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Preface

The x-ray computed tomography (CT) is well known as a useful imaging method and 
the invention of several pioneers such as G. Houns eld and A. M. Cormack in 1970’s. 
This was a brilliant breakthrough as people could not see only  uoroscopic, but tomo-
graphic inside shapes of a target without cutt ing it. Since that time, CT images have 
continuously been used for many applications, especially in medical  elds. This book 
discloses recent advances and new ideas in theories and applications of CT imaging 
and its analysis.

The book contains 16 chapters, which are classi ed by application purposes into the 
following  ve parts:

Part 1: CT Image Analysis for Computer-Aided Diagnosis  (Chapters 1 to 4)
Part 2: CT Image Analysis for Preoperational Planning  (Chapters 5 to 7)
Part 3: CT Image Analysis for Radiotherapy  (Chapters 8 and 9)
Part 4: Advanced CT Imaging and Analysis  (Chapters 10 to 14)
Part 5: CT Imaging and Analysis for Non-Medical Applications  (Chapters 15 and 16)

Parts 1 to 4 are devoted to theories and applications of CT imaging and analysis in 
medical  elds where several image processing techniques such as segmentation, reg-
istration, and recognition can be used for observing important pieces of medical infor-
mation such as positions and shapes of targets to diagnose and treat them accurately. 
Parts 1, 2, 3, and 4 provide CT imaging and analysis for computer-aided diagnosis 
(CAD), preoperational (surgery) planning, radiotherapy, and other advanced purpos-
es, respectively. On the other hand, Part 5 is devoted to non-medical CT imaging and 
analysis such as for forensic and industrial applications.

The 16 chapters selected in this book cover not only the major topics of CT imaging 
and analysis in medical  elds, but also some advanced applications for forensic and 
industrial purposes. These chapters propose state-of-the-art approaches and cutt ing-
edge research results. I could not thank enough to the contributions of the authors. 
This book would not have been possible without their support.

February 2011

Noriyasu Homma
Cyberscience Center

Tohoku University
Sendai, 

Japan
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CT Image Based Computer-Aided 
Lung Cancer Diagnosis 

Noriyasu Homma 
Cyberscience Center, Tohoku University 

Japan 

1. Introduction  
An early stage detection of lung cancer is extremely important for survival rate and quality 
of life (QOL) of patients (Naruke et al., 1988). Although a nationwide periodical group 
medical examination is conducted in Japan by diagnosing chest X-ray images, such group 
examination is not often good enough to detect the lung cancer accurately and thus there is 
a high possibility that the cancer at an early stage cannot be detected by using only the chest 
X-ray images. To improve the detection rate for the cancer at early stages, X-ray computed 
tomography (CT) has been used for a group medical examination as well (Iinuma et al., 
1992; Yamamoto et al., 1993). 
Using the X-ray CT, pulmonary nodules that are typical shadows of pathological changes of 
the lung cancer (Prokop and Galanski, 2003) can be detected more clearly compared to the 
chest X-ray examination even if they are at early stages. This is an advantage of the X-ray CT 
diagnosis. In fact, it has been reported that the survival rate of the later ten years can reach 
90% after the detection at early stages using X-ray CT images (I-ECAP, 2006). 
On the other hand, compared to the chest X-ray images diagnosis, the X-ray CT diagnosis 
may exhaust radiologists because the CT generates a large number of images (at least over 
30 images per patient) and they must diagnose all of them. The radiologists' exhaustion and 
physical tiredness might cause a wrong diagnosis especially for a group medical 
examination where most of CT images are healthy and only very few images involve the 
pathological changes. Therefore, some computer-aided diagnosis (CAD) systems have been 
developed to help their diagnosis work (Okumura et al., 1998; Lee et al., 1997; Yamamoto et 
al., 1994; Miwa et al., 1999). Core techniques of CAD systems can be found in feature 
extraction and pattern recognition. Because of the fuzziness of the diagnosis target in the 
medical images, it often requires different methods from those for artificial targets. 
Miwa et al. have developed a variable N-quoit filter to detect isolated pulmonary nodules 
(Miwa et al., 1999) and Homma et al. have further improved the detection accuracy by 
discriminating between the isolated nodules and blood vessels those are both in a circle-like 
shape in CT images (Homma et al., 2008). The discrimination was achieved by developing 
new feature extraction techniques and combining those features extracted by the techniques. 
These methods, however, aimed at detecting only isolated circle-like shapes with the some 
morphological features, and thus non-isolated nodules (pathological changes) may not be 
detected by such methods. Indeed, it has been demonstrated that the conventional methods 
can detect isolated nodules shown in Fig. 1 (a) (Homma et al., 2008), but cannot or hard to 
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detect a non-isolated nodule shown in Fig. 1 (b). A schematic difference between isolated 
and non-isolated targets is depicted in Fig. 2. 
     

 
(a) Red squares show 

locations of isolated-nodules
(b) Red arrow indicates a 

non-isolated nodule 
(c) Red square shows a 

converted isolated nodule 
from non-isolated one 

Fig. 1. (a) Isolated and (b) non-isolated nodules, and the conversion (c) from non-isolated 
into isolated one. 

 

                   
                              (a) Isolated target                                     (b) Non-isolated target 

Fig. 2. A schematic difference between isolated and non-isolated targets. 

Although non-isolated nodules are not very often seen in lung cancer observations, they can 
be a lung cancer with a high possibility and should not be missed from the viewpoint of the 
early stages detection of cancers (I-ECAP, 2006). 
In this chapter, to improve the detection rate of such non-isolated nodules, we propose a 
technique transforming the non-isolated nodules connected to the walls of the chest into 
isolated ones that can be detected more easily by the conventional CAD systems. The 
transformation of Fig. 2 (b) into (a) can be achieved by extracting the lung area from the 
original whole CT image as shown in Fig. 1 (c). 
The rest of this chapter consists of as follows. In section 2, a fundamental theory of active 
contour models (Kass et al., 1998) that can be used for such extraction and its local optimum 
problem will be introduced. Then, by setting appropriate initial contours for solving the 
local optimum problem, a novel extraction technique based on the contour model will be 
developed in section 3. Experimental results using clinical data of X-ray CT images will be 
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discussed to demonstrate the usefulness of the proposed method in section 4. Concluding 
remarks will be given in section 5. 

2. Active contour model 
The active contour model proposed by Kass ((Kass et al., 1998) uses a gradient decent-based 
optimal method. The optimality can be defined by an energy function. The time evolution of 
the model is controlled by the following partial differential equation. 

  v E
t v

η∂ ∂
=−

∂ ∂
 (1) 

where ( ,  ,  )v t x y  is a function of time t  and coordinates x  and y  in the two dimensional 
space of the original image. η  is a positive coefficient. The contour can be defined by a set of 
coordinates ( ,  )x y  satisfying a condition v L=  where L  is a constant. Obviously, the final 
contour evolved by (1) is depended on the energy function E . 
A well known simple energy function is related to the edge of the original image and can be 
defined as follows. 

 ( ) 2

Ω

  ,E I x y dxdy=− ∇∫  (2) 

where ( , )I x y  is a pixel value at the coordinates ( ,  )x y  and ( , )I x y∇  is the spatial gradient of 
the pixel value. Ω  is a domain of the coordinates ( ,  )x y  on the contour, i.e, 

( ) ( ){ , |  ,  }x y v x y LΩ = = . By using the energy function E  in Eq. (2), the final contour may be 
on an edge of the original image in which the gradient of the pixel value is the local 
maximum (i.e., the local minimum for the energy function). Fig. 3 shows an example of the 
time evolution of the contour given by the active contour model where the energy function 
was defined by Eq. (2). 
 
 
 
 
 
 
 
 

 
 
     (a) Initial contour                         (b) Contour in a halfway                          (c) Final contour 

Fig. 3. A sample time evolution of active contour. White lines show contours. 

Since the active contour model is controlled by a gradient-decent evolution as mentioned 
above, the final result is also depended on the initial settings of the contour. In other words, 
such model can converge to a local optimal solution instead of the global optimal one. Thus, 
as well as the right design of the energy function, an appropriate setting of the initial 
contour is required to obtain the desired contour. Fig. 4 shows an example illustrating 
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                          (a) Initial contour (I)                                       (b) Initial contour (II) 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

       (c) Final contour for the initial contour (I)        (d) Final contour for the initial contour (II) 

Fig. 4. Effect of initial contours on the final results: Examples using the same lung X-ray CT 
image. Black lines near the walls on the CT images are contours. 

results obtained from different initial contours for the same X-ray CT image. In fact, as is 
clear from this figure, the results are quite different from each other. 
In addition, note that the result (I) in Fig. 4 (c) may be more desirable than the result (II) in Fig. 
4 (d) because the result (I) seems more similar to the target contour inside the walls of the 
chest. This is because the initial contour (I) in Fig. 4 (a) is more similar to the target and thus 
appropriate than the initial contour (II) in Fig. 4 (b). Consequently, if an initial contour as 
similar as possible to the desirable contour could be given, it may be expected that the final 
result is the most desirable one since the number of local optimal contours encountered during 
the time evolution can be the minimum compared to those for the other initial settings. 

3. Advanced active contour model for lung cancer diagnosis 
As expected in the last paragraph of section 2, the local optimum problem can be avoided by 
starting from the appropriate initial contours. Note that a lung shape changes smoothly in 
axial direction as shown in Fig. 5 and recently the interval between X-ray CT slices next to each 
other is at most 10 [mm] in the direction. Then lung shapes in CT slices (axial tomography) 
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next to each other are almost the same or at least similar as shown in original CT images of Fig. 
6. Thus a novel technique proposed here initializes the contour by using such anatomical 
characteristics of the lung shape. That is, the resulting contour obtained from the active 
contour model on the CT slice next to a target slice can be an appropriate candidate for the 
initial contour of the target CT slice. This is a key idea of the proposed initialization. Let us 
define, in this chapter, a lung area as inside the thorax that includes the center area of heart 
and aorta, and consider the walls of the chest that does not include the center area. 
 

 
Fig. 5. A schema of a human lung. 

A flowchart of the proposed algorithm for extracting the lung area is shown in Fig. 7. In this 
algorithm, only the first CT slice is needed to be initialized in a specific way and called the 
initial slice of a series of the slices. Because of the specific initialization, steps (i) and (ii) in the 
flowchart for the initial slice are different from those of the other slices. In the followings, it 
is assumed, for simplicity, that the algorithm processes the series of CT slices from the head 
to the legs in the axial direction, but the algorithm is the same for the reverse direction. 
(i). Selection of the target slice: If the current target is the initial slice of the series, select a 

slice without non-isolated nodules connected to the walls of the chest. Otherwise, select 
the slice below the previous target slice. 

(ii). Initialization: There are many local optima during the time evolution of the model due 
to the edges created by the costae (bones) in the walls of the chest as shown in Fig. 4 (d). 
The resulting contour of the previous target slice can be a good candidate for the initial 
contour of the current slice as described above. The initialization except for the initial 
slice can thus be done easily by setting the candidate. 
There is, however, no previous final contour for the initial slice. In this case, to remove 
such undesirable edges, an equalization of the pixel values that are larger than a 
threshold is conducted within the walls of the initial slice. The equalization can be given 
as follows. 

 ( )
( )

' ,  ( , )
( , )  

, ,  ( )
max ThI I x y I

I x y
I x y otherwise
⎧ >⎪=⎨
⎪⎩

 (3) 

where '( , )I x y  denotes a new pixel value after the equalization, ThI  is the threshold, 
and maxI  is the maximum pixel value that usually represents the white color. 
As shown in Fig. 8, lung area of the initial slice can be extracted by using a mask 
processing. Then, a good result can be obtained from any contour outside the mask 
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       (c) Final contour for the initial contour (I)        (d) Final contour for the initial contour (II) 

Fig. 4. Effect of initial contours on the final results: Examples using the same lung X-ray CT 
image. Black lines near the walls on the CT images are contours. 
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and aorta, and consider the walls of the chest that does not include the center area. 
 

 
Fig. 5. A schema of a human lung. 

A flowchart of the proposed algorithm for extracting the lung area is shown in Fig. 7. In this 
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where '( , )I x y  denotes a new pixel value after the equalization, ThI  is the threshold, 
and maxI  is the maximum pixel value that usually represents the white color. 
As shown in Fig. 8, lung area of the initial slice can be extracted by using a mask 
processing. Then, a good result can be obtained from any contour outside the mask 
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Fig. 6. Similar lung shapes between CT slices next to each other. 
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Fig. 7. Flowchart of the proposed method. 

area. Note that lung area, however, could not often be extracted correctly if there is a 
non-isolated nodule connected to the walls of the chest as shown in Fig. 9. In this case, 
the non-isolated nodule that we want to detect is regarded as outside the lung area and 
thus cannot be detected by the mask processing. This is only the reason why we need to 
select the initial slice manually. 

(iii). Time evolution: By using Eq. (1), the resulting contour for the current target slice 
selected in step (i) can be obtained from the contour initialized in step (ii). 

(iv). Extraction: The lung area for the current target is extracted as the inside the resulting 
contour obtained in step (iii). 

Steps (i) - (iv) are repeatedly conducted until all lung areas in all CT slices are extracted.  
 
 

 
Fig. 8. A mask processing to extract the lung area. 
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Fig. 9. A failure case of the mask processing for a slice where there is a non-isolated nodule 
connected to the walls of the chest. 

4. Application to lung cancer diagnosis 
We have tested the proposed method using an extraction task in which the clinical CT 
images (https://imaging.nci.nih.gov/ncia/faces/baseDef.tiles) including non-isolated 
nodules connected to the walls of the chest are used. Examples of the extraction results are 
shown in Figs. 10 and 11. It is clear that the proposed method can extract the lung area 
including the non-isolated nodules. 
Extracted areas by the initial and the resulting contours for the original slice in Fig. 10 (c) are 
shown in Fig. 12. Note that the initial contour that is the resulting contour obtained in the 
previous slice in Fig. 10 (f) is similar enough to the target and thus, the final result in Fig. 10 
(g) is good enough. 
On the other hand, there are a few examples in which non-isolated nodules were not 
extracted as the lung area, but regarded as within the walls. In such case, still non-isolated 
nodules cannot be detected by the conventional CAD systems aiming at the isolated nodules 
detection. This problem may, however, be solved by designing a further appropriate energy 
function. For example, the contour curvature of the walls changes smoothly in general, but 
the curvature involving the connected nodules changes more sharply. Differences in the 
curvature may be incorporated into a new energy function to discriminate such non-isolated 
nodules from the walls of the chest. 
Furthermore, the active contour model has an ability of making a smooth contour line even 
if the initial contour has a sharp corner with a high curvature. We can then select the initial 
slice in an automatic way, i.e., random selection, the first (top), middle, or last (bottom) slice 
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         (a) Slice #1                       (b) Slice #2                      (c) Slice #3                      (d) Slice #4 
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 (e) Extracted area #1     (f) Extracted area #2      (g) Extracted area #3     (h) Extracted area #4 

Fig. 10. Extracted results for case 1 by the proposed active contour method. (a) - (d): Original 
CT images. (e) - (h): Extracted lung areas. 
 

 
 
 
 
 
 
 

 
         (a) Slice #1                       (b) Slice #2                      (c) Slice #3                      (d) Slice #4 
 
 
 
 
 
 
 
 
 
 
 
(e) Extracted area #1     (f) Extracted area #2      (g) Extracted area #3     (h) Extracted area #4 

Fig. 11. Extracted results for case 2 by the proposed active contour method. (a) - (d): Original 
CT images. (e) - (h): Extracted lung areas. 
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Fig. 11. Extracted results for case 2 by the proposed active contour method. (a) - (d): Original 
CT images. (e) - (h): Extracted lung areas. 
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of the series, and so on. The masking problem with the initial slice including non-isolated 
nodules connected to the walls of the chest can be solved by applying the proposed 
algorithm with an appropriate parameters setting repeatedly to the same series. This 
direction of future works can be important for clinical use. 
 
 

 
(a) Original CT image (same as in Fig. 10 (c)) 

 

 
(b) Extracted area by the initial contour that is the final contour of the above slice 

 

 
(c) Extracted area by the final contour (same as in Fig. 10 (g)) 

 
Fig. 12. The appropriate initial contour and the final contour for the CT slice #3 in Fig. 10 (c). 
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5. Concluding remarks 
In this chapter, we have taken into account non-isolated nodules connected to the walls of 
the chest that cannot be detected by the conventional CAD systems for lung cancer. To 
detect such nodules, we have proposed a technique to transform the non-isolated nodules 
into the isolated ones by using an active contour model to extract the lung area from the 
original CT image. The promising results suggest that the detection accuracy of the CAD 
systems can be further improved by incorporating the proposed technique. 
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1. Introduction

From all malignant tumors, except for non-melanoma skin cancer, lung cancer is the second
most common type among men and the most frequent among women. The most worrying
characteristic of this kind of cancer, however, is that it has caused more deaths that the sum of
the deaths caused by prostate, breast and rectal cancer in developed countries. Patients with
lung cancer have a five-year survival rate varying from 13% to 21% in developed countries
and varying from 7% to 10% in emerging countries. Only in 2005, 1.3 million deaths were
caused by lung cancer throughout the world. In this very same year, the National Institute of
Cancer (INCA) registered on the official statistics that lung cancer caused the death of 14,715
people in Brazil. Estimations of this specialized Brazilian organism point that the number of
new cases in 2010 will be 17,810 among men and 9,460 among women. Such incidence is still
the result of the large consumption of tobacco in the past, and does not reflect the present
scenario of reduction of the smoking habit by the people as a result of the preventive actions
more recently implemented (INCA, 2009).
Such incidence is still the result of the large consumption of tobacco in the past, and does
not reflect the present scenario of reduction of the smoking habit by the people as a result
of the preventive actions more recently implemented through the world. One of the causes
of the low survival rate from lung cancer is related to difficulty of its precocious diagnosis
due to the absence of symptoms and to the poor diagnosis at more advanced stages of the
disease (Jamnik et al., 2002). Due to these characteristics, several efforts have been made
targeting precocious diagnosis of lung cancer.
The detection of lung cancer in an initial stage has been improved by a wider use of
noninvasive image techniques, such as radiography and computerized chest tomography
(CT). However, invasive techniques are still necessary to the diagnostic definition that
occurs through the cytological and histopathological study of materials obtained via suction
puncture or biopsy. In this scenario, where the application of non-invasive techniques gains
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and varying from 7% to 10% in emerging countries. Only in 2005, 1.3 million deaths were
caused by lung cancer throughout the world. In this very same year, the National Institute of
Cancer (INCA) registered on the official statistics that lung cancer caused the death of 14,715
people in Brazil. Estimations of this specialized Brazilian organism point that the number of
new cases in 2010 will be 17,810 among men and 9,460 among women. Such incidence is still
the result of the large consumption of tobacco in the past, and does not reflect the present
scenario of reduction of the smoking habit by the people as a result of the preventive actions
more recently implemented (INCA, 2009).
Such incidence is still the result of the large consumption of tobacco in the past, and does
not reflect the present scenario of reduction of the smoking habit by the people as a result
of the preventive actions more recently implemented through the world. One of the causes
of the low survival rate from lung cancer is related to difficulty of its precocious diagnosis
due to the absence of symptoms and to the poor diagnosis at more advanced stages of the
disease (Jamnik et al., 2002). Due to these characteristics, several efforts have been made
targeting precocious diagnosis of lung cancer.
The detection of lung cancer in an initial stage has been improved by a wider use of
noninvasive image techniques, such as radiography and computerized chest tomography
(CT). However, invasive techniques are still necessary to the diagnostic definition that
occurs through the cytological and histopathological study of materials obtained via suction
puncture or biopsy. In this scenario, where the application of non-invasive techniques gains
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special relevance, a large number of computational tools have been employed, such as
Computer-aided Detection (CAD) and Computer-aided diagnosis (CADx), developed from
image processing and computer vision techniques.
Using digital images generated in the process of acquisition of the CT, it is possible to identify
the lung nodule and execute a series of measurements on it, in order to find some correlation
among these measurements and its diagnose of malignancy or benignity (Silva et al., 2009).
The need to obtain a precise diagnose of the lung nodule in order to provide longer survival
to the patient, specially at the starting stage when the tumor still has small dimensions, has
incited many researchers to look for new forms of detection and diagnosing with help of a
computer (Matsuoka et al., 2005), (Khan et al., 1991), (Vittitoe et al., 1997) and (Wolf et al.,
2005). The idea present in those tools is to provide an aid to the specialist doctor, whether
to evince suspicious radiological artifacts or to offer a second opinion to the specialist in the
diagnosing.
Works as those of (Jeong et al., 2005) and (Reeves & Kostis, 2000) have well demonstrated
this task of detection and diagnosing of the lung nodule. There is a set of works in the area
of pattern recognition that use texture and morphology as discriminative features of benign
and malignant nodules in the diagnosing, such as in (Iwano et al., 2005) and (Seemann et al.,
1999), that use the form of the nodule and in (Lo et al., 2003) that use morphology and texture
together, aiming to classify the nodule as malignant or benign. Recent researches in the area
of image processing with adoption of techniques of exploratory analysis of areas, largely used
in geostatistics, have presented promising works, such as (Silva et al., 2005), (Silva et al., 2009)
and (Silva et al., 2008), which extract certain texture measurements associated to the lung
nodules and are able to discriminate them as malignant and benign with accuracy varying
from 80% to 100%. However, this behavior is not perfectly noticed when using more than one
CT image database containing a sufficiently large number of lung nodule cases. Given this,
new measurements are being adapted to be used in lung nodule diagnosis, aiming to obtain
the same behavior when using several CT image databases.
This work presents a methodology for recognition of directional patterns of spatial
distribution, having the computer as a tool for diagnose aiding, especially in a precocious
manner, when the classic initial characteristics of malignancy are not well defined
The chapter is divided in the following way: Section 2 gives the medical viewpoint of the
characteristics of a lung nodule. In Section 3 we show the state of the art of works that
do the detection and/or diagnosis of lung nodules. Section 4 exemplifies a tentative of our
research team to automatically detect the lung nodule in a CT exam. In Section 5 we show the
application of one geostatistical measure and geometric measurements to suggest a diagnosis
for the lung nodule. In Section 6 we will give an ideia of how we expect CAD/CADx to
be applied to CT images in the next years. Finally, in Section 7, we present some final
considerations.

2. Medical viewpoint of the diagnosing of the solitary lung nodules by
computerized tomography

Lung cancer, associated to the smoking habit in more than 90% of cases, is the leading cause
of deaths and, in developed countries, it is responsible for a mortality rate bigger than that of
breast, prostate and rectal-colon cancer together, which, despite the large incidence, are more
controllable tumors from the therapeutic viewpoint. Perhaps the large amount of cancerous
substances carried by the smoke of cigarettes propitiates multiple molecular ways, which
represent a greater biological aggressiveness and more difficult therapeutic response. On
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the other hand, paradoxically, lung cancer is easier to prevent and decreases in parallel with
the reduction of the use of tobacco, such as has been seen world-wide. Unfortunately, in
less developed countries, the use of cigars has been increasing, bringing a disease of difficult
control, whose five-year survival, after diagnosis, is about 10%, in those locations where health
systems are weaker. The best chance to improve the survival in lung cancer is the precocious
diagnosis, occasionally done by the detection of anomalies in the bronchial mucosa, the
bronchoscopy and, more frequently, by finding the image of a lung nodule.
The solitary lung nodule is defined as an spherical image of up to 3 cm of diameter, not
accompanied by lesions that could suggest metastasis or invasion of neighbor structures,
traditionally obtained with a simple pulmonary radiography. Nevertheless, since the rise
of the first Computerized Tomography prototypes, evolving to the helical technique with a
detector and, more recently, multiple detectors (multi slice), it has been possible to diagnose
lung nodules which were invisible to simple X-rays.
In general, the more frequent diagnosing, which correspond to more than 80% of the cases of
lung nodules, but which can vary according to the characteristics of the population under
study, are the tuberculous or fungal granulomas, primary or metastatic lung cancer, the
harmatoma and the carcinoid tumor (Franquet et al., 2003). The main consequence of the
diagnosing of small nodules is the increase of the possibility of catching lung cancer in a recent
stage, what is known to increase the possibility of cure (Hanley & Rubins, 2003), (Lillington
& Caskey, 2003). This fact has already its reflections in the present TNM staging system for
lung cancer, modified in 2010, and which now covers the so called T1 (tumor with up to 3 cm
in diameter) in two sub-categories: T1a (up to 2 cm) and T1b (ranging from 2 to 3 cm), created
with the hope of stratify different survivals (Rami-Porta et al., 2009).
Together with all this benefic repercussion in the precocious detection of lung cancer, there
appears, on the other hand, a greater diagnostic difficulty, since benign nodules constitute
the majority of small nodules. Naturally, if there is not a correct judgment of the lung nodule
image, there will be an unnecessary increase of the number of invasive diagnosing procedures,
such as punctures with thin and cutting needles, transbronchial biopsy, video-assisted thoracic
surgery (VATS) and thoracotomy, methods with several possibilities of complications, but in
most cases with no mortality. Thus, all of the attributes of the image must be well evaluated,
not only to detect the nodule, but also to help determining its nature. In this context, we may
give emphasis to the screening of lung cancer, the measurement of texture and density of the
nodule, the dynamical evaluation by the volumetry and contrast impregnation and the fusion
of the images obtained by CT and positron emission (PET/CT). The computerized methods
for aiding detection and diagnosis, central object of this chapter, are analyzed in the next
section.

2.1 Tracking lung cancer through computerized tomography
Despite there is not a definitive proof that the screening by Computerized Tomography
decreases the global mortality by lung cancer, various findings tend to serve as a indication
that this goal can be achieved, maybe with the association to more than on advanced screening
method, such as looking for antibodies in the peripheral blood (Patel et al., 2010).
Studies about screening lung cancer using low-dosage helical computerized tomography have
advanced mainly in the USA, especially in New York City, which in a pioneer manner showed
the first results in 1999, from an experiment started in 1993. Other studies have also been
developed in Canada, Europe and Japan (I.Henschke & Yankelevitz, 2000). Despite some
criticisms about the cost-effectiveness of the method and the lack of a control group, the works
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have been multiplying and make clear the intention of coming to a standard of effectiveness
in order to reduce the mortality by lung cancer (Bellomi et al., 2006).
Detection aiding software can, through well established algorithms, perform the automatic
tracking of images with nodular profile, but still find difficulties in the segmentation of
nodules close to vessels and the thoracic wall, which demand special techniques. A special
advantage would be the diminishment og the errors caused by the radiologist’s tiredness,
since with modern devices the number of images to be analyzed increased significantly.
However, a relatively large number of false positives have been observed and this also testifies
that it will always be necessary the radiologist’s interpretation. Selecting the group of risk
for lung cancer, and in which can be different inclusion criteria, the percentage of lung
nodules per patient has been very variable in the literature, achieving even 50%, due to the
endemic pulmonary disorders. Nevertheless, most part of these nodules is constituted by
benign nodules, about 90% of cases, and so the need for observation has been increasing. In
parallel, new diagnosing programs (CADx systems) have been adopted, always intending to
increase sensibility, specificity and accuracy in order to make the final judgment easier for the
responsible medical (Way et al., 2010).

2.2 Texture of the lung nodule to the computerized tomography
With the rise of the tomographers with multiple detectors, the discovery of nodules has
become more and more frequent. These nodules, besides small, have diverse textures.
Screening programs have surprise entirely solid, non-solid (fosco glass texture) and mixed
nodules, which may have different biological behaviors (Hasegawa et al., 2000). This way, for
example, solid nodules are comprised into the whole spectrum between the carcinoma (small
and non-small cells) while the non-solid ones are usually represented by adenocarcinomas
of the bronchoalveolar subtype, with different biological behavior, normally more indolent.
Recent works have showed that the frosted glass texture, though being unspecific, can be
the starting form of lung cancer for computerized tomography. On the other hand nodules
heavily calcified, with central calcification or popcorn-like calcifications are inherently benign.
Nodules which alternate regions of fat density and rough calcifications suggest harmatoma,
a benign nodule composed of cartilagenous, osseous and fat tissues, with normal histological
aspect.
Nodules with predominance of density of soft parts, where cancer is more incident, need a
deeper study, because the human sight is unable to observe the minimal differences on gray
tones, which are actually the expression of a certain X-ray attenuation coefficient. Computer
programs can do this separation by analyzing the texture of the lung nodules through the
statistical study of the component voxels or eventual arrangements they form, each one with
its value or intensity. Despite these programs are very promising, they remain under study
in the literature being tested against a lung nodule database with known histopathological,
cytological or microbiological diagnosis.

2.3 Dynamic evaluation of the lung nodule by the computerized tomography
The dynamic evaluation is characterized by a study in two distinct moments of the same
nodule, with or without use of intravenous contrast. The commonest dynamic evaluation
without use of contrast is the calculation of the so called doubling time, which implies two
volumetric determinations after a certain time interval.
The volumetry of the lung nodule has been considered as an important attribute to study
undetermined nodules, especially if there is a screening program. Due to the tri-dimensional
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evaluation of the nodule, it establishes more precisely if there was a growing, involution or
stabilization, conclusions which have traditionally be taken by the analysis of the diameters of
a central tomographic cut, whose limitation is the incapacity to detect variations in other cuts
and specially in the z axis. Given the sensibility of the CT, it is possible to make a second
measurement in a short period, inclusively in the range below 30 days, and surprise the
nodules with doubling time in the spectrum of growing of neoplastic disorders, indicating,
so, its resection (Winer-Muram et al., 2002). Classically, doubling times inferior to 45 days
have been associated to inflammatory processes and those ranging from 45 to 450 days have
been associated to neoplasm (Nathan et al., 1962). Above 450 days the nodules has been
considered benign. However, certain tumors of germinative genealogy can have doubling
times below 45 days. For a neoplastic lesion, the smaller the doubling time the bigger the
biological aggressiveness of the tumor.
The computerized tomography with contrast injection is based on the fact that the
vascularization of the malignant nodule is much more prominent than that of the benign
one, especially in its central portion, occurrence demonstrated in immunohistochemistry
techniques with the use of antibodies anti-factor VIII. Made under standardization, the
method featured by Swensen and partners, in 1996, showed, with a cutoff point of
20 Hounsfield Units, a sensibility of 98%, a specificity of 73% and an accuracy of
85% (Christensen et al., 2006). Presently, in a general manner, we consider that a raise of more
than 15 to 25 Hounsfield Units (HU), after a contrast injection in standardized conditions
to enable comparison, suggests malignancy, but some benign conditions, inflammatory,
such as tuberculous granuloma and cryptogenic pneumonia, can also raise the radiologic
intensity (Jeong et al., 2005). Lately, more value has been given to the impregnation
curve (wash-in) and disimpregnation (wash-out) of contrast as a way to detail and help
distinguishing the benign nodules from the malignant one. In practical terms, the absence
of impregnation is the most useful dynamic feature, because it decreases significantly the
possibility of malignancy, having elevated negative predictive value (Christensen et al., 2006).
These conclusions are relativized in nodules smaller than 1 cm.

2.4 Association between computerized tomography and the positron emission tomography
(PET)

It has been demonstrated that the PET/CT association (PET integrated to CT) is more
adequate than the separate exams to diagnose the nature of the lung nodule. The same
way as in other methods, with PET, one has been giving more value to the quantification
obtained for the diagnosing, through the so called SUV max (Standardized Uptake Value)
which measures the maximum intensity of consumption of the agent marked by the tumored
cells in the region of interest. In the case of glucose it is used the 18-deoxi-fluoroglucose (FDG),
admitting, usually, as cutoff point the value 2.5 (Martins et al., 2008). Nevertheless, despite
the high sensibility, above 90%, the specificity in zones of high incidence of tuberculosis
and histoplasmosis stay between 70% and 80%, revealing still a reasonable possibility of
false positives, represented specially by the tuberculous granuloma. There has been some
research aiming to change glucose, the commonest energetic substrate, by an amino acid to
be incorporated to the DNA, as, for example, methionine (11 âĂŞ C- Methionine), obtaining
a smaller incidence of false positives, without sensibility loss (Sasaki et al., 1999). What is
special about the value of the PET is its contribution for the simultaneous staging in the
case of the malignant nodule, since it has the capability of pointing metastasis in places
where other image methods cannot find them. The incorporation of the study with PET

19
Informatics and Computerized Tomography 
Aiding Detection and Diagnosis of Solitary Lung Cancer



have been multiplying and make clear the intention of coming to a standard of effectiveness
in order to reduce the mortality by lung cancer (Bellomi et al., 2006).
Detection aiding software can, through well established algorithms, perform the automatic
tracking of images with nodular profile, but still find difficulties in the segmentation of
nodules close to vessels and the thoracic wall, which demand special techniques. A special
advantage would be the diminishment og the errors caused by the radiologist’s tiredness,
since with modern devices the number of images to be analyzed increased significantly.
However, a relatively large number of false positives have been observed and this also testifies
that it will always be necessary the radiologist’s interpretation. Selecting the group of risk
for lung cancer, and in which can be different inclusion criteria, the percentage of lung
nodules per patient has been very variable in the literature, achieving even 50%, due to the
endemic pulmonary disorders. Nevertheless, most part of these nodules is constituted by
benign nodules, about 90% of cases, and so the need for observation has been increasing. In
parallel, new diagnosing programs (CADx systems) have been adopted, always intending to
increase sensibility, specificity and accuracy in order to make the final judgment easier for the
responsible medical (Way et al., 2010).

2.2 Texture of the lung nodule to the computerized tomography
With the rise of the tomographers with multiple detectors, the discovery of nodules has
become more and more frequent. These nodules, besides small, have diverse textures.
Screening programs have surprise entirely solid, non-solid (fosco glass texture) and mixed
nodules, which may have different biological behaviors (Hasegawa et al., 2000). This way, for
example, solid nodules are comprised into the whole spectrum between the carcinoma (small
and non-small cells) while the non-solid ones are usually represented by adenocarcinomas
of the bronchoalveolar subtype, with different biological behavior, normally more indolent.
Recent works have showed that the frosted glass texture, though being unspecific, can be
the starting form of lung cancer for computerized tomography. On the other hand nodules
heavily calcified, with central calcification or popcorn-like calcifications are inherently benign.
Nodules which alternate regions of fat density and rough calcifications suggest harmatoma,
a benign nodule composed of cartilagenous, osseous and fat tissues, with normal histological
aspect.
Nodules with predominance of density of soft parts, where cancer is more incident, need a
deeper study, because the human sight is unable to observe the minimal differences on gray
tones, which are actually the expression of a certain X-ray attenuation coefficient. Computer
programs can do this separation by analyzing the texture of the lung nodules through the
statistical study of the component voxels or eventual arrangements they form, each one with
its value or intensity. Despite these programs are very promising, they remain under study
in the literature being tested against a lung nodule database with known histopathological,
cytological or microbiological diagnosis.

2.3 Dynamic evaluation of the lung nodule by the computerized tomography
The dynamic evaluation is characterized by a study in two distinct moments of the same
nodule, with or without use of intravenous contrast. The commonest dynamic evaluation
without use of contrast is the calculation of the so called doubling time, which implies two
volumetric determinations after a certain time interval.
The volumetry of the lung nodule has been considered as an important attribute to study
undetermined nodules, especially if there is a screening program. Due to the tri-dimensional

18 Theory and Applications of CT Imaging and Analysis

have been multiplying and make clear the intention of coming to a standard of effectiveness
in order to reduce the mortality by lung cancer (Bellomi et al., 2006).
Detection aiding software can, through well established algorithms, perform the automatic
tracking of images with nodular profile, but still find difficulties in the segmentation of
nodules close to vessels and the thoracic wall, which demand special techniques. A special
advantage would be the diminishment og the errors caused by the radiologist’s tiredness,
since with modern devices the number of images to be analyzed increased significantly.
However, a relatively large number of false positives have been observed and this also testifies
that it will always be necessary the radiologist’s interpretation. Selecting the group of risk
for lung cancer, and in which can be different inclusion criteria, the percentage of lung
nodules per patient has been very variable in the literature, achieving even 50%, due to the
endemic pulmonary disorders. Nevertheless, most part of these nodules is constituted by
benign nodules, about 90% of cases, and so the need for observation has been increasing. In
parallel, new diagnosing programs (CADx systems) have been adopted, always intending to
increase sensibility, specificity and accuracy in order to make the final judgment easier for the
responsible medical (Way et al., 2010).

2.2 Texture of the lung nodule to the computerized tomography
With the rise of the tomographers with multiple detectors, the discovery of nodules has
become more and more frequent. These nodules, besides small, have diverse textures.
Screening programs have surprise entirely solid, non-solid (fosco glass texture) and mixed
nodules, which may have different biological behaviors (Hasegawa et al., 2000). This way, for
example, solid nodules are comprised into the whole spectrum between the carcinoma (small
and non-small cells) while the non-solid ones are usually represented by adenocarcinomas
of the bronchoalveolar subtype, with different biological behavior, normally more indolent.
Recent works have showed that the frosted glass texture, though being unspecific, can be
the starting form of lung cancer for computerized tomography. On the other hand nodules
heavily calcified, with central calcification or popcorn-like calcifications are inherently benign.
Nodules which alternate regions of fat density and rough calcifications suggest harmatoma,
a benign nodule composed of cartilagenous, osseous and fat tissues, with normal histological
aspect.
Nodules with predominance of density of soft parts, where cancer is more incident, need a
deeper study, because the human sight is unable to observe the minimal differences on gray
tones, which are actually the expression of a certain X-ray attenuation coefficient. Computer
programs can do this separation by analyzing the texture of the lung nodules through the
statistical study of the component voxels or eventual arrangements they form, each one with
its value or intensity. Despite these programs are very promising, they remain under study
in the literature being tested against a lung nodule database with known histopathological,
cytological or microbiological diagnosis.

2.3 Dynamic evaluation of the lung nodule by the computerized tomography
The dynamic evaluation is characterized by a study in two distinct moments of the same
nodule, with or without use of intravenous contrast. The commonest dynamic evaluation
without use of contrast is the calculation of the so called doubling time, which implies two
volumetric determinations after a certain time interval.
The volumetry of the lung nodule has been considered as an important attribute to study
undetermined nodules, especially if there is a screening program. Due to the tri-dimensional

evaluation of the nodule, it establishes more precisely if there was a growing, involution or
stabilization, conclusions which have traditionally be taken by the analysis of the diameters of
a central tomographic cut, whose limitation is the incapacity to detect variations in other cuts
and specially in the z axis. Given the sensibility of the CT, it is possible to make a second
measurement in a short period, inclusively in the range below 30 days, and surprise the
nodules with doubling time in the spectrum of growing of neoplastic disorders, indicating,
so, its resection (Winer-Muram et al., 2002). Classically, doubling times inferior to 45 days
have been associated to inflammatory processes and those ranging from 45 to 450 days have
been associated to neoplasm (Nathan et al., 1962). Above 450 days the nodules has been
considered benign. However, certain tumors of germinative genealogy can have doubling
times below 45 days. For a neoplastic lesion, the smaller the doubling time the bigger the
biological aggressiveness of the tumor.
The computerized tomography with contrast injection is based on the fact that the
vascularization of the malignant nodule is much more prominent than that of the benign
one, especially in its central portion, occurrence demonstrated in immunohistochemistry
techniques with the use of antibodies anti-factor VIII. Made under standardization, the
method featured by Swensen and partners, in 1996, showed, with a cutoff point of
20 Hounsfield Units, a sensibility of 98%, a specificity of 73% and an accuracy of
85% (Christensen et al., 2006). Presently, in a general manner, we consider that a raise of more
than 15 to 25 Hounsfield Units (HU), after a contrast injection in standardized conditions
to enable comparison, suggests malignancy, but some benign conditions, inflammatory,
such as tuberculous granuloma and cryptogenic pneumonia, can also raise the radiologic
intensity (Jeong et al., 2005). Lately, more value has been given to the impregnation
curve (wash-in) and disimpregnation (wash-out) of contrast as a way to detail and help
distinguishing the benign nodules from the malignant one. In practical terms, the absence
of impregnation is the most useful dynamic feature, because it decreases significantly the
possibility of malignancy, having elevated negative predictive value (Christensen et al., 2006).
These conclusions are relativized in nodules smaller than 1 cm.

2.4 Association between computerized tomography and the positron emission tomography
(PET)

It has been demonstrated that the PET/CT association (PET integrated to CT) is more
adequate than the separate exams to diagnose the nature of the lung nodule. The same
way as in other methods, with PET, one has been giving more value to the quantification
obtained for the diagnosing, through the so called SUV max (Standardized Uptake Value)
which measures the maximum intensity of consumption of the agent marked by the tumored
cells in the region of interest. In the case of glucose it is used the 18-deoxi-fluoroglucose (FDG),
admitting, usually, as cutoff point the value 2.5 (Martins et al., 2008). Nevertheless, despite
the high sensibility, above 90%, the specificity in zones of high incidence of tuberculosis
and histoplasmosis stay between 70% and 80%, revealing still a reasonable possibility of
false positives, represented specially by the tuberculous granuloma. There has been some
research aiming to change glucose, the commonest energetic substrate, by an amino acid to
be incorporated to the DNA, as, for example, methionine (11 âĂŞ C- Methionine), obtaining
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has been recommended in the evaluation of the probability of malignancy by the Bayesian
method (Meert, 2010).

3. CAD/CADx lung systems

The development of medical images acquisition techniques, in particular Computerized
Tomography (CT), which may furnish more detailed information about the human body,
has increased the capability and fidelity in the diagnosing of many diseases. On the other
hand, the dimensions of these images are becoming bigger and bigger, increasing the need for
computer vision techniques that can make interpretation easier. This Section aims to provide
an overview of literature in automatic CT image analysis in the lung region.
The work of (Beigelman-Aubry et al., 2007) presented an evaluation of nodule detection and
its response time when performed by radiologists with and without use of a computerized
system. The work showed that the system improves the sensibility of the detection, what
raised the trust interval in 2%. Among the experiments with 109 patients, there was a nodule
which was not detected by one of the radiologists, but was detected by the system. Besides,
the use of the system decreases considerably the time required by the specialists to analyze
the exams.
This way, nodule detection systems have great importance in this process, despite they don’t
give the final diagnosis.
Nodule detection systems usually involve 4 steps: pre-processing, extraction of nodule
candidates, reduction of false positives and classification. Pre-processing normally consists in
restricting the search space, delimiting the lung, and reducing noises in the image. The region
of the lung is segmented and nodule candidate objects are identified. Among these objects
most of the non-nodules are discarded in the false positive reduction stage. The remaining
objects are then classified into nodule and non-nodule. In some methods, the false positive
reduction is performed after classification. Some works found in the literature involving these
steps are presented next.
(III & Sensakovic, 2004) showed the importance of adequate segmentation of lungs in
computer aided detection and/or diagnosing systems. His studies indicated that up to 17%
of lung nodules can be lost during lung segmentation if the algorithm is not adjusted to the
task of nodule detection.
A great challenge is the segmentation of lungs affected by high density pathologies connected
to their bounds. Due to the lack of contrast between these pathologies and the tissues adjacent
to the lung, density-based methods fail in this region. In this case, it is necessary some edition
technique, but, even so, part of the lung is normally lost (Sluimer et al., 2006).
Due to the large amount of air in the lung, its interior has dark tonality in CT images, differing
from the region around it. This way, contrast between lung and neighbor tissues is the basis for
most lung segmentation methods. Most methods are based on rules (Hu et al., 2001), (Zheng
et al., 2003), (Leader et al., 2003). The lung region can be found in two ways (Sluimer et al.,
2006). The first one is by means of region growing starting at trachea. The second one, more
usual, used thresholdings and constraints in size and location.
To find nodule candidates, the main techniques used are: multiple thresholding (Armato
et al., 1999), (Ko & Betke, 2001), (Zhao & Yankelevitz, 1999), (Zhao et al., 2004), mathematical
morphology (Ezoe et al., 2002), (Fetita et al., 2003), (Tanino et al., 2003), (Awai et al., 2004),
clustering) (Kanazawa et al., 1998), (Gurcan et al., 2002) (Kubo et al., 2002), (Yamada et al.,
2003), analysis of connected elements in thresholded images (Oda et al., 2002), (Saita et al.,
2004), detection of circles in thresholded images (Wiemker et al., 2002) and use of emphasis
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filter with spherical structure elements (Chang et al., 2004), (Li & Doi, 2004), (Paik et al.,
2004), (Paik, 2002).
In (Osman et al., 2007), for each slice, regions of interest (ROI) were found by using density
values of the pixels and analyzing their eight directions. The joining of all slices formed 3D
ROIs, which allows identifying the nodules when compared to a nodule model (template).
Sensibility reached 100%, but the test data were restricted to six cases.
(Retico et al., 2008) proposed a system based on emphasis filters for spherical objects and a
neural classification based on voxels of selected regions to reduce false positives. The system
performance was evaluated in a set of data from 39 CT and reached 80-85% of sensibility and
10-13 FP/exam.
(Bae et al., 2005) developed a Computer Aided Diagnosis (CADx) for high-resolution
CT images (HRCT - High-resolution computed tomography) using bi-dimensional and
tri-dimensional analysis algorithms. This technique was tested in eight lung cancer cases and
obtained 95% of sensibility and 0.91 FP/slice.
To improve the sensibility of the detection, (Li et al., 2008) used an emphasis filter in the
identification stage and, to reduce false positives, used a rule-based classifier.
After the nodule candidate objects have been generated, characteristic features of these objects
are calculated. Classifiers are then applied. These classifiers use the features to identify
candidate objects either in the nodules set or in the non-nodule set.
Several techniques can be used as classifiers in the final stage of nodule detection: based on
either rules or linear classifiers (Lee et al., 2001), (Mekada et al., 2003), (Chang et al., 2004),
by combining models (template matching) (Brown et al., 2003), analysis of the nearest cluster
(Ezoe et al., 2002), (Tanino et al., 2003), support vector machine (Lu et al., 2004), (Mousa &
Khan, 2002), (Sousa et al., 2007), neural networks (Suzuki et al., 2008), (Lo et al., 2003), (Zhang
et al., 2004) and Bayesian classifier (Farag et al., 2004), (McCulloch et al., 2004). The features
mostly used for classification are those based on the density of voxels, description of shapes,
spatial relation and size information.
(Sousa et al., 2007) proposed a set of three morphological features specially developed for
characterization of lung nodules with which matching rates of 100% were achieved using
support vector machine, despite this work used a small database.
In some works, the classifier presents good sensibility, but also a high number of false
positives. This way, techniques have been sought, in order to reduce this number after the
identification which, in some cases, work as filters before classification.
(Armato et al., 1999) presented a methodology for detection of lung nodules with just the
pre-processing stages, detection of candidates and classification. Nodule candidates were
found by through multiple thresholding and, next, using shape and density attributes and
discriminant linear analysis, the classification detected 70% of the nodules indicated by
specialists and 3 false positives per slice in average (approximately 80-90 false positives per
exam). In later papers, Armato and co-authors has focused in rules to reduce the number
of false positives: rule-based (III et al., 2001), (Arimura et al., 2004), discriminant analysis
(Arimura et al., 2004), (III et al., 2002) and neural networks (Arimura et al., 2004), (Suzuki,
2003). The best result obtained by these techniques was of 80.3% in detection rate with 4.8
false positives per exam against 27.4 without false positives reduction (Suzuki, 2003).
(Saita et al., 2004) added to the nodules detection methodology proposed by (Oda et al., 2002)
a false positives reduction stage.
(Lee et al., 2004) added the false positive reduction stage to the nodules detection method
initially proposed by (Lee et al., 2001). To do this, they added five density attributes and
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(Lee et al., 2004) added the false positive reduction stage to the nodules detection method
initially proposed by (Lee et al., 2001). To do this, they added five density attributes and
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adjusted the thresholding parameters to the original model. The sensibility continued the
same in 72.4% but the FP rate decreases from 30.8 to 5.5 per exam.
False positives reducing is important, because, even if sensibility keeps unaltered, the
radiologist’s final amount of work is reduced.

4. Lung nodule detection

This section presents, under the form of a sequence of stages, the procedures proposed to
perform the detection of lung nodules in a CT in an incremental manner. Another important
aspect of the methodology is the adoption of specific strategies for nodule detection in
particular conditions, such as nodules linked to the chest wall, aggregated to the bronchi or
blood trees, and the single ones.
The proposed methodology corresponds to the application of several successive stages of
processing to CT images, eliminating portions of them which do not correspond to interesting
areas, in this case, lung nodules. Figure 1 shows the methodology stages. Figure 2 presents
a CT slice consecutively submitted to this process. More details about this method in (Sousa
et al., 2010)

Fig. 1. Methodology Stages.

4.1 Thorax extraction
The process is started with thorax extraction. This stage comprises the removal of all artifacts
external to the patient’s body, among which are: bed sheets, the air that involves the patient
and the surface on which he lies, as example of the items numbered in Figure 2(a).
These structures are identified by a region growing algorithm whose seeds are initially put on
the four corners of each slice. The similarity criterion for the algorithm is based on gray tones
of the voxels, since great part of the external region of the thorax (which we want to identify)
is formed by low intensity voxels.

4.2 Lung extraction
The objective of lung extraction is to identify the thoracic wall and mediastinum voxels,
making possible the work on the next stages with just the region which forms the pulmonary
parenchyma. That is achieved again with use of the region growing algorithm, this time,
however, identifying the high-intensity voxels with values greater than the threshold and
with no need for tolerance. The final result, after the growing and elimination of the high
intensity voxels can be seen in Figure 2(c).

4.3 Lung reconstruction
Occasionally the lung extraction stage erroneously eliminates some voxels which belong
to the pulmonary parenchyma. These mistakes can lead to elimination, inclusively, of
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parenchyma. That is achieved again with use of the region growing algorithm, this time,
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intensity voxels can be seen in Figure 2(c).

4.3 Lung reconstruction
Occasionally the lung extraction stage erroneously eliminates some voxels which belong
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Fig. 2. Automatic lung nodule detection sequence. (a) Eliminates of all artifacts external to
the patient’s body, identified as 1 and 2 in the figure. (b) Removal of thorax, leaving just the
parenchyma. (c) Shows an example of the internal lung region and the thoracic wall
erroneously eliminated. (d) Parenchyma reconstructed with rolling-ball algorithm. (e) 3D
visualization of the remaining structures after threshold application and identified with
different colors. (f) 3D visualization of the structures after tubular elimination. (g) Shows the
correct identification of a lung nodule among other normal lung structures which came from
the previous stage. (h) Presents the same nodule identified in the original tomography image
by an arrow.

possible nodules, inducing an error in detection. This way, the reconstruction stage has great
importance for preservation of peripheral nodules.
Figure 2(c) shows an example of an internal lung region and the thoracic wall erroneously
eliminated together, due to its high intensity voxels.
In order to recover the correct lungs outlines, this stage uses the rolling-ball algorithm (Gurcan
et al., 2002), a mathematical morphology technique based on closing operations executed
with a circular structuring element, whose radius, in this specific case, was of thirty pixels.
Figure 2(d) shows the result after application this stage.

4.4 Parenchyma structures extraction
The previous stages had the main objective of detecting the pulmonary region, but only in
this stage, in fact, the search for internal lung regions occurs. This stage is performed in two
steps: the first one identifies and removes the less dense parenchyma tissue out from the
image, keeping only its internal structures; the second one isolates each of the tri-dimensional
structures found so that they can be individually processed.
The elimination of less dense tissues is performed by means of a thresholding process. The
proper threshold is again obtained from the volume voxels histogram, being considered only
the parenchyma-internal ones.
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possible nodules, inducing an error in detection. This way, the reconstruction stage has great
importance for preservation of peripheral nodules.
Figure 2(c) shows an example of an internal lung region and the thoracic wall erroneously
eliminated together, due to its high intensity voxels.
In order to recover the correct lungs outlines, this stage uses the rolling-ball algorithm (Gurcan
et al., 2002), a mathematical morphology technique based on closing operations executed
with a circular structuring element, whose radius, in this specific case, was of thirty pixels.
Figure 2(d) shows the result after application this stage.

4.4 Parenchyma structures extraction
The previous stages had the main objective of detecting the pulmonary region, but only in
this stage, in fact, the search for internal lung regions occurs. This stage is performed in two
steps: the first one identifies and removes the less dense parenchyma tissue out from the
image, keeping only its internal structures; the second one isolates each of the tri-dimensional
structures found so that they can be individually processed.
The elimination of less dense tissues is performed by means of a thresholding process. The
proper threshold is again obtained from the volume voxels histogram, being considered only
the parenchyma-internal ones.
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Nevertheless, these structures need to be separated individually, before the nodules can be
identified. So, each tri-dimensionally connected structure is identified through a region
growing algorithm which starts in each voxel of the structures which are not isolated yet.
The result of this stage is that every tri-dimensionally connected region can be individually
processed from this point. Figure 2(e) shows each tri-dimensional structure identified with
distinguished colors. Each color was randomly chosen and has no special meaning. We can
notice on it that structures such as blood vessels, bronchi and nodules are preserved, while
the major part of the parenchyma is suppressed.

4.5 Tubular structures elimination
We observed that among the objects identified by the 3D connectivity property, there are
structures that correspond to the bronchial and vascular trees. Besides, there are cases where
each nodule is connected to one or more of these structures. This creates a problem for
detection of these nodules, generating the need for identifying the bronchial and vascular
trees of the pulmonary parenchyma so that distinguishing these trees from possible nodules
can be possible.
Blood vessels are, as a rule, tubular. The depth of the medial axis varies very gradually,
inclusively in ramifications. In other words, blood vessels have thickness almost constant in a
certain location. Nodules have totally different characteristics. As they are compact structures,
they present an abrupt increase in the depth of the medial axis. This is perceived more clearly
in spicular nodules. The process consists in verifying to which of both patterns the structures
match better. With this objective, observing the structures to be identified, we use an analysis
based on their skeleton. This is possible since they resemble very much their medial axis,
obtained by means of the 3D skeletonization algorithm proposed in (Sousa et al., 2007).
The bifurcations among the vessels possibly present an increase in the depth of the medial
axis, but this increase, besides being small when compared with the diameter of the vessel, is
gradual. On the other hand, in the case of aggregated nodules, the increase in the depth of
the media axle is much more abrupt and intense. With the correct balance of cutoff thresholds
it is possible to come to a stage that results in few false positives or false negatives, with a
good sensibility. Anyway, errors generally occur in this stage, making necessary the posterior
stage of reducing false negatives and false positives, which, in our case, was based on Support
Vector Machine (SVM).
For each individual structure, the skeleton is calculated. After that, all of its segments are
scanned sequentially. During the scan of each segment the maximum value of depth is
selected and its neighborhood with the same pattern is also selected. The selection of the
neighborhood must consider the average depth of the adjacent medial voxels and the variation
from one to another, in sequence.
After the region is selected, it is previously evaluated. A very large rate between the length of
the selected part of the branch and its thickness clearly indicates a tubular region. However, a
great thickness in relation to the length indicates a compact structure, possibly a nodule. An
example can be seen in Figure 3(a) where we can notice a nodule connected to several blood
vessels. Figure 3(b), on the other hand, presents the same region after the elimination of these
vessels.

4.6 False positives reduction
False positives reduction is the stage in which the detection is refined by eliminating the false
lung nodules. For that, we used the SVM (Vapnik, 1998) previously trained to recognize the
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true nodules with basis on a series of descriptive features. This work used features commonly
used in other works (Agam et al., 2005), (Lu et al., 2004) and (Peldschus et al., 2005) with
the same objective, but with new features as well, especially developed for describing lung
nodules and distinguishing them from other pulmonary structures.
The complete list of the studied features is: Geometry (spherical disproportion, spherical
density, pondered radial distance, sphericity, elongation, Boyce-Clark radial shape index),
Texture (contrast, energy, entropy, homogeneity, moment), histogram (average, standard
deviation, skewness, kurtosis, energy, entropy), Gradient (average, standard deviation,
skewness, kurtosis, energy, entropy) and Spatial (location of the candidate). More details for
all those measurements can be found in (Sousa et al., 2007).
The set of features extracted from every candidate generates a vector which characterizes
them. As each features, however, bears on one isolate aspect of the candidate, it occurs that
many of them are in different units and frequently in disproportional scales.
To minimize the complexity of the model and speed up the process, we attempted to
select a subset of features which are more significant for classification. We empirically
tested several subsets of features and verified which one had the best performance. The
starting model had 24 variables and after selecting the best subset, there were 8 variables
left: geometry (spherical disproportion, spherical density), histogram (standard deviation,
skewness, entropy), gradient (standard deviation, kurtosis), spatial (location of candidate).
The adoption of the vector, such as obtained after calculating these features would cause
some of them to be overestimated by the SVM classifier due to the numerically greater value,
while others, because they vary in smaller intervals, would be underestimated. This way, the
features vector must be normalized so that all the features have the same representativeness.
After all candidates have been completely measured and described, each one by a normalized
features vector, these vectors are passed to the SVM, which uses the previous knowledge,
obtained by the analysis of other seemingly cases, to identify the real nature of each candidate,
recognizing them as lung nodules or as normal lung structures. As SVM kernel, we used the
radial basis function. The library LIBSVM (Chang et al., 2004) was used for training and
validation of the SVM classifiers.
Figure 2(g) shows the correct identification of a lung nodule among other normal lung
structures which came from the previous stage. Figure 2(h) presents the same nodule
identified in the original tomography image by an arrow.

5. Lung nodule diagnosis

The proposed methodology aims to classify single lung nodules into two groups: benign and
malignant. To perform this task, this methodology was based on the steps seen in Figure 4.
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Nevertheless, these structures need to be separated individually, before the nodules can be
identified. So, each tri-dimensionally connected structure is identified through a region
growing algorithm which starts in each voxel of the structures which are not isolated yet.
The result of this stage is that every tri-dimensionally connected region can be individually
processed from this point. Figure 2(e) shows each tri-dimensional structure identified with
distinguished colors. Each color was randomly chosen and has no special meaning. We can
notice on it that structures such as blood vessels, bronchi and nodules are preserved, while
the major part of the parenchyma is suppressed.

4.5 Tubular structures elimination
We observed that among the objects identified by the 3D connectivity property, there are
structures that correspond to the bronchial and vascular trees. Besides, there are cases where
each nodule is connected to one or more of these structures. This creates a problem for
detection of these nodules, generating the need for identifying the bronchial and vascular
trees of the pulmonary parenchyma so that distinguishing these trees from possible nodules
can be possible.
Blood vessels are, as a rule, tubular. The depth of the medial axis varies very gradually,
inclusively in ramifications. In other words, blood vessels have thickness almost constant in a
certain location. Nodules have totally different characteristics. As they are compact structures,
they present an abrupt increase in the depth of the medial axis. This is perceived more clearly
in spicular nodules. The process consists in verifying to which of both patterns the structures
match better. With this objective, observing the structures to be identified, we use an analysis
based on their skeleton. This is possible since they resemble very much their medial axis,
obtained by means of the 3D skeletonization algorithm proposed in (Sousa et al., 2007).
The bifurcations among the vessels possibly present an increase in the depth of the medial
axis, but this increase, besides being small when compared with the diameter of the vessel, is
gradual. On the other hand, in the case of aggregated nodules, the increase in the depth of
the media axle is much more abrupt and intense. With the correct balance of cutoff thresholds
it is possible to come to a stage that results in few false positives or false negatives, with a
good sensibility. Anyway, errors generally occur in this stage, making necessary the posterior
stage of reducing false negatives and false positives, which, in our case, was based on Support
Vector Machine (SVM).
For each individual structure, the skeleton is calculated. After that, all of its segments are
scanned sequentially. During the scan of each segment the maximum value of depth is
selected and its neighborhood with the same pattern is also selected. The selection of the
neighborhood must consider the average depth of the adjacent medial voxels and the variation
from one to another, in sequence.
After the region is selected, it is previously evaluated. A very large rate between the length of
the selected part of the branch and its thickness clearly indicates a tubular region. However, a
great thickness in relation to the length indicates a compact structure, possibly a nodule. An
example can be seen in Figure 3(a) where we can notice a nodule connected to several blood
vessels. Figure 3(b), on the other hand, presents the same region after the elimination of these
vessels.

4.6 False positives reduction
False positives reduction is the stage in which the detection is refined by eliminating the false
lung nodules. For that, we used the SVM (Vapnik, 1998) previously trained to recognize the
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true nodules with basis on a series of descriptive features. This work used features commonly
used in other works (Agam et al., 2005), (Lu et al., 2004) and (Peldschus et al., 2005) with
the same objective, but with new features as well, especially developed for describing lung
nodules and distinguishing them from other pulmonary structures.
The complete list of the studied features is: Geometry (spherical disproportion, spherical
density, pondered radial distance, sphericity, elongation, Boyce-Clark radial shape index),
Texture (contrast, energy, entropy, homogeneity, moment), histogram (average, standard
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skewness, kurtosis, energy, entropy) and Spatial (location of the candidate). More details for
all those measurements can be found in (Sousa et al., 2007).
The set of features extracted from every candidate generates a vector which characterizes
them. As each features, however, bears on one isolate aspect of the candidate, it occurs that
many of them are in different units and frequently in disproportional scales.
To minimize the complexity of the model and speed up the process, we attempted to
select a subset of features which are more significant for classification. We empirically
tested several subsets of features and verified which one had the best performance. The
starting model had 24 variables and after selecting the best subset, there were 8 variables
left: geometry (spherical disproportion, spherical density), histogram (standard deviation,
skewness, entropy), gradient (standard deviation, kurtosis), spatial (location of candidate).
The adoption of the vector, such as obtained after calculating these features would cause
some of them to be overestimated by the SVM classifier due to the numerically greater value,
while others, because they vary in smaller intervals, would be underestimated. This way, the
features vector must be normalized so that all the features have the same representativeness.
After all candidates have been completely measured and described, each one by a normalized
features vector, these vectors are passed to the SVM, which uses the previous knowledge,
obtained by the analysis of other seemingly cases, to identify the real nature of each candidate,
recognizing them as lung nodules or as normal lung structures. As SVM kernel, we used the
radial basis function. The library LIBSVM (Chang et al., 2004) was used for training and
validation of the SVM classifiers.
Figure 2(g) shows the correct identification of a lung nodule among other normal lung
structures which came from the previous stage. Figure 2(h) presents the same nodule
identified in the original tomography image by an arrow.

5. Lung nodule diagnosis

The proposed methodology aims to classify single lung nodules into two groups: benign and
malignant. To perform this task, this methodology was based on the steps seen in Figure 4.
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The first step is the acquisition of the image, which was obtained from a patient’s chest CT
exam. Step 2 is the segmentation of the tri-dimensional volume of the nodule using method
describe in Section 4. Right after that, the representative features of the nodules are obtained
by the use of the Simpson’s Index, that is, the texture analysis stage combined with the
geometric features extraction. This index has not been used in applications of analysis of
medical images in order to diagnose. The last step is the classification of the nodules as either
benign or malignant by a One-Class SVM. One-Class SVM was chosen because it was little
used in such applications. For more information about this method see (Silva et al., 2009).

Fig. 4. Methodology Steps.

5.1 Simpson’s index
Simpson’s Index is a second order statistical spatial feature that has been used by Ecology
specialists to determine the biodiversity of species in a region (Simpson, 1949). Its main
functionality is to summarize the representation of this diversity in a single value capable
of qualifying this region as either very heterogeneous or uniform.
Simpson’s Index takes into consideration the richness of the species, that is, the number of
species present in an area, and still, the regularity of such species, what is a measurement of
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Index can be obtained, still, through Equation 2 (Lyons et al., 2008).
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The values obtained for the Simpson’s Index are in the interval from 0 to 1, where the value 0
represents infinite diversity in the sample and 1 means that there’s no diversity.
Our proposal is the extraction of Simpson’s Index, as a measurement for texture, taking each
voxel found in the volume a possible species under analysis. The distinguishing can be
possible due to the morphological behavior of each kind of nodule: benign nodules present,
in most cases, a round or well defined shape, while malignant nodules, due to their capability
of spreading to other organs present a spicate or less defined shape. As the obtaining of the
index will occur in areas of interest, the small occurrence of voxels in a certain area of interest
can be related to the shape of this nodule. This way, the benign nodules have a tendency to
show a more homogeneous behavior, that is, less diversified in a certain region of study.

5.2 Geometrical measures
The shape of a lung nodule may represent an important indicator of its malignancy or
benignity, as we said before. With features geometrical measures is possible to extract and
analyze further information identified or not identified by doctors. In this work, three
3D geometry features extracted from each nodule in our database. They are: Spherical
Disproportion, Spherical Density and Sphericity. Spherical Disproportion is described in
the Equation 3, Spherical Disproportion in Equation 4 and Sphericity in Equation 5. Other
information about these measurements can be found in (Sousa et al., 2007).
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5.3 Validation the classification method
In order to evaluate the methodology with regard to its power of characterizing the proposed
groups, we tried to obtain the sensibility (Se), specificity (Sp) and accuracy (Ac) measurements
for all analysis performed in the study. Sensibility is given by TP

/
(TP + FN), specificity is

obtained by TN
/
(TN + FP), and accuracy is given by (TP + TN)

/
(TP + TN + FP + FN),

where TP is true-positive, TN is true-negative, FP is false-positive and FN is false-negative.
This way, the malignant lung nodules correctly computed are reported as true positives.

5.4 Experimental tests
We performed the extraction of the texture features by applying Simpson’s Index where the
area of interest was represented by circular rings as in Figure 5. Our objective with these forms
of extraction is to evaluate the diversity in the edge regions determined by two concentric
circles.
We have determined the size of the circles by finding the central point, mass center, of each
nodule and then, calculated the distance of this central point to the most distant point of each
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Fig. 5. Analysis applied to the nodule by means of circular rings containing 6 external radius.

nodule. This way, we get a R radius that represents a greater possible measurement for the
construction of a circle or still, in the analysis by rings, the maximum allowed radius. From
the radius R, we got the others values of radiuses as 1/6R, 1/3R, 1/2R, 2/3R and 5/6R. These
are represented as R1, R2, R3, R4, R5 e R6 (value of R).
Next, Simpson’s Index of Equation 2 was calculated in each region for a certain ring. We made
use of this index because we have quantitative and exact knowledge of the total number of
individuals in the sample, that is, the total of voxels in each nodule. In order to increase
the discriminatory power of the methodology, we obtained geometry measurements of the
nodules which were reported in Section 5.2. Then, we performed the classification considering
the Simpson’s Index extracted in each ring, for the analysis by rings aggregating to each
analysis the geometry measurements.
A library for SVM, called LIBSVM (Chang & Lin, 2003), was used for training and testing the
One-Class SVM classifier (Schölkopf et al., 2001). During the classification stage, four different
proportions for the training and test subgroups were used: 50/50, 60/40, 70/30 and 80/20,
where the first number represents the percentage of cases used in training(Tr) and the second
number represents the percentage of cases used in test(Te). The cases used in each subgroup
were randomly selected from the total number of database.
The results shown in Table 1 were obtained in each Tr/Te proportion for each region in
analysis in rings and indicate that in ring A1 the best values of sensibility, specificity and
accuracy were found: 100%, 80% and 90%, respectively in Tr/Te proportion of 80/20. The use
of geometry aided to put this boundary region in evidence as discriminant between malignant
and benign nodules.

Tr/Te = 50/50 Tr/Te = 60/40 Tr/Te = 70/30 Tr/Te = 80/20
Se Sp Ac Se Sp Ac Se Sp Ac Se Sp Ac
% % % % % % % % % % % %

R1 0 100 50 50 70 60 100 3.33 51.67 100 80 90
R2 50 76.67 63.33 75 73.33 74.17 66.67 83.33 75 100 46.67 73.33
R3 25 90 57.5 25 90 57.5 100 63.33 81.67 100 63.33 81.67
R4 75 60 67.5 75 60 67 33.33 66.67 50 100 43.33 71.67
R5 50 63.33 56.67 75 63.33 69.17 66.67 40 53.33 50 83.33 66.67

Table 1. Results found for all group Tr/Te in each region in the analysis in rings.

The Table 2 display the results of the sensibility averages, specificity and accuracy obtained
in each group Tr/Te for the analysis in rings. The best found result was of the group 80/20,
which obtained values of 90% of sensibility, 63.33% of specificity and 76.67% of accuracy.
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Table 1. Results found for all group Tr/Te in each region in the analysis in rings.

The Table 2 display the results of the sensibility averages, specificity and accuracy obtained
in each group Tr/Te for the analysis in rings. The best found result was of the group 80/20,
which obtained values of 90% of sensibility, 63.33% of specificity and 76.67% of accuracy.

Tr/Te Se (%) Sp (%) Ac (%)
50/50 40.00 78.00 59.00
60/40 60.00 71.33 65.67
70/30 73.33 51.33 62.33
80/20 90.00 63.33 76.67

Table 2. Results found to averages of the sensibility, specificity and accuracy obtained in
group Tr/Te for the analysis in rings.

6. Future directions

Several researchers believe that Computer-aided Detection (CAD) and Computer-aided
Diagnosis (CADx) systems will become an increasingly important tool for radiologists in the
early detection of lung cancer using CT images. Besides this feeling, we may see that there are
several challenges in the development and use of such systems.
One of the main challenges is the use of these systems for early detection of lung cancer
reducing the number of false positive, that often lead to unnecessary invasive medical
procedures and produce high levels of anxiety among patients who fear they have a tumor.
The challenges posed by CT-based lung CAD are exponential. With multidetector chest CT,
which generates hundreds of images, lung CAD highlights multiple findings for each study.
But we can notice that the newer developments in lung CAD technology for CT images have
dramatically reduced the false positive rates.
The challenges posed by CT-based lung CAD are exponential. With multidetector chest CT,
which generates hundreds of images, lung CAD highlights multiple findings for each study.
But we can notice that the newer developments in lung CAD technology for CT images have
dramatically reduced the false positive rates.
Eliminating the nuisance of false-positives makes the technology much more manageable in
the clinical setting, especially with preferences for increased sensitivity.
Decreasing the false positive rate while maintaining a high degree of sensitivity in these
systems is also a problem facing CAD/CADx systems. We may observe that in general the
CAD/CADx systems report good sensitivity but at the expense of high false positive rates.
These systems are satisfactorially used as second readers. But, the sensibility must be
improved if we intend, in the future, to use these systems as the first reader.
Although the introduction of low-dose helical computed tomography (CT) is considered
to be one of the most promising clinical research developments, another direction in the
development of CAD/CADx systems is the introduction of other imaging modalities for lung
cancer detection, diagnosis, staging, and treatment monitoring.
Hence, great efforts have been made to develop new bronchoscopic imaging
techniques (Yasufuku, 2010). Bronchoscopic imaging techniques capable of detecting
preinvasive lesions and currently available in clinical practice include autofluorescence
bronchoscopy (AFB), high magnification bronchovideoscope, and narrow band imaging
(NBI). And also the combination of PET and CT.
Finally, we believe that CAD/CADx systems must be integrated into radiology training
programs to help radiologists getting comfortable with such systems.
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in each group Tr/Te for the analysis in rings. The best found result was of the group 80/20,
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7. Final remarks

We have presented here a methodology to use CT images combined with computational
methods (image processing, computational vision and pattern recognition) to aid the
specialists in the detection and another for diagnosis of lung cancer.
The matching rates discussed demonstrate that there is technical viability for implantation
of the methodologies. Concerning the needs for it, statistics related to lung cancer clearly
indicate that methods for helping in precocious diagnosis of lung nodule may increase the
patient’s survival chances.
Due to the high sensitivity per exam, this tool has triage exam characteristics, that is, belongs
to the first set of exams to be required, which identify the suspicious cases, but need to be
confirmed later, by more strict exams, in this case, the medical analysis.
Since precocious diagnosis represents a considerable increase in the patient’s survival chances,
the proposal of methodologies that promotes this increase, as it is shown as a very useful tool
for the specialist in the attempt to anticipate more and more the nodule identification.
Another point is that the public network of hospitals in some places suffers from the lack of
specialists. The resources to increase the staff, however, are also limited. Redirecting qualified
craft of the available specialists to less repetitive tasks may mean making better use of their
skills. One step in that direction is to use the methodologies like these in the preliminary
analysis of CT exams, being the specialist just in charge of validating the result.
Finally,we may verify that methodologies as described here in also is a financially attractive
solution because it works on simple microcomputers, many of which are already available in
the hospitals. Large investments in infrastructure would not be necessary for its implantation.
Actually, there is a debate on the magnitude of the impact of such systems currently in clinical
use. But, on the other hand we may also see that we cannot afford to ignore their potential
benefits.
We may observe that more emphasis must be given to the CAD/CADx observed studies, in
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1. Introduction 
High Resolution CT (HRCT) techniques developed in the last decade have become 
invaluable tools for the detection of subtle diffuse lung disease patterns and for their 
characterisation into multiple possible diseases. HRCT imaging protocols produce 3D 
volume data and enable accurate visualisation of imaged anatomy and much better 
visualisation of the disease patterns than conventional X-rays. However, the amount of 
information produced by today’s HRCT scanners is beyond the ability of a radiologist to 
process in normal clinical practice. Single detector scanners generate up to 40 images per 
study and multi-slice detectors generate 300-600 high-resolution axial images. Furthermore, 
the number of images is rapidly growing. It is difficult and time consuming to analyse 
images accurately and efficiently by hand. Systems for computerised image analysis are 
needed to help with the large number of images and to draw radiologist’s attention to fewer, 
diagnostically useful images. 
The goal of computerised medical image analysis and interpretation is to detect abnormal 
appearance of the imaged anatomy and to assist radiologists in identifying and integrating 
all the useful information available in an image (Brown & McNitt-Gray, 2000). There is a 
growing number of computer-aided diagnosis (CAD) systems aimed at automating the 
analysis of lung CT images and supporting diagnosis (Uppaluri, et al., 1999; Uchiyama et al., 
2003; Sluimer, 2005; Zrimec et al., 2007; Tolouee et al., 2008). Uppaluri et al. (1999) presented 
a CAD system for detecting six lung tissue patterns using textural features. A multiple 
feature method was used to determine the optimal subset among 22 textural features 
calculated for each 31x31 pixel square region of interest in an image. A Bayesian classifier 
was trained to use the optimal subset of features to recognize six different tissue patterns. 
They reported that the automated system performed as well as experienced human 
observers who were told the diagnosis in advance. Uchiyama et al. (2003) also divided the 
lung into square regions and employed neural networks to perform classification of HRCT 
images into six textural classes. The neural network, trained with examples of different 
tissue patterns, was able to automatically detect images containing abnormalities and to 
provide good classification. In the work reported by Sluimer (2005), a multi-scale filter bank 
was used to represent the local image texture and structure. They used various classifiers to 
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1. Introduction 
High Resolution CT (HRCT) techniques developed in the last decade have become 
invaluable tools for the detection of subtle diffuse lung disease patterns and for their 
characterisation into multiple possible diseases. HRCT imaging protocols produce 3D 
volume data and enable accurate visualisation of imaged anatomy and much better 
visualisation of the disease patterns than conventional X-rays. However, the amount of 
information produced by today’s HRCT scanners is beyond the ability of a radiologist to 
process in normal clinical practice. Single detector scanners generate up to 40 images per 
study and multi-slice detectors generate 300-600 high-resolution axial images. Furthermore, 
the number of images is rapidly growing. It is difficult and time consuming to analyse 
images accurately and efficiently by hand. Systems for computerised image analysis are 
needed to help with the large number of images and to draw radiologist’s attention to fewer, 
diagnostically useful images. 
The goal of computerised medical image analysis and interpretation is to detect abnormal 
appearance of the imaged anatomy and to assist radiologists in identifying and integrating 
all the useful information available in an image (Brown & McNitt-Gray, 2000). There is a 
growing number of computer-aided diagnosis (CAD) systems aimed at automating the 
analysis of lung CT images and supporting diagnosis (Uppaluri, et al., 1999; Uchiyama et al., 
2003; Sluimer, 2005; Zrimec et al., 2007; Tolouee et al., 2008). Uppaluri et al. (1999) presented 
a CAD system for detecting six lung tissue patterns using textural features. A multiple 
feature method was used to determine the optimal subset among 22 textural features 
calculated for each 31x31 pixel square region of interest in an image. A Bayesian classifier 
was trained to use the optimal subset of features to recognize six different tissue patterns. 
They reported that the automated system performed as well as experienced human 
observers who were told the diagnosis in advance. Uchiyama et al. (2003) also divided the 
lung into square regions and employed neural networks to perform classification of HRCT 
images into six textural classes. The neural network, trained with examples of different 
tissue patterns, was able to automatically detect images containing abnormalities and to 
provide good classification. In the work reported by Sluimer (2005), a multi-scale filter bank 
was used to represent the local image texture and structure. They used various classifiers to 
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train the system. They reported that the CAD ROC curve showed very similar performance 
compared to that of two radiologists. 
Various combinations of wavelet transforms, in combination with support vector machines 
(SVM’s), were also used to discriminate among several texture patterns from patients 
affected by interstitial lung diseases. Two sets of over-complete wavelet filters, discrete 
wavelet frames (DWF) and rotated wavelet frames (RWF) were used to extract the features, 
which best characterise the lung tissue patterns (Tolouee et al., 2008). The system was able to 
successfully classify four different lung patterns with the best multi-class accuracy achieved 
when combining DWF and RWF. Depeursinge (2010), described a texture classification 
system based on discrete wavelet frames (DWF) and quincunx wavelet frames (QWF) 
together with grey level histogram (GLH). After testing the performance of five different 
classifiers from the Weka machine learning environment  (Witten & Frank, 2005), it was 
shown that the SVM classifier was the best in companions to Naive Bayes, k-NN, J48 and 
Multi Layer Perceptron (MLP), for correctly classifying instances into six classes of lung 
tissue patterns (Depeursinge, 2010). 
Almost all existing CAD systems divide the image into small, usually square regions, 
applying classical image processing techniques to calculate the image features. They do not 
take advantage of existing anatomical knowledge. Accurate interpretation of medical 
images requires a detailed understanding of normal lung anatomy and of pathological 
changes that occur in the presence of disease (Webb et al., 2000). In our approach to 
computer-aided detection, we first segment and extract anatomical features and landmarks 
from the images and then use them to help detecting abnormalities caused by disease 
processes. This approach enabled us to develop, for the first time, a digital model of the lung 
anatomy that incorporates regional information crucial for correct diagnosis. This is 
particularly important for lung diseases because the same disease patterns located in a 
different region of the lung or distributed in a different way can be linked to different 
pathologies (Webb et al., 2000). Lung regions are extensively used in clinical reporting for 
indicating the location of detected disease patterns. 
This chapter presents a methodology for building a computer system for interpreting HRCT 
images of the lung. The system is aimed at: 
• automating the analysis and understating of lung CT scans, 
• detecting lung disease patterns associated with diffuse lung diseases, 
• providing radiologist with Computer-Aided Diagnosis as a second opinion. 
To achieve these goals, the system is required to perform image analysis and interpretation, 
which includes:  
a. Segmentation of the organs of interest; 
b. Detection, classification and labelling of possible disease patterns; 
c. Combination of disease patterns into a list of differential diagnosis. 
Segmentation in image processing is defined as the separation of an image into regions that 
are meaningful for a specific task (Sonka, 2000). It is one of the first steps leading to image 
analysis and interpretation. In medical imaging, the segmented regions usually refer to 
organs, such as the heart, liver or lungs, or disease patterns, such as brain tumours or 
fibrosis in the lungs. Different image segmentation algorithms are used deepening on the 
type of object or feature of interest. Image segmentation usually involves image 
normalisation or pre-processing and low-level image processing to segment regions of 
interest from the image. Each region can be one to several pixels in size. It often involves 
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higher-level candidate selection or ranking, where domain knowledge about the segmented 
object is used. In medical imaging, such knowledge can be about the anatomy or the specific 
disease patterns. The low-level image processing, often used in segmentation, includes 
thresholding, region growing, connected-component labelling, and mathematical 
morphology. Good descriptions of segmentation methods can be found in image processing 
text books (Gonzalez & Woods, 1993, Shapiro & Stockman, 2001) or books that are specific to 
medical image segmentation, such as (Sonka, 2000, Suetens, 2008). In this chapter we present 
our knowledge-based approach to segmentation lung anatomy and other anatomical 
landmarks. We also present the way in which the landmarks are used for generating 
regional information needed for image interpretation. 
Detection, classification and labelling of possible disease patterns are the major tasks of the 
system and often are performed iteratively to achieve satisfactory results. There is a large 
class of disorders known as Diffuse Parenchymal Lung Disease (DPLD) that primarily affect 
the lung parenchyma and can be best diagnosed using HRCT. They are characterised by 
specific abnormal findings mostly texture-like in appearance (Webb, Muller & Naidich, 
2000). Consequently, most of the systems for computerised analysis of HRCT images of the 
lung are texture based and are trained to detect and classify abnormal tissue patterns into 
several textural categories.  The system for computer-aided interpretation of HRCT images, 
presented here, differs from existing systems by using knowledge about the disease 
patterns, their appearance and distribution, in addition to texture information. The rules for 
classifying detected patterns are automatically generated using machine learning. Two 
examples of pathology detection are presented to demonstrate the different detection 
techniques required for different disease patterns.  
Differential diagnosis (DDx), the process of weighing the probability of one disease versus 
that of other diseases, is a particularly challenging task even for experienced radiologist 
since the combination of several abnormal findings can be associated with a specific 
diagnosis (Webb et al., 2000). It requires good detection of disease patterns and substantial 
experience in radiology. Consequently, there is a relatively small number of publications on 
this topic. We present our preliminary results on differential diagnosis.  

2. High-resolution CT and the human lung 
Detailed understanding of lung anatomy is a prerequisite for successful image 
interpretation. We will look at the lung anatomy and it appearance on HRCT images. We 
will also learn what is used for image interpretation by radiologists.  

2.1 Lung anatomy 
There are two lungs, one on each side of the thoracic cavity, which are protected by the rib 
cage. Between the two lungs lies a space called the mediastinum, which is occupied by the 
heart, the trachea (the main airway), the oesophagus (tube to the stomach) and large blood 
vessels. In healthy people, each lung is elastic and conical in shape (Figure 1a). The hilum is 
the area on the medial surface of each lung, where the main bronchus, pulmonary artery, 
pulmonary vein and nerves enter and leave the lung. Each lung has a major or oblique 
fissure that divides the lung into upper and lower lobes. The right lung has also a minor or 
horizontal fissure that further divides the upper lobe. The lung consists of bronchi (or 
pulmonary airways), pulmonary blood vessels and connective tissue that support the 
structure of the lung; together these are called parenchyma. The pulmonary-arterial and the 
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train the system. They reported that the CAD ROC curve showed very similar performance 
compared to that of two radiologists. 
Various combinations of wavelet transforms, in combination with support vector machines 
(SVM’s), were also used to discriminate among several texture patterns from patients 
affected by interstitial lung diseases. Two sets of over-complete wavelet filters, discrete 
wavelet frames (DWF) and rotated wavelet frames (RWF) were used to extract the features, 
which best characterise the lung tissue patterns (Tolouee et al., 2008). The system was able to 
successfully classify four different lung patterns with the best multi-class accuracy achieved 
when combining DWF and RWF. Depeursinge (2010), described a texture classification 
system based on discrete wavelet frames (DWF) and quincunx wavelet frames (QWF) 
together with grey level histogram (GLH). After testing the performance of five different 
classifiers from the Weka machine learning environment  (Witten & Frank, 2005), it was 
shown that the SVM classifier was the best in companions to Naive Bayes, k-NN, J48 and 
Multi Layer Perceptron (MLP), for correctly classifying instances into six classes of lung 
tissue patterns (Depeursinge, 2010). 
Almost all existing CAD systems divide the image into small, usually square regions, 
applying classical image processing techniques to calculate the image features. They do not 
take advantage of existing anatomical knowledge. Accurate interpretation of medical 
images requires a detailed understanding of normal lung anatomy and of pathological 
changes that occur in the presence of disease (Webb et al., 2000). In our approach to 
computer-aided detection, we first segment and extract anatomical features and landmarks 
from the images and then use them to help detecting abnormalities caused by disease 
processes. This approach enabled us to develop, for the first time, a digital model of the lung 
anatomy that incorporates regional information crucial for correct diagnosis. This is 
particularly important for lung diseases because the same disease patterns located in a 
different region of the lung or distributed in a different way can be linked to different 
pathologies (Webb et al., 2000). Lung regions are extensively used in clinical reporting for 
indicating the location of detected disease patterns. 
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higher-level candidate selection or ranking, where domain knowledge about the segmented 
object is used. In medical imaging, such knowledge can be about the anatomy or the specific 
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text books (Gonzalez & Woods, 1993, Shapiro & Stockman, 2001) or books that are specific to 
medical image segmentation, such as (Sonka, 2000, Suetens, 2008). In this chapter we present 
our knowledge-based approach to segmentation lung anatomy and other anatomical 
landmarks. We also present the way in which the landmarks are used for generating 
regional information needed for image interpretation. 
Detection, classification and labelling of possible disease patterns are the major tasks of the 
system and often are performed iteratively to achieve satisfactory results. There is a large 
class of disorders known as Diffuse Parenchymal Lung Disease (DPLD) that primarily affect 
the lung parenchyma and can be best diagnosed using HRCT. They are characterised by 
specific abnormal findings mostly texture-like in appearance (Webb, Muller & Naidich, 
2000). Consequently, most of the systems for computerised analysis of HRCT images of the 
lung are texture based and are trained to detect and classify abnormal tissue patterns into 
several textural categories.  The system for computer-aided interpretation of HRCT images, 
presented here, differs from existing systems by using knowledge about the disease 
patterns, their appearance and distribution, in addition to texture information. The rules for 
classifying detected patterns are automatically generated using machine learning. Two 
examples of pathology detection are presented to demonstrate the different detection 
techniques required for different disease patterns.  
Differential diagnosis (DDx), the process of weighing the probability of one disease versus 
that of other diseases, is a particularly challenging task even for experienced radiologist 
since the combination of several abnormal findings can be associated with a specific 
diagnosis (Webb et al., 2000). It requires good detection of disease patterns and substantial 
experience in radiology. Consequently, there is a relatively small number of publications on 
this topic. We present our preliminary results on differential diagnosis.  

2. High-resolution CT and the human lung 
Detailed understanding of lung anatomy is a prerequisite for successful image 
interpretation. We will look at the lung anatomy and it appearance on HRCT images. We 
will also learn what is used for image interpretation by radiologists.  

2.1 Lung anatomy 
There are two lungs, one on each side of the thoracic cavity, which are protected by the rib 
cage. Between the two lungs lies a space called the mediastinum, which is occupied by the 
heart, the trachea (the main airway), the oesophagus (tube to the stomach) and large blood 
vessels. In healthy people, each lung is elastic and conical in shape (Figure 1a). The hilum is 
the area on the medial surface of each lung, where the main bronchus, pulmonary artery, 
pulmonary vein and nerves enter and leave the lung. Each lung has a major or oblique 
fissure that divides the lung into upper and lower lobes. The right lung has also a minor or 
horizontal fissure that further divides the upper lobe. The lung consists of bronchi (or 
pulmonary airways), pulmonary blood vessels and connective tissue that support the 
structure of the lung; together these are called parenchyma. The pulmonary-arterial and the 
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bronchial trees run alongside each other and branch simultaneously in a tree-like structure. 
The branches are of similar size in a healthy lung. 

2.2 High-resolution CT images of the lung 
Computer tomography (CT) is currently the best imaging modality for diagnosing lung 
diseases. High resolution CT scanners generate a three dimensional view of the imaged 
organs with sub-millimetre resolution in axial sections. It provides detailed information 
regarding the lung parenchyma and can delineate structures down to the level of the 
secondary pulmonary lobule, the smallest structure in the lung. It is particularly useful for 
image-based diagnosis, since alteration of the lung anatomy, caused by a disease, can be 
clearly seen in a thin-slice CT image (Webb et al., 2000). Figure 1 shows examples of a lung 
(a), an HRCT series of axial images (b) and an axial image with normal anatomy (c). 
 

