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Preface

Hyperspectral imagery has received considerable attention in the last decade as
it provides rich spectral information and allows the analysis of objects that are
unidentifiable by traditional imaging techniques. It has a wide range of applica-
tions, including remote sensing, industry sorting, food analysis, biomedical 
imaging, etc. However, in contrast to RGB images from which information can be
intuitively extracted, hyperspectral data is only useful with proper processing and 
analysis. This emphasizes the importance of using advanced signal processing, 
image processing, and machine learning techniques for such a purpose. Classical 
hyperspectral image analysis tasks include target detection, classification, and 
spectral unmixing. This book intends to provide a comprehensive overview of the
recent state of the art of these tasks. Thereafter, considering the prosperous study
of deep-learning-based image and data analysis, this book also aims to collect the
latest results of hyperspectral data analysis that benefit from deep neural networks. 
Finally, practical applications will be included to show how these analyses are useful 
in promoting real industry, medical, and biological development.

The book covers two sections, namely, Theoretical Advances of Hyperspectral 
Image Processing and Applications of Hyperspectral Image Processing. In the
first section, the chapters “Hyperspectral Endmember Extraction Techniques” 
and “Hyperspectral Image Classification” present typical techniques, both clas-
sical and deep-learning based, for unmixing and classification tasks. The chapter
“Hyperspectral Image Super-Resolution Using Optimization and DCNN-Based 
Methods” presents optimization-based and deep-learning-based super-resolution
techniques. The chapter “Fast Chaotic Encryption for Hyperspectral Images” 
considers another fundamental but important aspect, i.e., the encryption of data. 
The second section includes two application-oriented chapters. Hyperspectral 
techniques are used for evaluating the quality of tea and water, respectively, in “NIR 
Hyperspectral Imaging for Mapping of Moisture Content Distribution in Tea Buds
During Dehydration” and “Use of Hyperspectral Remote Sensing to Estimate Water
Quality.” The editors believe that readers can benefit from these chapters and gain a
better understanding of hyperspectral techniques.

Jie Chen
Centre of Intelligent Acoustic and Immersive Communications,

School of Marine Science and Technology,
Northwestern Polytechnical University,

China

Yingying Song
Centre de Recherche en Automatique de Nancy (CRAN),

CNRS, University of Lorraine,
France
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Chapter 1

Hyperspectral Endmember
Extraction Techniques
Karbhari V. Kale, Mahesh M. Solankar
and Dhananjay B. Nalawade

Abstract

Hyperspectral data processing and analysis mainly plays a vital role in detection,
identification, discrimination and estimation of earth surface materials. It involves
atmospheric correction, dimensionality reduction, endmember extraction, spectral
unmixing and classification phases. One of the ultimate aims of hyperspectral data
processing and analysis is to achieve high classification accuracy. The classification
accuracy of hyperspectral data most probably depends upon image-derived
endmembers. Ideally, an endmember is defined as a spectrally unique, idealized and
pure signature of a surface material. Extraction of consistent and desired
endmember is one of the important criteria to achieve the high accuracy of
hyperspectral data classification and spectral unmixing. Several methods, strategies
and algorithms are proposed by various researchers to extract the endmembers
from hyperspectral imagery. Most of these techniques and algorithms are signifi-
cantly dependent on user-defined input parameters, and this issue is subjective
because there is no standard specificity about these input parameters. This leads to
inconsistencies in overall endmember extraction. To resolve the aforementioned
problems, systematic, generic, robust and automated mechanism of endmember
extraction is required. This chapter gives and highlights the generic approach of
endmember extraction with popular algorithm limitations and challenges.

Keywords: hyperspectral imaging, endmember extraction, spectral signatures,
spatial features, spectral unmixing, supervised classification

1. Introduction

The hyperspectral imaging (HSI) is a renowned technology that uses the
chemical composition based spectroscopic properties of earth surface materials for
their detailed analysis and exploration [1]. HSI is spectrally overdetermined and has
the ability to observe the surface materials continuously across the wide range of
electromagnetic spectrum, generally covering 0.4–2.5 μm, where different regions
of wavelengths gives information about different material contents [2]. HSI, rather
than comprehensively depending only on the spatial variations within the image (as
in multispectral imaging), has moved to take the advantage of spectral variations
for detailed material analysis [3]. The narrow and continuous spectral measurement
provides the enriched amount of information significantly usable for target
detection, material identification, material mapping, surface material classification,
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abundance estimation and mapping details of surface properties [2, 4]. These
capabilities of HSI led to extend its areas of application and actively appealing
researchers coming from varying subject domains to solve their respective prob-
lems. The popular areas, where hyperspectral imaging is providing its significance
includes agriculture, forestry, hydrology, oceanography, soil analysis, land use land
cover mapping and geology, etc.

Along with the ample amount of information, the hyperspectral imaging is
characterized by several data processing and analysis challenges including adverse
atmospheric effects, curse of dimensionality, unavailability of the ground-truth
information and spectral mixing [1–3]. To extract the maximum information from
this high volume HSI data with greater precision, these challenges needs to be
handled efficiently. Of course, there several popular digital image processing and
pattern recognition techniques are well available in the literature, but those tech-
niques cannot be used as it is to process HSI data due to its different challenges. To
process and analyses the hyperspectral data proficiently with better accuracy, there
is a need to follow the generalized and application independent data processing
framework (Figure 1) [1].

The ultimate intention of hyperspectral image analysis is to achieve the better
classification or mapping accuracy, but it is adversely affected due the two impor-
tant issues. First, the unavailability of the ground truth information or lower num-
ber of training samples leads to the Hughes effect, which decreases the classification
accuracy as the number of features increases. Second, the spectral mixing problem
raised either due to the limited spatial resolution of the sensor or homogenously
combined mixture of surface materials. This leads to the linearly combined spectral
reflectance of the component materials for every mixed pixel and keep that partic-
ular pixel away from any of the class in classification. To resolve these significant
obstacles of HSI data classification and mapping, the term, image derived
“endmember” comes into picture and contribute with remarkable role in increasing
HSI data classification accuracy [1].

2. Hyperspectral endmembers

Due to significantly enhanced spatial and spectral resolutions of the
hyperspectral imaging sensors, hyperspectral endmember extraction (EE) is found
to be a significant step in hyperspectral data analysis. As described in [5], “a

Figure 1.
Generalized hyperspectral data processing framework.
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hyperspectral endmember (also known as ‘pure pixel’) is an idealized, pure signa-
ture of a spectral class.” The pure spectral signature signifies the complete reflec-
tance of pixel exclusively occupied by a single surface material. In case of
multispectral imagery, finding endmembers within the scene is significantly diffi-
cult because of the broad spectral bands with lower spatial and spectral resolutions.
Therefore the EE is not taken as an important step in multispectral data analysis and
its importance has remained unnoticed. Thereafter, with the substantial improve-
ments in hyperspectral sensors several subtle surface material contents that cannot
be explored by multispectral imaging can now be explored using the hyperspectral
imagery. These material contents are usually not known previously and can be only
analyzed with the higher spectral resolution data. The hyperspectral endmembers
are supposed to be one of these material contents. In HSI data, finding endmembers
is a critical task due to their population within the data is significantly low and
generally beyond the human visual perception [6]. Once the endmembers are
extracted precisely from the HSI image itself, they can be used as a reference data or
training data to enhance the classification accuracy or efficient spectral unmixing of
the hyperspectral images [1]. These image derived endmembers are more effective
as compared to the standard laboratory or field spectra, as they are not certainly
recorded under the similar conditions as the satellite or airborne HSI data.

There are several EE techniques and methods are available in the literature, each
having its own advantages and challenges. Depending on the EE approaches, these
techniques are broadly classified into two categories (Figure 2). First, the convex
geometry based EE. Further, it is sub-classified into the Orthogonal Projection (OP)
based and Simplex Volume (SV) based EE approaches. The OP based EE
approaches, makes the orthogonal projection of all data samples onto a set of
selected vectors and considers the data samples producing extreme (either minimal
or maximal) projections with these selected vectors as a final set of endmembers.
The popular OP based EE algorithms are Pixel Purity Index (PPI) [7], VCA [8] and
Sequential Maximum Angle Convex Cone (SMACC) [9]. The SV based EE
approaches, assumes that the simplex formed by a set of pure signatures as vertices
should produce the maximum volume among all simplexes formed by the same
number of signatures as vertices. The SV based EE algorithms are NFINDR [10],
Simplex Growing Algorithm (SGA) [11] and Convex Cone Analysis (CCA) [12].
Second, the statistics based EE. Further, it is sub-classified into second order statis-
tics based EE, higher order statistics based EE and Swarm Intelligence based EE.
The Iterative Error Analysis (IEA) [13] and EESCA [14] techniques comes under

Figure 2.
EE techniques.
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the category of second order statistics based EE. The skewness and Independent
Component Analysis EE algorithm (ICA-EEA) [6] comes under the category of
higher order statistics based EE. Apart from these traditional techniques, few sig-
nificant Swarm Intelligence (SI) based approaches are also discussed. The Ant
Colony Optimization (ACO) [15], Particle Swarm Optimization (PSO) [16] and
Artificial Bee Colony (ABC) [17] and others are the typical examples of SI based EE
algorithms. SI is the new area in artificial intelligence and deals with the natural and
artificial systems composed of multiple entities that are articulated using self-
organizations and decentralized control. In particular, the discipline emphases on
the mutual behaviors that resulted from the interactions of entities with each other
& their environment. SI algorithms have capability to solve the problem of
combinatorial optimization.

In the further portion, this chapter present and discuss these EE algorithms in
step-wise manner along with few practical experiments. The Samson hyperspectral
image (Figure 3) is used for practical demonstrations. This image contains 156
spectral channels (having 3.13 nm spectral resolution) covering from 401 to 889 nm
range of electromagnetic spectrum. Spectrally, there are three classes are available
into this image, i.e., soil, tree and water [18].

2.1 Pixel purity index (PPI)

The PPI algorithm [7] is a mostly used endmember extraction algorithm due to
its availability into the ENVI commercial software package. Its step-by-step imple-
mentation of is never been revealed into the literature due to its propriety rights.
Considering its basic idea, several endmember extraction algorithms [19–21] tried
to mimic the implementation of original PPI [7] and produced the useful results.
The PPI is an orthogonal projection based endmember extraction mechanism and
works through stages briefly explained below:

2.1.1 Initialization

The algorithm initiates with the randomly generate “k” unit vectors, also called
as “skewers,” skewerkf gkk¼1 where k is a supposed to be user defined large positive
integer.

2.1.2 PPI count calculation

In PPI count calculation, every data sample is orthogonally projected onto all the
skewers skewerkf gkk¼1. Further, for every data sample r, identify those skewers onto

Figure 3.
Samson hyperspectral image with ground truth (GT). (a) Samson. (b) GT: abundances. (c) GT: endmembers.
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which data sample r produces extreme (either the maximal or minimal) projection
at their end points. These skewers producing extreme projections, form a set (i.e.,
Sextrema rð Þ) for that particular data sample r. Then, the PPI count of that particular
data sample r is equal to the cardinality (i.e., total number of skewers within the
set) of the set Sextrema rð Þ, that is,

nPPI rð Þ ¼ ∣Sextrema rð Þ∣ (1)

where |A| is defined as the cardinality of set A.

2.1.3 Candidate selection

In candidate selection, the user defined value is set for threshold t to threshold
the PPI count nPPI rð Þ for all data sample vectors to select the possible data samples
for endmembers.

2.1.4 Endmember extraction

At the end, all the data samples having nPPI rð Þ≥ t as considered as final set of
endmembers.

Figure 4 enlightens the endmembers extracted using PPI from Samson data. In
this experiment, PPI is executed with 1000 iterations and 50 as a threshold value,
where it has extracted seven signatures as a final set of endmembers. Out of these
seven endmembers, one represents the “soil”, four represents the “trees” and two
represents the “water.” One endmember signature (along with their respective
spatial coordinates) for each class in the Samson image is given in Figure 4 along
with ground truth spectra’s.

Although PPI is mostly used endmember extraction algorithm, but initially it
was not considered as a solution for endmember extraction, but it was considered as
a guide for endmember extraction. The PPI is very sensitive to the value of ran-
domly generated skewers and threshold. The need of large number of randomly
generated skewers leads to the higher computations complexity and yields varying
outcomes (due to randomly generated skewers) during several runs even on the
same hyperspectral image. Further the undefined criteria for selecting the appro-
priate value of threshold put forward the need of trained user for selection the final
set of endmembers [19]. To deal with these challenges, there are few attempts
available into the literature that tried to improve the performance of PPI with some
modifications at algorithm level. In [19, 20], the attempt is made use the concept of
Virtual Dimensionality (VD) to automatically identify the number of endmembers
to be identified from the image and opted the algorithm based endmember initial-
ization to produce the appropriate initial endmember set, which minimizes the
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Figure 3.
Samson hyperspectral image with ground truth (GT). (a) Samson. (b) GT: abundances. (c) GT: endmembers.

6

Processing and Analysis of Hyperspectral Data

which data sample r produces extreme (either the maximal or minimal) projection
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large number of runs required for PPI. In [21], multi-dimensional PPI (MDPPI) is
presented as a fast alternative for PPI, which iteratively identifies the convex hull
indices in lower-dimensional random projections.

2.2 Vertex component analysis (VCA)

The vertex component analysis (VCA) algorithm [8, 22, 23] is an unsupervised
endmember extraction algorithm and works with the assumption that, in linear
spectral mixing, every pixel signature is composed with the linear combinations of
endmember spectra available within the scene. The VCA algorithm explores two
facts: One, the endmembers are found to be the vertices of the simplexes and two,
the affine transformation of every simplex is too simplex. The VCA algorithm
initiates with the assumption that, there is a presence of endmembers within the
data and iteratively projects data sample vectors on to the direction orthogonal to
the subspace covered by the hyperspectral endmembers which are already identi-
fied. The new endmembers relates to the extreme (either minimal of maximal)
projections. The algorithm continues to iterate till the number of endmembers are
exhausted. The step-wise VCA algorithm is briefed below:

a. Suppose r be the L� 1 vector, where L represents the total number of spectral
channels, and mi is the spectral signature of ith endmember, therefore

r ¼ eα, (2)

where, e ¼ e1; e2;⋯; ep
� �

and α ¼ α1; α2;⋯; αp
� �T is the abundance portion of every

endmember, and p is the total number of endmembers available within the image.

b. Due to the non-negativity constraint, the endmember abundance fractions
satisfy the conditions given in Eqs. (3) and (4).

0≤ αk ≤ 1 (3)

Xp

k¼1
αk ¼ 1 (4)

c. Every data sample can be considered as a sample vector within the L-
dimensional Euclidean space, where every channel is allocated to the one axis
of space and all are mutually orthogonal. Because of the constraints in Eqs. (3)
and (4), the observed sample vector r belongs to the simplex having
endmembers in the vertices. The detailed implementation and evaluation of
VCA is given in [8].

Figure 5.
VCA extracted endmember from Samson data.
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Figure 5 gives the endmembers extracted using VCA from Samson data. In this
experiment VCA is executed to extract three endmembers using nine iterations. It
has extracted three endmembers with spatial coordinates (69, 28), (4, 84) and (14,
54), out of which, first signature represents the “soil,” second signature represents
the “tree” and third signature represents the unknown or may be mixed pixel.

The VCA algorithm is considered as a sequential implementation of the PPI
algorithm. It is having lower computations cost as compared to the PPI and
NFINDR EE algorithms. The usage of VCA is requires the precise knowledge
about the number of endmembers to be identified. Its random initialization
nature leads to the inconsistent outcomes during several executions even of the
same image.

2.3 Sequential maximum angle convex cone (SMACC)

The sequential maximum angle convex cone (SMACC) [9] endmember extrac-
tion algorithm make use of a convex cone model along with non-negativity or sum-
to-unity constraints to identify hyperspectral endmembers. In SMACC, the extreme
projection points are used to determine a convex cone, which describes the first
endmember. Further the constrained oblique projection is applied to the existing
cone to extract another endmember. The convex cone is enlarged to comprise the
new endmember. This procedure is revised till a projection extracts the endmember
that is already available in the convex cone or till the defined number of
endmembers is extracted.

In other words, SMACC algorithm first identifies the brightest pixel from the
image; thereafter, it identifies the pixel mostly diverse from the brightest. Thereaf-
ter, it identifies the pixel that is most diverse as compared to the first two pixels.
This procedure is revised until SMACC identifies a pixel which is already accounted
for within the group of the formerly identified pixels, or until it identifies a previ-
ously defined number of endmembers.

As the convex approaches that are dependent on a simplex analysis, the number
of hyperspectral endmembers is not limited by the total number of spectral bands.
Although the endmembers identified by SMACC are exclusive, a one-to-one corre-
spondence is not available among the total number of materials within the image
and the total number of endmembers. SMACC extracts endmembers from pixels
within the image. Every image pixel may be occupied by only single material or may
be by high proportion of a single material with unique combinations of other
surface materials. Every single material identified from the image is defined by a
subset covering its spectral inconsistency. SMACC algorithm provides the
endmember basis that describes each of these material subsets. Apart from this,
SMACC also offers abundance images to identify the fractions of the total spectrally
integrated pixels contributed by each constituent endmembers. Mathematically,
SMACC algorithm uses the following convex cone expansion for every endmember
spectra, defined as p:

p c; ið Þ ¼N
k R c; kð ÞA k; jð Þ (5)

where, i indicates the pixel index, j and k represents the endmember indices
from 1 to the expansion length N, R is the matrix containing endmember signatures
as columns, c gives the spectral channel index and A gives the matrix that comprises
the proportional contribution of every individual endmember j in every
endmember k for every pixel.

The SMACC EE tool available into the ENVI software used for EE from Samson
data. The SMACC is executed to extract three endmembers. As compared to the GT
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in Figure 6, SMACC has successfully extracted two endmembers signifying the
“soil” and “tree” classes. The third signature belongs to the unknown class, which is
incorrectly reported as an endmember by SMACC.

The overall observation is that, SMACC provides a faster and more automated
method for finding spectral endmembers, but it is more approximate and yields less
precision.

2.4 NFINDR

The NFINDR [10] algorithm is basically based on the geometric properties of the
convex sets. The fundamental idea of NFINDR is to identify data samples that can
produce a simplex having maximum volume and these samples are considered as
final endmembers. Wherein, the algorithm assumes that, in L-spectral dimensions,
the L-volume contained by a simplex produced of the purest data sample is bigger
as compared to any other volume produced by any other combinations of data
samples. The algorithm proceeds by “inflating” a simplex within the data, initializ-
ing with the randomly selected set of pixels. For every data sample and for every
endmember, the endmember is substituted with the spectra of the data sample and
the volume is re-calculated. If the volume founds increased, the spectra of the new
data sample substitutes that endmember. This procedure is revised till no any
replacement takes place. The step-wise implementation along with the mathemati-
cal perspective is briefly given below:

Usually, the spectrum of a given data sample is supposed to be linear combina-
tions of the endmember signatures.

pij ¼
X
k

eikckj þ ε (6)

where pij indicates the ith spectral channel of jth data sample, eik indicates the ith
spectral channel of kth pure pixel, ckj denotes the proportions of spectral mixing for
the jth data sample from the kth pure pixel and ε indicates the Gaussian error
assumed to be very small. As the sample compositions in spectral mixing are
expected to be in percentage, all the mixing proportions must sum to one:

X
k

ckj ¼ 1 (7)

If, ckj≈1 for any of the endmember contribution within the data sample, the
other pure pixel contribution is considered nearly equal to zero and the data sample
can be considered as an endmember.

Figure 6.
SMACC extracted endmembers from Samson data.
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2.4.1 Preprocessing

In preprocessing, the orthogonal subspace projection (OSP) and maximum noise
fraction (MNF) transformations are applied to the dataset to minimize the data
dimensionality one less than the total number of endmembers to be identified. It
helps to determine the data sample volume in a simpler manner.

2.4.2 Volume determination

Consider E as an endmember matrix augmented by row of ones:

E ¼ 1

e!1

1

e!2

⋯

⋯

1

e!i

" #
(8)

where ei
! is the column vector comprising the spectrum of endmember i.

Now, the simplex volume (V) produced with the endmember estimates is
directly proportional to determinant E.

V Eð Þ ¼ 1
l� 1ð Þ! abs Ej jð Þ (9)

Here, l� 1ð Þ represents the number of dimensions occupied by data.

2.4.3 Endmember selection

The algorithm is stopped when all the pixels are tested and no replacement takes
place.

Figure 7 gives the endmembers extracted using NFINDR from Samson data. In
this experiment NFINDR is executed to extract three endmembers using nine iter-
ations. It has successfully extracted three endmembers with spatial coordinates
((69, 29), (4, 84) and (1, 1)), one representing each class as per the GT.

Though this algorithm is mostly referred into the literature, there were no well-
defined criteria for identifying the number of endmembers to extract. This chal-
lenge is tried to recover in [24] by using the notion of VD for defining the number
of endmember available within the scene. Another issue with N-FINDR was its
random initialization nature, which not only affects the algorithm convergence rate
but also affects the final outcomes. There are several modifications are done in N-
FINDR and made available in various versions [6, 25].

Figure 7.
NFINDR extracted endmembers from Samson data.
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2.5 Simplex growing algorithm (SGA)

The simplex growing algorithm (SGA) [11] is a simplex based sequential pure
pixel identification mechanism. It identifies the simplex having the maximum
volume each time the new vertex is added. It is also called as the modified version
of N-FINDR algorithm. The step-wise SGA is elaborated below:

2.5.1 Initialization

The SGA uses the VD estimation count to define the number of endmembers
p to generate; and uses the e1 identified by the very first pure pixel selection
procedure as the preferred initial pure pixel and initialize n = 1.

At n≥ 1 and for every data sample r, we compute the volume V e1;⋯; en; rð Þ
defined by equation

V e1;⋯; en; rð Þ ¼
det

1

e1

1

e2

⋯

⋯

1

en

1

r

2
4

3
5

������

������
n!

(10)

It is the volume of simplex spanned by the vertices e1, e2,⋯, en, r, symbolized

with S e1; e2;⋯; en; rð Þ. As the matrix
1

e1

1

e2

⋯

⋯

1

en

1

r

2
4

3
5 in Eq. (10) is not essentially a

square shaped matrix, the efficient DR technique like principal component analysis
(PCA) or maximum noise fraction (MNF) is used to minimize the data dimension-
ality L to dimension n.

Identify the enþ1 that produces the maximum of Eq. (10) and given by Eq. (11)
given below:

enþ1 ¼ arg max
r

V ee1;⋯; en; rð Þ½ �
n o

(11)

Stopping rule: if n< p, then n nþ 1 and go to the step b. If not, the final set of
vertices given by e1; e2;⋯; ep

� �
is considered as the p number of desired

endmembers.
This is the step-wise process of SGA to find endmembers from hyperspectral

images. The SGA algorithm efficiently solves the three significant challenges
observed in N-FINDR algorithm. First, SGA performs the automated estimation of
number of pure pixels to find, second, it produces the consistent final set of
endmembers and third, it performs efficiently with less computational complexity.
With the coincidence, the basic idea of using growing simplexes to find
endmembers in SGA is analogous to the that used in VCA, but their corresponding
approached are dissimilar. Most specifically, the VCA algorithm is unable to
resolve the second challenge and produces inconsistent outcomes due to its random
initialization nature [11].

2.6 Convex cone analysis (CCA)

The convex cone analysis (CCA) [12] algorithm assumes that physical quantities
like radiance of reflectance of the hyperspectral images are always positive. The
sample vectors produced by the discrete radiance or reflectance spectra can be
articulated as linear mixtures or combinations of non-negative components, which

12

Processing and Analysis of Hyperspectral Data

reside within the nonnegative also called as convex region. The fundamental objec-
tive of CCA algorithm is to identify the boundary points for that convex region. The
theoretical implementation of CCA algorithm is discussed below:

a. To practically implement this idea, the algorithm computes the eigenvectors
of the data sample correlation matrix of the scene, and only chooses those
eigenvectors conforming to the E largest eigenvalues (wherein, E is a
previously defined number of endmembers to extract).

b. The algorithm then looks forward to identify the boundary points of the
convex cone, wherein the linear combinations of these eigenvectors forms
sample vectors that are exactingly non-negative, by using the equation below:

h x; yð Þ ¼ p1 þ a1p2 þ⋯þ aE�1pE ≥0 (12)

where h x; yð Þ represents the spectral signature at pixel having spatial coordinates
(x, y), the pi indicates the eigenvectors belonging to the largest eigenvalues, and 0
indicates the zero vector.

c. These identified points characterize the corner points of the convex cone
region. Then, Eq. (6) is rewritten as:

h x; yð Þ ¼ p1⋯pE
� �

1

a1
⋯
aE�1

2
6664

3
7775 ¼ Pa ≥0 (13)

wherein, the pi are the N-dimensional column vectors. For N>E, Pa ¼ 0 is an
overdetermined system of the linear equations. If the elements of P are considered
as the coefficients, and elements of a are considered variables, then, there are N
equations of the given form:

pj1 þ a1pj2 þ⋯þ aE�1pjE ¼ 0, for j ¼ 1,⋯, N (14)

That defines (E-1)-dimensional hyperplane within the E-dimensional space.

d. Precise endmember set can be found by using the (E-1)-tuples from the N
equations. These solutions will form the linear combinations of eigenvectors
that is having minimum E-1 zeros.

e. At the end, the boundary points of the convex cone region are considered as
the endmember that satisfy Eq. (12) or equivalently, Min[h (x,y)] = 0, where
the smallest is taken over all hi ∈ h x; yð Þ, i ¼ 1,⋯, N.

These sample vectors can be coined as final set of endmembers.

2.7 Endmember extraction using sparse component analysis (EESCA)

The endmember extraction using sparse component analysis (EESCA) [14] uses
the sparse characteristics of abundance for endmember extraction from
hyperspectral imagery. This algorithm is basically dependent of the primary
endmember set of the VCA algorithm and thereafter two noteworthy iterative
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square shaped matrix, the efficient DR technique like principal component analysis
(PCA) or maximum noise fraction (MNF) is used to minimize the data dimension-
ality L to dimension n.

Identify the enþ1 that produces the maximum of Eq. (10) and given by Eq. (11)
given below:

enþ1 ¼ arg max
r

V ee1;⋯; en; rð Þ½ �
n o

(11)

Stopping rule: if n< p, then n nþ 1 and go to the step b. If not, the final set of
vertices given by e1; e2;⋯; ep

� �
is considered as the p number of desired

endmembers.
This is the step-wise process of SGA to find endmembers from hyperspectral

images. The SGA algorithm efficiently solves the three significant challenges
observed in N-FINDR algorithm. First, SGA performs the automated estimation of
number of pure pixels to find, second, it produces the consistent final set of
endmembers and third, it performs efficiently with less computational complexity.
With the coincidence, the basic idea of using growing simplexes to find
endmembers in SGA is analogous to the that used in VCA, but their corresponding
approached are dissimilar. Most specifically, the VCA algorithm is unable to
resolve the second challenge and produces inconsistent outcomes due to its random
initialization nature [11].

2.6 Convex cone analysis (CCA)

The convex cone analysis (CCA) [12] algorithm assumes that physical quantities
like radiance of reflectance of the hyperspectral images are always positive. The
sample vectors produced by the discrete radiance or reflectance spectra can be
articulated as linear mixtures or combinations of non-negative components, which
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reside within the nonnegative also called as convex region. The fundamental objec-
tive of CCA algorithm is to identify the boundary points for that convex region. The
theoretical implementation of CCA algorithm is discussed below:

a. To practically implement this idea, the algorithm computes the eigenvectors
of the data sample correlation matrix of the scene, and only chooses those
eigenvectors conforming to the E largest eigenvalues (wherein, E is a
previously defined number of endmembers to extract).

b. The algorithm then looks forward to identify the boundary points of the
convex cone, wherein the linear combinations of these eigenvectors forms
sample vectors that are exactingly non-negative, by using the equation below:

h x; yð Þ ¼ p1 þ a1p2 þ⋯þ aE�1pE ≥0 (12)

where h x; yð Þ represents the spectral signature at pixel having spatial coordinates
(x, y), the pi indicates the eigenvectors belonging to the largest eigenvalues, and 0
indicates the zero vector.

c. These identified points characterize the corner points of the convex cone
region. Then, Eq. (6) is rewritten as:

h x; yð Þ ¼ p1⋯pE
� �

1

a1
⋯
aE�1

2
6664

3
7775 ¼ Pa ≥0 (13)

wherein, the pi are the N-dimensional column vectors. For N>E, Pa ¼ 0 is an
overdetermined system of the linear equations. If the elements of P are considered
as the coefficients, and elements of a are considered variables, then, there are N
equations of the given form:

pj1 þ a1pj2 þ⋯þ aE�1pjE ¼ 0, for j ¼ 1,⋯, N (14)

That defines (E-1)-dimensional hyperplane within the E-dimensional space.

d. Precise endmember set can be found by using the (E-1)-tuples from the N
equations. These solutions will form the linear combinations of eigenvectors
that is having minimum E-1 zeros.

e. At the end, the boundary points of the convex cone region are considered as
the endmember that satisfy Eq. (12) or equivalently, Min[h (x,y)] = 0, where
the smallest is taken over all hi ∈ h x; yð Þ, i ¼ 1,⋯, N.

These sample vectors can be coined as final set of endmembers.

2.7 Endmember extraction using sparse component analysis (EESCA)

The endmember extraction using sparse component analysis (EESCA) [14] uses
the sparse characteristics of abundance for endmember extraction from
hyperspectral imagery. This algorithm is basically dependent of the primary
endmember set of the VCA algorithm and thereafter two noteworthy iterative
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approaches are followed. The first one used to modify the endmember matrix and
second one is to improve the pure pixel signature to enhance the algorithm accu-
racy. The step-wise mechanism of EESCA algorithm is summarized below:

The algorithm takes hyperspectral image as an input in the form of
X ¼ x 1ð Þ; x 2ð Þ;…; x Tð Þ½ �∈RL�T and proceeds further.

a. Initiate the endmember matrix, i.e., A 0½ � using VCA algorithm.

b. Modify the pure pixel signatures using hyper-line estimation as per the steps
given below:

1.Set the value of error tolerance, i.e., ε, and repeat k ¼ 1 : K

2.Compute the distance d x tð Þ; a k�1½ �
j

� �
of all the data samples using Eq. (4)

of [14], and allocate them in dissimilar classes Ω k½ �
j ; j ¼ 1;⋯; p

n o
.

3.Choose a subset matrix of M pixels from Ω k½ �
j . Now, use SVD to modify

the value of a k½ �
i and eigenvalueλ k½ �

i .

4.If λkj � λ k�1½ �
j

���
���≤ ε, the pure pixel signature a k½ �

j will be stable and not

modified in the upcoming iteration.

c. Enhance the pure pixel signature using K-SVD as per the steps given below:

1.State the matrix ωp ¼ i 1≤ i≤N; sp ið Þ 6¼ 0
�� ��

to note down the non-zero
indexes in sp and define the maximum iteration time tmax.

2.Compute Ep, the complete representation error matrix.

3.Confine Ep by selecting the columns vectors conforming to ωp, and derive
the ER

p , the restricted error matrix.

