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Preface

The advance in space machineries has created a novel technology for observing and 
monitoring the Earth from space. Most earth observation remote sensing consid-
erations focus on using conventional image processing algorithms or classic edge
detection tools. Nevertheless, these techniques do not implement modern physics, 
applied mathematics, signal communication, remote sensing data, and innova-
tive space technologies. This book provides readers with methods to comprehend 
how to monitor coastal environments, disaster areas, and infrastructure from
space with advanced talent remote sensing technology to bridge the gaps between
modern space technology, image processing algorithms, mathematical models and 
the critical issue of the coastal and infrastructure investigations. In other words, 
advanced remote sensing technology, which covers sensor developments, and image
processing algorithm modifications, which are based on modern physics, artificial 
intelligence, and machine learning. In these regards, their applications cover a wide
range of coastal observations, for instances, high risk of a tsunami depends on the
depth of water, the coastal geomorphology, the direction of the tsunami wave, and 
the existence of rivers or other water canals. In these circumstances, coastal zones
are required for new urban planning and specific infrastructure designing to reduce
the impact of such a disaster.

In spite of numerous of synthetic aperture radar (SAR) space technology, the
developing country researchers and scientists are still focusing on optical remote
sensing technology. In fact, microwave remote sensing require use of mathemat-
ics and physics behind the SAR technology. The first chapter introduces a new
technology for measuring sea surface current using along-track interferometry of
TanDEM-X satellite data. This chapter delivers a novel algorithm to retrieve sea
surface current using the multichannel MAP height estimator algorithm, which
is considered the first study of ocean current in the coastal waters of Peninsular
Malaysia.

The available SAR data increases dramatically with the recent operation of many
spaceborne and airborne SAR systems. This makes the joint processing of multiple
images for accurate understanding and perception of a scene and target possible. 
For SAR image pairs acquired from different imaging geometries or by different
sensors, there is always a geometrical warp between them, which should be com-
pensated first before any deep application. Image registration is aimed to retrieve
the warp function to align the same pixel position in each SAR image to the same
target position in the global system. A lot of SAR image registration techniques
have been developed hitherto. In the second chapter, the algorithms that conduct
registration based on image features, such as contour, region, line, and point are
accurately addressed. Contour, region, and line, as well as their combinations, are
often used for registration of multi-modality images. For SAR images with geo-
metrical distortion and speckle, point feature is generally much clearer and easier
extracted. Tie points, corner, and key points are the commonly-used features in
SAR image registration. Tie points usually refer to the features extracted from tie
patches in SAR image registration.



II

Chapter 7 125
Geo Spatial Analysis for Tsunami Risk Mapping
by Abu Bakar Sambah and Fusanori Miura

Chapter 8 147
Utilization of Unmanned Aerial Vehicle for Accurate 3D Imaging
by Yoichi Kunii

Preface

The advance in space machineries has created a novel technology for observing and 
monitoring the Earth from space. Most earth observation remote sensing consid-
erations focus on using conventional image processing algorithms or classic edge 
detection tools. Nevertheless, these techniques do not implement modern physics, 
applied mathematics, signal communication, remote sensing data, and innova-
tive space technologies. This book provides readers with methods to comprehend 
how to monitor coastal environments, disaster areas, and infrastructure from 
space with advanced talent remote sensing technology to bridge the gaps between 
modern space technology, image processing algorithms, mathematical models and 
the critical issue of the coastal and infrastructure investigations. In other words, 
advanced remote sensing technology, which covers sensor developments, and image 
processing algorithm modifications, which are based on modern physics, artificial 
intelligence, and machine learning. In these regards, their applications cover a wide 
range of coastal observations, for instances, high risk of a tsunami depends on the 
depth of water, the coastal geomorphology, the direction of the tsunami wave, and 
the existence of rivers or other water canals. In these circumstances, coastal zones 
are required for new urban planning and specific infrastructure designing to reduce 
the impact of such a disaster.

In spite of numerous of synthetic aperture radar (SAR) space technology, the 
developing country researchers and scientists are still focusing on optical remote 
sensing technology. In fact, microwave remote sensing require use of mathemat-
ics and physics behind the SAR technology. The first chapter introduces a new 
technology for measuring sea surface current using along-track interferometry of 
TanDEM-X satellite data. This chapter delivers a novel algorithm to retrieve sea 
surface current using the multichannel MAP height estimator algorithm, which 
is considered the first study of ocean current in the coastal waters of Peninsular 
Malaysia.

The available SAR data increases dramatically with the recent operation of many 
spaceborne and airborne SAR systems. This makes the joint processing of multiple 
images for accurate understanding and perception of a scene and target possible. 
For SAR image pairs acquired from different imaging geometries or by different 
sensors, there is always a geometrical warp between them, which should be com-
pensated first before any deep application. Image registration is aimed to retrieve 
the warp function to align the same pixel position in each SAR image to the same 
target position in the global system. A lot of SAR image registration techniques 
have been developed hitherto. In the second chapter, the algorithms that conduct 
registration based on image features, such as contour, region, line, and point are 
accurately addressed. Contour, region, and line, as well as their combinations, are 
often used for registration of multi-modality images. For SAR images with geo-
metrical distortion and speckle, point feature is generally much clearer and easier 
extracted. Tie points, corner, and key points are the commonly-used features in 
SAR image registration. Tie points usually refer to the features extracted from tie 
patches in SAR image registration.



XIV

Following the second chapter, the third chapter introduces a novel technology for 
implementation of interferometry synthetic aperture radar (InSAR) with L-band 
on monitoring harbor. In fact, L-band SAR and its long-lasting temporal coherence 
is an advantage to perform precise interferometric coherence analysis. In addition, 
recent high-resolution SAR images are found to be useful for observing relatively 
small targets, e.g., individual buildings and facilities. In this chapter, author pres-
ents the basic theory of SAR observation, interferometric coherence analysis for the 
disaster monitoring and its examples of the harbor facilities.

However, optical remote sensing experts are relying on commercial software and open 
source codes without fully understanding the mathematical algorithms involved in 
image processing. In fact, conventional image processing techniques such as image 
classification are being used. In this view, classifying remote scenes according to a set 
of semantic categories is a very challenging problem, because of high intraclass vari-
ability and low interclass distance.

The most advanced image processing technique is presented in Chapter 4. One of the 
advanced learning machine algorithms for image processing is Deep convolutional 
neural networks (CNNs), which have been widely used to obtain high-level represen-
tation in various computer vision tasks. Deep CNN models are trained upon a database 
of more than 1.2 million categorized natural images of 1000+ classes, which serve 
as the backbone for many segmentation, detection and classification tasks on other 
data sets.

The fifth chapter presents an image processing technique that is based on the sub-pixel 
algorithms for modeling a time series of shoreline changes. In fact, the majority of 
investigations are only used conventional classification or threshold technique to study 
short periods of coastal erosion. The novelty of the fifth chapter is that the authors 
implemented eight years of time series of multispectral data with a subpixel technique 
to reduce the error of shoreline extraction at sub-pixel, pixel and object-based scales.

A different remote sensing technique is introduced in the sixth chapter for monitoring 
infrastructure. This technique is based on utilization of accelerometer measurements. 
In fact, infrastructure, including roads, bridges, tunnels, water supply, sewers, electri-
cal grids, and telecommunications, may be exposed to environmentally-induced or 
traffic-induced vibrations. Some infrastructure, such as bridges and roadside upright 
structures, may be sensitive to vibration where accelerometers and other types of 
sensors may be used for their measurement of sensitivity to environmentally-induced 
loads, such as wind and earthquakes, and traffic-induced loads, such as passing trucks. 
With data collected by accelerometers, time histories may be obtained, transformed, 
and then analyzed to determine their modal frequencies and shapes.

A coastal disaster, which is mainly based on a tsunami disaster, requires such advanced 
technology of geospatial monitoring of the tsunami risk impact. The seventh chapter 
delivers the integrated approach of raster weighted overlay of all spatial databases of 
tsunami vulnerability and risk parameters specifying the vulnerability and risk area 
due to the tsunami and defines the possible area that could be affected by the tsunami 
and the potential inundated area.

Finally, the book describes a new technology of Unmanned Aerial Vehicle for accurate 
three-dimensional reconstruction (3-D). In fact, this technology is rapidly growing 
among the researchers and scientists. Chapter eight presents a novel technology to 
construct a precise 3-D image using an Unmanned Aerial Vehicle, which is validated 

V

by ground field measurements during UAV experiments. In this view, there is
great potential to use UAV images for 3-D modeling when compared to operational
satellite data.

I wish to convey my appreciation to all authors who contributed novel work to this
book. Without their intense commitment, this book would not have become such a
precious piece of novel knowledge. I am also grateful to the IntechOpen editorial team
Ms. Martina Josavac and Ms. Maja Bozicevic who afforded the opportunity to publish
this book.

Prof. Dr. Maged Marghany
Microwave Remote Sensing expert,
Faculty Geospatial and Real Estate,

Geomatika University College,
Kuala Lumpur, WP Kuala Lumpur,

Malaysia
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Chapter 1

Introductory Chapter: Advanced
Ocean Current Simulation from
TanDEM Satellite Data
Maged Marghany

1. Introduction

Satellite microwave data, such as synthetic aperture radar (SAR), have the great
potential for retrieving ocean dynamic parameters, for instance, ocean surface cur-
rent and ocean wave dynamic [1]. One of the attention-grabbing topics is current
flow that is needed for short go back satellite cycle and high resolution. These will
provide precisely data concerning current dynamic flow [2, 3]. In fact, current is very
important for ship navigation, fishing, waste matter substances transport, and sedi-
ment transport [4, 5]. Respectively, optical and microwave sensors are enforced to
monitor the current flows. Indeed, the ocean surface dynamic options of sea surface
current are vital parameters for atmospheric-sea surface interactions. In this regard,
the global climate change, marine pollution, and coastal risky are preponderantly
dominated by current speed and direction [1]. The measurements of ocean current
from space rely on the electromagnetic signal. Truly, associate degree of an electro-
magnetic signal of optical and microwave reflects from the ocean carrying records
concerning one among the first discernible quantities that are the color, the beamy
temperature, the roughness, and also the height of the ocean [2].

Recently, the high resolution of SAR sensors such as TerraSar-X, RADARSAT-2,
ALOS PALSAR, and the foremost three of the Italian satellite of COSMO-SkyMed
have been commenced. Once the four satellites in the COSMO-SkyMed constella-
tion are developed, they are conceivable functioning with a tiny resume time of a
little hours [4]. Nevertheless, the initial three of the COSMO-SkyMed, ALOS
PALSAR, and RADARSAT-2, satellite data are the cross-track interferometry,
which do not allow determining neither coastal water flow nor coastal water level
changing. In this regard, the TerraSAR-X satellite data use an along-track interfer-
ometric proficiency which simply permits the quantity of sea surface speed. Addi-
tionally, phase alterations between the coregistered pixels of an image pair are
consistent to Doppler frequency shifts of the signal backscattered and according to
line-of-sight velocities of the scatterers. In this view, phase alterations include
influences of surface flows and of the dynamic of wave movement. Consequently,
the retrieving of tidal current flow can be accurately achieved by both of TerraSAR-X
and TanDEM-X. These can be depleted to regulate precisely coastal water height
fluctuations. The TerraSAR-X can regulate perfectly the digital surface model (DSM),
where depiction of surface-containing topographies exceeds the terrain height, for
example, plants and constructions through precision of 2 m.

Moreover, TanDEM-X involves dual high-resolution imaging SAR data. In this
understanding, both TerraSAR-X and TanDEM-X are hovering in tandem and
establishing an enormous radar interferometer with an anticipated competence of
creating a comprehensive DSM through a perpendicular resolution of 2 m, exceeding

3
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whatever obtainable currently from space [4]. Consistent with Romeiser et al. [6],
with the usual helical revolution configuration, the dual satellites ensure an along-
track gap between 0 at the northern and southern utmost locations of the orbit and
approximately 550 m over the equator, restrictive of the district of convenient base-
lines for intersatellite interferometry above the sea surface to restricted space crews
far-off the north and south. In districts of elongated along-track baselines, the data
characteristic undergoes since sequential decorrelation of the signal backscattered.
Nonetheless, the TanDEM-X geometry constructions acquire adjusted from period to
period to enhance the cross-track interferometry performing in coastal water height
fluctuations and surface stream flow attentions [7].

On theword of Yoon et al. [8], the phase computation is a foremost encounter to
regulate surplus precise height. This is because the calculated phase differences are
assumed as a wrapped phase of the primary quantities of a scale�π to π, hence the
actuality vague contained bymultiples of 2π [2, 9, 10]. This technique generates phase
leaps between nearby pixels. Smooth function is depleted to resolve phase leap through
adding or detractingmultiples of 2π. Subsequently, Ferraiuolo et al. [2] have developed
themultichannel MAP height estimator as a function of a GaussianMarkov random
(GMRF) to unravel the doubts of height retrieving from InSAR procedure. They
initiated that themultichannel MAP height estimator has accomplished the phase gaps
and tweaked the height contour as compared to predictable phase unwrapping set of
rules, i.e., path-following algorithms andminimum-norm algorithms.

The foremost demonstrable of this experiment is to investigate the coastal water
level and velocity changes using along-track interferometric synthetic aperture
radar (ATInSAR) technique multichannel MAP height estimator.

2. Algorithm

The algorithm is implemented in this study, which is based on the multichannel
MAP height estimator. It is depleted to retain the information of the sea surface
level alterations. This algorithm is implemented from the consideration of Baselice
et al. [9]. Succeeding Baselice et al. [9], the signal of interferometric phase can be
articulated by the next mathematical Eq. (1) [9],

ϕsn ¼
4π

λR0 sin θ

� �
B⊥nhs þ α

� �

2π
,n ¼ 1, 2,…,N; s ¼ 1, 2,…, S (1)

where s is the pixel locus in the TanDEM-X data, n is the deliberated interfero-
gram band, λ is the TanDEM-X wavelength, R0 is the stretch between the epicenter
of the sight and the controlling antenna, and B⊥n is the orthogonal baseline. Fur-
thermore, hs is the height rate in meter, α is the phase decorrelation noise, and an
incident angle is presented by θ. Moreover, :h i2π signifies the “modulo-2π.” Let us
assume that N is autonomous interferogram bands; thenceforth, the obstruction
contains the retrieving of the sea-level height rates hs, which is being from the S�N
as a function of the expected wrapped phase ϕsn. Succeeding Ferraiuolo et al. [2],
the obstruction of demonstrating height can be elucidated by means of a MAP
height approximation technique. In this understanding, the multichannel probabil-
ity function Fmc is formulated as:

Fmc ϕs ςsjð Þ ¼
YN
n¼1

f ϕsn ςsj Þðð (2)

here F ϕsn ςsj Þð is the likelihood function of the signal channel, ϕs is calculated as
wrapped phase data which is denoted as the pixel s, ϕs ¼ ϕs1;ϕs2; :……;ϕsN½ �T, and ςs
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is collected vector height values where ς ¼ ς1; ς2; :……; ςS½ �T . Succeeding Baselice
et al. [9] and Ferraiuolo et al. [2], a MAP algorithm height approximation can be
casted by:

dςMAP ¼ argςmaxln ð
YS
S¼1

Fmc ϕs ςsj Þg ς; σ̂ð Þð
" #

(3)

here g :ð Þ is a preceding probability density function (pdf) which is approved by
means of GaussianMarkov random field (GMRF) and σ̂ is the hyperparameter route
which is not a preceding identified. As said by Baselice et al. [9], GMRF can be
appraised beginning fromthe restrained interferograms. This is realized bydeliberating
subbands, equivalent to diverse azimuth looks. In this regard, GMRF is determined by:
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where Ns is the district system of sth pixel, and s is well known as
hyperparameters, which are illustrative of the confined physical appearance of
the sea-level height h, σ is the hyperparameter vector assembling all pixel values,
and Z(σ) is the detachment function [10] which is required to standardize the pdf
[2, 9, 10]. Lastly, the regularized restoration square error is estimated via:

ε ¼ ς̂ � ςk k
ςk k2

2

(5)

where ς is the sea-level height which is derived from Eq. (3) and the accurate
height then can be estimated from Eq. (4) ς̂ð Þ. Though the reform is deliberating the
restricted sum of accessible data (four bands), it is virtuous to recover its feature,
predominantly on the disjointedness. Formerly, inverse algorithm is executed to
repossess the sea surface current pattern.

3. Dataset

Two panaches of acquaintance are required to inverse the sea surface current
pattern which are: (i) TanDEM-X of SAR; and (ii) real in situ measurements
throughout TanDEM-X satellite overpassed.

3.1 Satellite TanDEM-X data

Pair of Terra-SAR satellite data is attained by the TanDEM-X satellite on May 6,
2017. The earliest date was attained at 7:27:17 am; however, the subsequent data
obtained at 19:20:06 pm. Both data are in spotlight mode with X-band and HH and
VV polarization, respectively. Both spotlight modes are formatted in single look
complex binary data. The TanDEM-X functioning concern encompasses the syn-
chronized maneuver of two satellites hovering in contiguous pattern. The modifi-
cation restraints for the construction are: (i) the revolution arising nodes, (ii) the
perspective between the perigees, (iii) the revolution peculiarities, and (iv) the
phasing between the satellites. The adherence of ocean surface flow is a vigorous
façade of evaluating climate variations. Space-borne SAR along-track interferome-
try (ATI) obligates the talent to greatly subsidize to the contemporary field.
It will recommend a great-area, global-widespread seeming surface flow quantities.
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The difficulties of representing comparatively low-slung speeds are regular resolute
by the developments of SAR satellites that produce satisfactorily considerate ATI
quantities [7].

In this revision, the multichannel MAP height estimator relies on the TanDEMX
facts. Both TerraSAR-X and TanDEM-X satellites transmit identical SAR devices
functioning at 9.65 GHz frequency (X-band). All over approximately dedicated
maneuvers, both satellites are positioned acquaintance exceptionally in an actual
singular track conformation through a fleeting along path reference line delivering a
possibility for sea surface flow quantities. The TanDEM-X data exploited in this
investigation were bistatic (TS-X active/TD-X passive) channel with VV polariza-
tion and in stripmap (SM) [6, 7].

3.2 In situ ocean current measurement

Succeeding Marghany [3], the device of Aquadopp® 2 MHz current meter was
used to acquire the physical information of sea surface flows, for instance, speed
and direction (Figure 1). In this view, the surface flow information achievement

Figure 1.
Deployment of Aquadop 2 MHz current meter in the coastal water.

Figure 2.
In situ measurements geographical location.
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was collected by the Aquadopp® 2 MHz current meter factory-made by Nortek AS,
Scandinavian country. The device could be a standalone composition, manipulation
of the Doppler-established frequency equipment to gauge the surface current flows
at the positioning of a fixed geographical location on the sea surface. The equipment
is envisioned basically with memory and internal battery pack somewhere it may be
intended to tape and collect information within for self-positioning [3].

Along the coastal water of Teluk Kemang, Port Dickson, Malaysia, the current
meter instrument of Aquadopp® 2 MHz current meter was arrayed on May 6, 2017
(Figure 2). Two periods of data collection were carried out: (i) at 6:15 am to 8:15 am
and (ii) at 6:15 pm to 8:15 pm. For both phases, therefore, the surface flows were
deliberated for intermissions of 2 h.

4. Current pattern from TanDEM-X data

The TanDEM-X satellite data with the spotlight of VV polarization are
implemented to retrieve the sea surface flow rates (Figure 3). The retrieving sea
level and sea surface flow variations are constrained to range direction. In fact, the
sea surface current is only sensed along the range, while the wave spectra informa-
tion is a function of SAR azimuth direction. The retrieving sea surface flows are
delivered inshore zone of the coastal water of the Teluk Kemang, Port Dickson as
part of the Malacca Straits.

Therefore, the Doppler shift frequency of the ATI indicates fluctuations of sea
surface flow. The inshore water has a weak flow along 5 km of the coastal water.
This is indicated by the lower rate value of 0.1 m/s. In this regard, the lowest
spectral peak of the Doppler frequency shift is 0.04 which is corresponding to the
frequency shift value of �200 Hz (Figure 4). In this view, the weak inshore water
flow could be attributed to the impact of the low tide of 0.3 m as noticed along the
coastal water of the Teluk Kemang, Port Dickson.

The interferogram phase is ranged between �0.7° and +0.7° (Figure 5) derived
by the multichannel MAP height estimator. Obviously, the same pattern is visible.

Figure 3.
TanDEM-X SAR data (a) first mission and (b) second mission with VV polarization.
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This pattern signature represents current feature variations along the coastal
waters. Conversely, this interferogram phase is dominated by noises.

The inverters of the interferogram phase can be used to compute the ATI
Doppler sea surface current. The ATI Doppler shows a clear current pattern move-
ment along the coastal waters with minimum and maximum speed of 0.1 and
0.2 m/s, correspondingly (Figure 6). In fact, the interferometric combination of the
two images reveals phase alterations that are comparable to the backscatter varia-
tions of the Doppler frequency shift [7]. This rapidity is conforming to sea-level
differences of 0.4 m (Figure 6).

Figure 5.
Pattern of interferogram phase.

Figure 4.
TanDEM-X data Doppler spectra intensity.

8

Advanced Remote Sensing Technology for Synthetic Aperture Radar Applications,Tsunami…

Figure 6 exhibits noteworthy correspondences between the consequence of sea
surface flow speeds, which are created from TanDEM-X satellite data, and the
consequence delivered in the in situ quantity. Figure 7 demonstrates how the
correlation coefficient alteration as direct correlation between the two different
parameters is modified. Indeed, the investigation of the correlation between differ-
ent measured parameters can assist to develop accurate model. Obviously, there is a
worthy correlation between the retrieved sea surface flow and real in situ measured
flow with r2 of 0.76. Conversely, this correlation is not faultless, but it appears to
have a confident, direct association, and resembles to what one would guess when
bearing in mind both sea surface flow simulation from satellite data and one is
measured in situ and then follow the hypothesis of normality.

As said by Romeiser et al. [6, 7], the signatures of the Doppler frequency shift
are clearly responsive to sea surface flow than to wind modifications. Similarly, a
modification of the Doppler frequency shifts has a tiny effect on the TanDEM-X
backscatter intensity as compared to relaxation rate. Obtaining phase by using
multichannel MAP height estimator algorithm will allow us to characterize the
water sea-level fluctuations. Three-dimensional reconstruction of water-level

Figure 6.
Sea surface current and sea-level variations retrieved using an ATI MAP algorithm.
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changes from the ATInSAR technique by using the algorithm of multichannel MAP
height approximation can aid to regulate the vertical shift of sea-level changes.
Moreover, the multichannel MAP height approximation has achieved the difficulty
of the phase unwrapping discontinuities and amended the vertical displacement
synopsis as rivaled to conservative algorithm of phase unwrapping, for instance, (i)
minimum-norm algorithm and (ii) path-following algorithm [9]. Lastly, TanDEM-
X satellite data are comprehended as the prospective radar device for observing the
dynamic fluctuation of ocean surface. Sea surface flow is considered as one of a
consideration—impressing issue which is required a short visit cycle and extraordi-
nary resolution. In this understanding, these can afford specific facts in relation to
sea surface dynamic flow [2, 3, 5, 9–16].

5. Conclusion

This work has revealed a method for regaining sea surface flow using such high-
resolution satellite data of TanDEM SAR-X. Along-track interferometry (ATI)
technique is implemented to retrieve sea surface current movement. To this end,
multichannel MAP height estimator algorithm is said to model sea-level variation.
Then, the inverse algorithm is used which is based on the Doppler frequency model
to retrieve sea surface current. The results reveal that the sea surface flow pattern is
dominated by low velocity of less than 0.3 m/s which corresponds to lower sea-level
variation of 0.4 m. The study confirms that multichannel MAP height estimator
algorithm is proficient to regain the sea surface flow rate from ATI TanDEM-X with
an extraordinary precision of �0.09 m/s. In conclusion, the approximation algo-
rithm of multichannel MAP height conceivably can be a tremendous practice for
repossessing sea surface flow pattern and sea-level fluctuations from ATI TanDEM-X
satellite data.

Figure 7.
Validation of MAP algorithm with in situ measurement.
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Chapter 2

On Feature-Based SAR Image
Registration: Appropriate Feature
and Retrieval Algorithm
Dong Li, Yunhua Zhang and Xiaojin Shi

Abstract

An investigation on the appropriate feature and parameter retrieval algorithm is
conducted for feature-based registration of synthetic aperture radar (SAR) images.
The commonly used features such as tie points, Harris corner, SIFT, and SURF are
comprehensively evaluated. SURF is shown to outperform others on criteria such as
the geometrical invariance of feature and descriptor, the extraction and matching
speed, the localization accuracy, as well as the robustness to decorrelation and
speckling. The processing result reveals that SURF has nice flexibility to SAR
speckles for the potential relationship between Fast-Hessian detector and refined
Lee filter. Moreover, the use of Fast-Hessian to oversampled images with unaltered
sampling step helps to improve the registration accuracy to subpixel (i.e., <1 pixel).
As for parameter retrieval, the widely used random sample consensus (RANSAC) is
inappropriate because it may trap into local occlusion and result in uncertain esti-
mation. An extended fast least trimmed squares (EF-LTS) is proposed, which
behaves stable and averagely better than RANSAC. Fitting SURF features with EF-
LTS is hence suggested for SAR image registration. The nice performance of this
scheme is validated on both InSAR and MiniSAR image pairs.

Keywords: extended fast least trimmed squares (EF-LTS), feature-based image
registration, parameter estimation, speeded up robust feature (SURF),
synthetic aperture radar (SAR)

1. Introduction

Synthetic aperture radar (SAR) as an irreplaceable remote sensing technique has
been used for earth observation and environment monitoring for a long time due to
its all-weather and all-day operational capability. A large number of airborne and
spaceborne SAR sensors have been deployed recently. Nevertheless, the difference
in sensors and imaging geometries will always introduce a geometrical warp
between images which should be compensated before any joint application of mul-
tiple SAR images for accurate apperception and understanding of target and scene.
Image registration is just dedicated to retrieve the warp function to align the same
pixel position in each SAR image to the same target in the global system.

A lot of SAR image registration techniques have been developed hitherto. In this
chapter, we focus on the algorithms that conduct registration based on image
features, such as contour, region, line, and point. Contour, region, and line as well
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as their combination are often used for registration of multi-modality images. For
SAR images with geometrical distortion and speckle, point feature is generally
much clearer and easier extracted. Tie points, corner, and keypoint are the com-
monly used features in SAR image registration. Tie points usually refer to the
features extracted from tie patches in SAR image registration [1–4]. The tie patches
are first matched by region-based algorithms, and the tie points are then located by
extracting the geometrical centers or centroids of the matched patches. Corner
denotes another kind of point feature which has two dominant but different edge
directions in local neighborhood. In SAR image registration, Harris corner [5] is the
commonly used point feature [2, 6] whose response function is the weighted addi-
tion of the determinant and squared trace of the first-order moment matrix which
describes the local neighboring gradient distribution of a point. Keypoint refers to
the point differing in brightness or color compared with the surrounding. It is
identified to further enable a complementary description of image structure that
cannot be characterized by corner. The scale invariant feature transform (SIFT) [7]
and the speeded up robust feature (SURF) [8] are the widely used keypoints in SAR
image registration. SIFT was developed by Lowe [7] to extract features based on the
automatic scale selection theory. Lindeberg [9] found that the only possible scale-
space kernel under a variety of reasonable assumptions is the Gaussian function,
and he experimented with both the traces of Hessian matrix, i.e., the Laplacian of
Gaussian (LoG) and the determinant of Hessian (DoH) matrix, to detect the blob-
like structures. To extract keypoints efficiently, Lowe [7] simplified LoG with the
difference of Gaussian (DoG) further. SIFT enables not only a feature detector, but
also a 128D vectorized descriptor of gradient and orientation. Mikolajczyk and
Schmid conducted a comparative study on 10 different local descriptors and found
that SIFT performs the best on treating the common image deformations [10]. SIFT
has been widely used in SAR image registration [11–23]. Chen et al. [13] systemat-
ically evaluated the application of SIFT to SAR and displayed its usefulness for
image registration. Schwind et al. [15] further indicated that SIFT is a robust alter-
native for point feature-based SAR image registration. The bottleneck of SIFT is the
speed [8, 13, 15], which hinders its application to general SAR image registration. To
accelerate SIFT, Schwind et al. [15] proposed to skip features detected at the first
octave of the scale space pyramid (SSP) because matches extracted from this octave
have the highest matching false alarm rate (MFAR). This can save the processing
time without reducing the number of correct matches greatly. However, the first
scale octave in SSP of SIFT refers to the image of original size or doubled size which
has the highest resolution in SSP. Thus, the features extracted from this octave are
more accurate for image registration [16]. Therefore, the discarding of matches
from the first octave may influence the final registration accuracy. Based on the
same scheme as SIFT, SURF developed by Bay et al. [8] uses a combination of novel
detection, description, and matching methods to simplify SIFT. SURF extracts
feature based on DoH instead of its trace because DoH bears slightly better scale
selection property under non-Euclidean affine transformation than LoG. Bay et al.
used a Fast-Hessian detector with box filters to approximate DoH. The SURF
descriptor is a 64D vector composed by the Harr wavelet responses of the square
area around keypoint. SURF has been demonstrated to outperform SIFT on speed,
repeatability, distinctiveness, and robustness [8]. It has been used for multispectral
satellite image registration [24], seabed recognition based on sonar images [25], and
SAR image registration [26–29].

The next procedure after feature extraction is to match the features for corre-
spondences. For tie points, this procedure is unnecessary because they have already
matched when extracted. For other features, the correspondences are usually
constructed by optimizing certain merit function, such as maximizing the similarity
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or minimizing the difference. The warp function can then be retrieved by fitting the
obtained correspondences. For correspondences without any mismatches, the
retrieval can be easily conducted by fitting them with the least squares (LS). How-
ever, for the general registration cases, the initial correspondences often contain
mismatches. Therefore, the robust retrieval algorithms which are insensitive to
outliers are needed. In many existing literatures on feature-based SAR image regis-
tration [15, 16, 26, 27], the random sample consensus (RANSAC) [30] has been
widely used and recommended for warp function retrieval. RANSAC conducts the
estimation by randomly sampling a minimal sampling set (MSS) to achieve an
estimation of the warping, and the entire datasets are then checked on the estima-
tion for a consensus set (CS) of correspondences. These two steps are iterated until
the largest CS is achieved [31]. Besides this, the least median squares (LMedS) [32]
and the fast least trimmed squares (Fast-LTS) [33] have also been used [4, 34, 35].
There are also some other approaches which use different matching and retrieval
algorithms with different features, which can be referred to the related reviewing
articles [36–38].

Although lots of approaches have been developed for feature-based SAR image
registration, there are still some open problems that have not been perfectly
solved yet. In this chapter, we concentrate on two problems, i.e., which feature is
more appropriate and which retrieval algorithm performs much better? The first
problem is related to the feature operator, which is focused in Sections 2 and 3. We
give a detailed evaluation to tie points, Harris corner, SIFT, and SURF in terms of
the geometrical invariance of feature and descriptor, extraction and matching
speed, localization accuracy, robustness to decorrelation, and flexibility to
speckle. SURF is identified to outperform others. Particularly, we find that SURF
is flexible to speckle for the close relationship between Fast-Hessian detector and
refined Lee speckle filter. SURF is thus more competent for SAR image registra-
tion. The second problem is posed in Section 4 with the reason that the widely
used RANSAC is found instable for parameter estimation in the registration of an
interferometric SAR (InSAR) image pair. The uncertainty arises from its inappro-
priate loss function and estimation strategy. Based on the scheme of Fast-LTS, an
extended Fast-LTS (EF-LTS) is presented for 2D robust parameter estimation.
Experiment on InSAR image pair demonstrates that EF-LTS is more stable and
robust than RANSAC. It is more appropriate and competent for SAR image regis-
tration. Based on these, we recommend fitting the SURF features with EF-LTS to
conduct the registration. We further evaluate this scheme in Section 5 by
processing the MiniSAR image pair, and the result complies with our expectation.
Section 6 concludes the chapter finally.

2. Comparative analysis on the commonly used features
for SAR image registration

SAR image is acquired with intensity and phase, which should be transformed
into the real one before feature detection by taking the intensity or the logarithmic
intensity of the image. Instead of proposing a novel feature for SAR image registra-
tion, we identify the appropriate feature from the widely used tie points, Harris
corner, SIFT, and SURF by evaluating them on several criteria. In this section, the
features will be evaluated on the following six factors, i.e., the geometrical invari-
ance of feature, the extraction speed, the localization accuracy, the geometric
invariance of descriptor, the matching speed, and the robustness to decorrelation,
while the impact of SAR speckles will be particularly focused and analyzed in
Section 3.
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2.1 Geometrical invariance of feature

The geometrical invariance of feature refers to which degree of warping a same
feature can still be extracted from the warped images by a detector. Cross-
correlation (CC) is sensitive to image rotation and scaling, hence the CC-based tie
points are only invariant to the following translation transformation:
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where (x, y, 1)T $ (x0, y0, 1)T are the inhomogeneous coordinates of a pair of
matching points (the superscript T shows the vector transpose), and tx and ty denote
the translations in x- and y-direction, respectively. The Harris measure is the follow-
ing Harris matrix H describing the neighboring gradient distribution of a point [5]:
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where <�> denotes the ensemble average; Ix and Iy are the first-order partial
derivatives in x- and y-direction, respectively. Then, the response function R of
Harris is the weighted sum of the determinant and squared trace of H [5]:

R ¼ det Hð Þ � κ trace Hð Þð Þ2 (3)

where the weight κ is a constant within the interval 0.04–0.06. A pixel is selected
as a Harris corner if its response R is beyond a given threshold. It can be easily
obtained from (2) that H is semi-definite Hermitian, which indicates the existence
of two nonnegative eigenvalues λ1 and λ2. Then (3) can be further formulated as:

R ¼ λ1λ2 � κ λ1 þ λ2ð Þ2 (4)

The Harris response R is only decided by the eigenvalues of H. Any unitary
transformation of H will not influence the extraction of corner. Therefore, Harris
corner is invariant to the following Euclidean transformation:
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where θ denotes the rotation. SIFT and SURF were proposed to achieve the
scale-invariance further:
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where s is the scale. Theoretically, SIFT and SURF features are not affine-
invariant as Harris-Affine and Hessian-Affine features [39]. Nonetheless, the
affine frame in Hessian-Affine and Harris-Affine is more sensitive to noise than
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scale-invariant detector. For general SAR image application, scale-invariant features
such as SIFT and SURF are sufficient.

2.2 Feature extraction speed

The extraction speed is mainly influenced by the computational load of detector.
Tie points are identified by traversing all potential offsets to calculate CC. The
resulted computational load is heavy. The Harris response R is determined by the
determinant and trace of matrix H. The calculation of H only relates to the first-
order derivatives which can be fast achieved. The scale-invariant SIFT and SURF
keypoints are extracted by constructing SSP first. SSP is comprised of several
octaves and each octave consists of several scale levels further. A scale level is a
Gaussian-smoothed image. The nearby two layers are subtracted to calculate DoG,
an approximation to LoG. The keypoint is finally identified as the point with
extreme value of DoG in a 3 � 3 � 3 neighborhood in the scale space. SIFT detector
performs slower than Harris because it extracts the feature in 3D space not in 2D
space. Nonetheless, to extract the same number of subpixel features, SIFT detector
is faster than CC-based tie points for the latter conducts exhaustive searching. SURF
extracts feature based on DoH. Given a point x = (x, y) in image I at scale σ, the
scale function DoH is obtained by:

DoHSIFT ¼ Lxx x; σð ÞLyy x; σð Þ � Lxy x; σð Þ� �2 (7)

where Lxx (x, σ), Lyy (x, σ), and Lxy (x, σ) denote the convolution of the
Gaussian second-order derivative in x-, y-, and xy-directions with I, respectively.

When applied in practice, Gaussians should be discretized and cropped. The
corresponding discretized and cropped Lxx, Lxy, and Lyy with the lowest scale of 1.2
are displayed in the first row of Figure 1. Encouraged by the successful simplifica-
tion of LoG with DoG in SIFT, Bay et al. devised a Fast-Hessian detector to approx-
imate Lxx, Lxy, and Lyy with box filters Dxx, Dxy, and Dyy, respectively, shown in the
second row of Figure 1. In [8], Bay et al. indicated that the performance of this
approximation is comparable or even better than the original Gaussians. The

Figure 1.
SIFT discretized and cropped Gaussian second-order partial derivatives in x- (Lxx), xy- (Lxy), and y-direction
(Lyy), as well as their corresponding SURF box filter approximations Dxx , Dxy , and Dyy , respectively.
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where s is the scale. Theoretically, SIFT and SURF features are not affine-
invariant as Harris-Affine and Hessian-Affine features [39]. Nonetheless, the
affine frame in Hessian-Affine and Harris-Affine is more sensitive to noise than
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scale-invariant detector. For general SAR image application, scale-invariant features
such as SIFT and SURF are sufficient.

2.2 Feature extraction speed

The extraction speed is mainly influenced by the computational load of detector.
Tie points are identified by traversing all potential offsets to calculate CC. The
resulted computational load is heavy. The Harris response R is determined by the
determinant and trace of matrix H. The calculation of H only relates to the first-
order derivatives which can be fast achieved. The scale-invariant SIFT and SURF
keypoints are extracted by constructing SSP first. SSP is comprised of several
octaves and each octave consists of several scale levels further. A scale level is a
Gaussian-smoothed image. The nearby two layers are subtracted to calculate DoG,
an approximation to LoG. The keypoint is finally identified as the point with
extreme value of DoG in a 3 � 3 � 3 neighborhood in the scale space. SIFT detector
performs slower than Harris because it extracts the feature in 3D space not in 2D
space. Nonetheless, to extract the same number of subpixel features, SIFT detector
is faster than CC-based tie points for the latter conducts exhaustive searching. SURF
extracts feature based on DoH. Given a point x = (x, y) in image I at scale σ, the
scale function DoH is obtained by:

DoHSIFT ¼ Lxx x; σð ÞLyy x; σð Þ � Lxy x; σð Þ� �2 (7)

where Lxx (x, σ), Lyy (x, σ), and Lxy (x, σ) denote the convolution of the
Gaussian second-order derivative in x-, y-, and xy-directions with I, respectively.

When applied in practice, Gaussians should be discretized and cropped. The
corresponding discretized and cropped Lxx, Lxy, and Lyy with the lowest scale of 1.2
are displayed in the first row of Figure 1. Encouraged by the successful simplifica-
tion of LoG with DoG in SIFT, Bay et al. devised a Fast-Hessian detector to approx-
imate Lxx, Lxy, and Lyy with box filters Dxx, Dxy, and Dyy, respectively, shown in the
second row of Figure 1. In [8], Bay et al. indicated that the performance of this
approximation is comparable or even better than the original Gaussians. The

Figure 1.
SIFT discretized and cropped Gaussian second-order partial derivatives in x- (Lxx), xy- (Lxy), and y-direction
(Lyy), as well as their corresponding SURF box filter approximations Dxx , Dxy , and Dyy , respectively.
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approximation makes pixels in certain window have the same weight. The convo-
lutions can be then calculated at very low computational cost by using the integral
image. Therefore, instead of iteratively reducing the image size and using the
cascade filtering, SSP in SURF is built by simply up-scaling the box filters without
changing the size of the image. The use of integral image enables the convolutions
independent of the filter size and scale.

2.3 Localization accuracy of feature

Image registration accuracy is closely determined by the localization accuracy of
feature. Tie points achieve subpixel accuracy by oversampling the image patches
[40] or CC obtained in coarse registration [41]. Higher sampling rate indicates
higher accuracy, but it also signifies larger data sets, heavier computational load,
and more severe aliasing. Keypoint in SIFT and SURF is first located as the extrema
using the non-maximum suppression technique, and is then refined to subpixel and
sub-scale accuracy by Taylor fitting a 3D quadratic to the scale function DoG (for
SIFT) or the approximated DoH (for SURF) in the scale space [42]:

f Xð Þ ¼ f X0ð Þ þ ∂f
∂X

X0ð Þ
� �T

ΔXþ 1
2
ΔXT ∂

2f
∂x2 X0ð Þ

� �
ΔX: (8)

Therefore, SIFT and SURF can obtain the highest accuracy. However, it should
be noted that although the subpixel feature localization is the precondition of
accurate image registration, it cannot guarantee a subpixel image registration. For
high accurate SAR image registration, we should further evaluate the features
carefully, and this will be detailed in Section 3.4.

2.4 Geometrical invariance of descriptor

Feature descriptor is usually a vector depicting the neighboring information of a
feature. It plays a key role in feature matching. The descriptor’s geometrical invari-
ance determines the degree of warping to which features can still be successfully
matched. Harris corner and tie points have no descriptor. From feature matching
point of view, however, they both adopt template matching by selecting the image
square centered around the feature as descriptor, which is only invariant to trans-
lation. Thus, tie points and Harris corner can be successfully matched only under
weak warping. SIFT and SURF descriptors enable a good compromise between
feature complexity and the robustness to commonly occurring deformation such as
weak affine transformation [7, 8, 43]:
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where sx and sy denote the scales in directions x and y, respectively. Robust
matching across a substantial range of affine distortion and change in 3D viewpoint
can hence be achieved.

2.5 Matching speed of feature

Feature matching is usually conducted based on certain merit function of the
descriptors. In feature-based SAR image registration, the merit function is to
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maximize the similarity (such as CC [4]) or minimize the differences (such as
Euclidean distance [7, 8]). A correspondence is detected if it can optimize the merit
function. For SIFT and SURF, the merit of an optimal correspondence has also to be
certain times larger than the second optimal merit. Matching speed is mainly deter-
mined by the calculation of merit. For tie points and Harris corner, the merit
function is the maximum of CC, which can be obtained on complex data or magni-
tude data [44], referring to coherent CC or incoherent CC, respectively. The
registration accuracy attained by coherent CC is much higher than that by incoher-
ent CC [45]. If D1 and D2 are the image patches, respectively, centered at an initial
match, the coherent CC is calculated as

CC D1;D2ð Þ ¼
∑N

i¼1∑
N
j¼1 D1 i; jð Þ � μ1ð Þ D2 i; jð Þ � μ2ð Þ∗

���
���

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
∑N

i¼1∑
N
j¼1 D1 i; jð Þ � μ1ð Þj j2∑N

i¼1∑
N
j¼1 D2 i; jð Þ � μ2ð Þj j2

q (10)

where N is the size of the image patch, μ1 and μ1 denote the means of D1 and
D2, respectively. Equation (10) requires about 10N2 operations including 7N2

additions and 3N2 multiplications.
The merit function in SIFT and SURF is the minimum of the Euclidean distance.

If D3 and D4 are the descriptors of an initial match, respectively, the distance can
be calculated by

Dist D3;D4ð Þ ¼ ∑
L

i¼1
D3 ið Þ �D4 ið Þj j2 (11)

where L is the length of descriptor. Equation (11) requires 3L operations
including 2L additions and Lmultiplications. For SURF, Bay et al. [8] found that the
sign of Laplacian can be further used to distinguish the feature from its background
for fast indexing during matching stage. The merit will not be computed unless the
initial match has the same sign. Hence, under the assumption of equal probability
distribution for sign of Laplacian, the merit computation in SURF requires 1.5L
operations. Taking the descriptor lengths L for SIFT and SURF being 128 and 64 into
consideration, then (11) involves in 384 and 96 operations for SIFT and SURF,
respectively. Hence, SURF is four times faster than SIFT on feature matching. To
achieve the same efficiency as SIFT or SURF, the equivalent patch size N for tie
points and Harris corner should be about 6 or 3, respectively. This may lead to biased
CC estimation thus bad feature localization and matching due to the insufficient
sampling.

2.6 Robustness to decorrelation

SAR decorrelation sources can be classified into two categories, i.e., the
geometrical warping and radiometric warping. Geometrical warping will lead to
decorrelation and influence the CC-based feature matching, which relates to the
geometrical invariance of feature discussed above. Here, we focus on the
radiometric warping-induced decorrelation. Such decorrelation is resulted because
CC is only invariant to affine changes in scattering. Target scattering in
microwave band is sensitive to frequency, bandwidth, and polarization. All these
introduce a complex nonlinear radiometric warping, which degrades SAR
information and aggravates image registration by impacting the localization of tie
points. The localization accuracy of tie points is measured by the error standard
deviation σL [45]:
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approximation makes pixels in certain window have the same weight. The convo-
lutions can be then calculated at very low computational cost by using the integral
image. Therefore, instead of iteratively reducing the image size and using the
cascade filtering, SSP in SURF is built by simply up-scaling the box filters without
changing the size of the image. The use of integral image enables the convolutions
independent of the filter size and scale.
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Image registration accuracy is closely determined by the localization accuracy of
feature. Tie points achieve subpixel accuracy by oversampling the image patches
[40] or CC obtained in coarse registration [41]. Higher sampling rate indicates
higher accuracy, but it also signifies larger data sets, heavier computational load,
and more severe aliasing. Keypoint in SIFT and SURF is first located as the extrema
using the non-maximum suppression technique, and is then refined to subpixel and
sub-scale accuracy by Taylor fitting a 3D quadratic to the scale function DoG (for
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Therefore, SIFT and SURF can obtain the highest accuracy. However, it should
be noted that although the subpixel feature localization is the precondition of
accurate image registration, it cannot guarantee a subpixel image registration. For
high accurate SAR image registration, we should further evaluate the features
carefully, and this will be detailed in Section 3.4.

2.4 Geometrical invariance of descriptor

Feature descriptor is usually a vector depicting the neighboring information of a
feature. It plays a key role in feature matching. The descriptor’s geometrical invari-
ance determines the degree of warping to which features can still be successfully
matched. Harris corner and tie points have no descriptor. From feature matching
point of view, however, they both adopt template matching by selecting the image
square centered around the feature as descriptor, which is only invariant to trans-
lation. Thus, tie points and Harris corner can be successfully matched only under
weak warping. SIFT and SURF descriptors enable a good compromise between
feature complexity and the robustness to commonly occurring deformation such as
weak affine transformation [7, 8, 43]:
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where sx and sy denote the scales in directions x and y, respectively. Robust
matching across a substantial range of affine distortion and change in 3D viewpoint
can hence be achieved.