 
Fig. 1. Examples of a human lung (a), a series of HRCT images (b) and an axial image with 
normal anatomy (c). 

In patients with diffuse lung disease, contiguous scanning is usually not necessary, since 
diffuse lung abnormalities can be adequately sampled with the acquisition of interspaced 
sections (Muller, 1991). In a routine HRCT protocol, 1 mm thick images are acquired with 10 
to 20 mm inter-slice spacing. 
To develop and evaluate our system, HRCT scans from three radiology practices in Sydney, 
Australia were used. The images were taken using a SIEMENS CT scanner with a tube 
voltage of 140kVp, current between 180 and 280 mAs, and exposure time of 750 ms. Data 
were reconstructed as 512x512 matrices with a slice thickness of 1.0 mm and 15 mm inter-
slice spacing. The data are stored as DICOM 16-bit greyscale images with the pixel intensity 
proportional to tissue density represented in Hounsfield Unit1 (HU). 

2.3 Image marking and semantic labelling 
We use machine learning to train a computer to recognise disease patterns in an HRCT 
image and to correctly classify them into different diseases. Supervised learning requires 
examples of lungs with labelled disease patterns and areas with normal appearance. 
Although the disease patterns are clearly visible to a trained human eye, it is not obvious 
how to provide an appropriate description that can be used by a computer. To enable easy 

                                                 
1 Hounsfield unit (HU) is a unit used in medical imaging (CT or MRI scanning) to describe the amount 
of x-ray attenuation of each "voxel" (volume element) in the three-dimensional image. 
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communication with the radiologists while acquiring knowledge about different disease 
appearance in the HRCT images, we used a web-based interactive tool for image labelling.  
The LMIK image labeller, developed for the Learning Medical Image Knowledge project 
(Rudrapatna et al., 2004), was designed for easy access, marking and semantic labelling of 
images. It automatically downloads images from a hospital picture archiving and 
communication system (PACS) and stores them in a local LMIK database. The web-based 
interface enables access to the image database, provides interactive image display and a 
variety of semantic labelling facilities. Radiologists are able to remotely access cases from 
the local database, select and delineate representative examples of different lung diseases 
patterns (see Figure 2).  
 

   
Fig. 2. LMIK Image labeler for Web-based semantic marking and labeling. 

Every marked example consists of a delineated region of interest (ROI) containing a pattern, 
a label indicating the name of the pattern and the pattern severity, ranging from normal, 
moderate to severe.  
The LMIK image labeller was used to provide ROIs with disease patterns as well as ROIs 
with normal lung tissue by at list two radiologist for the same cases. Radiologists were also 
able to compare their marking and labelling with each other and to agree on consistent 
marking for some difficult cusses. 

2.4 Observing radiologists interpreting HRCT images 
We had three experienced radiologist in our project group. They provided us with the latest 
textbooks and the books they are using when reporting on images (Webb et al., 2000) as well 
as multimedia educational tools for interpretation of HRCT images of the lung,. We also had 
a few sessions observing the radiology reading and reporting HRCT cases in radiology 
practice. 
The information used in the interpretation process can be summarised as: 
a. knowledge of the imaged anatomy being investigated 
b. landmarks 
c. regional descriptions 
Knowledge of the imaged anatomy being investigated – Radiologists use knowledge of anatomy 
when inspecting HRCT images. For example, knowledge about the shape of the lung in a 
cross sectional HRCT image helps to understand which part of the lung is captured in the 
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image or knowledge of a broncho-arterial pair appearance helps to detect the presence or 
absence of a bronchial disease. 
Landmarks – Radiologists make extensive use of anatomical landmarks, which are objects or 
features that help determine the location of the imaged part of the body. Selected landmarks 
are usually consistent, despite variations in the patient’s position during scanning, or 
changes due to disease progression (Betke at al, 2003). 
Regional descriptions – Knowledge of the regional distribution of lung diseases also assists in 
detecting pathology. In textbooks on interpreting HRCT images of the lung, it is noted: “When 
attempting to reach diagnosis using HRCT, the practitioner should not only be focused on the 
morphology of the structures appearing in the HRCT, but on their distribution, location and 
appearance” (Webb et al., 2000). Many lung diseases show specific regional distributions or 
preferences. The same features located in a different region of the lung or distributed in a 
different way can be linked to different pathologies (Webb et al. 2000). Preferential 
predominant involvement of one or more lung regions is commonly seen in HRCT, even in 
patients with chest radiographs showing a “diffuse” abnormality (Muller, 1999). For the 
purpose of interpreting HRCT the regional distribution can be categorised in several ways: 
• central lung vs. peripheral lung 
• upper lung vs. lower lung 
• anterior lung vs. posterior lung 
• unilateral vs. bilateral. 

2.5 Knowledge based analysis of HRCT images of the lung 
To take advantage of the wealth of medical knowledge in lung image analysis, a 
computerised lung model or atlas, depicting the lung anatomy and lung appearance on the 
HRCT images is required. In the absence of such a model, we built a digital model from a 
nearly normal case of HRCT images taken with contiguous scanning, i.e., without inter-slice 
spacing, to represent the structure and anatomy of the lung and to record regional 
information. Literature on the visual interpretation of HRCT images of the lungs (Webb et 
al., 2000) was used to acquire knowledge and create rules about disease appearance and 
behaviour. Machine learning was employed to automatically generate rules for detecting 
anatomical features and disease patterns during image analysis. 
 

 
Fig. 3. System overview. Images are processed and interpreted using image processing 
algorithms, adapted for medical images, and knowledge that is mostly automatically 
generated and stored in the knowledge base. 

Computer-aided Analysis and Interpretation of HRCT Images of the Lung   

 

43 

An overview of the main modules involved in the computer aided detection and 
interpretation system is shown in Figure 3. An example of the use of the knowledge base is 
in providing spatial constraints indicating where an algorithm should be applied and 
semantic constraints to segment the correct objects. The knowledge includes a lung model, 
several HRCT lung atlases and a set of heuristic rules. The image processing module 
contains a  variety of image processing algorithms that are able to work in cooperation with 
the knowledge from the knowledge base. The image processing module together with the 
machine-learning module are used to generate new knowledge that is stored in the 
knowledge base. 

3. Segmentation of lung anatomy 
Segmentation in medical imaging is particularly challenging largely because the appearance 
of organs and diseases differ from person to person. Other factors, such as acquisition 
artefacts, poor image quality or different scanning protocols, also make the task nontrivial. 
For automated segmentation to be successful, image processing needs to incorporate 
domain-specific knowledge as used by radiologist.  
The set of anatomical features segmented by our system are grouped into: 
• Lung segmentation – this includes features that help determine the lung structure, for 

example, lung boundaries, fissures; 
• Segmentation of broncho-vascular structures – features that are part of the normal lung 

anatomy, for example, airways and vessels; 
• Landmarks segmentation – this includes features within the lung and the lung 

surroundings, for example, the trachea and the ribcage. 

3.1 Lung segmentation 
Segmenting the lung fields is the primary task in any CT pulmonary image analysis. 
Automated and semi-automated segmentation of CT and HRCT has been an active area of 
research over the past decade. Armato and Sensakovi (2004) emphasised the importance of 
lung segmentation as a pre-processing step of a CAD system. Similarly, the bronchial tree is 
one of the most important and most prominent structures inside the lung. Kuhnigk et al. 
(2005) recognised the importance of the bronchial tree segmentation as a way to divide the 
lung lobes into smaller regions and use them to evaluate the distribution of diseases. 
A number of authors have reported high accuracy for segmenting lung fields. Most of those 
approaches are based on grey-level thresholding, seeded region or volume growing or a 
combination of both. Examples that fall into this category are (Brown, et al., 1997; Hu, 
Hoffman, & Reinhardt, 2001; Garnavi, et al., 2005; Sluimer, 2005; Lee, et al., 2004). Various 
techniques were used to overcome shortcomings of the basic thresholding and region 
growing algorithms. Another approach uses active contouring such as energy-minimising 
snakes to find the lung contour, for example (Papalousis, 2003; Li & Reinhardt, 2001). Active 
contours have a better ability to deal with irregular shapes than thresholding and region 
growing (Kass et al., 1987). This is because they use their own shape as an input, instead of 
the pixel intensity alone. 
In lung segmentation 3D lung surfaces and 2D lung boundaries are determined to separate 
the pixels belonging to the lung parenchyma from the background. Some issues need 
addressing when segmenting the lungs on 2D cross-sectional images. First, the two lungs 
are close to each other in the posterior part of the body and a simple thresholding or 
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image or knowledge of a broncho-arterial pair appearance helps to detect the presence or 
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An overview of the main modules involved in the computer aided detection and 
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the knowledge from the knowledge base. The image processing module together with the 
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knowledge base. 
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the pixels belonging to the lung parenchyma from the background. Some issues need 
addressing when segmenting the lungs on 2D cross-sectional images. First, the two lungs 
are close to each other in the posterior part of the body and a simple thresholding or 
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morphology method often connects the two lungs. Merged lung need to be separated to 
determine the left and the right lung. The second issue is that segmentation sometimes 
includes the main bronchi as part of the lung since the bronchi also have low intensity and 
enter the lung in the hilum region. Main bronchi are generally not considered part of the 
lung and they also create irregularities in the hilum surface. The last issue occurs in the 
anterior part of the lung. Gas in the stomach also appears as a low density region on the 
image so the segmentation often includes it as part of the lung as well. 
A method for automatic lung boundary segmentation, described here, addresses all the 
above-mentioned issues. It uses a combination of the thresholding and morphology 
operators followed by active contours to achieve both robustness and smooth contour. Lung 
segmentation consists of the following steps: 
• Pre-processing – reduces noise and removes the large bronchi and CT background. 
• Segmentation – extracts the lung from the image using a combination of thresholding, 

morphology and other image processing techniques. 
• Post-processing – ensures the two lungs are separate, removes remaining false-positives 

and smoothes the contour using active contour snakes. 

3.1.1 Pre-processing 
The number of noisy pixels in an HRCT image may vary depending on the CT machine and 
the parameters used. A 3×3 median filter is used to reduce the noisy pixels by averaging 
them with the 3×3 neighbouring pixels. Even though the sharpness decreases as a result of 
the median filter, its effect is insignificant for large objects like the lungs. The large bronchi 
are segmented and removed from the image to prevent inclusion in the lung boundary. 

3.1.2 Segmentation 
Thresholding generally works well for lung segmentation because of the great intensity 
difference between the lung and the surrounding tissues in the thorax. Initially, a fixed 
threshold of −500 HU (middle point between air and water density) was used, but it was 
found inappropriate for some special cases. In some lung diseases, the density range of lung 
parenchyma is wide so a fixed threshold may not be optimal in all cases. Consequently, a 
histogram analysis is used to select a threshold. After removing the CT background, the  
 

 
Fig. 4. Intensity histogram of an HRCT image of the lung. The first peak corresponds to low 
intensity pixels in the lung and the second peak corresponds to high-intensity pixels in the 
body. The threshold used for lung segmentation is the midpoint between the two peaks. 
Lungs with different densities: normal density lungs (a), low-density lungs (b) and high-
density lungs (c). 
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intensity distribution of an HRCT image is bimodal, as shown in the histogram in Figure 4. 
The first peak in the histogram corresponds to pixels inside the lungs and the second peak 
corresponds to the pixels in the body tissue. The threshold selected for lung segmentation is 
the midpoint between the two peaks, ensuring that most of the pixels in the two groups are 
correctly separated. 
In some high-density disease cases, the lung may be broken into multiple regions after 
thresholding. A sequence of morphological operators is applied to smooth the lung contour 
and to merge multiple regions into one large region. 

3.1.3 Post-processing 
A special strategy is used to address the issue of two connected lungs (see Figure 5). After 
the thresholding and morphology, the following heuristic rule is applied to test whether the 
two lungs are merged: 
If  

there is only one segmented object and 
its size is over 1220 mm2 and 
its centre-of-mass lies within 40 mm width from the image centre line 

then the lungs are merged 
The lung pleura are used to help separate the lungs. The lung pleura are thin layers of 
membrane covering the lungs. While the pleura have the same density as other tissues, their 
intensity on HRCT is lower because of the HRCT volume-averaging effect. As a result, the 
pleura line separating the two lungs is often not detected by the globally optimal threshold. 
A threshold of −750 HU is used to segment the pleural line lying between the spinal cord 
and the sternum, as shown in Figure 5(c). The detected pleural line and the final result is 
shown in Figure 5(d). 
Active Contour Models, or snakes, are used as the final post-processing step to smooth the 
lung contour. Snakes are dynamic, energy minimising curves, first introduced by Kass et al. 
(1987). A snake is a special form of deformable model, which is moved under the influence 
of internal forces and the curve itself, and external forces calculated from the image data. 
Generally, the internal force discourages bending the curve and the external force 
potentially pulls the curve toward the image contour. The deformation of snakes is  
 

 
Fig. 5. An image of two lungs that are close to each other: appearance on HRCT (a), and the 
merged region resulted from the thresholding and morphology during the segmentation (b). 
The potential lung touching area, the 60-pixel-witdh bar between the spinal cord and the 
sternum (c), and the two lungs separated, indicated by the arrow, using the detected plural 
line (d). 
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Fig. 4. Intensity histogram of an HRCT image of the lung. The first peak corresponds to low 
intensity pixels in the lung and the second peak corresponds to high-intensity pixels in the 
body. The threshold used for lung segmentation is the midpoint between the two peaks. 
Lungs with different densities: normal density lungs (a), low-density lungs (b) and high-
density lungs (c). 
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intensity distribution of an HRCT image is bimodal, as shown in the histogram in Figure 4. 
The first peak in the histogram corresponds to pixels inside the lungs and the second peak 
corresponds to the pixels in the body tissue. The threshold selected for lung segmentation is 
the midpoint between the two peaks, ensuring that most of the pixels in the two groups are 
correctly separated. 
In some high-density disease cases, the lung may be broken into multiple regions after 
thresholding. A sequence of morphological operators is applied to smooth the lung contour 
and to merge multiple regions into one large region. 

3.1.3 Post-processing 
A special strategy is used to address the issue of two connected lungs (see Figure 5). After 
the thresholding and morphology, the following heuristic rule is applied to test whether the 
two lungs are merged: 
If  

there is only one segmented object and 
its size is over 1220 mm2 and 
its centre-of-mass lies within 40 mm width from the image centre line 

then the lungs are merged 
The lung pleura are used to help separate the lungs. The lung pleura are thin layers of 
membrane covering the lungs. While the pleura have the same density as other tissues, their 
intensity on HRCT is lower because of the HRCT volume-averaging effect. As a result, the 
pleura line separating the two lungs is often not detected by the globally optimal threshold. 
A threshold of −750 HU is used to segment the pleural line lying between the spinal cord 
and the sternum, as shown in Figure 5(c). The detected pleural line and the final result is 
shown in Figure 5(d). 
Active Contour Models, or snakes, are used as the final post-processing step to smooth the 
lung contour. Snakes are dynamic, energy minimising curves, first introduced by Kass et al. 
(1987). A snake is a special form of deformable model, which is moved under the influence 
of internal forces and the curve itself, and external forces calculated from the image data. 
Generally, the internal force discourages bending the curve and the external force 
potentially pulls the curve toward the image contour. The deformation of snakes is  
 

 
Fig. 5. An image of two lungs that are close to each other: appearance on HRCT (a), and the 
merged region resulted from the thresholding and morphology during the segmentation (b). 
The potential lung touching area, the 60-pixel-witdh bar between the spinal cord and the 
sternum (c), and the two lungs separated, indicated by the arrow, using the detected plural 
line (d). 
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controlled by an energy function that incorporates the internal and external forces and 
defines their weights. More specifically, the energy function is defined as: 

 ( ) ( ) ( )α β γ= + +∫ cont curv image
c

E s E s E s E ds  (1) 

 

where the contour, c, is parameterised by its arc length, s. The first two terms define the 
internal energy and the last term defines the external energy. The coefficients α(s), β(s), and 
γ (s) are user-defined constants used to balance the smoothness and fitness of the contour. 
Normal Push force proposed by Papasoulis (2003) helps push the snakes into a concavity, 
which is common in lung contours near hilum. The snakes are initialised to be two circles 
centred at the centroids of the two lungs. The circles’ radii are determined by the size of the 
lungs. The circles are clipped so that they do not lie outside the image. The entire 
deformation requires up to 200 iterations but the algorithm may stop early if no change 
occurred during the last iteration. Figure 6 shows intermediate steps and the final result of 
the lung segmentation. 

3.2 Fissure segmentation 
Fissures divide the lung into lobes that are relatively independent functional units. Lung 
pathology may be confined to one lobe, which in some cases can be surgically removed. There 
are several reports on segmenting pulmonary fissures. A method described by Kubo, et al. 
(2001) used a linear detector to segment fissures from thin CT scans and used surface 
curvature calculation and morphology filters to improve the results around pulmonary lesion. 
A fuzzy set approach with a fixed threshold was used by Zhang and Reinhardt, (1999) to 
segment the fissures. Wang et al. (2006) proposed a method for fissure segmentation using a 
2D-shape-based curve-growing model with a semi-automatic initialisation. 
 

 
Fig. 6. Results of lung boundary pre-processing at various steps: an input lung HRCT image 
(a), after large bronchi removal (b), after non-body pixel removal (c) and final result (d). 

A knowledge-based method for fissure detection, developed in our previous work, 
performs well in cases where fissures are fully visible (Zrimec & Busayarat, 2004; Zrimec et 
al.,2004). However, in almost 30% of the images, the fissures are only partially visible or are 
not visible at all (Eenakshi et al., 2004). Using information from the lung model, it was 
possible to successfully determine fissures in the cases where fissures were partially visible 
or missing. The model guided fissure detection by predicting its expected location. The 
detected fissures were used to determine the lung lobes in 2D images (see Figure 7(a) and 
(b)) and in 3D models of patient data (see Figure 7(c)). 
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Fig. 7. Majors fissures visible on both lungs, (arrows) (a), segmented fissures (b) and a 3D 
model with four lung lobes (c). 

3.3 Segmentation of broncho-vascular structures 
Pulmonary airways, or bronchi, are amongst the most important structures in the lungs. 
They distribute inhaled air to the alveoli where oxygen and carbon dioxide exchange 
between air and blood takes place. The bronchial tree is complemented by a system of 
arterial blood vessels and pulmonary veins that transport the blood. From a clinical point of 
view, the identification of bronchi CT images provides valuable clinical information in 
patients with suspected airways diseases including bronchiectasis and constrictive 
obliterative bronchiolitis (Webb et al., 2000). One of the main signs of a respiratory disease is 
the dilation of the bronchi. From an image processing point of view, bronchi can be used as 
landmarks for image registration, because their branching pattern is relatively static for the 
first four generations (Tschirren et al., 2002). 
Several publications discuss segmentation of bronchi in HRCT. Because the bronchi exhibit 
a tree-like structure, 3D approaches such as volume growing or tree-skeleton detection have 
been employed (Chiplunkar, et al., 1997; Aykac, et al., 2003). Their method was based on a 
2D segmentation using an eight-connected seeded region growing with an adaptive 
threshold and a 3D connectivity analysis. The work was extended to be capable of 
determining the bronchial tree skeleton, detecting the branching points and matching them 
(both intra and inter-subject). A group from France also reported research on bronchial tree 
segmentation (Preteux, Fetita, & Grenier, 1997; Fetita & Preteux, 1999; Fetita & Preteux, 2000; 
Fetita & Preteux, 2001). Their method also consisted of 2D segmentation and 3D analysis of 
the 2D results. Their 2D segmentation was based on the connection cost algorithm, which 
filled all the local intensity minima (i.e. bronchi lumens). The 3D analysis involved stacking  
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controlled by an energy function that incorporates the internal and external forces and 
defines their weights. More specifically, the energy function is defined as: 
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between air and blood takes place. The bronchial tree is complemented by a system of 
arterial blood vessels and pulmonary veins that transport the blood. From a clinical point of 
view, the identification of bronchi CT images provides valuable clinical information in 
patients with suspected airways diseases including bronchiectasis and constrictive 
obliterative bronchiolitis (Webb et al., 2000). One of the main signs of a respiratory disease is 
the dilation of the bronchi. From an image processing point of view, bronchi can be used as 
landmarks for image registration, because their branching pattern is relatively static for the 
first four generations (Tschirren et al., 2002). 
Several publications discuss segmentation of bronchi in HRCT. Because the bronchi exhibit 
a tree-like structure, 3D approaches such as volume growing or tree-skeleton detection have 
been employed (Chiplunkar, et al., 1997; Aykac, et al., 2003). Their method was based on a 
2D segmentation using an eight-connected seeded region growing with an adaptive 
threshold and a 3D connectivity analysis. The work was extended to be capable of 
determining the bronchial tree skeleton, detecting the branching points and matching them 
(both intra and inter-subject). A group from France also reported research on bronchial tree 
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Fig. 8. Broncho-vascular pairs. Top left: an example of normal boncho-vascular structure, 
top middle: an example of diseased boncho-vascular structure with enlarged bronchi, top 
right: structures within the lungs with similar appearance; left bottom: enlarged pair; right 
bottom: an example of bronchial dilatation – “signet ring”. 
the 2D segmented results and filling up the gap where a bronchus is missing. They also 
constructed a 3D descriptive structure of the bronchial tree from the 3D stack. 
In axial cross-sectional images, vertically oriented bronchi appear as high-attenuation 
circular or elliptical rings. Radiologists usually use this type of bronchus for diagnosing 
airway diseases, such as bronchiectasis. Figure 8 shows examples of a normal broncho-
vascular pair and an abnormal pair with dilated bronchus. Automatic identification of 
bronchi, running nearly perpendicular to the scan plane, consists of potential candidate 
generation and candidate classification based on knowledge in the lung model. After 
thresholding, edge and radius analysis is performed to find all potential bronchi candidates, 
all dark rounded objects with bright walls. P-tile thresholding was used to handle inter-
subject lung tissue density variability. Each object in the candidate bronchi list is 
represented by nine attributes. Knowledge of bronchial appearance in HRCT images is used 
to derive a heuristic function for ranking the candidates. The knowledge includes their 
average intensity, size, shape and position. Knowledge from the lung model, which includes 
a fully segmented bronchial tree, provides the expected number of bronchi for each lung in 
each cross-sectional image. The heuristic function, which is a weighted sum of all attributes, 
is used to remove all objects that are not bronchi. The final segmentation of the bronchi is 
done by region growing and rule-based classification to distinguish bronchi from other 
structures with similar appearance (Busayarat et al., 2005a). 
Each bronchus has an accompanying artery. The arteries appear as high-attenuation solid 
circles or ellipses. An automatic method for detecting arteries based on (Chabat, et al., 
2001) had problems with the ambiguous appearances of the adjacent arteries, which 
presents difficulties even for an experienced radiologist. It also had problems in providing 
accurate measurements of the size of small arteries due to the pixel rounding effect. A 
new technique was developed that uses knowledge-directed template matching to 
approximately locate the adjacent artery (Busayarat et al., 2005b). Knowledge of broncho-
arterial anatomy helps locate the adjacent artery when there is more than one possible 
candidate nearby. Even though there is a high contrast between artery and lung 
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parenchyma, an artery often contacts with other similar-density structures, such as 
bronchial wall and other vessels. This causes the growing region to leak into those 
structures. A specially developed region-growing algorithm, with leak correction, was 
used to accurately segment the arteries and to calculate their sizes. In contrast to other 
template matching techniques, where predefined templates are used, here the templates 
are generated on the fly using the detected bronchi in an image. 

3.3.1 Trachea segmentation and carina detection  
The trachea appears in an axial slice as a circular black object located in the middle of the 
body contour. To segment the trachea in an HRCT image, a fixed value of -400HU threshold 
is applied. After morphological filtering and connected component labelling, the trachea is 
segmented using knowledge about its expected location and size. Since the oesophagus can 
sometimes be misclassified as the trachea, the rules for trachea segmentation also include 
knowledge about the appearance of the oesophagus. The trachea is traced until the point at 
which it starts to bifurcate into two main bronchi. This bifurcation is known as carina 
(Figure 9). In a sparse scan (with 15 mm gap between consecutive slices), the exact location 
of the carina may not be visible. In that case, the slice before the trachea bifurcation is used 
as the carina position. We use carina as a landmark. 

3.4 Detecting lung landmarks 
Anatomical landmarks that are used to help determine the location of the imaged part of the 
lung include landmarks that are located on the ribcage and landmarks that are part of the 
lungs. The sternum, vertebrae and spinal canal are located on the ribcage. The trachea 
bifurcation - carina, hilum and the lung root are part of the lungs. These landmarks are often 
consistent and stable even in a presence of a disease. For example, the sternum and the 
vertebrae are good anatomical landmarks because they are bones and their position is 
relatively fixed within the chest. The sternum and the vertebrae have been used before for a 
different task, namely for inter-patient image registration (Archip, et al., 2002; Betke, et al., 
2003). Radiologists use the carina, the bifurcation point of the trachea and the hilum, as a 
landmark. The hilum, as a landmark, defines the base of the lung, which is comparable 
between patients. Figure 9 shows examples of the landmarks. 
Archip et al. (2002) used a knowledge-based approach to identifying the spinal cord. The 
knowledge base consists of an anatomical structures map and a task-oriented architecture, 
which is represented by a frame-like system. Deglint et al. (2007) uses a different approach to 
segment the spinal cord, based on 3D-seeded region-growing to detect the bones. The initial 
seed voxels are automatically obtained by an image processing procedure. The Hough 
transform is then applied on each image to find the best fitting circle inside the backbone, 
which represents the spinal cord. Betka et al. (2003) used an attenuation-based template 
matching approach to detect the sternum and spine. The sternum and spine were used to 
compute the optimal rigid-body transformation that aligns two CT scans of the same 
patient. 

3.4.1 Sternum segmentation 
The sternum and the spine are good landmarks in the chest HRCT images because they are 
bones outside the lungs. Their density (~1000 HU) is significantly higher than the 
surrounding soft tissue (30 to 40 HU) so they are relatively easy to segment. The spinal cord 
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Fig. 8. Broncho-vascular pairs. Top left: an example of normal boncho-vascular structure, 
top middle: an example of diseased boncho-vascular structure with enlarged bronchi, top 
right: structures within the lungs with similar appearance; left bottom: enlarged pair; right 
bottom: an example of bronchial dilatation – “signet ring”. 
the 2D segmented results and filling up the gap where a bronchus is missing. They also 
constructed a 3D descriptive structure of the bronchial tree from the 3D stack. 
In axial cross-sectional images, vertically oriented bronchi appear as high-attenuation 
circular or elliptical rings. Radiologists usually use this type of bronchus for diagnosing 
airway diseases, such as bronchiectasis. Figure 8 shows examples of a normal broncho-
vascular pair and an abnormal pair with dilated bronchus. Automatic identification of 
bronchi, running nearly perpendicular to the scan plane, consists of potential candidate 
generation and candidate classification based on knowledge in the lung model. After 
thresholding, edge and radius analysis is performed to find all potential bronchi candidates, 
all dark rounded objects with bright walls. P-tile thresholding was used to handle inter-
subject lung tissue density variability. Each object in the candidate bronchi list is 
represented by nine attributes. Knowledge of bronchial appearance in HRCT images is used 
to derive a heuristic function for ranking the candidates. The knowledge includes their 
average intensity, size, shape and position. Knowledge from the lung model, which includes 
a fully segmented bronchial tree, provides the expected number of bronchi for each lung in 
each cross-sectional image. The heuristic function, which is a weighted sum of all attributes, 
is used to remove all objects that are not bronchi. The final segmentation of the bronchi is 
done by region growing and rule-based classification to distinguish bronchi from other 
structures with similar appearance (Busayarat et al., 2005a). 
Each bronchus has an accompanying artery. The arteries appear as high-attenuation solid 
circles or ellipses. An automatic method for detecting arteries based on (Chabat, et al., 
2001) had problems with the ambiguous appearances of the adjacent arteries, which 
presents difficulties even for an experienced radiologist. It also had problems in providing 
accurate measurements of the size of small arteries due to the pixel rounding effect. A 
new technique was developed that uses knowledge-directed template matching to 
approximately locate the adjacent artery (Busayarat et al., 2005b). Knowledge of broncho-
arterial anatomy helps locate the adjacent artery when there is more than one possible 
candidate nearby. Even though there is a high contrast between artery and lung 
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parenchyma, an artery often contacts with other similar-density structures, such as 
bronchial wall and other vessels. This causes the growing region to leak into those 
structures. A specially developed region-growing algorithm, with leak correction, was 
used to accurately segment the arteries and to calculate their sizes. In contrast to other 
template matching techniques, where predefined templates are used, here the templates 
are generated on the fly using the detected bronchi in an image. 

3.3.1 Trachea segmentation and carina detection  
The trachea appears in an axial slice as a circular black object located in the middle of the 
body contour. To segment the trachea in an HRCT image, a fixed value of -400HU threshold 
is applied. After morphological filtering and connected component labelling, the trachea is 
segmented using knowledge about its expected location and size. Since the oesophagus can 
sometimes be misclassified as the trachea, the rules for trachea segmentation also include 
knowledge about the appearance of the oesophagus. The trachea is traced until the point at 
which it starts to bifurcate into two main bronchi. This bifurcation is known as carina 
(Figure 9). In a sparse scan (with 15 mm gap between consecutive slices), the exact location 
of the carina may not be visible. In that case, the slice before the trachea bifurcation is used 
as the carina position. We use carina as a landmark. 

3.4 Detecting lung landmarks 
Anatomical landmarks that are used to help determine the location of the imaged part of the 
lung include landmarks that are located on the ribcage and landmarks that are part of the 
lungs. The sternum, vertebrae and spinal canal are located on the ribcage. The trachea 
bifurcation - carina, hilum and the lung root are part of the lungs. These landmarks are often 
consistent and stable even in a presence of a disease. For example, the sternum and the 
vertebrae are good anatomical landmarks because they are bones and their position is 
relatively fixed within the chest. The sternum and the vertebrae have been used before for a 
different task, namely for inter-patient image registration (Archip, et al., 2002; Betke, et al., 
2003). Radiologists use the carina, the bifurcation point of the trachea and the hilum, as a 
landmark. The hilum, as a landmark, defines the base of the lung, which is comparable 
between patients. Figure 9 shows examples of the landmarks. 
Archip et al. (2002) used a knowledge-based approach to identifying the spinal cord. The 
knowledge base consists of an anatomical structures map and a task-oriented architecture, 
which is represented by a frame-like system. Deglint et al. (2007) uses a different approach to 
segment the spinal cord, based on 3D-seeded region-growing to detect the bones. The initial 
seed voxels are automatically obtained by an image processing procedure. The Hough 
transform is then applied on each image to find the best fitting circle inside the backbone, 
which represents the spinal cord. Betka et al. (2003) used an attenuation-based template 
matching approach to detect the sternum and spine. The sternum and spine were used to 
compute the optimal rigid-body transformation that aligns two CT scans of the same 
patient. 

3.4.1 Sternum segmentation 
The sternum and the spine are good landmarks in the chest HRCT images because they are 
bones outside the lungs. Their density (~1000 HU) is significantly higher than the 
surrounding soft tissue (30 to 40 HU) so they are relatively easy to segment. The spinal cord 
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is inside the spine and because of its smaller size, provides an accurate landmark. Figure 
9(a) shows HRCT appearances of the sternum, spine and spinal canal. 
 

 
Fig. 9. HRCT appearances of carina, sternum, vertebrae and spinal canal (a); Segmented 
bones, sternum candidates (b), Segmented sternum (c); Segmented vertebrae using snakes 
(d) and segmented spinal canal (e). The image (a) is displayed using soft-tissue window 
setting (mean=40, width=500). 

Our method uses intensity-based thresholding and morphological operators to segment the 
bones. A simplified version of the knowledge base presented in (Archip, et al., 2002) is also 
used to distinguish the sternum and the spine from other bone structures. The knowledge, 
encoded as parameters in the image processing script consists of knowledge about the sizes 
of the sternum and spine and their approximated positions, relative to the body. Once the 
spine is detected, a template-matching method is used to search for the spinal cord inside it. 
Sternum segmentation starts by removing the pixels outside the body in the image. Next, 
thresholding is used to segment bony pixels in the image. The bone density ranges from 400 
HU, which is significantly higher than the surrounding soft tissues. The threshold value 
chosen for segmenting bone pixels is 300 HU, which is low enough to compensate the 
partial volume effect, and high enough to not include the tissues. Binary dilation and 
connected-component labelling are then applied to separate each bony region and remove 
noise. Every connected region that is smaller than 50 pixels is considered noise and removed 
from the image. The remaining connected regions are candidates for the sternum selection 
during the post-processing step. An example of an image with all candidates is shown in 
Figure 9(b). 
In the post-processing step, knowledge of the location of the sternum is used for candidate 
selection. Specifically, the expected location of the sternum is near the middle and anterior 
part of the body. This is represented as a distance between the candidate sternum and the 
body. The Manhattan or city-block distance, between the candidate midpoint and the 
middle and most anterior point of the body-bounding box, is used to rank the candidates 
using Equation 2: 
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where B and C are sets of pixels belonging to a candidate and the body region, respectively. 
The candidate with the lowest distance is selected is the sternum (Figure 9(c)). 

3.4.2 Spine and spinal cord segmentation 
The spine detection algorithm is almost identical to the sternum segmentation algorithm 
because they are both bones and their locations can be assumed. The obvious difference is 
the location constraint because the spine appears in the posterior whereas the sternum is in 
the anterior part of the body. Therefore, the distance function is changed to Equation 3. 

 ( , ) ( ) ( ) ( ) minx x y yp B
spine_distance C B mid C mid B mid C p

∈
= − + −  (3) 

One problem with spine detection is that it sometimes connects with the rib. We overcome 
this problem by removing all pixels that are further from the component’s middle axis than 
the empirically determined distance of 37.5 millimetres. We set the upper limit of a spine 
diameter to be 75 millimetres using the guideline from Madden (2001). The spine outline is 
defined using active contour snakes. The snake is required because the spinal cord is not 
always completely surrounded by bones. The snake wraps around the spine and makes it a 
close-shape object (see Figure 9(d)). The snake is configured to rely more on the internal 
elastic and bending forces, than the external imaging force. 
For segmentation, we defined the spinal cord’s appearance in HRCT as the biggest circular 
and low-density object inside the spine (Figure 9(e)). 
 

 
Fig. 10. The mediastinal part of the lung with potential hilum regions (white arrows) 
(a); candidates for hilum end points (b), detected hilum (arrow) (c); lung root (arrow) (d). 

3.5 Hilum detection  
The hilum is a wedge-shaped depression of the mediastinal surface of each lung, where the 
bronchi, blood vessels, nerves, and lymphatics enter or leave the viscus (Webb et al., 2000).  
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is inside the spine and because of its smaller size, provides an accurate landmark. Figure 
9(a) shows HRCT appearances of the sternum, spine and spinal canal. 
 

 
Fig. 9. HRCT appearances of carina, sternum, vertebrae and spinal canal (a); Segmented 
bones, sternum candidates (b), Segmented sternum (c); Segmented vertebrae using snakes 
(d) and segmented spinal canal (e). The image (a) is displayed using soft-tissue window 
setting (mean=40, width=500). 

Our method uses intensity-based thresholding and morphological operators to segment the 
bones. A simplified version of the knowledge base presented in (Archip, et al., 2002) is also 
used to distinguish the sternum and the spine from other bone structures. The knowledge, 
encoded as parameters in the image processing script consists of knowledge about the sizes 
of the sternum and spine and their approximated positions, relative to the body. Once the 
spine is detected, a template-matching method is used to search for the spinal cord inside it. 
Sternum segmentation starts by removing the pixels outside the body in the image. Next, 
thresholding is used to segment bony pixels in the image. The bone density ranges from 400 
HU, which is significantly higher than the surrounding soft tissues. The threshold value 
chosen for segmenting bone pixels is 300 HU, which is low enough to compensate the 
partial volume effect, and high enough to not include the tissues. Binary dilation and 
connected-component labelling are then applied to separate each bony region and remove 
noise. Every connected region that is smaller than 50 pixels is considered noise and removed 
from the image. The remaining connected regions are candidates for the sternum selection 
during the post-processing step. An example of an image with all candidates is shown in 
Figure 9(b). 
In the post-processing step, knowledge of the location of the sternum is used for candidate 
selection. Specifically, the expected location of the sternum is near the middle and anterior 
part of the body. This is represented as a distance between the candidate sternum and the 
body. The Manhattan or city-block distance, between the candidate midpoint and the 
middle and most anterior point of the body-bounding box, is used to rank the candidates 
using Equation 2: 
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where B and C are sets of pixels belonging to a candidate and the body region, respectively. 
The candidate with the lowest distance is selected is the sternum (Figure 9(c)). 

3.4.2 Spine and spinal cord segmentation 
The spine detection algorithm is almost identical to the sternum segmentation algorithm 
because they are both bones and their locations can be assumed. The obvious difference is 
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One problem with spine detection is that it sometimes connects with the rib. We overcome 
this problem by removing all pixels that are further from the component’s middle axis than 
the empirically determined distance of 37.5 millimetres. We set the upper limit of a spine 
diameter to be 75 millimetres using the guideline from Madden (2001). The spine outline is 
defined using active contour snakes. The snake is required because the spinal cord is not 
always completely surrounded by bones. The snake wraps around the spine and makes it a 
close-shape object (see Figure 9(d)). The snake is configured to rely more on the internal 
elastic and bending forces, than the external imaging force. 
For segmentation, we defined the spinal cord’s appearance in HRCT as the biggest circular 
and low-density object inside the spine (Figure 9(e)). 
 

 
Fig. 10. The mediastinal part of the lung with potential hilum regions (white arrows) 
(a); candidates for hilum end points (b), detected hilum (arrow) (c); lung root (arrow) (d). 

3.5 Hilum detection  
The hilum is a wedge-shaped depression of the mediastinal surface of each lung, where the 
bronchi, blood vessels, nerves, and lymphatics enter or leave the viscus (Webb et al., 2000).  
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On axial HRCT images, the hilum appears in the mediastinum as a high-density hole 
surrounded by low-density lung parenchyma. It can be used as an anatomical landmark in 
many applications, such as lung region separation and image registration. 
The method for hilum detection is based on curvature analysis of the lung boundaries and 
proceeds as follows. To restrict the curvature analysis, a potential hilum region is 
determined (see Figure 10(a) marked with arrows). The hilum region is only the mediastinal 
part of the lung boundaries. A curvature analysis is performed in that region to detect the 
most concave curved section of the lung boundaries (see Figure 10(b) blue arrow). Four 
points, two on each side, with maximum slopes that are close to the section with maximum 
curvature, are chosen as candidates for hilum end points (see Figure 10(b), A, B, C, D). Two 
of those points are selected to be the hilum end points by using heuristic rules. The rules 
use, among other information, the relative position of the points with respect to the medial 
axes.  

3.6 Lung root detection 
Generally, the root of the lung is understood to be the entire hilum surface, where many 
structures enter or leave the lung (Betke et al., 2003). However, we need a more specific 
definition of the lung root to use it as a landmark for other image analyses. After discussions 
with radiologists, the point where the main bronchus passes through the hilum surface is 
chosen to represent the lung root. Figure 10(d) illustrates the lung root point, which is the 
midpoint of the first intersection between the bronchi and the hilum surface.  
 

 
Fig. 11. Lung regions in 3D and projected on 2D axial images. Lung division into: apical, 
middle, basal (a), central, intermediate, peripheral (b) and anterior, posterior (c). 
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3.7 Dividing lung into pulmonary regions 
A novel approach for dividing the lung and parenchyma into multiple clinically meaningful 
regions is as follows. The entire lung parenchyma is divided into three axes: apical-middle-
basal, anterior-posterior and peripheral-intermediate-central, which creates eight 
overlapping regions. For the purpose of HRCT image integration, the lung regions are 
mapped to each 2D axial image. 
Each lung is vertically divided into apical, middle and basal regions. The images above the 
hilum belong to the apex of the lung, the images in the region of hilum belong to the middle 
region of the lung and the images bellow the hilum belong to the base of the lung. Figure 
11(a) shows an example of the apical-basal division. The apical, middle, and basal regions in 
2D are displayed in green, red, and blue colour, respectively. 
The coronal plane, which runs through the centre of the carina, is used to divide the lung 
into two parts: anterior and posterior. However, not all HRCT scans are taken in a perfectly 
prone-supine orientation (i.e. the subject does not lie perfectly flat). Two additional 
landmarks, namely the spinal cord and sternum, are used for the alignment. The coronal 
plane needs to be perpendicular to the medial plane that runs through the centre of the 
spinal cord and the sternum. An example of the resulting anterior-posterior division is 
shown in Figure 11(c). The anterior and posterior regions are displayed in green and red 
colour, respectively. 
To divide the lung into central, medial and peripheral regions, the following 3D algorithm, 
developed together with a radiologist from our group, was used. A three-dimensional 
position of the lung root and voxels belonging to the lung surface are used. For each lung, a 
line is drawn between the lung root and each lung surface voxel. Since the lung root is 
outside the lung, the line will pass the lung surface twice, in and out. The line section 
between the first and the second crossing points are then divided into three parts equally. 
The first part, closer to the lung root, is the central region, the second part is intermediate 
region and the last third is peripheral region. The central, intermediate and peripheral 
divisions are projected onto 2D axial images (Figure 11(b)). After segmenting the anatomy, 
landmarks and lung regions, the images are prepared for detecting abnormal findings. 

4. Computer-aided detection and interpretation of disease patterns  
There is a substantial number of different disease patterns that can be visually identified in 
HRCT images of the lungs. In this chapter, we report on the detection of two kinds. One shows 
structural deformation of the bronchi by bronchial dilatation and bronchial wall thickening 
and the other shows fibrous changes of the lung parenchyma, represented by honeycombing. 
Bronchial dilatation and bronchial wall thickening patterns are associated with Bronchiectasis 
and honeycombing is associated with Interstitial Diffuse Lung Diseases (IDLD) or Diffuse 
Parenchymal Lung Disease (DPLD). The two examples described here were chosen to 
demonstrate the different detection techniques required by different disease patterns. 
Rules for classifying the detected patterns were built automatically using supervised 
machine learning. In supervised learning, a set of pre-classified training examples is used to 
generate classification rules. We used J48, the Weka (Witten et al., 2005) implementation of 
the C4.5 decision tree induction algorithm. The input to J48 was a set of classified examples 
of disease patterns represented by a set of image attributes. The result of learning is a 
classification tree in which the most informative attributes are used to determine the correct 
class. 
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4.1 Bronchial dilatation as a direct sign for Bronchiectasis 
Bronchiectasis is defined as localised, irreversible bronchial dilatation, often with thickening 
of the bronchial wall (Webb, et al., 2000). Dilation of a bronchus is detected by comparing its 
size with the size of the accompanying artery. Bronchiectasis is considered present when the 
internal diameter of a bronchus is greater than that of the adjacent pulmonary artery. The 
typical appearance of this pattern is known as the “signet ring sign” (see Figure 8). Webb et 
al. (2000) reported that subjective visual criteria are most often used in the interpretation of 
HRCT images and a few different scoring systems are used to assess bronchaectasis extend 
and severity. We have used an HRCT bronchiectasis scoring system (Webb et al., 2000) that 
provides ranges for bronchial dilatation and the bronchial wall thickening. 
A set of parameters, calculated to compare the bronchus and its accompanying artery, 
includes lumen area, shortest diameter and the ratios of the lumen areas and the shortest 
diameters of a broncho-vascular pair. 
Machine learning was used to automatically determine the severity thresholds and to 
determine which parameters to use in assessing the severity for different sizes of bronchi 
(Zrimec et al., 2003; Busayarat & Zrimec, 2005). Figure 12 shows radiologist’s marked 
examples of bronchial dilatation and results of the detected and classified by a computer. 
 

 
Fig. 12. Results of bronchial dilatation detection and severity assessment. Radiologist's 
marked broncho-arterial pairs (a), red arrows dilated (a’); computer detection results with 
severity assessment (b), green rectangle: normal, yellow triangle: mild dilatation (b’). 

4.2 Honeycombing as a sign for interstitial lung diseases 
Honeycombing indicates a disease process characterised by a cluster of air-filled cysts 
divided by thick walls. The cysts range from a few millimetres to several centimetres and 
occur predominantly in the periphery of the lung (Webb, et al., 2000). Honeycombing is 
common in patients with idiopathic pulmonary fibrosis (IPF) and other interstitial diseases. 
In an HRCT image, honeycombing can be seen as a cluster of roughly circular dark patches 
surrounded by white walls (see Figure 13). Because of its characteristic appearance, 
honeycombing is a challenging pattern to detect by a computer. For example, broncho-
vascular structures have similar appearance (see Figure 13). 
Honeycombing is present in many disorders that primarily affect the lung parenchyma. 
They are characterised by specific abnormal findings, mostly texture-like in appearance. 
Consequently, most of the automated detection algorithms, being developed to analyse CT 
scans are texture based. The classical approach is to use a set of image features to describe 
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the image content and to use some classification scheme to distinguish between different 
patterns. Initially, we adopted a similar approach. After experimenting with different 
attribute subsets for describing the content of the image and with different learning schemes 
for improving the system’s performance, the results reveal that classical pattern detection 
approaches do not perform satisfactorily. The problem is that texture descriptors, alone, do 
not capture information that is pertinent to medical images, i.e. the disease appearance and 
distribution. Therefore, we incorporated knowledge of the lung regions and anatomy as 
well as specialist’s knowledge of disease appearance, which help improve the detection. 
 

 
Fig. 13. Left lung - outlined region with honeycombing. Right lung - outlined example of 
broncho-vascular structures, which has similar appearance as honeycombing. 

Rules for discriminating between honeycombing and non-honeycombing patterns were 
created automatically by supervised machine learning. The training examples were obtained 
from the images with labelled regions provided by radiologists. The regions with 
representative examples of honeycombing and other lung diseases patterns, marked by the 
radiologists as described in section 2.3, were processed to extract statistical features from the 
images that best represent the underlying texture. The marked regions were subdivided into 
blocks of size 7x7 and 15x15 pixels. Adjacent blocks overlapped such that the centres of 
adjacent blocks were three pixels apart. A set of attributes was calculated for each central 
pixel and it’s neighbours in the block. Two block sizes were used to capture the 
characteristics of small and larger honeycombing cysts. 
First and second order texture attributes and grey-level difference were calculated for each 
block (Haralick, 1979; Wong & Zrimec, 2007). The first order texture attributes measure the 
grey-level distribution within the block. Those attributes include: the mean HU, variance, 
skewness, kurtosis, energy and entropy. The second order features describe the spatial 
distribution of the grey-levels within these blocks. A co-occurrence matrix is calculated that 
specifies the frequency of a particular grey-level occurring near another grey-level. The co-
occurrences of the grey-levels for four different directions were measured: 0o, 45o, 90o, 135o. 
Each pixel, with its surrounding area, is represented by 63 attributes per window, resulting 
in a feature vector with 126 attributes (63 for blocks of 7x7 pixels and 63 for blocks of 
15x15pixels). 
Correlation-based Feature Selection (CFS) (Hall, 2000) was used to reduce the 
dimensionality of the feature vector. CFS selects subsets of attributes that are highly 
correlated with the class and that have low inter-correlation.  
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A subset of features that best discriminates honeycombed and non-honeycombed regions 
was selected and used for learning. J48 decision tree learning produced rules for recognising 
honeycombing regions. Figure 14(a) shows an example of applying the classification rules.  
We used expert knowledge about the appearance of honeycombing to improve the 
classification results. An example of such knowledge is that “Honeycombing results in cysts 
…which have a peripheral predominance” (Webb, at al., 2000. pp 91). We implemented a 
post-processing step using knowledge about the lung regions (section 3.7). Masks with 
peripheral, intermediated and central regions were used to guide the classification 
algorithm. The classification algorithm classifies potential blocks as honeycombing only if 
they are in the periphery of the lung or in close proximity to other blocks classified as 
honeycombing. Results of the detection are shown in Figure 14, which contains the original 
image (Fig 14(a)), image with overlaid lung regions (Fig 14(b)), to determine the lung 
periphery, and regions with detected honeycombing (Fig 14(c)).  

5. Results 
Results of the methods developed to detect abnormalities in airways indicating 
Bronchiectasis and honeycombing are presented. The performance was compared against 
the manual reference set using the following three measures: 

TP TN TP TN TPaccuracy sensitivity specificity precision
P N TP FN TN FP TP FP
+

= = = =
+ + + +

 

where TP is the true positive rate, i.e., the number of pixels correctly classified. TN is true 
negative rate. FP is the false positive rate and FN is false negative rate. P and N indicate the 
total number of positives and the number of negatives. Accuracy is the degree of closeness of 
measurements of a quantity to its actual (true) value. Sensitivity determines the proportion 
of actual disease pattern that has been detected. Specificity measures the amount of non-
disease pattern that has been classified as non-disease pattern. Precision - reproducibility or 
repeatability is the degree to which repeated measurements under unchanged conditions 
show the same results. 

5.1 Evaluation of the success of detection of bronchial dilation and bronchial wall 
thickening singes  
The success of the disease patterns detection depends on quality of feature segmentation. 
This evaluation consisted of the following experiments:  
• the success of the automatic segmentation of bronchi, 
• the success of correctly identified broncho-arterial pairs, 
• the success of detection of the extent of baronial dilatation, 
• the success of detection of bronchial wall thickening. 
The result of the automatic detection of bronchi was compared with the 711 manually 
identified bronchi from 67 images of 18 subjects. It achieved 73% sensitivity and 83% 
accuracy on the unseen data. Most of the false negatives occur with small bronchi, which 
radiologists also have difficulty in identifying. 
The experiment for evaluating artery detection and bronchial-dilatation assessment was 
performed on 324 HRCT images from 64 subjects. Ground truth or the reference set 
consisted of 442 broncho-arterial pairs manually marked and verified by experienced 
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Fig. 14. Results of honeycombing detection (a) (red – honeycombing and green – non-
honeycombing), image with regional information (b), final results after post processing (c). 

radiologist PW. The artery detection was considered as correct if the centre was detected 
with error < 2 pixels. Artery detection achieved 90% accuracy (400/442). Figures 12(b) and 
12(b’) show  the results of the broncho-arterial pairs detection. 
To evaluate the performance of the severity of the bronchi dilation, 194 broncho-arterial 
pairs were manually classified as normal (94), mild (64) or severe (36). The experiment for 
baronial dilatation assessment only used samples that have correctly detected arteries. On 
10-fold cross-validation, the system achieved 82% accuracy.  
Bronchial wall thickening was evaluated on 12 broncho-arterial pairs marked by 
radiologists. The system demonstrated 83% correct detection. Examples of bronchial wall 
thickening and severity assessment are shown in Figure 15.  

5.2 Evaluation of honeycombing detection 
The performance of rules generated by machine learning is tested by cross-validation and by 
applying them to previously unseen cases. This evaluation consisted of the following 
experiments:  
• Creation of the classifier and evaluation of its performance with 10 fold cross validation; 
• Evaluation the success of classifying unseen cases. 
The detection of honeycombing was tested on 42 HRCT images from 10 patients. The 
training data set consisted of 30 images with 110 marked and labelled regions by 
radiologists. Those regions were used to generate 2964 blocks with honeycombing and 2569 
blocks with non-honeycombing training examples. Using tenfold cross validation, the 
method achieved 98% accuracy.  
A set of 12 unseen images was used for evaluation. In the evaluation set, there were 28 
regions with honeycombing and 20 regions without honeycombing. This resulted into 1240 
blocks with honeycombing and 876 blocks with non-honeycombing regions. The evaluation 
on the unseen data achieved 94.6% accuracy. The evaluation was performed on the 
radiologist’s marked regions. 

6. Discussion 
To validate the robustness of the algorithm in real clinical practice, the dataset is selected to 
have variations that reflect the real data. There are variations in four difference aspects: 
number of slices, slice gap, slice thickness and spatial pixel size. The slice gap, or distance 
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honeycombing), image with regional information (b), final results after post processing (c). 
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blocks with non-honeycombing training examples. Using tenfold cross validation, the 
method achieved 98% accuracy.  
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regions with honeycombing and 20 regions without honeycombing. This resulted into 1240 
blocks with honeycombing and 876 blocks with non-honeycombing regions. The evaluation 
on the unseen data achieved 94.6% accuracy. The evaluation was performed on the 
radiologist’s marked regions. 

6. Discussion 
To validate the robustness of the algorithm in real clinical practice, the dataset is selected to 
have variations that reflect the real data. There are variations in four difference aspects: 
number of slices, slice gap, slice thickness and spatial pixel size. The slice gap, or distance 
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between two adjacent slices, in our data set is a constant of 15 milimeters. Another aspect we 
considered was the variety of patients. The dataset was selected to include scans with a 
wide range of abnormalities. In particular, it includes subjects with high-density 
abnormalities, such as ground glass opacity, and with low-density abnormalities, such as 
emphysema. It also includes a few cases of airways abnormalities, such as bronchiectasis. 
 

 
Fig. 15. Results of bronchial wall thickening detection and severity assessment. Radiologist's 
marked broncho-arterial pairs (a), green arrows - normal and red arrows dilated (a’); 
computer detection results with severity assessment (b), green rectangle: normal, yellow 
triangle: mild dilatation (b’). 

To evaluate the performance of the segmentation algorithms a set of scans from 84 subjects 
was used. Each scan contained a series of cross-sectional images in the axial plane. There 
were a total number of 1685 images. The evaluation was performed on a manually 
segmented data set, verified by a radiologist. The evaluation showed that the segmentation 
algorithms were quite successful with the sensitivity shown in Table 1. From the results 
presented in Table 1, we can see that the chosen landmarks are very stable across patients.  
Our segmentation algorithms have mostly been developed for processing two-dimensional 
axial images rather than 3D because the radiology practices that supplied the data routinely 
use images with 15 mm gaps for analysing diffuse interstitial lung diseases. There is a trend, 
in the recent years, to move from two-dimensional to three-dimensional processing 
(Sluimer, 2005). A three-dimensional data set is necessary for bronchial and arterial three 
segmentation and we have already experimented on a limited data set of 20 subjects to 
segment both structures. 
A major problem in the evaluation was the creation of a reference dataset, which required 
manual tracing of outlines. To assist in the creation of the reference dataset, we developed 
interactive tools for annotating regions, lines and points in the images that represent 
anatomical structures (Rudrapatna, et al., 2004) . The reference standard or the ground truth, 
used for evaluating the anatomy segmentation was manually created by an observer who is 
familiar with lung anatomy. The reference standard was verified and corrected by three 
expert radiologists to ensure accuracy of the data. These tools enforce consistency of manual 
segmentation amongst radiologists. The same tools can be used in clinical practice for 
manually correcting cases where the automatic segmentation was not successful. 
The tasks of detecting, classifying and labelling possible disease patterns were demonstrated 
on two kinds of diseases patterns, one related to structural deformation of the bronchial tree 
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and one showing fibrotic changes of the lung parenchyma. The results show that the system 
is able to recognise potential lung abnormalities and indicate their size and location. 
Computer analysis and evaluation of bronchial morphology, especially bronchial thickness, 
is important, because bronchi are responsive to treatment. This system can help assess 
treatment outcomes as well as assist in studies of the effects of new drugs. 
Differential diagnosis in the case of interstitial lung disease is difficult even for experienced 
chest radiologists. Radiologists inspect the appearance of lung regions in all images and 
based on the pattern of pathology and its distribution, along with the patient’s history, an 
evaluation of the case is reported. Although the current system does not have access to the 
patient’s history we have preliminary results from automated methods for calculating the 
percentage of affected lung and for assessing the distribution of the decease patterns. The 
system provides a list of possible diagnoses with their probability, based on the patterns 
detected in the images. Radiologists then combine the suggested differential diagnosis with 
the patient history for the case report. 

7. Conclusions and future work 
We have presented a system for computer-aided detection of disease patterns. In the 
proposed framework, normal anatomy and anatomical landmarks are segmented and used 
to detect disease patterns. Recognising normal anatomy helps in detecting many diseases 
that have similar appearance. For example, the appearance of honeycombing is similar to 
normal bronchi and vessels. Because we know the expected location of the bronchi and 
vessels, they can be eliminated, leaving the honeycombing. Most of the methods developed 
are knowledge-guided. Knowledge of anatomy comes from a model of the lung. Specific 
knowledge, related to HRCT images, was acquired via machine learning from examples. 
Knowledge about disease appearance and its distribution in the lungs was encoded in 
heuristic rules. Having learned the lung anatomy and having developed a model of the 
lung, we are now concentrating on building systems for recognising patterns created by 
other lung diseases. 
 

Landmark Trachea Carina Sternum Spinal Cord Hilum 

%Sensitivity 100% 99% 99% 96% 93% 

Table 1. Results of the automatic segmentation of anatomical landmarks. 

Although there is an increasing number of publications on computer added CT analysis of 
DILD, it is difficult to compare the results form different groups. One of the problems is the 
absence of a common, carefully annotated and representative database for benchmarking 
algorithms (Sluimer, 2005) similar to the Lung Image Database Consortium for nodule 
detection (Armato et al., 2004). We are already making efforts in developing similar data sets 
for interstitial lung diseases detection. 
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1. Introduction 
Lung cancer is one of the most harmful forms of cancer, which is the leading cause of cancer 
death in many regions of the world (Ahmedin Jl et al.,2005). The overall 5-year survival rate 
of lung cancer patients is only 14%, and remained at this level for the past two decades. 
However, when lung cancer is found at the early stage I or II, 5-year survival rates can be as 
high as 60-70% ( Beadsmoore CJ et al.,2003). Early diagnosis of lung cancer was only 15%( Li 
YR et al., 2007).  Although histology diagnosis is the most accurate detection method in the 
medical environment, it is an aggressive invasive procedure that involves risks, discomfort 
and trauma, which restrict it to be used in the clinical practice. Digital CT (Computed 
Tomography), overcoming the shortages of histology diagnosis, has gradually become the 
best imaging diagnosis method of lung cancer. CT enables us to visualize lung anatomy in 
great detail and has been used to accurately diagnose lung diseases since the 1980s (Ye X et 
al.,2006).Detecting and diagnosing solitary pulmonary nodules (SPNs, referring to the lesion 
of lung field ≤ 3 cm in diameter), the most common manifestation of lung cancer, are critical 
since early identification of malignant nodules is crucial to the chance for successful 
treatment. But pulmonary nodules of lung cancer in CT images share similarity with benign 
cases to some extent, such as tuberculosis, inflammatory pseudotumor, hamartoma, and 
aspergillosis(Jee WC et al.,2008), which makes it difficult to distinguish, especially for the 
doctors who are not rich in clinical experience. With technique of computer rising, the 
computer-aided diagnosis (CAD) has become an auxiliary diagnosis tool (Jiang J et al.,2007), 
especially in diseases that can not be diagnosed efficiently. To improve the accuracy and 
efficiency of CT screening programs for the detection of early-stage lung cancer, a number of 
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research projects, such as texture analysis(Liu YN et al.,2008) and image segmentation(Sun 
XJ et al.,2006), have been done to assist radiologists in diagnosing lung cancer. 

2. Protocols of CT scan 
In this study, the chest CT examinations were performed by using 64 detector-row helical 
CT (Cardiac-64, Siemens Medical systems, Germany) with the following parameters: 0.5s 
tube rotation and 1.5 pitch. A caudal-cranial direction scan was performed during an 
aspiratory breathhold and no contrast was used. Images were obtained from the level of the 
lung bases (posterior recesses) to the lung apex with the help of a scout view. Exposure 
settings were 150 mAs and 120 kVp. The fields-of-view were large enough to cover the 
complete lung cross-section. Each chest CT examination was reconstructed using two 
different settings immediately after imaging with the following three combinations of 
section thickness/increment and kernel: (A) 1.0mm/1.0 mm and a soft kernel (Siemens B30 
filter), (B) 1.0 mm/1.0 mm and a sharp kernel (Siemens B60). The Siemens B30 kernel is the 
standard soft-tissue reconstruction kernel, and B60 is the bone reconstruction kernel, widely 
used in high resolution chest CT at normal. Images were displayed with a lung (level, −600 
HU and width, 1500 HU) and mediastinal (level, 30 HU and width, 400 HU) window 
settings. Slice thickness and reconstruction intervals for routine scanning were 1-5mm.Data 
were reconstructed with a matrix of 512×512. Diameter range is 1.0-3.0 cm.  

3. Methods of texture extraction 
Nowadays, the methods of texture extraction can be classified into four parts: statistical 
method, model method, spectrum method and structural method. The basic procedure of 
texture analysis is to extract texture of images using different methods and then run a set of 
mathematical texture operators to produce a corresponding set of texture feature values in 
order to describe character of images. 
Co-occurrence is one category of Statistical methods, which is a measure of the relative 
frequency or joint probability of two image properties occurring under predefined 
constraints, across the domain of an image. Gray level co-occurrence matrix (GLCM) is the 
most widely used texture analysis method in biological imaging (Ondimu SN et al.,2008). 
GLCM holds potential for analyzing segmented images of biogenic sedimentary structures 
because it can be used to analyze multi-scale differences in image texture (Honeycutt CE, et 
al.,2008). ROIs (small pulmonary nodules) were segmented using gray level threshold 
algorithm(Chou YC et al.,2007). Fig. 1 shows an example CT scan and a segmented slice of 
small pulmonary nodule. Using this segmentation algorithm, the small pulmonary nodules 
images were generated.  
Curvelet transform, a kind of spectrum method, stems from Wavelets theory, but it 
overcomes the weakness of traditional multiscale representations using wavelets, and is 
suitable to capture more directional features in an image.  
The main formulas offering to Curvelet transform are as followed: 

 
1

( , )
, , ( ) ( ( ))j l

j l k j kX R X Xθφ φ= −  (1) 

where Rθ  is the rotation by θ radians and 1Rθ
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Table 1. Descriptions and formulas of fourteen Image-level texture features as variables used 
in the analysis 
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A curvelet coefficient is the inner product between an element 
2 2( )f L R∈  and a Curvelet , ,j l kφ    

 2 , ,( , , )" : ( ) ( )j l kR
c j l k f X X dxφ= ∫  (2) 

where R denotes the real line. Curvelet transform obeys an anisotropy scaling relation, 
length ≈ 2-j/2, width = 2-j, so, width≈length2. This equation called a curve scaling law.  
Based on Curvelet transform, we extracted fourteen texture features of pulmonary nodules 
of CT images, including Entropy, Mean ,Correlation, Energy, Homogeneity, StdDev, MP, 
IDM, ClustTend, Inertia, SumMean, DiffMean, SumEntr, and DiffEntr. The meanings of 
some texture features are as follows. 
Energy is defined to measure the number of repeated pairs, which is expected to be high if 
the occurrence of repeated pixel pairs is high. In statistical mechanics, entropy is defined as 
a factor or quantity that is a function of the physical state of a mechanical system and is 
equal to the logarithm of the probability of the occurrence of the particular molecular 
arrangement in that state. Inverse Difference Moment tells us about the smoothness of the 
image, like homogeneity. The IDM is expected to be high if the gray levels of the pixel pairs 
are similar. Inertia reflects the roughness of texture, which is expected to be low if the more 
elements are near to diagonal line of matrix when texture is rougher. Correlation is 
expected to measure the relevance of the gray of pixel. Sun–mean (mean) and Difference-
mean provide the mean of the gray levels of the image. The sum–mean is expected to be 
large if the sum of the gray levels of the image is high. Standard deviation tells us how to 
spread out the distribution of gray levels . The variance is expected to be large if the gray 
levels of the image are spread out greatly. Results in the pixel pair is most predominant in 
the image. The Maximum probability (MP) is expected to be high if the occurrence of the 
most predominant pixel pair is high. The mean of the gray reflects the central tendency of 
the gray. Cluster tendency measures the grouping of pixels that have similar gray level 
values. Homogeneity measures the local homogeneity of a pixel pair. The homogeneity is 
expected to be large if the gray levels of each pixel are similar.  
Curvelet transform is a new image representation approach that codes image edges more 
efficiently than wavelet transform. Curvelet will be better than wavelet in following cases 
(Candes EJ et al.,2006) :  
1. Optimally sparse representation of objects with edges. 
2. Optimal image reconstruction in severely ill-posed problems. 
3. Optimal sparse representation of wave propagators. 
Some studies have been done using Curvelet transform in image processing. Dettori and 
Semler(Lucia D et al.,2007)presented a comparative study between Wavelet, Ridgelet and 
Curvelet transform on some computed tomography (CT) scans. The comparative study 
indicated that Curvelet yields better results than Wavelet or Ridgelet. 

4. Prediction models 
Using texture feature values, we can establish model to predict the characteristics of 
pulmonary nodules. The methods of establishing prediction model are variable, such as 
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logistic regression, discriminant analysis, artificial neural networks, and support machine 
vector. Because the same patient has many CT images, that is, there is correlation among CT 
images of one patient. Common mathematical methods, such as logistic regression, 
discriminant analysis, are not appropriate to predict the characteristics of pulmonary 
nodules. 
Multilevel modeling techniques are appropriate when there is correlation among clusters of 
subjects. It is the presence of within-cluster correlation that justifies the use of a multilevel 
(hierarchical) model, and correlation multilevel modeling without within-cluster does not 
provide benefit (Kim DG et al.,2007). Now we take establishing prediction model of CT 
images for example. The authors identified there is correlation among CT images of one 
patient, so multilevel models were fitted to a two-level hierarchy and used to identify 
factors affecting texture features of benign and malignant CT images for individual 
casualties. By establishing a multi-level model of texture features of pulmonary nodules, the 
characteristics of pulmonary nodules in the CT images could be better described , which 
profit early identification of small pulmonary nodules. 
We make small pulmonary nodules CT images as level 1 and SPN patients as level 2. With 
two-level structure data, three different equations can be formulated: individual-level 
model(image－level model, level 1 model), organization-level model(patient-level model, 
level 2 model), and combined model. Assuming normally distributed errors, for subject ij we 
have level 1 model, level 2 model and combined model (Wolfinger R et al.,1993), as 

2ˆ~ ( , );ij ij ijY N Y σ 2~ (0, );ijr N σ 0 1
ˆ ˆ ˆ ;ij j j ijY Xβ β= +  

 0 1ij j j ij ijY X rβ β= + +    (level 1 model) (3) 

 00 01 0oj j jWβ γ γ μ= + +   (level 2 model) (4) 

 and 1 10jβ γ=  (level 2 model) (5) 

Substituting Eqs.(4)and(5) into Eq.(3) yields the combined model: 

 00 01 10ij j ij oj ijY W X rγ γ γ μ= + + + +  (combined model) (6) 

If the observed outcomes ijY are binary, a binomial logistic model is appropriate. A 
multilevel binomial logistic model for outcome probabilities of benign and malignant 
pulmonary nodules on CT image data used in this study is formulated as follows: 
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Where P is the probability that malignant pulmonary nodules on CT image will occur 
( ijY =1), 00γ  the intercept, qjW  a vector of patient-level characteristics, pijX  a vector of 
image-level characteristics, and the regression coefficients associated with the patient-level 
characteristics and the image-level characteristics, respectively, and 0 ju  is the random effect 
at level 2,where 2

0 ~ (0, )j uu N σ .  
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A curvelet coefficient is the inner product between an element 
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Using texture feature values, we can establish model to predict the characteristics of 
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Where P is the probability that malignant pulmonary nodules on CT image will occur 
( ijY =1), 00γ  the intercept, qjW  a vector of patient-level characteristics, pijX  a vector of 
image-level characteristics, and the regression coefficients associated with the patient-level 
characteristics and the image-level characteristics, respectively, and 0 ju  is the random effect 
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SVM is a popular classifier based on structural risk minimization principle (Vapnik 
VN.,1998),  which could minimize the generalization error of the classifier. Recently, SVM 
has gained much attention as a useful tool for image recognition. Youngjoo Lee(Youngjoo L 
et al.,2009) investigated the performance of Bayesian classifier, ANN (artificial neural net) 
and SVM (support vector machine) for differentiating obstructive lung diseases using 
texture analysis. Results showed that SVM showed the best performance for classification. 
The same result had been got by Michael E. Mavroforakis(Michael EM et al.,2006) . 
 Compared with other classifiers, such as Artificial Neural Networks, SVM aims to find the 
hyperplane that maximizes the distance from the hyperplane to the nearest examples in 
each class. An attractive feature of SVM is that it can map linearly inseparable data into 
higher dimensional space so that SVM can make them to be linearly separable. There are 
two types of SVM, linear and non-linear. The training data of linear SVM may be analyzed 
as either linearly separable or linearly non-separable. Given a set of training vectors (l in 
total) belonging to separate classes (x1,y1), (x2,y2), (x3,y3), … ,(x1,y1) , where xj∈Rn denotes the 
ith input vector and yj∈{+1,-1} is the corresponding desired output. The maximal margin 
classifier aims to find a hyperplane w: wx+b=0 to separate the training data. In the possible 
hyperplanes, only one maximizes the margin (distance between the hyperplane) and the 
nearest data point of each class. The support vectors denote the points lying on the margin 
border (Huang YL,2005). The solution to the classification is given by the decision function 
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where jα is the positive Lagrange multiplier, sj is the support vectors (Nsv in total), and 
k(sj,x)is the function for convolution of the kernel of the decision function. Such kernels must 
hold Mercer´s condition(V V,1982) which tells us whether or not a perspective kernel is a 
dot product in some space. The polynomial, radial, anova kernels are now often seen choices 
in SVM-based CAD applications.  

5. Examples 
In the rest of the paper, we will provide two practical examples to explain the use of 
prediction model for small pulmonary nodules, which based on texture extraction to predict 
the characteristics of pulmonary nodules. 
5.1.Example1: Multilevel binomial logistic prediction model for malignant pulmonary 
nodules based on texture features of CT image. 
The digitized CT image set used in this study contains 2171 ROIs (Region of Interests) 
extracted from 185 patients with small solitary pulmonary nodules, with 61 benign nodules 
and 124  malignant tumors. There were 107 men and 78 women (range of age, 19-80 years; 
mean ages, 58 years). The final diagnosis of 124 small peripheral lung cancers (diameter 
range, 1.0-3.0 cm; mean diameter, 2.0cm) was determined by either operation or biopsy. All 
the images were provided by the radiology department of Beijing Friendship Hospital 
affiliated to Capital University of Medical Science.  
The structure of data from 185 patients is postulated as hierarchical data, which consists of 
two different levels: level-1 consisting of image-level characteristics and level-2 consisting of 
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patient-level characteristics. Image-level characteristics contain detailed information 
associated with individual images such as Energy, Contrast, and Inverse Difference Moment 
and the patient-level characteristics include sex and age. Fourteen image-level and two 
patient-level variables are used as independent variables in the analysis, and the benign and 
malignant pulmonary nodules as the dependent variables, 1 malignant, and 0 benign. Sex 
and age are patient-level variables (1 man, 0 woman ; 1 age >50.00 0 others). The 
descriptions of the fourteen image-level variables used in the study are provided in Table 1. 
Besides, Table 1 gives formulas of fourteen GLCM textural features in the study (Dettori L et 
al.,2007; Yogesan1 K et al.,1996; Guo XH et al.,2008).  
In this example, we used gray level co-occurrence matrix to get fourteen textural features 
and establishd multilevel binomial logistic prediction model (Wang H et al.,2010). 
combining patient and image characteristics of textural features Results showd that Five 
texture features, including Inertia, Entropy, Correlation, Difference-mean, Sum-Entropy, 
and age of patients own aggregating character on patient-level, were statistically different 
(P<0.05) between benign and malignant small solitary pulmonary nodules. 
For multilevel binomial logistic models, the variance at the lowest level is completely 
determined by the population proportion (Kim DG et al.,2007). SAS software (version 9.1, 
SAS Institute (Shanghai) Co., Ltd.) was used to perform the estimation of multilevel 
binomial logistic models. 
For obtaining estimates of between- and within-organization (or cluster) variance, null 
models were estimated (Table 2). The intra-class correlation coefficient (ICC) is 0.1795 for CT 
images, indicating that 17.95% of the total variation in images exists between patients, and 
therefore may be explained using patients-level predictors. As a result, the patients-level 
predictors are useful for estimating statistical models for texture features of CT images. In 
other words, multilevel models for texture features of CT images are necessary. It should be 
noted that roughly 18% of the total variation in texture features of CT images is attributable 
to the variability between patients, which suggesting that texture features of CT images are 
significantly influenced by patient’s characteristics. 
 

 external segmentation 

Fixed effect  

           Intercept 0.6766 (0.0100) 

Random effect  

           Images-level 0.03928(0.0066) 

           Patients-level 0.1795 (0.0000) 

                 ICC 0.1795 

           -2 Log Likelihood 2861.9 

Note. For parameter estimates, standard errors appear in parentheses. 
Table 2. The estimation results of null models 
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where jα is the positive Lagrange multiplier, sj is the support vectors (Nsv in total), and 
k(sj,x)is the function for convolution of the kernel of the decision function. Such kernels must 
hold Mercer´s condition(V V,1982) which tells us whether or not a perspective kernel is a 
dot product in some space. The polynomial, radial, anova kernels are now often seen choices 
in SVM-based CAD applications.  

5. Examples 
In the rest of the paper, we will provide two practical examples to explain the use of 
prediction model for small pulmonary nodules, which based on texture extraction to predict 
the characteristics of pulmonary nodules. 
5.1.Example1: Multilevel binomial logistic prediction model for malignant pulmonary 
nodules based on texture features of CT image. 
The digitized CT image set used in this study contains 2171 ROIs (Region of Interests) 
extracted from 185 patients with small solitary pulmonary nodules, with 61 benign nodules 
and 124  malignant tumors. There were 107 men and 78 women (range of age, 19-80 years; 
mean ages, 58 years). The final diagnosis of 124 small peripheral lung cancers (diameter 
range, 1.0-3.0 cm; mean diameter, 2.0cm) was determined by either operation or biopsy. All 
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The structure of data from 185 patients is postulated as hierarchical data, which consists of 
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patient-level characteristics. Image-level characteristics contain detailed information 
associated with individual images such as Energy, Contrast, and Inverse Difference Moment 
and the patient-level characteristics include sex and age. Fourteen image-level and two 
patient-level variables are used as independent variables in the analysis, and the benign and 
malignant pulmonary nodules as the dependent variables, 1 malignant, and 0 benign. Sex 
and age are patient-level variables (1 man, 0 woman ; 1 age >50.00 0 others). The 
descriptions of the fourteen image-level variables used in the study are provided in Table 1. 
Besides, Table 1 gives formulas of fourteen GLCM textural features in the study (Dettori L et 
al.,2007; Yogesan1 K et al.,1996; Guo XH et al.,2008).  
In this example, we used gray level co-occurrence matrix to get fourteen textural features 
and establishd multilevel binomial logistic prediction model (Wang H et al.,2010). 
combining patient and image characteristics of textural features Results showd that Five 
texture features, including Inertia, Entropy, Correlation, Difference-mean, Sum-Entropy, 
and age of patients own aggregating character on patient-level, were statistically different 
(P<0.05) between benign and malignant small solitary pulmonary nodules. 
For multilevel binomial logistic models, the variance at the lowest level is completely 
determined by the population proportion (Kim DG et al.,2007). SAS software (version 9.1, 
SAS Institute (Shanghai) Co., Ltd.) was used to perform the estimation of multilevel 
binomial logistic models. 
For obtaining estimates of between- and within-organization (or cluster) variance, null 
models were estimated (Table 2). The intra-class correlation coefficient (ICC) is 0.1795 for CT 
images, indicating that 17.95% of the total variation in images exists between patients, and 
therefore may be explained using patients-level predictors. As a result, the patients-level 
predictors are useful for estimating statistical models for texture features of CT images. In 
other words, multilevel models for texture features of CT images are necessary. It should be 
noted that roughly 18% of the total variation in texture features of CT images is attributable 
to the variability between patients, which suggesting that texture features of CT images are 
significantly influenced by patient’s characteristics. 
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Based on the results of null model estimation, one binomial logistic regression model and 
multilevel binomial logistic regression model can be used to estimate the texture features of 
CT images. 
Table 3 presents the estimation results of CT images model, in which image and patient 
features are included as predictors. For logistic regression models, the odds ratio is used to 
interpret the actual effects of estimated coefficients. Odds ratios are also provided in Table 3. 
The results show that malignant pulmonary nodules in CT image are more likely to occur 
while Inertia is lower than 0.4435 (odds=1.494–1), Difference-mean is lower than 0.3315 
(odds=1.332–1) or Inverse Difference Moment is higher than 0.8662 (odds=1.156–1) 
compared to benign pulmonary nodules. The results also show that malignant pulmonary 
nodules in CT image are less likely to occur while Entropy is lower than 0.8939 (odds 
=0.757–1), Sum- Entropy is lower than 2.4314 (odds =0.877–1) or Correlation is higher than 
0.9754 (odds = 0.779–1) compared to benign pulmonary nodules. Malignant pulmonary 
nodules in CT image belongs to young patients (≤50) are less likely (odds= 0.503–1) than old 
patients (>50). These findings are consistent with warrants for old patients of the effects of 
small solitary pulmonary nodules. That means old patients are 49.7% ((1-0.503) ×100) more 
likely to get earlier period lung cancer than young patients. The sensitivity of multilevel 
binomial logistic prediction model was 90.6% for another 50 patients with small solitary 
pulmonary nodules, which had a good effect on prediction of small pulmonary nodules. The 
result of prediction would be improved with the enhancement of doctors’ clinical 
experience. 

5.2 Example 2: Support vector machine prediction model for small pulmonary nodules 
based on Curvelet transform to extract texture features of CT image 

In this example, we explore the use of Curvelet transform to extract texture features of 
pulmonary nodules in CT image and support vector machine to establish prediction model 
of small solitary pulmonary nodules in order to promote the ratio of detection and diagnosis 
of early-stage lung cancer. Results show that the classification consistency, sensitivity and 
specificity for the model are 81.5%, 93.8% and 38.0% respectively.  
2461 CT images used in this study are extracted from 129 patients with small solitary 
pulmonary nodules, including 537 CT images (25 benign cases) related to benign nodule 
and 1924 CT images (104 malignant cases) to malignant tumors. The final diagnosis of 
malignant cases was determined by either operation or biopsy. The diagnosis of benign 
cases was confirmed by operation, CT diagnosis or follow-up. The original format is 
DICOM, and diameters of the chest nodules were from 0.3 cm to 3 cm. 129 cases were 
provided by four hospitals, and details are as follows: Beijing Xuanwu Hospital of Capital 
Medical University (26 malignant cases, 11 benign cases), Beijing Friendship Hospital 
affiliated to Capital Medical University (35 malignant cases,6 benign cases), Chaoyang 
Hospital affiliated to Capital Medical University (20 malignant cases,7 benign cases) and 
Fuxing Hospital affiliated to Capital Medical University (23 malignant cases,1 benign cases).  
Based on Curvelet transform, we extracted fourteen texture features of pulmonary nodules 
of CT images. Every image could be decomposed into 18 sub-images. The 18 sub-images 
could be classified into three parts: inner layer, middle layer and outer layer. So 252 texture 
features were extracted from every image. Among those texture features, 158 texture 
features showed statistically significant differences between benign and malignant cases 
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 Estimate Odds 

ratio
95% Confidence 

Limits 
Fixed effects    

Intercept ( 00γ ) -0.0638 (0.1204) 0.9382 (-0.2997   0.1721) 

Image-level    

Energy ( 10γ ) 0.0776 (0.0683) 1.0807 (-0.0562   0.2114) 

Inertia ( 20γ ) 0.4014*** (0.1316) 1.4940 (0.1434   0.6594) 

Inverse Difference Moment ( 30γ ) 0.1450* (0.0813) 1.1560 (-0.0143   0.3043) 

Entropy ( 40γ ) -0.2779*** (0.0603) 0.7574 (-0.3960  -0.1597) 

Correlation ( 50γ ) -0.2493 *** (0.0956) 0.7793 (-0.4366  -0.0620) 

Cluster Tendency ( 60γ ) 0.0174 (0.0631) 1.0176 (-0.1062   0.1410) 

Contrast ( 70γ ) -0.0461 (0.0743) 0.9549 (-0.1919   0.0996) 

Homogeneity ( 80γ ) 0.0904 (0.1425) 1.0946 (-0.1889   0.3696) 

Variance ( 90γ ) 0.0971 (0.0676) 1.1020 (-0.0353   0.2296) 

Maximum probability ( 100γ ) 0.1098 (0.0686) 1.1161 (-0.0247   0.2443) 

Sun-mean ( 110γ ) 0.0174 (0.0631) 1.0176 (-0.1062   0.1410) 

Difference-mean ( 120γ ) 0.2863** (0.1386) 1.3315 (0.0146   0.5580) 

Sum-Entropy ( 130γ ) -0.1311** (0.0648) 0.8771 (-0.2581  -0.0041) 

Difference-Entropy ( 140γ ) -0.1755 (0.1595) 0.8390 (-0.4881   0.1370 ) 

Patient-level    

sex( 01γ ) 0.0781 (0.0581) 1.0812 (-0.0359   0.1920) 

age( 02γ ) -0.6871*** (0.0611) 0.5030 (-0.8069  -0.5674) 

Random effects    

00τ  ( 0 jμ ) 0.4583*** (0.0280)   

 
Note. For parameter estimates, standard errors are within parentheses. *P< 0.10; **P< 0.05; ***P< 0.01 

Table 3. Estimation results for CT images 
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Note. For parameter estimates, standard errors are within parentheses. *P< 0.10; **P< 0.05; ***P< 0.01 

Table 3. Estimation results for CT images 
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through two independent samples tests of nonparametric test or two independent samples 
t-test  
The 2461 images were divided into two parts: one part was as a training sample (80%) and 
the other part was as a test sample (20%). The training sample was used to establish the 
database and the test sample was used to evaluate the validity of prediction model of SVM 
(Table 4). 
 

Samples Benign Malignant Total 

Training sample 429 1539 1968 

Test sample 108 385 493 

Total 537 1924 2461 

 
Table 4. Benign and Malignant Cases Distribution 

 
Based on Curvelet transform, 252 texture features we extracted were as parameters to 
establish prediction model for small pulmonary nodules (Table 5). 
 
 

Pathological Diagnosis 
SVM 

Benign Malignant 
Total 

Benign 41 24 65 

Malignant 67 361 428 

Total 108 385 493 

 
Table 5. Prediction Results of Pulmonary Nodules Based On SVM 

 
The validity of prediction model of SVM is evaluated by the following three indexes: 
sensitivity (93.8%), specificity (38.0%) and consistency (81.5%). The high sensitivity (93.8%) 
can reduce the false negative rate of early-stage lung cancer effectively. 
There are other methods used in published papers to select texture features. Wavelet 
transform was used to extract the texture features of chest radiography, and the Energy was 
as the only parameter to establish the prediction model (Huang PW. et al.,2004). Lucia 
Dettori(Lucia D et al.,2007) selected Mean, StaDev, Energy and Entropy to establish the 
prediction model. Principal component analysis，a very useful tool to deal with colinearity, 
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has various applications in texture extraction and tumor recognition(Zhang J et al.,2008). 
Mohamed Meselhy Eltoukhy(Mohamed ME et al.,2010) used Curvelet transform to 
decompose mammogram images into 4 levels, then selected the largest 100 texture features 
as parameters. 
In order to select texture features which are more accurate to reflect characteristics of 
pulmonary nodules, we have made many attempts. Results were showed in table 6. 
In order to promote sensitivity and specificity, we had made some attempts to select proper 
texture features. Compared with other methods, 252 texture features were used as 
parameters to establish prediction model is more satisfying. 
Based on published reports, characteristics of pulmonary nodules can been detected by 
texture features. However, 2D images are irregular when decomposed, and the Curvelet 
transform is more suitable than the wavelet transform to extract texture features. The 
methods to establish prediction model are variable, such as multiple linear regression, 
logistic regression, discriminant analysis, artificial neural networks, but the result of support 
vector machine is better (Zheng Z et al.,2007).In this research, we establish support vector 
machine prediction model for small pulmonary nodules using Curvelet transform to extract 
texture features of CT image, which has not been reported to our knowledge. 
 

 Sensitivity(%) Specificity(%) Consistency(%) 

Using Energy As The Only 
Parameter 93.2 29.6 79.3 

Using Texture Features of 
Inner Layer As Parameters 96.4 31.5 82.2 

Using Texture Features of 
Middle Layer As Parameters 94.8 25.0 79.5 

Using Texture Features of 
Outer Layer As Parameters 100.0 0.0 78.1 

Using Mean, StaDev, Energy 
and Entropy As Parameters 94.8 29.6 80.5 

Using Principal Component 
Analysis 100.0 0.0 78.1 

Using 158 Texture Features As 
Parameters 94.5 34.3 81.3 

The Largest 100 Texture 
Features As Parameters 93.8 28.7 79.5 

Table 6. Prediction Results of Pulmonary Nodules Using Other Methods 

6. Summary 
In recent years, the incidence of lung cancer has been the top of cancers in the most 
countries. Because of the difficulty to diagnosis, more attention has been paid to lung cancer. 
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Now the most accurate diagnosis method of lung cancer is histology diagnosis, but this 
method is traumatic, which restricts it to be used in clinical practice. In the decades, digital 
CT has been the main diagnosis tool of lung cancer for its convenience and safety, and 
widely used in clinical practice. However, it is difficult to distinguish between benign and 
malignant cases in the CT images of pulmonary nodules, especially for the doctors who 
were lack of experience. From two examples, we can make the conclusion that the prediction 
model is so sensitive that it can diagnose early-stage lung cancer effectively, reduces the 
difficulty of distinguishing characteristics of pulmonary nodules and improves accuracy 
rate of diagnosing early-stage lung cancer. 
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1. Introduction     
The advances in the understanding of the liver anatomy and physiology (Couinaud, 1999; 
Ryu & Cho, 2009), the improvement of medical imaging techniques (Radtke et al., 2007; 
Handels & Ehrhardt, 2009) and the progressive security of surgical instrumentation, allow 
surgeons to design complex liver resections more accurately and efficacious without 
jeopardizing patient safety.  Pre-operative planning has become an essential task before 
undertake liver surgery, and requires mandatory mapping of both inflow and outflow 
hepatic vasculature, the assessment of the number and spatial relationships of the tumor(s), 
and frequently, an estimation of the future remnant liver volume (FRLV). Several 
determinants may modify threshold levels for a safe FRLV (for example, the presence and 
extension of cirrhosis, esteatosis or post-chemotherapy sinusoidal obstructive syndrome). 
Therefore, healthy functional liver volume estimation and functional performance analysis 
are tests further needed to make the final clinical decision before extensive hepatectomies.  
Traditionally, FRLV has been extrapolated from preoperative computed tomography (CT) 
images using hepatic segmentation done manually in an otherwise time and labour-
consuming process.  Briefly, some commercial systems include tools that allow radiologists 
to manually segment 2D slices of a CT study in transverse (axial) views. Due to the high 
number of slices (usually ranging from 100 to 500 depending on the scanner), a sub-sampled 
version of the original CT is used in daily planning. However, even when using a sub-
sampled version, the complete procedure takes longer than 30 minutes.  
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Many research groups work nowadays in the development of automatic and semiautomatic 
liver segmentation tools in order to help clinicians saving time and effort and increasing 
precision. Since the liver is located adjacent to other organs of similar CT gray values, and it 
presents a huge variability in size and shape among different patients, the development of 
segmentation tools has become a challenging problem with increasing interest in the last 
few years.  
In this work we first present a summary of the state of the art in this field. Secondly, we 
propose the application of a semiautomatic tool to segment the healthy part of the liver and 
estimate the healthy liver volume from CT preoperative abdominal images, using 
techniques based on a sophisticated 3D Level Sets definition (Fernandez-de-Manuel et al., 
2009) that combines intensity, gradient information and curvature restrictions extended with 
a morphological image pre-processing and a method to easily define 3D frontiers with 
adjacent regions.  The algorithm has been developed to solve a specific request demanded 
by radiologists from the research team.  The requirement in our work is that the 
segmentation should include only healthy parenchyma excluding tumors in order not to 
overestimate healthy liver volumes.  
The proposed tool has been validated with several preoperative CT abdominal data sets. 
Resulting segmentations have been evaluated with respect to those obtained from 
radiologists’ manual segmentations and supervised by clinicians.  