4.Pick he modified pure pixel column ap and update the corresponding
coefficients vector using equation by Eq. (15) till the value of iterations
reaches to tmax.

X � ASk k2F ¼ X �
Xp

j¼1
ajs

j
T

�����

�����
2

F

¼ X �
Xp

j6¼p
ajs

j
T

0
@

1
A� aps

p
T

������

������

2

F

¼ Ep � aps
p
T

�� ��2
F

(15)

At the end, the endmember matrix, i.e., A ¼ a1; a2;⋯; ap
� �

∈RL�P, is given as
final outcome. As per the comparative evaluation done in [14], it is found that
EESCA is more capable and robust to deal with the mixed data and noise respec-
tively. Along with its advantages, it has also few downsides. EESCA neither con-
siders the spatial features nor touch the number of endmember estimation problem.

In further portion, three SI based EE approaches (i.e., ACO, PSO and ABC) are
discussed. Though these algorithms have capability to solve the problem of
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combinatorial optimization, their common drawback is that they are
computationally expensive due to the random searching mechanism [26, 27].

2.8 Ant colony optimization (ACO)

The ant colony optimization (ACO) [15] was first employed for endmember
extraction from hyperspectral imagery in 2011 and termed as ACOEE. In ACOEE
the problem of decomposition of mixed pixels is transformed into a problem of
optimization and forms a feasible solution space to estimate the practical implica-
tion of the objective function. To generate the solution space and the heuristic
information for endmember extraction a directed and weighted graph G is
constructed, where G corresponds to each pixel in the HSI data. The route gener-
ated by artificial ant (i.e., feasible solution) contains m unlike vertices in G, where,
m represents the number of endmembers. On the arrival of artificial ant at the
vertex vi after t� 1ð Þ times of moving, the probability of moving from vi to vertex vj
is defined as [15],

pkij tð Þ ¼
ταijη

β
ijP

j∈ allowedt τ
α
ijη

β
ij

, ∀j∈ allowedt (16)

where τij shows the amount of pheromones in the edge vi; vj
� �

and allowedt
indicates the set of pixels covered by ant from vi (i.e., all pixels in the image except
pixels that have been travelled by the ant) at time t. Parameters α and β shows
relative significance of pheromones and visibilities in the selection of route respec-
tively, where the pheromones concentration is initialized with similar value. On the
basis of path travelled by an artificial ant (i.e., endmembers), a remixed image can
be built by using abundance estimation. The root-mean-square error (RMSE)
between the original and the remixed image is used as the objective function to
calculate the endmembers set. In the kth iterative sequence, n ants creates dissimilar
paths and pheromones in the edges updated using following equation,

τkþ1ij ¼ ρτkij þ Δτkij (17)

where Δτkij is the pheromone increment and ρ is the factor of pheromone dissi-
pation. If the smallest RMSE value in given repetition is f k and its equivalent path is
pathk, then Δτkij is,

Δτkij ¼
Q=f k vi;vjh i∈pathk
0 vi;vjh i∉pathk ,

�
(18)

where Q represents constant which controls the rate of change of pheromones
Δτkij, within acceptable range. The algorithm breaks when it reaches at the similar
optimal path in multiple serial repetitive sequences or to the maximum number
[15, 27].

ACO EE outperforms the popular VCA and NFINDR EE algorithm and improves
the endmember representation [15].

2.9 Particle swarm optimization (PSO)

The particle swarm optimization (PSO) [16] technique is a mostly used swarm
intelligence technique to handle the problem of global optimization. Discrete PSO
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approaches are followed. The first one used to modify the endmember matrix and
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final outcome. As per the comparative evaluation done in [14], it is found that
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tively. Along with its advantages, it has also few downsides. EESCA neither con-
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combinatorial optimization, their common drawback is that they are
computationally expensive due to the random searching mechanism [26, 27].

2.8 Ant colony optimization (ACO)

The ant colony optimization (ACO) [15] was first employed for endmember
extraction from hyperspectral imagery in 2011 and termed as ACOEE. In ACOEE
the problem of decomposition of mixed pixels is transformed into a problem of
optimization and forms a feasible solution space to estimate the practical implica-
tion of the objective function. To generate the solution space and the heuristic
information for endmember extraction a directed and weighted graph G is
constructed, where G corresponds to each pixel in the HSI data. The route gener-
ated by artificial ant (i.e., feasible solution) contains m unlike vertices in G, where,
m represents the number of endmembers. On the arrival of artificial ant at the
vertex vi after t� 1ð Þ times of moving, the probability of moving from vi to vertex vj
is defined as [15],
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indicates the set of pixels covered by ant from vi (i.e., all pixels in the image except
pixels that have been travelled by the ant) at time t. Parameters α and β shows
relative significance of pheromones and visibilities in the selection of route respec-
tively, where the pheromones concentration is initialized with similar value. On the
basis of path travelled by an artificial ant (i.e., endmembers), a remixed image can
be built by using abundance estimation. The root-mean-square error (RMSE)
between the original and the remixed image is used as the objective function to
calculate the endmembers set. In the kth iterative sequence, n ants creates dissimilar
paths and pheromones in the edges updated using following equation,

τkþ1ij ¼ ρτkij þ Δτkij (17)

where Δτkij is the pheromone increment and ρ is the factor of pheromone dissi-
pation. If the smallest RMSE value in given repetition is f k and its equivalent path is
pathk, then Δτkij is,
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Q=f k vi;vjh i∈pathk
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where Q represents constant which controls the rate of change of pheromones
Δτkij, within acceptable range. The algorithm breaks when it reaches at the similar
optimal path in multiple serial repetitive sequences or to the maximum number
[15, 27].

ACO EE outperforms the popular VCA and NFINDR EE algorithm and improves
the endmember representation [15].

2.9 Particle swarm optimization (PSO)

The particle swarm optimization (PSO) [16] technique is a mostly used swarm
intelligence technique to handle the problem of global optimization. Discrete PSO
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for endmember extraction (DPSO EE) was firstly adapted by Zhang et al. in 2011,
where concept of PSO was utilized. In DPSO EE the combinatorial optimization
problem is resolved by converting endmember extraction into feasible solution
space and objective function, i.e., PSO searches for endmembers in the distinct
feasible solution by outlining the particles locations and their velocities along with
binary coding, and shows better endmember extraction results for HSI data than
state of art methods [16, 28].

Linear spectral mixture model was used for spectral unmixing as shown in
Eq. (19),

ri ¼
Xm
j¼1

ejαij þ εi (19)

where rif gni¼1 represents L bands and n pixels remote sensing image with ri as
column vector of spectrum of ith pixel, eif gni¼1 shows endmember set, εi is the
random error and αij is the abundance of jth endmember in ith pixels. The least
square method has been utilized for calculating area ratio of each endmember in a
pixels, i.e., αij.

If the values of rif gni¼1 and eif gni¼1 are known then the image can remixed as,

ri ¼
Pm
j¼1

ejαij, i ¼ 1, 2,…, n. The root mean square error (rmse) between an original

image and remixed image is calculated as [29],

rmse rif gni¼1; eif gni¼1
� � ¼ 1

n

Xn
i¼1

ffiffiffi
1
L

r
ri � r_

i

����
����
2

2
(20)

If the value of rmse is less, then the result of endmember extraction is better.
Therefore, endmember extraction can be defined as the combinatorial optimization
problem as,

Min rmse rif gni¼1;E
� �

s:t: E∈C rif gni¼1;E;m
� � (21)

Here, C rif gni¼1;E;m
� �

referred as, set of subsets of rif gni¼1 that contains m ele-
ments. rmse rif gni¼1;E

� �
is the objective function and C rif gni¼1;E;m

� �
is the feasible

solution space.
The feasible solution space of the optimization problem is used to search parti-

cles by PSO. The adaptability function is obtained on the basis of constantly moving
particles in the feasible space. In case of discrete feasible solution space D-PSO is
improved to search particles in it on the basis of PSO. Moreover, the mapping
relationship in the image and the feasible solution space can be given as [29],

G : C rif gni¼1;m
� �! Xn,m

E↦ x1; x2;…xnð Þ: (22)

where Xn,m ¼ x1; x2;…xnð Þjxi ∈ 0; 1f g;P
n

i¼1
xi ¼ m

� �

From above formula, if a pixel ri in rif gni¼1 is selected as an endmember, then
value of xi corresponding to ri in x is 1; otherwise, the value is 0.

The DPSO EE shows better performance compared to VCA and NFINDR, but it
has few limitations. The limitation includes several additional parameters that affect
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the performance of optimization and no assurance during about whether the loca-
tion of selected particle is best or not [16].

2.10 Artificial bee colony (ABC)

The artificial bee colony (ABC) [17] algorithm is utilized for solving optimiza-
tion problems by using the searching activity of bees in nature. The colony’s search
space is considered as feasible solution space for problem which is to be solved,
where feasible solution is referred as a food source and quantity of nectar present in
each source is referred as its fitness, which is linked with objective function value
created by corresponding solution. Bees can be categorized into three types:
employed bees, scout bees and onlooker bees. Xu Sun et al. used artificial bee colony
for endmember extraction in 2015 [17, 27]. The step-wise workflow of ABC algo-
rithm is given below:

a. The position of every employed bee is considered as position of a food source.
The data about particular food source is recorded and fitness of respective
food source is calculated. After finding with adjacent food sources, if fitness
of newly found food source is better than previous one then update the
former food source with new one otherwise continue to search.

b. If Xi ¼ Xi1;Xi2;…;XiMð ÞT represents the ith source food (i.e., location of
employed bee) then adjacent searching can be defined as follows:

φij ¼ xij þ Δ xij � xsj
� �

(23)

where, Δ shows a random value in the range of [�1, 1], s 6¼ i, s∈ 1; 2;…Mf g and
j∈ 1; 2; ::;Mf g the greedy selection operator selects a food source with a better
fitness value.

c. Each onlooker bee selects a food source on the basis of fitness acquired by the
employed bees. It repeats similar policy of employed bee. The “follow
probability” of an onlooker bee of selecting the jth food source is calculated as
follows:

pj ¼
fit xj
� �

Pnum
i¼1 fit xið Þ (24)

where num shows the number of food sources which is greater than M and fit xið Þ
shows the fitness function of the ith food source and.

The fitness of a food source is determined using Eq. (25), where f xið Þ is the
objective function of the given optimization problem:

fit xið Þ ¼ 1
f xið Þ (25)

The scout bee randomly reaches at a food source in the respective feasible
solution space, converting itself into an employed bee to calculate the fitness
value of the respective food source. Each random search can compute the best
fitness position using the iterative process. If a food source has not been updated
in a long time, then it is considered a global optimal source [17]. The ABC
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algorithm needs to face higher computational complexity for the images of larger
sizes containing more number of endmembers.

3. Conclusion

The ultimate objective of using HSI data is to achieve the higher material classi-
fication or mapping accuracy, but it is adversely affected due the ground truth
unavailability or spectral mixing problems. To overcome the same efficiently and
enhance the HSI data classification or mapping accuracy, an image derived
endmembers offers a precise and useful solution. To extract the endmembers from
HSI data, several approaches based on either convex geometry or statistical infor-
mation were tried over the past few years. Out of which, due to the higher volume
of the data, the convex geometry based EE algorithms were found more effective
and widely accepted and discussed in the literature. The popular algorithms comes
under this criteria are PPI, VCA, SMACC, NFINDR, CCA and SGA. Apart from
these techniques, some other statistical information and artificial intelligence based
approaches are also well available in the literature, but unfortunately, none of the
method provides the automated, data and application independent outcomes. Every
method has its own limitations and challenges. These methods provides either
inconsistent or misleading outcomes due to the random algorithm initialization
nature, unclear criterion to define the values of additional input parameters and
weakly defined algorithm stopping rules. In case of PPI, the algorithm is very
sensitive to the value of iterations and threshold, where higher number of iterations
results into higher computational complexity and unclear criteria to set the thresh-
old value leads to the endmember selection problem. In case of VCA, SMACC and
NFINDR, the basic requirement is that, the number of unique materials available
into the image needs to be known primarily, which is hardly possible. To satisfy this
requirement, some EE algorithms have opted the outcome of VD estimation (which
gives the number of distinct signal sources available within the scene) as a reference
to extract the number of endmembers. Further investigation of VD estimation
techniques revealed that, these methods are also produce misleading results. More
detailed and comparative analysis between various endmember extraction algo-
rithms is performed time to time in [30–33]. Therefore, to overcome most of the
challenges available in recent EE algorithm, there is a great need of a fully auto-
mated and robust endmember extraction algorithm. The efficient endmember
extraction algorithm need to be data and application independent and must be able
to find precise set of endmembers without any prior knowledge.
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Chapter 2

Hyperspectral Image Classification
Rajesh Gogineni and Ashvini Chaturvedi

Abstract

Hyperspectral image (HSI) classification is a phenomenal mechanism to analyze
diversified land cover in remotely sensed hyperspectral images. In the field of
remote sensing, HSI classification has been an established research topic, and
herein, the inherent primary challenges are (i) curse of dimensionality and
(ii) insufficient samples pool during training. Given a set of observations with known
class labels, the basic goal of hyperspectral image classification is to assign a class
label to each pixel. This chapter discusses the recent progress in the classification of
HS images in the aspects of Kernel-based methods, supervised and unsupervised
classifiers, classification based on sparse representation, and spectral-spatial classi-
fication. Further, the classification methods based on machine learning and the
future directions are discussed.

Keywords: hyperspectral imaging, classification, supervised and unsupervised
classification, machine learning

1. Introduction

The technological progression in optical sensors over the last few decades
provides enormous amount of information in terms of attaining requisite spatial,
spectral and temporal resolutions. Especially, the generous spectral information
comprises of hyperspectral images (HSIs) establishes new application domains and
poses new technological challenges in data analysis [1]. With the available high
spectral resolution, subtle objects and materials can be extracted by hyperspectral
imaging sensors with very narrow diagnostic spectral bands for the variety of
purposes such as detection, urban planning [2], agriculture [3], identification, sur-
veillance [4], and quantification [5, 6]. HSIs allow the characterization of objects of
interest (e.g., land cover classes) with unprecedented accuracy, and keep invento-
ries up to date. Improvements in spectral resolution have called for advances in
signal processing and exploitation algorithms.

Hyperspectral image is a 3D data cube, which contains two-dimensional spatial
information (image feature) and one-dimensional spectral information (spectral-
bands). Especially, the spectral bands occupy very fine wavelengths, while the
image features such as Land cover features and shape features disclose the disparity
and association among adjacent pixels from different directions at a confident
wavelength.

In the remote sensing community, the term classification is used to denote the
process that assigns individual pixels to a set of classes. The output of the classifi-
cation step is known as the classification map. With respect to the availability of
training samples, classification approaches can be split into two categories, i.e.,
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supervised and unsupervised classifiers. Supervised approaches classify input data
for each class using a set of representative samples known as training samples.
Hyperspectral (HS) image classification always suffers from varieties of artifacts,
such as high dimensionality, limited or unbalanced training samples [7], spectral
variability, and mixing pixels. The Hughes phenomenon is a common problem in
the supervised classification process [8]. The power of classification increases
with the increase of available training samples. The limited availability of training
samples decreases the classification performance with the increase of feature
dimension. This effect is famously termed as “Hughes phenomenon” [9]. It is well
known that increasing data dimensionality and high redundancy between features
might cause problems during data analysis. There are many significant challenges
that need to be addressed when performing hyperspectral image classification.
Primarily, supervised classification faces challenge about the imbalance between
high dimensionality and incomplete accessibility of training samples or the presence
of mixed pixels in the data [10]. Further, it is desirable to integrate the essential
spatial as well as spectral information so as to combine the complementary features
that stem from source images [11]. A considerable amount of literature has been
published with regard to overcoming these challenges, and performing
hyperspectral image classification effectively.

Hyperspectral image classification could attract scientific community which
aims at assigning a pixel (or a spectrum) to one of a certain set of predefined classes.
Maximum likelihood (ML) methods, neural networks architectures [12], support
vector machine (SVM) [13], Bayesian approach [14] as well as kernel methods [15]
are the prominent methods which have been investigated in recent years for the
identification or classification of hyperspectral data.

Based on the usage of training sample, image classification task is categorized as
supervised, unsupervised and semi-supervised hyperspectral image classification.

2. Unsupervised classification

The paramount challenge for HSI classification is the curse of dimensionality
which is also termed as Hughes phenomenon. To confront with this difficulty,
feature extraction methods are used to reduce the dimensionality by selecting
the prominent features. In unsupervised methods, the algorithm or method
automatically groups pixels with similar spectral characteristics (means, standard
deviations, etc.) into unique clusters according to some statistically determined
criteria. Further, unsupervised classification methods do not require any prior
knowledge to train the data. The familiar unsupervised methods are principal
component analysis (PCA) [16] and independent component analysis (ICA) [17].

2.1 Principal component analysis

It is the most widely used technique for dimensionality reduction. In compara-
tive sense, appreciable reduction in the number of variables is possible while
retaining most of the information contained by the original dataset. The substantial
correlation between the hyperspectral bands is the basis for PCA. The analysis
attempts to eliminate the correlation between the bands and further determines the
optimum linear combination of the original bands accounting for the variation of
pixel values in an image [18].

The mathematical principle of PCA relies upon the eigen value decomposition of
covariance matrix of HSI bands. The pixels of hyperspectral data are arranged as a
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vector having its size same as the number of bands. Xi ¼ x1, x2, ::… xN½ �T, where N is
the number of HS bands. The mean of all the pixel vectors is calculated as:

m ¼ 1
M

XM
i¼1

x1 x2 … xN½ �Ti (1)

where M = p ⋆ q is the number of pixel vectors for a HS image of “p” rows and
“q” columns. The covariance matrix is determined as:

C ¼ 1
M

XM
i¼1

Xi �mð Þ Xi �mð ÞT (2)

The covariance matrix can also be written as:

C ¼ ADAT (3)

D is the diagonal matrix composed of eigen values λ1, :… λNf g of C and A is the
orthogonal matrix with the corresponding eigen vectors (each of size N) as col-
umns. The linear transformation yi ¼ ATXi, i ¼ 1, 2:…M, is adapted to achieve the
modified pixel vectors which are the PCA transformed bands of original images.
The first K rows of the matrix AT are selected such that, the rows are the eigen
vectors corresponding to the eigen values arranged in a descending order. The
selected K rows are multiplied with the pixel vector Xi to yield the PCA bands
composed of most of the information contained in the HS bands.

In hypespectral data, most of the elements are covered by the sensors with high
spectral resolution which cannot be well described by the second order characteris-
tics. Hence, PCA is not an effective tool for HS image classification since it deals
with only second-order statistics.

2.2 Independent component analysis (ICA)

Independent component analysis successfully executes the independence of
the components with higher-order statistics, and is relatively more suitable to
encounter high dimensionality of HS images. ICA is an attractive tool for dimen-
sionality reduction, feature extraction, blind source separation, etc., as well as to
preserve the information which cannot be retrieved using second order statistics
[19, 20].

Let us consider a mixture of random variables x1, x2, … xN, where each xi ∈Rd.
These random variables are defined as a linear combination of another random
variables p1, p2, … , pN, where each pi ∈Rn. In such scenario, the mixing model can
be mathematically written as,

X ¼ AP (4)

where X ¼ x1, x2, … , xN½ � is the observed vector, P ¼ p1, p2, … , pN

� �
is the

unknown source, A is the mixing matrix, “n” denotes the number of unknown
sources and “d” represents the number of observations made. In order to find the
independent components, the unmixing matrix W is to be estimated (inverse of A).
The independent components are obtained using Eq. (5).

ICA Xð Þ ¼ P ¼ A�1X ¼WX (5)
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supervised and unsupervised classifiers. Supervised approaches classify input data
for each class using a set of representative samples known as training samples.
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vector having its size same as the number of bands. Xi ¼ x1, x2, ::… xN½ �T, where N is
the number of HS bands. The mean of all the pixel vectors is calculated as:

m ¼ 1
M

XM
i¼1

x1 x2 … xN½ �Ti (1)

where M = p ⋆ q is the number of pixel vectors for a HS image of “p” rows and
“q” columns. The covariance matrix is determined as:

C ¼ 1
M

XM
i¼1

Xi �mð Þ Xi �mð ÞT (2)

The covariance matrix can also be written as:

C ¼ ADAT (3)
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If X∈Rd�N is considered as the hyperspectral image,

Pn�N ¼Wn�dXd�N (6)

where N is the number of pixels in each band, d represents the number of
spectral bands and n gives the number of sources or materials present in the image.
The estimation of the ICA model is conceivable, only if the following presumptions
and limitations are fulfilled: (i) Sources should be statistically independent (ii)
Independent components should possess non Gaussian distribution (iii) Matrix A
should be a square and full rank matrix.

3. Supervised classification

The supervised classification takes the advantage of rich spectral information
and has explored many applications including urban development [21], the moni-
toring of land changes [22], target detection [23], and resource management [24].
In supervised classification only labeled data is used to train the classifier. A large
number of supervised classification methods have been discussed in the literature,
some of the prominent methods are maximum likelihood (ML), nearest neighbor
classifier, decision trees, random forest, support vector machines (SVMs), etc.

Figure 1 shows the conventional steps of supervised classification of HSIs.

3.1 ML classifier

The ML classifier assumes that the statistics for each class in each band are
normally distributed and estimates the probability that a given pixel belongs to a
certain specific class [25]. Unless a probability threshold is selected, all pixels are
classified. Each pixel is assigned to a particular class that manifests the maximum
probability. If the estimated maximum probability is smaller than a threshold, the
pixel remains unclassified. The following discriminant functions for each pixel in
the image are implemented in ML classification.

Figure 1.
Flowchart of HSI supervised classification.
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gi xð Þ ¼ ln p wið Þ � 1
2
ln ∣σi∣� 1

2
x�mið Þtσ�1i x�mið Þ (7)

where i = class; x = n-dimensional data (where n represents the number of
bands); p wið Þ = probability that class wi occurs in the image and is assumed the
same for all classes; ∣σi∣ = determinant of the covariance matrix of the data in class
wi; σij j�1 = its inverse matrix; and mi = mean vector.

Implementation of the ML classification involves the estimation of class mean
vectors and covariance matrices using training pattern chosen from known examples
of each particular class [26]. It usually acquires higher classification accuracy com-
pared to other traditional classification approaches. It assumes that each band is
normally distributed and the chosen training samples are comprised of exhaustively
defined set of classes. For hyperspectral data with tens of hundreds of spectral bands,
discrimination of land cover classes is not an easy task, whereas, the classification
accuracy of ML classifier is based on the accurate selection of the training samples.
Thus, for the hyperspectral imagery with poorly represented labeled training sam-
ples, it is preferable to adapt an alternative to the standard multiclass classifier.

3.2 k-nearest-neighbor (kNN) classifier

kNN is one of the widely used simplest classifier, and has been applied for HSI
classification [27, 28].

kNN method operates on majority voting rule, presumes that all the neighbors
make equal contributions to the classification of the testing point. Another impor-
tant feature of kNN classifier is Euclidian is used as distance metric, which assumes
the data is homogeneous.

LetX ¼ x1, … ,xN½ � be the N-point training data, with d as the dimension of each
point.Xi ¼ xi1, … ,xik½ � be the k nearest neighbors of xi. The testing data (Nt points)
is denoted as Xt with x0 is a random testing point. The k nearest neighbors from the
testing data with labels [l1, l2:… lk] is indicated as X0 ¼ x01, … ,x0k½ �. Let assume
that Ω½ � ¼ Ω1, … ,ΩC½ � are the “C” classes in the data.

The kNN classifier finds the k nearest neighbors of a testing point in the training
data and assigns the testing point to the most frequently occurring class of its k
neighbors. The classification of x0 by majority voting rule is exercised using the
following expression:

j ∗ ¼ arg max
j¼1, … , C

Xk
i¼1

δ li, jð Þ (8)

where δ is the Kronecker delta.
A distance metric learned from the given training data is used to enhance the

accuracy of kNN classifier.

dis xi,x j
� � ¼ T xi � x j

� ��� ��2 (9)

T denotes a linear transformation.
The decision rule of kNN can be modified by assigning different weights to the

neighbors. Further, the testing point is assigned to the class for which the sum of
weights chosen for the neighbors is largest.

j ∗ ¼ arg max
j¼1, … , C

Xk
i¼1

wiδ li, jð Þ (10)
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It is also referred as decision rule for weighted kNN (WkNN), where wi is the
weight of x0i.

3.3 Spectral angle mapper (SAM)

SAM is a supervised classification technique for HSIC [29]. SAM classifier
admits very quick classification using the spectral angle information of HSI data.

The reference spectra are usually determined from the field measurements or
from the image data, is used to measure the spectral angle. The spectral angle is a n-
dimensional vector between image and reference spectra. Smaller the angles
between two spectrums, higher the similarity and vice versa. The classification
approach using SAM is described in Figure 2.

This technique is comparatively insensitive to illumination and albedo effects when
reflectance data is used for analysis. The spectral angle can be calculated as follows:

θ¼ cos �1
PN

i¼1TiRiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPN
i¼1T

2
i

q ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPN
i¼1R

2
i

q

0
B@

1
CA (11)

Figure 2.
SAM classification approach.
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3.4 Support vector machine (SVM)

SVM is typically a linear classifier associative with kernel functions and optimi-
zation theory and is prominent for HSI classification [13, 30, 31]. SVM outperforms
the conventional supervised classification methods particularly in prevailing condi-
tions like increased number of spectral bands and the limited availability of training
samples [32–34].

3.4.1 Linear SVM: Linearly separable case

Let xi ∈ℝd, i ¼ 1, 2…Nð Þ be the set of training vectors, and a target
yi ∈ �1,þ1f g is corresponding to each vector xi. The problem is treated as a binary
classification and the two classes are linearly separable. Hence, at least one hyper-
plane must exist to separate the two classes without errors. The discriminant func-
tion associated with hyperplane can be defined as:

f xð Þ ¼ wxþ b (12)

where w∈ℝd is a vector normal to hyperplane, b∈ℝ is a bias. w and b must
satisfy the following condition to estimate such a hyperplane,

yi w:xi þ bð Þ>0, for i ¼ 1, 2…N (13)

The optimal hyperplane can be estimated by solving the following convex
problem.

min
1
2

wk k2 s:t yi w:xi þ bð Þ≥ 1, for i ¼ 1, 2…N (14)

3.4.2 Linearly nonseparable case

For practical data classification problem, the linearly separable condition may not
be true in different conditions. To solve the classification problem of nonseparable
data, hyperplane separation has been generalized. A cost function is formulated
comprising two conditions: margin maximization (as in the case of linearly separable
data) and error minimization (to penalize the wrongly classified samples).

ψ w, ξð Þ ¼ 1
2

wk k2 þ C
XN
i¼1

ξi (15)

Where, ξi are slack variables derived to account for the nonseparability of data
and C is a regularization parameter. The larger the C value, the higher the penalty
associated with misclassified sample.

The minimization of the cost function defined in Eq. (15) is subject to the
following conditions:

yi w:xi þ bð Þ≥ 1� ξi, i ¼ 1, 2:…N: (16)

ξi ≥0, i ¼ 1, 2:…N: (17)

For nonseparable data, two types of support vectors coexist: (1) margin support
vectors that lie on the hyperplane margin and (2) nonmargin support vectors that
fall on the “wrong” side of this margin [13].
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3.4.3 Nonlinear SVM -kernel method

The effective discriminant function to solve the nonlinear classification problem
can be expressed as:

f xð Þ ¼
X
i∈ S

αi yiK xi, xð Þ þ b (18)

A common example of kernel type that fulfills Mercer’s condition is the Gaussian
radial basis function:

K xi, xð Þ ¼ exp �γ xi � xk k2
� �

(19)

where, γ is a parameter that is inversely proportional to width of the Gaussian
kernel. The more details about kernel functions for this case can be referred in [35].

4. Random forest classifier

A random forest (RF) is a group of tree-based classifiers where each tree is
trained with a bootstrapped set of training data. The data to be classified is applied
as an input to each tree in the forest. The classification given by each tree is known
as a “vote” for that class. In the classification, the forest chooses the class having the
most votes (over all the trees in the forest). In RF classification a split is determined
by searching across a random subset of variables at each node [36, 37].

The Random forest classifier (RFC) features two main characteristics: relatively
high accuracy and the speed of processing. However, the correlation/independence
of trees can affect the accuracy of final land cover map. The primitive components
of Random Forest are explored as:

4.1 CART-like trees

Classification and regression tree (CART), a binary tree in which splits are
resolved by the variables obtained from the strong change in impurity or minimum
impurity (̂i tð Þ),

î tð Þ ¼
X
i 6¼ j

P̂ xi j tð ÞP̂ x j j t
� �

(20)

where P̂ xijtð Þ is the estimated probability of sample xi ∈ class i. The definite
classification takes place during training process. Either the impurity is zero or all
the splits result in only one node then the growth of the tree terminates.

4.2 Binary hierarchy classifier (BHC)

In contrary to CART, the split on each node in BHC is based on classes. The
optimal split at each node is based on class separability and further the splits are pure.

Let us consider a single meta-class case, which split into two into 2 meta-classes
and so on, until the true classes are realized in the leaves, while simultaneously
computing the Fisher discriminant and projection.

Let μγ, and σγ, γ ∈ y, β
� �

are the estimated mean vector and co-variance matrix
of the meta class wγ, then the data projected using w:
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w ¼W�1 μα � μβ
� �

(21)

The inverse of class covariance matrix W

W ¼ P ωαð Þσα þ P ωβ

� �
σβ (22)

P() is a prior probability. The discriminant T Wð Þ can be maximized as:

T wð Þ ¼ wTBw
wTWw

(23)

Where, B is the covariance matrix between classes.

B ¼ μα � μβ
� �

μα � μβ
� �T

: (24)

Like the CART trees, the BHC trees can be combined as a forest (RF-BHC) to
realize an ensemble of classifiers, where the best splits on classes are performed on
a subset of the features in the data to diversify individual trees and/or to stabilize
the W.

5. Spatial-spectral classification

The pixel-wise classification methods incur some difficulties: Discriminating the
classes is very difficult due to less interclass spectral variability. If interclass vari-
ability is high, it is very hard to determine a given class. The pixel-wise classification
capability can be enhanced by the exploration of additional information called
spatial dependency. The classification performance can be improved by incorpo-
rating spatial information into HSIC. This rationale motivates the study of spatial-
spectral classification methodologies [38]. The spatial dependency system for
spectral-spatial-based classification is depicted in Figure 3. The spatial dependency
(primary information for spatial-spectral classification techniques) is carried by
two identities called pixel and associated label. The correlation among spatially
related pixels is spatial dependency, hence spatially related pixels are termed as
neighboring pixels. The spatial dependency is associated with (i) Pixel dependency
indicates the correlation of neighboring pixels and (ii) Label dependency indicates
the correlation of labels of neighboring pixels. Distinct approaches of spatial-
spectral classification are as follows [39]:

i. Structural filtering: The spatial information from a region of the hyperspectral
data is extracted by evaluating the metrics like mean and standard deviation
of neighboring pixels over a window. The relevant methods include spectral-
spatial wavelet features [40], Gabor features [41], Wiener filtering [42], etc.

ii. Morphological profile (MP): mathematical morphology (MM) intent to
investigate spatial relationships between pixels using a set of known shape
and size which is called the structuring element (SE). Dilation and erosion are
the two elemental MM operations used for nonlinear image processing. The
concept of extracting the information regarding contrast and size of the
structures present in an image is termed as granulometry. The morphological
profile (MP) of size n has been defined as the composition of a granulometry
of size n built with opening by reconstruction and a (anti)granulometry of
size n built with closing by reconstruction [43].
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� �

μα � μβ
� �T

: (24)

Like the CART trees, the BHC trees can be combined as a forest (RF-BHC) to
realize an ensemble of classifiers, where the best splits on classes are performed on
a subset of the features in the data to diversify individual trees and/or to stabilize
the W.