2.5 Matching speed of feature

Feature matching is usually conducted based on certain merit function of the
descriptors. In feature-based SAR image registration, the merit function is to
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maximize the similarity (such as CC [4]) or minimize the differences (such as
Euclidean distance [7, 8]). A correspondence is detected if it can optimize the merit
function. For SIFT and SURF, the merit of an optimal correspondence has also to be
certain times larger than the second optimal merit. Matching speed is mainly deter-
mined by the calculation of merit. For tie points and Harris corner, the merit
function is the maximum of CC, which can be obtained on complex data or magni-
tude data [44], referring to coherent CC or incoherent CC, respectively. The
registration accuracy attained by coherent CC is much higher than that by incoher-
ent CC [45]. If D1 and D2 are the image patches, respectively, centered at an initial
match, the coherent CC is calculated as

CC D1;D2ð Þ ¼
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where N is the size of the image patch, μ1 and μ1 denote the means of D1 and
D2, respectively. Equation (10) requires about 10N2 operations including 7N2

additions and 3N2 multiplications.
The merit function in SIFT and SURF is the minimum of the Euclidean distance.

If D3 and D4 are the descriptors of an initial match, respectively, the distance can
be calculated by

Dist D3;D4ð Þ ¼ ∑
L

i¼1
D3 ið Þ �D4 ið Þj j2 (11)

where L is the length of descriptor. Equation (11) requires 3L operations
including 2L additions and Lmultiplications. For SURF, Bay et al. [8] found that the
sign of Laplacian can be further used to distinguish the feature from its background
for fast indexing during matching stage. The merit will not be computed unless the
initial match has the same sign. Hence, under the assumption of equal probability
distribution for sign of Laplacian, the merit computation in SURF requires 1.5L
operations. Taking the descriptor lengths L for SIFT and SURF being 128 and 64 into
consideration, then (11) involves in 384 and 96 operations for SIFT and SURF,
respectively. Hence, SURF is four times faster than SIFT on feature matching. To
achieve the same efficiency as SIFT or SURF, the equivalent patch size N for tie
points and Harris corner should be about 6 or 3, respectively. This may lead to biased
CC estimation thus bad feature localization and matching due to the insufficient
sampling.

2.6 Robustness to decorrelation

SAR decorrelation sources can be classified into two categories, i.e., the
geometrical warping and radiometric warping. Geometrical warping will lead to
decorrelation and influence the CC-based feature matching, which relates to the
geometrical invariance of feature discussed above. Here, we focus on the
radiometric warping-induced decorrelation. Such decorrelation is resulted because
CC is only invariant to affine changes in scattering. Target scattering in
microwave band is sensitive to frequency, bandwidth, and polarization. All these
introduce a complex nonlinear radiometric warping, which degrades SAR
information and aggravates image registration by impacting the localization of tie
points. The localization accuracy of tie points is measured by the error standard
deviation σL [45]:
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where γ is CC, N is the size of the tie patches, and osr is the oversampling rate.
Localization accuracy directly relates to CC: higher coherence means higher locali-
zation accuracy, while higher decorrelation indicates worse localization accuracy
and worse registration accuracy. It is known that one can approximate a nonlinear
function with a series of linear functions, so a nice method to improve the robust-
ness to decorrelation is to use smaller image patches, but this will also result in
worse localization accuracy through N in (12). Thus, tie points are not robust to
decorrelation. Similarly, the influence of decorrelation on CC-based matching of
Harris corners is also unavoidable. However, Harris, SIFT, and SURF locate feature
based on geometrical texture instead of correlation. This will reduce the influence of
decorrelation. The matching of SIFT and SURF features is based on local descriptors
which are invariant to affine changes in scattering. SIFT and SURF features are thus
more robust to decorrelation.

3. Impact of SAR speckles on accurate feature extraction

SAR image is acquired by actively measuring and coherently processing the
electromagnetic scattering of target. The interference of scatterings from scatterers
within each resolution cell produces a pixel-to-pixel variation in image intensity and
results in the so-called speckle. In this section, we first conduct a qualitative evalu-
ation on the flexibility of existing features to speckles. An experimental evaluation
of the identified feature is then conducted and some necessary improvements are
developed for high accurate SAR image registration.

3.1 Flexibility to image speckling

For CC-based tie points, the assumption that the scattering is locally stationary
and ergodic may not be tenable in the existence of speckles. As a result, the corre-
lation estimation as well as the localization and matching of the feature will be
biased. For the geometrical texture-based detectors such as Harris, SIFT, and SURF,
speckles may lead to false texture and high MFAR. To achieve stable features from
the speckle-contaminated SAR image, a conceivable method is to suppress speckle
beforehand. Schwind et al. [15] suggested adopting the ISEF filter, but they indi-
cated that ISEF filter and any other filter may slightly affect feature localization and
registration quality. Hence, a better strategy is to conduct speckle suppression while
feature extraction, i.e., the detector should be flexible to speckling.

Harris detector obtains features using the first-order image derivatives which
are not robust to speckles. As a result, Harris detector may extract many features,
but most of the extracted features are speckles with only a few correct matches.
This influence has been also observed by Schwind et al. [15] when using SIFT to
SAR: only very few matches are constructed at the first octave of SSP although with
extensive number of extractable features, and the matches from this octave have
the highest MFAR of all the octaves. The first scale octave refers to the original or
double-sized images which are of the highest resolution and the largest number of
extractable keypoints. The highest MFAR at this octave clearly indicates the bad
flexibility of SIFT to speckles, while the lower MFAR at higher octaves is just due to
the fact that larger image smoothing reduces the speckle. Different from SIFT,
SURF can deal with speckle very well because of the relationship between Fast-
Hessian detector and refined Lee speckle filter.
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3.2 Refined Lee speckle filter

An ideal speckle filter should adaptively smooth speckle, retain the sharpness of
boundaries and edges, and preserve the subtle but distinguishable details. The most
widely used boxcar filter replaces a pixel with the mean of its windowed neighbor-
hood. This filter can be easily implemented and works very well in homogeneous
area, but will degrade spatial resolution in inhomogeneous area due to the indis-
criminate averaging [46]. To solve this, many filtering techniques have been pro-
posed. The refined Lee speckle filter is just such a filter which uses the local
statistics to suppress speckles without degrading image. To identify pixels with the
similar texture, Lee devised the eight non-square edge-aligned windows, as shown
in Figure 2. In the course of filtering, one of the windows is matched to calculate
local statistics based on edge direction, and the minimum mean square algorithm is
then adopted for filtering. As a result, this filter can effectively reduce the speckle
without degrading the edge [46].

3.3 Relationship between Fast-Hessian detector and refined Lee filter

As mentioned previously, SURF extracts features based on the box filter
displayed in Figure 1. Box filter not only speeds up feature extraction, but also
enables SURF to extract features while reducing speckles. In Dxx of Figure 1, we
average the pixels using a 5 � 3 window first, and then extract the vertical edge by
the second-order image partial derivative in x-direction with convolution template
[1 �2 1]. This is equivalent to filter speckles with Lee’s windows Figure 2(a) and
(e). Similarly, Dyy denotes that we also filter the pixels using a 5 � 3 window first,
but then extract the horizontal edge using the second-order image partial derivative
in y-direction with convolution template [1 �2 1]T. This is equivalent to filter
speckle with Lee’s non-square windows Figure 2(c) and (g). Dxy shows that we use
a 3 � 3 window and extract the 135° edge feature by the second-order image partial
derivative in negative xy-direction with the convolution template [1�1;�1, 1]. This
is equivalent to filter speckle with windows Figure 2(d) and (h). Likewise, �Dxy

gives that we also use a 3 � 3 window but extract the 45° edge by the second order
image partial derivative in positive xy-direction with convolution template [�1 1;
1, �1]. This is equivalent to filter with windows Figure 2(b) and (f). Instead of

Figure 2.
Edge-aligned windows used in refined Lee filter to decide the local texture, where windows (a) and (e) are used
for vertical edge, (c) and (g) for horizontal edge, (b) and (f) for 135° edge, and (d) and (h) for 45° edge.
The pixels in white are used for filtering computation.
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where γ is CC, N is the size of the tie patches, and osr is the oversampling rate.
Localization accuracy directly relates to CC: higher coherence means higher locali-
zation accuracy, while higher decorrelation indicates worse localization accuracy
and worse registration accuracy. It is known that one can approximate a nonlinear
function with a series of linear functions, so a nice method to improve the robust-
ness to decorrelation is to use smaller image patches, but this will also result in
worse localization accuracy through N in (12). Thus, tie points are not robust to
decorrelation. Similarly, the influence of decorrelation on CC-based matching of
Harris corners is also unavoidable. However, Harris, SIFT, and SURF locate feature
based on geometrical texture instead of correlation. This will reduce the influence of
decorrelation. The matching of SIFT and SURF features is based on local descriptors
which are invariant to affine changes in scattering. SIFT and SURF features are thus
more robust to decorrelation.

3. Impact of SAR speckles on accurate feature extraction

SAR image is acquired by actively measuring and coherently processing the
electromagnetic scattering of target. The interference of scatterings from scatterers
within each resolution cell produces a pixel-to-pixel variation in image intensity and
results in the so-called speckle. In this section, we first conduct a qualitative evalu-
ation on the flexibility of existing features to speckles. An experimental evaluation
of the identified feature is then conducted and some necessary improvements are
developed for high accurate SAR image registration.

3.1 Flexibility to image speckling

For CC-based tie points, the assumption that the scattering is locally stationary
and ergodic may not be tenable in the existence of speckles. As a result, the corre-
lation estimation as well as the localization and matching of the feature will be
biased. For the geometrical texture-based detectors such as Harris, SIFT, and SURF,
speckles may lead to false texture and high MFAR. To achieve stable features from
the speckle-contaminated SAR image, a conceivable method is to suppress speckle
beforehand. Schwind et al. [15] suggested adopting the ISEF filter, but they indi-
cated that ISEF filter and any other filter may slightly affect feature localization and
registration quality. Hence, a better strategy is to conduct speckle suppression while
feature extraction, i.e., the detector should be flexible to speckling.

Harris detector obtains features using the first-order image derivatives which
are not robust to speckles. As a result, Harris detector may extract many features,
but most of the extracted features are speckles with only a few correct matches.
This influence has been also observed by Schwind et al. [15] when using SIFT to
SAR: only very few matches are constructed at the first octave of SSP although with
extensive number of extractable features, and the matches from this octave have
the highest MFAR of all the octaves. The first scale octave refers to the original or
double-sized images which are of the highest resolution and the largest number of
extractable keypoints. The highest MFAR at this octave clearly indicates the bad
flexibility of SIFT to speckles, while the lower MFAR at higher octaves is just due to
the fact that larger image smoothing reduces the speckle. Different from SIFT,
SURF can deal with speckle very well because of the relationship between Fast-
Hessian detector and refined Lee speckle filter.
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3.2 Refined Lee speckle filter

An ideal speckle filter should adaptively smooth speckle, retain the sharpness of
boundaries and edges, and preserve the subtle but distinguishable details. The most
widely used boxcar filter replaces a pixel with the mean of its windowed neighbor-
hood. This filter can be easily implemented and works very well in homogeneous
area, but will degrade spatial resolution in inhomogeneous area due to the indis-
criminate averaging [46]. To solve this, many filtering techniques have been pro-
posed. The refined Lee speckle filter is just such a filter which uses the local
statistics to suppress speckles without degrading image. To identify pixels with the
similar texture, Lee devised the eight non-square edge-aligned windows, as shown
in Figure 2. In the course of filtering, one of the windows is matched to calculate
local statistics based on edge direction, and the minimum mean square algorithm is
then adopted for filtering. As a result, this filter can effectively reduce the speckle
without degrading the edge [46].

3.3 Relationship between Fast-Hessian detector and refined Lee filter

As mentioned previously, SURF extracts features based on the box filter
displayed in Figure 1. Box filter not only speeds up feature extraction, but also
enables SURF to extract features while reducing speckles. In Dxx of Figure 1, we
average the pixels using a 5 � 3 window first, and then extract the vertical edge by
the second-order image partial derivative in x-direction with convolution template
[1 �2 1]. This is equivalent to filter speckles with Lee’s windows Figure 2(a) and
(e). Similarly, Dyy denotes that we also filter the pixels using a 5 � 3 window first,
but then extract the horizontal edge using the second-order image partial derivative
in y-direction with convolution template [1 �2 1]T. This is equivalent to filter
speckle with Lee’s non-square windows Figure 2(c) and (g). Dxy shows that we use
a 3 � 3 window and extract the 135° edge feature by the second-order image partial
derivative in negative xy-direction with the convolution template [1�1;�1, 1]. This
is equivalent to filter speckle with windows Figure 2(d) and (h). Likewise, �Dxy

gives that we also use a 3 � 3 window but extract the 45° edge by the second order
image partial derivative in positive xy-direction with convolution template [�1 1;
1, �1]. This is equivalent to filter with windows Figure 2(b) and (f). Instead of

Figure 2.
Edge-aligned windows used in refined Lee filter to decide the local texture, where windows (a) and (e) are used
for vertical edge, (c) and (g) for horizontal edge, (b) and (f) for 135° edge, and (d) and (h) for 45° edge.
The pixels in white are used for filtering computation.
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selecting the optimal edge to calculate local statistics, the four edge features are
combined to a new feature in SURF by:

DoHSURF ¼ DxxDyy þ 0:9Dxy
� � �0:9Dxy

� �
(13)

which corresponds to DoH in (7), where the constant 0.9 is used to balance the
expression for the Hessian’s determinant. Then, SSP in SURF just indicates that we
adopt a series of box filters of different size to filter speckles and extract features of
different scales. Hence, SURF is very flexible to deal with speckle.

3.4 Evaluation of SURF for SAR image subpixel registration

As listed in Table 1, according to the comparative analysis in Sections 2 and 3.1
on several criteria, we can obtain that for the general registration of SAR images

• SURF outperforms others in terms of the considered criteria.

• SIFT is applicable when no strict requirement for speed.

• Harris may be appropriate for coarse registration.

• Tie points are fit for images with slight distortion and weak decorrelation
and require heavy computation load.

From these, we can see that SURF is more appropriate and competent for
general SAR image registration. Nevertheless, SAR applications, like DEM retrieval
and deformation estimation usually impose a strict requirement for registration
accuracy. To ensure an acceptable result, the registration accuracy should be
subpixel. To evaluate the capability of SURF for subpixel image registration, we
devise a comparative experiment on some contrived SAR image pairs. Figure 3
shows a SAR image of Enta Volcano acquired by SIR-C/X-SAR. We treat this image
as the master and transform it to model an affine geometrical warp for the slave
image:

Items Tie points Harris corner SIFT SURF

Geometrical invariance of
feature

Translation Rotation and
translation

Scaling, rotation,
and translation

Scaling, rotation,
and translation

Feature extraction speed Slower Faster Slow Fast

Feature localization
accuracy

Subpixel* Pixel Subpixel Subpixel

Geometrical invariance of
feature descriptor

Translation Translation Affine transform Affine transform

Feature matching speed Slow Slow Fast Faster

Robustness to
decorrelation

Worse Bad Good Good

Flexibility to image
speckle

Good Bad Bad Better

*Determined by the sampling rate.

Table 1.
Evaluation of the four commonly used features for SAR image registration in terms of several criteria.
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where (x, y, 1)T are the homogenous image coordinates, subscripts s and m
denote the slave and master images, respectively. A is an affine matrix composed by
parameters a, b, c, and d, as well as two translations tx and ty. Bay et al. devised two
versions of Fast-Hessian detectors for SURF. The one initializes SSP by using 9 � 9
box filter to the original image is denoted as FH-9(-1), while the one initializes SSP
by using 15 � 15 box filter to double-sized image (also with doubled sampling step)
is denoted as FH-15(-2). FH-15(-2) has been shown to be better than FH-9(-1) on
repeatability [8]. We use the two detectors to extract point correspondences,
respectively, based on which the robust EF-LTS (will be presented in Section 4) is
then used to retrieve the warp matrix. To compare the two SURF detectors for SAR
image registration, we consider four criteria, i.e., the average transfer error (ATE),
MFAR, the number of correct matches, and the warp matrix estimation error
(WMEE). ATE measures the appropriateness of the extracted features to the
achieved warp parameters:

ATE ¼ 1
N
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where Ar indicates the warp matrix retrieved on all the constructed correspon-
dences (xsi, ysi) and (xmi, ymi) denote the ith correct correspondence located in slave
image and master image, respectively, and N is the number of correct matches
which are selected by:
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Figure 3.
SAR image of Enta Volcano taken by SIR-C/X-SAR (300 � 300).
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selecting the optimal edge to calculate local statistics, the four edge features are
combined to a new feature in SURF by:

DoHSURF ¼ DxxDyy þ 0:9Dxy
� � �0:9Dxy

� �
(13)

which corresponds to DoH in (7), where the constant 0.9 is used to balance the
expression for the Hessian’s determinant. Then, SSP in SURF just indicates that we
adopt a series of box filters of different size to filter speckles and extract features of
different scales. Hence, SURF is very flexible to deal with speckle.

3.4 Evaluation of SURF for SAR image subpixel registration

As listed in Table 1, according to the comparative analysis in Sections 2 and 3.1
on several criteria, we can obtain that for the general registration of SAR images

• SURF outperforms others in terms of the considered criteria.

• SIFT is applicable when no strict requirement for speed.

• Harris may be appropriate for coarse registration.

• Tie points are fit for images with slight distortion and weak decorrelation
and require heavy computation load.

From these, we can see that SURF is more appropriate and competent for
general SAR image registration. Nevertheless, SAR applications, like DEM retrieval
and deformation estimation usually impose a strict requirement for registration
accuracy. To ensure an acceptable result, the registration accuracy should be
subpixel. To evaluate the capability of SURF for subpixel image registration, we
devise a comparative experiment on some contrived SAR image pairs. Figure 3
shows a SAR image of Enta Volcano acquired by SIR-C/X-SAR. We treat this image
as the master and transform it to model an affine geometrical warp for the slave
image:

Items Tie points Harris corner SIFT SURF

Geometrical invariance of
feature

Translation Rotation and
translation

Scaling, rotation,
and translation

Scaling, rotation,
and translation

Feature extraction speed Slower Faster Slow Fast

Feature localization
accuracy

Subpixel* Pixel Subpixel Subpixel

Geometrical invariance of
feature descriptor

Translation Translation Affine transform Affine transform

Feature matching speed Slow Slow Fast Faster

Robustness to
decorrelation

Worse Bad Good Good

Flexibility to image
speckle

Good Bad Bad Better

*Determined by the sampling rate.

Table 1.
Evaluation of the four commonly used features for SAR image registration in terms of several criteria.
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where (x, y, 1)T are the homogenous image coordinates, subscripts s and m
denote the slave and master images, respectively. A is an affine matrix composed by
parameters a, b, c, and d, as well as two translations tx and ty. Bay et al. devised two
versions of Fast-Hessian detectors for SURF. The one initializes SSP by using 9 � 9
box filter to the original image is denoted as FH-9(-1), while the one initializes SSP
by using 15 � 15 box filter to double-sized image (also with doubled sampling step)
is denoted as FH-15(-2). FH-15(-2) has been shown to be better than FH-9(-1) on
repeatability [8]. We use the two detectors to extract point correspondences,
respectively, based on which the robust EF-LTS (will be presented in Section 4) is
then used to retrieve the warp matrix. To compare the two SURF detectors for SAR
image registration, we consider four criteria, i.e., the average transfer error (ATE),
MFAR, the number of correct matches, and the warp matrix estimation error
(WMEE). ATE measures the appropriateness of the extracted features to the
achieved warp parameters:
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where Ar indicates the warp matrix retrieved on all the constructed correspon-
dences (xsi, ysi) and (xmi, ymi) denote the ith correct correspondence located in slave
image and master image, respectively, and N is the number of correct matches
which are selected by:
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where A is the true warp matrix. The threshold is chosen as 5 pixels, i.e., a
correspondence is identified as a mismatch if the transfer error is larger than 5
pixels in any image direction.

MFAR, also called 1-precision [10], is defined as:

MFAR ¼ #matches� #correct matches
#matches

(17)

where “#” denotes “the number of.”MFAR is just the rate of mismatches, which
is related to image speckling as well as the radiometric and geometrical warping. It
can be used together with #correct matches to evaluate the robustness of a detector to
speckles on SAR image pair with controlled radiometric and geometrical warping.

WMEE is used to evaluate the consistency of the retrieved warp matrix and its
true value:

WMEE ¼ A�Ark kF (18)

where k�kF denotes the Frobenius norm.
We evaluate the two SURF detectors on four image pairs with different trans-

formations, the retrieved warp matrix parameters, ATE, correct match number,
MFAR, and WMEE are listed in Table 2. It shows that FH-15(-2) can extract more
correct matches with lower MFAR than FH-9(-1). This validates the robustness of
SURF to speckling because FH-15(-2) performs the feature extraction on the
double-sized image with much serious speckle. ATE of FH-15(-2) is smaller than
that of FH-9(-1) except on the first image pair. On all the four pairs, the features
extracted by FH-15(-2) can obtain subpixel estimation in both image directions, but
FH-9(-1) obtains this only on the first pair. Therefore, FH-15(-2) features are more
consistent with the retrieval parameters. This also signifies that FH-15(-2) can
attains lower MFAR than FH-9(-1) because parameter estimation in EF-LTS is
related to the outlier percentage in data. This will be detailed in Section 4. As on
WMEE, the two detectors perform equally, FH-15(-2) does not improve the regis-
tration accuracy on all the four pairs as we expected, and there is still clear incon-
sistency between the retrieved warp matrix and the true value. The reason lies in
that the sampling step is also doubled when FH-15(-2) doubles the image. This
makes sampling being still conducted on the equivalently same pixel position rather
than the subpixel image position. For instance, let (x0, y0) be a sampled pixel in the
original image, the corresponding position in doubled image is (2x0, 2y0). The
doubled step then makes this pixel position be still sampled instead of (2x0 � 1,
2y0 � 1), while the latter corresponds to the subpixel position (x0 � 0.5, y0 � 0.5) in
the original image and positively contributes to the subpixel registration. Based on
this, we suggest initializing SSP by using 9 � 9 box filter to the oversampled image
but with unchanged sampling, we denote this detector as FH-9(-Fs), Fs denotes the
sampling rate. To avoid nonlinear aliasing, the linear interpolator such as bilinear
interpolator is used to conduct the sampling. Table 2 further summarizes the
registration results based on FH-9(-2) to FH-9(-5) detector. Comparing with FH-9
(-1) and FH-15(-2), the correct match number, ATE, MFAR, and WMEE of FH-9
(-2) are all clearly improved. As oversampling rate increases from 2 to 5, the
registration accuracy is also improved for more correspondences of higher localiza-
tion accuracy are identified. All these make the high accurate SAR image registra-
tion possible. In view of the fact that oversampling will increase dataset and
computational load, for high accuracy registration we recommend oversampling the
image three or four times so as to achieve the compromise among accuracy, robust-
ness, and computational complexity.
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where A is the true warp matrix. The threshold is chosen as 5 pixels, i.e., a
correspondence is identified as a mismatch if the transfer error is larger than 5
pixels in any image direction.

MFAR, also called 1-precision [10], is defined as:

MFAR ¼ #matches� #correct matches
#matches

(17)

where “#” denotes “the number of.”MFAR is just the rate of mismatches, which
is related to image speckling as well as the radiometric and geometrical warping. It
can be used together with #correct matches to evaluate the robustness of a detector to
speckles on SAR image pair with controlled radiometric and geometrical warping.

WMEE is used to evaluate the consistency of the retrieved warp matrix and its
true value:

WMEE ¼ A�Ark kF (18)

where k�kF denotes the Frobenius norm.
We evaluate the two SURF detectors on four image pairs with different trans-

formations, the retrieved warp matrix parameters, ATE, correct match number,
MFAR, and WMEE are listed in Table 2. It shows that FH-15(-2) can extract more
correct matches with lower MFAR than FH-9(-1). This validates the robustness of
SURF to speckling because FH-15(-2) performs the feature extraction on the
double-sized image with much serious speckle. ATE of FH-15(-2) is smaller than
that of FH-9(-1) except on the first image pair. On all the four pairs, the features
extracted by FH-15(-2) can obtain subpixel estimation in both image directions, but
FH-9(-1) obtains this only on the first pair. Therefore, FH-15(-2) features are more
consistent with the retrieval parameters. This also signifies that FH-15(-2) can
attains lower MFAR than FH-9(-1) because parameter estimation in EF-LTS is
related to the outlier percentage in data. This will be detailed in Section 4. As on
WMEE, the two detectors perform equally, FH-15(-2) does not improve the regis-
tration accuracy on all the four pairs as we expected, and there is still clear incon-
sistency between the retrieved warp matrix and the true value. The reason lies in
that the sampling step is also doubled when FH-15(-2) doubles the image. This
makes sampling being still conducted on the equivalently same pixel position rather
than the subpixel image position. For instance, let (x0, y0) be a sampled pixel in the
original image, the corresponding position in doubled image is (2x0, 2y0). The
doubled step then makes this pixel position be still sampled instead of (2x0 � 1,
2y0 � 1), while the latter corresponds to the subpixel position (x0 � 0.5, y0 � 0.5) in
the original image and positively contributes to the subpixel registration. Based on
this, we suggest initializing SSP by using 9 � 9 box filter to the oversampled image
but with unchanged sampling, we denote this detector as FH-9(-Fs), Fs denotes the
sampling rate. To avoid nonlinear aliasing, the linear interpolator such as bilinear
interpolator is used to conduct the sampling. Table 2 further summarizes the
registration results based on FH-9(-2) to FH-9(-5) detector. Comparing with FH-9
(-1) and FH-15(-2), the correct match number, ATE, MFAR, and WMEE of FH-9
(-2) are all clearly improved. As oversampling rate increases from 2 to 5, the
registration accuracy is also improved for more correspondences of higher localiza-
tion accuracy are identified. All these make the high accurate SAR image registra-
tion possible. In view of the fact that oversampling will increase dataset and
computational load, for high accuracy registration we recommend oversampling the
image three or four times so as to achieve the compromise among accuracy, robust-
ness, and computational complexity.
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4. Appropriate retrieval algorithm for SAR image registration

The next procedure after feature extraction is to retrieve the warp function from
the attained correspondences. Due to the influences of spatial/temporal
decorrelation, system noise, and environmental interference, or the non-robustness
in the depiction and matching of features, there are always mismatches in the
constructed correspondences. It is difficult to get a priori information to remove
them beforehand. To accurately retrieve parameters from these error-prone corre-
spondences, some robust outlier-insensitive algorithms are necessary.

Furthermore, unlike the pinhole imaging of optical camera, SAR acquires the
imagery using a slant-range geometry which cannot be modeled as a central projec-
tion [47]. As a result, the warp model between SAR images is dependent on the
system parameter, imaging geometry, and target relief, and we cannot adopt a
global homography or essential matrix to model the geometrical warping then.
Nevertheless, when the system parameter and imaging geometry are fixed and the
area-of-interest has gentle topography, we can conventionally approximate the
warp function as a low-order polynomial [48]. This indicates our strategy in the
retrieval of registration parameters, to focus on the global registration instead of
local discontentment.

4.1 Evaluation of RANSAC for SAR image registration

RANSAC [30] has been widely used in feature-based SAR image registrations for
parameter retrieval [15, 16, 26, 27]. Unlike LS which uses all the available data to
estimate parameters, RANSAC conducts the estimation using a few-to-many strat-
egy or a local-to-global strategy. A MSS is randomly sampled from the constructed
correspondences to achieve an estimation of the warp function firstly. The cardi-
nality of MSS, i.e., the smallest sufficiency to determine the warp parameters, is just
related to the degree of freedom (DoF) of the warp function. For example, the
cardinality will be 3 for affine transformation of 6 DOFs. The entire dataset are then
checked for those correspondences consistent with the retrieved warping to con-
struct a larger CS. These two steps are repeated until the largest CS is finally
achieved for parameter estimation. This local-to-global strategy is tenable only if
any MSS of inliers can generate the “true value” of warp parameters [31]. But it is
often hard to keep this in real registration due to the unavoidable noise and local
distortion, i.e., a different estimation of parameters will be achieved from a differ-
ent MSS configuration of inliers. This uncertainty is even more severe in SAR image
registration because SAR warping varies from pixel to pixel and the low-order
polynomial approximation only accounts for global registration instead of local
contentment. The local-to-global strategy may then magnify the local distortion,
aggravate the estimation uncertainty, and damnify the global registration accuracy
although a largest CS is identified. To demonstrate this, we devise an experiment to
coregister a spaceborne InSAR image pair as shown in Figure 4(a) and (b). The two
images are acquired by RadarSat-2 on May 4 and 28, 2008, respectively. The scene
is within South Phoenix, AZ, USA with some buildings and vegetable lands. We
first use FH-9(-1) to construct SURF feature correspondences, and then adopt
RANSAC to retrieve the affine warp parameters. To evaluate the estimation cer-
tainty, we execute RANSAC 100 times and based on the obtained parameters of
each execution, we coregister the complex image pair to calculate the three-look
coherent CC and spectral SNR. CC measures the consistency, while spectral SNR,
the ratio between the maximum entry and the sum of other entries in the spectrum,
reflects the clarity of the interferogram fringe [49]. Figure 5 displays the affine
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4. Appropriate retrieval algorithm for SAR image registration

The next procedure after feature extraction is to retrieve the warp function from
the attained correspondences. Due to the influences of spatial/temporal
decorrelation, system noise, and environmental interference, or the non-robustness
in the depiction and matching of features, there are always mismatches in the
constructed correspondences. It is difficult to get a priori information to remove
them beforehand. To accurately retrieve parameters from these error-prone corre-
spondences, some robust outlier-insensitive algorithms are necessary.

Furthermore, unlike the pinhole imaging of optical camera, SAR acquires the
imagery using a slant-range geometry which cannot be modeled as a central projec-
tion [47]. As a result, the warp model between SAR images is dependent on the
system parameter, imaging geometry, and target relief, and we cannot adopt a
global homography or essential matrix to model the geometrical warping then.
Nevertheless, when the system parameter and imaging geometry are fixed and the
area-of-interest has gentle topography, we can conventionally approximate the
warp function as a low-order polynomial [48]. This indicates our strategy in the
retrieval of registration parameters, to focus on the global registration instead of
local discontentment.

4.1 Evaluation of RANSAC for SAR image registration

RANSAC [30] has been widely used in feature-based SAR image registrations for
parameter retrieval [15, 16, 26, 27]. Unlike LS which uses all the available data to
estimate parameters, RANSAC conducts the estimation using a few-to-many strat-
egy or a local-to-global strategy. A MSS is randomly sampled from the constructed
correspondences to achieve an estimation of the warp function firstly. The cardi-
nality of MSS, i.e., the smallest sufficiency to determine the warp parameters, is just
related to the degree of freedom (DoF) of the warp function. For example, the
cardinality will be 3 for affine transformation of 6 DOFs. The entire dataset are then
checked for those correspondences consistent with the retrieved warping to con-
struct a larger CS. These two steps are repeated until the largest CS is finally
achieved for parameter estimation. This local-to-global strategy is tenable only if
any MSS of inliers can generate the “true value” of warp parameters [31]. But it is
often hard to keep this in real registration due to the unavoidable noise and local
distortion, i.e., a different estimation of parameters will be achieved from a differ-
ent MSS configuration of inliers. This uncertainty is even more severe in SAR image
registration because SAR warping varies from pixel to pixel and the low-order
polynomial approximation only accounts for global registration instead of local
contentment. The local-to-global strategy may then magnify the local distortion,
aggravate the estimation uncertainty, and damnify the global registration accuracy
although a largest CS is identified. To demonstrate this, we devise an experiment to
coregister a spaceborne InSAR image pair as shown in Figure 4(a) and (b). The two
images are acquired by RadarSat-2 on May 4 and 28, 2008, respectively. The scene
is within South Phoenix, AZ, USA with some buildings and vegetable lands. We
first use FH-9(-1) to construct SURF feature correspondences, and then adopt
RANSAC to retrieve the affine warp parameters. To evaluate the estimation cer-
tainty, we execute RANSAC 100 times and based on the obtained parameters of
each execution, we coregister the complex image pair to calculate the three-look
coherent CC and spectral SNR. CC measures the consistency, while spectral SNR,
the ratio between the maximum entry and the sum of other entries in the spectrum,
reflects the clarity of the interferogram fringe [49]. Figure 5 displays the affine
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parameters a, b, c, d, tx, and ty as well as CC and SNR obtained in each execution.
Table 3 further displays the mean and standard deviation of the parameters, CC,
and SNR. RANSAC cannot obtain a stable registration because the retrieval param-
eters vary with executions, even for executions with the same cardinality of CS
achieved. Figure 6 shows the retrieval parameters, CC and SNR for 48 executions
with the same cardinality. We can still find the estimation uncertainty. This reveals
that the attained inliers which compose the final CS are actually different although
the same cardinality. Otherwise, the parameters would be the same for each execu-
tion because they are retrieved by just LS fitting the inliers.

The uncertainty of RANSAC in SAR image registration just comes from its
retrieval strategy and loss function. To achieve a stable registration for SAR images,
a feasible improvement is to estimate the parameters with more correspondences to
reflect the true support than just a MSS, and to apply an appropriate loss function.
This leads us another direction to the robust parameter regression.

Figure 4.
Registration of InSAR image pair from RadarSat-2. (a) Master image, (b) slave image, and the final (c)
interferogram and (d) correlation map based on the registration parameters estimated by EF-LTS.

Figure 5.
Registration parameters, cross-correlation (CC), and spectral SNR obtained by 100 executions of (thin line)
RANSAC and (thick line) EF-LTS on the image pair of RadarSat-2.
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parameters a, b, c, d, tx, and ty as well as CC and SNR obtained in each execution.
Table 3 further displays the mean and standard deviation of the parameters, CC,
and SNR. RANSAC cannot obtain a stable registration because the retrieval param-
eters vary with executions, even for executions with the same cardinality of CS
achieved. Figure 6 shows the retrieval parameters, CC and SNR for 48 executions
with the same cardinality. We can still find the estimation uncertainty. This reveals
that the attained inliers which compose the final CS are actually different although
the same cardinality. Otherwise, the parameters would be the same for each execu-
tion because they are retrieved by just LS fitting the inliers.

The uncertainty of RANSAC in SAR image registration just comes from its
retrieval strategy and loss function. To achieve a stable registration for SAR images,
a feasible improvement is to estimate the parameters with more correspondences to
reflect the true support than just a MSS, and to apply an appropriate loss function.
This leads us another direction to the robust parameter regression.

Figure 4.
Registration of InSAR image pair from RadarSat-2. (a) Master image, (b) slave image, and the final (c)
interferogram and (d) correlation map based on the registration parameters estimated by EF-LTS.

Figure 5.
Registration parameters, cross-correlation (CC), and spectral SNR obtained by 100 executions of (thin line)
RANSAC and (thick line) EF-LTS on the image pair of RadarSat-2.
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4.2 Fast-LTS

The widely used LS is now being criticized more and more for lack of robustness.
To tackle with this, some robust regression approaches were developed, like LMedS
[32] and the least trimmed squares (LTS) [50]. LMedS implements the regression
by minimizing the median of residual squares. This makes LMedS so robust that it
can still obtain a reasonable estimation even if 50% of the dataset are outliers. So the
breakdown point of LMedS is as high as 50%. LTS is a modification of LS with the
same breakpoint as LMedS. It also fits the linear model:

yi ¼ XT
i θþ ei, i ¼ 1,…, n (19)

where Xi = [xi1, xi2, …, xip]
T denotes the explanatory variable, yi denotes the

response variable, θ = [θ1, θ2, …, θp]
T indicates the unknown parameter to be

retrieved, ei is the error term, n is the sample size, and p is the dimension of Xi. The
loss function of LTS is:

Q≔Minimize ∑
h

i¼1
r2
� �

i with r ¼ r1; r2;⋯; rn½ �T and ri ¼ yi �XT
i θ (20)

where (r2)i denotes the ith element of the ordered squared residuals
(r2)1 ≤ ��� ≤ (r2)i ≤ ��� ≤ (r2)n, and h is termed as the trimming constant. LTS
conducts regression by LS fitting the h-subset to minimize the squared residuals.
Compared with LMedS, the statistical efficiency of LTS is much better and the loss
function is much smoother [33]. Nevertheless, the deficiency of LTS is the large
computation when processing the big data. To accelerate it, Rousseeuw and Van
Driessen [33] developed a Fast-LTS, which can efficiently deal with a sample size as
large as tens of thousands or even larger. The core of Fast-LTS is a concentration
step (C-step), which is designed to achieve a better estimation from an old h-subset
Hold [33]:

Figure 6.
Registration parameters, cross-correlation (CC), and spectral SNR obtained by 48 executions of RANSAC on
RadarSat-2 InSAR images with the same CS cardinality.
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Algorithm 1: C-step
Step 11. Compute regression parameters θold by LS fitting Hold.
Step 12. Calculate residuals rold based on θold. Ascendingly sort squared resid-

uals rold
2 for a permutation π of the set such that

(rold2)π(1) ≤ ��� ≤ (rold2)π(h) ≤ ��� ≤ (rold2)π(n).
Step 13. Construct a new h-subset Hnew = {π(1), π(2), …, π(h)} and obtain the

new parameters θnew by LS fitting Hnew.
It has been proved that Q of parameters θnew is always no larger than that of

parameters θold [33]. Therefore, an improved estimation of parameters can be
achieved after an execution of C-step, and a converged Qwill be obtained after only
a few C-steps. Thus Fast-LTS conducts estimation as follows [33]:

Algorithm 2: Fast-LTS
Step 21. Randomly generate a p-subset as parameter set θ0. Calculate n residuals

r0 based on θ0 to achieve an initial h-subset H0 = {π(1), π(2), …, π(h)} such that
(r02)π(1) ≤ ��� ≤ (r02)π(h) ≤ ��� ≤ (r02)π(n). Update H0 by carrying out two C-steps on
H0. Repeat above procedures 500 times.

Step 22. Implement C-steps on the 10 H0 with the lowest 10 Q until conver-
gence. Then the solution that creates the lowest Q is identified as the final estima-
tion θ.

The trimming constant h is set between [(n + p + 1)/2) ([x) denotes the smallest
integer larger than x) and n. The breakdown value of Fast-LTS is (n � h + 1)/n. A
nested extension approach should be adopted to enable an efficient estimation
when n is larger [33].

4.3 EF-LTS for SAR image registration

Fast-LTS is appropriate for 1D linear regression formulated in (19). However,
for SAR image registration, what we need to do is to fit a 2D polynomial regression
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where n is the number of constructed correspondences, N is the order of poly-
nomial, a and b are polynomial coefficients, (xsi, ysi) and (xmi, ymi) are the ith
feature correspondence extracted from the slave and master images, and ζi and ξi
denote the normally distributed error terms with zero mean. Actually, (21) denote a
2D linear regression problem:

xsi ¼ XT
i θþ ςi

ysi ¼ XT
i ψþ ξi

with

θ ¼ θ1; θ2;⋯; θp
� �T ¼ a00; a01;⋯; aN0½ �T

ψ ¼ ψ1;ψ2;⋯;ψp

h iT
¼ b00; b01;⋯; bN0½ �T

Xi ¼ Xi1;Xi2;⋯;Xip
� �T ¼ 1; ymi;⋯; yNmi; xmi;⋯; xNmi

� �T
, i ¼ 1,…, n
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>>>>:
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(22)

where θ and ψ are the unknown parameters to be estimated, and p = (N + 1)
(N + 2)/2 denotes the number of unknowns. Then, the warp function estimation for
SAR image registration can be transformed into the following optimization problems:
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4.2 Fast-LTS

The widely used LS is now being criticized more and more for lack of robustness.
To tackle with this, some robust regression approaches were developed, like LMedS
[32] and the least trimmed squares (LTS) [50]. LMedS implements the regression
by minimizing the median of residual squares. This makes LMedS so robust that it
can still obtain a reasonable estimation even if 50% of the dataset are outliers. So the
breakdown point of LMedS is as high as 50%. LTS is a modification of LS with the
same breakpoint as LMedS. It also fits the linear model:

yi ¼ XT
i θþ ei, i ¼ 1,…, n (19)

where Xi = [xi1, xi2, …, xip]
T denotes the explanatory variable, yi denotes the

response variable, θ = [θ1, θ2, …, θp]
T indicates the unknown parameter to be

retrieved, ei is the error term, n is the sample size, and p is the dimension of Xi. The
loss function of LTS is:

Q≔Minimize ∑
h

i¼1
r2
� �

i with r ¼ r1; r2;⋯; rn½ �T and ri ¼ yi �XT
i θ (20)

where (r2)i denotes the ith element of the ordered squared residuals
(r2)1 ≤ ��� ≤ (r2)i ≤ ��� ≤ (r2)n, and h is termed as the trimming constant. LTS
conducts regression by LS fitting the h-subset to minimize the squared residuals.
Compared with LMedS, the statistical efficiency of LTS is much better and the loss
function is much smoother [33]. Nevertheless, the deficiency of LTS is the large
computation when processing the big data. To accelerate it, Rousseeuw and Van
Driessen [33] developed a Fast-LTS, which can efficiently deal with a sample size as
large as tens of thousands or even larger. The core of Fast-LTS is a concentration
step (C-step), which is designed to achieve a better estimation from an old h-subset
Hold [33]:

Figure 6.
Registration parameters, cross-correlation (CC), and spectral SNR obtained by 48 executions of RANSAC on
RadarSat-2 InSAR images with the same CS cardinality.
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Algorithm 1: C-step
Step 11. Compute regression parameters θold by LS fitting Hold.
Step 12. Calculate residuals rold based on θold. Ascendingly sort squared resid-

uals rold
2 for a permutation π of the set such that

(rold2)π(1) ≤ ��� ≤ (rold2)π(h) ≤ ��� ≤ (rold2)π(n).
Step 13. Construct a new h-subset Hnew = {π(1), π(2), …, π(h)} and obtain the

new parameters θnew by LS fitting Hnew.
It has been proved that Q of parameters θnew is always no larger than that of

parameters θold [33]. Therefore, an improved estimation of parameters can be
achieved after an execution of C-step, and a converged Qwill be obtained after only
a few C-steps. Thus Fast-LTS conducts estimation as follows [33]:

Algorithm 2: Fast-LTS
Step 21. Randomly generate a p-subset as parameter set θ0. Calculate n residuals

r0 based on θ0 to achieve an initial h-subset H0 = {π(1), π(2), …, π(h)} such that
(r02)π(1) ≤ ��� ≤ (r02)π(h) ≤ ��� ≤ (r02)π(n). Update H0 by carrying out two C-steps on
H0. Repeat above procedures 500 times.

Step 22. Implement C-steps on the 10 H0 with the lowest 10 Q until conver-
gence. Then the solution that creates the lowest Q is identified as the final estima-
tion θ.

The trimming constant h is set between [(n + p + 1)/2) ([x) denotes the smallest
integer larger than x) and n. The breakdown value of Fast-LTS is (n � h + 1)/n. A
nested extension approach should be adopted to enable an efficient estimation
when n is larger [33].

4.3 EF-LTS for SAR image registration

Fast-LTS is appropriate for 1D linear regression formulated in (19). However,
for SAR image registration, what we need to do is to fit a 2D polynomial regression
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where n is the number of constructed correspondences, N is the order of poly-
nomial, a and b are polynomial coefficients, (xsi, ysi) and (xmi, ymi) are the ith
feature correspondence extracted from the slave and master images, and ζi and ξi
denote the normally distributed error terms with zero mean. Actually, (21) denote a
2D linear regression problem:

xsi ¼ XT
i θþ ςi

ysi ¼ XT
i ψþ ξi

with

θ ¼ θ1; θ2;⋯; θp
� �T ¼ a00; a01;⋯; aN0½ �T

ψ ¼ ψ1;ψ2;⋯;ψp
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¼ b00; b01;⋯; bN0½ �T
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where θ and ψ are the unknown parameters to be estimated, and p = (N + 1)
(N + 2)/2 denotes the number of unknowns. Then, the warp function estimation for
SAR image registration can be transformed into the following optimization problems:
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Qx≔Minimize ∑
h

i¼1
r2x
� �

i

Qy≔Minimize ∑
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r2y
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with
rx ¼ rx1; rx2;⋯; rxn½ �T

ry ¼ ry1; ry2;⋯; ryn
� �T and

rxi ¼ xsi �XT
i θ

ryi ¼ ysi �XT
i ψ
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(23)

where (rx
2)i represents the ith element of the ordered squared residuals

(rx
2)1 ≤ ��� ≤ (rx

2)i ≤ ��� ≤ (rx
2)n, and the meaning of (ry

2)i can be likewise inferred.
Each of the two optimizations in (23) is of the standard form (20). A direct solution
to (23) may be thus achieved by decomposing 2D regression as two independent 1D
regressions and using Fast-LTS to conduct estimation, respectively. This idea is
feasible, but it may result in unnecessary computations because the feature posi-
tions in two image directions are in fact tied to each other, i.e., for the ith feature
(xi, yi), the selection of xi will naturally mean the selection of yi. We can thus
combine the two 1D regressions into a real 2D regression effectively, i.e., the
extended Fast-LTS (EF-LTS):

Algorithm 3: EF-LTS
Step 31. Randomly draw p feature matches and LS fit them to estimate the initial

parameters θ0 and ψ0, and calculate the initial residuals r0x and r0y by

r0x ¼ r0x1; r0x2;⋯; r0xn½ �T

r0y ¼ r0y1; r0y2;⋯; r0yn
� �T and

r0xi ¼ xsi �XT
i θ0

r0yi ¼ ysi �XT
i ψ0

, i ¼ 1,…, n:

((
(24)

Then construct the initial h-subsets Hx0 and Hy0 by:

Hx0 ¼ πx 1ð Þ;πx 2ð Þ;⋯;πx hð Þf g⊂ 1; 2;⋯; nf g
Hy0 ¼ πy 1ð Þ;πy 2ð Þ;⋯;πy hð Þ� �

⊂ 1; 2;⋯; nf g s:t:
r20x
� �

πx 1ð Þ ≤⋯≤ r20x
� �

πx hð Þ ≤…≤ r20x
� �

πx nð Þ

r20y
� �

πy 1ð Þ
≤⋯≤ r20y

� �
πy hð Þ

≤…≤ r20y
� �

πy nð Þ

:

8><
>:

8><
>:

(25)

Carry out two C-steps onHx0 andHy0 to obtain the h-subsetsHx2 andHy2 with
smaller Qx and Qy, respectively. Iteratively repeat above procedures T times to
obtain a set of h-subsets Hx2 and Hy2.

