
Novel Trends in the Traveling
Salesman Problem

Edited by Donald Davendra
and Magdalena Bialic-Davendra

Edited by Donald Davendra
and Magdalena Bialic-Davendra

The Traveling Salesman Problem (TSP) is widely considered one of the most intensively
studied problems in computational mathematics and operations research. Since its
inception, it has become the poster child for computational complexity research. A

number of problems have been transformed to a TSP problem and its application
base now extends into scheduling, manufacturing, routing, and logistics. With the
advent of high-performance computing and advanced meta-heuristics such as GPU

programming and swarm-based algorithms, the TSP problem is positioned firmly as
the go-to problem for the development of the next generation of high-performance
intelligent heuristics. This book looks to leverage some of these new paradigms for

both students and researchers in this field.

Published in London, UK

© 2020 IntechOpen
© Nikita Malyutin / iStock

ISBN 978-1-83962-453-7

N
ovel Trends in the Traveling Salesm

an Problem

Novel Trends in the
Traveling Salesman

Problem
Edited by Donald Davendra

and Magdalena Bialic-Davendra

Published in London, United Kingdom

Supporting open minds since 2005

Novel Trends in the Traveling Salesman Problem
http://dx.doi.org/10.5772/intechopen.78197
Edited by Donald Davendra and Magdalena Bialic-Davendra

Contributors
Weiqi Li, Donald Davendra, Magdalena Bialic-Davendra, Magdalena Metlicka, Fernando Francisco
Sandoya, Carmen Letamendi, Fanny Sanabria, Wayne Frasch, Michael Kuby, Fusheng Xiong

© The Editor(s) and the Author(s) 2020
The rights of the editor(s) and the author(s) have been asserted in accordance with the Copyright,
Designs and Patents Act 1988. All rights to the book as a whole are reserved by INTECHOPEN LIMITED.
The book as a whole (compilation) cannot be reproduced, distributed or used for commercial or
non-commercial purposes without INTECHOPEN LIMITED’s written permission. Enquiries concerning
the use of the book should be directed to INTECHOPEN LIMITED rights and permissions department
(permissions@intechopen.com).
Violations are liable to prosecution under the governing Copyright Law.

Individual chapters of this publication are distributed under the terms of the Creative Commons
Attribution 3.0 Unported License which permits commercial use, distribution and reproduction of
the individual chapters, provided the original author(s) and source publication are appropriately
acknowledged. If so indicated, certain images may not be included under the Creative Commons
license. In such cases users will need to obtain permission from the license holder to reproduce
the material. More details and guidelines concerning content reuse and adaptation can be found at
http://www.intechopen.com/copyright-policy.html.

Notice
Statements and opinions expressed in the chapters are these of the individual contributors and not
necessarily those of the editors or publisher. No responsibility is accepted for the accuracy of
information contained in the published chapters. The publisher assumes no responsibility for any
damage or injury to persons or property arising out of the use of any materials, instructions, methods
or ideas contained in the book.

First published in London, United Kingdom, 2020 by IntechOpen
IntechOpen is the global imprint of INTECHOPEN LIMITED, registered in England and Wales,
registration number: 11086078, 5 Princes Gate Court, London, SW7 2QJ, United Kingdom
Printed in Croatia

British Library Cataloguing-in-Publication Data
A catalogue record for this book is available from the British Library

Additional hard and PDF copies can be obtained from orders@intechopen.com

Novel Trends in the Traveling Salesman Problem
Edited by Donald Davendra and Magdalena Bialic-Davendra
p. cm.
Print ISBN 978-1-83962-453-7
Online ISBN 978-1-83962-454-4
eBook (PDF) ISBN 978-1-83962-455-1

Selection of our books indexed in the Book Citation Index
in Web of Science™ Core Collection (BKCI)

Interested in publishing with us?
Contact book.department@intechopen.com

Numbers displayed above are based on latest data collected.
For more information visit www.intechopen.com

5,100+
Open access books available

156
Countries delivered to

12.2%
Contributors from top 500 universities

Our authors are among the

Top 1%
most cited scientists

126,000+
International authors and editors

145M+
Downloads

We are IntechOpen,
the world’s leading publisher of

Open Access books
Built by scientists, for scientists

BOOK
CITATION

INDEX

CL
AR

IVATE ANALYTICS

IN D E X E D

Meet the editors

Dr. Donald Davendra is Professor and Chair of Computer
Science at Central Washington University, USA. He has a PhD
in Technical Cybernetics from Tomas Bata University in Zlín,
Czech Republic. His research background is in optimization al-
gorithms, intelligent manufacturing systems, high-performance
computing, and chaos systems. He has edited three books and
numerous journal papers, book chapters, and conference publi-

cations in the field of computational intelligence.

Dr. Magdalena Bialic-Davendra has a PhD in Finance from Tomas
Bata University in Zlín, Czech Republic. She is author and co-au-
thor of more than thirty-five scientific articles. Her research
interests include wildfire modeling, business clusters, operations
research, and management science.

Contents

Preface III

Chapter 1 1
Introductory Chapter: Traveling Salesman Problem - An Overview
by Donald Davendra and Magdalena Bialic-Davendra

Chapter 2 7
CUDA Accelerated 2-OPT Local Search for the Traveling
Salesman Problem
by Donald Davendra, Magdalena Metlicka and
Magdalena Bialic-Davendra

Chapter 3 29
Solution Attractor of Local Search System: A Method to Reduce
Computational Complexity of the Traveling Salesman Problem
by Weiqi Li

Chapter 4 45
Accelerating DNA Computing via PLP-qPCR Answer Read out
to Solve Traveling Salesman Problems
by Fusheng Xiong, Michael Kuby and Wayne D. Frasch

Chapter 5 63
Comparative Study of Algorithms Metaheuristics Based Applied
to the Solution of the Capacitated Vehicle Routing Problem
by Fernando Francisco Sandoya Sánchez,
Carmen Andrea Letamendi Lazo and
Fanny Yamel Sanabria Quiñónez

Contents

Preface XIII

Chapter 1 1
Introductory Chapter: Traveling Salesman Problem - An Overview
by Donald Davendra and Magdalena Bialic-Davendra

Chapter 2 7
CUDA Accelerated 2-OPT Local Search for the Traveling
Salesman Problem
by Donald Davendra, Magdalena Metlicka and
Magdalena Bialic-Davendra

Chapter 3 29
Solution Attractor of Local Search System: A Method to Reduce
Computational Complexity of the Traveling Salesman Problem
by Weiqi Li

Chapter 4 45
Accelerating DNA Computing via PLP-qPCR Answer Read out
to Solve Traveling Salesman Problems
by Fusheng Xiong, Michael Kuby and Wayne D. Frasch

Chapter 5 63
Comparative Study of Algorithms Metaheuristics Based Applied
to the Solution of the Capacitated Vehicle Routing Problem
by Fernando Francisco Sandoya Sánchez,
Carmen Andrea Letamendi Lazo and
Fanny Yamel Sanabria Quiñónez

Preface

Dedicated to Kinga

The Traveling Salesman Problem (TSP) is widely considered one of the most inten-
sively studied problems in computational mathematics and operations research.
Since its inception in the 1800s, it has become the poster child for computational
complexity research and Graph Theory. A number of problems have been
transformed to a TSP problem, and its application base extends into scheduling,
manufacturing, routing, and logistics, among others. With the advent of high-
performance computing and advanced meta-heuristics such as Graphical Processing
Unit (GPU) programming and Swarm-based algorithms, the TSP problem is
positioned firmly as the go-to problem in the development of the next generation
of intelligent heuristics.

This book is targeted to students and researchers. It encompasses the latest trends in
TSP applications, including both theory and practical aspects, with emphasis on
cutting-edge algorithms that incorporate unique paradigms such as high-
performance computing using GPUs, software accelerators, and meta-heuristics.

Donald Davendra
Department of Computer Science,
Central Washington University,

Ellensburg, USA

Magdalena Bialic-Davendra
Department of Economics and Department of

Finance & Supply Chain Management,
Central Washington University,

Ellensburg, USA

Preface

Dedicated to Kinga

The Traveling Salesman Problem (TSP) is widely considered one of the most inten-
sively studied problems in computational mathematics and operations research.
Since its inception in the 1800s, it has become the poster child for computational
complexity research and Graph Theory. A number of problems have been
transformed to a TSP problem, and its application base extends into scheduling,
manufacturing, routing, and logistics, among others. With the advent of high-
performance computing and advanced meta-heuristics such as Graphical Processing
Unit (GPU) programming and Swarm-based algorithms, the TSP problem is
positioned firmly as the go-to problem in the development of the next generation
of intelligent heuristics.

This book is targeted to students and researchers. It encompasses the latest trends in
TSP applications, including both theory and practical aspects, with emphasis on
cutting-edge algorithms that incorporate unique paradigms such as high-
performance computing using GPUs, software accelerators, and meta-heuristics.

Donald Davendra
Department of Computer Science,
Central Washington University,

Ellensburg, USA

Magdalena Bialic-Davendra
Department of Economics and Department of

Finance & Supply Chain Management,
Central Washington University,

Ellensburg, USA

Chapter 1

Introductory Chapter: Traveling
Salesman Problem - An Overview
Donald Davendra and Magdalena Bialic-Davendra

1. Introduction

The traveling salesman problem (TSP) is considered one of the seminal prob-
lems in computational mathematics. Considered as part of the Clay Mathematics
Institute Millennium Problem with its assertion of P ¼ N P [1], the TSP problem
has been well researched during the past five decades.

The TSP problem can be described as the following: consider a number of cities
which must be visited by a traveling salesman, only once, arriving once and
departing once and starting and ending at the same city. Given the pairwise dis-
tances between cities, what is the best order in which to visit them, so as to
minimize the overall distance traveled?

Mathematically, the equation for the TSP can be given as in Eq. (1):

xij ¼
1 the path goes from city i to city j
0 otherwise

�
(1)

where xij ¼ 1 if city i is connected with city j, and xij ¼ 0 otherwise. For
i ¼ 0, … , n, let ui be an artificial variable and finally take cij to be the distance from
city i to city j. The objective function can be then formulated as Eq. (2):

min
Xn
i¼0

Xn

j6¼i, j¼0

cij xij

0≤ xij ≤ 1 i, j ¼ 0, … , n
ui ∈Z i ¼ 0, … , n
Xn

i¼0, i 6¼j

xij ¼ 1 j ¼ 0, … , n

Xn

j¼0, j6¼i

xij ¼ 1 i ¼ 0, … , n

ui � u j þ nxij ≤ n� 1 1≤ i 6¼ j≤ n

(2)

2. Complexity

The complexity of the TSP is still unknown. Using a brute force approach to test
each and every tour, for a tour of n cities, it will be (n-1)! possibilities and it will
have a time complexity of O n!ð Þ. However, using the dynamic programming
approach, the complexity can be derived of a tour of n cities, which can be divided
into n-2 subsets each of size n-1, with the constraint that all such subsets don’t have

1

Chapter 1

Introductory Chapter: Traveling
Salesman Problem - An Overview
Donald Davendra and Magdalena Bialic-Davendra

1. Introduction

The traveling salesman problem (TSP) is considered one of the seminal prob-
lems in computational mathematics. Considered as part of the Clay Mathematics
Institute Millennium Problem with its assertion of P ¼ N P [1], the TSP problem
has been well researched during the past five decades.

The TSP problem can be described as the following: consider a number of cities
which must be visited by a traveling salesman, only once, arriving once and
departing once and starting and ending at the same city. Given the pairwise dis-
tances between cities, what is the best order in which to visit them, so as to
minimize the overall distance traveled?

Mathematically, the equation for the TSP can be given as in Eq. (1):

xij ¼
1 the path goes from city i to city j
0 otherwise

�
(1)

where xij ¼ 1 if city i is connected with city j, and xij ¼ 0 otherwise. For
i ¼ 0, … , n, let ui be an artificial variable and finally take cij to be the distance from
city i to city j. The objective function can be then formulated as Eq. (2):

min
Xn
i¼0

Xn

j6¼i, j¼0

cij xij

0≤ xij ≤ 1 i, j ¼ 0, … , n
ui ∈Z i ¼ 0, … , n
Xn

i¼0, i 6¼j

xij ¼ 1 j ¼ 0, … , n

Xn

j¼0, j6¼i

xij ¼ 1 i ¼ 0, … , n

ui � u j þ nxij ≤ n� 1 1≤ i 6¼ j≤ n

(2)

2. Complexity

The complexity of the TSP is still unknown. Using a brute force approach to test
each and every tour, for a tour of n cities, it will be (n-1)! possibilities and it will
have a time complexity of O n!ð Þ. However, using the dynamic programming
approach, the complexity can be derived of a tour of n cities, which can be divided
into n-2 subsets each of size n-1, with the constraint that all such subsets don’t have

1

the nth city in them. Therefore, there are a maximum of O n2nð Þ such subproblems,
which can be solved in linear time. The time complexity is therefore O n22nð Þ. Both
space and time complexity of the TSP problem can be considered as exponential.

3. History

The genesis of the TSP problem is difficult to pinpoint. Some literature point to
widespread usage since the 1950’s [2], after the 48 state problem posed by Hassler
Whitney in the 1930’s induced a lot of interest. The subsequent second world war
really ingrained the use of operations research into this domain. An excellent
detailed history is given in [3], where TSP is considered as a part of the history of
Combinatorial Optimization.

The TSP problem over time has evolved into many different branches, each with
different constraints:

Symmetric TSP (STSP) - the basic TSP problem, where the distance between
city i and city j is the same as from city j and city i.

Asymmetric TSP (ATSP) - modified TSP, where the distance between city i
and city j is not the same as from city j and city i.

Hamiltonian Cycle Problem (HCP) - is a problem where finding if a path in an
undirected or directed graph G that visits each vertex V exactly once exists.

Sequential Ordering Problem (SOP) - Given a set of n cities and distances for
each pair of cities, find a Hamiltonian path from city 1 to city n of minimal length,
which takes given precedence constraints (such as requiring some nodes to be
visited prior) into account.

Capacitated Vehicle Routing Problem (CVRP) - Given n-1 nodes, 1 depot
(with resources) and distances between the nodes, the objective is to satisfy
demand at each node using vehicles with identical capacity with the shortest tour.

Case Enough TSP (CETSP) - a problem developed for radio frequency identi-
fication (RFID), where close proximity is enough to a node. The objective is to trace
the shortest path interlinking the different nodes.

TSP with Neighborhoods (TSPN) - where a collection of L regions in the
plane, called neighborhoods is given and the objective is to seek the shortest tour to
visit all these neighborhoods.

4. Current literature

Linear programming and deterministicmethods have been seen as the early solvers,
however, intractability of this problem has led to a general decline in these mathemat-
ical formulations.Within the past few decades with the rise of computational power, a
new branch of algorithms calledmeta-heuristics generally based on evolutionary
dynamics have becomemore synonymous with solving combinatorial optimization
problems. Based around naturally occurring phenomena, these algorithms treat each
problem as a black boxwith the aim of finding feasibly good solutionswithin acceptable
space and time constraints. A vast repository of literature exists for the TSP problem,
and the TSP Library is an excellent starting off resource point [4].

4.1 Deterministic approaches

Some of the latest literature on the TSP problem is divided into three compo-
nents. The first is the exact and approximation algorithms, which try and produced

2

Novel Trends in the Traveling Salesman Problem

efficient and reasonably good quality solutions. Some of the latest approaches are
given below.

1.2-Opt Algorithm [5]

2.Branch and Cut Algorithm [6]

3.Approximate and Exact Algorithms [7]

4.Branch and Bound [8]

4.2 Evolutionary approaches

The second aspect is evolutionary algorithms. A vast number of these algorithms
are now in existence and have been applied to the TSP problem from the seminal
work on the Ant Colony Optimization by Dorigo and Gambardella [9] to the
following current research.

1.Artificial Bee Colony [10]

2.Differential Evolution [11]

3.Genetic Algorithm [12]

4.Tree Seed Algorithm [13]

5.Spider Monkey [14]

6.Ant Colony Optimization [15]

7.Harmony Search Algorithm [16]

8.Pigeon Inspired Optimization [17]

4.3 High performance computing

The third aspect is application based, specifically high-performance computing.
With the wider dissemination of parallel computing, especially multi-core and
graphic processor unit based approaches, many algorithms have been parrallized.
Some of the latest approaches from literature is given as:

1.Multi-Core approach [18]

2.OpenMP [19]

3.CUDA [20]

5. Future direction

Even though a number of problems, especially in the combinatorial and sched-
uling domain have increased over the past decade, the TSP problem have remained
a vital area of research. This is primarily for it being generally equated to the

3

Introductory Chapter: Traveling Salesman Problem - An Overview
DOI: http://dx.doi.org/10.5772/intechopen.94435

the nth city in them. Therefore, there are a maximum of O n2nð Þ such subproblems,
which can be solved in linear time. The time complexity is therefore O n22nð Þ. Both
space and time complexity of the TSP problem can be considered as exponential.

3. History

The genesis of the TSP problem is difficult to pinpoint. Some literature point to
widespread usage since the 1950’s [2], after the 48 state problem posed by Hassler
Whitney in the 1930’s induced a lot of interest. The subsequent second world war
really ingrained the use of operations research into this domain. An excellent
detailed history is given in [3], where TSP is considered as a part of the history of
Combinatorial Optimization.

The TSP problem over time has evolved into many different branches, each with
different constraints:

Symmetric TSP (STSP) - the basic TSP problem, where the distance between
city i and city j is the same as from city j and city i.

Asymmetric TSP (ATSP) - modified TSP, where the distance between city i
and city j is not the same as from city j and city i.

Hamiltonian Cycle Problem (HCP) - is a problem where finding if a path in an
undirected or directed graph G that visits each vertex V exactly once exists.

Sequential Ordering Problem (SOP) - Given a set of n cities and distances for
each pair of cities, find a Hamiltonian path from city 1 to city n of minimal length,
which takes given precedence constraints (such as requiring some nodes to be
visited prior) into account.

Capacitated Vehicle Routing Problem (CVRP) - Given n-1 nodes, 1 depot
(with resources) and distances between the nodes, the objective is to satisfy
demand at each node using vehicles with identical capacity with the shortest tour.

Case Enough TSP (CETSP) - a problem developed for radio frequency identi-
fication (RFID), where close proximity is enough to a node. The objective is to trace
the shortest path interlinking the different nodes.

TSP with Neighborhoods (TSPN) - where a collection of L regions in the
plane, called neighborhoods is given and the objective is to seek the shortest tour to
visit all these neighborhoods.

4. Current literature

Linear programming and deterministicmethods have been seen as the early solvers,
however, intractability of this problem has led to a general decline in these mathemat-
ical formulations.Within the past few decades with the rise of computational power, a
new branch of algorithms calledmeta-heuristics generally based on evolutionary
dynamics have becomemore synonymous with solving combinatorial optimization
problems. Based around naturally occurring phenomena, these algorithms treat each
problem as a black boxwith the aim of finding feasibly good solutionswithin acceptable
space and time constraints. A vast repository of literature exists for the TSP problem,
and the TSP Library is an excellent starting off resource point [4].

4.1 Deterministic approaches

Some of the latest literature on the TSP problem is divided into three compo-
nents. The first is the exact and approximation algorithms, which try and produced

2

Novel Trends in the Traveling Salesman Problem

efficient and reasonably good quality solutions. Some of the latest approaches are
given below.

1.2-Opt Algorithm [5]

2.Branch and Cut Algorithm [6]

3.Approximate and Exact Algorithms [7]

4.Branch and Bound [8]

4.2 Evolutionary approaches

The second aspect is evolutionary algorithms. A vast number of these algorithms
are now in existence and have been applied to the TSP problem from the seminal
work on the Ant Colony Optimization by Dorigo and Gambardella [9] to the
following current research.

1.Artificial Bee Colony [10]

2.Differential Evolution [11]

3.Genetic Algorithm [12]

4.Tree Seed Algorithm [13]

5.Spider Monkey [14]

6.Ant Colony Optimization [15]

7.Harmony Search Algorithm [16]

8.Pigeon Inspired Optimization [17]

4.3 High performance computing

The third aspect is application based, specifically high-performance computing.
With the wider dissemination of parallel computing, especially multi-core and
graphic processor unit based approaches, many algorithms have been parrallized.
Some of the latest approaches from literature is given as:

1.Multi-Core approach [18]

2.OpenMP [19]

3.CUDA [20]

5. Future direction

Even though a number of problems, especially in the combinatorial and sched-
uling domain have increased over the past decade, the TSP problem have remained
a vital area of research. This is primarily for it being generally equated to the

3

Introductory Chapter: Traveling Salesman Problem - An Overview
DOI: http://dx.doi.org/10.5772/intechopen.94435

intractably quandary of P ¼ N P, with its far reaching consequences in other
fields such as encryption etc. It is the belief that a combination of smart heuristics
employed on super-computers with parallel programming paradigms will be the
future direction of tacking large-scale TSP problems.

Author details

Donald Davendra*† and Magdalena Bialic-Davendra†

Central Washington University, Ellensburg, USA

*Address all correspondence to: donald.davendra@cwu.edu

†These authors contributed equally.

© 2020TheAuthor(s). Licensee IntechOpen. This chapter is distributed under the terms
of theCreativeCommonsAttribution License (http://creativecommons.org/licenses/
by/3.0),which permits unrestricted use, distribution, and reproduction in anymedium,
provided the original work is properly cited.

4

Novel Trends in the Traveling Salesman Problem

References

[1] Clay Mathematics Institute https://
www.claymath.org/millennium-proble
ms/p-vs-np-problem [Accessed: 10
October 2020]

[2] Applegate DL, Bixby RE, Chvatal V,
Cook WJ. The Traveling Salesman
Problem: A Computational Study.
Princeton. Oxford: Princeton University
Press; 2006

[3] Alexander S. On the History of
Combinatorial Optimization (Till 1960),
Editor(s): K. Aardal, G.L., Nemhauser,
R., Weismantel, Handbooks in
Operations Research and Management
Science, Elsevier, Vol 12, Pages 1-68,
2005

[4] TSP Library. http://comopt.ifi.uni-he
idelberg.de/software/TSPLIB95/
[Accessed: 10 October 2020]

[5] Hougardy S, Zaiser F, Zhong X. The
approximation ratio of the 2-Opt
Heuristic for the metric Traveling
Salesman Problem. Operations Research
Letters. 2020;48(4):401-404

[6] Yuan Y, Cattaruzza D, Ogier M,
Semet F. A branch-and-cut algorithm
for the generalized traveling salesman
problem with time windows. European
Journal of Operational Research. 2020;
286(3):849-866, ISSN 0377-2217. DOI:
10.1016/j.ejor.2020.04.024

[7] Wang S, Liu M, Chu F. Approximate
and exact algorithms for an energy
minimization traveling salesman
problem. Journal of Cleaner Production.
2020;249:119433, ISSN 0959-6526. DOI:
10.1016/j.jclepro.2019.119433

[8] Salman R, Ekstedt F, Damaschke P.
Branch-and-bound for the Precedence
Constrained Generalized Traveling
Salesman Problem. Operations Research
Letters. 2020;48(2):163-166, ISSN
0167-6377. DOI: 10.1016/j.orl.2020.
01.009

[9] Dorigo M, Gambardella L. Ant
colony system: a cooperative learning
approach to the traveling salesman
problem. IEEE Transactions on
Evolutionary Computation. April 1997;
1(1):53-66. DOI: 10.1109/4235.585892

[10] Pandiri V, Singh A. An artificial bee
colony algorithm with variable degree of
perturbation for the generalized
covering traveling salesman problem.
Applied Soft Computing. 2019;78:
481-495, ISSN 1568-4946. DOI: 10.1016/
j.asoc.2019.03.001

[11] Ali I, Essam D, Kasmarik K. A novel
design of differential evolution for
solving discrete traveling salesman
problems. Swarm and Evolutionary
Computation. 2020;52:100607, ISSN
2210-6502. DOI: 10.1016/j.
swevo.2019.100607

[12] Dong X, Cai Y. A novel genetic
algorithm for large scale colored
balanced traveling salesman problem.
Future Generation Computer Systems.
2019;95:727-742, ISSN 0167-739X. DOI:
10.1016/j.future.2018.12.065

[13] Cinar A, Korkmaz S, Kiran M. A
discrete tree-seed algorithm for solving
symmetric traveling salesman problem.
Engineering Science and Technology, an
International Journal. 2020;23(4):
879-890, ISSN 2215-0986. DOI: 10.1016/
j.jestch.2019.11.005

[14] Akhand MAH, Ayon I,
Shahriyar SA, Siddique N, Adeli H.
Discrete Spider Monkey Optimization
for Travelling Salesman Problem.
Applied Soft Computing. 2020;86:
105887, ISSN 1568-4946. DOI: 10.1016/j.
asoc.2019.105887

[15] Tuani A, Keedwell E, Collett M.
Heterogenous Adaptive Ant Colony
Optimization with 3-opt local search for
the Travelling Salesman Problem.
Applied Soft Computing. 2020;106720,

5

Introductory Chapter: Traveling Salesman Problem - An Overview
DOI: http://dx.doi.org/10.5772/intechopen.94435

intractably quandary of P ¼ N P, with its far reaching consequences in other
fields such as encryption etc. It is the belief that a combination of smart heuristics
employed on super-computers with parallel programming paradigms will be the
future direction of tacking large-scale TSP problems.

Author details

Donald Davendra*† and Magdalena Bialic-Davendra†

Central Washington University, Ellensburg, USA

*Address all correspondence to: donald.davendra@cwu.edu

†These authors contributed equally.

© 2020TheAuthor(s). Licensee IntechOpen. This chapter is distributed under the terms
of theCreativeCommonsAttribution License (http://creativecommons.org/licenses/
by/3.0),which permits unrestricted use, distribution, and reproduction in anymedium,
provided the original work is properly cited.

4

Novel Trends in the Traveling Salesman Problem

References

[1] Clay Mathematics Institute https://
www.claymath.org/millennium-proble
ms/p-vs-np-problem [Accessed: 10
October 2020]

[2] Applegate DL, Bixby RE, Chvatal V,
Cook WJ. The Traveling Salesman
Problem: A Computational Study.
Princeton. Oxford: Princeton University
Press; 2006

[3] Alexander S. On the History of
Combinatorial Optimization (Till 1960),
Editor(s): K. Aardal, G.L., Nemhauser,
R., Weismantel, Handbooks in
Operations Research and Management
Science, Elsevier, Vol 12, Pages 1-68,
2005

[4] TSP Library. http://comopt.ifi.uni-he
idelberg.de/software/TSPLIB95/
[Accessed: 10 October 2020]

[5] Hougardy S, Zaiser F, Zhong X. The
approximation ratio of the 2-Opt
Heuristic for the metric Traveling
Salesman Problem. Operations Research
Letters. 2020;48(4):401-404

[6] Yuan Y, Cattaruzza D, Ogier M,
Semet F. A branch-and-cut algorithm
for the generalized traveling salesman
problem with time windows. European
Journal of Operational Research. 2020;
286(3):849-866, ISSN 0377-2217. DOI:
10.1016/j.ejor.2020.04.024

[7] Wang S, Liu M, Chu F. Approximate
and exact algorithms for an energy
minimization traveling salesman
problem. Journal of Cleaner Production.
2020;249:119433, ISSN 0959-6526. DOI:
10.1016/j.jclepro.2019.119433

[8] Salman R, Ekstedt F, Damaschke P.
Branch-and-bound for the Precedence
Constrained Generalized Traveling
Salesman Problem. Operations Research
Letters. 2020;48(2):163-166, ISSN
0167-6377. DOI: 10.1016/j.orl.2020.
01.009

[9] Dorigo M, Gambardella L. Ant
colony system: a cooperative learning
approach to the traveling salesman
problem. IEEE Transactions on
Evolutionary Computation. April 1997;
1(1):53-66. DOI: 10.1109/4235.585892

[10] Pandiri V, Singh A. An artificial bee
colony algorithm with variable degree of
perturbation for the generalized
covering traveling salesman problem.
Applied Soft Computing. 2019;78:
481-495, ISSN 1568-4946. DOI: 10.1016/
j.asoc.2019.03.001

[11] Ali I, Essam D, Kasmarik K. A novel
design of differential evolution for
solving discrete traveling salesman
problems. Swarm and Evolutionary
Computation. 2020;52:100607, ISSN
2210-6502. DOI: 10.1016/j.
swevo.2019.100607

[12] Dong X, Cai Y. A novel genetic
algorithm for large scale colored
balanced traveling salesman problem.
Future Generation Computer Systems.
2019;95:727-742, ISSN 0167-739X. DOI:
10.1016/j.future.2018.12.065

[13] Cinar A, Korkmaz S, Kiran M. A
discrete tree-seed algorithm for solving
symmetric traveling salesman problem.
Engineering Science and Technology, an
International Journal. 2020;23(4):
879-890, ISSN 2215-0986. DOI: 10.1016/
j.jestch.2019.11.005

[14] Akhand MAH, Ayon I,
Shahriyar SA, Siddique N, Adeli H.
Discrete Spider Monkey Optimization
for Travelling Salesman Problem.
Applied Soft Computing. 2020;86:
105887, ISSN 1568-4946. DOI: 10.1016/j.
asoc.2019.105887

[15] Tuani A, Keedwell E, Collett M.
Heterogenous Adaptive Ant Colony
Optimization with 3-opt local search for
the Travelling Salesman Problem.
Applied Soft Computing. 2020;106720,

5

Introductory Chapter: Traveling Salesman Problem - An Overview
DOI: http://dx.doi.org/10.5772/intechopen.94435

ISSN 1568-4946. DOI: 10.1016/j.
asoc.2020.106720

[16] Boryczka U, Szwarc K. The
Harmony Search algorithm with
additional improvement of harmony
memory for Asymmetric Traveling
Salesman Problem. Expert Systems with
Applications. 2019;122:43-53, ISSN
0957-4174. DOI: 10.1016/j.
eswa.2018.12.044

[17] Zhong Y, Wang L, Lin M, Zhang H.
Discrete pigeon-inspired optimization
algorithm with Metropolis acceptance
criterion for large-scale traveling
salesman problem. Swarm and
Evolutionary Computation. 2019;48:
134-144, ISSN 2210-6502. DOI: 10.1016/
j.swevo.2019.04.002

[18] Wei X, Ma L, Zhang H, Liu Y.
Multi-core-, multi-thread-based
optimization algorithm for large-scale
traveling salesman problem. Alexandria
Engineering Journal. 2020. DOI:
10.1016/j.aej.2020.06.055

[19] Burkhovetskiy V, Steinberg B.
Parallelizing an exact algorithm for the
traveling salesman problem. Procedia
Computer Science. 2017;119:97-102,
ISSN 1877-0509. DOI: 10.1016/j.
procs.2017.11.165

[20] Ermis G, Catay B. Accelerating local
search algorithms for the travelling
salesman problem through the effective
use of GPU. Transportation Research
Procedia. 2017;22:409-418, ISSN
2352-1465. DOI: 10.1016/j.
trpro.2017.03.012

6

Novel Trends in the Traveling Salesman Problem

Chapter 2

CUDA Accelerated 2-OPT Local
Search for the Traveling Salesman
Problem
Donald Davendra, Magdalena Metlicka
and Magdalena Bialic-Davendra

Abstract

This research involves the development of a compute unified device architecture
(CUDA) accelerated 2-opt local search algorithm for the traveling salesman prob-
lem (TSP). As one of the fundamental mathematical approaches to solving the TSP
problem, the time complexity has generally reduced its efficiency, especially for
large problem instances. Graphic processing unit (GPU) programming, especially
CUDA has become more mainstream in high-performance computing (HPC)
approaches and has made many intractable problems at least reasonably solvable in
acceptable time. This chapter describes two CUDA accelerated 2-opt algorithms
developed to solve the asymmetric TSP problem. Three separate hardware configu-
rations were used to test the developed algorithms, and the results validate that the
execution time decreased significantly, especially for the large problem instances
when deployed on the GPU.

Keywords: traveling salesman problem, CUDA, 2-opt, local search,
GPU programming

1. Introduction

This research addresses two very important aspects of computational
intelligence, algorithm design, and high-performance computing. One of the
fundamental problems in this field is the TSP, which has been used as a poster child
for the notorious P ¼ N P assertion in theoretical computer science.

TSP in nominal form is considered NP-Complete, when attempted using exact
deterministic heuristics. The time complexity when solving it using the Held-Karp
algorithm is O n22nð Þ and the space complexity is O n2nð Þ. When solving the problem
using optimization algorithms and approximation, then problem tends to beNP-Hard.

2-opt is considered the simplest local search for the TSP problem. Theoretical
knowledge about this heuristic is still very limited [1]; however, simple euclidean
distance variants have been shown to have complexity of O n3ð Þ [2]. Generally, the
computed solution has been shown to be within a few percentage points of the
global optimal [3].

One of the empirical approaches of improving the execution of the algorithm
is applying high performance computing (HPC) paradigm to the problem.
This is generally possible if the problem is deducible to a parallel form.

7

ISSN 1568-4946. DOI: 10.1016/j.
asoc.2020.106720

[16] Boryczka U, Szwarc K. The
Harmony Search algorithm with
additional improvement of harmony
memory for Asymmetric Traveling
Salesman Problem. Expert Systems with
Applications. 2019;122:43-53, ISSN
0957-4174. DOI: 10.1016/j.
eswa.2018.12.044

[17] Zhong Y, Wang L, Lin M, Zhang H.
Discrete pigeon-inspired optimization
algorithm with Metropolis acceptance
criterion for large-scale traveling
salesman problem. Swarm and
Evolutionary Computation. 2019;48:
134-144, ISSN 2210-6502. DOI: 10.1016/
j.swevo.2019.04.002

[18] Wei X, Ma L, Zhang H, Liu Y.
Multi-core-, multi-thread-based
optimization algorithm for large-scale
traveling salesman problem. Alexandria
Engineering Journal. 2020. DOI:
10.1016/j.aej.2020.06.055

[19] Burkhovetskiy V, Steinberg B.
Parallelizing an exact algorithm for the
traveling salesman problem. Procedia
Computer Science. 2017;119:97-102,
ISSN 1877-0509. DOI: 10.1016/j.
procs.2017.11.165

[20] Ermis G, Catay B. Accelerating local
search algorithms for the travelling
salesman problem through the effective
use of GPU. Transportation Research
Procedia. 2017;22:409-418, ISSN
2352-1465. DOI: 10.1016/j.
trpro.2017.03.012

6

Novel Trends in the Traveling Salesman Problem

Chapter 2

CUDA Accelerated 2-OPT Local
Search for the Traveling Salesman
Problem
Donald Davendra, Magdalena Metlicka
and Magdalena Bialic-Davendra

Abstract

This research involves the development of a compute unified device architecture
(CUDA) accelerated 2-opt local search algorithm for the traveling salesman prob-
lem (TSP). As one of the fundamental mathematical approaches to solving the TSP
problem, the time complexity has generally reduced its efficiency, especially for
large problem instances. Graphic processing unit (GPU) programming, especially
CUDA has become more mainstream in high-performance computing (HPC)
approaches and has made many intractable problems at least reasonably solvable in
acceptable time. This chapter describes two CUDA accelerated 2-opt algorithms
developed to solve the asymmetric TSP problem. Three separate hardware configu-
rations were used to test the developed algorithms, and the results validate that the
execution time decreased significantly, especially for the large problem instances
when deployed on the GPU.

Keywords: traveling salesman problem, CUDA, 2-opt, local search,
GPU programming

1. Introduction

This research addresses two very important aspects of computational
intelligence, algorithm design, and high-performance computing. One of the
fundamental problems in this field is the TSP, which has been used as a poster child
for the notorious P ¼ N P assertion in theoretical computer science.

TSP in nominal form is considered NP-Complete, when attempted using exact
deterministic heuristics. The time complexity when solving it using the Held-Karp
algorithm is O n22nð Þ and the space complexity is O n2nð Þ. When solving the problem
using optimization algorithms and approximation, then problem tends to beNP-Hard.

2-opt is considered the simplest local search for the TSP problem. Theoretical
knowledge about this heuristic is still very limited [1]; however, simple euclidean
distance variants have been shown to have complexity of O n3ð Þ [2]. Generally, the
computed solution has been shown to be within a few percentage points of the
global optimal [3].

One of the empirical approaches of improving the execution of the algorithm
is applying high performance computing (HPC) paradigm to the problem.
This is generally possible if the problem is deducible to a parallel form.

7

A number of different HPC approaches exist, namely, threads, OpenMP, MPI and
CUDA. CUDA is by far the most complex and accelerated approach, as it requires
programming on the GPU instead of the central processing unit (CPU).

Since its inception, CUDA has been widely used to solve a large number of
computational problems [4]. This research looks to harness this approach to
implement the 2-opt approach to the TSP problem.

The outline of the chapter follows with the introduction of the mathematical
background of the TSP problem followed by the 2-opt algorithm. CUDA is
subsequently discussed and the two CUDA developed 2-opt algorithm variants are
described. The experimentation design discusses the hardware specifications of the
three different architectures and then the obtained results are discussed and
analyzed in respect to the execution time.

2. Traveling salesman problem

The TSP is a well-studied problem in literature [5, 6], which in essence tries to
find the shortest path that visits a set of customers and returns to the first. A
number of studies have been done using both approximation-based approaches [7]
and metaheuristics. Metaheuritics are generally based on evolutionary approaches.
A brief outline of different approaches can be obtained from:

1.Tabu Search: [8]

2.Simulated Annealing: [9]

3.Genetic Algorithm: [10, 11]

4.Ant Colony Optimization: [12]

5.Particle Swarm Optimization: [13]

6.Cuckoo Search: [14]

7.Firefly Algorithm: [15]

8.Water Cycle Algorithm: [16]

9.Differential Evolution Algorithm: [17]

10.Artificial Bee Colony: [18]

11.Self Organizing Migrating Algorithm: [19]

The TSP function can be expressed as shown in Eq. (1).

xij ¼
1 the path goes from city i to city j
0 otherwise

�
(1)

where xij ¼ 1 if city i is connected with city j, and xij ¼ 0 otherwise. For
i ¼ 0, … , n, let ui be an artificial variable and finally take cij to be the distance from
city i to city j. The objective function can be then formulated as Eq. (2):

8

Novel Trends in the Traveling Salesman Problem

min
Xn
i¼0

Xn

j6¼i, j¼0

cij xij

0≤ xij ≤ 1 i, j ¼ 0, … , n

ui ∈Z i ¼ 0, … , n

Xn

i¼0, i 6¼j

xij ¼ 1 j ¼ 0, … , n

Xn

j¼0, j 6¼i

xij ¼ 1 i ¼ 0, … , n

ui � uj þ nxij ≤ n� 1 1≤ i 6¼ j≤ n

(2)

3. 2-OPT algorithm

The 2-opt algorithm is one of the most famous heuristics developed originally for
solving the TSP problem. It was first proposed by Croes [20]. Along with 3-opt,
generalized as k-opt [21], these heuristics are based on exchange of up to k edges in
a TSP tour (more information on application of k-opt local search techniques to TSP
problems can be obtained from [22]). Together they are called exchange or local
improvement heuristics. The exchange is considered to be a single move, from this
point of view, such heuristics search the neighborhood of the current solution, that
is, perform a local search and provide a locally optimal solution (k-optimal) to the
problem [23].

The 2-opt procedure requires a starting feasible solution. It then proceeds by
replacing the two non-adjacent edges, vi, viþð Þ and v j, v jþ

� �
by vi, v j

� �
and

viþ, v jþ
� �

, and reversing one of the subpaths produced by dropping of edges, in
order to maintain the consistent orientation of the tour. For example, the subpath
vi, viþ, … , v j, v jþ
� �

is replaced by vi, v j, … , viþ, v jþ
� �

. The solution cost change
produced in this way can be expressed as Δij ¼ c vi, v j

� �þ c viþ, v jþ
� �� c vi, viþð Þ �

c v j, v jþ
� �

. If Δij <0, the solution produced by the move improves upon its prede-
cessor. The procedure iterates until no move where Δij <0 (no improving move)
can be found [24].

The 2-opt local search was described by Kim et al. [25] as follows:
Step 1: Let S be the initial solution, f Sð Þ its objective function value. Set S ∗ ¼

S, i ¼ 1, j ¼ iþ 1 ¼ 2.
Step 2: Consider exchange result S0 such that f S0ð Þ< f S ∗ð Þ. Set S ∗ ¼ S0. if j< n

repeat step 2. Otherwise set i ¼ iþ 1 and j ¼ iþ 1. if i< n repeat step 2, otherwise go
to step 3.

Step 3: if S 6¼ S ∗ set S ¼ S ∗ , i ¼ 1, j ¼ iþ 1 and go to step 2. Otherwise output
best solution S and terminate the process.

4. CUDA

General purpose GPU computing (GPGPU) programming was introduced by
Apple Cooperation, which created the Kronos Group [26] to further develop and
promote this new approach to accelerate scientific computing paradigms.

9

CUDA Accelerated 2-OPT Local Search for the Traveling Salesman Problem
DOI: http://dx.doi.org/10.5772/intechopen.93125

A number of different HPC approaches exist, namely, threads, OpenMP, MPI and
CUDA. CUDA is by far the most complex and accelerated approach, as it requires
programming on the GPU instead of the central processing unit (CPU).

Since its inception, CUDA has been widely used to solve a large number of
computational problems [4]. This research looks to harness this approach to
implement the 2-opt approach to the TSP problem.

The outline of the chapter follows with the introduction of the mathematical
background of the TSP problem followed by the 2-opt algorithm. CUDA is
subsequently discussed and the two CUDA developed 2-opt algorithm variants are
described. The experimentation design discusses the hardware specifications of the
three different architectures and then the obtained results are discussed and
analyzed in respect to the execution time.

2. Traveling salesman problem

The TSP is a well-studied problem in literature [5, 6], which in essence tries to
find the shortest path that visits a set of customers and returns to the first. A
number of studies have been done using both approximation-based approaches [7]
and metaheuristics. Metaheuritics are generally based on evolutionary approaches.
A brief outline of different approaches can be obtained from:

1.Tabu Search: [8]

2.Simulated Annealing: [9]

3.Genetic Algorithm: [10, 11]

4.Ant Colony Optimization: [12]

5.Particle Swarm Optimization: [13]

6.Cuckoo Search: [14]

7.Firefly Algorithm: [15]

8.Water Cycle Algorithm: [16]

9.Differential Evolution Algorithm: [17]

10.Artificial Bee Colony: [18]

11.Self Organizing Migrating Algorithm: [19]

The TSP function can be expressed as shown in Eq. (1).

xij ¼
1 the path goes from city i to city j
0 otherwise

�
(1)

where xij ¼ 1 if city i is connected with city j, and xij ¼ 0 otherwise. For
i ¼ 0, … , n, let ui be an artificial variable and finally take cij to be the distance from
city i to city j. The objective function can be then formulated as Eq. (2):

8

Novel Trends in the Traveling Salesman Problem

min
Xn
i¼0

Xn

j6¼i, j¼0

cij xij

0≤ xij ≤ 1 i, j ¼ 0, … , n

ui ∈Z i ¼ 0, … , n

Xn

i¼0, i 6¼j

xij ¼ 1 j ¼ 0, … , n

Xn

j¼0, j 6¼i

xij ¼ 1 i ¼ 0, … , n

ui � uj þ nxij ≤ n� 1 1≤ i 6¼ j≤ n

(2)

3. 2-OPT algorithm

The 2-opt algorithm is one of the most famous heuristics developed originally for
solving the TSP problem. It was first proposed by Croes [20]. Along with 3-opt,
generalized as k-opt [21], these heuristics are based on exchange of up to k edges in
a TSP tour (more information on application of k-opt local search techniques to TSP
problems can be obtained from [22]). Together they are called exchange or local
improvement heuristics. The exchange is considered to be a single move, from this
point of view, such heuristics search the neighborhood of the current solution, that
is, perform a local search and provide a locally optimal solution (k-optimal) to the
problem [23].