5. Spatial-spectral classification

The pixel-wise classification methods incur some difficulties: Discriminating the
classes is very difficult due to less interclass spectral variability. If interclass vari-
ability is high, it is very hard to determine a given class. The pixel-wise classification
capability can be enhanced by the exploration of additional information called
spatial dependency. The classification performance can be improved by incorpo-
rating spatial information into HSIC. This rationale motivates the study of spatial-
spectral classification methodologies [38]. The spatial dependency system for
spectral-spatial-based classification is depicted in Figure 3. The spatial dependency
(primary information for spatial-spectral classification techniques) is carried by
two identities called pixel and associated label. The correlation among spatially
related pixels is spatial dependency, hence spatially related pixels are termed as
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the correlation of labels of neighboring pixels. Distinct approaches of spatial-
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spatial wavelet features [40], Gabor features [41], Wiener filtering [42], etc.

ii. Morphological profile (MP): mathematical morphology (MM) intent to
investigate spatial relationships between pixels using a set of known shape
and size which is called the structuring element (SE). Dilation and erosion are
the two elemental MM operations used for nonlinear image processing. The
concept of extracting the information regarding contrast and size of the
structures present in an image is termed as granulometry. The morphological
profile (MP) of size n has been defined as the composition of a granulometry
of size n built with opening by reconstruction and a (anti)granulometry of
size n built with closing by reconstruction [43].
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MP nð Þ Ið Þ ¼ ϕ nð Þ
r Ið Þ, … ,ϕ 1ð Þ

r Ið Þ, I, γ 1ð Þ
r Ið Þ, … , γ nð Þ

r Ið Þ
h i

(25)

From a single panchromatic image, the MP results in a (2n + 1)-band image.
However, for hyperspectral images the direct construction of the MP is not
straightforward, because of the lack of ordering relation between vector. In order to
overcome this shortcoming, several approaches have been considered [44].

i. Random field: random field-based methods have been studied broadly for HSI
classification. Markov random fields (MRFs) and conditional random fields
(CRFs) are two major variants of RF-based classification methods. CRF
methods adapt conditional probability for labeling the data and attain
favorable performance by utilizing the optimal spatial information; whereas,
MRF-based techniques achieve substantial reduction in computational
complexity by estimating class parameters independently from field
parameters. The basic formulation of random fields as follows:

Let S ¼ 1, … ::, nf g denote a set of integers indexing the n pixels of a
hyperspectral image. A conditional probability P y=x

� �
(a posteriori) is defined with

x ¼ x1, x2, ::… xnf g∈Rd�n denotes d-dimensional feature vectors composes a
hyperspectral image and y ¼ y1, y2:… yn

� �
is an image of lables. The a posteriori

probability can be expressed as:

p y=x
� �

¼ 1
Z ω,xð Þ exp

X
i∈S

log p yijxi,ω
� �þ μ

X
i, jð Þ∈ C

δ yi � y j

� �0
@

1
A (26)

The normalizing facor Z ω, xð Þ, also known as partition function is defined as:

Figure 3.
Spatial dependency system in spectral-spatial classification.
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Z ω,xð Þ ¼
X
y

exp
X
i∈S

log p yijxi,ω
� �þ μ

X
i, jð Þ∈ C

δ yi � y j

� �0
@

1
A (27)

where, p yijxi,ω
� �

=the class probability given by the learning parameter ω.
μ = parameter controlling the degree of smoothness on the image of labels.
δ yð Þ = unit impulse function and C is a set of cliques.
The CRFs not only avoids label bias problem but also its conditional nature

motivates the relaxation of independence assumptions. Recently, Distributed ran-
dom Forest (DRF) have gained interest for HSIC [45] owing to its inherent merit.

The salient features of DRF are (1) the relaxation of conditional independence of
the observed data. (2) the exploitation of probabilistic discriminative models
instead of the generative MRFs. and (3) the simultaneous estimation of all DRF
parameters from the training data.

6. Sparse-representation (SR)-based classification

The role of SR theory has become prevalent in almost all the image processing
applications. The SR theory presumes that the training samples can be represented
as a linear combination of smallest possible number of atoms (columns) of an over-
complete dictionary.

The test sample xi can be represented as xi ¼ Dαþ ϵ. where, D∈Rn�k is a
dictionary with n samples of k dimensions and the sparse coefficients vector α can
be determined by solving the following optimization problem.

α̂ ¼ argmin ∥α∥0 s:t:∥xi �Dα∥2 ≤ ϵ (28)

The term :k k0 is l0 norm that counts the number of nonzero entries. The opti-
mization problem in Eq. (28) can be solved with greedy pursuit algorithms [46], in
which the l0 norm is replaced with the l1 norm.

For HSIC, the Eq. (28) can be replaced as:

min
α

1
2
∥xi �Dα∥22 þ τ∥α∥1, α≥0: (29)

where, the parameter τ is a Lagrange multiplier that balances the tradeoff
between the reconstruction error and the sparse solution: τ! 0 when ϵ! 0.

In order to incorporate the spatial information a spatial weight is added and the
modified SR model for HSIC is formulated as:

min
α

1
2
∥xi �Dα∥22 þ τ∥Wα∥1, α≥0 (30)

The choice of a spatial weight matrix W, yields different classification strategies
for HSIs namely neighboring pixels [47], neighboring filtering [38], histogram-
based [47], spatial information based on super pixels [48], etc.

The class labels can be implied on the basis of the following formulation:

^class xið Þ ¼ arg min
j∈ 1, … , cf g

∥xi �D jα j∥2: (31)

A sparsity-based algorithm to improve the classification performance is pro-
posed in [49]. The principle depends on the sparse representation of a hyperspectral
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pixel by a linear combination of a few training samples from a structured dictio-
nary. The sparse vector is recovered by solving a sparsity-constrained optimization
problem, and it can directly determine the class label of the test sample. Zhang et al.
[50] proposed a nonlocal weighted joint sparse representation (NLW-JSRC) to
further improve the classification accuracy. The method enforced a weight matrix
on the pixels of a patch in order to discard the invalid pixels whose class was
different from that of the central pixel. A few of the recent investigations [51–53]
approved that a compact and discriminative dictionary learned from the training
samples can significantly reduce the computational complexity.

6.1 Segmentation-based methodologies

The segmentation process is performed after spectral-based classification in
some of HSIC techniques. The extraction and classification of homogeneous objects
is presented in [54] is the first classifier that used spatial postprocessing. The
comprehensive survey of other methodologies of this category is presented in [43].

7. Deep learning (DL)

Deep learning involves a class of models which try to hierarchically learn deep
features of input data with very deep neural networks, typically deeper than three
layers. The network is first layer-wise initialized via unsupervised training and
subsequently, tuned in a supervised manner. In this scheme, high level features are
learned from low level ones, whereas, the proper features can be formulated for
pattern classification towards the end. Deep models can potentially lead to progres-
sively more abstract and complex features at higher layers, and more abstract
features are generally invariant to the most local changes experienced by the input
data.

7.1 Deep learning for HSI classification

The DL theory presents a dynamic way for unsupervised feature learning using
very large raw image dataset. Unlike the traditional classification techniques, DL-
based techniques can represent and organize multiple levels of information to
express complex relationships between data.

Deep Learning (DL) is a sort of more complex architecture simulating human
brains, based on neural networks begins to apply hyperspectral image classification
[55]. The deep learning models for HSIC usually consists of three layers, to extract
the more complex characteristics layer by layer. (i) Input data (ii) Deep layer
construction (iii) Classification [56]. The notable methodologies include deep belief
network (DBN) [57], stacked auto encoder (SAE) [58], and convolutional neural
network (CNN) [59].

Deep belief networks (DBNs) [60] are an important development in DL
research and train one layer at a time in an unsupervised manner by restricted
Boltzmann machines (RBMs) [61]. The DBNs admit unsupervised pretraining over
unlabeled samples at first and then a supervised fine-tuning over labeled samples.
Since the pretrained DBN captures the useful information from the unlabeled sam-
ples, the fine-tuning with the pretrained DBN performes well over small number of
labeled samples [57, 62]. The simple structure of DBN is presented in Figure 4.

The conventional training of DBN incur two problems; The first is coadaptation
of latent factors [63, 64]. This activity is described as several latent factors tend to
behave very similarly. This phenomenon implies that the model parameters
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corresponding to the latent factors might be very similar. These similar latent
factors make most of the computations to be performed redundantly and also
decrease DBN’s description ability. The second is the set of many “dead” (never
responding) or “potential over-tolerant” (always responding) latent factors (neu-
rons) in the DBN learned with the usual sparsity promoting priors [65]. The “dead”
or “potential over-tolerant” latent factors directly correspond to the decrease of the
model’s description sources. These problems reduce the DBN’s description ability as
well as the classification performance. The first problem is solved by trying to
perform the latent factors diversely. The “dead” and “potential over-tolerant” latent
factors (neurons) are related to the sparsity and selectivity of activations of visual
neurons and the selectivity and sparsity are just two epiphenomena of the diversity
of receptive fields. Hence, both the problems can be solved together by diversifying
the DBN models.

The classification performance enhancement through the diversification of
latent factors of a given model has became attractive topic in recent years [66–68].
The determinantal point process (DPP) is used as a prior for probabilistic latent
variable models in [68]. Probabilistic latent variable models are one of the vital
elements of machine learning. The determinantal point process enables a modeler to
specify a notion of similarity on the space of interest, which in this case is a space of
possible latent distributions, via a positive definite kernel. The DPP then assigns
probabilities to particular configurations of these distributions according to the
determinant of the Gram matrix. This construction naturally leads to a generative
latent variable model in which diverse sets of latent parameters are preferred over
redundant sets.

Figure 4.
The simple structure of the standard DBN. (RBM- Restricted Boltzmann Machine).
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Restricted Boltzmann Machine (RBM)s has demonstrate immense effectiveness
in clustering and classification. In [69], divesified RBM (DRDM) is proposed to
enhance the diversity of the hidden units in RBM. To combat the phenomenon that
many redundant hidden units are learned to characterize the dominant topics as
best as possible with the price of ignoring long-tail topics by imposing a diversity
regularizer over these hidden units to reduce their redundancy and improve their
coverage of long-tail topics. First-order Hidden Markov Models (HMM) provides a
fundamental approach for unsupervised sequential labeling. A diversity-
encouraging prior over transition distributions is incorporated to extend HMM to
diversified HMM (dHMM) [66]. The dHMM shows great effectiveness in both the
unsupervised and supervised settings of sequential labeling problems. A successful
attempt has been made to improve the HSI classification by diversifying a deep
model in [70]. A new diversified DBN is developed through regularizing pretraining
and fine-tuning procedures by a diversity promoting prior over latent factors.
Moreover, the regularized pretraining and fine-tuning can be efficiently
implemented through usual recursive greedy and back-propagation learning
framework.

The conventional applications of the diversified models include image classifi-
cation [69], image restoration [67], and video summarization [71].

Two hyperspectral data sets, Indian Pines and the University of Pavia scenes are
selected for the evaluation of diversified DBN (D-DBN)-based classification method.
The Indian Pines data set has 220 spectral channels in 0.4 to 2.45 μm region of the
visible and infrared spectrumwith a spatial resolution of 20 m� 20m. The 20 spectral
bands were removed due to noise and water absorption, and the data set contains 200
bands of size 145 � 145 pixels. A three-band false color image and the ground truth
data are presented in Figure 5. The University of Pavia data set with a spectral
coverage ranging from 0.43 to 0.86 μm is presented in Figure 6. The image contains
610 � 340 pixels and 115 bands. After removing 12 bands due to noise and water
absorption, the image contains 103 bands with a spatial resolution as 1.3 m � 1.3 m.

The structure of the DBN for the Indian Pines data set is set as 200–50 - … - 50 -
8, which means the input layer has 200 nodes corresponding to the dimension of
input data, the output layer has eight nodes corresponding to the number of classes,
and all the middle layers have 50 nodes. Particulars about the number of training
and testing samples are presented in Table 1. The performance of the DBN can be
significantly improved by modifying the pretraining and fine-tuning of D-DBNs.
DBN-based classification methods realizes comparatively fast inference and

Figure 5.
Indian Pines data set. (a) Original image produced by the mixture of three bands. (b) Ground truth with eight
classes. (c) Map color.
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competent representation of hyperspectral image and thus good classification per-
formance.

7.2 Convolutional neural networks (CNN)

Quite a few number of neural network-based classification methods have been
proposed in the literature to deal with both supervised and unsupervised nonpara-
metric approaches [72–74]. The feedforward neural network (FN)-based classifiers
are extensively used with the variation of second-order optimization-based strate-
gies, which are faster and need fewer input parameters [75, 76]. The extreme
learning machine (ELM) learning algorithm has became popular that train single
hidden-layer FNs (SLFN) [77, 78]. Then, the concept has been extended to multi-
hidden-layer networks [79], radial basis function (RBF) networks [80], and kernel

Figure 6.
University of Pavia data set. (a) Original image produced by the mixture of three bands. (b) Ground truth
with nine classes. (c) Map color.

ID Indian pines University of Pavia

Class name Training Test Class name Training Test

1 Corn-notill 200 1234 Asphalt 200 6431

2 Corn-mintill 200 634 Meadows 200 18,499

3 Grass-pasture 200 297 Gravel 200 1899

4 Hay-windrowed 200 289 Trees 200 2864

5 Soybean-notill 200 768 Sheets 200 1145

6 Soybean-mintill 200 2268 Bare soil 200 4829

7 Soybean-clean 200 414 Bitumen 200 1130

8 Woods 200 1094 Bricks 200 3482

9 Shadows 200 747

Total 1600 1800 40,976

Table 1.
Number of training and test samples.
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learning [81, 82]. ELM-based networks are remarkably efficient in terms of accu-
racy and computational complexity and have been successfully applied as nonlinear
classifiers for hyperspectral data, providing results comparable with state-of-the-art
methodologies.

In recent years, convolutional neural network (CNN) has acquired auspicious
achievements in remote sensing [58, 83–85]. The deep structure of CNNs allows the
model to learn highly abstract feature detectors and to map the input features into
representations that can clearly boost the performance of the subsequent classifiers.
The advantage of such approaches over probabilistic methods result mainly from
the fact that neural networks do not need prior knowledge about the statistical
distribution of the classes. Their attractiveness increased because of the availability
of feasible training techniques for nonlinearly separable data citepbenedikts-
son1990statistical, although their use has been traditionally affected by their algo-
rithmic and training complexity [86] as well as by the number of parameters that
need to be tuned.

The CNN is a multi-layer architecture with multiple stages for effective feature-
extraction. Generally, each stage of CNN is composed of three layers. (i)
convolutional layer (ii) nonlinearity layer and and (iii) pooling layer. The classical
CNN is composed of one, two, or three feature-extraction stages, followed by one or
more fully connected layers and a final classifier layer.

Convolutional layer: The input to the convolutional layer is represented as xim,n,
with r number of features maps xi, each map is of size m� n. The convolutional
layer consists of filter banks W of size l� l� q that connects input filter map to
output filter map. The output of convolutional layer is a three-dimensional array
m1 � n1 � k , composed of k feature maps of size m1 � n1. The output of the
convolutional layer is determined as:

zs ¼
Xq

i¼1
Ws

i ∗ x
i þ bs (32)

Where, b is the bias paprameter.
Nonlinearity layer: The nonlinearity layermeasures the output featuremap

as ¼ f zsð Þ, as f(.) is usually selected tobe a rectified linear unit (ReLU) f(x)=max(0,x).
Pooling Layer: The pooling layer involves executing a max operation over the

activations within a small spatial region G of each feature map: ps
G ¼ max i∈G ais.

After the multiple feature-extraction stages, the entire network is trained with back
propagation of a supervised loss function such as the classic least-squares output,
and the target output γ is represented as a L-of-K vector, where K is the number of
output and L is the number of layers:

J θð Þ ¼
XN
i¼1

1
2
∥h xi, θð Þ � γ∥2

� �
þ λ

XL

l

sum ∥θ lð Þ∥2
� �

, (33)

where l indexes the layer number. Primary goal is to minimize J θð Þ as a function
of θ. To train the CNN, stochastic gradient descent with back propagation is
exercised to optimize the function.

The three fundamental parts of a CNN are a convolutional layer, non linear
function and a pooling layer. A deep CNN can be formulated by stacking several
convolution layers with nonlinear operation and several pooling layers. A deep CNN
can hierarchically extract the features of inputs, which tend to be invariant and
robust [87]. The architecture of a deep CNN for spectral classification is shown in
Figure 7.

38

Processing and Analysis of Hyperspectral Data

A systematic survey on deep networks for remote sensing data has been
presented in [56]. In [83], CNN was investigated to exploit deep representation
based on spectral signatures and the performance proved to be superior to that of
SVM. The high level spatial features are extracted using CNN [88], deep CNN for
pixel classification while learning unsupervised sparse features [59], deep CNN to
learn pixel-pair features [89] and few more.

The performance of the HSI classification method proposed in [83] termed as
deep CNN (D-CNN) is compared with a traditional SVM classifier. Two
hyperspectral data sets including Indian Pines and University Of Pavia are used for
the evaluation. The Indian Pines data set consists of 220 spectral channels in the
0.4–2.45 μm region of the visible and infrared spectrum with a spatial resolution of
20 m. The University of Pavia data set with a spatial coverage of 610 � 340 pixels
covering the city of Pavia and has 103 spectral bands prior to water band removal. It
has a spectral coverage from 0.43 to 0.86 μm and a spatial resolution of 1.3 m. All
the layer parameters of these two data sets for CNN classifier are set as specified in
[83]. The comparison of classification performance between D-CNN and SVM is
presented in Table 2. Figures 8 and 9 interpret the corresponding classification

Figure 7.
A spectral classifier based on a deep CNN.

Data set D-CNN (%) SVM (%)

Indian pines 90.18 87.54

University of Pavia 92.64 90.42

Table 2.
Comparison of results between the D-CNN and SVM using two data sets.

Figure 8.
RGB composition maps resulting from classification for the Indian Pines data set. From left to right: ground
truth, SVM, and D-CNN.
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exercised to optimize the function.

The three fundamental parts of a CNN are a convolutional layer, non linear
function and a pooling layer. A deep CNN can be formulated by stacking several
convolution layers with nonlinear operation and several pooling layers. A deep CNN
can hierarchically extract the features of inputs, which tend to be invariant and
robust [87]. The architecture of a deep CNN for spectral classification is shown in
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maps obtained with D-CNN and SVM classifier. Furthermore, compared with tra-
ditional SVM the D-CNN classifier has higher classification accuracy for the overall
data sets.

Furthermore, the application of Deep learning to hyperspectral image classifica-
tion has some potential issues to be investigated.

i. Deep learning methods may lead to a serious problem called overfitting,
which means that the results can be very good on the training data but poor
on the test data. To deal with this issue, it is necessary to use powerful
regularization methods.

ii. In contrast to natural images, the high resolution remote sensing (RS) images
are complex in nature. The complexity of RS images leads to some difficulty
in descriminative representation and learning features from the objects
with DL.

iii. The deepaer layers in supervised networks like CNNs can learn more complex
distributions. Research on appropriate depth for a DL model for a given data
set is still an open research topic to be explored.

iv. Deep learning methods can be combined with other methods, such as sparse
coding and ensemble learning which is another research area in hyperspectral
data classification.

Figure 9.
Thematic maps resulting from classification for University of Pavia data set. From left to right: ground truth,
SVM, and D-CNN.
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Chapter 3

Hyperspectral Image
Super-Resolution Using
Optimization and DCNN-Based
Methods
Xian-Hua Han

Abstract

Reconstructing a high-resolution (HR) hyperspectral (HS) image from the
observed low-resolution (LR) hyperspectral image or a high-resolution multispec-
tral (RGB) image obtained using the exiting imaging cameras is an important
research topic for capturing comprehensive scene information in both spatial and
spectral domains. The HR-HS hyperspectral image reconstruction mainly consists
of two research strategies: optimization-based and the deep convolutional neural
network-based learning methods. The optimization-based approaches estimate HR-
HS image via minimizing the reconstruction errors of the available low-resolution
hyperspectral and high-resolution multispectral images with different constrained
prior knowledge such as representation sparsity, spectral physical properties, spatial
smoothness, and so on. Recently, deep convolutional neural network (DCNN) has
been applied to resolution enhancement of natural images and is proven to achieve
promising performance. This chapter provides a comprehensive description of not
only the conventional optimization-based methods but also the recently investi-
gated DCNN-based learning methods for HS image super-resolution, which mainly
include spectral reconstruction CNN and spatial and spectral fusion CNN. Experi-
ment results on benchmark datasets have been shown for validating effectiveness of
HS image super-resolution in both quantitative values and visual effect.

Keywords: hyperspectral imaging, image super-resolution, optimization-based
approach, deep convolutional neural network (DCNN), spectral reconstruction,
spatial and spectral fusion

1. Introduction

Hyperspectral (HS) imaging simultaneously obtains a set of images of the same
scene on a large number of narrow-band wavelengths which can effectively
describe the spectral distribution for every scene point and provide intrinsic and
discriminative spectral information of the scene. The acquired dense spectral bands
of data are capable to benefit for numerous applications, including object recogni-
tion and segmentation [1–9], medical image analysis [10], and remote sensing
[11–15], to name a few. Although with the availability of the abundant spectral
information with HS imaging, it generally results in much low spatial resolution
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compared with ordinary panchromatic and RGB images since photon collection in
HS sensors is performed in a much larger spatial region for guaranteeing sufficiently
high signal-to-noise ratio. The low spatial resolution in the HS images leads to high
spectral mixing of different materials in a scene and greatly affects the performance
of scene analysis and understanding. Therefore, the reconstruction of high-
resolution hyperspectral (HR-HS) image using image processing and machine lean-
ing techniques has attracted a lot of attention.

Especially in remote sensing field, a low-resolution (LR) multispectral or HS
image is usually available accompanying with a HR single-channel panchromatic
image, and the fusion of these two images is generally known as the pan-sharpening
technique [16–39]. Motivated by the fact that human vision is more sensitive to
luminance, traditional pan-sharpening technique mainly concentrated the reliable
illumination restoration via substituting the calculated component of the LR-HS
image with the HR information of panchromatic image via sue saturation exploring
and principle component analysis. However, these simple approaches avoidably cause
spectral distortion in the resulting image. Recently, the HS image super-resolution
actively investigates the optimization methods for minimizing the reconstruction
error of the available LR-HS and HR-MS (HR-RGB) images [16–30], which
manifested impressive performance. The basic idea of these optimization-based
approaches assumes that the spectrum can be represented as matrix decomposition
with different constraints such as representation sparsity, spectral physical proper-
ties, spatial context similarity, and composited matrixes, which are iteratively opti-
mized for more accurate approximating the observed images. Recently, the matrix
factorization and spectral unmixing [40–43]-based HS image super-resolution, which
are mainly motivated by the fact the HS observations can be represented by a linear
combination of the reflectance function basis (the spectral signatures of the pure
materials) and the weight vector denoting the fractions of the pure materials on the
spectral response is assumed sparse, have been actively investigated [16, 17, 27, 28]. A
coupled nonnegative matrix factorization (CNMF) by Yokoya et al. [19], inspired by
the physical property of nonnegative weights for the linear combination, has been
proposed to estimate the HR-HS image from a pair of HR-MS and LR-HS images.
Although the CNMF approach provided acceptable spectral recovery performance,
its solution is usually not unique [44], which cannot always lead to unsatisfied
spectral recovery results. Lanaras et al. [10] proposed to integrate coupled spectral
unmixing strategy into HS super-resolution and conducted optimization procedure
with the proximal alternating linearized minimization method, which requires the
good initial points of the two decomposed reflectance signatures and the fraction
vectors for providing impressive results. Furthermore, taking consideration of the
physical meaning of the spectral linear combination on the reflectance signatures and
the implementation effectiveness, most work generally assumes that the number of
the pure materials in the observed scene is smaller than the spectral band number,
which is not always satisfied in the real application.

Motivated by the successful applications of the sparse representation on the
natural image analysis [14, 15] such as image de-noising, super-resolution, and
representation, the sparsity-promoting approaches without considering explicitly
the physical meaning constraint on the reflection signature (basis) and thus per-
mitting over-complete basis have widely been applied for HS super-resolution
[18, 19]. Inspired by the work in the general RGB image analysis with sparse
representation, Grohnfeldt et al. [11] explored a joint sparse representation for HS
image super-resolution. Via learning the corresponding HS and MS (RGB) patch
dictionaries using the prepared pairs, this work assumed the same sparse coeffi-
cients of the corresponding MS and HS patch dictionary, and thus, these can be
calculated with only the MS input patch. However the above procedure was
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conducted on each individual band, which mainly considered the well reconstruc-
tion of the local structure (patch) and completely ignored the spectral correlation
between channels. Therefore, several other works [19, 22] investigated the sparse
spectral representation via conducting reconstruction of all band spectra instead of
the local structure on each individual band. Akhtar et al. [13] explored a sparse
spatiospectral representation via calculating the optimized sparse coefficients of
each spectral pixel but assuming the same used atoms for the pixels in a local grid
region to integrate the spatial structure. For calculation effectiveness, a generalized
simultaneous orthogonal matching pursuit (G-SOMP) was proposed for estimating
the sparse coefficients in [22]. Later, the same research group integrated the sparse
representation and the Bayesian dictionary learning algorithm for improving the HS
image super-resolution performance and manifested its effectiveness. Dong et al.
[21] proposed a nonnegative structured sparse representation (NSSR) approach
for taking consideration of the spatial structure and then conducted optimization
procedure with the alternative direction multiplier method (ADMM) technique.
NSSR achieved a large margin on HS image recovery performance compared with
the other state-of-the-art approaches. Furthermore, Han et al. [45] proposed to
recover the HR-HS output via minimizing the coupled reconstruction error of the
available LR-HR and HR-RGB images with the following constraints, (1) the sparse
representation with over-complete spectral dictionary in the coupled unmixing
strategy [17] and (2) the self-similarity of the sparse spectral representation in the
global structures and the local spectra existed in the available HR-RGB image,
which further improved the HS image recovery performance in both visual and
quality aspects.

Deep convolutional neural networks (CNNs) have recently shown great success
in various image processing and computer vision applications. CNN has also been
applied to RGB image super-resolution and achieved promising performance. Dong
et al. [46] proposed a three-layer CNN architecture (SRCNN), which demonstrates
about 0.5–1.5 db improvement and much lower computational cost compared with
the popularly used sparse-based methods, and they further extended SRCNN to be
capable of directly dealing with the available LR images without mathematical
upsampling operation, called as fast SRCNN. Kim et al. [47] exploited a very deep
CNN architecture based on VGG-net architecture and concentrated on only esti-
mating the missing high-frequency image (residual image). Ledig et al. integrated
two different types of networks, generate network and discriminate network
(called as GAN), for estimating much sharper HR image. For applying CNN to HSI
SR, Li et al. [48] applied similar structures of SRCNN to super-resolve HSI only
from the LR-HS image. These CNN architectures take only the LR image as input,
and the expanding factor of resolution enhancement is theoretically limited to be
lower than 8 in both height and width. There are also several works exploring CNN-
based method with variant backbone architectures to expand the spectral resolution
with only HR-RGB image as input [49, 50]. This chapter introduces several research
works based on DCNN learning for HS image reconstruction.

On the other hand, regarding to the use of the observed data, the HR-HS image
reconstruction can be divided into three research directions: (1) spatial resolution
enhancement from hyperspectral imaging, (2) spectral resolution enhancement
from RGB imaging, and (3) fusion method based on the observed HR-RGB and low-
resolution (LR) HS images of the same scene. Spatial resolution enhancement has
popularly been used on single natural image super-resolution [46, 47], and impres-
sive performance has been achieved especially with the deep learning method in the
resolution expanding factor from 2 to 4. The deep convolutional neural network
(DCNN) has also been adopted for predicting the HR-HS image from a single LR-
HS image [48] and validated feasibility of HS image super-resolution for small
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compared with ordinary panchromatic and RGB images since photon collection in
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with the proximal alternating linearized minimization method, which requires the
good initial points of the two decomposed reflectance signatures and the fraction
vectors for providing impressive results. Furthermore, taking consideration of the
physical meaning of the spectral linear combination on the reflectance signatures and
the implementation effectiveness, most work generally assumes that the number of
the pure materials in the observed scene is smaller than the spectral band number,
which is not always satisfied in the real application.

Motivated by the successful applications of the sparse representation on the
natural image analysis [14, 15] such as image de-noising, super-resolution, and
representation, the sparsity-promoting approaches without considering explicitly
the physical meaning constraint on the reflection signature (basis) and thus per-
mitting over-complete basis have widely been applied for HS super-resolution
[18, 19]. Inspired by the work in the general RGB image analysis with sparse
representation, Grohnfeldt et al. [11] explored a joint sparse representation for HS
image super-resolution. Via learning the corresponding HS and MS (RGB) patch
dictionaries using the prepared pairs, this work assumed the same sparse coeffi-
cients of the corresponding MS and HS patch dictionary, and thus, these can be
calculated with only the MS input patch. However the above procedure was
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conducted on each individual band, which mainly considered the well reconstruc-
tion of the local structure (patch) and completely ignored the spectral correlation
between channels. Therefore, several other works [19, 22] investigated the sparse
spectral representation via conducting reconstruction of all band spectra instead of
the local structure on each individual band. Akhtar et al. [13] explored a sparse
spatiospectral representation via calculating the optimized sparse coefficients of
each spectral pixel but assuming the same used atoms for the pixels in a local grid
region to integrate the spatial structure. For calculation effectiveness, a generalized
simultaneous orthogonal matching pursuit (G-SOMP) was proposed for estimating
the sparse coefficients in [22]. Later, the same research group integrated the sparse
representation and the Bayesian dictionary learning algorithm for improving the HS
image super-resolution performance and manifested its effectiveness. Dong et al.
[21] proposed a nonnegative structured sparse representation (NSSR) approach
for taking consideration of the spatial structure and then conducted optimization
procedure with the alternative direction multiplier method (ADMM) technique.
NSSR achieved a large margin on HS image recovery performance compared with
the other state-of-the-art approaches. Furthermore, Han et al. [45] proposed to
recover the HR-HS output via minimizing the coupled reconstruction error of the
available LR-HR and HR-RGB images with the following constraints, (1) the sparse
representation with over-complete spectral dictionary in the coupled unmixing
strategy [17] and (2) the self-similarity of the sparse spectral representation in the
global structures and the local spectra existed in the available HR-RGB image,
which further improved the HS image recovery performance in both visual and
quality aspects.

