
Crystallography
Edited by Takashiro Akitsu

Edited by Takashiro Akitsu

This book reviews both current research in and several principles of crystallography, 
not only for natural sciences, mathematics, physics, chemistry, biology, and 

earth sciences but also for applied engineering such as material and medical or 
pharmaceutical sciences. As a review book on crystallography, this book will help with 
theoretical considerations and understanding the basic theory of frontier experiments, 

among other topics.

Published in London, UK 

©  2019 IntechOpen 
©  prill / iStock

ISBN 978-1-83881-878-4

Crystallography





Crystallography
Edited by Takashiro Akitsu

Published in London, United Kingdom





Supporting open minds since 2005



Crystallography
http://dx.doi.org/10.5772/intechopen.78499
Edited by Takashiro Akitsu

Contributors
Yoshitaka Matsukawa, Arthur Dyshekov, Yurii Khapachev, Takashiro Akitsu

© The Editor(s) and the Author(s) 2019
The rights of the editor(s) and the author(s) have been asserted in accordance with the Copyright, 
Designs and Patents Act 1988. All rights to the book as a whole are reserved by INTECHOPEN LIMITED. 
The book as a whole (compilation) cannot be reproduced, distributed or used for commercial or 
non-commercial purposes without INTECHOPEN LIMITED’s written permission. Enquiries concerning 
the use of the book should be directed to INTECHOPEN LIMITED rights and permissions department 
(permissions@intechopen.com).
Violations are liable to prosecution under the governing Copyright Law.

Individual chapters of this publication are distributed under the terms of the Creative Commons 
Attribution 3.0 Unported License which permits commercial use, distribution and reproduction of 
the individual chapters, provided the original author(s) and source publication are appropriately 
acknowledged. If so indicated, certain images may not be included under the Creative Commons 
license. In such cases users will need to obtain permission from the license holder to reproduce 
the material. More details and guidelines concerning content reuse and adaptation can be found at 
http://www.intechopen.com/copyright-policy.html.

Notice
Statements and opinions expressed in the chapters are these of the individual contributors and not 
necessarily those of the editors or publisher. No responsibility is accepted for the accuracy of 
information contained in the published chapters. The publisher assumes no responsibility for any 
damage or injury to persons or property arising out of the use of any materials, instructions, methods 
or ideas contained in the book.

First published in London, United Kingdom, 2019 by IntechOpen
IntechOpen is the global imprint of INTECHOPEN LIMITED, registered in England and Wales, 
registration number: 11086078, The Shard, 25th floor, 32 London Bridge Street  
London, SE19SG – United Kingdom
Printed in Croatia

British Library Cataloguing-in-Publication Data
A catalogue record for this book is available from the British Library

Additional hard and PDF copies can be obtained from orders@intechopen.com

Crystallography
Edited by Takashiro Akitsu
p. cm.
Print ISBN 978-1-83881-878-4
Online ISBN 978-1-83881-879-1
eBook (PDF) ISBN 978-1-83881-880-7



Selection of our books indexed in the Book Citation Index 
in Web of Science™ Core Collection (BKCI)

Interested in publishing with us? 
Contact book.department@intechopen.com

Numbers displayed above are based on latest data collected. 
For more information visit www.intechopen.com

4,200+ 
Open access books available

151
Countries delivered to

12.2%
Contributors from top 500 universities

Our authors are among the

Top 1%
most cited scientists

116,000+
International  authors and editors

125M+ 
Downloads

We are IntechOpen,
the world’s leading publisher of 

Open Access books
Built by scientists, for scientists

 





Meet the editor

Takashiro Akitsu, PhD, has been a full Professor for the De-
partment of Chemistry, Faculty of Science Division II, at Tokyo 
University of Science since 2016.
He completed his undergraduate school training (chemistry) and 
his graduate school training (physical and inorganic chemistry, 
especially coordination and crystal and bioinorganic chemistry) 
at Osaka University in 1995 and 2000, respectively. Dr. Akitsu 

has published many articles in journals while working at Osaka University (2000–
2002), Keio University (2002–2008), and Tokyo University of Science (2008–pres-
ent). He has been a peer reviewer of many journals and acted on the organizing 
committees of several international conferences. His research interests are crystal 
and electronic structures of chiral metal complexes and their hybrid materials.



Contents

Preface III

Chapter 1 1
Introductory Chapter: Crystallography
by Takashiro Akitsu

Chapter 2 5
Crystallography of Precipitates in Metals and Alloys: (1) Analysis of 
Crystallography
by Yoshitaka Matsukawa

Chapter 3 33
Crystallography of Precipitates in Metals and Alloys: (2) Impact of  
Crystallography on Precipitation Hardening
by Yoshitaka Matsukawa

Chapter 4 53
Covariant Dynamical Theory of X-Ray Diffraction
by Arthur Dyshekov and Yurii Khapachev



Contents

Preface XIII

Chapter 1 1
Introductory Chapter: Crystallography
by Takashiro Akitsu

Chapter 2 5
Crystallography of Precipitates in Metals and Alloys: (1) Analysis of 
Crystallography
by Yoshitaka Matsukawa

Chapter 3 33
Crystallography of Precipitates in Metals and Alloys: (2) Impact of 
Crystallography on Precipitation Hardening
by Yoshitaka Matsukawa

Chapter 4 53
Covariant Dynamical Theory of X-Ray Diffraction
by Arthur Dyshekov and Yurii Khapachev



Preface

This book reviews a wide range of both current research in and several principles
of crystallography, not only for natural sciences, mathematics, physics, chemistry, 
biology, and earth sciences but also for applied engineering such as material and 
medical or pharmaceutical sciences. As a review book on crystallography, this book
will help with theoretical considerations and understanding the basic theory of
frontier experiments, among other topics.

The main themes of this subject can be classified into three categories:

1. Pure mathematical theory or chemical aspects of crystal or molecular symme-
try about group theory.

2. Techniques of crystal structure analysis such as experiments on neutron dif-
fraction, computational methods about phase problem, and commonly used 
crystal structure analysis for chemical compounds.

3. Compounds or topics solved by crystallography such as a review of structural 
inorganic chemistry and hydrogen bonds in the crystal chemistry of organic
compounds.

Each chapter demonstrates all aspects of current crystallographic study.

The reader will also appreciate the many new developments in this subject.

Takashiro Akitsu
Department of Chemistry,

Faculty of Science,
Tokyo University of Science,

Japan
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Chapter 1

Introductory Chapter: 
Crystallography
Takashiro Akitsu

1. Book reviews about “greater” crystallography

Indeed, crystallography consists of wide range of not only natural sciences,
mathematics, physics, chemistry, biology, and earth sciences but also applied
engineering such as material and medical or pharmaceutical sciences. Like
chapters in this book, I have published several book reviews of crystallographic
books so far. The themes of these books are roughly classified into three
categories:

1. Pure mathematical theory [1] or chemical aspects of crystal [2] or molecular
[3] symmetry about group theory.

2. Techniques of crystal structure analysis such as experiments of neutron dif-
fraction [4], computational methods about phase problem [5], and commonly
used crystal structure analysis for chemical compounds [6, 7].

3. Compounds or topics solved by crystallography such as a review of structural 
inorganic chemistry [8] and hydrogen bonds in crystal chemistry of organic
compounds [9].

Crystallographic books, of course like this book, may play a helpful with
theoretical consideration or comparison with previous examples and so on.

2. Problems in crystallographic study

To data, however, my crystallographic study [10, 11] on single crystal or
powder structure analysis of chemical compounds especially (chiral) metal
complexes has been suffering things. I have also challenged to investigate
hybrid materials composed of metal complexes and other materials such as
metal nanoparticles and proteins, which are usually dealt with other types of 
crystallographic experiments. In other words, chemical and structural-bio-
logical (protein) single-crystal analyses are similar to each other in principle,
though they are different from the actual. Combination of several techniques
of crystallography should be employed or developed for these studies.
Probably, spectroscopy and crystallography may be good partner to be used at
the same time.

One of the serious problems may be basic level, namely, poor quality of crystal 
samples as a simple component for desiring hybrid materials. For both single crystal 
using laboratory MoKα radiation (Figure 1 up) and powder diffraction even by
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synchrotron beam (Figure 1 down), rings due to low resolution or wide peaks 
sometimes appeared as shown in Figure 1.

I want to discuss more essential problems furthermore in order to establish 
integrated crystallography hybrid materials in the future.

Figure 1. 
Bad diffraction patterns of single crystal (up) and powder (down).
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Crystallography of Precipitates in
Metals and Alloys: (1) Analysis of
Crystallography
Yoshitaka Matsukawa

Abstract

This chapter and the following chapters describe crystallography of second-
phase precipitate particles in metals and alloys. The focus of this chapter is placed
on technical aspects in the analysis of their crystal structure, composition, and
crystal orientation relationship with the matrix. Characterization of fine precipi-
tates embedded in solid matrix is technically rather difficult; the signal from the
matrix always hinders the signal from the precipitates. Although even state-of-the-
art characterization techniques are still incomplete, it is becoming possible to assess
the validity of assumptions involved in classic theories related to the crystallogra-
phy of precipitates. For instance, recent experimental studies demonstrated that
evolution of their crystal structure during nucleation seems to contradict the so-
called classical nucleation theory, in terms of fluctuations in size and composition.
Recent studies also demonstrated that their crystal orientation relationship with the
matrix is often different from the one predicted by energy considerations related
to the interfacial lattice mismatch. Furthermore, crystal orientation relationship
with the matrix was found to be a factor controlling the magnitude of precipitation
hardening, contrary to the conventional Orowan’s hardening model based on
continuum elasticity theory calculations without considering crystallography.

Keywords: precipitates, nucleation, crystal structure, strength, dislocations

1. Introduction

This chapter and the following chapters review recent progress of our knowl-
edge about crystallography of precipitate particles in metals and alloys [1–3]. The
main focus is placed on the following three subjects:

1. Evolution of crystal structure during nucleation

2. Crystal orientation relationship with the matrix

3. Effect of crystallography of precipitates on mechanical properties

These subjects are closely related to the following three basic theories, each of
which has a long history greater than a half century:

5



4

Crystallography

[1] Akitsu T. Book review: Crystal 
group–Kyoritsu series of mathematics 
quest 7. Journal of the Crystallographic 
Society of Japan. 2016;58:284. https://
doi.org/10.5940/jcrsj.57.252

[2] Akitsu T. Book review: IUCr 
monographs on crystallography 
17 symmetry in crystallography-
Understanding the international tables. 
Journal of the Crystallographic Society 
of Japan. 2012;54:234. https://doi.
org/10.5940/jcrsj.54.234

[3] Akitsu T. Book review: Symmetry 
of Crystals and Molecules. Journal of 
the Crystallographic Society of Japan. 
2015;57:252. https://doi.org/10.5940/
jcrsj.57.252

[4] Akitsu T. Book review: Inorganic 
chemistry based on quantum theory, 
approach from group theory. Journal of 
the Crystallographic Society of Japan. 
2010;52:191. https://doi.org/10.5940/
jcrsj.52.Book06

[5] Akitsu T. Book review: Applications 
of neutron powder diffraction. Journal 
of the Crystallographic Society of Japan. 
2009;51:267. https://doi.org/10.5940/
jcrsj.51.Book04

[6] Akitsu T. Book review: IUCr 
monographs on crystallography 
20 phasing in crystallography–A 
modern perspective. Journal of the 
Crystallographic Society of Japan. 
2014;56:338. https://doi.org/10.5940/
jcrsj.56.338

[7] Akitsu T. Book review: IUCr 
monographs on crystallography 
14 crystal structure analysis–A 
primer third edition. Journal of the 
Crystallographic Society of Japan. 
2010;52:303. https://doi.org/10.5940/
jcrsj.52.Book06

[8] Akitsu T. Book review: IUCr 
monographs on crystallography 14 

crystal structure analysis–A primer 
third edition (Japanese translated 
version). Journal of the Crystallographic 
Society of Japan. 2011;53:362. https://
doi.org/10.5940/jcrsj.53.362

[9] Akitsu T. Book review: IUCr 
Monographs on Crystallography 
23 The Nature of the Hydrogen 
Bond ~Outline of a Comprehensive 
Hydrogen Bond Theory~. Journal of 
the Crystallographic Society of Japan. 
2010;52:190. https://doi.org/10.5940/
jcrsj.52.Book03

[10] Akitsu T. Book review: Advanced 
Structural Inorganic Chemistry, 
IUCr Text on Crystallography 10. 
Coordination Chemistry Reviews 
2009;253:2782. https://doi.org/10.1016/j.
ccr.2009.06.002

[11] Akitsu T, editor. Crystallography: 
Research, Technology and Applications. 
NY, USA: Nova Science Publishers, Inc.; 
2012. ISBN: 978-1-62081-574-8

References Chapter 2

Crystallography of Precipitates in
Metals and Alloys: (1) Analysis of
Crystallography
Yoshitaka Matsukawa

Abstract

This chapter and the following chapters describe crystallography of second-
phase precipitate particles in metals and alloys. The focus of this chapter is placed
on technical aspects in the analysis of their crystal structure, composition, and
crystal orientation relationship with the matrix. Characterization of fine precipi-
tates embedded in solid matrix is technically rather difficult; the signal from the
matrix always hinders the signal from the precipitates. Although even state-of-the-
art characterization techniques are still incomplete, it is becoming possible to assess
the validity of assumptions involved in classic theories related to the crystallogra-
phy of precipitates. For instance, recent experimental studies demonstrated that
evolution of their crystal structure during nucleation seems to contradict the so-
called classical nucleation theory, in terms of fluctuations in size and composition.
Recent studies also demonstrated that their crystal orientation relationship with the
matrix is often different from the one predicted by energy considerations related
to the interfacial lattice mismatch. Furthermore, crystal orientation relationship
with the matrix was found to be a factor controlling the magnitude of precipitation
hardening, contrary to the conventional Orowan’s hardening model based on
continuum elasticity theory calculations without considering crystallography.

Keywords: precipitates, nucleation, crystal structure, strength, dislocations

1. Introduction

This chapter and the following chapters review recent progress of our knowl-
edge about crystallography of precipitate particles in metals and alloys [1–3]. The
main focus is placed on the following three subjects:

1. Evolution of crystal structure during nucleation

2. Crystal orientation relationship with the matrix

3. Effect of crystallography of precipitates on mechanical properties

These subjects are closely related to the following three basic theories, each of
which has a long history greater than a half century:

5



1. The theory of crystal nucleation (since 1876) [4]

2. The theory of dislocations (since 1934) [5–9]

3.The theory of precipitation hardening (since 1954) [10, 11]

From an engineering viewpoint, the knowledge provided here is primarily useful
for developing stronger materials. Dispersing fine precipitate particles over the
matrix at high density is a common engineering technique for improving the
strength of metals and alloys. By introducing a minor amount of second-phase
precipitate particles, such as 2% in volume fraction, the material strength is
increased by several times greater. In the traditional theory of precipitation hard-
ening (a.k.a. dispersion strengthening) established in the 1950s–1960s, the primary
factor controlling the magnitude of strengthening effect is assumed to be the shear
modulus [10, 11], whether or not precipitates are harder than the matrix. This
concept has been partly revised in the past few years. Recent experimental studies
using state-of-the-art material characterization techniques demonstrated that crys-
tallography of precipitate particles is another factor dominating their obstacle
strength [1, 2]. When the slip plane of dislocations in precipitates is not parallel to
that in the matrix, dislocations are unable to cut through the precipitates, resulting
in large hardening, regardless of the shear modulus. This subject is extensively
discussed in the next chapter.

This chapter may also be of interest for the audience outside of the research
community of materials science and solid-state physics. Nucleation is one of the
areas of basic science related to a wide variety of research subjects including chem-
ical reactions in liquid and gas. In fact, the first theory was originally developed for
the nucleation of droplets from gas. Nucleation of crystals in solid is more compli-
cated than the situation assumed in liquid and gas, in a sense that the formation of a
new crystal is highly constrained by the surrounding matrix, in terms of the strain
energy associated with the precipitate/matrix interface and the diffusivity of atoms
for their agglomeration. A long-standing open question is the critical condition for
nucleation regarding size and composition of nucleus. Precipitates are in many
cases compounds consisting of multiple elements such as carbides and oxides.
Unlike in gas and in liquid, the diffusivity of each element is not the same in solids
[12]. For instance, the diffusivity of light elements like carbon and oxygen is
several orders of magnitude greater than that of metallic elements. Although the
classical nucleation theory assumes that the crystal structure and composition of
precipitates are the same as those of the final product from the beginning of embryo
growth (Figure 1), the diffusivity difference indicates a possibility that the compo-
sition of precipitates fluctuates during the nucleation process. The classical nucle-
ation theory also assumes that nucleation occurs when the embryos have grown up
to a critical size. In many cases the critical size of precipitates for nucleation is 2–3
nm [3]. Assessing the composition of such small precipitates has been technically
impossible until recently. The highlights of recent studies are discoveries that, in the
early stage of precipitation, the crystal structure and composition of precipitates are
different from those of the final product and that the precipitates structurally
transform into the final product at a critical size with a critical composition
(Figure 1). Precipitates are clusters of solute elements when they start spontaneous
growth, which is defined as the state of “nucleation” in the classical nucleation
theory. An implication of this finding is that the obstacle strength of precipitates in
precipitation hardening may change during precipitation. They are weak obstacles
in the early stage of precipitation regardless of the crystal structure of the final
product. They can become strong obstacles due to a change in the shear modulus or
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the crystal structure. In some cases, precipitates become brittle by the structural
change, while they are ductile in the state of solute clusters. Brittle precipitates are
considered to serve as the nucleation site of cracks via particle cracking. Hence,
from the viewpoint of fracture mechanics, the ductile-brittle transition of precipi-
tates during precipitation considered a factor controlling the engineering lifetime of
materials.

As a result of the constraints from the surrounding matrix, precipitation of the
second phase often occurs with a specific crystal orientation relationship with the
matrix. Precipitates and matrix share a specific atomic plane in such a way to
minimize the mismatch between them. The orientation relationship is dependent on
their crystal structure. For instance, in the Burgers orientation relationship, bcc
precipitates in hcp matrix share atomic planes as follows (Figure 2) [13]:
(0001)hcp//(110)bcc ˄ 2110

� �
hcp== 11

�
1)bcc. Since the lattice parameter is specific to

materials, a preferable orientation relationship changes depending on the degree of
mismatch of lattice parameter between precipitates and matrix. The Burgers
orientation relationship is the optimum configuration for the combination of bcc
pure Zr and hcp pure Zr, but another orientation relationship is preferred for the
bcc Nb precipitates containing a few amount of Zr. The Zr-Nb binary system is a
complete solid solution in a bcc structure at high temperatures [14]. The difference
of lattice parameter between the bcc Zr and the bcc Nb is �10% [15]; the lattice
parameter of bcc precipitates changes in accordance with Vegard’s law [2]. Apart
from a remarkable progress in theoretical works on the orientation relationships,
experimental studies have recently demonstrated that precipitates and matrix do
not always follow such a theoretically predictable, ideal orientation relationships in
reality. Recent analysis using electron backscatter diffraction (EBSD) (Figure 3)

Figure 1
Nucleation of precipitates in metals and alloys: classical nucleation and two-step nucleation [3]. Unlike the
classical nucleation theory, in reality, crystal nuclei do not emerge directly from the matrix. They first nucleate
as solute clusters structurally indistinguishable from the matrix, followed by a structural change. Their crystal
structure changes at a critical size with a critical composition.
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the crystal structure. In some cases, precipitates become brittle by the structural
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from the viewpoint of fracture mechanics, the ductile-brittle transition of precipi-
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(0001)hcp//(110)bcc ˄ 2110

� �
hcp== 11

�
1)bcc. Since the lattice parameter is specific to
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reality. Recent analysis using electron backscatter diffraction (EBSD) (Figure 3)

Figure 1
Nucleation of precipitates in metals and alloys: classical nucleation and two-step nucleation [3]. Unlike the
classical nucleation theory, in reality, crystal nuclei do not emerge directly from the matrix. They first nucleate
as solute clusters structurally indistinguishable from the matrix, followed by a structural change. Their crystal
structure changes at a critical size with a critical composition.
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revealed that, when the matrix undergoes recrystallization after precipitation of
precipitates, their orientation relationship is overwritten. As a result of that, crystal
orientation of precipitates can become random (Figure 4). The degree of

Figure 2
The Burgers orientation relationship for bcc and hcp crystals [2]. This is the most traditional orientation
relationship discovered in 1934.

Figure 3
Example of EBSD analysis of precipitates: bcc Zr precipitates containing Nb and hcp Zr matrix in a Zr–2.5Nb
alloy [2].
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contribution of precipitates to the strength of materials may become different from
what is expected from well-known crystal orientation relationships [2].

Recent updates of these theories have been achieved by progress in material
characterization methods for determining the crystal structure and composition of
nano-sized precipitates. Before going into the details of these theories, we briefly
review the technological breakthrough in experimental methods. This chapter is
addressed to not only the specialists of precipitates but also nonspecialists including
students. For better understanding, traditional methods of material characterization
are also briefly reviewed at the beginning.

2. Brief history of microstructure characterization techniques

Crystal structure is determined based on the concept of diffraction, discovered
in 1912. It appears that X-ray diffraction (XRD) became common in the 1920s; a
great many structures of alloys were determined. Early works determined simple
structures having a high symmetry with which peaks in the XRD spectrum are
clearly resolved free from overlapping. Precipitates are, however, in many cases
compounds having a low symmetry. XRD became applicable to such complicated
structures by the invention of the Rietveld method in 1966 [16]. Precipitates
involved in bulk metallic samples are detectable only when their volume fraction is
higher than �1% [17], though that is highly dependent on their crystal orientation
relationship with the matrix. In bulk samples the crystal orientation of precipitates
is not necessarily random, and the matrix grains also not. Metallic bulk samples
cannot be crushed into powders due to their high ductility. They can be mechani-
cally grinded into powders by using a hand grinder; however, the XRD peaks of
such grinded metallic powders are broadened due to introduction of dislocations,

Figure 4
EBSD analysis results of atomic planes of precipitate particles parallel to the slip plane of matrix: bcc Nb
precipitates and hcp Zr matrix in a Zr–2.5Nb alloy [2]. Only 1 out of 100 precipitate particles had a slip plane
parallel to that of the matrix. Hence, dislocations are unable to cut through the bcc Nb precipitates.

9

Crystallography of Precipitates in Metals and Alloys: (1) Analysis of Crystallography
DOI: http://dx.doi.org/10.5772/intechopen.82693



revealed that, when the matrix undergoes recrystallization after precipitation of
precipitates, their orientation relationship is overwritten. As a result of that, crystal
orientation of precipitates can become random (Figure 4). The degree of

Figure 2
The Burgers orientation relationship for bcc and hcp crystals [2]. This is the most traditional orientation
relationship discovered in 1934.

Figure 3
Example of EBSD analysis of precipitates: bcc Zr precipitates containing Nb and hcp Zr matrix in a Zr–2.5Nb
alloy [2].

8

Crystallography

contribution of precipitates to the strength of materials may become different from
what is expected from well-known crystal orientation relationships [2].

Recent updates of these theories have been achieved by progress in material
characterization methods for determining the crystal structure and composition of
nano-sized precipitates. Before going into the details of these theories, we briefly
review the technological breakthrough in experimental methods. This chapter is
addressed to not only the specialists of precipitates but also nonspecialists including
students. For better understanding, traditional methods of material characterization
are also briefly reviewed at the beginning.

2. Brief history of microstructure characterization techniques

Crystal structure is determined based on the concept of diffraction, discovered
in 1912. It appears that X-ray diffraction (XRD) became common in the 1920s; a
great many structures of alloys were determined. Early works determined simple
structures having a high symmetry with which peaks in the XRD spectrum are
clearly resolved free from overlapping. Precipitates are, however, in many cases
compounds having a low symmetry. XRD became applicable to such complicated
structures by the invention of the Rietveld method in 1966 [16]. Precipitates
involved in bulk metallic samples are detectable only when their volume fraction is
higher than �1% [17], though that is highly dependent on their crystal orientation
relationship with the matrix. In bulk samples the crystal orientation of precipitates
is not necessarily random, and the matrix grains also not. Metallic bulk samples
cannot be crushed into powders due to their high ductility. They can be mechani-
cally grinded into powders by using a hand grinder; however, the XRD peaks of
such grinded metallic powders are broadened due to introduction of dislocations,

Figure 4
EBSD analysis results of atomic planes of precipitate particles parallel to the slip plane of matrix: bcc Nb
precipitates and hcp Zr matrix in a Zr–2.5Nb alloy [2]. Only 1 out of 100 precipitate particles had a slip plane
parallel to that of the matrix. Hence, dislocations are unable to cut through the bcc Nb precipitates.

