
Object Tracking
Edited by Hanna Goszczynska

Edited by Hanna Goszczynska

Photo by Murat Göçmen / iStock

Object tracking consists in estimation of trajectory of moving objects in the sequence
of images. Automation of the computer object tracking is a difficult task. Dynamics

of multiple parameters changes representing features and motion of the objects,
and temporary partial or full occlusion of the tracked objects have to be considered.
This monograph presents the development of object tracking algorithms, methods

and systems. Both, state of the art of object tracking methods and also the new
trends in research are described in this book. Fourteen chapters are split into two

sections. Section 1 presents new theoretical ideas whereas Section 2 presents real-life
applications. Despite the variety of topics contained in this monograph it constitutes
a consisted knowledge in the field of computer object tracking. The intention of editor

was to follow up the very quick progress in the developing of methods as well as
extension of the application.

ISBN 978-953-307-360-6

O
bject Tracking

OBJECT TRACKING

Edited by Hanna Goszczynska

OBJECT TRACKING

Edited by Hanna Goszczynska

Object Tracking
http://dx.doi.org/10.5772/614
Edited by Hanna Goszczynska

Contributors

Munchurl Kim, Muhammad Syah Houari Sabirin, Pier Luigi Mazzeo, Paolo Spagnolo, Hanna Goszczynska, Leszek
Kowalczyk, Budi Sugandi, Hyoungseop Kim, Seiji Ishikawa, Anna Hilsmann, Peter Eisert, David Schneider, Lizuo Jin,
Zhiguo Bian, Qinhan Xu, Zhengang Chen, Takeshi Sasaki, Hideki Hashimoto, Irene Y.H. Gu, Zulfiqar Khan, Jaime Riera,
Eduardo Parrilla, Juan R. Torregrosa, Jose L. Hueso, Junqiu Wang, Yasushi Yagi, Yun Zhai, Lyudmila Mihaylova, Artur
Loza, Fanglin Wang, Jie Yang, Ismael Daribo, Zachary Garrett, Yuki Takaya, Hideo Saito

© The Editor(s) and the Author(s) 2011
The moral rights of the and the author(s) have been asserted.
All rights to the book as a whole are reserved by INTECH. The book as a whole (compilation) cannot be reproduced,
distributed or used for commercial or non-commercial purposes without INTECH’s written permission.
Enquiries concerning the use of the book should be directed to INTECH rights and permissions department
(permissions@intechopen.com).
Violations are liable to prosecution under the governing Copyright Law.

Individual chapters of this publication are distributed under the terms of the Creative Commons Attribution 3.0
Unported License which permits commercial use, distribution and reproduction of the individual chapters, provided
the original author(s) and source publication are appropriately acknowledged. If so indicated, certain images may not
be included under the Creative Commons license. In such cases users will need to obtain permission from the license
holder to reproduce the material. More details and guidelines concerning content reuse and adaptation can be
foundat http://www.intechopen.com/copyright-policy.html.

Notice

Statements and opinions expressed in the chapters are these of the individual contributors and not necessarily those
of the editors or publisher. No responsibility is accepted for the accuracy of information contained in the published
chapters. The publisher assumes no responsibility for any damage or injury to persons or property arising out of the
use of any materials, instructions, methods or ideas contained in the book.

First published in Croatia, 2011 by INTECH d.o.o.
eBook (PDF) Published by IN TECH d.o.o.
Place and year of publication of eBook (PDF): Rijeka, 2019.
IntechOpen is the global imprint of IN TECH d.o.o.
Printed in Croatia

Legal deposit, Croatia: National and University Library in Zagreb

Additional hard and PDF copies can be obtained from orders@intechopen.com

Object Tracking
Edited by Hanna Goszczynska

p. cm.

ISBN 978-953-307-360-6

eBook (PDF) ISBN 978-953-51-5516-4

Selection of our books indexed in the Book Citation Index
in Web of Science™ Core Collection (BKCI)

Interested in publishing with us?
Contact book.department@intechopen.com

Numbers displayed above are based on latest data collected.
For more information visit www.intechopen.com

4,300+
Open access books available

151
Countries delivered to

12.2%
Contributors from top 500 universities

Our authors are among the

Top 1%
most cited scientists

116,000+
International authors and editors

130M+
Downloads

We are IntechOpen,
the world’s leading publisher of

Open Access books
Built by scientists, for scientists

Meet the editor

Hanna Goszczynska graduated from Warsaw Univer-
sity of Technology, Faculty of Fine Mechanics in 1979
with master degree (MSc) in Biomedical Engineering.
ln 2005 she has received the doctor’s degree (PhD) in
biomedical engineering in the Nat~cz Institute of Biocy-
bernetics and Biomedical Engineering Polish Academy
of Sciences. She was employed as an engineer at X-ray

Apparatuses and Medical Devices Works FARUM, Warsaw in 1979 - 1988.
Since 1989 she is with Nat~cz Institute of Biocybernetics and Biomedical
Engineering Polish Academy of Sciences. ln 2000 - 2006 she was a lecturer
of image processing in Warsaw School of lnformation Technology. Her
research interests cover medica I imaging: EEG mapping, angiographic
images, ultrasound images, SPECT, PET; image processing: densitometric
measurements, edge detection, segmentation, image enhancement, feature
extraction, movement estimation, image registration, similarity analysis
and pattern recognition. She isa member of the Polish Society of Medica I
Physics and the Polish Society of Biomedical Engineering.

Part 1

Chapter 1

Chapter 2

Chapter 3

Chapter 4

Chapter 5

Chapter 6

Chapter 7

Chapter 8

Preface IX

Methods 1

A Block Matching Technique for Object Tracking
Based on Peripheral Increment Sign Correlation Image 3
Budi Sugandi, Hyoungseop Kim., Joo Kooi Tan and Seiji Ishikawa

Structural Information Approaches
to Object Tracking in Video Sequences 23
Artur Loza, Lyudmila Mihaylova, Fanglin Wang and Jie Yang

Bayesian Tracking by Online Co-Training
and Sequential Evolutionary Importance Resampling 49
Lizuo Jin, Zhiguo Bian, Qinhan Xu and Zhengang Chen

Object Tracking Based on Color Information
Employing Particle Filter Algorithm 69
Budi Sugandi, Hyoungseop Kim, Joo Kooi Tan and Seiji Ishikawa

Online Learning and Robust
Visual Tracking using Local Features
and Global Appearances of Video Objects 89
Irene Y.H. Gu and Zulfiqar H. Khan

Switching Local and Covariance Matching
for Efficient Object Tracking 119
Junqiu Wang and Yasushi Yagi

Fuzzy Control System to Solve Coupling
Between Tracking and Predictive Algorithms 137
Eduardo Parrilla, Jaime Riera, Juan R. Torregrosa and José L. Hueso

Object Tracking and Indexing
in H.264/AVC Bitstream Domains 159
Muhammad Syah Houari Sabirin and Munchurl Kim

Contents

Part 1

Chapter 1

Chapter 2

Chapter 3

Chapter 4

Chapter 5

Chapter 6

Chapter 7

Chapter 8

Preface XI

Methods 1

A Block Matching Technique for Object Tracking
Based on Peripheral Increment Sign Correlation Image 3
Budi Sugandi, Hyoungseop Kim., Joo Kooi Tan and Seiji Ishikawa

Structural Information Approaches
to Object Tracking in Video Sequences 23
Artur Loza, Lyudmila Mihaylova, Fanglin Wang and Jie Yang

Bayesian Tracking by Online Co-Training
and Sequential Evolutionary Importance Resampling 49
Lizuo Jin, Zhiguo Bian, Qinhan Xu and Zhengang Chen

Object Tracking Based on Color Information
Employing Particle Filter Algorithm 69
Budi Sugandi, Hyoungseop Kim, Joo Kooi Tan and Seiji Ishikawa

Online Learning and Robust
Visual Tracking using Local Features
and Global Appearances of Video Objects 89
Irene Y.H. Gu and Zulfiqar H. Khan

Switching Local and Covariance Matching
for Efficient Object Tracking 119
Junqiu Wang and Yasushi Yagi

Fuzzy Control System to Solve Coupling
Between Tracking and Predictive Algorithms 137
Eduardo Parrilla, Jaime Riera, Juan R. Torregrosa and José L. Hueso

Object Tracking and Indexing
in H.264/AVC Bitstream Domains 159
Muhammad Syah Houari Sabirin and Munchurl Kim

Contents

X Contents

Accelerating Live Graph-Cut-Based
Object Tracking Using CUDA 177
Ismael Daribo, Zachary A. Garrett, Yuki Takaya and Hideo Saito

Applications 199

Parsing Object Events in Heavy Urban Traffic 201
Yun Zhai, Rogerio Feris, Arun Hampapur,
Stephen Russo and Sharath Pankanti

Object Tracking in Multiple Cameras with Disjoint Views 209
Pier Luigi Mazzeo and Paolo Spagnolo

Object Tracking for Calibration
of Distributed Sensors in Intelligent Space 229
Takeshi Sasaki and Hideki Hashimoto

Image-based Tracking of Deformable Surfaces 245
Anna Hilsmann, David C. Schneider and Peter Eisert

Tracking of Moving Coronary Artery
Segment in Sequence of X-Ray Images 267
Goszczynska Hanna and Kowalczyk Leszek

Chapter 9

Part 2

Chapter 10

Chapter 11

Chapter 12

Chapter 13

Chapter 14

Preface

Object tracking consists in estimation of trajectory of moving objects in the sequence
of images. Automation of the computer object tracking is a diffi cult task. Dynamics of
multiple parameters changes representing features and motion of the objects, and tem-
porary partial or full occlusion of the tracked objects have to be considered.

This monograph presents the development of object tracking algorithms, methods and
systems. Both, state of the art of object tracking methods and also the new trends in
research are described in this book. Fourteen chapters are split into two sections. Part
1 presents new theoretical ideas whereas Part 2 presents real-life applications. This
division was not easy because some chapters contain both, methods and applications.
Editor has done at her best to keep the consistency of both Sections.

Part 1 presents the methods based on block matching and object identi cation using
color and spatial information (Chapter 1). Chapter 2 presents methods that use the
structural similarity measure in deterministic and probabilistic approaches based on
hybrid particle lter. There adaptive tracking method is proposed in Chapter 3, which
integrates online semi-supervised classi cation and particle lter. Local features and
global appearances and shape of dynamic objects methods are described in Chapter 4.
Chapter 5 covers local and global tracking using the mean-shift and covariance match-
ing. Fusion of con dence maps in the visual object tracking procedure is described in
Chapter 6. Solving the occlusion problems by coupling between optical ow and pre-
dictive algorithms using fuzzy control system is shown in Chapter 7.

Chapter 8 and Chapter 9 in Part 1 present the application of commercial soft ware and
hardware solutions for object tracking. Chapter 8 presents a method for extraction and
indexing of moving objects in H.264/AVC bitstream domains and Chapter 9 presents
real-time implementation of graph cuts calculation on GPUs using CUDA for simulta-
neous object tracking and segmentation.

Part 2 presents descriptions of the application of automatic object tracking to some spe-
cial purposes. The frameworks targeted for digital video surveillance tasks in urban
environment and over wide-areas such as an airport, downtown of a large city or any
large public area are presented in Chapters 10 and Chapters 11. Automatic calibration
method for distributed sensors by using mobile robots is presented in Chapter 12. The
method for tracking surfaces which deformations are diffi cult to be described, such
as drapery of textiles, facial expressions or complex organ motion in medical image
sequences is presented in Chapter 13. Chapter 14 describes method for coronary artery
segment tracking in angiographic images.

XII Preface

Despite the variety of topics contained in this monograph it constitutes a consisted
knowledge in the eld of computer object tracking. The intention of editor was to fol-
low up the very quick progress in the developing of methods as well as extension of the
application. Editor thanks the authors for their excellent contributions.

Hanna Goszczynska
Nałęcz Institute of Biocybernetics and Biomedical Engineering

Polish Academy of Sciences,
Warsaw

Part 1

Methods

1

A Block Matching Technique for
Object Tracking Based on Peripheral

Increment Sign Correlation Image
Budi Sugandi, Hyoungseop Kim., Joo Kooi Tan and Seiji Ishikawa

Graduate School of Engineering, Kyushu Institute of Technology
Japan

1. Introduction
Automatic detection and tracking of moving object is very important task for human-
computer interface (Black & Jepson, 1998), video communication/expression (Menser &
Brunig, 2000), and security and surveillance system application (Greiffenhagen et al., 2000)
and so on. Various imaging techniques for detection, tracking and identification of the
moving objects have been proposed by many researchers. Based on (Collins et al., 2000;
Yilmaz, 2006), the object detection can be divided at least into five conventional approaches:
frame difference (Lipton et al., 1998; Collins et al., 2000), background subtraction (Heikkila
& Silven, 1999; Stauffer & Grimson, 1999; McIvor, 2000; Liu et al., 2001), optical flow (Meyer
et al., 1998), skin color extraction (Cho et al., 2001; Phung et al., 2003) and probability based
approaches (Harwood et al., 2000; Stauffer & Grimson, 2000; Paragios et al., 2000). Based on
(Wu et al., 2004), the object tracking method can be categorized into four categories: region
based tracking (Wren et al., 1997; McKenna, 2000), active contour based tracking (Paragois &
Deriche, 2000), feature based tracking (Schiele, 2000; Coifman et al., 1998) and model based
tracking (Koller, 2000). The object identification is performed to evaluate the effectiveness of
the tracking object especially when the object occlusion happens. It can be done by
measuring the similarity between the object model and the tracked object. Some of the
researches rely on color distribution (Cheng & Chen, 2006; Czyz et al., 2007).
Regarding to our study, many of researchers have their own methods to solve the problem
of object detection, object tracking and object identification.
In object detection methodology, many researchers have developed their methods. (Liu et
al., 2001) proposed background subtraction to detect moving regions in an image by taking
the difference between current and reference background image in a pixel-by-pixel. It is
extremely sensitive to change in dynamic scenes derived from lighting and extraneous
events etc. In another work, (Stauffer & Grimson, 1997) proposed a Gaussian mixture model
based on background model to detect the object. (Lipton et al., 1998) proposed frame
difference that use of the pixel-wise differences between two frame images to extract the
moving regions. This method is very adaptive to dynamic environments, but generally does
a poor job of extracting all the relevant pixels, e.g., there may be holes left inside moving
entities. In order to overcome disadvantage of two-frames differencing, in some cases three-
frames differencing is used. For instance, (Collins et al., 2000) developed a hybrid method

1

A Block Matching Technique for
Object Tracking Based on Peripheral

Increment Sign Correlation Image
Budi Sugandi, Hyoungseop Kim., Joo Kooi Tan and Seiji Ishikawa

Graduate School of Engineering, Kyushu Institute of Technology
Japan

1. Introduction
Automatic detection and tracking of moving object is very important task for human-
computer interface (Black & Jepson, 1998), video communication/expression (Menser &
Brunig, 2000), and security and surveillance system application (Greiffenhagen et al., 2000)
and so on. Various imaging techniques for detection, tracking and identification of the
moving objects have been proposed by many researchers. Based on (Collins et al., 2000;
Yilmaz, 2006), the object detection can be divided at least into five conventional approaches:
frame difference (Lipton et al., 1998; Collins et al., 2000), background subtraction (Heikkila
& Silven, 1999; Stauffer & Grimson, 1999; McIvor, 2000; Liu et al., 2001), optical flow (Meyer
et al., 1998), skin color extraction (Cho et al., 2001; Phung et al., 2003) and probability based
approaches (Harwood et al., 2000; Stauffer & Grimson, 2000; Paragios et al., 2000). Based on
(Wu et al., 2004), the object tracking method can be categorized into four categories: region
based tracking (Wren et al., 1997; McKenna, 2000), active contour based tracking (Paragois &
Deriche, 2000), feature based tracking (Schiele, 2000; Coifman et al., 1998) and model based
tracking (Koller, 2000). The object identification is performed to evaluate the effectiveness of
the tracking object especially when the object occlusion happens. It can be done by
measuring the similarity between the object model and the tracked object. Some of the
researches rely on color distribution (Cheng & Chen, 2006; Czyz et al., 2007).
Regarding to our study, many of researchers have their own methods to solve the problem
of object detection, object tracking and object identification.
In object detection methodology, many researchers have developed their methods. (Liu et
al., 2001) proposed background subtraction to detect moving regions in an image by taking
the difference between current and reference background image in a pixel-by-pixel. It is
extremely sensitive to change in dynamic scenes derived from lighting and extraneous
events etc. In another work, (Stauffer & Grimson, 1997) proposed a Gaussian mixture model
based on background model to detect the object. (Lipton et al., 1998) proposed frame
difference that use of the pixel-wise differences between two frame images to extract the
moving regions. This method is very adaptive to dynamic environments, but generally does
a poor job of extracting all the relevant pixels, e.g., there may be holes left inside moving
entities. In order to overcome disadvantage of two-frames differencing, in some cases three-
frames differencing is used. For instance, (Collins et al., 2000) developed a hybrid method

Object Tracking

4

that combines three-frame differencing with an adaptive background subtraction model for
their VSAM (Video Surveillance and Monitoring) project. The hybrid algorithm successfully
segments moving regions in video without the defects of temporal differencing and
background subtraction. (Desa & Salih, 2004) proposed a combination of background
subtraction and frame difference that improved the previous results of background
subtraction and frame difference.
In object tracking methodology, regarding to our study, this article will describe more about
the region based tracking. Region-based tracking algorithms track objects according to
variations of the image regions corresponding to the moving objects. For these algorithms,
the background image is maintained dynamically and motion regions are usually detected
by subtracting the background from the current image. (Wren et al., 1997) explored the use
of small blob features to track a single human in an indoor environment. In their work, a
human body is considered as a combination of some blobs respectively representing various
body parts such as head, torso and the four limbs. The pixels belonging to the human body
are assigned to the different body part’s blobs. By tracking each small blob, the moving
human is successfully tracked. (McKenna et al., 2000) proposed an adaptive background
subtraction method in which color and gradient information are combined to cope with
shadows and unreliable color cues in motion segmentation. Tracking is then performed at
three levels of abstraction: regions, people, and groups. Each region has a bounding box and
regions can merge and split. A human is composed of one or more regions grouped together
under the condition of geometric structure constraints on the human body, and a human
group consists of one or more people grouped together.
Moreover, for object identification, (Cheng & Chen, 2006) proposed a color and a spatial
feature of the object to identify the track object. The spatial feature is extracted from the
bounding box of the object. Meanwhile, the color features extracted is mean and standard
value of each object. (Czyz et al., 2007) proposed the color distribution of the object as
observation model. The similarity of the object is measure using Bhattacharya distance. The
low Bhattacharya distance corresponds to the high similarity.
To overcome the related problem described above, this article proposed a new technique for
object detection employing frame difference on low resolution image (Sugandi et al., 2007),
object tracking employing block matching algorithm based on PISC image (Satoh et al.,
2001) and object identification employing color and spatial information of the tracked object
(Cheng & Chen, 2006).
The study in this article includes three main building blocks for building an automated
tracking system, which can be listed as object detection, object tracking and object
identification as shown in Fig. 1. To cover all section, we organized our article as follows: in
section 2, we give a detail of some image pre-processing techniques and filtering process to
detect the moving object emerging in the scene. The tracking method is described in section
3 including the block matching algorithm. Object identification based on color and spatial
feature is presented in section 4. Experimental results and conclusions are described in
section 5 and 6, respectively.
Nearly, every tracking system starts with motion detection. Motion detection aims at
separating the corresponding moving objects region from the background image. The first
process in the motion detection is capturing the image information using a video camera.
The motion detection stage includes some image preprocessing step such as; gray-scaling
and smoothing, reducing image resolution using low resolution image technique, frame
difference, morphological operation and labeling. The preprocessing steps are applied to

A Block Matching Technique for Object Tracking
Based on Peripheral Increment Sign Correlation Image

5

reduce the image noise in order to achieve a higher accuracy of the tracking. The smoothing
technique is performed by using median filter. The low resolution image is performed in
three successive frames to remove the small or fake motion in the background. Then frame
difference is performed on those frames to detect the moving object emerging in the scene.
The next process is applying morphological operation such as dilation and erosion as
filtering to reduce the noise that is remained in the moving object. Connected component
labeling is then performed to label each moving object in different label.
The second stage is tracking the moving object. In this stage, we perform a block matching
technique to track only the interest moving object among the moving objects emerging in
the background. The blocks are defined by dividing the image frame into non-overlapping
square parts. The blocks are made based on PISC image that considers the brightness change
in all the pixels of the blocks relative to the considered pixel.

Fig. 1. Entire flow of procedure

The last stage is object identification. For this purpose we use spatial and color information
of the tracked object as the image feature (Cheng & Chen, 2006). Then, a feature queue is
created to save the features of the moving objects. When the new objects appear on the
scene, they will be tracked and labeled, and the features of the object are extracted and
recorded into the queue. Once a moving object is detected, the system will extract the
features of the object and identify it from the identified objects in the queue.
The details of each stage are described as following.

2. Object detection
Performance of an automated visual surveillance system considerably depends on its ability
to detect moving objects in the observed environment. A subsequent action, such as
tracking, analyzing the motion or identifying objects, requires an accurate extraction of the
foreground objects, making moving object detection a crucial part of the system. In order to
decide on whether some regions in a frame are foreground or not, there should be a model
for the background intensities. This model should also be able to capture and store

Object Detection

START

Object Tracking

Object Identification

END

Object Tracking

4

that combines three-frame differencing with an adaptive background subtraction model for
their VSAM (Video Surveillance and Monitoring) project. The hybrid algorithm successfully
segments moving regions in video without the defects of temporal differencing and
background subtraction. (Desa & Salih, 2004) proposed a combination of background
subtraction and frame difference that improved the previous results of background
subtraction and frame difference.
In object tracking methodology, regarding to our study, this article will describe more about
the region based tracking. Region-based tracking algorithms track objects according to
variations of the image regions corresponding to the moving objects. For these algorithms,
the background image is maintained dynamically and motion regions are usually detected
by subtracting the background from the current image. (Wren et al., 1997) explored the use
of small blob features to track a single human in an indoor environment. In their work, a
human body is considered as a combination of some blobs respectively representing various
body parts such as head, torso and the four limbs. The pixels belonging to the human body
are assigned to the different body part’s blobs. By tracking each small blob, the moving
human is successfully tracked. (McKenna et al., 2000) proposed an adaptive background
subtraction method in which color and gradient information are combined to cope with
shadows and unreliable color cues in motion segmentation. Tracking is then performed at
three levels of abstraction: regions, people, and groups. Each region has a bounding box and
regions can merge and split. A human is composed of one or more regions grouped together
under the condition of geometric structure constraints on the human body, and a human
group consists of one or more people grouped together.
Moreover, for object identification, (Cheng & Chen, 2006) proposed a color and a spatial
feature of the object to identify the track object. The spatial feature is extracted from the
bounding box of the object. Meanwhile, the color features extracted is mean and standard
value of each object. (Czyz et al., 2007) proposed the color distribution of the object as
observation model. The similarity of the object is measure using Bhattacharya distance. The
low Bhattacharya distance corresponds to the high similarity.
To overcome the related problem described above, this article proposed a new technique for
object detection employing frame difference on low resolution image (Sugandi et al., 2007),
object tracking employing block matching algorithm based on PISC image (Satoh et al.,
2001) and object identification employing color and spatial information of the tracked object
(Cheng & Chen, 2006).
The study in this article includes three main building blocks for building an automated
tracking system, which can be listed as object detection, object tracking and object
identification as shown in Fig. 1. To cover all section, we organized our article as follows: in
section 2, we give a detail of some image pre-processing techniques and filtering process to
detect the moving object emerging in the scene. The tracking method is described in section
3 including the block matching algorithm. Object identification based on color and spatial
feature is presented in section 4. Experimental results and conclusions are described in
section 5 and 6, respectively.
Nearly, every tracking system starts with motion detection. Motion detection aims at
separating the corresponding moving objects region from the background image. The first
process in the motion detection is capturing the image information using a video camera.
The motion detection stage includes some image preprocessing step such as; gray-scaling
and smoothing, reducing image resolution using low resolution image technique, frame
difference, morphological operation and labeling. The preprocessing steps are applied to

A Block Matching Technique for Object Tracking
Based on Peripheral Increment Sign Correlation Image

5

reduce the image noise in order to achieve a higher accuracy of the tracking. The smoothing
technique is performed by using median filter. The low resolution image is performed in
three successive frames to remove the small or fake motion in the background. Then frame
difference is performed on those frames to detect the moving object emerging in the scene.
The next process is applying morphological operation such as dilation and erosion as
filtering to reduce the noise that is remained in the moving object. Connected component
labeling is then performed to label each moving object in different label.
The second stage is tracking the moving object. In this stage, we perform a block matching
technique to track only the interest moving object among the moving objects emerging in
the background. The blocks are defined by dividing the image frame into non-overlapping
square parts. The blocks are made based on PISC image that considers the brightness change
in all the pixels of the blocks relative to the considered pixel.

Fig. 1. Entire flow of procedure

The last stage is object identification. For this purpose we use spatial and color information
of the tracked object as the image feature (Cheng & Chen, 2006). Then, a feature queue is
created to save the features of the moving objects. When the new objects appear on the
scene, they will be tracked and labeled, and the features of the object are extracted and
recorded into the queue. Once a moving object is detected, the system will extract the
features of the object and identify it from the identified objects in the queue.
The details of each stage are described as following.

2. Object detection
Performance of an automated visual surveillance system considerably depends on its ability
to detect moving objects in the observed environment. A subsequent action, such as
tracking, analyzing the motion or identifying objects, requires an accurate extraction of the
foreground objects, making moving object detection a crucial part of the system. In order to
decide on whether some regions in a frame are foreground or not, there should be a model
for the background intensities. This model should also be able to capture and store

Object Detection

START

Object Tracking

Object Identification

END

Object Tracking

6

necessary background information. Any change, which is caused by a new object, should be
detected by this model, whereas un-stationary background regions, such as branches and
leafs of a tree or a flag waving in the wind, should be identified as a part of the background.
In this thesis we propose method handle those problem related to un-stationary background
such as branches and leafs of a tree by reducing the resolution of the image.

Fig. 2. Flow of object detection

Our object detection method consists of two main steps. The first step is pre-processing step
including gray scaling, smoothing, and reducing image resolution and so on. The second

Frame fk-1 Frame fk Frame fk+1

Low resolution image

Frame difference

Difference image dk+1 Difference image dk-1

And operation

Dilation

Erosion

Image labeling

Smoothing

Gray scaling

START

END

Capturing three
successive frames

Pre processing
Filtering

A Block Matching Technique for Object Tracking
Based on Peripheral Increment Sign Correlation Image

7

step is filtering to remove the image noise contained in the object. The filtering is performed
by applying the morphology filter such as dilation and erosion. And finally connected
component labeling is performed on the filtered image.
The entire process of moving object detection is illustrated in Fig. 2.

2.1 Pre-processing
The first step on the moving object detection process is capturing the image information
using a video camera. Image is capture by a video camera as 24 bit RGB (red, green, blue)
image which each color is specified using 8-bit unsigned integers (0 through 255) that
representing the intensities of each color. The size of the captured image is 320x240 pixels.
This RGB image is used as input image for the next stage.
In order to reduce the processing time, gray-scale image is used on entire process instead of
color image. The gray-scale image only has one color channel that consists of 8 bit while
RGB image has three color channels. The color conversion between gray-scale image and
RGB image is defined by the following equation:

 0.3 0.59 0.11Y R G B= × + × + × (1)

where: Y is gray-scale image, R is red, G is green and B is Blue of RGB image, respectively.
Image smoothing is performed to reduce image noise from input image in order to achieve
high accuracy for detecting the moving objects. The smoothing process is performed by
using a median filter with m m× pixels.
We consider un-stationary background such as branches and leaf of a tree as part of the
background. The un-stationary background often considers as a fake motion other than the
motion of the object interest and can cause the failure of detection of the object. To handle
this problem, we reduce the resolution of the image to be a low resolution image. A low
resolution image is done by reducing spatial resolution of the image with keeping the image
size (Gonzales & Woods, 2001) and (Sugandi et al., 2007). In this article, the low resolution
image is done by averaging pixels value of its neighbors, including itself. We use a video
image with resolution 320x240 pixels. The original image size is 320x240 pixels. After
applying the low resolution image, the numbers of pixels will be 160x120, 80x60, or 40x30
pixels, respectively, while the image size is still 320x240 pixels. The low resolution image
can be used for reducing the scattering noise and the small fake motion in the background
because of un-stationary background such as leaf of a tree. These noises that have small
motion region will be disappeared in low resolution image.
To detect the moving object from the background based of image subtraction, generally
there are three approaches can be performed: (i) background subtraction as discussed in
(Liu et al., 2001), (ii) frame difference as discussed in (Lipton et al., 1998), and (iii)
combination of background subtraction and frame difference as discussed in (Desa & Salih,
2004). Background subtraction is computing the difference between the current and the
reference background image in a pixel-by-pixel. Frame difference is computing the
difference image between the successive frames image. In this article, we applied frame
difference method to detect the moving objects. In our case, frame difference method is
performed on the three successive frames, which are between frame fk and fk-1 and between
frame fk and fk+1. The output image as frame difference image is two difference images dk-1
and dk+1 as expressed in Eq. (2). Threshold is performed by threshold value T on the
difference image dk-1 and dk+1 as defined in Eq. (3) to distinguish between the moving object
and background.

Object Tracking

6

necessary background information. Any change, which is caused by a new object, should be
detected by this model, whereas un-stationary background regions, such as branches and
leafs of a tree or a flag waving in the wind, should be identified as a part of the background.
In this thesis we propose method handle those problem related to un-stationary background
such as branches and leafs of a tree by reducing the resolution of the image.

Fig. 2. Flow of object detection

Our object detection method consists of two main steps. The first step is pre-processing step
including gray scaling, smoothing, and reducing image resolution and so on. The second

Frame fk-1 Frame fk Frame fk+1

Low resolution image

Frame difference

Difference image dk+1 Difference image dk-1

And operation

Dilation

Erosion

Image labeling

Smoothing

Gray scaling

START

END

Capturing three
successive frames

Pre processing
Filtering

A Block Matching Technique for Object Tracking
Based on Peripheral Increment Sign Correlation Image

7

step is filtering to remove the image noise contained in the object. The filtering is performed
by applying the morphology filter such as dilation and erosion. And finally connected
component labeling is performed on the filtered image.
The entire process of moving object detection is illustrated in Fig. 2.

2.1 Pre-processing
The first step on the moving object detection process is capturing the image information
using a video camera. Image is capture by a video camera as 24 bit RGB (red, green, blue)
image which each color is specified using 8-bit unsigned integers (0 through 255) that
representing the intensities of each color. The size of the captured image is 320x240 pixels.
This RGB image is used as input image for the next stage.
In order to reduce the processing time, gray-scale image is used on entire process instead of
color image. The gray-scale image only has one color channel that consists of 8 bit while
RGB image has three color channels. The color conversion between gray-scale image and
RGB image is defined by the following equation:

 0.3 0.59 0.11Y R G B= × + × + × (1)

where: Y is gray-scale image, R is red, G is green and B is Blue of RGB image, respectively.
Image smoothing is performed to reduce image noise from input image in order to achieve
high accuracy for detecting the moving objects. The smoothing process is performed by
using a median filter with m m× pixels.
We consider un-stationary background such as branches and leaf of a tree as part of the
background. The un-stationary background often considers as a fake motion other than the
motion of the object interest and can cause the failure of detection of the object. To handle
this problem, we reduce the resolution of the image to be a low resolution image. A low
resolution image is done by reducing spatial resolution of the image with keeping the image
size (Gonzales & Woods, 2001) and (Sugandi et al., 2007). In this article, the low resolution
image is done by averaging pixels value of its neighbors, including itself. We use a video
image with resolution 320x240 pixels. The original image size is 320x240 pixels. After
applying the low resolution image, the numbers of pixels will be 160x120, 80x60, or 40x30
pixels, respectively, while the image size is still 320x240 pixels. The low resolution image
can be used for reducing the scattering noise and the small fake motion in the background
because of un-stationary background such as leaf of a tree. These noises that have small
motion region will be disappeared in low resolution image.
To detect the moving object from the background based of image subtraction, generally
there are three approaches can be performed: (i) background subtraction as discussed in
(Liu et al., 2001), (ii) frame difference as discussed in (Lipton et al., 1998), and (iii)
combination of background subtraction and frame difference as discussed in (Desa & Salih,
2004). Background subtraction is computing the difference between the current and the
reference background image in a pixel-by-pixel. Frame difference is computing the
difference image between the successive frames image. In this article, we applied frame
difference method to detect the moving objects. In our case, frame difference method is
performed on the three successive frames, which are between frame fk and fk-1 and between
frame fk and fk+1. The output image as frame difference image is two difference images dk-1
and dk+1 as expressed in Eq. (2). Threshold is performed by threshold value T on the
difference image dk-1 and dk+1 as defined in Eq. (3) to distinguish between the moving object
and background.

Object Tracking

8

 1 1k k kd f f− −= −

 1 1k k kd f f+ += −

(2)

1, if (,)

(,)
0, otherwise

d x y Tkd x yk
′ >⎧⎪′ = ⎨

⎪⎩
 (3)

where ' 1 and 1k k k= − + .
The process is followed by applying AND operator to dk-1 and dk+1 as expressed in Eq. (4).
The output image of this operation is named as motion mask mp.

 1 1p k km d d− += ∩ (4)

The comparison of moving object detection using a conventional method (frame different on
normal resolution) and frame different method on low resolution image is shown in Fig 3.
On those figures, we use same threshold to determine the object. As shown in those figures,
using the conventional method the detected moving object is still greatly affected by small
noise such as moving leaves. In the other hand, by reducing the resolution of the image
before taking the difference frame, that kind of noise can be removed.

2.2 Filtering
In order to fuses narrow breaks and long thin gulfs, eliminates small holes, and fills gaps in
the contour, a morphological operation is applied to the image.

a. frame difference on conventional method

b. frame difference on a low resolution image

Fig. 3. Comparison of moving object detection technique

A Block Matching Technique for Object Tracking
Based on Peripheral Increment Sign Correlation Image

9

As a result, small gaps between the isolated segments are erased and the regions are
merged. To extract the bounding boxes of detected objects, connected component analysis
was used. We find all contours in image and draw the rectangles around corresponding
contours with minimum area. Since the image may contain regions which are composed of
background noise pixels and these regions are smaller than actual motion regions, we
discard the region with a smaller area than the predefined threshold. As a result, the
processing produces perfect bounding boxes.
Morphological operation is performed to fill small gaps inside the moving object and to
reduce the noise remained in the moving objects (Stringa, 2000). The morphological
operators implemented are dilation followed by erosion. In dilation, each background pixel
that is touching an object pixel is changed into an object pixel. Dilation adds pixels to the
boundary of the object and closes isolated background pixel. Dilation can be expressed as:

1 if there is one or more pixels of the 8 neighbors are 1

(,)
0 otherwise

,
f x y

,
⎧

= ⎨
⎩

 (5)

In erosion, each object pixel that is touching a background pixel is changed into a
background pixel. Erosion removes isolated foreground pixels. Erosion can be expressed as:

0 if there is one or more pixels of the 8 neighbors are 0

(,)
1 otherwise

,
f x y

,
⎧

= ⎨
⎩

 (6)

Morphological operation eliminates background noise and fills small gaps inside an object.
This property makes it well suited to our objective since we are interested in generating
masks which preserve the object boundary.

Fig. 4. Binary image

 1 1 1 1 2 2
 3 3 3 3 4 4 4
 5 5 5 5 5 5
 6 6 6 6 6 7 7 7

Fig. 5. Image is labeled in the same row

Object Tracking

8

 1 1k k kd f f− −= −

 1 1k k kd f f+ += −

(2)

1, if (,)

(,)
0, otherwise

d x y Tkd x yk
′ >⎧⎪′ = ⎨

⎪⎩
 (3)

where ' 1 and 1k k k= − + .
The process is followed by applying AND operator to dk-1 and dk+1 as expressed in Eq. (4).
The output image of this operation is named as motion mask mp.

 1 1p k km d d− += ∩ (4)

The comparison of moving object detection using a conventional method (frame different on
normal resolution) and frame different method on low resolution image is shown in Fig 3.
On those figures, we use same threshold to determine the object. As shown in those figures,
using the conventional method the detected moving object is still greatly affected by small
noise such as moving leaves. In the other hand, by reducing the resolution of the image
before taking the difference frame, that kind of noise can be removed.

2.2 Filtering
In order to fuses narrow breaks and long thin gulfs, eliminates small holes, and fills gaps in
the contour, a morphological operation is applied to the image.

a. frame difference on conventional method

b. frame difference on a low resolution image

Fig. 3. Comparison of moving object detection technique

A Block Matching Technique for Object Tracking
Based on Peripheral Increment Sign Correlation Image

9

As a result, small gaps between the isolated segments are erased and the regions are
merged. To extract the bounding boxes of detected objects, connected component analysis
was used. We find all contours in image and draw the rectangles around corresponding
contours with minimum area. Since the image may contain regions which are composed of
background noise pixels and these regions are smaller than actual motion regions, we
discard the region with a smaller area than the predefined threshold. As a result, the
processing produces perfect bounding boxes.
Morphological operation is performed to fill small gaps inside the moving object and to
reduce the noise remained in the moving objects (Stringa, 2000). The morphological
operators implemented are dilation followed by erosion. In dilation, each background pixel
that is touching an object pixel is changed into an object pixel. Dilation adds pixels to the
boundary of the object and closes isolated background pixel. Dilation can be expressed as:

1 if there is one or more pixels of the 8 neighbors are 1

(,)
0 otherwise

,
f x y

,
⎧

= ⎨
⎩

 (5)

In erosion, each object pixel that is touching a background pixel is changed into a
background pixel. Erosion removes isolated foreground pixels. Erosion can be expressed as:

0 if there is one or more pixels of the 8 neighbors are 0

(,)
1 otherwise

,
f x y

,
⎧

= ⎨
⎩

 (6)

Morphological operation eliminates background noise and fills small gaps inside an object.
This property makes it well suited to our objective since we are interested in generating
masks which preserve the object boundary.

Fig. 4. Binary image

 1 1 1 1 2 2
 3 3 3 3 4 4 4
 5 5 5 5 5 5
 6 6 6 6 6 7 7 7

Fig. 5. Image is labeled in the same row

Object Tracking

10

 1 1 1 1 2 2
 1 1 1 1 2 2 2
 1 1 1 1 1 1
 1 1 1 1 1 1 1 1

Fig. 6. Labeled image is scanned from top-left to bottom-right

 1 1 1 1 1 1
 1 1 1 1 1 1 1
 1 1 1 1 1 1
 1 1 1 1 1 1 1 1

Fig. 7. Final labeled image

Connected component labeling is performed to label each moving object emerging in the
background. The connected component labeling (Gonzales & Woods, 2001) groups the
pixels into components based on pixel connectivity (same intensity or gray level). In this
article, connected component labeling is done by comparing the pixel with the pixel in four
neighbors. If the pixel has at least one neighbor with the same label, this pixel is labeled as
same as neighbor’s label. The algorithm of connected component labeling algorithm is
described as follows:
1. Firstly, image labeling is done on binary image as shown in Fig. 4 where object is shown

as 1 (white) and background is shown as 0 (black).
2. The image is scanned from top-left to search the object pixel. The label is done by

scanning the image from left to right and comparing label with the neighbor’s label in
the same line. If the neighbor has the same pixel value, the pixel is labeled as same as
previous label as shown in Figure. 5.

3. Next, the labeled image is scanned from top-left to bottom-right by comparing with the
four (or eight) neighbors pixel which have already been encountered in the scan (the
neighbors (i) to the left of the pixel, (ii) above it, and (iii and iv) the two upper diagonal
terms). If the pixel has at least one neighbor, then this pixel is labeled as same as
neighbor’s label as shown in Fig. 6.

4. On the last scanning, the image is scanned from bottom-right to top-left by comparing
with the four neighbors pixel as step 3. The final labeled image is shown in Fig. 7.

3. Object tracking
After the object detection is achieved, the problem of establishing a correspondence between
object masks in consecutive frames should arise. Indeed, initializing a track, updating it
robustly and ending the track are important problems of object mask association during
tracking. Obtaining the correct track information is crucial for subsequent actions, such as
object identification and activity recognition. Tracking process can be considered as a region
mask association between temporally consecutive frames and estimating the trajectory of an
object in the image plane as it moves around a scene. In this article, we use block matching

A Block Matching Technique for Object Tracking
Based on Peripheral Increment Sign Correlation Image

11

technique for this purpose. The entire process of tracking the moving object is illustrated in
Fig 8. The details of the tracking mechanism of the interest moving object are described in
the following sections.

Fig. 8. Entire flow of tracking of interest object

Making block in
 the previous frame

Making block in
 the current frame

Finding correlation value
maximum = Corrmax

Corrmax > Th1 ?

Blocks are matching

Count number of the
matching block= Nblock

Interest object

Nblock > Th2 ?

Not interest object

Finding object area in the
previous frame

Finding object area in the
current frame

Blocks are not matching

Start

End

End

Yes

Yes

No

No

Object Tracking

10

 1 1 1 1 2 2
 1 1 1 1 2 2 2
 1 1 1 1 1 1
 1 1 1 1 1 1 1 1

Fig. 6. Labeled image is scanned from top-left to bottom-right

 1 1 1 1 1 1
 1 1 1 1 1 1 1
 1 1 1 1 1 1
 1 1 1 1 1 1 1 1

Fig. 7. Final labeled image

Connected component labeling is performed to label each moving object emerging in the
background. The connected component labeling (Gonzales & Woods, 2001) groups the
pixels into components based on pixel connectivity (same intensity or gray level). In this
article, connected component labeling is done by comparing the pixel with the pixel in four
neighbors. If the pixel has at least one neighbor with the same label, this pixel is labeled as
same as neighbor’s label. The algorithm of connected component labeling algorithm is
described as follows:
1. Firstly, image labeling is done on binary image as shown in Fig. 4 where object is shown

as 1 (white) and background is shown as 0 (black).
2. The image is scanned from top-left to search the object pixel. The label is done by

scanning the image from left to right and comparing label with the neighbor’s label in
the same line. If the neighbor has the same pixel value, the pixel is labeled as same as
previous label as shown in Figure. 5.

3. Next, the labeled image is scanned from top-left to bottom-right by comparing with the
four (or eight) neighbors pixel which have already been encountered in the scan (the
neighbors (i) to the left of the pixel, (ii) above it, and (iii and iv) the two upper diagonal
terms). If the pixel has at least one neighbor, then this pixel is labeled as same as
neighbor’s label as shown in Fig. 6.

4. On the last scanning, the image is scanned from bottom-right to top-left by comparing
with the four neighbors pixel as step 3. The final labeled image is shown in Fig. 7.

3. Object tracking
After the object detection is achieved, the problem of establishing a correspondence between
object masks in consecutive frames should arise. Indeed, initializing a track, updating it
robustly and ending the track are important problems of object mask association during
tracking. Obtaining the correct track information is crucial for subsequent actions, such as
object identification and activity recognition. Tracking process can be considered as a region
mask association between temporally consecutive frames and estimating the trajectory of an
object in the image plane as it moves around a scene. In this article, we use block matching

A Block Matching Technique for Object Tracking
Based on Peripheral Increment Sign Correlation Image

11

technique for this purpose. The entire process of tracking the moving object is illustrated in
Fig 8. The details of the tracking mechanism of the interest moving object are described in
the following sections.

Fig. 8. Entire flow of tracking of interest object

Making block in
 the previous frame

Making block in
 the current frame

Finding correlation value
maximum = Corrmax

Corrmax > Th1 ?

Blocks are matching

Count number of the
matching block= Nblock

Interest object

Nblock > Th2 ?

Not interest object

Finding object area in the
previous frame

Finding object area in the
current frame

Blocks are not matching

Start

End

End

Yes

Yes

No

No

Object Tracking

12

3.1 Block matching method
Block matching is a technique for tracking the interest moving object among the moving
objects emerging in the scene. In this article, the blocks are defined by dividing the image
frame into non-overlapping square parts. The blocks are made based on peripheral increment
sign correlation (PISC) image (Satoh et al., 2001; Sugandi et al., 2007) that considers the
brightness change in all the pixels of the blocks relative to the considered pixel. Fig. 9 shows
the block in PISC image with block size is 5×5 pixels. Therefore, one block consists of 25 pixels.
The blocks of the PISC image in the previous frame are defined as shown in Eq. (7). Similarly,
the blocks of the PISC image in the current frame are defined in Eq. (8). To determine the
matching criteria of the blocks in two successive frames, we evaluate using correlation value
that expresses in Eq. (9). This equation calculates the correlation value between block in the
previous frame and the current one for all pixels in the block. The high correlation value shows
that the blocks are matched each other. The interest moving object is determined when the
number of matching blocks in the previous and current frame are higher than the certain
threshold value. The threshold value is obtained experimentally.

()1, if ,

0, otherwise

f f i jnpbnp
⎧ ≥⎪= ⎨
⎪⎩

 (7)

()1, if ,

0, otherwise

f f i jnpbnp
⎧ ≥⎪′ = ⎨
⎪⎩

 (8)

 * (1) * (1)
0 0

N N
corr b b b bn np np np npp p

′ ′= + − −∑ ∑
= =

 (9)

where : b and b’ are the block in previous and current frame, n is number of block and N is
number of pixels of block, respectively.

fi-2,j-2 fi-1,j-2 fi,j-2 fi+1,j-2 fi+2,j-2

fi-2,j-1 fi-1,j-1 fi,j-1 fi+1,j-1 fi+2,j-1

fi-2,j fi-1,j fi,j fi+1,j fi+2,j

fi-2,j+1 fi-1,j+1 fi,j+1 fi+1,j+1 fi+2,j+1

fi-2,j+2 fi-1,j+2 fi,j+2 fi+1,j+2 fi+2,j+2

Fig. 9. PISC image for block size 5 × 5 pixels

3.2 Tracking method
The tracking method used in this article can be described as following. The matching
process is illustrated in Fig. 10. Firstly, blocks and the tracking area are made only in the

A Block Matching Technique for Object Tracking
Based on Peripheral Increment Sign Correlation Image

13

area of moving object to reduce the processing time. We make the block size (block A) with
9x9 pixels in the previous frame. We assume that the object coming firstly will be tracked as
the interest moving object. The block A will search the matching block in each block of the
current frame by using correlation value as expresses in Eq. (9). In the current frame, the
interest moving object is tracked when the object has maximum number of matching blocks.
When that matching criteria is not satisfied, the matching process is repeated by enlarging
the tracking area (the rectangle with dash line). The blocks still are made inside the area of
moving object. When the interest moving object still cannot be tracked, then the moving
object is categorized as not interest moving object or another object and the tracking process
is begun again from the beginning.

4. Object identification
The object identification is the last stage of our study. In this stage, firstly, we will explain
about features extraction for object detection (Cheng & Chen, 2006). In this article, the
extracted features are divided into the following two types; color and spatial information of
the moving objects.

a. previous frame

b. curent frame

Fig. 10. Matching process

4.1 Spatial feature extraction
The feature of objects extracted in the spatial domain is the position of the tracked object. The
spatial information combined with the features in time domain represents the trajectory of the
tracked object, so we can estimate the movement and speed of the moving objects that we
tracked. Therefore, the features of spatial domain are very important to object identification.
The bounding box defined in Eq. (10) is used as spatial information of moving objects.

AA

A

Object Tracking

12

3.1 Block matching method
Block matching is a technique for tracking the interest moving object among the moving
objects emerging in the scene. In this article, the blocks are defined by dividing the image
frame into non-overlapping square parts. The blocks are made based on peripheral increment
sign correlation (PISC) image (Satoh et al., 2001; Sugandi et al., 2007) that considers the
brightness change in all the pixels of the blocks relative to the considered pixel. Fig. 9 shows
the block in PISC image with block size is 5×5 pixels. Therefore, one block consists of 25 pixels.
The blocks of the PISC image in the previous frame are defined as shown in Eq. (7). Similarly,
the blocks of the PISC image in the current frame are defined in Eq. (8). To determine the
matching criteria of the blocks in two successive frames, we evaluate using correlation value
that expresses in Eq. (9). This equation calculates the correlation value between block in the
previous frame and the current one for all pixels in the block. The high correlation value shows
that the blocks are matched each other. The interest moving object is determined when the
number of matching blocks in the previous and current frame are higher than the certain
threshold value. The threshold value is obtained experimentally.

()1, if ,

0, otherwise

f f i jnpbnp
⎧ ≥⎪= ⎨
⎪⎩

 (7)

()1, if ,

0, otherwise

f f i jnpbnp
⎧ ≥⎪′ = ⎨
⎪⎩

 (8)

 * (1) * (1)
0 0

N N
corr b b b bn np np np npp p

′ ′= + − −∑ ∑
= =

 (9)

where : b and b’ are the block in previous and current frame, n is number of block and N is
number of pixels of block, respectively.

fi-2,j-2 fi-1,j-2 fi,j-2 fi+1,j-2 fi+2,j-2

fi-2,j-1 fi-1,j-1 fi,j-1 fi+1,j-1 fi+2,j-1

fi-2,j fi-1,j fi,j fi+1,j fi+2,j

fi-2,j+1 fi-1,j+1 fi,j+1 fi+1,j+1 fi+2,j+1

fi-2,j+2 fi-1,j+2 fi,j+2 fi+1,j+2 fi+2,j+2

Fig. 9. PISC image for block size 5 × 5 pixels

3.2 Tracking method
The tracking method used in this article can be described as following. The matching
process is illustrated in Fig. 10. Firstly, blocks and the tracking area are made only in the

A Block Matching Technique for Object Tracking
Based on Peripheral Increment Sign Correlation Image

13

area of moving object to reduce the processing time. We make the block size (block A) with
9x9 pixels in the previous frame. We assume that the object coming firstly will be tracked as
the interest moving object. The block A will search the matching block in each block of the
current frame by using correlation value as expresses in Eq. (9). In the current frame, the
interest moving object is tracked when the object has maximum number of matching blocks.
When that matching criteria is not satisfied, the matching process is repeated by enlarging
the tracking area (the rectangle with dash line). The blocks still are made inside the area of
moving object. When the interest moving object still cannot be tracked, then the moving
object is categorized as not interest moving object or another object and the tracking process
is begun again from the beginning.

4. Object identification
The object identification is the last stage of our study. In this stage, firstly, we will explain
about features extraction for object detection (Cheng & Chen, 2006). In this article, the
extracted features are divided into the following two types; color and spatial information of
the moving objects.

a. previous frame

b. curent frame

Fig. 10. Matching process

4.1 Spatial feature extraction
The feature of objects extracted in the spatial domain is the position of the tracked object. The
spatial information combined with the features in time domain represents the trajectory of the
tracked object, so we can estimate the movement and speed of the moving objects that we
tracked. Therefore, the features of spatial domain are very important to object identification.
The bounding box defined in Eq. (10) is used as spatial information of moving objects.

AA

A

Object Tracking

14

After getting the interest moving object, we extract the interest moving object by using a
bounding box. The bounding box can be determined by computing the maximum and
minimum value of x and y coordinates of the interest moving object according to the
following equation:

 (){ }min min min, ,i i i iB x y x y O= ∈

 (){ }max max max, ,i i i iB x y x y O= ∈ (10)

where Oi denotes the set of the coordinate of points in the interest moving object i, Bimin is the
left-top corner coordinates of the interest moving object i and Bimax is the right-bottom corner
coordinates of the interest moving object i, respectively. Fig. 11 shows an example of the
bounding box of the object tracking.

4.2 Color feature extraction
The color feature extracted from the object is RGB color space as the RGB color information
can be obtained from video capture device directly. We extract the information from upper

a. single moving object b. two moving objects

Fig. 11. Example of bounding box of moving object

Fig. 12. Definition of a human body ratio

A Block Matching Technique for Object Tracking
Based on Peripheral Increment Sign Correlation Image

15

and lower part of the object to obtain more color information for identification. The ratio of
these three parts can be defined as shown in Fig. 12. However, in this article, we only
calculate the color information of the upper and lower part excluding the head part of the
object. The first color information calculated is mean value of each human body part as
calculated by Eq. (11) for upper part and Eq. (12) for lower part. The mean value is
calculated for each color component of RGB space.

()max max

min min
,

#

i i

i ii
U

k

x y
kx x y yO

f i
U

f x y

O
μ = ==

∑ ∑
 (11)

()max max

min min
,

#

i i

i ii
L

k

x y
kx x y yO

f i
L

f x y

O
μ = ==

∑ ∑
 (12)

where i is number of the moving objects and (x, y) is the coordinate of pixels in moving
object. ()max max,i ix y and ()min min,i ix y are the coordinates of the bounding box of moving
object i, fk(x,y) denotes pixel value for each color component in RGB space of the current
frame, i

UO and i
LO denote the set of coordinates of upper and lower part of human body of

moving object i and #Oi is the number of pixels of moving object i.
The standard deviation has proven to be an extremely useful measure of spread in part
because it is mathematically tractable. Standard deviation is a statistical term that provides a
good indication of volatility. It measures how widely the values are dispersed from the
average. Dispersion is the difference between the actual value and the average value. The
larger the difference between the actual color and the average color is, the higher the
standard deviation will be, and the higher the volatility. We can extract more useful color
features by computing the dispersed color information from upper and lower part of body
as shown in Eq. (13) for the upper part and Eq. (14) for the lower part.

()()max max

min min

2
,

#

i i i
U

i ii kU
k

x y O
k fx x y yO

f i
U

f x y
SD

O

μ
= =

−
=

∑ ∑
 (13)

()()max max

min min

2
,

#

i i i
L

i ii kL
k

x y O
k fx x y yO

f i
L

f x y
SD

O

μ
= =

−
=

∑ ∑
 (14)

where
i
U

k

O
fSD and

i
L

k

O
fSD denote the standard deviation of each color component of RGB space

for upper and lower part of the human body of moving object i, respectively.

4.3 Identification process
After the feature extraction, we can represent the moving object i by the following feature
vectors;

 ()min max, , , , ,
i ii i
U UL L

k k k k

O OO Oi i i
f f f fF SD SD B Bμ μ= (15)

Object Tracking

14

After getting the interest moving object, we extract the interest moving object by using a
bounding box. The bounding box can be determined by computing the maximum and
minimum value of x and y coordinates of the interest moving object according to the
following equation:

 (){ }min min min, ,i i i iB x y x y O= ∈

 (){ }max max max, ,i i i iB x y x y O= ∈ (10)

where Oi denotes the set of the coordinate of points in the interest moving object i, Bimin is the
left-top corner coordinates of the interest moving object i and Bimax is the right-bottom corner
coordinates of the interest moving object i, respectively. Fig. 11 shows an example of the
bounding box of the object tracking.

4.2 Color feature extraction
The color feature extracted from the object is RGB color space as the RGB color information
can be obtained from video capture device directly. We extract the information from upper

a. single moving object b. two moving objects

Fig. 11. Example of bounding box of moving object

Fig. 12. Definition of a human body ratio

A Block Matching Technique for Object Tracking
Based on Peripheral Increment Sign Correlation Image

15

and lower part of the object to obtain more color information for identification. The ratio of
these three parts can be defined as shown in Fig. 12. However, in this article, we only
calculate the color information of the upper and lower part excluding the head part of the
object. The first color information calculated is mean value of each human body part as
calculated by Eq. (11) for upper part and Eq. (12) for lower part. The mean value is
calculated for each color component of RGB space.

()max max

min min
,

#

i i

i ii
U

k

x y
kx x y yO

f i
U

f x y

O
μ = ==

∑ ∑
 (11)

()max max

min min
,

#

i i

i ii
L

k

x y
kx x y yO

f i
L

f x y

O
μ = ==

∑ ∑
 (12)

where i is number of the moving objects and (x, y) is the coordinate of pixels in moving
object. ()max max,i ix y and ()min min,i ix y are the coordinates of the bounding box of moving
object i, fk(x,y) denotes pixel value for each color component in RGB space of the current
frame, i

UO and i
LO denote the set of coordinates of upper and lower part of human body of

moving object i and #Oi is the number of pixels of moving object i.
The standard deviation has proven to be an extremely useful measure of spread in part
because it is mathematically tractable. Standard deviation is a statistical term that provides a
good indication of volatility. It measures how widely the values are dispersed from the
average. Dispersion is the difference between the actual value and the average value. The
larger the difference between the actual color and the average color is, the higher the
standard deviation will be, and the higher the volatility. We can extract more useful color
features by computing the dispersed color information from upper and lower part of body
as shown in Eq. (13) for the upper part and Eq. (14) for the lower part.

()()max max

min min

2
,

#

i i i
U

i ii kU
k

x y O
k fx x y yO

f i
U

f x y
SD

O

μ
= =

−
=

∑ ∑
 (13)

()()max max

min min

2
,

#

i i i
L

i ii kL
k

x y O
k fx x y yO

f i
L

f x y
SD

O

μ
= =

−
=

∑ ∑
 (14)

where
i
U

k

O
fSD and

i
L

k

O
fSD denote the standard deviation of each color component of RGB space

for upper and lower part of the human body of moving object i, respectively.

4.3 Identification process
After the feature extraction, we can represent the moving object i by the following feature
vectors;

 ()min max, , , , ,
i ii i
U UL L

k k k k

O OO Oi i i
f f f fF SD SD B Bμ μ= (15)

Object Tracking

16

To identify a moving object, a feature queue is created to save the features of the moving
objects. When a new object enters the system, it will be tracked and labeled, and the features
of the object are extracted and recorded into the queue. Once a moving object i is detected,
the system will extract the features Fi of the object i and identify it from the identified objects
in the queue by computing the similarity (), jiS F F , j =1… n, where j is one of the n identified
objects. The similarity, (), jiS F F is computed as in Eq. (16),

()

() ()min max maxmin

,

 0 5 0 5

j ji i
U U L L

k k k k

j ji i
U U L L

k k k k

O OO Oji
f f f f

O OO O
f f f f

j ji i

S F F Mc Mc

Msd SD SD Msd SD SD

. Mp B B . Mp B B

μ μ μ μ⎛ ⎞ ⎛ ⎞= − + −⎜ ⎟⎜ ⎟
⎝ ⎠⎝ ⎠

⎛ ⎞ ⎛ ⎞+ − + −⎜ ⎟⎜ ⎟
⎝ ⎠⎝ ⎠

+ − + −

 (16)

where Mc and Msd are the membership function of color information and standard
deviation as defined in Eq. (17) and Eq. (18), Mp is the membership function of spatial
information as defined in Eq. (19).

1 / if

()
0 if

x Thr x Thr
Mc x

x Thr
− <⎧

= ⎨ ≥⎩
 (17)

1 / if

()
0 if

x Thr x Thr
Msd x

x Thr
− <⎧

= ⎨ ≥⎩
 (18)

1 3 / if / 3

()
0 if / 3

x W x W
Mp x

x W
− <⎧

= ⎨ ≥⎩
 (19)

where Thr is threshold which is obtained experimentally and W is the width or height of the
image frames. We compare the features of detected object with those of the objects in the
feature queue. The one with the maximum similarity is identified as the same object. The
whole object identification flow is shown in Fig. 13.

5. Experimental results
We have done the experiments using a video camera in outdoor environment and real time
condition. The experiment is performed in 2.54 [GHz] Pentium 4 PC with 512 MB memory.
The image resolution is 320 × 240 [pixels]. The size of each block is 9×9 [pixels]. The
experimental results are shown in Fig. 14–Fig. 16. The rectangle area on the object shows the
tracked object. The identification result is shown in Table 1. In the experimental results, we
can extract the moving objects on the successive frame successfully and identification rates
of 92.8% were achieved.
In our experiment, we tracked the interest object from two and three moving objects that
occluded between each other when objects move in the same and different direction. We
assumed that the first moving object emerging in the scene as the interest moving object. We
did the experiments in three conditions. In the first condition, we tracked the interest

A Block Matching Technique for Object Tracking
Based on Peripheral Increment Sign Correlation Image

17

Fig. 13. Flow chart of object identification

moving object when it is occluded by another moving object when they move in the same
direction as shown in Fig. 14. In the second condition, we tracked the interest moving object
when it is occluded by another moving object when they move in different direction as
shown in Fig. 15. In the third condition, we tracked the interest moving object among three
moving object appear in the scene as shown in Fig. 16.

Record the feature as
initial object

Spatial information of
the tracked object

Color information of
the tracked object

Smax > Th1 ?

Record the feature
of the object as same
as object have Smax

Extracting the feature
of the tracked object

Start

End

Find the most similar in
feature queue = Smax

Y

N

Y

N

Check feature
queue is empty?

Record the feature
as new object

Object Tracking

16

To identify a moving object, a feature queue is created to save the features of the moving
objects. When a new object enters the system, it will be tracked and labeled, and the features
of the object are extracted and recorded into the queue. Once a moving object i is detected,
the system will extract the features Fi of the object i and identify it from the identified objects
in the queue by computing the similarity (), jiS F F , j =1… n, where j is one of the n identified
objects. The similarity, (), jiS F F is computed as in Eq. (16),

()

() ()min max maxmin

,

 0 5 0 5

j ji i
U U L L

k k k k

j ji i
U U L L

k k k k

O OO Oji
f f f f

O OO O
f f f f

j ji i

S F F Mc Mc

Msd SD SD Msd SD SD

. Mp B B . Mp B B

μ μ μ μ⎛ ⎞ ⎛ ⎞= − + −⎜ ⎟⎜ ⎟
⎝ ⎠⎝ ⎠

⎛ ⎞ ⎛ ⎞+ − + −⎜ ⎟⎜ ⎟
⎝ ⎠⎝ ⎠

+ − + −

 (16)

where Mc and Msd are the membership function of color information and standard
deviation as defined in Eq. (17) and Eq. (18), Mp is the membership function of spatial
information as defined in Eq. (19).

1 / if

()
0 if

x Thr x Thr
Mc x

x Thr
− <⎧

= ⎨ ≥⎩
 (17)

1 / if

()
0 if

x Thr x Thr
Msd x

x Thr
− <⎧

= ⎨ ≥⎩
 (18)

1 3 / if / 3

()
0 if / 3

x W x W
Mp x

x W
− <⎧

= ⎨ ≥⎩
 (19)

where Thr is threshold which is obtained experimentally and W is the width or height of the
image frames. We compare the features of detected object with those of the objects in the
feature queue. The one with the maximum similarity is identified as the same object. The
whole object identification flow is shown in Fig. 13.

5. Experimental results
We have done the experiments using a video camera in outdoor environment and real time
condition. The experiment is performed in 2.54 [GHz] Pentium 4 PC with 512 MB memory.
The image resolution is 320 × 240 [pixels]. The size of each block is 9×9 [pixels]. The
experimental results are shown in Fig. 14–Fig. 16. The rectangle area on the object shows the
tracked object. The identification result is shown in Table 1. In the experimental results, we
can extract the moving objects on the successive frame successfully and identification rates
of 92.8% were achieved.
In our experiment, we tracked the interest object from two and three moving objects that
occluded between each other when objects move in the same and different direction. We
assumed that the first moving object emerging in the scene as the interest moving object. We
did the experiments in three conditions. In the first condition, we tracked the interest

A Block Matching Technique for Object Tracking
Based on Peripheral Increment Sign Correlation Image

17

Fig. 13. Flow chart of object identification

moving object when it is occluded by another moving object when they move in the same
direction as shown in Fig. 14. In the second condition, we tracked the interest moving object
when it is occluded by another moving object when they move in different direction as
shown in Fig. 15. In the third condition, we tracked the interest moving object among three
moving object appear in the scene as shown in Fig. 16.

Record the feature as
initial object

Spatial information of
the tracked object

Color information of
the tracked object

Smax > Th1 ?

Record the feature
of the object as same
as object have Smax

Extracting the feature
of the tracked object

Start

End

Find the most similar in
feature queue = Smax

Y

N

Y

N

Check feature
queue is empty?

Record the feature
as new object

Object Tracking

18

On the first case (Fig. 14), at first, the man wearing the white shirt enters the scene from the
left side. This object is successfully detected as the interest moving object. While the first
object is being tracked, another object (man wearing the blue shirt) enters the scene from the
right side. They move in the different direction and overlap each other in the middle of the
scene. We successfully track the first moving object as the interest moving object as our
assumptions while the other moving object is not tracked.

Fig. 14. Two moving objects move in different direction
On the second case (Fig. 15), at first, the man wearing the blue shirt enters the scene from the
left side. This object is successfully detected as the interest moving object. Then on the next

Fig. 15. Two moving objects move in same direction

A Block Matching Technique for Object Tracking
Based on Peripheral Increment Sign Correlation Image

19

frame, the man wearing the white shirt enters the scene from the same side. They move in
the same direction and occlude each other in the middle of the scene. We successfully track
the first moving object as the interest moving object as our assumptions while the other
moving object is not tracked.

Fig. 16. Three moving objects occlude in the middle of the scene

Experiment Object
detected

Correct
identification

Identification
rates [%]

1 126 117 92.8
2 148 136 91.9
3 154 141 91.6

Table 1. Object identification results

a. an object entering scene b. an object moves slow down

Fig. 17. Error in object identification

On the third case (Fig.16), at first, the man wearing the white shirt enters the scene from the
right side. This person will be tracked as the interest moving object. Then on the next frame,
another man enters the scene from right side. They move in the same direction. The third

Object Tracking

18

On the first case (Fig. 14), at first, the man wearing the white shirt enters the scene from the
left side. This object is successfully detected as the interest moving object. While the first
object is being tracked, another object (man wearing the blue shirt) enters the scene from the
right side. They move in the different direction and overlap each other in the middle of the
scene. We successfully track the first moving object as the interest moving object as our
assumptions while the other moving object is not tracked.

Fig. 14. Two moving objects move in different direction
On the second case (Fig. 15), at first, the man wearing the blue shirt enters the scene from the
left side. This object is successfully detected as the interest moving object. Then on the next

Fig. 15. Two moving objects move in same direction

A Block Matching Technique for Object Tracking
Based on Peripheral Increment Sign Correlation Image

19

frame, the man wearing the white shirt enters the scene from the same side. They move in
the same direction and occlude each other in the middle of the scene. We successfully track
the first moving object as the interest moving object as our assumptions while the other
moving object is not tracked.

Fig. 16. Three moving objects occlude in the middle of the scene

Experiment Object
detected

Correct
identification

Identification
rates [%]

1 126 117 92.8
2 148 136 91.9
3 154 141 91.6

Table 1. Object identification results

a. an object entering scene b. an object moves slow down

Fig. 17. Error in object identification

On the third case (Fig.16), at first, the man wearing the white shirt enters the scene from the
right side. This person will be tracked as the interest moving object. Then on the next frame,
another man enters the scene from right side. They move in the same direction. The third

Object Tracking

20

man enters the scene from the left side. They occlude each other in the middle on the scene.
We successfully track the first moving object as interest moving object as our assumptions
while the other moving object is not tracked.
To evaluate our method, we performed the object identification method based on spatial
and color information of the tracked object. Table 1 shows the result of the object
identification. From the table, we notice that some objects are not correctly identified in
some frames of each experiment. The wrong identification occurs in two types. First, it
occurs when the moving object just enters or leaves the scene. When the moving object is
just entering the scene, the system can detect the moving object. However, the extracted
features of the moving object in this case cannot represent the moving object very well,
because only partial of the features of the moving objects are extracted. The second error
occurs when the moving object is slowing down. In this situation, the frame difference of the
object becomes smaller. Therefore, only smaller bounding box and less moving pixels are
obtained. On this condition, the extracted features will lose its representative. Both of errors
are illustrated in Fig. 17.

6. Conclusion
This article proposed a new method for detecting the moving object employing frame
difference on low resolution image, tracking the moving object employing block matching
technique based on peripheral increment sign correlation image for tracking the interest
moving object among the moving objects emerging in the background and identifying the
moving objects employing color and spatial information of the tracked object. The
experiment results and data show the effectiveness and the satisfaction of the proposed
methods. Using our method, we can achieve the identification rate of 92.1[%] in average.
However, the proposed method still has limitations. The limitations can be investigated as
followings. Firstly, the detection method based on frame difference on low resolution image
has a limitation when the moving object is too small to be detected. It is occurred because
the low resolution image removes the small moving objects emerging in the background. To
overcome this limitation, we can add another method such as skin color detection. By using
this method, even if the moving object is too small, it can still be detected based on the skin
color of the object. Secondly, the block matching technique has successfully tracked the
interest moving object in the occlude condition. However, when the moving objects appear
in the same time, we cannot judge any object to be an interest object. Moreover, when the
interest moving object is covered by the occluded object, the image information of the
interest moving object cannot be read by the camera. This condition cause the system cannot
recognize the interest moving object. Those limitations can be solved by adding other
information to the interest moving object such as flow of moving object based on optical
flow, dimension or another feature and also we can add the color information to each object.
So whenever the objects appear, they have their own model that different from each other.
And we can track them based on the model.
Thirdly, color and spatial information method show the high correct identification rate.
However, the system still cannot identify the objects sometimes when they are just entering
or leaving the scene. The extracted features in this case are not enough to be used to identify
the moving objects. The system also has limitation when the object is moving slowly. In this
condition, the inter-frame difference image of the object will become smaller and we will get
smaller bounding box and less moving pixels. Therefore, the extracted features will lose its

A Block Matching Technique for Object Tracking
Based on Peripheral Increment Sign Correlation Image

21

representative. The correct identification rate highly depends on the correctness of the
moving object detection and feature representation. This problem can be improved by a
better feature selection method and moving object detection method.
By considering those limitations and implement some improvements to our method
including speed up the processing time, they could lead to some improvements in the
tracking system. These are remaining for future work.

7. References
Lipton, A; Fujiyoshi, H. & Patil, R.(1998) .Moving target classification and tracking from

real-time video, Proceeding of IEEE Workshop Applications of Computer Vision, pp. 8-
14.

Stauffer, C. & Grimson, W. (1999). Adaptive background mixture models for real-time
tracking, Proceeding of IEEE Conf. on Computer Vision and Pattern Recognition, pp.
246-252.

LIU, Y.; Haizho, A. & Xu Guangyou.(2001). Moving object detection and tracking based on
background subtraction, Proceeding of Society of Photo-Optical Instrument Engineers
(SPIE), Vol. 4554, pp. 62-66.

Cheng, F. & Chen, Y. (2006). Real time multiple objects tracking and identification based on
discrete wavelet transform, Journal of the pattern Recognition Society, pp 1126-1139.

Davis, J. W. & Bobick, A. F. (1997). The representation and recognition of action using
temporal templates, Proceeding of Comp Vision and Pattern Recognition, pp. 928-934.

Meyer, D.; Denzler, J. & Niemann, H. (1998). Model based extraction of articulated objects in
image sequences for gait analysis, Proceeding of IEEE Int. Conf. Image Proccessing, pp.
78-81.

Paragios, N. & Deriche, R. (2000). Geodesic active contours and level sets for the detection
and tracking of moving object, IEEE Trans. on Pattern Analysis and Machine
Intelligent, pp. 266-280.

Satoh, Y.; Kaneko, S. & Igarashi, S. (2001). Robust Object Detection and Segmentation by
Peripheral Increment Sign Correlation Image, System and Computer in Japan,
pp.2585-2594.

Gonzalez, R. C. & Woods, R. E. (2001). Digital Image Processing, Addison-Wesley Longman
Publishing Co., Inc.,Boston, MA.

Sugandi, B.; Kim, H.S.; Tan, J.K. & Ishikawa, S. (2007). Tracking of moving object by using
low resolution image, Proceeding of Int. Conf. on Innovative Computing, Information
and Control (ICICIC07), Kumamoto, Japan, (4 pages).

Desa, S. M. & Salih, Q. A. (2004). Image subtraction for real time moving object extraction,
Proceeding of Int. Conf. on Computer Graphics, Imaging and Visualization (CGIV’04), pp.
41–45.

Stringa, E. (200). Morphological change detection algorithms for surveillance applications,
Proceeding of British Machine Vision Conf., pp. 402–412.

Sugandi, B.; Kim, H.S.; Tan, J.K. & Ishikawa, S. (2007).Tracking of moving persons using
multi camera employing peripheral increment sign correlation image, ICIC Express
Letters, An International Journal of Research and Surveys, Vol. 1, No. 2, pp. 177-184.

Black, M. & Jepson, A. (1998). A probabilistic framework for matching temporal trajectories:
condensation-based recognition of gestures and expressions, Proceeding of the
European Conference on Computer Vision, pp. 909-924.

Object Tracking

20

man enters the scene from the left side. They occlude each other in the middle on the scene.
We successfully track the first moving object as interest moving object as our assumptions
while the other moving object is not tracked.
To evaluate our method, we performed the object identification method based on spatial
and color information of the tracked object. Table 1 shows the result of the object
identification. From the table, we notice that some objects are not correctly identified in
some frames of each experiment. The wrong identification occurs in two types. First, it
occurs when the moving object just enters or leaves the scene. When the moving object is
just entering the scene, the system can detect the moving object. However, the extracted
features of the moving object in this case cannot represent the moving object very well,
because only partial of the features of the moving objects are extracted. The second error
occurs when the moving object is slowing down. In this situation, the frame difference of the
object becomes smaller. Therefore, only smaller bounding box and less moving pixels are
obtained. On this condition, the extracted features will lose its representative. Both of errors
are illustrated in Fig. 17.

6. Conclusion
This article proposed a new method for detecting the moving object employing frame
difference on low resolution image, tracking the moving object employing block matching
technique based on peripheral increment sign correlation image for tracking the interest
moving object among the moving objects emerging in the background and identifying the
moving objects employing color and spatial information of the tracked object. The
experiment results and data show the effectiveness and the satisfaction of the proposed
methods. Using our method, we can achieve the identification rate of 92.1[%] in average.
However, the proposed method still has limitations. The limitations can be investigated as
followings. Firstly, the detection method based on frame difference on low resolution image
has a limitation when the moving object is too small to be detected. It is occurred because
the low resolution image removes the small moving objects emerging in the background. To
overcome this limitation, we can add another method such as skin color detection. By using
this method, even if the moving object is too small, it can still be detected based on the skin
color of the object. Secondly, the block matching technique has successfully tracked the
interest moving object in the occlude condition. However, when the moving objects appear
in the same time, we cannot judge any object to be an interest object. Moreover, when the
interest moving object is covered by the occluded object, the image information of the
interest moving object cannot be read by the camera. This condition cause the system cannot
recognize the interest moving object. Those limitations can be solved by adding other
information to the interest moving object such as flow of moving object based on optical
flow, dimension or another feature and also we can add the color information to each object.
So whenever the objects appear, they have their own model that different from each other.
And we can track them based on the model.
Thirdly, color and spatial information method show the high correct identification rate.
However, the system still cannot identify the objects sometimes when they are just entering
or leaving the scene. The extracted features in this case are not enough to be used to identify
the moving objects. The system also has limitation when the object is moving slowly. In this
condition, the inter-frame difference image of the object will become smaller and we will get
smaller bounding box and less moving pixels. Therefore, the extracted features will lose its

A Block Matching Technique for Object Tracking
Based on Peripheral Increment Sign Correlation Image

21

representative. The correct identification rate highly depends on the correctness of the
moving object detection and feature representation. This problem can be improved by a
better feature selection method and moving object detection method.
By considering those limitations and implement some improvements to our method
including speed up the processing time, they could lead to some improvements in the
tracking system. These are remaining for future work.

7. References
Lipton, A; Fujiyoshi, H. & Patil, R.(1998) .Moving target classification and tracking from

real-time video, Proceeding of IEEE Workshop Applications of Computer Vision, pp. 8-
14.

Stauffer, C. & Grimson, W. (1999). Adaptive background mixture models for real-time
tracking, Proceeding of IEEE Conf. on Computer Vision and Pattern Recognition, pp.
246-252.

LIU, Y.; Haizho, A. & Xu Guangyou.(2001). Moving object detection and tracking based on
background subtraction, Proceeding of Society of Photo-Optical Instrument Engineers
(SPIE), Vol. 4554, pp. 62-66.

Cheng, F. & Chen, Y. (2006). Real time multiple objects tracking and identification based on
discrete wavelet transform, Journal of the pattern Recognition Society, pp 1126-1139.

Davis, J. W. & Bobick, A. F. (1997). The representation and recognition of action using
temporal templates, Proceeding of Comp Vision and Pattern Recognition, pp. 928-934.

Meyer, D.; Denzler, J. & Niemann, H. (1998). Model based extraction of articulated objects in
image sequences for gait analysis, Proceeding of IEEE Int. Conf. Image Proccessing, pp.
78-81.

Paragios, N. & Deriche, R. (2000). Geodesic active contours and level sets for the detection
and tracking of moving object, IEEE Trans. on Pattern Analysis and Machine
Intelligent, pp. 266-280.

Satoh, Y.; Kaneko, S. & Igarashi, S. (2001). Robust Object Detection and Segmentation by
Peripheral Increment Sign Correlation Image, System and Computer in Japan,
pp.2585-2594.

Gonzalez, R. C. & Woods, R. E. (2001). Digital Image Processing, Addison-Wesley Longman
Publishing Co., Inc.,Boston, MA.

Sugandi, B.; Kim, H.S.; Tan, J.K. & Ishikawa, S. (2007). Tracking of moving object by using
low resolution image, Proceeding of Int. Conf. on Innovative Computing, Information
and Control (ICICIC07), Kumamoto, Japan, (4 pages).

Desa, S. M. & Salih, Q. A. (2004). Image subtraction for real time moving object extraction,
Proceeding of Int. Conf. on Computer Graphics, Imaging and Visualization (CGIV’04), pp.
41–45.

Stringa, E. (200). Morphological change detection algorithms for surveillance applications,
Proceeding of British Machine Vision Conf., pp. 402–412.

Sugandi, B.; Kim, H.S.; Tan, J.K. & Ishikawa, S. (2007).Tracking of moving persons using
multi camera employing peripheral increment sign correlation image, ICIC Express
Letters, An International Journal of Research and Surveys, Vol. 1, No. 2, pp. 177-184.

Black, M. & Jepson, A. (1998). A probabilistic framework for matching temporal trajectories:
condensation-based recognition of gestures and expressions, Proceeding of the
European Conference on Computer Vision, pp. 909-924.

Object Tracking

22

Menser, B. & Brunig, V. (2000). Face detection and tracking for video coding applications,
Asilomar Conference on Signals, Systems, and Computers, pp. 49-53.

Greiffenhagen, M.; Ramesh, V.; Comaniciu, D. & Niemann, H. (2000). Statistical modeling
and performance characterization of a real-time dual camera surveillance system,
Proceeding of the IEEE Conf. on Computer Vision and Pattern Recognition, pp. 335-342.

McIvor, A. M. (2000). Background subtraction techniques, Proceeding of Image and Vision
Computing, 6 pages.

Heikkila, J. & Silven, O. (1999). A real-time system for monitoring of cyclists and
pedestrians, Proceeding of Second IEEE Workshop on Visual Surveillance, pp 74–81.

Collins, R. ; Lipton, A.; Kanade, T.; Fujiyoshi, H.; Duggins, D.; Tsin, Y.; Tolliver, D.;
Enomoto, N. & Hasegawa. (2000). System for video surveillance and monitoring,
Technical Report CMU-RI-TR-00-12, Robotics Institute, Carnegie Mellon University.

Meyer, D.; Denzler, J. & Niemann, H. (1998). Model based extraction of articulated objects in
image sequences for gait analysis, Proceeding of the IEEE Int. Conf. on Image
Processing, pp. 78–81.

Phung, S.; Chai, D. & Bouzerdoum, A. (2003). Adaptive skin segmentation in color images,
Proceeding of IEEE International Conference on Acoustics, Speech and Signal Processing,
Vol. 3, pp. 353-356.

Cho, K. M.; Jang, J. H. & Hong, K. S. (2001). Adaptive skin-color filter, Pattern Recognition,
pp. 1067-1073.

Harwood, D. ; Haritaoglu, I. & Davis, L. S. (2000). W4: Real-time surveillance of people and
their activities, IEEE Transactions on Pattern Analysis and Machine Intelligence, Vol. 22,
No. 8, pp. 809–830.

Stauffer, C. & Grimson, W. (2000). Learning patterns of activity using real-time tracking,
IEEE Transactions on Pattern Analysis and Machine Intelligence, pp. 747–757.

Hu, W. ; Tan, T.; Wang, L. & Maybank, S. (2004). A survey on visual surveillance of object
motion and behaviors, IEEE Trans. On System, Man, and Cybernetics, Vol. 34, No. 3,
pp. 334-352.

Wren, C. R.; Azarbayejani, A.; Darrell, T. & Pentland, A. P. (1997). Pfinder: real-time tracking
of the human body, IEEE Trans. Pattern Analysis. Machine Inteligent., Vol. 19, pp.
780–785.

McKenna, S.; Jabri, S.; Duric, Z.; Rosenfeld, A. & Wechsler, H. (2000). Tracking groups of
people, Computer Vision: Image Understanding, Vol. 80, No. 1, pp. 42–56.

Paragios, N. & Deriche, R. (2000). Geodesic active contours and level sets for the detection
and tracking of moving objects, IEEE Trans. Pattern Analysis and Machine Intelligent,
Vol. 22, pp. 266–280.

Schiele, B. (2000). Vodel-free tracking of cars and people based on color regions, Proceeding of
IEEE Int. Workshop Performance Evaluation of Tracking and Surveillance, Grenoble,
France, pp. 61–71.

Coifman, B.; Beymer, D.; McLauchlan, P. & Malik, J. (1998). A real-time computer vision
system for vehicle tracking and traffic surveillance, Transportation Research: Part C,
Vol. 6, No. 4, pp. 271–288.

Koller, D.; Danilidis, K. & Nagel. H. (2000). Model-based object tracking in monocular image
sequences of road traffic scenes, Int. Journal of Computer Vision, Vol.10, No.3, pp.257-
281.

Czyz, J.; Ristic, B. & Macq, B. (2007). A particle filter for joint detection and tracking of color
objects”, Image and Vision Computing, Vol. 25, No. 8, pp 1271-1281.

Yilmaz, A.; Javed, O. & Shah, M. (2006). Object tracking: a survey, ACM Computing Survey,
Vol.38, No.13, pp.1-45.

Artur Loza1, Lyudmila Mihaylova2, Fanglin Wang3 and Jie Yang4

2 Lancaster University
1,3,4Shanghai Jiao Tong University

2United Kingdom
1,3,4China

1. Introduction

The problem of object tracking has been a subject of numerous studies and has gained
considerable interest (Aghajan & Cavallaro (2009); Gandhi & Trivedi (2007)) in the light of
surveillance (Hu et al. (2004); Loza et al. (2009)), pedestrian protection systems (Forsyth et al.
(2006); Gerónimo et al. (2010); Smith & Singh (2006)), vehicular traffic management, human
vision systems (Chen & Yang (2007)) and others. The methods for object tracking can be
subdivided into two main groups: deterministic (Bradski (1998); Cheng (1995); Comaniciu &
Meer (2002); Comaniciu et al. (2000; 2003)) and probabilistic (e.g., Pérez et al. (2004)) within
which the Bayesian techniques are the most prominent.
Most video tracking techniques are region based which means that the object of interest is
contained within a region, often of a rectangular or circular shape. This region is then tracked
in a sequence of video frames based on certain features (or their histograms), such as colour,
texture, edges, shape, and their combinations (Brasnett et al. (2005; 2007); Pérez et al. (2004);
Triesch & von der Malsburg (2001)).
This book chapter addresses the problem of object tracking in video sequences by using
the recently proposed structural similarity-based image distance measure (Wang et al.,
2005a; Wang & Simoncelli, 2004). Advantages of the Structural SIMilarity (SSIM) measure
are its robustness to illumination changes and ability to extract the structural information
from images and video frames. Real world videos are often recorded in unfavourable
environments, for example with low or variable light exposure due to the weather conditions.
These factors often cause undesired luminance and contrast variations in videos produced by
optical cameras (e.g. the object entering dark or shadowy areas) and by Infrared (IR) sensors
(due to varying thermal conditions or insufficient exposure of the object). Moreover, due to
the presence of spurious objects or backgrounds in the environment, real-world video data
may lack sufficient colour information needed to discriminate the tracked object against its
background.
The commonly applied tracking techniques relying on colour and edge image features
represented by histograms are often prone to failure in such conditions. In contrast, the
SSIM reflects the distance between two video frames by jointly comparing their luminance,
contrast and spatial characteristics and is sensitive to relative rather than absolute changes in

Structural Information Approaches to Object
Tracking in Video Sequences

2

Object Tracking

22

Menser, B. & Brunig, V. (2000). Face detection and tracking for video coding applications,
Asilomar Conference on Signals, Systems, and Computers, pp. 49-53.

Greiffenhagen, M.; Ramesh, V.; Comaniciu, D. & Niemann, H. (2000). Statistical modeling
and performance characterization of a real-time dual camera surveillance system,
Proceeding of the IEEE Conf. on Computer Vision and Pattern Recognition, pp. 335-342.

McIvor, A. M. (2000). Background subtraction techniques, Proceeding of Image and Vision
Computing, 6 pages.

Heikkila, J. & Silven, O. (1999). A real-time system for monitoring of cyclists and
pedestrians, Proceeding of Second IEEE Workshop on Visual Surveillance, pp 74–81.

Collins, R. ; Lipton, A.; Kanade, T.; Fujiyoshi, H.; Duggins, D.; Tsin, Y.; Tolliver, D.;
Enomoto, N. & Hasegawa. (2000). System for video surveillance and monitoring,
Technical Report CMU-RI-TR-00-12, Robotics Institute, Carnegie Mellon University.

Meyer, D.; Denzler, J. & Niemann, H. (1998). Model based extraction of articulated objects in
image sequences for gait analysis, Proceeding of the IEEE Int. Conf. on Image
Processing, pp. 78–81.

Phung, S.; Chai, D. & Bouzerdoum, A. (2003). Adaptive skin segmentation in color images,
Proceeding of IEEE International Conference on Acoustics, Speech and Signal Processing,
Vol. 3, pp. 353-356.

Cho, K. M.; Jang, J. H. & Hong, K. S. (2001). Adaptive skin-color filter, Pattern Recognition,
pp. 1067-1073.

Harwood, D. ; Haritaoglu, I. & Davis, L. S. (2000). W4: Real-time surveillance of people and
their activities, IEEE Transactions on Pattern Analysis and Machine Intelligence, Vol. 22,
No. 8, pp. 809–830.

Stauffer, C. & Grimson, W. (2000). Learning patterns of activity using real-time tracking,
IEEE Transactions on Pattern Analysis and Machine Intelligence, pp. 747–757.

Hu, W. ; Tan, T.; Wang, L. & Maybank, S. (2004). A survey on visual surveillance of object
motion and behaviors, IEEE Trans. On System, Man, and Cybernetics, Vol. 34, No. 3,
pp. 334-352.

Wren, C. R.; Azarbayejani, A.; Darrell, T. & Pentland, A. P. (1997). Pfinder: real-time tracking
of the human body, IEEE Trans. Pattern Analysis. Machine Inteligent., Vol. 19, pp.
780–785.

McKenna, S.; Jabri, S.; Duric, Z.; Rosenfeld, A. & Wechsler, H. (2000). Tracking groups of
people, Computer Vision: Image Understanding, Vol. 80, No. 1, pp. 42–56.

Paragios, N. & Deriche, R. (2000). Geodesic active contours and level sets for the detection
and tracking of moving objects, IEEE Trans. Pattern Analysis and Machine Intelligent,
Vol. 22, pp. 266–280.

Schiele, B. (2000). Vodel-free tracking of cars and people based on color regions, Proceeding of
IEEE Int. Workshop Performance Evaluation of Tracking and Surveillance, Grenoble,
France, pp. 61–71.

Coifman, B.; Beymer, D.; McLauchlan, P. & Malik, J. (1998). A real-time computer vision
system for vehicle tracking and traffic surveillance, Transportation Research: Part C,
Vol. 6, No. 4, pp. 271–288.

Koller, D.; Danilidis, K. & Nagel. H. (2000). Model-based object tracking in monocular image
sequences of road traffic scenes, Int. Journal of Computer Vision, Vol.10, No.3, pp.257-
281.

Czyz, J.; Ristic, B. & Macq, B. (2007). A particle filter for joint detection and tracking of color
objects”, Image and Vision Computing, Vol. 25, No. 8, pp 1271-1281.

Yilmaz, A.; Javed, O. & Shah, M. (2006). Object tracking: a survey, ACM Computing Survey,
Vol.38, No.13, pp.1-45.

Artur Loza1, Lyudmila Mihaylova2, Fanglin Wang3 and Jie Yang4

2 Lancaster University
1,3,4Shanghai Jiao Tong University

2United Kingdom
1,3,4China

1. Introduction

The problem of object tracking has been a subject of numerous studies and has gained
considerable interest (Aghajan & Cavallaro (2009); Gandhi & Trivedi (2007)) in the light of
surveillance (Hu et al. (2004); Loza et al. (2009)), pedestrian protection systems (Forsyth et al.
(2006); Gerónimo et al. (2010); Smith & Singh (2006)), vehicular traffic management, human
vision systems (Chen & Yang (2007)) and others. The methods for object tracking can be
subdivided into two main groups: deterministic (Bradski (1998); Cheng (1995); Comaniciu &
Meer (2002); Comaniciu et al. (2000; 2003)) and probabilistic (e.g., Pérez et al. (2004)) within
which the Bayesian techniques are the most prominent.
Most video tracking techniques are region based which means that the object of interest is
contained within a region, often of a rectangular or circular shape. This region is then tracked
in a sequence of video frames based on certain features (or their histograms), such as colour,
texture, edges, shape, and their combinations (Brasnett et al. (2005; 2007); Pérez et al. (2004);
Triesch & von der Malsburg (2001)).
This book chapter addresses the problem of object tracking in video sequences by using
the recently proposed structural similarity-based image distance measure (Wang et al.,
2005a; Wang & Simoncelli, 2004). Advantages of the Structural SIMilarity (SSIM) measure
are its robustness to illumination changes and ability to extract the structural information
from images and video frames. Real world videos are often recorded in unfavourable
environments, for example with low or variable light exposure due to the weather conditions.
These factors often cause undesired luminance and contrast variations in videos produced by
optical cameras (e.g. the object entering dark or shadowy areas) and by Infrared (IR) sensors
(due to varying thermal conditions or insufficient exposure of the object). Moreover, due to
the presence of spurious objects or backgrounds in the environment, real-world video data
may lack sufficient colour information needed to discriminate the tracked object against its
background.
The commonly applied tracking techniques relying on colour and edge image features
represented by histograms are often prone to failure in such conditions. In contrast, the
SSIM reflects the distance between two video frames by jointly comparing their luminance,
contrast and spatial characteristics and is sensitive to relative rather than absolute changes in

Structural Information Approaches to Object
Tracking in Video Sequences

2

the video frame. It replaces histograms used for calculation of the measurement likelihood
function within a particle filter. We demonstrate that it is a good and efficient alternative to
histogram-based tracking. This work builds upon the results reported in Loza et al. (2006;
2009) with more detailed investigation including further extensions of the proposed method.
The remaining part of the book chapter is organised in the following way. Section 2 presents
an overview of the main (deterministic and probabilistic) tracking approaches and outlines the
Bayesian tracking framework. Section 3 presents the proposed approach, followed in Section
4 by the results obtained with real video data and Section 5 summarises the results and open
issues for future research.

2. Video tracking overview

2.1 Deterministic methods
In this chapter an overview of selected deterministic & probabilistic tracking techniques is
presented. Within the group of deterministic methods the mean shift (MS) algorithm (Cheng
(1995); Comaniciu & Meer (2002); Comaniciu et al. (2000; 2003)) is one of the most widely
used. The MS algorithm originally proposed by Fukunaga & Hostetler (1975) was further
extended to computer vision problems in (Comaniciu & Meer (2002); Comaniciu et al. (2000)).
It is a gradient based, iterative technique that uses smooth kernels, such as Gaussian or
Epanechnikov for representing a probability density function. The similarity between the
target region and the target candidates in the next video frame is evaluated using a metric
based on the Bhattacharyya coefficient (Aherne et al. (1990)). The MS tracking algorithm
from Comaniciu & Meer (2002) is a mode-finding technique that locates the local maxima
of the posterior density function. Based on the mean-shift vector, utilised as an estimate
of the gradient of the Bhattacharyya function, the new object state estimate is calculated.
The accuracy of the mean shift techniques depends on the kernel chosen and the number
of iterations in the gradient estimation process. One of the drawbacks of the MS technique is
that sometimes local extrema are found instead of the global one. Moreover, the MS algorithm
faces problems with multimodal probability density functions which can be overcome by
some of the Bayesian methods (sequential Monte Carlo methods).
The MS algorithm has been combined with particle filtering techniques and as a result kernel
particle filters (Chang & Ansari (2003; 2005)) and hybrid particle filters (Maggio & Cavallaro
(2005)) were proposed combining the advantages of both approaches. The MS is applied to the
particles in order to move them into more likely regions and hence the performance of these
hybrid particle filters is significantly improved. Interesting implementation of this scheme has
been proposed in (Cai et al., 2006) where the data association problem is formulated and the
MS algorithm is “embedded seamlessly” into the particle filter algorithm: the deterministic
MS - induced particle bias with a superimposed Gaussian distribution is considered as a new
proposal distribution. Other related hybrid particle filters combined with the MS have been
proposed in (Bai & Liu (2007); Cai et al. (2006); Han et al. (2004); Shan et al. (2007)).

2.2 Bayesian tracking framework
Bayesian inference methods (Doucet et al. (2001); Isard & Blake (1998); Koch (2010); Pérez
et al. (2004); Ristic et al. (2004)) have gained a strong reputation for tracking and data fusion
applications, because they avoid simplifying assumptions that may degrade performance
in complex situations and have the potential to provide an optimal or sub-optimal

24 Object Tracking

solution (Arulampalam et al. (2002); Khan et al. (2005)). In case of the sub-optimal solution,
the proximity to the theoretical optimum depends on the computational capability to execute
numeric approximations and the feasibility of probabilistic models for target appearance,
dynamics, and measurements likelihoods.
In the Bayesian tracking framework the best posterior estimate of the state vector xk ∈ Rnx

is inferred from the available measurements, z1:k = {z1, . . . ,zk}, based on derivation of the
posterior probability density function (pdf) of xk conditioned on the whole set of observations:
p(xk|z1:k). Assuming that the posterior pdf at time k − 1 (the initial pdf) is available, the prior
pdf of the state at time k is obtained via the Chapman-Kolmogorov equation:

p(xk|z1:k−1) =
∫

Rnx

p(xk|xk−1)p(xk−1|z1:k−1)dxk−1 (1)

where p(xk|xk−1) is the state transition probability. Once the sequence z1:k of measurements
is available, the posterior pdf p(xk|z1:k) is recursively obtained according to the Bayes update
rule

p(xk|z1:k) =
p(z1:k|xk)p(xk|z1:k−1)

p(z1:k|z1:k−1)
(2)

where p(z1:k|z1:k−1) is a normalising constant and p(z1:k|xk) is the measurement likelihood.
Thus, the recursive update of p(xk|z1:k) is proportional to the measurement likelihood

p(xk|z1:k) ∝ p(z1:k|xk)p(xk|z1:k−1). (3)

Different strategies can be applied to estimate xk from this pdf. Commonly used estimators
of xk, include the maximum a posteriori (MAP) approach,

x̂k = arg max
xk

p(xk|z1:k), (4)

and the minimum mean squared error (MMSE) approach, giving an estimate which is
equivalent to the expected value of the state

x̂k =
∫

xk p(xk|z1:k)dxk. (5)

2.3 Particle filtering techniques for state vector estimation
Particle filtering (Arulampalam et al. (2002); Doucet et al. (2001); Isard & Blake (1996; 1998);
Pérez et al. (2004); Ristic et al. (2004)) is a method relying on sample-based reconstruction
of probability density functions. The aim of sequential particle filtering is to evaluate the
posterior pdf p(xk|z1:k) of the state vector xk, given a set z1:k of sensor measurements up to

time k. The quality (importance) of the �th particle (sample) of the state, x(�)
k , is measured by

the weight associated with it, W(�)
k . An estimate of the variable of interest can be obtained

by the weighted sum of particles (cf. (5) and (9)). The pseudo-code description of a generic
particle filter (PF) tracking algorithm is shown in Table 1.
Two major stages can be distinguished in the particle filtering method: prediction and update.
During prediction, each particle is modified according to the state model of the region of
interest in the video frame, including the perturbation of the particle’s state by means of
addition of white noise in order to simulate the effect of the random walk according to the

25Structural Information Approaches to Object Tracking in Video Sequences

the video frame. It replaces histograms used for calculation of the measurement likelihood
function within a particle filter. We demonstrate that it is a good and efficient alternative to
histogram-based tracking. This work builds upon the results reported in Loza et al. (2006;
2009) with more detailed investigation including further extensions of the proposed method.
The remaining part of the book chapter is organised in the following way. Section 2 presents
an overview of the main (deterministic and probabilistic) tracking approaches and outlines the
Bayesian tracking framework. Section 3 presents the proposed approach, followed in Section
4 by the results obtained with real video data and Section 5 summarises the results and open
issues for future research.

2. Video tracking overview

2.1 Deterministic methods
In this chapter an overview of selected deterministic & probabilistic tracking techniques is
presented. Within the group of deterministic methods the mean shift (MS) algorithm (Cheng
(1995); Comaniciu & Meer (2002); Comaniciu et al. (2000; 2003)) is one of the most widely
used. The MS algorithm originally proposed by Fukunaga & Hostetler (1975) was further
extended to computer vision problems in (Comaniciu & Meer (2002); Comaniciu et al. (2000)).
It is a gradient based, iterative technique that uses smooth kernels, such as Gaussian or
Epanechnikov for representing a probability density function. The similarity between the
target region and the target candidates in the next video frame is evaluated using a metric
based on the Bhattacharyya coefficient (Aherne et al. (1990)). The MS tracking algorithm
from Comaniciu & Meer (2002) is a mode-finding technique that locates the local maxima
of the posterior density function. Based on the mean-shift vector, utilised as an estimate
of the gradient of the Bhattacharyya function, the new object state estimate is calculated.
The accuracy of the mean shift techniques depends on the kernel chosen and the number
of iterations in the gradient estimation process. One of the drawbacks of the MS technique is
that sometimes local extrema are found instead of the global one. Moreover, the MS algorithm
faces problems with multimodal probability density functions which can be overcome by
some of the Bayesian methods (sequential Monte Carlo methods).
The MS algorithm has been combined with particle filtering techniques and as a result kernel
particle filters (Chang & Ansari (2003; 2005)) and hybrid particle filters (Maggio & Cavallaro
(2005)) were proposed combining the advantages of both approaches. The MS is applied to the
particles in order to move them into more likely regions and hence the performance of these
hybrid particle filters is significantly improved. Interesting implementation of this scheme has
been proposed in (Cai et al., 2006) where the data association problem is formulated and the
MS algorithm is “embedded seamlessly” into the particle filter algorithm: the deterministic
MS - induced particle bias with a superimposed Gaussian distribution is considered as a new
proposal distribution. Other related hybrid particle filters combined with the MS have been
proposed in (Bai & Liu (2007); Cai et al. (2006); Han et al. (2004); Shan et al. (2007)).

2.2 Bayesian tracking framework
Bayesian inference methods (Doucet et al. (2001); Isard & Blake (1998); Koch (2010); Pérez
et al. (2004); Ristic et al. (2004)) have gained a strong reputation for tracking and data fusion
applications, because they avoid simplifying assumptions that may degrade performance
in complex situations and have the potential to provide an optimal or sub-optimal

24 Object Tracking

solution (Arulampalam et al. (2002); Khan et al. (2005)). In case of the sub-optimal solution,
the proximity to the theoretical optimum depends on the computational capability to execute
numeric approximations and the feasibility of probabilistic models for target appearance,
dynamics, and measurements likelihoods.
In the Bayesian tracking framework the best posterior estimate of the state vector xk ∈ Rnx

is inferred from the available measurements, z1:k = {z1, . . . ,zk}, based on derivation of the
posterior probability density function (pdf) of xk conditioned on the whole set of observations:
p(xk|z1:k). Assuming that the posterior pdf at time k − 1 (the initial pdf) is available, the prior
pdf of the state at time k is obtained via the Chapman-Kolmogorov equation:

p(xk|z1:k−1) =
∫

Rnx

p(xk|xk−1)p(xk−1|z1:k−1)dxk−1 (1)

where p(xk|xk−1) is the state transition probability. Once the sequence z1:k of measurements
is available, the posterior pdf p(xk|z1:k) is recursively obtained according to the Bayes update
rule

p(xk|z1:k) =
p(z1:k|xk)p(xk|z1:k−1)

p(z1:k|z1:k−1)
(2)

where p(z1:k|z1:k−1) is a normalising constant and p(z1:k|xk) is the measurement likelihood.
Thus, the recursive update of p(xk|z1:k) is proportional to the measurement likelihood

p(xk|z1:k) ∝ p(z1:k|xk)p(xk|z1:k−1). (3)

Different strategies can be applied to estimate xk from this pdf. Commonly used estimators
of xk, include the maximum a posteriori (MAP) approach,

x̂k = arg max
xk

p(xk|z1:k), (4)

and the minimum mean squared error (MMSE) approach, giving an estimate which is
equivalent to the expected value of the state

x̂k =
∫

xk p(xk|z1:k)dxk. (5)

2.3 Particle filtering techniques for state vector estimation
Particle filtering (Arulampalam et al. (2002); Doucet et al. (2001); Isard & Blake (1996; 1998);
Pérez et al. (2004); Ristic et al. (2004)) is a method relying on sample-based reconstruction
of probability density functions. The aim of sequential particle filtering is to evaluate the
posterior pdf p(xk|z1:k) of the state vector xk, given a set z1:k of sensor measurements up to

time k. The quality (importance) of the �th particle (sample) of the state, x(�)
k , is measured by

the weight associated with it, W(�)
k . An estimate of the variable of interest can be obtained

by the weighted sum of particles (cf. (5) and (9)). The pseudo-code description of a generic
particle filter (PF) tracking algorithm is shown in Table 1.
Two major stages can be distinguished in the particle filtering method: prediction and update.
During prediction, each particle is modified according to the state model of the region of
interest in the video frame, including the perturbation of the particle’s state by means of
addition of white noise in order to simulate the effect of the random walk according to the

25Structural Information Approaches to Object Tracking in Video Sequences

Table 1. Pseudocode of the particle filter algorithm

Input: target state xk−1 (previous frame)
Output: target state xk (current frame)

Initialisation
k = 0, initialise x0.
Generate N samples (particles) {x(�)

0 }, � = 1, 2, . . . , N, from the initial distribution p(x0).

Initialise weights W(�)
0 = 1/N.