2. State of the art 
As it has been briefly introduced, the development of automatic and semiautomatic liver 
segmentation tools is particularly challenging due to liver's variability in size and shape and 
to the proximity to other organs of similar intensity values which generates blurred edges in 
CT images. Many works have been published in this field.  
First attempts to perform automatic liver segmentation were based on gray-level statistics 
(Woodhouse et al., 1994; Gao et al., 1996). Liver gray levels can be estimated either by 
statistical analysis of manually segmented slices, either by histogram analysis with the aim 
of establishing an a priori knowledge about liver density. In most of the works based on 
gray-level statistics, a threshold is used to generate a binary volume that is later processed 
by morphological operators in order to separate desired organs. Recent gray-level methods 
have been presented by Soler et al. (Soler et al., 2001), Fujimoto et al. (Fujimoto et al., 2002), 
Liu et al. (Liu et al., 2005) and Lim et al. (Lim et al., 2004; Lim et al., 2005; Lim et al., 2006). 
However, the high variability among liver CT images due to the differences of intensity 
values in different kind of tumors and the different settings regarding contrast media, make 
difficult the optimal operation of the methods just based on gray-level statistics. Other 
approaches try to overcome the problem of liver’s gray-level estimation by learning gray-
level features corresponding to the liver from different CT images with methods based on 
neural networks. Tsai and Tanahashi (Tsai & Tanahashi, 1994) , Koss et al. (Koss et al., 1999) 
and Lee et al. (Lee & Chung, 2000; Lee et al., 2003) presented examples of automatic 
detection and labeling of abdominal organs with neural networks. A common difficulty of 
this kind of methods is that they usually need a big and highly varied training set to learn 
the variability among different patients. 
Liver segmentation based on anatomical knowledge regarding size, position and shape of 
each abdominal organ includes several works that employ statistical shape models (SSM) 
and shape constrained deformable models. Montagnat and Delingette (Montagnat & 
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Delingette, 1997), Gao et al. (Gao et al., 1998) and Lamecker et al. (Lamecker et al., 2004) 
presented several of these techniques. The drawback of these methods is the model 
construction, which requires a huge quantity of training data properly collected in order to 
capture all the possible shapes; a really challenging task regarding the high amount of 
variable and complex liver shapes and sizes. Besides, these algorithms use to fail when 
processing not standard liver shapes and require too much computation time to achieve a 
good matching between model and image. Other works are based on the construction of 
probabilistic atlases. That is the case of the works presented in (Park et al., 2003; Zhou et al., 
2005; Shimizu et al., 2006).  First, a registration step of training CT images into a standard 
space defined by landmarks (manually or automatically chosen) is needed. The probabilistic 
atlas is generated by spatially averaging the registered surfaces. Then, it is used to compute 
the probability of belonging to a certain organ for each voxel in the image. Finally, the 
region that maximizes the posterior probability of being the desired organ is extracted by 
thresholding or using an iterative algorithm. This type of techniques carries several 
problems. Firstly, the huge amount of training images required. Secondly, the difficulty of 
finding an appropriate probability function. Finally, the high computation times required.  
Some variants of region growing have been also applied to liver segmentation (Pohle & 
Toennies, 2001; Ruskó et al., 2007). However, for those cases, sophisticated restriction 
methods have to be taken into account in order to avoid over-flooding. 
Live wire algorithms (Barrett & Mortensen, 1997) are the basis of several semiautomatic 
liver volume extraction tools currently used in clinical practice. An image is described as an 
undirected and weighted graph where pixels are represented by the vertexes, the edges 
connect neighboring pixels, and their weighs represent the cost of the connections computed 
from image features like gray value, gradient magnitude, gradient direction or Laplacian 
zero-crossing among others. Dijkstra’s graph-search algorithm computes all possible 
minimum-cost paths between a starting seed point established by the user on the liver 
boundary and all the possible points in the image. After that, a desired boundary can be 
interactively chosen by selecting a free point with the mouse. Indeed, when the mouse 
pointer moves over the image, the previous boundary segment is deleted and the new 
minimal path between the seed point and the new position is displayed. When that minimal 
path is close to the desired boundary, the user can freeze it by adding a new seed point. It 
causes the reinitialization of the boundary detection. Thus, this process allows the user to 
have a full control over the segmentation. Many variants of this technique have been 
developed for years. In (Schenk et al., 2000; Schenk et al., 2001) the authors modified the 
original algorithm to reduce its computation time in order to extend it to 3D images. These 
methods speed up the work of radiologists manually drawing liver boundaries, but are 
highly dependent on the operator’s skill. 
Different approaches widely used in liver segmentation are Level Sets and snakes (Caselles 
et al., 1997; Pan & Dawant, 2001; Bekes et al., 2007; Garamendi et al., 2007; Lee et al., 2007; 
Platero et al., 2008), based on a speed function that controls the front propagation of an 
implicitly defined surface toward the liver boundary. Moreover, the propagation may be 
constrained by an a priori anatomic information or shape restrictions. The main problem of 
Level Sets is the definition of an appropriate speed function and its parameters.  
Finding an efficient liver segmentation algorithm able to provide good segmentation results 
from CT liver images and avoiding the classical problems of standard segmentation 
methods (such as over-flooding, under or over-segmentation, long computing times and so 
on) is such a challenging and important task that a recent competition has faced this 
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Many research groups work nowadays in the development of automatic and semiautomatic 
liver segmentation tools in order to help clinicians saving time and effort and increasing 
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purpose. In October 2007, a contest whose aim was to compare different algorithms to 
segment the liver from clinical 3D CT scans was hold as part of the workshop 3D 
Segmentation in the Clinic: A Grand Challenge in conjunction with MICCAI 2007 (Van 
Ginneken et al., 2007; Heimann et al., 2009). Teams that participated in the liver 
segmentation contest downloaded training and test data and submitted the results of their 
algorithms on test data both before and during the workshop. To evaluate the quality of a 
given segmentation, segmentations were compared to expert-generated references and rated 
according to detected deviations: Volumetric Overlap Error, Relative Volume Difference, 
Average Symmetric Surface Distance, Root Mean Square Symmetric Surface Distance and 
Maximum Symmetric Surface Distance. Some of the most successful proposals that got 
better punctuation were automatic methods based on statistical shape models with some 
additional free deformation (Heimann et al., 2007; Kainmueller et al., 2007; Saddi et al., 2007)  
and interactive segmentation methods requiring certain amount of user interaction such as 
manual refinement after a graph cut or a region growing method (Beck & Aurich, 2007; 
Beichel et al., 2007), two dimensional Level Sets with initialization (Dawant et al., 2007; Lee 
et al., 2007) and three dimensional Level Sets with initialization of 2D contours (Wimmer et 
al., 2007). However, in that workshop, the segmentation was defined as the entire liver 
tissue including all internal structures like big vessels systems, tumors, etc. Therefore, that 
segmentation definition does not exactly match the actual goal of our work (that is 
estimating healthy liver volumes).  
Recently, most of new liver segmentation methods combine different techniques: statistical 
shape models, mathematical morphology and Level Set approaches. (Linguraru et al., 2010) 
present a clinical tool developed to segment liver and spleen based on probabilistic atlases. 
The atlases are created using manually segmented data from non contrast CT images. The 
organ locations are modeled in the physical space and normalized to the position of the 
xiphoid. The construction of the atlases enables the automated quantifications of liver and 
spleen volumes and heights, later improved by a geodesic active contour. In (Suzuki et al., 
2010) a computerized liver extraction scheme based on geodesic active contour 
segmentation combined with level-set contour evolution and applied to liver donor images 
is presented. In (Jiang & Cheng, 2009) a threshold segmentation is combined with  
morphological image processing and active contour models in order to extract the initial 
contour and segment the liver slice by slice. In (Campadelli et al., 2010) a fully automatic, 
gray-level based segmentation framework based on a multiplanar fast marching method is 
proposed.  Other sophisticated methods are based on Support Vector Machines (Luo et al., 
2009).  

3. Proposed method 
In this work we propose the application of a tool based on Level Sets to segment the healthy 
part of the liver in CT preoperative abdominal images. The tool has been developed 
following the requirements demanded by radiologists inside the team: segmentation of 
healthy parenchyma excluding tumors in order not to overestimate healthy liver volumes. 
In this sense the proposed function allows to directly segment healthy parenchyma. 
The tool combines a 3D active contour algorithm previously introduced in (Fernandez-de-
Manuel et al., 2009) with morphological filtering and a fast manual frontier definition, in 
order to estimate healthy liver volumes. SSM models have been discarded due to the aim of 
segmenting a wide variety of shapes, sizes and liver pathologies with different kind of 
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tumors and surgical stages. For this reason, a solution based on active contours with no "a 
prioris" has been approached. The proposed technique only requires the user to initialize a 
seed and different frontier points in the most common problematic regions before the 
automatic computation stage. In case that the first segmentation was not satisfactory, the 
user could redefine or add some other frontiers and repeat the automatic stage.  Normally, 
the initial seed or frontiers do not need to be changed. Nevertheless, in clinical environment 
it is useful to give the opportunity to the radiologist of certain interaction that allows 
refining the segmentation having into account previous result. This is very useful in difficult 
and strange cases. 
The proposed method has been validated with 5 preoperative CT abdominal data sets. 
Resulting segmentations have been numerically evaluated in terms of Overlap Error, 
Relative Volume Difference and Surface Distances with respect to radiologists’ reference 
manual segmentations. The method has demonstrated good performance.  

3.1 3D active contour algorithm 
Active contour models are based on a curve (i.e. contour in 2D or surface in 3D) that evolves 
following different constraints given by the image. Traditionally, evolving constraints are 
based on the gradient of the image (Kass et al., 1987; Caselles et al., 1997), being suitable 
only for images with edges well defined by gradients. However, in 3D CT abdominal 
images, liver boundaries are not completely defined by a gradient. As we can observe in Fig. 
1 the proximity of the liver to other organs of similar CT intensity values prevents from 
defining all the edges using only gradient information.  
 

 
Fig. 1. On the left: transverse slice of an abdominal CT image and its profile of intensities 
along the yellow line showing the difficulty of establishing an intensity threshold between 
liver and adjacent intercostal muscles.  On the right: active contour growing based on a 
classical gradient dependent definition (above) and the improvement introduced by the 
proposed method that avoids the contour to overflow among the intercostal space (below).  

In order to segment objects with boundaries not necessarily defined by a gradient, (Chan & 
Vese, 2001) proposed an active contour method consisting on the minimization of a force 
that depends on the image gray values inside and outside the curve at each iterative step. 
This method is based on Mumford-Shah segmentation techniques (Mumford & Shah, 1989): 
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where u0 is a given image formed by two regions, C is an evolving contour, and the 
constants c1 and c2 are the averages of u0  inside and outside C respectively.  
This force can be formulated by Level Sets techniques as described in (Chan & Vese, 2001). 
Level Sets based active contour implementations have become very popular, due to their 
ability of handling discontinuities and the possibility of topological changes. For the Level 
Sets formulation, C is represented by a Lipschitz function φ: 
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The function (1) can be expressed using φ and the Heaviside H and Dirac δ0 functions. The 
associated Euler–Lagrange equation for φ is deduced by minimizing the function with 
respect to φ. Finally, a linear system is obtained that can be solved by an iterative method 
(for more details we refer the reader to (Chan & Vese, 2001)):   
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where μ≥0, γ≥0, λ1, λ2>0  are fixed parameters and Δt and h are the time and space steps 
respectively, used to discretize the equation in φ with a finite difference implicit scheme. The 
term div(∇φn/|∇φn|) is used to restrict the curvature of the contour. Subscripts i, j represent 
the position.  
With parameters λ1=λ2= 1 the equation produces a lineal force that is annulled in the mean 
value of intensity averages c1 and c2 .With this definition the contour stops only when there is 
a notable difference between clear zones toward darker zones and not with sudden zones of 
very extreme intensities; so this method works properly only with those images that contain 
two homogenously well defined regions and textures. If there is a small area with an extreme 
intensity closer to c1 than to c2, it will be erroneously included into the segmentation, even 
when differing to c1 more than the absolute difference between c1 and c2. An example of this 
problem, hardly controlled by modifying λ1 and λ2 weights, can be appreciated in Fig. 2 (left) 
showing a contour based on the (Chan & Vese, 2001) equation growing into the ribs. 
In order to solve this problem,  some variations inside the function defined in (Chan & Vese, 
2001) are proposed in (Fernandez-de-Manuel et al., 2009) to allow segmenting a 
homogenous region (liver) that is adjacent to other organs with higher or lower intensities in 
hepatic CT scans with a variable anatomy complexity.  The proposed active contour method 
restricts the growth of the contour to a zone limited around the average gray value inside 
the liver. It combines both the modified energy function based on gray values, and a 
morphological gradient information in order to make the algorithm more robust. The Level 
Sets function derives from equation (1) and considerably improves the segmentation results 
on the hepatic images under study. The resulting linear system proposed in (Fernandez-de-
Manuel et al., 2009), solved by iterative methods, is the following: 
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Fig. 2. On the left: 3D Active contour growing based on (Chan & Vese, 2001). On the right: 3D 
Active contour growing based on the redefinition of the force equation proposed in 
(Fernandez-de-Manuel et al., 2009). The growing of the contour into the ribs is successfully 
controlled in the right image. 
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where u0 is a 3D image formed by two regions, one with almost constant intensity (liver), 
and the other one with different intensity organs. φ represents the evolving 3D contour. μ≥0, 
γ≥0, ρ, λ1, λ2>0 are fixed parameters, the constants c1 and c2 depending on iteration n are the 
averages of u0 inside and outside the contour respectively and Δt and h are the time and 
space steps respectively. The term div(∇φn/|∇φn|) is used to restrict the curvature of the 3D 
contour. Subscripts i, j, k represent the position in the image. The algorithm starts with a 
small surface obtained from a seed point placed inside the healthy liver. The initial surface 
grows iteratively following the described linear system (4). The method has been 
implemented for 3D images inside a MATLAB framework limiting the force evaluation to a 
narrow band around the contour in order to reduce the complexity. 

3.2 3D Multi-resolution strategy 
Due to the large size of CT abdominal images, the method has been implemented following 
a multiresolution strategy in order to reduce computation time. Three pyramidal steps have 
been used (Fig. 3). In the first step, the resolution of the images is reduced by a factor of 4. 
This fast initial segmentation allows us to select the liver region and to get a first 
approximate surface. In the second step, the resolution is reduced by a factor of 2. A bicubic 
interpolation is applied in the resolution reduction process. At each step the growing surface 
begins with the previous step result and iterates to the actual surface of the liver. Finally, in 
the last step, the resolution of the image is the original one and it performs a final growing 
of the previous surface that segments properly the liver. 

3.3 Pre-processing and definition of frontiers 
The general active contour method is extended with a pre-processing step to address 
particular problems. 
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Fig. 2. On the left: 3D Active contour growing based on (Chan & Vese, 2001). On the right: 3D 
Active contour growing based on the redefinition of the force equation proposed in 
(Fernandez-de-Manuel et al., 2009). The growing of the contour into the ribs is successfully 
controlled in the right image. 
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where u0 is a 3D image formed by two regions, one with almost constant intensity (liver), 
and the other one with different intensity organs. φ represents the evolving 3D contour. μ≥0, 
γ≥0, ρ, λ1, λ2>0 are fixed parameters, the constants c1 and c2 depending on iteration n are the 
averages of u0 inside and outside the contour respectively and Δt and h are the time and 
space steps respectively. The term div(∇φn/|∇φn|) is used to restrict the curvature of the 3D 
contour. Subscripts i, j, k represent the position in the image. The algorithm starts with a 
small surface obtained from a seed point placed inside the healthy liver. The initial surface 
grows iteratively following the described linear system (4). The method has been 
implemented for 3D images inside a MATLAB framework limiting the force evaluation to a 
narrow band around the contour in order to reduce the complexity. 

3.2 3D Multi-resolution strategy 
Due to the large size of CT abdominal images, the method has been implemented following 
a multiresolution strategy in order to reduce computation time. Three pyramidal steps have 
been used (Fig. 3). In the first step, the resolution of the images is reduced by a factor of 4. 
This fast initial segmentation allows us to select the liver region and to get a first 
approximate surface. In the second step, the resolution is reduced by a factor of 2. A bicubic 
interpolation is applied in the resolution reduction process. At each step the growing surface 
begins with the previous step result and iterates to the actual surface of the liver. Finally, in 
the last step, the resolution of the image is the original one and it performs a final growing 
of the previous surface that segments properly the liver. 

3.3 Pre-processing and definition of frontiers 
The general active contour method is extended with a pre-processing step to address 
particular problems. 
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Fig. 3. Diagram of proposed pyramidal segmentation steps. 

Firstly, in order to guarantee that the surface evolution properties are properly fitted to the 
data, an interpolation is applied to make images isotropic. Next, a median filter eliminates 
inhomogeneities inside the liver region. Kernel size is 3 in lowest resolution levels and no 
median filter is used in the higher resolution level.  
In order to define 3D frontiers with conflictive regions, 6 points (3 segments) are selected. 
Each one of the segments is manually defined in each dimension (transverse, coronal and 
sagittal) using a multiplanar 3D viewer. These segments are integrated to reconstruct a 
parallelogram in the 3D space that approximates the restricted plane that separates the liver 
from the conflictive region. This approach allows the user to define 3D frontiers with 
minimal interaction. Then, a modification of the image gray values with an exponential 
function that grows from zero to the original gray image value around the 3D frontier is 
incorporated in order to restrict the surface growing around the selected area.  Frontiers are 
typically needed for the cava vein, heart or kidney. 

3.4 Post-processing 
The active contour functional has been chosen carefully and its operation is convenient. 
However, a post-processing step is always essential in any kind of tool in order to smooth 
the results and fill-in small gaps. In the presented work, resulting segmentations are 
automatically refined with additional post-processing in order to recover original spatial 
representation, to smooth the surface and to eliminate unconnected zones. To complete this 
last step, a morphological erosion is applied to the resulting segmentation mask followed by 
a binary morphological reconstruction of the mask from the original seed point and a final 
morphological dilation. 

4. Data and validation 
The presented liver segmentation tool has been validated on five abdominal CT 
examinations (Table 1). The set includes cases of different liver size, shape, intensity and 
pathologic state. Studies 1, 2, 4 and 5 were acquired on a Philips Brilliance 16 slice CT 
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scanner, and study 3 was acquired on a Philips AV Expander spiral CT. The pixel spacing 
varied between 0.69 and 0.84 mm, the inter-slice distance varied from 1 to 5 mm.  
The images were segmented manually by radiologists, working slice-by-slice in transverse 
view. These manual segmentations were performed using all the slices of the study. The 
liver region was defined as the entire healthy parenchyma, excluding tumors and lesions in 
order to avoid overestimating the liver functional volume.  
The semiautomatic segmentation has been carried out following steps described in Section 
3. The Level-Sets function parameters (4) were fixed to γ=0, ρ=1, λ1=1 and λ2= 1/5.5 as these 
values were presented in (Fernandez-de-Manuel et al., 2009) as the ones with better results 
in CT scans.  
The obtained segmentations have been evaluated by five metrics based on the ones 
described on (Heimann et al., 2009). This five metrics are as follows: 
Volumetric Overlap Error (VOE), in percent:  

 ( )( )1 / 100i uVOE N N= − ⋅  (5) 

where Ni is the number of voxels in the intersection of resulting segmentation and reference, 
and Nu is the number of voxels in the union of resulting segmentation and reference. This 
value is 0 for a perfect segmentation and 100 when there is no overlap.  
Relative Volume Difference (RVD), in percent: 

 ( )( ) / 100s r rRVD V V V= − ⋅  (6) 

where Vs  is the volume of the segmentation, and Vr is the volume of the reference. The best 
value is 0 (for exact volumes) and the worst one is 100. 
Average Symmetric Surface Distance (ASSD), in mm:  

 , ,( , ),      ASSD= ( )i s i r i id dist B B i mean d= ∀  (7) 

where Bs,i is the edge voxel i of one of the images, and Br,i is the edge voxel i of the other (the 
closest voxel to Bs,i). Border voxels are those belonging to the segmented liver that have at 
least one of their 18 nearest neighbors not belonging to the segmented liver. dist represents 
the Euclidean distance, not signed, in mm and taking into account the different resolutions 
in the different scan directions. Distances between the two sets of border voxels (one set 
from each image) are stored. mean represents the mean value of distances. ASSD value is 0 
for a perfect segmentation. 
Root Mean Square Symmetric Surface Distance (RMSD), in mm:  

 ( )( )2
, ,( , ),      i s i r i id dist B B i RMSD mean d= ∀ =  (8) 

This measure is similar to the previous one but in this case the squared distances between 
the two sets of border voxels are stored. RMSD value is 0 for a perfect segmentation. 
Maximum Symmetric Surface Distance (MSSD), in mm: 

 , ,( , ),      MSSD=max( )i s i r i id dist B B i d= ∀  (9) 
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This measure is similar to the previous two, but in this case the maximum of all distance is 
taken instead of the average. MSSD is 0 for a perfect segmentation. 

5. Results and discussion 
Table 1 shows the experiment results including case descriptions, the number of required 
frontiers manually selected by the user, resulting metrics, and the computation time for each 
examination.  
We can see that volume differences (absolute values of RVD) are smaller than 10% in all of 
the cases (Table 1). In all of them, the deviation is produced because of under-segmentation.  
Analyzing in detail the resulting images, we conclude that the region affected by these 
under-segmentations is, in the majority of the cases, the narrow end of the left liver lobe. 
This problem affects specially to the case 1 and the case 5, producing a Maximum Surface 
Distance bigger than 3 cm, which is exactly located in those narrow areas. Case 1 is probably 
the most difficult case presenting a very atypical shape and gray level distribution. In these 
narrow regions, the 3D contour finds difficulties to grow due to particularly restrictive 
curvature constraints. Further studies are warranted to correct the small misclassified areas 
by modifying curvature restrictions locally.  
Most of the tumors were not included in the liver region, according to the requirements of 
the clinicians. In this sense, the proposed method works properly, as it excludes 
hyperintense and hypointense large tumors (Fig. 4). However, in some of the cases, small 
metastases completely surrounded by healthy parenchyma were not excluded during the 
process of contour growing, affecting considerable to the Surface Distance Errors (case 3). 
Nevertheless, this problem hardly modifies the final volume estimation, because of its small 
size. 
Other segmentation minor errors were detected in the surroundings of the hepatic portal 
vein (case 2 and 4). 
 
 

Case Case description # 
frontiers VOE [%] RVD 

[%] 
ASSD 
[mm.] 

RMSD 
[mm.] 

MSSD 
[mm.] 

Time 
[min.] 

1 Hepatic carcinoma 13 13.13 -9.02 2.39 5.12 42.84 9.57 

2 Liver after 
hepatectomy 0 10.80 -5.76 1.43 2.04 14.25 9.92 

3 
Portal embolization 
pre- right 
hepatectomy 

4 10.48 -6.38 1.24 2.72 27.04 11.56 

4 Metastasis 2 11.55 -4.46 1.79 3.09 21.91 3.67 

5 
Portal embolization 
pre- right 
hepatectomy 

0 13.04 -9.41 2.13 3.67 33.44 3.82 

Table 1. Cases descriptions, number of initial frontiers points, resulting metrics and 
computation times. 

Liver Segmentation and Volume Estimation from Preoperative CT Images in Hepatic 
Surgical Planning: Application of a Semiautomatic Method Based on 3D Level Sets   

 

89 

 In general, resulting segmentations satisfied clinical requirements. Overlap errors, and 
volume errors were considered reasonable. Special attention will be made in further studies 
in order to solve problems affecting small areas. However, although Maximum Distance 
Errors (MSSD) were considerably high, the reasonable averages (ASSD and RMSD) show 
that these errors were produced in very punctual areas hardly modifying volumes. Most of 
the frontiers were defined in zones adjacent to the heart and cava vein. The number of 
frontiers needed to restrict forces in those areas depended on the image and varied from 0 to 
13 frontiers in the most difficult case. Further studies are also warranted in order to reduce 
the user interaction.  
The proposed method requires 7.7 minutes on average using a non optimized MATLAB 
code running on one core of a PC at 2.4 GHz with 4 GB memory.  
Time refers to the time needed for the automated computation of the segmentation result 
after the seed point and frontiers have been set. Computation time depends on the image 
size, mainly on the inter-slice distance (that vary from 1 to 5 mm in our data) and this is the 
reason because it goes from 3 to 11 min. Note that the highest resolution level of the process 
employ all the slices of the original data and this is the more time-consuming step. 
 

 
Fig. 4. Segmentation of healthy parenchyma in case 4. Top: radiologist manual segmentation. 
Bottom: resulting semiautomatic segmentation with presented method. Left to right: 
transverse, coronal and sagittal slices.  

6. Conclusion 
This chapter makes an especial effort in presenting, in a wide and complete context, the state 
of the art in the scope of the hepatic segmentation from CT images. It presents the newest 
and most sophisticated methods developed in this field in the last few years and notes the 
importance of hepatic volume estimation from CT scans for hepatic surgical planning. 
Moreover, the application of a semiautomatic liver 3D segmentation tool to segment and 
quantify the volume of the healthy parenchyma from CT preoperative abdominal images is 
presented. The tool combines a 3D active contour method implemented with Level Sets 
techniques with a multiresolution strategy, a morphological filtering post processing and a 
fast method to manually define specific frontiers. An initial seed point inside the healthy 
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parenchyma manually selected by the user is required. If desired the user can also define 
several frontiers to delineate the separation with problematic regions like the kidney or the 
heart. The method has been validated with a set of five abdominal CT preoperative images 
with special difficulties. Further studies are needed in order to solve specific problems 
related with errors in narrow liver areas and reducing user interaction. Nevertheless, the 
proposed method has demonstrated good performance and a noticeable reduction of the 
time needed with respect to manual segmentations.  

7. Acknowledgments 
This study was partially supported by research projects TIN 2007-68048-C02, PI09/91058, 
PI09/91065, ENTEPRASE PS-300000-2009-5, AMIT-CDTI, TEC2010-21619-C04 and 
PRECISION IPT-300000-2010-3, from Spain’s Ministry of Science & Innovation, the project 
ARTEMIS Comunidad de Madrid, and with assistance from the European Regional 
Development Fund (FEDER).  

8. References 
Barrett, W. A. & Mortensen, E. N. (1997). Interactive live-wire boundary extraction. Med 

Image Anal, Vol. 1, No. 4, pp. 331-41. 
Beck, A. & Aurich, V. (2007). HepaTux–A Semiautomatic Liver Segmentation System. 

Proceedings of MICCAI 2007 Workshop: 3D Segmentation in the Clinic-A Grand 
Challenge, pp. 225–233. 

Beichel, R.; Bauer, C.; Bornik, A.; Sorantin, E. & Bischof, H. (2007). Liver Segmentation in CT 
Data: A Segmentation Refinement Approach. Proceedings of MICCAI 2007 Workshop: 
3D Segmentation in the Clinic-A Grand Challenge, pp. 235–245. 

Bekes, G.; Nyül, L. G.; Máté, E.; Kuba, A. & M., F. (2007). 3D Segmentation of Liver, Kidneys 
and Spleen from CT Images. International Journal of Computer Assisted Radiology and 
Surgery, Vol. 2, pp. 45-46. 

Campadelli, P.; Casiraghi, E. & Pratissoli, S. (2010). A segmentation framework for 
abdominal organs from CT scans. Artif Intell Med, Vol. 50, No. 1, pp. 3-11. 

Caselles, V.; Kimmel, R. & Sapiro, G. (1997). Geodesic active contours. International Journal of 
Computer Vision, Vol. 22, No. 1, pp. 61-79. 

Couinaud, C. (1999). Liver anatomy: portal (and suprahepatic) or biliary segmentation. 
Digestive Surgery, Vol. 16, No. 6, pp. 459-467. 

Chan, T. F. & Vese, L. A. (2001). Active contours without edges. IEEE Transactions on Image 
Processing, Vol. 10, No. 2, pp. 266-277. 

Dawant, B. M.; Li, R.; Lennon, B. & Li, S. (2007). Semi-automatic segmentation of the liver 
and its evaluation on the MICCAI 2007 grand challenge data set. Proceedings of 
MICCAI 2007 Workshop: 3D Segmentation in the Clinic-A Grand Challenge, pp. 215–
221. 

Fernandez-De-Manuel, L.; Rubio, J. L.; Ledesma-Carbayo, M. J.; Pascau, J.; Tellado, J. M.; 
Ramón, E.; Desco, M. & Santos, A. (2009). 3D Liver Segmentation in Preoperative 
CT Images using a Level-Sets Active Surface Method. Proceedings of IEEE 
Engineering in Medicine and Biology Society (EMBC 2009), pp. 3625-3628. 

Liver Segmentation and Volume Estimation from Preoperative CT Images in Hepatic 
Surgical Planning: Application of a Semiautomatic Method Based on 3D Level Sets   

 

91 

Fujimoto, H.; Gu, L. & Kaneko, T. (2002). Recognition of abdominal organs using 3D 
mathematical morphology. Systems and Computers in Japan, Vol. 33, No. 8, pp. 75-83. 

Gao, L. M.; Heath, D. G. & Fishman, E. K. (1998). Abdominal image segmentation using 
three-dimensional deformable models. Investigative Radiology, Vol. 33, No. 6, pp. 
348-355. 

Gao, L. M.; Heath, D. G.; Kuszyk, B. S. & Fishman, E. K. (1996). Automatic liver 
segmentation technique for three-dimensional visualisation of CT data. Radiology, 
Vol. 201, No. 2, pp. 359-364. 

Garamendi, J. F.; Malpica, N.; Martel, J. & Schiavi, E. (2007). Automatic segmentation of the 
liver in CT using level sets without edges. Proceedings of Iberian Conference on Pattern 
Recognition and Image Analysis, pp. 161-168. 

Handels, H. & Ehrhardt, J. (2009). Medical Image Computing for Computer-supported 
Diagnostics and Therapy Advances and Perspectives. Methods of Information in 
Medicine, Vol. 48, No. 1, pp. 11-17. 

Heimann, T.; Meinzer, H. P. & Wolf, I. (2007). A statistical deformable model for the 
segmentation of liver CT volumes. Proceedings of MICCAI 2007 Workshop: 3D 
Segmentation in the Clinic-A Grand Challenge, pp. 161–166. 

Heimann, T.; Van Ginneken, B.; Styner, M. A.; Arzhaeva, Y.; Aurich, V.; Bauer, C.; Beck, A.; 
Becker, C.; Beichel, R.; Bekes, G.; Bello, F.; Binnig, G.; Bischof, H.; Bornik, A.; 
Cashman, P. M. M.; Chi, Y.; Cordova, A.; Dawant, B. M.; Fidrich, M.; Furst, J. D.; 
Furukawa, D.; Grenacher, L.; Hornegger, J.; Kainmuller, D.; Kitney, R. I.; Kobatake, 
H.; Lamecker, H.; Lange, T.; Lee, J.; Lennon, B.; Li, R.; Li, S.; Meinzer, H. P.; 
Nemeth, G.; Raicu, D. S.; Rau, A. M.; Van Rikxoort, E. M.; Rousson, M.; Rusko, L.; 
Saddi, K. A.; Schmidt, G.; Seghers, D.; Shimizu, A.; Slagmolen, P.; Sorantin, E.; 
Soza, G.; Susomboon, R.; Waite, J. M.; Wimmer, A. & Wolf, I. (2009). Comparison 
and Evaluation of Methods for Liver Segmentation From CT Datasets. IEEE 
Transactions on Medical Imaging, Vol. 28, No. 8, pp. 1251-1265. 

Jiang, H. Y. & Cheng, Q. S. (2009) Automatic 3D Segmentation of CT Images Based on 
Active Contour Models. IN Thalmann, D.;Shah, J. J. & Peng, Q. S. (Eds.) 2009 11th 
IEEE International Conference on Computer-Aided Design and Computer Graphics, 
Proceedings. pp. 540-543. 

Kainmueller, D.; Lange, T. & Lamecker, H. (2007). Shape constrained automatic 
segmentation of the liver based on a heuristic intensity model. Proceedings of 
MICCAI 2007 Workshop: 3D Segmentation in the Clinic-A Grand Challenge, pp. 109-116. 

Kass, M.; Witkin, A. & Terzopoulos, D. (1987). Snakes-Active Contour Models. International 
Journal of Computer Vision, Vol. 1, No. 4, pp. 321-331. 

Koss, J. E.; Newman, F. D.; Johnson, T. K. & Kirch, D. L. (1999). Abdominal organ 
segmentation using texture transforms and a Hopfield neural network. IEEE 
Transactions on Medical Imaging, Vol. 18, No. 7, pp. 640-648. 

Lamecker, H.; Lange, T. & Seebass, M. (2004) Segmentation of the liver using a 3d statistical 
shape model. Technical report, Zuse Institute Berlin. 

Lee, C. C. & Chung, P. C. (2000). Recognizing abdominal organs in CT images using 
contextual neural network and fuzzy rules. Proceedings of 22nd Annual International 
Conference of the IEEE Engineering in Medicine and Biology Society, pp. 1745-1748. 



 Theory and Applications of CT Imaging and Analysis 

 

90 

parenchyma manually selected by the user is required. If desired the user can also define 
several frontiers to delineate the separation with problematic regions like the kidney or the 
heart. The method has been validated with a set of five abdominal CT preoperative images 
with special difficulties. Further studies are needed in order to solve specific problems 
related with errors in narrow liver areas and reducing user interaction. Nevertheless, the 
proposed method has demonstrated good performance and a noticeable reduction of the 
time needed with respect to manual segmentations.  
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1. Introduction 
CT is an effective modality for evaluating the structure inside the body and the 3-D shape of 
organs of interest because of ability of high spatial resolution and of high acquisition speed. 
However, CT is weak to evaluate a function of organs because CT only maps X-ray 
absorption coefficients of materials constructing human body. Therefore, study of functional 
imaging of organs by using CT images will be a breakthrough of image diagnosis. This 
chapter introduces a novel method for estimating pulmonary function using MDCT.  
The human lung is composed of five anatomical compartments called “lung lobes.” The 
right lung is segmented into three lung lobes (the upper, middle and lower lobes), and the 
left lung is segmented into two lung lobes (the upper and lower lobes). Thoracic surgeries 
such as a living-donor lobar lung transplantation (LDLLT) (Date et al., 2003a) and the 
lobectomy (Kirby et al., 1993) often operate by a lung lobe. LDLLT is an operation that 
transplants the right and left lower lobes of two living donors to a recipient. In this surgery, 
predicting the postoperative forced vital capacity (FVC) of a recipient is necessary to select 
the adequate donors. The lobectomy is a treatment that extirpates lung lobe. This surgery 
excises the diseased region such as lung or improves breathing function by reducing the 
lung capacity that overexpands by emphysema. In this surgery, predicting the postoperative 
FVC is necessary to investigate the effectiveness of the surgery, too. Since these surgeries 
treatment lobe by lobe, the prediction should be based on individual lung lobes. Although a 
spirometry, which is widely used in a clinical field, enables us to measure the FVC of whole 
lung, it is not available for the FVCs of the individual lung lobes.  
Date et al. have proposed a method for approximating FVCs of individual lung lobes by 
determining the contribution ratio to FVC of the whole lung (Date et al., 2003b). The 
contribution ratio is determined from the number of lung segments occupied in the lung 
lobe. The FVC of recipients that underwent the LDLLT measured at 6 months was 
correlated well with the grafts FVCs of donors estimated by their method (r = 0.802). 
However, the method does not consider the variation of the lobar function among subjects. 
To consider such variation, a tracheal tube can measure the FVCs of the right and the left 
lung respectively. However, the method is invasive due to the use of anesthesia and the 
tracheal tube, and it still cannot measure the FVCs of the individual lung lobes. 
This chapter proposes a novel method for measuring the FVCs of individual lung lobes by 
using volume data acquired from CT scanner. This approach is based on an assumption that 
the FVC of whole lung can be expressed as the change of lung lobe volumes between 
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spirometry, which is widely used in a clinical field, enables us to measure the FVC of whole 
lung, it is not available for the FVCs of the individual lung lobes.  
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determining the contribution ratio to FVC of the whole lung (Date et al., 2003b). The 
contribution ratio is determined from the number of lung segments occupied in the lung 
lobe. The FVC of recipients that underwent the LDLLT measured at 6 months was 
correlated well with the grafts FVCs of donors estimated by their method (r = 0.802). 
However, the method does not consider the variation of the lobar function among subjects. 
To consider such variation, a tracheal tube can measure the FVCs of the right and the left 
lung respectively. However, the method is invasive due to the use of anesthesia and the 
tracheal tube, and it still cannot measure the FVCs of the individual lung lobes. 
This chapter proposes a novel method for measuring the FVCs of individual lung lobes by 
using volume data acquired from CT scanner. This approach is based on an assumption that 
the FVC of whole lung can be expressed as the change of lung lobe volumes between 
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inspiratory and expiratory. Thus, the contribution ratio of lung lobes can be obtained by 
measuring the volumes of lung lobes for each of inspiratory lung and of expiratory lung. 
Because of the use of MDCT images, the proposed method is less invasive in comparison 
with the use of the tracheal tube. The proposed method can consider the variation of the 
lobar function among subjects.  
There are several segmentation methods of lung lobes from MDCT images. Zhou et al. 
(Zhou et al., 2004) and Saita et al. (Saita et al., 2004) extract the lobar fissures in MDCT 
images to determine the boundary surface between lung lobes. They are called LFB (lobar 
fissure based) method. Because lobar fissure indicates right boundary surface of lung lobe, 
this approach is high accuracy. However, this approach has two limitations; (1) it is limited 
to apply the method by a lack of the lobar fissures, and (2) false positive (FP) regions of 
lobar fissures will be extracted.  
To overcome the difficulty of lacked lobar fissures, we proposed a new method (Kobashi et 
al., 2010) that estimates the boundary surface between the lung lobes with the tubular tissue 
density, which is called TTB (tubular tissue density based). The tubular tissues consist of the 
peripheral blood vessels and peripheral bronchus. Because the tubular tissues do not cross 
over the boundary surface between the lung lobes, this method defines the boundary 
surface as the region where the tubular tissue density is low. Therefore, this approach can be 
applied to MDCT images that have a lack of lobar fissures. 

2. Method 
2.1 Image acquisition and forced vital capacity measurement of the whole lung  
MDCT images were acquired from an MDCT scanner (LightSpeed Ultra16, GE Medical 
Systems, WI, USA). The acquisition parameters for the chest MDCT images were: the tube 
voltage was 120 kV; the tube current was 440 mA; the field of view (FOV) was 360 mm; the 
matrix size was 512 × 512 pixels; the slice thickness was 0.625 mm and was with no gap. 
Each sliced image included volumetric data, and a volume dataset from the apex of the lung 
to the diaphragmatic surface was composed of over 450 contiguous axial planes. Given these 
conditions, the acquisition time requiring breath holding was about 10 sec. Fig. 1 shows raw 
MDCT images of the chest. 
Two sets of MDCT image were acquired with inspiratory condition and with expiratory 
condition. For each dataset, the proposed method segmentes the lung lobes, and measrues  
 

 
Fig. 1. Raw MDCT images of the chest. Upper-left to lower-right are superior to inferior. 
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the individual volumes. Thus, we can estimate the change of lung lobe volumes between the 
inspiratory and the expiratory conditions. The contribution rate for the whole lung capacity 
can be estaimated. By using the whole lung FVC measured by a spirometer, the individual 
lung FVCs are estimated.  

2.2 Image analysis 
This study defines tubular tissues as a set of peripheral blood vessels and peripheral 
bronchi. Because the tubular tissues do not exist on the boundary between the lung lobes, 
the method determines the boundary by finding a 3-D continuous space where few tubular 
tissues exist. Therefore, the method does not depend on detection accuracy of the lobar 
fissures from MDCT images. The finding process is automatically performed with a fuzzy 
control (Kobashi et al., 2010), and is composed from the following steps. They are applied to 
both of MDCT datasets with inspiratory and with expiratory conditions.  
Step 1. Segment the lung region from MDCT images. 
 The lung region is segmented by 3-D region growing (RG) and morphological operation 
which consists of 3-D erosion and dilation methods. The bronchial region is removed from 
the segmented region by extracting the air region inside the bronchial walls using 3-D RG 
according to the method proposed by Mori et al. (2000).  
Step 2. Extract the tubular tissues.  
 The peripheral blood vessels have higher CT values than the surrounding parenchyma, and 
the peripheral bronchi also have high CT values. In summary, tubular tissues have high CT 
values in the lung region. Thus, the peripheral blood vessels and peripheral bronchi are 
collectively extracted and are called tubular tissues. They are extracted by an adaptive 
thresholding using mean of a local window. Fig. 2 shows an example of the extracted 
tubular tissues. Then, tubular tissue density is calculated for each voxel in the lung region.  

 

 
Fig. 2. 3-D rendering image of the extracted tubular tissues. 

Step 3. Determine the initial surface. 
 An examiner gives a plane, which runs a space where few tubular tissues using a 
configured graphical user interface (GUI). The GUI displays the 3-D rendering images of the 
extracted tubular tissues. The examiner rotates the rendering image to find a space with few 
tubular tissues. As shown in Fig. 3, by giving a straight line on the rendering image, a plane 
forwarding to the view angle is obtained as the initial surface of the boundary between the 
lung lobes. 
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Fig. 3. Manual determination of initial surface using the configured GUI. This figure shows 
the rendering image of tubular tissues in the right lung. Two cracks of tubular tissues 
corresponding to the major and minor fissures can be found. The examiner rotates the 
rendering image and gives a straight line on the rendering image. 

Step 4. Deform the curved surfaces and obtain the boundaries. 
The initial surface is converted into trapezoidal mesh. By moving the vertexes of the mesh, 
the surface can be deformed. The movement of the vertexes is automatically performed with 
fuzzy control system, which evaluates the anatomical knowledge on the lobar boundaries: 
(1) the moving vertex moves toward a space with low tissue density, and (2) the deforming 
surface model maintains a smoothed surface. The anatomical knowledge is described by 
fuzzy IF-THEN rules (e.g., Han et al., 2007), and the vertexes are moved to a position with 
the higher fuzzy degree belonging to the lobar boundaries.  
Step 5. Segment the lung lobes by the obtained boundaries. 
Step 3 and step 4 are applied to determine one boundary for the left lung, and to determine 
two boundaries for the right lung. Using the boundaries, the left lung is decomposed into 
the upper and the lower lung lobes, and the right lung is decomposed into the upper, the 
middle, and the lower lung lobes.  

2.3 Estimation of individual forced vital capacity 
This approach is based on an assumption that the FVC of whole lung is collerated with the 
differences of volumes between inspiratory and expiratory. The proposed method can 
calculate volumes of the individual lung lobes from a set of MDCT images on inspiratory 
and expiratory of the same subject. Therefore, by using the volumes of the segmented lung 
lobe region, it is possible to estimate the FVCs of individual lung lobes. 
 We consider that the FVC of whole lung is the sum of the FVCs of individual lung lobes. If 
we can calculate the ratios that each lung lobe can contribute to the FVC of whole lung, the 
FVCs of individual lung lobes are predicted. The contribution ratios are associated with the 
volume differences of the segmented lung lobe region between inspiratory and expiratory. 
Therefore, the FVCs of individual lung lobes are estimated by using the FVC of whole lung 
measured by the spirometry and the contribution ratios. 
The proposed method defines the contribution ratio of the lung lobe of interest R(t) (t = {the 
right upper lobe, right middle lobe, right lower lobe, left upper lobe, and left lower lobe}) 
through the following equation, 
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where Vi and Ve are the inspiratory and expiratory volume of the segmented lung lobe 
region, respectively. In consequently, the FVCs of individual lung lobes FVC(t) are predicted 
in the following equation, 

 ( ) ( ) lungFVC t R t FVC= ⋅  (2) 

where FVClung denotes the FVC of whole lung measured by the spirometry, and sum of 
contirbution ratios equals to 1. Therefore, the sum of FVC(t) equals FVClung. Because of the 
use of the image information (i.e., chest MDCT images), R(t) can reflect the variation of the 
respiratory function among subjects in comparison with the conventional method that fixes 
the contribution ratio (Date et al., 2003b). 

4. Experimental results 
The proposed method was applied to four normal subjects who were recruited in our 
institute. Table I shows the profiles of the subjects. All the subjects provided written 
informed consent according to a guideline approved by the local Ethics Committee. In the 
eight collected MDCT datasets, there were partial lacks in the delineation of the lobar 
fissure.  
 

Subjects Sex Age 
(YO) 

Height 
(cm) 

Smoking 
History VCP (cc) FVC (cc) FEV1% 

(%) 

A Male 23 175 No 4380 3440 87 
B Male 23 172 No 4300 3780 91 
C Male 22 173 No 4350 2890 99 
D Male 21 178 Yes 4490 3980 91 

Table I. Subject profiles; YO means years old, VCP means vital capacity predicted, and 
FEV1% means ratio of FEV1 (forced expiratory volume in one second) to FVC. 

Fig. 3 shows raw MDCT images, the experimental results with the proposed method, and 
lobar fissures extracted by conventional method for comparison. In raw MDCT image, lobar 
fissures appear with the higher CT values than the surrounding region. However, over-
extraction and under-extraction tend to be occurred. In contrast, the proposed method 
determines the lobar boundaries for the lacked fissures.  
To evaluate the determined boundaries with the proposed method, they were compared 
with boundaries manually delineated by a physician. Because the proposed method requires 
an interaction to determine the initial surface, for each dataset, the proposed method was 
applied 10 times. Table II shows the comparison results for each boundary; the left major 
fissure, the right major fissure, and the right minor fissure. The accuracy was evaluated by 
measuring the shortest distance between the automatically determined boundary and the 
manually delineated boundary. The mean ± standard deviation (SD) of detecting accuracy 
was 3.20 ± 1.72 [mm].  
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where Vi and Ve are the inspiratory and expiratory volume of the segmented lung lobe 
region, respectively. In consequently, the FVCs of individual lung lobes FVC(t) are predicted 
in the following equation, 
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where FVClung denotes the FVC of whole lung measured by the spirometry, and sum of 
contirbution ratios equals to 1. Therefore, the sum of FVC(t) equals FVClung. Because of the 
use of the image information (i.e., chest MDCT images), R(t) can reflect the variation of the 
respiratory function among subjects in comparison with the conventional method that fixes 
the contribution ratio (Date et al., 2003b). 
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The proposed method was applied to four normal subjects who were recruited in our 
institute. Table I shows the profiles of the subjects. All the subjects provided written 
informed consent according to a guideline approved by the local Ethics Committee. In the 
eight collected MDCT datasets, there were partial lacks in the delineation of the lobar 
fissure.  
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History VCP (cc) FVC (cc) FEV1% 

(%) 

A Male 23 175 No 4380 3440 87 
B Male 23 172 No 4300 3780 91 
C Male 22 173 No 4350 2890 99 
D Male 21 178 Yes 4490 3980 91 

Table I. Subject profiles; YO means years old, VCP means vital capacity predicted, and 
FEV1% means ratio of FEV1 (forced expiratory volume in one second) to FVC. 

Fig. 3 shows raw MDCT images, the experimental results with the proposed method, and 
lobar fissures extracted by conventional method for comparison. In raw MDCT image, lobar 
fissures appear with the higher CT values than the surrounding region. However, over-
extraction and under-extraction tend to be occurred. In contrast, the proposed method 
determines the lobar boundaries for the lacked fissures.  
To evaluate the determined boundaries with the proposed method, they were compared 
with boundaries manually delineated by a physician. Because the proposed method requires 
an interaction to determine the initial surface, for each dataset, the proposed method was 
applied 10 times. Table II shows the comparison results for each boundary; the left major 
fissure, the right major fissure, and the right minor fissure. The accuracy was evaluated by 
measuring the shortest distance between the automatically determined boundary and the 
manually delineated boundary. The mean ± standard deviation (SD) of detecting accuracy 
was 3.20 ± 1.72 [mm].  
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Fig. 3. 2-D segmentation results of subject A. (a) 170th slice, (b) 186th slice, and (c) 212th slice; 
(left) raw MDCT images, (middle) lung lobes segmented with the proposed method, (right) 
extracted lobar fissures with the conventional method.  
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 Left Major Right Major Right Minor 

Inspiratory 3.29±1.83 3.62±1.69 2.87±1.78 
Subject A 

Expiratory 3.34±1.75 3.43±1.68 2.60±1.62 

Inspiratory 3.29±1.68 3.54±1.69 3.62±1.72 
Subject B 

Expiratory 3.16±1.76 3.39±1.67 3.33±1.68 

Inspiratory 2.71±1.79 3.37±1.75 3.19±1.80 
Subject C 

Expiratory 3.09±1.63 3.33±1.68 2.69±1.71 

Inspiratory 3.65±1.65 3.06±1.79 3.49±1.76 
Subject D 

Expiratory 3.05±1.71 2.94±1.75 2.83±1.82 

Table II. Accuracy of detecting lobar boundaries with the proposed method (mean ± 
standard deviation [mm]). 

Fig. 4 shows the surface shaded display (SSD) images of the segmented lung lobes. For any 
subject, and for any condition of inspiratory or expiratory, the lung lobes were segmented 
well. The comparison of lung lobes between the conditions of inspiratory and expiratory 
demonstrates that the lobes deform largely by inspiration. Next, by counting the number of 
voxels for each lung lobe, the volumes can be measured. Table III shows the lung lobe 
volumes estimated by the proposed method. To validate the proposed method, lung lobe 
volumes were measured manually by delineating the lung lobe boundaries with physicians. 
Error ratio is computed by truth estimated

truth
− . The absolute mean error ratio across the lung 

lobes on the inspiratoy condition was 0.9 % and on the expiratory condition was 1.2 %, and 
the mean was 1.1 %. As shown in this table, there are no differences of segmentation 
accuracy among subjects, lung lobes, and inspiratory/expiratory conditions. 
Using the estimated lung lobe volumes shown in Table III, contribution ratio was calculated 
by Eq. (1). The contribution ratios calculated with the present method, and the fixed 
contribution ratios introduced by Data et al. (2003b) are shown in Table IV. There are slight 
differences between the estimated contribution ratios and the fixed parameters: e.g., the 
contribution ratio of the right middle lobe was lower than the fixed one, and the right lower 
lobe was higher than the fixed one. In addition, we can show the differences of contribution 
ratios among the subjects.  
Finally, FVCs of lung lobes were estimated by using Eq. (2). Table V shows the estimated 
FVCs of the individual lung lobes for all subjects. By using this table, we may predict FVC 
after LDLLT. For example, assume the left lower lobe of subject A and the right lower lobe 
of subject B are transplanted into a recipient. In this case, after LDLLT, FVC of the recipient 
can be predicted as 2217.4 cc (=1026.2 cc + 1191.1 cc), and FVC of two donors, subject A and 
subject B, will be 2413.8 cc (=3440 cc – 1026.2 cc) and 2588.9 cc (=3780cc -1191.1 cc), 
respectively. In the similar way, FVC after LDLLT with the other combination of donors can 
be predicted. Thus, by using this technique, we might choose the better donors for the 
recipient. Of course, FVC after LDLLT will be affected by the other factors. Therefore, we 
should validate this technique in the future.  
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Fig. 3. 2-D segmentation results of subject A. (a) 170th slice, (b) 186th slice, and (c) 212th slice; 
(left) raw MDCT images, (middle) lung lobes segmented with the proposed method, (right) 
extracted lobar fissures with the conventional method.  
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(a) Subject A. 

 
(b) Subject B. 

  
(c) Subject C. 

 
(d) Subject D. 

Fig. 4. SSD images of segmentation results; left and right; the segmentation results of a 
subject with inspiratory and expiratory, respectively. Different lung lobes are displayed 
with the different colours. 
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 Left 
Upper 

Left 
Lower 

Right 
Upper 

Right 
Middle 

Right 
Lower 

Truth 1157 1408 938 451 1604 
Estimated 1169 1396 937 452 1604 Inspiratory 
error ratio 1.0% -0.9% -0.1% 0.2% 0.0% 

Truth 683 645 565 298 883 
Estimated 673 655 571 294 881 

A 

Expiratory 
error ratio -1.5% 1.6% 1.1% -1.3% -0.2% 

Truth 1207 1709 937 496 1814 
Estimated 1213 1703 942 493 1811 Inspiratory 
error ratio 0.5% -0.4% 0.5% -0.6% -0.2% 

Truth 740 834 561 338 945 
Estimated 744 830 571 326 946 

B 

Expiratory 
error ratio 0.5% -0.5% 1.8% -3.6% 0.1% 

Truth 1058 1111 779 362 1266 
Estimated 1039 1130 771 348 1288 Inspiratory 
error ratio -1.8% 1.7% -1.0% -3.9% 1.7% 

Truth 584 479 440 205 636 
Estimated 575 487 426 210 644 

C 

Expiratory 
error ratio -1.5% 1.7% -3.2% 2.4% 1.3% 

Truth 1150 1486 999 454 1661 
Estimated 1168 1469 993 458 1665 Inspiratory 
error ratio 1.6% -1.1% -0.6% 0.9% 0.2% 

Truth 623 684 530 277 817 
Estimated 623 684 535 275 812 

D 

Expiratory 
error ratio 0.0% 0.0% 0.9% -0.7% -0.6% 

Inspiratory absolute mean 1.2% 1.0% 0.6% 1.4% 0.5% 
Expiratory absolute mean 0.9% 0.9% 1.7% 2.0% 0.6% 

Total absolute mean 1.1% 1.0% 1.2% 1.7% 0.5% 

Table III. Estimated lung lobe volumes with the proposed method (cc). 

 
 

Subject Left Upper Left Lower Right 
Upper 

Right 
Middle 

Right 
Lower 

A 20.0% 29.8% 14.7% 6.4% 29.1% 
B 17.1% 31.8% 13.5% 6.1% 31.5% 
C 20.8% 28.8% 15.4% 6.2% 28.8% 
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Mean 19.3% 29.6% 15.0% 6.3% 29.9% 
Conv. fixed  
parameter 

21.1% 
(=4/19) 

26.3% 
(=5/19) 

15.8% 
(=3/19) 

10.5% 
(=2/19) 

26.3% 
(=5/19) 

Table IV. Estimated contribution ratios of the individual lung lobes. "Conv. fixed 
parameters" are parameters introduced by Data et al (2003b). 
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(a) Subject A. 

 
(b) Subject B. 

  
(c) Subject C. 

 
(d) Subject D. 

Fig. 4. SSD images of segmentation results; left and right; the segmentation results of a 
subject with inspiratory and expiratory, respectively. Different lung lobes are displayed 
with the different colours. 
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Table IV. Estimated contribution ratios of the individual lung lobes. "Conv. fixed 
parameters" are parameters introduced by Data et al (2003b). 
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Subject Whole lung Left 
Upper 

Left 
Lower 

Right 
Upper 

Right 
Middle 

Right 
Lower 

A 3440 686.9 1026.2 506.9 218.8 1001.3 
B 3780 645.8 1202.2 510.9 230.0 1191.1 
C 2890 600.3 831.8 446.3 178.5 833.1 
D 3980 768.1 1106.3 645.5 257.9 1202.2 

Table V. Estimated FVCs of lung lobes with the proposed method (cc). The whole lung FVC 
was measured by spirometry, and the others were estimated by the proposed method. 

7. Conclusion 
This chapter presents a novel method for estimating individual lung lobe FVC with MDCT 
images. The new method can be applied to chest MDCT images with lacked fissures. 
Moreover, this will be the first attempt to estimate the individual lung lobe FVC. In the 
future, we should validate the estimated individual lung lobe FVC. In addition, the 
effectiveness of this technique will be discussed through future clinical studies.  
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1. Introduction      
As surgical skills develop in spinal field, transpedicular screw fixation of the lower thoracic, 
thoracolumbar, and lumbar spines have already been performed successfully, even using 
freehand technique by trained surgeons. The benefits of transpedicular screw fixation are 
widely accepted in the thoracolumbar spinal region for very stable fixation effect. Abumi et 
al first introduced transpedicular screw fixation in the subaxial cervical spinal region in 1991 
and reported their initial clinical results in 1994 [1]. Since then, some other spinal surgeons 
began to accept transpedicular screw fixation in the subaxial cervical region as one choice 
[5]. But whether this fixation method can be accepted widely as a routine choice has been 
disputed till now. The main concern comes from the potential violation of the pedicle 
cortices and following damages to adjacent neurovascular structures [6][12]. To diminish 
subaxial cervical pedicle (SCP) screw malposition ratio as low as possible and to ensure 
successful clinical results, the complex morphologic features and projections of subaxial 
cervical pedicles should be clearly understood. That is, the exact diameter, inclinations at 
transverse and sagittal plane, cortical thicknesses at different orientations, and cortical 
thicknesses adjacent to pedicle entrance should be determined before any transpedicular 
screw fixation was performed, even by experienced surgeons using meticulous surgical 
techniques[Fig.1]. Although morphologic studies of the cervical spine have been reported as 
a way to evaluate the feasibility and safety of the technique, many have focused on 
transverse diameter of the pedicles, which is far from enough [3].Thorough understanding 
of the subaxial cervical spinal pedicle anatomy is mandatory to avoid injury to the vertebral 
artery, spinal cord or a nerve root [8][11][14]. 
Because of their inherent ability to render bony anatomy in three dimensions, CT scans can 
provide the best osseous detail of subaxial cervical pedicles. Volumetric CT could 
reconstruct multiplanar CT images based on raw sequential transaxial CT images [7]. 
Multiple planar reconstruction (MPR) CT images could provide vivid anatomic data of 
subaxial cervical pedicles at different planes and different orientations for further detailed 
study. MPR CT images can be reconstructed using the CT-machine attached Advantage 
Workstation. If time permitted, quantitative measurement of MPR CT images can be 
fulfilled using the measurement tools of the CT machine-attached Advantage Workstation. 
But in clinical practice, large clinical CT scanning tasks are under schedule，the Advantage 
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1. Introduction      
As surgical skills develop in spinal field, transpedicular screw fixation of the lower thoracic, 
thoracolumbar, and lumbar spines have already been performed successfully, even using 
freehand technique by trained surgeons. The benefits of transpedicular screw fixation are 
widely accepted in the thoracolumbar spinal region for very stable fixation effect. Abumi et 
al first introduced transpedicular screw fixation in the subaxial cervical spinal region in 1991 
and reported their initial clinical results in 1994 [1]. Since then, some other spinal surgeons 
began to accept transpedicular screw fixation in the subaxial cervical region as one choice 
[5]. But whether this fixation method can be accepted widely as a routine choice has been 
disputed till now. The main concern comes from the potential violation of the pedicle 
cortices and following damages to adjacent neurovascular structures [6][12]. To diminish 
subaxial cervical pedicle (SCP) screw malposition ratio as low as possible and to ensure 
successful clinical results, the complex morphologic features and projections of subaxial 
cervical pedicles should be clearly understood. That is, the exact diameter, inclinations at 
transverse and sagittal plane, cortical thicknesses at different orientations, and cortical 
thicknesses adjacent to pedicle entrance should be determined before any transpedicular 
screw fixation was performed, even by experienced surgeons using meticulous surgical 
techniques[Fig.1]. Although morphologic studies of the cervical spine have been reported as 
a way to evaluate the feasibility and safety of the technique, many have focused on 
transverse diameter of the pedicles, which is far from enough [3].Thorough understanding 
of the subaxial cervical spinal pedicle anatomy is mandatory to avoid injury to the vertebral 
artery, spinal cord or a nerve root [8][11][14]. 
Because of their inherent ability to render bony anatomy in three dimensions, CT scans can 
provide the best osseous detail of subaxial cervical pedicles. Volumetric CT could 
reconstruct multiplanar CT images based on raw sequential transaxial CT images [7]. 
Multiple planar reconstruction (MPR) CT images could provide vivid anatomic data of 
subaxial cervical pedicles at different planes and different orientations for further detailed 
study. MPR CT images can be reconstructed using the CT-machine attached Advantage 
Workstation. If time permitted, quantitative measurement of MPR CT images can be 
fulfilled using the measurement tools of the CT machine-attached Advantage Workstation. 
But in clinical practice, large clinical CT scanning tasks are under schedule，the Advantage 
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Workstation could only fulfil routine MPR reconstruction and measurement work; it is not 
realistic to reconstruct wanted subaxial cervical MPR CT images and to finish quantitative 
measurement using the measurement tools of the Workstation at every time（Fig. 2）. Also, 
one could not expect that a CT-machine operator could reconstruct satisfied MPR CT images 
and finish relative measurement as a spinal surgeon really needed. If primary MPR CT 
images are not qualified, reviewing or reconstructing more MPR images based on raw CT 
data for further observation and quantitative measurement becomes more difficult. One 
feasible substitute choice is to develop other software which is free of CT-machine and could 
fulfil reconstructing satisfied MPR CT images and quantitative measurement based on raw 
transaxial CT images at a free computer. 
 

 
Fig. 1. Lateral wall violation of mispositioned screw trajectory 

 

 
Fig. 2. It is not realistic to finish quantitative measurement using the measurement tools of 
the CT machine-attached Advantage workstation at every time 

To some extent, we found ImageViewer software could fulfil this requirement. The software 
is one sharestation of Silver picture archiving and communication system (PACS) which was 
developed by Beijing Silver medical information Technical Corporation Limited of People’s 
Republic of China (webdress: http://www. minipacs. com). The software could provide 
qualified electronic MPR CT images with reference ruler present based on sequential raw 
transaxial CT images (Fig.3).  However this software also has some defects; for example, it 
could not finish electronic measurements on reconstructed MPR CT images. Later we found 
this defect could be compensated by AutoCAD software with the help of Adobe Photoshop 
software.  
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Fig. 3. Raw CT image opened in ImageViewer interface (Chinese Version) 
In this chapter we describe the technique of using AutoCAD2010 software to perform 
quantitative electronic measurement on subaxial cervical MPR CT images which were 
reconstructed with Imageviewer interface of Silver PACS software at the basis of sequential 
raw tranaxial CT images. As the morphology of SCP and quantitative anatomical data were 
got, unsuitable pedicles were rejected; successful subaxial cervical transpedicular screw 
fixation could be finished.  

2. Important 
To ensure accuracy of subaxial cervical transpedicular fixation, the pedicle’s morphology and 
orientation must be clearly understood preoperatively. Multiple planar reconstructed (MPR) 
CT images can provide vivid MPR images for detailed observation (Fig.4). Meanwhile, 
quantitative electronic measurement of these images can be fulfilled using the measurement 
tools of the CT machine-attached Advantage Workstation. Theoretically, all needed 
quantitative data could be easily obtained at Advantage Workstation. But as large routine 
clinical CT scanning tasks and multiple planar reconstruction works are under schedule every 
day, it is not realistic to do extra MPR reconstructions and quantitative electronic measurement 
of subaxial cervical pedicles at Advantage Workstation every time as one spinal surgeon really 
needs. If there exists some other software which can fulfil the multiple reconstruction work 
meanwhile fulfil quantitative measurement which is free of CT machine, that would be a good 
substitute solution method. ImageViewer software is one sharestation of Silver picture 
archiving and communication system (PACS), it was developed by Beijing Silver medical 
information Technical Corporation Limited and has been authorized to our hospital. Primarily 
the software was developed to provide online command dashboard screen observation of raw 
CT images at remote terminal computers; meanwhile it also could reconstruct qualified 
electronic MPR CT images with reference ruler present by reformatted method based on 
sequential raw transaxial CT images (Fig.2).  Also the software could finish some primary 
linear and angular measurement on raw digital images, although not accurate. To our great 
pity, it could not finish electronic measurements on reconstructed MPR CT images.  
To compensate this defect, we used the computer’s PrtSc key to capture a snapshot of the 
computer screen which was exhibiting the electronic MPR CT images with reference ruler 
present at ImageViewer interface, and pasted it to a new opened file which was created in 
Adobe Photoshop CS software and used the crop tool to crop the needed image region and 
saved it as in JPG format [2]. The JPG format image was then inserted to opened AutoCAD 
file as raster image to finish electronic quantitative measurement. By such steps, the 
morphology of SCP and quantitative anatomical data could be gotten successfully.  
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Fig. 3. Raw CT image opened in ImageViewer interface (Chinese Version) 
In this chapter we describe the technique of using AutoCAD2010 software to perform 
quantitative electronic measurement on subaxial cervical MPR CT images which were 
reconstructed with Imageviewer interface of Silver PACS software at the basis of sequential 
raw tranaxial CT images. As the morphology of SCP and quantitative anatomical data were 
got, unsuitable pedicles were rejected; successful subaxial cervical transpedicular screw 
fixation could be finished.  

2. Important 
To ensure accuracy of subaxial cervical transpedicular fixation, the pedicle’s morphology and 
orientation must be clearly understood preoperatively. Multiple planar reconstructed (MPR) 
CT images can provide vivid MPR images for detailed observation (Fig.4). Meanwhile, 
quantitative electronic measurement of these images can be fulfilled using the measurement 
tools of the CT machine-attached Advantage Workstation. Theoretically, all needed 
quantitative data could be easily obtained at Advantage Workstation. But as large routine 
clinical CT scanning tasks and multiple planar reconstruction works are under schedule every 
day, it is not realistic to do extra MPR reconstructions and quantitative electronic measurement 
of subaxial cervical pedicles at Advantage Workstation every time as one spinal surgeon really 
needs. If there exists some other software which can fulfil the multiple reconstruction work 
meanwhile fulfil quantitative measurement which is free of CT machine, that would be a good 
substitute solution method. ImageViewer software is one sharestation of Silver picture 
archiving and communication system (PACS), it was developed by Beijing Silver medical 
information Technical Corporation Limited and has been authorized to our hospital. Primarily 
the software was developed to provide online command dashboard screen observation of raw 
CT images at remote terminal computers; meanwhile it also could reconstruct qualified 
electronic MPR CT images with reference ruler present by reformatted method based on 
sequential raw transaxial CT images (Fig.2).  Also the software could finish some primary 
linear and angular measurement on raw digital images, although not accurate. To our great 
pity, it could not finish electronic measurements on reconstructed MPR CT images.  
To compensate this defect, we used the computer’s PrtSc key to capture a snapshot of the 
computer screen which was exhibiting the electronic MPR CT images with reference ruler 
present at ImageViewer interface, and pasted it to a new opened file which was created in 
Adobe Photoshop CS software and used the crop tool to crop the needed image region and 
saved it as in JPG format [2]. The JPG format image was then inserted to opened AutoCAD 
file as raster image to finish electronic quantitative measurement. By such steps, the 
morphology of SCP and quantitative anatomical data could be gotten successfully.  
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Fig. 4. Reconstructed sagittal CT images at CT machine-attached Advantage Workstation 

Based on these data, we fulfilled successful subaxial cervical transpedicular screw fixation 
manipulation. In this chapter, we introduce the details of using AutoCAD2010 software[3] 
to perform quantitative electronic measurement on subaxial cervical MPR CT images which 
were reconstructed with ImageViewer interface of Silver PACS software at the basis of 
sequential raw transaxial CT images. 
As the raster images opened in AutoCAD program were not real digitized images but JPG 
format ones. The precision is still limited, to some extent. Also, the procedures were tedious. 
In the near future, we hope new version of ImageViewer software can be developed to fulfil 
electronic quantitative measurement on MPR CT images. 

3. Content 
3.1 Getting raw transaxial CT images 
Volumetric CT ((GE, LightSpeed 16) scanning was performed on cervical spine samples 
with the samples on prone position one by one. We made sure the samples’ longitudinal 
axes were parallel to the CT machine’s longitudinal axis. The scan length was kept constant 
as 5-mm thickness. The entire subaxial cervical region was enrolled within the scanning 
region (Fig. 5).  
 

 
Fig. 5. Cervical spine sample 

Sequential raw transaxial CT image data of each sample were then generated by 
interpolation reconstruction method for a 0.625-mm thickness at 0.625 mm reconstruction 
intervals and saved as digital imaging and communication in medicine (Dicom) format 
documents using the CT machine-attached Advantage Workstation software. These image 
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data could be stored in Disk array machine, so that they could be observed online  at a 
remote terminal computer or downloaded to hard disc of a terminal computer through 
Picture Archiving and Communication System (PACS)[6]. These data could also be directly 
burned to a compact disc or saved to a USB (Universal Serial Bus) flash disk. Here chose to 
burn the data to a compact disc.  

3.2 Reconstructing MPR CT images using the post-processing function of 
ImageViewer software 
Installed Imageviewer software to its default location on our personal computer. The 
software  could also be installed  to any other location.  
(1). Starting ImageViewer 
ImageViewer is a very good Windows program, we could make the program window 
appear on-screen in numerous ways. 
1. On the Windows taskbar, click Start, point to All Programs, point to ImageViewer button, 

then click;  
2. Open the ImageViewer folder, double-click the ImageViewer program icon 
3. During installing process, we chose to create an ImageViewer shortcut icon on our 

computer desktop. So, double-clicking the shortcut icon also could start the program.  
The running ImageViewer program window was shown as Fig.6 
 

 
Fig. 6. The ImageViewer Interface Window 

The title bar locates at the top of the screen, a menu bar just below it, a standard toolbar is 
below the menu bar, and a floating integrated toolbox pane on the right, which are very like 
those found in Microsoft Office System program window. If you have installed this softare, 
what you see on your screen might not match the graphics in Fig.5 exactly. That depends 
whether toolbars are chosen hide or show. The settings could be toggled by clicking their 
relative buttons on View menu’s subcommands.  
(2). Opening raw sequential CT images 
1. On the Standard toolbar of the ImageViewer , click the Open button. Or press Ctrl +O  to 

open the Open dialog box. 
2. In the Open dialog box, navigate to the folder that contains the  sequential raw CT images.  
3. Chose the sequential images that we want to open, then press Alt+O , or click the Open 

button, the chosen images will display (Fig.7). The image numbers displayed in the 
work area may vary. This depends on what display pattern we chose. Click relative 
display settings buttons on the standard toolbar, then the display pattern would change to 
fulfil our request (Fig. 8). 
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Fig. 4. Reconstructed sagittal CT images at CT machine-attached Advantage Workstation 
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Fig. 5. Cervical spine sample 

Sequential raw transaxial CT image data of each sample were then generated by 
interpolation reconstruction method for a 0.625-mm thickness at 0.625 mm reconstruction 
intervals and saved as digital imaging and communication in medicine (Dicom) format 
documents using the CT machine-attached Advantage Workstation software. These image 
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data could be stored in Disk array machine, so that they could be observed online  at a 
remote terminal computer or downloaded to hard disc of a terminal computer through 
Picture Archiving and Communication System (PACS)[6]. These data could also be directly 
burned to a compact disc or saved to a USB (Universal Serial Bus) flash disk. Here chose to 
burn the data to a compact disc.  

3.2 Reconstructing MPR CT images using the post-processing function of 
ImageViewer software 
Installed Imageviewer software to its default location on our personal computer. The 
software  could also be installed  to any other location.  
(1). Starting ImageViewer 
ImageViewer is a very good Windows program, we could make the program window 
appear on-screen in numerous ways. 
1. On the Windows taskbar, click Start, point to All Programs, point to ImageViewer button, 

then click;  
2. Open the ImageViewer folder, double-click the ImageViewer program icon 
3. During installing process, we chose to create an ImageViewer shortcut icon on our 

computer desktop. So, double-clicking the shortcut icon also could start the program.  
The running ImageViewer program window was shown as Fig.6 
 

 
Fig. 6. The ImageViewer Interface Window 

The title bar locates at the top of the screen, a menu bar just below it, a standard toolbar is 
below the menu bar, and a floating integrated toolbox pane on the right, which are very like 
those found in Microsoft Office System program window. If you have installed this softare, 
what you see on your screen might not match the graphics in Fig.5 exactly. That depends 
whether toolbars are chosen hide or show. The settings could be toggled by clicking their 
relative buttons on View menu’s subcommands.  
(2). Opening raw sequential CT images 
1. On the Standard toolbar of the ImageViewer , click the Open button. Or press Ctrl +O  to 

open the Open dialog box. 
2. In the Open dialog box, navigate to the folder that contains the  sequential raw CT images.  
3. Chose the sequential images that we want to open, then press Alt+O , or click the Open 

button, the chosen images will display (Fig.7). The image numbers displayed in the 
work area may vary. This depends on what display pattern we chose. Click relative 
display settings buttons on the standard toolbar, then the display pattern would change to 
fulfil our request (Fig. 8). 
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Fig. 7. To navigate to the folder which contains the raw CT images 

 

 
Fig. 8. Raw transaxial CT images opened at ImageViewer interface in sequence (four images 
in one work area). 

Only a few of the images can be displayed on the screen. We could choose to display other 
images by clicking their relative thumbnails on the left, or by dragging the Scroll bar just 
right to the work area. 
4. Deleting  unnecessary images. 
Following observation and identification, delete those raw images which are not belonged 
to the subaxial cervical spinal region from the folder (Fig.9~10). 
 
 

 
Fig. 9. Proximal transaxial images should be deleted(C1~2 spinal region, nine images in one 
work area) 
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Fig. 10. Distal images should be deleted (upper thoracic spinal region) 

5. Reconstructing MPR CT images  
Click delete button on the standard toolbar to delete all the displayed images at the work area 
(the original images still exist in the folder). Then open all the images which should be 
included in the reconstruction region from the folder again, then clicked the coronal/sagittal 
reconstruction  menu and scroll down to choose begin reconstructing icon and click (Fig.11). 
The MPR CT images with reference ruler then appear (Fig. 12). At this step, the raw axial 
images are  used for guiding as a reference. 
 

 
Fig. 11. To click begin reconstructing icon 
 

 
Fig. 12. Reconstructed MPR CT images at ImageViewer interface. A: Raw transverse CT 
image (act as localizer); B: Reconstructed coronal CT image ;C: Reconstructed sagittal CT 
image. 1.Localizer indicates coronal reconstructing plane; 2.Localizer indicates sagittal 
reconstructing plane;3.Reference ruler at coronal reconstructed CT image interface 
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The raw CT images chosen for reconstruction must be in sequence, neither repeated, nor 
interrupted images are permitted. Or the reconstruction couldn’t  be fulfilled. 
6. Adjusting required MPR images 
Mov the mouse cursor  to the raw axial CT image(Fig. 13A), and choose the coronal 
reconstructing plane localizer (Fig.12,arrow1) then drag the coronal localizer to proper position 
and inclination. During this process, the reconstructed coronal CT image will change 
simultaneously. The same can be done to sagittal reconstructing plane localizer (Fig. 13, 
arrow3). By such process, the real coronal MPR image which was perpendicular to the 
longitudinal axis of the pedicle and sagittal MPR image which just bisects the pedicle along its 
longitudinal axis are reconstructed. The lateral cortex is confirmed to be the thinnest (Fig.13-B). 
 

 
Fig. 13. To drag the localizers to suitable position and angulation to recontruct satisfied MPR 
images. A: Raw transverse CT image (acted as localizer); B: Reconstructed requierd coronal 
CT image; C: Reconstructed required sagittal CT image. 1.Localizer indicates coronal 
reconstructing plane;2.Localizer indicates sagittal reconstructing plane.3.Recontructed 
coronal image of subaxial cervical pedicle; 4.Reconstructed sagittal image of subaxial 
cervical pedicle 
7. Adjusting the size of MPR images  
Select the zoom tool from the floating integrated toolbox pane on the far right side of the work 
area, or click the ”image” menu and scroll down to choose ”zoom” subcommand icon and 
  

 
Fig. 14. To Select the zoom tool to magnify the raw CT image, the reconstructed MPR images 
maginfied  simultaneously with the reference rulers changing too.A:Magnified raw 
transaxial CT image;B:Reconstructed coronal CT image(magnified);C: Reconstructed sagittal 
CT imgage(magnified).  1.Localizer indicated coronal reconstructing plane;2.Localizer 
indicated sagittal reconstructing plane;3.Recontructed coronal image of subaxial cervical 
pedicle; 4.Reconstructed sagittal image of subaxial cervical pedicle;5.Changed reference 
ruler at coronal MPR image interface;6.Changed reference ruler at sagittal MPR image. 
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click.  Then move the cursor over the raw transaxial CT image area (Fig.14-A), the cursor 
would look like a tiny magnifying glass with a plus sign (+) in the center. Presse the left key 
of the mouse and drag the cursor downwards or rightwards, the raw image can be enlarged. 
Meanwhile, the reconstructed coronal and sagittal MPR images will enlarge with the 
reference rulers changing simultaneously. If we drag the cursor upwards or leftwards, the 
raw and reconstructed images would diminish simultaneouly. 
8. To reconstruct MPR images from only one vertebral raw transaxial CT images 
We could also choose part of sequential raw transaxial CT images which mainly come from 
only real vertebra, thus the reconstructed MPR images only displayed the proper CT images 
of one vertebral structure (Fig.15). 
 

 
Fig. 15. Reformatted MPR CT imges from sequential raw transaxial CT images of only one 
cervical vertebra 

(3). Simple and rough linear and angular measurement of raw transaxial CT image. 
Chose line icon at the measure toolbar (Tip: we could click View button on the standard menu 
and then click the measure toolbar subcommand button to show the toolbar if it was hidden). 
We could finish rough linear measurement at raw transaxial CT image. If we chose angular 
icon, the angular measurement could be finished on raw CT images. But linear or angular 
measurement could not be fulfilled at reconstructed MPR image (Fig 15). The linear 
measurement precision is limited as 0mm.  Angular measurement precision is 0.00. 
Compared to the measurement precision that AutoCAD could provide, the values are 
rougher. 

3.3 Creating .JPG documents of MPR CT images with Adobe Photoshop CS 
(1). Capturing a snapshot of the computer screen 
First press Windows Print Screen Key to capture a snapshot of the computer screen which 
exhibits the ImageViewer interface with the raw CT and reformatted CT images and copy 
the snapshot to the clipboard 
(2). Creating a new image document with Adobe Photoshop CS. 
Firstly, start Adobe Photoshop CS program to open the Photoshop interface, then press 
Ctrl+N to create a new image document.  After this, the New Dialog Box appears. On the 
New dialog box, choose resolution as 300 pixels/inch, color mode as RGB color, background 
contents as  white, then click OK(Fig. 16). The new document work area appears. 
Following , press Ctrl+V, the  snapshot will be pasted to the new created document as a 
new layer (Fig. 17). 



 Theory and Applications of CT Imaging and Analysis 

 

112 

The raw CT images chosen for reconstruction must be in sequence, neither repeated, nor 
interrupted images are permitted. Or the reconstruction couldn’t  be fulfilled. 
6. Adjusting required MPR images 
Mov the mouse cursor  to the raw axial CT image(Fig. 13A), and choose the coronal 
reconstructing plane localizer (Fig.12,arrow1) then drag the coronal localizer to proper position 
and inclination. During this process, the reconstructed coronal CT image will change 
simultaneously. The same can be done to sagittal reconstructing plane localizer (Fig. 13, 
arrow3). By such process, the real coronal MPR image which was perpendicular to the 
longitudinal axis of the pedicle and sagittal MPR image which just bisects the pedicle along its 
longitudinal axis are reconstructed. The lateral cortex is confirmed to be the thinnest (Fig.13-B). 
 

 
Fig. 13. To drag the localizers to suitable position and angulation to recontruct satisfied MPR 
images. A: Raw transverse CT image (acted as localizer); B: Reconstructed requierd coronal 
CT image; C: Reconstructed required sagittal CT image. 1.Localizer indicates coronal 
reconstructing plane;2.Localizer indicates sagittal reconstructing plane.3.Recontructed 
coronal image of subaxial cervical pedicle; 4.Reconstructed sagittal image of subaxial 
cervical pedicle 
7. Adjusting the size of MPR images  
Select the zoom tool from the floating integrated toolbox pane on the far right side of the work 
area, or click the ”image” menu and scroll down to choose ”zoom” subcommand icon and 
  

 
Fig. 14. To Select the zoom tool to magnify the raw CT image, the reconstructed MPR images 
maginfied  simultaneously with the reference rulers changing too.A:Magnified raw 
transaxial CT image;B:Reconstructed coronal CT image(magnified);C: Reconstructed sagittal 
CT imgage(magnified).  1.Localizer indicated coronal reconstructing plane;2.Localizer 
indicated sagittal reconstructing plane;3.Recontructed coronal image of subaxial cervical 
pedicle; 4.Reconstructed sagittal image of subaxial cervical pedicle;5.Changed reference 
ruler at coronal MPR image interface;6.Changed reference ruler at sagittal MPR image. 

AutoCAD for Quantitative Measurement  
of Cervical MPR CT Images Reconstructed in ImageViewer Interface   

 

113 

click.  Then move the cursor over the raw transaxial CT image area (Fig.14-A), the cursor 
would look like a tiny magnifying glass with a plus sign (+) in the center. Presse the left key 
of the mouse and drag the cursor downwards or rightwards, the raw image can be enlarged. 
Meanwhile, the reconstructed coronal and sagittal MPR images will enlarge with the 
reference rulers changing simultaneously. If we drag the cursor upwards or leftwards, the 
raw and reconstructed images would diminish simultaneouly. 
8. To reconstruct MPR images from only one vertebral raw transaxial CT images 
We could also choose part of sequential raw transaxial CT images which mainly come from 
only real vertebra, thus the reconstructed MPR images only displayed the proper CT images 
of one vertebral structure (Fig.15). 
 

 
Fig. 15. Reformatted MPR CT imges from sequential raw transaxial CT images of only one 
cervical vertebra 

(3). Simple and rough linear and angular measurement of raw transaxial CT image. 
Chose line icon at the measure toolbar (Tip: we could click View button on the standard menu 
and then click the measure toolbar subcommand button to show the toolbar if it was hidden). 
We could finish rough linear measurement at raw transaxial CT image. If we chose angular 
icon, the angular measurement could be finished on raw CT images. But linear or angular 
measurement could not be fulfilled at reconstructed MPR image (Fig 15). The linear 
measurement precision is limited as 0mm.  Angular measurement precision is 0.00. 
Compared to the measurement precision that AutoCAD could provide, the values are 
rougher. 
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(1). Capturing a snapshot of the computer screen 
First press Windows Print Screen Key to capture a snapshot of the computer screen which 
exhibits the ImageViewer interface with the raw CT and reformatted CT images and copy 
the snapshot to the clipboard 
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Ctrl+N to create a new image document.  After this, the New Dialog Box appears. On the 
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contents as  white, then click OK(Fig. 16). The new document work area appears. 
Following , press Ctrl+V, the  snapshot will be pasted to the new created document as a 
new layer (Fig. 17). 
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Fig. 16. To create a new document with Adobe Photoshop 

 

 
Fig. 17. To paste the snapshot in the new created document opened in Adobe Photoshop 

(3). Editing image  
Choose rectangular marquee tool at the toolbox (locate at the left side of the work area). Then 
move the cursor over the image window, drag the cursor to draw a rectangule around the 
required image area and then release the mouse button. An animated dashed line indicates 
that the area inside it is selected. 
Click the Image menu and drag down to select the crop icon, and then click. Only the selected 
image is left (Fig. 18).  
 

 
Fig. 18. Only selected area is left after clicking Crop icon 

Following , click the layer menu and drag down to select the merge layer icon to merge the 
two layers together.  
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(4). Saving the merged image document as .JPG image 
Click the File menu and drag down to select save as icon, the Save As dialog box appears, 
saved the image as .JPG document to destined folder for further use[3] (Fig.19). 
 

 
Fig. 19. To save the selected area as .JPG document 

3.4 Finishing electronic quantitative measurement of MPR CT images using AutoCAD 
2010 
(1). Starting AutoCAD 2010 
We can select one of the following to start AutoCAD: 
1. Double-click  the AutoCAD shortcut icon on the desktop. 
2. Click the Start button→(All) Programs→Autodesk→AutoCAD 2010→ AutoCAD2010 

icon, then clicked.  
After this step, the New Features Workshop box appears, select the Maybe Later option on the 
left and click OK (Fig.20). The AutoCAD program window will appear. 
 

 
Fig. 20. To select Maybe later option when encounter the New Features Workshop 

(2). (2)Inserting  MPR CT image as raster image 
We did the followings: 
1. On the ribbon, click the Insert tab. 
2. On the Reference panel, click the attach button (Fig. 21), the Select Reference File box will 

appear (Fig .22). 
On the “Select Reference File” box, navigate to the folder that contains the MPR CT images. 
Then browse to the raster image file (.JPG format) that we want to attach (the image we 
want to fulfil quantitative measurement in AutoCAD) and select it, then click Open (Fig.22). 
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Fig. 21. To access attach command on the reference panel 

 

 
Fig. 22. To choose the image that we wanted to measure 

The Select Image File dialog box closes, and the Attach Image dialog box appears. Click Details 
button to display additional information about the selected image (Fig. 23). 
 

 
Fig. 23. To attach a raster image reference 

The path to and the name of the file we selected appear  in the Found In and Saved Path 
fields, respectively. The Name drop-down list allows us to select a previously attached raster 
image file, and Browse allows us to specify a different raster image file to reference. The 
Image Information area provides feedback on how the image would be scaled when it is 
inserted. We could also click Hide Details button to hide the additional information. 
In the Path Type area, we specify the path format as full path. In the Insertion Point area, 
choose <0,0,0>,in the Scale area, choose <1>, in the Rotation area, choose <0>, then press OK 

AutoCAD for Quantitative Measurement  
of Cervical MPR CT Images Reconstructed in ImageViewer Interface   

 

117 

button (we could also choose other choices). The selected MPR image appears at AutoCAD 
work area. 
(3). Adjusting the image to proper location and proper magnified extent.   
Move the cursor to work area, then right-clicked the mouse to display shortcut menu and 
chose zoom button (Fig.24). 
 

 
Fig. 24. To choose zoom shortcut 

We then right-clicked the mouse again to display zoom menu shortcut and chose zoom 
extends button, the inserted image fitted the whole window (Fig.25). 
 

 
Fig. 25. To choose zoom extents to make the image occupy the whole active window area. 

Then we moved the portion that we wanted to measure to the center of the window screen 
and adjusted it to suitable size by using pan and zoom icons’ functions alternatively (Fig.26). 
 

 
Fig. 26. To move the measured portion to the center of the active window screen by pan and 
zoom buttons alternatively.   
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(4). Adjusting reference factor for accurate measurement 
1. On the ribbon, click the Home tab. 
2. On the Draw panel,  click the point button. 
3. Then draw point objects at the start point and end point of the reference ruler of the 

MPR image, respectively. Later, they are chosen as specified node points for the origins 
of dimensions (Fig .27).  

 

 
Fig. 27. To draw point objects for the origins of dimensions  

4. Toggling the Object Snaps on for correct measurement. 
Object snaps let one pick a precise point. We use object snaps to make sure that the 
dimensions are created with the correct measurement.  Node objects are chosen as specified 
points. Clicking the Object Snap button toggles the Object Snap on if it is off, then right-click 
the Object Snap (OSNAP) button on the Status Bar and toggle the Node object snaps on  from 
the shortcut menu (Fig.28).  
 

 
Fig. 28. To turn the Node object snap on from the shortcut menu. 