Deep convolutional neural networks (CNNs) have recently shown great success
in various image processing and computer vision applications. CNN has also been
applied to RGB image super-resolution and achieved promising performance. Dong
et al. [46] proposed a three-layer CNN architecture (SRCNN), which demonstrates
about 0.5–1.5 db improvement and much lower computational cost compared with
the popularly used sparse-based methods, and they further extended SRCNN to be
capable of directly dealing with the available LR images without mathematical
upsampling operation, called as fast SRCNN. Kim et al. [47] exploited a very deep
CNN architecture based on VGG-net architecture and concentrated on only esti-
mating the missing high-frequency image (residual image). Ledig et al. integrated
two different types of networks, generate network and discriminate network
(called as GAN), for estimating much sharper HR image. For applying CNN to HSI
SR, Li et al. [48] applied similar structures of SRCNN to super-resolve HSI only
from the LR-HS image. These CNN architectures take only the LR image as input,
and the expanding factor of resolution enhancement is theoretically limited to be
lower than 8 in both height and width. There are also several works exploring CNN-
based method with variant backbone architectures to expand the spectral resolution
with only HR-RGB image as input [49, 50]. This chapter introduces several research
works based on DCNN learning for HS image reconstruction.

On the other hand, regarding to the use of the observed data, the HR-HS image
reconstruction can be divided into three research directions: (1) spatial resolution
enhancement from hyperspectral imaging, (2) spectral resolution enhancement
from RGB imaging, and (3) fusion method based on the observed HR-RGB and low-
resolution (LR) HS images of the same scene. Spatial resolution enhancement has
popularly been used on single natural image super-resolution [46, 47], and impres-
sive performance has been achieved especially with the deep learning method in the
resolution expanding factor from 2 to 4. The deep convolutional neural network
(DCNN) has also been adopted for predicting the HR-HS image from a single LR-
HS image [48] and validated feasibility of HS image super-resolution for small
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expanding factor. However, the spatial resolution of the available HS image is
considerably low compared with the commonly observed RGB image, and then the
expanding factor for HR-HS image reconstruction is required to be large enough,
for example, more than 10 in horizontal and vertical directions, respectively. Thus,
the reconstructed HS image with acceptable quality usually cannot reach the
required spatial resolution for different applications. The spectral resolution
enhancement for RGB-to-spectrum reconstruction [49, 50] has recently become a
hot research line with a single RGB image, which can be lightly collected with a low-
price visual sensor. Although the impressive potential of the RGB-spectrum recon-
struction is evaluated, there has still large space for performance improving in real
applications. Fusing a LR-HS image with the corresponding HR-RGB image to
obtain a HR-HS image has shown promising performance [18, 19, 22, 30] compared
to spatial and spectral resolution enhancement methods. It is usually solved as an
optimization problem with prior knowledge such as sparsity representation and
spectral physical properties as constraints, which needs comprehensive analysis of
the target scene previously and would be varied scene by scene. Motivated by the
amazing performance of the DCNN in natural image super-resolution, Han etc. [51]
proposed a spatial and spectral fusion network (SSF-Net) for the HR-HS image
reconstruction and validated the better results of the SSF-Net in spite of the simple
concatenation of the upsampled LR-HS image and the HR-RGB image. However,
the upsampling of the LR-HS image and the simple concatenation cannot effectively
integrate the existed spatial structure and spectral property but would lead to
computational cost. In addition, precise alignment is needed for the input of LR-HS
and HR-RGB images and is extremely difficult due to the large difference of spatial
resolution in the LR-HS and HR-RGB images. This chapter introduces several
advanced DCNN-based learning methods for hyperspectral image super-resolution
and manifests the impressive performance for benchmark datasets. The basic con-
cept of the hyperspectral image super-resolution is shown in Figure 1.

2. Problem formulation of HS image super-resolution

The goal of HS image super-resolution is to recover a HR-HS image
Z0 ∈W�H�L, where L denotes the spectral band number and W and H denote the
image width and height, respectively, from a HR-MS image Y0 ∈W�H�l (l≪L)

Figure 1.
The basic concept of the hyperspectral image super-resolution.
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and a LR-HS image X0 ∈w�h�L (w≪W, h≪H). The common used HR-MS image
in the HS image SR scenario is generally a RGB image with l ¼ 3 spectral bands. The
matrix forms of Z0, X0, and Y0 are denoted as Z∈L�N (N ¼W �H), X∈L�M

(M ¼ w� h), and Y∈3�N, respectively. Both X (LR-HS) and Y (HR-RGB) can be
expressed as a linear transformation from Z (the desired HS image) as:

X ¼ ZD,Y ¼ RZ (1)

where D∈N�M is the decimation matrix, which blurs and down-samples the
HR-HS image to form the LR-HS image, and R∈3�L represents the RGB camera
spectral response functions that maps the HR-HS image to the HR-RGB image.
With the given X and Y, Z can be estimated by minimizing the following recon-
struction error:

Ẑ ¼ arrmin X� ZDk k2F þ Y� RZk k2F (2)

where �k kF denotes the Frobenius norm. Via minimizing the reconstruction
errors of the observed LR-HSI, X, and the HR-RGB image, Y, in Eq. (2), we attempt
to recover the HR-HSI, Z. The intuitive way to solve Eq. (2) is to adopt an
optimization-based strategy to minimize Eq. (2) for providing an estimation of the
HR-HSI, Z. This chapter firstly explores the alternative back-projection (ABP)
algorithm to iteratively update the HR-HSI, Z, aiming at minimizing Eq. (2). Back-
projection [12] is well-known as the efficient iterative procedure to minimize the
reconstruction error. Since the back-projection requires an initial estimation for
updating the next Zt, we simply upsample the LR-HS image X as the initial state,
Z0 ¼ Up Xð Þ. The alternative update for Zt at the t-th step is formulated as:

Z0t ¼ Zt�1 þ λ1R�1 ∗ Y� RZt�1ð Þ
Zt ¼ Z0t þ λ2D ∗ DT ∗D

� ��1
X � Z0tD
� � (3)

where �ð ÞT denotes the transpose operation of a matrix and �ð Þ � 1 represents the
inverse operation of a matrix. λ1 and λ2 denote the hyper-parameters for controlling
the updating weights. After the predefined number of alternative iterations, it is
prospected to obtain an estimated HR-HSI. Z, for well reconstructing the observed
LR-HSI, X, and HR-RGB image, Y.

Since the number of the unknowns (N*L) is much larger than the number of
available measurements (M*L + 3*N), the above optimization problem is highly ill-
posed, and proper regularization terms are required to narrow the solution space
and ensure stable estimation. A widely adopted constraint is that each pixel spectral
zn ∈L of Z lies in a low-dimensional space, and it can be decomposed as [30]:

zn ¼
XK

k¼1
bkαk,n subject to: bi,k ≥0, αk,n ≥0,

XK

k¼1
αk,n ¼ 1 (4)

where B∈L�K ¼ b1,b2,⋯,bK½ � is the set of all spectral signatures (bk, also
called as the k-th endmember) of K distinct materials. αn represents the fractional
abundance of all K materials for the n-th pixel. Taking consideration of the
physical property on the spectral reflectance, the elements in the spectral signatures
and the fractional abundance are nonnegative as shown in the first and second
constraint terms of Eq. (4), and the summation of abundance vector for each
pixel is one.
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expanding factor. However, the spatial resolution of the available HS image is
considerably low compared with the commonly observed RGB image, and then the
expanding factor for HR-HS image reconstruction is required to be large enough,
for example, more than 10 in horizontal and vertical directions, respectively. Thus,
the reconstructed HS image with acceptable quality usually cannot reach the
required spatial resolution for different applications. The spectral resolution
enhancement for RGB-to-spectrum reconstruction [49, 50] has recently become a
hot research line with a single RGB image, which can be lightly collected with a low-
price visual sensor. Although the impressive potential of the RGB-spectrum recon-
struction is evaluated, there has still large space for performance improving in real
applications. Fusing a LR-HS image with the corresponding HR-RGB image to
obtain a HR-HS image has shown promising performance [18, 19, 22, 30] compared
to spatial and spectral resolution enhancement methods. It is usually solved as an
optimization problem with prior knowledge such as sparsity representation and
spectral physical properties as constraints, which needs comprehensive analysis of
the target scene previously and would be varied scene by scene. Motivated by the
amazing performance of the DCNN in natural image super-resolution, Han etc. [51]
proposed a spatial and spectral fusion network (SSF-Net) for the HR-HS image
reconstruction and validated the better results of the SSF-Net in spite of the simple
concatenation of the upsampled LR-HS image and the HR-RGB image. However,
the upsampling of the LR-HS image and the simple concatenation cannot effectively
integrate the existed spatial structure and spectral property but would lead to
computational cost. In addition, precise alignment is needed for the input of LR-HS
and HR-RGB images and is extremely difficult due to the large difference of spatial
resolution in the LR-HS and HR-RGB images. This chapter introduces several
advanced DCNN-based learning methods for hyperspectral image super-resolution
and manifests the impressive performance for benchmark datasets. The basic con-
cept of the hyperspectral image super-resolution is shown in Figure 1.

2. Problem formulation of HS image super-resolution

The goal of HS image super-resolution is to recover a HR-HS image
Z0 ∈W�H�L, where L denotes the spectral band number and W and H denote the
image width and height, respectively, from a HR-MS image Y0 ∈W�H�l (l≪L)

Figure 1.
The basic concept of the hyperspectral image super-resolution.
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and a LR-HS image X0 ∈w�h�L (w≪W, h≪H). The common used HR-MS image
in the HS image SR scenario is generally a RGB image with l ¼ 3 spectral bands. The
matrix forms of Z0, X0, and Y0 are denoted as Z∈L�N (N ¼W �H), X∈L�M

(M ¼ w� h), and Y∈3�N, respectively. Both X (LR-HS) and Y (HR-RGB) can be
expressed as a linear transformation from Z (the desired HS image) as:

X ¼ ZD,Y ¼ RZ (1)

where D∈N�M is the decimation matrix, which blurs and down-samples the
HR-HS image to form the LR-HS image, and R∈3�L represents the RGB camera
spectral response functions that maps the HR-HS image to the HR-RGB image.
With the given X and Y, Z can be estimated by minimizing the following recon-
struction error:

Ẑ ¼ arrmin X� ZDk k2F þ Y� RZk k2F (2)

where �k kF denotes the Frobenius norm. Via minimizing the reconstruction
errors of the observed LR-HSI, X, and the HR-RGB image, Y, in Eq. (2), we attempt
to recover the HR-HSI, Z. The intuitive way to solve Eq. (2) is to adopt an
optimization-based strategy to minimize Eq. (2) for providing an estimation of the
HR-HSI, Z. This chapter firstly explores the alternative back-projection (ABP)
algorithm to iteratively update the HR-HSI, Z, aiming at minimizing Eq. (2). Back-
projection [12] is well-known as the efficient iterative procedure to minimize the
reconstruction error. Since the back-projection requires an initial estimation for
updating the next Zt, we simply upsample the LR-HS image X as the initial state,
Z0 ¼ Up Xð Þ. The alternative update for Zt at the t-th step is formulated as:

Z0t ¼ Zt�1 þ λ1R�1 ∗ Y� RZt�1ð Þ
Zt ¼ Z0t þ λ2D ∗ DT ∗D

� ��1
X � Z0tD
� � (3)

where �ð ÞT denotes the transpose operation of a matrix and �ð Þ � 1 represents the
inverse operation of a matrix. λ1 and λ2 denote the hyper-parameters for controlling
the updating weights. After the predefined number of alternative iterations, it is
prospected to obtain an estimated HR-HSI. Z, for well reconstructing the observed
LR-HSI, X, and HR-RGB image, Y.

Since the number of the unknowns (N*L) is much larger than the number of
available measurements (M*L + 3*N), the above optimization problem is highly ill-
posed, and proper regularization terms are required to narrow the solution space
and ensure stable estimation. A widely adopted constraint is that each pixel spectral
zn ∈L of Z lies in a low-dimensional space, and it can be decomposed as [30]:

zn ¼
XK

k¼1
bkαk,n subject to: bi,k ≥0, αk,n ≥0,

XK

k¼1
αk,n ¼ 1 (4)

where B∈L�K ¼ b1,b2,⋯,bK½ � is the set of all spectral signatures (bk, also
called as the k-th endmember) of K distinct materials. αn represents the fractional
abundance of all K materials for the n-th pixel. Taking consideration of the
physical property on the spectral reflectance, the elements in the spectral signatures
and the fractional abundance are nonnegative as shown in the first and second
constraint terms of Eq. (4), and the summation of abundance vector for each
pixel is one.
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According to Y ¼ RZ, each pixel yn ∈3 in the HR-RGB image can be
decomposed as:

yn ¼ Rzn ¼ RBαn ¼ B̂αn (5)

where B̂ denotes the RGB spectral dictionary obtained via transforming the HS
dictionary B with camera spectral function R. With a corresponding set of the
previously learned spectral dictionaries, B̂ and B, the sparse fractional vector αn is
able to be estimated from the HR-RGB pixel yn only.

The matrix representation forms of Eqs. (4) and (5) can be formulated as:

Z ¼ BA,Y ¼ B̂A (6)

where A ¼ α1,α2,⋯,αN½ �∈K�N
þ is a nonnegative sparse coefficient matrix.

Substituting Eq. (4) into Eq. (2), we obtain the nonnegative constrains on both
B and B̂A, which are applied in the same manner as in Eq. (2). Unless otherwise
noted, the nonnegative constraint is imposed on both dictionary and sparse matrix
in the following deductions:

B ∗ ,A ∗f g ¼ argminB,A X� BADk k2F þ Y� B̂A
�� ��2

F (7)

The goal of Eq. (7) is to solve both spectral dictionary B and coefficient matrix
A with proper regularization terms to achieve stable and accurate solution.

3. Self-similarity constrained sparse representation for HS image
super-resolution

The complete pipeline of self-constrained sparse representation for HS image
super-resolution is illustrated in Figure 2. The main contribution of this method
is to propose a nonnegative sparse representation coupled with self-similarity

Figure 2.
Schematics of self-similarity constrained sparse representation for HS image super-resolution: (1) learn the HS
dictionary B from the input LR-HS image X, (2) explore self-similarity of the global-structure and local-
spectral, (3) convex optimization of the objective function with sparse and self-similarity constrains on the
sparse matrix A for estimating the required HR-HS image.
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constraint to regularize the solution of Eq. (7). Denoting Λ B,Að Þ ¼ X � BADk k2F þ
Y � B̂A

�� ��2
F, two additional terms are added to Eq. (7) as:

B ∗ ,A ∗f g ¼ arrminB,AΛ B,Að Þ þ λ Ak k1 þ ηΩ Að Þ (8)

where Ak k1 denotes the sparse constrained term on the coefficient matrix and
Ω Að Þ represents the self-similarity regularized term. λ and η are the hyper-
parameters, for controlling the contribution of the two constrained terms. Our
study solves Eq. (8) with the following three steps: (1) online learning the HS
dictionary from the input LR-HS image, (2) exploring the self-similarity properties
of the global-structure and local-spectral self-similarity from the input HR-RGB
image, and (3) conducting the convex optimization with the previously learned
HS dictionary and the extracted self-similarity for estimating the HR-HS image.
Next, we will describe the details of the above procedures in the following three
subsections.

3.1 Online HS dictionary learning

Since different materials would have very large variety of the HS reflectance,
learning a common HS dictionary for various scenes with different materials would
lead to considerable spectral distortion. In order to obtain a set of adaptive HS
dictionary for well reconstructing the pixel spectra, this study conducts the learning
procedure directly using the observed LR-HS image X in an online manner. The
objective function to build the HS dictionary for representing the pixel spectra is
formulated as follows:

B ∗ , Â∗
n o

¼ argminB,A X� BÂ
���

���
2

F
þ λ Â

���
���
1

(9)

where Â is the sparse matrix for the pixels in the LR-HS image. In our study, we
also impose the nonnegative constraints on both sparse matrix Â and spectral
dictionary B, and thus, the existing dictionary learning method such as K-SVD
cannot be applied for our optimization problem. We follow the optimization algo-
rithm [21] and adopt ADMM technique to transform the constrained dictionary
learning problem into an unconstrained version. The unconstrained dictionary
learning problem is then solved with alternative optimization algorithm. After
obtaining the HS dictionary B ∗ via optimizing Eq. (9) with the observed LR-HS
image, we would only optimize A to solve Eq. (8) via fixing B ∗ .

3.2 Extraction of self-similarity constraint

The regularization term Ω Að Þ in Eq. (8) is formulated with two types of
self-similarities, which are extracted from the HR-RGB image (see Figure 2 for
illustration):

• Global-structure self-similarity: Since pixels with similar spatial structure,
which are represented as the concatenated RGB spectra within a local square
windows, share similar hyperspectral information, thus the sparse vectors for
reconstructing the hyper-spectra of these pixels would also be similar; this
applies for both nearby patches and nonlocal patches in the whole image plane,
and we name these as global-structure self-similarity.

55

Hyperspectral Image Super-Resolution Using Optimization and DCNN-Based Methods
DOI: http://dx.doi.org/10.5772/intechopen.89243



According to Y ¼ RZ, each pixel yn ∈3 in the HR-RGB image can be
decomposed as:

yn ¼ Rzn ¼ RBαn ¼ B̂αn (5)

where B̂ denotes the RGB spectral dictionary obtained via transforming the HS
dictionary B with camera spectral function R. With a corresponding set of the
previously learned spectral dictionaries, B̂ and B, the sparse fractional vector αn is
able to be estimated from the HR-RGB pixel yn only.

The matrix representation forms of Eqs. (4) and (5) can be formulated as:

Z ¼ BA,Y ¼ B̂A (6)

where A ¼ α1,α2,⋯,αN½ �∈K�N
þ is a nonnegative sparse coefficient matrix.

Substituting Eq. (4) into Eq. (2), we obtain the nonnegative constrains on both
B and B̂A, which are applied in the same manner as in Eq. (2). Unless otherwise
noted, the nonnegative constraint is imposed on both dictionary and sparse matrix
in the following deductions:

B ∗ ,A ∗f g ¼ argminB,A X� BADk k2F þ Y� B̂A
�� ��2

F (7)

The goal of Eq. (7) is to solve both spectral dictionary B and coefficient matrix
A with proper regularization terms to achieve stable and accurate solution.

3. Self-similarity constrained sparse representation for HS image
super-resolution

The complete pipeline of self-constrained sparse representation for HS image
super-resolution is illustrated in Figure 2. The main contribution of this method
is to propose a nonnegative sparse representation coupled with self-similarity

Figure 2.
Schematics of self-similarity constrained sparse representation for HS image super-resolution: (1) learn the HS
dictionary B from the input LR-HS image X, (2) explore self-similarity of the global-structure and local-
spectral, (3) convex optimization of the objective function with sparse and self-similarity constrains on the
sparse matrix A for estimating the required HR-HS image.
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constraint to regularize the solution of Eq. (7). Denoting Λ B,Að Þ ¼ X � BADk k2F þ
Y � B̂A

�� ��2
F, two additional terms are added to Eq. (7) as:

B ∗ ,A ∗f g ¼ arrminB,AΛ B,Að Þ þ λ Ak k1 þ ηΩ Að Þ (8)

where Ak k1 denotes the sparse constrained term on the coefficient matrix and
Ω Að Þ represents the self-similarity regularized term. λ and η are the hyper-
parameters, for controlling the contribution of the two constrained terms. Our
study solves Eq. (8) with the following three steps: (1) online learning the HS
dictionary from the input LR-HS image, (2) exploring the self-similarity properties
of the global-structure and local-spectral self-similarity from the input HR-RGB
image, and (3) conducting the convex optimization with the previously learned
HS dictionary and the extracted self-similarity for estimating the HR-HS image.
Next, we will describe the details of the above procedures in the following three
subsections.

3.1 Online HS dictionary learning

Since different materials would have very large variety of the HS reflectance,
learning a common HS dictionary for various scenes with different materials would
lead to considerable spectral distortion. In order to obtain a set of adaptive HS
dictionary for well reconstructing the pixel spectra, this study conducts the learning
procedure directly using the observed LR-HS image X in an online manner. The
objective function to build the HS dictionary for representing the pixel spectra is
formulated as follows:

B ∗ , Â∗
n o

¼ argminB,A X� BÂ
���

���
2

F
þ λ Â

���
���
1

(9)

where Â is the sparse matrix for the pixels in the LR-HS image. In our study, we
also impose the nonnegative constraints on both sparse matrix Â and spectral
dictionary B, and thus, the existing dictionary learning method such as K-SVD
cannot be applied for our optimization problem. We follow the optimization algo-
rithm [21] and adopt ADMM technique to transform the constrained dictionary
learning problem into an unconstrained version. The unconstrained dictionary
learning problem is then solved with alternative optimization algorithm. After
obtaining the HS dictionary B ∗ via optimizing Eq. (9) with the observed LR-HS
image, we would only optimize A to solve Eq. (8) via fixing B ∗ .

3.2 Extraction of self-similarity constraint

The regularization term Ω Að Þ in Eq. (8) is formulated with two types of
self-similarities, which are extracted from the HR-RGB image (see Figure 2 for
illustration):

• Global-structure self-similarity: Since pixels with similar spatial structure,
which are represented as the concatenated RGB spectra within a local square
windows, share similar hyperspectral information, thus the sparse vectors for
reconstructing the hyper-spectra of these pixels would also be similar; this
applies for both nearby patches and nonlocal patches in the whole image plane,
and we name these as global-structure self-similarity.
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• Local-spectral self-similarity: Since pixels in a local region have the same
material with RGB values in the HR-RGB image, the sparse vector for different
HR pixels is similar in a local region (superpixel). Note the superpixel is usually
not a square patch.

The global-structure self-similarity is represented by global-structure groups
g ¼ g1; g2;⋯; gP

� �
(in total P groups), which are obtained by clustering all similar

patches (spatial structure) in the HR-RGB image with K-means; gp (each gp may
have different length) is a vector consisting of the pixel indices in the p-th group.
The local-spectral self-similarity is formulated as the superpixels L ¼ l1, l2, ⋯ , lQ

� �
(in total Q superpixels) obtained via SLIC superpixel segmentation method; lq is
also a vector composed with the pixel indices in the q-th superpixel. Since the pixels
in the same global-structure group have similar spectral-spatial structure, we cal-
culate the sparse vector of any pixel in a given group by a weighted average of the
sparse matrix for all pixels in this group. Similarly, the sparse vector of a pixel can
also be approximated by a weighted average of the sparse matrix for all pixels in the
same local-spectral superpixel. With both self-similarity constraints, the sparse
vector for the n-th pixel can be formulated as:

αn ¼ γ
X
i∈ gp

wg
n, iαi þ 1� γð Þ

X
j∈ lq

wL
n, jαj

with n∈ gp∧n∈ lq
(10)

where wg
n, i is the global-structure weight for the n-th sparse vector αn; it adjusts

and merges the contribution of the i-th sparse vector αi belonging to the same
global-structure group. Analoguely, wLn,j weights the j-th sparse vector αj belonging
to the same local-spectral superpixel. And γ is a parameter for balancing the contri-
bution between the global-structure and local-spectral self-similarity.

To be more specific, wg
n, i (0< wg

n, i <1 and
P

iw
g
n, i ¼ 1) measures the similarity

between the RGB intensities of patches pn and pi centered around the n-th and i-th
pixels. Each patch is a set of pixels in a R� R window, so each p is a 3R2-dimensional
(R� R� RGB) vector. It is a decreasing function of the Euclidean distance between
the spatial RGB values as:

wg
n, i ¼

1

zgn
exp �

pi�pnk k2
hg , n; ið Þ∈ gp, ∀p

0, others

8><
>:

(11)

where zgn is a normalization factor defined as zgn ¼
P

i∈ gp
exp �

pi�pnk k2
hg to guarantee

and ensure that
P

i∈ gp
wg

n, i ¼ 1 and hg are a smoothing kernel for 3R2-dimensional

vectors. The local-spectral weight wLn,j is defined in the exactly same format but
with pn and pi being the RGB values of the n-th and i-th pixels (so each p is a three-
dimensional vector here) and a smoothing kernel hL for three-dimensional vectors.

We then build affinity matrices Wg ∈RN�N and WL ∈N�N, whose element
encodes the pairwise similarity calculated using Eq. (11). Finally, the regularization
term constrained by two types of self-similarities is represented as:

Ω Að Þ ¼ A� γWg A� 1� γð ÞWLA
�� ��2

F (12)
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With the self-similarity constraints of the global-structure and local-spectral, the
sparse representation will be more robust and prospected to be similar for the
locations in the same clustered global group and local superpixel. Given the HS
dictionary B ∗ pre-learned using Eq. (9) and the regularization term with self-
similarity in Eq. (12), Eq. (8), is convex and can be efficiently solved by optimiza-
tion algorithm. We apply the ADMM technique to solve Eq. (8), and please refer to
[45] for detail optimization procedure.

3.3 Experimental results

We evaluate the self-similarity constrained sparse representation method using
two publicly released hyperspectral imaging databases: the CAVE and Harvard
datasets. The CAVE dataset includes 32 indoor images consisting of paintings, toys,
food, and so on, which are captured under controlled illumination. The Harvard
dataset has 50 indoor and outdoor images captured under daylight illumination. The
image size in the CAVE dataset is 512 � 512 pixels, and 31 spectral bands of 10 nm
wide, which covers the visible spectrum from 400 to 700 nm. The image size in the
Harvard dataset is 1392 � 1040 pixels, and 31 spectral bands of width 10 nm,
basically covering the visible spectrum from 420 to 720 nm. In our experiments, we
extract the top left 1024� 1024 pixels as the understudying HR images. We take the
original images in the datasets as ground-truth Z and resize them by a factor of 32 to
create 16 � 16 images in the CAVE dataset and 32 � 32 images in the Harvard
dataset, which is implemented by averaging over 32 � 32 pixel blocks as done in
[10, 21]. The observed HR-RGB images Y are generated by multiplying the spectral
channels of the ground-truth image with the spectral response R of a Nikon D700
camera. We evaluate the recovery performance of the estimated HS images using
four quantitative metrics including root-mean-square error (RMSE), peak-signal-
to-noise ratio (PSNR), spectral angle mapper (SAM) [9], and relative dimensionless
global error in synthesis (ERGAS) [34]. The quantitative metric, SAM [9], gives the
spectral distortion degree of the pixel spectrum in the estimated HR-HS image with
the corresponding one in the ground-truth HR-HS image. We calculate the overall
SAMmetric of one understudying by averaging the SAMs computed from all pixels.
The value of SAM is expressed in degrees and thus normalized into the range (�90,
90). The smaller the absolute value of SAM, the less the spectral distortion is. The
ERGAS [34] calculates the average amount of the relative difference error, where
the absolute difference error is normalized by intensity mean in each band. The
smaller the ERGAS, the smaller the relative difference error is.

3.3.1 Compare results with the state-of-the-art methods

Firstly, we manifest the compared recovery performance of the HR-HS images
with our proposed method (including the online dictionary learning procedure and
self-similarity constraints) and the state-of-the-art HS image SR methods including
matrix factorization (MF) method [18], coupled nonnegative matrix factorization
method [19], sparse nonnegative matrix factorization (SNNMF) method [20], gen-
eralization of simultaneous orthogonal matching pursuit method [13], Bayesian
sparse representation (BSR) method [9], couple spectral unmixing (CSU) method
[10], and nonnegative structured sparse representation method [21]. Table 1
manifests the average RMSE, PSNR, SAM, and ERGAS results of the 32 images in
the CAVE dataset [32], while Table 2 shows the average results of the 50 images
from the Harvard dataset [33].

It can be seen from Tables 1 and 2 that our approach obtains the best recovery
performance for all quantitative metrics, and the performance improvement on the
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• Local-spectral self-similarity: Since pixels in a local region have the same
material with RGB values in the HR-RGB image, the sparse vector for different
HR pixels is similar in a local region (superpixel). Note the superpixel is usually
not a square patch.

The global-structure self-similarity is represented by global-structure groups
g ¼ g1; g2;⋯; gP

� �
(in total P groups), which are obtained by clustering all similar

patches (spatial structure) in the HR-RGB image with K-means; gp (each gp may
have different length) is a vector consisting of the pixel indices in the p-th group.
The local-spectral self-similarity is formulated as the superpixels L ¼ l1, l2, ⋯ , lQ

� �
(in total Q superpixels) obtained via SLIC superpixel segmentation method; lq is
also a vector composed with the pixel indices in the q-th superpixel. Since the pixels
in the same global-structure group have similar spectral-spatial structure, we cal-
culate the sparse vector of any pixel in a given group by a weighted average of the
sparse matrix for all pixels in this group. Similarly, the sparse vector of a pixel can
also be approximated by a weighted average of the sparse matrix for all pixels in the
same local-spectral superpixel. With both self-similarity constraints, the sparse
vector for the n-th pixel can be formulated as:

αn ¼ γ
X
i∈ gp

wg
n, iαi þ 1� γð Þ

X
j∈ lq

wL
n, jαj

with n∈ gp∧n∈ lq
(10)

where wg
n, i is the global-structure weight for the n-th sparse vector αn; it adjusts

and merges the contribution of the i-th sparse vector αi belonging to the same
global-structure group. Analoguely, wLn,j weights the j-th sparse vector αj belonging
to the same local-spectral superpixel. And γ is a parameter for balancing the contri-
bution between the global-structure and local-spectral self-similarity.

To be more specific, wg
n, i (0< wg

n, i <1 and
P

iw
g
n, i ¼ 1) measures the similarity

between the RGB intensities of patches pn and pi centered around the n-th and i-th
pixels. Each patch is a set of pixels in a R� R window, so each p is a 3R2-dimensional
(R� R� RGB) vector. It is a decreasing function of the Euclidean distance between
the spatial RGB values as:

wg
n, i ¼

1

zgn
exp �

pi�pnk k2
hg , n; ið Þ∈ gp, ∀p

0, others

8><
>:

(11)

where zgn is a normalization factor defined as zgn ¼
P

i∈ gp
exp �

pi�pnk k2
hg to guarantee

and ensure that
P

i∈ gp
wg

n, i ¼ 1 and hg are a smoothing kernel for 3R2-dimensional

vectors. The local-spectral weight wLn,j is defined in the exactly same format but
with pn and pi being the RGB values of the n-th and i-th pixels (so each p is a three-
dimensional vector here) and a smoothing kernel hL for three-dimensional vectors.

We then build affinity matrices Wg ∈RN�N and WL ∈N�N, whose element
encodes the pairwise similarity calculated using Eq. (11). Finally, the regularization
term constrained by two types of self-similarities is represented as:

Ω Að Þ ¼ A� γWg A� 1� γð ÞWLA
�� ��2

F (12)
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With the self-similarity constraints of the global-structure and local-spectral, the
sparse representation will be more robust and prospected to be similar for the
locations in the same clustered global group and local superpixel. Given the HS
dictionary B ∗ pre-learned using Eq. (9) and the regularization term with self-
similarity in Eq. (12), Eq. (8), is convex and can be efficiently solved by optimiza-
tion algorithm. We apply the ADMM technique to solve Eq. (8), and please refer to
[45] for detail optimization procedure.