• FOR k = 1 : Kframes

* FOR � = 1, 2, . . . , N

Prediction

1. Sample the state from the object motion model

x
(�)
k ∼ p(xk|x(�)

k−1). (6)

Update

2. Evaluate the importance weights based on the likelihood L(zk|x(�)
k) of the cue from the

measurement zk

W(�)
k ∝ W(�)

k−1L(zk|x(�)
k). (7)

* END FOR

Output

3. Normalise the weights of each particle

Ŵ(�)
k = W(�)

k /
N

∑
�=1

W(�)
k . (8)

4. Compute the posterior mean state estimate of xk using the collection of samples

x̂k =
N

∑
�=1

Ŵ(�)
k x̂

(�)
k . (9)

Resampling

5. Estimate the effective number of particles Neff = 1/ ∑N
�=1

(
Ŵ(�)

k

)2
. If Neff ≤ Nthr (Nthr is

a given threshold) then perform resampling: multiply samples x
(�)
k with high importance

weights Ŵ(�)
k and suppress samples with low importance weights, in order to introduce

variety and obtain N new random samples. Set W(�)
k = Ŵ(�)

k = 1/N.

• END FOR

26 Object Tracking

motion model p(xk|x(�)
k−1), (6). The prior pdf of the state at time k is obtained in prediction

stage via Chapman-Kolmogorov equation (1). Once a measurement zk is available, p(xk|z1:k)
is recursively obtained in the update step according to (3), or equivalently, (7). The likelihood

L(zk|x(�)
k) is calculated for the respective image cue (e.g. colour). Consequently, the posterior

mean state is computed using the collection of particles (9).
An inherent problem with particle filters is degeneracy (the case when only one particle has
a significant weight). A resampling procedure helps to avoid this by eliminating particles
with small weights and replicating the particles with larger weights. Various approaches for
resampling have been proposed (see Doucet et al. (2001); Kitagawa (1996); Liu & Chen (1998);
Wan & van der Merwe (2001), for example). In this work, the systematic resampling method
(Kitagawa (1996)) was used with the estimate of the measure of degeneracy (Doucet et al.
(2001)) as given in (Liu & Chen (1998)) (see Table 1).

2.4 Importance sampling and proposal distributions
In the PF framework, the pdf of the object state, p(xk|z1:k), is represented by a set of samples

with associated weights {x(�)
k , W(�)

k }N
i=1 such that ∑N

i=1 W(�)
k = 1. Then the posterior density

can be approximated as

p(xk|z1:k) ≈
N

∑
�=1

W(�)
k δ(xk − x

(�)
k) (10)

based on the likelihood L(zk|x(�)
k) (see the following paragraph for details of the likelihood)

of the measurement and particle weights. Here, δ(.) is the Dirac delta function. The particle
weights in (10) are updated based on the principle of importance sampling (Arulampalam
et al. (2002))

W(�)
k ∝ W(�)

k−1

p(zk|x(�)
k)p(x(�)

k |x(�)
k−1)

q(x(�)
k |x(�)

k−1,z1:k)
, (11)

where q(x(�)
k |x(�)

k−1,z1:k) is a proposal, called an importance density and p(zk|x(�)
k) is the

measurement likelihood function. It has been assumed that q(.) is only dependent on x
(�)
k−1

and zk. The most popular choice of the importance density is the prior, p(xk|xk−1). This
choice results in a simple implementation of the weight update stage (cf. (11))

W(�)
k ∝ W(�)

k−1 p(zk|x(�)
k) . (12)

However, using the transition information alone may not be sufficient to capture the complex
dynamics of some targets. It has been shown that an optimal importance density is defined

as function of the state and a new measurement/additional information q(x(�)
k |x(�)

k−1,z1:k).
Therefore, in this work, the use of a mixture distribution containing additional information as
the importance density is proposed

q(x(�)
k |x(�)

k−1,z1:k) =
M

∑
m=1

αm fm(x
(�)
1:k ,z1:k) (13)

where αm, ∑M
m=1 αm = 1 are normalised weights of M components of the mixture. Among

possible candidates for fm are the prior, blob detection and data association distributions. For

27Structural Information Approaches to Object Tracking in Video Sequences

Table 1. Pseudocode of the particle filter algorithm

Input: target state xk−1 (previous frame)
Output: target state xk (current frame)

Initialisation
k = 0, initialise x0.
Generate N samples (particles) {x(�)

0 }, � = 1, 2, . . . , N, from the initial distribution p(x0).

Initialise weights W(�)
0 = 1/N.

• FOR k = 1 : Kframes

* FOR � = 1, 2, . . . , N

Prediction

1. Sample the state from the object motion model

x
(�)
k ∼ p(xk|x(�)

k−1). (6)

Update

2. Evaluate the importance weights based on the likelihood L(zk|x(�)
k) of the cue from the

measurement zk

W(�)
k ∝ W(�)

k−1L(zk|x(�)
k). (7)

* END FOR

Output

3. Normalise the weights of each particle

Ŵ(�)
k = W(�)

k /
N

∑
�=1

W(�)
k . (8)

4. Compute the posterior mean state estimate of xk using the collection of samples

x̂k =
N

∑
�=1

Ŵ(�)
k x̂

(�)
k . (9)

Resampling

5. Estimate the effective number of particles Neff = 1/ ∑N
�=1

(
Ŵ(�)

k

)2
. If Neff ≤ Nthr (Nthr is

a given threshold) then perform resampling: multiply samples x
(�)
k with high importance

weights Ŵ(�)
k and suppress samples with low importance weights, in order to introduce

variety and obtain N new random samples. Set W(�)
k = Ŵ(�)

k = 1/N.

• END FOR

26 Object Tracking

motion model p(xk|x(�)
k−1), (6). The prior pdf of the state at time k is obtained in prediction

stage via Chapman-Kolmogorov equation (1). Once a measurement zk is available, p(xk|z1:k)
is recursively obtained in the update step according to (3), or equivalently, (7). The likelihood

L(zk|x(�)
k) is calculated for the respective image cue (e.g. colour). Consequently, the posterior

mean state is computed using the collection of particles (9).
An inherent problem with particle filters is degeneracy (the case when only one particle has
a significant weight). A resampling procedure helps to avoid this by eliminating particles
with small weights and replicating the particles with larger weights. Various approaches for
resampling have been proposed (see Doucet et al. (2001); Kitagawa (1996); Liu & Chen (1998);
Wan & van der Merwe (2001), for example). In this work, the systematic resampling method
(Kitagawa (1996)) was used with the estimate of the measure of degeneracy (Doucet et al.
(2001)) as given in (Liu & Chen (1998)) (see Table 1).

2.4 Importance sampling and proposal distributions
In the PF framework, the pdf of the object state, p(xk|z1:k), is represented by a set of samples

with associated weights {x(�)
k , W(�)

k }N
i=1 such that ∑N

i=1 W(�)
k = 1. Then the posterior density

can be approximated as

p(xk|z1:k) ≈
N

∑
�=1

W(�)
k δ(xk − x

(�)
k) (10)

based on the likelihood L(zk|x(�)
k) (see the following paragraph for details of the likelihood)

of the measurement and particle weights. Here, δ(.) is the Dirac delta function. The particle
weights in (10) are updated based on the principle of importance sampling (Arulampalam
et al. (2002))

W(�)
k ∝ W(�)

k−1

p(zk|x(�)
k)p(x(�)

k |x(�)
k−1)

q(x(�)
k |x(�)

k−1,z1:k)
, (11)

where q(x(�)
k |x(�)

k−1,z1:k) is a proposal, called an importance density and p(zk|x(�)
k) is the

measurement likelihood function. It has been assumed that q(.) is only dependent on x
(�)
k−1

and zk. The most popular choice of the importance density is the prior, p(xk|xk−1). This
choice results in a simple implementation of the weight update stage (cf. (11))

W(�)
k ∝ W(�)

k−1 p(zk|x(�)
k) . (12)

However, using the transition information alone may not be sufficient to capture the complex
dynamics of some targets. It has been shown that an optimal importance density is defined

as function of the state and a new measurement/additional information q(x(�)
k |x(�)

k−1,z1:k).
Therefore, in this work, the use of a mixture distribution containing additional information as
the importance density is proposed

q(x(�)
k |x(�)

k−1,z1:k) =
M

∑
m=1

αm fm(x
(�)
1:k ,z1:k) (13)

where αm, ∑M
m=1 αm = 1 are normalised weights of M components of the mixture. Among

possible candidates for fm are the prior, blob detection and data association distributions. For

27Structural Information Approaches to Object Tracking in Video Sequences

M = 1 and f1(x
(�)
1:k ,z1:k) = p(x(�)

k |x(�)
k−1) the generic PF is obtained. Examples of such mixture

importance densities have been proposed in (Cai et al. (2006); Lu et al. (2009); Okuma et al.
(2004)), consisting in an inclusion of the Adaboost detection information and a modification
of the particle distribution with the use of a mode-seeking algorithm (M-S has been used). In
this case the ’proposal distribution’ has been defined as a mixture distribution between the
prior and detection distributions:

q(x(�)
k |x(�)

k−1,z1:k) = αpada(x
(�)
k |zk) + (1 − α)p(x(�)

k |x(�)
k−1) (14)

In (Cai et al., 2006) the application of M-S optimisation to the particles is considered as a new
proposal distribution:

q̆(x̆(�)
k |x(�)

k−1,z1:k) = N (x̆
(�)
k |x̃(�)

k , Σ) , (15)

where x̃
(�)
k are M-S-modified samples of the original proposal distribution q and

N (x̆
(�)
k |x̃(�)

k , Σ) is a Gaussian distribution, with mean x̃
(�)
k fixed covariance Σ, superimposed

on the results of M-S. The particle weights are then updated accordingly, i.e.

W(�)
k ∝ W(�)

k−1

p(zk|x̆(�)
k)p(x̆(�)

k |x(�)
k−1)

q(x̆(�)
k |x(�)

k−1,z1:k)
. (16)

3. The structural information approach

The recently proposed approach combining the SSIM and particle filtering for video tracking
has been shown in (Loza et al., 2009) to outperform similar methods using the conventional
colour or edge histograms and Bhattacharyya distance. However, the structural similarity
combined with the particle filtering approach results in increased computational complexity
of the algorithm due to the necessity of extracting the structural information at each point
of the state space. In this book chapter, novel optimised approaches based on the SSIM are
proposed for video tracking. Firstly, a fast, deterministic version of the SSIM-based tracking
algorithm is developed. The deterministic tracking algorithm estimates the state of the
target (location and size) combining a gradient ascent procedure with the structural similarity
surface of the current video frame, thus avoiding computationally expensive sampling of
the state space. Next, an optimisation scheme is presented, based on a hybrid PF with a
deterministic mode search, applied to the particle distribution.

3.1 Structural similarity measure
The proposed method uses a similarity measure computed directly in the image spatial
domain. This approach differs significantly from other particle filtering algorithms, that
compare image distributions represented by their sample histograms (Nummiaro et al. (2003);
Pérez et al. (2004); Shen et al. (2003)).
Although many simple image similarity measures exist (for example, mean square error,
mean absolute error or peak signal-to-noise ratio), most of these have failed so far to capture
the perceptual similarity of images/video frames under the conditions of varied luminance,
contrast, compression or noise (Wang et al. (2004)). Recently, based on the premise that
the HVS is highly tuned to extracting structural information, a new image metric has been
developed, called the Structural SIMilarity (SSIM) index (Wang et al. (2004)). The SSIM index,

28 Object Tracking

between two images, I and J is defined as follows:

S(I, J) =

(
2μIμJ + C1

μ2
I + μ2

J + C1

)(
2σIσJ + C2

σ2
I + σ2

J + C2

)(
σI J + C3

σIσJ + C3

)
(17)

= l(I, J) c(I, J) s(I, J),

where C1,2,3 are small positive constants used for the numerical stability purposes, μ denotes
the sample mean

μI =
1
L

L

∑
j=1

Ij, (18)

σ denotes the sample standard deviation

σI =

√√√√ 1
L − 1

L

∑
j=1

(Ij − μI)2 (19)

and

σI J =
1

L − 1

L

∑
j=1

(Ij − μI)(Jj − μJ) (20)

corresponds to the sample covariance. The estimators are defined identically for images I and
J, each having L pixels. The image statistics are computed in the way proposed in (Wang et al.
(2004)), i.e. locally, within a 11 × 11 normalised circular-symmetric Gaussian window.
For C3 = C2/2, (17) can be simplified to obtain

S(I, J) =

(
2μIμJ + C1

μ2
I + μ2

J + C1

)(
2σI J + C2

σ2
I + σ2

J + C2

)
. (21)

3.2 Selected properties of the SSIM
The three components of (17), l, c and s, measure respectively the luminance, contrast and
structural similarity of the two images. Such a combination of image properties can be seen as
a fusion of three independent image cues. The relative independence assumption is based on
a claim that a moderate luminance and/or contrast variation does not affect structures of the
image objects (Wang et al. (2005a)).
In the context of the multimodal data used in our investigation, an important feature of the
SSIM index is (approximate) invariance to certain image distortions. It has been shown in
(Wang et al. (2005a; 2004)), that the normalised luminance measurement, l, is sensitive to the
relative rather than to absolute luminance change, thus following the masking feature of the
Hue, Saturation, Value (HVS).
Similarly, the contrast comparison function, c, is less sensitive to contrast changes occurring
in images with high base contrast. Finally, the structure comparison, s, is performed on
contrast-normalised signal with mean luminance extracted, making it immune to other
(non-structural) distortions.
These particular invariance properties of the SSIM index make it suitable for the use with
multimodal and surveillance video sequences. The similarity measure is less sensitive to

29Structural Information Approaches to Object Tracking in Video Sequences

M = 1 and f1(x
(�)
1:k ,z1:k) = p(x(�)

k |x(�)
k−1) the generic PF is obtained. Examples of such mixture

importance densities have been proposed in (Cai et al. (2006); Lu et al. (2009); Okuma et al.
(2004)), consisting in an inclusion of the Adaboost detection information and a modification
of the particle distribution with the use of a mode-seeking algorithm (M-S has been used). In
this case the ’proposal distribution’ has been defined as a mixture distribution between the
prior and detection distributions:

q(x(�)
k |x(�)

k−1,z1:k) = αpada(x
(�)
k |zk) + (1 − α)p(x(�)

k |x(�)
k−1) (14)

In (Cai et al., 2006) the application of M-S optimisation to the particles is considered as a new
proposal distribution:

q̆(x̆(�)
k |x(�)

k−1,z1:k) = N (x̆
(�)
k |x̃(�)

k , Σ) , (15)

where x̃
(�)
k are M-S-modified samples of the original proposal distribution q and

N (x̆
(�)
k |x̃(�)

k , Σ) is a Gaussian distribution, with mean x̃
(�)
k fixed covariance Σ, superimposed

on the results of M-S. The particle weights are then updated accordingly, i.e.

W(�)
k ∝ W(�)

k−1

p(zk|x̆(�)
k)p(x̆(�)

k |x(�)
k−1)

q(x̆(�)
k |x(�)

k−1,z1:k)
. (16)

3. The structural information approach

The recently proposed approach combining the SSIM and particle filtering for video tracking
has been shown in (Loza et al., 2009) to outperform similar methods using the conventional
colour or edge histograms and Bhattacharyya distance. However, the structural similarity
combined with the particle filtering approach results in increased computational complexity
of the algorithm due to the necessity of extracting the structural information at each point
of the state space. In this book chapter, novel optimised approaches based on the SSIM are
proposed for video tracking. Firstly, a fast, deterministic version of the SSIM-based tracking
algorithm is developed. The deterministic tracking algorithm estimates the state of the
target (location and size) combining a gradient ascent procedure with the structural similarity
surface of the current video frame, thus avoiding computationally expensive sampling of
the state space. Next, an optimisation scheme is presented, based on a hybrid PF with a
deterministic mode search, applied to the particle distribution.

3.1 Structural similarity measure
The proposed method uses a similarity measure computed directly in the image spatial
domain. This approach differs significantly from other particle filtering algorithms, that
compare image distributions represented by their sample histograms (Nummiaro et al. (2003);
Pérez et al. (2004); Shen et al. (2003)).
Although many simple image similarity measures exist (for example, mean square error,
mean absolute error or peak signal-to-noise ratio), most of these have failed so far to capture
the perceptual similarity of images/video frames under the conditions of varied luminance,
contrast, compression or noise (Wang et al. (2004)). Recently, based on the premise that
the HVS is highly tuned to extracting structural information, a new image metric has been
developed, called the Structural SIMilarity (SSIM) index (Wang et al. (2004)). The SSIM index,

28 Object Tracking

between two images, I and J is defined as follows:

S(I, J) =

(
2μIμJ + C1

μ2
I + μ2

J + C1

)(
2σIσJ + C2

σ2
I + σ2

J + C2

)(
σI J + C3

σIσJ + C3

)
(17)

= l(I, J) c(I, J) s(I, J),

where C1,2,3 are small positive constants used for the numerical stability purposes, μ denotes
the sample mean

μI =
1
L

L

∑
j=1

Ij, (18)

σ denotes the sample standard deviation

σI =

√√√√ 1
L − 1

L

∑
j=1

(Ij − μI)2 (19)

and

σI J =
1

L − 1

L

∑
j=1

(Ij − μI)(Jj − μJ) (20)

corresponds to the sample covariance. The estimators are defined identically for images I and
J, each having L pixels. The image statistics are computed in the way proposed in (Wang et al.
(2004)), i.e. locally, within a 11 × 11 normalised circular-symmetric Gaussian window.
For C3 = C2/2, (17) can be simplified to obtain

S(I, J) =

(
2μIμJ + C1

μ2
I + μ2

J + C1

)(
2σI J + C2

σ2
I + σ2

J + C2

)
. (21)

3.2 Selected properties of the SSIM
The three components of (17), l, c and s, measure respectively the luminance, contrast and
structural similarity of the two images. Such a combination of image properties can be seen as
a fusion of three independent image cues. The relative independence assumption is based on
a claim that a moderate luminance and/or contrast variation does not affect structures of the
image objects (Wang et al. (2005a)).
In the context of the multimodal data used in our investigation, an important feature of the
SSIM index is (approximate) invariance to certain image distortions. It has been shown in
(Wang et al. (2005a; 2004)), that the normalised luminance measurement, l, is sensitive to the
relative rather than to absolute luminance change, thus following the masking feature of the
Hue, Saturation, Value (HVS).
Similarly, the contrast comparison function, c, is less sensitive to contrast changes occurring
in images with high base contrast. Finally, the structure comparison, s, is performed on
contrast-normalised signal with mean luminance extracted, making it immune to other
(non-structural) distortions.
These particular invariance properties of the SSIM index make it suitable for the use with
multimodal and surveillance video sequences. The similarity measure is less sensitive to

29Structural Information Approaches to Object Tracking in Video Sequences

the type of global luminance and contrast changes produced by infrared sensors (results of
varied thermal conditions or exposure of the object) and visible sensors (for example, the
object entering dark or shadowy areas or operating in variable lighting conditions). Moreover,
the structure comparison is expected to be more reliable in scenarios when spurious objects
appear in the scene or when there is not enough discriminative colour information available.
The latter may be the result of the tracked object being set against background of similar colour
or when background-like camouflage is deliberately being used.
It can easily be shown that the measure defined in (17) is symmetric, i.e.

S(I, J) = S(J, I) (22)

and has a unique upper bound

S(I, J) ≤ 1, S(I, J) = 1 iff I = J. (23)

One way of converting such a similarity S(I, J) into dissimilarity D(I, J) is to take (Loza et al.
(2009); Webb (2003))

D(I, J) =
1

|S(I, J)| − 1. (24)

Here a more natural way Webb (2003),

D(I, J) = (1 − S(I, J))/2. (25)

is preferred, however, as it maps the dissimilarity into [0, 1] interval (0 when the images are
identical). The measure (25) satisfies non-negativity, reflexivity and symmetry conditions.
Although sufficient for our purposes, this dissimilarity measure is not a metric, as it does not
satisfy the triangle condition. In the following Section we present a method of evaluating the
likelihood function, based on the structural similarity between two greyscale images.

3.3 The structural information particle filter tracking algorithm
Below the main constituents of the structural similarity-based particle filter tracking algorithm
(SSIM-PF), such us motion, likelihood and target model, are described. A pseudocode of the
algorithm is shown in Table 2.

3.3.1 Motion model
The motion of the moving object can be modelled by the random walk model,

xk = Fxk−1 + vk−1, (26)

with a state vector xk = (xk, yk, sk)
T comprising the pixel coordinates (xk, yk) of the centre of

the region surrounding the object and the region scale sk; F is the transition matrix (F = I in
the random walk model) and vk is the process noise assumed to be white, Gaussian, with a
covariance matrix

Q = diag(σ2
x , σ2

y , σs
2). (27)

The estimation of the scale permits adjustment of the region size of the moving objects, e.g.,
when it goes away from the camera, when it gets closer to it, or when the camera zoom
varies. Depending on the type of the tracking object and the environment in which tracking is

30 Object Tracking

Table 2. Pseudocode of the SSIM-based particle filter algorithm

Input: target state xk−1 (previous frame)
Output: target state xk (current frame)

Initialisation
k = 0, initialise tracked region at x0.

Generate N samples (particles) {x(�)
0 }, � = 1, 2, . . . , N, from the initial distribution p(x0).

Initialise weights W(�)
0 = 1/N.

• FOR k = 1 : Kframes

* FOR � = 1, 2, . . . , N

Prediction

1. Sample the state from the object motion model x(�)
k ∼ p(xk|x(�)

k−1).

Update

3. Evaluate the importance weights according to 29:

W(�)
k ∝ W(�)

k−1L(zk|x(�)
k). (28)

* END FOR

Output

4. Normalise the weights of each particle (8)

5. Compute the posterior mean state estimate of xk (9).

Resampling

6. Perform resampling as described in Table 1

• END FOR

performed, the state vector can be extended to include, for example, the acceleration variables,
and the fixed ratio condition can be relaxed allowing independent changes of the height
and the width of the object. However, increased dimensionality of the state vector requires
finer sampling of the state space, and thus undesirably high number of particles, which may
preclude real-time implementation of the tracking system.

3.3.2 Likelihood model
The distance between the reference (target) region tre f and the current region tk is calculated
by the similarity measure (25). The normalised distance between the two regions is then
substituted into the likelihood function, modelled as an exponential:

L(zk|x(�)
k) ∝ exp

(
−D2(tref, tk)/D2

min

)
, (29)

31Structural Information Approaches to Object Tracking in Video Sequences

the type of global luminance and contrast changes produced by infrared sensors (results of
varied thermal conditions or exposure of the object) and visible sensors (for example, the
object entering dark or shadowy areas or operating in variable lighting conditions). Moreover,
the structure comparison is expected to be more reliable in scenarios when spurious objects
appear in the scene or when there is not enough discriminative colour information available.
The latter may be the result of the tracked object being set against background of similar colour
or when background-like camouflage is deliberately being used.
It can easily be shown that the measure defined in (17) is symmetric, i.e.

S(I, J) = S(J, I) (22)

and has a unique upper bound

S(I, J) ≤ 1, S(I, J) = 1 iff I = J. (23)

One way of converting such a similarity S(I, J) into dissimilarity D(I, J) is to take (Loza et al.
(2009); Webb (2003))

D(I, J) =
1

|S(I, J)| − 1. (24)

Here a more natural way Webb (2003),

D(I, J) = (1 − S(I, J))/2. (25)

is preferred, however, as it maps the dissimilarity into [0, 1] interval (0 when the images are
identical). The measure (25) satisfies non-negativity, reflexivity and symmetry conditions.
Although sufficient for our purposes, this dissimilarity measure is not a metric, as it does not
satisfy the triangle condition. In the following Section we present a method of evaluating the
likelihood function, based on the structural similarity between two greyscale images.

3.3 The structural information particle filter tracking algorithm
Below the main constituents of the structural similarity-based particle filter tracking algorithm
(SSIM-PF), such us motion, likelihood and target model, are described. A pseudocode of the
algorithm is shown in Table 2.

3.3.1 Motion model
The motion of the moving object can be modelled by the random walk model,

xk = Fxk−1 + vk−1, (26)

with a state vector xk = (xk, yk, sk)
T comprising the pixel coordinates (xk, yk) of the centre of

the region surrounding the object and the region scale sk; F is the transition matrix (F = I in
the random walk model) and vk is the process noise assumed to be white, Gaussian, with a
covariance matrix

Q = diag(σ2
x , σ2

y , σs
2). (27)

The estimation of the scale permits adjustment of the region size of the moving objects, e.g.,
when it goes away from the camera, when it gets closer to it, or when the camera zoom
varies. Depending on the type of the tracking object and the environment in which tracking is

30 Object Tracking

Table 2. Pseudocode of the SSIM-based particle filter algorithm

Input: target state xk−1 (previous frame)
Output: target state xk (current frame)

Initialisation
k = 0, initialise tracked region at x0.

Generate N samples (particles) {x(�)
0 }, � = 1, 2, . . . , N, from the initial distribution p(x0).

Initialise weights W(�)
0 = 1/N.

• FOR k = 1 : Kframes

* FOR � = 1, 2, . . . , N

Prediction

1. Sample the state from the object motion model x(�)
k ∼ p(xk|x(�)

k−1).

Update

3. Evaluate the importance weights according to 29:

W(�)
k ∝ W(�)

k−1L(zk|x(�)
k). (28)

* END FOR

Output

4. Normalise the weights of each particle (8)

5. Compute the posterior mean state estimate of xk (9).

Resampling

6. Perform resampling as described in Table 1

• END FOR

performed, the state vector can be extended to include, for example, the acceleration variables,
and the fixed ratio condition can be relaxed allowing independent changes of the height
and the width of the object. However, increased dimensionality of the state vector requires
finer sampling of the state space, and thus undesirably high number of particles, which may
preclude real-time implementation of the tracking system.

3.3.2 Likelihood model
The distance between the reference (target) region tre f and the current region tk is calculated
by the similarity measure (25). The normalised distance between the two regions is then
substituted into the likelihood function, modelled as an exponential:

L(zk|x(�)
k) ∝ exp

(
−D2(tref, tk)/D2

min

)
, (29)

31Structural Information Approaches to Object Tracking in Video Sequences

where Dmin = min
x

{D(tref, tk)}. Here z denotes the measurement vector, although with

the SSIM a measurement in explicit form is not available. This smooth likelihood function,
although chosen empirically by (Pérez et al. (2004)), has been in widespread use for a variety
of cues ever since. The similarity-based distance proposed in this work is an alternative to the
Bhattacharyya distance D, commonly used to calculate similarity between target and reference
objects, described by their histograms h:

D(tref, tk) =

(
1 −

B

∑
i=1

href,ihk,i

)0.5

. (30)

where the tracked image regions are described by their colour (Nummiaro et al. (2003)) or
texture histograms (Brasnett et al. (2007)). The likelihood function is then used to evaluate
the importance weights of the particle filter, to update the particles and to obtain the overall
estimate of the centre of the current region.

3.3.3 Target model
The tracked objects are defined as image regions within a rectangle or ellipsoid specified
by the state vector (i.e. spatial location and scale). In the particle filtering framework as
specified in Table 1, a region corresponding to each particle, centred at location (x, y) and
resized according to the scale parameter of the state, is computed. The extracted region is then
compared to the target region using the distance measure D (25). The structural properties of
the region extracted through SSIM (17) are related with the estimates of the centre of the region
of interest and are used directly to calculate the distance D in (29) between the reference and
current region as shown in (25).

3.4 Differential SSIM tracking algorithm
In the SSIM-PF tracking algorithm, described in Section 3.3, the SSIM is computed a large
number of times, i.e. for each particle. This makes the SSIM-PF method computational
expensive when a large number of particles is required. In this section, a low-complexity,
deterministic alternative to the SSIM-PF is proposed, namely Differential SSIM-based tracker
(DSSIM). The proposed algorithm tracks the object by analysing the gradient SSIM surface
computed between the current video frame and the object model. This deterministic iterative
gradient search procedure uses the structural information directly and does not rely on the
probabilistic framework introduced in Section 2.2.
In order to achieve a computationally efficient tracking performance, whilst retaining the
benefits of the original measure, a differential SSIM formula is proposed as follows. The object
is tracked in the spatial domain of the subsequent video frames by maximising the measure
(21) with respect to location x, based on its gradient. In order to simplify the subsequent
derivation, we choose to analyse the logarithm of (21) by defining a function ρ(x):

ρ(x) = s log(|S(x)|) (31)

= s log (2μIμJ + C1)− log (μ2
I + μ2

J + C1) + log (2|σI J |+ C2)−
log (σ2

I + σ2
J + C2). (32)

32 Object Tracking

Table 3. Pseudocode of the proposed DSSIM tracking algorithm

Input: target state xk−1 (previous frame)
Output: target state xk (current frame)

Initialisation
k = 0, initialise tracked region at x0.
• FOR k = 1 : Kframes

0. Initialise x
(0)
k = x

(1)
k = xk−1

* WHILE S(x(1)
k) ≥ S(x(0)

k)

1. Assign x
(0)
k = x

(1)
k

2. Calculate ∇ρ(x
(0)
k) according to (39)

3. Assign x
(1)
k the location of a pixel in x

(0)
k 8-connected neighbourhood, along the

direction of ∇ρ(x
(0)
k)

* END WHILE

Output

4. Assign target location in the current frame xk = x
(0)
k

• END FOR

where S(x) denotes the similarity (21) between the object template J and a current frame
image region I centered around the pixel location x = (x, y) and s = sign (S(x)). After a
simple expansion of (31) we obtain the expression for the gradient of the function ρ(x)

∇ρ(x) = s
(

A1∇μI + A2∇σ2
I + A3∇σI J

)
, (33)

where

A1 =
2μJ

2μIμJ + C1
− 2μI

μ2
I + μ2

J + C1
, (34)

A2 = − 1
σ2

I + σ2
J + C2

, A3 =
1

2σI J + C2
. (35)

The gradients ∇μI and ∇σ2
I can be calculated as follows

∇μI =
1
L

L

∑
i=1

∇Ii , (36)

∇σ2
I =

2
L − 1

L

∑
i=1

(Ii − μI)∇Ii . (37)

33Structural Information Approaches to Object Tracking in Video Sequences

where Dmin = min
x

{D(tref, tk)}. Here z denotes the measurement vector, although with

the SSIM a measurement in explicit form is not available. This smooth likelihood function,
although chosen empirically by (Pérez et al. (2004)), has been in widespread use for a variety
of cues ever since. The similarity-based distance proposed in this work is an alternative to the
Bhattacharyya distance D, commonly used to calculate similarity between target and reference
objects, described by their histograms h:

D(tref, tk) =

(
1 −

B

∑
i=1

href,ihk,i

)0.5

. (30)

where the tracked image regions are described by their colour (Nummiaro et al. (2003)) or
texture histograms (Brasnett et al. (2007)). The likelihood function is then used to evaluate
the importance weights of the particle filter, to update the particles and to obtain the overall
estimate of the centre of the current region.

3.3.3 Target model
The tracked objects are defined as image regions within a rectangle or ellipsoid specified
by the state vector (i.e. spatial location and scale). In the particle filtering framework as
specified in Table 1, a region corresponding to each particle, centred at location (x, y) and
resized according to the scale parameter of the state, is computed. The extracted region is then
compared to the target region using the distance measure D (25). The structural properties of
the region extracted through SSIM (17) are related with the estimates of the centre of the region
of interest and are used directly to calculate the distance D in (29) between the reference and
current region as shown in (25).

3.4 Differential SSIM tracking algorithm
In the SSIM-PF tracking algorithm, described in Section 3.3, the SSIM is computed a large
number of times, i.e. for each particle. This makes the SSIM-PF method computational
expensive when a large number of particles is required. In this section, a low-complexity,
deterministic alternative to the SSIM-PF is proposed, namely Differential SSIM-based tracker
(DSSIM). The proposed algorithm tracks the object by analysing the gradient SSIM surface
computed between the current video frame and the object model. This deterministic iterative
gradient search procedure uses the structural information directly and does not rely on the
probabilistic framework introduced in Section 2.2.
In order to achieve a computationally efficient tracking performance, whilst retaining the
benefits of the original measure, a differential SSIM formula is proposed as follows. The object
is tracked in the spatial domain of the subsequent video frames by maximising the measure
(21) with respect to location x, based on its gradient. In order to simplify the subsequent
derivation, we choose to analyse the logarithm of (21) by defining a function ρ(x):

ρ(x) = s log(|S(x)|) (31)

= s log (2μIμJ + C1)− log (μ2
I + μ2

J + C1) + log (2|σI J |+ C2)−
log (σ2

I + σ2
J + C2). (32)

32 Object Tracking

Table 3. Pseudocode of the proposed DSSIM tracking algorithm

Input: target state xk−1 (previous frame)
Output: target state xk (current frame)

Initialisation
k = 0, initialise tracked region at x0.
• FOR k = 1 : Kframes

0. Initialise x
(0)
k = x

(1)
k = xk−1

* WHILE S(x(1)
k) ≥ S(x(0)

k)

1. Assign x
(0)
k = x

(1)
k

2. Calculate ∇ρ(x
(0)
k) according to (39)

3. Assign x
(1)
k the location of a pixel in x

(0)
k 8-connected neighbourhood, along the

direction of ∇ρ(x
(0)
k)

* END WHILE

Output

4. Assign target location in the current frame xk = x
(0)
k

• END FOR

where S(x) denotes the similarity (21) between the object template J and a current frame
image region I centered around the pixel location x = (x, y) and s = sign (S(x)). After a
simple expansion of (31) we obtain the expression for the gradient of the function ρ(x)

∇ρ(x) = s
(

A1∇μI + A2∇σ2
I + A3∇σI J

)
, (33)

where

A1 =
2μJ

2μIμJ + C1
− 2μI

μ2
I + μ2

J + C1
, (34)

A2 = − 1
σ2

I + σ2
J + C2

, A3 =
1

2σI J + C2
. (35)

The gradients ∇μI and ∇σ2
I can be calculated as follows

∇μI =
1
L

L

∑
i=1

∇Ii , (36)

∇σ2
I =

2
L − 1

L

∑
i=1

(Ii − μI)∇Ii . (37)

33Structural Information Approaches to Object Tracking in Video Sequences

A simplified expression for the covariance gradient, ∇σI J , can be obtained, based on the
observation that ∑L

i=1(Ji − μJ) = 0:

∇σI J =
1

L − 1

L

∑
i=1

(Ji − μJ)(∇Ii −∇μI)

=
1

L − 1

L

∑
i=1

(Ji − μJ)∇Ii

(38)

Finally, by defining the gradient of the pixel intensity as ∇Ii =
(

∂Ii
∂x , ∂Ii

∂y

)T
, the complete

formula for ∇ρ(x) is obtained

∇ρ(x) = s
L

∑
i=1

(
A1
L

+
2A2(Ii − μI) + A3(Ji − μJ)

L − 1

)
∇Ii . (39)

The proposed algorithm, employing the gradient DSSIM function (39) is summarised in

Table 3. In general terms, the estimated target location, x(0)k is moved along the direction of
the structural similarity gradient by one pixel in each iteration until no further improvement is
achieved. The number of SSIM and gradient evaluations depends on the number of iterations
needed to find the maximum of the measure S(x) and on average does not exceed 5 in our
experiments. This makes our approach significantly faster than the original SSIM-PF. It should
be noted that although the differential framework of the algorithm is based on a reformulation
of the scheme proposed in (Zhao et al. (2007)), it utilises a distinct similarity measure.

3.5 The hybrid SSIM-PF tracker algorithm
An extension to the SSIM-PF, by deterministically modifying each particle according to
the local structural similarity surface, referred to as hybrid SSIM-PF, is proposed in this
correspondence. In the DSSIM procedure described in Section 3.4, the estimated target

location, x(0)
k is moved along the direction the structural similarity gradient by one pixel in

each iteration until no further improvement is achieved, or the limit of iterations is reached.
In the hybrid scheme proposed here this step is performed for each particle, following its
prediction (step 1. in Table 1). In accordance with the principle of importance sampling (see
Section 2.4), the prior distribution p resulting from the particle prediction and the proposal
distribution q centred on the optimised position of the particle in the state space, are used to
re-calculate the weight of a resulting particle x̃(�):

W(�)
k ∝ W(�)

k−1

L(zk|x̃(�)
k)p(x̃(�)

k |x(�)
k−1)

q(x̃(�)
k |x(�)

k−1, zk)
. (40)

with the proposal distribution defined analogously to Lu et al. (2009)

q(x̃(�)
k |x̃(�)

k−1,zk) = αpDSSIM(x̃
(�)
k |zk) + (1 − α)p(x̃(�)

k |x̃(�)
k−1) . (41)

In our implementation of this algorithm the mixing parameter is set to α = 0.5 resulting in
a uniform mixture distribution of two Gaussian distributions with identical covariances (27),

34 Object Tracking

Table 4. Pseudocode of the hybrid particle filter algorithm

Input: target state xk−1 (previous frame)
Output: target state xk (current frame)

Initialisation
k = 0, initialise tracked region at x0.

Generate N samples (particles) {x(�)
0 }, � = 1, 2, . . . , N, from the initial distribution p(x0).

Initialise weights W(�)
0 = 1/N.

• FOR k = 1 : Kframes

* FOR � = 1, 2, . . . , N

Prediction

1. Sample the state from the object motion model x(�)
k ∼ p(xk|x(�)

k−1).

Optimisation

2. Modify the particle associated with the state x
(�)
k by performing steps 0.–4., Table 3.

Assign the modified state to x̃
(�)
k .

Update

3. Evaluate the importance weights

W(�)
k ∝ W(�)

k−1

L(zk|x̃(�)
k)p(x̃(�)

k |x(�)
k−1)

q(x̃(�)
k |x(�)

k−1, zk)
. (42)

with proposal distribution q defined as in (41).

* END FOR

Output

4. Normalise the weights of each particle (8)

5. Compute the posterior mean state estimate of xk (9).

Resampling

6. Perform resampling as described in Table 1

• END FOR

centred on the motion model-predicted particle and its optimised version, respectively. The
proposed method is described in the form of a pseudocode in Table 4.

35Structural Information Approaches to Object Tracking in Video Sequences

A simplified expression for the covariance gradient, ∇σI J , can be obtained, based on the
observation that ∑L

i=1(Ji − μJ) = 0:

∇σI J =
1

L − 1

L

∑
i=1

(Ji − μJ)(∇Ii −∇μI)

=
1

L − 1

L

∑
i=1

(Ji − μJ)∇Ii

(38)

Finally, by defining the gradient of the pixel intensity as ∇Ii =
(

∂Ii
∂x , ∂Ii

∂y

)T
, the complete

formula for ∇ρ(x) is obtained

∇ρ(x) = s
L

∑
i=1

(
A1
L

+
2A2(Ii − μI) + A3(Ji − μJ)

L − 1

)
∇Ii . (39)

The proposed algorithm, employing the gradient DSSIM function (39) is summarised in

Table 3. In general terms, the estimated target location, x(0)k is moved along the direction of
the structural similarity gradient by one pixel in each iteration until no further improvement is
achieved. The number of SSIM and gradient evaluations depends on the number of iterations
needed to find the maximum of the measure S(x) and on average does not exceed 5 in our
experiments. This makes our approach significantly faster than the original SSIM-PF. It should
be noted that although the differential framework of the algorithm is based on a reformulation
of the scheme proposed in (Zhao et al. (2007)), it utilises a distinct similarity measure.

3.5 The hybrid SSIM-PF tracker algorithm
An extension to the SSIM-PF, by deterministically modifying each particle according to
the local structural similarity surface, referred to as hybrid SSIM-PF, is proposed in this
correspondence. In the DSSIM procedure described in Section 3.4, the estimated target

location, x(0)
k is moved along the direction the structural similarity gradient by one pixel in

each iteration until no further improvement is achieved, or the limit of iterations is reached.
In the hybrid scheme proposed here this step is performed for each particle, following its
prediction (step 1. in Table 1). In accordance with the principle of importance sampling (see
Section 2.4), the prior distribution p resulting from the particle prediction and the proposal
distribution q centred on the optimised position of the particle in the state space, are used to
re-calculate the weight of a resulting particle x̃(�):

W(�)
k ∝ W(�)

k−1

L(zk|x̃(�)
k)p(x̃(�)

k |x(�)
k−1)

q(x̃(�)
k |x(�)

k−1, zk)
. (40)

with the proposal distribution defined analogously to Lu et al. (2009)

q(x̃(�)
k |x̃(�)

k−1,zk) = αpDSSIM(x̃
(�)
k |zk) + (1 − α)p(x̃(�)

k |x̃(�)
k−1) . (41)

In our implementation of this algorithm the mixing parameter is set to α = 0.5 resulting in
a uniform mixture distribution of two Gaussian distributions with identical covariances (27),

34 Object Tracking

Table 4. Pseudocode of the hybrid particle filter algorithm

Input: target state xk−1 (previous frame)
Output: target state xk (current frame)

Initialisation
k = 0, initialise tracked region at x0.

Generate N samples (particles) {x(�)
0 }, � = 1, 2, . . . , N, from the initial distribution p(x0).

Initialise weights W(�)
0 = 1/N.

• FOR k = 1 : Kframes

* FOR � = 1, 2, . . . , N

Prediction

1. Sample the state from the object motion model x(�)
k ∼ p(xk|x(�)

k−1).

Optimisation

2. Modify the particle associated with the state x
(�)
k by performing steps 0.–4., Table 3.

Assign the modified state to x̃
(�)
k .

Update

3. Evaluate the importance weights

W(�)
k ∝ W(�)

k−1

L(zk|x̃(�)
k)p(x̃(�)

k |x(�)
k−1)

q(x̃(�)
k |x(�)

k−1, zk)
. (42)

with proposal distribution q defined as in (41).

* END FOR

Output

4. Normalise the weights of each particle (8)

5. Compute the posterior mean state estimate of xk (9).

Resampling

6. Perform resampling as described in Table 1

• END FOR

centred on the motion model-predicted particle and its optimised version, respectively. The
proposed method is described in the form of a pseudocode in Table 4.

35Structural Information Approaches to Object Tracking in Video Sequences

 cross man

 bushes_ir bushes_vi bushes_cwt

Fig. 1. Reference frames from the test videos

4. Tracking performance

4.1 Evaluation metrics
Tracking algorithms are usually evaluated based on whether they generate correct mobile
object trajectories. In addition to the commonly applied visual assessment of the tracking
performance, qualitative measures can be used to provide formal comparisons of the tested
algorithms. In our work, the Root Mean Square Error (RMSE)

RMSE(k) =

(
1
M

M

∑
m=1

(xk − x̂k,m)
2 + (yk − ŷk,m)

2

) 1
2

(43)

has been used as numerical measure of the performance of the developed techniques. In
(43) (x̂k,m, ŷk,m) stand for the upper-left corner coordinates of the tracking box determined
by both the object’s central position and the scale estimated by the tracking algorithm in the
frame k in m-th independent simulation (in our simulations M = 50 for probabilistic tracking
algorithms and M = 1 for DSSIM and MS). The corresponding ground truth positions of the
object, (xk, yk), have been generated by manually tracking the object.

4.2 Video sequences
The performance of our method is demonstrated over various multimodal video sequences,
in which we aim to track a pre-selected moving person. The sequence cross (5 sec duration),
taken from our multimodal database The Eden Project Multi-Sensor Data Set (2006), contains
three people walking rapidly in front of a stationary camera. The main difficulties posed
by this sequence are: the colour similarity between the tracked object and the background
or other passing people, and a temporal near-complete occlusion of the tracked person by a
passer-by.

36 Object Tracking

Seq. mean RMSE std RMSE
name colour edges col.&edges SSIM colour edges col.&edges SSIM
cross 150.5 77.4 39.6 8.3 98.4 70.1 58.2 5.1
man 71.5 27.7 48.4 8.0 46.1 23.7 34.3 6.5

bushes_ir 71.9 30.7 26.9 21.0 40.8 9.6 7.8 7.5
bushes_vi 98.4 36.0 36.4 19.1 13.1 15.7 16.7 7.1

bushes_cwt 92.6 45.4 32.0 20.7 54.6 21.0 12.1 7.5

Table 5. The performance evaluation measures of the tracking simulations

The sequence man (40 sec long), has been obtained from PerceptiVU, Inc. (n.d.). This is a video
showing a person walking along a car park. Apart from the object’s similarity to the nearby
cars and the shadowed areas, the video contains numerous instabilities. These result from
a shaking camera (changes in the camera pan and tilt), fast zoom-ins and zoom-outs, and a
altered view angle towards the end of the sequence.
The three multimodal sequences bushes (The Eden Project Multi-Sensor Data Set (2006)), contain
simultaneous registered infrared (ir), visual (vi) and complex wavelet transform fused (cwt,
see Lewis et al. (2007) for details) recordings of two camouflaged people walking in front of a
stationary camera (10 sec). The tracked individual looks very similar to the background. The
video contains changes in the illumination (the object entering shadowy areas) together with
nonstationary surroundings (bushes moved by strong wind). The reference frames used in
tracking are shown in Figure 1.

4.3 Comparison of tracking cues
In this section the commonly used tracking cues (colour, edge histograms and their
combination (Brasnett et al. (2007); Nummiaro et al. (2003))) are compared with the cue based
on the structural similarity information. In order to facilitate easy and fair comparison the cues
are evaluated in the same PF framework with identical initialisation and common parameters.
The reference targets shown in Figure 1 were tracked in 50 Monte Carlo simulations and then
the tracking output of each cue has been compared to the ground truth. The exemplary frames
showing the tracking output are given in Figures 2–4 and the mean of RMSE and its standard
deviation (std) were computed and are presented in Table 5.
From inspection of the video output in Figures 2–4 and the tracking error statistics in Table 5 it
can clearly be seen that the SSIM-based method outperforms the other methods in all instances
while never loosing the tracked object. The colour-based PF algorithm is the most prone to fail
or give imprecise estimates of the object’s state. Combining edge and colour cues is usually
beneficial, however in some cases (sequences man and bushes_vi) the errors of the colour-based
PF propagate through the performance of the algorithm, making it less precise than the PF
based on edges alone. Another observation is that the ‘structure’ tracking algorithm has
been least affected by the modality of bushes and the fusion process, which demonstrates the
robustness of the proposed method to luminance and contrast alterations.
A closer investigation of the selected output frames illustrates the specific performance of the
different methods. Figures 2–4 show the object tracking boxes constructed from the mean
locations and scales estimated during the tests. Additionally, the particles and object location
obtained from one of the Monte Carlo trials are shown. Since very similar performance has
been obtained for all three bushes videos, only the fused sequence, containing complementary
information from both input modalities, is shown. The visual difference between contents of

37Structural Information Approaches to Object Tracking in Video Sequences

 cross man

 bushes_ir bushes_vi bushes_cwt

Fig. 1. Reference frames from the test videos

4. Tracking performance

4.1 Evaluation metrics
Tracking algorithms are usually evaluated based on whether they generate correct mobile
object trajectories. In addition to the commonly applied visual assessment of the tracking
performance, qualitative measures can be used to provide formal comparisons of the tested
algorithms. In our work, the Root Mean Square Error (RMSE)

RMSE(k) =

(
1
M

M

∑
m=1

(xk − x̂k,m)
2 + (yk − ŷk,m)

2

) 1
2

(43)

has been used as numerical measure of the performance of the developed techniques. In
(43) (x̂k,m, ŷk,m) stand for the upper-left corner coordinates of the tracking box determined
by both the object’s central position and the scale estimated by the tracking algorithm in the
frame k in m-th independent simulation (in our simulations M = 50 for probabilistic tracking
algorithms and M = 1 for DSSIM and MS). The corresponding ground truth positions of the
object, (xk, yk), have been generated by manually tracking the object.

4.2 Video sequences
The performance of our method is demonstrated over various multimodal video sequences,
in which we aim to track a pre-selected moving person. The sequence cross (5 sec duration),
taken from our multimodal database The Eden Project Multi-Sensor Data Set (2006), contains
three people walking rapidly in front of a stationary camera. The main difficulties posed
by this sequence are: the colour similarity between the tracked object and the background
or other passing people, and a temporal near-complete occlusion of the tracked person by a
passer-by.

36 Object Tracking

Seq. mean RMSE std RMSE
name colour edges col.&edges SSIM colour edges col.&edges SSIM
cross 150.5 77.4 39.6 8.3 98.4 70.1 58.2 5.1
man 71.5 27.7 48.4 8.0 46.1 23.7 34.3 6.5

bushes_ir 71.9 30.7 26.9 21.0 40.8 9.6 7.8 7.5
bushes_vi 98.4 36.0 36.4 19.1 13.1 15.7 16.7 7.1

bushes_cwt 92.6 45.4 32.0 20.7 54.6 21.0 12.1 7.5

Table 5. The performance evaluation measures of the tracking simulations

The sequence man (40 sec long), has been obtained from PerceptiVU, Inc. (n.d.). This is a video
showing a person walking along a car park. Apart from the object’s similarity to the nearby
cars and the shadowed areas, the video contains numerous instabilities. These result from
a shaking camera (changes in the camera pan and tilt), fast zoom-ins and zoom-outs, and a
altered view angle towards the end of the sequence.
The three multimodal sequences bushes (The Eden Project Multi-Sensor Data Set (2006)), contain
simultaneous registered infrared (ir), visual (vi) and complex wavelet transform fused (cwt,
see Lewis et al. (2007) for details) recordings of two camouflaged people walking in front of a
stationary camera (10 sec). The tracked individual looks very similar to the background. The
video contains changes in the illumination (the object entering shadowy areas) together with
nonstationary surroundings (bushes moved by strong wind). The reference frames used in
tracking are shown in Figure 1.

4.3 Comparison of tracking cues
In this section the commonly used tracking cues (colour, edge histograms and their
combination (Brasnett et al. (2007); Nummiaro et al. (2003))) are compared with the cue based
on the structural similarity information. In order to facilitate easy and fair comparison the cues
are evaluated in the same PF framework with identical initialisation and common parameters.
The reference targets shown in Figure 1 were tracked in 50 Monte Carlo simulations and then
the tracking output of each cue has been compared to the ground truth. The exemplary frames
showing the tracking output are given in Figures 2–4 and the mean of RMSE and its standard
deviation (std) were computed and are presented in Table 5.
From inspection of the video output in Figures 2–4 and the tracking error statistics in Table 5 it
can clearly be seen that the SSIM-based method outperforms the other methods in all instances
while never loosing the tracked object. The colour-based PF algorithm is the most prone to fail
or give imprecise estimates of the object’s state. Combining edge and colour cues is usually
beneficial, however in some cases (sequences man and bushes_vi) the errors of the colour-based
PF propagate through the performance of the algorithm, making it less precise than the PF
based on edges alone. Another observation is that the ‘structure’ tracking algorithm has
been least affected by the modality of bushes and the fusion process, which demonstrates the
robustness of the proposed method to luminance and contrast alterations.
A closer investigation of the selected output frames illustrates the specific performance of the
different methods. Figures 2–4 show the object tracking boxes constructed from the mean
locations and scales estimated during the tests. Additionally, the particles and object location
obtained from one of the Monte Carlo trials are shown. Since very similar performance has
been obtained for all three bushes videos, only the fused sequence, containing complementary
information from both input modalities, is shown. The visual difference between contents of

37Structural Information Approaches to Object Tracking in Video Sequences

Fig. 2. Example video frames with average output of the tracking algorithm (solid line
rectangle), a single trial output (dashed line rectangle and particles) superimposed, sequence
cross

the input bushes videos (colour information, a person hidden in shaded area) can be seen by
comparing the reference frames in Figure 1.
In the sequence cross, Figure 2, the ‘colour’ and ‘edges’ tracking algorithms are distracted by
the road sign, which eventually leads to the loss of the object. Then, the first non-occluding
passer-by causes the ‘colour&edges’ cue tracking algorithm to loose the object (frame 65). The
‘structure’ tracking technique is not distracted even by the temporary occlusion (frame 76).
The shaking camera in the sequence man (Figure 3, frame 162), has less effect on the ‘structure’
tracking technique than on the other compared algorithms, which appear to choose the wrong
scale of the tracking box. Moreover, the other considered tracking algorithms do not perform
well in case of similar dark objects appearing close-by (shadows, tyres, frame 478, where the
‘colour’ tracking algorithm permanently looses object) and rapid zoom-in (frame 711) and
zoom-out of the camera (frame 790). Our method, however, seems to cope well with both
situations. It should be noted, however, that ‘colour&edges’ (and ‘edges’) based algorithms
show a good ability of recovering from some of the failings.

38 Object Tracking

Fig. 3. Example video frames with average output of the tracking algorithm (solid line
rectangle), a single trial output (dashed line rectangle and particles) superimposed, sequence
man

Similarly, in the multimodal sequence bushes, Figure 4, the proposed ‘structure’ tracking
algorithm is the most precise and the ‘colour’ tracking algorithm the least precise. The use
of the fused video, although resulting in slightly deteriorated performance of the ‘edges’
based tracking algorithm, can still be motivated by the fact that it retains complementary
information useful both for the tracking algorithm and a human operator (Cvejic et al. (2007);
Mihaylova et al. (2006)): contextual information from the visible sequence and a hidden object
location from the infrared sequence.
A single-trial output shown in Figures 2–4 exemplifies the spread of the spatial distribution
of the particles. Typically, in the ‘structure’ tracking technique, particles are the most
concentrated. Similar features can be observed in the output of the ‘colour&edges’ tracking
algorithm. The particle distribution of the remaining PF tracking algorithms is much more
spread, often attracted by spurious objects (see Figures 2 and 3, in particular).
It should also be noted that, the tracking performance varies between realisations, often giving
different results compared with the output averaged over all Monte Carlo trials. Also in this

39Structural Information Approaches to Object Tracking in Video Sequences

Fig. 2. Example video frames with average output of the tracking algorithm (solid line
rectangle), a single trial output (dashed line rectangle and particles) superimposed, sequence
cross

the input bushes videos (colour information, a person hidden in shaded area) can be seen by
comparing the reference frames in Figure 1.
In the sequence cross, Figure 2, the ‘colour’ and ‘edges’ tracking algorithms are distracted by
the road sign, which eventually leads to the loss of the object. Then, the first non-occluding
passer-by causes the ‘colour&edges’ cue tracking algorithm to loose the object (frame 65). The
‘structure’ tracking technique is not distracted even by the temporary occlusion (frame 76).
The shaking camera in the sequence man (Figure 3, frame 162), has less effect on the ‘structure’
tracking technique than on the other compared algorithms, which appear to choose the wrong
scale of the tracking box. Moreover, the other considered tracking algorithms do not perform
well in case of similar dark objects appearing close-by (shadows, tyres, frame 478, where the
‘colour’ tracking algorithm permanently looses object) and rapid zoom-in (frame 711) and
zoom-out of the camera (frame 790). Our method, however, seems to cope well with both
situations. It should be noted, however, that ‘colour&edges’ (and ‘edges’) based algorithms
show a good ability of recovering from some of the failings.

38 Object Tracking

Fig. 3. Example video frames with average output of the tracking algorithm (solid line
rectangle), a single trial output (dashed line rectangle and particles) superimposed, sequence
man

Similarly, in the multimodal sequence bushes, Figure 4, the proposed ‘structure’ tracking
algorithm is the most precise and the ‘colour’ tracking algorithm the least precise. The use
of the fused video, although resulting in slightly deteriorated performance of the ‘edges’
based tracking algorithm, can still be motivated by the fact that it retains complementary
information useful both for the tracking algorithm and a human operator (Cvejic et al. (2007);
Mihaylova et al. (2006)): contextual information from the visible sequence and a hidden object
location from the infrared sequence.
A single-trial output shown in Figures 2–4 exemplifies the spread of the spatial distribution
of the particles. Typically, in the ‘structure’ tracking technique, particles are the most
concentrated. Similar features can be observed in the output of the ‘colour&edges’ tracking
algorithm. The particle distribution of the remaining PF tracking algorithms is much more
spread, often attracted by spurious objects (see Figures 2 and 3, in particular).
It should also be noted that, the tracking performance varies between realisations, often giving
different results compared with the output averaged over all Monte Carlo trials. Also in this

39Structural Information Approaches to Object Tracking in Video Sequences

Fig. 4. Example video frames with average output of the tracking algorithm (solid line
rectangle), a single trial output (dashed line rectangle and particles) superimposed, sequence
bushes_cwt

respect the proposed method has been observed to be the most consistent, i.e., its results had
the lowest variation, as illustrated by the low values of std RMSE in Table 5.

4.4 Comparison of SSIM-based probabilistic and deterministic techniques
In this section the probabilistic tracking SSIM-PF (Section 3.3) is compared with its
deterministic counterpart, DSSIM-PF (Section 3.4). Since the main motivation for
development of DSSIM technique was the reduction of the computational complexity, the
algorithms are also evaluated with respect to their execution speed and therefore the rate at
which the video frames are processed by the tracking algorithms, measured as frames per
second (FPS), has been included in the results shown in Table 6. The proposed algorithms
have been compared with another deterministic technique, the MS algorithm (Comaniciu &
Meer (2002)). Analogously to PF-based methods, the MS and DSSIM algorithms are made
scale-adaptive, by varying the object size by 5% and choosing the size giving the best match
in terms of the similarity measure used.

40 Object Tracking

Seq. Image size Speed (fps) Mean RMSE (pixels) std RMSE (pixels)
name (pixels) MS SSIM-PF DSSIM MS SSIM-PF DSSIM MS SSIM-PF DSSIM
cross 720 × 576 27 13 71 37.3 8.3 5.6 62.2 5.1 4.3
man 320 × 240 109 53 315 18.2 8.0 7.0 13.1 6.5 4.9

Table 6. The performance evaluation measures of the tracking simulations

Based on the performance measures in Table 5, it can be concluded that DSSIM outperforms
the MS and SSIM-PF, both in terms of the processing speed and the tracking accuracy. It also
appears to be more stable than the other two methods (lowest std). Although the example
frames in Figure 5 reveal that in a number of instances the methods perform comparably, it
can be seen that DSSIM method achieves the overall best performance in most of the frames.
Admittedly, the difference between the accuracy and the stability of SSIM-PF and DSSIM is
not large in most cases, however, in terms of the computational complexity, DSSIM method
compares much more favourably with the other two techniques. The average tracking speed
estimates were computed on PC in the following setup: CPU clock 2.66 GHZ, 1G RAM, MS
and DSSIM requiring on average 20 and 5 iterations, respectively, and PF using 100 particles.
In terms of the relative computational efficiency, the proposed method has been found to be
approximately four times faster than SSIM-PF and twice as fast as MS.
The exemplary frames in Figure 5, where the ’difficult’ frames have been selected, offer more
insight into the performance and robustness of the algorithms. In the cross sequence, neither
SSIM-PF nor DSSIM are distracted by the temporary occlusion of the tracked person by other
passer-by, whereas the MS algorithm locks onto a similar object moving in the opposite
direction. Likewise, although all the three algorithms manage to follow the target in man
sequences, the gradient structural similarity method identifies the scale and the position of
the object with the best accuracy.

4.4.1 Performance evaluation of the extension of the SSIM-based tracking algorithm
Below, we present a performance analysis of the hybrid structural similarity-based PF
algorithm. For the sake of completeness, six competing algorithms has been tested and
compared: colour-based PF algorithm COL-PF, SSIM-PF, their hybridised versions, hybrid
SSIM-PF-DSSIM (Section 3.5) and hybrid COL-PF-MS (based on procedure proposed in (Lu
et al. (2009))), and two deterministic procedures themselves (DSSIM and MS). A discussion of
the results based on the visual observation of tracking output in the cross sequence is provided
below and the specific features of the algorithms tested are pointed out. Figure 6 presents the
extracted frames of the output of the six tracking algorithms.
It should be noted that in order to illustrate the benefit of using the optimisation procedures,
a very low number of the particles for PF-based methods has been chosen (20 for SSIM-based
and 30 for colour-based PF). Consequently, it allowed us to observe whether the resulting
tracking instability and failures are partially mitigated by the use of the optimisation
procedures. Moreover, since the optimisation procedures are much faster than PFs, such a
combination does not increase the computational load considerably. On the contrary, the
appropriate combination of the two methods, results in a lower number of the particles
required and thus reducing the processing time. Conversely, it can be shown that, a
non-optimised tracking algorithms can achieve a similar performance to the optimised
tracking algorithm utilising a larger number of particles and thus being more computationally
demanding.

41Structural Information Approaches to Object Tracking in Video Sequences

Fig. 4. Example video frames with average output of the tracking algorithm (solid line
rectangle), a single trial output (dashed line rectangle and particles) superimposed, sequence
bushes_cwt

respect the proposed method has been observed to be the most consistent, i.e., its results had
the lowest variation, as illustrated by the low values of std RMSE in Table 5.

4.4 Comparison of SSIM-based probabilistic and deterministic techniques
In this section the probabilistic tracking SSIM-PF (Section 3.3) is compared with its
deterministic counterpart, DSSIM-PF (Section 3.4). Since the main motivation for
development of DSSIM technique was the reduction of the computational complexity, the
algorithms are also evaluated with respect to their execution speed and therefore the rate at
which the video frames are processed by the tracking algorithms, measured as frames per
second (FPS), has been included in the results shown in Table 6. The proposed algorithms
have been compared with another deterministic technique, the MS algorithm (Comaniciu &
Meer (2002)). Analogously to PF-based methods, the MS and DSSIM algorithms are made
scale-adaptive, by varying the object size by 5% and choosing the size giving the best match
in terms of the similarity measure used.

40 Object Tracking

Seq. Image size Speed (fps) Mean RMSE (pixels) std RMSE (pixels)
name (pixels) MS SSIM-PF DSSIM MS SSIM-PF DSSIM MS SSIM-PF DSSIM
cross 720 × 576 27 13 71 37.3 8.3 5.6 62.2 5.1 4.3
man 320 × 240 109 53 315 18.2 8.0 7.0 13.1 6.5 4.9

Table 6. The performance evaluation measures of the tracking simulations

Based on the performance measures in Table 5, it can be concluded that DSSIM outperforms
the MS and SSIM-PF, both in terms of the processing speed and the tracking accuracy. It also
appears to be more stable than the other two methods (lowest std). Although the example
frames in Figure 5 reveal that in a number of instances the methods perform comparably, it
can be seen that DSSIM method achieves the overall best performance in most of the frames.
Admittedly, the difference between the accuracy and the stability of SSIM-PF and DSSIM is
not large in most cases, however, in terms of the computational complexity, DSSIM method
compares much more favourably with the other two techniques. The average tracking speed
estimates were computed on PC in the following setup: CPU clock 2.66 GHZ, 1G RAM, MS
and DSSIM requiring on average 20 and 5 iterations, respectively, and PF using 100 particles.
In terms of the relative computational efficiency, the proposed method has been found to be
approximately four times faster than SSIM-PF and twice as fast as MS.
The exemplary frames in Figure 5, where the ’difficult’ frames have been selected, offer more
insight into the performance and robustness of the algorithms. In the cross sequence, neither
SSIM-PF nor DSSIM are distracted by the temporary occlusion of the tracked person by other
passer-by, whereas the MS algorithm locks onto a similar object moving in the opposite
direction. Likewise, although all the three algorithms manage to follow the target in man
sequences, the gradient structural similarity method identifies the scale and the position of
the object with the best accuracy.

4.4.1 Performance evaluation of the extension of the SSIM-based tracking algorithm
Below, we present a performance analysis of the hybrid structural similarity-based PF
algorithm. For the sake of completeness, six competing algorithms has been tested and
compared: colour-based PF algorithm COL-PF, SSIM-PF, their hybridised versions, hybrid
SSIM-PF-DSSIM (Section 3.5) and hybrid COL-PF-MS (based on procedure proposed in (Lu
et al. (2009))), and two deterministic procedures themselves (DSSIM and MS). A discussion of
the results based on the visual observation of tracking output in the cross sequence is provided
below and the specific features of the algorithms tested are pointed out. Figure 6 presents the
extracted frames of the output of the six tracking algorithms.
It should be noted that in order to illustrate the benefit of using the optimisation procedures,
a very low number of the particles for PF-based methods has been chosen (20 for SSIM-based
and 30 for colour-based PF). Consequently, it allowed us to observe whether the resulting
tracking instability and failures are partially mitigated by the use of the optimisation
procedures. Moreover, since the optimisation procedures are much faster than PFs, such a
combination does not increase the computational load considerably. On the contrary, the
appropriate combination of the two methods, results in a lower number of the particles
required and thus reducing the processing time. Conversely, it can be shown that, a
non-optimised tracking algorithms can achieve a similar performance to the optimised
tracking algorithm utilising a larger number of particles and thus being more computationally
demanding.

41Structural Information Approaches to Object Tracking in Video Sequences

Fig. 5. Example video frames with output of the tracking algorithm output superimposed:
DSSIM solid blue rectangle, SSIM-PF dashed green rectangle and MS solid magenta rectangle

Based on the observation of the estimated target regions in Figure 6, it can be concluded
that the gradient structural similarity procedure locates the object precisely in majority of
the frames. It fails, however, to recover from an occlusion towards the end of the sequence.
The performance of the SSIM-PF is very unstable, due to a very low number of particles
used and it looses the object half-way through the sequence. On the other hand, the
combined algorithm, SSIM-PF-DSSIM, tracks the object successfully throughout the sequence.
The MS algorithm has completely failed to track the object. Since the MS algorithm is a
memory-less colour-based tracking algorithm, its poor performance in these sequence is due
to the object’s fast motion and its similarity to the surrounding background. The colour-based
algorithm, COL-PF, performs similarly to SSIM-PF, however, it locates the object somewhat
more precisely. Finally, the combined COL-PF-MS algorithm, appears to be more stable
than its non-optimised version. Nevertheless, the objects is eventually lost as a result of the
occlusion.
Finally, to illustrate a potential of further extension of the SSIM-PF, a type of target distortion,
for which the state space can be easily extended, is considered: rotation of the target in the
plane approximately perpendicular to the camera’s line-of-sight. A simple solution to the
tracking of the rotating objects is to include an orientation of the target in the state space, by
taking x = (xk, yk, sk, αk)

T as the state variable in the algorithm described in Table 2, where αk
is the orientation angle. The complexity of the algorithm is increased slightly due to the need
to generate the rotated versions of the reference object (which can, possibly, be pre-computed).
For some video sequences it may also be necessary to increase the number of particles, in
order to sufficiently sample the state space. The results of tracking a rotating trolley in a
sequence from PETS 2006 Benchmark Data (Nin (2006)), with the use of 150 particles are
shown in Figure 7. The figure shows examples of frames from two best-performing tracking
techniques, ‘colour&edges’ and ‘structure’. Apart from the rotation scaling of the object,
additional difficulty in tracking arose because the object was partially transparent and thus
often took on the appearance of the non-stationary background. However, also in this case
‘structure’ tracking algorithm appears to follow the location, scale and rotation of the object
more closely than the other algorithms.

42 Object Tracking

D
SS

IM
SS

IM
-P

F
SS

IM
-P

F-
D

SS
IM

M
S

C
O

L
-P

F
C

O
L

-P
F-

M
S

Fig. 6. Pedestrian tracking test results

43Structural Information Approaches to Object Tracking in Video Sequences

Fig. 5. Example video frames with output of the tracking algorithm output superimposed:
DSSIM solid blue rectangle, SSIM-PF dashed green rectangle and MS solid magenta rectangle

Based on the observation of the estimated target regions in Figure 6, it can be concluded
that the gradient structural similarity procedure locates the object precisely in majority of
the frames. It fails, however, to recover from an occlusion towards the end of the sequence.
The performance of the SSIM-PF is very unstable, due to a very low number of particles
used and it looses the object half-way through the sequence. On the other hand, the
combined algorithm, SSIM-PF-DSSIM, tracks the object successfully throughout the sequence.
The MS algorithm has completely failed to track the object. Since the MS algorithm is a
memory-less colour-based tracking algorithm, its poor performance in these sequence is due
to the object’s fast motion and its similarity to the surrounding background. The colour-based
algorithm, COL-PF, performs similarly to SSIM-PF, however, it locates the object somewhat
more precisely. Finally, the combined COL-PF-MS algorithm, appears to be more stable
than its non-optimised version. Nevertheless, the objects is eventually lost as a result of the
occlusion.
Finally, to illustrate a potential of further extension of the SSIM-PF, a type of target distortion,
for which the state space can be easily extended, is considered: rotation of the target in the
plane approximately perpendicular to the camera’s line-of-sight. A simple solution to the
tracking of the rotating objects is to include an orientation of the target in the state space, by
taking x = (xk, yk, sk, αk)

T as the state variable in the algorithm described in Table 2, where αk
is the orientation angle. The complexity of the algorithm is increased slightly due to the need
to generate the rotated versions of the reference object (which can, possibly, be pre-computed).
For some video sequences it may also be necessary to increase the number of particles, in
order to sufficiently sample the state space. The results of tracking a rotating trolley in a
sequence from PETS 2006 Benchmark Data (Nin (2006)), with the use of 150 particles are
shown in Figure 7. The figure shows examples of frames from two best-performing tracking
techniques, ‘colour&edges’ and ‘structure’. Apart from the rotation scaling of the object,
additional difficulty in tracking arose because the object was partially transparent and thus
often took on the appearance of the non-stationary background. However, also in this case
‘structure’ tracking algorithm appears to follow the location, scale and rotation of the object
more closely than the other algorithms.

42 Object Tracking

D
SS

IM
SS

IM
-P

F
SS

IM
-P

F-
D

SS
IM

M
S

C
O

L
-P

F
C

O
L

-P
F-

M
S

Fig. 6. Pedestrian tracking test results

43Structural Information Approaches to Object Tracking in Video Sequences

Fig. 7. Example video frames with a tracking output (tracking rectangle and particles)
superimposed, sequence S1-T1-C containing a rotating object

5. Discussion and conclusions

The recently developed video tracking methods based on structural similarity and their new
extensions have been presented in this work. Novel deterministic and hybrid probabilistic
approaches to video target tracking have been investigated, and their advantages and mutual
complementarities have been identified. First, a fast deterministic procedure that uses the
gradient of the structural similarity surface to localise the target in a video frame has been
derived. Next, a hybrid PF-based scheme, where each particle is optimised with the use of the
aforementioned gradient procedure has been proposed.
The performance of the structural similarity-based methods has been contrasted with selected
tracking methods based on colour and edge cues. The structural similarly methods, while
being computationally less expensive, perform better, on average, than the colour, edge and
mean shift, as shown in the testing surveillance video sequences. Specifically, the results
obtained with the hybrid technique proposed indicate that a considerable improvement in
tracking is achieved by applying the optimisation scheme, while the price of a moderate
computational complexity increase of the algorithm is off-set by the low number of particles
required.
The particular issue addressed herein is concerned with tracking object in the presence of
spurious or similarly-coloured targets, which may interact or become temporarily occluded.
All structural similarity-based method have been shown to perform reliably under difficult
conditions (as often occurs in surveillance videos), when tested with real-world video
sequences. Robust performance has been demonstrated in both low and variable light
conditions, and in the presence of spurious or camouflaged objects. In addition, the algorithm
copes well with the artefacts that may be introduced by a human operator, such as rapid
changes in camera view angle and zoom. This is achieved with relatively low computational
complexity, which makes these algorithms potentially applicable to real-time surveillance
problems.
Among the research issues that will be the subject of further investigation is a further speed
and reliability improvement of the proposed optimised hybrid technique. It is envisaged
that this could be achieved by replacing the simple gradient search with a more efficient

44 Object Tracking

optimisation procedure and by more accurate modelling of the resulting proposal density.
The structural similarity measure-based tracker, although giving very precise performance,
may in some cases be sensitive to alteration of the tracked object, for example its significant
rotation or long occlusion. Thus, the recovery and/or template update techniques will also be
investigated in the future to improve reliability of the proposed tracker.

6. Acknowledgements

We would like to thank the support from the [European Community’s] Seventh Framework
Programme [FP7/2007-2013] under grant agreement No 238710 (Monte Carlo based
Innovative Management and Processing for an Unrivalled Leap in Sensor Exploitation) and
the EU COST action TU0702. The authors are grateful for the support offered to the project
by National Natural Science Foundation of China Research Fund for International Young
Scientists and EU The Science & Technology Fellowship Programme in China.

7. References

Aghajan, H. & Cavallaro, A. (2009). Multi-Camera Networks: Principles and Applications,
Academic Press.

Aherne, F., Thacker, N. & Rockett, P. (1990). The quality of training-sample estimates of the
Bhattacharyya coefficient, IEEE Trans. on PAMI 12(1): 92–97.

Arulampalam, M., Maskell, S., Gordon, N. & Clapp, T. (2002). A tutorial on particle filters
for online nonlinear/non-Gaussian Bayesian tracking, IEEE Trans. on Signal Proc.
50(2): 174–188.

Bai, K. & Liu, W. (2007). Improved object tracking with particle filter and mean shift,
Proceedings of the IEEE International Conference on Automation and Logistics, Jinan, China,
Vol. 2, pp. 221–224.

Bradski, G. (1998). Computer vision face tracking as a component of a perceptual user
interface, Workshop on Applic. of Comp. Vision, Princeton, NJ, pp. 214–219.

Brasnett, P., Mihaylova, L., Canagarajah, N. & Bull, D. (2005). Particle filtering with multiple
cues for object tracking in video sequences, Proc. of SPIE’s 17th Annual Symposium on
Electronic Imaging, Science and Technology, V. 5685, pp. 430–441.

Brasnett, P., Mihaylova, L., Canagarajah, N. & Bull, D. (2007). Sequential Monte Carlo
tracking by fusing multiple cues in video sequences, Image and Vision Computing
25(8): 1217–1227.

Cai, Y., de Freitas, N. & Little, J. J. (2006). Robust visual tracking for multiple targets, In Proc.
of European Conference on Computer Vision, ECCV, pp. 107–118.

Chang, C. & Ansari, R. (2003). Kernel particle filter: Iterative sampling for efficient visual
tracking, Proc. of ICIP 2003, pp. III - 977-80, vol. 2.

Chang, C. & Ansari, R. (2005). Kernel particle filter for visual tracking, IEEE Signal Processing
Letters 12(3): 242–245.

Chen, D. & Yang, J. (2007). Robust object tracking via online dynamic spatial bias appearance
models, IEEE Transactions on Pattern Analysis and Machine Intelligence 29: 2157–2169.

Cheng, Y. (1995). Mean shift, mode seeking and clustering, IEEE Transactions on Pattern
Analysis and Machine Intelligence 17(8): 790–799.

Comaniciu, D. & Meer, P. (2002). Mean shift: A robust approach toward feature space analysis,
IEEE Transactions on Pattern Analysis and Machine Intelligence 22(5): 603–619.

45Structural Information Approaches to Object Tracking in Video Sequences

Fig. 7. Example video frames with a tracking output (tracking rectangle and particles)
superimposed, sequence S1-T1-C containing a rotating object

5. Discussion and conclusions

The recently developed video tracking methods based on structural similarity and their new
extensions have been presented in this work. Novel deterministic and hybrid probabilistic
approaches to video target tracking have been investigated, and their advantages and mutual
complementarities have been identified. First, a fast deterministic procedure that uses the
gradient of the structural similarity surface to localise the target in a video frame has been
derived. Next, a hybrid PF-based scheme, where each particle is optimised with the use of the
aforementioned gradient procedure has been proposed.
The performance of the structural similarity-based methods has been contrasted with selected
tracking methods based on colour and edge cues. The structural similarly methods, while
being computationally less expensive, perform better, on average, than the colour, edge and
mean shift, as shown in the testing surveillance video sequences. Specifically, the results
obtained with the hybrid technique proposed indicate that a considerable improvement in
tracking is achieved by applying the optimisation scheme, while the price of a moderate
computational complexity increase of the algorithm is off-set by the low number of particles
required.
The particular issue addressed herein is concerned with tracking object in the presence of
spurious or similarly-coloured targets, which may interact or become temporarily occluded.
All structural similarity-based method have been shown to perform reliably under difficult
conditions (as often occurs in surveillance videos), when tested with real-world video
sequences. Robust performance has been demonstrated in both low and variable light
conditions, and in the presence of spurious or camouflaged objects. In addition, the algorithm
copes well with the artefacts that may be introduced by a human operator, such as rapid
changes in camera view angle and zoom. This is achieved with relatively low computational
complexity, which makes these algorithms potentially applicable to real-time surveillance
problems.
Among the research issues that will be the subject of further investigation is a further speed
and reliability improvement of the proposed optimised hybrid technique. It is envisaged
that this could be achieved by replacing the simple gradient search with a more efficient

44 Object Tracking

optimisation procedure and by more accurate modelling of the resulting proposal density.
The structural similarity measure-based tracker, although giving very precise performance,
may in some cases be sensitive to alteration of the tracked object, for example its significant
rotation or long occlusion. Thus, the recovery and/or template update techniques will also be
investigated in the future to improve reliability of the proposed tracker.

6. Acknowledgements

We would like to thank the support from the [European Community’s] Seventh Framework
Programme [FP7/2007-2013] under grant agreement No 238710 (Monte Carlo based
Innovative Management and Processing for an Unrivalled Leap in Sensor Exploitation) and
the EU COST action TU0702. The authors are grateful for the support offered to the project
by National Natural Science Foundation of China Research Fund for International Young
Scientists and EU The Science & Technology Fellowship Programme in China.

7. References

Aghajan, H. & Cavallaro, A. (2009). Multi-Camera Networks: Principles and Applications,
Academic Press.

Aherne, F., Thacker, N. & Rockett, P. (1990). The quality of training-sample estimates of the
Bhattacharyya coefficient, IEEE Trans. on PAMI 12(1): 92–97.

Arulampalam, M., Maskell, S., Gordon, N. & Clapp, T. (2002). A tutorial on particle filters
for online nonlinear/non-Gaussian Bayesian tracking, IEEE Trans. on Signal Proc.
50(2): 174–188.

Bai, K. & Liu, W. (2007). Improved object tracking with particle filter and mean shift,
Proceedings of the IEEE International Conference on Automation and Logistics, Jinan, China,
Vol. 2, pp. 221–224.

Bradski, G. (1998). Computer vision face tracking as a component of a perceptual user
interface, Workshop on Applic. of Comp. Vision, Princeton, NJ, pp. 214–219.

Brasnett, P., Mihaylova, L., Canagarajah, N. & Bull, D. (2005). Particle filtering with multiple
cues for object tracking in video sequences, Proc. of SPIE’s 17th Annual Symposium on
Electronic Imaging, Science and Technology, V. 5685, pp. 430–441.

Brasnett, P., Mihaylova, L., Canagarajah, N. & Bull, D. (2007). Sequential Monte Carlo
tracking by fusing multiple cues in video sequences, Image and Vision Computing
25(8): 1217–1227.

Cai, Y., de Freitas, N. & Little, J. J. (2006). Robust visual tracking for multiple targets, In Proc.
of European Conference on Computer Vision, ECCV, pp. 107–118.

Chang, C. & Ansari, R. (2003). Kernel particle filter: Iterative sampling for efficient visual
tracking, Proc. of ICIP 2003, pp. III - 977-80, vol. 2.

Chang, C. & Ansari, R. (2005). Kernel particle filter for visual tracking, IEEE Signal Processing
Letters 12(3): 242–245.

Chen, D. & Yang, J. (2007). Robust object tracking via online dynamic spatial bias appearance
models, IEEE Transactions on Pattern Analysis and Machine Intelligence 29: 2157–2169.

Cheng, Y. (1995). Mean shift, mode seeking and clustering, IEEE Transactions on Pattern
Analysis and Machine Intelligence 17(8): 790–799.

Comaniciu, D. & Meer, P. (2002). Mean shift: A robust approach toward feature space analysis,
IEEE Transactions on Pattern Analysis and Machine Intelligence 22(5): 603–619.

45Structural Information Approaches to Object Tracking in Video Sequences

Comaniciu, D., Ramesh, V. & Meer, P. (2000). Real-time tracking of non-rigid objects
using mean shift, Proc. of 1st Conf. Comp. Vision Pattern Recogn., Hilton Head, SC,
pp. 142–149.

Comaniciu, D., Ramesh, V. & Meer, P. (2003). Kernel-based object tracking, IEEE Trans. Pattern
Analysis Machine Intelligence 25(5): 564–575.

Cvejic, N., Nikolov, S. G., Knowles, H., Loza, A., Achim, A., Bull, D. R. & Canagarajah, C. N.
(2007). The effect of pixel-level fusion on object tracking in multi-sensor surveillance
video, Proc. IEEE Computer Society Conf. on Computer Vision and Pattern Recognition,
Minneapolis, Minnesota, USA.

Doucet, A., Freitas, N. & N. Gordon, E. (2001). Sequential Monte Carlo Methods in Practice, New
York: Springer-Verlag.

Forsyth, D., Arikan, O., Ikemoto, L. & Ramanan, D. (2006). Computational Studies of Human
Motion: Part 1, Tracking and Motion Synthesis. Foundations and Trends in Computer
Graphics and Vision, Hanover, Massachusetts. Now Publishers Inc.

Fukunaga, K. & Hostetler, L. (1975). The estimation of the gradient of a density function, with
applications in pattern recognition, Information Theory, IEEE Transactions on 21(1): 32
– 40.

Gandhi, T. & Trivedi, M. (2007). Pedestrian protection systems: Issues, survey and chllenges,
IEEE Transactions on Intelligent Transportation Systems 8(3): 413–430.

Gerónimo, D., López, A. M., Sappa, A. D. & Graf, T. (2010). Survey of pedestrian detection for
advanced driver assistance systems, IEEE Transactions on Pattern Analysis and Machine
Intelligence 32: 1239–1258.

Han, B., Comaniciu, D., Zhu, Y. & Davis, L. S. (2004). Incremental density approximation and
kernel-based bayesian filtering for object tracking., CVPR (1), pp. 638–644.

Hu, W., Tan, T., Wang, L. & Maybank, S. (2004). A survey on visual surveillance of object
motion and behaviors, Systems, Man, and Cybernetics, Part C: Applications and Reviews,
IEEE Transactions on 34(3): 334 –352.

Isard, M. & Blake, A. (1996). Contour tracking by stochastic propagation of conditional
density, European Conf. on Comp. Vision, Cambridge, UK, pp. 343–356.

Isard, M. & Blake, A. (1998). Condensation – conditional density propagation for visual
tracking, Intl. Journal of Computer Vision 28(1): 5–28.

Khan, Z., Balch, T. & Dellaert, F. (2005). MCMC-based particle filtering for tracking a variable
number of interacting targets, IEEE Transactions on Pattern Analysis and Machine
Intelligence 27(11): 1805–1819.

Kitagawa, G. (1996). Monte Carlo filter and smoother for non-Gaussian nonlinear state space
models, J. Comput. Graph. Statist. 5(1): 1Ű25.

Koch, W. (2010). On Bayesian tracking and data fusion: A tutorial introduction with examples,
IEEE Transactions on Aerospace and Electronics Magazine Part II: Tutorials 7(July): 29–52.

Lewis, J. J., O’Callaghan, R. J., Nikolov, S. G., Bull, D. R. & Canagarajah, C. (2007). Pixel- and
region-based image fusion using complex wavelets, 8(2): 119–130.

Liu, J. & Chen, R. (1998). Sequential Monte Carlo methods for dynamic systems, Journal of the
American Statistical Association 93(443): 1032–1044.

Loza, A., Mihaylova, L., Bull, D. R. & Canagarajah, C. N. (2006). Structural similarity-based
object tracking in video sequences, Proc. Intl. Conf. on Information Fusion, Florence,
Italy, pp. 1–6.

46 Object Tracking

Loza, A., Mihaylova, L., Bull, D. R. & Canagarajah, C. N. (2009). Structural similarity-based
object tracking in multimodality surveillance videos, Machine Vision and Applications
20(2): 71–83.

Lu, W.-L., Okuma, K. & Little, J. J. (2009). Tracking and recognizing actions of multiple hockey
players using the boosted particle filter, Image Vision Comput. 27(1-2): 189–205.

Maggio, E. & Cavallaro, A. (2005). Hybrid particle filter and mean shift tracker with adaptive
transition model, Proc. of ICASSP 2005, pp. 221-224, vol. 2.

Mihaylova, L., Loza, A., Nikolov, S. G., Lewis, J., Canga, E. F., Li, J., Bull, D. R. & Canagarajah,
C. N. (2006). The influence of multi-sensor video fusion on object tracking using
a particle filter, Proc. Workshop on Multiple Sensor Data Fusion, Dresden, Germany,
pp. 354–358.

Nin (2006). PETS 2006 benchmark data, Dataset available on-line at:
http://www.pets2006.net.

Nummiaro, K., Koller-Meier, E. B. & Gool, L. V. (2003). An adaptive color-based particle filter,
Image and Vision Computing 21(1): 99–110.

Okuma, K., Taleghani, A., de Freitas, N., Little, J. & Lowe, D. (2004). A boosted particle filter:
Multitarget detection and tracking, In Proc. of European Conference on Computer Vision,
Vol. 1, pp. 28–39.

PerceptiVU, Inc. (n.d.). Target Tracking Movie Demos.
http://www.perceptivu.com/MovieDemos.html.

Pérez, P., Vermaak, J. & Blake, A. (2004). Data fusion for tracking with particles, Proceedings of
the IEEE 92(3): 495–513.

Ristic, B., Arulampalam, S. & Gordon, N. (2004). Beyond the Kalman Filter: Particle Filters for
Tracking Applications, Artech House, Boston, London.

Shan, C., Tan, T. & Wei, Y. (2007). Real-time hand tracking using a mean shift embedded
particle filter, Pattern Recogn. 40(7): 1958–1970.

Shen, C., van den Hengel, A. & Dick, A. (2003). Probabilistic multiple cue integration for
particle filter based tracking, Proc. of the VIIth Digital Image Computing : Techniques
and Applications, C. Sun, H. Talbot, S. Ourselin, T. Adriansen, Eds.

Smith, D. & Singh, S. (2006). Approaches to multisensor data fusion in target tracking: A
survey, IEEE Transactions on Knowledge and Data Engineering 18(12): 1696–1710.

The Eden Project Multi-Sensor Data Set (2006). http://www.imagefusion.org/.
Triesch, J. & von der Malsburg, C. (2001). Democratic integration: Self-organized integration

of adaptive cues, Neural Computation 13(9): 2049–2074.
Wan, E. & van der Merwe, R. (2001). The Unscented Kalman Filter, Ch. 7: Kalman Filtering and

Neural Networks. Edited by S. Haykin, Wiley Publishing, pp. 221–280.
Wang, Z., Bovik, A. C. & Simoncelli, E. P. (2005a). Structural approaches to image quality

assessment, in A. Bovik (ed.), Handbook of Image and Video Processing, 2nd Edition,
Academic Press, chapter 8.3.

Wang, Z., Bovik, A., Sheikh, H. & Simoncelli, E. (2004). Image quality assessment: from error
visibility to structural similarity, IEEE Transactions on Image Processing 13(4): 600–612.

Wang, Z. & Simoncelli, E. (2004). Stimulus synthesis for efficient evaluation and refinement of
perceptual image quality metrics, IS & T/ SPIE’s 16th Annual Symposium on Electronic
Imaging. Human Vision and Electronic Imaging IX, Proc. SPIE, Vol. 5292, San Jose,
pp. 18–22.

Webb, A. (2003). Statistical Pattern Recognition, John Wiley & Sons.

47Structural Information Approaches to Object Tracking in Video Sequences

Comaniciu, D., Ramesh, V. & Meer, P. (2000). Real-time tracking of non-rigid objects
using mean shift, Proc. of 1st Conf. Comp. Vision Pattern Recogn., Hilton Head, SC,
pp. 142–149.

Comaniciu, D., Ramesh, V. & Meer, P. (2003). Kernel-based object tracking, IEEE Trans. Pattern
Analysis Machine Intelligence 25(5): 564–575.

Cvejic, N., Nikolov, S. G., Knowles, H., Loza, A., Achim, A., Bull, D. R. & Canagarajah, C. N.
(2007). The effect of pixel-level fusion on object tracking in multi-sensor surveillance
video, Proc. IEEE Computer Society Conf. on Computer Vision and Pattern Recognition,
Minneapolis, Minnesota, USA.

Doucet, A., Freitas, N. & N. Gordon, E. (2001). Sequential Monte Carlo Methods in Practice, New
York: Springer-Verlag.

Forsyth, D., Arikan, O., Ikemoto, L. & Ramanan, D. (2006). Computational Studies of Human
Motion: Part 1, Tracking and Motion Synthesis. Foundations and Trends in Computer
Graphics and Vision, Hanover, Massachusetts. Now Publishers Inc.

Fukunaga, K. & Hostetler, L. (1975). The estimation of the gradient of a density function, with
applications in pattern recognition, Information Theory, IEEE Transactions on 21(1): 32
– 40.

Gandhi, T. & Trivedi, M. (2007). Pedestrian protection systems: Issues, survey and chllenges,
IEEE Transactions on Intelligent Transportation Systems 8(3): 413–430.

Gerónimo, D., López, A. M., Sappa, A. D. & Graf, T. (2010). Survey of pedestrian detection for
advanced driver assistance systems, IEEE Transactions on Pattern Analysis and Machine
Intelligence 32: 1239–1258.

Han, B., Comaniciu, D., Zhu, Y. & Davis, L. S. (2004). Incremental density approximation and
kernel-based bayesian filtering for object tracking., CVPR (1), pp. 638–644.

Hu, W., Tan, T., Wang, L. & Maybank, S. (2004). A survey on visual surveillance of object
motion and behaviors, Systems, Man, and Cybernetics, Part C: Applications and Reviews,
IEEE Transactions on 34(3): 334 –352.

Isard, M. & Blake, A. (1996). Contour tracking by stochastic propagation of conditional
density, European Conf. on Comp. Vision, Cambridge, UK, pp. 343–356.

Isard, M. & Blake, A. (1998). Condensation – conditional density propagation for visual
tracking, Intl. Journal of Computer Vision 28(1): 5–28.

Khan, Z., Balch, T. & Dellaert, F. (2005). MCMC-based particle filtering for tracking a variable
number of interacting targets, IEEE Transactions on Pattern Analysis and Machine
Intelligence 27(11): 1805–1819.

Kitagawa, G. (1996). Monte Carlo filter and smoother for non-Gaussian nonlinear state space
models, J. Comput. Graph. Statist. 5(1): 1Ű25.

Koch, W. (2010). On Bayesian tracking and data fusion: A tutorial introduction with examples,
IEEE Transactions on Aerospace and Electronics Magazine Part II: Tutorials 7(July): 29–52.

Lewis, J. J., O’Callaghan, R. J., Nikolov, S. G., Bull, D. R. & Canagarajah, C. (2007). Pixel- and
region-based image fusion using complex wavelets, 8(2): 119–130.

Liu, J. & Chen, R. (1998). Sequential Monte Carlo methods for dynamic systems, Journal of the
American Statistical Association 93(443): 1032–1044.

Loza, A., Mihaylova, L., Bull, D. R. & Canagarajah, C. N. (2006). Structural similarity-based
object tracking in video sequences, Proc. Intl. Conf. on Information Fusion, Florence,
Italy, pp. 1–6.

46 Object Tracking

Loza, A., Mihaylova, L., Bull, D. R. & Canagarajah, C. N. (2009). Structural similarity-based
object tracking in multimodality surveillance videos, Machine Vision and Applications
20(2): 71–83.

Lu, W.-L., Okuma, K. & Little, J. J. (2009). Tracking and recognizing actions of multiple hockey
players using the boosted particle filter, Image Vision Comput. 27(1-2): 189–205.

Maggio, E. & Cavallaro, A. (2005). Hybrid particle filter and mean shift tracker with adaptive
transition model, Proc. of ICASSP 2005, pp. 221-224, vol. 2.

Mihaylova, L., Loza, A., Nikolov, S. G., Lewis, J., Canga, E. F., Li, J., Bull, D. R. & Canagarajah,
C. N. (2006). The influence of multi-sensor video fusion on object tracking using
a particle filter, Proc. Workshop on Multiple Sensor Data Fusion, Dresden, Germany,
pp. 354–358.

Nin (2006). PETS 2006 benchmark data, Dataset available on-line at:
http://www.pets2006.net.

Nummiaro, K., Koller-Meier, E. B. & Gool, L. V. (2003). An adaptive color-based particle filter,
Image and Vision Computing 21(1): 99–110.

Okuma, K., Taleghani, A., de Freitas, N., Little, J. & Lowe, D. (2004). A boosted particle filter:
Multitarget detection and tracking, In Proc. of European Conference on Computer Vision,
Vol. 1, pp. 28–39.

PerceptiVU, Inc. (n.d.). Target Tracking Movie Demos.
http://www.perceptivu.com/MovieDemos.html.

Pérez, P., Vermaak, J. & Blake, A. (2004). Data fusion for tracking with particles, Proceedings of
the IEEE 92(3): 495–513.

Ristic, B., Arulampalam, S. & Gordon, N. (2004). Beyond the Kalman Filter: Particle Filters for
Tracking Applications, Artech House, Boston, London.

Shan, C., Tan, T. & Wei, Y. (2007). Real-time hand tracking using a mean shift embedded
particle filter, Pattern Recogn. 40(7): 1958–1970.

Shen, C., van den Hengel, A. & Dick, A. (2003). Probabilistic multiple cue integration for
particle filter based tracking, Proc. of the VIIth Digital Image Computing : Techniques
and Applications, C. Sun, H. Talbot, S. Ourselin, T. Adriansen, Eds.

Smith, D. & Singh, S. (2006). Approaches to multisensor data fusion in target tracking: A
survey, IEEE Transactions on Knowledge and Data Engineering 18(12): 1696–1710.

The Eden Project Multi-Sensor Data Set (2006). http://www.imagefusion.org/.
Triesch, J. & von der Malsburg, C. (2001). Democratic integration: Self-organized integration

of adaptive cues, Neural Computation 13(9): 2049–2074.
Wan, E. & van der Merwe, R. (2001). The Unscented Kalman Filter, Ch. 7: Kalman Filtering and

Neural Networks. Edited by S. Haykin, Wiley Publishing, pp. 221–280.
Wang, Z., Bovik, A. C. & Simoncelli, E. P. (2005a). Structural approaches to image quality

assessment, in A. Bovik (ed.), Handbook of Image and Video Processing, 2nd Edition,
Academic Press, chapter 8.3.

Wang, Z., Bovik, A., Sheikh, H. & Simoncelli, E. (2004). Image quality assessment: from error
visibility to structural similarity, IEEE Transactions on Image Processing 13(4): 600–612.

Wang, Z. & Simoncelli, E. (2004). Stimulus synthesis for efficient evaluation and refinement of
perceptual image quality metrics, IS & T/ SPIE’s 16th Annual Symposium on Electronic
Imaging. Human Vision and Electronic Imaging IX, Proc. SPIE, Vol. 5292, San Jose,
pp. 18–22.

Webb, A. (2003). Statistical Pattern Recognition, John Wiley & Sons.

47Structural Information Approaches to Object Tracking in Video Sequences

Zhao, Q., Brennan, S. & Tao, H. (2007). Differential EMD tracking, Proc. of IEEE 11th
International Conference on Computer Vision, pp. 1–8.

48 Object Tracking

3

Bayesian Tracking by Online Co-Training and
Sequential Evolutionary Importance Resampling

Lizuo Jin, Zhiguo Bian, Qinhan Xu and Zhengang Chen
School of Automation, Southeast University

China

1. Introduction
Object tracking is an indispensable ingredient of many machine vision applications such as
intelligent visual surveillance, traffic monitoring, robot and vehicle navigation, human
computer interactions, virtual and augmented realities, video compression and indexing, etc.
and has drawn considerable attention from computer research communities in recent years.
Actually, in the real world scenarios, that is a very challenging task due to the interference of
noise, clutters, occlusions, illumination variations and dynamic changes of the object and the
background appearance in the complex scene; a quite variety of tracking methods have been
proposed to tackle these difficulties in decades (Yilmaz et al., 2006), which can be roughly
divided into two categories: the deterministic method and the statistical methods.
The deterministic method performs tracking typically by seeking the local extreme of a
matching function which measures the similarity between a template and a candidate
image; the most widely used similarity measures include the sum of squared differences, the
histogram intersection distance, the Kullback-Leibler divergence, the normalized cross
correlation coefficient, and the Bhattacharyya coefficient. Some optimization techniques
have been proposed to search the local extreme of the matching function such as the mean-
shift method (Comaniciu et al., 2003) and the optical flow based method (Baker & Matthews,
2004). The drawback of these methods is if the matching function takes into account only the
object and not the background, then it might not be able to correctly distinguish the object
from the background and tracking might fail. More robust similarity measures are presented
recently such as the posterior probability measure (Feng et al., 2008.) and the log likelihood
ratio of features (Collins et al., 2005), which takes the background interference into account.
Recently, object tracking is treated as a binary classification problem, where the object have
to be identified from the background with multiple image cues and better performance over
the matching function based approaches such as the template-matching method (Lucas &
Kanade, 1981), the view-based method (Black & Jepson, 1998), and the kernel-based method
(Comaniciu et al., 2003), etc. was reported in literatures, where a discriminative model for
separating the object from the background is trained offline and applied before tracking and
termed tracking-by-detection method (Andriluka et al., 2008 ; Avidan 2004; Breitenstein et
al., 2009 ; Choudhury et al., 2003; Leibe et al., 2008; Okuma et al., 2004; Wu & Nevatia,
2007). However, to formulate that as an object-background discrimination problem, two
important factors need to be treated carefully: what features to choose and how to train the
classifiers. Furthermore, since the object and background appearance may change greatly

Zhao, Q., Brennan, S. & Tao, H. (2007). Differential EMD tracking, Proc. of IEEE 11th
International Conference on Computer Vision, pp. 1–8.

48 Object Tracking

3

Bayesian Tracking by Online Co-Training and
Sequential Evolutionary Importance Resampling

Lizuo Jin, Zhiguo Bian, Qinhan Xu and Zhengang Chen
School of Automation, Southeast University

China

1. Introduction
Object tracking is an indispensable ingredient of many machine vision applications such as
intelligent visual surveillance, traffic monitoring, robot and vehicle navigation, human
computer interactions, virtual and augmented realities, video compression and indexing, etc.
and has drawn considerable attention from computer research communities in recent years.
Actually, in the real world scenarios, that is a very challenging task due to the interference of
noise, clutters, occlusions, illumination variations and dynamic changes of the object and the
background appearance in the complex scene; a quite variety of tracking methods have been
proposed to tackle these difficulties in decades (Yilmaz et al., 2006), which can be roughly
divided into two categories: the deterministic method and the statistical methods.
The deterministic method performs tracking typically by seeking the local extreme of a
matching function which measures the similarity between a template and a candidate
image; the most widely used similarity measures include the sum of squared differences, the
histogram intersection distance, the Kullback-Leibler divergence, the normalized cross
correlation coefficient, and the Bhattacharyya coefficient. Some optimization techniques
have been proposed to search the local extreme of the matching function such as the mean-
shift method (Comaniciu et al., 2003) and the optical flow based method (Baker & Matthews,
2004). The drawback of these methods is if the matching function takes into account only the
object and not the background, then it might not be able to correctly distinguish the object
from the background and tracking might fail. More robust similarity measures are presented
recently such as the posterior probability measure (Feng et al., 2008.) and the log likelihood
ratio of features (Collins et al., 2005), which takes the background interference into account.
Recently, object tracking is treated as a binary classification problem, where the object have
to be identified from the background with multiple image cues and better performance over
the matching function based approaches such as the template-matching method (Lucas &
Kanade, 1981), the view-based method (Black & Jepson, 1998), and the kernel-based method
(Comaniciu et al., 2003), etc. was reported in literatures, where a discriminative model for
separating the object from the background is trained offline and applied before tracking and
termed tracking-by-detection method (Andriluka et al., 2008 ; Avidan 2004; Breitenstein et
al., 2009 ; Choudhury et al., 2003; Leibe et al., 2008; Okuma et al., 2004; Wu & Nevatia,
2007). However, to formulate that as an object-background discrimination problem, two
important factors need to be treated carefully: what features to choose and how to train the
classifiers. Furthermore, since the object and background appearance may change greatly

Object Tracking

50

over time; online feature selection and classifier training are necessary to adapt the tracker
to such variations. The appearance-based method deals with it by updating a holistic
representation of object in a feature space with online learning, such as the incremental PCA
(Wang et al., 2007; Ross et al., 2008), the incremental LDA (Lin et al., 2007; Li et al., 2008), the
Expectation Maximization method (Jepson et al., 2003), etc. The online feature selection
method chooses the most discriminative features that could distinguish the object from the
background correctly rather than specifying features beforehand (Collins et al., 2005). The
feature fusion method in (Yin et al., 2008) combines multiple features by weighting the
likelihood maps with respect to their variance ratios. Additionally, other feature fusion
methods for tracking such as the weighted averaging rule, the product rule, the maximum
rule, the minimum rule and the dynamic weighting rule are compared in (Conaire et al.,
2006). An ensemble of weak classifiers is trained with the offline boosting algorithm and
updated online weakly in (Avidan, 2007) for identifying the pixels of object from that of
background, and an improved version is proposed in (Grabner et al., 2006) with online
boosting that endows the tracker the adaptability somehow. An ensemble of SVM classifiers
for tracking is built in (Tian et al., 2007) by seeking the linear separating hyperplane which
maximizes the margin between the positive and the negative sample in a kernel space, and
that handles appearance changes somehow by heuristically updating a SVM queue online.
It is reported that the increment of the number of features used for tracking could benefit the
performance of tracker (Isard & Blake, 1998; Wu & Huang, 2004); however, it depends on
how the features are utilized. Online feature selection is advocated in (Collins et al., 2005;
Grabner et al., 2006), but it is difficult to determine how many features should be chosen
beforehand. Online feature fusion is proposed in (Yin et al., 2008) where the features are
weighted and combined with respect to their variance ratios but the final combination is in
fact not the most discriminative. Moreover, unlabelled data is valuable for classifier training,
though they do not improve the performance always (Chapelle et al., 2006; Zhu & Goldberg,
2009). It is demonstrated recently that the performance of tracker could be significantly
improved by training classifier on a labeled dataset augmented by unlabelled ones with the
semi-supervised learning technologies; however, it depends on how to predict the labels on
unlabeled data correctly. The self-training method updates the classifier online with its own
predictions to adapt the tracker to the appearance changes in (Collins et al., 2005; Grabner et
al., 2006), however incorrect predictions could deteriorate the tracker and even cause the
tracking drifting, which is called tracking label jitter. Therefore, the unlabelled data need to
be treated carefully when updating the classifier. The template is updated based on the
geometric information heuristically in (Matthews et al., 2004) to make the tracker adaptive
and avoid drifting. The semi-supervised online boosting method in (Grabner et al., 2008;
Godec et al. 2009; Leistner et al. 2008) formulates the update process in a semi-supervised
fashion as a combined decision of a given prior and an online classifier and can limit the
drifting somehow while adaptive to appearance changes. An improved version is proposed
in (Stalder et al., 2009) to adapt rapid appearance changes of the target object that may result
in tracking label jitter, by optimizing a robust loss function based on a convex combination
of a supervised and an unsupervised classifier. Recently online random forest is proposed
for tracking in (Saffari et al. 2009; Godec et al. 2010), which outperform the online boosting
based trackers in case of severe occlusions and large appearance changes. An online multi-
classifier boosting algorithm is proposed in (Kim et al. 2010) for learning object multi-modal
appearance models and tracking under rapid appearance changes. Tracking label jitter can
also be handled by online multiple instance learning methods and in principle the classifier

Bayesian Tracking by Online Co-Training and Sequential Evolutionary Importance Resampling

51

is still performing self-training (Babenko et al., 2009; Saffari et al., 2009). The co-training and
the multi-view learning method in (Javed et al., 2005; Leistner et al., 2010; Liu et al. 2009;
Tang et al., 2007; Yu et al. 2008) updates the classifiers online each other with the predictions
generated on different features and can avoid tracking drifting somehow.
The statistical methods model the underlying dynamics of a tracking system in a state space.
Assuming a linear Gaussian model of system dynamics, only one mode appears in the
posterior probability density function (PDF); for example Kalman filter performs tracking by
updating the mean and the covariance of the posterior PDF. However the dynamics of a
practical tracking system is usually nonlinear and non-Gaussian; it is impossible to estimate
the distribution analytically; therefore, many statistical approximation algorithms have been
developed in recent years. Among them, particle filter, also called sequential Monte Carlo, is
the most popular state estimation method, which constructs the posterior PDF recursively in
a state space using Monte Carlo integration (Doucet et al. 2001; Cappe et al., 2007; Doucet &
Johansen, 2010). It is developed for object tracking in computer vision research communities
originally in (Isard & Black, 1998), also termed Condensation algorithm. During the tracking
process, object state can be estimated recursively with particle filter, but over depletion of
particles by sequential importance resampling (SIR) could cause tracking failure. It is very
important to preserve particles diversity, which is measured usually by the effective sample
size (Doucet et al. 2001). Various methods have been proposed to tackle this problem in
recent years (Doucet et al. 2001; Cappe et al., 2007; Doucet & Johansen, 2010).
In this chapter we propose an adaptive object tracking method that integrates a particle filter
with an online semi-supervised classifier to treat the appearance variations of the object and
the background and occlusions. An online real AdaBoost algorithm is presented to train an
ensemble of weak classifiers that endows the strong classifier faster convergence speed and
higher classification accuracy. We further improve the classifiers by co-training operated on
two groups of uncorrelated local image features in order to reduce tracking label jitter. To
deal with the problem of particles depletion, an iterative importance resampling algorithm
to maximize the effective sample size with evolutionary operations is proposed, which gives
more accurate estimations than the SIR method, and we term it the sequential evolutionary
importance resampling (SEIR) method. The final tracker combines online real AdaBoost, co-
training and the SEIR particle filter all together. The experimental results on pedestrian and
vehicles tracking in the real world scenarios demonstrate that our method is very robust to
tracking objects undergoing large appearance changes and severe occlusions.
The remainder of this chapter is organized as follows: Section 2 introduces the local image
features for representing object; Section 3 discusses the online real AdaBoost and co-training
algorithm; Section 4 presents the SEIR particle filter; Section 5 gives the experimental results;
and finally Section 6 concludes the chapter.