9

Crystallography of Precipitates in Metals and Alloys: (1) Analysis of Crystallography
DOI: http://dx.doi.org/10.5772/intechopen.82693



resulting in hindering the peaks of precipitates by the background noise. These
issues are avoided by the use of residue extracted from the matrix via chemical
dissolution using an acid [18]. This extraction residue analysis is, however, applica-
ble to only nonmetallic compound precipitates embedded in metallic matrix.

Transmission electron microscope (TEM) is a multifunctional characterization
tool capable of determining not only crystal structure but also composition and size
of precipitates on the image of microstructure, free from the constraint due to
volume fraction. The first prototype was produced by Ruska et al. in 1932, and the
first commercial model was released by Siemens in 1939. It appears that TEM
became common in the 1950s; for example, the number of commercial products
released in Japan was greater than 250. The resolution (point resolution) was 50 nm
for Ruska’s first TEM, 1 nm for the Siemens Elmiskap I released in 1956, and 0.2 nm
for the JEOL JEM100B released in 1968. Precipitates are visualized using diffraction
contrasts; those satisfying the Bragg condition exhibit dark contrast in the so-called
bright-field image (bright contrast in the dark-field image), whereas the others are
indistinguishable from the matrix. The number density of precipitates determined
by diffraction contrast images represents the true number density only in the case
where precipitates are all aligned to the same crystal orientation. This condition is
achievable only when precipitation occurs with a specific crystal orientation rela-
tionship with the matrix such as the cube-on-cube orientation relationship, where
the unit cells of the precipitate and the matrix completely overlap each other. In the
other orientation relationships, some crystallographic variants are often invisible.
This is a potential error in the evaluation of the number density of precipitate
particles but often out of consideration. In many cases, the magnitude of error bars
is determined solely by a statistical analysis: either the standard error or standard
deviation.

High-resolution (HR)-TEM is another mode capable of visualizing precipitates
using phase contrasts, i.e., lattice fringes generated by interference of transmitted
and diffracted electron waves. This imaging mode became common in the 1970s–
1980s [19]. In those days, however, alignment of electron beam axis was technically
difficult for entry-level users. This technical issue was resolved in the 1990s by an
introduction of the field-emission gun, which provides a hundred times brighter
illumination, a digital camera system, a real-time image processing software (fast
Fourier transformation for the alignment minimizing the objective lens
stigmatism), etc. However, even though the issue of beam alignment has been
resolved, HR-TEM analysis of nano-precipitates is still extremely time-consuming
due to alignment of crystal orientation. The HR-TEM image (crystal lattice image)
is obtained only when the direction of incident electron beam is aligned with the
crystal’s zone axis having a low index, e.g. [001] and [110]. The beam-crystal
alignment, achieved by using Kikuchi lines or bend counters, is easy for large
precipitates greater than several hundred nm but technically almost impossible for
nano-precipitates. So for this reason, in practice, the operator searches particles
which already exhibit the crystal lattice image without tilting the sample. Unless
otherwise precipitates have a specific orientation relationship with the matrix, the
operator can find only a few but not many such particles, whereas the minimum
requirement of the number of precipitates for drawing a smooth histogram of the
size distribution is ~500 in the author’s experience [3].

TEM is capable of determining the crystal orientation relationship between pre-
cipitates and matrix, though this analysis is also extremely time-consuming. In
order to determine the orientation relationship, one needs to find out a sample-
tilting angle, where the beam direction is aligned with a zone axis. Three such tilting
angles need to be found for both precipitates and matrix in order to determine their
(hkl) indices. In some cases precipitates may not have any specific orientation
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relationship with the matrix; however, proving such a random orientation relation-
ship is practically impossible for one-to-one analysis using a TEM. The random
orientation issue can be assessed only if the number density of precipitates is
sufficiently high enough for obtaining the Debye ring patterns in selected-area
electron diffraction. A more appropriate method rather than TEM to investigate this
research subject is EBSD equipped on a scanning electron microscope (SEM). EBSD
determines the orientation of crystals based on the Kikuchi pattern, whose theoret-
ical accuracy is �0.1° [20, 21], whereas the accuracy of orientation analysis using
diffraction spots is �3° [22, 23].

The first report introducing the principle of EBSD was published in 1973, within
10 years after the release of the first commercial SEM, the Stereoscan series 1, by the
Cambridge Instrument Company in 1965. EBSD became a practically useful tool in
1993, by full automation of mapping (detecting, indexing, and recording the Kikuchi
bands based on the Hough transformation). The spatial resolution of EBSD is depen-
dent on probe size, step size of scanning, accelerating voltage of electrons, sample
geometry (bulk or thin foil), etc. According to the author’s experience, precipitates of
�500 nm in diameter can be identified but �50 nm not. The spatial resolution is
improved by using an advanced technique called transmission Kikuchi diffraction
(TKD), a.k.a. transmission EBSD, proposed in 2012 [24]. This new technique works
on conventional EBSD system and software. The difference is that TKD uses forward-
scattered electrons, whereas EBSD uses backscatter electrons. In other words, TKD
uses transmitted electrons as well as TEM; hence, the samples must be thin foils.
Sample preparation is not difficult for TEM users; TEM samples can be directly
subjected to this analysis. The high spatial resolution of TKD owes not only to the use
of thin foil specimens, which minimize unfavorable lateral beam spreading inside the
specimens, but also to a greater signal intensity of forward-scattered electrons than
backscattered electrons [25]. Since the Kikuchi pattern is generated from elastic
scattering (diffraction) of inelastically scattered electrons [26], there exists a lower
limit in both specimen thickness and precipitate size below which the Kikuchi pat-
terns are not obtained. When the thickness of thin foil specimens is largely greater
than the size of precipitates, the signal from the precipitates is hindered by that from
the matrix. In other words, there exists an upper limit of measurable foil thickness
depending on the size of precipitates. Only a limited range of thickness is applicable
to this method in a wedged-shaped TEM thin foil specimens. The practical spatial
resolution limit of TKD is dependent on many factors such as the position of detector
(florescent screen); according to the author’s experience using a conventional EBSD
system, precipitates of �50 nm in diameter can be identified but�10 nm not. The
resolution will be improved if the detector is placed just beneath of the sample; this is
an ideal setting that minimizes the loss of forward-scattered electrons.

Traditionally, TEM has been a primary analysis tool for composition analysis of
precipitates: energy-dispersive X-ray spectroscopy (EDS) and electron energy loss
spectroscopy (EELS). In these TEM-based composition analyses, samples having a
3D geometry are projected on 2D space via electron transmission. Precipitates often
overlap the matrix in the thickness direction, whereas their TEM image is
constructed based on integrated information over thickness. These analyses are
unable to determine the composition of overlapped portion. It is practically impos-
sible to judge from the projected 2D image if the precipitates are free from
overlapping. In terms of composition analysis of precipitates, the most innovative
breakthrough in the past two decades is probably the invention of atom probe
tomography (APT). Although its concept was first proposed in 1967, it has become
a practically useful tool since the commercial release of local-electrode atom probe
(LEAP) in 2003. APT is capable of visualizing atoms in 3D space, which is a critical
advantage over the TEM-based composition analyses. APT is a quantitative mass

11

Crystallography of Precipitates in Metals and Alloys: (1) Analysis of Crystallography
DOI: http://dx.doi.org/10.5772/intechopen.82693



resulting in hindering the peaks of precipitates by the background noise. These
issues are avoided by the use of residue extracted from the matrix via chemical
dissolution using an acid [18]. This extraction residue analysis is, however, applica-
ble to only nonmetallic compound precipitates embedded in metallic matrix.

Transmission electron microscope (TEM) is a multifunctional characterization
tool capable of determining not only crystal structure but also composition and size
of precipitates on the image of microstructure, free from the constraint due to
volume fraction. The first prototype was produced by Ruska et al. in 1932, and the
first commercial model was released by Siemens in 1939. It appears that TEM
became common in the 1950s; for example, the number of commercial products
released in Japan was greater than 250. The resolution (point resolution) was 50 nm
for Ruska’s first TEM, 1 nm for the Siemens Elmiskap I released in 1956, and 0.2 nm
for the JEOL JEM100B released in 1968. Precipitates are visualized using diffraction
contrasts; those satisfying the Bragg condition exhibit dark contrast in the so-called
bright-field image (bright contrast in the dark-field image), whereas the others are
indistinguishable from the matrix. The number density of precipitates determined
by diffraction contrast images represents the true number density only in the case
where precipitates are all aligned to the same crystal orientation. This condition is
achievable only when precipitation occurs with a specific crystal orientation rela-
tionship with the matrix such as the cube-on-cube orientation relationship, where
the unit cells of the precipitate and the matrix completely overlap each other. In the
other orientation relationships, some crystallographic variants are often invisible.
This is a potential error in the evaluation of the number density of precipitate
particles but often out of consideration. In many cases, the magnitude of error bars
is determined solely by a statistical analysis: either the standard error or standard
deviation.

High-resolution (HR)-TEM is another mode capable of visualizing precipitates
using phase contrasts, i.e., lattice fringes generated by interference of transmitted
and diffracted electron waves. This imaging mode became common in the 1970s–
1980s [19]. In those days, however, alignment of electron beam axis was technically
difficult for entry-level users. This technical issue was resolved in the 1990s by an
introduction of the field-emission gun, which provides a hundred times brighter
illumination, a digital camera system, a real-time image processing software (fast
Fourier transformation for the alignment minimizing the objective lens
stigmatism), etc. However, even though the issue of beam alignment has been
resolved, HR-TEM analysis of nano-precipitates is still extremely time-consuming
due to alignment of crystal orientation. The HR-TEM image (crystal lattice image)
is obtained only when the direction of incident electron beam is aligned with the
crystal’s zone axis having a low index, e.g. [001] and [110]. The beam-crystal
alignment, achieved by using Kikuchi lines or bend counters, is easy for large
precipitates greater than several hundred nm but technically almost impossible for
nano-precipitates. So for this reason, in practice, the operator searches particles
which already exhibit the crystal lattice image without tilting the sample. Unless
otherwise precipitates have a specific orientation relationship with the matrix, the
operator can find only a few but not many such particles, whereas the minimum
requirement of the number of precipitates for drawing a smooth histogram of the
size distribution is ~500 in the author’s experience [3].

TEM is capable of determining the crystal orientation relationship between pre-
cipitates and matrix, though this analysis is also extremely time-consuming. In
order to determine the orientation relationship, one needs to find out a sample-
tilting angle, where the beam direction is aligned with a zone axis. Three such tilting
angles need to be found for both precipitates and matrix in order to determine their
(hkl) indices. In some cases precipitates may not have any specific orientation

10

Crystallography

relationship with the matrix; however, proving such a random orientation relation-
ship is practically impossible for one-to-one analysis using a TEM. The random
orientation issue can be assessed only if the number density of precipitates is
sufficiently high enough for obtaining the Debye ring patterns in selected-area
electron diffraction. A more appropriate method rather than TEM to investigate this
research subject is EBSD equipped on a scanning electron microscope (SEM). EBSD
determines the orientation of crystals based on the Kikuchi pattern, whose theoret-
ical accuracy is �0.1° [20, 21], whereas the accuracy of orientation analysis using
diffraction spots is �3° [22, 23].

The first report introducing the principle of EBSD was published in 1973, within
10 years after the release of the first commercial SEM, the Stereoscan series 1, by the
Cambridge Instrument Company in 1965. EBSD became a practically useful tool in
1993, by full automation of mapping (detecting, indexing, and recording the Kikuchi
bands based on the Hough transformation). The spatial resolution of EBSD is depen-
dent on probe size, step size of scanning, accelerating voltage of electrons, sample
geometry (bulk or thin foil), etc. According to the author’s experience, precipitates of
�500 nm in diameter can be identified but �50 nm not. The spatial resolution is
improved by using an advanced technique called transmission Kikuchi diffraction
(TKD), a.k.a. transmission EBSD, proposed in 2012 [24]. This new technique works
on conventional EBSD system and software. The difference is that TKD uses forward-
scattered electrons, whereas EBSD uses backscatter electrons. In other words, TKD
uses transmitted electrons as well as TEM; hence, the samples must be thin foils.
Sample preparation is not difficult for TEM users; TEM samples can be directly
subjected to this analysis. The high spatial resolution of TKD owes not only to the use
of thin foil specimens, which minimize unfavorable lateral beam spreading inside the
specimens, but also to a greater signal intensity of forward-scattered electrons than
backscattered electrons [25]. Since the Kikuchi pattern is generated from elastic
scattering (diffraction) of inelastically scattered electrons [26], there exists a lower
limit in both specimen thickness and precipitate size below which the Kikuchi pat-
terns are not obtained. When the thickness of thin foil specimens is largely greater
than the size of precipitates, the signal from the precipitates is hindered by that from
the matrix. In other words, there exists an upper limit of measurable foil thickness
depending on the size of precipitates. Only a limited range of thickness is applicable
to this method in a wedged-shaped TEM thin foil specimens. The practical spatial
resolution limit of TKD is dependent on many factors such as the position of detector
(florescent screen); according to the author’s experience using a conventional EBSD
system, precipitates of �50 nm in diameter can be identified but�10 nm not. The
resolution will be improved if the detector is placed just beneath of the sample; this is
an ideal setting that minimizes the loss of forward-scattered electrons.

Traditionally, TEM has been a primary analysis tool for composition analysis of
precipitates: energy-dispersive X-ray spectroscopy (EDS) and electron energy loss
spectroscopy (EELS). In these TEM-based composition analyses, samples having a
3D geometry are projected on 2D space via electron transmission. Precipitates often
overlap the matrix in the thickness direction, whereas their TEM image is
constructed based on integrated information over thickness. These analyses are
unable to determine the composition of overlapped portion. It is practically impos-
sible to judge from the projected 2D image if the precipitates are free from
overlapping. In terms of composition analysis of precipitates, the most innovative
breakthrough in the past two decades is probably the invention of atom probe
tomography (APT). Although its concept was first proposed in 1967, it has become
a practically useful tool since the commercial release of local-electrode atom probe
(LEAP) in 2003. APT is capable of visualizing atoms in 3D space, which is a critical
advantage over the TEM-based composition analyses. APT is a quantitative mass

11

Crystallography of Precipitates in Metals and Alloys: (1) Analysis of Crystallography
DOI: http://dx.doi.org/10.5772/intechopen.82693



analysis, whereas EDS and EELS are semiquantitative analyses that require a stan-
dard sample for calibration. Furthermore, EDS is inherently lack of quantitative
accuracy in detection of light elements; emission of Auger electrons is dominant
over characteristic X-ray and is dominant for low-Z elements like oxygen. Although
APT is superior to TEM-based analyses in many aspects, determination of precipi-
tates’ composition is a challenging subject even for APT. The quantitative precision
of the APT composition analysis is often limited by artifacts partly due to the so-
called trajectory aberration [27–29]. For precipitates darkly imaged in FIM (i.e., low
evaporate field regions) compared to the surrounding matrix, defocused high-field
iron ions coming from the surrounding matrix fall into the precipitate image on the
detector [30]. Conversely, for precipitates brightly imaged in FIM, image
overlapping occurs outside the precipitate image. In both cases, mixing with the
matrix elements inevitably occurs at the interface. Hence, matrix elements are often
detected in nano-precipitates [31, 32].

3. Evolution of crystal structure during nucleation

The classical nucleation theory is based on the so-called capillarity approxima-
tion, which assumes that the properties of nuclei are the same as those of the final
product from the beginning of embryo growth. In other words, all parameters that
characterize the new crystal phase to be distinct from the matrix phase, such as
density, composition, and structure, are assumed to be unchanged throughout the
nucleation stage. Under this assumption, nucleation event is expected to be solely
controlled by the size of embryos. Spontaneous growth (nucleation) of precipitates
is expected to occur at a critical composition where the hierarchy of the bulk free
energy of the precipitate phase and the surface free energy of precipitate/matrix
interface is reversed. In the past two decades, a modern concept called the two-step
nucleation has been established by the research community of crystal nucleation

Figure 5
Two-step nucleation of crystals from liquid [33].
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from liquid (Figure 5) [33]. This concept is nonclassical in that embryos become
distinct from the matrix liquid in terms of density prior to the structural change.
Here, fluctuation of composition is generally out of consideration, as in liquid
diffusivity of solute elements is equally very high; composition fluctuation is
expected to be negligibly small. On the other hand, in the nucleation of compound
precipitates in crystalline solids, fluctuation of density is relatively small (compared
to the nucleation of solid from liquid), but instead, composition may be a variable
parameter. In solids, diffusion coefficients of solute elements are merely the same;
stoichiometric composition of the compound may not be fulfilled in the early stage
of embryo growth. In this case, although the parameter being in focus is different
from the conventional two-step nucleation in liquid, this is also nonclassical in the
sense that multiple parameters required for nucleation evolve in parallel during
nucleation. In 2014, Peng et al. demonstrated that a solid-solid phase transition
occurs in a two-step process [34]. In their experiments using a model crystal
consisting of microgel colloidal spheres, the two-step represents a two-step change
in structure. The first step is a transition from a two-dimensional square lattice
structure to a liquid-like structure, and the second step is a transition from the
liquid-like structure to a two-dimensional triangular lattice structure. Fluctuation of
composition is not associated with their two-step process. Within the framework of
the classical nucleation theory, in 1937 Borelius assumed that composition is a
variable parameter in the nucleation of precipitates in solids [35]. Absolute value of
the bulk free energy of precipitates becomes the greatest with the compound’s
stoichiometric composition; nucleation is expected to occur at this critical compo-
sition. Borelius did not discuss the effect of compositional fluctuation on the critical
size. In 1949, Hobstetter attempted to handle both size and composition as variable
parameters [36]. He demonstrated that in this two-variable analysis there is a
pathway (in terms of evolution of size and composition) energetically more favor-
able than the pathway fixed by the previous one-variable analyses. However, the
meaning of the energetically most favorable pathway remained unclear in the
context of critical size and composition.

The final product described in the classical nucleation theory is not necessarily the
most stable, equilibrium phase. In many cases, the first nucleating phase is a meta-
stable phase, formation of which occurs with the lowest energy barrier; the equilib-
rium phase is produced through multiple transitions from a metastable phase to
another metastable phase step-by-step. This is an empirical rule known as Ostwald’s
rule of stages, proposed in the 1890s [37, 38]. One of such examples is precipitation of
Al2Cu at Guinier-Preston (GP) zone in Al-Cu alloys [39, 40]. The precipitation of
Al2Cu, which is the stable phase in this system, is known to occur via multiple
intermediate configurations such as GP zone! coherent θ” phase! semi-coherent
θ’ phase ! incoherent θ phase (Al2Cu). Those intermediate phases are distinct from
the Al2Cu in both crystal structure and composition. Another example is precipitation
of fcc Cu in bcc Fe matrix. Precipitation of Cu is known to occur via multiple
intermediate configurations such as bcc Cu! a twinned 9R Cu! fcc Cu [41]. The
bcc Cu precipitates are crystallographically indistinct from the matrix; in other words,
they are solute clusters in the bcc solid solution. The critical composition for their
structural changes remains unclear. It is technically rather difficult to determine the
composition of precipitates in the early stage of precipitation due to their small sizes.

Traditionally, experimental studies on the nucleation in solids have focused on
determining the critical size. For example, Othen et al. [41] reported that the bcc Cu
precipitates grow with the twinned 9R structure in a size range from 6 to 15 nm.
Their conclusion is based on the results of HR-TEM observation. This methodology
is, however, insufficient for statistical argument as mentioned in the previous
section.
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meaning of the energetically most favorable pathway remained unclear in the
context of critical size and composition.
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Al2Cu at Guinier-Preston (GP) zone in Al-Cu alloys [39, 40]. The precipitation of
Al2Cu, which is the stable phase in this system, is known to occur via multiple
intermediate configurations such as GP zone! coherent θ” phase! semi-coherent
θ’ phase ! incoherent θ phase (Al2Cu). Those intermediate phases are distinct from
the Al2Cu in both crystal structure and composition. Another example is precipitation
of fcc Cu in bcc Fe matrix. Precipitation of Cu is known to occur via multiple
intermediate configurations such as bcc Cu! a twinned 9R Cu! fcc Cu [41]. The
bcc Cu precipitates are crystallographically indistinct from the matrix; in other words,
they are solute clusters in the bcc solid solution. The critical composition for their
structural changes remains unclear. It is technically rather difficult to determine the
composition of precipitates in the early stage of precipitation due to their small sizes.

Traditionally, experimental studies on the nucleation in solids have focused on
determining the critical size. For example, Othen et al. [41] reported that the bcc Cu
precipitates grow with the twinned 9R structure in a size range from 6 to 15 nm.
Their conclusion is based on the results of HR-TEM observation. This methodology
is, however, insufficient for statistical argument as mentioned in the previous
section.
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Even today, experimental studies on the critical composition for nucleation are
still limited. As mentioned earlier, even in atom probe tomography, mixing with
matrix elements inevitably occurs at the precipitate/matrix interface due to trajec-
tory aberration. Hence, it is practically impossible to judge if the abovementioned
Cu precipitates embedded in Fe matrix is 100% pure Cu. When the precipitate of
interest is a compound consisting of multiple elements, the ratio of its constituent
elements can be discussed. However, when one of those elements is the element of
matrix, such as the Al–Cu precipitates in Al alloys, interpretation of their concen-
tration ratio is not straightforward.

In order to determine the critical composition for the structural change, the
crystal structure of precipitates must be examined together with composition. In
TEM observation of diffraction contrasts, precipitates are indistinguishable from
the matrix while they are solute clusters, and they become visible after structural
change. By using this unique feature in visibility, recently, Matsukawa et al.
performed a systematic analysis on the precipitation of the G-phase in a duplex
stainless steel subjected to thermal aging [3]. The crystal structure of the G-phase is
cF116 (a variant of fcc structure), and the lattice parameter is exactly fourfold of the
matrix ferrite (Figure 6). Precipitation occurs with the cube-on-cube orientation
relationship [42]. The stoichiometric composition is Ni16Si7Mn6; its constituent
elements are different from the matrix elements (Fe and Cr). So for these reasons,
this intermetallic compound is ideal for the fundamental study of nucleation. Pre-
cipitation of G-phase in duplex stainless steels is known to occur only in a very
narrow temperature range, 673–773 K [43]. In their study, thermal aging was
performed at 673 K for up to 10,000 h.

Their analysis revealed that precipitation of Ni–Si–Mn clusters started at 500 h
(Figure 7), whereas their structural change transforming into the G-phase started at
10,000 h (Figure 8). The number density of G-phase particles detected by TEM
was only �26% of the number of Ni–Si–Mn precipitates detected by APT. In other
words, three quarters of the Ni–Si–Mn precipitates were solute clusters yet without
structural change. The number of particles examined by TEMwas�750. A potential
error factor that could cause a misevaluation of the precipitate number density is
the method used to evaluate the thickness of the TEM foil. Their method was to use
thickness fringes obtained at an exact Bragg condition, where the deviation param-
eter was s=0. In this case, thickness is determined by the number of thickness
fringes multiplied by the extinction distance of the electron beam. Since the pre-
cipitate number density was counted in portions where the number of thickness
fringes was 4, the magnitude of the error in the foil-thickness evaluation was �25%.
In other words, the number of Ni–Si–Mn clusters that exhibited the crystal struc-
ture change was at most 50% of the total.

Their APT analysis also revealed that the Ni–Si–Mn clusters contained not only the
G-phase elements (Ni, Si, and Mn) but also the matrix elements (Fe and Cr) and that
enrichment of the G-phase elements occurred during thermal aging. Unlike the size
growth, the solute enrichment continued even after 5,000 h. In the composition
analysis of the clusters (Figure 9), those clusters were divided into three groups by
size, i.e., small (<2 nm in diameter), medium (2–3 nm), and large (>3 nm), in order
to minimize the artifacts that occur at the cluster/matrix interface; a comparison of
cluster composition should be made for those having the same size. The concentra-
tion ratio of the G-phase elements (Si/Ni and Mn/Ni) did not change during the
isothermal aging. The Mn/Ni ratio was in good agreement with that of stoichiometric
composition, whereas the Si/Ni ratio was roughly a half of the stoichiometric ratio.

Their analysis indicates that the nucleation of the G-phase occurred via a two-
step process: the first step is the spontaneous growth of solute clusters (i.e., nucle-
ation as solute clusters), and the second step is the nucleation as compounds
(i.e., the G-phase) (Figure 1). There was a time lag between the end of size growth
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(5,000 h) and the start of structural change (10,000 h). It appears that the
incubation period was controlled by solute enrichment inside the clusters. In other
words, the structural change occurred via another two-step process: the first step is
size fluctuation to become a critical size, and the second step is composition fluctu-
ation to become a critical composition (Figure 1).

