coupling coefficient between the antisymmetric pressure and the
strain rate. From this expression, it is apparent that the alignment angle must be
either 0 or 90°, that is, where the torque exerted by the strain rate is equal to zero.
For a flow stable calamitic nematic liquid crystal, the cross coupling coefficient ~γ2 is
negative [6], so that the 0° orientation parallel to the elongation direction is
mechanically stable, and the 90° orientation is unstable.

Just as in planar Couette flow or shear flow, the connection to the variational
principle can be made by considering the algebraic expression for the irreversible
energy dissipation rate in the linear regime,

_wirr ¼ �P : ∇u ¼ 4ηþ 2
~η1
3
þ 2~η3 cos

22θ
� �

γ2: (13)

If the viscosity coefficient ~η3 is positive, this expression is minimal when θ is
equal to 45° but this orientation is excluded because of the mechanical stability (12).
If ~η3 on the other hand is negative, this expression attains the same minimal value
when θ is equal to 0 or 90°, that is, the elongation or contraction direction. Simula-
tions of a nematic phase of calamitic soft ellipsoids have shown that ~η3 is less than
zero [8], so that the energy dissipation rate is minimal in the stable orientation also
in this case of planar elongational flow. This is in agreement with the variational
principle [1]. See also Figure 6 where the angular distribution of the director
around the elongation direction is displayed.

Figure 5.
The Kraynik-Reinelt boundary conditions. The original simulation cell is square 1. When the angle between the
elongation direction and the horizontal direction is equal to φ0, square 1 is deformed to a parallelogram, which,
after a given time interval, becomes the dashed parallelogram, partially covering the squares (1–6). Then the
triangles a’, b’, and c’ in the parallelogram are periodic copies of the triangles a, b, and c in square 1. If the
primed triangles are moved to the corresponding unprimed triangles, a square is recovered and the simulation
can continue. Reproduced from Ref. [8], with permission from the PCCP Owner Societies.
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4.2 Planar elongational flow of nematic liquid crystals

The director alignment angle is in the first place determined by the mechanical
stability in the same way as in shear flow whereby the antisymmetric pressure must
be zero. In the linear or Newtonian regime, the alignment angle can be found by
using the following relation between the antisymmetric pressure and the strain rate,
see Appendix 1,
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where θ denotes the angle between the director and the elongation direction, and
~γ2 is the cross coupling coefficient between the antisymmetric pressure and the
strain rate. From this expression, it is apparent that the alignment angle must be
either 0 or 90°, that is, where the torque exerted by the strain rate is equal to zero.
For a flow stable calamitic nematic liquid crystal, the cross coupling coefficient ~γ2 is
negative [6], so that the 0° orientation parallel to the elongation direction is
mechanically stable, and the 90° orientation is unstable.

Just as in planar Couette flow or shear flow, the connection to the variational
principle can be made by considering the algebraic expression for the irreversible
energy dissipation rate in the linear regime,

_wirr ¼ �P : ∇u ¼ 4ηþ 2
~η1
3
þ 2~η3 cos
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γ2: (13)

If the viscosity coefficient ~η3 is positive, this expression is minimal when θ is
equal to 45° but this orientation is excluded because of the mechanical stability (12).
If ~η3 on the other hand is negative, this expression attains the same minimal value
when θ is equal to 0 or 90°, that is, the elongation or contraction direction. Simula-
tions of a nematic phase of calamitic soft ellipsoids have shown that ~η3 is less than
zero [8], so that the energy dissipation rate is minimal in the stable orientation also
in this case of planar elongational flow. This is in agreement with the variational
principle [1]. See also Figure 6 where the angular distribution of the director
around the elongation direction is displayed.

Figure 5.
The Kraynik-Reinelt boundary conditions. The original simulation cell is square 1. When the angle between the
elongation direction and the horizontal direction is equal to φ0, square 1 is deformed to a parallelogram, which,
after a given time interval, becomes the dashed parallelogram, partially covering the squares (1–6). Then the
triangles a’, b’, and c’ in the parallelogram are periodic copies of the triangles a, b, and c in square 1. If the
primed triangles are moved to the corresponding unprimed triangles, a square is recovered and the simulation
can continue. Reproduced from Ref. [8], with permission from the PCCP Owner Societies.
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5. Heat conduction

5.1 Heat flow algorithm

A temperature gradient can be maintained by keeping different regions, 1 and 2,
of a system at different temperatures, see Figure 7. Mathematically, this can be
brought about by adding thermostatting terms for each of the regions 1 and 2 to the
ordinary Newtonian equations of motion [29],

m€ri ¼ Fi � ŵ1iα1m _ri � ŵ2iα2m _ri � ζ, (14)

Figure 6.
The angular distribution, p θð Þ, of the director of a calamitic nematic liquid crystal consisting of soft ellipsoids
around the elongation direction where the angle between the director and the elongation direction is denoted by
θ. Reproduced from Ref. [8], with permission from the PCCP Owner Societies.

Figure 7.
A temperature gradient is maintained by thermostatting one region (dark gray) of the system at a high
temperature and another region (light gray) at a low temperature, whereby heat will flow from the high
temperature region to the low temperature region. Reproduced from Ref. [15], with permission from the PCCP
Owner Societies.
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where m is the molecular mass, _ri and €ri are the velocity and the acceleration of
molecule i, and Fi is the force exerted on molecule i by the other molecules. The
thermostatting terms are ŵ1iα1m _ri and ŵ2iα2m _ri where ŵ1i and ŵ2i are two normal-
ized weight functions. These terms are actually similar to the thermostatting term in
Eq. (4b), but here region 1 and region 2 are thermostatted separately at different
temperatures. This is achieved by letting the weight functions be Gaussian func-
tions centered in region 1 and 2, respectively, and with decay lengths that are
considerably shorter than the distance between these two regions. In this way, only
the molecules in region 1 contribute to the temperature in region 1, and only the
molecules in region 2 contribute to the temperature in region 2. The molecules far
away from the centers of these regions move according to the ordinary Newtonian
equations of motion. Note that, it is not necessary to use Gaussian weight functions;
it is possible to use any function with a maximum and a rather short decay length.
The parameters α1 and α2 are thermostatting multipliers in the same way as the
multiplier α in Eqs. (4b) and (5), but here, they thermostat the regions 1 and 2
separately. They are determined by applying Gauss’s principle of least constraints
using the fact that the weighted kinetic energies are constant:

1
2
∑
N

i¼1
ŵ1im _r2i ¼ Ek1 (15a)

and

1
2
∑
N

i¼1
ŵ2im _r2i ¼ Ek2, (15b)

where Ek1 and Ek2 are the weighted kinetic energies for region 1 and 2, respectively.
The algebraic expressions for the thermostatting multipliers are given in Ref. [15]. The
parameter ζ is a multiplier determined in such a way that the linear momentum of the
whole system is constant. It goes to zero in the thermodynamic limit.

5.2 Heat flow in nematic liquid crystals

The heat flow in an axially symmetric system such as a nematic liquid crystal or
a cholesteric liquid crystal is given by

JQ
� � ¼ � λk knnþ λ⊥⊥ 1� nnð Þ� � � ∇T

T
, (16)

where JQ
� �

is the heat current density, λk k is the heat conductivity parallel to the
director of an ordinary achiral nematic liquid crystal or parallel to the cholesteric
axis of a cholesteric liquid crystal, λ⊥⊥ is the heat conductivity perpendicular to the
director of a nematic liquid crystal or perpendicular to the cholesteric axis of a
cholesteric liquid crystal,T is the absolute temperature, and n is the director. Then,
the irreversible energy dissipation rate of the system due to the heat flow becomes,

_wirr ¼ � JQ
� � � ∇T

T
¼ 1

T2 λ⊥⊥∇T � ∇T þ λk k � λ⊥⊥
� �

n � ∇Tð Þ2
h i

¼ ∂zT
T

�� ��2 λ⊥⊥ þ λk k � λ⊥⊥
� �

cos 2θ
� �

,
(17)

where the last equality has been obtained by assuming that the director lies in
the zx-plane forming an angle θ with the temperature gradient, see Figure 8. When
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The algebraic expressions for the thermostatting multipliers are given in Ref. [15]. The
parameter ζ is a multiplier determined in such a way that the linear momentum of the
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5.2 Heat flow in nematic liquid crystals
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� �
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λk k>λ⊥⊥, as in a nematic liquid crystal consisting of calamitic molecules, the heat
current density and thereby _wirr are maximal when the temperature gradient and
the director are parallel and minimal when they are perpendicular to each other.
Conversely, when λk k < λ⊥⊥, as in a nematic liquid crystal consisting of discotic
molecules, the heat current density and the irreversible energy dissipation rate are
maximal when the director is perpendicular to the temperature gradient and mini-
mal when it is parallel to the temperature gradient.

The temperature gradient exerts a torque on the molecules around an axis
perpendicular to itself and perpendicular to the director, see Figure 8. This torque
must be zero in the parallel and perpendicular orientations due to the symmetry,
but it is impossible to determine whether these orientations are stable or unstable.
Unfortunately, there is no linear relation between the torque and the temperature
gradient since they are pseudovectors and polar vectors, respectively, due to the
axial symmetry of the system. However, a quantitative relation between them can
be obtained by noting that a cross coupling between a pseudo vector and a sym-
metric second rank tensor is allowed. The latter quantity can be obtained by
forming the dyadic product of the temperature gradient, giving the following
relation [15],

Γ ¼ με : nn � ∇T
T

∇T
T

¼ μn � ∇T
T

n� ∇T
T

¼ μ
∂zT
T

����
����
2

cos θ sin θey ¼ 1
2
μ
∂zT
T

����
����
2

sin 2θey,

(18)

where Γ is the torque density, μ is a cross coupling coefficient, and ε is the Levi-
Civita tensor. The third equality is obtained by assuming that the temperature
gradient points in the z-direction, and the director lies in the zx-plane, see Figure 8,
whereby θ becomes the angle between these two vectors. This relation fulfills the
symmetry condition according to which the torque must be zero when the director
is parallel or perpendicular to the temperature gradient. Moreover, the torque is
proportional to the square of the temperature gradient for given angle θ. Note also
that, this relation is analogous to the relation between the strain rate and the
antisymmetric pressure in planar elongational flow (12).

Figure 8.
A schematic view of a nematic liquid crystal subject to a temperature gradient is shown. The temperature
gradient ∇T points in the z-direction, and the director n lies in the zx-plane forming an angle θ to the z-axis.
Then a torque Γ arises in the direction of the y-axis. Reproduced from Ref. [15], with permission from the
PCCP Owner Societies.
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The director orientation can be determined by simulating systems, where a
temperature gradient and a heat flow are maintained by thermostatting different
parts of the system at different temperatures by using the above simulation algo-
rithm (14). Such simulations have shown that the director of nematic liquid crystals
consisting of soft calamitic ellipsoids tends to align perpendicularly to the tempera-
ture gradient, see Figure 9, whereas the director of nematic liquid crystals
consisting of discotic ellipsoids tends to align parallel to the temperature gradient.
Thus, the energy dissipation rate is minimal in both cases. Moreover, if the director
is constrained to attain a fixed orientation between the perpendicular and parallel
orientation relative to temperature gradient by applying the Lagrangian constraint
algorithm (3), the torque exerted can be obtained. Then, it is found that this torque
turns the director of a calamitic system toward the perpendicular orientation and
the director of a discotic system toward the parallel orientation. The same orienta-
tion behavior of the directors of calamitic and discotic nematic liquid crystals
relative to the temperature gradient was observed in an earlier work [21]. However,
then the Evans heat flow algorithm [22] was applied where a fictitious external field
under non-Newtonian equations of motion rather than a real temperature gradient
drives the heat flow. Therefore, it was not possible to determine whether the
orientation phenomena were a real effect or a consequence of the non-Newtonian
synthetic equations of motion.

There are also some early experimental works on the orientation of the director
of nematic liquid crystals relative to temperature gradients [9–14] that probably
support the conclusions of these heat flow simulations. Unfortunately, it is very
difficult to carry out these experiments because if the temperature gradient is too
large, there will be convection in the system, and if the temperature gradient is too
small, it will not be strong enough to overcome the elastic torques or the surface
torques. Therefore, these experiments are not fully conclusive.

Finally, one example where the director orientation relative to a temperature
gradient definitely is the one that minimizes the irreversible energy dissipation rate
is a cholesteric liquid crystal. In this system, the director rotates in space around the
cholesteric axis forming a spiral structure. Then experimental studies, where a
temperature gradient is applied, have shown that the cholesteric axis orients parallel
to the temperature gradient, whereby the energy dissipation rate is minimized since
the heat conductivity is greater in the direction perpendicular to the cholesteric axis
than in the parallel direction. Moreover, the whole spiral structure starts rotating in
time. This phenomenon is known as thermomechanical coupling [3, 4, 18–20, 30, 31].

Figure 9.
The angular distribution, p θð Þ, of the director of a nematic liquid crystal consisting of soft calamitic ellipsoids
around the temperature gradient where the angle between the director and the temperature gradient is denoted
by θ. Reproduced from Ref. [15], with permission from the PCCP Owner Societies.
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where Γ is the torque density, μ is a cross coupling coefficient, and ε is the Levi-
Civita tensor. The third equality is obtained by assuming that the temperature
gradient points in the z-direction, and the director lies in the zx-plane, see Figure 8,
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Figure 8.
A schematic view of a nematic liquid crystal subject to a temperature gradient is shown. The temperature
gradient ∇T points in the z-direction, and the director n lies in the zx-plane forming an angle θ to the z-axis.
Then a torque Γ arises in the direction of the y-axis. Reproduced from Ref. [15], with permission from the
PCCP Owner Societies.
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temperature gradient and a heat flow are maintained by thermostatting different
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There are quite a few experimental studies available on this phenomenon, where it
has been found in a conclusive way that the cholesteric axis remains parallel to the
temperature gradient, so this orientation seems to be stable, and thus the irrevers-
ible energy dissipation rate is minimal.

We can consequently conclude that the orientation of the director relative to the
temperature gradient is consistent with the variational principle [1] even though the
coupling between the torque and the temperature gradient is quadratic rather than
linear and the system is inhomogeneous. However, the temperature gradient is
rather weak, so we still remain in the linear regime.

6. Effects of the thermostat

In the above simulations of shear flow and elongational flow, the velocity gradi-
ent does work on the system that is converted to heat, which must be removed in
order to keep the temperature constant and to maintain a steady state. In a real
macroscopic system, this takes place by heat conduction to the system boundaries
and this could in principle be arranged in a microscopic simulation cell as well.
Unfortunately, this is inconvenient because a temperature gradient of molecular
dimensions would make the system inhomogeneous, and thus make it difficult to
define the thermodynamic state. Therefore, the temperature is kept constant by
forcing the kinetic energy to be a constant of motion by applying a Gaussian
thermostat, see Eq. (5). This thermostat was originally devised independently by
Hoover et al. [32–34] and by Evans [22]. The equilibrium ensemble averages of the
phase functions and time correlation functions generated when this thermostat is
applied are essentially canonical [35]. Away from equilibrium, it can be shown that
the effect of the Gaussian thermostat on the ensemble averages is proportional to
the square of the external field, whereas the thermodynamic fluxes driven by the
field are directly proportional to the field in a linear transport process. Thus, the
corresponding linear transport coefficients that are equal to the ratio of the flux and
the field in the limit of zero field are independent of the thermostat. Therefore,
transport coefficients obtained from the simulations of shear flow and elongational
flow are independent of the thermostat since there is a linear relation between the
velocity gradient and the shear stress in the Newtonian regime and since we are
interested in the limit of zero velocity gradient. Neither is the correctness of the
variational principle affected by the thermostat since it is valid in the linear regime.

The situation is different in the heat flow simulations because here we actually
want a temperature gradient. This gradient is obtained by applying two bar ther-
mostats at different temperatures acting over a limited range and separated by a
distance that is long compared to this range, see Figure 7 and Eq. (14). Therefore,
the movements of only a small fraction of the molecules are affected by the ther-
mostats, whereas the movements of the majority of the molecules away from the
bar thermostats are governed by the ordinary Newtonian equations of motion.
Thus, it is reasonable to assume that the influence of the details of the thermostat on
the ensemble averages of the phase functions is limited in this case too.

7. Conclusion

The purpose of this work has been to test a recently proven variational princi-
ple according to which the irreversible energy dissipation rate is minimal in the
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linear regime of a nonequilibrium steady state. Therefore, we have reviewed
molecular dynamics simulations and experimental work on director orientation
phenomena in nematic liquid crystals and in cholesteric liquid crystals under
external dissipative fields such as velocity gradients and temperature gradients.
A general observation that we have made is that in all the examples studied, the
director of the liquid crystals seems to attain precisely that alignment angle
relative to the external dissipative field that minimizes the irreversible energy
dissipation rate.