5. Creating a new dimension style 
Type  dimstyle on the command line to display the Dimension Style Manager dialog box, then 
click  New button. The Create New Dimension Style dialog box is displayed. 
In the New Style Name text box, enter reference as the new name for the dimension style.  In 
the Start With drop-down list, select standard.  After this, click continue button. The New 
Dimension Style dialog box then is displayed. Click  OK button to return to the Dimension 
Style Manager dialog box. Then click Set Current button to set the reference dimension style to 
current. Following click Close button to close the dialog box. The reference dimension style is 
applied to dimensions  we  created. 
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6. Creating a linear dimension 
On the ribbon, click the Annotate tab. Then on the Dimensions panel, click the dimension 
flyout button and chosoe linear icon (Fig.29). 
 

 
Fig. 29. To choose liner dimension 
At the prompt, pick the node which had been drawn at the start location of the reference 
ruler for the first origin point of the dimension. After this, the prompt Specify second extension 
line origin is displayed. Then move the cursor to the second node which has been drawn at 
the end point of the reference ruler for the second origin point of the dimension and click. 
As the prompt Specify dimension line location is displayed, pick a point to place the 
dimension, the linear dimension will display.  But the value is not identical to real reference 
ruler length (Fig.30).  
 

 
Fig. 30. Original vertical linear dimension is displayed 

7. Displaying correct reference value by modifying the dimension style in use. 
Type dimstyle on the command line to display the Dimension style Manager dialog box again. 
In the Styles list box,  select reference, then click Modify button to display the Modify 
Dimension Style dialog box.  In the Modify Dimension Style dialog box,  click Symbols and 
Arrows tab, change the arrow size to desired size; click Text tab, chang the text height to 
desired height; click Primary Units tab, specified Precision as 0.0, suffix as mm, specify 
measurement Scale factor to a proper value, then click OK to save the changes to the reference 
dimension style and to close the Modify Dimension Style dialog box. Any dimensions using 
the modified style (reference) are automatically updated to reflect the changes. Here when 
we modify the measurement  Scale factor to 2.2240, the vertical linear dimension value is  
identical to  the real reference ruler length (30.0mm ). By changing other styles proper value, 
the dimensions created are shown clearly on the computer screen (Fig.31). 
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the modified style (reference) are automatically updated to reflect the changes. Here when 
we modify the measurement  Scale factor to 2.2240, the vertical linear dimension value is  
identical to  the real reference ruler length (30.0mm ). By changing other styles proper value, 
the dimensions created are shown clearly on the computer screen (Fig.31). 
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Fig. 31. To adjust Scale factor till the vertical linear dimension value changes identical to the 
reference ruler value the dimensions created can be observed clearly. 

(5). Correct electronic quantitative measurement of the MPR CT images 
To get correct linear distance values, operate as the followings: 
1. On the ribbon, click the Home tab. 
2. On the Draw panel, click the point button 
3. Draw point objects at the MPR CT image’s proper positions to identify the start point 

and end point for relative linear dimension display. 
4. On the Dimensions panel, choose the aligned linear dimension button 
5. Pick the start node and then the end node. Then relative aligned distance value displays 

(Fig.32). The value is just the one we want to get. Here the value’s precision is 0.0mm. 
We could choose to change precision setting on the Modify Dimension Style dialog box as 
we like; Toggling Object snaps on and turning on the Node object snaps guarantee 
correct and precise measurement if the positions of point objects are positioned correct. 
As the start and end nodes are fixed, the aligned linear dimension value is determined 
identical, no matter what time we do the measurement.  

 

 
Fig. 32. Electronic quantitative measurement of the MPR sagittal CT image. 

The reference ruler length at sagittal image is not identical to that at coronal image.  We ‘d 
first made correct reference value on coronal MPR CT image by modifying scale factor value 
at Primary Units tab in the Modify Dimension Style dialogue box, then repeat the same steps, 
the electronic quantitative measurement of the coronal CT image could be achieved  
successfully  (Fig. 33). 
Chose Angular Dimension, then the superior and medial angles of the pedicle can be 
displayed (Fig.34). 
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Fig. 33. To finish electronic quantitative measurement of the MPR coronal CT image 

 

 
Fig. 34. To finish electronic quantitative angular measurement of the MPR sagittal CT image 

We could also make correct electronic quantitative measurement of the raw Transaxial CT 
images if we are not satisfied with  the values measured in ImageViewer software.  
Repeat the above-mentioned steps, each pedicle’s linear and angular quantitative data could 
be gotten precisely as desired. 
The following table is some linear value data we got in eight subaxial cervical samples. 
 

 MCP LCP SCP ICP ACL ACS ACI PCT 

C3 1.9±0.3 
(1.3~2.1) 

0.8±0.4 
(0.3~1.2) 

2.1±0.5 
(1.5~2.7) 

2.3±0.6 
(1.9~3.2) 

2.3±0.5 
(1.6~2.9) 

1.9±0.4 
(1.6~2.7) 

1.9±0.3 
(1.5~2.2) 

0.9±0.2 
(0.8~1.2) 

C4 2.3±0.7 
(1.8~3.5) 

1.4±0.4 
(0.9~2.0) 

2.4±0.5 
(1.8~2.8) 

2.2±0.4 
(1.9~2.8) 

2.2±0.3 
(1.9~2.7) 

2.1±0.3 
(1.7~2.4) 

2.5±0.6 
(1.8~3.2) 

0.9±0.4 
(0.5~1.4) 

C5 2.3±0.2 
(2~2.6) 

1.5±0.3 
(1.1~1.8) 

2.5±0.8 
(1.8~3.6) 

2.3±0.6 
(1.9~3.3) 

2.0±0.3 
(1.7~2.5) 

1.8±0.7 
(1.3~3.3) 

2.8±0.6 
(1.8~3.8) 

1.2±0.4 
(0.8~1.8) 

C6 1.9±0.2 
(1.5~2.2) 

1.2±0.2 
(0.8~1.3) 

2.4±0.6 
(2.0~3.6) 

2.3±0.5 
(1.9~3.1) 

1.7±0.2 
(1.3~1.9) 

1.8±0.3 
(1.3~2.0) 

2.8±0.4 
(2.4~3.5) 

1.0±0.3 
(0.8~1.4) 

C7 2.0±0.5 
(1.5~2.8) 

0.9±0.3 
(0.5~1.3) 

2.0±0.3  
(1.6~2.5) 

2.2±0.4 
(1.6~2.7) 

1.8±0.2 
(1.6~2.2) 

1.8±0.3 
(1.5~2.2) 

2.1±0.4 
(1.6~2.5) 

0.9±0.3 
(0.6~1.3) 

* MCP: medial cortex of pedicle. LCP:lateral cortex of pedicle SCP:superior cortex of pedicle. ICP: 
inferior cortex of pedicle ACL:anterior cortex of lamina ACS:anterior cortex of superior articularis 
ACI:anterior cortex of inferior articularis PCT posterior cortex of transverse foramen  

Table 1. Cortex thickness measurement of subaxial pedicle and its adjacent structures 
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Fig. 31. To adjust Scale factor till the vertical linear dimension value changes identical to the 
reference ruler value the dimensions created can be observed clearly. 

(5). Correct electronic quantitative measurement of the MPR CT images 
To get correct linear distance values, operate as the followings: 
1. On the ribbon, click the Home tab. 
2. On the Draw panel, click the point button 
3. Draw point objects at the MPR CT image’s proper positions to identify the start point 

and end point for relative linear dimension display. 
4. On the Dimensions panel, choose the aligned linear dimension button 
5. Pick the start node and then the end node. Then relative aligned distance value displays 

(Fig.32). The value is just the one we want to get. Here the value’s precision is 0.0mm. 
We could choose to change precision setting on the Modify Dimension Style dialog box as 
we like; Toggling Object snaps on and turning on the Node object snaps guarantee 
correct and precise measurement if the positions of point objects are positioned correct. 
As the start and end nodes are fixed, the aligned linear dimension value is determined 
identical, no matter what time we do the measurement.  

 

 
Fig. 32. Electronic quantitative measurement of the MPR sagittal CT image. 

The reference ruler length at sagittal image is not identical to that at coronal image.  We ‘d 
first made correct reference value on coronal MPR CT image by modifying scale factor value 
at Primary Units tab in the Modify Dimension Style dialogue box, then repeat the same steps, 
the electronic quantitative measurement of the coronal CT image could be achieved  
successfully  (Fig. 33). 
Chose Angular Dimension, then the superior and medial angles of the pedicle can be 
displayed (Fig.34). 
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Fig. 33. To finish electronic quantitative measurement of the MPR coronal CT image 

 

 
Fig. 34. To finish electronic quantitative angular measurement of the MPR sagittal CT image 

We could also make correct electronic quantitative measurement of the raw Transaxial CT 
images if we are not satisfied with  the values measured in ImageViewer software.  
Repeat the above-mentioned steps, each pedicle’s linear and angular quantitative data could 
be gotten precisely as desired. 
The following table is some linear value data we got in eight subaxial cervical samples. 
 

 MCP LCP SCP ICP ACL ACS ACI PCT 

C3 1.9±0.3 
(1.3~2.1) 

0.8±0.4 
(0.3~1.2) 

2.1±0.5 
(1.5~2.7) 

2.3±0.6 
(1.9~3.2) 

2.3±0.5 
(1.6~2.9) 

1.9±0.4 
(1.6~2.7) 

1.9±0.3 
(1.5~2.2) 

0.9±0.2 
(0.8~1.2) 

C4 2.3±0.7 
(1.8~3.5) 

1.4±0.4 
(0.9~2.0) 

2.4±0.5 
(1.8~2.8) 

2.2±0.4 
(1.9~2.8) 

2.2±0.3 
(1.9~2.7) 

2.1±0.3 
(1.7~2.4) 

2.5±0.6 
(1.8~3.2) 

0.9±0.4 
(0.5~1.4) 

C5 2.3±0.2 
(2~2.6) 

1.5±0.3 
(1.1~1.8) 

2.5±0.8 
(1.8~3.6) 

2.3±0.6 
(1.9~3.3) 

2.0±0.3 
(1.7~2.5) 

1.8±0.7 
(1.3~3.3) 

2.8±0.6 
(1.8~3.8) 

1.2±0.4 
(0.8~1.8) 

C6 1.9±0.2 
(1.5~2.2) 

1.2±0.2 
(0.8~1.3) 

2.4±0.6 
(2.0~3.6) 

2.3±0.5 
(1.9~3.1) 

1.7±0.2 
(1.3~1.9) 

1.8±0.3 
(1.3~2.0) 

2.8±0.4 
(2.4~3.5) 

1.0±0.3 
(0.8~1.4) 

C7 2.0±0.5 
(1.5~2.8) 

0.9±0.3 
(0.5~1.3) 

2.0±0.3  
(1.6~2.5) 

2.2±0.4 
(1.6~2.7) 

1.8±0.2 
(1.6~2.2) 

1.8±0.3 
(1.5~2.2) 

2.1±0.4 
(1.6~2.5) 

0.9±0.3 
(0.6~1.3) 

* MCP: medial cortex of pedicle. LCP:lateral cortex of pedicle SCP:superior cortex of pedicle. ICP: 
inferior cortex of pedicle ACL:anterior cortex of lamina ACS:anterior cortex of superior articularis 
ACI:anterior cortex of inferior articularis PCT posterior cortex of transverse foramen  

Table 1. Cortex thickness measurement of subaxial pedicle and its adjacent structures 
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The results confirmed that the lateral cortex of the subaxial cervical pedicles was 
significantly thinner than medial, superior, and inferior counterparts. 
Based on above-mentioned and other relative linear and angular values, we tried some new 
techniques to perform subaxial cervical transpedicular manipulation by hand. All suitable 
pedicles were performed successfully (Fig .35). 
 

 
Fig. 35. Successful subaxial transpedicular manipulation  

Although it seems tedious and troublesome from the above-mentioned steps description, but if 
one is familiar with AutoCAD, it is very easy to finish the steps mentioned-above.  What we 
need to do is just translating the MPR image into JPG-format image and inserted it into 
AutoCAD interface as raster image. Other measurement steps are very simple and easy to do.  

4. Conclusion 
To make successful transpedicular screw fixation in subaxial cervical spinal region, the 
anatomical characteristics of subaxial cervical spine must be thoroughly understood. Many 
previous morphologic studies based on cadaveric specimens and CT images have mainly 
focused on transverse diameter of the pedicles [15]. Realizing the complex morphologic 
features of the subaxial cervical pedicles in spatial orientation and vital neurovascular 
structures adjacent, these studies are far from enough. To get successful subaxial cervical 
transpedicular screw insertion, surgeons must make in mind the anatomical features in 
three dimensions clearly. Volumetric CT scanning could reconstruct multiplanar CT images 
needed at CT-machine attached Advantage Workstation. But it is not realistic to reconstruct 
wanted subaxial cervical MPR CT images and to finish quantitative measurement using the 
measurement tools of the Workstation at every time, while a spinal surgeon who is 
interested in subaxial cervical transpedicular screw insertion study may not allowed to 
manipulate the Advantage Workstation. Even the surgeon is allowed to manipulate at rare 
condition, he may not familiar with the sophisticated operating procedures. ImageViewer 
software is a very good and easy-to-learn Windows program and has been authorized to our 
hospital. Every terminal computer has been installed this program. The software could 
reconstruct qualified MPR CT images with reference ruler present based on sequential raw 
CT images to fulfil primary and qualitative observation. AutoCAD program is developed 
primary to create accurate 2D and 3D designs, to do much more complex things that 
were not possible with board drafting, and the new-emerged versions are able to be 
installed on personal computers, have become into something that we could take on-
site with us. AutoCAD program has been introduced into medical field to realize 
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precise quantitative measurement in recent years [7]. But using AutoCAD to realize 
quantitative measurement of MPR CT images are rarely reported. By selecting proper 
MRP CT images reconstructed using ImageViewer program  and saving them as .JPG 
images using Adobe Photoshop program, we got raster images for further quantitative 
measurement with AutoCAD program. When these images were inserted into opened 
AutoCAD document, and proper nodes were drawn at special locations of the images, 
we could get precise linear and angular values, which guaranteed our entrance point 
and direction determination of transpedicular screw fixation.  With these quantitative 
data in mind, we successfully finished subaxial cervical pedicle screw fixation 
manipulation on suitable pedicles.  
There are two kinds of images: bitmap and vectorgram images [13] .Vectorgram images are 
essentially presentation of computer programming language based on mathematical 
expressions, no matter simple or sophisticated, their qualities are not influenced by 
magnifying or decreasing the image. While the qualities of bitmap images are determined 
by image size dimensions and resolution.  The images in JPG format are belonged to bitmap 
kind. Realizing JPEG compressed images would produce some artifacts, the visualization of 
details of MPR CT images inserted in AutoCAD program for quantitative measurement is 
determined by raw .JPG image size. So determining the specified points for measurement is 
mainly estimated by the observers, what we introduced here is just the very likelihood 
estimation of special points’ determination. Thus the measurement data got were non-rigid. 
But we think they are satisfied enough to guide the pedicle screw insertion. 
It seems tedious and troublesome from the description above, but if one is familiar with 
AutoCAD, it is very easy to finish the steps mentioned-above. In fact, what we need to do is 
just translating the MPR image into JPG-format image and inserted it into AutoCAD 
interface as raster image. Other measurement steps are very simple and easy to do. 
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1. Introduction    
X-ray computed tomography images (CT) are widely used in radiotherapy planning 
because they provide electronic densities of tissues of interest which are mandatory to a 
correct dose computation. Furthermore, the good spatial resolution and soft/hard tissues 
contrast allow precise target delineation. In this context of dose calculation and delivery, 
two challenging problems regarding CT images and radiotherapy are adressed here. 
First, we present a new automated approach to respiratory motion prediction. Respiratory 
motion leads to artifacts in the lower part of the lungs and blurs contours of tissues 
especially in thoracic and upper abdominal cases. Four-dimensional acquisitions allow 
accounting for this difficulty but at the expense of dosimetric considerations. On the other 
hand, the knowledge of the organs' motion during radiotherapy treatment is necessary (a) to 
a good conformation of the isodoses to the target contours and (b) to a sufficient protection 
of the organs at risk. In this study, we present a model-based method able to predict the 
internal movement of organs from CT images and external respiratory signals. A promising 
objective could be the improvement of dose computation and of real-time target tracking 
during treatment delivery. 
In the second part of this work, we present state-of-the-art image combination algorithms 
able to provide superior information when determining target contours from CT images. 
The aim is to extract pertinent information from both worlds of medical imaging, 
morphology and function, and to present them in a single image. 

2. Respiratory monitoring using predictive models based on 4D CT 
2.1 Four-dimensional image-based motion management  
In external radiotherapy, respiratory-induced organ and tumor motion limits the accuracy of 
the treatment delivery. This is because, under breathing, the photon beam may from one hand 
hit on normal tissues while on the other it may miss some of the tumor volume. A solution to 
this problem is the gating approach (Veda et al 2001; Keall et al 2002)  : the beam is delivered 
only at a given phase of the breathing cycle, according to an external respiratory signal 
(pressure belt around the thorax, optical system, active breath-holding). Although this could 
potentially reduce tumor motion, most patients (especially with lung cancer) have usually 
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two challenging problems regarding CT images and radiotherapy are adressed here. 
First, we present a new automated approach to respiratory motion prediction. Respiratory 
motion leads to artifacts in the lower part of the lungs and blurs contours of tissues 
especially in thoracic and upper abdominal cases. Four-dimensional acquisitions allow 
accounting for this difficulty but at the expense of dosimetric considerations. On the other 
hand, the knowledge of the organs' motion during radiotherapy treatment is necessary (a) to 
a good conformation of the isodoses to the target contours and (b) to a sufficient protection 
of the organs at risk. In this study, we present a model-based method able to predict the 
internal movement of organs from CT images and external respiratory signals. A promising 
objective could be the improvement of dose computation and of real-time target tracking 
during treatment delivery. 
In the second part of this work, we present state-of-the-art image combination algorithms 
able to provide superior information when determining target contours from CT images. 
The aim is to extract pertinent information from both worlds of medical imaging, 
morphology and function, and to present them in a single image. 

2. Respiratory monitoring using predictive models based on 4D CT 
2.1 Four-dimensional image-based motion management  
In external radiotherapy, respiratory-induced organ and tumor motion limits the accuracy of 
the treatment delivery. This is because, under breathing, the photon beam may from one hand 
hit on normal tissues while on the other it may miss some of the tumor volume. A solution to 
this problem is the gating approach (Veda et al 2001; Keall et al 2002)  : the beam is delivered 
only at a given phase of the breathing cycle, according to an external respiratory signal 
(pressure belt around the thorax, optical system, active breath-holding). Although this could 
potentially reduce tumor motion, most patients (especially with lung cancer) have usually 
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trouble in holding or controlling their breathing. Furthermore the method is rather time 
consuming. Actually, there is a very interesting alternative to gating which consists of a 
continuous irradiation of the target during its movement. It is generally referred to as "tumour 
tracking" and the principle relies on a real-time adjustment of the beam according to a 
respiratory signal. A number of articles are currently published about this domain of research, 
but one of the challenging points is the ability to adapt the beam in real-time. Electronic 
devices, computer methods, and mechanical movements of the LINAC are not sufficiently 
rapid to allow actual real-time delivery. In this context, we have developped a model which is 
able to continuously predict the movement of the thorax and the abdomen from a four-
dimensional CT exam (4D CT). This approach could help compensating the dead-time 
problems described previously, just by incorporating reliable tumour position estimates.  
The use of 4D CT images reduces the problems caused by respiratory motion and can improve 
the quality of the radiation therapy (Rietzel et al, 2005).  However, 4D CT images correspond 
to given positions in the respiratory cycle and are not continuous in time. In addition, 
respiratory cycle irregularities limit the efficiency of 4D CT. To resolve this issue, McClelland 
et al (McClelland et al, 2006, 2008) worked on the generation of a patient specific model of the 
motion of the target tumor and the adjacent anatomy. This model provides displacements over 
the respiratory cycle for any point in the CT volume and is continuous over the respiratory 
cycle. However this model describes an average respiratory cycle and as such the 
predictability of the model is limited to the information given by that average respiratory cycle 
and not the acquired, potentially irregular, respiratory signal. In the study presented in this 
chapter, we propose an approach based on the creation of a continuous patient specific model 
that takes into account respiratory signal irregularities while describing, in the same time, 
respiration induced organ motion. The acquired CT data in cine mode were examined to form 
continuous CT volumes using a combined phase and amplitude binning procedure based on 
the information given by a registered respiratory signal (Real-time Position Management: 
RPM). A B-spline elastic registration is used to spatially register the obtained CT volumes. 
Finally, the patient specific motion model is reconstructed by performing a 2D fitting for the 
displacement of every registration control point separately, i.e. every displacement is fitted 
against the amplitude and the phase values extracted from the acquired respiratory signal. The 
assumption behind the use of the external respiratory measurements is that a correlation 
between the acquired respiratory signal and the internal motion exists (Kanoulas et al 2007, 
Gierga et al 2005). As a result, the issues associated with the non continuous volumes caused 
by 4D CT acquisitions, and the respiratory signal irregularities, are resolved. This model can 
hence create a CT volume corresponding to any position in the respiratory cycle using a given 
respiratory phase and corresponding amplitude.  

2.2 Description of the methodology 
2.2.1 Dataset 
The clinical data were acquired on a multislice CT (MSCT) and on a combined PET/CT 
scanner with a cine CT scan capability. A cine CT scan consists of the continuous acquisition of 
projections over many gantry rotation cycles while the imaging table remains stationary. As a 
consequence the X rays do not stop between two continuous axial scans. Each CT scan covers 
2cm (8×2.5mm) on an 8-slice MSCT. The duration of each cine CT is normally 1s longer than 
the average breath cycle, and 19 to 23 images are acquired per slice location. A 0.5s gantry 
rotation is used for high temporal resolution. The interval between each cine image is 0.45s, 
and the total reconstruction angle is 360°. Fourteen different slice locations were acquired for 
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every patient. During the whole acquisition, the time, as well as the amplitude and phase of 
the patient breathing were recorded. The Realtime Position Management (RPM) system 
records in addition to the patient respiratory trace, a flag indicating when the CT X-ray tube 
was on, allowing therefore the time-sampling of the CT data with respect to the respiration 
phase. A software was developed to examine these acquired 8-slice volumes in order to form 
19 (or 23 depending on patient acquisition time) 8 ×14 volumes (512×512×112 voxels, with 
dimensions 0.97×0.97×2.5 mm3). The obtained CT volume corresponding to the full expiration 
will be referred to from here onwards as the "reference volume". Moreover, this software 
removes 8-slice volumes that correspond to irregular breathing (Pan et al, 2007) and then, 
based on the phase extracted from the respiratory signal and a spline amplitude based 
interpolation, all CT volumes are reconstructed. The present study includes the analysis of 
three patients, who were asked to breathe normally and regularly.  

2.2.2 Elastic registration method 
Elastic registration of reconstructed CT volumes is performed using a spatio-temporal 
algorithm for motion reconstruction from a series of images. This method uses a semi-local 
spatio-temporal parametric model for the deformation using B-splines and reformulates the 
registration task as a global optimization problem (Ledesma-Carbayo et al, 2006). The 
obtained transformation Dt(x) between the frame f(x,t) at time t and the reference frame 
f(x,0) was defined as a linear combination of B-spline basis functions, located in a 
rectangular grid (Seungyong et al, 1997):  

 ( ) ( / )
N

t j r
j Z

D x x c x h jβ
∈

= + −∑  (1) 

where ( )r xβ  is a tensor product of centered B-splines of degree r, and j are the indices of the 
grid locations. Many different transformation grid spacings were tested and finally cubic B-
splines with grid spacing set to 5×5×5 pixels provided the best results and were used to 
represent the deformation.    
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Fig. 1. A 2D-Bspline fitting for one displacement in one direction. The displacement are 
fitted in function of the phase and amplitude extracted from the respiratory signal.  
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trouble in holding or controlling their breathing. Furthermore the method is rather time 
consuming. Actually, there is a very interesting alternative to gating which consists of a 
continuous irradiation of the target during its movement. It is generally referred to as "tumour 
tracking" and the principle relies on a real-time adjustment of the beam according to a 
respiratory signal. A number of articles are currently published about this domain of research, 
but one of the challenging points is the ability to adapt the beam in real-time. Electronic 
devices, computer methods, and mechanical movements of the LINAC are not sufficiently 
rapid to allow actual real-time delivery. In this context, we have developped a model which is 
able to continuously predict the movement of the thorax and the abdomen from a four-
dimensional CT exam (4D CT). This approach could help compensating the dead-time 
problems described previously, just by incorporating reliable tumour position estimates.  
The use of 4D CT images reduces the problems caused by respiratory motion and can improve 
the quality of the radiation therapy (Rietzel et al, 2005).  However, 4D CT images correspond 
to given positions in the respiratory cycle and are not continuous in time. In addition, 
respiratory cycle irregularities limit the efficiency of 4D CT. To resolve this issue, McClelland 
et al (McClelland et al, 2006, 2008) worked on the generation of a patient specific model of the 
motion of the target tumor and the adjacent anatomy. This model provides displacements over 
the respiratory cycle for any point in the CT volume and is continuous over the respiratory 
cycle. However this model describes an average respiratory cycle and as such the 
predictability of the model is limited to the information given by that average respiratory cycle 
and not the acquired, potentially irregular, respiratory signal. In the study presented in this 
chapter, we propose an approach based on the creation of a continuous patient specific model 
that takes into account respiratory signal irregularities while describing, in the same time, 
respiration induced organ motion. The acquired CT data in cine mode were examined to form 
continuous CT volumes using a combined phase and amplitude binning procedure based on 
the information given by a registered respiratory signal (Real-time Position Management: 
RPM). A B-spline elastic registration is used to spatially register the obtained CT volumes. 
Finally, the patient specific motion model is reconstructed by performing a 2D fitting for the 
displacement of every registration control point separately, i.e. every displacement is fitted 
against the amplitude and the phase values extracted from the acquired respiratory signal. The 
assumption behind the use of the external respiratory measurements is that a correlation 
between the acquired respiratory signal and the internal motion exists (Kanoulas et al 2007, 
Gierga et al 2005). As a result, the issues associated with the non continuous volumes caused 
by 4D CT acquisitions, and the respiratory signal irregularities, are resolved. This model can 
hence create a CT volume corresponding to any position in the respiratory cycle using a given 
respiratory phase and corresponding amplitude.  

2.2 Description of the methodology 
2.2.1 Dataset 
The clinical data were acquired on a multislice CT (MSCT) and on a combined PET/CT 
scanner with a cine CT scan capability. A cine CT scan consists of the continuous acquisition of 
projections over many gantry rotation cycles while the imaging table remains stationary. As a 
consequence the X rays do not stop between two continuous axial scans. Each CT scan covers 
2cm (8×2.5mm) on an 8-slice MSCT. The duration of each cine CT is normally 1s longer than 
the average breath cycle, and 19 to 23 images are acquired per slice location. A 0.5s gantry 
rotation is used for high temporal resolution. The interval between each cine image is 0.45s, 
and the total reconstruction angle is 360°. Fourteen different slice locations were acquired for 
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every patient. During the whole acquisition, the time, as well as the amplitude and phase of 
the patient breathing were recorded. The Realtime Position Management (RPM) system 
records in addition to the patient respiratory trace, a flag indicating when the CT X-ray tube 
was on, allowing therefore the time-sampling of the CT data with respect to the respiration 
phase. A software was developed to examine these acquired 8-slice volumes in order to form 
19 (or 23 depending on patient acquisition time) 8 ×14 volumes (512×512×112 voxels, with 
dimensions 0.97×0.97×2.5 mm3). The obtained CT volume corresponding to the full expiration 
will be referred to from here onwards as the "reference volume". Moreover, this software 
removes 8-slice volumes that correspond to irregular breathing (Pan et al, 2007) and then, 
based on the phase extracted from the respiratory signal and a spline amplitude based 
interpolation, all CT volumes are reconstructed. The present study includes the analysis of 
three patients, who were asked to breathe normally and regularly.  

2.2.2 Elastic registration method 
Elastic registration of reconstructed CT volumes is performed using a spatio-temporal 
algorithm for motion reconstruction from a series of images. This method uses a semi-local 
spatio-temporal parametric model for the deformation using B-splines and reformulates the 
registration task as a global optimization problem (Ledesma-Carbayo et al, 2006). The 
obtained transformation Dt(x) between the frame f(x,t) at time t and the reference frame 
f(x,0) was defined as a linear combination of B-spline basis functions, located in a 
rectangular grid (Seungyong et al, 1997):  
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where ( )r xβ  is a tensor product of centered B-splines of degree r, and j are the indices of the 
grid locations. Many different transformation grid spacings were tested and finally cubic B-
splines with grid spacing set to 5×5×5 pixels provided the best results and were used to 
represent the deformation.    
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Fig. 1. A 2D-Bspline fitting for one displacement in one direction. The displacement are 
fitted in function of the phase and amplitude extracted from the respiratory signal.  
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2.2.3 Patient specific motion model 
The patient specific motion model is reconstructed by performing a 2D fitting for the x, y 
and z displacement for every registration control point separately. The value of every 
displacement is effectively plotted against the amplitude and the phase of the corresponding 
CT volume and a 2D-Bspline is then fitted to the data. Figure 1 shows an example of this 
process in the case of a unique displacement in one direction. 
Let ( ){ }, ,0 ,0x y x m y nΩ = ≤ < ≤ <  be a rectangular domain in the xy-plane. The 
approximation 2D-Bspline function f is defined by a control lattice Φ in the domain Ω . Let 

,i jφ be the value of the ij-th control point on the control lattice Φ located at (i,j) for 
{ }1,0,...,( 1)i m= − +  and { }1,0,...,( 1)j n= − + . Finally f is defined in terms of these control 

points by:  
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The patient specific model thus consists of a series of control points that correspond to every 
displacement in every direction. As a consequence, one can predict the corresponding CT 
image based on the phase and amplitude of a given respiratory signal. This is simply done 
by calculating the pixels displacement in all directions based on the different B-spline 
coefficients and applying them to the reference CT image. The model leads to a non rigid 
transformation that will alter the reference volume and estimate the CT volume for any 
position according to an acquired respiratory signal.  

2.2.4 Evaluation of the methodology 
To evaluate the motion model, we have derived CT images using this model having the 
same amplitude and phase as the acquired CT volumes. These predicted volumes are 
compared to their corresponding acquired volumes. At each comparison, one of the 
acquired CT volumes was not included in the motion model creation and was used as a 
ground truth for comparison purpose only. The correlation coefficient is used for that 
purpose. It measures a linear affine relation between the intensity of the compared images. 
The correlation coefficient between two images A and B is given by:  
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where i and j are the voxel intensities of images A and B respectively, mA is the mean of the 
image intensities, σA is the standard deviation and pij is the joint probability. A correlation of 
1 indicates a perfect matching of the two compared images. In addition to the correlation 
coefficients, pixel-to-pixel image differences were used to provide global CT image 
comparisons. Finally, local profiles served to perform local image comparisons between the 
CT volumes.  

2.3 First results 
In this study results for three patients are presented and for each patient three CT volumes 
corresponding to different amplitudes and phases were derived using the model. At each 
prediction step, four different CT volumes were compared; namely the acquired CT 
(original data: not used in the model creation step), the predicted CT volume using our 
model, the predicted CT volume using the model based on the use of the phase parameter 
(phase based model, McClelland et al, 2006) and that derived using the model based on the 
amplitude parameter (amplitude based model).  
Figure 2 shows the coronal view of an original CT image (fig. 2(a)), and the corresponding 
slices from the derived CT volumes using the new developed model, as well as the phase 
only and amplitude only based models. The profile results show little advantage from the 
2D model in comparison to the 1D amplitude based model, while a more important 
difference is seen with respect to the 1D phase based model. Figure 3 shows the difference 
image between the original acquired CT and the predicted image using the 2D model as 
well as the 1D phase and amplitude based models. Finally, figure 4 shows the analysis on 
the correlation coefficient results for all three patients between the original and the 
corresponding model derived CT volumes. The results of both figures 3 and 4 demonstrate a 
closer matching and better correlation between the original CT volume and the one derived 
using the 2D model, rather than the 1D phase or amplitude models. 

2.4 Future work 
It is very important to monitor the respiratory movements when delivering radiotherapy 
treatments in the thorax or in the upper abdomen. Gating and tracking are techniques that 
lead to a better conformation of the dose to the target, while preserving organs at risk in the 
same time. In this context, 4D CT images with concomitant recording of the respiratory 
movements are very useful tools. For this reason we have proposed a patient specific 
continuous respiratory motion model from such 4D CT acquisitions. The first results show that 
including both phase and amplitude for the model construction is better than including only 
one of the two parameters. The demonstration of the efficacy of a 2D model over previous 1D 
models relies especially on the management of respiratory signal irregularities and on a signal 
continuity guaranteed during the whole respiratory cycle. The developed model is accurate in 
describing organ and tumor motion. It is useful for improving the quality of the dose delivery, 
and it could be of interest also for improving the accuracy of dose calculation. Potential 
limitations are cases where the correlation between the external acquired respiratory signal 
and the internal motion is not guaranteed. Numerous studies are currently performed to find 
the best way to estimate the organ movements from external signals (skin surface etc...). This 
knowledge will contribute to improve the tumour tracking approaches which are based on 
personalized predictive models as the one we presented here. 
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2.2.3 Patient specific motion model 
The patient specific motion model is reconstructed by performing a 2D fitting for the x, y 
and z displacement for every registration control point separately. The value of every 
displacement is effectively plotted against the amplitude and the phase of the corresponding 
CT volume and a 2D-Bspline is then fitted to the data. Figure 1 shows an example of this 
process in the case of a unique displacement in one direction. 
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The patient specific model thus consists of a series of control points that correspond to every 
displacement in every direction. As a consequence, one can predict the corresponding CT 
image based on the phase and amplitude of a given respiratory signal. This is simply done 
by calculating the pixels displacement in all directions based on the different B-spline 
coefficients and applying them to the reference CT image. The model leads to a non rigid 
transformation that will alter the reference volume and estimate the CT volume for any 
position according to an acquired respiratory signal.  

2.2.4 Evaluation of the methodology 
To evaluate the motion model, we have derived CT images using this model having the 
same amplitude and phase as the acquired CT volumes. These predicted volumes are 
compared to their corresponding acquired volumes. At each comparison, one of the 
acquired CT volumes was not included in the motion model creation and was used as a 
ground truth for comparison purpose only. The correlation coefficient is used for that 
purpose. It measures a linear affine relation between the intensity of the compared images. 
The correlation coefficient between two images A and B is given by:  
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comparisons. Finally, local profiles served to perform local image comparisons between the 
CT volumes.  

2.3 First results 
In this study results for three patients are presented and for each patient three CT volumes 
corresponding to different amplitudes and phases were derived using the model. At each 
prediction step, four different CT volumes were compared; namely the acquired CT 
(original data: not used in the model creation step), the predicted CT volume using our 
model, the predicted CT volume using the model based on the use of the phase parameter 
(phase based model, McClelland et al, 2006) and that derived using the model based on the 
amplitude parameter (amplitude based model).  
Figure 2 shows the coronal view of an original CT image (fig. 2(a)), and the corresponding 
slices from the derived CT volumes using the new developed model, as well as the phase 
only and amplitude only based models. The profile results show little advantage from the 
2D model in comparison to the 1D amplitude based model, while a more important 
difference is seen with respect to the 1D phase based model. Figure 3 shows the difference 
image between the original acquired CT and the predicted image using the 2D model as 
well as the 1D phase and amplitude based models. Finally, figure 4 shows the analysis on 
the correlation coefficient results for all three patients between the original and the 
corresponding model derived CT volumes. The results of both figures 3 and 4 demonstrate a 
closer matching and better correlation between the original CT volume and the one derived 
using the 2D model, rather than the 1D phase or amplitude models. 
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It is very important to monitor the respiratory movements when delivering radiotherapy 
treatments in the thorax or in the upper abdomen. Gating and tracking are techniques that 
lead to a better conformation of the dose to the target, while preserving organs at risk in the 
same time. In this context, 4D CT images with concomitant recording of the respiratory 
movements are very useful tools. For this reason we have proposed a patient specific 
continuous respiratory motion model from such 4D CT acquisitions. The first results show that 
including both phase and amplitude for the model construction is better than including only 
one of the two parameters. The demonstration of the efficacy of a 2D model over previous 1D 
models relies especially on the management of respiratory signal irregularities and on a signal 
continuity guaranteed during the whole respiratory cycle. The developed model is accurate in 
describing organ and tumor motion. It is useful for improving the quality of the dose delivery, 
and it could be of interest also for improving the accuracy of dose calculation. Potential 
limitations are cases where the correlation between the external acquired respiratory signal 
and the internal motion is not guaranteed. Numerous studies are currently performed to find 
the best way to estimate the organ movements from external signals (skin surface etc...). This 
knowledge will contribute to improve the tumour tracking approaches which are based on 
personalized predictive models as the one we presented here. 
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Fig. 2. Coronal view of (a) an original CT image, the same slice from the CT derived from (b) 
using our 2D model, (c) the phase based model, and (d) using the amplitude based model. 
In the bottom of the figure we can see the corresponding HU profiles drawn in (a), (b), (c) 
and (d).  

(a) CT images (b) 2D Spline Fitting 

(c)1D Amplitude Fitting (d) 1D Phase Fitting 
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Fig. 3. Coronal view of the difference image between the original CT and the corresponding 
derived image using (a) our 2D model, (b) the 1D phase only model, and (c) the 1D 
amplitude only model. Gray pixels indicate areas where images are very similar, while black 
and white pixels show areas where images differ significantly.  
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Fig. 4. Comparison of the correlation coefficients derived using the 2D model as well as the 
1D phase and amplitude models, for all three patients and for different predicted volume 
amplitudes and phases.  
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3. Combination of CT with functional images for better delineation of targets 
in radiotherapy 
In radiotherapy, the accurate delineation of the tumours and the organs at risk (OAR) 
remains a critical step of the treatment planning phase. In a first step, the physician 
manually or semi-automatically draws regions of interest in the CT images of the patient 
(target, OAR). Then, the treatment planning system (TPS) is used to compute the dose 
received by the target and the OAR, the aim being to give the maximum dose to the target 
while preserving OAR in the same time. During this process, the images obtained by 
computed tomography are mandatory because they give access to the electronic densities of 
the tissues, which allows dose calculation by the TPS. CT images also provide valuable 
anatomical data with good spatial resolution and hard/soft tissues contrast. However, it has 
been shown that discrepancies often appear between morphological size and shape of the 
tumor seen in CT, and its functional activity seen in positron emission tomography (PET). 
The glucose metabolism is for instance obtained in whole-body PET after injection of 18FDG. 
In this case, necrotic parts of a tumor may be visible on 18FDG  PET images but not in the CT 
images. This point is of importance since a higher dose should be delivered to the active part 
of a tumour than to the necrotic parts. This dose delivery scheme is sometimes referred to as 
dose painting, i.e. the ability to deliver different levels of dose to different parts of a single 
target. This dose escalation process leads to a better efficacy especially in prostate cancer for 
example.  
The main difficulty in dose painting is the definition of the target and the delineation of its 
inner active parts. As already stated, computed tomography gives precise but uniform 
images while PET is able to segment active/necrotic sub-parts of a given tumour, but with a 
significantly lower spatial resolution. Images appear more blurred and contours of the 
different organs are difficult to delineate. These effects are included in what is often referred 
to as partial volume effects. These latter have several aspects but are mainly caused by the 
wide point spread function of PET imaging devices from which we define spatial resolution. 
The full width at half maximum of the point spread function eventually gives the spatial 
resolution, which may be seen as the ability to separate two points on the reconstructed 
image. More precisely the spatial resolution is the minimal distance between two actual 
points inside the patient necessary to separate them on the reconstructed image. If the points 
are closer than that distance, it is practically impossible to separate them on the image and 
they appear as a big single blurred point. The aim of the method presented now is to build 
an enhanced image incorporating both functional and anatomical data from the CT and 
18FDG PET images. 

3.1 Fusion of medical images in a context of multimodality: the wavelet framework 
The enhanced image that we are introducing here is computed using a 3D wavelet analysis 
where details of two images are extracted at different levels of spatial resolution. Considering 
that the level of resolution of the initial CT image is q, (referred to as CTq) and that of the 
initial PET image is r = q + p, (referred to as PETr), we can perform the extraction of the spatial 
frequencies at a level of resolution common to CT and PET (q+p+1), using the "à trous" 
algorithm. This discrete wavelet transform algorithm was introduced by Dutilleux (Dutilleux, 
1987), developed by Holdschneider  (Holdschneider et al, 1989) and detailed by Starck (Starck 
et al, 1998). The process gives an image sequence of coarser and coarser spatial resolution by 
performing successive convolutions with a low-pass filter h (Boussion et al, 2006).   
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Practically, at each iteration j, the spatial resolution of the degraded image degj−1 is 
degraded to give the degraded image degj according to : 
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The first approximation image deg0 is taken as I, the original image. The difference degj−1 
−degj is the wavelet coefficients wj containing the details (edges, texture) at a resolution 
level between degj−1 and degj. The procedure that reconstructs the original image from its 
layers of details wk is called synthesis and is given by: 
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with N the number of iterations from the initial image I to the final degraded image IN of 
spatial resolution decreased by 2N. The algorithm can be easily implemented by performing 
the following steps: 
1. Initialize j to 0: start with the original image I = deg0 (deg stands for degraded image). 
2. Increment j and carry out a convolution of degj−1 with a low-pass filter h in order to 

obtain degj (the distance between the central voxel and the adjacent ones is 2j−1). 
3. The wavelet coefficients w(j) at this level of resolution are given by degj−1−degj. 
4. If j is less than the required number N of resolutions go to step 2. 
5. The set W = { }(1), (2),..., ( ),degNw w w N  is the wavelet transform of I.                         
In a practical point of vue, zeros are inserted between lines and columns of the filter h at 
each iteration j of the process. This particularity gives its name to the algorithm "à trous" 
which in French means "with holes". In the present study, we have chosen a low pass filter 
corresponding to a B-spline interpolation implemented sequentially according to:  

 ( , ) ( ) ( )h x y h x h y= ⊗  (9) 

with: 

 (0) 3 /8, ( 1) 1 / 4 ( 2) 1 /16 ( ) 0 2h h h and h n if n= ± = ± = = >  (10) 

The initial image can always be perfectly reconstructed by adding the different layers and 
the final degraded image of the wavelet decomposition on a voxel-to-voxel basis. As a 
consequence, we have the two following equations: 
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with wPET and wCT the wavelet coefficients from the wavelet decomposition of respectively 
(i) the functional PET image of "low" spatial resolution and (ii) the anatomical CT image of 
"high" spatial resolution. The final enhanced image, or fused image, is then given 
straightforwardly by: 
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Fig. 5. Illustration of the CT-PET combination process on simulated images. (a) wavelet 
transform of the original simulated CT image (three iterations were arbitrarily chosen in this 
example); (b) wavelet transform of the original simulated PET image; the lacking details of 
the PET image are retrieved from the existing details of the CT images which are modified 
according to the α model; (c) the fused CT-PET image is the pixel-to-pixel addition of the 
original PET image with the retrieved details coming from CT.  
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where the parameter α is just the mean voxel-to-voxel ratio of wavelet coefficients at 
resolution q+p+1:  
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In equation (9), each pixel is processed individually and the parameter α is computed locally 
using a 3D moving cube, simultaneously applied within the PET and CT wavelet layers. For 
the sake of clarity, the whole process is illustrated on fig. 5 where synthetic images are used 
in order to facilitate the understanding of the method.  
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3.2 Examples of fused images 
Some examples are given on fig. 6 and fig.7 where one can see the transverse view of a CT 
image, of the corresponding 18FDG PET image, and of the final fused image. 
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Fig. 6. Example of CT-PET fusion using wavelet-based decomposition. (a) CT image, (b) PET 
image and (c) fused CT-PET image, where the contours of the pulmonary lesion become 
more visible. 
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Fig. 7. This example is another pertinent illustration of what fusion permits to obtain. In the 
fused image (c), both anatomical details coming from CT and functional information coming 
from PET are visible at the same time.  
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Fig. 8. In this case, we illustrate the fusion with a quantitative analysis of the pixels values 
along a given profile (see arrow for location). The two curves clearly demonstrate the gain in 
contrast given by the fusion process. The slope of the curve corresponding to the fused 
image is sharper than the one corresponding to the original PET image. This improvement if 
directly coming from the incorporation of high resolution details of the CT image. 

3.4 Potential improvements 
In this part of the study a new approach to CT/PET image fusion has been proposed for 
whole-body imaging. Contrary to the great majority of existing methods, the aim of the 
presented work was to provide the user with a fused image preserving both anatomical and 
functional data. The objective is therefore different from simply presenting two images in a 
visually convenient fusion display in the sense that quantitative analysis is also here 
considered as a possible step. In the proposed methodology the anatomical information is 
present in terms of improved contrast while the intensity in the organs is comparable with 
the functional information presented by the PET. This is of paramount importance in cancer 
staging and treatment follow-up for instance, where quantitative assessment of activity 
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uptake is necessary. Furthermore, for applications in radiotherapy, the efficient image 
fusion proposed in this article may be of key interest. Indeed, when considering day-to-day 
clinical use, this algorithm appears user-friendly and allows physicians to gain a lot of time 
when making diagnosis and when planning radiotherapy treatment on a dedicated 
software. However, the model that is used to modify the detail layers (images of wavelet 
coefficient) obtained in the CT decomposition may be considered too simplistic (mean voxel-
to-voxel division). A more sophisticated model would be preferable when absolute 
quantitation is mandatory, for tumour follow-up for example. For this specific purpose we 
have designed an alternate model which is able to take into account local discrepancies 
between CT and PET. Adopting a local model may be more appropriate, in particular for 
limiting artifacts coming from structures present in the CT only. The methodology itself is of 
course not restricted to whole-body imaging in the oncology domain. Provided two co-
registered images are available, one functional and the other anatomical, the process can be 
applied in a wide range of clinical areas. The main difference with the initial model relies on 
the definition of the α parameter. In the first method, α is just the global mean of the wavelet 
ratios (equation 14). In this improved approach (Le Pogam et al, 2008), α is in particular 
computed locally as a median value instead of a mean value. This point allows improving 
the quantitative correction of PET images without incorporating artifacts in the final fused 
image. This original approach is quantitatively relevant in the sense that it leads to a direct 
correction of partial volume effects.  
As an illustration we give an example of partial volume correction in the PET image of a 
lung lesion (fig.10). In this case, the high resolution details provided by the CT image not 
only improve the visual aspect of the PET image, but it also corrects the image for the partial 
volume effect. As a consequence, the direct segmentation of the target for radiotherapy 
treatment becomes possible. 
 
 
 
 
 

       
 

 
 
 

Fig. 10. Original PET image before (left) and after (right) fusion with a corresponding CT 
image, by using a local model instead of a global one. 
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4. Conclusion 
In this chapter we have presented two CT image processing methods dedicated to 
radiotherapy. X-ray computed tomography is indeed the only image modality mandatory to 
classical radiotherapy treatment planning.  It permits to visualize the anatomy of the patient 
and in particular to delineate targets and organs at risk. The link between Hounsfield Units 
and electronic densities also leads to the pre-treatment computation of the dose delivered to 
the patient. However, new treatment technologies like intensity modulated radiotherapy 
require more and more data to improve the precision and the efficacy of the treatment 
delivery. In this context, the monitoring of the respiratory signal and the incorporation of 
functional imaging in the treatment process are of significant   interest. One of the objectives 
of this chapter was thus to underline the increasing synergy between CT images and others 
medical signals. The presented studies also illustrated the multi-disciplinary features of 
modern radiotherapy. 
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1. Introduction 
The name “Brachytherapy” is derived from ancient Greek words for short distance (brachios) 
and treatment (therapy) and refers to the therapeutic use of encapsulated radionuclides 
placed within or close to the tumor. Brachytherapy (BT), used as an integral part of cancer 
treatment for almost a century, developed in last three decades a rapid growth with the 
development of afterloading devices and the introduction of artificial radionuclides. The 
impressive progress of three dimensional (3D) imaging, the rapidly increasing speed and 
capacity of computers, and the sophisticated techniques developed for the treatment 
planning, opened a new era.  
Brachytherapy plays a crucial role in the curative treatment of many tumors. CT and/or 
MRI compatible applicators allow a sectional image based approach with a better 
assessment of GTV (Gross Tumor Volume) and CTV (Clinical Target Volume) compared to 
traditional approaches. Accurate and reproducible delineation of GTV and CTV, as well as 
healthy (critical) organs, has a direct impact on treatment planning, especially it is possible 
to optimize the reference isodoses to the target. 
A two-film typical localization technique does not allow the definition of the three-
dimensional (3D) extensions of the planning target volume (PTV) and organs at risk (OARs). 
Furthermore, using traditional dosimetry systems the dose report is related to the geometry 
of the implant and not to the target volume. In modern BT both treatment planning and plan 
evaluation have to be based on real 3D volume of the PTV and OARs.  

2. Rationale for CT- Image Guided Brachytherapy 
Utilization of 3D sectional imaging in brachytherapy (BT) planning of different tumor sites 
allows for a clinically meaningful dose escalation in the target, while respecting normal 
tissue tolerance. 3D treatment planning has made promising progress in the last decade of 
radiotherapy. Currently, the conformal 3D external beam radiation therapy (EBRT) is the 
permanent part of routine clinical work in most of the radiotherapy departments. Moreover, 
the 3D brachytherapy treatment planning has just become the center of interest.  
As far as the method of sectional imaging is concerned, there are some important 
advantages afforded by CT compared to other imaging modalities (Barrett et al., 2009). CT 
scanning provides detailed cross-sectional anatomy of the normal organs, as well as 3D 
tumor information. These images provide density data for radiation dose calculations by 
conversion of CT Hounsfield units into relative electron densities using calibration curves. 
Compton scattering is the main process of tissue interaction for megavoltage beams and is 
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permanent part of routine clinical work in most of the radiotherapy departments. Moreover, 
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As far as the method of sectional imaging is concerned, there are some important 
advantages afforded by CT compared to other imaging modalities (Barrett et al., 2009). CT 
scanning provides detailed cross-sectional anatomy of the normal organs, as well as 3D 
tumor information. These images provide density data for radiation dose calculations by 
conversion of CT Hounsfield units into relative electron densities using calibration curves. 
Compton scattering is the main process of tissue interaction for megavoltage beams and is 
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directly proportional to electron density. Hence CT provides ideal density information for 
dose corrections for tissue inhomogeneity, such as occurs in lung tissue. Clinical studies 
have shown that 30%-80% of patients undergoing radiotherapy benefit from the increased 
accuracy of target volume delineation with CT scanning compared with conventional 
simulation. It has been estimated that the use of CT improves overall 5-year survival rates 
by around 3.5%, with the greatest impact on small volume treatments (Barrett et al., 2009). 
CT scans taken for brachytherapy treatment planning usually differ from those taken for 
diagnostic use. Ideally, planning CT scans are taken on a dedicated brachytherapy CT 
scanner by a therapy trained radiographer. Protocols for CT scanning are developed with 
the radiologist to optimize tumor information, to ensure full body contour in the 
reconstruction circle and scanning of relevant whole organs for DVHs. CT scans are 
transferred digitally to the target volume localization console using an electronic network 
system. The CTV, PTV, body contour and normal organs (OARs) are outlined by a team of 
radiation oncologist and physicist (Barrett et al., 2009). 
The rationale behind CT guidance in BT is twofold: (1) to assure an optimal position of BT 
catheters within the target volume by controlling their insertion and (2) to assist the process 
of detection and contouring of the target volume and organs at risk (OARs). CT guidance of 
insertion can be accomplished preoperatively or during an intraoperative procedure. 
Standard preoperative strategy is based on integration of initial CT findings and clinical 
and/or ultrasound findings at BT. CT-guided treatment planning is in this case most 
commonly performed only after the procedure, limiting the ability to correct an eventually 
suboptimal implantation. Obtaining an additional pre-planning CT just a few days before 
the application can facilitate the ability for an accurate insertion. An overview of the current 
approaches in CT guided BT is presented in this chapter. 
One of the best approaches for CT-guided brachytherapy was made by Kolotas and al. 
(Kolotas et al., 1999). They described development of a CT-based brachytherapy catheter 
application and treatment planning procedure which is focused on anatomy (PTV and 
healthy tissues) based optimization, and with evaluation using the conformal index COIN of 
the 3D dose distribution. The clinical feasibility of this new method, which is essentially a 
new philosophy in the practice of interstitial brachytherapy, has been proved for several 
tumor sites (Kolotas et al., 1999). Catheter implantation using CT imaging is first performed 
to localize the tumor and the surrounding critical tissues. Then, CT-guided catheter 
implantation is performed in the CT room and, if necessary, contrast enhanced, cross-
sectional images are made. This imaging procedure determines the choice of the application 
technique including the type of catheters to be used. Aluminum skin markers and painting 
can also be used for this localization procedure. The CT table top drive mechanism and the 
markers are then used to navigate between the CT slices and the patient. In cases where a 
template can be used this offers an additional navigation possibility for catheter insertion 
through the numbered holes of the template which are also visible on the CT slices. Based 
on the pre-implantation imaging and clinical information, and after local anesthesia and 
sedation, catheter insertion is commenced with the patient remaining on the CT table. The 
maximum insertion depth and direction as well as position (in case of template the whole 
number) of the catheter can be estimated from the CT information. This information is 
displayed on a monitor within the CT room and therefore is immediately available to the 
physician. This is a real advantage for the physician when implanting the catheters since this 
provides rapid and effective control of catheter position and geometry and ensures 
avoidance of injuries to neighboring critical structures. Control of the position of an inserted 
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catheter is achieved by taking CT images with the catheters in situ, and then if necessary 
correcting the catheter position. This procedure is repeated until all catheters needed to 
cover the tumor volume have been implanted. After reconstruction of catheters all the 
graphical information, including body contour, PTV, critical structures and catheters are 
displayed in a 3D view window. The 3D view is fully scalable and can be rotated. For 
simplification in an individual patient, the user can select the graphical elements needed to 
be viewed in 3D, using simple button menus, and exclude all others that may be confusing. 
The 3D window is extremely useful for real time monitoring of the reconstruction of 
catheters. It also offers an efficient method of viewing the position of critical organs by 
reference to the PTV and to the catheters (Kolotas et al., 1999). 

3. Gynecological tumors 
In gynecological tumors image-guided 3D conformal BT planning postimplant CT images 
are useful to control and report the dose to treated volume and OARs (e.g. for rectum, 
sigmoid, and bladder). This allows better assessment of dose distributions in different 
volumes, such as the gross tumor volume (GTV), clinical target volume (CTV), and OARs. 
Clinical target volume (CTV), bladder volume, rectum volume, sigmoid colon, and small 
bowel should be delineated on CT images. Advantages of 3D imaging in gynecologic 
brachytherapy that may lead to improved patient outcome, irrespective of the dose rate, 
include avoiding or early detection of a uterine perforation, ensuring target coverage, and 
avoiding excessive dose to the OAR. Disadvantages include an increased amount of 
physician and physicist time to coordinate imaging and incorporate this into treatment 
planning, as well as the need for additional training to gain familiarity with the contouring 
methodology (Viswanathan & Erickson, 2010). For post-implantation imaging, the 
advantages of 3D imaging with either CT or MRI include clear target definition as well as 
better localization and target delineation of the OARs. With MRI, one may contour residual 
cervical tumor. With CT, one visualizes the cervix and parametrium as one structure, 
resulting in potential overcontouring of the lateral aspect of the volume (Viswanathan et al., 
2007) Nevertheless, CT allows visualization of tumor that may lie beyond Point A, thereby 
ensuring adequate dosing of the target volume (Viswanathan & Erickson, 2010). 
To unify 3D plan evaluation concepts and to provide a common set of terms to be used, 
Gynecologic (GYN) GEC-ESTRO Working Group (GEC-ESTRO) published guidelines on 3D 
image-based treatment planning in cervical cancer brachytherapy (Haie-Meder et al., 2005; 
Pötter et al., 2006). 
One of the first reports describing the volumetric dose distributions from BT was published 
in 1987 (Ling et al., 1987). Since the 1990s, widespread implementation of CT simulation for 
EBRT treatment planning in radiation oncology departments has enabled physicians to 
contour and perform dose volume histogram (DVH) analysis of the OARs. Several centers 
have published results with CT simulation or MRI based gynecologic brachytherapy. To 
standardize some aspects of nomenclature, the American Brachytherapy Society (ABS) 
published guidelines for image-guided gynecologic brachytherapy in 2004 (Nag et al., 2004).   
Viswanathan and Erickson in their recently published (2010) paper determined current 
practice patterns with regard to three-dimensional (3D) imaging for gynecologic 
brachytherapy among American Brachytherapy Society (ABS) members. Material was based 
on a 19-item survey send to physicians from ABS. The results show that after insertion, 70% 
of physicians routinely obtain a computed tomography (CT) scan. The majority (55%) use 
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directly proportional to electron density. Hence CT provides ideal density information for 
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CT rather than X-ray films (43%) or magnetic resonance imaging (MRI; 2%) for dose 
specification to the cervix. However, 76% prescribe to Point A alone instead of using a 3D-
derived tumor volume (14%), both Point A and tumor volume (7%), or mg/h (3%). Those 
using 3D imaging routinely contour the bladder and rectum (94%), sigmoid (45%), small 
bowel (38%), and/or urethra (8%) and calculate normal tissue dose–volume histogram 
(DVH) analysis parameters including the D2cc (49%), D1cc (36%), D0.1cc (19%), and/or D5cc 
(19%). Authors concluded that more ABS physician members use CT post-implantation 
imaging than plain films for visualizing the gynecologic brachytherapy applicators. 
However, the majority prescribes to Point A rather than using 3D image based dosimetry 
(Viswanathan & Erickson, 2010). 
Another authors concluded that calculating dose-volume histograms (DVHs) using 3D-
based volumetric planning may provide a more accurate evaluation of the dose to the target 
volume and OARs (Al-Halabi et al., 2010). In addition, better imaging of the target and 
OARs allows for a more precise delineation of the target volume and OARs and, 
consequently, a better assessment of the dose delivered to these structures (Nag et al., 2004). 
Studies of CT-based 3D brachytherapy planning have shown that the ICRU-defined bladder 
and rectum doses in fact underestimate the true maximal doses to these organs.  
Hellebust et al. recently published recommendations from gynaecological (GYN) GEC-
ESTRO Working Group including considerations and pitfalls in commissioning and 
applicator reconstruction in 3D image-based treatment planning (Hellebust et al., 2010). The 
aim of these guidelines was to unify 3D plan evaluation concepts and to provide a common 
set of terms to be used. They concluded that image-guided brachytherapy in cervical cancer 
is increasingly replacing X-ray based dose planning. In image-guided brachytherapy the 
geometry of the applicator is extracted from the patient 3D images and introduced into the 
treatment planning system; a process referred to as applicator reconstruction. Due to the 
steep brachytherapy dose gradients, reconstruction errors can lead to major dose deviations 
in target and organs at risk. Appropriate applicator commissioning and reconstruction 
methods must be implemented in order to minimize uncertainties and to avoid accidental 
errors. Applicator commissioning verifies the location of source positions in relation to the 
applicator by using auto-radiography and imaging. Sectional imaging can be utilized in the 
process, with CT imaging being the optimal modality. The importance of proper 
commissioning is underlined by the fact that errors in library files result in systematic errors 
for clinical treatment plans (Hellebust et al., 2010). The next step, reconstruction of the 
applicator, can be performed by different methods: library plans (LIB), direct reconstruction 
(DR) or a combination of these two methods. Applicator reconstruction using CT images 
offers the good visualisation of the lumen of the applicator and this means that a 
markerstring is not always necessary. Authors indicate some X-ray catheters may produce 
artifacts in the CT images resulting in larger uncertainties in the reconstruction and 
contouring process. Slice thickness <3 mm is recommended to give the best visualization. 
The lumen of the ring will be visible in several slices, e.g. 3–4 images for 3 mm slice 
thickness. In order to visualize the ring in one image a multiplanar reconstructed image 
through the ring can be used. The reconstructed image can be used during direct 
reconstruction or for positioning of a library applicator (Hellebust et al., 2010). In another 
paper similar authors analyzed the impact of the applicator orientation and the 
reconstruction method used on the calculated dose around a reconstructed ring applicator 
set using CT imaging (Hellebust et al., 2007).  Their results showed that it was not possible 
to identify one applicator orientation that gave lower uncertainties with regard to the 
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calculated dose around the applicator. However, all orientations and all reconstruction 
methods resulted in limited variation in calculated dose, i.e. both LIB and DR are feasible for 
applicator reconstruction in CT images. With CT-based reconstruction the visibility of the 
applicator is usually excellent and it has been shown that the dose variation between 
different CT reconstruction methods is limited – below 4% (1 standard deviation) in 
clinically relevant dose points (Hellebust et al., 2010). 
Davidson et al. analyzed whether customized 3D plans generated for the first insertion 
(using CT planning) can be applied to subsequent insertions without significant changes in 
dose distributions if identical applicators are used (Davidson et al., 2008). They concluded 
that a duplication of planned dwell times and positions from one insertion to the next does 
not duplicate dose distributions in HDR cervix applications. A single plan used for an entire 
course of BT can result in significant increases to OAR doses for tandem and ring (TR) and 
unpredictable OAR doses for tandem and ovoids (TO) applicators. Treatment plans should 
be tailored for each insertion to reflect current applicator and anatomical geometry. They 
emphasized also that ideally, 3D imaging with MRI should be performed after each BT 
implantation for individual treatment planning of each HDR fraction. This is, unfortunately, 
not possible for many radiotherapy departments due to limited MRI resources. In cases 
where MRI is unavailable for BT planning, CT may be a more accessible alternative. 
Although CT does not provide a clear clinical target volume for BT planning due to poorer 
soft-tissue contrast than MRI, it can identify surrounding OARs and define dose 
distributions in 3D. This allows for the determination of problematic volumetric doses to 
OAR and instances where dose shapes should be altered to reduce the risk of complications 
(Davidson et al., 2008). 
Another authors investigated two-dimensional (2D) radiograph-based plans using 3D dose-
volume histogram (DVH) parameters following guidelines from Gynecologic GEC-ESTRO 
Working Group (Gao et al., 2010). Clinical target volume (CTV), bladder volume, rectum 
volume, sigmoid colon, and small bowel were delineated on CT images. CTV included the 
whole cervical mass visualized as aided by implanted marker seeds. DVHs were calculated 
for these structures. 3D plan evaluation parameters recommended by GYN-GEC-ESTRO 
guidelines (Pötter et al., 2006) were adopted. CTV coverage was evaluated using D100, D90, 
and V100 (i.e., dose covering 100% of the volume, dose covering 90% of the volume, and 
volume covered by 100% of prescription dose). High dose volume in CTV was estimated 
using V200. For organs at risk (OARs), D0.1cc, D1cc, and D2cc (i.e., minimum dose received 
by 0.1-, 1-, and 2-cm3 tissue volume) were calculated. In conclusions we can read that the 
DVH analysis of 2D plans revealed a suboptimal coverage of CT-based cervix and a 
negative correlation between coverage and cervical size. Rectum dose to 2 cc weakly 
correlated with ICRU point dose. Currently published constraints for bladder in 3D 
planning were tighter than ABS guidelines in past 2D planning.   
Shin et al. compared the conventional point A plan (conventional plan) and computed 
tomography (CT)-guided clinical target volume-based plan (CTV plan) by analysis of the 
quantitative dose–volume parameters and irradiated volumes of organs at risk in patients 
with cervical cancer (Shin et al., 2006). In 30 plans CT images were acquired at the first 
intracavitary radiotherapy (ICR) session with artifact-free applicators in place. The gross 
tumor volume, clinical target volume (CTV), point A, and International Commission on 
Radiation Units and Measurements (ICRU) Report 38 rectal and bladder points were 
defined on reconstructed CT images. They concluded that the results have shown that CT-
guided CTV planning of ICR is superior to conventional point A planning in terms of both 
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conformity of target coverage and avoidance of overdosed normal tissue volumes (Shin et 
al., 2006). 
In another paper Wang et al. evaluated and reported volumetric dose specification of 
clinical target volume (CTV) and organs at risk with three-dimensional CT-based 
brachytherapy. They analyzed CTV volumes and correlated the dose specification from CT-
based volumes with doses at classical point A and International Commission on Radiation 
Units and Measurements (ICRU) points (Wang et al., 2009). Their main conclusion was that 
excellent dose coverage of CTV can be achieved with image-guided CT-based planning with 
geometric optimization although maximal sparing of rectum was not achieved. Careful dose 
constraints and standardization of D90 should be considered when optimizing doses to 
target tissues such that normal tissue constraints can be met (Wang et al., 2009). 
These several studies have shown that traditional ICRU reference points underestimate dose 
to normal organs when compared to CT-based 3-dimensional (3D) imaging. On figure 1 
example of typical 3D treatment plan in cervical cancer is presented. 
 

 
Fig. 1. Cervical cancer - reconstruction of plastic applicator in a 3D CT study. Plastic 
catheters - intrauterine tube and ovoids are inserted into vaginal vaults and uterus. (a) Para-
transverse image at the level of the ovoids, (b) Para-coronal image and (c) Para-sagittal 
image with a reconstructed tube and ovoids. On (d) 3D-visualisation of application is 
presented. 

4. Prostate cancer 
Real-time rectal ultrasonography (US) guidance has been accepted as a standard technique 
for prostate BT. However, post-implant CT (and MRI) imaging have also been implemented 
for 3D treatment planning for temporary HDR implants and for the verification of 
postimplant dose distribution of permanent seed implants. Paper published by Merrick et 
al. investigated the magnitude of the effect that various methods of treatment volume 
delineation have on dosimetric quality parameters for a treatment planning philosophy that 
defines a target volume as the prostate with a periprostatic margin. They noticed that 
postoperative computed tomography (CT) based dosimetric analysis provides detailed 
information regarding the coverage and the uniformity of an implant. CT-based 
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postoperative dosimetric analysis provides detailed information regarding the dose 
distribution to the prostate/periprostatic region, urethra, and rectum (Wallner et al., 1995; 
Willins & Wallner, 1997; Merrick et al., 1998; Prestidge et al., 1998; Merrick et al., 1999). 
Prestidge et al., 1998 found that the majority of institutions performing postimplant 
assessment employ CT scans, although MRI has also recently been described for this 
purpose. Typically, scans are taken at 3–5-mm slice intervals from the base to the apex of the 
gland. The brachytherapist is then asked to outline the prostate on the film of each axial slice 
on which it is identified. Accurately discerning the prostate from the rectal wall, levator ani 
musculature, periprostatic venous plexus, preprostatic fat, seminal vesicles, and urethral 
sphincter requires some experience.  
American Brachytherapy Society guidelines for postimplant dosimetric analysis recommend 
CT-based imaging (Nag et al., 2000). This represents a dramatic improvement over prior 
postimplant dosimetric methods. The weakness of this method is poor definition of prostate 
volume by CT imaging relative to MRI or ultrasound imaging (Roach et al., 1996). This is 
especially true in the postimplant state, when significant anatomical distortion is present 
due to implanted radioactive sources (seeds) and edema. MRI imaging by pelvic coil or 
rectal coil provides greater definition of the prostate volume postimplant. Ideally, this 
clarity of the prostate volume could be combined with the clarity of seed definition by CT to 
allow improved postimplant dosimetry. Another reason for CT-imaging is assessment of 
edema associated with 125I or 103Pd prostate brachytherapy and its impact on post-implant 
dosimetry (Waterman et al., 1998). Pelvic CT scanning is used to determine the necessity of 
preoperative evaluation of pubic arch interference in patients with small prostate volumes. 
Bellon et al. concluded that the degree of pubic arch interference is highly variable from one 
patient to the next and the TRUS volume cannot reliably predict patients who do or do not 
need a pelvic CT to detect potential arch interference (Bellon et al., 1999). 
Another authors compared real-time intraoperative ultrasound-based dosimetry with 
postoperative computed tomography-based dosimetry for prostate brachytherapy (Nag et 
al., 2008). Although dosimetry using intraoperative US-based planning provides 
preliminary real-time information, it does not accurately reflect the postoperative CT-based 
dosimetry. Until studies have determined whether US-based dosimetry or postoperative 
CT-based dosimetry can better predict patient outcomes, the American Brachytherapy 
Society recommendation of CT-based postimplant dosimetry should remain the standard of 
care (Nag et al., 2008).  
An interesting conclusion drew Al-Qaisieh et al. They analyzed computed tomography 
(CT)-based dosimetry performed to evaluate the variability of different observers’ 
judgements in marking the prostate gland on CT films, and its effect on the parameters that 
characterize the prostate implantation quality. They observed that the evaluation of prostate 
gland volume on CT films varies between different observers. This has an effect on the 
dosimetric indices that characterize the implant quality in particular the D90 (Al-Qaisieh et 
al., 2002). 
CT-imaging is also useful in HDR brachytherapy of prostate cancer. Mullokandov & 
Gejerman investigated the constancy of catheter position and its impact on dose distribution 
using serial dosimetric CT scans. During initial CT treatment planning, transverse images of 
the implant volume were collected, and all structures were digitized into the Planning 
System. They concluded that interstitial catheters did not slip within the template and were 
not caudally displaced independently but rather in conjunction with the template 
(Mullokandov & Gejerman, 2004).  
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Figure 2 presents example of CT-dosimetry after permanent implants application in Greater 
Poland Cancer Centre.  
 

 
Fig. 2. Prostate cancer – Scan made on next day after permanent seeds implantation. 
Example of CT-dosimetry after application in Greater Poland Cancer Centre. Prostate is 
underlined with red line, violet line presents the 100% isodose, yellow line – 150% and blue 
– 200%, respectively. Urethra (yellow in the middle of prostate) and rectum (brown line) are 
marked too. Seeds are clearly visible.   

5. Breast cancer 
Today the availability of modern diagnostic imaging facilities allows to detect early stage of 
breast cancer, what along with the integration of sophisticated RT techniques, the Breast 
Conserving Therapy (BCT) makes widely accepted an alternative to mastectomy in the 
management of early breast cancer (Gerbaulet et al., 2002). The main purpose of radiation in 
BCT is to prevent any local recurrence without effecting cosmetic outcome (Van Limbergen 
et al., 1987). Conventionally RT in the BCT includes Whole Breast Radiation Therapy 
(WBRT) that is usually delivered by tangential beams. A supplementary tumor bed boost 
dose of 10-20 Gy (either through electrons, photons or an interstitial implants) is added to 
decrease the rate of local recurrence. The use of BT as additional irradiation to the tumor site 
with early stage breast cancer has increased significantly over the past several years (Polgar 
et al., 2002). The big advantage of BT above external beam radiotherapy (EBRT) results in 
much smaller and more conformal irradiation to the target volume due to the rapid dose 
fall-off (Frazier et al., 2001; Hammer et al., 2009). Nowadays the indication of the boost after 
BCT and selection of proper technique in order to deliver extra dose, should be depending 
on clinical and morphologic criteria as well as patient agreement. At present there are 
several techniques used in maintaining better coverage of the target volume. However, the 
irregular 3-D shape of the excision cavity and the normal tissue structures can only be 
accurately localized by visual information acquired from cross-sectional imaging 
(Kubaszewska et al., 2008). The use of surgical clips and CT at the same time seems to be the 
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best method to determine the target volume, since both titanium clips and borders of the 
excision cavity can be visualized exactly from slice to slice (Polgar et al., 2000). CT scan with 
visible clips is presented in figure 3a, the target volume is then outlined (figure 3b). 
 

 
 

  
Fig. 3. Breast cancer – (a) CT scan after breast conserving surgery before catheter 
implantation. Visible three clips, (b) the target (tumor bed) volume (red line), lung and skin 
(OARs) are outlined.  
CT based treatment boost planning - target volume delineation 
Every individual case of BT target volume is based on combined information from the 
pathologic evaluation (factors considered included excision specimen size, tumor location 
within the resected specimen, characteristic of surgical margins, histological type) 
mammographic and ultrasound findings, clinical examination (scar position, size and 
location of any palpable seroma), localization of surgical clips, as well as CT pre-implant 
cross-sectional imaging (both exact visibility of titanium clips and borders of the slice to slice 
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excision cavity). An intraoperative implantation demands good collaboration and time 
management between the surgeons and radiation oncologists. The majority of authors 
suggested the best orientation given by titanium clips marker that are implanted 
intraoperatively (Hammer et al., 1999; Polgar et al., 2000). Placing of 6 clips into the walls of 
the excision cavity according to latero – medial, antero – posterior, inferior and superior 
dimensions seem to be the ideal approach. However, the titanium clips do not alter the dose 
distribution during RT and the quality of diagnostic MR images after the procedure. The 
irregular 3 dimensional (3D) shape of the target volume and the normal tissue structures can 
only be correctly localized on the basis of visual information obtained from cross-sectional 
CT-imaging. In addition to this, better local control rate with fewer side effects might be 
achieved with this technique based on CT-imaging (Polgar et al., 2000). The combined use of 
surgical clips and CT or MRI appear to be the best method to determine the target volume, 
since both titanium clips and borders of the excision cavity can be visualized exactly from 
slice to slice. Vicini et al. implemented 3D virtual brachytherapy based on two sets (pre- and 
postimplant) of CT scans. In their researches, the 3D BT showed excellent agreement in 
target volume coverage between the preplanned virtual implant geometry and the actual 
positioning of the final afterloading needles (Vicini et al., 1998). 
CT based treatment planning procedure 
The advantages of conformal brachytherapy boost treatment planning in the management of 
breast cancer are as follow: 1. as a useful tool helps to avoid geographical miss, 2. the 
irregular 3D shape of the target volume and the normal tissue structures can only be 
localized correctly on the basis of visual information obtained from cross-sectional CT-
imaging (better local control rate with less side effects might be achieved with these 
technique based on CT-imaging), 3. the primary role of the treatment planning and dose 
optimization for a given implantation is to achieve as best coverage of the target volume as 
possible (the adequate homogeneity is relatively important) 4. verification of  the 
positioning of the plastic tubes with  the use of  CT unit (Vicini et al., 1997). With CT-based 
planning, the distances between implant tubes and overlying skin and underlying ribs are 
directly visible and measurable. The skin dose should not exceed 60% of prescribed dose 
(executed only in case of a superficial plane implanted at least 10 mm from the skin). 
In the 3D treatment planning based on CT sectional-cross the main aspect is to achieve such 
dose distribution, where all surgical clips would receive at least 85 % of the prescribed dose 
(Kubaszewska et al., 2008). Planning concepts are based on the 3D reconstruction of the 
catheters, tumor bed clips maintaining proper distances (at least 10 mm) from critical 
structures (skin, ribs). The clinical target volume (CTV) is defined by a margin of 2 cm breast 
tissue of the primary tumor, since this area contains 80% of the microscopic tumor 
extensions. The planning target volume (PTV) is comparable to the CTV for the reason that 
extra margin added in case of organ motion or set-up errors is not required in interstitial BT. 
The CTV of boost irradiation is not focused on such critical structures like ribs and breast 
skin with tissues beyond the fascia such as thoracic wall muscle. The minimum distance 
from the PTV to skin and underling ribs should be 10 mm. This helps to define the 
dimensions of the boost volume, as well as the choice between electron beam boost and 
interstitial implants. Some examples of 3-D treatment plans are presented in Figures 4-8. The 
active source positions, dwell times and reference dose points are defined individually in 
each catheter as well as dose optimization. To avoid skin and rib injury, the most peripheral 

CT-Image Guided Brachytherapy   

 

153 

active source positions are kept at a minimum of 10 mm distance from the skin and rib 
surface (Kubaszewska et al., 2008).  
 
 

 
Fig. 4. Breast cancer – CT-based 3D image of Oncentra Planning System® (Nucletron), with 
target and applicators.  

 
 

 
Fig. 5. Breast cancer – CT-based 3D image showing target, applicators and coverage of 100% 
isodose of target.  
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active source positions are kept at a minimum of 10 mm distance from the skin and rib 
surface (Kubaszewska et al., 2008).  
 
 

 
Fig. 4. Breast cancer – CT-based 3D image of Oncentra Planning System® (Nucletron), with 
target and applicators.  

 
 

 
Fig. 5. Breast cancer – CT-based 3D image showing target, applicators and coverage of 100% 
isodose of target.  
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Fig. 6. Breast cancer – Transverse CT scan with final plan – different isodoses allow to assess 
value of dose in tumor bed (target) lung, skin and other tissues.  

 
 

 

 
 

Fig. 7. Breast cancer – Saggital CT scan makes possible assessment of distance from ribs 
(white structures) and applicators, also from skin to applicators. Values of isodoses are 
visible. 
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Fig. 8. Breast cancer – Transverse CT scan of Contura® application. Final treatment plan. CT 
makes possible visualisation of all 5 catheteres within Contura balloon, assessment of 
isodoses in CTV, lung and skin (OARs).     

Polgar et al. compared the conventional 2D, the simulator-guided semi 3D and the recently 
developed CT-guided 3D brachytherapy treatment planning in the interstitial radiotherapy 
of breast cancer. With the help of conformal semi 3D and 3D brachytherapy planning they 
defined reference dose points, active source positions and dwell times individually. This 
technique decreased the mean skin dose with 22.2% and reduced the possibility of 
geographical miss. The best conformity between the planning target volume and the treated 
volume with the CT-image was achieved by 3D treatment planning, however at the cost of 
worse dose homogeneity. The mean treated volume was reduced by 25.1% with semi 3D 
planning, however, it was increased by 16.2% with 3D planning, compared to the 2D 
planning. Authors concluded that the application of clips into the tumor bed and the 
conformal (semi 3D and 3D) planning help to avoid geographical miss. CT is suitable for 3D 
brachytherapy planning. Better local control with fewer side effects might be achieved with 
these new techniques. Conformal 3D brachytherapy calls for new treatment planning 
concepts, taking the irregular 3D shape of the target volume into account. The routine 
clinical application of image-based 3D brachytherapy is a real aim in the very close future 
(Polgar et al., 2000 ). In conclusion, in breast BT, CT-based PTV definition and implant 
simulation can be effectively used to obtain improved dose distribution regarding PTV 
coverage, dose homogeneity and conformality, and dose to OARs (e.g. skin, lung, and heart 
for left sided tumors). Much better PTV coverage can be achieved with CT image-based 
implant technique than with conventional one. These dosimetric results reinforce that 
image-guided BT planning for breast implants can be effectively used to improve dose 
delivery regarding both target coverage and dose homogeneity, which may turn into 
improved clinical results. 
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6. Head and neck cancers 
There is limited clinical evidence supporting the routine use of CT image guidance for BT 
planning of interstitial implants in the H&N region (e.g. oral cavity and base of tongue). 
Organ (and tumor) motion during implantation limits the possible advantages of 
preimplant cross-sectional imaging in PTV definition. Thus, clinical examination (palpation) 
remains the basic element for definition of the target volume for H&N implants. However, 
CT images are useful to control the dose to OARs for example to avoid radionecrosis of the 
mandible.  
Takácsi-Nagy et al. examined the feasibility and efficacy of interstitial HDR brachytherapy 
in the treatment of carcinoma of the tongue base (Takácsi-Nagy et al., 2004). Extent of the 
disease was diagnosed by clinical and computed tomography (CT). Brachytherapy 
treatment planning was performed by the use of two postimplant isocentric X-ray films or 
CT images. CT images made possible calculation of the coverage index, which is the fraction 
of the target volume receiving a dose equal to or greater than the prescribed dose. One of 
the important conclusions was that successful radiation therapy of base of tongue 
carcinomas requires total dose above 70 Gy, which, however, increases the risk of 
osteoradionecrosis and xerostomia. In those locations CT-image based planning reduces this 
risk. 
Another authors analyzed usefulness of CT-imaging in salvage brachytherapy for cervical 
recurrences of head and neck cancer (Pellizzon et al., 2006). For HDR planning and 
reconstruction, CT scans were used in order to calculate exactly the dose distribution to the 
target volume and adjacent healthy tissues. In GEC-ESTRO recommendations we can read, 
that CT-guided pre-treatment work-up is useful (Mazeron et al., 2009). The CT scan depicts 
both soft tissue and bone, and is more sensitive than MRI for evaluating lymph nodes. This 
is the reason for use CT in cases of treatment planning of recurrences in irradiated neck area. 
Example of CT-image guided brachytherapy is presented in figure 9.  
 

 
Fig. 9. Head and Neck cancer - CT-image based treatment plan. Tumor (recurrence in lymph 
node system) is located in chins region. (a) Para-transverse image at the level of the tumor, 
(b) Para-coronal image and (c) Para-sagittal image. On (d) 3D-visualisation of application is 
presented. 
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7. Sarcomas 
In 1994 Griffin et al. presented one of the first experiences of using CT-image guided BT. A 
technique was presented for computer tomography - guided interstitial catheter placement 
and treatment planning for high-dose-rate brachytherapy. In a 66-year-old woman with 
adenocarcinoma of unknown origin that had metastasized to the right ilium, interstitial 
brachytherapy catheters were placed by means of CT guidance. With use of a treatment 
planning system with dose optimization, an excellent dose distribution was obtained with 
minimal dose being delivered to the surrounding critical tissues. Authors concluded that for 
selected patients, this procedure can provide effective and safe local treatment for solid 
tumors. 
Report published by the American Brachytherapy Society (ABS) presents guidelines for the 
use of brachytherapy for patients with soft tissue sarcoma (Nag et al., 2001). Brachytherapy 
used alone or in combination with external beam irradiation is an established means of 
safely providing adjuvant local treatment after resection for soft tissue sarcomas in adults 
and in children. Brachytherapy options include low dose rate techniques with iridium 192 or 
iodine 125, fractionated high dose rate brachytherapy, or intraoperative high dose rate 
therapy. Recommendations are made for patient selection, techniques, dose rates, and 
dosages. In treatment planning they recommended the cross-section imaging (CT or MRI) 
which allows for the 3D reconstruction of catheter position and sources within. This 
approach minimizes errors and furthermore permits 3D treatment planning and dose 
distribution.  

8. Lung cancer and other tumors 
There are few reports concerning the use of CT in brachytherapy of lung cancer. 
Lagerwaard et al. investigated the consequences of using different dose prescription 
methods for endobronchial brachytherapy (EB), both with and without the use of a centered 
applicator. A CT scan was performed during EB procedures in 13 patients after insertion of 
the lung applicator. A dosimetric analysis was subsequently performed in five of these 
patients using a 3D-brachytherapy treatment planning system (PLATO v13.3®, Nucletron). 
CT images made possible confirmation of the rapid dose fall-off in EB mucosal dose 
prescription which should be used with caution in curative treatments where EB, without 
additional external radiotherapy, was used as the sole treatment modality (Lagerwaard et 
al., 2000). The CT measurements of the diameter of the different bronchial segments 
generally correlated well with the calculated values. 
In another paper Senan et al. described a CT-based planning method which, by improving 
target volume definition and volumetric dose information, can improve the therapeutic ratio 
of EB (Senan et al., 2000). Sixteen CT-assisted EB procedures were performed in patients 
who were treated with palliative high-dose-rate EB. The CT data were used to analyze 
applicator position in relation to anatomy. An example of a three-dimensional optimized 
treatment plan was generated and analyzed using different types of dose-volume 
histograms. Authors initial experience highlights both the potential benefits and limitations 
of using “CT-assisted EB”, which we have defined as EB characterized by the following: 1. 
use of CT imaging to supplement the findings of bronchoscopy, particularly in determining 
the distal extent of the target volume; 2. visualization of the position of the applicator in 
relation to the target volume; 3. facilitation of dose prescription to the bronchial mucosa by 
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identifying the position of branching of the different subsegments of the bronchial tree and 
allowing the use of actual measurements of the diameter of each segment; 4. generation of a 
3D dosimetric database for correlation with toxicity. Authors concluded that: CT-assisted EB 
was feasible and underlines the need for using centered applicators for proximally located 
tumors. By enabling accurate mucosal dose prescription, CT-assisted EB may reduce the 
toxicity of fractionated EB in the curative setting. However, faster online EB treatment 
planning is needed for the routine clinical application of this technique (Senan et al., 2000). 
In their review article Jansen et al. analyzed usefulness of CT-imaging in treatment planning 
of brain tumors. They mentioned that delineation of the clinical target volume (CTV) in 
radiation treatment planning of high-grade glioma is a controversial issue. The use of CT 
has greatly improved the accuracy of tumor localization in 3D planning. Their review aims 
at critically analyzing available literature data in which tumor extent of high-grade glioma 
has been assessed using CT and/or MRI and relating this to postmortem observations. 
Attention was given to the pattern of tumor spread at initial presentation and to tumor 
recurrence pattern after external beam irradiation. Special emphasis was given to the site of 
tumor regrowth after radiation treatment in relation to the boundaries of the CTV. 
Guidelines for delineating CTV were inferred from this information, taking data on 
radiation effects on the normal brain into account (Jansen et al., 2000). Hochberg & Pruitt 
were among the first to demonstrate the value of CT in radiation treatment planning of 
gliomas. But, they research another subject. They related CT scans in 127 untreated GBM 
patients with postmortem examination and found that only 3% had multicentric GBM at 
presentation (Hochberg & Pruitt, 1980). In another study by the same group on 15 patients, 
CT and postmortem findings were related to the intended radiation treatment plan 
(Halperin et al., 1989). Studies on CT focused also on reports in which tumor delineation 
assessed with CT and/or MRI were correlated with documented recurrence patterns after 
radiation treatment. Accordingly, in a study of 42 patients treated with WBI and followed 
up with serial CT scanning, 90% of the cases showed tumor recurrence within a 2-cm 
margin of the primary site (Hochberg & Pruitt, 1980). A similar recurrence pattern was 
observed after WBI with a cone-down boost field (Gaspar et al., 1992). This results where the 
basis for limiting the fields in 3D external beam radiation therapy. 
In rectal cancer there is an interest in CT-guided needle insertion into tumor or tumor bed. 
Sakurai et al. described developing of high-dose-rate (HDR) conformal interstitial 
brachytherapy by means of combined CT-fluoroscopy guidance with CT-based treatment 
planning for locally recurrent rectal carcinoma. They concluded that CT fluoroscopy 
guidance ensures safety and increases the accuracy of needles placement in brachytherapy. 
Conformal high-dose-rate (HDR) interstitial brachytherapy with CT-based treatment 
planning is a method worth considering for locally recurrent rectal cancer (Sakurai et al., 
2004).  

9. Conclusions 
The target volume is currently generally defined using radiologic imaging (e.g., plane 
radiography, CT, MRI). The improvements required include increased tissue resolution; 
improved boundary definition; functional imaging (i.e., PET); and antibody-based imaging. 
Radiographs are conventionally used for source localization and calculation of the dose 
distribution around brachytherapy applicators, whether they are placed manually or with a 
computerized treatment planning system. The doses to normal tissues such as the bladder 
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and the rectum have traditionally been calculated from the implant localization films with 
contrast in the bladder or catheter bulb and a radiopaque marker or contrast in the rectum. 
The inability of the orthogonal film pair method to delineate organ boundaries diminishes 
the reliability of the normal tissue dose point determinations and compromises the 
understanding of the dose distributions to the non infiltrated soft tissues. An improvement 
in the spatial resolution may also bring about improved target volume definition of the 
imaging modality and fusion of various imaging modalities (e.g., transrectal 
ultrasonography with MRI or CT). 

10. Acknowledgements 
Author thanks Grzegorz Bielęda, MSc from Greater Poland Cancer Centre, for preparing 
excellent figures from Oncentra Planning system (Nucletron®, Netherlands).  

11. References 
Al-Halabi, H., Portelance, P., Duclos, M. et al. (2010). Cone Beam Ct-Based Three-

Dimensional Planning In High-Dose-Rate Brachytherapy For Cervical Cancer. Int J 
Radiat Oncol Biol Phys; 77: pp 1092–1097. 

Al-Qaisieh, B., Ash, D., Bottomley, D.M. et al. (2002). Impact of prostate volume evaluation 
by different observers on CT-based post-implant dosimetry. Radiother Oncol; 62: pp 
267–273. 