The 2-opt procedure requires a starting feasible solution. It then proceeds by
replacing the two non-adjacent edges, vi, viþð Þ and v j, v jþ

� �
by vi, v j

� �
and

viþ, v jþ
� �

, and reversing one of the subpaths produced by dropping of edges, in
order to maintain the consistent orientation of the tour. For example, the subpath
vi, viþ, … , v j, v jþ
� �

is replaced by vi, v j, … , viþ, v jþ
� �

. The solution cost change
produced in this way can be expressed as Δij ¼ c vi, v j

� �þ c viþ, v jþ
� �� c vi, viþð Þ �

c v j, v jþ
� �

. If Δij <0, the solution produced by the move improves upon its prede-
cessor. The procedure iterates until no move where Δij <0 (no improving move)
can be found [24].

The 2-opt local search was described by Kim et al. [25] as follows:
Step 1: Let S be the initial solution, f Sð Þ its objective function value. Set S ∗ ¼

S, i ¼ 1, j ¼ iþ 1 ¼ 2.
Step 2: Consider exchange result S0 such that f S0ð Þ< f S ∗ð Þ. Set S ∗ ¼ S0. if j< n

repeat step 2. Otherwise set i ¼ iþ 1 and j ¼ iþ 1. if i< n repeat step 2, otherwise go
to step 3.

Step 3: if S 6¼ S ∗ set S ¼ S ∗ , i ¼ 1, j ¼ iþ 1 and go to step 2. Otherwise output
best solution S and terminate the process.

4. CUDA

General purpose GPU computing (GPGPU) programming was introduced by
Apple Cooperation, which created the Kronos Group [26] to further develop and
promote this new approach to accelerate scientific computing paradigms.

9

CUDA Accelerated 2-OPT Local Search for the Traveling Salesman Problem
DOI: http://dx.doi.org/10.5772/intechopen.93125

GPU’s offer significantly faster acceleration due to their uniquer hardware archi-
tecture. GPGPU’s started to increase in application from 2006. At this point
NVIDIA decided to create its propriety unique architecture called Compute Unified
Device Architecture (CUDA), specific for their Tesla generation GPU cards. In
order to support this architect, specific API primitive extensions of C, C++ and
Fortran extensions has been developed [27, 28].

The specific C/C++ language extension for the C language is called the
CUDA-C. This contains a number of accelerated libraries, extensions, and APIs.
These are scalable and freely available without professional license. The main
computational bottleneck is the splitting of the task between GPU and CPU tasks,
where CPU handles better memory management and memory checking and GPU
handles the data acceleration using parallization. It is considered heterogenous
programming, where compute intensive data parallel tasks are offloaded on to
the GPU.

CUDA contains three specific paradigms, thread hierarchy, memory hierarchy and
synchronization. These can be further divided into coarse-grained parallelism on the
blocks in grid parallization and fine-grain parallization in the threads in block, which
requires low-level synchronization.

4.1 Thread hierarchy

CUDA kernels are special function calls, which is used for data parallization.
Each kernel launches threads which are grouped into blocks which are then grouped
into grids. Communication is done synchronously by threads in a block, whereas
blocks are independent. Certain programming techniques needs to be undertaken to
ensure data synchronization and validity between blocks. Threads in different blocks
are not able to communicate with each other.

Threads are distinguished by their unique threadId in their respective blockId,
which allows operating on specific data in the global and shared memory.

4.2 Memory hierarchy

There are different memory types in the GPU, which CUDA can utilize. Some
memory structures are based on cache, some are read-only, etc. The first higher
level memory structure is called the global memory, which can be accessed by all
memory blocks. Due to its size and access level, it is the slowest memory on the
GPU. The second memory level is the shared memory, which is shared by blocks,
which threads within blocks can access. The third memory is the register memory,
which are only accessible by threads, and can be used to local variables. This is the
smallest and fastest memory in the GPU. If there are larger memory structures, and
when registers are not sufficient, local memory can be then utilized. Another mem-
ory is constant memory which cannot be changed by the kernel code. The final
memory is the texture memory, which is a read-only cache that provides a speed-up
for locality in data access by threads [29].

4.3 Synchronization

Blocks in grids are used in coarse-grained parallelism and threads in a specific
block are used in fine-grained parallelism. Data sharing in the scope of a kernel is
done by threads in the block. The number of threads are limited by the device
architecture design (max. 1024) and also by thread memory resource consumption.
There is a level of scalability as the blocks are scheduled independently. Each block is
assigned to a streaming multiprocessor (MS) in the GPU [29, 30].

10

Novel Trends in the Traveling Salesman Problem

5. CUDA-based 2-opt algorithm

This section presents the parallel CUDA-based version of 2-opt algorithm. This is
a modification of the local search for permutative flowshop with makespan crite-
rion problem [31] and its NEH variant [32]. Before coming to the parallel imple-
mentation description, however, the more detailed pseudocode of sequential
version is provided in Algorithm 5, in order to enable better understanding of the
CUDA algorithm design.

Algorithm 1: 2-opt sequential version. The Swap(T,j,i) procedure swaps j�th
and i�th cities of tour T

As can be seen already from the analysis of description of 2-opt, the task that can
be done in parallel is the exploration of neighborhood of the current solution. This is
divided between individual CUDA blocks. Possible neighbors of the current solu-
tion are split evenly between the launched blocks, which then explores these

11

CUDA Accelerated 2-OPT Local Search for the Traveling Salesman Problem
DOI: http://dx.doi.org/10.5772/intechopen.93125

GPU’s offer significantly faster acceleration due to their uniquer hardware archi-
tecture. GPGPU’s started to increase in application from 2006. At this point
NVIDIA decided to create its propriety unique architecture called Compute Unified
Device Architecture (CUDA), specific for their Tesla generation GPU cards. In
order to support this architect, specific API primitive extensions of C, C++ and
Fortran extensions has been developed [27, 28].

The specific C/C++ language extension for the C language is called the
CUDA-C. This contains a number of accelerated libraries, extensions, and APIs.
These are scalable and freely available without professional license. The main
computational bottleneck is the splitting of the task between GPU and CPU tasks,
where CPU handles better memory management and memory checking and GPU
handles the data acceleration using parallization. It is considered heterogenous
programming, where compute intensive data parallel tasks are offloaded on to
the GPU.

CUDA contains three specific paradigms, thread hierarchy, memory hierarchy and
synchronization. These can be further divided into coarse-grained parallelism on the
blocks in grid parallization and fine-grain parallization in the threads in block, which
requires low-level synchronization.

4.1 Thread hierarchy

CUDA kernels are special function calls, which is used for data parallization.
Each kernel launches threads which are grouped into blocks which are then grouped
into grids. Communication is done synchronously by threads in a block, whereas
blocks are independent. Certain programming techniques needs to be undertaken to
ensure data synchronization and validity between blocks. Threads in different blocks
are not able to communicate with each other.

Threads are distinguished by their unique threadId in their respective blockId,
which allows operating on specific data in the global and shared memory.

4.2 Memory hierarchy

There are different memory types in the GPU, which CUDA can utilize. Some
memory structures are based on cache, some are read-only, etc. The first higher
level memory structure is called the global memory, which can be accessed by all
memory blocks. Due to its size and access level, it is the slowest memory on the
GPU. The second memory level is the shared memory, which is shared by blocks,
which threads within blocks can access. The third memory is the register memory,
which are only accessible by threads, and can be used to local variables. This is the
smallest and fastest memory in the GPU. If there are larger memory structures, and
when registers are not sufficient, local memory can be then utilized. Another mem-
ory is constant memory which cannot be changed by the kernel code. The final
memory is the texture memory, which is a read-only cache that provides a speed-up
for locality in data access by threads [29].

4.3 Synchronization

Blocks in grids are used in coarse-grained parallelism and threads in a specific
block are used in fine-grained parallelism. Data sharing in the scope of a kernel is
done by threads in the block. The number of threads are limited by the device
architecture design (max. 1024) and also by thread memory resource consumption.
There is a level of scalability as the blocks are scheduled independently. Each block is
assigned to a streaming multiprocessor (MS) in the GPU [29, 30].

10

Novel Trends in the Traveling Salesman Problem

5. CUDA-based 2-opt algorithm

This section presents the parallel CUDA-based version of 2-opt algorithm. This is
a modification of the local search for permutative flowshop with makespan crite-
rion problem [31] and its NEH variant [32]. Before coming to the parallel imple-
mentation description, however, the more detailed pseudocode of sequential
version is provided in Algorithm 5, in order to enable better understanding of the
CUDA algorithm design.

Algorithm 1: 2-opt sequential version. The Swap(T,j,i) procedure swaps j�th
and i�th cities of tour T

As can be seen already from the analysis of description of 2-opt, the task that can
be done in parallel is the exploration of neighborhood of the current solution. This is
divided between individual CUDA blocks. Possible neighbors of the current solu-
tion are split evenly between the launched blocks, which then explores these

11

CUDA Accelerated 2-OPT Local Search for the Traveling Salesman Problem
DOI: http://dx.doi.org/10.5772/intechopen.93125

neighbors evenly including the fitness evaluations. If a new better solution is found,
it is then stored into the global memory allocation of that block. Thereafter, if at least
one of the launched blocks finds an improving solution during the iteration, the best
cost solution amongst all blocks is obtained and stored into memory as the current
solution for the next iteration. Otherwise, the current solution is returned as the
best. It should be noted that the fitness function is not parallelized, as only a single
thread in each block is tasked with this task.

Each block explores approximately the same amount of possible neighbors to the
current solution (in the worst case, when no improving solution is found), including
the cost evaluation. However, if it finds an improving solution, that solution is stored
into the global memory allocated for each block, and the block terminates. If at least one
of the blocks found an improving solution, the minimal cost solution amongst all blocks
is found and stored into memory as the current solution for the next iteration.
Otherwise, the current solution is returned. The cost function evaluation itself was
not parallelized, as in each block only a single thread performs this task.

The outline of the parallel algorithm can be given as follows:

Step 1: Set current solution S = Initial solution.
Step 2: Explore the neighborhood of S by G blocks in parallel. In each block b:

Step 1.1: Determine initial index i for b.
Step 1.2: Explore all neighbors of S created by swapping of i and

j, j∈ 1, … ,Nf g. If improving neighbor T found, go to step 1.4.
Step 1.3: Determine next index i for b. If i≥N, terminate. Otherwise go

to step 1.2.
Step 1.4: Store T and its objective function value f T into global memory

and terminate.
Step 3: If no improving solution found, exit procedure and return S as the best

solution found. Otherwise determine the best solution amongst those found by
blocks in parallel.

Step 4: Store best solution as S. Go to step 2.
Where N is the number of cities in the tour and i is the outer loop index (see

Algorithm 1 for sequential version of 2-opt).

5.1 Exploration and evaluation of neighboring solutions

The neighbors of solution are generated and evaluated in this kernel. From the
sequential version pseudocode (Algorithm 1), it is obvious that the function of
generating individual neighbors by swapping every possible pair of jobs pair-wise
i, jð Þ for i ¼ 1, … ,N and j ¼ iþ 1, … ,N can be considered independent and there-
fore executed in parallel. These solutions can be stored in the shared memory after
generation. After evaluation, if the new solution has better fitness value compared
to the current one, it is stored into the global memory allocated for each block, to
avoid data races between blocks (this is illustrated in Figure 1 depicting memory
layout for six cities and four blocks). The improvements counter in the global
memory is incremented using an atomic operation. This counter is compared against
zero after the kernel termination, to determine if the stopping criterion of the
algorithm was met. The fitness function itself is evaluated by only a single thread;
the other threads in a block process the elements of the solution when transferring
data between shared and global memory locations.

It is logically impractical to allocate the full number of N � 1ð Þ2=2 blocks on the
GPU in most case scenarios. This number can be very large, whereas the number of
SMs and the number of resident blocks on SM is limited by various factors, such as
the number of threads in a block and a registers/shared memory usage.

12

Novel Trends in the Traveling Salesman Problem

The optimal number of threads in a blockmaximizing the number of resident blocks,
as well as GPU occupancy, can be easily determined based on the calculations
performed in the CUDA occupancy calculator tool [33], as a function of the number
of cities in a tour (which determines the size of shared memory used). This can
maximizes the utilization of the GPU, while reducing the total global memory size
required by the grid, as well as the workload done by the search for minimal cost
solution in the next kernel. The mapping of the blocks to the tasks however can
becomes more complicated to implement in code.

Using the assumption that the number of blocks will be nearly always smaller
than the aforementioned function of the number of actual cities for the problem
instances of interest (problems with cities larger than 30), only the outer loop of the
sequential 2-opt algorithm was parallelized. The inner loop is performed by each
block sequentially. This reduces the data transfers between global and shared mem-
ory, and does not eliminate the advantage of the low complexity of the swap
operation at the same time. If the solution created by swapping jobs i and j is worse
than the current one, it is easy to reverse this change by swapping again j and i, with
equal complexity. Therefore, maximally N � 1 blocks are needed for this function.
The mapping of blocks to tasks is illustrated in Figure 2.

5.2 Parallel reduction to obtain minimal cost

The parallel reduction procedure is used to find the index of the solution with the
minimal fitness value. This employs shared memory to store the data being used,
whereas the data is initially copied from the global to shared memory. In this step,
each active thread compares two costs, and stores the smaller of the two costs on the
place of the first cost, along with its original index (cost is represented as a structure

Figure 1.
CUDA-based 2-opt memory layout.

13

CUDA Accelerated 2-OPT Local Search for the Traveling Salesman Problem
DOI: http://dx.doi.org/10.5772/intechopen.93125

neighbors evenly including the fitness evaluations. If a new better solution is found,
it is then stored into the global memory allocation of that block. Thereafter, if at least
one of the launched blocks finds an improving solution during the iteration, the best
cost solution amongst all blocks is obtained and stored into memory as the current
solution for the next iteration. Otherwise, the current solution is returned as the
best. It should be noted that the fitness function is not parallelized, as only a single
thread in each block is tasked with this task.

Each block explores approximately the same amount of possible neighbors to the
current solution (in the worst case, when no improving solution is found), including
the cost evaluation. However, if it finds an improving solution, that solution is stored
into the global memory allocated for each block, and the block terminates. If at least one
of the blocks found an improving solution, the minimal cost solution amongst all blocks
is found and stored into memory as the current solution for the next iteration.
Otherwise, the current solution is returned. The cost function evaluation itself was
not parallelized, as in each block only a single thread performs this task.

The outline of the parallel algorithm can be given as follows:

Step 1: Set current solution S = Initial solution.
Step 2: Explore the neighborhood of S by G blocks in parallel. In each block b:

Step 1.1: Determine initial index i for b.
Step 1.2: Explore all neighbors of S created by swapping of i and

j, j∈ 1, … ,Nf g. If improving neighbor T found, go to step 1.4.
Step 1.3: Determine next index i for b. If i≥N, terminate. Otherwise go

to step 1.2.
Step 1.4: Store T and its objective function value f T into global memory

and terminate.
Step 3: If no improving solution found, exit procedure and return S as the best

solution found. Otherwise determine the best solution amongst those found by
blocks in parallel.

Step 4: Store best solution as S. Go to step 2.
Where N is the number of cities in the tour and i is the outer loop index (see

Algorithm 1 for sequential version of 2-opt).

5.1 Exploration and evaluation of neighboring solutions

The neighbors of solution are generated and evaluated in this kernel. From the
sequential version pseudocode (Algorithm 1), it is obvious that the function of
generating individual neighbors by swapping every possible pair of jobs pair-wise
i, jð Þ for i ¼ 1, … ,N and j ¼ iþ 1, … ,N can be considered independent and there-
fore executed in parallel. These solutions can be stored in the shared memory after
generation. After evaluation, if the new solution has better fitness value compared
to the current one, it is stored into the global memory allocated for each block, to
avoid data races between blocks (this is illustrated in Figure 1 depicting memory
layout for six cities and four blocks). The improvements counter in the global
memory is incremented using an atomic operation. This counter is compared against
zero after the kernel termination, to determine if the stopping criterion of the
algorithm was met. The fitness function itself is evaluated by only a single thread;
the other threads in a block process the elements of the solution when transferring
data between shared and global memory locations.

It is logically impractical to allocate the full number of N � 1ð Þ2=2 blocks on the
GPU in most case scenarios. This number can be very large, whereas the number of
SMs and the number of resident blocks on SM is limited by various factors, such as
the number of threads in a block and a registers/shared memory usage.

12

Novel Trends in the Traveling Salesman Problem

The optimal number of threads in a blockmaximizing the number of resident blocks,
as well as GPU occupancy, can be easily determined based on the calculations
performed in the CUDA occupancy calculator tool [33], as a function of the number
of cities in a tour (which determines the size of shared memory used). This can
maximizes the utilization of the GPU, while reducing the total global memory size
required by the grid, as well as the workload done by the search for minimal cost
solution in the next kernel. The mapping of the blocks to the tasks however can
becomes more complicated to implement in code.

Using the assumption that the number of blocks will be nearly always smaller
than the aforementioned function of the number of actual cities for the problem
instances of interest (problems with cities larger than 30), only the outer loop of the
sequential 2-opt algorithm was parallelized. The inner loop is performed by each
block sequentially. This reduces the data transfers between global and shared mem-
ory, and does not eliminate the advantage of the low complexity of the swap
operation at the same time. If the solution created by swapping jobs i and j is worse
than the current one, it is easy to reverse this change by swapping again j and i, with
equal complexity. Therefore, maximally N � 1 blocks are needed for this function.
The mapping of blocks to tasks is illustrated in Figure 2.

5.2 Parallel reduction to obtain minimal cost

The parallel reduction procedure is used to find the index of the solution with the
minimal fitness value. This employs shared memory to store the data being used,
whereas the data is initially copied from the global to shared memory. In this step,
each active thread compares two costs, and stores the smaller of the two costs on the
place of the first cost, along with its original index (cost is represented as a structure

Figure 1.
CUDA-based 2-opt memory layout.

13

CUDA Accelerated 2-OPT Local Search for the Traveling Salesman Problem
DOI: http://dx.doi.org/10.5772/intechopen.93125

containing two elements: cost value, and cost index). Using this reduction, the first
element of the costs array contains the minimal cost found, along with its respective
solution index. This pair is then written into global memory.

5.3 Device synchronization and subsequence update

In the final process, a new kernel copies the best indexed solution into the
current solution buffer, and the next step of the main loop can be performed. A
global CUDA device synchronization is required for relatively large data (for a tour
size/number of threads in a block of size more than approximately 100, as was
empirically confirmed) before the start of the synchronization. As each of the

Figure 2.
CUDA-based 2-opt, mapping of blocks to tasks.

Figure 3.
CUDA-based 2-opt distance and indices layout.

14

Novel Trends in the Traveling Salesman Problem

kernels consumes some of the GPU resources, it is necessary to wait, until the
pending kernels completely finish the execution, and release their resources, other-
wise the GPU freezes and unsuccessful kernel launches start to appear. This is done
by calling cudaDeviceSynchronize() function from the host code, after the Update
kernel is launched.

Figure 3 outlines the memory layout of the previously described code (without
TSP input data, for the current subsequence size 2, city tour 4. The data fields not
used in the current step are grayed out). The candidate solutions are stored in one
global memory 1D array, which conceptually represents 2D array, wherein each row
contains one candidate tour. The respective costs are stored in a separate array. The
TSP problem input data (distance between cities) are stored in the similar fashion in
global memory (because of its large size).

This implementation is expected to provide in each step the speedup propor-
tional to the number of solutions generated.

6. 2-OPT variants

Two versions of the 2-opt local searchwas implemented in this work. The first is the
LS2OPT variant, which uses the searchwith the first ascend strategy. In this strategy, the
next tour is the first improving solution found. This can be given in Algorithm 2.

The second variant is the MLS2OPT version, which is the best ascend strategy. In
this strategy, the next tour is the best improving solution found in the 2-swap
neighborhood as given in Algorithm 3.

7. Experimentation design

The experimentation design is as the following. Three different CPU’s and three
different GPU’s are used to run the two different 2-opt variants on a selected number of
asymmetric TSP instances (ATSP). The only measure is the time complexity.

The problem instances of the ATSP was obtained from the TSP library [34]. The
following problems were selected due to differing city sizes as given in Table 1.

The machine specifications is given in Table 2. Three separate machines were
used with differing CPUs and GPUs. Two machines were on a Windows 10 operat-
ing system and the other is a Central Washington University Supercomputer cluster
running Ubuntu [35]. Machine 2 and 3 utilized headless GPU’s.

Data Cities

ft70 70

ftv64 65

ftv170 171

kro124p 100

rbg323 323

rbg358 358

rbg403 403

Table 1.
TSP instances and number of cities.

15

CUDA Accelerated 2-OPT Local Search for the Traveling Salesman Problem
DOI: http://dx.doi.org/10.5772/intechopen.93125

containing two elements: cost value, and cost index). Using this reduction, the first
element of the costs array contains the minimal cost found, along with its respective
solution index. This pair is then written into global memory.

5.3 Device synchronization and subsequence update

In the final process, a new kernel copies the best indexed solution into the
current solution buffer, and the next step of the main loop can be performed. A
global CUDA device synchronization is required for relatively large data (for a tour
size/number of threads in a block of size more than approximately 100, as was
empirically confirmed) before the start of the synchronization. As each of the

Figure 2.
CUDA-based 2-opt, mapping of blocks to tasks.

Figure 3.
CUDA-based 2-opt distance and indices layout.

14

Novel Trends in the Traveling Salesman Problem

kernels consumes some of the GPU resources, it is necessary to wait, until the
pending kernels completely finish the execution, and release their resources, other-
wise the GPU freezes and unsuccessful kernel launches start to appear. This is done
by calling cudaDeviceSynchronize() function from the host code, after the Update
kernel is launched.

Figure 3 outlines the memory layout of the previously described code (without
TSP input data, for the current subsequence size 2, city tour 4. The data fields not
used in the current step are grayed out). The candidate solutions are stored in one
global memory 1D array, which conceptually represents 2D array, wherein each row
contains one candidate tour. The respective costs are stored in a separate array. The
TSP problem input data (distance between cities) are stored in the similar fashion in
global memory (because of its large size).

This implementation is expected to provide in each step the speedup propor-
tional to the number of solutions generated.

6. 2-OPT variants

Two versions of the 2-opt local searchwas implemented in this work. The first is the
LS2OPT variant, which uses the searchwith the first ascend strategy. In this strategy, the
next tour is the first improving solution found. This can be given in Algorithm 2.

The second variant is the MLS2OPT version, which is the best ascend strategy. In
this strategy, the next tour is the best improving solution found in the 2-swap
neighborhood as given in Algorithm 3.

7. Experimentation design

The experimentation design is as the following. Three different CPU’s and three
different GPU’s are used to run the two different 2-opt variants on a selected number of
asymmetric TSP instances (ATSP). The only measure is the time complexity.

The problem instances of the ATSP was obtained from the TSP library [34]. The
following problems were selected due to differing city sizes as given in Table 1.

The machine specifications is given in Table 2. Three separate machines were
used with differing CPUs and GPUs. Two machines were on a Windows 10 operat-
ing system and the other is a Central Washington University Supercomputer cluster
running Ubuntu [35]. Machine 2 and 3 utilized headless GPU’s.

Data Cities

ft70 70

ftv64 65

ftv170 171

kro124p 100

rbg323 323

rbg358 358

rbg403 403

Table 1.
TSP instances and number of cities.

15

CUDA Accelerated 2-OPT Local Search for the Traveling Salesman Problem
DOI: http://dx.doi.org/10.5772/intechopen.93125

Algorithm 2: LS2OPT sequential version. The Swap(T,j,i) procedure swaps j�th
and i�th cities of tour T

Algorithm 3:MLS2OPT sequential version. The Swap(T,idx,i) procedure swaps
idx�th and i�th cities of tour T, where idx�th is the best 2-swap
schedule j�th index found after iteration

Specifications Machine 1 Machine 2 Machine 3

Processor Intel i7-9750H GTX 1050 Intel i7-7800X Titan Xp Power 8 P100

Memory 16 GB 2 GB 32 GB 12 GB 32 GB 16 GB

Cores 4 640 6 3840 6 3584

OS Win10 Win10 Ubuntu

Language C++ CUDA-C C++ CUDA-C C++ CUDA-C

IDE Visual Studio 17 Visual Studio 17 Makefile

Cost (USD) $200 $1500 $15,000

Table 2.
Machines specifications.

16

Novel Trends in the Traveling Salesman Problem

8. Results and analysis

The results are grouped by the machine architectures, as there is a dependency
between the CPU and GPU. Thirty experimentations was done of each problem
instance on each machine for each algorithm and the average time is given in the
tables (* in msec). The percentage relative difference (PRD) is calculated between the
CPU and GPU times as given in Eq. (3). Negatives values (given as bolded text in
the tables) indicate that the GPU execution is faster.

PRD ¼ GPU � CPUð Þ=CPUð Þ � 100 (3)

The first part of the first machine experiment results of the LS2OPT and its
CUDA variant is given in Table 3. The first column is the problem instances and the
second and third column is the CPU and GPU average results of the LS2OPT in
milliseconds. The final column is the PRD results. From all the results, apart from
the ftv64 instance, the GPU produced faster results. The average time was
22480.28 ms for the CPU and 2168.57 ms for the GPU. The average PRD was
�47.29% for all experiments. A deeper analysis shows that for the larger instances,
the PRD was over 80%.

The plot of the execution time is given in Figure 4 where the execution speedup
is clearly identifiable for the larger instances.

The second part of the first machine experimentation is the MLS2OPT and its
CUDA variant and the result are given in Table 4. For all the problem instances, the
execution time for the GPU was significantly better. The average time was
14183.85 ms for the CPU and 1854.28 ms for the GPU. The average PRD was
�52.55% for all experiments. Apart from two instances, all the other were above
85% PRD.

The plot of the execution time is given in Figure 5, where the execution speedup
is linearly identifiable for the larger instances.

The first part of the second machine experiment results of the LS2OPT and its
CUDA variant is given in Table 5. As the NVidia Titan Xp is a dedicated headless
TESLA category GPU, the computational times are better than the CPU for all the
results. The average time was 12157.14ms for the CPU and 857ms for the GPU. The
average PRD was�64.92% for all experiments. A deeper analysis shows that for the
larger instances, the PRD was over 90%. As the transfer overhead for the PCIe bus is

Data Intel i7-9750H LS2OPT Nvidia GTX 1050 LS2OPTCUDA PRD (%)

ft70 42 34 �19.047

ftv64 14 30 114.29

ftv170 322 87 �72.98

kro124p 580 111 �80.86

rbg323 43,854 2963 �93.24

rbg358 51,069 4096 �91.98

rbg403 61,481 7859 �87.22

Average 22480.28 2168.57 �47.29
*All results are in milliseconds (ms).

Table 3.
Results of the experiments of Intel i7-9750H and NVidia GTX 1050 on the LS2OPT and LS2OPTCUDA
algorithms.

17

CUDA Accelerated 2-OPT Local Search for the Traveling Salesman Problem
DOI: http://dx.doi.org/10.5772/intechopen.93125

Algorithm 2: LS2OPT sequential version. The Swap(T,j,i) procedure swaps j�th
and i�th cities of tour T

Algorithm 3:MLS2OPT sequential version. The Swap(T,idx,i) procedure swaps
idx�th and i�th cities of tour T, where idx�th is the best 2-swap
schedule j�th index found after iteration

Specifications Machine 1 Machine 2 Machine 3

Processor Intel i7-9750H GTX 1050 Intel i7-7800X Titan Xp Power 8 P100

Memory 16 GB 2 GB 32 GB 12 GB 32 GB 16 GB

Cores 4 640 6 3840 6 3584

OS Win10 Win10 Ubuntu

Language C++ CUDA-C C++ CUDA-C C++ CUDA-C

IDE Visual Studio 17 Visual Studio 17 Makefile

Cost (USD) $200 $1500 $15,000

Table 2.
Machines specifications.

16

Novel Trends in the Traveling Salesman Problem

8. Results and analysis

The results are grouped by the machine architectures, as there is a dependency
between the CPU and GPU. Thirty experimentations was done of each problem
instance on each machine for each algorithm and the average time is given in the
tables (* in msec). The percentage relative difference (PRD) is calculated between the
CPU and GPU times as given in Eq. (3). Negatives values (given as bolded text in
the tables) indicate that the GPU execution is faster.

PRD ¼ GPU � CPUð Þ=CPUð Þ � 100 (3)

The first part of the first machine experiment results of the LS2OPT and its
CUDA variant is given in Table 3. The first column is the problem instances and the
second and third column is the CPU and GPU average results of the LS2OPT in
milliseconds. The final column is the PRD results. From all the results, apart from
the ftv64 instance, the GPU produced faster results. The average time was
22480.28 ms for the CPU and 2168.57 ms for the GPU. The average PRD was
�47.29% for all experiments. A deeper analysis shows that for the larger instances,
the PRD was over 80%.

The plot of the execution time is given in Figure 4 where the execution speedup
is clearly identifiable for the larger instances.

The second part of the first machine experimentation is the MLS2OPT and its
CUDA variant and the result are given in Table 4. For all the problem instances, the
execution time for the GPU was significantly better. The average time was
14183.85 ms for the CPU and 1854.28 ms for the GPU. The average PRD was
�52.55% for all experiments. Apart from two instances, all the other were above
85% PRD.

The plot of the execution time is given in Figure 5, where the execution speedup
is linearly identifiable for the larger instances.

The first part of the second machine experiment results of the LS2OPT and its
CUDA variant is given in Table 5. As the NVidia Titan Xp is a dedicated headless
TESLA category GPU, the computational times are better than the CPU for all the
results. The average time was 12157.14ms for the CPU and 857ms for the GPU. The
average PRD was�64.92% for all experiments. A deeper analysis shows that for the
larger instances, the PRD was over 90%. As the transfer overhead for the PCIe bus is

Data Intel i7-9750H LS2OPT Nvidia GTX 1050 LS2OPTCUDA PRD (%)

ft70 42 34 �19.047

ftv64 14 30 114.29

ftv170 322 87 �72.98

kro124p 580 111 �80.86

rbg323 43,854 2963 �93.24

rbg358 51,069 4096 �91.98

rbg403 61,481 7859 �87.22

Average 22480.28 2168.57 �47.29
*All results are in milliseconds (ms).

Table 3.
Results of the experiments of Intel i7-9750H and NVidia GTX 1050 on the LS2OPT and LS2OPTCUDA
algorithms.

17

CUDA Accelerated 2-OPT Local Search for the Traveling Salesman Problem
DOI: http://dx.doi.org/10.5772/intechopen.93125

compensated by more extensive experimentation, larger instances performed faster
on the GPU.

The plot of the execution time is given in Figure 6, where the execution speedup
is clearly identifiable for the larger instances.

The second part of the second machine experimentation is the MLS2OPT and its
CUDA variant and the result are given in Table 6. For all the problem instances, the
execution time for the GPU was significantly better. The average time was
7955.28ms for the CPU and 616.28ms for the GPU. The average PRD was�63.39%
for all experiments. The three larger instances were above 90% PRD.

The plot of the execution time is given in Figure 7, where the execution speedup
is linearly identifiable for the larger instances.

The first part of the third machine experiment results of the LS2OPT and its
CUDA variant is given in Table 7. Generally, the NVidia P100 is regarded as an
industry leading GPU solution for scientific computing. This is coupled with the
IBM Power 8 CPU Architecture. For all the problem instances the result was

Data Intel i7-9750H MLS2OPT Nvidia GTX 1050 MLS2OPTCUDA PRD (%)

ft70 37 21 �43.24

ftv64 26 52 100.00

ftv170 619 78 �87.40

kro124p 303 75 �75.25

rbg323 21,205 2525 �88.09

rbg358 31,330 3775 �87.95

rbg403 45,767 6454 �85.90

Average 14183.85 1854.28 �52.55
*All results are in milliseconds (ms).

Table 4.
Results of the experiments of Intel i7-9750H and NVidia GTX 1050 on the MLS2OPT and
MLS2OPTCUDA algorithms.

Figure 4.
Figure for the experiments of Intel i7 and NVidia GTX 1050 on the LS2OPT and LS2OPTCUDA
algorithms.

18

Novel Trends in the Traveling Salesman Problem

significantly better. The average time was 28592.43 ms for the CPU and 1536.42 ms
for the GPU. The average PRD was �87.83% for all experiments.

The plot of the execution time is given in Figure 8, where the execution speedup
is clearly identifiable for the larger instances.

The second part of the third machine experimentation is the MLS2OPT and its
CUDA variant and the result are given in Table 8. For all the problem instances, the
execution time for the GPU was again significantly better. The average time was
23429.14 ms for the CPU and 751 ms for the GPU. The average PRD was �92.78%
for all experiments. The PRD is the highest of all experiments.

The plot of the execution time is given in Figure 9, where the execution speedup
is linearly identifiable for the larger instances.

The final comparison is of the three GPU’s on the two separate algorithms.
Figure 10 shows the values of the three GPU’s on the problem instances for the
LS2OPTCUDA algorithm. For the small sized problem, the timing is not significantly
distinct. The distinction only becomes variable when the instance sizes increase.
Overall, the NVidia Titan Xp is the best performing GPU for this algorithm.

Figure 5.
Figure for the experiments of Intel i7 and NVidia GTX 1050 on the MLS2OPT and MLS2OPTCUDA
algorithms.

Data Intel i7-7800X LS2OPT NVidia Titan Xp LS2OPTCUDA PRD (%)

ft70 21 18 �14.29

ftv64 12 8 �33.33

ftv170 183 77 �57.92

kro124p 306 94 �69.28

rbg323 23,619 1467 �93.79

rbg358 27,614 1848 �93.31

rbg403 33,345 2487 �92.54

Average 12157.14 857 �64.92
*All results are in milliseconds (ms).

Table 5.
Results of the experiments of Intel i7-7800X and NVidia titan Xp on the LS2OPT and LS2OPTCUDA
algorithms.

19

CUDA Accelerated 2-OPT Local Search for the Traveling Salesman Problem
DOI: http://dx.doi.org/10.5772/intechopen.93125

compensated by more extensive experimentation, larger instances performed faster
on the GPU.

The plot of the execution time is given in Figure 6, where the execution speedup
is clearly identifiable for the larger instances.

The second part of the second machine experimentation is the MLS2OPT and its
CUDA variant and the result are given in Table 6. For all the problem instances, the
execution time for the GPU was significantly better. The average time was
7955.28ms for the CPU and 616.28ms for the GPU. The average PRD was�63.39%
for all experiments. The three larger instances were above 90% PRD.

The plot of the execution time is given in Figure 7, where the execution speedup
is linearly identifiable for the larger instances.

The first part of the third machine experiment results of the LS2OPT and its
CUDA variant is given in Table 7. Generally, the NVidia P100 is regarded as an
industry leading GPU solution for scientific computing. This is coupled with the
IBM Power 8 CPU Architecture. For all the problem instances the result was

Data Intel i7-9750H MLS2OPT Nvidia GTX 1050 MLS2OPTCUDA PRD (%)

ft70 37 21 �43.24

ftv64 26 52 100.00

ftv170 619 78 �87.40

kro124p 303 75 �75.25

rbg323 21,205 2525 �88.09

rbg358 31,330 3775 �87.95

rbg403 45,767 6454 �85.90

Average 14183.85 1854.28 �52.55
*All results are in milliseconds (ms).

Table 4.
Results of the experiments of Intel i7-9750H and NVidia GTX 1050 on the MLS2OPT and
MLS2OPTCUDA algorithms.

Figure 4.
Figure for the experiments of Intel i7 and NVidia GTX 1050 on the LS2OPT and LS2OPTCUDA
algorithms.

18

Novel Trends in the Traveling Salesman Problem

significantly better. The average time was 28592.43 ms for the CPU and 1536.42 ms
for the GPU. The average PRD was �87.83% for all experiments.

The plot of the execution time is given in Figure 8, where the execution speedup
is clearly identifiable for the larger instances.

The second part of the third machine experimentation is the MLS2OPT and its
CUDA variant and the result are given in Table 8. For all the problem instances, the
execution time for the GPU was again significantly better. The average time was
23429.14 ms for the CPU and 751 ms for the GPU. The average PRD was �92.78%
for all experiments. The PRD is the highest of all experiments.

The plot of the execution time is given in Figure 9, where the execution speedup
is linearly identifiable for the larger instances.

The final comparison is of the three GPU’s on the two separate algorithms.
Figure 10 shows the values of the three GPU’s on the problem instances for the
LS2OPTCUDA algorithm. For the small sized problem, the timing is not significantly
distinct. The distinction only becomes variable when the instance sizes increase.
Overall, the NVidia Titan Xp is the best performing GPU for this algorithm.

Figure 5.
Figure for the experiments of Intel i7 and NVidia GTX 1050 on the MLS2OPT and MLS2OPTCUDA
algorithms.

Data Intel i7-7800X LS2OPT NVidia Titan Xp LS2OPTCUDA PRD (%)

ft70 21 18 �14.29

ftv64 12 8 �33.33

ftv170 183 77 �57.92

kro124p 306 94 �69.28

rbg323 23,619 1467 �93.79

rbg358 27,614 1848 �93.31

rbg403 33,345 2487 �92.54

Average 12157.14 857 �64.92
*All results are in milliseconds (ms).

Table 5.
Results of the experiments of Intel i7-7800X and NVidia titan Xp on the LS2OPT and LS2OPTCUDA
algorithms.

19

CUDA Accelerated 2-OPT Local Search for the Traveling Salesman Problem
DOI: http://dx.doi.org/10.5772/intechopen.93125

Figure 6.
Figure for the experiments of Intel i7-7800X and NVidia titan Xp on the LS2OPT and LS2OPTCUDA
algorithms.

Data Intel i7-7800X MLS2OPT NVidia Titan Xp MLS2OPTCUDA PRD (%)

ft70 20 16 �20.00

ftv64 11 8 �27.27

ftv170 321 58 �81.93

kro124p 164 56 �65.85

rbg323 11,517 941 �91.83

rbg358 17,109 1059 �93.81

rbg403 24,445 2176 �91.10

Average 7955.28 616.28 �63.39
*All results are in milliseconds (ms).

Table 6.
Results of the experiments of Intel i7-7800X and NVidia titan Xp on the MLS2OPT and MLS2OPTCUDA
algorithms.

Figure 7.
Figure for the experiments of Intel i7-7800X and NVidia titan Xp on the MLS2OPT and MLS2OPTCUDA
algorithms.

20

Novel Trends in the Traveling Salesman Problem

Data Power 8 LS2OPT NVidia P100 LS2OPTCUDA PRD (%)

ft70 57 10 �82.46

ftv64 23 6 �73.91

ftv170 430 75 �82.56

kro124p 754 61 �91.91

rbg323 61,775 3245 �94.75

rbg358 64,419 3587 �94.43

rbg403 72,689 3771 �94.81

Average 28592.43 1536.42 �87.83
*All results are in milliseconds (ms).

Table 7.
Results of the experiments of power 8 and NVidia P100 on the LS2OPT and LS2OPTCUDA algorithms.

Figure 8.
Figure for the experiments of power 8 and NVidia P100 on the LS2OPT and LS2OPTCUDA algorithms.

Data Power 8 MLS2OPT NVidia P100 MLS2OPTCUDA PRD (%)

ft70 53 7 �86.79

ftv64 33 4 �87.88

ftv170 811 52 �93.59

kro124p 385 35 �90.91

rbg323 30,120 1124 �96.27

rbg358 44,709 1215 �97.28

rbg403 87,893 2820 �96.79

Average 23429.14 751 �92.78
*All results are in milliseconds (ms).

Table 8.
Results of the experiments of power 8 and NVidia P100 on the MLS2OPT and MLS2OPTCUDA algorithms.

21

CUDA Accelerated 2-OPT Local Search for the Traveling Salesman Problem
DOI: http://dx.doi.org/10.5772/intechopen.93125

Figure 6.
Figure for the experiments of Intel i7-7800X and NVidia titan Xp on the LS2OPT and LS2OPTCUDA
algorithms.

Data Intel i7-7800X MLS2OPT NVidia Titan Xp MLS2OPTCUDA PRD (%)

ft70 20 16 �20.00

ftv64 11 8 �27.27

ftv170 321 58 �81.93

kro124p 164 56 �65.85

rbg323 11,517 941 �91.83

rbg358 17,109 1059 �93.81

rbg403 24,445 2176 �91.10

Average 7955.28 616.28 �63.39
*All results are in milliseconds (ms).

Table 6.
Results of the experiments of Intel i7-7800X and NVidia titan Xp on the MLS2OPT and MLS2OPTCUDA
algorithms.

Figure 7.
Figure for the experiments of Intel i7-7800X and NVidia titan Xp on the MLS2OPT and MLS2OPTCUDA
algorithms.

20

Novel Trends in the Traveling Salesman Problem

Data Power 8 LS2OPT NVidia P100 LS2OPTCUDA PRD (%)

ft70 57 10 �82.46

ftv64 23 6 �73.91

ftv170 430 75 �82.56

kro124p 754 61 �91.91

rbg323 61,775 3245 �94.75

rbg358 64,419 3587 �94.43

rbg403 72,689 3771 �94.81

Average 28592.43 1536.42 �87.83
*All results are in milliseconds (ms).

Table 7.
Results of the experiments of power 8 and NVidia P100 on the LS2OPT and LS2OPTCUDA algorithms.

Figure 8.
Figure for the experiments of power 8 and NVidia P100 on the LS2OPT and LS2OPTCUDA algorithms.

Data Power 8 MLS2OPT NVidia P100 MLS2OPTCUDA PRD (%)

ft70 53 7 �86.79

ftv64 33 4 �87.88

ftv170 811 52 �93.59

kro124p 385 35 �90.91

rbg323 30,120 1124 �96.27

rbg358 44,709 1215 �97.28

rbg403 87,893 2820 �96.79

Average 23429.14 751 �92.78
*All results are in milliseconds (ms).

Table 8.
Results of the experiments of power 8 and NVidia P100 on the MLS2OPT and MLS2OPTCUDA algorithms.

21

CUDA Accelerated 2-OPT Local Search for the Traveling Salesman Problem
DOI: http://dx.doi.org/10.5772/intechopen.93125

Figure 11 shows the results of the MLS2OPTCUDA algorithm on the problem.
As with the previous case, the distinction only becomes obvious for large sized
problem instances. Again the NVidia Titan Xp is the best performing GPU for this
algorithm.

9. Algorithm comparison

This section discusses the tour cost obtained by the two different 2-OPT
approaches developed here compared with published research. The first compari-
son is done with the best known solution in literature, which can be obtained from
the TSPLib [36].

Table 9 gives the comparison results between the optimal and the results
obtained from the LS2OPTCUDA and MLS2OPTCUDA algorithms on the P100

Figure 9.
Figure for the experiments of power 8 andNVidia P100 on the MLS2OPT and MLS2OPTCUDA algorithms.