In a nematic liquid crystal, the director orientation is in the first place deter-
mined by a mechanical stability criterion, namely, that the external torques acting
on the system must be zero at mechanical equilibrium. This makes it possible to
derive an exact relation between the alignment angle relative to the streamlines and
the viscosity coefficients in the linear or Newtonian regime of planar elongational
flow and of planar Couette flow. Both simulations and experimental measurements
imply that the irreversible energy dissipation rate is minimal at this mechanically
stable orientation.

It can be shown that the elongation direction is the stable orientation of flow
stable calamitic nematic liquid crystals undergoing elongational flow in the linear
regime. It can also be shown that the value of the energy dissipation rate is the same
in the contraction direction and in the elongation direction, and that this value is
either the maximal or the minimal value by using the linear phenomenological
relations between the strain rate and the pressure. Simulations of the calamitic soft
ellipsoid fluid have shown that the irreversible energy dissipation rate is minimal in
the elongation direction.

In calamitic nematic liquid crystals, the heat conductivity is larger in the direc-
tion parallel to the director than in the perpendicular direction, and the reverse is
true for discotic nematic liquid crystals. Thus, the irreversible energy dissipation
rate due to the heat flow depends on the angle between the director and the
temperature gradient. When a nematic liquid crystal is subjected to a temperature
gradient, a torque is exerted on the molecules. Due to symmetry, this torque must
be proportional to the square of the temperature gradient and it must be zero when
the director is parallel or perpendicular to this gradient.

In simulations of nematic phases of soft ellipsoids under a temperature gradient,
it turns out that the director of a calamitic nematic liquid crystal aligns perpendic-
ularly to the temperature gradient, whereas the director of a discotic nematic liquid
crystal attains the parallel orientation. In both cases, the irreversible energy dissi-
pation rate is minimal. These simulation results are probably supported by some
experimental measurements, but they are difficult to carry out in practice so they
are not fully conclusive.

Finally, one system where there is definitely a conclusive experimental evidence
for the fact that the director attains the orientation that minimizes the energy
dissipation rate due to a temperature gradient is the cholesteric liquid crystal. The
cholesteric axis of droplets of cholesteric liquid crystals orient parallel to a temper-
ature gradient and the director rotates. This is a well-established phenomenon
observed in studies of thermomechanical coupling, and since the heat conductivity
is lower in the direction of the cholesteric axis than in the perpendicular direction,
the energy dissipation rate is minimal in this case.

Thus, the director orientation relative to a temperature gradient also follows the
variational principle even though there is a quadratic coupling between the torque
and the temperature gradient. However, the temperature gradients are rather low
so we are still in the linear regime.
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the ensemble averages of the phase functions is limited in this case too.

7. Conclusion
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linear regime of a nonequilibrium steady state. Therefore, we have reviewed
molecular dynamics simulations and experimental work on director orientation
phenomena in nematic liquid crystals and in cholesteric liquid crystals under
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dissipation rate.
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on the system must be zero at mechanical equilibrium. This makes it possible to
derive an exact relation between the alignment angle relative to the streamlines and
the viscosity coefficients in the linear or Newtonian regime of planar elongational
flow and of planar Couette flow. Both simulations and experimental measurements
imply that the irreversible energy dissipation rate is minimal at this mechanically
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It can be shown that the elongation direction is the stable orientation of flow
stable calamitic nematic liquid crystals undergoing elongational flow in the linear
regime. It can also be shown that the value of the energy dissipation rate is the same
in the contraction direction and in the elongation direction, and that this value is
either the maximal or the minimal value by using the linear phenomenological
relations between the strain rate and the pressure. Simulations of the calamitic soft
ellipsoid fluid have shown that the irreversible energy dissipation rate is minimal in
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In calamitic nematic liquid crystals, the heat conductivity is larger in the direc-
tion parallel to the director than in the perpendicular direction, and the reverse is
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rate due to the heat flow depends on the angle between the director and the
temperature gradient. When a nematic liquid crystal is subjected to a temperature
gradient, a torque is exerted on the molecules. Due to symmetry, this torque must
be proportional to the square of the temperature gradient and it must be zero when
the director is parallel or perpendicular to this gradient.
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it turns out that the director of a calamitic nematic liquid crystal aligns perpendic-
ularly to the temperature gradient, whereas the director of a discotic nematic liquid
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pation rate is minimal. These simulation results are probably supported by some
experimental measurements, but they are difficult to carry out in practice so they
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for the fact that the director attains the orientation that minimizes the energy
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A. Appendix 1: Relation between the pressure tensor, velocity gradient,
and viscosity coefficients

The relation between the velocity gradient, ∇u, and the pressure tensor, P, is
more complicated in an axially symmetric system such as nematic liquid crystal
than in an isotropic fluid due to the lower symmetry. In order to derive the linear
phenomenological relations between the velocity gradient and the pressure, it is
appropriate to begin by identifying the thermodynamic forces and fluxes in the
expression for the irreversible entropy production [3, 4, 23, 36]:

σ ¼ � 1
T

P : ∇uþ 2Pa� ½∇� u�Ωð Þ þ 1
3
Tr Pð Þ � peq

� �
∇�u

� �
, (A.1)

where T is the absolute temperature, and u is the streaming velocity. The various
parts of the second rank tensor are denoted in the following manner: the symmetric
traceless part is given by A ¼ ½ AþAT� �� 1=3ð ÞTr Að Þ1 and the pseudovector dual
of the antisymmetric part is denoted by Aa ¼ �½ε:A ¼ �½εαβγAγβ, where ε is the
Levi-Civita tensor. Three pairs of thermodynamic forces and fluxes can be identi-
fied by inspection of the irreversible entropy production, namely, the symmetric
traceless pressure tensor and the traceless strain rate, P and ∇u, the antisymmetric
pressure and the difference between the rotation and the director angular velocity,
Pa and ½∇� u�Ω, and the difference between the trace of the pressure tensor and
the equilibrium pressure of a quiescent liquid crystal, and the trace of the strain
rate, 1=3ð ÞTr Pð Þ � peq and ∇�u. Note that the strain rate is defined as

½ ∇uþ ∇uð ÞT
h i

, and it is always symmetric. In a uniaxially symmetric nematic

liquid crystal, the relations between the pressure and the velocity gradient can be
deduced by symmetry arguments, and they can be expressed in a few different
equivalent ways [23, 36]. It has been found that a notation due to Hess [36] is the
most convenient one for deducing Green-Kubo relations and NEMD-algorithms:

P
� � ¼ �2η∇u � ~η1nn � ∇u � 2~η3nn nn:∇u þ 2~η2nn � ε � ½∇� u�Ωð Þ � ζnn∇ � u,

(A.2a)

Pah i ¼ �~γ1
2

½∇� u�Ωð Þ � ~γ2
2
ε : nn � ∇u� �

, (A.2b)

and

1
3

Tr Pð Þh i � peq ¼ �ηV∇ � u� κnn:∇u, (A.2c)
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where the products involving the Levi-Civita tensor ε are defined in the
following way: ε : A ¼ εαβγAγβ and A � ε � B ¼ AαβεβγδBδ. The quantities η, ~η1, and
~η3 are shear viscosities, ~γ1 is the twist viscosity, ηV is the volume viscosity, ~η2 is
the cross coupling coefficient relating the difference between the rotation and
the director angular velocity, and the symmetric traceless pressure. According
to the Onsager reciprocity relations (ORR), this coefficient is equal to ~γ2=2, the
cross coupling coefficient relating the traceless strain rate and the antisymmet-
ric pressure. The trace of the strain rate and the symmetric traceless pressure
are related by the cross coupling coefficient, ζ, which, according to the ORR, is
equal to the cross coupling coefficient κ between the traceless strain rate and
the difference between the trace of the pressure tensor and the equilibrium
pressure.

Application of a planar Couette velocity gradient, ∇u ¼ γ ezex, where γ ¼ ∂zux is
the shear rate and fixation of the director in the zx-plane at an angle θ relative to the
stream lines, see Figure 2, by application of an electric or a magnetic field gives the
following relations between the pressure tensor components and the strain rate in a
director based coordinate system e1; e2; e3ð Þ where the director points in the e3-
direction:

p11
� � ¼ ηþ ~η3

3

� �
γ sin 2θ, (A.3a)

p22
� � ¼ 1

3
~η1 þ ~η3Þγ sin 2θ,
�

(A.3b)

p33
� � ¼ � ηþ ~η1

3
þ 2

~η3
3

� �
γ sin 2θ, (A.3c)

p31
� � ¼ ηþ ~η1

6

� �
γ cos 2θ þ ~η2

γ

2
, (A.3d)

and

2 pa2
� � ¼ λ̂2

� � ¼ �~γ1
γ

2
� ~γ2

γ

2
cos 2θ, (A.3e)

where λ̂2 is the external torque density acting on the system. From these equa-
tions, it is apparent that the various elements of the pressure tensor are linear
functions of sin 2θ and cos 2θ, so the various viscosity coefficients can be evaluated
by fixing the director at a few different angles relative to the stream lines and
calculating the averages of the pressure tensor elements.

In a planar elongational flow [8, 26–28], where the elongation direction is paral-
lel to the x-axis, the contraction direction is parallel to the negative z-axis, and the
velocity field is equal to u ¼ γ xex � zezð Þ, so that the velocity gradient becomes
∇u ¼ γ exex � ezezð Þ. Then the linear relations between the velocity gradient and the
pressure become the following in a director-based coordinate system e1; e2; e3ð Þ
where the director points in the e1-direction, and θ is the angle between the director
and the elongation direction or x-axis, e2 ¼ ey and e3 ¼ e1 � e2,

p11
� � ¼ �2 ηþ ~η3

3

� �
γ cos 2θ, (A.4a)

p22
� � ¼ � 2

3
~η1 þ ~η3Þγ cos 2θ,
�

(A.4b)
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tions, it is apparent that the various elements of the pressure tensor are linear
functions of sin 2θ and cos 2θ, so the various viscosity coefficients can be evaluated
by fixing the director at a few different angles relative to the stream lines and
calculating the averages of the pressure tensor elements.

In a planar elongational flow [8, 26–28], where the elongation direction is paral-
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velocity field is equal to u ¼ γ xex � zezð Þ, so that the velocity gradient becomes
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and the elongation direction or x-axis, e2 ¼ ey and e3 ¼ e1 � e2,

p11
� � ¼ �2 ηþ ~η3

3

� �
γ cos 2θ, (A.4a)

p22
� � ¼ � 2

3
~η1 þ ~η3Þγ cos 2θ,
�

(A.4b)

139

Variational Principle for Nonequilibrium Steady States Tested by Molecular Dynamics…
DOI: http://dx.doi.org/10.5772/intechopen.80977



p33
� � ¼ 2 ηþ ~η1

3
þ 2

~η3
3

� �
γ cos 2θ, (A.4c)

p31
� � ¼ 2ηþ ~η1

3

� �
γ sin 2θ, (A.4d)

and

2 pa2
� � ¼ λ̂2

� � ¼ �~γ2γ sin 2θ: (A.4e)

If these expressions for the pressure tensor are inserted in the expression for
energy dissipation rate (A.1), we obtain
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for planar Couette flow and

_wirr ¼ 4ηþ 2
~η1
3
þ 2~η3 sin

22θ
� �

γ2 (A.6)

for planar elongational flow. The subscript γ denotes that the average is evalu-
ated in a nonequilibrium ensemble at a finite shear rate.

B. Appendix 2: The Gay-Berne potential

In order to evaluate the above expressions for the irreversible work in shear
flow, elongational flow, and heat flow, we have simulated a coarse grained model
system composed of molecules interacting via a purely repulsive version of the
commonly used Gay-Berne potential [16, 17, 21],

U r12; û1; û2ð Þ ¼ 4ε r̂12; û1; û2ð Þ σ0
r12 � σ r̂12; û1; û2ð Þ þ σ0

� �18

, (A.7)

where r12 ¼ r2 � r1 is the distance vector from the center of mass of molecule 1
to the center of mass of molecule 2, r̂12 is the unit vector in the direction of r12, r12 is
the length of the vector r12, and û1 and û2 are the unit vectors parallel to the axes of
revolution of molecule 1 and molecule 2. The parameter σ0 is the length of the axis
perpendicular to the axis of revolution, that is, the minor axis of a calamitic ellipsoid
of revolution and the major axis of a discotic ellipsoid of revolution. The strength
and range parameters are given by

ε r̂12; û1; û2ð Þ ¼ ε0 1� χ2 û1 � û2ð Þ2
h i�1=2

1� χ0

2
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and
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σ r̂12; û1; û2ð Þ ¼ σ0 1� χ
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(A.8b)

where the parameter χ is equal to κ2 � 1ð Þ= κ2 þ 1ð Þ and κ is the ratio of the
axis of revolution and the axis perpendicular to this axis, χ0 is equal to

κ01=2 � 1
� �

= κ01=2 þ 1
� �

and κ0 is the ratio of the potential energy minima of the side

by side and end to end configurations of calamitic ellipsoids or the ratio of the edge-
to-edge and face-to-face configurations of discotic ellipsoids, and ε0 denotes the
depth of the potential minimum in the cross configuration, where r̂12, û1, and û2 are
perpendicular to each other. The parameters κ and κ0 have been given the values 3
and 5, respectively, for the calamitic ellipsoids and 1/3 and 1/5 for the discotic
ellipsoids.

The denominators in Eqs. (A.8a) and (A.8b) are never equal to zero because the
absolute value of the scalar product û1 � û2 is less than or equal to one since û1 and
û2 are unit vectors, and the absolute values of the parameters χ and χ0 are less than
one. The ordinary Lennard-Jones potential is recovered in the limit when κ and κ0 go
to one. Note that, the potential is purely repulsive, so there are no potential minima
but the value of κ0 optimized for the attractive Gay-Berne potential has been
retained. The transport properties of this system of purely repulsive soft ellipsoids
are similar to those of a system where the molecules interact according to the
conventional Gay-Berne potential with attraction as well, so the results are still
relevant.
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1� χû1 � û2
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Chapter 6

Equilibrium and Nonequilibrium
Hydrodynamic Modes of a
Nematic Liquid Crystal
Jorge Fernando Camacho and Rosalío Fernando Rodríguez

Abstract

We use a fluctuating hydrodynamics (FH) approach to study the fluctuations of
the hydrodynamic variables of a thermotropic nematic liquid crystal (NLC) in a
nonequilibrium steady state (NESS). This NESS is produced by an externally
imposed temperature gradient and a uniform gravity field. We calculate analytically
the equilibrium and nonequilibrium seven modes of the NLC in this NESS. These
modes consist of a pair of sound modes, one orientation mode of the director and
two visco-heat modes formed by the coupling of the shear and thermal modes. We
find that the nonequilibrium effects produced by the external gradients only affect
the longitudinal modes. The analytic expressions for the visco-heat modes show
explicitly how the heat and shear modes of the NLC are coupled. We show that they
may become propagative, a feature that also occurs in the simple fluid and suggests
the realization of new experiments. We show that in equilibrium and in the isotro-
pic limit of the NLC, our modes reduce to well-known results in the literature. For
the NESS considered, we point out the differences between our modes and those
reported by other authors. We close the chapter by proposing the calculation of
other physical quantities that lend themselves to a more direct comparison with
possible experiments for this system.

Keywords: fluctuating hydrodynamics, nonequilibrium fluctuations,
hydrodynamic modes, thermotropic nematic liquid crystals

1. Introduction

When a fluid is in thermodynamic equilibrium, its state variables always present
spontaneous microscopic fluctuations due to the thermal excitations of its mole-
cules, producing deviations around the state of equilibrium. The theory of fluctua-
tions for fluids in states close to equilibrium was initiated long ago by Einstein and
Onsager, and it has been reformulated in several but equivalent ways. The first
more systematic approach to introduce thermal fluctuations into the hydrodynamic
equations was the fluctuating hydrodynamics (FH) of Landau and Lifshitz [1, 2].
It stems from the idea that the hydrodynamic equations are valid for any flow,
including fluctuating changes in its state. Accordingly, stochastic currents are
incorporated into the deterministic energy and momentum fluxes by adding fluctu-
ating sources. This theory was put on a firm basis within the framework of the
general theory of stationary Gaussian Markov processes by Fox and Uhlenbeck [3–5].
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This approach has matched the theory of Onsager and Machlup with that of Landau
and Lifshitz for systems where the basic state variables do not possess a definite
time reversal symmetry [6, 7]. However, in spite of the fact that the theory of
fluctuations for nonequilibrium fluids was initiated in the late 1970s, and was
pursued by many authors [8], still nowadays several questions concerning the
nature of hydrodynamic fluctuations in stationary nonequilibrium states (NESS)
are of current active interest. One of these issues is the long-range character of
these fluctuations, especially far away from instability points [9]. Thermal fluctua-
tions in an equilibrium fluid always give rise to short-range equal time correlation
functions, except close to a critical point. But when external gradients are applied,
equal-time correlation functions can develop long-range contributions, whose
nature is very different from those in equilibrium. For many models and systems
in nonequilibrium states, it has been shown theoretically that the existence of the
so-called generic scale invariance is the origin of the long-range nature of the
correlation functions [10, 11].