Barrett, A., Dobbs, J., Morris, S., et al. (2009). Practical Radiotherapy Planning. 4th Edition. 
Hodder Arnold, London. pp 15-19. 

Bellon, J., Wallner, K., Ellis, W. et al. (1999). Use of Pelvic CT Scanning to Evaluate Pubic 
Arch Interference of Transperineal Prostate Brachytherapy. Int J Radiat Oncol Biol 
Phys; 43: pp 579–581. 

Davidson, M.T.M., Yuen, J., D’Souza, D.P. et al. (2008). Image-guided cervix high-dose-rate 
brachytherapy treatment planning: Does custom computed tomography planning 
for each insertion provide better conformal avoidance of organs at risk? 
Brachytherapy; 7: pp 37-42. 

Frazier, R.C., Kestin, L.L., Kini, V., et al. (2001). Impact of boost technique on outcome in 
early-stage breast cancer patients treated with breast conserving therapy. Am J Clin 
Oncol; 24: pp 26-32. 

Gao, M., Albuquerque, K., Chi, A. et al. (2010). 3D CT-based volumetric dose assessment of 
2D plans using GEC-ESTRO guidelines for cervical cancer brachytherapy. 
Brachytherapy; 9: pp 55-60. 

Gaspar, L.E., Fisher, B.J. & Macdonald, D.R.  (1992). Supratentorial malignant glioma: 
patterns of recurrence and implications for external beam local treatment. Int J 
Radiat Oncol Biol Phys; 24: pp 55-57. 

Gerbaulet, A., Pötter, R., Mazeron, J.J. et al. (2002). The GEC ESTRO Handbook of 
Brachytherapy. Brussels. pp 435-454. 

Griffin, P.C., Amin, P.A., Hughes, P. et al. (1994). Pelvic Mass: CT-guided Interstitial 
Catheter Implantation with High-Dose-Rate Remote Afterloader. Radiology; 191: 
pp 581-583. 

Haie-Meder, C., Pötter, R., Van Limbergen, E. et al. (2005). Recommendations from 
Gynaecological (GYN) GEC-ESTRO Working Group (I): Concepts and terms in 3D 



 Theory and Applications of CT Imaging and Analysis 

 

158 

identifying the position of branching of the different subsegments of the bronchial tree and 
allowing the use of actual measurements of the diameter of each segment; 4. generation of a 
3D dosimetric database for correlation with toxicity. Authors concluded that: CT-assisted EB 
was feasible and underlines the need for using centered applicators for proximally located 
tumors. By enabling accurate mucosal dose prescription, CT-assisted EB may reduce the 
toxicity of fractionated EB in the curative setting. However, faster online EB treatment 
planning is needed for the routine clinical application of this technique (Senan et al., 2000). 
In their review article Jansen et al. analyzed usefulness of CT-imaging in treatment planning 
of brain tumors. They mentioned that delineation of the clinical target volume (CTV) in 
radiation treatment planning of high-grade glioma is a controversial issue. The use of CT 
has greatly improved the accuracy of tumor localization in 3D planning. Their review aims 
at critically analyzing available literature data in which tumor extent of high-grade glioma 
has been assessed using CT and/or MRI and relating this to postmortem observations. 
Attention was given to the pattern of tumor spread at initial presentation and to tumor 
recurrence pattern after external beam irradiation. Special emphasis was given to the site of 
tumor regrowth after radiation treatment in relation to the boundaries of the CTV. 
Guidelines for delineating CTV were inferred from this information, taking data on 
radiation effects on the normal brain into account (Jansen et al., 2000). Hochberg & Pruitt 
were among the first to demonstrate the value of CT in radiation treatment planning of 
gliomas. But, they research another subject. They related CT scans in 127 untreated GBM 
patients with postmortem examination and found that only 3% had multicentric GBM at 
presentation (Hochberg & Pruitt, 1980). In another study by the same group on 15 patients, 
CT and postmortem findings were related to the intended radiation treatment plan 
(Halperin et al., 1989). Studies on CT focused also on reports in which tumor delineation 
assessed with CT and/or MRI were correlated with documented recurrence patterns after 
radiation treatment. Accordingly, in a study of 42 patients treated with WBI and followed 
up with serial CT scanning, 90% of the cases showed tumor recurrence within a 2-cm 
margin of the primary site (Hochberg & Pruitt, 1980). A similar recurrence pattern was 
observed after WBI with a cone-down boost field (Gaspar et al., 1992). This results where the 
basis for limiting the fields in 3D external beam radiation therapy. 
In rectal cancer there is an interest in CT-guided needle insertion into tumor or tumor bed. 
Sakurai et al. described developing of high-dose-rate (HDR) conformal interstitial 
brachytherapy by means of combined CT-fluoroscopy guidance with CT-based treatment 
planning for locally recurrent rectal carcinoma. They concluded that CT fluoroscopy 
guidance ensures safety and increases the accuracy of needles placement in brachytherapy. 
Conformal high-dose-rate (HDR) interstitial brachytherapy with CT-based treatment 
planning is a method worth considering for locally recurrent rectal cancer (Sakurai et al., 
2004).  

9. Conclusions 
The target volume is currently generally defined using radiologic imaging (e.g., plane 
radiography, CT, MRI). The improvements required include increased tissue resolution; 
improved boundary definition; functional imaging (i.e., PET); and antibody-based imaging. 
Radiographs are conventionally used for source localization and calculation of the dose 
distribution around brachytherapy applicators, whether they are placed manually or with a 
computerized treatment planning system. The doses to normal tissues such as the bladder 

CT-Image Guided Brachytherapy   

 

159 

and the rectum have traditionally been calculated from the implant localization films with 
contrast in the bladder or catheter bulb and a radiopaque marker or contrast in the rectum. 
The inability of the orthogonal film pair method to delineate organ boundaries diminishes 
the reliability of the normal tissue dose point determinations and compromises the 
understanding of the dose distributions to the non infiltrated soft tissues. An improvement 
in the spatial resolution may also bring about improved target volume definition of the 
imaging modality and fusion of various imaging modalities (e.g., transrectal 
ultrasonography with MRI or CT). 

10. Acknowledgements 
Author thanks Grzegorz Bielęda, MSc from Greater Poland Cancer Centre, for preparing 
excellent figures from Oncentra Planning system (Nucletron®, Netherlands).  

11. References 
Al-Halabi, H., Portelance, P., Duclos, M. et al. (2010). Cone Beam Ct-Based Three-

Dimensional Planning In High-Dose-Rate Brachytherapy For Cervical Cancer. Int J 
Radiat Oncol Biol Phys; 77: pp 1092–1097. 

Al-Qaisieh, B., Ash, D., Bottomley, D.M. et al. (2002). Impact of prostate volume evaluation 
by different observers on CT-based post-implant dosimetry. Radiother Oncol; 62: pp 
267–273. 

Barrett, A., Dobbs, J., Morris, S., et al. (2009). Practical Radiotherapy Planning. 4th Edition. 
Hodder Arnold, London. pp 15-19. 

Bellon, J., Wallner, K., Ellis, W. et al. (1999). Use of Pelvic CT Scanning to Evaluate Pubic 
Arch Interference of Transperineal Prostate Brachytherapy. Int J Radiat Oncol Biol 
Phys; 43: pp 579–581. 

Davidson, M.T.M., Yuen, J., D’Souza, D.P. et al. (2008). Image-guided cervix high-dose-rate 
brachytherapy treatment planning: Does custom computed tomography planning 
for each insertion provide better conformal avoidance of organs at risk? 
Brachytherapy; 7: pp 37-42. 

Frazier, R.C., Kestin, L.L., Kini, V., et al. (2001). Impact of boost technique on outcome in 
early-stage breast cancer patients treated with breast conserving therapy. Am J Clin 
Oncol; 24: pp 26-32. 

Gao, M., Albuquerque, K., Chi, A. et al. (2010). 3D CT-based volumetric dose assessment of 
2D plans using GEC-ESTRO guidelines for cervical cancer brachytherapy. 
Brachytherapy; 9: pp 55-60. 

Gaspar, L.E., Fisher, B.J. & Macdonald, D.R.  (1992). Supratentorial malignant glioma: 
patterns of recurrence and implications for external beam local treatment. Int J 
Radiat Oncol Biol Phys; 24: pp 55-57. 

Gerbaulet, A., Pötter, R., Mazeron, J.J. et al. (2002). The GEC ESTRO Handbook of 
Brachytherapy. Brussels. pp 435-454. 

Griffin, P.C., Amin, P.A., Hughes, P. et al. (1994). Pelvic Mass: CT-guided Interstitial 
Catheter Implantation with High-Dose-Rate Remote Afterloader. Radiology; 191: 
pp 581-583. 

Haie-Meder, C., Pötter, R., Van Limbergen, E. et al. (2005). Recommendations from 
Gynaecological (GYN) GEC-ESTRO Working Group (I): Concepts and terms in 3D 



 Theory and Applications of CT Imaging and Analysis 

 

160 

image based 3D treatment planning in cervix cancer brachytherapy with emphasis 
on MRI assessment of GTV and CTV. Radiother Oncol; 74: pp 235-245. 

Halperin, E.C., Bentel, G., Heinz, E.R. et al. (1989). Radiation therapy treatment planning in 
supratentorial glioblastoma multiforme: an analysis based on post mortem 
topographic anatomy with CT correlations. Int J Radiat Oncol Biol Phys; 17: pp 1347-
1350. 

Hammer, J., Mazeron, J.J & van Limbergen, E. (2001). Breast boost – Why, how, when? 
Strahlenther Onkol; 175: pp 478–483. 

Hellebust, T.P., Kirisits Ch., Berger D. et al. (2010). Recommendations from Gynaecological 
(GYN) GEC-ESTRO Working Group: Considerations and pitfalls in commissioning 
and applicator reconstruction in 3D image-based treatment planning of cervix 
cancer brachytherapy. Radioth Oncol; 96: pp 153–160. 

Hellebust, T.P., Tanderup, K., Bergstrand, E.S. et al. (2007). Reconstruction of the ring 
applicator set using CT imaging; impact of reconstruction method and applicator 
orientation. Phys Med Biol; 52: pp 4893–4904. 

Hochberg, F.H. & Pruitt, A. (1980). Assumptions in the radiotherapy of glioblastoma. 
Neurology; 30: pp 907-911. 

Jansen, J.P.M., Dewit, L.G.H., van Herk, M. et al. (2000). Target volumes in radiotherapy for 
high-grade malignant glioma of the brain. Radiother Oncol; 56: pp 151-156. 

Kolotas, Ch., Baltas, D & Zamboglou N. (1999). CT-Based Interstitial HDR Brachytherapy. 
Strahlenther Onkol; 175: pp 419–427. 

Kubaszewska, M., Dymnicka, M., Skowronek, J., et al. (2008). CT-image based conformal 
High Dose Rate Brachytherapy boost in the conservative treatment of stage I –II 
breast cancer – introducing the procedure. Rep Pract Radioth Oncol; 5: pp 227 – 239. 

Lagerwaard, F.J., Murrer, L.H.P., de Pan, C. et al. (2000). Mucosal Dose Prescription in 
Endobronchial Brachytherapy: A Study Based On CT-Dosimetry. Int J Radiat Oncol 
Biol Phys; 46: pp 1051–1059. 

Van Limbergen, E., Van den Bogaert, W., Van der Schueren, E., et al. (1987). Tumor excision 
and radiotherapy as primary treatment of breast cancer. Analysis of patient and 
treatment parameters and local control. Radiother Oncol; 8: pp 1-9. 

Ling, C., Schell, M., Working, K. et al. (1987). CT-assisted assessment of bladder and rectum 
dose in gynecological implants. Int J Radiat Oncol Biol Phys; 13: pp 1577–1582. 

Mazeron, J-J., Ardiet, J-M., Haie-Méder, Ch. et al. (2009). GEC-ESTRO recommendations for 
brachytherapy for head and neck squamous cell carcinomas. Radiother Oncol; 91: pp 
150–156. 

Merrick, G.S., Butler, W.M., Dorsey, A.T. et al. (1998). Influence of timing on the dosimetric 
analysis of transperineal ultrasound-guided prostatic conformal brachytherapy. 
Rad Onc Invest; 6: pp 182–190. 

Merrick, G.S., Butler, W.M., Dorsey, A.T. et al. (1999). The potential role of various 
dosimetric quality indications in prostate brachytherapy. Int J Radiat Oncol Biol 
Phys; 44: pp 717–724. 

Merrick, G.S., Butler, W.M., Dorsey, A.T. et al. (1999). The Dependence Of Prostate 
Postimplant Dosimetric Quality On Ct Volume Determination. Int J Radiat Oncol 
Biol Phys; 44: pp. 1111–1117. 

CT-Image Guided Brachytherapy   

 

161 

Mullokandov, E. & Gejerman G. (2004). Analysis of Serial CT Scans to Assess Template and 
Catheter Movement in Prostate HDR Brachytherapy. Int J Radiat Oncol Biol Phys; 58: 
pp 1063–1071. 

Nag, S., Bice, W., de Wyngaert, K. et al. (2000). The American Brachytherapy Society 
recommendations for permanent prostate brachytherapy postimplant dosimetric 
analysis. Int J Radiat Oncol Biol Phys; 46: pp 221–230. 

Nag, S., Cardenes, H., Chang, S. et al. (2004). Proposed guidelines for image-based 
intracavitary brachytherapy for cervical carcinoma: Report from Image-Guided 
Brachytherapy Working Group. Int J Radiat Oncol Biol Phys; 60: pp 1160–1172. 

Nag, S., Shasha, D., Janjan, N. et al. for The American Brachytherapy Society. (2001). The 
American Brachytherapy Society Recommendations for Brachytherapy of Soft 
Tissue Sarcomas. Int J Radiat Oncol Biol Phys; 49: pp 1033–1043. 

Nag, S., Shi, P., Liu, B. et al. (2008). Comparison of Real-Time Intraoperative Ultrasound-
Based Dosimetry with Postoperative Computed Tomography-Based Dosimetry for 
Prostate Brachytherapy. Int J Radiat Oncol Biol Phys; 70: pp 311–317. 

Pellizzon, A.C.A., Salvajoli, J.V., Kowalski, L.P. et al. (2006). Salvage for cervical recurrences 
of head and neck cancer with dissection and interstitial high dose rate 
brachytherapy. Radiation Oncology; 1: pp 27-32. 

Polgar, C., Fodor, J., Orosz, Z., et al. (2002). Electron and high-dose-rate brachytherapy boost 
in the conservative treatment of stage I-II breast cancer: First results of the 
randomized Budapest boost trial. Strahlenther Onkol; 178: pp 615–623. 

Polgár, C., Major, T., Somogyi, A. et al. (2000). CT-image based conformal brachytherapy of 
breast cancer: the significance of semi-3D and 3-D treatment planning. Strahlenther 
Onkol; 176: pp 118-124. 

Pötter, R., Haie-Meder, C., Van Limbergen, E. et al. (2006). Recommendations from 
gynaecological (GYN) GEC ESTRO working group (II): Concepts and terms in 3D 
image-based treatment planning in cervix cancer brachytherapy-3D dose volume 
parameters and aspects of 3D image-based anatomy, radiation physics, 
radiobiology. Radiother Oncol; 78: pp 67-77. 

Prestidge, B.R., Bice, W.S., Kiefer, E.T. et al. (1998). Timing of computed tomography based 
post-implant assessment following permanent transperineal prostate 
brachytherapy. Int J Radiat Oncol Biol Phys; 40: pp 1111–1115. 

Roach, M., Faillace-Akazawa, P., Malfatti, C. et al. (1996). Prostate volumes defined by 
magnetic resonance imaging and computerized tomographic scans for three-
dimensional conformal radiotherapy. Int J Radiat Oncol Biol Phys; 35: pp 1011–1018. 

Sakurai, H., Mitsuhashi, N., Harashima, K. et al. (2004). CT-fluoroscopy guided interstitial 
brachytherapy with image-based treatment planning for unresectable locally 
recurrent rectal carcinoma. Brachytherapy; 3: pp 222–230. 

Senan, S., Lagerwaard, F.J., de Pan, C. on behalf of the Rotterdam Oncological Thoracic 
Study Group. (2000). A CT-assisted method of dosimetry in brachytherapy of lung 
cancer. Radiother Oncol; 55: pp 75-80. 

Shin, K.H., Kim, T.H., Cho, J.K. et al. (2006). CT-guided intracavitary radiotherapy for 
cervical cancer: Comparison of conventional Point A plan with clinical target 
volume-based three-dimensional plan using dose-volume parameters. Int J Radiat 
Oncol Biol Phys; 64: pp 197–204. 



 Theory and Applications of CT Imaging and Analysis 

 

160 

image based 3D treatment planning in cervix cancer brachytherapy with emphasis 
on MRI assessment of GTV and CTV. Radiother Oncol; 74: pp 235-245. 

Halperin, E.C., Bentel, G., Heinz, E.R. et al. (1989). Radiation therapy treatment planning in 
supratentorial glioblastoma multiforme: an analysis based on post mortem 
topographic anatomy with CT correlations. Int J Radiat Oncol Biol Phys; 17: pp 1347-
1350. 

Hammer, J., Mazeron, J.J & van Limbergen, E. (2001). Breast boost – Why, how, when? 
Strahlenther Onkol; 175: pp 478–483. 

Hellebust, T.P., Kirisits Ch., Berger D. et al. (2010). Recommendations from Gynaecological 
(GYN) GEC-ESTRO Working Group: Considerations and pitfalls in commissioning 
and applicator reconstruction in 3D image-based treatment planning of cervix 
cancer brachytherapy. Radioth Oncol; 96: pp 153–160. 

Hellebust, T.P., Tanderup, K., Bergstrand, E.S. et al. (2007). Reconstruction of the ring 
applicator set using CT imaging; impact of reconstruction method and applicator 
orientation. Phys Med Biol; 52: pp 4893–4904. 

Hochberg, F.H. & Pruitt, A. (1980). Assumptions in the radiotherapy of glioblastoma. 
Neurology; 30: pp 907-911. 

Jansen, J.P.M., Dewit, L.G.H., van Herk, M. et al. (2000). Target volumes in radiotherapy for 
high-grade malignant glioma of the brain. Radiother Oncol; 56: pp 151-156. 

Kolotas, Ch., Baltas, D & Zamboglou N. (1999). CT-Based Interstitial HDR Brachytherapy. 
Strahlenther Onkol; 175: pp 419–427. 

Kubaszewska, M., Dymnicka, M., Skowronek, J., et al. (2008). CT-image based conformal 
High Dose Rate Brachytherapy boost in the conservative treatment of stage I –II 
breast cancer – introducing the procedure. Rep Pract Radioth Oncol; 5: pp 227 – 239. 

Lagerwaard, F.J., Murrer, L.H.P., de Pan, C. et al. (2000). Mucosal Dose Prescription in 
Endobronchial Brachytherapy: A Study Based On CT-Dosimetry. Int J Radiat Oncol 
Biol Phys; 46: pp 1051–1059. 

Van Limbergen, E., Van den Bogaert, W., Van der Schueren, E., et al. (1987). Tumor excision 
and radiotherapy as primary treatment of breast cancer. Analysis of patient and 
treatment parameters and local control. Radiother Oncol; 8: pp 1-9. 

Ling, C., Schell, M., Working, K. et al. (1987). CT-assisted assessment of bladder and rectum 
dose in gynecological implants. Int J Radiat Oncol Biol Phys; 13: pp 1577–1582. 

Mazeron, J-J., Ardiet, J-M., Haie-Méder, Ch. et al. (2009). GEC-ESTRO recommendations for 
brachytherapy for head and neck squamous cell carcinomas. Radiother Oncol; 91: pp 
150–156. 

Merrick, G.S., Butler, W.M., Dorsey, A.T. et al. (1998). Influence of timing on the dosimetric 
analysis of transperineal ultrasound-guided prostatic conformal brachytherapy. 
Rad Onc Invest; 6: pp 182–190. 

Merrick, G.S., Butler, W.M., Dorsey, A.T. et al. (1999). The potential role of various 
dosimetric quality indications in prostate brachytherapy. Int J Radiat Oncol Biol 
Phys; 44: pp 717–724. 

Merrick, G.S., Butler, W.M., Dorsey, A.T. et al. (1999). The Dependence Of Prostate 
Postimplant Dosimetric Quality On Ct Volume Determination. Int J Radiat Oncol 
Biol Phys; 44: pp. 1111–1117. 

CT-Image Guided Brachytherapy   

 

161 

Mullokandov, E. & Gejerman G. (2004). Analysis of Serial CT Scans to Assess Template and 
Catheter Movement in Prostate HDR Brachytherapy. Int J Radiat Oncol Biol Phys; 58: 
pp 1063–1071. 

Nag, S., Bice, W., de Wyngaert, K. et al. (2000). The American Brachytherapy Society 
recommendations for permanent prostate brachytherapy postimplant dosimetric 
analysis. Int J Radiat Oncol Biol Phys; 46: pp 221–230. 

Nag, S., Cardenes, H., Chang, S. et al. (2004). Proposed guidelines for image-based 
intracavitary brachytherapy for cervical carcinoma: Report from Image-Guided 
Brachytherapy Working Group. Int J Radiat Oncol Biol Phys; 60: pp 1160–1172. 

Nag, S., Shasha, D., Janjan, N. et al. for The American Brachytherapy Society. (2001). The 
American Brachytherapy Society Recommendations for Brachytherapy of Soft 
Tissue Sarcomas. Int J Radiat Oncol Biol Phys; 49: pp 1033–1043. 

Nag, S., Shi, P., Liu, B. et al. (2008). Comparison of Real-Time Intraoperative Ultrasound-
Based Dosimetry with Postoperative Computed Tomography-Based Dosimetry for 
Prostate Brachytherapy. Int J Radiat Oncol Biol Phys; 70: pp 311–317. 

Pellizzon, A.C.A., Salvajoli, J.V., Kowalski, L.P. et al. (2006). Salvage for cervical recurrences 
of head and neck cancer with dissection and interstitial high dose rate 
brachytherapy. Radiation Oncology; 1: pp 27-32. 

Polgar, C., Fodor, J., Orosz, Z., et al. (2002). Electron and high-dose-rate brachytherapy boost 
in the conservative treatment of stage I-II breast cancer: First results of the 
randomized Budapest boost trial. Strahlenther Onkol; 178: pp 615–623. 

Polgár, C., Major, T., Somogyi, A. et al. (2000). CT-image based conformal brachytherapy of 
breast cancer: the significance of semi-3D and 3-D treatment planning. Strahlenther 
Onkol; 176: pp 118-124. 

Pötter, R., Haie-Meder, C., Van Limbergen, E. et al. (2006). Recommendations from 
gynaecological (GYN) GEC ESTRO working group (II): Concepts and terms in 3D 
image-based treatment planning in cervix cancer brachytherapy-3D dose volume 
parameters and aspects of 3D image-based anatomy, radiation physics, 
radiobiology. Radiother Oncol; 78: pp 67-77. 

Prestidge, B.R., Bice, W.S., Kiefer, E.T. et al. (1998). Timing of computed tomography based 
post-implant assessment following permanent transperineal prostate 
brachytherapy. Int J Radiat Oncol Biol Phys; 40: pp 1111–1115. 

Roach, M., Faillace-Akazawa, P., Malfatti, C. et al. (1996). Prostate volumes defined by 
magnetic resonance imaging and computerized tomographic scans for three-
dimensional conformal radiotherapy. Int J Radiat Oncol Biol Phys; 35: pp 1011–1018. 

Sakurai, H., Mitsuhashi, N., Harashima, K. et al. (2004). CT-fluoroscopy guided interstitial 
brachytherapy with image-based treatment planning for unresectable locally 
recurrent rectal carcinoma. Brachytherapy; 3: pp 222–230. 

Senan, S., Lagerwaard, F.J., de Pan, C. on behalf of the Rotterdam Oncological Thoracic 
Study Group. (2000). A CT-assisted method of dosimetry in brachytherapy of lung 
cancer. Radiother Oncol; 55: pp 75-80. 

Shin, K.H., Kim, T.H., Cho, J.K. et al. (2006). CT-guided intracavitary radiotherapy for 
cervical cancer: Comparison of conventional Point A plan with clinical target 
volume-based three-dimensional plan using dose-volume parameters. Int J Radiat 
Oncol Biol Phys; 64: pp 197–204. 



 Theory and Applications of CT Imaging and Analysis 

 

162 

Takácsi-Nagy, Z., Polgár, C., Oberna, F. et al. (2004). Interstitial High-Dose-Rate 
Brachytherapy in the Treatment of Base of Tongue Carcinoma. Strahlenther Onkol; 
180: pp 768–775. 

Vicini, F.A., Horwitz, E.M., Lacerna, M.D. et al. (1997). Long term outcome with interstitial 
brachytherapy in the management of patient with early breast cancer treated with 
breast conserving therapy. Int J Radiat Oncol Biol Phys; 37: pp 845-852. 

Vicini, F.A., Jaffray, D.A., Horwitz, E.M. et al. (1998). Implementation of 3D-virtual 
brachytherapy in the management of breast cancer: a description of a new method 
of interstitial brachytherapy. Int J Radiat Oncol Biol Phys; 40: pp 629-635. 

Viswanathan, A.N. & Erickson, B. (2010). Three-Dimensional Imaging in Gynecologic 
Brachytherapy: A Survey of the American Brachytherapy Society. Int J Radiat Oncol 
Biol Phys; 76: pp 104–109. 

Viswanathan, A.N., Dimopoulos, J., Kirisits, C. et al. (2007). Computed tomography versus 
magnetic resonance imaging-based contouring in cervical cancer brachytherapy: 
Results of a prospective trial and preliminary guidelines for standardized contours. 
Int J Radiat Oncol Biol Phys; 68: pp 491–498. 

Wang, B., Kwon, A., Zhu, Y. et al. (2009). Image-guided intracavitary high-dose-rate 
brachytherapy for cervix cancer: A single institutional experience with three-
dimensional CT-based planning. Brachytherapy; 8: pp 240-247. 

Wallner, K., Roy, J. & Harrison, L. (1995). Dosimetry guidelines to minimize urethral and 
rectal morbidity following transperineal I-125 prostate brachytherapy. Int J Radiat 
Oncol Biol Phys; 32: pp 465–471. 

Willins, J. & Wallner, K. (1997). CT based dosimetry for transperineal I-125 prostate 
brachytherapy. Int J Radiat Oncol Biol Phys; 39: pp 347–353. 

Waterman, F., Yue, N., Cord, B.W. et al. (1998). Edema associated with 125I or 103Pd prostate 
brachytherapy and its impact on post-implant dosimetry: An analysis based on 
serial CT acquisition. Int J Radiat Oncol Biol Phys; 41: pp 1069–1077. 

 

Part 4 

Advanced CT Imaging and Analysis 



 Theory and Applications of CT Imaging and Analysis 

 

162 

Takácsi-Nagy, Z., Polgár, C., Oberna, F. et al. (2004). Interstitial High-Dose-Rate 
Brachytherapy in the Treatment of Base of Tongue Carcinoma. Strahlenther Onkol; 
180: pp 768–775. 

Vicini, F.A., Horwitz, E.M., Lacerna, M.D. et al. (1997). Long term outcome with interstitial 
brachytherapy in the management of patient with early breast cancer treated with 
breast conserving therapy. Int J Radiat Oncol Biol Phys; 37: pp 845-852. 

Vicini, F.A., Jaffray, D.A., Horwitz, E.M. et al. (1998). Implementation of 3D-virtual 
brachytherapy in the management of breast cancer: a description of a new method 
of interstitial brachytherapy. Int J Radiat Oncol Biol Phys; 40: pp 629-635. 

Viswanathan, A.N. & Erickson, B. (2010). Three-Dimensional Imaging in Gynecologic 
Brachytherapy: A Survey of the American Brachytherapy Society. Int J Radiat Oncol 
Biol Phys; 76: pp 104–109. 

Viswanathan, A.N., Dimopoulos, J., Kirisits, C. et al. (2007). Computed tomography versus 
magnetic resonance imaging-based contouring in cervical cancer brachytherapy: 
Results of a prospective trial and preliminary guidelines for standardized contours. 
Int J Radiat Oncol Biol Phys; 68: pp 491–498. 

Wang, B., Kwon, A., Zhu, Y. et al. (2009). Image-guided intracavitary high-dose-rate 
brachytherapy for cervix cancer: A single institutional experience with three-
dimensional CT-based planning. Brachytherapy; 8: pp 240-247. 

Wallner, K., Roy, J. & Harrison, L. (1995). Dosimetry guidelines to minimize urethral and 
rectal morbidity following transperineal I-125 prostate brachytherapy. Int J Radiat 
Oncol Biol Phys; 32: pp 465–471. 

Willins, J. & Wallner, K. (1997). CT based dosimetry for transperineal I-125 prostate 
brachytherapy. Int J Radiat Oncol Biol Phys; 39: pp 347–353. 

Waterman, F., Yue, N., Cord, B.W. et al. (1998). Edema associated with 125I or 103Pd prostate 
brachytherapy and its impact on post-implant dosimetry: An analysis based on 
serial CT acquisition. Int J Radiat Oncol Biol Phys; 41: pp 1069–1077. 

 

Part 4 

Advanced CT Imaging and Analysis 



10 

An Approach to Lumbar Vertebra 
Biomechanical Analysis Using the Finite 
Element Modeling Based on CT Images 

Haiyun Li 
Capital Medical University School of Biomedical Engineering, Beijing, 100069 

 China 

1. Introduction 
Lumber disc herniation is one of the most common causes of low back pain. Relevant 
research indicates that it is generally induced by the degenerated deformation of a disc due 
to too much labor or spine abnormality. The number and variety of clinical interventions for 
lumbar disc herniation continue to grow. The lumbar intervertebral disc is a viscoelastic 
tissue located in the middle of the two intervertebral bodies, which is the largest 
cartilaginous structure in human body that contributes to flexibility and load support in the 
spine. They can transfer labor loads, balance body, stabilize spine and absorb vibration[1]. 
All the functions depend on the intact disc. In pathological cases such as disc herniation 
caused by excessive load on the spine. The spine will undergo a series of changes in its 
biomechanical properties.  
The interbertebral disc consists of endplate, annulus fiber, and nucleus pulposus. The 
penetration between endplate and the concellous bone will change feebly if the disc bears an 
abnormal force and thus can affect the nutrient supply of annulus fiber, which results in the 
degeneration of the disc. Annulus fiber with poor nutrient supply is likely to rupture if there 
exists a stress concentration on this region. The nucleus pulposus will dissociate from the 
disc along the ruptured region. At last, the disc extrudes out[2,3].  
In order to biomechanically evaluate the treatment options for spine related diseases and 
gain a better understanding of spinal biomechanical behaviour, there are three types of 
methodologies available. In vitro biomechanical experimental measurements on spinal 
components or segments tested in the laboratory have been used extensively to compare 
different treatment scenarios, but there are inherent limitations in using the 
specimens[2,4,5]. The limitations include the availability, the range of samples and the 
representativity of specimens. In vivo measurements can provide true subject-specific 
information on the spine in its physiological state but are confined by the requirement for 
limited invasiveness. More recently, in silico testing method has become more prevalent in 
the biomechanics assessment of the spine. In particular, there has been a rapid rise in the use 
of finite element analysis for this purpose over the last decade. The finite element analysis is 
a standard engineering technique generally used in the design of airplanes, machines and 
bridges. Using a special software, it allows the modeling of complex structures by splitting 
the structure into numerous simple finite elements, each of which is easy to characterize and 
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model mathematically. It is a numerical method for solving problems of engineering and 
mathematical physics[6]. Finite element modelling and calculating can be applied to show 
detailed biomechanical characteristics of lumbar and provide intrinsic parameters (stress, 
strain, strain energy, etc). Finite element models of the spine have been developed to 
evaluate surgical interventions, and also to investigate the risk of fracture in the vertebrae 
and the progression of degeneration in the intervertebral discs. 
Our study is to analyze the biomechnical characteristics of lumbar in the compression using 
the finite element method based on medical image. We are sure that better understanding 
on the biomechnical characteristics of surgical procedures will ultimately get to better 
diagnosis and treatment on intervertebral disk herniation. 

2. Methodology 
In this chapter, a CT image based computational method has been presented which is 
applied to perform biomechanical analysis for lumbar vertebrae in vivo. The method 
involves establishing a subject-specific geometric model and a finite element model for 
vertebra. The geometric model derived from CT images represents three-dimensional 
anatomy characteristics of the vertebra. the finite element model based on geometric model 
provides a useful tool to perform biomechanical calculation for the vertebra. These 
numerical models are created from CT image data, in a process, which draws from an array 
of segmentation and mesh generation tool to define the geometry model. The geometry 
model is then augmented into finite element model with material properties, boundary 
conditions and interactions between multi-element models. We can get the stain and stress 
distribution of the whole structure by studying the relation between the displacement of 
particle and force for every element[6,7]. It is a feasible method for resolving biomechanical 
characteristic problem of complex structure. 

2.1 Geometric model 
The subject-specific geometric model is established by segmenting vertebrae in CT slice 
images and performing three-dimensional reconstruction slice-by-slice using extracted 
vertebrae morphology information.  
A reliable segmentation of vertebrae is essential for subject-specific geometric model. 
Although bony structures show high contrast in CT images, a precise segmentation of 
vertebrae still remains challenging. Many factors could influence the accuracy and 
robustness of the vertebrae segmentation, e.g., complex anatomical structure, degenerative 
deformations, unclear object boundaries and similar structures in close vicinity, and these 
factors also could complicate the application of fully automated segmentation. Several 
approaches to precise segmentation of lumbar vertebrae in CT images were proposed so far. 
Admittedly, exact vertebrae segmentation has not been addressed. It has to be noted that 
these methods were developed for specific vertebrae regions. Several methods have been 
presented aiming at automated segmentation and labelling of the vertebrae, combining 
respective characterics of MRI and CT image. In MRI images, bony tissue structures show as 
dark regions with sparse details and low contrast whereas the intervertebral disks often 
appear brighter. In comparison with MRI, CT offers higher contrast for bony tissue 
structures while it is somewhat difficult to distinguish the intervertebral disks from 
surrounding soft tissue in CT images. 
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We developed a method to establish three-dimensional subject-specific geometric model of 
vertebrae based on the CT and MRI data-based anatomical structure of spine by using 
reconstruction software VTK. A GE Lightspeed 16 CT scanner (General Electric, Fairfield, 
CT) was used to scan the human subject. A young man with no history of present and past 
disc disease was selected as normal subject. Initially L1-L2 motion segment data were taken 
in the axial direction, from which we could get 30 contiguous slices images from the CT 
scans. The CT slice images had a slice thickness of 0.8mm, and each pixel size is 
0.33×0.33mm. The 3D modeling procedure was in the VTK software. We obtained three 
groups of 3D data from CT scans, the disc, L1, and L2 vertebral bones. The original 2D 
image slices from CT scans has 512×512 resolution. Considering the cost of the calculation 
time, in order to get the balance between the accuracy and time cost, we reconstructed the 
3D image by using the 2D subsampled image slices which had 64×64 resolution substituted 
of the original 2D image slices with a 512×512 resolution. The subsample ratio is 8:1. Then, 
we have these slice images segmented. In order to precisely extract the morphology of 
vertebrae in CT images, we apply both automated and manual segmentation methods for 
slice images. First we adopted gray threshold segmentation algorithms for 2D image slices. 
As we know, the gray value of bone is greater than those of other tissues. We can separate 
the bone tissue from other tissue by setting a proper gray value. However, the automated 
gray threshold segmentation may result in artificial isolated section or discontinuous 
boundary as the gray value of cancellous bone is lower than that of cortical bone and similar 
to those of other tissues such as soft tissue. That’s why we employ the manual segmentation 
to modify the contour and boundary of the 2D slice images of the vertebrae. The manual 
segmentation is a live-wire-based semi-automatic segmentation method. 
MRI image is used as a reference priori knowledge for radiologist to identify the corresponding 
anatomical structure in CT image. The radiologist could interactively modify the segmented 
result using the manual method after the automated gray threshold segmentation.  
The 3D L1-L2 segmentation modeling was fundamentally performed based on a set of 
segmented image data of axial slices in VTK software using Maching cubes algorithm, a 
surface reconstruction method. The segmentation result shows in Fig. 1, and the 
reconstructed 3D model of the segment shows in Fig. 2.  
All reconstruction models were saved in a VTK file format. Its content included space 
coordinates of keypoints as well as topologic structure on the surface of the model. We  
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translate the data from the VTK file format to the macro file format in order to import the 
data to the finite element method software Ansys6.0. We finally create the geometric model 
of the L1-L2 segment in Ansys6.0. The space coordinates of the keypoints in the VTK 
software correspond to the keypoints in Ansys6.0. It is convenient to transfer data between 
the geometric model in VTK and the finite element model in Ansys6.0. The geometric model 
which was imported into Ansys6.0 is an entity model. We divided it into a grid of elements 
by applying the finite element meshing on it to form the finite element model. 

2.2 The finite element model 
The generation of a subject-specific finite element model consists of the determination of the 
geometrical parameters, the creation of a finite element mesh and the definition of the 
material properties, and all the procedures should be associated to the given subject. The 
common method for creating a subject-specific mesh of the vertebrae is the direct conversion 
from image voxel to hexahedral mesh elements. In this method, the segmented region of the 
image is extracted and each image voxel is directly converted to a brick element in the mesh. 
Materials properties are defined on an element-by-element basis using densities derived 
from the image data. The density value is generally derived for each element based on the 
image intensity in that region, then the density is applied to calculate the Young's modulus 
value for that element. Several formulae used for this calculation conversion have been 
published, as yet there is no consensus as to which of these formulae is most appropriate. 
How to get more accurate material properties of vertebrae tissue is still challenging for most 
image-based models. 
We applied the Ansys to create an isotropic, 3D, nonlinear finite element model of an intact 
human L1-L2 motion segment. Details of the model developing have been given and are 
briefly summarized here: the shape of the lumbar segment is reconstructed from data obtained 
from CT scans of a human L1-L2 segment. The finite model created is shown in Fig. 3. 
 

 
 
Fig. 3. The finite element model of L1-L2 segment 
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Each vertebral bone was modeled as 20-node isoparametric material elements using 
homogeneous and isotropic material properties[8]. The intervertebral disc was modeled 
using solid elements to simulate an incompressible behavior with a low Young modulus 
and a Poisson ratio close to 0.4999[8]. In order to appropriately model the changes of 
contacting areas of facet articulating surface which were applied upon with the load, facet 
articulations were modeled using contact elements. The ligaments were modeled as two-
node axial cable elements that sustained tension only, oriented along the respective ligament 
fiber alignment. Their attachment points to the bony prominence were determined by 
referring to anatomy books in order to mimic anatomic observations as close as possible. 
The cross-sectional areas used were averages of the values reported previously. The material 
properties used in the study were derived from the literature[8-10]. The behavior of material 
properties in the model response better reflected those of published experimental lumbar 
response. Here, we hypothesize that the strain of spine is small. Table 1 lists the type, 
number and material properties of element used to model the various components of the L1-
L2 motion segment and the complete model consists of 37449 elements. 
 

Material Element type Element 
number 

Young’s modulus(MPa) 
/Possion rate 

Cortical bone of L1 20-node brick 
(solid 95) 16596 200/0.3 

Cortical bone of L2 20-node brick 
(solid 95) 18663 200/0.3 

Disc bone 20-node brick 
(solid 95) 2082 4/0.4999 

Facet joint Ligaments Contact(CONTA 174) 
3D-cable(tension only) 42  

Table 1. Element type and material properties 

2.3 Boundary conditions 
With regard to the validation and accurateness of model analysis, we applied the boundary 
conditions on the finite element model. The boundary conditions on the model use pressure 
and restraints assigned to surface areas of the model. The inferior surface of L2 vertebral body 
and its spinous process were fixed in all directions. The restraints were used to limit the 
models movement with six possible values at the node on the surface, three translations and 
three rotations. The value of freedom was zero. Then couple the inferior surface of vertebral L1 
body and the upper surface of the intervertebral disc body, as well as the bottom intervertebral 
disc body and the upper surface of the L2 vertebral body in all directions of translation. The 
facet articulation was modeled as a 3D contact unit using interface elements [8]. 

2.4 Load cases 
In this study we will analyze the stress and strain distribution of the spine. The evaluation 
was performed by following methods: (1) load–displacement behavior. We can observe the 
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displacement change of the vertebral and the strain distribution of L1–L2 segment under 
different loads. (2) A load of 1600N axial compression was applied to the superior surface of 
the model in the form of a uniformly concentrated load over all L1 superior surface nodes. 
We can observe the stress distribution of L1–L2 segment by applying the load and clue on 
the high stress concentration region as the most likely fracture areas. (3) Disc bulge: disc 
herniation is an important part in our study for the L1–L2 segment. It is of clinical 
significance to analyze the disc bulge degree under different directions at 400N axial 
compression, and such analysis can instruct the surgical treatment for disc herniation. (4) 
Nucleus populous resection: appling 500N loads on the L1–L2 segment with denucleated 
disc to observe stress and strain distribution on lumbar and the difference between normal 
disc and denucleated disc. From the load cases, we know that the finite element model can 
be used to predict the change of biomechanical behavior of the human lumbar spine under 
pressure. 

3. Results 
The stress and strain distributions of the vertebral column were obtained from 
biomechanical analysis by applying different axial compression loads using our proposed 
CT image based numerical modelling method. The results are presented in the following 
sections. 

3.1 Load displacement 
The loads we applied on the L1 superior surface were: 500, 1000, 1500, 2000, and 2500 N. The 
L1 superior surface bears a 500N load when a healthy person weighted 70 kg stands straight 
in a relaxation state. However, the number goes up to 2000N when he lifted 100N with two 
arms stretching straight. The heavier he lifts the more L1 superior surface bears. The results 
of load–displacement behavior in axial compression are shown in Table 2. From the table we 
can see an increase tendency of displacement of L1 superior surface with the increase of 
load. The tendency is approximately linear which also illustrates that the vertebral bone has 
flexible biomechanical characteristics. 

 
Table 2. The maximum displacement of the FE model in different loading 
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3.2 Stress distribution of model 
Fig. 4 shows the stress distribution of the spine when an 1500N load is applied. It shows that 
the high stress concentrations are around the vertebral body and pedicle region due to the 
way the load applied. That is, they are mainly focusing on the upper body of vertebral. 
These areas show Von Mises stress that ranges gradually from blue, 1.7E−01mN/mm2 to the 
Maximum Von Mises stress of 1.57E−02mN/mm2 indicated in red. The stress on the 
vertebral body (the value ranges from 35 to 87) is higher than that on the pedicle (about 17), 
which makes it a common place for injuries due to loading. The stress concentration may be 
higher in pedicle region if the pedicle area is loaded with a greater proportion.  
 

  
Fig. 4. The Vos Mises distribution of L1-L2 segment 

As to the L1 vertebral displacement, the vertebral body and the superior articular processes 
are compressed downward. Consequently, the movement of vertebral due to the applied 
load and restraints placed on the model induces the high areas of stress in the pedicle. 

3.3 Disc bulge 
3.3.1 Disc stress distribution 
The disc consists of annulus fiber and nucleus pulposus. In a normal healthy disc, the 
hydrated nucleus pulposus exerts a hydrostatic pressure (intradiscal pressure, IDP) on the 
annulus fibrosus (annulus) fibers [11]. The fiber bears a higher IDP than the nucleus 
pulposus [12,13]. Applying 1000N axial compressive loads on the normal disc, we can see 
that the value of stress on fiber shows in green, and the range of the stress is from 1.77E−01 
to 2.67E−01mN/mm2. From the annulus fiber to the nucleus pulposus, the intensity of stress 
grows weaker and weaker (Fig. 5). It indicates that the nucleus pulposus can absorb some 
compressive loads. That’s why the fiber shows higher stress than the nucleus pulposus. 
From the figure, we can also see that the stress and strain distribution of lumbar is mainly 
concentrated on the posterior and bilateral posterior of annulus fibers in the normal disc.  
We can also observe that the stress becomes higher correspondingly as the loads applied to 
the disc increases. The relationship between IDP and the external load is approximately 
linear as is shown in Table 3, indicating that intervertebral disc has flexible properties in a 
certain extent. 
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Fig. 5. Vos Mises distribution of disc at 1000N axial compressed load 

 

 
Table 3. The maximum stress of disc in different loading 

3.3.2 Bulge direction and magnitude 
Four nodal points on the intervertebral disc were taken to represent the directions of bulge, 
left lateral, and right lateral, left posterior and right posterior. They were marked to 
determine the bulge displacement of the disc at the 500N axial compression (Fig. 6) [9]. We 
observed the degree of the bulge at four directions. The result indicates that the 
displacement of posterior disc extrusion is more obvious than that of bilateral.  
Table 4 displays the disc bulge magnitude at different directions on the 500N load. Table 5 
lists the disc displacement magnitude at different axial compressive loads from 500 to 2500 
N. The values of displacement at all directions increase with the increase of loads. The 
posterior direction has a more obvious tendency to extrude than others; at the same time, 
the bilateral direction has a greater tendency to extrude out than the anterior. This agrees  
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Fig. 6. The selection of four directional node 

 
 
 

 
 
Table 4. Disc bulge displacement at axial load of 500N 



 Theory and Applications of CT Imaging and Analysis 

 

172 

 
 

 
Fig. 5. Vos Mises distribution of disc at 1000N axial compressed load 

 

 
Table 3. The maximum stress of disc in different loading 

3.3.2 Bulge direction and magnitude 
Four nodal points on the intervertebral disc were taken to represent the directions of bulge, 
left lateral, and right lateral, left posterior and right posterior. They were marked to 
determine the bulge displacement of the disc at the 500N axial compression (Fig. 6) [9]. We 
observed the degree of the bulge at four directions. The result indicates that the 
displacement of posterior disc extrusion is more obvious than that of bilateral.  
Table 4 displays the disc bulge magnitude at different directions on the 500N load. Table 5 
lists the disc displacement magnitude at different axial compressive loads from 500 to 2500 
N. The values of displacement at all directions increase with the increase of loads. The 
posterior direction has a more obvious tendency to extrude than others; at the same time, 
the bilateral direction has a greater tendency to extrude out than the anterior. This agrees  
 

An Approach to Lumbar Vertebra Biomechanical 
Analysis Using the Finite Element Modeling Based on CT Images  

 

173 

 

 
 

Fig. 6. The selection of four directional node 

 
 
 

 
 
Table 4. Disc bulge displacement at axial load of 500N 
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Table 5. Disc displacement at different axial loads 

with what we observed on the patients. Our clinical experience tells us that posterior-lateral 
of the disc is the region where annulus fiber ruptures and nucleus populous extrusion 
occurs easily. As we reviewed above, this is also the region with higher stress. It indicates 
stress focusing on the region defined has certain relation with disc herniation. 

3.4 Removal of the nucleus 
The normal disc consists of the annulus fiber and the nucleus populous. The nucleus 
populous was considered incompressible and was modeled as 3D tetrahedral solid elements 
[11,14]. The denucleated disc only includes annulus fiber tissue (Fig. 7).  
 
 

 
Fig. 7. The finite element model of an intact denucleated disc  

annulus fiber 

An Approach to Lumbar Vertebra Biomechanical 
Analysis Using the Finite Element Modeling Based on CT Images  

 

175 

Consequently, the process of modeling is similar to that of a normal disc except setting IDP 
of nucleus to zero. The whole model of the L1–L2 segment with a denucleated disc was 
developed as shown in Fig. 8.  
The disc plays an important role in the stabilization of lumbar. The nucleus populous is the 
fulcrum during lumbar activity [15,16]. It maintains the height of the lumbar, and distributes 
the stress evenly around the annulus fiber, as shown in Fig. 9.  
 

 
 

Fig. 8. The L1-L2 segment model with denucleated disc 

 

 
Fig. 9. Von Mises of the intervertebral disc: (a) Intact Disc,(b) Intact denucleated Disc. 

 
We applied 500N load on the L1 upper surface body of the normal disc and observed 
changes in the stress. As is shown in Fig.9a, the central area of the disc shows low stress 
indicated in blue. The area outside the disc bears higher stress indicated in green. Fig. 9b 
shows the results of the Von Mises stress on the denucleated disc, we can see almost the 
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Table 5. Disc displacement at different axial loads 
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Fig. 7. The finite element model of an intact denucleated disc  
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Consequently, the process of modeling is similar to that of a normal disc except setting IDP 
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developed as shown in Fig. 8.  
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the stress evenly around the annulus fiber, as shown in Fig. 9.  
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whole disc bears low stress indicated in blue, illustrating that the IDP on the denucleated 
disc falls without the nucleus populous’ function of sustaining surface tension of annulus 
fibers near the nucleus. The results from the analysis show that resection operations can 
relax the IDP of the disc, relieve the pain in the patients, and attain the goal to cure disc 
herniation through operation.  
Table 6 lists the axial displacement of normal disc and denucleated disc. Three nodes in 
different locations representing three directions (anterior, posterior, lateral ) are selected to 
determine the displacement of disc. The histogram in blue in the table represents the axial 
displacement of normal disc, and the red represents that of denucleated disc.  
 

 
Table 6. Axial displacement of two types of discs 

From the table, we can see that the value of axial displacement of of the denucleated disc is 
larger than that of the normal, illustrating that the height of intervertebral disc will become 
smaller when the nucleus pulposus is resected. The disease or the operation on the disc will 
make the cubage of the disc and the height it maintains disappear. They also destroy the 
compact structure between upper and lower intervertebral bodies. Then, the stress on small 
joints on both sides may change. Finally, the cartilage on it degenerates, leading to 
deformation of the disc.  
As we know, the nucleous populous serves as the fulcrum of the spine and maintains the 
stability of the lumbar [17]. Once resected, the function of fulcrum disappears, and the disc 
will tend to extrude frontal, resulting in  instability of the spine. 

4. Discussion 
The CT image based finite element modelling can provide a thorough understanding of the 
biomechanical influence on the lumbar and may offer reasonable explanations to 
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biomechanically linked pathologies. It allows us to implement simulation calculation of 
biomechanical parameters of lumbar tissues, thus to analyze the influence of a single 
component within the construct investigated. It is useful in analyzing stress and strain 
distribution patterns of lumbar, leading to an optimal design of the surgeon[3]. It does, 
however, not mean that biomechanical in vitro approaches should be replaced by such a 
model. The current finite element model also has limitations, even if its modeling is based 
on the characteristics of physiological material and the geometric shape of lumbar. The 
anatomic structure of spine is complicated, and such properties of the small articulation as 
friction coefficient are not very clear. So all the material parameters adopted for the model 
have been simplified or based on hypothesis on some degree. It is a simplified model. In the 
future study, more nonlinear materials will be modeled. Any finite element model does only 
represent a mathematical model and thus is only an approximation to the specimen and 
even further from real life conditions[18-20]. It cannot reflect the variability of shape and 
material properties of the bone within an individual or among individuals. The interface 
between two bones only simulates appropriately the condition in vitro or in vivo. The model 
is just one segment of the whole spine. The results may vary if done with the whole spine. 
There are lots of differences and uncertain factors induced by the individual diversity 
during modeling. Based on the above reason, even though a finite element model has some 
limitations, it simulates the biomechanical characteristics of the lumbar preferably[19-21]. 

5. Conclusions 
The lumbar is an important organ for bearing the weight. Wherein, the intervertebral disc 
can keep the height of the spine, linking the adjoining vertebral body. Experiment tests 
show that the nucleus pulposus bears a load of 45–60 kg when one lies down with muscles 
relaxed. A normal disc can bear a load of 30 kg while it goes up to several times when 
exercising violently or lifting heavy things. The nucleus pulposus is more likely to be 
injured and extrude out while the loading threshold is exceeded. We apply the load from 
500 to 2500 N, which are in the range that the human being can bear. The result accords with 
the biomechnical characteristics in the normal disc[22–24]. In our research, we applied small 
distortion parameters to simulate the stress and strain distribution of the lumbar. The height 
of L1 is about 23 mm. When a load is applied on the L1, small distortion appears, reflecting 
the flexion properties, which indicates that the cancellous bone and cortical bone bear the 
force together, and the high stress is concentrated on the pedicle. The high stress is on the 
lateral and posterior region of the normal disc. From the tables, we learn that the extrusive 
magnitude for the posterior and the lateral is larger than in other directions. The tendency is 
more distinct with the increase of the load. A 3D nonlinear finite element model of lumbar 
motion segment was established to simulate the loading state of the spine. The study 
indicates the biomechanical characteristics as follows: 
1. The strain of L1–L2 segment under axial compressive load increases with the performed 

load. 
2. Large stress concentrations are found in the pedicle region, a common place for injuries. 

Under the axial compressive load, the body of vertebrate and articular process was 
compressed downward. The magnitude of stress in the pedicle region depends on the 
proportion of load applied on the superior articular processes. The stress on the pedical 
region is higher with greater proportion. 
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3. Excessive loads could cause the disc bulge. The bulge extent depends on the magnitude 
of the applied load. Under the same load, the disc tends to bulge laterally than 
posteriorly. 

4. The denucleated disc shows a lower IDP than the normal disc. The resection surgery 
relieves the stress of the disc and alleviates the low back pain in the patients. However,  
after the nucleus populous is resected, the denucleated disc is liable to extrude outward 
frontal, and the height of the disc is lower than that of the normal. All of these will 
result in changes of biomechanics in the spine, such as lumbar instability and the 
inhomogeneous stress distribution on the annulous fiber, as well as the loss of the 
function of nucleus on the disc. This study has enriched some understandings of the 
biomechanical characteristics under loadings and can help surgeons make better 
decisions for the treatment of low back pain. In the study, an initial model of vertebral 
is developed, which includes solid cortical bone, disc, facet joints and several ligaments. 
In the further study, the models will include cortical bone, cancellous bone, and 
ligaments, which can also improve the accuracy of results and evaluation validity. Our 
next step is to study more on stress and strain distribution under torsion and shear 
conditions and to simulate the biomechanical characteristics of lumber during an 
operation. We aim at the operation simulation and surgery navigation by developing 
and analyzing the finite element model. The finite element model of L1–L2 segments 
based on medical images can analyze biomechanical characteristics of lumbar 
effectively and facilitate the optimization of individualized therapy in the future. 
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1. Introduction

We discuss three closely relevant computational approaches for understanding computed
tomography (CT) images: X-ray imaging, medical image analysis, and the application of
radiotherapy planning. The computational approaches have been widely used in X-ray
research for more than three decades (Colijn, 2004; Feldkamp et al., 1984; Ju et al., 2010; Kak,
1999; Kum, 2010; KumPark, 2010; Kum, 2007; 2005; Kim, 2006; Kum et al., 2009; Peterzol et
al., 2008). To understand CT images is to understand photon and/or electron scattering in
matter, which can easily be done by the Monte Carlo method. Our research is mostly based
on our in-house Monte Carlo code, PMCEPT code, which was developed recently (Ju et al.,
2010; Kum, 2007; 2005; Kim, 2006; Kum et al., 2009; Peterzol et al., 2008).
Image processing to delineate tumor and to extract body contours and organ boundaries
for dosimetric modeling in radiotherapy planning has become a routine process since CT
scanners became available in the late 1970s (Gu et al., 2006; Haris et al., 1998; Kum et al., 2007;
Kim et al., 2007; Kum, 2007; Kum et al., 2008). Moreover, pixel by pixel dose computation for
planning is performed on the bulk inhomogeneous human body via the CT image. Recently,
almost all major treatment machine manufacturers have been influenced by these technically
advanced attributes to mount a cone beam CT(CBCT) 3D-imaging system on their linear
accelerators for radiotherapy (Moore et al., 2006). They are using flat panel transducers
to acquire a rotation fluoroscopy image sequence for input to 3D filtered back-projection
algorithms. However, the development of cone beam tomography for radiotherapy is far from
complete, with X-ray source, image transducer, reconstruction algorithms, and techniques for
image profile collection still being researched (Feldkamp et al., 1984; Kak, 1999; Lagravere et
al., 2008; Miceli et al., 2007; Wang et al., 1993; Zhao et al., 2009).
Simulation is a helpful tool to develop and optimize a new CBCT imaging system and to
understand the influence of the various adjustable parameters. It acts as a virtual experimental
workbench to offer powerful means for choosing the most suitable components and for
predicting the future imaging system performance. It may enable the behavior of the whole
imaging system to be investigated in complex situations by using simulated images which
can be obtained in little time and at low cost (Colijn, 2004; Duvauchelle et al., 2000; Freud et
al., 2006; 2004; Li et al., 2008; Miceli et al., 2007).
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understand the influence of the various adjustable parameters. It acts as a virtual experimental
workbench to offer powerful means for choosing the most suitable components and for
predicting the future imaging system performance. It may enable the behavior of the whole
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Although Monte-Carlo simulation is a powerful method for the investigation of the
production of scattered particles in a medium in detail, deterministic calculations based on
ray tracing algorithms are known as a powerful alternative to the Monte Carlo approaches
to simulate X-ray imaging system whenever computation time is a critical issue (Freud et al.,
2006; 2004). We focus on a simpler ray tracing approach in this chapter to describe our X-ray
imaging system.
One of the important issues in medical imaging is to precisely segment structures of interest
from a huge dataset, accurately represent them, efficiently visualize them, and perform
measurements appropriate for diagnosis and therapy guidance, or other applications (Gu et
al., 2006; Haris et al., 1998; Jos, 2001; Lagravere et al., 2008; Moga et al., 1998; Vincent, 1991).
Advances in the area of computer science have a tremendous impact on the interpretation of
medical images. Computer Aided Diagnosis systems aim to provide computer output as a
second opinion in order to assist physicians in the detection of abnormalities, quantification
of disease progress, and differential diagnosis of lesions, which enhances the physicians’
capabilities and reduces the time required for accurate diagnosis.
Image segmentation is the process of dividing images into regions according to its
characteristics involved in the images. The segmented objects are in the form of images
that are more meaningful, easier to understand, and easier to analyze. In order to
locate objects and boundaries in images, either data-based methods or pixel classification
methods are used. Data-based approaches involve mathematical morphology, model-fitting,
level-set methods, thresholding, edge-detection, and knowledge-based classification. Pixel
classification techniques have used neural networks, Markov random field modeling, and
active contours. The simplest idea for segmenting CT images is to classify the Hounsfield
units (CT numbers) of the DICOM file into clusters. Intuitively, the Hounsfield unit of a pixel
is interpreted as its altitude in the relief of each cluster, which leads to the watershed image
segmentation algorithm. We discuss this algorithm in this chapter to provide semi-automatic
segmentation of CT image, including the pre- and post-processing procedures for alleviating
the drawbacks of a pure watershed algorithm.
Images are digitally processed to maximize the perception of medically important features.
Physically meaningful Hounsfield values (CT numbers) in the computer memory are adjusted
to suit grey values on a display monitor for the special application requirements. The
customized radiation therapy applications are easily available with the information of the
clustered Hounsfield values segmented by the watershed algorithms. The physico-chemical
information from each patient’s CT image such as the mass density and the chemical elements’
weights of atomic compositions in each voxel corresponding to each pixel of the CT image
is extracted via segmentation process because the Hounsfield unit includes quantitative
information about the radiological properties of the different tissues (Lagravere et al., 2008;
Scheneider et al., 2000). Tissue inhomogeneities are expressed in terms of different Hounsfield
values, which makes the corrected dose calculations available for inhomogeneous target
materials such as human body.
Exact estimate of clinical dose distribution in a patient body is the ultimate goal for the
radiotherapy treatment planning (Moore et al., 2006). The exact dose calculation can be done
by direct simulation of the interactions between the radiation and the patient tissue, the mass
density and the chemical composition of the tissues, with Monte Carlo code such as PMCEPT
code (Kum, 2007; 2005). With the advances of the computing power, applications of the Monte
Carlo method for patient dose calculations have recently become more and more common
by using the patient’s CT images. Since this idea is closely correlated to the Hounsfield
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values, radiotherapy treatment planning is closely relevant to the CT imaging techniques,
reconstruction algorithms, and segmentation algorithms in the computer simulations.
In this context, our laboratory initiated a comprehensive simulation research program of
“from CT imaging to radiotherapy treatment planning with the state of the art information
technologies." The major subject of this research program is to use our in-house Monte Carlo
code, PMCEPT code to simulate directly the interactions between the radiation and the patient
body. However, for better understanding of the complex physical phenomena involved in the
radiation interactions with matter, this program involves closely relevant augmented novel
computational approaches for each phase which are introduced in this chapter in order better
to understand the CT images.

2. Cone beam computer tomography simulator

2.1 Virtual cone beam imaging technique
The major advantages of cone-beam acquisition are the reduction of data collection time and
lower patient absorbed dose per scan. This is particularly important for real-time imaging
of moving structures such as the beating heart, or the use of image guided radiotherapy
treatment (IGRT) (Moore et al., 2006). With the advances in planar detector technology, it is
expected that next generation scanners will adopt the cone beam geometry. This is the reason
we developed a CBCT simulator in our laboratory.
CT image is acquired by the physical principle that the X-ray interacts with the body’s tissues
while it is passing through the body. If it does not experience some type of interaction, such as
absorption, attenuation, and scattering with the body, the detected signal would not contain
any useful information regarding the internal anatomy, and thus it would not be possible to
construct an image of the anatomy with the detected information (Kum, 2010).
Although a medical image has an aesthetic appearance, the acquisition of an image is closely
related to both the technical quality of the image and the adjustment of the input parameters.
Thus, image quality in medical imaging involves very little artistic evaluation but a great deal
of technical appraisal. For example, better CT images can be obtained when the radiation dose
to the patient is high. However, patient safety and comfort must be considered first while
acquiring medical images. Consequently, excessive patient dose in the pursuit of a perfect
image is not acceptable, rather, a power balance is required to satisfy both the patient safety
and image quality.
The procedure involved in obtaining CT image is that the patient remains stationary on the
examination table while the X-ray tube rotates in a circular orbit around the patient in a plane
perpendicular to the length-axis of the patient. The data acquired from the detectors are fed
in to a computer which, after numerous calculations, produces a tomogram of the patient,
i.e., a map of linear attenuation coefficients whose value is assigned a grey scale value on the
display-monitor and is presented in a square picture element (pixel) of the image. In the 2D
tomography, after a complete rotation of X-ray tube, the table with the patient is moved a
small distance and the next slice can be measured. Thus, it takes a comparatively long time
and gives high dose to the patient. Moreover, it is not possible to obtain, in particular, real-time
imaging of moving structures, such as the beating heart, or contrast agent flow through the
body in 2D fan beam CT imaging.
CBCT is a three-dimensional extension of two dimensional fan beam tomography. X-rays
diverging as a cone from the source irradiates on the body, and data corresponding to passing
X-rays is recorded on a planar detector surface (receptors) (Freud et al., 2006; 2004). Such cone
beam projections are collected for a multitude of source positions along a source orbit which
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Although Monte-Carlo simulation is a powerful method for the investigation of the
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that are more meaningful, easier to understand, and easier to analyze. In order to
locate objects and boundaries in images, either data-based methods or pixel classification
methods are used. Data-based approaches involve mathematical morphology, model-fitting,
level-set methods, thresholding, edge-detection, and knowledge-based classification. Pixel
classification techniques have used neural networks, Markov random field modeling, and
active contours. The simplest idea for segmenting CT images is to classify the Hounsfield
units (CT numbers) of the DICOM file into clusters. Intuitively, the Hounsfield unit of a pixel
is interpreted as its altitude in the relief of each cluster, which leads to the watershed image
segmentation algorithm. We discuss this algorithm in this chapter to provide semi-automatic
segmentation of CT image, including the pre- and post-processing procedures for alleviating
the drawbacks of a pure watershed algorithm.
Images are digitally processed to maximize the perception of medically important features.
Physically meaningful Hounsfield values (CT numbers) in the computer memory are adjusted
to suit grey values on a display monitor for the special application requirements. The
customized radiation therapy applications are easily available with the information of the
clustered Hounsfield values segmented by the watershed algorithms. The physico-chemical
information from each patient’s CT image such as the mass density and the chemical elements’
weights of atomic compositions in each voxel corresponding to each pixel of the CT image
is extracted via segmentation process because the Hounsfield unit includes quantitative
information about the radiological properties of the different tissues (Lagravere et al., 2008;
Scheneider et al., 2000). Tissue inhomogeneities are expressed in terms of different Hounsfield
values, which makes the corrected dose calculations available for inhomogeneous target
materials such as human body.
Exact estimate of clinical dose distribution in a patient body is the ultimate goal for the
radiotherapy treatment planning (Moore et al., 2006). The exact dose calculation can be done
by direct simulation of the interactions between the radiation and the patient tissue, the mass
density and the chemical composition of the tissues, with Monte Carlo code such as PMCEPT
code (Kum, 2007; 2005). With the advances of the computing power, applications of the Monte
Carlo method for patient dose calculations have recently become more and more common
by using the patient’s CT images. Since this idea is closely correlated to the Hounsfield
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may be a complete circle or not. The main advantages of cone beam acquisition system are
the reduction of data collection time, reduced dose to the patient, and real-time imaging of
moving structures. High quality CBCT images may be generated with high patient exposures
and a large number of X-ray image profiles for reconstruction. However, this is not practical
in view of the general regulations that embodies the principle of doses being “as low as
reasonably practical" in the context of risks and benefits to the patient. Thus, there still remain
many important research problems in CBCT imaging technology (Moore et al., 2006).
The apparent drawback of the CBCT image is the significant degradation of image quality
due to the contamination of X-ray projection data with scattered photons and/or secondary
electrons, resulting in a decrease of low-contrast detectability, cupping artifacts and streak
artifacts between different objects (Peterzol et al., 2008). The amount of scatter contamination
depends strongly on the type of imaging and detector geometry used as well as the object
under study. Monte Carlo methods are known to be the best to accurately simulate scatter in
X-ray imaging. Our in-house Monte Carlo code, PMCEPT code, has a capability to simulate
the photon energy as low as 1 KeV and as high as 1 GeV against the targets of about hundred
chemical elements, their compositions, and mixtures (KumPark, 2010; Kum, 2005). However,
when low noise scatter projections have to be simulated, these Monte Carlo simulations tend
to be very time consuming even though we use high performance parallel computing (Kim,
2006). Thus, it is worthwhile to add the most simplified approach to simulate CBCT X-ray
projection by using ray tracing algorithms which is discussed in detail in the following.
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Figure 1: Cone beam simulator model. (a) A set of ray beams is emitted towards every pixel
center of the detector. (b) Radiological path is determined by summing up the length times
the corresponding attenuation value.

Cone beam X-ray projector can be modeled with a bunch of rays that are emitted by a source
point towards irradiated objects. This is the simplest and fastest in algorithm speed but the
scattering effects and quantum noise are not taken into account. A plane panel detector is
described by the grid of pixels with perfect quantum efficiency in a 3D scene. The right-
handed Cartesian coordinate system is appropriate to describe the position and orientation of
the source, object, and detector in the three dimensions. As shown in Fig. 1 (a), from the X-ray
source, a set of ray beams is emitted towards every pixel center of the detector. The exact

Fig. 1. Cone beam simulator model. (a) A set of ray beams is emitted towards every pixel
center of the detector. (b) Radiological path is determined by summing up the length times
the corresponding attenuation value.

Cone beam X-ray projector can be modeled with a bunch of rays that are emitted by a
source point towards irradiated objects. This is the simplest and fastest in algorithm speed
but the scattering effects and quantum noise are not taken into account. A plane panel
detector is described by the grid of pixels with perfect quantum efficiency in a 3D scene.
The right-handed Cartesian coordinate system is appropriate to describe the position and
orientation of the source, object, and detector in the three dimensions. As shown in Fig. 1
(a), from the X-ray source, a set of ray beams is emitted towards every pixel center of the
detector. The exact radiological path through the phantom volume is calculated on the basis
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Cone beam X-ray projector can be modeled with a bunch of rays that are emitted by a
source point towards irradiated objects. This is the simplest and fastest in algorithm speed
but the scattering effects and quantum noise are not taken into account. A plane panel
detector is described by the grid of pixels with perfect quantum efficiency in a 3D scene.
The right-handed Cartesian coordinate system is appropriate to describe the position and
orientation of the source, object, and detector in the three dimensions. As shown in Fig. 1
(a), from the X-ray source, a set of ray beams is emitted towards every pixel center of the
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of the calculation of ray-box intersection (see Fig. 1 (b)) because the phantom volume makes
up the grid of cuboid cells (meshes or voxels). Determining the total path length with a cuboid
grid is simpler than it is with a triangulated surface model. Radiological path is determined
by summing up the length times the corresponding attenuation coefficient of the ray segments
that cut each cell together along the ray path (see Fig. 1 (b)). There are many algorithms to
calculate the exact radiological path through the phantom volume. Among them, our system
adopted the well-known Siddon’s fast or improved algorithms (Siddon, 1985). Our code
was purposefully developed from scratch (no recourse to existing ‘black-box’ code libraries),
including specifically designed and optimized ray casting algorithms.
The X-ray attenuation law, together with ray tracing techniques forms the basis of our code.
The detector measures the attenuation in the phantom volume along the path of a particular
ray. The attenuation of X-rays with a typical mean energy of 50–150 keV is determined by
three different physical processes; Compton scattering (σcom), photoelectric absorption (σpho),
and Rayleigh scattering (σray). The particle fluence of the transmitted X-rays entering the
detector behind the phantom (Kum, 2010) is

Φ(E) = Φo(E)exp(−
∫ l

0
µ(E, s)ds), (1)

where Φo(E) is the initial particle fluence of the X-rays and µ(E, s) is the linear attenuation
coefficient of the phantom material at position s and energy E. The attenuation coefficient
depends on the atomic compositions at point s,

µ(E) = ρNA

n

∑
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(
wi
Ai

σi(E)), (2)

where ρ is overall mass density (g/cm3) at point s, NA the Avogadro constant, i the element
index, wi the element weight, Ai the atomic mass (g/mol), and σi the total cross section, σcom

i +

σ
pho
i + σ

ray
i . The corresponding attenuation coefficients, associated with any elementary or

compound substance, can be obtained from available databases, such as EPDL97 (Cullen et
al., 1997).
The measured detector signal is either proportional to the particle fluence (i.e. energy fluence)
or, to the energy deposition per mass if the detector is an ionization chamber. In general,
projection value r which is calculated as the logarithmic ratio of the signal measured without
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may be a complete circle or not. The main advantages of cone beam acquisition system are
the reduction of data collection time, reduced dose to the patient, and real-time imaging of
moving structures. High quality CBCT images may be generated with high patient exposures
and a large number of X-ray image profiles for reconstruction. However, this is not practical
in view of the general regulations that embodies the principle of doses being “as low as
reasonably practical" in the context of risks and benefits to the patient. Thus, there still remain
many important research problems in CBCT imaging technology (Moore et al., 2006).
The apparent drawback of the CBCT image is the significant degradation of image quality
due to the contamination of X-ray projection data with scattered photons and/or secondary
electrons, resulting in a decrease of low-contrast detectability, cupping artifacts and streak
artifacts between different objects (Peterzol et al., 2008). The amount of scatter contamination
depends strongly on the type of imaging and detector geometry used as well as the object
under study. Monte Carlo methods are known to be the best to accurately simulate scatter in
X-ray imaging. Our in-house Monte Carlo code, PMCEPT code, has a capability to simulate
the photon energy as low as 1 KeV and as high as 1 GeV against the targets of about hundred
chemical elements, their compositions, and mixtures (KumPark, 2010; Kum, 2005). However,
when low noise scatter projections have to be simulated, these Monte Carlo simulations tend
to be very time consuming even though we use high performance parallel computing (Kim,
2006). Thus, it is worthwhile to add the most simplified approach to simulate CBCT X-ray
projection by using ray tracing algorithms which is discussed in detail in the following.
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Figure 1: Cone beam simulator model. (a) A set of ray beams is emitted towards every pixel
center of the detector. (b) Radiological path is determined by summing up the length times
the corresponding attenuation value.

Cone beam X-ray projector can be modeled with a bunch of rays that are emitted by a source
point towards irradiated objects. This is the simplest and fastest in algorithm speed but the
scattering effects and quantum noise are not taken into account. A plane panel detector is
described by the grid of pixels with perfect quantum efficiency in a 3D scene. The right-
handed Cartesian coordinate system is appropriate to describe the position and orientation of
the source, object, and detector in the three dimensions. As shown in Fig. 1 (a), from the X-ray
source, a set of ray beams is emitted towards every pixel center of the detector. The exact
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Cone beam X-ray projector can be modeled with a bunch of rays that are emitted by a
source point towards irradiated objects. This is the simplest and fastest in algorithm speed
but the scattering effects and quantum noise are not taken into account. A plane panel
detector is described by the grid of pixels with perfect quantum efficiency in a 3D scene.
The right-handed Cartesian coordinate system is appropriate to describe the position and
orientation of the source, object, and detector in the three dimensions. As shown in Fig. 1
(a), from the X-ray source, a set of ray beams is emitted towards every pixel center of the
detector. The exact radiological path through the phantom volume is calculated on the basis
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but the scattering effects and quantum noise are not taken into account. A plane panel
detector is described by the grid of pixels with perfect quantum efficiency in a 3D scene.
The right-handed Cartesian coordinate system is appropriate to describe the position and
orientation of the source, object, and detector in the three dimensions. As shown in Fig. 1
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of the calculation of ray-box intersection (see Fig. 1 (b)) because the phantom volume makes
up the grid of cuboid cells (meshes or voxels). Determining the total path length with a cuboid
grid is simpler than it is with a triangulated surface model. Radiological path is determined
by summing up the length times the corresponding attenuation coefficient of the ray segments
that cut each cell together along the ray path (see Fig. 1 (b)). There are many algorithms to
calculate the exact radiological path through the phantom volume. Among them, our system
adopted the well-known Siddon’s fast or improved algorithms (Siddon, 1985). Our code
was purposefully developed from scratch (no recourse to existing ‘black-box’ code libraries),
including specifically designed and optimized ray casting algorithms.
The X-ray attenuation law, together with ray tracing techniques forms the basis of our code.
The detector measures the attenuation in the phantom volume along the path of a particular
ray. The attenuation of X-rays with a typical mean energy of 50–150 keV is determined by
three different physical processes; Compton scattering (σcom), photoelectric absorption (σpho),
and Rayleigh scattering (σray). The particle fluence of the transmitted X-rays entering the
detector behind the phantom (Kum, 2010) is

Φ(E) = Φo(E)exp(−
∫ l

0
µ(E, s)ds), (1)

where Φo(E) is the initial particle fluence of the X-rays and µ(E, s) is the linear attenuation
coefficient of the phantom material at position s and energy E. The attenuation coefficient
depends on the atomic compositions at point s,

µ(E) = ρNA

n

∑
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(
wi
Ai

σi(E)), (2)

where ρ is overall mass density (g/cm3) at point s, NA the Avogadro constant, i the element
index, wi the element weight, Ai the atomic mass (g/mol), and σi the total cross section, σcom

i +

σ
pho
i + σ

ray
i . The corresponding attenuation coefficients, associated with any elementary or

compound substance, can be obtained from available databases, such as EPDL97 (Cullen et
al., 1997).
The measured detector signal is either proportional to the particle fluence (i.e. energy fluence)
or, to the energy deposition per mass if the detector is an ionization chamber. In general,
projection value r which is calculated as the logarithmic ratio of the signal measured without
a phantom (Φo) in the CT scanner and the signal of the X-rays attenuated by the phantom
(ΦE), i.e. r = ln(Φo/ΦE). In the case of monochromatic X-rays, we have:

r = ln(
Φo

ΦE
) =

∫ l

0
µ(E, s)ds ≡ ∑ µ(E, si)∆s, (3)

where the sum runs from 0 to l. Reconstructing these line integrals would give the values
µ(E) of the different material, i.e. a well defined physical quantity.
Although most commercial CT scanners produce more or less polychromatic X-rays, even
though the bandwidth is not so broad, we only use the monochromatic X-rays in this simpler
ray casting model, which is different from the full Monte Carlo model. Thus, we neglect the
unavoidable beam hardening effect with polychromatic X-rays in this model. However, we
consider the different CT scanner effect of having wide range of measured attenuation values.
We obtain comparable attenuation values for different CT scanners by rescaling them with
respect to that of water because most soft tissues have linear attenuation coefficients very
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similar to that of water over a large photon energy interval. The CT number or Hounsfield
value (H) is defined as follows:

H = 1000(
µ

µH2O
− 1) (4)

where µH2O is the mean attenuation coefficient of water. Thus, water has always the
value 0 and air the value −1000. Note that the ratio of (µ/µH2O) depends slightly on the
spectral function f̂ (E) of the commercial CT scanner, and therefore the CT number is a
scanner-dependent quantity with fixed values for water and air (Scheneider et al., 2000).
These investigations show that we can also define uniquely patient body’s mass density and
chemical composition according to the Hounsfield values of the patient’s CT data. Thus,
we emphasize that the process of clustering pixels in a medical image dataset according
to Hounsfield values classifies anatomical structures with corresponding physiological
properties. This classification has a wide variety of applications in medical research and
visualization, i.e. computer-aided diagnosis and radiotherapy treatment planning. Therefore,
these three areas are closely relevant (KumPark, 2010).
A straightforward ray tracing technique would require computing time that scales with
the array size N3. Siddon (Siddon, 1985) proposed a fast method to trace the rays
whose computing time scales with 3N. In this study, a refinement to Siddon’s algorithm is
investigated. Our new algorithm uses an incremental or decrement operation for computing
the voxel indeces which improves computing time a little bit. Moreover, like the PMCEPT
Monte Carlo code, ray tracing algorithm uses MPI based parallel computing algorithm for the
projection angle on a Linux PC cluster. It is very efficient parallel algorithm because there is
no intercommunication between nodes while computing. The final project data in the form of
‘RAW’ file is used for reconstruction, which is discussed in the following.
The two kinds of algorithm, ray tracing and Monte Carlo are not exclusive, but
complementary. The Monte Carlo approach is slow but correct. Several hours or even days
may be needed to get an image with an acceptable noise level (e.g. 1%), but it incorporates all
the photon-material interactions into account, such as scattering, fluorescence, and electron
processes. The ray tracing approach is fast and does not produce any noise. To simulate
realistic images, a few statistical noise models in each photon energy channel can be added.
A full sinogram can be simulated from computer-aided design (CAD) models in a few
minutes using a current computer for the directly transmitted photons. This ray tracing
with CAD model is also closely related to the optimization simulation used for the optimized
radiotherapy planning.

2.2 Reconstruction technique
A reconstruction algorithm is a mathematical method to find the attenuation coefficients,
µ-values, in each voxel based on all the measured data in the projection profiles. The
procedure to reconstruct the image, based on the many projections at different angles, is
performed with a reconstruction algorithm. Several types of reconstruction algorithms are
available: filtered backprojection, direct Fourier, and algebraic reconstruction techniques. For
the acquisition geometry of circular rotation of a cone about a fixed iso-center, Feldkamp,
Davis, and Kress (FDK) algorithm (Feldkamp et al., 1984; Kak, 1999) which uses weighted
filtered back-projection is used most often in practice, although it is an approximate method.
Specifically, this algorithm is appropriate for the incomplete data set which is prone to
inherent artifacts, in particular, away from the source plane.
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Figure 2: Geometry of cone beam reconstruction. (a) Fan beam reconstruction geometry cor-
responding to the mid-plane of cone beam. (b) Tilted fan geometry of FDK algorithm.

Figure 2(a) shows mid-plane geometry of cone beam tomography (equivalent to fan beam
reconstruction geometry or 2D parallel projection), and (b) shows tilted fan geometry of FDK
algorithm. Three dimensional Radon transformation delivers integration values over planes
formed by the detector plane, rather than along lines (formed by the receptors). The cone
beam reconstruction algorithm is driven from the fan beam reconstruction algorithm (mid-
plane geometry of cone beam) for the point (t, s) which represents the 2D parallel projection.

g(t, s) =
1
2

∫ 2π

0

D2
SO

(DSO − s)2

∫ ∞

−∞
Rβ(p) f

(
DSOt

DSO − s
− p

)
DSO√

D2
SO + p2

dpdβ. (5)

where,

t = x cos β + ysin β, (6)

s = −x sin β + ycos β, (7)

x = r cosφ, (8)

y = r sinφ. (9)

Rβ(p) represents the 2D projection data, p describes a linear detector array intersecting the
origin of the reconstruction coordinate system, DSO denotes the (source) distance between the
X-ray source and the origin of the reconstruction coordinate system, and f (·) is the reconstruc-
tion filter defined as Kak and Slaney (Kak; 1999),

f (p) =
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In a cone beam reconstruction, all the fans except the mid plane are tilted out of the plane of
rotation so that the size of the fan and the coordinate system of the reconstructed point change.
Thus, a new coordinate system (t̃, s̃) is defined that represents the location of the reconstructed
point with respect to the tilted fan shown in Fig. 2(b). Because the geometry of the fan size
changes, both the source-to-origin distance, DSO, and the angular differential, β, are changed.
The new source-to-origin distance is given by
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Fig. 2. Geometry of cone beam reconstruction. (a) Fan beam reconstruction geometry
corresponding to the mid-plane of cone beam. (b) Tilted fan geometry of FDK algorithm.

Figure 2(a) shows mid-plane geometry of cone beam tomography (equivalent to fan beam
reconstruction geometry or 2D parallel projection), and (b) shows tilted fan geometry of FDK
algorithm. Three dimensional Radon transformation delivers integration values over planes
formed by the detector plane, rather than along lines (formed by the receptors). The cone beam
reconstruction algorithm is driven from the fan beam reconstruction algorithm (mid-plane
geometry of cone beam) for the point (t, s) which represents the 2D parallel projection.
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similar to that of water over a large photon energy interval. The CT number or Hounsfield
value (H) is defined as follows:

H = 1000(
µ

µH2O
− 1) (4)

where µH2O is the mean attenuation coefficient of water. Thus, water has always the
value 0 and air the value −1000. Note that the ratio of (µ/µH2O) depends slightly on the
spectral function f̂ (E) of the commercial CT scanner, and therefore the CT number is a
scanner-dependent quantity with fixed values for water and air (Scheneider et al., 2000).
These investigations show that we can also define uniquely patient body’s mass density and
chemical composition according to the Hounsfield values of the patient’s CT data. Thus,
we emphasize that the process of clustering pixels in a medical image dataset according
to Hounsfield values classifies anatomical structures with corresponding physiological
properties. This classification has a wide variety of applications in medical research and
visualization, i.e. computer-aided diagnosis and radiotherapy treatment planning. Therefore,
these three areas are closely relevant (KumPark, 2010).
A straightforward ray tracing technique would require computing time that scales with
the array size N3. Siddon (Siddon, 1985) proposed a fast method to trace the rays
whose computing time scales with 3N. In this study, a refinement to Siddon’s algorithm is
investigated. Our new algorithm uses an incremental or decrement operation for computing
the voxel indeces which improves computing time a little bit. Moreover, like the PMCEPT
Monte Carlo code, ray tracing algorithm uses MPI based parallel computing algorithm for the
projection angle on a Linux PC cluster. It is very efficient parallel algorithm because there is
no intercommunication between nodes while computing. The final project data in the form of
‘RAW’ file is used for reconstruction, which is discussed in the following.
The two kinds of algorithm, ray tracing and Monte Carlo are not exclusive, but
complementary. The Monte Carlo approach is slow but correct. Several hours or even days
may be needed to get an image with an acceptable noise level (e.g. 1%), but it incorporates all
the photon-material interactions into account, such as scattering, fluorescence, and electron
processes. The ray tracing approach is fast and does not produce any noise. To simulate
realistic images, a few statistical noise models in each photon energy channel can be added.
A full sinogram can be simulated from computer-aided design (CAD) models in a few
minutes using a current computer for the directly transmitted photons. This ray tracing
with CAD model is also closely related to the optimization simulation used for the optimized
radiotherapy planning.

2.2 Reconstruction technique
A reconstruction algorithm is a mathematical method to find the attenuation coefficients,
µ-values, in each voxel based on all the measured data in the projection profiles. The
procedure to reconstruct the image, based on the many projections at different angles, is
performed with a reconstruction algorithm. Several types of reconstruction algorithms are
available: filtered backprojection, direct Fourier, and algebraic reconstruction techniques. For
the acquisition geometry of circular rotation of a cone about a fixed iso-center, Feldkamp,
Davis, and Kress (FDK) algorithm (Feldkamp et al., 1984; Kak, 1999) which uses weighted
filtered back-projection is used most often in practice, although it is an approximate method.
Specifically, this algorithm is appropriate for the incomplete data set which is prone to
inherent artifacts, in particular, away from the source plane.
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Figure 2: Geometry of cone beam reconstruction. (a) Fan beam reconstruction geometry cor-
responding to the mid-plane of cone beam. (b) Tilted fan geometry of FDK algorithm.