2. Local image features for object representation
In order to identify pixels of the object from that of the background in a predicted candidate
region at each image frame, two types of local image features, namely color features and
texture features are employed to represent the appearance of the object and the background.
The color features include the most wildly used color intensity RGB and gray level intensity
Y. The texture features are the recently proposed local ternary pattern (LTP) (Tan & Triggs,
2010), which is in fact an improved version of local binary patterns (LBP) that is originally
applied to texture classification (Ojala et al., 2002) and later extended to face recognition

Object Tracking

50

over time; online feature selection and classifier training are necessary to adapt the tracker
to such variations. The appearance-based method deals with it by updating a holistic
representation of object in a feature space with online learning, such as the incremental PCA
(Wang et al., 2007; Ross et al., 2008), the incremental LDA (Lin et al., 2007; Li et al., 2008), the
Expectation Maximization method (Jepson et al., 2003), etc. The online feature selection
method chooses the most discriminative features that could distinguish the object from the
background correctly rather than specifying features beforehand (Collins et al., 2005). The
feature fusion method in (Yin et al., 2008) combines multiple features by weighting the
likelihood maps with respect to their variance ratios. Additionally, other feature fusion
methods for tracking such as the weighted averaging rule, the product rule, the maximum
rule, the minimum rule and the dynamic weighting rule are compared in (Conaire et al.,
2006). An ensemble of weak classifiers is trained with the offline boosting algorithm and
updated online weakly in (Avidan, 2007) for identifying the pixels of object from that of
background, and an improved version is proposed in (Grabner et al., 2006) with online
boosting that endows the tracker the adaptability somehow. An ensemble of SVM classifiers
for tracking is built in (Tian et al., 2007) by seeking the linear separating hyperplane which
maximizes the margin between the positive and the negative sample in a kernel space, and
that handles appearance changes somehow by heuristically updating a SVM queue online.
It is reported that the increment of the number of features used for tracking could benefit the
performance of tracker (Isard & Blake, 1998; Wu & Huang, 2004); however, it depends on
how the features are utilized. Online feature selection is advocated in (Collins et al., 2005;
Grabner et al., 2006), but it is difficult to determine how many features should be chosen
beforehand. Online feature fusion is proposed in (Yin et al., 2008) where the features are
weighted and combined with respect to their variance ratios but the final combination is in
fact not the most discriminative. Moreover, unlabelled data is valuable for classifier training,
though they do not improve the performance always (Chapelle et al., 2006; Zhu & Goldberg,
2009). It is demonstrated recently that the performance of tracker could be significantly
improved by training classifier on a labeled dataset augmented by unlabelled ones with the
semi-supervised learning technologies; however, it depends on how to predict the labels on
unlabeled data correctly. The self-training method updates the classifier online with its own
predictions to adapt the tracker to the appearance changes in (Collins et al., 2005; Grabner et
al., 2006), however incorrect predictions could deteriorate the tracker and even cause the
tracking drifting, which is called tracking label jitter. Therefore, the unlabelled data need to
be treated carefully when updating the classifier. The template is updated based on the
geometric information heuristically in (Matthews et al., 2004) to make the tracker adaptive
and avoid drifting. The semi-supervised online boosting method in (Grabner et al., 2008;
Godec et al. 2009; Leistner et al. 2008) formulates the update process in a semi-supervised
fashion as a combined decision of a given prior and an online classifier and can limit the
drifting somehow while adaptive to appearance changes. An improved version is proposed
in (Stalder et al., 2009) to adapt rapid appearance changes of the target object that may result
in tracking label jitter, by optimizing a robust loss function based on a convex combination
of a supervised and an unsupervised classifier. Recently online random forest is proposed
for tracking in (Saffari et al. 2009; Godec et al. 2010), which outperform the online boosting
based trackers in case of severe occlusions and large appearance changes. An online multi-
classifier boosting algorithm is proposed in (Kim et al. 2010) for learning object multi-modal
appearance models and tracking under rapid appearance changes. Tracking label jitter can
also be handled by online multiple instance learning methods and in principle the classifier

Bayesian Tracking by Online Co-Training and Sequential Evolutionary Importance Resampling

51

is still performing self-training (Babenko et al., 2009; Saffari et al., 2009). The co-training and
the multi-view learning method in (Javed et al., 2005; Leistner et al., 2010; Liu et al. 2009;
Tang et al., 2007; Yu et al. 2008) updates the classifiers online each other with the predictions
generated on different features and can avoid tracking drifting somehow.
The statistical methods model the underlying dynamics of a tracking system in a state space.
Assuming a linear Gaussian model of system dynamics, only one mode appears in the
posterior probability density function (PDF); for example Kalman filter performs tracking by
updating the mean and the covariance of the posterior PDF. However the dynamics of a
practical tracking system is usually nonlinear and non-Gaussian; it is impossible to estimate
the distribution analytically; therefore, many statistical approximation algorithms have been
developed in recent years. Among them, particle filter, also called sequential Monte Carlo, is
the most popular state estimation method, which constructs the posterior PDF recursively in
a state space using Monte Carlo integration (Doucet et al. 2001; Cappe et al., 2007; Doucet &
Johansen, 2010). It is developed for object tracking in computer vision research communities
originally in (Isard & Black, 1998), also termed Condensation algorithm. During the tracking
process, object state can be estimated recursively with particle filter, but over depletion of
particles by sequential importance resampling (SIR) could cause tracking failure. It is very
important to preserve particles diversity, which is measured usually by the effective sample
size (Doucet et al. 2001). Various methods have been proposed to tackle this problem in
recent years (Doucet et al. 2001; Cappe et al., 2007; Doucet & Johansen, 2010).
In this chapter we propose an adaptive object tracking method that integrates a particle filter
with an online semi-supervised classifier to treat the appearance variations of the object and
the background and occlusions. An online real AdaBoost algorithm is presented to train an
ensemble of weak classifiers that endows the strong classifier faster convergence speed and
higher classification accuracy. We further improve the classifiers by co-training operated on
two groups of uncorrelated local image features in order to reduce tracking label jitter. To
deal with the problem of particles depletion, an iterative importance resampling algorithm
to maximize the effective sample size with evolutionary operations is proposed, which gives
more accurate estimations than the SIR method, and we term it the sequential evolutionary
importance resampling (SEIR) method. The final tracker combines online real AdaBoost, co-
training and the SEIR particle filter all together. The experimental results on pedestrian and
vehicles tracking in the real world scenarios demonstrate that our method is very robust to
tracking objects undergoing large appearance changes and severe occlusions.
The remainder of this chapter is organized as follows: Section 2 introduces the local image
features for representing object; Section 3 discusses the online real AdaBoost and co-training
algorithm; Section 4 presents the SEIR particle filter; Section 5 gives the experimental results;
and finally Section 6 concludes the chapter.

2. Local image features for object representation
In order to identify pixels of the object from that of the background in a predicted candidate
region at each image frame, two types of local image features, namely color features and
texture features are employed to represent the appearance of the object and the background.
The color features include the most wildly used color intensity RGB and gray level intensity
Y. The texture features are the recently proposed local ternary pattern (LTP) (Tan & Triggs,
2010), which is in fact an improved version of local binary patterns (LBP) that is originally
applied to texture classification (Ojala et al., 2002) and later extended to face recognition

Object Tracking

52

(Ahonen et al., 2006). Nowadays the LBP pattern is one of the best performing texture
descriptors. It has proven to be highly discriminative, invariant to monotonic gray level
changes and computational efficient, make it much suitable for demanding image analysis
tasks, and it has been used in various applications. Concretely LBP pattern is based on the
difference between the central and the neighbor pixels in a mask to form a representation of
texture pattern by coding a binary sequence, which is defined by

-1

,
0

(,) 2 (-)
P

u
P r u c

u
LBP i j S g g

=
= ⋅∑ (1)

where ()S x is an indicating function, () 1S x = if 0x ≥ else () 0S x = ; r is the radius of a
mask, P is the number of neighbor pixels in the mask, cg is the gray value of the central
pixel, ug is the gray value of the neighbor pixels, u is the label of the neighbor pixels and
(),i j is the position of the central pixel. The most widely used masks and their neighbor
pixels labeled by the black dots are shown in Figure 1.

Fig. 1. The mask and the neighbor pixels

If set 8P = , 1r = then we get the most widely used pattern LBP8, 1, named 1-radius 8-
neighborhood pattern. Figure 2 shows how the pattern LBP8, 1 is calculated.

Fig. 2. Calculate the texture pattern LBP8, 1

One flaw of LBP pattern is that it cannot reflect the relationship between the central and the
neighbor pixels in a mask completely, for example it cannot distinguish bright spots, dark
spots and other small sized patterns; furthermore, it is very sensitive to noise. To deal with it,
local ternary pattern (LTP) is developed recently (Tan & Triggs, 2010), which is defined by

 ()
1

,
0

(,) 3 S ,
P

u
P r u c

u
LTP i j g g t

−

=
′= ⋅ −∑ (2)

where ()S x′ is an indicating function with a threshold t specified beforehand.
To simplify the computation, the LTP pattern is divided into two parts: the upper pattern

()uS x and the lower pattern ()lS x , that are defined respectively by

 () ()
1 1

S , , S ,
0 0

u lx t x t
x t x t

x t x t
≥ ≤ −⎧ ⎧

= =⎨ ⎨< > −⎩ ⎩
 (3)

Bayesian Tracking by Online Co-Training and Sequential Evolutionary Importance Resampling

53

For each part, a similar operation as the calculation of LBP pattern is used to encode the
pattern, and then they are combined into one unified representation. Figure 3 shows how
the pattern LTP8, 1 is calculated.

Fig. 3. Calculate the texture pattern LTP8, 1

The texture is represented by nine LTP8, 1 patterns, which contains the in-channel texture
feature R-R, B-B, G-G and the cross-channel texture feature R-G, R-B, G-R, G-B, B-R, and B-
G. For example, when compute the R-G texture feature, around each pixel a 3x3 sized
rectangle area is specified as the mask, the central pixel is taken from the red channel and
the other eight neighbor pixels are taken from the green channel. Figure 4 shows the four
color features and the nine texture features used in this chapter for representing the object
and the background. It is obvious that the capability of each feature to discriminate the
object from the background is different, and it may change greatly too when the object
moves in the scene; we need to choose the best ones dynamically during tracking.

Fig. 4. The local image features

3. Locate object with online co-trained classifiers
3.1 Online real AdaBoost
To a practical tracking application, only a few training sample are available at each image
frame, and the performance of the tracker depends heavily on the discriminative capability

Object Tracking

52

(Ahonen et al., 2006). Nowadays the LBP pattern is one of the best performing texture
descriptors. It has proven to be highly discriminative, invariant to monotonic gray level
changes and computational efficient, make it much suitable for demanding image analysis
tasks, and it has been used in various applications. Concretely LBP pattern is based on the
difference between the central and the neighbor pixels in a mask to form a representation of
texture pattern by coding a binary sequence, which is defined by

-1

,
0

(,) 2 (-)
P

u
P r u c

u
LBP i j S g g

=
= ⋅∑ (1)

where ()S x is an indicating function, () 1S x = if 0x ≥ else () 0S x = ; r is the radius of a
mask, P is the number of neighbor pixels in the mask, cg is the gray value of the central
pixel, ug is the gray value of the neighbor pixels, u is the label of the neighbor pixels and
(),i j is the position of the central pixel. The most widely used masks and their neighbor
pixels labeled by the black dots are shown in Figure 1.

Fig. 1. The mask and the neighbor pixels

If set 8P = , 1r = then we get the most widely used pattern LBP8, 1, named 1-radius 8-
neighborhood pattern. Figure 2 shows how the pattern LBP8, 1 is calculated.

Fig. 2. Calculate the texture pattern LBP8, 1

One flaw of LBP pattern is that it cannot reflect the relationship between the central and the
neighbor pixels in a mask completely, for example it cannot distinguish bright spots, dark
spots and other small sized patterns; furthermore, it is very sensitive to noise. To deal with it,
local ternary pattern (LTP) is developed recently (Tan & Triggs, 2010), which is defined by

 ()
1

,
0

(,) 3 S ,
P

u
P r u c

u
LTP i j g g t

−

=
′= ⋅ −∑ (2)

where ()S x′ is an indicating function with a threshold t specified beforehand.
To simplify the computation, the LTP pattern is divided into two parts: the upper pattern

()uS x and the lower pattern ()lS x , that are defined respectively by

 () ()
1 1

S , , S ,
0 0

u lx t x t
x t x t

x t x t
≥ ≤ −⎧ ⎧

= =⎨ ⎨< > −⎩ ⎩
 (3)

Bayesian Tracking by Online Co-Training and Sequential Evolutionary Importance Resampling

53

For each part, a similar operation as the calculation of LBP pattern is used to encode the
pattern, and then they are combined into one unified representation. Figure 3 shows how
the pattern LTP8, 1 is calculated.

Fig. 3. Calculate the texture pattern LTP8, 1

The texture is represented by nine LTP8, 1 patterns, which contains the in-channel texture
feature R-R, B-B, G-G and the cross-channel texture feature R-G, R-B, G-R, G-B, B-R, and B-
G. For example, when compute the R-G texture feature, around each pixel a 3x3 sized
rectangle area is specified as the mask, the central pixel is taken from the red channel and
the other eight neighbor pixels are taken from the green channel. Figure 4 shows the four
color features and the nine texture features used in this chapter for representing the object
and the background. It is obvious that the capability of each feature to discriminate the
object from the background is different, and it may change greatly too when the object
moves in the scene; we need to choose the best ones dynamically during tracking.

Fig. 4. The local image features

3. Locate object with online co-trained classifiers
3.1 Online real AdaBoost
To a practical tracking application, only a few training sample are available at each image
frame, and the performance of the tracker depends heavily on the discriminative capability

Object Tracking

54

of the classifier. Boosting can improve the performance of weak learners by building a small
number of weak classifiers iteratively and combining them into a strong one. AdaBoost is an
adaptive boosting algorithm that combines weak classifiers together to adapt to the
problem. Real AdaBoost deals with confidence-rated weak classifiers, mapping from a
sample space to a real-valued prediction instead of a Boolean prediction. The real-valued
weak classifiers have an advantage over the Boolean ones in discriminative capability.
Although, the final classifier trained by discrete AdaBoost achieves a similar accuracy as
that by real AdaBoost mostly, however, the former includes much more weak classifiers
than the latter. Namely, real AdaBoost can achieve a higher accuracy if the number of weak
classifiers is fixed beforehand (Schapire & Singer, 1999), exactly the case of online learning.
Unlike offline training, which uses all samples to train one weak classifier at the same time,
the online version has a fixed-length classifier and uses only one sample on the entire stage.
For each weak classifier on the online stage, there is a feature selector and each maintains its
own information on features and updates it when a new sample is availab1e. The selector
chooses the best feature with respect to the cumulated classification error; then updates the
weights according to the output of the corresponding weak classifier and passes the sample
to the next selector. The weights updating process boosts the online stage and enables the
succeeding weak classifiers to focus on difficult sample. When the cumulated error is
beyond a specified threshold, the weights updating steps are skipped. Online boosting is
proposed originally in (Oza & Rusell, 2001) and later improved in (Grabner et al., 2006).
In this chapter, real AdaBoost is applied to select a group of optimal weak classifiers by
minimizing the cumulated classification error on the available training sample at each image
frame. In this way, the final strong classifier could adapt to appearance changes of the object
and background somehow. A remarkable feature of the proposed method is that the optimal
weak classifiers are chosen by real AdaBoost, which improves the classification performance
significantly compared with that by discrete AdaBoost. The pseudo code of the proposed
online real AdaBoost method is shown as Algorithm 1.

3.2 Online co-training
Co-training is a typical semi-supervised learning method originally introduced in (Blum &
Mitchell, 1998) that allows starting with only a few labeled data to train classifiers initially
and then apply more unlabeled data to improve accuracy of classification. The basic idea is
that the features describing the data are redundant and could be split into different groups,
each of which is sufficient for correct classification. One classifier is trained from one group
of features, and the resulted two classifiers go through parallelly more unlabeled data, label
them and add a part of the unlabeled ones having the most confident predictions to the
labeled dataset; namely the classifier trains each other on the unlabeled data.
In this chapter we train two online ensemble classifiers parallelly by co-training, one from
the group of color features and one from the group of texture features introduced in section
2, and each ensemble classifier is trained by online real AdaBoost. To predict the unlabeled
data more reliably, a voting scheme for classifier combination is applied; logically, it is based
on the degree of predicting agreement between the two ensemble classifiers. The final fused
classifier is applied to locate the target object from each image frame. The pseudo code of
the proposed online co-training method is shown as Algorithm 2.

Bayesian Tracking by Online Co-Training and Sequential Evolutionary Importance Resampling

55

Algorithm 1 : online real AdaBoost

Input: training sample () { }, 1,1x y χ∈ × − ,

 where χ is partitioned into several disjoint blocks 1 2, , , kX X X .

 weights ,
corr
n mλ , ,

wrong
n mλ (initialized with one)

Output: strong classifier strongh (initialized randomly)

Initialize the importance weight λ of the incoming sample with one.
for 1,2, ,n N= do // update all feature selector sel

nh
 for 1,2, ,m M= do // one feature selector maintains M features individually
 Initialize the weight of the sample () (), ,, ,n m n mw x y w x y λ= + ,

 where jx X∈ , { }1,2, ,j k∈ .

 Update the weak classifier ()() ()()(), , ,
1 ln , 1 , 1
2

weak
n m n m n mh w x w xε ε= + + − + ,

 where ε is a small positive constant.

 Estimate the classification error (), , , ,
wrong wrong corr

n m n m n m n me λ λ λ= + ,

 if , 0weak
n mh y⋅ ≥ then , , ,

corr corr weak
n m n m n mhλ λ λ= + ,

 else , , ,
wrong wrong weak
n m n m n mhλ λ λ= + end if.

 end for // feature selector
 Select the weak classifier having the lowest error ,

sel weak
n n mh h += , (),arg minm n mm e+ = .

 if , 0n me + = or , 0.5n me + > then exit end if.

 Calculate the voting weight ()(), ,ln 1n n m n me eα + += − .

 Update the importance weight λ ,

 if , 0weak
n mh y⋅ ≥ then ()(),2 1 n meλ λ += − ,

 else (),2 n meλ λ += end if.

 Replace the worst weak classifier ,
weak
n mh − , (),arg maxm n mm e− = with a new one,

 set , 1corr
n mλ − = ,

,
1wrong

n m
λ − = .

end for // update all feature selectors

The final classifier is ()()strongh sign conf x= , the confidence score is () ()
1

N
sel

n n
n

conf x h xα
=

= ∑ .

Object Tracking

54

of the classifier. Boosting can improve the performance of weak learners by building a small
number of weak classifiers iteratively and combining them into a strong one. AdaBoost is an
adaptive boosting algorithm that combines weak classifiers together to adapt to the
problem. Real AdaBoost deals with confidence-rated weak classifiers, mapping from a
sample space to a real-valued prediction instead of a Boolean prediction. The real-valued
weak classifiers have an advantage over the Boolean ones in discriminative capability.
Although, the final classifier trained by discrete AdaBoost achieves a similar accuracy as
that by real AdaBoost mostly, however, the former includes much more weak classifiers
than the latter. Namely, real AdaBoost can achieve a higher accuracy if the number of weak
classifiers is fixed beforehand (Schapire & Singer, 1999), exactly the case of online learning.
Unlike offline training, which uses all samples to train one weak classifier at the same time,
the online version has a fixed-length classifier and uses only one sample on the entire stage.
For each weak classifier on the online stage, there is a feature selector and each maintains its
own information on features and updates it when a new sample is availab1e. The selector
chooses the best feature with respect to the cumulated classification error; then updates the
weights according to the output of the corresponding weak classifier and passes the sample
to the next selector. The weights updating process boosts the online stage and enables the
succeeding weak classifiers to focus on difficult sample. When the cumulated error is
beyond a specified threshold, the weights updating steps are skipped. Online boosting is
proposed originally in (Oza & Rusell, 2001) and later improved in (Grabner et al., 2006).
In this chapter, real AdaBoost is applied to select a group of optimal weak classifiers by
minimizing the cumulated classification error on the available training sample at each image
frame. In this way, the final strong classifier could adapt to appearance changes of the object
and background somehow. A remarkable feature of the proposed method is that the optimal
weak classifiers are chosen by real AdaBoost, which improves the classification performance
significantly compared with that by discrete AdaBoost. The pseudo code of the proposed
online real AdaBoost method is shown as Algorithm 1.

3.2 Online co-training
Co-training is a typical semi-supervised learning method originally introduced in (Blum &
Mitchell, 1998) that allows starting with only a few labeled data to train classifiers initially
and then apply more unlabeled data to improve accuracy of classification. The basic idea is
that the features describing the data are redundant and could be split into different groups,
each of which is sufficient for correct classification. One classifier is trained from one group
of features, and the resulted two classifiers go through parallelly more unlabeled data, label
them and add a part of the unlabeled ones having the most confident predictions to the
labeled dataset; namely the classifier trains each other on the unlabeled data.
In this chapter we train two online ensemble classifiers parallelly by co-training, one from
the group of color features and one from the group of texture features introduced in section
2, and each ensemble classifier is trained by online real AdaBoost. To predict the unlabeled
data more reliably, a voting scheme for classifier combination is applied; logically, it is based
on the degree of predicting agreement between the two ensemble classifiers. The final fused
classifier is applied to locate the target object from each image frame. The pseudo code of
the proposed online co-training method is shown as Algorithm 2.

Bayesian Tracking by Online Co-Training and Sequential Evolutionary Importance Resampling

55

Algorithm 1 : online real AdaBoost

Input: training sample () { }, 1,1x y χ∈ × − ,

 where χ is partitioned into several disjoint blocks 1 2, , , kX X X .

 weights ,
corr
n mλ , ,

wrong
n mλ (initialized with one)

Output: strong classifier strongh (initialized randomly)

Initialize the importance weight λ of the incoming sample with one.
for 1,2, ,n N= do // update all feature selector sel

nh
 for 1,2, ,m M= do // one feature selector maintains M features individually
 Initialize the weight of the sample () (), ,, ,n m n mw x y w x y λ= + ,

 where jx X∈ , { }1,2, ,j k∈ .

 Update the weak classifier ()() ()()(), , ,
1 ln , 1 , 1
2

weak
n m n m n mh w x w xε ε= + + − + ,

 where ε is a small positive constant.

 Estimate the classification error (), , , ,
wrong wrong corr

n m n m n m n me λ λ λ= + ,

 if , 0weak
n mh y⋅ ≥ then , , ,

corr corr weak
n m n m n mhλ λ λ= + ,

 else , , ,
wrong wrong weak
n m n m n mhλ λ λ= + end if.

 end for // feature selector
 Select the weak classifier having the lowest error ,

sel weak
n n mh h += , (),arg minm n mm e+ = .

 if , 0n me + = or , 0.5n me + > then exit end if.

 Calculate the voting weight ()(), ,ln 1n n m n me eα + += − .

 Update the importance weight λ ,

 if , 0weak
n mh y⋅ ≥ then ()(),2 1 n meλ λ += − ,

 else (),2 n meλ λ += end if.

 Replace the worst weak classifier ,
weak
n mh − , (),arg maxm n mm e− = with a new one,

 set , 1corr
n mλ − = ,

,
1wrong

n m
λ − = .

end for // update all feature selectors

The final classifier is ()()strongh sign conf x= , the confidence score is () ()
1

N
sel

n n
n

conf x h xα
=

= ∑ .

Object Tracking

56

Algorithm 2 : online co-training

At the first image frame:
1. Locate the target object manually or automatically, and generate the labeled data.
2. Train two strong classifiers by online real AdaBoost shown in Table 1,
 One classifier from one group of features on the labeled data respectively.

At each newly coming image frame:
1. Apply the two strong classifiers pixel by pixel in a predicted candidate image region,
 generate two confidence score maps respectively.
2. Combine the two confidence score maps into one by voting:
 the label is ()()()minfused

ih sign conf x= ,

 the confidence score is () ()() ()maxfused fused
iconf x conf x h x= ⋅ .

3. Locate the target object from the image frame based on the combined confidence map.
4. Add a part of the pixels having the most confident scores to the labeled dataset.
5. Retrain the two strong classifiers on the updated labeled data respectively.

3.3 Locate the target object
Giving the two strong classifiers, to a newly incoming image frame, we need to determine
the location of the target object within it. To do this, each classifier is operated pixel by pixel
in a predicted candidate region at that image frame individually, thus yields two confidence
score maps from the two groups of local features; and then they are combined into one.
Figure 5 illustrates how the combined confidence score map is generated. In Figure 5, (a) is
the predicted candidate region containing the target object; (b) and (c) are the confidence
score maps from the texture and color features respectively; (d) and (e) are the confidence
score maps of (b) and (c) after applying the morphological operation OPENING
respectively; (f) is the final combined confidence score map. It is obvious that each feature
contributes the map differently; it has fewer clutters than either one before combining,
which means it can reduce tracking label jitter and may lead to more stable tracking.

Fig. 5. Combine the confidence score maps into one

Bayesian Tracking by Online Co-Training and Sequential Evolutionary Importance Resampling

57

The location of the target object can be conjured from the combined confidence score map.
Since local features are utilized, the confidence score can somehow measure the contribution
of the pixel to the existence of the target object; the largest blob having highest accumulated
confidence score locates the object most confidently. We check all the blobs within the
predicted candidate region and choose the most confident blob as the target object and the
center of the ellipse bounding the blob most closely is treated as object location. The whole
locating procedure is visualized in figure 6, where, (a) is the predicted candidate region
containing the target object; (b) is the confidence score map from the color features; (c) is the
confidence score map from the texture features; (d) is the combined confidence score map;
(e) is the result of (d) after thresholding; (f) shows the ellipse that bounding the blob most
closely, of which the center indicates the object location.

(a) (b) (c) (d) (e) (f)

Fig. 6. Locate the target object from the combined confidence score map
Stable tracking depends on the discriminative ability of the strong classifiers trained by co-
training, in fact which is heavily affected by the correctness of the sequentially predicted
sample added to the labeled dataset. We must check the accuracy of classification carefully;
however it is difficult to be evaluated online due to lacking ground-truth data. Fortunately,
by checking the amount of object pixels within and background pixels outside of the object
blob, we can guess that somewhat, though it is ad hoc. Usually the most confident blob is
treated as the object; when the accumulated confidence score of pixels within it beyond a
specified threshold, the pixels are reckoned as positive sample, and added to the labeled
dataset, otherwise no one is selected; that happens mostly as occlusions appear. Meanwhile,
the pixels near the boundary of the candidate region are treated as negative sample and
added to the labeled dataset at any time to adapt the tracker to the varying background.

4. Predict object location with particle filter
4.1 Sequential importance resampling
To a practical object tracking system, we can describe the dynamics of the target object by

 1k k kX X δ−= + (4)

where kX and 1kX − are the location of the target object at time k and 1k − respectively, kδ
is a random variable which subjects to the transition distribution ()1k kp X X − .
The posterior PDF is approximated recursively by a weighted sample, involving two steps
mainly: prediction and update. Given the observations { }1: -1 1 -1, ,k kY Y Y= … up to time 1k − ,
at the prediction step, the transition distribution ()1k kp X X − is applied to predict the
posterior PDF at time k, termed the prior as well,

 () ()1: 1 1 1 1: 1 1(|) |k k k k k k kp X Y p X X p X Y dX− − − − −= ∫ (5)

At time k as the observation kY is available, applying the Bayes rule, the posterior PDF is

Object Tracking

56

Algorithm 2 : online co-training

At the first image frame:
1. Locate the target object manually or automatically, and generate the labeled data.
2. Train two strong classifiers by online real AdaBoost shown in Table 1,
 One classifier from one group of features on the labeled data respectively.

At each newly coming image frame:
1. Apply the two strong classifiers pixel by pixel in a predicted candidate image region,
 generate two confidence score maps respectively.
2. Combine the two confidence score maps into one by voting:
 the label is ()()()minfused

ih sign conf x= ,

 the confidence score is () ()() ()maxfused fused
iconf x conf x h x= ⋅ .

3. Locate the target object from the image frame based on the combined confidence map.
4. Add a part of the pixels having the most confident scores to the labeled dataset.
5. Retrain the two strong classifiers on the updated labeled data respectively.

3.3 Locate the target object
Giving the two strong classifiers, to a newly incoming image frame, we need to determine
the location of the target object within it. To do this, each classifier is operated pixel by pixel
in a predicted candidate region at that image frame individually, thus yields two confidence
score maps from the two groups of local features; and then they are combined into one.
Figure 5 illustrates how the combined confidence score map is generated. In Figure 5, (a) is
the predicted candidate region containing the target object; (b) and (c) are the confidence
score maps from the texture and color features respectively; (d) and (e) are the confidence
score maps of (b) and (c) after applying the morphological operation OPENING
respectively; (f) is the final combined confidence score map. It is obvious that each feature
contributes the map differently; it has fewer clutters than either one before combining,
which means it can reduce tracking label jitter and may lead to more stable tracking.

Fig. 5. Combine the confidence score maps into one

Bayesian Tracking by Online Co-Training and Sequential Evolutionary Importance Resampling

57

The location of the target object can be conjured from the combined confidence score map.
Since local features are utilized, the confidence score can somehow measure the contribution
of the pixel to the existence of the target object; the largest blob having highest accumulated
confidence score locates the object most confidently. We check all the blobs within the
predicted candidate region and choose the most confident blob as the target object and the
center of the ellipse bounding the blob most closely is treated as object location. The whole
locating procedure is visualized in figure 6, where, (a) is the predicted candidate region
containing the target object; (b) is the confidence score map from the color features; (c) is the
confidence score map from the texture features; (d) is the combined confidence score map;
(e) is the result of (d) after thresholding; (f) shows the ellipse that bounding the blob most
closely, of which the center indicates the object location.

(a) (b) (c) (d) (e) (f)

Fig. 6. Locate the target object from the combined confidence score map
Stable tracking depends on the discriminative ability of the strong classifiers trained by co-
training, in fact which is heavily affected by the correctness of the sequentially predicted
sample added to the labeled dataset. We must check the accuracy of classification carefully;
however it is difficult to be evaluated online due to lacking ground-truth data. Fortunately,
by checking the amount of object pixels within and background pixels outside of the object
blob, we can guess that somewhat, though it is ad hoc. Usually the most confident blob is
treated as the object; when the accumulated confidence score of pixels within it beyond a
specified threshold, the pixels are reckoned as positive sample, and added to the labeled
dataset, otherwise no one is selected; that happens mostly as occlusions appear. Meanwhile,
the pixels near the boundary of the candidate region are treated as negative sample and
added to the labeled dataset at any time to adapt the tracker to the varying background.

4. Predict object location with particle filter
4.1 Sequential importance resampling
To a practical object tracking system, we can describe the dynamics of the target object by

 1k k kX X δ−= + (4)

where kX and 1kX − are the location of the target object at time k and 1k − respectively, kδ
is a random variable which subjects to the transition distribution ()1k kp X X − .
The posterior PDF is approximated recursively by a weighted sample, involving two steps
mainly: prediction and update. Given the observations { }1: -1 1 -1, ,k kY Y Y= … up to time 1k − ,
at the prediction step, the transition distribution ()1k kp X X − is applied to predict the
posterior PDF at time k, termed the prior as well,

 () ()1: 1 1 1 1: 1 1(|) |k k k k k k kp X Y p X X p X Y dX− − − − −= ∫ (5)

At time k as the observation kY is available, applying the Bayes rule, the posterior PDF is

Object Tracking

58

 () ()1: 1
1:

1: 1

(|) |
(|)

k k k k
k k

k k

p Y X p X Y
p X Y

p Y Y
−

−
= (6)

The posterior PDF is approximated by N sample i
kX drawn from the proposal distribution

()1: -1 1:| ,k k kq X X Y with the importance weight i
kv ,

()1

1
1: 1 1:

(|) |

(| ,)

i i i
k k k ki i

k k
k k k

p Y X p X X
v v

q X X Y
−

−
−

= (7)

In the case of sequential importance resampling (SIR), () ()1: -1 1: 1: -1| , |k k k k kq X X Y p X X= , the
importance weight becomes the observation likelihood ()k kp Y X .
To the SIR particle filter, if it fails to generate new values for the states from the latest
observations, only a few particles will have significant importance weights, the variance of
weights will increase continuously and eventually cause tracking failure, which is termed
particle degeneration. So it is very important to move particles towards the regions of high
likelihood. This problem arises when the likelihood is too peaked or lies in the tail of the
prior. Various approaches have been proposed to tackle this problem such as the auxiliary
particle filter (APF), the unscented particle filter (UPF), the kernel particle filter (KPF), the
regularized particle filter (RPF), to name a few (Doucet et al. 2001; Cappe et al., 2007).

4.2 Sequential evolutionary importance resampling
To keep the diversity of particles, we enhance importance resampling in this chapter with
four evolutionary operations: copy, crossover, mutation and selection.
1. COPY: generate N new particles 1l

kX by duplicating all the existing N particles,

 1l i
k kX X= (8)

2. CROSSOVER: generate N new particles 2l
kX based on N pair of particles i

kX and j
kX

chosen randomly from the existing N particles according to the probability ()i
k kp Y X

and ()1 j
k kp Y X− ,

 2 ()j jl i
k kk kX X X Xμ= + ⋅ − (9)

where μ is a random number which subjects the standard uniform distribution.
3. MUTATION: generate N new particles 3l

kX by disturbing the existing N particles,

 3l i
k kX X λ ν= + ⋅ (10)

where ν is a random number which subjects the standard normal distribution, and λ
is a constant which controls the amplitude of interference.

4. SELECTION: resample N particles from the resulted 3N new particles { }1 2 3, ,l l l
k k kX X X

according to their importance weights.
In fact, the operation CROSSOVER and MUTATION can increase the amount of distinctive
particles, the operation COPY and SELECTION can keep the particles staying in the regions
of high likelihood. The combination of the four operations can make particles move towards
the regions of high likelihood so as to overcome the degeneration of particles.

Bayesian Tracking by Online Co-Training and Sequential Evolutionary Importance Resampling

59

The effective sample size (ESS) is a function of the coefficient of the variation of importance
weights, measuring the efficiency of an importance sampling algorithm, which is defined by

 ()2

1
1

n
i

eff k
i

N v
=

= ∑ � (11)

where i
kv� is the normalized importance weight, which is defined by

 ()
1

n
i i i
k k k

i
v v v

=
= ∑� (12)

When ESS is small, it means there is a risk of degeneration; importance resampling should
be conducted to augment the particles by applying COPY, CROSSOVER, MUTATION and
SELECTION until ESS becomes large enough. The pseudo code of the proposed sequential
evolutionary importance resampling method is detailed as Algorithm 3.

Algorithm 3: sequential evolutionary importance resampling

1: Initialization, 1k =
 Sample ()1 1

iX p X∼ , 1, ,i N= � .
 Evaluate the importance weight ()1 1 1|i iv p Y X= .
 Resample { }1 1,i iX v to generate the N equally weighted particles{ }1

1 ,i
NX .

2: Importance sampling, 1k >
 Sample ()1|i i

k k kX p X X −
� ∼ , 1, ,i N= � .

 Evaluate the importance weight ()|i i
k k kv p Y X= � .

 Normalize the importance weight to obtain ()
1

n
i i i
k k k

i
v v v

=
= ∑� .

3: Evolutionary importance resampling
 Compute the effective sample size effN , and set the loop counter 0T = .
 While (effN or T is not large enough)
 Generate N new particles 1l

kX by COPY, 1 1, ,l N= � ,
 evaluate the importance weight ()1 1|l l

k k kv p Y X= .
 Generate N new particles 2l

kX by CROSSOVER, 2 1, ,l N= � ,
 evaluate the importance weight ()2 2|l l

k k kv p Y X= .
 Generate N new particles 3l

kX by MUTATION, 3 1, ,l N= � ,
 evaluate the importance weight ()3 3|l l

k k kv p Y X= .
 Normalize the importance weight of the 3N particles{ }1 2 3, ,l l l

k k kX X X .
 Resample N particles i

kX by SELECTION from the 3N particles{ }1 2 3, ,l l l
k k kX X X .

 Normalize the importance weight of the selected N particles to obtain i
kv� .

 Compute the effective sample size effN and set 1T T= + .
 end while
 Resample { },i i

k kX v� to generate the N equally weighted particles{ }1,i
k NX .

 Set 1k k= + and go to step 2.

Object Tracking

58

 () ()1: 1
1:

1: 1

(|) |
(|)

k k k k
k k

k k

p Y X p X Y
p X Y

p Y Y
−

−
= (6)

The posterior PDF is approximated by N sample i
kX drawn from the proposal distribution

()1: -1 1:| ,k k kq X X Y with the importance weight i
kv ,

()1

1
1: 1 1:

(|) |

(| ,)

i i i
k k k ki i

k k
k k k

p Y X p X X
v v

q X X Y
−

−
−

= (7)

In the case of sequential importance resampling (SIR), () ()1: -1 1: 1: -1| , |k k k k kq X X Y p X X= , the
importance weight becomes the observation likelihood ()k kp Y X .
To the SIR particle filter, if it fails to generate new values for the states from the latest
observations, only a few particles will have significant importance weights, the variance of
weights will increase continuously and eventually cause tracking failure, which is termed
particle degeneration. So it is very important to move particles towards the regions of high
likelihood. This problem arises when the likelihood is too peaked or lies in the tail of the
prior. Various approaches have been proposed to tackle this problem such as the auxiliary
particle filter (APF), the unscented particle filter (UPF), the kernel particle filter (KPF), the
regularized particle filter (RPF), to name a few (Doucet et al. 2001; Cappe et al., 2007).

4.2 Sequential evolutionary importance resampling
To keep the diversity of particles, we enhance importance resampling in this chapter with
four evolutionary operations: copy, crossover, mutation and selection.
1. COPY: generate N new particles 1l

kX by duplicating all the existing N particles,

 1l i
k kX X= (8)

2. CROSSOVER: generate N new particles 2l
kX based on N pair of particles i

kX and j
kX

chosen randomly from the existing N particles according to the probability ()i
k kp Y X

and ()1 j
k kp Y X− ,

 2 ()j jl i
k kk kX X X Xμ= + ⋅ − (9)

where μ is a random number which subjects the standard uniform distribution.
3. MUTATION: generate N new particles 3l

kX by disturbing the existing N particles,

 3l i
k kX X λ ν= + ⋅ (10)

where ν is a random number which subjects the standard normal distribution, and λ
is a constant which controls the amplitude of interference.

4. SELECTION: resample N particles from the resulted 3N new particles { }1 2 3, ,l l l
k k kX X X

according to their importance weights.
In fact, the operation CROSSOVER and MUTATION can increase the amount of distinctive
particles, the operation COPY and SELECTION can keep the particles staying in the regions
of high likelihood. The combination of the four operations can make particles move towards
the regions of high likelihood so as to overcome the degeneration of particles.

Bayesian Tracking by Online Co-Training and Sequential Evolutionary Importance Resampling

59

The effective sample size (ESS) is a function of the coefficient of the variation of importance
weights, measuring the efficiency of an importance sampling algorithm, which is defined by

 ()2

1
1

n
i

eff k
i

N v
=

= ∑ � (11)

where i
kv� is the normalized importance weight, which is defined by

 ()
1

n
i i i
k k k

i
v v v

=
= ∑� (12)

When ESS is small, it means there is a risk of degeneration; importance resampling should
be conducted to augment the particles by applying COPY, CROSSOVER, MUTATION and
SELECTION until ESS becomes large enough. The pseudo code of the proposed sequential
evolutionary importance resampling method is detailed as Algorithm 3.

Algorithm 3: sequential evolutionary importance resampling

1: Initialization, 1k =
 Sample ()1 1

iX p X∼ , 1, ,i N= � .
 Evaluate the importance weight ()1 1 1|i iv p Y X= .
 Resample { }1 1,i iX v to generate the N equally weighted particles{ }1

1 ,i
NX .

2: Importance sampling, 1k >
 Sample ()1|i i

k k kX p X X −
� ∼ , 1, ,i N= � .

 Evaluate the importance weight ()|i i
k k kv p Y X= � .

 Normalize the importance weight to obtain ()
1

n
i i i
k k k

i
v v v

=
= ∑� .

3: Evolutionary importance resampling
 Compute the effective sample size effN , and set the loop counter 0T = .
 While (effN or T is not large enough)
 Generate N new particles 1l

kX by COPY, 1 1, ,l N= � ,
 evaluate the importance weight ()1 1|l l

k k kv p Y X= .
 Generate N new particles 2l

kX by CROSSOVER, 2 1, ,l N= � ,
 evaluate the importance weight ()2 2|l l

k k kv p Y X= .
 Generate N new particles 3l

kX by MUTATION, 3 1, ,l N= � ,
 evaluate the importance weight ()3 3|l l

k k kv p Y X= .
 Normalize the importance weight of the 3N particles{ }1 2 3, ,l l l

k k kX X X .
 Resample N particles i

kX by SELECTION from the 3N particles{ }1 2 3, ,l l l
k k kX X X .

 Normalize the importance weight of the selected N particles to obtain i
kv� .

 Compute the effective sample size effN and set 1T T= + .
 end while
 Resample { },i i

k kX v� to generate the N equally weighted particles{ }1,i
k NX .

 Set 1k k= + and go to step 2.

Object Tracking

60

4.3 Predict the location of the target object
When performing tracking, a particle is a candidate object state, actually corresponding to a
possible location of the target object; of which the importance weight is proportional to the
observation likelihood, that in fact indicates the possibility whether the object appears there;
Theoretically, the likelihood must be proportional to the accumulated confidence scores of
pixels classification around the position; practically, it is computed by adding the confidence
scores together in a specified window at that position in this chapter.
Figure 7 exemplifies the distribution of accumulated confidence scores in a predicted region,
where, (a) is the predicted image region containing the target object; (b) is the combined
confidence score map yield by the co-trained classifier; (c) is the distribution of accumulated
confidence scores. It is obvious in (c) that there is one mode holding a very high likelihood
value, which may result in an accurate prediction on object location.

(a) (b) (c)

Fig. 7. The distribution of accumulated confidence scores

To track an object in complex scene, actually, pixels classification error is inevitable, means
clutters must appear at the predicted object region. To reduce the interference of clutters, we
use a gating function to penalize pixels by weighting; concretely, pixels near the predicted
position get a higher weight, otherwise gets a lower weight. In this chapter, we choose a
Gaussian (); ,g X μ σ as the gating function, let the distribution of accumulated confidence
scores is ()l X , then the observation likelihood is defined by

 () () ()| ; ,p Y X l X g X μ σ= ⋅ (13)

5. Experimental results
This section presents two tracking examples on practical video sequences that illustrate the
benefits of combining online feature selection and co-training techniques. Specifically, these
benefits are the enhanced ability to track objects undergoing large appearance variations,
the ability to adapt to the changing background and illumination conditions, the ability to
treat severe occlusions, and the ability to avoid distraction by similar objects by emphasizing
automatically certain features that are distinctive to the target object.

5.1 Results on pixels classification
Figure 8 shows the comparison result on pixels classification by the co-trained and the self-
trained classifier, where, (a) is the predicted candidate image region containing the target
object; (b) and (c) are the confidence score map respectively from the texture and the color
features yield by the co-trained classifier; (d) is the combined confidence score map from (b)
and (c); (e) is the confidence score map from the mixed texture and color features yield by
the self-trained classifier; (f) is the result of (e) after applying the morphological operation
OPENING. It is obvious that the score map yield by the co-trained classifier has much fewer
clutters than the one by the self-trained classifier, which may lead to more stable tracking.

Bayesian Tracking by Online Co-Training and Sequential Evolutionary Importance Resampling

61

 (a) (b) (c) (d) (e) (f)

Fig. 8. Pixels classification by the co-trained and the self-trained classifier

5.2 Results on tracking objects in complex scene
The proposed method is applied to track vehicles and pedestrians in complex scene. The test
video data consists of a vehicle sequence from PETS 2005 dataset (Collins et al., 2005) and a
pedestrian sequence captured by us. Especially, the vehicle sequence involves significant
appearance variations resulting from the change of object size, environmental lighting and
distractions by similar objects in the scene. Besides, in the pedestrian sequence, the object is
occasionally occluded severely by background clutters for several times.
Figure 9 (a) and (b) shows the results on tracking a vehicle and a pedestrian respectively,
where the red box indicates the location of the target object yield by the proposed tracker.
The experimental results demonstrate that the proposed method can enhance the ability to
effectively track objects undergoing large appearance variations due to size change, and to
adapt the background and illumination change, severe occlusions, and even the distractions
by similar objects.

500 875 910

(a)

1521 1527 1913

25 30 50

(b)

164 188 195
Fig. 9. Results on tracking vehicle and pedestrian

Object Tracking

60

4.3 Predict the location of the target object
When performing tracking, a particle is a candidate object state, actually corresponding to a
possible location of the target object; of which the importance weight is proportional to the
observation likelihood, that in fact indicates the possibility whether the object appears there;
Theoretically, the likelihood must be proportional to the accumulated confidence scores of
pixels classification around the position; practically, it is computed by adding the confidence
scores together in a specified window at that position in this chapter.
Figure 7 exemplifies the distribution of accumulated confidence scores in a predicted region,
where, (a) is the predicted image region containing the target object; (b) is the combined
confidence score map yield by the co-trained classifier; (c) is the distribution of accumulated
confidence scores. It is obvious in (c) that there is one mode holding a very high likelihood
value, which may result in an accurate prediction on object location.

(a) (b) (c)

Fig. 7. The distribution of accumulated confidence scores

To track an object in complex scene, actually, pixels classification error is inevitable, means
clutters must appear at the predicted object region. To reduce the interference of clutters, we
use a gating function to penalize pixels by weighting; concretely, pixels near the predicted
position get a higher weight, otherwise gets a lower weight. In this chapter, we choose a
Gaussian (); ,g X μ σ as the gating function, let the distribution of accumulated confidence
scores is ()l X , then the observation likelihood is defined by

 () () ()| ; ,p Y X l X g X μ σ= ⋅ (13)

5. Experimental results
This section presents two tracking examples on practical video sequences that illustrate the
benefits of combining online feature selection and co-training techniques. Specifically, these
benefits are the enhanced ability to track objects undergoing large appearance variations,
the ability to adapt to the changing background and illumination conditions, the ability to
treat severe occlusions, and the ability to avoid distraction by similar objects by emphasizing
automatically certain features that are distinctive to the target object.

5.1 Results on pixels classification
Figure 8 shows the comparison result on pixels classification by the co-trained and the self-
trained classifier, where, (a) is the predicted candidate image region containing the target
object; (b) and (c) are the confidence score map respectively from the texture and the color
features yield by the co-trained classifier; (d) is the combined confidence score map from (b)
and (c); (e) is the confidence score map from the mixed texture and color features yield by
the self-trained classifier; (f) is the result of (e) after applying the morphological operation
OPENING. It is obvious that the score map yield by the co-trained classifier has much fewer
clutters than the one by the self-trained classifier, which may lead to more stable tracking.

Bayesian Tracking by Online Co-Training and Sequential Evolutionary Importance Resampling

61

 (a) (b) (c) (d) (e) (f)

Fig. 8. Pixels classification by the co-trained and the self-trained classifier

5.2 Results on tracking objects in complex scene
The proposed method is applied to track vehicles and pedestrians in complex scene. The test
video data consists of a vehicle sequence from PETS 2005 dataset (Collins et al., 2005) and a
pedestrian sequence captured by us. Especially, the vehicle sequence involves significant
appearance variations resulting from the change of object size, environmental lighting and
distractions by similar objects in the scene. Besides, in the pedestrian sequence, the object is
occasionally occluded severely by background clutters for several times.
Figure 9 (a) and (b) shows the results on tracking a vehicle and a pedestrian respectively,
where the red box indicates the location of the target object yield by the proposed tracker.
The experimental results demonstrate that the proposed method can enhance the ability to
effectively track objects undergoing large appearance variations due to size change, and to
adapt the background and illumination change, severe occlusions, and even the distractions
by similar objects.

500 875 910

(a)

1521 1527 1913

25 30 50

(b)

164 188 195
Fig. 9. Results on tracking vehicle and pedestrian

Object Tracking

62

To check why it can do these, the results on pixels classification yield by the co-trained
classifier in the predicted candidate regions on the selected frames from the two sequences
are visualized in figure 10 and 11 respectively, where, (a) is the predicted candidate image
region, (b) is the combined confidence score map. As can be seen, the combined map in (b)
has very few clutters; based on that the target object can be located very accurately, in fact,
the white bounding ellipse in (a) predict the object location correctly.

(a)

(b)

 500 875 910 1521 1527 1913

Fig. 10. Pixels classification by the co-trained classifier on the vehicle sequence

5.3 Results on importance resampling
Figure 12 shows the comparison results on vehicle tracking with state estimation by particle
filter using different importance resampling method, where, the object locating results are
shown in (a); the effective sample size and maximum loop number yield by the sequential
evolutionary importance resampling (SEIR) particle filter are shown respectively in (b) and
(c). The results demonstrate that the SEIR particle filter yields more accurate state estimation
than the SIR particle filter. It is obvious in (a) that the red box (SEIR) encloses the object
more closely than the green box (SIR) and the latter loses tracking at frame 1600, which may
due to the inaccurate state estimation. The figure in (b) shows that the SEIR particle filter
(red line) can maintain high efficiency of importance resampling while the SIR particle filter
(green line) is much lower, where in total 300 particles are used. Furthermore within finite
times, only about three loops averagely, the expected efficiency can be reached by the SEIR
particle filter, means it is computationally very efficient.

(a)

(b)

 25 30 50 164 188 195

Fig. 11. Pixels classification by the co-trained classifier on the pedestrian sequence

Figure 13 shows the variation on scatter of particles when conducting the evolutionary
importance resampling at some frame. In figure (a) to (d), the effective sample size is 62, 186,

Bayesian Tracking by Online Co-Training and Sequential Evolutionary Importance Resampling

63

260 460 860

(a)

980 1200 1600

(b)

(c)

Fig. 12. Results on vehicle tracking with state estimation by particle filter

236 and 259 respectively. It is obvious that the particles move quickly towards the center of
the target object and cover it more closely, meanwhile the effective sample size increases
accordingly; and that may lead to more accurate state estimation than the SIR particle filter.
Figure 14 shows the scatter of particles after importance resampling at some frame, where,
(a) is the predicted candidate image region containing the target object; (b) is the combined
confidence score map yield by the co-trained classifier; (c) shows the distribution of particles
after SEIR; (d) shows the distribution of particles after SIR. It is obvious that though there
are some clutters in (b), yield by inaccurate pixels classification, through conducting SEIR,
particles move towards the true location of the target object, which is demonstrated by the
number and the spread of the mode appearing in the distributions of particles. There are
fewer modes in (c) than in (d) and the spread of mode is much lower in (c) than that in (d).

(a) (b) (c) (d)

Fig. 13. Scatter of particles when conducting importance resampling

Object Tracking

62

To check why it can do these, the results on pixels classification yield by the co-trained
classifier in the predicted candidate regions on the selected frames from the two sequences
are visualized in figure 10 and 11 respectively, where, (a) is the predicted candidate image
region, (b) is the combined confidence score map. As can be seen, the combined map in (b)
has very few clutters; based on that the target object can be located very accurately, in fact,
the white bounding ellipse in (a) predict the object location correctly.

(a)

(b)

 500 875 910 1521 1527 1913

Fig. 10. Pixels classification by the co-trained classifier on the vehicle sequence

5.3 Results on importance resampling
Figure 12 shows the comparison results on vehicle tracking with state estimation by particle
filter using different importance resampling method, where, the object locating results are
shown in (a); the effective sample size and maximum loop number yield by the sequential
evolutionary importance resampling (SEIR) particle filter are shown respectively in (b) and
(c). The results demonstrate that the SEIR particle filter yields more accurate state estimation
than the SIR particle filter. It is obvious in (a) that the red box (SEIR) encloses the object
more closely than the green box (SIR) and the latter loses tracking at frame 1600, which may
due to the inaccurate state estimation. The figure in (b) shows that the SEIR particle filter
(red line) can maintain high efficiency of importance resampling while the SIR particle filter
(green line) is much lower, where in total 300 particles are used. Furthermore within finite
times, only about three loops averagely, the expected efficiency can be reached by the SEIR
particle filter, means it is computationally very efficient.

(a)

(b)

 25 30 50 164 188 195

Fig. 11. Pixels classification by the co-trained classifier on the pedestrian sequence

Figure 13 shows the variation on scatter of particles when conducting the evolutionary
importance resampling at some frame. In figure (a) to (d), the effective sample size is 62, 186,

Bayesian Tracking by Online Co-Training and Sequential Evolutionary Importance Resampling

63

260 460 860

(a)

980 1200 1600

(b)

(c)

Fig. 12. Results on vehicle tracking with state estimation by particle filter

236 and 259 respectively. It is obvious that the particles move quickly towards the center of
the target object and cover it more closely, meanwhile the effective sample size increases
accordingly; and that may lead to more accurate state estimation than the SIR particle filter.
Figure 14 shows the scatter of particles after importance resampling at some frame, where,
(a) is the predicted candidate image region containing the target object; (b) is the combined
confidence score map yield by the co-trained classifier; (c) shows the distribution of particles
after SEIR; (d) shows the distribution of particles after SIR. It is obvious that though there
are some clutters in (b), yield by inaccurate pixels classification, through conducting SEIR,
particles move towards the true location of the target object, which is demonstrated by the
number and the spread of the mode appearing in the distributions of particles. There are
fewer modes in (c) than in (d) and the spread of mode is much lower in (c) than that in (d).

(a) (b) (c) (d)

Fig. 13. Scatter of particles when conducting importance resampling

Object Tracking

64

5

20

36

53

64

 (a) (b) (c) (d)

Fig. 14. Scatter of particles after importance resampling

6. Conclusions
Object tracking is still a challenging and open task in computer vision research, especially
when dealing with large appearance variations and severe occlusions. In this chapter, an
adaptive object tracking method is proposed, which integrates online semi-supervised
classification and particle filter efficiently. Thanks to the feature selection capability
achieved by online real AdaBoost and co-training, two classifiers are trained on two groups
of features complementarily; the tracker consistently provides accurate classification of the
object and the background for stable tracking, even under severe situations.
In fact the efficiency of the proposed method comes from three aspects. First of all, the real
AdaBoost approach constructs ensemble classifiers with a soft decision scheme to adapt to
aspects, occlusions and size variations of the object by online learning. Second, classifier co-
training on two uncorrelated groups of features further improves the classification accuracy
on the object from the background. Finally, the particle filter with sequential evolutionary
importance resampling can adapt the nonlinearity of object dynamics and integrates the
confidence scores updated online to predict object state more accurately even when it is
occluded by background clutters completely.

Bayesian Tracking by Online Co-Training and Sequential Evolutionary Importance Resampling

65

7. References
Ahonen, T.; Hadid, A. & Pietikainen, M. (2006). Face Description with Local Binary Patterns:

Application to Face Recognition. IEEE Transactions on Pattern Analysis and Machine
Intelligence, Vol. 28, No. 12, (Dec. 2006) pp. 2037-2041.

Andriluka, M.; Roth, S. & Schiele, B. (2008). People tracking by detection and people
detection by tracking, Proceedings of the 2008 IEEE Conference on Computer Vision and
Pattern Recognition, pp. 1-8, Anchorage, Alaska, USA, Jun. 2008.

Avidan, S.; Support vector tracking (2004). IEEE Transactions on Pattern Analysis and Machine
Intelligence, Vol. 26, No. 8, (Aug. 2004) pp. 1064-1072.

Avidan, S.; Ensemble Tracking (2007). IEEE Transactions on Pattern Analysis and Machine
Intelligence, Vol. 29, No. 2, (Feb. 2007) pp. 261-271.

Babenko, B.; Yang, M-H & Belongie, S. (2009). Visual tracking with online multiple instance
learning, Proceedings of the 2009 IEEE Conference on Computer Vision and Pattern
Recognition, pp. 1-8, Miami, FL, USA, Jun. 2009.

Baker, S. & Matthews, I. (2004). Lucas-Kanade 20 years on: A unifying framework.
International Journal of Computer Vision, Vol. 56, No.3, (Mar. 2004) pp.221-255.

Black, M.J. & Jepson, A.D. (1998). EigenTracking: Robust Matching and Tracking of
Articulated Objects Using a View-Based Representation. International Journal of
Computer Vision, Vol. 26, No.1, (Jan. 1998) pp. 63-84.

Blum, A. & Mitchell, T. (1998). Combining labeled and unlabeled data with co-training,
Proceedings of the 11th Annual Conference on Computational Learning Theory, pp. 92-
100, Madison, Wisconsin, USA, Jul. 1998.

Breitenstein, M.D.; Reichlin, F., Leibe, B., Koller-Meier, E. & Gool, L.V. (2009). Robust
tracking-by-detection using a detector confidence particle filter, Proceedings of the
12th IEEE International Conference on Computer Vision, pp. 1515-1522, Kyoto, Japan,
Sep. 2009.

Cappe, O.; Godsill, J.S. & Moulines, E. (2007). An Overview of Existing Methods and Recent
Advances in Sequential Monte Carlo. Proceeding of IEEE, Vol. 95, No. 5, (May 2007)
pp. 899-924.

Chapelle, O.; Scholkopf, B. & Zien, A. (2006). Semi-Supervised Learning. The MIT Press, ISBN:
978-0-262-03358-9, London, England.

Choudhury, R.; Schmid, C. & Mikolajczyk, K. (2003). Face detection and tracking in a video
by propagating detection probabilities. IEEE Transactions on Pattern Analysis and
Machine Intelligence, Vol. 25, No. 10, (Oct. 2003) pp. 1215-1228.

Collins, R.T.; Liu, Y. & Leordeanu, M. (2005). Online Selection of Discriminative Tracking
Features. IEEE Transactions on Pattern Analysis and Machine Intelligence, Vol. 27, No.
10, (Oct. 2003) pp. 1631-1643.

Collins, R.T.; Zhou, X. & Teh, S.K. (2005). An Open Source Tracking Testbed and
Evaluation Web Site, Proceedings of the IEEE International Workshop on Performance
Evaluation of Tracking and Surveillance (PETS 2005), pp. 1-8, Breckenridge, USA, Jan.
2005.

Comaniciu, D.; Ramesh, V. & Meer, P. (2003). Kernel-based object tracking. IEEE
Transactions on Pattern Analysis and Machine Intelligence, Vol. 25, No. 5, (May 2003)
pp. 234-240.

Object Tracking

64

5

20

36

53

64

 (a) (b) (c) (d)

Fig. 14. Scatter of particles after importance resampling

6. Conclusions
Object tracking is still a challenging and open task in computer vision research, especially
when dealing with large appearance variations and severe occlusions. In this chapter, an
adaptive object tracking method is proposed, which integrates online semi-supervised
classification and particle filter efficiently. Thanks to the feature selection capability
achieved by online real AdaBoost and co-training, two classifiers are trained on two groups
of features complementarily; the tracker consistently provides accurate classification of the
object and the background for stable tracking, even under severe situations.
In fact the efficiency of the proposed method comes from three aspects. First of all, the real
AdaBoost approach constructs ensemble classifiers with a soft decision scheme to adapt to
aspects, occlusions and size variations of the object by online learning. Second, classifier co-
training on two uncorrelated groups of features further improves the classification accuracy
on the object from the background. Finally, the particle filter with sequential evolutionary
importance resampling can adapt the nonlinearity of object dynamics and integrates the
confidence scores updated online to predict object state more accurately even when it is
occluded by background clutters completely.

Bayesian Tracking by Online Co-Training and Sequential Evolutionary Importance Resampling

65

7. References
Ahonen, T.; Hadid, A. & Pietikainen, M. (2006). Face Description with Local Binary Patterns:

Application to Face Recognition. IEEE Transactions on Pattern Analysis and Machine
Intelligence, Vol. 28, No. 12, (Dec. 2006) pp. 2037-2041.

Andriluka, M.; Roth, S. & Schiele, B. (2008). People tracking by detection and people
detection by tracking, Proceedings of the 2008 IEEE Conference on Computer Vision and
Pattern Recognition, pp. 1-8, Anchorage, Alaska, USA, Jun. 2008.

Avidan, S.; Support vector tracking (2004). IEEE Transactions on Pattern Analysis and Machine
Intelligence, Vol. 26, No. 8, (Aug. 2004) pp. 1064-1072.

Avidan, S.; Ensemble Tracking (2007). IEEE Transactions on Pattern Analysis and Machine
Intelligence, Vol. 29, No. 2, (Feb. 2007) pp. 261-271.

Babenko, B.; Yang, M-H & Belongie, S. (2009). Visual tracking with online multiple instance
learning, Proceedings of the 2009 IEEE Conference on Computer Vision and Pattern
Recognition, pp. 1-8, Miami, FL, USA, Jun. 2009.

Baker, S. & Matthews, I. (2004). Lucas-Kanade 20 years on: A unifying framework.
International Journal of Computer Vision, Vol. 56, No.3, (Mar. 2004) pp.221-255.

Black, M.J. & Jepson, A.D. (1998). EigenTracking: Robust Matching and Tracking of
Articulated Objects Using a View-Based Representation. International Journal of
Computer Vision, Vol. 26, No.1, (Jan. 1998) pp. 63-84.

Blum, A. & Mitchell, T. (1998). Combining labeled and unlabeled data with co-training,
Proceedings of the 11th Annual Conference on Computational Learning Theory, pp. 92-
100, Madison, Wisconsin, USA, Jul. 1998.

Breitenstein, M.D.; Reichlin, F., Leibe, B., Koller-Meier, E. & Gool, L.V. (2009). Robust
tracking-by-detection using a detector confidence particle filter, Proceedings of the
12th IEEE International Conference on Computer Vision, pp. 1515-1522, Kyoto, Japan,
Sep. 2009.

Cappe, O.; Godsill, J.S. & Moulines, E. (2007). An Overview of Existing Methods and Recent
Advances in Sequential Monte Carlo. Proceeding of IEEE, Vol. 95, No. 5, (May 2007)
pp. 899-924.

Chapelle, O.; Scholkopf, B. & Zien, A. (2006). Semi-Supervised Learning. The MIT Press, ISBN:
978-0-262-03358-9, London, England.

Choudhury, R.; Schmid, C. & Mikolajczyk, K. (2003). Face detection and tracking in a video
by propagating detection probabilities. IEEE Transactions on Pattern Analysis and
Machine Intelligence, Vol. 25, No. 10, (Oct. 2003) pp. 1215-1228.

Collins, R.T.; Liu, Y. & Leordeanu, M. (2005). Online Selection of Discriminative Tracking
Features. IEEE Transactions on Pattern Analysis and Machine Intelligence, Vol. 27, No.
10, (Oct. 2003) pp. 1631-1643.

Collins, R.T.; Zhou, X. & Teh, S.K. (2005). An Open Source Tracking Testbed and
Evaluation Web Site, Proceedings of the IEEE International Workshop on Performance
Evaluation of Tracking and Surveillance (PETS 2005), pp. 1-8, Breckenridge, USA, Jan.
2005.

Comaniciu, D.; Ramesh, V. & Meer, P. (2003). Kernel-based object tracking. IEEE
Transactions on Pattern Analysis and Machine Intelligence, Vol. 25, No. 5, (May 2003)
pp. 234-240.

Object Tracking

66

Conaire, C.O.; O’Connor, N.E., Cooke E. & Smeaton, A.F. (2006). Comparison of Fusion
Methods for Thermo-Visual Surveillance Tracking, Proceedings of the 9th IEEE
International Conference on Information Fusion, pp.1-7, Florence, Italy, Jul. 2006.

Doucet, A.; Freitas, N.D. & Gordon, N. (2001). Sequential Monte Carlo Methods in Practice.
Springer, ISBN: 978-0-387-95146-1.

Doucet, A. & Johansen, A. M. (2010). A Tutorial on Particle Filtering and Smoothing: Fifteen
years later, in Oxford Handbook of Nonlinear Filtering, D. Crisan, B. Rozovsky (Ed.),
Oxford University Press, London UK.

Feng, Z.; Lu, N. & Jiang, P. (2008). Posterior probability measure for image matching. Pattern
Recognition, Vol. 41, No. 7, (Jul. 2008) pp. 2422-2433.

Godec, M., Grabner, H., Leistner, C. & H. Bischof. (2009). Speeding up Semi-Supervised On-
line Boosting for Tracking, Proceedings of the 33rd annual Workshop of the Austrian
Association for Pattern Recognition, pp. 1-8, Stainz, Austria, May 2009.

Godec, M., Leistner, C., Saffari, A. & Bischof, H. (2010). On-line Random Naive Bayes for
Tracking, Proceedings of the IEEE 20th International Conference on Pattern Recognition,
pp. 1-4, Istanbul, Turkey, Aug. 2010.

Grabner, H.; Grabner, M. & Bischof, H. (2006). Real-time tracking via on-line boosting,
Proceedings of the 17th British Machine Vision Conference, pp. 47-56, Edinburgh UK,
Sep. 2006.

Grabner, H.; Leistner, C. & Bischof, H. (2008). Semi-supervised On-Line Boosting for Robust
Tracking, Proceedings of the 10th European Conference on Computer Vision, pp. 234-247,
Marseille, France, Oct. 2008.

Hieu, N. & Arnold, S. (2006). Robust Tracking Using Foreground-Background Texture
Discrimination. International Journal of Computer Vision, Vol. 69, No. 3, (Jun. 2006)
pp. 277-293.

Isard, M.; & Blake, A. (1998). CONDENSATION: Conditional Density Propagation for
Visual Tracking. International Journal of Computer Vision, Vol. 29, No.1, (Jan. 1998)
pp. 5-28.

Isard, M. & Blake, A. (1998). ICONDENSATION: Unifying Low-Level and High-Level
Tracking in a Stochastic Framework, Proceedings of the 6th European Conference on
Computer Vision, pp.893-908, Freiburg, Germany, Jun. 1998.

Javed, O.; Ali, S. & Shah, M. (2005). Online Detection and Classification of Moving Objects
Using Progressively Improving Detectors, Proceedings of the IEEE 2005 Conference on
Computer Vision and Pattern Recognition, pp. 1-8, San Diego, Jun. 2005.

Jepson, A.; Fleet, D. & El-Maraghi, T. (2003). Robust online appearance models for visual
tracking. IEEE Transactions on Pattern Analysis and Machine Intelligence, Vol. 25, No.
10, (Oct. 2003) pp.1296-1311.

Kim, T-K; Woodley, T., Stenger, B. & Cipolla, R. (2010). Online Multiple Classifier Boosting
for Object Tracking, Proceedings of the 2010 IEEE Conference on computer Vision
and Pattern Recognition, pp. 1-6, San Francisco, CA, USA, Jun. 2010.

Leibe, B.; Schindler, K., Cornelis, N. & Gool, L.V. (2008). Coupled object detection and
tracking from static cameras and moving vehicles. IEEE Transactions on Pattern
Analysis and Machine Intelligence, Vol. 30, No. 10, (Oct. 2008) pp. 1683-1698.

Leistner, C., Godec, M., Saffari, A. & Bischof, H. (2010). On-line Multi-View Forests for
Tracking, Proceedings of the 32nd annual symposium of The German Association for
Pattern Recognition, pp.1-10, Darmstadt, Germany, Sep. 2010.

Bayesian Tracking by Online Co-Training and Sequential Evolutionary Importance Resampling

67

Leistner, C.; Grabner, H. & Bischof, H. (2008). Semi-Supervised Boosting using Visual
Similarity Learning, Proceedings of the 2008 IEEE Conference on Computer Vision and
Pattern Recognition, pp. 1-8, Anchorage, Alaska, USA, Jun. 2008.

Li, G.; Liang, D., Huang, Q., Jiang, S. & Gao, W. (2008). Object tracking using incremental
2D-LDA learning and Bayes inference, Proceedings of the IEEE 15th International
Conference on Image Processing, pp. 1568-1571, San Diego, California, USA, Oct. 2008.

Lin, R-S; Yang, M-H & Levinson, S.E. (2004). Object Tracking Using Incremental Fisher
Discriminant Analysis, Proceedings of the IEEE 17th International Conference on Pattern
Recognition, pp. 757-760, Cambridge, UK, Aug. 2004.

Liu, R.; Cheng, J. & Lu, H. (2009). A robust boosting tracker with minimum error bound in a
co-training framework, Proceedings of the 12th IEEE International Conference on
Computer Vision, pp. 1459-1466, Kyoto, Japan, Sep. 2009.

Lucas B. & Kanade T. (1981). An iterative image registration technique with an application
to stereo vision, Proceedings of the 7th international joint conference on Artificial
intelligence, pp.674-679, Vancouver, British Columbia, Aug. 1981.

Matthews, I.; Ishikawa, T. & Baker, S. (2004). The template update problem. IEEE
Transactions on Pattern Analysis and Machine Intelligence, Vol. 26, No.6, (Jun. 2004)
pp. 810-815.

Mallapragada, P.K.; Jin, R., Jain, A.K. & Liu, Y. (2009). SemiBoost: Boosting for Semi-
Supervised Learning, IEEE Transactions on Pattern Analysis and Machine Intelligence,
Vol. 31, No. 11, (Nov. 2009) pp. 2000-2014.

Ojala, T.; Pietikainen, M. & Maenpaa, T. (2002). Multiresolution gray-scale and rotation
invariant texture classification with local binary patterns. IEEE Transactions on
Pattern Analysis and Machine Intelligence, Vol. 24, No. 7, (Jul. 2002) pp. 971-987.

Okuma, K.; Taleghani, A., Freitas, N.D., Little, J., & Lowe, D. (2004). A boosted particle filter:
Multitarget detection and tracking, Proceedings of the 8th European Conference on
Computer Vision, pp. 28-39, Prague, Czech, May 2004.

Oza, N. & Rusell, S. (2001). Online bagging and boosting, Proceedings of the 8th International
Workshop on Artificial Intelligence and Statistics, pp.105-112, Key West, FL, USA, Jan.
2001.

Ross, D.A.; Lim, J., Lin, R-S & Yang, M-H (2008). Incremental Learning for Robust Visual
Tracking. International Journal of Computer Vision, Vol. 77, No. 3, (Mar. 2008) pp. 125-
141.

Saffari, A.; Leistner, C., Santner, J., Godec, M. & Bischof, H. (2009). On-line random forests,
Proceedings of the 12th IEEE International Conference on Computer Vision, pp. 1-8,
Kyoto, Japan, Sep. 2009.

Schapire, R.E. & Singer, Y. (1999). Improved Boosting Algorithms Using Confidence-rated
Predictions. Machine Learning, Vol. 37, No. 3, (Dec. 1999) pp. 297-336.

Stalder, S.; Grabner, H. & Gool, L.V. (2009). Beyond Semi-Supervised Tracking: Tracking
Should Be as Simple as Detection, but not Simpler than Recognition, Proceedings of
the 12th IEEE International Conference on Computer Vision, pp. 1409-1416, Kyoto,
Japan, Sep. 2009.

Tan, X. & Triggs, B. (2010). Enhanced local texture feature sets for face recognition under
difficult lighting conditions. IEEE Transactions on Image Processing, Vol. 19, No. 6,
(Jun. 2010) pp. 1635-1650.

Object Tracking

66

Conaire, C.O.; O’Connor, N.E., Cooke E. & Smeaton, A.F. (2006). Comparison of Fusion
Methods for Thermo-Visual Surveillance Tracking, Proceedings of the 9th IEEE
International Conference on Information Fusion, pp.1-7, Florence, Italy, Jul. 2006.

Doucet, A.; Freitas, N.D. & Gordon, N. (2001). Sequential Monte Carlo Methods in Practice.
Springer, ISBN: 978-0-387-95146-1.

Doucet, A. & Johansen, A. M. (2010). A Tutorial on Particle Filtering and Smoothing: Fifteen
years later, in Oxford Handbook of Nonlinear Filtering, D. Crisan, B. Rozovsky (Ed.),
Oxford University Press, London UK.

Feng, Z.; Lu, N. & Jiang, P. (2008). Posterior probability measure for image matching. Pattern
Recognition, Vol. 41, No. 7, (Jul. 2008) pp. 2422-2433.

Godec, M., Grabner, H., Leistner, C. & H. Bischof. (2009). Speeding up Semi-Supervised On-
line Boosting for Tracking, Proceedings of the 33rd annual Workshop of the Austrian
Association for Pattern Recognition, pp. 1-8, Stainz, Austria, May 2009.

Godec, M., Leistner, C., Saffari, A. & Bischof, H. (2010). On-line Random Naive Bayes for
Tracking, Proceedings of the IEEE 20th International Conference on Pattern Recognition,
pp. 1-4, Istanbul, Turkey, Aug. 2010.

Grabner, H.; Grabner, M. & Bischof, H. (2006). Real-time tracking via on-line boosting,
Proceedings of the 17th British Machine Vision Conference, pp. 47-56, Edinburgh UK,
Sep. 2006.

Grabner, H.; Leistner, C. & Bischof, H. (2008). Semi-supervised On-Line Boosting for Robust
Tracking, Proceedings of the 10th European Conference on Computer Vision, pp. 234-247,
Marseille, France, Oct. 2008.

Hieu, N. & Arnold, S. (2006). Robust Tracking Using Foreground-Background Texture
Discrimination. International Journal of Computer Vision, Vol. 69, No. 3, (Jun. 2006)
pp. 277-293.

Isard, M.; & Blake, A. (1998). CONDENSATION: Conditional Density Propagation for
Visual Tracking. International Journal of Computer Vision, Vol. 29, No.1, (Jan. 1998)
pp. 5-28.

Isard, M. & Blake, A. (1998). ICONDENSATION: Unifying Low-Level and High-Level
Tracking in a Stochastic Framework, Proceedings of the 6th European Conference on
Computer Vision, pp.893-908, Freiburg, Germany, Jun. 1998.

Javed, O.; Ali, S. & Shah, M. (2005). Online Detection and Classification of Moving Objects
Using Progressively Improving Detectors, Proceedings of the IEEE 2005 Conference on
Computer Vision and Pattern Recognition, pp. 1-8, San Diego, Jun. 2005.

Jepson, A.; Fleet, D. & El-Maraghi, T. (2003). Robust online appearance models for visual
tracking. IEEE Transactions on Pattern Analysis and Machine Intelligence, Vol. 25, No.
10, (Oct. 2003) pp.1296-1311.

Kim, T-K; Woodley, T., Stenger, B. & Cipolla, R. (2010). Online Multiple Classifier Boosting
for Object Tracking, Proceedings of the 2010 IEEE Conference on computer Vision
and Pattern Recognition, pp. 1-6, San Francisco, CA, USA, Jun. 2010.

Leibe, B.; Schindler, K., Cornelis, N. & Gool, L.V. (2008). Coupled object detection and
tracking from static cameras and moving vehicles. IEEE Transactions on Pattern
Analysis and Machine Intelligence, Vol. 30, No. 10, (Oct. 2008) pp. 1683-1698.

Leistner, C., Godec, M., Saffari, A. & Bischof, H. (2010). On-line Multi-View Forests for
Tracking, Proceedings of the 32nd annual symposium of The German Association for
Pattern Recognition, pp.1-10, Darmstadt, Germany, Sep. 2010.

Bayesian Tracking by Online Co-Training and Sequential Evolutionary Importance Resampling

67

Leistner, C.; Grabner, H. & Bischof, H. (2008). Semi-Supervised Boosting using Visual
Similarity Learning, Proceedings of the 2008 IEEE Conference on Computer Vision and
Pattern Recognition, pp. 1-8, Anchorage, Alaska, USA, Jun. 2008.

Li, G.; Liang, D., Huang, Q., Jiang, S. & Gao, W. (2008). Object tracking using incremental
2D-LDA learning and Bayes inference, Proceedings of the IEEE 15th International
Conference on Image Processing, pp. 1568-1571, San Diego, California, USA, Oct. 2008.

Lin, R-S; Yang, M-H & Levinson, S.E. (2004). Object Tracking Using Incremental Fisher
Discriminant Analysis, Proceedings of the IEEE 17th International Conference on Pattern
Recognition, pp. 757-760, Cambridge, UK, Aug. 2004.

Liu, R.; Cheng, J. & Lu, H. (2009). A robust boosting tracker with minimum error bound in a
co-training framework, Proceedings of the 12th IEEE International Conference on
Computer Vision, pp. 1459-1466, Kyoto, Japan, Sep. 2009.

Lucas B. & Kanade T. (1981). An iterative image registration technique with an application
to stereo vision, Proceedings of the 7th international joint conference on Artificial
intelligence, pp.674-679, Vancouver, British Columbia, Aug. 1981.

Matthews, I.; Ishikawa, T. & Baker, S. (2004). The template update problem. IEEE
Transactions on Pattern Analysis and Machine Intelligence, Vol. 26, No.6, (Jun. 2004)
pp. 810-815.

Mallapragada, P.K.; Jin, R., Jain, A.K. & Liu, Y. (2009). SemiBoost: Boosting for Semi-
Supervised Learning, IEEE Transactions on Pattern Analysis and Machine Intelligence,
Vol. 31, No. 11, (Nov. 2009) pp. 2000-2014.

Ojala, T.; Pietikainen, M. & Maenpaa, T. (2002). Multiresolution gray-scale and rotation
invariant texture classification with local binary patterns. IEEE Transactions on
Pattern Analysis and Machine Intelligence, Vol. 24, No. 7, (Jul. 2002) pp. 971-987.

Okuma, K.; Taleghani, A., Freitas, N.D., Little, J., & Lowe, D. (2004). A boosted particle filter:
Multitarget detection and tracking, Proceedings of the 8th European Conference on
Computer Vision, pp. 28-39, Prague, Czech, May 2004.

Oza, N. & Rusell, S. (2001). Online bagging and boosting, Proceedings of the 8th International
Workshop on Artificial Intelligence and Statistics, pp.105-112, Key West, FL, USA, Jan.
2001.

Ross, D.A.; Lim, J., Lin, R-S & Yang, M-H (2008). Incremental Learning for Robust Visual
Tracking. International Journal of Computer Vision, Vol. 77, No. 3, (Mar. 2008) pp. 125-
141.

Saffari, A.; Leistner, C., Santner, J., Godec, M. & Bischof, H. (2009). On-line random forests,
Proceedings of the 12th IEEE International Conference on Computer Vision, pp. 1-8,
Kyoto, Japan, Sep. 2009.

Schapire, R.E. & Singer, Y. (1999). Improved Boosting Algorithms Using Confidence-rated
Predictions. Machine Learning, Vol. 37, No. 3, (Dec. 1999) pp. 297-336.

Stalder, S.; Grabner, H. & Gool, L.V. (2009). Beyond Semi-Supervised Tracking: Tracking
Should Be as Simple as Detection, but not Simpler than Recognition, Proceedings of
the 12th IEEE International Conference on Computer Vision, pp. 1409-1416, Kyoto,
Japan, Sep. 2009.

Tan, X. & Triggs, B. (2010). Enhanced local texture feature sets for face recognition under
difficult lighting conditions. IEEE Transactions on Image Processing, Vol. 19, No. 6,
(Jun. 2010) pp. 1635-1650.

Object Tracking

68

Tang F.; Brennan S., Zhao Q. & Tao H. (2007). Co-tracking using semi-supervised support
vector machines, Proceedings of the 11th IEEE International Conference on Computer
Vision, pp. 1-8, Rio de Janeiro, Brazil, Oct. 2007.

Tian, M.; Zhang, W. & Liu, F. (2007). On-Line Ensemble SVM for Robust Object Tracking,
Proceedings of the 8th Asian Conference on Computer Vision, pp. 355-364, Tokyo Japan,
Nov. 2007.

Wang, T.; Gu, I.Y.H. & Shi, P. (2007). Object Tracking Using Incremental 2D-PCA Learning
and ML Estimation, Proceedings of the IEEE 32nd International Conference on Acoustics,
Speech, and Signal Processing, pp. 933-936, Honolulu, Hawaii, USA, Apr. 2007.

Wu, B. & Nevatia, R. (2007). Detection and tracking of multiple, partially occluded humans
by bayesian combination of edgelet based part detectors. International Journal of
Computer Vision, Vol. 75, No. 2, (Feb. 2007) pp. 247-266.

Wu, Y. & Huang, T. S. (2004). Robust Visual Tracking by Integrating Multiple Cues Based on
Co-Inference Learning. International Journal of Computer Vision, Vol. 58, No. 1, (Jan.
2004) pp. 55-71.

Yilmaz, A.; Javed, O. & Shah, M. (2006). Object Tracking: A Survey, ACM Computing Surveys,
Vol. 38, No. 4, (Dec. 2006) pp. 1-45.

Yin, Z.; Porikli, F. & Collins, R.T. (2008). Likelihood Map Fusion for Visual Object Tracking,
Proceedings of the IEEE 2008 Workshop on Application of Computer Vision, pp. 1-7,
Copper Mountain, USA, Jan. 2008.

Yu, Q.; Dinh, T.B. & Medioni, G. (2008). Online Tracking and Reacquisition Using Co-
trained Generative and Discriminative Trackers, Proceedings of the 10th European
Conference on Computer Vision, pp. 678-691, Marseille, France, Oct. 2008.

Zhu, X. & Goldberg, A.B. (2009). Introduction to Semi-Supervised Learning. Morgan &
Claypool Publishers, ISBN: 978-1-598-29548-1.

4

Object Tracking Based on Color Information
Employing Particle Filter Algorithm

Budi Sugandi, Hyoungseop Kim, Joo Kooi Tan and Seiji Ishikawa
Graduate School of Engineering, Kyushu Institute of Technology

Japan

1. Introduction
The increasing interest in the object tracking is motivated by a huge number of promising
applications that can now be tackled in real-time applications. These applications include
performance analysis, surveillance, video-indexing, smart interfaces, teleconferencing and
video compression and so on. However, object tracking can be extremely complex and time-
consuming especially when it is done in outdoor environments. Here, we can mention some
problems of object tracking in outdoor environments such as fake-motion background,
illumination changes, shadows and presence of clutter. A variety of tracking algorithms
have been proposed and implemented to overcome these difficulties. They can be roughly
classified into two categories: deterministic methods and stochastic methods.
Deterministic methods typically track the object by performing an iterative search for a
similarity between the template image and the current one. The algorithms which utilize the
deterministic method are background subtraction (Heikkila & Silven, 1999; Stauffer &
Grimson, 1999; McIvor, 2000; Liu et al., 2001), inter-frame difference (Lipton et al., 1998;
Collins et al., 2000), optical flow (Meyer et al., 1998), skin color extraction (Cho et al., 2001;
Phung et al., 2003) and so on. On the other hand, the stochastic methods use the state space
to model the underlying dynamics of the tracking system such as Kalman filter (Broida &
Chellappa, 1986; Arulampalam et al., 2002) and particle filter (Isard & Black, 1998; Kitagawa,
1996; Gordon et al., 1993; Ristic et al., 2004). Kalman filter is a common approach for dealing
with target tracking in the probabilistic framework. In a linear-Gaussian model with linear
measurement, there is always only one mode in the posterior probability density function
(pdf). The Kalman filter can be used to propagate and update the mean and covariance of
the distribution of this model (Arulampalam et al., 2002). But it cannot resolve the tracking
problem when the model is nonlinear and non-Gaussian (Tanizaki, 1987). For nonlinear or
non-Gaussian problems, it is impossible to evaluate the distributions analytically and many
algorithms have been proposed to approximate them. The extended Kalman filter can deal
to this problem, but still has a problem when the nonlinearity and non-Gaussian cannot be
approximated accurately. To overcome those problems, particle filter has been introduced
by many researchers and become popular algorithm to estimate the problem of nonlinear
and non-Gaussian estimation framework. The particle filter, also known as sequential
Monte Carlo (Kitagawa, 1996), is the most popular approach which recursively constructs
the posterior pdf of the state space using Monte Carlo integration. It approximates a
posterior probability density of the state such as the object position by using samples or

Object Tracking

68

Tang F.; Brennan S., Zhao Q. & Tao H. (2007). Co-tracking using semi-supervised support
vector machines, Proceedings of the 11th IEEE International Conference on Computer
Vision, pp. 1-8, Rio de Janeiro, Brazil, Oct. 2007.

Tian, M.; Zhang, W. & Liu, F. (2007). On-Line Ensemble SVM for Robust Object Tracking,
Proceedings of the 8th Asian Conference on Computer Vision, pp. 355-364, Tokyo Japan,
Nov. 2007.

Wang, T.; Gu, I.Y.H. & Shi, P. (2007). Object Tracking Using Incremental 2D-PCA Learning
and ML Estimation, Proceedings of the IEEE 32nd International Conference on Acoustics,
Speech, and Signal Processing, pp. 933-936, Honolulu, Hawaii, USA, Apr. 2007.

Wu, B. & Nevatia, R. (2007). Detection and tracking of multiple, partially occluded humans
by bayesian combination of edgelet based part detectors. International Journal of
Computer Vision, Vol. 75, No. 2, (Feb. 2007) pp. 247-266.

Wu, Y. & Huang, T. S. (2004). Robust Visual Tracking by Integrating Multiple Cues Based on
Co-Inference Learning. International Journal of Computer Vision, Vol. 58, No. 1, (Jan.
2004) pp. 55-71.

Yilmaz, A.; Javed, O. & Shah, M. (2006). Object Tracking: A Survey, ACM Computing Surveys,
Vol. 38, No. 4, (Dec. 2006) pp. 1-45.

Yin, Z.; Porikli, F. & Collins, R.T. (2008). Likelihood Map Fusion for Visual Object Tracking,
Proceedings of the IEEE 2008 Workshop on Application of Computer Vision, pp. 1-7,
Copper Mountain, USA, Jan. 2008.

Yu, Q.; Dinh, T.B. & Medioni, G. (2008). Online Tracking and Reacquisition Using Co-
trained Generative and Discriminative Trackers, Proceedings of the 10th European
Conference on Computer Vision, pp. 678-691, Marseille, France, Oct. 2008.

Zhu, X. & Goldberg, A.B. (2009). Introduction to Semi-Supervised Learning. Morgan &
Claypool Publishers, ISBN: 978-1-598-29548-1.

4

Object Tracking Based on Color Information
Employing Particle Filter Algorithm

Budi Sugandi, Hyoungseop Kim, Joo Kooi Tan and Seiji Ishikawa
Graduate School of Engineering, Kyushu Institute of Technology

Japan

1. Introduction
The increasing interest in the object tracking is motivated by a huge number of promising
applications that can now be tackled in real-time applications. These applications include
performance analysis, surveillance, video-indexing, smart interfaces, teleconferencing and
video compression and so on. However, object tracking can be extremely complex and time-
consuming especially when it is done in outdoor environments. Here, we can mention some
problems of object tracking in outdoor environments such as fake-motion background,
illumination changes, shadows and presence of clutter. A variety of tracking algorithms
have been proposed and implemented to overcome these difficulties. They can be roughly
classified into two categories: deterministic methods and stochastic methods.
Deterministic methods typically track the object by performing an iterative search for a
similarity between the template image and the current one. The algorithms which utilize the
deterministic method are background subtraction (Heikkila & Silven, 1999; Stauffer &
Grimson, 1999; McIvor, 2000; Liu et al., 2001), inter-frame difference (Lipton et al., 1998;
Collins et al., 2000), optical flow (Meyer et al., 1998), skin color extraction (Cho et al., 2001;
Phung et al., 2003) and so on. On the other hand, the stochastic methods use the state space
to model the underlying dynamics of the tracking system such as Kalman filter (Broida &
Chellappa, 1986; Arulampalam et al., 2002) and particle filter (Isard & Black, 1998; Kitagawa,
1996; Gordon et al., 1993; Ristic et al., 2004). Kalman filter is a common approach for dealing
with target tracking in the probabilistic framework. In a linear-Gaussian model with linear
measurement, there is always only one mode in the posterior probability density function
(pdf). The Kalman filter can be used to propagate and update the mean and covariance of
the distribution of this model (Arulampalam et al., 2002). But it cannot resolve the tracking
problem when the model is nonlinear and non-Gaussian (Tanizaki, 1987). For nonlinear or
non-Gaussian problems, it is impossible to evaluate the distributions analytically and many
algorithms have been proposed to approximate them. The extended Kalman filter can deal
to this problem, but still has a problem when the nonlinearity and non-Gaussian cannot be
approximated accurately. To overcome those problems, particle filter has been introduced
by many researchers and become popular algorithm to estimate the problem of nonlinear
and non-Gaussian estimation framework. The particle filter, also known as sequential
Monte Carlo (Kitagawa, 1996), is the most popular approach which recursively constructs
the posterior pdf of the state space using Monte Carlo integration. It approximates a
posterior probability density of the state such as the object position by using samples or

Object Tracking

70

particles. The probability distribution of the state of the tracked object is approximated by a
set of particles, which each state is denoted as the hypothetical state of the tracked object
and its weight. It has been developed in the computer vision community and applied to
tracking problem and is also known as the Condensation algorithm (Isard & Black, 1998).
For another particle filter, Bayesian bootstrap filter was introduced (Gordon et al., 1993).
Although particle filters have been widely used in recent years, they have important
drawbacks (King & Forsyth, 2000) such as samples are spread around several modes
pointing out the different hypotheses in the state space. Many improvements have been
introduced, but there is still much ground to cover. Different approaches have been taken in
order to overcome these problems. (Nummiaro et al., 2002) used a particle filter based on
color histograms features. Histograms are robust to partial occlusions and rotations but no
shape analysis is taken into account. Moreover, no multiple-target tracking is considered
and complete occlusions are not handled. (Perez et al., 2002) proposed also a particle filter
based on color histogram. They introduced interesting extension in multiple-part modeling,
incorporation of background information and multiple targets tracking. Nevertheless, it
requires an extremely large number of samples and no appearance model updating is
performed, what usually leads to target loss in dynamic scenes. (Comaniciu et al., 2000)
proposed to use mean shift in order to track non-rigid object. His work has real time
capabilities. However, the problem for object tracking with color occurs when the region
around the object is cluttered and illumination is change. In this way, a color feature based
tracking does not provide reliable performance because it fails to fully model the target
especially when occlusion occurs. In another work, (Comaniciu et al., 2003) approach relied
on gradient-based optimization and color-based histograms. In this case, no dynamic model
is used therefore no occlusion can be predicted. (Deutscher & Reid, 2005) presented an
interesting approach called annealing particle filter which aims to reduce the required
number of samples. However, it could be inappropriate in a cluttered environment. They
combine edge and intensity measures but they focused on motion analysis, and thus, no
occlusion handling is explored.
To overcome the above problems, in this article, we made some improvements on color
based object tracking and employed it to track a moving object. We proposed an object state
not only object position but also speed, size, object size scale and appearance condition of
the object. We applied also target model update condition and adaptive likelihood, ensuring
the proper tracking object. By applying the appropriate initialization of the sample, we
successfully track the moving object both known and unknown initial position of the object.
We utilized the appearance condition and variance of the samples position for the tracking
purpose without any other object detection methods. The color histogram is utilized as the
observation model which is measured using Bhattacharyya distance as a similarity
measurement between target model and the samples.
The outline of this article is as follows. In section 2, we describe briefly a particle filter
algorithm. In section 3, our approach employing color particle filter is described in detail.
We make an extension of our design method for robustness of the tracking method. In
section 4, we show some experimental results in order to demonstrate the effectiveness of
our method. Finally, section 5 presents the conclusions of the article.

2. Particle filter
2.1 Bayesian filtering framework
In this sub section, we briefly discuss the Bayesian approach for state estimation (Simon,
2006). Suppose we have a nonlinear system described by equations,

Object Tracking Based on Color Information Employing Particle Filter Algorithm

71

 1 (,)k k k kx f x ω+ =

 (,)k k k ky h x v=
(1)

where, k is the time index, xk is the state, ωk is the process noise, yk is the measurement, and
vk is the measurement noise, respectively. The function fk(.) and hk(.) are time-varying non-
linear system and measurement equation. The noise sequences {ωk } and{ vk } are assumed to
be independent and white with known pdf’s. The goal of a Bayesian estimator is to
approximate the conditional pdf of xk based on measurements y1, y2,…, yk. This conditional
pdf is denoted as p(xk|yk). The first measurement is obtained at k = 1, so the initial condition
of the estimator is the pdf of x0, which can be written as p(x0) = p(x0|y0) since y0 is defined as
the set of no measurements. Once we compute p(xk|yk) then we can estimate xk.
The Bayesian estimator will find a recursive way to compute the conditional pdf p(xk|yk).
Before we find this conditional pdf, we will find the conditional pdf p(xk|y1:k-1). This pdf can
be calculated as

 1: 1 1 1 1: 1 1(|) (|) (|)k k k k k k kp x y p x x p x y dx− − − − −= ∫ (2)

The second pdf on the right side of the above equation is not available yet, but it is available at
the initial time (p(x0) = p(x0|y0)). The first pdf on the right side of the above equation is
available. The pdf p(xk|xk-1) is simply the pdf of the state at time k given a specific state at time
(k - 1). We know this pdf because we know the system equation fk(.) and we know the pdf of
the noise ωk. This pdf can be calculated according to dynamical model of the system fk(.)
Next, we consider a posteriori conditional pdf of xk . We can write this pdf as

 1: 1
1:

1: 1

(|) (|)(|)
(|)

k k k k
k k

k k

p y x p x yp x y
p y y

−

−
= (3)

All of the pdf’s on the right side of the above equation are available. The pdf p(yk|xk) is
available from our knowledge of the measurement equation hk(.) and our knowledge of the
pdf of the measurement noise vk. The pdf p(xk|y1:k-1) is available from Eq. (2). Finally, the pdf
p(yk|y1:k-1) is obtained as follows:

 1: 1 1: 1(|) (|) (|)k k k k k k kp y y p y x p x y dx− −= ∫ (4)

Both of the pdf’s on the right side of the above equation are available. The pdf p(yk|xk) is
available from our knowledge of the measurement equation h(.) and the pdf of vk, and
p(xk|y1:k-1) is available from Eq. (2).
Summarizing the development of this section, the recursive equations of the Bayesian state
estimation filter can be summarized as follows.
1. The system and measurement equations are given as follows:

1 (,)k k k kx f x ω+ =

(,)k k k ky h x v=

 where {ωk } and {vk} are independent white noise processes with known pdf’s.

Object Tracking

70

particles. The probability distribution of the state of the tracked object is approximated by a
set of particles, which each state is denoted as the hypothetical state of the tracked object
and its weight. It has been developed in the computer vision community and applied to
tracking problem and is also known as the Condensation algorithm (Isard & Black, 1998).
For another particle filter, Bayesian bootstrap filter was introduced (Gordon et al., 1993).
Although particle filters have been widely used in recent years, they have important
drawbacks (King & Forsyth, 2000) such as samples are spread around several modes
pointing out the different hypotheses in the state space. Many improvements have been
introduced, but there is still much ground to cover. Different approaches have been taken in
order to overcome these problems. (Nummiaro et al., 2002) used a particle filter based on
color histograms features. Histograms are robust to partial occlusions and rotations but no
shape analysis is taken into account. Moreover, no multiple-target tracking is considered
and complete occlusions are not handled. (Perez et al., 2002) proposed also a particle filter
based on color histogram. They introduced interesting extension in multiple-part modeling,
incorporation of background information and multiple targets tracking. Nevertheless, it
requires an extremely large number of samples and no appearance model updating is
performed, what usually leads to target loss in dynamic scenes. (Comaniciu et al., 2000)
proposed to use mean shift in order to track non-rigid object. His work has real time
capabilities. However, the problem for object tracking with color occurs when the region
around the object is cluttered and illumination is change. In this way, a color feature based
tracking does not provide reliable performance because it fails to fully model the target
especially when occlusion occurs. In another work, (Comaniciu et al., 2003) approach relied
on gradient-based optimization and color-based histograms. In this case, no dynamic model
is used therefore no occlusion can be predicted. (Deutscher & Reid, 2005) presented an
interesting approach called annealing particle filter which aims to reduce the required
number of samples. However, it could be inappropriate in a cluttered environment. They
combine edge and intensity measures but they focused on motion analysis, and thus, no
occlusion handling is explored.
To overcome the above problems, in this article, we made some improvements on color
based object tracking and employed it to track a moving object. We proposed an object state
not only object position but also speed, size, object size scale and appearance condition of
the object. We applied also target model update condition and adaptive likelihood, ensuring
the proper tracking object. By applying the appropriate initialization of the sample, we
successfully track the moving object both known and unknown initial position of the object.
We utilized the appearance condition and variance of the samples position for the tracking
purpose without any other object detection methods. The color histogram is utilized as the
observation model which is measured using Bhattacharyya distance as a similarity
measurement between target model and the samples.
The outline of this article is as follows. In section 2, we describe briefly a particle filter
algorithm. In section 3, our approach employing color particle filter is described in detail.
We make an extension of our design method for robustness of the tracking method. In
section 4, we show some experimental results in order to demonstrate the effectiveness of
our method. Finally, section 5 presents the conclusions of the article.

2. Particle filter
2.1 Bayesian filtering framework
In this sub section, we briefly discuss the Bayesian approach for state estimation (Simon,
2006). Suppose we have a nonlinear system described by equations,

Object Tracking Based on Color Information Employing Particle Filter Algorithm

71

 1 (,)k k k kx f x ω+ =

 (,)k k k ky h x v=
(1)

where, k is the time index, xk is the state, ωk is the process noise, yk is the measurement, and
vk is the measurement noise, respectively. The function fk(.) and hk(.) are time-varying non-
linear system and measurement equation. The noise sequences {ωk } and{ vk } are assumed to
be independent and white with known pdf’s. The goal of a Bayesian estimator is to
approximate the conditional pdf of xk based on measurements y1, y2,…, yk. This conditional
pdf is denoted as p(xk|yk). The first measurement is obtained at k = 1, so the initial condition
of the estimator is the pdf of x0, which can be written as p(x0) = p(x0|y0) since y0 is defined as
the set of no measurements. Once we compute p(xk|yk) then we can estimate xk.
The Bayesian estimator will find a recursive way to compute the conditional pdf p(xk|yk).
Before we find this conditional pdf, we will find the conditional pdf p(xk|y1:k-1). This pdf can
be calculated as

 1: 1 1 1 1: 1 1(|) (|) (|)k k k k k k kp x y p x x p x y dx− − − − −= ∫ (2)

The second pdf on the right side of the above equation is not available yet, but it is available at
the initial time (p(x0) = p(x0|y0)). The first pdf on the right side of the above equation is
available. The pdf p(xk|xk-1) is simply the pdf of the state at time k given a specific state at time
(k - 1). We know this pdf because we know the system equation fk(.) and we know the pdf of
the noise ωk. This pdf can be calculated according to dynamical model of the system fk(.)
Next, we consider a posteriori conditional pdf of xk . We can write this pdf as

 1: 1
1:

1: 1

(|) (|)(|)
(|)

k k k k
k k

k k

p y x p x yp x y
p y y

−

−
= (3)

All of the pdf’s on the right side of the above equation are available. The pdf p(yk|xk) is
available from our knowledge of the measurement equation hk(.) and our knowledge of the
pdf of the measurement noise vk. The pdf p(xk|y1:k-1) is available from Eq. (2). Finally, the pdf
p(yk|y1:k-1) is obtained as follows:

 1: 1 1: 1(|) (|) (|)k k k k k k kp y y p y x p x y dx− −= ∫ (4)

Both of the pdf’s on the right side of the above equation are available. The pdf p(yk|xk) is
available from our knowledge of the measurement equation h(.) and the pdf of vk, and
p(xk|y1:k-1) is available from Eq. (2).
Summarizing the development of this section, the recursive equations of the Bayesian state
estimation filter can be summarized as follows.
1. The system and measurement equations are given as follows:

1 (,)k k k kx f x ω+ =

(,)k k k ky h x v=

 where {ωk } and {vk} are independent white noise processes with known pdf’s.

Object Tracking

72

2. Assuming that the pdf of the initial state p(x0) is known, initialize the estimator as
follows:

p(x0|y0) = p(x0)

3. For k = 1, 2, …, perform the following.
a. The a priori pdf is obtained from Eq. (2).

1: 1 1 1 1: 1 1(|) (|) (|)k k k k k k kp x y p x x p x y dx− − − − −= ∫

b. The a posteriori pdf is obtained from Eq. (3) and (4).