In the case of a simple fluid in a thermal gradient, the structure factor, which
determines the intensity of the Rayleigh scattering, diverges as k�4 for small values
of the wave number k. This amounts to an algebraic decay of the density-density
correlation function, a feature that has been verified experimentally [12–14]. How-
ever, there are few similar studies for NESS of complex fluids. Among these, the
enhancement of concentration fluctuations in polymer solutions under external
hydrodynamic and electric fields [15], or the case of a polymer solution subjected to
a stationary temperature gradient in the absence of any flow [16], has been
discussed. Also, the behavior of fluctuations about some NESS has been analyzed in
the case of thermotropic nematic liquid crystals. Specific examples are the
nonequilibrium situations generated by a static temperature gradient [17], a sta-
tionary shear flow [18] or by an externally imposed constant pressure gradient
[19, 20]. In the first two cases, it was found that the nonequilibrium contributions
to the corresponding light scattering spectrum were small, but in the case of a
Poiseuille flow induced by an external pressure gradient, the effect may be quite
large. To our knowledge, however, at present, there is no experimental confirma-
tion of these effects, in spite of the fact that for nematics, the scattered intensity is
several orders of magnitude larger than for ordinary simple fluids.

When a hydrodynamic system relaxes from a state of thermodynamic equilib-
rium to another, almost all its degrees of freedom will return to that equilibrium
value in a short, finite time τ determined by the microscopic interactions of the
system. There are, however, some other degrees of freedom of collective character,
the hydrodynamic modes, which will decay much more slowly. When τ ! ∞, its
characteristic frequencies ω ! 0 ω � 1=τð Þ, when k ! 0: Such is the case, for
example, of the propagation of sound waves and the conduction of heat in a simple
fluid [21]. Hydrodynamics allows to describe these modes or degrees of freedom of
greater duration, through the laws of conservation and balance of the system, and,
as in the case of ordered systems, by the continuous breaking of symmetries
[22, 23].

The central purpose of this work is to briefly review the general procedure
developed by Fox and Uhlenbeck and show that it may be employed to treat
fluctuating complex fluid systems like a thermotropic nematic liquid crystal (NLC)
in a NESS. In particular, we describe the dynamics of the fluctuations of its hydro-
dynamic variables induced by a stationary temperature gradient and under the
influence of gravity (a Rayleigh-Bénard system) on a nematic layer confined
between two parallel horizontal plates in a steady state in a nonconvective
regime [24–26]. Once the dynamics of fluctuation is established, we calculate the
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time-dependent correlation functions in equilibrium between the fluctuating
hydrodynamic variables, quantities that allow to obtain the transport properties of

the system [27, 28]. One of these properties is the dynamic structure factor S k
!
;ω

� �

of the system, which measures the magnitude of the changes in energy and
momentum between the light beam and the fluid as functions of the wave vector k

←

and ω.

For simple fluids with fixed k
!
, S k

!
;ω

� �
consists of three well-separated

Lorentzian features: a line or central peak (Rayleigh peak) located at ω ¼ 0 and two
Brillouin peaks symmetrically located with respect to the central one [29, 30]. These
three lines are directly related to the hydrodynamic modes of the simple fluid, and
from them, it is possible to obtain relevant information about transport properties.
For instance, the Rayleigh line, associated with a thermal diffusive mode, is due to
the fluctuations of the entropy (or temperature) that diffuse in the fluid and its
width is proportional to the thermal diffusivity. On the other hand, the Brillouin
lines are related to two acoustic propagative modes and are the result of the coupled
dynamics of the pressure fluctuations and a component of the flow velocity that are
transmitted with the speed of sound in the medium. Their widths are proportional
to the absorption of sound.

In the case of an anisotropic system like a NLC, fluctuating hydrodynamic
theories have recently been proposed [22, 31] based on the methodology proposed
by Landau and Lifshitz [1]. However, this analysis of the fluctuations of the nematic
hydrodynamic variables is not precise, since it does not take into account the parity
with respect to time reversal, so their description using the Onsager-Machlup for-
malism would be strictly inadequate. The correct theoretical framework should be
the more general theory of Fox and Uhlenbeck [3–5, 20, 24]. However, although a
NLC disperses light by several orders of magnitude more than an ordinary fluid
[32], from both a theoretical and experimental point of view, the studies
corresponding to the behavior of the fluctuations in these media around stationary
states out of equilibrium are rather scarce. From the theoretical point of view, and
only for the case of the transverse hydrodynamic variables [33], some studies of the
behavior of orientational fluctuations have been carried out when analyzing the
effect produced in the light scattering spectrum of a NLC in NESS induced by the
presence of uniform temperature gradients [17] and by the action of a shear flow
[18]. In both cases, it has been found that the effect of fluctuations in the light
scattering spectrum is small, being difficult to detect experimentally. On the other
hand, as far as we know, no theoretical study has been carried out on the behavior
of the longitudinal variables of a nematic and much less on its spectrum of light
scattering, both in states of thermodynamic equilibrium and outside of it. This is an
open research topic. Nor have been performed analyzes of stationary states gener-
ated by other types of external gradients in these systems, with which could be
obtained qualitatively and quantitatively much greater effects than those reported
so far in the literature for simple fluids. It should be mentioned that although
preliminary attempts have been made to calculate the transverse hydrodynamic
modes of a nematic [34, 35], there are few studies that also involve the
corresponding longitudinal modes [31]. Unfortunately, a clear and systematic
method to derive the set of complete, transverse, and longitudinal hydrodynamic
modes of a NLC is still lacking.

By introducing an alternative set of state variables that takes into account the
asymmetry presented by both, the velocity and the director fields due by their
mutual coupling, two groups of fluctuating variables, namely, longitudinal and
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transverse, can be clearly identified. Both set of variables are completely decoupled:
there are five in the first and two in the second group. The longitudinal variables in
turn can be separated into two mutually independent sets. The first is composed of
two variables whose dynamics determine the existence of acoustic propagation
modes; while the second, formed by three variables, giving rise to three hydrody-
namic modes: one related to the orientation of the director and two more, the so-
called visco-heat modes, that result from the coupling of the thermal diffusive and
shear modes due by the presence of the gradient thermal and the gravitational field.
As will be discussed later on, from the set of transverse variables, two hydrody-
namic modes emerge: one due to the orientation of the director and another one
due to shearing. Altogether, there are seven nematic hydrodynamic modes: five
longitudinal and two transversal. As will be shown below, the applied gradient of
temperature and gravitational field produce their greatest effect in the pair of visco-
heat modes, which is quantified in them by means of the Rayleigh quotient R=Rc,
where R is the number of Rayleigh and Rc the value that it reaches when in the
nematic initiates the convection.

2. Liquid crystalline phases

The liquid crystal phase is a well-defined and specific phase of matter
characterized by a remarkable anisotropy in many of their physical properties as
solid crystals do, although they are able to flow. Liquid crystal phases that undergo a
phase transition as a function of temperature (thermotropics) exist in relatively
small intervals of temperature lying between solid crystals and isotropic liquids.
Due to this intermediate nature, sometimes, these states are called also mesophases
[32]. In general, liquid crystals are synthesized from organic molecules, some of
which are elongated and uniaxial, so they can be represented as rigid rods; others
are formed by disc-like molecules [35]. This molecular anisotropy is manifested
macroscopically through the anisotropy of the mechanical, optical, and transport
properties of these substances. The typical dimensions of the lengths of this type of
structures are some tens of angstroms.

Liquid crystals are classified by symmetry. As it is well known, isotropic liquids
with spherically symmetric molecules are invariant under rotational, O 3ð Þ, and

Figure 1.
Representation of the average orientation of the molecules of a thermotropic NLC by means of the director
vector n̂.
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translational, T 3ð Þ, transformations. Thus, the group of symmetries of an isotropic
liquid is O 3ð Þ � T 3ð Þ: However, by decreasing the temperature of these liquids,
the translational symmetry T 3ð Þ is usually broken corresponding to the isotropic
liquid-solid transition. In contrast, for a liquid formed by anisotropic molecules,
by diminishing the temperature, the rotational symmetry O 3ð Þ is broken, which
leads to the appearance of a liquid crystal. The mesophases for which only the
rotational invariance has been broken are called nematics. As shown, the centers
of mass of the molecules of a nematic have arbitrary positions, whereas the
principal axes of their molecules are spontaneously oriented along a preferred
direction. If the temperature decreases even more, the symmetry T 3ð Þ is also
partially broken. The mesophases exhibiting the translational symmetry T 2ð Þ are
called smectics [36].

This preferential direction is described by a local unitary vector field, n̂, called
the director. This vector is easily distorted by the presence of electric and magnetic
fields, as well as by the surfaces of the containers of the liquid crystals if they have
been prepared properly [32]. With respect to NLC, it is important to point out that
the director’s orientation does not distinguish between the n̂ and �n̂ directions
(nematic symmetry). A schematic representation of the order presented by the
molecules in a nematic is shown in Figure 1 .

3. Model

Consider a NLC thin layer of thickness d under the presence of a constant
gravitational field g!¼ �gẑ, where g denotes its magnitude and ẑ the unit vector
along the z axis. The initial configuration of the layer is homeotropic with a prefer-
ential orientation n̂0 along the z axis, as depicted in Figure 2. The nematic is
confined between two parallel flat plates kept at fixed temperatures T1 and T2
(T1 ,T2), so that a uniform temperature gradient ∇zT � �αẑ is established down-
ward in the layer. The situation where the temperature gradient goes from bottom
to top can also be considered, and in this case, ∇zT � αẑ. The gravitational force
induces a pressure gradient, ∇zp ¼ �ρgẑ, where ρ is the mass density.

Figure 2.

TheNLC cell subject to a constant gravitational field g! and an external uniform temperature gradient ∇T. k
!
is

the scattering vector.
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rotational invariance has been broken are called nematics. As shown, the centers
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partially broken. The mesophases exhibiting the translational symmetry T 2ð Þ are
called smectics [36].

This preferential direction is described by a local unitary vector field, n̂, called
the director. This vector is easily distorted by the presence of electric and magnetic
fields, as well as by the surfaces of the containers of the liquid crystals if they have
been prepared properly [32]. With respect to NLC, it is important to point out that
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3.1 Stationary state

The external gradients drive the nematic layer into a nonequilibrium steady
state. We shall assume that the temperature difference T1 � T2 amounts only to a
few degrees, so that there are no nematic layer flows vsti ¼ 0

� �
, nor instabilities of

the Rayleigh-Bénard type. In this NESS, we choose as the nematodynamic variables

the set Ψ ¼ ρ; s; vi; nif g, where s r!; t
� �

is the specific entropy density (entropy per

unit mass), the hydrodynamic velocity is vi r!; t
� �

and ni r!; t
� �

is the director field.

It is to be expected that in this steady state, the changes in Ψst will only occur in the
z direction, so that Ψst ¼ Ψ p zð Þ;T zð Þ½ �, where p is the local pressure. We assume that
Ψst admits an expansion of the Taylor series around an equilibrium state T0; p0

� �
at

z0 ¼ 0, and we consider only first-order terms in the gradients. Thus, by setting the
values of the temperature at the plates, T1 ¼ T z ¼ �d=2ð Þ and T2 ¼ T z ¼ d=2ð Þ, the
steady temperature profile is completely determined by:

Tst ¼ T zð Þ ¼ T0 þ dT
dz

z ¼ T0 1� α

T0
z

� �
, (1)

where T0 � T st z ¼ 0ð Þ ¼ T1 þ T2ð Þ=d and α � ΔT=d, with ΔT � T1 � T2. In
what follows, we shall only consider T0≈3� 102K, and it will be convenient to
introduce the effective temperature gradient ∇zTst � Xẑ as [37],

X � �αþ gβT0

cp
, (2)

which contains explicitly the contributions of both external forces. In Eq. (2), cp
is the specific heat at constant pressure, β is the thermal expansion coefficient,
which satisfies the relationship β2 � γ � 1ð Þcp=T0c2s , where cs is the adiabatic sound
velocity in the nematic, γ � cp=cv ¼ c2s =c

2
T, being cv the specific heat at constant

volume and cT the isothermic sound velocity in the nematic.

4. Nematodynamic equations

The geometry of the proposed model allows us to separate the hydrodynamic
variables into transverse (T) and longitudinal (L) variables with respect to n̂0

and k
!
, [33]. The former set is ΨT r!; t

� �
� vx; nxf g, while the latter reads

ΨL r!; t
� �

� p; vy; vz; s; ny
� �

. We want to describe the stochastic dynamics of the

spontaneous thermal deviations (fluctuations) δΨ r!; t
� �

¼ Ψ r!; t
� �

� Ψst around the

above defined stationary state. A complete set of stochastic equations for the space-
time evolution of the fluctuations is obtained by linearizing the general
nematodynamic equations [20, 22, 24], and by using the FH formalism. This
starting set of equations is given explicitly by Eqs. (19)–(22) in Ref. [25]. However,
since for the nematic mesophase, the rotational invariance has been broken, it is
convenient to rewrite these nematodynamic equations in a representation which
takes into account that a symmetry breaking has occurred along the z axis.

In order to take into account the effect of the intrinsic anisotropy of the fluid in
the dynamics of the fluctuations, as well as to facilitate the calculation of the
nematic modes and the spectrum of light scattering, it is convenient to introduce a
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new state variables. In the case of the present model, owing to the initial orientation
of the director n̂st

i , the NLC exhibits several symmetries: rotational invariances
around the z axis, symmetry under inversions with respect to both, the xy plane and
with respect to reflections on planes containing the z axis. A proper set of variables
for this purpose was proposed long ago [38, 39], in terms of the variables
δp; δφ; δs; δξ; δf 1; δψ ; δf 2
� �

, defined in detail in Eqs. (6)–(10) in Ref. [26] (or
Eqs. (53)–(57) in [25]). In this new representation, the complete set of stochastic
hydrodynamic equations for the fluctuations takes an alternative form given by
Eqs. (11)–(17) in Ref. [26] (or Eqs. (58)–(64) in [25]). The matrix representation of
the Fourier transformation of this set of equations is given by:

∂

∂t
δ X

!
k
!
; t

� �
¼ �Mδ X

!
k
!
; t

� �
þ Θ

!
k
!
; t

� �
, (3)

where δ X
!

k
!
; t

� �
¼ δX

!L; δX
!T

� �t
with δX

!L k
!
; t

� �
¼ δep; δeφ; δes; δeξ; δef 1
� �t

and

δX
!

T k
!
; t

� �
¼ δeψ ; δef 2
� �t

. The superscript t denotes the transpose, while L and T

indicate, respectively, the longitudinal and transverse sets of variables. In Eq. (3),M
stands for a 7 � 7 hydrodynamic matrix which is diagonal in the 5� 5 NL and the
2� 2 NT blocks. The explicit form of these matrices is not necessary in our discus-
sion; however, they are given explicitly by Eqs. (21) and (22) in Ref. [26] (see also

Eqs. (72) and (73) in Ref. [25]). The stochastic terms, Θ
!

k
!
; t

� �
, in Eq. (3) are given

by the column vector Θ
!

k
!
; t

� �
¼ Θ

!L;Θ
!T

� �t
which explicit form of its components

can be found in Eqs. (32) and (33) in Ref. [26] (or Eqs. (84) and (85) of Ref. [25]). It
is important to emphasize that as a consequence of this change of representation, in
this last system, it can be clearly seen how the nematic variables are separated in

two sets completely independent: the five longitudinal δep; δeφ; δes; δeξ; δef 1
n o

and the

two transverse δeψ ; δef 2
n o

.