Figure 6
Crystal structure and TEM electron pattern of the G-phase precipitates in the ferrite portion of a duplex
stainless steel subjected to thermal annealing at 673 K [3].
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Figure 7
APT results on the steel [3]: size and number density of Ni–Si–Mn clusters.
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The G-phase is currently of particular interest in nuclear materials research, as
this compound precipitates also in the steel constituting the main body of reactor
pressure vessels (RPVs) at the operation temperature of light water reactors

Figure 8
TEM results on the steel [3]. The G-phase precipitates were detected by diffraction pattern and DF image, only
in the sample annealed up to 10,000 h. Their number density was only�26% of the Ni–Si–Mn clusters detected
by APT.
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(�573 K) under neutron irradiation. It has long been well known that precipitation
of impurity Cu causes embrittlement of the RPV steels. In the late 1990s, Odette
et al. pointed out that, in the case of RPV steels containing a low amount of Cu such
as those manufactured after 1973, precipitation of Cu occurs in the first few years of
reactor operation, but near the end of the plants’ initial operational license lifetime

Figure 9
APT results on the steel [3]: composition of Ni–Si–Mn clusters.
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(typically 40 years), precipitation of Ni, Mn, and occasionally Si becomes dominant
over Cu [44]. The Ni–Mn(–Si), precipitates have been called the late-blooming
phase [45–47] since their structural and compositional features were unclear at that
time. It was very recently that the late-blooming phase is in many cases found to be
characterized as the G-phase [48, 49]. The composition of the late-blooming phase
detected by APT is not always the same [31, 32]. The composition range of Ni–Si–
Mn clusters to become brittle G-phase is a subject to be investigated further.

4. Crystal orientation relationship with the matrix

Crystal orientation relationship between precipitates and matrix is a potential
factor controlling the mechanical properties of metals and alloys. Dislocations can
glide on specific atomic planes, the choice of which is specific to crystal structure
and material. For instance, the slip plane is the {111} plane for fcc metals, the
{0001} plane for hcp magnesium, and the {10-10} plane for hcp titanium and hcp
zirconium [9]. When the slip plane of precipitates is not parallel to that of the
matrix, dislocations are in theory unable to cut through the precipitates. Although
the orientation relationship has been extensively studied in the past [50], only a few
studies have been reported on the effect of the crystal mismatch on the plasticity
[1, 2]. The absence of such studies is partly due to a technical difficulty in determi-
nation of crystal orientation of fine precipitate particles as mentioned in the Section
2. Recently, Matsukawa et al. performed a systematic analysis on the parallelism of
atomic planes between precipitates and matrix in a Zr–2.5Nb alloy: the precipitates
are bcc Nb containing Zr �10% and the matrix is hcp Zr. Based on the analysis
results obtained from 100 precipitate particles (�50 nm in diameter) by means of
TKD, they demonstrated that the orientation is practically random. Only 1 out of
100 precipitates had a slip plane parallel to that of the matrix. Their experimental
result is inconsistent with a preceding theoretical prediction by Zhang and Kelly
[51, 52]. Judging from the mismatch of inter-planar spacings, the most favorable
crystal orientation relationship for the Nb-rich bcc precipitates in the hcp Zr matrix
is (1011Þhcp== 1

�
10)bcc ˄ (1123)hcp//(113)bcc (Figure 2). Matsukawa et al. further

demonstrated that the absence of such a specific crystal orientation relationship is
attributable to the recrystallization of the matrix. In the Zr–2.5Nb alloy, precipita-
tion occurs in parallel with recrystallization as follows. The Nb atoms are fully
dissolved in the matrix at high temperatures with a bcc structure (Figure 10).
Quenching from this temperature range results in nucleation of bcc Nb nano-
precipitates and hcp Zr fine martensites. Ostwald ripening of Nb precipitates occurs
during annealing at medium temperatures (773–853 K) together with the recrystal-
lization of the martensite Zr matrix. The initial orientation relationship between the
precipitates and the matrix is overwritten by the recrystallization.

In the study of the Zr–2.5Nb alloy, the parallelism of slip planes between pre-
cipitates and matrix was analyzed as follows. This analysis is achieved by using the
Euler angles obtained from EBSD/TKD measurements, though so far not auto-
mated. The analysis procedure is slightly different depending on the analysis soft-
ware due to the different definition of the Euler angles. In the case of the TSL-OIM
software based on Bunge’s description [53], the Euler angles (φ1, Φ, φ2) are given by
three rotations along z1-x-z2 axes in accordance with passive rotation (intrinsic
rotation), where the axes are rotated instead of the vectors of object, while the
object is fixed in space (Figure 11). In this case, the rotation matrix (R) relative to
the space coordinates is given as follows [54]:
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In the reference crystal, the z- and the x-axes of space coordinates are parallel to
the [001] and to the [100] directions of cubic crystals. Here, we consider the
orientation relationship between two cubic crystals, A and B, whose rotation matri-
ces relative to the reference crystal are RA and RB. The rotation matrix between
these two crystals (RC) is given as follows:
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Figure 10
The Zr–Nb binary alloy phase diagram [14].
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Passive rotations of a cubic crystal with Euler angles (the Bunge Euler angles).
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An atomic plane of crystal B, H2
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0ð Þ, parallel to H1
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0ð Þ
of the crystal A is expressed by using the Euler rotation matrix RD,
which rotates the sample coordinates in such a way as to match H1
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[001] in the space coordinates:
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RA and RB are directly determined by EBSD measurements of crystals A and B.
The Euler angles of the RD are determined by using a simulation equipped on the
TSL-OIM data collection software. This simulation module is capable of (1) calcu-
lating how the index of a crystal (in the ND and the RD directions) changes in
accordance with rotations along the three axes and (2) visualizing where the index
(of the ND direction) is located on the Kikuchi map (the inverse pole figure). By
using these functions, the index H2

0 K2
0 L2

0ð Þ of precipitate particles can be plotted
on one inverse pole figure, though plotting the data points is a time-consuming
hand work.

Determination of theoretical accuracy of this analysis method is not straightfor-
ward, since errors are introduced by various factors such as (1) the conversion of
the Euler angles (φ1, Φ, φ2) to direction cosines, (2) the conversion of direction
cosines denoted in fractional values to the Millar indices (h k l) denoted in integer
ratio, and (3) the noise of EBSD data. In order to estimate the practical accuracy of
this analysis method, they first analyzed a standard sample in which the atomic-
plane parallelism between grains is already known. Their standard sample was a
type-316 austenitic stainless steel containing annealing twins (Figure 12). The twin
boundary of fcc metals is one of the four crystallographically equivalent {111}
planes. The Euler angles of these {111} planes for the RD rotation are, e.g.,
(φ1, Φ, φ2) = (0°, 55°, 45°), (0°, 55°, 135°), (0°, 55°, 225°), and (0°, 55°, 315°). They
performed this analysis on 50 twin couples and found that the largest offset from
the exact {111} was 3.3°. This is the magnitude of practical error of this analysis
method.

To date, several orientation relationships have been reported on bcc precipitates
in hcp matrix (Figure 13). The parallelism of slip planes in those orientation rela-
tionships is as follows: (1) the Burgers orientation relationship [13]: (0001)hcp//
(110)bcc ˄ (2110)hcp//(111)bcc. The slip plane of hcp Zr matrix, {1010}, is not
exactly parallel to the slip plane of bcc Nb precipitates, {110} or {112}; however, the
rotational offset between the 110

� �
bcc and the 1100

� �
hcp is only 5.3°. (2) The Pitsch-

Schrader orientation relationship [55]: (0001)hcp//(110)bcc ˄ 1100
� �

hcp== 110
� �

bcc.

The slip planes are exactly parallel to each other. (3) The Potter orientation rela-
tionship [56]: 2110

� �
hcp== 111

�
)bcc, ˄ 1101

� �
hcp== 011ð Þbcc. One of the {112}bcc is not

exactly but nearly parallel to one of the 1100
� �

hcp}. This orientation relationship is

close to the Burgers, from which the rotational offset is only �1.5°. (4) The Rong-
Dunlop orientation relationship [57]: (0001)hcp//(120)bcc ˄ (1120)hcp//(001)bcc ˄
1100
� �

hcp== 210
� �

bcc. The slip plane of hcp and bcc crystals is not parallel to each

other. (5) The Zhang and Kelly orientation relationships [51, 52]:
0001ð Þhcp== 1

�
10)bcc ˄ (1010)hcp//(113)bcc. They proposed several orientation rela-

tionships. This one is the most favorable orientation relationship for the bcc Nb
precipitates, in terms of the mismatch of the lattice parameter. Their analysis also
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suggested that the Pitsch-Schrader and the Rong-Dunlop orientation relationships
are favorable over the Burgers orientation relationship for Nb-rich precipitates. This
orientation relationship is close to the Burgers, and the slip plane of matrix is not
exactly parallel to that of precipitates.

The magnitude of error of the abovementioned analysis of atomic-plane paral-
lelism is greater than the orientation difference between the Potter and the Burgers
orientation relationships, 1.5°. It follows that these two orientation relationships are
practically indistinguishable from each other in this analysis. On the other hand, the
orientation difference between the Pitsch-Schrader and the Burgers orientation
relationships is 5.3°; in theory, they are distinguishable. In both the Burgers and the
Pitsch-Schrader orientation relationships, the basal plane of the hcp crystal is par-
allel to a {110} plane of the bcc crystal. In other words, when any one of {110}
planes of a precipitate is not parallel to the (0001) plane of the matrix, it follows
that the precipitate is in neither one of these two orientation relationships. The
criterion for the judgment of whether the Burgers or the Pitsch-Schrader is given by

Figure 12
Evaluation of the magnitude of error of the EBSD analysis method on the atomic plane parallelism described in
this chapter, using annealing twins in a type-316 stainless steel [2]. The largest offset from the exact {111} was
�3.3°. This is considered as the magnitude of practical error of this analysis method.
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Figure 13
Examples of crystal orientation relationships between bcc and hcp crystals [2]: (a) the Burgers, (b) the Pitsch-
Schrader, (c) the Potter, (d) the Rong-Dunlop, and (e) the Zhang-Kelly No. 5.
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another atomic-plane parallelism, which is whether 1120
� �

hcp== 111f gbcc or
1100
� �

hcp== 110f gbcc. As for the parallelism of slip planes, hcp crystals have three

crystallographically equivalent {1010} planes, whereas bcc crystals have 12 equiva-
lent {110} planes and another 12 equivalent {112} planes.

In the study of the Zr–2.5Nb alloy, Matsukawa et al. fixed the plane of hcp
matrix and plotted its corresponding atomic planes of bcc precipitates on an inverse
pole figure (Figure 4). In the TSL-OIM software, the Euler angles of hcp crystals
are given in the orthogonal coordinate system. In the reference crystal, the z- and
the x-axes of space coordinates are parallel to the [0001]hcp and the 2110

� �
hcp,

respectively:The Euler angles for the RD rotation of the 1120
� �

and the 101
�

0}
planes are shown in Table 1.

5. Conclusion

Recent progresses in our understanding of the crystallography of precipitates in
metals and alloys have been briefly reviewed. The major highlights are the following
three: (1) crystal structure of precipitates changes during nucleation. This concept
in itself has been known since the 1930s. Recent new findings concern the critical
conditions for the structural change in terms of fluctuations in size and composi-
tion, discovered by mean of combining transmission electron microscopy crystallo-
graphic analysis with atom probe tomography compositional analysis. It appears
that the structural change occurs at a critical size with a critical composition. There
is a long incubation period (in some cases a year long) before the structural change
after the growth to be the critical size. During the incubation period, enrichment of
solute elements occurs inside the precipitates without further size growth. It still
remains unclear if these features are universal for any types of precipitates. This
research field is expected to advance drastically in the years ahead. (2) In the past
years, it has also become technically possible to examine the crystal orientation
relationship of fine precipitate particles such as �50 nm in diameter with the
matrix, on numbers of samples numerically sufficient for statistical arguments.
Transmission Kikuchi diffraction, which is an advanced technique of electron
backscatter diffraction equipped with a scanning electron microscope, revealed that
the crystal orientation of precipitates can be random even when they are in theory
favorable to have a specific orientation relationship with the matrix from the view-
point of lattice mismatch. It appears that such a situation is realized when the

Index Euler angle (φ1, Φ, φ2) [°]

Basal 0001 0, 0, 0

Prismatic (type 1) 0110 0, 90, 0

1010 0, 90, 60

1100 0, 90, 120

Prismatic (type 2) 2110 0, 90, 90

1210 0, 90, 150

1120 0, 90, 210

Table 1
The Euler angles to rotate the object coordinates of an hcp crystal in such a way that the plane of interest
coincide with the (0001) of the reference hcp crystal, whose [0001] and 2110

� �
are parallel to ND and RD,

respectively.

25

Crystallography of Precipitates in Metals and Alloys: (1) Analysis of Crystallography
DOI: http://dx.doi.org/10.5772/intechopen.82693



Figure 13
Examples of crystal orientation relationships between bcc and hcp crystals [2]: (a) the Burgers, (b) the Pitsch-
Schrader, (c) the Potter, (d) the Rong-Dunlop, and (e) the Zhang-Kelly No. 5.

24

Crystallography

another atomic-plane parallelism, which is whether 1120
� �

hcp== 111f gbcc or
1100
� �

hcp== 110f gbcc. As for the parallelism of slip planes, hcp crystals have three

crystallographically equivalent {1010} planes, whereas bcc crystals have 12 equiva-
lent {110} planes and another 12 equivalent {112} planes.

In the study of the Zr–2.5Nb alloy, Matsukawa et al. fixed the plane of hcp
matrix and plotted its corresponding atomic planes of bcc precipitates on an inverse
pole figure (Figure 4). In the TSL-OIM software, the Euler angles of hcp crystals
are given in the orthogonal coordinate system. In the reference crystal, the z- and
the x-axes of space coordinates are parallel to the [0001]hcp and the 2110

� �
hcp,

respectively:The Euler angles for the RD rotation of the 1120
� �

and the 101
�

0}
planes are shown in Table 1.

5. Conclusion

Recent progresses in our understanding of the crystallography of precipitates in
metals and alloys have been briefly reviewed. The major highlights are the following
three: (1) crystal structure of precipitates changes during nucleation. This concept
in itself has been known since the 1930s. Recent new findings concern the critical
conditions for the structural change in terms of fluctuations in size and composi-
tion, discovered by mean of combining transmission electron microscopy crystallo-
graphic analysis with atom probe tomography compositional analysis. It appears
that the structural change occurs at a critical size with a critical composition. There
is a long incubation period (in some cases a year long) before the structural change
after the growth to be the critical size. During the incubation period, enrichment of
solute elements occurs inside the precipitates without further size growth. It still
remains unclear if these features are universal for any types of precipitates. This
research field is expected to advance drastically in the years ahead. (2) In the past
years, it has also become technically possible to examine the crystal orientation
relationship of fine precipitate particles such as �50 nm in diameter with the
matrix, on numbers of samples numerically sufficient for statistical arguments.
Transmission Kikuchi diffraction, which is an advanced technique of electron
backscatter diffraction equipped with a scanning electron microscope, revealed that
the crystal orientation of precipitates can be random even when they are in theory
favorable to have a specific orientation relationship with the matrix from the view-
point of lattice mismatch. It appears that such a situation is realized when the

Index Euler angle (φ1, Φ, φ2) [°]

Basal 0001 0, 0, 0

Prismatic (type 1) 0110 0, 90, 0

1010 0, 90, 60

1100 0, 90, 120

Prismatic (type 2) 2110 0, 90, 90

1210 0, 90, 150

1120 0, 90, 210

Table 1
The Euler angles to rotate the object coordinates of an hcp crystal in such a way that the plane of interest
coincide with the (0001) of the reference hcp crystal, whose [0001] and 2110

� �
are parallel to ND and RD,

respectively.

25

Crystallography of Precipitates in Metals and Alloys: (1) Analysis of Crystallography
DOI: http://dx.doi.org/10.5772/intechopen.82693



matrix exhibits recrystallization after precipitation. (3) Crystal orientation rela-
tionship between precipitates and matrix was found to be a factor controlling the
magnitude of precipitation hardening. This is a new concept beyond the scope of
the traditional theory of precipitation hardening, which assumes that the hardening
is controlled solely by the shear modulus, whether or not the precipitates are harder
than the matrix. In cases where the slip plane of precipitates is not parallel to the slip
plane of the matrix, dislocations gliding in the matrix are unable to cut through
them, resulting in strong obstacles regardless of the shear modulus. Further infor-
mation on this issue is provided in the next chapter.
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Chapter 3

Crystallography of Precipitates in
Metals and Alloys: (2) Impact of
Crystallography on Precipitation
Hardening
Yoshitaka Matsukawa

Abstract

Following the previous chapter, this chapter describes crystallography of
second-phase precipitate particles in metals and alloys; the focus of this chapter is
placed on the effect of crystallography of precipitates on precipitation hardening.
Unlike nonmetallic composite materials whose strength is determined by the vol-
ume fraction ratio of constituent phases, the strength of metals and alloys can be
several times greater by introducing a minor amount of precipitate particles such as
2%. The magnitude of strengthening (hardening) due to precipitates is, in tradi-
tional understanding, controlled by the shear modulus, whether or not the precipi-
tates are harder than the matrix. The most recent major update in this research field
is a discovery that crystallography of precipitates is another factor controlling the
magnitude of strengthening. In the case where the slip plane of dislocations in
precipitates is not parallel to that in the matrix, dislocations gliding in the matrix are
unable to cut through the precipitates, resulting in intense hardening regardless of
the shear modulus. This chapter also reviews the classical theory of precipitation
hardening established in the 1950s–1960s, in order to sort out open questions to be
resolved.

Keywords: precipitates, nucleation, crystal structure, strength, dislocations

1. Introduction

This chapter is a supplement to the previous chapter on crystallography of
precipitate particles in metals and alloys, for the purpose of describing how the
crystallography of precipitates practically affects the physical properties of entire
the material. The crystallography of precipitates is of interest not only for funda-
mental materials science but also for engineering, in particular, structural materials
engineering. The strength of metals and alloys is highly affected by a minor amount
of precipitates such as a few percent. In the case of nonmetallic composite materials,
their strength is determined by the volume fraction ratio of constituent phases. In
other words, the strength of nonmetallic composites is expected not to exceed that
of constituent phases. On the other hand, metals and alloys containing second-
phase precipitate particles, say, 2% in volume fraction, can exhibit a strength sev-
eral times greater than the matrix phase (Figures 1–3). Such intense hardening is

33



Chapter 3

Crystallography of Precipitates in
Metals and Alloys: (2) Impact of
Crystallography on Precipitation
Hardening
Yoshitaka Matsukawa

Abstract

Following the previous chapter, this chapter describes crystallography of
second-phase precipitate particles in metals and alloys; the focus of this chapter is
placed on the effect of crystallography of precipitates on precipitation hardening.
Unlike nonmetallic composite materials whose strength is determined by the vol-
ume fraction ratio of constituent phases, the strength of metals and alloys can be
several times greater by introducing a minor amount of precipitate particles such as
2%. The magnitude of strengthening (hardening) due to precipitates is, in tradi-
tional understanding, controlled by the shear modulus, whether or not the precipi-
tates are harder than the matrix. The most recent major update in this research field
is a discovery that crystallography of precipitates is another factor controlling the
magnitude of strengthening. In the case where the slip plane of dislocations in
precipitates is not parallel to that in the matrix, dislocations gliding in the matrix are
unable to cut through the precipitates, resulting in intense hardening regardless of
the shear modulus. This chapter also reviews the classical theory of precipitation
hardening established in the 1950s–1960s, in order to sort out open questions to be
resolved.

Keywords: precipitates, nucleation, crystal structure, strength, dislocations

1. Introduction

This chapter is a supplement to the previous chapter on crystallography of
precipitate particles in metals and alloys, for the purpose of describing how the
crystallography of precipitates practically affects the physical properties of entire
the material. The crystallography of precipitates is of interest not only for funda-
mental materials science but also for engineering, in particular, structural materials
engineering. The strength of metals and alloys is highly affected by a minor amount
of precipitates such as a few percent. In the case of nonmetallic composite materials,
their strength is determined by the volume fraction ratio of constituent phases. In
other words, the strength of nonmetallic composites is expected not to exceed that
of constituent phases. On the other hand, metals and alloys containing second-
phase precipitate particles, say, 2% in volume fraction, can exhibit a strength sev-
eral times greater than the matrix phase (Figures 1–3). Such intense hardening is

33



achieved when precipitate particles are strong obstacles against the motion of dis-
locations gliding on a slip plane in the matrix. They are strong obstacles in the case
where dislocations are unable to cut through them (Figure 4). In the classical
theory of precipitation hardening (a.k.a. dispersion strengthening) established in
the 1950s–1960s, the obstacle strength is assumed to be determined by the shear
modulus [1, 2]; those which are harder than the matrix are strong obstacles. In
general, this condition is fulfilled by a combination of metallic matrix and nonme-
tallic compound precipitates such as oxides and carbides whose strength is typically
a few GPa, which is �10 times greater than the yield strength of metals. Recent
experimental studies demonstrated that crystallography of precipitate particles is

Figure 1.
A model calculation of precipitation hardening in the hcp Ti, the hcp Mg, the fcc Cu, and the bcc Fe, as a
function of the volume fraction of precipitates for the cases of precipitate diameter of 5 and 50 nm. The obstacle
strength is set to α = 0.8.

Figure 2.
A model calculation of precipitation hardening in the hcp Ti, the hcp Mg, the fcc Cu, and the bcc Fe, as a
function of the diameter of precipitates for the case of precipitate volume fraction of 2%. The obstacle strength is
set to α = 0.8.
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Figure 3.
Example of precipitate particles in alloys: (a) G-phase precipitates in a duplex stainless steel and (b) bcc Nb
precipitates in a Zr▬2.5Nb alloy [4].

Figure 4.
Interaction between a gliding dislocation and a precipitate particle: (a) the Orowan mechanism for strong
obstacles and (b) the cutting mechanism for weak obstacles [1]. The factor controlling the obstacle strength has
been assumed to be the shear modulus, i.e., precipitates harder than matrix are strong obstacles. This concept
has recently been updated; crystallography of precipitates is another factor controlling their obstacle strength.
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another factor dominating their obstacle strength [3, 4]. When the slip plane in
precipitates is not parallel to that in the matrix, dislocations gliding in the matrix are
unable to cut through the precipitates regardless of the shear modulus. In this case,
metallic precipitates are strong obstacles as well as nonmetallic compound precipi-
tates. It follows that metals and alloys can be several times stronger than their
constituent phases. In this way, crystallography enables us to create strong materials
from a combination of weak materials: one plus one becomes more than two.

2. Magnitude of hardening as a function of precipitate size and number
density

The abovementioned statement about the magnitude of precipitation hardening
of the case of 2% volume fraction is derived from the following numerical calcula-
tion. Based on a geometry consideration of dislocation-precipitate interaction, the
increase of material’s yield strength, σy, which is a critical stress level where the
deformation mode changes from elastic to plastic deformation, is given as follows
[3, 5–7]:

Δσy ¼ αMμbðNvdÞ1=2 (1)

where α is the obstacle strength of the precipitates, M is the Taylor factor, μ is
the shear modulus of the matrix, b is the magnitude of the Burgers vector of
dislocations in the matrix, and Nv and d are the number of precipitate particles per
unit volume (i.e., the number density) and their mean diameter. The Taylor factor
(M) is a material-specific constant primarily dependent on the crystal structure, slip
systems, and texture. An M value of 3.1 is commonly applied to non-textured
polycrystalline metals having an fcc structure or a bcc structure [5–7]. For metals
having an hcp structure, M values of 6.5 and 5.0 are commonly applied to Mg [8, 9]
and Ti [10, 11], respectively. Their difference is related to the number of active slip
system, which is dependent on the c/a ratio. The c/a ratio is 1.633 for ideal close-
packed structure, 1.623 for Mg, and 1.587 for Ti. In the hcp Mg only the basal plane
is available for dislocation slip, whereas in the hcp Ti, the primary slip plane is the
prism plane, and the basal plane is also available as a secondary slip plane. In the
traditional concept of the Orowan hardening, the obstacle strength (α) is dependent
on the shear modulus. The obstacle strength of strong obstacles is, in theory, α = 1.
However, when particles are dispersed in random distribution, the obstacle strength
α is no longer 1, but instead a factor of 0.80–0.85 is introduced [12–16].