Figure 2(a) shows mid-plane geometry of cone beam tomography (equivalent to fan beam
reconstruction geometry or 2D parallel projection), and (b) shows tilted fan geometry of FDK
algorithm. Three dimensional Radon transformation delivers integration values over planes
formed by the detector plane, rather than along lines (formed by the receptors). The cone
beam reconstruction algorithm is driven from the fan beam reconstruction algorithm (mid-
plane geometry of cone beam) for the point (t, s) which represents the 2D parallel projection.

g(t, s) =
1
2

∫ 2π

0

D2
SO

(DSO − s)2

∫ ∞

−∞
Rβ(p) f

(
DSOt

DSO − s
− p

)
DSO√

D2
SO + p2

dpdβ. (5)

where,

t = x cos β + ysin β, (6)

s = −x sin β + ycos β, (7)

x = r cosφ, (8)

y = r sinφ. (9)

Rβ(p) represents the 2D projection data, p describes a linear detector array intersecting the
origin of the reconstruction coordinate system, DSO denotes the (source) distance between the
X-ray source and the origin of the reconstruction coordinate system, and f (·) is the reconstruc-
tion filter defined as Kak and Slaney (Kak; 1999),

f (p) =
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| ω | exp(jωp)dω. (10)

In a cone beam reconstruction, all the fans except the mid plane are tilted out of the plane of
rotation so that the size of the fan and the coordinate system of the reconstructed point change.
Thus, a new coordinate system (t̃, s̃) is defined that represents the location of the reconstructed
point with respect to the tilted fan shown in Fig. 2(b). Because the geometry of the fan size
changes, both the source-to-origin distance, DSO, and the angular differential, β, are changed.
The new source-to-origin distance is given by

D
′2
SO = D2

SO + ζ2, (11)
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Figure 2(a) shows mid-plane geometry of cone beam tomography (equivalent to fan beam
reconstruction geometry or 2D parallel projection), and (b) shows tilted fan geometry of FDK
algorithm. Three dimensional Radon transformation delivers integration values over planes
formed by the detector plane, rather than along lines (formed by the receptors). The cone beam
reconstruction algorithm is driven from the fan beam reconstruction algorithm (mid-plane
geometry of cone beam) for the point (t, s) which represents the 2D parallel projection.
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where ζ is the height of the fan above the center of the plane of rotation. In addition, for the
tilted fan the increment of angular rotation dβ′ must be,

DSOdβ = D′
SOdβ′ ⇒ dβ′ =

DSOdβ√
D2

SO + ζ2
. (12)

If we replace the 2D reconstruction variables, DSO and β, by the 3D reconstruction variables,
D′

SO and β′, respectively, Eq. 5 becomes
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dpdβ′. (13)

To return the reconstruction to the original orthogonal (t, s, z) coordinate system we replace
the 3D reconstruction variables D′

SO and β′, by the 2D rotating plane variables, DSO and β,
respectively, in Eq. 13 by using a coordinate transformation,

g(t, s, z) =
1
2
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(14)
where a coordinate transform is,

t̃ = t,
s̃

D′
SO

=
s

DSO
,

ζ

DSO
=

z
DSO − s

. (15)

In the numerical algorithm the final formula g(t, s, z) in Eq. 14 is usually converted again
into g(x, y, z) in the usual 3D Cartesian coordinate system by using the inverse coordinate
transformations of Eqs. 6-9. The Eq. 14 is called the generalized Feldkamp’s cone beam
reconstruction formula. The important problem in the reconstruction algorithm is to choose
the reconstruction filter f (·). We assume that the projection data are sampled with a sampling
interval of τ cm. If there is no aliasing, this means that in the Fourier domain the projections
don’t contain any energy outside the frequency interval (−W, W) where

W =
1

2τ
cycles/cm. (16)

Since the highest frequency of the projections is finite, we have
∫ ∞

−∞
R′

β(w, ζ) | w | exp(j2πwt)dw =
∫ ∞

−∞
R′

β(w, ζ)F(w) exp(j2πwt)dw, (17)

where R′
β(w, ζ) is the one-dimensional Fourier transform of Rβ(p, ζ) with respect to p,

F(w) =| w | bW(w). (18)

and

bw(w) =

{
1, | w |< W
0, otherwise. (19)
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F(w) represents the transfer function of a filter with which the projections must be processed.
Thus, the impulse function, f (t), of this filter is given by the inverse Fourier transform of F(w)
and is

f (t) =
∫ ∞

−∞
F(w) exp(+j2πwt)dw (20)

=
1

2τ2
sin(2πt)/2τ

2πt/2τ
− 1

4τ2

(
sin(πt)/2τ

πt/2τ

)2
, (21)

where Eq.16 is used. Since the sampling interval of the projection data is τ, the impulse
response, f (t), needs only to be known with the same sampling interval for the digital
processing. The samples are given by

f (nτ) =





0 n : even
1

4τ2 n = 0
− 1

n2π2τ2 n : odd.
(22)

The cone beam reconstruction algorithm can be formulated as three steps:
Step 1: Calculate the pre-weighted projection data,

R′
β(p, ζ) =

DSO√
D2

SO + p2 + ζ2
Rβ(p, ζ). (23)

Step 2: Convolve the weighted projection R′
β(p, ζ) with f (p)/2 by multiplying their Fourier

transforms with respect to p,

Qβ(p, ζ) ≡ R′
β(p, ζ) ∗ 1

2
f (p). (24)

Note that this convolution is done independently for each elevation, ζ.
Step 3: Back-project over the three-dimensional reconstruction grid,

g(t, s, z) =
∫ 2π

0

D2
SO

(DSO − s)2 Qβ

(
DSOt

DSO − s
,

DSOz
DSO − s

)
dβ. (25)

The two arguments of the convolved projection, Qβ, represent the transformation of a point
in the object into the coordinate system of the tilted fan shown in Fig. 2(b). Note that the
cone beam system can not correctly reconstruct the whole object because the beam projection
region is a sphere of radius DSO sin(Γm), where Γm is half the beamwidth angle of the cone
and some points outside this region may not be included in any of the projections (Lagravere
et al., 2008; Wang et al., 1993).
For the fast ray-tracing, a target object is, in general, included in the smallest cuboid which
includes the object, and the cuboid is divided into the same size of small voxels as shown in
cylindrical object in Fig. 3(a). Radiological path is calculated by multiplying the attenuation
coefficients of the target materials. The void voxels have zero attenuation values (vacuum)
and automatically subtracted from the radiological path as shown in Fig.3(b), top-view of
the cylindrical object. Thus, there may exist negligible error for the curved objects. In this
example, the height of the target cylinder is 160 mm and is divided into 64 slices, so that
each slice is 2.5 mm in thickness. The number of pixels in each slice is 512 × 512 and the
width between the pixels is 0.5 mm. 720 projections were simulated for the evenly divided
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The two arguments of the convolved projection, Qβ, represent the transformation of a point
in the object into the coordinate system of the tilted fan shown in Fig. 2(b). Note that the
cone beam system can not correctly reconstruct the whole object because the beam projection
region is a sphere of radius DSO sin(Γm), where Γm is half the beamwidth angle of the cone
and some points outside this region may not be included in any of the projections (Lagravere
et al., 2008; Wang et al., 1993).
For the fast ray-tracing, a target object is, in general, included in the smallest cuboid which
includes the object, and the cuboid is divided into the same size of small voxels as shown in
cylindrical object in Fig. 3(a). Radiological path is calculated by multiplying the attenuation
coefficients of the target materials. The void voxels have zero attenuation values (vacuum)
and automatically subtracted from the radiological path as shown in Fig.3(b), top-view of
the cylindrical object. Thus, there may exist negligible error for the curved objects. In this
example, the height of the target cylinder is 160 mm and is divided into 64 slices, so that
each slice is 2.5 mm in thickness. The number of pixels in each slice is 512 × 512 and the
width between the pixels is 0.5 mm. 720 projections were simulated for the evenly divided

189
Novel Computational Approaches for 
Understanding Computed Tomography (CT) Images and Their Applications



Figure 3: CAD description of target object. (a) Cylinder object included in cuboid. (b) Top-
view of the cylindrical object.

angles. On the plane of rotation (z = 0) the cone beam algorithm is identical to a equi-spatial
fan beam algorithm, as discussed above, and the quality of the reconstruction varies with the
elevation of the plane because farther from the central plane each point in the reconstruction
is irradiated from all directions but now at an oblique angle. Figure. 4 shows reconstruction
at z=15 mm, the sixth slice above from the plane of rotation. However, as shown in Fig. 4,
there is no noticeable degradation in the reconstruction in our algorithm.

3. Image Segmentation

3.1 Watershed Segmentation Algorithm
Image segmentation is one of the most important issues in computer aided medical imaging.
It is now frequently used in the analysis and diagnosis of numerous applications, such as the
study of anatomical structure, localization of pathology, treatment planning, and computer-
assisted surgery. Computers are indispensable for the analysis of large amounts of data, for
tasks that require complex computation, or for the extraction of quantitative information.
There are two important reasons for the use of computer aided segmentation: one is to im-
prove upon the conventional expert (human)-based segmentation, and the other is to acquire
segmentation prior to visualization or quantification for the analysis of medical images (Gu et
al.; 2006; Moga et al.; 1998; Haris et al.; 1998).
The watershed transform is the method of choice and widely used for medical image seg-
mentation. It is classified as a region-based segmentation method and an important field in
mathematical morphology. It can provide a hierarchical image segmentation from which a sin-
gle region or set of regions can be extracted a priori by using a threshold or interactively with
the help of a graphical user interface (Kim et al.; 2007). To study the physical or physiological
properties for each group of pixels in a medical image, a hierarchical image segmentation is
important because it can provide a set of several segmentations at different levels of segmen-
tation detail. The segmentations at coarser levels of detail can be produced by simple merges
of regions from segmentations at finer levels of detail. A unique feature of hierarchical image

Fig. 3. CAD description of target object. (a) Cylinder object included in cuboid. (b) Top-view
of the cylindrical object.

angles. On the plane of rotation (z = 0) the cone beam algorithm is identical to a equi-spatial
fan beam algorithm, as discussed above, and the quality of the reconstruction varies with the
elevation of the plane because farther from the central plane each point in the reconstruction
is irradiated from all directions but now at an oblique angle. Figure. 4 shows reconstruction
at z=15 mm, the sixth slice above from the plane of rotation. However, as shown in Fig. 4,
there is no noticeable degradation in the reconstruction in our algorithm.

Figure 4: Reconstructed image (512 × 512) of the slice at z=15 mm above the rotational plane.

segmentation is that the segmented region boundaries are maintained at the full image spatial
resolution at all levels of the segmentation hierarchy.
The intuitive idea underlying the watershed transform is that of a landscape or topographic
relief flooded by water. In flooding a landscape or topographic relief with water, watersheds
are the dividing lines of the domains of attraction of rain falling over the region. An alter-
native approach is to imagine the landscape being gradually immersed in a lake, with holes
pierced at the local minima. Basins (called ‘catchment basins’) will fill up with water starting
at these local minima, and, at points where water coming from different basins would meet,
dams are built. When the water level has reached the highest peak in the landscape, the pro-
cess is stopped. As a result, the landscape is partitioned into regions or basins separated by
dams, called watershed lines or simply watersheds. One of the difficulties with this intuitive
concept is that it leaves room for various formalizations. Different watershed definitions for
continuous functions can be given (Jos; 2001). Our main interest in this study is in digital
images, for which there is even more freedom to define watersheds because in the discrete
case, there is no unique definition of the path that a drop of water follows. This produces
various algorithmic specifications and implementations. In this study, we followed Insight
Image Segmentation and Registration Toolkit (ITK) (ITK; 2010) and Vincent-Soille transforms
(Vincent; 1991) in digital spaces, which are now used as a fundamental step in many powerful
segmentation procedures.
ITK is a cross-platform application development framework widely used for the development
of image segmentation and image registration programs. ITK was developed with funding
from the National Library of Medicine in the USA as an open resource of algorithms for ana-
lyzing the images of the Visible Human Project. The toolkit provides a top-down watershed
algorithm that first computes a complete partition of the image into basins and subsequently
finds watersheds by boundary detection. This assumes a multi-scale differentiable operator

Fig. 4. Reconstructed image (512 × 512) of the slice at z=15 mm above the rotational plane.
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dams are built. When the water level has reached the highest peak in the landscape, the pro-
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fan beam algorithm, as discussed above, and the quality of the reconstruction varies with the
elevation of the plane because farther from the central plane each point in the reconstruction
is irradiated from all directions but now at an oblique angle. Figure. 4 shows reconstruction
at z=15 mm, the sixth slice above from the plane of rotation. However, as shown in Fig. 4,
there is no noticeable degradation in the reconstruction in our algorithm.
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at these local minima, and, at points where water coming from different basins would meet,
dams are built. When the water level has reached the highest peak in the landscape, the pro-
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information. There are two important reasons for the use of computer aided segmentation:
one is to improve upon the conventional expert (human)-based segmentation, and the other
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images (Gu et al., 2006; Haris et al., 1998; Moga et al., 1998).
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segmentation. It is classified as a region-based segmentation method and an important field
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single region or set of regions can be extracted a priori by using a threshold or interactively
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physiological properties for each group of pixels in a medical image, a hierarchical image
segmentation is important because it can provide a set of several segmentations at different
levels of segmentation detail. The segmentations at coarser levels of detail can be produced
by simple merges of regions from segmentations at finer levels of detail. A unique feature of
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The intuitive idea underlying the watershed transform is that of a landscape or topographic
relief flooded by water. In flooding a landscape or topographic relief with water, watersheds
are the dividing lines of the domains of attraction of rain falling over the region. An alternative
approach is to imagine the landscape being gradually immersed in a lake, with holes pierced
at the local minima. Basins (called ‘catchment basins’) will fill up with water starting at these
local minima, and, at points where water coming from different basins would meet, dams
are built. When the water level has reached the highest peak in the landscape, the process
is stopped. As a result, the landscape is partitioned into regions or basins separated by
dams, called watershed lines or simply watersheds. One of the difficulties with this intuitive
concept is that it leaves room for various formalizations. Different watershed definitions for
continuous functions can be given (Jos, 2001). Our main interest in this study is in digital
images, for which there is even more freedom to define watersheds because in the discrete
case, there is no unique definition of the path that a drop of water follows. This produces
various algorithmic specifications and implementations. In this study, we followed Insight
Image Segmentation and Registration Toolkit (ITK) (ITK, 2010) and Vincent-Soille transforms
(Vincent, 1991) in digital spaces, which are now used as a fundamental step in many powerful
segmentation procedures.
ITK is a cross-platform application development framework widely used for the development
of image segmentation and image registration programs. ITK was developed with funding
from the National Library of Medicine in the USA as an open resource of algorithms for
analyzing the images of the Visible Human Project. The toolkit provides a top-down
watershed algorithm that first computes a complete partition of the image into basins
and subsequently finds watersheds by boundary detection. This assumes a multi-scale
differentiable operator and, consequently, floating point operations in two, three, and more
dimensions. The software is implemented in C++, and it is wrapped for Tcl, Python, and
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Java. On the other hand, Vincent-Soille transforms, developed in early 90’s, are faster and
flexible with adaptations to any kind of underlying grid (different connectivities) and easily
extendable to n-dimensional images and to graphs. They are appropriate to the CT images
because they used an integer-sorting algorithm of the pixels in increasing order of Hounsfield
values and fast breadth first scanning of the plateaus enabled by a first-in-first out type data
structure. The algorithm first finds basins; then, the watersheds are the voxels not included in
any basin.
Mathematically rigorous algorithmic definition of the digital watershed is presented based on
the Vincent and Soille’s idea. In fact, other watershed algorithms could be defined in a similar
manner.

Definition: Image function Let Z be a set of integer and D ⊆ Z × Z ≡ Z2. Define a digital
image map I: D → Z, where D is the domain of the image and I(p) denotes the Hounsfield
value of the pixel p ∈ D.

Definition: Path Let G ⊆ Z2 × Z2 denote the pixel grid. Define a path P of length l between
two pixels p and q be an l + 1-tuple (p0, p1, · · · , pl−1, pl) such that p0 = p, pl = q and ∀
i ∈ [0, l) : (pi, pi+1) ∈ G.

Definition: Connected A set of pixels M is called connected if and only if for every pair of
pixels p, q ∈ M there exists a path between p and q which only passes through pixels of M.

Definition: Connected component A connected component is defined as a nonempty
connected set of pixels of maximal size.

Definition: Minimum A regional minimum (or minimum for short) of I at altitude h is a
connected component of pixels p with I(p) = h from which it is impossible to reach a point of
lower altitude without having to climb.

Definition: Geodesic distance Let A ⊆ Z2, and a, b two points in A. The geodesic distance
dA(a, b) within A is the minimum of the lengths of all paths from a to b in A:
dA(a, b) = min{l(P) : P path between a and b which is totally included in A}.

Definition: Geodesic influence zone Let A ⊆ Z2 and contain a set B made of several
connected components, B1, B2, · · · , Bk. The geodesic influence zone of the set Bi within A is
defined as:
izA(Bi) = {p ∈ A | ∀j ∈ [1, · · · , k] \ {i} : dA(p, Bi) < dA(p, Bj)}.

Definition: Skeleton by influence zones (SKIZ) Let A ⊆ Z2. The skeleton by influence zones
(SKIZ) of the set Bi within A is defined as a complement of the union of the geodesic influence
zones of the connected components of B:
SKIZA(B) = A \ IZA(B) with IZA(B) =

⋃
i∈[1;k] izA(Bi).

Note that SKIZ consists of all points which are equally distant from at least two connected
components. However, SKIZ does not necessarily separate the different geodesic influence
zones and is often made of disconnected and thick one, meaning that a set of pixels equally
distant from two connected components may be thicker than one pixel.
The key feature of the Vincent-Soille algorithm is a recursive computing from the lowest
pixel value (hmin) to the highest one (hmax). To explain the recursive algorithm, we define
the threshold set of I at level h as follows:
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(2) Xh+1 = minh+1 ∪IZTh+1(I)(Xh), ∀h ∈ [hmin, hmax − 1].

Finally, the watersheds (WI) of the image I correspond to the set of the pixels of DI which
do not belong to any catchment basin, i.e., WI = DI ∩ (Xhmax )

c. The fact that computing
Xh+1 needs Xh expresses the sequential recursive nature of this algorithm. An example of the
watershed transform on the square grid according to the immersion process is shown in Fig.
5.
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Figure 5: Example of watershed transform. Original image is in the left-hand side, watershed
with 4-connectivities in the middle, and 8-connectivities in the right-hand side.

The drawback of watershed segmentation is that it produces a region for each local mini-
mum, resulting in oversegmentation. To alleviate this problem, a graph merging algorithm
which is generally complicated, is used with a threshold value of the watershed depth, which
sometimes impedes the efficient implementation of the graphical user interface. In this study,
we propose an effective watershed method without a post merging process. Moreover, a
steppedup graphical user interface provides a function of interactive and semi-automatic
medical image segmentation.
The initial oversegmentation depends on the gradient image intensity variations because of
the high sensitivity of the watershed algorithm. Thus, as a pre-processor, the noise reduction
algorithm can reduce the oversegmentation appreciably. However, the image edges should
be preserved to represent the boundaries of the image objects which have different physio-
logical properties. We implemented a well-known statistical edge-preserving noise reduction
algorithm. To preserve the edges, small bi-modal window filters were used. Also, the noise
reduction process depends on the value of parameter of the filter size which may be user
defined or can be evaluated based on the estimated noise variance. The output of the noise

Fig. 5. Example of watershed transform. Original image is in the left-hand side, watershed
with 4-connectivities in the middle, and 8-connectivities in the right-hand side.

The drawback of watershed segmentation is that it produces a region for each local minimum,
resulting in oversegmentation. To alleviate this problem, a graph merging algorithm which
is generally complicated, is used with a threshold value of the watershed depth, which
sometimes impedes the efficient implementation of the graphical user interface. In this study,
we propose an effective watershed method without a post merging process. Moreover, a
steppedup graphical user interface provides a function of interactive and semi-automatic
medical image segmentation.
The initial oversegmentation depends on the gradient image intensity variations because
of the high sensitivity of the watershed algorithm. Thus, as a pre-processor, the noise
reduction algorithm can reduce the oversegmentation appreciably. However, the image edges
should be preserved to represent the boundaries of the image objects which have different
physiological properties. We implemented a well-known statistical edge-preserving noise
reduction algorithm. To preserve the edges, small bi-modal window filters were used. Also,
the noise reduction process depends on the value of parameter of the filter size which may
be user defined or can be evaluated based on the estimated noise variance. The output of the
noise reduction procedure is the starting point of the gradient-based boundary sharpening
process. This process is closely combined with a watershed technique, resulting in an effective
watershed method without a post merging process. The gradient-based boundary sharpening
technique reduces the oversegemntation by thresholding the gradient magnitude priori to
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Definition: Skeleton by influence zones (SKIZ) Let A ⊆ Z2. The skeleton by influence zones
(SKIZ) of the set Bi within A is defined as a complement of the union of the geodesic influence
zones of the connected components of B:
SKIZA(B) = A \ IZA(B) with IZA(B) =

⋃
i∈[1;k] izA(Bi).

Note that SKIZ consists of all points which are equally distant from at least two connected
components. However, SKIZ does not necessarily separate the different geodesic influence
zones and is often made of disconnected and thick one, meaning that a set of pixels equally
distant from two connected components may be thicker than one pixel.
The key feature of the Vincent-Soille algorithm is a recursive computing from the lowest
pixel value (hmin) to the highest one (hmax). To explain the recursive algorithm, we define
the threshold set of I at level h as follows:
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zones of the connected components of B:
SKIZA(B) = A \ IZA(B) with IZA(B) =
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Note that SKIZ consists of all points which are equally distant from at least two connected
components. However, SKIZ does not necessarily separate the different geodesic influence
zones and is often made of disconnected and thick one, meaning that a set of pixels equally
distant from two connected components may be thicker than one pixel.
The key feature of the Vincent-Soille algorithm is a recursive computing from the lowest
pixel value (hmin) to the highest one (hmax). To explain the recursive algorithm, we define
the threshold set of I at level h as follows:

Definition: Threshold set of I at level h Th(I) = {p ∈ D | I(p) ≤ h}.

Let minh denote the union of all regional minima at level h. Then, the catchment basins and
watersheds by immersion can be defined as follows.

Definition: Catchment basins and watersheds by immersion The set of the catchment
basins of the image I is equal to the set Xhmax obtained after the following recursion:
(1) Xhmin

= Thmin
(I),

(2) Xh+1 = minh+1 ∪IZTh+1(I)(Xh), ∀h ∈ [hmin, hmax − 1].

Finally, the watersheds (WI) of the image I correspond to the set of the pixels of DI which
do not belong to any catchment basin, i.e., WI = DI ∩ (Xhmax )

c. The fact that computing
Xh+1 needs Xh expresses the sequential recursive nature of this algorithm. An example of the
watershed transform on the square grid according to the immersion process is shown in Fig.
5.
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c. The fact that computing
Xh+1 needs Xh expresses the sequential recursive nature of this algorithm. An example of the
watershed transform on the square grid according to the immersion process is shown in Fig.
5.

Figure 5: Example of watershed transform. Original image is in the left-hand side, watershed
with 4-connectivities in the middle, and 8-connectivities in the right-hand side.

The drawback of watershed segmentation is that it produces a region for each local mini-
mum, resulting in oversegmentation. To alleviate this problem, a graph merging algorithm
which is generally complicated, is used with a threshold value of the watershed depth, which
sometimes impedes the efficient implementation of the graphical user interface. In this study,
we propose an effective watershed method without a post merging process. Moreover, a
steppedup graphical user interface provides a function of interactive and semi-automatic
medical image segmentation.
The initial oversegmentation depends on the gradient image intensity variations because of
the high sensitivity of the watershed algorithm. Thus, as a pre-processor, the noise reduction
algorithm can reduce the oversegmentation appreciably. However, the image edges should
be preserved to represent the boundaries of the image objects which have different physio-
logical properties. We implemented a well-known statistical edge-preserving noise reduction
algorithm. To preserve the edges, small bi-modal window filters were used. Also, the noise
reduction process depends on the value of parameter of the filter size which may be user
defined or can be evaluated based on the estimated noise variance. The output of the noise

Fig. 5. Example of watershed transform. Original image is in the left-hand side, watershed
with 4-connectivities in the middle, and 8-connectivities in the right-hand side.

The drawback of watershed segmentation is that it produces a region for each local minimum,
resulting in oversegmentation. To alleviate this problem, a graph merging algorithm which
is generally complicated, is used with a threshold value of the watershed depth, which
sometimes impedes the efficient implementation of the graphical user interface. In this study,
we propose an effective watershed method without a post merging process. Moreover, a
steppedup graphical user interface provides a function of interactive and semi-automatic
medical image segmentation.
The initial oversegmentation depends on the gradient image intensity variations because
of the high sensitivity of the watershed algorithm. Thus, as a pre-processor, the noise
reduction algorithm can reduce the oversegmentation appreciably. However, the image edges
should be preserved to represent the boundaries of the image objects which have different
physiological properties. We implemented a well-known statistical edge-preserving noise
reduction algorithm. To preserve the edges, small bi-modal window filters were used. Also,
the noise reduction process depends on the value of parameter of the filter size which may
be user defined or can be evaluated based on the estimated noise variance. The output of the
noise reduction procedure is the starting point of the gradient-based boundary sharpening
process. This process is closely combined with a watershed technique, resulting in an effective
watershed method without a post merging process. The gradient-based boundary sharpening
technique reduces the oversegemntation by thresholding the gradient magnitude priori to
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detect the watersheds of the image. To detect the boundary, a first order derivative is used in
two-dimensional image:
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]
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Figure 6: An example of local image mask in 3 × 3 region.

Many different gradient operators can be used in the boundary sharpening step. Combination
of the two operators also makes the edge sharper and thinner. For the mask shown in Fig. 6,
the standard and cross gradient operators are given, respectively:

Gx = i6 − i5, Gy = i8 − i5, (27)

Gx = i8 − i6, Gy = i9 − i5. (28)

The mean value of the two gradient magnitudes results in the value of the gradient. Thresh-
olding the gradient magnitude is performed interactively by using the graphical user interface
(moving bar).

3.2 Application: Defining Anatomical Structures
Defining anatomical structures and the extraction of the objects in CT images are essential
parts of medical imaging applications, such as diagnostic imaging, 3D treatment planning,
and image-guided surgery. The volume definition process may provide for delineating the
specific shape of an organ on a digital image as accurately as possible, especially for 3D ren-
dering, radiation therapy, and surgery planning. Specifically, in the radiation treatment plan-
ning the accuracy and reproducibility of this process affects targeting, optimization based on
dose-volume histograms or other volume-based measures, and the development of biological
models for tumor control and complication probabilities (Kum et al.; 2007).
This can be done either through manual user interactions or by applying imaging processing
techniques for the automatic detection of specific structures in the image using segmenta-
tion techniques. The automatic segmentation process might involve complicated structures,
and in this case usually only an expert can perform the task of identification manually on a

Fig. 6. An example of local image mask in 3 × 3 region.

Many different gradient operators can be used in the boundary sharpening step. Combination
of the two operators also makes the edge sharper and thinner. For the mask shown in Fig. 6,
the standard and cross gradient operators are given, respectively:

Gx = i6 − i5, Gy = i8 − i5, (27)

Gx = i8 − i6, Gy = i9 − i5. (28)

The mean value of the two gradient magnitudes results in the value of the gradient.
Thresholding the gradient magnitude is performed interactively by using the graphical user
interface (moving bar).

3.2 Application: Defining anatomical structures
Defining anatomical structures and the extraction of the objects in CT images are essential
parts of medical imaging applications, such as diagnostic imaging, 3D treatment planning,
and image-guided surgery. The volume definition process may provide for delineating the
specific shape of an organ on a digital image as accurately as possible, especially for 3D
rendering, radiation therapy, and surgery planning. Specifically, in the radiation treatment
planning the accuracy and reproducibility of this process affects targeting, optimization
based on dose-volume histograms or other volume-based measures, and the development
of biological models for tumor control and complication probabilities (Kum et al., 2007).
This can be done either through manual user interactions or by applying imaging processing
techniques for the automatic detection of specific structures in the image using segmentation
techniques. The automatic segmentation process might involve complicated structures, and
in this case usually only an expert can perform the task of identification manually on a
slice-by-slice basis. Humans can perform this task using complex analyses of shape, intensity,
position, texture, and proximity to surrounding structures. Thus, despite the advances in
automatic segmentation methodology, many medical image research labs continue to rely on
manual delineation. This reluctance to accept automation may be due to insufficient reliability
and high specificity of fully automatic methods and the lack of inexpensive user-friendly
tools implementing semi-automatic methods. To address this difficulty, we developed the
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techniques for the automatic detection of specific structures in the image using segmenta-
tion techniques. The automatic segmentation process might involve complicated structures,
and in this case usually only an expert can perform the task of identification manually on a
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The mean value of the two gradient magnitudes results in the value of the gradient.
Thresholding the gradient magnitude is performed interactively by using the graphical user
interface (moving bar).

3.2 Application: Defining anatomical structures
Defining anatomical structures and the extraction of the objects in CT images are essential
parts of medical imaging applications, such as diagnostic imaging, 3D treatment planning,
and image-guided surgery. The volume definition process may provide for delineating the
specific shape of an organ on a digital image as accurately as possible, especially for 3D
rendering, radiation therapy, and surgery planning. Specifically, in the radiation treatment
planning the accuracy and reproducibility of this process affects targeting, optimization
based on dose-volume histograms or other volume-based measures, and the development
of biological models for tumor control and complication probabilities (Kum et al., 2007).
This can be done either through manual user interactions or by applying imaging processing
techniques for the automatic detection of specific structures in the image using segmentation
techniques. The automatic segmentation process might involve complicated structures, and
in this case usually only an expert can perform the task of identification manually on a
slice-by-slice basis. Humans can perform this task using complex analyses of shape, intensity,
position, texture, and proximity to surrounding structures. Thus, despite the advances in
automatic segmentation methodology, many medical image research labs continue to rely on
manual delineation. This reluctance to accept automation may be due to insufficient reliability
and high specificity of fully automatic methods and the lack of inexpensive user-friendly
tools implementing semi-automatic methods. To address this difficulty, we developed the

semi-automatic hierarchical watershed segmentation algorithms. A semiautomatic approach
combines high efficiency, accuracy, and repeatability of automatic methods with expertise and
quality control that can only come from human supervision.
The hierarchical watershed segmentation algorithms divide the whole medical image into
many groups of pixels according to the corresponding Hounsfield values. The number of
divided groups depends on the threshold value given by the user. In our current experience,
a single fixed threshold has not produced adequate results, so semi-automatic human-aided
adjustment is necessary. For this purpose, we have supplied a user interface with which
regions can be added, replaced, or subtracted semi-automatically via the command input
window in 3D and a mouse click in 2D. With a user-friendly interface tools, the watershed
method is an especially elegant segmentation technique that requires the expert to provide
an initialization, set control parameters, and terminate the segmentation. Moreover, it was
designed to make segmentation and parameter selection as easy as possible for users without
a mathematical background. The detailed pixel information for each group is included in the
ASCII format output file, from which we may extract any region of interest. We found that
the semiautomatic method was useful to avoid errors incurred by both human and machine
sources and, in addition, provided clear and visible information for pedagogical purposes.

Figure 7: Three-dimensional semi-automatic region extraction and registration procedures
from the head phantom CT data.

columns gantry angles, for example, in conformal 3D treatment planning. Prior to optimiza-
tion, each pixel’s (or voxel’s) dose in the target volume and neighboring organs is calculated
with respect to the gantry angle as a matrix (di,j), where i is the pixel address and j is the gantry
angle. In general, the matrix size is too big to include all elements for the optimization. We
choose a small number of pixels in the simulation, but the choice of insufficient number of
pixels can cause a dose inhomogeneity problem. Frequently, we may observe hot spots that
may have critical effects on the organs at risk. Thus, the pixel address information is essential
for the best treatment planning. Our algorithm was developed specifically for segmenting
anatomical structures and is considerably easier to master than the other packages due to its
tightly focused and simple functionality.

3.3 Application: Hepatic Tumor Analysis
The primary goals of a CT examination of the liver are the detection and the characteriza-
tion of focal hepatic lesions. The choice between surgical or palliative treatment depends on
the size, number, and location of metastases as determined by the image. The detection of
hepatic tumors with CT theoretically improves as lesion conspicuousness increases. Because
most hepatic tumors are hypo-vascular, increased conspicuousness may be accomplished by
increasing the degree of enhancement of normal surrounding liver. CT contrast agents, some-
times referred to as dyes, are used to highlight specific areas so that the organs, blood vessels,
or tissues are more visible. In this study, we show a sample patient’s CT image whose liver

Fig. 7. Three-dimensional semi-automatic region extraction and registration procedures from
the head phantom CT data.

Figure 7 shows three-dimensional semi-automatic region extraction and registration
procedures from the head phantom CT data. The figure shows three windows, the
three-dimensional transparent image output window with a selected volume, the ASCII file
output window including group information and Hounsfield value for each pixel, and the
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Figure 6: An example of local image mask in 3 × 3 region.

Many different gradient operators can be used in the boundary sharpening step. Combination
of the two operators also makes the edge sharper and thinner. For the mask shown in Fig. 6,
the standard and cross gradient operators are given, respectively:

Gx = i6 − i5, Gy = i8 − i5, (27)

Gx = i8 − i6, Gy = i9 − i5. (28)

The mean value of the two gradient magnitudes results in the value of the gradient. Thresh-
olding the gradient magnitude is performed interactively by using the graphical user interface
(moving bar).

3.2 Application: Defining Anatomical Structures
Defining anatomical structures and the extraction of the objects in CT images are essential
parts of medical imaging applications, such as diagnostic imaging, 3D treatment planning,
and image-guided surgery. The volume definition process may provide for delineating the
specific shape of an organ on a digital image as accurately as possible, especially for 3D ren-
dering, radiation therapy, and surgery planning. Specifically, in the radiation treatment plan-
ning the accuracy and reproducibility of this process affects targeting, optimization based on
dose-volume histograms or other volume-based measures, and the development of biological
models for tumor control and complication probabilities (Kum et al.; 2007).
This can be done either through manual user interactions or by applying imaging processing
techniques for the automatic detection of specific structures in the image using segmenta-
tion techniques. The automatic segmentation process might involve complicated structures,
and in this case usually only an expert can perform the task of identification manually on a
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techniques. The automatic segmentation process might involve complicated structures, and
in this case usually only an expert can perform the task of identification manually on a
slice-by-slice basis. Humans can perform this task using complex analyses of shape, intensity,
position, texture, and proximity to surrounding structures. Thus, despite the advances in
automatic segmentation methodology, many medical image research labs continue to rely on
manual delineation. This reluctance to accept automation may be due to insufficient reliability
and high specificity of fully automatic methods and the lack of inexpensive user-friendly
tools implementing semi-automatic methods. To address this difficulty, we developed the
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Figure 7 shows three-dimensional semi-automatic region extraction and registration
procedures from the head phantom CT data. The figure shows three windows, the
three-dimensional transparent image output window with a selected volume, the ASCII file
output window including group information and Hounsfield value for each pixel, and the
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command input window (Kim et al., 2007). The number of segmented groups is automatically
contingent on the given threshold value. It is more than just an implementation of a given
computational method, which contains innovative tools for manual outlining and quality
control in addition to the automatic segmentation work flow.

Figure 8: Two-dimensional segmentation of the head phantom CT data.

has a comparatively large-area tumor. The results show that the use of our segmentation
algorithms for studying various radiological problems, such as liver CT enhancement with
contrast material, is indeed feasible. However, this is not an exhaustive radiological study for
the effects of contrast materials or CT protocols (Kim et al.; 2007).

Fig. 8. Two-dimensional segmentation of the head phantom CT data.

Figure 8 shows two-dimensional segmentation of the head phantom CT data. The original
CT slice is on the upper left-hand side. The threshold value is given as a percentage of
maximum depth. As the threshold value (T) increases, the number of segmentations (S)
decreases. This property is very useful to select a focused anatomical region automatically.
A graph merging algorithm is used to adjust the number of regions. The computing time for
two-dimensional problem is only a few seconds using a desktop PC. During radiation therapy,
irradiating beams pass through a patient, killing both carcinoma and normal tissues. Thus,
the radiation treatment must be carefully planned to deliver a clinically prescribed dose to the
target volumes containing carcinoma cells, while nearby organs at risk and normal cells are
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spared. To optimize the beams, we need to extract pixel numbers for each group of organs.
The ASCII format output file (including group numbers and pixel addresses) is very useful to
find the exact pixel numbers for the focused region.
Defining anatomical structures is an especially useful procedure for the treatment planning.
The state of the art of modern treatment planning requires very tight margin and dose
escalation. To meet these requirements, we obtain exact pixel addresses of the interesting
anatomical regions for the calculation of an optimization matrix, whose rows represent pixel
numbers and columns gantry angles, for example, in conformal 3D treatment planning. Prior
to optimization, each pixel’s (or voxel’s) dose in the target volume and neighboring organs
is calculated with respect to the gantry angle as a matrix (di,j), where i is the pixel address
and j is the gantry angle. In general, the matrix size is too big to include all elements for
the optimization. We choose a small number of pixels in the simulation, but the choice of
insufficient number of pixels can cause a dose inhomogeneity problem. Frequently, we may
observe hot spots that may have critical effects on the organs at risk. Thus, the pixel address
information is essential for the best treatment planning. Our algorithm was developed
specifically for segmenting anatomical structures and is considerably easier to master than
the other packages due to its tightly focused and simple functionality.

3.3 Application: Hepatic tumor analysis
The primary goals of a CT examination of the liver are the detection and the characterization
of focal hepatic lesions. The choice between surgical or palliative treatment depends on
the size, number, and location of metastases as determined by the image. The detection of
hepatic tumors with CT theoretically improves as lesion conspicuousness increases. Because
most hepatic tumors are hypo-vascular, increased conspicuousness may be accomplished
by increasing the degree of enhancement of normal surrounding liver. CT contrast agents,
sometimes referred to as “dyes,” are used to highlight specific areas so that the organs, blood
vessels, or tissues are more visible. In this study, we show a sample patient’s CT image whose
liver has a comparatively large-area tumor. The results show that the use of our segmentation
algorithms for studying various radiological problems, such as liver CT enhancement with
contrast material, is indeed feasible. However, this is not an exhaustive radiological study for
the effects of contrast materials or CT protocols (Kim et al., 2007).
Two different methods based on watershed segmentation are applied to the analysis of the
hepatic tumor (see Fig. 9). The segmented images and corresponding frequency distributions
of the Hounsfield values are shown in the left-hand and the right-hand columns, respectively.
In each column, the four images from top to bottom represent the progressive levels of contrast
materials, pre-contrast (PRE), arterial phase (ART), portal venous phase (POR), and delayed
phase (DEL), respectively. Once the contrast is injected into the bloodstream, it circulates
throughout the body. Advanced CT scanners with rapid acquisition times and short delay
between acquisition of groups of scans permit scanning of the liver in an exclusively and
separately a pre-contrast phase, an arterial phase (∼ 30 sec), and a separate portal venous
phase (∼ 70 sec) consecutively. A couple of minutes after the portal venous phase, a
delayed phase (∼ 3 min in general) can be obtained. Watershed segmentation produces
hierarchical region segmentations contingent on the threshold value. For the first automatic
segmentation step, we adjusted the threshold values to get better segmentations, though
the results were not complete. The pictures shown here were automatically segmented
with the best adjusted threshold value in each phase. After this procedure, we adjusted
the segmented regions semi-automatically via the command input window or mouse click.
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observe hot spots that may have critical effects on the organs at risk. Thus, the pixel address
information is essential for the best treatment planning. Our algorithm was developed
specifically for segmenting anatomical structures and is considerably easier to master than
the other packages due to its tightly focused and simple functionality.

3.3 Application: Hepatic tumor analysis
The primary goals of a CT examination of the liver are the detection and the characterization
of focal hepatic lesions. The choice between surgical or palliative treatment depends on
the size, number, and location of metastases as determined by the image. The detection of
hepatic tumors with CT theoretically improves as lesion conspicuousness increases. Because
most hepatic tumors are hypo-vascular, increased conspicuousness may be accomplished
by increasing the degree of enhancement of normal surrounding liver. CT contrast agents,
sometimes referred to as “dyes,” are used to highlight specific areas so that the organs, blood
vessels, or tissues are more visible. In this study, we show a sample patient’s CT image whose
liver has a comparatively large-area tumor. The results show that the use of our segmentation
algorithms for studying various radiological problems, such as liver CT enhancement with
contrast material, is indeed feasible. However, this is not an exhaustive radiological study for
the effects of contrast materials or CT protocols (Kim et al., 2007).
Two different methods based on watershed segmentation are applied to the analysis of the
hepatic tumor (see Fig. 9). The segmented images and corresponding frequency distributions
of the Hounsfield values are shown in the left-hand and the right-hand columns, respectively.
In each column, the four images from top to bottom represent the progressive levels of contrast
materials, pre-contrast (PRE), arterial phase (ART), portal venous phase (POR), and delayed
phase (DEL), respectively. Once the contrast is injected into the bloodstream, it circulates
throughout the body. Advanced CT scanners with rapid acquisition times and short delay
between acquisition of groups of scans permit scanning of the liver in an exclusively and
separately a pre-contrast phase, an arterial phase (∼ 30 sec), and a separate portal venous
phase (∼ 70 sec) consecutively. A couple of minutes after the portal venous phase, a
delayed phase (∼ 3 min in general) can be obtained. Watershed segmentation produces
hierarchical region segmentations contingent on the threshold value. For the first automatic
segmentation step, we adjusted the threshold values to get better segmentations, though
the results were not complete. The pictures shown here were automatically segmented
with the best adjusted threshold value in each phase. After this procedure, we adjusted
the segmented regions semi-automatically via the command input window or mouse click.
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Figure 9: Segmented images and corresponding frequency distributions of the Hounsfield val-
ues in the left-hand and the right-hand columns, respectively. In each column, the four images
from top to bottom represent the progressive levels of contrast materials, pre-contrast (PRE),
arterial phase (ART), portal venous phase (POR), and delayed phase (DEL), respectively.

Two different methods based on watershed segmentation are applied to the analysis of the
hepatic tumor (see Fig. 9). The segmented images and corresponding frequency distributions
of the Hounsfield values are shown in the left-hand and the right-hand columns, respectively.
In each column, the four images from top to bottom represent the progressive levels of contrast
materials, pre-contrast (PRE), arterial phase (ART), portal venous phase (POR), and delayed
phase (DEL), respectively. Once the contrast is injected into the bloodstream, it circulates
throughout the body. Advanced CT scanners with rapid acquisition times and short delay
between acquisition of groups of scans permit scanning of the liver in an exclusively and
separately a pre-contrast phase, an arterial phase (∼ 30 sec), and a separate portal venous
phase (∼ 70 sec) consecutively. A couple of minutes after the portal venous phase, a delayed
phase (∼ 3 min in general) can be obtained. Watershed segmentation produces hierarchical
region segmentations contingent on the threshold value. For the first automatic segmentation

Fig. 9. Segmented images and corresponding frequency distributions of the Hounsfield
values in the left-hand and the right-hand columns, respectively. In each column, the four
images from top to bottom represent the progressive levels of contrast materials, pre-contrast
(PRE), arterial phase (ART), portal venous phase (POR), and delayed phase (DEL),
respectively.

For the appropriate region of interest chosen semi-automatically, we analyze radiological
properties using regional average and median Hounsfield values, which represent X-ray
transport properties.
The pre-enhanced segmented image on the top left-hand side shows many clustered regions,
which are different basins in the Hounsfield values. Although there are many different basins,
their average Hounsfield values are not significantly different as shown in the corresponding
right-hand side histogram. Separation between tumor and normal liver is negligible, so that
it is not easy to identify the hepatic tumor area from this picture. For better identification of
the lesion area, it is necessary to develop augmented tools or analysis techniques. They are
included in one of our on-going research activities. The segmented image of the artery phase
on the left-hand side shows the focal hepatic region, although it is still not quite satisfactory.
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For the appropriate region of interest chosen semi-automatically, we analyze radiological
properties using regional average and median Hounsfield values, which represent X-ray
transport properties.
The pre-enhanced segmented image on the top left-hand side shows many clustered regions,
which are different basins in the Hounsfield values. Although there are many different basins,
their average Hounsfield values are not significantly different as shown in the corresponding
right-hand side histogram. Separation between tumor and normal liver is negligible, so that
it is not easy to identify the hepatic tumor area from this picture. For better identification of
the lesion area, it is necessary to develop augmented tools or analysis techniques. They are
included in one of our on-going research activities. The segmented image of the artery phase
on the left-hand side shows the focal hepatic region, although it is still not quite satisfactory.

Hepatic metastases are supplied almost exclusively by hepatic arteries, but most of these
lesions are hypo-vascular and are not well visualized on images obtained during the hepatic
arterial phase. On the other hand, a strongly enhanced liver lesion is readily perceived before
the minimally enhanced surrounding normal liver parenchyma during the arterial phase. This
result is shown clearly in the right-hand side corresponding histogram. Frequencies in tumor
area are increased, compared to those of normal area. The CT’s X-ray beam is weakened
as it passes through the blood vessels and organs that have “taken up” the contrast. These
structures are enhanced by this process and show up as white areas on the CT images. The
segmented image in the third row from the top shows clearly the focal tumor region in a
portal venous phase. The frequency distribution shown in the right-hand side also shows the
two different groups of Hounsfield values. During the portal venous phase, the liver lesion is
normally seen as a filling defect in the strongly enhanced normal liver parenchyma because
approximately 70% − 75% of the hepatic parenchymal blood flow arrives from the portal vein
and the remaining 25% −30% arrives from the hepatic artery (Greenway, 1971). The liver
lesion, however, can be more conspicuous in either phase, depending on the vascularity of
the tumor. The metastases are most conspicuous when imaging is performed with techniques
that optimize portal venous enhancement, during which phase they appear as regions of low
attenuation against a background of the brightly enhanced liver parenchyma. Therefore, the
biggest difference in attenuation value between a liver lesion and the normal liver tissue will
be visible shortly after maximum portal venous enhancement, with the lesions appearing
as hypo-attenuating within a highly enhanced liver parenchyma. The length of this phase
is, however, limited in time and depends on multiple parameters, among which are the
volume and the rate of injection of the contrast material. Thus, the results shown in two
phases (ART and POR) suggest that this patient has a hepatic metastases. The delayed phase
segmented image in the bottom of the left-hand column shows clearly the focal regions. The
frequency distribution in the right-hand side shows more clearly the ‘V’-shape focal regions.
It looks similar to the portal venous phase, which is explained by the staying time of the
contrast material in the liver area. The results suggest that segmented images cannot exceed
or overpower the effects of the contrast material for the liver CT scan to find the tumor area,
and the histogram estimations can be used as a good measure to find tumor areas as shown in
Fig. 9. However, the segmentation algorithm is useful for studying quantitative variations of
the Hounsfield values in the tumor. In the histogram calculations, we used unsigned integers
by adding 1000 to Eq. 4 for computational purposes so that the Hounsfield value of water is
not 0 but 1000.
Segmentation is absolutely necessary to cluster Hounsfield values for each region of interest.
Specifically, the semi-automatic algorithm was helpful in reducing errors incurred by both
human and machine sources. The whole liver image included approximately 35000 pixels
in total. Two separated peaks explain the existence of the different groups of Hounsfield
values. This phenomenon explains explicitly the existence of the hepatic tumor. Frequency
analysis using the segmentation algorithm shows more clearly the existence of the tumor
(quantitatively) than the segmented image (qualitatively). The evidence is very clear in this
sample because its tumor size is almost half of the whole liver area. It may, however, not be
easy to detect a tumor from frequency analysis if the tumor size is comparatively small, but a
watershed segmentation algorithm is still very helpful even for a small tumor.
Figure 10 shows the changes in the average Hounsfield values with one standard deviation as
a function of the phase (PRE, ART, POR, and DEL) for both the lesion area and the normal area.
In the lesion area, the mean enhancement values differed by 12, 15, 11 at the ART, the POR, and
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Figure 9: Segmented images and corresponding frequency distributions of the Hounsfield val-
ues in the left-hand and the right-hand columns, respectively. In each column, the four images
from top to bottom represent the progressive levels of contrast materials, pre-contrast (PRE),
arterial phase (ART), portal venous phase (POR), and delayed phase (DEL), respectively.

Two different methods based on watershed segmentation are applied to the analysis of the
hepatic tumor (see Fig. 9). The segmented images and corresponding frequency distributions
of the Hounsfield values are shown in the left-hand and the right-hand columns, respectively.
In each column, the four images from top to bottom represent the progressive levels of contrast
materials, pre-contrast (PRE), arterial phase (ART), portal venous phase (POR), and delayed
phase (DEL), respectively. Once the contrast is injected into the bloodstream, it circulates
throughout the body. Advanced CT scanners with rapid acquisition times and short delay
between acquisition of groups of scans permit scanning of the liver in an exclusively and
separately a pre-contrast phase, an arterial phase (∼ 30 sec), and a separate portal venous
phase (∼ 70 sec) consecutively. A couple of minutes after the portal venous phase, a delayed
phase (∼ 3 min in general) can be obtained. Watershed segmentation produces hierarchical
region segmentations contingent on the threshold value. For the first automatic segmentation
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(PRE), arterial phase (ART), portal venous phase (POR), and delayed phase (DEL),
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For the appropriate region of interest chosen semi-automatically, we analyze radiological
properties using regional average and median Hounsfield values, which represent X-ray
transport properties.
The pre-enhanced segmented image on the top left-hand side shows many clustered regions,
which are different basins in the Hounsfield values. Although there are many different basins,
their average Hounsfield values are not significantly different as shown in the corresponding
right-hand side histogram. Separation between tumor and normal liver is negligible, so that
it is not easy to identify the hepatic tumor area from this picture. For better identification of
the lesion area, it is necessary to develop augmented tools or analysis techniques. They are
included in one of our on-going research activities. The segmented image of the artery phase
on the left-hand side shows the focal hepatic region, although it is still not quite satisfactory.
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by adding 1000 to Eq. 4 for computational purposes so that the Hounsfield value of water is
not 0 but 1000.
Segmentation is absolutely necessary to cluster Hounsfield values for each region of interest.
Specifically, the semi-automatic algorithm was helpful in reducing errors incurred by both
human and machine sources. The whole liver image included approximately 35000 pixels
in total. Two separated peaks explain the existence of the different groups of Hounsfield
values. This phenomenon explains explicitly the existence of the hepatic tumor. Frequency
analysis using the segmentation algorithm shows more clearly the existence of the tumor
(quantitatively) than the segmented image (qualitatively). The evidence is very clear in this
sample because its tumor size is almost half of the whole liver area. It may, however, not be
easy to detect a tumor from frequency analysis if the tumor size is comparatively small, but a
watershed segmentation algorithm is still very helpful even for a small tumor.
Figure 10 shows the changes in the average Hounsfield values with one standard deviation as
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total. Two separated peaks explain the existence of the different groups of Hounsfield values.
This phenomenon explains explicitly the existence of the hepatic tumor. Frequency analysis
using the segmentation algorithm shows more clearly the existence of the tumor (quantita-
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Figure 10 shows the changes in the average Hounsfield values with one standard deviation as
a function of the phase (PRE, ART, POR, and DEL) for both the lesion area and the normal area.
In the lesion area, the mean enhancement values differed by 12, 15, 11 at the ART, the POR, and
the DEL phases, respectively. On the other hand, in the normal liver region, the differences
were 10, 50, 44 at the ART, the POR, and the DEL phases, respectively. Thus, in both areas, the
maximum difference occurred at the POR phase. The results suggest that the liver is mostly
surrounded by portal veins, and discrimination between the normal parenchyma and liver
lesions is considered to be most effective in the early portal venous phase. These results also
suggest that the tumor may be hepatic metastases.
Statistical analysis between different phases were performed by using t and one-way ANOVA
tests for means and variances. We used the SPSS software program for the statistical analysis.
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the DEL phases, respectively. On the other hand, in the normal liver region, the differences
were 10, 50, 44 at the ART, the POR, and the DEL phases, respectively. Thus, in both areas, the
maximum difference occurred at the POR phase. The results suggest that the liver is mostly
surrounded by portal veins, and discrimination between the normal parenchyma and liver
lesions is considered to be most effective in the early portal venous phase. These results also
suggest that the tumor may be hepatic metastases.
Statistical analysis between different phases were performed by using t and one-way ANOVA
tests for means and variances. We used the SPSS software program for the statistical analysis.
The means were considered significantly different if P was less than 0.01. For each test
parameter, the confidence interval was obtained by using the standard normal distributions.
The statistical analysis showed that for the normal liver region, the mean Hounsfield value
was 1072.4, and its standard deviation and standard error were 20.6 and 0.2, respectively.
Thus, in the 95 % confidence interval, the minimum value is 1072.1, and the maximum is
1072.7. For the lesion area, the mean Hounsfield value was 1057.3 and its standard deviation
and standard error were 26.1 and 0.2, respectively. This results in a minimum of 1057 and a
maximum of 1058 in the 95 % confidence interval. Thus, both areas are included in the same
group by Schneider et al.’s classification table (see the Table 1 in the reference) (Scheneider
et al., 2000). Their densities, however, are slightly different because the density is linearly
proportional to the CT number (see Fig. 7 in the same reference).

4. Analysis of radiological properties

Both the exact anatomical structures of the patient’s body and quantitative information about
radiological properties of the different tissues can be extracted from the CT scans as described
by Eq. 2. Although the Monte Carlo simulations are the most accurate methods for radiation
treatment planning, without accurate input data, they can only produce incorrect results.
For the customized cancer treatment planning, each patient’s physico-chemical data of the
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adding 1000 to Eq. 4 for computational purposes so that the Hounsfield value of water is not
0 but 1000.
Segmentation is absolutely necessary to cluster Hounsfield values for each region of interest.
Specifically, the semi-automatic algorithm was helpful in reducing errors incurred by both
human and machine sources. The whole liver image included approximately 35000 pixels in
total. Two separated peaks explain the existence of the different groups of Hounsfield values.
This phenomenon explains explicitly the existence of the hepatic tumor. Frequency analysis
using the segmentation algorithm shows more clearly the existence of the tumor (quantita-
tively) than the segmented image (qualitatively). The evidence is very clear in this sample
because its tumor size is almost half of the whole liver area. It may, however, not be easy to
detect a tumor from frequency analysis if the tumor size is comparatively small, but a water-
shed segmentation algorithm is still very helpful even for a small tumor.

Figure 10: Changes in the average Hounsfield values with one standard deviation as a func-
tion of the phase (PRE, ART, POR, and DEL) for both the lesion area and the normal area.

Figure 10 shows the changes in the average Hounsfield values with one standard deviation as
a function of the phase (PRE, ART, POR, and DEL) for both the lesion area and the normal area.
In the lesion area, the mean enhancement values differed by 12, 15, 11 at the ART, the POR, and
the DEL phases, respectively. On the other hand, in the normal liver region, the differences
were 10, 50, 44 at the ART, the POR, and the DEL phases, respectively. Thus, in both areas, the
maximum difference occurred at the POR phase. The results suggest that the liver is mostly
surrounded by portal veins, and discrimination between the normal parenchyma and liver
lesions is considered to be most effective in the early portal venous phase. These results also
suggest that the tumor may be hepatic metastases.
Statistical analysis between different phases were performed by using t and one-way ANOVA
tests for means and variances. We used the SPSS software program for the statistical analysis.
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The means were considered significantly different if P was less than 0.01. For each test
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and standard error were 26.1 and 0.2, respectively. This results in a minimum of 1057 and a
maximum of 1058 in the 95 % confidence interval. Thus, both areas are included in the same
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proportional to the CT number (see Fig. 7 in the same reference).

4. Analysis of radiological properties

Both the exact anatomical structures of the patient’s body and quantitative information about
radiological properties of the different tissues can be extracted from the CT scans as described
by Eq. 2. Although the Monte Carlo simulations are the most accurate methods for radiation
treatment planning, without accurate input data, they can only produce incorrect results.
For the customized cancer treatment planning, each patient’s physico-chemical data of the

body, such as mass density and the elemental mass fractions of the patient’s tissues, is
required. The Monte Carlo method for high-energy photon and charged particle transport
is the most accurate for dose calculations, specifically for tissue inhomogeneities. Thus, the
radiological properties relative to the beam quality used in radiotherapy planning must be
obtained by conversion of the CT numbers because most CT scans are taken at X-ray energies
of approximately 120 keV (fixed value).
The general approach in this direction was to divide the scale of CT numbers into different
groups to correlate the CT numbers with the elemental mass fractions of the tissues, but there
was no rule about how to determine the threshold values correctly. Thus, the results might,
in general, depend on the therapeutic beam quality. In this direction, we used Schneider et
al.’s results (Scheneider et al., 2000) to evaluate the physico-chemical properties for the normal
liver and lesion areas in the first trial because they extracted the information about the tissue
parameters from the CT number irrespective of the therapeutic beam quality.
However, by using the segmentation tools, we can extract different organ areas and estimate
the average Hounsfields values and standard deviation from the pixels consisting of the area.
Although the distribution of the CT numbers may be different for the same material (except
water) due to both beam hardening effects and small machine dependent band widths, we can
adjust the differences with the graphical user interface as shown in Fig. 7. For a better study,
many experiments are required with the CT scanner being used for generating this CT data
set. It remains as one of our on-going projects to study exhaustively the radiological properties
of the patient’s CT data sets. CT imaging simulations are the most efficient methods for the
exhaustive study. In addition, statistical analysis for differentiating the tissues is performed
as shown in hepatic tumor analysis.
Ray-tracing algorithm (used in virtual CT imaging) with Monte Carlo method may be used
in the next step to optimize the treatment planning. Although the Monte Carlo method is the
most accurate for dose calculations, specifically, for tissue inhomogeneities, it costly in terms
of computation time in general. Therefore, deterministic calculations based on ray-tracing
techniques are used as a powerful alternative to the Monte Carlo approach to optimize
the treatment planning, especially with the results based on the Monte Carlo calculations,
whenever computation time is a critical issue. The most popular method for the optimization
is a simplex method, which is closely relevant to the optimization of the segmentation
problems. Thus, a few novel computational approaches such as ray-tracing, segmentation,
Monte Carlo, and optimization cover the simulations of almost all subjects ranging from CT
imaging to treatment planning and quality assurance in radiotherapy. Moreover, they turned
out to be all closely relevant and affect to each other in the simulations of CT imaging and its
applications.

5. Conclusions

As a part of the larger numerical simulation project, “from CT imaging to customized cancer
radiation treatment planning," which includes virtual X-ray imaging, image reconstruction,
medical image segmentation and structure definition, radiological property analysis of the
CT data, irradiating beam optimization, and scientific data visualization, we have been
developing a few novel numerical approaches such as ray tracing algorithm for virtual cone
beam imaging, cone beam image reconstruction algorithm, in-house general purpose Monte
Carlo code (PMCEPT), semi-automatic watershed segmentation schemes to analyze CT data
based on radiological and/or physical principles. In this feasibility study, we found that the
Monte Carlo method was a powerful simulation approach which covered from CT imaging to

201
Novel Computational Approaches for 
Understanding Computed Tomography (CT) Images and Their Applications



adding 1000 to Eq. 4 for computational purposes so that the Hounsfield value of water is not
0 but 1000.
Segmentation is absolutely necessary to cluster Hounsfield values for each region of interest.
Specifically, the semi-automatic algorithm was helpful in reducing errors incurred by both
human and machine sources. The whole liver image included approximately 35000 pixels in
total. Two separated peaks explain the existence of the different groups of Hounsfield values.
This phenomenon explains explicitly the existence of the hepatic tumor. Frequency analysis
using the segmentation algorithm shows more clearly the existence of the tumor (quantita-
tively) than the segmented image (qualitatively). The evidence is very clear in this sample
because its tumor size is almost half of the whole liver area. It may, however, not be easy to
detect a tumor from frequency analysis if the tumor size is comparatively small, but a water-
shed segmentation algorithm is still very helpful even for a small tumor.

Figure 10: Changes in the average Hounsfield values with one standard deviation as a func-
tion of the phase (PRE, ART, POR, and DEL) for both the lesion area and the normal area.

Figure 10 shows the changes in the average Hounsfield values with one standard deviation as
a function of the phase (PRE, ART, POR, and DEL) for both the lesion area and the normal area.
In the lesion area, the mean enhancement values differed by 12, 15, 11 at the ART, the POR, and
the DEL phases, respectively. On the other hand, in the normal liver region, the differences
were 10, 50, 44 at the ART, the POR, and the DEL phases, respectively. Thus, in both areas, the
maximum difference occurred at the POR phase. The results suggest that the liver is mostly
surrounded by portal veins, and discrimination between the normal parenchyma and liver
lesions is considered to be most effective in the early portal venous phase. These results also
suggest that the tumor may be hepatic metastases.
Statistical analysis between different phases were performed by using t and one-way ANOVA
tests for means and variances. We used the SPSS software program for the statistical analysis.

Fig. 10. Changes in the average Hounsfield values with one standard deviation as a function
of the phase (PRE, ART, POR, and DEL) for both the lesion area and the normal area.

the DEL phases, respectively. On the other hand, in the normal liver region, the differences
were 10, 50, 44 at the ART, the POR, and the DEL phases, respectively. Thus, in both areas, the
maximum difference occurred at the POR phase. The results suggest that the liver is mostly
surrounded by portal veins, and discrimination between the normal parenchyma and liver
lesions is considered to be most effective in the early portal venous phase. These results also
suggest that the tumor may be hepatic metastases.
Statistical analysis between different phases were performed by using t and one-way ANOVA
tests for means and variances. We used the SPSS software program for the statistical analysis.
The means were considered significantly different if P was less than 0.01. For each test
parameter, the confidence interval was obtained by using the standard normal distributions.
The statistical analysis showed that for the normal liver region, the mean Hounsfield value
was 1072.4, and its standard deviation and standard error were 20.6 and 0.2, respectively.
Thus, in the 95 % confidence interval, the minimum value is 1072.1, and the maximum is
1072.7. For the lesion area, the mean Hounsfield value was 1057.3 and its standard deviation
and standard error were 26.1 and 0.2, respectively. This results in a minimum of 1057 and a
maximum of 1058 in the 95 % confidence interval. Thus, both areas are included in the same
group by Schneider et al.’s classification table (see the Table 1 in the reference) (Scheneider
et al., 2000). Their densities, however, are slightly different because the density is linearly
proportional to the CT number (see Fig. 7 in the same reference).

4. Analysis of radiological properties

Both the exact anatomical structures of the patient’s body and quantitative information about
radiological properties of the different tissues can be extracted from the CT scans as described
by Eq. 2. Although the Monte Carlo simulations are the most accurate methods for radiation
treatment planning, without accurate input data, they can only produce incorrect results.
For the customized cancer treatment planning, each patient’s physico-chemical data of the

200 Theory and Applications of CT Imaging and Analysis

adding 1000 to Eq. 4 for computational purposes so that the Hounsfield value of water is not
0 but 1000.
Segmentation is absolutely necessary to cluster Hounsfield values for each region of interest.
Specifically, the semi-automatic algorithm was helpful in reducing errors incurred by both
human and machine sources. The whole liver image included approximately 35000 pixels in
total. Two separated peaks explain the existence of the different groups of Hounsfield values.
This phenomenon explains explicitly the existence of the hepatic tumor. Frequency analysis
using the segmentation algorithm shows more clearly the existence of the tumor (quantita-
tively) than the segmented image (qualitatively). The evidence is very clear in this sample
because its tumor size is almost half of the whole liver area. It may, however, not be easy to
detect a tumor from frequency analysis if the tumor size is comparatively small, but a water-
shed segmentation algorithm is still very helpful even for a small tumor.

Figure 10: Changes in the average Hounsfield values with one standard deviation as a func-
tion of the phase (PRE, ART, POR, and DEL) for both the lesion area and the normal area.

Figure 10 shows the changes in the average Hounsfield values with one standard deviation as
a function of the phase (PRE, ART, POR, and DEL) for both the lesion area and the normal area.
In the lesion area, the mean enhancement values differed by 12, 15, 11 at the ART, the POR, and
the DEL phases, respectively. On the other hand, in the normal liver region, the differences
were 10, 50, 44 at the ART, the POR, and the DEL phases, respectively. Thus, in both areas, the
maximum difference occurred at the POR phase. The results suggest that the liver is mostly
surrounded by portal veins, and discrimination between the normal parenchyma and liver
lesions is considered to be most effective in the early portal venous phase. These results also
suggest that the tumor may be hepatic metastases.
Statistical analysis between different phases were performed by using t and one-way ANOVA
tests for means and variances. We used the SPSS software program for the statistical analysis.

Fig. 10. Changes in the average Hounsfield values with one standard deviation as a function
of the phase (PRE, ART, POR, and DEL) for both the lesion area and the normal area.

the DEL phases, respectively. On the other hand, in the normal liver region, the differences
were 10, 50, 44 at the ART, the POR, and the DEL phases, respectively. Thus, in both areas, the
maximum difference occurred at the POR phase. The results suggest that the liver is mostly
surrounded by portal veins, and discrimination between the normal parenchyma and liver
lesions is considered to be most effective in the early portal venous phase. These results also
suggest that the tumor may be hepatic metastases.
Statistical analysis between different phases were performed by using t and one-way ANOVA
tests for means and variances. We used the SPSS software program for the statistical analysis.
The means were considered significantly different if P was less than 0.01. For each test
parameter, the confidence interval was obtained by using the standard normal distributions.
The statistical analysis showed that for the normal liver region, the mean Hounsfield value
was 1072.4, and its standard deviation and standard error were 20.6 and 0.2, respectively.
Thus, in the 95 % confidence interval, the minimum value is 1072.1, and the maximum is
1072.7. For the lesion area, the mean Hounsfield value was 1057.3 and its standard deviation
and standard error were 26.1 and 0.2, respectively. This results in a minimum of 1057 and a
maximum of 1058 in the 95 % confidence interval. Thus, both areas are included in the same
group by Schneider et al.’s classification table (see the Table 1 in the reference) (Scheneider
et al., 2000). Their densities, however, are slightly different because the density is linearly
proportional to the CT number (see Fig. 7 in the same reference).

4. Analysis of radiological properties

Both the exact anatomical structures of the patient’s body and quantitative information about
radiological properties of the different tissues can be extracted from the CT scans as described
by Eq. 2. Although the Monte Carlo simulations are the most accurate methods for radiation
treatment planning, without accurate input data, they can only produce incorrect results.
For the customized cancer treatment planning, each patient’s physico-chemical data of the

body, such as mass density and the elemental mass fractions of the patient’s tissues, is
required. The Monte Carlo method for high-energy photon and charged particle transport
is the most accurate for dose calculations, specifically for tissue inhomogeneities. Thus, the
radiological properties relative to the beam quality used in radiotherapy planning must be
obtained by conversion of the CT numbers because most CT scans are taken at X-ray energies
of approximately 120 keV (fixed value).
The general approach in this direction was to divide the scale of CT numbers into different
groups to correlate the CT numbers with the elemental mass fractions of the tissues, but there
was no rule about how to determine the threshold values correctly. Thus, the results might,
in general, depend on the therapeutic beam quality. In this direction, we used Schneider et
al.’s results (Scheneider et al., 2000) to evaluate the physico-chemical properties for the normal
liver and lesion areas in the first trial because they extracted the information about the tissue
parameters from the CT number irrespective of the therapeutic beam quality.
However, by using the segmentation tools, we can extract different organ areas and estimate
the average Hounsfields values and standard deviation from the pixels consisting of the area.
Although the distribution of the CT numbers may be different for the same material (except
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of computation time in general. Therefore, deterministic calculations based on ray-tracing
techniques are used as a powerful alternative to the Monte Carlo approach to optimize
the treatment planning, especially with the results based on the Monte Carlo calculations,
whenever computation time is a critical issue. The most popular method for the optimization
is a simplex method, which is closely relevant to the optimization of the segmentation
problems. Thus, a few novel computational approaches such as ray-tracing, segmentation,
Monte Carlo, and optimization cover the simulations of almost all subjects ranging from CT
imaging to treatment planning and quality assurance in radiotherapy. Moreover, they turned
out to be all closely relevant and affect to each other in the simulations of CT imaging and its
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based on radiological and/or physical principles. In this feasibility study, we found that the
Monte Carlo method was a powerful simulation approach which covered from CT imaging to
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customized cancer radiation treatment planning whenever computation time is not a critical
issue. However, we also found that a simpler augmented deterministic algorithm such as
ray tracing was a useful alternative to the Monte Carlo approach to simulate X-ray imaging
systems. The same ray tracing algorithm is also used for the fast radiotherapy treatment
optimization. Moreover, a simplex optimization algorithm can be applied to optimize the
image segmentation. Thus, we found that a few closely relevant numerical algorithms could
be used for almost all simulations ranging from CT imaging to treatment optimization.
In this chapter, we presented some results such as the virtual X-ray imaging and
reconstruction algorithms for cone beam CT, semi-automatic medical image segmentation
algorithm and its applications to define anatomical structures of a head phantom CT and
to analyze hepatic lesion areas with contrast material, and to calculate radiological and
chemico-physical properties of the patient’s liver CT data. The algorithms show outstanding
performance and several characteristic features, which make it possible to apply the proposed
algorithms to build a larger numerical simulation project, from CT imaging to treatment
optimization. In combination with our in-house Monte Carlo code (PMCEPT code), these
augmented algorithms were very useful to study CT image and its various applications.
According to our experiences on this study, the algorithms are not separated but closely
relevant to each other, so that the experience of an algorithm accelerates the study of other
algorithms. Eventually, they can be combined into one system for studying almost all areas of
CT imaging, which is one of our on-going research activities.
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1. Introduction 
Visualization of the fine structures of the ear is not easy because they may not be well 
contrasted and their shapes in ear may be variable in CT; for instance the incudostapedial joint 
often cannot be visualized separately and the stapes foot plate is barely visible in CT. Black-
and-white images may not reflect actual anatomy in CT because the human eye is capable of 
detecting only 30 different shades of gray and intensity variations of less than 200 Hounsfield 
units (HU) are invisible to the naked eye(Tringali et al., 2007). However, the human eye can 
discriminate between hundreds of colors and human beings have a superior memory for 
colors, which means that color has wider dynamic range than gray scale(Addrews et al., 1972). 
There were some reports to support the effectiveness of the pseudocolor for the 
interpretation and detection of small periodontal defects (Brägger U et al., 1989; Reddy et 
aL., 1991).   An endoscopic pseudocolor imaging system has been used for color processing 
of ulcer images observed using an electronic endoscope (Tamada et al., 1996) and images of 
paranasal sinuses for endoscopic sinus surgery (Christmas et al., 1999). Besides there was an 
experiment showing that contrasting-color scales was the most efficient to detect small 
changes in radionuclide images (Crowe et al., 1988). 
Recently color transformation of radiologic images has come into wide use because of the 
popularization of picture archiving and communication systems (PACS) for digital 
radiology. This has made it easier to manipulate image enhancement systems such as 
pseudocolor transformation. Converting a gray scale intensity level to a specific pseudocolor 
would be helpful for detecting small and difficult-to-find lesions in temporal bone CT(Park 
et al., 2009). 
Pseudocolor could be used with various combinations. The rainbow scale is a standard and 
popular process that has been applied to density data to improve visual clarity, which is the 
result of traversing the color solid along a path through all the hues of the rainbow. Even the 
single pseudocolor could be applied for easy concentration on a specific area, for example 
otosclerotic foci in CT if needed.  
Otosclerosis is a primary focal disease of the otic capsule. This disease involves principally 
the stapes footplate and the bone around the base of the stapes, which reduces normal 
sound transmission resulting in a conductive hearing loss. In temporal bone CT, the 
appearance of otosclerotic foci differs depending on the stage of the disease. In the active 
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contrasted and their shapes in ear may be variable in CT; for instance the incudostapedial joint 
often cannot be visualized separately and the stapes foot plate is barely visible in CT. Black-
and-white images may not reflect actual anatomy in CT because the human eye is capable of 
detecting only 30 different shades of gray and intensity variations of less than 200 Hounsfield 
units (HU) are invisible to the naked eye(Tringali et al., 2007). However, the human eye can 
discriminate between hundreds of colors and human beings have a superior memory for 
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There were some reports to support the effectiveness of the pseudocolor for the 
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aL., 1991).   An endoscopic pseudocolor imaging system has been used for color processing 
of ulcer images observed using an electronic endoscope (Tamada et al., 1996) and images of 
paranasal sinuses for endoscopic sinus surgery (Christmas et al., 1999). Besides there was an 
experiment showing that contrasting-color scales was the most efficient to detect small 
changes in radionuclide images (Crowe et al., 1988). 
Recently color transformation of radiologic images has come into wide use because of the 
popularization of picture archiving and communication systems (PACS) for digital 
radiology. This has made it easier to manipulate image enhancement systems such as 
pseudocolor transformation. Converting a gray scale intensity level to a specific pseudocolor 
would be helpful for detecting small and difficult-to-find lesions in temporal bone CT(Park 
et al., 2009). 
Pseudocolor could be used with various combinations. The rainbow scale is a standard and 
popular process that has been applied to density data to improve visual clarity, which is the 
result of traversing the color solid along a path through all the hues of the rainbow. Even the 
single pseudocolor could be applied for easy concentration on a specific area, for example 
otosclerotic foci in CT if needed.  
Otosclerosis is a primary focal disease of the otic capsule. This disease involves principally 
the stapes footplate and the bone around the base of the stapes, which reduces normal 
sound transmission resulting in a conductive hearing loss. In temporal bone CT, the 
appearance of otosclerotic foci differs depending on the stage of the disease. In the active 
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stage, they appear to be radiolucent areas due to active bone resorption and remodeling of 
the otic capsule. But, in the inactive stage, they look like the normal adjacent bone of the 
cochlear capsule. In the active stage of otosclerosis, otosclerotic foci tend to occur in the area 
just in front of the oval window (fissula ante fenestram, FAF), round window, and 
pericochlear area. If the size of the lesions or the difference of radio-opacity is too small to 
detect, it will be not easy for otolaryngologists without much experience to find out them in 
CT images and to explain them to patients.  
It has been known that the normal otic capsule has about 1800 to 2000 HU; however the 
optic capsule with otospongiotic change has about 1000 to 1400 HU (Huizing et al., 1987). 
So, the difference which numerical value of normal otic capsule and otospongiotic change 
occurred ranges from 400 to 1000 HU, which is correspondent to only several shades when 
the values is converted to gray color scale. But, if we convert the difference of HU to various 
colors or specific color then there will be lots of color shades. The pseudocolor 
transformation of the original image can widen capability of dynamic range. So, we 
supposed that converting gray scale intensity level to specific pseudocolor would be helpful 
to detect small lesions as well as fine structures of the ear in temporal bone CT. 

2. Methods 
2.1 Pseudocolor transformation of normal ossicles   
Thirty-six CT studies of healthy ears were studied. Healthy ears were defined as having 
normal hearing ability with hearing loss of less than 20dBHL and showed a typical type A 
tympanogram. There was no past history of ear infection or inner ear diseases.  
Both axial and coronal CT images were used. One mm thick contiguous non-overlapping 
sections were acquired. The scanner used was a Lightspeed 16(GE, Milwaukee, USA). The 
window width and level were adjusted to 3200 and +400 respectively. 
The entire middle ear of the temporal bone was scanned; i.e. 24-32 planes were taken. The 
software used was Image- Pro Plus 4.0. (Media Cybernetics, MD, USA).   
Pseudocolor transformation of the middle ear was performed using the following 
procedures: 2 planes of the axial CT image immediately below the plane showing the 
incudomalleolar joint were selected. After the CT images were scanned, they were 
converted to gray-scale images, because the pseudocolor command is only relevant to 
monochrome images. In Process menu, the intensity range was specified using the upper 
limit and lower limit buttons. The specified range was divided into the numbers of 
intervals and a default color was assigned to each interval, i.e. 255 colors were selected 
using the Divisions tool that showed entire and colorized part of the intensity range. 
Because red to blue and blue to red patterns of color spread (rainbow scale) were chosen 
in the pseudocolor scale’s predefined assignments the process of the color assignments 
changing and refining of the intensity division widths were omitted. Blue to red arrays 
the colors in a spectrum with blue assigned to a lower value than red. Red to blue arrays 
the colors in a spectrum with red assigned to a lower value than blue. Two planes of the 
coronal CT image showing the bony lip of the oval window were selected and 
pseudocolor transformation was performed in the same manner. However typical 
variables such as the continuous zone of soft tissue or higher attenuation between the 
incus and stapes were excluded in this study. 
Two otolaryngologists examined each image twice: plain, blue to red and red to blue 
transformed. They knew nothing about the history and audiometric findings for the 
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subjects. They were informed that the images were given from randomly selected temporal 
bone CTs. They compared the detectability of the stapes and IS joint using pseudocolor-
transformed images with that of plain images. 
Using Lemmerling’s rating; scale the examination of CT images was done. For each image 
one of 5 scores concerning the visibility of the stapes (head of stapes, anterior & posterior 
crura, footplate, oval window) and IS joint (lenticular process, IS joint, crus of stapes) was 
given: 1–not seen, 2-probably not seen, 3-not sure, 4-probably seen, 5-definitely seen. The 
stapes footplate was defined as the structure that had higher attenuation than the fluid in 
the vestibule at the interface. The oval window was defined as the structure at the interface 
between the air in the tympanum and the fluid in the vestibule and the IS joint was defined 
as the small gap of hypoattenuation between the most medial part of the lenticular process 
of the incus and the most lateral part of the stapes head(Lammering et al., 1997). The 
determination of visualization sensitivity was done through statistical analysis using a 
paired t-test. 

2.2 Pseudocolor transformation of otosclerotic foci  
Temporal bone CT images of sixty patients were reviewed. Of them, thirty-two ears were 
normal and twenty-eight ears were diagnosed as otosclerosis by radiologists experienced in 
evaluating otosclerosis in CT images. 
Two otolarynogologists with experience of 3 years independently evaluated the sixty 
temporal bone CT images, randomly selected in a conventional manner (gray scale). They 
knew nothing about the history and audiometric findings for the subjects. 1 month later, 
they were educated about the technique of real time pseudocolor transformation (RTPT) and 
reevaluated the images randomly selected using it. The sensitivity, specificity, and inter-
observer agreement rate were evaluated.  
The method of RTPT is as follows: The axial CT images were used. 0.6mm thickness 
contiguous non-overlapping sections were acquired. The CT was a BRILLIANCE TM CT 64 
Slice (PHILIPS, Yerusalem, Israel). The entire middle ear was scanned. The whole scanned 
images were transported to Picture Archiving and Communication System (PACS). The 
PACS was a STARPACS 5.0.8.1 (INFINITT, Seoul, Korea) 
After opening the images of a selected patient in PACS, one or two planes of the axial CT 
image showing the anterior portion of oval window or stapes crura were selected and the 
observers amplified the image twice using zoom button menu, built-in PACS. And the 
observers chose “T” button menu located upper tool bar and selected the “Pseudo” sub-
menu, then pseudocolor mapping working window appeared. There were variable 
predefined pseudocolor scales in the palette menu. But, we selected the same gray-scale for 
the reference. Using the color mask function, we chose specific color (red color in this case) 
to be applied to the specific intensity range of scanned image. Moving the control bar of the 
“color mask” up and down between soft tissue density and bone density range, red color 
was dressed on the selected gray-scale intensity area (figure 1). 
If observers find out the presence of focal thickenings of red color in the otic capsule, 
especially in FAF, oval window, and pericochlear area, then it can be diagnosed as 
otosclerosis. It is excluded that focal thickening at the boundary where soft tissue and bone 
are contiguous, because it shows false radiolucent area where soft tissue and bone are abut 
by the interference during scanning the image. 
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stage, they appear to be radiolucent areas due to active bone resorption and remodeling of 
the otic capsule. But, in the inactive stage, they look like the normal adjacent bone of the 
cochlear capsule. In the active stage of otosclerosis, otosclerotic foci tend to occur in the area 
just in front of the oval window (fissula ante fenestram, FAF), round window, and 
pericochlear area. If the size of the lesions or the difference of radio-opacity is too small to 
detect, it will be not easy for otolaryngologists without much experience to find out them in 
CT images and to explain them to patients.  
It has been known that the normal otic capsule has about 1800 to 2000 HU; however the 
optic capsule with otospongiotic change has about 1000 to 1400 HU (Huizing et al., 1987). 
So, the difference which numerical value of normal otic capsule and otospongiotic change 
occurred ranges from 400 to 1000 HU, which is correspondent to only several shades when 
the values is converted to gray color scale. But, if we convert the difference of HU to various 
colors or specific color then there will be lots of color shades. The pseudocolor 
transformation of the original image can widen capability of dynamic range. So, we 
supposed that converting gray scale intensity level to specific pseudocolor would be helpful 
to detect small lesions as well as fine structures of the ear in temporal bone CT. 

2. Methods 
2.1 Pseudocolor transformation of normal ossicles   
Thirty-six CT studies of healthy ears were studied. Healthy ears were defined as having 
normal hearing ability with hearing loss of less than 20dBHL and showed a typical type A 
tympanogram. There was no past history of ear infection or inner ear diseases.  
Both axial and coronal CT images were used. One mm thick contiguous non-overlapping 
sections were acquired. The scanner used was a Lightspeed 16(GE, Milwaukee, USA). The 
window width and level were adjusted to 3200 and +400 respectively. 
The entire middle ear of the temporal bone was scanned; i.e. 24-32 planes were taken. The 
software used was Image- Pro Plus 4.0. (Media Cybernetics, MD, USA).   
Pseudocolor transformation of the middle ear was performed using the following 
procedures: 2 planes of the axial CT image immediately below the plane showing the 
incudomalleolar joint were selected. After the CT images were scanned, they were 
converted to gray-scale images, because the pseudocolor command is only relevant to 
monochrome images. In Process menu, the intensity range was specified using the upper 
limit and lower limit buttons. The specified range was divided into the numbers of 
intervals and a default color was assigned to each interval, i.e. 255 colors were selected 
using the Divisions tool that showed entire and colorized part of the intensity range. 
Because red to blue and blue to red patterns of color spread (rainbow scale) were chosen 
in the pseudocolor scale’s predefined assignments the process of the color assignments 
changing and refining of the intensity division widths were omitted. Blue to red arrays 
the colors in a spectrum with blue assigned to a lower value than red. Red to blue arrays 
the colors in a spectrum with red assigned to a lower value than blue. Two planes of the 
coronal CT image showing the bony lip of the oval window were selected and 
pseudocolor transformation was performed in the same manner. However typical 
variables such as the continuous zone of soft tissue or higher attenuation between the 
incus and stapes were excluded in this study. 
Two otolaryngologists examined each image twice: plain, blue to red and red to blue 
transformed. They knew nothing about the history and audiometric findings for the 

Use of Pseudocolor for Detecting Otologic Structures in CT   

 

207 

subjects. They were informed that the images were given from randomly selected temporal 
bone CTs. They compared the detectability of the stapes and IS joint using pseudocolor-
transformed images with that of plain images. 
Using Lemmerling’s rating; scale the examination of CT images was done. For each image 
one of 5 scores concerning the visibility of the stapes (head of stapes, anterior & posterior 
crura, footplate, oval window) and IS joint (lenticular process, IS joint, crus of stapes) was 
given: 1–not seen, 2-probably not seen, 3-not sure, 4-probably seen, 5-definitely seen. The 
stapes footplate was defined as the structure that had higher attenuation than the fluid in 
the vestibule at the interface. The oval window was defined as the structure at the interface 
between the air in the tympanum and the fluid in the vestibule and the IS joint was defined 
as the small gap of hypoattenuation between the most medial part of the lenticular process 
of the incus and the most lateral part of the stapes head(Lammering et al., 1997). The 
determination of visualization sensitivity was done through statistical analysis using a 
paired t-test. 

2.2 Pseudocolor transformation of otosclerotic foci  
Temporal bone CT images of sixty patients were reviewed. Of them, thirty-two ears were 
normal and twenty-eight ears were diagnosed as otosclerosis by radiologists experienced in 
evaluating otosclerosis in CT images. 
Two otolarynogologists with experience of 3 years independently evaluated the sixty 
temporal bone CT images, randomly selected in a conventional manner (gray scale). They 
knew nothing about the history and audiometric findings for the subjects. 1 month later, 
they were educated about the technique of real time pseudocolor transformation (RTPT) and 
reevaluated the images randomly selected using it. The sensitivity, specificity, and inter-
observer agreement rate were evaluated.  
The method of RTPT is as follows: The axial CT images were used. 0.6mm thickness 
contiguous non-overlapping sections were acquired. The CT was a BRILLIANCE TM CT 64 
Slice (PHILIPS, Yerusalem, Israel). The entire middle ear was scanned. The whole scanned 
images were transported to Picture Archiving and Communication System (PACS). The 
PACS was a STARPACS 5.0.8.1 (INFINITT, Seoul, Korea) 
After opening the images of a selected patient in PACS, one or two planes of the axial CT 
image showing the anterior portion of oval window or stapes crura were selected and the 
observers amplified the image twice using zoom button menu, built-in PACS. And the 
observers chose “T” button menu located upper tool bar and selected the “Pseudo” sub-
menu, then pseudocolor mapping working window appeared. There were variable 
predefined pseudocolor scales in the palette menu. But, we selected the same gray-scale for 
the reference. Using the color mask function, we chose specific color (red color in this case) 
to be applied to the specific intensity range of scanned image. Moving the control bar of the 
“color mask” up and down between soft tissue density and bone density range, red color 
was dressed on the selected gray-scale intensity area (figure 1). 
If observers find out the presence of focal thickenings of red color in the otic capsule, 
especially in FAF, oval window, and pericochlear area, then it can be diagnosed as 
otosclerosis. It is excluded that focal thickening at the boundary where soft tissue and bone 
are contiguous, because it shows false radiolucent area where soft tissue and bone are abut 
by the interference during scanning the image. 



 Theory and Applications of CT Imaging and Analysis 

 

208 

 
Fig. 1. Pseudocolor mapping task window showing the range of intensity to be applied by 
red color.  

3. Results 
3.1 Pseudocolor transformation of normal ossicles   
The result indicated increased visibility of the stapes and IS joint in CT images after 
pseudocolor transformation. But, pseudo-colored images often showed slightly distorted 
bony structures.      
Figure 2 shows an example of plain and pseudocolor-transformed images of the stapes. The 
footplate and oval window were more easily identifiable in the pseudocolor image 
compared with the plain image. In the red to blue image (b), the green-colored crura 
showed sharp contrast. The air in the tympanum appeared as blue, the fluid in the vestibule 
appeared as green to sky blue. The radiolucent area between the otic bones in the plain 
image was a light green color after the transformation, which was considered the area of the 
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Fig. 2. Axial image of CT showing pseudocolor transformation of stapes. a) plain image b) 
pseudocolor transformed image(red to blue) c) pseudocolor transformed image (blue to red)  
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foot plate. In the blue-to-red image(c), the otic bone appeared blue. The crura of the stapes 
appeared thicker compared with the plain image. 
Figure 3 shows an example of plain and pseudocolor-transformed images of the IS joint. The 
gap of hypoattenuation in the IS joint appeared to be more prominent in the pseudocolor- 
transformed image.     
 

   
                                      (a)                                                                            (b) 

Fig. 3. Coronal image of CT showing pseudocolor transformation of incudostapedial joint. a) 
plain image. b) pseudocolor transformed image(red to blue). Red circles indicate 
incudostapedial joint. 
The visibility of the stapes was increased after pseudocolor transformation. The oval 
window and footplate in particular were more easily distinguishable in both pseudocolor-
transformed images compared with the plain images (p<0.05) (Figure 4). The visualization 
sensitivity of the IS joint including surrounding structures was increased after pseudocolor 
transformation. In particular the IS joint was more easily identifiable in both pseudocolor-
transformed images as compared with plain images (p<0.05).  
 

 
Fig. 4. Changed visibility of the stapes structures after pseudocolor transformation 



 Theory and Applications of CT Imaging and Analysis 

 

208 

 
Fig. 1. Pseudocolor mapping task window showing the range of intensity to be applied by 
red color.  

3. Results 
3.1 Pseudocolor transformation of normal ossicles   
The result indicated increased visibility of the stapes and IS joint in CT images after 
pseudocolor transformation. But, pseudo-colored images often showed slightly distorted 
bony structures.      
Figure 2 shows an example of plain and pseudocolor-transformed images of the stapes. The 
footplate and oval window were more easily identifiable in the pseudocolor image 
compared with the plain image. In the red to blue image (b), the green-colored crura 
showed sharp contrast. The air in the tympanum appeared as blue, the fluid in the vestibule 
appeared as green to sky blue. The radiolucent area between the otic bones in the plain 
image was a light green color after the transformation, which was considered the area of the 
 

     
                       (a)                                                    (b)                                                  (c) 

Fig. 2. Axial image of CT showing pseudocolor transformation of stapes. a) plain image b) 
pseudocolor transformed image(red to blue) c) pseudocolor transformed image (blue to red)  

Use of Pseudocolor for Detecting Otologic Structures in CT   

 

209 

foot plate. In the blue-to-red image(c), the otic bone appeared blue. The crura of the stapes 
appeared thicker compared with the plain image. 
Figure 3 shows an example of plain and pseudocolor-transformed images of the IS joint. The 
gap of hypoattenuation in the IS joint appeared to be more prominent in the pseudocolor- 
transformed image.     
 

   
                                      (a)                                                                            (b) 

Fig. 3. Coronal image of CT showing pseudocolor transformation of incudostapedial joint. a) 
plain image. b) pseudocolor transformed image(red to blue). Red circles indicate 
incudostapedial joint. 
The visibility of the stapes was increased after pseudocolor transformation. The oval 
window and footplate in particular were more easily distinguishable in both pseudocolor-
transformed images compared with the plain images (p<0.05) (Figure 4). The visualization 
sensitivity of the IS joint including surrounding structures was increased after pseudocolor 
transformation. In particular the IS joint was more easily identifiable in both pseudocolor-
transformed images as compared with plain images (p<0.05).  
 

 
Fig. 4. Changed visibility of the stapes structures after pseudocolor transformation 



 Theory and Applications of CT Imaging and Analysis 

 

210 

3.2 Pseudocolor transformation of otosclerotic foci  
The study cases consisted of 30 patients (60 ears), including 16(53.3%) women and 14(46.7%) 
men.  Age ranged from 26 to 65 years, with a mean of 46.8 years. 15 patients were healthy 
and 15 patients (28 ears) were otosclerosis. Among otosclerotic patients, 13 patients had 
bilateral otosclerotic foci and 2 patients had unilateral foci. Distribution of otosclerotic foci 
consisted of fenestral(71.43%), cochlear(7.14%), and mixed type(21.43%). Figure 5 showed 
one CT image of otosclerosis after pseudocolor transformation. 
 