Step 32. Select 10 Hx2 with the smallest 10 Qx and 10 Hy2 with the smallest 10
Qy if T is larger than 10; otherwise, select all Hx2 and Hy2. Carry out C-steps on
these h-subsets until convergence. The solutions corresponding to the smallest Qx

and Qy are selected as the raw estimations θr and ψr, respectively.
Step 33. Calculate residuals rrx and rry based on θr and ψr,

rrx ¼ rrx1; rrx2;⋯; rrxn½ �T

rry ¼ rry1; rry2;⋯; rryn
� �T with

rrxi ¼ xsi �XT
i θr

rryi ¼ ysi �XT
i ψr

, i ¼ 1,…, n

((
(26)

and estimate the error scales σx and σy by

σx ¼ C1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
h
∑
h

i¼1
r2rx
� �

i

s

σy ¼ C2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
h
∑
h

i¼1
r2ry

� �
i

s

8>>>>><
>>>>>:

(27)

where C1 and C2 are correction factors to achieve consistency at Gaussian error
distributions [50]. Based on (27), we further calculate two weights by:
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wxi ¼
1 if rxi=σxj j≤ 2:5

0 if rxi=σxj j > 2:5 wyi ¼
1 if ryi=σy

�� ��≤ 2:5

0 if ryi=σy
�� �� > 2:5

, i ¼ 1,…, n:

((
(28)

The credible correspondence in both directions of x and y is chosen:

wi ¼ wxi &wyi, i ¼ 1,…, n (29)

where “&” denotes the logical AND operator. The final estimations θf and ψf are
attained by LS solving the following optimizations:

θf ¼ argmin∑
n

i¼1
wir2xi

ψf ¼ argmin∑
n

i¼1
wir2yi

8>><
>>:

(30)

which in fact indicates the weighted LS.
Step 33 makes EF-LTS obtain more accurate and stable estimation than the

original LTS. The logical AND in (29) shows that only the feature correspondence
which is correctly matched in both x- and y-direction is considered as an inlier. This
is necessary for accurate estimation because mismatching in one direction may also
affect the matching in another. The bound in (28) is set as 2.5 for there are very few
residuals larger than 2.5σ in a Gaussian situation [50].

In Fast-LTS, the random sampling number T is a constant 500. This is inappro-
priate because accurate estimation only requires one p-match to being “clean.” Let q
denote the percentage of inliers in data, then the probability ε of having at least one
“clean” p-match among all the T random p-matches can be expressed as

ε ¼ 1� 1� qpð ÞT: (31)

Since the trimming constant h is chosen beforehand according to the percentage
of inliers, a good estimation of q can be obtained by

q̂ ¼ h
n
: (32)

Therefore, if a required false alarm rate ε for the estimation is given, the sam-
pling number T can be then calculated by combining (31) and (32):

T ¼ log 1� εð Þ
log 1� h

n

� �p� �
" !

: (33)

Thus, iteration in EF-LTS is controlled by the inlier percentage rather than the
inlier number. Table 4 shows the sampling number T under given N and q when
ε = 0.99. It can be seen that even the worst sampling number 293 is much smaller
than 500 for N = 2. Thus, the constant 500 sampling will be redundant for the
second-order polynomial, but will be insufficient for the third-order polynomial
with smaller q, as listed in Table 4.

The inlier percentage q is in fact related to MFAR by:

q ¼ 1�MFAR: (34)

Thus, besides introducing more iterations and computation load, higher MFAR
will also lead to a smaller h-subset, which indicates more localization and less
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where (rx
2)i represents the ith element of the ordered squared residuals

(rx
2)1 ≤ ��� ≤ (rx

2)i ≤ ��� ≤ (rx
2)n, and the meaning of (ry

2)i can be likewise inferred.
Each of the two optimizations in (23) is of the standard form (20). A direct solution
to (23) may be thus achieved by decomposing 2D regression as two independent 1D
regressions and using Fast-LTS to conduct estimation, respectively. This idea is
feasible, but it may result in unnecessary computations because the feature posi-
tions in two image directions are in fact tied to each other, i.e., for the ith feature
(xi, yi), the selection of xi will naturally mean the selection of yi. We can thus
combine the two 1D regressions into a real 2D regression effectively, i.e., the
extended Fast-LTS (EF-LTS):

Algorithm 3: EF-LTS
Step 31. Randomly draw p feature matches and LS fit them to estimate the initial

parameters θ0 and ψ0, and calculate the initial residuals r0x and r0y by

r0x ¼ r0x1; r0x2;⋯; r0xn½ �T

r0y ¼ r0y1; r0y2;⋯; r0yn
� �T and
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Then construct the initial h-subsets Hx0 and Hy0 by:

Hx0 ¼ πx 1ð Þ;πx 2ð Þ;⋯;πx hð Þf g⊂ 1; 2;⋯; nf g
Hy0 ¼ πy 1ð Þ;πy 2ð Þ;⋯;πy hð Þ� �

⊂ 1; 2;⋯; nf g s:t:
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Carry out two C-steps onHx0 andHy0 to obtain the h-subsetsHx2 andHy2 with
smaller Qx and Qy, respectively. Iteratively repeat above procedures T times to
obtain a set of h-subsets Hx2 and Hy2.

Step 32. Select 10 Hx2 with the smallest 10 Qx and 10 Hy2 with the smallest 10
Qy if T is larger than 10; otherwise, select all Hx2 and Hy2. Carry out C-steps on
these h-subsets until convergence. The solutions corresponding to the smallest Qx

and Qy are selected as the raw estimations θr and ψr, respectively.
Step 33. Calculate residuals rrx and rry based on θr and ψr,

rrx ¼ rrx1; rrx2;⋯; rrxn½ �T

rry ¼ rry1; rry2;⋯; rryn
� �T with

rrxi ¼ xsi �XT
i θr

rryi ¼ ysi �XT
i ψr

, i ¼ 1,…, n
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(26)

and estimate the error scales σx and σy by

σx ¼ C1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
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where C1 and C2 are correction factors to achieve consistency at Gaussian error
distributions [50]. Based on (27), we further calculate two weights by:
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wxi ¼
1 if rxi=σxj j≤ 2:5

0 if rxi=σxj j > 2:5 wyi ¼
1 if ryi=σy
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, i ¼ 1,…, n:

((
(28)

The credible correspondence in both directions of x and y is chosen:

wi ¼ wxi &wyi, i ¼ 1,…, n (29)

where “&” denotes the logical AND operator. The final estimations θf and ψf are
attained by LS solving the following optimizations:

θf ¼ argmin∑
n

i¼1
wir2xi

ψf ¼ argmin∑
n

i¼1
wir2yi
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(30)

which in fact indicates the weighted LS.
Step 33 makes EF-LTS obtain more accurate and stable estimation than the

original LTS. The logical AND in (29) shows that only the feature correspondence
which is correctly matched in both x- and y-direction is considered as an inlier. This
is necessary for accurate estimation because mismatching in one direction may also
affect the matching in another. The bound in (28) is set as 2.5 for there are very few
residuals larger than 2.5σ in a Gaussian situation [50].

In Fast-LTS, the random sampling number T is a constant 500. This is inappro-
priate because accurate estimation only requires one p-match to being “clean.” Let q
denote the percentage of inliers in data, then the probability ε of having at least one
“clean” p-match among all the T random p-matches can be expressed as

ε ¼ 1� 1� qpð ÞT: (31)

Since the trimming constant h is chosen beforehand according to the percentage
of inliers, a good estimation of q can be obtained by

q̂ ¼ h
n
: (32)

Therefore, if a required false alarm rate ε for the estimation is given, the sam-
pling number T can be then calculated by combining (31) and (32):

T ¼ log 1� εð Þ
log 1� h

n

� �p� �
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: (33)

Thus, iteration in EF-LTS is controlled by the inlier percentage rather than the
inlier number. Table 4 shows the sampling number T under given N and q when
ε = 0.99. It can be seen that even the worst sampling number 293 is much smaller
than 500 for N = 2. Thus, the constant 500 sampling will be redundant for the
second-order polynomial, but will be insufficient for the third-order polynomial
with smaller q, as listed in Table 4.

The inlier percentage q is in fact related to MFAR by:

q ¼ 1�MFAR: (34)

Thus, besides introducing more iterations and computation load, higher MFAR
will also lead to a smaller h-subset, which indicates more localization and less
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accuracy in estimation and worse consistency between the extracted features and
retrieval parameters. This is why FH-15(-2) can achieve better ATE than FH-9(-1),
as displayed in Table 2. As presented in Section 3, on MFAR and many other
criteria, SURF is identified to be the best for general SAR image registration. SURF
may thus also improve the efficiency and accuracy of parameter retrieval besides
the good performance on feature extraction and matching.

When the correspondence number n is large, a similar nested extension can be
also taken for EF-LTS by randomly partitioning the correspondences intoM subsets
with equal cardinality, and the trimming constant hs and sampling number Ts of
each subset should be also reduced by M times relative to h and T. On each subset,
we first implement Step 31 for Ts hs-subsets of Hx2 and Hy2. Based on which we
then implement Step 32 and Step 33 on all the constructed correspondences with
original h and T. In this way, an efficient retrieval can be still achieved.

To evaluate EF-LTS for SAR image registration, we also use it to the InSAR
image pair given in Figure 4(a) and (b). Similarly, the feature correspondences are
first constructed by SURF with HF-9(-1), then we run EF-LTS 100 times to retrieve
the affine parameters and calculate CC and SNR. The obtained parameters, CC, and
SNR of each execution are shown in Figure 5, while the mean and standard devia-
tion of the parameters, CC, and SNR are listed in Table 3. It is revealed that EF-LTS
behaves very stable and the estimated parameters, CC, and SNR are invariant for
each execution. It can reach an averagely better CC and SNR than RANSAC and is
more appropriate for InSAR image registration. Figure 4(c) and (d) further illus-
trates the interferogram and correlation map of the coregistered InSAR pair with
wrap parameters estimated by EF-LTS. Interferogram is the argument or phase of
the dot production between the complex master image and the complex conjugation
of the registered slave image, while correlation map measures CC of the 3 � 3
patches around each corresponding pixel position between the images. The inter-
ferogram fringe is clear and the correlation is strong in stable area such as the
brighter buildings in Figure 4(a) and (b) and the upper-right bare land. But in the
upper-left residential area, the interferogram becomes less clear and the correlation
is relatively small probably because the scattering is very sensitive to incidence
changes. While in other area (mainly vegetable lands and parking lot), the interfer-
ogram is almost lost and the coherence is very low due to the temporal and/or
volume decorrelation. All these match with the ground truth very well.

5. Experiment and analysis

Based on the finding in Sections 2–4, we propose to conduct high accurate SAR
image registration by using EF-LTS to fit the SURF correspondences. The scheme
works as follows:

N q

0.5 0.6 0.7 0.75 0.8 0.9 0.95

0 7 6 4 4 3 2 2

1 35 19 11 9 7 4 3

2 293 97 37 24 16 7 4

3 4714 760 161 80 41 11 6

Table 4.
Sampling number T under different inlier percentage q and polynomial order N when ε = 0.99.
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Algorithm 4: Accurate SAR image registration based on SURF features and
EF-LTS

Step 41. Use FH-9(-Fs) to extract SURF keypoints from master and slave
images, respectively.

Step 42. Construct initial feature correspondences by simply matching SURF
descriptors.

Step 43. Robustly processing the correspondences with EF-LTS to retrieve the
warp function.

Step 44. Transform and interpolate the slave image to geometrically align it to
master image.

Actually, this scheme has been put into practice in the above experiments. In
this section, we further devise an experiment to check it on MiniSAR pair. The
images we use are two high-resolution SAR images of the entrance gate of the
Sandia Research Park acquired by the Ku-Band MiniSAR system developed by the
Sandia Laboratory [51]. The images are taken from different tracks with different
incidences and squints, as listed in Table 5, while the platform altitude is just
beyond 1 km. All these reveal the nontrivial target relief-induced geometrical
warping between images, which, however, cannot be compensated beforehand for
lack of ground truth such as DEM and target height. Besides this, the images also
experience a very large intensity variation. To enhance the texture, we use the
logarithmic intensity of original complex images, as shown in Figure 7(a) and (b).
To achieve a more precise approximation to the real warping, we divide the image
pair into four 500 � 500 patch pairs. The geometrical warping on each patch pair is
approximated as an affine transformation (the higher order polynomial has also
been used to model the warp function, but unsatisfactory registration result is
attained). We adopt HF-9(-4) SURF detector to extract feature correspondences
from each patch pair, and EF-LTS is then used to obtain the affine parameters,
based on which the slave image is finally aligned to the master image. To illustrate
the registration accuracy, we fuse and overlap the coregistered images together. The
RGB fusion in Figure 7(c) is obtained by treating the master image and the
coregistered slave image as red and green, respectively, while zeroing the blue
component. The well-distributed yellow then immediately illustrates the accurate
registration of the images. The overlapping in Figure 7(d) is obtained by simply
averaging the two coregistered images. It contains the whole information of the two
images but has fewer speckles.

To further evaluate the registration performance of the scheme, in the following
we focus on the two pole-like target areas 1 and 2 in Figure 7(d) with their
corresponding Google optical images shown in Figure 8(g) and (h), respectively.
Figure 8(i) portrays the details of Pole 2 in the Street View of Google Maps. The

Parameters Master image Slave image

Azimuth resolution 0.1016 m 0.1016 m

Range resolution 0.1016 m 0.1016 m

Grazing angle 27.0107° 26.1892°

Global track angle 158.3687° 153.0825°

Central frequency 16.8 GHz 16.8 GHz

Platform altitude 1.6715 km 1.6715 km

Squint �89.9935° �89.9924°

Table 5.
Imaging parameters of the two MiniSAR images.
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accuracy in estimation and worse consistency between the extracted features and
retrieval parameters. This is why FH-15(-2) can achieve better ATE than FH-9(-1),
as displayed in Table 2. As presented in Section 3, on MFAR and many other
criteria, SURF is identified to be the best for general SAR image registration. SURF
may thus also improve the efficiency and accuracy of parameter retrieval besides
the good performance on feature extraction and matching.

When the correspondence number n is large, a similar nested extension can be
also taken for EF-LTS by randomly partitioning the correspondences intoM subsets
with equal cardinality, and the trimming constant hs and sampling number Ts of
each subset should be also reduced by M times relative to h and T. On each subset,
we first implement Step 31 for Ts hs-subsets of Hx2 and Hy2. Based on which we
then implement Step 32 and Step 33 on all the constructed correspondences with
original h and T. In this way, an efficient retrieval can be still achieved.

To evaluate EF-LTS for SAR image registration, we also use it to the InSAR
image pair given in Figure 4(a) and (b). Similarly, the feature correspondences are
first constructed by SURF with HF-9(-1), then we run EF-LTS 100 times to retrieve
the affine parameters and calculate CC and SNR. The obtained parameters, CC, and
SNR of each execution are shown in Figure 5, while the mean and standard devia-
tion of the parameters, CC, and SNR are listed in Table 3. It is revealed that EF-LTS
behaves very stable and the estimated parameters, CC, and SNR are invariant for
each execution. It can reach an averagely better CC and SNR than RANSAC and is
more appropriate for InSAR image registration. Figure 4(c) and (d) further illus-
trates the interferogram and correlation map of the coregistered InSAR pair with
wrap parameters estimated by EF-LTS. Interferogram is the argument or phase of
the dot production between the complex master image and the complex conjugation
of the registered slave image, while correlation map measures CC of the 3 � 3
patches around each corresponding pixel position between the images. The inter-
ferogram fringe is clear and the correlation is strong in stable area such as the
brighter buildings in Figure 4(a) and (b) and the upper-right bare land. But in the
upper-left residential area, the interferogram becomes less clear and the correlation
is relatively small probably because the scattering is very sensitive to incidence
changes. While in other area (mainly vegetable lands and parking lot), the interfer-
ogram is almost lost and the coherence is very low due to the temporal and/or
volume decorrelation. All these match with the ground truth very well.

5. Experiment and analysis

Based on the finding in Sections 2–4, we propose to conduct high accurate SAR
image registration by using EF-LTS to fit the SURF correspondences. The scheme
works as follows:

N q

0.5 0.6 0.7 0.75 0.8 0.9 0.95

0 7 6 4 4 3 2 2

1 35 19 11 9 7 4 3

2 293 97 37 24 16 7 4

3 4714 760 161 80 41 11 6

Table 4.
Sampling number T under different inlier percentage q and polynomial order N when ε = 0.99.
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Algorithm 4: Accurate SAR image registration based on SURF features and
EF-LTS

Step 41. Use FH-9(-Fs) to extract SURF keypoints from master and slave
images, respectively.

Step 42. Construct initial feature correspondences by simply matching SURF
descriptors.

Step 43. Robustly processing the correspondences with EF-LTS to retrieve the
warp function.

Step 44. Transform and interpolate the slave image to geometrically align it to
master image.

Actually, this scheme has been put into practice in the above experiments. In
this section, we further devise an experiment to check it on MiniSAR pair. The
images we use are two high-resolution SAR images of the entrance gate of the
Sandia Research Park acquired by the Ku-Band MiniSAR system developed by the
Sandia Laboratory [51]. The images are taken from different tracks with different
incidences and squints, as listed in Table 5, while the platform altitude is just
beyond 1 km. All these reveal the nontrivial target relief-induced geometrical
warping between images, which, however, cannot be compensated beforehand for
lack of ground truth such as DEM and target height. Besides this, the images also
experience a very large intensity variation. To enhance the texture, we use the
logarithmic intensity of original complex images, as shown in Figure 7(a) and (b).
To achieve a more precise approximation to the real warping, we divide the image
pair into four 500 � 500 patch pairs. The geometrical warping on each patch pair is
approximated as an affine transformation (the higher order polynomial has also
been used to model the warp function, but unsatisfactory registration result is
attained). We adopt HF-9(-4) SURF detector to extract feature correspondences
from each patch pair, and EF-LTS is then used to obtain the affine parameters,
based on which the slave image is finally aligned to the master image. To illustrate
the registration accuracy, we fuse and overlap the coregistered images together. The
RGB fusion in Figure 7(c) is obtained by treating the master image and the
coregistered slave image as red and green, respectively, while zeroing the blue
component. The well-distributed yellow then immediately illustrates the accurate
registration of the images. The overlapping in Figure 7(d) is obtained by simply
averaging the two coregistered images. It contains the whole information of the two
images but has fewer speckles.

To further evaluate the registration performance of the scheme, in the following
we focus on the two pole-like target areas 1 and 2 in Figure 7(d) with their
corresponding Google optical images shown in Figure 8(g) and (h), respectively.
Figure 8(i) portrays the details of Pole 2 in the Street View of Google Maps. The

Parameters Master image Slave image

Azimuth resolution 0.1016 m 0.1016 m

Range resolution 0.1016 m 0.1016 m

Grazing angle 27.0107° 26.1892°

Global track angle 158.3687° 153.0825°

Central frequency 16.8 GHz 16.8 GHz

Platform altitude 1.6715 km 1.6715 km

Squint �89.9935° �89.9924°

Table 5.
Imaging parameters of the two MiniSAR images.
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target is shown to be the power transmission pole. Figure 8(a)–(c) exhibits the SAR
imagery of Pole 1 in the master image, coregistered slave image, and overlapped
image, respectively. The corresponding SAR imageries of Pole 2 are displayed in
Figure 8(d)–(f), respectively. It is known that the darker pole-like feature in each
SAR image is not the real pole scattering, but its shadow under the irradiation of
radar. The actual scattering center of the pole is overlapped with its ground position
because of the dominant dihedral backscattering between the pole and ground.
From Figure 8(c) and (f), we can find that the shadows of the two poles are still
separated after registration due to the volume-induced warping. According to our
estimate, the separations are about 6.5 and 5°, respectively, which approach to the
actual track angle 5.2862°. Except for these shadows, the poles and other area are
accurately overlapped. Nice registration is still achieved despite the large local
distortion and decorrelation. Moreover, the experiment also validates the strategy
for general feature-based SAR image registration, i.e., to focus on the global regis-
tration and to neglect the local discontentment. The accurate registration of each
pixel is impossible and unnecessary. It should be noted that the conventional SAR
image registrations including the feature-based approaches focused in current
chapter are mainly appropriate for images with approximated low-order polyno-
mial geometrical warping. For SAR images taken from area of rough topography
with long baseline, we need some more complex approaches with the a priori
ground truth information being included, such as the DEM-assisted registration
[48]. Although the SAR and InSAR image pairs used in the experiment are all

Figure 7.
Registration of the MiniSAR image pair. (a) Master image, (b) slave image, and (c) pseudocolor fusion as well
as (d) the overlapping of them after registration with EF-LTS to fit the SURF features. “1” and “2” in (d)
indicate two pole-like targets which are further detailed in Figure 8.
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monopolarized, the developed scheme is also appropriate to the registration of
fully polarimetric SAR (PolSAR) images. Different from monopolarized SAR, each
cell in PolSAR image is a scattering matrix S with four entries SHH, SHV, SVH, and
SVV [52]:

S ¼ SHH SHV

SVH SVV

� �
: (35)

Nevertheless, by taking the squared Frobenius norm of matrix S [53]:

SPAN ¼ Sk k2F ¼ SHHj j2 þ SHVj j2 þ SVHj j2 þ SVVj j2 (36)

we can then obtain the total power (also known as SPAN) of target. An accurate
registration of PolSAR images can be eventually achieved by simply using the
developed scheme to the corresponding SPAN image pair.

6. Conclusion

SAR coherent imaging unavoidably brings about geometrical distortion and
speckle into the acquired images and makes the registration of SAR images much
more complicated. In this chapter, we focus on two important procedures in general
feature-based SAR registration, i.e., the feature extraction and the parameter
retrieval by identifying the appropriate feature and the appropriate estimation
algorithm. As for the former, we conduct a detailed evaluation on the commonly
used features such as tie points, Harris corner, SIFT, and SURF. We find that SURF
outperforms others in terms of the geometrical invariance of feature, extraction
speed, accuracy of localization, geometrical invariance of descriptor, matching
speed, robustness to decorrelation, and flexibility to image speckling. Among these
criteria, feature’s flexibility to speckle is particularly focused because speckle
impacts the feature extraction and matching, while speckle filtering may change the
feature position and impact the subpixel localization. The Fast-Hessian detector of

Figure 8.
Registration of the two pole-like targets. SAR imagery of pole “1” in (a) master image, (b) coregistered slave
image, and (c) overlapped image, as well as (g) the corresponding Google optical image. SAR imagery of pole
“2” in (d) master image, (e) coregistered slave image, and (f) overlapped image, as well as (h) its Google
optical image and (i) detailed portrayal in Google Maps.
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target is shown to be the power transmission pole. Figure 8(a)–(c) exhibits the SAR
imagery of Pole 1 in the master image, coregistered slave image, and overlapped
image, respectively. The corresponding SAR imageries of Pole 2 are displayed in
Figure 8(d)–(f), respectively. It is known that the darker pole-like feature in each
SAR image is not the real pole scattering, but its shadow under the irradiation of
radar. The actual scattering center of the pole is overlapped with its ground position
because of the dominant dihedral backscattering between the pole and ground.
From Figure 8(c) and (f), we can find that the shadows of the two poles are still
separated after registration due to the volume-induced warping. According to our
estimate, the separations are about 6.5 and 5°, respectively, which approach to the
actual track angle 5.2862°. Except for these shadows, the poles and other area are
accurately overlapped. Nice registration is still achieved despite the large local
distortion and decorrelation. Moreover, the experiment also validates the strategy
for general feature-based SAR image registration, i.e., to focus on the global regis-
tration and to neglect the local discontentment. The accurate registration of each
pixel is impossible and unnecessary. It should be noted that the conventional SAR
image registrations including the feature-based approaches focused in current
chapter are mainly appropriate for images with approximated low-order polyno-
mial geometrical warping. For SAR images taken from area of rough topography
with long baseline, we need some more complex approaches with the a priori
ground truth information being included, such as the DEM-assisted registration
[48]. Although the SAR and InSAR image pairs used in the experiment are all

Figure 7.
Registration of the MiniSAR image pair. (a) Master image, (b) slave image, and (c) pseudocolor fusion as well
as (d) the overlapping of them after registration with EF-LTS to fit the SURF features. “1” and “2” in (d)
indicate two pole-like targets which are further detailed in Figure 8.
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monopolarized, the developed scheme is also appropriate to the registration of
fully polarimetric SAR (PolSAR) images. Different from monopolarized SAR, each
cell in PolSAR image is a scattering matrix S with four entries SHH, SHV, SVH, and
SVV [52]:

S ¼ SHH SHV

SVH SVV

� �
: (35)

Nevertheless, by taking the squared Frobenius norm of matrix S [53]:

SPAN ¼ Sk k2F ¼ SHHj j2 þ SHVj j2 þ SVHj j2 þ SVVj j2 (36)

we can then obtain the total power (also known as SPAN) of target. An accurate
registration of PolSAR images can be eventually achieved by simply using the
developed scheme to the corresponding SPAN image pair.

6. Conclusion

SAR coherent imaging unavoidably brings about geometrical distortion and
speckle into the acquired images and makes the registration of SAR images much
more complicated. In this chapter, we focus on two important procedures in general
feature-based SAR registration, i.e., the feature extraction and the parameter
retrieval by identifying the appropriate feature and the appropriate estimation
algorithm. As for the former, we conduct a detailed evaluation on the commonly
used features such as tie points, Harris corner, SIFT, and SURF. We find that SURF
outperforms others in terms of the geometrical invariance of feature, extraction
speed, accuracy of localization, geometrical invariance of descriptor, matching
speed, robustness to decorrelation, and flexibility to image speckling. Among these
criteria, feature’s flexibility to speckle is particularly focused because speckle
impacts the feature extraction and matching, while speckle filtering may change the
feature position and impact the subpixel localization. The Fast-Hessian detector of

Figure 8.
Registration of the two pole-like targets. SAR imagery of pole “1” in (a) master image, (b) coregistered slave
image, and (c) overlapped image, as well as (g) the corresponding Google optical image. SAR imagery of pole
“2” in (d) master image, (e) coregistered slave image, and (f) overlapped image, as well as (h) its Google
optical image and (i) detailed portrayal in Google Maps.

39

On Feature-Based SAR Image Registration: Appropriate Feature and Retrieval Algorithm
DOI: http://dx.doi.org/10.5772/intechopen.81665



SURF has a potential relation with the refined Lee speckle filter. SSP in SURF just
indicates that we use a series of box filters of different size to filter speckles and
extract features of different scales. Thus, SURF is very flexible to deal with SAR
speckle. In view of the application with strict requirement for registration accuracy,
we suggest using the SURF detector of HF-9(-1) to the Fs times interpolated images
with unchanged sampling step to extract feature. The new detector HF-9(-Fs) can
significantly improve the registration accuracy to subpixel (<1 pixel) and is espe-
cially fit for high accurate SAR image registration.

Parameter retrieval in SAR registration is difficult because spatial or temporal
decorrelation will always introduce mismatches into the obtained feature corre-
spondences. The estimator should be robust to outliers. We find that the commonly
used RANSAC may trap into local occlusion and result in uncertain parameter
retrieval. This uncertainty is more severe in SAR image registration because SAR
geometrical warping varies from pixel to pixel, but the low-order polynomial
approximation can only account for global registration instead of the local content-
ment. The local-to-global strategy in RANSAC may thus magnify the local distor-
tion, aggravate the estimation uncertainty, and damnify the global registration
accuracy although a largest CS is obtained. To achieve a stable registration for SAR
images, we should estimate the parameters with more correspondences to reflect
the true support than just a MSS, and apply an appropriate loss function. This leads
us to EF-LTS, which improves Fast-LTS from 1D regression to 2D regression, and
provides us an adaptive determination of the number of random sampling instead
of setting it as a constant 500. EF-LTS conducts registration by LS fitting at least
half of the correspondences to minimize the squared residual. It behaves very stable
and is averagely better than RANSAC. Hence, we recommend conducting SAR
image registration by fitting SURF features with EF-LTS. Experiments on both
InSAR and MiniSAR image pairs validate the nice performance of this registration
scheme.
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SURF has a potential relation with the refined Lee speckle filter. SSP in SURF just
indicates that we use a series of box filters of different size to filter speckles and
extract features of different scales. Thus, SURF is very flexible to deal with SAR
speckle. In view of the application with strict requirement for registration accuracy,
we suggest using the SURF detector of HF-9(-1) to the Fs times interpolated images
with unchanged sampling step to extract feature. The new detector HF-9(-Fs) can
significantly improve the registration accuracy to subpixel (<1 pixel) and is espe-
cially fit for high accurate SAR image registration.

Parameter retrieval in SAR registration is difficult because spatial or temporal
decorrelation will always introduce mismatches into the obtained feature corre-
spondences. The estimator should be robust to outliers. We find that the commonly
used RANSAC may trap into local occlusion and result in uncertain parameter
retrieval. This uncertainty is more severe in SAR image registration because SAR
geometrical warping varies from pixel to pixel, but the low-order polynomial
approximation can only account for global registration instead of the local content-
ment. The local-to-global strategy in RANSAC may thus magnify the local distor-
tion, aggravate the estimation uncertainty, and damnify the global registration
accuracy although a largest CS is obtained. To achieve a stable registration for SAR
images, we should estimate the parameters with more correspondences to reflect
the true support than just a MSS, and apply an appropriate loss function. This leads
us to EF-LTS, which improves Fast-LTS from 1D regression to 2D regression, and
provides us an adaptive determination of the number of random sampling instead
of setting it as a constant 500. EF-LTS conducts registration by LS fitting at least
half of the correspondences to minimize the squared residual. It behaves very stable
and is averagely better than RANSAC. Hence, we recommend conducting SAR
image registration by fitting SURF features with EF-LTS. Experiments on both
InSAR and MiniSAR image pairs validate the nice performance of this registration
scheme.
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Chapter 3

L-Band SAR Disaster Monitoring
for Harbor Facilities Using
Interferometric Analysis
Ryo Natsuaki

Abstract

Synthetic aperture radar (SAR) has become a major tool for disaster monitoring.
Its all-weather capability enables us to monitor the affected area soon after the
event happens. Since the first launch of spaceborne SAR, its amplitude images have
been widely used for disaster observations. Nowadays, an accurate orbit control and
scheduled frequent observations enable us to perform interferometric analysis of
SAR (InSAR) and the use of interferometric coherence. Especially for L-band SAR,
its long-lasting temporal coherence is an advantage to perform precise interfero-
metric coherence analysis. In addition, recent high resolution SAR images are found
to be useful for observing relatively small targets, e.g., individual buildings and
facilities. In this chapter, we present basic theory of SAR observation, interfero-
metric coherence analysis for the disaster monitoring, and its examples for the
harbor facilities. In the actual case, DInSAR measurement could measure the subsi-
dence of the quay wall with 3 cm error.

Keywords: synthetic aperture radar (SAR), interferometry, interferometric
coherence, disaster monitoring, infrastructure monitoring

1. Introduction

In the last decade, Interferometric Synthetic Aperture Radar (InSAR) has widely
spread for measuring ground deformations caused by disasters, for example, earth-
quakes, volcanic eruptions, or subsidence [1, 2]. It can measure several centimeters
of deformation with one pair of SAR images. The accuracy can be increased to
several millimeters per year by applying time-series analysis [3, 4]. Compared with
traditional optical or amplitude-based SAR analyses, e.g., [5], the advantages of
InSAR-based monitoring are, for example, its sensitivity for the deformation and
all-weather availability [6–8]. It is effective in the detection of various deformations
caused by disasters such as earthquakes [9, 10], volcanic eruptions [11], storms
[12], and human disaster [13]. Especially for the long wavelength SAR, i.e., L-band
SAR, its long-lasting temporal coherence enables us to perform precise
multitemporal interferometric coherence analysis [14]. Polarimetric analysis
(PolSAR) has been also proposed for the damage detection using scattering
mechanism analysis [15]. In PolSAR mode, SAR transmits both horizontal and
vertical polarized waves and receives their co- and cross-polarized signals to see the
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scattering mechanism of targets. The collapsed buildings show different scattering
mechanisms when they are compared with standing buildings. The most important
examples are derived from 2011 off the pacific coast of Tohoku Earthquake [16–19].
Current problem for this method in the operational SARs is that there is less
acquisition for full polarimetric mode, narrower swath width, and less spatial
resolution caused by the operational limit of the platforms.

Another merit of spaceborne observations is that they have a wider observation
swath than that of airborne observations, resulting in faster measurement over
a wide area. However, the area of deformation is assumed to be larger than hun-
dreds of meters in the world of InSAR. If its spatial resolution increases, it can be
applied to smaller targets’ deformation, e.g., the disaster monitoring of harbor
facilities smaller than 100 m [20], in addition to the existing change detection
methods, e.g., [21, 22].

Currently, operational SAR satellites aim wide swath or high resolution. ALOS-2,
COSMO-SkyMed, RADARSAT-2, and TerraSAR/TanDEM-X aim higher resolution
(<5 m) with relatively narrow swath width (<50 km), while Sentinel-1 aims wider
swath width (200 km) with lower resolution (>20 m). Observation with higher
resolution can achieve precise texture of the ground. One can analyze individual
buildings with such a high resolution, while preceding researches mostly aim to
evaluate in the size of a city block [23, 24]. On the other hand, wider observation
swath is required for frequent and scheduled global observation using small number
of satellites. That is, the higher frequent acquisition enables us to analyze the region
of interest (RoI) without making any conflict with other observation requirements.
The frequent observation is a requirement not only for time-series analysis but also
for disaster monitoring that the users must observe the affected area as soon as
possible. In the next decade, wide swath and high resolution are going to be
combined, and the Earth will be observed weekly or bi-weekly with higher than
10 m resolution by SAR satellites such as ALOS-4, NISAR, Sentinel-1 NG, and
TanDEM-L.

In such an era, disaster monitoring with SAR data using interferometric analysis
becomes more useful [25]. In addition to the traditional amplitude-based change
detection, centimeter-order deformation detection and interferometric coherence-
based damage assessment will be more operational. One can acquire a delineation
map over dozens of square kilometers for the affected area with a few meters
resolution several hours after the observation, which cannot be achieved with
ground/airborne surveys.

Monitoring harbor facilities plays an important role in the recovery phase in the
disaster, because maritime traffic is a backbone of the logistics. For example, a
heavy storm may have damaged the seawalls and piers. However, it is difficult to
assess the stability of them soon after the event by humans because the ocean is still
heavy. A catastrophic earthquake and tsunamis may have damaged a number of
harbors simultaneously. In such a case, the authorities have to assess the damage of
their facilities and decide whether to rearrange the route. SAR can quickly observe
the affected area remotely on behalf of the risky direct observation by humans. This
is the reason why SAR can play an important role in the rescue and recovery phase
of the disaster. This chapter thinks of it.

In this chapter, we firstly present a fundamental theory for the interferometric
analysis of SAR. It includes the basis of differential InSAR (DInSAR) and interfero-
metric coherence analysis. Next, we describe a basic scheme of harbor monitoring
for disaster monitoring. Finally, we show several examples in the real case, includ-
ing the latest L-band SAR satellite Advanced Land Observing Satellite-2 (ALOS-2 or
DAICHI-2) [26].
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2. Synthetic aperture radar and interferometric analysis

In this section, we briefly explain the system of synthetic aperture radar (SAR)
and its interferometric analysis (InSAR), including coherence analysis. Three
monitoring methods are shown here. Firstly, wreckages and inundated area
detection using amplitude information are described. Next, DInSAR-based dis-
placement detection of the ground is explained. Finally, assessment for the dam-
aged buildings from interferometric coherence is introduced. The descriptions are
especially supposed for damage detection in harbor facilities, which is a combina-
tion of InSAR and coherence analysis.

2.1 Synthetic aperture radar

The larger antenna diameter derives the higher spatial resolution of radar sys-
tems. However, some platforms such as aircraft and satellites cannot deploy a
sufficient size of the antenna because of their payload limitations. SAR solves this
problem by moving itself and synthesizes the received signals by assuming that the
ground targets are fixed [27].

If a SAR can use wide bandwidth, e.g., 1 GHz, it can achieve approximately
0.25 m of spatial resolution in the range direction. A typical high resolution SAR
achieves 3–5 m. In the azimuth direction, a pulse repetition frequency (PRF) and
aperture length are the large factors. The amplitude of a pixel of SAR image depends
on the backscattering coefficient, and the phase depends on the distance between
SAR and scatter. The phase information is difficult to handle because the wave-
length is too short to measure the ground directly. On the other hand, the phase
contains topographic, deformation, and the other valuable information. Those can
be analyzed by interferometric analysis.

2.2 Differential interferometric SAR

Figure 1 presents a schematic diagram of InSAR analysis. A SAR image contains
amplitude and phase information, in other words, complex-valued information and
thus is called Single Look Complex (SLC) image. When we observe the same place
from the same orbit multiply and multiply one SLC image (master) and another
complex conjugated SLC image (slave), we can make an interferogram. The phase
value of the interferogram, φ, is the phase difference between the master and slave.
A SAR interferometric phase contains topographic, deformation, ionospheric delay,
and tropospheric delay information [28].

In this chapter, we consider that the interferogram, φ, consists of the topo-
graphic, φtopo, and deformation, φdefo, components and ignore the others. The topo-
graphic component can be estimated by calculating the relationship between the
known heights H acquired from a known topographic map as shown in Eq. (1).

φtopo ¼
4πBCT cos θ � γCTð Þ

λRm sin θ
H (1)

where λ is the wavelength of SAR, BCT cos(θ-γCT) is the perpendicular baseline
of the two observations, θ is the incidence angle, and Rm is the slant range distance.
Therefore, we can subtract φtopo from the interferogram and measure the deforma-
tion component. If deformation occurs between two observations, the deformation
phase value, φdefo, corresponds to the shrink or extension in the line-of-sight
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2. Synthetic aperture radar and interferometric analysis

In this section, we briefly explain the system of synthetic aperture radar (SAR)
and its interferometric analysis (InSAR), including coherence analysis. Three
monitoring methods are shown here. Firstly, wreckages and inundated area
detection using amplitude information are described. Next, DInSAR-based dis-
placement detection of the ground is explained. Finally, assessment for the dam-
aged buildings from interferometric coherence is introduced. The descriptions are
especially supposed for damage detection in harbor facilities, which is a combina-
tion of InSAR and coherence analysis.

2.1 Synthetic aperture radar

The larger antenna diameter derives the higher spatial resolution of radar sys-
tems. However, some platforms such as aircraft and satellites cannot deploy a
sufficient size of the antenna because of their payload limitations. SAR solves this
problem by moving itself and synthesizes the received signals by assuming that the
ground targets are fixed [27].

If a SAR can use wide bandwidth, e.g., 1 GHz, it can achieve approximately
0.25 m of spatial resolution in the range direction. A typical high resolution SAR
achieves 3–5 m. In the azimuth direction, a pulse repetition frequency (PRF) and
aperture length are the large factors. The amplitude of a pixel of SAR image depends
on the backscattering coefficient, and the phase depends on the distance between
SAR and scatter. The phase information is difficult to handle because the wave-
length is too short to measure the ground directly. On the other hand, the phase
contains topographic, deformation, and the other valuable information. Those can
be analyzed by interferometric analysis.

2.2 Differential interferometric SAR

Figure 1 presents a schematic diagram of InSAR analysis. A SAR image contains
amplitude and phase information, in other words, complex-valued information and
thus is called Single Look Complex (SLC) image. When we observe the same place
from the same orbit multiply and multiply one SLC image (master) and another
complex conjugated SLC image (slave), we can make an interferogram. The phase
value of the interferogram, φ, is the phase difference between the master and slave.
A SAR interferometric phase contains topographic, deformation, ionospheric delay,
and tropospheric delay information [28].

In this chapter, we consider that the interferogram, φ, consists of the topo-
graphic, φtopo, and deformation, φdefo, components and ignore the others. The topo-
graphic component can be estimated by calculating the relationship between the
known heights H acquired from a known topographic map as shown in Eq. (1).

φtopo ¼
4πBCT cos θ � γCTð Þ

λRm sin θ
H (1)

where λ is the wavelength of SAR, BCT cos(θ-γCT) is the perpendicular baseline
of the two observations, θ is the incidence angle, and Rm is the slant range distance.
Therefore, we can subtract φtopo from the interferogram and measure the deforma-
tion component. If deformation occurs between two observations, the deformation
phase value, φdefo, corresponds to the shrink or extension in the line-of-sight
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distance between the satellite and ground targets. If we denote the change in the
line-of-sight distance as ΔR, the phase value can be calculated with the wave length
λ using Eq. (2).

φdefo ¼
4π
λ
ΔR (2)

As shown in the Eq. (2), the range of phase value is limited between �π and π,
and thus, we cannot distinguish deformations greater than a quarter wavelength.
For example, L-band radar has approximately 24 cm wavelength. When ΔR = 0,
+/�12, +/�24… cm, φdefo becomes 0 with indefinite 2nπ. Therefore, we cannot
define the deformation if the neighboring pixels have more than a 6 cm line-of-sight
difference. Long wavelength has an advantage to measure a large deformation. We
can measure the absolute deformation by unwrapping the phase as long as the
deformation satisfies the sampling theorem. The robustness of DInSAR analysis for
harbor facilities is discussed in [20]. In [20], it is reported that the average error of
the 11 observations was 0.1 cm, and its standard deviation was 0.4 cm for ideal case.
That is, there was no systematic error of more than 0.1 cm when we apply the
averaging filter when it contains a 0.4 cm variation inside the averaging window. At
the same time, the average of the standard deviation of every observation was
1.0 cm. That is, a measured deformation with L-band SAR contains a 1.0 cm error.

2.3 Phase unwrapping

In order to calculate the absolute amount of the deformation, phase unwrapping
process is required. The exact operation of phase unwrapping is a line integration of
the phase values. We can achieve the integration result, which is independent of the
integration path, as long as the amount of deformation between all neighboring
pixels satisfies the sampling theorem. If there are residual points, i.e. rotational
points, the unwrapping results become dependent on the integration path.

To solve this problem, estimating an appropriate phase value (filtering) and
finding a specific integration path is required. Various filtering and unwrapping

Figure 1.
Schematic diagram of InSAR analysis.
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methods have been proposed. The Goldstein-Werner filter [29] is the famous low
pass filter in the frequency domain. Probability estimation methods such as Markov
random field model [30] and Bayesian estimation [31] have been proposed too.
Nonlocal filter is widely used for its robustness [32]. Robust unwrapping methods
have also been proposed. Branch-cut technique [33] tries to find the minimum cost
to cancel the SPs by connecting opposite rotation side ones. Least square methods
[34, 35] use Fourier transformation to distinguish steep slope from high frequency
noise. The singularity spreading technique [36] is a newly developed method, which
simply cancels residues by adding opposite direction to send residue to the other
residues. In this chapter, we applied Markov random field model [30] filter and a
least-square method [35] for phase unwrapping.

2.4 Interferometric coherence analysis

Interferometric coherence represents the uniformity of the interferometric pair
of the SAR images [37, 38]. Interferometric coherence becomes high when the
Master and Slave images are close to each other, while it decreases when two are
completely different. The coherence value is calculated from the cross-correlation
and autocorrelation between the two observations as shown in Eq. (3). When the
ground targets are damaged or collapsed by disasters or human activities, the
identical position reflects radio waves differently when we compare the pre- and
post-event SLCs. In this case, the interferometric phase value contains no informa-
tion, and the signal in master and slave SLC has no correlation. If the ground surface
has been changed by the disaster, this effect appears as a large decrease in interfer-
ometric coherence.

γ ¼ M∗S
� �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
M∗M
� �q ffiffiffiffiffiffiffiffiffiffiffiffi

S∗S
� �q , (3)

where M and S represent Master and Slave samples, M∗M represents the com-
plex conjugate multiplication ofM, and < > represents the ensemble average of the
samples in < > . In short, γ is a normalized cross-correlation ofM and S, and thus, it
varies from 0 to 1. γ = 1 only happens when M = S and γ = 0 never occurs because of
randomness. A large facility has a relatively high (approximately 0.7–0.9) value.
Contrarily, bare soil and concrete caissons have low (0.3<) values because they
have smooth surface and low reflectivity in radar. An insufficient window size will
overestimate the coherence value, while the larger window size will reduce the
ground resolution. The window size of the ensemble average in Eq. (3) is 5 � 5
pixels in this chapter. The interferometric coherence largely depends on the surface
roughness and temporal stability. If it is too smooth and/or unstable, such as water
surface, concrete surface, and highly active region, the radio wave does not return
to the satellite coherently.

Coherence γ also depends on the interval of M and S. Though it is stable, the
ground surface changes time by time. If master and slave images are acquired in, for
example, different years, γ becomes lower. This is called temporal decorrelation. To
avoid this effect, it is required to observe the same place frequently. In general, a
lower band SAR has a slower temporal decorrelation.

When we compare γ of two interferograms, we can detect the effect of disasters.
This is called multitemporal coherence analysis; its aim is to detect the damaged
part from the change in γ. If we have at least one interferogram prior to the disaster,
a pre-event interferogram and an interferogram which is made from pre-event and
post-event SLCs, a co-event interferogram, we can compare their coherence values.
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methods have been proposed. The Goldstein-Werner filter [29] is the famous low
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have also been proposed. Branch-cut technique [33] tries to find the minimum cost
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[34, 35] use Fourier transformation to distinguish steep slope from high frequency
noise. The singularity spreading technique [36] is a newly developed method, which
simply cancels residues by adding opposite direction to send residue to the other
residues. In this chapter, we applied Markov random field model [30] filter and a
least-square method [35] for phase unwrapping.
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Master and Slave images are close to each other, while it decreases when two are
completely different. The coherence value is calculated from the cross-correlation
and autocorrelation between the two observations as shown in Eq. (3). When the
ground targets are damaged or collapsed by disasters or human activities, the
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ometric coherence.
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where M and S represent Master and Slave samples, M∗M represents the com-
plex conjugate multiplication ofM, and < > represents the ensemble average of the
samples in < > . In short, γ is a normalized cross-correlation ofM and S, and thus, it
varies from 0 to 1. γ = 1 only happens when M = S and γ = 0 never occurs because of
randomness. A large facility has a relatively high (approximately 0.7–0.9) value.
Contrarily, bare soil and concrete caissons have low (0.3<) values because they
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pixels in this chapter. The interferometric coherence largely depends on the surface
roughness and temporal stability. If it is too smooth and/or unstable, such as water
surface, concrete surface, and highly active region, the radio wave does not return
to the satellite coherently.

Coherence γ also depends on the interval of M and S. Though it is stable, the
ground surface changes time by time. If master and slave images are acquired in, for
example, different years, γ becomes lower. This is called temporal decorrelation. To
avoid this effect, it is required to observe the same place frequently. In general, a
lower band SAR has a slower temporal decorrelation.