However, in order to facilitate the calculation of the hydrodynamic modes, we

define a new set of variables having the same dimensionality, δzj k
!
; t

� �h i
¼

M1=2L�1=2t (j ¼ 1,…, 7): z1 � ρ0c2s
� ��1=2

δep, z2 � ρ0k
�2� �1=2

δeφ, z3 � ρ0T0c�1
p

� �1=2
δes,

z4 ¼ ρ0k
�4� �1=2

δeξ, z5 � ρ0c2s k
�2� �1=2

δef 1 , z6 � ρ0k
�2� �1=2

δeψ , z7 � ρ0c2s k
�2� �1=2

δef 2 . In
terms of these new variables, the system of equations (3) is rewritten in the more
compact form as:

∂

∂t
Z
!

k
!
; t

� �
¼ �N Z

!
k
!
; t

� �
þ Ξ

!
k
!
; t

� �
, (4)

where Z
!

k
!
; t

� �
¼ Z

!L; Z
!T

� �t
with ZL

!
k
!
; t

� �
¼ z1; z2; z3; z4; z5ð Þt and

Z
!
T k

!
; t

� �
¼ z6; z7ð Þt. In Eq. (4), N stands for a 7 � 7 hydrodynamic matrix which is

diagonal in the 5� 5 NL and the 2� 2 NT blocks. Again, the explicit form of these
matrices is not necessary in our discussion, but they are given explicitly by
Eqs. (39)–(41) in Ref. [26] (see also Eqs. (94)–(96) in [25]). In Eq. (4),

Ξ
!

k
!
; t

� �
¼ Ξ

!L;Ξ
!T

� �t
is the stochastic term, composed by the longitudinal

Ξ
!L k

!
; t

� �
¼ ζ1; ζ2; ζ3; ζ4; ζ5ð Þt and transverse Ξ

!T k
!
; t

� �
¼ ζ6; ζ7ð Þt noise vectors. The
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3.1 Stationary state

The external gradients drive the nematic layer into a nonequilibrium steady
state. We shall assume that the temperature difference T1 � T2 amounts only to a
few degrees, so that there are no nematic layer flows vsti ¼ 0

� �
, nor instabilities of

the Rayleigh-Bénard type. In this NESS, we choose as the nematodynamic variables

the set Ψ ¼ ρ; s; vi; nif g, where s r!; t
� �

is the specific entropy density (entropy per

unit mass), the hydrodynamic velocity is vi r!; t
� �

and ni r!; t
� �

is the director field.

It is to be expected that in this steady state, the changes in Ψst will only occur in the
z direction, so that Ψst ¼ Ψ p zð Þ;T zð Þ½ �, where p is the local pressure. We assume that
Ψst admits an expansion of the Taylor series around an equilibrium state T0; p0

� �
at

z0 ¼ 0, and we consider only first-order terms in the gradients. Thus, by setting the
values of the temperature at the plates, T1 ¼ T z ¼ �d=2ð Þ and T2 ¼ T z ¼ d=2ð Þ, the
steady temperature profile is completely determined by:

Tst ¼ T zð Þ ¼ T0 þ dT
dz

z ¼ T0 1� α

T0
z

� �
, (1)

where T0 � T st z ¼ 0ð Þ ¼ T1 þ T2ð Þ=d and α � ΔT=d, with ΔT � T1 � T2. In
what follows, we shall only consider T0≈3� 102K, and it will be convenient to
introduce the effective temperature gradient ∇zTst � Xẑ as [37],

X � �αþ gβT0

cp
, (2)

which contains explicitly the contributions of both external forces. In Eq. (2), cp
is the specific heat at constant pressure, β is the thermal expansion coefficient,
which satisfies the relationship β2 � γ � 1ð Þcp=T0c2s , where cs is the adiabatic sound
velocity in the nematic, γ � cp=cv ¼ c2s =c

2
T, being cv the specific heat at constant

volume and cT the isothermic sound velocity in the nematic.

4. Nematodynamic equations

The geometry of the proposed model allows us to separate the hydrodynamic
variables into transverse (T) and longitudinal (L) variables with respect to n̂0

and k
!
, [33]. The former set is ΨT r!; t

� �
� vx; nxf g, while the latter reads

ΨL r!; t
� �

� p; vy; vz; s; ny
� �

. We want to describe the stochastic dynamics of the

spontaneous thermal deviations (fluctuations) δΨ r!; t
� �

¼ Ψ r!; t
� �

� Ψst around the

above defined stationary state. A complete set of stochastic equations for the space-
time evolution of the fluctuations is obtained by linearizing the general
nematodynamic equations [20, 22, 24], and by using the FH formalism. This
starting set of equations is given explicitly by Eqs. (19)–(22) in Ref. [25]. However,
since for the nematic mesophase, the rotational invariance has been broken, it is
convenient to rewrite these nematodynamic equations in a representation which
takes into account that a symmetry breaking has occurred along the z axis.

In order to take into account the effect of the intrinsic anisotropy of the fluid in
the dynamics of the fluctuations, as well as to facilitate the calculation of the
nematic modes and the spectrum of light scattering, it is convenient to introduce a
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new state variables. In the case of the present model, owing to the initial orientation
of the director n̂st

i , the NLC exhibits several symmetries: rotational invariances
around the z axis, symmetry under inversions with respect to both, the xy plane and
with respect to reflections on planes containing the z axis. A proper set of variables
for this purpose was proposed long ago [38, 39], in terms of the variables
δp; δφ; δs; δξ; δf 1; δψ ; δf 2
� �

, defined in detail in Eqs. (6)–(10) in Ref. [26] (or
Eqs. (53)–(57) in [25]). In this new representation, the complete set of stochastic
hydrodynamic equations for the fluctuations takes an alternative form given by
Eqs. (11)–(17) in Ref. [26] (or Eqs. (58)–(64) in [25]). The matrix representation of
the Fourier transformation of this set of equations is given by:

∂

∂t
δ X

!
k
!
; t

� �
¼ �Mδ X

!
k
!
; t

� �
þ Θ

!
k
!
; t

� �
, (3)

where δ X
!

k
!
; t

� �
¼ δX

!L; δX
!T

� �t
with δX

!L k
!
; t

� �
¼ δep; δeφ; δes; δeξ; δef 1
� �t

and

δX
!

T k
!
; t

� �
¼ δeψ ; δef 2
� �t

. The superscript t denotes the transpose, while L and T

indicate, respectively, the longitudinal and transverse sets of variables. In Eq. (3),M
stands for a 7 � 7 hydrodynamic matrix which is diagonal in the 5� 5 NL and the
2� 2 NT blocks. The explicit form of these matrices is not necessary in our discus-
sion; however, they are given explicitly by Eqs. (21) and (22) in Ref. [26] (see also

Eqs. (72) and (73) in Ref. [25]). The stochastic terms, Θ
!

k
!
; t

� �
, in Eq. (3) are given

by the column vector Θ
!

k
!
; t

� �
¼ Θ

!L;Θ
!T

� �t
which explicit form of its components

can be found in Eqs. (32) and (33) in Ref. [26] (or Eqs. (84) and (85) of Ref. [25]). It
is important to emphasize that as a consequence of this change of representation, in
this last system, it can be clearly seen how the nematic variables are separated in

two sets completely independent: the five longitudinal δep; δeφ; δes; δeξ; δef 1
n o

and the

two transverse δeψ ; δef 2
n o

.

However, in order to facilitate the calculation of the hydrodynamic modes, we

define a new set of variables having the same dimensionality, δzj k
!
; t

� �h i
¼

M1=2L�1=2t (j ¼ 1,…, 7): z1 � ρ0c2s
� ��1=2

δep, z2 � ρ0k
�2� �1=2

δeφ, z3 � ρ0T0c�1
p

� �1=2
δes,

z4 ¼ ρ0k
�4� �1=2

δeξ, z5 � ρ0c2s k
�2� �1=2

δef 1 , z6 � ρ0k
�2� �1=2

δeψ , z7 � ρ0c2s k
�2� �1=2

δef 2 . In
terms of these new variables, the system of equations (3) is rewritten in the more
compact form as:

∂

∂t
Z
!

k
!
; t

� �
¼ �N Z

!
k
!
; t

� �
þ Ξ

!
k
!
; t

� �
, (4)

where Z
!

k
!
; t

� �
¼ Z

!L; Z
!T

� �t
with ZL

!
k
!
; t

� �
¼ z1; z2; z3; z4; z5ð Þt and

Z
!
T k

!
; t

� �
¼ z6; z7ð Þt. In Eq. (4), N stands for a 7 � 7 hydrodynamic matrix which is

diagonal in the 5� 5 NL and the 2� 2 NT blocks. Again, the explicit form of these
matrices is not necessary in our discussion, but they are given explicitly by
Eqs. (39)–(41) in Ref. [26] (see also Eqs. (94)–(96) in [25]). In Eq. (4),

Ξ
!

k
!
; t

� �
¼ Ξ

!L;Ξ
!T

� �t
is the stochastic term, composed by the longitudinal

Ξ
!L k

!
; t

� �
¼ ζ1; ζ2; ζ3; ζ4; ζ5ð Þt and transverse Ξ

!T k
!
; t

� �
¼ ζ6; ζ7ð Þt noise vectors. The
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explicit form of the components ζm, m ¼ 1…7, as well as their fluctuation-
dissipation relations (FDR), can be found in Eqs. (169)–(175) and Eqs. (176)–(186),
respectively, in Appendix A of [25].

5. Hydrodynamic modes

In order to find the hydrodynamic modes, or decay rates [37], we need the
Fourier transform of the linear system (4), which yields an algebraic system of

equations in terms of the variables k
!
and ω: The hydrodynamic modes are obtained

by calculating its eigenvalues λ ¼ iω, given by the roots of the characteristic equa-
tion p λð Þ ¼ pL λð ÞpT λð Þ ¼ 0, where pL λð Þ and pT λð Þ are the characteristic polyno-
mials of fifth and second order in λ of the matrices NL and NT, respectively. These
roots are calculated below.

5.1 Longitudinal modes

Following the method proposed by [13] for a simple fluid, it can be shown that
longitudinal variables can be separated in turn and within a very good approxima-

tion, into two completely independent sets of variables, Z
!L

X ¼ z1; z2ð Þt and
Z
!L

Y ¼ z3; z4; z5ð Þt, as it is shown in the Subsection 3.1 of Ref. [25], or in more detail in
[24]. This approximation allows us to rewrite the characteristic polynomial of
longitudinal variables as pL λð Þ ¼ pLXX λð ÞpLYY λð Þ: It should be mentioned that pLXX λð Þ
and pLYY λð Þ are polynomials of second and third degree in λ, and explicitly are given
by the Eqs. (44) and (45) in Ref. [26] (or Eqs. (117) and (118) in [25]).

While there is no analytical difficulty to solve the quadratic and cubic equations
pLXX λð Þ and pLYY λð Þ, the explicit form of their exact roots can be quite complicated.
However, it is possible to estimate them following a procedure based partially on a
method suggested in Ref. [40], which allows to identify the following quantities in
the equation for pLYY λð Þ, namely, γ � 1ð ÞDTk

2, σ1k
2, k2c2s and g2k2∥= c2s k

2� �
. They

depend on the anisotropic coefficients of diffusivity DT and on the viscosity σ1: The
former quantity is a function of the parallel χ∥ and perpendicular χ⊥ components of
thermal diffusivity, while the latter depends on the nematic viscosity coefficients
νi i ¼ 1;…; 5ð Þ (see Eqs. (23) and (24) in Ref. [26], or Eqs. (74) and (75) in [25]). In
the same way, in the equation for pLYY λð Þ, the following quantities can be identified,

gαβ k2⊥
k2
, gXβ k2⊥

k2
, DTk

2, Ωχak
2, σ3k

2, K1
γ1
k2, Ω

2KI
ρ0

k4, which depend on the anisotropic
coefficients of viscosity σ3, of elasticity KI, symmetry Ω (see, respectively,
Eqs. (26), (28), and (30) in [26]), as well as the anisotropy χa ¼ χ∥ � χ⊥ and the
torsional viscous coefficient γ1. We now compare all these quantities with ω � csk,
by introducing the (small) reduced dimensionless quantities:

a0 � gαβ
ω2

k2⊥
k2

, a00 � gXβ
ω2

k2⊥
k2

, a000 � g2k2∥
ω2c2s k

2 , a1 � DTk
2

ω
, a01 �

Ωχak
2

ω
,

a2 � σ1k
2

ω
, a3 � σ3k

2

ω
, a5 � KIk

2

γ1ω
, a6 � Ω2KIk

4

ρ0ω
2 :

(5)

The relevant point for our purpose is to realize that for most nematics at ambient
temperatures, ρ0 and Ω are of order of magnitude 1, γ1 � 10�1, χi and νi are of order
10�2–10�3, Ki � 10�6–10�7, while β � 10�4 [32]. If we consider that α≲ 1 and
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g � 103, and knowing that in a typical light scattering experiments k ¼ 105cm�1 and
cs ¼ 1:5� 105cms�1 [41], the quantities given in Eq. (5) have the following orders of
magnitude: a0 � 10�21, a00 � 10�21, a000 � 10�24, a1 � 10�3, a01 � 10�3, a2 � 10�2,
a3 � 10�2, a5 � 10�5 and a6 � 10�6. We now follow the method of Ref. [40] and
the solutions of the polynomial pLYY λð Þ may be obtained by a perturbation approxi-
mation in terms of these small quantities. However, in what follows, we improve
this approximation by using its exact roots and by expressing them in terms of the
reduced quantities (Eq. (5)) of order k2 [24].

5.1.1 Sound longitudinal modes

They are the roots of the characteristic equation pLXX λð Þ ¼ 0. Its roots are com-
plex conjugate and are given by (see Eqs. (47) and (48) in [26], or Eqs. (128) and
(129) in [25]):

λ1 ≃Γk2 þ icsk, λ2 ≃Γk2 � icsk, (6)

where Γ � 1
2 γ � 1ð ÞDT þ σ1½ � is the anisotropic sound attenuation coefficient

of the NLC. This result shows that the sound propagation modes, λ1 and λ2, are
in complete agreement with those already reported in the literature for NLC
[31, 34].

5.1.2 Visco-heat and director longitudinal modes

These modes are the roots of the characteristic equation pLYY λð Þ ¼ 0. In Ref. [26]
(or in [25]), it is shown that, up to first order in the small quantities (Eq. (5)), these
roots can be written approximately as:

λ3,4 ¼ 1
2

DTk
2 þ σ3k

2 � Ω2KIk
4

ρ0σ3k
2

 !

∓
1
2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
DTk

2 þ σ3k
2 � Ω2KIk

4

ρ0σ3k
2

 !2

� 4DTk
2σ3k

2 1� R
Rc

� �vuut ,

(7)

and

λ5 ≃
KIk

2

γ1
þΩ2KIk

4

ρ0σ3k
2 , (8)

with

R k
!� �

Rc
� � gβk̂

2
⊥

DTσ3k
4 X þ αΩχa

DTσ3
σ3 þDTð Þ

� �
, (9)

where k̂2
⊥ � k2⊥=k

2. In Eq. (7), R � βgΔTd3

σ3χ
is the Rayleigh number and Rc denotes

its critical value above which convection sets in. It should be emphasized that our

results are expressed in terms of the ratio R k
!� �

=Rc and are, therefore, independent

of the value of the separation d between the plates. However, the appropriate value
of d in an experiment should be chosen with an experimental criterion [42].
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explicit form of the components ζm, m ¼ 1…7, as well as their fluctuation-
dissipation relations (FDR), can be found in Eqs. (169)–(175) and Eqs. (176)–(186),
respectively, in Appendix A of [25].

5. Hydrodynamic modes

In order to find the hydrodynamic modes, or decay rates [37], we need the
Fourier transform of the linear system (4), which yields an algebraic system of

equations in terms of the variables k
!
and ω: The hydrodynamic modes are obtained

by calculating its eigenvalues λ ¼ iω, given by the roots of the characteristic equa-
tion p λð Þ ¼ pL λð ÞpT λð Þ ¼ 0, where pL λð Þ and pT λð Þ are the characteristic polyno-
mials of fifth and second order in λ of the matrices NL and NT, respectively. These
roots are calculated below.

5.1 Longitudinal modes

Following the method proposed by [13] for a simple fluid, it can be shown that
longitudinal variables can be separated in turn and within a very good approxima-

tion, into two completely independent sets of variables, Z
!L

X ¼ z1; z2ð Þt and
Z
!L

Y ¼ z3; z4; z5ð Þt, as it is shown in the Subsection 3.1 of Ref. [25], or in more detail in
[24]. This approximation allows us to rewrite the characteristic polynomial of
longitudinal variables as pL λð Þ ¼ pLXX λð ÞpLYY λð Þ: It should be mentioned that pLXX λð Þ
and pLYY λð Þ are polynomials of second and third degree in λ, and explicitly are given
by the Eqs. (44) and (45) in Ref. [26] (or Eqs. (117) and (118) in [25]).