Figure 10.
Figure for the experiments of the three NVidia GPU’s for the LS2OPTCUDA algorithm.

22

Novel Trends in the Traveling Salesman Problem

GPU. The results are compared using the PRD Eq. (3). The GPU is replaced with the
optimal value and the CPU is replaced by the obtained result.

The PRD values comparison shows that the LS2OPT is at most 40% away from
the optimal value for ftv170 instance and � 9% for the rbg403 instance. For the
MLS2OPT comparison, the PRD is �39% from the optimal value for ftv170 instance
and � 5% for the rbg403 instance. On average, the MLS2OPT is a better performing
algorithm with an average of 15853.86 against 16356.57 for the LS2OPT algorithm. A
plot of the comparison values is given in Figure 12.

The second comparison is now done with four different evolutionary algorithms
as given in Table 10. Theses are the Discrete Particle Swarm Optimization (DPSO)
algorithm [37], Discrete Self-Organizing Algorithm (DSOMA) [38], Enhanced Dif-
ferential Evolution (EDE) algorithm and the Chaos driven Enhanced Differential
Evolution (EDEC) algorithm [17]. The DPSO and DSOMA algorithms were revised
for the TSP problem and the 2-OPT local search was removed from the algorithms
to compare the results without any local search implemented. EDE and EDEC are
published algorithms however only three instances were published. Both these
algorithms had the 2-OPT local search embedded in them.

Figure 11.
Figure for the experiments of the three NVidia GPU’s for the MLS2OPTCUDA algorithm.

Data Optimal LS2OPT PRD (%) MLS2OPT PRD (%)

ft70 38,673 43,163 �10.40 43,310 �10.71

ftv64 1839 2744 �32.98 2554 �28.00

ftv170 2755 4559 �39.57 4510 �38.91

kro124p 36,230 58,014 �37.55 55,011 �34.14

rbg323 1326 1681 �21.12 1535 �13.62

rbg358 1163 1625 �28.43 1459 �20.29

rbg403 2465 2710 �9.04 2598 �5.12

Average 12064.43 16356.57 �25.58 15853.86 �21.54

Table 9.
Comparison of 2OPT vs. optimal values.

23

CUDA Accelerated 2-OPT Local Search for the Traveling Salesman Problem
DOI: http://dx.doi.org/10.5772/intechopen.93125

Figure 11 shows the results of the MLS2OPTCUDA algorithm on the problem.
As with the previous case, the distinction only becomes obvious for large sized
problem instances. Again the NVidia Titan Xp is the best performing GPU for this
algorithm.

9. Algorithm comparison

This section discusses the tour cost obtained by the two different 2-OPT
approaches developed here compared with published research. The first compari-
son is done with the best known solution in literature, which can be obtained from
the TSPLib [36].

Table 9 gives the comparison results between the optimal and the results
obtained from the LS2OPTCUDA and MLS2OPTCUDA algorithms on the P100

Figure 9.
Figure for the experiments of power 8 andNVidia P100 on the MLS2OPT and MLS2OPTCUDA algorithms.

Figure 10.
Figure for the experiments of the three NVidia GPU’s for the LS2OPTCUDA algorithm.

22

Novel Trends in the Traveling Salesman Problem

GPU. The results are compared using the PRD Eq. (3). The GPU is replaced with the
optimal value and the CPU is replaced by the obtained result.

The PRD values comparison shows that the LS2OPT is at most 40% away from
the optimal value for ftv170 instance and � 9% for the rbg403 instance. For the
MLS2OPT comparison, the PRD is �39% from the optimal value for ftv170 instance
and � 5% for the rbg403 instance. On average, the MLS2OPT is a better performing
algorithm with an average of 15853.86 against 16356.57 for the LS2OPT algorithm. A
plot of the comparison values is given in Figure 12.

The second comparison is now done with four different evolutionary algorithms
as given in Table 10. Theses are the Discrete Particle Swarm Optimization (DPSO)
algorithm [37], Discrete Self-Organizing Algorithm (DSOMA) [38], Enhanced Dif-
ferential Evolution (EDE) algorithm and the Chaos driven Enhanced Differential
Evolution (EDEC) algorithm [17]. The DPSO and DSOMA algorithms were revised
for the TSP problem and the 2-OPT local search was removed from the algorithms
to compare the results without any local search implemented. EDE and EDEC are
published algorithms however only three instances were published. Both these
algorithms had the 2-OPT local search embedded in them.

Figure 11.
Figure for the experiments of the three NVidia GPU’s for the MLS2OPTCUDA algorithm.

Data Optimal LS2OPT PRD (%) MLS2OPT PRD (%)

ft70 38,673 43,163 �10.40 43,310 �10.71

ftv64 1839 2744 �32.98 2554 �28.00

ftv170 2755 4559 �39.57 4510 �38.91

kro124p 36,230 58,014 �37.55 55,011 �34.14

rbg323 1326 1681 �21.12 1535 �13.62

rbg358 1163 1625 �28.43 1459 �20.29

rbg403 2465 2710 �9.04 2598 �5.12

Average 12064.43 16356.57 �25.58 15853.86 �21.54

Table 9.
Comparison of 2OPT vs. optimal values.

23

CUDA Accelerated 2-OPT Local Search for the Traveling Salesman Problem
DOI: http://dx.doi.org/10.5772/intechopen.93125

From the results, it was obvious that evolutionary algorithms without local
search heuristics are not as effective as the 2-opt local search heuristic or algorithms
with both directed and local search combined. Therefore, it is important to combine
these two algorithms as in [39]. As reported in [39] that the execution time of local
search can be around 95–99% of the total run time of the algorithm, it is viable to
accelerate the local search heuristics.

10. Conclusions

This chapter introduces a CUDA accelerated 2-opt algorithm for the TSP prob-
lem. As one of the most common and widely used approaches to solve the problem,
the 2-opt approach can be considered as canonical in the field.

GPU programming, especially CUDA has gained significant traction for high
performance computing. Readily available hardware has made programming a
much easier and available task.

Two variants of the 2-opt algorithm have been coded in CUDA to show the
acceleration of computational time. This has been tested against a sample of test

Figure 12.
Figure for the comparison of 2-OPT against global optimal values [36].

Data MLS2OPT DPSO DSOMA EDE EDEC

ft70 43,310 54,444 51,325 40,285 39,841

ftv64 2554 4711 4423 — —

ftv170 4510 19,102 9522 6902 4578

kro124p 55,011 113,153 75,373 41,180 39,574

rbg323 1535 4852 4523 — —

rbg358 1459 5692 4874 — —

rbg403 2598 6373 4427 — —

Average 15853.86 29761.00 22066.71 — —

Table 10.
MLS2OPT vs. evolutionary algorithms.

24

Novel Trends in the Traveling Salesman Problem

instances from literature. From the results obtained, it is clear that even for a
relatively cheap GPU such as the GTX 1050 the performance improvement is
significant, especially for larger sized problem instances. These were compared
against industry leading CPU’s such as Intel i7-X series and IBM Power 8.

One of the interesting aspects was that the Titan Xp performed better than the
P100 for these instances. It is difficult to identify the reasons, as the same code was
deployed on all machines, however the IBM and Intel architecture differences and
different C/C++ compiler usage may have affected the performance. The physical
configuration of the GPU’s inside the hardware and its connection to the mother-
board and memory bandwidth issues could also add to the time overhead. However,
when analyzing the cost-performance of the GPU’s then the $1500 Titan Xp is a
better GPU than the $15,000 P100 in this case.

However, the clear distinction is that there is a significant improvement to be
had when applying the CUDA version of the 2-opt algorithm. The next direction of
this research is to combine it with powerful swarm meta-heuristics with a layered
approach, and try and solve very large TSP instances.

Author details

Donald Davendra1*†, Magdalena Metlicka2† and Magdalena Bialic-Davendra1†

1 Central Washington University, Ellensburg, USA

2 Honeywell Engineering Aerospace, Brno, Czech Republic

*Address all correspondence to: donald.davendra@cwu.edu

†These authors contributed equally.

© 2020TheAuthor(s). Licensee IntechOpen. This chapter is distributed under the terms
of theCreativeCommonsAttribution License (http://creativecommons.org/licenses/
by/3.0),which permits unrestricted use, distribution, and reproduction in anymedium,
provided the original work is properly cited.

25

CUDA Accelerated 2-OPT Local Search for the Traveling Salesman Problem
DOI: http://dx.doi.org/10.5772/intechopen.93125

From the results, it was obvious that evolutionary algorithms without local
search heuristics are not as effective as the 2-opt local search heuristic or algorithms
with both directed and local search combined. Therefore, it is important to combine
these two algorithms as in [39]. As reported in [39] that the execution time of local
search can be around 95–99% of the total run time of the algorithm, it is viable to
accelerate the local search heuristics.

10. Conclusions

This chapter introduces a CUDA accelerated 2-opt algorithm for the TSP prob-
lem. As one of the most common and widely used approaches to solve the problem,
the 2-opt approach can be considered as canonical in the field.

GPU programming, especially CUDA has gained significant traction for high
performance computing. Readily available hardware has made programming a
much easier and available task.

Two variants of the 2-opt algorithm have been coded in CUDA to show the
acceleration of computational time. This has been tested against a sample of test

Figure 12.
Figure for the comparison of 2-OPT against global optimal values [36].

Data MLS2OPT DPSO DSOMA EDE EDEC

ft70 43,310 54,444 51,325 40,285 39,841

ftv64 2554 4711 4423 — —

ftv170 4510 19,102 9522 6902 4578

kro124p 55,011 113,153 75,373 41,180 39,574

rbg323 1535 4852 4523 — —

rbg358 1459 5692 4874 — —

rbg403 2598 6373 4427 — —

Average 15853.86 29761.00 22066.71 — —

Table 10.
MLS2OPT vs. evolutionary algorithms.

24

Novel Trends in the Traveling Salesman Problem

instances from literature. From the results obtained, it is clear that even for a
relatively cheap GPU such as the GTX 1050 the performance improvement is
significant, especially for larger sized problem instances. These were compared
against industry leading CPU’s such as Intel i7-X series and IBM Power 8.

One of the interesting aspects was that the Titan Xp performed better than the
P100 for these instances. It is difficult to identify the reasons, as the same code was
deployed on all machines, however the IBM and Intel architecture differences and
different C/C++ compiler usage may have affected the performance. The physical
configuration of the GPU’s inside the hardware and its connection to the mother-
board and memory bandwidth issues could also add to the time overhead. However,
when analyzing the cost-performance of the GPU’s then the $1500 Titan Xp is a
better GPU than the $15,000 P100 in this case.

However, the clear distinction is that there is a significant improvement to be
had when applying the CUDA version of the 2-opt algorithm. The next direction of
this research is to combine it with powerful swarm meta-heuristics with a layered
approach, and try and solve very large TSP instances.

Author details

Donald Davendra1*†, Magdalena Metlicka2† and Magdalena Bialic-Davendra1†

1 Central Washington University, Ellensburg, USA

2 Honeywell Engineering Aerospace, Brno, Czech Republic

*Address all correspondence to: donald.davendra@cwu.edu

†These authors contributed equally.

© 2020TheAuthor(s). Licensee IntechOpen. This chapter is distributed under the terms
of theCreativeCommonsAttribution License (http://creativecommons.org/licenses/
by/3.0),which permits unrestricted use, distribution, and reproduction in anymedium,
provided the original work is properly cited.

25

CUDA Accelerated 2-OPT Local Search for the Traveling Salesman Problem
DOI: http://dx.doi.org/10.5772/intechopen.93125

References

[1] Englert M, Roglin H, Vocking B.
Worst case and probabilistic analysis of
the 2-opt algorithm for the TSP.
Algorithmica. 2014;68:190-264

[2] Van Leeuwen J, Schoon A.
Untangling a traveling salesman tour in
the plane. In: Proceedings of the 7th
International Workshop on Graph-
Thoeratical Concepts in Computer
Science. The Netherlands:
Rijksuniversiteit. Vakgroep Informatica;
1981. pp. 87-98

[3] Johnson D, McGeoch L. The traveling
salesman problem: A case study in local
optimization. In: Aarts E, Lenstra J
editors, Local Search in Combinatorial
Optimization. Hoboken, NJ, USA: John
Wiley and Sons; 1997

[4] Farber R. CUDA Application Design
and Development. Burlington, MA,
USA: Morgan Kaufmann; 2012

[5] Lawler EL, Lenstra JK, Kan AR,
Shmoys DB. The Traveling Salesman
Problem: A Guided Tour of
Combinatorial Optimization. Vol. 3.
New York: Wiley; 1985

[6] Davendra D, editor. Traveling
Salesman Problem, Theory and
Applications. Rijeka: IntechOpen;
2010

[7] Laporte G. The traveling salesman
problem: An overview of exact and
approximate algorithms. European
Journal of Operations Research. 1992;
59(2):231-247

[8] Li H, Alidaee B. Tabu search for
solving the black-and-white travelling
salesman problem. Journal of the
Operational Research Society. 2016;
67(8):1061-1079

[9] Kirkpatrick S, Gellat C, Vecchi M.
Optimization by simulated annealing.
Science. 1983;220(4598):671-680

[10] Grefenstette J, Gopal R, Rosmaita B,
Van Gucht D. Genetic algorithms for the
traveling salesman problem. In:
Proceedings of the First International
Conference on Genetic Algorithms and
their Applications. New Jersey:
Lawrence Erlbaum; 1985. pp. 160-168

[11] Oliver I, Smith D, Holland JR. Study
of permutation crossover operators on
the traveling salesman problem. In:
Genetic Algorithms and their
Applications: Proceedings of the Second
International Conference on Genetic
Algorithms; July 28–31, 1987 at the
Massachusetts Institute of Technology,
Cambridge, MA, Hillsdale, NJ, L.
Erlhaum Associates; 1987

[12] Yu B, Yang Z-Z, Yao B. An
improved ant colony optimization for
vehicle routing problem. European
Journal of Operations Research. 2009;
196(1):171-176

[13] Tang K, Li Z, Luo L, Liu B.
Multi-strategy adaptive particle
swarm optimization for numerical
optimization. Engineering Applications
of Artificial Intelligence. 2015;37:9-19

[14] Yang X-S, Deb S. Cuckoo search via
levy flights. In: World Congress on
Nature & Biologically Inspired
Computing, 2009. NaBIC 2009. NY,
USA: IEEE Publications; 2009.
pp. 210-214

[15] Yang X-S. Firefly algorithms for
multimodal optimization. In: Stochastic
Algorithms: Foundations and
Applications. Berlin, Heidelberg,
Germany: Springer; 2009. pp. 169-178

[16] Osabaa E, Sera D, Sadollahd A,
Miren Nekane Bilbaob J, Camachoe D.
A discrete water cycle algorithm
for solving the symmetric and
asymmetric traveling salesman problem.
Applied Soft Computing. 2018;71:
277-290

26

Novel Trends in the Traveling Salesman Problem

[17] Davendra D, Zelinka I, Senkerik R,
Bialic-Davendra M. Chaos driven
evolutionary algorithm for the traveling
salesman problem. In: Davendra D,
editor. Traveling salesman problem.
Rijeka: IntechOpen. DOI: 10.5772/13107

[18] Li L, Cheng Y, Tan Y, Niu B. A
discrete artificial bee colony algorithm
for TSP problem. In: Proceedings of the
7th International Conference on
Intelligent Computing: Bio-Inspired
Computing and Applications (ICIC’11).
Berlin, Heidelberg: Springer-Verlag;
2011. pp. 566-573. DOI: 10.1007/978-3-
642-24553-4_75

[19] Davendra D, Zelinka I, Pluhacek M,
Senkerik R. DSOMA—Discrete self-
organising migrating algorithm. In: Self-
Organizing Migrating Algorithm:
Methodology and Implementation.
Berlin, Heidelberg, Germany: Springer;
2016. pp. 51-63

[20] Croes G. A method for solving
traveling-salesman problems.
Operations Research. 1958;6(6):791-812

[21] Shen L. Computer solutions of the
traveling salesman problem. Bell System
Technical Journal. 1965;44(10):
2245-2269

[22] Savelsbergh M. An efficient
implementation of local search
algorithms for constrained routing
problems. European Journal of
Operational Research. 1990;47(1):75-85

[23] Johnson D, McGeoch L. The
traveling salesman problem: A case
study in local optimization. Local search
in combinatorial optimization. 1997;1:
215-310

[24] Gutin G, Punnen A. The Traveling
Salesman Problem and Its Variations.
Vol. 12. Berlin, Heidelberg, Germany:
Springer; 2002

[25] Kim B, Shim J, Zhang M.
Comparison of tsp algorithms. In:

Project for Facilities Planning and
Materials Handling. 1998

[26] Kronos Group. Available from:
https://www.khronos.org/ [Accessed: 24
May 2020]

[27] Sanders J, Kandrot E. CUDA by
Example. 1st Print Edition. Addison-
Wesley; 2010

[28] Kirk D, Wen-mei W. Programming
Massively Parallel Processors: A Hands-
on Approach. Newnes; 2012

[29] NVIDIA: Cuda C Programming
Guide. Santa Clara, CA, USA: NVIDIA
Corporation; 2020

[30] NVIDIA: Kepler gk110. Santa Clara,
CA, USA: NVIDIA Corporation; 2012

[31] Metlicka M. Framework for
scheduling problems [master thesis].
Czech Republic: Technical University of
Ostrava; 2015

[32] Metlicka M, Davendra D,
Hermann F, Meier M, Amann M. GPU
accelerated NEH algorithm. In: 2014
IEEE Symposium on Computational
Intelligence in Production and Logistics
Systems (CIPLS), Orlando, FL; 2014.
pp. 114-119. DOI: 10.1109/
CIPLS.2014.7007169

[33] NVIDIA. Cuda C Best Practices
Guide [Online]. 2020

[34] TSP Library ATSP Dataset.
Available from: http://elib.zib.de/
pub/mp-testdata/tsp/tsplib/atsp/index.
html [Accessed: 02 January 2020]

[35] CWU Turing Supercomputer.
Available from: http://www.cwu.edu/
faculty/turing-cwu-supercomputer
[Accessed: 20 February 2020]

[36] TSP Library ATSP Best Known
Solutions. Available from: http://elib.zib
.de/pub/mp-testdata/tsp/tsplib/atsp-sol.
html [Accessed: 17 May 2020]

27

CUDA Accelerated 2-OPT Local Search for the Traveling Salesman Problem
DOI: http://dx.doi.org/10.5772/intechopen.93125

References

[1] Englert M, Roglin H, Vocking B.
Worst case and probabilistic analysis of
the 2-opt algorithm for the TSP.
Algorithmica. 2014;68:190-264

[2] Van Leeuwen J, Schoon A.
Untangling a traveling salesman tour in
the plane. In: Proceedings of the 7th
International Workshop on Graph-
Thoeratical Concepts in Computer
Science. The Netherlands:
Rijksuniversiteit. Vakgroep Informatica;
1981. pp. 87-98

[3] Johnson D, McGeoch L. The traveling
salesman problem: A case study in local
optimization. In: Aarts E, Lenstra J
editors, Local Search in Combinatorial
Optimization. Hoboken, NJ, USA: John
Wiley and Sons; 1997

[4] Farber R. CUDA Application Design
and Development. Burlington, MA,
USA: Morgan Kaufmann; 2012

[5] Lawler EL, Lenstra JK, Kan AR,
Shmoys DB. The Traveling Salesman
Problem: A Guided Tour of
Combinatorial Optimization. Vol. 3.
New York: Wiley; 1985

[6] Davendra D, editor. Traveling
Salesman Problem, Theory and
Applications. Rijeka: IntechOpen;
2010

[7] Laporte G. The traveling salesman
problem: An overview of exact and
approximate algorithms. European
Journal of Operations Research. 1992;
59(2):231-247

[8] Li H, Alidaee B. Tabu search for
solving the black-and-white travelling
salesman problem. Journal of the
Operational Research Society. 2016;
67(8):1061-1079

[9] Kirkpatrick S, Gellat C, Vecchi M.
Optimization by simulated annealing.
Science. 1983;220(4598):671-680

[10] Grefenstette J, Gopal R, Rosmaita B,
Van Gucht D. Genetic algorithms for the
traveling salesman problem. In:
Proceedings of the First International
Conference on Genetic Algorithms and
their Applications. New Jersey:
Lawrence Erlbaum; 1985. pp. 160-168

[11] Oliver I, Smith D, Holland JR. Study
of permutation crossover operators on
the traveling salesman problem. In:
Genetic Algorithms and their
Applications: Proceedings of the Second
International Conference on Genetic
Algorithms; July 28–31, 1987 at the
Massachusetts Institute of Technology,
Cambridge, MA, Hillsdale, NJ, L.
Erlhaum Associates; 1987

[12] Yu B, Yang Z-Z, Yao B. An
improved ant colony optimization for
vehicle routing problem. European
Journal of Operations Research. 2009;
196(1):171-176

[13] Tang K, Li Z, Luo L, Liu B.
Multi-strategy adaptive particle
swarm optimization for numerical
optimization. Engineering Applications
of Artificial Intelligence. 2015;37:9-19

[14] Yang X-S, Deb S. Cuckoo search via
levy flights. In: World Congress on
Nature & Biologically Inspired
Computing, 2009. NaBIC 2009. NY,
USA: IEEE Publications; 2009.
pp. 210-214

[15] Yang X-S. Firefly algorithms for
multimodal optimization. In: Stochastic
Algorithms: Foundations and
Applications. Berlin, Heidelberg,
Germany: Springer; 2009. pp. 169-178

[16] Osabaa E, Sera D, Sadollahd A,
Miren Nekane Bilbaob J, Camachoe D.
A discrete water cycle algorithm
for solving the symmetric and
asymmetric traveling salesman problem.
Applied Soft Computing. 2018;71:
277-290

26

Novel Trends in the Traveling Salesman Problem

[17] Davendra D, Zelinka I, Senkerik R,
Bialic-Davendra M. Chaos driven
evolutionary algorithm for the traveling
salesman problem. In: Davendra D,
editor. Traveling salesman problem.
Rijeka: IntechOpen. DOI: 10.5772/13107

[18] Li L, Cheng Y, Tan Y, Niu B. A
discrete artificial bee colony algorithm
for TSP problem. In: Proceedings of the
7th International Conference on
Intelligent Computing: Bio-Inspired
Computing and Applications (ICIC’11).
Berlin, Heidelberg: Springer-Verlag;
2011. pp. 566-573. DOI: 10.1007/978-3-
642-24553-4_75

[19] Davendra D, Zelinka I, Pluhacek M,
Senkerik R. DSOMA—Discrete self-
organising migrating algorithm. In: Self-
Organizing Migrating Algorithm:
Methodology and Implementation.
Berlin, Heidelberg, Germany: Springer;
2016. pp. 51-63

[20] Croes G. A method for solving
traveling-salesman problems.
Operations Research. 1958;6(6):791-812

[21] Shen L. Computer solutions of the
traveling salesman problem. Bell System
Technical Journal. 1965;44(10):
2245-2269

[22] Savelsbergh M. An efficient
implementation of local search
algorithms for constrained routing
problems. European Journal of
Operational Research. 1990;47(1):75-85

[23] Johnson D, McGeoch L. The
traveling salesman problem: A case
study in local optimization. Local search
in combinatorial optimization. 1997;1:
215-310

[24] Gutin G, Punnen A. The Traveling
Salesman Problem and Its Variations.
Vol. 12. Berlin, Heidelberg, Germany:
Springer; 2002

[25] Kim B, Shim J, Zhang M.
Comparison of tsp algorithms. In:

Project for Facilities Planning and
Materials Handling. 1998

[26] Kronos Group. Available from:
https://www.khronos.org/ [Accessed: 24
May 2020]

[27] Sanders J, Kandrot E. CUDA by
Example. 1st Print Edition. Addison-
Wesley; 2010

[28] Kirk D, Wen-mei W. Programming
Massively Parallel Processors: A Hands-
on Approach. Newnes; 2012

[29] NVIDIA: Cuda C Programming
Guide. Santa Clara, CA, USA: NVIDIA
Corporation; 2020

[30] NVIDIA: Kepler gk110. Santa Clara,
CA, USA: NVIDIA Corporation; 2012

[31] Metlicka M. Framework for
scheduling problems [master thesis].
Czech Republic: Technical University of
Ostrava; 2015

[32] Metlicka M, Davendra D,
Hermann F, Meier M, Amann M. GPU
accelerated NEH algorithm. In: 2014
IEEE Symposium on Computational
Intelligence in Production and Logistics
Systems (CIPLS), Orlando, FL; 2014.
pp. 114-119. DOI: 10.1109/
CIPLS.2014.7007169

[33] NVIDIA. Cuda C Best Practices
Guide [Online]. 2020

[34] TSP Library ATSP Dataset.
Available from: http://elib.zib.de/
pub/mp-testdata/tsp/tsplib/atsp/index.
html [Accessed: 02 January 2020]

[35] CWU Turing Supercomputer.
Available from: http://www.cwu.edu/
faculty/turing-cwu-supercomputer
[Accessed: 20 February 2020]

[36] TSP Library ATSP Best Known
Solutions. Available from: http://elib.zib
.de/pub/mp-testdata/tsp/tsplib/atsp-sol.
html [Accessed: 17 May 2020]

27

CUDA Accelerated 2-OPT Local Search for the Traveling Salesman Problem
DOI: http://dx.doi.org/10.5772/intechopen.93125

[37] Wang X, Tang L. A discrete particle
swarm optimization algorithm with self-
adaptive diversity control for the
permutation flowshop problem with
blocking. Applied Soft Computing.
2012;12:652-662

[38] Davendra D, Bialic-Davendra M.
Discrete self organizing algorithm
for pollution vehicle routing problem.
In: Proceedings of the genetic and
evolutionary computation conference
2020 (GECCO 20 companion).
New York, NY, USA: ACM; 2020. p. 8.
DOI: 10.1145/3377929.3398076

[39] Merz P, Freisleben B. Genetic
local search for the TSP: New results. In:
Proceedings of 1997 IEEE International
Conference on Evolutionary
Computation (ICEC ’97), Indianapolis,
IN, USA; 1997. pp. 159-164. DOI:
10.1109/ICEC.1997.592288

28

Novel Trends in the Traveling Salesman Problem

Chapter 3

Solution Attractor of Local Search
System: A Method to Reduce
Computational Complexity of the
Traveling Salesman Problem
Weiqi Li

Abstract

The traveling salesman problem (TSP) is presumably difficult to solve exactly
using local search algorithms. It can be exactly solved by only one algorithm—the
enumerative search algorithm. However, the scanning of all possible solutions
requires exponential computing time. Do we need exploring all the possibilities to
find the optimal solution? How can we narrow down the search space effectively
and efficiently for an exhausted search? This chapter attempts to answer these
questions. A local search algorithm is a discrete dynamical system, in which a search
trajectory searches a part of the solution space and stops at a locally optimal point.
A solution attractor of a local search system for the TSP is defined as a subset of the
solution space that contains all locally optimal tours. The solution attractor concept
gives us great insight into the computational complexity of the TSP. If we know
where the solution attractor is located in the solution space, we simply completely
search the solution attractor, rather than the entire solution space, to find the
globally optimal tour. This chapter describes the solution attractor of local search
system for the TSP and then presents a novel search system—the attractor-based
search system—that can solve the TSP much efficiently with global optimality
guarantee.

Keywords: local search, global optimization, computational complexity, dynamical
system, combinatorial optimization, solution attractor

1. Introduction

What it is that makes the TSP difficulty? The difficulty of the TSP is associated
with the combinatorial explosion of potential solutions in the solution space. When
a TSP instance is large, the number of possible tours in the solution space is so large
as to forbid an exhausted search for the optimal tour. Numerous approaches to
solving the TSP have been published. Some algorithms such as enumerative search,
branch-and-bound search, and linear programming are exact approaches but lack
efficiency. Other approximate algorithms, based on heuristics, are quick to find a
good tour but lack effectiveness and robustness. Modern approximate algorithms,
with today’s fast computers, can find good solutions for extremely large TSP

29

[37] Wang X, Tang L. A discrete particle
swarm optimization algorithm with self-
adaptive diversity control for the
permutation flowshop problem with
blocking. Applied Soft Computing.
2012;12:652-662

[38] Davendra D, Bialic-Davendra M.
Discrete self organizing algorithm
for pollution vehicle routing problem.
In: Proceedings of the genetic and
evolutionary computation conference
2020 (GECCO 20 companion).
New York, NY, USA: ACM; 2020. p. 8.
DOI: 10.1145/3377929.3398076

[39] Merz P, Freisleben B. Genetic
local search for the TSP: New results. In:
Proceedings of 1997 IEEE International
Conference on Evolutionary
Computation (ICEC ’97), Indianapolis,
IN, USA; 1997. pp. 159-164. DOI:
10.1109/ICEC.1997.592288

28

Novel Trends in the Traveling Salesman Problem

Chapter 3

Solution Attractor of Local Search
System: A Method to Reduce
Computational Complexity of the
Traveling Salesman Problem
Weiqi Li

Abstract

The traveling salesman problem (TSP) is presumably difficult to solve exactly
using local search algorithms. It can be exactly solved by only one algorithm—the
enumerative search algorithm. However, the scanning of all possible solutions
requires exponential computing time. Do we need exploring all the possibilities to
find the optimal solution? How can we narrow down the search space effectively
and efficiently for an exhausted search? This chapter attempts to answer these
questions. A local search algorithm is a discrete dynamical system, in which a search
trajectory searches a part of the solution space and stops at a locally optimal point.
A solution attractor of a local search system for the TSP is defined as a subset of the
solution space that contains all locally optimal tours. The solution attractor concept
gives us great insight into the computational complexity of the TSP. If we know
where the solution attractor is located in the solution space, we simply completely
search the solution attractor, rather than the entire solution space, to find the
globally optimal tour. This chapter describes the solution attractor of local search
system for the TSP and then presents a novel search system—the attractor-based
search system—that can solve the TSP much efficiently with global optimality
guarantee.

Keywords: local search, global optimization, computational complexity, dynamical
system, combinatorial optimization, solution attractor

1. Introduction

What it is that makes the TSP difficulty? The difficulty of the TSP is associated
with the combinatorial explosion of potential solutions in the solution space. When
a TSP instance is large, the number of possible tours in the solution space is so large
as to forbid an exhausted search for the optimal tour. Numerous approaches to
solving the TSP have been published. Some algorithms such as enumerative search,
branch-and-bound search, and linear programming are exact approaches but lack
efficiency. Other approximate algorithms, based on heuristics, are quick to find a
good tour but lack effectiveness and robustness. Modern approximate algorithms,
with today’s fast computers, can find good solutions for extremely large TSP

29

instances within a reasonable time, which are with a high probability just 2–3%
away from the optimal tour [1–3].

Most approximate algorithms have been based on or derived from a general
search technique known as local search. Local search algorithms iteratively explore
the neighborhoods of solutions trying to improve the current solution by local
changes. However, the scope of a single search trajectory is limited by the neigh-
borhood definition. Both the TSP and local search have been hot research topics for
decades, and many aspects of them have been studied. However, there is still a
variety of open questions. The study of local search for the TSP continues to be a
vibrant, exciting, and fruitful endeavor in combinatorial optimization, computa-
tional mathematics, and computer science.

A local search algorithm is essentially in the domain of dynamical systems. The
goal of a dynamical system analysis is to capture the distinctive properties of certain
points in the state space for a given dynamical system. The attractor theory of
dynamical systems is a natural paradigm that provides the necessary and sufficient
theoretical foundation to study the convergent behavior of a local search system.
The TSP is believed to be NP-hard because we do not have an efficient enumerative
search system for the problem. Do we need to examine all possibilities in order to
solve the problem? Can we quickly narrow down the search space to a small region
in which the optimal solution is located and then search that small region
completely to find the optimal solution? This chapter attempts to use the solution
attractor concept to answer these questions. If we can quickly identify that small
region, the solution attractor, and then search that region thoroughly in reasonable
time, the computational complexity of the problem can be dramatically reduced or
may not exist. This chapter introduces the solution attractor concept, which not
only helps us understand the behavior of a local search system for the TSP but also
offers an important method to solve the problem efficiently with global optimality
guarantee. This chapter presents a novel search algorithm—the attractor-based
search system (ABSS)—that is a simple and quick global search system for the TSP.

2. Reframing the TSP definition

A problem is the frame into which the solutions fall. By changing the frame,
we can change the range of possible solutions and scope of the optimal solutions.
The classic TSP is defined as a complete graph Q ¼ V,E,Cð Þ, where V ¼
vi : i ¼ 1, 2, … , nf g is a set of n nodes, E ¼ e i, jð Þ : i, j ¼ 1, 2, … , n; i 6¼ jf g is an n� n

edge matrix containing the set of edges that completely connects the n nodes, and
C ¼ c i, jð Þ : i, j ¼ 1, 2, … , n; i 6¼ jf g is an n� n cost matrix holding a set of costs
between nodes. A tours∈ S is a closed tour that visits every node exactly once and
returns to the starting node at the end. The solution space S contains a finite set of
all feasible tours. The goal of the TSP is to find a tour s ∗ with minimal cost:

s ∗ ¼ min
s∈ S

f sð Þ (1)

Obviously, this definition requires a search algorithm to find any single optimal
tour in the solution space for a given instance. However, many real-world optimi-
zation problems are inherently multimodal. They may contain multiple optimal
solutions in their solution spaces. Finding all optimal solutions is the essential
requirement for global optimization. In practice, knowledge of multiple optimal
solutions is essentially helpful, providing the decision-maker with multiple best
options. We assume that a TSP instance contains h h≥ 1ð Þ optimal tours in the

30

Novel Trends in the Traveling Salesman Problem

solution space S and denotes S ∗ as the set of h optimal tours. Under global optimi-
zation frame, the objective of the TSP is to find the set of optimal tours S ∗ ⊂ S:

S ∗ ¼ arg min
s∈ S

f sð Þ
� �

¼ s ∗1 , s
∗
2 , … , s ∗h

� �
(2)

For a given TSP instance, we do not know the number of optimal tours in the
solution space until we find all of them. Obviously, this reframed TSP definition
becomes even more difficult to solve. To solve this reframed TSP, we need a search
algorithm that converges not just in value but also in solution. Convergence in value
means that a search system can find any one of the optimal solutions in the solution
space eventually. Convergence in solution means that the search system can identify
the same set of optimal solutions in the solution space over and over again.

Usually, the edge matrix E is not necessary to be included in the TSP definition
because the TSP is a complete graph. However, the matrix E is a powerful data
structure that can shift our point of view so that we can uncover alternative
approaches. One factor contributing to algorithmic difficulty is that we lack a data
structure that links the structure of the problem and the behavior of the search
algorithm and that can make the complex search space traceable and tractable. It
may be unreasonable to expect a search algorithm to be able to solve any problem
without taking into account the structure and properties of the problem. Local
search algorithms may not require much problem-specific knowledge in order to
generate good solutions. However, in order to solve a problem exactly, we should
design a search algorithm that is based on the structure of the problem at hand.

3. Solution attractor of local search system for TSP

A dynamical system is a model to describing the temporal evolution of a system
in its state space [4–9]. The theory of dynamical system is an extremely broad area
of study. The study of dynamical systems has discovered that many dynamical
systems exhibit attracting behavior in the system trajectories. In such a system, all
initial states tend to evolve toward a single final state or a set of final states. This
single state or a set of states is called attractor. A heuristic local search system
essentially is a discrete dynamical system and therefore natural in the domain of
dynamical systems.

A local search system has a solution space S, a set of times T (iterations of
search), and a search function f : S� T ! S for temporal evolution that gives the
consequent to a solution s∈ S. A search trajectory is the sequence of solutions of a
local search system at successive time steps in the form s tþ 1ð Þ ¼ f s tð Þð Þ. The
behavior of a search trajectory can be understood as a process of iterating a function
f sð Þ. Questions about the behavior of a local search system over time are actually the
questions about its search trajectories. Let us denote s0 as an initial point of a search
trajectory, f t as the f th iterate of the function f sð Þ, and a locally optimal solution s0 as
the limit of the convergent search trajectory s0, f s0ð Þ, f 2 s0ð Þ, … , f t s0ð Þ, … ; then

f s0ð Þ ¼ f lim
t!∞

f t s0ð Þ
� �

¼ lim
t!∞

f tþ1 s0ð Þ ¼ s0 (3)

For the TSP, a search trajectory leads to a sequence of tours s0, s1, s2, … , st, where
s0 is an arbitrary initial tour and st is the final tour at the end of search after t
iterations. This time series represents a part of the solution space searched by this

31

Solution Attractor of Local Search System: A Method to Reduce Computational Complexity…
DOI: http://dx.doi.org/10.5772/intechopen.90521

instances within a reasonable time, which are with a high probability just 2–3%
away from the optimal tour [1–3].

Most approximate algorithms have been based on or derived from a general
search technique known as local search. Local search algorithms iteratively explore
the neighborhoods of solutions trying to improve the current solution by local
changes. However, the scope of a single search trajectory is limited by the neigh-
borhood definition. Both the TSP and local search have been hot research topics for
decades, and many aspects of them have been studied. However, there is still a
variety of open questions. The study of local search for the TSP continues to be a
vibrant, exciting, and fruitful endeavor in combinatorial optimization, computa-
tional mathematics, and computer science.

A local search algorithm is essentially in the domain of dynamical systems. The
goal of a dynamical system analysis is to capture the distinctive properties of certain
points in the state space for a given dynamical system. The attractor theory of
dynamical systems is a natural paradigm that provides the necessary and sufficient
theoretical foundation to study the convergent behavior of a local search system.
The TSP is believed to be NP-hard because we do not have an efficient enumerative
search system for the problem. Do we need to examine all possibilities in order to
solve the problem? Can we quickly narrow down the search space to a small region
in which the optimal solution is located and then search that small region
completely to find the optimal solution? This chapter attempts to use the solution
attractor concept to answer these questions. If we can quickly identify that small
region, the solution attractor, and then search that region thoroughly in reasonable
time, the computational complexity of the problem can be dramatically reduced or
may not exist. This chapter introduces the solution attractor concept, which not
only helps us understand the behavior of a local search system for the TSP but also
offers an important method to solve the problem efficiently with global optimality
guarantee. This chapter presents a novel search algorithm—the attractor-based
search system (ABSS)—that is a simple and quick global search system for the TSP.

2. Reframing the TSP definition

A problem is the frame into which the solutions fall. By changing the frame,
we can change the range of possible solutions and scope of the optimal solutions.
The classic TSP is defined as a complete graph Q ¼ V,E,Cð Þ, where V ¼
vi : i ¼ 1, 2, … , nf g is a set of n nodes, E ¼ e i, jð Þ : i, j ¼ 1, 2, … , n; i 6¼ jf g is an n� n

edge matrix containing the set of edges that completely connects the n nodes, and
C ¼ c i, jð Þ : i, j ¼ 1, 2, … , n; i 6¼ jf g is an n� n cost matrix holding a set of costs
between nodes. A tours∈ S is a closed tour that visits every node exactly once and
returns to the starting node at the end. The solution space S contains a finite set of
all feasible tours. The goal of the TSP is to find a tour s ∗ with minimal cost:

s ∗ ¼ min
s∈ S

f sð Þ (1)

Obviously, this definition requires a search algorithm to find any single optimal
tour in the solution space for a given instance. However, many real-world optimi-
zation problems are inherently multimodal. They may contain multiple optimal
solutions in their solution spaces. Finding all optimal solutions is the essential
requirement for global optimization. In practice, knowledge of multiple optimal
solutions is essentially helpful, providing the decision-maker with multiple best
options. We assume that a TSP instance contains h h≥ 1ð Þ optimal tours in the

30

Novel Trends in the Traveling Salesman Problem

solution space S and denotes S ∗ as the set of h optimal tours. Under global optimi-
zation frame, the objective of the TSP is to find the set of optimal tours S ∗ ⊂ S:

S ∗ ¼ arg min
s∈ S

f sð Þ
� �

¼ s ∗1 , s
∗
2 , … , s ∗h

� �
(2)

For a given TSP instance, we do not know the number of optimal tours in the
solution space until we find all of them. Obviously, this reframed TSP definition
becomes even more difficult to solve. To solve this reframed TSP, we need a search
algorithm that converges not just in value but also in solution. Convergence in value
means that a search system can find any one of the optimal solutions in the solution
space eventually. Convergence in solution means that the search system can identify
the same set of optimal solutions in the solution space over and over again.

Usually, the edge matrix E is not necessary to be included in the TSP definition
because the TSP is a complete graph. However, the matrix E is a powerful data
structure that can shift our point of view so that we can uncover alternative
approaches. One factor contributing to algorithmic difficulty is that we lack a data
structure that links the structure of the problem and the behavior of the search
algorithm and that can make the complex search space traceable and tractable. It
may be unreasonable to expect a search algorithm to be able to solve any problem
without taking into account the structure and properties of the problem. Local
search algorithms may not require much problem-specific knowledge in order to
generate good solutions. However, in order to solve a problem exactly, we should
design a search algorithm that is based on the structure of the problem at hand.

3. Solution attractor of local search system for TSP

A dynamical system is a model to describing the temporal evolution of a system
in its state space [4–9]. The theory of dynamical system is an extremely broad area
of study. The study of dynamical systems has discovered that many dynamical
systems exhibit attracting behavior in the system trajectories. In such a system, all
initial states tend to evolve toward a single final state or a set of final states. This
single state or a set of states is called attractor. A heuristic local search system
essentially is a discrete dynamical system and therefore natural in the domain of
dynamical systems.

A local search system has a solution space S, a set of times T (iterations of
search), and a search function f : S� T ! S for temporal evolution that gives the
consequent to a solution s∈ S. A search trajectory is the sequence of solutions of a
local search system at successive time steps in the form s tþ 1ð Þ ¼ f s tð Þð Þ. The
behavior of a search trajectory can be understood as a process of iterating a function
f sð Þ. Questions about the behavior of a local search system over time are actually the
questions about its search trajectories. Let us denote s0 as an initial point of a search
trajectory, f t as the f th iterate of the function f sð Þ, and a locally optimal solution s0 as
the limit of the convergent search trajectory s0, f s0ð Þ, f 2 s0ð Þ, … , f t s0ð Þ, … ; then

f s0ð Þ ¼ f lim
t!∞

f t s0ð Þ
� �

¼ lim
t!∞

f tþ1 s0ð Þ ¼ s0 (3)

For the TSP, a search trajectory leads to a sequence of tours s0, s1, s2, … , st, where
s0 is an arbitrary initial tour and st is the final tour at the end of search after t
iterations. This time series represents a part of the solution space searched by this

31

Solution Attractor of Local Search System: A Method to Reduce Computational Complexity…
DOI: http://dx.doi.org/10.5772/intechopen.90521

search trajectory. The globally optimal tour s ∗ is the target point of a search
trajectory. Due to the constraint of the neighborhood search structure, a search
trajectory rarely reaches the target point and eventually stops at a locally optimal
tour s0. In a heuristic local search system, different initial points and randomness in
the search process lead to a complex search behavior and generate different search
trajectories. There are no two search trajectories that are exactly alike. Different
search trajectories explore different regions of the solution space and stop at differ-
ent final points. Since all search trajectories have the same target point, they move
toward the same direction and finally stop in the same target region in the solution
space. This target region is called the solution attractor, denoted as A. Roughly
speaking, the solution attractor of a local search system is a closed region of the
solution space toward which a search trajectory tends to evolve regardless of the
starting point. A solution attractor is the equilibrium level of the system dynamics.
At this level, all search trajectories will stop moving, and therefore the solution
attractor consists of all locally optimal tours. A single search trajectory typically
converges to either one of the points in the solution attractor. Since the globally
optimal tour is a special case of locally optimal tours, it is undoubtedly embodied in
the solution attractor, that is, s ∗ ∈A and A⊂ S. Figure 1 summaries the concepts of
search trajectories and solution attractor in a local search system. Illustrating search
trajectories and solution attractor of a local search system as 2-D object is a valid
metaphor for understanding how a local search system might proceed. The solution
attractor A of a local search system has the following properties [10–12]:

• Invariance, i.e., ∀s0 ∈A, f t s0ð Þ ¼ s0 and f t Að Þ ¼ A for all time t.