In the past several years, Eq. (1) has been frequently cited especially in the
research community of nuclear materials, which exhibit hardening and embrittle-
ment due to precipitation induced by high-energy neutron irradiation. According to
previous publications [5–7], the source of this equation goes back to a paper
published in 1958 [17]. This information appears to be incorrect; Eq. (1) is not
mentioned in it. For future reference, here we provide the detailed derivation
method of Eq. (1) as follows.

When a gliding dislocation is pinned by a precipitate particle (Figure 5), the
force acting on the dislocation (F) is given as a function of bowing angle (θ) and the
line tension (T):

F ¼ 2Tcos θ=2ð Þ (2)

The force acting on a dislocation line is alternatively given as a function of a
shear stress (τ), the Burgers vector (b), and the length of dislocation line, which is
in this case the distance between particles (L):
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F ¼ τbL ! τ ¼ 2T
bL

cos θ=2ð Þ (3)

By adopting the simplest approximation for the line tension of dislocations, i.e.,
T = μb2/2, we obtain:

τ ¼ μb
L

cos θ=2ð Þ !¼ αμb=Lð Þ (4)

The obstacle strength (α) corresponds to the bowing angle (θ). In the case where
the precipitate particle is an impenetrable obstacle, the dislocation eventually
bypasses the obstacle with forming a dislocation loop around it (Figure 4). The
formation of dislocation loop occurs at θ = 0°, where the segments of dislocation line
on both sides of the obstacle become parallel from each other. Those segments have
the same Burgers vector and opposite line senses, thereby they are attracted each
other and eventually merged into one. At θ = 0°, F becomes a maximum value
(=2 T). In other words, the maximum value of α is 1. Degree of precipitation
hardening in macroscopic length scale is denoted by the tensile stress rather than
the shear stress; they converted each other using the Taylor factor (τ = σ/M):

Δσy ¼ Mμb
L

cos θ=2ð Þ !¼ αMμb=Lð Þ (5)

Eq. (5) is converted into Eq. (1), based on the simplest approximation for the
spatial distribution of precipitates, i.e., a square lattice arrangement:

L ¼ 1=N1=2
s ¼ 1=ð2rNvÞ1=2 ¼ 1=ðNvdÞ1=2 (6)

where Ns is the number of precipitate particles per unit area on a plane
(i.e., the planar number density) and r is the mean radius of precipitates. The
relation of Ns = 2rNv is derived from the Delesse’s principle [18], where the volume
fraction of precipitate particles in 3D space (VV) is equivalent to their area fraction
in 2D space (AA):
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Figure 5.
Dislocation on a slip plane where each obstacle exerts localized glide resistance force (F) balanced in
equilibrium by line tension forces (T).

37

Crystallography of Precipitates in Metals and Alloys: (2) Impact of Crystallography…
DOI: http://dx.doi.org/10.5772/intechopen.84273



another factor dominating their obstacle strength [3, 4]. When the slip plane in
precipitates is not parallel to that in the matrix, dislocations gliding in the matrix are
unable to cut through the precipitates regardless of the shear modulus. In this case,
metallic precipitates are strong obstacles as well as nonmetallic compound precipi-
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Δσy ¼ αMμbðNvdÞ1=2 (1)
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When a gliding dislocation is pinned by a precipitate particle (Figure 5), the
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F ¼ 2Tcos θ=2ð Þ (2)

The force acting on a dislocation line is alternatively given as a function of a
shear stress (τ), the Burgers vector (b), and the length of dislocation line, which is
in this case the distance between particles (L):
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F ¼ τbL ! τ ¼ 2T
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Ns ≈ 2rNv (7)

The average radius of particles measured on 2D space (r’) is a function of their
true radius (r): r’ = r/1.22. This relationship is derived as follows [19]. The radius
(r’) varies with the position of sectioning plane relative to the center of sphere:

r0 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r2 � h2

p
(8)

where h is the distance from the center to the sectioning plane. The probability
that the test plane intersects the sphere at a distance between h and h + Δh from its

center is dh/r. The average of the area of section π r0ð Þ2 is obtained by applying the
definition of mean value [19] as follows:

π r0ð Þ2 ¼
ðr
0
π r2 � h2� �dh

r
¼ 2

3
πr2

r0ð Þ2 ¼ 2
3
r2

r≈ 1:2247r0 (9)

The obstacle strength α is 1 for particles dispersed in an ideal square lattice
arrangement but �0.8 for those dispersed randomly. This is an empirical rule
obtained from 2D simulations performed by Foreman and Makin (Figure 6). The
motion of dislocations is not uniform, but they propagate preferentially through “local
soft spots” where the local number density of obstacles is smaller than the others
(Figure 7). As a result of such spatially localized deformation, the average stress level
required to sweep a unit area becomes smaller than the case of square arrangement.

An alternative explanation of α 6¼ 1 is obtained from a geometry analysis
(Figure 8) considering the possibility that effective average interparticle distance
(Λ) on the slip plane may be different from the actual average interparticle distance
(L) in 3D space due to the effect of a dislocation-obstacle interaction on another
interaction. This concept is based on an assumption that the lattice friction against
dislocation glide is negligibly small, in a steady-state plastic deformation at a

Figure 6.
Simulation results of Foreman and Makin [12] in comparison with the Orowan model, which assumes a square
lattice arrangement of obstacles, and a calibrated model based on the Friedel’s assumption shown in Figure 14.
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constant strain rate. In this case, after unpinning from an obstacle, the curvature
of a dislocation remains unchanged until it encounters another obstacle [20]
(Figure 8). If the area swept by such motion of dislocations upon unpinning is
greater than the area occupied by one obstacle in the average of 3D space (given as a
regular square lattice arrangement), it follows that the apparent stress level
required to sweep a unit area becomes smaller. The area swept by the dislocation
(Λ2) is regarded as the effective area occupied by a single particle on the slip plane.
This area is the area of large segment of a circle of radius (R) minus that of two
small ones:

Λ2 ¼ R2 sin �1 L
2R

� �
� L

4

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4R2 � L2

p� �
� 2 R2 sin �1 L

R

� �
� L

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
R2 � L2

p� �
(10)

This formula cannot be solved unless otherwise some kind of approximation is
introduced. A common approximation of L < <R results in Λ2 ¼ 0. Judging from
the geometry shown in Figure 8, a rather approximation is L = R.

Figure 7.
Simulation results of Foreman and Makin [12]: (a) strong obstacles and (b) weak obstacles. The arrows
indicate the propagation direction of dislocations.

Figure 8.
A geometry consideration of simultaneous interaction of a dislocation with multiple obstacles. When a
dislocation segment starts interacting with an obstacle, this segment is already curved due to the aftereffect of
previous interaction with another obstacle. Since the dislocation segment sweeps an area between obstacles
without any additional stress (when the friction is assumed to be negligibly small), the average flow stress
becomes smaller that of the case of single obstacle interaction (and also the square lattice arrangement).
Consequently, their effective obstacle strength becomes smaller.
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constant strain rate. In this case, after unpinning from an obstacle, the curvature
of a dislocation remains unchanged until it encounters another obstacle [20]
(Figure 8). If the area swept by such motion of dislocations upon unpinning is
greater than the area occupied by one obstacle in the average of 3D space (given as a
regular square lattice arrangement), it follows that the apparent stress level
required to sweep a unit area becomes smaller. The area swept by the dislocation
(Λ2) is regarded as the effective area occupied by a single particle on the slip plane.
This area is the area of large segment of a circle of radius (R) minus that of two
small ones:
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This formula cannot be solved unless otherwise some kind of approximation is
introduced. A common approximation of L < <R results in Λ2 ¼ 0. Judging from
the geometry shown in Figure 8, a rather approximation is L = R.
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Simulation results of Foreman and Makin [12]: (a) strong obstacles and (b) weak obstacles. The arrows
indicate the propagation direction of dislocations.

Figure 8.
A geometry consideration of simultaneous interaction of a dislocation with multiple obstacles. When a
dislocation segment starts interacting with an obstacle, this segment is already curved due to the aftereffect of
previous interaction with another obstacle. Since the dislocation segment sweeps an area between obstacles
without any additional stress (when the friction is assumed to be negligibly small), the average flow stress
becomes smaller that of the case of single obstacle interaction (and also the square lattice arrangement).
Consequently, their effective obstacle strength becomes smaller.
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Λ2 ¼ π
6
þ

ffiffiffi
3

p

2

� �
L2

Λ≈ 1:18L (11)

In this case, a factor of 1/1.18 = 0.85 is introduced into Eq. (4). In other words,
the maximum value of α is 0.85 if this geometry effect is considered. It is notewor-
thy that this value coincides with the coefficient of the well-known Ashby-Orowan
model [16]. The Ashby-Orowan model adopted this value from Kocks’ works,
which consist of a graphical analysis performed on 550 obstacles in random distri-
bution [13] and a geometry consideration expressed in a more complicated form
than this analysis [15].

Eq. (1) is, although obtained from simplified assumptions in terms of the line
tension of dislocations and the spatial distribution of precipitates, helpful for intu-
itive understanding about the effects of precipitate size and number density on
hardening. Using this formula, here we evaluate the magnitude of hardening as a
function of those factors in fcc Cu, bcc Fe, hcp Ti, and hcp Mg. Under a constant
volume fraction of precipitates, smaller size results in greater hardening due to:

Vv ¼ Nv � 4πr3

3

� �
(12)

Smaller size results in higher number density. In many cases, the maximum
value of the number density of precipitates introduced by thermal aging is
�1 � 1023m�3, which corresponds to an interparticle distance of �22 nm in the case
of the square lattice distribution. With this number density, when the volume
fraction is 2%, it follows that the diameter of particles is 7.3 nm (Table 1). In the
case of bcc Fe, the yield strength is estimated to be �1.4 GPa, �10 times greater
than the yield strength without precipitates, �120 MPa. Irradiation with high-
energy particles such as neutron often induces (or enhance) precipitation of second
phase. The number density of irradiation-induced precipitates can become the
order of 1024/m3, which corresponds to an interparticle distance of 10 nm. For
instance, the number density and diameter of neutron irradiation-induced Cu pre-
cipitates and Ni▬Si▬Mn precipitates are both some 1024/m3 and 0.5–1.5 nm,
respectively [21]. Their volume fractions are 0.007% for 0.5 nm and 0.18% for
1.5 nm. Their hardening is estimated to be 1.1 GPa for the former and 1.9 GPa for
the latter. For reference, the magnitude of hardening in the bcc Fe, the fcc Cu, the
hcp Ti, and the hcp Mg as a function of volume fractions and diameter of pre-
cipitates is summarized in Figures 1 and 2.

Number density
[m�3]

Volume fraction
[%]

Diameter
[nm]

Interparticle distance
[nm]

Δσ
[MPa]

2 � 1023 2 5.8 17.1 1750

1 � 1023 2 7.3 21.5 1365

1 � 1022 2 15.6 46.4 631

1 � 1021 2 34 100 295

1 � 1020 2 73 215 137

Table 1.
Estimation of realistically achievable maximum precipitation hardening in bcc iron at a constant volume
fraction (2%) with variation of number density and mean diameter of precipitate particles.
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3. Effects of crystallography on obstacle strength

After Orowan, extensive studies have been made on the effects of various
factors such as dislocation character (edge vs. screw), spatial distribution of pre-
cipitates and their size distribution, elastic anisotropy, stacking fault energy, coher-
ency, formation of ledges at the precipitate/matrix interface due to passage of
dislocations (a.k.a. chemical strengthening), formation of antiphase boundary at
the interface (a.k.a. ordering strengthening), etc. However, the effect of crystallog-
raphy of precipitates has long been unexplored until very recently, partly due to
technical difficulties in experiments. The absence of simulations on this issue is due
to the following two reasons. (1) For molecular dynamics (MD) simulations,
reproducing the realistic interaction geometry between gliding dislocations and
incoherent particles is technically rather difficult, because experimental databases
on the atomic structures of the precipitate-matrix interphases are limited. (2) For
dislocation dynamics (DD) simulations based on continuum elasticity theory calcu-
lations, the effect of crystal mismatch is beyond the capability.

In 2016 it was experimentally demonstrated that soft precipitates can be strong
obstacles. That report examined bcc Nb precipitates in hcp Zr matrix, the shear
modulus of which are 28 and 33 GPa, respectively. Traditionally, the obstacle
strength of such soft precipitates has been scaled by the difference of the shear
modulus between precipitates and matrix in accordance with a model proposed by
Russell and Brown in 1972 [22]. An implication of the Russell-Brown model is that a
greater difference in the shear modulus results in a greater obstacle strength, as
described later. Since the Nb precipitates in the Zr▬2.5Nb alloy are as soft as the Zr
matrix, they are considered weak obstacles. Nevertheless, their experimentally
determined obstacle strength was α = 0.8–1 (Figure 9), indicating that they are
ideal Orowan-type strong obstacles. This analysis result is supported by transmis-
sion electron microscopy (TEM) observation (Figure 10). The morphology of the
Nb precipitates does not change even after severe cold rolling up to 90%; they are
certainly non-shearable obstacles. Later, Matsukawa et al. further demonstrated
that, by means of transmission Kikuchi diffraction (TKD), crystal orientation of the
Nb precipitates is practically random (as described in the previous section of this
chapter). Considering that dislocations can glide only on specific atomic planes, the
most probable scenario is probably that dislocations cannot cut through the

Figure 9.
Experimentally determined obstacle strength of bcc Nb precipitates and irradiation-induced Nb nanoclusters in
Zr▬Nb alloys [3]. The former was obtained from Zr▬Nb alloys containing various amounts of bcc Nb
precipitates, whereas the latter from a Zr▬2.5Nb alloy subjected to ion irradiation.

41

Crystallography of Precipitates in Metals and Alloys: (2) Impact of Crystallography…
DOI: http://dx.doi.org/10.5772/intechopen.84273



Λ2 ¼ π
6
þ

ffiffiffi
3

p

2

� �
L2

Λ≈ 1:18L (11)

In this case, a factor of 1/1.18 = 0.85 is introduced into Eq. (4). In other words,
the maximum value of α is 0.85 if this geometry effect is considered. It is notewor-
thy that this value coincides with the coefficient of the well-known Ashby-Orowan
model [16]. The Ashby-Orowan model adopted this value from Kocks’ works,
which consist of a graphical analysis performed on 550 obstacles in random distri-
bution [13] and a geometry consideration expressed in a more complicated form
than this analysis [15].

Eq. (1) is, although obtained from simplified assumptions in terms of the line
tension of dislocations and the spatial distribution of precipitates, helpful for intu-
itive understanding about the effects of precipitate size and number density on
hardening. Using this formula, here we evaluate the magnitude of hardening as a
function of those factors in fcc Cu, bcc Fe, hcp Ti, and hcp Mg. Under a constant
volume fraction of precipitates, smaller size results in greater hardening due to:

Vv ¼ Nv � 4πr3

3

� �
(12)

Smaller size results in higher number density. In many cases, the maximum
value of the number density of precipitates introduced by thermal aging is
�1 � 1023m�3, which corresponds to an interparticle distance of �22 nm in the case
of the square lattice distribution. With this number density, when the volume
fraction is 2%, it follows that the diameter of particles is 7.3 nm (Table 1). In the
case of bcc Fe, the yield strength is estimated to be �1.4 GPa, �10 times greater
than the yield strength without precipitates, �120 MPa. Irradiation with high-
energy particles such as neutron often induces (or enhance) precipitation of second
phase. The number density of irradiation-induced precipitates can become the
order of 1024/m3, which corresponds to an interparticle distance of 10 nm. For
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on the atomic structures of the precipitate-matrix interphases are limited. (2) For
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In 2016 it was experimentally demonstrated that soft precipitates can be strong
obstacles. That report examined bcc Nb precipitates in hcp Zr matrix, the shear
modulus of which are 28 and 33 GPa, respectively. Traditionally, the obstacle
strength of such soft precipitates has been scaled by the difference of the shear
modulus between precipitates and matrix in accordance with a model proposed by
Russell and Brown in 1972 [22]. An implication of the Russell-Brown model is that a
greater difference in the shear modulus results in a greater obstacle strength, as
described later. Since the Nb precipitates in the Zr▬2.5Nb alloy are as soft as the Zr
matrix, they are considered weak obstacles. Nevertheless, their experimentally
determined obstacle strength was α = 0.8–1 (Figure 9), indicating that they are
ideal Orowan-type strong obstacles. This analysis result is supported by transmis-
sion electron microscopy (TEM) observation (Figure 10). The morphology of the
Nb precipitates does not change even after severe cold rolling up to 90%; they are
certainly non-shearable obstacles. Later, Matsukawa et al. further demonstrated
that, by means of transmission Kikuchi diffraction (TKD), crystal orientation of the
Nb precipitates is practically random (as described in the previous section of this
chapter). Considering that dislocations can glide only on specific atomic planes, the
most probable scenario is probably that dislocations cannot cut through the
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precipitates as the slip plane of precipitate interior is not parallel to the slip plane of
the matrix.

The hcp Zr matrix of the Zr▬2.5Nb alloy contained Nb �0.5 at.%, which is
greater than the solubility (see Figure 10 of the previous chapter). The excess Nb
atoms formed nanoprecipitates when the alloy is subjected to high-energy particle
irradiation. Unlike the bcc Nb precipitates whose α is 0.8–1, the α of the Nb
nanoprecipitates produced by irradiation was estimated to be �0.2 or less. Their
obstacle strength α is plotted in Figure 9 as a function of damage level (displace-
ment per atom: dpa). This analysis is based on an assumption that the irradiation-
induced hardening occurred solely due to nanoprecipitates. In reality, however, the
irradiated samples may also have contained defect clusters such as dislocation loops
at high density. This assumption yields an overestimation of the α of
nanoprecipitates; nevertheless, the obtained α was extremely small, indicating that
the Nb nanoclusters are weak obstacles. The origin of such small α of
nanoprecipitates is presumably attributable to the structural change of precipitates

Figure 10.
Bcc Nb precipitates in a Zr▬2.5Nb alloy subjected to cold rolling up to 90% [4]. Although the bcc Nb is softer
than the hcp Zr in terms of shear modulus, the bcc Nb precipitates in the hcp Zr matrix are actually
nonshearable, strong obstacles against gliding dislocations.

Figure 11.
Coherent fcc Co precipitates embedded in fcc Cu matrix of a Cu-3 wt.% Co alloy [23]. The strain contrast
around the precipitate particles in undeformed samples is lost in deformed samples.
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during precipitation described in the previous chapter. This hypothesis is still open
for further investigation.

Soft precipitates can become non-shearable obstacles against dislocations due to
the effect of crystallography. Likewise, hard precipitates can become shearable if
crystallography allows, i.e., when their slip plane is parallel to that of the matrix. An
example shown here is a coherent fcc Co precipitate particle embedded in fcc Cu
matrix [23] (Figure 11). The shear modulus of the fcc Co is about two times greater
than that of the fcc Cu [24]; nevertheless, the Co precipitates are actually shearable
(Figure 12). It still remains unclear how much hard particles are shearable. It
appears that this process occurs only in a limited circumstance. The Co particles
were sheared only when interacted with Shockley partial dislocations having the
same Burgers vector, gliding on adjacent {111} planes, forming a twin band. Other-
wise, dislocations bypassed the Co precipitates via the Hirsch mechanism [25]
(Figure 13). The Hirsch mechanism is similar to the Orowan mechanism but
distinct in terms of the type of dislocation loop remained after the interaction.

Figure 12.
Cutting of strong obstacles by dislocations: fcc Co precipitates in fcc Cu matrix [25]. The shear modulus of the
fcc Co is two times larger than the fcc Cu [24].

Figure 13.
The Hirsch mechanism [26] observed by TEM in situ straining experiments: fcc Co precipitates in fcc Cu matrix
[25].
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precipitates as the slip plane of precipitate interior is not parallel to the slip plane of
the matrix.
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irradiation. Unlike the bcc Nb precipitates whose α is 0.8–1, the α of the Nb
nanoprecipitates produced by irradiation was estimated to be �0.2 or less. Their
obstacle strength α is plotted in Figure 9 as a function of damage level (displace-
ment per atom: dpa). This analysis is based on an assumption that the irradiation-
induced hardening occurred solely due to nanoprecipitates. In reality, however, the
irradiated samples may also have contained defect clusters such as dislocation loops
at high density. This assumption yields an overestimation of the α of
nanoprecipitates; nevertheless, the obtained α was extremely small, indicating that
the Nb nanoclusters are weak obstacles. The origin of such small α of
nanoprecipitates is presumably attributable to the structural change of precipitates

Figure 10.
Bcc Nb precipitates in a Zr▬2.5Nb alloy subjected to cold rolling up to 90% [4]. Although the bcc Nb is softer
than the hcp Zr in terms of shear modulus, the bcc Nb precipitates in the hcp Zr matrix are actually
nonshearable, strong obstacles against gliding dislocations.

Figure 11.
Coherent fcc Co precipitates embedded in fcc Cu matrix of a Cu-3 wt.% Co alloy [23]. The strain contrast
around the precipitate particles in undeformed samples is lost in deformed samples.
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during precipitation described in the previous chapter. This hypothesis is still open
for further investigation.

Soft precipitates can become non-shearable obstacles against dislocations due to
the effect of crystallography. Likewise, hard precipitates can become shearable if
crystallography allows, i.e., when their slip plane is parallel to that of the matrix. An
example shown here is a coherent fcc Co precipitate particle embedded in fcc Cu
matrix [23] (Figure 11). The shear modulus of the fcc Co is about two times greater
than that of the fcc Cu [24]; nevertheless, the Co precipitates are actually shearable
(Figure 12). It still remains unclear how much hard particles are shearable. It
appears that this process occurs only in a limited circumstance. The Co particles
were sheared only when interacted with Shockley partial dislocations having the
same Burgers vector, gliding on adjacent {111} planes, forming a twin band. Other-
wise, dislocations bypassed the Co precipitates via the Hirsch mechanism [25]
(Figure 13). The Hirsch mechanism is similar to the Orowan mechanism but
distinct in terms of the type of dislocation loop remained after the interaction.

Figure 12.
Cutting of strong obstacles by dislocations: fcc Co precipitates in fcc Cu matrix [25]. The shear modulus of the
fcc Co is two times larger than the fcc Cu [24].

Figure 13.
The Hirsch mechanism [26] observed by TEM in situ straining experiments: fcc Co precipitates in fcc Cu matrix
[25].
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The Orowan loop is a shear dislocation loop whose Burgers vector is parallel to the
loop plane, whereas the Hirsch mechanism produces a prismatic loop [26] whose
Burgers vector is not parallel. When the Burgers vector is perpendicular to the loop
plane, the prismatic often exhibit one-dimensional back and forth motion along the
Burgers vector [27]. The Hirsch mechanism is frequently observed in TEM in situ
straining experiments using thin foil specimens, which have a less constraint for
deformation in the thickness direction (i.e., so-called plane stress condition). In
such a thin foil geometry, screw dislocations that compensate the out-of-plane shear
displacements are dominant over edge dislocations [28]. Screw dislocations exhibit
cross slip (slip transfer from the slip plane to another slip plane) on non-shearable
obstacles. The Hirsch mechanism is induced by the cross slip of screw dislocations
on the surface of obstacles [25]. Hence, the Hirsch mechanism is probably dominant
over the Orowan mechanism in the deformation of thin foil samples.

4. Precipitation hardening due to solute clusters

Precipitation hardening is a key research subject not only for developing new,
strong materials but also for estimating the engineering lifetime of existing mate-
rials. For instance, engineering lifetime of reactor pressure vessels (RPVs) of light-
water nuclear reactors is determined by embrittlement due to precipitation of
minor alloying elements such as Cu, Ni, Mn, and Si rather than accumulation of
irradiation damages. Since the RPVs are practically non-replaceable due to eco-
nomic reasons, their engineering lifetime determines the useful lifetime of entire
power plants. Establishing a predictive model of material embrittlement (loss of
ductility) is a long-standing challenge in fundamental physical metallurgy.
Although the theory of dislocations is well established for quantitatively describing
the strength of materials, the dislocation theory is incapable of directly describing
the ductility. Hence, the loss of ductility has often been indirectly scaled by the
degree of hardening, based on a generally accepted empirical rule that stronger
materials exhibit less ductility. The size of irradiation-induced precipitates in the
RPV steels is typically a few nm. In the early stage of precipitation, they may be
solute clusters rather than second-phase particles crystallographically distinct from
the matrix.