3.3 Experimental results

We evaluate the self-similarity constrained sparse representation method using
two publicly released hyperspectral imaging databases: the CAVE and Harvard
datasets. The CAVE dataset includes 32 indoor images consisting of paintings, toys,
food, and so on, which are captured under controlled illumination. The Harvard
dataset has 50 indoor and outdoor images captured under daylight illumination. The
image size in the CAVE dataset is 512 � 512 pixels, and 31 spectral bands of 10 nm
wide, which covers the visible spectrum from 400 to 700 nm. The image size in the
Harvard dataset is 1392 � 1040 pixels, and 31 spectral bands of width 10 nm,
basically covering the visible spectrum from 420 to 720 nm. In our experiments, we
extract the top left 1024� 1024 pixels as the understudying HR images. We take the
original images in the datasets as ground-truth Z and resize them by a factor of 32 to
create 16 � 16 images in the CAVE dataset and 32 � 32 images in the Harvard
dataset, which is implemented by averaging over 32 � 32 pixel blocks as done in
[10, 21]. The observed HR-RGB images Y are generated by multiplying the spectral
channels of the ground-truth image with the spectral response R of a Nikon D700
camera. We evaluate the recovery performance of the estimated HS images using
four quantitative metrics including root-mean-square error (RMSE), peak-signal-
to-noise ratio (PSNR), spectral angle mapper (SAM) [9], and relative dimensionless
global error in synthesis (ERGAS) [34]. The quantitative metric, SAM [9], gives the
spectral distortion degree of the pixel spectrum in the estimated HR-HS image with
the corresponding one in the ground-truth HR-HS image. We calculate the overall
SAMmetric of one understudying by averaging the SAMs computed from all pixels.
The value of SAM is expressed in degrees and thus normalized into the range (�90,
90). The smaller the absolute value of SAM, the less the spectral distortion is. The
ERGAS [34] calculates the average amount of the relative difference error, where
the absolute difference error is normalized by intensity mean in each band. The
smaller the ERGAS, the smaller the relative difference error is.

3.3.1 Compare results with the state-of-the-art methods

Firstly, we manifest the compared recovery performance of the HR-HS images
with our proposed method (including the online dictionary learning procedure and
self-similarity constraints) and the state-of-the-art HS image SR methods including
matrix factorization (MF) method [18], coupled nonnegative matrix factorization
method [19], sparse nonnegative matrix factorization (SNNMF) method [20], gen-
eralization of simultaneous orthogonal matching pursuit method [13], Bayesian
sparse representation (BSR) method [9], couple spectral unmixing (CSU) method
[10], and nonnegative structured sparse representation method [21]. Table 1
manifests the average RMSE, PSNR, SAM, and ERGAS results of the 32 images in
the CAVE dataset [32], while Table 2 shows the average results of the 50 images
from the Harvard dataset [33].

It can be seen from Tables 1 and 2 that our approach obtains the best recovery
performance for all quantitative metrics, and the performance improvement on the
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CAVE dataset is more significant than on the Harvard dataset. The NNSR method
[21] has the closest performance to ours, and both methods show relatively larger
advantage over other methods. In addition, our method shows the best improve-
ment on SAM values over NNSR [21]. This is because for SAM, a slight spectral
distortion of the pixels with small magnitudes affects its value greatly. Thus, we can
conclude that our proposed approach not only robustly recovers the HS image but
also suppresses the noise and artifacts, especially for those pixels with small spectral
magnitudes, due to the imposed constraints of the global-structure and local-
spectral self-similarities.

3.3.2 Compared results without self-similarity constraints

One of the key differences of our method from existing ones (such as MF [18]) is
the two types of imposed self-similarities formulated by the regularized term, Ω Að Þ
in Eq. (8). Without the Ω Að Þ term, Eq. (8) can still be solved by an optimization
method such as the ADMM. In addition, we can also adopt either global or local self-
similarity separately, i.e., by taking only the Wg or WL terms in Eq. (12). We
conduct such experiments under the same experimental conditions, and the same
quantitative metrics as in Tables 1 and 2 for both datasets are shown in Table 3.

MF
[18]

CNMF
[19]

SNMF
[20]

GSOMP
[13]

BSR
[9]

CSU
[10]

NNSR
[21]

Our

RMSE 3.03 � 0.97 2.93 � 1.30 3.26 � 1.57 6.47 � 2.53 3.13 � 1.57 3.0 � 1.40 2.21 � 1.19 2.17 � 1.08

PSNR 39.37 � 3.76 39.53 � 3.55 38.73 � 3.79 32.48 � 3.08 39.16 � 3.91 39.50 � 3.63 42.26 � 4.11 42.28 � 3.86

SAM 6.12 � 2.17 5.48 � 1.62 6.50 � 2.32 14.19 � 5.42 6.75 � 2.37 5.8 � 2.21 4.33 � 1.37 3.98 � 1.27

ERGAS 0.40 � 0.22 0.39 � 0.21 0.44 � 0.23 0.77 � 0.32 0.37 � 0.22 0.41 � 0.27 0.30 � 0.18 0.28 � 0.18

Table 1.
Quantitative comparison results of the self-similarity constrained sparse representation with the state-of-the-art
methods on the CAVE dataset.

MF
[18]

CNMF
[19]

SNMF
[20]

GSOMP
[13]

BSR
[9]

CSU
[10]

NNSR
[21]

Our

RMSE 1.96 � 0.97 2.08 � 1.34 2.20 � 0.94 4.08 � 3.55 2.10 � 1.60 1.7 � 1.24 1.76 � 0.79 1.64 � 1.20

PSNR 43.19 � 3.87 43.00 � 4.44 42.03 � 3.61 38.02 � 5.71 43.11 � 4.59 43.40 � 4.10 44.00 � 3.63 45.20 � 4.56

SAM 2.93 � 1.06 2.91 � 1.18 3.17 � 1.07 4.99 � 2.99 2.93 � 1.33 2.9 � 1.05 2.64 � 0.86 2.63 � 0.97

ERGAS 0.23 � 0.14 0.23 � 0.11 0.26 � 0.27 0.41 � 0.24 0.24 � 0.15 0.24 � 0.20 0.21 � 0.12 0.16 � 0.15

Table 2.
Quantitative comparison results of the self-similarity constrained sparse representation with the state-of-the-art
methods on the Harvard dataset.

CAVE dataset Harvard dataset

Without
both

Local simil.
only

Global simil.
only

Without
both

Local simil.
only

Global simil.
only

RMSE 2.81 � 1.42 2.25 � 1.15 2.32 � 1.20 1.83 � 1.30 1.66 � 1.20 1.88 � 1.32

PSNR 40.05 � 3.97 42.00 � 3.91 41.78 � 4.05 44.16 � 4.39 45.01 � 4.51 44.02 � 4.56

SAM 5.46 � 1.89 4.24 � 1.36 4.59 � 1.46 2.86 � 1.06 2.69 � 1.00 2.99 � 1.09

ERGAS 0.37 � 0.20 0.30 � 0.18 0.31 � 0.19 0.23 � 0.16 0.19 � 0.15 0.18 � 0.16

Table 3.
Results without local, global, and both similarities on the CAVE and Harvard datasets.
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Taking local self-similarity only into consideration significantly improves the
results on both datasets for all quantitative metrics which shows relatively larger
contribution than considering global self-similarity only, but integrating global self-
similarity as our complete approach could further improve the results.

3.3.3 Evaluation results by changing parameter γ

In addition, we evaluate the HR-HS image recovery performance via changing
the parameter γ for adjusting the contribution of global-structure and local-spectral
self-similarity. For CAVE dataset, the parameter γ is changed from 0 (local-spectral
self-similarity only) to 1 (global-structure self-similarity only) with interval 0.1,
and apply the same measure metrics for manifesting the contribution of the global
and local self-similarity. Figure 3 (a)–(d) gives the curves of the quantitative
measures, RMSE, PSNR, SAM, and ERGAS, respectively, which manifests that
γ = 0.3 gives the best performances. For Harvard dataset, we also conducted exper-
iments with the parameter γ, 0, 0.1, 0.2, ⋯, and the curves of the quantitative
measures, RMSE, PSNR, SAM, and ERGAS, are given in Figure 4.

3.3.4 Visual quality comparison

Figures 5 and 6 manifest the recovered HS images and the difference images
with respect to the ground-truth, which includes one example from the CAVE and
Harvard dataset, respectively. Since including our method, the CSU [10] and NNSR
[21] methods provide the impressive performance compared with all other evalu-
ated methods as shown in Tables 1 and 2, we only give the compared results of our
method, the CSU [10] and NNSR [21] methods for checking the differences in
visual quality. It is obvious that the recovered HS images by our approach have
smaller absolute difference magnitude for most pixels than the result by the CSU
and NNSR method. It is also worth noting that when self-similarity is not applied,

Figure 3.
The evaluated performances with different values of the parameter γ on CAVE dataset. (a) RMSE, (b) PNSR,
(c) SAM, and (d) ERGAS.
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CAVE dataset is more significant than on the Harvard dataset. The NNSR method
[21] has the closest performance to ours, and both methods show relatively larger
advantage over other methods. In addition, our method shows the best improve-
ment on SAM values over NNSR [21]. This is because for SAM, a slight spectral
distortion of the pixels with small magnitudes affects its value greatly. Thus, we can
conclude that our proposed approach not only robustly recovers the HS image but
also suppresses the noise and artifacts, especially for those pixels with small spectral
magnitudes, due to the imposed constraints of the global-structure and local-
spectral self-similarities.

3.3.2 Compared results without self-similarity constraints

One of the key differences of our method from existing ones (such as MF [18]) is
the two types of imposed self-similarities formulated by the regularized term, Ω Að Þ
in Eq. (8). Without the Ω Að Þ term, Eq. (8) can still be solved by an optimization
method such as the ADMM. In addition, we can also adopt either global or local self-
similarity separately, i.e., by taking only the Wg or WL terms in Eq. (12). We
conduct such experiments under the same experimental conditions, and the same
quantitative metrics as in Tables 1 and 2 for both datasets are shown in Table 3.

MF
[18]

CNMF
[19]

SNMF
[20]

GSOMP
[13]

BSR
[9]

CSU
[10]

NNSR
[21]

Our

RMSE 3.03 � 0.97 2.93 � 1.30 3.26 � 1.57 6.47 � 2.53 3.13 � 1.57 3.0 � 1.40 2.21 � 1.19 2.17 � 1.08

PSNR 39.37 � 3.76 39.53 � 3.55 38.73 � 3.79 32.48 � 3.08 39.16 � 3.91 39.50 � 3.63 42.26 � 4.11 42.28 � 3.86

SAM 6.12 � 2.17 5.48 � 1.62 6.50 � 2.32 14.19 � 5.42 6.75 � 2.37 5.8 � 2.21 4.33 � 1.37 3.98 � 1.27

ERGAS 0.40 � 0.22 0.39 � 0.21 0.44 � 0.23 0.77 � 0.32 0.37 � 0.22 0.41 � 0.27 0.30 � 0.18 0.28 � 0.18

Table 1.
Quantitative comparison results of the self-similarity constrained sparse representation with the state-of-the-art
methods on the CAVE dataset.

MF
[18]

CNMF
[19]

SNMF
[20]

GSOMP
[13]

BSR
[9]

CSU
[10]

NNSR
[21]

Our

RMSE 1.96 � 0.97 2.08 � 1.34 2.20 � 0.94 4.08 � 3.55 2.10 � 1.60 1.7 � 1.24 1.76 � 0.79 1.64 � 1.20

PSNR 43.19 � 3.87 43.00 � 4.44 42.03 � 3.61 38.02 � 5.71 43.11 � 4.59 43.40 � 4.10 44.00 � 3.63 45.20 � 4.56

SAM 2.93 � 1.06 2.91 � 1.18 3.17 � 1.07 4.99 � 2.99 2.93 � 1.33 2.9 � 1.05 2.64 � 0.86 2.63 � 0.97

ERGAS 0.23 � 0.14 0.23 � 0.11 0.26 � 0.27 0.41 � 0.24 0.24 � 0.15 0.24 � 0.20 0.21 � 0.12 0.16 � 0.15

Table 2.
Quantitative comparison results of the self-similarity constrained sparse representation with the state-of-the-art
methods on the Harvard dataset.

CAVE dataset Harvard dataset

Without
both

Local simil.
only

Global simil.
only

Without
both

Local simil.
only

Global simil.
only

RMSE 2.81 � 1.42 2.25 � 1.15 2.32 � 1.20 1.83 � 1.30 1.66 � 1.20 1.88 � 1.32

PSNR 40.05 � 3.97 42.00 � 3.91 41.78 � 4.05 44.16 � 4.39 45.01 � 4.51 44.02 � 4.56

SAM 5.46 � 1.89 4.24 � 1.36 4.59 � 1.46 2.86 � 1.06 2.69 � 1.00 2.99 � 1.09

ERGAS 0.37 � 0.20 0.30 � 0.18 0.31 � 0.19 0.23 � 0.16 0.19 � 0.15 0.18 � 0.16

Table 3.
Results without local, global, and both similarities on the CAVE and Harvard datasets.
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Taking local self-similarity only into consideration significantly improves the
results on both datasets for all quantitative metrics which shows relatively larger
contribution than considering global self-similarity only, but integrating global self-
similarity as our complete approach could further improve the results.

3.3.3 Evaluation results by changing parameter γ

In addition, we evaluate the HR-HS image recovery performance via changing
the parameter γ for adjusting the contribution of global-structure and local-spectral
self-similarity. For CAVE dataset, the parameter γ is changed from 0 (local-spectral
self-similarity only) to 1 (global-structure self-similarity only) with interval 0.1,
and apply the same measure metrics for manifesting the contribution of the global
and local self-similarity. Figure 3 (a)–(d) gives the curves of the quantitative
measures, RMSE, PSNR, SAM, and ERGAS, respectively, which manifests that
γ = 0.3 gives the best performances. For Harvard dataset, we also conducted exper-
iments with the parameter γ, 0, 0.1, 0.2, ⋯, and the curves of the quantitative
measures, RMSE, PSNR, SAM, and ERGAS, are given in Figure 4.

3.3.4 Visual quality comparison

Figures 5 and 6 manifest the recovered HS images and the difference images
with respect to the ground-truth, which includes one example from the CAVE and
Harvard dataset, respectively. Since including our method, the CSU [10] and NNSR
[21] methods provide the impressive performance compared with all other evalu-
ated methods as shown in Tables 1 and 2, we only give the compared results of our
method, the CSU [10] and NNSR [21] methods for checking the differences in
visual quality. It is obvious that the recovered HS images by our approach have
smaller absolute difference magnitude for most pixels than the result by the CSU
and NNSR method. It is also worth noting that when self-similarity is not applied,

Figure 3.
The evaluated performances with different values of the parameter γ on CAVE dataset. (a) RMSE, (b) PNSR,
(c) SAM, and (d) ERGAS.
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Figure 4.
The evaluated performances with different values of the parameter γ on Harvard dataset. (a) RMSE,
(b) PNSR, (c) SAM, and (d) ERGAS.

Figure 5.
The visualized results of the recovered HR images from the “cloth” image in the CAVE dataset. The first column
shows the ground-truth HR image and the input LR image, respectively. The second to fifth columns show results
from CSU [10], NNSR [21], and our method with and without self-similarity, where the upper part provides
the recovered images and the lower part gives the absolute difference maps w.r.t. ground-truth. Close-up views
are provided below each full resolution image.
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our results manifest quite similar appearance to those from the NNSR method [21],
which also reflects the effectiveness of imposing the self-similarity constraint.

4. DCNN-based HS image super-resolution

Motivated by the success for image super-resolution and simply formulation,
our previous work explored a simple DCNN-based HS image super-resolution
method following the similar CNN structure as in [46], which mainly consists of
three convolutional layers and was explained as three operations for the mapping
process from LR images to HR images. This explanation follows the schematic
concept in sparse coding-based SR: patch extraction, representation learning,
nonlinear mapping, and reconstruction. Patch extraction obtains the overlapping
patches from the input image and represents each patch as a high-dimensional
vector. The convolution layers in CNN are used as feature learning and act as a
nonlinear function, which maps a high-dimensional vector (conceptually the patch
representation) to another high-dimensional vector (the feature map in the middle-
layer of CNN). Reconstruction process combines the mapped CNN features into the
final HR image. The above CNN architecture for Y-component recovery of natural
image SR adopts the spatial filters in three convolutional layers with sizes 9� 9, 1� 1,
and 5� 5. Since HSI SR attempts to recover high resolution in not only spatial but also
spectral domain, which has been proven that the spectral response is more important

Figure 6.
The visualized results of the recovered HR images from the “imgf1” image in the Harvard dataset. The first
column shows the ground-truth HR image and the input LR image, respectively. The second to fifth columns
show results from CSU [10], NNSR [21], and our method with and without self-similarity, with the upper
part showing the recovered images and the lower part showing the absolute difference maps w.r.t. ground-truth.
Close-up views are provided below each full resolution image.
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in HIS SR, we set the spatial filter sizes as 3 � 3, 3 � 3, and 5 � 5 with full connection
in spectral domain from either one of the available LR-HS and HR-RGB images or the
concatenated LR-HS and HR-RGB cubic data.

The intuitive way to apply the above baseline architecture of CNN for HSI SR is
to learn the HR-HS image, Z directly from the available LR-HS image X, called as
spatial CNN. Another research line exploits CNN architecture for learning HSI SR Z
from the available HR-MS (RGB) image X, named as spectral CNN. However,
spatial CNN and spectral CNN take only one domain data of the available LR-HS
and HR-MS images, X or Y as input, and completely exclude the other domain data.
Therefore, this chapter introduces a spatial and spectral fusion architecture of CNN,
named as SSF-CNN for recovering the HR-HS image. Recent CNN work incorpo-
rates shorter connections between layers for more accurate and efficient training of
substantially deeper architectures such as ResNets and Highway Networks, or
exploits concatenation between different layer for information and feature reuse
such as Densenet, which manifest considerable improvements in different applica-
tions. In the scenario of our HSI SR application, since the available HR-RGB image
has the same high spatial resolution and the expanding factor (about 10 from 3 to
31) in spectral domain is much smaller than those in spatial domain (32 times from
16/32 to 512/1024 in horizontal and vertical directions, respectively), we concate-
nate the available HR-RGB image (a part data of the input: Partial) to the outputs of
the Conv and RELU blocks (Densely) in the CNN structure for transferring the
available maximum spatial information, and name this new CNN architecture as
PDCon-SSF. The schematic structures of the spatial CNN, spectral CNN, SSF-CNN
and PDCon-SSF are shown in Figure 7.

Recently, we also investigated a residual network architecture for HS image
super-resolution. The residual network takes the concatenated cubic data of both
available HR-RGB and upsampled LR-HS images as input, and simultaneously
maintains spectral attribute in LR-HS image and spatial context in HR-RGB image
to estimate a more robust HS-HS image. Taking consideration of the characteristic
in HS image super-resolution, we modified the ResNet architecture, which is orig-
inally proposed for solving higher-level computer vision problems such as image
classification and detection, via removing unnecessary modules to simplify the
network architecture for this low-level vision problem. Furthermore, as evidenced
in pansharping research that the estimated HR-HS image should have similar spatial
structure information with HR-RGB image, we utilize the input RGB image to guide
the spatial structure of the learned feature maps in our proposed ResNet. We firstly
upsample the LR-HS image to the same size with the HR-RGB image, and stack
them together with a “Concat” layer in our method. Multiple residual layer modules
with alternately conjuncted spectral and spatial reconstruction layers, which are
implemented with convolutional kernel size 1 and n (n > 1), are used for effectively
investigating the nonlinear spectral mapping and spatial structure. Our constructed
ResNet architecture consists of 5 residual blocks and each block includes a set of
the conjuncted spectral and spatial reconstruction layers as shown in Figure 8. In
Figure 8, the first 3 residual blocks have 128 feature maps, and the last 2 residual
blocks are with 256 feature maps. The output of them-th residual block is expressed as:

Fm ¼ Spat3 Spec1 Fm�1ð Þ� �þ Fm�1 (13)

where Spec1 �ð Þ denotes the spectral reconstruction layer with convolutional
kernel size 1, and Spat3 �ð Þ denotes the spatial reconstruction layer with
convolutional kernel size 3. Fm � 1 is the input of the residual block. Furthermore,
considering the HR spatial structure in the observed HR-RGB image, we use the
HR-RGB image to guide the spatial structure of the learned feature maps in the
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Figure 7.
The network architectures of four different types of CNNs. The top row denotes the baseline upsampling
network, and the bottom rows are the architectures of spatial CNN, spectral CNN, and the SSF-CNN,
respectively.

Figure 8.
The ResNet architecture for the residual component reconstruction.
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residual blocks, which is modeled by stacking the input HR-RGB image and the
input feature map Fm � 1. Thus, with the added guidance connection, the output of a
residual block is modified as:

Fm ¼ Spat3 Spec1 stack Fm�1,Yð Þð Þ� �þ Fm�1 (14)

The guidance connections of the HR-RGB image are shown in dot lines in
Figure 7. Our ResNet-based HR-HS image recovery model is trained by minimizing
the Mean Square Error (MSE) between the estimated HR-HS image and the
ground-truth Z.

4.1 Experimental results

We also validate the performance of the HR image reconstruction with the
DCNN-based method using CAVE and Harvard datasets. We have randomly
selected 20 HSIs from CAVE database to train CNN model, and the remainder is
used for validation of the performance of the proposed CNN method. For Harvard
database, 10 HSIs have been randomly selected for CNN model training, and the
remainder 40 HSIs are as test for validation. Figure 9manifests the HR-RGB images
of the test samples from CAVE database and several test samples from Harvard
databases.

4.1.1 Compared results of different CNN models

As we introduced above, the CNN-based method can be used for recovering the
HR-HS image from either of the available LR-HS, HR-RGB images or the
concatenated cubic data of the LR-HS, HR-RGB images, which are named as spatial
CNN, spectral CNN, Spatial and spectral Fusion CNN (SSF-CNN) and an extended

Figure 9.
The HR-RGB images of test samples from CAVE and Harvard databases.
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version of SSF-CNN, PDCon-SSF. The baseline network is a three-layer convolution
architecture. For CAVE database, we randomly select 20 images for learning the
different types of CNN models, and save the CNN model parameters after 0.5 and 1
million iterations. The remainder 12 images in CAVE database are used for evaluat-
ing the recovering performance of different CNN models. The average and the
standard deviation of RMSE, PSNR, SAM, and ERGAS of the 12 test images in
CAVE database are shown in Table 4, which manifests much better results of the
spectral CNN than spatial CNN due to the smaller expanding factor in spectral
domain (about 10 from 3 to 32) than spatial domain (32 from 16 to 512 for horizon-
tal and vertical directions, respectively) and significant performance improvement
using SSF-CNN and PDCon-SSF-CNN models. One recovered HS image example
and the corresponding residual images with the ground-truth HR images from
CAVE database are visualized in Figure 10 using different CNN models.

From Table 4 and Figure 10, it can be seen that the SSF-based CNN models
provide significant performance improvement compared with the spatial CNN and
the spectral CNN, and thus for Harvard database, we only train the SSF-CNN and
PDCon-SSF models with 1 million iterations using 10 randomly selected 10 images,
and the remainder 40 images are used for evaluation. In addition, in order to
validate the generation of the learned CNN model, we predict the HR-HS image of
the Harvard test samples according to the parameters of the learned SSF-CNN and

Table 4.
The average and standard deviation of RMSE, PSNR, SAM, and ERGAS using different CNN models of
three-layer architecture under 0.5 and 1 million iteration training on CAVE database.

Figure 10.
The “superballs” image example from the CAVE database. The first row shows the ground-truth HR image and
the recovered images by spatial CNN, spectral CNN, CSU [22], NNSR [12], and the proposed spatial and
spectral CNN architectures, SSF-CNN and PDCon-SSF-CNN, respectively. The second row gives the input LR
image, the absolute difference images between the ground-truth image, and the recovered HR-HS images in the
first row.
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PDCon-SSF-CNN with the CAVE training samples. The average and the standard
deviation of RMSE, PSNR, SAM, and ERGAS of the 40 test images in Harvard
database are shown in Table 5, which shows that the learned SSF-CNN and PDCon-
SSF models even with the training samples from CAVE database can provide rea-
sonable recovery performance and the quantitative measures can further be
improved using the learned SSF-CNN and PDCon-SSF models even with 10 training
images only. One recovered HS image example and its corresponding residual
images with the ground-truth HR image from Harvard database are visualized in
Figure 11 using the learned SSF and PDCon-SSF-CNN models with the CAVE and
Harvard training samples, respectively.

4.1.2 Compared results of different baseline CNN architectures

As mentioned above, we also investigated a residual network architecture for HS
image super-resolution, which has different baseline CNN architecture with the
SSF-CNN. Under the same experimental results, we implemented the DCNN-based
HS image reconstruction using three-layer CNN and the ResNet architecture with
five residual blocks. The compared quantitative results are shown in Table 6 for
both CAVE and Harvard datasets. One recovered HS image example and the
corresponding residual images with the ground-truth HR image from CAVE data-
base are visualized in Figure 12 using the ResNet-RGB, SSF-Net, and the ResNet-
based fusion models.

Table 5.
The average and standard deviation of RMSE, PSNR, SAM, and ERGAS of the test samples of Harvard
database using different CNN models, where “SSF-CNN-CAVE” and “PDCon-SSF-CAVE” denote the
learned CNN models using the training images from CAVE database.

Figure 11.
An image example from the Harvard database. The first row shows the ground-truth HR image and the
recovered images by CSU [22], NNSR [12], and the proposed PDCon-SSF-CNN using CAVE training images,
SSF-CNN, and PDCon-SSF-CNN using Harvard training images, respectively. The second row gives the input
LR image, the absolute difference images between the ground-truth image, and the recovered HR-HS images in
the first row.
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5. Conclusions

This chapter introduced recently research on HS image super-resolution. We
firstly described the problem formulation for HS image super-resolution and pro-
vided the mathematical model between the observed HR-RGB, LR-HS images, and
the required HR-HS image. Then we gave the detail description for an optimization-
based method: self-similarity constrained sparse representation and the recently
proposed DCNN-based method. Experimental results validated that the recently
proposed HR image super-resolution methods manifest promising performance on
benchmark datasets.

Table 6.
The compared average and standard deviation of RMSE, PSNR, SAM, and SSIM using the ResNet-RGB,
SSF-Net [51], and the ResNet-based fusion methods on both CAVE and Harvard databases.

Figure 12.
The visualized results of the recovered HR images from an example image in CAVE dataset.
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Chapter 4

Fast Chaotic Encryption for
Hyperspectral Images
Carlos Villaseñor, Javier Gomez-Avila, Nancy Arana-Daniel,
Alma Y. Alanis and Carlos Lopez-Franco

Abstract

The information collected by hyperspectral images (HI) is essential in applica-
tions of remote sensing like object detection, geological process recognition, and
identifying materials. However, HI information could be sensitive, and therefore, it
should be protected. In this chapter, we show a parallel encryption algorithm
specifically designed for HI. The algorithm uses multiple chaotic systems to produce
a crossed multidimensional chaotic map for encrypting the image; the scheme takes
advantage of the multidimensional nature of HI and is highly parallelizable, which
leads to a time-efficient algorithm. We also show that the algorithm gets high-
entropy ciphertext and is robust to ciphertext-only attacks.

Keywords: chaotic encryption, hyperspectral images, parallel computing

1. Introduction

Hyperspectral images (HI) or image spectrometry is a spectral sensing technique
in which an object is photographed using several well-defined optical bands in the
broad spectral range. This technique integrates imaging and spectroscopy to attain
both spatial and spectral information from an object. It was originally developed on
satellite and airborne platforms for remote sensing applications utilizing satellite
imaging data of the earth and planets mostly; however, it has found application
in diverse fields such as military defense, medical diagnosis, and agriculture [1].

HI are characterized by their spatial and spectral resolution. The spatial resolu-
tion measures the geometric relationship of the image pixels, and the spectral
resolution determines the variations within image pixels as a function of wave-
length. The HI has two spatial dimensions (m and n) and one spectral dimension (l).
The hyperspectral data are represented in the form of a 3D hyperspectral data cube
as it is shown in Figure 1. Each slice of the cube along the spectral dimension is
called band or channel.

HI could be made up of hundreds of contiguous bands for each spatial position.
Consequently, each pixel in a hyperspectral image contains a spectrum representing
the light-absorbing and/or scattering properties of the spatial region represented by
that pixel. The resulting spectrum acts like a signature, which can be used to classify
or estimate composition of the material it represents.

However, the information in the HI could be sensitive, and thus, it should be
protected. There already exist many algorithms for secure encryption [2], like
advanced encryption standard (AES) [3–5] based on irreducible polynomials in
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Galois fields or the Rivest-Shamir-Adleman (RSA) algorithm [6] based on large
prime number factorization. These algorithms work with raw data, and they offer a
secure way to protect it. They work at the binary level of the data, and then they can
deal with all kinds of data structures like images, videos, and documents.

The computational run-time of AES and RSA could be very high for a high
volume of data. For this reason, in the last decades, the uses of chaos-based cryp-
tography have become very popular [7]. The chaotic systems are deterministic
dynamical systems which are sensitive to their initial conditions and parameters.

In this chapter, we present an extended revision of the parallel encryption
algorithm based on chaotic systems for HI previously presented in [8]. This algo-
rithm was specifically designed for HI, and it takes advantage of the spatial and
spectral distribution to get fast encryption. The algorithm gets high-entropy
ciphertext, and it is robust to ciphertext-only attacks.

The chapter is organized as follow: in Section 2, we briefly review the basics of HI
and their applications. In Section 3, we explain the characteristics of the chaotic
systems andwhy they are a suitable mathematical tool for encryption. In Section 4, we
present our encryption scheme with full details of implementation (we include source
code in Matlab and CUDA languages). In Section 5, we present new experimentation
and results, and finally, in Section 6, we present our conclusions and future work.

2. Hyperspectral images

A digital image is a rectangular array of n rows and m columns where every
element of the array, also called pixel, has an intensity value. New cameras allow us
to have multiple measures in the same pixel of different wavelengths, where we
represent this information by adding a new dimension l called channels.

The pixels are a discrete quantified measure of light; the intensity represented is
an integer proportional to the number of photons detected. In a simple image, the
intensity is represented with 28 precision, where 0 is no photons detected and 255 is
the pixel saturated. Other systems use 212, 214, or 216 levels of intensity [9].

Color images have three channels to represent visible light (400–800 nm of
wavelength). This kind of camera uses filter for red, green, and blue light. When we
have more of three channels, we called it multivariate images or multispectral
images, for example, an image of 21 channels.

A common convention is to call hyperspectral images to images with more than
100 channels [9]. Every pixel of a HI has its spectral representation of that position;

Figure 1.
Hyperspectral image dimensions.
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classical spectrophotometers use a light source, a filter system to disperse the light
into their respective wavelengths, and a detection system. The HI has commonly a
spectral resolution of 10–20 nm.

HI have many applications such as oil detection [10], earth remote sensing [11],
vegetation and water studies [12, 13], archaeology and art conservation [14–16],
finding minerals and other materials [17], medical diagnosis [18–20], food
quality and safety control [18, 21, 22], and crime scene analysis and forensic traces
[23, 24].

3. Chaotic systems and chaotic encryption

Chaotic systems are dynamical systems that for a certain range of initial condi-
tions show chaotic behavior. This chaotic behavior has the following features:

• Sensitive to initial conditions: the chaotic system is exponentially sensitive to
small changes in the initial conditions. These small changes could produce a big
difference in the system output.