• Attractiveness, i.e., ∀si ∈ S, f t sið Þ∈A for sufficient time t.

• Convexity, i.e., all locally optimal tours in A are gathered in an extremely small
region of the solution space.

• Centrality, i.e., the best of these locally optimal tours (the globally optimal
tour) is located centrally with respect to the other locally optimal tours.

• Irreducibility, i.e., the solution attractor A contains a limit number of invariant
locally optimal tours.

In general term, for a TSP instance with h h≥ 1ð Þ optimal tours, the local search
system will have h solution attractors (A1,A2, … ,Ah) that attract all search trajec-
tories. Each of the solution attractors has its own set of locally optimal tours,

Figure 1.
Search trajectories and solution attractor in a local search system.

32

Novel Trends in the Traveling Salesman Problem

surrounding a globally optimal tour s ∗i i ¼ 1, 2, … , hð Þ. The search trajectories will
explore many different regions of the solution space and converge to these solution
attractors. A particular search trajectory will converge into one of these solution
attractors. The set of locally optimal tours generated by all search trajectories will be
distributed to these h solution attractors. According to dynamical systems theory
[9], the closure of an arbitrary union of attractors is still an attractor, that is, the
attractor of a local search system for a multimodal TSP is a complete collection of
solution attractors A ¼ A1∪A2∪…∪Ah and A⊂ S:

4. The attractor-based search system for TSP

Figure 2 presents the attractor-based search system (ABSS) for the TSP. In this
algorithm, Q is a given TSP instance. K is the number of search trajectories used to
generate K locally optimal tours. E is the edge matrix used to store the K locally
optimal tours. si is an initial tour generated by the function Initial_Tour(), which
can use any technique to construct the initial tour. sj is a locally optimal tour
generated by the function Local_Search(), which can use any local search tech-
nique. The function Update() updates the edge matrix E by recording the edge
configuration of tour sj into E. Finally, the function Exhausted_Search() searches
the matrix E completely using any enumerative search technique and outputs the
set of the found globally optimal tours, S ∗ . The search strategy behind the ABSS is
simple and effective: we first identify the small regions—the solution attractors—in
which the globally optimal tours are located, and then we search these small regions
completely to find the globally optimal tours. In this strategy, we avoid searching
the large unnecessary region of the solution space so that the search time is dra-
matically reduced. The ABSS shows strong features of effectiveness, flexibility,
adaptability, and scalability. It can be implemented in many different ways: serial or
parallel. The computational model in ABSS is inherently parallel and can support
the exploitation of massive parallelism. If the ABSS is implemented using proper
number of concurrent processors, it can deal with dynamic TSP in real time:

The critical element in the ABSS is the edge matrix E. Few search algorithms
have used the edge matrix E in their search processes. An edge is the most basic
element in a tour. It is a connection between two nodes and contains pieces of
information about n� 2ð Þ! tours that go through it. A tour is a list of ordered nodes
and has an edge configuration in the matrix E, as an example illustrated in Figure 3.
Each edge has an implicit probability to be selected by a locally optimal tour. The
edges in the matrix E can be divided into three groups: G-edges, globally superior

Figure 2.
The ABSS algorithm for the TSP.

33

Solution Attractor of Local Search System: A Method to Reduce Computational Complexity…
DOI: http://dx.doi.org/10.5772/intechopen.90521

search trajectory. The globally optimal tour s ∗ is the target point of a search
trajectory. Due to the constraint of the neighborhood search structure, a search
trajectory rarely reaches the target point and eventually stops at a locally optimal
tour s0. In a heuristic local search system, different initial points and randomness in
the search process lead to a complex search behavior and generate different search
trajectories. There are no two search trajectories that are exactly alike. Different
search trajectories explore different regions of the solution space and stop at differ-
ent final points. Since all search trajectories have the same target point, they move
toward the same direction and finally stop in the same target region in the solution
space. This target region is called the solution attractor, denoted as A. Roughly
speaking, the solution attractor of a local search system is a closed region of the
solution space toward which a search trajectory tends to evolve regardless of the
starting point. A solution attractor is the equilibrium level of the system dynamics.
At this level, all search trajectories will stop moving, and therefore the solution
attractor consists of all locally optimal tours. A single search trajectory typically
converges to either one of the points in the solution attractor. Since the globally
optimal tour is a special case of locally optimal tours, it is undoubtedly embodied in
the solution attractor, that is, s ∗ ∈A and A⊂ S. Figure 1 summaries the concepts of
search trajectories and solution attractor in a local search system. Illustrating search
trajectories and solution attractor of a local search system as 2-D object is a valid
metaphor for understanding how a local search system might proceed. The solution
attractor A of a local search system has the following properties [10–12]:

• Invariance, i.e., ∀s0 ∈A, f t s0ð Þ ¼ s0 and f t Að Þ ¼ A for all time t.

• Attractiveness, i.e., ∀si ∈ S, f t sið Þ∈A for sufficient time t.

• Convexity, i.e., all locally optimal tours in A are gathered in an extremely small
region of the solution space.

• Centrality, i.e., the best of these locally optimal tours (the globally optimal
tour) is located centrally with respect to the other locally optimal tours.

• Irreducibility, i.e., the solution attractor A contains a limit number of invariant
locally optimal tours.

In general term, for a TSP instance with h h≥ 1ð Þ optimal tours, the local search
system will have h solution attractors (A1,A2, … ,Ah) that attract all search trajec-
tories. Each of the solution attractors has its own set of locally optimal tours,

Figure 1.
Search trajectories and solution attractor in a local search system.

32

Novel Trends in the Traveling Salesman Problem

surrounding a globally optimal tour s ∗i i ¼ 1, 2, … , hð Þ. The search trajectories will
explore many different regions of the solution space and converge to these solution
attractors. A particular search trajectory will converge into one of these solution
attractors. The set of locally optimal tours generated by all search trajectories will be
distributed to these h solution attractors. According to dynamical systems theory
[9], the closure of an arbitrary union of attractors is still an attractor, that is, the
attractor of a local search system for a multimodal TSP is a complete collection of
solution attractors A ¼ A1∪A2∪…∪Ah and A⊂ S:

4. The attractor-based search system for TSP

Figure 2 presents the attractor-based search system (ABSS) for the TSP. In this
algorithm, Q is a given TSP instance. K is the number of search trajectories used to
generate K locally optimal tours. E is the edge matrix used to store the K locally
optimal tours. si is an initial tour generated by the function Initial_Tour(), which
can use any technique to construct the initial tour. sj is a locally optimal tour
generated by the function Local_Search(), which can use any local search tech-
nique. The function Update() updates the edge matrix E by recording the edge
configuration of tour sj into E. Finally, the function Exhausted_Search() searches
the matrix E completely using any enumerative search technique and outputs the
set of the found globally optimal tours, S ∗ . The search strategy behind the ABSS is
simple and effective: we first identify the small regions—the solution attractors—in
which the globally optimal tours are located, and then we search these small regions
completely to find the globally optimal tours. In this strategy, we avoid searching
the large unnecessary region of the solution space so that the search time is dra-
matically reduced. The ABSS shows strong features of effectiveness, flexibility,
adaptability, and scalability. It can be implemented in many different ways: serial or
parallel. The computational model in ABSS is inherently parallel and can support
the exploitation of massive parallelism. If the ABSS is implemented using proper
number of concurrent processors, it can deal with dynamic TSP in real time:

The critical element in the ABSS is the edge matrix E. Few search algorithms
have used the edge matrix E in their search processes. An edge is the most basic
element in a tour. It is a connection between two nodes and contains pieces of
information about n� 2ð Þ! tours that go through it. A tour is a list of ordered nodes
and has an edge configuration in the matrix E, as an example illustrated in Figure 3.
Each edge has an implicit probability to be selected by a locally optimal tour. The
edges in the matrix E can be divided into three groups: G-edges, globally superior

Figure 2.
The ABSS algorithm for the TSP.

33

Solution Attractor of Local Search System: A Method to Reduce Computational Complexity…
DOI: http://dx.doi.org/10.5772/intechopen.90521

edges, and bad edges. The edges that are contained in a globally optimal tour are
G-edges. A globally superior edge is the edge that is hit by many locally optimal
tours. Although each of these locally optimal tour selects this edge based on its own
neighborhood function and search path, the edge is globally superior because it is
selected by these tours from different search paths that go through different regions
of the solution space. Bad edges are the edges that are eventually discarded by all
search trajectories or selected by only few locally optimal tours. The edge configu-
ration of a locally optimal tour consists of some G-edges, some globally superior
edges and a few bad edges. Therefore, the edge matrix E is an exploitable data
structure that plays the following roles in the ABSS:

• It is a natural data structure that can store the edge configurations of search
trajectories and thus can visually demonstrate the asymptotic behavior of the
search trajectories during the search. When the search trajectories reach their
final points, it records the frequency of occurrence of each of the edges in the
locally optimal tours.

• It is an instrument that can alter the state of what we measure for the TSP. We
can change a tour-search process into an edge-search process, and thus the
problem of finding the optimal tour is converted into the problem of finding a
set of edges. The edge space represented by the edge matrix E is much simpler
and smaller than the solution space represented by the tours.

• It is a mechanism that can transform non-deterministic local search to
deterministic global search. Through the matrix E, we can see that the search
trajectories actually perform the process of edge inclusion and exclusion, and the
temporal evolution of the edge configuration matrix E generated by different
sets of K search trajectories always converges to the same small set of edges.

A search trajectory changes its edge configuration during the search process. Let
W be the total number of edges in the matrix E, α tð Þ the number of the common
edges that are hit by all search trajectories at time t, β tð Þ the number of the edges
that are hit by one or some of the search trajectories, and γ tð Þ the number of the
edges that have no hit from the search trajectories. Then at any time t, we have

W ¼ α tð Þ þ β tð Þ þ γ tð Þ (4)

Figure 3.
(a) Shows a 10-node tour and (b) shows its edge configuration in the matrix E.

34

Novel Trends in the Traveling Salesman Problem

For a given TSP instance, W is a constant value n n� 1ð Þ=2 for a symmetric
instance or n n� 1ð Þ for an asymmetric instance. We can expect that, as local search
process continues, the values for both α tð Þ and γ tð Þ will increase and value for β tð Þ
will decrease. Our experiments confirmed this inference about α tð Þ, β tð Þ, and γ tð Þ.
Figure 4 illustrates the curve patterns of α tð Þ, β tð Þ, and γ tð Þ. These curves cannot
increase or decrease forever, and they approach to constant values as the search
time continues, that is,

W ¼ lim
t!∞

α tð Þ þ lim
t!∞

β tð Þ þ lim
t!∞

γ tð Þ ¼ Aþ Bþ Γ (5)

This indicates that at certain point of time, the union of the edge configurations
of the search trajectories will become fixed. This aggregate edge configuration will
be the edge configuration of the solution attractor at limit.

When the matrix E records the edge configurations of K locally optimal tours,
the edges are partitioned into two sets: the edges with hit (hit edges) and the edges
without hit (non-hit edges). The hit edges include all globally superior edges, all G-
edges, and some bad edges. Figure 5 shows the composition of edges in the matrix E
after the edge configurations of K locally optimal tours are stored in it. The local
search process can quickly make large number of edges become the non-hit edges.
In our experiments, we found that the ration γ tð Þ=W exceeds 75% easily with short
search time for the symmetric TSP. This fact indicates that the edge configuration
of the solution attractor contains very small percentage of the edges. Therefore,
compared to the full solution space, the solution attractor is extremely small.

Figure 4.
The α tð Þ, β tð Þ, and γ tð Þ curves with search iterations.

Figure 5.
The composition of edges in the matrix E after the edge configurations of K locally optimal tours are stored.

35

Solution Attractor of Local Search System: A Method to Reduce Computational Complexity…
DOI: http://dx.doi.org/10.5772/intechopen.90521

edges, and bad edges. The edges that are contained in a globally optimal tour are
G-edges. A globally superior edge is the edge that is hit by many locally optimal
tours. Although each of these locally optimal tour selects this edge based on its own
neighborhood function and search path, the edge is globally superior because it is
selected by these tours from different search paths that go through different regions
of the solution space. Bad edges are the edges that are eventually discarded by all
search trajectories or selected by only few locally optimal tours. The edge configu-
ration of a locally optimal tour consists of some G-edges, some globally superior
edges and a few bad edges. Therefore, the edge matrix E is an exploitable data
structure that plays the following roles in the ABSS:

• It is a natural data structure that can store the edge configurations of search
trajectories and thus can visually demonstrate the asymptotic behavior of the
search trajectories during the search. When the search trajectories reach their
final points, it records the frequency of occurrence of each of the edges in the
locally optimal tours.

• It is an instrument that can alter the state of what we measure for the TSP. We
can change a tour-search process into an edge-search process, and thus the
problem of finding the optimal tour is converted into the problem of finding a
set of edges. The edge space represented by the edge matrix E is much simpler
and smaller than the solution space represented by the tours.

• It is a mechanism that can transform non-deterministic local search to
deterministic global search. Through the matrix E, we can see that the search
trajectories actually perform the process of edge inclusion and exclusion, and the
temporal evolution of the edge configuration matrix E generated by different
sets of K search trajectories always converges to the same small set of edges.

A search trajectory changes its edge configuration during the search process. Let
W be the total number of edges in the matrix E, α tð Þ the number of the common
edges that are hit by all search trajectories at time t, β tð Þ the number of the edges
that are hit by one or some of the search trajectories, and γ tð Þ the number of the
edges that have no hit from the search trajectories. Then at any time t, we have

W ¼ α tð Þ þ β tð Þ þ γ tð Þ (4)

Figure 3.
(a) Shows a 10-node tour and (b) shows its edge configuration in the matrix E.

34

Novel Trends in the Traveling Salesman Problem

For a given TSP instance, W is a constant value n n� 1ð Þ=2 for a symmetric
instance or n n� 1ð Þ for an asymmetric instance. We can expect that, as local search
process continues, the values for both α tð Þ and γ tð Þ will increase and value for β tð Þ
will decrease. Our experiments confirmed this inference about α tð Þ, β tð Þ, and γ tð Þ.
Figure 4 illustrates the curve patterns of α tð Þ, β tð Þ, and γ tð Þ. These curves cannot
increase or decrease forever, and they approach to constant values as the search
time continues, that is,

W ¼ lim
t!∞

α tð Þ þ lim
t!∞

β tð Þ þ lim
t!∞

γ tð Þ ¼ Aþ Bþ Γ (5)

This indicates that at certain point of time, the union of the edge configurations
of the search trajectories will become fixed. This aggregate edge configuration will
be the edge configuration of the solution attractor at limit.

When the matrix E records the edge configurations of K locally optimal tours,
the edges are partitioned into two sets: the edges with hit (hit edges) and the edges
without hit (non-hit edges). The hit edges include all globally superior edges, all G-
edges, and some bad edges. Figure 5 shows the composition of edges in the matrix E
after the edge configurations of K locally optimal tours are stored in it. The local
search process can quickly make large number of edges become the non-hit edges.
In our experiments, we found that the ration γ tð Þ=W exceeds 75% easily with short
search time for the symmetric TSP. This fact indicates that the edge configuration
of the solution attractor contains very small percentage of the edges. Therefore,
compared to the full solution space, the solution attractor is extremely small.

Figure 4.
The α tð Þ, β tð Þ, and γ tð Þ curves with search iterations.

Figure 5.
The composition of edges in the matrix E after the edge configurations of K locally optimal tours are stored.

35

Solution Attractor of Local Search System: A Method to Reduce Computational Complexity…
DOI: http://dx.doi.org/10.5772/intechopen.90521

Different sets of K search trajectories will generate a little different edge config-
uration in the matrix E. However, the underlying edge configuration of the solution
attractor in the matrix E is structurally stable because small differences in the final
edge configurations generated by different sets of K search trajectories do not mean
the qualitative difference in the dynamical behavior of search trajectories. The core
structure of the edge configuration of the solution attractor keeps unchanged. In our
experiments, we observed that in the aggregated edge configurations of the differ-
ent sets of K locally optimal tours, the set of globally superior edges and the G-edges
is always the same. This empirical fact indicates that a local search system actually
is a deterministic system. Although a single search trajectory appears stochastic,
there is an important aspect of order hidden in the local search system that makes
all different sets of K search trajectories converge to the same set of core edges.

5. Global optimization and computational complexity of ABSS

In order to make sure that the ABSS is an effective and efficient search system,
we should answer the following fundamental questions:

1.“How can we construct the edge configuration of the solution attractor
without large number of search trajectories?” that is, “What is a proper size
of K?”

2.What is the relationship between the size of the constructed solution attractor
and the size of the TSP instance?

3.How does the ABSS meet the requirements of a global optimization system?

4.Is the best tour in the solution attractor the best tour in the solution space?

It is easy to verify that the edge configuration of a true solution attractor can be
obtained if all search trajectories are performed and all search trajectories reach
their real locally optimal points. In other words, the probability of finding all
globally optimal points is one if all possible search trajectories are performed.
However, the required search effort may be very huge—equivalent to enumerating
all possibilities in the solution space. In fact, we can construct the edge configura-
tion of the solution attractor with a limited number of K locally optimal tours. In a
heuristic local search system, K search trajectories start a sample of initial points
from a uniform distribution over the solution space S and generate a sample of
locally optimal points uniformly distributed over the solution attractor A. The
fundamental theory behind using K search trajectories is the information theory.
According to the information theory [13], each solution point in the solution space
contains some information about its neighboring points that can be modeled as
mapping Ωsi : si ! R, called information or influence function, which is a decreasing
function of the spatial distance to the solution point si in the solution space. The
information function value of si is maximum at the point and decreases gradually
with the distance from that point. The notion of influence function has been used
extensively in data mining, data clustering, and pattern recognition. In a local
search system for the TSP, as one search trajectory is approaching to a locally
optimal tour, it shares more and more edges with other search trajectories and thus
collects more and more information about the other locally optimal tours and the
globally optimal tour. When K search trajectories reach their end points and record

36

Novel Trends in the Traveling Salesman Problem

their edge configurations in the matrix E, the aggregate edge configuration in the
matrix E is not just a countable union of the edge configurations of the K locally
optimal tours but also includes the edge configurations of all other locally optimal
tours. The essential motivation behind using the edge matrix E is that a collection of
K locally optimal tours is able to provide whole information about all locally optimal
tours and the matrix E is a tool that put all pieces of puzzles together to reveal the
edge configuration of the solution attractor. What is the proper number for K? In
our experiments, we found that K ¼ 6n is the magic number. The union of the edge
configurations of at most 6n random initial tours can generate the edge configura-
tion of the entire solution space (i.e., all cells of the matrix E can be hit by these
initial tours). The core structure (the set of the globally superior edges and the
G-edges) of the edge configuration of the constructed solution attractor becomes
unique and fixed when the number of search trajectories K ≥ 6n.

Another related question is “how many moves a local search trajectory has to
make before it reaches a real locally optimal tour?” So far we do not have an answer
to this question. We even do not know any nontrivial upper bounds on the number
of moves that may be needed to reach local optimality [14–17]. In practice, we are
rarely able to find a true locally optimal point because we simply do not allow the
local search process run enough long time. We usually let a search trajectory run a
predefined number of iterations, accept whatever solution it generates, and treat it
as a locally optimal solution. Therefore, the size of the constructed solution attractor
depends not only on the problem structure and the neighborhood function used in
the local search process but also on the amount of search time invested in the local
search process. If we spend more time in the local search process (t2>t1), the
resulting constructed solution attractor should be smaller (A2 <A1), as illustrated
in Figure 6.

Let MS be the edge configuration of the solution space S, MA the edge configu-
ration of the true solution attractor A, and f t the t-iterate of the search function f in
the local search process on K search trajectories, and then it follows easily thatMA is
equal to the intersection of the nested sequence of forward edge sets:

MS⊃ f MSð Þ…⊃ f t MSð Þ…⊃MA (6)

Therefore, at any search time t before the K search trajectories reach their true
end points, the edge configuration of the true solution attractor MA is always a
subset of the edge configuration of the constructed solution attractor f t MSð Þ, and
thus the constructed solution attractor is always larger than the true solution
attractor.

What is the relationship between the size of the constructed solution attractor
and the size of the given problem? So far there is no theoretical or analytical tool
available in the literature that can be used to answer this question. We have to
depend on empirical results to lend some insights. If the size of the constructed
attractor increases exponentially with the size of the problem increases, the ABSS
still does not fundamentally reduce the computational complexity of the problem.

Figure 6.
The size of a constructed solution attractor is also determined by the time spent in the local search process.

37

Solution Attractor of Local Search System: A Method to Reduce Computational Complexity…
DOI: http://dx.doi.org/10.5772/intechopen.90521

Different sets of K search trajectories will generate a little different edge config-
uration in the matrix E. However, the underlying edge configuration of the solution
attractor in the matrix E is structurally stable because small differences in the final
edge configurations generated by different sets of K search trajectories do not mean
the qualitative difference in the dynamical behavior of search trajectories. The core
structure of the edge configuration of the solution attractor keeps unchanged. In our
experiments, we observed that in the aggregated edge configurations of the differ-
ent sets of K locally optimal tours, the set of globally superior edges and the G-edges
is always the same. This empirical fact indicates that a local search system actually
is a deterministic system. Although a single search trajectory appears stochastic,
there is an important aspect of order hidden in the local search system that makes
all different sets of K search trajectories converge to the same set of core edges.

5. Global optimization and computational complexity of ABSS

In order to make sure that the ABSS is an effective and efficient search system,
we should answer the following fundamental questions:

1.“How can we construct the edge configuration of the solution attractor
without large number of search trajectories?” that is, “What is a proper size
of K?”

2.What is the relationship between the size of the constructed solution attractor
and the size of the TSP instance?

3.How does the ABSS meet the requirements of a global optimization system?

4.Is the best tour in the solution attractor the best tour in the solution space?

It is easy to verify that the edge configuration of a true solution attractor can be
obtained if all search trajectories are performed and all search trajectories reach
their real locally optimal points. In other words, the probability of finding all
globally optimal points is one if all possible search trajectories are performed.
However, the required search effort may be very huge—equivalent to enumerating
all possibilities in the solution space. In fact, we can construct the edge configura-
tion of the solution attractor with a limited number of K locally optimal tours. In a
heuristic local search system, K search trajectories start a sample of initial points
from a uniform distribution over the solution space S and generate a sample of
locally optimal points uniformly distributed over the solution attractor A. The
fundamental theory behind using K search trajectories is the information theory.
According to the information theory [13], each solution point in the solution space
contains some information about its neighboring points that can be modeled as
mapping Ωsi : si ! R, called information or influence function, which is a decreasing
function of the spatial distance to the solution point si in the solution space. The
information function value of si is maximum at the point and decreases gradually
with the distance from that point. The notion of influence function has been used
extensively in data mining, data clustering, and pattern recognition. In a local
search system for the TSP, as one search trajectory is approaching to a locally
optimal tour, it shares more and more edges with other search trajectories and thus
collects more and more information about the other locally optimal tours and the
globally optimal tour. When K search trajectories reach their end points and record

36

Novel Trends in the Traveling Salesman Problem

their edge configurations in the matrix E, the aggregate edge configuration in the
matrix E is not just a countable union of the edge configurations of the K locally
optimal tours but also includes the edge configurations of all other locally optimal
tours. The essential motivation behind using the edge matrix E is that a collection of
K locally optimal tours is able to provide whole information about all locally optimal
tours and the matrix E is a tool that put all pieces of puzzles together to reveal the
edge configuration of the solution attractor. What is the proper number for K? In
our experiments, we found that K ¼ 6n is the magic number. The union of the edge
configurations of at most 6n random initial tours can generate the edge configura-
tion of the entire solution space (i.e., all cells of the matrix E can be hit by these
initial tours). The core structure (the set of the globally superior edges and the
G-edges) of the edge configuration of the constructed solution attractor becomes
unique and fixed when the number of search trajectories K ≥ 6n.

Another related question is “how many moves a local search trajectory has to
make before it reaches a real locally optimal tour?” So far we do not have an answer
to this question. We even do not know any nontrivial upper bounds on the number
of moves that may be needed to reach local optimality [14–17]. In practice, we are
rarely able to find a true locally optimal point because we simply do not allow the
local search process run enough long time. We usually let a search trajectory run a
predefined number of iterations, accept whatever solution it generates, and treat it
as a locally optimal solution. Therefore, the size of the constructed solution attractor
depends not only on the problem structure and the neighborhood function used in
the local search process but also on the amount of search time invested in the local
search process. If we spend more time in the local search process (t2>t1), the
resulting constructed solution attractor should be smaller (A2 <A1), as illustrated
in Figure 6.

Let MS be the edge configuration of the solution space S, MA the edge configu-
ration of the true solution attractor A, and f t the t-iterate of the search function f in
the local search process on K search trajectories, and then it follows easily thatMA is
equal to the intersection of the nested sequence of forward edge sets:

MS⊃ f MSð Þ…⊃ f t MSð Þ…⊃MA (6)

Therefore, at any search time t before the K search trajectories reach their true
end points, the edge configuration of the true solution attractor MA is always a
subset of the edge configuration of the constructed solution attractor f t MSð Þ, and
thus the constructed solution attractor is always larger than the true solution
attractor.

What is the relationship between the size of the constructed solution attractor
and the size of the given problem? So far there is no theoretical or analytical tool
available in the literature that can be used to answer this question. We have to
depend on empirical results to lend some insights. If the size of the constructed
attractor increases exponentially with the size of the problem increases, the ABSS
still does not fundamentally reduce the computational complexity of the problem.

Figure 6.
The size of a constructed solution attractor is also determined by the time spent in the local search process.

37

Solution Attractor of Local Search System: A Method to Reduce Computational Complexity…
DOI: http://dx.doi.org/10.5772/intechopen.90521

The ABSS consists of two search phases: the local search phase that construct the
solution attractor (from line 5 to line 10 in the ABSS algorithm) and the exhausted
search phase that find the best tour in the solution attractor (line 11). For the TSP,
the solution space can be represented by a search tree. The local search phase
actually performs the task of pruning off the edges that cannot possibly be included
in the globally optimal tours. When the first edge is discarded by all K search
trajectories, n� 2ð Þ! tours that go through this edge are excluded in the search space
of the exhausted search phase. Each time an edge is removed, the search space of
the exhausted search phase is reduced by a factor. In such a way, the number of
combinatorial branching possibilities for the exhausted search can be exponentially
reduced. Decades of research and empirical evidence have found that heuristic local
search algorithms converge very quickly, within low-order polynomial time [14].
When majority of the edges are removed, a huge number of possible tours in the
solution space are removed from consideration in the exhausted search phase. In
this way, the computational complexity of the problem is significantly reduced. In
our experiments, the local search process can remove over 70% of edges in the
matrix E in a number of iterations bounded by a linear polynomial time. Therefore,
the local search phase in the ABSS can be done in O n2ð Þ. Figure 7 shows the result of
one of our experiments. All other similar experiments reveal the same pattern. All
our experiments used the 2-opt local search technique because the 2-opt has the
smallest expected number of local optima [14]. The experiments were carried out
on a PC with 2.60 GHz Intel® Core(TM)i7-3687U CPU, running under Microsoft
Windows 7 Enterprise. The ABSS algorithm was coded in Microsoft Visual Basic
2012. In this experiment, we generated 10 unimodal TSP instances in the size from
1000 to 10,000 nodes with 1000-node increment. For each instance, the search
system generated k ¼ 6n search trajectories. First, we let each search trajectory stop
when no improvement was made during 10,000 iterations, no matter the size of the
problem (viz., fixed search time). We counted the number of tours in the
constructed solution attractor for each instance. Next we ran the search system
again on these instances. This time we made each search trajectory stop when no
improvement was made during 10n iterations (varied search time 1) and 100n
iterations (varied search time 2), respectively. Then we counted the number of

Figure 7.
The relationship between the size of the constructed solution attractor and the size of the problem.

38

Novel Trends in the Traveling Salesman Problem

tours in the constructed solution attractor for each instance. As illustrated in the
chart of Figure 7, all curves appear to be linear, and the varied-search-time curves
have much flatter slope because longer local search time leads a smaller solution
attractor.

After the local search phase, majority of unnecessary branches have been cut off
from the search tree. Usually, when using tree search enumerative algorithm, the
effective branching factor is used to measure the computing complexity of the
algorithm. An effective branching factorb ∗ is the number of successors generated by a
typical node for a given search tree problem. We use the following definition to
calculate effective branding factor b ∗ in the exhausted search phase:

N ¼ b ∗þ b ∗ð Þ2 þ … þ b ∗ð Þn (7)

where N is total number of nodes generated from the origin node and n is the
size of the TSP instance, representing the depth of the tree. We conducted several
experiments on different TSP instances. The tree search process always starts from
node 1 (the first row of the matrix E). N is the total number of nodes that are
processed to construct all valid and invalid tours in the matrix E from the node 1. N
does not count the node 1 (the origin node), but includes node 1 as the end node of a
valid tour. Figure 8 shows the result of one experiment, using the same instances
and setting reported in Figure 7. The effective branching factors in all our experi-
ments are very small, all less than 2. This result indicates that the edge configuration
of the solution attractor presents a tree with extremely sparse branches, and the
degree of sparseness does not change as the problem size increases if we properly
increase local search time for a larger instance. It also indicates that the exhausted
search phase is polynomial time if we polynomially increase local search time for
larger instances. Therefore, the tree represented by the edge configuration of the
constructed solution attractor has a manageable size that can be searched
completely in O n2ð Þ.

The ABSS is a global optimization system. The goal of a global optimization
system is to find all absolute best solutions in the solution space. There are two
major tasks in a global optimization system: (1) finding all globally optimal points in
the solution space and (2) making sure that they are globally optimal. To complete
these tasks, the global optimization system should meet the following requirements:
(1) its search behavior should be globally convergent, (2) it should be deterministic

Figure 8.
The b ∗ values for different problem size n.

39

Solution Attractor of Local Search System: A Method to Reduce Computational Complexity…
DOI: http://dx.doi.org/10.5772/intechopen.90521

The ABSS consists of two search phases: the local search phase that construct the
solution attractor (from line 5 to line 10 in the ABSS algorithm) and the exhausted
search phase that find the best tour in the solution attractor (line 11). For the TSP,
the solution space can be represented by a search tree. The local search phase
actually performs the task of pruning off the edges that cannot possibly be included
in the globally optimal tours. When the first edge is discarded by all K search
trajectories, n� 2ð Þ! tours that go through this edge are excluded in the search space
of the exhausted search phase. Each time an edge is removed, the search space of
the exhausted search phase is reduced by a factor. In such a way, the number of
combinatorial branching possibilities for the exhausted search can be exponentially
reduced. Decades of research and empirical evidence have found that heuristic local
search algorithms converge very quickly, within low-order polynomial time [14].
When majority of the edges are removed, a huge number of possible tours in the
solution space are removed from consideration in the exhausted search phase. In
this way, the computational complexity of the problem is significantly reduced. In
our experiments, the local search process can remove over 70% of edges in the
matrix E in a number of iterations bounded by a linear polynomial time. Therefore,
the local search phase in the ABSS can be done in O n2ð Þ. Figure 7 shows the result of
one of our experiments. All other similar experiments reveal the same pattern. All
our experiments used the 2-opt local search technique because the 2-opt has the
smallest expected number of local optima [14]. The experiments were carried out
on a PC with 2.60 GHz Intel® Core(TM)i7-3687U CPU, running under Microsoft
Windows 7 Enterprise. The ABSS algorithm was coded in Microsoft Visual Basic
2012. In this experiment, we generated 10 unimodal TSP instances in the size from
1000 to 10,000 nodes with 1000-node increment. For each instance, the search
system generated k ¼ 6n search trajectories. First, we let each search trajectory stop
when no improvement was made during 10,000 iterations, no matter the size of the
problem (viz., fixed search time). We counted the number of tours in the
constructed solution attractor for each instance. Next we ran the search system
again on these instances. This time we made each search trajectory stop when no
improvement was made during 10n iterations (varied search time 1) and 100n
iterations (varied search time 2), respectively. Then we counted the number of

Figure 7.
The relationship between the size of the constructed solution attractor and the size of the problem.

38

Novel Trends in the Traveling Salesman Problem

tours in the constructed solution attractor for each instance. As illustrated in the
chart of Figure 7, all curves appear to be linear, and the varied-search-time curves
have much flatter slope because longer local search time leads a smaller solution
attractor.

After the local search phase, majority of unnecessary branches have been cut off
from the search tree. Usually, when using tree search enumerative algorithm, the
effective branching factor is used to measure the computing complexity of the
algorithm. An effective branching factorb ∗ is the number of successors generated by a
typical node for a given search tree problem. We use the following definition to
calculate effective branding factor b ∗ in the exhausted search phase:

N ¼ b ∗þ b ∗ð Þ2 þ … þ b ∗ð Þn (7)

where N is total number of nodes generated from the origin node and n is the
size of the TSP instance, representing the depth of the tree. We conducted several
experiments on different TSP instances. The tree search process always starts from
node 1 (the first row of the matrix E). N is the total number of nodes that are
processed to construct all valid and invalid tours in the matrix E from the node 1. N
does not count the node 1 (the origin node), but includes node 1 as the end node of a
valid tour. Figure 8 shows the result of one experiment, using the same instances
and setting reported in Figure 7. The effective branching factors in all our experi-
ments are very small, all less than 2. This result indicates that the edge configuration
of the solution attractor presents a tree with extremely sparse branches, and the
degree of sparseness does not change as the problem size increases if we properly
increase local search time for a larger instance. It also indicates that the exhausted
search phase is polynomial time if we polynomially increase local search time for
larger instances. Therefore, the tree represented by the edge configuration of the
constructed solution attractor has a manageable size that can be searched
completely in O n2ð Þ.

The ABSS is a global optimization system. The goal of a global optimization
system is to find all absolute best solutions in the solution space. There are two
major tasks in a global optimization system: (1) finding all globally optimal points in
the solution space and (2) making sure that they are globally optimal. To complete
these tasks, the global optimization system should meet the following requirements:
(1) its search behavior should be globally convergent, (2) it should be deterministic

Figure 8.
The b ∗ values for different problem size n.

39

Solution Attractor of Local Search System: A Method to Reduce Computational Complexity…
DOI: http://dx.doi.org/10.5772/intechopen.90521

and has a rigorous guarantee for finding all globally optimal solutions without
excessive computing burden, and (3) it should have a self-evident optimality
criterion.

In the ABSS, two different search phases have different search objectives. The
objective of the local search phase is “searching for most promising tours in the
solution space.” It tries to provide an answer to the question “In which small region
of the solution space is the best tour located?” The objective pursued by the
exhausted search phase is “finding the best tour among the most promising tours.”
It tries to provide an answer to the question “In this small region, which tour is the
best one?” Putting these two objectives together, the ABSS tries to provide an
answer to the question “Which tour is the best tour in the solution space?”

The ABSS combines beautifully two crucial aspects in search: exploration and
exploitation. In the local search phase, K search trajectories explore the solution
space independently and individually to collect the edges for constructing the
solution attractor. The K search trajectories create and maintain diversity from
beginning to the end. Randomization in the local search process makes the local
search process become a randomized process. A search trajectory changes its edge
configuration according to the objective function and its neighborhood structure.
The local search phase actually uses the Monte Carlo simulation to sample locally
optimal tours. Monte Carlo simulation is defined as simulations used to model the
probability of different outcomes in a process that cannot easily be predicted due to
intervention of random variables. The essential idea of Monte Carlo method is to
use randomness to solve problems that might be deterministic in principle. In the
ABSS, K search trajectories start a sample of initial tours from uniform distribution
over the solution space and, through a randomized local search process, generate a
sample of locally optimal tours that are uniformly distributed in the constructed
solution attractor. Therefore the edge configuration of the solution attractor is
constructed through this Monte Carlo sampling process. The distribution of the hit
edges in the matrix E converges to a small set of edges, and the set of the edges is
statistically fixed. This fixed edge configuration is not sensitive to the selection of
K search trajectories. Convergence and stability are two desirable properties of the
solution attractor: all search trajectories will converge to the solution attractor and
remain there forever. The ability of K search trajectories to explore the entire
solution space and thus collect all globally superior edges and G-edges can help the
ABSS achieve its required function—finding all globally optimal tours.

The global convergence and deterministic property of the search trajectories
make the ABSS converge in solution, that is, the ABSS always find the same set of
the best tours. This argument was empirically confirmed in our experiments. For a
given TSP instance, we repeated the same search process on the same instance many
times, each time using a different set of K search trajectories, and the search system
always generates the same set of the best tours in all trials. Table 1 shows the result
of one experiment. This experiment generated two TSP instances Q1 and Q2 with
n1 ¼ 1000 and n2 ¼ 10000 nodes. The ABSS ran each instance 15 times, each time
using a different set of K ¼ 6n search trajectories. The ABSS found the same single
best tour in all 15 trials for Q1 and the same set of three best tours in all 15 trials for
Q2. The three best tours for Q2 have the same cost value but with different edge
configurations. It is clear that Q1 is a unimodal TSP instance and Q2 is a multimodal
instance having three optimal tours in its solution space. If any trial had generated a
different set of the best tours, we could immediately make a conclusion that the best
tours in the constructed solution attractor may not be the globally optimal tours.
From the experimental and practical perspective, the fact that the same set of the
best tours was detected in all trials provides a significant empirical evidence of the
optimality of these tours.

40

Novel Trends in the Traveling Salesman Problem

One factor that makes the TSP difficult to solve is that we have not found a
simple optimality criterion to decide whether or not a locally optimal tour is also a
globally optimal tour. Selecting the best tour among a set of tours and knowing it is
the best one are the full challenges of the TSP. A brute-force algorithm that sorts
through all tours in the solution space can be certain that it meets the challenge.
However, it lacks practical efficiency. For a TSP instance, there are an unknown
number of globally and locally optimal tours. The ABSS uses a simple and practical
optimality criterion: the best tours in the set of all locally optimal tours are the
globally optimal tour. In fact, this criterion is the necessary and sufficient condition
for a locally optimal tour to be a globally optimal tour. In the ABSS, the local search
phase identifies the solution attractor, and no tour outside the solution attractor can
be better than any tour inside. Then the exhausted search phase examines all tours
in the solution attractor and finds the best tours. In fact, this optimality criterion
describes how the ABSS models and solves the TSP.

For a tour si ∈ S, its neighborhood N sið Þ⊂ S is defined, consisting of all tours that
can be reached from si in one single transition. A locally optimal tour s0 satisfies
f s0ð Þ≤ f sð Þ for all s∈ S∩N s0ð Þ. A solution attractor A consists of all locally optimal
tours. A best tour s ∗ in a solution attractor satisfies f s ∗ð Þ< f s0ð Þ for all s0 ∈A: The
best tour s ∗ ∈A satisfies the following conditions, which allow the propagation of

Trial # Number of tours in A Range of tour cost Number of best tours in A

1000 nodes (Q1) (6000 initial tours)

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15

5,703,833
5,703,785
5,703,479
5,703,829
5,703,868
5,703,499
5,703,253
5,703,791
5,703,742
5,703,990
5,703,637
5,703,457
5,703,642
5,703,626
5,703,727

[3926, 4437]
[3926, 4521]
[3926, 4509]
[3926, 4495]
[3926, 4540]
[3926, 4500]
[3926, 4556]
[3926, 4488]
[3926, 4498]
[3926, 4551]
[3926, 4526]
[3926, 4536]
[3926, 4534]
[3926, 4546]
[3926, 4522]

1
1
1
1
1
1
1
1
1
1
1
1
1
1
1

10,000 nodes (Q2) (60,000 initial tours)

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15

9,428,645
9,428,571
9,428,032
9,429,004
9,428,625
9,428,819
9,428,815
9,429,021
9,428,950
9,428,847
9,428,749
9,428,978
9,428,767
9,428,933
9,428,799

[81,967, 85,287]
[81,967, 84,979]
[81,967, 85,286]
[81,967, 85,365]
[81,967, 85,348]
[81,967, 85,345]
[81,967, 85,232]
[81,967, 85,254]
[81,967, 85,320]
[81,967, 85,286]
[81,967, 85,036]
[81,967, 85,248]
[81,967, 85,076]
[81,967, 85,223]
[81,967, 85,337]

3
3
3
3
3
3
3
3
3
3
3
3
3
3
3

Table 1.
Tours in solution attractor for 1000-node and 10,000-node TSP instances.

41

Solution Attractor of Local Search System: A Method to Reduce Computational Complexity…
DOI: http://dx.doi.org/10.5772/intechopen.90521

and has a rigorous guarantee for finding all globally optimal solutions without
excessive computing burden, and (3) it should have a self-evident optimality
criterion.

In the ABSS, two different search phases have different search objectives. The
objective of the local search phase is “searching for most promising tours in the
solution space.” It tries to provide an answer to the question “In which small region
of the solution space is the best tour located?” The objective pursued by the
exhausted search phase is “finding the best tour among the most promising tours.”
It tries to provide an answer to the question “In this small region, which tour is the
best one?” Putting these two objectives together, the ABSS tries to provide an
answer to the question “Which tour is the best tour in the solution space?”

The ABSS combines beautifully two crucial aspects in search: exploration and
exploitation. In the local search phase, K search trajectories explore the solution
space independently and individually to collect the edges for constructing the
solution attractor. The K search trajectories create and maintain diversity from
beginning to the end. Randomization in the local search process makes the local
search process become a randomized process. A search trajectory changes its edge
configuration according to the objective function and its neighborhood structure.
The local search phase actually uses the Monte Carlo simulation to sample locally
optimal tours. Monte Carlo simulation is defined as simulations used to model the
probability of different outcomes in a process that cannot easily be predicted due to
intervention of random variables. The essential idea of Monte Carlo method is to
use randomness to solve problems that might be deterministic in principle. In the
ABSS, K search trajectories start a sample of initial tours from uniform distribution
over the solution space and, through a randomized local search process, generate a
sample of locally optimal tours that are uniformly distributed in the constructed
solution attractor. Therefore the edge configuration of the solution attractor is
constructed through this Monte Carlo sampling process. The distribution of the hit
edges in the matrix E converges to a small set of edges, and the set of the edges is
statistically fixed. This fixed edge configuration is not sensitive to the selection of
K search trajectories. Convergence and stability are two desirable properties of the
solution attractor: all search trajectories will converge to the solution attractor and
remain there forever. The ability of K search trajectories to explore the entire
solution space and thus collect all globally superior edges and G-edges can help the
ABSS achieve its required function—finding all globally optimal tours.