When we compare γ of two interferograms, we can detect the effect of disasters.
This is called multitemporal coherence analysis; its aim is to detect the damaged
part from the change in γ. If we have at least one interferogram prior to the disaster,
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This is called multitemporal interferometric coherence change detection. If the co-
event interferometric coherence is lower than the pre-event one, though consider-
ing temporal decorrelation, it can be regarded that scatterers on the surface have
been damaged and/or moved largely. Two definitions for the coherence decrease dγ
can be considerable. One is the simple difference or un-normalized coherence
decrease (CD) dγun, and the other is the normalized coherence decrease dγnorm, as
shown in Eqs. (4) and (5).

dγun ¼ γpre � γco (4)

dγnorm ¼ γpre � γco
γpre þ γco

(5)

where the pre-event coherence is γpre and the co-event coherence is γco. Eq. (4)
requires relatively large γpre and cannot be applied for low coherency areas, such as
vegetated ground. On the other hand, Eq. (5) does not require large γpre, while the
temporal decorrelation will suffer in accuracy. In this chapter, Eq. (4) is applied
because harbor facilities generally have large γpre in long temporal baseline.

The facilities should be regarded as damaged when dγun exceeds the specific
threshold. The threshold is generally defined manually to reduce the effect of
temporal and spatial decorrelations. In [39], the authors found that the buildings
which are larger than 200m2 can be evaluated by setting the threshold 0.3. When
the buildings exceed the threshold, they were moderately or severely damaged
when they are classified by EMS-98 scheme [40]. In this chapter, therefore, thresh-
old for dγun is set to 0.3.

2.5 Scattering mechanisms of harbor facilities

In order to apply those analyses above to the disaster monitoring of harbor
facilities, the scattering mechanisms of SAR are briefly described. Numerical
models are the same to the other cases; however, it is worth mentioning what the
scatterers are in the harbor. Figure 2 shows the schematic image of harbor. In the
figure, SAR satellite is observing the harbor from left top of the figure.

Figure 2(a) shows the scattering mechanisms in normal condition. Region A is
water, and therefore, backscattering coefficient is very low. Region B is the bare
ground, and its brightness depends on its roughness. If the ground is covered by
concrete or asphalt, it can be seen dark as same as water. Region C is layover of the
facilities, and its surface scattering from the roof can be seen. On the other hand,
Region D is a shadow region and Point Z cannot be observed by the satellite. Water,
ground, and vertical walls work as smooth surface, and therefore, double-bounce
effects are seen in Point X and Y.

Figure 3 presents an example of airborne L-band SAR image and the
corresponding spaceborne optical image of the harbor. There are multiple bright
targets which exist at the edge of the pier and the buildings. Those are the
double-bounce effects. On the other hand, the top of the pier which is covered by
asphalt and concrete is mostly dark as the water. The brightness of the rooftop
of buildings depends on the structure of them. Those bright scatterers which do not
move between two observations have high coherence. Note that ships have no
coherence because they move on the water. Other moving facilities such as cars,
containers, and cranes do not have high coherence too. On the other hand,
stable facilities, e.g., buildings, walls, and vegetation have high coherence in L-band
SAR. In short, interferometric analysis is applicable only to the stable bright
scatterers.
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Figure 2(b) shows a schematic diagram of the traditional amplitude-based SAR
analysis. By comparing the pre- and post-disaster observation, the followings can be
found. Object P wreckages on the water reflects the radar signal and appears in the
post-disaster image. Region Q, an inundated area, will decrease the backscattering
coefficients, and therefore, it appears as water region in the postdisaster image.
Roads and other smooth surfaces are originally dark in SAR image and therefore
may not change the amplitude by flooding. In addition, insufficient amount of
subsidence or deformation will not be detected from amplitude image. Region R,

Figure 2.
Schematic image for disaster monitoring of harbor facilities using SAR. (a) Scattering mechanism in harbor and
change detection based on (b) amplitude and (c) interferometric analysis.

53

L-Band SAR Disaster Monitoring for Harbor Facilities Using Interferometric Analysis
DOI: http://dx.doi.org/10.5772/intechopen.81465
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SAR. In short, interferometric analysis is applicable only to the stable bright
scatterers.

52

Advanced Remote Sensing Technology for Synthetic Aperture Radar Applications,Tsunami…

Figure 2(b) shows a schematic diagram of the traditional amplitude-based SAR
analysis. By comparing the pre- and post-disaster observation, the followings can be
found. Object P wreckages on the water reflects the radar signal and appears in the
post-disaster image. Region Q, an inundated area, will decrease the backscattering
coefficients, and therefore, it appears as water region in the postdisaster image.
Roads and other smooth surfaces are originally dark in SAR image and therefore
may not change the amplitude by flooding. In addition, insufficient amount of
subsidence or deformation will not be detected from amplitude image. Region R,

Figure 2.
Schematic image for disaster monitoring of harbor facilities using SAR. (a) Scattering mechanism in harbor and
change detection based on (b) amplitude and (c) interferometric analysis.
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the totally collapsed buildings, can be seen as a brighter scatterer in the postdisaster
image, because in general, demolished buildings are more random surface than
standing ones. On the other hand, slightly damaged buildings do not show any
significant change in the amplitude image. In short, amplitude-based analysis can
detect significant difference of the scatterers.

Figure 2(c) shows what can be observed by interferometric analysis. As water
and surface has no coherency, wreckages on the water are not visible by interfero-
metric analysis. Inundated Region S shows significant drop of coherence. Region T,
deformation of the ground including subsidence or lateral flow, can be seen by
interferometric phase and can be measured how large the surface moved. To calcu-
late the absolute amount of the deformation, it requires relatively high coherence,

Figure 3.
Example of (a) SAR and (b) optical observation among harbor facilities.
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that is, the place where the deformation can be measured has less damage. Region U
and V, moderately damaged and collapsed buildings, can be detected by interfero-
metric coherence analysis too. Its sensitivity is discussed precisely in [39].

In summary, some damages can be detected only by amplitude information,
while the others can be detected only by interferometric analysis. Precise
centimeter-order deformation can be measured when the surface keeps enough
coherencies.

In a qualitative manner, one can segmentalize the disaster affected harbor facil-
ities as following features.

• Nonaffected area can be recognized as high coherence and same amplitude
areas.

• Deformation can be measured by DInSAR as long as the surface keeps enough
coherence. Note that the phase component of the interferogram is relative
value in the line-of-sight direction and not the absolute deformation of neither
vertical nor horizontal direction.

• Moderately damaged buildings can be found by the decrease of coherence.

• Severely damaged buildings can be found by both decrease of coherence and
increase of amplitude.

• Inundated areas appear as significant drop of amplitude as well as decrease of
coherence.

• Wreckages on the water can be found from increase of the amplitude in the
water region.

3. Damage detection scheme

Here, a brief detection scheme is introduced. In the rescue and recovery phase of
disaster, mapping an affected area is one of the urgent tasks. The authorities use the
delineation map for planning their activities. However, not all the responsible
persons are familiar with remote sensing, especially for SAR. Therefore, intuitive
classification is required.

Figure 4 shows an example of the classification flow. The classification scheme
consists of five processes. First, the region which amplitude dropped more than
6 dB than pre-disaster data or weaker than the known water region is regarded as
under the water and indicated as blue on map. The area which was affected by
subsidence, tidal wave, and/or tsunami will be visualized.

Figure 4.
Decision flow of the quick assessment.
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that is, the place where the deformation can be measured has less damage. Region U
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Second, the region in which amplitude increased more than 6 dB than pre-
disaster data is indicated as yellow on map. Wreckages and totally collapsed build-
ings will appear here.

Third, the region which coherence dropped more than 0.3 than pre-disaster
dataset is regarded as inundated and indicated as red on map. Moderately or
severely damaged facilities will be shown in this color. Totally collapsed buildings
will be also classified here too.

Fourth, the region in which coherence is higher than 0.6 is regarded as not
affected and indicated as green. Showing “safe zone” is demanded for the authori-
ties to decide from where they start their operations.

If the region fulfills both 3 and 4, they do indicate none of them. Some large
buildings have higher than 0.9 of coherence in pre-disaster pair, and their coher-
ence may keep higher than 0.6 in co-disaster pair. In such a case, it is difficult to
distinguish whether the buildings are damaged or not.

Measurement results for the deformation by DInSAR are presented in the dif-
ferent layer.

4. Examples

In this section, we applied the classification scheme to two examples. First is
Ishinomaki port, Japan, which was severely affected by the 2011 off the Pacific coast
of Tohoku earthquake. The port was observed by ALOS that was operated by JAXA
until 2011. The second example is Kumamoto port, Japan, which was slightly
affected by 2016 Kumamoto earthquake and observed by the latest ALOS-2. Note
that the scheme can be applied to the other disasters such as typhoon and is
evaluated in [20].

In Kumamoto port case, we measured the lateral flow with DInSAR. As the area
is enough small, we assumed that all phase components consist of topography and
deformation and ignored other phase components in the interferogram, such as the
ionospheric [41–43] and tropospheric [44, 45] delays.

4.1 Ishinomaki port, Japan in 2011 off the Pacific coast of Tohoku earthquake

Ishinomaki port, Miyagi prefecture, Japan, was severely affected by the 2011 off
the Pacific coast of Tohoku earthquake on March 11, 2011. A large tsunami hits the
port, and almost all facilities were collapsed, damaged, or flushed out. The affected
area was observed by ALOS several times. Here, we use the data set of Path 402,
Frame 760. The observation dates are April 1, 2011, August 14, 2010, and May 14,
2010. The first two are used for co-event pair, and the latter two are for pre-event
pair. Thanks to the L-band SAR’s long lasting coherence, 8 months interval pair can
be used effectively for the analysis. ALOS has approximately 10 m by 5 m resolution
and therefore hardly investigate an identical building in general. However, the
harbor facilities in this port were enough large to be distinguished. On the other
hand, the deformation itself was too large to be measured by DInSAR. Therefore,
we present a delineation map only.

Figure 5 presents the damage assessment results for the Ishinomaki port. As
shown in the figure, most part of the coast line of the city was colored in red; the
buildings are detected as moderately or severely damaged. In the left side of the
figure, there is a large inundated area which is colored in blue. From Figure 5, it is
also clear that some buildings on the hills in the north part of the city survived from
the earthquake and tsunami.
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Figure 6 shows the closed-up images with optical data of white rectangles,
which are marked as X and Y in Figure 5. Figure 6(a) is a closed-up image for the
piers and its comparison in optical images in Region X. Most facilities are
demolished, while some of them are remaining. The pier in right hand side has both
inundated and wreckage-covered area.

Figure 6(b) is a closed-up image and its optical comparison for the Region Y in
Figure 5. This part is a breakwater of the port. Soon after the disaster, it is some-
times difficult to approach the offshore facilities. On the other hand, satellite-based
SAR can observe them. In this case, tsunami hits the breakwater and some of them
are sunk under the water. Wreckages are also found surrounding them. Most
damaged buildings were found by interferometric coherence analysis. This is prob-
ably caused by the orientation, size, and structure of the buildings.

4.2 Kumamoto port, Japan in 2016 Kumamoto earthquake

Kumamoto port, Kumamoto prefecture, Japan, was hit by the earthquake on
April 15, 2016. ALOS-2 had observed the port half a day before the earthquake and
observed there again in the next revisit cycle (14-days) on April 29, 2016. There is
another observation record from the same orbit on November 14, 2014, and there-
fore, we can perform the interferometric coherence analysis. The path and frame
number of the observation are Path 28 and Frame 2930, respectively.

Figure 5.
Damage assessment results for Ishinomaki port, Japan, in 2011 off the Pacific coast of Tohoku earthquake.
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Figure 7 shows an example of the interferometric phase and the position of the
port. Each fringe of the interferometric phase represents 12 cm deformation.
Fortunately, the port is enough far from the epicenter. Its overall deformation was
small enough to continue the operation. Figure 8 presents the delineation map
and the analytical results for coherence analysis and DInSAR measurement.
Figure 8(a) shows the delineation map. Fortunately, most part of the pier
received no damage. Therefore, we could only detect the difference of the

Figure 6.
Close up images for Figure 5: (a) Region X and (b) Region Y.
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berthing ships between April 15 and 29. There were almost no damaged
facilities, and therefore, it is hardly visible to see nongreen part. In Figure 8(b),
we show the coherence drop data, red color in Figure 8(a). Now, it is visible that
the right hand side of the pier has several damaged facilities. According to the
rapid report from the port [46], some roads and facilities received several
damages.

In this case, temporal baseline of γpre is almost 17 months. In such a long interval,
a SAR, which uses higher frequency (e. g., X- or C-band), cannot achieve enough
coherence to compare with γco. These results indicate that L-band SAR may observe
the earth from additional incidence angle once in a several years in order to prepare
for the disaster. If we have multiple archives from multiple incidence angles, the
operator can mauve the satellite to observe the affected area as soon as possible and
compare the observation results with the archives. Such operation will greatly help
the corresponding authorities because they need not to wait for the next “sched-
uled” observation.

Kumamoto port had been under construction to landfill. A lateral flow
occurred in the north part of the pier. Figure 8(c) shows the measurement results
of the DInSAR. The unwrapped result shows more than 20 cm of line-of-sight
displacement. As ALOS-2 observed the port from west of the port, west half of the
port moved toward the satellite and the east half moved away from the satellite.
On the other hand, the existing parts show only small deformations. For example,
the quay wall showed 5–10 cm subsidence by DInSAR measurement. On the
other hand, the actual measurement in [46] was 7 cm. Therefore, the error in this
case was 3 cm, which is larger than the ideal case in [20] (1 cm). This is caused by,
for example, filtering errors, unwrapping errors, or the randomness in the subsi-
dence. In summary, DInSAR could measure the subsidence of the quay wall with
several centimeter of error. The measured deformation can be used in the recovery
phase of the disaster. As single DInSAR pair can measure the line-of-sight displace-
ment, three dimensional measurements require more than three observations.
Especially for the satellite SAR, it is difficult to measure north-south deformation by
interferometric analysis because it usually flights polar orbit and can only observe
from east or west. If the deformation is enough large to be detected by co-
registration, pixel-offset method can be applied.

Figure 7.
Interferogram in Kumamoto earthquake.
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Figure 8.
Damage assessment results for Kumamoto port, Japan, in 2016 Kumamoto earthquake. (a) Damage assessment
map, (b) coherence dropped part only, and (c) deformation map.
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5. Conclusion

In this chapter, a rapid damage assessment scheme which is based on SAR
interferometric analysis was introduced. With a combination of amplitude analysis,
it is able to show an easy-understanding and enough-accurate delineation map.
Furthermore, interferometric analysis can provide centimeter-order deformation
map. In the example case of Kumamoto earthquake, ALOS-2 detected 5–10 cm
subsidence in the quay wall, which was 7 cm in real measurement. These results are
highly appreciated by the disaster corresponding authorities. In this chapter, a basic
theory is shown. Its accuracy can be easily improved by, for example, machine
learning and data-fusions with the other observations.
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Chapter 4

Utilization of Deep Convolutional
Neural Networks for Remote
Sensing Scenes Classification
Chang Luo, Hanqiao Huang, Yong Wang and Shiqiang Wang

Abstract

Deep convolutional neural networks (CNNs) have been widely used to obtain
high-level representation in various computer vision tasks. However, for the task of
remote scene classification, there are no sufficient images to train a very deep CNN
from scratch. Instead, transferring successful pre-trained deep CNNs to remote
sensing tasks provides an effective solution. Firstly, from the viewpoint of general-
ization power, we try to find whether deep CNNs need to be deep when applied for
remote scene classification. Then, the pre-trained deep CNNs with fixed parameters
are transferred for remote scene classification, which solve the problem of time-
consuming and parameters over-fitting at the same time. With five well-known
pre-trained deep CNNs, experimental results on three independent remote sensing
datasets demonstrate that transferred deep CNNs can achieve state-of-the-art
results in unsupervised setting. This chapter also provides baseline for applying
deep CNNs to other remote sensing tasks.

Keywords: convolutional neural network, remote sensing, scene classification,
deep learning, generalization power

1. Introduction

Remote sensing image processing achieves great advances in recent years, from
low-level tasks, such as segmentation, to high-level ones, such as classification.
[1–7] However, the task becomes incrementally more difficult as the level of
abstraction increases, going from pixels, to objects, and then scenes. Classifying
remote scenes according to a set of semantic categories is a very challenging prob-
lem, because of high intra-class variability and low interclass distance. [5–9] There-
fore, the more representative and higher-level representations are desirable and will
certainly play a dominant role in scene-level tasks. The deep convolutional neural
network (CNN), which is acknowledged as the most successful and widely used
deep learning model, attempts to learn high-level features corresponding to high
level of abstraction [10]. Its recent impressive results for classification and detec-
tion tasks bring dramatic improvements beyond the state-of-the-art records on a
number of benchmarks [11–14]. In theory, considering the subtle differences
among categories in remote scene classification, we may attempt to form high-level
representations for remote scenes from CNN activations. However, the acquisition
of large-scale well-annotated remote sensing datasets is costly, and it is easy to
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over-fit when we try to train a high-powered deep CNN with small datasets in
practice [15]. In other words, with limited remote sensing dataset, deep CNNs work
perfectly on the training data but do not generalize well to test data, resulting in
poor performance eventually.

ImageNet1 is a large-scale dataset, which offers a very comprehensive database
of more than 1.2 million categorized natural images of 1000+ classes [16]. Deep
CNN models trained upon this dataset serve as the backbone for many segmenta-
tion, detection, and classification tasks on other datasets. Moreover, some very
recent works have demonstrated that the representations learned from deep CNNs
pre-trained on large datasets such as ImageNet can be transferable to image classi-
fication task [17]. Some works also start to apply them to remote sensing field and
obtain state-of-the-art results for some specific datasets [15, 18, 19]. However, the
generalization power of features learned from deep CNNs fades evidently when the
features of remote sensing images become different with that of natural images in
the ImageNet dataset [15, 18]. Therefore, to solve the problem discussed above, the
generalization power of deep CNNs plays the key role. We find that the generaliza-
tion power of a deep CNN is relative to its depth. A deeper architecture trained by
large-scale dataset may lead to a more general hypothesis for remote scenes. To our
surprise, features learned from deeper layers are more general than that learned
from shallower layers in a deep CNN when we transfer them for remote scene
classification. This overturns the traditional view that features in shallow layers of a
deep CNN are composed of basic visual patterns (e.g., salient edges and borders)
and they are more general for test data. Inspired by this, we evaluate the generali-
zation power of transferred deep CNN for remote scenes in different conditions and
explore the proper way to apply deep CNNs to remote scene classification with
limited remote sensing data.

We conduct extensive experiments with transferred deep CNN and evaluate the
generalization power of it on different remote sensing datasets that vary in space
information. The results show that the depth of CNNs contributes to the generali-
zation power of them. Features from deeper layers are more general for test data
and brings better performance in remote scene classification. Then, we conduct
extensive experiments with different pre-trained deep CNNs such as CaffeNet [13],
GoogLeNet [20], and ResNet [21]. This chapter hardly contains any deep or new
techniques, and our study so far is mainly empirical. However, a thorough report on
generalization power of deep CNNs for remote scene classification has tremendous
value for applying deep CNNs to remote sensing images. A satisfied answer to this
question would not only help to make features of remote scenes more interpretable
in deep CNNs, but it might also lead to more principled and reliable deep architec-
ture design. Our main contributions are summarized as follows:

1.We thoroughly investigate how transferred deep CNNs work for remote scene
classification with limited remote sensing data and how the generalization
power of them affect their performance.

2. This chapter challenges the classical view of features learned in deep CNNs by
showing that high-level features learned in deeper layers are more general than
basic features (e.g., salient edges and borders) learned in shallower layers.
Features learned in shallow layers of deep CNNs are not general enough for
remote scenes. This leads us to believe that depth of CNNs enhances the

1 http://www.image-net.org/challenges/LSVRC/
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generalization power of the learned features and it is essential for remote scene
classification.

3. Based on various pre-trained deep CNNs, we evaluate our proposed method on
different remote sensing datasets that vary in space and spectrum. The results
show that our proposed method can learn better features for remote scenes.
With “unsupervised settings,” our proposed method achieves state-of-the-art
performance on some public remote scene datasets.

The rest of the chapter is organized as follows. Section 2 presents successful
pre-trained deep CNNs nowadays and the way to transfer them for remote scene
classification. Section 3 analyzes the generalization power of features in different
layers of transferred deep CNN. Experiments are presented in Section 4, and we
conclude the chapter in Section 5.

2. Transferred deep CNNs for remote scene classification

Convolutional neural networks are generally presented as systems of
interconnected processing units which can compute values from inputs leading to
an output that may be used on further units. The typical architecture of a deep CNN
is composed of multiple cascaded layers with various types.

Among the different types of layers, the convolutional one is the responsible for
capturing the features from the images. The first layers usually obtain low-level
features (like edges, lines, and corners), while the others get high-level features (like
structures, objects, and shapes). The process made in this type of layer can be
decomposed into two phases: (i) the convolution step, where a fixed-size window runs
over the image, with some stride, defining a region of interest and (ii) the processing
step that uses the pixels inside each window as input for the neurons that, finally,
perform the feature extraction from the region. The continuous form and discrete
form of convolutional operation can be expressed as Eqs. (1) and (2), respectively:

h x; yð Þ ¼ i∗k x; yð Þ ¼
ð∞
�∞

ð∞
�∞

i u; vð Þk x� u; y� vð Þdudv (1)

H x; yð Þ ¼ I∗K x; yð Þ ¼ ∑m∑nI m; nð ÞK x�m; y� nð Þ (2)

As to the input map, the convolutional operation can be further illustrated by
Figure 1:

Conventionally, a nonlinear function is provided after the convolutional opera-
tion, which is usually called activation function. There are a lot of alternatives for
activation function, such as sigmoid function 1

1þe�x and tanh function ex�e�x

exþe�x. The
most popular activation function nowadays is called rectified linear unit (ReLU).
ReLU has several advantages when compared to others: (i) works better to avoid
saturation during the learning process, (ii) induces the sparsity in the hidden units,
and (iii) does not face gradient vanishing problem as with sigmoid and tanh func-
tion. The mathematic form of the ReLU can be shown as follows:

a ¼ z, if z>0
0, otherwise

⇔ a ¼ f zð Þ ¼ max 0; zð Þ
�

(3)

Typically, after obtaining the convolved feature activations, we would next like
to aggregate statistics of these features at various locations, and this aggregation
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ture design. Our main contributions are summarized as follows:
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different remote sensing datasets that vary in space and spectrum. The results
show that our proposed method can learn better features for remote scenes.
With “unsupervised settings,” our proposed method achieves state-of-the-art
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The rest of the chapter is organized as follows. Section 2 presents successful
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classification. Section 3 analyzes the generalization power of features in different
layers of transferred deep CNN. Experiments are presented in Section 4, and we
conclude the chapter in Section 5.
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interconnected processing units which can compute values from inputs leading to
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Among the different types of layers, the convolutional one is the responsible for
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structures, objects, and shapes). The process made in this type of layer can be
decomposed into two phases: (i) the convolution step, where a fixed-size window runs
over the image, with some stride, defining a region of interest and (ii) the processing
step that uses the pixels inside each window as input for the neurons that, finally,
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form of convolutional operation can be expressed as Eqs. (1) and (2), respectively:

h x; yð Þ ¼ i∗k x; yð Þ ¼
ð∞
�∞

ð∞
�∞

i u; vð Þk x� u; y� vð Þdudv (1)

H x; yð Þ ¼ I∗K x; yð Þ ¼ ∑m∑nI m; nð ÞK x�m; y� nð Þ (2)

As to the input map, the convolutional operation can be further illustrated by
Figure 1:
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tion, which is usually called activation function. There are a lot of alternatives for
activation function, such as sigmoid function 1

1þe�x and tanh function ex�e�x
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most popular activation function nowadays is called rectified linear unit (ReLU).
ReLU has several advantages when compared to others: (i) works better to avoid
saturation during the learning process, (ii) induces the sparsity in the hidden units,
and (iii) does not face gradient vanishing problem as with sigmoid and tanh func-
tion. The mathematic form of the ReLU can be shown as follows:

a ¼ z, if z>0
0, otherwise

⇔ a ¼ f zð Þ ¼ max 0; zð Þ
�

(3)

Typically, after obtaining the convolved feature activations, we would next like
to aggregate statistics of these features at various locations, and this aggregation
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operation is called pooling operation. Pooling operation within the pooling region
translates convolved feature activations into pooled features, which are much lower
in dimension and can improve classification results (i.e., less over-fitting). Pooling
regions are usually contiguous areas in the convolved feature maps, and the pooled
features are usually generated from the same filter. Then these pooled features
would be “translation invariant.” Although several novel pooling approaches have
been proposed, max pooling and average pooling are still the most commonly used
approaches as shown in Figure 2.

After several convolutional and pooling layers, there are the fully connected
ones, which take all neurons in the previous layer and connect them to every single
neuron in its layer. Since a fully connected layer occupies most of the parameters,
over-fitting can easily happen. To prevent this, the dropout method was employed
as shown in Figure 3. This technique randomly drops several neuron outputs, which
do not contribute to the forward pass and backpropagation anymore. This neuron
drops are equivalent to decreasing the number of neurons of the network,

Figure 1.
Convolutional operation.

Figure 2.
Pooling operation.
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improving the speed of training, and making model combination practical, even for
deep networks.

Finally, after all the convolution, pooling, and fully connected layers, a classifier
layer may be used to calculate the class probability of each instance.

Based on the typical architecture of deep CNN, AlexNet [11], CaffeNet [13],
VGG-VD [14], MSRA-Net [22], NIN [23], GoogLeNet [20], Inception V3 [24],
Inception V4 [25], and ResNet [21] all proved to be effective in detection or classi-
fication tasks and achieve state-of-the-art performance.

In summary, we demonstrate the evolution of deep CNNs’ structure in Figure 4:
However, these successful deep CNNs discussed above do not achieve good

performance as we expected, when we directly apply them for remote scene classi-
fication. An effective solution, recently explored in [15, 18, 20], is to transfer deep
features trained on ImageNet dataset to remote sensing images. Deep CNNs pre-
trained by ImageNet dataset can be treated as fixed feature extractors. In a
feedforward way, they extract global feature representation of the remote sensing
images. With the global representation, a simple classifier can implement remote
scene classification. Taking a step further, fine-tuning strategy is usually used for
deeper layers of transferred deep CNNs to further improve the performance of
them for remote scene classification. Typically, the first few layers are frozen,
because low-level features can better fit remote scenes, and deeper layers are
allowed to keep learning by training them with remote sensing images. Taking
AlexNet, for example, we show the fine-tuning strategy in Figure 5.

Figure 3.
Dropout method. (a) No dropout and (b) dropout.

Figure 4.
Evolution of the structure of deep CNNs.
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Although the strategy of fine-tuning deeper layers of transferred deep CNNs
with remote sensing images achieves near-perfect performance in remote scene
classification [18], we challenge the theory basis of this strategy by showing that not
all low-level features in shallow layers are general enough for remote scenes; some
of them even shows very poor generalization power in transferring process. We
find that the depth of transferred CNNs enhances the generalization power of them
and guarantees a general hypothesis for remote scene classification. The detailed
results are discussed in Section 3. This find in transferred deep CNNs gives an
answer to the very recent discussion about whether generalization power of deep
CNNs comes from sheer memorization or available hypothesis.

3. Generalization power of features in different layers of transferred
deep CNN

As mentioned in Section 2, when transferring deep CNNs pre-trained by
ImageNet for remote scene classification, we typically assume that features
(e.g., salient edges and borders) in the shallow layers are generic, while features in
the deep layers are more specific to the dataset used for pre-training and thus need
to be fine-tuned by the target dataset. Therefore, the traditional strategy of trans-
ferring pre-trained deep CNNs for remote scene classification is to freeze the shal-
low layers and fine-tune the last deep layers. However, this assumption drives us to
the question that how the “depth” of transferred deep CNNs affect the features of
remote scenes in the transferring process. To answer this question, we take
CaffeNet pre-trained by ImageNet, for example, and thoroughly analyze features of
remote scenes in different layers of it when we transfer it for remote scene classifi-
cation on UC Merced dataset2.

Firstly, we take a close look into features of remote sensing image in the first
convolutional layer of the pre-trained CaffeNet. In Figure 6, we visualize the
convolutional filters of the first convolutional layer. These convolutional filters are
learned by pre-training the CaffeNet with ImageNet dataset. We can see that the
former filters are learned for extracting edges in different directions and the later
filters are learned for extracting different colors. For example, the first, fifth, and
ninth filters are mainly used to extract features in the right lower oblique direction,

Figure 5.
Strategy of fine-tuning deeper layers of AlexNet.

2 http://vision.ucmerced.edu/datasets/landuse.html
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while the second, sixth, and eighth filters are mainly used to extract features in the
left lower oblique direction. Based on the architecture of pre-trained CaffeNet, we
can obtain 96 feature maps in the first convolutional layer by applying these
convolutional filters to remote sensing image. In Figure 6(a), we find that the first,
fifth, and ninth feature maps contain features of the input image in the right lower
oblique direction, while the second, sixth, and eighth feature maps contain features
of the input image in the left lower oblique direction. However, in Figure 6(b), we
cannot see obvious features in these two directions in the corresponding feature
maps. The input images in Figure 6(a) and (b) belong to the same remote scene
class. However, features of them extracted by filters in the first convolutional layer
of pre-trained CaffeNet are very different from each other. Compared with daily
optical images in ImageNet dataset, remote sensing images are much more sophis-
ticated. Some convolutional filters in shallow layers of pre-trained CaffeNet may be
effective for some remote sensing image while affecting little about some other
remote sensing images. Not all features in shallow layers of pre-trained CaffeNet are
general for remote sensing images.

Furthermore, we try to visualize features of the input remote sensing image
learned in deeper layers of the pre-trained CaffeNet. However, as we can see in
Figure 7, feature maps of the remote sensing image become increasingly fuzzy from
the second convolutional layer. With the increase of depth, representations of
remote scene become more and more abstract. In order to reveal how the depth of
pre-trained CaffeNet affects the generalization power of features in it, we intui-
tively reflect the distribution of features learned from the two input remote sensing
images in Figure 8 by using the t-SNE algorithm. [26, 27] In Figure 8, we use the
t-SNE algorithm to visualize feature maps in different convolutional layers by
giving each datapoint a location in a 2-D map.

Figure 8 shows the separability of features learned in different convolutional
layers of pre-trained CaffeNet when we apply it on two different remote sensing

Figure 6.
Feature maps of (a) one remote sensing image and (b) another one within the same remote scene class extracted
by convolutional filters in the first layer of pre-trained CaffeNet.
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images that belong to the same remote scene class. In Figure 8(a), the 2-D features
of the two input images are separated to each other obviously in the first
convolutional layer. Notably, from Figure 8(a)–(e), the deeper the layer, the more
overlap between features of the two remote sensing images we can observe. There-
fore, in contrast to common belief that features in shallow layer are more generic,
they are susceptible to changes in input remote sensing images. Indeed, filters of the
first convolutional layer are similar to HOG, SURF, or SIFT (edge detectors, color
detectors, texture, etc.). They give representative information for different input
images. However, this information also conveys the specific characteristics of the
dataset used to pre-train the CaffeNet. As a result, features extracted in shallow
layers of pre-trained CaffeNet may be not general enough for remote scene classi-
fication in the transferring process. On the other hand, it seems that the depth of
pre-trained CaffeNet enhances the generalization power of features in it. Regardless
of the specific meaning of edges or colors, high-level features in deeper layer
represent the sematic meaning of the input remote sensing image. Based on this
analysis of features in pre-trained CaffeNet, we believe that depth of pre-trained
CNNs brings general hypothesis for remote scene classification. It plays an impor-
tant role when we apply pre-trained CNNs to the task of remote scene classification.

4. Experiments

The main objective of this chapter is to evaluate different deep CNNs trans-
ferred for remote scene classification. Therefore, we organize the experiments for
transferred deep CNNs with various deep CNN architectures and various remote
sensing datasets. We try to explore the answer for the problem where the general-
ization power comes from in deep CNNs and find the proper way to apply deep

Figure 7.
Feature maps of the remote sensing image in different layers of pre-trained CaffeNet.

Figure 8
2-D visualization of feature maps in (a) the first convolutional layer, (b) the second convolutional layer,
(c) the third convolutional layer, (d) the fourth convolutional layer, and (e) the fifth convolutional layer of
pre-trained CaffeNet. The t-SNE algorithm proposed in [26, 27] is used to visualize the high-dimensional
representations.
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CNNs for remote scene classification. All the developed codes rely on the
MatConvNet3 framework which provides a complete deep learning toolkit for
training and testing models. In addition, it should be noted that all the experiments
are performed on HP z820 with two Intel (R) Xeon (R) CPUs with 2.60 GHz of
clock and 32GB of RAM memory. NVIDIA Quadro K2000 series is used as graphic
processing units.

4.1 Experimental setup

In this section, we carry out a number of experiments based on different archi-
tectures of deep CNNs. To evaluate the effectiveness of pre-trained deep CNNs
transferred for remote scene classification, we conduct experiments on three
remote sensing datasets. These three datasets are different in spatial and spectral
information. We compare the performance of pre-trained deep CNNs with the
state-of-the-art results in these three datasets. We must note that except learning
the classifier, all the experiments are unsupervised.

The three publicly available datasets used in our experiments are as follows:
UC merced land use dataset. This dataset is composed of 2100 overhead scene

images divided into 21 land use scene classes. Each class consists of 100 aerial
images measuring 256 � 256 pixels, with a spatial resolution of 0.3 m per pixel in
the red-green-blue color space. The example images for each class are shown in
Figure 9. This dataset was extracted from aerial orthoimagery downloaded from the
United States Geological Survey (USGS) National Map of the following US regions:
Birmingham, Boston, Buffalo, Columbus, Dallas, Harrisburg, Houston, Jacksonville,
Las Vegas, Los Angeles, Miami, Napa, New York, Reno, San Diego, Santa Barbara,
Seattle, Tampa, Tucson, and Ventura. So far, this dataset is the most popular and
has been widely used for the task of remote scene classification and retrieval. [28]

WHU-RS dataset4. Collected from Google Earth, this dataset is composed of 950
aerial scene images with 600 � 600 pixels, which are uniformly distributed in 19

Figure 9.
One example image for each class of the UC Merced land use dataset. (a) Agricultural; (b) airplane;
(c) baseball diamond; (d) beach; (e) buildings; (f) chaparral; (g) dense residential; (h) forest; (i) freeway;
(j) golf course; (k) harbor; (l) intersection; (m) medium residential; (n) mobile home park; (o) overpass;
(p) parking lot; (q) river; (r) runway; (s) sparse residential; (t) storage tanks; (u) tennis court.

3 http://www.vlfeat.org/matconvnet/
4 http://www.tsi.enst.fr/�xia/satellite_image_project.html.
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scene classes, 50 for each class. With spatial resolution up to 0.5 m and spectral
bands of red, green, and blue, the example images for each class are shown in
Figure 10. This dataset is challenging due to the high variations in resolution, scale,
orientation, and illuminations of the images.

Brazilian coffee scenes dataset5. This dataset consists of only two scene classes
(coffee class and non-coffee class), and each class has 1438 image tiles with a size
of 64 � 64 pixels cropped from SPOT satellite images over four counties in the State
of Minas Gerais, Brazil: Arceburgo, Guaranesia, Guaxupe, and Monte Santo. This
dataset considered the green, red, and near-infrared bands because they are the
most useful and representative ones for distinguishing vegetation areas. Figure 11
shows three example images for each of the coffee and non-coffee classes in false
colors.

In the experiments, we divide all the datasets in fivefolds. For UC Merced
dataset, WHU-RS dataset, and Brazilian coffee scenes dataset, each of the five folds
contains 420 images, 190 images, and 600 images, respectively. Then, the classifi-
cation accuracy and standard deviation are calculated with fivefold cross-
validation. Five well-known pre-trained deep CNNs (AlexNet [11], CaffeNet [13],
VGG-VD16 [14], GoogLeNet [20], and ResNet [21]) descripted in Section 2 are
used to test the effectiveness of pre-trained deep CNNs in the experiments. As we
analyzed before, all the experiments are in unsupervised framework except learning
the classifier.

4.2 Experiment results of remote scene classification

We evaluate transferred deep CNNs for the task of remote scene classification
based on the five well-known deep CNN architectures (AlexNet, CaffeNet,
VGG-VD16, GoogLeNet, and ResNet) pre-trained by ImageNet. For the strategy
of transferring deep CNNs for remote scene classification, we use the five pre-
trained deep CNNs to extract high-level features from input images. These input
images are resized to 227� 227 for pre-trained AlexNet and CaffeNet and 224 � 224
for pre-trained VGG-VD16, GoogLeNet, and ResNet by down-sampling or up-
sampling operation. Linear SVM is used as classifier.

Figure 10.
One example image for each class of the WHU-RS dataset. (a) Airport; (b) beach; (c) bridge; (d) commercial;
(e) desert; (f) farmland; (g) football field; (h) forest; (i) industrial; (j) meadow; (k) mountain; (l) park;
(m) parking lot; (n) pond; (o) port; (p) railway; (q) residential; (r) river; (s) viaduct.

5 www.patreo.dcc.ufmg.br/downloads/brazilian-coffee-dataset/
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With various pre-trained deep CNN models and remote sensing datasets, the
remote scene classification performances are shown in Table 1. In Table 1, Ac and
SD denote accuracy and standard deviation, respectively.

In the experiment, pre-trained deep CNNs are directly used as feature extractors
in an unsupervised manner. By removing the last fully connected layer, the rest
parts of pre-trained deep CNNs extract high-dimensional feature vectors of remote
sensing images. These feature vectors are considered as final image representation
followed by a linear SVM classifier. From Table 1, we can see that all transferred
deep CNNs generated from AlexNet, CaffeNet, VGG-VD16, and GoogLeNet
achieve state-of-the-art performance. Pre-trained deep CNNs show strong general-
ization power in the transferring process. In addition to our surprise, the most
successful deep CNNs to date, ResNets fail to obtain a good experiment result, no
matter their layers are 50, 101, or 152. In ResNets, shortcut connections bring less
parameters and make the network much easier to optimize. At the same time, the
direct connection between input and output brings poor generalization ability when
we transfer them for other tasks. On the other hand, as shown in Figure 11, the
spatial information of remote sensing images in the Brazilian coffee scene dataset is
very simple. However, these remote sensing images are not optical (green-red-
infrared). In Table 1, the relatively poor performance on this dataset comes from
the difference in spectral information when we are transferring pre-trained deep
CNNs for remote scene classification.

In order to test the performance of transferred deep CNNs for each remote scene
class, in Figure 12, we draw the confusion matric of the experiment results on UC
Merced dataset based on pre-trained CaffeNet.

In Figure 12, the experiment results in perfect or near-perfect accuracy for most
of the scene categories. The relatively lower classification accuracy lies in the
categories of building, dense residential, medium residential, and tennis court.

Figure 11.
Example images of the Brazilian coffee scene dataset in false colors. (a)–(c) coffee class; (d)–(f) non-coffee
class.

Pre-trained deep CNN UC merced WHU-RS Brazilian coffee scenes

Ac (%) SD Ac (%) SD Ac (%) SD

AlexNet 94.51 0.94 94.57 0.61 85.14 1.26

CaffeNet 94.12 1.05 94.67 0.75 84.97 1.54

VGG-VD16 94.43 0.68 94.76 0.72 84.12 0.97

GoogLeNet 94.57 0.98 94.68 1.01 84.06 1.16

ResNet-50 74.14 5.89 75.12 5.36 60.54 7.22

ResNet-101 72.36 5.96 72.85 5.09 59.39 6.68

ResNet-152 72.48 4.35 72.81 4.42 59.62 6.81

Table 1
Remote scene classification results of the five well-known pre-trained deep CNNs on three different remote
sensing datasets.
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scene classes, 50 for each class. With spatial resolution up to 0.5 m and spectral
bands of red, green, and blue, the example images for each class are shown in
Figure 10. This dataset is challenging due to the high variations in resolution, scale,
orientation, and illuminations of the images.

Brazilian coffee scenes dataset5. This dataset consists of only two scene classes
(coffee class and non-coffee class), and each class has 1438 image tiles with a size
of 64 � 64 pixels cropped from SPOT satellite images over four counties in the State
of Minas Gerais, Brazil: Arceburgo, Guaranesia, Guaxupe, and Monte Santo. This
dataset considered the green, red, and near-infrared bands because they are the
most useful and representative ones for distinguishing vegetation areas. Figure 11
shows three example images for each of the coffee and non-coffee classes in false
colors.

In the experiments, we divide all the datasets in fivefolds. For UC Merced
dataset, WHU-RS dataset, and Brazilian coffee scenes dataset, each of the five folds
contains 420 images, 190 images, and 600 images, respectively. Then, the classifi-
cation accuracy and standard deviation are calculated with fivefold cross-
validation. Five well-known pre-trained deep CNNs (AlexNet [11], CaffeNet [13],
VGG-VD16 [14], GoogLeNet [20], and ResNet [21]) descripted in Section 2 are
used to test the effectiveness of pre-trained deep CNNs in the experiments. As we
analyzed before, all the experiments are in unsupervised framework except learning
the classifier.

4.2 Experiment results of remote scene classification

We evaluate transferred deep CNNs for the task of remote scene classification
based on the five well-known deep CNN architectures (AlexNet, CaffeNet,
VGG-VD16, GoogLeNet, and ResNet) pre-trained by ImageNet. For the strategy
of transferring deep CNNs for remote scene classification, we use the five pre-
trained deep CNNs to extract high-level features from input images. These input
images are resized to 227� 227 for pre-trained AlexNet and CaffeNet and 224 � 224
for pre-trained VGG-VD16, GoogLeNet, and ResNet by down-sampling or up-
sampling operation. Linear SVM is used as classifier.

Figure 10.
One example image for each class of the WHU-RS dataset. (a) Airport; (b) beach; (c) bridge; (d) commercial;
(e) desert; (f) farmland; (g) football field; (h) forest; (i) industrial; (j) meadow; (k) mountain; (l) park;
(m) parking lot; (n) pond; (o) port; (p) railway; (q) residential; (r) river; (s) viaduct.

5 www.patreo.dcc.ufmg.br/downloads/brazilian-coffee-dataset/
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With various pre-trained deep CNN models and remote sensing datasets, the
remote scene classification performances are shown in Table 1. In Table 1, Ac and
SD denote accuracy and standard deviation, respectively.

In the experiment, pre-trained deep CNNs are directly used as feature extractors
in an unsupervised manner. By removing the last fully connected layer, the rest
parts of pre-trained deep CNNs extract high-dimensional feature vectors of remote
sensing images. These feature vectors are considered as final image representation
followed by a linear SVM classifier. From Table 1, we can see that all transferred
deep CNNs generated from AlexNet, CaffeNet, VGG-VD16, and GoogLeNet
achieve state-of-the-art performance. Pre-trained deep CNNs show strong general-
ization power in the transferring process. In addition to our surprise, the most
successful deep CNNs to date, ResNets fail to obtain a good experiment result, no
matter their layers are 50, 101, or 152. In ResNets, shortcut connections bring less
parameters and make the network much easier to optimize. At the same time, the
direct connection between input and output brings poor generalization ability when
we transfer them for other tasks. On the other hand, as shown in Figure 11, the
spatial information of remote sensing images in the Brazilian coffee scene dataset is
very simple. However, these remote sensing images are not optical (green-red-
infrared). In Table 1, the relatively poor performance on this dataset comes from
the difference in spectral information when we are transferring pre-trained deep
CNNs for remote scene classification.

In order to test the performance of transferred deep CNNs for each remote scene
class, in Figure 12, we draw the confusion matric of the experiment results on UC
Merced dataset based on pre-trained CaffeNet.

In Figure 12, the experiment results in perfect or near-perfect accuracy for most
of the scene categories. The relatively lower classification accuracy lies in the
categories of building, dense residential, medium residential, and tennis court.

Figure 11.
Example images of the Brazilian coffee scene dataset in false colors. (a)–(c) coffee class; (d)–(f) non-coffee
class.

Pre-trained deep CNN UC merced WHU-RS Brazilian coffee scenes

Ac (%) SD Ac (%) SD Ac (%) SD

AlexNet 94.51 0.94 94.57 0.61 85.14 1.26

CaffeNet 94.12 1.05 94.67 0.75 84.97 1.54

VGG-VD16 94.43 0.68 94.76 0.72 84.12 0.97

GoogLeNet 94.57 0.98 94.68 1.01 84.06 1.16

ResNet-50 74.14 5.89 75.12 5.36 60.54 7.22

ResNet-101 72.36 5.96 72.85 5.09 59.39 6.68

ResNet-152 72.48 4.35 72.81 4.42 59.62 6.81

Table 1
Remote scene classification results of the five well-known pre-trained deep CNNs on three different remote
sensing datasets.
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However, all these classes have some very “close” neighbors. Taking dense residen-
tial as example, it suffers the presence of very close classes, like buildings and
medium residential, which we cannot even distinguish by eyes. Taking pre-trained
CaffeNet, for example, Figure 13 shows the detail changes of an optical remote
sensing image.

Abbreviated as “conv” and “fc,” reconstructions of convolutional feature maps
in the former network layers and that of fully connected layers are shown in
Figure 13. Figure 13 shows that the representations of convolutional layers are still
photographically similar with the remote sensing image to some extent, although
they become fuzzier and fuzzier from “conv1” to “conv5.” In addition, the fully
connected layers rearrange the information from lower layers to generate represen-
tations that are more abstract. They compose of parts (e.g., the wings of airplanes)
similar but not identical to the ones found in the original image.

In Table 2, we compare our best result achieved via transferred deep CNNs with
various state-of-the-art methods on the UC Merced dataset. With a straightforward
and simple framework, transferred deep CNN achieves outstanding performance
on this dataset. We must note that our proposed method just provides basic

Figure 12.
Confusion matrices of classification accuracies on UC Merced dataset based on pre-trained CaffeNet.

Figure 13.
Reconstruction of deep CNN activations from different layers of transferred CaffeNet. The method presented in
[29] is used for visualization.
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framework to directly transfer pre-trained deep CNNs for remote scene classifica-
tion in an unsupervised manner. The effectiveness of fine-tuning approach is much
dependent on the amount of images in remote sensing dataset, and the computation
time of it is more demanding compared with our proposed strategy [15].