• Bounded: the states with chaotic behavior have bounded limits.

• Deterministic: a chaotic system does not have randomness, so if we have the
initial conditions and parameters, we can simulate the system.

• Aperiodic: there is no periodicity in the chaotic behavior.

The chaotic behavior is a deterministic phenomenon that seems random for a
viewer that does not know the initial conditions and parameters of the system; but
like any deterministic system, we can obtain the same time-series output by simu-
lating the system with the same initial condition and parameters.

These features make the chaotic system a suitable platform for encryption. We
have two principal ways of implementing chaotic encryption:

• Chaotic encryption by synchronization phenomenon: in the case of continuous
signals, they could be encrypted by adding a chaotic continuous signal. For the
decrypt process, we synchronize another chaotic system throughout the
synchronization phenomenon and control theory to subtract the chaotic signal
[25, 26].

• Simulating discrete chaotic system: it consists in generating a chaotic mask and
mixing with a discrete plaintext with an involution operation. For decrypt, we
generate the same mask, and by properties of the involutions, we recover the
original signal. In this chapter, we concentrate in the second alternative.

Many chaotic systems have been used for different encryption problems like:

• Stream ciphers: Lorenz system has been used as a stream cipher in [27].

• Image encryption: for image encryption is common in using chaotic maps like
Ikeda chaotic map [28], logistic map, tent map, quadratic map, and Bernoulli
map [29], a survey is presented in [30].

• Video encryption: the chaotic maps also are used to encrypt video in [31–33].
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Figure 1.
Hyperspectral image dimensions.
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classical spectrophotometers use a light source, a filter system to disperse the light
into their respective wavelengths, and a detection system. The HI has commonly a
spectral resolution of 10–20 nm.

HI have many applications such as oil detection [10], earth remote sensing [11],
vegetation and water studies [12, 13], archaeology and art conservation [14–16],
finding minerals and other materials [17], medical diagnosis [18–20], food
quality and safety control [18, 21, 22], and crime scene analysis and forensic traces
[23, 24].

3. Chaotic systems and chaotic encryption

Chaotic systems are dynamical systems that for a certain range of initial condi-
tions show chaotic behavior. This chaotic behavior has the following features:

• Sensitive to initial conditions: the chaotic system is exponentially sensitive to
small changes in the initial conditions. These small changes could produce a big
difference in the system output.

• Bounded: the states with chaotic behavior have bounded limits.

• Deterministic: a chaotic system does not have randomness, so if we have the
initial conditions and parameters, we can simulate the system.

• Aperiodic: there is no periodicity in the chaotic behavior.

The chaotic behavior is a deterministic phenomenon that seems random for a
viewer that does not know the initial conditions and parameters of the system; but
like any deterministic system, we can obtain the same time-series output by simu-
lating the system with the same initial condition and parameters.

These features make the chaotic system a suitable platform for encryption. We
have two principal ways of implementing chaotic encryption:

• Chaotic encryption by synchronization phenomenon: in the case of continuous
signals, they could be encrypted by adding a chaotic continuous signal. For the
decrypt process, we synchronize another chaotic system throughout the
synchronization phenomenon and control theory to subtract the chaotic signal
[25, 26].

• Simulating discrete chaotic system: it consists in generating a chaotic mask and
mixing with a discrete plaintext with an involution operation. For decrypt, we
generate the same mask, and by properties of the involutions, we recover the
original signal. In this chapter, we concentrate in the second alternative.

Many chaotic systems have been used for different encryption problems like:

• Stream ciphers: Lorenz system has been used as a stream cipher in [27].

• Image encryption: for image encryption is common in using chaotic maps like
Ikeda chaotic map [28], logistic map, tent map, quadratic map, and Bernoulli
map [29], a survey is presented in [30].

• Video encryption: the chaotic maps also are used to encrypt video in [31–33].

75

Fast Chaotic Encryption for Hyperspectral Images
DOI: http://dx.doi.org/10.5772/intechopen.88980



For the proposed encryption scheme, we use the piecewise linear chaotic maps
(PLM) described by Eq. (1), where x0 ∈ 0, 1ð Þ is the initial condition and μ∈ 0,0:5ð Þ is
the parameter of the system. In Figure 2, we present a simulation of the PLM system.

xnþ1 ¼
xn � ⌊xnμ ⌋μ

μ
(1)

4. Chaotic systems for parallel encryption of hyperspectral images

In this section we will review the proposed chaotic encryption scheme for HI
presented in [8]. The proposed scheme is shown in Figure 3. We propose to use
four chaotic systems for encrypting HI. The first three chaotic systems are used to
generate a chaotic mask of the same size of the HI, and the last one is used to
generate a chaotic substitution box (S-box) according to the algorithm in [34].

The key is formed with initial conditions xi and parameters μi of the four PLM
chaotic systems. It is important to notice that this scheme can be implemented with
other discrete chaotic systems. These systems are simulated in parallel to create four
different chaotic signals denoted by c1 tð Þ , c2 tð Þ , c3 tð Þ, and cs tð Þ that are saved as
the key expansion.

In Figure 4, we show the source code of the parallel implementation of the
chaotic system in the CUDA programming language, where the variable ite repre-
sents the maximum number of iterations of the chaotic system, x_vec is a vector
with the initial condition parameters, mu_vec is a vector with the parameters of the
PLM systems, and C is an array where the chaotic signals are stored.

The chaotic signal cs tð Þ is used to generate a chaotic S-box [34]. An S-box is a
basic component for symmetric key ciphers because it is a reversible operation for
confusion introduction. Confusion is a property of a secure cipher denied by Claude
Shannon, and it means that each basic unit of the ciphertext should depend on
several parts of the key hiding the relationship between them. The S-box is a
permutation which is commonly implemented with a look-up table that maps from
a byte to another byte.

In Figure 5, we present the Matlab code for the generation of the chaotic S-box
and its inverse.

Using the previous codes, we can encrypt the HI by using Eq. (2), where every
pixel in the direction i, j, kð Þ is encrypted in parallel by composing a chaotic signal
with the c1 tð Þ, c2 tð Þ, c3 tð Þ chaotic signals. We combine them by using the XOR

Figure 2.
Simulation of the PLM chaotic system.
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operation which is an involution. Afterwards we use the chaotic S-box to include
confusion in the signal:

Ic i, j, kð Þ ¼ Sbox c3 kð Þ⨁ c2 jð Þ⨁ c1 ið Þ⨁ I i, j, kð Þ½ � (2)

Eq. (2) is implemented in the CUDA language as it is shown in Figure 6.
To use the chaotic and encrypted function from Matlab, we compile from the

terminal, in this case, using nvcc compiler with the lines in Figure 7:

Figure 4.
Parallel chaotic system implementation (Chaos.cu file).

Figure 3.
Encryption scheme for HI.
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In Figure 8, we show the code in Matlab for encrypting HI in parallel. Notice
that the first step in Figure 8 is to load the HI in the variable I in the GPU memory
(Igpu), and then we calculate the chaotic S-box in the variable S with the code in
Figure 5; after that, we simulate the chaotic systems in the variable Cgpu with the
code in Figure 4. Finally, we encrypt the HI with Figure 6 gathering the result in
the Ic variable.

The decryption scheme of the HI is almost symmetrical. This could be achieved
with Eq. (3) which is implemented in Figure 9. The code in Figure 9 is very close to
the one in Figure 6, but notice that the inverse of the S-box is used and the XOR of
the chaotic signal are in inverse order:

I i, j, kð Þ ¼ c1 ið Þ⨁ c2 jð Þ⨁ c3 kð Þ⨁ S�1box Ic i, j, kð Þ½ � (3)

Using Eq. (2) in Eq. (3) we obtain the development in Eqs. (4)–(6) that shows
how the S-box is canceled with the inverse S-box and how the chaotic signals are
canceled because the XOR operation is an involution:

Figure 5.
Chaotic substitution box.

Figure 6.
Parallel chaotic encryption (Encrypt.cu file).

Figure 7.
Compilation of the CUDA files.
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I i, j, kð Þ ¼ c1 ið Þ⨁ c2 jð Þ⨁ c3 kð Þ⨁ S�1box Sbox c3 kð Þ⨁ c2 jð Þ⨁ c1 ið Þ⨁ I i, j, kð Þ½ �½ � (4)

I i, j, kð Þ ¼ c1 ið Þ⨁ c2 jð Þ⨁ c3 kð Þ⨁ c3 kð Þ⨁ c2 jð Þ⨁ c1 ið Þ⨁ I i, j, kð Þ (5)

I i, j, kð Þ ¼ I i, j, kð Þ (6)

5. Experiments and results

In this section, we present the result of six new experiments. In Table 1, we
report the references and the size of the HI.

Figure 8.
Encryption of the HI.

Figure 9.
Parallel decryption function (Decrypt.cu).
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In the first experiment, we present the results of encrypting the “San Francisco”
image. In Figure 10, we present a comparison of the ninety third channel of the
original image and the cipher one. The image was loaded to the GPU in 0.4439 s and
encrypted in 0.0094 s and then downloaded to the CPU memory in 0.21585 s.

The original image has an entropy of 6.1057; after the encryption, we get an
entropy of 7.9985. In Figure 11, we show a comparison of the hyper-histograms of
the original and encrypted image.

In the second experiment, we present the results of encrypting the “Urban”
image. In Figure 12, we present a comparison of the sixtieth channel of the original
image and the cipher one. The image was loaded to the GPU in 0.0118 s and
encrypted in 0.0023 s and then downloaded to the CPU memory in 0.0435 s.

The original image has an entropy of 6.7452; after the encryption, we get an
entropy of 7.9987. In Figure 13, we show a comparison of the hyper-histograms of
the original and encrypted image.

Number Name and reference Size

1 San Francisco1 702 � 1000 � 148

2 Urban [35, 36] 307 � 307 � 210

3 Indian pine [37] 145 � 145 � 220

4 Jasper Ridge [35, 36] 100 � 100 � 224

5 University of Pavia2 610 � 340 � 103

6 Samson [35, 36] 95 � 95 � 156
1From Ref. [38].
2From Ref. [39].

Table 1.
HI data set.

Figure 10.
Experiment 1: image comparison. a) Original image. b) Encrypted image. c) Original histogram. d) Encrypted
histogram.
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In experiment 3, we present the results of encrypting the “Indian pine” image. In
Figure 14, we present a comparison of the forty-fifth channel of the original image
and the cipher one. The image was loaded to the GPU in 0.0035 s and encrypted in
0.0010 s and then downloaded to the CPU memory in 0.0124 s.

The original image has an entropy of 6.3325; after the encryption, we get an
entropy of 7.9985. In Figure 15, we show a comparison of the hyper-histograms of
the original and encrypted image.

In experiment 4, we present the results of encrypting the “Jasper Ridge” image.
In Figure 16, we present a comparison of the forty seventh channel of the original

Figure 11.
Experiment 1: hyper-histogram comparison. a) Original Hyperhistogram. b) Encrypted Hyperhistogram.

Figure 12.
Experiment 2: image comparison. a) Original image. b) Encrypted image. c) Original histogram. d) Encrypted
histogram.
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0.0010 s and then downloaded to the CPU memory in 0.0124 s.
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Figure 11.
Experiment 1: hyper-histogram comparison. a) Original Hyperhistogram. b) Encrypted Hyperhistogram.

Figure 12.
Experiment 2: image comparison. a) Original image. b) Encrypted image. c) Original histogram. d) Encrypted
histogram.

81

Fast Chaotic Encryption for Hyperspectral Images
DOI: http://dx.doi.org/10.5772/intechopen.88980



image and the cipher one. The image was loaded to the GPU in 0.0020 s and
encrypted in 0.009 s and then downloaded to the CPU memory in 0.0055 s.

The original image has an entropy of 6.8918; after the encryption, we get an
entropy of 7.9983. In Figure 17, we show a comparison of the hyper-histograms of
the original and encrypted image.

In experiment 5, we present the results of encrypting the “University of Pavia”
image. In Figure 18, we present a comparison of the 62nd channel of the original
image and the cipher one. The image was loaded to the GPU in 0.0122 s and
encrypted in 0.0026 s and then downloaded to the CPU memory in 0.0545 s.

Figure 13.
Experiment 2: hyper-histogram comparison. a) Original Hyperhistogram. b) Encrypted Hyperhistogram.

Figure 14.
Experiment 3: image comparison. a) Original image. b) Encrypted image. c) Original histogram. d) Encrypted
histogram.
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The original image has an entropy of 6.6827; after the encryption, we get an
entropy of 7.9986. In Figure 19, we show a comparison of the hyper-histograms of
the original and encrypted image.

In experiment 6, we present the results of encrypting the “Samson” image. In
Figure 20, we present a comparison of the hundredth channel of the original image
and the cipher one. The image was loaded to the GPU in 0.0013 s and encrypted in
0.0007 s and then downloaded to the CPU memory in 0.0036 s.

Figure 15.
Experiment 3: hyper-histogram comparison. a) Original Hyperhistogram. b) Encrypted Hyperhistogram.

Figure 16.
Experiment 4: image comparison. a) Original image. b) Encrypted image. c) Original histogram. d) Encrypted
histogram.
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The original image has an entropy of 6.5833; after the encryption, we get an
entropy of 7.9981. In Figure 21, we show a comparison of the hyper-histograms of
the original and encrypted image.

In Table 2, we summarize the results of the encryption. Notice that the encryp-
tion process results in high entropy close to eight (the maximum for 28 representa-
tion). The entropy is a measure of uncertainty defined in Eq. (7), where si is a
symbol or codification and P sið Þ is the probability of si to appear. The number of bits
for the representation, in this case eight, is depicted by b:

Figure 17.
Experiment 4: hyper-histogram comparison. a) Original Hyperhistogram. b) Encrypted Hyperhistogram.

Figure 18.
Experiment 5: image comparison. a) Original image. b) Encrypted image. c) Original histogram. d) Encrypted
histogram.
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H sð Þ ¼ �
X2b�1
i¼0

P sið Þ log 2 P sið Þð Þ (7)

The proposed algorithm takes advantage of the multidimensionality nature of
the HI. This leads to a high-performance algorithm that can encrypt images quickly.
Notice that the load to GPU and download to CPU processes take most of the time.
This could be avoided with a direct acquisition of the HI from the GPU, but this
problem is beyond the scope of this chapter.

Figure 19.
Experiment 5: hyper-histogram comparison. a) Original Hyperhistogram. b) Encrypted Hyperhistogram.

Figure 20.
Experiment 6: image comparison. a) Original image. b) Encrypted image. c) Original histogram. d) Encrypted
histogram.
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6. Conclusions and future work

In this chapter, we have reviewed the proposed method in [8] with a full review of
the source code. The proposed algorithm is a parallel encryption scheme specific for
hyperspectral images. This scheme takes advantage of the multidimensionality nature
of the HI, where every pixel of every channel is encrypted in parallel. These features
lead to a high-performance algorithm capable of encrypting HI in a short time.

The algorithm uses four chaotic systems, the first three for generating a chaotic
cube mask of the same size of the HI and the fourth one to generate a chaotic S-box
to aggregate confusion in the ciphertext. As the experimentation has shown, the
algorithm can generate high-entropy ciphertext. This algorithm is recommended
for fast encryption in ciphertext-only attacks.
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Chapter 5

NIR Hyperspectral Imaging for 
Mapping of Moisture Content 
Distribution in Tea Buds during 
Dehydration
Keqiang Yu, Yanru Zhao, Xiaoli Li and Yong He

Abstract

This work employed hyperspectral imaging technique to map the spatial distri-
bution of moisture content (MC) in tea buds during dehydration. Hyperspectral 
images (874–1734 nm) of tea buds were acquired in six dehydrated periods (0, 3, 
6, 9, 14 and 21 min) at 80°C. The spectral reflectance of tea buds were extracted 
from region of interests (ROIs) in the hyperspectral images. Competitive adaptive 
reweighted sampling (CARS) was used to select effective wavelengths (EWs) and ten 
representing the wavelengths were selected. The quantitative relationship between 
spectral reflectance and the measured MC values of tea buds was built using partial 
least square regression (PLSR) based on full spectra and EWs. The quantitative 
model established using EWs, which had a result of coefficient of correlation (RP) of 
0.941 and root mean square error of prediction (RMSEP) of 5.31%, was considered 
as the optimal model for mapping MC distribution. The optimal model was finally 
applied to predict the MC of each pixel within of the tea bud sample and built the 
MC distribution maps by utilization of a developed image processing procedure. 
Results demonstrated that the hyperspectral imaging technique has the potential of 
mapping the MC spatial distribution in tea buds in dehydrated process.

Keywords: NIR hyperspectral imaging, tea buds, moisture content,  
spatial distribution, dehydration process

1. Introduction

Tea, one of the most popular beverages worldwide, is of great interest due to its 
beneficial medicinal properties [1, 2]. Tea products are mainly made from the pro-
cessed tea buds or fresh tea leaves of a plant called Camellia sinensis. In the tea process-
ing, a great number of moisture are always changed along with a series of physical 
and chemical reactions. Especially in the drying stage with thermochemical reactions 
under high temperature, variations of moisture content (MC) in tea can directly 
affect smell, taste and others quality characteristics. With the growing consumption 
of the tea products, high qualities of tea products become more and more important 
nowadays. Therefore, in order to produce the high quality of tea products and pro-
long its shelf life, the determination of MC distribution in tea is quite meaningful in 
modern society.
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The conventional way to analyze MC includes the gravimetric method, oven-
dehydrated [3], freeze-dehydrated or lyophilization [4], electronic moisture ana-
lyzer [2], and so on. Those methods are time-consuming, tedious and fail to meet 
the requirements of real-time, on-line detection of MC in tea processing. In addi-
tion, the same sample cannot be reused for any other purpose and those methods 
may debase the quality of tea products through directly touching way.

In recent years, spectroscopy technique has proved to be a powerful tool for 
detecting the MC in tea products and agricultural sideline products. For example, 
Mizukami et al. [5] developed a new method for measuring the moisture in tea 
leaves using an electrical spectroscopy. Diffuse reflectance spectroscopy combined 
with chemometric analysis were employed to investigate MCs in tea [6]. Sinija and 
Mishra [2] employed Fourier transform near infrared (FTNIR) spectroscopy to 
measure MC in green tea. However, spectroscopy technique is not able to provide 
spatial information of quality parameters, which greatly limited its application to 
quantify spatial distribution.

Hyperspectral imaging, a powerful analytical tool, has attracted a great deal of 
attention for the safety detection of agricultural and sideline products. It integrated 
conventional spectral information and digital imaging into one system, which made 
it possible for providing both spectral and spatial information of an object simulta-
neously [7]. Over the past several years, hyperspectral imaging has many potential 
applications for quantifying and controlling of quality parameters with good 
precision. It is widely applying in evaluation of various agricultural products, such as 
beef [8], pork [9] and lamb [10], moisture in prawn [11], mushroom [12], moisture 
in banana [13], strawberry [14] and maturity and firmness of apple [15], and texture 
analysis to classify green tea [16].

However, to the best of our knowledge, applying the hyperspectral imaging 
technique to determine the moisture distribution in tea buds has not been found 
to date. There are also some broadband peaks occurring in the NIR region related 
to the overtone and combination vibrations of hydrogen containing bonds, such as 
O–H, C–H, and N–H [11]. The presence of water (O-H) in the tea buds showed two 
feature wavelengths at 980 and 1450 nm (O–H stretching second and first over-
tones) in NIR region. So, this research employed the NIR hyperspectral imaging for 
predicting and mapping the distribution of MC in tea buds. The steps of the work 
are to: (1) obtain hyperspectral image of tea buds in NIR region of 874–1734 nm and 
measure the MCs of tea bud samples in dehydrated process; (2) extract spectral data 
of the region of interests (ROIs) from the acquired hyperspectral images; (3) select 
the effective wavelengths which carried the most valuable information related to 
MC prediction and build the quantitative models; (4) develop an image processing 
procedure for mapping the spatial distribution of MC in tea buds. The main steps 
involved in building MC distribution maps are presented in Figure 1.

2. Materials and methods

2.1 Pretreatment of tea buds samples

In this research, buds of tea bushes (C. sinensis cv. Longjing 43) were prepared 
for the experiment. Tea bushes were planted about 6 years in the Zijingang campus 
of Zhejiang University, Hangzhou (30°16′N, 120°20′E), China. Each tea bud sample 
contained three fresh leaf blades. A total of 216 tea bud samples were randomly 
collected from different tea clusters on 2 April 2013. At first, random 36 tea buds 
were selected for acquiring the hyperspectral images. Then the remaining 180 
samples were randomly divided into five groups. These five groups of tea buds 
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were implemented to dehydrate at 80°C by an attemperator (IKA@C-MAG HS4, 
Germany) for corresponding five dehydrated times (3, 6, 9, 14 and 21 min), respec-
tively. Meanwhile, all samples were scanned by to acquire hyperspectral images in 
the corresponding dehydrated time.

After acquirement of hyperspectral images, the MC of all samples was measured 
by the gravimetric method according to the Chinese National Standard GB8304-87.  
In detail, all samples were dried in a constant temperature oven at 103°C for 18 h. 
Meanwhile, an electronic balance with accuracy of 0.0001 g was employed to 
weight all samples after acquiring hyperspectral images and drying. All the mea-
surements were carried out in a room at approximate constant temperature of 25°C 
and relative humidity of 35–45%. In addition, all the 216 tea bud samples were 
divided into a calibration set (162 samples) and a prediction set (54 samples) by 
Kennard-Stone (K-S) algorithm [17].

2.2 Hyperspectral imaging acquiring equipment

In this study, a laboratory pushbroom hyperspectral imaging equipment 
(Figure 2) with reflectance mode was employed to scan all the samples. As Yu et al. 
[18] described, the core sensing components of the equipment consisted of several 
parts: a conveyor belt operated by a stepper motor (IRCP0076, Isuzu Optics Crop, 
Taiwan, China); an illumination unit assembled by two 150-W quartz tungsten 
halogen lamps (Fiber-Lite DC950 Illuminator, Dolan Jenner Industries Inc., USA); 
an imaging spectrograph (ImSpector N17E, Spectral Imaging Ltd., Finland) 
covering a spectral range of 874–1734 nm; a CCD camera (C8484-05, Hamamatsu, 
Hamamatsu city, Japan) coupled with a camera lens (OLES23; Specim, Spectral 
Imaging Ltd., Oulu, Finland) and a computer with the spectral-cube data acquisi-
tion software (Isuzu Optics Corp, Taiwan, China), which could set and adjust the 

Figure 1. 
Main steps for building of MC distribution maps in tea buds by using hyperspectral imaging, (1) pre-treatment 
of tea buds; (2) hyperspectral data pre-processing; (3) analyses of spectral data; (4) image post-processing for 
building the MC distribution maps of tea buds.
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contained three fresh leaf blades. A total of 216 tea bud samples were randomly 
collected from different tea clusters on 2 April 2013. At first, random 36 tea buds 
were selected for acquiring the hyperspectral images. Then the remaining 180 
samples were randomly divided into five groups. These five groups of tea buds 
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speed of conveyer belt, exposure time, binning mode, wavelength range, image 
acquisition, images calibration and so on. Overall, all the components (except 
computer) were fixed inside a dark chamber to avoid any stray light which might 
affect the veracity of hyperspectral imaging equipment.

In order to acquire clear and undistorted hyperspectral images, some parameters 
of the equipment needed to be adjusted before the images acquirement. Firstly, 
illumination unit should set an appropriate intensity and adjust a proper angel to 
make the light gather in a linear area of the conveyor belt just below the imaging 
spectrograph. Then, two reference reflectance panels with reflectance of 99.9 and 
0% were adopted for dark and white reflectance calibration of sample. In this study, 
the distance between samples and the lens was 165 mm. All samples placed on the 
conveyor belt and moved at a speed of 14.5 mm/s to be scanned with an exposure 
time of 5 ms during the image acquisition. Gradually in line by line pattern, a 
hyperspectral image called “hypercube” with dimension of (x, y, λ) was built. In 
this study, the hyperspectral images were obtained with 320 pixels in x-direction, 
n-pixels in y-direction (based on the length of each sample) and 256 wavelengths in 
λ-direction.

2.3 Calibration of hyperspectral images

Because of the existence of dark current in CCD camera and the uneven inten-
sity of illumination in different bands, several bands with weaker light intensity 
contained the bigger noises [19]. Based on this point, the raw hyperspectral images 
(Iraw) required to be calibrated and the calibration process could be finished using 
the following Eq. (1) [20, 21]:

  R =    I  raw   −  I  dark   ________  I  white   −  I  dark      (1)

where, R were the calibrated hyperspectral images of the samples; Idark were the 
dark reference images (~0% reflectance) obtained with light source off; Iwhite were 
the white reference images (~99% reflectance) acquired from a white reference 

Figure 2. 
Schematic diagram of the hyperspectral imaging equipment.
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ceramic tile. Then the calibrated images were used as the basis for subsequent 
processing and analysis.

2.4 ROIs identification and spectral data extraction

Spectral data were extracted by the region of interests (ROIs) function of ENVI 
software. An irregular ROI was identified by initially shape of tea bud in hyper-
spectral image. Then, the mean relative reflectance for each image by averaging 
the spectral responses of each pixel in the ROI was calculated. According to this 
procedure, a total of 216 mean reflectance spectra were obtained from the hyper-
spectral images of tea bud samples. Because of because the response of the CCD 
detector [8] and strong noise existence, the reflectance in two regions of 874–950 
and 1670–1734 nm was rather low and littery. Therefore, hyperspectral images were 
resized to the spectral range of 950–1670 nm with a total of 214 wavebands.

2.5 Chemometric of spectral data processing

Competitive adaptive reweighted sampling (CARS), a novel algorithm for select-
ing important variables [22], was employed to select the effective wavelengths from 
the full range spectra of the calibration in this study. Details of the CARS methodol-
ogy could be found in Li et al. [22].

Partial least square regression (PLSR), one of the most robust and reliable 
analytical tools for modeling, is a linear and supervised multivariate calibration 
method [23]. PLSR projects the spectral data onto a set of orthogonal factors called 
latent variables (LVs), and explores the optimal function by minimizing the error of 
sum squares (finding the optimal LVs), which is typically done by cross-validation 
[24]. The process of extracting the LVs should take the response variable into 
account. In this research, the quantitative model between the spectral reflectance 
and MCs was established using the PLSR.

The performance of a calibration model is usually evaluated according to 
coefficients of correlation (R) and root mean square error (RMSE) in calibration 
(RC, RMSEC), in cross-validation (RCV, RMSECV) and in prediction (RP, RMSEP). 
Generally speaking, a model with larger values of RC, RCV and RP, smaller values of 
RMSEC, RMSECV and RMSEP is wonderful, and it has a small difference between 
RMSEC, RWSECV and RMSEP.

In this research, data extractions, statistical calculations and multivariate 
data analyses were executed with ENVI 4.6 software (ITT Visual Information 
Solutions, Boulder, CO, USA), “The Unscrambler X 10.1” (CAMO PROCESS 
AS, Oslo, Norway) and MATLAB 7.8 (R2009a) software (The Math Works, Inc., 
Natick, MA, USA). The developed procedures for mapping MC distribution were 
completed in MATLAB.

3. Results and discussion

3.1 Spectral features of tea buds and statistics of measured MC

In general, NIR spectra region contained rich information relevant to hydrogen 
containing bonds than others spectra region [24]. To compare spectral trends over 
six dehydrated periods, the mean spectral values of the pixels within the ROI of 
tea bud samples were calculated. And those values exhibited some variances and 
overlays between two adjacent dehydrated periods (not given here). The mean spec-
tral reflectance curves are illustrated in Figure 3. There were also some broadband 
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speed of conveyer belt, exposure time, binning mode, wavelength range, image 
acquisition, images calibration and so on. Overall, all the components (except 
computer) were fixed inside a dark chamber to avoid any stray light which might 
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ceramic tile. Then the calibrated images were used as the basis for subsequent 
processing and analysis.

2.4 ROIs identification and spectral data extraction

Spectral data were extracted by the region of interests (ROIs) function of ENVI 
software. An irregular ROI was identified by initially shape of tea bud in hyper-
spectral image. Then, the mean relative reflectance for each image by averaging 
the spectral responses of each pixel in the ROI was calculated. According to this 
procedure, a total of 216 mean reflectance spectra were obtained from the hyper-
spectral images of tea bud samples. Because of because the response of the CCD 
detector [8] and strong noise existence, the reflectance in two regions of 874–950 
and 1670–1734 nm was rather low and littery. Therefore, hyperspectral images were 
resized to the spectral range of 950–1670 nm with a total of 214 wavebands.

2.5 Chemometric of spectral data processing

Competitive adaptive reweighted sampling (CARS), a novel algorithm for select-
ing important variables [22], was employed to select the effective wavelengths from 
the full range spectra of the calibration in this study. Details of the CARS methodol-
ogy could be found in Li et al. [22].

Partial least square regression (PLSR), one of the most robust and reliable 
analytical tools for modeling, is a linear and supervised multivariate calibration 
method [23]. PLSR projects the spectral data onto a set of orthogonal factors called 
latent variables (LVs), and explores the optimal function by minimizing the error of 
sum squares (finding the optimal LVs), which is typically done by cross-validation 
[24]. The process of extracting the LVs should take the response variable into 
account. In this research, the quantitative model between the spectral reflectance 
and MCs was established using the PLSR.

The performance of a calibration model is usually evaluated according to 
coefficients of correlation (R) and root mean square error (RMSE) in calibration 
(RC, RMSEC), in cross-validation (RCV, RMSECV) and in prediction (RP, RMSEP). 
Generally speaking, a model with larger values of RC, RCV and RP, smaller values of 
RMSEC, RMSECV and RMSEP is wonderful, and it has a small difference between 
RMSEC, RWSECV and RMSEP.

In this research, data extractions, statistical calculations and multivariate 
data analyses were executed with ENVI 4.6 software (ITT Visual Information 
Solutions, Boulder, CO, USA), “The Unscrambler X 10.1” (CAMO PROCESS 
AS, Oslo, Norway) and MATLAB 7.8 (R2009a) software (The Math Works, Inc., 
Natick, MA, USA). The developed procedures for mapping MC distribution were 
completed in MATLAB.

3. Results and discussion

3.1 Spectral features of tea buds and statistics of measured MC

In general, NIR spectra region contained rich information relevant to hydrogen 
containing bonds than others spectra region [24]. To compare spectral trends over 
six dehydrated periods, the mean spectral values of the pixels within the ROI of 
tea bud samples were calculated. And those values exhibited some variances and 
overlays between two adjacent dehydrated periods (not given here). The mean spec-
tral reflectance curves are illustrated in Figure 3. There were also some broadband 
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peaks occurring in the NIR region related to the overtone and combination vibra-
tions of hydrogen containing bonds, such as O-H, C-H, and N-H [25]. As is shown 
in Figure 3, the existence of water in the tea buds showed two feature wavelengths 
around 980 and 1450 nm (O-H stretching second and first overtones). Additionally, 
the absorption peak around 1200 nm (C-H stretching second overtone) was due 
to organic matter content in tea bud. Because of the complex chemical composi-
tions (maybe including C-H and N-H) in tea buds, it is hard to find a clear trend 
of curves over MC within 950–1100 nm. However, it was worth noting that the 
spectral reflectance curves over MC showed a clear upward trend in the vicinity of 
1450–1650 nm during the dehydrated processing in five periods (0, 3, 6, 9, 14 and 
21 min).