1: 1
1:

1: 1

(|) (|)(|)
(|) (|)

k k k k
k k

k k k k k

p y x p x yp x y
p y x p x y dx

−

−
=
∫

Analytical solutions to these equations are available only for a few special cases. In
particular, if f(.) and h(.) are linear, and x0, {ωk}, and {vk} are additive, independent, and
Gaussian, then the solution is the Kalman filter , otherwise it can be solved by particle filter.

2.2 Particle filter for object tracking
The particle filter was invented to numerically implement the Bayesian estimator which
recursively approximates the posterior distribution using a finite set of weighted samples or
particles. It has been introduced by many researchers to solve the estimation problem when
the system is nonlinear and non-Gaussian. The basic idea behind the particle filter is Monte
Carlo simulation, in which the posterior density is approximated by a set of particles with
associated weights. As a Bayesian estimator, particle filter has two main steps: prediction
and update. Prediction is done by propagating the samples based on the system model. The
update step is done by measuring the weight of each samples based on the observation
model. The implementation of particle filter can be described as follows.
1. Particle initialization.
Starting with a weighted set of samples at k-1 1 1{x , ; 1 : }i i

k k i Nπ− − = approximately distributed
according to p(xk−1|y1:k−1) as initial distribution p(x0), new samples are generated from a
suitable proposal distribution, which may depend on the previous state and the new
measurements.
2. Prediction step.
Using the probabilistic system transition model p(xk|xk−1), the particles are predicted at time
k. It is done by propagating each particle based on the transition or system model.

1 (,)k k k kx f x ω+ = = p(xk|xk-1)

3. Update step.
To maintain a consistent sample, the new importance weights are set to

() ()
()

1
1

1: 1 1:

y x x x

x x ,

i i i
k k k ki i

k k
k k k

p p

q y
π π

−
−

−

= (5)

It is done by measuring the likelihood of each sample based on the observation model.

Object Tracking Based on Color Information Employing Particle Filter Algorithm

73

4. Resample.
This step is performed to generate a new samples set according to their weight for the next
iteration. The resample step will decrease the number of the samples with low weight and
will increase the number of high weight sample. The new particles set is re-sampled using
normalized weights i

kπ as probabilities. This sample set represents the posterior at time k,

()1:xk kp y .
5. Then, the expectations can be approximated as

 ()1:
1

x y x
N

i i
k k k k

i
p π

=
Ε ≅ ∑ (6)

Initialization of the state
sk for the first frame

Start

End

Generation of set of N
particles

Prediction based on
system model

Calculation of histogram
distance based on

Bhattacharya distance

Particle update based on
particle weight

Estimation of the state of
the tracked object

Resampling of
Particles

Target model update

Particle filter iteration

Prediction

Update

Resampling

Fig. 1. Entired flow of procedure

Object Tracking

72

2. Assuming that the pdf of the initial state p(x0) is known, initialize the estimator as
follows:

p(x0|y0) = p(x0)

3. For k = 1, 2, …, perform the following.
a. The a priori pdf is obtained from Eq. (2).

1: 1 1 1 1: 1 1(|) (|) (|)k k k k k k kp x y p x x p x y dx− − − − −= ∫

b. The a posteriori pdf is obtained from Eq. (3) and (4).

1: 1
1:

1: 1

(|) (|)(|)
(|) (|)

k k k k
k k

k k k k k

p y x p x yp x y
p y x p x y dx

−

−
=
∫

Analytical solutions to these equations are available only for a few special cases. In
particular, if f(.) and h(.) are linear, and x0, {ωk}, and {vk} are additive, independent, and
Gaussian, then the solution is the Kalman filter , otherwise it can be solved by particle filter.

2.2 Particle filter for object tracking
The particle filter was invented to numerically implement the Bayesian estimator which
recursively approximates the posterior distribution using a finite set of weighted samples or
particles. It has been introduced by many researchers to solve the estimation problem when
the system is nonlinear and non-Gaussian. The basic idea behind the particle filter is Monte
Carlo simulation, in which the posterior density is approximated by a set of particles with
associated weights. As a Bayesian estimator, particle filter has two main steps: prediction
and update. Prediction is done by propagating the samples based on the system model. The
update step is done by measuring the weight of each samples based on the observation
model. The implementation of particle filter can be described as follows.
1. Particle initialization.
Starting with a weighted set of samples at k-1 1 1{x , ; 1 : }i i

k k i Nπ− − = approximately distributed
according to p(xk−1|y1:k−1) as initial distribution p(x0), new samples are generated from a
suitable proposal distribution, which may depend on the previous state and the new
measurements.
2. Prediction step.
Using the probabilistic system transition model p(xk|xk−1), the particles are predicted at time
k. It is done by propagating each particle based on the transition or system model.

1 (,)k k k kx f x ω+ = = p(xk|xk-1)

3. Update step.
To maintain a consistent sample, the new importance weights are set to

() ()
()

1
1

1: 1 1:

y x x x

x x ,

i i i
k k k ki i

k k
k k k

p p

q y
π π

−
−

−

= (5)

It is done by measuring the likelihood of each sample based on the observation model.

Object Tracking Based on Color Information Employing Particle Filter Algorithm

73

4. Resample.
This step is performed to generate a new samples set according to their weight for the next
iteration. The resample step will decrease the number of the samples with low weight and
will increase the number of high weight sample. The new particles set is re-sampled using
normalized weights i

kπ as probabilities. This sample set represents the posterior at time k,

()1:xk kp y .
5. Then, the expectations can be approximated as

 ()1:
1

x y x
N

i i
k k k k

i
p π

=
Ε ≅ ∑ (6)

Initialization of the state
sk for the first frame

Start

End

Generation of set of N
particles

Prediction based on
system model

Calculation of histogram
distance based on

Bhattacharya distance

Particle update based on
particle weight

Estimation of the state of
the tracked object

Resampling of
Particles

Target model update

Particle filter iteration

Prediction

Update

Resampling

Fig. 1. Entired flow of procedure

Object Tracking

74

3. An approach to robust tracking
In this article, we proposed an algorithm based on particle filter in conjunction with a color
feature. The motion of the central point of a bounding box is modeled using first-order
dynamics model. In this article, the state of the object is defined as s (x ,x ,w ,w ,A)k k k k k k=
where the components are position, speed, bounding-box size, bounding-box scale and pixel
appearance, respectively. The observations yk is given by input images Ik.

3.1 System flow diagram
In this article, we implement a particle filter in a color model-based framework to track the
moving objects in outdoor environment. Firstly, the initialization of the samples done in the
first frame is performed by drawing them randomly on entire scene or drawing them based
on region where the object is expected to appear.
Next, the samples are predicted based on a system/transitional model by propagating each
sample based on this model. The samples update is performed based on the observation
model. In this article, we use color distribution of the object as the observation model. Then
using the Bhattacharya distance, the similarity between the color distribution of the target
and the samples can be measured. Based on the Bhattacharya distance, the weight of each
sample is measured. The target sate estimation is performed based on the sample’s weight.
The resampling is performed for the next sample iteration to generate a new samples set.
During the resample step, samples with a high weight may be chosen several times leading
to identical copies, while others with relatively low weights may be ignored and deleted.
And finally, the target model update is performed adaptively based on the best match of the
target model. The overall flow diagram is shown in Fig. 1.

3.2 Initialization
In this article, the initialization of the particles is done on two approaches: (i) samples are
initialized by putting the samples randomly on entire scene and (ii) by putting the samples
around the region where the target is expected to appear such as edge of the scene or edge
of the occluded object.

#1 #5 #10

Fig. 2. Initialization based on the variance of the samples
On the first approach (Fig. 2), the samples are initialized randomly on entire scene (frame
#1). In this approach, we utilize the variance of the samples position to be a parameter of
object tracking. We determine that the object is begun to track when the variance of the
samples is below then certain threshold. Fig. 3 shows the variance of the samples position
for each frame index. From that figure, we can understand that the object has not been

Object Tracking Based on Color Information Employing Particle Filter Algorithm

75

0
5

10
15
20
25
30
35
40
45
50

0 20 40 60 80

frame number

va
ria

nc
e

of
 s

am
pl

es

Fig. 3. Variance of the samples

tracked yet before the variance of the sample less than the threshold, although the object
appeared on the scene. We can see from Fig. 2 that the object is begun to be tracked in frame
#10 when the variance of the sample position is less than threshold.

#1 #9 #25

Fig. 4. Initialization based on expected region

0

20

40

60

80

100

0 20 40 60 80 100 120
frame number

nu
m

be
r o

f a
pp

ea
ra

nc
e

Fig. 5. Appearance of the samples

On the other hand on the second approach, the object tracking is begun when the samples
satisfy some special appearance conditions. In this condition, the samples are put around
the region where the target is expected to appear such as edge of the scene or edge of the
occluded object. In this approach, if the target appears, the Bhattacharyya distances (later
we will discuss it) of samples around the object position should be remarkable smaller than
the average of sample set. Therefore, the mean value μb and the standard deviation σb of the
Bhattacharyya distances of all initial samples are firstly calculated as,

Object Tracking

74

3. An approach to robust tracking
In this article, we proposed an algorithm based on particle filter in conjunction with a color
feature. The motion of the central point of a bounding box is modeled using first-order
dynamics model. In this article, the state of the object is defined as s (x ,x ,w ,w ,A)k k k k k k=
where the components are position, speed, bounding-box size, bounding-box scale and pixel
appearance, respectively. The observations yk is given by input images Ik.

3.1 System flow diagram
In this article, we implement a particle filter in a color model-based framework to track the
moving objects in outdoor environment. Firstly, the initialization of the samples done in the
first frame is performed by drawing them randomly on entire scene or drawing them based
on region where the object is expected to appear.
Next, the samples are predicted based on a system/transitional model by propagating each
sample based on this model. The samples update is performed based on the observation
model. In this article, we use color distribution of the object as the observation model. Then
using the Bhattacharya distance, the similarity between the color distribution of the target
and the samples can be measured. Based on the Bhattacharya distance, the weight of each
sample is measured. The target sate estimation is performed based on the sample’s weight.
The resampling is performed for the next sample iteration to generate a new samples set.
During the resample step, samples with a high weight may be chosen several times leading
to identical copies, while others with relatively low weights may be ignored and deleted.
And finally, the target model update is performed adaptively based on the best match of the
target model. The overall flow diagram is shown in Fig. 1.

3.2 Initialization
In this article, the initialization of the particles is done on two approaches: (i) samples are
initialized by putting the samples randomly on entire scene and (ii) by putting the samples
around the region where the target is expected to appear such as edge of the scene or edge
of the occluded object.

#1 #5 #10

Fig. 2. Initialization based on the variance of the samples
On the first approach (Fig. 2), the samples are initialized randomly on entire scene (frame
#1). In this approach, we utilize the variance of the samples position to be a parameter of
object tracking. We determine that the object is begun to track when the variance of the
samples is below then certain threshold. Fig. 3 shows the variance of the samples position
for each frame index. From that figure, we can understand that the object has not been

Object Tracking Based on Color Information Employing Particle Filter Algorithm

75

0
5

10
15
20
25
30
35
40
45
50

0 20 40 60 80

frame number

va
ria

nc
e

of
 s

am
pl

es

Fig. 3. Variance of the samples

tracked yet before the variance of the sample less than the threshold, although the object
appeared on the scene. We can see from Fig. 2 that the object is begun to be tracked in frame
#10 when the variance of the sample position is less than threshold.

#1 #9 #25

Fig. 4. Initialization based on expected region

0

20

40

60

80

100

0 20 40 60 80 100 120
frame number

nu
m

be
r o

f a
pp

ea
ra

nc
e

Fig. 5. Appearance of the samples

On the other hand on the second approach, the object tracking is begun when the samples
satisfy some special appearance conditions. In this condition, the samples are put around
the region where the target is expected to appear such as edge of the scene or edge of the
occluded object. In this approach, if the target appears, the Bhattacharyya distances (later
we will discuss it) of samples around the object position should be remarkable smaller than
the average of sample set. Therefore, the mean value μb and the standard deviation σb of the
Bhattacharyya distances of all initial samples are firstly calculated as,

Object Tracking

76

1

1 1 [,]
i

I

b x
i

p q
I

μ ρ
=

= −∑ (7)

 ()22

1

1 1 [,]
i

I

b x
i

p q
I

σ ρ μ
=

= − −∑ (8)

and then an appearance condition is defined as,

 1 [,] 2
ixd p qρ μ σ= − > + (9)

indicating a 95[%] confidence that a sample belongs to the object. Here, ρ[pxi ,q] is the
Bhattacharya distance between the target model and the object. Then, an appearing and
disappearing threshold T is defined to indicate the quantity of the samples fulfilling the
appearance condition during initialization. More than T means the target being found and
starting tracking, contrary situation means the tracker will enter the initialization mode. Fig.
4 shows the initialization approach (frame #1). The object tracking is begun when the
appearance condition is fulfilled (frame #9). The appearance of the samples is shown in Fig.
5. As presented in that figure, the object is detected and started to be tracked when the
number of samples appearance more than threshold T. From that figure also, we can
understand that object disappear behind the tree. It is shown by the number of samples
appearance become zero. Thus, using the appearance condition, we not only can detect the
object but also can predict the occlusion of the object. The predicted occlusion is illustrated
in Fig. 6. The occlusion is predicted occurs on frame #50.

#45 #50 #60

Fig. 6. Occlusion prediction based on appearance condition

3.3 Transition/system model
In this article, we consider the motion of the object as the discrete time 2-dimensional (2D)
motion with constant velocity assumption. The state vector at a time step k is denoted by sk,
including position, speed, size and bounding box scale of each sample. For this purpose, we
model the system based on the following expression.

1 1 xx̂ x xk k k t ξ− −= + Δ + ,

1 xx̂ xk k ξ−= + ,

 1 wŵ w wk k k i t ξ− −= + Δ + , (10)

1 wŵ wk k ξ−= +

Object Tracking Based on Color Information Employing Particle Filter Algorithm

77

Here, ˆ ˆx̂ ,x , ,k k k kw w are the sample position, speed, bounding box and bounding box scale of
the state, respectively. The random vectors x x w w, , ,ξ ξ ξ ξ are Gaussian noise providing the
system with a diversity of hypotheses. Then, each component of the samples is predicted by
propagating the samples according to this transition model.

3.4 Observation model
The observation model is used to measure the observation likelihood of the samples. Many
observation models have been built for particle filtering tracking. One of them is a contour
based appearance template (Isard & Black, 1998). The tracker based on a contour template
gives an accurate description of the targets but performs poorly in clutter and is generally
time-consuming. The initialization of the system is relatively difficult and tedious. In
contrast, color-based trackers are faster and more robust, where the color histogram is
typically used to model the targets to combat the partial occlusion, and non-rigidity
(Nummiaro et al., 2002; Perez et al., 2002).
In this article, the observation model is made based on color information of the target
obtained by building the color histogram in the RGB color space. This section describes how
the color features is modeled in a rectangular region R, where R can be a region surrounding
the object to be tracked or region surrounding one of the hypothetical regions. A color
histogram is commonly used for object tracking because they are robust to partial occlusion,
rotation and scale invariant. They are also flexible in the types of object that they can be used
to track, including rigid and non-rigid object.
The color distribution is expressed by an m-bins histogram, whose components are
normalized so that its sum of all bins equals one. For a region R in an image, given a set of n
samples in R, denoted by X = {xi, i =1, 2, … , n} ∈ R, the m-bins color histogram H(R) = {hj}, (j
= 1, 2, . . . ,m) can be obtained by assigning each pixel xi to a bin, by the following equation:

() X

1 [()]
i

j j i
x

h b x
n

δ
∈

= ∑ (11)

Here b(xi) is the bin index where the color component at xi falls into, and δ is the Kronecker
delta function.
To increase the reliability of the target model, smaller weight are assigned to the pixels that
are further away from region center by employing a weighting function

21 1()

 0
r rg r

otherwise
⎧ − <⎪= ⎨
⎪⎩

 (12)

Here, r is the distance from the center of the region.
Using this weight, the color histogram { }()

y y 1,...,up p u m= = at location y is calculated as

 ()
y

y x
x

1
u I j

p f g h ujaj
δ

⎛ ⎞−⎜ ⎟ ⎡ ⎤⎛ ⎞= −∑ ⎜ ⎟ ⎜ ⎟⎢ ⎥⎝ ⎠⎣ ⎦⎜ ⎟= ⎜ ⎟
⎝ ⎠

 (13)

Object Tracking

76

1

1 1 [,]
i

I

b x
i

p q
I

μ ρ
=

= −∑ (7)

 ()22

1

1 1 [,]
i

I

b x
i

p q
I

σ ρ μ
=

= − −∑ (8)

and then an appearance condition is defined as,

 1 [,] 2
ixd p qρ μ σ= − > + (9)

indicating a 95[%] confidence that a sample belongs to the object. Here, ρ[pxi ,q] is the
Bhattacharya distance between the target model and the object. Then, an appearing and
disappearing threshold T is defined to indicate the quantity of the samples fulfilling the
appearance condition during initialization. More than T means the target being found and
starting tracking, contrary situation means the tracker will enter the initialization mode. Fig.
4 shows the initialization approach (frame #1). The object tracking is begun when the
appearance condition is fulfilled (frame #9). The appearance of the samples is shown in Fig.
5. As presented in that figure, the object is detected and started to be tracked when the
number of samples appearance more than threshold T. From that figure also, we can
understand that object disappear behind the tree. It is shown by the number of samples
appearance become zero. Thus, using the appearance condition, we not only can detect the
object but also can predict the occlusion of the object. The predicted occlusion is illustrated
in Fig. 6. The occlusion is predicted occurs on frame #50.

#45 #50 #60

Fig. 6. Occlusion prediction based on appearance condition

3.3 Transition/system model
In this article, we consider the motion of the object as the discrete time 2-dimensional (2D)
motion with constant velocity assumption. The state vector at a time step k is denoted by sk,
including position, speed, size and bounding box scale of each sample. For this purpose, we
model the system based on the following expression.

1 1 xx̂ x xk k k t ξ− −= + Δ + ,

1 xx̂ xk k ξ−= + ,

 1 wŵ w wk k k i t ξ− −= + Δ + , (10)

1 wŵ wk k ξ−= +

Object Tracking Based on Color Information Employing Particle Filter Algorithm

77

Here, ˆ ˆx̂ ,x , ,k k k kw w are the sample position, speed, bounding box and bounding box scale of
the state, respectively. The random vectors x x w w, , ,ξ ξ ξ ξ are Gaussian noise providing the
system with a diversity of hypotheses. Then, each component of the samples is predicted by
propagating the samples according to this transition model.

3.4 Observation model
The observation model is used to measure the observation likelihood of the samples. Many
observation models have been built for particle filtering tracking. One of them is a contour
based appearance template (Isard & Black, 1998). The tracker based on a contour template
gives an accurate description of the targets but performs poorly in clutter and is generally
time-consuming. The initialization of the system is relatively difficult and tedious. In
contrast, color-based trackers are faster and more robust, where the color histogram is
typically used to model the targets to combat the partial occlusion, and non-rigidity
(Nummiaro et al., 2002; Perez et al., 2002).
In this article, the observation model is made based on color information of the target
obtained by building the color histogram in the RGB color space. This section describes how
the color features is modeled in a rectangular region R, where R can be a region surrounding
the object to be tracked or region surrounding one of the hypothetical regions. A color
histogram is commonly used for object tracking because they are robust to partial occlusion,
rotation and scale invariant. They are also flexible in the types of object that they can be used
to track, including rigid and non-rigid object.
The color distribution is expressed by an m-bins histogram, whose components are
normalized so that its sum of all bins equals one. For a region R in an image, given a set of n
samples in R, denoted by X = {xi, i =1, 2, … , n} ∈ R, the m-bins color histogram H(R) = {hj}, (j
= 1, 2, . . . ,m) can be obtained by assigning each pixel xi to a bin, by the following equation:

() X

1 [()]
i

j j i
x

h b x
n

δ
∈

= ∑ (11)

Here b(xi) is the bin index where the color component at xi falls into, and δ is the Kronecker
delta function.
To increase the reliability of the target model, smaller weight are assigned to the pixels that
are further away from region center by employing a weighting function

21 1()

 0
r rg r

otherwise
⎧ − <⎪= ⎨
⎪⎩

 (12)

Here, r is the distance from the center of the region.
Using this weight, the color histogram { }()

y y 1,...,up p u m= = at location y is calculated as

 ()
y

y x
x

1
u I j

p f g h ujaj
δ

⎛ ⎞−⎜ ⎟ ⎡ ⎤⎛ ⎞= −∑ ⎜ ⎟ ⎜ ⎟⎢ ⎥⎝ ⎠⎣ ⎦⎜ ⎟= ⎜ ⎟
⎝ ⎠

 (13)

Object Tracking

78

where, m is number of bins, I is the number of pixels in the region R, xj is the position of
pixels in the region R, δ is the Kronecker delta function, a is the normalization factor, f is the
scaling factor to ensures that ()

y1 1m u
u p= =∑ , and g(.) is weighting function, respectively.

Fig. 7 shows an example of target histogram at time step k. In subsequent frames, at every
time k, there are N particles that represent N hypothetical states need to be evaluated. The
observation likelihood model is used to assign a weight associated to a specific particle (new
observation) depending on how similar the model histogram q and the histogram p(xt) of
object in the region described by the ith particle i

kx are.
The similarity between two color histograms can be calculated using Bhattacharya

distance 1 [,]d p qρ= − , where () ()

1
[,]

m
u u

u
p q p qρ

=
= ∑ . Similar histogram will have a small

Bhattacharya distance which corresponds to high sample weight. Based on the Bhattacharya
distance, the weight π(i) of the sample state x(i) is calculated as,

 ()()()

21() exp 22 2

1 x ,1 exp 22 2

i

di

p q

π
πσ σ

ρ

πσ σ

⎛ ⎞
⎜ ⎟=
⎜ ⎟
⎝ ⎠
⎛ ⎞⎡ ⎤−⎜ ⎟⎣ ⎦= −⎜ ⎟
⎜ ⎟
⎝ ⎠

 (14)

Where p(x(i)) and q are the color histogram of the samples and target model, respectively.
During the resample step, samples with a high weight may be chosen several times leading
to identical copies, while others with relatively low weights may be ignored.

0

0.02

0.04

0.06

0.08

0.1

0.12

1 101 201 301 401 501
bin number

hi
st

og
ra

m
 a

t x
(t0

)

(a) target object at time k (b) histogram of a target

Fig. 7. An example of color histogram distribution of a target model at time k

3.5 State estimation
Each of the target state is estimated according their mean estimation as following equation,

Object Tracking Based on Color Information Employing Particle Filter Algorithm

79

()x 1 1 x 1 ˆx (1)(x x) xN i i
k k k k kitα α π− − == − + Δ + ∑

()w 1 w 1 ˆw (1)w N i i
k k k ki wα α π− == − + ∑

 1
x 1 x

x xx (1)x k k
k k t

α α −
−

⎛ ⎞−
= − + ⎜ ⎟⎜ ⎟Δ⎝ ⎠

 (15)

1
w 1 w

ww (1)w k k
k k

w
t

α α −
−

⎛ ⎞−
= − + ⎜ ⎟⎜ ⎟Δ⎝ ⎠

Here, []x x w w, , , 0,1α α α α ∈ denote the adaptation rates.

3.6 Resample step
The resample step is performed for the next sample iteration to generate a new samples set.
During the resample step, samples with a high weight may be chosen several times leading
to identical copies, while others with relatively low weights may be ignored and deleted.
The resample step can be done in several different ways. One straightforward way is as the
following steps [Ristic et al., 2004].
1. Generate a random number r that is uniformly distributed on [0, 1].
2. Calculate the normalized cumulative probability

()

(0) () (1) () ()
()0, ,

i
i i i i k

k k k k k N
k

c
c c c w c

c
− ′= = + = (16)

3. By binary search, find the smallest j for which kc r′ ≥ and set the new particle ji
k kx x=

#12 #16 #20

(a) Using non adaptive likelihood

#12 #16 #20

(b) Using adaptive likelihood
Fig. 8. Object tracking using adaptive and non adaptive likelihood

Object Tracking

78

where, m is number of bins, I is the number of pixels in the region R, xj is the position of
pixels in the region R, δ is the Kronecker delta function, a is the normalization factor, f is the
scaling factor to ensures that ()

y1 1m u
u p= =∑ , and g(.) is weighting function, respectively.

Fig. 7 shows an example of target histogram at time step k. In subsequent frames, at every
time k, there are N particles that represent N hypothetical states need to be evaluated. The
observation likelihood model is used to assign a weight associated to a specific particle (new
observation) depending on how similar the model histogram q and the histogram p(xt) of
object in the region described by the ith particle i

kx are.
The similarity between two color histograms can be calculated using Bhattacharya

distance 1 [,]d p qρ= − , where () ()

1
[,]

m
u u

u
p q p qρ

=
= ∑ . Similar histogram will have a small

Bhattacharya distance which corresponds to high sample weight. Based on the Bhattacharya
distance, the weight π(i) of the sample state x(i) is calculated as,

 ()()()

21() exp 22 2

1 x ,1 exp 22 2

i

di

p q

π
πσ σ

ρ

πσ σ

⎛ ⎞
⎜ ⎟=
⎜ ⎟
⎝ ⎠
⎛ ⎞⎡ ⎤−⎜ ⎟⎣ ⎦= −⎜ ⎟
⎜ ⎟
⎝ ⎠

 (14)

Where p(x(i)) and q are the color histogram of the samples and target model, respectively.
During the resample step, samples with a high weight may be chosen several times leading
to identical copies, while others with relatively low weights may be ignored.

0

0.02

0.04

0.06

0.08

0.1

0.12

1 101 201 301 401 501
bin number

hi
st

og
ra

m
 a

t x
(t0

)

(a) target object at time k (b) histogram of a target

Fig. 7. An example of color histogram distribution of a target model at time k

3.5 State estimation
Each of the target state is estimated according their mean estimation as following equation,

Object Tracking Based on Color Information Employing Particle Filter Algorithm

79

()x 1 1 x 1 ˆx (1)(x x) xN i i
k k k k kitα α π− − == − + Δ + ∑

()w 1 w 1 ˆw (1)w N i i
k k k ki wα α π− == − + ∑

 1
x 1 x

x xx (1)x k k
k k t

α α −
−

⎛ ⎞−
= − + ⎜ ⎟⎜ ⎟Δ⎝ ⎠

 (15)

1
w 1 w

ww (1)w k k
k k

w
t

α α −
−

⎛ ⎞−
= − + ⎜ ⎟⎜ ⎟Δ⎝ ⎠

Here, []x x w w, , , 0,1α α α α ∈ denote the adaptation rates.

3.6 Resample step
The resample step is performed for the next sample iteration to generate a new samples set.
During the resample step, samples with a high weight may be chosen several times leading
to identical copies, while others with relatively low weights may be ignored and deleted.
The resample step can be done in several different ways. One straightforward way is as the
following steps [Ristic et al., 2004].
1. Generate a random number r that is uniformly distributed on [0, 1].
2. Calculate the normalized cumulative probability

()

(0) () (1) () ()
()0, ,

i
i i i i k

k k k k k N
k

c
c c c w c

c
− ′= = + = (16)

3. By binary search, find the smallest j for which kc r′ ≥ and set the new particle ji
k kx x=

#12 #16 #20

(a) Using non adaptive likelihood

#12 #16 #20

(b) Using adaptive likelihood
Fig. 8. Object tracking using adaptive and non adaptive likelihood

Object Tracking

80

3.7 Adaptive likelihood
The observation likelihood function is very important for the tracking performance of
particle filter. The reason is that the observation likelihood function determines the weights
of the particles and determines how the particles are resampled. Resample step is used to
decrease the number of low-weighted particles and increase the number of particles with
high weights. The observation likelihood function is expressed in Eq. (14). In this case, the
observation likelihood function is the only function that contributes to particle’s weight. We
can rewrite the equation as,

2() exp 22

diπ
σ

⎛ ⎞
⎜ ⎟∝ −
⎜ ⎟
⎝ ⎠

 (17)

here, the σ parameter determines the steepness of the function, i.e. how fast the function will
decrease when the distance is large (bad particles).
It is reported that the value of the parameter σ has a major influence on the properties of the
likelihood (Freeman & Adelson, 1992). Typically, the choice of this value is left as a design
parameter to be determined experimentally. However, in this article, an adaptive scheme is
proposed which aims to maximize the information available in the likelihood using the
Bhattacharya distance d. For this purpose, we define the minimum squared distance 2

mind as
the minimum distance d2 of the set of distance calculated for all particles. Rearranging the
likelihood function yields,

2

2log()
2
dπ
σ

∝ − (18)

from which we can obtain σ that gives maximum likelihood as,

 2
min

2
2

dσ ∝ (19)

Fig. 8 shows a comparison the object tracking method using the adaptive and non-adaptive
likelihood model. Using non adaptive likelihood, the particles with different Bhattacharya
distance will be assigned with equal weights. As a result, the likelihood function will not
differentiate the difference between particle with small distance and particle with big
distance. This condition may assign the bad particles with high weight (Fig. 8 (a)). On the
other hand, the adaptive likelihood ensures the best particles are assigned with the highest
weights and the worst ones are assigned with small weight (Fig. 8 (b)).

3.8 Target model update
The problem for object tracking with color occurs when the region around the object is
cluttered, illumination is change and the object appearance is change. In this way, a color
feature based tracking does not provide reliable performance because it fails to fully model
the target. To overcome this problem, the adaptive target model is applied based on the best
match of the color model. However, this is a sensitive task. The target models are only
updated when two conditions hold: (i) the target is not occluded and (ii) the likelihood of

Object Tracking Based on Color Information Employing Particle Filter Algorithm

81

the estimated target’s state suggests that the estimate is sufficiently reliable. In this case, they
are updated using an adaptive filter

 1(1)k q k q estq q pα α−= − + (20)

where αq ∈[0, 1] is the learning rate that contribute to the updated histogram and pest is
histogram of the estimated state, respectively. In order to determine when the estimate is
reliable, the likelihood of the current estimate is computed, πest. The appearance is then
updated when this value is higher than an indicator of the expected likelihood value and is
calculated following an adaptive rule

 1(1)k u k u estλ α λ α π−= − + (21)

here λk is expected likelihood, αu ∈[0, 1] is the learning rate and πest is estimated likelihood,
respectively. This value indicates that the object has to be well matched to the model
histogram before the update is applied.
Fig. 9 and Fig. 10 show the comparison of object tracking with and without target model
update. As shown in Fig. 9, non-adaptive model fail to detect the object properly. However,
the adaptive model can track the object successfully. It is because, using the adaptive model,
the target model is always updated based on the best match of the color model. Moreover,
as shown in Fig. 10, using adaptive model the scale of object appearance is getting adapted
correctly compare to without using adaptive model.

#210 #220 #230

Without target model update

#210 #220 #230

With target model update

Fig. 9. Object tracking with and without model update

Object Tracking

80

3.7 Adaptive likelihood
The observation likelihood function is very important for the tracking performance of
particle filter. The reason is that the observation likelihood function determines the weights
of the particles and determines how the particles are resampled. Resample step is used to
decrease the number of low-weighted particles and increase the number of particles with
high weights. The observation likelihood function is expressed in Eq. (14). In this case, the
observation likelihood function is the only function that contributes to particle’s weight. We
can rewrite the equation as,

2() exp 22

diπ
σ

⎛ ⎞
⎜ ⎟∝ −
⎜ ⎟
⎝ ⎠

 (17)

here, the σ parameter determines the steepness of the function, i.e. how fast the function will
decrease when the distance is large (bad particles).
It is reported that the value of the parameter σ has a major influence on the properties of the
likelihood (Freeman & Adelson, 1992). Typically, the choice of this value is left as a design
parameter to be determined experimentally. However, in this article, an adaptive scheme is
proposed which aims to maximize the information available in the likelihood using the
Bhattacharya distance d. For this purpose, we define the minimum squared distance 2

mind as
the minimum distance d2 of the set of distance calculated for all particles. Rearranging the
likelihood function yields,

2

2log()
2
dπ
σ

∝ − (18)

from which we can obtain σ that gives maximum likelihood as,

 2
min

2
2

dσ ∝ (19)

Fig. 8 shows a comparison the object tracking method using the adaptive and non-adaptive
likelihood model. Using non adaptive likelihood, the particles with different Bhattacharya
distance will be assigned with equal weights. As a result, the likelihood function will not
differentiate the difference between particle with small distance and particle with big
distance. This condition may assign the bad particles with high weight (Fig. 8 (a)). On the
other hand, the adaptive likelihood ensures the best particles are assigned with the highest
weights and the worst ones are assigned with small weight (Fig. 8 (b)).

3.8 Target model update
The problem for object tracking with color occurs when the region around the object is
cluttered, illumination is change and the object appearance is change. In this way, a color
feature based tracking does not provide reliable performance because it fails to fully model
the target. To overcome this problem, the adaptive target model is applied based on the best
match of the color model. However, this is a sensitive task. The target models are only
updated when two conditions hold: (i) the target is not occluded and (ii) the likelihood of

Object Tracking Based on Color Information Employing Particle Filter Algorithm

81

the estimated target’s state suggests that the estimate is sufficiently reliable. In this case, they
are updated using an adaptive filter

 1(1)k q k q estq q pα α−= − + (20)

where αq ∈[0, 1] is the learning rate that contribute to the updated histogram and pest is
histogram of the estimated state, respectively. In order to determine when the estimate is
reliable, the likelihood of the current estimate is computed, πest. The appearance is then
updated when this value is higher than an indicator of the expected likelihood value and is
calculated following an adaptive rule

 1(1)k u k u estλ α λ α π−= − + (21)

here λk is expected likelihood, αu ∈[0, 1] is the learning rate and πest is estimated likelihood,
respectively. This value indicates that the object has to be well matched to the model
histogram before the update is applied.
Fig. 9 and Fig. 10 show the comparison of object tracking with and without target model
update. As shown in Fig. 9, non-adaptive model fail to detect the object properly. However,
the adaptive model can track the object successfully. It is because, using the adaptive model,
the target model is always updated based on the best match of the color model. Moreover,
as shown in Fig. 10, using adaptive model the scale of object appearance is getting adapted
correctly compare to without using adaptive model.

#210 #220 #230

Without target model update

#210 #220 #230

With target model update

Fig. 9. Object tracking with and without model update

Object Tracking

82

#1 #30 #50

Without target model update

#1 #30 #50

With target model update
Fig. 10. Object tracking with model update shows the scale adaptation

4. Experimental results
In order to evaluate our proposed method, we have done the experiments using a video
camera to track the objects in outdoor environment. The experiments are implemented on
Pentium 4 with 2.54 [GHz] CPU and 512 [MB] RAM. The resolution of each frame is 320x240
[pixels] image. The color histogram is calculated in RGB space with 8 8 8× × [bins]. The
experimental results are shown in Fig. 11 – Fig. 18. In each experimental result, the white
dots represent the samples’ distribution, the red dot represents the mean state of the
samples’ position and the red rectangle represents the bounding box of the tracked object
used in calculation of the histogram distribution.
We did the experiments in three conditions. In the first condition, we tracked the moving
object when the initial position of the object is unknown as shown in Fig. 12. In the second
condition, we tracked the moving object when the initial position of the object is known as
shown in Fig. 13 and Fig. 15. In the third condition, we tracked the moving object based on
the appearance condition including the handling of object occlusion by another object as
shown in Fig. 16 and Fig. 17.

4.1 Object tracking with unknown initial position
In this experiment, we track the moving object when the initial position of the object is
unknown. We set the initial samples to be uniform distribution in x0∼U(1,320) and
y0∼U(1,240). The experimental result is shown in Fig. 12. As presented in the figure, initially,
the samples are distributed uniformly around the scene (frame #1). The object moves from
left-hand to right-hand side and begin to appear on frame #5, however, the object starts to
be tracked on frame #10. In this experiment, the variance of the samples’ position
distribution is utilized to judge whether the object has been tracked. We consider the object

Object Tracking Based on Color Information Employing Particle Filter Algorithm

83

has been tracked by the system when the variance is below 10 and it occurs on the frame
#10. Fig. 11 shows the variance positions of the samples. We can understand from that
figure that at the beginning the variance is very high but after some while it decreases below
the threshold. At that time, we determine that object is being tracked.

0
5

10
15
20
25
30
35
40
45
50

0 20 40 60 80

frame number

va
ria

nc
e

of
 s

am
pl

es

Fig. 11. Variance of samples’ position

#1 #5 #10

#25 #50 #65

Fig. 12. Object tracking with unknown initial position

Object Tracking

82

#1 #30 #50

Without target model update

#1 #30 #50

With target model update
Fig. 10. Object tracking with model update shows the scale adaptation

4. Experimental results
In order to evaluate our proposed method, we have done the experiments using a video
camera to track the objects in outdoor environment. The experiments are implemented on
Pentium 4 with 2.54 [GHz] CPU and 512 [MB] RAM. The resolution of each frame is 320x240
[pixels] image. The color histogram is calculated in RGB space with 8 8 8× × [bins]. The
experimental results are shown in Fig. 11 – Fig. 18. In each experimental result, the white
dots represent the samples’ distribution, the red dot represents the mean state of the
samples’ position and the red rectangle represents the bounding box of the tracked object
used in calculation of the histogram distribution.
We did the experiments in three conditions. In the first condition, we tracked the moving
object when the initial position of the object is unknown as shown in Fig. 12. In the second
condition, we tracked the moving object when the initial position of the object is known as
shown in Fig. 13 and Fig. 15. In the third condition, we tracked the moving object based on
the appearance condition including the handling of object occlusion by another object as
shown in Fig. 16 and Fig. 17.

4.1 Object tracking with unknown initial position
In this experiment, we track the moving object when the initial position of the object is
unknown. We set the initial samples to be uniform distribution in x0∼U(1,320) and
y0∼U(1,240). The experimental result is shown in Fig. 12. As presented in the figure, initially,
the samples are distributed uniformly around the scene (frame #1). The object moves from
left-hand to right-hand side and begin to appear on frame #5, however, the object starts to
be tracked on frame #10. In this experiment, the variance of the samples’ position
distribution is utilized to judge whether the object has been tracked. We consider the object

Object Tracking Based on Color Information Employing Particle Filter Algorithm

83

has been tracked by the system when the variance is below 10 and it occurs on the frame
#10. Fig. 11 shows the variance positions of the samples. We can understand from that
figure that at the beginning the variance is very high but after some while it decreases below
the threshold. At that time, we determine that object is being tracked.

0
5

10
15
20
25
30
35
40
45
50

0 20 40 60 80

frame number

va
ria

nc
e

of
 s

am
pl

es

Fig. 11. Variance of samples’ position

#1 #5 #10

#25 #50 #65

Fig. 12. Object tracking with unknown initial position

Object Tracking

84

#1 #10 #20

#30 #40 #50

Fig. 13. Object tracking with known initial position

4.2 Object tracking with known initial position
In this experiment, the initial position of the moving object is known. We set the initial
samples around the initial position of the object i.e. x0∼N(22,3) and y0∼N(145,3). The tracking
result is presented in Fig. 13. Initially, the samples are distributed around initial position of
the object. The object moves from left-hand to right-hand side and is tracked from the initial
position (frame #1). We successfully tracked the object from the initial position until the end
of the scene. Fig. 14 shows the comparison between true and estimated position of the
tracked object. From that figure, we obtained the RMSE (root mean square error) of the
estimated position is about 2.06 for X position and 2.18 for Y position.
Another result is shown in Fig. 15. Here, we set the initial samples around the initial
position of the object i.e. x0∼N(65,3) and y0∼N(106,3). The obejct is tracked from the initial
position. We can observe that the scale of object bounding box is adaptively updated. It is
because, in this experiment, the target model is always updated using the adaptive model
based on the best match of the color model.

100

110

120

130

140

150

160

170

180

0 50 100 150 200 250 300

X

Y

True trajectory
estimation trajectory

Fig. 14. True vs. estimate position

Object Tracking Based on Color Information Employing Particle Filter Algorithm

85

#1 #10 #25

#35 #45 #53

Fig. 15. Another result of object tracking with known initial position

#1 #6 #9

#15 #20 #30

Fig. 16. Object tracking based on appearance condition

4.3 Object tracking with appearance condition and in the presence of occlusion
In this experiment, the samples initialize around the expected region where the target is
most likely to appear, such as image borders and edge of the occluded object (tree). The
experimental results are shown in Fig.16.
As presented in Fig. 16, the initial samples are placed at the position where the object is most
likely to appear, such as image borders and edge of the occluded object (tree) as shown in
frame #1. The object is started to appear on frame #6, but as the appearance condition is not
fulfilled, the object is still judged not to be tracked. However, when the appearance
condition is fulfilled (frame #9), the object starts to be tracked.

Object Tracking

84

#1 #10 #20

#30 #40 #50

Fig. 13. Object tracking with known initial position

4.2 Object tracking with known initial position
In this experiment, the initial position of the moving object is known. We set the initial
samples around the initial position of the object i.e. x0∼N(22,3) and y0∼N(145,3). The tracking
result is presented in Fig. 13. Initially, the samples are distributed around initial position of
the object. The object moves from left-hand to right-hand side and is tracked from the initial
position (frame #1). We successfully tracked the object from the initial position until the end
of the scene. Fig. 14 shows the comparison between true and estimated position of the
tracked object. From that figure, we obtained the RMSE (root mean square error) of the
estimated position is about 2.06 for X position and 2.18 for Y position.
Another result is shown in Fig. 15. Here, we set the initial samples around the initial
position of the object i.e. x0∼N(65,3) and y0∼N(106,3). The obejct is tracked from the initial
position. We can observe that the scale of object bounding box is adaptively updated. It is
because, in this experiment, the target model is always updated using the adaptive model
based on the best match of the color model.

100

110

120

130

140

150

160

170

180

0 50 100 150 200 250 300

X

Y

True trajectory
estimation trajectory

Fig. 14. True vs. estimate position

Object Tracking Based on Color Information Employing Particle Filter Algorithm

85

#1 #10 #25

#35 #45 #53

Fig. 15. Another result of object tracking with known initial position

#1 #6 #9

#15 #20 #30

Fig. 16. Object tracking based on appearance condition

4.3 Object tracking with appearance condition and in the presence of occlusion
In this experiment, the samples initialize around the expected region where the target is
most likely to appear, such as image borders and edge of the occluded object (tree). The
experimental results are shown in Fig.16.
As presented in Fig. 16, the initial samples are placed at the position where the object is most
likely to appear, such as image borders and edge of the occluded object (tree) as shown in
frame #1. The object is started to appear on frame #6, but as the appearance condition is not
fulfilled, the object is still judged not to be tracked. However, when the appearance
condition is fulfilled (frame #9), the object starts to be tracked.

Object Tracking

86

Fig. 17 shows the object occlusion handling based on appearance condition. As shown in
that figure, we successfully track the object although the part and full occlusion occur. When
occlusion occurs, the final mean state estimate is still calculated and the object is still tracked
(frame #45 – frame #50). On that condition, the update and resample step are not performed
due to no object color information can be represented the object. The samples are just
propagated based on the system model and the target model is not updated until no more
occlusion is detected. The object appears behind the tree (frame #55), due to the fulfilling of
appearance condition, then the sample update and resample is performed again and the
object continues to be tracked until the end of the frame.
The number of samples that fulfill the appearance condition is shown in Fig. 18. As
presented in that figure, the object is detected and started to be tracked when the number of
appearance more than 10. That means the object is detected and tracked when the number
of samples fulfilling the appearance condition is more than 10 samples. We can see from the
figure, the number of appearance is started by zero at the initial position. After some while,
the number of appearance increases due to appearance of the object. Using the threshold 10
samples appearance, the object starts to be tracked on frame #9 (Fig. 16). The object
continues to be tracked until it is occluded by tree (Fig. 17 frame #45 – frame #50). At this
time, the number of samples at appearance condition is dropped to zero. At frame #55, the
number of samples at appearance condition is higher again. It shows that the object is no
more occluded by tree.

#40 #45 #48

#50 #53 #55

Fig. 17. Object tracking in the presence of oclusion

5. Conclusions
This paper presented a method to track the moving object employing particle filter in
conjunction with color information in both known and unknown initial position of the object
and in the presence of occlusion with static object. The robust color likelihood is used to
evaluate samples properly associated to the target which present high appearance

Object Tracking Based on Color Information Employing Particle Filter Algorithm

87

0

20

40

60

80

100

0 20 40 60 80 100 120
frame number

nu
m

be
r o

f a
pp

ea
ra

nc
e

Fig. 18. Number of samples fulfilling the appearance condition

variability. We rely on Bhattacharya coefficient between target and sample histogram to
perform this task. Model updating is carried to update the object in the presence of
appearance change. The problem occlusion by static object can be tackled by prediction
based on the dynamical model and appearance condition. The performance of the tracking
algorithm was evaluated by the experiments. The experimental results show the algorithm
can successfully track the single moving object in the presence of occlusion with static object
and both known and unknown initial position of the object
Furthermore, the performance of the objects tracking can be improved in several ways such
as adding the background modeling information in the calculation of likelihood, detection
of appearing objects and extend the method to track multiple object in the presence of object
occlusion and so on. Taking them into consideration could lead to some improvement.
These are remaining for our future works.

6. References
Stauffer, C. & Grimson, W. (1999). Adaptive background mixture models for real-time

tracking, Proceeding of IEEE Conf. on Computer Vision and Pattern Recognition, pp.
246-252.

LIU, Y.; Haizho, A. & Xu Guangyou.(2001). Moving object detection and tracking based on
background subtraction, Proceeding of Society of Photo-Optical Instrument Engineers
(SPIE), Vol. 4554, pp. 62-66.

McIvor, A. M. (2000). Background subtraction techniques, Proceeding of Image and Vision
Computing, 6 pages.

Heikkila, J. & Silven, O. (1999). A real-time system for monitoring of cyclists and
pedestrians, Proceeding of Second IEEE Workshop on Visual Surveillance, pp 74–81.

Lipton, A; Fujiyoshi, H. & Patil, R.(1998) .Moving target classification and tracking from
real-time video, Proceeding of IEEE Workshop Applications of Computer Vision, pp. 8-
14.

Collins, R. ; Lipton, A.; Kanade, T.; Fujiyoshi, H.; Duggins, D.; Tsin, Y.; Tolliver, D.;
Enomoto, N. & Hasegawa. (2000). System for video surveillance and monitoring,
Technical Report CMU-RI-TR-00-12, Robotics Institute, Carnegie Mellon University.

Object Tracking

86

Fig. 17 shows the object occlusion handling based on appearance condition. As shown in
that figure, we successfully track the object although the part and full occlusion occur. When
occlusion occurs, the final mean state estimate is still calculated and the object is still tracked
(frame #45 – frame #50). On that condition, the update and resample step are not performed
due to no object color information can be represented the object. The samples are just
propagated based on the system model and the target model is not updated until no more
occlusion is detected. The object appears behind the tree (frame #55), due to the fulfilling of
appearance condition, then the sample update and resample is performed again and the
object continues to be tracked until the end of the frame.
The number of samples that fulfill the appearance condition is shown in Fig. 18. As
presented in that figure, the object is detected and started to be tracked when the number of
appearance more than 10. That means the object is detected and tracked when the number
of samples fulfilling the appearance condition is more than 10 samples. We can see from the
figure, the number of appearance is started by zero at the initial position. After some while,
the number of appearance increases due to appearance of the object. Using the threshold 10
samples appearance, the object starts to be tracked on frame #9 (Fig. 16). The object
continues to be tracked until it is occluded by tree (Fig. 17 frame #45 – frame #50). At this
time, the number of samples at appearance condition is dropped to zero. At frame #55, the
number of samples at appearance condition is higher again. It shows that the object is no
more occluded by tree.

#40 #45 #48

#50 #53 #55

Fig. 17. Object tracking in the presence of oclusion

5. Conclusions
This paper presented a method to track the moving object employing particle filter in
conjunction with color information in both known and unknown initial position of the object
and in the presence of occlusion with static object. The robust color likelihood is used to
evaluate samples properly associated to the target which present high appearance

Object Tracking Based on Color Information Employing Particle Filter Algorithm

87

0

20

40

60

80

100

0 20 40 60 80 100 120
frame number

nu
m

be
r o

f a
pp

ea
ra

nc
e

Fig. 18. Number of samples fulfilling the appearance condition

variability. We rely on Bhattacharya coefficient between target and sample histogram to
perform this task. Model updating is carried to update the object in the presence of
appearance change. The problem occlusion by static object can be tackled by prediction
based on the dynamical model and appearance condition. The performance of the tracking
algorithm was evaluated by the experiments. The experimental results show the algorithm
can successfully track the single moving object in the presence of occlusion with static object
and both known and unknown initial position of the object
Furthermore, the performance of the objects tracking can be improved in several ways such
as adding the background modeling information in the calculation of likelihood, detection
of appearing objects and extend the method to track multiple object in the presence of object
occlusion and so on. Taking them into consideration could lead to some improvement.
These are remaining for our future works.

6. References
Stauffer, C. & Grimson, W. (1999). Adaptive background mixture models for real-time

tracking, Proceeding of IEEE Conf. on Computer Vision and Pattern Recognition, pp.
246-252.

LIU, Y.; Haizho, A. & Xu Guangyou.(2001). Moving object detection and tracking based on
background subtraction, Proceeding of Society of Photo-Optical Instrument Engineers
(SPIE), Vol. 4554, pp. 62-66.

McIvor, A. M. (2000). Background subtraction techniques, Proceeding of Image and Vision
Computing, 6 pages.

Heikkila, J. & Silven, O. (1999). A real-time system for monitoring of cyclists and
pedestrians, Proceeding of Second IEEE Workshop on Visual Surveillance, pp 74–81.

Lipton, A; Fujiyoshi, H. & Patil, R.(1998) .Moving target classification and tracking from
real-time video, Proceeding of IEEE Workshop Applications of Computer Vision, pp. 8-
14.

Collins, R. ; Lipton, A.; Kanade, T.; Fujiyoshi, H.; Duggins, D.; Tsin, Y.; Tolliver, D.;
Enomoto, N. & Hasegawa. (2000). System for video surveillance and monitoring,
Technical Report CMU-RI-TR-00-12, Robotics Institute, Carnegie Mellon University.

Object Tracking

88

Meyer, D.; Denzler, J. & Niemann, H. (1998). Model based extraction of articulated objects in
image sequences for gait analysis, Proceeding of IEEE Int. Conf. Image Proccessing, pp.
78-81.

Phung, S.; Chai, D. & Bouzerdoum, A. (2003). Adaptive skin segmentation in color images,
Proceeding of IEEE International Conference on Acoustics, Speech and Signal Processing,
Vol. 3, pp. 353-356.

Cho, K. M.; Jang, J. H. & Hong, K. S. (2001). Adaptive skin-color filter, Pattern Recognition,
pp. 1067-1073.

Broida, T. & Chellappa, R. (1986). Estimation of object motion parameters from noisy
images, IEEE Transactions on Pattern Analysis and Machine Intelligence, Vol. 8, No. 1,
pp. 90–99.

Ristic, B.; Arulampalam, S. & Gordon, N. (2004). Beyond the Kalman filter: Particle filters for
tracking applications, Artech House.

Isard, M. & Blake, A. (1998). CONDENSATION –Conditional Density Propagation for
Visual Tracking, Intl. Journal of Computer Vision, Vol. 29, No. 1, pp. 5-28.

Kitagawa G. (1996). Monte Carlo filter and smoother for non-Gaussian nonlinear state space
models, Journal of Comput. and Graph. Stat., Vol. 5, No. 1, pp. 1–25.

Gordon, N.; Salmon, D. & Smith, A. (1993). Novel approach to nonlinear/non-Gaussian
Bayesian state estimation, IEE Proc. on Radar and Signal Processing, Vol. 140, No. 2,
pp. 107-113.

Tanizaki, H. (1987). Non-Gaussian state-space modeling of non-stationary time series,
Journal of American Statistic Association, Vol. 82, pp. 1032–1063.

King, O. & Forsyth, D. (2000). How does Condensation behave with a finite number of
samples, Proc. of 6th European Conference on Computer Vision, pp. 695-709.

Nummiaro, K.; Koller, E. & Gool, L. (2002). An adaptive color-based particle filter, Image and
Vision Computing, Vol. 25, No. 1, pp. 99–110.

Perez, P.; Hue, C. & Vermaak, J. (2002). Color-based probabilistic tracking, Proc. of the 7th
European Conference on Computer Vision, 661–675.

Comaniciu, D.; Ramesh, V. & Meer, P. (2000). Real-time tracking of non-rigid objects using
mean shift, Proc. of the IEEE Conf. on Comp. Vision and Pattern Recog., pp. 142–149.

Comaniciu, D.; Ramesh, V. & Meer, P. (2003), Kernel-based object tracking, IEEE Trans. on
Pattern Analysis and Machine Intelligence, Vol. 25, No.5, pp. 564-577.

Deutscher, J. & Reid, I. (2005). Articulated body motion capture by stochastic search, Intl.
Journal of Computer Vision, Vol. 61, No. 2, pp. 185-205.

Simon, D. (2006). Optimal State Estimation, Jhon Wiey & Sons, Inc, Publication.
Freeman, W. & Adelson, E. (1991). The Design and Use of Steerable Filters, IEEE Transactions

on Pattern Analysis and Machine Intelligence, Vol. 13, No. 9, pp. 891-906.

Irene Y.H. Gu and Zulfiqar H. Khan
Dept. of Signals and Systems, Chalmers Univ. of Technology, Gothenburg, 41296

Sweden

1. Introduction

This chapter describes a novel hybrid visual object tracking scheme that jointly exploits local

point features, global appearance and shape of target objects. The hybrid tracker contains two

baseline candidate trackers and is formulated under an optical criterion. One baseline tracker,

a spatiotemporal SIFT-RANSAC, extracts local feature points separatively for the foreground

and background regions. Another baseline tracker, an enhanced anisotropic mean shift, tracks

a dynamic object whose global appearance is most similar to the online learned distribution

of reference object. An essential building block in the hybrid tracker is the online learning of

dynamic object, where we employ a new approach for learning the appearance distribution,

and another new approach for updating the two feature point sets. To demonstrate the

applications of such online learning approaches to other trackers, we show an example in

which online learning is added to an existing JMSPF (joint mean shift and particle filter

tracking) tracking scheme, resulting in improved tracking robustness. The proposed hybrid

tracker has been tested on numerous videos with a range of complex scenarios where

target objects may experience long-term partial occlusions/intersections from other objects,

large deformations, abrupt motion changes, dynamic cluttered background/occluding objects

having similar color distributions to the target object. Tracking results have shown to be

very robust in terms of tracking drift, accuracy and tightness of tracked bounding boxes.

The performance of the hybrid tracker is evaluated qualitatively and quantitatively, with

comparisons to four existing stat-of-the-art tracking schemes. Limitations of the tracker are

also discussed.

2. Related work

2.1 Visual tracking
Visual object tracking has drawn increasing interest in recent years, partly due to its

wide variety of applications, e.g., video surveillance in airports, schools, banks, hospitals,

traffic, freight, and e-health cares. Tracking is often the first step towards a further

analysis about the activities, behaviors, interactions and relationships between objects of

interest. Many object tracking methods have been proposed and developed, e.g., state-space

based tracking using Kalman filters and particle filters (Welch & Bishop,97; Rosales &

Online Learning and Robust Visual Tracking
using Local Features and Global Appearances

of Video Objects

5

Object Tracking

88

Meyer, D.; Denzler, J. & Niemann, H. (1998). Model based extraction of articulated objects in
image sequences for gait analysis, Proceeding of IEEE Int. Conf. Image Proccessing, pp.
78-81.

Phung, S.; Chai, D. & Bouzerdoum, A. (2003). Adaptive skin segmentation in color images,
Proceeding of IEEE International Conference on Acoustics, Speech and Signal Processing,
Vol. 3, pp. 353-356.

Cho, K. M.; Jang, J. H. & Hong, K. S. (2001). Adaptive skin-color filter, Pattern Recognition,
pp. 1067-1073.

Broida, T. & Chellappa, R. (1986). Estimation of object motion parameters from noisy
images, IEEE Transactions on Pattern Analysis and Machine Intelligence, Vol. 8, No. 1,
pp. 90–99.

Ristic, B.; Arulampalam, S. & Gordon, N. (2004). Beyond the Kalman filter: Particle filters for
tracking applications, Artech House.

Isard, M. & Blake, A. (1998). CONDENSATION –Conditional Density Propagation for
Visual Tracking, Intl. Journal of Computer Vision, Vol. 29, No. 1, pp. 5-28.

Kitagawa G. (1996). Monte Carlo filter and smoother for non-Gaussian nonlinear state space
models, Journal of Comput. and Graph. Stat., Vol. 5, No. 1, pp. 1–25.

Gordon, N.; Salmon, D. & Smith, A. (1993). Novel approach to nonlinear/non-Gaussian
Bayesian state estimation, IEE Proc. on Radar and Signal Processing, Vol. 140, No. 2,
pp. 107-113.

Tanizaki, H. (1987). Non-Gaussian state-space modeling of non-stationary time series,
Journal of American Statistic Association, Vol. 82, pp. 1032–1063.

King, O. & Forsyth, D. (2000). How does Condensation behave with a finite number of
samples, Proc. of 6th European Conference on Computer Vision, pp. 695-709.

Nummiaro, K.; Koller, E. & Gool, L. (2002). An adaptive color-based particle filter, Image and
Vision Computing, Vol. 25, No. 1, pp. 99–110.

Perez, P.; Hue, C. & Vermaak, J. (2002). Color-based probabilistic tracking, Proc. of the 7th
European Conference on Computer Vision, 661–675.

Comaniciu, D.; Ramesh, V. & Meer, P. (2000). Real-time tracking of non-rigid objects using
mean shift, Proc. of the IEEE Conf. on Comp. Vision and Pattern Recog., pp. 142–149.

Comaniciu, D.; Ramesh, V. & Meer, P. (2003), Kernel-based object tracking, IEEE Trans. on
Pattern Analysis and Machine Intelligence, Vol. 25, No.5, pp. 564-577.

Deutscher, J. & Reid, I. (2005). Articulated body motion capture by stochastic search, Intl.
Journal of Computer Vision, Vol. 61, No. 2, pp. 185-205.

Simon, D. (2006). Optimal State Estimation, Jhon Wiey & Sons, Inc, Publication.
Freeman, W. & Adelson, E. (1991). The Design and Use of Steerable Filters, IEEE Transactions

on Pattern Analysis and Machine Intelligence, Vol. 13, No. 9, pp. 891-906.

Irene Y.H. Gu and Zulfiqar H. Khan
Dept. of Signals and Systems, Chalmers Univ. of Technology, Gothenburg, 41296

Sweden

1. Introduction

This chapter describes a novel hybrid visual object tracking scheme that jointly exploits local

point features, global appearance and shape of target objects. The hybrid tracker contains two

baseline candidate trackers and is formulated under an optical criterion. One baseline tracker,

a spatiotemporal SIFT-RANSAC, extracts local feature points separatively for the foreground

and background regions. Another baseline tracker, an enhanced anisotropic mean shift, tracks

a dynamic object whose global appearance is most similar to the online learned distribution

of reference object. An essential building block in the hybrid tracker is the online learning of

dynamic object, where we employ a new approach for learning the appearance distribution,

and another new approach for updating the two feature point sets. To demonstrate the

applications of such online learning approaches to other trackers, we show an example in

which online learning is added to an existing JMSPF (joint mean shift and particle filter

tracking) tracking scheme, resulting in improved tracking robustness. The proposed hybrid

tracker has been tested on numerous videos with a range of complex scenarios where

target objects may experience long-term partial occlusions/intersections from other objects,

large deformations, abrupt motion changes, dynamic cluttered background/occluding objects

having similar color distributions to the target object. Tracking results have shown to be

very robust in terms of tracking drift, accuracy and tightness of tracked bounding boxes.

The performance of the hybrid tracker is evaluated qualitatively and quantitatively, with

comparisons to four existing stat-of-the-art tracking schemes. Limitations of the tracker are

also discussed.

2. Related work

2.1 Visual tracking
Visual object tracking has drawn increasing interest in recent years, partly due to its

wide variety of applications, e.g., video surveillance in airports, schools, banks, hospitals,

traffic, freight, and e-health cares. Tracking is often the first step towards a further

analysis about the activities, behaviors, interactions and relationships between objects of

interest. Many object tracking methods have been proposed and developed, e.g., state-space

based tracking using Kalman filters and particle filters (Welch & Bishop,97; Rosales &

Online Learning and Robust Visual Tracking
using Local Features and Global Appearances

of Video Objects

5

Sclaroff,99; Gordon et al.,01; Gordon,00; Wang et al.,08; Vermaak et al.,03; Okuma et

al.,04), joint state-space representation and association (Bar-Shalom & Fortmann,98), multiple

hypothesis tracking (MHT) (Reid,79), anisotropic mean shift tracking (Comaniciu et al.,03;

Khan & Gu,10), optical flow-based tracking (Shi & Tomasi,94), and point feature-based

tracking (Strandmark & Gu,09; Haner & Gu,10), among many others. An overview on visual

tracking methods can be found in (Yilmaz et al.,06; Sankaranarayanan et al.,08).

In the state space-based tracking approach using Kalman Filters (KFs), the assumptions

of Gaussian noise and linear models of state vector are made. A state vector typically

includes different attributes of object, e.g. object appearance and shape, and/or other object

features. G.Welch (Welch & Bishop,97) applies KFs to track user’s poses in man-computer

interactive graphics. R.Roosales (Rosales & Sclaroff,99) uses Extended Kalman Filters (EKFs)

to estimate the 3D object trajectory from 2D motions. (Gordon et al.,01) uses Unscented

Kalman Filters (UKFs) that enforces Gaussian distributions while keeps nonlinearity by using

discrete samples to estimate the mean and covariance in posterior densities. Under Multiple

Hypothesis Tests (MHTs), (Reid,79) uses an iterative process to track multiple objects and

finds the best matching between the real object descriptors. Gordon et al. (Gordon,00) uses

particle filers (PFs) to track 1D (one dimensional) signals. Tracking is achieved by estimating

the probability density of state vector from synthetic nonlinear and non-Gaussian distributed

1D signals, and is formulated under the Bayesian framework by estimating the posterior

probability using the rule of propagation of state density over time. Extension of PFs to

visual tracking is not straight forwards, since the size of state vector for tracking a visual

object is significantly larger than that of a 1D target. This requires a large number of particles

and consequently a heavy computation, which often hampers the practical use of PFs. To

overcome this, (Wang et al.,08) proposes to use Rao-Blackwellized PFs that marginalizes out

the linear part of the state vector (the appearance), while the nonlinear shape and pose parts

are then estimated by PFs, while (Khan et al.,09; Deguchi et al.,04) propose to embed the object

appearance in the likelihood of PFs so that the size of the state vector can be kept small.

Visual tracking from mean shift has drawn much interest lately, partly due to its

computational efficiency and relatively robust performance. Different from the conventional

mean shift for nonlinear image smoothing or segmentation that seeks the local modes in

the kernel estimate of pdf, mean shift tracking is an efficient and fast implementation of

the similarity metric, the Bhattacharyya coefficient, that maximizes the similarity between

the reference and a candidate object regions. It is worth mentioning that other similarity

metrics, e.g., Kullback-Leibler divergence (Khalid et al.,05), or SSD measure (Hager et al.,04),

can also be used as well. The main drawback of mean shift is that tracking may drift

away or fail especially when the background clutter and the object of interest have similar

color distributions, or when long term partial occlusions of objects, pose changes of large

objects, and fast change of object motion occur. Following the pioneering work of mean

shift tracking by (Comaniciu et al.,03), various attempts are made to address these issues.

(Collins,03) extends the mean shift by introducing a normalizing factor to the bandwidth

matrix to capture target variations in scales (Bretzner & Lindeberg,98). It performs extensive

search within a range of ellipses and is computationally expensive. (Yilmaz,07) proposes

tracking by using a level-set asymmetric kernel. It is performed in image coordinates by

including the scale and orientation as additional dimensions and simultaneously estimating

all unknowns. (Sumin & Xianwu,08) proposes to simultaneously track the position, scale

and orientation of bounding box by using anisotropic mean shift, where the bandwidth

matrix is used to compute the scale and orientation. (Zivkovic & Krose,04) proposes

90 Object Tracking

an EM-like algorithm that tracks a deformable object whose bounding box contains five

degrees of freedom. It simultaneously estimates the center and the bandwidth matrix of

kernel. (Maggio & Cavallaro,05; Xu et al.,05; Parameswaran et al.,07; Khan et al.,09) include

the spatial information in the color histogram by dividing an ellipse shape bounding box

into multiple parts to make the tracker more robust. (Maggio & Cavallaro,05; Khan et al.,09)

further integrate the multi-part mean shift into the particle filter framework using overlapped,

or non-overlapped regions where improved results are reported. The tracking performance

is rather robust, however, tracking drift or tracking failure may still occur in some

occasions, especially when a cluttered background or an intersecting object has similar color

distributions to the target object.

While global appearance distributions are widely used in visual object tracking, local

point features of object are often used as an alternative. One of the main advantages

of using point features is their resilience to partial object occlusions. When one part of

an object is occluded, point features from the non-occluded part can still be used for the

tracking. Local appearance-based tracking usually involves detecting and characterizing

the appearance of object by local features from points, lines or curves, establishing

correspondences between detected feature points (lines, or curves) across frames and

estimating the parameters of the associated transformation between two feature point (line,

or curve) sets. Several strategies are used to select feature points that are invariant to

affine or projective transformations. (Harris & Stephens,88) proposes to extract rotational

and translational-invariant features by combining corner and edge detectors based on local

autocorrelation functions. (Shi & Tomasi,94) proposes to threshold the minimum eigen values

of image gradient matrices at candidate feature points and use them as the appropriate feature

points for tracking. These methods generate rotational and translational invariant point

features however are variant to affine or projective transformations. (Lowe,04) proposes a

Scale-Invariant Feature Transform (SIFT) that is invariant to rotations, translations, scalings,

affine transformations, and partially invariant to illuminations. Each point feature is described

by a feature descriptor or a vector, formed from the gradient directions and the magnitudes

around the point. (Bay et al.,06) proposes to use Speeded Up Robust Features (SURF),

having similar performance as SIFT (Bauer et al.,07) but faster. Due to the robustness of SIFT

features, various attempts (Skrypnyk & Lowe,04; Mondragon wt al.,07; Li et al,06; Xu et al,08;

Battiato et al.,07) have been made to integrate SIFT in the tracking. (Skrypnyk & Lowe,04)

proposes to use SIFT features to track camera poses and to register virtual objects in online

videos. Since feature points are often sensitive to noise, the consensus of a group of

points can be exploited. (Mondragon wt al.,07) uses SIFT and RANSAC to detect points

of interest and reject outliers when estimating projective transformations, where videos are

captured by an online UAV camera. (Li et al,06) handles object occlusions by matching local

invariant features learned online rather than predicted from motions, since the local point

features from a non-occluded object part can still be used for the tracking. (Xu et al,08)

proposes vehicle tracking by using SIFT features extracted from detected moving object

bounding boxes, followed by frame-by-frame matching. (Battiato et al.,07) proposes a video

stabilizer by inferring the inter-frame motion through SIFT feature tracking in consecutive

frames. These methods are efficient and invariant to scaling, rotation and moderate lighting

changes, however require the appearance of object containing sufficient textures. Several

attempts are made to solve this problem by combining SIFT features with other tracking

methods. To extend the visual tracking from 2 images to a video sequence, efficient methods

for establishing spatiotemporal local feature point correspondences through video frames

91
Online Learning and Robust Visual Tracking using
Local Features and Global Appearances of Video Objects

Sclaroff,99; Gordon et al.,01; Gordon,00; Wang et al.,08; Vermaak et al.,03; Okuma et

al.,04), joint state-space representation and association (Bar-Shalom & Fortmann,98), multiple

hypothesis tracking (MHT) (Reid,79), anisotropic mean shift tracking (Comaniciu et al.,03;

Khan & Gu,10), optical flow-based tracking (Shi & Tomasi,94), and point feature-based

tracking (Strandmark & Gu,09; Haner & Gu,10), among many others. An overview on visual

tracking methods can be found in (Yilmaz et al.,06; Sankaranarayanan et al.,08).

In the state space-based tracking approach using Kalman Filters (KFs), the assumptions

of Gaussian noise and linear models of state vector are made. A state vector typically

includes different attributes of object, e.g. object appearance and shape, and/or other object

features. G.Welch (Welch & Bishop,97) applies KFs to track user’s poses in man-computer

interactive graphics. R.Roosales (Rosales & Sclaroff,99) uses Extended Kalman Filters (EKFs)

to estimate the 3D object trajectory from 2D motions. (Gordon et al.,01) uses Unscented

Kalman Filters (UKFs) that enforces Gaussian distributions while keeps nonlinearity by using

discrete samples to estimate the mean and covariance in posterior densities. Under Multiple

Hypothesis Tests (MHTs), (Reid,79) uses an iterative process to track multiple objects and

finds the best matching between the real object descriptors. Gordon et al. (Gordon,00) uses

particle filers (PFs) to track 1D (one dimensional) signals. Tracking is achieved by estimating

the probability density of state vector from synthetic nonlinear and non-Gaussian distributed

1D signals, and is formulated under the Bayesian framework by estimating the posterior

probability using the rule of propagation of state density over time. Extension of PFs to

visual tracking is not straight forwards, since the size of state vector for tracking a visual

object is significantly larger than that of a 1D target. This requires a large number of particles

and consequently a heavy computation, which often hampers the practical use of PFs. To

overcome this, (Wang et al.,08) proposes to use Rao-Blackwellized PFs that marginalizes out

the linear part of the state vector (the appearance), while the nonlinear shape and pose parts

are then estimated by PFs, while (Khan et al.,09; Deguchi et al.,04) propose to embed the object

appearance in the likelihood of PFs so that the size of the state vector can be kept small.

Visual tracking from mean shift has drawn much interest lately, partly due to its

computational efficiency and relatively robust performance. Different from the conventional

mean shift for nonlinear image smoothing or segmentation that seeks the local modes in

the kernel estimate of pdf, mean shift tracking is an efficient and fast implementation of

the similarity metric, the Bhattacharyya coefficient, that maximizes the similarity between

the reference and a candidate object regions. It is worth mentioning that other similarity

metrics, e.g., Kullback-Leibler divergence (Khalid et al.,05), or SSD measure (Hager et al.,04),

can also be used as well. The main drawback of mean shift is that tracking may drift

away or fail especially when the background clutter and the object of interest have similar

color distributions, or when long term partial occlusions of objects, pose changes of large

objects, and fast change of object motion occur. Following the pioneering work of mean

shift tracking by (Comaniciu et al.,03), various attempts are made to address these issues.

(Collins,03) extends the mean shift by introducing a normalizing factor to the bandwidth

matrix to capture target variations in scales (Bretzner & Lindeberg,98). It performs extensive

search within a range of ellipses and is computationally expensive. (Yilmaz,07) proposes

tracking by using a level-set asymmetric kernel. It is performed in image coordinates by

including the scale and orientation as additional dimensions and simultaneously estimating

all unknowns. (Sumin & Xianwu,08) proposes to simultaneously track the position, scale

and orientation of bounding box by using anisotropic mean shift, where the bandwidth

matrix is used to compute the scale and orientation. (Zivkovic & Krose,04) proposes

90 Object Tracking

an EM-like algorithm that tracks a deformable object whose bounding box contains five

degrees of freedom. It simultaneously estimates the center and the bandwidth matrix of

kernel. (Maggio & Cavallaro,05; Xu et al.,05; Parameswaran et al.,07; Khan et al.,09) include

the spatial information in the color histogram by dividing an ellipse shape bounding box

into multiple parts to make the tracker more robust. (Maggio & Cavallaro,05; Khan et al.,09)

further integrate the multi-part mean shift into the particle filter framework using overlapped,

or non-overlapped regions where improved results are reported. The tracking performance

is rather robust, however, tracking drift or tracking failure may still occur in some

occasions, especially when a cluttered background or an intersecting object has similar color

distributions to the target object.

While global appearance distributions are widely used in visual object tracking, local

point features of object are often used as an alternative. One of the main advantages

of using point features is their resilience to partial object occlusions. When one part of

an object is occluded, point features from the non-occluded part can still be used for the

tracking. Local appearance-based tracking usually involves detecting and characterizing

the appearance of object by local features from points, lines or curves, establishing

correspondences between detected feature points (lines, or curves) across frames and

estimating the parameters of the associated transformation between two feature point (line,

or curve) sets. Several strategies are used to select feature points that are invariant to

affine or projective transformations. (Harris & Stephens,88) proposes to extract rotational

and translational-invariant features by combining corner and edge detectors based on local

autocorrelation functions. (Shi & Tomasi,94) proposes to threshold the minimum eigen values

of image gradient matrices at candidate feature points and use them as the appropriate feature

points for tracking. These methods generate rotational and translational invariant point

features however are variant to affine or projective transformations. (Lowe,04) proposes a

Scale-Invariant Feature Transform (SIFT) that is invariant to rotations, translations, scalings,

affine transformations, and partially invariant to illuminations. Each point feature is described

by a feature descriptor or a vector, formed from the gradient directions and the magnitudes

around the point. (Bay et al.,06) proposes to use Speeded Up Robust Features (SURF),

having similar performance as SIFT (Bauer et al.,07) but faster. Due to the robustness of SIFT

features, various attempts (Skrypnyk & Lowe,04; Mondragon wt al.,07; Li et al,06; Xu et al,08;

Battiato et al.,07) have been made to integrate SIFT in the tracking. (Skrypnyk & Lowe,04)

proposes to use SIFT features to track camera poses and to register virtual objects in online

videos. Since feature points are often sensitive to noise, the consensus of a group of

points can be exploited. (Mondragon wt al.,07) uses SIFT and RANSAC to detect points

of interest and reject outliers when estimating projective transformations, where videos are

captured by an online UAV camera. (Li et al,06) handles object occlusions by matching local

invariant features learned online rather than predicted from motions, since the local point

features from a non-occluded object part can still be used for the tracking. (Xu et al,08)

proposes vehicle tracking by using SIFT features extracted from detected moving object

bounding boxes, followed by frame-by-frame matching. (Battiato et al.,07) proposes a video

stabilizer by inferring the inter-frame motion through SIFT feature tracking in consecutive

frames. These methods are efficient and invariant to scaling, rotation and moderate lighting

changes, however require the appearance of object containing sufficient textures. Several

attempts are made to solve this problem by combining SIFT features with other tracking

methods. To extend the visual tracking from 2 images to a video sequence, efficient methods

for establishing spatiotemporal local feature point correspondences through video frames

91
Online Learning and Robust Visual Tracking using
Local Features and Global Appearances of Video Objects

are required. (Strandmark & Gu,09) proposes multiple motion models and feature point

maintenance by employing an online updating process that may add new feature points,

prune the existing points, or temporally freeze the updating, and (Haner & Gu,10) further

improves the method by introducing two local feature point sets, one for the foreground and

another for the background, where the background point set is used to provide priors on

possible occlusions.

While both the global and local object models offer some attractive properties for visual

tracking, hybrid models that combines these two types of models may offer better results

as they can complement each other. (Zhou et al.,08) proposes an expectation-maximization

algorithm that integrates SIFT features along with the color-based appearance in the mean

shift, resulting in a better tracking performance even if one of the two methods becomes

unreliable. (Wu et al.,08) enhances the performance of particle filters in cluttered background

by taking into account the SIFT features in particle weights along with the color similarity

measure. (Zhao et al.,08) uses feature point analysis to recover affine parameters, from

which relative scales between two frames are estimated. It reconstructs target positions and

relative scales using the affine parameters estimated from the SIFT feature correspondences.

(Chen et al.,08) uses a similar method to handle the occlusion and scaling under the mean

shift framework. While local feature points are promising for tracking, several problems

remain, e.g. lacking of SIFT point features in smooth objects; lacking of sufficient feature

point correspondences through video frames especially when the object contains pose

changes, intersections and large deformations. (Khan & Gu,10) proposes to combine an

enhanced anisotropic mean shift and a spatiotemporal SIFT-RANSAC procedure into a

unified framework by using an optimal criterion, where the mean shift seeks global object

appearance similarity and the spatiotemporal SIFT-RANSAC finds local feature points in the

foreground/background. To further enhance the robustness against the tracking drift, the

scheme also includes online learning of global appearances and local features.

2.2 Online learning
Online learning is another key issue that significantly impacts the performance of visual

tracking. Most tracking methods require some kind of reference object models. Offline

training videos from the same target object usually are not available, since video scenes from

specific objects (e.g. suspicious actions of a particular person) captured by a surveillance

camera are rarely repeatable. For tracking dynamic target objects, online learning of reference

object appearances and/or shape is thus crucial. This is not trivial as the change of object can

be caused by the object itself (e.g. change in colors, poses or shape), but also by partial/full

occlusions from an occluding object or cluttered background, in addition to other changes

such as lighting and illuminations. Online learning of dynamic objects requires that only the

change associated with the target object itself is learned/updated into the model, while the

remaining change from the background or other objects does not trigger the learning process.

This is challenging since we have neither priors on the background/occluding objects, nor

the information on when and where an occlusion may occur. Techniques for online learning

vary depending on the attributes of object (e.g. global/local appearance, shape, motion) to

be learned. Further, it depends on the technique used in the visual tracking as tracking and

online learning are usually incorporated under a same framework. Many online learning

techniques have been proposed. For example, (Lim et al.,04; Yang et al.,04; Wang et al.,07)

perform incremental learning of 1D/2D PCA that describes the object appearance in a visual

tracker. (Wang et al.,08) proposes an online Grassmann manifold learning scheme where

92 Object Tracking

dynamic object appearances are constrained on a smooth curved surface rather than a linear

subspace. For online learning of pdf associated with each individual pixels, (Li et al.,08)

suggests a color co-occurrence based method to learn the time-varying principal pdf of

individual pixels that contain motions. For online learning of object appearance pdf used

in the mean shift, (Khan & Gu,10) propose a robust online learning method in the regular

frame intervals based on the criterion that determines whether the change is likely caused

by the target object. For online learning of local features, (Strandmark & Gu,09) proposes

multiple motion models and dynamic maintenance of the feature point set by using SIFT

and RANSAC allowing online adding and pruning the feature points, or freezing the

updating. (Haner & Gu,10; Khan & Gu,10) further improve the method by applying dynamic

maintenance of separate foreground and background feature point sets under different

criteria, where the background set is used to provide priors on occlusions to the foreground

object.

2.3 Chapter outline
This chapter is focused on describing a hybrid visual tracking scheme, where both the local

features and the global dynamic object appearance and shape are exploited. A key component

of the tracker, the online learning, is employed to two baseline trackers: one is used to

maintain the dynamic local feature point sets, and the other is used to learn the global

appearance of dynamic object. The hybrid tracking scheme combines local point features and

global appearances. It includes: (a) A local point feature-based candidate tracking method by

employing consensus point feature correspondences separately in the foreground set and in

the surrounding background set through using a spatiotemporal SIFT-RANSAC procedure.

They are accompanied with an online maintenance process that can add, prune, freeze and

re-initialize feature points in the sets; (b) A global appearance similarity-based candidate

tracking method by using an enhanced anisotropic mean shift whose initial kernel is partially

guided by the local point features, and is equipped with the online learning of reference object

distribution; (c) The final hybrid tracker by combining the candidate trackers in (a) and (b)

through using an optimal criterion.

We then show that the online learning strategy for the candidate tracker in (b) can be directly

applied to the online learning of another state-of-the-art visual tracking method, the joint

anisotropic mean shift and particle filter (JMSPF) tracker, which may result in further tracking

robustness in terms of tracking drift, tightness of tracked bounding boxes, and tracking

failures in complex scenarios.

Experimental results on visual tracking of video objects with a range of difficult scenarios

are included. Several distance metrics are used to quantitatively evaluate the robustness of

the tracker, to evaluate the performance of the tracker with and without the online learning.

Further performance evaluations are made qualitatively with three existing trackers, and

quantitatively with two existing trackers. The computations are also compared for the hybrid

tracker and three existing trackers.

The remainder of the chapter is organized as follows. The general structure and overall

description of the hybrid tracker are given in Section 3. In Section 4, we describe two

baseline trackers, one is based on using local feature point correspondences extracted from

the spatiotemporal SIFT-RANSAC, and the other is based on the global object appearance

similarities. In particular, Section 5 emphasizes two online learning techniques employed

to these two baseline trackers. In Section 6, the hybrid tracker is formulated from the two

baseline trackers under an optimal criterion. Section 7 describes a direct application of the

93
Online Learning and Robust Visual Tracking using
Local Features and Global Appearances of Video Objects

are required. (Strandmark & Gu,09) proposes multiple motion models and feature point

maintenance by employing an online updating process that may add new feature points,

prune the existing points, or temporally freeze the updating, and (Haner & Gu,10) further

improves the method by introducing two local feature point sets, one for the foreground and

another for the background, where the background point set is used to provide priors on

possible occlusions.

While both the global and local object models offer some attractive properties for visual

tracking, hybrid models that combines these two types of models may offer better results

as they can complement each other. (Zhou et al.,08) proposes an expectation-maximization

algorithm that integrates SIFT features along with the color-based appearance in the mean

shift, resulting in a better tracking performance even if one of the two methods becomes

unreliable. (Wu et al.,08) enhances the performance of particle filters in cluttered background

by taking into account the SIFT features in particle weights along with the color similarity

measure. (Zhao et al.,08) uses feature point analysis to recover affine parameters, from

which relative scales between two frames are estimated. It reconstructs target positions and

relative scales using the affine parameters estimated from the SIFT feature correspondences.

(Chen et al.,08) uses a similar method to handle the occlusion and scaling under the mean

shift framework. While local feature points are promising for tracking, several problems

remain, e.g. lacking of SIFT point features in smooth objects; lacking of sufficient feature

point correspondences through video frames especially when the object contains pose

changes, intersections and large deformations. (Khan & Gu,10) proposes to combine an

enhanced anisotropic mean shift and a spatiotemporal SIFT-RANSAC procedure into a

unified framework by using an optimal criterion, where the mean shift seeks global object

appearance similarity and the spatiotemporal SIFT-RANSAC finds local feature points in the

foreground/background. To further enhance the robustness against the tracking drift, the

scheme also includes online learning of global appearances and local features.

2.2 Online learning
Online learning is another key issue that significantly impacts the performance of visual

tracking. Most tracking methods require some kind of reference object models. Offline

training videos from the same target object usually are not available, since video scenes from

specific objects (e.g. suspicious actions of a particular person) captured by a surveillance

camera are rarely repeatable. For tracking dynamic target objects, online learning of reference

object appearances and/or shape is thus crucial. This is not trivial as the change of object can

be caused by the object itself (e.g. change in colors, poses or shape), but also by partial/full

occlusions from an occluding object or cluttered background, in addition to other changes

such as lighting and illuminations. Online learning of dynamic objects requires that only the

change associated with the target object itself is learned/updated into the model, while the

remaining change from the background or other objects does not trigger the learning process.

This is challenging since we have neither priors on the background/occluding objects, nor

the information on when and where an occlusion may occur. Techniques for online learning

vary depending on the attributes of object (e.g. global/local appearance, shape, motion) to

be learned. Further, it depends on the technique used in the visual tracking as tracking and

online learning are usually incorporated under a same framework. Many online learning

techniques have been proposed. For example, (Lim et al.,04; Yang et al.,04; Wang et al.,07)

perform incremental learning of 1D/2D PCA that describes the object appearance in a visual

tracker. (Wang et al.,08) proposes an online Grassmann manifold learning scheme where

92 Object Tracking

dynamic object appearances are constrained on a smooth curved surface rather than a linear

subspace. For online learning of pdf associated with each individual pixels, (Li et al.,08)

suggests a color co-occurrence based method to learn the time-varying principal pdf of

individual pixels that contain motions. For online learning of object appearance pdf used

in the mean shift, (Khan & Gu,10) propose a robust online learning method in the regular

frame intervals based on the criterion that determines whether the change is likely caused

by the target object. For online learning of local features, (Strandmark & Gu,09) proposes

multiple motion models and dynamic maintenance of the feature point set by using SIFT

and RANSAC allowing online adding and pruning the feature points, or freezing the

updating. (Haner & Gu,10; Khan & Gu,10) further improve the method by applying dynamic

maintenance of separate foreground and background feature point sets under different

criteria, where the background set is used to provide priors on occlusions to the foreground

object.

2.3 Chapter outline
This chapter is focused on describing a hybrid visual tracking scheme, where both the local

features and the global dynamic object appearance and shape are exploited. A key component

of the tracker, the online learning, is employed to two baseline trackers: one is used to

maintain the dynamic local feature point sets, and the other is used to learn the global

appearance of dynamic object. The hybrid tracking scheme combines local point features and

global appearances. It includes: (a) A local point feature-based candidate tracking method by

employing consensus point feature correspondences separately in the foreground set and in

the surrounding background set through using a spatiotemporal SIFT-RANSAC procedure.

They are accompanied with an online maintenance process that can add, prune, freeze and

re-initialize feature points in the sets; (b) A global appearance similarity-based candidate

tracking method by using an enhanced anisotropic mean shift whose initial kernel is partially

guided by the local point features, and is equipped with the online learning of reference object

distribution; (c) The final hybrid tracker by combining the candidate trackers in (a) and (b)

through using an optimal criterion.

We then show that the online learning strategy for the candidate tracker in (b) can be directly

applied to the online learning of another state-of-the-art visual tracking method, the joint

anisotropic mean shift and particle filter (JMSPF) tracker, which may result in further tracking

robustness in terms of tracking drift, tightness of tracked bounding boxes, and tracking

failures in complex scenarios.

Experimental results on visual tracking of video objects with a range of difficult scenarios

are included. Several distance metrics are used to quantitatively evaluate the robustness of

the tracker, to evaluate the performance of the tracker with and without the online learning.

Further performance evaluations are made qualitatively with three existing trackers, and

quantitatively with two existing trackers. The computations are also compared for the hybrid

tracker and three existing trackers.

The remainder of the chapter is organized as follows. The general structure and overall

description of the hybrid tracker are given in Section 3. In Section 4, we describe two

baseline trackers, one is based on using local feature point correspondences extracted from

the spatiotemporal SIFT-RANSAC, and the other is based on the global object appearance

similarities. In particular, Section 5 emphasizes two online learning techniques employed

to these two baseline trackers. In Section 6, the hybrid tracker is formulated from the two

baseline trackers under an optimal criterion. Section 7 describes a direct application of the

93
Online Learning and Robust Visual Tracking using
Local Features and Global Appearances of Video Objects

online learning method to an existing joint anisotropic mean shift and particle filter (JMSPF)

tracker. Section 8 is contributed to the experimental results and performance evaluations

aimed at demonstrating the feasibility and robustness of the hybrid tracker. The advantages

and limitations are also discussed. Finally, conclusions are given in Section 9.

3. A Robust hybrid visual tracking scheme: The big picture

This section describes the general structure and gives the big picture of the hybrid tracking

scheme, where multiple issues are treated in a unified tracking framework. The tracking

scheme, as shown in the block diagram of Fig.1, can be split into several basic modules. This

is briefly summarized as follows:

Fig. 1. Block diagram of the hybrid tracking scheme, where V(i)
t , i = 1, 2, is the parameter

vector for the tracked candidate region R(i)
t from the baseline tracker-A and tracker-B at time

t, It is the tth video frame, R(obj)
t−1

is the finally tracked object region from the hybrid tracker at

t − 1, and qt is the estimated appearance pdf for the reference object at t.

(a) Two online learning methods. Two novel methods for online learning of dynamic object are

described: one is used for online maintenance of local point feature sets, and the other is

for dynamically updating the object appearance distribution. This is aimed at keeping

a time-varying reference object description thereby the tracking drift can be reduced.

The method is based on seeking the best frame, indicated by reliable tracking without

occlusions, in each fixed-size frame interval. This is achieved by using a criterion function

in the interval.

(b) Baseline tracker-A: exploit local point features for object tracking. The baseline tracker-A in

the hybrid tracker is realized by exploiting the local point features. Local point features

are useful when partial occlusions occur: point features in non-occluded part remain

unchanged, despite the global object appearance may experience significant changes. To

make the point feature-based tracking robust, two sets of point features are utilized: one

for the foreground region and the other for the background region (see Fig.1). The idea

of using the background point features is to provide priors to the foreground on possible

occlusions. The local point features are collected by introducing a novel spatiotemporal

SIFT-RANSAC procedure followed by an online maintenance process that may add,

prune and update feature points in both sets. To prevent drift and error propagation, a

re-initialization process is also used.

94 Object Tracking

(c) Baseline tracker-B: exploit global object appearance for object tracking. The baseline tracker-B in

the hybrid tracker is realized by exploiting global object appearance distributions. To find

the most similar appearance object compared with the reference (e.g., previously tracked

object, or a reference object), anisotropic mean shift with a 5-degree parametric bounding

box is used. An enhancement is added to the conventional mean shift by allowing its

kernel partially guided by the local point features. This may reduce the tracking drift as the

mean shift is sensitive to cluttered background/occluding objects having the similar color

distribution to the foreground object. Online learning of object appearance distributions

and re-initialization introduced for achieving more tracking robustness and preventing

propagation of tracking drift across frames.

(d) The hybrid tracking scheme: formulated from an optimal criterion. The above local point

feature-based tracker and global object appearance-based tracker in (b) and (c) are

exploited jointly to form the hybrid tracker. It is formulated by using an optimal criterion

that parallel employs the two baseline trackers and one from their weighted combination.

4. Baseline tracking methods using local features and global appearances

This section describes two baseline tracking methods, one is based on using local point

features of object (Tracker-A in Fig.1), and the other is based on using global object appearance

(Tracker-B in Fig.1).

4.1 Local feature point-based visual tracking
This section describes one baseline tracking method, tracker-A, in the hybrid tracker shown

in Fig.1. It is a local feature point-based tracking method realized by a spatiotemporal
SIFT-RANSAC procedure. It generates separate local feature point sets in the foreground and

the surrounding background respectively.

The use of local point features is motivated by problems encountered in tracking partially

occluded objects, or objects having similar color distributions to the cluttered background. In

these scenarios, local salient point features from non-occluded object parts, or salient point

features of object may be exploited for tracking. For matching local point features, two well

known computer vision techniques are employed: SIFT (scale-invariant feature transform)

(Lowe,04) and RANSAC (random sample consensus) (Fischler & Bolles,81) are used. The

former is used to match scale-invariant feature points, while the latter is used to remove

outliers. A brief review of SIFT and RANSAC is given in Section 4.1.1. For introducing more

robustness to partial occlusions/itersections, two sets of feature points, one to the foreground

area and another to the background area surrounding the candidate object, are employed. The

background set is used to provide priors on occlusions. This is described in Section 4.1.2.

It is worth emphasizing that one of the key steps to realize the spatiotemporal SIFT-RANSAC

is the online maintenance of point feature sets (in Section 5.1), while the conventional SIFT

and RANSAC usually cannot be applied successfully to a long video sequence (e.g. of a few

hundreds of frames).

4.1.1 Review: SIFT and RANSAC for feature point correspondences
Two standard computer vision techniques, SIFT (Lowe,04) and RANSAC

(Fischler & Bolles,81), are briefly reviewed in this subsection.

In SIFT, each point feature is described by a feature vector

fi = {pi, Φi} = {pi, σi, ϕi, ghi
} (1)

95
Online Learning and Robust Visual Tracking using
Local Features and Global Appearances of Video Objects

online learning method to an existing joint anisotropic mean shift and particle filter (JMSPF)

tracker. Section 8 is contributed to the experimental results and performance evaluations

aimed at demonstrating the feasibility and robustness of the hybrid tracker. The advantages

and limitations are also discussed. Finally, conclusions are given in Section 9.

3. A Robust hybrid visual tracking scheme: The big picture

This section describes the general structure and gives the big picture of the hybrid tracking

scheme, where multiple issues are treated in a unified tracking framework. The tracking

scheme, as shown in the block diagram of Fig.1, can be split into several basic modules. This

is briefly summarized as follows:

Fig. 1. Block diagram of the hybrid tracking scheme, where V(i)
t , i = 1, 2, is the parameter

vector for the tracked candidate region R(i)
t from the baseline tracker-A and tracker-B at time

t, It is the tth video frame, R(obj)
t−1

is the finally tracked object region from the hybrid tracker at

t − 1, and qt is the estimated appearance pdf for the reference object at t.

(a) Two online learning methods. Two novel methods for online learning of dynamic object are

described: one is used for online maintenance of local point feature sets, and the other is

for dynamically updating the object appearance distribution. This is aimed at keeping

a time-varying reference object description thereby the tracking drift can be reduced.

The method is based on seeking the best frame, indicated by reliable tracking without

occlusions, in each fixed-size frame interval. This is achieved by using a criterion function

in the interval.

(b) Baseline tracker-A: exploit local point features for object tracking. The baseline tracker-A in

the hybrid tracker is realized by exploiting the local point features. Local point features

are useful when partial occlusions occur: point features in non-occluded part remain

unchanged, despite the global object appearance may experience significant changes. To

make the point feature-based tracking robust, two sets of point features are utilized: one

for the foreground region and the other for the background region (see Fig.1). The idea

of using the background point features is to provide priors to the foreground on possible

occlusions. The local point features are collected by introducing a novel spatiotemporal

SIFT-RANSAC procedure followed by an online maintenance process that may add,

prune and update feature points in both sets. To prevent drift and error propagation, a

re-initialization process is also used.

94 Object Tracking

(c) Baseline tracker-B: exploit global object appearance for object tracking. The baseline tracker-B in

the hybrid tracker is realized by exploiting global object appearance distributions. To find

the most similar appearance object compared with the reference (e.g., previously tracked

object, or a reference object), anisotropic mean shift with a 5-degree parametric bounding

box is used. An enhancement is added to the conventional mean shift by allowing its

kernel partially guided by the local point features. This may reduce the tracking drift as the

mean shift is sensitive to cluttered background/occluding objects having the similar color

distribution to the foreground object. Online learning of object appearance distributions

and re-initialization introduced for achieving more tracking robustness and preventing

propagation of tracking drift across frames.

(d) The hybrid tracking scheme: formulated from an optimal criterion. The above local point

feature-based tracker and global object appearance-based tracker in (b) and (c) are

exploited jointly to form the hybrid tracker. It is formulated by using an optimal criterion

that parallel employs the two baseline trackers and one from their weighted combination.

4. Baseline tracking methods using local features and global appearances

This section describes two baseline tracking methods, one is based on using local point

features of object (Tracker-A in Fig.1), and the other is based on using global object appearance

(Tracker-B in Fig.1).

4.1 Local feature point-based visual tracking
This section describes one baseline tracking method, tracker-A, in the hybrid tracker shown

in Fig.1. It is a local feature point-based tracking method realized by a spatiotemporal
SIFT-RANSAC procedure. It generates separate local feature point sets in the foreground and

the surrounding background respectively.

The use of local point features is motivated by problems encountered in tracking partially

occluded objects, or objects having similar color distributions to the cluttered background. In

these scenarios, local salient point features from non-occluded object parts, or salient point

features of object may be exploited for tracking. For matching local point features, two well

known computer vision techniques are employed: SIFT (scale-invariant feature transform)

(Lowe,04) and RANSAC (random sample consensus) (Fischler & Bolles,81) are used. The

former is used to match scale-invariant feature points, while the latter is used to remove

outliers. A brief review of SIFT and RANSAC is given in Section 4.1.1. For introducing more

robustness to partial occlusions/itersections, two sets of feature points, one to the foreground

area and another to the background area surrounding the candidate object, are employed. The

background set is used to provide priors on occlusions. This is described in Section 4.1.2.

It is worth emphasizing that one of the key steps to realize the spatiotemporal SIFT-RANSAC

is the online maintenance of point feature sets (in Section 5.1), while the conventional SIFT

and RANSAC usually cannot be applied successfully to a long video sequence (e.g. of a few

hundreds of frames).

4.1.1 Review: SIFT and RANSAC for feature point correspondences
Two standard computer vision techniques, SIFT (Lowe,04) and RANSAC

(Fischler & Bolles,81), are briefly reviewed in this subsection.

In SIFT, each point feature is described by a feature vector

fi = {pi, Φi} = {pi, σi, ϕi, ghi
} (1)

95
Online Learning and Robust Visual Tracking using
Local Features and Global Appearances of Video Objects

where pi = (xi, yi) is the 2D position of SIFT keypoint, Φi = {σi, ϕi, ghi
} is the parameter

vector associated with the point pi, including the scale σi, the main gradient orientation

within the region ϕi and the gradient orientation histogram ghi
(128 bins). First, the original

image I is convolved with a bandpass filter h to obtain a filtered image Io, Io(x, y, σ) =
I(x, y) ∗ h(x, y, kσ), where h(·) is formulated from the difference of two scale Gaussian shape

kernels h(x, y, σ) = g(x, y, kσ)− g(x, y, σ). The location of each feature point (SIFT keypoint)

pi , i = 1, 2, · · · , at scale σi corresponds to the thresholded local extrema of Io(x, y, σ). For each

SIFT keypoint, one or more principal orientations θi are assigned by computing the gradient

magnitudes and orientations in a region surrounding the point and finding 80% peaks in

the orientation histogram. The orientation histogram is computed from a 16 × 16 region

centered at pi, partitioned into 4 × 4 blocks each consisting of 8 bins. This results in a total

of 8 × 16 = 128 bins. The value of orientation histogram hi is obtained by summing up the

gradient magnitudes in each bin.

Matching SIFT keypoints in two image frames is obtained by searching the Euclidian distance

from the nearest neighboring keypoints with the minimum errors. Under a pre-defined

motion model, corresponding SIFT keypoints across two image frames are related. For

example, if two images are related to an affine transform T(β, θ, (dx , dy)), then each pair of

SIFT keypoints is related by

�
x̃
ỹ

�
= β

�
cos θ − sin θ
sin θ cos θ

� �
x
y

�
+

�
dx
dy

�
. Equivalently, given two

sets of keypoints {(x1, y1), · · · , (xn, yn)} and {(x̃1, ỹ1), · · · , (x̃n , ỹn)} from two images (e.g. at

(t − 1) and t), these pairs of keypoints are related by,

⎡
⎢⎢⎢⎢⎢⎣

x̃1

ỹ1

.

.

.

x̃n
ỹn

⎤
⎥⎥⎥⎥⎥⎦
=

⎡
⎢⎢⎢⎢⎢⎣

x1 −y1 1 0

y1 x1 0 1

.

.

.
.
.
.

.

.

.
.
.
.

xn −yn 1 0

yn xn 0 1

⎤
⎥⎥⎥⎥⎥⎦

⎡
⎢⎢⎣

β cos θ
β sin θ

dx
dy

⎤
⎥⎥⎦ (2)

The LS (Least Squares) estimation, argmin(β,θ,dx,dy, index order of pj)|| p̃i − T(pj)||2, can be applied

to find the best matching and to estimate the transform parameters β, θ, (dx , dy) at t. To make

the matching robust against the false positive, the best matching is selected if the ratio of

distances between the first and the second nearest neighbors is less than some empirically

determined threshold (Lowe,04).

Since individual SIFT keypoints are prune to noise, RANSAC is often followed to remove

outliers through finding the maximum number of consensus correspondences and estimating

the associated motion parameters. RANSAC contains a two-step iterative process: estimate

the parameters of the transform T(t)
i and find a subset of inlier points from the SIFT keypoints

that yield the maximum consensus under T(t)
i∗ . In the first step, it differentiates outliers from

inliers by selecting a minimum number of points needed to estimate the transform from the

SIFT keypoint set at random. Then, the parameters of the transform are estimated. Using the

estimated parameters, more points are picked up if they fit to this specific transform. This

is done by calculating the error for each pair of keypoints and comparing with a small error

threshold Te. The iteration is repeated until the error is smaller than Te, or the total number of

iterations exceeds a pre-specified maximum iteration number Titer. In the second step, it fits

the transform to the inliers while ignoring the outliers. The transform parameters are updated

using all collected inlier points. A tracked candidate object region is then obtained by drawing

a tight rectangle surrounding the consensus points.

96 Object Tracking

4.1.2 Using separate feature point sets for the foreground and the background
In the local point feature-based baseline tracker, two separate feature point sets, PF and PB,

are formed. PF = {pF
i | pF

i : ΦF
i } is for the foreground, and PB = {pB

i | pB
i : ΦB

i } is

for the background surrounding the candidate object. In each set, the parameter vector ΦF
i

(or, ΦB
i) is defined according to (1). The basic idea of using background points is to extract

priors on possible object occlusions or intersections. As shown in Fig.2, a searching area (the

black rectangle) is defined to be larger than that of an object region (the red rectangle). The

region between the searching area and the candidate object region (between the black and red

rectangles) is defined as the background region.

Fig. 2. Foreground and background regions. Red rectangle: a foreground object region; Black

rectangle: the searching area. The area between the black and red rectangles is the

background region. Red ellipse: maybe used for some objects (e.g humans) to minimize the

possible inclusion of background points around the four corner areas.

Both sets of feature points are extracted by combining SIFT and RANSAC as described above,

however, in different regions. Finally, a tight outer rectangular boundary surrounding the

selected foreground feature points in PF is drawn as the tracked candidate object region

R(1) for the baseline tracker-A. The region is specified by the parameter vector V(1) =

[pc = (y(1)
1,c , y(1)

2,c), w(1), h(1), θ(1),PF]T including the 2D center position, the width, height and

orientation of the region, and the foreground sets. To reduce the possibility of including

background points in the foreground set, the shape of object type may be considered. For

example, for human objects, foreground feature points may be constrained within an ellipse

that is tightly made within the rectangular region R(1).

It is worth mentioning that the resulting region R(1) is also provided to the baseline tracker-B

(in Section 4.2) to enhance the conventional mean shift which is prune to the background or

occluding objects with similar color distributions.

4.1.3 Re-initialization
A re-initialization process may be applied to some frames to prevent tracking drift or tracking

error propagation across frames. The idea can be analogue to using I (intra-coding) frames

in video compression. A re-initialization process for the baseline tracker-A is used to avoid

severe errors, e.g., when the number of corresponding points is very small, unreliable tracking

or accumulated tracking drift may occur. In the former case, a small number of feature points

may lead to an ill-posed RANSAC estimation, or a unreliably tracked region. In the latter

case, accumulated drift may eventually lead to tracking failure. A tracker thus needs to be

re-initialized to avoid the propagation of errors across frames.