The global convergence and deterministic property of the search trajectories
make the ABSS converge in solution, that is, the ABSS always find the same set of
the best tours. This argument was empirically confirmed in our experiments. For a
given TSP instance, we repeated the same search process on the same instance many
times, each time using a different set of K search trajectories, and the search system
always generates the same set of the best tours in all trials. Table 1 shows the result
of one experiment. This experiment generated two TSP instances Q1 and Q2 with
n1 ¼ 1000 and n2 ¼ 10000 nodes. The ABSS ran each instance 15 times, each time
using a different set of K ¼ 6n search trajectories. The ABSS found the same single
best tour in all 15 trials for Q1 and the same set of three best tours in all 15 trials for
Q2. The three best tours for Q2 have the same cost value but with different edge
configurations. It is clear that Q1 is a unimodal TSP instance and Q2 is a multimodal
instance having three optimal tours in its solution space. If any trial had generated a
different set of the best tours, we could immediately make a conclusion that the best
tours in the constructed solution attractor may not be the globally optimal tours.
From the experimental and practical perspective, the fact that the same set of the
best tours was detected in all trials provides a significant empirical evidence of the
optimality of these tours.

40

Novel Trends in the Traveling Salesman Problem

One factor that makes the TSP difficult to solve is that we have not found a
simple optimality criterion to decide whether or not a locally optimal tour is also a
globally optimal tour. Selecting the best tour among a set of tours and knowing it is
the best one are the full challenges of the TSP. A brute-force algorithm that sorts
through all tours in the solution space can be certain that it meets the challenge.
However, it lacks practical efficiency. For a TSP instance, there are an unknown
number of globally and locally optimal tours. The ABSS uses a simple and practical
optimality criterion: the best tours in the set of all locally optimal tours are the
globally optimal tour. In fact, this criterion is the necessary and sufficient condition
for a locally optimal tour to be a globally optimal tour. In the ABSS, the local search
phase identifies the solution attractor, and no tour outside the solution attractor can
be better than any tour inside. Then the exhausted search phase examines all tours
in the solution attractor and finds the best tours. In fact, this optimality criterion
describes how the ABSS models and solves the TSP.

For a tour si ∈ S, its neighborhood N sið Þ⊂ S is defined, consisting of all tours that
can be reached from si in one single transition. A locally optimal tour s0 satisfies
f s0ð Þ≤ f sð Þ for all s∈ S∩N s0ð Þ. A solution attractor A consists of all locally optimal
tours. A best tour s ∗ in a solution attractor satisfies f s ∗ð Þ< f s0ð Þ for all s0 ∈A: The
best tour s ∗ ∈A satisfies the following conditions, which allow the propagation of

Trial # Number of tours in A Range of tour cost Number of best tours in A

1000 nodes (Q1) (6000 initial tours)

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15

5,703,833
5,703,785
5,703,479
5,703,829
5,703,868
5,703,499
5,703,253
5,703,791
5,703,742
5,703,990
5,703,637
5,703,457
5,703,642
5,703,626
5,703,727

[3926, 4437]
[3926, 4521]
[3926, 4509]
[3926, 4495]
[3926, 4540]
[3926, 4500]
[3926, 4556]
[3926, 4488]
[3926, 4498]
[3926, 4551]
[3926, 4526]
[3926, 4536]
[3926, 4534]
[3926, 4546]
[3926, 4522]

1
1
1
1
1
1
1
1
1
1
1
1
1
1
1

10,000 nodes (Q2) (60,000 initial tours)

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15

9,428,645
9,428,571
9,428,032
9,429,004
9,428,625
9,428,819
9,428,815
9,429,021
9,428,950
9,428,847
9,428,749
9,428,978
9,428,767
9,428,933
9,428,799

[81,967, 85,287]
[81,967, 84,979]
[81,967, 85,286]
[81,967, 85,365]
[81,967, 85,348]
[81,967, 85,345]
[81,967, 85,232]
[81,967, 85,254]
[81,967, 85,320]
[81,967, 85,286]
[81,967, 85,036]
[81,967, 85,248]
[81,967, 85,076]
[81,967, 85,223]
[81,967, 85,337]

3
3
3
3
3
3
3
3
3
3
3
3
3
3
3

Table 1.
Tours in solution attractor for 1000-node and 10,000-node TSP instances.

41

Solution Attractor of Local Search System: A Method to Reduce Computational Complexity…
DOI: http://dx.doi.org/10.5772/intechopen.90521

the minimum properties of s ∗ in the solution attractor A to the whole solution space
S, that is, f s ∗ ∈Að Þ< f sð Þ for all s∈ S:

1. f s0ð Þ≤ f sð Þ for all s∈ S∩N s0ð Þ

2.A∋s0 for all s0 ∈ S

3. f s ∗ ∈Að Þ< f s0ð Þ for all s0 ∈A

4. min
s∈ S

f sð Þ ¼ min
s∈A

f sð Þ

5. lim
t!∞

f s ∗ð Þ ¼ s ∗

6. Conclusions

For the TSP, the computational complexity is associated with the combinatorial
explosion of potential solutions in the solution space. If we accept the argument that
the number of tours in the solution space indicates the difficulty of the TSP, then
the fact that the solution space can be significantly reduced to a small solution
attractor means that the difficulty of the TSP can be dramatically reduced. The
novel perspective of solution attractor in a local search system for the TSP gives us
an opportunity to overcome combinatorial complexity. The solution attractor shows
us where the best tour can be found in the solution space. If we concentrate the
exhausted search effort in this much smaller region, the number of possibilities in
search space is no longer prohibitive. Our experiments showed that the ABSS can
significantly reduce the computational complexity for the TSP and thus can solve
the TSP much efficiently with global optimality guarantee. The ABSS is an obvious
finite algorithm in computing complexity of O n2ð Þ and space requirement of O n2ð Þ
for the TSP. This suggests that the TSP might not be as complex as we might have
expected.

The edge matrix E is the data structure that is defined by the TSP naturally and is
used in the ABSS to separate the solution attractor from the entire solution space. In
the ABSS, the combination of an efficient local search process, a powerful data
structure (the matrix E), and an exhausted search process provides a highly effec-
tive and efficient search system. If some other NP-hard problems have the same
nice data structure that can be used to reduce the search space, these problems can
also be solved in polynomial time.

This chapter focuses on the solution attractor of the local search system for the
TSP. Does it appear to be technical archetypes for other combinatorial optimization
problems? Each optimization problem has its own specifics and data structure. In
order to fully understand the search process for a particular problem, we must put
our attention to the data structure that is defined by the problem. The combination
of a proper data structure and simple search strategy can make the highly complex
solution space become tractable and lead to more knowledge about the problem and
provide opportunities for new algorithmic designs.

The TSP is the most prominent problem in NP-hard problems. It is hoped that
this chapter will serve as a pioneer in this field and bring more and better works
from other researchers and practitioners. The ultimate goal of this chapter is to
encourage readers to take up their own pursuit of interesting problem-by-problem
methods for attacking diverse optimization problems.

42

Novel Trends in the Traveling Salesman Problem

The solution attractor theory provides some important insights into the power of
efficient computations and a line of reasoning that may lead to a proof in the near
future about P vs. NP problem. The P vs. NP problem is an important computa-
tional issue in nearly every scientific discipline [18]. It is about how efficient we can
search through a huge number of possibilities. Computational complexity theory
suggests that there are limits of the power of general-purpose optimization tech-
niques. Majority of people are in favor of P 6¼ NP because we totally lack funda-
mental progress in the area of enumerative search [19]. What are these limits? If we
design a search algorithm that fully utilizes the natural structure of the problem,
like the edge matrix E of the TSP, we may be able to remove some constraint on
our road.

Author details

Weiqi Li
University of Michigan – Flint, Flint, USA

*Address all correspondence to: weli@umich.edu

©2019 TheAuthor(s). Licensee IntechOpen. This chapter is distributed under the terms
of theCreativeCommonsAttribution License (http://creativecommons.org/licenses/
by/3.0),which permits unrestricted use, distribution, and reproduction in anymedium,
provided the original work is properly cited.

43

Solution Attractor of Local Search System: A Method to Reduce Computational Complexity…
DOI: http://dx.doi.org/10.5772/intechopen.90521

the minimum properties of s ∗ in the solution attractor A to the whole solution space
S, that is, f s ∗ ∈Að Þ< f sð Þ for all s∈ S:

1. f s0ð Þ≤ f sð Þ for all s∈ S∩N s0ð Þ

2.A∋s0 for all s0 ∈ S

3. f s ∗ ∈Að Þ< f s0ð Þ for all s0 ∈A

4. min
s∈ S

f sð Þ ¼ min
s∈A

f sð Þ

5. lim
t!∞

f s ∗ð Þ ¼ s ∗

6. Conclusions

For the TSP, the computational complexity is associated with the combinatorial
explosion of potential solutions in the solution space. If we accept the argument that
the number of tours in the solution space indicates the difficulty of the TSP, then
the fact that the solution space can be significantly reduced to a small solution
attractor means that the difficulty of the TSP can be dramatically reduced. The
novel perspective of solution attractor in a local search system for the TSP gives us
an opportunity to overcome combinatorial complexity. The solution attractor shows
us where the best tour can be found in the solution space. If we concentrate the
exhausted search effort in this much smaller region, the number of possibilities in
search space is no longer prohibitive. Our experiments showed that the ABSS can
significantly reduce the computational complexity for the TSP and thus can solve
the TSP much efficiently with global optimality guarantee. The ABSS is an obvious
finite algorithm in computing complexity of O n2ð Þ and space requirement of O n2ð Þ
for the TSP. This suggests that the TSP might not be as complex as we might have
expected.

The edge matrix E is the data structure that is defined by the TSP naturally and is
used in the ABSS to separate the solution attractor from the entire solution space. In
the ABSS, the combination of an efficient local search process, a powerful data
structure (the matrix E), and an exhausted search process provides a highly effec-
tive and efficient search system. If some other NP-hard problems have the same
nice data structure that can be used to reduce the search space, these problems can
also be solved in polynomial time.

This chapter focuses on the solution attractor of the local search system for the
TSP. Does it appear to be technical archetypes for other combinatorial optimization
problems? Each optimization problem has its own specifics and data structure. In
order to fully understand the search process for a particular problem, we must put
our attention to the data structure that is defined by the problem. The combination
of a proper data structure and simple search strategy can make the highly complex
solution space become tractable and lead to more knowledge about the problem and
provide opportunities for new algorithmic designs.

The TSP is the most prominent problem in NP-hard problems. It is hoped that
this chapter will serve as a pioneer in this field and bring more and better works
from other researchers and practitioners. The ultimate goal of this chapter is to
encourage readers to take up their own pursuit of interesting problem-by-problem
methods for attacking diverse optimization problems.

42

Novel Trends in the Traveling Salesman Problem

The solution attractor theory provides some important insights into the power of
efficient computations and a line of reasoning that may lead to a proof in the near
future about P vs. NP problem. The P vs. NP problem is an important computa-
tional issue in nearly every scientific discipline [18]. It is about how efficient we can
search through a huge number of possibilities. Computational complexity theory
suggests that there are limits of the power of general-purpose optimization tech-
niques. Majority of people are in favor of P 6¼ NP because we totally lack funda-
mental progress in the area of enumerative search [19]. What are these limits? If we
design a search algorithm that fully utilizes the natural structure of the problem,
like the edge matrix E of the TSP, we may be able to remove some constraint on
our road.

Author details

Weiqi Li
University of Michigan – Flint, Flint, USA

*Address all correspondence to: weli@umich.edu

©2019 TheAuthor(s). Licensee IntechOpen. This chapter is distributed under the terms
of theCreativeCommonsAttribution License (http://creativecommons.org/licenses/
by/3.0),which permits unrestricted use, distribution, and reproduction in anymedium,
provided the original work is properly cited.

43

Solution Attractor of Local Search System: A Method to Reduce Computational Complexity…
DOI: http://dx.doi.org/10.5772/intechopen.90521

References

[1] Ausiello G, Crescenzi P, Kann V,
Marchetti-sp G, Spaccamela M.
Complexity and Approximation:
Combinatorial Optimization Problems
and their Approximability Properties.
New York: Springer; 2003

[2] Rego C, Gamboa D, Glover F,
Osterman C. Traveling salesman
problem heuristics: Leading methods,
implementations and latest advances.
European Journal of Operational
Research. 2011;211:427-441

[3] Korte B, Vygen J. Combinatorial
Optimization: Theory and Algorithms.
New York: Springer; 2012

[4] Alligood KT, Sauer TD, Yorke JA.
Chaos: Introduction to Dynamical
System. New York: Springer; 2000

[5] Brin M, Stuck G. Introduction to
Dynamical Systems. Cambridge:
Cambridge University Press; 2016

[6] Brown RA. Modern Introduction to
Dynamical System. New York: Oxford
University Press; 2018

[7] Dénes A, Makay G. Attractors and
basins of dynamical systems. Electronic
Journal of Qualitative Theory of
Differential Equations. 2011;20:1-11

[8] Milnor J. On the concept of attractor.
Communications in Mathematical
Physics. 1985;99:177-195

[9] Milnor J. Collected Papers of
John Milnor VI: Dynamical Systems
(1953–2000). Washington, DC:
American Mathematical Society; 2010

[10] Li W. Dynamics of local search
trajectory in traveling salesman
problem. Journal of Heuristics. 2005;11:
507-524

[11] Li W, Feng M. The solution attractor
of local search in traveling salesman

problem: Concept, construction and
application. International Journal of
Metaheuristics. 2013;2:201-233

[12] Li W, Li X. The solution attractor of
local search in traveling salesman
problem (part 2): Computational study.
International Journal of Metaheuristics.
2019;7:93-126

[13] Shannon CE. A mathematical theory
of communication. Bell System
Technical Journal. 1948;27:623-656

[14] Aarts E, Lenstra JK. Local Search in
Combinatorial Optimization. Princeton:
Princeton University Press; 2003

[15] Chandra B, Karloff H, Tovey C. New
results on the old k-opt algorithm for
the traveling salesman problem. SIAM
Journal on Computing. 1999;28:
1998-2029

[16] Fischer ST. A note on the
complexity of local search problems.
Information Processing Letters. 1995;53:
69-75

[17] Grover LK. Local search and the
local structure of NP-complete
problems. Operations Research Letters.
1992;12:235-243

[18] Fortnow L. The Golden Ticket – P,
NP, and the Search for the Impossible.
Princeton: Princeton University Press;
2013

[19] Fortnow L. The status of the P
versus NP problem. Communications of
the ACM. 2009;52:78-86

44

Novel Trends in the Traveling Salesman Problem

Chapter 4

Accelerating DNA Computing via
PLP-qPCR Answer Read out to
Solve Traveling Salesman
Problems
Fusheng Xiong, Michael Kuby and Wayne D. Frasch

Abstract

An asymmetric, fully-connected 8-city traveling salesman problem (TSP) was
solved by DNA computing using the ordered node pair abundance (ONPA)
approach through the use of pair ligation probe quantitative real time polymerase
chain reaction (PLP-qPCR). The validity of using ONPA to derive the optimal
answer was confirmed by in silico computing using a reverse-engineering method to
reconstruct the complete tours in the feasible answer set from the measured ONPA.
The high specificity of the sequence-tagged hybridization, and ligation that results
from the use of PLPs significantly increased the accuracy of answer determination
in DNA computing. When combined with the high throughput efficiency of qPCR,
the time required to identify the optimal answer to the TSP was reduced from days
to 25 min.

Keywords: DNA computing, traveling salesman problem, ordered node pair
abundance, pair ligation probe-qPCR, PLP-qPCR

1. Introduction

The traveling salesman problem (TSP) computes the shortest route on the arcs
of a network that visits a given set of nodes (cities) before returning to the starting
point [1–6]. In many cases, in silico computers are incapable of quickly determining
an exact solution of these nondeterministic polynomial (NP) problems because a
linear increase in the number of variables leads to a factorial increase in the number
of potential solutions. Although advanced heuristic methods have increased the
ability of in silico computers to provide approximate answers to NP problems [7],
they lack the massive parallelism and data storage required to find exact solutions.
DNA computing, which uses the hybridization of DNA molecules as a means to
make computations [8–15], is particularly well-suited to solve computationally
intense NP problems such as the TSP because multiple sequences of DNA in a
solution can hybridize simultaneously, thereby performing massively parallel
computing.

Several technical limitations have prevented DNA computing from reaching
its full potential. Although the computation can occur within seconds, current

45

References

[1] Ausiello G, Crescenzi P, Kann V,
Marchetti-sp G, Spaccamela M.
Complexity and Approximation:
Combinatorial Optimization Problems
and their Approximability Properties.
New York: Springer; 2003

[2] Rego C, Gamboa D, Glover F,
Osterman C. Traveling salesman
problem heuristics: Leading methods,
implementations and latest advances.
European Journal of Operational
Research. 2011;211:427-441

[3] Korte B, Vygen J. Combinatorial
Optimization: Theory and Algorithms.
New York: Springer; 2012

[4] Alligood KT, Sauer TD, Yorke JA.
Chaos: Introduction to Dynamical
System. New York: Springer; 2000

[5] Brin M, Stuck G. Introduction to
Dynamical Systems. Cambridge:
Cambridge University Press; 2016

[6] Brown RA. Modern Introduction to
Dynamical System. New York: Oxford
University Press; 2018

[7] Dénes A, Makay G. Attractors and
basins of dynamical systems. Electronic
Journal of Qualitative Theory of
Differential Equations. 2011;20:1-11

[8] Milnor J. On the concept of attractor.
Communications in Mathematical
Physics. 1985;99:177-195

[9] Milnor J. Collected Papers of
John Milnor VI: Dynamical Systems
(1953–2000). Washington, DC:
American Mathematical Society; 2010

[10] Li W. Dynamics of local search
trajectory in traveling salesman
problem. Journal of Heuristics. 2005;11:
507-524

[11] Li W, Feng M. The solution attractor
of local search in traveling salesman

problem: Concept, construction and
application. International Journal of
Metaheuristics. 2013;2:201-233

[12] Li W, Li X. The solution attractor of
local search in traveling salesman
problem (part 2): Computational study.
International Journal of Metaheuristics.
2019;7:93-126

[13] Shannon CE. A mathematical theory
of communication. Bell System
Technical Journal. 1948;27:623-656

[14] Aarts E, Lenstra JK. Local Search in
Combinatorial Optimization. Princeton:
Princeton University Press; 2003

[15] Chandra B, Karloff H, Tovey C. New
results on the old k-opt algorithm for
the traveling salesman problem. SIAM
Journal on Computing. 1999;28:
1998-2029

[16] Fischer ST. A note on the
complexity of local search problems.
Information Processing Letters. 1995;53:
69-75

[17] Grover LK. Local search and the
local structure of NP-complete
problems. Operations Research Letters.
1992;12:235-243

[18] Fortnow L. The Golden Ticket – P,
NP, and the Search for the Impossible.
Princeton: Princeton University Press;
2013

[19] Fortnow L. The status of the P
versus NP problem. Communications of
the ACM. 2009;52:78-86

44

Novel Trends in the Traveling Salesman Problem

Chapter 4

Accelerating DNA Computing via
PLP-qPCR Answer Read out to
Solve Traveling Salesman
Problems
Fusheng Xiong, Michael Kuby and Wayne D. Frasch

Abstract

An asymmetric, fully-connected 8-city traveling salesman problem (TSP) was
solved by DNA computing using the ordered node pair abundance (ONPA)
approach through the use of pair ligation probe quantitative real time polymerase
chain reaction (PLP-qPCR). The validity of using ONPA to derive the optimal
answer was confirmed by in silico computing using a reverse-engineering method to
reconstruct the complete tours in the feasible answer set from the measured ONPA.
The high specificity of the sequence-tagged hybridization, and ligation that results
from the use of PLPs significantly increased the accuracy of answer determination
in DNA computing. When combined with the high throughput efficiency of qPCR,
the time required to identify the optimal answer to the TSP was reduced from days
to 25 min.

Keywords: DNA computing, traveling salesman problem, ordered node pair
abundance, pair ligation probe-qPCR, PLP-qPCR

1. Introduction

The traveling salesman problem (TSP) computes the shortest route on the arcs
of a network that visits a given set of nodes (cities) before returning to the starting
point [1–6]. In many cases, in silico computers are incapable of quickly determining
an exact solution of these nondeterministic polynomial (NP) problems because a
linear increase in the number of variables leads to a factorial increase in the number
of potential solutions. Although advanced heuristic methods have increased the
ability of in silico computers to provide approximate answers to NP problems [7],
they lack the massive parallelism and data storage required to find exact solutions.
DNA computing, which uses the hybridization of DNA molecules as a means to
make computations [8–15], is particularly well-suited to solve computationally
intense NP problems such as the TSP because multiple sequences of DNA in a
solution can hybridize simultaneously, thereby performing massively parallel
computing.

Several technical limitations have prevented DNA computing from reaching
its full potential. Although the computation can occur within seconds, current

45

applications of DNA computing are largely limited by time-consuming and
labor-intensive answer sorting and determination processes. For example, a gradi-
ent PCR procedure that involved a series of PCR reactions with a variety of primer
pair combinations was used to determine the solution to a 7-city directed
Hamiltonian circuit problem [8]. Other answer determination methods include
DNA sequencing [16], and denaturation temperature gradient-polymerase chain
reaction (DTG-PCR) associated with denaturing gradient gel electrophoresis
(DGGE) and/or temperature gradient gel electrophoresis (TGGE) [10, 17, 18].
Neither DNA sequencing nor DGDC/TGDC can be used to identify the optimal
answer to a TSP because the feasible answers represent both optimal and
suboptimal answers that differ only in the order in which the components were
ligated when the answers were formed, and are flanked by the sequences that
encode the start and end nodes. The dependence of the discriminatory powers of
DTG-PCR, DGGE, and TGGE on the diversity of oligonucleotide components,
especially the G and C content [19, 20] also limits their applicability for answer
determination of NP-complete problems.

Xiong et al. [12] developed the ordered node pair abundance (ONPA) approach
to identify the optimal answer of an asymmetric, fully-connected 15-city TSP, the
largest problem solved to date, using DNA computing. In that study, 20-mer DNA
sequences that specifically encoded the nodes and arcs in the network were added
to the reaction mixture in the presence of ligase. The sequence of each arc was
capable of linking two node sequences in a specific order via hybridization of the
last 10 bases of the prior node to the first 10 bases of the subsequent node. The
efficiency of each arc in the network was encoded as the concentration of DNA for
that arc using saturating concentrations of DNA for each node. Ligation of these
sequences then formed covalently linked ordered node pairs (ONPs) that assembled
into answer sequences representing tours through the network, such that the opti-
mal answer would be formed in greatest abundance.

The optimal answer to the 15-city TSP was identified by ONPA after infeasible
answer sequences were removed by electrophoresis and magnetic bead separation
[11, 12]. For each ONP examined by ONPA, probes were designed to hybridize to
the 30-end of the prior node and the 50-end of the subsequent node in the ordered
pair as well as a complementary pair for use in ligation chain reaction (LCR). Each
pair of probes was then subjected to the same number of LCR cycles in the presence
of an aliquot of answer sequences, and the relative abundance of LCR product was
quantified by PAGE band intensity. This was repeated for every possible combina-
tion of ONPs to identify the ones present in greatest abundance. Although this
provided a clear determination of the optimal answer, the accuracy and precision of
the computation were limited by the error inherent in determining DNA abundance
via bands in a PAGE gel and by the fact that LCR is an end-point assay. In addition,
the procedure required days to complete.

Quantitative real-time PCR (qPCR), which uses an increase in fluorescent signal
to monitor increases of PCR amplicons, has proven to be a fast, precise and repro-
ducible method to rapidly quantify the relative abundance of many nucleic acid
sequences. This results in part because qPCR is not an end-point assay. Instead, the
cycle at which a positive signal is first consistently detectable, termed the cycle
threshold (Ct), is proportional to the initial content of a given template in the
sample. Higher initial target contents give rise to earlier detectable increases in
signal, resulting in lower Ct values. Simultaneous amplifications of multiple DNA
targets in a single reaction tube can be achieved by multiplex qPCR, which maxi-
mizes throughput and decreases the time required to collect information. Ibrahim
et al. [21] reported a qPCR approach to readout answers to a Hamiltonian path
problem. However, the protocol required multiple combinations of qPCR

46

Novel Trends in the Traveling Salesman Problem

amplifications and was ultimately dependent upon the use of in silico information
processing to determine the answer.

Answer determination via a direct qPCR amplification of the entire length of
TSP answer sequences is impossible. This is due to the intra-molecular heterogene-
ity of answers sharing the same starting and the ending nodes, which are the same
limitations that eliminate the use of DTG-PCR. The application of qPCR for the
quantification of the short 20-mer sequences using ONPA for answer determination
of a TSP has also not been possible because standard PCR methodologies require
two DNA primers that flank the region of the DNA sequence to be amplified.
However, we developed a pair ligation probe (PLP)-dependent qPCR system (PLP-
qPCR) that is capable of rapidly quantifying the abundance of short DNA sequences
under the multiplex conditions [22]. Upon hybridization to its 20-mer target DNA,
the PLP becomes circularized by ligation. This allows the abundance of adjacent
short sequences in a DNA strand to be transformed into the copy number of
circularized PLP that can be amplified by qPCR.

We have now solved an asymmetric, fully-connected 8-city TSP by the ONPA
approach using PLP-qPCR without the need for in silico information processing. The
validity of using ONPA to derive the optimal answer was confirmed using a reverse-
engineering method to reconstruct the complete tours in the feasible answer set
from the measured ONPA. The high specificity of the sequence-tagged hybridiza-
tion and ligation that results from the use of PLPs significantly increased the accu-
racy of answer determination in DNA computing. When combined with the high
throughput efficiency of qPCR, the time required to identify the optimal answer to
the TSP was reduced from days to 25 min.

2. Materials and methods

2.1 Oligonucleotide design and construction

Oligonucleotide sequences were designed using Primer Express Version 2 for
Windows (Applied Biosystems) and were synthesized by Invitrogen Inc. Nodes
labeled B through H were represented by synthetic 20-mer sequences of DNA
except for the starting and ending nodes (Astart and Aend) that were comprised of
30-mers (Table 1). Node sequences were chosen to minimize cross hybridization,
and nodes B through H had a GC content from 30% to 35% such that melting points
varied from 60.6 to 62.0 °C, while the Astart and Aend sequences contained GC
contents of 66% and 72%, respectively. None of the arc sequences were comple-
mentary to the first 15-mer sequence for the Astart and the last 15-mer sequence for
the Aend. Thus, incorporation of Astart or Aend into an answer sequence prevented
further extension of that end of the answer sequence. The start and end sequences
also served as primer sequences for downstream amplification by PCR, which
provided the capability to increase the amount of answer sequences. The longer
Astart and Aend sequences with higher GC content were important for downstream
PCR amplification with enhanced fidelity and improved efficiency for answer puri-
fication. Any two node sequences could be linked together by a 20-mer arc
sequence composed of two 10-mers that were complementary to the last and first
10 nucleotides in the sequences of the former and latter nodes, respectively
(Figure 1). Arcs were made to complement every combination of nodes with the
exception of the respective 50 and 30 ends of Astart and Aend. Oligo sequences
(Table 2) designed for the PLP-mediated qPCR assay followed the protocol of
Xiong and Frasch [23]. All oligonucleotides were purified by PAGE under denatur-
ing conditions [12].

47

Accelerating DNA Computing via PLP-qPCR Answer Read out to Solve Traveling Salesman…
DOI: http://dx.doi.org/10.5772/intechopen.91663

applications of DNA computing are largely limited by time-consuming and
labor-intensive answer sorting and determination processes. For example, a gradi-
ent PCR procedure that involved a series of PCR reactions with a variety of primer
pair combinations was used to determine the solution to a 7-city directed
Hamiltonian circuit problem [8]. Other answer determination methods include
DNA sequencing [16], and denaturation temperature gradient-polymerase chain
reaction (DTG-PCR) associated with denaturing gradient gel electrophoresis
(DGGE) and/or temperature gradient gel electrophoresis (TGGE) [10, 17, 18].
Neither DNA sequencing nor DGDC/TGDC can be used to identify the optimal
answer to a TSP because the feasible answers represent both optimal and
suboptimal answers that differ only in the order in which the components were
ligated when the answers were formed, and are flanked by the sequences that
encode the start and end nodes. The dependence of the discriminatory powers of
DTG-PCR, DGGE, and TGGE on the diversity of oligonucleotide components,
especially the G and C content [19, 20] also limits their applicability for answer
determination of NP-complete problems.

Xiong et al. [12] developed the ordered node pair abundance (ONPA) approach
to identify the optimal answer of an asymmetric, fully-connected 15-city TSP, the
largest problem solved to date, using DNA computing. In that study, 20-mer DNA
sequences that specifically encoded the nodes and arcs in the network were added
to the reaction mixture in the presence of ligase. The sequence of each arc was
capable of linking two node sequences in a specific order via hybridization of the
last 10 bases of the prior node to the first 10 bases of the subsequent node. The
efficiency of each arc in the network was encoded as the concentration of DNA for
that arc using saturating concentrations of DNA for each node. Ligation of these
sequences then formed covalently linked ordered node pairs (ONPs) that assembled
into answer sequences representing tours through the network, such that the opti-
mal answer would be formed in greatest abundance.

The optimal answer to the 15-city TSP was identified by ONPA after infeasible
answer sequences were removed by electrophoresis and magnetic bead separation
[11, 12]. For each ONP examined by ONPA, probes were designed to hybridize to
the 30-end of the prior node and the 50-end of the subsequent node in the ordered
pair as well as a complementary pair for use in ligation chain reaction (LCR). Each
pair of probes was then subjected to the same number of LCR cycles in the presence
of an aliquot of answer sequences, and the relative abundance of LCR product was
quantified by PAGE band intensity. This was repeated for every possible combina-
tion of ONPs to identify the ones present in greatest abundance. Although this
provided a clear determination of the optimal answer, the accuracy and precision of
the computation were limited by the error inherent in determining DNA abundance
via bands in a PAGE gel and by the fact that LCR is an end-point assay. In addition,
the procedure required days to complete.

Quantitative real-time PCR (qPCR), which uses an increase in fluorescent signal
to monitor increases of PCR amplicons, has proven to be a fast, precise and repro-
ducible method to rapidly quantify the relative abundance of many nucleic acid
sequences. This results in part because qPCR is not an end-point assay. Instead, the
cycle at which a positive signal is first consistently detectable, termed the cycle
threshold (Ct), is proportional to the initial content of a given template in the
sample. Higher initial target contents give rise to earlier detectable increases in
signal, resulting in lower Ct values. Simultaneous amplifications of multiple DNA
targets in a single reaction tube can be achieved by multiplex qPCR, which maxi-
mizes throughput and decreases the time required to collect information. Ibrahim
et al. [21] reported a qPCR approach to readout answers to a Hamiltonian path
problem. However, the protocol required multiple combinations of qPCR

46

Novel Trends in the Traveling Salesman Problem

amplifications and was ultimately dependent upon the use of in silico information
processing to determine the answer.

Answer determination via a direct qPCR amplification of the entire length of
TSP answer sequences is impossible. This is due to the intra-molecular heterogene-
ity of answers sharing the same starting and the ending nodes, which are the same
limitations that eliminate the use of DTG-PCR. The application of qPCR for the
quantification of the short 20-mer sequences using ONPA for answer determination
of a TSP has also not been possible because standard PCR methodologies require
two DNA primers that flank the region of the DNA sequence to be amplified.
However, we developed a pair ligation probe (PLP)-dependent qPCR system (PLP-
qPCR) that is capable of rapidly quantifying the abundance of short DNA sequences
under the multiplex conditions [22]. Upon hybridization to its 20-mer target DNA,
the PLP becomes circularized by ligation. This allows the abundance of adjacent
short sequences in a DNA strand to be transformed into the copy number of
circularized PLP that can be amplified by qPCR.

We have now solved an asymmetric, fully-connected 8-city TSP by the ONPA
approach using PLP-qPCR without the need for in silico information processing. The
validity of using ONPA to derive the optimal answer was confirmed using a reverse-
engineering method to reconstruct the complete tours in the feasible answer set
from the measured ONPA. The high specificity of the sequence-tagged hybridiza-
tion and ligation that results from the use of PLPs significantly increased the accu-
racy of answer determination in DNA computing. When combined with the high
throughput efficiency of qPCR, the time required to identify the optimal answer to
the TSP was reduced from days to 25 min.

2. Materials and methods

2.1 Oligonucleotide design and construction

Oligonucleotide sequences were designed using Primer Express Version 2 for
Windows (Applied Biosystems) and were synthesized by Invitrogen Inc. Nodes
labeled B through H were represented by synthetic 20-mer sequences of DNA
except for the starting and ending nodes (Astart and Aend) that were comprised of
30-mers (Table 1). Node sequences were chosen to minimize cross hybridization,
and nodes B through H had a GC content from 30% to 35% such that melting points
varied from 60.6 to 62.0 °C, while the Astart and Aend sequences contained GC
contents of 66% and 72%, respectively. None of the arc sequences were comple-
mentary to the first 15-mer sequence for the Astart and the last 15-mer sequence for
the Aend. Thus, incorporation of Astart or Aend into an answer sequence prevented
further extension of that end of the answer sequence. The start and end sequences
also served as primer sequences for downstream amplification by PCR, which
provided the capability to increase the amount of answer sequences. The longer
Astart and Aend sequences with higher GC content were important for downstream
PCR amplification with enhanced fidelity and improved efficiency for answer puri-
fication. Any two node sequences could be linked together by a 20-mer arc
sequence composed of two 10-mers that were complementary to the last and first
10 nucleotides in the sequences of the former and latter nodes, respectively
(Figure 1). Arcs were made to complement every combination of nodes with the
exception of the respective 50 and 30 ends of Astart and Aend. Oligo sequences
(Table 2) designed for the PLP-mediated qPCR assay followed the protocol of
Xiong and Frasch [23]. All oligonucleotides were purified by PAGE under denatur-
ing conditions [12].

47

Accelerating DNA Computing via PLP-qPCR Answer Read out to Solve Traveling Salesman…
DOI: http://dx.doi.org/10.5772/intechopen.91663

2.2 Answer formation and purification

Hybridization was performed by heating the answer formation reaction medium
(AFRM) to 92°C for 4 min, followed by a programmed annealing process at a
cooling rate of 1°C per min to 8°C. The AFRM was composed of all relevant
oligonucleotides in T4 Ligase Buffer (Fermentas). Ligation was performed by incu-
bating at 8°C for �16 h after addition of 5 Weiss U of T4 ligase, 20 mM DTT, and
10 mM ATP to the AFRM.

Ligation products containing all answer sequences were separated by 6% dena-
turing PAGE containing 8 M urea and 15% formamide at 95 V for about 3 h. The gels
were visualized with UV light after staining with ethidium bromide (1 mg/ml) for
10 min. Fragment sizes were determined by comparison with mobility of a 20-bp
DNA ladder (Bayou BioLabs). The 190 bp band was excised from the gel that
contained sequences consistent in length to those of feasible answers (i.e.
containing one copy of each node sequence starting and ending with Astart and
Aend). These sequences were amplified by PCR using PCR primers for Astart and

Node Length Sequencea GC (%) TM (°C)

AS
e 30 TCTGCGGGCGGACAGACATGGTTAGCGGCCb,c 66 70.0

B 20 TTTACGTCTACCATATCTATd 30 61.2

C 20 ATAGCAACACTACATATGTC 35 61.6

D 20 TCGACTAATTCGTACTTATA 30 61.6

E 20 CCTGATACAAGTACTAAGTA 35 61.6

F 20 GCGTAAGGATATTTATACAA 30 61.6

G 20 GTTTGTTTAGTCCATCATTA 30 61.7

H 20 AGCATTATTTCTTCCAAATA 25 61.7

AE
e 30 CTACTGCCGCCGCCGGGTAGACGGCTCGGA 72 72.0

aAll sequences read in the 50 to 30 direction.
bBlue sequences can hybridize to the 30-ends of arc sequences.
cGreen sequences are unable to hybridize to arc sequences but serve as primer sequences for PCR.
dBlack sequences can hybridize to the 50-ends of arc sequences.
eAS is the sequence for node Astart; the AE is the sequence for the node Aend.

Table 1.
Node sequences used in the calculation.

Figure 1.
Graphical representation of the 8-city TSP solved by DNA computing. The optimal tour through the network
visits the nodes in alphabetical order. All other tours include arcs that are 100-fold less efficient, and cross at a
common point.

48

Novel Trends in the Traveling Salesman Problem

Aend, and subject to sequential magnetic affinity purification steps as reported by
Spetzler et al. [11, 12] to purify feasible answers.

2.3 Preparation of target-specific pair ligation probes

Each PLP consisted of one 55-mer core and two 10-mer target-specific sequences
that comprised the 50 and 30 arms located at ends of the core (Table 2). The core
sequence contained the forward (Pf 19-mer) and reverse (Pr 21-mer) PCR primer-
binding sequences, and a qPCR reporter-identifying sequence known as a TaqMan
spacer for use with the TaqMan-MGB® (Applied Biosystems) NED reporter dye
(λmax = 580 nm). The PLPs specific for each ONP in the answer sequences were
made from core and arm components by ligation as per Xiong and Frasch [23].

2.4 Circularization of the PLP and the qPCR assay

Aliquots of the purified answer sequences containing �2 pmol DNA were dena-
tured and annealed with 20 pM of linear PLP. The hybridized PLPs were circular-
ized by ligation at 10°C overnight. The ligation reaction mixture contained 2 μl of
10� ligation buffer (Fermentas), 50 mM DTT, and 5Weiss U of T4 DNA ligase, in a
final volume of 20 μl. After ligation, 2 μl of ligation product was added to 18 μl of the
exonuclease mixture that contained 10 mM Tris-HCl, pH 9.0, 5 mM MgCl2, 0.1 mg
per ml of BSA, 10 U Exonuclease I and 10 U Exonuclease III to remove any
remaining linear PLPs. The samples were incubated at 37°C for 2 h followed by
inactivation at 65°C for 20 min.

Quantitative real-time PCR (qPCR) assays were performed in a 96-well, closed
plate using the AB 7500 Fast RT-PCR System (Applied Biosystems). In a typical
qPCR assay, 20 μl of qPCR reaction mixture that contained 10 μl of 2� TaqMan®

Fast universal PCR Master Mix including the ROX fluorescent reporter as a passive
reference, 900 nM of each of the Pf and Pr primers, 0.25 μM of the NED

DNA sequence

qPCR reporter-identifying sequences

NED-TAqMan® spacer CGCGGATGTCGGTCAGCCGAGTCTACCCAGCGCGCCACTATCGCCATCAGGCAGC

TaqMan-MGB® reporter

NED NED-TCGCCATCAGGCAGC-MGBNFQ

Pair ligation arms for node recognition

50-B0 ATAGATATGG

50-D0 TATAAGTACG

50-F0 TTGTATAAAT

30-C″ GTGTTGCTAT

30-E″ TTGTATCAGG

30-G″ CTAAACAAAC

qPCR primers

Pr TAGACTCGGCTTGACCGACATCCGCG

Pf TCTACCCAGCGCGCCAC

Table 2.
Oligonucleotide sequences for the 50 and 30 arms of the pair ligation probes, the forward (Pf) and reverse (Pr)
primers, and the TaqMan reporters used for PLP-qPCR.

49

Accelerating DNA Computing via PLP-qPCR Answer Read out to Solve Traveling Salesman…
DOI: http://dx.doi.org/10.5772/intechopen.91663

2.2 Answer formation and purification

Hybridization was performed by heating the answer formation reaction medium
(AFRM) to 92°C for 4 min, followed by a programmed annealing process at a
cooling rate of 1°C per min to 8°C. The AFRM was composed of all relevant
oligonucleotides in T4 Ligase Buffer (Fermentas). Ligation was performed by incu-
bating at 8°C for �16 h after addition of 5 Weiss U of T4 ligase, 20 mM DTT, and
10 mM ATP to the AFRM.

Ligation products containing all answer sequences were separated by 6% dena-
turing PAGE containing 8 M urea and 15% formamide at 95 V for about 3 h. The gels
were visualized with UV light after staining with ethidium bromide (1 mg/ml) for
10 min. Fragment sizes were determined by comparison with mobility of a 20-bp
DNA ladder (Bayou BioLabs). The 190 bp band was excised from the gel that
contained sequences consistent in length to those of feasible answers (i.e.
containing one copy of each node sequence starting and ending with Astart and
Aend). These sequences were amplified by PCR using PCR primers for Astart and

Node Length Sequencea GC (%) TM (°C)

AS
e 30 TCTGCGGGCGGACAGACATGGTTAGCGGCCb,c 66 70.0

B 20 TTTACGTCTACCATATCTATd 30 61.2

C 20 ATAGCAACACTACATATGTC 35 61.6

D 20 TCGACTAATTCGTACTTATA 30 61.6

E 20 CCTGATACAAGTACTAAGTA 35 61.6

F 20 GCGTAAGGATATTTATACAA 30 61.6

G 20 GTTTGTTTAGTCCATCATTA 30 61.7

H 20 AGCATTATTTCTTCCAAATA 25 61.7

AE
e 30 CTACTGCCGCCGCCGGGTAGACGGCTCGGA 72 72.0

aAll sequences read in the 50 to 30 direction.
bBlue sequences can hybridize to the 30-ends of arc sequences.
cGreen sequences are unable to hybridize to arc sequences but serve as primer sequences for PCR.
dBlack sequences can hybridize to the 50-ends of arc sequences.
eAS is the sequence for node Astart; the AE is the sequence for the node Aend.

Table 1.
Node sequences used in the calculation.

Figure 1.
Graphical representation of the 8-city TSP solved by DNA computing. The optimal tour through the network
visits the nodes in alphabetical order. All other tours include arcs that are 100-fold less efficient, and cross at a
common point.

48

Novel Trends in the Traveling Salesman Problem

Aend, and subject to sequential magnetic affinity purification steps as reported by
Spetzler et al. [11, 12] to purify feasible answers.

2.3 Preparation of target-specific pair ligation probes

Each PLP consisted of one 55-mer core and two 10-mer target-specific sequences
that comprised the 50 and 30 arms located at ends of the core (Table 2). The core
sequence contained the forward (Pf 19-mer) and reverse (Pr 21-mer) PCR primer-
binding sequences, and a qPCR reporter-identifying sequence known as a TaqMan
spacer for use with the TaqMan-MGB® (Applied Biosystems) NED reporter dye
(λmax = 580 nm). The PLPs specific for each ONP in the answer sequences were
made from core and arm components by ligation as per Xiong and Frasch [23].

2.4 Circularization of the PLP and the qPCR assay

Aliquots of the purified answer sequences containing �2 pmol DNA were dena-
tured and annealed with 20 pM of linear PLP. The hybridized PLPs were circular-
ized by ligation at 10°C overnight. The ligation reaction mixture contained 2 μl of
10� ligation buffer (Fermentas), 50 mM DTT, and 5Weiss U of T4 DNA ligase, in a
final volume of 20 μl. After ligation, 2 μl of ligation product was added to 18 μl of the
exonuclease mixture that contained 10 mM Tris-HCl, pH 9.0, 5 mM MgCl2, 0.1 mg
per ml of BSA, 10 U Exonuclease I and 10 U Exonuclease III to remove any
remaining linear PLPs. The samples were incubated at 37°C for 2 h followed by
inactivation at 65°C for 20 min.