In order to evaluate hardening due to solute clusters, the Orowan model needs a
modification as follows. The simulation by Foreman and Makin was performed not
only on strong obstacles but also on weak obstacles. In Figure 6 empirical results of
their simulations are plotted as a function of bowing angles (θ), together with out-
puts of two theoretical models: one is the Orowan model with a square lattice
arrangement, and the other is a model obtained based on Friedel’s geometry con-
sideration (a.k.a the Friedel’s statistics) [29, 30] similar to Figure 8. In the Friedel’s
concept the angle (β) of Figure 14 is assumed to be very small, i.e., L < <R, which
is a realistic approximation for weak obstacles. In fact, the simulation results were
in good agreement with this model at bowing angles of greater than �100°. The
formula based on the Friedel’s approximation is obtained as follows [29, 30]:

F ¼ 2Tsin β ¼ τb 2βRð Þ ! 2Tβ≈ 2τbβR ! R ¼ T
τb

(13)

sin β ¼ L
R
! β≈

L
R

(14)

tan
β

2

� �
≈

h
L
! β

2
≈

h
L
! h ¼ L2

2R
(15)

44

Crystallography

Λ2 ≈Lh (16)

From Eqs. (13) and (15), (16), we obtain.

Λ2 ¼ L3

2R
¼ τbL3

2T
! L ¼ 2TΛ2

τb

� �1=3

¼ μbΛ2

τ

� �1=3

(17)

From Eqs. (4) and (17), the following relationship is obtained [12]:

L ¼ μb
τ

cos θ=2ð Þ ¼ μbΛ2

τ

� �1=3

μb
τ

� �3

cos θ=2ð Þ½ �3 ¼ μbΛ2

τ

τ2 ¼ μb
Λ

� �2

cos θ=2ð Þ½ �3

τ ¼ μb
Λ

cos θ=2ð Þ½ �3=2 (18)

By replacing Λ with L, this formula is generalized as follows [12]:

τ ¼ μb
L

cos θ=2ð Þ½ �3=2 θ≥ 100° (19)

In practice, however, applying Eq. (19) to the analysis of weak obstacles is not
straightforward; it is difficult to evaluate how much weak the obstacles are. The
Russell-Brown model [22] is an alternative model, more practically useful than the
previous model for this purpose (Figure 15). This model was originally developed
for Cu precipitates in Fe▬Cu steels; the crystal structure of which is not fcc but bcc
in the early stage of precipitation. In this model the obstacle strength is scaled by the
ratio of the energy of dislocation segments in precipitates and in matrix. The energy
of dislocations is dependent on the shear modulus. The shear modulus of fcc Cu is
lower than bcc Fe. According to the results of ab initio calculations, the shear
modulus of bcc Cu is even smaller. The energy of dislocation segment inside the Cu
precipitate is lower than that in the matrix Fe.

Figure 14.
Friedel’s geometry consideration of dislocation-obstacle interactions [29, 30]. This approximation assumes L <
<R, i.e., 2β ≈ 0, whereas the other previously discussed in Figure 8 assumes L = R.
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The Orowan loop is a shear dislocation loop whose Burgers vector is parallel to the
loop plane, whereas the Hirsch mechanism produces a prismatic loop [26] whose
Burgers vector is not parallel. When the Burgers vector is perpendicular to the loop
plane, the prismatic often exhibit one-dimensional back and forth motion along the
Burgers vector [27]. The Hirsch mechanism is frequently observed in TEM in situ
straining experiments using thin foil specimens, which have a less constraint for
deformation in the thickness direction (i.e., so-called plane stress condition). In
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strong materials but also for estimating the engineering lifetime of existing mate-
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irradiation damages. Since the RPVs are practically non-replaceable due to eco-
nomic reasons, their engineering lifetime determines the useful lifetime of entire
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RPV steels is typically a few nm. In the early stage of precipitation, they may be
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modification as follows. The simulation by Foreman and Makin was performed not
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their simulations are plotted as a function of bowing angles (θ), together with out-
puts of two theoretical models: one is the Orowan model with a square lattice
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concept the angle (β) of Figure 14 is assumed to be very small, i.e., L < <R, which
is a realistic approximation for weak obstacles. In fact, the simulation results were
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In practice, however, applying Eq. (19) to the analysis of weak obstacles is not
straightforward; it is difficult to evaluate how much weak the obstacles are. The
Russell-Brown model [22] is an alternative model, more practically useful than the
previous model for this purpose (Figure 15). This model was originally developed
for Cu precipitates in Fe▬Cu steels; the crystal structure of which is not fcc but bcc
in the early stage of precipitation. In this model the obstacle strength is scaled by the
ratio of the energy of dislocation segments in precipitates and in matrix. The energy
of dislocations is dependent on the shear modulus. The shear modulus of fcc Cu is
lower than bcc Fe. According to the results of ab initio calculations, the shear
modulus of bcc Cu is even smaller. The energy of dislocation segment inside the Cu
precipitate is lower than that in the matrix Fe.
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Friedel’s geometry consideration of dislocation-obstacle interactions [29, 30]. This approximation assumes L <
<R, i.e., 2β ≈ 0, whereas the other previously discussed in Figure 8 assumes L = R.
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In accordance with the aforementioned empirical knowledge obtained from the
simulation of Foreman and Makin, on the applicability limit of the Orowan model in
terms of dislocation bowing angle, when sin�1(E1/E2) ≤ 50°,

τ ¼ 0:8
μb
L

1� E1

E2

� �2
" #1=2

, σ ¼ 0:8
Mμb
L

1� E1

E2

� �2
" #1=2

: (20)

When sin�1(E1/E2) ≥ 50°,

τ ¼ μb
L

1� E1

E2

� �2
" #3=4

, σ ¼ Mμb
L

1� E1

E2

� �2
" #3=4

(21)

The energy ratio is given as follows:

E1

E2
¼ E∞

1 log r
r0

E∞
2 log R

r0

þ log R
r

log R
r0

(22)

where E∞
1 and E∞

2 refer to the energy per unit length of a dislocation in infinite
media, r is the radius of precipitates, and r0 and R are the inner and outer cutoff
radius (they adopted R = 103r0). Since the energy of dislocation is proportional to
the shear modulus, the ratio of energy E∞

1 =E
∞
2 is equal to the ratio of shear modulus

G1/G2 for a screw dislocation, and G1 1�ν2ð Þ
G2 1�ν1ð Þ for an edge dislocation (ν: the Poisson’s

ratio)—in the case of bcc Cu precipitates embedded in bcc Fe matrix, 0.59 for the
former and 0.64 for the latter.

The Russell-Brown model indicates that, even in the case where precipitates are
softer than the matrix, they become weak obstacles only when their shear modulus
is slightly smaller than the matrix. Two extreme conditions, E∞

1 ¼ E∞
2 and E∞

1 ¼ 0,
correspond to the situations of “no obstacle” and “the strongest obstacle,” respec-
tively. The latter may be consistent with our empirical knowledge that voids are the
strongest obstacles, obtained from experiments [31] and from MD simulations
[32, 33]. Although the Russell-Brown model indicates that those which are as soft as
the matrix are weak obstacles, as mentioned earlier, such precipitates can also
become ideal Orowan-type strong obstacles if the slip plane inside the precipitates is
not parallel to that of the matrix [3–4]. From this respect, the situation where
precipitate particles become weak obstacles against dislocations may be rather rare.
The Russell-Brown model has been applied to the analysis of irradiation-induced

Figure 15.
The Russell-Brown model for weak obstacles [23]. This model scales the obstacle strength of soft precipitates by
the ratio of shear modulus between precipitates and matrix.
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hardening of RPV steels due to not only Cu precipitates but also Ni▬Si▬Mn pre-
cipitates [34–37], though it remains unclear whether the Ni▬Si▬Mn precipitates
are softer than the matrix. If they were harder than the matrix (E∞

1 >E
∞
2 ), it may not

be mathematically valid to apply the Russell-Brown model to them, regardless of
whether they are shearable obstacles. Furthermore, the effect of crystal structure
change during precipitation has not been considered thus far.
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In accordance with the aforementioned empirical knowledge obtained from the
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hardening of RPV steels due to not only Cu precipitates but also Ni▬Si▬Mn pre-
cipitates [34–37], though it remains unclear whether the Ni▬Si▬Mn precipitates
are softer than the matrix. If they were harder than the matrix (E∞

1 >E
∞
2 ), it may not

be mathematically valid to apply the Russell-Brown model to them, regardless of
whether they are shearable obstacles. Furthermore, the effect of crystal structure
change during precipitation has not been considered thus far.
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Chapter 4

Covariant Dynamical Theory of
X-Ray Diffraction
Arthur Dyshekov and Yurii Khapachev

Abstract

The proposed nonstandard diffraction theory is constructed directly from the
Maxwell equations for the crystalline medium in the X-ray wavelength range.
Analysis of Maxwell’s equations for dynamic diffraction is possible using the
method of multiple scales which is modified to the vector character of the problem.
In this case, the small parameter of the expansion is the Fourier component of the
polarizability of the crystal. The second-order wave equation is analyzed without
any assumptions about the possibility of the interaction between the refracted and
scattered waves which automatically leads to the dynamic character of the scatter-
ing. The unified consideration of different geometrical schemes of diffraction
including grazing geometry is possible. This is due to the construction of a unified
wave field in the crystal and obtaining the field amplitudes according to the bound-
ary conditions. The proposed theory allows generalization to the case of an imper-
fect crystal. Thus, a unified approach to account for deformations and other crystal
structure disturbances in all diffraction schemes is implemented. The determination
of a unified wave field without separation of the refracted and scattered waves is of
the greatest importance in the analysis of secondary processes.

Keywords: X-ray diffraction, dynamic theory, imperfect crystal, perturbation
theory, the method of multiple scales, deformation, extinction length, boundary
conditions, reflection coefficient

1. Introduction

It is possible to separate several fundamental approaches in the theory of
dynamical X-ray scattering in the crystal [1, 2].

The Darwin theory [1] is based on the Bragg model for the crystal considered as
a family of parallel crystal planes. The X-ray wave reflection is considered as a result
of successive transmission and multiple reflections from planes. In this case deter-
mination of the diffracted wave amplitude is reduced to the solution of recurrent
relations between the amplitudes of transmitted and scattered waves in passing
through the specified atomic plane. In essence, the Darwin theory represents a
direct extrapolation of the optical task of propagation of light in a layer continuum
to the case of wavelengths of the X-ray range.

The Evald-Laue theory [2] was the next stage in the development of theoretical
approximations about the character of X-ray wave propagation in the crystal under
dynamic scattering. The model approximations of the X-ray crystal interaction were
formulated in the framework of this theory, meaning that the X-ray wavelength is
comparable to the interatomic distances.
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Therefore, the standard continual approximation for electrodynamics of con-
tinua proves to be unacceptable, and the scattering from individual charges should
be taken into consideration. As is known, taking this into account results in the
formalism of 3D periodic dielectric permeability ε(r) or polarizability χ(r) with the
lattice spacings of the crystal. The Evald-Laue theory proceeds from the conception
of a uniform wave field that appears in the crystal under dynamic scattering. In the
two-wave approximation, the wave field is a superposition of refracted and
diffracted waves. The determination of field amplitudes is reduced to the solution
of a certain dispersion equation following from the fundamental equations of the
theory.

In spite of a series of unconditional advantages in the interpretation and theo-
retical prediction of experimental results on dynamic X-ray scattering in crystals,
both the Evald-Laue theory and, substantially, the Darwin theory have the principal
limitation that they describe the dynamical diffraction in perfect crystals only.

The necessity of taking into accounts the different deviations from ideal period-
icity in the crystal and, first of all, deformations resulted in the creation of the
generalized theory developed by Takagi and Taupin [2]. This is based on the
approximation of a wave field in the form of superposition of the transmitted and
diffracted waves with slowly varied amplitudes depending on the coordinates that
leads to the Takagi-Taupin equations to the system of differential equations relative
to the field amplitudes. This formalism gives the possibility to describe the dynam-
ical diffraction in a distorted crystal since the distortions of ideal periodicity can be
taken into account in the explicit form in the wave field approximation. Corre-
spondingly, the Takagi-Taupin equations become the system of differential equa-
tions with variable coefficients.

It is important that the Takagi-Taupin system is shortened and the coordinate
second derivatives of field amplitudes are neglected in it. On the one hand, this
significantly facilitates the theoretical consideration and makes observable the
solution of a series of diffraction problems in standard diffraction geometries when
this simplification proves to be justified. On the other hand, the Takagi-Taupin
equations become inapplicable under the conditions, for example, of grazing dif-
fraction geometry; then, it is necessary to solve the third- or even fourth-order
differential equations [3].

The principal disadvantage of the procedure of equation shortening is related to
the impossibility to state correctly the boundary conditions at the crystal-vacuum
interface for field amplitudes. Instead of the known classical continuity conditions
for tangential components of electric and magnetic fields, the boundary conditions
of the type of setting of the normal components of field amplitudes on the crystal
surface become vaguely clear but not in line with the Maxwell equations. Of cause
the solutions of these boundary problems prove to be applicable only for rather
large (more correctly significantly exceeding the angle of full external reflection)
angles of radiation incidence and yield.

As a result the theory faces the difficulties related to the necessity to solve the
third- or fourth-order equations which become virtually overwhelming for the case
of the crystal with lattice deformation when the diffraction schemes of the type of
sliding diffraction are considered.

At the same time, the Maxwell equations are the first-order equations or the
second-order ones in the case of a single wave equation when passing, for example,
to an electric field. Namely, this structure of equations agrees with the mentioned
classical boundary conditions. This means that the requirement of taking correctly
into account the boundary conditions in any theoretical diffraction scheme leads
virtually unambiguously to the known structure of wave equation following from
the Maxwell equation.
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Thus, to overcome the aforementioned difficulties, it is necessary to create the
theory directly based on the Maxwell equations using model approximations of
crystal polarizability in the X-ray wavelength range.

2. A covariant dynamical theory of X-ray scattering in perfect crystals

In this section we follow the original papers [4–7].

2.1 Physical diffraction model and basic equation

The model approximations for crystal and X-rays propagating in it are reduced
to the following.

The plane monochromatic wave falls from vacuum onto the crystal. The crystal-
vacuum interface is considered as a geometrical one so that the classical boundary
conditions for optics prove to be applicable. The uniform wave field in the crystal is
described by the fundamental Maxwell equations supplemented by the constitutive
equation D = ε(r)E with 3D periodic dielectric permeability ε(r) or polarizability
χ(r) with the lattice spacing. Thereby, the linearity and isotropy of continuum in
the X-ray wavelength range and the locality of connection between D and E are
suggested. The possible time dependence is not taken into account; therefore, the
possibility of incoherent (in the sense of the change in the radiation frequency)
scattering is eliminated. As is seen, the indicated suggestions properly correspond to
the model underlying the Evald-Laue theory if the functional form ε(r) is not
specified.

The Maxwell equations, as the equations of electromagnetic waves in dielectric,
when dispersion is absent, can be written in the form (designations here and below
are standard):

rotE ¼ � 1
c
∂H
∂t

; (1)

divH ¼ 0; (2)

rotH ¼ 1
c
∂D
∂t

¼ 1
c
∂

∂t
1þ χ r0ð Þð ÞE ¼ 1

c
1þ χ r0ð Þð Þ ∂E

∂t
; (3)

divD ¼ 0 (4)

These equations are supplemented by the constitutive relations:

D ¼ ε r0ð ÞE ¼ 1þ χ r0ð Þð ÞE; B ¼ μH ¼ H (5)

As usual, we will consider that the time dependence of E and H is harmonic:

E r0; tð Þ ¼ E r0ð Þ exp �i2πνtð Þ; H r0; tð Þ ¼ H r0ð Þ exp �i2πνtð Þ:
We have the system

rotE ¼ � 1
c
∂H
∂t

¼ ikH;

rotH ¼ 1
c
1þ χ r0ð Þð Þ ∂E

∂t
¼ �ik 1þ χ r0ð Þð ÞE:

(6)

For economy we use here and below factor 2π into k, 2πk ! k. We come from
system (6) to the basic equation in the standard way:
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rotrotE� k2 1þ χ r0ð Þð ÞE ¼ 0: (7)

In the present section, we will consider the case of a perfect crystal. This will
allow us to compare the conclusions of the proposed formalism to the known
theoretical results.

We choose the crystal model χ(r0) in the form

χ r0ð Þ ¼ χ0 þ χH exp i2πHr0ð Þ þ χH exp �i2πHr0ð Þ: (8)

Below, we will bring 2π into H as for k, 2πH ! H. Then, we have for Eq. (7)

rotrotE r0ð Þ � k2 1þ χ0 þ χH exp iHr0ð Þ þ χH exp �iHr0ð Þ� �
E r0ð Þ ¼ 0: (9)

To take correctly into account the contribution of different terms into Eq. (9)
when using the methods of perturbation theory, it is necessary to bring it to the
dimensionless form. This procedure assumes the choice of a certain characteristic
spatial scale of the problem. Apparently, this is the parameter determining the
reciprocal lattice in our problem, namely, the modulus of the reciprocal lattice vector:

H
H

¼ h; Hr0 ¼ hr; r ¼ Hr0:

rotrotE rð Þ � κ2 1þ χ0 þ χH exp ihrð Þ þ χH exp �ihrð Þ� �
E rð Þ ¼ 0; (10)

κ ¼ k
H
:

Eq. (10) cannot be exactly solved. Correspondingly, it is necessary to use some
method of approximate solution. There are two main ways to analyze Eq. (10). In
the first case, taking into account that χ(r0) ≪ 1 Eq. (10) is presented in the form of
an inhomogeneous equation, the right side of which is considered as a small per-
turbation specifying the field of the incident wave:

rotrotE r0ð Þ � κ2E r0ð Þ ¼ χ r0ð ÞE r0ð Þ:
The approximate solution is searched in the space beyond the scattering crystal

at large distances from it in the form of the first term of a series of the Born
expansion. The applicability of this approach is limited by the smallness of the
scattering cross section as compared to the geometrical area of the crystal section.
As is known this approach results in the kinematical theory [8].

In the second case, two variants of the dynamical theory are developed from
Eq. (10). For the first variant, the solution of Eq. (10) is sought in the form of Bloch
wave represented in the form of an infinite series of plane waves with wave vectors
corresponding to the refracted wave and diffracted waves in the crystal. This Bloch
wave is interpreted as a multiwave solution of the dynamical theory. As a result, the
use of expansion of χ(r’) in a Fourier series leads to an infinite system of the
fundamental equations of the algebraic Evald-Laue type.

Since it is not possible to solve an infinite system, one has to be limited as a rule
by two equations, that is, by the two-wave approximation.

For the second variant of the theory, the solution of Eq. (10) is presented in the
form of plane waves with the slowly varying amplitude. As a result of the two-wave
approximation, we obtain the Takagi-Taupin equations which can be interpreted as
the recurrent Darwin relations written in the differential form [2].

We propose here to use a new approach to the analysis of Eq. (10). The physical
justification of the proposed method indicates the choice of the perturbation
parameter and is as follows. The propagation of an X-ray wave in the crystal
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unaccompanied by the appearance of diffracted beams is adequately described by
the uniform wave equation with ε = 1 + χ0. This corresponds to the propagation of
an X-ray wave in the crystal as a continuum with the refraction factor with respect
to the usual laws of optics. This situation can be considered typical. On the contrary
the appearance of diffracted beams requires that the definite geometrical conditions
be fulfilled for the wave vectors and reciprocal lattice vector. Apparently, χH is
responsible for this cardinal change in the picture of a wave field in the crystal.

Thus, in spite of the fact that all quantities χ0, χH, χH � 10�5÷10�6
, namely, χH,

should be chosen as the perturbation parameter.

2.2 Direct expansion and geometric diffraction conditions

We use the simplest perturbation method, direct expansion, in χH:

E rð Þ ¼ E0 rð Þ þ χHE1 rð Þ þ χ2HE2 rð Þ þ…

We will restrict ourselves to the first-order expansion. We have

rotrotE0 þ χHrotrotE1 þ…

� κ2 1þ χ0ð Þ þ κ2χH exp ihrð Þ þ χH
χH

exp �ihrð Þ
� �� �

E0 þ χHE1 þ…ð Þ ¼ 0
(11)

The zeroth approximation corresponds to zero power of the perturbation
parameter χH:

rotrotE0 � κ20E0 ¼ 0;

κ20 ¼ κ2 1þ χ0ð Þ:
We select the solution of this vector wave equation in the form of superposition

of two plane waves:

E0 rð Þ ¼ E01 rð Þ exp iκ0rð Þ þ E02 rð Þ exp �iκ0rð Þ;
κ0Eið Þ ¼ 0

The reasons for this selection are the following. The zeroth approximation cor-
responds to the propagation of two plane transverse waves in opposite directions in
the continuum with χ = const. This is a singular analog of the total field in the crystal
for the case of an empty lattice. The propagation directions and the wave ampli-
tudes remain indeterminate and are specified below by the boundary conditions at
the vacuum-crystal interface.

The first approximation is obtained when all terms in Eq. (11) proportional to
the first power of χH are zero:

rotrotE1 � κ20E1 ¼ κ2 exp ihrð Þ þ χH
χH

exp �ihrð Þ
� �

E0

¼ κ2 exp i κ0 þ hð Þrð Þ þ χH
χH

exp i κ0 � hð Þrð Þ
� �

E01þ

þ κ2 exp �i κ0 � hð Þrð Þ þ χH
χH

exp �i κ0 þ hð Þrð Þ
� �

E02

: (12)

We obtained the inhomogeneous wave equation. According to the perturbation
theory, it is necessary to find its particular solution. Since the continuum is uniform
with an accuracy of the reciprocal lattice vector h, the desired wave field is
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rotrotE� k2 1þ χ r0ð Þð ÞE ¼ 0: (7)
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H
H

¼ h; Hr0 ¼ hr; r ¼ Hr0:

rotrotE rð Þ � κ2 1þ χ0 þ χH exp ihrð Þ þ χH exp �ihrð Þ� �
E rð Þ ¼ 0; (10)

κ ¼ k
H
:
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at large distances from it in the form of the first term of a series of the Born
expansion. The applicability of this approach is limited by the smallness of the
scattering cross section as compared to the geometrical area of the crystal section.
As is known this approach results in the kinematical theory [8].

In the second case, two variants of the dynamical theory are developed from
Eq. (10). For the first variant, the solution of Eq. (10) is sought in the form of Bloch
wave represented in the form of an infinite series of plane waves with wave vectors
corresponding to the refracted wave and diffracted waves in the crystal. This Bloch
wave is interpreted as a multiwave solution of the dynamical theory. As a result, the
use of expansion of χ(r’) in a Fourier series leads to an infinite system of the
fundamental equations of the algebraic Evald-Laue type.

Since it is not possible to solve an infinite system, one has to be limited as a rule
by two equations, that is, by the two-wave approximation.

For the second variant of the theory, the solution of Eq. (10) is presented in the
form of plane waves with the slowly varying amplitude. As a result of the two-wave
approximation, we obtain the Takagi-Taupin equations which can be interpreted as
the recurrent Darwin relations written in the differential form [2].

We propose here to use a new approach to the analysis of Eq. (10). The physical
justification of the proposed method indicates the choice of the perturbation
parameter and is as follows. The propagation of an X-ray wave in the crystal

56

Crystallography

unaccompanied by the appearance of diffracted beams is adequately described by
the uniform wave equation with ε = 1 + χ0. This corresponds to the propagation of
an X-ray wave in the crystal as a continuum with the refraction factor with respect
to the usual laws of optics. This situation can be considered typical. On the contrary
the appearance of diffracted beams requires that the definite geometrical conditions
be fulfilled for the wave vectors and reciprocal lattice vector. Apparently, χH is
responsible for this cardinal change in the picture of a wave field in the crystal.

Thus, in spite of the fact that all quantities χ0, χH, χH � 10�5÷10�6
, namely, χH,

should be chosen as the perturbation parameter.

2.2 Direct expansion and geometric diffraction conditions

We use the simplest perturbation method, direct expansion, in χH:

E rð Þ ¼ E0 rð Þ þ χHE1 rð Þ þ χ2HE2 rð Þ þ…

We will restrict ourselves to the first-order expansion. We have

rotrotE0 þ χHrotrotE1 þ…

� κ2 1þ χ0ð Þ þ κ2χH exp ihrð Þ þ χH
χH

exp �ihrð Þ
� �� �

E0 þ χHE1 þ…ð Þ ¼ 0
(11)

The zeroth approximation corresponds to zero power of the perturbation
parameter χH:

rotrotE0 � κ20E0 ¼ 0;

κ20 ¼ κ2 1þ χ0ð Þ:
We select the solution of this vector wave equation in the form of superposition

of two plane waves:

E0 rð Þ ¼ E01 rð Þ exp iκ0rð Þ þ E02 rð Þ exp �iκ0rð Þ;
κ0Eið Þ ¼ 0

The reasons for this selection are the following. The zeroth approximation cor-
responds to the propagation of two plane transverse waves in opposite directions in
the continuum with χ = const. This is a singular analog of the total field in the crystal
for the case of an empty lattice. The propagation directions and the wave ampli-
tudes remain indeterminate and are specified below by the boundary conditions at
the vacuum-crystal interface.