Based on the observation that a bounding box does not change significantly in consecutive

frames, and that a very low similarity value between the tracked region and the reference

object indicates a possible tracking drift or unstable tracking, the frames for re-initialization

97
Online Learning and Robust Visual Tracking using
Local Features and Global Appearances of Video Objects

where pi = (xi, yi) is the 2D position of SIFT keypoint, Φi = {σi, ϕi, ghi
} is the parameter

vector associated with the point pi, including the scale σi, the main gradient orientation

within the region ϕi and the gradient orientation histogram ghi
(128 bins). First, the original

image I is convolved with a bandpass filter h to obtain a filtered image Io, Io(x, y, σ) =
I(x, y) ∗ h(x, y, kσ), where h(·) is formulated from the difference of two scale Gaussian shape

kernels h(x, y, σ) = g(x, y, kσ)− g(x, y, σ). The location of each feature point (SIFT keypoint)

pi , i = 1, 2, · · · , at scale σi corresponds to the thresholded local extrema of Io(x, y, σ). For each

SIFT keypoint, one or more principal orientations θi are assigned by computing the gradient

magnitudes and orientations in a region surrounding the point and finding 80% peaks in

the orientation histogram. The orientation histogram is computed from a 16 × 16 region

centered at pi, partitioned into 4 × 4 blocks each consisting of 8 bins. This results in a total

of 8 × 16 = 128 bins. The value of orientation histogram hi is obtained by summing up the

gradient magnitudes in each bin.

Matching SIFT keypoints in two image frames is obtained by searching the Euclidian distance

from the nearest neighboring keypoints with the minimum errors. Under a pre-defined

motion model, corresponding SIFT keypoints across two image frames are related. For

example, if two images are related to an affine transform T(β, θ, (dx , dy)), then each pair of

SIFT keypoints is related by

�
x̃
ỹ

�
= β

�
cos θ − sin θ
sin θ cos θ

� �
x
y

�
+

�
dx
dy

�
. Equivalently, given two

sets of keypoints {(x1, y1), · · · , (xn, yn)} and {(x̃1, ỹ1), · · · , (x̃n , ỹn)} from two images (e.g. at

(t − 1) and t), these pairs of keypoints are related by,

⎡
⎢⎢⎢⎢⎢⎣

x̃1

ỹ1

.

.

.

x̃n
ỹn

⎤
⎥⎥⎥⎥⎥⎦
=

⎡
⎢⎢⎢⎢⎢⎣

x1 −y1 1 0

y1 x1 0 1

.

.

.
.
.
.

.

.

.
.
.
.

xn −yn 1 0

yn xn 0 1

⎤
⎥⎥⎥⎥⎥⎦

⎡
⎢⎢⎣

β cos θ
β sin θ

dx
dy

⎤
⎥⎥⎦ (2)

The LS (Least Squares) estimation, argmin(β,θ,dx,dy, index order of pj)|| p̃i − T(pj)||2, can be applied

to find the best matching and to estimate the transform parameters β, θ, (dx , dy) at t. To make

the matching robust against the false positive, the best matching is selected if the ratio of

distances between the first and the second nearest neighbors is less than some empirically

determined threshold (Lowe,04).

Since individual SIFT keypoints are prune to noise, RANSAC is often followed to remove

outliers through finding the maximum number of consensus correspondences and estimating

the associated motion parameters. RANSAC contains a two-step iterative process: estimate

the parameters of the transform T(t)
i and find a subset of inlier points from the SIFT keypoints

that yield the maximum consensus under T(t)
i∗ . In the first step, it differentiates outliers from

inliers by selecting a minimum number of points needed to estimate the transform from the

SIFT keypoint set at random. Then, the parameters of the transform are estimated. Using the

estimated parameters, more points are picked up if they fit to this specific transform. This

is done by calculating the error for each pair of keypoints and comparing with a small error

threshold Te. The iteration is repeated until the error is smaller than Te, or the total number of

iterations exceeds a pre-specified maximum iteration number Titer. In the second step, it fits

the transform to the inliers while ignoring the outliers. The transform parameters are updated

using all collected inlier points. A tracked candidate object region is then obtained by drawing

a tight rectangle surrounding the consensus points.

96 Object Tracking

4.1.2 Using separate feature point sets for the foreground and the background
In the local point feature-based baseline tracker, two separate feature point sets, PF and PB,

are formed. PF = {pF
i | pF

i : ΦF
i } is for the foreground, and PB = {pB

i | pB
i : ΦB

i } is

for the background surrounding the candidate object. In each set, the parameter vector ΦF
i

(or, ΦB
i) is defined according to (1). The basic idea of using background points is to extract

priors on possible object occlusions or intersections. As shown in Fig.2, a searching area (the

black rectangle) is defined to be larger than that of an object region (the red rectangle). The

region between the searching area and the candidate object region (between the black and red

rectangles) is defined as the background region.

Fig. 2. Foreground and background regions. Red rectangle: a foreground object region; Black

rectangle: the searching area. The area between the black and red rectangles is the

background region. Red ellipse: maybe used for some objects (e.g humans) to minimize the

possible inclusion of background points around the four corner areas.

Both sets of feature points are extracted by combining SIFT and RANSAC as described above,

however, in different regions. Finally, a tight outer rectangular boundary surrounding the

selected foreground feature points in PF is drawn as the tracked candidate object region

R(1) for the baseline tracker-A. The region is specified by the parameter vector V(1) =

[pc = (y(1)
1,c , y(1)

2,c), w(1), h(1), θ(1),PF]T including the 2D center position, the width, height and

orientation of the region, and the foreground sets. To reduce the possibility of including

background points in the foreground set, the shape of object type may be considered. For

example, for human objects, foreground feature points may be constrained within an ellipse

that is tightly made within the rectangular region R(1).

It is worth mentioning that the resulting region R(1) is also provided to the baseline tracker-B

(in Section 4.2) to enhance the conventional mean shift which is prune to the background or

occluding objects with similar color distributions.

4.1.3 Re-initialization
A re-initialization process may be applied to some frames to prevent tracking drift or tracking

error propagation across frames. The idea can be analogue to using I (intra-coding) frames

in video compression. A re-initialization process for the baseline tracker-A is used to avoid

severe errors, e.g., when the number of corresponding points is very small, unreliable tracking

or accumulated tracking drift may occur. In the former case, a small number of feature points

may lead to an ill-posed RANSAC estimation, or a unreliably tracked region. In the latter

case, accumulated drift may eventually lead to tracking failure. A tracker thus needs to be

re-initialized to avoid the propagation of errors across frames.

Based on the observation that a bounding box does not change significantly in consecutive

frames, and that a very low similarity value between the tracked region and the reference

object indicates a possible tracking drift or unstable tracking, the frames for re-initialization

97
Online Learning and Robust Visual Tracking using
Local Features and Global Appearances of Video Objects

can be selected. Two conditions, the distance of consecutive box shape and the Bhattacharyya

coefficient between the tracked and the reference object regions, are used to determine

whether a re-initialization is applied. That is, if one of the following two conditions is satisfied,

dist(1)t = ∑4
i=1 �x(1)t,i − x(1)t−1,i�2 > T(1)

1
, or ρ

(1)
t < T(1)

2
(3)

then the baseline tracker-A is re-initialized at t by:

R(1)
t ← R(obj)

t−1
, V(1)

t ← V(obj)
t−1

, and ρ̃
(1)
t ← 0 (4)

where R(obj)
t−1

is the tracked bounding box from the final hybrid tracker at (t − 1), and V(obj)
t−1

is

the corresponding parameter vector, ρ̃
(1)
t is the normalized Bhattacharyya coefficient defined

in (21), x(1)t,i and x(1)t−1,i are the four corners of the object bounding box at t and (t − 1) from

the baseline tracker-A, ρ
(1)
t is the Bhattacharyya coefficient for the baseline tracker-A, and T(1)

1

and T(1)
2

are the empirically determined thresholds.

4.2 Global appearance-based visual tracking
This section describes another baseline tracking method, tracker-B, in the hybrid tracker

shown in Fig.1. It is a global object appearance-based tracking method realized by an

enhanced anisotropic mean shift. Based on the observation that mean shift tracking yields

reasonably good tracking results, however, tracking drift may occur when nearby objects or

background clutter have similar color distributions. To tackle the problem, two strategies are

introduced here to the mean shift: The first one is to employ an enhanced anisotropic mean

shift, where the result from the point feature-based tracking (the baseline tracker-A) is used to

partially guild the location of mean shift kernel. The second strategy is to add online learning

of reference object appearance (in Section 5.2), as well as a re-initialization process to prevent

the propagation of tracking drift. This baseline tracker-B results in a tracked candidate object

region R(2) specified by a parameter vector V(2) = [y(2) = (y(2)
1

, y(2)
2

), w(2), h(2), θ(2), h(2)
rgb]

T,

where y(2) = (y(2)
1

, y(2)
2

), w(2), h(2) and θ(2) are the 2D center, width, height and orientation of

R(2), and h(2)
rgb is the color histogram.

4.2.1 Anisotropic mean shift
This subsection briefly reviews the anisotropic mean shift for visual tracking. More details of

mean shift can be found in (Sumin & Xianwu,08; Comaniciu et al.,03).

Let the pdf estimate p(y, Σ) = {pu(y, Σ), u = 1, · · · , m} for a candidate object be the spatial

kernel-weighted color histogram within the bounding box in the image I(y), and the spatial

kernel-weighted color histogram q(xc, Σc) = {qu(xc, Σc), u = 1, · · · , m} for the reference

object within the bounding box in I0(x). The corresponding histogram bins for the candidate

and reference objects are described respectively as follows:

pu(y, Σ) = c

|Σ| 1
2

∑n
j=1 k(ỹj

TΣ−1ỹj)δ[bu(I(yj))− u]

qu(xc, Σc) =
c0

|Σc| 1
2

∑n
j=1 k(x̃j

TΣ−1
c x̃j)δ[bu(I0(xj))− u]

(5)

where ỹj = (yj − y), x̃j = (xj − xc), Σ (or, Σc) is a kernel bandwidth matrix, bu(I(yj)) (or,

bu(I0(xj))) is the index of color histogram bin at the location yj (or, xj) associated with the

98 Object Tracking

candidate (or, reference) object region, yj (or, xj) is summed over all pixels within the bounding

box, c (or, c0) is a constant used for the normalization, m is the total number of bins, k(·) is the

spatial kernel profile, and y (or, xc) is the center of the kernel (or, bounding box).

To measure the similarity between a candidate and the reference object region, the

Bhattacharyya coefficient ρ defined below, is used:

ρ(p, q) =
m

∑
u=1

√
pu(y, Σ)qu (6)

Applying the first-order Taylor series expansion to (6) around (y0, Σ0), (where y0 and Σ0 are

the kernel center and bandwidth in the previous frame) yields ρ ≈ ∑u
1
2

√
qu pu(y0, Σ0) +

c

2|Σ| 1
2

∑j ωjk(ỹT
j Σ−1ỹj), where ωj = ∑u

√
qu

pu(y0,Σ0)
δ[bu(I(yj)) − u]. The kernel center (or,

bounding box center) can be estimated by setting ∇yρ(p, q) = 0. This leads to:

ŷ =
∑n

j=1 g(ỹT
j Σ−1ỹj)ωjxj

∑n
j=1 g(ỹT

j Σ−1ỹj)ωj
(7)

where g(·) = −k
�
(·) is the shadow of the kernel. To estimate Σ̂, a γ-normalized kernel

bandwidth Σ (in (Bretzner & Lindeberg,98)) is applied to ρ, where y in ỹj is substituted

by ŷ that is obtained from (7). The kernel bandwidth matrix is estimated by setting

∇Σ(|Σ|γ/2ρ(p, q)) = 0, yielding,

Σ̂ =
2

1 − γ

∑n
j=1 ωj g(ỹT

j Σ−1ỹj)ỹT
j ỹj

∑n
j=1 ωj k(ỹT

j Σ−1ỹj)
(8)

where γ is empirically determined, and ỹj = (yj − ŷ). The estimation of (7) and (8) are done

alternatively in each iteration. The iteration repeats until the estimated parameters converge,

or a pre-specified maximum number of iterations is reached.

4.2.2 Estimating shape parameters of bounding box
For estimating the parameters of bounding box in the baseline tracker-B, a simple approach

different from (Sumin & Xianwu,08) is employed. The anisotropic mean shift used in the

baseline tracker-B contains a fully tunable affine box with five degrees of freedom, i.e., the

2D central position, width, height and orientation of the box.

Let the orientation of the box be defined as the angle between the long axis of bandwidth

matrix and the horizontal-axis of the coordinate system. Let the height h and width w of the

bounding box be defined as the radii along the long and short axes of an ellipse, as depicted

in Fig.3. Since h, w, and θ are related to the kernel bandwidth matrix Σ by,

Σ = RT(θ)

[
(h/2)2 0

0 (w/2)2

]
R(θ) (9)

where R =

[
cos θ sin θ
− sin θ cos θ

]
, computing these parameters can be efficiently done by applying

eigenvalue decomposition to Σ,

Σ = VΛV−1 (10)

99
Online Learning and Robust Visual Tracking using
Local Features and Global Appearances of Video Objects

can be selected. Two conditions, the distance of consecutive box shape and the Bhattacharyya

coefficient between the tracked and the reference object regions, are used to determine

whether a re-initialization is applied. That is, if one of the following two conditions is satisfied,

dist(1)t = ∑4
i=1 �x(1)t,i − x(1)t−1,i�2 > T(1)

1
, or ρ

(1)
t < T(1)

2
(3)

then the baseline tracker-A is re-initialized at t by:

R(1)
t ← R(obj)

t−1
, V(1)

t ← V(obj)
t−1

, and ρ̃
(1)
t ← 0 (4)

where R(obj)
t−1

is the tracked bounding box from the final hybrid tracker at (t − 1), and V(obj)
t−1

is

the corresponding parameter vector, ρ̃
(1)
t is the normalized Bhattacharyya coefficient defined

in (21), x(1)t,i and x(1)t−1,i are the four corners of the object bounding box at t and (t − 1) from

the baseline tracker-A, ρ
(1)
t is the Bhattacharyya coefficient for the baseline tracker-A, and T(1)

1

and T(1)
2

are the empirically determined thresholds.

4.2 Global appearance-based visual tracking
This section describes another baseline tracking method, tracker-B, in the hybrid tracker

shown in Fig.1. It is a global object appearance-based tracking method realized by an

enhanced anisotropic mean shift. Based on the observation that mean shift tracking yields

reasonably good tracking results, however, tracking drift may occur when nearby objects or

background clutter have similar color distributions. To tackle the problem, two strategies are

introduced here to the mean shift: The first one is to employ an enhanced anisotropic mean

shift, where the result from the point feature-based tracking (the baseline tracker-A) is used to

partially guild the location of mean shift kernel. The second strategy is to add online learning

of reference object appearance (in Section 5.2), as well as a re-initialization process to prevent

the propagation of tracking drift. This baseline tracker-B results in a tracked candidate object

region R(2) specified by a parameter vector V(2) = [y(2) = (y(2)
1

, y(2)
2

), w(2), h(2), θ(2), h(2)
rgb]

T,

where y(2) = (y(2)
1

, y(2)
2

), w(2), h(2) and θ(2) are the 2D center, width, height and orientation of

R(2), and h(2)
rgb is the color histogram.

4.2.1 Anisotropic mean shift
This subsection briefly reviews the anisotropic mean shift for visual tracking. More details of

mean shift can be found in (Sumin & Xianwu,08; Comaniciu et al.,03).

Let the pdf estimate p(y, Σ) = {pu(y, Σ), u = 1, · · · , m} for a candidate object be the spatial

kernel-weighted color histogram within the bounding box in the image I(y), and the spatial

kernel-weighted color histogram q(xc, Σc) = {qu(xc, Σc), u = 1, · · · , m} for the reference

object within the bounding box in I0(x). The corresponding histogram bins for the candidate

and reference objects are described respectively as follows:

pu(y, Σ) = c

|Σ| 1
2

∑n
j=1 k(ỹj

TΣ−1ỹj)δ[bu(I(yj))− u]

qu(xc, Σc) =
c0

|Σc| 1
2

∑n
j=1 k(x̃j

TΣ−1
c x̃j)δ[bu(I0(xj))− u]

(5)

where ỹj = (yj − y), x̃j = (xj − xc), Σ (or, Σc) is a kernel bandwidth matrix, bu(I(yj)) (or,

bu(I0(xj))) is the index of color histogram bin at the location yj (or, xj) associated with the

98 Object Tracking

candidate (or, reference) object region, yj (or, xj) is summed over all pixels within the bounding

box, c (or, c0) is a constant used for the normalization, m is the total number of bins, k(·) is the

spatial kernel profile, and y (or, xc) is the center of the kernel (or, bounding box).

To measure the similarity between a candidate and the reference object region, the

Bhattacharyya coefficient ρ defined below, is used:

ρ(p, q) =
m

∑
u=1

√
pu(y, Σ)qu (6)

Applying the first-order Taylor series expansion to (6) around (y0, Σ0), (where y0 and Σ0 are

the kernel center and bandwidth in the previous frame) yields ρ ≈ ∑u
1
2

√
qu pu(y0, Σ0) +

c

2|Σ| 1
2

∑j ωjk(ỹT
j Σ−1ỹj), where ωj = ∑u

√
qu

pu(y0,Σ0)
δ[bu(I(yj)) − u]. The kernel center (or,

bounding box center) can be estimated by setting ∇yρ(p, q) = 0. This leads to:

ŷ =
∑n

j=1 g(ỹT
j Σ−1ỹj)ωjxj

∑n
j=1 g(ỹT

j Σ−1ỹj)ωj
(7)

where g(·) = −k
�
(·) is the shadow of the kernel. To estimate Σ̂, a γ-normalized kernel

bandwidth Σ (in (Bretzner & Lindeberg,98)) is applied to ρ, where y in ỹj is substituted

by ŷ that is obtained from (7). The kernel bandwidth matrix is estimated by setting

∇Σ(|Σ|γ/2ρ(p, q)) = 0, yielding,

Σ̂ =
2

1 − γ

∑n
j=1 ωj g(ỹT

j Σ−1ỹj)ỹT
j ỹj

∑n
j=1 ωj k(ỹT

j Σ−1ỹj)
(8)

where γ is empirically determined, and ỹj = (yj − ŷ). The estimation of (7) and (8) are done

alternatively in each iteration. The iteration repeats until the estimated parameters converge,

or a pre-specified maximum number of iterations is reached.

4.2.2 Estimating shape parameters of bounding box
For estimating the parameters of bounding box in the baseline tracker-B, a simple approach

different from (Sumin & Xianwu,08) is employed. The anisotropic mean shift used in the

baseline tracker-B contains a fully tunable affine box with five degrees of freedom, i.e., the

2D central position, width, height and orientation of the box.

Let the orientation of the box be defined as the angle between the long axis of bandwidth

matrix and the horizontal-axis of the coordinate system. Let the height h and width w of the

bounding box be defined as the radii along the long and short axes of an ellipse, as depicted

in Fig.3. Since h, w, and θ are related to the kernel bandwidth matrix Σ by,

Σ = RT(θ)

[
(h/2)2 0

0 (w/2)2

]
R(θ) (9)

where R =

[
cos θ sin θ
− sin θ cos θ

]
, computing these parameters can be efficiently done by applying

eigenvalue decomposition to Σ,

Σ = VΛV−1 (10)

99
Online Learning and Robust Visual Tracking using
Local Features and Global Appearances of Video Objects

Fig. 3. Definition of the width, height and orientation of a bounding box.

where V =

[
v11 v12

v21 v22

]
, Λ =

[
λ1 0

0 λ2

]
, and by relating these parameters with eigenvectors and

eigenvalues using (9) and (10) as follows,

θ̂ = tan−1(v2,1/v1,1), ĥ = 2
√

λ1, ŵ = 2
√

λ2 (11)

where v11 and v21 are the two components from the largest eigenvector. The first five

parameters in V(2) are obtained from the estimates in (7), (8) and (11).

4.2.3 Enhancing the anisotropic mean shift
The basic idea of enhanced mean shift is to partially guild the location of mean shift kernel

from the result of local feature point-based tracker (or, baseline tracker-A). This is designed

for correcting possible tracking drift due to, e.g. similar color distributed object / background

clutter, or partial object occlusions/intersections. Enhancement is done by assigning the mean

shift tracker to an area that is also agreeable with that from the local feature points of target.

Areas used for the mean shift and for the candidate object: To limit the number of background

pixels entering the foreground region, one may use a slightly smaller ellipse area inside the

rectangular box (e.g., scaled by K, K=0.9 in our tests) of candidate object region R(2). This is

based on the observation that an ellipse box can be tighter for some object types and would

therefore exclude the background pixels around the four corners of the rectangular box.

The result from the local feature-based tracker (i.e. baseline tracker-A) is employed to guide

the kernel position of mean shift, if the result from the baseline tracker-A is shown to be

reliable. This is done by examining the Bhattacharyya coefficient and the number of consensus

feature points in the tracked object region R(1)
t . If they are both high (indicating a reliable

result), then the initial parameter vector in R(2)
t for the baseline tracker-B is assigned by that

in the tracker-A, otherwise by the parameter vector from the tracker-B at t − 1, i.e.

V(2)
t =

{
V(1)

t if |PF | > T(2)
1

and ρ
(1)
t > T(2)

2

V(2)
t−1

otherwise
(12)

where T(2)
1

and T(2)
2

are thresholds determined empirically.

4.2.4 Re-initializing the region
A re-initialization process is added to tackle the issue of tracking drift or tracking error

propagation across frames. The idea can be analogue to applying intra video coding in each

fixed frame interval. The following criterion, in a similar spirit to that in the baseline tracker-A,

100 Object Tracking

is used to determine whether or not the re-initialization is applied to the tracked region R̂(2)
t

for the baseline tracker-B. That is, if one of the following two conditions is satisfied:

dist(2)t =
4

∑
i=1

�x(2)t,i − x(2)t−1,i�2 > T(2)
3

, or ρ
(2)
t < T(2)

4
(13)

then, the baseline tracker-B is re-initialized at t by:

R(2)
t ← R(obj)

t−1
, V(2)

t ← V(obj)
t−1

and ρ̃
(2)
t ← 0 (14)

where R(obj)
t−1

is the previous tracked bounding box from the final hybrid tracker at (t − 1) and

V(obj)
t−1

is the corresponding parameter vector, ρ̃
(2)
t is the normalized Bhattacharyya coefficient

defined in (21), x(2)t,i and x(2)t−1,i are the four corners of tracked object regions R(2)
t and R(2)

t−1
from

the baseline tracker-B, T(2)
3

and T(2)
4

are two empirically determined thresholds.

5. Online learning in the spatiotemporal SIFT-RANSAC and the enhanced
anisotropic mean shift

Online learning is an important step that may significant impact the tracking performance.

In this section, we describe two online learning techniques, one is utilized to maintain two

feature point sets from the spatiotemporal SIFT-RANSAC in the baseline tracker-A, another is

applied to update the reference object distribution from the enhanced anisotropic mean shift

in the baseline tracker-B.

5.1 Online learning of local point feature sets
This subsection describes a key step in the spatiotemporal SIFT-RANSAC: online learning

of two feature point sets across video frames. The use of spatiotemporal SIFT-RANSAC

is motivated by the problems encountered in the conventional SIFT-RANSAC for tracking

objects through long video sequences. Often, the number of corresponding feature points

reduce significantly through video frames due to object pose changes, partial occlusions or

intersections. In these cases, some feature points on the object may disappear, consequently

only a subset of feature points finds their correspondences across two image frames. This

phenomenon may propagate through video frames, and may eventually lead to a dramatically

reduced number of corresponding points. When the number of points is very small, the

region surrounding these points may become very small and unreliable. Further, motion

parameter estimation can become ill-posed if the number of equations is less than the

unknown parameters.

The online learning procedure in the spatiotemporal SIFT-RANSAC is designed to

dynamically maintain the corresponding point sets through video frames. This includes the

possibility of adding new points, pruning weak points with low weights, and freezing the

adaptation when partial occlusions are suspected. This online learning is applied separately to

the foreground candidate object region and the surrounding background region. The method

for online maintenance of spatiotemporal point correspondences is similar to the work in

(Haner & Gu,10; Khan & Gu,10), which contains the following main steps:

• Assign weights to all corresponding feature points;

• Add new candidate feature points;

101
Online Learning and Robust Visual Tracking using
Local Features and Global Appearances of Video Objects

Fig. 3. Definition of the width, height and orientation of a bounding box.

where V =

[
v11 v12

v21 v22

]
, Λ =

[
λ1 0

0 λ2

]
, and by relating these parameters with eigenvectors and

eigenvalues using (9) and (10) as follows,

θ̂ = tan−1(v2,1/v1,1), ĥ = 2
√

λ1, ŵ = 2
√

λ2 (11)

where v11 and v21 are the two components from the largest eigenvector. The first five

parameters in V(2) are obtained from the estimates in (7), (8) and (11).

4.2.3 Enhancing the anisotropic mean shift
The basic idea of enhanced mean shift is to partially guild the location of mean shift kernel

from the result of local feature point-based tracker (or, baseline tracker-A). This is designed

for correcting possible tracking drift due to, e.g. similar color distributed object / background

clutter, or partial object occlusions/intersections. Enhancement is done by assigning the mean

shift tracker to an area that is also agreeable with that from the local feature points of target.

Areas used for the mean shift and for the candidate object: To limit the number of background

pixels entering the foreground region, one may use a slightly smaller ellipse area inside the

rectangular box (e.g., scaled by K, K=0.9 in our tests) of candidate object region R(2). This is

based on the observation that an ellipse box can be tighter for some object types and would

therefore exclude the background pixels around the four corners of the rectangular box.

The result from the local feature-based tracker (i.e. baseline tracker-A) is employed to guide

the kernel position of mean shift, if the result from the baseline tracker-A is shown to be

reliable. This is done by examining the Bhattacharyya coefficient and the number of consensus

feature points in the tracked object region R(1)
t . If they are both high (indicating a reliable

result), then the initial parameter vector in R(2)
t for the baseline tracker-B is assigned by that

in the tracker-A, otherwise by the parameter vector from the tracker-B at t − 1, i.e.

V(2)
t =

{
V(1)

t if |PF | > T(2)
1

and ρ
(1)
t > T(2)

2

V(2)
t−1

otherwise
(12)

where T(2)
1

and T(2)
2

are thresholds determined empirically.

4.2.4 Re-initializing the region
A re-initialization process is added to tackle the issue of tracking drift or tracking error

propagation across frames. The idea can be analogue to applying intra video coding in each

fixed frame interval. The following criterion, in a similar spirit to that in the baseline tracker-A,

100 Object Tracking

is used to determine whether or not the re-initialization is applied to the tracked region R̂(2)
t

for the baseline tracker-B. That is, if one of the following two conditions is satisfied:

dist(2)t =
4

∑
i=1

�x(2)t,i − x(2)t−1,i�2 > T(2)
3

, or ρ
(2)
t < T(2)

4
(13)

then, the baseline tracker-B is re-initialized at t by:

R(2)
t ← R(obj)

t−1
, V(2)

t ← V(obj)
t−1

and ρ̃
(2)
t ← 0 (14)

where R(obj)
t−1

is the previous tracked bounding box from the final hybrid tracker at (t − 1) and

V(obj)
t−1

is the corresponding parameter vector, ρ̃
(2)
t is the normalized Bhattacharyya coefficient

defined in (21), x(2)t,i and x(2)t−1,i are the four corners of tracked object regions R(2)
t and R(2)

t−1
from

the baseline tracker-B, T(2)
3

and T(2)
4

are two empirically determined thresholds.

5. Online learning in the spatiotemporal SIFT-RANSAC and the enhanced
anisotropic mean shift

Online learning is an important step that may significant impact the tracking performance.

In this section, we describe two online learning techniques, one is utilized to maintain two

feature point sets from the spatiotemporal SIFT-RANSAC in the baseline tracker-A, another is

applied to update the reference object distribution from the enhanced anisotropic mean shift

in the baseline tracker-B.

5.1 Online learning of local point feature sets
This subsection describes a key step in the spatiotemporal SIFT-RANSAC: online learning

of two feature point sets across video frames. The use of spatiotemporal SIFT-RANSAC

is motivated by the problems encountered in the conventional SIFT-RANSAC for tracking

objects through long video sequences. Often, the number of corresponding feature points

reduce significantly through video frames due to object pose changes, partial occlusions or

intersections. In these cases, some feature points on the object may disappear, consequently

only a subset of feature points finds their correspondences across two image frames. This

phenomenon may propagate through video frames, and may eventually lead to a dramatically

reduced number of corresponding points. When the number of points is very small, the

region surrounding these points may become very small and unreliable. Further, motion

parameter estimation can become ill-posed if the number of equations is less than the

unknown parameters.

The online learning procedure in the spatiotemporal SIFT-RANSAC is designed to

dynamically maintain the corresponding point sets through video frames. This includes the

possibility of adding new points, pruning weak points with low weights, and freezing the

adaptation when partial occlusions are suspected. This online learning is applied separately to

the foreground candidate object region and the surrounding background region. The method

for online maintenance of spatiotemporal point correspondences is similar to the work in

(Haner & Gu,10; Khan & Gu,10), which contains the following main steps:

• Assign weights to all corresponding feature points;

• Add new candidate feature points;

101
Online Learning and Robust Visual Tracking using
Local Features and Global Appearances of Video Objects

• Prune feature points with low weights;

• Freeze the updating when a partial occlusion of object is likely to occur;

• Separate maintenance of the foreground feature point set PF and the background feature

point set PB.

5.1.1 Maintenance of foreground feature point set PF

For this feature point set, online learning of the dynamic feature points contains the following

main steps:

Assigning weights: First, a set of feature points PF = {pi = (xi, yi), i = 1, 2, · · · } at the frame

t is selected from the SIFT, within the transformed bounding box area obtained by using the

estimated affine transform parameters from the RANSAC to the tracked object box at (t-1).

Feature points from RANSAC that are outside the transformed bounding box (i.e. belong to

the background) are then removed. After that, a candidate consensus point set PF is created.

PF consists of three subsets of feature points according to how consensus correspondences in

the foreground set are established,

PF = {PF
a ∪ PF

b ∪ PF
c } (15)

In (15), PF
a contains matched consensus points, i.e. the feature points selected by the

RANSAC, PF
b contains the outliers that fail to agree with the best estimated transform

parameters in the RANSAC (which could be the result from noise influence or object

dynamics), and PF
c is the set of newly added feature points from the SIFT that are initiated

within the candidate object region at t and do not correspond to any background feature

points. Each feature point pi in the candidate set PF is assigned to a weight according to:

Wi
t =

⎧
⎨
⎩

Wi
t−1

+ 2 pi ∈ PF
a

Wi
t−1

− 1 pi ∈ PF
b

Wi
0 pi ∈ PF

c

(16)

where the initial weight for a new feature point Wi
0 is set to be the median weight value of all

points in the subsets PF
a and PF

b , i.e. Wj
0
= median(Wj

t |pj ∈ PF
a ∪ PF

b), and Wi
t−1

for PF
a and

PF
b is initialized to zero in the first frame. Once the maximum consensus points are selected

at t, their weights in (16) are increased. For those corresponding points that do not fit to the

estimated transform parameters in the RANSAC (i.e. matched outliers), their weights in (16)

are reduced.

Adding or pruning consensus points: After updating the weights in (16), feature points in PF

are then updated. This is done by first sorting out the feature points in PF according to their

weights. New feature points in PF
c are added with the median weight values, so that they may

remain in the set after the subsequent pruning process. The pruning process is then applied

to keep a reasonable size of PF by removing low weight feature points in the set. This is done

by keeping the LF (LF empirically determined, LF=1000 in our tests) highest weight points in

the set and removing the remaining ones.

Freezing the updating when a partial occlusion is highly probable: If an object is occluded by

cluttered background or intersected by other objects, object appearance within the bounding

box may change significantly. The Bhattacharyya coefficient value may indicate the existence

of such scenarios, as the images between the tracked object and the reference object become

less similar. When such a scenario occurs, the online maintenance process should be

temporally frozen in order to not include the feature points from the background clutter or

102 Object Tracking

the occluding object. The Bhattacharyya coefficient is computed by using the histograms

from the reference object and from the tracked object region R(1) at t obtained in RANSAC

as ρ
(1)
t = ∑m

u=1

√
pt,(1)

u (y, Σ) qt
u, where pt,(1)

u and qt
u are the uth bin of spatial kernel-weighted

color histogram from R(1) of tracker-A, and of the reference object region, respectively. The

kernel center y = (y1, y2) and the anisotropic kernel bandwidth matrix Σ can be computed

using the method described in Section 4.2. The Bhattacharyya coefficient ρ
(1)
t is used to

indicate whether or not the region R(1) is likely to contain occluding objects/background

area, e.g. from partial occlusions or object intersections. If ρ
(1)
t is small, indicating that the

global appearance of object is significantly different from that of the reference object, then the

dynamic maintenance is temporally frozen, so that no new feature points would be wrongly

added. This is done as follows: If ρ
(1)
t ≤ TF (TF is a threshold determined empirically), then

the maintenance process freezes, otherwise the maintenance process proceeds.

5.1.2 Maintenance of background feature point set PB

Online learning is also performed to the background set to maintain the dynamic background

feature points. The background set contains feature points in between the large searching

box and the candidate object region (see the area between the black and red rectangles in

Fig.2). Comparing with the foreground case, the following differences exist for maintaining

the background set:

The searching area and its re-initialization: The search area at t (see the black rectangle in Fig.2) is

a rectangular area, that is larger than the tracked object region R(1)
t−1

. This is done by extending

both the left and right side of R(1)
t−1

by kxw(1) (w(1) is the width of R(1)
t−1

, and kx=0.5 in our tests),

and extending both the top and bottom side of R(1)
t−1

by kyh(1) (h(1) is the height of R(1)
t−1

, and

ky ∈ [0.1, 0.5] in our tests). This results in a searching area of (2kx + 1)w(1) in width, and

(2ky + 1)h(1) in height. Correspondingly, the search area is re-initialized immediately after

the re-initialization of the foreground object region R(1)
t .

Shift foreground points to the background set: Those feature points in the foreground set that find

their correspondences in the background set are re-assigned to the background set.

Adding and pruning new background points: New feature points that are found in the

background region at the current frame t are added into this set. A maximum number LB
is then assigned to the background point set (LB=1500 in our tests, empirically determined).

Feature points in this set are sorted out according to their aging: If the total number of feature

points exceeds LB, then only the newest LB feature points are kept while the remaining old

aging points are removed.

5.2 Online learning of dynamic reference object appearance
Since the appearance of a target object may change in time, using a time-independent

appearance distribution qt = q for the reference object may lead to tracking drift or tracking

failures in the mean shift especially when the pdf of a visual object changes (e.g. significant

changes in the object color distribution). Despite much research work in the mean shift-based

object tracking, online learning of reference object pdf q remains an open issue. This is mainly

due to the ambiguity on the change which could be caused either by object itself or by some

background interferences (e.g. occlusions/intersections or background clutter) and the lack of

103
Online Learning and Robust Visual Tracking using
Local Features and Global Appearances of Video Objects

• Prune feature points with low weights;

• Freeze the updating when a partial occlusion of object is likely to occur;

• Separate maintenance of the foreground feature point set PF and the background feature

point set PB.

5.1.1 Maintenance of foreground feature point set PF

For this feature point set, online learning of the dynamic feature points contains the following

main steps:

Assigning weights: First, a set of feature points PF = {pi = (xi, yi), i = 1, 2, · · · } at the frame

t is selected from the SIFT, within the transformed bounding box area obtained by using the

estimated affine transform parameters from the RANSAC to the tracked object box at (t-1).

Feature points from RANSAC that are outside the transformed bounding box (i.e. belong to

the background) are then removed. After that, a candidate consensus point set PF is created.

PF consists of three subsets of feature points according to how consensus correspondences in

the foreground set are established,

PF = {PF
a ∪ PF

b ∪ PF
c } (15)

In (15), PF
a contains matched consensus points, i.e. the feature points selected by the

RANSAC, PF
b contains the outliers that fail to agree with the best estimated transform

parameters in the RANSAC (which could be the result from noise influence or object

dynamics), and PF
c is the set of newly added feature points from the SIFT that are initiated

within the candidate object region at t and do not correspond to any background feature

points. Each feature point pi in the candidate set PF is assigned to a weight according to:

Wi
t =

⎧
⎨
⎩

Wi
t−1

+ 2 pi ∈ PF
a

Wi
t−1

− 1 pi ∈ PF
b

Wi
0 pi ∈ PF

c

(16)

where the initial weight for a new feature point Wi
0 is set to be the median weight value of all

points in the subsets PF
a and PF

b , i.e. Wj
0
= median(Wj

t |pj ∈ PF
a ∪ PF

b), and Wi
t−1

for PF
a and

PF
b is initialized to zero in the first frame. Once the maximum consensus points are selected

at t, their weights in (16) are increased. For those corresponding points that do not fit to the

estimated transform parameters in the RANSAC (i.e. matched outliers), their weights in (16)

are reduced.

Adding or pruning consensus points: After updating the weights in (16), feature points in PF

are then updated. This is done by first sorting out the feature points in PF according to their

weights. New feature points in PF
c are added with the median weight values, so that they may

remain in the set after the subsequent pruning process. The pruning process is then applied

to keep a reasonable size of PF by removing low weight feature points in the set. This is done

by keeping the LF (LF empirically determined, LF=1000 in our tests) highest weight points in

the set and removing the remaining ones.

Freezing the updating when a partial occlusion is highly probable: If an object is occluded by

cluttered background or intersected by other objects, object appearance within the bounding

box may change significantly. The Bhattacharyya coefficient value may indicate the existence

of such scenarios, as the images between the tracked object and the reference object become

less similar. When such a scenario occurs, the online maintenance process should be

temporally frozen in order to not include the feature points from the background clutter or

102 Object Tracking

the occluding object. The Bhattacharyya coefficient is computed by using the histograms

from the reference object and from the tracked object region R(1) at t obtained in RANSAC

as ρ
(1)
t = ∑m

u=1

√
pt,(1)

u (y, Σ) qt
u, where pt,(1)

u and qt
u are the uth bin of spatial kernel-weighted

color histogram from R(1) of tracker-A, and of the reference object region, respectively. The

kernel center y = (y1, y2) and the anisotropic kernel bandwidth matrix Σ can be computed

using the method described in Section 4.2. The Bhattacharyya coefficient ρ
(1)
t is used to

indicate whether or not the region R(1) is likely to contain occluding objects/background

area, e.g. from partial occlusions or object intersections. If ρ
(1)
t is small, indicating that the

global appearance of object is significantly different from that of the reference object, then the

dynamic maintenance is temporally frozen, so that no new feature points would be wrongly

added. This is done as follows: If ρ
(1)
t ≤ TF (TF is a threshold determined empirically), then

the maintenance process freezes, otherwise the maintenance process proceeds.

5.1.2 Maintenance of background feature point set PB

Online learning is also performed to the background set to maintain the dynamic background

feature points. The background set contains feature points in between the large searching

box and the candidate object region (see the area between the black and red rectangles in

Fig.2). Comparing with the foreground case, the following differences exist for maintaining

the background set:

The searching area and its re-initialization: The search area at t (see the black rectangle in Fig.2) is

a rectangular area, that is larger than the tracked object region R(1)
t−1

. This is done by extending

both the left and right side of R(1)
t−1

by kxw(1) (w(1) is the width of R(1)
t−1

, and kx=0.5 in our tests),

and extending both the top and bottom side of R(1)
t−1

by kyh(1) (h(1) is the height of R(1)
t−1

, and

ky ∈ [0.1, 0.5] in our tests). This results in a searching area of (2kx + 1)w(1) in width, and

(2ky + 1)h(1) in height. Correspondingly, the search area is re-initialized immediately after

the re-initialization of the foreground object region R(1)
t .

Shift foreground points to the background set: Those feature points in the foreground set that find

their correspondences in the background set are re-assigned to the background set.

Adding and pruning new background points: New feature points that are found in the

background region at the current frame t are added into this set. A maximum number LB
is then assigned to the background point set (LB=1500 in our tests, empirically determined).

Feature points in this set are sorted out according to their aging: If the total number of feature

points exceeds LB, then only the newest LB feature points are kept while the remaining old

aging points are removed.

5.2 Online learning of dynamic reference object appearance
Since the appearance of a target object may change in time, using a time-independent

appearance distribution qt = q for the reference object may lead to tracking drift or tracking

failures in the mean shift especially when the pdf of a visual object changes (e.g. significant

changes in the object color distribution). Despite much research work in the mean shift-based

object tracking, online learning of reference object pdf q remains an open issue. This is mainly

due to the ambiguity on the change which could be caused either by object itself or by some

background interferences (e.g. occlusions/intersections or background clutter) and the lack of

103
Online Learning and Robust Visual Tracking using
Local Features and Global Appearances of Video Objects

occlusion priors. An efficient method for online learning of reference object pdf for the mean

shift has so far been reported in (Khan & Gu,10).

The basic idea behind this online learning method is to only update the reference appearance

distribution at those frames where reliable tracking without occlusion is indicated. Further,

the updating frequency does not need to be very high, since object changes are usually gradual

due to the mechanical movement. The online learning is done by using a criterion function

and seeking the local maximum point that corresponds to good tracking performance in

each individual frame interval of fixed length. Let ρt = ∑u

√
qj−1

u pt
u be the Bhattacharyya

coefficient between the current tracked object from the final tracker and the reference object

in the previous (j − 1)th interval, and xt,i be the four corners of the tracked region R(obj)
t

from the final tracker. Noting that qj−1
u implies that qt

u is in the (j − 1)th interval, t ∈
[(j − 2)S + 1, (j − 1)S], where S is the total frames in the interval (S is empirically determined

depending on the motion speed and video frame rate, S=25 frames in our tests). If the

following conditions are both satisfied:

distt =
4

∑
i=1

�xt,i − xt−1,i�2 < T1, and ρt > T2 (17)

then the reference object appearance distribution qj in the jth interval is updated

qj = κpt∗ + (1 − κ)qj−1 (18)

where j = 1, 2, · · · , and t∗ is the highest performance frame chosen from

t∗ = argmaxt∈[(j−1)S+1,jS] ρt (19)

and qj is the updated reference object pdf in the jth interval that is related to the time interval

t ∈ [(j − 1)S + 1, jS], κ is the constant controlling the learning rate (κ = 0.1 in our tests), pt∗ is

the appearance distribution of the candidate object where t∗ is chosen from (19). If (17) is not

satisfied, then the reference object distribution remains unchanged, i.e., qj ← qj−1. Key steps

for updating qj in the jth interval can be summarized as:

1. Check whether conditions in (17) are satisfied in t ∈ [(j − 1)S + 1, jS];

2. If satisfied, updating qj using (18) where the frame t∗ is selected from (19);

3. Otherwise, freezing the update by assigning qj ← qj−1.

As an example, Fig.4 shows the two performance curves in (17) for the video "stair walking",

where the thresholds T1 and T2 (blue dash line) and the updated frames (red dots) are marked.
To demonstrate the effect of online learning, Fig.5 shows the results from the hybrid tracker

with and without adding online learning to the reference object appearance. It shows that the

improvement of tracking performance is most visible with the increase of video frame number.

Since object appearance changes gradually in time, online learning of dynamic reference object

distribution has indeed yielded visible improvement in tracking.

6. Hybrid tracker formulated from a criterion function

This section describes the formulation of hybrid tracker through combining the two baseline

trackers under a given criterion function.

For the baseline tracker-A in Section 4.1, feature point correspondences are estimated by using

spatiotemporal SIFT-RANSAC in the foreground and background regions. A tight rectangle

104 Object Tracking

0 50 100 150 200 250 300
0.97

0.975

0.98

0.985

0.99

0.995

1

1.005

Frame Number

ρ t

ρ
t

Frames updated

0 50 100 150 200 250 300
0

10

20

30

40

50

60

70

80

Frame Number

D
is

ta
n
ce

Distance

Frames updated

Fig. 4. Online learning of qt for video "stair walking". Left: the curve of Bhattacharyya

coefficient ρt in (17) vs. frame number, where the blue dash line is the threshold T2, and the

red dots are the frames updated. Right: the curve of distance of four corners distt in (17) vs.

frame number, where the blue dash line is T1 and the corresponding updated frames are in

red dots.

50 100 150 200
0

10

20

30

40

50

60

Frame Number

D
is

ta
nc

e

with learning

without learning

Fig. 5. Left: Tracking errors for the hybrid tracker as a function of video frame number.

Distance d1 in the curve is defined between the tracked and the ground-truth regions,

according to (25). Red: with online learning; Blue: without online learning. Both curves are

for the "stair walking" video; Right: an example frame of "stair walking".

surrounding the foreground points is then drawn as the candidate object region R(1)
t that is

described by a parameter vector,

R(1)
t : V(1)

t = [yc = (y(1)
1,c , y(1)

2,c), w(1), h(1), θ(1),PF]Tt

containing the 2D center position, width, height and orientation of the bounding box, and

the foreground point set. For the baseline tracker-B in Section 4.2, an image region R(2)
t

whose image content is most similar to the reference object appearance is sought by using the

enhanced anisotropic mean shift with its kernel partially guided by the local feature points.

This enhanced mean shift tracker generates a parameterized candidate region

R(2)
t : V(2)

t = [y = (y(2)
1

, y(2)
2

), w(2), h(2), θ(2), h(2)
rgb]

T
t

A third candidate object region R(3)
t is then formed whose parameter vector is a weighted

combination of the parameter vectors of the above two baseline trackers, i.e.,

R(3)
t : V(3)

t = ∑2
i=1 ρ̃

(i)
t V(i)

t
(20)

105
Online Learning and Robust Visual Tracking using
Local Features and Global Appearances of Video Objects

occlusion priors. An efficient method for online learning of reference object pdf for the mean

shift has so far been reported in (Khan & Gu,10).

The basic idea behind this online learning method is to only update the reference appearance

distribution at those frames where reliable tracking without occlusion is indicated. Further,

the updating frequency does not need to be very high, since object changes are usually gradual

due to the mechanical movement. The online learning is done by using a criterion function

and seeking the local maximum point that corresponds to good tracking performance in

each individual frame interval of fixed length. Let ρt = ∑u

√
qj−1

u pt
u be the Bhattacharyya

coefficient between the current tracked object from the final tracker and the reference object

in the previous (j − 1)th interval, and xt,i be the four corners of the tracked region R(obj)
t

from the final tracker. Noting that qj−1
u implies that qt

u is in the (j − 1)th interval, t ∈
[(j − 2)S + 1, (j − 1)S], where S is the total frames in the interval (S is empirically determined

depending on the motion speed and video frame rate, S=25 frames in our tests). If the

following conditions are both satisfied:

distt =
4

∑
i=1

�xt,i − xt−1,i�2 < T1, and ρt > T2 (17)

then the reference object appearance distribution qj in the jth interval is updated

qj = κpt∗ + (1 − κ)qj−1 (18)

where j = 1, 2, · · · , and t∗ is the highest performance frame chosen from

t∗ = argmaxt∈[(j−1)S+1,jS] ρt (19)

and qj is the updated reference object pdf in the jth interval that is related to the time interval

t ∈ [(j − 1)S + 1, jS], κ is the constant controlling the learning rate (κ = 0.1 in our tests), pt∗ is

the appearance distribution of the candidate object where t∗ is chosen from (19). If (17) is not

satisfied, then the reference object distribution remains unchanged, i.e., qj ← qj−1. Key steps

for updating qj in the jth interval can be summarized as:

1. Check whether conditions in (17) are satisfied in t ∈ [(j − 1)S + 1, jS];

2. If satisfied, updating qj using (18) where the frame t∗ is selected from (19);

3. Otherwise, freezing the update by assigning qj ← qj−1.

As an example, Fig.4 shows the two performance curves in (17) for the video "stair walking",

where the thresholds T1 and T2 (blue dash line) and the updated frames (red dots) are marked.
To demonstrate the effect of online learning, Fig.5 shows the results from the hybrid tracker

with and without adding online learning to the reference object appearance. It shows that the

improvement of tracking performance is most visible with the increase of video frame number.

Since object appearance changes gradually in time, online learning of dynamic reference object

distribution has indeed yielded visible improvement in tracking.

6. Hybrid tracker formulated from a criterion function

This section describes the formulation of hybrid tracker through combining the two baseline

trackers under a given criterion function.

For the baseline tracker-A in Section 4.1, feature point correspondences are estimated by using

spatiotemporal SIFT-RANSAC in the foreground and background regions. A tight rectangle

104 Object Tracking

0 50 100 150 200 250 300
0.97

0.975

0.98

0.985

0.99

0.995

1

1.005

Frame Number

ρ t

ρ
t

Frames updated

0 50 100 150 200 250 300
0

10

20

30

40

50

60

70

80

Frame Number

D
is

ta
n
ce

Distance

Frames updated

Fig. 4. Online learning of qt for video "stair walking". Left: the curve of Bhattacharyya

coefficient ρt in (17) vs. frame number, where the blue dash line is the threshold T2, and the

red dots are the frames updated. Right: the curve of distance of four corners distt in (17) vs.

frame number, where the blue dash line is T1 and the corresponding updated frames are in

red dots.

50 100 150 200
0

10

20

30

40

50

60

Frame Number

D
is

ta
nc

e

with learning

without learning

Fig. 5. Left: Tracking errors for the hybrid tracker as a function of video frame number.

Distance d1 in the curve is defined between the tracked and the ground-truth regions,

according to (25). Red: with online learning; Blue: without online learning. Both curves are

for the "stair walking" video; Right: an example frame of "stair walking".

surrounding the foreground points is then drawn as the candidate object region R(1)
t that is

described by a parameter vector,

R(1)
t : V(1)

t = [yc = (y(1)
1,c , y(1)

2,c), w(1), h(1), θ(1),PF]Tt

containing the 2D center position, width, height and orientation of the bounding box, and

the foreground point set. For the baseline tracker-B in Section 4.2, an image region R(2)
t

whose image content is most similar to the reference object appearance is sought by using the

enhanced anisotropic mean shift with its kernel partially guided by the local feature points.

This enhanced mean shift tracker generates a parameterized candidate region

R(2)
t : V(2)

t = [y = (y(2)
1

, y(2)
2

), w(2), h(2), θ(2), h(2)
rgb]

T
t

A third candidate object region R(3)
t is then formed whose parameter vector is a weighted

combination of the parameter vectors of the above two baseline trackers, i.e.,

R(3)
t : V(3)

t = ∑2
i=1 ρ̃

(i)
t V(i)

t
(20)

105
Online Learning and Robust Visual Tracking using
Local Features and Global Appearances of Video Objects

where ρ
(i)
t is the Bhattacharyya coefficient (defined in (23)), and ρ̃

(i)
t is the normalized

Bhattacharyya coefficients for the two baseline trackers,

ρ̃
(i)
t =

ρ
(i)
t

ρ
(1)
t + ρ

(2)
t

(21)

For the final hybrid tracker, the parameter vector associated with the optimal target object

region R(obj)
t is selected by maximizing the following criterion,

V(obj)
t = arg max

i:V(i)
t

{
ρ
(i)
t , i = 1, · · · , 3

}
(22)

where ρ
(i)
t , i=1,2,3, is the Bhattacharyya coefficient measuring the similarity between the

reference object and the candidate object from the tracked candidate region R(i)
t at time t,

ρ
(i)
t =

m

∑
u=1

√
qt

u pt,(i)
u (23)

pt,(i)
u is the uth bin of candidate object pdf estimate either from the baseline tracker-A (i=1) or

from the baseline tracker-B (i=2), qt
u is the uth bin of reference object pdf estimate. Noting that

the superscript t in qt
u indicates that the reference object pdf is dynamic. Table 1 summarizes

the algorithm of the entire hybrid tracking scheme.

Initialization::
Frame t = 0: mark a bounding box for the object and compute q0;

For frame t = 1, 2, · · · , do:

1. Baseline tracker-A: Local feature correspondences by the spatiotemporal SIFT-RANSAC.
1.1 Compute correspondence points by SIFT in the searching area;

1.2 Find consensus points, estimate the transform, compute scores by RANSAC;

1.3 Perform dynamic point maintenance to PF and PB;

1.4 Compute V(1)
t , R(1)

t , and ρ
(1)
t ;

1.5 If (3) is satisfied, re-initialize V(1)
t , R(1)

t , and ρ̃
(1)
t ;

2. Baseline tracker-B: Enhanced anisotropic mean shift:
2.1 Using (12) to determine the initial V(2);

2.2 Compute ŷ(t) using (8), and Σ̂(t) using (9);

2.3 Repeat Step 2.2 until convergence;

2.4 Compute ŵ(2)
t , ĥ(2)t , θ̂

(2)
t from (11), and form V(2)

t ;

2.5 Compute ρ
(2)
t and form R(2)

t ;

2.6 If (13) is satisfied, re-initialize V(2)
t , R(2)

t and ρ̃
(2)
t ;

3. Compute the combined region parameters V(3) using (20);

4. Determine R(obj)
t for the hybrid tracker according to (22);

5. Online learning of object appearance pdf:

If mod(t, S) = 0 (i.e., boundary of an interval), then online

learning of qj using (18), if conditions in (17) are satisfied;

END (For)

Table 1. The algorithm for the hybrid tracking scheme

106 Object Tracking

7. Application: Employ online learning in the joint mean shift and particle
filter-based tracker

In this section, we show a new application example where the online learning approach

in Section 5.2 is directly added to an existing joint anisotropic mean shift and particle

filter-based (JMSPF) tracking scheme (Khan et al.,09), in order to further improve the tracking

performance.

In the JMSPF tracking scheme, a particle filter is used to track the parameters of object shape

(or, the bounding box of object), while the multi-mode anisotropic mean shift is embedded

in the the particle filter through shifting its kernel location to the most similar object area and

subsequently forming up the conditional probability based on the appearance distance metric.

In such a way, PF weights are updated by using the likelihood obtained from the mean-shift,

that re-distribute particles according to the distance metric through exploiting the most similar

object appearance from the mean shift, rather than using the random sampling. This leads to

more efficient utilizing of particles, hence a significantly reduction of the required number

of particles: from NP = 800 particles when the state vector contains both the shape and

the appearance of object (Wang et al.,08), to NP=15 particles in this JMSPF tracking scheme.

Details of the JMSPF tracking scheme is referred to (Khan et al.,09).

Due to the lack of effective online learning methods, the JMSPF tracker in (Khan et al.,09) uses

a time-invariant reference object appearance. Adding online learning of object appearance to

the JMSPF tracker can be done by applying (18) in fixed-length frame intervals, with a small

modification to include the superscript i for particles,

qj,i = κpt∗ ,i + (1 − κ)qj−1,i, i = 1, · · · , NP (24)

if the both conditions in (17) are satisfied. Further, the re-initialization process in Section

4.2.4 can also be applied. A JMSPF tracking scheme after adding the online learning and

re-initialization process can be shown schematically in Fig.6.

Fig. 6. Block diagram of the joint multi-mode anisotropic mean shift and particle filter-based

tracking scheme (JMSPF) with online learning. Notations used in the block diagram: It:

image frame at t; ŝ(obj)
t−1

and ŝ(obj)
t : tracked box parameters at (t-1) and t; s(j)

t : jth particle at t;

qt−1 and qt: the estimated reference object pdf at (t-1) and t.

Fig.7 shows the tracking errors on the two videos "ThreePastShop2Cor" (CAVIAR Dataset)

and "Pets2006_S07_C4" (PETS2006) with and without online learning. One can see that adding

online learning to the scheme is able to further improve the tracking robustness and reduce

the tracking drift in these cases.

107
Online Learning and Robust Visual Tracking using
Local Features and Global Appearances of Video Objects

where ρ
(i)
t is the Bhattacharyya coefficient (defined in (23)), and ρ̃

(i)
t is the normalized

Bhattacharyya coefficients for the two baseline trackers,

ρ̃
(i)
t =

ρ
(i)
t

ρ
(1)
t + ρ

(2)
t

(21)

For the final hybrid tracker, the parameter vector associated with the optimal target object

region R(obj)
t is selected by maximizing the following criterion,

V(obj)
t = arg max

i:V(i)
t

{
ρ
(i)
t , i = 1, · · · , 3

}
(22)

where ρ
(i)
t , i=1,2,3, is the Bhattacharyya coefficient measuring the similarity between the

reference object and the candidate object from the tracked candidate region R(i)
t at time t,

ρ
(i)
t =

m

∑
u=1

√
qt

u pt,(i)
u (23)

pt,(i)
u is the uth bin of candidate object pdf estimate either from the baseline tracker-A (i=1) or

from the baseline tracker-B (i=2), qt
u is the uth bin of reference object pdf estimate. Noting that

the superscript t in qt
u indicates that the reference object pdf is dynamic. Table 1 summarizes

the algorithm of the entire hybrid tracking scheme.

Initialization::
Frame t = 0: mark a bounding box for the object and compute q0;

For frame t = 1, 2, · · · , do:

1. Baseline tracker-A: Local feature correspondences by the spatiotemporal SIFT-RANSAC.
1.1 Compute correspondence points by SIFT in the searching area;

1.2 Find consensus points, estimate the transform, compute scores by RANSAC;

1.3 Perform dynamic point maintenance to PF and PB;

1.4 Compute V(1)
t , R(1)

t , and ρ
(1)
t ;

1.5 If (3) is satisfied, re-initialize V(1)
t , R(1)

t , and ρ̃
(1)
t ;

2. Baseline tracker-B: Enhanced anisotropic mean shift:
2.1 Using (12) to determine the initial V(2);

2.2 Compute ŷ(t) using (8), and Σ̂(t) using (9);

2.3 Repeat Step 2.2 until convergence;

2.4 Compute ŵ(2)
t , ĥ(2)t , θ̂

(2)
t from (11), and form V(2)

t ;

2.5 Compute ρ
(2)
t and form R(2)

t ;

2.6 If (13) is satisfied, re-initialize V(2)
t , R(2)

t and ρ̃
(2)
t ;

3. Compute the combined region parameters V(3) using (20);

4. Determine R(obj)
t for the hybrid tracker according to (22);

5. Online learning of object appearance pdf:

If mod(t, S) = 0 (i.e., boundary of an interval), then online

learning of qj using (18), if conditions in (17) are satisfied;

END (For)

Table 1. The algorithm for the hybrid tracking scheme

106 Object Tracking

7. Application: Employ online learning in the joint mean shift and particle
filter-based tracker

In this section, we show a new application example where the online learning approach

in Section 5.2 is directly added to an existing joint anisotropic mean shift and particle

filter-based (JMSPF) tracking scheme (Khan et al.,09), in order to further improve the tracking

performance.

In the JMSPF tracking scheme, a particle filter is used to track the parameters of object shape

(or, the bounding box of object), while the multi-mode anisotropic mean shift is embedded

in the the particle filter through shifting its kernel location to the most similar object area and

subsequently forming up the conditional probability based on the appearance distance metric.

In such a way, PF weights are updated by using the likelihood obtained from the mean-shift,

that re-distribute particles according to the distance metric through exploiting the most similar

object appearance from the mean shift, rather than using the random sampling. This leads to

more efficient utilizing of particles, hence a significantly reduction of the required number

of particles: from NP = 800 particles when the state vector contains both the shape and

the appearance of object (Wang et al.,08), to NP=15 particles in this JMSPF tracking scheme.

Details of the JMSPF tracking scheme is referred to (Khan et al.,09).

Due to the lack of effective online learning methods, the JMSPF tracker in (Khan et al.,09) uses

a time-invariant reference object appearance. Adding online learning of object appearance to

the JMSPF tracker can be done by applying (18) in fixed-length frame intervals, with a small

modification to include the superscript i for particles,

qj,i = κpt∗ ,i + (1 − κ)qj−1,i, i = 1, · · · , NP (24)

if the both conditions in (17) are satisfied. Further, the re-initialization process in Section

4.2.4 can also be applied. A JMSPF tracking scheme after adding the online learning and

re-initialization process can be shown schematically in Fig.6.

Fig. 6. Block diagram of the joint multi-mode anisotropic mean shift and particle filter-based

tracking scheme (JMSPF) with online learning. Notations used in the block diagram: It:

image frame at t; ŝ(obj)
t−1

and ŝ(obj)
t : tracked box parameters at (t-1) and t; s(j)

t : jth particle at t;

qt−1 and qt: the estimated reference object pdf at (t-1) and t.

Fig.7 shows the tracking errors on the two videos "ThreePastShop2Cor" (CAVIAR Dataset)

and "Pets2006_S07_C4" (PETS2006) with and without online learning. One can see that adding

online learning to the scheme is able to further improve the tracking robustness and reduce

the tracking drift in these cases.

107
Online Learning and Robust Visual Tracking using
Local Features and Global Appearances of Video Objects

50 100 150 200
0

2

4

6

8

10

12

14

16

18

20

Frame Number

D
is

ta
n
ce

online learning

no learning

50 100 150 200 250 300 350 400 450
0

10

20

30

40

50

60

Frame Number

D
is

ta
n
ce

online learning

no learning

Fig. 7. Tracking errors for the JMSPF tracker: the distance d1 in the curve is defined between

the tracked and ground-truth regions according to (25). Red: with online learning; Blue:

without online learning. Left: from the video "ThreePastShop2Cor"; Right: from the video

"Pets2006_S07_C4". The ground truth boxes are manually marked. For "ThreePastShop2Cor",

only the first 250 frames of ground truth boxes are marked and compared.

8. Experimental results and performance evaluation

The hybrid tracking scheme (summarized in Section 6) has been tested on numerous videos

containing a range of complex scenarios. Our test results have shown that the hybrid tracking

scheme is very robust and has yielded a marked improvement in terms of tracking drift,

tightness and accuracy of tracked bounding boxes. This is especially obvious when complex

scenarios in videos contain long-term partial occlusions, object intersections, severe object

deformation, or cluttered background / background objects with similar color distributions

to the foreground object.

8.1 Experimental setup
For testing the effectiveness of the hybrid tracking scheme, test videos that contain difficult

scenarios in a range of complexities (e.g. long-term partial occlusion, object intersection,

deformation or, pose changes) are selected. These videos are either captured from a dynamic

or a static camera. In the tests, the initial bounding box is manually marked. Methods

for automatic initial bounding box is beyond the scope of this chapter, readers can exploit

other techniques, e.g. multiple hypothesis tests (Reid,79), active shape models or polygon

vertices (Cootes et al.,01). For the mean shift tracking, a 32 × 32 × 32 bin histogram is used

for the RGB color images. The maximum number of iterations is 10 for the enhanced mean

shift for all videos and is determined empirically. Table 2 summarizes the thresholds used

for re-initialization thresholds as well as the γ values for normalizing the kernel bandwidth

matrix of the mean shift in the hybrid tracker. (T(2)
1

, T(2)
2

) in (12) are set to (10, 0.95) in all

cases. Further, Table 3 summarizes the online learning thresholds used for the hybrid tracker

and the improved JMSPF tracker.

8.2 Qualitative evaluation and comparison of tracking results
The hybrid tracking scheme has been tested on numerous videos that contain a variety of

difficult tracking scenarios. Fig.8 shows the tracking results (key video frames) from the

hybrid scheme (marked by red solid line rectangles) on 5 videos. In all cases, online learning

is included in the hybrid tracker.

108 Object Tracking

Video in baseline tracker-A in baseline tracker-B

T(1)
1

T(1)
2 T(2)

3 T(2)
4

γ
walking lady 50 0.73 30 0.950 0.33

OneShopOneWait2Cor 300 0.65 15 0.975 0.33

ThreePastShop2Cor 60 0.98 15 0.975 0.33

Pets2006_S7_C4 150 0.87 12 0.975 0.31

Pets2007_DS5_C1 100 0.88 15 0.975 0.23

Table 2. Parameters in the hybrid tracker: re-initializing thresholds in (3) and (13), and

γ-normalization in (8).

Video Hybrid tracker JMSPF tracker

T1 T2 T1 T2

walking lady 10 0.95 50 0.90

OneShopOneWait2Cor 30 0.95 20 0.90

ThreePastShop2Cor 30 0.96 15 0.96

Pets2006_S7_C4 30 0.95 20 0.95

Pets2007_DS5_C1 30 0.95 20 0.90

Table 3. Online learning thresholds in (17) for the hybrid tracker and the JMSPF tracker.

The video "walking lady" captured from a moving camera contains several long-term partial

occlusions when the lady walks behind cars. Further, colors from a part of the object

sometimes appear to be similar to the occluding car.

The video "OneShopOneWait2Cor" is downloaded from the CAVIAR dataset

(CAVIAR Dataset). The selected target object is a walking man with dark colored clothes.

During the course of walking, there is intersection where another man partially occludes the

target man, also there are pose changes while the man is waiting, and scale changes during

the course of walking.

The video "ThreePastShop2Cor" is also from the CAVIAR dataset (CAVIAR Dataset). In the

video, the selected target (a man wearing a red coat with a backpack) walks in parallel with

two other persons before intersecting with one of them by suddenly changing his walking

direction. The man continues his walking and passes another nearby person with a red coat

coming from the opposite direction. After a while, several other intersections appear when

the man walks continuously away from the camera (depth changes).

The video "Pets2006_S7_C4" is from the Pets 2006 dataset (PETS2006), named "Dataset S7

(Take 6-B)" by the camera 4. The selected target object is a walking man with dark clothes.

During the course of walking, there are several intersections with partial occlusions, pose

changes. The man also passes over other walking persons with similar color clothes.

The video "Pets2007_S05_C1" is from the Pets 2007 dataset (PETS2007), named "Dataset S5"

from the camera one. The video ia probably captured around a check-in desk in an airport,

where there are many walking persons. The selected target object is a man with white shirt

carrying a backpack. Tracking this single target through the crowds (containing around 20

persons where some are moving, some stand still) is a rather challenging task, as there are

many and frequent partial occlusions, intersections and pose changes.

The aim of these tests is to qualitatively evaluate the robustness of the hybrid tracking scheme,

especially in video scenes containing long term partial occlusions, object intersections,

deformations and fast motion, cluttered background or background object.

Comparisons: Comparisons are made with three state-of-the-art methods that are

closely-related to the hybrid tracker described in this chapter. They are:

109
Online Learning and Robust Visual Tracking using
Local Features and Global Appearances of Video Objects

50 100 150 200
0

2

4

6

8

10

12

14

16

18

20

Frame Number

D
is

ta
n
ce

online learning

no learning

50 100 150 200 250 300 350 400 450
0

10

20

30

40

50

60

Frame Number

D
is

ta
n
ce

online learning

no learning

Fig. 7. Tracking errors for the JMSPF tracker: the distance d1 in the curve is defined between

the tracked and ground-truth regions according to (25). Red: with online learning; Blue:

without online learning. Left: from the video "ThreePastShop2Cor"; Right: from the video

"Pets2006_S07_C4". The ground truth boxes are manually marked. For "ThreePastShop2Cor",

only the first 250 frames of ground truth boxes are marked and compared.

8. Experimental results and performance evaluation

The hybrid tracking scheme (summarized in Section 6) has been tested on numerous videos

containing a range of complex scenarios. Our test results have shown that the hybrid tracking

scheme is very robust and has yielded a marked improvement in terms of tracking drift,

tightness and accuracy of tracked bounding boxes. This is especially obvious when complex

scenarios in videos contain long-term partial occlusions, object intersections, severe object

deformation, or cluttered background / background objects with similar color distributions

to the foreground object.

8.1 Experimental setup
For testing the effectiveness of the hybrid tracking scheme, test videos that contain difficult

scenarios in a range of complexities (e.g. long-term partial occlusion, object intersection,

deformation or, pose changes) are selected. These videos are either captured from a dynamic

or a static camera. In the tests, the initial bounding box is manually marked. Methods

for automatic initial bounding box is beyond the scope of this chapter, readers can exploit

other techniques, e.g. multiple hypothesis tests (Reid,79), active shape models or polygon

vertices (Cootes et al.,01). For the mean shift tracking, a 32 × 32 × 32 bin histogram is used

for the RGB color images. The maximum number of iterations is 10 for the enhanced mean

shift for all videos and is determined empirically. Table 2 summarizes the thresholds used

for re-initialization thresholds as well as the γ values for normalizing the kernel bandwidth

matrix of the mean shift in the hybrid tracker. (T(2)
1

, T(2)
2

) in (12) are set to (10, 0.95) in all

cases. Further, Table 3 summarizes the online learning thresholds used for the hybrid tracker

and the improved JMSPF tracker.

8.2 Qualitative evaluation and comparison of tracking results
The hybrid tracking scheme has been tested on numerous videos that contain a variety of

difficult tracking scenarios. Fig.8 shows the tracking results (key video frames) from the

hybrid scheme (marked by red solid line rectangles) on 5 videos. In all cases, online learning

is included in the hybrid tracker.

108 Object Tracking

Video in baseline tracker-A in baseline tracker-B

T(1)
1

T(1)
2 T(2)

3 T(2)
4

γ
walking lady 50 0.73 30 0.950 0.33

OneShopOneWait2Cor 300 0.65 15 0.975 0.33

ThreePastShop2Cor 60 0.98 15 0.975 0.33

Pets2006_S7_C4 150 0.87 12 0.975 0.31

Pets2007_DS5_C1 100 0.88 15 0.975 0.23

Table 2. Parameters in the hybrid tracker: re-initializing thresholds in (3) and (13), and

γ-normalization in (8).

Video Hybrid tracker JMSPF tracker

T1 T2 T1 T2

walking lady 10 0.95 50 0.90

OneShopOneWait2Cor 30 0.95 20 0.90

ThreePastShop2Cor 30 0.96 15 0.96

Pets2006_S7_C4 30 0.95 20 0.95

Pets2007_DS5_C1 30 0.95 20 0.90

Table 3. Online learning thresholds in (17) for the hybrid tracker and the JMSPF tracker.

The video "walking lady" captured from a moving camera contains several long-term partial

occlusions when the lady walks behind cars. Further, colors from a part of the object

sometimes appear to be similar to the occluding car.

The video "OneShopOneWait2Cor" is downloaded from the CAVIAR dataset

(CAVIAR Dataset). The selected target object is a walking man with dark colored clothes.

During the course of walking, there is intersection where another man partially occludes the

target man, also there are pose changes while the man is waiting, and scale changes during

the course of walking.

The video "ThreePastShop2Cor" is also from the CAVIAR dataset (CAVIAR Dataset). In the

video, the selected target (a man wearing a red coat with a backpack) walks in parallel with

two other persons before intersecting with one of them by suddenly changing his walking

direction. The man continues his walking and passes another nearby person with a red coat

coming from the opposite direction. After a while, several other intersections appear when

the man walks continuously away from the camera (depth changes).

The video "Pets2006_S7_C4" is from the Pets 2006 dataset (PETS2006), named "Dataset S7

(Take 6-B)" by the camera 4. The selected target object is a walking man with dark clothes.

During the course of walking, there are several intersections with partial occlusions, pose

changes. The man also passes over other walking persons with similar color clothes.

The video "Pets2007_S05_C1" is from the Pets 2007 dataset (PETS2007), named "Dataset S5"

from the camera one. The video ia probably captured around a check-in desk in an airport,

where there are many walking persons. The selected target object is a man with white shirt

carrying a backpack. Tracking this single target through the crowds (containing around 20

persons where some are moving, some stand still) is a rather challenging task, as there are

many and frequent partial occlusions, intersections and pose changes.

The aim of these tests is to qualitatively evaluate the robustness of the hybrid tracking scheme,

especially in video scenes containing long term partial occlusions, object intersections,

deformations and fast motion, cluttered background or background object.

Comparisons: Comparisons are made with three state-of-the-art methods that are

closely-related to the hybrid tracker described in this chapter. They are:

109
Online Learning and Robust Visual Tracking using
Local Features and Global Appearances of Video Objects

Fig. 8. Comparing tracking results from 3 trackers: the hybrid tracker (red solid line box),

Tracker-1 (green short dash line); Tracker-2 (blue long dash line). From rows 1-6: results for

videos (key frames) "walking lady", "OneShopOneWait2Cor", "ThreePastShop2Cor",

"Pets2006_S5_C4" and "Pets2007_DS5_C1".

• Tracker-1: an anisotropic mean shift tracker in (Sumin & Xianwu,08) that is formed entirely

based on using global object modeling.

• Tracker-2: a spatiotemporal SIFT-RANSAC tracker that is entirely based on using local

feature points.

• Tracker-3: a fragments-based tracker that uses integral histograms (Adam et al.,06).

Since we do not have the program code of Tracker-3, comparison is made by using the

same videos shown in the Tracker-3 (Adam et al.,06). Three videos (rows 1-3 in Fig.8) in

(Adam et al.,06) are found by the Internet search, and are used for comparisons with Tracker-3.

Fig.8 shows the tracking results from the three tracking methods: the hybrid tracker (marked

in red solid line boxes), Tracker-1 (marked in green short dash line boxes), and Tracker-2
(marked in blue long dash line boxes). Observing the tracked results in Fig.8, the hybrid

tracker is shown to be very robust with tightly tracked bounding boxes and without tracking

drift. Comparing the results from the hybrid tracker and the two existing Tracker-1 and

Tracker-2, the hybrid tracking scheme is shown to be much more robust with marked

improvement, especially in difficult video scenarios that contain long partial occlusions,

object intersects, fast object motions, nearby persons/cluttered background with similar color

distributions and shape. For the video "Pets2007_S05_C1", the hybrid tracker has eventually

failed after 490 frames as the scenes contain too many persons (around 15) with high frequency

of partial occlusions. Comparing with Tracker-1 and Tracker-2, the two trackers have failed in

110 Object Tracking

about 400 and 240 frames, respectively, while the hybrid tracker has managed to track the

object somewhat longer.

Fig.9 shows the tracking results in (Adam et al.,06) (referred to as: Tracker-3). Comparing the

tracking results (marked in red box) shown in Fig.9 and the tracking results in Fig.8 (rows

1-3, marked in red box), one can see that the two trackers have somewhat similar tracking

performance in these 3 videos, both have tracked the target object rather well. Comparisons

using more complex videos, e.g., "Pets2007_DS5_C1" would probably be able to distinguish

the performance differences of these 2 trackers, however, no tests are made as this would

require to run the program of (Adam et al.,06).

Fig. 9. Results from Tracker-3 (courtesy from (Adam et al.,06)): results from Tracker-3 (Red);

manually selected target (Pink). Top to bottom: frames from the videos "walking lady",

"OneShopOneWait2Cor" and "ThreePastShop2Cor".

8.3 Quantitative evaluation and comparisons of performance
To quantitatively evaluate and compare the performance of the hybrid tracker and the two

existing trackers (Tracker-1 and Tracker-2), three distance metrics are used.

8.3.1 Distance metrics
The Euclidian distance: is defined between the four corners of the tracked object bounding box

and the manually marked ground truth box as follows,

d1 =
1

4

4

∑
i=1

√
(xi,1 − xGT

i,1)2 + (xi,2 − xGT
i,2)2 (25)

where (xi,1, xi,2) and (xGT
i, , xGT

i,2), i = 1, · · · , 4, are the corners of rectangular box from the final

hybrid tracker and the manually marked Ground Truth (GT), respectively.

The MSE (Mean Square Error): is defined between the 5 parameters (2D center, width, height

and orientation) of tracked object box and the manually marked Ground Truth (GT) object

111
Online Learning and Robust Visual Tracking using
Local Features and Global Appearances of Video Objects

Fig. 8. Comparing tracking results from 3 trackers: the hybrid tracker (red solid line box),

Tracker-1 (green short dash line); Tracker-2 (blue long dash line). From rows 1-6: results for

videos (key frames) "walking lady", "OneShopOneWait2Cor", "ThreePastShop2Cor",

"Pets2006_S5_C4" and "Pets2007_DS5_C1".

• Tracker-1: an anisotropic mean shift tracker in (Sumin & Xianwu,08) that is formed entirely

based on using global object modeling.

• Tracker-2: a spatiotemporal SIFT-RANSAC tracker that is entirely based on using local

feature points.

• Tracker-3: a fragments-based tracker that uses integral histograms (Adam et al.,06).

Since we do not have the program code of Tracker-3, comparison is made by using the

same videos shown in the Tracker-3 (Adam et al.,06). Three videos (rows 1-3 in Fig.8) in

(Adam et al.,06) are found by the Internet search, and are used for comparisons with Tracker-3.

Fig.8 shows the tracking results from the three tracking methods: the hybrid tracker (marked

in red solid line boxes), Tracker-1 (marked in green short dash line boxes), and Tracker-2
(marked in blue long dash line boxes). Observing the tracked results in Fig.8, the hybrid

tracker is shown to be very robust with tightly tracked bounding boxes and without tracking

drift. Comparing the results from the hybrid tracker and the two existing Tracker-1 and

Tracker-2, the hybrid tracking scheme is shown to be much more robust with marked

improvement, especially in difficult video scenarios that contain long partial occlusions,

object intersects, fast object motions, nearby persons/cluttered background with similar color

distributions and shape. For the video "Pets2007_S05_C1", the hybrid tracker has eventually

failed after 490 frames as the scenes contain too many persons (around 15) with high frequency

of partial occlusions. Comparing with Tracker-1 and Tracker-2, the two trackers have failed in

110 Object Tracking

about 400 and 240 frames, respectively, while the hybrid tracker has managed to track the

object somewhat longer.

Fig.9 shows the tracking results in (Adam et al.,06) (referred to as: Tracker-3). Comparing the

tracking results (marked in red box) shown in Fig.9 and the tracking results in Fig.8 (rows

1-3, marked in red box), one can see that the two trackers have somewhat similar tracking

performance in these 3 videos, both have tracked the target object rather well. Comparisons

using more complex videos, e.g., "Pets2007_DS5_C1" would probably be able to distinguish

the performance differences of these 2 trackers, however, no tests are made as this would

require to run the program of (Adam et al.,06).

Fig. 9. Results from Tracker-3 (courtesy from (Adam et al.,06)): results from Tracker-3 (Red);

manually selected target (Pink). Top to bottom: frames from the videos "walking lady",

"OneShopOneWait2Cor" and "ThreePastShop2Cor".

8.3 Quantitative evaluation and comparisons of performance
To quantitatively evaluate and compare the performance of the hybrid tracker and the two

existing trackers (Tracker-1 and Tracker-2), three distance metrics are used.

8.3.1 Distance metrics
The Euclidian distance: is defined between the four corners of the tracked object bounding box

and the manually marked ground truth box as follows,

d1 =
1

4

4

∑
i=1

√
(xi,1 − xGT

i,1)2 + (xi,2 − xGT
i,2)2 (25)

where (xi,1, xi,2) and (xGT
i, , xGT

i,2), i = 1, · · · , 4, are the corners of rectangular box from the final

hybrid tracker and the manually marked Ground Truth (GT), respectively.

The MSE (Mean Square Error): is defined between the 5 parameters (2D center, width, height

and orientation) of tracked object box and the manually marked Ground Truth (GT) object

111
Online Learning and Robust Visual Tracking using
Local Features and Global Appearances of Video Objects

bounding box over all frames in each video,

MSE =
1

N

N

∑
t=1

√(
vt

i − vt,GT
i

)2
(26)

where vt
i is the ith parameter of a tracked box at t, vt,GT

i is the ith ground truth parameter at t,
N is the total number of frames in the video.

The Bhattacharyya distance: is defined between the tracked object box and the reference object

box as follows:

d2 =
√

1 − ∑
u

ρ(pu , qu) (27)

where u is the index of histogram bin. Under this criterion, good performance is indicated

by small d2 values. The average Bhattacharyya distance d̄2 is computed by averaging the

Bhattacharyya distances over all frames in each video.

In the first row of Fig.10, we compare the tracking errors for the 3 trackers (the hybrid tracker,

Tracker-1 and Tracker-2), in terms of the Euclidian distance d1 (in (25)) between the tracked box

and the ground truth box as a function of image frames, on the video "face" and "walking

lady". Comparing the results from the two videos, the hybrid tracker has clearly shown better

performance than those from the Tracker-1 and Tracker-2 in these cases. In the 2nd row of

Fig.10, we compare the hybrid tracker and the JMSPF tracker with online learning. Comparing

the results from the two videos, the JMSPF tracker seems better in "ThreePastShop2Cor" and

slightly worse in "walking lady" to that obtained from the hybrid tracker. The performance of

these two methods varies depending on the test videos.

Table 4 shows the tracking errors (the MSEs defined in (26)) for the four trackers: the hybrid

tracker, the JMSPF tracker, Tracker-1, and Tracker-2. Comparing the results in the table, the

hybrid tracker and JMSPF tracker have shown clearly better performance than those from the

two existing Tracker-1 and Tracker-2. Further, the JMSPF tracker is shown to be much better

than that of the hybrid tracker on the video "ThreePastShop2Corthe" and slightly worse on

the video "walking lady".

Video Box Hybrid JMSPF Tracker-1 Tracker-2
Parameters tracker tracker

walking lady x-position 1.6851 2.9454 51.575 19.854

y-position 1.6020 4.7661 66.222 10.357

width w 0.8935 1.0221 4.7926 3.3857

height h 1.1682 2.6063 2.5973 55.973

θ (in radius) 0.0011 0.0047 0.0627 0.0123

ThreePastShop2Cor x-position 2.8815 0.9940 23.835 4.8997

y-position 3.3784 2.7138 37.878 7.6360

width w 1.9675 1.0327 5.8228 2.4200

height h 16.836 2.1415 9.8112 4.3763

θ (in radius) 0.0067 0.0001 0.0023 0.0012

Table 4. Tracking errors, the MSE defined in (26), for 4 different trackers.

Table 5 shows the tracking errors, the average Bhattacharyya distances d2 in (27), for the four

trackers: the hybrid tracker, the JMSPF tracker, Tracker-1 and Tracker-2.

112 Object Tracking

Video Hybrid Tracker JMSPF Tracker Tracker-1 Tracker-2
walking lady 0.2076 0.2652 0.3123 0.3654

OneShopOneWait2Cor 0.1466 0.2037 0.4549 0.5240

ThreePastShop2Cor 0.1580 0.1444 0.3241 0.2861

Pets2006_S7_C4 0.1007 0.2267 0.2473 0.2032

Pets2007_DS5_C1 0.1455 0.2133 0.2840 0.2370

Table 5. Tracking errors, the average Bhattacharyya distances d̄2 in (27), for 4 different

trackers. The smaller the d2, the better the performance.

Fig. 10. Comparison of tracking errors (the Euclidian distance d1 in (25)) on the videos

"ThreePastShop2Cor" (column 1) and "walking lady" (column 2). 1st row: comparison

among 3 trackers: hybrid tracker (red), Tracker-1 (blu) and Tracker-2 (green); 2nd row:

comparison between hybrid tracker (red solid) and JMSPF tracker (blue dash). Noting the

scale difference in vertical axis for "walking lady" in the 2nd column.

8.4 Computational cost
To give an indication on the computational cost, the execution times are recorded for four

tracking methods: the hybrid tracker (summarized in Section 6), Tracker-1, Tracker-2, and

JMSPF tracker (in Section 7). Table 6 shows the average time (in Second) required for tracking

one object in one video frame, where the average is done over all frames in each video.

Noting that tracking time varies dependent on the complexity of video scenes. All these

tracking schemes are implemented by Matlab programs, and run on a PC with a Intel Pentium

Dual 2.00 GHz processor. Observing Table 6 one can see that the hybrid tracker requires

Video Hybrid tracker Tracker-1 Tracker-2 JMSPF tracker

(in sec) (in sec) (in sec) (in sec)

OneShopOneWait2Cor 0.1498 0.0934 0.049 1.4356

ThreePastShop2Cor 0.1501 0.0954 0.053 1.3945

Pets2006_S7_C4 0.1352 0.0935 0.041 1.5423

Pets2007_DS5_C1 0.1489 0.0845 0.050 0.9870

Table 6. Average required time to track a visual object in one video frame, for 4 different

visual trackers. All programs are implemented in Matlab without optimizing the program

codes.

113
Online Learning and Robust Visual Tracking using
Local Features and Global Appearances of Video Objects

bounding box over all frames in each video,

MSE =
1

N

N

∑
t=1

√(
vt

i − vt,GT
i

)2
(26)

where vt
i is the ith parameter of a tracked box at t, vt,GT

i is the ith ground truth parameter at t,
N is the total number of frames in the video.

The Bhattacharyya distance: is defined between the tracked object box and the reference object

box as follows:

d2 =
√

1 − ∑
u

ρ(pu , qu) (27)

where u is the index of histogram bin. Under this criterion, good performance is indicated

by small d2 values. The average Bhattacharyya distance d̄2 is computed by averaging the

Bhattacharyya distances over all frames in each video.

In the first row of Fig.10, we compare the tracking errors for the 3 trackers (the hybrid tracker,

Tracker-1 and Tracker-2), in terms of the Euclidian distance d1 (in (25)) between the tracked box

and the ground truth box as a function of image frames, on the video "face" and "walking

lady". Comparing the results from the two videos, the hybrid tracker has clearly shown better

performance than those from the Tracker-1 and Tracker-2 in these cases. In the 2nd row of

Fig.10, we compare the hybrid tracker and the JMSPF tracker with online learning. Comparing

the results from the two videos, the JMSPF tracker seems better in "ThreePastShop2Cor" and

slightly worse in "walking lady" to that obtained from the hybrid tracker. The performance of

these two methods varies depending on the test videos.

Table 4 shows the tracking errors (the MSEs defined in (26)) for the four trackers: the hybrid

tracker, the JMSPF tracker, Tracker-1, and Tracker-2. Comparing the results in the table, the

hybrid tracker and JMSPF tracker have shown clearly better performance than those from the

two existing Tracker-1 and Tracker-2. Further, the JMSPF tracker is shown to be much better

than that of the hybrid tracker on the video "ThreePastShop2Corthe" and slightly worse on

the video "walking lady".

Video Box Hybrid JMSPF Tracker-1 Tracker-2
Parameters tracker tracker

walking lady x-position 1.6851 2.9454 51.575 19.854

y-position 1.6020 4.7661 66.222 10.357

width w 0.8935 1.0221 4.7926 3.3857

height h 1.1682 2.6063 2.5973 55.973

θ (in radius) 0.0011 0.0047 0.0627 0.0123

ThreePastShop2Cor x-position 2.8815 0.9940 23.835 4.8997

y-position 3.3784 2.7138 37.878 7.6360

width w 1.9675 1.0327 5.8228 2.4200

height h 16.836 2.1415 9.8112 4.3763

θ (in radius) 0.0067 0.0001 0.0023 0.0012

Table 4. Tracking errors, the MSE defined in (26), for 4 different trackers.

Table 5 shows the tracking errors, the average Bhattacharyya distances d2 in (27), for the four

trackers: the hybrid tracker, the JMSPF tracker, Tracker-1 and Tracker-2.

112 Object Tracking

Video Hybrid Tracker JMSPF Tracker Tracker-1 Tracker-2
walking lady 0.2076 0.2652 0.3123 0.3654

OneShopOneWait2Cor 0.1466 0.2037 0.4549 0.5240

ThreePastShop2Cor 0.1580 0.1444 0.3241 0.2861

Pets2006_S7_C4 0.1007 0.2267 0.2473 0.2032

Pets2007_DS5_C1 0.1455 0.2133 0.2840 0.2370

Table 5. Tracking errors, the average Bhattacharyya distances d̄2 in (27), for 4 different

trackers. The smaller the d2, the better the performance.

Fig. 10. Comparison of tracking errors (the Euclidian distance d1 in (25)) on the videos

"ThreePastShop2Cor" (column 1) and "walking lady" (column 2). 1st row: comparison

among 3 trackers: hybrid tracker (red), Tracker-1 (blu) and Tracker-2 (green); 2nd row:

comparison between hybrid tracker (red solid) and JMSPF tracker (blue dash). Noting the

scale difference in vertical axis for "walking lady" in the 2nd column.

8.4 Computational cost
To give an indication on the computational cost, the execution times are recorded for four

tracking methods: the hybrid tracker (summarized in Section 6), Tracker-1, Tracker-2, and

JMSPF tracker (in Section 7). Table 6 shows the average time (in Second) required for tracking

one object in one video frame, where the average is done over all frames in each video.

Noting that tracking time varies dependent on the complexity of video scenes. All these

tracking schemes are implemented by Matlab programs, and run on a PC with a Intel Pentium

Dual 2.00 GHz processor. Observing Table 6 one can see that the hybrid tracker requires

Video Hybrid tracker Tracker-1 Tracker-2 JMSPF tracker

(in sec) (in sec) (in sec) (in sec)

OneShopOneWait2Cor 0.1498 0.0934 0.049 1.4356

ThreePastShop2Cor 0.1501 0.0954 0.053 1.3945

Pets2006_S7_C4 0.1352 0.0935 0.041 1.5423

Pets2007_DS5_C1 0.1489 0.0845 0.050 0.9870

Table 6. Average required time to track a visual object in one video frame, for 4 different

visual trackers. All programs are implemented in Matlab without optimizing the program

codes.

113
Online Learning and Robust Visual Tracking using
Local Features and Global Appearances of Video Objects

more computations as comparing with Tracker-1 or Tracker-2, as the result of combining

baseline trackers, adding online learning and computing the criterion in order to make the

final tracking. Despite this, the hybrid tracker achieves an average tracking speed of 10

frames/second using the Matlab program. One may also observe that the JMSPF tracker

requires rather heavy computations, approximately 10 times of that required by the hybrid

tracker.

8.5 Comparison between the hybrid tracker and the JMSPF tracker
Both tracking schemes, the hybrid tracker (summarized in Section 6) and the JMSPF tracker

(in Section 7) are shown to be very robust in tracking visual objects. Fig.11 shows some

results of tracked video frames (key frames are selected) on 5 videos from these two methods.

Qualitatively evaluation of these tracking results through visual comparisons, both the hybrid

tracker and the JMSPF tracker are shown to be very robust. From the general visual

impression, the JMSPF tracker has a slightly better performance in terms of the tightness

and the accuracy of the bounding box in some frames. For the video "Pets2007_S05_C1",

similar to that in the hybrid tracker, the JMSPF tracker has eventually failed after about 490

frames as the scenes contain too many persons with high frequency of partial occlusions.

Quantitatively evaluations of the performance by comparing d2 values (defined in (27)) in

Table 5 (columns 1 and 2) and d1 values (defined in (25)) in Fig.10 (the right sub-figure), and

comparing the computational speed in Table 6 (columns 1 and 4), show that the hybrid tracker

has slightly smaller (average) d2 values and a much fast computational speed (about 10 times

faster) on the tested videos. While d1 values in the two trackers vary depending on the videos.

Overall, the hybrid tracker seems a more attractive choice, as the tradeoff between the average

performance, tracking robustness and computational speed.

8.6 Limitations
Despite very robust tracking performance from the hybrid tracking scheme, several weak

points are observed from the experiments. (a) If a target object in the video experiences a

long-duration partial occlusions over a large percentage of area (e.g.>60%), then the tracking

performance can be degraded, especially if the visible part is rather smooth and lacks of

local feature points. (b) For images contain a relatively large object, e.g., a face, large pose

changes could potentially cause tracking degradation. This is probably due to the complexity

of face movement (many possible local motions) and the use of pdf as the face appearance

model (that may not be the best choice). Improvement through using object-type-specific

appearance models and feature point correspondences under multiple local motion models

could be considered. (c) When full object occlusion occurs. Although our tests occasionally

contain a few frames of full occlusion, it causes the tracker temporally frozen or tracking

failure, however, the tracking is able to immediately recover or resume tracking soon after the

partial appearance of the object. In principle, full occlusions with a long duration is beyond

the limit of this scheme. The problem may be better tackled by trackers using videos from

multiple cameras.

9. Conclusion

A novel hybrid visual tracking scheme is presented in this chapter, which jointly exploits

local features and global appearances and shape of dynamic objects. The hybrid tracker

is formulated using a criterion function that optimally combines the results from two

baseline trackers: the spatiotemporal SIFT-RANSAC and the enhanced anisotropic mean shift.

114 Object Tracking

Fig. 11. Comparing tracking results from 2 trackers: the hybrid tracker (red solid line box)

and the JMSPF tracker with online learning (green dash line box). From rows 1-5: result

frames (key frames) from videos "walking lady", "OneShopOneWait2Cor",

"ThreePastShop2Cor", "Pets2006_S5_C4" and "Pets2007_DS5_C1".

Online learning of dynamic object is introduced to the global object appearance and local

object feature points separately: For object appearances, online learning of the appearance

distribution of reference object is performed in each fixed-length frame interval where the

ambiguity between the object change and the change due to partial occlusions is addressed.

For object feature points, online maintenance of two feature point sets (foreground and

background) is performed in each video frame, where the background set is used as priors

on the occlusion. It is worth noting that the online maintenance of feature point sets is a key

step for the realization of spatiotemporal SIFT-RANSAC. It is also worth mentioning that the

enhanced mean shift, by allowing the kernel position partially guided by local feature points,

significantly reduces the mean shift sensitivity to similar color distributed background/other

objects.

Experimental results on numerous videos with a range of complexities have shown that

the hybrid tracker has yielded very robust tracking performance. This is especially evident

when tracking objects through complex scenarios, for example, video scenes where the target

object experiences long-term partial occlusions or intersections from other objects, large object

deformations, abrupt motion changes of object, dynamic cluttered background/occluding

objects having similar color distributions to the target object. Results of quantitative and

qualitative evaluations and comparisons of the hybrid tracker and the two existing tracking

methods, (Tracker-1 and Tracker-2), have shown a marked tracking improvement from the

hybrid tracker, in terms of reduced tracking drift and improved tightness of tracked object

bounding box. Comparisons by visual inspecting the tracking results of 3 videos from the

hybrid tracker and from (Adam et al.,06) have shown that both trackers perform rather well

115
Online Learning and Robust Visual Tracking using
Local Features and Global Appearances of Video Objects

more computations as comparing with Tracker-1 or Tracker-2, as the result of combining

baseline trackers, adding online learning and computing the criterion in order to make the

final tracking. Despite this, the hybrid tracker achieves an average tracking speed of 10

frames/second using the Matlab program. One may also observe that the JMSPF tracker

requires rather heavy computations, approximately 10 times of that required by the hybrid

tracker.

8.5 Comparison between the hybrid tracker and the JMSPF tracker
Both tracking schemes, the hybrid tracker (summarized in Section 6) and the JMSPF tracker

(in Section 7) are shown to be very robust in tracking visual objects. Fig.11 shows some

results of tracked video frames (key frames are selected) on 5 videos from these two methods.

Qualitatively evaluation of these tracking results through visual comparisons, both the hybrid

tracker and the JMSPF tracker are shown to be very robust. From the general visual

impression, the JMSPF tracker has a slightly better performance in terms of the tightness

and the accuracy of the bounding box in some frames. For the video "Pets2007_S05_C1",

similar to that in the hybrid tracker, the JMSPF tracker has eventually failed after about 490

frames as the scenes contain too many persons with high frequency of partial occlusions.

Quantitatively evaluations of the performance by comparing d2 values (defined in (27)) in

Table 5 (columns 1 and 2) and d1 values (defined in (25)) in Fig.10 (the right sub-figure), and

comparing the computational speed in Table 6 (columns 1 and 4), show that the hybrid tracker

has slightly smaller (average) d2 values and a much fast computational speed (about 10 times

faster) on the tested videos. While d1 values in the two trackers vary depending on the videos.

Overall, the hybrid tracker seems a more attractive choice, as the tradeoff between the average

performance, tracking robustness and computational speed.

8.6 Limitations
Despite very robust tracking performance from the hybrid tracking scheme, several weak

points are observed from the experiments. (a) If a target object in the video experiences a

long-duration partial occlusions over a large percentage of area (e.g.>60%), then the tracking

performance can be degraded, especially if the visible part is rather smooth and lacks of

local feature points. (b) For images contain a relatively large object, e.g., a face, large pose

changes could potentially cause tracking degradation. This is probably due to the complexity

of face movement (many possible local motions) and the use of pdf as the face appearance

model (that may not be the best choice). Improvement through using object-type-specific

appearance models and feature point correspondences under multiple local motion models

could be considered. (c) When full object occlusion occurs. Although our tests occasionally

contain a few frames of full occlusion, it causes the tracker temporally frozen or tracking

failure, however, the tracking is able to immediately recover or resume tracking soon after the

partial appearance of the object. In principle, full occlusions with a long duration is beyond

the limit of this scheme. The problem may be better tackled by trackers using videos from

multiple cameras.

9. Conclusion

A novel hybrid visual tracking scheme is presented in this chapter, which jointly exploits

local features and global appearances and shape of dynamic objects. The hybrid tracker

is formulated using a criterion function that optimally combines the results from two

baseline trackers: the spatiotemporal SIFT-RANSAC and the enhanced anisotropic mean shift.

114 Object Tracking

Fig. 11. Comparing tracking results from 2 trackers: the hybrid tracker (red solid line box)

and the JMSPF tracker with online learning (green dash line box). From rows 1-5: result

frames (key frames) from videos "walking lady", "OneShopOneWait2Cor",

"ThreePastShop2Cor", "Pets2006_S5_C4" and "Pets2007_DS5_C1".

Online learning of dynamic object is introduced to the global object appearance and local

object feature points separately: For object appearances, online learning of the appearance

distribution of reference object is performed in each fixed-length frame interval where the

ambiguity between the object change and the change due to partial occlusions is addressed.

For object feature points, online maintenance of two feature point sets (foreground and

background) is performed in each video frame, where the background set is used as priors

on the occlusion. It is worth noting that the online maintenance of feature point sets is a key

step for the realization of spatiotemporal SIFT-RANSAC. It is also worth mentioning that the

enhanced mean shift, by allowing the kernel position partially guided by local feature points,

significantly reduces the mean shift sensitivity to similar color distributed background/other

objects.

Experimental results on numerous videos with a range of complexities have shown that

the hybrid tracker has yielded very robust tracking performance. This is especially evident

when tracking objects through complex scenarios, for example, video scenes where the target

object experiences long-term partial occlusions or intersections from other objects, large object

deformations, abrupt motion changes of object, dynamic cluttered background/occluding

objects having similar color distributions to the target object. Results of quantitative and

qualitative evaluations and comparisons of the hybrid tracker and the two existing tracking

methods, (Tracker-1 and Tracker-2), have shown a marked tracking improvement from the

hybrid tracker, in terms of reduced tracking drift and improved tightness of tracked object

bounding box. Comparisons by visual inspecting the tracking results of 3 videos from the

hybrid tracker and from (Adam et al.,06) have shown that both trackers perform rather well

115
Online Learning and Robust Visual Tracking using
Local Features and Global Appearances of Video Objects

in these cases. Further comparisons on complex video scenarios requires to run the program

from (Adam et al.,06) and hence not performed. Comparisons of the hybrid tracker and the

JMSPF tracker with online learning (in Section 7) have shown that latter has rather similar

however occasionally slightly better performance but at the cost of significantly increase in

computations (approximately 10 times). Comparisons of hybrid tracker with and without

online learning have shown that adding online learning has significantly reduced the tracking

drift especially for long video sequences. Overall, the hybrid tracking scheme is shown to

be very robust and yielded marked improvements over the existing trackers (Tracker-1 and

Tracker-2). Comparing with the JMSPF tracker, the hybrid tracker provides a better tradeoff

between the tracking robustness and tracking speed (≈ 10 frames/second in our Matlab

program).

10. References

[Adam et al.,06] Adam A, Rivlin E, Shimshoni I (2006), "Robust Fragments-based Tracking

using the Integral Histogram", vol.1, pp.798-805, in Proc.IEEE int’l conf CVPR.

[Bay et al.,06] Bay H., Tuytelaars T. & Gool L.V.(2006), "SURF: Speeded Up Robust Features",

in proc. European conf. ECCV, pp.404-417.

[Bauer et al.,07] Bauer J, Sunderhauf N & Protzel P (2007), "Comparing Several

Implementations of Two Recently Published Feature Detectors", in proc. Int’l Conf.
Intelligent and Autonomous Systems, Toulouse, France.

[Bar-Shalom & Fortmann,98] Bar-Shalom Y. and Fortmann T. (1998), Tracking and Data

Association. New York: Academic.

[Battiato et al.,07] Battiato S., Gallo G., Puglisi G. & Scellato S. (2007), "SIFT Features Tracking

for Video Stabilization", in Proc of Int’l Conf Image Analysis and Processing, pp. 825-830.

[Bretzner & Lindeberg,98] Bretzner L. & Lindeberg T. (1998), "Feature Tracking with

Automatic Selection of Spatial Scales", in proc. Comp. Vision and Image Understanding,

vol. 71, pp. 385-392.

[CAVIAR Dataset] http://groups.inf.ed.ac.uk/vision/CAVIAR/CAVIARDATA1/

[Chen et al.,08] Chen A, Zhu M, Wang Y & Xue C. (2008), "Mean shift tracking combining

SIFT", in proc. Int’l conf. Audio, Language and Image Proc., pp.1532-1535.

[Cootes et al.,01] Cootes TF, Edwards GJ, Taylor CJ (2001), "Active appearance models", IEEE
trans. TPAMI, vol.23, no.6, pp.681Ű685.

[Collins,03] Collins R.T.(2003), "Mean-shift blob tracking through scale space", in proc. IEEE
Int’l conf. CVPR’03, vol. 2, pp. 234-240.

[Comaniciu et al.,03] Comaniciu D., Ramesh V. & Meer P. (2003), "Kernel-based object

tracking", IEEE Trans Pattern Analysis and Machine Intelligence, Vol.5, pp.564-577.

[Deguchi et al.,04] Deguchi K., Kawanaka O. & Okatani T. (2004), "Object tracking by the

mean-shift of regional color distribution combined with the particle-filter algorithm",

in proc. Int’l conf. ICPR, vol. 3, pp. 506-509.

[Fischler & Bolles,81] Fischler MA & Bolles RC (1981), "Random sample consensus: a

paradigm for model fitting with applications to image analysis and automated

cartographys", in Communications of the ACM, vol. 24, pp. 381-395.

[Gordon et al.,01] Gordon N.J., Doucet A. and Freitas N.D. (2001), "Sequential Monte Carlo

Methods in Practice", New York: Springer.

[Gordon,00] Gordon N.J., Doucet A. and de Freitas N. (2000), "On sequential monte carlo

sampling methods for Bayesian filtering", Statistics and Computing, vol. 10, pp. 197-208.

116 Object Tracking

[Haner & Gu,10] Haner S and Gu IYH (2010), "Combining Foreground / Background Feature

Points and Anisotropic Mean Shift For Enhanced Visual Object Tracking", in proc. IEEE
Int’l conf. ICPR, 23-26 August, Istanbul, Turkey.

[Harris & Stephens,88] Harris C. & Stephens M.(1988), "A Combined Corner and Edge

Detector", in Proc. 4th Alvey Vision Conf., Manchester, pp.147-151.

[Hager et al.,04] Hager G.D., Dewan M., Stewart C.V. (2004), ŤMultiple Kernel Tracking with

SSD,Ť vol. 1, pp.790-797, in proc. IEEE Int’l conf. CVPR’04.

[Khan & Gu,10] Khan, Z.H.; Gu, I.Y.H.(2010), "Joint Feature Correspondences and

Appearance Similarity for Robust Visual Object Tracking", IEEE Trans. Information
Forensics and Security, Vol.5, No. 3, pp. 591-606.

[Khan et al.,09] Khan ZH, Gu IYH, Backhouse AG (2010), "Robust Visual Object Tracking

using Multi-Mode Anisotropic Mean Shift and Particle Filters", to appear, IEEE trans.

Circuits and Systems for Video Technology.