Quantitative real-time PCR (qPCR) assays were performed in a 96-well, closed
plate using the AB 7500 Fast RT-PCR System (Applied Biosystems). In a typical
qPCR assay, 20 μl of qPCR reaction mixture that contained 10 μl of 2� TaqMan®

Fast universal PCR Master Mix including the ROX fluorescent reporter as a passive
reference, 900 nM of each of the Pf and Pr primers, 0.25 μM of the NED

DNA sequence

qPCR reporter-identifying sequences

NED-TAqMan® spacer CGCGGATGTCGGTCAGCCGAGTCTACCCAGCGCGCCACTATCGCCATCAGGCAGC

TaqMan-MGB® reporter

NED NED-TCGCCATCAGGCAGC-MGBNFQ

Pair ligation arms for node recognition

50-B0 ATAGATATGG

50-D0 TATAAGTACG

50-F0 TTGTATAAAT

30-C″ GTGTTGCTAT

30-E″ TTGTATCAGG

30-G″ CTAAACAAAC

qPCR primers

Pr TAGACTCGGCTTGACCGACATCCGCG

Pf TCTACCCAGCGCGCCAC

Table 2.
Oligonucleotide sequences for the 50 and 30 arms of the pair ligation probes, the forward (Pf) and reverse (Pr)
primers, and the TaqMan reporters used for PLP-qPCR.

49

Accelerating DNA Computing via PLP-qPCR Answer Read out to Solve Traveling Salesman…
DOI: http://dx.doi.org/10.5772/intechopen.91663

TaqMan-MGB® reporter, and �2 ng of the circularized PLP were used to determine
the abundance of each ordered node pair. Thermal cycling profiles for qPCR included
heating at 95°C for 20s followed by 45 cycles with 95°C for 3s and 60°C for 30s.

During the PLP-qPCR assay, DNA amplification was monitored by quantitatively
analyzing fluorescence emissions using an ABI prism sequence detector. The inten-
sity of the NED reporter dye was measured against the ROX internal reference dye
signal to normalize for non-PCR-related fluorescence fluctuations that occurred
from well to well. The threshold cycle (Ct) represented the refraction cycle number
at which a positive amplification reaction was measured and was set at 10 times the
standard deviation of the mean baseline emission calculated from PCR cycle 5–15.

2.5 Linear programming (LP) model of tour frequency from ONPA data

The model is based on LP approaches to data fitting [24–27], and solves for the
tour frequencies Xt that best fit the observed ONPA Fij.

Minimize
X8
i¼1

X8
j¼1

dþij þ d�ij
� �

(1)

Subject to :
X5040
t¼1

htijXt þ dþij � d�ij ¼ Fij for all i, j (2)

Xt, d
þ
ij , d

�
ij ≥0 for all t, i, j (3)

where dþij = positive deviation from observed frequency of arc ij; d�ij = negative
deviation from observed frequency of arc ij; Xt = estimated frequency of tour t;
htij = 1, if tour t contains ONP ij; 0 otherwise; Fij = observed frequency of arc ij.

The number of possible tours t that begin and end with node A, and visit each
node only once is P7

7 = 7! = 5,040. Since the number of DNA molecules of tour t that
were made by the DNA computer were not explicitly measured, one Xt variable is
generated for each tour t, representing how many DNA molecules of tour t were
likely to have been made, given the ONPA. The goal was to solve for the best-fitting
values of Xt. Constraints 2 are written once for each ONP ij. The first expression on
the left-hand side of the constraint,

P5040
t¼1 htijXt, sums all occurrences of arc ijwithin

all tours t. Constraints 2 then add a positive deviation or error (dþij) and subtract a
negative deviation (d�ij) to the left-hand side and equate it to the observed ONPA Fij.
Thus, if there is no set of Xt values that can perfectly reproduce the observed ONPA,
the deviation variables are forced to take up any slack or surplus. The objective
function 1 minimizes the sum of the deviations so as to find the best-fitting tour
frequencies Xt for the observed ONPA Fij. The deviations are separated into positive
and negative components because linear programming cannot handle absolute
values explicitly. The deviation variables, like the tour frequency variables, are
constrained by 3 to be non-negative. If the deviation variables were permitted to be
either positive or negative, minimizing their sum would not provide a good fit
because the objective would reward large negative deviations pushed toward �∞.

3. Results

The computation to find the optimal solution to an asymmetric, fully-connected
8-city TSP was defined by the distance matrix in Table 3. The problem was

50

Novel Trends in the Traveling Salesman Problem

designed such that the alphabetical order of the nodes was the optimal tour
(Figures 1 and 2d). To accomplish this, the distances were translated into concen-
trations (1:1 pmol) of the arc sequences that connect the nodes in inverse proportion
to the distances (Table 3). These sequences were then hybridized with an excess of
all node sequences and ligated to form answer strands as summarized in Figure 2.
Node and arc sequences were asymmetric in design so that two node sequences
could become ligated in an order-specific manner to form an ordered node pair
(ONP). For example, to compute the formation of the BC-ONP, the last (30) and
first (50) halves of the sequences for nodes B and C hybridize to the first (30) and last
(50) halves of the BC arc oligonucleotide, respectively, which then permits ligase to
link them covalently.

Given that the concentration of arcs along the upper diagonal of the efficiency
matrix was 100-fold that of the other arcs, strands containing node sequences in
alphabetical order were anticipated to be produced in highest abundance. A com-
parable result was obtained previously using a similar approach to solve an asym-
metric, fully-connected 15-city TSP [10]. Consequently, this computational method
could be reliably used to examine the efficacy of PLP-qPCR in the answer determi-
nation step of a DNA computation.

A tour of the nodes was feasible, whether it was optimal or suboptimal, only if it
contained one copy of each node sequence flanked by the Astart and Aend sequences
(Figure 2d–f). Figure 3 shows a stepwise summary of the procedure used to make
the calculation. The PAGE profile of answer sequences at various stages of purifi-
cation is shown in Figure 4. Selective amplification of answer sequences flanked by
Astart and Aend (Lane 1) was achieved by PCR using primers specific for those
sequences (Figure 2a–f). This PCR product (Lane 2) included the 190-mer band
that was the size required for feasible answers (Figure 2c–f), which was then
subjected to sequential magnetic bead affinity purification for every node sequence.
This insured that all sequences used for answer analysis contained one and only
one copy of each node sequence, and thus represented Hamiltonian circuits through
the network. The purified sample composed only of answer DNA sequences for
feasible tours (i.e. Figure 2d–f) appeared as a single 190-mer band (Lane 3) that
was used to determine the optimal answer to the computation.

Prior Subsequent node

Node AS B C D E F G H AE

AS *a (0)b 1c (100)b 100 (1) 100 (1) 100 (1) 100 (1) 100 (1) 100 (1) 100 (1)

B * (0) * (0) 1 (100) 100 (1) 100 (1) 100 (1) 100 (1) 100 (1) 100 (1)

C * (0) 100 (1) * (0) 1 (100) 100 (1) 100 (1) 100 (1) 100 (1) 100 (1)

D * (0) 100 (1) 100 (1) * (0) 1 (100) 100 (1) 100 (1) 100 (1) 100 (1)

E * (0) 100 (1) 100 (1) 100 (1) * (0) 1 (100) 100 (1) 100 (1) 100 (1)

F * (0) 100 (1) 100 (1) 100 (1) 100 (1) * (0) 1 (100) 100 (1) 100 (1)

G * (0) 100 (1) 100 (1) 100 (1) 100 (1) 100 (1) * (0) 1 (100) 100 (1)

H * (0) 100 (1) 100 (1) 100 (1) 100 (1) 100 (1) 100 (1) * (0) 1 (100)

AE * (0) * (0) * (0) * (0) * (0) * (0) * (0) * (0) * (0)
aArc does not exist.
bpmoles of arc molecules input into a final volume of 56 μl are shown in parentheses.
cDistances.

Table 3.
Arc distance and corresponding concentration matrices used to make the computation.

51

Accelerating DNA Computing via PLP-qPCR Answer Read out to Solve Traveling Salesman…
DOI: http://dx.doi.org/10.5772/intechopen.91663

TaqMan-MGB® reporter, and �2 ng of the circularized PLP were used to determine
the abundance of each ordered node pair. Thermal cycling profiles for qPCR included
heating at 95°C for 20s followed by 45 cycles with 95°C for 3s and 60°C for 30s.

During the PLP-qPCR assay, DNA amplification was monitored by quantitatively
analyzing fluorescence emissions using an ABI prism sequence detector. The inten-
sity of the NED reporter dye was measured against the ROX internal reference dye
signal to normalize for non-PCR-related fluorescence fluctuations that occurred
from well to well. The threshold cycle (Ct) represented the refraction cycle number
at which a positive amplification reaction was measured and was set at 10 times the
standard deviation of the mean baseline emission calculated from PCR cycle 5–15.

2.5 Linear programming (LP) model of tour frequency from ONPA data

The model is based on LP approaches to data fitting [24–27], and solves for the
tour frequencies Xt that best fit the observed ONPA Fij.

Minimize
X8
i¼1

X8
j¼1

dþij þ d�ij
� �

(1)

Subject to :
X5040
t¼1

htijXt þ dþij � d�ij ¼ Fij for all i, j (2)

Xt, d
þ
ij , d

�
ij ≥0 for all t, i, j (3)

where dþij = positive deviation from observed frequency of arc ij; d�ij = negative
deviation from observed frequency of arc ij; Xt = estimated frequency of tour t;
htij = 1, if tour t contains ONP ij; 0 otherwise; Fij = observed frequency of arc ij.

The number of possible tours t that begin and end with node A, and visit each
node only once is P7

7 = 7! = 5,040. Since the number of DNA molecules of tour t that
were made by the DNA computer were not explicitly measured, one Xt variable is
generated for each tour t, representing how many DNA molecules of tour t were
likely to have been made, given the ONPA. The goal was to solve for the best-fitting
values of Xt. Constraints 2 are written once for each ONP ij. The first expression on
the left-hand side of the constraint,

P5040
t¼1 htijXt, sums all occurrences of arc ijwithin

all tours t. Constraints 2 then add a positive deviation or error (dþij) and subtract a
negative deviation (d�ij) to the left-hand side and equate it to the observed ONPA Fij.
Thus, if there is no set of Xt values that can perfectly reproduce the observed ONPA,
the deviation variables are forced to take up any slack or surplus. The objective
function 1 minimizes the sum of the deviations so as to find the best-fitting tour
frequencies Xt for the observed ONPA Fij. The deviations are separated into positive
and negative components because linear programming cannot handle absolute
values explicitly. The deviation variables, like the tour frequency variables, are
constrained by 3 to be non-negative. If the deviation variables were permitted to be
either positive or negative, minimizing their sum would not provide a good fit
because the objective would reward large negative deviations pushed toward �∞.

3. Results

The computation to find the optimal solution to an asymmetric, fully-connected
8-city TSP was defined by the distance matrix in Table 3. The problem was

50

Novel Trends in the Traveling Salesman Problem

designed such that the alphabetical order of the nodes was the optimal tour
(Figures 1 and 2d). To accomplish this, the distances were translated into concen-
trations (1:1 pmol) of the arc sequences that connect the nodes in inverse proportion
to the distances (Table 3). These sequences were then hybridized with an excess of
all node sequences and ligated to form answer strands as summarized in Figure 2.
Node and arc sequences were asymmetric in design so that two node sequences
could become ligated in an order-specific manner to form an ordered node pair
(ONP). For example, to compute the formation of the BC-ONP, the last (30) and
first (50) halves of the sequences for nodes B and C hybridize to the first (30) and last
(50) halves of the BC arc oligonucleotide, respectively, which then permits ligase to
link them covalently.

Given that the concentration of arcs along the upper diagonal of the efficiency
matrix was 100-fold that of the other arcs, strands containing node sequences in
alphabetical order were anticipated to be produced in highest abundance. A com-
parable result was obtained previously using a similar approach to solve an asym-
metric, fully-connected 15-city TSP [10]. Consequently, this computational method
could be reliably used to examine the efficacy of PLP-qPCR in the answer determi-
nation step of a DNA computation.

A tour of the nodes was feasible, whether it was optimal or suboptimal, only if it
contained one copy of each node sequence flanked by the Astart and Aend sequences
(Figure 2d–f). Figure 3 shows a stepwise summary of the procedure used to make
the calculation. The PAGE profile of answer sequences at various stages of purifi-
cation is shown in Figure 4. Selective amplification of answer sequences flanked by
Astart and Aend (Lane 1) was achieved by PCR using primers specific for those
sequences (Figure 2a–f). This PCR product (Lane 2) included the 190-mer band
that was the size required for feasible answers (Figure 2c–f), which was then
subjected to sequential magnetic bead affinity purification for every node sequence.
This insured that all sequences used for answer analysis contained one and only
one copy of each node sequence, and thus represented Hamiltonian circuits through
the network. The purified sample composed only of answer DNA sequences for
feasible tours (i.e. Figure 2d–f) appeared as a single 190-mer band (Lane 3) that
was used to determine the optimal answer to the computation.

Prior Subsequent node

Node AS B C D E F G H AE

AS *a (0)b 1c (100)b 100 (1) 100 (1) 100 (1) 100 (1) 100 (1) 100 (1) 100 (1)

B * (0) * (0) 1 (100) 100 (1) 100 (1) 100 (1) 100 (1) 100 (1) 100 (1)

C * (0) 100 (1) * (0) 1 (100) 100 (1) 100 (1) 100 (1) 100 (1) 100 (1)

D * (0) 100 (1) 100 (1) * (0) 1 (100) 100 (1) 100 (1) 100 (1) 100 (1)

E * (0) 100 (1) 100 (1) 100 (1) * (0) 1 (100) 100 (1) 100 (1) 100 (1)

F * (0) 100 (1) 100 (1) 100 (1) 100 (1) * (0) 1 (100) 100 (1) 100 (1)

G * (0) 100 (1) 100 (1) 100 (1) 100 (1) 100 (1) * (0) 1 (100) 100 (1)

H * (0) 100 (1) 100 (1) 100 (1) 100 (1) 100 (1) 100 (1) * (0) 1 (100)

AE * (0) * (0) * (0) * (0) * (0) * (0) * (0) * (0) * (0)
aArc does not exist.
bpmoles of arc molecules input into a final volume of 56 μl are shown in parentheses.
cDistances.

Table 3.
Arc distance and corresponding concentration matrices used to make the computation.

51

Accelerating DNA Computing via PLP-qPCR Answer Read out to Solve Traveling Salesman…
DOI: http://dx.doi.org/10.5772/intechopen.91663

To identify the optimal answer, the feasible answers (Figure 4, Lane 3) were
analyzed by the ONPA approach. This was accomplished using PLP-qPCR with the
56 PLPs that were specific to each of the possible ONPs. Each PLP was added to an
aliquot of the solution containing the answer set to prepare it for PLP-qPCR. Prep-
aration included the steps summarized in Figure 5 for the BC-PLP that was used to
detect the ONP in which the sequence encoding node B immediately precedes that
of node C in a tour. For the BC-ONP, the 50-arm of the PLP complementary to the
last 10 bases of sequence B (designated B0), and the 30-arm (designated C″) that
were complementary to the first 10 bases of sequence C were created [23]. The
hybridized PLP was circularized by ligase, after which the PLP was denatured from
the target strand and exonuclease was added to eliminate any DNA that had not
been circularized. Because the amount of circulated PLP was quantitatively related
to the initial content of a target, the target content used in the determination was
transformed into the copy number of the circularized PLPs. The presence of a qPCR
reporter-identification sequence, and PCR primers in the PLP enabled the use of
qPCR to measure the copy number.

Figure 6 shows the PLP-qPCR fluorescence amplification plots as a function of
cycle number that determines the amount of each possible ONP in the answer
sequences of the 8-city TSP. The ONPA was determined in groups according to the

Figure 2.
Protocol used to compute the 8-city TSP. Answers were formed by the addition of saturating amounts of all
nodes and limiting amounts of arcs in inverse proportion to their respective distance. Upon hybridization, nodes
and arcs were ligated to form answers. The ligation was accomplished in two stages to increase the probability of
forming feasible answers that contained a single copy of each node flanked by the start and end sequences.
Infeasible answers were removed by PAGE and by magnetic affinity purification as described in Section 2.
Examples of infeasible answer sequences formed include those that are: (a) too short because they lack one or
more nodes; (b) too long because they contain multiple copies of nodes; and (c) the correct length but lack at
least one node. Feasible answers were subjected to PLP-qPCR for ONPA. Examples of feasible sequences include:
(d) the optimal answer sequence with the nodes in alphabetical order; (e) a suboptimal sequence that contains
a minimum substitution of 3 arcs from the optimal (see Table 5, normalized data row 2), and (f) an even less
optimal sequence in which 4 arcs have been substituted from those found in the optimal answer (see Table 5,
normalized data row 3).

52

Novel Trends in the Traveling Salesman Problem

prior node in the ONP such that the relative abundance of any of the ONPs in that
group could be compared directly. In each case, it is evident that the first sample in
which fluorescence amplification consistently increased above the threshold
corresponded to that ONP where the nodes appeared in alphabetical order (i.e. AB,
BC, etc.). Thus, it was possible to determine the optimal answer to the 8-city TSP
using PLP-qPCR by simple inspection of the raw data. Due to the quantitative
nature of qPCR, the Ct values measured from the data in Figure 3 were used to
calculate the copy number of each ONP (Table 4). The results are organized so that
each row and column define the prior and subsequent nodes of each ONP. Since
these measurements were made in groups corresponding to each row, comparisons
of the ONPA between rows were achieved by determining the fractional ONPA
after normalizing the ONPA present in each row in highest abundance (data in
parentheses). The average copy number for suboptimal ONPs was 0.35% of the
optimal ONP in each row. However, the suboptimal ONPs were not present in equal
abundance. Seven of the suboptimal ONPs were present in amounts that were
below the limit of detection. However, the ability to detect these low abundance
ONPs was not needed to obtain the optimal answer to the problem solved here.
Some of the suboptimal ONPs were formed in much higher abundance than the
average. Figure 7A shows the number of suboptimal ONPs from Table 4 as a
percentage of the preceding node in the pair. The fraction of suboptimal ONPs was
significantly larger in rows C, D, E and F in Table 4. This was due to a relatively
small number of specific alternate ONPs that included CE (0.2%), DA (0.2%), EC
(0.47%), FD (0.5%), and FE (0.47%).

Figure 3.
Graphical representation of the process to make, and purify DNA sequences that represent correct answers, and
the use of PLP sequences for ordered node pair analysis to identify the optimal tour. Details of the methods are
described in Section 2.

53

Accelerating DNA Computing via PLP-qPCR Answer Read out to Solve Traveling Salesman…
DOI: http://dx.doi.org/10.5772/intechopen.91663

To identify the optimal answer, the feasible answers (Figure 4, Lane 3) were
analyzed by the ONPA approach. This was accomplished using PLP-qPCR with the
56 PLPs that were specific to each of the possible ONPs. Each PLP was added to an
aliquot of the solution containing the answer set to prepare it for PLP-qPCR. Prep-
aration included the steps summarized in Figure 5 for the BC-PLP that was used to
detect the ONP in which the sequence encoding node B immediately precedes that
of node C in a tour. For the BC-ONP, the 50-arm of the PLP complementary to the
last 10 bases of sequence B (designated B0), and the 30-arm (designated C″) that
were complementary to the first 10 bases of sequence C were created [23]. The
hybridized PLP was circularized by ligase, after which the PLP was denatured from
the target strand and exonuclease was added to eliminate any DNA that had not
been circularized. Because the amount of circulated PLP was quantitatively related
to the initial content of a target, the target content used in the determination was
transformed into the copy number of the circularized PLPs. The presence of a qPCR
reporter-identification sequence, and PCR primers in the PLP enabled the use of
qPCR to measure the copy number.

Figure 6 shows the PLP-qPCR fluorescence amplification plots as a function of
cycle number that determines the amount of each possible ONP in the answer
sequences of the 8-city TSP. The ONPA was determined in groups according to the

Figure 2.
Protocol used to compute the 8-city TSP. Answers were formed by the addition of saturating amounts of all
nodes and limiting amounts of arcs in inverse proportion to their respective distance. Upon hybridization, nodes
and arcs were ligated to form answers. The ligation was accomplished in two stages to increase the probability of
forming feasible answers that contained a single copy of each node flanked by the start and end sequences.
Infeasible answers were removed by PAGE and by magnetic affinity purification as described in Section 2.
Examples of infeasible answer sequences formed include those that are: (a) too short because they lack one or
more nodes; (b) too long because they contain multiple copies of nodes; and (c) the correct length but lack at
least one node. Feasible answers were subjected to PLP-qPCR for ONPA. Examples of feasible sequences include:
(d) the optimal answer sequence with the nodes in alphabetical order; (e) a suboptimal sequence that contains
a minimum substitution of 3 arcs from the optimal (see Table 5, normalized data row 2), and (f) an even less
optimal sequence in which 4 arcs have been substituted from those found in the optimal answer (see Table 5,
normalized data row 3).

52

Novel Trends in the Traveling Salesman Problem

prior node in the ONP such that the relative abundance of any of the ONPs in that
group could be compared directly. In each case, it is evident that the first sample in
which fluorescence amplification consistently increased above the threshold
corresponded to that ONP where the nodes appeared in alphabetical order (i.e. AB,
BC, etc.). Thus, it was possible to determine the optimal answer to the 8-city TSP
using PLP-qPCR by simple inspection of the raw data. Due to the quantitative
nature of qPCR, the Ct values measured from the data in Figure 3 were used to
calculate the copy number of each ONP (Table 4). The results are organized so that
each row and column define the prior and subsequent nodes of each ONP. Since
these measurements were made in groups corresponding to each row, comparisons
of the ONPA between rows were achieved by determining the fractional ONPA
after normalizing the ONPA present in each row in highest abundance (data in
parentheses). The average copy number for suboptimal ONPs was 0.35% of the
optimal ONP in each row. However, the suboptimal ONPs were not present in equal
abundance. Seven of the suboptimal ONPs were present in amounts that were
below the limit of detection. However, the ability to detect these low abundance
ONPs was not needed to obtain the optimal answer to the problem solved here.
Some of the suboptimal ONPs were formed in much higher abundance than the
average. Figure 7A shows the number of suboptimal ONPs from Table 4 as a
percentage of the preceding node in the pair. The fraction of suboptimal ONPs was
significantly larger in rows C, D, E and F in Table 4. This was due to a relatively
small number of specific alternate ONPs that included CE (0.2%), DA (0.2%), EC
(0.47%), FD (0.5%), and FE (0.47%).

Figure 3.
Graphical representation of the process to make, and purify DNA sequences that represent correct answers, and
the use of PLP sequences for ordered node pair analysis to identify the optimal tour. Details of the methods are
described in Section 2.

53

Accelerating DNA Computing via PLP-qPCR Answer Read out to Solve Traveling Salesman…
DOI: http://dx.doi.org/10.5772/intechopen.91663

To test the validity of using ONPA to identify the optimal answer of a TSP, a
linear programming (LP) model containing 5168 variables and 64 constraints was
developed to “reverse engineer” the frequency of the feasible tours formed by DNA
computing that would most closely match the individual ONP frequencies found in
Table 4 when broken down into their constituent ONPs. Since the data for each
row in Table 4 were obtained independently from the others, the model 1–3 was
solved by inputting either the normalized and absolute ONP frequencies in Table 4
as the Fij parameters. In the normalized model, the Fij were converted into percent-
ages of each row total, whereas in the absolute model, the Fij values were the total
number of molecules detected (see Table 5 footnotes a and b).

For the normalized model, the largest individual deviation is for the FG-ONP.
The observed abundance FFG was 0.98791. In the optimal solution, summed over all
reverse-engineered tours (

P5040
t¼1 htFGXt), arc FG was part of 0.99215 of the tours

formed. Therefore, the FG-ONP would have a negative deviation d�FG = 0.00425 and
a positive deviation dþFG = 0. Many sets of positive and negative deviations exist that
could equalize this constraint. However, the set that contributes the smallest amount
to the objective results from the case in which one or both of the positive and
negative deviations are zero, because the objective function adds both positive and
negative deviations. In addition, there exist many possible solutions with Xt values
such that

P5040
t¼1 htFGXt = FFG = 0.98791 exactly, but none of them were optimal

because it would have increased the deviations for other ONPs. The same set of Xt

values appeared in all 64 constraints and, while there is no set of Xt values that can
satisfy all 64 instances of constraint 2 perfectly with no deviations, the model was
designed to minimize the sum of the deviations for all ONPs simultaneously.

Figure 4.
Profiles of DNA computing products by super denaturing PAGE following amplification by PCR using primers
specific to AS and AE. 1: Initial product of hybridization/ligation from the answer formation process. Black
arrow indicates the 190-mer band that was excised for subsequent purification. 2: Purified 190-mer band
excised from Lane 1. 3: Feasible answer sequences following sequential magnetic affinity purification to insure
the presence of every node sequence. M: Molecular size reference using a 20-mer DNA ladder where the 100-mer
was the brightest band (red arrow).

54

Novel Trends in the Traveling Salesman Problem

When the normalized ONPA data from Table 4 were input, 99.01% of feasible
tours formed by the DNA computer are estimated to have been the optimal tour
ABCDEFGHA. Given the relative proportions of the ONPs formed, no other tour
is likely to have comprised more than 0.38% of the tours formed (Table 5), which
was the percentage for the second-most frequently formed tour in the reverse-
engineering model (ASBFECDGHAE). Of the 5040 possible tours in the LP model,
the optimal reverse-engineered set of tours had only 30 tours with a non-zero
frequency. The objective function value in the model of the normalized data (the
sum of the positive and negative deviations over all 64 ordered node pairs) was
0.02997.

Using the absolutemolecule frequencies as the Fij values, the LP model estimated
that 339,742 molecules, or 99.13% of all feasible tour molecules, were the optimal
answer. The next most frequently produced tour by the DNA computer was esti-
mated to have formed only 1259 molecules (Table 5). As expected, the error levels
increased dramatically when the model was used to reverse-engineer the tours
formed from the absolute molecule frequency. This occurred because the row sums
of molecules in Table 4 were determined in separate qPCR measurements without
controlling for the absolute amount of answer sequences used in the samples
between rows. Had this been held constant during the measurement, the total

Figure 5.
Use of pair ligation probes (PLPs) to quantify the abundance of the nucleotide sequence encoding the BC ordered
node pair (BC-ONP) where node B precedes node C. (1) The PLP hybridizes to 20 consecutive bases of the BC
target sequence. (2) T4 ligase circularizes the hybridized PLP. (3) Circularized PLP is denatured from target,
and Exonuclease I eliminated any nucleic acid not circularized. (4) qPCR quantifies PLP abundance upon
addition of the TaqMan-MGB® reporter, PCR primers and nucleotides.

55

Accelerating DNA Computing via PLP-qPCR Answer Read out to Solve Traveling Salesman…
DOI: http://dx.doi.org/10.5772/intechopen.91663

To test the validity of using ONPA to identify the optimal answer of a TSP, a
linear programming (LP) model containing 5168 variables and 64 constraints was
developed to “reverse engineer” the frequency of the feasible tours formed by DNA
computing that would most closely match the individual ONP frequencies found in
Table 4 when broken down into their constituent ONPs. Since the data for each
row in Table 4 were obtained independently from the others, the model 1–3 was
solved by inputting either the normalized and absolute ONP frequencies in Table 4
as the Fij parameters. In the normalized model, the Fij were converted into percent-
ages of each row total, whereas in the absolute model, the Fij values were the total
number of molecules detected (see Table 5 footnotes a and b).

For the normalized model, the largest individual deviation is for the FG-ONP.
The observed abundance FFG was 0.98791. In the optimal solution, summed over all
reverse-engineered tours (

P5040
t¼1 htFGXt), arc FG was part of 0.99215 of the tours

formed. Therefore, the FG-ONP would have a negative deviation d�FG = 0.00425 and
a positive deviation dþFG = 0. Many sets of positive and negative deviations exist that
could equalize this constraint. However, the set that contributes the smallest amount
to the objective results from the case in which one or both of the positive and
negative deviations are zero, because the objective function adds both positive and
negative deviations. In addition, there exist many possible solutions with Xt values
such that

P5040
t¼1 htFGXt = FFG = 0.98791 exactly, but none of them were optimal

because it would have increased the deviations for other ONPs. The same set of Xt

values appeared in all 64 constraints and, while there is no set of Xt values that can
satisfy all 64 instances of constraint 2 perfectly with no deviations, the model was
designed to minimize the sum of the deviations for all ONPs simultaneously.

Figure 4.
Profiles of DNA computing products by super denaturing PAGE following amplification by PCR using primers
specific to AS and AE. 1: Initial product of hybridization/ligation from the answer formation process. Black
arrow indicates the 190-mer band that was excised for subsequent purification. 2: Purified 190-mer band
excised from Lane 1. 3: Feasible answer sequences following sequential magnetic affinity purification to insure
the presence of every node sequence. M: Molecular size reference using a 20-mer DNA ladder where the 100-mer
was the brightest band (red arrow).

54

Novel Trends in the Traveling Salesman Problem

When the normalized ONPA data from Table 4 were input, 99.01% of feasible
tours formed by the DNA computer are estimated to have been the optimal tour
ABCDEFGHA. Given the relative proportions of the ONPs formed, no other tour
is likely to have comprised more than 0.38% of the tours formed (Table 5), which
was the percentage for the second-most frequently formed tour in the reverse-
engineering model (ASBFECDGHAE). Of the 5040 possible tours in the LP model,
the optimal reverse-engineered set of tours had only 30 tours with a non-zero
frequency. The objective function value in the model of the normalized data (the
sum of the positive and negative deviations over all 64 ordered node pairs) was
0.02997.

Using the absolutemolecule frequencies as the Fij values, the LP model estimated
that 339,742 molecules, or 99.13% of all feasible tour molecules, were the optimal
answer. The next most frequently produced tour by the DNA computer was esti-
mated to have formed only 1259 molecules (Table 5). As expected, the error levels
increased dramatically when the model was used to reverse-engineer the tours
formed from the absolute molecule frequency. This occurred because the row sums
of molecules in Table 4 were determined in separate qPCR measurements without
controlling for the absolute amount of answer sequences used in the samples
between rows. Had this been held constant during the measurement, the total

Figure 5.
Use of pair ligation probes (PLPs) to quantify the abundance of the nucleotide sequence encoding the BC ordered
node pair (BC-ONP) where node B precedes node C. (1) The PLP hybridizes to 20 consecutive bases of the BC
target sequence. (2) T4 ligase circularizes the hybridized PLP. (3) Circularized PLP is denatured from target,
and Exonuclease I eliminated any nucleic acid not circularized. (4) qPCR quantifies PLP abundance upon
addition of the TaqMan-MGB® reporter, PCR primers and nucleotides.

55

Accelerating DNA Computing via PLP-qPCR Answer Read out to Solve Traveling Salesman…
DOI: http://dx.doi.org/10.5772/intechopen.91663

number of molecules in each row of Table 4 should be the same because each
feasible answer contains one copy of each node sequence. The total deviations
summed to 9,057,230, which represents 81.57% of the total ΣiΣj Fij, compared with
only 0.37% for the normalized model. It is noteworthy that, in the model based on
the absolute data, the five ONPs with the greatest deviations from the observed
frequencies (HAE, ASB, GH, BC, CD) were all part of the optimal tour, whereas only
two such ONPs were among the top five deviations (FG, BF, DG, BC, and FD)
when matching to the normalized ONPA. Despite the fact that the deviations
derived from the absolute ONPs were much higher, the DNA computation still
returned the optimal tour over 99% of the time.

A fully connected 8-city TSP was solved by the ordered node pair abundance
(ONPA) approach through the use of a pair ligation probe quantitative real time

Figure 6.
Abundance of ONPs in the feasible answer sequences determined by PLP-qPCR. A separate PLP was designed to
detect the amount of each of the 56 possible ONPs (ASB, ASC, etc.). Each PLP contained a qPCR reporter
identification sequence for use in fluorescence detection with the TaqMan-MGB® reporter for NED. Plots of
fluorescence intensity as a function of PCR cycle number are grouped by the preceding node in the ONP. Each of
these groups was run as single-plex assays on a 96-well plate using aliquots from a common solution of answer
sequences so that the assays within each group are comparable. The latter node in the ONP is indicated as
B (●), C (■), D (○), E (▽), F (▲), G (△), H (□), and AE (▼).

56

Novel Trends in the Traveling Salesman Problem

polymerase chain reaction (PLP-qPCR) system. The high specificity of the
sequence-tagged hybridization and ligation that results from the use of PLPs signif-
icantly increased the accuracy of answer determination in DNA computing. When
combined with the high throughput efficiency of qPCR, the time required to iden-
tify the optimal answer to the TSP was reduced from days to 25 min.

The reverse-engineering LP model provides additional evidence that the DNA
computer can distinguish the quality of solutions to the TSP. Although the problem
was set up artificially to have a single solution that was far better than any other
possible solution, the reverse-engineering LP model confirms that the optimal solu-
tion was produced in far greater abundance than any other answer, and among the
suboptimal solutions, those with greater optimality were generally produced in
greater abundance than those that were less optimal.

Examination of the less frequently produced tours provides a measure of the
sensitivity of DNA computer to the abundance of the arc sequence molecules
initially input to carry out the computation. To make any change to the optimal tour
ASBCDEFGHAE, at least three ONPs in the tour must be different. For example, the
tour with penultimate optimality (Figure 2e) must have 3 ONPs that are different

Prior node Subsequent node

B C D E F G H AE

AS 1.4 � 106a 10 3.5 2.9 0.019 0.19 1.4 *

B * 4.8 � 105 0.49 6 10 9 4.9 21

C 0.04 * 2.2 � 105 420 0.18 6.4 22 0

D 28.5 190 * 3.5 � 105 395 320 48.5 750

E 640 1600 380 * 3.4 � 105 87 1.5 0

F 1.5 0 1800 1600 * 3.4 � 105 380 380

G 0.87 0.057 0 47 0 * 1.2 � 105 31

H 0.4 22 1.6 0 47 0.34 * 7.9 � 106

aAll values are in 1000s of molecules.

Table 4.
ONPA in the set of feasible answers from the 8-city TSP determined by PLP-qPCR.

Figure 7.
(A) Dominant suboptimal ONPs present in the answer sequences. The subsequent node in the ONP is indicated
in each bar, and the sum of all other suboptimal ONPs in a given row from Table 5 is indicated in yellow. (B)
Combined probability of tours reverse engineered by the LP Model as a function of the Number of Suboptimal
ONPs. The combined probability is the sum of the probabilities of all tours containing a given number of
suboptimal ONPs generated from the normalized (●) and absolute data (□ of Table 5). The optimal tour did
not contain suboptimal ONPs. From 1 to 9 tours were reverse engineered for each number of suboptimal ONPs
shown.

57

Accelerating DNA Computing via PLP-qPCR Answer Read out to Solve Traveling Salesman…
DOI: http://dx.doi.org/10.5772/intechopen.91663

number of molecules in each row of Table 4 should be the same because each
feasible answer contains one copy of each node sequence. The total deviations
summed to 9,057,230, which represents 81.57% of the total ΣiΣj Fij, compared with
only 0.37% for the normalized model. It is noteworthy that, in the model based on
the absolute data, the five ONPs with the greatest deviations from the observed
frequencies (HAE, ASB, GH, BC, CD) were all part of the optimal tour, whereas only
two such ONPs were among the top five deviations (FG, BF, DG, BC, and FD)
when matching to the normalized ONPA. Despite the fact that the deviations
derived from the absolute ONPs were much higher, the DNA computation still
returned the optimal tour over 99% of the time.

A fully connected 8-city TSP was solved by the ordered node pair abundance
(ONPA) approach through the use of a pair ligation probe quantitative real time

Figure 6.
Abundance of ONPs in the feasible answer sequences determined by PLP-qPCR. A separate PLP was designed to
detect the amount of each of the 56 possible ONPs (ASB, ASC, etc.). Each PLP contained a qPCR reporter
identification sequence for use in fluorescence detection with the TaqMan-MGB® reporter for NED. Plots of
fluorescence intensity as a function of PCR cycle number are grouped by the preceding node in the ONP. Each of
these groups was run as single-plex assays on a 96-well plate using aliquots from a common solution of answer
sequences so that the assays within each group are comparable. The latter node in the ONP is indicated as
B (●), C (■), D (○), E (▽), F (▲), G (△), H (□), and AE (▼).

56

Novel Trends in the Traveling Salesman Problem

polymerase chain reaction (PLP-qPCR) system. The high specificity of the
sequence-tagged hybridization and ligation that results from the use of PLPs signif-
icantly increased the accuracy of answer determination in DNA computing. When
combined with the high throughput efficiency of qPCR, the time required to iden-
tify the optimal answer to the TSP was reduced from days to 25 min.

The reverse-engineering LP model provides additional evidence that the DNA
computer can distinguish the quality of solutions to the TSP. Although the problem
was set up artificially to have a single solution that was far better than any other
possible solution, the reverse-engineering LP model confirms that the optimal solu-
tion was produced in far greater abundance than any other answer, and among the
suboptimal solutions, those with greater optimality were generally produced in
greater abundance than those that were less optimal.

Examination of the less frequently produced tours provides a measure of the
sensitivity of DNA computer to the abundance of the arc sequence molecules
initially input to carry out the computation. To make any change to the optimal tour
ASBCDEFGHAE, at least three ONPs in the tour must be different. For example, the
tour with penultimate optimality (Figure 2e) must have 3 ONPs that are different

Prior node Subsequent node

B C D E F G H AE

AS 1.4 � 106a 10 3.5 2.9 0.019 0.19 1.4 *

B * 4.8 � 105 0.49 6 10 9 4.9 21

C 0.04 * 2.2 � 105 420 0.18 6.4 22 0

D 28.5 190 * 3.5 � 105 395 320 48.5 750

E 640 1600 380 * 3.4 � 105 87 1.5 0

F 1.5 0 1800 1600 * 3.4 � 105 380 380

G 0.87 0.057 0 47 0 * 1.2 � 105 31

H 0.4 22 1.6 0 47 0.34 * 7.9 � 106

aAll values are in 1000s of molecules.

Table 4.
ONPA in the set of feasible answers from the 8-city TSP determined by PLP-qPCR.

Figure 7.
(A) Dominant suboptimal ONPs present in the answer sequences. The subsequent node in the ONP is indicated
in each bar, and the sum of all other suboptimal ONPs in a given row from Table 5 is indicated in yellow. (B)
Combined probability of tours reverse engineered by the LP Model as a function of the Number of Suboptimal
ONPs. The combined probability is the sum of the probabilities of all tours containing a given number of
suboptimal ONPs generated from the normalized (●) and absolute data (□ of Table 5). The optimal tour did
not contain suboptimal ONPs. From 1 to 9 tours were reverse engineered for each number of suboptimal ONPs
shown.

57

Accelerating DNA Computing via PLP-qPCR Answer Read out to Solve Traveling Salesman…
DOI: http://dx.doi.org/10.5772/intechopen.91663

from the optimal (Figure 2d), while tours containing 4 different predominant
ONPs (Figure 2f) would be even less optimal, and so forth. As shown in Table 5,
among the 2nd-5th most frequently produced tours for models predicted from both
the absolute and normalized data, all but one exhibit either three or four ONP
changes from the optimal tour. When the probabilities of the tours were summed
over all tours with a given number of suboptimal ONPs, the frequency of tours
formed with more suboptimal ONPs exponentially declined as a function of an
increase in the number of suboptimal ONPs incorporated (Figure 7B). Thus, not
only did the DNA computer generate the optimal answer far more frequently, but
other answers were generated in amounts that were inversely proportional to their
objective function value.

Even though the data of Table 4 were obtained in separate sets grouped
according to each row without controlling for the abundance of molecules between
rows (absolute data), the computation returned the correct answer, demonstrating
the robustness of this approach. Several ONPs were not detected as products of the
computation (e.g. FB). However, this does not imply that no molecules of these
ONPs were formed. Although the amounts of these ONPs were below the level of
detection, this did not alter the determination of the optimal answer to this problem
because the efficiency of the tour that gave rise to the optimal answer was so much
greater than any other tour. Identification of the optimal answers to some less
obvious problems may require a more sensitive discrimination of ONPA. Under
these circumstances, to quantify smaller amounts of ONPs or to discriminate
between smaller differences in abundance of two specific ONPs, the PLP-qPCR can
be repeated using larger aliquots of feasible answer solutions.

Acknowledgements

This work was supported by grants to WDF from DARPA-DSO and AFOSR
(FA95500710219). The Fair Isaac Corp. (www.fico.com) provided the Xpress
Optimization Suite to the university under their Academic Partnership Program.

Normalized ONPA Fij
a Absolute ONPA Fij

b

Top five toursc # suboptimal
ONPs

Probability Top five toursd # suboptimal
ONPs

Molecules
(in 1000s)

Probability

ASBCDEFGHAE 0 0.990131 AsBCDEFGHAE 0 339,742 0.991252

ASBFECDGHAE 4 0.003831 AsBFDECGHAE 4 1,259 0.003672

ASFDEBCGHAE 4 0.001860 AsFDEBCGHAE 4 512 0.001494

ASBCEDHGFAE 6 0.001099 AsBCEDFGHAE 3 258 0.000754

ASBCDFEGHAE 3 0.000733 AsBFECDGHAE 4 217 0.000634

aBased on ONPA as a percent of total molecules in each row in Table 4 (i.e. ΣFij on Row As = 1.00, ΣFij on Row B = 1.00, etc.).
bBased on ONPA in Table 5 (i.e. ΣFij on Row As = 1.5 e9, ΣFij on Row B = 4.5 e8, etc.).
cA total of 30 non-zero tours were reversed engineered from Normalized data with 0.0299702 total absolute deviations
(objective function value).
dA total of 32 non-zero tours were reverse engineered from Absolute data with 9,057,230,000 total absolute deviations
(objective function value).

Table 5.
Tour probabilities reverse engineered from observed ONPA by the LP model.

58

Novel Trends in the Traveling Salesman Problem

Author details

Fusheng Xiong1, Michael Kuby2 and Wayne D. Frasch1*

1 School of Life Sciences, Arizona State University, Tempe, AZ, USA

2 School of Geographical Sciences and Urban Planning, Arizona State University,
Tempe, AZ, USA

*Address all correspondence to: frasch@asu.edu

©2020TheAuthor(s). Licensee IntechOpen. This chapter is distributed under the terms
of theCreativeCommonsAttribution License (http://creativecommons.org/licenses/
by/3.0),which permits unrestricted use, distribution, and reproduction in anymedium,
provided the original work is properly cited.

59

Accelerating DNA Computing via PLP-qPCR Answer Read out to Solve Traveling Salesman…
DOI: http://dx.doi.org/10.5772/intechopen.91663

from the optimal (Figure 2d), while tours containing 4 different predominant
ONPs (Figure 2f) would be even less optimal, and so forth. As shown in Table 5,
among the 2nd-5th most frequently produced tours for models predicted from both
the absolute and normalized data, all but one exhibit either three or four ONP
changes from the optimal tour. When the probabilities of the tours were summed
over all tours with a given number of suboptimal ONPs, the frequency of tours
formed with more suboptimal ONPs exponentially declined as a function of an
increase in the number of suboptimal ONPs incorporated (Figure 7B). Thus, not
only did the DNA computer generate the optimal answer far more frequently, but
other answers were generated in amounts that were inversely proportional to their
objective function value.