 

 
(a) 

  
(b) 

Fig. 5. Axial image of CT showing foci of radiolucent area anterior to the oval window 
(yellow arrow) and the apex of cochlear (small yellow arrow). a) plain image, b) 
pseudocolor transformed image.   

When they were classified according to the distribution of otosclerotic foci, the sensitivity 
was increased in fenestral and mixed type and was equal in cochlear type (Fig.6).   
Inter-observer agreement rate of conventional technique and RTPT technique was similar 
each other. The kappa value was 0.528(p<0.05) in conventional technique and 0.539(p<0.05) 
in RTPT. 
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Fig. 6. Comparison of the sensitivity according to the distribution of otosclerotic foci. 
Increased sensitivity of fenestral and mixed type was seen when using the RTPT than 
conventional technique and same sensitivity of cochlear type was seen in each techniques 

4. Conclusion 
Nowadays, digital technology has been commonly used to transform an original image into 
various forms without damaging it. And the creative combinations of pseudocolor could 
make it possible to producing various impressive images. In our studies, a new visualization 
method using pseudocolor transformation was described to increase detection rate of 
ossicles in many CT images. And also we showed that pseudocolor transformation could be 
helpful for detecting ear pathology such as otosclerosis. These procedures may be 
performed by use of the image analyzer or PACS with real time processing. 
Variable color transformation can be examined for increasing detectability of CT image in 
the future.   
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1. Introduction 
For the first 20 years of clinical use, CT scan explored morphology of the body with axial 
slices. Within the head, CT-scan allowed to analyze broadly the brain like any organ of the 
body, whereas the skull like others bones was finely detailed. 
The appearance of helical and multi-slice CT scans in the 1990’s, with high speed processes, 
led to volumetric and dynamic data, such as angio CT and CT perfusion.  
Since 2005, there has been a constant development in new techniques. 
1. The improved travelling table systems allow thicker dynamic studies, especially useful 

for cerebral perfusion. 
2. Dual energy allows reduction of metallic and bony artefacts, making possible to obtain 

material decomposition images (quantitative evaluation of density). 
However, these improvements often lead to increased patient irradiation. Techniques 
aiming to limit this important drawback are currently being developed, allowing reducing 
irradiation dose. 
We review the basic principles of advanced techniques, including irradiation dose 
reduction, and then describe their neuroradiological applications in daily practice. 

2. Material 
In our institution, we use a 40-mm CT scanner (General Electric Discovery CT 750 HD, with 
Gemstone Spectral Imaging and Volume Helical Shuttle Perfusion), with Adaptative 
Statistical Iterative Reconstruction (ASIR). 
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3. Dual-energy CT 
First experiments in Dual Energy CT (DECT), performed initially in the 1970s, demonstrated 
that DECT improved tissue characterization (Rutherford, Pullan, et Isherwood 1976). Until 
recently, this technology was impractical because of limiting factors such as insufficient 
spatial resolution, length of scan duration and important noise in the low-energy (low-
kilovolts, low-kv) images. Two datasets must be acquired separately, at different times, 
increasing the risk of patient movements during the two phases that can reduce image 
quality (Thorsten R C Johnson et al. 2007). 
Recent avdances in CT technology allow simultaneous acquisition of datasets at different 
energy levels (Coursey et al. 2010); such acquisitions have become possible either with two 
tubes mounted orthogonally, or with a generator able to switch between 80 and 140 kv 
targets in a very short time, less than 0.5 msec.  

3.1 Principles 
In Computed Tomography, differenciation of materials or tissues depends on X-ray 
attenuation, which is a function of X-ray energy, determined by photoelectric effect and 
Compton scattering (fig.1)  
 

 
Fig. 1. The two main mechanisms of X-ray (blue line) attenuation are photoelectric effect and 
Compton effect. Photoelectric effect happens within electronic shells (layers) and consists in 
electron (colored sphere) ejection with concomittant emission of photon and reorganisation 
of electrons between shells. Compton effect happens with electrons which are scattered with 
concomittant emission of photon.  

At the energy levels used in diagnostic imaging, Compton effect is almost independent of X-
ray photon energy, while photoelectric effect is strongly energy dependent (Sprawls Perry). 
The probality of photoelectric interaction increases as the energy is nearer to that of the K 
shell binding. The K edge is the energy level where there is a spike in attenuation, and 
which corresponds to energy levels just greater than that of the K shell binding. The K edge 
increases with the atomic number (Table 1) 
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K Edges and Atomic Numbers of Physiologic Substances 
and Contrast Agents 

Substance K Edge (keV) Atomic Number (Z) 
Hydrogen 0.01 1 
Carbon 0.28 6 
Nitrogen 0.40 7 
Oxygen 0.53 8 
Calcium 4.00 20 
Iodine 33.20 53 
Barium 37.45 56 
Gadolinium 50.20 64 

Table 1. Relationships between material atomic number and photon energy (Coursey et al. 
2010) 
DECT imaging relies on energy dependence of the photoelectric effect and on the variability 
of K edges. The optimal energies must be just greater than the K edge of substances 
explored (Coursey et al. 2010); using different energy levels, DECT allows distinguishing 
materials according to attenuation coefficients at selected energy levels. 
Material decomposition (MD) does not identify stricto sensu materials. Material attenuation 
curve is indirectly studied using the linear combination of two other materials (fig.2). Thus 
given two arbitrary selected basic materials, MD determines how much of each material 
would be needed to produce the observed measurements at low (65 Kev) energy and high (140 
Kev) energy. These last two values correspond to common fixed DECT parameters of energy.  
 

 
Fig. 2. The bone attenuation curve is a linear combination of iodine and water X-ray; x-axis, 
photon energy, Kev; y-axis, mass attenuation coefficient, m²/Kg (from D.A.Langan, (Langan 
DA 2008) 

For medical diagnosis, iodine and water are generally used, because they span the atomic 
number of the different materials that can be found in clinical practice. 

3.2 Pratical consequences 
Monochromatic spectral images obtained with DECT imaging are similar to that of a 
conventional Hounsfield unit image, but with fewer artefacts. This property is particularly 
useful to demonstrate implanted metallic devices such as coil, clip and electrode. In CT 



 Theory and Applications of CT Imaging and Analysis 

 

214 

3. Dual-energy CT 
First experiments in Dual Energy CT (DECT), performed initially in the 1970s, demonstrated 
that DECT improved tissue characterization (Rutherford, Pullan, et Isherwood 1976). Until 
recently, this technology was impractical because of limiting factors such as insufficient 
spatial resolution, length of scan duration and important noise in the low-energy (low-
kilovolts, low-kv) images. Two datasets must be acquired separately, at different times, 
increasing the risk of patient movements during the two phases that can reduce image 
quality (Thorsten R C Johnson et al. 2007). 
Recent avdances in CT technology allow simultaneous acquisition of datasets at different 
energy levels (Coursey et al. 2010); such acquisitions have become possible either with two 
tubes mounted orthogonally, or with a generator able to switch between 80 and 140 kv 
targets in a very short time, less than 0.5 msec.  

3.1 Principles 
In Computed Tomography, differenciation of materials or tissues depends on X-ray 
attenuation, which is a function of X-ray energy, determined by photoelectric effect and 
Compton scattering (fig.1)  
 

 
Fig. 1. The two main mechanisms of X-ray (blue line) attenuation are photoelectric effect and 
Compton effect. Photoelectric effect happens within electronic shells (layers) and consists in 
electron (colored sphere) ejection with concomittant emission of photon and reorganisation 
of electrons between shells. Compton effect happens with electrons which are scattered with 
concomittant emission of photon.  

At the energy levels used in diagnostic imaging, Compton effect is almost independent of X-
ray photon energy, while photoelectric effect is strongly energy dependent (Sprawls Perry). 
The probality of photoelectric interaction increases as the energy is nearer to that of the K 
shell binding. The K edge is the energy level where there is a spike in attenuation, and 
which corresponds to energy levels just greater than that of the K shell binding. The K edge 
increases with the atomic number (Table 1) 

Advanced Neuroimaging with Computed Tomography Scanning   

 

215 

K Edges and Atomic Numbers of Physiologic Substances 
and Contrast Agents 

Substance K Edge (keV) Atomic Number (Z) 
Hydrogen 0.01 1 
Carbon 0.28 6 
Nitrogen 0.40 7 
Oxygen 0.53 8 
Calcium 4.00 20 
Iodine 33.20 53 
Barium 37.45 56 
Gadolinium 50.20 64 

Table 1. Relationships between material atomic number and photon energy (Coursey et al. 
2010) 
DECT imaging relies on energy dependence of the photoelectric effect and on the variability 
of K edges. The optimal energies must be just greater than the K edge of substances 
explored (Coursey et al. 2010); using different energy levels, DECT allows distinguishing 
materials according to attenuation coefficients at selected energy levels. 
Material decomposition (MD) does not identify stricto sensu materials. Material attenuation 
curve is indirectly studied using the linear combination of two other materials (fig.2). Thus 
given two arbitrary selected basic materials, MD determines how much of each material 
would be needed to produce the observed measurements at low (65 Kev) energy and high (140 
Kev) energy. These last two values correspond to common fixed DECT parameters of energy.  
 

 
Fig. 2. The bone attenuation curve is a linear combination of iodine and water X-ray; x-axis, 
photon energy, Kev; y-axis, mass attenuation coefficient, m²/Kg (from D.A.Langan, (Langan 
DA 2008) 

For medical diagnosis, iodine and water are generally used, because they span the atomic 
number of the different materials that can be found in clinical practice. 

3.2 Pratical consequences 
Monochromatic spectral images obtained with DECT imaging are similar to that of a 
conventional Hounsfield unit image, but with fewer artefacts. This property is particularly 
useful to demonstrate implanted metallic devices such as coil, clip and electrode. In CT 



 Theory and Applications of CT Imaging and Analysis 

 

216 

angiography, it can distinguish between contrast in a vessel and calcification; it also allows 
removing skull base bone artefacts (Watanabe et al. 2009). 
With post-processing, monochromatic energy levels can be chosen within a range from 40 to 
140 Kev. At high energy levels, material contrasting is limited, whereas at low energy levels, 
they are more important. This allows material differenciation and quantitative evaluation of 
density (Thorsten R C Johnson et al. 2007). 

4. Volume helical shuttle and CT brain perfusion 
4.1 Principle of Volume Helical Shuttle (VHS) 
With the latest generation of multidetector CT scanners, it is possible to cover large 
volumes of anatomy in a very short time. As a consequence, a thick portion of the brain is 
explored.  
However, when width of coverage increases, it might increase phenomenas such as cone 
beam artefact (wide cone angle for wide-area detector), heel effect (non-uniform 
illumination of X-ray of the tube anode for wide-area detector) and scatter of X-ray photons. 
These inconveniences are reduced by VHS, which is a new adaptative technology enabling 
the CT table to travel back and forth using continuous periodic table movement during the 
acquisition (fig.3). 
 

 
Fig. 3. Volume helical Shuttle (VHS, left) compared to wide-coverage detector axial 
acquisitions (right): there is no image quality (IQ) concern with VHS, whereas with wide-
coverage detetector IQ concerns, as well as heel effect, cone beam artefact and increase 
photon scaterring, are known (from A. Hagiwara, 2008) 

VHS affords minimal overscanning, consequently reducing unnecessary radiation exposure, 
(fig.4). VHS also improves temporal sampling; for maximum scan coverage of 312.5 mm, the 
system realizes 20 passes (10 round trips) within 60 sec, with a temporal sampling of 2.9 sec 
at the center of the volume. 
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Fig. 4. There is no overscanning with Volume Helical Shuttle (top) conversely to 
conventional helical scanning (bottom) (from A. Hagiwara, 2008) 

4.2 Principle of CT brain perfusion 
VHS main application in neuroimagery is CT brain perfusion. 
Until today, maximum coverage allowed in a sufficient temporal resolution was of 20-mm 
thickness for four detector-rows CT, and 80 mm for sixteen detector rows. With VHS 
technology, the coverage for brain CT perfusion is 120 mm, obtained in less than 48 sec, with 
a temporal resolution of 0.2 sec. 
For many years, CT and MRI have been used for structural information. After the 
development of perfusion MRI, CT perfusion has been perfected and these two modalities 
now allow assessment of haemodynamic characteristics in brain tissue. 
CT perfusion consists in analysis of the time evolution of contrast agent during the first 
passage of an intravenous bolus of iodine (Grand et al. 2007) (Hoeffner et al. 2004). Scans are 
obtained in dynamic mode during the injection. Functional data of brain perfusion are 
automatically calculated according to the central volume principle, which relates cerebral 
blood volume (CBV), cerebral blood flow (CBF) and mean transit time (MTT) in the 
following equation: CBF = CBV/MTT. MTT is given by deconvolution of tissue 
enhancement curves with reference to an arterial curve, generally obtained in the anterior 
cerebral artery (fig. 5). For each parenchymal pixel, CBV is calculated as the area under the 
curve divided by the area under the curve in the arterial ROI. Then, CBF is calculated 
according to central volume equation. 
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Fig. 3. Volume helical Shuttle (VHS, left) compared to wide-coverage detector axial 
acquisitions (right): there is no image quality (IQ) concern with VHS, whereas with wide-
coverage detetector IQ concerns, as well as heel effect, cone beam artefact and increase 
photon scaterring, are known (from A. Hagiwara, 2008) 

VHS affords minimal overscanning, consequently reducing unnecessary radiation exposure, 
(fig.4). VHS also improves temporal sampling; for maximum scan coverage of 312.5 mm, the 
system realizes 20 passes (10 round trips) within 60 sec, with a temporal sampling of 2.9 sec 
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Fig. 5. Time-concentration curve. The anterior cerebral artery is generally choosen as the 
input artery (ROI, left), and time-concentration curve is generated from data within the ROI 
pixels (right; in this example the ROI comprises 102 pixels; x-axis, image number; y-axis, 
Hounsfield unit). 

 

 
Fig. 6. (A) Mean Transit Time color map, msec, from 0, red, to 15, blue; (B) Cerebral Blood 
Flow color map, ml/msec, from 0, blue, to 100, red; (C) Cerebral Blood Volume color map, 
ml, from 0, blue, to 10, red. (Normal data) 

A parameter related to vascular dynamics process has also been introduced, namely 
Permeability Surface Area Product (PS), which evaluates the flow of contrast agent crossing 
the capillary wall between intravascular and extravascular compartments.  
This trans compartment flow is often called blood vessel leakness or blood clearance of 
contrast agent and is extrapolated from Patlak graphical analysis used for glomerule 
filtration rate exploration (Dawson 2006). The formula is as follows: PS = P × S; P 
(permeability) = D / t, with D = diffusion coefficient of contrast agent, and t = thickness of 
endothelium; S = surface of capillary tree.  
PS is expressed in ml / 100 g of tissue / min. A voxel-wise approach leads to PS map (Fig. 7)  
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Fig. 7. Permeability Surface Area Product (PS) map, from 0, blue, to 10, red, in ml / 100 g of 
tissue / min (normal data) 

CT perfusion presents some advantages compared with magnetic resonance imaging (MRI) 
perfusion: 
- It allows qualitative and quantitative analysis, by giving absolute values of brain 

perfusion. 
- Patient access is generally easier and CT perfusion is easy to perform; thus CT perfusion 

can be the initial exploration. 
- Spatial resolution is good; voxel size is about 1-2mm. 
- Results are obtained in less than 15 mn. 
The main limitation of CT perfusion was the thickness of coverage, which is of 20 mm for a 
4-detector row and 80 mm for a 16-detector row) (Grand et al. 2007)). VHS now allows 
coverage of 120 mm of the brain, with a temporal resolution of 1 image every 3 sec.  
The main drawbacks are the risk of radiation overexposures and adverse effects due to 
iodinated contrast agent.  

5. Reducing radiation dose in CT neuroimagery: use of adaptative statistical 
reconstruction algorithm (ASIR) 
Since the inception of CT, the number of CT scans per year has dramatically increased 
(Brenner et Hall 2007). This results from its large availability, speed and diagnostic benefits. 
The drawback was increased radiation doses, requiring new techniques reducing these 
doses while improving diagnosis performances. 
Reconstruction algorithms currently used such as filtered back projection (FBP) are unable 
to generate diagnostic quality images if X-ray tube currents decrease because signal-
difference-to-noise ratio decreases with low-dose CT. 
One alternative is iterative reconstruction technique (McCollough et al. 2009)(Silva et al. 
2010) perfected with an adaptative statistical iterative reconstruction technique (ASIR), 
which limits computing time. 
ASIR uses information obtained from the FBP algorithm and then uses matrix algebra to 
transform the value of each pixel to a new estimate of the pixel value. This new pixel value 
is then comparated with the ideal value predicted with the noise model. Iterations are 
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successively performed until final estimated and ideal pixel values converge (Silva et al. 
2010)(Hara et al. 2009). It is possible to blend ASIR and FBP images in a range of 10% to 
100%(Leipsic et al. 2010)(Flicek et al. 2010) . 
Recent studies have demonstrated that ASIR reduces noise and improve signal-difference-
to-noise ratio. By applying an appropriate percentage of ASIR, radiation doses are reduced 
between 23% to 65% (Leipsic et al. 2010)(Flicek et al. 2010)(Sagara et al. 2010)(Prakash et al. 
2010). 

6. Medical Neuroimaging 
6.1 Applications of CT perfusion 
6.1.1 Acute stroke 
Recent advances in thrombolytic therapy, allowing reperfusion of brain tissue, have fostered 
the identification of biological parameters witnessing of reversible cell damage within the 
hypoperfused territory. Restoration of normal cell activity depends on severity of cell 
damage and on blood supply, particularly oxygen content and cerebro-vascular 
autoregulation. The tissue tolerance of CBF reduction ranges from 20 ml/100g/min to 6-10 
ml/100g/min; below 6-10 ml/100g/min, cell damage and synaptic conduction may be 
irreversible, leading to infarction; below 20 ml/100g/min, often called the “penumbral flow 
threshold”, damage may be reversible (Zaro-Weber et al. 2009) 
One of the challenges is to identify the area where the cerebro-vascular autoregulation is 
maintained, because of the likelihood to reverse non-lethal cell damage. CT perfusion can 
determine this penumbra area, defined by normal or elevated CBV, while CBF is decreased 
and MTT is increased because of hypoperfusion (Max Wintermark et al. 2002). 
The infarct core, i.e. area of irreversibility of damaged tissue, is characterized by the loss of 
cerebro-vascular autoregulation, and defined by decreased CBV, decreased CBF and 
increased MTT;  (Grand et al. 2007)(Hoeffner et al. 2004)(Schramm et al. 2004)(Schaefer et al. 
2006)(Mejdoubi, Calviere, et Dumas 2010) (fig.8).  
 

 
Fig. 8. Recent stroke in the left middle cerebral artery territory. Infarct tissue has elevated 
MTT (A), decreased CBF (B) and decreased CBV (C). Note the mismatch between the infarct 
area and the tissue at risk of infarction, which corresponds to the area where CBV is 
maintained and MTT is increased. 

Patients with acute stroke can benefit from reperfusion therapy if undertaken before six 
hours, if the size of infarct area is less from one third of the middle cerebral artery territory, 
and if there is a minimal mismatch ratio of 20%, between the infarct core and the penumbra, 
hence more than 20% of the hypoperfused region could recover (Furtado et al. 2010). In 
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addition, mismatch ratio increases with the z-axis coverage, or thickness, of CT Perfusion 
(Furtado et al. 2010). Consequently, increasing coverage of CT Perfusion, improves accuracy 
of functional data; it also prevents missing a lesion by incorrect selection of the tissue block 
analysis. 
The most sensitive criteria of early detection of ischemia seems the relative increase of MTT, 
compared with controlateral safe hemisphere, higher than 145%, and the most accurate 
parameter to determine infarcted area seems a CBV value under 2ml/100mg;  the mismatch 
between areas with a CBV lower than 2ml/100mg and areas with increased MTT allows the 
most accurate delineation of tissue at risk of infarction (Max Wintermark et al. 2006). 
Another recent study shows that the risk of hemorrhagic transformation in acute stroke 
patients is correlated with increased PS (Aviv et al. 2009) 
CT angiography (CTA) is usually performed during the same session to determine stroke 
etiology, intra or extracranial vessel occlusion or dissection, and occlusion location. 
Conventional CTA images are well known to have poor quality in skull base region (Ma et 
al. 2010). In DECT acquisitions, value of iodine increases much more than bone or calcium 
with decreasing of X-ray tube voltage. By varying the values of Kev on Material 
Decomposition images, skull base bone artefacts are exclude, while keeping good contrast in 
the lumen of arteries, and vascular calcifications are removed, allowing to insulate the 
lumen vessel (Thorsten R C Johnson et al. 2007) (Coursey et al. 2010)(Watanabe et al. 2009). 
Finally, CT is a reliable and accurate technique to explore patients with acute stroke, 
combining CT without injection to exclude intracranial haemorrhage, CT Perfusion to 
evaluate penumbra, and CTA to determine the etiology of ischemia (Grand et al. 
2007)(Hoeffner et al. 2004)(Furtado et al. 2010). 
However, CT may be insufficient for lacunar or brainstem infarction and also to determine 
directly cell damage. 

6.1.2 Vasospasm 
Vasospam is a complication of aneurysmal subarachnoïd hemorrhage that can worsen the 
prognosis. Severe vasospasm can lead to delayed cerebral ischemia (DCI) and symptomatic 
vasospasm, this latter can lead to delayed ischemic neurologic deficit (DIND); one can bear 
in mind that the relationship between vasospasm and DIND is not straightforward (Al-
Tamimi et al. 2010) 
The diagnosis of vasospasm and DCI stays difficult to establish and often delayed. 
Currently, the gold standard of arterial vasospam diagnosis is conventional angiography, 
and the survey of patients relies mainly on clinical examination and transcranial Doppler. 
Recent studies show that CT Perfusion is useful and reliable to assess vasospasm and DCI,  
vasospasm  induces increased MTT and further decreased CBV (Grand et al. 
2007)(Dankbaar et al. 2009)(van der Schaaf et al. 2006)(M Wintermark, N U Ko, et al. 
2006).(Max Wintermark et al. 2008). MTT seems the most sensitive parameter to detect 
regions at risk to vasospam (M Wintermark, N U Ko, et al. 2006) (Pham et al. 2007) (Max 
Wintermark et al. 2008) (fig.9). 
In addition, CT Perfusion is repeatable at regular intervals with reproductible parameters, 
making it useful in this critical period, while taking into account risk of radiation 
overexposures and adverse effects due to iodinated contrast agent.  
VHS can help to detect directly the vasospasm on the vascular tree during CTA, allowing 
wider exploration of vascular territories. DEACT reduces artefacts generated by metallic 
clips or coils enabling better analysis of vessels (fig.10); it also removes bone artefacts. 
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addition, mismatch ratio increases with the z-axis coverage, or thickness, of CT Perfusion 
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between areas with a CBV lower than 2ml/100mg and areas with increased MTT allows the 
most accurate delineation of tissue at risk of infarction (Max Wintermark et al. 2006). 
Another recent study shows that the risk of hemorrhagic transformation in acute stroke 
patients is correlated with increased PS (Aviv et al. 2009) 
CT angiography (CTA) is usually performed during the same session to determine stroke 
etiology, intra or extracranial vessel occlusion or dissection, and occlusion location. 
Conventional CTA images are well known to have poor quality in skull base region (Ma et 
al. 2010). In DECT acquisitions, value of iodine increases much more than bone or calcium 
with decreasing of X-ray tube voltage. By varying the values of Kev on Material 
Decomposition images, skull base bone artefacts are exclude, while keeping good contrast in 
the lumen of arteries, and vascular calcifications are removed, allowing to insulate the 
lumen vessel (Thorsten R C Johnson et al. 2007) (Coursey et al. 2010)(Watanabe et al. 2009). 
Finally, CT is a reliable and accurate technique to explore patients with acute stroke, 
combining CT without injection to exclude intracranial haemorrhage, CT Perfusion to 
evaluate penumbra, and CTA to determine the etiology of ischemia (Grand et al. 
2007)(Hoeffner et al. 2004)(Furtado et al. 2010). 
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directly cell damage. 
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Vasospam is a complication of aneurysmal subarachnoïd hemorrhage that can worsen the 
prognosis. Severe vasospasm can lead to delayed cerebral ischemia (DCI) and symptomatic 
vasospasm, this latter can lead to delayed ischemic neurologic deficit (DIND); one can bear 
in mind that the relationship between vasospasm and DIND is not straightforward (Al-
Tamimi et al. 2010) 
The diagnosis of vasospasm and DCI stays difficult to establish and often delayed. 
Currently, the gold standard of arterial vasospam diagnosis is conventional angiography, 
and the survey of patients relies mainly on clinical examination and transcranial Doppler. 
Recent studies show that CT Perfusion is useful and reliable to assess vasospasm and DCI,  
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Wintermark et al. 2008) (fig.9). 
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making it useful in this critical period, while taking into account risk of radiation 
overexposures and adverse effects due to iodinated contrast agent.  
VHS can help to detect directly the vasospasm on the vascular tree during CTA, allowing 
wider exploration of vascular territories. DEACT reduces artefacts generated by metallic 
clips or coils enabling better analysis of vessels (fig.10); it also removes bone artefacts. 
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Fig. 9. CT Perfusion performed seven days after intravascular embolisation of anterior 
communicant artery aneurysm revealed by subarachnoïd hemorrhage: increased MTT (A) 
associated with decreased CBV (B) in right middle cerebral artery territory (white arrows) is 
the result of vasospam. 

 

 
Fig. 10. Using DEACT (B) removes most of artefacts visible on current CT acquisition (A); 
same patient than in fig. 8.  

Compromise must be found when increasing Kev to reduce artefact, because this can lead a 
false reducing of vascular luminal diameter, mimicking a vasospasm. 

6.1.3 Tumors 
It is challenging to determine the bio-architecture of brain tumor. Modern non invasive 
imaging techniques allow estimating many biological parameters, which must be 
interpreted cautionly and compared with histological findings, which are still the gold 
standard for tumor classification (Scheithauer, Fuller, et VandenBerg 2008). Among bio-
architectural parameters, such as cell proliferation and energetic metabolism, 
vascularization is of upmost importance since it was demonstrated that it could be an 
important prognostic factor, nowdays easily accessible with non invasive imaging 
(Scheithauer, Fuller, et VandenBerg 2008). 
However the word vascularisation covers different conditions, such as 
hypervascularization, neo vascularization whatever the cause (e.g. tumor growth, tumoral 
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vessels, radionecrosis) and blood brain barrier (BBB) dysfunction up to permanent rupture. 
Imaging perfusion allows quantifying CBF, CBV, MTT and PS product that could be usefull 
to show differences between diverse brain tumors and to determine non-invasive prognostic 
factors. 
Thus, for the last few years, studies of MRI perfusion imaging have shown correlation 
between increasing of regional CBV (rCBF), Permeability Surface-area product (PS) and 
grading of tumors (Grand et al. 2007)(Hoeffner et al. 2004)(R Jain et al. 2008)(Law et al. 
2003)(Ding et al. 2006). CNS lymphomas have intense contrast enhancement with increased 
PS product whereas CBV remains low (Schramm et al. 2010). In gliomas, perfusion imaging 
could also be useful to guide the biopsy where there is the greatest increasing of rCBV and 
PS (Grand et al. 2007) . 
Lastly, it can assess the response to treatment (besides the tumoral volume), and 
differentiate tumor recurrence from radionecrosis(Grand et al. 2007)  (see e.g fig.11) 
One of the main advantage of CT Perfusion compared with MRI is the quantitative 
assessment of PS. Poor anatomical definition remains a drawback of this technique, and 
additional studies are required to validate results; however it seems to be a good 
alternative or complement to MRI perfusion imaging, especially to obtain quantitative 
data. 
 

 
Fig. 11. CT Scan (iodinated contrast injection) performed 2 years after fractionated 
radiotherapy for a frontal metastasis (A) shows a contrast-enhancing lesion (white arrow); 
CT perfusion has revealed increased CBV (B) and increased PS (C) favoring tumor 
recurrence confirmed by histopathological analysis.  

6.1.4 Other applications of vascular imaging 
CT Perfusion is a non-invasive way to characterize cerebral vascular autoregulation, and 
could hence be used to adjust and monitor brain oedema therapy following head injury (M 
Wintermark, Chiolero, et al. 2006). In this indication, VHS is always interesting to study a 
greater width of cerebral parenchyma. 
Time aspect given by perfusion imaging can be used to obtain dynamic images of cerebral 
blood flow (fig.12) 
This technique is not a current practice because of the volume of data lending long 
reconstruction time. However, it seems interesting in specific indications, such as arterio-
veinous malformation for diagnosis and volume survey of vascular nidus after treatment. 
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Fig. 12. Dynamic CT acquisitions show the circulation of iodinated contrast agent in the 
vessels: from arterial time (A) to venous time (F). An intraventricular catheter (white) is 
visible.  

6.2 Analysis of contacts of deep brain stimulation electrodes: a predictable using of 
spectral CT  
Groups performing brain stimulation advocated post-operative imaging, MRI or CT to 
analyse the anatomic position of each electrod contact (F Caire et al. 2006)(Duffner et al. 
2002)(Ferroli et al. 2004)(Lemaire et al. 2007, a) (Pinto et al. 2007)(Vayssiere et al. 2004). 
We studied the artefact generated on CT scans by the contacts of the DBS 3389 electrode 
(Medtronic, Mineapolis, USA) (Hemm et al. 2009). In vitro-study showed that the distal and 
proximal limits of a lateral black artefact represented the four contacs of the electrode. In 
vivo-study confirmed that the artefacts are reliable to define the position of the fours 
contacts. Phantom and patient CT acquisitions showed the presence of three other sorts of 
artefacts: a white artefact corresponding to the electrode, a lateral black artefact around a 
part of the electrode due to the large difference in density between the contact and the 
surrounding tissue, and zones of protuberance of the white artefact, corresponding to the 
transition from metal to insulation (unlike for MRI, where the biggest artefact correspond to 
the contact of the electrode). From these observations, three measurements were carried out: 
height of the lateral black artefact (H), distance between the begining of the white and the 
lateral black artefact (D), maximal artefact width (W), representing respectively the lengths 
of the four contacts, the electrode tip and width of the contact zone (fig. 13) 
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Fig. 13. A. Illustration of the different artefact parameters measured on phantom and patient 
CT acquisitions; W , maximal width of the white electrode artefact, H height of lateral black 
artefact along the electrode axis, D, distance between the beginning of the white electrode 
artefact and the beginning of the lateral black artefact (Hemm et al. 2009). B. After 
identification of the distal and proximal black artefact boundaries (dotted lines), the location 
of the four contacts is determined relatively to the point (M) placed in the middle of the 
distance between the two boundaries (Hemm et al. 2009). 

The width of the artefact was nearly twice the theorical electrode diameter because of X-ray 
diffusion. There was no difference between pseudo-sagittal and pseudo-coronal 
reconstructions along the electrode axis; however there is a slight influence of the second 
electrode in the pseudo-coronal direction. Consequently, contact positions analysis relied 
on (fig.13.B): identification of the end of the distal contact corresponding to the distal 
boundary of the lateral black artefact, the tip length of approximately 1.2 mm can be used to 
validate the beginning of this black artefact; identification of the beginning of the proximal 
contact corresponding to the proximal boundary of the lateral black artefact; calculation of 
the four contact locations, according to the known electrode geometry. 
This study demonstrates that post-operative CT scan in implanted patients is a useful 
alternative to MRI. In addition, CT offers some advantages over MRI: shorter acquisition 
time (< 1 min versus 5 min), greater accessibility and lower cost. MRI-CT coregistration 
allows optimizing post operative data using with the best contact analysis on CT and the 
best anatomical analysis on MR (Lemaire et al. 2007,b) . There are also safety issues for both 
techniques: Specific Absorption Rate (SAR) can be a problem for MRI because the presence 
of a metallic implant carries a potential risk of electrode displacement or of heating under a 
high magnetic field (Gleason et al. 1992)(Schueler et al. 1999)(Uitti et al. 2002), and CT uses 
ionising radiations. 
Further studies are mandatory to reduce electrode artefacts. First measurements made with 
DEAC technology seems promising, reducing dramatically artifacts; MRI-CT coregistration 
and refined electrode analysis suggest that we will have nearly real visualization (fig 14), 
allowing better understanding of deep brain stimulation mecahnisms.  
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Fig. 13. DEAC monochromatic images are close to reality: (A) reconstructed image along the 
electrode (DBS 3389), showing artefacts of contacts; B, coregistration of electrode artifact 
extracted from DEAC images with pre operative MRI, on the right, zoom in of the electrode 
artifact showing details of the tip (*) and twisted electride wires (#). 

6.3 Material decomposition 
Multi-Energy CT enables measurement of material density using spectral images, namely 
Material Decomposition (MD). MD allows separation and characterization of different 
materials with similar CT density values (Hui et al. 2010). In clinical neuroimaging, this 
technique can be used for several purposes such as differenciate iodine in the vessel lumen 
from wall calcifications (Coursey et al. 2010) (Fig.14) and differentiate intracerebral 
hemorrhage from iodinated contrast (Rajiv Gupta et al. 2010) (fig.15) 
Density measurement of products using multi-energy opens prospects in biomedical 
research.  For instance, it is possible to determine physical properties of gels, such as density 
(mg/cm3) and homogeneity (fig. 16)(Saliege et al. 2010)  
 

 
Fig. 14. Carotid (white arrow) CTA: (A) 70 KeV monochromatic image; (B) calcium density 
windowing; (C) iodine density windowing. Data transformation into effective material 
densities (MD) improves tissue characterization. 
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Fig. 15. Hyperdensity due to hemorrhage (white arrow) on mono energy 70 keV images (A) 
is removed on iodine density image (B). 

 

. 

Fig. 16. Measurement of 1.1% agarose gel (3 samples) using post-processing on 65 keV 
monochromatic image. 

7. Conclusion 
Most recent advance in medical CT imaging relies on dual-energy and improvement of 
travelling table system. They enable a more accurate evaluation of tissue density and brain 
perfusion, with a reduction of artefacts and an increase of cover thickness, retaining 
moderate radiation dose using suited reconstruction algorithms (ASIR). 
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1. Introduction     
The evaluation of bone fragility remains an open question that is all the more important 
given that the prevalence of osteoporosis is increasing in industrial countries with the 
ageing of the population and its greater sedentarity. This disease, which affects one in three 
menopausal women, is responsible of fractures and vertebral compression that can lead to 
invalidity. Osteoporosis is a “silent disease”: 40% of women and 13% of men after 50 years 
old are concerned with and 24% of aged patients die one year after a hip fracture. Thus this 
disease represents a major cost for public health. 
The diagnosis of bone fragility and the associated therapeutic decision are currently based 
on the measurement of bone mineral density (BMD) using dual X-ray absorptiometry (DXA) 
techniques. However, although BMD is an important determinant of bone fragility, it 
doesn’t provide a sufficient prediction of fracture risk (estimated between 60% and 70%) 
and it appears necessary to develop new methods for bone strength evaluation.  
Bone quality changes that occur during aging and osteoporosis are receiving increasing 
interest. Among bone quality factors, the role of bone micro-architecture which refers 
essentially to the organization of the trabecular network has been widely demonstrated.  
The quantification of bone micro-architecture should make possible to improve the 
prediction of bone mechanical resistance. Although bone architecture was conventionally 
evaluated by histomorphometry, new non-destructive techniques derived from medical 
imaging are increasingly used for the assessment of bone tissue.  
In this chapter, we shall concentrate on X-ray imaging techniques, and in particular on 3D X-
ray microtomography (micro-CT) which is progressively supplanting standard 
histomorphometry for the analysis of bone micro-architecture. This technique is non 
destructive, avoids sample preparation and provides three-dimensional images with a high 
and isotropic spatial resolution in the three spatial directions. 
Using synchrotron radiation (SR) coupled to micro-CT instead of standard X-ray beams 
possesses additional advantages in terms of image quality and signal to noise ratio. Thanks 
to the properties of synchrotron radiation, this modality enables to study simultaneously 
bone microstructure and bone mineralization.  
As clinicians expect more than images, objective measures of bone architecture and 
quantification techniques based on these images have been developed.  The availability of 



 Theory and Applications of CT Imaging and Analysis 

 

232 

Naito. 2009. Dual-energy direct bone removal CT angiography for evaluation of 
intracranial aneurysm or stenosis: comparison with conventional digital subtraction 
angiography. European Radiology 19, n°. 4 (Avril): 1019-1024. doi:10.1007/s00330-
008-1213-5. 

Wintermark, M, R Chiolero, G Van Melle, J P Revelly, F Porchet, L Regli, P Maeder, R Meuli, 
et P Schnyder. 2006. Cerebral vascular autoregulation assessed by perfusion-CT in 
severe head trauma patients. Journal of Neuroradiology. Journal De Neuroradiologie 33, 
n°. 1 (Février): 27-37. 

Wintermark, M, N U Ko, W S Smith, S Liu, R T Higashida, et W P Dillon. 2006. Vasospasm 
after subarachnoid hemorrhage: utility of perfusion CT and CT angiography on 
diagnosis and management. AJNR. American Journal of Neuroradiology 27, n°. 1 
(Janvier): 26-34. 

Wintermark, Max, William P Dillon, Wade S Smith, Benison C Lau, Saadia Chaudhary, 
Songling Liu, Melissa Yu, et al. 2008. Visual grading system for vasospasm based 
on perfusion CT imaging: comparisons with conventional angiography and 
quantitative perfusion CT. Cerebrovascular Diseases (Basel, Switzerland) 26, n°. 2: 163-
170. doi:10.1159/000139664. 

Wintermark, Max, Adam E Flanders, Birgitta Velthuis, Reto Meuli, Maarten van Leeuwen, 
Dorit Goldsher, Carissa Pineda, et al. 2006. Perfusion-CT assessment of infarct core 
and penumbra: receiver operating characteristic curve analysis in 130 patients 
suspected of acute hemispheric stroke. Stroke; a Journal of Cerebral Circulation 37, n°. 
4 (Avril): 979-985. doi:10.1161/01.STR.0000209238.61459.39. 

Wintermark, Max, Marc Reichhart, Jean-Philippe Thiran, Philippe Maeder, Marc Chalaron, 
Pierre Schnyder, Julien Bogousslavsky, et Reto Meuli. 2002. Prognostic accuracy of 
cerebral blood flow measurement by perfusion computed tomography, at the time 
of emergency room admission, in acute stroke patients. Annals of Neurology 51, n°. 4 
(Avril): 417-432. 

Zaro-Weber, Olivier, Walter Moeller-Hartmann, Wolf-Dieter Heiss, et Jan Sobesky. 2009. 
The performance of MRI-based cerebral blood flow measurements in acute and 
subacute stroke compared with 15O-water positron emission tomography: 
identification of penumbral flow. Stroke; a Journal of Cerebral Circulation 40, n°. 7 
(Juillet): 2413-2421. doi:10.1161/STROKEAHA.108.540914. 

 

14 

Synchrotron Radiation Micro-CT 
Imaging of Bone Tissue 

Zsolt-Andrei Peter1 and Françoise Peyrin2,3 
1Université Paris Ouest Nanterre La Défense, IUT de Ville d'Avray, Département GTE 

2Creatis, CNRS UMR 5220; INSERM U630; Université de Lyon; INSA Lyon 
3European Synchrotron Radiation Facility 

 France 

1. Introduction     
The evaluation of bone fragility remains an open question that is all the more important 
given that the prevalence of osteoporosis is increasing in industrial countries with the 
ageing of the population and its greater sedentarity. This disease, which affects one in three 
menopausal women, is responsible of fractures and vertebral compression that can lead to 
invalidity. Osteoporosis is a “silent disease”: 40% of women and 13% of men after 50 years 
old are concerned with and 24% of aged patients die one year after a hip fracture. Thus this 
disease represents a major cost for public health. 
The diagnosis of bone fragility and the associated therapeutic decision are currently based 
on the measurement of bone mineral density (BMD) using dual X-ray absorptiometry (DXA) 
techniques. However, although BMD is an important determinant of bone fragility, it 
doesn’t provide a sufficient prediction of fracture risk (estimated between 60% and 70%) 
and it appears necessary to develop new methods for bone strength evaluation.  
Bone quality changes that occur during aging and osteoporosis are receiving increasing 
interest. Among bone quality factors, the role of bone micro-architecture which refers 
essentially to the organization of the trabecular network has been widely demonstrated.  
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As clinicians expect more than images, objective measures of bone architecture and 
quantification techniques based on these images have been developed.  The availability of 
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3D micro-CT images makes it possible to measure model independent parameters of bone 
micro-architecture, and thus to obtain reliable information on the geometry and topology of 
the bone structures as well as its connectivity, orientation, and anisotropy. 
In the following we shall first present basic notions in bony biology. Then we shall briefly 
describe the evolution of bone imaging by means of X-ray based techniques, and detail the 
powerful synchrotron radiation micro-CT tool for imaging bone tissue. We shall then 
present image processing techniques to extract quantitative measurement from micro-CT 
images. After addressing the segmentation of bone from background and the separation of 
trabecular from cortical bone, we shall review specific methods to analyze trabecular and 
cortical bone. On the one hand, methods allowing the morphometric and topologic 
quantification of the trabecular network will be presented. On the other hand, new methods 
allowing the quantification of cortical bone from SR micro-CT images will be described. 
Then, examples of applications of SR micro-CT in bone research will be reviewed. We shall 
then conclude by some perspectives opened by this modality for the investigation of bone 
tissue. 

2. Bone tissue 
Bone achieves several functions in the organism; it has a multiscale structure exhibiting 
different levels of organization. At the microstructural scale, it is possible to distinguish 
cortical and cancellous (trabecular) bone being, respectively, a dense external shell and a 
porous inner material made of thin trabeculae (hundred of micrometers). Figure 1 a) 
illustrates a 3D SR micro-CT image of a mice tibia bone obtained by our group at the ESRF 
(voxel size : 5µm) with a zoom on the cortical (b) and trabecular (c) structures.  
The trabecular or spongy bone constitutes 70% of the axial (or central) skeleton in humans, 
and can be seen as a honeycomb of vertical and horizontal bars called trabeculae. It is within 
this region that human red marrow is almost exclusively located.  
The cortical or compact bone constitutes 80% of the total human skeleton, located primarily 
in the peripheral skeleton. It plays a major role in bone strength and bone fragility depends 
on its micro-structure. Human cortical bone is mainly organized in osteons and includes a 
complex network of canals: the mainly longitudinally oriented Havers canals and 
perpendicular to it, the Volkmann canals. 
A fundamental process in bone biology is remodeling which replaces old bones with new 
one and allows bone to adapt its properties to mechanical constraints. All along our life, 
bone is constantly remodeled, which means that it is sequentially resorbed and 
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and accordingly bone remodeling has a greater effect on trabecular bone because it has an 
annual turnover rate of about 25% in trabecular and 2-3% in cortical bone. After bone 
reconstruction, its mineral concentration in localized regions increases progressively. Thus 
bone tissue can be seen as an arrangement of bone modeling units (BMU) with different 
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At the cellular scale, bone tissue includes micrometric or submicrometric porosities such as 
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If the general organization of bone microstructure is well described in an anatomy 
handbook, its particular organization for a given bone may vary with aging, disease, or 
therapy. The main particularity of bone as a material is to be able to adapt itself to 
mechanical constraints. This adaptation is the consequence of complex biological processes 
which are not fully elucidated but which result in modifications at all levels, from the 
arrangement of mineralized particles to that of its micro and macro structure. 
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Among the different means of investigating bone, imaging techniques may provide various 
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examine the ultra-structural level and a nanometric resolution is required to get information 
about the crystalline structure. 

3. X-ray based imaging techniques of bone 
X-ray radiography is the oldest and simplest medical imaging technique. Although it does 
not directly produce a three-dimensional image of bone structure, different groups have 
suggested coupling it with texture analysis techniques to assess bone architecture (Cortet, B. 
et al., 1995). Research in this area involves the optimization of radiographic imaging 
together with texture analysis. When using flat panel detectors, the choice of spatial 
resolution has been shown to be a key issue. Texture analysis consists in extracting 
characteristic parameters of the arrangement of more or less regular patterns that constitute 
the bone image. Fractal approaches have been particularly exploited (Benhamou, C.L. et al., 
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2001), but other statistical or structural approaches are also appropriate (Apostol, L. et al., 
2006). Nevertheless these techniques have inherent limitations since they only allow 
studying 2D projections of the 3D bone microstructure. 
X-ray Computerized Tomography (CT) avoids the overlay problem encountered in 
radiography by providing slices within the structure. Since its discovery, the technology of 
X-ray CT has considerably evolved and recent spiral scanners are well suited to the 
acquisition of fast serial sections. CT and particularly Quantitative CT (QCT) are 
increasingly used to measure BMD since it measures a volumetric density instead of an areal 
density as in standard DXA (Engelke, K. et al., 2009). CT has also been proposed to quantify 
in vivo trabecular texture to evaluate osteoporosis (Chevalier, F. et al., 1992), (Laval-Jeantet, 
A.M. et al., 1993), (Mundinger, A. et al., 1993). The typical spatial resolutions vary between 
300 µm and 500 µm in the cutting plane for a slice thickness which is generally between 1 
mm and 2 mm. The partial volume effect in these images is important given the size of the 
trabeculae (estimated at a few hundred micrometers) compared to the spatial resolution. It is 
manifested by the disappearance of the finest trabeculae or the grouping of the closest 
trabeculae, and can only provide indicators (Bousson, V. et al., 2000), (Bousson, V. et al., 
2001). New peripheral CT systems such as the Xtreme C (from Scanco) can now provide 3D 
images of the bone micro-architecture at the human extremities (tibia or radius) at very high 
spatial resolution (~100 µm). 
Even higher spatial resolution can be achieved in vitro with 3D microtomography (micro-
CT) for the three-dimensional analysis of bone microarchitecture. A pioneer work in this 
area was that of Feldkamp (Feldkamp, L.A. et al., 1989) who was the first to develop a cone-
beam micro-CT to acquire three-dimensional images of the bone with an isotropic spatial 
resolution of 70 µm. That technique possesses several advantages over histomorphometry: 
first, it is non-destructive, thus it does not compromise the sample for other testing methods 
(for instance biomechanical testing) and then it provides a 3D characterization able to render 
the complex organization of the bone tissue. This technique has received a considerable 
success and many commercial cone-beam micro-CT systems are now available for the 
analysis of bone samples (Cooper, D.M. et al., 2006).  
Micro-CT can be improved by using X-ray beams extracted from synchrotron radiation. In 
fact, synchrotron sources permit to use a monochromatic X-ray beam while maintaining a 
high flux. Thus Synchrotron Radiation (SR) micro-CT provides three-dimensional images of 
bone structure at high or very high resolution of a few micrometers in relatively short 
exposure times. The feasibility of three-dimensional synchrotron microtomography to image 
bone samples was first demonstrated by Engelke (Engelke, K. et al., 1989). Bonse (Bonse, U. 
et al., 1994) presented three-dimensional images of iliac crest biopsies with a cubic voxel size 
of 8 µm. Kinney showed the possibility of acquiring in vivo three-dimensional synchrotron 
microtomography on rats at 9 μm (Kinney, J.H. et al., 1995). A three-dimensional 
synchrotron microtomography was developed at the European Synchrotron Radiation 
Facility (ESRF) in Grenoble (France), to study bone architecture (Salome, M. et al., 1999), and 
will be described in the following section. 

4. Synchrotron Radiation (SR) micro-CT imaging technique 
In this section we will briefly present the physical properties of the synchrotron radiation 
sources and the major advantages of coupling it to micro-CT. In particular, we will describe 
the SR micro-CT setup available at the ESRF, on beamline ID19, which is very well adapted 
to image bone tissue. 
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4.1 Synchrotron radiation sources 
Electromagnetic waves are emitted when a charged particle is submitted to acceleration. In a 
circular accelerator such as a synchrotron or a storage ring, electrons are deviated by 
magnetic fields. This deviation is due to the radial force which attracts the electrons towards 
the center or the ring, and we call “synchrotron radiation” the light emitted by these 
electrons. Its wide spectrum reaches the X-ray range, it has a very high intensity and a 
continuous spectrum, spanning the whole range from infra-red (wavelength between 2.5 to 
25μm) to X-rays (wavelength between 0.1 to 3Å), which is reached only when the energy of 
the electrons is high enough (of the order of several billion electronvolts - GeV). This wide 
range of wavelengths will allow studying different properties of materials at different scales 
and tiny features, e.g. bonds in molecules, nanoscale objects etc., but also lets to follow for 
example chemical reactions on a very short time scale. 
The storage ring in a synchrotron facility includes different types of magnets and insertion 
devices connected to the beamline. Beamlines are located all around the storage ring and are 
optimized for a given technique. 
The most important advantage of synchrotron radiation over a laboratory X-ray source is its 
brilliance. A synchrotron source like the ESRF (Figure 2 a)) has a brilliance that is more than 
a billion times higher than a laboratory source. It belongs to third generation sources, like 
APS (Chicago, USA) and Spring’8 (Himeji, Japan). The Sincrotrone Trieste (Trieste, Italy), 
SLS (Zürich, Switzerland), ALS (Berkeley, USA), SOLEIL (Orsay, France) also belong to 
third generation sources but have a lower critical energy. 

4.2 SR micro-CT setup  
The use of synchrotron X-rays compared to laboratory X-ray sources has several advantages 
in micro-CT. A first major property is the very high intensity of the X-ray beam, which 
allows improving the signal to noise ratio (SNR) in the images while reducing acquisition 
times. In 3D CT, the necessary number of photons is proportional to the fourth power of the 
voxel size to keep the same noise level, and then the high photon flux permits 
measurements at high spatial resolution. A second major property offered by synchrotron 
sources is the possibility to perform tomography with a monochromatic X-ray beam for a 
selected energy. Monochromaticity is a basic assumption in the theory of tomographic 
reconstruction which avoids beam hardening artifacts that can occur with a polychromatic 
standard X-ray tube. On a SR micro-CT setiup, the energy of the X-ray beam is tunable, and 
can be optimized for a given sample or a series of samples. Finally, unlike in most 
commercialized system using cone-beam sources, it is possible to implement parallel beam 
acquisition. This mode of acquisition has the advantage to allow exact tomographic 
reconstruction and thus to avoid typical cone-beam artefacts with conventional systems.  
In three-dimensional (3D) SR micro-CT, hundreds of two-dimensional (2D) projection 
radiographs of the specimen are taken at several different angles. The accuracy of the CT 
image is dependent on the number of parallel beam projections and the number of data 
points in each projection. Each radiograph is a projection of the linear absorption 
distribution in the sample along the direction of X-ray beam onto the plane perpendicular to 
the direction of the X-ray beam propagation. Thus, SR micro-CT images represent maps of 
the linear absorption coefficient within the sample for a given energy.  
An important limitation in high resolution micro-CT, which is inherent to the principle of 
CT, is the limited size of the sample. An important issue is the choice of spatial resolution 
versus overall sample size. Indeed, since the number of pixels of the detector is fixed, the 



 Theory and Applications of CT Imaging and Analysis 

 

236 

2001), but other statistical or structural approaches are also appropriate (Apostol, L. et al., 
2006). Nevertheless these techniques have inherent limitations since they only allow 
studying 2D projections of the 3D bone microstructure. 
X-ray Computerized Tomography (CT) avoids the overlay problem encountered in 
radiography by providing slices within the structure. Since its discovery, the technology of 
X-ray CT has considerably evolved and recent spiral scanners are well suited to the 
acquisition of fast serial sections. CT and particularly Quantitative CT (QCT) are 
increasingly used to measure BMD since it measures a volumetric density instead of an areal 
density as in standard DXA (Engelke, K. et al., 2009). CT has also been proposed to quantify 
in vivo trabecular texture to evaluate osteoporosis (Chevalier, F. et al., 1992), (Laval-Jeantet, 
A.M. et al., 1993), (Mundinger, A. et al., 1993). The typical spatial resolutions vary between 
300 µm and 500 µm in the cutting plane for a slice thickness which is generally between 1 
mm and 2 mm. The partial volume effect in these images is important given the size of the 
trabeculae (estimated at a few hundred micrometers) compared to the spatial resolution. It is 
manifested by the disappearance of the finest trabeculae or the grouping of the closest 
trabeculae, and can only provide indicators (Bousson, V. et al., 2000), (Bousson, V. et al., 
2001). New peripheral CT systems such as the Xtreme C (from Scanco) can now provide 3D 
images of the bone micro-architecture at the human extremities (tibia or radius) at very high 
spatial resolution (~100 µm). 
Even higher spatial resolution can be achieved in vitro with 3D microtomography (micro-
CT) for the three-dimensional analysis of bone microarchitecture. A pioneer work in this 
area was that of Feldkamp (Feldkamp, L.A. et al., 1989) who was the first to develop a cone-
beam micro-CT to acquire three-dimensional images of the bone with an isotropic spatial 
resolution of 70 µm. That technique possesses several advantages over histomorphometry: 
first, it is non-destructive, thus it does not compromise the sample for other testing methods 
(for instance biomechanical testing) and then it provides a 3D characterization able to render 
the complex organization of the bone tissue. This technique has received a considerable 
success and many commercial cone-beam micro-CT systems are now available for the 
analysis of bone samples (Cooper, D.M. et al., 2006).  
Micro-CT can be improved by using X-ray beams extracted from synchrotron radiation. In 
fact, synchrotron sources permit to use a monochromatic X-ray beam while maintaining a 
high flux. Thus Synchrotron Radiation (SR) micro-CT provides three-dimensional images of 
bone structure at high or very high resolution of a few micrometers in relatively short 
exposure times. The feasibility of three-dimensional synchrotron microtomography to image 
bone samples was first demonstrated by Engelke (Engelke, K. et al., 1989). Bonse (Bonse, U. 
et al., 1994) presented three-dimensional images of iliac crest biopsies with a cubic voxel size 
of 8 µm. Kinney showed the possibility of acquiring in vivo three-dimensional synchrotron 
microtomography on rats at 9 μm (Kinney, J.H. et al., 1995). A three-dimensional 
synchrotron microtomography was developed at the European Synchrotron Radiation 
Facility (ESRF) in Grenoble (France), to study bone architecture (Salome, M. et al., 1999), and 
will be described in the following section. 

4. Synchrotron Radiation (SR) micro-CT imaging technique 
In this section we will briefly present the physical properties of the synchrotron radiation 
sources and the major advantages of coupling it to micro-CT. In particular, we will describe 
the SR micro-CT setup available at the ESRF, on beamline ID19, which is very well adapted 
to image bone tissue. 

Synchrotron Radiation Micro-CT Imaging of Bone Tissue   

 

237 

4.1 Synchrotron radiation sources 
Electromagnetic waves are emitted when a charged particle is submitted to acceleration. In a 
circular accelerator such as a synchrotron or a storage ring, electrons are deviated by 
magnetic fields. This deviation is due to the radial force which attracts the electrons towards 
the center or the ring, and we call “synchrotron radiation” the light emitted by these 
electrons. Its wide spectrum reaches the X-ray range, it has a very high intensity and a 
continuous spectrum, spanning the whole range from infra-red (wavelength between 2.5 to 
25μm) to X-rays (wavelength between 0.1 to 3Å), which is reached only when the energy of 
the electrons is high enough (of the order of several billion electronvolts - GeV). This wide 
range of wavelengths will allow studying different properties of materials at different scales 
and tiny features, e.g. bonds in molecules, nanoscale objects etc., but also lets to follow for 
example chemical reactions on a very short time scale. 
The storage ring in a synchrotron facility includes different types of magnets and insertion 
devices connected to the beamline. Beamlines are located all around the storage ring and are 
optimized for a given technique. 
The most important advantage of synchrotron radiation over a laboratory X-ray source is its 
brilliance. A synchrotron source like the ESRF (Figure 2 a)) has a brilliance that is more than 
a billion times higher than a laboratory source. It belongs to third generation sources, like 
APS (Chicago, USA) and Spring’8 (Himeji, Japan). The Sincrotrone Trieste (Trieste, Italy), 
SLS (Zürich, Switzerland), ALS (Berkeley, USA), SOLEIL (Orsay, France) also belong to 
third generation sources but have a lower critical energy. 

4.2 SR micro-CT setup  
The use of synchrotron X-rays compared to laboratory X-ray sources has several advantages 
in micro-CT. A first major property is the very high intensity of the X-ray beam, which 
allows improving the signal to noise ratio (SNR) in the images while reducing acquisition 
times. In 3D CT, the necessary number of photons is proportional to the fourth power of the 
voxel size to keep the same noise level, and then the high photon flux permits 
measurements at high spatial resolution. A second major property offered by synchrotron 
sources is the possibility to perform tomography with a monochromatic X-ray beam for a 
selected energy. Monochromaticity is a basic assumption in the theory of tomographic 
reconstruction which avoids beam hardening artifacts that can occur with a polychromatic 
standard X-ray tube. On a SR micro-CT setiup, the energy of the X-ray beam is tunable, and 
can be optimized for a given sample or a series of samples. Finally, unlike in most 
commercialized system using cone-beam sources, it is possible to implement parallel beam 
acquisition. This mode of acquisition has the advantage to allow exact tomographic 
reconstruction and thus to avoid typical cone-beam artefacts with conventional systems.  
In three-dimensional (3D) SR micro-CT, hundreds of two-dimensional (2D) projection 
radiographs of the specimen are taken at several different angles. The accuracy of the CT 
image is dependent on the number of parallel beam projections and the number of data 
points in each projection. Each radiograph is a projection of the linear absorption 
distribution in the sample along the direction of X-ray beam onto the plane perpendicular to 
the direction of the X-ray beam propagation. Thus, SR micro-CT images represent maps of 
the linear absorption coefficient within the sample for a given energy.  
An important limitation in high resolution micro-CT, which is inherent to the principle of 
CT, is the limited size of the sample. An important issue is the choice of spatial resolution 
versus overall sample size. Indeed, since the number of pixels of the detector is fixed, the 



 Theory and Applications of CT Imaging and Analysis 

 

238 

higher the spatial resolution, the smaller the field of view. Moreover, during data 
acquisition, the sample must completely fit into the field of view to avoid local tomography, 
compromising quantitative reconstruction. 
During data acquisition, a number of parameters have to be selected: energy of the X-ray 
beam, exposure time per projection, number of projection, number of frames. Ideally, the 
energy should be chosen such that the specimens absorb 85-90% of the incident radiation to 
obtain the best signal to noise ratio in the reconstructed image. In a homogeneous sample, 
absorbing 90% of the incident radiation means that the product between the sample 
thickness and the linear attenuation coefficient associated to the X-ray wavelength 
corresponds to 2.3. The exposure time and the number of projection will directly impact the 
signal to noise ratio in the reconstructed image. 
Throughout the acquisition, the sample is sequentially rotated over a total angular range of 
180. Typically, several hundreds equiangular radiographic images of the sample are 
acquired (corresponding to approximately 8-16 GBytes of data per sample with a 2048x2048 
detector). In addition, dark current and reference images are recorded with the same 
exposure time at different moments of each scan, to perform flat field corrections. This set of 
2D images is then processed through a tomographic reconstruction algorithm to get the 
three-dimensional image of the sample. Tomographic image reconstruction consists in 
solving an inverse problem to estimate an image from its line integrals on different 
directions, in 2D, and the problem is theoretically equivalent to the inversion of the Radon 
transform of the image. In practice, there are two major classes of reconstruction algorithms 
that use fundamentally different approaches to accomplish this conversion: the first are the 
transform-based methods using analytic inversion formulae, and the other are series 
expansion methods based on linear algebra. The conventional method used in practice is the 
Filtered backprojection algorithm (FBP) which belongs to the first class of methods. 
An SR micro-CT setup has been implemented on beamline ID19, one of the two long 
beamlines (145 m) of the ESRF (Salome, M. et al., 1999). The experimental scheme and a 
photo of this particular micro-CT setup are represented on Figure 2 b) and c).  
  

 
Fig. 2. a) the ESRF in Grenoble; b) and c) the SR micro-CT setup at the ID19 beamline (ESRF) 

b) 
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c)
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A wide SR parallel beam (up to 40mm×14 mm) with an energy ranging from 10 to 80 keV is 
available. A double crystal monochromator sets to diffract in the symmetrical Bragg 
reflection geometry, selects the appropriate energy from the white SR beam emerging from 
the storage ring. The sample is mounted on a goniometer including high resolution 
translations and rotations to position the sample and to rotate it in the beam. A two-
dimensional detector records the beam transmitted through the sample. The distance 
between the sample and detector must be as small as possible to avoid phase contrast effects 
due to the coherence of the beam (Cloetens, P. et al., 1997). The two-dimensional detector is 
based on a two-dimensional charge coupled device (CCD) Fast REadout LOw Noise 
(FRELON) camera developed by the ESRF detector group (2048 × 2048 CCD chip, 14 bit 
dynamic range) (Labiche, J.-C. et al., 2007). This camera records the light image converted 
from a scintillator screen, after optical magnification. The optical system is modular and can 
be used with different objectives to adapt the field of view and the spatial resolution to the 
sample under investigation. Typically, pixel sizes of 10.13 µm, 6.65 μm, down to 0.28 μm may 
be used (Weitkamp, T. et al., 2010). 

4.3 Comparison between micro-CT and SR micro-CT in bone research 
As already mentioned, SR micro-CT presents a number of advantages over standard micro-
CT because it allows quantitative imaging with high SNR in smaller acquisition times. SR 
micro-CT is thus often used as a reference technique to evaluate emerging imaging 
modalities. 
SR and standard micro-CT have previously been compared to assess trabecular bone 
microarchitecture in a large subset of human bone specimens (Chappard, C. et al., 2006). In 
that work SR micro-CT images with a voxel size of 10.13 µm were reconstructed from 900 
2D radiographic projections (with angular step of 0.2°), while standard micro-CT images 
with a voxel size of 10.77 µm were reconstructed from 205, 413 and 825 projections obtained 
using angular steps of 0.9°, 0.45° and 0.23°, respectively. The results show that streak-like 
artifacts occurred with standard micro-CT as a result of reconstruction artifacts, geometrical 
blurring, and beam hardening. These streak-like artifacts appear on histograms as an 
intermediate grey level between bone and background and therefore tend to reduce image 
contrast. Although systematic differences were noted between SR micro-CT and standard 
micro-CT images, correlations between the techniques were high and the differences would 
generally not change the discrimination between the studied groups. In conclusion, 
standard micro-CT was shown to provide a reliable 3D assessment of human bone when 
working with 0.23° or 0.45° rotation step, but not with 0.9° rotation step, thus highlighting 
the importance of acquisition conditions in practical study.  
Another fundamental property of SR micro-CT in bone studies is the possibility to observe 
differences in mineralization within the bone phase and therefore to access another factor of 
bone quality. The differences observed in gray levels are related to various stages of 
mineralization associated with bone remodeling. The accuracy of the system was evaluated 
by using solutions mimicking hydroxyapatite, the main component of bone, at different 
known concentrations (Nuzzo, S. et al., 2001). This property is related to the 
monochromaticity of the beam but also to the high SNR of SR micro-CT images, and makes 
it possible to quantify the local degree of mineralization in bones. The method was validated 
and compared with quantitative microradiography (Nuzzo, S. et al., 2002b). It is therefore 
possible to quantify the degree of mineralization of bone in three-dimensions 
simultaneously to the bone architecture. This technique was applied to study the effects of a 
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sample under investigation. Typically, pixel sizes of 10.13 µm, 6.65 μm, down to 0.28 μm may 
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modalities. 
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contrast. Although systematic differences were noted between SR micro-CT and standard 
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generally not change the discrimination between the studied groups. In conclusion, 
standard micro-CT was shown to provide a reliable 3D assessment of human bone when 
working with 0.23° or 0.45° rotation step, but not with 0.9° rotation step, thus highlighting 
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Another fundamental property of SR micro-CT in bone studies is the possibility to observe 
differences in mineralization within the bone phase and therefore to access another factor of 
bone quality. The differences observed in gray levels are related to various stages of 
mineralization associated with bone remodeling. The accuracy of the system was evaluated 
by using solutions mimicking hydroxyapatite, the main component of bone, at different 
known concentrations (Nuzzo, S. et al., 2001). This property is related to the 
monochromaticity of the beam but also to the high SNR of SR micro-CT images, and makes 
it possible to quantify the local degree of mineralization in bones. The method was validated 
and compared with quantitative microradiography (Nuzzo, S. et al., 2002b). It is therefore 
possible to quantify the degree of mineralization of bone in three-dimensions 
simultaneously to the bone architecture. This technique was applied to study the effects of a 
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treatment for osteoporosis with etidronate on paired iliac crest biopsies (Nuzzo, S. et al., 
2002a).  

5. 3D analysis of SR micro-CT bone images 
After tomographic reconstruction, 3D renderings of obtained data may be made by 
electronically stacking up the slices. These 3D volumes may be also sectioned in arbitrary 
ways, zoomed and rotated to better locate individual details. While the 2D slice images and 
3D renderings are very useful for making qualitative observations of an internal concrete 
structure, the real benefit is the quantitative information that can be extracted from the 3D 
datasets. 
The development of new 3D image analysis techniques is mandatory to fully exploit the 
wealth of information provided by SR micro-CT. We will thus review original image 
processing methods which are intimately related to the particular features of the available 
images. In this respect, the segmentation of the phases of interest is crucial since it will 
determine the accuracy of any quantitative analysis. The analysis of huge 3D images 
(between 2 and 16 GBytes per sample) involves the additional need to develop fast and 
automatic 3D image processing algorithms in order to study a statistically significant 
amount of data. 

5.1 Segmentation of bone from background 
With SR micro-CT, the segmentation of bone from background is much easier than with 
standard micro-CT due to the high SNR and high contrast in the image. In addition, parallel 
beam SR micro-CT avoids cone beam artifacts encountered in most standard micro-CT 
systems and resulting in various blurring effects. Thus it results that the gray level 
histogram of a SR micro-CT is typically bimodal, with two well defined peaks, one 
corresponding to background and the other to bone. Note that this property is deteriorating 
rather quickly with the spatial resolution of the image. 
The segmentation of the bone phase can thus be appropriately done by simple thresholding 
based on standard techniques such as Otsu method. In SR micro-CT, the choice of the 
threshold will be less sensitive than in standard micro-CT, where this method is known to 
generate isolated particles and disconnection in the trabecular network. When processing a 
whole series of samples acquired in the same conditions, it is generally better to use the 
same threshold for all samples. 

5.2 Separation of cortical and trabecular bone in a composite sample  
To be biologically relevant, the extraction of quantitative parameters must be done 
separately on the trabecular and cortical envelops. This task cannot be simply performed by 
thresholding gray levels since both bone structures are in the same range of attenuation.  
In previous work, we proposed an automatic method to separate both cortical and 
trabecular bone in those bone samples that contained the two components (Martín-Badosa, 
E. et al., 2003b). To this aim, we used the fact that the cortical envelope, as being the external 
shell surrounding the trabecular bone, is much more compact than the trabecular bone. 
Thus, a customized algorithm for identification of the cortical envelope based on 
geometrical considerations was developed. The process was mainly based on an iterative 
filling procedure. The exterior region was scanned until bone was reached and filled with a 
constant gray level value. Then, the same procedure was used to label the cortical region 
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with a different gray-level value, starting from the exterior cortical border and stopping 
when darker regions were reached.  

5.3 3D analysis of trabecular bone 
5.3.1 Quantification of trabecular microarchitecture 
The typical analysis of trabecular bone involves the computation of quantitative 
morphometric parameters calculated from the binarized images.  
A first possible approach is to reproduce those parameters which are conventionally used in 
histomorphometry and are calculated slice by slice on the volume data (Peyrin, F. et al., 
2000). This method, although based on a two-dimensional calculus, provides parameters 
which are measured throughout the volume and capture the variability of parameters both 
on the slice level and on the direction of analysis. 
A second approach is to use a 3D version of the mean intercept length (MIL) method (Hipp, 
J.A. & Simmons, C.A., 1997), which was initially proposed for 2D images. For random 
directions in 3D space, the number of intercepts of a set of parallel test lines with the bone 
structure is computed and normalized by the total length of test lines. Then, a number of 
morphometric parameters are derived from the MIL measurements based on the hypothesis 
that the bone network is organized in a parallel plate model (Parfitt, A.M. et al., 1983): 
Trabecular Bone Volume fraction (BV/TV in %, where TV stands for total bone sample 
volume), Bone Surface on Bone Volume ratio (BS/BV in mm-1), Trabecular Thickness (Tb.Th 
in mm), Trabecular Number (Tb.N in mm-1), and Trabecular Separation (Tb.Sp in mm). The 
nomenclature used for quantifying bone microarchitecture in trabecular (and cortical) bone 
has been standardized in a reference paper of Parfitt (Parfitt, A.M. et al., 1987). 
However, these so-called derived architectural parameters have the drawback to rely on a 
geometrical model of bone structures which is obviously not completely appropriate in all 
situations. This is particularly the case when comparing normal and pathological data 
since it may not be known if observed differences are real or are due to an inappropriate 
model. 
Fortunately, the availability of 3D images makes it possible to avoid such assumptions, 
allowing the proposal of new model independent morphometric parameters. 
A definition of local thickness on three-dimensional images proposed in the work 
(Hildebrand, T. & Rüegsegger, P., 1997a) evaluates the thickness at any point of the bone 
structure, which is a direct or model-independent definition requiring no prior assumption. 
A theoretical local thickness is defined at each point of the volume as the diameter of the 
maximal sphere centered in that point. We proposed a method for computing the local 
thickness of 3D discrete images based on discrete geometry (Martín-Badosa, E. et al., 2003b). 
A medial axis of the bone structure, defined by the centers of maximal balls, is derived from 
the local maxima of a 3D discrete distance map. The discrete thickness map is then obtained 
by propagating the sorted values of the diameter of the maximal balls to the entire balls. We 
typically use a 3D chamfer distance which provides a good approximation of the Euclidian 
distance (Apostol, L. et al., 2006). Figure 3 a) shows a 3D rendering of a human trabecular 
bone (voxel size : 10 µm) and its associated thickness map (Figure 3 b)). This method 
provides a thickness value at each point of the bone volume, and thus makes available the 
distribution of thickness over the entire volume. Statistical results such as the histogram of 
thickness, and the mean, median, and standard deviation of the distribution can be 
computed. 
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beam SR micro-CT avoids cone beam artifacts encountered in most standard micro-CT 
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based on standard techniques such as Otsu method. In SR micro-CT, the choice of the 
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generate isolated particles and disconnection in the trabecular network. When processing a 
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separately on the trabecular and cortical envelops. This task cannot be simply performed by 
thresholding gray levels since both bone structures are in the same range of attenuation.  
In previous work, we proposed an automatic method to separate both cortical and 
trabecular bone in those bone samples that contained the two components (Martín-Badosa, 
E. et al., 2003b). To this aim, we used the fact that the cortical envelope, as being the external 
shell surrounding the trabecular bone, is much more compact than the trabecular bone. 
Thus, a customized algorithm for identification of the cortical envelope based on 
geometrical considerations was developed. The process was mainly based on an iterative 
filling procedure. The exterior region was scanned until bone was reached and filled with a 
constant gray level value. Then, the same procedure was used to label the cortical region 
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A first possible approach is to reproduce those parameters which are conventionally used in 
histomorphometry and are calculated slice by slice on the volume data (Peyrin, F. et al., 
2000). This method, although based on a two-dimensional calculus, provides parameters 
which are measured throughout the volume and capture the variability of parameters both 
on the slice level and on the direction of analysis. 
A second approach is to use a 3D version of the mean intercept length (MIL) method (Hipp, 
J.A. & Simmons, C.A., 1997), which was initially proposed for 2D images. For random 
directions in 3D space, the number of intercepts of a set of parallel test lines with the bone 
structure is computed and normalized by the total length of test lines. Then, a number of 
morphometric parameters are derived from the MIL measurements based on the hypothesis 
that the bone network is organized in a parallel plate model (Parfitt, A.M. et al., 1983): 
Trabecular Bone Volume fraction (BV/TV in %, where TV stands for total bone sample 
volume), Bone Surface on Bone Volume ratio (BS/BV in mm-1), Trabecular Thickness (Tb.Th 
in mm), Trabecular Number (Tb.N in mm-1), and Trabecular Separation (Tb.Sp in mm). The 
nomenclature used for quantifying bone microarchitecture in trabecular (and cortical) bone 
has been standardized in a reference paper of Parfitt (Parfitt, A.M. et al., 1987). 
However, these so-called derived architectural parameters have the drawback to rely on a 
geometrical model of bone structures which is obviously not completely appropriate in all 
situations. This is particularly the case when comparing normal and pathological data 
since it may not be known if observed differences are real or are due to an inappropriate 
model. 
Fortunately, the availability of 3D images makes it possible to avoid such assumptions, 
allowing the proposal of new model independent morphometric parameters. 
A definition of local thickness on three-dimensional images proposed in the work 
(Hildebrand, T. & Rüegsegger, P., 1997a) evaluates the thickness at any point of the bone 
structure, which is a direct or model-independent definition requiring no prior assumption. 
A theoretical local thickness is defined at each point of the volume as the diameter of the 
maximal sphere centered in that point. We proposed a method for computing the local 
thickness of 3D discrete images based on discrete geometry (Martín-Badosa, E. et al., 2003b). 
A medial axis of the bone structure, defined by the centers of maximal balls, is derived from 
the local maxima of a 3D discrete distance map. The discrete thickness map is then obtained 
by propagating the sorted values of the diameter of the maximal balls to the entire balls. We 
typically use a 3D chamfer distance which provides a good approximation of the Euclidian 
distance (Apostol, L. et al., 2006). Figure 3 a) shows a 3D rendering of a human trabecular 
bone (voxel size : 10 µm) and its associated thickness map (Figure 3 b)). This method 
provides a thickness value at each point of the bone volume, and thus makes available the 
distribution of thickness over the entire volume. Statistical results such as the histogram of 
thickness, and the mean, median, and standard deviation of the distribution can be 
computed. 
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5.3.2 Topological and geometrical classification of the trabecular bone 
Three-dimensional images may also be used to get information on the orientation and 
anisotropy of the structure, as well as on the topology of the bone network (Martín-Badosa, 
E. et al., 2003b). Orientation and anisotropy may be obtained from the MIL method by fitting 
the points defined by each direction and the normalized number of intersections in this 
direction, by an ellipsoid in 3D space (Hipp, J.A. & Simmons, C.A., 1997). The degree of 
anisotropy (DA) is estimated by the ratio of the largest to the smallest axis value. The main 
orientation of the ellipsoid gives an estimate of the orientation of the structure. 
 

 

       
                                     (a)                                                                              (b) 

Fig. 3. a) 3D SR micro-CT image of a human trabecular bone volume; b) the associated 
thickness map 
 

In terms of topological parameters, the connectivity of the structure is often quantified using 
the number of Euler-Poincaré. A method for computing it on discrete three-dimensional 
images is described in the work of Odgaard (Odgaard, A. & Gundersen, H.J.G., 1993) and 
the result is often normalized to bone volume which is called Euler density. If the structure 
contains only one connected component, the Euler density decreases when the connectivity 
increases. Other studies have suggested the use of a skeleton to extract three-dimensional 
topological parameters, like the number of branches, number of connections (Pothuaud, L. 
et al., 2002). However, in three dimensions, there are different types of skeletons, wireframe 
or surface, and these methods have a high sensitivity to noise especially for high resolution 
images (Peyrin, F. et al., 1998b).  
The assessment of the type of trabecular structure as being plate-like or rod-like was 
introduced by Hildebrand with the Structure Model Index (SMI) (Hildebrand, T. & 
Rüegsegger, P., 1997b). This parameter was a major advance in the characterization of 
trabecular bone since it is known that with age or disease, there is conversion of plate 
trabeculae into rods. The SMI thus provides relevant information about the plateness or 
rodness of the structure. Technically, the SMI involves the computation of the bone surface 
and its derivative and is based on a model.  
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However, while the SMI is a global parameter, it can also be of interest to characterize 
locally the geometry of trabeculae ("plate"-like or "rod"-like). First works in this area were 
done by analyzing the skeleton of the image and applied to in vivo MRI images (Wehrli, 
F.W. et al., 2001). Nevertheless, this method was restricted to the analysis of the skeleton, 
which can be noisy when dealing with SR micro-CT images at high resolution. To overcome 
this problem, a new method was introduced in order to characterize locally all voxels of the 
3D image and not only the skeleton (Bonnassie, A. et al., 2003). This technique uses an 
original idea of making a local topological analysis in the neighbourhood of each point in 
order to classify the voxels of the bone structure (Peyrin, F. et al., 2007). This approach is 
based again on three–dimensional medial axis transformation for describing geometrical 
shapes in three-dimensional images. For 3D images, the medial axis, which is composed of 
both curves and medial surfaces, provides a simplified and reversible representation of 
structures. The local topological analysis method works in three main steps:  
1. the voxels of the medial axis are classified in four classes: boundary, branching, regular 

and arc points.  
2. the reversibility of the medial axis is used to propagate the classification to the whole 

object.  
3. the boundary points are eliminated. 
From this decomposition, it is possible to count the percentage of branch, plate and rod 
points in the bone volume, respectively denoted NV/BV, PV/BV, and RV/BV, as well as the 
thickness of each structure of interest (Peyrin, F. et al., 2010). As an illustration, Figure 4 
shows the application of this method to a trabecular bone volume obtained by SR micro-CT 
at the ESRF (voxel size : 10µm). The labelled volume is shown on Figure 4 b), and on the 
zoomed image one can see the highly reliable classification of the original volume’s voxels. 
 

 
Fig. 4. a) human trabecular bone;   b) local topological classification 

5.4 Analysis of cortical bone 
Although less studied than trabecular bone, the investigation of cortical bone is also raising 
increasing interest  The possibility offered by SR micro-CT to tune the energy higher than 
for trabecular bone is an important asset to get quantitative images of cortical bone. Figure 5 
a) shows the 3D rendering of a typical cortical bone sample imaged from SR micro-CT 
(voxel size : 10 µm), illustrating its compact structure compared to that of trabecular bone 
presented above. 



 Theory and Applications of CT Imaging and Analysis 

 

242 

5.3.2 Topological and geometrical classification of the trabecular bone 
Three-dimensional images may also be used to get information on the orientation and 
anisotropy of the structure, as well as on the topology of the bone network (Martín-Badosa, 
E. et al., 2003b). Orientation and anisotropy may be obtained from the MIL method by fitting 
the points defined by each direction and the normalized number of intersections in this 
direction, by an ellipsoid in 3D space (Hipp, J.A. & Simmons, C.A., 1997). The degree of 
anisotropy (DA) is estimated by the ratio of the largest to the smallest axis value. The main 
orientation of the ellipsoid gives an estimate of the orientation of the structure. 
 

 

       
                                     (a)                                                                              (b) 

Fig. 3. a) 3D SR micro-CT image of a human trabecular bone volume; b) the associated 
thickness map 
 

In terms of topological parameters, the connectivity of the structure is often quantified using 
the number of Euler-Poincaré. A method for computing it on discrete three-dimensional 
images is described in the work of Odgaard (Odgaard, A. & Gundersen, H.J.G., 1993) and 
the result is often normalized to bone volume which is called Euler density. If the structure 
contains only one connected component, the Euler density decreases when the connectivity 
increases. Other studies have suggested the use of a skeleton to extract three-dimensional 
topological parameters, like the number of branches, number of connections (Pothuaud, L. 
et al., 2002). However, in three dimensions, there are different types of skeletons, wireframe 
or surface, and these methods have a high sensitivity to noise especially for high resolution 
images (Peyrin, F. et al., 1998b).  
The assessment of the type of trabecular structure as being plate-like or rod-like was 
introduced by Hildebrand with the Structure Model Index (SMI) (Hildebrand, T. & 
Rüegsegger, P., 1997b). This parameter was a major advance in the characterization of 
trabecular bone since it is known that with age or disease, there is conversion of plate 
trabeculae into rods. The SMI thus provides relevant information about the plateness or 
rodness of the structure. Technically, the SMI involves the computation of the bone surface 
and its derivative and is based on a model.  

Synchrotron Radiation Micro-CT Imaging of Bone Tissue   

 

243 

However, while the SMI is a global parameter, it can also be of interest to characterize 
locally the geometry of trabeculae ("plate"-like or "rod"-like). First works in this area were 
done by analyzing the skeleton of the image and applied to in vivo MRI images (Wehrli, 
F.W. et al., 2001). Nevertheless, this method was restricted to the analysis of the skeleton, 
which can be noisy when dealing with SR micro-CT images at high resolution. To overcome 
this problem, a new method was introduced in order to characterize locally all voxels of the 
3D image and not only the skeleton (Bonnassie, A. et al., 2003). This technique uses an 
original idea of making a local topological analysis in the neighbourhood of each point in 
order to classify the voxels of the bone structure (Peyrin, F. et al., 2007). This approach is 
based again on three–dimensional medial axis transformation for describing geometrical 
shapes in three-dimensional images. For 3D images, the medial axis, which is composed of 
both curves and medial surfaces, provides a simplified and reversible representation of 
structures. The local topological analysis method works in three main steps:  
1. the voxels of the medial axis are classified in four classes: boundary, branching, regular 

and arc points.  
2. the reversibility of the medial axis is used to propagate the classification to the whole 

object.  
3. the boundary points are eliminated. 
From this decomposition, it is possible to count the percentage of branch, plate and rod 
points in the bone volume, respectively denoted NV/BV, PV/BV, and RV/BV, as well as the 
thickness of each structure of interest (Peyrin, F. et al., 2010). As an illustration, Figure 4 
shows the application of this method to a trabecular bone volume obtained by SR micro-CT 
at the ESRF (voxel size : 10µm). The labelled volume is shown on Figure 4 b), and on the 
zoomed image one can see the highly reliable classification of the original volume’s voxels. 
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5.4 Analysis of cortical bone 
Although less studied than trabecular bone, the investigation of cortical bone is also raising 
increasing interest  The possibility offered by SR micro-CT to tune the energy higher than 
for trabecular bone is an important asset to get quantitative images of cortical bone. Figure 5 
a) shows the 3D rendering of a typical cortical bone sample imaged from SR micro-CT 
(voxel size : 10 µm), illustrating its compact structure compared to that of trabecular bone 
presented above. 
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                                           (a)                                                                          (b) 

Fig. 5. a) 3D rendering of the cortical bone (6x6x6 mm3 sample) imaged with SR micro-CT 
(voxel size : 10 µm); b) porous network  of a) limited to 300 µm thickness corresponding to 
the arrangement of Havers and Volkman canals 

5.4.1 Extraction of the canal network from the cortical bone 
The filled cortical bone envelop, can typically be obtained by using mathematical 
morphology tools, including opening and closing operations (Bousson, V. et al., 2004). The 
pore network can be then easily segmented from the SR micro-CT image by subtracting the 
porous cortical volume to the cortical envelop, as demonstrated in Figure 5 b). 
As described in section 2, the pore network in cortical bone including the so-called Havers 
and Volkman canals is of great interest to characterize cortical bone. This network which is 
extremely dense can be characterized by using the same types of parameters than those used 
for the quantification of the trabecular bone network (see section 5.3.1). The porosity can be 
evaluated as the ratio of the pore volume to the filled cortical envelop (Cooper, D.M. et al., 
2007). 

5.4.2 Segmentation of remodeling regions 
Compared to standard micro-CT, we already pointed out that SR micro-CT has the ability to 
provide the mineral concentration in bone tissue, also called the degree of mineralization of 
bone (DMB). The quantification of the DMB provides important information about the 
metabolism of bone and is typically only studied by 2D methods.  
However, even if the Bone Mineral Units (BMUs) can be observed in the SR micro-CT slices 
(see Figure 6a)), their automatic detection is challenging since the contrast between osteons 
and interstitial bone may be very weak and close to the standard deviation of noise.  
So far, the quantification of ancient versus new bone from SR micro-CT images had only 
been addressed by simple thresholding (Borah, B. et al., 2006) and global parameters such as 
the mean and standard deviation calculated on the entire bone phase were used to 
characterize the DMB. Although this method may give an approximate value of the 
respective volume of the two phases, it is obviously not sufficient to identify each osteon.  

Synchrotron Radiation Micro-CT Imaging of Bone Tissue   

 

245 

In a previous work, we addressed this problem and proposed a segmentation scheme 
associated to a denoising process (Peter, Z. et al., 2008). While there are many general 
segmentation approaches which perform well in various applications, a number of them fail 
when they are used to separate low-contrast features. Several approaches, such as K-means 
or a region growing method using the energy model of Mumford and Shah (Dibos, F. & 
Koepfler, G., 2000) were tested to segment osteons. The later is based on the minimization of 
an energy term incorporating a constraint on the curvature. Although these methods 
seemed attractive, the results showed over-segmentations: false detections appeared in bone 
background and a remodeling zone corresponding to a physiological entity could be split in 
many sub-regions. Thus we designed a customized method based on a region growing 
segmentation scheme associated to a denoising process using wavelets. The first step of the 
method was to improve the signal to noise ratio of the image by using a denoising method 
which preserves high frequency features and contours. Then, we developed customized 
region growing methods, which use some prior biological knowledge and whose principles 
will be recalled in the following section.  

Denoising 
Despite their exceptional quality, SR micro-CT images are generally corrupted by photonic 
Poisson or Gaussian noise and ring artifacts, related to image formation process. These may 
influence to some extent the treatment, because the structures of interest are generally small 
and with low contrast. To avoid the degradation of the spatial resolution, a non linear 
denoising method is preferred. 
In this class, wavelet based denoising has been showed efficient in many applications 
(Mallat, S., 1997). Basically, the noisy image is transformed into the wavelet domain, then 
the wavelet coefficients are subjected to soft or hard thresholding, and in the last step the 
result is inverse-transformed. If W denote the wavelet transform (and w  the set of the 
wavelet coefficients), then the whole denoising process with a threshold t , amounts to a 
non-linear operator ηT  : 

 WWT tηη
1−=  (1) 

where ( ) ( )( )
+−= twwwt sgnη  for the soft thresholding, and ( ) { }twt ww >= 1η  for the hard 

thresholding.  
The application of this method yields some oscillations which are especially pronounced in 
the vicinity of discontinuities and rapid changes (Donoho, D. & Coifman, R. R., 1995). These 
“pseudo-Gibbs” oscillations are caused by the fact that only a subset of the full set of basis 
elements has been used for the reconstruction after the thresholding. In contrast to the 
classical Gibbs-phenomena associated with Fourier analysis, the “pseudo-Gibbs-
phenomena” are much better behaved, much better localized and much more moderate in 
oscillation; nevertheless they can yield incorrect results in the subsequent segmentation.  
These artifacts exhibited by denoising with traditional wavelet transforms are due to the 
lack of translation invariance of the wavelet basis. The main idea of the “second generation 
denoising” method, also called “translation invariant (TI) wavelet denoising”, proposed in 
(Donoho, D. & Coifman, R. R., 1995), is the following: for a range of shifts, one shifts the 
data, denoises the shifted data and then unshifts the denoised data. Doing this for each of a 
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Fig. 5. a) 3D rendering of the cortical bone (6x6x6 mm3 sample) imaged with SR micro-CT 
(voxel size : 10 µm); b) porous network  of a) limited to 300 µm thickness corresponding to 
the arrangement of Havers and Volkman canals 
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In a previous work, we addressed this problem and proposed a segmentation scheme 
associated to a denoising process (Peter, Z. et al., 2008). While there are many general 
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 WWT tηη
1−=  (1) 

where ( ) ( )( )
+−= twwwt sgnη  for the soft thresholding, and ( ) { }twt ww >= 1η  for the hard 

thresholding.  
The application of this method yields some oscillations which are especially pronounced in 
the vicinity of discontinuities and rapid changes (Donoho, D. & Coifman, R. R., 1995). These 
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denoising” method, also called “translation invariant (TI) wavelet denoising”, proposed in 
(Donoho, D. & Coifman, R. R., 1995), is the following: for a range of shifts, one shifts the 
data, denoises the shifted data and then unshifts the denoised data. Doing this for each of a 
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range of shifts, and averaging the several results so obtained, produces a reconstruction 
subject to far weaker Gibbs phenomena.  
For a signal ( )ntxt <≤0: , let hS  denote the circulant shift by Ν∈h , ( ) ( ) nhtth xxS mod+= . This 
operator is unitary, and hence invertible: ( ) 1−

− = hh SS . In term of operators, the idea of 
shifting to avoid artifacts is the following: given an analysis technique ηT , calculate the 
shifted version ηT~ , for a range H of shifts (all n  for instance) and average over the several 
results so obtained:  

 ( )( ) ( )( )( )xSTSAverSxT hhHhHhh ηη −∈∈ =;~ . (2) 

Hard thresholding combined with translation invariance give both good visual quantitative 
characteristics (Donoho, D. & Coifman, R. R., 1995).  