[Khalid et al.,05] Khalid M.S., Ilyas M.U., Mahmoo K., Sarfaraz M.S., Malik M.B.(2005),

"Kullback-Leiber divergence measure in correlation of gray-scale objects", in Proc. 2nd
IntŠl conf. on innovations in Information Technology (IIT05).

[Li et al,06] Li. Y., Yang J., Wu R. & Gong F. (2006), "Efficient Object Tracking Based on Local

Invariant Features", in Proc. of Int. Symposium on Comm. and Information Technologies
(ISCIT), pp. 697-700.

[Li et al.,08] Li L, Huang W, Gu IYH, Luo R & Tian Q (2008), "An efficient sequential approach

to tracking multiple objects through crowds for real-time intelligent CCTV systems",

IEEE trans. Systems, Man and Cybernetics, part B, vol.38, No.5, pp.1254-1269.

[Lim et al.,04] Lim J, Ross D,Lin R-S, Yang M-H (2004), "Incremental learning for visual

tracking", in Proc. Int’l conf NIPS.

[Lowe,04] Lowe D.G (2004), "Distinctive Image Features from Scale-Invariant Keypoints", Int.
Journal of Computer Vision, vol.60, pp. 91-110.

[Maggio & Cavallaro,05] Maggio E. & Cavallaro A. (2005), "Multi-part target representation

for colortracking", in proc. IEEE Int’l conf. ICIP, pp.729-732.

[Mondragon wt al.,07] Mondragon I.F., Campoy P., Correa J. F. , & Mejias L.(2007), "Visual

Model Feature Tracking For UAV Control", in Proc. Int’l Symposium Intelligent Signal
Processing, pp.1-6.

[Okuma et al.,04] Okuma K., Taleghani A., Freitas N., Little J.J. & Lowe D.G. (2004), "A

boosted particle filter: multitarget detection and tracking", in Proc. Int’l conf. ECCV,

pp.28-39.

[PETS2006] http://www.cvg.rdg.ac.uk/PETS2006/data.html

[PETS2007] http://pets2007.net/

[Parameswaran et al.,07] Parameswaran V, Ramesh V & Zoghlami I (2006), "Tunable kernels

for racking", in proc. IEEE Int’l Conf. CVPR, pp.2179-2186.

[Reid,79] Reid D.B. (1979), "An algorithm for tracking multiple targets", IEEE Trans. Autom.
Control, vol. 24, no. 2, pp. 843-854.

[Rosales & Sclaroff,99] Rosales R. and Sclaroff S. (1999), "3D trajectory recovery for tracking

multiple objects and trajectory guided recognition of actions", in proc. IEEE Int’l Conf.
CVPR, pp. 117-123.

[Sankaranarayanan et al.,08] Sankaranarayanan A.C., Veeraraghavan A., Chellappa R. (2008),

"Object Detection, Tracking and Recognition for Multiple Smart Cameras", Proc. of the
IEEE, Vol.96, No.10, pp. 1606-1624.

117
Online Learning and Robust Visual Tracking using
Local Features and Global Appearances of Video Objects

in these cases. Further comparisons on complex video scenarios requires to run the program

from (Adam et al.,06) and hence not performed. Comparisons of the hybrid tracker and the

JMSPF tracker with online learning (in Section 7) have shown that latter has rather similar

however occasionally slightly better performance but at the cost of significantly increase in

computations (approximately 10 times). Comparisons of hybrid tracker with and without

online learning have shown that adding online learning has significantly reduced the tracking

drift especially for long video sequences. Overall, the hybrid tracking scheme is shown to

be very robust and yielded marked improvements over the existing trackers (Tracker-1 and

Tracker-2). Comparing with the JMSPF tracker, the hybrid tracker provides a better tradeoff

between the tracking robustness and tracking speed (≈ 10 frames/second in our Matlab

program).

10. References

[Adam et al.,06] Adam A, Rivlin E, Shimshoni I (2006), "Robust Fragments-based Tracking

using the Integral Histogram", vol.1, pp.798-805, in Proc.IEEE int’l conf CVPR.

[Bay et al.,06] Bay H., Tuytelaars T. & Gool L.V.(2006), "SURF: Speeded Up Robust Features",

in proc. European conf. ECCV, pp.404-417.

[Bauer et al.,07] Bauer J, Sunderhauf N & Protzel P (2007), "Comparing Several

Implementations of Two Recently Published Feature Detectors", in proc. Int’l Conf.
Intelligent and Autonomous Systems, Toulouse, France.

[Bar-Shalom & Fortmann,98] Bar-Shalom Y. and Fortmann T. (1998), Tracking and Data

Association. New York: Academic.

[Battiato et al.,07] Battiato S., Gallo G., Puglisi G. & Scellato S. (2007), "SIFT Features Tracking

for Video Stabilization", in Proc of Int’l Conf Image Analysis and Processing, pp. 825-830.

[Bretzner & Lindeberg,98] Bretzner L. & Lindeberg T. (1998), "Feature Tracking with

Automatic Selection of Spatial Scales", in proc. Comp. Vision and Image Understanding,

vol. 71, pp. 385-392.

[CAVIAR Dataset] http://groups.inf.ed.ac.uk/vision/CAVIAR/CAVIARDATA1/

[Chen et al.,08] Chen A, Zhu M, Wang Y & Xue C. (2008), "Mean shift tracking combining

SIFT", in proc. Int’l conf. Audio, Language and Image Proc., pp.1532-1535.

[Cootes et al.,01] Cootes TF, Edwards GJ, Taylor CJ (2001), "Active appearance models", IEEE
trans. TPAMI, vol.23, no.6, pp.681Ű685.

[Collins,03] Collins R.T.(2003), "Mean-shift blob tracking through scale space", in proc. IEEE
Int’l conf. CVPR’03, vol. 2, pp. 234-240.

[Comaniciu et al.,03] Comaniciu D., Ramesh V. & Meer P. (2003), "Kernel-based object

tracking", IEEE Trans Pattern Analysis and Machine Intelligence, Vol.5, pp.564-577.

[Deguchi et al.,04] Deguchi K., Kawanaka O. & Okatani T. (2004), "Object tracking by the

mean-shift of regional color distribution combined with the particle-filter algorithm",

in proc. Int’l conf. ICPR, vol. 3, pp. 506-509.

[Fischler & Bolles,81] Fischler MA & Bolles RC (1981), "Random sample consensus: a

paradigm for model fitting with applications to image analysis and automated

cartographys", in Communications of the ACM, vol. 24, pp. 381-395.

[Gordon et al.,01] Gordon N.J., Doucet A. and Freitas N.D. (2001), "Sequential Monte Carlo

Methods in Practice", New York: Springer.

[Gordon,00] Gordon N.J., Doucet A. and de Freitas N. (2000), "On sequential monte carlo

sampling methods for Bayesian filtering", Statistics and Computing, vol. 10, pp. 197-208.

116 Object Tracking

[Haner & Gu,10] Haner S and Gu IYH (2010), "Combining Foreground / Background Feature

Points and Anisotropic Mean Shift For Enhanced Visual Object Tracking", in proc. IEEE
Int’l conf. ICPR, 23-26 August, Istanbul, Turkey.

[Harris & Stephens,88] Harris C. & Stephens M.(1988), "A Combined Corner and Edge

Detector", in Proc. 4th Alvey Vision Conf., Manchester, pp.147-151.

[Hager et al.,04] Hager G.D., Dewan M., Stewart C.V. (2004), ŤMultiple Kernel Tracking with

SSD,Ť vol. 1, pp.790-797, in proc. IEEE Int’l conf. CVPR’04.

[Khan & Gu,10] Khan, Z.H.; Gu, I.Y.H.(2010), "Joint Feature Correspondences and

Appearance Similarity for Robust Visual Object Tracking", IEEE Trans. Information
Forensics and Security, Vol.5, No. 3, pp. 591-606.

[Khan et al.,09] Khan ZH, Gu IYH, Backhouse AG (2010), "Robust Visual Object Tracking

using Multi-Mode Anisotropic Mean Shift and Particle Filters", to appear, IEEE trans.

Circuits and Systems for Video Technology.

[Khalid et al.,05] Khalid M.S., Ilyas M.U., Mahmoo K., Sarfaraz M.S., Malik M.B.(2005),

"Kullback-Leiber divergence measure in correlation of gray-scale objects", in Proc. 2nd
IntŠl conf. on innovations in Information Technology (IIT05).

[Li et al,06] Li. Y., Yang J., Wu R. & Gong F. (2006), "Efficient Object Tracking Based on Local

Invariant Features", in Proc. of Int. Symposium on Comm. and Information Technologies
(ISCIT), pp. 697-700.

[Li et al.,08] Li L, Huang W, Gu IYH, Luo R & Tian Q (2008), "An efficient sequential approach

to tracking multiple objects through crowds for real-time intelligent CCTV systems",

IEEE trans. Systems, Man and Cybernetics, part B, vol.38, No.5, pp.1254-1269.

[Lim et al.,04] Lim J, Ross D,Lin R-S, Yang M-H (2004), "Incremental learning for visual

tracking", in Proc. Int’l conf NIPS.

[Lowe,04] Lowe D.G (2004), "Distinctive Image Features from Scale-Invariant Keypoints", Int.
Journal of Computer Vision, vol.60, pp. 91-110.

[Maggio & Cavallaro,05] Maggio E. & Cavallaro A. (2005), "Multi-part target representation

for colortracking", in proc. IEEE Int’l conf. ICIP, pp.729-732.

[Mondragon wt al.,07] Mondragon I.F., Campoy P., Correa J. F. , & Mejias L.(2007), "Visual

Model Feature Tracking For UAV Control", in Proc. Int’l Symposium Intelligent Signal
Processing, pp.1-6.

[Okuma et al.,04] Okuma K., Taleghani A., Freitas N., Little J.J. & Lowe D.G. (2004), "A

boosted particle filter: multitarget detection and tracking", in Proc. Int’l conf. ECCV,

pp.28-39.

[PETS2006] http://www.cvg.rdg.ac.uk/PETS2006/data.html

[PETS2007] http://pets2007.net/

[Parameswaran et al.,07] Parameswaran V, Ramesh V & Zoghlami I (2006), "Tunable kernels

for racking", in proc. IEEE Int’l Conf. CVPR, pp.2179-2186.

[Reid,79] Reid D.B. (1979), "An algorithm for tracking multiple targets", IEEE Trans. Autom.
Control, vol. 24, no. 2, pp. 843-854.

[Rosales & Sclaroff,99] Rosales R. and Sclaroff S. (1999), "3D trajectory recovery for tracking

multiple objects and trajectory guided recognition of actions", in proc. IEEE Int’l Conf.
CVPR, pp. 117-123.

[Sankaranarayanan et al.,08] Sankaranarayanan A.C., Veeraraghavan A., Chellappa R. (2008),

"Object Detection, Tracking and Recognition for Multiple Smart Cameras", Proc. of the
IEEE, Vol.96, No.10, pp. 1606-1624.

117
Online Learning and Robust Visual Tracking using
Local Features and Global Appearances of Video Objects

[Shi & Tomasi,94] Shi J. & Tomasi C. (2008), "Good features to track", in proc. IEEE Int’l conf.
CVPR, pp. 593-600.

[Strandmark & Gu,09] Strandmark P. & Gu I.Y.H. (2009), "Joint Random Sample Consensus

and Multiple Motion Models for Robust Video Tracking", in Springer LNCS Vol. 5575,

pp. 450-459.

[Skrypnyk & Lowe,04] Skrypnyk I.& Lowe D.G.(2004), "Scene modelling, recognition and

tracking with invariant image features", in Proc. Int. Symposium Mixed and Augmented
Reality (ISMAR), pp. 110-119, 2004.

[Sumin & Xianwu,08] Sumin Q. & Xianwu H. (2008), "Hand tracking and gesture gecogniton

by anisotropic kernel mean shift", in proc. IEEE Int’l. conf. NNSP, vol. 25, pp. 581-585.

[Vermaak et al.,03] Vermaak J., Doucet A., Perez P. (2003), "Maintaining multimodality

through mixture tracking", in Proc. IEEE Int’l conf. ICCV, pp.1110-1116.

[Wang et al.,07] Wang T, Gu IYH, Shi P (2007), "Object tracking using incremental 2D-PCA

learning and ML estimation", in proc. IEEE int’l conf. ICASSP.

[Wang et al.,08] Wang T., Backhouse A.G., & Gu I.Y.H. (2008), "Online subspace learning

on Grassmann manifold for moving object tracking in video", in proc.IEEE int’l conf.
ICASSP.

[Wang et al.,08] Wang T., Gu I.Y.H., Backhouse A.G. and Shi P. (2008), "Face Tracking Using

Rao-Blackwellized Particle Filter and Pose-Dependent Probabilistic PCA", in proc. IEEE
int’l conf ICIP, San Diego, USA, Oct. 12-15.

[Welch & Bishop,97] Welch G. and Bishop G. (1997), "Scaat: incremental tracking with

incomplete information", in proc. 24th Annual Conf. Comp. Graphics & Interactive
Techniques.

[Wu et al.,08] Wu P, Kong L, Zhao F & Li X(2008), "Particle filter tracking based on color and

SIFT features", in Proc. IEEE int’l conf Audio, Language and Image Processing, pp. 932-937.

[Xu et al,08] Tu Q., Xu Y., & Zhou M. (2008), "Robust vehicle tracking based on Scale Invariant

Feature Transform", in proc. Int. Conf. Information and Automation (ICIA), pp. 86-90.

[Xu et al.,05] Xu D, Wang Y & An J (2005), "Applying a new spatial color histogram in

mean-shift based tracking algorithm", in proc. Int’l conf. Image and Vision Comp. New

Zealand.

[Yang et al.,04] Yang J, Zhang D, Frangi AF, Yang J-Y (2004), "Two-dimensional PCA: a new

approach to appearance-based face representation and recognition", IEEE Trans. PAMI,
vol.26, no.1, pp.131-137.

[Yilmaz,07] Yilmaz A., "Object tracking by asymmetric kernel mean shift with automatic scale

and orientation selection", in Proc. IEEE conf. CVPR’07.

[Yilmaz et al.,06] Yilmaz A., Javed O. and Shah M.(2006), "Object tracking: A survey", ACM
Computing Surveys, vol. 38, no. 4.

[Zhao et al.,08] Zhao C, Knight A & Reid I (2008), "Target tracking using mean-shift and affine

structure", in Proc. IEEE Int’l conf. ICPR, pp.1-5.

[Zhou et al.,08] Zhou H., Yuan Y., Shi C.(2008), "Kernel-Based method for tracking objects

with rotation and translation", Int. Journal Computer Vision.

[Zivkovic & Krose,04] Zivkovic Z. & Krose B. (2004), "An EM-like algorithm for

color-histogram-based object tracking", in proc. IEEE Int’l conf. CVPR, vol.1, pp.

I-798-808.

118 Object Tracking

Junqiu Wang and Yasushi Yagi
Osaka University

Japan

1. Introduction

Object tracking in video sequences is challenging under uncontrolled conditions. Tracking
algorithms have to estimate the states of the targets when variations of background and
foreground exist, occlusions happen, or appearance contrast becomes low. Trackers need
to be efficient and can track variant targets. Target representation, similarity measure and
localization strategy are essential components of most trackers. The selection of components
leads to different tracking performance.
The mean-shift algorithm Comaniciu et al. (2003) is a non-parametric density gradient
estimator which finds local maxima of a similarity measure between the color histograms
(or kernel density estimations) of the model and the candidates in the image. The mean-shift
algorithm is very fast due to its searching strategy. However, it is prone to failure in detecting
the target when the motion of the target is large or when occlusions exist since only local
searching is carried out.
The covariance tracker Porikli et al. (2006) represents targets using covariance matrices. The
covariance matrices fuse multiple features in a natural way. They capture both spatial and
statistical properties of objects using a low dimensional representation. To localize targets,
the covariance tracker searches all the regions; and the region with the highest similarity
to the target model is taken as the estimation result. The covariance tracker does not make
any assumption on the motion. It can compare any regions without being restricted to a
constant window size. Unfortunately, the Riemannian metrics adopted in Porikli et al. (2006)
are complicated and expensive. Since it uses a global searching strategy, it has to compute
distances between the covariance matrices of the model and all candidate regions. Although
an integral image based algorithm that requires constant time is proposed to improve the
speed, it is still not quick enough for real time tracking. It is difficult for the covariance tracker
to track articulated objects since computing covariance matrices for articulated objects is very
expensive.
In this work, we propose a tracking strategy that switches between local tracking and global
covariance tracking. The switching criteria are determined by the tracking condition. Local
tracking is carried out when the target does not have large motion. When large motion or
occlusions happen, covariance tracking is adopted to deal with the issue. The switching
between local and covariance matching makes the tracking efficient. Moreover, it can deal
with sudden motions, distractions, and occlusions in an elegant way. We compute covariance

Switching Local and Covariance Matching
for Efficient Object Tracking

6

[Shi & Tomasi,94] Shi J. & Tomasi C. (2008), "Good features to track", in proc. IEEE Int’l conf.
CVPR, pp. 593-600.

[Strandmark & Gu,09] Strandmark P. & Gu I.Y.H. (2009), "Joint Random Sample Consensus

and Multiple Motion Models for Robust Video Tracking", in Springer LNCS Vol. 5575,

pp. 450-459.

[Skrypnyk & Lowe,04] Skrypnyk I.& Lowe D.G.(2004), "Scene modelling, recognition and

tracking with invariant image features", in Proc. Int. Symposium Mixed and Augmented
Reality (ISMAR), pp. 110-119, 2004.

[Sumin & Xianwu,08] Sumin Q. & Xianwu H. (2008), "Hand tracking and gesture gecogniton

by anisotropic kernel mean shift", in proc. IEEE Int’l. conf. NNSP, vol. 25, pp. 581-585.

[Vermaak et al.,03] Vermaak J., Doucet A., Perez P. (2003), "Maintaining multimodality

through mixture tracking", in Proc. IEEE Int’l conf. ICCV, pp.1110-1116.

[Wang et al.,07] Wang T, Gu IYH, Shi P (2007), "Object tracking using incremental 2D-PCA

learning and ML estimation", in proc. IEEE int’l conf. ICASSP.

[Wang et al.,08] Wang T., Backhouse A.G., & Gu I.Y.H. (2008), "Online subspace learning

on Grassmann manifold for moving object tracking in video", in proc.IEEE int’l conf.
ICASSP.

[Wang et al.,08] Wang T., Gu I.Y.H., Backhouse A.G. and Shi P. (2008), "Face Tracking Using

Rao-Blackwellized Particle Filter and Pose-Dependent Probabilistic PCA", in proc. IEEE
int’l conf ICIP, San Diego, USA, Oct. 12-15.

[Welch & Bishop,97] Welch G. and Bishop G. (1997), "Scaat: incremental tracking with

incomplete information", in proc. 24th Annual Conf. Comp. Graphics & Interactive
Techniques.

[Wu et al.,08] Wu P, Kong L, Zhao F & Li X(2008), "Particle filter tracking based on color and

SIFT features", in Proc. IEEE int’l conf Audio, Language and Image Processing, pp. 932-937.

[Xu et al,08] Tu Q., Xu Y., & Zhou M. (2008), "Robust vehicle tracking based on Scale Invariant

Feature Transform", in proc. Int. Conf. Information and Automation (ICIA), pp. 86-90.

[Xu et al.,05] Xu D, Wang Y & An J (2005), "Applying a new spatial color histogram in

mean-shift based tracking algorithm", in proc. Int’l conf. Image and Vision Comp. New

Zealand.

[Yang et al.,04] Yang J, Zhang D, Frangi AF, Yang J-Y (2004), "Two-dimensional PCA: a new

approach to appearance-based face representation and recognition", IEEE Trans. PAMI,
vol.26, no.1, pp.131-137.

[Yilmaz,07] Yilmaz A., "Object tracking by asymmetric kernel mean shift with automatic scale

and orientation selection", in Proc. IEEE conf. CVPR’07.

[Yilmaz et al.,06] Yilmaz A., Javed O. and Shah M.(2006), "Object tracking: A survey", ACM
Computing Surveys, vol. 38, no. 4.

[Zhao et al.,08] Zhao C, Knight A & Reid I (2008), "Target tracking using mean-shift and affine

structure", in Proc. IEEE Int’l conf. ICPR, pp.1-5.

[Zhou et al.,08] Zhou H., Yuan Y., Shi C.(2008), "Kernel-Based method for tracking objects

with rotation and translation", Int. Journal Computer Vision.

[Zivkovic & Krose,04] Zivkovic Z. & Krose B. (2004), "An EM-like algorithm for

color-histogram-based object tracking", in proc. IEEE Int’l conf. CVPR, vol.1, pp.

I-798-808.

118 Object Tracking

Junqiu Wang and Yasushi Yagi
Osaka University

Japan

1. Introduction

Object tracking in video sequences is challenging under uncontrolled conditions. Tracking
algorithms have to estimate the states of the targets when variations of background and
foreground exist, occlusions happen, or appearance contrast becomes low. Trackers need
to be efficient and can track variant targets. Target representation, similarity measure and
localization strategy are essential components of most trackers. The selection of components
leads to different tracking performance.
The mean-shift algorithm Comaniciu et al. (2003) is a non-parametric density gradient
estimator which finds local maxima of a similarity measure between the color histograms
(or kernel density estimations) of the model and the candidates in the image. The mean-shift
algorithm is very fast due to its searching strategy. However, it is prone to failure in detecting
the target when the motion of the target is large or when occlusions exist since only local
searching is carried out.
The covariance tracker Porikli et al. (2006) represents targets using covariance matrices. The
covariance matrices fuse multiple features in a natural way. They capture both spatial and
statistical properties of objects using a low dimensional representation. To localize targets,
the covariance tracker searches all the regions; and the region with the highest similarity
to the target model is taken as the estimation result. The covariance tracker does not make
any assumption on the motion. It can compare any regions without being restricted to a
constant window size. Unfortunately, the Riemannian metrics adopted in Porikli et al. (2006)
are complicated and expensive. Since it uses a global searching strategy, it has to compute
distances between the covariance matrices of the model and all candidate regions. Although
an integral image based algorithm that requires constant time is proposed to improve the
speed, it is still not quick enough for real time tracking. It is difficult for the covariance tracker
to track articulated objects since computing covariance matrices for articulated objects is very
expensive.
In this work, we propose a tracking strategy that switches between local tracking and global
covariance tracking. The switching criteria are determined by the tracking condition. Local
tracking is carried out when the target does not have large motion. When large motion or
occlusions happen, covariance tracking is adopted to deal with the issue. The switching
between local and covariance matching makes the tracking efficient. Moreover, it can deal
with sudden motions, distractions, and occlusions in an elegant way. We compute covariance

Switching Local and Covariance Matching
for Efficient Object Tracking

6

matrices only on those pixels that are classified as foreground. Therefore we can track
articulated objects.
To speed up the global searching process, we use Log-Euclidean metrics Arsigny et al. (2005)
instead of the Riemannian invariant metrics Pennec et al. (2006); Porikli et al. (2006) to measure
the similarity between covariance matrices. The model update in covariance tracking Porikli
et al. (2006) is also expensive. We update the model by computing the geometric mean of
covariance matrices based on Log-Euclidean metrics. The computation is simply Euclidean in
the logarithmic domain, which reduces the computational costs. The final geometric mean is
computed by mapping back to the Riemannian domain with the exponential. Log-Euclidean
metrics provide results similar to their Riemannian affine invariant equivalent but takes much
less time.
We arrange this chapter as follows. After a brief review of previous works in Section 2, we
introduce the local tracking method based on foreground likelihood computation in Section
3. In specific, we discuss target representation for local tracking using color and shape texture
information in Section 3.1; we describe our feature selection for local tracking in Section 3.2,
and our target localization strategy for local tracking in Section 3.3. In Section 4, we apply
Log-Euclidean metric in covariance tracking. We introduce a few basic concepts that are
important for our covariance matching in Section 4.1. The extended covariance matching
method using Log-Euclidean metric is described in Section 4.2. In Section 5, we give the
switching criteria for the local and global tracking. Experimental results are given in Section
6. Section 7 concludes the paper.

2. Related work

Many tracking algorithms assume that target motion is continuous. Given this assumption,
we can apply local tracking algorithms Comaniciu et al. (2003); Isard & Blake (1998); Wang &
Yagi (2008b). In the local tracking algorithms, the mean-shift algorithm Comaniciu et al. (2003)
aims at searching for a peak position using density gradient estimation, whereas particle
filtering techniques Isard & Blake (1998); Rathi et al. (2005); Wang & Yagi (2009); Zhao et al.
(2008); Zhou et al. (2006) use a dynamic model to guide the particle propagation within a
limited sub-space of target state. Particle filtering tracking algorithms have certain robustness
against sudden motions. The mean-shift algorithm can deal with partial occlusions.
Tracking can be formulated as template matching Hager & Belhumeur (1998). A target is
characterized by a template that can be parametric or non-parametric. The task of a template
matching tracking is to find the region that is the most similar to the template. Template
matching techniques do not require the continuous motion assumption. Therefore, it is
possible to handle occlusions and sudden motions. We will introduce local tracking and
global matching techniques. The objective of our algorithm in this chapter it to combine the
advantages of the local and global matching techniques.

2.1 Local tracking
There are many local tracking methods. Tracking was treated as a binary classification
problem in previous works. An adaptive discriminative generative model was suggested in
Lin et al. (2004) by evaluating the discriminative ability of the object from the foreground using
a Fisher Linear Discriminant function. Fisher Linear Discriminant function was also using in
Nguyen & Smeulders (2006) to provide good discrimination. Comaniciu et al. Comaniciu et al.
(2003) take of the advantage of this method to their mean-shift algorithm, where colors that
appear on the object are down weighted by colors that appear in the background. Collins et

120 Object Tracking

al. Collins & Liu (2005) explicitly treat tracking as a binary classification problem. They apply
mean-shift algorithm using discriminative features selected by two online discriminative
evaluation methods (Variance ration and peak difference). Avidan Avidan (2007) proposes
ensemble tracking that updates a collection of weak classifiers. The Collection of weak
classifiers are assembled to make a strong classifier, which separates the foreground object
from the background. The weak classifiers are maintained by adding or removing at any time
to deal with appearance variations.
Temporal integration methods include particle filtering to properly integrate measurements
over time. The WSL tracking that maintains short-term and long term

2.2 Exhaustive matching
Describing a target by one or many templates, tracking can be formulated as exhaustive
searching. A target represented by its whole appearance can be matched with each region
in the input image by comparing the Sum of Squared Distances (SSD). Template using
SSD matching is not flexible because it is sensitive to viewpoint, illumination changes. To
deal with these problems, histograms are employed for characterizing targets. Histogram
representation is extended to a spatiogram-based tracking algorithm Birchfield & Rangarajan
(2005), which makes use of spatial information in addition to color information. A histogram
contains many bins which are spatially weighted by the mean and covariance of the location
of the pixels that contribute to that bin. Since the target is presented by one histogram, the
tracking is not reliable when occlusion exist. The computational cost is also high due to the
exhaustive matching. Tuzel et al. Tuzel et al. (2006) introduce covariance matrix to describe the
target. This descriptor contains appearance and spatial information. The target localization
process is formulated as an expensive exhaustive searching. Moreover, the similarity measure
in Tuzel et al. (2006) is adopted from Pennec et al. (2006), which is an affine invariant metric.
The affine invariant metric used in Tuzel et al. (2006) is computationally expensive.

3. Local tracking

3.1 Target representation for local tracking
The local tracking is performed based on foreground likelihood. The foreground likelihood
is computed using the selected discriminative color and shape-texture features Wang &
Yagi (2008a). The target is localized using mean-shift local mode seeking on the integrated
foreground likelihood image.
We represent a target using color and shape-texture information. Color information is
important because of its simplicity and discriminative ability. Color information only is not
always sufficiently discriminative. Shape-texture information is helpful for separating a target
and its background. Therefore, the target representation for our local tracking consists of color
and shape-texture features.

3.1.1 Multiple Color Channels
We represent color distributions on a target and its background using color histograms. We
select several color channels from different color spaces. Among them, we compute color
histograms for the R, G, and B channels in the RGB space; the H, S, and V channels in the HSV
space. Different from the approach in Wang & Yagi (2008a), we do not use the r and g channels
in the normalized rg space because they are found not discriminative in many sequences.
Although the r and g channels have good invariant ability to illumination changes, the gain
from this advantage is not very important in our approach since we use global matching and

121Switching Local and Covariance Matching for Efficient Object Tracking

matrices only on those pixels that are classified as foreground. Therefore we can track
articulated objects.
To speed up the global searching process, we use Log-Euclidean metrics Arsigny et al. (2005)
instead of the Riemannian invariant metrics Pennec et al. (2006); Porikli et al. (2006) to measure
the similarity between covariance matrices. The model update in covariance tracking Porikli
et al. (2006) is also expensive. We update the model by computing the geometric mean of
covariance matrices based on Log-Euclidean metrics. The computation is simply Euclidean in
the logarithmic domain, which reduces the computational costs. The final geometric mean is
computed by mapping back to the Riemannian domain with the exponential. Log-Euclidean
metrics provide results similar to their Riemannian affine invariant equivalent but takes much
less time.
We arrange this chapter as follows. After a brief review of previous works in Section 2, we
introduce the local tracking method based on foreground likelihood computation in Section
3. In specific, we discuss target representation for local tracking using color and shape texture
information in Section 3.1; we describe our feature selection for local tracking in Section 3.2,
and our target localization strategy for local tracking in Section 3.3. In Section 4, we apply
Log-Euclidean metric in covariance tracking. We introduce a few basic concepts that are
important for our covariance matching in Section 4.1. The extended covariance matching
method using Log-Euclidean metric is described in Section 4.2. In Section 5, we give the
switching criteria for the local and global tracking. Experimental results are given in Section
6. Section 7 concludes the paper.

2. Related work

Many tracking algorithms assume that target motion is continuous. Given this assumption,
we can apply local tracking algorithms Comaniciu et al. (2003); Isard & Blake (1998); Wang &
Yagi (2008b). In the local tracking algorithms, the mean-shift algorithm Comaniciu et al. (2003)
aims at searching for a peak position using density gradient estimation, whereas particle
filtering techniques Isard & Blake (1998); Rathi et al. (2005); Wang & Yagi (2009); Zhao et al.
(2008); Zhou et al. (2006) use a dynamic model to guide the particle propagation within a
limited sub-space of target state. Particle filtering tracking algorithms have certain robustness
against sudden motions. The mean-shift algorithm can deal with partial occlusions.
Tracking can be formulated as template matching Hager & Belhumeur (1998). A target is
characterized by a template that can be parametric or non-parametric. The task of a template
matching tracking is to find the region that is the most similar to the template. Template
matching techniques do not require the continuous motion assumption. Therefore, it is
possible to handle occlusions and sudden motions. We will introduce local tracking and
global matching techniques. The objective of our algorithm in this chapter it to combine the
advantages of the local and global matching techniques.

2.1 Local tracking
There are many local tracking methods. Tracking was treated as a binary classification
problem in previous works. An adaptive discriminative generative model was suggested in
Lin et al. (2004) by evaluating the discriminative ability of the object from the foreground using
a Fisher Linear Discriminant function. Fisher Linear Discriminant function was also using in
Nguyen & Smeulders (2006) to provide good discrimination. Comaniciu et al. Comaniciu et al.
(2003) take of the advantage of this method to their mean-shift algorithm, where colors that
appear on the object are down weighted by colors that appear in the background. Collins et

120 Object Tracking

al. Collins & Liu (2005) explicitly treat tracking as a binary classification problem. They apply
mean-shift algorithm using discriminative features selected by two online discriminative
evaluation methods (Variance ration and peak difference). Avidan Avidan (2007) proposes
ensemble tracking that updates a collection of weak classifiers. The Collection of weak
classifiers are assembled to make a strong classifier, which separates the foreground object
from the background. The weak classifiers are maintained by adding or removing at any time
to deal with appearance variations.
Temporal integration methods include particle filtering to properly integrate measurements
over time. The WSL tracking that maintains short-term and long term

2.2 Exhaustive matching
Describing a target by one or many templates, tracking can be formulated as exhaustive
searching. A target represented by its whole appearance can be matched with each region
in the input image by comparing the Sum of Squared Distances (SSD). Template using
SSD matching is not flexible because it is sensitive to viewpoint, illumination changes. To
deal with these problems, histograms are employed for characterizing targets. Histogram
representation is extended to a spatiogram-based tracking algorithm Birchfield & Rangarajan
(2005), which makes use of spatial information in addition to color information. A histogram
contains many bins which are spatially weighted by the mean and covariance of the location
of the pixels that contribute to that bin. Since the target is presented by one histogram, the
tracking is not reliable when occlusion exist. The computational cost is also high due to the
exhaustive matching. Tuzel et al. Tuzel et al. (2006) introduce covariance matrix to describe the
target. This descriptor contains appearance and spatial information. The target localization
process is formulated as an expensive exhaustive searching. Moreover, the similarity measure
in Tuzel et al. (2006) is adopted from Pennec et al. (2006), which is an affine invariant metric.
The affine invariant metric used in Tuzel et al. (2006) is computationally expensive.

3. Local tracking

3.1 Target representation for local tracking
The local tracking is performed based on foreground likelihood. The foreground likelihood
is computed using the selected discriminative color and shape-texture features Wang &
Yagi (2008a). The target is localized using mean-shift local mode seeking on the integrated
foreground likelihood image.
We represent a target using color and shape-texture information. Color information is
important because of its simplicity and discriminative ability. Color information only is not
always sufficiently discriminative. Shape-texture information is helpful for separating a target
and its background. Therefore, the target representation for our local tracking consists of color
and shape-texture features.

3.1.1 Multiple Color Channels
We represent color distributions on a target and its background using color histograms. We
select several color channels from different color spaces. Among them, we compute color
histograms for the R, G, and B channels in the RGB space; the H, S, and V channels in the HSV
space. Different from the approach in Wang & Yagi (2008a), we do not use the r and g channels
in the normalized rg space because they are found not discriminative in many sequences.
Although the r and g channels have good invariant ability to illumination changes, the gain
from this advantage is not very important in our approach since we use global matching and

121Switching Local and Covariance Matching for Efficient Object Tracking

local matching. The histograms computed in R,G, B, H, and S channels are quantized into 12
bins respectively. The color distribution in the V channel is not used here because we found
that intensity is less helpful in our tracking tasks. The rg space has been shown to be reliable
when the illumination changes. Thus r and g are also employed. There are 5 color features in
the candidate feature set.
A color histogram is calculated using a weighting scheme. The contributions of different
pixels to the object representation depend on their position with respect to the center of the
target. Pixels near the region center are more reliable than those further away. Smaller weights
are given to those further pixels by using Epanechnikov kernel Comaniciu et al. (2003) as a
weighting function:

k(x) =

⎧⎨
⎩

1
2 c−1

d (d + 2)(1 − �x�2), if �x�2 ≤ 1;

0, otherwise,

(1)

where cd is the volume of the unit d-dimensional sphere; x the local coordinates with respect
to the center of the target. Thus, we increase the reliability of the color distribution when these
boundary pixels belong to the background or get occluded.

The color distribution h f = {p(bin)
f }bin=1...m of the target is given by

p(bin)
f = Cf ∑

xi∈R f

k(�xi�)δ[h(xi)− bin], (2)

where δ is the Kronecker delta function and h(xi) assigns one of the m-bins (m = 12) of the
histogram to a given color at location xi. Cf is a normalization constant. It is calculated as

Cf =
1

∑xi∈R f
k(�xi�2)

. (3)

The tracking algorithm searches for the target in a new frame from the target candidates. The
target candidates are represented by

p(bin)
c (y) = Cb ∑

xi∈R f

k(
�y − xi�

h
)2δ[h(xi)− bin], (4)

where Cb is

Cb =
1

∑xi∈Rc
k(� y−xi

h �)2
. (5)

and R f is the target region.

3.1.2 Shape-texture information
Shape-texture information plays an important role for describing a target. Shape-texture
information has a few nice properties such as certain invariant ability to illumination changes.
Shape-texture information can be characterized by various descriptors Belongie et al. (2002);
Berg & Malik (2001); Lowe (1999). We describe a target’s shape-texture information by
orientation histograms, which is computed based on image derivatives in x and y directions.
We did not use the popular Sobel masks in this calculation. Instead, the Scharr masks (Sx and
Sy) are employed here because they give more accurate results than the Sobel kernel.

122 Object Tracking

The gradients at the point (x, y) in the image I can be calculated by convolving the Scharr
masks with the image:

Dx(x, y) = Sx ∗ I(x, y),

and

Dy(x, y) = Sy ∗ I(x, y).

The strength of the gradient at the point (x, y)

D(x, y) =
√

Dx(x, y)2 + Dy(x, y)2.

In order to ignore noise, a threshold is given

D
�
(x, y) =

{
D(x, y), if D(x, y) ≥ TD,

0, otherwise,
(6)

where TD is a threshold given empirically.
The orientation of the edge is

θ(x, y) = arctan(
Dy(x, y)
Dx(x, y)

). (7)

The orientations are also quantized into 12 bins. A orientation histogram can be calculated
using a approach similar to the calculation of a color histogram, as introduced in the previous
subsection.

3.2 Feature selection for local tracking
We select a subset of features from the feature pool in the 5 color channels and 1 shape-texture
representation. We evaluate the discriminative ability of each feature based on the histograms
calculated on the target and its background. The discriminative ability of each feature
is dependent on the separability between the target and its background. The weighted
histograms introduced in the last section do not directly reflect the descriptive ability of the
features. A log-likelihood ratio histogram can be helpful for solving this problem Collins
(2003); Swain & Ballard (1991); Wang & Yagi (2006). We calculate likelihood images for each
feature. Then, we compute likelihood ratio images of the target and its background. Finally,
we select good features by ranking the discriminative ability of different features.

3.2.1 Likelihood images
Given target representation using a specific feature, we want to evaluate the probability on
an input image. The probability indicates the likelihood of appearance of the target. we We
compute foreground likelihood based on the histograms of the foreground and background
with respect to a given feature. The frequency of the pixels that appear in a histogram bin is

calculated as ζ
(bin)
f = p(bin)

f /n f g and ζ
(bin)
b = p(bin)

b /nbg, where n f g is the pixel number of the

target region and nbg the pixel number of the background.
The log-likelihood ratio of a feature value is given by

L(bin) = max(−1, min(1, log
max(ζ

(bin)
f , δL)

max(ζ
(bin)
b , δL)

)), (8)

123Switching Local and Covariance Matching for Efficient Object Tracking

local matching. The histograms computed in R,G, B, H, and S channels are quantized into 12
bins respectively. The color distribution in the V channel is not used here because we found
that intensity is less helpful in our tracking tasks. The rg space has been shown to be reliable
when the illumination changes. Thus r and g are also employed. There are 5 color features in
the candidate feature set.
A color histogram is calculated using a weighting scheme. The contributions of different
pixels to the object representation depend on their position with respect to the center of the
target. Pixels near the region center are more reliable than those further away. Smaller weights
are given to those further pixels by using Epanechnikov kernel Comaniciu et al. (2003) as a
weighting function:

k(x) =

⎧⎨
⎩

1
2 c−1

d (d + 2)(1 − �x�2), if �x�2 ≤ 1;

0, otherwise,

(1)

where cd is the volume of the unit d-dimensional sphere; x the local coordinates with respect
to the center of the target. Thus, we increase the reliability of the color distribution when these
boundary pixels belong to the background or get occluded.

The color distribution h f = {p(bin)
f }bin=1...m of the target is given by

p(bin)
f = Cf ∑

xi∈R f

k(�xi�)δ[h(xi)− bin], (2)

where δ is the Kronecker delta function and h(xi) assigns one of the m-bins (m = 12) of the
histogram to a given color at location xi. Cf is a normalization constant. It is calculated as

Cf =
1

∑xi∈R f
k(�xi�2)

. (3)

The tracking algorithm searches for the target in a new frame from the target candidates. The
target candidates are represented by

p(bin)
c (y) = Cb ∑

xi∈R f

k(
�y − xi�

h
)2δ[h(xi)− bin], (4)

where Cb is

Cb =
1

∑xi∈Rc
k(� y−xi

h �)2
. (5)

and R f is the target region.

3.1.2 Shape-texture information
Shape-texture information plays an important role for describing a target. Shape-texture
information has a few nice properties such as certain invariant ability to illumination changes.
Shape-texture information can be characterized by various descriptors Belongie et al. (2002);
Berg & Malik (2001); Lowe (1999). We describe a target’s shape-texture information by
orientation histograms, which is computed based on image derivatives in x and y directions.
We did not use the popular Sobel masks in this calculation. Instead, the Scharr masks (Sx and
Sy) are employed here because they give more accurate results than the Sobel kernel.

122 Object Tracking

The gradients at the point (x, y) in the image I can be calculated by convolving the Scharr
masks with the image:

Dx(x, y) = Sx ∗ I(x, y),

and

Dy(x, y) = Sy ∗ I(x, y).

The strength of the gradient at the point (x, y)

D(x, y) =
√

Dx(x, y)2 + Dy(x, y)2.

In order to ignore noise, a threshold is given

D
�
(x, y) =

{
D(x, y), if D(x, y) ≥ TD,

0, otherwise,
(6)

where TD is a threshold given empirically.
The orientation of the edge is

θ(x, y) = arctan(
Dy(x, y)
Dx(x, y)

). (7)

The orientations are also quantized into 12 bins. A orientation histogram can be calculated
using a approach similar to the calculation of a color histogram, as introduced in the previous
subsection.

3.2 Feature selection for local tracking
We select a subset of features from the feature pool in the 5 color channels and 1 shape-texture
representation. We evaluate the discriminative ability of each feature based on the histograms
calculated on the target and its background. The discriminative ability of each feature
is dependent on the separability between the target and its background. The weighted
histograms introduced in the last section do not directly reflect the descriptive ability of the
features. A log-likelihood ratio histogram can be helpful for solving this problem Collins
(2003); Swain & Ballard (1991); Wang & Yagi (2006). We calculate likelihood images for each
feature. Then, we compute likelihood ratio images of the target and its background. Finally,
we select good features by ranking the discriminative ability of different features.

3.2.1 Likelihood images
Given target representation using a specific feature, we want to evaluate the probability on
an input image. The probability indicates the likelihood of appearance of the target. we We
compute foreground likelihood based on the histograms of the foreground and background
with respect to a given feature. The frequency of the pixels that appear in a histogram bin is

calculated as ζ
(bin)
f = p(bin)

f /n f g and ζ
(bin)
b = p(bin)

b /nbg, where n f g is the pixel number of the

target region and nbg the pixel number of the background.
The log-likelihood ratio of a feature value is given by

L(bin) = max(−1, min(1, log
max(ζ

(bin)
f , δL)

max(ζ
(bin)
b , δL)

)), (8)

123Switching Local and Covariance Matching for Efficient Object Tracking

where δL is a very small number. The likelihood image for each feature is created by
back-projecting the ratio into each pixel in the image Swain & Ballard (1991); Wang & Yagi
(2008a).

3.2.2 Color and shape-texture likelihood ratio images
Based on the multi-cue representation of the target and its background, we can compute the
likelihood probability in an input image. The values in likelihood images have large variations
since they are not normalized. We need good representation of different features and evaluate
their discriminative ability. Log-likelihood ratios of the the target and background provide
such representation. We calculate log-likelihood ratios based on the histograms of the
foreground and background with respect to a given feature. The likelihood ratio produces
a function that maps feature values associated with the target to positive values and the
background to negative values. The frequency of the pixels that appear in a histogram bin
is calculated as

ζ
(bin)
f =

p(bin)
f

n f g
, (9)

and

ζ
(bin)
b =

p(bin)
b
nbg

, (10)

where n f g is the pixel number of the target region and nbg the pixel number of the background.
The log-likelihood ratio of a feature value is given by

L(bin) = max(−1, min(1, log
max(ζ

(bin)
f , δL)

max(ζ
(bin)
b , δL)

)), (11)

where δL is a very small number. The likelihood image for each feature is created by
back-projecting the ratio into each pixel in the image.
We use likelihood ratio images as the foundation for evaluating the discriminative ability of
the features in the candidate feature set. The discriminative ability will be evaluated using
variance ratios of the likelihood ratios, which will be discussed in the next subsection.

3.2.3 Feature selection using variance ratios
Given md features for tracking, the purpose of the feature selection module is to find the best
subset feature of size mm, and mm < md. Feature selection can help minimize the tracking
error and maximize the descriptive ability of the feature set.
We find the features with the largest corresponding variances. Following the method in
Collins (2003), based on the equality var(x) = E[x2]− (E[x])2, the variance of Equation(11) is
computed as

var(L; p) = E[(Lbin)2]− (E[Lbin])2.

The variance ratio of the likelihood function is defined as Collins (2003):

VR =
var(B ∪ F)

var(F) + var(B)
=

var(L; (p f + pb)/2)

var(L; p f) + var(L; pb)
. (12)

We evaluate the discriminative ability of each feature by calculating the variance ratio. In the
candidate feature set, the color feature includes 7 different features: the color histograms of R,

124 Object Tracking

G, B, H, S, r, and g, while the appearance feature includes a gradient orientation histogram.
These features are ranked according to the discriminative ability by comparing the variance
ratio. The feature with the maximum variance ratio is taken as the most discriminative feature.

3.3 Location estimation for local tracking
We select discriminative features from the color and shape-texture feature pool. These features
are employed to compute likelihood images. We extend the basic mean-shift algorithm to
our local tracking framework. We combine the likelihood images calculated using different
discriminative features. The combined likelihood images are used for our location estimation.
In this section, we will introduce the localization strategy in the basic mean-shift algorithm.
Then, we discuss how many features are appropriate for the local tracking. Finally, we will
describe the localization in our local tracking.

3.3.1 Localization using the standard mean-shift algorithm
The localization process for our local tracking can be described as a minimization process,
which aims at searching for the position with maximum similarity with the target. The
minimizing process can be formulated as a gradient descent process in the basic mean-shift
algorithm. The mean-shift algorithm is a robust non-parametric probability density gradient
estimation method. It is able to find the mode of the probability distributions of samples.
It can estimate the density function directly from data without any assumptions about
underlying distribution. This virtue avoids choosing a model and estimating its distribution
parameters Comaniciu & Meer (2002). The algorithm has achieved great success in object
tracking Comaniciu et al. (2003) and image segmentation Comaniciu & Meer (2002). However,
the basic mean shift tracking algorithm assumes that the target representation is sufficiently
discriminative against the background. This assumption is not always true especially when
tracking is carried out in a dynamic background such as surveillance with a moving camera.
We extend the basic mean shift algorithm to an adaptive mean shift tracking algorithm that
can choose the most discriminative features for effective tracking.
The standard mean shift tracker finds the location corresponding to the target in the current
frame based on the appearance of the target. Therefore, a similarity measure is needed
between the color distributions of a region in the current frame and the target model. A
popular measure between two distributions is the Bhattacharyya distance Comaniciu et al.
(2003); Djouadi et al. (1990). Considering discrete densities such as two histograms p =

{p(u)}u=1...m and q = {q(u)}u=1...m the coefficient is calculated by:

ρ[p, q] =
m

∑
bin=1

√
p(bin)q(bin). (13)

The larger ρ is, the more similar the distributions are. For two identical histograms we obtain
ρ = 1, indicating a perfect match. As the distance between two distributions, the measure can
be defined as Comaniciu et al. (2003):

d =
√

1 − ρ[p, q], (14)

which d is the Bhattacharyya distance.
The tracking algorithm recursively computes an offset value from the current location ŷ0 to
a new location ŷ1 according to the mean shift vector. ŷ1 is calculated by using Comaniciu &

125Switching Local and Covariance Matching for Efficient Object Tracking

where δL is a very small number. The likelihood image for each feature is created by
back-projecting the ratio into each pixel in the image Swain & Ballard (1991); Wang & Yagi
(2008a).

3.2.2 Color and shape-texture likelihood ratio images
Based on the multi-cue representation of the target and its background, we can compute the
likelihood probability in an input image. The values in likelihood images have large variations
since they are not normalized. We need good representation of different features and evaluate
their discriminative ability. Log-likelihood ratios of the the target and background provide
such representation. We calculate log-likelihood ratios based on the histograms of the
foreground and background with respect to a given feature. The likelihood ratio produces
a function that maps feature values associated with the target to positive values and the
background to negative values. The frequency of the pixels that appear in a histogram bin
is calculated as

ζ
(bin)
f =

p(bin)
f

n f g
, (9)

and

ζ
(bin)
b =

p(bin)
b
nbg

, (10)

where n f g is the pixel number of the target region and nbg the pixel number of the background.
The log-likelihood ratio of a feature value is given by

L(bin) = max(−1, min(1, log
max(ζ

(bin)
f , δL)

max(ζ
(bin)
b , δL)

)), (11)

where δL is a very small number. The likelihood image for each feature is created by
back-projecting the ratio into each pixel in the image.
We use likelihood ratio images as the foundation for evaluating the discriminative ability of
the features in the candidate feature set. The discriminative ability will be evaluated using
variance ratios of the likelihood ratios, which will be discussed in the next subsection.

3.2.3 Feature selection using variance ratios
Given md features for tracking, the purpose of the feature selection module is to find the best
subset feature of size mm, and mm < md. Feature selection can help minimize the tracking
error and maximize the descriptive ability of the feature set.
We find the features with the largest corresponding variances. Following the method in
Collins (2003), based on the equality var(x) = E[x2]− (E[x])2, the variance of Equation(11) is
computed as

var(L; p) = E[(Lbin)2]− (E[Lbin])2.

The variance ratio of the likelihood function is defined as Collins (2003):

VR =
var(B ∪ F)

var(F) + var(B)
=

var(L; (p f + pb)/2)

var(L; p f) + var(L; pb)
. (12)

We evaluate the discriminative ability of each feature by calculating the variance ratio. In the
candidate feature set, the color feature includes 7 different features: the color histograms of R,

124 Object Tracking

G, B, H, S, r, and g, while the appearance feature includes a gradient orientation histogram.
These features are ranked according to the discriminative ability by comparing the variance
ratio. The feature with the maximum variance ratio is taken as the most discriminative feature.

3.3 Location estimation for local tracking
We select discriminative features from the color and shape-texture feature pool. These features
are employed to compute likelihood images. We extend the basic mean-shift algorithm to
our local tracking framework. We combine the likelihood images calculated using different
discriminative features. The combined likelihood images are used for our location estimation.
In this section, we will introduce the localization strategy in the basic mean-shift algorithm.
Then, we discuss how many features are appropriate for the local tracking. Finally, we will
describe the localization in our local tracking.

3.3.1 Localization using the standard mean-shift algorithm
The localization process for our local tracking can be described as a minimization process,
which aims at searching for the position with maximum similarity with the target. The
minimizing process can be formulated as a gradient descent process in the basic mean-shift
algorithm. The mean-shift algorithm is a robust non-parametric probability density gradient
estimation method. It is able to find the mode of the probability distributions of samples.
It can estimate the density function directly from data without any assumptions about
underlying distribution. This virtue avoids choosing a model and estimating its distribution
parameters Comaniciu & Meer (2002). The algorithm has achieved great success in object
tracking Comaniciu et al. (2003) and image segmentation Comaniciu & Meer (2002). However,
the basic mean shift tracking algorithm assumes that the target representation is sufficiently
discriminative against the background. This assumption is not always true especially when
tracking is carried out in a dynamic background such as surveillance with a moving camera.
We extend the basic mean shift algorithm to an adaptive mean shift tracking algorithm that
can choose the most discriminative features for effective tracking.
The standard mean shift tracker finds the location corresponding to the target in the current
frame based on the appearance of the target. Therefore, a similarity measure is needed
between the color distributions of a region in the current frame and the target model. A
popular measure between two distributions is the Bhattacharyya distance Comaniciu et al.
(2003); Djouadi et al. (1990). Considering discrete densities such as two histograms p =

{p(u)}u=1...m and q = {q(u)}u=1...m the coefficient is calculated by:

ρ[p, q] =
m

∑
bin=1

√
p(bin)q(bin). (13)

The larger ρ is, the more similar the distributions are. For two identical histograms we obtain
ρ = 1, indicating a perfect match. As the distance between two distributions, the measure can
be defined as Comaniciu et al. (2003):

d =
√

1 − ρ[p, q], (14)

which d is the Bhattacharyya distance.
The tracking algorithm recursively computes an offset value from the current location ŷ0 to
a new location ŷ1 according to the mean shift vector. ŷ1 is calculated by using Comaniciu &

125Switching Local and Covariance Matching for Efficient Object Tracking

Meer (2002); Comaniciu et al. (2003)

ŷ1 =
∑nh

i=1 xiwig(
y−xi

h)

∑nh
i=1 wig(

y−xi
h)

. (15)

where wi = ∑m
u=1

√
q(u)

p(u)(y0)
δ[h(xi)− bin] and g(x) = −k�(x).

3.3.2 How many features are appropriate?
We evaluate the discriminative abilities of different features in the feature pool. In the
Evaluation, we rank the features according to their discriminative ability against the
background. Features with good discriminative ability can be combined to represent and
localize the target. The combination of features needs to be carried out carefully. Intuitively,
the more features we use, the better the tracking performance; however, this is not true
in practice. According to information theory, the feature added into the system can bring
negative effect as well as improvement of the performance Cover & Thomas (1991). This is
due to the fact that the features used are not totally independent. Instead, they are correlated.
In our implementation, two kinds of features are used to represent the target, a number, which
according to the experimental results, is appropriate in most cases. We have tested a system
using 1 or 3 features, which gave worse performances. During the initialization of the tracker,
the features ranked in the top two are selected for the tracking. The feature selection module
runs every 8 to 12 frames. When the feature selection module selects features different from
those in the initialization, only one feature is replaced each time. Only the second feature of
the previous selection will be discarded and replaced by the best one in current selection. This
strategy is very important in keeping the target from drifting.

3.3.3 Target localization for local tracking
The proposed tracking algorithm combines the top two features through
back-projection Bradski (1998) of the joint histogram, which implicitly contains certain
spatial information that is important for the target representation. Based on Equation(4), we
calculate the joint histogram of the target with the top two features,

p
(b(1)in ,b(2)in)
f = C ∑

xi∈R f

k(�xi�)δ[h(xi)− b(1)in]δ[h(xi)− b(2)in], (16)

and a joint histogram of the searching region

p
(b(1)in ,b(2)in)
b = C ∑

xi∈Rb

k(�xi�)δ[h(xi)− b(1)in]δ[h(xi)− b(2)in]. (17)

We get a division histogram by dividing the joint histogram of the target by the joint histogram
of the background,

p
(b(1)in ,b(2)in)
d =

p
(b(1)in ,b(2)in)
f

p
(b(1)in ,b(2)in)
b

. (18)

The division histogram is normalized for the histogram back-projection. The pixel values in
the image are associated with the value of the corresponding histogram bin by histogram

126 Object Tracking

back-projection. The back-projection of the target histogram with any consecutive frame
generates a probability image p = {pi

w}i=1...nh
where the value of each pixel characterizes

the probability that the input pixel belongs to the histograms. The two images of the top two
features have been computed for the back-projection. Note that the H, S, r, and g images are
calculated by transferring the original image to the HSV and the rg spaces; the orientation
image has been calculated using the approach introduced in section III(B).
Since we are using an Epanechnikov profile the derivative of the profile, g(x), is constant. The
target’s shift vector in the current frame is computed as

ŷ1 =
∑nh

i=1 xi pi
w

∑nh
i=1 pi

w
. (19)

The tracker assigns a new position to the target by using

ŷ1 =
1

2
(ŷ0 + ŷ1). (20)

If �ŷ0 − ŷ1� < ε, this position is assigned to the target. Otherwise, compute the Equation(19)
again. In our algorithm, the number of the computation is set to less than 15. In most cases,
the algorithm converges in 3 to 6 loops.

3.4 Target model updating for local tracking
The local tracker needs adaptivity to handle appearance changes. The model is computed by
mixing the current model with the initial model which is considered as correct Wang & Yagi
(2008a). The mixing weights are generated from the similarity between the current model and
the initial model Wang & Yagi (2008a). The initial model works in a similar way to the stable
component in Jepson et al. (2003). But the updating approach in Wang & Yagi (2008a) takes
less time.
Updating the target model adaptively may lead to tracking drift because of the imperfect
classification of the target and background. Collins and Liu Collins (2003) proposed that
forming a pooled estimate allows the object appearance model to adapt to current conditions
while keeping the overall distribution anchored to the original training appearance of the
object. They assume that the initial color histogram remains representative of the object
appearance throughout the entire tracking sequence. However, this is not always true in real
image sequences.
To update the target model, we propose an alternative approach that is based on similarities
between the initial and current appearance of the target. The similarity s is measured by a
simple correlation based template matching Atallah (2001) performed between the current
and the initial frames. The updating is done according to the similarity s:

Hm = (1 − s)Hi + sHc, (21)

where the Hi is the histogram computed on the initial target; the Hc the histogram of the target
current appearance, the Hm the updated histogram of the target.
The template matching is performed between the initial model and the current candidates.
Since we do not use the search window that is necessary in template matching-based tracking,
the matching process is efficient and brings little computational cost to our algorithm. The
performance of the proposed algorithm is improved by using this strategy, which will be
shown in the next section.

127Switching Local and Covariance Matching for Efficient Object Tracking

Meer (2002); Comaniciu et al. (2003)

ŷ1 =
∑nh

i=1 xiwig(
y−xi

h)

∑nh
i=1 wig(

y−xi
h)

. (15)

where wi = ∑m
u=1

√
q(u)

p(u)(y0)
δ[h(xi)− bin] and g(x) = −k�(x).

3.3.2 How many features are appropriate?
We evaluate the discriminative abilities of different features in the feature pool. In the
Evaluation, we rank the features according to their discriminative ability against the
background. Features with good discriminative ability can be combined to represent and
localize the target. The combination of features needs to be carried out carefully. Intuitively,
the more features we use, the better the tracking performance; however, this is not true
in practice. According to information theory, the feature added into the system can bring
negative effect as well as improvement of the performance Cover & Thomas (1991). This is
due to the fact that the features used are not totally independent. Instead, they are correlated.
In our implementation, two kinds of features are used to represent the target, a number, which
according to the experimental results, is appropriate in most cases. We have tested a system
using 1 or 3 features, which gave worse performances. During the initialization of the tracker,
the features ranked in the top two are selected for the tracking. The feature selection module
runs every 8 to 12 frames. When the feature selection module selects features different from
those in the initialization, only one feature is replaced each time. Only the second feature of
the previous selection will be discarded and replaced by the best one in current selection. This
strategy is very important in keeping the target from drifting.

3.3.3 Target localization for local tracking
The proposed tracking algorithm combines the top two features through
back-projection Bradski (1998) of the joint histogram, which implicitly contains certain
spatial information that is important for the target representation. Based on Equation(4), we
calculate the joint histogram of the target with the top two features,

p
(b(1)in ,b(2)in)
f = C ∑

xi∈R f

k(�xi�)δ[h(xi)− b(1)in]δ[h(xi)− b(2)in], (16)

and a joint histogram of the searching region

p
(b(1)in ,b(2)in)
b = C ∑

xi∈Rb

k(�xi�)δ[h(xi)− b(1)in]δ[h(xi)− b(2)in]. (17)

We get a division histogram by dividing the joint histogram of the target by the joint histogram
of the background,

p
(b(1)in ,b(2)in)
d =

p
(b(1)in ,b(2)in)
f

p
(b(1)in ,b(2)in)
b

. (18)

The division histogram is normalized for the histogram back-projection. The pixel values in
the image are associated with the value of the corresponding histogram bin by histogram

126 Object Tracking

back-projection. The back-projection of the target histogram with any consecutive frame
generates a probability image p = {pi

w}i=1...nh
where the value of each pixel characterizes

the probability that the input pixel belongs to the histograms. The two images of the top two
features have been computed for the back-projection. Note that the H, S, r, and g images are
calculated by transferring the original image to the HSV and the rg spaces; the orientation
image has been calculated using the approach introduced in section III(B).
Since we are using an Epanechnikov profile the derivative of the profile, g(x), is constant. The
target’s shift vector in the current frame is computed as

ŷ1 =
∑nh

i=1 xi pi
w

∑nh
i=1 pi

w
. (19)

The tracker assigns a new position to the target by using

ŷ1 =
1

2
(ŷ0 + ŷ1). (20)

If �ŷ0 − ŷ1� < ε, this position is assigned to the target. Otherwise, compute the Equation(19)
again. In our algorithm, the number of the computation is set to less than 15. In most cases,
the algorithm converges in 3 to 6 loops.

3.4 Target model updating for local tracking
The local tracker needs adaptivity to handle appearance changes. The model is computed by
mixing the current model with the initial model which is considered as correct Wang & Yagi
(2008a). The mixing weights are generated from the similarity between the current model and
the initial model Wang & Yagi (2008a). The initial model works in a similar way to the stable
component in Jepson et al. (2003). But the updating approach in Wang & Yagi (2008a) takes
less time.
Updating the target model adaptively may lead to tracking drift because of the imperfect
classification of the target and background. Collins and Liu Collins (2003) proposed that
forming a pooled estimate allows the object appearance model to adapt to current conditions
while keeping the overall distribution anchored to the original training appearance of the
object. They assume that the initial color histogram remains representative of the object
appearance throughout the entire tracking sequence. However, this is not always true in real
image sequences.
To update the target model, we propose an alternative approach that is based on similarities
between the initial and current appearance of the target. The similarity s is measured by a
simple correlation based template matching Atallah (2001) performed between the current
and the initial frames. The updating is done according to the similarity s:

Hm = (1 − s)Hi + sHc, (21)

where the Hi is the histogram computed on the initial target; the Hc the histogram of the target
current appearance, the Hm the updated histogram of the target.
The template matching is performed between the initial model and the current candidates.
Since we do not use the search window that is necessary in template matching-based tracking,
the matching process is efficient and brings little computational cost to our algorithm. The
performance of the proposed algorithm is improved by using this strategy, which will be
shown in the next section.

127Switching Local and Covariance Matching for Efficient Object Tracking

4. Covariance matching in riemannian manifold

We describe our covariance matching in Riemmannian manifold in this section. We introduce
some important theories on Riemannian manifold. Since the affine invariant metric used in
Tuzel et al. (2006) is computationally expensive, we apply the efficient Log-Euclidean metric
in the manifold. Finally, we give the updating strategy for the covariance matching.

4.1 Basic concepts for global matching in riemannian manifold
We will introduce some basic concepts of Riemannian geometry, which is important for our
global tracking formulation. We describe differentiable manifold, Lie groups, Lie algebras,
and Riemannian manifold. The details of the theories are referred to Gilmore (2006); Jost
(2001).

4.1.1 Differentiable manifold
A manifold M is a Hausdorff topological space, such that for every point x ∈ M there exists
a neighborhood N ⊂ M containing x and an associated homeomorphism from N to some
Euclidean space Rm. The neighborhood N and its associated mapping φ together form a
coordinate chart. A collection of chart is named as an atlas.
If a manifold is locally similar enough to Euclidean space, it is allowed to do calculus. A
differentiable manifold is such kind of manifold that is also a topological manifold with
globally defined differential structure. Any topological manifold can be given a differential
structure locally by using the homeomorphisms in this atlas. One may apply ideas from
calculus which working within the individual charts, since these lie in Euclidean spaces to
which the usual rules of calculus apply.

4.1.2 Lie groups
Lie groups are finite-dimensional real smooth manifold with continuous transformation
group properties Rossmann (2003). Group operations can be applied into Lie groups.
Assuming we have two groups, G1 and G2, we can define a homomorphism fA : G1 → G2

for them. The homomorphism f is required to be continuous (not necessarily to be smooth).
If we have another homomorphism fB : G3 → G4, the two homomorphisms are combined
into a new homomorphism. A category is formulated by composing all the Lie groups and
morphisms. According to the type of homomorphisms, there are two kinds of Lie groups:
isomorphic Lie groups with bijective homomorphisms.
Homomorphisms are useful in describing Lie groups. We can represent a Lie group on a vector
space V. We chose a basis for the vector space, the Lie group representation is expressed as
a homomorphisms into GL(n, K), which is known as a matrix representation. If we have two
vector spaces V1 and V2, the two representations of G on V1 and V2 are equivalent when they
have the same matrix representations with respect to some choices of bases for V1 and V2.

4.1.3 Lie algebras
We may consider Lie groups as smoothly varying families of symmetries. Small
transformation is an essential property of Lie groups. In such situations, Lie algebras can
be defined because Lie groups are smooth manifold with tangent spaces at each point. Lie
algebra, an algebraic structure, is critical in studying differentiable manifolds such as Lie
groups. Lie algebra is able to replace the global object, the group, with its local or linearized
version. In practice, matrices sets with specific properties are the most useful Lie groups.

128 Object Tracking

Matrix Lie groups is defined as closed subgroups of general linear groups GL(n,R), the group
of n × n. nonsingular matrices.
We associate a Lie algebra with every Lie group. The underlying vector space is the tangent
space of Lie group at the identity element, which contains the complete local structure of
the group. The elements of the Lie algebra can be thought as elements of the group that
are infinitesimally close to the identity. The Lie algebra provides a commutator of two such
infinitesimal elements with the Lie bracket. We can connect vector space with Lie algebra
preserves the Lie bracket.
Each Lie group has a identity component, which is an open nomal subgroup. All the
connected Lie groups forms the universal cover of these groups. Any Lie group G can be
decomposed into discrete abelian groups.
We can not define a global structure for a Lie group using its Lie algebra. However, if the Lie
group is simply connected, we can determine the global structure based on its Lie algebra.
Tensors are defined as multidimensional arrays of numbers. It is an extension of matrix, which
is a 2D definition. The entries of such arrays are symbolically denoted by the name of tensor
with indices giving the position in the array. Covariance

4.1.4 Exponential maps
A Lie algebra homomorphism is a mapping: every vector v in Lie algebra g is a linear map
from R taking 1 to v. Because R is the Lie algebra of the simply connected Lie group R, this
induces a Lie group homorphism f : R → G. The operation of c is

c(s + t) = c(s)c(t) (22)

for all s and t. We easily find that it is similar to exponential function

exp(v) = c(1). (23)

This exponential function is name as exponential map which maps the Lie algebra g into the
Lie group G. Between a neighborhood of the identity element of g, there is a diffeomorphism.
The exponential map is a generalization of the exponential function for real numbers. In
fact, the exponential function can be extended into complex numbers and matrices, which is
important in computing Lie groups and Lie algebras.
Since we are interested in symmetric matrices, matrix operators are important for the
computation on Lie algebra. The exponential map from the Lie algebra is defined by

exp(A) =
∞

∑
i=0

1

i!
Ai, (24)

It is possible to decompose A into an orthogonal matrix U and a diagonal matrix (A = UDUT ,
D = DIAG(di)), we compute power k of A using the same basis

Ak = UDkUT , (25)

where the rotation matrices in the computation is factored out. The mapping of exponential
to each eigenvalue:

exp(A) = UDIAG(exp(di))U
T. (26)

129Switching Local and Covariance Matching for Efficient Object Tracking

4. Covariance matching in riemannian manifold

We describe our covariance matching in Riemmannian manifold in this section. We introduce
some important theories on Riemannian manifold. Since the affine invariant metric used in
Tuzel et al. (2006) is computationally expensive, we apply the efficient Log-Euclidean metric
in the manifold. Finally, we give the updating strategy for the covariance matching.

4.1 Basic concepts for global matching in riemannian manifold
We will introduce some basic concepts of Riemannian geometry, which is important for our
global tracking formulation. We describe differentiable manifold, Lie groups, Lie algebras,
and Riemannian manifold. The details of the theories are referred to Gilmore (2006); Jost
(2001).

4.1.1 Differentiable manifold
A manifold M is a Hausdorff topological space, such that for every point x ∈ M there exists
a neighborhood N ⊂ M containing x and an associated homeomorphism from N to some
Euclidean space Rm. The neighborhood N and its associated mapping φ together form a
coordinate chart. A collection of chart is named as an atlas.
If a manifold is locally similar enough to Euclidean space, it is allowed to do calculus. A
differentiable manifold is such kind of manifold that is also a topological manifold with
globally defined differential structure. Any topological manifold can be given a differential
structure locally by using the homeomorphisms in this atlas. One may apply ideas from
calculus which working within the individual charts, since these lie in Euclidean spaces to
which the usual rules of calculus apply.

4.1.2 Lie groups
Lie groups are finite-dimensional real smooth manifold with continuous transformation
group properties Rossmann (2003). Group operations can be applied into Lie groups.
Assuming we have two groups, G1 and G2, we can define a homomorphism fA : G1 → G2

for them. The homomorphism f is required to be continuous (not necessarily to be smooth).
If we have another homomorphism fB : G3 → G4, the two homomorphisms are combined
into a new homomorphism. A category is formulated by composing all the Lie groups and
morphisms. According to the type of homomorphisms, there are two kinds of Lie groups:
isomorphic Lie groups with bijective homomorphisms.
Homomorphisms are useful in describing Lie groups. We can represent a Lie group on a vector
space V. We chose a basis for the vector space, the Lie group representation is expressed as
a homomorphisms into GL(n, K), which is known as a matrix representation. If we have two
vector spaces V1 and V2, the two representations of G on V1 and V2 are equivalent when they
have the same matrix representations with respect to some choices of bases for V1 and V2.

4.1.3 Lie algebras
We may consider Lie groups as smoothly varying families of symmetries. Small
transformation is an essential property of Lie groups. In such situations, Lie algebras can
be defined because Lie groups are smooth manifold with tangent spaces at each point. Lie
algebra, an algebraic structure, is critical in studying differentiable manifolds such as Lie
groups. Lie algebra is able to replace the global object, the group, with its local or linearized
version. In practice, matrices sets with specific properties are the most useful Lie groups.

128 Object Tracking

Matrix Lie groups is defined as closed subgroups of general linear groups GL(n,R), the group
of n × n. nonsingular matrices.
We associate a Lie algebra with every Lie group. The underlying vector space is the tangent
space of Lie group at the identity element, which contains the complete local structure of
the group. The elements of the Lie algebra can be thought as elements of the group that
are infinitesimally close to the identity. The Lie algebra provides a commutator of two such
infinitesimal elements with the Lie bracket. We can connect vector space with Lie algebra
preserves the Lie bracket.
Each Lie group has a identity component, which is an open nomal subgroup. All the
connected Lie groups forms the universal cover of these groups. Any Lie group G can be
decomposed into discrete abelian groups.
We can not define a global structure for a Lie group using its Lie algebra. However, if the Lie
group is simply connected, we can determine the global structure based on its Lie algebra.
Tensors are defined as multidimensional arrays of numbers. It is an extension of matrix, which
is a 2D definition. The entries of such arrays are symbolically denoted by the name of tensor
with indices giving the position in the array. Covariance

4.1.4 Exponential maps
A Lie algebra homomorphism is a mapping: every vector v in Lie algebra g is a linear map
from R taking 1 to v. Because R is the Lie algebra of the simply connected Lie group R, this
induces a Lie group homorphism f : R → G. The operation of c is

c(s + t) = c(s)c(t) (22)

for all s and t. We easily find that it is similar to exponential function

exp(v) = c(1). (23)

This exponential function is name as exponential map which maps the Lie algebra g into the
Lie group G. Between a neighborhood of the identity element of g, there is a diffeomorphism.
The exponential map is a generalization of the exponential function for real numbers. In
fact, the exponential function can be extended into complex numbers and matrices, which is
important in computing Lie groups and Lie algebras.
Since we are interested in symmetric matrices, matrix operators are important for the
computation on Lie algebra. The exponential map from the Lie algebra is defined by

exp(A) =
∞

∑
i=0

1

i!
Ai, (24)

It is possible to decompose A into an orthogonal matrix U and a diagonal matrix (A = UDUT ,
D = DIAG(di)), we compute power k of A using the same basis

Ak = UDkUT , (25)

where the rotation matrices in the computation is factored out. The mapping of exponential
to each eigenvalue:

exp(A) = UDIAG(exp(di))U
T. (26)

129Switching Local and Covariance Matching for Efficient Object Tracking

An inverse mapping is defined in the neighborhood: logX : G → TXR. This definition is
unique. For certain manifolds, the neighborhood can be extended more regions in the tangent
space and manifold.
This operator is able to be applied to any square matrix. The definitions above are meaningful
only for matrix groups. Since we concern matrix groups in this work, the definitions are very
important for understanding our algorithm.

4.2 Improving covariance tracking
The covariance tracker Porikli et al. (2006) describes objects using covariance matrices. The
covariance matrix fuses different types of features and modalities with small dimensionality.
Covariance tracking searches all the regions and guarantees a global optimization (Up to
the descriptive ability of the covariance matrices). Despite of these advantages, covariance
tracking is relatively expensive due to the distance computation and model updating in
Riemannian manifold. We speed up the global searching and the model updating by
introducing Log-Euclidean metrics.

4.2.1 Target representation
The target is described by covariance matrices that fuse multiple features. We adopt the
features used in Porikli et al. (2006), which consist of pixel coordinates, RGB colors and
gradients. The region R is described with the d × d covariance matrix of the feature points
in R

CR =
1

n − 1

n

∑
k=1

(zk − ¯)(zk − ¯)T, (27)

where ¯ is the mean of the points.
The covariance of a certain region reflects the spatial and statistical properties as well as their
correlations of a region. However, the means of the features are not taken into account for
tracking. We use the means by computing the foreground likelihoods and incorporate them
into the covariance computation.

4.2.2 Similarity measuring for covariance matrices
The simplest way for measuring similarity between covariance matrices is to define a
Euclidean metric, for instance, d2(C1, C2) = Trace((C1 − C2)

2) Arsigny et al. (2005). However,
the Euclidean metric can not be applied to measure the similarity due to the fact that
covariance matrices may have null or negative eigenvalues which are meaningless for the
Euclidean metrics Forstner & Moonen (1999). In addition, the Euclidean metrics are not
appropriate in terms of symmetry with respect to matrix inversion, e.g., the multiplication
of covariance matrices with negative scalars is not closed for Euclidean space.
Since covariance matrices do not lie on Euclidean space, affine invariant Riemannian
metrics Forstner & Moonen (1999); Pennec et al. (2006) have been proposed for measuring
similarities between covariance matrices. To avoid the effect of negative and null eigenvalues,
the distance measure is defined based on generalized eigenvalues of covariance matrices:

ρ(C1, C2) =

√
n

∑
i=1

ln2 λi(C1, C2), (28)

where {λi(C1, C2)}i=1...n are the generalized eigenvalues of C1 and C2, computed from

130 Object Tracking

λiC1xi − C1xi = 0, i = 1 . . . d, (29)

and xi �= 0 are the generalized eigenvectors. The distance measure ρ satisfies the metric
axioms for positive definite symmetric matrices C1 and C2. The price paid for this measure is
a high computational burden, which makes the global searching expensive.
In this work, we use another Riemannian metrics – Log-Eucliean metrics proposed in Arsigny
et al. (2005). When only the multiplication on the covariance space is considered, covariance
matrices have Lie group structures. Thus the similarity can be measured in the domain of
logarithms by Euclidean metrics:

ρLE(C1, C2) = � log(C1)− log(C2)�Id. (30)

This metric is different from the classical Euclidean framework in which covariance matrices
with null or negative eigenvalues are at an infinite distance from covariance matrices and will
not appear in the distance computations.
Although Log-Eucliean metrics are not affine-invariant Arsigny et al. (2005), some of
them are invariant by similarity (orthogonal transformation and scaling). It means
that the Log-Euclidean metrics are invariant to changes of coordinates obtained by a
similarity Arsigny et al. (2005). The properties of Log-Euclidean make them appropriate for
similarity measuring of covariance matrices.

4.3 Model updating
Covariance tracking has to deal with appearance variations. Porikli et al. Porikli et al.
(2006) construct and update a temporal kernel of covariance matrices corresponding to
the previously estimated object regions. They keep a set of previous covariance matrices
[C1 . . . CT]. From this set, they compute a sample mean covariance matrix that blends all
the previous matrices. The sample mean is an intrinsic mean Porikli et al. (2006) because
covariance matrices do not lie on Euclidean spaces. Since covariance matrices are symmetric
positive definite matrices, they can be formulated as a connected Riemannian manifold. The
structure of the manifold is specified by a Riemannian metric defined by collection of inner
products. The model updating is computationally expensive due to the heavy burden of
computation in Riemannian space.
In this work, we use the Log-Euclidean mean of T covariance matrices with arbitrary positive
weights (wi)

T
i=1 such that ∑T

i=1 wi = 1 is a direct generalization of the geometric mean of the
matrices. It is computed as

Cm = exp(
T

∑
i=1

log(Ci)). (31)

This updating method need much less computational costs than the method used in Porikli
et al. (2006).

5. Switching criteria

The local tracking strategy is adopted when the tracker runs in steady states. When sudden
motion, distractions or occlusions happen, local tracking strategy tends to fail due to its
limited searching region. We switch to the global searching strategy based on the improved
covariance tracker described in the previous section. Motion prediction techniques such the
Kalman filter have been used to deal with occlusions. However, when the prediction is far
away from the true location, a global searching is preferred to recover from tracking failure.

131Switching Local and Covariance Matching for Efficient Object Tracking

An inverse mapping is defined in the neighborhood: logX : G → TXR. This definition is
unique. For certain manifolds, the neighborhood can be extended more regions in the tangent
space and manifold.
This operator is able to be applied to any square matrix. The definitions above are meaningful
only for matrix groups. Since we concern matrix groups in this work, the definitions are very
important for understanding our algorithm.

4.2 Improving covariance tracking
The covariance tracker Porikli et al. (2006) describes objects using covariance matrices. The
covariance matrix fuses different types of features and modalities with small dimensionality.
Covariance tracking searches all the regions and guarantees a global optimization (Up to
the descriptive ability of the covariance matrices). Despite of these advantages, covariance
tracking is relatively expensive due to the distance computation and model updating in
Riemannian manifold. We speed up the global searching and the model updating by
introducing Log-Euclidean metrics.

4.2.1 Target representation
The target is described by covariance matrices that fuse multiple features. We adopt the
features used in Porikli et al. (2006), which consist of pixel coordinates, RGB colors and
gradients. The region R is described with the d × d covariance matrix of the feature points
in R

CR =
1

n − 1

n

∑
k=1

(zk − ¯)(zk − ¯)T, (27)

where ¯ is the mean of the points.
The covariance of a certain region reflects the spatial and statistical properties as well as their
correlations of a region. However, the means of the features are not taken into account for
tracking. We use the means by computing the foreground likelihoods and incorporate them
into the covariance computation.

4.2.2 Similarity measuring for covariance matrices
The simplest way for measuring similarity between covariance matrices is to define a
Euclidean metric, for instance, d2(C1, C2) = Trace((C1 − C2)

2) Arsigny et al. (2005). However,
the Euclidean metric can not be applied to measure the similarity due to the fact that
covariance matrices may have null or negative eigenvalues which are meaningless for the
Euclidean metrics Forstner & Moonen (1999). In addition, the Euclidean metrics are not
appropriate in terms of symmetry with respect to matrix inversion, e.g., the multiplication
of covariance matrices with negative scalars is not closed for Euclidean space.
Since covariance matrices do not lie on Euclidean space, affine invariant Riemannian
metrics Forstner & Moonen (1999); Pennec et al. (2006) have been proposed for measuring
similarities between covariance matrices. To avoid the effect of negative and null eigenvalues,
the distance measure is defined based on generalized eigenvalues of covariance matrices:

ρ(C1, C2) =

√
n

∑
i=1

ln2 λi(C1, C2), (28)

where {λi(C1, C2)}i=1...n are the generalized eigenvalues of C1 and C2, computed from

130 Object Tracking

λiC1xi − C1xi = 0, i = 1 . . . d, (29)

and xi �= 0 are the generalized eigenvectors. The distance measure ρ satisfies the metric
axioms for positive definite symmetric matrices C1 and C2. The price paid for this measure is
a high computational burden, which makes the global searching expensive.
In this work, we use another Riemannian metrics – Log-Eucliean metrics proposed in Arsigny
et al. (2005). When only the multiplication on the covariance space is considered, covariance
matrices have Lie group structures. Thus the similarity can be measured in the domain of
logarithms by Euclidean metrics:

ρLE(C1, C2) = � log(C1)− log(C2)�Id. (30)

This metric is different from the classical Euclidean framework in which covariance matrices
with null or negative eigenvalues are at an infinite distance from covariance matrices and will
not appear in the distance computations.
Although Log-Eucliean metrics are not affine-invariant Arsigny et al. (2005), some of
them are invariant by similarity (orthogonal transformation and scaling). It means
that the Log-Euclidean metrics are invariant to changes of coordinates obtained by a
similarity Arsigny et al. (2005). The properties of Log-Euclidean make them appropriate for
similarity measuring of covariance matrices.

4.3 Model updating
Covariance tracking has to deal with appearance variations. Porikli et al. Porikli et al.
(2006) construct and update a temporal kernel of covariance matrices corresponding to
the previously estimated object regions. They keep a set of previous covariance matrices
[C1 . . . CT]. From this set, they compute a sample mean covariance matrix that blends all
the previous matrices. The sample mean is an intrinsic mean Porikli et al. (2006) because
covariance matrices do not lie on Euclidean spaces. Since covariance matrices are symmetric
positive definite matrices, they can be formulated as a connected Riemannian manifold. The
structure of the manifold is specified by a Riemannian metric defined by collection of inner
products. The model updating is computationally expensive due to the heavy burden of
computation in Riemannian space.
In this work, we use the Log-Euclidean mean of T covariance matrices with arbitrary positive
weights (wi)

T
i=1 such that ∑T

i=1 wi = 1 is a direct generalization of the geometric mean of the
matrices. It is computed as

Cm = exp(
T

∑
i=1

log(Ci)). (31)

This updating method need much less computational costs than the method used in Porikli
et al. (2006).

5. Switching criteria

The local tracking strategy is adopted when the tracker runs in steady states. When sudden
motion, distractions or occlusions happen, local tracking strategy tends to fail due to its
limited searching region. We switch to the global searching strategy based on the improved
covariance tracker described in the previous section. Motion prediction techniques such the
Kalman filter have been used to deal with occlusions. However, when the prediction is far
away from the true location, a global searching is preferred to recover from tracking failure.

131Switching Local and Covariance Matching for Efficient Object Tracking

Algorithm Seq1 Seq2 Seq3

Meanshift 72.6 78.5 35.8

Covariance 89.7 90.4 78.8

TheProposed 91.3 88.1 83.1

Table 1. Tracking percentages of the proposed and other trackers.

The detection of sudden motion and distraction is performed using the effective methods
proposed in Wang & Yagi (2007). Occlusions are announced when the objective function value
of the local tracking is lower than some threshold tl . The threshold for switching between local
and covariance tracking is computed by fitting a Gaussian distribution based on the similarity
scores (Bhattacharyya distances) of the frames labeled as occlusion. The threshold is set to 3σt
from the mean of the Gaussian. The covariance tracking is applied when the above threats are
detected.

6. Experiments

We verify our approach by tracking different objects in some challenging video sequences.
We compare the performance of the mean-shift algorithm and the proposed method in
Figure. 1. The face in the sequence moves very fast. Therefore, the mean-shift tracker fails
to capture the face. The proposed method combines multiple features for local tracking. It is
possible to track the target thorough the sequence. The example in Figure. 1 demonstrate the
power of the local tracking part in our approach.
In Figure. 2, we show the tracking results on the street sequence Leibe et al. (2007). Pedestrians
are articulated objects which are difficult to track. The occlusions in frame 7574 brings
more difficulty to the tracking. The proposed tracker successfully tracks through the whole
sequence.
We compare the proposed tracker with the mean-shift and covariance trackers. Different
objects in the three sequences Leibe et al. (2007) are tracked and the tracking percentages are
given in Table. 1. The proposed tracker provides higher or similar correct ratio.

6.1 Computation complexity
The tracking is faster when the local tracking method is applied since the searching of local
tracking is only performed on certain the regions. It takes less than 0.02 seconds to process
one frame.
The covariance tracking is also sped up thanks to the efficiency of Log-Euclidean distance
computation adopted in this work. The iterative computation of the affine invariant mean
leads to heavy computational cost. In contrast, the Log-Euclidean metrics are computed in a
closed form. The computation of mean based on Log-Euclidean distances takes less than 0.02
seconds, whereas the computation based on Riemannian invariant metrics takes 0.4 seconds.

7. Conclusions

We propose a novel tracking framework taking the advantages of local and global tracking
strategies. The local and global tracking are performed by using the mean-shift and covariance
matching. The proposed tracking algorithm is efficient because local searching strategy is
adopted for most of the frames. It can deal with occlusions and large motions for the switching

132 Object Tracking

��

��

���

���

���

Fig. 1. Face tracking results using the basic mean shift algorithm (in the first row) and the
proposed method (in the second row). The face in the sequence moves quickly.

133Switching Local and Covariance Matching for Efficient Object Tracking

Algorithm Seq1 Seq2 Seq3

Meanshift 72.6 78.5 35.8

Covariance 89.7 90.4 78.8

TheProposed 91.3 88.1 83.1

Table 1. Tracking percentages of the proposed and other trackers.

The detection of sudden motion and distraction is performed using the effective methods
proposed in Wang & Yagi (2007). Occlusions are announced when the objective function value
of the local tracking is lower than some threshold tl . The threshold for switching between local
and covariance tracking is computed by fitting a Gaussian distribution based on the similarity
scores (Bhattacharyya distances) of the frames labeled as occlusion. The threshold is set to 3σt
from the mean of the Gaussian. The covariance tracking is applied when the above threats are
detected.

6. Experiments

We verify our approach by tracking different objects in some challenging video sequences.
We compare the performance of the mean-shift algorithm and the proposed method in
Figure. 1. The face in the sequence moves very fast. Therefore, the mean-shift tracker fails
to capture the face. The proposed method combines multiple features for local tracking. It is
possible to track the target thorough the sequence. The example in Figure. 1 demonstrate the
power of the local tracking part in our approach.
In Figure. 2, we show the tracking results on the street sequence Leibe et al. (2007). Pedestrians
are articulated objects which are difficult to track. The occlusions in frame 7574 brings
more difficulty to the tracking. The proposed tracker successfully tracks through the whole
sequence.
We compare the proposed tracker with the mean-shift and covariance trackers. Different
objects in the three sequences Leibe et al. (2007) are tracked and the tracking percentages are
given in Table. 1. The proposed tracker provides higher or similar correct ratio.

6.1 Computation complexity
The tracking is faster when the local tracking method is applied since the searching of local
tracking is only performed on certain the regions. It takes less than 0.02 seconds to process
one frame.
The covariance tracking is also sped up thanks to the efficiency of Log-Euclidean distance
computation adopted in this work. The iterative computation of the affine invariant mean
leads to heavy computational cost. In contrast, the Log-Euclidean metrics are computed in a
closed form. The computation of mean based on Log-Euclidean distances takes less than 0.02
seconds, whereas the computation based on Riemannian invariant metrics takes 0.4 seconds.

7. Conclusions

We propose a novel tracking framework taking the advantages of local and global tracking
strategies. The local and global tracking are performed by using the mean-shift and covariance
matching. The proposed tracking algorithm is efficient because local searching strategy is
adopted for most of the frames. It can deal with occlusions and large motions for the switching

132 Object Tracking

��

��

���

���

���

Fig. 1. Face tracking results using the basic mean shift algorithm (in the first row) and the
proposed method (in the second row). The face in the sequence moves quickly.

133Switching Local and Covariance Matching for Efficient Object Tracking

����

����

����

����

����

Fig. 2. Tracking pedestrian in the complex background. No background subtraction is
applied in the tracking.

134 Object Tracking

from local to global matching. We adopt Log-Euclidean metrics in the improved covariance
tracking, which makes the global matching and model updating fast.

8. References

Arsigny, V., Fillard, P., Pennec, X. & Ayache, N. (2005). Fast and simple calculus on tensors in
the log-euclidean framework, Proc. MICCAI’05, pp. 115–122.

Atallah, M. J. (2001). Faster image template matching in the sum of the absolute value of
differences measure, IEEE Transactions on Image Processing 10(4): 659–663.

Avidan, S. (2007). Ensemble tracking, IEEE Trans. on Pattern Analysis and Machine Intelligence
29(2): 261–271.

Belongie, S., Malik, J. & Puzicha, J. (2002). Shape matching and object recognition using shape
contexts, IEEE Trans. Pattern Anal. Mach. Intell. 24(4): 509–522.

Berg, A. C. & Malik, J. (2001). Geometric blur for template matching, Proc. of the IEEE Conf. on
Computer Vision and Pattern Recognition, pp. 607–614.

Birchfield, S. & Rangarajan, S. (2005). Spatiograms versus histograms for region-based
tracking, Proc. of Conf. Computer Vision and Pattern Recognition, pp. 1158–1163.

Bradski, G. (1998). Computer vision face tracking as a component of a perceptural user
interface, Proc. of the IEEE Workshop Applications of Computer Vision, pp. 214–219.

Collins, R. T. (2003). Mean-shift blob tracking through scale space, Proc. CVPR, pp. 234–240.
Collins, R. T. & Liu, Y. (2005). On-line selection of discriminative tracking features, IEEE Trans.

Pattern Anal. Mach. Intell. 27(10): 1631–1643.
Comaniciu, D. & Meer, P. (2002). Mean shift: a robust approach toward feature space analysis,

IEEE Trans. on Pattern Analysis and Machine Intelligence 24(5): 603–619.
Comaniciu, D., Ramesh, V. & Meer, P. (2003). Kernel-based object tracking, IEEE Trans. Pattern

Anal. Mach. Intell. 25(5): 564–577.
Cover, T. M. & Thomas, J. A. (1991). Elements of Information Theory, John Wiley and Sons Press.
Djouadi, A., Snorrason, O. & Garber, F. D. (1990). The quality of training sample estimates of

the bhattacharyya coefficient, IEEE Trans. Pattern Anal. Mach. Intell. 12(1): 92–97.
Forstner, W. & Moonen, B. (1999). A metric for covariance matrices, Technical report, Dept. of

Geodesy and Geoinformatics .
Gilmore, R. (2006). Lie Groups, Lie Algebras, and Some of Their Applications, Dover Publications.
Hager, G. D. & Belhumeur, P. N. (1998). Efficient region tracking with parametric models of

geometry and illumination, IEEE Trans. Pattern Anal. Mach. Intell. 20(10): 1025–1039.
Isard, M. & Blake, A. (1998). Condensation - conditional density propagation for tracking, Intl.

Journal of Computer Vision 29(1): 2–28.
Jepson, A. D., Fleet, D. J. & EI-Maraghi, T. (2003). Robust online appearance models for visual

tracking, IEEE Trans. on Pattern Analysis and Machine Intelligence 25(10): 1296–1311.
Jost, J. (2001). Riemannian Geometry and Geometric Analysis, Springer.
Leibe, B., Schindler, K. & Gool, L. V. (2007). Coupled detection and trajectory estimation for

multi-object tracking, Proc. of Int’l Conf. on Computer Vision, pp. 115–122.
Lin, R.-S., Ross, D. A., Lim, J. & Yang, M.-H. (2004). Adaptive discriminative generative model

and its applications, Proc. Conf. Neural Information Processing System.
Lowe, D. G. (1999). Object recognition from local scale-invariant features, Proc. ICCV’99,

pp. 1150–1157.
Nguyen, H. T. & Smeulders, A. W. M. (2006). Robust tracking using foreground-background

texture discrimination, International Journal of Computer Vision 69(3): 277–293.

135Switching Local and Covariance Matching for Efficient Object Tracking

����

����

����

����

����

Fig. 2. Tracking pedestrian in the complex background. No background subtraction is
applied in the tracking.

134 Object Tracking

from local to global matching. We adopt Log-Euclidean metrics in the improved covariance
tracking, which makes the global matching and model updating fast.

8. References

Arsigny, V., Fillard, P., Pennec, X. & Ayache, N. (2005). Fast and simple calculus on tensors in
the log-euclidean framework, Proc. MICCAI’05, pp. 115–122.

Atallah, M. J. (2001). Faster image template matching in the sum of the absolute value of
differences measure, IEEE Transactions on Image Processing 10(4): 659–663.

Avidan, S. (2007). Ensemble tracking, IEEE Trans. on Pattern Analysis and Machine Intelligence
29(2): 261–271.

Belongie, S., Malik, J. & Puzicha, J. (2002). Shape matching and object recognition using shape
contexts, IEEE Trans. Pattern Anal. Mach. Intell. 24(4): 509–522.

Berg, A. C. & Malik, J. (2001). Geometric blur for template matching, Proc. of the IEEE Conf. on
Computer Vision and Pattern Recognition, pp. 607–614.

Birchfield, S. & Rangarajan, S. (2005). Spatiograms versus histograms for region-based
tracking, Proc. of Conf. Computer Vision and Pattern Recognition, pp. 1158–1163.

Bradski, G. (1998). Computer vision face tracking as a component of a perceptural user
interface, Proc. of the IEEE Workshop Applications of Computer Vision, pp. 214–219.

Collins, R. T. (2003). Mean-shift blob tracking through scale space, Proc. CVPR, pp. 234–240.
Collins, R. T. & Liu, Y. (2005). On-line selection of discriminative tracking features, IEEE Trans.

Pattern Anal. Mach. Intell. 27(10): 1631–1643.
Comaniciu, D. & Meer, P. (2002). Mean shift: a robust approach toward feature space analysis,

IEEE Trans. on Pattern Analysis and Machine Intelligence 24(5): 603–619.
Comaniciu, D., Ramesh, V. & Meer, P. (2003). Kernel-based object tracking, IEEE Trans. Pattern

Anal. Mach. Intell. 25(5): 564–577.
Cover, T. M. & Thomas, J. A. (1991). Elements of Information Theory, John Wiley and Sons Press.
Djouadi, A., Snorrason, O. & Garber, F. D. (1990). The quality of training sample estimates of

the bhattacharyya coefficient, IEEE Trans. Pattern Anal. Mach. Intell. 12(1): 92–97.
Forstner, W. & Moonen, B. (1999). A metric for covariance matrices, Technical report, Dept. of

Geodesy and Geoinformatics .
Gilmore, R. (2006). Lie Groups, Lie Algebras, and Some of Their Applications, Dover Publications.
Hager, G. D. & Belhumeur, P. N. (1998). Efficient region tracking with parametric models of

geometry and illumination, IEEE Trans. Pattern Anal. Mach. Intell. 20(10): 1025–1039.
Isard, M. & Blake, A. (1998). Condensation - conditional density propagation for tracking, Intl.

Journal of Computer Vision 29(1): 2–28.
Jepson, A. D., Fleet, D. J. & EI-Maraghi, T. (2003). Robust online appearance models for visual

tracking, IEEE Trans. on Pattern Analysis and Machine Intelligence 25(10): 1296–1311.
Jost, J. (2001). Riemannian Geometry and Geometric Analysis, Springer.
Leibe, B., Schindler, K. & Gool, L. V. (2007). Coupled detection and trajectory estimation for

multi-object tracking, Proc. of Int’l Conf. on Computer Vision, pp. 115–122.
Lin, R.-S., Ross, D. A., Lim, J. & Yang, M.-H. (2004). Adaptive discriminative generative model

and its applications, Proc. Conf. Neural Information Processing System.
Lowe, D. G. (1999). Object recognition from local scale-invariant features, Proc. ICCV’99,

pp. 1150–1157.
Nguyen, H. T. & Smeulders, A. W. M. (2006). Robust tracking using foreground-background

texture discrimination, International Journal of Computer Vision 69(3): 277–293.

135Switching Local and Covariance Matching for Efficient Object Tracking

Pennec, X., Fillard, P. & Ayache, N. (2006). A riemannian framework for tensor computing,
Intl. Journal of Computer Vision 66: 41–66.

Porikli, F., Tuzel, O. & Meer, P. (2006). Covariance tracking using model update based on lie
algebra, Proc. of Intl Conf. on Computer Vision and Pattern Recognition, pp. 728–735.

Rathi, Y., Vaswani, N., Tannenbaum, A. & Yezzi, A. (2005). Particle filtering for geometric
active contours with application to tracking moving and deforming objects, Proc. of
Conf. Computer Vision and Pattern Recognition, pp. 2–9.

Rossmann, W. (2003). Lie groups: an introduction through linear groups, London: Oxford
University Press.

Swain, M. & Ballard, D. (1991). Color indexing, Intl. Journal of Computer Vision 7(1): 11–32.
Tuzel, O., Porikli, F. & Meer, P. (2006). Region covariance: A fast descriptor for detection and

classification, ECCV, pp. 589–600.
Wang, J. & Yagi, Y. (2006). Integrating shape and color features for adaptive real-time object

tracking, Proc. of Conf. on Robotics and Biomimetrics, pp. 1–6.
Wang, J. & Yagi, Y. (2007). Discriminative mean shift tracking with auxiliary particles, Proc.

8th Asian Conference on Computer Vision, pp. 576–585.
Wang, J. & Yagi, Y. (2008a). Integrating color and shape-texture features for adaptive real-time

tracking, IEEE Trans. on Image Processing 17(2): 235–240.
Wang, J. & Yagi, Y. (2008b). Patch-based adaptive tracking using spatial and appearance

information, Proc. International Conference on Image Processing, pp. 1564–1567.
Wang, J. & Yagi, Y. (2009). Adaptive mean-shift tracking with auxiliary particles, IEEE Trans.

on Systems, Man, and Cybernetics, Part B: Cybernetics 39(6): 1578–1589.
Zhao, T., Nevatia, R. & Wu, B. (2008). Segmentation and tracking of multiple humans in

crowded environments, IEEE Trans. Pattern Anal. Mach. 30(7): 1198–1211.
Zhou, S. K., Georgescu, B., Comaniciu, D. & Shao, J. (2006). Boostmotion: boosting

a discriminative similarity function for motion estimation, Proc. of CVPR,
pp. 1761–1768.

136 Object Tracking

Eduardo Parrilla, Jaime Riera, Juan R. Torregrosa and José L. Hueso
Universidad Politécnica de Valencia

Spain

1. Introduction

In this work, we analyze different topics in the study of object tracking. In Section 2,
we study algorithms for tracking objects in a video sequence, based on the selection of
landmark points representative of the moving objects in the first frame of the sequence to
be analyzed. The movement of these points is estimated using a sparse optical-flow method.
Methods of this kind are fast, but they are not very robust. Particularly, they are not able
to handle the occlusion of the moving objects in the video. To improve the performance of
optical flow-based methods, we propose the use of adaptive filters to predict the expected
instantaneous velocities of the objects, using the predicted velocities as indicators of the
performance of the tracking algorithm. The efficiency of this strategy to handle occlusion
problems are tested with a set of synthetic and real video sequences. In (Parrilla et al., 2008)
we develop a similar study using neural networks.
Video tracking deals with the problem of following moving objects across a video sequence
(Trucco & Plakas, 2006), and it has many applications as, for example, traffic monitoring and
control (Iñigo, 1989), (Erdem et al., 2003), robotic tasks, surveillance, etc. Simple algorithms
for video tracking are based on the selection of regions of interest in the first frame of a
video sequence, which are associated with moving objects to be followed and a system for
estimating the movement of these regions across the sequence. More demanding methods
impose constrains on the shape of the tracked objects (Erdem et al., 2003; Shin et al., 2005), or
use methods to separate the moving objects from the background of the images (Ji et al, 2006;
Wren et al., 1997). Most of these more demanding algorithms deal with partial occlusion of
the moving objects, that is, the algorithms are not lost when the target temporarily disappears
from the frame and they resume correctly when the target reappears. Generally, this kind
of algorithms include an a priori training of the possible shape of the object to be followed
and occlusion is handled following the movement of the contour. This is expensive from the
computational point of view and makes these algorithms difficult to be implemented in a
real-time application.
We have used adaptive filters (Haykin, 1986; Ljung, 1999) to predict the velocities of the object
to track. These expected velocities are compared with the ones computed with the optical
flow method and are used as indicators of the performance of the method. If the optical flow
method fails to compute reasonable values for the velocities, the velocity values predicted by
the filter can be used as reliable values for the velocities of the object. A system of this kind

Fuzzy Control System to Solve Coupling
Between Tracking and Predictive Algorithms

7

Pennec, X., Fillard, P. & Ayache, N. (2006). A riemannian framework for tensor computing,
Intl. Journal of Computer Vision 66: 41–66.

Porikli, F., Tuzel, O. & Meer, P. (2006). Covariance tracking using model update based on lie
algebra, Proc. of Intl Conf. on Computer Vision and Pattern Recognition, pp. 728–735.

Rathi, Y., Vaswani, N., Tannenbaum, A. & Yezzi, A. (2005). Particle filtering for geometric
active contours with application to tracking moving and deforming objects, Proc. of
Conf. Computer Vision and Pattern Recognition, pp. 2–9.

Rossmann, W. (2003). Lie groups: an introduction through linear groups, London: Oxford
University Press.

Swain, M. & Ballard, D. (1991). Color indexing, Intl. Journal of Computer Vision 7(1): 11–32.
Tuzel, O., Porikli, F. & Meer, P. (2006). Region covariance: A fast descriptor for detection and

classification, ECCV, pp. 589–600.
Wang, J. & Yagi, Y. (2006). Integrating shape and color features for adaptive real-time object

tracking, Proc. of Conf. on Robotics and Biomimetrics, pp. 1–6.
Wang, J. & Yagi, Y. (2007). Discriminative mean shift tracking with auxiliary particles, Proc.

8th Asian Conference on Computer Vision, pp. 576–585.
Wang, J. & Yagi, Y. (2008a). Integrating color and shape-texture features for adaptive real-time

tracking, IEEE Trans. on Image Processing 17(2): 235–240.
Wang, J. & Yagi, Y. (2008b). Patch-based adaptive tracking using spatial and appearance

information, Proc. International Conference on Image Processing, pp. 1564–1567.
Wang, J. & Yagi, Y. (2009). Adaptive mean-shift tracking with auxiliary particles, IEEE Trans.

on Systems, Man, and Cybernetics, Part B: Cybernetics 39(6): 1578–1589.
Zhao, T., Nevatia, R. & Wu, B. (2008). Segmentation and tracking of multiple humans in

crowded environments, IEEE Trans. Pattern Anal. Mach. 30(7): 1198–1211.
Zhou, S. K., Georgescu, B., Comaniciu, D. & Shao, J. (2006). Boostmotion: boosting

a discriminative similarity function for motion estimation, Proc. of CVPR,
pp. 1761–1768.