Even though the data of Table 4 were obtained in separate sets grouped
according to each row without controlling for the abundance of molecules between
rows (absolute data), the computation returned the correct answer, demonstrating
the robustness of this approach. Several ONPs were not detected as products of the
computation (e.g. FB). However, this does not imply that no molecules of these
ONPs were formed. Although the amounts of these ONPs were below the level of
detection, this did not alter the determination of the optimal answer to this problem
because the efficiency of the tour that gave rise to the optimal answer was so much
greater than any other tour. Identification of the optimal answers to some less
obvious problems may require a more sensitive discrimination of ONPA. Under
these circumstances, to quantify smaller amounts of ONPs or to discriminate
between smaller differences in abundance of two specific ONPs, the PLP-qPCR can
be repeated using larger aliquots of feasible answer solutions.

Acknowledgements

This work was supported by grants to WDF from DARPA-DSO and AFOSR
(FA95500710219). The Fair Isaac Corp. (www.fico.com) provided the Xpress
Optimization Suite to the university under their Academic Partnership Program.

Normalized ONPA Fij
a Absolute ONPA Fij

b

Top five toursc # suboptimal
ONPs

Probability Top five toursd # suboptimal
ONPs

Molecules
(in 1000s)

Probability

ASBCDEFGHAE 0 0.990131 AsBCDEFGHAE 0 339,742 0.991252

ASBFECDGHAE 4 0.003831 AsBFDECGHAE 4 1,259 0.003672

ASFDEBCGHAE 4 0.001860 AsFDEBCGHAE 4 512 0.001494

ASBCEDHGFAE 6 0.001099 AsBCEDFGHAE 3 258 0.000754

ASBCDFEGHAE 3 0.000733 AsBFECDGHAE 4 217 0.000634

aBased on ONPA as a percent of total molecules in each row in Table 4 (i.e. ΣFij on Row As = 1.00, ΣFij on Row B = 1.00, etc.).
bBased on ONPA in Table 5 (i.e. ΣFij on Row As = 1.5 e9, ΣFij on Row B = 4.5 e8, etc.).
cA total of 30 non-zero tours were reversed engineered from Normalized data with 0.0299702 total absolute deviations
(objective function value).
dA total of 32 non-zero tours were reverse engineered from Absolute data with 9,057,230,000 total absolute deviations
(objective function value).

Table 5.
Tour probabilities reverse engineered from observed ONPA by the LP model.

58

Novel Trends in the Traveling Salesman Problem

Author details

Fusheng Xiong1, Michael Kuby2 and Wayne D. Frasch1*

1 School of Life Sciences, Arizona State University, Tempe, AZ, USA

2 School of Geographical Sciences and Urban Planning, Arizona State University,
Tempe, AZ, USA

*Address all correspondence to: frasch@asu.edu

©2020TheAuthor(s). Licensee IntechOpen. This chapter is distributed under the terms
of theCreativeCommonsAttribution License (http://creativecommons.org/licenses/
by/3.0),which permits unrestricted use, distribution, and reproduction in anymedium,
provided the original work is properly cited.

59

Accelerating DNA Computing via PLP-qPCR Answer Read out to Solve Traveling Salesman…
DOI: http://dx.doi.org/10.5772/intechopen.91663

References

[1] Lin S. Computer solutions of
traveling salesman problem. Bell System
Technical Journal. 1965;44:2245

[2] Rosenkrantz DJ, Stearns RE,
Lewis PM. An analysis of several
heuristics for the traveling salesman
problem. SIAM Journal of Computing.
1977;6:563-581

[3] Crowder H, Padberg MW.
Solving large-scale symmetric
traveling salesman problems to
optimality. Management Science. 1980;
26:495-509

[4] Jünger M, Reinelt G, Rinaldi G. The
traveling salesman problem. In:
Ball MO, Monma CL, Nemhauser GL,
editors. Handbooks in Operations
Research and Management Science.
Amsterdam: Elsevier Science B.V; 1995.
pp. 225-330

[5] Ryu H. A revisiting method using a
covariance traveling salesman problem
algorithm for landmark-based
simultaneous localization and mapping.
Sensors. 2019;19:E4910

[6] Miao K, Duan H, Qian F, Dong Y. A
one-commodity pickup-and-delivery
traveling salesman problem solved by a
two-stage method: A sensor relocation
application. PLoS One. 2019;14:
e0215107

[7] Kahng AB, Reda S. Match twice and
stitch: A new TSP tour construction
heuristic. Operations Research Letters.
2004;32:499-509

[8] Adleman LM. Molecular
computation of solutions to
combinational problems. Science. 1994;
266:1021-1024

[9] Lipton RJ. DNA solution of hard
computational problems. Science. 1995;
268:542-545

[10] Lee JY, Shin SY, Park TH,
Zhang BT. Solving traveling salesman
problems with DNA molecules encoding
numerical values. Biosystems. 2004;78:
39-47

[11] Spetzler D, Ziong F, Frasch WD.
Heuristic solution to a 10-city
Asymmetric traveling salesman problem
using probabilistic DNA Computing.
Lecture Notes in Computer Science.
2008;4848:152-160

[12] Xiong FS, Spetzler D, Frasch WD.
Solving the fully-connected 15-city TSP
using probabilistic DNA computing.
Integrative Biology. 2009;1:275-280

[13] Sharma D, Ramteke M. A note on
short-term scheduling of multi-grade
polymer plant using DNA computing.
Chemical Engineering Research and
Design. 2018;135:78-93

[14] Xu F, Wu T, Shi X, Pan L. A study
on a special DNA nanotube assembled
from two single-stranded tiles.
Nanotechnology. 2019;30(115602):1-6

[15] Woods D, Doty D, Myhrvold C,
Hui J, Zhou F, Yin P, et al. Diverse and
robust molecular algorithms using
reprogrammable DNA self-assembly.
Nature. 2019;567:366-372

[16] Yamamoto M, Kameda A,
Matsuura M, Shiba T, Kawazoe Y,
Ohuchi A. A separation method for
DNA computing based on concentration
control. New Generation Computing.
2002;20:251-261

[17] Lee J-Y, Shin S-Y, Augh SJ, Park TH,
Zhang B-T. Temperature gradient-based
DNA computing for graph problems
with weighted edges. Lecture notes in
Computer Science. 2003;2568:73-84

[18] Yamamura M, Hiroto Y, Matoba T.
Solutions of shortest path problems by

60

Novel Trends in the Traveling Salesman Problem

concentration control. Lecture Notes in
Computer Science. 2002;2340:231-240

[19] Henco K, Harders J, Wiese U,
Riesner D. Temperature gradient gel
electrophoresis (TGGE) for the
detection of polymorphic DNA and
RNA. Methods in Molecular Biology.
1994;31:211-228

[20] Riesner D, Steger G, Wiese U,
Wulfert M, Heibey M, Henco K.
Temperature-gradient gel
electrophoresis for the detection of
polymorphic DNA and for quantitative
polymerase chain reaction.
Electrophoresis. 1992;13:632-636

[21] Ibrahim Z, Rose JA, Suyama A,
Khalid M. Experimental
Implementation and analysis of a DNA
computing readout method based on
real-time PCR with TaqMan probes.
Natural Computing. 2008;7:277-286

[22] Szemes M, Bonants P, de Weerdt M,
Baner J, Landegren U, Schoen CD.
Diagnostic application of padlock
probes-multiple detection of plant
pathogens using universal microarrays.
Nucleic Acids Research. 2005;33:e70

[23] Xiong F, Frasch WD. Padlock
probe-mediated qRT-PCR for DNA
computing answer determination.
Natural Computing. 2010;10:947-959

[24] Brüggemann W. A minimal cost
function method for optimizing the age-
depth relation of deep-sea sediment
cores. Paleoceanography. 1992;7:
467-487

[25] Kuby MJ, Cerveny RS, Dorn RI. A
new approach to paleoclimatic research
using linear programming.
Palaeogeography Palaeoclimatocology
Palaeoecology. 1997;129:251-267

[26] Leinen M, Pisias N. An objective
technique for determining end-member
compositions and for partitioning

sediments according to their sources.
Geochimica et Cosmochimica Acta.
1984;48:47-62

[27] Narula SC, Wellington JF. Selection
of variables in linear-regression using
the minimum sum of weighted absolute
errors Criterion. Technometrics. 1979;
21:299-306

61

Accelerating DNA Computing via PLP-qPCR Answer Read out to Solve Traveling Salesman…
DOI: http://dx.doi.org/10.5772/intechopen.91663

References

[1] Lin S. Computer solutions of
traveling salesman problem. Bell System
Technical Journal. 1965;44:2245

[2] Rosenkrantz DJ, Stearns RE,
Lewis PM. An analysis of several
heuristics for the traveling salesman
problem. SIAM Journal of Computing.
1977;6:563-581

[3] Crowder H, Padberg MW.
Solving large-scale symmetric
traveling salesman problems to
optimality. Management Science. 1980;
26:495-509

[4] Jünger M, Reinelt G, Rinaldi G. The
traveling salesman problem. In:
Ball MO, Monma CL, Nemhauser GL,
editors. Handbooks in Operations
Research and Management Science.
Amsterdam: Elsevier Science B.V; 1995.
pp. 225-330

[5] Ryu H. A revisiting method using a
covariance traveling salesman problem
algorithm for landmark-based
simultaneous localization and mapping.
Sensors. 2019;19:E4910

[6] Miao K, Duan H, Qian F, Dong Y. A
one-commodity pickup-and-delivery
traveling salesman problem solved by a
two-stage method: A sensor relocation
application. PLoS One. 2019;14:
e0215107

[7] Kahng AB, Reda S. Match twice and
stitch: A new TSP tour construction
heuristic. Operations Research Letters.
2004;32:499-509

[8] Adleman LM. Molecular
computation of solutions to
combinational problems. Science. 1994;
266:1021-1024

[9] Lipton RJ. DNA solution of hard
computational problems. Science. 1995;
268:542-545

[10] Lee JY, Shin SY, Park TH,
Zhang BT. Solving traveling salesman
problems with DNA molecules encoding
numerical values. Biosystems. 2004;78:
39-47

[11] Spetzler D, Ziong F, Frasch WD.
Heuristic solution to a 10-city
Asymmetric traveling salesman problem
using probabilistic DNA Computing.
Lecture Notes in Computer Science.
2008;4848:152-160

[12] Xiong FS, Spetzler D, Frasch WD.
Solving the fully-connected 15-city TSP
using probabilistic DNA computing.
Integrative Biology. 2009;1:275-280

[13] Sharma D, Ramteke M. A note on
short-term scheduling of multi-grade
polymer plant using DNA computing.
Chemical Engineering Research and
Design. 2018;135:78-93

[14] Xu F, Wu T, Shi X, Pan L. A study
on a special DNA nanotube assembled
from two single-stranded tiles.
Nanotechnology. 2019;30(115602):1-6

[15] Woods D, Doty D, Myhrvold C,
Hui J, Zhou F, Yin P, et al. Diverse and
robust molecular algorithms using
reprogrammable DNA self-assembly.
Nature. 2019;567:366-372

[16] Yamamoto M, Kameda A,
Matsuura M, Shiba T, Kawazoe Y,
Ohuchi A. A separation method for
DNA computing based on concentration
control. New Generation Computing.
2002;20:251-261

[17] Lee J-Y, Shin S-Y, Augh SJ, Park TH,
Zhang B-T. Temperature gradient-based
DNA computing for graph problems
with weighted edges. Lecture notes in
Computer Science. 2003;2568:73-84

[18] Yamamura M, Hiroto Y, Matoba T.
Solutions of shortest path problems by

60

Novel Trends in the Traveling Salesman Problem

concentration control. Lecture Notes in
Computer Science. 2002;2340:231-240

[19] Henco K, Harders J, Wiese U,
Riesner D. Temperature gradient gel
electrophoresis (TGGE) for the
detection of polymorphic DNA and
RNA. Methods in Molecular Biology.
1994;31:211-228

[20] Riesner D, Steger G, Wiese U,
Wulfert M, Heibey M, Henco K.
Temperature-gradient gel
electrophoresis for the detection of
polymorphic DNA and for quantitative
polymerase chain reaction.
Electrophoresis. 1992;13:632-636

[21] Ibrahim Z, Rose JA, Suyama A,
Khalid M. Experimental
Implementation and analysis of a DNA
computing readout method based on
real-time PCR with TaqMan probes.
Natural Computing. 2008;7:277-286

[22] Szemes M, Bonants P, de Weerdt M,
Baner J, Landegren U, Schoen CD.
Diagnostic application of padlock
probes-multiple detection of plant
pathogens using universal microarrays.
Nucleic Acids Research. 2005;33:e70

[23] Xiong F, Frasch WD. Padlock
probe-mediated qRT-PCR for DNA
computing answer determination.
Natural Computing. 2010;10:947-959

[24] Brüggemann W. A minimal cost
function method for optimizing the age-
depth relation of deep-sea sediment
cores. Paleoceanography. 1992;7:
467-487

[25] Kuby MJ, Cerveny RS, Dorn RI. A
new approach to paleoclimatic research
using linear programming.
Palaeogeography Palaeoclimatocology
Palaeoecology. 1997;129:251-267

[26] Leinen M, Pisias N. An objective
technique for determining end-member
compositions and for partitioning

sediments according to their sources.
Geochimica et Cosmochimica Acta.
1984;48:47-62

[27] Narula SC, Wellington JF. Selection
of variables in linear-regression using
the minimum sum of weighted absolute
errors Criterion. Technometrics. 1979;
21:299-306

61

Accelerating DNA Computing via PLP-qPCR Answer Read out to Solve Traveling Salesman…
DOI: http://dx.doi.org/10.5772/intechopen.91663

Chapter 5

Comparative Study of Algorithms
Metaheuristics Based Applied to
the Solution of the Capacitated
Vehicle Routing Problem
Fernando Francisco Sandoya Sánchez,
Carmen Andrea Letamendi Lazo
and Fanny Yamel Sanabria Quiñónez

Abstract

This chapter presents the best-known heuristics and metaheuristics that are
applied to solve the capacitated vehicle routing problem (CVRP), which is the
generalization of the TSP, in which the nodes are visited by more than one route.
To find out which algorithm obtains better results, there are 30 test instances used,
which are grouped into 3 sets of problems according to the position of the nodes.
The study begins with an economic impact analysis of the transportation sector in
companies, which represents up to 20% of the final cost of the product. This case
study focuses on the CVRP for its acronym capacitated vehicle routing problem,
analyzing the best-known heuristics such as Clarke &Wright and sweep, and the
algorithms GRASP and simulated annealing metaheuristics based.

Keywords: vehicle routing problem, VRP, CVRP, heuristics, metaheuristics,
Clarke &Wright, sweep heuristic, GRASP, simulated annealing

1. Introduction

Logistics as a science has its origins in the military area; the transportation of
weapons, food, and men at the service was coordinated through it. With the passage
of time, the concept began to be applied in the business field, and for a long period of
time, the logistics function was considered as a habitual, operational, and necessary
activity to take the products from the seller to the buyer [1]. A little later, starting in
the 1950s, a cycle of growth and constant demand increase was experienced
throughout the world, which caused the production and sales capacity to exceed the
companies’ ability to distribute products. Thus, in those years, delivering orders on
time became a problem due to poor compliance. Then, in 1980, the concept of
response time was created, which is the union between the concept of physical
distribution and material management; specialists realized that the faster the
response time to the customer, the more the profitability of the company increased.

As the concepts were changing, the methods as well and the companies looked for
ways to become efficient; in this way they expanded the activities related to logistics

63

Chapter 5

Comparative Study of Algorithms
Metaheuristics Based Applied to
the Solution of the Capacitated
Vehicle Routing Problem
Fernando Francisco Sandoya Sánchez,
Carmen Andrea Letamendi Lazo
and Fanny Yamel Sanabria Quiñónez

Abstract

This chapter presents the best-known heuristics and metaheuristics that are
applied to solve the capacitated vehicle routing problem (CVRP), which is the
generalization of the TSP, in which the nodes are visited by more than one route.
To find out which algorithm obtains better results, there are 30 test instances used,
which are grouped into 3 sets of problems according to the position of the nodes.
The study begins with an economic impact analysis of the transportation sector in
companies, which represents up to 20% of the final cost of the product. This case
study focuses on the CVRP for its acronym capacitated vehicle routing problem,
analyzing the best-known heuristics such as Clarke &Wright and sweep, and the
algorithms GRASP and simulated annealing metaheuristics based.

Keywords: vehicle routing problem, VRP, CVRP, heuristics, metaheuristics,
Clarke &Wright, sweep heuristic, GRASP, simulated annealing

1. Introduction

Logistics as a science has its origins in the military area; the transportation of
weapons, food, and men at the service was coordinated through it. With the passage
of time, the concept began to be applied in the business field, and for a long period of
time, the logistics function was considered as a habitual, operational, and necessary
activity to take the products from the seller to the buyer [1]. A little later, starting in
the 1950s, a cycle of growth and constant demand increase was experienced
throughout the world, which caused the production and sales capacity to exceed the
companies’ ability to distribute products. Thus, in those years, delivering orders on
time became a problem due to poor compliance. Then, in 1980, the concept of
response time was created, which is the union between the concept of physical
distribution and material management; specialists realized that the faster the
response time to the customer, the more the profitability of the company increased.

As the concepts were changing, the methods as well and the companies looked for
ways to become efficient; in this way they expanded the activities related to logistics

63

and determined that one of the heaviest items is transportation costs, representing on
average, between 10% and 20% of the final cost of the product or service [2].

Although transport decisions are expressed in a variety of ways, the main
ones are mode selection, route design, vehicle programming, and shipment
consolidation [1]. In relation to the route design problem, the problem is commonly
known as vehicle routing problem (VRP). Both the companies that own the
transport service as part of their processes and the companies that provide the
service seek to optimize resources within the route selection, since a good
selection brings savings in time, resources such as fuel, maintenance of the fleet,
salaries, and improvements, among others, in service indicators as a promise of
product delivery.

The VRP can be considered as the natural extension of the TSP, in the sense that
unlike the TSP, in the VRP we consider that the vehicles, or the agents in charge of
providing a service to the nodes, have a limited capacity; therefore, most likely the
entire route cannot be made through a single route, with a single vehicle that leaves
and returns to the storage, traveling all the nodes, but to respect the restriction of
the limited capacity of the vehicles so. In general, several routes are required, or
what is the same, the solution of the VRP will be a set of Hamiltonian cycles that
start from the deposit and such that each node is traveled only once.

2. Vehicle routing problem

The vehicle routing problem (VRP) consists in determining a set of routes for a
fleet of vehicles that depart from one or more warehouses to meet the demand of
several geographically dispersed customers [3].

The VRP objective is to meet the demand of the customers, optimizing some
objective, which is generally the total cost involved in the routes, which is affected
by the vehicular congestion of large cities, the high-energy consumption of cargo
vehicles, and other factors.

Since the VRP problem is a generalization of the TSP, and knowing that the TSP
is of the NP-hard problem class [4], it is concluded that the VRP is also a difficult
problem of the NP-hard class.

The VRP model has many classifications by the different characteristics that can
be included or considered in it. The most basic version is reflected with the CVRP
capability (for the acronym of capacitated vehicle routing problem). The CVRP has
the following assumptions:

The fleet of vehicles is homogeneous, that is to say all cargo vehicles have the
same characteristics:

I. The demand is known in advance, that is, the quantity to be delivered for
each client is known; this means that the demand is deterministic.

II. Each vehicle will carry the entire delivery to customers, prohibiting the
distribution of fractional or partial loads that would later be completed by
another vehicle.

III. All vehicles in the fleet have exactly the same load capacity.

IV. The starting point of the vehicles is only one and is considered a central
warehouse.

V. Vehicles have capacity restrictions that are known in advance.

64

Novel Trends in the Traveling Salesman Problem

3. Classic heuristics to solve VRP

Heuristics are simple processes that perform a limited space search and generate
acceptable solutions in moderate calculation times; an important characteristic of
these methods is that they are designed to solve a specific optimization problem,
and in general they cannot be used to solve other optimization problems. A more
advanced class are the so-called metaheuristics, which are considered more
advanced methods than heuristics, in the sense that they guide their construction
and, therefore, are general purpose [5].

There are many advantages, and also disadvantages, when using heuristic algo-
rithm methods to solve optimization problems, as described [6] within the reasons
to use heuristic methods which are as follows:

I. The problem is that no exact method for its resolution is known.

II. Although there is an exact method to solve the problem, its execution is
computationally very expensive.

III. A heuristic method is more flexible than an exact method, that is, difficult
modeling conditions can be incorporated.

IV. The heuristic method is used as part of a global process that certifies an
optimal solution. There are two possibilities:

a. The heuristic method provides a good initial starting solution.

b. The heuristic method participates in an intermediate step of the procedure,
such as the selection rules of the variable to enter the base in the simplex
method.

3.1 Savings based heuristics

There are several types of heuristic methods to solve the VRP, which are
addressed extensively in Braekers et al. [3], trying to generate broad, nonexclusive
categories, where the best-known heuristics are located to solve this problem;
among them one of the most used and popular algorithms is the one of Clarke &
Wright, and that has had contributions from different authors [7].

This algorithm is based on successively combining subtours until a Hamiltonian
cycle is obtained, of which the subtours have a common node or vertex called base
or initial.

The method can be described as follows:

• Having a solution of two different routes 0, … , i, 0ð Þ and 0, j, … , 0ð Þ can be
joined by creating a new route 0, … , i, j, … , 0ð Þ.

• The distance savings obtained by the union is

sij ¼ ci0 þ c0j � cij (1)

In Eq. (1) sij is the savings on the total distance traveled if the two routes
0, … , i, 0ð Þ and 0, j, … , 0ð Þ are joined.

65

Comparative Study of Algorithms Metaheuristics Based Applied to the Solution…
DOI: http://dx.doi.org/10.5772/intechopen.91972

3. Classic heuristics to solve VRP

Heuristics are simple processes that perform a limited space search and generate
acceptable solutions in moderate calculation times; an important characteristic of
these methods is that they are designed to solve a specific optimization problem,
and in general they cannot be used to solve other optimization problems. A more
advanced class are the so-called metaheuristics, which are considered more
advanced methods than heuristics, in the sense that they guide their construction
and, therefore, are general purpose [5].

There are many advantages, and also disadvantages, when using heuristic algo-
rithm methods to solve optimization problems, as described [6] within the reasons
to use heuristic methods which are as follows:

I. The problem is that no exact method for its resolution is known.

II. Although there is an exact method to solve the problem, its execution is
computationally very expensive.

III. A heuristic method is more flexible than an exact method, that is, difficult
modeling conditions can be incorporated.

IV. The heuristic method is used as part of a global process that certifies an
optimal solution. There are two possibilities:

a. The heuristic method provides a good initial starting solution.

b. The heuristic method participates in an intermediate step of the procedure,
such as the selection rules of the variable to enter the base in the simplex
method.

3.1 Savings based heuristics

There are several types of heuristic methods to solve the VRP, which are
addressed extensively in Braekers et al. [3], trying to generate broad, nonexclusive
categories, where the best-known heuristics are located to solve this problem;
among them one of the most used and popular algorithms is the one of Clarke &
Wright, and that has had contributions from different authors [7].

This algorithm is based on successively combining subtours until a Hamiltonian
cycle is obtained, of which the subtours have a common node or vertex called base
or initial.

The method can be described as follows:

• Having a solution of two different routes 0, … , i, 0ð Þ and 0, j, … , 0ð Þ can be
joined by creating a new route 0, … , i, j, … , 0ð Þ.

• The distance savings obtained by the union is

sij ¼ ci0 þ c0j � cij (1)

In Eq. (1) sij is the savings on the total distance traveled if the two routes
0, … , i, 0ð Þ and 0, j, … , 0ð Þ are joined.

65

Comparative Study of Algorithms Metaheuristics Based Applied to the Solution…
DOI: http://dx.doi.org/10.5772/intechopen.91972

• An initial solution is started in this algorithm, and the unions that give greater
savings are made as long as they do not violate the restrictions of the problem.

• When the maximum saving is negative, the combinations of the routes will
increase the distance traveled, but the amount of routes in the solution will
decrease; depending on the characteristics of each problem, this can generate
circular or radial routes that can be avoided by placing a reference value λ,
which penalizes the union routes with distant customers. Saving is proposed as

sij ¼ ci0 þ c0j � λcij (2)

In Eq. (2) sij represents penalized savings with the weight λ in the total distance
traveled if the two routes 0, … , i, 0ð Þ and 0, j, … , 0ð Þ are joined, which prevents
when possible, merging routes with nodes far apart.

3.1.1 Application of savings algorithm

Step 1: With the coordinates of each client or city, prepare the distance matrix.
Step 2: Calculate the sij savings table for each pair of nodes.
Step 3: For each client or city i, build the route 0, i, 0ð Þ.
Step 4: Order savings from highest to lowest.
Step 5: Starting with the greatest savings, join the corresponding nodes, so that
sij ¼ max sij, where the maximum is taken between the savings that have not
yet been considered; the route, ri ∗ j ∗ , will be created, if i ∗ is the last customer
of de ri ∗ ; and j ∗ is the first customer of r j ∗ . Remove si ∗ j ∗ from future
considerations. Repeat step 5 until there are no more combinations of savings.

3.1.2 Example of application of the savings algorithm

A company wants to solve the problem of routing and design of the fleet of its
product x to its 10 customers in the city and has a homogeneous fleet of trucks with
capacity for 100 units of x product, with locations and demand shown in Table 1.

There are details in the Cartesian coordinates of the warehouse and each cus-
tomer with the demand, while in Figure 1, the position of each customer and the
warehouse is shown.

Step 1: The matrix of Euclidean distances between each pair of nodes is
calculated: Table 2 shows the distance matrix between all customers along
with the warehouse. This matrix is symmetrical, that is, it has the same
distance to go from client i to client j and vice versa. Point 0 has been
considered for the warehouse (whs).

Step 2: Once the distance matrix is obtained, the savings are calculated. For the
savings matrix, no row or column is placed for the warehouse.

For example, the savings between customer 1 and customer 2 is

s12 ¼ c1bdg þ cbdg2 � c12 (3)

s12 ¼ 25:46þ 19:80� 5:66 ¼ 39 (4)

In Table 3 all the savings are shown; in the same way the matrix is symmetric.
Step 3: The route 0, i, 0ð Þ is built for each client. In Figure 2 each route is shown
from the warehouse to each customer and back to the warehouse.

Step 4: Savings are organized from the highest to lowest.

66

Novel Trends in the Traveling Salesman Problem

In the list of savings to choose, only the savings that can be chosen are
considered.

When the list is prepared with all the savings, those savings that one or both
clients have already considered in a previous route are discarded.

Step 5: To assemble the routes, the restrictions are considered; for this example
the only restriction is the capacity of the truck that does not exceed 100 units
of the product x.

For the first route, the highest savings are chosen and placed in the form 0, i, 0ð Þ;
in this case 0 is the warehouse (whs), as the savings are chosen to add them to the
existing route or create a new one; the demands of each client are added, and the
route is closed when the sum of the demands is equal to or less than the capacity of
the truck 100 units, but when adding one more client, the demand exceeds the
capacity, and you can no longer choose that customer.

The composition of the routes is displayed step by step in Figure 3, and the
complete route diagram is shown in Figure 4. Below is the composition of the
routes with the demands.

Route 1: whs, c1, c9, whs Route demand 1: 17 + 14 = 31

Route 1: whs, c2, c1, c9, whs Route demand 1: 31 + 25 = 56

Route 2: whs, c3, c7, whs Route demand 2: 10 + 28 = 38

Route 1: whs, c2, c1, c9, c3, c7, whs Route demand 1: 56 + 38 = 94

Route 2: whs, c6, c8, whs Route demand 2: 15 + 36 = 51

Route 2: whs, c6, c8, c10, whs Route demand 2: 51 + 24 = 75

Table 1.
Cardinal coordinates of storage and customers with their demand.

67

Comparative Study of Algorithms Metaheuristics Based Applied to the Solution…
DOI: http://dx.doi.org/10.5772/intechopen.91972

In the list of savings to choose, only the savings that can be chosen are
considered.

When the list is prepared with all the savings, those savings that one or both
clients have already considered in a previous route are discarded.

Step 5: To assemble the routes, the restrictions are considered; for this example
the only restriction is the capacity of the truck that does not exceed 100 units
of the product x.

For the first route, the highest savings are chosen and placed in the form 0, i, 0ð Þ;
in this case 0 is the warehouse (whs), as the savings are chosen to add them to the
existing route or create a new one; the demands of each client are added, and the
route is closed when the sum of the demands is equal to or less than the capacity of
the truck 100 units, but when adding one more client, the demand exceeds the
capacity, and you can no longer choose that customer.

The composition of the routes is displayed step by step in Figure 3, and the
complete route diagram is shown in Figure 4. Below is the composition of the
routes with the demands.

Route 1: whs, c1, c9, whs Route demand 1: 17 + 14 = 31

Route 1: whs, c2, c1, c9, whs Route demand 1: 31 + 25 = 56

Route 2: whs, c3, c7, whs Route demand 2: 10 + 28 = 38

Route 1: whs, c2, c1, c9, c3, c7, whs Route demand 1: 56 + 38 = 94

Route 2: whs, c6, c8, whs Route demand 2: 15 + 36 = 51

Route 2: whs, c6, c8, c10, whs Route demand 2: 51 + 24 = 75

Table 1.
Cardinal coordinates of storage and customers with their demand.

67

Comparative Study of Algorithms Metaheuristics Based Applied to the Solution…
DOI: http://dx.doi.org/10.5772/intechopen.91972

Route 2: whs, c5, c6, c8, c10, whs Route demand 2: 75 + 20 = 95

Route 3: whs, c4, whs Route demand 3: 29

Figure 1.
Customer and warehouse positioning.

Cij whs c1 c2 c3 c4 c5 c6 c7 c8 c9 c10

whs — 25.46 19.80 19.65 7.07 25.00 15.81 23.60 29.15 24.19 11.05

c1 25.46 — 5.66 23.02 26.42 33.06 40.22 37.22 54.20 6.71 33.62

c2 19.80 5.66 — 19.65 21.02 29.61 34.67 33.00 48.60 7.28 28.18

c3 19.65 23.02 19.65 — 26.00 42.20 34.00 14.87 39.45 17.12 18.97

c4 7.07 26.42 21.02 26.00 — 18.03 14.14 30.61 31.62 26.93 17.09

c5 25.00 33.06 29.61 42.20 18.03 — 25.00 48.60 45.00 36.88 34.89

c6 15.81 40.22 34.67 34.00 14.14 25.00 — 32.20 20.00 39.81 17.09

c7 23.60 37.22 33.00 14.87 30.61 48.60 32.20 — 29.61 31.78 15.26

c8 29.15 54.20 48.60 39.45 31.62 45.00 20.00 29.61 — 51.62 21.26

c9 24.19 6.71 7.28 17.12 26.93 36.88 39.81 31.78 51.62 — 30.48

c10 11.05 33.62 28.18 18.97 17.09 34.89 17.09 15.26 21.26 30.48 —

Table 2.
Distance matrix.

68

Novel Trends in the Traveling Salesman Problem

Consequently, Clarke & Wright algorithm determines a solution for the routing
problem in which the distance traveled is 204.20 units in length.

3.2 Heuristic method of assigning first, routing after

Sweep heuristics are the best-known method of assigning first, routing later.
This method is solved in two phases. First, groups of customers called clusters

are created considering the capacity constraints of the vehicles, and second for each
cluster, a route is generated that visits all customers.

In sweep heuristic, clusters are created by turning a half-straight in the central
tank from the horizontal counterclockwise; after that the customers are incorpo-
rated into the mentioned group until the maximum capacity restriction of the
vehicles is met.

This heuristic is used to find solutions to geographical problems, that is to say in
which the nodes or vertices correspond to a point in the plane. It is assumed that the

Sij c1 c2 c3 c4 c5 c6 c7 c8 c9 c10

c1 — 39.60 22.08 6.11 17.40 1.04 11.84 0.41 42.93 2.89

c2 — 19.80 5.85 15.18 0.94 10.40 0.35 36.71 2.67

c3 — 0.72 2.44 1.46 28.38 9.36 26.72 11.72

c4 — 14.04 8.74 0.06 4.60 4.33 1.03

c5 — 15.81 0.00 9.15 12.31 1.16

c6 — 7.21 24.97 0.19 9.77

c7 — 23.14 16.01 19.38

c8 — 1.72 18.94

c9 — 4.75

c10 —

Table 3.
Savings matrix.

Figure 2.
Clarke & Wright heuristics step 1 route development 0, i, 0ð Þ.

69

Comparative Study of Algorithms Metaheuristics Based Applied to the Solution…
DOI: http://dx.doi.org/10.5772/intechopen.91972

Consequently, Clarke & Wright algorithm determines a solution for the routing
problem in which the distance traveled is 204.20 units in length.

3.2 Heuristic method of assigning first, routing after

Sweep heuristics are the best-known method of assigning first, routing later.
This method is solved in two phases. First, groups of customers called clusters

are created considering the capacity constraints of the vehicles, and second for each
cluster, a route is generated that visits all customers.

In sweep heuristic, clusters are created by turning a half-straight in the central
tank from the horizontal counterclockwise; after that the customers are incorpo-
rated into the mentioned group until the maximum capacity restriction of the
vehicles is met.

This heuristic is used to find solutions to geographical problems, that is to say in
which the nodes or vertices correspond to a point in the plane. It is assumed that the

Sij c1 c2 c3 c4 c5 c6 c7 c8 c9 c10

c1 — 39.60 22.08 6.11 17.40 1.04 11.84 0.41 42.93 2.89

c2 — 19.80 5.85 15.18 0.94 10.40 0.35 36.71 2.67

c3 — 0.72 2.44 1.46 28.38 9.36 26.72 11.72

c4 — 14.04 8.74 0.06 4.60 4.33 1.03

c5 — 15.81 0.00 9.15 12.31 1.16

c6 — 7.21 24.97 0.19 9.77

c7 — 23.14 16.01 19.38

c8 — 1.72 18.94

c9 — 4.75

c10 —

Table 3.
Savings matrix.

Figure 2.
Clarke & Wright heuristics step 1 route development 0, i, 0ð Þ.

69

Comparative Study of Algorithms Metaheuristics Based Applied to the Solution…
DOI: http://dx.doi.org/10.5772/intechopen.91972

location of each client i can be represented through its polar coordinates ri, θið Þ
having a single central deposit. It defines

θi ¼ arctan
Y ið Þ � Y whsð Þ
X ið Þ � X whsð Þ

� �

where � π < ri <0 si Y ið Þ � Y whsð Þ<0

y 0< ri < π si Y ið Þ � Y 1ð Þ≥0, i ¼ 1, 2, … , nð Þ
ri ¼ polar radio coordinate of the i th position i ¼ 1, 2, … , nð Þ

(5)

Figure 3.
Step by step: routing of Clarke & Wright heuristics.

70

Novel Trends in the Traveling Salesman Problem

3.2.1 Steps for sweep heuristics

Step 1: Prepare the table of the location of the nodes in polar coordinates.
Step 2: Customers or cities are sorted in ascending order by θ; if two clients or
cities have the same θ value, the one with the lowest r value is chosen first.
Then a customer or city w is selected to start and make k ¼ 1 y Ck ¼ wf g.

Step 3: If all clients or cities are in a cluster, go to step 4. Otherwise, a client or
city is selected; wi and wi are added to Ck if you do not exceed the capacity
restrictions; if you exceed them, create a new cluster for which, k ¼ kþ 1 and
Ck ¼ wif g. Repeat step 2 until there are no clients or cities without a cluster.

Step 4: For each cluster Ck for t ¼ 1, … , k, solve traveling salesman problem
(TSP) with its clients and a solution that can be a local optimum is obtained
until not checking otherwise.

Step 5: Return to step 2 to reorder customers where the first becomes the last,
the second the first, and so on until the original sorting. For each change, steps
3 and 4 are performed again, and the best of the solutions obtained is taken.

3.2.2 Example of sweep heuristics

We will take the example of the savings algorithm.
Step 1: Formula (5) is used to obtain the polar coordinate table, where θi is
expressed in radians and ri is the directed distance. Table 4 shows the polar
coordinates for each client i. The change of polar coordinates is displayed
(Figure 5).

Step 2: It is sorted by θi from least to greatest, as seen in Table 5.
Step 3: To elaborate the routes, it is done in two phases, the first one where the
clients are grouped by the sweep method and the second one where a TSP is
resolved (step 4).

Figure 4.
Final routes by Clarke & Wright algorithm.

71

Comparative Study of Algorithms Metaheuristics Based Applied to the Solution…
DOI: http://dx.doi.org/10.5772/intechopen.91972

3.2.1 Steps for sweep heuristics

Step 1: Prepare the table of the location of the nodes in polar coordinates.
Step 2: Customers or cities are sorted in ascending order by θ; if two clients or
cities have the same θ value, the one with the lowest r value is chosen first.
Then a customer or city w is selected to start and make k ¼ 1 y Ck ¼ wf g.

Step 3: If all clients or cities are in a cluster, go to step 4. Otherwise, a client or
city is selected; wi and wi are added to Ck if you do not exceed the capacity
restrictions; if you exceed them, create a new cluster for which, k ¼ kþ 1 and
Ck ¼ wif g. Repeat step 2 until there are no clients or cities without a cluster.

Step 4: For each cluster Ck for t ¼ 1, … , k, solve traveling salesman problem
(TSP) with its clients and a solution that can be a local optimum is obtained
until not checking otherwise.

Step 5: Return to step 2 to reorder customers where the first becomes the last,
the second the first, and so on until the original sorting. For each change, steps
3 and 4 are performed again, and the best of the solutions obtained is taken.

3.2.2 Example of sweep heuristics

We will take the example of the savings algorithm.
Step 1: Formula (5) is used to obtain the polar coordinate table, where θi is
expressed in radians and ri is the directed distance. Table 4 shows the polar
coordinates for each client i. The change of polar coordinates is displayed
(Figure 5).

Step 2: It is sorted by θi from least to greatest, as seen in Table 5.
Step 3: To elaborate the routes, it is done in two phases, the first one where the
clients are grouped by the sweep method and the second one where a TSP is
resolved (step 4).

Figure 4.
Final routes by Clarke & Wright algorithm.

71

Comparative Study of Algorithms Metaheuristics Based Applied to the Solution…
DOI: http://dx.doi.org/10.5772/intechopen.91972

For the sweep method, the angles from the smallest to the largest are chosen,
and it moves counterclockwise.

As can be seen in Table 5, customers are already sorted in ascending order by
their angular polar coordinate, and customers are chosen until they fail to comply
with the capacity restriction of the truck that is 100 units of product x. Considering
this the routes are as follows:

Route 1: whs, c9, c2, c1, c5, whs Route demand 1: 14+25+17+20 = 76

Route 2: whs, c4, c6, c8, whs Route demand 2: 29+15+36 = 80

Route 3: whs, c10, c7, c3, whs Route demand 3: 24+28+10 = 62

In Figure 6, the sweeps are visualized starting with client 9 that has the greatest
angle, thus grouping them in zones in this case by colors and within each one for
their best distance. The sweep groups customers do not violate the restriction of the
truck.

In Figure 7, the solution is shown with three routes before the TSP is applied.
Step 4: In the second phase to each route already generated in the first, it is
resolved by TSP, for this case with the nearest node.

ri θi

c1 25.46 �2.36

c2 19.80 �2.36

c3 19.65 2.88

c4 7.07 �0.79

c5 25.00 �0.93

c6 15.81 0.32

c7 23.60 2.21

c8 29.15 1.03

c9 24.19 �2.62

c10 11.05 1.66

Table 4.
Polar coordinates for each i.

Figure 5.
Node location.

72

Novel Trends in the Traveling Salesman Problem

The routes are as follows:

Route 1: whs, c9, c1, c2, c5, whs Route demand 1: 14+17+25+20 = 76

Route 2: whs, c4, c6, c8, whs Route demand 2: 29+15+36 = 80

Route 3: whs, c10, c7, c3, whs Route demand 3: 24+28+10 = 62

Thus, the sweep algorithm has a local solution for the routing problem in which
the distance traveled is 222.36 units in length.

In Figure 8, the route diagram is displayed.
Step 5: Repeat step 2 where the customers already ordered from Table 5,
continue to rotate the position until the first returns to be first, and for each
rotation, steps 3 and 4 are performed, and after all iterations, the best is
selected.

Below is the iteration that had the best result. Table 6 shows the fifth iteration of
nine where you start with client six (Figure 9).

After performing step 3 in Figure 10, the grouping of customers is appreciated
to not violate the restriction of the truck’s capacity.

ri θi

c9 24.19 �2.62

c2 19.80 �2.36

c1 25.46 �2.36

c5 25.00 �0.93

c4 7.07 �0.79

c6 15.81 0.32

c8 29.15 1.03

c10 11.05 1.66

c7 23.60 2.21

c3 19.65 2.88

Table 5.
Ascending ordering of customers.

Figure 6.
First phase of sweep heuristics, grouping.

73

Comparative Study of Algorithms Metaheuristics Based Applied to the Solution…
DOI: http://dx.doi.org/10.5772/intechopen.91972

The routes are as follows:

Route 1: whs, c9, c1, c2, c5, whs Route demand 1: 14+17+25+20 = 76

Route 2: whs, c4, c6, c8, whs Route demand 2: 29+15+36 = 80

Route 3: whs, c10, c7, c3, whs Route demand 3: 24+28+10 = 62

Thus, the sweep algorithm has a local solution for the routing problem in which
the distance traveled is 222.36 units in length.

In Figure 8, the route diagram is displayed.
Step 5: Repeat step 2 where the customers already ordered from Table 5,
continue to rotate the position until the first returns to be first, and for each
rotation, steps 3 and 4 are performed, and after all iterations, the best is
selected.

Below is the iteration that had the best result. Table 6 shows the fifth iteration of
nine where you start with client six (Figure 9).

After performing step 3 in Figure 10, the grouping of customers is appreciated
to not violate the restriction of the truck’s capacity.

ri θi

c9 24.19 �2.62

c2 19.80 �2.36

c1 25.46 �2.36

c5 25.00 �0.93

c4 7.07 �0.79

c6 15.81 0.32

c8 29.15 1.03

c10 11.05 1.66

c7 23.60 2.21

c3 19.65 2.88

Table 5.
Ascending ordering of customers.

Figure 6.
First phase of sweep heuristics, grouping.

73

Comparative Study of Algorithms Metaheuristics Based Applied to the Solution…
DOI: http://dx.doi.org/10.5772/intechopen.91972

Figure 7.
First phase of sweep heuristics, solution with three routes.

Figure 8.
Routes by sweep algorithm.

ri θi

c6 15.81 0.32

c8 29.15 1.03

c10 11.05 1.66

c7 23.60 2.21

c3 19.65 2.88

c9 24.19 �2.62

c1 25.46 �2.36

c2 19.80 �2.36

c5 25.00 �0.93

c4 7.07 �0.79

Table 6.
Customer ordering—fifth iteration.

74

Novel Trends in the Traveling Salesman Problem

In step 4, each grouping is resolved with a TSP, and the following routes are obtained:

Route 1: whs, c6, c8, c10, whs Route demand 1: 15+36+24 = 75

Route 2: whs, c7, c3, c9, c1, c2, whs Route demand 2: 28+10+14+25+17 = 94

Route 3: whs, c5, c4, whs Route demand 3: 20+29 = 49

In Figure 10, the diagram of the routes of the fifth iteration is displayed, which
obtained the best response.