The first approximation is obtained when all terms in Eq. (11) proportional to
the first power of χH are zero:

rotrotE1 � κ20E1 ¼ κ2 exp ihrð Þ þ χH
χH

exp �ihrð Þ
� �

E0

¼ κ2 exp i κ0 þ hð Þrð Þ þ χH
χH

exp i κ0 � hð Þrð Þ
� �

E01þ

þ κ2 exp �i κ0 � hð Þrð Þ þ χH
χH

exp �i κ0 þ hð Þrð Þ
� �

E02

: (12)

We obtained the inhomogeneous wave equation. According to the perturbation
theory, it is necessary to find its particular solution. Since the continuum is uniform
with an accuracy of the reciprocal lattice vector h, the desired wave field is
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delocalized. It means that the particular solution of Eq. (12) must have the form of a
plane wave. The particular solution of the equation

rotrotE0 � κ02E0 ¼ A exp iqrð Þ
takes the form

E ¼ A exp iqrð Þ
q2 � κ20

(13)

Eq. (13) is obtained taking into account the condition divD ¼ 0 from which
follows κ0E0ið Þ ¼ hE0ið Þ ¼ 0 i = 1, 2, that is, the field is strictly transverse when
sources are absent.

Now, the solution in the first order of the perturbation theory can be written:

E1 ¼ κ2
E01 exp i κ0 þ hð Þrð Þ

κ0 þ hð Þ2 � κ20
þ κ2

χH
χH

E01 exp i κ0 � hð Þrð Þ
κ0 � hð Þ2 � κ20

þ κ2
E02 exp �i κ0 � hð Þrð Þ

κ0 � hð Þ2 � κ20
þ κ2

χH
χH

E02 exp �i κ0 þ hð Þrð Þ
κ0 þ hð Þ2 � κ20

(14)

Finally, the direct expansion with an accuracy of χ2H takes the form

E rð Þ ¼ E0 rð Þ þ χHE1 rð Þ þ… ¼

¼ E01 exp iκ0rð Þ þ κ2χH
exp i κ0 þ hð Þrð Þ
κ0 þ hð Þ2 � κ20

þ κ2χH
exp i κ0 � hð Þrð Þ
κ0 � hð Þ2 � κ20

 !
þ

E02 exp �iκ0rð Þ þ κ2χH
exp �i κ0 � hð Þrð Þ

κ0 � hð Þ2 � κ20
þ κ2χH

exp �i κ0 þ hð Þrð Þ
κ0 þ hð Þ2 � κ20

 !
þ…

(15)

It follows from Eq. (15) that in addition to the direct (κ0) and inverse (�κ0)
directions of the plane wave propagation in a continuum, waves in the directions
(κ0 � h) and –(κ0 � h) appear as well. The amplitude of these waves is negligibly
small (χH times smaller) as compared to the initial one and cannot substantially
change the wave field in the crystal. Thus, the refracted (and also possibly
reflected) wave with small distortions propagates in the crystal.

However, this position radically changes when any denominator in Eq. (15)
approaches zero. In this case E1 ! ∞, and we cannot consider a small correction to
E0. Then, the direct expansion does not hold, and its modification is required.
Apparently, this occurs under condition

κ0 � hð Þ2 � κ20 ≤ χH

This condition is well known: it is the Laue condition for X-rays, and therefore
there is no need to detail its physical sense. Note only that all geometric construc-
tions following from the Laue condition appear in this case as a natural consequence
of validity violation of the direct field expansion in the parameter χH.

Thus, the wave field structure principally changes for certain κ0 values, and new
directions of the wave propagation different from the initial one appear, that is,
diffraction. We will restrict ourselves here and below to the two-wave approxima-
tion when the transmitted and diffracted waves satisfy the Laue equation.

Thus, it is necessary to modify the direct expansion near the κ0 values for which
diffraction is observed. The parametric character of the interaction of continuum
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with a wave field is the principal moment here which provides the physical (and
mathematical) justification for the search of the solution.

There are different methods to modify the direct expansion. All of them are
directed to solve one problem: to obtain a so-called uniformly acceptable expansion
near the values of parameters interesting for us. The method of multiple scales is
most favorable for our investigation [9]. However, method modification is neces-
sary having in mind the vector character of the problem.

2.3 The method of multiple scales

The main idea of the method for the considered problem is the following. The
wave field singularities appear for different spatial scales determined by a small
parameter of expansion of χH. Correspondingly, these singularities can be indepen-
dently considered in the specified approximation. It is attained mathematically by
the transition from one spatially variable (r in our case) to several ones reflecting
different scales of the problems. The fixed number of scales determines the expan-
sion order of the solution. The abovementioned modification is related to the fact
that the method of many scales is used for scalar equations; here, it is used for the
vector equation.

Thus, we will search for the approximate solution of Eq. (10) for the most
interesting case in the area of the Bragg maximum when the Laue condition
κ0 � h = κh is fulfilled. We make the substitution r ! r0, r1,… = r0, χHr0,... in
Eq. (10), assuming that the field is determined by different spatial scales:

E(r) = E(r0, r1,…).

Hereinafter, we will restrict ourselves to the first order of expansion; corre-
spondingly, we will consider two spatial scales r0 and r1.

Then, for rotE we obtain

rotE ¼ rot0 þ χHrot1 þ…ð ÞE
that is, operator rot is linear relative to the carried-out substitution. The index of

the operator signifies the space in which it operates. Using this property we obtain

rotrot ¼ rot0 þ χHrot1 þ…ð Þ rot0 þ χHrot1 þ…ð Þ ¼

¼ rot0rot0 þ χHrot1rot0 þ χHrot0rot1 þ…

As was indicated above, the interaction of the field with continuum has a para-
metric character. This means that along with the field expansion it is also necessary
to expand the wave vector κ0 in powers of χH:

E ¼ E0 r0; r1;…ð Þ þ χHE1 r0; r1;…ð Þ þ…;

κ0 ¼ κ00 þ χHκ01 þ…;

κ20 ¼ κ0;κ0ð Þ ¼ κ20 þ 2χH κ0;κ01ð Þ þ… ¼ κ20 þ χHX; X ¼ 2 κ0;κ01ð Þ

(16)

We substitute all expansions into Eq. (10):

rot0rot0 þ χHrot1rot0 þ χHrot0rot1 þ…ð Þ E0 þ χHE1 þ…ð Þ�

� κ200 þ χHX þ…þ κ2χH exp ihr0ð Þ þ χH
χH

exp �ihr0ð Þ
� �� �

E0 þ χHE1 þ…ð Þ ¼ 0
(17)
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delocalized. It means that the particular solution of Eq. (12) must have the form of a
plane wave. The particular solution of the equation

rotrotE0 � κ02E0 ¼ A exp iqrð Þ
takes the form

E ¼ A exp iqrð Þ
q2 � κ20

(13)

Eq. (13) is obtained taking into account the condition divD ¼ 0 from which
follows κ0E0ið Þ ¼ hE0ið Þ ¼ 0 i = 1, 2, that is, the field is strictly transverse when
sources are absent.

Now, the solution in the first order of the perturbation theory can be written:

E1 ¼ κ2
E01 exp i κ0 þ hð Þrð Þ

κ0 þ hð Þ2 � κ20
þ κ2

χH
χH

E01 exp i κ0 � hð Þrð Þ
κ0 � hð Þ2 � κ20

þ κ2
E02 exp �i κ0 � hð Þrð Þ

κ0 � hð Þ2 � κ20
þ κ2

χH
χH

E02 exp �i κ0 þ hð Þrð Þ
κ0 þ hð Þ2 � κ20

(14)

Finally, the direct expansion with an accuracy of χ2H takes the form

E rð Þ ¼ E0 rð Þ þ χHE1 rð Þ þ… ¼

¼ E01 exp iκ0rð Þ þ κ2χH
exp i κ0 þ hð Þrð Þ
κ0 þ hð Þ2 � κ20

þ κ2χH
exp i κ0 � hð Þrð Þ
κ0 � hð Þ2 � κ20

 !
þ

E02 exp �iκ0rð Þ þ κ2χH
exp �i κ0 � hð Þrð Þ

κ0 � hð Þ2 � κ20
þ κ2χH

exp �i κ0 þ hð Þrð Þ
κ0 þ hð Þ2 � κ20

 !
þ…

(15)

It follows from Eq. (15) that in addition to the direct (κ0) and inverse (�κ0)
directions of the plane wave propagation in a continuum, waves in the directions
(κ0 � h) and –(κ0 � h) appear as well. The amplitude of these waves is negligibly
small (χH times smaller) as compared to the initial one and cannot substantially
change the wave field in the crystal. Thus, the refracted (and also possibly
reflected) wave with small distortions propagates in the crystal.

However, this position radically changes when any denominator in Eq. (15)
approaches zero. In this case E1 ! ∞, and we cannot consider a small correction to
E0. Then, the direct expansion does not hold, and its modification is required.
Apparently, this occurs under condition

κ0 � hð Þ2 � κ20 ≤ χH

This condition is well known: it is the Laue condition for X-rays, and therefore
there is no need to detail its physical sense. Note only that all geometric construc-
tions following from the Laue condition appear in this case as a natural consequence
of validity violation of the direct field expansion in the parameter χH.

Thus, the wave field structure principally changes for certain κ0 values, and new
directions of the wave propagation different from the initial one appear, that is,
diffraction. We will restrict ourselves here and below to the two-wave approxima-
tion when the transmitted and diffracted waves satisfy the Laue equation.

Thus, it is necessary to modify the direct expansion near the κ0 values for which
diffraction is observed. The parametric character of the interaction of continuum
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with a wave field is the principal moment here which provides the physical (and
mathematical) justification for the search of the solution.

There are different methods to modify the direct expansion. All of them are
directed to solve one problem: to obtain a so-called uniformly acceptable expansion
near the values of parameters interesting for us. The method of multiple scales is
most favorable for our investigation [9]. However, method modification is neces-
sary having in mind the vector character of the problem.

2.3 The method of multiple scales

The main idea of the method for the considered problem is the following. The
wave field singularities appear for different spatial scales determined by a small
parameter of expansion of χH. Correspondingly, these singularities can be indepen-
dently considered in the specified approximation. It is attained mathematically by
the transition from one spatially variable (r in our case) to several ones reflecting
different scales of the problems. The fixed number of scales determines the expan-
sion order of the solution. The abovementioned modification is related to the fact
that the method of many scales is used for scalar equations; here, it is used for the
vector equation.

Thus, we will search for the approximate solution of Eq. (10) for the most
interesting case in the area of the Bragg maximum when the Laue condition
κ0 � h = κh is fulfilled. We make the substitution r ! r0, r1,… = r0, χHr0,... in
Eq. (10), assuming that the field is determined by different spatial scales:

E(r) = E(r0, r1,…).

Hereinafter, we will restrict ourselves to the first order of expansion; corre-
spondingly, we will consider two spatial scales r0 and r1.

Then, for rotE we obtain

rotE ¼ rot0 þ χHrot1 þ…ð ÞE
that is, operator rot is linear relative to the carried-out substitution. The index of

the operator signifies the space in which it operates. Using this property we obtain

rotrot ¼ rot0 þ χHrot1 þ…ð Þ rot0 þ χHrot1 þ…ð Þ ¼

¼ rot0rot0 þ χHrot1rot0 þ χHrot0rot1 þ…

As was indicated above, the interaction of the field with continuum has a para-
metric character. This means that along with the field expansion it is also necessary
to expand the wave vector κ0 in powers of χH:

E ¼ E0 r0; r1;…ð Þ þ χHE1 r0; r1;…ð Þ þ…;

κ0 ¼ κ00 þ χHκ01 þ…;

κ20 ¼ κ0;κ0ð Þ ¼ κ20 þ 2χH κ0;κ01ð Þ þ… ¼ κ20 þ χHX; X ¼ 2 κ0;κ01ð Þ

(16)

We substitute all expansions into Eq. (10):

rot0rot0 þ χHrot1rot0 þ χHrot0rot1 þ…ð Þ E0 þ χHE1 þ…ð Þ�

� κ200 þ χHX þ…þ κ2χH exp ihr0ð Þ þ χH
χH

exp �ihr0ð Þ
� �� �

E0 þ χHE1 þ…ð Þ ¼ 0
(17)
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In this case, χ(r) is presented as a function of the ground spatial scale r0. The
subsequent procedure follows the standard scheme of perturbation methods.

Namely, the initial approximation (unperturbed state) and subsequent ones are
obtained when the constants of powers of the perturbation parameter χH are
sequentially equated. The uniformly available expansion is obtained when addi-
tional conditions are imposed elimination of secular (divergent) terms of expan-
sion. In turn, this elimination is due to the expansion of κ0 and introduction of
different scales of the problem.

Let us demonstrate this procedure. As before the zeroth approximation, (the
unperturbed equation) has the form of the standard vector wave equation for
transverse waves propagating in continuum:

rot0rot0E0 � κ200E0 ¼ 0: (18)

However, in contrast to the direct expansion, the operator rot acts here only on
the single spatial scale r0. According to this, the solution should search in the form
of superposition of transmitted and diffracted waves (two-wave approximation):

E0 ¼ e1c1 r1ð Þ exp iκ00r0ð Þ þ e2c2 r1ð Þ exp iκhr0ð Þ
κ00; eið Þ ¼ κh; eið Þ ¼ 0: (19)

The quantities ci(r1) are related to the other spatial scale and considered as slow
variables.

This structure of the wave field supposes strict fulfillment of the diffraction
Laue condition κ0 � h = κh and the presence of reflecting plane. In fact the condi-
tion κ0hð Þ ¼ �1=2 follows from κ0 � hð Þ2 � κ20 ¼ 0 which imposes the limitation
only on the component κ0 directed along h, κ0II. The component κ0⊥ normal to h is
identical for κ0 and κh.

The condition of wave transversity (κ00, ei) = (κh, ei) = 0 defines only the planes
orthogonal to the corresponding wave vectors. As is known two cases of polariza-
tion are considered, namely, σ polarization when the field amplitude is in the plane
orthogonal to the diffraction plane and π polarization when the field amplitude is in
the diffraction plane. The case of σ polarization is more favorable for the further
consideration being a simpler one.

The following first-order approximation to leads to the inhomogeneous equation:

rot0rot0E1 � κ200E1 ¼� rot1rot0 þ rot0rot1ð ÞE0 þ XE0

þ κ2 exp ihr0ð Þ þ χH=χH exp �ihr0ð Þ� �
E0

(20)

Hence

rot0rot0E1 � κ200E1 ¼  i2 ∇1c1;κ00ð Þ þ Xc1ð Þe1 þ κ2
χH
χH

c2e2

� �
exp iκ00r0ð Þþ

þ   κ2c1e1 þ i2 ∇1c2; κhð Þ þ Xc2ð Þe2
� �

exp iκhr0ð Þþ

þ  κ2
χH
χH

exp i κ00 � hð Þr0ð Þc1e1 þ κ2 exp i κh þ hð Þr0ð Þc2e2:

(21)

Operator ∇1 (gradient) acts here on r1. Eq. (21) is obtained taking into account
κ00eð Þ ¼ κheð Þ ¼ 0 and the additional condition ∇1c1; e1ð Þ ¼ 0. This means the fol-
lowing. The quantities ci r1ð Þ are considered as the perturbed amplitudes of the
corresponding plane waves. The two first terms in the right side of Eq. (21) generate
the secular components in expansion which is seen from the abovementioned
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particular solution. In other words they provide parametric resonance in the system.
Consequently, it is necessary to eliminate these terms in order to obtain the uniform
approximation near the Laue condition. Then, we obtain the following system of
vector equations:

i2 ∇1c1;κ00ð Þ þ Xc1ð Þe1 þ κ2
χH
χH

c2e2 ¼ 0

i2 ∇1c2;κhð Þ þ Xc2ð Þe2 þ κ2c1e1 ¼ 0

8<
: (22)

In contrast to the usual scalar system, additional limitations are necessary to
solve Eq. (22). The issue is that e1 and e2 are linearly independent in a general case
(e.g., for π polarization), that is, form a certain vector basis. It is clear that in the
general case it is not possible to provide the field limitations in all the space if one
has only the given system. Therefore, it is necessary to select the characteristic
directions (or planes orthogonal to them) along which the field limitation is real-
ized, that is, the obtained solution proves to be uniformly available. According to
the physical meaning of the problem, one can assume that these directions are
related to the transmitted (κ00) and diffracted (κh) waves. This assumption is
confirmed by the following.

The particular solution of the inhomogeneous equation

rotrotE� κ20E ¼ e exp iκ0rð Þ
in the resonance case takes the form

E ¼ i κ0rð Þ
2κ2

e� κ0eð Þ
κ4

κ0 � i κ0eð Þ κ0rð Þ
2κ4

κ0

� �
exp iκ0rð Þ:

It is seen from here that the infinite increase in the wave amplitude is associated
with the wave vector κ0 in the direction coinciding with e. Then, according to the
meaning of the zeroth approximation, it is necessary that the projections onto e1 in
the first equation of Eq. (22) vanish and analogously the projections onto e2 in the
second equation vanish.

Thus, multiplying scalarly the first equation of the system by e1 and the second
one by e2, we obtain the scalar system

i2 ∇1c1;κ00ð Þ þ Xc1 þ κ2
χH
χH

ηc2 ¼ 0

κ2ηc1 þ i2 ∇1c2;κhð Þ þ Xc2 ¼ 0

8<
: (23)

where

η ¼ e1e2ð Þ ¼ 1� for σ polarization

cos 2θ � for π polarization

�

The obtained system (23) is virtually the dispersion relation written in the differ-
ential form for the transmitted and diffracted waves in the two-wave approximation.
As follows from the presented conclusion, the possibility to obtain this system is
dictated by the choice of the zeroth approximation. Namely, the wave vectors of
transmitted and diffracted waves must have the identical component κ0⊥ that leads
to the scattering interpretation as a result of reflection from the atomic plane.

We pass from the differential form of system (23) to the algebraic one; for this
purpose we make the following substitution cj r1ð Þ ! cj exp iPrð Þ, ∇1cj ¼ iPcj, where
P is a certain constant vector.
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In this case, χ(r) is presented as a function of the ground spatial scale r0. The
subsequent procedure follows the standard scheme of perturbation methods.

Namely, the initial approximation (unperturbed state) and subsequent ones are
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unperturbed equation) has the form of the standard vector wave equation for
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This structure of the wave field supposes strict fulfillment of the diffraction
Laue condition κ0 � h = κh and the presence of reflecting plane. In fact the condi-
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rot0rot0E1 � κ200E1 ¼� rot1rot0 þ rot0rot1ð ÞE0 þ XE0

þ κ2 exp ihr0ð Þ þ χH=χH exp �ihr0ð Þ� �
E0

(20)

Hence

rot0rot0E1 � κ200E1 ¼  i2 ∇1c1;κ00ð Þ þ Xc1ð Þe1 þ κ2
χH
χH

c2e2

� �
exp iκ00r0ð Þþ

þ   κ2c1e1 þ i2 ∇1c2; κhð Þ þ Xc2ð Þe2
� �

exp iκhr0ð Þþ

þ  κ2
χH
χH

exp i κ00 � hð Þr0ð Þc1e1 þ κ2 exp i κh þ hð Þr0ð Þc2e2:

(21)

Operator ∇1 (gradient) acts here on r1. Eq. (21) is obtained taking into account
κ00eð Þ ¼ κheð Þ ¼ 0 and the additional condition ∇1c1; e1ð Þ ¼ 0. This means the fol-
lowing. The quantities ci r1ð Þ are considered as the perturbed amplitudes of the
corresponding plane waves. The two first terms in the right side of Eq. (21) generate
the secular components in expansion which is seen from the abovementioned
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particular solution. In other words they provide parametric resonance in the system.
Consequently, it is necessary to eliminate these terms in order to obtain the uniform
approximation near the Laue condition. Then, we obtain the following system of
vector equations:

i2 ∇1c1;κ00ð Þ þ Xc1ð Þe1 þ κ2
χH
χH

c2e2 ¼ 0

i2 ∇1c2;κhð Þ þ Xc2ð Þe2 þ κ2c1e1 ¼ 0

8<
: (22)

In contrast to the usual scalar system, additional limitations are necessary to
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rotrotE� κ20E ¼ e exp iκ0rð Þ
in the resonance case takes the form

E ¼ i κ0rð Þ
2κ2

e� κ0eð Þ
κ4

κ0 � i κ0eð Þ κ0rð Þ
2κ4

κ0

� �
exp iκ0rð Þ:
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meaning of the zeroth approximation, it is necessary that the projections onto e1 in
the first equation of Eq. (22) vanish and analogously the projections onto e2 in the
second equation vanish.

Thus, multiplying scalarly the first equation of the system by e1 and the second
one by e2, we obtain the scalar system

i2 ∇1c1;κ00ð Þ þ Xc1 þ κ2
χH
χH

ηc2 ¼ 0

κ2ηc1 þ i2 ∇1c2;κhð Þ þ Xc2 ¼ 0

8<
: (23)

where

η ¼ e1e2ð Þ ¼ 1� for σ polarization

cos 2θ � for π polarization

�

The obtained system (23) is virtually the dispersion relation written in the differ-
ential form for the transmitted and diffracted waves in the two-wave approximation.
As follows from the presented conclusion, the possibility to obtain this system is
dictated by the choice of the zeroth approximation. Namely, the wave vectors of
transmitted and diffracted waves must have the identical component κ0⊥ that leads
to the scattering interpretation as a result of reflection from the atomic plane.

We pass from the differential form of system (23) to the algebraic one; for this
purpose we make the following substitution cj r1ð Þ ! cj exp iPrð Þ, ∇1cj ¼ iPcj, where
P is a certain constant vector.
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We obtain

�2 Pκ00ð Þ þ Xð Þc1 þ κ2
χH
χH

ηc2 ¼ 0

κ2ηc1 þ �2 Pκhð Þ þ Xð Þc2 ¼ 0

8<
: (24)

This system should be considered as the condition of field limitation in the
specified direction of field propagation that is related to the structure parameters of
the crystal and to the diffraction geometry. As for the physical meaning of the
considered problem, this limitation should be in the direction of the normal inside
crystal.

�2Pκ00γ0 þ Xð Þc1 þ κ2η
χH
χH

c2 ¼ 0

κ2ηc1 þ �2Pκhγh þ Xð Þc2 ¼ 0

8<
: (25)

Here, γ0, h are the direction cosines of the corresponding wave vectors, κh=κ00.
The nontrivial solution of Eq. (25) requires the corresponding determinant to

vanish:

4κ200γnγ0P
2 � 2κ00X γ0 þ γhð ÞPþ X2 � κ4η2

χH
χH

¼ 0 (26)

The solution of quadratic equation relative to P takes the form

P1,2 ¼
X γ0 þ γhð Þ � X2 γ0 � γhð Þ2 þ 4γ0γhκ4η2

χH
χH

h i

4κ00γhγ0

1=2

¼ X γ0 þ γhð Þ �D
4κ00γhγ0

(27)

Then, solving, for example, the first equation of system (25) relative to с2, we obtain

c2 ¼ X γ0 � γhð Þ �D
2κ2ηγh

� χH
χH

c1 ¼ α1,2c1 (28)

Finally, going back to the initial variables, we represent the wave field in the
crystal in the following form:

E ¼ exp iχH P1rð Þð Þ exp iκ00rð Þe1 þ α1 exp iκhrð Þe2ð Þc11
þ exp iχH P2rð Þð Þ exp iκ00rð Þe1 þ α2 exp iκhrð Þe2ð Þc12

(29)

Here, the constants cij have the additional indices corresponding to the values of
P1 and P2.