Segmentation 
Among the different possible approaches to image segmentation, we proposed to use a 
customized region growing taking into account biological prior information. According to 
bone physiology, osteons in cortical bone are located around pores and are relatively elliptic 
although their shapes may vary (see for instance the darker zones around the black pores on 
Figure 6 a) ). The method proceeds as follows. 
First, the original image (Figure 6 a)) is binarized using a threshold which enables to keep as 
much pores as possible (Figure 6 c)). The contours are detected by a simple gradient method 
and the exterior contour is eliminated. The pore contours (Figure 6 b) are then obtained and 
tracked to get closed and 1 pixel-thick contours. Then a connected component analysis is 
performed in order to label each pore contour. This image is then used to initialize the 
region growing process. The number of connected pore sets the number of regions in the 
image.  
The simple region growing method proceeds as follows. For each region, labeled by l , a 
neighbor pixel ( )yx,=x  is labeled in the region if : 

 )()()( llmI ασ<−x  (3) 

where )(xI  is the image gray level, )(lm  and )(lσ  are the current mean and standard 
deviation of the region, and α is a parameter. The direct application of this algorithm gives 
poor results, but using denoising schemes like TI wavelets prior to segmentation 
considerably improved the quality of the segmentation. On Figure 6 f) we can check the 
localization and the shape of detected remodeling zones, superimposed to the original 
image. Although some remodeling zones are missing, a majority of them are detected at the 
good location. However the application of this method shows a number of problems. First, 
some regions are missing: looking in more details to the image, it appeared that some 
remodeling zones aren't really homogeneous due to phase contrast which is inherent to SR 
micro-CT imaging and creates a contrast which behaves as a second derivative at the 
boundaries. This phase contrast is almost invisible but may also compromise the growing of 
some regions. Second, leakage in ring artifacts frequently occurs, leading to false detection. 
Therefore we proposed a second segmentation strategy including shape constraints to 
overcome this inconveniency. To this aim, we exploited the additional biological prior that 
remodeling zones are formed around the pores, they follow roughly the shape of the 
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contours and their thickness is also almost isotropic around each pore. This physiological 
sketch led us to use the distance map dist associated to the image. The different steps of the 
method are illustrated in Figure 6. We calculate the distance map of the binarized image (see 
Figure 6 d)). The brightness (“hotness”) of each pixel in the distance map is the distance to 
the nearest boundary, so in our case, to the nearest pore. The hotter a pixel is, it is farther 
from a pore. The maxima lines of the distance map give the best estimate of the separation 
lines between two different remodeling regions. The maxima of the distance map 
correspond to the boundaries of the watershed image (see Figure 6 e)).  
The regions to be segmented are initialized, as previously, by the contours of the pores, but 
now assuming that the remodeling regions are entirely included in the polygon-like zones 
(the so-called “catchment basins”) delimitated by the watershed boundaries around each 
pore. Each remodeling zone is segmented separately starting from the initial contours. For 
each label l , the segmented remodeling zone is constructed by agglomerating pixels at 
increasing distances satisfying a given criterion while being still included in the 
corresponding watershed zone (catchment basin) lC . The final segmentation of each 
remodeling zone can be expressed by: 

 ( ) ( ) ( ){ }lll dyxdistCyxyxIR ≤∈= ,  and , / ,  (4) 

and the overall segmentation result by applying this method is represented on Figure 6 e). 
 

 
Fig. 6. a) Region of Interest on the original cortical bone slice : the remodeling regions 
appear in darker gray levels around the black pores; b) the contours of the pores; c) the 
binarized image associated to a); d) the distance map image (coded with the “jet” colorbar) 
obtained from c);  e) location of remodeling regions: overlay of the areas segmented with the 
shape constraint method (in green) and the boundaries of watershed image (in red) on the 
original image on a); f) the initial segmentation of the osteons, obtained by homogeneity 
guided region growing. 

c) 

e) 

d)

f)

b)a) 
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micro-CT imaging and creates a contrast which behaves as a second derivative at the 
boundaries. This phase contrast is almost invisible but may also compromise the growing of 
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contours and their thickness is also almost isotropic around each pore. This physiological 
sketch led us to use the distance map dist associated to the image. The different steps of the 
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Different criteria may be used to define the maximum distance ld , corresponding to the 
thickness of the remodeling zones. We used the maximization of the derivative of the mean 
gray level value of the pixels at a given distance from the pore. Roughly speaking, this 
distance is supposed to identify the change in the image contrast and it corresponds to the 
boundary of the remodeling zones. 
The results presented in Figure 6 e) show that the segmentation is closely related to the 
shape of the pores and is no more influenced by the ring artifacts since it is purely related on 
the maximal thickness of the zone. However, this method can also slightly under-estimate 
those remodeling regions whose boundary is irregular around the pore. 

6. Application of the SR micro-CT in bone research 
Applications of SR micro-CT in bone research have been performed at different 
synchrotrons in the world (SSL (Swiss Light Source), ALS, in Lawrence Berkeley National 
Laboratory Berkeley National (USA), Japan, ESRF). In most studies, the important property 
of SR micro-CT to provide the degree of mineralization of bone was exploited. We shall only 
mention a few of these studies, either related to animal models or to human bone. 
SR micro-CT has first been used to study the effects of treatment of osteoporosis with 
etidronate by analyzing biopsies from osteoporotic patients before and after one or two 
years of treatment. The results showed an increased degree of mineralization with the 
treatment without significant modification of the micro-architecture, which was in 
agreement with what was expected with a biphosphonate treatement (Nuzzo, S. et al., 
2002a) (Meunier, P.J. & Boivin, G., 1997). A more recent study focused on the 
characterization of subchondral bone in patients with osteoarthritis and osteoporosis 
(Chappard, C. et al., 2006). A significant increase in the thickness of trabeculae in patients 
with osteoarthritis and a lower degree of mineralization were observed, which can be 
interpreted by an increase in bone remodeling activity. 
With the development of studies on animal models for therapeutics or genetics, imaging of 
small animals, and particularly mice, has become a major issue. In this field, SR micro-CT 
offering higher spatial and density resolution is also particularly attractive. It was used to 
assess significant differences in micro-architecture and mineralization between two strains 
of mice (Martín-Badosa, E. et al., 2003a). In addition these two strains showed a different 
response to a model of osteoporosis by hind-limb suspension (Martín-Badosa, E. et al., 
2003a). The properties of SR micro-CT were particularly exploited to study the 
mineralization in genetically modified mice and in treated mice with bone metabolic 
diseases (Yao, W. et al., 2006), (Balooch, G. et al., 2007). SR micro-CT at the micrometer scale 
permitted to study the role of insulin like growth factor-I (IGF-I) in regulating bone 
mineralization in fetal bone structure (Burghardt, A.J. et al., 2007). While most studies were 
performed after animal sacrifice, the feasibility of imaging mice bone in vivo with SR micro-
CT was also demonstrated (Kinney, J.H. et al., 1998), (Bayat, S. et al., 2005). 

7. Conclusions and future works 
The development of micro-CT in bone research was first driven by the need for having a 
highly precise means of reconstructing the complex architecture of bone tissue at a high 
resolution. During the last decade, it has become a standard tool for the evaluation of bone 
micro-architecture. By exploiting the physical properties of synchrotron light, Synchrotron 
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micro-CT overpasses standard micro-CT. Its major advantage is to allow the simultaneous 
analysis of bone morphometry and bone mineralization. 
The quantitative exploitation of SR micro-CT images has also driven the development of 
new image analysis techniques that have been briefly recalled in this chapter. Specific 
developments were designed to extract morphometric, topologic and geometric parameters 
on the trabecular network. Work is also in progress to analyze the osteonal system in cortical 
bone, including the pore network and the remodeling zones. The methods developed so far 
have already been applied in a number of studies on human or animal bone. A limitation is 
that SR micro-CT techniques cannot be used in vivo on humans (due to the high X-ray dose 
received by the samples (Salome, M. et al., 1999)), but only ex vivo on extracted bone 
biopsies. 
A first perspective in SR micro-CT is to push the resolution limit at the nanometer level, 
which is currently an active research topic at the international level. This opens interesting 
opportunities and can help to visualize in particular unrevealed features of bone ultra-
structure. The feasibility of visualizing osteocyte lacunae in human vertebra imaged at two 
scales (6.7 and 1.4 μm) was demonstrated in an earlier work (Peyrin, F. et al., 1998a). 
Nevertheless, relatively few micro-CT studies have so far been conducted on bone 
ultrastructure in humans (Hengsberger, S. et al., 2003) and mice (Schneider, P. et al., 2007). 
We have also presented recently new methods for extracting three-dimensional 
characteristics  of osteocyte lacunae and micro-cracks (Peyrin, F., 2009), (Larrue, A. et al., 
2007). This subject with the development of new nano-CT systems is becoming a hot topic to 
characterize the osteocyte system which has a fundamental role in bone biology.  
A second perspective in SR micro-CT is to exploit phase contrast imaging which is also 
raising increasing interest. While different experimental procedures allow obtaining phase 
contrast, the coherence properties of the ESRF beam makes it possible to implement phase 
contrast by simple propagation. Phase contrast imaging allows to image samples with low 
absorption and to enhance very small differences in attenuation. Different acquisition 
strategies may be used. The “edge enhancement” mode consists in making a scan with the 
detector not just after the sample but at a given distance. The “holotomographic” mode 
consists in recording several scans (in general two to four) placing the detector at different 
distances from the sample. In this case, the phase map is obtained by tomographic 
reconstruction after a so-called “phase retrieval” algorithm, processing the radiographs 
acquired at these different distances for each angle. The phase retrieval methods which were 
initially proposed for low absorbing samples have recently been extended to absorbing 
samples (Langer, M. et al., 2008), and open interesting perspectives to quantify 
simultaneously the bone tissue and the organic matrix.   
A third perspective, is the development of new image analysis methods to provide smart 
solutions to image segmentation and analysis in this domain, which also requires 
multidisciplinary vision on bone research. These new techniques should be inspired from 
recent theoretical developments in fields like mathematics or image processing 
(engineering). It is mandatory to integrate improvements in data backup solutions but also 
of new techniques in speeding up computer calculations. The complex processing 
algorithms should be parallelized in order to manage huge 3D image volumes of about 16 
Gbytes/volume. The advances concerning the GPU (Graphics Processing Unit) and their 
compatibility with widely used scientific softwares could make possible to manipulate 
easier 3D renderings, which is very important when working with 3D image volumes 
representing such a complex and multiscale structures like the bone tissue.  
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All these improvements together raise exciting perspectives to acquire novel knowledge on 
bone tissue, bone strength and the physiopathology of bone. 
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1. Introduction    
Forensic personal identification is a fundamental topic of forensic sciences and technologies 
to identify lived subjects, recently deceased bodies and human remains often at a crime 
scene by using several appropriate techniques.  
Throughout human history, many different methods were used for personal identification. 
The most commonly used method was relying on one’s memory to identify the 
distinguishing features and characteristics of other humans, such as their outward 
appearance or the sound of their voice before the introduction of computer technology 
(Michael & Michael, 2006). In Ancient Egypt and China, criminals and victims of several 
medico-legal events was often identified through visual characteristics such as sex, human 
height, body weight, deformation of the body, tattoos, old scars or caste marks and clothing, 
etc. In the forensic personal identification, progressions based on science accelerated in 19th 
century. Italian Cesarè Lombroso (1835-1909) had studied on body structures of prison 
inmates and had claimed that criminals have particular physiognomic attributes or 
deformities. In 1823, known first documentation of fingerprints were defined in a thesis by 
Johannes Evangelists Purkinje (1787-1869), a Czech anatomist and physiologist. French 
Police Officer Alphonse Bertillon (1853-1914) created first anthropometric scientific system 
based on physical measurements for identifying criminals in 1880.  Sir Francis Galton (1822-
1911) was an English inventor, devised a method for classifying fingerprints that proved 
useful in forensic science and he wrote first book about fingerprints in 1892 (Soysal & Eke, 
1999). In November 1895, the detection of electromagnetic radiation in a wavelength range - 
today known as x-rays or Röntgen rays - by Wilhelm Conrad Röntgen (1845-1923), a 
German physicist, marked an era in forensic science as well as in clinical diagnosis. The 
discovery of ABO blood group system by Karl Landsteiner (1868-1943), an Austrian 
biologist and physician, in 1901 and rhesus blood system by Landsteiner and Alexander 
Solomon Wiener (1907-1976), American Scientist, in 1937, and description of Coombs test by 
British immunologists Robin Coombs (1921-2006), et al., blood samples was used to be a 
unique profile that could be used for personal identification in legal and criminal areas. At 
9:05 am on Monday 10 September 1984, Sir Alec John Jeffreys (1950-….), British geneticist, 
looked at the X-ray film image of a deoxyribonucleic acid (DNA), then he developed 
techniques for DNA fingerprinting and DNA profiling, which provided a significant 
contribution for forensic personal identification in all over the world (Soysal & Eke, 1999).  
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Although the development of new techniques, forensic imaging studies have continued to 
increase until now and has not lost its importance especially in difficult cases of DNA 
analysis—for example, relatives, twins, or cases of poorly conserved remains (Cameriere et 
al., 2008).  
In the last years of 20th century and first decade of 21st century, the use of radiological 
techniques improved and became widespread by the creation of computerized tomography 
(CT), magnetic resonance imaging (MRI), multislice computed tomography (MSCT) and 
ultrasound (USG). These creations provided opportunity for developing newer techniques 
in the forensic sciences.  
In this chapter, we aimed to present the usage of radiographic technique especially CT 
images in forensic sciences, morphological structure of frontal sinus, usability of CT images 
of frontal sinus in forensic personal identification, and techniques for forensic personal 
identification by using CT images of frontal sinus.  

2. Usage of radiographic techniques in forensic sciences 
Historically, early application of x-ray in forensic sciences was introduced in 1896 - just one 
year following the x-ray discovery - by Prof. Arthur Schuster (1851-1934) of Owens College, 
Manchester in England, to demonstrate the presence of lead bullets inside the head of a 
victim (Eckert & Garland, 1984).  
It was expressed that, Schüller from Vienna proposed the possibility of utilizing by 
comparison of radiological images of the frontal sinuses with plates formerly taken for 
identification purposes in 1921 and the first complete radiological identification by using 
pneumatic cells of the skull was described by Culbert & Law, in 1927 (Culbert & Law, 1927; 
Gruber & Kameyama, 2001; Carvalho et al., 2009).  
Today, forensic scientists have regularly used radiographic images as part of the autopsy 
procedures and clinical forensic applications.  

2.1 Usage of radiographic techniques in autopsy procedure 
Radiological techniques are part of autopsy techniques and they have been fairly common 
used in modern forensic facilities. The stage at which radiology is implemented during 
autopsy varies according to the individual circumstances, but usually it is be after the 
external examination and prior to the dissection (Kahana & Hiss, 1999). 
Radiological techniques may provide important clues to determine the manner of death. In 
the autopsy procedure, radiography is best and earliest method of demonstrating air 
embolism to the heart, brain or vascular tree and forensics can be alerted in advance to the 
presence of pneumothorax, pneumoperitonium, pneumopericardium, pneumomediastinum 
or abnormal air collections associated with abscess, obstruction or paralytic dysfunction 
(Brogdon, 1998).   
Whilst, the identification of some fractures, fracture sequels, baro-traumas and soft tissue 
injuries present some difficulties, the determination of them by radiological techniques may 
be relatively easy. Radiological determination of manner of death in medico-legal cases by 
using CT, MRI, MSCT and USG was defined to be “virtopsy (virtual autopsy) technique”.  
Virtopsy has been proposed as an alternative to conventional autopsy in cases when the 
next of kin oppose the necroscopy and as a complementary tool for better visualization of 
postmortem findings such as fractures, especially pelvic and extremity fractures; visceral 
and vascular injuries and pathologies like intracranial hemorrhages, cerebral contusions and 
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edema, splenomegaly, aneurysms, air and fat embolism, hemothorax and pneumothorax, 
pneumonia, aspiration of foreign bodies, food or blood, subcutaneous emphysema, 
myocardial infarction, some tumors (Kahana & Hiss, 2005; Poulsen & Simonsen, 2007).  
Bullet or bullet fragments in death related firearms, bomb fragments or shrapnel in death 
related bombings and glass or metallic fragments in death related traffic or air-craft 
accidents, animals, plants or minerals, which embedded, aspirated or injected, in several 
deaths, etc., can be determined and exerted, to be presented as evidence in court, by using x-
rays and other radiological techniques during medico-legal autopsy applications (Brogdon, 
1998; Gruber & Kameyama, 2001; Carvalho et al., 2009). It was reported that CT data and the 
3-D reconstruction could provide valuable information in the forensic assessment of patients 
with gunshot wounds for determination of firing distance (Stein et al., 2000).  
The angiographic techniques including corpuscular radiopaque material such as menninge 
(a red lead oxide), barium sulfate, bismuth chloride, potassium iodide, corn syrup;  oily 
liquids such as iodized oil, propyliodone, mixture of diesel oil and paraffin oil; hydro-
soluble preparations such as diatrizoate meglumine, diatrizoate sodium, ioxithalamate; casts 
such as mixtures of lead, bismuth, and cadmium, celluloid and celloidin, nylon, neoprene 
latex, polyester resin, vinyl and silicon rubber; and their special mixtures was defined very 
useful for postmortem investigation of cardiovascular system (Grabherr et al., 2007) (Fig-2). 
The usage of radiological techniques in postmortem applications allows creating of 
permanent records of autopsy findings for reevaluation, comparison in personal 
identification and submission to be evidence to courts (Swift & Rutty, 2006).  
Also, radiological techniques allow forensic personal identification of the ripped, lacerated, 
carbonized, macerated, putrefied or skeletonized corpses (Gruber & Kameyama, 2001; 
Carvalho et al., 2009) and in mass disasters (Kahana & Hiss, 1999; Swift & Rutty, 2006). 

2.2 Usage of radiographic techniques in clinical forensic applications 
The importance of radiological techniques in clinical forensic application is widely 
recognized for definition type, severity, healing degree and mechanism of injuries (Kahana 
& Hiss, 2005; Swift & Rutty, 2006). It was defined that some skull fractures can not be 
diagnosed on conventional CT; they can be distinguished with the use of plain x-rays 
(Yavuz et al., 2001).  
Radiological examinations play significant role in differential diagnosis to non-accidental 
fractures from accidental fractures (Asirdizer & Zeyfeoglu, 2005); in determination of 
radiological evidence of physical child abuse (Asirdizer & Zeyfeoglu, 2005; Kahana & Hiss, 
2005; Yavuz et al., 2008), torture (Vogel et al., 2007) and medical malpractice cases  (Ulucay 
et al., 2010); localization and type of bullets remained within body  (Brogdon, 1998).  
Also, radiological techniques have been used by aim of personalization and age 
determination of victims or defendants in criminal cases and persons in civil litigations 
(Brogdon, 1998; Kahana & Hiss, 1999; Kahana & Hiss, 2005).  

2.3 Usage of radiographic techniques in forensic personal identification 
In forensic personal identification, forensic scientists have benefited from the variations of 
normal anatomical structures in radiographs and they compared shapes, contours, 
distinctive trabecular patterns, healed fractures, deformities, abnormal calcifications or other 
pathological features of several bones in radiographs, which taken to determine the identity, 
with previously existent radiographs (Jablonski & Shum, 1989). Also, they take into account 
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the absence or replacing of some anatomical structures, and the presence of metallic 
materials such as prosthesis.  
Among radiographs used for forensic personal identification, there were several parts of 
skull (Bodey et al., 2003; Teke et al., 2007), ribs (Rejtarová et al., 2004), hip (Varga & Takács, 
1991), dental, chest and abdominal areas (Kahana & Hiss, 1999). Identification of human 
remains by comparison of antemortem and postmortem radiographs of frontal sinuses is a 
well established procedure among forensic scientists and even some of the authors claim to 
use them as a substitute for fingerprints and frontal sinuses in particular have always been 
assumed to be different in every person (Yoshino et al., 1987; Harris et al., 1987; Kullman et 
al., 1990). Computerized tomography is an advanced and new technique and in literature 
there are only a few reports on identification of unknown bodies using CT scans of frontal 
sinus (Reichs, 1993; Riepert et al., 2001; Tatlisumak et al., 2007; Pfaeffli et al., 2007; Blau et al., 
2008; Uthman et al., 2010). 

3. Morphological structure of frontal sinus 
3.1 The location of frontal sinus 
The frontal sinuses are a part of paranasal sinuses and they located in the frontal bone above 
each eye (Fig-1). They make an important contribution to normal forehead and glabellar 
contour. 

3.2 The development of frontal sinus 
According to classical knowledge based on x-rays, frontal sinus is not apparent at birth and 
development begins during the second year of life (Yoshino et al., 1987; Quatrehomme et al., 
1996; Kirk et al., 2002). However, CT studies show that frontal sinus begins development in 
 

 
Fig. 1. Location of Paranasal Sinuses 
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the region of frontal recess of the frontal nasal meatus in a fetus aging 4th months of 
gestation. In the latter weeks of the fetal life, the frontal recess of the middle nasal meatus 
transforms upwards into an oval thin-walled space corresponding to the developing frontal 
sinus. It adheres to the ethmoidal labyrinth, integrating with it (Miller & Amedee, 1998; 
Porowski et al., 1999). 
The frontal sinus rarely is visible on radiographs earlier than the second year of life. The 
sinus invades the frontal bone by about 5 years of age and slowly grows to reach an adult 
size in late adolescence (Miller & Amedee, 1998).  
Whilst it is widely accepted that the development of the frontal sinus is complete by about 
20 years of age and remains stable until further enlargement of the chambers can occur from 
bone resorption during the advanced ages (Yoshino et al., 1987; Quatrehomme et al., 1996; 
Kirk et al., 2002); Tatlisumak et al., reported that, the highest values of measurements of 
frontal sinus were at the 31–40 age group in both sexes and there were a tendency to 
decrease with aging (Tatlisumak et al, 2008). Also, McLaughlin et al., suggested that the 
frontal sinus continued to expand until the age of 40 years because of mechanical stresses of 
mastication and growth hormone levels (McLaughlin et al., 2001). 

3.3 Morphological structure of frontal sinus 
The frontal sinus is a triangular, pyramid-shaped (its apex is superior and its base is 
inferior) cavity extending between the anterior and posterior tables of the ascending portion 
of the frontal bone (Clemente, 2004). The structure of frontal sinus can be variable from 
person to person and its sizes might be different in different populations (Miller & Amedee, 
1998; Tatlisumak et al., 2008). Yoshino et al. described 20,000 types of frontal sinus (Yoshino 
et al., 1987). Although, Miller and Amedee reported that height of frontal sinus was between 
5 and 66 mm, and its width between 17 and 49 mm (Miller & Amedee, 1998); the maximum 
and minimum sizes of frontal sinus were defined variable by several scientists in several 
populations.  
Usually, there was a complete intersinus septum between both frontal sinuses. The 
anterior wall of frontal sinus is the strongest of the sinus walls and its thickness can reach 
to 12 mm. In the entire sinus wall, there were diploë, although the diploë is minimal in the 
posterior wall and floor of sinus (inferior wall). The posterior wall is a plate of thin, 
compact bone (1-2 mm) whose upper part is vertical. It separates the frontal sinus from 
the anterior cranial fossa and can extent to lesser wing of sphenoid bone. The floor of the 
sinus also functions as the supraorbital roof in the lateral side and naso-etmoid floor in 
the medial side. The drainage ostium is located in the posteromedial portion of the sinus 
floor. The frontal infundibulum is a more narrow area within the sinus that leads to the 
ostium. The frontal sinus-ostium-frontal recess complex is shaped like an hourglass. The 
size of the bottom half depends on the dimensions of the frontal recess (Miller & Amedee, 
1998; Clemente, 2004). 

3.4 Functions of frontal sinus 
The functions of frontal sinuses which are a part of paranasal sinuses greatly resemble to 
paranasal sinus functions. The functional significance of paranasal sinuses remains largely 
unknown. The sinuses have been believed to play numerous roles, but no substantive 
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paranasal sinus functions. The functional significance of paranasal sinuses remains largely 
unknown. The sinuses have been believed to play numerous roles, but no substantive 
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laboratory studies have confirmed any of these hypothetical functions (Miller & Amedee, 
1998). 
Prevailing theories suggest that the paranasal sinuses perform: (a) humidifying and 
warming inspired air, (b) assisting in regulation of intranasal pressure, (c) increasing the 
surface area of the olfactory membranes, (d) lightening the skull to maintain proper head 
balance or assist in flotation, (e) imparting resonance to the voice, (f) absorbing shock to the 
head, (g) contributing to facial growth, (h) existing as evolutionary remains of useless air 
spaces, (i) secreting of immunoglobulin, interferon and lysozyme (Miller & Amedee, 1998; 
Wang & Berke, 1998). Also, Qian et al described a role of frontal sinus in nitric oxide output 
(Qian et al, 2005).  
The complete function of the paranasal sinuses is probably not described by a single theory 
but is instead most likely a combination of several of the foregoing theories (Miller & 
Amedee, 1998).  

4. Usage of radiology of frontal sinus in forensic personal identification 
Some of the features of frontal sinus morphology make it most convenient part of the 
skeleton for forensic identification (Fig-2 & Fig-3). Firstly, it presents highly variable nature 
and shows variation even among the monozygotic twins (Yoshino et al., 1987; 
Quatrehomme et al., 1996; Cox et al., 2009). This empirically accepted variability was proven  
 

 
Fig. 2. Appearance of Frontal Sinus in an x-ray 
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Fig. 3. Appearance of Several Frontal Sinuses in CTs 

mathematically using Elliptical Fourier analysis by Christensen (Christensen, 2005). Second 
feature is its relatively stable structure during adult life (Cox et al., 2009).  But changes in the 
dimensions of the frontal sinus throughout the adult life were shown by the investigators 
(McLaughlin, et al., 2001; Tatlisumak et al., 2008). Therefore, writers of this text is suggesting 
that the radiographs not older than ten years are more reliable for the identification 
purposes. Thirdly, the resiliency of the frontal sinus makes it useful for forensic purposes. It 
has very strong walls and preserved intact in human remains (Marlin, et al., 1991; Nambiar, 
et al., 1999; Fairgrieve, 2008)  Fourthly, paranasal sinus radiographs are  taken commonly for 
diagnostic purposes and almost everybody has one in his/her health folder (Tatlisumak, et 
al., 2007; Cox, et al., 2009). 
Radiographic comparison permits the matching of unique anatomical features and has the 
advantage of making possible the matching of external and internal bony anatomy, 
therefore increasing by several-fold the potential number of points of correspondence 
available for identification (Jablonski & Shum, 1989).   
In the presence of an antemortem radiograph, it can be compared with a postmortem one 
and personal identification of a human remain can be made. It is a widely accepted 
procedure in forensic sciences. Comparison of the antemortem and postmortem radiographs 
of the frontal sinus can be made by superimposition or coding systems. Superimposition is 
accepted as a reliable method (Yoshino, et al., 1987; Riberio Fde, 2000; Kirk, et al., 2002; 
Nambiar, et al., 1999; Marlin, et al., 1991). But there are some disadvantages: Data can not be 
stored and the evaluation should be made again and again for every case and both 
radiographs should be in hands for comparison.  To overcome this problem, systems were 
proposed for coding frontal sinuses (Yoshino, et al., 1987; Tatlisumak, et al., 2007; 
Cameriere, et al., 2008).  But none of them is perfect and there is always a possibility of false 
positive results (Tatlisumak, et al., 2007; Tang, et al., 2009).  
These systems are still are far from being as useful as fingerprints. Today, discrimination of 
the most of the radiographs by using simple features and applying pattern matching for the 
remaining ones is seen logical as an algorithm (Tatlisumak, et al., 2007).  
Computerized tomography is a significant advance in radiology and it is becoming 
increasingly available and replacing gradually the conventional radiographs (Haglund & 
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laboratory studies have confirmed any of these hypothetical functions (Miller & Amedee, 
1998). 
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but is instead most likely a combination of several of the foregoing theories (Miller & 
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mathematically using Elliptical Fourier analysis by Christensen (Christensen, 2005). Second 
feature is its relatively stable structure during adult life (Cox et al., 2009).  But changes in the 
dimensions of the frontal sinus throughout the adult life were shown by the investigators 
(McLaughlin, et al., 2001; Tatlisumak et al., 2008). Therefore, writers of this text is suggesting 
that the radiographs not older than ten years are more reliable for the identification 
purposes. Thirdly, the resiliency of the frontal sinus makes it useful for forensic purposes. It 
has very strong walls and preserved intact in human remains (Marlin, et al., 1991; Nambiar, 
et al., 1999; Fairgrieve, 2008)  Fourthly, paranasal sinus radiographs are  taken commonly for 
diagnostic purposes and almost everybody has one in his/her health folder (Tatlisumak, et 
al., 2007; Cox, et al., 2009). 
Radiographic comparison permits the matching of unique anatomical features and has the 
advantage of making possible the matching of external and internal bony anatomy, 
therefore increasing by several-fold the potential number of points of correspondence 
available for identification (Jablonski & Shum, 1989).   
In the presence of an antemortem radiograph, it can be compared with a postmortem one 
and personal identification of a human remain can be made. It is a widely accepted 
procedure in forensic sciences. Comparison of the antemortem and postmortem radiographs 
of the frontal sinus can be made by superimposition or coding systems. Superimposition is 
accepted as a reliable method (Yoshino, et al., 1987; Riberio Fde, 2000; Kirk, et al., 2002; 
Nambiar, et al., 1999; Marlin, et al., 1991). But there are some disadvantages: Data can not be 
stored and the evaluation should be made again and again for every case and both 
radiographs should be in hands for comparison.  To overcome this problem, systems were 
proposed for coding frontal sinuses (Yoshino, et al., 1987; Tatlisumak, et al., 2007; 
Cameriere, et al., 2008).  But none of them is perfect and there is always a possibility of false 
positive results (Tatlisumak, et al., 2007; Tang, et al., 2009).  
These systems are still are far from being as useful as fingerprints. Today, discrimination of 
the most of the radiographs by using simple features and applying pattern matching for the 
remaining ones is seen logical as an algorithm (Tatlisumak, et al., 2007).  
Computerized tomography is a significant advance in radiology and it is becoming 
increasingly available and replacing gradually the conventional radiographs (Haglund & 
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Fligner., 1993; Tatlisumak, et al., 2007). Computerized tomography is a suitable imaging 
method in the identification of unknown human remains and presents alot of advantages as 
compared with conventional radiographs. Firstly, it gives the opportunity of avoiding the 
superimposition of structures beyond the plane of interest and allowing the visualization of 
small differences of density (Reichs, 1993; Jackowski, et al., 2008; Carvalho, et al., 2009). 
Secondly, the images can be easily manipulated and internal points that should be evaluated 
can be shown by images segmentation. Thirdly, Craniometric points can be precisely located 
and measurements can be more accurately performed than on conventional radiographs. 
Volumes and areas can be determined. Fourtly, the film includes a description of the 
technical details and knowledge about the patient which can be very useful for the 
identification process (Jackowski, et al., 2008; Carvalho, et al., 2009).  
There are several studies in the literature presenting successful identification using CT 
images of frontal sinus (Reichs, 1993; Haglund & Fligner., 1993; Smith, et al., 2002; 
Tatlisumak, et al., 2007). It is expected that forensic scientists will make more identification 
in the future by using CT scans. The identification technique by conventional radiography 
was based on the comparison to ante-mortem images of frontal sinuses recorded in clinics 
and radiology departments with post-mortem radiographic images obtained in autopsy 
rooms or during autopsy procedure.  
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1. Introduction    
1.1 Historical perspective of product development methodologies 
It is difficult to find the origins of what we call “systematic design”. To offer but one 
example, anyone studying the diagrams and sketches of Leonardo da Vinci can hardly fail 
to observe the depth of his analysis and how he systematically used variations to suggest 
possible solutions and be able to compare them (Taddei, Kaiser, König, 2006, Bautista, 2007). 
Up to the Industrial revolution, product design and development work was essentially 
linked to art and craft and only with the gradual mechanization of processes halfway 
through the 19th Century did a need begin to emerge to optimize the use of materials and 
perform detailed studies on strength, stiffness, wear, friction, assembly and maintenance 
(Reuleaux, 1875).  
However, it was not until the 20th Century that a systematic evaluation of these parameters 
was put forward as a way of gradually reaching an optimal solution. (Erkens, Wörgebauer). 
Just before the Second World War a need was beginning to be noticed to rationalize product 
design processes but progress in this direction was hampered by the following factors: 
• An absence of effective methods for representing abstract ideas.  
• The widespread belief that design was an art and not a technical activity that could be 

carried out methodically and not just through creativity.  
A large-scale use of systematic design methodologies would have to wait for these 
limitations to be overcome and for the introduction of a more widespread use of automation 
and the appearance of more modern data processing procedures.  
Modern ideas on systematic development were given an enormous boost by  relevant 
figures (Kesselring, 1951, 1954, Tschochner, 1954, Matousek, 1957 or Niemann, 1950, 1965, 
1975), whose revolutionary ideas continue to suggest ways of solving and dealing with 
specific tasks related to machine and product design processes (Kaiser, König, 2006). During 
the 40s and the 50s Kesserling put forward a method based on successive approaches where 
each approach optimized different variables in line with technical and economic criteria. He 
also proposed several principles like “minimal production costs”, “minimal weight and 
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volume”, “minimal loss” and “optimal functionality and operability”. On the other hand, in 
the 50s Tschochner emphasized the importance of four basic design factors: the principles of 
functionality, material, shape and size, similar to what Matousek would later do, but 
emphasizing the need to consider: the principles of functionality, material, manufacture and 
geometry. Niemann’s approach designed in the 60s and 70s consisted in starting out design 
by defining a general outline for the product with the main sizes to be worked on in greater 
depth. To this end, the overall design continued to be divided into different parts that could 
be developed in parallel. The optimal solution was finally reached by a systematic variation 
of all the possible solutions.  
These progressive approaches towards ever more systematic methodologies for product 
design were mainly performed by university lecturers who had learned the fundamentals of 
design and development during their practical class contacts with increasingly complex 
products. They realized that not only was it possible to apply more mathematical concepts, 
physical principles, information theory-based methods and systematic design, but that with 
the gradual increase in the division of work it was becoming indispensable. Their designs 
were evidently strongly influenced by the industries they worked for, but many of their 
principles suitably modified can be adapted to numerous cases of design in other sectors. 
The currently accepted principles for effectively carrying out new product development are 
based on the ideas of the foregoing authors, as well as on the series of design steps that 
subsequently set apart important researchers (Hansen, 1956, Wächtler, 1967 o Kuhlenkamp, 
1971). In general terms, these researchers talk of “pre-studies”, “defining the basic 
principle”, “basic design” and “detailed design” as the main stages. They are also listed in 
“design guidelines” written by organizations like the “VDI – Verein Deutscher Ingenieure” 
or the “ISO – International Organization for Standardization” in reference to global testing 
and quality management.  

1.2 Stages of a product’s systematic development process 
The outcomes of previous research, satisfactorily proven through numerous developed 
products, led to a slightly modified work structure (Roozenburg, Eeckels, 1995, Pahl, Beitz, 
1996, Ulrich, Eppinger, 2007) which included: planning, conceptual design, basic 
engineering and detailed engineering, although a clear dividing line cannot always be set 
between these stages.  
Defining objectives and planning.- This broadly consists of the strategic decision taken by 
a company, university or research centre as to which products or ideas must be developed 
to satisfy the new social needs, taking account of the scientific-technological and socio-
economic circumstances of the time. To set about a product idea that will be successful the 
state of the market has to be fully understood and especially customers and their needs. 
Thus, market and customer requirements become the major stimuli for developing new 
products. However, these stimuli frequently have other origins, the most important of 
which are politics, the appearance of new technologies, processes, materials, discoveries or 
research results and environmental issues. Neither should the role played by internal 
stimuli be underestimated (arising in the company, university or technology centre itself) 
when it comes to making a decision about a new product. Among these internal stimuli are 
new ideas or outcomes related to research activity and the implementation of new means of 
production as well as production being made more rational and diversified. Depending on 
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the stimuli mentioned, the main tasks to be included in the “defining objectives and 
planning” stage are:  
• Situation analysis.- By carrying out an in-depth study of the company and its products, 

together with market analysis and other possible information sources, a thorough 
analysis can be reached of the starting out point.  

• Drawing up search strategies.- By bearing in mind the companies’ aims, strengths and 
weaknesses, as well as market gaps and needs, certain areas or promising fields can be 
discovered where ideas can be sought to be applied. 

• Finding product ideas.- From the search in the chosen field for new applications, 
functions, principles of functionality, geometries, materials, energy management 
methods and other alternatives, a set of product ideas can be found. 

• Choosing product ideas.- Depending on the company’s aims and market needs, the set 
of ideas found are evaluated in order to choose the most attractive product idea. 

• Defining the product to be developed.- By evaluating the different alternatives against a 
list of requirements a product proposal or definition is reached together with some 
initial objectives concerning costs, prices and schedules.   

Conceptual design.- This is the stage where a decisive global principle is reached or a basis 
for reaching a satisfactory solution based on identifying crucial problems and choosing the 
right functional principles that in combination will attain the set objective. If this stage is to 
be properly tackled a series of prerequisites must be fulfilled linked to a correct conclusion 
of the previous stage. The objective must therefore be clearly stated and, in principle, be 
technically and financially viable. In addition, the designer must be informed of the needs of 
this conceptual design stage and the existence of possible solutions that allow proceeding 
directly to the design or basic engineering stage. The scope and depth required for the 
conceptual design stage must also be pre-established. Related to the above, the main tasks 
included in this stage are listed below: 
• Abstraction for identifying basic problems.- The decisive designs and principles based 

on traditional methods cease to provide optimum responses in the face of scientific-
technological advances concerning technologies, materials or procedures, which when 
used in combination usually provide the key to more effective new solutions. On the 
other hand, every industry, company or research centre has countless experiences, 
which, although valuable, can lead to prejudice and hinder the creative process. For this 
reason, particularly at the outset of a new product design, designers must make an 
effort of abstraction and distance themselves from the influences of conventional ideas 
and focus on analysing the list of requirements and setting out the fundamental 
problem or problems in an objective manner.  

• Setting functional frameworks.- Having set out the basic problem to be solved, a global 
function must be obtained based on energy flows, mass and signals so that a 
relationship between the inputs to, and outputs from the plant, machine, part or object 
to be designed can be established. This global function can then be divided into less 
complex sub-functions and a lower level of abstraction, all of which can be individually 
dealt with to facilitate the search for solutions. Combining and relating these sub-
functions leads to the so-called functional framework. It is advisable to draw up several 
functional frameworks depending on whether it is wished to optimize costs, 
functionalities, quality, development time or other factors.  
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volume”, “minimal loss” and “optimal functionality and operability”. On the other hand, in 
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physical principles, information theory-based methods and systematic design, but that with 
the gradual increase in the division of work it was becoming indispensable. Their designs 
were evidently strongly influenced by the industries they worked for, but many of their 
principles suitably modified can be adapted to numerous cases of design in other sectors. 
The currently accepted principles for effectively carrying out new product development are 
based on the ideas of the foregoing authors, as well as on the series of design steps that 
subsequently set apart important researchers (Hansen, 1956, Wächtler, 1967 o Kuhlenkamp, 
1971). In general terms, these researchers talk of “pre-studies”, “defining the basic 
principle”, “basic design” and “detailed design” as the main stages. They are also listed in 
“design guidelines” written by organizations like the “VDI – Verein Deutscher Ingenieure” 
or the “ISO – International Organization for Standardization” in reference to global testing 
and quality management.  

1.2 Stages of a product’s systematic development process 
The outcomes of previous research, satisfactorily proven through numerous developed 
products, led to a slightly modified work structure (Roozenburg, Eeckels, 1995, Pahl, Beitz, 
1996, Ulrich, Eppinger, 2007) which included: planning, conceptual design, basic 
engineering and detailed engineering, although a clear dividing line cannot always be set 
between these stages.  
Defining objectives and planning.- This broadly consists of the strategic decision taken by 
a company, university or research centre as to which products or ideas must be developed 
to satisfy the new social needs, taking account of the scientific-technological and socio-
economic circumstances of the time. To set about a product idea that will be successful the 
state of the market has to be fully understood and especially customers and their needs. 
Thus, market and customer requirements become the major stimuli for developing new 
products. However, these stimuli frequently have other origins, the most important of 
which are politics, the appearance of new technologies, processes, materials, discoveries or 
research results and environmental issues. Neither should the role played by internal 
stimuli be underestimated (arising in the company, university or technology centre itself) 
when it comes to making a decision about a new product. Among these internal stimuli are 
new ideas or outcomes related to research activity and the implementation of new means of 
production as well as production being made more rational and diversified. Depending on 
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the stimuli mentioned, the main tasks to be included in the “defining objectives and 
planning” stage are:  
• Situation analysis.- By carrying out an in-depth study of the company and its products, 

together with market analysis and other possible information sources, a thorough 
analysis can be reached of the starting out point.  

• Drawing up search strategies.- By bearing in mind the companies’ aims, strengths and 
weaknesses, as well as market gaps and needs, certain areas or promising fields can be 
discovered where ideas can be sought to be applied. 

• Finding product ideas.- From the search in the chosen field for new applications, 
functions, principles of functionality, geometries, materials, energy management 
methods and other alternatives, a set of product ideas can be found. 

• Choosing product ideas.- Depending on the company’s aims and market needs, the set 
of ideas found are evaluated in order to choose the most attractive product idea. 

• Defining the product to be developed.- By evaluating the different alternatives against a 
list of requirements a product proposal or definition is reached together with some 
initial objectives concerning costs, prices and schedules.   

Conceptual design.- This is the stage where a decisive global principle is reached or a basis 
for reaching a satisfactory solution based on identifying crucial problems and choosing the 
right functional principles that in combination will attain the set objective. If this stage is to 
be properly tackled a series of prerequisites must be fulfilled linked to a correct conclusion 
of the previous stage. The objective must therefore be clearly stated and, in principle, be 
technically and financially viable. In addition, the designer must be informed of the needs of 
this conceptual design stage and the existence of possible solutions that allow proceeding 
directly to the design or basic engineering stage. The scope and depth required for the 
conceptual design stage must also be pre-established. Related to the above, the main tasks 
included in this stage are listed below: 
• Abstraction for identifying basic problems.- The decisive designs and principles based 

on traditional methods cease to provide optimum responses in the face of scientific-
technological advances concerning technologies, materials or procedures, which when 
used in combination usually provide the key to more effective new solutions. On the 
other hand, every industry, company or research centre has countless experiences, 
which, although valuable, can lead to prejudice and hinder the creative process. For this 
reason, particularly at the outset of a new product design, designers must make an 
effort of abstraction and distance themselves from the influences of conventional ideas 
and focus on analysing the list of requirements and setting out the fundamental 
problem or problems in an objective manner.  

• Setting functional frameworks.- Having set out the basic problem to be solved, a global 
function must be obtained based on energy flows, mass and signals so that a 
relationship between the inputs to, and outputs from the plant, machine, part or object 
to be designed can be established. This global function can then be divided into less 
complex sub-functions and a lower level of abstraction, all of which can be individually 
dealt with to facilitate the search for solutions. Combining and relating these sub-
functions leads to the so-called functional framework. It is advisable to draw up several 
functional frameworks depending on whether it is wished to optimize costs, 
functionalities, quality, development time or other factors.  
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• Designing functional frameworks.- After establishing the different functional 
frameworks the principles of functionality for each of the sub-functions need to be 
sought. When they have been found, they should be properly interconnected to 
produce all the different possible functional frameworks that fulfil the global function. 
In line with the different preferences (cost, timeframe, quality and others) a table of 
choices can be made to choose the most suitable functional frameworks.     

• Obtaining the decisive principle.- By taking the functional frameworks the different 
decisive principles to be evaluated can be obtained based on the different techno-
economic criteria and preliminary calculations that can lead to the choice of the most 
adequate decisive principle (proposal for a preliminary solution or product concept) 
that can be worked on.  

Basic engineering.- When the decisive principle has been arrived at it is time to specify the 
underlying ideas behind this preliminary proposal for a solution or product concept. During 
the basic engineering stage (also often called basic design) the design engineers have the 
task of defining the basic shapes and geometries that characterize the product, and must 
also choose the preliminary materials and appropriate manufacturing processes. It is at this 
stage when technical, technological and economic considerations become of vital 
importance. In other words the mission of this stage is to provide a definitive general outline 
of the product to be developed, on which an effective analysis can be performed concerning: 
function, duration, manufacture, assembly, functionality, costs and safety.  
Unlike the conceptual design stage, the basic engineering stage is subject to numerous 
checks, which means the work of analysis and synthesis constantly alternate and 
complement each other. An enormous effort also needs to be made regarding the 
compilation of information to make it easier to evaluate solutions, identify errors and 
continuously optimize.  
The complexity of this stage is also greater because many actions have to be performed 
simultaneously. Sub-tasks need to be repeated when high levels of information are reached 
and because any change in an area or sub-area has repercussions on all the rest. For these 
reasons, it is impossible to set a series of steps to be strictly adhered to that will ensure the 
basic engineering will come to a successful conclusion. However, the following approach 
may be followed in general terms: 
• Choose the requirements that are crucially important in the basic engineering stage. 
• Make scale drawings with the existing spatial constraints and evaluate the required free 

spaces. 
• Draw up a basic outline to decide which components will be required to fulfil the main 

functions. 
• A preliminary design of the parts and components that fulfil these main functions.  
• Draw up a basic outline to decide which components will fulfil the remaining 

secondary functions. 
• Draw up the preliminary designs of parts and components that fulfil these secondary 

functions.  
• Evaluate the designs using both technical and economic criteria. 
• Decide the overall preliminary design. 
• Optimize the chosen design, eradicating any weak points that may have arisen during 

evaluation. 
• Make proposals for improvement and checking if cost and quality objectives are met. 
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• Prepare a basic preliminary parts and documentation list for production and assembly. 
This documentation comprises the starting point for the detailed engineering stage. 

During the basic engineering stage it is very useful to use check lists to ensure that when 
designing the different parts intended for the main product functions, all the various aspects 
have been taken into account. Of these aspects the most important are:   
• Function. 
• Principle of functionality. 
• Design. 
• Safety. 
• Regulations. 
• Ergonomics. 
• Manufacturing. 
• Quality control. 
• Assembly. 
• Transport. 
• Operation.  
• Fault detection. 
• Recycling.  
• Maintenance. 
• Cost. 
• Timescale. 
Alongside this stage as part of the work to compare designs and check geometries and 
functionalities, it is very useful to produce prototypes that will aid decision-making and 
help reduce the number of design iterations and minimize both the timescales and costs 
associated with product development. Currently a distinction is made between virtual 
prototypes, the result of computer-aided design, simulation, calculation and manufacturing 
programs (“CAD-CAE-CAM” programs) and physical prototypes that coincide with the 
traditional concept of “original product sample for testing and checking”.   
The appearance of  support “software” for engineering design work and its gradual 
incorporation into industry since the end of the 80s, together with growing operational and 
calculating capacity, have caused major changes to the way design processes are carried out. 
Information exchange has become easier enabling countless effects in combination to be 
taken into account using multivariable simulations and enabling forecasts to be made 
concerning the influence of parameters such as the material or the manufacturing process on 
the end quality of a part or product. All these “software” tools can be included in a set of 
computer tools for managing the life-cycle of a product or “PLM programs – Product 
Lifecycle Management” (Stark, 2004, Saaksvuori, 2008). These capabilities enable a company 
to effectively manage and develop their products and related services throughout their 
economic life. All companies also need to manage the communications and information 
with their customers (“CRM tools or programs – Customer Relationship Management”), 
with their suppliers (programs called “SCM – Supply Chain Management”) and company 
resources (programs referred to as “ERP – Enterprise Resource Planning”).  
These three groups of software programs together with the PLM programs complete the 
four cornerstones of the information technology infrastructure that enable the main needs of 
a company to be addressed. More directly linked to product development in line with the 
approach taken here, PLM tools that include the following types of software programs come 
to the fore for performing tasks like: 
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• Designing functional frameworks.- After establishing the different functional 
frameworks the principles of functionality for each of the sub-functions need to be 
sought. When they have been found, they should be properly interconnected to 
produce all the different possible functional frameworks that fulfil the global function. 
In line with the different preferences (cost, timeframe, quality and others) a table of 
choices can be made to choose the most suitable functional frameworks.     

• Obtaining the decisive principle.- By taking the functional frameworks the different 
decisive principles to be evaluated can be obtained based on the different techno-
economic criteria and preliminary calculations that can lead to the choice of the most 
adequate decisive principle (proposal for a preliminary solution or product concept) 
that can be worked on.  

Basic engineering.- When the decisive principle has been arrived at it is time to specify the 
underlying ideas behind this preliminary proposal for a solution or product concept. During 
the basic engineering stage (also often called basic design) the design engineers have the 
task of defining the basic shapes and geometries that characterize the product, and must 
also choose the preliminary materials and appropriate manufacturing processes. It is at this 
stage when technical, technological and economic considerations become of vital 
importance. In other words the mission of this stage is to provide a definitive general outline 
of the product to be developed, on which an effective analysis can be performed concerning: 
function, duration, manufacture, assembly, functionality, costs and safety.  
Unlike the conceptual design stage, the basic engineering stage is subject to numerous 
checks, which means the work of analysis and synthesis constantly alternate and 
complement each other. An enormous effort also needs to be made regarding the 
compilation of information to make it easier to evaluate solutions, identify errors and 
continuously optimize.  
The complexity of this stage is also greater because many actions have to be performed 
simultaneously. Sub-tasks need to be repeated when high levels of information are reached 
and because any change in an area or sub-area has repercussions on all the rest. For these 
reasons, it is impossible to set a series of steps to be strictly adhered to that will ensure the 
basic engineering will come to a successful conclusion. However, the following approach 
may be followed in general terms: 
• Choose the requirements that are crucially important in the basic engineering stage. 
• Make scale drawings with the existing spatial constraints and evaluate the required free 

spaces. 
• Draw up a basic outline to decide which components will be required to fulfil the main 

functions. 
• A preliminary design of the parts and components that fulfil these main functions.  
• Draw up a basic outline to decide which components will fulfil the remaining 

secondary functions. 
• Draw up the preliminary designs of parts and components that fulfil these secondary 

functions.  
• Evaluate the designs using both technical and economic criteria. 
• Decide the overall preliminary design. 
• Optimize the chosen design, eradicating any weak points that may have arisen during 

evaluation. 
• Make proposals for improvement and checking if cost and quality objectives are met. 
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• Prepare a basic preliminary parts and documentation list for production and assembly. 
This documentation comprises the starting point for the detailed engineering stage. 

During the basic engineering stage it is very useful to use check lists to ensure that when 
designing the different parts intended for the main product functions, all the various aspects 
have been taken into account. Of these aspects the most important are:   
• Function. 
• Principle of functionality. 
• Design. 
• Safety. 
• Regulations. 
• Ergonomics. 
• Manufacturing. 
• Quality control. 
• Assembly. 
• Transport. 
• Operation.  
• Fault detection. 
• Recycling.  
• Maintenance. 
• Cost. 
• Timescale. 
Alongside this stage as part of the work to compare designs and check geometries and 
functionalities, it is very useful to produce prototypes that will aid decision-making and 
help reduce the number of design iterations and minimize both the timescales and costs 
associated with product development. Currently a distinction is made between virtual 
prototypes, the result of computer-aided design, simulation, calculation and manufacturing 
programs (“CAD-CAE-CAM” programs) and physical prototypes that coincide with the 
traditional concept of “original product sample for testing and checking”.   
The appearance of  support “software” for engineering design work and its gradual 
incorporation into industry since the end of the 80s, together with growing operational and 
calculating capacity, have caused major changes to the way design processes are carried out. 
Information exchange has become easier enabling countless effects in combination to be 
taken into account using multivariable simulations and enabling forecasts to be made 
concerning the influence of parameters such as the material or the manufacturing process on 
the end quality of a part or product. All these “software” tools can be included in a set of 
computer tools for managing the life-cycle of a product or “PLM programs – Product 
Lifecycle Management” (Stark, 2004, Saaksvuori, 2008). These capabilities enable a company 
to effectively manage and develop their products and related services throughout their 
economic life. All companies also need to manage the communications and information 
with their customers (“CRM tools or programs – Customer Relationship Management”), 
with their suppliers (programs called “SCM – Supply Chain Management”) and company 
resources (programs referred to as “ERP – Enterprise Resource Planning”).  
These three groups of software programs together with the PLM programs complete the 
four cornerstones of the information technology infrastructure that enable the main needs of 
a company to be addressed. More directly linked to product development in line with the 
approach taken here, PLM tools that include the following types of software programs come 
to the fore for performing tasks like: 
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•  PPM - Product and Portfolio Management.- These are programs aimed at helping 
determine the optimal combination or sequence for the projects proposed for the 
company to successfully achieve it objectives in accordance with its economic and 
technological strategy and actual market requirements. These tools help analyse 
resources, costs, investment, production schedules and how one project affects another.  

• CAD – Computer-Aided Design.- These programs support design engineers, architects 
and other design professionals in their work, which is to make their designs a reality. 
They usually have 2D and 3D drawing systems for creating files or have all the 
information on a product’s geometry and its different parts, as well as its plans. 
Changes can be made, symmetries are included, scale designs and numerous operations 
that can help make changes to the design.     

• CAE – Computer-Aided Engineering.- These computer programs allow simulating 
designs that have usually been made with CAD programs, and apply kinematic, 
dynamic, thermal or fluid mechanics considerations to the geometries designed and, 
above all, the chosen materials. They allow analysing how changes will affect the 
product or its parts and help optimize the number of prototypes or tests required. 

• CAM – Computer-Aided Manufacturing.- These programs lend support to prototype 
manufacturing work and end products by converting the information on part geometry 
from a CAD program into a code that can be understood by numerical control, 
manufacturing or rapid prototyping machines. On occasions it has a similar mission to 
CAE programs, letting part quality be simulated according to the manufacturing 
process used as well as allowing a study on geometries and materials.  

• PDM – Product Data Management.- These are programs focused on facilitating the 
records and paperwork of the processes to create modify and revise any of the parts of a 
product. The information stored ranges from specifications, CAD file diagrams, plans, 
manufacturing documents, assembly documents, tenders, test specifications and quality 
control, as well as financial reports.   

In recent years the boundaries between these types of software are shrinking with the ever 
more frequent appearance of packs that combine different modules to provide a global 
response to all the aforementioned needs. As explained, these technologies can provide 
assistance at every product design stage as well as production start-up, market placement 
and after-sales services, up to the product’s life-end. The benefits of using them become 
obvious at the basic engineering stage where their use is even more justified in the detailed 
engineering stage where the amount of information handled increases rapidly, as will be 
explained further on.  
Regarding prototypes, the industrial importance acquired over the last decade by the so-
called “manufacturing and rapid prototyping technologies” should be emphasized. These 
technologies enable physical parts to be directly obtained in a short time (hours or a few 
days) from the designs made with the help of a computer using “CAD-CAE-CAM” 
programs. They are of great help in optimizing design iterations, help the early detection of 
errors and speed up production start-up. They are usually either based on “Layer 
Manufacturing Technologies” (like Laser Stereolithography or Selective Laser Sintering) or 
on material elimination manufacturing processes (high speed numerical control machining). 
The different technologies available mean that prototypes can be obtained in a wide range of 
metal, ceramic and polymeric materials with remarkable precision (Freitag, Wohlers, 2003, 
Kucklick, 2006, Lafont, Lorenzo Yustos, Díaz Lantada, 2007, 2008). 

Enhancing Product Development through CT Images, Computer-Aided Design 
and Rapid Manufacturing: Present Capabilities, Main Applications and Challenges   

 

275 

Depending on the objective and the similarity to the end product, the physical prototypes 
are usually divided into the three following levels: 
• Level “A” prototypes (commonly called “A-samples”).- These are demonstration 

prototypes for analysing shapes, geometries and other more subjective aspects (like 
aesthetics, visual impact or ergonomics) related to the product under development.   

• Level “B” prototypes (commonly called “B-samples”).- These are functional prototypes 
intended for checking the behaviour of different product parts and their functionalities. 
Although they are generally made of non-final materials, these tests are usually 
performed with limits on certain applications.   

• Level “C” prototypes (commonly called “C-samples”).- These are prototypes with 
similar materials and behaviour to the end product although the manufacturing 
methods used to obtain them do not coincide with the methods used in production. 
These level “C” prototypes are usually manufactured for final checks, to prepare 
production start-up and for obtaining official approval as part of the detailed 
engineering stage which will be dealt with further on.   

However, the end of the basic engineering stage and the beginning of the detailed 
engineering stage cannot be precisely delimited as there is always some overlap that is to 
the benefit of the overall process.  
Detailed engineering.- Once the final basic design has been obtained, work must be begun 
on the requirements of  the shape, properties, size and tolerances of the different parts. The 
final choice of manufacturing and assembly must also be done as well as final cost 
evaluation.  
The outcome of this stage is the definitive technical specifications of the product: a list of 
functionalities, production plans and the specifications including the instructions for 
assembly, disassembly and operation.  
Based on this information or technical documentation, production start-up can be 
undertaken as well as the placing of the product on the market. According to the above, 
detailed engineering work can be divided into the following: 
• Finalizing the end design.- The different parts are fully defined by means of plans or 3D 

geometry CAD files, and materials, tolerances, adjustments and other details are 
specified.  

• Parts integration.- By means of full comprehensive plans or CAD assembly files which 
define the product as a whole. 

• Finalizing paperwork.- For an unambiguous definition of the product and be able to 
launch production. 

• Final checks.- As to compliance with general regulations and company standards. 
Precision of size and tolerances, the availability of standard or catalogue parts and other 
checks. 

The basic and detailed engineering stages can often be brought together in one single design 
stage with a global focus where the level of detail is gradually added. The ever more 
generalized use of CAD-CAE-CAM technologies and the already mentioned PLM tools has 
promoted this gradual fusion between stages, which also simplifies any information 
exchange between the agents involved in product design.  
In this chapter we will concentrate on the advantages and novel possibilities that CT 
imaging technologies have helped to introduce into the area of product design and 
development. We will analyse in the following sections the novel possibilities of CT-aided 
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•  PPM - Product and Portfolio Management.- These are programs aimed at helping 
determine the optimal combination or sequence for the projects proposed for the 
company to successfully achieve it objectives in accordance with its economic and 
technological strategy and actual market requirements. These tools help analyse 
resources, costs, investment, production schedules and how one project affects another.  

• CAD – Computer-Aided Design.- These programs support design engineers, architects 
and other design professionals in their work, which is to make their designs a reality. 
They usually have 2D and 3D drawing systems for creating files or have all the 
information on a product’s geometry and its different parts, as well as its plans. 
Changes can be made, symmetries are included, scale designs and numerous operations 
that can help make changes to the design.     

• CAE – Computer-Aided Engineering.- These computer programs allow simulating 
designs that have usually been made with CAD programs, and apply kinematic, 
dynamic, thermal or fluid mechanics considerations to the geometries designed and, 
above all, the chosen materials. They allow analysing how changes will affect the 
product or its parts and help optimize the number of prototypes or tests required. 

• CAM – Computer-Aided Manufacturing.- These programs lend support to prototype 
manufacturing work and end products by converting the information on part geometry 
from a CAD program into a code that can be understood by numerical control, 
manufacturing or rapid prototyping machines. On occasions it has a similar mission to 
CAE programs, letting part quality be simulated according to the manufacturing 
process used as well as allowing a study on geometries and materials.  

• PDM – Product Data Management.- These are programs focused on facilitating the 
records and paperwork of the processes to create modify and revise any of the parts of a 
product. The information stored ranges from specifications, CAD file diagrams, plans, 
manufacturing documents, assembly documents, tenders, test specifications and quality 
control, as well as financial reports.   

In recent years the boundaries between these types of software are shrinking with the ever 
more frequent appearance of packs that combine different modules to provide a global 
response to all the aforementioned needs. As explained, these technologies can provide 
assistance at every product design stage as well as production start-up, market placement 
and after-sales services, up to the product’s life-end. The benefits of using them become 
obvious at the basic engineering stage where their use is even more justified in the detailed 
engineering stage where the amount of information handled increases rapidly, as will be 
explained further on.  
Regarding prototypes, the industrial importance acquired over the last decade by the so-
called “manufacturing and rapid prototyping technologies” should be emphasized. These 
technologies enable physical parts to be directly obtained in a short time (hours or a few 
days) from the designs made with the help of a computer using “CAD-CAE-CAM” 
programs. They are of great help in optimizing design iterations, help the early detection of 
errors and speed up production start-up. They are usually either based on “Layer 
Manufacturing Technologies” (like Laser Stereolithography or Selective Laser Sintering) or 
on material elimination manufacturing processes (high speed numerical control machining). 
The different technologies available mean that prototypes can be obtained in a wide range of 
metal, ceramic and polymeric materials with remarkable precision (Freitag, Wohlers, 2003, 
Kucklick, 2006, Lafont, Lorenzo Yustos, Díaz Lantada, 2007, 2008). 
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Depending on the objective and the similarity to the end product, the physical prototypes 
are usually divided into the three following levels: 
• Level “A” prototypes (commonly called “A-samples”).- These are demonstration 

prototypes for analysing shapes, geometries and other more subjective aspects (like 
aesthetics, visual impact or ergonomics) related to the product under development.   

• Level “B” prototypes (commonly called “B-samples”).- These are functional prototypes 
intended for checking the behaviour of different product parts and their functionalities. 
Although they are generally made of non-final materials, these tests are usually 
performed with limits on certain applications.   

• Level “C” prototypes (commonly called “C-samples”).- These are prototypes with 
similar materials and behaviour to the end product although the manufacturing 
methods used to obtain them do not coincide with the methods used in production. 
These level “C” prototypes are usually manufactured for final checks, to prepare 
production start-up and for obtaining official approval as part of the detailed 
engineering stage which will be dealt with further on.   

However, the end of the basic engineering stage and the beginning of the detailed 
engineering stage cannot be precisely delimited as there is always some overlap that is to 
the benefit of the overall process.  
Detailed engineering.- Once the final basic design has been obtained, work must be begun 
on the requirements of  the shape, properties, size and tolerances of the different parts. The 
final choice of manufacturing and assembly must also be done as well as final cost 
evaluation.  
The outcome of this stage is the definitive technical specifications of the product: a list of 
functionalities, production plans and the specifications including the instructions for 
assembly, disassembly and operation.  
Based on this information or technical documentation, production start-up can be 
undertaken as well as the placing of the product on the market. According to the above, 
detailed engineering work can be divided into the following: 
• Finalizing the end design.- The different parts are fully defined by means of plans or 3D 

geometry CAD files, and materials, tolerances, adjustments and other details are 
specified.  

• Parts integration.- By means of full comprehensive plans or CAD assembly files which 
define the product as a whole. 

• Finalizing paperwork.- For an unambiguous definition of the product and be able to 
launch production. 

• Final checks.- As to compliance with general regulations and company standards. 
Precision of size and tolerances, the availability of standard or catalogue parts and other 
checks. 

The basic and detailed engineering stages can often be brought together in one single design 
stage with a global focus where the level of detail is gradually added. The ever more 
generalized use of CAD-CAE-CAM technologies and the already mentioned PLM tools has 
promoted this gradual fusion between stages, which also simplifies any information 
exchange between the agents involved in product design.  
In this chapter we will concentrate on the advantages and novel possibilities that CT 
imaging technologies have helped to introduce into the area of product design and 
development. We will analyse in the following sections the novel possibilities of CT-aided 
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product development, as a complement to the aforementioned “CAD-CAE-CAM” and rapid 
prototyping tools, and the implications of computed tomography in all the stages of product 
lifecycle. The main application fields and some case studies will be provided, so as to give a 
wider panorama of the related advantages.  

2. New possibilities: CT-aided product development  
The remarkable advances of the last decades in the different systems of medical image 
acquisition (mainly computerized tomography, Doppler echography, magnetic resonance 
and positron emission tomography) have considerably increased the diagnostic capability of 
these systems as well as the reliability of the diagnoses based on these data and the ensuing 
decisions made regarding the therapy to be applied.  
Computerized Axial Tomography (CAT- Scan) resulted from the research of two teams. One 
team led by Dr. Alan McLeod Cormack (who disclosed the theoretical formulation in 1962, 
1963 and 1964) and the other by the engineer Godfrey Newbold Hounsfield (who built the 
first prototype in 1971), for which they received the Nobel Prize for Medicine in 1979. 
The conventional CAT provides axial planes of the body by way of sections of a quality that 
is often higher than anatomical slices. This is achieved by using the simultaneous rotation of 
the tube producing the ray beam and the corona detectors. A computer calculates the dose 
absorbed at the different points of the slice during the rotational motion of the whole 
system, which displays an image on a screen. 
Since the first TAC images in 1976, different generations have appeared in the search for 
ever faster processing speeds and better image quality while attempting to obtain 
reconstructions on other different axial planes that are of an acceptable quality, with a larger 
number of detectors and shorter study times. 
Thanks to the important advances in hardware during these years a new computerized 
tomography (CT) has been developed, helical CT (HCT), which uses the continuous rotation 
of the detector and the X-ray source in combination with the continuous movement of the 
examination table. With this method of examination 100% of the time is put to use. 
Moreover, with this system, data capture is not slice by slice as in axial CT, but results in the 
entire volume being captured so that slices can be reconstructed in all three dimensions of 
space. Combining this new hardware with the progress in software for processing the 
images taken enables more efficient diagnoses to be made from the more realistic and exact 
reconstructions achieved with 3D textures and images. An HCT 64 detector model was used 
for this work due to its having the precision required for subsequent customized design. 
In fact, medical circles are now benefiting from the ability to exchange information from 
different medical image acquisition systems between centres and researchers. This is due to 
the “DICOM” (Digital Imaging and Communication in Medicine) standard having been set 
up and its now generalized use as a working format for a range of three-dimensional image 
reconstruction software, particularly since the introduction of version DICOM 3.0 in 1993.  
As an additional development tool, “Mimics” (Materialise NV) and similar programs have 
also appeared which not only perform three-dimensional reconstruction from medical 
images but also carry out simple operations on these reconstructions and convert them to 
other formats that can be accessed by “CAD-CAE-CAM” computer-aided design, 
engineering and manufacturing programs. These “CAD-CAE-CAM” programs (Solid Edge, 
Catia, NX-5, I-DEAS, Rhino, Solid Works and others) form a wide range of computer tools 
that are at the service of engineers, architects and design professionals, as has previously 
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been explained regarding modern product development methodologies. The power of these 
software packages together with their ability to manage information from medical images as 
a basis for design, means that at present, customized designs, specially for the medical 
device industry, can be designed in a matter of hours, while comparing alternative designs 
is also made easier (Hieu, 2002, Harryson, 2007). 
However, the use of customized designs, products, prostheses or implants has been 
historically sporadic, practically always the fruit of research projects. This is basically due to 
problems of cost and timescale which have always prevented these customized products, 
prostheses and implants from competing with standard mass-produced designs.  
Nonetheless, in recent years “rapid prototyping” has also led to reduced timescales and 
costs by manufacturing parts directly from the information on their geometry stored in the 
files of “CAD-CAE-CAM” programs or Mimics and to the advent of new capabilities for a 
customized response in the product development industry, with a social impact that is likely 
to be highly positive (Schwarz, 2005, Kucklick, 2006).  
There are several softwares, for handling the information obtained from medical imaging 
technologies, and enabling computer-aided design, engineering and prototyping tasks. They 
are usually referred to as “Mimics-like” programs (due to the relevance of Mimics 
(Materialise NV). Among such programs, due to their industrial impact and quality of 
results, it is important to mention at least: 
• Mimics (Materialise NV), for general purpose applications. 
• Simplant (Materialise NV), especially oriented to Odontology. 
• Surgiguide (Materialise NV), especially oriented to Odontology.  
• 3D Doctor, for bone modelling from CT scan and soft tissue from MRI. 
• Analyze (Mayo Clinic), for handling images from MR, CT and PET. 
• MRIcro Software, for converting medical images to SPM friendly Analyze format. 
• Biobuild, for converting volumetric imaging data to rapid prototyping file formats. 
• Volume Graphics, for general purpose applications.  
Listed below are the main applications of computerized tomography, together with software 
for processing medical images and “CAD-CAE-CAM” tools, for optimizing product design 
and development activities:  
• Personalized and special designs (Bibb, 2000, Chang, 2003, Díaz Lantada, 2010). 
• Reverse engineering, modular developments and design optimization (Flisch, 1999, 

Vasilash, 2009). 
• Object reconstruction (Effenberger, 2008, Vasilash, 2009).  
• Prototyping and trials (Flisch, 1999, Effenberger, 2008). 
• Inspection of inner details and defects during manufacturing processes (Losano, 1999, 

Effenberger, 2008). 
• Inspection of inner details and crack propagation during service life (Losano, 1999, 

Effenberger, 2008). 
• Multipurpose non-destructive evaluations (Losano, 1999, Effenberger, 2008).  
These technological combinations provide novel ways of tackling the design process, but 
also for validating manufacturing processes and verifying service life. It is very important to 
mention that the whole process is economical and non-destructive. In addition CT allows 
inner details and defects to be registered, which proves to be a great advantage when 
compared with other monitoring processes, such as three-dimensional laser reconstructions 
or surface ultrasound-based examination technologies.  
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product development, as a complement to the aforementioned “CAD-CAE-CAM” and rapid 
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Figure 1 includes a schematic description of the main applications of computerized 
tomography for product design and development, taking into account the whole lifecycle, 
from the design stage to the end of product life or replacement by novel products. The 
different typical formats conventionally used are also included in the diagram, taking into 
account the related studies and software for design, calculation or manufacturing.   
 

 
Fig. 1. Schematic review of applications of computerized tomography for product lifecycle. 

The combined use of such technologies is of recent appearance; in fact, the main evolution 
has been registered in the last decade, as Figure 2 shows. The Figure represents the 
evolution of “ISI Web of Knowledge”-indexed publications related to the use of computed 
tomography for promoting product development activities, such as design, calculations or 
engineering and prototyping.  
 

Evolution of ISI-WOK publications  related to the use of CT for promoting product 
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Fig. 2. Evolution of ISI – Web of Knowledge publications including the combination of 
“tomography” with “rapid prototyping”, with “computer-aided design” and with 
“computer-aided engineering”. 
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All these novel possibilities and applications can be included or described under the terms 
“CT-aided engineering” or “CT-aided product development”. The main application fields of 
these technological combinations focusing on product development are discussed further on 
in the following section.  

3. Main application fields 
The first approximations, around 15 to 20 years ago, linked to using computed tomography 
as a support tool for product design and development correspond to the industry of 
personalized medical prosthesis and devices, as well as to some studies linked to the 
prototyping of human body structures for subsequent surgical planning and training tasks. 
As the main applications of computed tomography imaging have always been within the 
medical field, it is normal that the first experiences connected to CT-aided product 
development would be related to the development of medical devices or surgical support 
tools. However, during the last decade, the application fields have greatly expanded and 
there are examples of remarkable CT-aided product design and development case studies in 
sectors such as the plastics processing industry (Reinhart, Losano, 1999), the automotive 
sector (Vasilash, 2009), the medical device area (Bibb, 2000, Díaz Lantada, 2010), with 
especial growth in dentistry and oral surgery (Chang, 2003) and other industries (Filsch, 
1999). There are even application experiences related to archaeology and art (Vasilash, 2009), 
including remarkable teaching consequences and proposals.  
For a more detailed analysis regarding the main application fields of CT in product 
development, searches of the main scientific publications related to [“tomography” and 
“rapid prototyping”], [“tomography” and “computer-aided design”] and [“tomography” 
and “computer-aided engineering”] were carried out. Such mentioned searches were done 
in September 2010 using the capabilities of ISI – Web of Knowledge databases and the main 
results are shown in Figures 3, 4 and 5. Of course, computed tomography is not the only 
imaging technology of application for promoting product development activities and we 
have to mention other possibilities, such as obtaining information from laser digitization or 
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using information from nuclear magnetic resonances and even positron emission 
tomography. A more detailed comparison between the capabilities of these technologies is 
included in the section regarding “Challenges and Future Trends”. 
Medical applications are most relevant according to all statistics, covering around 45 to 65% 
of applications, when considering surgery, orthopaedics, dentistry, radiology and anatomy 
together. Engineering studies (mainly related with product development, computer science 
and materials science) cover around 25 to 39% of applications of tomography combined 
with rapid prototyping, computer-aided design and computer-aided engineering, which is 
also an important number. Among medical applications there are several examples of 
publications regarding fields such as surgical training, medical device development, 
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development of diagnostic models and even development of models for teaching activities. 
Among engineering applications, the most important advances based on CT-aided processes 
correspond to the automotive and aeronautic industries.   

4. Case studies: CT applications in product development 
This section provides a couple of case studies, linked to the development of several 
prosthetic devices, regarding the use of computed tomography for enhancing personalized 
product developments.  Traditionally, references of CT application to the design of 
personalized devices have been more linked to source images from hard tissues, but novel 
advances on quality and precision of the CT equipment also provide remarkable 
possibilities for designing prostheses adapted to soft tissues. Both approaches are compared 
further on, showing the design process of a hip prosthesis (including an evaluation of its 
influence on the patient’s femoral structure) and explaining the development of a prosthesis 
adapted to cardiac tissue.  

4.1 Design of personalized prosthesis adapted to hard tissue 
The case study set out in this subchapter as an example details the process for producing a 
customized hip prosthesis design from the information from medical images. The aim was 
to produce a non-cemented prosthesis where the metal part is pressure-mounted inside the 
femur and must therefore be made to fit the available space. The design was made in the 
Machine Engineering Division of Universidad Politécnica de Madrid (www.upm.es) with 
the aid of the available CAD-CAE-CAM technologies. More detailed information may be 
found in the references (Osuna, 2008, Ojeda, 2009).  
The usual procedure for carrying out a customized examination with a view to using a 
prosthetic device usually begins either by taking a computerized tomography - CT or a 
nuclear magnetic resonance - MRI / NMRI of the patient needing the prosthesis. Then, with 
the aid of .dicom or .dcm (Digital Communications in Medicine) format, the information 
from the CT or MRI can be transferred to a program such as “Mimics”, so that it can be 
displayed in 3D, as Figure 6 shows. These programs usually include modules that allow 
selecting part of the patient’s bone geometry and storing it in .stl or .igs formats that can be 
read by other CAD programs after processing the images “slice by slice”. Having selected 
the relevant part of the patient’s femur (in this example, the internal cavity to which the 
metal part of a customized prosthesis must be adapted) this three-dimensional geometry 
can be transferred to a format that is valid for a design program and this femoral zone can 
be used as the basis for a customized prosthesis design, as can be seen in Figure 7 (Ojeda, 
Osuna, Lafont, Díaz Lantada, 2009). 
 

 
Fig. 6. 3D reconstruction of hip joint based on the information from CT images.  
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Mimics software for computer-aided designs based on medical images.  
 
 

 
Fig. 7. Example of personalized prosthesis designed from the information of CT images.  

4.2 Mechanical studies of body structures regarding the development of prostheses 
Taking the designs produced by CAD programs, geometries can be converted into files that 
are recognized by CAE programs, that is, computer–aided calculation to which the finite 
elements method can be applied as a simulation tool for verifying that the designs are 
adequate for the in-service loads to be borne by the final product.  
Until just a few years ago, this conversion was not always direct and the use of .igs or .stl 
formats led to some loss of information. However, the most widely-used CAD design 
programs are becoming more and more flexible in saving files and using different formats 
that are compatible with other CAD and CAE programs with FEM capabilities (Catia, NX-6, 
Solid Works, Rhino, Ansys, Nastran…). In fact, some programs like “Mimics” with the 
ability to reconstruct the information from medical images in 3D, cannot only transfer files 
to other design programs (and rapid prototyping machines) through their use of .stl format, 
but are also beginning to include specific outputs for finite element calculation and 
simulation programs.   
In this study we have taken the relevant part of the patient’s femur, from previous case study, 
and used a “.slt to solid” converter, so as to obtain a .igs file, for subsequent FEM calculations 
with the help of CAE programs. After introducing the geometry in such programs, material 
properties can be applied, the part can be meshed for optimizing calculations and loads and 
boundary conditions can be applied, so as to obtain a systematic study.  
Figure 8 shows an example of how a patient’s femur behaves, when the attached prosthesis 
receives a load from the acetabulum (2000 N is the value usually chosen for critical 
situations) and where the metal part is pressure-mounted inside the femur. The simulations 
were performed with FEM software taking an initial CAD design and allow us to study the 
stresses induced to a patient’s femur, during loading of the prosthesis in conventional daily-
life activities, so as to analyse the convenience of a prosthetic solution.  
By using different contact models, the in-service behaviour of the implant and its effects on 
the surrounding tissue (bone in this case) can be reproduced. Some studies examine the 
influence of active prostheses on the geometry of soft tissues (Díaz Lantada, 2009). These 
studies are anyway essential for evaluating any harm that may be caused to the receptor 
organism by the designed implants. 
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4.3 Design of a personalized prosthesis adapted to soft tissue 
The major advances in customized prosthesis design have traditionally been linked to bone 
structures, since bone tissue density is easily identifiable, making it easier to produce the 
associated design more easily than for soft structures and tissue. Bone tissue appears as a 
very distinct white on the Hounsfield Scale, which is an important advantage when 
processing information from medical imaging tools, with programs like “Mimics” and those 
previously mentioned. However, in soft organs the difference in density between tissues is 
very small and does not let the different structures be identified separately, which is an 
enormous barrier to customized design work. This is the case with cardiac prostheses and in 
particular, regarding mitral annuloplasty rings, shown here as an example of application 
(Díaz Lantada, 2010).  
In these cases, due to the similar densities of soft tissue, surrounding cloth and blood, some 
reference points need to be found in the medical images that will help the three-dimensional 
reconstruction of the target zone of the organ or soft tissue. In the example shown, cardiac 
CT images were used to identify in each “slice” the points of insertion of the valve leaflets in 
the patient’s mitral ring (marked in blue in Figure 9). These points were inserted through 
their Cartesian coordinates in a CAD program, in order to get an idea of the three-
dimensional morphology of the patient’s mitral ring, to which the prosthetic annuloplasty 
ring is to be adapted, as well as for design tasks, as can be seen in Figure 10. Such prosthetic 
rings provide additional stiffness to the structure of a patient’s mitral valve and help to 
reduce the degree of mitral insufficiency. There are several models and sizes in the market, 
as no design has yet proved to be especially beneficial, so personalization may well be a 
promising solution. The proposed design was also carried out in the Machine Engineering 
Division of Universidad Politécnica de Madrid (www.upm.es), with the aid of the available 
CAD-CAE-CAM technologies. 
Further information on the complete design process of prostheses adapted to soft tissue and 
the customized design methodology proposed may be found in the references cited. 
Whatever the case, the information from medical imaging technologies combined with rapid 
prototyping technologies, are not only enormously useful in planning surgical work 
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(Binder, 2000, Gilon, 2002, Mottl-Link, 2008, Kim, 2008), but also have considerable 
advantages when rapid customized implants are required.  
 

 
Fig. 9. Cardiac CT reconstruction of left atrium and ventricle, connected via mitral valve  

(Image courtesy of Raquel del Valle – Lennox Hill Heart and Vascular Institute NY). 
 
 

 
Fig. 10. Reconstruction of mitral valve section of a patient with mitral insufficiency and 
design of personalized annuloplasty ring, based on the information of cardiac CT images. 

From the first solid models manufactured by layer manufacturing technologies, other rapid 
prototyping technologies denominated as “second stage” can be used to produce moulds by 
rapid-form copying. These moulds can be manufactured in numerous materials such as, 
silicones, ceramics, ceramics with a metal load and others, and allow casting stronger 
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materials inside them than the original models. They enable prototypes to be produced for 
meeting the in-service specifications.  

5. Challenges and future trends 
5.1 Quality, precision and cost of equipment  
A limiting aspect for using computed tomography for promoting product development 
activities, in different industries not directly linked to the medical sector, has traditionally 
been the cost of medical imaging equipment and the surrounding installations needed. To 
overcome such limitations, some enterprises now offer imaging and prototyping services, 
including the possibility of carrying out CT scans and subsequently providing a CAD file 
with the geometry of the desired part of the product. Outsourcing such medical imaging 
and format conversion tasks is a remarkable solution for research teams or small enterprises, 
that might need the help of computed tomography (or other imaging technologies), without 
having the possibility of acquiring their own equipment. Regarding the costs of digitization 
equipment, laser scanners and CCD (charge coupled device) film digitizers are more 
economic (around 1000 – 60000 €) than CT scanners or NMR equipment (from 150,000 even 
up to 500,000 €). However, laser and optical systems do not allow the reproduction of inner 
details, so important not only for personalized design processes, but also for non-invasive 
in-service verifications. New trends in the medical imaging industry are trying to mount 
different technologies, for combining their respective advantages, in one machine (CT+PET, 
CT+SPEC…) and regarding product development enhancement, perhaps it would be very 
positive to combine in one machine the fastness of laser scans with the capabilities of 
reproducing inner details of computed tomography. Such advances, together with an 
increase in precision and more competitive prices will help to spread the industrial 
applications of these technologies. 

5.2 Normalization and standardization of formats 
An aspect requiring additional dedication, to simplify the tasks of designers and to promote 
the information exchange regarding 3D designs, is the development and decision to use a 
common universal file format for computer-aided design activities and another one for 
computer-aided manufacturing and rapid prototyping processes (if possible, the same one). 
Nowadays there are several formats for CAD programs (.par, .prt, .asm, .cat, .obj, .3ds, .iges, 
.step…), as well as numerous alternatives for information exchange and subsequent rapid 
prototyping (.stl, .ply, .vrml, .iges, .step…). Format conversions suffered by a part, 
throughout the design, calculation and manufacturing process, entail information and 
quality loss. Furthermore, the possibility of using different CAD-CAE-CAM tools, for 
profiting from their respective advantages, is limited due to incompatibilities. Previous 
attempts at standardization have been carried out by private and military initiatives (.iges) 
or have appeared as an answer to proposals from international organisms such as ISO (.step 
format was a consequence of ISO10303 Standard), although the initial objectives have not 
yet been achieved. However, in other areas there are remarkable examples of collaboration, 
as happens in document processing (with the use of .pdf) and in the medical sector (with the 
DICOM standard for medical imaging). Once these limitations have been tackled, the 
advantages of the combined use of computed tomography with CAD tools and rapid 
prototyping will become evident. Such homogenization would also imply a cost reduction 
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for teaching centres, due to the need for fewer software licenses, and the distribution of 
teaching resources would also be more adequate.  

5.3 Promotion tasks: Teaching issues and collaboration between researchers  
To promote the industrial expansion of CT-aided product development and CT-aided 
engineering, and facilitate their use for the development of new devices in several fields, 
it is very important for universities, research centres and major sector companies to 
collaborate and exchange information in respect of the scientific-technological progress in 
these materials and their applications. It is an inherent mission of teachers and researchers 
to focus attention on these new fields of study and on the importance of examining them 
together in a coordinated manner and to look on other researchers as companions and 
never as rivals. Cooperation among technology branch and health branch teachers in the 
preparation and teaching of courses related to these subjects is also important. It is in this 
respect that the participation of departments from different universities is very positive as 
they can make their laboratories and research centres available to students. It is 
interesting to consider ways to exchange information and enhance teaching, like those 
listed below: 
• It would be highly beneficial to set up a specific forum on medical imaging and its 

industrial applications, beyond the medical sector, with a specific section devoted to 
engineering and product design and development, where researchers, universities and 
companies can get in productive contact. 

• Congresses and scientific meetings are very useful instruments for bringing together the 
main researchers in an area of knowledge, particularly when this is done according to a 
fixed schedule to discuss specific topics, and it would be very positive to arrange 
regular international meetings on CT-aided product development and CT-aided 
engineering, possibly also including topics linked to alternative technologies, such as 
nuclear magnetic resonance or laser digitization. 

• To encourage the use of these technologies in Industry it is important to make known 
the advantages expected from their use. Therein lies one of the basic benefits of carrying 
out research work in the University, since the discoveries made encourage changing 
and gradually updating the syllabuses of the related subjects. This helps to promote and 
maintain students’ interest and to increase the transfer of knowledge arising from 
research to Society as a whole.  

5.4 Reverse Engineering: Related risks 
We cannot finish the chapter without warning about the risks derived from the misuse of 
these combinations of technologies, especially regarding industrial piracy and the 
usurpation of intellectual property rights. Of course computed tomography, combined 
with computer-aided design and rapid prototyping, can give new life to old or damaged 
parts and products no longer available and promote restoration activities (for example for 
the classic automotive industry), as well as archaeological processes and modular design 
activities. However, it has also led to the appearance of pirate companies that plainly copy 
the designs of products from all kinds of industries (automotion, entertainment, 
household, furniture…) and start up production directly, without having invested in the 
development process.  It is therefore always advisable to protect novel developments by 
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means of patents, not just as a very positive advantage related with marketing activities 
and negotiation processes, but also as a way of being protected against the risks of reverse 
engineering. For a powerful protection, patents should provide a description, as detailed 
as possible, of the novel developments and be written with the help of specialized 
lawyer’s offices.      

6. Conclusions 
Several technological advances during the last two decades have promoted novel 
approaches to product design and development. The generalized use of computer-aided 
design and simulation tools, together with the advances in materials science and 
manufacturing technologies (especially rapid manufacturing technologies or “layer 
manufacturing technologies”), has enabled the development of more complex geometries 
and products. The additional possibility of using the information obtained from CT images 
as input for computer-aided design and for computer-aided engineering programs has 
opened up new horizons for carrying out personalized and ergonomic designs, as well as 
for promoting all kinds of tasks linked to product design and reverse engineering 
(reconstruction of damaged products, reproduction of delicate parts and studies related to 
inner non-visible geometries, among others).   
This chapter has tried to cover some of the most important applications for such 
combination of CT imaging, design and manufacturing technologies, including industrial 
design, automotive engineering, aeronautics, bioengineering, archaeology and even 
teaching or art. Some case studies related to successful developments have been explained 
in detail, so as to analyse the most common procedures and in order to provide advice for 
conventional difficulties. It is important to note that the impact of combining information 
from medical imaging technologies with the advantages of novel design and manufacturing 
tools is so remarkable and its applications so widespread, that we can speak of “CT-aided 
product development” or even “CT-aided engineering”. The main present challenges for 
improving the end-quality and industrial impact of such developments have been also 
discussed, together with some analytical reflections on the most important risks derived 
from these novel capabilities, especially concerning the limits between reverse engineering 
and plagiarism. Current remarkable study and research trends have also been analysed, 
with the hope of promoting collaboration among universities, research centres and 
enterprises. 
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