The sweep algorithm determines a solution for the routing problem in which the
distance traveled is 205.96 units in length, that is, a solution of lower quality than
that obtained by the Clarke &Wright algorithm with 204.20 units in length.

4. Metaheuristics

The term metaheuristics first appeared in the seminal article about taboo search
(Glover, 1987). The term metaheuristics is obtained by putting the suffix “meta”
before the word heuristic, which means “beyond” or “at a higher level.”

Figure 9.
First phase of sweep heuristics, grouping—fifth iteration.

Figure 10.
Routes by sweep algorithm—fifth iteration.

75

Comparative Study of Algorithms Metaheuristics Based Applied to the Solution…
DOI: http://dx.doi.org/10.5772/intechopen.91972

In step 4, each grouping is resolved with a TSP, and the following routes are obtained:

Route 1: whs, c6, c8, c10, whs Route demand 1: 15+36+24 = 75

Route 2: whs, c7, c3, c9, c1, c2, whs Route demand 2: 28+10+14+25+17 = 94

Route 3: whs, c5, c4, whs Route demand 3: 20+29 = 49

In Figure 10, the diagram of the routes of the fifth iteration is displayed, which
obtained the best response.

The sweep algorithm determines a solution for the routing problem in which the
distance traveled is 205.96 units in length, that is, a solution of lower quality than
that obtained by the Clarke &Wright algorithm with 204.20 units in length.

4. Metaheuristics

The term metaheuristics first appeared in the seminal article about taboo search
(Glover, 1987). The term metaheuristics is obtained by putting the suffix “meta”
before the word heuristic, which means “beyond” or “at a higher level.”

Figure 9.
First phase of sweep heuristics, grouping—fifth iteration.

Figure 10.
Routes by sweep algorithm—fifth iteration.

75

Comparative Study of Algorithms Metaheuristics Based Applied to the Solution…
DOI: http://dx.doi.org/10.5772/intechopen.91972

Metaheuristics are generic procedures that, through approximate algorithms,
guide a subordinate heuristic by combining the exploration of the solution space for
optimization problems, obtaining better results than classical heuristics in a longer
period; however, this time is less than if the exact methods are used.

Metaheuristics that have been considered for this comparative study are shown
below, which correspond to constructive and local search procedures [6].

4.1 GRASP

GRASP methods had their origins at the end of the 1980s in order to find a
solution to problems of joint coverings, and in 1995 by Feo and Resende, this
metaheuristic is of general purpose [8].

The word GRASP comes from the acronym of greedy randomized adaptive
search procedures that would be something like search procedures based on vora-
cious adaptive random functions.

GRASP has a multistart process in which each step has a construction and an
improvement phase. In the construction phase, the constructive heuristic process
obtains a good initial solution, which is improved in the second phase by a local
search algorithm. The best of all solutions examined is saved as the final result.

There are many implementations of GRASP metaheuristics, including variants
and hybridizations with other procedures such as variable neighborhood search or
path relinking, with which this metaheuristic has proven to work very well in
practice as demonstrated in Marti and Sandoya [9]. A simple scheme to represent
the operation of this algorithm is as follows:

While (stop condition)
Construction phase:

• Choose a list of candidate elements.

• Have a restricted list with the best candidates.

• Select an item randomly from the restricted list.

Improvement phase:

• Perform a local search process based on the solution built until it can no longer
be improved.

Update:

• If the solution obtained improves to the best stored, update it.

In the construction phase, a possible solution is built iteratively, considering an
element in each step. In each iteration the choice of the next element to be added to
the partial solution is determined by a greedy function, which examines the
benefit of adding each of the elements according to the objective function and
choosing the best one.

This metaheuristic works with a restricted list of the best candidates, which makes
the best candidate randomly selected for each iteration of the construction phase.

In the improvement phase, the results that are obtained from the construction
phase are not usually local optimal; therefore, a local search procedure is applied as
post-processing to perfect the solution obtained.

Performing several iterations is a way of sampling the solution space.

76

Novel Trends in the Traveling Salesman Problem

4.2 Simulated annealing

The simulated annealing metaheuristics was introduced in the 1950s by Metrop-
olis Hastings to be used in the field of statistical thermodynamics simulating cooling
processes of a material.

In 1983 the method was refocused to solve combinatorial optimization problems
of great complexity by Scott Kirkpatrick, C. Daniel Gelatt and Mario P. Vecchi, and
independently in 1985 by Vlado Cerny. For its implementation ease, this
metaheuristic had a great boom in the 1980s.

Simulated annealing has its procedure based on local search by environments
that is characterized by an acceptance criterion of neighboring solutions that are
adapted throughout its execution.

A temperature variable is used, T, that determines the extent to which neigh-
boring solutions, worse than the current n, can be accepted. This variable is about
starting it with a high value, which is called the initial temperature, T0, which
generates a high probability of accepting a nonimprovement movement. In each
iteration the temperature decreases through a temperature cooling mechanism,
α, having a smaller probability until approaching the optimal solution and
reaching a final temperature, T f . Costs also decrease as the temperature
decreases, making it increasingly difficult to accept bad movements in search
of the solution.

In each iteration a specific number of neighbors is generated, which can be fixed
for the entire execution or depend on each iteration.

Each time a neighbor is generated, the acceptance criterion is applied to see if it
replaces the current solution:

• If the neighboring solution is better than the current one, it is automatically
accepted, as it would be done in the classic local search.

• If the neighboring solution is worse than the current one, there is still a
chance that the neighbor will replace the current solution. This allows the
algorithm to exit from local optimum, in which the classic local search would
be trapped.

This model is given by the following structure:

Take an initial solution x
Take an initial temperature T
While (not frozen)
Perform L times
Take x’ from N xð Þ
d = f(x0) – f(x)
If d<0ð Þ dox ¼ x0

If d>0ð Þ dox ¼ x0 with p ¼ e�d=T

Take action of the cooling mechanism T ¼ rTð Þ

The following parameters are determined:

I. Initial temperature: it is established by doing a series of tests to reach a
certain fraction of accepted movements.

II. Cooling speed r.

77

Comparative Study of Algorithms Metaheuristics Based Applied to the Solution…
DOI: http://dx.doi.org/10.5772/intechopen.91972

4.2 Simulated annealing

The simulated annealing metaheuristics was introduced in the 1950s by Metrop-
olis Hastings to be used in the field of statistical thermodynamics simulating cooling
processes of a material.

In 1983 the method was refocused to solve combinatorial optimization problems
of great complexity by Scott Kirkpatrick, C. Daniel Gelatt and Mario P. Vecchi, and
independently in 1985 by Vlado Cerny. For its implementation ease, this
metaheuristic had a great boom in the 1980s.

Simulated annealing has its procedure based on local search by environments
that is characterized by an acceptance criterion of neighboring solutions that are
adapted throughout its execution.

A temperature variable is used, T, that determines the extent to which neigh-
boring solutions, worse than the current n, can be accepted. This variable is about
starting it with a high value, which is called the initial temperature, T0, which
generates a high probability of accepting a nonimprovement movement. In each
iteration the temperature decreases through a temperature cooling mechanism,
α, having a smaller probability until approaching the optimal solution and
reaching a final temperature, T f . Costs also decrease as the temperature
decreases, making it increasingly difficult to accept bad movements in search
of the solution.

In each iteration a specific number of neighbors is generated, which can be fixed
for the entire execution or depend on each iteration.

Each time a neighbor is generated, the acceptance criterion is applied to see if it
replaces the current solution:

• If the neighboring solution is better than the current one, it is automatically
accepted, as it would be done in the classic local search.

• If the neighboring solution is worse than the current one, there is still a
chance that the neighbor will replace the current solution. This allows the
algorithm to exit from local optimum, in which the classic local search would
be trapped.

This model is given by the following structure:

Take an initial solution x
Take an initial temperature T
While (not frozen)
Perform L times
Take x’ from N xð Þ
d = f(x0) – f(x)
If d<0ð Þ dox ¼ x0

If d>0ð Þ dox ¼ x0 with p ¼ e�d=T

Take action of the cooling mechanism T ¼ rTð Þ

The following parameters are determined:

I. Initial temperature: it is established by doing a series of tests to reach a
certain fraction of accepted movements.

II. Cooling speed r.

77

Comparative Study of Algorithms Metaheuristics Based Applied to the Solution…
DOI: http://dx.doi.org/10.5772/intechopen.91972

III. Length L that must be proportional to the expected size of N xð Þ.

IV. When the cooling sequence ends, it is frozen cont ¼ contþ 1 when a
temperature is completed and the percentage of movements accepted is less
than MinPercent:cont ¼ 0 when the best stored solution is improved.

5. Implementation of heuristics and metaheuristics for the resolution of
CVRP

5.1 Test instances

The cases to be evaluated are divided into three groups classified by the type of
client with 10 examples each. Next, some tables will be presented, which have the
name of instance, the truck’s capacity in column cap, the number of customers in
column n, the number of vehicles to be used in column k, and the optimal solution
in column opt.

I. Clustered clients, as shown inTable 7, belong to the Augerat B set in 1995 [10]
and specify that the coordinates are points between [0,100] � [0,100] in the
grid that are chosen to form neighborhood groups (NC) closest, where
k≤NC� 1. The demands have a uniform distribution U 1, 30ð Þ; however,
n=10 was multiplied by 3.

II. Random clients, as shown in Table 8, belong to the Augerat set A in 1995 and
specify that the coordinates are points between [0,100] � [0,100] placed
randomly. The demands have a uniform distribution U 1, 30ð Þ; however,
n=10 was multiplied by 3.

III. Clustered and random clients, as shown in Table 9, belong to the Augerat set
X in 1995 and specify that the coordinates are points between [0,1000] x
[0,1000] that are grouped and placed randomly, where k is the minimum
feasible number of vehicles.

Instances Cap n k Opt

Clustered B-n31-k5 100 30 5 672

B-n34-k5 100 33 5 788

B-n35-k5 100 34 5 955

B-n38-k6 100 37 6 805

B-n39-k5 100 38 5 549

B-n41-k6 100 40 6 829

B-n43-k6 100 42 6 742

B-n44-k7 100 43 7 909

B-n45-k5 100 44 5 751

B-n45-k6 100 44 6 678

Table 7.
Instances of set B.

78

Novel Trends in the Traveling Salesman Problem

6. Results

The results for the 30 selected test cases are shown below, applying the heuris-
tics and metaheuristics studied in Chapter 3 and 4 to know which one has a
response that is closer or equal to the optimum by group of client positioning.

To define which has a better quality solution, the gap analysis or difference
analysis is used, which consists in calculating the difference between the optimal
solution and the solution obtained, divided for the solution obtained and expressed
as a percentage.

The solution of the real case is also presented through the heuristics and
metaheuristics that offer the best solution given the characteristic of the clients’
positions.

6.1 Test cases resolved by heuristics

Clarke &Wright heuristics have better quality solutions, solving problems
where customers with a small n are grouped.

Instances Cap n k Opt

Random A-n32-k5 100 31 5 784

A-n33-k6 100 32 6 742

A-n34-k5 100 33 5 778

A-n36-k5 100 35 5 799

A-n37-k5 100 36 5 669

A-n37-k6 100 36 6 949

A-n38-k5 100 37 5 730

A-n39-k5 100 38 5 822

A-n39-k6 100 38 6 831

A-n44-k6 100 43 6 937

Table 8.
Instances of set A.

Instances Cap n k Opt

Clustered and random X-n101-k25 206 100 25 27,591

X-n106-k14 600 105 14 26,362

X-n110-k13 66 109 13 14,971

X-n115-k10 169 114 10 12,747

X-n120-k6 21 119 6 13,332

X-n125-k30 188 124 30 55,539

X-n129-k18 39 128 18 28,940

X-n134-k13 643 133 13 10,916

X-n139-k10 106 138 10 13,590

X-n143-k7 1190 142 7 15,700

Table 9.
Instances of set X.

79

Comparative Study of Algorithms Metaheuristics Based Applied to the Solution…
DOI: http://dx.doi.org/10.5772/intechopen.91972

6. Results

The results for the 30 selected test cases are shown below, applying the heuris-
tics and metaheuristics studied in Chapter 3 and 4 to know which one has a
response that is closer or equal to the optimum by group of client positioning.

To define which has a better quality solution, the gap analysis or difference
analysis is used, which consists in calculating the difference between the optimal
solution and the solution obtained, divided for the solution obtained and expressed
as a percentage.

The solution of the real case is also presented through the heuristics and
metaheuristics that offer the best solution given the characteristic of the clients’
positions.

6.1 Test cases resolved by heuristics

Clarke &Wright heuristics have better quality solutions, solving problems
where customers with a small n are grouped.

Instances Cap n k Opt

Random A-n32-k5 100 31 5 784

A-n33-k6 100 32 6 742

A-n34-k5 100 33 5 778

A-n36-k5 100 35 5 799

A-n37-k5 100 36 5 669

A-n37-k6 100 36 6 949

A-n38-k5 100 37 5 730

A-n39-k5 100 38 5 822

A-n39-k6 100 38 6 831

A-n44-k6 100 43 6 937

Table 8.
Instances of set A.

Instances Cap n k Opt

Clustered and random X-n101-k25 206 100 25 27,591

X-n106-k14 600 105 14 26,362

X-n110-k13 66 109 13 14,971

X-n115-k10 169 114 10 12,747

X-n120-k6 21 119 6 13,332

X-n125-k30 188 124 30 55,539

X-n129-k18 39 128 18 28,940

X-n134-k13 643 133 13 10,916

X-n139-k10 106 138 10 13,590

X-n143-k7 1190 142 7 15,700

Table 9.
Instances of set X.

79

Comparative Study of Algorithms Metaheuristics Based Applied to the Solution…
DOI: http://dx.doi.org/10.5772/intechopen.91972

Table 10 shows that for the group of clients with gathered positions, the gap is
3.63%; for the positions of random clients, the gap is 5.18%; and in less effective
way for customers with grouped and random positions, it has a gap of 6.55%.

Data Clarke &Wright

Instances Cap n k Opt k Result Gap (%)

Clustered B-n31-k5 100 30 5 672 5 681.20 1.37

B-n34-k5 100 33 5 788 5 794.30 0.80

B-n35-k5 100 34 5 955 5 978.30 2.44

B-n38-k6 100 37 6 805 6 832.10 3.37

B-n39-k5 100 38 5 549 5 566.70 3.22

B-n41-k6 100 40 6 829 7 898.10 8.34

B-n43-k6 100 42 6 742 6 782.00 5.39

B-n44-k7 100 43 7 909 7 937.70 3.16

B-n45-k5 100 44 5 751 5 757.20 0.83

B-n45-k6 100 44 6 678 7 727.80 7.35

Average 3.63

Random A-n32-k5 100 31 5 784 5 843.70 7.61

A-n33-k6 100 32 6 742 7 776.30 4.62

A-n34-k5 100 33 5 778 6 810.40 4.16

A-n36-k5 100 35 5 799 5 828.50 3.69

A-n37-k5 100 36 5 669 5 707.80 5.80

A-n37-k6 100 36 6 949 6 976.60 2.91

A-n38-k5 100 37 5 730 6 768.10 5.22

A-n39-k5 100 38 5 822 5 902.00 9.73

A-n39-k6 100 38 6 831 6 863.10 3.86

A-n44-k6 100 43 6 937 7 976.00 4.16

Average 5.18

Clustered and random X-n101-k25 206 100 25 27,591 28 28940.00 4.89

X-n106-k14 600 105 14 26,362 14 27280.00 3.48

X-n110-k13 66 109 13 14,971 13 15870.00 6.00

X-n115-k10 169 114 10 12,747 11 13490.00 5.83

X-n120-k6 21 119 6 13,332 6 14540.00 9.06

X-n125-k30 188 124 30 55,539 33 58830.00 5.93

X-n129-k18 39 128 18 28,940 18 30300.00 4.70

X-n134-k13 643 133 13 10,916 14 11520.00 5.53

X-n139-k10 106 138 10 13,590 11 14530.00 6.92

X-n143-k7 1190 142 7 15,700 7 17770.00 13.18

Average 6.55

Table 10.
Clarke & Wright heuristics results.

80

Novel Trends in the Traveling Salesman Problem

It also compares the number of vehicles kð Þ that were obtained when solving
each case against the optimal solution, and it was obtained that 12 cases had a
vehicle more than the optimum B-n41-k6, B-n45-k6, A-n33-k6, A-n34-k5, A-n38-
k5, A-n44-k6, X-n106-k14, X-n115-k10, X-n134-k13, and X-n139-k10, and two
cases had three more than the optimal vehicles X-n101-k25 and X-n125-k30.

Sweep heuristics are more effective in solving problems where customers with a
small n are grouped together. However, the difference in the average gap between
random and grouped customers is short.

Table 11 shows that for the group of customers with grouped positions, the
gap is 8.68%; for random customer positions; the gap is 8.85%; and in a less
effective way for customers with grouped and random positions, it has a gap of
17.00%.

It also compares the number of vehicle numbers kð Þ that were obtained when
solving each case against the optimal solution, and it was obtained that seven cases
had a vehicle more than the optimal B-n45-k6, A-n38-k5, A-n39-k5, X-n115-k10, X-
n129-k18, X-n134-k13, and X-n139-k10; one case had five more vehicles than
the optimum X-n101-k25, and one case had six more vehicles than the optimal
X-n125-k30.

In each group of clients, the sweep heuristic obtained better answers than the
Clarke &Wright heuristics with 30% in the group of clients with a grouped posi-
tion, 30% in the group of clients with a random position, and 20% in the group of
clients with grouped and random position. In other words, Clarke &Wright heu-
ristics are superior with 70% in the first two groups of clients and with 80% in the
last group of clients.

A comparison among the values of the Distance traveled in the solution found by
the heuristic, the optimal solution and the GAP for each one of the considered test
instances is shown in Table 12.

On the other hand, Table 13 shows a summary of the minimum, maximum and
average gap for each of the three classes of problems considered: Clustered, Random
and Clustered, and Random.

6.2 Test cases resolved through metaheuristics

The GRASP metaheuristics are based on a previous solution for which Clarke &
Wright heuristic responses were selected since their responses are of better quality
than the sweep heuristics.

The following parameters were considered for its implementation:

• α = 0.5

• Number of iterations = 10,000

GRASP’s metaheuristics are more effective in solving problems where customers
with a small n are grouped together.

Customers Minimum gap (%) Maximum gap (%) Average gap (%)

Clustered 0.80 8.34 3.63

Random 2.91 9.73 5.18

Clustered and random 3.48 13.18 6.55

Table 11.
Clarke & Wright heuristic gaps comparison.

81

Comparative Study of Algorithms Metaheuristics Based Applied to the Solution…
DOI: http://dx.doi.org/10.5772/intechopen.91972

It also compares the number of vehicles kð Þ that were obtained when solving
each case against the optimal solution, and it was obtained that 12 cases had a
vehicle more than the optimum B-n41-k6, B-n45-k6, A-n33-k6, A-n34-k5, A-n38-
k5, A-n44-k6, X-n106-k14, X-n115-k10, X-n134-k13, and X-n139-k10, and two
cases had three more than the optimal vehicles X-n101-k25 and X-n125-k30.

Sweep heuristics are more effective in solving problems where customers with a
small n are grouped together. However, the difference in the average gap between
random and grouped customers is short.

Table 11 shows that for the group of customers with grouped positions, the
gap is 8.68%; for random customer positions; the gap is 8.85%; and in a less
effective way for customers with grouped and random positions, it has a gap of
17.00%.

It also compares the number of vehicle numbers kð Þ that were obtained when
solving each case against the optimal solution, and it was obtained that seven cases
had a vehicle more than the optimal B-n45-k6, A-n38-k5, A-n39-k5, X-n115-k10, X-
n129-k18, X-n134-k13, and X-n139-k10; one case had five more vehicles than
the optimum X-n101-k25, and one case had six more vehicles than the optimal
X-n125-k30.

In each group of clients, the sweep heuristic obtained better answers than the
Clarke &Wright heuristics with 30% in the group of clients with a grouped posi-
tion, 30% in the group of clients with a random position, and 20% in the group of
clients with grouped and random position. In other words, Clarke &Wright heu-
ristics are superior with 70% in the first two groups of clients and with 80% in the
last group of clients.

A comparison among the values of the Distance traveled in the solution found by
the heuristic, the optimal solution and the GAP for each one of the considered test
instances is shown in Table 12.

On the other hand, Table 13 shows a summary of the minimum, maximum and
average gap for each of the three classes of problems considered: Clustered, Random
and Clustered, and Random.

6.2 Test cases resolved through metaheuristics

The GRASP metaheuristics are based on a previous solution for which Clarke &
Wright heuristic responses were selected since their responses are of better quality
than the sweep heuristics.

The following parameters were considered for its implementation:

• α = 0.5

• Number of iterations = 10,000

GRASP’s metaheuristics are more effective in solving problems where customers
with a small n are grouped together.

Customers Minimum gap (%) Maximum gap (%) Average gap (%)

Clustered 0.80 8.34 3.63

Random 2.91 9.73 5.18

Clustered and random 3.48 13.18 6.55

Table 11.
Clarke & Wright heuristic gaps comparison.

81

Comparative Study of Algorithms Metaheuristics Based Applied to the Solution…
DOI: http://dx.doi.org/10.5772/intechopen.91972

Table 14 shows that for the clients with grouped positions; the gap is 3.09%; for
the positions of random clients, the gap is 4.38%; and less effectively for customers
with grouped and random positions, it has a gap of 5.97%.

Data Sweep

Instances Cap n k Opt k Result Gap (%)

Clustered B-n31-k5 100 30 5 672 5 696.69 3.67

B-n34-k5 100 33 5 788 5 889.51 12.88

B-n35-k5 100 34 5 955 5 966.93 1.25

B-n38-k6 100 37 6 805 6 838.99 4.22

B-n39-k5 100 38 5 549 5 613.45 11.74

B-n41-k6 100 40 6 829 6 884.53 6.70

B-n43-k6 100 42 6 742 6 750.92 1.20

B-n44-k7 100 43 7 909 7 1137.46 25.13

B-n45-k5 100 44 5 751 5 836.08 11.33

B-n45-k6 100 44 6 678 7 736.62 8.65

Average 8.68

Random A-n32-k5 100 31 5 784 5 885.04 12.89

A-n33-k6 100 32 6 742 6 751.65 1.30

A-n34-k5 100 33 5 778 5 786.44 1.08

A-n36-k5 100 35 5 799 5 862.71 7.97

A-n37-k5 100 36 5 669 5 736.35 10.07

A-n37-k6 100 36 6 949 7 1087.46 14.59

A-n38-k5 100 37 5 730 6 818.46 12.12

A-n39-k5 100 38 5 822 5 882.53 7.36

A-n39-k6 100 38 6 831 6 900.14 8.32

A-n44-k6 100 43 6 937 6 1056.84 12.79

Average 8.85

Clustered and random X-n101-k25 206 100 25 27,591 30 34368.50 24.56

X-n106-k14 600 105 14 26,362 14 30035.90 13.94

X-n110-k13 66 109 13 14,971 13 15769.30 5.33

X-n115-k10 169 114 10 12,747 11 14894.20 16.84

X-n120-k6 21 119 6 13,332 6 14495.40 8.73

X-n125-k30 188 124 30 55,539 36 69342.40 24.85

X-n129-k18 39 128 18 28,940 19 36941.80 27.65

X-n134-k13 643 133 13 10,916 14 13835.90 26.75

X-n139-k10 106 138 10 13,590 11 14850.90 9.28

X-n143-k7 1190 142 7 15,700 7 17593.50 12.06

Average 17.00

Table 12.
Sweep heuristic results.

82

Novel Trends in the Traveling Salesman Problem

Customers Minimum gap (%) Maximum gap (%) Average gap (%)

Clustered 1.20 25.13 8.68

Random 1.08 14.59 8.85

Clustered and random 5.33 27.65 17.00

Table 13.
Sweep heuristic gap comparison.

Data Grasp

Instances cap n k Opt k Result Gap (%)

Clustered B-n31-k5 100 30 5 672 5 679.05 1.05

B-n34-k5 100 33 5 788 5 788.00 0.00

B-n35-k5 100 34 5 955 5 968.85 1.45

B-n38-k6 100 37 6 805 6 830.45 3.16

B-n39-k5 100 38 5 549 5 564.85 2.89

B-n41-k6 100 40 6 829 7 897.24 8.23

B-n43-k6 100 42 6 742 6 777.98 4.85

B-n44-k7 100 43 7 909 7 932.36 2.57

B-n45-k5 100 44 5 751 5 755.23 0.56

B-n45-k6 100 44 6 678 7 719.80 6.17

Average 3.09

Random A-n32-k5 100 31 5 784 5 830.67 5.95

A-n33-k6 100 32 6 742 7 776.02 4.58

A-n34-k5 100 33 5 778 6 809.38 4.03

A-n36-k5 100 35 5 799 5 823.20 3.03

A-n37-k5 100 36 5 669 5 695.42 3.95

A-n37-k6 100 36 6 949 6 976.61 2.91

A-n38-k5 100 37 5 730 6 765.87 4.91

A-n39-k5 100 38 5 822 5 901.99 9.73

A-n39-k6 100 38 6 831 6 856.93 3.12

A-n44-k6 100 43 6 937 7 951.73 1.57

Average 4.38

Clustered and random X-n101-k25 206 100 25 27,591 28 28891.90 4.71

X-n106-k14 600 105 14 26,362 14 27199.80 3.18

X-n110-k13 66 109 13 14,971 13 15847.90 5.86

X-n115-k10 169 114 10 12,747 11 13436.60 5.41

X-n120-k6 21 119 6 13,332 6 14192.90 6.46

X-n125-k30 188 124 30 55,539 33 58809.10 5.89

X-n129-k18 39 128 18 28,940 18 30298.40 4.69

X-n134-k13 643 133 13 10,916 14 11492.20 5.28

X-n139-k10 106 138 10 13,590 11 14521.10 6.85

X-n143-k7 1190 142 7 15,700 7 17491.80 11.41

Average 5.97

Table 14.
GRASP metaheuristic results.

83

Comparative Study of Algorithms Metaheuristics Based Applied to the Solution…
DOI: http://dx.doi.org/10.5772/intechopen.91972

Customers Minimum gap (%) Maximum gap (%) Average gap (%)

Clustered 1.20 25.13 8.68

Random 1.08 14.59 8.85

Clustered and random 5.33 27.65 17.00

Table 13.
Sweep heuristic gap comparison.

Data Grasp

Instances cap n k Opt k Result Gap (%)

Clustered B-n31-k5 100 30 5 672 5 679.05 1.05

B-n34-k5 100 33 5 788 5 788.00 0.00

B-n35-k5 100 34 5 955 5 968.85 1.45

B-n38-k6 100 37 6 805 6 830.45 3.16

B-n39-k5 100 38 5 549 5 564.85 2.89

B-n41-k6 100 40 6 829 7 897.24 8.23

B-n43-k6 100 42 6 742 6 777.98 4.85

B-n44-k7 100 43 7 909 7 932.36 2.57

B-n45-k5 100 44 5 751 5 755.23 0.56

B-n45-k6 100 44 6 678 7 719.80 6.17

Average 3.09

Random A-n32-k5 100 31 5 784 5 830.67 5.95

A-n33-k6 100 32 6 742 7 776.02 4.58

A-n34-k5 100 33 5 778 6 809.38 4.03

A-n36-k5 100 35 5 799 5 823.20 3.03

A-n37-k5 100 36 5 669 5 695.42 3.95

A-n37-k6 100 36 6 949 6 976.61 2.91

A-n38-k5 100 37 5 730 6 765.87 4.91

A-n39-k5 100 38 5 822 5 901.99 9.73

A-n39-k6 100 38 6 831 6 856.93 3.12

A-n44-k6 100 43 6 937 7 951.73 1.57

Average 4.38

Clustered and random X-n101-k25 206 100 25 27,591 28 28891.90 4.71

X-n106-k14 600 105 14 26,362 14 27199.80 3.18

X-n110-k13 66 109 13 14,971 13 15847.90 5.86

X-n115-k10 169 114 10 12,747 11 13436.60 5.41

X-n120-k6 21 119 6 13,332 6 14192.90 6.46

X-n125-k30 188 124 30 55,539 33 58809.10 5.89

X-n129-k18 39 128 18 28,940 18 30298.40 4.69

X-n134-k13 643 133 13 10,916 14 11492.20 5.28

X-n139-k10 106 138 10 13,590 11 14521.10 6.85

X-n143-k7 1190 142 7 15,700 7 17491.80 11.41

Average 5.97

Table 14.
GRASP metaheuristic results.

83

Comparative Study of Algorithms Metaheuristics Based Applied to the Solution…
DOI: http://dx.doi.org/10.5772/intechopen.91972

On average metaheuristic GRASP based is better than Clarke &Wright heuris-
tics by 0.53%, 0.77%, and 0.38% in the solutions of the positions of the grouped,
random, and grouped and random clients, the group of clients with random posi-
tions being those that obtained a greater improvement in the quality of the solutions.

Data Simulated annealing

Instances Cap n k Opt k Result Gap (%)

Clustered B-n31-k5 100 30 5 672 5 681.20 1.37

B-n34-k5 100 33 5 788 5 793.20 0.66

B-n35-k5 100 34 5 955 5 959.50 0.47

B-n38-k6 100 37 6 805 6 819.50 1.80

B-n39-k5 100 38 5 549 5 565.00 2.91

B-n41-k6 100 40 6 829 7 897.00 8.20

B-n43-k6 100 42 6 742 6 778.60 4.93

B-n44-k7 100 43 7 909 7 937.30 3.11

B-n45-k5 100 44 5 751 5 756.20 0.69

B-n45-k6 100 44 6 678 7 726.16 7.10

Average 3.13

Random A-n32-k5 100 31 5 784 5 830.70 5.96

A-n33-k6 100 32 6 742 7 776.30 4.62

A-n34-k5 100 33 5 778 6 810.40 4.16

A-n36-k5 100 35 5 799 5 828.50 3.69

A-n37-k5 100 36 5 669 5 695.00 3.89

A-n37-k6 100 36 6 949 6 976.60 2.91

A-n38-k5 100 37 5 730 6 762.00 4.38

A-n39-k5 100 38 5 822 5 888.60 8.10

A-n39-k6 100 38 6 831 6 856.90 3.12

A-n44-k6 100 43 6 937 7 967.60 3.27

Average 4.41

Clustered and random X-n101-k25 206 100 25 27,591 28 28850.00 4.56

X-n106-k14 600 105 14 26,362 14 27240.00 3.33

X-n110-k13 66 109 13 14,971 13 15790.00 5.47

X-n115-k10 169 114 10 12,747 11 13480.00 5.75

X-n120-k6 21 119 6 13,332 6 14420.00 8.16

X-n125-k30 188 124 30 55,539 33 58790.00 5.85

X-n129-k18 39 128 18 28,940 18 30300.00 4.70

X-n134-k13 643 133 13 10,916 14 11500.00 5.35

X-n139-k10 106 138 10 13,590 11 14530.00 6.92

X-n143-k7 1190 142 7 15,700 7 17670.00 12.55

Average 6.26

Table 15.
Results of simulated annealing metaheuristics.

84

Novel Trends in the Traveling Salesman Problem

The simulated annealing metaheuristics start from a previous solution for which
Clarke &Wright heuristic responses were selected since their responses are of
better quality than the sweep heuristics.

The following parameters were considered for its implementation:

• Current temperature = 250

• Final temperature = 10

• Cooling coefficient = 0.8

• Number of iterations = 10,000

The simulated annealing metaheuristic is more effective in solving problems
where customers with a small n are grouped together.

Table 15 and 17 shows that for clients with grouped positions, the gap is 3.13%;
for the positions of random clients, the gap is 4.41%; and less effectively for clients
with grouped and random positions, it has a gap of 6.26%.

On average simulated annealing heuristics based is better than Clarke &Wright
heuristics by 0.52%, 0.71%, and 0.21% in the solutions of grouped, random, and
grouped and random clients’ positions, the group of clients with random positions
being those that obtained a greater improvement in the solutions quality.

Within each group of clients, the simulated annealing metaheuristics obtained
better answers than the GRASP metaheuristics with 30% in the group of clients
with a grouped position, 50% in the group of clients with a random position, and
40% in the group of clients with grouped and random position. That is, the GRASP
metaheuristic is superior with 70% in the first group and with 60% in the third
group of clients and is equal with 50% in the second group of clients.

A comparison between the minimum and maximum gap within each group is
established in Table 16 test results with clustered clients have better results. There-
fore, obtaining a minimum gap of 0%, that is, in the case of B-n34-k5, the GRASP
metaheuristic obtained the optimal solution (Table 17).

Customers Minimum gap (%) Maximum gap (%) Average gap (%)

Clustered 0.00 8.23 3.09

Random 1.57 9.73 4.38

Clustered and random 3.18 11.41 5.97

Table 16.
GRASP metaheuristic gap comparison.

Customers Minimum gap (%) Maximum gap (%) Average gap (%)

Clustered 0.47 8.20 3.13

Random 2.91 8.10 4.41

Clustered and random 3.33 12.55 6.26

Table 17.
Simulated annealing metaheuristics gap comparison.

85

Comparative Study of Algorithms Metaheuristics Based Applied to the Solution…
DOI: http://dx.doi.org/10.5772/intechopen.91972

The simulated annealing metaheuristics start from a previous solution for which
Clarke &Wright heuristic responses were selected since their responses are of
better quality than the sweep heuristics.

The following parameters were considered for its implementation:

• Current temperature = 250

• Final temperature = 10

• Cooling coefficient = 0.8

• Number of iterations = 10,000

The simulated annealing metaheuristic is more effective in solving problems
where customers with a small n are grouped together.

Table 15 and 17 shows that for clients with grouped positions, the gap is 3.13%;
for the positions of random clients, the gap is 4.41%; and less effectively for clients
with grouped and random positions, it has a gap of 6.26%.

On average simulated annealing heuristics based is better than Clarke &Wright
heuristics by 0.52%, 0.71%, and 0.21% in the solutions of grouped, random, and
grouped and random clients’ positions, the group of clients with random positions
being those that obtained a greater improvement in the solutions quality.

Within each group of clients, the simulated annealing metaheuristics obtained
better answers than the GRASP metaheuristics with 30% in the group of clients
with a grouped position, 50% in the group of clients with a random position, and
40% in the group of clients with grouped and random position. That is, the GRASP
metaheuristic is superior with 70% in the first group and with 60% in the third
group of clients and is equal with 50% in the second group of clients.

A comparison between the minimum and maximum gap within each group is
established in Table 16 test results with clustered clients have better results. There-
fore, obtaining a minimum gap of 0%, that is, in the case of B-n34-k5, the GRASP
metaheuristic obtained the optimal solution (Table 17).

Customers Minimum gap (%) Maximum gap (%) Average gap (%)

Clustered 0.00 8.23 3.09

Random 1.57 9.73 4.38

Clustered and random 3.18 11.41 5.97

Table 16.
GRASP metaheuristic gap comparison.

Customers Minimum gap (%) Maximum gap (%) Average gap (%)

Clustered 0.47 8.20 3.13

Random 2.91 8.10 4.41

Clustered and random 3.33 12.55 6.26

Table 17.
Simulated annealing metaheuristics gap comparison.

85

Comparative Study of Algorithms Metaheuristics Based Applied to the Solution…
DOI: http://dx.doi.org/10.5772/intechopen.91972

7. Conclusions

The results obtained by solving the test cases by heuristics and metaheuristics
show both generate better quality solutions when solving cases where customers are
grouped together and had their worst result in the group of clients with a grouped
and random position since they had large n with reference to the other groups of
clients. Between the heuristics, Clarke &Wright heuristics generated better quality
results than sweep heuristics, having a big difference in the maximum gaps of each
one for each group of clients. However, the numbers of vehicles obtained in the
solutions of both heuristics were compared with the optimal solution, and the
sweep heuristics had more solutions in which it reached the optimum. This is a very
important contribution, since Clarke &Wright heuristics get solutions with shorter
distances than the sweep heuristic, but this gets greater distances with fewer vehicle
units. For some companies it will be more important to reduce the units to buy than
the distance traveled.

Analyzing the metaheuristics, the GRASP metaheuristics generated better qual-
ity results than simulated annealing metaheuristics, with minimal differences in
average gap for each group of clients, and both metaheuristics obtained greater
improvements in relation to the initial solutions of Clarke &Wright heuristics in
the test cases of randomized clients. Also GRASP algorithm with B-n34-k5 case of
grouped customers reached the optimal solution, being the only test instance of the
thirty that were done.

It is recommended that for future studies, each group of clients by positioning
has a number of clients nð Þ with greater variability to be able to deduce exactly if
heuristics and metaheuristics have better or worse solutions when n are larger or
smaller.

Author details

Fernando Francisco Sandoya Sánchez, Carmen Andrea Letamendi Lazo*
and Fanny Yamel Sanabria Quiñónez
Escuela Superior Politécnica del Litoral (ESPOL), Guayaquil, Ecuador

*Address all correspondence to: cletamendi@gmail.com

©2020TheAuthor(s). Licensee IntechOpen. This chapter is distributed under the terms
of theCreativeCommonsAttribution License (http://creativecommons.org/licenses/
by/3.0),which permits unrestricted use, distribution, and reproduction in anymedium,
provided the original work is properly cited.

86

Novel Trends in the Traveling Salesman Problem

References

[1] Ballou, RH. Business Logistics/
Supply Chain Management: Planning,
Organizing, and Controlling the Supply
Chain. Upper Saddle River, New Jersey:
Pearson/Prentice Hall; 2004 (Print)

[2] Toth P, Vigo D, editors. The Vehicle
Routing Problem. Society for Industrial
and Applied Mathematics; Jan 2002.
Available from: http://dx.doi.org/
10.1137/1.9780898718515

[3] Braekers K, Ramaekers K, Van
Nieuwenhuysec I. The vehicle routing
problem: State of the art classification
and review. Computers & Industrial
Engineering. 2016;99:300-313

[4] Safra S, Schwartz O. On the
complexity of approximating TSP with
neighborhoods and related problems.
Computational Complexity. 2005;14:
281-307

[5] Abdel-Basset M, Abdel-Fatah L,
Kumar Sangaiah A. Metaheuristic
algorithms: A comprehensive review.
Computational Intelligence for
Multimedia Big Data on the Cloud with
Engineering Applications. 2018:185-231

[6] Sandoya F, Martinez-Gavara A,
Aceves R, Duarte A, Martı R. Diversity
and equity models. In: Martí R, Panos P,
Resende M, editors. Handbook of
Heuristics. Cham: Springer; 2015.
pp. 1-20

[7] Altınel I, Öncan T. A new
enhancement of the Clarke and Wright
savings heuristic for the capacitated
vehicle routing problem. Journal of the
Operational Research Society. 2005;
56(8):954-961

[8] Resende M, Ribeiro C. Optimization
by GRASP. Greedy Randomized
Adaptive Search Procedures. New York,
NY: Springer; 2016

[9] Marti R, Sandoya F. GRASP and path
relinking for the equitable dispersion

problem. Computers & Operations
Research. 2013;40(12):3091-3099

[10] Augerat. Capacitated VRP
Instances. 2013. Available from: http://ne
o.lcc.uma.es/vrp/vrp-instances/capacita
ted-vrp-instances/ [Accessed: 12
September 2019]

87

Comparative Study of Algorithms Metaheuristics Based Applied to the Solution…
DOI: http://dx.doi.org/10.5772/intechopen.91972

References

[1] Ballou, RH. Business Logistics/
Supply Chain Management: Planning,
Organizing, and Controlling the Supply
Chain. Upper Saddle River, New Jersey:
Pearson/Prentice Hall; 2004 (Print)

[2] Toth P, Vigo D, editors. The Vehicle
Routing Problem. Society for Industrial
and Applied Mathematics; Jan 2002.
Available from: http://dx.doi.org/
10.1137/1.9780898718515

[3] Braekers K, Ramaekers K, Van
Nieuwenhuysec I. The vehicle routing
problem: State of the art classification
and review. Computers & Industrial
Engineering. 2016;99:300-313

[4] Safra S, Schwartz O. On the
complexity of approximating TSP with
neighborhoods and related problems.
Computational Complexity. 2005;14:
281-307

[5] Abdel-Basset M, Abdel-Fatah L,
Kumar Sangaiah A. Metaheuristic
algorithms: A comprehensive review.
Computational Intelligence for
Multimedia Big Data on the Cloud with
Engineering Applications. 2018:185-231

[6] Sandoya F, Martinez-Gavara A,
Aceves R, Duarte A, Martı R. Diversity
and equity models. In: Martí R, Panos P,
Resende M, editors. Handbook of
Heuristics. Cham: Springer; 2015.
pp. 1-20

[7] Altınel I, Öncan T. A new
enhancement of the Clarke and Wright
savings heuristic for the capacitated
vehicle routing problem. Journal of the
Operational Research Society. 2005;
56(8):954-961

[8] Resende M, Ribeiro C. Optimization
by GRASP. Greedy Randomized
Adaptive Search Procedures. New York,
NY: Springer; 2016

[9] Marti R, Sandoya F. GRASP and path
relinking for the equitable dispersion

problem. Computers & Operations
Research. 2013;40(12):3091-3099

[10] Augerat. Capacitated VRP
Instances. 2013. Available from: http://ne
o.lcc.uma.es/vrp/vrp-instances/capacita
ted-vrp-instances/ [Accessed: 12
September 2019]

87

Comparative Study of Algorithms Metaheuristics Based Applied to the Solution…
DOI: http://dx.doi.org/10.5772/intechopen.91972

Novel Trends in the Traveling
Salesman Problem

Edited by Donald Davendra
and Magdalena Bialic-Davendra

Edited by Donald Davendra
and Magdalena Bialic-Davendra

The Traveling Salesman Problem (TSP) is widely considered one of the most intensively
studied problems in computational mathematics and operations research. Since its
inception, it has become the poster child for computational complexity research. A

number of problems have been transformed to a TSP problem and its application
base now extends into scheduling, manufacturing, routing, and logistics. With the
advent of high-performance computing and advanced meta-heuristics such as GPU

programming and swarm-based algorithms, the TSP problem is positioned firmly as
the go-to problem for the development of the next generation of high-performance
intelligent heuristics. This book looks to leverage some of these new paradigms for

both students and researchers in this field.

Published in London, UK

© 2020 IntechOpen
© Nikita Malyutin / iStock

ISBN 978-1-83962-453-7

N
ovel Trends in the Traveling Salesm

an Problem

ISBN 978-1-83962-455-1

	Novel Trends in the Traveling Salesman Problem
	Contents
	Preface
	Chapter 1 - Introductory Chapter: Traveling Salesman Problem - An Overview
	Chapter 2 - CUDA Accelerated 2-OPT Local Search for the Traveling Salesman Problem
	Chapter 3 - Solution Attractor of Local Search System: A Method to Reduce Computational Complexity of the Traveling Salesman Problem
	Chapter 4 - Accelerating DNA Computing via PLP-qPCR Answer Read out to Solve Traveling Salesman Problems
	Chapter 5 - Comparative Study of Algorithms Metaheuristics Based Applied to the Solution of the Capacitated Vehicle Routing Problem