The equation for the wave field is simplified for the case of semi-infinite crystal
when the wave reflection from a lower crystal face is eliminated. In this case the
choice of sign in P1,2 and correspondingly in α1,2 is defined by physical consider-
ations. Namely, it is necessary that the wave field transfers to the usual form of the
refracted wave propagating in the crystal as continuum at the deviation from the
exact Bragg condition (increasing |X|). Then, we have

P ¼ X γ0 þ γhð Þ � sgn Xð ÞD
4κ00γhγo

; (30)

α ¼ X γ0 � γhð Þ � sgn Xð ÞD
2κ2ηγhχH=χH

(31)
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sgn Xð Þ ¼ 1, X ≥0

�1, X,0

�

Finally, the wave field in the crystal takes the form

E ¼ exp iχH Prð Þð Þ exp iκ00rð Þe1 þ α exp iκhrð Þe2ð Þc (32)

where the constant с is determined from the boundary conditions.
Eq. (32) describes the uniform wave field in a perfect crystal near the Bragg

maximum.
To compare the obtained expression to the known results and to the experiment,

it is necessary to go to the angular variable which connects with the deviation from
the exact Bragg angle Δθ. In this case, the parameter X ¼ 2 κ00κ01ð Þ should be
expressed by Δθ. As was mentioned the parametric resonance (diffraction Laue
condition κ0hð Þ ¼ ∓1=2) is determined only by the component κ0k directed along h,
by the vector character of the problem. This means that the vector κ01 in expansion
κ0 ¼ κ00 þ χHκ01 is directed along h, κ01 ¼ κ01h. Taking into account that the
reflection fixed in the experiment is determined by the normal component of the
wave vector κ0n ¼ κ0nð Þ, we obtain for X

X ¼ � κ200βHγ0
γh � γ0ð ÞχH

(33)

Here, we introduce the standard (with an accuracy of refraction) angular
variable:

βH ¼ �2Δθ sin 2θ

As is known, two principal schemes are considered in the diffraction theory, by
Laue (γ0 .0, γh .0) and by Bragg (γ0 .0, γh ,0). In the case of Bragg diffraction,
the wave field structure will qualitatively differ depending on the considered angu-
lar range.

In particular in the range

X2 γ0 þ γhj jð Þ2 , 4γ0 γhj jκ4η2 χH
χH

,

the waves will exponentially attenuate along the normal surface into the crystal.
In terms of the qualitative theory of differential equations, the solution will be
unstable. The known interpretation [10, 11] leads to the conclusion of the expulsion
of the wave from the crystal and the formation of a diffraction maximum. Thus, the
indicated condition separates the stable solutions (oscillating type) from unstable
ones (exponential type), that is, provides the equations of transition curves of the
parametric plane (X, κ2) [10, 11].

The width of the unstable region, the region of exponential wave attenuation, is
determined by the expression

ΔX ¼ 4κ2η γ0 γhj jð Þ1=2
γ0 þ γhj j � χH

χH

� �1=2

(34)

or proceeding to the angular variable

Δθ ¼ 2η χHχH
� �1=2

1þ χ0ð Þ sin 2θ �
γhj j
γ0

� �1=2

(35)
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We obtain

�2 Pκ00ð Þ þ Xð Þc1 þ κ2
χH
χH

ηc2 ¼ 0

κ2ηc1 þ �2 Pκhð Þ þ Xð Þc2 ¼ 0

8<
: (24)

This system should be considered as the condition of field limitation in the
specified direction of field propagation that is related to the structure parameters of
the crystal and to the diffraction geometry. As for the physical meaning of the
considered problem, this limitation should be in the direction of the normal inside
crystal.

�2Pκ00γ0 þ Xð Þc1 þ κ2η
χH
χH

c2 ¼ 0

κ2ηc1 þ �2Pκhγh þ Xð Þc2 ¼ 0

8<
: (25)

Here, γ0, h are the direction cosines of the corresponding wave vectors, κh=κ00.
The nontrivial solution of Eq. (25) requires the corresponding determinant to

vanish:

4κ200γnγ0P
2 � 2κ00X γ0 þ γhð ÞPþ X2 � κ4η2

χH
χH

¼ 0 (26)

The solution of quadratic equation relative to P takes the form

P1,2 ¼
X γ0 þ γhð Þ � X2 γ0 � γhð Þ2 þ 4γ0γhκ4η2

χH
χH

h i

4κ00γhγ0

1=2

¼ X γ0 þ γhð Þ �D
4κ00γhγ0

(27)

Then, solving, for example, the first equation of system (25) relative to с2, we obtain

c2 ¼ X γ0 � γhð Þ �D
2κ2ηγh

� χH
χH

c1 ¼ α1,2c1 (28)

Finally, going back to the initial variables, we represent the wave field in the
crystal in the following form:

E ¼ exp iχH P1rð Þð Þ exp iκ00rð Þe1 þ α1 exp iκhrð Þe2ð Þc11
þ exp iχH P2rð Þð Þ exp iκ00rð Þe1 þ α2 exp iκhrð Þe2ð Þc12

(29)

Here, the constants cij have the additional indices corresponding to the values of
P1 and P2.

The equation for the wave field is simplified for the case of semi-infinite crystal
when the wave reflection from a lower crystal face is eliminated. In this case the
choice of sign in P1,2 and correspondingly in α1,2 is defined by physical consider-
ations. Namely, it is necessary that the wave field transfers to the usual form of the
refracted wave propagating in the crystal as continuum at the deviation from the
exact Bragg condition (increasing |X|). Then, we have

P ¼ X γ0 þ γhð Þ � sgn Xð ÞD
4κ00γhγo

; (30)

α ¼ X γ0 � γhð Þ � sgn Xð ÞD
2κ2ηγhχH=χH

(31)
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sgn Xð Þ ¼ 1, X ≥0

�1, X,0

�

Finally, the wave field in the crystal takes the form

E ¼ exp iχH Prð Þð Þ exp iκ00rð Þe1 þ α exp iκhrð Þe2ð Þc (32)

where the constant с is determined from the boundary conditions.
Eq. (32) describes the uniform wave field in a perfect crystal near the Bragg

maximum.
To compare the obtained expression to the known results and to the experiment,

it is necessary to go to the angular variable which connects with the deviation from
the exact Bragg angle Δθ. In this case, the parameter X ¼ 2 κ00κ01ð Þ should be
expressed by Δθ. As was mentioned the parametric resonance (diffraction Laue
condition κ0hð Þ ¼ ∓1=2) is determined only by the component κ0k directed along h,
by the vector character of the problem. This means that the vector κ01 in expansion
κ0 ¼ κ00 þ χHκ01 is directed along h, κ01 ¼ κ01h. Taking into account that the
reflection fixed in the experiment is determined by the normal component of the
wave vector κ0n ¼ κ0nð Þ, we obtain for X

X ¼ � κ200βHγ0
γh � γ0ð ÞχH

(33)

Here, we introduce the standard (with an accuracy of refraction) angular
variable:

βH ¼ �2Δθ sin 2θ

As is known, two principal schemes are considered in the diffraction theory, by
Laue (γ0 .0, γh .0) and by Bragg (γ0 .0, γh ,0). In the case of Bragg diffraction,
the wave field structure will qualitatively differ depending on the considered angu-
lar range.

In particular in the range

X2 γ0 þ γhj jð Þ2 , 4γ0 γhj jκ4η2 χH
χH

,

the waves will exponentially attenuate along the normal surface into the crystal.
In terms of the qualitative theory of differential equations, the solution will be
unstable. The known interpretation [10, 11] leads to the conclusion of the expulsion
of the wave from the crystal and the formation of a diffraction maximum. Thus, the
indicated condition separates the stable solutions (oscillating type) from unstable
ones (exponential type), that is, provides the equations of transition curves of the
parametric plane (X, κ2) [10, 11].

The width of the unstable region, the region of exponential wave attenuation, is
determined by the expression

ΔX ¼ 4κ2η γ0 γhj jð Þ1=2
γ0 þ γhj j � χH

χH

� �1=2

(34)

or proceeding to the angular variable

Δθ ¼ 2η χHχH
� �1=2

1þ χ0ð Þ sin 2θ �
γhj j
γ0

� �1=2

(35)

63

Covariant Dynamical Theory of X-Ray Diffraction
DOI: http://dx.doi.org/10.5772/intechopen.82695



This is the known expression (with an accuracy of refraction) for the angular
width of the Bragg table for the case of the semi-infinite perfect non-absorbing
crystal. The extinction length Λext is determined as a decrement of wave attenuation
in the point Bragg position:

Λext ¼ 2κ00 γhj jγ0ð Þ1=2

κ2η χHχH
� �1=2 ≈

κ

χHj j (36)

We now summarize the intermediate stage. The use of the generalized method
of many scales allowed us to obtain the system of basic equations describing the
behavior of wave field near the Bragg maximum in the two-wave approximation.
This system is a direct analog of the dispersion relations of the Ewald-Laue theory
and the Takagi-Taupin system of the generalized dynamic theory. The substantial
difference of the developed variant of the theory consists in the cancelation of the
shortening procedure of equations by neglecting the second derivatives. The prin-
cipal moment here is the expansion in χH which makes it possible to save maximally
the structure of Maxwell equations for the wave field in the crystal under conditions
of the dynamic diffraction.

Comparison of the obtained results to that known from the Takagi-Taupin
theory shows the complete correspondence both in the qualitative interpretation of
types of the solutions obtained in the different angular ranges in the case of Bragg
diffraction and in the analytical expressions for the width of the Bragg maximum
and the extinction length. This correspondence indicates that in spite of the formal
representation of χ(r) in the form of infinite Fourier series in the Ewald-Laue and
Takagi-Taupin theories only three terms of the series are really used.

However, the value of the theory developed here shows itself to a large degree
when the boundary conditions are taken into account that takes the explicit expres-
sions for the reflection coefficient. Therefore, we consider now the boundary con-
ditions and determine the principal difference between our approach and known
variants of the dynamical diffraction theory.

2.4 Boundary conditions and the amplitude reflection coefficient

According to Eq. (32), the expression above obtained for the wave field in the
crystal depends on the constant c, which must be determined by the boundary
conditions of the problem. As was indicated above, it is not possible to use the
classical boundary conditions of electrodynamics in the Takagi-Taupin theory since
negligibility of the second derivatives of amplitudes with respect to the coordinates
reduces the order of the equation. As a result the boundary conditions redefine the
problem, and the new boundary conditions are stated that determine only the field
amplitudes on a crystal surface. This procedure proves to be quite correct for
usual diffraction geometries, when the angles of incidence and yield of waves
substantially exceed the critical values.

We find out now the differences appearing when the boundary conditions are
strictly taken into account in our theory.

The reflection coefficient is determined as a ratio of the averaged values of
normal components of the pointing vector for the diffracted and incident waves:

R ¼ c0h
c0

����
����
2

� nκ0
h

� �
nκð Þ (37)

Here, n is the unit vector of the normal directed inside the crystal, and κ, c0 and
κ0
h , c

0
h are the wave vectors and amplitudes of the incident and diffracted waves,
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respectively. Index 0 denotes that the values of the indicated quantities are related
to the environment vacuum. Thus, the determination of the reflection coefficient is
associated with the determination of the diffracted wave amplitude in the vacuum.
This problem is solved by the boundary conditions.

As is known, the boundary conditions require continuity of the tangential com-
ponents of electric and magnetic fields which is a consequence of the uniformity of
the problem along the surface. The boundary problem disintegrates into successive
steps related to the determination of c0h . In this case the elementary problem is
considered at each stage, namely, the determination of the relation between the
amplitudes of incident, transmitted, and secularly reflected waves. The solution of
this problem leads to the known Fresnel formulas:

c ¼ n;κð Þ � n;κRð Þ
n;κ0 þ Pð Þ � n;κRð Þ c

0 ¼ 2 n;κð Þ
n;κ0 þ Pð Þ þ n;κð Þ c

0 (38)

cR ¼ nκð Þ � n;κ0 þ χHPð Þ
n;κ0 þ χHPð Þ � nκRð Þ c

0 ¼ nκð Þ � n;κ0 þ χHPð Þ
n;κ0 þ χHPð Þ þ nκð Þ c

0 (39)

c0h ¼ n;κh þ χHPð Þ � n;κhRð Þ
n;κ0

h

� �� n;κhRð Þ αc ¼ n;κh þ χHPð Þ � n;κhRð Þ
n;κ0

h

� �� n;κhRð Þ � 2 n;κð Þ
n;κ0 þ χHPð Þ þ n;κð Þ αc

0

(40)

Here, cR is the amplitude of the specularly reflected wave, and κhR is the wave
vector of the diffraction wave specularly reflected from the lower side of the
crystal-vacuum interface.

The obtained relations allow us to determine not only the diffracted wave but
also the specularly reflected wave, which principally distinguishes our approach
from the formalism of the Takagi-Taupin equations.

Eqs. (38)–(40) solve the problem of the determination of field amplitudes under
the conditions of sliding noncoplanar diffraction when the incident and diffracted
waves are near the critical angles of total external reflection (TER). They are
analogous to the relations obtained in [12] where this problem was solved by the
fourth-order dispersion equation.

The correspondence with the Takagi-Taupin theory must be undoubtedly ful-
filled for the case of large angles of incidence and yield of the diffraction wave.
Really in this case, the amplitude of specular wave tends to be zero, and the
reflection coefficient takes the form

R ¼ c0h
c0

����
����
2

� nκ0
h

� �
nκð Þ ¼ αj j2 nκ0

h

� �
nκð Þ

¼
γ0 1þ χ0ð ÞβH � sgn βHð Þ γ0 1þ χ0ð ÞβHð Þ2 þ 4γ0γHη2χHχH

h i1=2

2γHηχH
� γH
γ0

(41)

This is the known expression for the coefficient of reflection from a perfect half-
infinite crystal, i.e. the Bragg table. In addition to this in the case of extremely
asymmetric diffraction when the diffraction wave leaving the crystal is almost
parallel to the surface, the amplitude is modulated by the factors taking into account
the refraction of transmitted and diffracted waves at the crystal-vacuum interface
and the diffraction wave interaction related to the vector P.

The proposed covariant (it may be named nonstandard) theory allows the
generalization for the case of the crystal with lattice deformations. Therefore, a
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This is the known expression (with an accuracy of refraction) for the angular
width of the Bragg table for the case of the semi-infinite perfect non-absorbing
crystal. The extinction length Λext is determined as a decrement of wave attenuation
in the point Bragg position:

Λext ¼ 2κ00 γhj jγ0ð Þ1=2

κ2η χHχH
� �1=2 ≈

κ

χHj j (36)

We now summarize the intermediate stage. The use of the generalized method
of many scales allowed us to obtain the system of basic equations describing the
behavior of wave field near the Bragg maximum in the two-wave approximation.
This system is a direct analog of the dispersion relations of the Ewald-Laue theory
and the Takagi-Taupin system of the generalized dynamic theory. The substantial
difference of the developed variant of the theory consists in the cancelation of the
shortening procedure of equations by neglecting the second derivatives. The prin-
cipal moment here is the expansion in χH which makes it possible to save maximally
the structure of Maxwell equations for the wave field in the crystal under conditions
of the dynamic diffraction.

Comparison of the obtained results to that known from the Takagi-Taupin
theory shows the complete correspondence both in the qualitative interpretation of
types of the solutions obtained in the different angular ranges in the case of Bragg
diffraction and in the analytical expressions for the width of the Bragg maximum
and the extinction length. This correspondence indicates that in spite of the formal
representation of χ(r) in the form of infinite Fourier series in the Ewald-Laue and
Takagi-Taupin theories only three terms of the series are really used.

However, the value of the theory developed here shows itself to a large degree
when the boundary conditions are taken into account that takes the explicit expres-
sions for the reflection coefficient. Therefore, we consider now the boundary con-
ditions and determine the principal difference between our approach and known
variants of the dynamical diffraction theory.

2.4 Boundary conditions and the amplitude reflection coefficient

According to Eq. (32), the expression above obtained for the wave field in the
crystal depends on the constant c, which must be determined by the boundary
conditions of the problem. As was indicated above, it is not possible to use the
classical boundary conditions of electrodynamics in the Takagi-Taupin theory since
negligibility of the second derivatives of amplitudes with respect to the coordinates
reduces the order of the equation. As a result the boundary conditions redefine the
problem, and the new boundary conditions are stated that determine only the field
amplitudes on a crystal surface. This procedure proves to be quite correct for
usual diffraction geometries, when the angles of incidence and yield of waves
substantially exceed the critical values.

We find out now the differences appearing when the boundary conditions are
strictly taken into account in our theory.

The reflection coefficient is determined as a ratio of the averaged values of
normal components of the pointing vector for the diffracted and incident waves:

R ¼ c0h
c0

����
����
2

� nκ0
h

� �
nκð Þ (37)

Here, n is the unit vector of the normal directed inside the crystal, and κ, c0 and
κ0
h , c

0
h are the wave vectors and amplitudes of the incident and diffracted waves,
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respectively. Index 0 denotes that the values of the indicated quantities are related
to the environment vacuum. Thus, the determination of the reflection coefficient is
associated with the determination of the diffracted wave amplitude in the vacuum.
This problem is solved by the boundary conditions.

As is known, the boundary conditions require continuity of the tangential com-
ponents of electric and magnetic fields which is a consequence of the uniformity of
the problem along the surface. The boundary problem disintegrates into successive
steps related to the determination of c0h . In this case the elementary problem is
considered at each stage, namely, the determination of the relation between the
amplitudes of incident, transmitted, and secularly reflected waves. The solution of
this problem leads to the known Fresnel formulas:

c ¼ n;κð Þ � n;κRð Þ
n;κ0 þ Pð Þ � n;κRð Þ c

0 ¼ 2 n;κð Þ
n;κ0 þ Pð Þ þ n;κð Þ c

0 (38)

cR ¼ nκð Þ � n;κ0 þ χHPð Þ
n;κ0 þ χHPð Þ � nκRð Þ c

0 ¼ nκð Þ � n;κ0 þ χHPð Þ
n;κ0 þ χHPð Þ þ nκð Þ c

0 (39)

c0h ¼ n;κh þ χHPð Þ � n;κhRð Þ
n;κ0

h

� �� n;κhRð Þ αc ¼ n;κh þ χHPð Þ � n;κhRð Þ
n;κ0

h

� �� n;κhRð Þ � 2 n;κð Þ
n;κ0 þ χHPð Þ þ n;κð Þ αc

0

(40)

Here, cR is the amplitude of the specularly reflected wave, and κhR is the wave
vector of the diffraction wave specularly reflected from the lower side of the
crystal-vacuum interface.

The obtained relations allow us to determine not only the diffracted wave but
also the specularly reflected wave, which principally distinguishes our approach
from the formalism of the Takagi-Taupin equations.

Eqs. (38)–(40) solve the problem of the determination of field amplitudes under
the conditions of sliding noncoplanar diffraction when the incident and diffracted
waves are near the critical angles of total external reflection (TER). They are
analogous to the relations obtained in [12] where this problem was solved by the
fourth-order dispersion equation.

The correspondence with the Takagi-Taupin theory must be undoubtedly ful-
filled for the case of large angles of incidence and yield of the diffraction wave.
Really in this case, the amplitude of specular wave tends to be zero, and the
reflection coefficient takes the form

R ¼ c0h
c0

����
����
2

� nκ0
h

� �
nκð Þ ¼ αj j2 nκ0

h

� �
nκð Þ

¼
γ0 1þ χ0ð ÞβH � sgn βHð Þ γ0 1þ χ0ð ÞβHð Þ2 þ 4γ0γHη2χHχH

h i1=2

2γHηχH
� γH
γ0

(41)

This is the known expression for the coefficient of reflection from a perfect half-
infinite crystal, i.e. the Bragg table. In addition to this in the case of extremely
asymmetric diffraction when the diffraction wave leaving the crystal is almost
parallel to the surface, the amplitude is modulated by the factors taking into account
the refraction of transmitted and diffracted waves at the crystal-vacuum interface
and the diffraction wave interaction related to the vector P.

The proposed covariant (it may be named nonstandard) theory allows the
generalization for the case of the crystal with lattice deformations. Therefore, a
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uniform approach to the account of deformations and other distortions in all dif-
fraction schemes is realized.

3. Generalization of a covariant dynamic diffraction theory to the case
of deformed crystal

It is known that Takagi-Taupin equations were obtained using the model con-
cept of the character of lattice distortions which makes it possible to directly take
into account the displacement of atomic planes in the three-dimensional periodic
function of crystal polarizability. This concept allows for describing lattice dis-
placements and strain using the methods of classical theory of elasticity formulated
within the continuum approximation. To satisfy the condition of the dynamic
character of scattering in the Takagi-Taupin theory, the lattice distortion is assumed
to be rather weak; correspondingly, the strain is small. The character of variation in
strain is implicitly taken into account only when the wave field is chosen in the form
of a Bloch function with slowly varying amplitudes; thus, the question of applica-
bility of this concept remains open.

There is another limitation of the Takagi-Taupin theory which is related to the
correct statement of boundary conditions. Mathematically, the Takagi-Taupin
equations form a first-order differential system with respect to the scalar ampli-
tudes of transmitted and diffracted waves. The procedure of determining these
amplitudes at the crystal-vacuum interface does not correspond to the classical
boundary conditions.

This discrepancy is due to the fact that the Takagi-Taupin equations are obtained
disregarding the second derivatives of the field amplitudes with respect to coordi-
nates. Thus, the boundary conditions impose fundamental limitations on the appli-
cability of the Takagi-Taupin equations (e.g., when analyzing extremely
asymmetric diffraction schemes).

In this section we generalized the covariant theory of dynamic diffraction which
was presented in the previous section, to a crystal with a distorted lattice. This
approach makes it possible to formulate the limitation on the character of variation
in strain for the applicability of the Takagi-Taupin equations. In addition, the
equations obtained can be applied (as in the case of an ideal crystal) for arbitrary
diffraction schemes.

In this section, we follow the original papers [13, 14].

3.1 Wave field in the absence of diffraction

The polarizability χ(r’) of a crystal with a distorted lattice is a function of
coordinates; however, in contrast with an ideal crystal, it depends not only on the
reciprocal lattice vector H but also on the vector of atomic plane displacement from
equilibrium u(r’). According to the accepted assumptions of the generalized
dynamic theory, we choose the crystal model χ(r’) in the form

χ r0ð Þ ¼ χ0 þ χH exp iH r0 þ u r0ð Þð Þð Þ þ χH exp �iH r0 þ u r0ð Þð Þð Þ (42)

It can be seen that the general structure of χ(r’) corresponds to the case of an
ideal crystal. Obviously, this situation is possible only when the displacement u(r’)
is small. Then, for Eq. (7) we arrive at

rotrotE r0ð Þ � k2 1þ χ0 þ χH exp iH r0 þ u r0ð Þð Þð Þ þ χH exp �iH r0 þ u r0ð Þð Þð ÞE r0ð Þ ¼ 0
�

(43)
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As in the case of an ideal crystal, Eq. (43) should be reduced to a dimensionless
form. To this end we will use the length H of the reciprocal lattice vector:

rotrotE rð Þ � κ2 1þ χ0 þ χH exp ih rþ u rð Þð Þð Þ þ χH exp �ih rþ u rð Þð Þð ÞE rð Þ ¼ 0;
�

(44)

The approximate solution to Eq. (44) in the Takagi-Taupin theory is known to
be sought after in the form of plane waves with slowly varying amplitudes. Finally,
the Takagi-Taupin equations can be derived from Eq. (44) with allowance for the
two-wave approximation [2].

The covariant dynamic theory in the case of an ideal crystal is due to the fact that
the Fourier component of polarizability χH which is responsible for the excitation of
a diffraction wave in the crystal under the corresponding Laue geometric condition
for the wave vectors of refracted and diffracted waves and the reciprocal lattice
vector was chosen to be the perturbation parameter. The parameter χ0 cannot be
considered a perturbation parameter because it leads to only refraction of the
incident wave in the crystal and does not influence the occurrence of diffraction
effects. Obviously, in the case of a weakly deformed crystal, the criterion of the
choice of χH as the expansion parameter remains valid because the presence of a
weak displacement field only transforms the diffraction pattern rather than break-
ing it. This circumstance allows one to extend (with necessary modifications) the
scheme of constructing a solution in the nonstandard approach to a deformed
structure.

Recall that in the case of an ideal crystal the direct expansion of the solution to
Eq. (44) in the parameter χH is inconsistent when a parametric resonance is
observed which corresponds to the Laue diffraction condition:

κ0 � hð Þ2 � κ20 ¼ 0 (45)

In this case, the scattered wave amplitude increases unlimitedly. This is due to
the fact that the diffraction wave can be found as a particular solution to the
inhomogeneous wave equation:

rotrotE� κ02E ¼ E0 exp i κ0 � hð Þrð Þ (46)

which according to Eq. (13) has the form

E ¼ E0 exp i κ0 � hð Þrð Þ
κ0 � hð Þ2 � κ20

(47)

For a deformed crystal, the plane wave is replaced with E0exp(i(qr � hu(r)))
within model (42); as a result a particular solution to Eq. (46) cannot be written in
the form as in Eq. (47). A particular solution (Eq. (47)) can generally be
represented in the integral form using Green’s function for the corresponding
homogeneous equation. However, the generality of this representation is devalued
by the difficulties in analyzing the relations (e.g., in view of the vector character of
the problem Green’s function has generally speaking a tensor form). As a result the
integral representation of the solution to Eq. (46) is basically formal.