5. Discussion

To solve the problem that deep CNNs tend to over-fit when trained with limited
remote sensing dataset, generalization power of deep CNNs plays the key role. In
this chapter, we try to transfer deep CNNs pre-trained by daily images for remote
scene classification and provide an insight for the generalization power of features
in the transferred deep CNNs. From the extensive experiments above, the deep
architecture of CNNs, which extracts semantic features of remote scenes, has been
proven to be critical for remote scene classification. Specifically, several practical
observations from the experiments and some limitations of our study are summa-
rized as follows:

From Table 1, we can see that with our proposed method the classification
accuracies of UC Merced dataset and WHU-RS dataset can both achieve state-of-
the-art results which are near 95%. In addition, small standard deviation of

Method Reference Accuracy (%)

SCK [28] 72.52

SPCK++ [30] 77.38

BRSP [31] 77.80

UFL [5] 81.67

CCM-BOVW [32] 86.64

mCENTRIST [33] 89.90

MSIFT [34] 90.97

COPD [35] 91.33

Dirichlet [36] 92.80

VLAT [10] 94.30

MCMI-based [37] 88.20

PSR [38] 89.10

UFL-SC [39] 90.26

Partlets [40] 91.33

Sparselets [41] 91.46

FBC [42] 85.53

LPCNN [43] 89.90

MTJSLRC [44] 91.07

SSBFC [45] 91.67

CTS [46] 93.08

Transferred GoogLeNet — 94.57

Table 2
Classification accuracy (%) of reference and transferred deep CNN on the UC Merced dataset.
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framework to directly transfer pre-trained deep CNNs for remote scene classifica-
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dependent on the amount of images in remote sensing dataset, and the computation
time of it is more demanding compared with our proposed strategy [15].
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classification accuracy suggests that our proposed method is stable when applied for
remote scene classification. To our surprise, the most successful deep CNNs to date,
ResNets, fail to obtain good experiment result when we transfer it for remote scene
classification, no matter their layers are 50, 101, or 152. Shortcut connections in
ResNets bring poor generalization ability when we transfer them to remote scenes.
[21] This phenomenon indicates that not all successful deep CNNs are suitable for
transferring to the task of remote scene classification.

Different from the traditional view that all basic features (e.g., salient edges and
borders) in shallow layers of a deep CNN are more general than that learned in deep
layers, we find some features in shallow layer of deep CNNs show poor generaliza-
tion power when we transfer them for remote scene classification. High-level fea-
tures learned in deeper layers of transferred deep CNNs are more general than these
basic features.

In the remote sensing field, the scale of remote sensing datasets will be larger
and larger. On the other hand, the structure of deep CNN will be optimized, and the
parameters in it will be less and less. [47] Therefore, we could get more and more
useful information from remote sensing datasets, which provide a priori knowledge
for pre-trained deep CNNs and result in better generalization power.

Based on our study, the future research directions of applying deep CNNs for
remote scene classification may be as follows. Firstly, as we discussed above, when
transferring the most successful ResNet for remote scene classification, it does not
work as we expected. What is the proper architecture of deep CNN that is suitable
to transfer to remote scenes? Secondly, instead of directly transferring pre-trained
deep CNNs for remote scene classification, could we replace some basic features
that show poor generalization power in shallow layers of transferred deep CNN?
Finally, with more and more remote sensing information coming into our sight,
how can we use these a priori knowledge when we apply deep CNNs for remote
scene classification?

6. Conclusion

In this chapter, we have presented a framework to investigate the effectiveness
of transferred deep CNNs for remote scene classification. We test transferred deep
CNNs for different remote sensing datasets and take a close look into the generali-
zation power of features in them.

The two main conclusions of this work are that (1) without shortcut connections
in the deep architecture as ResNet dose, most CNNs transferred from well-known
pre-trained deep CNNs achieve state-of-the-art performance in remote scene clas-
sification. (2)We further confirm the conclusion in the background of remote scene
classification that the generalization power derived from deep architectures brings
general hypothesis. Compared with basic features (e.g., salient edges and borders),
features in deeper layers are more general for remote scenes. Experiments on three
remote sensing datasets with different image resolutions have provided insightful
information. Transferred deep CNN improves the classification accuracy of remote
scenes on UC Merced dataset with a gain up to 1.49% compared with other
methods. High-level feathers in deeper layers of transferred deep CNNs are more
general for remote scene classification and result in satisfied performance in
unsupervised setting.

We believe our work in this chapter provides a thorough analysis about the
generalization power of transferred deep CNNs for remote scene classification. It
can serve as a good baseline for people to apply deep CNNs to other remote sensing
datasets.

80

Advanced Remote Sensing Technology for Synthetic Aperture Radar Applications,Tsunami…

Acknowledgements

This work was supported by the National Natural Science Foundation of China
under Grant No. 61601499 and No. 61601505. All the funds above can cover the
costs to publish in open access.

Conflict of interest

The authors declare no conflict of interest. The founding sponsors had no role in
the design of the study; in the collection, analyses, or interpretation of data; in the
writing of the manuscript, and in the decision to publish the results.

Author details

Chang Luo1*†, Hanqiao Huang2†, Yong Wang1 and Shiqiang Wang3

1 Troops of 78092, Cheng Du, China

2 Unmanned System Research Institute, Northwestern Polytechnical University,
Xi’an, China

3 Air and Missile Defense College, Air Force Engineering University, Xi’an, China

*Address all correspondence to: luochang1988@126.com

† These authors contributed equally to this work and should be considered co-first
authors.

© 2018 TheAuthor(s). Licensee IntechOpen. This chapter is distributed under the terms
of theCreativeCommonsAttribution License (http://creativecommons.org/licenses/
by/3.0),which permits unrestricted use, distribution, and reproduction in anymedium,
provided the original work is properly cited.

81

Utilization of Deep Convolutional Neural Networks for Remote Sensing Scenes Classification
DOI: http://dx.doi.org/10.5772/intechopen.81982



classification accuracy suggests that our proposed method is stable when applied for
remote scene classification. To our surprise, the most successful deep CNNs to date,
ResNets, fail to obtain good experiment result when we transfer it for remote scene
classification, no matter their layers are 50, 101, or 152. Shortcut connections in
ResNets bring poor generalization ability when we transfer them to remote scenes.
[21] This phenomenon indicates that not all successful deep CNNs are suitable for
transferring to the task of remote scene classification.

Different from the traditional view that all basic features (e.g., salient edges and
borders) in shallow layers of a deep CNN are more general than that learned in deep
layers, we find some features in shallow layer of deep CNNs show poor generaliza-
tion power when we transfer them for remote scene classification. High-level fea-
tures learned in deeper layers of transferred deep CNNs are more general than these
basic features.

In the remote sensing field, the scale of remote sensing datasets will be larger
and larger. On the other hand, the structure of deep CNN will be optimized, and the
parameters in it will be less and less. [47] Therefore, we could get more and more
useful information from remote sensing datasets, which provide a priori knowledge
for pre-trained deep CNNs and result in better generalization power.

Based on our study, the future research directions of applying deep CNNs for
remote scene classification may be as follows. Firstly, as we discussed above, when
transferring the most successful ResNet for remote scene classification, it does not
work as we expected. What is the proper architecture of deep CNN that is suitable
to transfer to remote scenes? Secondly, instead of directly transferring pre-trained
deep CNNs for remote scene classification, could we replace some basic features
that show poor generalization power in shallow layers of transferred deep CNN?
Finally, with more and more remote sensing information coming into our sight,
how can we use these a priori knowledge when we apply deep CNNs for remote
scene classification?

6. Conclusion

In this chapter, we have presented a framework to investigate the effectiveness
of transferred deep CNNs for remote scene classification. We test transferred deep
CNNs for different remote sensing datasets and take a close look into the generali-
zation power of features in them.

The two main conclusions of this work are that (1) without shortcut connections
in the deep architecture as ResNet dose, most CNNs transferred from well-known
pre-trained deep CNNs achieve state-of-the-art performance in remote scene clas-
sification. (2)We further confirm the conclusion in the background of remote scene
classification that the generalization power derived from deep architectures brings
general hypothesis. Compared with basic features (e.g., salient edges and borders),
features in deeper layers are more general for remote scenes. Experiments on three
remote sensing datasets with different image resolutions have provided insightful
information. Transferred deep CNN improves the classification accuracy of remote
scenes on UC Merced dataset with a gain up to 1.49% compared with other
methods. High-level feathers in deeper layers of transferred deep CNNs are more
general for remote scene classification and result in satisfied performance in
unsupervised setting.

We believe our work in this chapter provides a thorough analysis about the
generalization power of transferred deep CNNs for remote scene classification. It
can serve as a good baseline for people to apply deep CNNs to other remote sensing
datasets.

80

Advanced Remote Sensing Technology for Synthetic Aperture Radar Applications,Tsunami…

Acknowledgements

This work was supported by the National Natural Science Foundation of China
under Grant No. 61601499 and No. 61601505. All the funds above can cover the
costs to publish in open access.

Conflict of interest

The authors declare no conflict of interest. The founding sponsors had no role in
the design of the study; in the collection, analyses, or interpretation of data; in the
writing of the manuscript, and in the decision to publish the results.

Author details

Chang Luo1*†, Hanqiao Huang2†, Yong Wang1 and Shiqiang Wang3

1 Troops of 78092, Cheng Du, China

2 Unmanned System Research Institute, Northwestern Polytechnical University,
Xi’an, China

3 Air and Missile Defense College, Air Force Engineering University, Xi’an, China

*Address all correspondence to: luochang1988@126.com

† These authors contributed equally to this work and should be considered co-first
authors.

© 2018 TheAuthor(s). Licensee IntechOpen. This chapter is distributed under the terms
of theCreativeCommonsAttribution License (http://creativecommons.org/licenses/
by/3.0),which permits unrestricted use, distribution, and reproduction in anymedium,
provided the original work is properly cited.

81

Utilization of Deep Convolutional Neural Networks for Remote Sensing Scenes Classification
DOI: http://dx.doi.org/10.5772/intechopen.81982



References

[1] Wang J, Qin Q, Li Z, et al. Deep
hierarchical representation and
segmentation of high resolution remote
sensing images. In: 2015 IEEE
International Geoscience and Remote
Sensing Symposium (IGARSS). IEEE;
2015. pp. 4320-4323

[2] NijimM,Chennuboyina RD,Al AW.A
supervised learning datamining approach
for object recognition and classification in
high resolution satellite data. International
Journal of Computer, Electrical,
Automation, Control and Information
Engineering. 2015;9(12):2319-2323

[3] Vakalopoulou M, Karantzalos K,
Komodakis N, et al. Building detection
in very high resolution multispectral
data with deep learning features. In:
2015 IEEE International Geoscience and
Remote Sensing Symposium (IGARSS).
IEEE; 2015. pp. 1873-1876

[4] Zhou W, Shao Z, Diao C, et al. High-
resolution remote-sensing imagery
retrieval using sparse features by auto-
encoder. Remote Sensing Letters. 2015;
6(10):775-783

[5] Cheriyadat AM. Unsupervised
feature learning for aerial scene
classification. IEEE Transactions on
Geoscience and Remote Sensing. 2014;
52(1):439-451

[6] Xu Y, Huang B. Spatial and temporal
classification of synthetic satellite
imagery: Land cover mapping and
accuracy validation. Geo-spatial
Information Science. 2014;17(1):1-7

[7] Yang W, Yin X, Xia GS. Learning
high-level features for satellite image
classification with limited labeled
samples. IEEE Transactions on
Geoscience and Remote Sensing. 2015;
53(8):4472-4482

[8] Shao W, Yang W, Xia GS. Extreme
value theory-based calibration for the

fusion of multiple features in high-
resolution satellite scene classification.
International Journal of Remote Sensing.
2013;34(23):8588-8602

[9] Romero A, Gatta C, Camps-Valls G.
Unsupervised deep feature extraction
for remote sensing image classification.
IEEE Transactions on Geoscience and
Remote Sensing. 2016;54(3):1349-1362

[10] Negrel R, Picard D, Gosselin PH.
Evaluation of second-order visual
features for land-use classification. In:
2014 12th International Workshop on
Content-Based Multimedia Indexing
(CBMI). IEEE; 2014. pp. 1-5

[11] Krizhevsky A, Sutskever I, Hinton
GE. Imagenet classification with deep
convolutional neural networks. In:
Advances in Neural Information
Processing Systems. 2012. pp. 1097-1105

[12] Sermanet P, Eigen D, Zhang X, et al.
Overfeat: Integrated recognition,
localization and detection using
convolutional networks. arXiv preprint
arXiv:1312.6229; 2013

[13] Jia Y, Shelhamer E, Donahue J, et al.
Caffe: Convolutional architecture for
fast feature embedding. In: Proceedings
of the 22nd ACM International
Conference on Multimedia. ACM; 2014.
pp. 675-678

[14] Simonyan K, Zisserman A. Very
deep convolutional networks for large-
scale image recognition. arXiv preprint
arXiv:1409.1556; 2014

[15] Castelluccio M, Poggi G, Sansone C,
et al. Land use classification in remote
sensing images by convolutional neural
networks. arXiv preprint arXiv:
1508.00092; 2015

[16] Deng J, Dong W, Socher R, et al.
Imagenet: A large-scale hierarchical

82

Advanced Remote Sensing Technology for Synthetic Aperture Radar Applications,Tsunami…

image database. In: Computer Vision
and Pattern Recognition, 2009. CVPR
2009. IEEE; 2009. pp. 248-255

[17] Nanni L, Ghidoni S. How could a
subcellular image, or a painting by van
Gogh, be similar to a great white shark
or to a pizza? Pattern Recognition
Letters. 2017;85:1-7

[18] Penatti OAB, Nogueira K, dos
Santos JA. Do deep features generalize
from everyday objects to remote sensing
and aerial scenes domains? In:
Proceedings of the IEEE Conference on
Computer Vision and Pattern
Recognition Workshops. 2015. pp. 44-51

[19] Hu F, Xia G-S, Hu J, et al.
Transferring deep convolutional neural
networks for the scene classification of
high-resolution remote sensing imagery.
Remote Sensing. 2015;7:14680-14707

[20] Szegedy C, LiuW, Jia Y, et al. Going
deeper with convolutions. In:
Proceedings of the IEEE Conference on
Computer Vision and Pattern
Recognition. 2015. pp. 1-9

[21] He K, Zhang X, Ren S, et al. Deep
residual learning for image recognition.
arXiv preprint arXiv:1512.03385; 2015

[22] He K, Sun J. Convolutional neural
networks at constrained time cost. In:
Proceedings of the IEEE Conference on
Computer Vision and Pattern
Recognition. 2015. pp. 5353-5360

[23] Lin M, Chen Q, Yan S. Network in
network. arXiv preprint arXiv:
1312.4400; 2013

[24] Szegedy C, Vanhoucke V, Ioffe S,
et al. Rethinking the inception
architecture for computer vision. arXiv
preprint arXiv:1512.00567; 2015

[25] Szegedy C, Ioffe S, Vanhoucke V.
Inception-v4, inception-resnet and the
impact of residual connections on

learning. arXiv preprint arXiv:
1602.07261; 2016

[26] Maaten L, Hinton G. Visualizing
data using t-SNE. Journal of Machine
Learning Research. 2008;9(Nov):
2579-2605

[27] Van Der Maaten L. Accelerating t-
SNE using tree-based algorithms.
Journal of Machine Learning Research.
2014;15(1):3221-3245

[28] Yang Y, Newsam S. Bag-of-visual-
words and spatial extensions for land-
use classification. In: Proceedings of the
18th SIGSPATIAL International
Conference on Advances in Geographic
Information Systems. ACM; 2010.
pp. 270-279

[29] Mahendran A, Vedaldi A.
Understanding deep image
representations by inverting them. In:
2015 IEEE Conference on Computer
Vision and Pattern Recognition (CVPR).
IEEE; 2015. pp. 5188-5196

[30] Yang Y, Newsam S. Spatial pyramid
co-occurrence for image classification.
In: 2011 International Conference on
Computer Vision. IEEE; 2011.
pp. 1465-1472

[31] Jiang Y, Yuan J, Yu G. Randomized
spatial partition for scene recognition.
In: Computer Vision–ECCV 2012.
Berlin, Heidelberg: Springer; 2012.
pp. 730-743

[32] Zhao LJ, Tang P, Huo LZ. Land-use
scene classification using a concentric
circle-structured multiscale bag-
of-visual-words model. Journal of
Selected Topics in Applied Earth
Observations and Remote Sensing.
2014;7(12):4620-4631

[33] Xiao Y, Wu J, Yuan J. mCENTRIST:
A multi-channel feature generation
mechanism for scene categorization.
IEEE Transactions on Image Processing.
2014;23(2):823-836

83

Utilization of Deep Convolutional Neural Networks for Remote Sensing Scenes Classification
DOI: http://dx.doi.org/10.5772/intechopen.81982



References

[1] Wang J, Qin Q, Li Z, et al. Deep
hierarchical representation and
segmentation of high resolution remote
sensing images. In: 2015 IEEE
International Geoscience and Remote
Sensing Symposium (IGARSS). IEEE;
2015. pp. 4320-4323

[2] NijimM,Chennuboyina RD,Al AW.A
supervised learning datamining approach
for object recognition and classification in
high resolution satellite data. International
Journal of Computer, Electrical,
Automation, Control and Information
Engineering. 2015;9(12):2319-2323

[3] Vakalopoulou M, Karantzalos K,
Komodakis N, et al. Building detection
in very high resolution multispectral
data with deep learning features. In:
2015 IEEE International Geoscience and
Remote Sensing Symposium (IGARSS).
IEEE; 2015. pp. 1873-1876

[4] Zhou W, Shao Z, Diao C, et al. High-
resolution remote-sensing imagery
retrieval using sparse features by auto-
encoder. Remote Sensing Letters. 2015;
6(10):775-783

[5] Cheriyadat AM. Unsupervised
feature learning for aerial scene
classification. IEEE Transactions on
Geoscience and Remote Sensing. 2014;
52(1):439-451

[6] Xu Y, Huang B. Spatial and temporal
classification of synthetic satellite
imagery: Land cover mapping and
accuracy validation. Geo-spatial
Information Science. 2014;17(1):1-7

[7] Yang W, Yin X, Xia GS. Learning
high-level features for satellite image
classification with limited labeled
samples. IEEE Transactions on
Geoscience and Remote Sensing. 2015;
53(8):4472-4482

[8] Shao W, Yang W, Xia GS. Extreme
value theory-based calibration for the

fusion of multiple features in high-
resolution satellite scene classification.
International Journal of Remote Sensing.
2013;34(23):8588-8602

[9] Romero A, Gatta C, Camps-Valls G.
Unsupervised deep feature extraction
for remote sensing image classification.
IEEE Transactions on Geoscience and
Remote Sensing. 2016;54(3):1349-1362

[10] Negrel R, Picard D, Gosselin PH.
Evaluation of second-order visual
features for land-use classification. In:
2014 12th International Workshop on
Content-Based Multimedia Indexing
(CBMI). IEEE; 2014. pp. 1-5

[11] Krizhevsky A, Sutskever I, Hinton
GE. Imagenet classification with deep
convolutional neural networks. In:
Advances in Neural Information
Processing Systems. 2012. pp. 1097-1105

[12] Sermanet P, Eigen D, Zhang X, et al.
Overfeat: Integrated recognition,
localization and detection using
convolutional networks. arXiv preprint
arXiv:1312.6229; 2013

[13] Jia Y, Shelhamer E, Donahue J, et al.
Caffe: Convolutional architecture for
fast feature embedding. In: Proceedings
of the 22nd ACM International
Conference on Multimedia. ACM; 2014.
pp. 675-678

[14] Simonyan K, Zisserman A. Very
deep convolutional networks for large-
scale image recognition. arXiv preprint
arXiv:1409.1556; 2014

[15] Castelluccio M, Poggi G, Sansone C,
et al. Land use classification in remote
sensing images by convolutional neural
networks. arXiv preprint arXiv:
1508.00092; 2015

[16] Deng J, Dong W, Socher R, et al.
Imagenet: A large-scale hierarchical

82

Advanced Remote Sensing Technology for Synthetic Aperture Radar Applications,Tsunami…

image database. In: Computer Vision
and Pattern Recognition, 2009. CVPR
2009. IEEE; 2009. pp. 248-255

[17] Nanni L, Ghidoni S. How could a
subcellular image, or a painting by van
Gogh, be similar to a great white shark
or to a pizza? Pattern Recognition
Letters. 2017;85:1-7

[18] Penatti OAB, Nogueira K, dos
Santos JA. Do deep features generalize
from everyday objects to remote sensing
and aerial scenes domains? In:
Proceedings of the IEEE Conference on
Computer Vision and Pattern
Recognition Workshops. 2015. pp. 44-51

[19] Hu F, Xia G-S, Hu J, et al.
Transferring deep convolutional neural
networks for the scene classification of
high-resolution remote sensing imagery.
Remote Sensing. 2015;7:14680-14707

[20] Szegedy C, LiuW, Jia Y, et al. Going
deeper with convolutions. In:
Proceedings of the IEEE Conference on
Computer Vision and Pattern
Recognition. 2015. pp. 1-9

[21] He K, Zhang X, Ren S, et al. Deep
residual learning for image recognition.
arXiv preprint arXiv:1512.03385; 2015

[22] He K, Sun J. Convolutional neural
networks at constrained time cost. In:
Proceedings of the IEEE Conference on
Computer Vision and Pattern
Recognition. 2015. pp. 5353-5360

[23] Lin M, Chen Q, Yan S. Network in
network. arXiv preprint arXiv:
1312.4400; 2013

[24] Szegedy C, Vanhoucke V, Ioffe S,
et al. Rethinking the inception
architecture for computer vision. arXiv
preprint arXiv:1512.00567; 2015

[25] Szegedy C, Ioffe S, Vanhoucke V.
Inception-v4, inception-resnet and the
impact of residual connections on

learning. arXiv preprint arXiv:
1602.07261; 2016

[26] Maaten L, Hinton G. Visualizing
data using t-SNE. Journal of Machine
Learning Research. 2008;9(Nov):
2579-2605

[27] Van Der Maaten L. Accelerating t-
SNE using tree-based algorithms.
Journal of Machine Learning Research.
2014;15(1):3221-3245

[28] Yang Y, Newsam S. Bag-of-visual-
words and spatial extensions for land-
use classification. In: Proceedings of the
18th SIGSPATIAL International
Conference on Advances in Geographic
Information Systems. ACM; 2010.
pp. 270-279

[29] Mahendran A, Vedaldi A.
Understanding deep image
representations by inverting them. In:
2015 IEEE Conference on Computer
Vision and Pattern Recognition (CVPR).
IEEE; 2015. pp. 5188-5196

[30] Yang Y, Newsam S. Spatial pyramid
co-occurrence for image classification.
In: 2011 International Conference on
Computer Vision. IEEE; 2011.
pp. 1465-1472

[31] Jiang Y, Yuan J, Yu G. Randomized
spatial partition for scene recognition.
In: Computer Vision–ECCV 2012.
Berlin, Heidelberg: Springer; 2012.
pp. 730-743

[32] Zhao LJ, Tang P, Huo LZ. Land-use
scene classification using a concentric
circle-structured multiscale bag-
of-visual-words model. Journal of
Selected Topics in Applied Earth
Observations and Remote Sensing.
2014;7(12):4620-4631

[33] Xiao Y, Wu J, Yuan J. mCENTRIST:
A multi-channel feature generation
mechanism for scene categorization.
IEEE Transactions on Image Processing.
2014;23(2):823-836

83

Utilization of Deep Convolutional Neural Networks for Remote Sensing Scenes Classification
DOI: http://dx.doi.org/10.5772/intechopen.81982



[34] Avramović A, Risojević V. Block-
based semantic classification of high-
resolution multispectral aerial images.
Signal, Image and Video Processing.
2016;10(1):75-84

[35] Cheng G, Han J, Zhou P, et al. Multi-
class geospatial object detection and
geographic image classification based on
collection of part detectors. ISPRS
Journal of Photogrammetry and Remote
Sensing. 2014;98:119-132

[36] Kobayashi T. Dirichlet-based
histogram feature transform for image
classification. In: Proceedings of the
IEEE Conference on Computer Vision
and Pattern Recognition. 2014.
pp. 3278-3285

[37] Ren J, Jiang X, Yuan J. Learning LBP
structure by maximizing the conditional
mutual information. Pattern
Recognition. 2015;48(10):3180-3190

[38] Chen S, Tian YL. Pyramid of spatial
relations for scene-level land use
classification. IEEE Transactions on
Geoscience and Remote Sensing. 2015;
53(4):1947-1957

[39] Hu F, Xia GS, Wang Z, et al.
Unsupervised feature learning via
spectral clustering of multidimensional
patches for remotely sensed scene
classification. Journal of Selected Topics
in Applied Earth Observations and
Remote Sensing. IEEE; 2015;8(5):13

[40] Cheng G, Han J, Guo L, et al.
Effective and efficient midlevel visual
elements-oriented land-use
classification using VHR remote sensing
images. IEEE Transactions on
Geoscience and Remote Sensing. 2015;
53(8):4238-4249

[41] Cheng G, Han J, Guo L, et al.
Learning coarse-to-fine sparselets for
efficient object detection and scene
classification. In: Proceedings of the
IEEE Conference on Computer Vision

and Pattern Recognition. 2015.
pp. 1173-1181

[42] Hu F, Xia GS, Hu J, et al. Fast binary
coding for the scene classification of
high-resolution remote sensing imagery.
Remote Sensing. 2016;8(7):555

[43] Zhong Y, Fei F, Zhang L. Large
patch convolutional neural networks for
the scene classification of high spatial
resolution imagery. Journal of Applied
Remote Sensing. 2016;10(2):
025006-025006

[44] Kunlun Qi, Wenxuan Liu, Chao
Yang, et al. High resolution satellite
image classification using multi-task
joint sparse and low-rank
representation. Preprints, 7 November
2016, doi:10.20944/preprints201611.
0036.v1, (www.preprints.org)

[45] Zhao B, Zhong Y, Zhang L. A
spectral–structural bag-of-features
scene classifier for very high spatial
resolution remote sensing imagery.
ISPRS Journal of Photogrammetry and
Remote Sensing. 2016;116:73-85

[46] Yu H, Yang W, Xia GS, et al. A
color-texture-structure descriptor for
high-resolution satellite image
classification. Remote Sensing. 2016;
8(3):259

[47] LeCun Y, Bengio Y, Hinton G. Deep
learning. Nature. 2015;521:436-444

84

Advanced Remote Sensing Technology for Synthetic Aperture Radar Applications,Tsunami…

85

Chapter 5

Sub-Pixel Technique for Time 
Series Analysis of Shoreline 
Changes Based on Multispectral 
Satellite Imagery
Qingxiang Liu and John C. Trinder

Abstract

The measurement and monitoring of shoreline changes are of great interest to 
coastal managers and engineers. Shoreline change information can be crucial for 
the assessment of coastal disasters, design of coastal infrastructure and protection 
of coastal environment. This chapter presents shoreline change monitoring based 
on multispectral satellite imagery and sub-pixel technique. Firstly, a brief intro-
duction of shoreline definitions and indicators is given. Sub-pixel techniques for 
shoreline mapping on multispectral satellite images are then introduced. Following 
that, a brief review of existing research studies of long-term shoreline change 
monitoring based on multispectral imagery is given. Subsequently, a case study of 
sub-pixel shoreline change monitoring at the northern Gold Coast on the east coast 
of Australia is presented. By comparing the longshore averaged beach widths at 
seven representative transects from Landsat with those from Argus imaging data, 
the RMSEs range from 9.1 to 12.3 m and the correlations are all no less than 0.7. 
Annual means and variabilities of beach widths were estimated without significant 
differences from the reference data for most of the results. Finally, conclusions and 
recommendations for future work are given.

Keywords: shoreline mapping, change monitoring, satellite imagery, multispectral, 
super-resolution mapping (SRM)

1. Introduction

1.1 Shoreline definitions and indicators

A ‘Shoreline’ is ideally defined as the interface between the land and water [1]. 
However, because of its temporally and spatially dynamic nature, the definition of 
shoreline should be considered in a temporal sense [2]. The shoreline is dynamic as 
unconsolidated sediments along the beach adjust constantly to changes of envi-
ronmental forces. Sediments are deposited offshore during energetic conditions, 
resulting in an erosion trend of the shoreline; during calm conditions, sediments are 
returned back to the subaerial area, leading to an accretion of the shoreline [3]. The 
erosion-recovery circles may occur over several days, or as long as several decades 
during extreme wave conditions. In addition to shoreline changes resulting from 
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1. Introduction

1.1 Shoreline definitions and indicators

A ‘Shoreline’ is ideally defined as the interface between the land and water [1]. 
However, because of its temporally and spatially dynamic nature, the definition of 
shoreline should be considered in a temporal sense [2]. The shoreline is dynamic as 
unconsolidated sediments along the beach adjust constantly to changes of envi-
ronmental forces. Sediments are deposited offshore during energetic conditions, 
resulting in an erosion trend of the shoreline; during calm conditions, sediments are 
returned back to the subaerial area, leading to an accretion of the shoreline [3]. The 
erosion-recovery circles may occur over several days, or as long as several decades 
during extreme wave conditions. In addition to shoreline changes resulting from 
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cross-shore sediment exchanges, along sediment exchanges can also occur, leading 
to relative movements between updrift and downdrift ends of the beach, which is 
commonly referred to as “beach rotation” [3].

For practical purposes, coastal investigators have adopted various indicators 
to approximate the real shoreline positions. A comprehensive literature review 
of shoreline definitions with extensive references is given in [2]. Three groups 
of shoreline indicators exist. The first group of shoreline indicators are based on 
visually interpreted features. A visually interpreted shoreline is a coastal feature 
that can be physically seen, which can change without any onshore or offshore 
movement of sand because it is affected by tide, wave and weather conditions 
[4]. Despite the definitions, some visually interpreted shoreline indicators may 
sometimes not be observable. For example, the high water line (HWL), which 
was defined as the mark left by maximum run-up from the previous high tide, 
may appear as a transitional zone instead of a clear line, or may not be visible 
at all [5]. Also, as the sand gradually dries out after previous waves, a discern-
ible wet/dry boundary may not be available. In addition, some of the indicators 
are ambiguous, subjective or even inconsistent between different studies [2]. 
Therefore, visually interpreted shorelines may require experience and skills from 
the interpreters.

The second group of shoreline indicators are tidal datum-based, which are 
determined by the intersection of the beach profile with specific vertical tidal eleva-
tions. Generally, they are temporally and spatially more stable and are less respon-
sive to wave condition changes than visually interpreted shorelines [4, 6, 7]. Tidal 
datum-based shorelines are easy to understand and less likely to be ambiguous, but 
their extraction requires beach profile data, i.e. 3D survey data.

The third group of shoreline indicators reported by [2] depend purely on image 
processing techniques and are not necessarily visually discernible. As digital image 
processing is more and more widely used, especially when an automatically instead 
of manually extracted shoreline is required, this group of shoreline indicators are 
not uncommon nowadays, e.g. [8–10].

The decision as to which group of shoreline indicators to use largely depends on 
data availability. Taking 2D satellite imagery as an example, the lack of elevation 
information prohibits the extraction of tidal datum-based shorelines. Also, the 
spatial resolution of the images significantly affects the feasibility of extracting 
visually discernible shorelines. Since the stabilities of these shoreline indicators are 
different, the decision should also take account of the investigated temporal scales, 
i.e. whether short-term or long-term shoreline change is of interest. In addition, a 
single shoreline indicator should be consistently used as possible when comparing 
shoreline changes over time.

1.2 Sub-pixel techniques for shoreline mapping

While shorelines are primarily linear features, the extraction using only edge 
detection methods can be a difficult task, because of the lack of sufficient and 
consistent contrast between water body and land. Besides, shorelines should be 
continuous and normally unique, which increases the requirements of extracting 
edges. In this case, shoreline mapping can be converted to the task of boundary 
extraction between water and land regions on a labelled map, which is produced 
through a classification step.

For images with medium to low spatial resolutions, pixels are most likely to be 
mixed. In other words, many pixels contain multiple land covers and the actual 
boundaries between classes generally run through the content of mixed pixels. 
Consequently, a traditional pixel-based classification which forces each pixel to 
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be assigned to a single class label may mis-locate the boundaries between classes. 
This mis-location will be more significant as the pixel size increases. In this case, 
image processing at a sub-pixel level is preferred. Sub-pixel mapping techniques, 
which is also referred to as super-resolution mapping (SRM), was defined as the 
process of spatially designating class proportions to concrete pure sub-pixels [11]. 
SRM aims to produce a classification map at a finer scale than the original image, 
under the basic assumption of spatial dependence between pixels [12]. According 
to [11], there are generally two steps for SRM as shown in Figure 1. The first step 
is calculating the proportion of each class inside a pixel, which is also called soft 
classification. The second step is spatially assigning land cover classes to pure sub-
pixels according to their proportions in the pixel, after which a classification map 
at a finer scale is generated. Readers are referred to [11] for more details of SRM. 

Figure 1. 
SRM principle (adapted from [11, 15]).
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SRM has been demonstrated in some research works (e.g. [11–14]) to be suitable 
for image classification at sub-pixel level.

Ref. [16] compared the performance of three SRM methods, i.e. contouring of 
soft classification [17], wavelet based interpolation and geo-statistical two-point 
histogram methods [18], for the extraction of sub-pixel shorelines from a degraded 
IKONOS satellite image. They used the shoreline extracted from the original 
IKONOS image as reference and demonstrated that all three SRM methods outper-
formed pixel-based classification and that the geostatistical two-point histogram 
method gave the best result over the study site. Ref. [19] tested two SRM methods 
also on a degraded IKONOS image, using both local and global training statistics. In 
Ref. [20] Normalised Difference Water Index (NDWI) was calculated to distinguish 
water and land, which was defined as

  NDWI =    B  Green   −  B  NIR   _________  B  Green   +  B  NIR      (1)

where   B  Green    and   B  NIR    represent green and NIR bands of Landsat Enhanced 
Thematic Mapper Plus (ETM+) images respectively. Lake shorelines were then 
extracted at sub-pixel level based on sub-pixel edge localisation and smoothing. 
Using QuickBird panchromatic images as reference data, the authors demonstrated 
that the extracted shorelines gave a better estimation of lake areas and perimeters 
than pixel-based results. Ref. [9] developed a method to automatically extract 
sub-pixel shorelines using the near-infrared (NIR) band of Landsat images. They 
compared 45 sub-pixel shorelines with manually edited shorelines from aerial 
photos, demonstrating that the error of sub-pixel shoreline locations over their 
study site is less than 6 m. All of these above mentioned studies indicate that SRM 
techniques can be effective for improving shoreline mapping accuracy on medium 
to low-resolution satellite images.

1.3  Long-term shoreline change monitoring using multispectral sa 
tellite images

Since most of the high-resolution satellites were launched no earlier than two 
decades ago, they are mostly not suitable for monitoring long-term (e.g. multi-
decadal) shoreline changes. Therefore, most of the studies in the literature used 
medium to low-resolution satellite data such as Landsat, ASTER and SPOT imagery 
as the main data source, e.g. [21–23].

The Landsat program dates back to 1972, producing multi-decadal archival data 
freely available to the public with a revisit time of 16 days since Landsat-4. Although a 
number of case studies on using Landsat data to monitor long-term shoreline changes 
exist, there are a limited number of existing long-term coastal monitoring programs 
producing ground-truth data with both high spatial and temporal resolutions [24, 25]. 
The availability of ground-truth data is likely to have limited the amount and temporal 
frequency of experimental data used in the literature. Most of the studies have used 
only a small percentage of available archival Landsat satellite images with yearly 
frequency or even longer time intervals, e.g. [26–28]. Only a few studies have used a 
frequency higher than yearly [9, 29] or even all the available Landsat data [30, 31] over 
the studied areas. However, the ground truth data used in these studies was either over 
a much shorter term [30] or much lower than monthly frequency [31]. Consequently, 
intra-annual variability over a long term may not be revealed and validated. Ref. [10] 
presented a case study of using full-frequency archival Landsat data for monitoring of 
shoreline changes during approximately three decades, where long-term and tempo-
rally dense ground surveying data is used as reference data.
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2.  Long-term shoreline change monitoring: a case study at the northern 
Gold Coast, Australia

2.1 Study site description

The Gold Coast is a coastal city located approximately 66 km southeast of 
Brisbane near the Queensland-New South Wales state border (Figure 2(b) and (c)). 
The Gold Coast comprises a 35 km-long east-facing shoreline of over a dozen of 
beaches, stretching from the Rainbow Bay at the southern end to South Stradbroke 
Island in the north. The study area is a part of the northern Gold Coast between 
Main Beach and Broadbeach (Figure 2(a)), extending 4.5 km alongshore.

The Gold Coast beaches are characterised as energetic, intermediate beaches with 
mean offshore significant wave height and peak wave period of 1.1 m and 9.4 s respec-
tively [32]. Beach sediments of the site have a mean grain size of 0.25 mm and a fall 
velocity of around 0.03 m/s. Tides in this area are micro-tidal and semidiurnal with a 
mean spring tidal range of approximately 1.8 m. Waves are predominantly from the 
southeast and show strong seasonal variations, with larger waves and more frequent 
storms during Australian summer to fall months (i.e. December to June) while milder 
waves occur during winter and spring months [32]. The nearshore morphology of 
the study site is characterised as a double sandbar system with a nearshore bed slope 
around 0.02 [33]. The net longshore drift is estimated to be 500,000 m3 per year 
northwards [32]. This study site is an open, straight sandy beach, which is a represen-
tative of moderate to high wave energy, wave-dominated (micro-tidal) beaches.

2.2 Northern Gold Coast Beach protection strategy

The Gold Coast is a major tourist destination that offers some of the most 
popular surfing beaches in Australia. However the tourist economy is at risk of 

Figure 2. 
(a) Study site: the northern Gold Coast (source: ArcMap basemap). (b) The location of Gold Coast with 
respect to Brisbane. The study area is marked as the small black rectangle. (c) The location of Gold Coast in the 
map of Australia.
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SRM has been demonstrated in some research works (e.g. [11–14]) to be suitable 
for image classification at sub-pixel level.

Ref. [16] compared the performance of three SRM methods, i.e. contouring of 
soft classification [17], wavelet based interpolation and geo-statistical two-point 
histogram methods [18], for the extraction of sub-pixel shorelines from a degraded 
IKONOS satellite image. They used the shoreline extracted from the original 
IKONOS image as reference and demonstrated that all three SRM methods outper-
formed pixel-based classification and that the geostatistical two-point histogram 
method gave the best result over the study site. Ref. [19] tested two SRM methods 
also on a degraded IKONOS image, using both local and global training statistics. In 
Ref. [20] Normalised Difference Water Index (NDWI) was calculated to distinguish 
water and land, which was defined as

  NDWI =    B  Green   −  B  NIR   _________  B  Green   +  B  NIR      (1)

where   B  Green    and   B  NIR    represent green and NIR bands of Landsat Enhanced 
Thematic Mapper Plus (ETM+) images respectively. Lake shorelines were then 
extracted at sub-pixel level based on sub-pixel edge localisation and smoothing. 
Using QuickBird panchromatic images as reference data, the authors demonstrated 
that the extracted shorelines gave a better estimation of lake areas and perimeters 
than pixel-based results. Ref. [9] developed a method to automatically extract 
sub-pixel shorelines using the near-infrared (NIR) band of Landsat images. They 
compared 45 sub-pixel shorelines with manually edited shorelines from aerial 
photos, demonstrating that the error of sub-pixel shoreline locations over their 
study site is less than 6 m. All of these above mentioned studies indicate that SRM 
techniques can be effective for improving shoreline mapping accuracy on medium 
to low-resolution satellite images.

1.3  Long-term shoreline change monitoring using multispectral sa 
tellite images

Since most of the high-resolution satellites were launched no earlier than two 
decades ago, they are mostly not suitable for monitoring long-term (e.g. multi-
decadal) shoreline changes. Therefore, most of the studies in the literature used 
medium to low-resolution satellite data such as Landsat, ASTER and SPOT imagery 
as the main data source, e.g. [21–23].

The Landsat program dates back to 1972, producing multi-decadal archival data 
freely available to the public with a revisit time of 16 days since Landsat-4. Although a 
number of case studies on using Landsat data to monitor long-term shoreline changes 
exist, there are a limited number of existing long-term coastal monitoring programs 
producing ground-truth data with both high spatial and temporal resolutions [24, 25]. 
The availability of ground-truth data is likely to have limited the amount and temporal 
frequency of experimental data used in the literature. Most of the studies have used 
only a small percentage of available archival Landsat satellite images with yearly 
frequency or even longer time intervals, e.g. [26–28]. Only a few studies have used a 
frequency higher than yearly [9, 29] or even all the available Landsat data [30, 31] over 
the studied areas. However, the ground truth data used in these studies was either over 
a much shorter term [30] or much lower than monthly frequency [31]. Consequently, 
intra-annual variability over a long term may not be revealed and validated. Ref. [10] 
presented a case study of using full-frequency archival Landsat data for monitoring of 
shoreline changes during approximately three decades, where long-term and tempo-
rally dense ground surveying data is used as reference data.
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2.  Long-term shoreline change monitoring: a case study at the northern 
Gold Coast, Australia

2.1 Study site description

The Gold Coast is a coastal city located approximately 66 km southeast of 
Brisbane near the Queensland-New South Wales state border (Figure 2(b) and (c)). 
The Gold Coast comprises a 35 km-long east-facing shoreline of over a dozen of 
beaches, stretching from the Rainbow Bay at the southern end to South Stradbroke 
Island in the north. The study area is a part of the northern Gold Coast between 
Main Beach and Broadbeach (Figure 2(a)), extending 4.5 km alongshore.

The Gold Coast beaches are characterised as energetic, intermediate beaches with 
mean offshore significant wave height and peak wave period of 1.1 m and 9.4 s respec-
tively [32]. Beach sediments of the site have a mean grain size of 0.25 mm and a fall 
velocity of around 0.03 m/s. Tides in this area are micro-tidal and semidiurnal with a 
mean spring tidal range of approximately 1.8 m. Waves are predominantly from the 
southeast and show strong seasonal variations, with larger waves and more frequent 
storms during Australian summer to fall months (i.e. December to June) while milder 
waves occur during winter and spring months [32]. The nearshore morphology of 
the study site is characterised as a double sandbar system with a nearshore bed slope 
around 0.02 [33]. The net longshore drift is estimated to be 500,000 m3 per year 
northwards [32]. This study site is an open, straight sandy beach, which is a represen-
tative of moderate to high wave energy, wave-dominated (micro-tidal) beaches.

2.2 Northern Gold Coast Beach protection strategy

The Gold Coast is a major tourist destination that offers some of the most 
popular surfing beaches in Australia. However the tourist economy is at risk of 

Figure 2. 
(a) Study site: the northern Gold Coast (source: ArcMap basemap). (b) The location of Gold Coast with 
respect to Brisbane. The study area is marked as the small black rectangle. (c) The location of Gold Coast in the 
map of Australia.
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significant losses due to beach erosion during major storm events. The Northern 
Gold Coast Beach Protection Strategy (NGCBPS) was a long-term, sustainable plan 
to maintain and enhance the beaches at the northern Gold Coast [34]. As a part 
of the NGCBPS, over 1.2 million cubic metres of sediment were deposited on the 
northern Gold Coast beaches and within the nearshore to increase beach amenity 
and widen the beaches as preparation for future storm events. The locations of the 
six sand nourishment deposition areas A1 to A6 are indicated in Figure 3(a).

The beach nourishment program was commenced in February 1999 and the 
major phase was completed in June 2000. The progress of the nourishment is 
shown in Figure 3(b), where the cumulative nourishment volumes at the six 
deposition areas are indicated using different grey scales. Note that A1a is an area 
approximately 300 m north of A1 and is not shown in Figure 3(a). In addition, a 
submerged artificial reef (marked as a blue circle in Figure 3(a)) was built within 
the nearshore at Narrowneck primarily to stabilise the beach nourishment and 
improve surfing quality, which was initiated approximately a half year later than the 
commencement of the beach nourishment (in August 1999). The main phase of the 
reef construction was completed in December 2000.

2.3 Data used

2.3.1 Reference shorelines

Funded by the City of Gold Coast, an Argus coastal monitoring system was 
installed in late July 1999 at the northern Gold Coast by the Water Research 
Laboratory (WRL), University of New South Wales to monitor shoreline changes. 
Four video cameras were installed approximately 100 m above the ground on the 

Figure 3. 
(a) Locations of sand nourishment deposition areas A1 to A6 (marked as squares). The locations of the focus 
building where the Argus cameras were installed and the artificial reef at Narrowneck are marked as orange 
and blue circles respectively. The locations of the seven regularly spaced cross-shore profile lines, i.e. from 
2000 m north (N 2000) to 1500 m south (S 1500) of the Argus station are also indicated. (b) Progress of sand 
nourishment (adapted from [35]) at all deposition areas. The black arrow indicates the time when the Argus 
coastal monitoring was initiated.
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Focus Building, which is located about 60 m landward of the dune line and 900 m 
to the south of Narrowneck (Figure 3(a)). The system became fully operational 
in August 1999, which coincided with the commencement of Narrowneck reef 
construction. The Argus monitoring project lasted from 1999 to 2008 and was 
recommenced in 2014.

Every daylight hour, the cameras collected a 10-minute time-averaged image, from 
which the natural variations of breaking waves were effectively averaged. To minimise 
the effects of tidal variations, only the time-averaged images acquired at mid-tide, 
which is approximately 0 m on the Australian Height Datum (AHD) were selected. 
Among the selected images, only those acquired when the root-mean-square wave 
heights were no more than 1 m were retained for future use. These images were recti-
fied and geo-referenced through a standardised image pre-processing procedure [35]. 
Shorelines were then extracted by WRL staff using the pixel intensity clustering (PIC) 
method [8, 36]. The shoreline positions were defined as the cross-shore locations 
of the mean sea level contours [37] and may not be visually discernible on the time-
averaged video images. Therefore, they are believed to belong to the third group of 
shoreline indicators and depend on the PIC method. It is estimated that the horizontal 
errors of the extracted shoreline time-series were within ±5 m [37]. While the nominal 
frequency of the shorelines is weekly [35], the actual frequency depends on the wave 
conditions during the monitoring period. During the studied period (1999 to 2008), 
the average time frequency of available shorelines is 6–9 days.

2.3.2 Experimental Landsat images

Decided by the availability of the reference data, Landsat multispectral images 
spanning approximately 9 years, i.e. from August 1999 to October 2008 were used. 
The dataset consists of images acquired by two satellite instruments—Landsat 5 
Thematic Mapper (TM) and Landsat 7 ETM+. For Landsat 7 ETM+ instrument, 
the products before and after the scan line corrector (SLC) failure are used. Surface 
Reflectance products which have been atmospherically corrected based on L1T 
(precision terrain) data were ordered from U.S. Geological Survey (USGS) website 
https://espa.cr.usgs.gov/. Radiometric calibration and cross-calibration have been 
implemented [38] by USGS. As reported by NASA, the geo-registration errors are 
within 0.4 pixels (12 m), indicating the variation in position between images at dif-
ferent times is at subpixel level. The numbers and spanning periods of images used, 
after eliminating scenes blocked by thick clouds, are indicated as Table 1.