While there is no analytical difficulty to solve the quadratic and cubic equations
pLXX λð Þ and pLYY λð Þ, the explicit form of their exact roots can be quite complicated.
However, it is possible to estimate them following a procedure based partially on a
method suggested in Ref. [40], which allows to identify the following quantities in
the equation for pLYY λð Þ, namely, γ � 1ð ÞDTk

2, σ1k
2, k2c2s and g2k2∥= c2s k

2� �
. They

depend on the anisotropic coefficients of diffusivity DT and on the viscosity σ1: The
former quantity is a function of the parallel χ∥ and perpendicular χ⊥ components of
thermal diffusivity, while the latter depends on the nematic viscosity coefficients
νi i ¼ 1;…; 5ð Þ (see Eqs. (23) and (24) in Ref. [26], or Eqs. (74) and (75) in [25]). In
the same way, in the equation for pLYY λð Þ, the following quantities can be identified,

gαβ k2⊥
k2
, gXβ k2⊥

k2
, DTk

2, Ωχak
2, σ3k

2, K1
γ1
k2, Ω

2KI
ρ0

k4, which depend on the anisotropic
coefficients of viscosity σ3, of elasticity KI, symmetry Ω (see, respectively,
Eqs. (26), (28), and (30) in [26]), as well as the anisotropy χa ¼ χ∥ � χ⊥ and the
torsional viscous coefficient γ1. We now compare all these quantities with ω � csk,
by introducing the (small) reduced dimensionless quantities:

a0 � gαβ
ω2

k2⊥
k2

, a00 � gXβ
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k2⊥
k2
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ω
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ω
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ω
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2

γ1ω
, a6 � Ω2KIk

4
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(5)

The relevant point for our purpose is to realize that for most nematics at ambient
temperatures, ρ0 and Ω are of order of magnitude 1, γ1 � 10�1, χi and νi are of order
10�2–10�3, Ki � 10�6–10�7, while β � 10�4 [32]. If we consider that α≲ 1 and
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g � 103, and knowing that in a typical light scattering experiments k ¼ 105cm�1 and
cs ¼ 1:5� 105cms�1 [41], the quantities given in Eq. (5) have the following orders of
magnitude: a0 � 10�21, a00 � 10�21, a000 � 10�24, a1 � 10�3, a01 � 10�3, a2 � 10�2,
a3 � 10�2, a5 � 10�5 and a6 � 10�6. We now follow the method of Ref. [40] and
the solutions of the polynomial pLYY λð Þ may be obtained by a perturbation approxi-
mation in terms of these small quantities. However, in what follows, we improve
this approximation by using its exact roots and by expressing them in terms of the
reduced quantities (Eq. (5)) of order k2 [24].

5.1.1 Sound longitudinal modes

They are the roots of the characteristic equation pLXX λð Þ ¼ 0. Its roots are com-
plex conjugate and are given by (see Eqs. (47) and (48) in [26], or Eqs. (128) and
(129) in [25]):

λ1 ≃Γk2 þ icsk, λ2 ≃Γk2 � icsk, (6)

where Γ � 1
2 γ � 1ð ÞDT þ σ1½ � is the anisotropic sound attenuation coefficient

of the NLC. This result shows that the sound propagation modes, λ1 and λ2, are
in complete agreement with those already reported in the literature for NLC
[31, 34].

5.1.2 Visco-heat and director longitudinal modes

These modes are the roots of the characteristic equation pLYY λð Þ ¼ 0. In Ref. [26]
(or in [25]), it is shown that, up to first order in the small quantities (Eq. (5)), these
roots can be written approximately as:

λ3,4 ¼ 1
2

DTk
2 þ σ3k

2 � Ω2KIk
4

ρ0σ3k
2

 !

∓
1
2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
DTk

2 þ σ3k
2 � Ω2KIk

4

ρ0σ3k
2

 !2

� 4DTk
2σ3k

2 1� R
Rc

� �vuut ,

(7)

and

λ5 ≃
KIk

2

γ1
þΩ2KIk

4

ρ0σ3k
2 , (8)

with

R k
!� �

Rc
� � gβk̂

2
⊥

DTσ3k
4 X þ αΩχa

DTσ3
σ3 þDTð Þ

� �
, (9)

where k̂2
⊥ � k2⊥=k

2. In Eq. (7), R � βgΔTd3

σ3χ
is the Rayleigh number and Rc denotes

its critical value above which convection sets in. It should be emphasized that our

results are expressed in terms of the ratio R k
!� �

=Rc and are, therefore, independent

of the value of the separation d between the plates. However, the appropriate value
of d in an experiment should be chosen with an experimental criterion [42].
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The Rayleigh-number ratio R k
!� �

=Rc contains two contributions: the first term is

due to the presence of the effective temperature gradient X, which depends on
both, the temperature gradient α and the gravity field g. The second term is entirely
a contribution due to α and the nematic anisotropy χa. For typical nematics and
conventional light scattering experiments, both contributions are approximately of
order 10�16.

The decay rates λ3 and λ4 for an inhomogeneous nematic given by Eq. (7) are
called visco-heat modes, because they are composed of the coupling between the

thermal DTk
2 and shear σ3k

2 � Ω2KIk4

ρ0σ3k
2 diffusive modes through the ratio R k

!� �
=Rc.

The nature of these modes may be propagative or diffuse, as will be shown below.

5.1.3 Values of R k
!� �

=Rc

The three nematic modes (7) and (8) could be two propagative and one diffu-
sive, or all of them completely diffusive; its nature depends on the values assumed

by the ratio R k
!� �

=Rc. For simple fluids, these features have been predicted theo-

retically and corroborated experimentally, but to our knowledge, not for anNLC. In
this sense, the following results suggest that it might be feasible to be also verified
experimentally for nematics.

5.1.3.1 Propagative and diffusive modes

If we take into account the orders of magnitude of the small quantities (Eq. (5)),
the nematic modes (7) and (8) in general are real and different. Nevertheless, it
may happen that these modes may be transformed into one real and two complex

conjugate roots. This occurs if R k
!� �

=Rc ,R0, where

R0 � �
σ3 � Ω2KI

ρ0σ3

� �
�DT

h i2

4DTσ3
, (10)

which is always negative. Thus, if we consider the orders of magnitude of the
involved quantities and typical light scattering experiment values of k, DTk

2 � 107,

σ3k
2 � 108, and Ω2KIk

4

ρ0
� 1014, then R0 ffi �101 and the visco-heat modes, Eq. (7),

will be propagative when R k
!� �

=Rc ≲ � 101. This situation corresponds to the

propagation region indicated in Figure 3. The decay rate λ5, Eq. (8), remains to be
real. It is worth emphasizing that this case corresponds to overstabilized states,
where out of the three decay rates, two are propagative visco-heat modes and the
other one is completely diffusive. According to Eq. (9), this occurs if the α
contained in the effective temperature gradient X changes its sign and increases by
several orders of magnitude, situation that may be achieved by reversing the direc-
tion in which the temperature gradient is applied, i. e., when heating from below,
and by increasing its intensity. As far as we know, there are no theoretical analyses
nor experimental evidence for the existence of visco-heat propagating modes in
NLC under the presence of a temperature gradient and a uniform gravitational
field. Given that in simple fluids, under these conditions, there are analytical
[8, 37, 38] and experimental [43] studies that support the presence of visco-heat
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propagation modes, this prediction suggests that it may be worth to design experi-
ments to corroborate this phenomenon for nematics.

5.1.3.2 Pure diffusive modes

When R0 ≤R k
!� �

=Rc ≤ 1, the two visco-heat modes preserve the same form as in

Eq. (7) and the other one remains identical to Eq. (8), but all are real and completely
diffusive. In this regime, the following cases are of special interest. For instance, if

R k
!� �

=Rc ¼ R0, then the visco-heat modes (7) reach the same value, and conse-

quently, the three decay rates are:

λ3,4 ¼ 1
2

DTk
2 þ σ3k

2 � Ω2KIk
4

ρ0σ3k
2

 !
, (11)

and λ5, that takes the same form as in Eq. (8). These visco-heat modes are
identified at the vertex of the parabola in Figure 3.

Since for nematics, σ3 � Ω2KI
ρ0σ3

is usually greater than DT, it can be seen from

Eq. (7) that, as R ek
� �

=Rc grows and approaches 1, the magnitude of the heat diffu-

sive mode decreases, whereas the one of the shear mode increases. At the onset of

convections regime, R k
!� �

=Rc ¼ 1, i. e., when R reaches its critical value Rc and the

two visco-heat modes (7) are simplified to:

λ3 ¼ 0, (12)

λ4 ¼ DTk
2 þ σ3k

2 �Ω2KIk
4

ρ0σ3k
2 , (13)

Figure 3.

The real part of the nematic visco-heat modes λ3 and λ4 as a function of the Rayleigh ratio R k
!� �

=Rc. When

R k
!� �

=Rc ,R0, both modes are propagative; if R0 ≤R k
!� �

=Rc ≤ 1, both are completely diffusive. For

R k
!� �

=Rc ¼ R0, both modes are equal. In equilibrium, R k
!� �

=Rc ¼ 0, and the onset of convection occurs for

R k
!� �

=Rc ¼ 1.
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!� �
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!� �
=Rc.

The nature of these modes may be propagative or diffuse, as will be shown below.

5.1.3 Values of R k
!� �

=Rc

The three nematic modes (7) and (8) could be two propagative and one diffu-
sive, or all of them completely diffusive; its nature depends on the values assumed

by the ratio R k
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!� �
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4DTσ3
, (10)
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σ3k
2 � 108, and Ω2KIk

4

ρ0
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!� �
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propagation modes, this prediction suggests that it may be worth to design experi-
ments to corroborate this phenomenon for nematics.
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while the third, λ5, is identical to Eq. (8). This behavior for the decay rates λ3
and λ4 is also shown in Figure 3.

It should be noted that our expressions for these three decay rates are not in
agreement with those reported for an NLC in the literature [44, 45]. In these works,
the director mode tends to zero, the shear mode does not change and there is an
additional mode which is the sum of the thermal and director modes. In contrast,
we have found that the thermal mode λ3 vanishes, the director mode λ5 is virtually
unchanged, while λ4 has contributions from the thermal and shear diffusive modes.
We know that this phenomenon also occurs in the simple fluid, where there are two
diffusive modes, the thermal mode also vanishes and the other one has contribu-
tions from the shear and thermal modes. In other words, our results reduce to the
corresponding one for a simple fluid as R reaches its critical value Rc. Because for a
simple fluid, these features have been predicted theoretically, our results suggest
that it might be feasible to verify them experimentally also for nematics [8, 37, 38].

5.2 Transverse modes

As mentioned earlier, pT λð Þ is the characteristic polynomial of second order in λ

of the matrix NT. The corresponding transverse hydrodynamic modes are the roots
of this equation pT λð Þ ¼ 0.

5.2.1 Shear and director transverse modes

Accordingly, the shear and director transverse modes are the roots of pT λð Þ ¼ 0,
and are given by Eq. (63) in Ref. [26] (or by Eq. (157) in [25]). Following again
the approximate method of small quantities used previously, the quantities σ4,
KIIk

2=γ1 and λþKIIk
2k2∥=ρ0, may be identified in this equation. In terms of them, we

have another set of anisotropic coefficients given by the viscosity σ4, the elasticity
KII, and symmetry λþ (see, respectively, Eqs. (27), (29), and (31) in [26]). We also
define the small or reduced dimensionless quantities, analogous to those defined in

Eq. (5), namely, a4 � σ4k
2

ω , a05 � KIIk
2

γ1ω
, a06 � λ2þKII

ρ0ω
2 k2k2∥, where again ω � csk. It should

be noted that the viscous coefficient σ4 only depends on the viscous coefficients ν2,
ν3, while the elastic coefficient KII depends on the two Frank elastic constants K2

and K3: Since for typical nematics λþ � 1, γ1 � 10�1, σ4 � 10�2, KII � 10�6 [32],
and also by taking into account that cs � 105, k � 105, g � 103, the quantities a4, a05
and a06 have the orders of magnitude a4 � 10�2, a05 � 10�5, and a06 � 10�6.
According to Eqs. (64) and (65) in Ref. [26] (or Eqs. (167) and (168) in [25]), up to
first order in such small amounts, these two roots can be written as:

λ6 ¼ σ4k
2 � λ2þKIIk

2k2∥
ρ0σ4k

2 , λ7 ¼ KIIk
2

γ1
þ λ2þKIIk

2k2∥
ρ0σ4k

2 (14)

It should be noted that these shear and director diffusive transverse modes also
match completely with those already reported for nematics [22, 31, 32].

6. The equilibrium and simple fluid limits

From the hydrodynamic modes calculated for an NLC in a NESS determined by
a Rayleigh-Bénard system, it is possible to obtain, as limit cases, the corresponding
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modes of a nematic in the state of equilibrium and those of a simple fluid under the
same nonequilibrium regime. Both situations are of physical interest and are
discussed below.

6.1 Nematic in equilibrium

It has been found that for anNLC in a NESS, the effects of the external gradients
α and g are only manifested in the coupling of the thermal diffusive and shear
longitudinal modes, which gives rise to the visco-heat modes λ3,4 indicated, respec-
tively, by means of Eq. (7). If the nematic layer is in a state of homogeneous
thermodynamic equilibrium, g ¼ 0 and α ¼ 0, and therefore X ¼ 0 and

R k
!� �

=Rc ¼ 0: Thus, the hydrodynamic modes of a nematic, in the state of equilib-

rium (denoted by the superscript e), are composed of five longitudinal and two
transverse modes. The longitudinal modes are integrated by the two acoustic prop-
agatives λe1 and λe2 given by Eq. (6); as well as by the three diffusives, which consist
of one thermal:

λe3 ¼ DTk
2, (15)

another of shear:

λe4 ¼ σ3k
2 �Ω2KIk

2

ρ0σ3
(16)

and one more of the director, λe5, which is the same as Eq. (8). The longitudinal
diffusive modes (15) and (16) are obtained precisely from Eq. (7), since in this, the
Rayleigh ratio, given by Eq. (9), is zero if α and g vanish. Moreover, the pair of
transverse modes consist of the shear and director modes λe6 and λe7 which are equal
to the Eq. (14). It is necessary to mention that the decay rates λei i ¼ 1…7ð Þ are well
known in the literature [22, 31, 46]. Note that λe3 and λe4 are shown in the middle part
of Figure 3.

6.2 Simple fluid in a Rayleigh-Bénard system

Given that in the isotropic limit (simple fluid limit), the degree of nematic order
goes to zero, ni is no longer a hydrodynamic variable, and the elastic constants Ki
(for i ¼ 1, 2, 3) and the kinetic parameters γ1, λ vanish. Also, χ⊥ and χ∥ are reduced
to the coefficient of thermal diffusivity χ and χa ¼ 0. On the other hand, the
nematic viscosities are reduced in the following way: ν1 ! η, ν2 ! η, ν3 ! η,
ν4 ! ζ þ 1

3 η, ν5 ! � 2
3 ηþ ζ, where η and ζ denote, respectively, the shear and

volumetric viscosities of the simple fluid. As a result, from Eqs. (23)–(31) in Ref.
[26] (or Eqs. (74)–(82) in [25]), it follows that in the isotropic limit DT ! χ,
σ1 ! 1

ρ0
4
3 ηþ ζ
� �

, σ2 ! 0, σ3 ! ν, σ4 ! ν, where ν � η=ρ0 is the kinematic viscosity,
whereas KI ! 0, KII ! 0, and Ω ! 0. Consequently, by making the identifications
indicated above, the corresponding hydrodynamic modes of a simple fluid can be
obtained when it is in a Rayleigh-Bénard system. Thus, according to Eq. (6), a
simple fluid has the two acoustic propagative modes:

λ1 ≃Γ0k2 þ icsk, λ2 ≃Γ0k2 � icsk, (17)
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while the third, λ5, is identical to Eq. (8). This behavior for the decay rates λ3
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We know that this phenomenon also occurs in the simple fluid, where there are two
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and also by taking into account that cs � 105, k � 105, g � 103, the quantities a4, a05
and a06 have the orders of magnitude a4 � 10�2, a05 � 10�5, and a06 � 10�6.
According to Eqs. (64) and (65) in Ref. [26] (or Eqs. (167) and (168) in [25]), up to
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It should be noted that these shear and director diffusive transverse modes also
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From the hydrodynamic modes calculated for an NLC in a NESS determined by
a Rayleigh-Bénard system, it is possible to obtain, as limit cases, the corresponding
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modes of a nematic in the state of equilibrium and those of a simple fluid under the
same nonequilibrium regime. Both situations are of physical interest and are
discussed below.

6.1 Nematic in equilibrium

It has been found that for anNLC in a NESS, the effects of the external gradients
α and g are only manifested in the coupling of the thermal diffusive and shear
longitudinal modes, which gives rise to the visco-heat modes λ3,4 indicated, respec-
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rium (denoted by the superscript e), are composed of five longitudinal and two
transverse modes. The longitudinal modes are integrated by the two acoustic prop-
agatives λe1 and λe2 given by Eq. (6); as well as by the three diffusives, which consist
of one thermal:

λe3 ¼ DTk
2, (15)

another of shear:

λe4 ¼ σ3k
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2

ρ0σ3
(16)

and one more of the director, λe5, which is the same as Eq. (8). The longitudinal
diffusive modes (15) and (16) are obtained precisely from Eq. (7), since in this, the
Rayleigh ratio, given by Eq. (9), is zero if α and g vanish. Moreover, the pair of
transverse modes consist of the shear and director modes λe6 and λe7 which are equal
to the Eq. (14). It is necessary to mention that the decay rates λei i ¼ 1…7ð Þ are well
known in the literature [22, 31, 46]. Note that λe3 and λe4 are shown in the middle part
of Figure 3.