136 Object Tracking

Eduardo Parrilla, Jaime Riera, Juan R. Torregrosa and José L. Hueso
Universidad Politécnica de Valencia

Spain

1. Introduction

In this work, we analyze different topics in the study of object tracking. In Section 2,
we study algorithms for tracking objects in a video sequence, based on the selection of
landmark points representative of the moving objects in the first frame of the sequence to
be analyzed. The movement of these points is estimated using a sparse optical-flow method.
Methods of this kind are fast, but they are not very robust. Particularly, they are not able
to handle the occlusion of the moving objects in the video. To improve the performance of
optical flow-based methods, we propose the use of adaptive filters to predict the expected
instantaneous velocities of the objects, using the predicted velocities as indicators of the
performance of the tracking algorithm. The efficiency of this strategy to handle occlusion
problems are tested with a set of synthetic and real video sequences. In (Parrilla et al., 2008)
we develop a similar study using neural networks.
Video tracking deals with the problem of following moving objects across a video sequence
(Trucco & Plakas, 2006), and it has many applications as, for example, traffic monitoring and
control (Iñigo, 1989), (Erdem et al., 2003), robotic tasks, surveillance, etc. Simple algorithms
for video tracking are based on the selection of regions of interest in the first frame of a
video sequence, which are associated with moving objects to be followed and a system for
estimating the movement of these regions across the sequence. More demanding methods
impose constrains on the shape of the tracked objects (Erdem et al., 2003; Shin et al., 2005), or
use methods to separate the moving objects from the background of the images (Ji et al, 2006;
Wren et al., 1997). Most of these more demanding algorithms deal with partial occlusion of
the moving objects, that is, the algorithms are not lost when the target temporarily disappears
from the frame and they resume correctly when the target reappears. Generally, this kind
of algorithms include an a priori training of the possible shape of the object to be followed
and occlusion is handled following the movement of the contour. This is expensive from the
computational point of view and makes these algorithms difficult to be implemented in a
real-time application.
We have used adaptive filters (Haykin, 1986; Ljung, 1999) to predict the velocities of the object
to track. These expected velocities are compared with the ones computed with the optical
flow method and are used as indicators of the performance of the method. If the optical flow
method fails to compute reasonable values for the velocities, the velocity values predicted by
the filter can be used as reliable values for the velocities of the object. A system of this kind

Fuzzy Control System to Solve Coupling
Between Tracking and Predictive Algorithms

7

can be useful in different applications, such as economic systems for traffic monitoring and
control using images provided by cameras installed in the roads (Iñigo, 1989).
The critical point of the system for solving the occlusion problems is the coupling between
optical flow and predictive algorithms. This coupling is governed by different parameters. In
Section 3, we propose the use of a fuzzy control system to solve the mentioned coupling.
Section 4 is devoted to stereoscopic video sequences. We analyze simple algorithms for 3D
tracking objects in a stereo video sequence, by combining optical flow and stereo vision. This
method is not able to handle the occlusion of the moving objects when they disappear due to
an obstacle. To improve the performance of this method, we propose the use of adaptive filters
or fuzzy control techniques to predict the expected instantaneous velocities of the objects.

2. Handling occlusion in optical ow algorithms for object tracking

2.1 Optical ow
For computing the optical flow of a frame of a video sequence, it is necessary to assume that
intensity variations of the image are only caused by displacements of the objects, without
considering other causes such as changes of illumination. This hypothesis, proposed initially
by Horn and Schunck (Horn & Schunck, 1981), supposes that present intensity structures in
the image, at local level, stay constant throughout the time, at least during small temporal
intervals. Formally, if I(x̄, t) = I(x(t), y(t), t) denotes the continuous space-time intensity
function of an image, it has to be fulfilled that

I(x(t), y(t), t) ≈ I(x(t + Δt), y(t + Δt), t + Δt). (1)

By expanding the right-hand side of equation (1) using the Taylor series yields

I(t) ≈ I(t) +
dI(t)

dt
Δt + O2(Δt) (2)

that is,
dI
dt

= 0, (3)

where O2(Δt) are the 2nd and higher order terms, which are assumed to be negligible. Finally,
applying the Chain rule, we obtain the optical flow equation

∂I
∂x

dx
dt

+
∂I
∂y

dy
dt

+
∂I
∂t

= 0 (4)

or, in another way
Ixu + Iyv + It = 0, (5)

where Ix, Iy are the components of the spatial gradient ∇I, It denotes partial differentiation
with respect to time and v = (u, v) denotes the components of the image velocity field. The
distribution of the velocity in each point of the image is known as the optical flow.
Constraint (5) is not sufficient to solve the optical flow equation for a given frame. The
problem is ill-posed because we have to compute two components, u and v, and we only
have one equation. This phenomenon is known as the aperture problem. It is necessary to
consider additional restrictions to the problem to estimate the motion at every image location.
There are many techniques for computing the optical flow, which differ one from each other in
the different assumptions that are taken into account to determine the solution. In our analysis
we use the technique proposed by Lucas and Kanade in 1981 (Lukas & Kanade, 1981).

138 Object Tracking

2.1.1 Lucas and Kanade algorithm
The algorithm proposed by Lucas and Kanade uses a local constant model of velocity,
obtaining good results in different applications (Bourel et al., 2001; Parrilla et al., 2005;?). It
is based on supposing the values of optical flow in a local neighborhood, R, to be constant,
minimizing the following expression

∑
(x,y)∈R

W2(x, y)(∇I(x, y, t)v + It(x, y, t))2, (6)

where W(x, y) denotes a window function and R is a spatial neighborhood. Equation (6) has
the following solution (Barron et al., 1994)

ATW2 A · v = ATW2b, (7)

where, for n points (xi, yi) in R at a moment t,

A =
[
∇I(x1, y1), · · · ,∇I(xn, yn)

]T
(8)

W = diag
[
W(x1, y1), · · · , W(xn, yn)

]
(9)

b = −
[

It(x1, y1), · · · , It(xn, yn)
]T

(10)

We can track a window from frame to frame if the system (7) represents good measurements,
and if it can be solved reliably. This means that the 2 × 2 coefficient matrix ATW2A of the
system must be both above the image noise level and well conditioned. In turn, the noise
requirement implies that both eigenvalues of ATW2A must be large, while the conditioning
requirement means that they cannot differ by several orders of magnitude. In practice, if the
two eigenvalues of ATW2A are λ1 and λ2, we accept a window if min(λ1, λ2) > λ, where λ is
a predefined threshold.

2.2 Adaptive lters
To obtain an indicator of the performance of the tracking algorithm, each component of the
velocity estimated by using optical flow, for the different frames of a sequence, is considered
as a time series. We use adaptive filters to predict instantaneous velocities in order to compare
them with the velocities obtained by using the optical flow algorithm.
An adaptive filter is a filter which self-adjusts its transfer function according to an optimizing
algorithm. Because of the complexity of the optimizing algorithms, most adaptive filters are
digital filters that perform digital signal processing and adapt their performance based on the
input signal. In our work, we concentrate on the recursive least squares (RLS) filter (Ljung,
1999).

2.2.1 RLS lter
We start from a signal xn , n = 0, . . . , NT, and we assume for the signal an AR(p) model

xk = − (a1)k xk−1 − (a2)k xk−2 − · · · −
(
ap
)

k xk−p + εk . (11)

Assuming this model for k = p, . . . , N, we obtain the system of equations

XN = CNaN + �N , (12)

139Fuzzy Control System to Solve Coupling Between Tracking and Predictive Algorithms

can be useful in different applications, such as economic systems for traffic monitoring and
control using images provided by cameras installed in the roads (Iñigo, 1989).
The critical point of the system for solving the occlusion problems is the coupling between
optical flow and predictive algorithms. This coupling is governed by different parameters. In
Section 3, we propose the use of a fuzzy control system to solve the mentioned coupling.
Section 4 is devoted to stereoscopic video sequences. We analyze simple algorithms for 3D
tracking objects in a stereo video sequence, by combining optical flow and stereo vision. This
method is not able to handle the occlusion of the moving objects when they disappear due to
an obstacle. To improve the performance of this method, we propose the use of adaptive filters
or fuzzy control techniques to predict the expected instantaneous velocities of the objects.

2. Handling occlusion in optical ow algorithms for object tracking

2.1 Optical ow
For computing the optical flow of a frame of a video sequence, it is necessary to assume that
intensity variations of the image are only caused by displacements of the objects, without
considering other causes such as changes of illumination. This hypothesis, proposed initially
by Horn and Schunck (Horn & Schunck, 1981), supposes that present intensity structures in
the image, at local level, stay constant throughout the time, at least during small temporal
intervals. Formally, if I(x̄, t) = I(x(t), y(t), t) denotes the continuous space-time intensity
function of an image, it has to be fulfilled that

I(x(t), y(t), t) ≈ I(x(t + Δt), y(t + Δt), t + Δt). (1)

By expanding the right-hand side of equation (1) using the Taylor series yields

I(t) ≈ I(t) +
dI(t)

dt
Δt + O2(Δt) (2)

that is,
dI
dt

= 0, (3)

where O2(Δt) are the 2nd and higher order terms, which are assumed to be negligible. Finally,
applying the Chain rule, we obtain the optical flow equation

∂I
∂x

dx
dt

+
∂I
∂y

dy
dt

+
∂I
∂t

= 0 (4)

or, in another way
Ixu + Iyv + It = 0, (5)

where Ix, Iy are the components of the spatial gradient ∇I, It denotes partial differentiation
with respect to time and v = (u, v) denotes the components of the image velocity field. The
distribution of the velocity in each point of the image is known as the optical flow.
Constraint (5) is not sufficient to solve the optical flow equation for a given frame. The
problem is ill-posed because we have to compute two components, u and v, and we only
have one equation. This phenomenon is known as the aperture problem. It is necessary to
consider additional restrictions to the problem to estimate the motion at every image location.
There are many techniques for computing the optical flow, which differ one from each other in
the different assumptions that are taken into account to determine the solution. In our analysis
we use the technique proposed by Lucas and Kanade in 1981 (Lukas & Kanade, 1981).

138 Object Tracking

2.1.1 Lucas and Kanade algorithm
The algorithm proposed by Lucas and Kanade uses a local constant model of velocity,
obtaining good results in different applications (Bourel et al., 2001; Parrilla et al., 2005;?). It
is based on supposing the values of optical flow in a local neighborhood, R, to be constant,
minimizing the following expression

∑
(x,y)∈R

W2(x, y)(∇I(x, y, t)v + It(x, y, t))2, (6)

where W(x, y) denotes a window function and R is a spatial neighborhood. Equation (6) has
the following solution (Barron et al., 1994)

ATW2 A · v = ATW2b, (7)

where, for n points (xi, yi) in R at a moment t,

A =
[
∇I(x1, y1), · · · ,∇I(xn, yn)

]T
(8)

W = diag
[
W(x1, y1), · · · , W(xn, yn)

]
(9)

b = −
[

It(x1, y1), · · · , It(xn, yn)
]T

(10)

We can track a window from frame to frame if the system (7) represents good measurements,
and if it can be solved reliably. This means that the 2 × 2 coefficient matrix ATW2A of the
system must be both above the image noise level and well conditioned. In turn, the noise
requirement implies that both eigenvalues of ATW2A must be large, while the conditioning
requirement means that they cannot differ by several orders of magnitude. In practice, if the
two eigenvalues of ATW2A are λ1 and λ2, we accept a window if min(λ1, λ2) > λ, where λ is
a predefined threshold.

2.2 Adaptive lters
To obtain an indicator of the performance of the tracking algorithm, each component of the
velocity estimated by using optical flow, for the different frames of a sequence, is considered
as a time series. We use adaptive filters to predict instantaneous velocities in order to compare
them with the velocities obtained by using the optical flow algorithm.
An adaptive filter is a filter which self-adjusts its transfer function according to an optimizing
algorithm. Because of the complexity of the optimizing algorithms, most adaptive filters are
digital filters that perform digital signal processing and adapt their performance based on the
input signal. In our work, we concentrate on the recursive least squares (RLS) filter (Ljung,
1999).

2.2.1 RLS lter
We start from a signal xn , n = 0, . . . , NT, and we assume for the signal an AR(p) model

xk = − (a1)k xk−1 − (a2)k xk−2 − · · · −
(
ap
)

k xk−p + εk . (11)

Assuming this model for k = p, . . . , N, we obtain the system of equations

XN = CNaN + �N , (12)

139Fuzzy Control System to Solve Coupling Between Tracking and Predictive Algorithms

where

XN =

⎡
⎢⎢⎢⎣

xp
xp+1

...
xN

⎤
⎥⎥⎥⎦ , CN =

⎡
⎢⎢⎢⎣

xp−1 xp−2 · · · x0

xp xp−1 · · · x1

...
...

xN−1 xN−2 · · · xN−p

⎤
⎥⎥⎥⎦ ,

aN =

⎡
⎢⎢⎢⎣

− (a1)N
− (a2)N

...
−

�
ap
�

N

⎤
⎥⎥⎥⎦ , �N =

⎡
⎢⎢⎢⎣

εp
εp+1

...
εN

⎤
⎥⎥⎥⎦ .

The model coefficients,
�

aj

�
N

, are obtained as those coefficients that make minimum the error

function

JN =
1

2

N

∑
k=p

λN−kεkεk =

=
1

2
�T

NΛN�N =
1

2
(XN − CNaN)T ΛN (XN − CNaN) . (13)

We have introduced the weights matrix

ΛN =

⎡
⎢⎢⎢⎢⎢⎣

λN−p 0 · · · 0

0 λN−p−1
...

...
...

0 · · · 1

⎤
⎥⎥⎥⎥⎥⎦

,

where 0 < λ ≤ 1 is a constant that controls the importance on the error function JN of the
older samples of the signal, and is called the forgetting factor of the method. The coefficients
aN are the solutions of the equation

∂JN

∂aN
= 0 ,

that is,

aN =
�
CT

NΛNCN

�−1
CT

NΛNXN . (14)

Let us consider now N + 1 samples of the signal. The system (12) becomes

�
XN

xN+1

�
=

�
CN

cT
N+1

�
aN+1 + �N+1 , (15)

where
cT

N+1 =
�
xN , xN−1, · · · , xN−p+1

�
.

aN+1 will be the coefficients that minimize the new error function

JN+1 =
1

2

N+1

∑
k=p

λN+1−kεnεN =
1

2
�T

N+1ΛN+1�N+1 .

140 Object Tracking

The solution of this problem is

aN+1 =
�
CT

N+1ΛN+1CN+1

�−1
CT

N+1ΛN+1XN+1 . (16)

To obtain the inverse of matrix CT
N+1ΛN+1CN+1 is an expensive process from the

computational point of view, especially when a large number of samples are considered. To
overcome this problem, we take into account that

CT
N+1ΛN+1CN+1 =

�
CT

N cN+1

� � λΛN 0
0 1

� �
CN

cT
N+1

�
=

= CT
NλΛNCN + cN+1cT

N+1 .

By using the inversion lemma (Ogata, 1987)

(A + BD)−1 = A−1 − A−1B
�

I + DA−1B
�−1

DA−1 ,

with
A = λCT

NΛNCN , B = cN+1 , D = cT
N+1 ,

we rewrite

�
CT

N+1ΛN+1CN+1

�−1
= (17)

1

λ

⎛
⎝�

CT
NΛNCN

�−1
−

�
CT

NΛNCN
�−1

cN+1cT
N+1

�
CT

NΛNCN
�−1

λ + cT
N+1

�
CT

NΛNCN
�−1 cN+1

⎞
⎠ .

Introducing the notation

PN =
�
CT

NΛCN

�−1
, KN+1 =

PNcN+1

λ + cT
N+1PNcN+1

,

we obtain the recurrence

PN+1 =
1

λ

�
PN − KN+1cT

N+1PN

�
. (18)

Therefore, using (16), we can write

aN+1 = PN+1λCT
NΛNXN + PN+1cN+1xN+1

= PNCT
NΛN XN − KN+1cT

N+1PNCT
NΛNXN

+
1

λ
PNcN+1xN+1 −

1

λ
KN+1cT

N+1PNcN+1xN+1

= aN − KN+1cT
N+1aN +

1

λ
PNcN+1xN+1

−
1

λ

PNcN+1cT
N+1PNcN+1xN+1

λ + cT
N+1PNcN+1

= aN + KN+1

�
xN+1 − cT

N+1aN

�
.

141Fuzzy Control System to Solve Coupling Between Tracking and Predictive Algorithms

where

XN =

⎡
⎢⎢⎢⎣

xp
xp+1

...
xN

⎤
⎥⎥⎥⎦ , CN =

⎡
⎢⎢⎢⎣

xp−1 xp−2 · · · x0

xp xp−1 · · · x1

...
...

xN−1 xN−2 · · · xN−p

⎤
⎥⎥⎥⎦ ,

aN =

⎡
⎢⎢⎢⎣

− (a1)N
− (a2)N

...
−

�
ap
�

N

⎤
⎥⎥⎥⎦ , �N =

⎡
⎢⎢⎢⎣

εp
εp+1

...
εN

⎤
⎥⎥⎥⎦ .

The model coefficients,
�

aj

�
N

, are obtained as those coefficients that make minimum the error

function

JN =
1

2

N

∑
k=p

λN−kεkεk =

=
1

2
�T

NΛN�N =
1

2
(XN − CNaN)T ΛN (XN − CNaN) . (13)

We have introduced the weights matrix

ΛN =

⎡
⎢⎢⎢⎢⎢⎣

λN−p 0 · · · 0

0 λN−p−1
...

...
...

0 · · · 1

⎤
⎥⎥⎥⎥⎥⎦

,

where 0 < λ ≤ 1 is a constant that controls the importance on the error function JN of the
older samples of the signal, and is called the forgetting factor of the method. The coefficients
aN are the solutions of the equation

∂JN

∂aN
= 0 ,

that is,

aN =
�
CT

NΛNCN

�−1
CT

NΛNXN . (14)

Let us consider now N + 1 samples of the signal. The system (12) becomes

�
XN

xN+1

�
=

�
CN

cT
N+1

�
aN+1 + �N+1 , (15)

where
cT

N+1 =
�
xN , xN−1, · · · , xN−p+1

�
.

aN+1 will be the coefficients that minimize the new error function

JN+1 =
1

2

N+1

∑
k=p

λN+1−kεnεN =
1

2
�T

N+1ΛN+1�N+1 .

140 Object Tracking

The solution of this problem is

aN+1 =
�
CT

N+1ΛN+1CN+1

�−1
CT

N+1ΛN+1XN+1 . (16)

To obtain the inverse of matrix CT
N+1ΛN+1CN+1 is an expensive process from the

computational point of view, especially when a large number of samples are considered. To
overcome this problem, we take into account that

CT
N+1ΛN+1CN+1 =

�
CT

N cN+1

� � λΛN 0
0 1

� �
CN

cT
N+1

�
=

= CT
NλΛNCN + cN+1cT

N+1 .

By using the inversion lemma (Ogata, 1987)

(A + BD)−1 = A−1 − A−1B
�

I + DA−1B
�−1

DA−1 ,

with
A = λCT

NΛNCN , B = cN+1 , D = cT
N+1 ,

we rewrite

�
CT

N+1ΛN+1CN+1

�−1
= (17)

1

λ

⎛
⎝�

CT
NΛNCN

�−1
−

�
CT

NΛNCN
�−1

cN+1cT
N+1

�
CT

NΛNCN
�−1

λ + cT
N+1

�
CT

NΛNCN
�−1 cN+1

⎞
⎠ .

Introducing the notation

PN =
�
CT

NΛCN

�−1
, KN+1 =

PNcN+1

λ + cT
N+1PNcN+1

,

we obtain the recurrence

PN+1 =
1

λ

�
PN − KN+1cT

N+1PN

�
. (18)

Therefore, using (16), we can write

aN+1 = PN+1λCT
NΛNXN + PN+1cN+1xN+1

= PNCT
NΛN XN − KN+1cT

N+1PNCT
NΛNXN

+
1

λ
PNcN+1xN+1 −

1

λ
KN+1cT

N+1PNcN+1xN+1

= aN − KN+1cT
N+1aN +

1

λ
PNcN+1xN+1

−
1

λ

PNcN+1cT
N+1PNcN+1xN+1

λ + cT
N+1PNcN+1

= aN + KN+1

�
xN+1 − cT

N+1aN

�
.

141Fuzzy Control System to Solve Coupling Between Tracking and Predictive Algorithms

To use the recursive least square (RLS) method, we first perform an initialization step,
considering Nin samples of the signal and computing

PNin =
[
CT

Nin
ΛNCNin

]−1
,

aNin = PNCT
Nin

ΛNin XNin .

After this step, the following recursion is used

KN+1 =
PNcN+1

λ + cT
N+1PNcN+1

,

PN+1 =
1

λ

(
PN − KN+1cT

N+1PN

)
,

aN+1 = aN + KN+1

(
xN+1 − cT

N+1aN

)
, (19)

for N = Nin, . . . , NT, obtaining in this way a new set of coefficients for the AR(p) model each
time a new sample of the signal is considered. This kind of autoregressive method where the
coefficients change in time is called a Dynamic Autoregressive method of order p, DAR(p),
(Young, 1999).
In order to combine adaptive filters with optical flow calculation, we follow the next steps:

1. We calculate velocities for Nin frames of each sequence by using Lucas and Kanade
algorithm and we use this samples to inicialize the filter coefficients.

2. For the N-th frame, we calculate the velocity vN in the following way:

a. We calculate vo f
N by using optical flow.

b. We estimate va f
N by using an adaptive filter.

c. If |vo f
N − va f

N | < tolN , then vN = vo f
N . Else vN = va f

N , where tolN are certain tolerance
factors, which depend on the sequence to be analyzed.

2.3 Numerical results
The method explained above has been used to analyze synthetic and real video sequences.
The result has been satisfactory, since the algorithm has allowed to track the objects along the
whole sequence.

Fig. 1. Moving object

In all the examples, we have used windows of 7 × 7 pixels to calculate optical flow by using
Lucas and Kanade algorithm. The point to track has been selected by indicating to the
program the zone where the object that we want to track is. In a final application, we would

142 Object Tracking

select a greater number of points of the image, discarding those that did not have movement.
In this way, we would only consider the points that belong to objects in movement.
Parameter values are a critical factor for the correct operation of the proposed algorithms. A
very small value of the tolerance will cause the methods to select predicted velocities when
there is no obstacle. On the other hand, a large value of the tolerance will make that the
methods can not detect any occlusion.
We will analyze the occlusion problem by using the example observed in figure 1. It consists
in an object with a horizontal movement and a velocity vel pixels per frame.

Fig. 2. Difference between optical flow and prediction

We have calculated |vo f
x − va f

x | for vel = 2, vel = 3 and vel = 4 pixels per frame (ppf) for
the different frames of the sequence. The results can be observed in figure 2. We can see that
there are two different peaks for each value of vel that corresponds with the input and output
frontiers of the obstacle. In these points there are two discontinuities that produce a large error
in the calculation of the optical flow. These peaks will always be detected. If we analyze what
happens in the region corresponding to the transition of the object through the obstacle, we
obtain the figure 3.

Fig. 3. Difference between optical flow and prediction (zoom)

As we can see, the values of |vo f
x − va f

x | are very similar to the velocity values of the object

because the optical flow algorithm considers that obstacle is a static object so vo f
x,y = 0 in this

region. In this way, we will use a variable value of tolerance in our algorithm for each frame
N

tolN = k |vN−1| (20)

143Fuzzy Control System to Solve Coupling Between Tracking and Predictive Algorithms

To use the recursive least square (RLS) method, we first perform an initialization step,
considering Nin samples of the signal and computing

PNin =
[
CT

Nin
ΛNCNin

]−1
,

aNin = PNCT
Nin

ΛNin XNin .

After this step, the following recursion is used

KN+1 =
PNcN+1

λ + cT
N+1PNcN+1

,

PN+1 =
1

λ

(
PN − KN+1cT

N+1PN

)
,

aN+1 = aN + KN+1

(
xN+1 − cT

N+1aN

)
, (19)

for N = Nin, . . . , NT, obtaining in this way a new set of coefficients for the AR(p) model each
time a new sample of the signal is considered. This kind of autoregressive method where the
coefficients change in time is called a Dynamic Autoregressive method of order p, DAR(p),
(Young, 1999).
In order to combine adaptive filters with optical flow calculation, we follow the next steps:

1. We calculate velocities for Nin frames of each sequence by using Lucas and Kanade
algorithm and we use this samples to inicialize the filter coefficients.

2. For the N-th frame, we calculate the velocity vN in the following way:

a. We calculate vo f
N by using optical flow.

b. We estimate va f
N by using an adaptive filter.

c. If |vo f
N − va f

N | < tolN , then vN = vo f
N . Else vN = va f

N , where tolN are certain tolerance
factors, which depend on the sequence to be analyzed.

2.3 Numerical results
The method explained above has been used to analyze synthetic and real video sequences.
The result has been satisfactory, since the algorithm has allowed to track the objects along the
whole sequence.

Fig. 1. Moving object

In all the examples, we have used windows of 7 × 7 pixels to calculate optical flow by using
Lucas and Kanade algorithm. The point to track has been selected by indicating to the
program the zone where the object that we want to track is. In a final application, we would

142 Object Tracking

select a greater number of points of the image, discarding those that did not have movement.
In this way, we would only consider the points that belong to objects in movement.
Parameter values are a critical factor for the correct operation of the proposed algorithms. A
very small value of the tolerance will cause the methods to select predicted velocities when
there is no obstacle. On the other hand, a large value of the tolerance will make that the
methods can not detect any occlusion.
We will analyze the occlusion problem by using the example observed in figure 1. It consists
in an object with a horizontal movement and a velocity vel pixels per frame.

Fig. 2. Difference between optical flow and prediction

We have calculated |vo f
x − va f

x | for vel = 2, vel = 3 and vel = 4 pixels per frame (ppf) for
the different frames of the sequence. The results can be observed in figure 2. We can see that
there are two different peaks for each value of vel that corresponds with the input and output
frontiers of the obstacle. In these points there are two discontinuities that produce a large error
in the calculation of the optical flow. These peaks will always be detected. If we analyze what
happens in the region corresponding to the transition of the object through the obstacle, we
obtain the figure 3.

Fig. 3. Difference between optical flow and prediction (zoom)

As we can see, the values of |vo f
x − va f

x | are very similar to the velocity values of the object

because the optical flow algorithm considers that obstacle is a static object so vo f
x,y = 0 in this

region. In this way, we will use a variable value of tolerance in our algorithm for each frame
N

tolN = k |vN−1| (20)

143Fuzzy Control System to Solve Coupling Between Tracking and Predictive Algorithms

Fig. 4. RLS tracking in a synthetic sequence

In the different sequences that have been analyzed we have used a value of k = 0.75.
In figure 4, we can observe differents frames of a synthetic video sequence that consists in an
object that follows a curved trajectory passing under an obstacle. Another example is shown
in figure 5. We can see an urban route where there is a partial vehicle occlusion because of a
street light. In these two examples, occlusions have been handled by using a RLS filter. We
have used a value of Nin = 7 frames, an order filter of 2 and a forgetting factor of λ = 0.99.
In both sequences, without using the RLS filter, an error occurs when the object arrives at
the obstacle. As we can see, by using the RLS filter, objects can be tracked along the whole
sequences.
This method has demonstrated to be very efficient to handle occlusion because of its
adaptability and tolerance to noisy data.

3. Fuzzy control for obstacle detection in object tracking

As we have said in the former section, tolerance values are a critical factor for the correct
operation of the proposed algorithms. A very small value of the tolerance will cause the
methods to select predicted velocities when there is no obstacle. On the other hand, a large
value of the tolerance will make that the methods can not detect any occlusion. For this reason,
the choice of parameter k is very critical. In this section, we propose to use a variable value
for parameter k controlled by a fuzzy system, instead of selecting its value a priori.

3.1 Fuzzy controller
A fuzzy control system is a control system based on fuzzy logic (Zadeh, 1965). Fuzzy control
provides a formal methodology for representing, manipulating and implementing a human’s
heuristic knowledge about how to control a system (Passino & Yurkovich, 2000). The fuzzy
controller block diagram is given in figure 6, where we can see a fuzzy controller embedded
in a closed-loop control system.

144 Object Tracking

Fig. 5. RLS tracking in a real sequence

Fig. 6. Fuzzy controller architecture

To design a fuzzy controller, we have to specify the different blocks of the system:

• Input variables LHS

• Output variables RHS

• Input fuzzification method

• Fuzzy rules

• Inference engine parameters

• Defuzzification method

3.1.1 Fuzzication
The function of the fuzzificator is the conversion of the real input x into a fuzzy set. To do
this work, it is neccessary to define a set of membership functions. In figure 7, we can see an
example of this set.

145Fuzzy Control System to Solve Coupling Between Tracking and Predictive Algorithms

Fig. 4. RLS tracking in a synthetic sequence

In the different sequences that have been analyzed we have used a value of k = 0.75.
In figure 4, we can observe differents frames of a synthetic video sequence that consists in an
object that follows a curved trajectory passing under an obstacle. Another example is shown
in figure 5. We can see an urban route where there is a partial vehicle occlusion because of a
street light. In these two examples, occlusions have been handled by using a RLS filter. We
have used a value of Nin = 7 frames, an order filter of 2 and a forgetting factor of λ = 0.99.
In both sequences, without using the RLS filter, an error occurs when the object arrives at
the obstacle. As we can see, by using the RLS filter, objects can be tracked along the whole
sequences.
This method has demonstrated to be very efficient to handle occlusion because of its
adaptability and tolerance to noisy data.

3. Fuzzy control for obstacle detection in object tracking

As we have said in the former section, tolerance values are a critical factor for the correct
operation of the proposed algorithms. A very small value of the tolerance will cause the
methods to select predicted velocities when there is no obstacle. On the other hand, a large
value of the tolerance will make that the methods can not detect any occlusion. For this reason,
the choice of parameter k is very critical. In this section, we propose to use a variable value
for parameter k controlled by a fuzzy system, instead of selecting its value a priori.

3.1 Fuzzy controller
A fuzzy control system is a control system based on fuzzy logic (Zadeh, 1965). Fuzzy control
provides a formal methodology for representing, manipulating and implementing a human’s
heuristic knowledge about how to control a system (Passino & Yurkovich, 2000). The fuzzy
controller block diagram is given in figure 6, where we can see a fuzzy controller embedded
in a closed-loop control system.

144 Object Tracking

Fig. 5. RLS tracking in a real sequence

Fig. 6. Fuzzy controller architecture

To design a fuzzy controller, we have to specify the different blocks of the system:

• Input variables LHS

• Output variables RHS

• Input fuzzification method

• Fuzzy rules

• Inference engine parameters

• Defuzzification method

3.1.1 Fuzzication
The function of the fuzzificator is the conversion of the real input x into a fuzzy set. To do
this work, it is neccessary to define a set of membership functions. In figure 7, we can see an
example of this set.

145Fuzzy Control System to Solve Coupling Between Tracking and Predictive Algorithms

Fig. 7. Membership functions. LN: large negative, MN: medium negative, S: small, MP:
medium positive, LP: large positive

The values of each membership function are labeled by μ (x) and determined by the input
value x and the shape of each membership function. In the example of figure 7, if we have an
input value x = 2, the set of fuzzy variables will be:
μLN = 0
μMN = 0
μS = 0.6
μMP = 0.4
μLP = 0

3.1.2 Fuzzy decision blocks
Fuzzy control requires a specification of the rules in terms of linguistic variables, that are
conditional statements of type IF-THEN. These rules relate input fuzzy values to output fuzzy
value. A set of fuzzy rules Rl is:

Rl : IF x1 is Fl
1 and ... and xn is Fl

n THEN y is Gl,

where xi and y are input and output linguistic variables, and Fl
i and Gl are fuzzy sets.

In this case, we consider a system with multiples inputs and one output. A system with
multiple outputs can be separated in a set of simple fuzzy systems.

3.1.3 Inference engine
The inference engine produces a global output μout (y), by using the set of rules and
considering the membership degree of the input with each membership function. The global
output μout (y) is a fuzzy set that is calculated from a set of membership functions for the
output y.
Continuing the previous example, if we have the two following rules:
If x is small (S), Then y is small (S)
If x is medium positive (MP), Then y is positive (P)
, and we know that
μS = 0.6
μMP = 0.4
by using the set of membership functions for the output y observed in figure 8, we will obtain
the global output of the figure 9.
Depending of the method of defuzzification, we can consider an only global output μout (y)
as the union of all the contributions, or a global output μk

out (y) for each contribution.

146 Object Tracking

Fig. 8. Membership output functions. N: negative, S: small, P: positive

Fig. 9. Global output

3.1.4 Defuzzication
The defuzzification is a process to obtain a real value u∗ representative of μout (u). There are
different methods for defuzzification and method selection is very important for the efficiency
and precision of the controller.
The most used defuzzification techniques are:

• COA o Center of Areas

This technique calculates u∗ as the geometric center of the output fuzzy value μout (u),
where μout (u) is the combination of all the contributions. u∗ divides the area in two
regions with the same area. Some problems of this method are the computational cost,
the preference for central values and that the overlapping area is only counted once.

• COS o Center of Sums

This method operates separately for each contribution. The overlapping areas are
considered more than once. It is efficient and it is the most used method.

• MOM o Mean of Maxima

This technique calculates the mean value of points with maxima membership degree in the
global output μout (u). It is very fast, but it does not consider the shape of μout (u).

• CA o Center Average

This method operates separately for each contribution and calculates a pondered average
of the centers of the contributions.

3.2 Obstacle detection
In our system, we want the value of tol to be small when there is an obstacle and large in any
other case. The value of tol can be controlled by the variable k. In this way, we have designed
a fuzzy system to control the value of k.

147Fuzzy Control System to Solve Coupling Between Tracking and Predictive Algorithms

Fig. 7. Membership functions. LN: large negative, MN: medium negative, S: small, MP:
medium positive, LP: large positive

The values of each membership function are labeled by μ (x) and determined by the input
value x and the shape of each membership function. In the example of figure 7, if we have an
input value x = 2, the set of fuzzy variables will be:
μLN = 0
μMN = 0
μS = 0.6
μMP = 0.4
μLP = 0

3.1.2 Fuzzy decision blocks
Fuzzy control requires a specification of the rules in terms of linguistic variables, that are
conditional statements of type IF-THEN. These rules relate input fuzzy values to output fuzzy
value. A set of fuzzy rules Rl is:

Rl : IF x1 is Fl
1 and ... and xn is Fl

n THEN y is Gl,

where xi and y are input and output linguistic variables, and Fl
i and Gl are fuzzy sets.

In this case, we consider a system with multiples inputs and one output. A system with
multiple outputs can be separated in a set of simple fuzzy systems.

3.1.3 Inference engine
The inference engine produces a global output μout (y), by using the set of rules and
considering the membership degree of the input with each membership function. The global
output μout (y) is a fuzzy set that is calculated from a set of membership functions for the
output y.
Continuing the previous example, if we have the two following rules:
If x is small (S), Then y is small (S)
If x is medium positive (MP), Then y is positive (P)
, and we know that
μS = 0.6
μMP = 0.4
by using the set of membership functions for the output y observed in figure 8, we will obtain
the global output of the figure 9.
Depending of the method of defuzzification, we can consider an only global output μout (y)
as the union of all the contributions, or a global output μk

out (y) for each contribution.

146 Object Tracking

Fig. 8. Membership output functions. N: negative, S: small, P: positive

Fig. 9. Global output

3.1.4 Defuzzication
The defuzzification is a process to obtain a real value u∗ representative of μout (u). There are
different methods for defuzzification and method selection is very important for the efficiency
and precision of the controller.
The most used defuzzification techniques are:

• COA o Center of Areas

This technique calculates u∗ as the geometric center of the output fuzzy value μout (u),
where μout (u) is the combination of all the contributions. u∗ divides the area in two
regions with the same area. Some problems of this method are the computational cost,
the preference for central values and that the overlapping area is only counted once.

• COS o Center of Sums

This method operates separately for each contribution. The overlapping areas are
considered more than once. It is efficient and it is the most used method.

• MOM o Mean of Maxima

This technique calculates the mean value of points with maxima membership degree in the
global output μout (u). It is very fast, but it does not consider the shape of μout (u).

• CA o Center Average

This method operates separately for each contribution and calculates a pondered average
of the centers of the contributions.

3.2 Obstacle detection
In our system, we want the value of tol to be small when there is an obstacle and large in any
other case. The value of tol can be controlled by the variable k. In this way, we have designed
a fuzzy system to control the value of k.

147Fuzzy Control System to Solve Coupling Between Tracking and Predictive Algorithms

The system has two inputs, Δε and qV, and one output, k.
The variable Δε is the increment error (EI). If we call error ε to the absolute value of the
difference between the velocity calculated by optical flow and the velocity estimated by the
adaptive filter, we have that:

εn =
∣∣∣vo f

n − va f
n

∣∣∣ , (21)

Δεn = εn − εn−1 . (22)

The variable qV is a binary variable that indicates if we are using the velocities calculated
by optical flow in the previous frames (qV = 1) or the ones estimated by the adaptive filter
(qV = 0).
In figure 10, we can see the set of membership functions used to the fuzzification of the input
Δε. Fuzzy values for this input can be negative big (NB), medium (M) or positive big (PB). NB
values correspond to the final of the peaks that exist in the frontiers of the obstacle as we can
see in figure 2, PB values correspond to the beginning of these peaks and M value correspond
to the other situations.

Fig. 10. Membership functions for the input Δε

In this system, the value of variable k must be high (H), to select the velocity calculated by
optical flow, when there is no occlusion (EI=M, qV=1) and when the target is in the output of
the obstacle (EI=NB, qV=0). In all the other cases, the value of k will be low (L) to select the
velocity estimated by the adaptive filter.
In this way, the system fuzzy rules are the following:

• IF EI is NB and qV=0 THEN k is H

• IF EI is M and qV=0 THEN k is L

• IF EI is PB and qV=0 THEN k is L

• IF EI is NB and qV=1 THEN k is L

• IF EI is M and qV=1 THEN k is H

• IF EI is PB and qV=1 THEN k is L

The inference engine calculates the global output μout (k) by using these conditions and the
set of output membership functions that we can observe in figure 11. In this way, the value of
the output variable k can oscillate between 0.5 and 1.
Finally, the defuzzificator calculates from the global output μout (k) the real value for the
variable k by using the center of sums technique, that provides fast and satisfactory results.

148 Object Tracking

Fig. 11. Membership functions for the output k

3.3 Results
The algorithm exposed has been tested in different video sequences, studying synthetic and
real traffic videos. We have used windows of 7 × 7 pixels for Lucas and Kanade algorithm,
and a value of Nin = 7 frames, an order of 2 and a forgetting factor of λ = 0.99 for the adaptive
filter.
In figure 12, we can observe differents frames of a synthetic video sequence designed with
3D Studio Max ® that consists in an object that follows a curved trajectory passing under an
obstacle.

Fig. 12. Fuzzy object tracking in a synthetic sequence

In this example, the occlusion is produced in frames 37-43. As we can observe in figure 13, the
value of k decreases in those frames. In this way, the predicted velocity is selected while the
target is hidden by the obstacle and the object is correctly tracked along all the sequence.
The same result is obtained analyzing the example shown in figure 14. In this figure, we can
see an urban route where there is a partial vehicle occlusion because of a street light.
In this case, the occlusion occurs in frames 21-27 and, as we can see in figure 15, k decreases
in this position. On the other hand, in this figure, we can observe that the value of k also
decreases in frames 51-54. This change is due to the fact that there is an error in the optical
flow calculation. The performance of the system in this point is very interesting since it is able
to correct possible errors in the optical flow calculation, besides handling occlusion.

149Fuzzy Control System to Solve Coupling Between Tracking and Predictive Algorithms

The system has two inputs, Δε and qV, and one output, k.
The variable Δε is the increment error (EI). If we call error ε to the absolute value of the
difference between the velocity calculated by optical flow and the velocity estimated by the
adaptive filter, we have that:

εn =
∣∣∣vo f

n − va f
n

∣∣∣ , (21)

Δεn = εn − εn−1 . (22)

The variable qV is a binary variable that indicates if we are using the velocities calculated
by optical flow in the previous frames (qV = 1) or the ones estimated by the adaptive filter
(qV = 0).
In figure 10, we can see the set of membership functions used to the fuzzification of the input
Δε. Fuzzy values for this input can be negative big (NB), medium (M) or positive big (PB). NB
values correspond to the final of the peaks that exist in the frontiers of the obstacle as we can
see in figure 2, PB values correspond to the beginning of these peaks and M value correspond
to the other situations.

Fig. 10. Membership functions for the input Δε

In this system, the value of variable k must be high (H), to select the velocity calculated by
optical flow, when there is no occlusion (EI=M, qV=1) and when the target is in the output of
the obstacle (EI=NB, qV=0). In all the other cases, the value of k will be low (L) to select the
velocity estimated by the adaptive filter.
In this way, the system fuzzy rules are the following:

• IF EI is NB and qV=0 THEN k is H

• IF EI is M and qV=0 THEN k is L

• IF EI is PB and qV=0 THEN k is L

• IF EI is NB and qV=1 THEN k is L

• IF EI is M and qV=1 THEN k is H

• IF EI is PB and qV=1 THEN k is L

The inference engine calculates the global output μout (k) by using these conditions and the
set of output membership functions that we can observe in figure 11. In this way, the value of
the output variable k can oscillate between 0.5 and 1.
Finally, the defuzzificator calculates from the global output μout (k) the real value for the
variable k by using the center of sums technique, that provides fast and satisfactory results.

148 Object Tracking

Fig. 11. Membership functions for the output k

3.3 Results
The algorithm exposed has been tested in different video sequences, studying synthetic and
real traffic videos. We have used windows of 7 × 7 pixels for Lucas and Kanade algorithm,
and a value of Nin = 7 frames, an order of 2 and a forgetting factor of λ = 0.99 for the adaptive
filter.
In figure 12, we can observe differents frames of a synthetic video sequence designed with
3D Studio Max ® that consists in an object that follows a curved trajectory passing under an
obstacle.

Fig. 12. Fuzzy object tracking in a synthetic sequence

In this example, the occlusion is produced in frames 37-43. As we can observe in figure 13, the
value of k decreases in those frames. In this way, the predicted velocity is selected while the
target is hidden by the obstacle and the object is correctly tracked along all the sequence.
The same result is obtained analyzing the example shown in figure 14. In this figure, we can
see an urban route where there is a partial vehicle occlusion because of a street light.
In this case, the occlusion occurs in frames 21-27 and, as we can see in figure 15, k decreases
in this position. On the other hand, in this figure, we can observe that the value of k also
decreases in frames 51-54. This change is due to the fact that there is an error in the optical
flow calculation. The performance of the system in this point is very interesting since it is able
to correct possible errors in the optical flow calculation, besides handling occlusion.

149Fuzzy Control System to Solve Coupling Between Tracking and Predictive Algorithms

Fig. 13. k values in synthetic sequence

Fig. 14. Object tracking in a real sequence

4. Handling occlusion in object tracking in stereoscopic video sequences

Stereo vision is a part of the field of computer vision that uses two or more cameras to
obtain two or more images from which distance information can be obtained by using
the triangulation principle (Cochran & Medioni, 1992). We can obtain three-dimensional
information of static scenes by using this technique. On the other hand, we can use optical
flow algorithms for object tracking in two dimensional video sequences along the time (Trucco
& Plakas, 2006).
In (Parrilla et al., 2005), we have studied a system that combines stereoscopic vision and
optical flow algorithms for object tracking in a three-dimensional space. We select a set of
points to be tracked in the first frame of one video of the stereo sequence and, by using optical
flow algorithms, we track them in that sequence. For each frame, we calculate the disparity of
these points by using the other video and stereo algorithms. In this way, we know the position
of each point in a three dimensional space (disparity) and along the time (optical flow). One
of the most important problems of this technique is that this method is not able to handle the
occlusion of the moving objects.

150 Object Tracking

Fig. 15. k values in real sequence

Fig. 16. Triangulation principle

For solving this occlusion problem, we propose the use of adaptive filters (Haykin, 1986;
Ljung, 1999) to predict the expected 3D velocities of the objects. In this section, we combine
adaptive filters, optical flow algorithms and stereo vision, in order to handle occlusion in
object tracking in stereoscopic video sequences.
Stereo vision (Cochran, 1990) consists in, given a point P from which we know their
projections P1 and P2 in the images of a pair of cameras, calculating its position in the space
by using the triangulation principle (see figure 16). If we designate the cartesian coordinates
of the projections as (x1, y1) and (x2, y2) in the respective coordinate systems of the cameras,
we can obtain their relationship with the coordinates (x, y, z) of point P.
Without loss of generality, we will assume that the coordinate system of the left camera and
the real world is the same and, to simplify the problem, we will consider that the axes of the
cameras are parallel and the coordinate system of the right camera is similar but moved a
distance B along the axis x. We will also assume that the two cameras are equal with a focal
length f . In this way we have the following equations:

151Fuzzy Control System to Solve Coupling Between Tracking and Predictive Algorithms

Fig. 13. k values in synthetic sequence

Fig. 14. Object tracking in a real sequence

4. Handling occlusion in object tracking in stereoscopic video sequences

Stereo vision is a part of the field of computer vision that uses two or more cameras to
obtain two or more images from which distance information can be obtained by using
the triangulation principle (Cochran & Medioni, 1992). We can obtain three-dimensional
information of static scenes by using this technique. On the other hand, we can use optical
flow algorithms for object tracking in two dimensional video sequences along the time (Trucco
& Plakas, 2006).
In (Parrilla et al., 2005), we have studied a system that combines stereoscopic vision and
optical flow algorithms for object tracking in a three-dimensional space. We select a set of
points to be tracked in the first frame of one video of the stereo sequence and, by using optical
flow algorithms, we track them in that sequence. For each frame, we calculate the disparity of
these points by using the other video and stereo algorithms. In this way, we know the position
of each point in a three dimensional space (disparity) and along the time (optical flow). One
of the most important problems of this technique is that this method is not able to handle the
occlusion of the moving objects.

150 Object Tracking

Fig. 15. k values in real sequence

Fig. 16. Triangulation principle

For solving this occlusion problem, we propose the use of adaptive filters (Haykin, 1986;
Ljung, 1999) to predict the expected 3D velocities of the objects. In this section, we combine
adaptive filters, optical flow algorithms and stereo vision, in order to handle occlusion in
object tracking in stereoscopic video sequences.
Stereo vision (Cochran, 1990) consists in, given a point P from which we know their
projections P1 and P2 in the images of a pair of cameras, calculating its position in the space
by using the triangulation principle (see figure 16). If we designate the cartesian coordinates
of the projections as (x1, y1) and (x2, y2) in the respective coordinate systems of the cameras,
we can obtain their relationship with the coordinates (x, y, z) of point P.
Without loss of generality, we will assume that the coordinate system of the left camera and
the real world is the same and, to simplify the problem, we will consider that the axes of the
cameras are parallel and the coordinate system of the right camera is similar but moved a
distance B along the axis x. We will also assume that the two cameras are equal with a focal
length f . In this way we have the following equations:

151Fuzzy Control System to Solve Coupling Between Tracking and Predictive Algorithms

Fig. 17. Correlation search

⎧⎪⎪⎨
⎪⎪⎩

x1

f
=

x
z

x2

f
=

x − B
z

(23)

By solving the system of equations we obtain the following results:

x =
x1B

x1 − x2
, (24)

z =
B f

x1 − x2
. (25)

By proceeding in a similar way we also can calculate that:

y =
y1B

x1 − x2
. (26)

The main problem of stereo vision is to find the correspondences between the points of the
different images (disparity), i.e, given the projection P1 in the left image, to find what point of
the right image corresponds to the projection P2, to situate in the space the point P.
We have programmed a correlation search method that has provided satisfactory results. This
technique selects a neighborhood around the point P1 and calculates the correlation with a
window that will displace over the different points of the right image (see figure 17). Finally
we select that point where the correlation is maximum.
Because of the geometry of the problem, we only have to displace the window along a line
(epipolar line) because projections P1 and P2 will be situated in the same horizontal (see figure
18).

4.1 Two-dimensional adaptive lter
To obtain an indicator of the performance of the tracking algorithm, each component of the
velocity estimated by using optical flow and stereo vision, for the different frames of the
sequences, is considered as a time series. We use adaptive filters to predict instantaneous
velocities in order to compare them with the velocities obtained by using optical flow and
stereo vision. For the component vy, we use a simple adaptive filter because this component
is the same in the two video sequences. On the other hand, there are two components vLx and
vRx that correspond to the velocities in the left and right images. In this case, we will adapt
the RLS filter to operate with two signals simultaneously.

152 Object Tracking

Fig. 18. Epipolar line

We start from two signals xLn and xRn, n = 0, . . . , NT, and we assume for the signals an AR(p)
model

xLk = − (a1)k xLk−1 − (a2)k xRk−1 − · · ·

· · · −
�
a2p−1

�
k xLk−p −

�
a2p

�
k xRk−p + εk ,

xRk = − (b1)k xLk−1 − (b2)k xRk−1 − · · ·

· · · −
�
b2p−1

�
k xLk−p −

�
b2p

�
k xRk−p + ε�k , (27)

In this case, xLk and xRk will depend on the previous samples of both signals.
Assuming this model for k = p, . . . , N, we obtain the system of equations

�
XLN
XRN

�
= CN

�
aN
bN

�
+ �N ,

where

XLN =

⎡
⎢⎢⎢⎣

xLp
xLp+1

...
xLN

⎤
⎥⎥⎥⎦ , XRN =

⎡
⎢⎢⎢⎣

xRp
xRp+1

...
xRN

⎤
⎥⎥⎥⎦ , CN =

⎡
⎢⎢⎢⎣

xLp−1 xRp−1 · · · xL0 xR0

xLp xRp · · · xL1 xR1

...
...

xLN−1 xRN−1 · · · xLN−p xRN−p

⎤
⎥⎥⎥⎦ ,

aN =

⎡
⎢⎢⎢⎣

− (a1)N
− (a2)N

...
−

�
a2p

�
N

⎤
⎥⎥⎥⎦ , bN =

⎡
⎢⎢⎢⎣

− (b1)N
− (b2)N

...
−

�
b2p

�
N

⎤
⎥⎥⎥⎦ , �N =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

εp
...

εN
ε�p
...

ε�N

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

.

This system of equations can be considered as two separated systems of equations with the
same matrix CN , that contains samples of both signals xLN and xRN

XLN = CNaN + �N ,
XRN = CNbN + ��N .

(28)

153Fuzzy Control System to Solve Coupling Between Tracking and Predictive Algorithms

Fig. 17. Correlation search

⎧⎪⎪⎨
⎪⎪⎩

x1

f
=

x
z

x2

f
=

x − B
z

(23)

By solving the system of equations we obtain the following results:

x =
x1B

x1 − x2
, (24)

z =
B f

x1 − x2
. (25)

By proceeding in a similar way we also can calculate that:

y =
y1B

x1 − x2
. (26)

The main problem of stereo vision is to find the correspondences between the points of the
different images (disparity), i.e, given the projection P1 in the left image, to find what point of
the right image corresponds to the projection P2, to situate in the space the point P.
We have programmed a correlation search method that has provided satisfactory results. This
technique selects a neighborhood around the point P1 and calculates the correlation with a
window that will displace over the different points of the right image (see figure 17). Finally
we select that point where the correlation is maximum.
Because of the geometry of the problem, we only have to displace the window along a line
(epipolar line) because projections P1 and P2 will be situated in the same horizontal (see figure
18).

4.1 Two-dimensional adaptive lter
To obtain an indicator of the performance of the tracking algorithm, each component of the
velocity estimated by using optical flow and stereo vision, for the different frames of the
sequences, is considered as a time series. We use adaptive filters to predict instantaneous
velocities in order to compare them with the velocities obtained by using optical flow and
stereo vision. For the component vy, we use a simple adaptive filter because this component
is the same in the two video sequences. On the other hand, there are two components vLx and
vRx that correspond to the velocities in the left and right images. In this case, we will adapt
the RLS filter to operate with two signals simultaneously.

152 Object Tracking

Fig. 18. Epipolar line

We start from two signals xLn and xRn, n = 0, . . . , NT, and we assume for the signals an AR(p)
model

xLk = − (a1)k xLk−1 − (a2)k xRk−1 − · · ·

· · · −
�
a2p−1

�
k xLk−p −

�
a2p

�
k xRk−p + εk ,

xRk = − (b1)k xLk−1 − (b2)k xRk−1 − · · ·

· · · −
�
b2p−1

�
k xLk−p −

�
b2p

�
k xRk−p + ε�k , (27)

In this case, xLk and xRk will depend on the previous samples of both signals.
Assuming this model for k = p, . . . , N, we obtain the system of equations

�
XLN
XRN

�
= CN

�
aN
bN

�
+ �N ,

where

XLN =

⎡
⎢⎢⎢⎣

xLp
xLp+1

...
xLN

⎤
⎥⎥⎥⎦ , XRN =

⎡
⎢⎢⎢⎣

xRp
xRp+1

...
xRN

⎤
⎥⎥⎥⎦ , CN =

⎡
⎢⎢⎢⎣

xLp−1 xRp−1 · · · xL0 xR0

xLp xRp · · · xL1 xR1

...
...

xLN−1 xRN−1 · · · xLN−p xRN−p

⎤
⎥⎥⎥⎦ ,

aN =

⎡
⎢⎢⎢⎣

− (a1)N
− (a2)N

...
−

�
a2p

�
N

⎤
⎥⎥⎥⎦ , bN =

⎡
⎢⎢⎢⎣

− (b1)N
− (b2)N

...
−

�
b2p

�
N

⎤
⎥⎥⎥⎦ , �N =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

εp
...

εN
ε�p
...

ε�N

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

.

This system of equations can be considered as two separated systems of equations with the
same matrix CN , that contains samples of both signals xLN and xRN

XLN = CNaN + �N ,
XRN = CNbN + ��N .

(28)

153Fuzzy Control System to Solve Coupling Between Tracking and Predictive Algorithms

If we apply the RLS filter theory to these systems of equations, we will obtain an adaptive filter
for two correlated signals. To use this filter, we first perform an initialization step, considering
Nin samples of the signals and computing

PNin =
[
CT

Nin
ΛNCNin

]−1
,

aNin = PNCT
Nin

ΛNin XLNin ,

bNin = PNCT
Nin

ΛNin XRNin .

After this step, the following recursion is used

KN+1 =
PNcN+1

λ + cT
N+1PNcN+1

,

PN+1 =
1

λ

(
PN − KN+1cT

N+1PN

)
,

aN+1 = aN + KN+1

(
xLN+1 − cT

N+1aN

)
,

bN+1 = bN + KN+1

(
xRN+1 − cT

N+1bN

)
, (29)

where
cT

N+1 =
[
xLN , xRN , xLN−1, xRN−1, · · · , xLN−p+1, xRN−p+1

]
,

for N = Nin, . . . , NT, obtaining in this way a new set of coefficients for the AR(p) model each
time a new sample of the signals is considered.
In this way, we can estimate the following sample of the signals

xLN+1 = cT
N+1aN+1,

xRN+1 = cT
N+1bN+1. (30)

4.2 Handling occlusion
In order to predict the velocities of the objects, we follow the next steps:

1. We calculate velocities for Nin frames of each sequence by using Lucas and Kanade
algorithm and stereo vision, and we use this samples to inicialize the filter coefficients.

2. For the N-th frame, we calculate the velocities vLN and vRN in the following way:

a. We calculate vo f
LN and vo f

RN by using optical flow and stereo vision.

b. We estimate ves
LN and ves

RN by using an adaptive filter.

c. If |vo f
L,RN − ves

L,RN | < tolL,RN, then vL,RN = vo f
L,RN . Else vL,RN = ves

L,RN

3. We use vL,RN and Nin − 1 previous samples to update the filter coefficients.

Tolerance values are a critical factor for the correct operation of the proposed algorithm. A
very small value of the tolerance will cause the method to select predicted velocities when
there is no obstacle. On the other hand, a large value of the tolerance will make that the
method can not detect any occlusion. In Section 2, we have demonstrated that an optimum
value of tolerance is

154 Object Tracking

Fig. 19. Tracking system diagram

tolL,RN = k |vL,RN−1| . (31)

In the same way as in the case of two-dimensional tracking, the values of k will be controlled
by a fuzzy system.
In Figure 19, we can see a diagram of the entire system. An optical flow algorithm is applied
to the left sequence in order to perform a 2D tracking of the object. From the obtained
results, by calculating the disparity, we track the object in the right sequence. Moreover, the
velocity values are predicted by using the adaptive filter. The velocity values calculated using
optical flow and the predicted values are the inputs of two identical fuzzy controllers that are
responsible for deciding which velocities are selected according to whether there is occlusion.
These selected velocities will also be the inputs of the adaptive filter that will update the
coefficients in order to make the prediction in the next frame. Once the object has been
tracked in both sequences, using the triangulation principle, we can obtain the 3D velocity
of the object.

4.3 Numerical results
The method explained above has been used to analyze synthetic and real video sequences.
The result has been satisfactory, since the algorithm has allowed to track the objects along the
whole sequence.
In all the examples, we have used windows of 7 × 7 pixels to calculate optical flow and
disparity.
In Figure 20, we can observe differents frames of a synthetic video sequence that consists in
an object that moves over a rail and passes behind an obstacle. Another example is shown in
Figure 21. We can see an urban route where there is a partial vehicle occlusion because of a
street light. In these two examples, occlusions have been handled by using an adaptive filter.
We have used a value of Nin = 7 frames, an order filter of 2 and a forgetting factor of λ = 0.99.
As we can observe in the images, objects are successfully tracked along all the frames, there
is not any error when they disappear behind the obstacles and their trajectory is predicted
correctly.

155Fuzzy Control System to Solve Coupling Between Tracking and Predictive Algorithms

If we apply the RLS filter theory to these systems of equations, we will obtain an adaptive filter
for two correlated signals. To use this filter, we first perform an initialization step, considering
Nin samples of the signals and computing

PNin =
[
CT

Nin
ΛNCNin

]−1
,

aNin = PNCT
Nin

ΛNin XLNin ,

bNin = PNCT
Nin

ΛNin XRNin .

After this step, the following recursion is used

KN+1 =
PNcN+1

λ + cT
N+1PNcN+1

,

PN+1 =
1

λ

(
PN − KN+1cT

N+1PN

)
,

aN+1 = aN + KN+1

(
xLN+1 − cT

N+1aN

)
,

bN+1 = bN + KN+1

(
xRN+1 − cT

N+1bN

)
, (29)

where
cT

N+1 =
[
xLN , xRN , xLN−1, xRN−1, · · · , xLN−p+1, xRN−p+1

]
,

for N = Nin, . . . , NT, obtaining in this way a new set of coefficients for the AR(p) model each
time a new sample of the signals is considered.
In this way, we can estimate the following sample of the signals

xLN+1 = cT
N+1aN+1,

xRN+1 = cT
N+1bN+1. (30)

4.2 Handling occlusion
In order to predict the velocities of the objects, we follow the next steps:

1. We calculate velocities for Nin frames of each sequence by using Lucas and Kanade
algorithm and stereo vision, and we use this samples to inicialize the filter coefficients.

2. For the N-th frame, we calculate the velocities vLN and vRN in the following way:

a. We calculate vo f
LN and vo f

RN by using optical flow and stereo vision.

b. We estimate ves
LN and ves

RN by using an adaptive filter.

c. If |vo f
L,RN − ves

L,RN | < tolL,RN, then vL,RN = vo f
L,RN . Else vL,RN = ves

L,RN

3. We use vL,RN and Nin − 1 previous samples to update the filter coefficients.

Tolerance values are a critical factor for the correct operation of the proposed algorithm. A
very small value of the tolerance will cause the method to select predicted velocities when
there is no obstacle. On the other hand, a large value of the tolerance will make that the
method can not detect any occlusion. In Section 2, we have demonstrated that an optimum
value of tolerance is

154 Object Tracking

Fig. 19. Tracking system diagram

tolL,RN = k |vL,RN−1| . (31)

In the same way as in the case of two-dimensional tracking, the values of k will be controlled
by a fuzzy system.
In Figure 19, we can see a diagram of the entire system. An optical flow algorithm is applied
to the left sequence in order to perform a 2D tracking of the object. From the obtained
results, by calculating the disparity, we track the object in the right sequence. Moreover, the
velocity values are predicted by using the adaptive filter. The velocity values calculated using
optical flow and the predicted values are the inputs of two identical fuzzy controllers that are
responsible for deciding which velocities are selected according to whether there is occlusion.
These selected velocities will also be the inputs of the adaptive filter that will update the
coefficients in order to make the prediction in the next frame. Once the object has been
tracked in both sequences, using the triangulation principle, we can obtain the 3D velocity
of the object.

4.3 Numerical results
The method explained above has been used to analyze synthetic and real video sequences.
The result has been satisfactory, since the algorithm has allowed to track the objects along the
whole sequence.
In all the examples, we have used windows of 7 × 7 pixels to calculate optical flow and
disparity.
In Figure 20, we can observe differents frames of a synthetic video sequence that consists in
an object that moves over a rail and passes behind an obstacle. Another example is shown in
Figure 21. We can see an urban route where there is a partial vehicle occlusion because of a
street light. In these two examples, occlusions have been handled by using an adaptive filter.
We have used a value of Nin = 7 frames, an order filter of 2 and a forgetting factor of λ = 0.99.
As we can observe in the images, objects are successfully tracked along all the frames, there
is not any error when they disappear behind the obstacles and their trajectory is predicted
correctly.

155Fuzzy Control System to Solve Coupling Between Tracking and Predictive Algorithms

Fig. 20. RLS tracking stereo in a synthetic sequence

156 Object Tracking

Fig. 21. RLS tracking stereo in a real sequence

5. References

Barron, J.L., Fleet, D.J. & Beauchemin, S.S. (1994) Performance of Optical Flow Techniques,
International Journal of Computer Vision, Vol. 12(1): 43-77.

Bourel, F., Chibelushi, C.C. & Low, A.A. (2001) Recognition of facial expressions in the
presence of occlusion, Proceedings of the Twelfth British Machine Vision Conference, Vol.
1: 213-222.

Cochran, S.D. (1990) Surface description from binocular stereo, Dissertation presented in partial
fulfillment of the requirements for the degree Doctor of Philosophy, Vol. 1.

Cochran, S.D. & Medioni, G. (1992) 3-D Surface Description from Binocular Stereo, IEEE
Transactions on Pattern Analysis and Machine Intelligence, Vol. 14(10): 981-994.

Erdem, Ç.E., Tekalp, A.M. & Sankur, B. (2003) Video Object Tracking with Feedback of
Performance Measures, IEEE Trans. Circuits and Systems for Video Technology, Vol.
13(4): 310-324.

Haykin, S. (1986) Adaptive Filter Theory, Prentice-Hall, Englewood Cliffs NJ.
Horn B.K.P. & Schunck B. G. (1981) Determining optical flow, Artificial Intelligence, Vol. 17(1-3):

185-203.

157Fuzzy Control System to Solve Coupling Between Tracking and Predictive Algorithms

Fig. 20. RLS tracking stereo in a synthetic sequence

156 Object Tracking

Fig. 21. RLS tracking stereo in a real sequence

5. References

Barron, J.L., Fleet, D.J. & Beauchemin, S.S. (1994) Performance of Optical Flow Techniques,
International Journal of Computer Vision, Vol. 12(1): 43-77.

Bourel, F., Chibelushi, C.C. & Low, A.A. (2001) Recognition of facial expressions in the
presence of occlusion, Proceedings of the Twelfth British Machine Vision Conference, Vol.
1: 213-222.

Cochran, S.D. (1990) Surface description from binocular stereo, Dissertation presented in partial
fulfillment of the requirements for the degree Doctor of Philosophy, Vol. 1.

Cochran, S.D. & Medioni, G. (1992) 3-D Surface Description from Binocular Stereo, IEEE
Transactions on Pattern Analysis and Machine Intelligence, Vol. 14(10): 981-994.

Erdem, Ç.E., Tekalp, A.M. & Sankur, B. (2003) Video Object Tracking with Feedback of
Performance Measures, IEEE Trans. Circuits and Systems for Video Technology, Vol.
13(4): 310-324.

Haykin, S. (1986) Adaptive Filter Theory, Prentice-Hall, Englewood Cliffs NJ.
Horn B.K.P. & Schunck B. G. (1981) Determining optical flow, Artificial Intelligence, Vol. 17(1-3):

185-203.

157Fuzzy Control System to Solve Coupling Between Tracking and Predictive Algorithms

Iñigo, R.M. (1989) Application of machine Vision to Traffic Monitoring and Control, IEEE
Transactions on Vehicular Technology, Vol. 38(3): 112-122.

Ji, X., Wei, Z. & Feng, Y. (2006) Effective Vehicle Detection Technique for Traffic Surveillance
Systems, J. Vis. Commun. Image R., Vol. 17: 647-658.

Ljung, L. (1999) System Identification. Theory for the User, Prentice-Hall, Upper Saddle River NJ.
Lukas, B.D. & Kanade, T. (1981) An iterative image registration technique with an application

to stereovision, Proceedings of Imaging Understanding Workshop, 121-130.
Ogata, K. (1987) Discrete-Time Control Systems, Prentice Hall. Upper Saddle River, NJ.
Parrilla, E., Riera, J., Giménez, M., Torregrosa, J.R. & Hueso, J.L. (2005) Vehicle tracking in

urban routes by means of Lucas&Kanade algorithm, Proceedings of the International
Conference on Computational and Mathematical Methods in Science and Engineering,
438-445.

Parrilla, E., Riera, J., Giménez, M., Torregrosa, J.R. & Hueso, J.L. (2005) Cálculo de velocidades
mediante un sistema estereoscópico y algoritmos de flujo óptico, Proceedings of the
Congreso de Ecuaciones Diferenciales y Aplicaciones.

Parrilla, E., Ginestar, D., Hueso, J.L., Riera, J. & Torregrosa, J.R. (2008) Handling occlusion
in optical flow algorithms for object tracking, Computers and Mathematics with
Applications, Vol. 56(3): 733-742.

Parrilla, E., Riera, J., Torregrosa, J.R. & Hueso, J.L. (2009) Handling occlusion in object tracking
in stereoscopic video sequences, Mathematical and Computer Modelling, Vol. 50(5-6):
823-830.

Passino, K.M. & Yurkovich, S. (2000) Fuzzy control, International Journal of General Systems,
Vol. 29(2): 341-342.

Rumelhart, D. & McClelland, J. (1986) Parallel Distributed Processing. MIT Press, Cambridge,
MA.

Shin, J., Kim, S., Kang, S., Lee, S., Paik, J., Abidi, B., & Abidi, M. (2005) Optical flow-based
real-time object tracking using non-prior training active feature model, Real-Time
Imaging, Vol. 11: 204-218.

Trucco, E. & Plakas, K. (2006) Video Tracking: A Concise Survey, IEEE Journal of Oceanic
Engineering, Vol. 31(2): 520-529.

Wren, C.R., Azerbayejani, A., Darrell, T. & Pentland, A.P. (1997) Pfinder: Real-time tracking of
the human body, IEEE Trans. Pattern Anal. Machine Intell, Vol. 19: 780-785.

Young, P.C. (1999) Nonstationary time series analysis and forecasting, Progress in
Environmental Science, Vol. 1(1): 3-48.

Zadeh, L.A. (1965) Fuzzy sets, Inf. Control, Vol. 8: 338-353.

158 Object Tracking

8

Object Tracking and Indexing
in H.264/AVC Bitstream Domains

Muhammad Syah Houari Sabirin and Munchurl Kim
Korea Advanced Institute of Science and Technology

Korea

1. Introduction
The use of surveillance video recording is mainly based on the activity of monitoring the
areas in which the surveillance cameras are located. Consequently, one of the motivations of
observing the footage from surveillance video is to locate and identify regions of interest
(e.g. suspected moving objects) in the covered areas. The visual information of objects such
as color, shape, texture and motion etc. enables users to easily navigate and browse regions
of interest in the surveillance video data. However, this requires the semi-automatic or
automatic analysis and description of visual features for surveillance video data, which is
usually very challengeable and time consuming.
To describe the visual information of the surveillance video contents in a structured way for
fast and accurate retrieval over visual queries, MPEG has standardized a set of visual
descriptors in forms of metadata schema. The MPEG-7 Visual descriptors, as Part 3 of
MPEG-7 (Multimedia Content Description Interface, standardized under ISO/IEC 15938),
provide the standardized descriptions of visual features that enable users to identify,
categorize or filter the image or video data (MPEG57/N4358). The MPEG-7 Visual
descriptors enable the structured descriptions of color, texture, shape, motion, location and
face recognition features. Moreover, since they are described in low-level, the retrieval
process can be relatively easier by comparing a given query with the pre-generated
descriptions of MPEG-7 Visual descriptors in database.
In surveillance video contents, MPEG-7 Visual descriptor enables the description of the
characteristics of objects. The motion trajectory can be used to describe the behavior of
objects. It can track and identify when and where the objects move. The motion information
for an object enables the retrieval of the object by querying the intensity of the motion or the
moving direction.
The automatic extraction of visual features from video contents has also become an
emerging issue with MPEG-7 Visual descriptors. Recently, H.264/AVC has become a
popular video compression tool for video surveillance due to its high coding efficiency and
the availability of its real-time encoding devices. By incorporating content analysis into the
surveillance applications, intelligent surveillance can be possible for efficient searching and
retrieval of surveillance video data. In this case, the content analysis for the surveillance
video data is usually required to be performed in real-time for metadata generation. For
real-time generation of metadata, the content analysis is usually performed in the bitstream
domain of compressed video instead of its raw pixel domain. In this chapter, we explain a
feature extraction of motion trajectory which detects and tracks moving objects (ROI’s) and

Iñigo, R.M. (1989) Application of machine Vision to Traffic Monitoring and Control, IEEE
Transactions on Vehicular Technology, Vol. 38(3): 112-122.

Ji, X., Wei, Z. & Feng, Y. (2006) Effective Vehicle Detection Technique for Traffic Surveillance
Systems, J. Vis. Commun. Image R., Vol. 17: 647-658.

Ljung, L. (1999) System Identification. Theory for the User, Prentice-Hall, Upper Saddle River NJ.
Lukas, B.D. & Kanade, T. (1981) An iterative image registration technique with an application

to stereovision, Proceedings of Imaging Understanding Workshop, 121-130.
Ogata, K. (1987) Discrete-Time Control Systems, Prentice Hall. Upper Saddle River, NJ.
Parrilla, E., Riera, J., Giménez, M., Torregrosa, J.R. & Hueso, J.L. (2005) Vehicle tracking in

urban routes by means of Lucas&Kanade algorithm, Proceedings of the International
Conference on Computational and Mathematical Methods in Science and Engineering,
438-445.

Parrilla, E., Riera, J., Giménez, M., Torregrosa, J.R. & Hueso, J.L. (2005) Cálculo de velocidades
mediante un sistema estereoscópico y algoritmos de flujo óptico, Proceedings of the
Congreso de Ecuaciones Diferenciales y Aplicaciones.

Parrilla, E., Ginestar, D., Hueso, J.L., Riera, J. & Torregrosa, J.R. (2008) Handling occlusion
in optical flow algorithms for object tracking, Computers and Mathematics with
Applications, Vol. 56(3): 733-742.

Parrilla, E., Riera, J., Torregrosa, J.R. & Hueso, J.L. (2009) Handling occlusion in object tracking
in stereoscopic video sequences, Mathematical and Computer Modelling, Vol. 50(5-6):
823-830.

Passino, K.M. & Yurkovich, S. (2000) Fuzzy control, International Journal of General Systems,
Vol. 29(2): 341-342.

Rumelhart, D. & McClelland, J. (1986) Parallel Distributed Processing. MIT Press, Cambridge,
MA.

Shin, J., Kim, S., Kang, S., Lee, S., Paik, J., Abidi, B., & Abidi, M. (2005) Optical flow-based
real-time object tracking using non-prior training active feature model, Real-Time
Imaging, Vol. 11: 204-218.

Trucco, E. & Plakas, K. (2006) Video Tracking: A Concise Survey, IEEE Journal of Oceanic
Engineering, Vol. 31(2): 520-529.

Wren, C.R., Azerbayejani, A., Darrell, T. & Pentland, A.P. (1997) Pfinder: Real-time tracking of
the human body, IEEE Trans. Pattern Anal. Machine Intell, Vol. 19: 780-785.

Young, P.C. (1999) Nonstationary time series analysis and forecasting, Progress in
Environmental Science, Vol. 1(1): 3-48.

Zadeh, L.A. (1965) Fuzzy sets, Inf. Control, Vol. 8: 338-353.

158 Object Tracking

8

Object Tracking and Indexing
in H.264/AVC Bitstream Domains

Muhammad Syah Houari Sabirin and Munchurl Kim
Korea Advanced Institute of Science and Technology

Korea

1. Introduction
The use of surveillance video recording is mainly based on the activity of monitoring the
areas in which the surveillance cameras are located. Consequently, one of the motivations of
observing the footage from surveillance video is to locate and identify regions of interest
(e.g. suspected moving objects) in the covered areas. The visual information of objects such
as color, shape, texture and motion etc. enables users to easily navigate and browse regions
of interest in the surveillance video data. However, this requires the semi-automatic or
automatic analysis and description of visual features for surveillance video data, which is
usually very challengeable and time consuming.
To describe the visual information of the surveillance video contents in a structured way for
fast and accurate retrieval over visual queries, MPEG has standardized a set of visual
descriptors in forms of metadata schema. The MPEG-7 Visual descriptors, as Part 3 of
MPEG-7 (Multimedia Content Description Interface, standardized under ISO/IEC 15938),
provide the standardized descriptions of visual features that enable users to identify,
categorize or filter the image or video data (MPEG57/N4358). The MPEG-7 Visual
descriptors enable the structured descriptions of color, texture, shape, motion, location and
face recognition features. Moreover, since they are described in low-level, the retrieval
process can be relatively easier by comparing a given query with the pre-generated
descriptions of MPEG-7 Visual descriptors in database.
In surveillance video contents, MPEG-7 Visual descriptor enables the description of the
characteristics of objects. The motion trajectory can be used to describe the behavior of
objects. It can track and identify when and where the objects move. The motion information
for an object enables the retrieval of the object by querying the intensity of the motion or the
moving direction.
The automatic extraction of visual features from video contents has also become an
emerging issue with MPEG-7 Visual descriptors. Recently, H.264/AVC has become a
popular video compression tool for video surveillance due to its high coding efficiency and
the availability of its real-time encoding devices. By incorporating content analysis into the
surveillance applications, intelligent surveillance can be possible for efficient searching and
retrieval of surveillance video data. In this case, the content analysis for the surveillance
video data is usually required to be performed in real-time for metadata generation. For
real-time generation of metadata, the content analysis is usually performed in the bitstream
domain of compressed video instead of its raw pixel domain. In this chapter, we explain a
feature extraction of motion trajectory which detects and tracks moving objects (ROI’s) and

Object Tracking

160

also propose improvement to the feature extraction of motion activity of the moving objects
in H.264/AVC bistreams. Our target is fast indexing of object retrieval in the metadata.
Object retrieval can be performed only in interested time frame in which the metadata
describes the existence of an object with high motion activity. Thus the motion trajectory of
the object can be detected in the given time frame, without having to search the entire
metadata, localizing objects of interest by effectively limiting the scope of searching subjects,
thus reducing computation complexity in similarity matching process
Much research has been made object detection and tracking in MPEG-1 or MPEG-2
compressed video, and recently some related works (Zeng, 2005; Thilak 2004; You 2007; You
2009) have been tried for moving object detection and tracking in H.264/AVC bitstream
domains. Nevertheless the methods do not consider identifying the objects into different
identity, thus the objects cannot be consistently tracked along the sequence. To overcome
this problem, a novel technique is introduced which uses motion information and quantized
residual coefficients in every 4x4 block partition units of a macroblock. Using smallest block
partition, our method can detect small sized object. Furthermore, by observing both motion
and residue coefficients, we develop a similarity model to keep track of object when
occlusion occurred.
We use motion activity of detected object as a point of interest in indexing the tracking using
MPEG-7 descriptor. The MPEG-7 motion activity descriptor can describe the degree of
motion activity caused by moving objects in the video. It has a motion intensity element to
describe how much active the moving objects are. The normative of MPEG-7 motion activity
descriptor only expresses the motion intensity into 5 levels of motion activity. However,
how to categorize an amount of motion intensity into one of the five motion activity levels is
non-normative and is left for application vendors.
In this chapter, the proposed motion activity categorization method takes into account the
moving and non-moving parts in each frame. The non-moving parts are usually stationary
background, which are more likely to be encoded in the partition of 16x16 macroblock size.
On the other hand, the moving objects are likely to be encoded in sub-macroblock partitions
due to their motion. Therefore weighting factors are assigned on encoded macroblock types
by giving more emphasis on sub-macroblock partitions. Details of motion activity
description are described in Section 2.2.
This chapter is organized as follows: We first describe the proposed method of extracting
visual features from H.264/AVC bitstream domain in Section 2; the experimental results are
described in Section 3; the example of conceptual structure of MPEG-7 metadata with the
descriptions of extracted features is presented in Section 4; finally, the conclusion and future
works are described in Section 5.

2. Feature extraction for MPEG-7 visual descriptor
2.1 Feature extraction of MPEG-7 motion trajectory descriptor
The MPEG-7 motion trajectory descriptor describes the transition of the relative coordinates
of moving region in a frame during a sequence. The object detection and tracking method
will provide the coordinates of the detected object for each frame. Feature extraction of
motion trajectory is performed by observing each of 4x4 block partition units in a
macrbolock in the bitstream. We take into account only the blocks having nonzero motion
vectors or nonzero quantized residue coefficient by assumption that the camera is static so
the observed blocks have high probability of being the region of moving objects.
Define ijB as a 4x4 block partition in frame f having nonzero motion vectors and nonzero
quantized residue coefficient values, where { , }i I j J∈ ∈ is the location of the block in the 4×4

Object Tracking and Indexing in H.264/AVC Bitstream Domains

161

block-unit of a 4 4I J× -sized frame. Thus by definition, all blocks having zero motion
vectors are spatially segmented into background and 4 4K I J×≺ denotes the number of 4x4
block partition that belongs to foreground that contains a nonzero motion vector and
nonzero quantized residual coefficient values. We then define a block group fC as the
group of 4×4 block partitions that are adjacent to each other (we will use the term “group” to
refer to as the block group hereafter). Each group is representation of individual objects to
be tracked.
Let { }ˆ ;u

f fO C u K= ∈� be a set of groups where � denotes the index of group and u U∈
denotes the block partition index. A group may have U member block partitions, where
U K∈ but not necessarily in order of K (that is, one group may contain any arbitrary block
partition regardless its index order). For implementation, we keep the maximum number of
groups to be recognized to ten objects. For each group, the parameters are classified into two
categories: static parameters and dynamic parameters. Static parameters are the parameters
that have been defined by the bitstreams and its values will not be changed by the algorithm
throughout the sequence. Dynamic parameters are the parameters that will be updated
adaptively to the change of the static parameters.
The static parameters are position, direction, and energy. Position of the group is denoted by
x and y , where x width≤ and y height≤ . The position value is defined from the leftmost
x and topmost y positions of the member block partitions of the group. For the l-th group
in frame f , its position is defined as ,f fx y� � .
The direction of the group, ,0 360D D∈ℜ ≤ ≤ , is calculated from the motion vector average
of member blocks of the group. For the l-th in frame f , its direction is defined as

 1 ()1 tan
()

u
y f

f u
u U x f

mv
D

U mv
−

∈

⎛ ⎞
⎜ ⎟=
⎜ ⎟
⎝ ⎠

∑� (1)

where ()u
x fmv and ()u

y fmv are the motion vectors of u
fC for each block partition u . For the

l-th group in frame f its energy is defined as

 2

16

1 1 ()
16

uj
f f

u U j
e R

U ∈ ∈

⎛ ⎞
= ⎜ ⎟⎜ ⎟

⎝ ⎠
∑ ∑� (2)

where uj
fR is the residue data of u

fC for each j -th pixel in block partition u .
The dynamic parameters are event status and label. The status of events occurred in the
group is given by {0,1}S = . The status events defined for a group are: (1) occlusion, (2) out of
frame, (3) stop, and (4) in to frame. Additionally we add default status (0) if none of the
mentioned status occurred to the group. For the l-th group in frame f its status is defined
as (0)fS� , (1)fS� , (2)fS� , (3)fS� and (4)fS� according to the event respectively. Restriction
applies to the event status where one object can only have at most one status in a frame.
The label of the group is denoted as l with 0l > . For the l-th group in frame f its label is
defined as fl� . Note that label l is not the same index as � , although it is possible that a
group may have the same value for the label and index, for example, in initial frame where
we set the label equal to the index, or if the relative positions of objects are interchanged
over the sequence (for example, if the objects are moving toward the same direction). Label

Object Tracking

160

also propose improvement to the feature extraction of motion activity of the moving objects
in H.264/AVC bistreams. Our target is fast indexing of object retrieval in the metadata.
Object retrieval can be performed only in interested time frame in which the metadata
describes the existence of an object with high motion activity. Thus the motion trajectory of
the object can be detected in the given time frame, without having to search the entire
metadata, localizing objects of interest by effectively limiting the scope of searching subjects,
thus reducing computation complexity in similarity matching process
Much research has been made object detection and tracking in MPEG-1 or MPEG-2
compressed video, and recently some related works (Zeng, 2005; Thilak 2004; You 2007; You
2009) have been tried for moving object detection and tracking in H.264/AVC bitstream
domains. Nevertheless the methods do not consider identifying the objects into different
identity, thus the objects cannot be consistently tracked along the sequence. To overcome
this problem, a novel technique is introduced which uses motion information and quantized
residual coefficients in every 4x4 block partition units of a macroblock. Using smallest block
partition, our method can detect small sized object. Furthermore, by observing both motion
and residue coefficients, we develop a similarity model to keep track of object when
occlusion occurred.
We use motion activity of detected object as a point of interest in indexing the tracking using
MPEG-7 descriptor. The MPEG-7 motion activity descriptor can describe the degree of
motion activity caused by moving objects in the video. It has a motion intensity element to
describe how much active the moving objects are. The normative of MPEG-7 motion activity
descriptor only expresses the motion intensity into 5 levels of motion activity. However,
how to categorize an amount of motion intensity into one of the five motion activity levels is
non-normative and is left for application vendors.
In this chapter, the proposed motion activity categorization method takes into account the
moving and non-moving parts in each frame. The non-moving parts are usually stationary
background, which are more likely to be encoded in the partition of 16x16 macroblock size.
On the other hand, the moving objects are likely to be encoded in sub-macroblock partitions
due to their motion. Therefore weighting factors are assigned on encoded macroblock types
by giving more emphasis on sub-macroblock partitions. Details of motion activity
description are described in Section 2.2.
This chapter is organized as follows: We first describe the proposed method of extracting
visual features from H.264/AVC bitstream domain in Section 2; the experimental results are
described in Section 3; the example of conceptual structure of MPEG-7 metadata with the
descriptions of extracted features is presented in Section 4; finally, the conclusion and future
works are described in Section 5.

2. Feature extraction for MPEG-7 visual descriptor
2.1 Feature extraction of MPEG-7 motion trajectory descriptor
The MPEG-7 motion trajectory descriptor describes the transition of the relative coordinates
of moving region in a frame during a sequence. The object detection and tracking method
will provide the coordinates of the detected object for each frame. Feature extraction of
motion trajectory is performed by observing each of 4x4 block partition units in a
macrbolock in the bitstream. We take into account only the blocks having nonzero motion
vectors or nonzero quantized residue coefficient by assumption that the camera is static so
the observed blocks have high probability of being the region of moving objects.
Define ijB as a 4x4 block partition in frame f having nonzero motion vectors and nonzero
quantized residue coefficient values, where { , }i I j J∈ ∈ is the location of the block in the 4×4

Object Tracking and Indexing in H.264/AVC Bitstream Domains

161

block-unit of a 4 4I J× -sized frame. Thus by definition, all blocks having zero motion
vectors are spatially segmented into background and 4 4K I J×≺ denotes the number of 4x4
block partition that belongs to foreground that contains a nonzero motion vector and
nonzero quantized residual coefficient values. We then define a block group fC as the
group of 4×4 block partitions that are adjacent to each other (we will use the term “group” to
refer to as the block group hereafter). Each group is representation of individual objects to
be tracked.
Let { }ˆ ;u

f fO C u K= ∈� be a set of groups where � denotes the index of group and u U∈
denotes the block partition index. A group may have U member block partitions, where
U K∈ but not necessarily in order of K (that is, one group may contain any arbitrary block
partition regardless its index order). For implementation, we keep the maximum number of
groups to be recognized to ten objects. For each group, the parameters are classified into two
categories: static parameters and dynamic parameters. Static parameters are the parameters
that have been defined by the bitstreams and its values will not be changed by the algorithm
throughout the sequence. Dynamic parameters are the parameters that will be updated
adaptively to the change of the static parameters.
The static parameters are position, direction, and energy. Position of the group is denoted by
x and y , where x width≤ and y height≤ . The position value is defined from the leftmost
x and topmost y positions of the member block partitions of the group. For the l-th group
in frame f , its position is defined as ,f fx y� � .
The direction of the group, ,0 360D D∈ℜ ≤ ≤ , is calculated from the motion vector average
of member blocks of the group. For the l-th in frame f , its direction is defined as

 1 ()1 tan
()

u
y f

f u
u U x f

mv
D

U mv
−

∈

⎛ ⎞
⎜ ⎟=
⎜ ⎟
⎝ ⎠

∑� (1)

where ()u
x fmv and ()u

y fmv are the motion vectors of u
fC for each block partition u . For the

l-th group in frame f its energy is defined as

 2

16

1 1 ()
16

uj
f f

u U j
e R

U ∈ ∈

⎛ ⎞
= ⎜ ⎟⎜ ⎟

⎝ ⎠
∑ ∑� (2)

where uj
fR is the residue data of u

fC for each j -th pixel in block partition u .
The dynamic parameters are event status and label. The status of events occurred in the
group is given by {0,1}S = . The status events defined for a group are: (1) occlusion, (2) out of
frame, (3) stop, and (4) in to frame. Additionally we add default status (0) if none of the
mentioned status occurred to the group. For the l-th group in frame f its status is defined
as (0)fS� , (1)fS� , (2)fS� , (3)fS� and (4)fS� according to the event respectively. Restriction
applies to the event status where one object can only have at most one status in a frame.
The label of the group is denoted as l with 0l > . For the l-th group in frame f its label is
defined as fl� . Note that label l is not the same index as � , although it is possible that a
group may have the same value for the label and index, for example, in initial frame where
we set the label equal to the index, or if the relative positions of objects are interchanged
over the sequence (for example, if the objects are moving toward the same direction). Label

Object Tracking

162

l defines the actual identification of groups as object candidates regardless their positions in
frames, while index defines the order of groups for which the top-leftmost group has the
smaller index value. Similar to groups, we limit the maximum number of objects to ten
objects.
To this point, we have object candidates as groups with static and dynamic parameters
which are then to be correctly identified frame to frame, i.e. tracking the objects by correctly
recognize whether the candidate of objects in the current frame are the same as the
identified object in the previous frame. In the next section we will describe the method of
tracking the groups and set their label appropriately using a similarity model.
Object tracking process begins with pre-processing the groups in order for inconsistent
groups to prevent from incorrect tracking. In addition, temporal and spatial filtering is
applied to remove noise that resulted from inconsistent, isolated and dangled block. In the
temporal refinement, we filter (remove) the groups that inconsistently appear in frames and
interpolate (insert) the groups that inconsistently disappear over frames.
Let h be the number of frames where a group ˆ lO exists over five consecutive frames
including the current frame, two frames prior and two frames, thus 0 5h≤ ≤ . The filtering is
simply to remove the groups that appears only in 2 frames or less as given by

2ˆ

f
keep if h

O
remove else

>⎧
⎨
⎩

 (3)

Similarly, ˆ
fO is interpolated when there is missing groups in frame f by taking the

average value of static parameters of groups in frames ' { 2, 1, , 1, 2}f f f f f f= − − + + so the
interpolated ˆ

fO will have average values of positions, directions and energies. The
interpolation is defined by

 ' '
'

1ˆ ˆ ˆ ˆ,l l
f f f f

f
O O O O

h
= ∅⇔ = ≠ ∅∑ (4)

From the filtering and interpolating process, we expect to have consistent groups (object
candidates) ready to be tracked. In this process we track the object candidates by updating
their dynamic parameters. At the end of the process, the object candidates will be
determined as the real objects fO .
The first step of tracking is to observe the difference (increment or decrement) of number of
groups from one frame to the next. Let fL be the total number of groups in the current
frame and 1fL − be the total number of groups in the previous frame. Then we define the
difference as γ and set its value as follows

1

1

1

0
1
2

f f

f f

f f

L L
L L
L L

γ
−

−

−

⎧ ⇔ =
⎪⎪= ⇔ <⎨
⎪ ⇔ >⎪⎩

 (5)

Assessing the changes in the number of groups in the first step is performed when a new
frame is tracked. Following the assessment we may then update the status event of every
candidate of objects in a frame. The status event will determine the way of finding the

Object Tracking and Indexing in H.264/AVC Bitstream Domains

163

similarity of an object candidate in the current frame with its corresponding one in the
previous frame.
The status event is updated when the number of groups in the current frame is larger than
the number of groups in the previous frame. For the other γ we set status events of all
groups as 0, that is, (0) 1fS = . Thus for γ =2 we update the status event of a group based on
the position of the group relative to the other groups or to the the edge of the frame, or
based on its existence in the current and previous frames.
The relative position of a group to other groups is determined based on the Euclidean
distance of its parameters. We define

 () ()
1

2 2 2
1 1 1 1 1 1(,)m m m

f f xy f f f fd O O x x y y− − − − − −
⎛ ⎞= − + −⎜ ⎟
⎝ ⎠

 (6)

as the distance between object and object m in frame 1f − ,

 ()
1

2 2
1 1 1 1(,)m m

f f x f fd O O x x− − − −
⎛ ⎞= −⎜ ⎟
⎝ ⎠

 (7)

as the distance between position x of object and object m in frame 1f − , and

 ()
1

2 2
1 1 1 1(,)m m

f f y f fd O O y y− − − −
⎛ ⎞= −⎜ ⎟
⎝ ⎠

 (8)

as the distance between position y of object and object m in frame 1f − ; m L∈ denotes
the pair index of object in frame 1f − where m≠ .
The relative position of a group to the frame edge is determined by its outer boundaries. We
define min

ˆ()f xyp O as the leftmost x and topmost y positions of member block partitions of
group in frame f , max

ˆ()f xp O as the leftmost x position of member block partitions of
group in frame f , and max

ˆ()f yp O as the topmost y position of member block partitions
of group in frame f .
Finally, the criterion is given by

()

() ()

1 1 1 1 1 1

min max max 1

1 1

1 (,) (,) (,)
(1)

0
ˆ ˆ ˆ1 () 8 () 8 () 8

(2)
0

ˆ1 (1) 0 (2) 0
(3)

0

m m m
f f xy f f x f f y

f

f xy f x f y f
f

f f f
f

if d O O d O O d O O
S

otherwise

if p O p O width p O height O
S

otherwise

if S S O
S

− − − − − −

−

− −

⎧ < ∧⎪= ⎨
⎪⎩
⎧ ≤ ∧ ≥ − ∧ ≥ − ∨ ≠ ∅⎪= ⎨
⎪⎩

= ∨ = ∨ = ∅
=

() ()min max max 1
ˆ ˆ ˆ1 () 8 () 8 () 8

(4)
0

f xy f x f y f
f

otherwise

if p O p O width p O height O
S

otherwise
−

⎧⎪
⎨
⎪⎩
⎧ ≤ ∧ ≥ − ∧ ≥ − ∨ = ∅⎪= ⎨
⎪⎩

(9)

where 1fO − denotes object in the previous frame. Based on γ and the status event, the
next step of tracking is to update the label fl by finding the most similar object between two

Object Tracking

162

l defines the actual identification of groups as object candidates regardless their positions in
frames, while index defines the order of groups for which the top-leftmost group has the
smaller index value. Similar to groups, we limit the maximum number of objects to ten
objects.
To this point, we have object candidates as groups with static and dynamic parameters
which are then to be correctly identified frame to frame, i.e. tracking the objects by correctly
recognize whether the candidate of objects in the current frame are the same as the
identified object in the previous frame. In the next section we will describe the method of
tracking the groups and set their label appropriately using a similarity model.
Object tracking process begins with pre-processing the groups in order for inconsistent
groups to prevent from incorrect tracking. In addition, temporal and spatial filtering is
applied to remove noise that resulted from inconsistent, isolated and dangled block. In the
temporal refinement, we filter (remove) the groups that inconsistently appear in frames and
interpolate (insert) the groups that inconsistently disappear over frames.
Let h be the number of frames where a group ˆ lO exists over five consecutive frames
including the current frame, two frames prior and two frames, thus 0 5h≤ ≤ . The filtering is
simply to remove the groups that appears only in 2 frames or less as given by

2ˆ

f
keep if h

O
remove else

>⎧
⎨
⎩

 (3)

Similarly, ˆ
fO is interpolated when there is missing groups in frame f by taking the

average value of static parameters of groups in frames ' { 2, 1, , 1, 2}f f f f f f= − − + + so the
interpolated ˆ

fO will have average values of positions, directions and energies. The
interpolation is defined by

 ' '
'

1ˆ ˆ ˆ ˆ,l l
f f f f

f
O O O O

h
= ∅⇔ = ≠ ∅∑ (4)

From the filtering and interpolating process, we expect to have consistent groups (object
candidates) ready to be tracked. In this process we track the object candidates by updating
their dynamic parameters. At the end of the process, the object candidates will be
determined as the real objects fO .
The first step of tracking is to observe the difference (increment or decrement) of number of
groups from one frame to the next. Let fL be the total number of groups in the current
frame and 1fL − be the total number of groups in the previous frame. Then we define the
difference as γ and set its value as follows

1

1

1

0
1
2

f f

f f

f f

L L
L L
L L

γ
−

−

−

⎧ ⇔ =
⎪⎪= ⇔ <⎨
⎪ ⇔ >⎪⎩

 (5)

Assessing the changes in the number of groups in the first step is performed when a new
frame is tracked. Following the assessment we may then update the status event of every
candidate of objects in a frame. The status event will determine the way of finding the

Object Tracking and Indexing in H.264/AVC Bitstream Domains

163

similarity of an object candidate in the current frame with its corresponding one in the
previous frame.
The status event is updated when the number of groups in the current frame is larger than
the number of groups in the previous frame. For the other γ we set status events of all
groups as 0, that is, (0) 1fS = . Thus for γ =2 we update the status event of a group based on
the position of the group relative to the other groups or to the the edge of the frame, or
based on its existence in the current and previous frames.
The relative position of a group to other groups is determined based on the Euclidean
distance of its parameters. We define

 () ()
1

2 2 2
1 1 1 1 1 1(,)m m m

f f xy f f f fd O O x x y y− − − − − −
⎛ ⎞= − + −⎜ ⎟
⎝ ⎠

 (6)

as the distance between object and object m in frame 1f − ,

 ()
1

2 2
1 1 1 1(,)m m

f f x f fd O O x x− − − −
⎛ ⎞= −⎜ ⎟
⎝ ⎠

 (7)

as the distance between position x of object and object m in frame 1f − , and

 ()
1

2 2
1 1 1 1(,)m m

f f y f fd O O y y− − − −
⎛ ⎞= −⎜ ⎟
⎝ ⎠

 (8)

as the distance between position y of object and object m in frame 1f − ; m L∈ denotes
the pair index of object in frame 1f − where m≠ .
The relative position of a group to the frame edge is determined by its outer boundaries. We
define min

ˆ()f xyp O as the leftmost x and topmost y positions of member block partitions of
group in frame f , max

ˆ()f xp O as the leftmost x position of member block partitions of
group in frame f , and max

ˆ()f yp O as the topmost y position of member block partitions
of group in frame f .
Finally, the criterion is given by

()

() ()

1 1 1 1 1 1

min max max 1

1 1

1 (,) (,) (,)
(1)

0
ˆ ˆ ˆ1 () 8 () 8 () 8

(2)
0

ˆ1 (1) 0 (2) 0
(3)

0

m m m
f f xy f f x f f y

f

f xy f x f y f
f

f f f
f

if d O O d O O d O O
S

otherwise

if p O p O width p O height O
S

otherwise

if S S O
S

− − − − − −

−

− −

⎧ < ∧⎪= ⎨
⎪⎩
⎧ ≤ ∧ ≥ − ∧ ≥ − ∨ ≠ ∅⎪= ⎨
⎪⎩

= ∨ = ∨ = ∅
=

() ()min max max 1
ˆ ˆ ˆ1 () 8 () 8 () 8

(4)
0

f xy f x f y f
f

otherwise

if p O p O width p O height O
S

otherwise
−

⎧⎪
⎨
⎪⎩
⎧ ≤ ∧ ≥ − ∧ ≥ − ∨ = ∅⎪= ⎨
⎪⎩

(9)

where 1fO − denotes object in the previous frame. Based on γ and the status event, the
next step of tracking is to update the label fl by finding the most similar object between two

Object Tracking

164

frames and to set the same label for the most similar objects. The similarity is computed by
finding index that gives the minimum distance between the group in the current frame
ˆ

fO and the object in the previous frame 1fO − for given previous frame’s event S and the
changes of group γ . We define the similarity model as

 ()(){ }1 1
ˆ|min , , ,f f f fl l O O S γ− −= Δ (10)

where ()1
ˆ, , ,f fO O S γ−Δ denotes the similarity function between 1fO − and ˆ

fO for given S
and γ . When γ =0, the similarity is defined as

 ()1 1
ˆ ˆ ˆ, , , (,) ()f f f f xy fO O S d O O Oγ− −Δ = Γ (11)

where ˆ() {0,1}fOΓ = denotes the existence of group l in the current frame. If γ =1, the
similarity is defined as

()1 1

ˆ ˆ, , , (,) (0)

ˆ(,) (1) (4)new

f f f f xy f

f t f De f ff

O O S d O O S

d O O S l S

γ− −

−

Δ =

+ +
 (12)

where

 () ()
1

2 2 2ˆ(,)f t f De f t f f t fd O O D D e e− − −
⎛ ⎞= − + −⎜ ⎟
⎝ ⎠

 (13)

which denotes the similarity between f tO − and ˆ
fO based on their direction and energy. t

denotes number of elapsed frames since (1)fS is set (i.e. when occlusion has occurred), and
new

fl is a new label.
In finding the distance in direction and energy between two objects, instead of using the
actual values, we normalize the parameter values in logarithmic scale, where 10log ()D D=
and 10log ()e e= , to make fair comparison of two values in different ranges (as can be seen
from (1) and (2), the direction D has possible values from 0 to 360 while energy e has
possible values from 0 to virtually unlimited). New label new

fl is determined by observing
the list of labels already used or currently being used in the frame so the used labels or the
current labels are not defined as new labels. When γ =2,

 ()1 1 1
ˆ ˆ, , , (,) ()f f f f xy fO O S d O O Oγ− − −Δ = Γ (14)

where 1() {0,1}fO −Γ = denotes the existence of the object in the previous frame.
By this step, the groups are now labeled with the same label of the most similar object in the
previous frame and the groups are then defined as the real objects for which their parameter
values will then be used in the next frame to identify the candidate of objects.

2.2 Feature extraction of MPEG-7 motion activity descriptor
The MPEG-7 motion activity descriptor describes the degree of motion activity in a frame in
terms of the intensity, direction, spatial distribution, spatial localization, and temporal

Object Tracking and Indexing in H.264/AVC Bitstream Domains

165

distribution features of motion activity. Here, we especially take into consideration the
intensity feature of the descriptor because surveillance observation tends to give more
attention to the intensity of motion. Furthermore, the usage of intensity descriptor is
mandatory in annotating MPEG-7 motion activity.
The intensity feature indicates the degree of motion into five levels (very low, low, medium,
high, and very high). However, the feature extraction itself is outside the standard. So, in this
chapter, we propose a feature extraction scheme for the computation of such feature values
in the H.264/AVC bitstream domain.
Feature extraction of motion intensity in a frame can be performed by computing the
standard deviation of the magnitudes of motion vectors of the macroblocks. The standard
deviation can then be quantized into one of the five levels in which the quantization
parameters are determined experimentally by the training data of motion vectors from
H.264/AVC bitstreams. In this chapter, we use the quantization parameters in Table 1 as
defined in (Manjunath, 2002).

Activity value Range of σ

1 0 < σ <3.9
2 3.9 < σ < 10.7
3 10.7 < σ <17.1
4 17.1 < σ < 32
5 32 < σ

Table 1. Quantization threshold of motion intensity

The result of using the method described in (MPEG57/N4358) for surveillance video
recording has drawback to describe the information of object activity. This justification is
depicted in the following case. Fig. 1(a) shows the curve of standard deviation of the
magnitudes of motion vectors for a surveillance video sequence with its corresponding
quantized motion intensity, while Fig. 1(b) shows one frame from the sequence with its
representation of motion vectors. While the frame shows the objects actively moving, the
resulting level of motion activity corresponds to very low activity.
This problem is caused by the size of the objects that are relatively small, compared to the
resolution of the frame. Even though the method described in (MPEG57/N4358) takes into
account the resolution of frame for the computation of standard deviation, it is still hard to
correctly categorize such motion. Therefore, small objects with high activity cannot be
identified as having high activity motion. On the other hand, it is also possible that large
objects (e.g., the object that located very near to the camera) with slow activity will be
identified as having high activity motion.
To overcome this problem, we propose a method of preprocessing the standard deviation
values before it is quantized. Our method utilizes the macroblock partition types (16x16,
16x8, 8x16, 8x8, 8x4, 4x8, 4x4 block types) and applies different values of the weighting
factor for different block classes. Our method is applicable for surveillance video contents
that are commonly captured by still cameras. These surveillance video usually has still
background (i.e., no abrupt changes in intensity) and all motions are likely to happen by
object movement. The weighting factor for each MB partition is defined based on the size of
the partition itself. For example, an MB with 4x4 block types can have 16 motion vectors, so
it can contribute more to the standard deviation of motion intensity, compared to the MB’s

Object Tracking

164

frames and to set the same label for the most similar objects. The similarity is computed by
finding index that gives the minimum distance between the group in the current frame
ˆ

fO and the object in the previous frame 1fO − for given previous frame’s event S and the
changes of group γ . We define the similarity model as

 ()(){ }1 1
ˆ|min , , ,f f f fl l O O S γ− −= Δ (10)

where ()1
ˆ, , ,f fO O S γ−Δ denotes the similarity function between 1fO − and ˆ

fO for given S
and γ . When γ =0, the similarity is defined as

 ()1 1
ˆ ˆ ˆ, , , (,) ()f f f f xy fO O S d O O Oγ− −Δ = Γ (11)

where ˆ() {0,1}fOΓ = denotes the existence of group l in the current frame. If γ =1, the
similarity is defined as

()1 1

ˆ ˆ, , , (,) (0)

ˆ(,) (1) (4)new

f f f f xy f

f t f De f ff

O O S d O O S

d O O S l S

γ− −

−

Δ =

+ +
 (12)

where

 () ()
1

2 2 2ˆ(,)f t f De f t f f t fd O O D D e e− − −
⎛ ⎞= − + −⎜ ⎟
⎝ ⎠

 (13)

which denotes the similarity between f tO − and ˆ
fO based on their direction and energy. t

denotes number of elapsed frames since (1)fS is set (i.e. when occlusion has occurred), and
new

fl is a new label.
In finding the distance in direction and energy between two objects, instead of using the
actual values, we normalize the parameter values in logarithmic scale, where 10log ()D D=
and 10log ()e e= , to make fair comparison of two values in different ranges (as can be seen
from (1) and (2), the direction D has possible values from 0 to 360 while energy e has
possible values from 0 to virtually unlimited). New label new

fl is determined by observing
the list of labels already used or currently being used in the frame so the used labels or the
current labels are not defined as new labels. When γ =2,

 ()1 1 1
ˆ ˆ, , , (,) ()f f f f xy fO O S d O O Oγ− − −Δ = Γ (14)

where 1() {0,1}fO −Γ = denotes the existence of the object in the previous frame.
By this step, the groups are now labeled with the same label of the most similar object in the
previous frame and the groups are then defined as the real objects for which their parameter
values will then be used in the next frame to identify the candidate of objects.