2.4 Shoreline extraction from Landsat images

The shoreline extraction and change monitoring flow chart is described as 
Figure 4. Firstly, Landsat images were clipped based on the boundary of the 
study site. A simple one-dimensional cubic interpolation was employed to fill the 
gaps on the Landsat 7 images in SLC-off mode. This step was merely for extract-
ing continuous shorelines and the interpolated values were not utilised for beach 
widths calculation. Then, shorelines at sub-pixel level were extracted from the 
nine-year Landsat data using the strategy illustrated in [10]. Due to the limitation 
of the spatial resolution of Landsat images, the extracted shorelines are not visually 
discernible. Therefore, theses shorelines also belong to the third group of shoreline 
indicators and depend on the shoreline extraction strategy.

Subsequently, tidal correction was applied to the shorelines extracted from Landsat 
images. Assuming the beach face slope did not vary significantly alongshore, which is 
a valid judgement from the averaged historical ground measurements, the horizontal 
and cyclic translation of the shoreline caused by tidal variation can be simplified as
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shown in Figure 3(b), where the cumulative nourishment volumes at the six 
deposition areas are indicated using different grey scales. Note that A1a is an area 
approximately 300 m north of A1 and is not shown in Figure 3(a). In addition, a 
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reef construction was completed in December 2000.
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installed in late July 1999 at the northern Gold Coast by the Water Research 
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Four video cameras were installed approximately 100 m above the ground on the 
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building where the Argus cameras were installed and the artificial reef at Narrowneck are marked as orange 
and blue circles respectively. The locations of the seven regularly spaced cross-shore profile lines, i.e. from 
2000 m north (N 2000) to 1500 m south (S 1500) of the Argus station are also indicated. (b) Progress of sand 
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coastal monitoring was initiated.
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Focus Building, which is located about 60 m landward of the dune line and 900 m 
to the south of Narrowneck (Figure 3(a)). The system became fully operational 
in August 1999, which coincided with the commencement of Narrowneck reef 
construction. The Argus monitoring project lasted from 1999 to 2008 and was 
recommenced in 2014.

Every daylight hour, the cameras collected a 10-minute time-averaged image, from 
which the natural variations of breaking waves were effectively averaged. To minimise 
the effects of tidal variations, only the time-averaged images acquired at mid-tide, 
which is approximately 0 m on the Australian Height Datum (AHD) were selected. 
Among the selected images, only those acquired when the root-mean-square wave 
heights were no more than 1 m were retained for future use. These images were recti-
fied and geo-referenced through a standardised image pre-processing procedure [35]. 
Shorelines were then extracted by WRL staff using the pixel intensity clustering (PIC) 
method [8, 36]. The shoreline positions were defined as the cross-shore locations 
of the mean sea level contours [37] and may not be visually discernible on the time-
averaged video images. Therefore, they are believed to belong to the third group of 
shoreline indicators and depend on the PIC method. It is estimated that the horizontal 
errors of the extracted shoreline time-series were within ±5 m [37]. While the nominal 
frequency of the shorelines is weekly [35], the actual frequency depends on the wave 
conditions during the monitoring period. During the studied period (1999 to 2008), 
the average time frequency of available shorelines is 6–9 days.

2.3.2 Experimental Landsat images

Decided by the availability of the reference data, Landsat multispectral images 
spanning approximately 9 years, i.e. from August 1999 to October 2008 were used. 
The dataset consists of images acquired by two satellite instruments—Landsat 5 
Thematic Mapper (TM) and Landsat 7 ETM+. For Landsat 7 ETM+ instrument, 
the products before and after the scan line corrector (SLC) failure are used. Surface 
Reflectance products which have been atmospherically corrected based on L1T 
(precision terrain) data were ordered from U.S. Geological Survey (USGS) website 
https://espa.cr.usgs.gov/. Radiometric calibration and cross-calibration have been 
implemented [38] by USGS. As reported by NASA, the geo-registration errors are 
within 0.4 pixels (12 m), indicating the variation in position between images at dif-
ferent times is at subpixel level. The numbers and spanning periods of images used, 
after eliminating scenes blocked by thick clouds, are indicated as Table 1.

2.4 Shoreline extraction from Landsat images

The shoreline extraction and change monitoring flow chart is described as 
Figure 4. Firstly, Landsat images were clipped based on the boundary of the 
study site. A simple one-dimensional cubic interpolation was employed to fill the 
gaps on the Landsat 7 images in SLC-off mode. This step was merely for extract-
ing continuous shorelines and the interpolated values were not utilised for beach 
widths calculation. Then, shorelines at sub-pixel level were extracted from the 
nine-year Landsat data using the strategy illustrated in [10]. Due to the limitation 
of the spatial resolution of Landsat images, the extracted shorelines are not visually 
discernible. Therefore, theses shorelines also belong to the third group of shoreline 
indicators and depend on the shoreline extraction strategy.

Subsequently, tidal correction was applied to the shorelines extracted from Landsat 
images. Assuming the beach face slope did not vary significantly alongshore, which is 
a valid judgement from the averaged historical ground measurements, the horizontal 
and cyclic translation of the shoreline caused by tidal variation can be simplified as
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  Δ = Z / m,  (2)

where  Δ  is the horizontal cross-shore shift;  Z  is the tidal elevation at image 
acquisition time relative to 0 m AHD. Astronomical tidal elevations recorded every 
15 minutes at the nearest available location of Southport (approximately 3 km from 
the Focus Building) were used for tidal correction. An intertidal beach face slope of 
0.06, which is the mean beach slope between 0 and 2 m AHD at Narrowneck [39] 
was used for the correction.

Figure 4. 
Flow chart of shoreline mapping and change monitoring.

TM ETM+ (SLC-on) ETM+ (SLC-off)

Period 1999–2008 1999–2003 2003–2008

Number of scenes 63 53 61

Table 1. 
Description of Landsat multispectral data used.
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2.5 Results and discussions

2.5.1 Time-series beach width results

Based on the shorelines derived from Landsat and video imaging data, 100 m 
longshore-averaged beach widths centred at seven representative transects 
(marked in Figure 3(a)) were calculated. These transects were spaced at a regular 
interval of 500 m, i.e., they are 2000, 1500, 1000, 500 m to the north, and 500, 
1000, 1500 m to the south of the Argus cameras. The selected alongshore loca-
tions are consistent with [35] as the report indicated that beach widths at these 
transects are suitable for the analysis of shoreline trends and variabilities. Using 
longshore averaged beach widths aims to average out the effects of the longshore 
varied instantaneous waves at the beach face. The area nearest to the cameras (0 m 
alongshore) was not selected because of sun glint and the gap between the field 
views of the cameras [35].

Figure 5 shows the time-series beach widths from 1999 to 2008 at the seven 
transect lines after tidal correction, compared with video imaging derived results 
(as reference data). The legend for the alongshore locations were abbreviated 
according to whether they were north (N) or south (S) followed by their distances, 
relative to the Argus cameras, e.g. 2000 m at the north was abbreviated as N 2000 
and 1500 m at the south as S 1500. The time-series beach widths at the seven loca-
tions show very similar trends in the results from the Landsat data compared with 
the reference data, despite some intermittent results with noticeable errors. The 
beach widths over the 9 years along the full 4.5 km study area can be seen to have 
varied up to approximately 100 m.

To realise pairwise comparisons between Landsat and video imaging derived 
beach widths, each of the final ground truth beach widths was calculated using a 
linear interpolation between the closest pair of pre and post surveys correspond-
ing to each satellite image acquisition time. A time-series of errors was derived at 
each transect location as the difference between each pair of Landsat and video 
imaging derived beach widths. Subsequently, the mean error (ME), mean absolute 
error (MAE) and root mean squared error (RMSE) of the time-series results from 
Landsat were calculated as listed in Table 2.

2.5.2 Annual mean and variability

Annual mean beach widths from 2000 to 2008 at the seven profile lines were calcu-
lated for both Landsat and Argus video imaging based results shown as Figure 6.  
Note that year 1999 was excluded since the available video-based data for that year 
spanned less than half a year. The inter-annual shoreline change trends derived from 
Landsat match very well with those from video imaging data, with the most noticeable 
discrepancies at the northern part during 2000–2003. It was found that during those 
years the average frequency of the ground survey data and/or the Landsat data at the 
northern part of the beach (N 2000–N 500) was much lower than average. Taking year 
2000 as an example, the average frequencies of the ground survey and Landsat data at 
the northern part were approximately 17 and 35 days respectively. This is believed to be 
the main reason for the significant divergence between the annual means of Landsat 
and ground survey data during that period, as it is believed that higher-frequency data 
would lead to more accurate estimations of annual mean beach widths.

Table 3 presents the statistical assessment of annual mean beach widths at the seven 
locations, where the RMSEs are in the range of 3.9–7.2 m. Statistical t-tests of the beach 
width results from Landsat and video imaging within each year of 2000–2008 were 
employed, there being nine tests for each of the seven locations. The majority of the tests 
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To realise pairwise comparisons between Landsat and video imaging derived 
beach widths, each of the final ground truth beach widths was calculated using a 
linear interpolation between the closest pair of pre and post surveys correspond-
ing to each satellite image acquisition time. A time-series of errors was derived at 
each transect location as the difference between each pair of Landsat and video 
imaging derived beach widths. Subsequently, the mean error (ME), mean absolute 
error (MAE) and root mean squared error (RMSE) of the time-series results from 
Landsat were calculated as listed in Table 2.
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Annual mean beach widths from 2000 to 2008 at the seven profile lines were calcu-
lated for both Landsat and Argus video imaging based results shown as Figure 6.  
Note that year 1999 was excluded since the available video-based data for that year 
spanned less than half a year. The inter-annual shoreline change trends derived from 
Landsat match very well with those from video imaging data, with the most noticeable 
discrepancies at the northern part during 2000–2003. It was found that during those 
years the average frequency of the ground survey data and/or the Landsat data at the 
northern part of the beach (N 2000–N 500) was much lower than average. Taking year 
2000 as an example, the average frequencies of the ground survey and Landsat data at 
the northern part were approximately 17 and 35 days respectively. This is believed to be 
the main reason for the significant divergence between the annual means of Landsat 
and ground survey data during that period, as it is believed that higher-frequency data 
would lead to more accurate estimations of annual mean beach widths.

Table 3 presents the statistical assessment of annual mean beach widths at the seven 
locations, where the RMSEs are in the range of 3.9–7.2 m. Statistical t-tests of the beach 
width results from Landsat and video imaging within each year of 2000–2008 were 
employed, there being nine tests for each of the seven locations. The majority of the tests 
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Figure 5. 
Time-series beach widths along the seven transects at northern Gold Coast from August 1999 to October 2008. 
Blue and orange curves represent beach widths from Landsat and Argus coastal video imaging data respectively.
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did not reject the null hypothesis of no significant difference at 5% significance level 
where only 16 out of the 63 tests rejected the null hypothesis. This indicates the suitabil-
ity of Landsat data for monitoring annual mean shoreline behaviour at the study site.

The standard deviations within each of the 9 years for the seven locations 
were calculated and displayed in Figure 7. Intra-annual variabilities derived from 
Landsat data do not appear consistently larger or smaller than the video-based 
measurements at the northern Gold Coast. The F-test was employed within each 
of the 9 years to statistically compare beach width variances derived from Landsat 
and video imaging data. The great majority of tests did not reject the null difference 
hypothesis of no differences at the confidence level of 95%, where only 6 out of the 
63 tests rejected the null hypothesis. This indicates that Landsat data can produce 
consistent estimations of annual variances with the reference data at the study area.

2.5.3 Shoreline change trends

2.5.3.1 Effects of beach nourishment

It is believed worthwhile to explore the capability of Landsat data to identify the 
beach width changes predominantly affected by the beach nourishment that occurred 
between 1999 and 2000. Observing the beach widths (Figure 8) from both Landsat 
and video imaging data during the first year of monitoring (when the nourishment was 
ongoing), it is clear that the beach widths at the northern part started to show an increase 
trend soon after the commencement of Argus monitoring project, which is especially 
observable at N 2000 and N 500. In contrast, the beach widths at the southern part did 
not show increasing trends until early 2000 when the nourishment at A4–A6 was started. 
In other words, the time lag of beach widening between the northern and southern parts 
of the study area as the beach nourishment progressed southwards is observable.

Linear regressions were applied separately to the time-series beach widths from 
both Landsat and video imaging data from August 1999 to July 2000 and after-
wards. The linearly fitted lines are superimposed on the plotted original time-series 
beach widths in Figure 8. The fitted lines at both north and south of the study 
area show clear increasing trends during August 1999 to July 2000. The regressed 
changing rates are listed in Table 4, which are all positive except for the change rate 
calculated from video imaging data at N 1000.

Since single beach width results from Landsat data may be erroneous and the 
time frequency of the extracted shorelines is relatively low, Landsat-estimated lin-
ear changing rates during such short periods (i.e. only approximately 1 year) are not 
reliable, as indicated by the significant differences of the regression rates between 
Landsat and video imaging results at most of the seven locations. Nevertheless, the 
most significant accretion rates are at N 2000, N 500 and S 500 for both Landsat 
and video imaging results. This is consistent with the progress of the nourishment 
(Figure 3(b)) since additional sand was deposited in A1 and A3 (where transects 

N 2000 N 1500 N 1000 N 500 S 500 S 1000 S 1500

ME (m) −1.5 −3.2 −1.0 −4.0 0.0 0.1 1.6

MAE (m) 7.7 8.0 7.2 8.9 9.1 8.8 9.7

RMSE (m) 9.6 10.2 9.1 11.1 11.7 11.4 12.3

Correlation 0.71 0.71 0.72 0.70 0.73 0.78 0.73

Table 2. 
Statistical assessment of full time-series beach widths at the seven profile locations.
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Figure 5. 
Time-series beach widths along the seven transects at northern Gold Coast from August 1999 to October 2008. 
Blue and orange curves represent beach widths from Landsat and Argus coastal video imaging data respectively.
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did not reject the null hypothesis of no significant difference at 5% significance level 
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N 2000 and N 500 were located) during the first year of the coastal monitoring, 
although a large volume of sand had already been deposited before the monitor-
ing commenced. Besides, the sand nourishment at A5, where transect S 500 was 
located, was implemented after the commencement of the Argus monitoring. In 
contrast, the nourishment of A2, where transects N 1500 and N 1000 are located, 

Figure 6. 
Annual mean beach widths at the seven locations at northern Gold Coast. Blue and orange curves represent 
annual mean beach widths from Landsat and from video imaging data respectively.

N 2000 N 1500 N 1000 N 500 S 500 S 1000 S 1500

ME (m) −2.6 −4.1 −1.3 −4.3 1.6 1.9 2.9

MAE (m) 3.2 4.6 3.2 6.1 3.8 3.1 3.9

RMSE (m) 3.9 5.6 4.2 7.2 4.7 4.2 5.3

Table 3. 
Statistical assessment of annual mean beach widths at the seven locations.
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had been completed several months before the coastal monitoring program, and the 
beach widths over that area are expected to have increased before August 1999. The 
linear regression results indicate that the effects of beach nourishment progress can 
be statistically identified from Landsat data.

2.5.3.2 Shoreline change trends post beach nourishment

To quantify the overall trends post beach nourishment at the seven locations, 
linear regressions were also applied to the time-series results from Landsat and ref-
erence data from August 2000 onwards. Slightly decreasing trends were observed 
at all locations (see the regression lines in Figure 8) and corresponding negative 
changing rates (Table 4) were derived from both Landsat and reference data, 
indicating overall modest erosion trends post the beach nourishment.

Observing Figure 9 and based on the analysis of shoreline changes illustrated in 
[35], the post beach nourishment period was judiciously divided into four shorter 

Figure 7. 
Annual standard deviations of beach widths at the seven locations at northern Gold Coast. Blue and orange 
curved represent annual standard deviations from Landsat and coastal video imaging data respectively.
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periods: August 2000–February 2006, March 2006–July 2007, August 2007–January 
2008 and February 2008–October 2008. Linear regressions were applied to the beach 
widths during each of the periods and the regression lines are displayed in Figure 9.

Figure 8. 
Linear regression lines of beach widths at the seven profile locations during and after the beach nourishment, 
where the original time-series of beach widths from Landsat (blue curves) and video imaging data (orange 
curves) are also plotted for reference.

N 
2000

N 
1500

N 
1000

N 
500

S 
500

S 
1000

S 
1500

Aug 1999–Jul 
2000

Landsat 46.6 22.3 30.3 74.4 56.3 39.0 39.4

Reference 46.9 7.6 −2.5 55.9 58.4 22.7 8.0

Aug 2000–Oct 
2008

Landsat −1.8 −2.3 −2.4 −2.4 −1.5 −1.0 −0.3

Reference −3.3 −4.2 −4.4 −5.2 −3.6 −2.5 −2.3

Table 4. 
Shoreline changing rates (m/year) of beach widths at the seven locations during and post beach nourishment.
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N 
2000

N 
1500

N 
1000

N  
500

S  
500

S  
1000

S  
1500

Aug 2000–
Feb 2006

Landsat 0.28 −0.3 −0.6 −1.2 2.1 4.5 4.4

Reference −0.8 −2.6 −2.8 −4.4 1.4 4.5 3.6

Mar 2006–
Jul 2007

Landsat 24.8 18.0 15.7 21.8 22.3 20.9 26.1

Reference 20.6 16.1 14.5 11.2 16.6 11.5 14.5

Aug 2007–
Jan 2008

Landsat −72.7 −77.4 −65.1 −72.7 −121.3 −119.0 −119.5

Reference −72.4 −60.4 −39.5 −0.9 −3.8 −25.3 −4.8

Feb 2008–
Oct 2008

Landsat 11.0 28.4 22.8 22.9 31.2 34.4 32.9

Reference 15.2 10.4 15.2 17.1 23.0 30.9 18.7

Table 5. 
Shoreline changing rates (m/year) during shorter periods post beach nourishment at the seven locations using 
linear regression.

Figure 9. 
Linear regressed shoreline change trends during shorter periods post beach nourishment at the seven locations, 
where the original time-series of beach widths post beach nourishment from Landsat (blue curves) and video 
imaging data (orange curves) are also plotted for reference.
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Linear regressed shoreline change trends during shorter periods post beach nourishment at the seven locations, 
where the original time-series of beach widths post beach nourishment from Landsat (blue curves) and video 
imaging data (orange curves) are also plotted for reference.
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The corresponding changing rates during those periods are given in Table 5. 
During the period from August 2000 to February 2006, the northern parts of 
the study area generally exhibited slight erosions, whereas the southern parts 
showed modest accretion trend. Dramatic erosions can be clearly observed 
at all locations in March 2006, as a result of relatively slow passage of an east 
coast low pressure weather system [35]. In the following months until July 
2007, the beach had a steady recovery trend at all locations. During the last 
period (February to October 2008), the entire beach showed consistent recov-
ery trends.

Note that given such short periods (e.g. less than 6 months), the estimations 
of net erosion/accretion rates from Landsat are not reliable, as indicated by some 
significant differences of the regression rates between Landsat and video imaging 
results. However, the identified trends, i.e. whether accretions or erosions, are still 
mostly consistent with those from the reference data. This demonstrates the capa-
bility of Landsat data to estimate general erosion/accretion trends during periods as 
short as half a year.

3. Conclusions and recommendation

This chapter presents the application of multispectral satellite imagery for 
shoreline mapping and change monitoring. Firstly, a brief introduction of shoreline 
definitions and indicators is given, which is fundamental for shoreline extraction 
and monitoring. Next, a brief introduction of SRM techniques is presented. A brief 
review of existing research on time-series shoreline change monitoring based on 
multi-temporal multispectral satellite imagery is then presented. Most of the stud-
ies in the literature used medium to low-resolution satellite data such as Landsat, 
ASTER and SPOT imagery as the main data source.

Subsequently, a case study of using approximately 9 years of Landsat archi-
val data to monitor shoreline changes at the northern Gold Coast, Australia 
is presented. By comparing the longshore averaged beach widths at seven 
representative transects from Landsat with those from Argus imaging data, the 
derived errors of extracted shorelines are at a sub-pixel level. Specifically, the 
RMSEs of beach widths at these locations range from 9.1 to 12.3 m and the cor-
relations are all no less than 0.7; the RMSEs of annual mean beach widths are in 
the range of 3.9–7.2 m. Besides, annual means and variabilities of beach widths 
can be estimated from Landsat data, without significant differences from the 
reference data for most of the results. In addition, linear regression results show 
that Landsat data can be used to identify the general trends of beach widths, i.e. 
erosion or accretion, during periods as short as half a year. More importantly, 
beach widening as a result of the sand nourishment can be clearly observed. 
This case study, together with the existing work in Narrabeen-Collaroy Beach 
[10], further demonstrates the suitability of Landsat images for long-term 
shoreline change monitoring and the practicability of the super-resolution 
shoreline extraction strategy.

On the other hand, Landsat images can be unreliable for the monitoring 
of shoreline changes during much shorter periods, e.g. only a few days which 
is the typical duration for a coastal storm event. In this case, satellite images 
with both higher spatial and temporal resolutions are needed. While Landsat 
archival data are used in this chapter as a representative data source of medium-
resolution satellite data, it is recommended that other multispectral satellite 
images such as the freely available Sentinel multispectral images could also be 
investigated.
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Chapter 6

Utilization of Dynamic and
Static Sensors for Monitoring
Infrastructures
Chung C. Fu, Yifan Zhu and Kuang-Yuan Hou

Abstract

Infrastructures, including bridges, tunnels, sewers, and telecommunications,
may be exposed to environmental-induced or traffic-induced deformation and
vibrations. Some infrastructures, such as bridges and roadside upright structures,
may be sensitive to vibration and displacement where several different types of
dynamic and static sensors may be used for their measurement of sensitivity to
environmental-induced loads, like wind and earthquake, and traffic-induced loads,
such as passing trucks. Remote sensing involves either in situ, on-site, or airborne
sensing where in situ sensors, such as strain gauges, displacement transducers,
velometers, and accelerometers, are considered conventional but more durable and
reliable. With data collected by accelerometers, time histories may be obtained,
transformed, and then analyzed to determine their modal frequencies and shapes,
while with displacement and strain transducers, structural deflections and internal
stress distribution may be measured, respectively. Field tests can be used to char-
acterize the dynamic and static properties of the infrastructures and may be further
used to show their changes due to damage. Additionally, representative field appli-
cations on bridge dynamic testing, seismology, and earthborn/construction vibra-
tion are explained. Sensor data can be analyzed to establish the trend and ensure
optimal structural health. At the end, five case studies on bridges and industry
facilities are demonstrated in this chapter.

Keywords: health monitoring, accelerometers, velometers,
displacement transducers, strain sensors, frequency response function,
cross-power spectrum, power spectral density, bridge dynamic testing, seismology,
earthborn/construction vibration, infrastructure

1. Introduction

In order to acquire infrastructural health data, proper sensor knowledge and
technology are required. This article first introduces in situ remote sensing and then
provides a review of some sensors that are useful and currently implemented in
health monitoring projects, especially those associated with vibration.

A project on the development of a self-sustained wireless integrated structural
health monitoring (ISHM) system for highway bridges was sponsored by the
USDOT Research and Innovative Technology Administration (RITA) [1]. Figure 1
shows the wireless ISHM system with remote sensing ability: (1) wireless sensor
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nodes including AE sensors, strain gages, accelerometers, thermocouples, etc.;
(2) wireless smart sensor network with (3) energy harvester; (4) data acquisition
system (DAQ ), with wireless communication modem; and (5) web-based remote
data processing and data storage for application.

In situ sensors may include the capability to collect static and dynamic data and
then apply algorithm to extract and combine relevant condition information from
sensor data. Typical vibrational sensors used include accelerometers and velometers
(velocity transducers), while static sensors include displacement transducers, strain
gauges (transducers), tilt meters, and weather-related sensors to measure and
record temperature, humidity, barometric pressure, wind velocity, wind direction,
etc. When using vibration data, especially in conjunction with modeling systems,
the data is often measured in the form of acceleration, velocity, and displacement.
Sometimes different analyses require measured signals in different forms. Even if
we measure in the form of acceleration, velocity, or displacement (Figure 2), we
may apply simple mathematics to convert between them through integration or
differentiation. For instance, if the measured signal is from accelerometers, we may
obtain the velocity through integration and displacement through double integra-
tion. On the other hand, if the measured signal is from velocity or displacement

Figure 1.
Remote wireless bridge monitoring system.

Figure 2.
Measured signals in different forms: (a) acceleration (raw data), (b) velocity (single integration from
acceleration), and (c) displacement (double integration from acceleration).
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transducers, we may obtain acceleration through differentiation or double differ-
entiation, respectively. Usually, unless there are special circumstances, the
suggested method to measure vibration is with an accelerometer. However, care is
required to remove accelerations of very low frequencies for possible noises if any
integration to velocity or displacement is needed.

Accelerometers and strain sensors are widely used dynamic and static monitor-
ing sensors. The modern-day systems are small, lightweight, and robust and are
typically quite simple to calibrate and to convert output to acceleration or strain
data. Accelerometers are useful for measuring with low to very high sampling rates.
They have shown to be useful in a wide variety of applications. On the other hand,
velocity sensors are generally used to measure dynamic response in the low- to
medium-range frequencies. They are typically used for similar applications as
accelerometers [2].

For the static monitoring sensor, displacement transducers are used to measure
relative displacement. These sensors are available in both contacting devices, like
string pot and linear variable differential transformer (LVDT), and non-contacting
devices, like laser displacement, global positioning systems (GPS), and photogram-
metry. The major limitation for contacting displacement-measuring devices in the
field is that the measured displacement is a relative displacement. GPS-type sensors
are gradually more often used in civil engineering studies because of recent devel-
opments allowing measurements to be taken at high fidelity. Displacement mea-
surements from laser sensors, ultrasonic distance sensors, and strain pot were used
on different occasions to determine the vertical deflection of a bridge. These tech-
niques are useful because they can result in relative and absolute displacement
states. Strain sensors, including optical fiber strain, can be monitored at dynamic
rates, while traditional foil strain gauges have been widely used on civil engineering
structures, even in remote sensing.

2. Mathematical models for computing accelerometer sensor data

The data acquisition system may be set to measure acceleration time histories
and calculate frequency response function (FRF), cross-power spectrum (CPS),
and power spectral density (PSD) [3].

For a continuous time series, x tð Þ, defined on the interval from 0 to T, the
Fourier spectrum (Fourier transform), X fð Þ, is defined in Eq. (1) as

X  fð Þ ¼
ðT

0

x tð Þe�i2πftdt (1)

where i ¼ ffiffiffiffiffiffi�1
p

and f ¼ cyclic frequency Hzð Þ.
This function is complex, and the magnitude is typically plotted in engineering

units (EU), such as m=s2 or g’s, versus frequency.
This power spectrum is defined in Eq. (2) as

X fð Þj j2 ¼ X  fð ÞX  fð Þ (2)

where * denotes a complex conjugate. The power spectrum is a real-valued
frequency domain function and has the units of EUð Þ2.

The power spectral density (auto-spectral density, or abbreviated as PSD),
GXX  fð Þ, is defined in Eq. (3) as
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field is that the measured displacement is a relative displacement. GPS-type sensors
are gradually more often used in civil engineering studies because of recent devel-
opments allowing measurements to be taken at high fidelity. Displacement mea-
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on different occasions to determine the vertical deflection of a bridge. These tech-
niques are useful because they can result in relative and absolute displacement
states. Strain sensors, including optical fiber strain, can be monitored at dynamic
rates, while traditional foil strain gauges have been widely used on civil engineering
structures, even in remote sensing.

2. Mathematical models for computing accelerometer sensor data

The data acquisition system may be set to measure acceleration time histories
and calculate frequency response function (FRF), cross-power spectrum (CPS),
and power spectral density (PSD) [3].

For a continuous time series, x tð Þ, defined on the interval from 0 to T, the
Fourier spectrum (Fourier transform), X fð Þ, is defined in Eq. (1) as

X  fð Þ ¼
ðT

0

x tð Þe�i2πftdt (1)

where i ¼ ffiffiffiffiffiffi�1
p

and f ¼ cyclic frequency Hzð Þ.
This function is complex, and the magnitude is typically plotted in engineering

units (EU), such as m=s2 or g’s, versus frequency.
This power spectrum is defined in Eq. (2) as

X fð Þj j2 ¼ X  fð ÞX  fð Þ (2)

where * denotes a complex conjugate. The power spectrum is a real-valued
frequency domain function and has the units of EUð Þ2.

The power spectral density (auto-spectral density, or abbreviated as PSD),
GXX  fð Þ, is defined in Eq. (3) as
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GXX  fð Þ ¼ 2
T
E X  fð Þð Þ2
h i

(3)

where E n½ � indicates an ensemble average for a specific t over n samples of X  fð Þ.
This PSD is a real-valued frequency domain function and has the units of EU2=Hz.

The cross-power spectrum (cross-spectrum density, or abbreviated as CPS),
GXY  fð Þ, relating two time histories, x tð Þ and y tð Þ, is defined in Eq. (3) as

GXY  fð Þ ¼ 2
T
E X  fð ÞY  fð Þ½ � (4)

For a linear system, the frequency response function (transfer function, or
abbreviated as FRF), H  fð Þ, which relates an input X  fð Þ to a response Y  fð Þ, is
defined in Eq. (5) as

H fð Þ ¼ Y  fð Þ
X  fð Þ ¼

GXY  fð Þ
GXX  fð Þ (5)

In actual dynamic testing, discrete time series are measured. Refer to Bendal and
Piersol [4] for the discrete representations on the functions listed in Eqs. (1)–(5).

There are several factors that would affect system-level measurement accuracy,
which are (1) sensitivity error and initial absolute offset, (2) nonlinearity of the
data, (3) total offset variation from initial absolute offset, and (4) noise. To improve
the accuracy, two- or three-point calibrations recommended by manufacturers may
be needed.

The output spectrum (measured with accelerometers) can be assumed to be
linearly related to the input spectrum through the FRF, which contains both reso-
nant frequency and damping information of the vibrating system. Resonant fre-
quencies can be determined from peaks in the output spectrum, and damping
values can be determined by the half-power bandwidth (HPBW) method.

The damping ratio, or damping coefficient, ξ, is defined as c=cc ¼ c=2
ffiffiffiffiffiffiffi
km

p
to be

used in the dynamic analysis. Normally, steel bridges have a low damping coeffi-
cient ξ≤0:02. The half-power (bandwidth) method is the most commonly used
experimental method [5] to determine the damping in the structure by using two
frequencies shown in Figure 3 and Eq. (6):

ξ ¼ f 2 � f 1
f 2 þ f 1

(6)

Mathematically the most common and easy way is to use the Rayleigh damping
method with a linear combination of the mass and the stiffness matrices as Eq. (7):

c ¼ a0m� a1k (7)

where c, m, and k are the damping, the mass, and the stiffness matrices, respec-
tively, a0 and a1 are proportional constants, and cc represents the critical damping
coefficient. The relationship between the damping ratio and the frequency for
Rayleigh damping is shown in Figure 4. By simplification, these lead to Eq. (8):

a0
a1

� �
¼ 2ξ

ωn þ ωm

ωnωm

1

� �
(8)

The CPS plot between the signals from two accelerometers can then be used to
determine the vibration mode shape information based on the relative phase of
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the two signals. One signal is termed the reference signal, and the process is
repeated at various stations on the bridge to map out the mode shapes. Typically,
in vibration testing FRFs are used to estimate the dynamic properties of a struc-
ture. Further interpreted from the CPS, it can be seen that two measured
responses are correlated only at the resonant frequencies of the structure. There-
fore, the CPS will show peaks corresponding to the resonant frequency which
shows another method estimating the resonant frequencies from peaks in the

Figure 3.
Half-power method to estimate damping by experiment.

Figure 4.
Relationship between damping ratio and frequency for Rayleigh damping.
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GXX  fð Þ ¼ 2
T
E X  fð Þð Þ2
h i

(3)

where E n½ � indicates an ensemble average for a specific t over n samples of X  fð Þ.
This PSD is a real-valued frequency domain function and has the units of EU2=Hz.

The cross-power spectrum (cross-spectrum density, or abbreviated as CPS),
GXY  fð Þ, relating two time histories, x tð Þ and y tð Þ, is defined in Eq. (3) as

GXY  fð Þ ¼ 2
T
E X  fð ÞY  fð Þ½ � (4)

For a linear system, the frequency response function (transfer function, or
abbreviated as FRF), H  fð Þ, which relates an input X  fð Þ to a response Y  fð Þ, is
defined in Eq. (5) as

H fð Þ ¼ Y  fð Þ
X  fð Þ ¼

GXY  fð Þ
GXX  fð Þ (5)

In actual dynamic testing, discrete time series are measured. Refer to Bendal and
Piersol [4] for the discrete representations on the functions listed in Eqs. (1)–(5).

There are several factors that would affect system-level measurement accuracy,
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data, (3) total offset variation from initial absolute offset, and (4) noise. To improve
the accuracy, two- or three-point calibrations recommended by manufacturers may
be needed.

The output spectrum (measured with accelerometers) can be assumed to be
linearly related to the input spectrum through the FRF, which contains both reso-
nant frequency and damping information of the vibrating system. Resonant fre-
quencies can be determined from peaks in the output spectrum, and damping
values can be determined by the half-power bandwidth (HPBW) method.

The damping ratio, or damping coefficient, ξ, is defined as c=cc ¼ c=2
ffiffiffiffiffiffiffi
km

p
to be

used in the dynamic analysis. Normally, steel bridges have a low damping coeffi-
cient ξ≤0:02. The half-power (bandwidth) method is the most commonly used
experimental method [5] to determine the damping in the structure by using two
frequencies shown in Figure 3 and Eq. (6):

ξ ¼ f 2 � f 1
f 2 þ f 1

(6)

Mathematically the most common and easy way is to use the Rayleigh damping
method with a linear combination of the mass and the stiffness matrices as Eq. (7):

c ¼ a0m� a1k (7)

where c, m, and k are the damping, the mass, and the stiffness matrices, respec-
tively, a0 and a1 are proportional constants, and cc represents the critical damping
coefficient. The relationship between the damping ratio and the frequency for
Rayleigh damping is shown in Figure 4. By simplification, these lead to Eq. (8):

a0
a1

� �
¼ 2ξ

ωn þ ωm

ωnωm

1

� �
(8)

The CPS plot between the signals from two accelerometers can then be used to
determine the vibration mode shape information based on the relative phase of
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the two signals. One signal is termed the reference signal, and the process is
repeated at various stations on the bridge to map out the mode shapes. Typically,
in vibration testing FRFs are used to estimate the dynamic properties of a struc-
ture. Further interpreted from the CPS, it can be seen that two measured
responses are correlated only at the resonant frequencies of the structure. There-
fore, the CPS will show peaks corresponding to the resonant frequency which
shows another method estimating the resonant frequencies from peaks in the

Figure 3.
Half-power method to estimate damping by experiment.

Figure 4.
Relationship between damping ratio and frequency for Rayleigh damping.

111

Utilization of Dynamic and Static Sensors for Monitoring Infrastructures
DOI: http://dx.doi.org/10.5772/intechopen.83500



response power spectra. Mode shapes are estimated from the relative
magnitudes of these peaks, where relative phase information can be obtained
from either the CPS or FRF and modal damping values can be obtained by
applying the HPBW method to these peaks, which need very-high-frequency
resolution to obtain the values. Mode shapes can be determined from cross-power
spectra of the various accelerometer readings relative to the reference
accelerometer [3]. Examples of field dynamic applications are shown in the
next sections.

3. Representative applications

3.1 Bridge dynamic testing

Dynamic testing on bridges has been conducted for many years. Measured data
were usually in the form of deflections and strains, but some measurements were in
acceleration. For bridge dynamic testing, ambient and forced vibrations can be
performed.

• Ambient vibration testing—Ambient vibrations in bridges can be induced by
a wide variety of environmental factors, such as traffic, seismic, and wind
loading.

• Forced vibration testing—Some techniques of forced vibration testing of
bridges such as variable frequency rotating dynamic shaker, servo-hydraulic
inertial actuators, impact hammer, and controlled truck loading can be applied.
Accelerometers can be used to determine the resonant frequencies, damping
ratios, and mode shapes.

By using accelerometers, acceleration time histories can be obtained,
transformed into Fourier spectra and CPS, and then analyzed to determine
damping, resonant frequencies, and corresponding modal shapes.

3.2 Seismology

Devices can be used to measure seismic data. Two types of sensors (transducers)
were used by Caltrans to measure seismic record [6].

• Seismometer—A seismometer, also called a velocity transducer, measures
velocity directly using a signal conditioner. It measures low frequencies of
ground motions (usually 1–200 Hz) and produces a voltage proportional to
velocity through magnetic induction. A seismometer can catch low rate
vibrations during monitoring.

• Accelerometer—An accelerometer measures acceleration directly by using the
piezoelectric crystal material. This type of sensor, which is widely used by
Caltrans, is pressure sensitive and can also obtain velocity and displacement
with an integrator. Accelerometer is usually a small sensor with a wide
frequency range, and typically not as sensitive as the seismometer. The
frequency range could be narrowed from 0.1 to 1.0 KHz when using as large
sensor as around 1 pound in weight and more sensitive technical methods,
typically from 1.0 to several KHz.
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3.3 Earthborn/construction vibration

Humans have varying sensitivities to vibrations at different frequencies. In
general, humans are more sensitive to low-frequency vibration. Construction activ-
ities could induce vibrations that caused building surface movements, shaking or
rattling of windows, hanging items, and lightweight furniture [7]. This type of low-
frequency vibrations, when acting on the structural component, can also produce
an audible rumbling noise, which referred to earthborn noise. The noise could be a
problem when the upper end of the range frequencies (60–200 Hz) dominates the
originating vibration spectrum, or the construction activities are connected to the
structure by foundations or utilities.

Earthborn vibrations can be detected and measured by accelerometers which
could be mounted to heavy blocks of steel (about 5–10 kg) directly placed directly
on the ground or other surfaces by magnets [6, 8]. Activities and motions of the
vibration-sensitive land shall be monitored and measured during constructions
occur within 15 m (50 ft) to establish the level of vibrations. Construction projects
of foundations, like pile driving, jackhammering, and soil compacting, may also
produce high-level vibrations by their equipment operations. Measured vibration
data from construction are commonly classified as broadband or random vibrations
with various ranges of frequencies. The general frequency ranges of most earthborn
vibrations are from less than 1.0 to 200 Hz.

Vibration levels can be represented in terms of velocity (in/sec or mm/sec) or
acceleration (in/sec2 or mm/sec2), which demonstrates vibration severity. Vibration
levels for construction activities are recognized as the highest during demolition
activities and soil compacting. Vibration levels are required to remain below
0.5 in/sec (15 mm/sec) at residences along the project corridor and minimized risk
for structural damage. Vibration levels from other general construction activities
will also be well below the 0.5 in/sec (15 mm/sec) criteria.

The US Department of Transportation (USDOT) has guidelines for vibration
levels from construction related to their activities and recommends that the maxi-
mum peak-particle-velocity levels remain below 0.05 in/sec (1.5 mm/sec) at the
nearest structures. Vibration levels above 0.5 in/sec (1.5 mm/sec) have the potential
to cause architectural damage to normal dwellings. The USDOT also states that
vibration levels above 0.015 in/sec (0.45 mm/sec) are sometimes perceptible to
people and the level at which vibration becomes annoying to people is 0.64 in/sec
(19.2 mm/sec).

3.4 Types of accelerometers and their advantages/disadvantages

Popular types of accelerometers used in the infrastructural areas are (1) bulk
micromachined capacitive, (2) bulk micromachined piezoelectric resistive,
(3) capacitive spring-mass system based, and (4) laser accelerometers [9].

The work principles of different types of accelerometers are based on piezoelec-
tric effect due to accelerative forces and displacement sensing based on displace-
ment of mass. The advantages of piezoelectric resistive are (1) rugged and
inexpensive, (2) high impedance, (3) high sensitivity, and (4) high-frequency
response. However, their disadvantages are (1) sensitive to temperature, (2) hys-
teresis error, (3) less longevity, and (4) decreased efficiency with time.

On the other hand, displacement sensing or seismic-type accelerometers are
using spring-mass-damper system, and their advantages are (1) easy calculation,
(2) simple and reliable, and (3) durable and efficient. Their disadvantages are
(1) spring system not always accurate and (2) fluctuation in mass leading to wrong
calculation.
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4. Case study 1:Wireless accelerometer sensing of a self-sustained
wireless integrated structural health monitoring (ISHM) system on
Beaufort #25 bridge, NC

A scalable integral structural health monitoring (ISHM) system sponsored by the
USDOT had been developed by the University of Maryland (UMD) and North
Carolina State University (NCSU) with the URS (later named AECOM) Corpora-
tion [1]. This system, with remote sensing capability, is designed to be suited for
fatigue condition assessment of highway steel bridges. Furthermore, the ISHM
system would help in damage detection and deterioration diagnosis in early stages,
predicting the remaining service life more accurately when compared with the
traditional SHM system with reliable technology to improve current inspection
methods, and reduce the operating and maintenance costs.

The ISHM system based on wireless sensor networks entails a few recent innova-
tions which applied the current state of the practice in remote sensing and highway
infrastructure management. Accelerometers, in this system, are used for monitoring
the vibration response of bridges so that the modal frequency information could be
obtained and used to calibrate the finite element model of the monitored bridge.

In this system, a new wireless piezoelectric sensor board had been designed and
used. This board mainly consists of an 8-bit microcontroller, a FPGA, and a piezo-
electric amplifier circuit. This device is enhanced with improved operating frequency
and a four-wire, SPI-compatible interface while having lower power consumption. In
the ISHM system, each single wireless sensor was tested on a shaker to verify that the
developed sensor can recover the input information accurately. However, a single
sensor could not catch enough data for structure monitoring and analysis. Thus, a
number of wireless sensors along the bridge span are needed [1].

The example for the ISHM accelerometer monitoring case is the Structure No.
060025 Swing Bridge in Beaufort County, North Carolina (Figure 5, Beaufort #25
Bridge). The bridge consists of side spans and main spans. It should be noted that
the structural support of the side span is a simply supported steel girder bridge,
which has a relatively simple stress state compared with the main span because the

Figure 5.
Sketch plan for monitoring system.
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boundary condition of the main span is changed between simply supported and
cantilever due to the close or open of the main span. Thus, the researchers of NCSU
chose the main span as the targeted monitoring case for the dynamic behavior
considering the complex stress states.

In this case, a row of smart sensors was attached to the bridge girders in the main
span. The dynamic behavior was analyzed by data from accelerometers. Figure 6

Figure 6.
The result of the field test of Beaufort #25 bridge.

Figure 7.
The first three mode shapes from FE analysis.
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shows the test results of the bridge by using the set of wireless sensors. The data is
processed using fast Fourier transform (FFT). The estimation of the natural fre-
quency of the bridge about 4.0 Hz to 5.0 Hz was made by the NCSU researchers.

Meanwhile, the finite element model using the software ANSYS of Beaufort #25
Bridge was built and analyzed. The structural analysis was separated into two
conditions due to the fact that the main span could swing. The first three mode
shapes are illustrated in Figure 7, and the first five modes are summarized in
Table 1. Depending on the relative amplitude of the mode shapes, these modes
were noted as the vertical-dominated modes, the lateral-dominated modes, and the
torsional-dominated modes (Figure 7).

The accelerometers are commonly used in highway bridges’ monitoring for
dynamic behavior. The monitoring results for the bridge are close to the finite
element analysis result, and thus, the model was calibrated to be analyzed for other
load conditions, and the test results were archived to be the baseline for future
monitoring.

5. Case study 2: Remote monitoring of a self-sustained wireless
integrated structural health monitoring (ISHM) system for highway
bridges on I-270 bridge in MD

The second case study is under the same ISHM project [1] and was conducted by
the University of Maryland at College Park. The types of sensors used in this project
were (1) piezoelectric paint AE sensors; (2) wireless accelerometers; (3) laser sen-
sor; (4) ultrasonic distance sensors; (5) BDI strain transducers; and (6) string pots.

Fixed position Swing position

First (torsional) 4.95 Hz First (torsional) 1.51 Hz

Second (vertical) 5.92 Hz Second (torsional) 1.72 Hz

Third (vertical) 6.74 Hz Third (vertical) 2.15 Hz

Fourth (vertical) 7.48 Hz Fourth (vertical) 2.51 Hz

Fifth (lateral) 8.18 Hz Fifth (vertical) 2.58 Hz

Table 1.
Modal analysis results.

Figure 8.
Sensor locations.
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In order to verify the reliability of the whole system, a field test for I-270 Bridge in
Maryland by using this ISHM system was carried out with the accelerometer sensor
locations shown in Figure 8. Figures 9 and 10 show the test results collected by
these wireless sensors.

Figure 9.
PSD of these sensors and the first mode shape of the bridge.

Figure 10.
The results of field test of I-270 bridge, MD: (a) the time-history data of sensor 3 and (b) the PSD of sensor 3.
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In order to verify the reliability of the whole system, a field test for I-270 Bridge in
Maryland by using this ISHM system was carried out with the accelerometer sensor
locations shown in Figure 8. Figures 9 and 10 show the test results collected by
these wireless sensors.

Figure 9.
PSD of these sensors and the first mode shape of the bridge.

Figure 10.
The results of field test of I-270 bridge, MD: (a) the time-history data of sensor 3 and (b) the PSD of sensor 3.
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6. Case study 3:Wireless structural monitoring of a newly replaced
fiber-reinforced plastic (FRP) bridge deck

The use of FRP-composite bridge decks is viewed as a potential long-term
solution for the concrete deck deterioration problem. A pilot project
sponsored by the Federal Highway Administration (FHWA), USA, was under-
taken by the Maryland State Department of Transportation, partnered with the
University of Maryland to rehabilitate a steel truss bridge (MD24 over Deer
Creek in Harford County, Maryland) using lightweight FRP deck [10, 11]. The
existing steel truss bridge (Figure 11), built in 1934, carries two lanes of
traffic, provides 9.14 m (30 ft.) of clear roadway, and is 37.50 m (123 ft.) long
with severe roadway skew (Figure 12). The FRP deck panels are placed per-
pendicular to the stringers and act as a continuous plate between the stringer
supports.

Load tests and structural monitoring were conducted to obtain information
regarding the performance of the structure. For a relatively new material like
FRP, the use of load tests can prove the structure’s capacity. Wireless structural
monitoring system developed through a previous FHWA small business inno-
vation research (SBIR) contract to Invocon, Inc. in Conroe, Texas, was used.
The system includes a data acquisition and communication nodes (Figure 13)
connected to strain gages that can acquire data in digital form and relay the

Figure 11.
Steel truss bridge on MD 24 over deer creek.