6.2 Simple fluid in a Rayleigh-Bénard system

Given that in the isotropic limit (simple fluid limit), the degree of nematic order
goes to zero, ni is no longer a hydrodynamic variable, and the elastic constants Ki
(for i ¼ 1, 2, 3) and the kinetic parameters γ1, λ vanish. Also, χ⊥ and χ∥ are reduced
to the coefficient of thermal diffusivity χ and χa ¼ 0. On the other hand, the
nematic viscosities are reduced in the following way: ν1 ! η, ν2 ! η, ν3 ! η,
ν4 ! ζ þ 1

3 η, ν5 ! � 2
3 ηþ ζ, where η and ζ denote, respectively, the shear and

volumetric viscosities of the simple fluid. As a result, from Eqs. (23)–(31) in Ref.
[26] (or Eqs. (74)–(82) in [25]), it follows that in the isotropic limit DT ! χ,
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ρ0
4
3 ηþ ζ
� �

, σ2 ! 0, σ3 ! ν, σ4 ! ν, where ν � η=ρ0 is the kinematic viscosity,
whereas KI ! 0, KII ! 0, and Ω ! 0. Consequently, by making the identifications
indicated above, the corresponding hydrodynamic modes of a simple fluid can be
obtained when it is in a Rayleigh-Bénard system. Thus, according to Eq. (6), a
simple fluid has the two acoustic propagative modes:

λ1 ≃Γ0k2 þ icsk, λ2 ≃Γ0k2 � icsk, (17)
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where cs corresponds to the adiabatic velocity of the sound in this medium and

Γ0 � 1
2 γ � 1ð Þχ þ 1

ρ0
4
3 ηþ ζ
� �h i

is the corresponding coefficient of sound attenuation.

On the other hand, according to the Eq. (7), the longitudinal visco-heat modes are:

λ3,4 ≃
1
2

χ þ νð Þk2∓ 1
2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
χ þ νð Þ2k4 � 4χνk4 1� R

Rc

� �s
: (18)

In the isotropic limit of the simple fluid, λ5 ¼ λ7 ¼ 0, so that, according to the
Eq. (14), the only transverse mode of this substance in a Rayleigh-Bénard system is:

λ6 ¼ νk2: (19)

In Eq. (18), the ratio R k
!� �

=Rc is defined as:

R k
!� �

Rc
� � gβXk̂

2
⊥

χνk4
, (20)

which, in this limit case, can be derived from Eq. (9). It should be pointed out
that Eq. (20) coincides with the Eq. (2.21) of reference [37]. The modes (17)–(19)
are in complete concordance with those analytically calculated in [8, 37, 38].

Moreover, if in the coefficient matrix M of the stochastic system given by
Eq. (20) in Ref. [26], the simple fluid limit is taken, it reduces to a matrix that is a
generalization of the one given by the Eq. (6) in [38]. Additionally, if in the
corresponding matrix M found for the simple fluid, the equilibrium limit is now
considered, i. e., when α and g vanish, the resulting matrix is also reduced to that
given by Eq. (4) of [38].

6.2.1 Values of R k
!� �

=Rc

The two visco-heat mode, as in the nematic, could be propagative or diffusive.

These characteristics depend on the values assumed by the ratio R k
!� �

=Rc. For

simple fluids, these have been predicted theoretically and corroborated experimen-
tally.

6.2.1.1 Propagative modes

If R k
!� �

=Rc ,R0, where R0 � � ν� χð Þ2= 4χνð Þ,0, the visco-heat modes (18)

will be propagative. According to Eq. (20), this occurs again if the α contained in X
changes its sign and increases by several orders of magnitude, a situation that is
achieved by inverting the temperature gradient (when heated from below and its
intensity is increased). There are analytical [8, 37, 38] and experimental [43] studies
that report, for simple fluids in these conditions, the presence of visco-heat propa-
gative modes.

6.2.1.2 Pure diffusive modes

When R0 ≤R k
!� �

=Rc ≤ 1, the visco-heat modes preserve the form (Eq. (18)),

they are real and completely diffusive. In this regime, there are again three cases of
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special interest. If R k
!� �

=Rc ¼ R0, then both visco-heat modes (18) are identical and

equal to:

λ3,4 ¼ 1
2

χ þ νð Þk2: (21)

On the other hand, if the simple fluid is in a state of homogeneous thermody-

namic equilibrium, g ¼ 0 and α ¼ 0, so that X ¼ 0 and R k
!� �

=Rc ¼ 0; conse-

quently, in this equilibrium state (identified by the superscript e), there is a thermal
diffusive mode:

λe3 ¼ χk2 (22)

and the shear mode:

λe4 ¼ νk2: (23)

These decay rates are well known in the literature [8, 37, 38]. Finally, because in

a simple fluid, commonly ν is greater than χ, according to Eq. (18), and as R k
!� �

=Rc

grows and approaches to 1, the magnitude of the thermal diffusive mode decreases,

while the shear mode grows. At the threshold of the convective regime (when R k
!� �

reaches its critical value Rc), R k
!� �

=Rc ¼ 1, and the two visco-heat modes (18)

acquire the values:

λ3 ¼ 0 (24)

and

λ4 ¼ χ þ νð Þk2: (25)

These three cases are consistent with those obtained in analytical studies already
reported for simple fluids in this regime [8, 37, 38]. Schematically, its behavior is
very similar to that illustrated in Figure 3, and this can be seen in Figure 1 of the
reference [37].

7. Conclusions

In this work, we have used the standard formulation of FH to describe the
dynamics of the fluctuations of a NLC layer in a NESS characterized by the simul-
taneous action of a uniform temperature gradient α and a constant gravitational
field g, which corresponds to a Rayleigh-Bénard system. The analysis carried out
takes into account only the nonconvective regime. The most important results are
the analytic expressions for the seven nematic hydrodynamic modes. The explicit
details of several of the calculations can be found in Refs. [25, 26]. To summarize
the results obtained in this work and to put them into a proper context, the follow-
ing comments may be useful.

First, in our analysis, the symmetry properties of the nematic are taken into
consideration, and this allowed us to separate its hydrodynamic variables into two
completely independent sets: one longitudinal, composed of five variables, and the
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where cs corresponds to the adiabatic velocity of the sound in this medium and
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4
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they are real and completely diffusive. In this regime, there are again three cases of
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special interest. If R k
!� �

=Rc ¼ R0, then both visco-heat modes (18) are identical and

equal to:

λ3,4 ¼ 1
2

χ þ νð Þk2: (21)

On the other hand, if the simple fluid is in a state of homogeneous thermody-

namic equilibrium, g ¼ 0 and α ¼ 0, so that X ¼ 0 and R k
!� �

=Rc ¼ 0; conse-

quently, in this equilibrium state (identified by the superscript e), there is a thermal
diffusive mode:

λe3 ¼ χk2 (22)

and the shear mode:

λe4 ¼ νk2: (23)

These decay rates are well known in the literature [8, 37, 38]. Finally, because in

a simple fluid, commonly ν is greater than χ, according to Eq. (18), and as R k
!� �

=Rc

grows and approaches to 1, the magnitude of the thermal diffusive mode decreases,

while the shear mode grows. At the threshold of the convective regime (when R k
!� �

reaches its critical value Rc), R k
!� �

=Rc ¼ 1, and the two visco-heat modes (18)

acquire the values:

λ3 ¼ 0 (24)

and

λ4 ¼ χ þ νð Þk2: (25)

These three cases are consistent with those obtained in analytical studies already
reported for simple fluids in this regime [8, 37, 38]. Schematically, its behavior is
very similar to that illustrated in Figure 3, and this can be seen in Figure 1 of the
reference [37].

7. Conclusions

In this work, we have used the standard formulation of FH to describe the
dynamics of the fluctuations of a NLC layer in a NESS characterized by the simul-
taneous action of a uniform temperature gradient α and a constant gravitational
field g, which corresponds to a Rayleigh-Bénard system. The analysis carried out
takes into account only the nonconvective regime. The most important results are
the analytic expressions for the seven nematic hydrodynamic modes. The explicit
details of several of the calculations can be found in Refs. [25, 26]. To summarize
the results obtained in this work and to put them into a proper context, the follow-
ing comments may be useful.

First, in our analysis, the symmetry properties of the nematic are taken into
consideration, and this allowed us to separate its hydrodynamic variables into two
completely independent sets: one longitudinal, composed of five variables, and the
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other transverse, consisting of only two variables. From the equations that govern
the dynamics of the variables in these sets, the corresponding hydrodynamic modes
were calculated. The longitudinal modes are two acoustic, λ1 and λ2, modes (6), as
well as the triplet formed by the visco-heat pair λ3 and λ4, modes (7), and the
director λ5, mode (8). In addition, the transverse ones are given by the shear λ6 and
the director λ7, modes (14). We find that the influence of the temperature gradient
α and the gravitational field g occurs only in the longitudinal modes, being greater
its effect � 10�9� �

on the visco-heat pair λ3 and λ4. This effect is quantified by

means of the Rayleigh ratio R k
!� �

=Rc, Eq. (9), where R is the Rayleigh number and

Rc is its critical value above which convection sets in. The developed analysis
corresponding to the nonconvective regime was carried out under the condition

R k
!� �

=Rc ≤ 1:

The analytical expressions calculated for the hydrodynamic modes of a nematic
in the NESS considered exhibit behaviors that are of great interest in the following
particular situations. First, if the isotropic limit of the simple fluid is taken, the NLC
hydrodynamic modes reduce to those in the same state out of equilibrium, modes
(17)–(19), [8, 37, 38]. If R ¼ 0, that is, in the absence of the uniform temperature
gradient and the constant gravitational field, our expressions are simplified and
reduce to those already reported for a nematic in the state of thermodynamic
equilibrium, modes (6), (8), (14), (15), and (16), [22, 31, 46]. In this case, if we also
consider the limit of the simple fluid, they agree with those of this system in
equilibrium, modes (17), (19), (22), and (23), [41, 47, 48]. When R ¼ Rc, that is, at
the threshold of convection, from the triplet of longitudinal λ3, λ4 and λ5, the visco-
heat λ3 vanishes, and λ4 is the sum of the thermal and shear modes, modes (12) and
(13); while that of director λ5 is identical to mode (8) [37, 38]. Moreover, if in this
nematic threshold of convection, the limit of the simple fluid is considered, the
modes of this system are recovered: one is zero, mode (24), and the other is the sum

of the thermal and shear modes, mode (25), [37, 38]. Also, if R k
!� �

=Rc ,R0
ek
� �

,

where R0 k
!� �

is the reference value (10), our results predict that the visco-heat pair

λ3 and λ4, modes (7), become propagative; in the limit of the simple fluid, under
similar conditions, the corresponding modes (18) are also propagative. The latter
have been predicted theoretically [8, 37, 38] and verified experimentally [43].

However, it should be mentioned that our hydrodynamic modes λ3, λ4, and λ5
do not coincide with those reported in the literature for an NLC in the same NESS
considered here [44, 45], which consist in one mode due to the director, another
more product of the coupling of the thermal and director modes, and a shear
mode. The effect of external forces α and g is only manifested in the first two
modes. This triplet is reduced to the corresponding director, thermal, and shear
longitudinal modes of an NLC in the state of thermodynamic equilibrium, as well
as to the thermal and shear modes of a simple fluid in such state. It should be
noted that from the analytical expressions of these modes, the existence of
nematic propagative modes cannot be predicted; much less, in this NESS, in the
simple fluid. In addition, when the threshold of convection in the nematic is
considered, the director mode is canceled, another one is the sum of the thermal
and director modes, and the shear mode remains unchanged; consequently, when
the limit of the simple fluid is taken, they are reduced to thermal and shear
modes. This last result differs completely from the already reported [37, 38] for
the hydrodynamic modes of a simple fluid at the threshold of convection, where
one is zero, mode (24), and the other the sum of the thermal with the shear,
mode (25).
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Nevertheless, our calculated expressions for the visco-heat λ3, λ4, and director
λ5 modes predict both the existence of propagative modes and the form that this
triplet acquires in the convection threshold, and moreover, they reduce to the
corresponding modes in all the different limit cases already mentioned. In this
respect, we believe that they are more general than those reported in the literature
[44, 45]. As far as we know, the diffusive or propagative nature of the modes λ3 and

λ4, depending on the values taken by the ratio R k
!� �

=Rc, was not known; therefore,

its derivation represents a relevant contribution of this work. Since in simple fluids,
the existence of propagative modes has been predicted and verified experimentally,
our predictions about the existence of this phenomenon in the modes of an NLC
suggest the realization of new experiments.

Finally, it should be noted that this theory can be useful, since the description of
some characteristics of our model lend themselves to establish a more direct contact
with the experiment. Actually, physical quantities, such as director-director and
density-density correlation functions, memory functions or the dynamic structure

factor S k
!
;ω

� �
, may be calculated from our FH description. In Ref. [49], an appli-

cation of this nature was developed by calculating the Rayleigh dynamic structure
factor for the NLC under the NESS already mentioned, and its possible comparison
with experimental studies is discussed; a preliminary analysis can be consulted in
Ref. [50]. Another studies of the dynamic structure factor for an NLC in a different
NESS, such as that produced by the presence of an external pressure gradient, were
published in the references [19, 20].
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other transverse, consisting of only two variables. From the equations that govern
the dynamics of the variables in these sets, the corresponding hydrodynamic modes
were calculated. The longitudinal modes are two acoustic, λ1 and λ2, modes (6), as
well as the triplet formed by the visco-heat pair λ3 and λ4, modes (7), and the
director λ5, mode (8). In addition, the transverse ones are given by the shear λ6 and
the director λ7, modes (14). We find that the influence of the temperature gradient
α and the gravitational field g occurs only in the longitudinal modes, being greater
its effect � 10�9� �

on the visco-heat pair λ3 and λ4. This effect is quantified by

means of the Rayleigh ratio R k
!� �

=Rc, Eq. (9), where R is the Rayleigh number and

Rc is its critical value above which convection sets in. The developed analysis
corresponding to the nonconvective regime was carried out under the condition

R k
!� �

=Rc ≤ 1:

The analytical expressions calculated for the hydrodynamic modes of a nematic
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(13); while that of director λ5 is identical to mode (8) [37, 38]. Moreover, if in this
nematic threshold of convection, the limit of the simple fluid is considered, the
modes of this system are recovered: one is zero, mode (24), and the other is the sum

of the thermal and shear modes, mode (25), [37, 38]. Also, if R k
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� �
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!� �

is the reference value (10), our results predict that the visco-heat pair
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have been predicted theoretically [8, 37, 38] and verified experimentally [43].
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do not coincide with those reported in the literature for an NLC in the same NESS
considered here [44, 45], which consist in one mode due to the director, another
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mode. The effect of external forces α and g is only manifested in the first two
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noted that from the analytical expressions of these modes, the existence of
nematic propagative modes cannot be predicted; much less, in this NESS, in the
simple fluid. In addition, when the threshold of convection in the nematic is
considered, the director mode is canceled, another one is the sum of the thermal
and director modes, and the shear mode remains unchanged; consequently, when
the limit of the simple fluid is taken, they are reduced to thermal and shear
modes. This last result differs completely from the already reported [37, 38] for
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triplet acquires in the convection threshold, and moreover, they reduce to the
corresponding modes in all the different limit cases already mentioned. In this
respect, we believe that they are more general than those reported in the literature
[44, 45]. As far as we know, the diffusive or propagative nature of the modes λ3 and

λ4, depending on the values taken by the ratio R k
!� �

=Rc, was not known; therefore,

its derivation represents a relevant contribution of this work. Since in simple fluids,
the existence of propagative modes has been predicted and verified experimentally,
our predictions about the existence of this phenomenon in the modes of an NLC
suggest the realization of new experiments.

Finally, it should be noted that this theory can be useful, since the description of
some characteristics of our model lend themselves to establish a more direct contact
with the experiment. Actually, physical quantities, such as director-director and
density-density correlation functions, memory functions or the dynamic structure

factor S k
!
;ω

� �
, may be calculated from our FH description. In Ref. [49], an appli-

cation of this nature was developed by calculating the Rayleigh dynamic structure
factor for the NLC under the NESS already mentioned, and its possible comparison
with experimental studies is discussed; a preliminary analysis can be consulted in
Ref. [50]. Another studies of the dynamic structure factor for an NLC in a different
NESS, such as that produced by the presence of an external pressure gradient, were
published in the references [19, 20].
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g! constant gravitational force of magnitude g
x̂, ŷ, ẑ Cartesian unitary vectors
x, y, z Cartesian coordinates
T temperature
α temperature gradient of magnitude ∇zT
p hydrostatic pressure
∇zp pressure gradient
ρ volumetric density of mass
v! flow velocity
s specific density of entropy (entropy per unit mass)
r! position vector
ΔT temperature difference between the plates of the cell
X effective temperature gradient
β coefficient of thermal expansivity
cp specific heat at constant pressure
cv specific heat at constant volume
γ ratio of specific heats
cs adiabatic sound velocity
cT isothermic sound velocity
Ψ set of nematodynamic variables
δφ divergence of δ v!