In addition, Figure 4 summarizes the statistics of MCs including mean, max, 
min and standard deviation (SD) values of tea bud samples in six dehydrated peri-
ods. It could be concluded that the mean, max and min values of MC appeared an 
obviously decreasing trend. Especially in mean values of those groups, a remarkable 
gradient (declining about 10%) was easily observed.

3.2 Variables selection

In this study, CARS was employed to select the effective variables. During the 
CARS process, some key variables were survived, while incompetent variables were 
sifted out. Figure 5 demonstrated the process of variable selection by CARS.

Figure 5(a) illustrated that the number of sampled variables decreased fast at 
the first stage of EDF and then slowly at the second stage of EDF, which demon-
strated “fast selection” and “refined selection”. And in Figure 5(b), it was clearly 
that along with the number of sampling runs increased, RMSECV values first 
reduced in sampling runs 1–4, and then fluctuated in a gentle way in the sampling 
runs 5–33, finally in sampling runs 34–50 increased fast. In this process, most of 

Figure 3. 
Mean spectral reflectance of tea buds in six dehydrated periods.
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uninformative variables were eliminated, and finally the RMSECV value increased 
because of the loss of some key variables [22]. The optimal variable subset was 
determined corresponding to the minimal 5-fold RMSECV value, and located by 
the vertical blue asterisk line in Figure 5(c). Moreover, the regression coefficient 
path of each wavelength was also shown in Figure 5(c). The variation of coefficient 
values of each variable was recorded by the colorful lines at different sampling runs. 
At the beginning of the each number sampling run, the absolute value of regression 
coefficient of each wavelength was very lowly. After that, values of some variables 
had a growing trend, while the rest of variables became smaller and smaller and 
turned into zero eventually (those were weeded out) because of their incompe-
tence. In other words, the larger the absolute coefficient was, the more possibility 
the corresponding wavelength was able to survive.

Based on the calculation of CARS, ten wavelengths at 1133, 1173, 1332, 1372, 
1419, 1446, 1450, 1507, 1538 and 1595 nm were identified as the EWs for predict-
ing MC of tea buds. And the distribution of the selected EWs based on CARS was 
demonstrated in Figure 6.

Obviously, most of those selected EWs (1419, 1446, 1450 and 1507 nm) were 
scattered around the O-H stretching first overtones (1450 nm). Comparatively 
speaking, only two effective wavelengths (1133 and 1173 nm) were centered in C-H 
stretching second overtone (1200 nm), which might be related to organic matter of 
tea buds.

3.3 Modeling of MC in tea buds by PLSR

In this research, the multivariate models were established by PLSR algorithm 
with full spectra and EWs, respectively. In the PLSR model of calibration set, the 
quantitative relationship between the spectral reflectance and corresponding 

Figure 4. 
Statistical results of measured MC of tea bud samples in six dehydrated periods.
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peaks occurring in the NIR region related to the overtone and combination vibra-
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uninformative variables were eliminated, and finally the RMSECV value increased 
because of the loss of some key variables [22]. The optimal variable subset was 
determined corresponding to the minimal 5-fold RMSECV value, and located by 
the vertical blue asterisk line in Figure 5(c). Moreover, the regression coefficient 
path of each wavelength was also shown in Figure 5(c). The variation of coefficient 
values of each variable was recorded by the colorful lines at different sampling runs. 
At the beginning of the each number sampling run, the absolute value of regression 
coefficient of each wavelength was very lowly. After that, values of some variables 
had a growing trend, while the rest of variables became smaller and smaller and 
turned into zero eventually (those were weeded out) because of their incompe-
tence. In other words, the larger the absolute coefficient was, the more possibility 
the corresponding wavelength was able to survive.

Based on the calculation of CARS, ten wavelengths at 1133, 1173, 1332, 1372, 
1419, 1446, 1450, 1507, 1538 and 1595 nm were identified as the EWs for predict-
ing MC of tea buds. And the distribution of the selected EWs based on CARS was 
demonstrated in Figure 6.

Obviously, most of those selected EWs (1419, 1446, 1450 and 1507 nm) were 
scattered around the O-H stretching first overtones (1450 nm). Comparatively 
speaking, only two effective wavelengths (1133 and 1173 nm) were centered in C-H 
stretching second overtone (1200 nm), which might be related to organic matter of 
tea buds.

3.3 Modeling of MC in tea buds by PLSR

In this research, the multivariate models were established by PLSR algorithm 
with full spectra and EWs, respectively. In the PLSR model of calibration set, the 
quantitative relationship between the spectral reflectance and corresponding 

Figure 4. 
Statistical results of measured MC of tea bud samples in six dehydrated periods.
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Figure 5. 
Selection of effective wavelengths, (a) changing trend of the number of sampled variables; (b) 5-fold RMSECV 
values; (c) regression coefficients of each variable with the increasing of sampling runs, the line (marked by 
asterisk) denoted the optimal point where 5-fold RMSECV values achieved the lowest.

Figure 6. 
The distribution of the selected effective wavelengths.
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measured MC of tea bud samples was established. Table 1 displayed the statistical 
results with respect to the prediction of MC in tea buds by using the full spectra 
and EWs.

Form Table 1, the PLSR model based on full spectra (F-PLSR) with RC = 0.956, 
RMSEC = 5.22%, RCV = 0.908, RMSECV = 5.93%, RP = 0.946, RMSEP = 5.07% had 
the better result for predicting MC in tea buds. Compared to the F-PLSR model, the 
results of CARS-PLSR model had a slight drop in RC, Rp of 0.008, 0.005, respec-
tively. The above results indicated that models using full spectra for predicting MC 
of tea buds had excellent predictive accuracy and robustness.

Regretfully, full spectra had a high-dimensional data and F-PLSR model could 
not provide a simple linear function about the reflectance of spectral reflectance 
and MC of tea buds. On the contrary, the selected ten EWs had minimal redun-
dancy and offered a commendable prediction performance (RP = 0.941). Hence, 
CARS-PLSR model was considered as the ideal model for the predicting MC of tea 
buds during the six dehydrated periods. The obtained function Eq. (2) according to 
CARS-PLSR model was shown as follows:

   

 Y  mositure   = 0.7649 + 7.8540  λ  1133nm   − 3.2826  λ  1173nm  

                        − 13.9586  λ  1332nm   + 7  .4947  λ1372nm   − 2.3084  λ  1419nm        
                     +3.1167  λ  1446nm   + 1.8836  λ  1450nm   − 5.9708  λ  1507nm  

      

                     − 5.3227  λ  1538nm   + 19.9262  λ  1595nm  

    (2)

where, λi nm was the spectral reflectance at the wavelength of i nm, and Ymositure 
was the predicted moisture content of tea buds. In addition, the obtained function 
was also taken for further analysis of mapping the spatial distribution of MC in 
tea buds.

3.4 Distribution maps of MC in tea buds

For predicting MC in all spots of the sample, the CARS-PLSR model was then 
transferred to each pixel of the image. After multiplying the model’s regression 
coefficients by the spectrum of each pixel in the image [25], a prediction image 
(called distribution map) was built and exhibited the spatial distribution of MC of 
the sample. In the final distribution map, the pixels with similar spectral character-
istics would generate the same predicted values of MC, which were led to a similar 
color in the acquired image [7, 25].

Figure 7 shows examples of spatial distribution maps of tea buds with different 
MC levels in six dehydrated periods. Figure 7(a) showed the pseudo-color images 
of six tea bud samples with different MC values. The values at the top of tea buds 
represented the average concentration of moisture in the whole samples. As seen 

Models Variable 
number

LVs Calibration Cross-validation Prediction

RC RMSEC 
(%)

RCV RMSECV 
(%)

RP RMSEP 
(%)

F-PLSR 214 7 0.956 5.22 0.908 5.93 0.946 5.07

CARS-
PLSR

10 5 0.948 5.15 0.921 5.43 0.941 5.31

Note: F-PLSR stood for meant the PLSR model established using the full spectra; CARS-PLSR represented the PLSR 
model built based on EWs selected by CARS.

Table 1. 
The results of PLSR models for predicting MC in tea buds based on full spectra and the effective wavelengths.
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Figure 5. 
Selection of effective wavelengths, (a) changing trend of the number of sampled variables; (b) 5-fold RMSECV 
values; (c) regression coefficients of each variable with the increasing of sampling runs, the line (marked by 
asterisk) denoted the optimal point where 5-fold RMSECV values achieved the lowest.

Figure 6. 
The distribution of the selected effective wavelengths.
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measured MC of tea bud samples was established. Table 1 displayed the statistical 
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    (2)

where, λi nm was the spectral reflectance at the wavelength of i nm, and Ymositure 
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the sample. In the final distribution map, the pixels with similar spectral character-
istics would generate the same predicted values of MC, which were led to a similar 
color in the acquired image [7, 25].

Figure 7 shows examples of spatial distribution maps of tea buds with different 
MC levels in six dehydrated periods. Figure 7(a) showed the pseudo-color images 
of six tea bud samples with different MC values. The values at the top of tea buds 
represented the average concentration of moisture in the whole samples. As seen 
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F-PLSR 214 7 0.956 5.22 0.908 5.93 0.946 5.07
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Note: F-PLSR stood for meant the PLSR model established using the full spectra; CARS-PLSR represented the PLSR 
model built based on EWs selected by CARS.

Table 1. 
The results of PLSR models for predicting MC in tea buds based on full spectra and the effective wavelengths.
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clearly that the color of samples changed from emerald to silver along with MC 
values decrease. In addition, it was so hard to find out the difference in MC from 
point to point by naked eye from the pseudo-color image. Surprisingly, the different 
MC level among the samples was very obvious to be discerned from the final distri-
bution maps as shown in Figure 7(b). A linear color scale was generated with the 
different MC values from small to large shown in different color from blue to red. 
The MC of tea buds from high to low was displayed in different colors from red to 
blue. Meanwhile, the difference of MC level within a sample could be easily identi-
fied. A comprehensive map with different colors indicated that there were mixed 
components and heterogeneous distribution of MC in samples. Many pixels in fresh 
tea bud (0 min dehydrated) were red or orange because it had an average MC value 
of 64.67%. Along with the dehydrated time increased, the color of pixels changed 
from red, orange, pale bluish green to blue, which indicated the moisture of tea bud 
gradually lost. It was worth noticing that the edge of blade was turned blue firstly, 
then the vein, and finally the petiole. Especially in two dehydrated periods (9 and 
14 min), the color of leaf petiole and blade was obviously different. This is a clear 
indication of MC status during the dehydrated process of tea buds.

In fact, the water in the blade is free water in mesophyll cells while it exists in a 
form of the bound water in xylem, leaf vein and petiole. Meanwhile, the free water 
can be easily dried in a short time at a lower temperature, in contrast evaporation 
of the bound water requires a long time at a higher temperature. So the MC of the 
blade is lower than that of leaf vein and petiole in the early stage of drying. Through 
visualization analysis, and spatial variation of MC can be intuitively detected which 
will provide vital information for understanding the drying dynamics of tea leaf 
and optimization of tea leaf drying process.

4. Conclusions

This study was conducted to evaluate the dominant position of hyperspectral 
imaging technique in NIR region for mapping spatial distribution of MC in tea 
buds during dehydration. The results demonstrated that as a promising technology, 

Figure 7. 
Distribution maps of MC in tea buds in six dehydrated periods. (a) Pseudo-color image of the tea buds in 
three monochromatic images at 1399, 1197 and 995 nm; and (b) the spatial distribution maps of MC in six 
dehydrated periods.
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hyperspectral imaging could achieve the objective of mapping the MC distribution 
in tea bud during the drying process. In this research, the chemometric method of 
CARS was employed to select EWs. After that, PLSR algorithm was used to establish 
the quantitative relationship between the spectral reflectance and measured MC of 
tea buds. At last stage, the MC of all pixels in tea buds were calculated based on the 
optimal PLSR model. Meanwhile, the spatial distribution maps were built using a 
developed image processing procedure. The spatial variation of MC could expose 
the different MC within tea buds in different dehydrated periods, which applied 
an approach to kinetic analysis of MC in drying process, and provide important 
information for optimization of tea processing technic.

In further research, tea products with more types of sample and different 
geographical locations, ages and times should be taken into account to establish 
more robust and generate MC determination model, which could give more help for 
optimization of dehydrated process of agricultural products.
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hyperspectral imaging could achieve the objective of mapping the MC distribution 
in tea bud during the drying process. In this research, the chemometric method of 
CARS was employed to select EWs. After that, PLSR algorithm was used to establish 
the quantitative relationship between the spectral reflectance and measured MC of 
tea buds. At last stage, the MC of all pixels in tea buds were calculated based on the 
optimal PLSR model. Meanwhile, the spatial distribution maps were built using a 
developed image processing procedure. The spatial variation of MC could expose 
the different MC within tea buds in different dehydrated periods, which applied 
an approach to kinetic analysis of MC in drying process, and provide important 
information for optimization of tea processing technic.
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geographical locations, ages and times should be taken into account to establish 
more robust and generate MC determination model, which could give more help for 
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Chapter 6

Use of Hyperspectral Remote 
Sensing to Estimate Water Quality
Mbongowo Mbuh

Abstract

Approximating and forecasting water variables like phosphorus, nitrogen, 
chlorophyll, dissolved organic matter, and turbidity are of supreme importance due 
to their strong influence on water resource quality. This chapter is aimed at showing 
the practicability of merging water quality observations from remote sensing with 
water quality modeling for efficient and effective monitoring of water quality. We 
examine the spatial dynamics of water quality with hyperspectral remote sensing 
and present approaches that can be used to estimate water quality using hyperspec-
tral images. The methods presented here have been embraced because the blue-
green and green algae peak wavelengths reflectance are close together and make 
their distinction more challenging. It has also been established that hyperspectral 
imagers permit an improved recognition of chlorophyll and hereafter algae, due to 
acquired narrow spectral bands between 450 nm and 600 nm. We start by describ-
ing the practical application of hyperspectral remote sensing data in water quality 
modeling. The surface inherent optical properties of absorption and backscatter-
ing of chlorophyll a, colored dissolved organic matter (CDOM), and turbidity are 
estimated, and a detailed approach on analyzing ARCHER data for water quality 
estimation is presented.

Keywords: water quality, field spectroscopy, ARCHER, chlorophyll a, colored 
dissolved organic matter, turbidity, total phosphorus, nitrogen

1. Introduction

Water is one of the valuable and essential resources of life on earth. There is ever-
increasing stress on water resources, and as population increases, there is an ever-
increasing pressure placed on water resources [1–3]. Several nations depend on water 
resources for economic growth [4]. Water serves as a source of food, income, and 
livelihood for many [4, 5]. Equally, important information on resources that support 
life in an ecosystem is delivered by the quality of surface water [6]. An increase in 
water pollution deteriorates water quality and also threatens human health, aquatic 
ecosystem balance, economic development, and social prosperity [7, 8].

Supportable water resources management requires continuous and accurate 
monitoring. Satellite observations [1, 9] have provided data for such tracking for 
several years [10] and have served at a time- and the cost-effective way to carry 
out large-scale monitoring [11, 12]. Water pollution is an important environmental 
issue, further limiting the availability of water for human and environmental 
use [1, 13]. Though nutrients are indispensable for plant and animal growth and 
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Chapter 6

Use of Hyperspectral Remote 
Sensing to Estimate Water Quality
Mbongowo Mbuh

Abstract

Approximating and forecasting water variables like phosphorus, nitrogen, 
chlorophyll, dissolved organic matter, and turbidity are of supreme importance due 
to their strong influence on water resource quality. This chapter is aimed at showing 
the practicability of merging water quality observations from remote sensing with 
water quality modeling for efficient and effective monitoring of water quality. We 
examine the spatial dynamics of water quality with hyperspectral remote sensing 
and present approaches that can be used to estimate water quality using hyperspec-
tral images. The methods presented here have been embraced because the blue-
green and green algae peak wavelengths reflectance are close together and make 
their distinction more challenging. It has also been established that hyperspectral 
imagers permit an improved recognition of chlorophyll and hereafter algae, due to 
acquired narrow spectral bands between 450 nm and 600 nm. We start by describ-
ing the practical application of hyperspectral remote sensing data in water quality 
modeling. The surface inherent optical properties of absorption and backscatter-
ing of chlorophyll a, colored dissolved organic matter (CDOM), and turbidity are 
estimated, and a detailed approach on analyzing ARCHER data for water quality 
estimation is presented.

Keywords: water quality, field spectroscopy, ARCHER, chlorophyll a, colored 
dissolved organic matter, turbidity, total phosphorus, nitrogen

1. Introduction

Water is one of the valuable and essential resources of life on earth. There is ever-
increasing stress on water resources, and as population increases, there is an ever-
increasing pressure placed on water resources [1–3]. Several nations depend on water 
resources for economic growth [4]. Water serves as a source of food, income, and 
livelihood for many [4, 5]. Equally, important information on resources that support 
life in an ecosystem is delivered by the quality of surface water [6]. An increase in 
water pollution deteriorates water quality and also threatens human health, aquatic 
ecosystem balance, economic development, and social prosperity [7, 8].

Supportable water resources management requires continuous and accurate 
monitoring. Satellite observations [1, 9] have provided data for such tracking for 
several years [10] and have served at a time- and the cost-effective way to carry 
out large-scale monitoring [11, 12]. Water pollution is an important environmental 
issue, further limiting the availability of water for human and environmental 
use [1, 13]. Though nutrients are indispensable for plant and animal growth and 
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nourishment, an excess of some nutrients in water can disturb the river [1, 14, 15]. 
Excellent and clear water is imperative to the plants and animals that live in any 
watershed.

A significant difficulty in assessing surface water quality is identifying the 
sources of pollutants and the contribution of the parameters/variables that explain 
water quality variation [1, 6, 16–18]. Determining the conditions and parameters of 
water quality is one of the significant advantages of hyperspectral remote sens-
ing technologies. Hyperspectral reflectance technology has been broadly used to 
examine and monitor the water quality conditions of many open water aquatic eco-
systems [19, 20]. Hyperspectral remote sensing has been used to characterize algal 
blooms [21] and assess ammonia dynamics for wetland treatments [22, 23]. Tilley 
et al. [23] also developed remotely sensed hyperspectral signatures of macrophytes 
to monitor changes in wetland water quality predictors of total ammonia concentra-
tions [24] Hyperspectral remote sensing has similarly been used to determine water 
quality parameters like temperature, chlorophyll a, total suspended solids  
[25, 26], total phosphorus [27, 28], and turbidity; Lillesand et al. [29] and Lathrop 
and Lillesand [30] studied lakes and reservoirs, estuaries [31, 32], and tropical 
coastal areas [33, 34]. Other water quality studies on monitoring surface water 
bodies in different parts of the world (e.g., [35–40]) have all been interested in 
modeling and development of concentration distribution maps for different water 
quality parameters based on its reflectance characteristics. Algal concentrations 
in water through hyperspectral remote sensing images have been undertaken in 
the estimation of chlorophyll that is then used as an estimate for monitoring algal 
content and hence water quality. This approach has been adopted because wave-
lengths corresponding with the peak reflectance of blue-green and green algae are 
close together; it is harder to differentiate between them [19, 41, 42]. Hakvoorth 
et al. [43], however, demonstrate that hyperspectral imagers permit for improved 
detection of chlorophyll and hereafter algae, as a result of acquired narrow spectral 
bands between 450 nm and 600 nm [20, 44].

1.1 Remote sensing for water quality

The spectral signature changes in the water can be measured and relate them 
to empirical or analytical models to a water quality parameter through remote 
sensing techniques [25, 45]. Since the 1960s, the earth’s resources have been 
monitored from space by the National Aeronautics and Space Administration 
(NASA) with multispectral scanners, which collect data sets in about 5–10 bands 
of relatively large bandwidths (70–400 nm) [10, 46]. The spectral resolution of 
data from the multispectral scanners was limited, inadequately evaluating water 
quality and starting in the mid-1980s. Hyperspectral remote sensing with a higher 
spectral resolution (i.e., 224 bands) and 30 meters in spatial resolution covering 
wavelengths from the 400–2500 nm “in the visible and near-infrared bands of the 
spectrum” (Field Assessment of a Fiber Optic Spectral Reflectance System http://
horttech.ashspublications.org/content/6/1/73.full.pdf) became available for earth 
sciences including water quality monitoring. Some of these hyperspectral sensors 
include FTHSI on MightySat II, Hyperion on NASA EO-1, airborne visible/infrared 
imaging spectrometer (AVIRIS), Airborne real-time cueing hyperspectral enhanced 
reconnaissance (ARCHER), Hyperspectral Digital Imagery Collection Experiment 
(HYDICE), PROBE-1, Compact Airborne Spectrographic Imager (CASI), and 
HyMap. The ARCHER sensor, which is of interest to this research, is used to 
estimate the water quality parameters. The very high spectral resolution of hyper-
spectral sensors gives them the advantage over multispectral sensors in facilitating 
exceptional differentiation of objects based on their spectral response in the narrow 
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bands [10, 47]. This spectral information has made hyperspectral sensor data very 
useful in estimating dissolved organic matter, chlorophyll, and total suspended 
matter concentrations from optical remote sensing technologies [43, 48, 49]. Our 
objective is to review the literature of water quality as it relates to remote sensing, 
water quality modeling, and data fusion.

The application of hyperspectral remote sensing techniques to water resource 
problems is proving to be the most in-depth way of examining spatial, spectral, and 
temporal variations to derive more accurate estimates of information required for 
water resource applications [19]. This emergence offers the capability of covering 
large areas on a real-time scale to directly monitor and characterize environmental 
pollutants entering a body of water. Addressing the problem of colored dissolved 
organic matter (CDOM), Nelson and Guarda [50], in the South Atlantic Bight, and 
Vodacek et al. [51], in the Mid-Atlantic, examined the visible absorption spectra 
and characteristics of particulate and dissolved materials. Both studies demon-
strated that colored dissolved organic matter comes mostly from riverine runoff, 
and it is also widespread and abundant in natural waters, which have a significant 
portion of the dissolved organic matter (10–90%), and influences water-leaving 
radiances [52]. Another chlorophyll retrieval study by Fell et al. [53] used chloro-
phyll algorithms to describe coastal properties in the Monterey Bay through hyper-
spectral remote sensing. Using a composite AVIRIS to examine marine environment 
changes, the Sea-viewing Wide Field-of-view Sensor (SeaWiFS) algorithm was 
applied to derive chlorophyll information. The study showed the importance of 
high spatial resolution in representing the coastal ocean in the Monterey Bay, 
though additional research using higher hyperspectral resolution on the phyto-
plankton pigment spectral absorbance was recommended.

Kirkpatrick et al. [54] indicate that a considerable portion of the organic carbon 
in the oceans is found as dissolved organic matter (DOM) and a better understand-
ing of the distribution and dynamics of DOM is necessary for understanding 
global carbon cycles. The authors also demonstrate that CDOM is often present 
in concentrations sufficient to affect the color of lakes, estuaries, and nearshore 
coastal waters, although other studies have shown that CDOM absorption does not 
correlate with chlorophyll a [55, 56]. Brando and Dekker [57] used spectroscopy to 
test for its capabilities over a range of water targets in eastern Australia using open 
ocean flushing and a combination of turbid and humic river inputs, to determine 
the water quality of the bay. Integrated atmospheric and hydro-optical radiative 
transfer models (MODTRAN- 4, Hydrolight) were developed to estimate the 
underwater light field. A matrix inversion approach was used to retrieve chlorophyll 
a, dissolved organic matter, and suspended matter concentrations. The research 
demonstrated that Hyperion has enough sensitivity to map optical water quality 
concentrations of total suspended matter, dissolved organic matter, chlorophyll, 
and concurrently the complex waters of estuarine and coastal systems of the 
Moreton Bay. The results obtained from this retrieval were comparable to those 
estimated in the field campaigns, which were coincident with Hyperion overpasses. 
[38], in a similar study, collected three sets of remote sensing and ground-truth data 
to evaluate the correlations between reflection data and water quality analyses to 
develop optical indicators of water quality constituents. Imagery and field reflec-
tance data and water quality samples were collected in the river in 1999 concur-
rently, and 2001, in southwest Ohio, and results showed a correlation between the 
spectral data and water quality parameters.

Brezonik et al. [36] used Landsat-based remote sensing to characterize chloro-
phyll a, total suspended sediments (TSS), turbidity, and Secchi disk transparency 
(SDT) of lake water quality. All three variables demonstrated a high correlation 
with each other, and all act as direct or indirect measures of algal abundance in 
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nourishment, an excess of some nutrients in water can disturb the river [1, 14, 15]. 
Excellent and clear water is imperative to the plants and animals that live in any 
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bands [10, 47]. This spectral information has made hyperspectral sensor data very 
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The application of hyperspectral remote sensing techniques to water resource 
problems is proving to be the most in-depth way of examining spatial, spectral, and 
temporal variations to derive more accurate estimates of information required for 
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strated that colored dissolved organic matter comes mostly from riverine runoff, 
and it is also widespread and abundant in natural waters, which have a significant 
portion of the dissolved organic matter (10–90%), and influences water-leaving 
radiances [52]. Another chlorophyll retrieval study by Fell et al. [53] used chloro-
phyll algorithms to describe coastal properties in the Monterey Bay through hyper-
spectral remote sensing. Using a composite AVIRIS to examine marine environment 
changes, the Sea-viewing Wide Field-of-view Sensor (SeaWiFS) algorithm was 
applied to derive chlorophyll information. The study showed the importance of 
high spatial resolution in representing the coastal ocean in the Monterey Bay, 
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Kirkpatrick et al. [54] indicate that a considerable portion of the organic carbon 
in the oceans is found as dissolved organic matter (DOM) and a better understand-
ing of the distribution and dynamics of DOM is necessary for understanding 
global carbon cycles. The authors also demonstrate that CDOM is often present 
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coastal waters, although other studies have shown that CDOM absorption does not 
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transfer models (MODTRAN- 4, Hydrolight) were developed to estimate the 
underwater light field. A matrix inversion approach was used to retrieve chlorophyll 
a, dissolved organic matter, and suspended matter concentrations. The research 
demonstrated that Hyperion has enough sensitivity to map optical water quality 
concentrations of total suspended matter, dissolved organic matter, chlorophyll, 
and concurrently the complex waters of estuarine and coastal systems of the 
Moreton Bay. The results obtained from this retrieval were comparable to those 
estimated in the field campaigns, which were coincident with Hyperion overpasses. 
[38], in a similar study, collected three sets of remote sensing and ground-truth data 
to evaluate the correlations between reflection data and water quality analyses to 
develop optical indicators of water quality constituents. Imagery and field reflec-
tance data and water quality samples were collected in the river in 1999 concur-
rently, and 2001, in southwest Ohio, and results showed a correlation between the 
spectral data and water quality parameters.

Brezonik et al. [36] used Landsat-based remote sensing to characterize chloro-
phyll a, total suspended sediments (TSS), turbidity, and Secchi disk transparency 
(SDT) of lake water quality. All three variables demonstrated a high correlation 
with each other, and all act as direct or indirect measures of algal abundance in 
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Minnesota lakes. This study also showed that chl-a and turbidity could be estimated 
from Landsat data if the near-contemporaneous ground measurements are avail-
able for calibration. Also, Kneubühler et al. [58], in evaluating total chlorophyll 
content (TCHL) concentration, used spectral reflectance data measured at 1 m 
above the water surface with a handheld field spectroradiometer and applied the 
semi-analytical algorithms. The results proved to be valuable for an enormous range 
of observed TCHL concentrations (0–460 μg/L), high r2, and low mean deviations. 
Dingtian et al. [59] used hyperspectral remote sensing images and field reflectance 
measurements with Field spec, to characterize chl-a and suspended solids in Taihu 
Lake, China. Their results showed the relationship between chl-a and wavelengths 
in Taihu Lake in different seasons, with an average correlation coefficient of more 
than 0.65. This research showed success in the application of hyperspectral remote 
sensing in retrieving chl-a and suspended solid concentrations.

Giardino et al. [60] used hyperspectral data to map chlorophyll a and tripton 
concentrations in Lake Garda based on the forward and inverse bio-optical model-
ing. The research demonstrated that Hyperion-derived levels were on average 
comparable to in situ data for chlorophyll a. The authors, however, mentioned that 
the same analysis was more complicated for tripton since some incompatibilities of 
methods occurred. This study demonstrated that the spatial and spectral resolu-
tions of Hyperion and the capability of physics-based approaches were considered 
highly suitable, although more research was necessary to address the compatibilities 
of methods for monitoring waterbody features with a high rate of wind or wave-
driven change. This study also showed that procedures used can be transferred to 
other water bodies if the optical characterization of the water body is known and 
information about atmospheric properties during the satellite overpass is accessible.

Equally, Giardino et al. [61] used satellite data and field spectrometer data 
to estimate chl-a as an indicator of the trophic level and CDOM in the Curonian 
Lagoon. A PANalytical handheld spectroradiometer in situ Rrs spectra can be used 
to parameterize a semi-empirical algorithm in retrieving chl-a concentrations and 
validate the performances of two atmospheric correction algorithms, to build a 
bond ratio algorithm for chl-a and to validate MERIS-derived maps. Results from 
this combined in situ and calibration study confirmed the hypertrophic/dystrophic 
conditions of the Curonian Lagoon.

Santini et al. [62], to analyze colored dissolved organic matter, used hyper-
spectral remote sensing techniques ranging from empirical algorithm to complex 
physics-based models to retrieve water quality constituent. With the empirical 
approach, acceptable results for the CDOM concentrations were returned. The 
study also showed a correlation index of over 0.82, between the laboratory CDOM 
concentrations and model output. The study showed that the physical model could 
be used to retrieve simultaneously of chlorophyll and the total suspended matter 
concentrations. Another research studying the relationship between suspended 
sediments and reflectance has been demonstrated to rely on physical and optical 
characteristics of sediment type and sensor zenith angle [63], and the properties of 
scattering and absorption of sediment type affect water reflectance [64].

Xiao et al. [65] explored the potential of in situ hyperspectral remote sensing for 
estimating chlorophyll a and phycocyanin concentrations of a water body. In situ 
measurements of the lake surface reflectance at the five sites were examined using 
PANalytical FieldSpec3 spectroradiometer to investigate the relationship between 
PANalytical-based reflectance data and chlorophyll a and phycocyanin concentra-
tions at different depths of water. The study shows significant correlations between 
lake surface reflectance and chlorophyll a and phycocyanin concentrations in upper 
mixed surface waters (0 to 1 m depth) at these five sites. Hommersom et al. [66] 
also used PANalytical field spec to carry out measurements in the central basin 

111

Use of Hyperspectral Remote Sensing to Estimate Water Quality
DOI: http://dx.doi.org/10.5772/intechopen.89222

of Lake Vänern, and matrix inversion algorithms were used to derive parameters 
such as the concentrations of chl-a and suspended particulate matter (SPM) and 
the absorption by colored dissolved organic matter at 440 nm. Maltese et al. [67] 
retrieved turbidity from MODIS data, and PANalytical handheld spectrometer 
was used to obtain underwater irradiances at 11 depths from just below the water’s 
surface, up to 5.5 meters. In situ data, acquired during the spring and summer, 
were used to enhance the retrieval of water surface nephelometric turbidity locally 
through satellite images.