Figure 12.
Replacement of a FRP deck panel.
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data to a local base receiver attached to a personal computer. In this load test,
five boxes were linked in a “smart” network to control the data acquisition
process. By using this system, the effort of instrumenting a bridge was reduced
by more than half compared to hardwired systems. All CEA-06-250-UN350
uniaxial gages installed on the bridge are produced by the Measurements
Group, Inc. As shown in Figure 13, strain gauges were strategically placed at
different locations to measure strains due to live load effect. Three stringers, as
shown in Figure 13(a), were load tested to check the distribution of live load
over the stringers. Strain gages (data sets 2–1, 2–2, and 2–3 in Figure 13(b))
were located on the top of bottom flanges in the middle of the span. Compari-
son of finite element results and test results shows that the percentage differ-
ence ranged between 1.47 and 9.43%. The purpose of this test is to prove the
integrated composite action between the steel stringers and the new FRP panels
[10, 11].

Figure 13.
Truss bridge deck, stringers, strain sensor locations, and data: (a) plan, elevation, and section A-A views and
(b) section B-B and strain data measurement.
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Group, Inc. As shown in Figure 13, strain gauges were strategically placed at
different locations to measure strains due to live load effect. Three stringers, as
shown in Figure 13(a), were load tested to check the distribution of live load
over the stringers. Strain gages (data sets 2–1, 2–2, and 2–3 in Figure 13(b))
were located on the top of bottom flanges in the middle of the span. Compari-
son of finite element results and test results shows that the percentage differ-
ence ranged between 1.47 and 9.43%. The purpose of this test is to prove the
integrated composite action between the steel stringers and the new FRP panels
[10, 11].

Figure 13.
Truss bridge deck, stringers, strain sensor locations, and data: (a) plan, elevation, and section A-A views and
(b) section B-B and strain data measurement.
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7. Case study 4: Digital accelerometer monitoring of hanger cables on
arch bridges

Arch-girder bridges with hanger cables are a popular type of bridges because
they have the advantages of both arch and girder forms. Therefore, it is critical to
check the performance of the hanger cables in order to guarantee road safety. The
hanger, which ties the arch and the girder, is a key determinant of bridge quality. If
one hanger is damaged, the whole structure is at risk. By detecting bridge’s hangers,
we may make judgment whether the bridge is in good condition or not:

T0 ¼ ml2 4:3865 f 21 � 0:2742 f 22
� �

(9)

where T0 is the cable tension, m is the mass of the cable, l is the length of the
cable, and f1, f2 are the first and second natural frequencies, respectively.

In Eq. (9), the stiffness of hanger cable is not needed to be tested, only frequen-
cies. Therefore, it has an advantage of easy operation and usage. The demonstrated
bridge here is a tied-arch bridge, and the above equation was used to calculate the
cable forces, which are shown in Refs. [5, 12].

In the project, digital accelerometer JMM-268 dynamic testing instrument
(Figure 14) was used to measure the first and second frequencies of hanger cables.
When the frequencies were obtained, the hanger cable force can be calculated
according to Eq. (9).

Comparing calculated hanger cable forces with cable force capacity, inspector of
the bridge can locate critical sites and focus on those sites to do more detailed
inspection. With the fast assessment method presented, only the first and second
frequencies of the hanger cable need to be detected. This method was used to
evaluate several arch bridges with hanger cables [5, 12].

8. Case study 5: Accelerometer application on large steel frame
structure

The steel frame structure is commonly used in the infrastructure of the petro-
leum industry to support numerous pipes and storage tanks. Vibration in steel
frames is an industrial safety issue due to the movement of massive amounts of
liquid, solid, and gas through the pipes. According to statistics published by David
G. Maboney [13] regarding the causes of serious disasters in petrochemical indus-
tries, tube systems took up to 33% of the equipment. To identify the structural
behavior of steel frames, accelerometers could be applied to detect vibrations.
Shown here is an industry case that a new half-mile-long, 76-in (190 mm) diameter
pipeline system is installed above a large 80-ft (24 m)-high steel frame structure in
an oil refinery in Taiwan (Figure 15). The main function of the 76-in pipeline is to
deliver massive amount of waste to the flare stack. However, an unexpected dis-
turbance of the 76-in pipeline occurs which becomes the source of dramatic and

Figure 14.
Digital accelerometer JMM-268 dynamic testing instrument.
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continuous vibrations above the steel frames during the discharge process. The
vibration in the steel frames caused by the 76-in pipeline disturbance might lead to
cracks in the original pipes below, steel fatigue, and joint failure. Once the above
incidents occur, it has potential to result in the escape of poisonous gas, interruption
of the production process, and even conflagration. In this case, accelerometer mon-
itoring records are used to detect dynamic structural weaknesses of the steel frames,
and then, the structural systems could be retrofitted to reduce the probable essential
structure faults leading to industry disasters. Disturbances occur randomly along
the 76-in pipeline due to vaporization of solid or liquid waste whose volume
expands dramatically and raises the pressure in the pipeline. Waste flow also causes
impact force on curved parts of the 76-in pipeline when the flow direction changes.

The IMI 603C01 piezoelectric accelerometer is used in this case. It is a shear-
mode-type accelerometer with a ceramic sensing element. It is suggested that
ceramic sensing elements provide great resolution and durability in noisy environ-
ments and it also covers both low-frequency and high-frequency measurements
[15]. Fifty-six accelerometers in either vertical or horizontal direction are installed
on the 76-in pipeline and the steel frame below. Accelerometers are aligned verti-
cally along the 76-in pipeline and the steel frame since the response of the steel
frame caused by disturbances could be monitored simultaneously by all sensors
(Figure 16).

With acceleration data from long-term monitoring, locations of vibrations and
vibration levels could be identified. To provide methods to reduce vibration, the
first step is to build the finite element model verified with monitoring data. In this
case, SAP2000 is used to build the finite element model of the steel frame and the
76-in pipeline (Figure 17). By assigning time history recorded by the accelerometer,
the fundamental frequency of the steel frame could be obtained by the FFT. The
fundamental frequency of the steel frame could be also calculated by finite element

Figure 15.
76-in pipeline with steel frame and plan view [14].

Figure 16.
Accelerometer installation and side view of design [14].
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continuous vibrations above the steel frames during the discharge process. The
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impact force on curved parts of the 76-in pipeline when the flow direction changes.
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software. Therefore, the finite element model could be modified to increase accu-
racy of the model by comparing frequencies with data recorded by accelerometers.
The higher-vibrated steel frame structure is suggested to increase stiffness by
installing steel bracing or enlarging column size. Based on the modified finite
element model, the effect of retrofitted design could be evaluated in software. After
retrofitting, the improvement of the steel frame could be demonstrated by further
accelerometers monitoring (Figure 18).

The accelerometer plays an important role in this industry case because it pro-
vides critical information for steel frame dynamic behavior due to unexpected
turbulence. Based on the monitoring data, the accuracy of the finite element model
could be enhanced. More accurate models can help structural engineers figure out
effective methods to reduce vibration which potentially leads to serious industrial
disasters. The improvement could also be validated by further monitoring using
accelerometers. On the other hand, steel frame vibration caused by the 76-in pipe-
line turbulence is also related to the volume of waste delivered to the flare stack.
Therefore, the safe range of waste consumption could be determined to avoid
insecure vibrations of the steel frame.

Figure 17.
Finite element model [16].

Figure 18.
Research flowchart [16].
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9. Conclusion

The purpose of the infrastructural monitoring is to have efficient use of the
materials, energy, and labor to increase the performance of infrastructures.
Advances of modern remote monitoring increase the efficiency, which is demon-
strated in case studies. The emerging sensor technologies, no matter in situ, on-site,
or airborne sensors, are increasingly used in the infrastructure sensing. An inte-
grated structural health monitoring system (ISHM) includes the ability to extract
information from sensor data to establish trends, such as the sensor signatures and
structural damage, and make recommendation of actions to ensure the health of the
infrastructures.

Author details

Chung C. Fu*, Yifan Zhu and Kuang-Yuan Hou
The Bridge Engineering Software and Technology (BEST) Center, Department of
Civil and Environmental Engineering, University of Maryland, College Park, MD,
USA

*Address all correspondence to: ccfu@umd.edu

©2019 TheAuthor(s). Licensee IntechOpen. This chapter is distributed under the terms
of theCreativeCommonsAttribution License (http://creativecommons.org/licenses/
by/3.0),which permits unrestricted use, distribution, and reproduction in anymedium,
provided the original work is properly cited.

123

Utilization of Dynamic and Static Sensors for Monitoring Infrastructures
DOI: http://dx.doi.org/10.5772/intechopen.83500



software. Therefore, the finite element model could be modified to increase accu-
racy of the model by comparing frequencies with data recorded by accelerometers.
The higher-vibrated steel frame structure is suggested to increase stiffness by
installing steel bracing or enlarging column size. Based on the modified finite
element model, the effect of retrofitted design could be evaluated in software. After
retrofitting, the improvement of the steel frame could be demonstrated by further
accelerometers monitoring (Figure 18).

The accelerometer plays an important role in this industry case because it pro-
vides critical information for steel frame dynamic behavior due to unexpected
turbulence. Based on the monitoring data, the accuracy of the finite element model
could be enhanced. More accurate models can help structural engineers figure out
effective methods to reduce vibration which potentially leads to serious industrial
disasters. The improvement could also be validated by further monitoring using
accelerometers. On the other hand, steel frame vibration caused by the 76-in pipe-
line turbulence is also related to the volume of waste delivered to the flare stack.
Therefore, the safe range of waste consumption could be determined to avoid
insecure vibrations of the steel frame.

Figure 17.
Finite element model [16].

Figure 18.
Research flowchart [16].

122

Advanced Remote Sensing Technology for Synthetic Aperture Radar Applications,Tsunami…

9. Conclusion

The purpose of the infrastructural monitoring is to have efficient use of the
materials, energy, and labor to increase the performance of infrastructures.
Advances of modern remote monitoring increase the efficiency, which is demon-
strated in case studies. The emerging sensor technologies, no matter in situ, on-site,
or airborne sensors, are increasingly used in the infrastructure sensing. An inte-
grated structural health monitoring system (ISHM) includes the ability to extract
information from sensor data to establish trends, such as the sensor signatures and
structural damage, and make recommendation of actions to ensure the health of the
infrastructures.

Author details

Chung C. Fu*, Yifan Zhu and Kuang-Yuan Hou
The Bridge Engineering Software and Technology (BEST) Center, Department of
Civil and Environmental Engineering, University of Maryland, College Park, MD,
USA

*Address all correspondence to: ccfu@umd.edu

©2019 TheAuthor(s). Licensee IntechOpen. This chapter is distributed under the terms
of theCreativeCommonsAttribution License (http://creativecommons.org/licenses/
by/3.0),which permits unrestricted use, distribution, and reproduction in anymedium,
provided the original work is properly cited.

123

Utilization of Dynamic and Static Sensors for Monitoring Infrastructures
DOI: http://dx.doi.org/10.5772/intechopen.83500



References

[1] Fu CC, Yunfeng Zhang, Yuan FG.
Development of a Self-sustained
Wireless Integrated Structural Health
Monitoring (ISHM) System for
Highway Bridges [Internet]. 2011.
Available from: http://ishm.umd.edu/
index.php [Accessed: June 10, 2018]

[2] Hsieh KH, Halling MW, Barr PJ.
Overview of vibrational structural
health monitoring with representative
case studies. Journal of Bridge
Engineering. 2006;11(6):707-715

[3] Farrar CR, Baker WE, Bell TM, Cone
KM, Darling TW, Duffey TA, et al.
Dynamic Characterization and Damage
Detection in the I-40 Bridge Over the
Rio Grande. NM (United States): Los
Alamos National Lab.; 1994. DOI:
10.2172/10158042. Web

[4] Bendat JS, Piersol AG. Engineering
Applications of Correlation and Spectral
Analysis. New York:Wiley-Interscience;
1980. 315 p

[5] Fu CC, Wang S. Computational
Analysis and Design of Bridge
Structures. USA: CRC Press; 2014.
ISBN-13 978-1466579842

[6] California Department of
Transportation (Caltrans). Available
from: http://www.dot.ca.gov [Accessed:
June 10, 2018]

[7] Michael Minor & Associates
(Oregon, USA). Available from: http://
www.drnoise.com [Accessed:
November 9, 2018]

[8] Andrews J, Buehler D, Gill H, Wesley
L. Transportation and Construction
Vibration–Guidance Manual, (CT-
HWANP-RT-13-069.25.3). CALTRAN;
2013

[9] Wikipedia. Acceleration [Internet].
Available from: https://en.wikipedia.org/
wiki/Acceleration#/media/File:1-D_kine
matics.svg [Accessed: June 10, 2018]

[10] Fu CC, Alayed H, Amde AM. Field
performance of the fiber reinforced
polymer (FRP) deck of a truss bridge.
United States: Journal of Performance of
Constructed Facilities, USA: ASCE.
2007;21(1 Jan/Feb):53-60

[11] Fu CC. Load Test Report—Bridge
No. 12016 on MD-24 over Deer Creek
(FRP Bridge Deck Replacement) to
Maryland State Highway
Administration and Federal Highway
Administration IBRC project. Rev. 2.
2003. Available from: https://cpb-us-e1.
wpmucdn.com/blog.umd.edu/dist/f/
392/files/2016/08/MD-24-Report_
R2-2egkdtr.pdf [Accessed: June 10,
2018]

[12] Li X, Sun M, Fu CC. Fast assessment
of hanger cables on arch-girder bridges.
In: Bridge Maintenance, Safety,
Management and Life Extension
Chapter 210. London: CRC Press/Taylor
& Francis Group. 2014. pp. 1527-1534

[13] Mahoney D. Large property damage
losses in the hydrocarbon-chemical
industries: A thirty-year review. M & M
Protection Consultants; 1997

[14] Yi-Chen Z, Tsung-Chin H. A field
study of dynamic measurement and
security assessment of large-scale
petrochemical structures [thesis].
Taiwan: Civil Engineering, National
Kaohsiung University of Science and
Technology; 2013

[15] PCB. Model 603C01 Platinum Low-
cost Industrial ICP® Accelerometer
Installation and Operating Manual; 2010

[16] Tsung-Hsuan L, Tsung-Chin H.
Dynamic simulation and strengthening
analysis of large steel frame structure
[thesis]. Taiwan: Civil Engineering,
National Cheng Kung University; 2014

124

Advanced Remote Sensing Technology for Synthetic Aperture Radar Applications,Tsunami…

125

Chapter 7

Geo Spatial Analysis for Tsunami 
Risk Mapping
Abu Bakar Sambah and Fusanori Miura

Abstract

Tsunami risk is a combination of the danger posed by tsunami hazard, the vulner-
ability of people to an event, and the probability of destructive tsunami. The spatial 
multicriteria approach made a possibility for integrating the vulnerability and risk 
parameters to assess the potential area that will be affected by the tsunami. The study 
applied the parameters of physical and social vulnerability and combined element at 
risk to assess tsunami risk in the coastal area of East Java Indonesia. All parameters in 
both tsunami vulnerability and tsunami risk assessment were analyzed through cell-
based analysis in geographical information system. The weight of each parameter was 
calculated through the analytical hierarchy process. The results were provided as maps 
of tsunami vulnerability and tsunami risk. Tsunami risk map described five classes 
of risk. It described that coastal area with a low elevation and almost flat identified as 
high risk to the tsunami. The coastal area with a high density of vegetation (mangrove) 
was defined as the area with low level of tsunami risk. The existence of river and other 
water canals in coastal area was also analyzed for generating tsunami risk map. Risk 
map highlights the coastal areas with a strong need for tsunami mitigation plan.

Keywords: tsunami, vulnerability, risk, geospatial, weighted overlay, GIS

1. Introduction

Tsunami can be defined as a series of waves created by an impulsive disturbance 
in the water body. It causes severe damage to coastal areas. A tsunami wave could be 
less than 1 m high in the open ocean and traveling at up to 800 km/h in which the 
wave energy will be extended from the surface to the ocean floor. The wave energy 
of tsunami will be compressed into a much shorter distance when it approaches the 
coast, creating potentially large destructive to the coastal areas [1]. A tsunami can 
be generated when the sea floor abruptly deforms and a bottom layer of water body 
displaces the overlying water vertically. One kind of earthquake that is related to the 
crustal deformation of the earth is tectonic earthquakes. When these earthquakes 
happen in the bottom of the sea, the water layer above the deformed area is dis-
placed from its equilibrium position. Waves are formed as the displaced water mass, 
which occurs due to the impact of gravity. A tsunami can be generated when large 
areas of the sea floor subside.

In the deep water of the open ocean, the speed of tsunami waves can be up to 
800 km/h. The energy wave of tsunami will decrease dramatically when it approaches 
the coast, but its height can be 10 times or more and have catastrophic consequences 
to the coastal areas. As a result, the low-lying areas of the coast and the areas near 
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Geo Spatial Analysis for Tsunami 
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Abstract

Tsunami risk is a combination of the danger posed by tsunami hazard, the vulner-
ability of people to an event, and the probability of destructive tsunami. The spatial 
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1. Introduction

Tsunami can be defined as a series of waves created by an impulsive disturbance 
in the water body. It causes severe damage to coastal areas. A tsunami wave could be 
less than 1 m high in the open ocean and traveling at up to 800 km/h in which the 
wave energy will be extended from the surface to the ocean floor. The wave energy 
of tsunami will be compressed into a much shorter distance when it approaches the 
coast, creating potentially large destructive to the coastal areas [1]. A tsunami can 
be generated when the sea floor abruptly deforms and a bottom layer of water body 
displaces the overlying water vertically. One kind of earthquake that is related to the 
crustal deformation of the earth is tectonic earthquakes. When these earthquakes 
happen in the bottom of the sea, the water layer above the deformed area is dis-
placed from its equilibrium position. Waves are formed as the displaced water mass, 
which occurs due to the impact of gravity. A tsunami can be generated when large 
areas of the sea floor subside.

In the deep water of the open ocean, the speed of tsunami waves can be up to 
800 km/h. The energy wave of tsunami will decrease dramatically when it approaches 
the coast, but its height can be 10 times or more and have catastrophic consequences 
to the coastal areas. As a result, the low-lying areas of the coast and the areas near 
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bay mouths or tidal flats will be highly vulnerable to the tsunamis. A tsunami can be 
generated through four special events, which are illustrated in Figure 1. These figures 
described that the distribution of tsunami was based on the effect and magnitude, 
which describes that mostly this event occurred in the area of “ring of fire,” a zone of 
active earthquakes and volcanoes, surrounds much of the Pacific Ocean.

1. Subduction zone

One of the many plates that make up earth’s outer shell descends under an adja-
cent plate. This kind of boundary is called a subduction zone. When the plates move 
suddenly in an area where they usually stick, an earthquake will happen.

2. Between earthquakes

Stuck to the subducting plate, the overriding plate gets squeezed. Its leading 
edge is dragged down, while an area behind bulges upward. This movement goes on 
for decades or centuries, slowly building up stress.

3. During earthquakes

An earthquake along a subduction zone happens when the leading edge of the 
overriding plate breaks free and springs seaward, raising the seafloor and water 
above it. This uplift starts a tsunami. Meanwhile, the bulge behind the leading lead 
collapses, flexing the plate downward and lowering the coastal area.

4. After earthquakes

Part of the tsunami races toward nearby land, growing taller as it comes into 
shore. Another part heads across the ocean toward distant shores.

The 2004 Indian Ocean earthquake and tsunami, the 2011 Tohoku earthquake 
and tsunami, and the 2018 Sulawesi Indonesia earthquake and tsunami show that 

Figure 1. 
Tsunami generations [2].
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this natural disaster is almost periodical event in 7–10 years along the area of ring 
of fire, a major area in the basin of the Pacific Ocean where many earthquakes and 
volcanic eruptions occur. The natural disaster includes tsunami is the even that it is 
impossible to reduce its occurrence, but the impact can be minimized by perform-
ing an initial assessment related to vulnerability and risk mapping.

Tsunami risk mapping combines the results of the tsunami vulnerability and 
tsunami hazard. This illustration is described in Figure 2. Assessing tsunami 
vulnerability and risk can provide important information for tsunami mitigation 
plan. This also plays an important role in preparing and mitigating for the future 
events of tsunami [3, 4]. A risk of a tsunami disaster is defined as the mathematical 
product of tsunami vulnerability and tsunami hazard. It refers to the expected loss 
from a given hazard to a given element at risk [5]. A disaster is a function of the risk 
process. Risk results from the combination of hazards, vulnerability, and insuf-
ficient capacity to minimize the negative impact of risk. In general, risk assessment 
combines the results of the hazard and vulnerability assessments [6].

Moreover, disaster risk assessment is a qualitative or quantitative approach to 
determine the nature and extent of disaster risk by analyzing potential hazards and 
evaluating existing conditions of exposure and vulnerability that together could 
harm people, property, services, livelihoods, and the environment on which they 
depend [7].

The implementation of tsunami risk assessment includes the effectiveness of 
mitigation will be the practical outcome of the study. Risk map can be used for 
both tsunami evacuation route and tsunami evacuation building setting. In order to 
create tsunami risk map, it is necessary for assessing the vulnerability areas due to 
tsunami in which the physical and social parameters of vulnerability are needed.

Figure 2. 
General concept of the study.
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Figure 1. 
Tsunami generations [2].
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Many approaches have been applied in order to map the potential areas affected 
by tsunami. A novel approach of tsunami vulnerability mapping in the application 
of geographical information system (GIS) together with the analysis of satellite 
remote sensing has been done to assess the risk areas due to tsunami. An overview 
of the use of geospatial data with emphasis on satellite remote sensing data and of 
the approaches used for hazard assessment is given. Satellite images have the advan-
tage of being able to deliver simultaneous images of wide areas [8–11]. Remote 
sensing imagery is already used for hazard-related applications since the advent of 
research-oriented satellite systems and sensors four decades ago.

In addition, with the aid of the GIS, geospatial analysis helps prioritize the 
decision-making process using georeference data. Geospatial analysis through the 
application of spatial multicriteria analysis is vastly different from conventional 
multicriteria decision-making techniques, due to the inclusion of an explicit 
geographic element. Spatial multicriteria analysis uses information on both the cri-
terion values and the geographical information, in addition to the decision-maker’s 
preferences with respect to a set of evaluation parameters [12, 13].

Some of the previous studies on tsunami vulnerability have analyzed remote 
sensing data, primarily to assess the physical vulnerability and risk of coastal 
areas. In addition to such studies, the application of remote sensing in hazard and 
vulnerability assessment related to ecological and socioeconomic vulnerability 
has been analyzed. Previous studies have also applied moderate-resolution optical 
satellite images and integrated analysis using GIS to identify inundation areas due to 
tsunamis [14–17]. GIS mapping of tsunami vulnerability has also applied using the 
Shuttle Radar Topography Mission (SRTM) to obtain the topographic data of the 
study area [18]. Another spatial analysis method has applied soil type, urban form, 
and social type system for the potential natural hazard mapping [Hsien] and has 
determined the tsunami-vulnerable area by comparing building damage map with 
the topography data, which is discussed with regard to land elevation, land use, and 
the distance from the coast [19].

Mapping of the 2011 Tohoku Earthquake tsunami inundation and run-up 
by survey also has been published [20]. A novel approach from the Coastal Risk 
Analysis for Tsunamis and Environmental Remediation (CRATER) project was 
applied for assessing tsunami vulnerability on a regional scale using ASTER imag-
ery and SRTM version 3. This work analyzed the vulnerability of coastal zones 
and inland areas using the parameters of infrastructural, geomorphological, and 
ecological features for coastal zones, and parameters of land use, altimetry, and 
distance from the shoreline for inland areas [21]. Tsunami vulnerability mapping 
along coastal area of East Java also applied using high resolution of elevation data 
from NEXTMap World 10.

The main contribution of this book chapter is to utilize the remote sensing 
technology based on geospatial technique to investigate the spatial tsunami risk 
impact on coastal zones. In this regard, the main objective is to establish a geospatial 
tool for monitoring the tsunami risk impacts along the coastal area of East Java, 
Indonesia.

2. Method

2.1 Study area

The study was applied at the south coastal area of East Java, Indonesia (Figure 3).  
The coastal areas of East Java including Malang district and Jember district were 
known as one of the important marine fishery resource spots in East Java. These areas 
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also affected by 1994 tsunami event along the coastal area of East Java. The tsunami 
genic earthquake occurred on June 3, 1994, in the Indian Ocean about 200 km south 
of Java. The earthquake, which had a surface-wave magnitude of 7.2 and a moment 
magnitude of 7.8 at 10.51°S and 112.87°E, generated a devastating tsunami that took 
the lives of more than 200 East Java coastal residents; with maximum run-up value 
of 9.50 m measured at Rajekwesi area, east part of the study area [22, 23].

2.2 Dataset

Tsunami vulnerability map was created using two deference sources of elevation 
data. Digital Elevation Model (DEM) from the ASTER Global Digital Elevation 
Model (ASTER GDEM) version 2 was applied to generate elevation and slope map. 
The Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER) 
GDEM is a joint product developed and made available to the public by the Ministry 
of Economy, Trade, and Industry (METI) of Japan and the United States National 
Aeronautics and Space Administration (NASA).

DEM of NEXTMap World 10 also applied for creating the elevation and slope 
parameter as a digital elevation data for physical tsunami vulnerability mapping. 
NEXTMap World 10 provides a 10 m resolution and makes the wide possibility 
for elevation analysis in large areas. This DEM was the combination process from 
SRTM90 v2.1: 90 m Digital Surface Model (DSM) collected from Interferometric 
Synthetic Aperture Radar (IFSAR) in February 2000, SRTM30: 30 m DSM also 
collected from IFSAR in February 2000, ASTER 30v2.0: 30 m DSM collected from 
optical sensor from 2005 to 2011, ICESat as a point data of LiDAR from Geoscience 
Laser Altimeter System (GLAS) satellite collected from 2003 to 2010, and GTOPO30: 
30 m DSM collected from eight raster and vector data from USGS in 1996.

Figure 3. 
Study area was the coastal area of East Java. [Points represent historical data of earth quake epicenter].
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In order to map the land use of the study area, ALOS satellite imagery with the 
instrument of the Advanced Visible and Near Infrared Radiometer type 2 (AVNIR-2)  
with the spatial resolution of 10 m was analyzed. Landsat 8 Operational Land 
Imager (OLI) with the spatial resolution of 30 m also applied for this land use map. 
Moreover, seismic data of the study area from 1992 to 2014 collected from the 
United States Geological Survey (USGS), and downloaded from http://earthquake.
usgs.gov/earthquakes/search/ was used as a supporting parameter for tsunami 
vulnerability in which further will generate the seismic map. In order to apply the 
overlay process, vector base map of East Java Indonesia was used to prepare vector 
data of coastal morphology, coastal line (coastal proximity), and river proximity.

2.3 Satellite image processing for land cover classification

2.3.1 Digital number to radiance conversion

The algorithm that applied for the conversion of DN to radiance applied Eq. (1) [24].

   L  λ   =  G  rescale   × QCAL +  B  rescale    (1)

in which Lλ is the spectral radiance at the sensor’s aperture (W/m2/sr/μm), Grescale 
is the rescaled gain, QCAL is the digital number (DN), and Brescale is the rescaled 
bias. Table 1 described rescaled gains and biases for ALOS AAVNIR-2 satellite.

2.3.2 Radiance to reflectance conversion

The conversion of radiance to reflectance applied the algorithm of Eq. (2) [25].

   𝝆𝝆  λ   = 𝝅𝝅 ×  L  λ   ×   d   2 ⁄ ESUN  λ    × cos  𝜽𝜽  s    (2)

where ρλ is the unitless planetary reflectance, Lλ is the spectral radiance at the 
sensor’s aperture, d2 is the earth-sun distance in astronomical units from a nautical 
handbook, ESUNλ is the mean solar exoatmospheric irradiance, and θs is the solar 
zenith angle in degree.

2.3.3 Decision tree classification

Satellite image classification was applied a decision tree classification. The value 
that was used for the range of classification was based on the normalized difference 
vegetation index (NDVI) value. NDVI is a measure of the difference in reflectance 
between these wavelength ranges with the values from −1 to 1. NDVI value more 
than 0.5 indicates dense vegetation and the value less than 0 indicates no vegetation 
including water. NDVI was calculated using Eq. (3) [26].

Band Grescale Brescale

1 0.5888 0

2 0.5730 0

3 0.5020 0

4 0.8350 0

Table 1. 
Rescaling gains and biases used for DN to spectral radiance conversion (for ALOS AVNIR-2).
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  NDVI =    (NIR − VIS)  _________ 
 (NIR + VIS) 

    (3)

NIR is the reflectance of near-infrared band and VIS is that of visible red band 
of satellite sensor. Band 3 is represented in red and band 4 is NIR.

Decision tree classification is a flowchart like a tree structure where each internal 
node donates a test on an attribute and each branch represents an outcome of the 
test and leaf nodes represent the class distribution [27]. The concept of decision 
tree classification is illustrated in Figure 4. The NDVI value was applied as a basic 
expression. Each decision is based on a numerical comparison with a selected 
threshold index, which makes the whole process easily repeatable. The decision 
tree is also applied in the study of tsunami vulnerability using ASTER imagery [21]. 
The main advantage of such approach is that data from many different sources can 
be processed together to make a single decision tree classifier. Decision tree tool is 
nonparametric; therefore, it makes no assumption on the distribution of the input 
data [28]. The NDVI represents a simple numerical indicator that can be used in 
analyzing remote sensing imagery and assessing whether the target being observed 
contains live green vegetation.

Decision tree classification step applied as below.

1. Entering the rules

a. The decision tree tool starts with one empty decision node that will divide 
the pixels in the dataset into two groups using binary decision expression 
entered into that empty node.

b. The first decision will be based on the medium resolution of satellite image. 
The decision can be created by adding the decision node labeled.

c. Expression of the decision can be set in the decision node based on the 
criteria of analysis (for example, NIR < 0.09). The text will appear in the 
decision node in the graphical view of decision tree.

d. The variable pairings dialog appears after adding the expression.

2. Pairing the expression variable with a file

In this step, an expression that already set will be linked to the associate file. 
This describes the decision tree that when evaluating this decision expression, the 
expression should be calculated from the associate file.

2.4  Data processing and analysis by modeling tsunami physical, social, and risk 
vulnerability

2.4.1 Physical and social vulnerability

Vulnerability mapping has been generated using the parameter of elevation, 
slope, coastal proximity, river proximity, coastal morphology (illustrated coastal 
type), and land use. Together with hazard or capacity, tsunami vulnerability is one 
of the parameters in assessing tsunami risk. The cell-based analysis was applied in 
combining all parameters through GIS process. Each tsunami vulnerability param-
eter was classified into five classes for vulnerability based on the criteria range as 
shown in Tables 1 and 2. The coastal proximity classes in meter were calculated 



Advanced Remote Sensing Technology for Synthetic Aperture Radar Applications, Tsunami...

130

In order to map the land use of the study area, ALOS satellite imagery with the 
instrument of the Advanced Visible and Near Infrared Radiometer type 2 (AVNIR-2)  
with the spatial resolution of 10 m was analyzed. Landsat 8 Operational Land 
Imager (OLI) with the spatial resolution of 30 m also applied for this land use map. 
Moreover, seismic data of the study area from 1992 to 2014 collected from the 
United States Geological Survey (USGS), and downloaded from http://earthquake.
usgs.gov/earthquakes/search/ was used as a supporting parameter for tsunami 
vulnerability in which further will generate the seismic map. In order to apply the 
overlay process, vector base map of East Java Indonesia was used to prepare vector 
data of coastal morphology, coastal line (coastal proximity), and river proximity.

2.3 Satellite image processing for land cover classification

2.3.1 Digital number to radiance conversion

The algorithm that applied for the conversion of DN to radiance applied Eq. (1) [24].

   L  λ   =  G  rescale   × QCAL +  B  rescale    (1)

in which Lλ is the spectral radiance at the sensor’s aperture (W/m2/sr/μm), Grescale 
is the rescaled gain, QCAL is the digital number (DN), and Brescale is the rescaled 
bias. Table 1 described rescaled gains and biases for ALOS AAVNIR-2 satellite.

2.3.2 Radiance to reflectance conversion

The conversion of radiance to reflectance applied the algorithm of Eq. (2) [25].

   𝝆𝝆  λ   = 𝝅𝝅 ×  L  λ   ×   d   2 ⁄ ESUN  λ    × cos  𝜽𝜽  s    (2)

where ρλ is the unitless planetary reflectance, Lλ is the spectral radiance at the 
sensor’s aperture, d2 is the earth-sun distance in astronomical units from a nautical 
handbook, ESUNλ is the mean solar exoatmospheric irradiance, and θs is the solar 
zenith angle in degree.

2.3.3 Decision tree classification

Satellite image classification was applied a decision tree classification. The value 
that was used for the range of classification was based on the normalized difference 
vegetation index (NDVI) value. NDVI is a measure of the difference in reflectance 
between these wavelength ranges with the values from −1 to 1. NDVI value more 
than 0.5 indicates dense vegetation and the value less than 0 indicates no vegetation 
including water. NDVI was calculated using Eq. (3) [26].

Band Grescale Brescale

1 0.5888 0

2 0.5730 0

3 0.5020 0

4 0.8350 0

Table 1. 
Rescaling gains and biases used for DN to spectral radiance conversion (for ALOS AVNIR-2).

131

Geo Spatial Analysis for Tsunami Risk Mapping
DOI: http://dx.doi.org/10.5772/intechopen.82665

  NDVI =    (NIR − VIS)  _________ 
 (NIR + VIS) 

    (3)

NIR is the reflectance of near-infrared band and VIS is that of visible red band 
of satellite sensor. Band 3 is represented in red and band 4 is NIR.

Decision tree classification is a flowchart like a tree structure where each internal 
node donates a test on an attribute and each branch represents an outcome of the 
test and leaf nodes represent the class distribution [27]. The concept of decision 
tree classification is illustrated in Figure 4. The NDVI value was applied as a basic 
expression. Each decision is based on a numerical comparison with a selected 
threshold index, which makes the whole process easily repeatable. The decision 
tree is also applied in the study of tsunami vulnerability using ASTER imagery [21]. 
The main advantage of such approach is that data from many different sources can 
be processed together to make a single decision tree classifier. Decision tree tool is 
nonparametric; therefore, it makes no assumption on the distribution of the input 
data [28]. The NDVI represents a simple numerical indicator that can be used in 
analyzing remote sensing imagery and assessing whether the target being observed 
contains live green vegetation.

Decision tree classification step applied as below.

1. Entering the rules

a. The decision tree tool starts with one empty decision node that will divide 
the pixels in the dataset into two groups using binary decision expression 
entered into that empty node.

b. The first decision will be based on the medium resolution of satellite image. 
The decision can be created by adding the decision node labeled.

c. Expression of the decision can be set in the decision node based on the 
criteria of analysis (for example, NIR < 0.09). The text will appear in the 
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expression should be calculated from the associate file.

2.4  Data processing and analysis by modeling tsunami physical, social, and risk 
vulnerability

2.4.1 Physical and social vulnerability

Vulnerability mapping has been generated using the parameter of elevation, 
slope, coastal proximity, river proximity, coastal morphology (illustrated coastal 
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shown in Tables 1 and 2. The coastal proximity classes in meter were calculated 



Advanced Remote Sensing Technology for Synthetic Aperture Radar Applications, Tsunami...

132

based on the measured run-up and water height in the surveyed area during the last 
tsunami event in the coastal area of East Java on June 3, 1994. It was calculated using 
algorithm Eq. (4) [29, 30].

  log  X  max   = log 1400 +  4 ⁄ 3  log  (  Y  0  ⁄ 10 )   (4)

Xmax is the maximum reach of the tsunami over land, and Y0 is the height of the 
tsunami at the coast.

Moreover, land use map was generated from supervised classification process 
of satellite mage. Maximum likelihood methods were applied in the supervised 
process. Land use class was divided into five classes, and each class was reclassified 
based on the vulnerability classes as shown in Tables 2 and 3. The selected sample 
for each land use class in the reflectance value of satellite digital image was collected 
to calculate the accuracy of classification result. The classification of land use was 
based on the spectral signature defined in the training set.

Vulnerability class Physical vulnerability

Elevation (m)1 Slope (%)2 Land use3

High <5 0–2 Urban

Slightly high 5–10 2–6 Agriculture

Moderate 10–15 6–13 Bare soil

Slightly low 15–20 13–20 Water

Low >20 >20 Forest
1Ref. [31].
2Ref. [32].
3Ref. [30].

Table 2. 
Physical tsunami vulnerability value range (1).

Figure 4. 
Illustration of decision tree applied in satellite image classification.
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In the term of social vulnerability analysis, a social parameter was needed. 
Social vulnerability can be defined as the exposure of groups or individuals to 
unexpected changes and disruption to livelihoods [34]. Social vulnerability also can 
be measured as a result of social and place inequalities [35]. Social vulnerability is 
defined also as the limitation of a community to the impact of natural disasters that 
influence its ability or resilience in order to mitigate and recover from and prepare 
for the impacts of disaster [36]. Social vulnerability map was created using four 
parameters and weighted equally based on the criteria as explained in Table 4.

2.4.2 Spatial multicriteria analysis

The parameters of both physical and social vulnerabilities are displayed in grid 
cells, which are then classified based on their value to five classes of vulnerabilities; 
they represent low, slightly low, medium, slightly high, and high vulnerability. 
All parameters will be overlaid in the raster data format (cell-based) based on 
their weight. Weighted overlay describes the technique for applying a common 
measurement scale of values to diverse and dissimilar inputs to create an integrated 
analysis. Weighted overlay also describes the type of suitability analysis that helps in 
analyzing site conditions based on multiple criteria. By identifying areas based on 
their criteria, weighted overlay analysis allows the user to combine weight and rank 
several different types of information and give the visualization of the result, in 
which multiple parameters can be evaluated at once [38]. Weights for all parameters 
are constructed in terms of pair-wise comparison matrix through analytical hierar-
chy process (AHP).

AHP can be defined as an approach for organizing and analyzing complex 
decisions, based on mathematics (matrix calculation) and psychology. In this study, 
AHP helps in constructing the weight of each parameter by applying expert judg-
ment. The result from AHP calculation then overlaid spatially in GIS methods. The 
concept of pair-wise comparison and AHP calculation is illustrated in four steps 
below.

Step 1. Construct pair-wise comparison matrix, in which each parameter will be 
compared to others as described below.

c1 c2 c3 c4 c5

c1 1 c1/c2 c1/c3 c1/c4 c1/c5

c2 c2/c1 1 c2/c3 c2/c4 c2/c5

c3 c3/c1 c3/c2 1 c3/c4 c3/c5

Vulnerability class Physical vulnerability

Coastal distance (m)1 River proximity (m)2 Coastal type2

High <293 0–100 V bay

Slightly high 293–514 100–200 U bay

Moderate 514–762 200–300 Cape

Slightly low 762–1032 300–500 Straight

Low >1032 >500 Neutral
1Based on Eq. (4) calculations.
2Ref. [33].

Table 3. 
Physical tsunami vulnerability value range (2).
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based on the measured run-up and water height in the surveyed area during the last 
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Moreover, land use map was generated from supervised classification process 
of satellite mage. Maximum likelihood methods were applied in the supervised 
process. Land use class was divided into five classes, and each class was reclassified 
based on the vulnerability classes as shown in Tables 2 and 3. The selected sample 
for each land use class in the reflectance value of satellite digital image was collected 
to calculate the accuracy of classification result. The classification of land use was 
based on the spectral signature defined in the training set.

Vulnerability class Physical vulnerability

Elevation (m)1 Slope (%)2 Land use3

High <5 0–2 Urban

Slightly high 5–10 2–6 Agriculture

Moderate 10–15 6–13 Bare soil

Slightly low 15–20 13–20 Water

Low >20 >20 Forest
1Ref. [31].
2Ref. [32].
3Ref. [30].

Table 2. 
Physical tsunami vulnerability value range (1).

Figure 4. 
Illustration of decision tree applied in satellite image classification.
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In the term of social vulnerability analysis, a social parameter was needed. 
Social vulnerability can be defined as the exposure of groups or individuals to 
unexpected changes and disruption to livelihoods [34]. Social vulnerability also can 
be measured as a result of social and place inequalities [35]. Social vulnerability is 
defined also as the limitation of a community to the impact of natural disasters that 
influence its ability or resilience in order to mitigate and recover from and prepare 
for the impacts of disaster [36]. Social vulnerability map was created using four 
parameters and weighted equally based on the criteria as explained in Table 4.

2.4.2 Spatial multicriteria analysis

The parameters of both physical and social vulnerabilities are displayed in grid 
cells, which are then classified based on their value to five classes of vulnerabilities; 
they represent low, slightly low, medium, slightly high, and high vulnerability. 
All parameters will be overlaid in the raster data format (cell-based) based on 
their weight. Weighted overlay describes the technique for applying a common 
measurement scale of values to diverse and dissimilar inputs to create an integrated 
analysis. Weighted overlay also describes the type of suitability analysis that helps in 
analyzing site conditions based on multiple criteria. By identifying areas based on 
their criteria, weighted overlay analysis allows the user to combine weight and rank 
several different types of information and give the visualization of the result, in 
which multiple parameters can be evaluated at once [38]. Weights for all parameters 
are constructed in terms of pair-wise comparison matrix through analytical hierar-
chy process (AHP).

AHP can be defined as an approach for organizing and analyzing complex 
decisions, based on mathematics (matrix calculation) and psychology. In this study, 
AHP helps in constructing the weight of each parameter by applying expert judg-
ment. The result from AHP calculation then overlaid spatially in GIS methods. The 
concept of pair-wise comparison and AHP calculation is illustrated in four steps 
below.

Step 1. Construct pair-wise comparison matrix, in which each parameter will be 
compared to others as described below.

c1 c2 c3 c4 c5

c1 1 c1/c2 c1/c3 c1/c4 c1/c5

c2 c2/c1 1 c2/c3 c2/c4 c2/c5

c3 c3/c1 c3/c2 1 c3/c4 c3/c5

Vulnerability class Physical vulnerability

Coastal distance (m)1 River proximity (m)2 Coastal type2

High <293 0–100 V bay

Slightly high 293–514 100–200 U bay

Moderate 514–762 200–300 Cape

Slightly low 762–1032 300–500 Straight

Low >1032 >500 Neutral
1Based on Eq. (4) calculations.
2Ref. [33].

Table 3. 
Physical tsunami vulnerability value range (2).
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c4 c4/c1 c4/c2 c4/c3 1 c4/c5

c5 c5/c1 c5/c2 c5/c3 c5/c4 1

sum S1 S2 S3 S4 S5

c1: parameter 1 c4: parameter 4
c2: parameter 2 c2: parameter 5
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n5: fifth iteration of principal eigenvalue
Step 3. Calculation of consistency ratio

  CR =   CI __ RI    (5)

  CI =    ( λ  max   − N)  ________  (N − 1)     (6)

in which, CR is consistency ratio, CI is consistency index, RI is random consis-
tency index, λmax is the principal eigenvalue, N is the number of the comparison 
matrix.

RI values depend on matrix size (N) as explained below.

Matrix size (N) 1 2 3 4 5 6 7 8 9 10

RI 0 0 0.58 0.90 1.12 1.24 1.32 1.41 1.45 1.49

If the value of CR in less than or equal to 0.10 (10%), the inconsistency is 
acceptable. If the CR is more than 10%, then the subjective judgment needs to be 
revised.

In AHP processing, pair-wise matrix was done to compare the importance of each 
parameter using Saaty’s nine scales. In the second step of AHP, the normalized matrix 
was applied to calculate the eigenvalue of the parameter in which the parameter’s 
weight was constructed. Eigenvalue represents the weight of each parameter, and 
it is applied after the fifth iteration of principal eigenvalue. Consistency ratio (CR) 

Parameters (a) ∑ (b) Proportion* (c) Score** (d)

Population density P (b)/total population (c)/maximum proportion

Gender G (b)/total woman (c)/maximum proportion

Age*** A (b)/total age (c)/maximum proportion

Disabilities D (b)/total disabilities (c)/maximum proportion

*Determine the factor of each village divided by number per subdistrict.

**The same value for all places on all the social variables.
***Number of elderly and children.

Table 4. 
Social vulnerability parameter [37].
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calculation was done to determine the inconsistency from AHP process in which RC 
should be less than 10%. Weighted linear combination is very straightforward in a 
raster GIS, and factors are combined by applying a weight value to each followed by a 
summation of the results to create both physical and social vulnerabilities using  
Eq. (7) [36] and Eq. (8).

  Vulnerability = ∑  ( W  i   ∙  X  i  )   (7)

 Total vulnerability = ∑  (physical vulnerability × weight)   
                    + (social vulnerability × weight)   (8)

where Wi is the weight value of the parameter i and Xi is the potential rating of 
the factor.

The illustration of weighted/cell-based overlay is described in Figure 5.

2.4.3 Risk assessment

Risk combines the vulnerability result with the probable level of loss to be 
expected from a predictable magnitude of hazard (which can be considered as the 
manifestation of the means that produces the loss). Risk, vulnerability, and hazard 
are the three factors or elements, which we are considering here in this pseudoequa-
tion. The terminology of risk also given by factor analysis of information risk which 
may be related to disaster is “the probable frequency and probable magnitude of 

Figure 5. 
Weighted/cell-based overlay illustration.
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calculation was done to determine the inconsistency from AHP process in which RC 
should be less than 10%. Weighted linear combination is very straightforward in a 
raster GIS, and factors are combined by applying a weight value to each followed by a 
summation of the results to create both physical and social vulnerabilities using  
Eq. (7) [36] and Eq. (8).

  Vulnerability = ∑  ( W  i   ∙  X  i  )   (7)

 Total vulnerability = ∑  (physical vulnerability × weight)   
                    + (social vulnerability × weight)   (8)

where Wi is the weight value of the parameter i and Xi is the potential rating of 
the factor.

The illustration of weighted/cell-based overlay is described in Figure 5.

2.4.3 Risk assessment

Risk combines the vulnerability result with the probable level of loss to be 
expected from a predictable magnitude of hazard (which can be considered as the 
manifestation of the means that produces the loss). Risk, vulnerability, and hazard 
are the three factors or elements, which we are considering here in this pseudoequa-
tion. The terminology of risk also given by factor analysis of information risk which 
may be related to disaster is “the probable frequency and probable magnitude of 
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Figure 6. 
Land use of the study area as the result of satellite image processing.

predicted losses” [34]. The value of risk can be calculated as the product of vulner-
ability and hazard level. Vulnerability level ranges from 1 to 5 from low to high 
vulnerability and hazard level ranges from 1 to 4. Risk was calculated using Eq. (9).