δψ component z of the rotational of δ v!

δξ component z of the double rotational of δ v!

δf 1 divergence of δ n!

δf 2 component z of the rotational of δ n!

t as superscript, indicates transpose matrix

δ X
!

k
!
; t

� �
vector whose components are the spatial Fourier trans-
form of the variables δp, δφ, δs, δψ , δξ, δf 1 and δf 2

δXL
!

k
!
; t

� �
longitudinal component of δ X

!
k
!
; t

� �

δXT
!

k
!
; t

� �
transverse component of δ X

!
k
!
; t

� �

M coefficient matrix of the linear system for δ X
!

k
!
; t

� �

ML and MT longitudinal and transverse submatrices of M

Θ
!

k
!
; t

� �
stochastic vector of the linear system for δ X

!
k
!
; t

� �

ΘL
!

k
!
; t

� �
longitudinal component of Θ

!
k
!
; t

� �

ΘT
!

k
!
; t

� �
transverse component of Θ

!
k
!
; t

� �

zi k
!
; t

� �
variables of same dimensionality (i ¼ 1,…, 7)

Z
!

k
!
; t

� �
vector of the variables zi k

!
; t

� �

ZL
!

k
!
; t

� �
longitudinal component of Z

!
k
!
; t

� �

ZT
!

k
!
; t

� �
transverse component of Z

!
k
!
; t

� �

N coefficient matrix of the linear system for δ Z
!

k
!
; t

� �

NL and NT longitudinal and transverse submatrices of N

Ξ
!

k
!
; t

� �
noise vector of the linear system for Z

!
k
!
; t

� �
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ΞL
!

k
!
; t

� �
longitudinal component of Ξ

!
k
!
; t

� �

ΞT
!

k
!
; t

� �
transverse component of Ξ

!
k
!
; t

� �

ζi noise components of ΞL
!

(i ¼ 1,…, 5) and ΞT
!

(i ¼ 6, 7)
p λð Þ characteristic polynomial of the matrix N
pL λð Þ characteristic polynomial of the submatrix NL

pT λð Þ characteristic polynomial of the submatrix NT

λ eigenvalues of p λð Þ
Z
!L

X k
!
; t

� �
and Z

!L

Y k
!
; t

� �
components of the vector ZL

!
k
!
; t

� �

pLXX λð Þ and pLYY λð Þ polynomials in which pL λð Þ is broken down
DT anisotropic thermal coefficient
σ1, σ2, σ3, and σ4 anisotropic viscous coefficients
χ∥ and χ⊥ thermal diffusivities parallel and perpendicular to n!

χa anisotropic thermal diffusivity
νi nematic viscosities (i ¼ 1,…, 5)
Ω and λþ anisotropic adimensional nematic coefficients
K1, K2 and K3 elastic coefficients of Frank
KI and KII anisotropic elastic coefficients
γ1 torsion viscosity
ω auxiliary parameter
a0, a00, and a000 small dimensionless longitudinal quantities
a1, a01, and a2 small dimensionless longitudinal quantities
a3, a5, and a6 small dimensionless longitudinal quantities
λ1 and λ2 acoustic propagative longitudinal modes
Γ anisotropic sound attenuation coefficient
λ3 and λ4 visco-heat longitudinal modes
λ5 director diffusive longitudinal mode
k⊥and k∥ components of k

!
perpendicular and parallel to n̂0

k̂⊥ � k⊥=k unit vector of k̂⊥
R0 reference value of the Rayleigh ratio below which visco-

caloric modes are propagative
a4, a05, and a06 small dimensionless transverse quantities
λ6 and λ7 shear and director diffusive transverse modes
λei nematic modes in the state of equilibrium (i ¼ 1,…, 7)
χ thermal diffusivity of a simple fluid
η and ζ shear and volumetric viscosities of a simple fluid
ν kinetic viscosity of a simple fluid
Γ0 attenuation coefficient of sound in a simple fluid
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Chapter 7

Non-Newtonian Dynamics with
Heat Transport in Complex
Systems
Aamir Shahzad and Fang Yang

Abstract

Transport properties of complex system under various conditions are of practi-
cal interest in the field of science and technology. Homogenous nonequilibrium
molecular dynamics (HNEMD) simulations have been employed to calculate the
thermal conductivity (λ) of three-dimensional (3D) strongly coupled complex
nonideal plasmas (SCCNPs) over a suitable range of plasma parameters (Γ, κ). New
investigations show that the λ depending on plasma parameters and minimum value
of λ exists at nearly same plasma states. In the present case, the non-Newtonian
behavior is checked with different system sizes and it is found that the λ behavior is
well matched with earlier numerical work. It is demonstrated that the present out-
comes are more consistent than those obtained earlier known simulations. It is
revealed that our outcomes can be acceptable for a low range of force field in order
to find out the size of linear ranges, and it explains the nature of nonlinearity of
SCCNPs. It has been shown that the measured outcomes at steady states of external
field of F* (=0.005) are in acceptable agreement with previous numerical outcomes,
and it showed that the deviations are within less than 12% for most of the data and
depend on plasma states.

Keywords: non-Newtonian, thermal conductivity, homogenous nonequilibrium
molecular dynamics, strongly coupled complex nonideal plasmas,
external force field

1. Introduction

The computational knowledge of thermophysical properties is very different of
complex liquids as compared to the nonionic liquids. The important thermal con-
ductivity of complex liquids is used in the heat design process as an important
parameter. The estimations of thermal conductivity obtained by applying the
molecular dynamics (MD) approach in liquids and crystalline solids are a difficult
job due to perceived limitations of computational power [1]. Recently, in the field of
science and technology, the transport properties of interacting particles in complex
nonideal systems are of practical importance. A deep understanding of the interac-
tion of complex systems is required for nano- and microstructuring of surfaces. The
micron-size particles have recently been investigated in complex (dusty) plasmas,
and in the physics and chemistry of plasmas, space environment, ionized gases, and
material research and in the nuclear energy generation. The complex (dusty)
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plasmas play very important role in various technological applications, such as
industrial processing of microelectronic devices, storage devices, and fuel burning,
and future energy production [2]. For the explanation and understanding of these
macroscopic phenomena, a comprehensive microscopic knowledge and calculation
of the transport properties of complex (dusty) plasmas are required over the exten-
sive range of plasma parameters (Г, к). Both the Coulomb coupling (Г) and Debye
screening strength (к) are the dimensionless parameters, which can be used to
characterize the plasma. In statistical mechanics, the microscopic dynamical origin
of heat transport is a fundamental problem. Moreover, the purpose of the present
work is to investigate the thermal conductivity dependences on the strength of
different perturbation fields and to understand the non-Newtonian behaviors in the
Yukawa liquids along with the calculations of thermal conductivity.

1.1 Dusty plasmas

Dusty plasmas are also known as nonideal complex plasmas that contain partic-
ulates of condensed matter. The dust particles may have sizes ranging from nano-
meters to micrometers, and typically much more massive than that of plasma ions,
electrons, and neutrons. When the dust particles immersed in the plasma, they
attain a high electric charge (negative charge) which makes the dusty plasmas
interesting and technological important in the area of applied plasma physics. The
dynamical behavior of these massive dust charge particles is much complex and
occurs on considerably slower time scales, because their charge-to-mass ratio is in
orders of magnitude smaller than that of the corresponding charge-to-mass ratio of
either the electrons or ions. Dust particles are found in the large abundant in
planetary plasmas, cosmic plasmas, plasmas in the laboratory, and plasmas near the
earth. As a matter of fact, one may cogitate that except in the hottest regions of
fusion plasmas, where the dust particles would not survive, most are known as
dusty plasmas in the sense that some dust particles might be present. To understand
this fact, one recognizes two cases in which: (1) there are just few secluded
(noninteracting) dust particles, with the goal that they have nearly nothing if any
impact on the plasma, and (2) there are countless number of dust particles in the
plasma so that their existence really changes the properties and behavior of the
plasma. In the event (1), the dust particles are charged by their interactions with the
plasma yet do not change the plasma in any noticeable way. Then, again case (2)
agrees to the situation in which the charge dust is a component of the plasma,
subject to the collective interactions that recognize an ionized gas from a neutral
gas. Case (2) is what is ordinary characterized as “dusty plasmas.” At a significantly
bigger scale, it is outstanding that comets for the most part have two tails. One tail
is expected to the comet’s dust particles, the other is because of ionized gas comet
coma. These tails are not separate near the coma but overlap forming dusty
plasma [3].

1.2 Dusty plasma parameters

There are two basic dimensionless parameters which are used for the analysis of
transport coefficients in 2D and 3D dusty plasma systems, and which are responsi-
ble for mass transfer and phase state in nonideal dissipative systems [4–6]. These
dimensionless parameters are known as effective Coulomb coupling (Г*) parameter
and scaling parameter (ξ). These parameters (Г*, ξ) are responsible for transport
and structural processes for nonideal systems [5]. Screening parameter (к) is the
third one which is the important for the classification of dusty plasmas. Here, we
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discuss only two parameters, Coulomb coupling (Г) and the Debye screening
strength (к).

1.2.1 Coulomb coupling parameter (Г)

The Coulomb coupling (Г) parameter is the ratio between the interparticle
potential energy (P.E) to kinetic energy (K.E), and mathematically, it is written as,
Г ¼ P:E

K:E. This Coulomb coupling (Г) parameter is used for the classification of
strongly coupled complex (dusty) plasmas and weakly coupled complex (dusty)
plasmas.

1.2.2 Screening parameter (к)

Another important parameter of dusty plasmas is the screening strength (к),
which is the ratio of interparticle distance to the Debye length, and mathematically,
it is written as к ¼ a

λD
, here “a” is the Wigner-Seitz (WS) radius and “λD” is the

Debye length. The screening parameter (к) is also used for the classification of
dusty plasmas.

1.3 Types of dusty plasmas

On the basis of Coulomb coupling (Г) parameter, the complex (dusty) plasmas
are classified into two classes: one is called weakly coupled (ideal) complex (dusty)
plasmas and the other is called strongly coupled (nonideal) complex (dusty)
plasmas. These are succinctly discussed below.

1.3.1 Weakly coupled complex (dusty) plasmas

For weakly coupled complex (dusty) plasmas (WCCDPS), the Coulomb cou-
pling parameter (Г) is less than the unity (Г < 1), and it also called the weakly
coupled ideal plasmas because Columbic collisions are negligible. Weakly coupled
plasmas, like a gas, have no structure because Coulombic interactions are negligible
between the particles and particle motion is like molecular motion in gases and
particles have nearly random positions with respect to nearest neighbors [7]. For
WCCDPS, the K.E (thermal energy) is much larger than the Coulomb interparticle
P.E of nearest particles.

1.3.2 Strongly coupled complex (dusty) plasmas

When the Coulomb coupling parameter (Г) is greater than the unity (Г > 1),
then the plasma is known as strongly coupled (nonideal) complex plasmas. For
weak-to-intermediate Coulomb coupling (Г) values, the SCCDPS can have structure
of liquids, and structure of solids for higher values of Г. Furthermore, SCCDPS are
the collection of free microparticles that interact with each other with a strong
Coulomb repulsion force and have structure at microscopic scale for the arrange-
ment of particles. The particle motion in SCCDPS resembles that in the liquids or
solids, and particles remain in relative fixed positions with respect to neighboring
particles because of the strong Coulomb interactions present between the charged
particles [7]. In SCCDPS, the Coulomb interaction P.E is much larger than the K.E of
nearby particles.
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1.4 Formation and growth of dust particles in a plasma

An innovative feature of plasmas is that comprise chemically energetic species
which grow the dust particles. It is true for plasma appliances that are using in the
plasma processing semiconductor engineering, in which combinations of gases such
as oxygen (O2), argon (Ar), and silane (SiH4) are castoff in the assembly and
figments of microelectronic chips. Dust particles could also produce through
sputtering, arcing, electron bombardment, etc., where the atoms or molecules from
the walls of chamber or electrodes come out and immersed in the plasmatic system
through a different mechanism, called plasma-material interaction [8]. Plasma
processing devices are employed for the production of silicon wafers characteristi-
cally used as parallel plate electrode, in which 13.56 MHz radio frequency (rf)
power is connected to the lower electrode to create the plasma. Etching process
involves a reactive species such as silane along with a buffer gas like Ar. Plasma-
aided gas phase chemical reactions produced silicon hydride (SiH2) by the reaction
{e� + SiH4 ! (SiH4)* ! SiH2 + 2H}. The vibrationally excited state is produced by
the collisions of SiH4 with electrons which then dissociates into SiH2 [9]. The
particle that grows in plasmas passes through certain phases like nucleation, coagu-
lation, and surface growth.

1.5 Dust particle in the plasma

Dust particles are found everywhere in the entire universe with different shapes
and sizes and mostly found in the solid form but also found in the liquid and
gaseous ionized form. When the dust particles coexist with the plasma, then “dusty
(complex) plasma” is formed. Dust particles acquire an electric negative charge,
when these dust particles are immersed in the plasma and then affected by electric
and magnetic fields and plasma properties are changed. Moreover, these dust par-
ticles attain electric negative charge (typically depends on the flow of ions and
electrons) very fast due to the interactions between the dust particles and the
nearby plasmas.

In recent years, dusty plasmas have opened up an entirely new field of research
of science and technology by investigating transport properties (thermal conduc-
tivity, shear viscosity, and diffusion coefficient) of dusty plasmas in the laboratory.

1.5.1 Charge on dust particle

A lot of mechanisms are adopted to produce charge on a dust particle. If all
mechanisms are considered at once, then the measurement of the equilibrium
charge condition on a grain becomes very difficult. For the electron temperature Te

and ions temperature Ti, the flux of ions and electrons has an individual thermal
velocity vte. The thermal velocity of electron is higher than that of the heavier ions
which have a minute thermal velocity vti. These motions develop the charge Q on
the grain and make its surface potential (ϕs) negative. The charge on a grain
fluctuates continuously due to the collective current of electron and ion, i.e.,
dQ/dt = Ie + Ii and equilibrium of charge occurs under condition Ie + Ii = 0 or
ϕs = �2.49kT/e for an electron-ion plasma. The charge itself is associated to the
surface potential by Q = Cϕs, in which C tells about the capacitance of a grain in a
plasma [10]. The dust particle density differs from the density of electrons and ions
because in normal plasma, neutral n0 exists. If the primary electrons are very
energetic, then they release subordinate electrons, which make the positive poten-
tial surface. The absorption of plasma ions also makes the positive potential surface.
The transition of primary electrons and ions influenced by the surface potential of
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the grain depends on the relative velocity between the plasma species and the grain.
Electrons are repelled and the grain current will be decreased if surface potential is
negative. Electrons show attraction and the grain current increases for positive
potential surface.

1.5.2 Size of dust particle

In dusty plasma, the dust particles can have any shape and can be made of either
dielectric or conducting materials. The size of dust particles is much larger than the
size of electrons and ions of plasmas which is in microns or tens of nanometers. So,
the dust particles can easily be seen without any microscope. The typical size range
of dust particles is from 100 nm up to about 100 μm. For experimental studies, dust
particles that are distributed into plasmas are generally plastic or glass particles
(commonly used particle is melamine formaldehyde). They are spherical in shape
with a very narrow distribution of diameters. For example, the diameter of a
normally used particle may be 3.50 � 0.05 μm and a mass � 3� 10�11 kg. Such
particles are named monodisperse. Fine powders, such as aluminum silicate
(kaolin) with a broad size distribution ranging from the submicron to tens of
microns, are used in some experiments. Such powders contain particles having
laminar shapes with jagged edges.

1.6 Forces acting on dust particles in a plasma

When the dust particles are immersed in the plasma, then various forces are
acting on the dust particles which are significant because of their dynamics and
transport characteristics. These various forces determine that where the particles
are trapped or not, and these are sensitive to the position of dust particles within the
plasmas.

1.6.1 Force of gravity (Fg)

The dust particles which are under a gravitational force are proportional to the
mass of dust particle, and if dust particles are under microgravity condition, then it
must be ignored.

Fg ¼ mgd ¼
4
3
πa3ρd g (1)

where “g” describes the gravitational acceleration and “ρd” represents the mass
density of dust particles. Mostly, its value for solid materials is ρd = 2000 kg/m3.
This force can be neglected for submicron particles, but for the micron sized or
larger particles, this can be considered as the dominant force that typically confines
the time during which the particle resides in the plasmas.