At the same time from the physical point of view, the displacement field changes
significantly at distances much larger than the lattice parameter. This limitation is
substantiated in particular by the fact that we describe lattice distortions within the
continuum approximation. In this case the approximate solution to Eq. (46) can be
obtained similarly to Eq. (47):
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3.1 Wave field in the absence of diffraction

The polarizability χ(r’) of a crystal with a distorted lattice is a function of
coordinates; however, in contrast with an ideal crystal, it depends not only on the
reciprocal lattice vector H but also on the vector of atomic plane displacement from
equilibrium u(r’). According to the accepted assumptions of the generalized
dynamic theory, we choose the crystal model χ(r’) in the form
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It can be seen that the general structure of χ(r’) corresponds to the case of an
ideal crystal. Obviously, this situation is possible only when the displacement u(r’)
is small. Then, for Eq. (7) we arrive at
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�
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As in the case of an ideal crystal, Eq. (43) should be reduced to a dimensionless
form. To this end we will use the length H of the reciprocal lattice vector:
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�
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The approximate solution to Eq. (44) in the Takagi-Taupin theory is known to
be sought after in the form of plane waves with slowly varying amplitudes. Finally,
the Takagi-Taupin equations can be derived from Eq. (44) with allowance for the
two-wave approximation [2].

The covariant dynamic theory in the case of an ideal crystal is due to the fact that
the Fourier component of polarizability χH which is responsible for the excitation of
a diffraction wave in the crystal under the corresponding Laue geometric condition
for the wave vectors of refracted and diffracted waves and the reciprocal lattice
vector was chosen to be the perturbation parameter. The parameter χ0 cannot be
considered a perturbation parameter because it leads to only refraction of the
incident wave in the crystal and does not influence the occurrence of diffraction
effects. Obviously, in the case of a weakly deformed crystal, the criterion of the
choice of χH as the expansion parameter remains valid because the presence of a
weak displacement field only transforms the diffraction pattern rather than break-
ing it. This circumstance allows one to extend (with necessary modifications) the
scheme of constructing a solution in the nonstandard approach to a deformed
structure.

Recall that in the case of an ideal crystal the direct expansion of the solution to
Eq. (44) in the parameter χH is inconsistent when a parametric resonance is
observed which corresponds to the Laue diffraction condition:

κ0 � hð Þ2 � κ20 ¼ 0 (45)

In this case, the scattered wave amplitude increases unlimitedly. This is due to
the fact that the diffraction wave can be found as a particular solution to the
inhomogeneous wave equation:

rotrotE� κ02E ¼ E0 exp i κ0 � hð Þrð Þ (46)

which according to Eq. (13) has the form

E ¼ E0 exp i κ0 � hð Þrð Þ
κ0 � hð Þ2 � κ20

(47)

For a deformed crystal, the plane wave is replaced with E0exp(i(qr � hu(r)))
within model (42); as a result a particular solution to Eq. (46) cannot be written in
the form as in Eq. (47). A particular solution (Eq. (47)) can generally be
represented in the integral form using Green’s function for the corresponding
homogeneous equation. However, the generality of this representation is devalued
by the difficulties in analyzing the relations (e.g., in view of the vector character of
the problem Green’s function has generally speaking a tensor form). As a result the
integral representation of the solution to Eq. (46) is basically formal.

At the same time from the physical point of view, the displacement field changes
significantly at distances much larger than the lattice parameter. This limitation is
substantiated in particular by the fact that we describe lattice distortions within the
continuum approximation. In this case the approximate solution to Eq. (46) can be
obtained similarly to Eq. (47):
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E ¼ E0 exp i κ0 � hð Þr� ihu rð Þð Þ
κ0 � hð Þ2 � κ20

(48)

Correspondingly, the direct expansion of the solution to Eq. (44) for a deformed
crystal is similar to that for an ideal crystal and is determined by the wave superpo-
sition in the form

E01 2ð Þ exp iκ0rð Þ þ κ2χH Hð Þ
exp i κ0 � hð Þr� ihu rð Þð Þ

κ0 � hð Þ2 � κ20

 !
(49)

where E01 and E02 are the amplitudes of the plane waves exp.(�iκ0r) propagat-
ing in the crystal, considering a continuous medium with χ = 1 + χ0. This solution
describes the wave field in the crystal with a distorted lattice beyond the angular
ranges of diffraction reflection (i.e., in the nonresonant case). The question of the
accuracy of approximation (49) remains open until the character of the change in
u(r) is specified.

The most general limitation on the strain in the crystal is imposed by the
requirement for the smallness of the strain tensor ε corresponding to a given
displacement field:

ε ¼ ε0
∂u rð Þ
∂r

≪ 1, (50)

where ε0 is the strain amplitude in the structure. For sufficiently regular dis-
placement fields, this requirement is reduced to the condition ε0 ≪ 1. It follows
from Eq. (50) that in the case of a deformed crystal when the aforementioned
conditions are satisfied the applicability of direct expansion remains limited because
of the Laue resonant condition (45) where the amplitudes of waves excited in the
crystal increase unlimitedly. Thus, the method for obtaining an approximate solu-
tion must also be modified in the case of a crystal with a distorted lattice. The choice
of the modification technique depends on the character of the displacement field in
the crystal and obviously cannot provide a universal solution for all physically
possible cases. We will consider the most widespread situation where the displace-
ment field changes at distances comparable with the extinction length. In this case
the multiscale method which is the basis of the covariant theory of diffraction in an
ideal crystal can directly be extended to a deformed structure.

3.2 Derivation of the main equations for strained crystal

The strain field in a crystal may have various forms depending on the nature of
lattice distortions. These forms can mathematically be represented by setting dif-
ferent structural parameters (e.g., the thicknesses of epitaxial layers and transition
regions between layers, sizes of lattice-strain regions caused by various defects,
etc.). The values of these parameters are determined by not only the strain ampli-
tudes ε0i but also the characteristic regions Li of their variation in the crystal. As a
result this situation can symbolically be presented in a form that explicitly relates
the parameters:

Hu ¼ F
ε0iLi

d
;
rd
Li

� �
(51)
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Here, ε0iLi/d is the amplitude of the displacement field, and rd/Li is the size of
the distorted region in the accepted coordinate normalization (d is the interplanar
spacing). The influence of the factor Hu on the diffraction effects should correlate
with χH which physically determines the characteristic region of wave-field
formation under dynamic diffraction conditions. This concerns both the angular
range of diffraction reflection and the field extinction length in the crystal.

Thus, the parameter χH must implicitly be taken into account in functional
relation (51) which takes the form

Hu ¼ F
ε0

miχiH
;miri

� �
, mi ¼ 1

HLχiH
¼ d

2πLχiH
, ri ¼ χiHr: (52)

The powers i in Eq. (52) can be integers; however, fractional values (e.g., 1/2)
are physically most interesting because they indicate changes in displacement fields
on scales below the extinction length.

Thus, a consideration of different types of lattice distortions generally calls for
taking into account different characteristic spatial regions; this approach completely
corresponds to the main concept of the multiscale method [9]. Obviously, different
modifications of the method are required depending on the specific structure of
Eq. (52). We will consider the simplest case of one scale which leads in a particular
case to Takagi-Taupin equations.

Let us consider the atomic plane displacement occurring at some effective layer
thickness L. The parameter Hu(r) can be written as

Hu rð Þ ¼ ε0LHF
r
L

� �
, (53)

where F r
L

� �
is the displacement model and ε0 is the strain amplitude.

According to the multiscale method [9], the main equation (Eq. (44)) is ana-
lyzed near the Bragg maximum on different spatial scales (determined by χH) using
the transition from one variable r to several variables r0 = r, r1 = χHr, r2 ¼ χ2Hr,…. If
one seeks the first-order approximation for χH, two scales (affecting the field in the
crystal) should be considered:

E rð Þ ¼ E r0; r1ð Þ:
Then, according to Section 2, the field, the operator rot, and the wave vector κ0

are expanded in χH powers:

E ¼ E0 r0; r1ð Þ þ χHE1 r0; r1ð Þ þ…;

κ0 ¼ κ00 þ χHκ01 þ…;

κ20 ¼ κ0;κ0ð Þ ¼ κ20 þ 2χH κ0;κ01ð Þ þ… ¼ κ20 þ χHX; X ¼ 2 κ0;κ01ð Þ
rotrot ¼ rot0rot0 þ χH rot0rot1 þ rot1rot0ð Þ þ…

(54)

Substituting expansion (54) into the main equation (Eq. (44)), we obtain

rot0rot0 þ χHrot1rot0 þ χHrot0rot1 þ…ð Þ E0 þ χHE1 þ…ð Þ�
�ðκ200 þ χHX þ…þ κ2χHð exp ihr0 þ iϕ r1ð Þð Þþ
χH
χH

exp �ihr0 � iϕ r1ð Þð ÞÞÞ E0 þ χHE1 þ…ð Þ ¼ 0

(55)
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 !
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the multiscale method which is the basis of the covariant theory of diffraction in an
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The strain field in a crystal may have various forms depending on the nature of
lattice distortions. These forms can mathematically be represented by setting dif-
ferent structural parameters (e.g., the thicknesses of epitaxial layers and transition
regions between layers, sizes of lattice-strain regions caused by various defects,
etc.). The values of these parameters are determined by not only the strain ampli-
tudes ε0i but also the characteristic regions Li of their variation in the crystal. As a
result this situation can symbolically be presented in a form that explicitly relates
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d
;
rd
Li

� �
(51)
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Here, ε0iLi/d is the amplitude of the displacement field, and rd/Li is the size of
the distorted region in the accepted coordinate normalization (d is the interplanar
spacing). The influence of the factor Hu on the diffraction effects should correlate
with χH which physically determines the characteristic region of wave-field
formation under dynamic diffraction conditions. This concerns both the angular
range of diffraction reflection and the field extinction length in the crystal.

Thus, the parameter χH must implicitly be taken into account in functional
relation (51) which takes the form

Hu ¼ F
ε0

miχiH
;miri

� �
, mi ¼ 1

HLχiH
¼ d

2πLχiH
, ri ¼ χiHr: (52)

The powers i in Eq. (52) can be integers; however, fractional values (e.g., 1/2)
are physically most interesting because they indicate changes in displacement fields
on scales below the extinction length.

Thus, a consideration of different types of lattice distortions generally calls for
taking into account different characteristic spatial regions; this approach completely
corresponds to the main concept of the multiscale method [9]. Obviously, different
modifications of the method are required depending on the specific structure of
Eq. (52). We will consider the simplest case of one scale which leads in a particular
case to Takagi-Taupin equations.

Let us consider the atomic plane displacement occurring at some effective layer
thickness L. The parameter Hu(r) can be written as
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L

� �
, (53)

where F r
L

� �
is the displacement model and ε0 is the strain amplitude.

According to the multiscale method [9], the main equation (Eq. (44)) is ana-
lyzed near the Bragg maximum on different spatial scales (determined by χH) using
the transition from one variable r to several variables r0 = r, r1 = χHr, r2 ¼ χ2Hr,…. If
one seeks the first-order approximation for χH, two scales (affecting the field in the
crystal) should be considered:
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Then, according to Section 2, the field, the operator rot, and the wave vector κ0

are expanded in χH powers:

E ¼ E0 r0; r1ð Þ þ χHE1 r0; r1ð Þ þ…;
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rotrot ¼ rot0rot0 þ χH rot0rot1 þ rot1rot0ð Þ þ…

(54)

Substituting expansion (54) into the main equation (Eq. (44)), we obtain
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(55)
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In contrast to the case of an ideal crystal, χ(r) is now presented as a function of
two spatial scales: r0 and r1. Here, the following designation is introduced:

ϕ r1ð Þ ¼ ε0
mχH

Hu mr1ð Þ, m ¼ 1
HLχH

¼ d
2πLχH

: (56)

The parameter 1/m means some effective thickness of the deformed layer on the
scale r1. The possibility of presenting the displacement as a function of the scale r1
suggests the condition m � 1, i.e., the number d of interplanar spacings embedded
in the deformed layer thickness should be on the order of the extinction length Λext

on the dimensionless scale r:

L
d
� 1

χH
� Λext (57)

We will follow the scheme for solving Eq. (55) that was reported in Section 1. As
for an ideal crystal, the initial approximation can be written in the form as in
Eq. (18). Accordingly, the operator rot acts on only one spatial scale r0. Since we are
interested in the wave field near the Bragg maximum, a solution to Eq. (18) within
the two-wave approximation should be sought after in the form of a superposition
of transmitted and diffracted waves:

E0 ¼ e1c1 r1ð Þ exp iκ00r0ð Þ þ e2c2 r1ð Þ exp iκhr0ð Þ
κh ¼ κ0 þ h, (58)

The first-order approximation with respect to χH yields the inhomogeneous
equation:

rot0rot0E1 � κ200E1 ¼� rot1rot0 þ rot0rot1ð ÞE0 þ XE0

þ κ2 exp ihr0 þ iϕ r1ð Þð Þ þ χH
χH

exp �ihr0 � iϕ r1ð Þð Þ
� �

E0

(59)

Hence

rot0rot0E1 � κ200E1 ¼ i2 ∇1c1;κ00ð Þ þ Xc1ð Þe1 þ κ2
χH
χH

c2e2 exp �iϕ r1ð Þð Þ
� �

exp iκ00r0ð Þþ

þ   κ2c1e1 exp iϕ r1ð Þð Þ þ i2 ∇1c2;κhð Þ þ Xc2ð Þe2
� �

exp iκhr0ð Þþ

þ  κ2
χH
χH

exp i κ00 � hð Þr0ð Þ exp �iϕ r1ð Þð Þc1e1 þ κ2 exp i κh þ hð Þr0ð Þ exp iϕ r1ð Þð Þc2e2:

(60)

Here, the gradient ∇1 acts in the space r1. Eq. (60) was derived taking into
account the additional condition ∇1c1; e1ð Þ ¼ 0. This indicates that the change in
amplitudes on the scale r1 does not violate the wave transversity.

As can easily be found from Eq. (47), two first terms in the right-hand part of
Eq. (60) generate the divergence of a particular solution. The following vector
system can be obtained by excluding these terms from Eq. (60):

i2 ∇1c1;κ00ð Þ þ Xc1ð Þe1 þ κ2
χH
χH

exp �iϕ r1ð Þð Þc2e2 ¼ 0

i2 ∇1c2;κhð Þ þ Xc2ð Þe2 þ κ2 exp iϕ r1ð Þð Þc1e1 ¼ 0

8><
>:

(61)
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According to Section 2, to satisfy the field boundedness condition, the projec-
tions of Eq. (61) on the corresponding unit vectors e1 and e2 must be nullified.
Then, we obtain the following scalar system from Eq. (61):

i2 ∇1c1;κ00ð Þ þ Xc1 þ κ2
χH
χH

η exp �iϕ r1ð Þð Þc2 ¼ 0

i2 ∇1c2;κhð Þ þ κ2η exp iϕ r1ð Þð Þc1 þ Xc2 ¼ 0

8<
: (62)

According to Section 2, the parameter X ¼ 2 κ00κ01ð Þ can be expressed in terms
of the deviation from the exact Bragg angle Δθ as follows:

X ¼ γ0κ
2
00βH

γh � γ0ð ÞχH
(63)

Eq. (62) describes the changes in the wave amplitudes on the scale r1 in the
Bragg reflection range for a crystal with a specified displacement field u(r1). Thus,
the amplitudes are slowly varying parameters. This condition is in fact the basis of
the formalism of generalized dynamic theory which results in the Takagi-Taupin
equations. In this case the system of Eq. (62) should be considered a direct analog of
the Takagi-Taupin equations. Let us prove this statement. We make the following
substitutions in Eq. (62):

c1 ! c1 exp iar1ð Þ, c2 ! c2 exp iar1ð Þ
where a = an is a constant vector directed along the normal to the crystal surface.

Vector a is chosen so as to make parameter X absent in the first equation of system
(62). Then, a can be written as

a ¼ X
2κ00γ0

Accordingly, Eq. (62) is reduced to the form

i2 ∇1c1;κ00ð Þ þ κ2
χH
χH

η exp �iϕ r1ð Þð Þc2 ¼ 0

i2 ∇1c2;κhð Þ þ κ2η exp iφ r1ð Þð Þc1 � κ200βH
χH

c2 ¼ 0

8>><
>>:

(64)

In a particular case of coplanar diffraction in the xz plane oriented normally to
the crystal surface, the gradient in Eq. (64) can be written as

∇1 ¼ ∂

∂x1
þ ∂

∂z1

Under the assumption that the displacement field in Eq. (64) depends on only x
and z coordinates in the plane of incidence, system (64) is transformed into the set
of Takagi-Taupin equations written on the scale r1 = χHr. Thus, the formalism
considered here which is based on applying the multiscale method is in complete
agreement with the generalized Takagi-Taupin dynamical theory of diffraction [2].
However, there is an important difference. The reduction of the covariant theory
for a deformed crystal to the Takagi-Taupin equations in a particular case suggests
that key condition (57) is satisfied, i.e., this correspondence is valid for only dis-
placement fields changing in a region comparable in size with the extinction length.
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HLχH

¼ d
2πLχH

: (56)
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L
d
� 1

χH
� Λext (57)
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� �

E0
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8>><
>>:
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and z coordinates in the plane of incidence, system (64) is transformed into the set
of Takagi-Taupin equations written on the scale r1 = χHr. Thus, the formalism
considered here which is based on applying the multiscale method is in complete
agreement with the generalized Takagi-Taupin dynamical theory of diffraction [2].
However, there is an important difference. The reduction of the covariant theory
for a deformed crystal to the Takagi-Taupin equations in a particular case suggests
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Obviously, other displacement fields which a fortiori do not satisfy condition (57)
can be implemented in real crystals. In this case the use of Takagi-Taupin equations
may be unjustified and in any case should be additionally analyzed.

3.3 Reflection coefficient

System (64) has a more general character because it was obtained without
additional limitations on the Takagi-Taupin equations which is related to the rejec-
tion of the second derivatives of the field amplitudes with respect to coordinates. It
is known that the boundary conditions at the crystal-vacuum interface cannot be
correctly taken into account due to these limitations. Finally, the Takagi-Taupin
equations cannot be applied to extremely asymmetric diffraction schemes.

Let us show how the consideration of the boundary conditions yields explicit
expressions for the amplitudes of diffracted and specularly reflected waves for
arbitrary angles of incidence. For simplicity we will consider diffraction in a semi-
infinite crystal in the case of σ polarization where the vectors e1 and e2 are mutually
parallel. Here, the solution providing extinction wave decay near the Bragg maxi-
mum should be chosen from two linearly independent solutions to Eq. (62). Corre-
spondingly, the solution to Eq. (62) for c1(r1) by analogy with an ideal crystal
(Section 2) can be written as

c1 r1ð Þ ¼ c exp iP r1ð Þr1ð Þ (65)

where the constant c can be found from the boundary conditions and the vector
P, in contrast to Section 2, is assumed to be variable on the scale r1. Then, the
amplitude c1(r1) according to the first equation of system (62) is determined as

c2 r1ð Þ ¼ χH
κ2χH

2 ∇1 Pr1ð Þκ00ð Þ � Xð Þ exp iPr1ð Þ exp iϕ r1ð Þð Þc ¼ αc (66)

Finally, the wave field in the semi-infinite crystal near the Bragg angle of inci-
dence can be described by an expression that formally corresponds to an ideal
crystal:

E ¼ exp iPr1ð Þ exp iκ00rð Þ þ α exp iκhrð Þð Þce (67)

The procedure of solving the boundary problem which can be reduced to a
successive establishment of relations between wave amplitudes having common
tangential components of the electric and magnetic fields at the crystal-vacuum
interface remains the same. Therefore, one can use the expressions for amplitudes
obtained in Section 2. As a result we arrive at formulas that are similar to the Fresnel
formulas:

c ¼ 2 n;κð Þ
n;κ0 þ χHP χHrsð Þð Þ þ n;κð Þ c

0 (68)

cR ¼ nκð Þ � n;κ0 þ χHP χHrsð Þð Þ
n;κ0 þ χHP χHrsð Þð Þ þ nκð Þ c

0 (69)

c0h ¼ n;κh þ χHP χHrsð Þð Þ � n;κhRð Þ
n;κ0

h

� �� n;κhRð Þ � 2 n;κð Þ
n;κ0 þ χHP χHrsð Þð Þ þ n;κð Þ αc

0 (70)

The following designations are introduced here: n is the unit vector directed
along the normal to the crystal surface into the crystal bulk; κ(c0) and κ0

h c0h
� �

are
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the wave vectors (amplitudes) of the incident and diffracted waves, respectively; cR
is the amplitude of the specularly reflected wave; and κhR is the wave vector of the
diffraction wave which is specularly reflected from the lower side of the crystal-
vacuum interface. The superscript “0” is used for the parameters related to the
environment. Vector rs lies in the plane of crystal-vacuum interface. In
Eqs. (68)–(70), we returned to the initial dimensionless variable r.

Eqs. (68)–(70) can be used to find the field amplitudes for arbitrary angles of
incidence including those in the vicinity of the critical total reflection angles. In
particular the formula for reflectance can be found from Eq. (70) as follows:

R ¼ c0h
c0

����
����
2

� nκ0
h

� �
nκð Þ (71)

In a particular case of large angles of incidence, Eq. (71) can be simplified, and
Eq. (70) yields the following expression for the reflectance (which can be derived
from the Takagi-Taupin equations):

R ¼ c0h
c0

����
����
2

� nκ0
h

� �
nκð Þ ¼ αj j2 γH

γ0
(72)

4. Conclusions

The variant of the dynamic X-ray diffraction presented in the present work is
based on direct analysis of Maxwell equations for the definite model representations
of the field-medium interaction taking into account the lattice presence which agree
as a whole with the Ewald-Laue theory. This analysis proves to be available when
the method of many scales adapted to the vector character of the problem is used.
In this case the magnitude χH is the parameter of expansion that corresponds in
full to the physical character of the problem. This correspondence is reflected in
the mathematical structure of the analyzed field equation in the crystal under
conditions of dynamic scattering.

The expressions obtained for the main field characteristics in the Bragg
maximum region following from the qualitative singularities of the field
propagation correspond to the known results of the dynamical theory. However,
the correct use of the boundary conditions leads to an expression for the
reflection coefficient that substantially differs from the classical one for the case of
extremely asymmetric diffraction schemes. In addition the presented approach
provides the amplitude of specularly reflected wave under conditions of dynamic
diffraction, which cannot be apparently obtained in the framework of traditional
approaches.

In the present work, we do not state the problem to analyze the features of
dynamic scattering in the sliding diffraction geometry.

In conclusion, we note the most important in our opinion differences and
advantages of the approach developed in the present work.

The second-order wave equation analyzed without any additional assumptions
of the possibility of the interaction of refracted and scattered waves automatically
results in dynamical scattering character; in this case the kinematical scattering can
be considered to a certain extent as an artificial process having limited applicability.
The diffraction Laue conditions appear as a result of natural limitations of the direct
expansion of the solution in the resonance case.
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In the framework of the developed theory, the total consideration of different
geometrical diffraction schemes including sliding geometry and other surface vari-
ants proves to be possible. In this case the order of the dispersion equations does not
change. This situation is related to the effective decomposition of the problem into
the construction of the uniform wave field in the crystal and the determination of
field amplitudes according to the boundary conditions.

Determination of the wave field as a whole without decomposition into refracted
and scattered waves is the advantage of the theory. It is clear that this feature of the
theory is most important for analysis of secondary diffraction processes.

We have generalized the covariant theory of dynamic X-ray diffraction to the
case of a crystal with lattice deformation. In this case the displacement field is
specified, starting from model representations used in Takagi-Taupin dynamic
theory. In our case (in contrast to the formalism of the Takagi-Taupin equations),
lattice distortions have been taken into account on various spatial scales that were
different from the scale of the lattice period.

The displacement field was also a slowly varying function of coordinates. If the
displacement field is considered on one spatial scale on the order of the extinction
length, then the particular case of fundamental equations for the field amplitudes is
obtained as a result.

In precisely this case, we have the same result as that of the Takagi-Taupin
equations. By doing so we have shown possible restrictions on the applicability of
the Takagi-Taupin equations to describing dynamic diffraction in crystals using
various deformation models.

At the same time, the presented theory offers an opportunity for successively
taking into account displacement fields of various types implemented on different
spatial scales (that are larger or significantly smaller than the extinction length).

The possibility of the correct application of boundary conditions including cases
of extremely asymmetric diffraction schemes in covariant theory for ideal crystals is
also wholly retained for crystals with lattice distortions. Such a situation is due to
the fact that the solution of the diffraction problem proper is not related to the
boundary conditions; in particular the order of fundamental equations of the theory
remains the same for arbitrary diffraction geometry.
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