  R = V ×  H ⁄ 4   (9)

in which R is a risk, V is vulnerability, and H is a hazard.
R must be an integer number ranging from 1 to 5, where 5 stands for the maxi-

mum risk level. Once risk level has been calculated, it will be possible to plot it 
on a risk map by the process of GIS. Risk map was also generated using weighted 
cell-based overlay. Weighted overlay analysis allows the user to combine weight and 
rank several different types of information and visualize it, so multiple factors can 
be evaluated at once [38].

3. Result and discussion

3.1 Image classification for land use mapping

Land use is one of the parameters that is applied in the spatial multicriteria 
analysis in creating physical tsunami vulnerability map. Land use map was created 
using decision tree classification in which the concept was as illustrated in Figure 4. 
The result of the image classification is described in Figure 6.

In order to create a tsunami vulnerability map based on the land use, a category 
of vulnerability classes was applied in the land use raster map. Tsunami vulnerability 
map was created using the criteria as described in Table 1, in which it briefly described 
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that high class of vulnerability was set for the land use of urban area, slightly high for 
the agriculture, moderate for the bare soil area, slightly low for the water body, and 
low vulnerability class for the forest area. The reclassification of land use based on 
those criteria created the tsunami vulnerability map as shown in Figure 7.

Mostly, urban area was spread in the western part along the coastal of study area. 
These areas are known as a center of fishery activities with many fishing bases. An 
urban area spread in the low elevation until flat area, and it will get serious impact 
when tsunami wave approaches the coastal area. In the area with high density of 
coastal vegetation, the damage impact of the tsunami will be lower. Coastal vegeta-
tion, such as mangrove, can act as the barrier zone to reduce the energy of tsunami 
wave when it hits the coastal area, and it will also minimize the impact of tsunami.

3.2 Tsunami vulnerability mapping

Physical vulnerability map was created using six criteria with different weight. 
The weight of each criterion was calculated using pair-wise comparison matrix in 
the AHP approach. Some experts in the theme of tsunami prevention system and 
management were collected to construct the matrix of criteria. Pair-wise com-
parison matrix and the result calculation of CR for the physical vulnerability are 
described in Table 5.

Moreover, social vulnerability was calculated based on social database in the 
theme of population density, gender, age, and also education level. The map of 
these criteria is based on scoring and weight of each criterion, which will be basic 
information in determining both evacuation route and evacuation building. The 
calculation was based on [39] in which the first step in calculation was calculation 
of X for determining the percentage of woman. This calculation was using Eq. (10). 

Figure 7. 
Tsunami vulnerability map based on land use.
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that high class of vulnerability was set for the land use of urban area, slightly high for 
the agriculture, moderate for the bare soil area, slightly low for the water body, and 
low vulnerability class for the forest area. The reclassification of land use based on 
those criteria created the tsunami vulnerability map as shown in Figure 7.

Mostly, urban area was spread in the western part along the coastal of study area. 
These areas are known as a center of fishery activities with many fishing bases. An 
urban area spread in the low elevation until flat area, and it will get serious impact 
when tsunami wave approaches the coastal area. In the area with high density of 
coastal vegetation, the damage impact of the tsunami will be lower. Coastal vegeta-
tion, such as mangrove, can act as the barrier zone to reduce the energy of tsunami 
wave when it hits the coastal area, and it will also minimize the impact of tsunami.

3.2 Tsunami vulnerability mapping

Physical vulnerability map was created using six criteria with different weight. 
The weight of each criterion was calculated using pair-wise comparison matrix in 
the AHP approach. Some experts in the theme of tsunami prevention system and 
management were collected to construct the matrix of criteria. Pair-wise com-
parison matrix and the result calculation of CR for the physical vulnerability are 
described in Table 5.

Moreover, social vulnerability was calculated based on social database in the 
theme of population density, gender, age, and also education level. The map of 
these criteria is based on scoring and weight of each criterion, which will be basic 
information in determining both evacuation route and evacuation building. The 
calculation was based on [39] in which the first step in calculation was calculation 
of X for determining the percentage of woman. This calculation was using Eq. (10). 

Figure 7. 
Tsunami vulnerability map based on land use.
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The second step was to calculate the score of woman by calculating the ratio of X for 
determining scale using Eq. (11)

  X =   total of woman in district   _________________________  
total of woman in study area

    (10)

  score for woman =   X _______________ maximum X    (11)

Scoring of the parameter was calculated using Table 6.
By using Eq. (8), tsunami vulnerability map was created. The map of tsunami 

vulnerability is shown in Figure 8, which illustrated that from the analysis of both 
physical and social parameters of vulnerability, the high class of tsunami vulnerabil-
ity area is found in the area with low elevation along the coastal area. The coastal area 
vulnerable to tsunami inundation, the urban area, and infrastructure are not uni-
formly at risk within the flood zone [35]. The affected area due to tsunami is related 
both to vulnerability and to the tsunami wave energy; it is also related to the source 
of earthquake epicenter. Damage level to buildings in the urban area depends on 
building type and the height of the building and on inundation depth [37] or could 
depend on vegetation density around the coastal area. Mangrove can be a buffer zone 
for the impact of tsunami wave and it is assumed that it will reduce tsunami impact.

3.3 Seismic analysis and tsunami run-up

Seismic data consist of physical measurements, seismic sources, seismic waves, 
and their propagating media. The purpose of seismic data processing is to learn 
something about the earth’s interior. It needs to figure out some specific relations 
between the intended targets and measurable parameters in order to understand 
certain aspects of the earth [38]. All initial tsunami warnings are based on early 
detection and characterization of seismic activity. Due to the fundamental differ-
ences in nature between the solid earth in which an earthquake takes place and the 
fluid of ocean where tsunami gravity waves propagate, the vast majority of earth-
quakes occurring on a daily basis do not trigger appreciable or even measurable 
tsunamis. It takes a large event (magnitude more than 7.0) to generate a damaging 
tsunami in the near field and a great earthquake (magnitude more than 8.0) to 
generate a tsunami in the far field [39].

Normalized principal eigenvector (fifth iteration)

c.1 c.2 c.3 c.4 c.5 c.6 %

c.1 0.28 0.29 0.353 0.288 0.184 0.273 28

c.2 0.187 0.194 0.176 0.231 0.184 0.182 19

c.3 0.14 0.194 0.176 0.231 0.245 0.136 18

c.4 0.112 0.097 0.088 0.115 0.184 0.182 12

c.5 0.187 0.129 0.088 0.077 0.122 0.136 13

c.6 0.093 0.097 0.118 0.058 0.082 0.091 9

CI = 0.032, CR = 2.6%.
c.1: elevation; c.2: slope; c.3: coastal distance; c.4: river proximity; c.5: coastal type; c.6: land use.

Table 5. 
Pair-wise comparison matrix.
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Coastal area of East Java was identified as the area with high number of the 
seismic point with the depth of 1–5 km in average and the range of magnitude was 
1 to more than 6. As the result, the coastal area of East Java can be classified as a 
high risk to tsunami. Based on historical event, it was a magnitude of 7.8 Mw in 
the depth of 18 km that identified the geographic position in latitude of −10.477° 
and longitude of 112.835°, caused a big tsunami, and affected the coastal area of 
East Java.

Tsunami run-up parameter plays as an important role in determining tsunami 
risk. This parameter is also classified as a main parameter in hazard criteria. The 
historical tsunami event close the coastal area of East Java in 1994 was used as basic 
data for run-up analysis. The maximum run-up was recorded around 11.2 m at 
Tempurejo district, and minimum run-up was 3.1 m in the area of Puger district. 
The run-up analysis described seven run-up points along the coastal area. The last 
survey described that in the North West part of the study area (Cape Pelindu), a 
small fishermen village where a fishery created a sort of barrier to the sea water, 

Parameter (a) Proportion (b) Score (c) Weight 
(d)

Population density (b)/total population (c)/maximum proportion 25

Gender (b)/total woman (c)/maximum proportion 25

Age (b)/total age (c)/maximum proportion 25

Disabilities (b)/total disabilities (c)/maximum proportion 25

Table 6. 
Weight of the parameter for social vulnerability [39].

Figure 8. 
Tsunami vulnerability map.
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separating houses from the ocean [37]. The fishery defense wall and three typical 
straw houses were destroyed. According to eyewitnesses, three big waves followed 
each other, the third one being the biggest. The measured maximum water height 
was 3.20 m, and the maximum water ingression was about 350 m.

3.4 Tsunami risk mapping

Tsunami risk map describes five classes of risk level. Moderate until the high 
class of tsunami risk was found in the western part of the study area. This area is 
mostly covered by flat elevation, bare soil, and the area that contains rare density 
of coastal vegetation and high density of building area. Previous tsunami event 
recorded that run-up of 4.85–5.85 m happened in this area.

Tsunami risk map was created by the spatial integration of vulnerability and 
hazard map. Tsunami risk can be defined as a combination of the danger posted by 
tsunami event, the vulnerability of people to tsunami hazard, and the probability of 
destructive tsunami. Tsunami risk as the result of this study is described in Figure 9. 
Tsunami waves may undergo extensive refraction and create a process that may con-
verge their energy to particular areas on the coastal area and increase the heights and 
run-up of the waves when they hit the coastal area. High risk of a tsunami is depend-
ing on the depth of water, the coastal geomorphology, the direction of the tsunami 
wave, and the existence of rivers or other water canals.

The high density of mangrove in coastal areas and the existence of reefs can 
play as a barrier to reduce the effect of the tsunami wave, as well as the islands 
with steep-sided fringing are only at moderate risk from tsunamis. Study about 
predicting tsunami inundation area using coastal vegetation density was carried 

Figure 9. 
Tsunami risk map.
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out after the 2011 Japan tsunami and found that coastal vegetation is also an impor-
tant feature to reduce tsunami wave [30]. The high density of mangrove along the 
coastal area has the capacity to minimize the negative impact of a tsunami wave. 
Dense mangrove forests growing along coastal areas can help reduce the devastat-
ing impact of tsunamis and coastal storms by absorbing some of the wave’s energy. 
When the tsunami struck India’s southern state of Tamil Nadu on 26 December, for 
example, coastal areas with dense mangroves (areas of Pichavaram and Muthupet) 
suffered fewer human casualties and less damage to property compared to areas 
without mangroves [40].

The use of pair-wise comparison in AHP process helps in the analysis of spa-
tial multicriteria data where all of the parameters were calculated based on their 
weight factor. The calculation of weight as a result of pair-wise comparison matrix 
was created from expert judgment, from a person who was selected based on his/
her expertise in tsunami hazard, and disaster mitigation. Tsunami vulnerability 
research in Alexandria applied all parameters in equal weight due to the limitation 
of knowledge regarding the study area [14].

High tsunami risk areas were mostly found in the coastal area with the sloping 
coast type. Elevation and slope play an important role in governing the stability of a 
terrain. Tsunami vulnerability research in Bali, Indonesia, shows the distribution of 
vulnerability is not uniform and physically it is highly influenced by coastal prox-
imity, elevation, and slope [29, 37]. Tsunami risk map that described here is based 
on the integrated approach and provided to the people in the near future due to less 
information about tsunami risk in the study area.

4. Conclusions

Tsunami risk can be assessed using the application of spatial multicriteria 
analysis followed by weighted cell-based processing in terms of GIS. DEM data 
were applied as basic data for creating the parameter of tsunami vulnerability. The 
result performed here can be used for the evacuation and reconstruction plan due to 
the tsunami disaster. Also, this will be important basic information in determining 
both evacuation building and the evacuation route in the coastal areas. Moreover, 
the final target of tsunami risk mapping is to reduce the effect of the tsunami to the 
coastal areas where the population is dense by generating a good mitigation plan. 
The integrated approach of raster weighted overlay of all spatial databases of tsu-
nami vulnerability and risk parameters specified the vulnerability and risk area due 
to the tsunami and defined the possible area that could be affected by the tsunami 
and the potential inundated area. The weight of each parameter was calculated by 
pair-wise comparison matrix from the construction of expert judgment, in which 
every parameter was weighted not equally.

The overlay processing of tsunami risk map and existing land use, also the 
distribution of infrastructure and main public facilities, will define the priority area 
that needs first to be evacuated when tsunami happens. The result of weighted over-
lay illustrated that high land use of tsunami vulnerability and tsunami risk mostly 
in the class of urban area in which it is describe the high density of population. 
Forest area was indicated in the low class of tsunami risk. The green belt mitigation 
is one of the projects to construct the distribution of coastal vegetation (mangrove) 
and set it as the barrier zone to reduce the energy of tsunami wave when comes to 
coastal area and to minimize the negative impact of the wave to the coastal area. 
More parameters of physical and social vulnerability to tsunami disaster are needed 
to produce more detailed result.
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and the potential inundated area. The weight of each parameter was calculated by 
pair-wise comparison matrix from the construction of expert judgment, in which 
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Chapter 8

Utilization of Unmanned Aerial
Vehicle for Accurate 3D Imaging
Yoichi Kunii

Abstract

In order to acquire geographical data by aerial photogrammetry, many images
should be taken from an aerial vehicle. After that, the images are processed with the
help of the structure-from-motion (SfM) technique. Multiple neighboring images
with a high rate of overlapping should be obtained for high-accuracy measurement.
In the event of natural disasters, UAV operation may sometimes involve risk and
should be avoided. Therefore, an easy and convenient method of operating the
UAVs is needed. Reports exist on some applications of the UAVs with other devices;
however, it will be difficult to prepare a number of such devices in emergency. We
considered the most suitable condition for image acquisition by using the UAV.
Specifically, some of the altitudes and the rate of overlapping were attempted, and
accuracies of the 3D measurement were confirmed. Furthermore, we developed a
new camera calibration and measurement method that requires only a few images
taken in a simple UAV flight. The UAV in this method was flied vertically and the
images were taken at a different altitude. As a result, the plane and height accuracy
was �0.093 and �0.166 m, respectively. These values were of higher accuracy than
the results of the usual SfM software.

Keywords: UAV, 3D measurement, camera calibration, overlapping, accuracy

1. Introduction

The demand for the unmanned aerial vehicles (UAVs) is increasing as they find
applications in various fields. For example, more accurate geographical data can be
acquired by using the UAVs than by using the usual aerial photogrammetry [1]. The
UAVs can take high resolution images as they are able to fly at low altitudes [2]. In
addition, the UAVs can be used for observation of natural disasters [3, 4] or for
surveying the construction sites [5, 6]. Such applications need rapid and low-cost
surveying, and the UAVs are well suited for that purpose [7]. In the case of applying
this method to the public survey, the manual published by the Geographical Survey
Institute of the Ministry of Land, Infrastructure and Transport in Japan prescribes
that the overlap ratio between continuous images is 80% or more. Therefore, even
in a narrow target area, it should be taking about several dozen sheets. Also,
photogrammetry software equipped with SfM (Structure from Motion), which is
now mainstream, also supports such a large number of images. However, since the
imaging method as described above requires technology and labor for operating the
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UAV, there is a concern in terms of cost, such as requiring a dedicated operator
when applying in various construction sites or the like.

Therefore, when applying survey by UAV in the landscaping space, with the aim
of minimizing the labor of imaging while ensuring adequate measuring accuracy,
measuring precision with respect to change in ground level and the number of
images taken to be verified. In addition, we tried 3D modeling in urban plaza and
hilly terrain by using the obtained results. Furthermore, we developed a new cam-
era calibration and measurement method which requires only a few images taken in
a simple UAV flight. The UAV in this method was flied vertically and the images
were taken at a different altitude. We compared the measurement accuracy of the
proposed method against the SfM method and evaluated the performance of the
proposed method by checking the accuracy.

2. Background of UAV photogrammetry

UAV has been developed for military purposes in the United States since the
1950s and has been developed as a small unmanned reconnaissance aircraft around
1970 due to progress of electronic guidance technology and the like. Utilization of
UAV in Japan started spreading because it was used since the late 1990s for spraying
pesticides; now it is applied in information gathering and surveying at various sites,
and its use in media and entertainment is expanding. Among them, aerial photo-
grammetry is an application field of particular importance. Normal aerial photo-
grammetry is carried out by a manned aircraft to image the ground above several
hundred to several thousand meters from the altitude to the ground, mainly to
create a topographic map. On the other hand, since the altitude of the UAV to the
ground is as low as several tens to 100 m, it is possible to create a more detailed
topographic map than the manned aircraft. Also, since UAV is inexpensive,
maneuverable, and easy to operate compared with a manned aircraft, it demon-
strates superior ability in capturing terrain during emergencies such as when a
disaster occurs. Furthermore, it is expected to be a tool to improve the efficiency of
surveying in earthworks and concrete works. Therefore, it can be said that evalua-
tion of measurement accuracy for UAV photogrammetry is required due to such
applications.

3. Acquisition of images for evaluation

3.1 UAV devise and test site

The images for checking the accuracy were taken at a UAV test site in
Kanagawa, Japan. The UAV test site is managed by the Japan Society for Photo-
grammetry and Remote Sensing. Figure 1 shows the entrance to the UAV test site.
There are 76 points of circular ground marks that have Japanese national coordinate
in the test area of about 5000 m2, as shown in Figure 2. The center coordinates of
the ground marks were given by performing the ground survey of the whole site by
a total station. This allowed comparing the given coordinates and the results of the
UAV photogrammetry and checking the accuracy of the photogrammetry.

Figure 3 shows the UAV “DJI Inspire 1” which was used for taking the images.
The camera “FC350” on the Inspire 1 has 4000 � 2250 pixels and 4 mm focal
length.
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3.2 Altitude and overlapping rate

The taking the image of the accuracy verification on the test site was carried out
on 23 October, 2016. The altitude of the UAV was set as three stages of 40, 60,
and 80 m. The taking at each altitude was carried out so that the overlap ratio was
90% and the side lap ratio was 60%. As a result, the number of image acquired at
each altitude at the ground level was 135 for 40 m, 57 for 60 m, and 26 for 80 m.
Figure 4 shows samples of images taken at each altitude.

Figure 2.
76 ground marks in the test site.

Figure 1.
Entrance to UAV test site.
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Figure 3.
DJI Inspire 1.

Figure 4.
Sample images at each altitude. (a) 40 m, (b) 60 m, and (c) 80 m.
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4. Verification of measurement accuracy

4.1 Details of the verification

3D surveying for each ground mark was carried out by photogrammetry, and
accuracy verification was carried out using the image of the test site obtained by
such taking image. In the verification of accuracy, in addition to verification by
each altitude to ground level, verification is also required when using images with
overlap rates of 50, 60, 70, 80, and 90% in the form of thinning took images,
respectively. As a result, the number of images in the verification was 135 with the
relationship between the ground altitude and the overlap ratio of 40 m and 90%,
which was the largest number, and the number of the images was 6 in the case of
80 m and 50%. In the verification, among the 76 points of the ground marks at the
test site, 9 points, 13, 17, 25, 33, 42, 47, 70, 75, and 76, were set as control points. On
the other hand, the other 67 points were set as verification points, and the accuracy
verification of the 3D coordinates obtained for the verification point was decided.
For accuracy verification, Agisoft PhotoScan Professional (hereinafter referred to as
PhotoScan) which is a general photogrammetry software with SfM was used.

4.2 Results of the verification

In order to verify the accuracy for each condition, root mean square errors
(RMSEs) were calculated with the following equation.

σ0 ¼ �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
v21 þ v22 þ v23 þ⋯þ v2n

n� 1

r
¼ �

ffiffiffiffiffiffiffiffiffiffiffi
v2½ �

n� 1

r

where,
σ0 : RMSE

v : Residual error

n : Number of the data

(1)

Table 1 shows the results of accuracy verification carried out as mentioned
above. The measurement accuracy shown in the same table is set by setting the
value of the ground control point survey at each verification point to the true value
and the value of the photogrammetry by the UAV as the measurement value and
calculating the standard deviation calculated from the difference value of both at
each point. From this result, it can be confirmed that an accuracy of about �0.05 m
is obtained at any altitude of ground and overlap ratio. According to the precision
standard of earthmoving specified by the Ministry of Land, Infrastructure and
Transport, if it is within �0.1 m, it can be applied to the construction surveying and
rock surveying. The results of this verification can be confirmed to satisfy the
above-mentioned numerical values in any of the results. On the other hand, it is also
possible to apply it to measurement of shape within �0.05 m. Regarding this
numerical value, at the overlap rate of 90%, any ground altitude is satisfied; how-
ever, the result satisfied with 80% or less is mostly at the ground altitude of 40 m. In
theory, in the photogrammetry, the altitude of the ground is low, and as the overlap
rate becomes higher, the accuracy improves. It is thought that the results according
to the situation were obtained.

In addition to the above results, it was confirmed that certain results can be
obtained at any ground altitude and overlap rate in this verification. In other words,
in the landscaping space where various environments exist in natural space and
urban space, the possibility that the method of flight of UAV is limited may be
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considered; however, by this verification, it is possible to fly according to the local
situation.

From the above results, it is suggested that the usefulness of surveying in the
landscaping space using UAV was suggested, so the case of 3D modeling by UAV
conducted at the two survey sites is shown below.

5. Examples of application

5.1 Measurement for plaza

First of all, as an application to UAV’s open space in urban space, we decided to
do 3D modeling on Yurinoki Plaza at Tokyo University of Agriculture Setagaya
Campus (Setagaya, Tokyo) as shown in Figure 5. In the Yurinoki Plaza, several
trees were planted in a space of about 6000 m2 covered with lawn. In addition,
there are buildings such as research buildings around the open space, and these
buildings are also subject to 3D modeling. The images of Yurinoki Plaza were taken
by UAV, and a total of 431 images were taken. Of these, 87 images were taken from
the UAV in the vertical direction to the ground with an overlap rate of 80% from
the altitude of 20 m to the ground and the other 344 aimed the camera in the
horizontal direction. Figure 6 shows samples of the took image.

Table 1.
Result of accuracy verification.
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The image taken as mentioned above was processed by PhotoScan; 3D point cloud
data of each feature captured in the image was generated. Next, a high density point
cloud is generated from the obtained point cloud. Compared with the point cloud,
the high density point cloud has a high density of point clouds composed of data.
Therefore, it seems that texture is attached at the viewpoint from a distance, since it is
a set of points to the last, the part where the hole is open as a surface becomes
conspicuous because it is a set of points to the last. Figure 15 shows a target point
indicated by the high density point cloud. Finally, texture mapping was performed for
the high density point cloud, and a 3Dmodel could be generated as shown in Figure 7.
In addition, it was confirmed that the area of the plum tree calculated from the
created 3D model was 6358.4 m2, which was almost the same as the area (6357.7 m2)
obtained by ground survey by the total station. In addition, this plaza closed in 2017,
and a new research building scheduled for completion in 2020 is being built in this
place. In other words, since the results of this report acquired 3D data before closing
the open space, it is expected to be utilized as a record of changes in the campus.

5.2 Measurement for mountain area

As an application to the natural space of UAV, it is necessary to perform 3D
modeling on the hilly area of about 200,000 m2 between Tenjinzawa and

Figure 5.
Yurinoki Plaza.

Figure 6.
Image from UAV.
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Hatayazawa in Matsuda town, Kanagawa Prefecture, respectively, as shown in
Figure 8. This area was a place where Matsuda Castle was built in the late Heian era
(twelfth century) and is currently managed by Matsuda Town as Matsuda Castle
Ruins. The Tomei Expressway passes the southern end of the slope; however, the

Figure 7.
3D model of Yurinoki Plaza. (a) Vertical view, (b) Bird’s-eye view.

Figure 8.
Matsuda Castle Ruins.
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slope was excavated when constructing this expressway, and there was a circum-
stance that part of Matsuda Castle site was lost. In this research, the image taken at
the Matsuda Castle site by UAV was performed on May 19, 2016, and the image
taken with an 80% overlap ratio was secured from the altitude of 70 m. As a result,
the number of images taken was 949.

The images taken as mentioned above were processed by PhotoScan. The dif-
ference in height from the vicinity of the top of Matsuda Castle to the Tomei
Expressway, which was obtained from the created 3Dmodel, is about 66.3 m, which
is almost equal to the value (65.5 m) obtained from the Geographical Survey Insti-
tute. In addition, the created 3D model also includes the parts excavated by the road
construction mentioned above. Therefore, the terrain before excavation clarified by
the excavation survey was reproduced as shown in Figure 9 in complementing the
current 3D model. As a result, it is expected that the drilling site by road construc-
tion will become visibly apparent, and it will be useful for preservation and man-
agement of the future remains.

6. Development of new photogrammetric method

In the above sections, many images should be taken from an aerial vehicle which
moves in the horizontal direction and at a fixed altitude [8]. After that, the images
are processed with the help of the SfM technique [9]. Multiple neighboring images
with a high rate of overlapping should be obtained for high accuracy measurement
[10], which calls for labor and cost. In the event of natural disasters, UAV operation
may sometimes involve risk [11] and should be avoided. Therefore, an easy and
convenient method of operating the UAVs is strongly needed. Reports exist on
some applications of the UAVs with other devices [12]; however, it will be difficult
to prepare a number of such devices in emergency.

In this research, we developed a method of limiting the movement of UAV only
in the vertical direction, using only a small number of images vertically taken at
different ground altitudes and performing aerial photogrammetry without using the
ground reference point. In addition, in order to evaluate the performance of the
developed method, verification was performed by comparing surveying accuracy
with general photogrammetry software.

6.1 Acquisition of images for evaluation

The images for checking the accuracy were also taken at a UAV test site, and DJI
Inspire 1 also was used for taking the images.

Figure 9.
3D modeling for Matsuda Castle Ruins and excavation area.
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Figure 7.
3D model of Yurinoki Plaza. (a) Vertical view, (b) Bird’s-eye view.

Figure 8.
Matsuda Castle Ruins.
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slope was excavated when constructing this expressway, and there was a circum-
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Since the method developed in this research eliminates the ground control point,
the obtained 3D coordinates are local coordinates based on arbitrary origin and
coordinate axes. Also, to calculate 3D coordinates by this method, it is necessary to
give only the distance between two arbitrary points as a known quantity. In this
research, we decided to treat the distance (14.831 m) between the airspace signs No.
27 and 35 as shown in Figure 10 as a known amount.

6.2 Theory of the proposed method

In this research, photogrammetry is carried out by using a plurality of vertical
images taken from UAV and acquiring common corresponding points for each
image. In general photogrammetry procedures, first of all, after performing orien-
tation processing (camera calibration) to obtain exterior orientation parameters
such as shooting points and posture of the camera at the time of shooting and
interior orientation parameters such as focal length and lens distortion correction
coefficient, 3D surveying of the measurement point will be carried out. However,
the method developed in this research is to obtain the optimal solution of each
parameter while advancing the camera calibration and the 3D survey at the same
time. The details of this method will be described below for each procedure.

6.2.1 Estimation of relative distance

We estimate relative positional relationships with each principal point with
respect to a plurality of vertical images taken from the UAV. Figure 11 schemati-
cally shows the situation of the camera at the time of taking each image, and it is
assumed to be 1, 2, … in descending order of altitude to ground. First, the approx-
imate ground altitude for each image was calculated. In this calculation, let the
arbitrary two point distance set as described above be a known amount L, let the
length on the sensor when L is took on the image be l1, l2,… the focal point of the
camera when the distance is f, the approximate imaging heights H1, H2, … for each
image are obtained by the following equation.

Hi ¼ L
li
f i ¼ 1; 2; 3;⋯ð Þ (2)

Figure 10.
Given distance between 2 points.
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where,
Hi : Altitude of pictures approximateð Þ mð Þ
L : Given distance mð Þ
li : Given distance on sensors mð Þ
f : Focal length approximateð Þ mð Þ

Therefore, the relative distance between the lowest principal point and the other
Bz1, Bz2, … and Bz5 could be calculated by the following equation.

Bzi ¼ Hi �H1 i ¼ 1; 2; 3;⋯ð Þ
where,
Bzi : Distance between principal points approximateð Þ mð Þ
Hi : Altitude of pictures approximateð Þ mð Þ

(3)

6.2.2 Relative orientation

The relative orientation is to obtain relative took points and postures with
respect to a plurality of took images. Generally, relative orientation is often
performed only between two images; however, in this study, based on the image
No.1 in Figure 11 as a reference, relative orientation with respect to the other
images after image 2. We decided to do all at the same time. In other words, it is
assumed that image 1 is taken with no inclination at the origin of the relative
coordinates, and the relative point and rotation angle at the time of taking after the
image 2 are obtained at the same time. Furthermore, with respect to mutual orien-
tation in this research, the interior orientation parameter of the camera is also set as
an unknown quantity as a parameter common to each image, and the orientation is
performed at the same time. Figure 12 shows a coplanar condition that focuses on
only No. 1 and 5 images. The principal points of these two images and a common

Figure 11.
Positional relation of vertical images.
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where,
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point P are set as one plane (epipolar plane). Hereinafter, the details of the present
method will be described based on the figure.

Let the principal points of each image be O1(0, 0,0) and O5(Bx, By, Bz), image
points of P be p1(x1, y1) and p5(x5, y5). Then, the relationship of these two images is
expressed by the following coplanarity equation.

Bx By Bz

X1 Y1 Z1

X5 Y5 Z5

��������

��������
¼ 0

where,
X1
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ω,ϕ, κ : rotation angle of No:5

f : focal length

(4)

The relative distance Bz1 obtained by Eq. (3) is substituted for Bz in Eq. (4). That
is, under normal coplanar conditions, Bx is a fixed value; however, in this case,

Figure 12.
Coplanarity condition of two vertical images.
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relative orientation is done with Bz as a known quantity. Furthermore, in the mutual
orientation in this method, since the interior orientation parameter common to each
image is also treated as an unknown quantity, it is necessary to consider the interior
orientation parameter with respect to the image coordinates of the image points p1
and p5. That is, considering the principal point positions as u0 and v0, the scale
factors as a1, a2, a3, and a4, as for the lens distortion, the radiation direction
(coefficients: k1, k2, and k3) and the tangential direction (p1, p2), (xi, yi) (i = 1, 5) in
the Eq. (4) is obtained by converting the pixel coordinates (ui, vi) (i = 1, 5) obtained
from each took image by the following equation.

xi ¼ x0i þ x0i k1r
2 þ k2r4 þ k3r6

� �þ p1 r2 þ 2x02i
� �

þ 2p2x
0
iy
0
i

yi ¼ y0i þ y0i k1r
2 þ k2r4 þ k3r6

� �þ p2 r2 þ 2y0i2
� �þ 2p1x

0
iy
0
i

9=
;

where,
k1, k2, k3 : Coefficients of radial distortion

p1, p2 : Coefficients of tangential distortion

r ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x02i þ y02i

p

ui ¼ xp þ a1x0i þ a2y0i
vi ¼ yp þ a3x0 þ a4y0i
x0i, y

0
i : Measurement point mmð Þ

ui, vi : Measurement point pixelð Þ
xp, yp : Principal point pixelð Þ
a1, a2, a3, a4 : Scale factor

(5)

By sequentially deriving the coplanar conditional expressions from each pair
based on image 1, the parameters shown in Table 2 are unknown quantities in the
mutual orientation here. In other words, if one set of corresponding points is
obtained between each image, one coplanar condition formula can be obtained, so it
is necessary to acquire corresponding points so that a coplanar condition formula
exceeding the number of unknown quantities can be obtained. For example, if the
number of images is five, the unknown quantity is 10 + 5� (5� 1) = 30; however, if
8 or more corresponding points are obtained, the coplanar conditional expression
becomes 8 � (5 � 1) = 32 or more, and it is possible to obtain a solution.

Table 2.
Unknown parameters of relative orientation.
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relative orientation is done with Bz as a known quantity. Furthermore, in the mutual
orientation in this method, since the interior orientation parameter common to each
image is also treated as an unknown quantity, it is necessary to consider the interior
orientation parameter with respect to the image coordinates of the image points p1
and p5. That is, considering the principal point positions as u0 and v0, the scale
factors as a1, a2, a3, and a4, as for the lens distortion, the radiation direction
(coefficients: k1, k2, and k3) and the tangential direction (p1, p2), (xi, yi) (i = 1, 5) in
the Eq. (4) is obtained by converting the pixel coordinates (ui, vi) (i = 1, 5) obtained
from each took image by the following equation.

xi ¼ x0i þ x0i k1r
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where,
k1, k2, k3 : Coefficients of radial distortion

p1, p2 : Coefficients of tangential distortion

r ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x02i þ y02i

p

ui ¼ xp þ a1x0i þ a2y0i
vi ¼ yp þ a3x0 þ a4y0i
x0i, y

0
i : Measurement point mmð Þ

ui, vi : Measurement point pixelð Þ
xp, yp : Principal point pixelð Þ
a1, a2, a3, a4 : Scale factor

(5)

By sequentially deriving the coplanar conditional expressions from each pair
based on image 1, the parameters shown in Table 2 are unknown quantities in the
mutual orientation here. In other words, if one set of corresponding points is
obtained between each image, one coplanar condition formula can be obtained, so it
is necessary to acquire corresponding points so that a coplanar condition formula
exceeding the number of unknown quantities can be obtained. For example, if the
number of images is five, the unknown quantity is 10 + 5� (5� 1) = 30; however, if
8 or more corresponding points are obtained, the coplanar conditional expression
becomes 8 � (5 � 1) = 32 or more, and it is possible to obtain a solution.

Table 2.
Unknown parameters of relative orientation.

159

Utilization of Unmanned Aerial Vehicle for Accurate 3D Imaging
DOI: http://dx.doi.org/10.5772/intechopen.82626



6.2.3 Calculation of 3D actual coordinates

Since the relative orientation parameter and the interior orientation parameter
for all the images were obtained by the above processing, here, the calculation of the
3D relative coordinates for each measurement point is performed under the collin-
ear condition. The collinear condition is a condition in which the three points, the
ground survey point (X, Y, Z), the image point (x, y) on the sensor, and the
principal point (X0, Y0, Z0), exist in a straight line. Yes, it is expressed by the
following equation as a collinear condition expression.

x ¼ �f
a11 X � X0ð Þ þ a12 Y � Y0ð Þ þ a13 Z � Z0ð Þ
a31 X � X0ð Þ þ a32 Y � Y0ð Þ þ a33 Z � Z0ð Þ

y ¼ �f
a21 X � X0ð Þ þ a22 Y � Y0ð Þ þ a23 Z � Z0ð Þ
a31 X � X0ð Þ þ a32 Y � Y0ð Þ þ a33 Z � Z0ð Þ

where,
a11 a12 a13

a21 a22 a23

a31 a32 a33

0
BB@

1
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0 cosω � sinω
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0
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1
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0
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cos κ � sin κ 0

sin κ cos κ 0

0 0 1

0
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1
CCA

(6)

That is, since two collinear conditional expressions for one measurement point
are obtained for each image, if there are two or more images, it is possible to obtain
3D relative coordinates by 2 � 2 = 4 or more collinear conditional expressions. It is
possible to solve the three unknown quantities. As a result, 3D relative coordinates
for all measurement points are obtained.

Further, all of the obtained 3D relative coordinates are converted into the coor-
dinates of the real scale by the length given as the known amount as shown in
Figure 10. That is, from the ratio between the actual length and the length on the
sensor between points known as known amounts, the 3D relative coordinates for all
the measurement points are converted to the coordinates on the real scale. When
converting to real scale coordinates, it is necessary to set the coordinate origin and
coordinate axes.

6.2.4 Absolute orientation

Since the 3D coordinates on the real scale with respect to all the measurement
points are obtained by the above processing, here, the interior orientation parame-
ter common to each image and each exterior orientation parameter are determined
by absolute orientation. In other words, in this orientation, all collinear conditional
expressions are derived with all measurement points from which 3D coordinates are
obtained as ground reference points, and the interior orientation parameter shown
in Table 2 and the took points and attitude angles for each image. All exterior
orientation parameters are to be obtained at the same time. As a result, absolute
orientation for each image is completed.

6.2.5 Final orientation

The orientation parameters for every camera and the absolute 3D coordinates for
every measurement point were acquired by the procedure described above. How-
ever, errors in estimation of the absolute 3D coordinates are possible due to con-
version from the relative coordinates if using only one given distance. Therefore, as
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the final stage of this measurement process, all three orientation parameters for all
the orientation parameters and all the measurement points are regarded as
unknown quantities and the final line. The orientation process shall be carried out.

6.3 Checking accuracy

In order to evaluate the performance of the proposed method, image taking was
carried out at the UAV test site and the measurement accuracy verification was
carried out. The images were taken by UAV in the vertical direction from the center
of the UAV test site. Moreover, every 5 m in the range of the ground altitude of
approximately 70–90 m and acquires 5 photos in total as shown in Figure 13. In
addition, 3D coordinates for 39 points of anti-aircraft signs, which are commonly
found in 5 photos, were calculated by this development method and accuracy
verification was carried out based on residuals with known coordinates. At that
time, as shown in Figure 14, the origin is set to No. 27 anti-aircraft marker, the
direction of No. 35 is the X axis, the plane formed by these two points and three
points is the XY plane, the XY plane is set as the Z axis. In order to applying the
proposed orientation method for acquisition of 3D coordinate of these anti-aircraft
signs except origin point, the orientation can be performed by using only 2 images.
However, in the case of a small number of images, the observation equation and the
number of unknown quantities compete with each other, and the convergence state
of the calculation by the least squares method becomes unstable. Even in the images
taken in this research, trial was done with a small number of sheets; however, it was
difficult to stably obtain a convergent solution with 4 or less, so we decided to use
all 5 images. Table 3 shows the results of final orientation for 5 photos. Since the
ground altitude in the table is an approximate value obtained by independent
positioning with GPS mounted on UAV, a difference of several meters is generated
from the Z coordinate in the orientation result.

As shown in Table 4, the accuracy verification results showed that the mean
square error was within �0.200 m for both plane and height. When this precision is
applied to the surveying accuracy at the earthmoving site, it is considered that the
3D point group within the position accuracy of 0.20 m can be applied to partial
payment measurement, and it was recognized that it can be applied as a simple
method for earthwork.

Meanwhile, as a comparison target, measurement accuracy was also calculated
by general photogrammetry software. The software used is PhotoScan. In this
research, PhotoScan also captured the 5 images shown in Figure 13 and calculated

Figure 13.
Vertical images for checking accuracy. (a) 70 m, (b) 75 m, (c) 80 m, (d) 85 m, and (e) 90 m.
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6.2.3 Calculation of 3D actual coordinates

Since the relative orientation parameter and the interior orientation parameter
for all the images were obtained by the above processing, here, the calculation of the
3D relative coordinates for each measurement point is performed under the collin-
ear condition. The collinear condition is a condition in which the three points, the
ground survey point (X, Y, Z), the image point (x, y) on the sensor, and the
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are obtained for each image, if there are two or more images, it is possible to obtain
3D relative coordinates by 2 � 2 = 4 or more collinear conditional expressions. It is
possible to solve the three unknown quantities. As a result, 3D relative coordinates
for all measurement points are obtained.

Further, all of the obtained 3D relative coordinates are converted into the coor-
dinates of the real scale by the length given as the known amount as shown in
Figure 10. That is, from the ratio between the actual length and the length on the
sensor between points known as known amounts, the 3D relative coordinates for all
the measurement points are converted to the coordinates on the real scale. When
converting to real scale coordinates, it is necessary to set the coordinate origin and
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version from the relative coordinates if using only one given distance. Therefore, as

160

Advanced Remote Sensing Technology for Synthetic Aperture Radar Applications,Tsunami…

the final stage of this measurement process, all three orientation parameters for all
the orientation parameters and all the measurement points are regarded as
unknown quantities and the final line. The orientation process shall be carried out.

6.3 Checking accuracy

In order to evaluate the performance of the proposed method, image taking was
carried out at the UAV test site and the measurement accuracy verification was
carried out. The images were taken by UAV in the vertical direction from the center
of the UAV test site. Moreover, every 5 m in the range of the ground altitude of
approximately 70–90 m and acquires 5 photos in total as shown in Figure 13. In
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found in 5 photos, were calculated by this development method and accuracy
verification was carried out based on residuals with known coordinates. At that
time, as shown in Figure 14, the origin is set to No. 27 anti-aircraft marker, the
direction of No. 35 is the X axis, the plane formed by these two points and three
points is the XY plane, the XY plane is set as the Z axis. In order to applying the
proposed orientation method for acquisition of 3D coordinate of these anti-aircraft
signs except origin point, the orientation can be performed by using only 2 images.
However, in the case of a small number of images, the observation equation and the
number of unknown quantities compete with each other, and the convergence state
of the calculation by the least squares method becomes unstable. Even in the images
taken in this research, trial was done with a small number of sheets; however, it was
difficult to stably obtain a convergent solution with 4 or less, so we decided to use
all 5 images. Table 3 shows the results of final orientation for 5 photos. Since the
ground altitude in the table is an approximate value obtained by independent
positioning with GPS mounted on UAV, a difference of several meters is generated
from the Z coordinate in the orientation result.

As shown in Table 4, the accuracy verification results showed that the mean
square error was within �0.200 m for both plane and height. When this precision is
applied to the surveying accuracy at the earthmoving site, it is considered that the
3D point group within the position accuracy of 0.20 m can be applied to partial
payment measurement, and it was recognized that it can be applied as a simple
method for earthwork.

Meanwhile, as a comparison target, measurement accuracy was also calculated
by general photogrammetry software. The software used is PhotoScan. In this
research, PhotoScan also captured the 5 images shown in Figure 13 and calculated

Figure 13.
Vertical images for checking accuracy. (a) 70 m, (b) 75 m, (c) 80 m, (d) 85 m, and (e) 90 m.
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Local coordinate system.

Table 3.
Results of final orientation.

Table 4.
Results of checking accuracy.
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the 3D coordinates and measurement accuracy for anti-aircraft signs. At that time,
we tried two patterns, one with only the No. 27, 35, and 62 as the reference point
and one with the 39 points as the reference point. In addition, we also decided to
compare it with the case where shooting was performed by a general method as
photogrammetry. In other words, with the altitude of the ground set constant at
approximately 70 m, the UAV was made to fly in parallel, a total of 57 images were
taken to cover the entire test site with securing an overlap rate of 80%, and the
image was taken into PhotoScan. The 3D coordinates and measurement accuracy in
the case were also calculated. At that time, we decided to use the same number of 9
points as the standard photogrammetry. Also, as an index for evaluating each
measurement accuracy obtained above, the standard accuracy generally used in
photogrammetry was calculated by the following equation [13].

σx ¼ σy ¼ H
f
σp, σz ¼

ffiffiffi
2

p H
f
H
B
σp

where,

σx, σy, σz : Standard error for each axis mð Þ
H : Altitude mð Þ
f : Focal length mð Þ
B : Base line mð Þ
σp : Pointing accuracy mð Þ

(7)

In the above equation, since five vertical took images are used in this study, H in
Eq. (7) is the average value (83.944 m) of ground altitude after orientation for 5
images, B is 5. The standard accuracy was calculated using the distance (20.137 m)
between the two most distant images. As for the reading accuracy, as in the general
photogrammetry, one pixel was used, and the pixel was converted into the length
on the sensor of the camera and was used.

As a result, in the case of using only 5 vertical images, the plan accuracy was lower
than the standard accuracy for both the proposed method and PhotoScan; however,
for the height accuracy only the proposed method exceeded the standard accuracy. In
other words, it was confirmed that the proposed method can obtain the accuracy
equivalent to that of ordinary photogrammetry, especially in the height direction,
although the imaging method is simple and the ground reference point is unneces-
sary. On the other hand, when images taken by general parallel imaging were
processed by PhotoScan, the accuracy was high enough to be applicable to the volume
control of the earthworks. From the above results, it is necessary to select the shoot-
ing method by UAV according to the situation; however, it can be said that the
proposed method is useful for grasping the situation of the site easily in a short time.

6.4 Consideration of the results

Figure 15 shows distribution of residuals of X and Y coordinates with respect to
39 points in an arrow direction. From the figure, within the range of about 10–20 m
from the origin, the residuals at most verification points are within �0.04 m, which
is equivalent to the standard accuracy, but No. 45, 50 and 51, 55, 61, and 66, the
residual is around �0.2 m, and it can be confirmed that the accuracy deteriorates.
Also, in the same figure, the distribution of the verification point positions can
be confirmed to be relatively wide, ranging from about 40 m in the X direction to
50–60 m in the Y direction. In other words, in this verification, it is speculated that
the verification point where the Y coordinate is far from the origin is due to the
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decrease in the Y coordinate accuracy in the proposed method. From these results, it
is considered preferable to set the origin as close to the measurement object as
possible when applying this method in the field.

On the other hand, in order to confirm the utility for 3D measurement by the
UAV, measurement accuracy of this result was compared with measurement accu-
racy by satellite image [14] and aerial image [15]. As a result, the RMSEs of mea-
surement by using the satellite image were �0.3 to 1.0 m, and the case of the aerial
image were �0.1 to 0.5 m. Such results were dependent on several number of
GCPs. Therefore, it can be said the UAV is utilized for accurate measurement in a
limited area.

7. Conclusions

In this research, we developed a method of using an image taken vertically from
UAV and performing aerial photogrammetry without using the ground reference

Figure 15.
Error distribution of the proposed method.
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point. In addition, in order to evaluate the performance of the developed method,
verification was performed by comparing surveying accuracy with general photo-
grammetry software. As a result, since the developed method uses only a small
number of vertical took images, it is presumed that the imaging effort can be
reduced as compared with the usual method. Also, since the ground reference point
is unnecessary, preparation for imaging is unnecessary.

On the other hand, the accuracy verification was performed by comparing with
the accuracy of the ground survey by the total station; however, it is inferior in the
case of using the general imaging method and software, it was confirmed that the
measurement with accuracy of. Specifically, in the general method, it is about
�0.040 m, whereas in the proposed method, it is about �0.100 m. Also, since the
shooting method simply shoots UAV in the vertical direction and shoots several
images, it is possible to drastically reduce the time and labor involved in shooting.
From these facts, it is expected that the present development method will be used
for surveying the current conditions at the earthmoving site and grasping the
damage situation at the time of a disaster.

As a future task, we need to consider means for further improving accuracy. In
particular, since it is confirmed that the accuracy of this method decreases with
respect to a point away from the origin, it is desirable to stabilize the accuracy with
respect to the position of the measurement point. Specific countermeasures include
verifying the optimum number of photos according to the situation, verifying the
optimum altitude difference between the photos, and using GNSS (GPS) position-
ing information at UAV flight. In this study, 3D coordinates are obtained as local
coordinates without using the ground reference point; however, it is necessary to
continue discussion on a method for efficiently obtaining global coordinates such as
planar rectangular coordinates.
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