2. Remote sensing of water quality analysis approaches

2.1 Empirical approach and analytical methods

There exist two main approaches to examining water quality from remotely 
sensed data: the (semi-) empirical approach and the (semi-) analytical method  
[60, 68–72]. The most common are the semi-empirical and empirical approaches 
where water quality is determined by statistical relationships between measured 
spectral properties (reflectance) and the measured water quality parameter of 
interest [72]. Ocean color derivation algorithms for chlorophyll a concentration 
have applied this approach to high correlations between chl-a and the blue and 
green spectral regions (chl-a has absorption maxima at 430–450 nm and  
660–680 nm (nanometers)) (Reif [73]). However, Dall’Olmo and Gitelson [74] 
have illustrated that these spectral regions typically do not work, and this problem 
has been fixed by subtracting the contributions of other factors on reflectance 
nearby the peak at 670 nm with a three-band reflectance model [75, 76].

With the use of empirical approaches, statistical regressions are recognized 
among reflectance values extracted from the image with synchronized in situ water 
quality measurements for correlation and validation well for retrieval of chl-a in 
waters with increased turbidity and overlapping absorption of dissolved organic 
matter and tripton [73, 76]. Using this method wavelengths are naturally evaluated 
and selected from regions in the spectrum in which absorption and reflectance are 
strongly impacted by the parameter of interest [68]. Band ratio algorithms between 
a reflectance peak near 700 nm and an absorption peak (red chl-a absorption band) 
around 670–680 nm have been developed for turbid water environments to retrieve 
chlorophyll [73]. Though the empirical approach has shown some success, it has the 
disadvantages that they require in situ samplings for testing and validation and they 
tend to be scene dependent, to apply locally to the explicit data from which they 
were derived [60, 68, 72, 77].

To solve this problem, analytically and semi-analytical approaches that mention 
modeling that is more complex where water parameter concentrations are related 
physically to the measured reflectance spectra by evaluating their absorption and 
scattering coefficients at multiple wavelengths are necessary to take care of the 
problems [73]. This method establishes sophisticated radiative transfer equations, 
relationships between water reflectance and the concentration of constituents 
and their specified inherent optical properties (SIOPS) [60, 68, 70, 72]. Using the 
analytical approach, the radiative transfer equation is inverted to determine water 
quality parameters, and several inversion procedures have been established for this 
purpose [78, 79] and have been revealed to optimize unknown parameters when 
measured input does not exist [60, 62, 78].

The inversion approach has been vital to separate bottom reflectance from water 
column spectra, in superficial waters where the water-leaving radiance/reflectance 
possibly encompasses some spectral evidence from the bottom reflectance and in 
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study also showed a correlation index of over 0.82, between the laboratory CDOM 
concentrations and model output. The study showed that the physical model could 
be used to retrieve simultaneously of chlorophyll and the total suspended matter 
concentrations. Another research studying the relationship between suspended 
sediments and reflectance has been demonstrated to rely on physical and optical 
characteristics of sediment type and sensor zenith angle [63], and the properties of 
scattering and absorption of sediment type affect water reflectance [64].

Xiao et al. [65] explored the potential of in situ hyperspectral remote sensing for 
estimating chlorophyll a and phycocyanin concentrations of a water body. In situ 
measurements of the lake surface reflectance at the five sites were examined using 
PANalytical FieldSpec3 spectroradiometer to investigate the relationship between 
PANalytical-based reflectance data and chlorophyll a and phycocyanin concentra-
tions at different depths of water. The study shows significant correlations between 
lake surface reflectance and chlorophyll a and phycocyanin concentrations in upper 
mixed surface waters (0 to 1 m depth) at these five sites. Hommersom et al. [66] 
also used PANalytical field spec to carry out measurements in the central basin 
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of Lake Vänern, and matrix inversion algorithms were used to derive parameters 
such as the concentrations of chl-a and suspended particulate matter (SPM) and 
the absorption by colored dissolved organic matter at 440 nm. Maltese et al. [67] 
retrieved turbidity from MODIS data, and PANalytical handheld spectrometer 
was used to obtain underwater irradiances at 11 depths from just below the water’s 
surface, up to 5.5 meters. In situ data, acquired during the spring and summer, 
were used to enhance the retrieval of water surface nephelometric turbidity locally 
through satellite images.

2. Remote sensing of water quality analysis approaches

2.1 Empirical approach and analytical methods

There exist two main approaches to examining water quality from remotely 
sensed data: the (semi-) empirical approach and the (semi-) analytical method  
[60, 68–72]. The most common are the semi-empirical and empirical approaches 
where water quality is determined by statistical relationships between measured 
spectral properties (reflectance) and the measured water quality parameter of 
interest [72]. Ocean color derivation algorithms for chlorophyll a concentration 
have applied this approach to high correlations between chl-a and the blue and 
green spectral regions (chl-a has absorption maxima at 430–450 nm and  
660–680 nm (nanometers)) (Reif [73]). However, Dall’Olmo and Gitelson [74] 
have illustrated that these spectral regions typically do not work, and this problem 
has been fixed by subtracting the contributions of other factors on reflectance 
nearby the peak at 670 nm with a three-band reflectance model [75, 76].

With the use of empirical approaches, statistical regressions are recognized 
among reflectance values extracted from the image with synchronized in situ water 
quality measurements for correlation and validation well for retrieval of chl-a in 
waters with increased turbidity and overlapping absorption of dissolved organic 
matter and tripton [73, 76]. Using this method wavelengths are naturally evaluated 
and selected from regions in the spectrum in which absorption and reflectance are 
strongly impacted by the parameter of interest [68]. Band ratio algorithms between 
a reflectance peak near 700 nm and an absorption peak (red chl-a absorption band) 
around 670–680 nm have been developed for turbid water environments to retrieve 
chlorophyll [73]. Though the empirical approach has shown some success, it has the 
disadvantages that they require in situ samplings for testing and validation and they 
tend to be scene dependent, to apply locally to the explicit data from which they 
were derived [60, 68, 72, 77].

To solve this problem, analytically and semi-analytical approaches that mention 
modeling that is more complex where water parameter concentrations are related 
physically to the measured reflectance spectra by evaluating their absorption and 
scattering coefficients at multiple wavelengths are necessary to take care of the 
problems [73]. This method establishes sophisticated radiative transfer equations, 
relationships between water reflectance and the concentration of constituents 
and their specified inherent optical properties (SIOPS) [60, 68, 70, 72]. Using the 
analytical approach, the radiative transfer equation is inverted to determine water 
quality parameters, and several inversion procedures have been established for this 
purpose [78, 79] and have been revealed to optimize unknown parameters when 
measured input does not exist [60, 62, 78].

The inversion approach has been vital to separate bottom reflectance from water 
column spectra, in superficial waters where the water-leaving radiance/reflectance 
possibly encompasses some spectral evidence from the bottom reflectance and in 
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the water column [73, 80]. Using the simple methods like the empirical method, 
optically, shallow water can result in an overestimation of water column constitu-
ents caused by high reflectance values primarily from the bottom reflectance [81]. 
Comparing empirical and analytical approaches, it can be noted that analytical and 
semi-analytical methods are preferred for subsequent reasons: (1) they can be used 
to estimate both optically profound and shallow water optical properties, and the 
bottoms of optically shallow waters with physics-based modeling; (2) the approach 
does not require in situ water quality measurements to model, resulting in its inde-
pendence; and (3) analytical and semi-analytical methods can be applied regionally 
in multiple lakes, reservoirs, and rivers with varied circumstances. Notwithstanding 
these benefits, nonetheless, they are computationally intensive and more expensive 
and difficult to use, thus requiring information of the inherent optical properties 
of the water body [73]. This research relies on the analytical approach to analyzing 
spectroscopic data.

2.2 Use of hyperspectral remote sensing methods and standard water quality 
approach in measuring the water quality parameters

Although the standard methods provide accurate measurement for a point 
in time and space, spatial or temporal view of water quality required for precise 
assessment of large water systems is usually not available [72]. It is necessary to 
integrate the use of calibrated image data with field spectral measurements to 
solve this problem, so as entirely to deploy the spatial and spectral information of 
hyperspectral remote sensing data. Hyperspectral images are critical for the water 
quality assessments where field data collection is planned to coincide with flight 
overpasses followed by the retrieval of the apparent and inherent optical properties 
of the basin or watershed of interest.

An in situ sampling water quality survey for nutrients is necessary at multiple 
sites in the study area, using the EPA-approved quality control/quality assurance 
procedures. A sample collected procedure is required, and we recommend 15 to 20 
samples from each sampling area separated by at least 100 m from each other; using 
handheld spectrometer and paying particular attention to just the deep portions of 
the river for sample collection, above surface water reflectance was also measured. 
In situ data for chlorophyll a and other nutrients of interest can also be obtained 
from water quality databases, which contain data for fixed monitoring stations 
throughout the watershed of interest.

Using the handheld spectrometer to measure all the relevant quantities from above 
the surface, three types of measurements were carried out at each sampling site with 
the spectrometer: total upwelling radiance (LT), downwelling sky radiance (LSky), 
and “gray-card” radiance (LG, 3) reflected from a diffuse reflector (Spectralon®) 
[71]. All measurements were carried out at about 2:30 pm (local time), under clear 
skies, minor cloud cover, a wind speed of 4 m s−1, and very calm water, at roughly 
0.5 m above the water surface using a canoe. The above-water reflectance needs to 
be measured at 40° from the nadir and 90° from the azimuth and the sky reflectance 
measured in the same plane as the water, except for the angle from the zenith, which 
was 40°. To determine the downwelling irradiance, the Spectralon is assumed to have 
a Lambertian reflector in which, Ed = πLG/R, where LG is the average of the four 
grayscale scans and RG the reflectance of the diffuse reflector (~10%) [71].

2.3 Hyperspectral image processing

For the quantitative assessments of water quality parameters, detectable from 
hyperspectral data, data preprocessing is required by performing robust corrections 
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for atmospheric effects of adjacency effects and those effects occurring at the 
water surface level (sunglint, specular reflection of direct irradiance, and diffuse 
skylight).

Hyperspectral imagery requires an atmospheric correction to retrieve the 
surface reflectance from remotely sensed imagery by removing the atmospheric 
effects such as water vapor and other trace gasses. In an atmospheric correction, the 
radiance values are transformed into reflectance data to obtain water reflectance 
by removing surface reflectance [82], measuring the fraction of radiation reflected 
from the surface [83]. This procedure is particularly important for quantitative 
image analysis or change detection using hyperspectral data; image calibration is 
essential for remote sensing (Figure 1) to convert the instrument’s digital numbers 
(DNs) to a substantial value to correct atmospheric instrument effect.

Image-driven empirical correction procedures have been suggested [57, 84, 85] 
for use with the Hyperspectral Imager for the Coastal Ocean (HICO), airborne vis-
ible/infrared imaging spectrometer (AVIRIS), Compact Airborne Spectrographic 
Imager (CASI-2), and Hyperion [86]. The empirical correction approach is based 
on the facts that clear ocean waters have water-leaving reflectance above 800 nm 
close to zero and sunglint and cirrus reflectance in the 400–1000 nm region. In this 
dissertation, we use the empirical line approach, which is an atmospheric correction 
method that serves as an alternative to radiative transfer modeling approaches [87]. 
This method calculates the empirical relation between radiance and reflectance 
using a dark and a bright target, well-characterized by field and image spectra. Our 
targets were measured in the area during data collection for optimal representation.

This method has been applied to correct both land and ocean data [88] and has 
shown great success with both coarser spatial resolution satellite sensor data and 
airborne data approaches [87]. This technique is only suitable for regional data 
correction where reflectance properties of bright and dark targets such as sand and 
water over uniform areas are measured coincidentally with the aircraft or airborne 
overpass [89].

A minimum of two known materials is required to use this method to carry out 
the calibration, and selecting one bright object and one dark object is also crucial 
for this exercise. This calibration method is recommended to use on two targets; 
however, using more targets will better estimate the relationship between target 
reflectance and at-sensor radiance [87, 88]. Using the image and field spectra, the 
two targets are regressed linearly against the reflectance spectra measured on the 

Figure 1. 
ARCHER color composite (RGB of 726 nm, 668 nm, and 551 nm) for areas around Edinburg, the NorthFork of 
Shenandoah River in Virginia, USA. Image location: 38°49′55. 32″N 78°33’1. 53″W, North Edinburg, NF.
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the water column [73, 80]. Using the simple methods like the empirical method, 
optically, shallow water can result in an overestimation of water column constitu-
ents caused by high reflectance values primarily from the bottom reflectance [81]. 
Comparing empirical and analytical approaches, it can be noted that analytical and 
semi-analytical methods are preferred for subsequent reasons: (1) they can be used 
to estimate both optically profound and shallow water optical properties, and the 
bottoms of optically shallow waters with physics-based modeling; (2) the approach 
does not require in situ water quality measurements to model, resulting in its inde-
pendence; and (3) analytical and semi-analytical methods can be applied regionally 
in multiple lakes, reservoirs, and rivers with varied circumstances. Notwithstanding 
these benefits, nonetheless, they are computationally intensive and more expensive 
and difficult to use, thus requiring information of the inherent optical properties 
of the water body [73]. This research relies on the analytical approach to analyzing 
spectroscopic data.

2.2 Use of hyperspectral remote sensing methods and standard water quality 
approach in measuring the water quality parameters

Although the standard methods provide accurate measurement for a point 
in time and space, spatial or temporal view of water quality required for precise 
assessment of large water systems is usually not available [72]. It is necessary to 
integrate the use of calibrated image data with field spectral measurements to 
solve this problem, so as entirely to deploy the spatial and spectral information of 
hyperspectral remote sensing data. Hyperspectral images are critical for the water 
quality assessments where field data collection is planned to coincide with flight 
overpasses followed by the retrieval of the apparent and inherent optical properties 
of the basin or watershed of interest.

An in situ sampling water quality survey for nutrients is necessary at multiple 
sites in the study area, using the EPA-approved quality control/quality assurance 
procedures. A sample collected procedure is required, and we recommend 15 to 20 
samples from each sampling area separated by at least 100 m from each other; using 
handheld spectrometer and paying particular attention to just the deep portions of 
the river for sample collection, above surface water reflectance was also measured. 
In situ data for chlorophyll a and other nutrients of interest can also be obtained 
from water quality databases, which contain data for fixed monitoring stations 
throughout the watershed of interest.

Using the handheld spectrometer to measure all the relevant quantities from above 
the surface, three types of measurements were carried out at each sampling site with 
the spectrometer: total upwelling radiance (LT), downwelling sky radiance (LSky), 
and “gray-card” radiance (LG, 3) reflected from a diffuse reflector (Spectralon®) 
[71]. All measurements were carried out at about 2:30 pm (local time), under clear 
skies, minor cloud cover, a wind speed of 4 m s−1, and very calm water, at roughly 
0.5 m above the water surface using a canoe. The above-water reflectance needs to 
be measured at 40° from the nadir and 90° from the azimuth and the sky reflectance 
measured in the same plane as the water, except for the angle from the zenith, which 
was 40°. To determine the downwelling irradiance, the Spectralon is assumed to have 
a Lambertian reflector in which, Ed = πLG/R, where LG is the average of the four 
grayscale scans and RG the reflectance of the diffuse reflector (~10%) [71].

2.3 Hyperspectral image processing

For the quantitative assessments of water quality parameters, detectable from 
hyperspectral data, data preprocessing is required by performing robust corrections 
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for atmospheric effects of adjacency effects and those effects occurring at the 
water surface level (sunglint, specular reflection of direct irradiance, and diffuse 
skylight).

Hyperspectral imagery requires an atmospheric correction to retrieve the 
surface reflectance from remotely sensed imagery by removing the atmospheric 
effects such as water vapor and other trace gasses. In an atmospheric correction, the 
radiance values are transformed into reflectance data to obtain water reflectance 
by removing surface reflectance [82], measuring the fraction of radiation reflected 
from the surface [83]. This procedure is particularly important for quantitative 
image analysis or change detection using hyperspectral data; image calibration is 
essential for remote sensing (Figure 1) to convert the instrument’s digital numbers 
(DNs) to a substantial value to correct atmospheric instrument effect.

Image-driven empirical correction procedures have been suggested [57, 84, 85] 
for use with the Hyperspectral Imager for the Coastal Ocean (HICO), airborne vis-
ible/infrared imaging spectrometer (AVIRIS), Compact Airborne Spectrographic 
Imager (CASI-2), and Hyperion [86]. The empirical correction approach is based 
on the facts that clear ocean waters have water-leaving reflectance above 800 nm 
close to zero and sunglint and cirrus reflectance in the 400–1000 nm region. In this 
dissertation, we use the empirical line approach, which is an atmospheric correction 
method that serves as an alternative to radiative transfer modeling approaches [87]. 
This method calculates the empirical relation between radiance and reflectance 
using a dark and a bright target, well-characterized by field and image spectra. Our 
targets were measured in the area during data collection for optimal representation.

This method has been applied to correct both land and ocean data [88] and has 
shown great success with both coarser spatial resolution satellite sensor data and 
airborne data approaches [87]. This technique is only suitable for regional data 
correction where reflectance properties of bright and dark targets such as sand and 
water over uniform areas are measured coincidentally with the aircraft or airborne 
overpass [89].

A minimum of two known materials is required to use this method to carry out 
the calibration, and selecting one bright object and one dark object is also crucial 
for this exercise. This calibration method is recommended to use on two targets; 
however, using more targets will better estimate the relationship between target 
reflectance and at-sensor radiance [87, 88]. Using the image and field spectra, the 
two targets are regressed linearly against the reflectance spectra measured on the 

Figure 1. 
ARCHER color composite (RGB of 726 nm, 668 nm, and 551 nm) for areas around Edinburg, the NorthFork of 
Shenandoah River in Virginia, USA. Image location: 38°49′55. 32″N 78°33’1. 53″W, North Edinburg, NF.
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field to derive the gain and offset coefficients [88]. Once the gains and offsets are 
obtained, they are then applied to the entire image to derive surface reflectance, 
by producing reflectance values that are comparable to field measured values 
[88] (Figures 1 and 2). The empirical line method uses the following equation to 
calculate the gains and offsets:

Reflectance (field spectrum) = gain* radiance (input data) + offset.
Remote sensing data is also impeded by the effect of wave-induced sun glint 

[90], and this has become a limiting factor in estimating water quality efficiently 
from airborne data with high accuracy. The environmental and atmospheric effects 
resulting in inaccuracies in remote sensing classification results remain a growing 
concern in remote sensing classification [91]. For an adequate estimation of water 
quality with remote sensing data that is void of inaccuracies, the sun glint needs 
to be examined. After performing atmospheric correction on our image, sunglint 
removal was required to correct atmospheric effects on the visible wavelength 
region (0.45–0.69 μm). The sunglint is the specular reflection of sunlight directly 
transmitted from the air-water interfaces [92]. Under clear skies and irregular water 
surface, specular reflectance can result in sun glint on the image, which reduces the 
accuracy of retrievals [93]. The sunglint often occurs on an image when the orienta-
tion of the water surface is directly reflected toward the sensor as a function of the 
position of the sun, the viewing angle, and the state of the water surface [92].

These circumstances have resulted to the more excellent specular reflection of 
light from water “than the water-leaving radiance from the sub-surface features.” 
The necessity to remove the sun glint contribution for better image classification or 
information retrieval has been recognized by several researchers [90]. The approach 
adopted for this research estimates the amount of glint in the image by using data 
from the near-infrared (NIR), with the assumption that water-leaving radiance is 
negligible in this part of the spectrum, and any NIR signal left after atmospheric 
correction is undoubtedly from the sunglint. A relationship is established between the 
NIR and glint radiance while using the spectrum of the deep-water part of the image 
[92]. We use the shallow water sunglint removal approach that assumes that all the 
radiance from the NIR reaching the sensor is from atmospheric scattering and surface 
reflection, and any signal at the NIR after atmospheric correction is sunglint [92].

Figure 2. 
Atmospherically corrected ARCHER using empirical line calibration approach with a color composite of RGB 
726 nm, 668 nm, and 551 nm for areas around Edinburg (above), for North Fork of the Shenandoah River 
taken on July 12, 2014. Image location: 38°49′55. 32″N 78°33’1. 53″W, North Edinburg, NF.

115

Use of Hyperspectral Remote Sensing to Estimate Water Quality
DOI: http://dx.doi.org/10.5772/intechopen.89222

3. Sunglint background and removal approach

There are five critical processes through which a remote sensing detector 
receives radiance reaching it, as shown in Figure 3 from Kay et al. [92].

Several approaches have been proposed for glint correction for estimating the 
contribution of glint to the “ the sensor reaching radiance, and then subtract it 
from the received signal” [92]. Hochberg et al. [94] proposed a sunglint removal 
method, which assumed that the NIR brightness is only made up of sunglint and 
a spatially constant ambient NIR component. This method also believes that the 
sunglint present in the visible band is linearly related to the brightness of the NIR 
band. However, all two assumptions were proven weak because the first assump-
tion models a constant ambient NIR brightness, which is removed from all pixels 
during analysis, and secondly, only two pixels are used to establish a linear rela-
tionship assumption. Selecting only one bright and one dark pixel could result to 
a bright pixel chosen from the land, which necessitated masking for results from 
this method to be efficient, and, this makes it very difficult and time-consuming. 
Thus, the difficulty of being able to identify an appropriate bright pixel can result 
in significant errors, which undermine the effectiveness of the method proposed by 
Hochberg et al. [94].

Hedley et al. [95], after acknowledging how sensitive this approach was to 
outlier pixel, proposed a revised method in which glint intensity is obtained using 
several pixels rather than two to establish a linear relationship between regression 
between the NIR and visible bands to allow sunglint contribution removal [90]. 
Hedley et al. [93] proposes using single or several regions on the image where 
sunglint is evident with consistent spectral brightness. The linear regression uses 
NIR brightness (x-axis) against the visible band’s intensity (Figure 4) of all the 
selected pixels.

As recommended by Hedley et al. [93], the first step is to select the minimum 
NIR brightness NIR Min deep-water pixels having a variety of glint intensities from 
which a sample is calculated. The next step in deglinting the image is to use each 
visible spectrum (VIS) Band i and perform a linear regression on the NIR pixel 

Figure 3. 
Diagram showing routes by which light can arrive at a remote sensing detector from Kay et al. (2005). 

 (A) Molecules or aerosols scattering in the atmosphere, which is either single or multiple. 
 (B) Surface-water scattering from the atmosphere followed by reflection to the detector—known as 

“sky glint.”  (C) Whitecaps reflections from the sea surface.  (D) Surface-water specular 
reflection directly transmitted from the sun to the atmosphere to the surface and from the surface to the 
detector—also called “sun glint.”  (E) Atmosphere and air-water interface transmission, which is 
followed by reflection or scattering below the water surface and transfer back to the detector through the 
atmosphere.
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field to derive the gain and offset coefficients [88]. Once the gains and offsets are 
obtained, they are then applied to the entire image to derive surface reflectance, 
by producing reflectance values that are comparable to field measured values 
[88] (Figures 1 and 2). The empirical line method uses the following equation to 
calculate the gains and offsets:

Reflectance (field spectrum) = gain* radiance (input data) + offset.
Remote sensing data is also impeded by the effect of wave-induced sun glint 

[90], and this has become a limiting factor in estimating water quality efficiently 
from airborne data with high accuracy. The environmental and atmospheric effects 
resulting in inaccuracies in remote sensing classification results remain a growing 
concern in remote sensing classification [91]. For an adequate estimation of water 
quality with remote sensing data that is void of inaccuracies, the sun glint needs 
to be examined. After performing atmospheric correction on our image, sunglint 
removal was required to correct atmospheric effects on the visible wavelength 
region (0.45–0.69 μm). The sunglint is the specular reflection of sunlight directly 
transmitted from the air-water interfaces [92]. Under clear skies and irregular water 
surface, specular reflectance can result in sun glint on the image, which reduces the 
accuracy of retrievals [93]. The sunglint often occurs on an image when the orienta-
tion of the water surface is directly reflected toward the sensor as a function of the 
position of the sun, the viewing angle, and the state of the water surface [92].

These circumstances have resulted to the more excellent specular reflection of 
light from water “than the water-leaving radiance from the sub-surface features.” 
The necessity to remove the sun glint contribution for better image classification or 
information retrieval has been recognized by several researchers [90]. The approach 
adopted for this research estimates the amount of glint in the image by using data 
from the near-infrared (NIR), with the assumption that water-leaving radiance is 
negligible in this part of the spectrum, and any NIR signal left after atmospheric 
correction is undoubtedly from the sunglint. A relationship is established between the 
NIR and glint radiance while using the spectrum of the deep-water part of the image 
[92]. We use the shallow water sunglint removal approach that assumes that all the 
radiance from the NIR reaching the sensor is from atmospheric scattering and surface 
reflection, and any signal at the NIR after atmospheric correction is sunglint [92].

Figure 2. 
Atmospherically corrected ARCHER using empirical line calibration approach with a color composite of RGB 
726 nm, 668 nm, and 551 nm for areas around Edinburg (above), for North Fork of the Shenandoah River 
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3. Sunglint background and removal approach

There are five critical processes through which a remote sensing detector 
receives radiance reaching it, as shown in Figure 3 from Kay et al. [92].

Several approaches have been proposed for glint correction for estimating the 
contribution of glint to the “ the sensor reaching radiance, and then subtract it 
from the received signal” [92]. Hochberg et al. [94] proposed a sunglint removal 
method, which assumed that the NIR brightness is only made up of sunglint and 
a spatially constant ambient NIR component. This method also believes that the 
sunglint present in the visible band is linearly related to the brightness of the NIR 
band. However, all two assumptions were proven weak because the first assump-
tion models a constant ambient NIR brightness, which is removed from all pixels 
during analysis, and secondly, only two pixels are used to establish a linear rela-
tionship assumption. Selecting only one bright and one dark pixel could result to 
a bright pixel chosen from the land, which necessitated masking for results from 
this method to be efficient, and, this makes it very difficult and time-consuming. 
Thus, the difficulty of being able to identify an appropriate bright pixel can result 
in significant errors, which undermine the effectiveness of the method proposed by 
Hochberg et al. [94].

Hedley et al. [95], after acknowledging how sensitive this approach was to 
outlier pixel, proposed a revised method in which glint intensity is obtained using 
several pixels rather than two to establish a linear relationship between regression 
between the NIR and visible bands to allow sunglint contribution removal [90]. 
Hedley et al. [93] proposes using single or several regions on the image where 
sunglint is evident with consistent spectral brightness. The linear regression uses 
NIR brightness (x-axis) against the visible band’s intensity (Figure 4) of all the 
selected pixels.

As recommended by Hedley et al. [93], the first step is to select the minimum 
NIR brightness NIR Min deep-water pixels having a variety of glint intensities from 
which a sample is calculated. The next step in deglinting the image is to use each 
visible spectrum (VIS) Band i and perform a linear regression on the NIR pixel 

Figure 3. 
Diagram showing routes by which light can arrive at a remote sensing detector from Kay et al. (2005). 

 (A) Molecules or aerosols scattering in the atmosphere, which is either single or multiple. 
 (B) Surface-water scattering from the atmosphere followed by reflection to the detector—known as 

“sky glint.”  (C) Whitecaps reflections from the sea surface.  (D) Surface-water specular 
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brightness R NIR against the pixel value of VIS band R i. A user-based selection 
process is used to collect the samples, and land or cloud masking is not necessary. 
The product of slope bi and RNIR minus MinNIR is subtracted from Ri to obtain the 
pixel Ri with glint removed using the following equation:

    R  ′  i    =  R  i    -   b  i   (  R  NIR    -    Min  NIR  )    (1)

where   b  i    is the regression slope.
  R  i    is the visible band.
  R  NIR    is the NIR pixel value.
  Min  NIR    is the ambient NIR value, which is NIR pixel with no sunglint, which is 

either estimated from the figure above or from the entire image, and it is less prone 
to outliers caused by nonoptically deep pixels.

The result of the sunglint corrects brightness in band i, by minimizing outlier 
effects caused by surface objects [92]. This approach can be applied on either before 
or after atmospheric correction since it works entirely on the relative magnitude 
of values, and the pixel units are not very necessary for image deglinting. We 
initially corrected out the image with the empirical line method before removing 
the sunglint. It should, however, be mentioned that, if there are variations in the 
atmosphere properties, this will also affect the regression slope, thus making glint 
effect to be confounded [92]. As outlined by Hedley et al. [93], this approach is 
attained in four steps:

Step-by-step implementation

1. Image is radiometrically corrected.

2. Area of the image displaying a range of sun glint, with a more or less homo-
geneous surface, is selected. The minimum NIR brightness value is determined.

3. The newly created region of interest is used as a subset to create a new im-
age with only the glare pixel subset and all image bands saved individually in 
ASCII. A linear regression of NIR brightness (x-axis) against the visible band 
(y-axis) is performed using the selected pixels in Excel to remove the sunglint 
from each band. The output of interest from the linear regression analysis for 
each band is the slope, which is called bi in the equation above.

4. To individually glint each band i or all pixels in the image, the product of bi 
and NIR brightness of the pixel (minus MinMIN) subtracted the pixel value in 
band i as illustrated in Eq. (1).

Figure 4. 
Graphical interpretation of sunglint correction method from Hedley et al. [93].
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4. Conclusion

The combination of several hundred spectral bands in a single acquisition has 
been made feasible by hyperspectral systems, which produce more detailed spectral 
data. Before advances in hyperspectral remote sensing, the multispectral imagery 
was the only data source in land and water observational remote sensing from 
airborne and spacecraft operations since the 1960s [10]. However, multispectral 
remote sensing data were only collected in three to six spectral bands in a single 
observation from the visible near-infrared and shortwave infrared regions of the 
electromagnetic spectrum, making it challenging to examine water quality from 
this data source. The present chapter covered hyperspectral remote sensing data 
analysis using field spectrometer data and remote sensing of water quality. Research 
has shown that remote sensing, GIS, and hydrological models can be integrated to 
solve hydrological problems [96, 97]. Here we review relevant literature on research 
in hyperspectral remote sensing that examines water quality parameters like sus-
pended sediments, turbidity, chlorophyll a, and total phosphorus as investigated by 
numerous researchers. Unique characteristics of hyperspectral remote sensing data 
are introduced. This chapter shows that field observations/ spectroscopy, and water 
quality modeling is very instrumental in the accuracy of remote sensing analysis. 
We also presented the methodology for the study of visible to infrared hyperspec-
tral remote sensing data from ARCHER aircraft and data collected with a handheld 
field portable spectroradiometer, to retrieve and establish a relationship between 
water quality parameters like chlorophyll a, colored dissolved organic matter, 
turbidity, phosphorus, and nitrogen in the Shenandoah River Basin.
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where   b  i    is the regression slope.
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effects caused by surface objects [92]. This approach can be applied on either before 
or after atmospheric correction since it works entirely on the relative magnitude 
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and NIR brightness of the pixel (minus MinMIN) subtracted the pixel value in 
band i as illustrated in Eq. (1).
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Graphical interpretation of sunglint correction method from Hedley et al. [93].
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