1.6.2 The electric force (Fe)

For plasma having an electric field (E), the electric force acting on dust species is
written as:

Fe ¼ QE (2)

This force is much larger in the bulk of the plasmas, while it is much smaller in
the sheaths next to the plasma edge. For example, for characteristic radio frequency
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(rf) parallel plate glow discharge plasmas, particles reside beneath the negative
electrode where the downward electric field offers an upward electric force that
stabilizes the weight of the particle with force.

1.6.3 Neutral drag force (Fn)

This force is generated due to impacts of dust particles with the neutral gas
species (atoms and molecules) and it is proportional to the neutral pressure in the
vacuum chamber. Mathematically, it is written as:

Fn ¼ Nmnv2dnπa2 (3)

where N defines the density of neutral species, mn denotes the mass of neutral
species, and vdn represents the average relative velocity between the neutral ele-
ments and dust species. The resulting damping force also acts on the dust particles if
the dust particles drift with drag force in the opposite direction to its motion.

1.6.4 Thermophoretic force (Fth)

The thermophoretic force occurs from the effect of temperature gradient in the
neutral gas in the plasmas, and it is in the opposite direction to the temperature
gradient. This force occurs due to transfer of momentum by the gas molecules from
the hotter region to the colder portion of the gas. It can be written as:

Fth ¼ 16
ffiffiffi
π

p
15

a2κT
νT,n

∇Tn (4)

where vT,n describes the thermal speed of the neutral gas of plasma, κT defines
the translational effects in the λ, and Tn tells about the temperature of the neutrals.
It can be occurred in the discharge by heating one of the electrodes. The force
of gravity acting on the dust particles in plasma is balanced by the temperature
gradient [11].

1.7 Application of dusty plasmas in industry

Plasma-based material processing technologies are extensively employed in the
designing and commercialization of very large-scale integrated circuits (VLSI).
Usually, chemically reactive plasmas are useful to sputter, etch, or otherwise alter
the surface characteristics especially for silicon. Surface characteristics are approx-
imately done at length scale of 0.2 μm wide and 4 μm deep in silicon films by such
kind of mechanisms. The presence of dust is of critical concern to the microelec-
tronic industry since particle contamination of semiconductor materials was esti-
mated to account for more than 50% of device failures. Dust contamination
diminishes the yield and recital characteristics of fabricated devices. Simply, the
dust particles fall into the surface topographies of semiconductors either interfering
with the etching process, preventing the adhesion of thin films or contaminating the
final products. The occurrence of even the smallest dust particles became a crucial
problem as the microelectronics industry moved to smaller and smaller structures.

1.7.1 Dust is a good thing

In those days, it was investigated that dust particles in plasma can have very
interesting and useful properties, e.g., very small sizes, uniform size distribution,
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and chemical activity. There are many applications of plasma-produced particles.
For example, large and active surface in catalysis is profitable. They are also essen-
tial in ceramic industry for sintering, in the modern technology of composite mate-
rials, and in fabrication of hard coatings [12] and solar cells [13]. Also, by injecting
particles in plasma can furnish unique objects, like coated or layered grains with
desired surface structure, color, and fluorescent properties. These particles are used
as toners in copying machines [14] or in some optical devices [15].

1.7.2 Dust in plasma processing devices (dust is a bad thing)

During the last decade, in microelectronics industry, dust particles become the
major cause of contamination and reduce the yield and performance of fabricated
devices. In early 1990s, more than 50% devices were failed due to the particle
contamination. The adhesion of thin films was reduced due to the submicron
particles deposited on the surface, also causes dislocations. In semiconductor tech-
nology, the elimination of even smallest dust particles has become an urgent issue
to develop smaller structures and thin films. Firstly, it was thought that the cause
of most of the contamination is that the processed surfaces were handling in the
clean rooms but soon it was seemed that plasma is the major source of dust
particles and causes the loss of costly wafers. Now, the dust contamination is well
controlled.

2. HNEMD algorithm and computational technique

We start, as usual, the Green-Kubo relations (GKRS) for the hydrodynamic
transport coefficients of uncharged particles [16]. It is well-known form and has
been shown the standard GKRS of fluids to the YDPLS [17–22]. The typical GKRS

used for the estimation of thermal conductivity of interacting dust particles for
YDPLS:

λ ¼ 1
3kBVT2

ð∞

0

JQ tð Þ:JQ 0ð Þ� �
dt (5)

where in Eq. (5), kB is the Boltzmann’s constant, V is the system volume,T is the
absolute temperature, and JQ is the heat flux vector. The expression for the micro-
scopic heat flux vector JQ can be given by:

JQV ¼ ∑
N

i¼1
Ei

pi

m
� 1
2
∑
i 6¼j

ri � rj
� � pi

m
:Fij

� �
(6)

In the above expression, Fij is the total interparticle force on particle i due to j,
rij = ri � rj are the position vectors, and Pi is the momentum vector of the ith
particle. Ei is the energy of particle i and is given by the expression as:

Ei ¼ p2
i

2m
þ 1
2
∑
i 6¼j

ϕij (7)

where ϕij is the Yukawa pair potential between particle i and j. Evans [23] has
developed the non-Hamiltonian linear response theory (LRT) used for a moving
system representing the equation of motion:
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r• i ¼ pi

m
(8)

p• i ¼ ∑
N

J¼1
Fi þDi ri;pi

� �
:Fe tð Þ � αpi (9)

where Fi ¼ �∂ϕij=∂ri
� �

is the total interparticle force acting on particle i and

Di ¼ Di ri;pi

� �
is the tensor phase variable that describes the coupling of system to

the fictitious external force field Fe tð Þ. A mechanical work is performed through the
external applied force field Fe tð Þ, and thus, the equilibrium cannot be maintained.
In the above Eq. (9), α is the Gaussian thermostat multiplier that maintains the
system temperature and it is given as [16, 23]:

α ¼ ∑N
i¼1 Fi þDi ri;pi

� �
:Fe tð Þ

� �
:pi

∑N
i¼1p

2
i =mi

(10)

The external force field parallel to the z-axis is of the form Fe tð Þ ¼ 0;0;FZð Þ;
therefore, the thermal conductivity is calculated as:

λ ¼ V
3kBT2

ð∞

0

JQ z tð Þ JQ z 0ð Þ� �
dt

¼ lim
Fz!0

lim
t!∞

� JQz
tð Þ

D E

TFz

(11)

where JQZ
tð Þ is the z-component of the heat flux vector and the external force

field Fe tð Þ ¼ FZð Þ.

3. Numerical results and discussion

This section provides the outcomes of thermal conductivity of 3D complex dusty
plasmas by using HNEMD simulations over suitable plasma couplings Γ (�1, 200)
and screening strengths κ (�1.4, 4) at constant external force strength of Fext
(�0.005). It is noted that we have already reported our similar results with higher
system sizes [13] and with different varying force fields [13]. In this present work,
we have reported our HNEMD outcomes for different low to intermediate system
sizes at fixed force field.

Figures 1–4 show our main outcomes of plasma thermal conductivity (λ) by
employing HNEMD approach. Here, the thermal conductivity is normalized by
plasma frequency (ωp) as λ0 = λ/nkBωpaws, or by the Einstein frequency (ωE) as
λ* = λ/√3nkBωEaws of SCCNPs, at the normalized external field strength F* = (Fz)
(aws/JQ), where aws is radius of Wigner-Seitz (WS) radius with n being the equilib-
rium particle number density, kB is Boltzmann constant and JQ. It should be noted
that these normalizations have been employed for classical Coulomb one-
component plasmas (COCPs) [24] and SCCNPs [7].

Diverse series of the plasma λ0 subsequent to a decreasing series of external
force field F* are computed to establish the linear system of the SCCNPs under the
influence of the normalized force field strength. The current HNEMD outcomes
allow investigation for the complete range of plasma parameters (Γ, κ) with varia-
tion of external force field F*. In this work, a feasible suitable value of the external
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force field strength F* (=0.005) for the computation of the steady state values of the
plasma normalized thermal conductivity is to be selected, for small varying practi-
cal system size. This feasible suitable external force field provides the steady state
plasma thermal conductivity estimations, which are satisfactory over the whole
range of the plasma state points (Γ, κ).

Figures 1–3 display that the computed plasma thermal conductivity is in
acceptable conformity with former HNEMD investigations by Shahzad and He [13],
EMD calculations of Salin and Caillol [21], inhomogenous NEMD estimations of
Donkó and Hartmann [17], homogenous perturbed molecular dynamics simulations
(HPMD) measurements of Shahzad and He, and theoretical predictions of
Faussurier and Murillo for variance procedure (VP) [18, 25]. It can be seen from
Figure 1 that our results are slightly lower as compared to earlier known numerical
results based on different numerical techniques, at lower Γ. However, the present

Figure 1.
Comparison of normalized plasma thermal conductivity (λ0), computed by various numerical approaches for
plasma coupling states Γ � (1, 200). Results investigated by Shahzad and He for homogenous nonequilibrium
MD (HNEMD) [13], Salin and Caillol for equilibrium MD (EMD) [21], Donko and Hartmann for
inhomogenous NEMD [17]. Shahzad and He for homogenous perturbed MD (HPMD) [18] and Faussurier
and Murillo for variance procedure (VP) [25], (a) for N = 256, (b) N = 1372 and at κ = 1.4.
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λ ¼ V
3kBT2

ð∞

0

JQ z tð Þ JQ z 0ð Þ� �
dt

¼ lim
Fz!0

lim
t!∞

� JQz
tð Þ

D E

TFz

(11)

where JQZ
tð Þ is the z-component of the heat flux vector and the external force

field Fe tð Þ ¼ FZð Þ.

3. Numerical results and discussion

This section provides the outcomes of thermal conductivity of 3D complex dusty
plasmas by using HNEMD simulations over suitable plasma couplings Γ (�1, 200)
and screening strengths κ (�1.4, 4) at constant external force strength of Fext
(�0.005). It is noted that we have already reported our similar results with higher
system sizes [13] and with different varying force fields [13]. In this present work,
we have reported our HNEMD outcomes for different low to intermediate system
sizes at fixed force field.

Figures 1–4 show our main outcomes of plasma thermal conductivity (λ) by
employing HNEMD approach. Here, the thermal conductivity is normalized by
plasma frequency (ωp) as λ0 = λ/nkBωpaws, or by the Einstein frequency (ωE) as
λ* = λ/√3nkBωEaws of SCCNPs, at the normalized external field strength F* = (Fz)
(aws/JQ), where aws is radius of Wigner-Seitz (WS) radius with n being the equilib-
rium particle number density, kB is Boltzmann constant and JQ. It should be noted
that these normalizations have been employed for classical Coulomb one-
component plasmas (COCPs) [24] and SCCNPs [7].

Diverse series of the plasma λ0 subsequent to a decreasing series of external
force field F* are computed to establish the linear system of the SCCNPs under the
influence of the normalized force field strength. The current HNEMD outcomes
allow investigation for the complete range of plasma parameters (Γ, κ) with varia-
tion of external force field F*. In this work, a feasible suitable value of the external
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force field strength F* (=0.005) for the computation of the steady state values of the
plasma normalized thermal conductivity is to be selected, for small varying practi-
cal system size. This feasible suitable external force field provides the steady state
plasma thermal conductivity estimations, which are satisfactory over the whole
range of the plasma state points (Γ, κ).

Figures 1–3 display that the computed plasma thermal conductivity is in
acceptable conformity with former HNEMD investigations by Shahzad and He [13],
EMD calculations of Salin and Caillol [21], inhomogenous NEMD estimations of
Donkó and Hartmann [17], homogenous perturbed molecular dynamics simulations
(HPMD) measurements of Shahzad and He, and theoretical predictions of
Faussurier and Murillo for variance procedure (VP) [18, 25]. It can be seen from
Figure 1 that our results are slightly lower as compared to earlier known numerical
results based on different numerical techniques, at lower Γ. However, the present

Figure 1.
Comparison of normalized plasma thermal conductivity (λ0), computed by various numerical approaches for
plasma coupling states Γ � (1, 200). Results investigated by Shahzad and He for homogenous nonequilibrium
MD (HNEMD) [13], Salin and Caillol for equilibrium MD (EMD) [21], Donko and Hartmann for
inhomogenous NEMD [17]. Shahzad and He for homogenous perturbed MD (HPMD) [18] and Faussurier
and Murillo for variance procedure (VP) [25], (a) for N = 256, (b) N = 1372 and at κ = 1.4.
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results are well matched with earlier results for intermediate to higher Γ at two
different system sizes N = (256 and 1372) and it is clearly shown that our results are
very close EMD and HNEMD results. It is observed from Figure 2 that HNEMD
results are between EMD (at lower N) results and HNEMD (at higher N) computa-
tions at low value of Γ but our outcomes are satisfactorily matched with earlier
results at intermediate and higher Γ. It can be seen from Figure 2 that our HNEMD
data for low intermediate system size it is increasing behavior at higher Γ,
confirming earlier HPMD results [18]. It is observed that the deviation of data from
earlier known measured data based on different methods of EMD, HPMD, and
InNEMD is also computed and the outcomes of plasma λ0 are within range of �3–
22% for EMD, �7–20% for NEMD, and �10–35% for HPMD. It is noted that some

Figure 2.
Comparison of normalized plasma thermal conductivity (λ0), computed by various numerical approaches for
plasma coupling states Γ � (1, 300). Results investigated by Shahzad and He for homogenous nonequilibrium
MD (HNEMD) [13], Salin and Caillol for equilibrium MD (EMD) [21], Donko and Hartmann for
inhomogenous NEMD [17]. Shahzad and He for homogenous perturbed MD (HPMD) [18] and Faussurier
and Murillo for variance procedure (VP) [25], (a) for N = 500, (b) N = 864 and at κ = 3.

178

Non-Equilibrium Particle Dynamics

of data points are far away from present data that are not mentioned here but most
of data points are within limited statistical range, as expected. At higher screening
κ = 4, it is examined from Figure 3 that the present results are definitely lower as
compared to earlier EMD computations of Salin and Caillol and HNEMD estima-
tions at higher N of Shahzad and He. Moreover, it can be noted that the present
outcomes are slightly lower at intermediate Γ and well matched at higher Γ,
confirming earlier results.

It is suggested from these figures that measured outcomes are satisfactory well
matched with previous outcomes at intermediate to high Γ; however, some results
diverge at the lower Γ points but all within statistical unlimited uncertainty range.
Figures 1–3 show that the presented HNEMD method may precisely calculate the

Figure 3.
Comparison of normalized plasma thermal conductivity (λ0), computed by various numerical approaches for
plasma coupling states Γ � (1, 300). Results investigated by Shahzad and He for homogenous nonequilibrium
MD (HNEMD) [13], Salin and Caillol for equilibrium MD (EMD) [21], Shahzad and He for homogenous
perturbed MD (HPMD) [18] and Faussurier and Murillo for variance procedure (VP) [25], (a) for N = 500,
(b) N = 864 and at κ = 4.
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plasma thermal conductivity of strongly coupled complex plasmas. We have shown
that the present method has good performance and its accuracy is very close to
earlier EMD and InHNEMD methods. It is concluded that our outcomes depend on
the plasma parameters of Coulomb coupling and Debye screening strength,
confirming earlier simulations. Moreover, it is shown that the position of minimum
value of thermal conductivity shifts toward higher Γwith an increase of screening κ,
as expected. Presently, we have demonstrated our results for a wide range of plasma
parameters, ranging from nonideal gaseous state to strongly coupled range. It is
noted that the extended HNMED method is excellent for lower system sizes with
constant external force field strength, where signal-to-noise ratio is acceptable for
equilibrium plasma thermal conductivity.

4. Summary

Plasma thermal conductivity of SCCNPs system was computed over a suitable
domain of plasma couplings (1 ≤ Γ ≤ 300) and screening strength (1.5 ≤ κ ≤ 4) by
employing constant external force field strength through HNEMD approach. It is
shown that our HNEMD outcomes are in reasonable agreement with the earlier
outcomes measured from EMD, HNEMD, InHNEMD, HPMD, and VP approaches
for SCCNPs. New computations show that the minimum values of thermal conduc-
tivity exist at same values of plasma coupling Γ and it shifts toward higher Γwith an
increase of screening κ, as expected in earlier numerical approaches. It has been
revealed that the plasma thermal conductivity depends on plasma parameters (Γ, κ)
in 3D complex dusty systems that illustrate earlier results of SCCNPs. In this study,
the HNEMD method is a mostly dominant numerical approach, which occupies fast
computations of plasma thermal conductivity, for small to intermediate system
sizes. This chapter provides the understanding and investigation of nonlinear
regime of the SCCNPs for a suitable low value of external force field strength. In
future, thermal conductivity of complex plasma can be calculated by applying
external magnetic field or an electric field strength and it can be applied to other
systems (Coulomb, polymer, or ionic).

Figure 4.
Trend of normalized potential energy (P.E.) with four values of screening parameters (κ = 1, 2, 3, and 4) for
different coupling states Γ � (1, 5, 10, 20, 50, 100, 200, and 300) and at N = 256.
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