2.2 Feature extraction of MPEG-7 motion activity descriptor
The MPEG-7 motion activity descriptor describes the degree of motion activity in a frame in
terms of the intensity, direction, spatial distribution, spatial localization, and temporal

Object Tracking and Indexing in H.264/AVC Bitstream Domains

165

distribution features of motion activity. Here, we especially take into consideration the
intensity feature of the descriptor because surveillance observation tends to give more
attention to the intensity of motion. Furthermore, the usage of intensity descriptor is
mandatory in annotating MPEG-7 motion activity.
The intensity feature indicates the degree of motion into five levels (very low, low, medium,
high, and very high). However, the feature extraction itself is outside the standard. So, in this
chapter, we propose a feature extraction scheme for the computation of such feature values
in the H.264/AVC bitstream domain.
Feature extraction of motion intensity in a frame can be performed by computing the
standard deviation of the magnitudes of motion vectors of the macroblocks. The standard
deviation can then be quantized into one of the five levels in which the quantization
parameters are determined experimentally by the training data of motion vectors from
H.264/AVC bitstreams. In this chapter, we use the quantization parameters in Table 1 as
defined in (Manjunath, 2002).

Activity value Range of σ

1 0 < σ <3.9
2 3.9 < σ < 10.7
3 10.7 < σ <17.1
4 17.1 < σ < 32
5 32 < σ

Table 1. Quantization threshold of motion intensity

The result of using the method described in (MPEG57/N4358) for surveillance video
recording has drawback to describe the information of object activity. This justification is
depicted in the following case. Fig. 1(a) shows the curve of standard deviation of the
magnitudes of motion vectors for a surveillance video sequence with its corresponding
quantized motion intensity, while Fig. 1(b) shows one frame from the sequence with its
representation of motion vectors. While the frame shows the objects actively moving, the
resulting level of motion activity corresponds to very low activity.
This problem is caused by the size of the objects that are relatively small, compared to the
resolution of the frame. Even though the method described in (MPEG57/N4358) takes into
account the resolution of frame for the computation of standard deviation, it is still hard to
correctly categorize such motion. Therefore, small objects with high activity cannot be
identified as having high activity motion. On the other hand, it is also possible that large
objects (e.g., the object that located very near to the camera) with slow activity will be
identified as having high activity motion.
To overcome this problem, we propose a method of preprocessing the standard deviation
values before it is quantized. Our method utilizes the macroblock partition types (16x16,
16x8, 8x16, 8x8, 8x4, 4x8, 4x4 block types) and applies different values of the weighting
factor for different block classes. Our method is applicable for surveillance video contents
that are commonly captured by still cameras. These surveillance video usually has still
background (i.e., no abrupt changes in intensity) and all motions are likely to happen by
object movement. The weighting factor for each MB partition is defined based on the size of
the partition itself. For example, an MB with 4x4 block types can have 16 motion vectors, so
it can contribute more to the standard deviation of motion intensity, compared to the MB’s

Object Tracking

166

with a smaller number of block partitions. For such an MB, we multiply a larger value of
weighting factor to its magnitude of motion vectors so the resulting standard deviation
increases large enough to represent the motion activity of the object.

(a)

(b)

Fig. 1. (a) The curve of standard deviation of the magnitudes of motion vectors for a
surveillance video sequence and its corresponding quantized value identifies the sequence
has very slow activity of objects (intensity = 1) (b) a snapshot frame from the same sequence
with its corresponding motion vectors of macroblocks
However, a slowly moving object close to a surveillance camera can be identified as having
high motion intensity due to the large portion of the object size, compared to the
background. Therefore, we need to reflect the partition of the object into the weighting
factor by estimating the object size with respect to its distance to the camera. That is, the
larger the estimated object size is, the larger a penalty factor value is taken into account in
the weighting factor. So, the weighting factor is defined as

1

PBn
k r

i
k

w M r e ⋅

=
= − ∑ (15)

Here M reflects the size of the i-th partition block or macroblock, assuming that the square-
sized blocks (4x4 and 8x8) contribute more to the motion activity due to more numbers of
those block types in each MB, while the remaining block types (4x8, 8x4, 16x8, 8x16) are
contribute less. Therefore M can be calculated as follows:

()

()

,
_ 1 8 8 4 4

,
_ 2 16 8, 8 16, 8 4 4 8

m n
if mb type class or

M
m n

if mb type class or

×⎧
⎪ = × ×⎪
⎪= ⎨
⎪ ×⎪
⎪ = × × × ×⎩

 (16)

Object Tracking and Indexing in H.264/AVC Bitstream Domains

167

where m and n indicate the width and height of one partitioned block in the i-th partition
block or MB. r is a multiplication factor of the penalty term in (15) based on the partition
ratio of partition block, with similar assumptions to M where square-sized blocks have
smaller penalty than the other block type. Thus r is given by

1
4
1
2

, _ 8 8 4 4
, _ 16 8, 8 16, 8 4 4 8

if mb type or
r

if mb type or
⎧ = × ×⎪= ⎨ = × × × ×⎪⎩

 (17)

PBn is the accumulated number of all the partition blocks for a same class of the block partition
types to the i-th partition block or macroblock. In (15), the penalty term contains exponents in
summation. This is to put more penalties on the partition blocks of a same class coming in the
subsequent MB’s. In this regard, smaller values of the weighting factor are then applied for the
partition blocks of having the same class with more frequent occurrence. By doing so, the
slowly moving object of a large size can be regarded as having low motion activity.
In (16), the square block types are more emphasized for the calculation of standard
deviation than the non-square block types because the square block type allows for more
sub-block partitions which results in more motion vectors. Therefore, with the weighting
factor in (15), the standard deviation of the intensity in motion activity can be calculated as

 2

1

1 ()
N

i
i

x x
N

σ
=

= −∑ (18)

where ix is a weighted magnitude of motion vector and is given by

 i i ix w mv= × (19)

imv is the motion vector of the i-th partition block or macroblock and N is the total number
of the partition blocks and macroblocks (no partitions) in a frame.
Sometimes, due to the noise of motion caused by camera shaking, abrupt light intensity
change or unexpected shadow, the standard deviation undergoes abrupt change in a certain
frame over time. Therefore, we remove such outliers by applying a median filter on
standard deviation values for every five frames. Finally the median filtered standard
deviation values are quantized into the five levels of motion activity.

3. Experimental results
3.1 Feature extraction of motion trajectory
(a) Three sequences were used in our experiments: Corridor and Speedway for low and high
camera, respectively; and PETS2001 for occlusion handling experiments. Corridor sequence
is a QVGA (320x240), 670 frames, indoor surveillance video with single object (a person)
moves toward the camera. Speedway sequence is a CIF (352x288), 198 frames, outdoor
surveillance video of traffic in a speedway with several vehicles. PETS2001 is a QPAL
(384x288), 600 frames, outdoor surveillance video in a building complex, with several objects
and group of objects and having occlusions between some of them.
We first present the observation of using energy of object to determine the similarity
between objects before and after occlusion as defined in (12). Fig. 2 shows the example of

Object Tracking

166

with a smaller number of block partitions. For such an MB, we multiply a larger value of
weighting factor to its magnitude of motion vectors so the resulting standard deviation
increases large enough to represent the motion activity of the object.

(a)

(b)

Fig. 1. (a) The curve of standard deviation of the magnitudes of motion vectors for a
surveillance video sequence and its corresponding quantized value identifies the sequence
has very slow activity of objects (intensity = 1) (b) a snapshot frame from the same sequence
with its corresponding motion vectors of macroblocks
However, a slowly moving object close to a surveillance camera can be identified as having
high motion intensity due to the large portion of the object size, compared to the
background. Therefore, we need to reflect the partition of the object into the weighting
factor by estimating the object size with respect to its distance to the camera. That is, the
larger the estimated object size is, the larger a penalty factor value is taken into account in
the weighting factor. So, the weighting factor is defined as

1

PBn
k r

i
k

w M r e ⋅

=
= − ∑ (15)

Here M reflects the size of the i-th partition block or macroblock, assuming that the square-
sized blocks (4x4 and 8x8) contribute more to the motion activity due to more numbers of
those block types in each MB, while the remaining block types (4x8, 8x4, 16x8, 8x16) are
contribute less. Therefore M can be calculated as follows:

()

()

,
_ 1 8 8 4 4

,
_ 2 16 8, 8 16, 8 4 4 8

m n
if mb type class or

M
m n

if mb type class or

×⎧
⎪ = × ×⎪
⎪= ⎨
⎪ ×⎪
⎪ = × × × ×⎩

 (16)

Object Tracking and Indexing in H.264/AVC Bitstream Domains

167

where m and n indicate the width and height of one partitioned block in the i-th partition
block or MB. r is a multiplication factor of the penalty term in (15) based on the partition
ratio of partition block, with similar assumptions to M where square-sized blocks have
smaller penalty than the other block type. Thus r is given by

1
4
1
2

, _ 8 8 4 4
, _ 16 8, 8 16, 8 4 4 8

if mb type or
r

if mb type or
⎧ = × ×⎪= ⎨ = × × × ×⎪⎩

 (17)

PBn is the accumulated number of all the partition blocks for a same class of the block partition
types to the i-th partition block or macroblock. In (15), the penalty term contains exponents in
summation. This is to put more penalties on the partition blocks of a same class coming in the
subsequent MB’s. In this regard, smaller values of the weighting factor are then applied for the
partition blocks of having the same class with more frequent occurrence. By doing so, the
slowly moving object of a large size can be regarded as having low motion activity.
In (16), the square block types are more emphasized for the calculation of standard
deviation than the non-square block types because the square block type allows for more
sub-block partitions which results in more motion vectors. Therefore, with the weighting
factor in (15), the standard deviation of the intensity in motion activity can be calculated as

 2

1

1 ()
N

i
i

x x
N

σ
=

= −∑ (18)

where ix is a weighted magnitude of motion vector and is given by

 i i ix w mv= × (19)

imv is the motion vector of the i-th partition block or macroblock and N is the total number
of the partition blocks and macroblocks (no partitions) in a frame.
Sometimes, due to the noise of motion caused by camera shaking, abrupt light intensity
change or unexpected shadow, the standard deviation undergoes abrupt change in a certain
frame over time. Therefore, we remove such outliers by applying a median filter on
standard deviation values for every five frames. Finally the median filtered standard
deviation values are quantized into the five levels of motion activity.

3. Experimental results
3.1 Feature extraction of motion trajectory
(a) Three sequences were used in our experiments: Corridor and Speedway for low and high
camera, respectively; and PETS2001 for occlusion handling experiments. Corridor sequence
is a QVGA (320x240), 670 frames, indoor surveillance video with single object (a person)
moves toward the camera. Speedway sequence is a CIF (352x288), 198 frames, outdoor
surveillance video of traffic in a speedway with several vehicles. PETS2001 is a QPAL
(384x288), 600 frames, outdoor surveillance video in a building complex, with several objects
and group of objects and having occlusions between some of them.
We first present the observation of using energy of object to determine the similarity
between objects before and after occlusion as defined in (12). Fig. 2 shows the example of

Object Tracking

168

occlusion and disocclusion occurred in PETS2001 sequence with the graphs showing the
energy value for occluded objects before and after occlusion.
In Fig. 2(a), object 1 and object 2 starts to occlude in frame 157 and disocclude in frame 216.
As depicted by the graph in Fig. 2(c) we can see that the energy value of each object is
distributed fairly different so we can easily match the energy of object 1 and object 2 before
and after occlusion. However, there is also case when the energy value alone is not enough
to determine the similarity of object. As shown in Fig. 2(d), the energy value of object 4
fluctuates and in some points overwhelming the energy value of object 3. Furthermore, it
makes the energy value almost has no significant differences for the similarity calculation to
find similarity (and dissimilarity) of both objects after occlusion in frame 567, although
energy value of both objects fairly different just before occlusion in frame 490. For this
reason we add direction value term in the similarity model as the weighting factor to control
the energy value for the model to not depend only one feature of object. Fig. 2(b) shows the
result of handling occlusion for object 3 and object 4.

(a) (b)

(c) (d)
Fig. 2. Computing energy similarity of two occluded objects in PETS2001 sequence (a) between
object 1 and object 2, (b) between object 3 and object 4. Graphs show the value of energy of (c)
objects 1 and 2, (d) object 3 and 4. Dashed lines in the graphs imply the occlusion.
The results from of overall object detection and tracking process are shown. Fig. 3 shows the
result of overall object detection and tracking process for Corridor sequence. The sequence is
taken from video surveillance camera located near the ceiling of a corridor and features one
person moving toward the camera. In this sequence the object’s size changes gradually from
small to large until the person finally walks approximately below the camera. As shown in
Fig. 3, when the object starts to appear in the frame, its motion and residue information is
available and the algorithm can recognize it correctly until the object is large and located
near the camera.
Fig. 4 shows the result of overall object detection and tracking process for Speedway
sequence. The sequence is taken from video surveillance camera located in high position
and features four vehicles: two vehicles move away from camera and two vehicles move
toward the camera. In this sequence the objects’ size changes rapidly from large to small for

Object Tracking and Indexing in H.264/AVC Bitstream Domains

169

(a)

(b)

(c)

(d)

(e)

(f)

Fig. 3. Object detection and tracking results for 18th (a), 298th (b), 447th (c), 498th (d), 535th
(e) and 650th (f) frame of Corridor sequence.
the objects that move away from camera, and vice versa. In the bitstreams, the small objects
are too small to have motion and residue information. As a result, those objects cannot be
recognized by the segmentation process, as can be seen in Fig. 4(a). In frame 54, shown in
Fig. 4(b), the small objects moving toward the camera are first recognized into single object
because their motion and residue information are represented in small amount of adjacent
block partitions. As the frame advances, the two objects become large and finally can be
recognized as two objects in the frame 186 as shown in Fig. 4(f). Similarly, object one (red) is
getting small as the frame advances and finally unable to be recognized by the algorithm
(Fig. 4(e)). From this experiment it can be seen that the algorithm is able to detect small
object with block partitions take up less than one macroblock as long as its appearance is
consistent along several frames in the sequence.

Object Tracking

168

occlusion and disocclusion occurred in PETS2001 sequence with the graphs showing the
energy value for occluded objects before and after occlusion.
In Fig. 2(a), object 1 and object 2 starts to occlude in frame 157 and disocclude in frame 216.
As depicted by the graph in Fig. 2(c) we can see that the energy value of each object is
distributed fairly different so we can easily match the energy of object 1 and object 2 before
and after occlusion. However, there is also case when the energy value alone is not enough
to determine the similarity of object. As shown in Fig. 2(d), the energy value of object 4
fluctuates and in some points overwhelming the energy value of object 3. Furthermore, it
makes the energy value almost has no significant differences for the similarity calculation to
find similarity (and dissimilarity) of both objects after occlusion in frame 567, although
energy value of both objects fairly different just before occlusion in frame 490. For this
reason we add direction value term in the similarity model as the weighting factor to control
the energy value for the model to not depend only one feature of object. Fig. 2(b) shows the
result of handling occlusion for object 3 and object 4.

(a) (b)

(c) (d)
Fig. 2. Computing energy similarity of two occluded objects in PETS2001 sequence (a) between
object 1 and object 2, (b) between object 3 and object 4. Graphs show the value of energy of (c)
objects 1 and 2, (d) object 3 and 4. Dashed lines in the graphs imply the occlusion.
The results from of overall object detection and tracking process are shown. Fig. 3 shows the
result of overall object detection and tracking process for Corridor sequence. The sequence is
taken from video surveillance camera located near the ceiling of a corridor and features one
person moving toward the camera. In this sequence the object’s size changes gradually from
small to large until the person finally walks approximately below the camera. As shown in
Fig. 3, when the object starts to appear in the frame, its motion and residue information is
available and the algorithm can recognize it correctly until the object is large and located
near the camera.
Fig. 4 shows the result of overall object detection and tracking process for Speedway
sequence. The sequence is taken from video surveillance camera located in high position
and features four vehicles: two vehicles move away from camera and two vehicles move
toward the camera. In this sequence the objects’ size changes rapidly from large to small for

Object Tracking and Indexing in H.264/AVC Bitstream Domains

169

(a)

(b)

(c)

(d)

(e)

(f)

Fig. 3. Object detection and tracking results for 18th (a), 298th (b), 447th (c), 498th (d), 535th
(e) and 650th (f) frame of Corridor sequence.
the objects that move away from camera, and vice versa. In the bitstreams, the small objects
are too small to have motion and residue information. As a result, those objects cannot be
recognized by the segmentation process, as can be seen in Fig. 4(a). In frame 54, shown in
Fig. 4(b), the small objects moving toward the camera are first recognized into single object
because their motion and residue information are represented in small amount of adjacent
block partitions. As the frame advances, the two objects become large and finally can be
recognized as two objects in the frame 186 as shown in Fig. 4(f). Similarly, object one (red) is
getting small as the frame advances and finally unable to be recognized by the algorithm
(Fig. 4(e)). From this experiment it can be seen that the algorithm is able to detect small
object with block partitions take up less than one macroblock as long as its appearance is
consistent along several frames in the sequence.

Object Tracking

170

(a)

(b)

(c)

(d)

(e)

(f)
Fig. 4. Object detection and tracking results 43rd (a), 54th (b), 70th (c), 92nd (d), 138th (e)
and 186th (f) frame of Speedway sequence.
Fig. 5 shows the result of overall object detection and tracking process for PETS2001 sequence.
The sequence features five objects: two persons, two vehicles, and one group of persons where
there are two times occlusions between the objects. The first occlusion is occurred between a
person and a vehicle (Fig. 15(b)). During the occlusion, both objects are identified as single
object and labeled as “occluded objects”. Because we kept their information prior the
occlusion, the label information correctly identified both object to their original label after the
occlusion. Similar result also occurred in the second occlusion when another vehicle occluded
with group of persons, as shown in Fig. 5(e). The identification of all objects can be correctly
detected prior to occlusion (Fig. 5(d)) and after occlusion (Fig. 5(f)).

Object Tracking and Indexing in H.264/AVC Bitstream Domains

171

(a)

(b)

(c)

(d)

(e)

(f)
Fig. 5. Object detection and tracking results for 104th (a), 165th (b), 207th (c), 462nd (d),
510th (e) and 556th (f) frame of PETS2001 sequence.

3.2 Feature extraction of motion activity
In this section we present the result of the extraction of motion activity using the proposed
method with a weighting factor and its comparison with the one without the weighting
factor. The experiments were performed for surveillance video of QVGA size encoded at 30
fps by an H.264/AVC baseline profile encoder.
As shown in Fig. 1, the quantization of standard deviation of motion vector magnitudes
cannot appropriately describe the real motion activity. In this experiment, the surveillance
video camera covers a large area, i.e., the mounted camera is far away from the objects. As
the result, quantization of the standard deviation without the weighting factor results in
incorrect classification of motion intensity.
Fig. 6 shows the quantization of the standard deviation of the motion vector magnitudes
using a weighting factor. As a result we can identify the motion of the object. The frames
that have relatively high motion are quantized as higher intensity level.

Object Tracking

170

(a)

(b)

(c)

(d)

(e)

(f)
Fig. 4. Object detection and tracking results 43rd (a), 54th (b), 70th (c), 92nd (d), 138th (e)
and 186th (f) frame of Speedway sequence.
Fig. 5 shows the result of overall object detection and tracking process for PETS2001 sequence.
The sequence features five objects: two persons, two vehicles, and one group of persons where
there are two times occlusions between the objects. The first occlusion is occurred between a
person and a vehicle (Fig. 15(b)). During the occlusion, both objects are identified as single
object and labeled as “occluded objects”. Because we kept their information prior the
occlusion, the label information correctly identified both object to their original label after the
occlusion. Similar result also occurred in the second occlusion when another vehicle occluded
with group of persons, as shown in Fig. 5(e). The identification of all objects can be correctly
detected prior to occlusion (Fig. 5(d)) and after occlusion (Fig. 5(f)).

Object Tracking and Indexing in H.264/AVC Bitstream Domains

171

(a)

(b)

(c)

(d)

(e)

(f)
Fig. 5. Object detection and tracking results for 104th (a), 165th (b), 207th (c), 462nd (d),
510th (e) and 556th (f) frame of PETS2001 sequence.

3.2 Feature extraction of motion activity
In this section we present the result of the extraction of motion activity using the proposed
method with a weighting factor and its comparison with the one without the weighting
factor. The experiments were performed for surveillance video of QVGA size encoded at 30
fps by an H.264/AVC baseline profile encoder.
As shown in Fig. 1, the quantization of standard deviation of motion vector magnitudes
cannot appropriately describe the real motion activity. In this experiment, the surveillance
video camera covers a large area, i.e., the mounted camera is far away from the objects. As
the result, quantization of the standard deviation without the weighting factor results in
incorrect classification of motion intensity.
Fig. 6 shows the quantization of the standard deviation of the motion vector magnitudes
using a weighting factor. As a result we can identify the motion of the object. The frames
that have relatively high motion are quantized as higher intensity level.

Object Tracking

172

We present another result where the position of the camera is relatively low from the floor,
which means there is a possibility that the size of objects becomes large so that it might lead
to incorrect motion activity quantization.

frames

Fig. 6. Curves of original and quantized standard deviations
In order to see the effect of assigning penalty value in computing the standard deviation of
the motion vector magnitudes, we present a screenshot with an object that moves slowly
near the camera as shown in Fig 7(a).

(a)

(b)

(c)

Fig. 7. The effect of assigning penalty value: (a) A snapshot frame (b) The quantized
standard deviation without the penalty value and (c) The quantized standard deviation with
penalty value.

Object Tracking and Indexing in H.264/AVC Bitstream Domains

173

For this, the quantized standard deviation without penalty values results in higher intensity
levels as shown in Fig 7(b), compared to those with penalty values in Fig. 7(c). The object
motion activity is abnormally high as having level 4 and 5 in the interval between 134th frame
and 230th frame, and the interval between 570th frame to 670th frame. Assigning penalty values
for this sequence gives better quantization result for the same frame as shown in Fig 7(c).

(a)

(b)

(c)

Fig. 8. (a) A snapshot frame of surveillance video sequence shows high motion activity. (b)
Quantized standard deviation without weighting factor and (c) Quantized standard
deviation with weighting factor.
Fig 8(a) shows the screenshot of the sequence in which an object moves fast. Fig. 8(b) shows
the quantization results of the standard deviation of the magnitude of motion vectors
without applying the weighting factor. The quantized standard deviation seems to correctly
represent the activity of the objects. However, the video sequence actually consists of the
scene where an object moves fast. Fig. 8(c) shows the result of the quantization by applying
the weighting factor and penalty values, which results in relatively more appealing
quantization results of motion intensity.

Object Tracking

172

We present another result where the position of the camera is relatively low from the floor,
which means there is a possibility that the size of objects becomes large so that it might lead
to incorrect motion activity quantization.

frames

Fig. 6. Curves of original and quantized standard deviations
In order to see the effect of assigning penalty value in computing the standard deviation of
the motion vector magnitudes, we present a screenshot with an object that moves slowly
near the camera as shown in Fig 7(a).

(a)

(b)

(c)

Fig. 7. The effect of assigning penalty value: (a) A snapshot frame (b) The quantized
standard deviation without the penalty value and (c) The quantized standard deviation with
penalty value.

Object Tracking and Indexing in H.264/AVC Bitstream Domains

173

For this, the quantized standard deviation without penalty values results in higher intensity
levels as shown in Fig 7(b), compared to those with penalty values in Fig. 7(c). The object
motion activity is abnormally high as having level 4 and 5 in the interval between 134th frame
and 230th frame, and the interval between 570th frame to 670th frame. Assigning penalty values
for this sequence gives better quantization result for the same frame as shown in Fig 7(c).

(a)

(b)

(c)

Fig. 8. (a) A snapshot frame of surveillance video sequence shows high motion activity. (b)
Quantized standard deviation without weighting factor and (c) Quantized standard
deviation with weighting factor.
Fig 8(a) shows the screenshot of the sequence in which an object moves fast. Fig. 8(b) shows
the quantization results of the standard deviation of the magnitude of motion vectors
without applying the weighting factor. The quantized standard deviation seems to correctly
represent the activity of the objects. However, the video sequence actually consists of the
scene where an object moves fast. Fig. 8(c) shows the result of the quantization by applying
the weighting factor and penalty values, which results in relatively more appealing
quantization results of motion intensity.

Object Tracking

174

4. Implementations
Here we present the conceptual structure of MPEG-7 Visual for describing the result of
motion trajectory and motion activity description to illustrate the practical usage of our
method.

MPEG-7: MultimediaContent Description

Video type description
- ID: Object #1

VideoSegment #1 Motion trajectory description

Motion activity description

MediaTimePoint #1
MediaTimePoint #2

MediaTimePoint #3

MediaTimePoint #N
...

X KeyValue #1

X KeyValue #2

X KeyValue #3

X KeyValue #N
...

Y KeyValue #1

Y KeyValue #2

Y KeyValue #3

Y KeyValue #N
...

Intensity

Segment MediaTimePoint #1

VideoSegment #2

Motion activity description

Intensity

Segment MediaTimePoint #2

VideoSegment #3

Motion activity description

Intensity

Segment MediaTimePoint #3

VideoSegment #N

Motion activity description

Intensity

Segment MediaTimePoint #N

...

...

MediaTimePoint #4
MediaTimePoint #5

X KeyValue #4
X KeyValue #5

Y KeyValue #4

Y KeyValue #5

Fig. 9. The example of conceptual structure of MPEG-7 metadata to describe object motion
trajectory and motion intensity.
Fig. 9 shows the example of conceptual structure of MPEG-7 metadata. A multimedia
content descriptor from MPEG-7 Multimedia Description Scheme (MDS) (MPEG57/N4242)
is the container for video type object description that can be used to describe each of
detected objects in the bitstream. As shown in Fig. 9, the identity of object, which obtained
from labeling process described in section 2.1, can be described by an identifier attributes,
thus all descriptions inside the video descriptor belong to this object. A video segment
descriptor in a video descriptor is used to index the segment of the video having the motion

Object Tracking and Indexing in H.264/AVC Bitstream Domains

175

intensity description of this object. Each video segment has media time information,
describing the frame number where the intensity is annotated. Effective indexing can be
generated by describing video segment description for every time frame when the intensity
is high. A motion trajectory description describes the coordinate x and y of tracked objects,
which can be represented by the interpolation of the centroid of the region resulted by the
tracking algorithm. As shown in Fig. 9, each of x and y coordinates of tracked object is
referred by each media time point.
Referencing the motion trajectory time point and video segment time point can be
performed to find the location of detected object from frame to frame. Suppose the motion
intensity description of an object describes a high intensity motion at frame 10, then the
corresponding segment media time point of video segment acts as pointer to the media time
point of motion trajectory. Then the trajectory of this object can be found by tracing the x
and y coordinate values referred by media time point of motion trajectory started from
frame 10.

5. Conclusions
In this chapter, a novel approach for extracting the ROI’s of multiple moving objects in
H.264/AVC bitstream domains is proposed which includes spatial and temporal filtering,
similarity model for object detection and tracking and motion activity extraction to enhance
indexing.
In order to extract the motion activity feature values, we proposed to utilize the macroblock
types of H.264/AVC bitstreams by assigning the weighting factor to the block partitions so
that the standard deviation of the magnitudes of the motion vectors can be appropriately
quantized to represent the motion activity levels.
Finally, some examples for the usage of the extracted features are shown for visual
information retrieval in the form of MPEG-7 structure that can make it easy the detected
object indexing and information retrieval. Future study on the current can be extended to
deal with occlusion problems during object detection and tracking in H.264/AVC bitstream
domains.

6. References
MPEG57/N4358, ISO/IEC FDIS 15938-3 Visual, ISO/IEC JTC 1/SC 29/WG 11, July 2001,

Sydney
MPEG57/N4242, ISO/IEC FDIS 15938-5 Multimedia Description Schemes, ISO/IEC JTC 1/SC

29/WG 11, July 2001, Sydney
Manjunath, B. S.; Salembier, P. & Sikora, T., Introduction to MPEG-7, Multimedia Content

Description Interface, John Wiley & Sons, 2002
Zeng, W.; Du, J.; Gao, W. & Huang, Q., Robust moving object segmentation on H.264|AVC

compressed video using the block-based MRF model, Real-Time Imaging, vol. 11(4),
2005, pp. 290-299

Thilak, V. & Creusere, C. D., Tracking of extended size targets in H.264 compressed video
using the probabilistic data association filter, EUSIPCO 2004, pp. 281-284

Object Tracking

174

4. Implementations
Here we present the conceptual structure of MPEG-7 Visual for describing the result of
motion trajectory and motion activity description to illustrate the practical usage of our
method.

MPEG-7: MultimediaContent Description

Video type description
- ID: Object #1

VideoSegment #1 Motion trajectory description

Motion activity description

MediaTimePoint #1
MediaTimePoint #2

MediaTimePoint #3

MediaTimePoint #N
...

X KeyValue #1

X KeyValue #2

X KeyValue #3

X KeyValue #N
...

Y KeyValue #1

Y KeyValue #2

Y KeyValue #3

Y KeyValue #N
...

Intensity

Segment MediaTimePoint #1

VideoSegment #2

Motion activity description

Intensity

Segment MediaTimePoint #2

VideoSegment #3

Motion activity description

Intensity

Segment MediaTimePoint #3

VideoSegment #N

Motion activity description

Intensity

Segment MediaTimePoint #N

...

...

MediaTimePoint #4
MediaTimePoint #5

X KeyValue #4
X KeyValue #5

Y KeyValue #4

Y KeyValue #5

Fig. 9. The example of conceptual structure of MPEG-7 metadata to describe object motion
trajectory and motion intensity.
Fig. 9 shows the example of conceptual structure of MPEG-7 metadata. A multimedia
content descriptor from MPEG-7 Multimedia Description Scheme (MDS) (MPEG57/N4242)
is the container for video type object description that can be used to describe each of
detected objects in the bitstream. As shown in Fig. 9, the identity of object, which obtained
from labeling process described in section 2.1, can be described by an identifier attributes,
thus all descriptions inside the video descriptor belong to this object. A video segment
descriptor in a video descriptor is used to index the segment of the video having the motion

Object Tracking and Indexing in H.264/AVC Bitstream Domains

175

intensity description of this object. Each video segment has media time information,
describing the frame number where the intensity is annotated. Effective indexing can be
generated by describing video segment description for every time frame when the intensity
is high. A motion trajectory description describes the coordinate x and y of tracked objects,
which can be represented by the interpolation of the centroid of the region resulted by the
tracking algorithm. As shown in Fig. 9, each of x and y coordinates of tracked object is
referred by each media time point.
Referencing the motion trajectory time point and video segment time point can be
performed to find the location of detected object from frame to frame. Suppose the motion
intensity description of an object describes a high intensity motion at frame 10, then the
corresponding segment media time point of video segment acts as pointer to the media time
point of motion trajectory. Then the trajectory of this object can be found by tracing the x
and y coordinate values referred by media time point of motion trajectory started from
frame 10.

5. Conclusions
In this chapter, a novel approach for extracting the ROI’s of multiple moving objects in
H.264/AVC bitstream domains is proposed which includes spatial and temporal filtering,
similarity model for object detection and tracking and motion activity extraction to enhance
indexing.
In order to extract the motion activity feature values, we proposed to utilize the macroblock
types of H.264/AVC bitstreams by assigning the weighting factor to the block partitions so
that the standard deviation of the magnitudes of the motion vectors can be appropriately
quantized to represent the motion activity levels.
Finally, some examples for the usage of the extracted features are shown for visual
information retrieval in the form of MPEG-7 structure that can make it easy the detected
object indexing and information retrieval. Future study on the current can be extended to
deal with occlusion problems during object detection and tracking in H.264/AVC bitstream
domains.

6. References
MPEG57/N4358, ISO/IEC FDIS 15938-3 Visual, ISO/IEC JTC 1/SC 29/WG 11, July 2001,

Sydney
MPEG57/N4242, ISO/IEC FDIS 15938-5 Multimedia Description Schemes, ISO/IEC JTC 1/SC

29/WG 11, July 2001, Sydney
Manjunath, B. S.; Salembier, P. & Sikora, T., Introduction to MPEG-7, Multimedia Content

Description Interface, John Wiley & Sons, 2002
Zeng, W.; Du, J.; Gao, W. & Huang, Q., Robust moving object segmentation on H.264|AVC

compressed video using the block-based MRF model, Real-Time Imaging, vol. 11(4),
2005, pp. 290-299

Thilak, V. & Creusere, C. D., Tracking of extended size targets in H.264 compressed video
using the probabilistic data association filter, EUSIPCO 2004, pp. 281-284

Object Tracking

176

You, W.; Sabirin, M. S. H. & Kim, M., Moving Object Tracking in H.264/AVC bitstream,
MCAM 2007, LNCS, vol. 4577, pp. 483-492

You, W.; Sabirin, M. S. H. & Kim, M. (2009) Real-time detection and tracking of multiple
objects with partial decoding in H.264/AVC bitstream domain, In: Proc. Of SPIE, N.
Kehtarnavaz & M. F. Carlsohn (Ed.), 72440D-72440D-12, SPIE, San Jose, CA, USA

Ismael Daribo, Zachary A. Garrett, Yuki Takaya and Hideo Saito
Keio University

Japan

1. Introduction

Graph cuts have found many applications that address the problem of energy minimization,
which occur frequently in computer vision and image processing. One of the most common
applications is binary image segmentation, or silhouette extraction.
Image segmentation is the process of applying a labeling to each pixel in an image to
determine a list of boundaries of objects, areas of interest, or silhouettes of objects in the scene.
The resulting pixel labeling enables higher level vision systems to perform complex actions
such as gesture recognition for human-computer interfaces Ueda et al. (2003), real-time 3D
volume reconstructions Laurentini (1994), and mixed reality applications Takaya et al. (2009).
Without accurate and coherent segmentations, these higher end-to-end systems will fail to
perform their required functions. This necessitates a method which can correctly identify
and extract objects from a scene with high accuracy. However, accuracy usually comes with
serious performance penalties, particularly in image processing which examines hundreds of
thousands of pixels in each image. This is unacceptable for high-level vision systems, which
generally require the processing to be completed in real time.
By creating a graph using information in the image, as in Fig. 1, researchers have recast
the problem of energy minimization and image segmentation as a graph theory problem.
Then, methods such as flow analysis and finding shortest paths give researchers information
about the structure of the underlying image. The results of these methods have been very
promising, although the problem of computation complexity (speed) remains. Techniques
such as livewire Mortensen & Barrett (1995), normalized cuts Shi & Malik (1997), and graph
cuts have been developed to produce more accurate image segmentations and silhouette
extractions.
Applying graph cuts to layered frames of a video sequence has shown to be robust for object
tracking and object segmentation. In such scenarios, the entire video sequence is treated as
a single 3D volume of layered frames, and a cut is performed across the entire sequence at
once Boykov & Funka-Lea (2006). In sight of the large size of the graphs, which is increased
with the video sequence length, performance of the cut is of paramount importance. To
solve this problem, advances in the graph cut algorithm have produced dramatic performance
improvements Boykov & Kolmogorov (2004); Juan & Boykov (2006).
However, regarding live video applications, there is no prior knowledge of subsequent
frames. Techniques that build single graph across the entire video Boykov & Funka-Lea (2006)
become then inapplicable in live video scenarios. Instead, a graph must be maintained or

Accelerating Live Graph-Cut-Based Object
Tracking Using CUDA

9

Object Tracking

176

You, W.; Sabirin, M. S. H. & Kim, M., Moving Object Tracking in H.264/AVC bitstream,
MCAM 2007, LNCS, vol. 4577, pp. 483-492

You, W.; Sabirin, M. S. H. & Kim, M. (2009) Real-time detection and tracking of multiple
objects with partial decoding in H.264/AVC bitstream domain, In: Proc. Of SPIE, N.
Kehtarnavaz & M. F. Carlsohn (Ed.), 72440D-72440D-12, SPIE, San Jose, CA, USA

Ismael Daribo, Zachary A. Garrett, Yuki Takaya and Hideo Saito
Keio University

Japan

1. Introduction

Graph cuts have found many applications that address the problem of energy minimization,
which occur frequently in computer vision and image processing. One of the most common
applications is binary image segmentation, or silhouette extraction.
Image segmentation is the process of applying a labeling to each pixel in an image to
determine a list of boundaries of objects, areas of interest, or silhouettes of objects in the scene.
The resulting pixel labeling enables higher level vision systems to perform complex actions
such as gesture recognition for human-computer interfaces Ueda et al. (2003), real-time 3D
volume reconstructions Laurentini (1994), and mixed reality applications Takaya et al. (2009).
Without accurate and coherent segmentations, these higher end-to-end systems will fail to
perform their required functions. This necessitates a method which can correctly identify
and extract objects from a scene with high accuracy. However, accuracy usually comes with
serious performance penalties, particularly in image processing which examines hundreds of
thousands of pixels in each image. This is unacceptable for high-level vision systems, which
generally require the processing to be completed in real time.
By creating a graph using information in the image, as in Fig. 1, researchers have recast
the problem of energy minimization and image segmentation as a graph theory problem.
Then, methods such as flow analysis and finding shortest paths give researchers information
about the structure of the underlying image. The results of these methods have been very
promising, although the problem of computation complexity (speed) remains. Techniques
such as livewire Mortensen & Barrett (1995), normalized cuts Shi & Malik (1997), and graph
cuts have been developed to produce more accurate image segmentations and silhouette
extractions.
Applying graph cuts to layered frames of a video sequence has shown to be robust for object
tracking and object segmentation. In such scenarios, the entire video sequence is treated as
a single 3D volume of layered frames, and a cut is performed across the entire sequence at
once Boykov & Funka-Lea (2006). In sight of the large size of the graphs, which is increased
with the video sequence length, performance of the cut is of paramount importance. To
solve this problem, advances in the graph cut algorithm have produced dramatic performance
improvements Boykov & Kolmogorov (2004); Juan & Boykov (2006).
However, regarding live video applications, there is no prior knowledge of subsequent
frames. Techniques that build single graph across the entire video Boykov & Funka-Lea (2006)
become then inapplicable in live video scenarios. Instead, a graph must be maintained or

Accelerating Live Graph-Cut-Based Object
Tracking Using CUDA

9

Fig. 1. Graph based silhouette extraction, from Boykov & Funka-Lea (2006).

build at each frame. When considering live real-time video, using faster cut algorithms, is not
enough sufficient. The creation of the graph, as well as the structure for utilizing temporal
data from previous frames must be reconsidered.
Although recent researches have given much attention to graph cuts algorithms, most of
them are too computational expensive to reach real-time, limiting their applications to off-line
processing. Moreover, with the introduction of the Compute Unified Device Architecture
(CUDA), GPUs are no longer exclusively designed for 3D rendering. In CUDA, a GPU can
be explicitly programmed as general-purpose shared memory Single Instruction Multiple
Data (SIMD) multi-core processors, which allows a high level of parallelism. Thus, many
applications that are not yet able to achieve satisfactory performance on Central Processing
Units (CPUs), can get benefit from that massive parallelism provided by such devices.
Nevertheless, only specific algorithms can be adapted and efficiently designed on GPUs.
In this chapter, we propose the design and implementation of graph cuts that is capable of
handling both tracking and segmentation simultaneously, leading to real-time conditions. We
first propose to track and segment objects in live video thereby utilizing regional graph cuts
and object pixel probability maps, where the graph is dynamically adapted to the motion of
objects. We then introduce a fast and generic novel method for graph cuts on GPUs that places
no limits on graph configuration, and which is able to reach real-time performance.

2. Background on graph cuts

Graph-based segmentation has a history originally based in mathematics and graph theory.
Since graphs are an abstraction of the problem space, they are often applied to many different
domains. In addition to image segmentation, graph cuts have been applied to computer
networking, selection maximization, and stereo vision. The graph theory that supports

178 Object Tracking

graph-based segmentation methods is described, followed by a survey of frequently used
algorithms, and a discussion of common graph construction techniques.
Before applications to image segmentation were demonstrated, mathematicians had been
interested in computation of flows through networks. Networks were modeled as directed
graphs with weights (also called capacities) assigned to the edges. The first important
discovery in graph-based segmentation occurred in 1956, when Elias et al Elias et al. (1956),
and Ford and Fulkerson Ford & Faulkerson (1956) independently proved the max-flow min-cut
theorem. This theorem proved that solving for the maximum flow across a network is
equivalent to solving for the minimum cut required to separate a network into two disjoint
components.

2.1 Max-ow min-cut theorem
The max-flow min-cut theorem defines the relationship between the maximum flow on a flow
network, and the minimum cut required to separate the network into two disjoint components.
A flow network is a graph G =< V, E > composed of edge set E and a vertex set V. The vertex
set V contains two labeled vertices, the source s, and the sink t, and each edge �uv ∈ E has
a capacity cuv, and the flow f between two vertices u and v is never more than the capacity,
f (u, v) ≤ cuv. Then for a path Pu0un = { �u0u1, �u1u2, . . . , �un−1un} where u0, u1, . . . , un ∈ V, the
flow is defined as:

f (Puv) = min
�ij∈Puv

cij (1)

Then the maximum flow of the network G is defined as the sum of path flows for all paths
from s to t:

f (G) = ∑
∀Pst∈G

f (Pst) (2)

Next, an s-t cut is defined as a partition of the vertices V into two sets (W, W̄) such that s ∈ W
and t ∈ W̄ and no edges exists from W to W̄, as shown in Fig. 2 if the forward edges are
removed. The max-flow min-cut theorem states that the value v of the maximum flow is
equal to the value of the minimum s-t cut Papadimitriou & Steiglitz (1998).

Fig. 2. Graph s-t partitioning

While the theorem was proved in 1956, algorithms allowing for efficient computer
computation of very large graphs continued to be a focus of much research. Today, general
categories of algorithms for solving the max-flow/min-cut exist and are often the basis of
additional research.

179Accelerating Live Graph-Cut-Based Object Tracking Using CUDA

Fig. 1. Graph based silhouette extraction, from Boykov & Funka-Lea (2006).

build at each frame. When considering live real-time video, using faster cut algorithms, is not
enough sufficient. The creation of the graph, as well as the structure for utilizing temporal
data from previous frames must be reconsidered.
Although recent researches have given much attention to graph cuts algorithms, most of
them are too computational expensive to reach real-time, limiting their applications to off-line
processing. Moreover, with the introduction of the Compute Unified Device Architecture
(CUDA), GPUs are no longer exclusively designed for 3D rendering. In CUDA, a GPU can
be explicitly programmed as general-purpose shared memory Single Instruction Multiple
Data (SIMD) multi-core processors, which allows a high level of parallelism. Thus, many
applications that are not yet able to achieve satisfactory performance on Central Processing
Units (CPUs), can get benefit from that massive parallelism provided by such devices.
Nevertheless, only specific algorithms can be adapted and efficiently designed on GPUs.
In this chapter, we propose the design and implementation of graph cuts that is capable of
handling both tracking and segmentation simultaneously, leading to real-time conditions. We
first propose to track and segment objects in live video thereby utilizing regional graph cuts
and object pixel probability maps, where the graph is dynamically adapted to the motion of
objects. We then introduce a fast and generic novel method for graph cuts on GPUs that places
no limits on graph configuration, and which is able to reach real-time performance.

2. Background on graph cuts

Graph-based segmentation has a history originally based in mathematics and graph theory.
Since graphs are an abstraction of the problem space, they are often applied to many different
domains. In addition to image segmentation, graph cuts have been applied to computer
networking, selection maximization, and stereo vision. The graph theory that supports

178 Object Tracking

graph-based segmentation methods is described, followed by a survey of frequently used
algorithms, and a discussion of common graph construction techniques.
Before applications to image segmentation were demonstrated, mathematicians had been
interested in computation of flows through networks. Networks were modeled as directed
graphs with weights (also called capacities) assigned to the edges. The first important
discovery in graph-based segmentation occurred in 1956, when Elias et al Elias et al. (1956),
and Ford and Fulkerson Ford & Faulkerson (1956) independently proved the max-flow min-cut
theorem. This theorem proved that solving for the maximum flow across a network is
equivalent to solving for the minimum cut required to separate a network into two disjoint
components.

2.1 Max-ow min-cut theorem
The max-flow min-cut theorem defines the relationship between the maximum flow on a flow
network, and the minimum cut required to separate the network into two disjoint components.
A flow network is a graph G =< V, E > composed of edge set E and a vertex set V. The vertex
set V contains two labeled vertices, the source s, and the sink t, and each edge �uv ∈ E has
a capacity cuv, and the flow f between two vertices u and v is never more than the capacity,
f (u, v) ≤ cuv. Then for a path Pu0un = { �u0u1, �u1u2, . . . , �un−1un} where u0, u1, . . . , un ∈ V, the
flow is defined as:

f (Puv) = min
�ij∈Puv

cij (1)

Then the maximum flow of the network G is defined as the sum of path flows for all paths
from s to t:

f (G) = ∑
∀Pst∈G

f (Pst) (2)

Next, an s-t cut is defined as a partition of the vertices V into two sets (W, W̄) such that s ∈ W
and t ∈ W̄ and no edges exists from W to W̄, as shown in Fig. 2 if the forward edges are
removed. The max-flow min-cut theorem states that the value v of the maximum flow is
equal to the value of the minimum s-t cut Papadimitriou & Steiglitz (1998).

Fig. 2. Graph s-t partitioning

While the theorem was proved in 1956, algorithms allowing for efficient computer
computation of very large graphs continued to be a focus of much research. Today, general
categories of algorithms for solving the max-flow/min-cut exist and are often the basis of
additional research.

179Accelerating Live Graph-Cut-Based Object Tracking Using CUDA

2.2 Max-ow algorithms
Along with the proof of the max-flow min-cut theorem in Ford & Faulkerson (1956), Ford
and Fulkerson presented an algorithm for computing the maximum flow of a flow network.
This algorithm forms the basis of a set of algorithms known as Ford-Fulkerson or augmenting
paths algorithms. Then, in 1988 Goldberg and Tarjan presented a new way of approaching the
computation of flow with their push-relabel algorithm Goldberg & Tarjan (1988).
The time complexities for two augmenting paths algorithms and two push-relabel algorithms
are presented in Table 1. The two classes of algorithms differ in time complexity based on the
number of vertices V, or edges E. Ford-Fulkerson algorithms would generally perform better
on sparse graphs (fewer edges) than do push relabel algorithms. At the time of writing, one
of the fastest (and freely available) implementations is an augmenting paths algorithm utilizing
breadth-first-search (BFS) search trees Kolmogorov & Zabin (2004).

Algorithm Complexity Notes

Ford & Faulkerson (1956) O(VE2)
Ford & Faulkerson (1956) O(E f) Only for

Edmonds & Karp (1972) O(V2E) integer capacities BFS

Push-Relabel, Goldberg & Tarjan (1988) O(V2E)
Push-Relabel w/ FIFO Queue, Goldberg & Tarjan (1988) O(V3)

Table 1. Time Complexity of Maximum Flow Algorithms.

2.3 Augmenting paths algorithm
The augmenting paths algorithm solves the maximum flow problem by iterating searches
for paths from s to t and pushing flow equal to the minimum capacity along the path.
The algorithm terminates when no paths with remaining capacity exist from s to t. The
pseudo-code for the algorithm is presented in Algorithm 1.

Algorithm 1: Augmenting Paths Algorithm.

input : Graph G with flow capacity c, source vertex s, sink vertex t
output: A flow f from s to t which is maximum

1 forall the �uv ∈ E do
2 f (u, v) ← 0
3 end
4 while ∃ path P from s to t such that cuv > 0 for all �uv ∈ P do
5 c f (p) = min (cuv|�uv ∈ P)
6 foreach �uv ∈ P do
7 f (u, v) ← f (u, v) + c f (p) /* Send flow along the path */

8 f (v, u) ← f (v, u)− c f (p)
9 end

10 end

The difference between the Edmonds-Karp algorithm and the Ford-Fulkerson algoirthm in
Table 1 lies in the method used to find paths from s to t. In step 2 in Algorithm 1, the
Edmonds-Karp algorithm uses a BFS search method originating from vertex s.
Fig. 3 presents a simple case of an augmenting paths algorithm. Fig. 3(a) shows the initial
graph. The graph has been constructed with a source vertex and a sink vertex, and all

180 Object Tracking

flow has been initialized to zero. In the next panel, the first path from the source to sink is
highlighted in red, and the minimum capacity has been pushed as flow. The result is that
the link connecting to the sink has been fully saturated, and this path is no longer usable.
This continues through panel three and four, iteratively pushing flow along s-t paths until no
unsaturated path remains. Then the cut separates those vertices that still have an unsaturated
path back to the source from those that do not.

(a) Initial Graph (b) First Iteration (c) Second Iteration

(d) Third Iteration (e) Cut

Fig. 3. Example Augmenting Paths Algorithm Execution.

2.4 Push relabel algorithm
Whereas the augmenting paths algorithm examines entire s-t paths, the push relabel algorithm
examines individual vertices and attempts to push flow through the graph network. The push
relabel algorithm relies on generating a pseudo-flow (a flow that does not obey the properties
of the graph) and finding a convergence on a true flow. The algorithm adds two pieces of
information to each vertex, a height h and an excess e. The height of the vertex is a distance
measurement, reflecting how close the vertex is to the source. The excess is the difference
between incoming and outgoing flow of a vertex, or in other words, the flow that is trapped
or waiting at the vertex. A vertex with e > 0 is said to be overflowing. The algorithm consists
of two main operations: push (also called discharge) and relabel (also called raise). Typically a
queue of overflowing vertices is checked each iteration, with the first vertex in the list being
dequeued and either discharged or relabeled. The loop terminates once there are no further
viable discharge or relabel operations to perform (i.e. no remaining overflowing vertices).
Discharging a vertex causes some of the excess to be pushed to neighboring vertices when the
incident edge has not completely saturated (has residual capacity). The push decreases the
excess in the current vertex, increasing excess in the destination, and decreasing the residual
capacity of the edge. The destination vertex is then enqueued into the overflowing list, along
with the current vertex if it is still overflowing.
A vertex must be relabeled when it is overflowing but has no valid neighbors. A neighbor is
valid if the edge incident to both vertices has remaining capacity, and the destination vertex’s
height is lower than the current vertex. The current vertex’s height is increased to one more
than the lowest neighbor, which allows further discharging. If a vertex has no remaining
outgoing capacity, then it is relabeled to the height of the source plus one, so that the excess
may be pushed back to the source.

181Accelerating Live Graph-Cut-Based Object Tracking Using CUDA

2.2 Max-ow algorithms
Along with the proof of the max-flow min-cut theorem in Ford & Faulkerson (1956), Ford
and Fulkerson presented an algorithm for computing the maximum flow of a flow network.
This algorithm forms the basis of a set of algorithms known as Ford-Fulkerson or augmenting
paths algorithms. Then, in 1988 Goldberg and Tarjan presented a new way of approaching the
computation of flow with their push-relabel algorithm Goldberg & Tarjan (1988).
The time complexities for two augmenting paths algorithms and two push-relabel algorithms
are presented in Table 1. The two classes of algorithms differ in time complexity based on the
number of vertices V, or edges E. Ford-Fulkerson algorithms would generally perform better
on sparse graphs (fewer edges) than do push relabel algorithms. At the time of writing, one
of the fastest (and freely available) implementations is an augmenting paths algorithm utilizing
breadth-first-search (BFS) search trees Kolmogorov & Zabin (2004).

Algorithm Complexity Notes

Ford & Faulkerson (1956) O(VE2)
Ford & Faulkerson (1956) O(E f) Only for

Edmonds & Karp (1972) O(V2E) integer capacities BFS

Push-Relabel, Goldberg & Tarjan (1988) O(V2E)
Push-Relabel w/ FIFO Queue, Goldberg & Tarjan (1988) O(V3)

Table 1. Time Complexity of Maximum Flow Algorithms.

2.3 Augmenting paths algorithm
The augmenting paths algorithm solves the maximum flow problem by iterating searches
for paths from s to t and pushing flow equal to the minimum capacity along the path.
The algorithm terminates when no paths with remaining capacity exist from s to t. The
pseudo-code for the algorithm is presented in Algorithm 1.

Algorithm 1: Augmenting Paths Algorithm.

input : Graph G with flow capacity c, source vertex s, sink vertex t
output: A flow f from s to t which is maximum

1 forall the �uv ∈ E do
2 f (u, v) ← 0
3 end
4 while ∃ path P from s to t such that cuv > 0 for all �uv ∈ P do
5 c f (p) = min (cuv|�uv ∈ P)
6 foreach �uv ∈ P do
7 f (u, v) ← f (u, v) + c f (p) /* Send flow along the path */

8 f (v, u) ← f (v, u)− c f (p)
9 end

10 end

The difference between the Edmonds-Karp algorithm and the Ford-Fulkerson algoirthm in
Table 1 lies in the method used to find paths from s to t. In step 2 in Algorithm 1, the
Edmonds-Karp algorithm uses a BFS search method originating from vertex s.
Fig. 3 presents a simple case of an augmenting paths algorithm. Fig. 3(a) shows the initial
graph. The graph has been constructed with a source vertex and a sink vertex, and all

180 Object Tracking

flow has been initialized to zero. In the next panel, the first path from the source to sink is
highlighted in red, and the minimum capacity has been pushed as flow. The result is that
the link connecting to the sink has been fully saturated, and this path is no longer usable.
This continues through panel three and four, iteratively pushing flow along s-t paths until no
unsaturated path remains. Then the cut separates those vertices that still have an unsaturated
path back to the source from those that do not.

(a) Initial Graph (b) First Iteration (c) Second Iteration

(d) Third Iteration (e) Cut

Fig. 3. Example Augmenting Paths Algorithm Execution.

2.4 Push relabel algorithm
Whereas the augmenting paths algorithm examines entire s-t paths, the push relabel algorithm
examines individual vertices and attempts to push flow through the graph network. The push
relabel algorithm relies on generating a pseudo-flow (a flow that does not obey the properties
of the graph) and finding a convergence on a true flow. The algorithm adds two pieces of
information to each vertex, a height h and an excess e. The height of the vertex is a distance
measurement, reflecting how close the vertex is to the source. The excess is the difference
between incoming and outgoing flow of a vertex, or in other words, the flow that is trapped
or waiting at the vertex. A vertex with e > 0 is said to be overflowing. The algorithm consists
of two main operations: push (also called discharge) and relabel (also called raise). Typically a
queue of overflowing vertices is checked each iteration, with the first vertex in the list being
dequeued and either discharged or relabeled. The loop terminates once there are no further
viable discharge or relabel operations to perform (i.e. no remaining overflowing vertices).
Discharging a vertex causes some of the excess to be pushed to neighboring vertices when the
incident edge has not completely saturated (has residual capacity). The push decreases the
excess in the current vertex, increasing excess in the destination, and decreasing the residual
capacity of the edge. The destination vertex is then enqueued into the overflowing list, along
with the current vertex if it is still overflowing.
A vertex must be relabeled when it is overflowing but has no valid neighbors. A neighbor is
valid if the edge incident to both vertices has remaining capacity, and the destination vertex’s
height is lower than the current vertex. The current vertex’s height is increased to one more
than the lowest neighbor, which allows further discharging. If a vertex has no remaining
outgoing capacity, then it is relabeled to the height of the source plus one, so that the excess
may be pushed back to the source.

181Accelerating Live Graph-Cut-Based Object Tracking Using CUDA

Algorithm 2: Push Relabel Algorithm.

input : Graph G with flow capacity c, source vertex s, sink vertex t
output: A flow f from s to t which is maximum

1 list.enqueue(s)
2 while not list.isEmpty() do
3 u ← list.dequeue()
4 if u.excess > 0 then
5 amtPushed ← discharge(u)
6 if amtPushed == 0 then
7 relabel(u)
8 end

9 end

10 end

In Algorithm 2, the enqueueing of more vertices into the list would occur inside the discharge
and relabel functions. Various techniques to change or improve performance have been
proposed, such as pushing to the highest neighbors first, or using a first-in-first-out (FIFO)
queue for vertex selection. The general time complexity given in Table 1 would seem to say
that the push relabel algorithm is more efficient than augmenting paths, especially for sparse
graphs, but in practice this did not seem to be the case, until recently, with parallelized
implementations of the algorithm.
Fig. 4 demonstrates the operations of the push relabel algorithm. All vertices have their
information printed alongside their label. The source and sink have their height listed after
the semicolon, while vertices u and v have their height listed, follow by their current excess
(after the slash). The currently active vertex is highlighted in red. There appear to be many
more steps than augmenting paths, but this is not necessarily the case, since the path finding
steps were not detailed in the previous section.

(a) Initial Graph (b) Discharge s to u (c) Relabel u to 1

(d) Discharge s to v (e) Discharge u to t (f) Relabel v to 1

Fig. 4. Example Push Relabel Algorithm Execution.

182 Object Tracking

2.4.1 Parallel push relabel algorithm
As recently as 2008, researchers discovered methods for parallelization of the push relabel
family of maximum flow algorithms. Most of the strategies implement methods so that
the vertices in the overflowing list can be processed concurrently, vastly speeding up the
performance of the algorithm. The parallelization of any algorithm often involves many
complex concurrency issues, requiring control structures (often referred to as locks) so that the
order of execution of certain statements is guaranteed. However, a lock-less implementation
of the push relabel has been presented by Hong Hong (2008), which will be presented here.
The algorithm constructs the graph with a pre-flow, effectively saturating all outgoing links
from s.

Algorithm 3: Lock-free, Parallel Push Relabel Algorithm: Master Thread.

input : Graph G with flow capacity c, source vertex s, sink vertex t
output: A flow f from s to t which is maximum

/* Initialization, performed by master thread */
1 s.height ← |V|
2 foreach u ∈ V − {s} do
3 u.height ← 0
4 end
5 foreach �uv ∈ E do
6 f (u, v) ← 0
7 end
8 foreach �su ∈ E do
9 f (s, u) ← csu

10 u.excess ← csu

11 end

As stated by Hong, lines 14-17 must be performed by atomic read-update-write operations.
These operations are usually available on multi-core systems, or are implementable via
software (though at a cost). Lastly, Hong notes that while a single thread may terminate
because of no available operations, it does not mean that the algorithm has terminated. Other
vertices may push flow back into the vertex, making it necessary for the thread to continue
operations. This problem will be address in the GPU implementation in Section 3.2.

2.5 Building graphs from images
While the max-flow min-cut theorem was first proved in 1956, it was not applied to computer
vision and image segmentation for more than 30 years. The key to applying the max-flow
min-cut theorem image segmentation is the ability to represent the image as a meaningful
flow network, so that the min-cut can be translated back into an image segmentation. One
of the first successful image processing applications was developed by Greig et al Greig et al.
(1989), which demonstrated success in estimating solutions for noise removal. Then Boykov
et al Boykov et al. (2001) demonstrated that the min-cut of a graph can correspond to the
maximum a posteriori distribution of a Markov Random Field, which had been used for image
segmentation in the past. By formulating image segmentation as an energy minimization
problem, and then a max-flow min-cut problem, Boykov et al created graph cuts for image
segmentation.

183Accelerating Live Graph-Cut-Based Object Tracking Using CUDA

Algorithm 2: Push Relabel Algorithm.

input : Graph G with flow capacity c, source vertex s, sink vertex t
output: A flow f from s to t which is maximum

1 list.enqueue(s)
2 while not list.isEmpty() do
3 u ← list.dequeue()
4 if u.excess > 0 then
5 amtPushed ← discharge(u)
6 if amtPushed == 0 then
7 relabel(u)
8 end

9 end

10 end

In Algorithm 2, the enqueueing of more vertices into the list would occur inside the discharge
and relabel functions. Various techniques to change or improve performance have been
proposed, such as pushing to the highest neighbors first, or using a first-in-first-out (FIFO)
queue for vertex selection. The general time complexity given in Table 1 would seem to say
that the push relabel algorithm is more efficient than augmenting paths, especially for sparse
graphs, but in practice this did not seem to be the case, until recently, with parallelized
implementations of the algorithm.
Fig. 4 demonstrates the operations of the push relabel algorithm. All vertices have their
information printed alongside their label. The source and sink have their height listed after
the semicolon, while vertices u and v have their height listed, follow by their current excess
(after the slash). The currently active vertex is highlighted in red. There appear to be many
more steps than augmenting paths, but this is not necessarily the case, since the path finding
steps were not detailed in the previous section.

(a) Initial Graph (b) Discharge s to u (c) Relabel u to 1

(d) Discharge s to v (e) Discharge u to t (f) Relabel v to 1

Fig. 4. Example Push Relabel Algorithm Execution.

182 Object Tracking

2.4.1 Parallel push relabel algorithm
As recently as 2008, researchers discovered methods for parallelization of the push relabel
family of maximum flow algorithms. Most of the strategies implement methods so that
the vertices in the overflowing list can be processed concurrently, vastly speeding up the
performance of the algorithm. The parallelization of any algorithm often involves many
complex concurrency issues, requiring control structures (often referred to as locks) so that the
order of execution of certain statements is guaranteed. However, a lock-less implementation
of the push relabel has been presented by Hong Hong (2008), which will be presented here.
The algorithm constructs the graph with a pre-flow, effectively saturating all outgoing links
from s.

Algorithm 3: Lock-free, Parallel Push Relabel Algorithm: Master Thread.

input : Graph G with flow capacity c, source vertex s, sink vertex t
output: A flow f from s to t which is maximum

/* Initialization, performed by master thread */
1 s.height ← |V|
2 foreach u ∈ V − {s} do
3 u.height ← 0
4 end
5 foreach �uv ∈ E do
6 f (u, v) ← 0
7 end
8 foreach �su ∈ E do
9 f (s, u) ← csu

10 u.excess ← csu

11 end

As stated by Hong, lines 14-17 must be performed by atomic read-update-write operations.
These operations are usually available on multi-core systems, or are implementable via
software (though at a cost). Lastly, Hong notes that while a single thread may terminate
because of no available operations, it does not mean that the algorithm has terminated. Other
vertices may push flow back into the vertex, making it necessary for the thread to continue
operations. This problem will be address in the GPU implementation in Section 3.2.

2.5 Building graphs from images
While the max-flow min-cut theorem was first proved in 1956, it was not applied to computer
vision and image segmentation for more than 30 years. The key to applying the max-flow
min-cut theorem image segmentation is the ability to represent the image as a meaningful
flow network, so that the min-cut can be translated back into an image segmentation. One
of the first successful image processing applications was developed by Greig et al Greig et al.
(1989), which demonstrated success in estimating solutions for noise removal. Then Boykov
et al Boykov et al. (2001) demonstrated that the min-cut of a graph can correspond to the
maximum a posteriori distribution of a Markov Random Field, which had been used for image
segmentation in the past. By formulating image segmentation as an energy minimization
problem, and then a max-flow min-cut problem, Boykov et al created graph cuts for image
segmentation.

183Accelerating Live Graph-Cut-Based Object Tracking Using CUDA

Algorithm 4: Lock-free, Parallel Push Relabel Algorithm: Child Threads.

input : A vertex u
output: None

/* Main loop performed per thread, one thread per vertex */
1 while u.excess > 0 do
2 é ← u.excess
3 v̂ ← null

4 ĥ ← ∞
5 foreach �uv ∈ E f do /* edges with capacity */
6 h́ ← v.height
7 if h� < v̂.height then
8 v̂ ← v
9 ĥ ← h́

10 end

11 end

12 if u.height > ĥ then /* Discharged */
13 d ← min (é, cuv − f (u, v))
14 f (u, v) ← f (u, v) + d
15 f (v, u) ← f (v, u)− d
16 u.excess ← u.excess −d
17 v.excess ← v.excess +d
18 else /* Relabel */
19 u.height ← ĥ + 1
20 end

21 end

The graph cut creation process consists of splitting the edges of the graph into two categories.
All edges that are incident to the source or sink are called t-links (terminal links), while the
other links are called n-links (neighbor links). The two different types of links are assigned
weights (energy) using different methods, and give rise to the energy equation which is to be
minimized by the graph cut.

E(A) = λR(A) + B(A) (3)

where

R(A) = ∑
p∈P

Rp(Ap) (4)

B(A) = ∑
{p,q}∈N

Bp,q · δAp �=Aq
(5)

Equation 4 defines the regional energy, which corresponds to the t-links of the graph. This
energy is often a model of the object to be extracted. Research has been conducted into various
object models such as Gaussian mixture models Rother et al. (2004) and color histograms
Garrett & Saito (2008). One simple method for t-link energy computation uses histograms.
For a given pixel p and a histogram H, the histogram value for p, H(p), is divided by

184 Object Tracking

the maximum histogram value to obtain an energy between [0.0, 1.0] as demonstrated in
Equation 6.

R(p) =
H(p)

max
∀q∈V

H(q)
(6)

Equation 5 is the boundary energy, corresponding to the n-links in the graph. The most
common equation used for the boundary energy is the square of the Euclidean distance
between two pixels. Equation 7 demonstrates the energy between two RGB pixels (pT =
[r, g, b]), normalized to the range [0.0, 1.0]. This produces a linear energy model, which is often
not optimized for practical use, as the difference between colors captured in real scenes does
not exhibit enough variance in the RGB color space. Instead negative exponential functions
(Equation 8) can replace the Euclidean difference.

B({p, q} ∈ V) = 1.0 − ||p − q||/3.0 (7)

B({p, q} ∈ V) = e−||p−q|| (8)

Fig. 5 demonstrates the differences in boundary energy equations. The x axis is the difference
between the pixels (||p − q||), and the y axis is the resultant energy. The exponential function
decreases much faster for small differences of pixel intensity earlier than does the linear
function.

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 0.5 1 1.5 2 2.5 3

E
ne

rg
y

be
tw

ee
n

pi
xe

ls

Pixel intensity difference

exp(-x)
1 - (x/3)

Fig. 5. Boundary Equation Comparisons

Finally, graph construction can be summed up by the energy table by Boykov et al Boykov
& Funka-Lea (2006), which has been reproduced here. The K in Table 2 refers to a maximum
energy level, computed as:

K = 1 + max
p∈P

∑
q∈Np

Bpq (9)

This equation defines that links may have hard constraints, limiting them to either the
foreground or background by ensuring that their neighbor links are fully saturated due to
the large amount of energy in the t-link from the source, or the large drain to the sink.

185Accelerating Live Graph-Cut-Based Object Tracking Using CUDA

Algorithm 4: Lock-free, Parallel Push Relabel Algorithm: Child Threads.

input : A vertex u
output: None

/* Main loop performed per thread, one thread per vertex */
1 while u.excess > 0 do
2 é ← u.excess
3 v̂ ← null

4 ĥ ← ∞
5 foreach �uv ∈ E f do /* edges with capacity */
6 h́ ← v.height
7 if h� < v̂.height then
8 v̂ ← v
9 ĥ ← h́

10 end

11 end

12 if u.height > ĥ then /* Discharged */
13 d ← min (é, cuv − f (u, v))
14 f (u, v) ← f (u, v) + d
15 f (v, u) ← f (v, u)− d
16 u.excess ← u.excess −d
17 v.excess ← v.excess +d
18 else /* Relabel */
19 u.height ← ĥ + 1
20 end

21 end

The graph cut creation process consists of splitting the edges of the graph into two categories.
All edges that are incident to the source or sink are called t-links (terminal links), while the
other links are called n-links (neighbor links). The two different types of links are assigned
weights (energy) using different methods, and give rise to the energy equation which is to be
minimized by the graph cut.

E(A) = λR(A) + B(A) (3)

where

R(A) = ∑
p∈P

Rp(Ap) (4)

B(A) = ∑
{p,q}∈N

Bp,q · δAp �=Aq
(5)

Equation 4 defines the regional energy, which corresponds to the t-links of the graph. This
energy is often a model of the object to be extracted. Research has been conducted into various
object models such as Gaussian mixture models Rother et al. (2004) and color histograms
Garrett & Saito (2008). One simple method for t-link energy computation uses histograms.
For a given pixel p and a histogram H, the histogram value for p, H(p), is divided by

184 Object Tracking

the maximum histogram value to obtain an energy between [0.0, 1.0] as demonstrated in
Equation 6.

R(p) =
H(p)

max
∀q∈V

H(q)
(6)

Equation 5 is the boundary energy, corresponding to the n-links in the graph. The most
common equation used for the boundary energy is the square of the Euclidean distance
between two pixels. Equation 7 demonstrates the energy between two RGB pixels (pT =
[r, g, b]), normalized to the range [0.0, 1.0]. This produces a linear energy model, which is often
not optimized for practical use, as the difference between colors captured in real scenes does
not exhibit enough variance in the RGB color space. Instead negative exponential functions
(Equation 8) can replace the Euclidean difference.

B({p, q} ∈ V) = 1.0 − ||p − q||/3.0 (7)

B({p, q} ∈ V) = e−||p−q|| (8)

Fig. 5 demonstrates the differences in boundary energy equations. The x axis is the difference
between the pixels (||p − q||), and the y axis is the resultant energy. The exponential function
decreases much faster for small differences of pixel intensity earlier than does the linear
function.

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 0.5 1 1.5 2 2.5 3

E
ne

rg
y

be
tw

ee
n

pi
xe

ls

Pixel intensity difference

exp(-x)
1 - (x/3)

Fig. 5. Boundary Equation Comparisons

Finally, graph construction can be summed up by the energy table by Boykov et al Boykov
& Funka-Lea (2006), which has been reproduced here. The K in Table 2 refers to a maximum
energy level, computed as:

K = 1 + max
p∈P

∑
q∈Np

Bpq (9)

This equation defines that links may have hard constraints, limiting them to either the
foreground or background by ensuring that their neighbor links are fully saturated due to
the large amount of energy in the t-link from the source, or the large drain to the sink.

185Accelerating Live Graph-Cut-Based Object Tracking Using CUDA

Edge Weight (Energy) For
�pq Bpq {p, q} ∈ V

�ps
λ · Rp(”bkg”) p ∈ P , p �∈ O ∪ B

K p ∈ O
0 p ∈ B

�pt
λ · Rp(”obj”) p ∈ P , p �∈ O ∪ B

0 p ∈ O
K p ∈ B

Table 2. Edge Energy Computations per Edge Type.

Fig. 6. Flow Chart of Tracking System.

3. Proposed system

3.1 Live video extraction
The method for tracking and silhouette extraction is composed of three main steps: building
the graph, cutting the graph, and creating temporal seed information for the next frame. These
three steps are performed in a cycle, with the temporal seeds being used in the next build
phase, shown in Fig. 6. The images on the right show the image representation of data at each
step of the algorithm.

186 Object Tracking

Fig. 7. System Operation Flow Chart.

3.1.1 Build the graph
Each edge in the graph requires an energy computation, and as the size of the image increases,
the number of edges increases dramatically. For example, an 8-neighborhood graph on a
640x480-resolution video has almost 2 million edges. This results in poor performance on live
video because 2 million edges must be recomputed for every frame. If an object is tracked
and segmented that does not fill the entire frame, many of the pixels will not need to be
computed, such as those far from the object, since they will not likely change unless the object
moves closer. To reduce the number of computations required, the graph is restricted to a
region-of-interest.
For the very first cut on the graph, the region-of-interest will cover the entire video frame.
However, subsequent regions will be smaller, depending on the object size.

3.1.2 Cut the graph
The second step is to cut the graph. For this step, a freely available graph cut implementation
by Kolmogorov et al Kolmogorov & Zabin (2004) was used. This implementation relies on a
modified augmenting paths algorithm, as described earlier.

3.1.3 Temporal seeding
Seeding the graph for the next frame is not a simple matter of marking the previous frame’s
object pixels as object seeds, and all other pixels as background seeds. If the object were to
move within the next frame, then some seeds would be mislabeled, also causing the cut to
incorrectly label some pixels. This research describes a new method for seeding pixels based
on probabilities of future pixel locations.
When examining any two consecutive frames of a video sequence, many of the pixels of
the object will overlap between frames. These will most likely be those pixels closer to the
center of the object, as the object must travel farther before these pixels change from object to
background. Thus, a probability distribution can be created over the object pixels such that
the pixels near the edge will have a lower probability of remaining object pixels in the next
video frame. Pixels near the center of the object have a high probability of remaining object
pixels in the next video frame. This distribution we call the object pixel probability map.
To compute the pixel probability map, the binary mask of the object segmentation from the
previous frame is computed. Then a distance transform is applied to the mask to obtain
the pixel probability map, shown on the right hand side of Fig. 7. The distance transform
computes the distance from a given white pixel to the closest black pixel. This gives us a
gradient from the center of the object (greatest distance) to the cut edge (shortest distance).
Using the probability map, the t-links of the next frame’s graph are computed using a
modified version of Region Equation R described by Equation 5. Table 3 shows the new
energy computations for t-links.

187Accelerating Live Graph-Cut-Based Object Tracking Using CUDA

Edge Weight (Energy) For
�pq Bpq {p, q} ∈ V

�ps
λ · Rp(”bkg”) p ∈ P , p �∈ O ∪ B

K p ∈ O
0 p ∈ B

�pt
λ · Rp(”obj”) p ∈ P , p �∈ O ∪ B

0 p ∈ O
K p ∈ B

Table 2. Edge Energy Computations per Edge Type.

Fig. 6. Flow Chart of Tracking System.

3. Proposed system

3.1 Live video extraction
The method for tracking and silhouette extraction is composed of three main steps: building
the graph, cutting the graph, and creating temporal seed information for the next frame. These
three steps are performed in a cycle, with the temporal seeds being used in the next build
phase, shown in Fig. 6. The images on the right show the image representation of data at each
step of the algorithm.

186 Object Tracking

Fig. 7. System Operation Flow Chart.

3.1.1 Build the graph
Each edge in the graph requires an energy computation, and as the size of the image increases,
the number of edges increases dramatically. For example, an 8-neighborhood graph on a
640x480-resolution video has almost 2 million edges. This results in poor performance on live
video because 2 million edges must be recomputed for every frame. If an object is tracked
and segmented that does not fill the entire frame, many of the pixels will not need to be
computed, such as those far from the object, since they will not likely change unless the object
moves closer. To reduce the number of computations required, the graph is restricted to a
region-of-interest.
For the very first cut on the graph, the region-of-interest will cover the entire video frame.
However, subsequent regions will be smaller, depending on the object size.

3.1.2 Cut the graph
The second step is to cut the graph. For this step, a freely available graph cut implementation
by Kolmogorov et al Kolmogorov & Zabin (2004) was used. This implementation relies on a
modified augmenting paths algorithm, as described earlier.

3.1.3 Temporal seeding
Seeding the graph for the next frame is not a simple matter of marking the previous frame’s
object pixels as object seeds, and all other pixels as background seeds. If the object were to
move within the next frame, then some seeds would be mislabeled, also causing the cut to
incorrectly label some pixels. This research describes a new method for seeding pixels based
on probabilities of future pixel locations.
When examining any two consecutive frames of a video sequence, many of the pixels of
the object will overlap between frames. These will most likely be those pixels closer to the
center of the object, as the object must travel farther before these pixels change from object to
background. Thus, a probability distribution can be created over the object pixels such that
the pixels near the edge will have a lower probability of remaining object pixels in the next
video frame. Pixels near the center of the object have a high probability of remaining object
pixels in the next video frame. This distribution we call the object pixel probability map.
To compute the pixel probability map, the binary mask of the object segmentation from the
previous frame is computed. Then a distance transform is applied to the mask to obtain
the pixel probability map, shown on the right hand side of Fig. 7. The distance transform
computes the distance from a given white pixel to the closest black pixel. This gives us a
gradient from the center of the object (greatest distance) to the cut edge (shortest distance).
Using the probability map, the t-links of the next frame’s graph are computed using a
modified version of Region Equation R described by Equation 5. Table 3 shows the new
energy computations for t-links.

187Accelerating Live Graph-Cut-Based Object Tracking Using CUDA

Edge Weight (Energy) For

{p, s}
min(λ + 1, λ · Rp(bkg) + λ · Dp) p ∈ P, p �∈ O

0 p ∈ O

{p, t}
min(λ + 1, λ · Rp(bkg) + λ · Dp) p ∈ P, p �∈ B

0 p ∈ B

Table 3. Modified Boundary Energy Equation

Where Dp is the value of the probability map for pixel p divided by the largest D, and thus
Dp ∈ [0.0, 1.0]. The technique also requires that Rp ∈ [0.0, 1.0] to make sure that the maximum
value of the t-link weight is λ + 1 (labeled as K in Table 2).
Finally, a region-of-interest is constructed around the object area of the binary image mask.
The region-of-interest is then expanded to contain probable future locations of the object.
Metrics for determining the size of potential for the region-of-interest include camera frame
rate, previous object velocities, and object scaling speeds.

3.1.4 Focused graph cuts
Graph cuts are notoriously computationally expensive. The graph size grows exponentially
with image size (image size growth means growing in width and height), and easily includes
hundreds of thousands of vertices and millions of edges, as seen in Fig. 8. To alleviate this
problem, the proposed system focuses only on those pixels which are most likely to contain
the object from the previous frame. By utilizing a dilation of the previous graph cut’s resultant
binary image, the operations of function graph cuts ca be masked, resulting in a smaller graph
on which to operate. Similar methods which use banded graph cuts, cutting only around
the boundary of the object, have been proposed Lambaert et al. (2005); Mooser et al. (2007),
however these methods have been shown to lose information and misclassify pixels in certain
topologies Garrett & Saito (2008); Sinop & Grady (2006).

 0

 5

 10

 15

 20

 25

QVGA
VGA

PAL
10

80
p

M
ill

io
ns

Input Image Resolution

of Vertices
of Edges

Fig. 8. Graph Growth Size.

Initial timing analysis of graph cuts shown in Fig. 9 demonstrates that the building of the
graph consumes a majority of the time, as many floating point operations must be performed
(typically slow on CPUs). To speed up the graph cuts even more, the next section details how
to harness the parallelization and floating computations of the GPU.

188 Object Tracking

 0

 50

 100

 150

 200

 250

 300

Build Cut Reseed

P
er

ce
nt

ag
e

Ti
m

e

Task

Full Frame
Focused

Fig. 9. Graph Timing per Task.

3.2 GPU implementation using CUDA
Driven by the insatiable market demand for real-time, high-definition 3D graphics, the
programmable GPU has evolved into a highly parallel, multi-threaded, many-core processor
with tremendous computational horsepower and very high memory bandwidth.
The reason behind the discrepancy in floating-point capability between the CPU and the GPU
is that the GPU is specialized for compute-intensive, high-parallel computation, and therefore
designed such that more transistors are devoted to data processing rather that data caching
and flow control.
NVidia’s CUDA allows researchers to easily parallelize their computing task to take
advantage of the GPU. CUDA provides a software library used for interfacing with the
graphics processor, and a specialized compiler to create executable code to run on the GPU.
CUDA presents programmers with two other types of memory access, shared memory and
global memory, on top of the texture cache units. Being able to access to all the memory on
the GPU (albeit with varying access times) has made it much easier to perform research into
GPGPU computing. The method presented in this paper was developed using the CUDA
architecture and run on nVidia hardware. There are many technical resources available on the
nVidia CUDA homepage nVidia (2009).
The following description of the CUDA model is stated in terms of its hardware and software
components. The hardware model, shown in Fig. 10, illustrates how each processor core is
laid out in relation to the different memory buses of global memory, texture cache, and shared
memory. Device (global) memory is the slowest to access while the texture cache is only
available for read operations. Shared memory is used by all of the threads in a block, as
described by the software model.
The software model, depicted in Fig. 11, shows the how a block organizes threads, and how
the grid of a kernel is organized into blocks. When an invocation of kernel code is to be called,
CUDA requires specifying the dimensions of the grid and the size of blocks within the grid
(each block is the same size). A collection of threads that will be run in parallel on the SIMD
cores is defined as a warp. Operations such as branching will cause threads to diverge into
separate warps which must be run serially in time-shared environments. Each thread and
each block have a two dimensional ID that can be accessed at any time. This ID is often used
to reference memory locations pertaining to the particular thread.

189Accelerating Live Graph-Cut-Based Object Tracking Using CUDA

Edge Weight (Energy) For

{p, s}
min(λ + 1, λ · Rp(bkg) + λ · Dp) p ∈ P, p �∈ O

0 p ∈ O

{p, t}
min(λ + 1, λ · Rp(bkg) + λ · Dp) p ∈ P, p �∈ B

0 p ∈ B

Table 3. Modified Boundary Energy Equation

Where Dp is the value of the probability map for pixel p divided by the largest D, and thus
Dp ∈ [0.0, 1.0]. The technique also requires that Rp ∈ [0.0, 1.0] to make sure that the maximum
value of the t-link weight is λ + 1 (labeled as K in Table 2).
Finally, a region-of-interest is constructed around the object area of the binary image mask.
The region-of-interest is then expanded to contain probable future locations of the object.
Metrics for determining the size of potential for the region-of-interest include camera frame
rate, previous object velocities, and object scaling speeds.

3.1.4 Focused graph cuts
Graph cuts are notoriously computationally expensive. The graph size grows exponentially
with image size (image size growth means growing in width and height), and easily includes
hundreds of thousands of vertices and millions of edges, as seen in Fig. 8. To alleviate this
problem, the proposed system focuses only on those pixels which are most likely to contain
the object from the previous frame. By utilizing a dilation of the previous graph cut’s resultant
binary image, the operations of function graph cuts ca be masked, resulting in a smaller graph
on which to operate. Similar methods which use banded graph cuts, cutting only around
the boundary of the object, have been proposed Lambaert et al. (2005); Mooser et al. (2007),
however these methods have been shown to lose information and misclassify pixels in certain
topologies Garrett & Saito (2008); Sinop & Grady (2006).

 0

 5

 10

 15

 20

 25

QVGA
VGA

PAL
10

80
p

M
ill

io
ns

Input Image Resolution

of Vertices
of Edges

Fig. 8. Graph Growth Size.

Initial timing analysis of graph cuts shown in Fig. 9 demonstrates that the building of the
graph consumes a majority of the time, as many floating point operations must be performed
(typically slow on CPUs). To speed up the graph cuts even more, the next section details how
to harness the parallelization and floating computations of the GPU.

188 Object Tracking

 0

 50

 100

 150

 200

 250

 300

Build Cut Reseed

P
er

ce
nt

ag
e

Ti
m

e

Task

Full Frame
Focused

Fig. 9. Graph Timing per Task.

3.2 GPU implementation using CUDA
Driven by the insatiable market demand for real-time, high-definition 3D graphics, the
programmable GPU has evolved into a highly parallel, multi-threaded, many-core processor
with tremendous computational horsepower and very high memory bandwidth.
The reason behind the discrepancy in floating-point capability between the CPU and the GPU
is that the GPU is specialized for compute-intensive, high-parallel computation, and therefore
designed such that more transistors are devoted to data processing rather that data caching
and flow control.
NVidia’s CUDA allows researchers to easily parallelize their computing task to take
advantage of the GPU. CUDA provides a software library used for interfacing with the
graphics processor, and a specialized compiler to create executable code to run on the GPU.
CUDA presents programmers with two other types of memory access, shared memory and
global memory, on top of the texture cache units. Being able to access to all the memory on
the GPU (albeit with varying access times) has made it much easier to perform research into
GPGPU computing. The method presented in this paper was developed using the CUDA
architecture and run on nVidia hardware. There are many technical resources available on the
nVidia CUDA homepage nVidia (2009).
The following description of the CUDA model is stated in terms of its hardware and software
components. The hardware model, shown in Fig. 10, illustrates how each processor core is
laid out in relation to the different memory buses of global memory, texture cache, and shared
memory. Device (global) memory is the slowest to access while the texture cache is only
available for read operations. Shared memory is used by all of the threads in a block, as
described by the software model.
The software model, depicted in Fig. 11, shows the how a block organizes threads, and how
the grid of a kernel is organized into blocks. When an invocation of kernel code is to be called,
CUDA requires specifying the dimensions of the grid and the size of blocks within the grid
(each block is the same size). A collection of threads that will be run in parallel on the SIMD
cores is defined as a warp. Operations such as branching will cause threads to diverge into
separate warps which must be run serially in time-shared environments. Each thread and
each block have a two dimensional ID that can be accessed at any time. This ID is often used
to reference memory locations pertaining to the particular thread.

189Accelerating Live Graph-Cut-Based Object Tracking Using CUDA

Fig. 10. CUDA Hardware Model

Fig. 11. CUDA Programming Model

3.2.1 GPU Programming paradigm
To develop a GPU implementation of a traditional algorithm, both data structure layout (the
graph representation in memory) and concurrency bottlenecks must be carefully considered
to realize the full potential of the GPU. CUDA implementations of graph cuts for image
segmentation have traditionally paired the 2D lattice structure of graphs with the 2D grid
structure of the CUDA programming model. However this leads to restrictions on the types
of graphs that can be processed by the routine. Furthermore, traditional graph cut algorithms
contain too much cyclomatic complexity in the form of branching and looping. In CUDA,
divergent code produces poor performance because the SIMD model cannot perform the
instructions in parallel, making new techniques for graph cuts necessary.
Vineet and Narayanan presented a method of graph cuts in CUDA that has shown improved
performance by pairing the 2D lattice graphs with the CUDA programming model. They
conceded that this method would not be feasible for other types of graphs Vineet & Narayanan

190 Object Tracking

(a) Original Graph (b) Vertex/Edge List Model

Fig. 12. Conversion of a direct graph into vertex and edge lists.

(2008). In this research, the graphs were structured using a technique similar to that
presented by Harish et al Harish & Narayanan (2007) that improved performance in distance
calculations on arbitrary graphs using the GPU by representing graph G(V, E) as a vertex
array Va and an edge array Ea. Edges in the edge list are grouped so that all edges that
originate at a vertex are contiguous, and the vertex contains a pointer to the first edge in the
group, as in Fig. 12. Each edge structure holds information about its capacity, current flow,
and destination vertex.

3.2.2 Regular graphs
The technique used in this research improved upon the basic implementation of vertex and
array lists. To make the list-based graph representation more SIMD friendly, the input graph
is made regular by adding null edges to any vertex that has fewer edges than the vertex with
the highest degree. Second, the code is simplified by only having one kernel, which performs
both the discharging and relabeling steps.
Since the GPU is treated as an array of SIMD processors, it is important that the algorithm is
able to perform the same operation across multiple data locations. However, this assumes that
any kind of graph configuration could be used as input, requiring that each vertex be treated
uniquely, as the vertex set is not homogeneous. Particularly in the case of image segmentation,
there are three classes of vertices: center vertices, edge vertices, and corners vertices, which
have 10, 7, and 5 edges respectively (in an 8-neighborhood graph). Since the vertices must
be treated differently, the CUDA framework cannot perform the operations in parallel and it
serializes the kernel calls, negating the benefit of using the GPU.
To overcome this problem, the new method used in this research adds extra edges to the graph
so that each vertex has the same degree. In Fig. 13, the dotted line of edge E4 is an example of
a null edge. These null edges point back to the originating vertex and have a capacity of zero.
This causes the null edges to be ignored by the graph cut algorithm, as the destination of the
edge never has a height lower than the origin (a condition for discharging), and the capacity
of the edge restricts the amount of flow discharged to zero.

3.2.3 GPU graph cuts on regular graphs
Algorithm 5 details the steps of the computation that take place on the CPU. The program
operates on a list of vertices V, and a list of edges E. The initialize function starts by
discharging the maximum possible amount of flow from the source to the neighboring
vertices. Then the GPU kernel is invoked so that one thread is excuted for each non-source and
non-sink vertex. The CPU continues to invoke the GPU kernel until no discharge or relabel
operations can be performed.

191Accelerating Live Graph-Cut-Based Object Tracking Using CUDA

Fig. 10. CUDA Hardware Model

Fig. 11. CUDA Programming Model

3.2.1 GPU Programming paradigm
To develop a GPU implementation of a traditional algorithm, both data structure layout (the
graph representation in memory) and concurrency bottlenecks must be carefully considered
to realize the full potential of the GPU. CUDA implementations of graph cuts for image
segmentation have traditionally paired the 2D lattice structure of graphs with the 2D grid
structure of the CUDA programming model. However this leads to restrictions on the types
of graphs that can be processed by the routine. Furthermore, traditional graph cut algorithms
contain too much cyclomatic complexity in the form of branching and looping. In CUDA,
divergent code produces poor performance because the SIMD model cannot perform the
instructions in parallel, making new techniques for graph cuts necessary.
Vineet and Narayanan presented a method of graph cuts in CUDA that has shown improved
performance by pairing the 2D lattice graphs with the CUDA programming model. They
conceded that this method would not be feasible for other types of graphs Vineet & Narayanan

190 Object Tracking

(a) Original Graph (b) Vertex/Edge List Model

Fig. 12. Conversion of a direct graph into vertex and edge lists.

(2008). In this research, the graphs were structured using a technique similar to that
presented by Harish et al Harish & Narayanan (2007) that improved performance in distance
calculations on arbitrary graphs using the GPU by representing graph G(V, E) as a vertex
array Va and an edge array Ea. Edges in the edge list are grouped so that all edges that
originate at a vertex are contiguous, and the vertex contains a pointer to the first edge in the
group, as in Fig. 12. Each edge structure holds information about its capacity, current flow,
and destination vertex.

3.2.2 Regular graphs
The technique used in this research improved upon the basic implementation of vertex and
array lists. To make the list-based graph representation more SIMD friendly, the input graph
is made regular by adding null edges to any vertex that has fewer edges than the vertex with
the highest degree. Second, the code is simplified by only having one kernel, which performs
both the discharging and relabeling steps.
Since the GPU is treated as an array of SIMD processors, it is important that the algorithm is
able to perform the same operation across multiple data locations. However, this assumes that
any kind of graph configuration could be used as input, requiring that each vertex be treated
uniquely, as the vertex set is not homogeneous. Particularly in the case of image segmentation,
there are three classes of vertices: center vertices, edge vertices, and corners vertices, which
have 10, 7, and 5 edges respectively (in an 8-neighborhood graph). Since the vertices must
be treated differently, the CUDA framework cannot perform the operations in parallel and it
serializes the kernel calls, negating the benefit of using the GPU.
To overcome this problem, the new method used in this research adds extra edges to the graph
so that each vertex has the same degree. In Fig. 13, the dotted line of edge E4 is an example of
a null edge. These null edges point back to the originating vertex and have a capacity of zero.
This causes the null edges to be ignored by the graph cut algorithm, as the destination of the
edge never has a height lower than the origin (a condition for discharging), and the capacity
of the edge restricts the amount of flow discharged to zero.

3.2.3 GPU graph cuts on regular graphs
Algorithm 5 details the steps of the computation that take place on the CPU. The program
operates on a list of vertices V, and a list of edges E. The initialize function starts by
discharging the maximum possible amount of flow from the source to the neighboring
vertices. Then the GPU kernel is invoked so that one thread is excuted for each non-source and
non-sink vertex. The CPU continues to invoke the GPU kernel until no discharge or relabel
operations can be performed.

191Accelerating Live Graph-Cut-Based Object Tracking Using CUDA

(a) 2-regular Original Graph (b) Vertex/Edge List Model

Fig. 13. Addition of null edges to achieve a k-regular graph.

Algorithm 5: Proposed System Host Graph Cut Loop

1 nished ← false
2 Initialize(V, E)
3 while not nished do

// GraphCutKernel() is performed in parallel on the GPU
4

5 nished ← GraphCutKernel(V,E)
6 end

The GPU kernel is detailed in Algorithm 6. Since the graph is regular, the loop over the
neighbors is fully unrolled. The null edges are ignored because the height of u will never be
less than the current vertex’s height (since they are equal). In addition the discharge can be
modified to push a conditionally assigned amount of flow. Conditional assignment allows us
to use of the ternary operator, which prevents divergent code since it can be optimized to a
zeroing of either operand of an addition.

Algorithm 6: Proposed System GPU Kernel

1 tId ← GetThreadID()
2 amtPushed ← 0
3 foreach Neighbor u of V[tId] do

4 if u.height < V[tId].height and
−−−−−→
(V[tId], u) ∈ E has capacity > 0 then

5 amtPushed ← amtPushed + Discharge(V[tId], u)
6 end

7 end
8 if amtPushed > 0 and V[tId].excess > 0 then
9 V[tId].height = FindLowestNeighbor(V[tId]).height + 1

10 end

4. Experimental results

The GPU experiment analyzes the performance of the GPU push relabel implementation
described in Section 3.2. The goal of the implementation is to be able to realize the results of
the graph cut faster than the traditional CPU implementations. To measure the performance

192 Object Tracking

benefit of the GPU approach, a pure GPU implementation was compared against the previous
CPU implementation and against a hybrid CPU/GPU system.
This section begins with the drawbacks of the GPU approach. Then, as remarked at the end
of the CPU test analysis, the two areas identified for improvement are the graph building and
the graph cutting areas, which are covered in the following two sections respectively.
These tests utilized two video sequences scaled to QVGA (320x240), VGA (640x480), HD 720p
(1280x720), and HD 1080p (1920x1080) resolutions.
All tests in this section were performed on an 2.5 GHz Intel Xeon processor with 2 GB of RAM
and a nVidia GTX 280 graphics card running Windows XP. This information is important in
analyzing the performance results in the following sections, as results are likely to differ with
hardware.

4.1 GPU transfer latency
Due to computer hardware architecture, the memory on the GPU is not directly accessible
from the CPU. An important limitation of the older GPUs was the time required to transfer
the input to the GPU memory and the time required to transfer the GPU output back to the
CPU. This latency from transferring data is not applicable to the CPU-only implementations of
graph cuts, since all the data resides in the CPU main memory. Traditional Advanced Graphics
Port (AGP) technology facilitated fast data transfer to the GPU, but the return path to the CPU
was considered unimportant, since the output would then be written to the display device.
Even with the new Peripheral Component Interconnect Express (PCIe) bus architecture, at
very large image resolutions, minor latency is observed. Fig. 14 demonstrates that for even
large HD 1080p (1920x1080) resolution images the absolute maximum frame rate (due to
transfer latency) would be approximately 30 frames-per-second.

 0

 2

 4

 6

 8

 10

 12

 14

 16

 18

 20

Send
Receive

E
la

ps
ed

 ti
m

e
(m

s)

Gpu Transfer Direction

QVGA
VGA
PAL

1080p

Fig. 14. Graph of Elapsed Time per GPU Task

4.2 GPU graph building
Due to the parallelism in GPUs, even greater performance benefits can be obtained using
CUDA. The GPU performed so well during this task that the histogram bars cannot be seen,
and instead the values are written. Furthermore, unlike focused graph cuts, this task is content
independent since it works on the entire frame at the same time.
Table 4 gives exact performance numbers for the results shown in Fig. 15. In the final row,
the speed up multiplier is computed as the ratio between the GPU implementation and the
focused graph cuts implementation. For HD 1080p video, GPU graph building achieves as

193Accelerating Live Graph-Cut-Based Object Tracking Using CUDA

(a) 2-regular Original Graph (b) Vertex/Edge List Model

Fig. 13. Addition of null edges to achieve a k-regular graph.

Algorithm 5: Proposed System Host Graph Cut Loop

1 nished ← false
2 Initialize(V, E)
3 while not nished do

// GraphCutKernel() is performed in parallel on the GPU
4

5 nished ← GraphCutKernel(V,E)
6 end

The GPU kernel is detailed in Algorithm 6. Since the graph is regular, the loop over the
neighbors is fully unrolled. The null edges are ignored because the height of u will never be
less than the current vertex’s height (since they are equal). In addition the discharge can be
modified to push a conditionally assigned amount of flow. Conditional assignment allows us
to use of the ternary operator, which prevents divergent code since it can be optimized to a
zeroing of either operand of an addition.

Algorithm 6: Proposed System GPU Kernel

1 tId ← GetThreadID()
2 amtPushed ← 0
3 foreach Neighbor u of V[tId] do

4 if u.height < V[tId].height and
−−−−−→
(V[tId], u) ∈ E has capacity > 0 then

5 amtPushed ← amtPushed + Discharge(V[tId], u)
6 end

7 end
8 if amtPushed > 0 and V[tId].excess > 0 then
9 V[tId].height = FindLowestNeighbor(V[tId]).height + 1

10 end

4. Experimental results

The GPU experiment analyzes the performance of the GPU push relabel implementation
described in Section 3.2. The goal of the implementation is to be able to realize the results of
the graph cut faster than the traditional CPU implementations. To measure the performance

192 Object Tracking

benefit of the GPU approach, a pure GPU implementation was compared against the previous
CPU implementation and against a hybrid CPU/GPU system.
This section begins with the drawbacks of the GPU approach. Then, as remarked at the end
of the CPU test analysis, the two areas identified for improvement are the graph building and
the graph cutting areas, which are covered in the following two sections respectively.
These tests utilized two video sequences scaled to QVGA (320x240), VGA (640x480), HD 720p
(1280x720), and HD 1080p (1920x1080) resolutions.
All tests in this section were performed on an 2.5 GHz Intel Xeon processor with 2 GB of RAM
and a nVidia GTX 280 graphics card running Windows XP. This information is important in
analyzing the performance results in the following sections, as results are likely to differ with
hardware.

4.1 GPU transfer latency
Due to computer hardware architecture, the memory on the GPU is not directly accessible
from the CPU. An important limitation of the older GPUs was the time required to transfer
the input to the GPU memory and the time required to transfer the GPU output back to the
CPU. This latency from transferring data is not applicable to the CPU-only implementations of
graph cuts, since all the data resides in the CPU main memory. Traditional Advanced Graphics
Port (AGP) technology facilitated fast data transfer to the GPU, but the return path to the CPU
was considered unimportant, since the output would then be written to the display device.
Even with the new Peripheral Component Interconnect Express (PCIe) bus architecture, at
very large image resolutions, minor latency is observed. Fig. 14 demonstrates that for even
large HD 1080p (1920x1080) resolution images the absolute maximum frame rate (due to
transfer latency) would be approximately 30 frames-per-second.

 0

 2

 4

 6

 8

 10

 12

 14

 16

 18

 20

Send
Receive

E
la

ps
ed

 ti
m

e
(m

s)

Gpu Transfer Direction

QVGA
VGA
PAL

1080p

Fig. 14. Graph of Elapsed Time per GPU Task

4.2 GPU graph building
Due to the parallelism in GPUs, even greater performance benefits can be obtained using
CUDA. The GPU performed so well during this task that the histogram bars cannot be seen,
and instead the values are written. Furthermore, unlike focused graph cuts, this task is content
independent since it works on the entire frame at the same time.
Table 4 gives exact performance numbers for the results shown in Fig. 15. In the final row,
the speed up multiplier is computed as the ratio between the GPU implementation and the
focused graph cuts implementation. For HD 1080p video, GPU graph building achieves as

193Accelerating Live Graph-Cut-Based Object Tracking Using CUDA

 0

 200

 400

 600

 800

 1000

 1200

QVGA
VGA

PAL
1080p

E
la

ps
ed

 ti
m

e
(m

s)

Image Resolution

GPU

0.86
3.61

8.72
17.60

Focused
Full

Fig. 15. Build Times for Various Image Resolutions

high as a 26x speed increase over the focused graph building, and even greater over traditional
graph building methods.

QVGA VGA 720p 1080p

Full 57.96 208.91 638.07 1090.52
Focus 15.59 45.82 82.99 477.55
GPU 0.86 3.61 8.72 17.60
Speedup 17.5x 12.7x 9.5x 26.1x

Table 4. Speed Results for GPU Graph Building.

4.3 GPU push relabel
This section compares the cut speeds of the GPU implementation of the system. Fig. 16 shows
that at smaller resolutions, the GPU implementation does not see significant improvement in
speed. As the raw clock speed of the CPU is higher than that of the GPU (4x greater), this is
to be expected. However, at the higher resolutions (720p and 1080p), the GPUs parallelization
capabilities start to have an impact on the performance.

 0

 50

 100

 150

 200

 250

 300

 350

 400

 450

 500

 550

QVGA VGA 720p 1080p

E
la

ps
ed

 T
im

e
(m

s)

Resolution

CPU
GPU

Fig. 16. Cut Times for Various Image Resolutions.

Table 5 gives exact performance numbers for the results shown in Fig. 16.

194 Object Tracking

QVGA VGA 720p 1080p

CPU
Avg 20 88 170 503
Min 15 78 156 453
Max 32 94 170 503

GPU
Avg 14 43 107 197
Min 11 39 91 180
Max 18 47 117 207

Table 5. Speed Results for GPU Graph Building.

4.4 GPU Summary
Experimental data show that the GPU implementation is able to perform on average 9 times
faster than the CPU implementation for large resolutions (see Table 6). Standard video
broadcasts (up to VGA) could be segmented with very little delay as the frame rates approach
15 fps. However, HD video is still beyond the reach of real-time systems, averaging only 3
fps.

QVGA VGA 720p 1080p

CPU 150 739 1739 3094
GPU 23 69 186 336

Speedup 6.5x 10.7x 9.3x 9.2x

Table 6. Summary Results for Full System Performance Tests.

Fig. 17 contains sample frames from output video, scaled to fit the page, and scaled relative
to each other in order to realize the size difference in resolutions. The segmentation boundary
is designated by the red border around the yellow airplane. The ocean and islands are
segmented as background, and the airplane is segmented as the object of interest. The videos
are samples obtained from the Microsoft WMV HD Content Showcase website Microsoft (2009).

5. Conclusions

This chapter has presented research on a novel system for object silhouette extraction. The
originality of the system comes from three distinct method improvements. First, the research
developed a method for tracking and segmenting objects across a sequence of images by
using temporal information and distance transforms. Second, the method performance was
increased by focusing the graph cut on likely image pixels, reducing the graph size to only
those pixels that are considered useful. Finally, creating an implementation on the GPU using
vertex and edge lists, as opposed to 2D memory arrays, and making the graph regular by
adding null edges further improved performance.
Through testing on various image sequences and the standardized Berkeley segmentation
data set, the research showed the new system provides fast and accurate results. Future
research extensions include alternative color models for objects and new boundary energy
equations. Both hold promise for better segmentation in the occlusion case, but must be
balanced with computational complexity, otherwise the improvement in speed realized by
the system will be negated.

6. Acknowledgments

This work is supported by the National Institute of Information and Communications
Technology (NICT), Japan.

195Accelerating Live Graph-Cut-Based Object Tracking Using CUDA

 0

 200

 400

 600

 800

 1000

 1200

QVGA
VGA

PAL
1080p

E
la

ps
ed

 ti
m

e
(m

s)

Image Resolution

GPU

0.86
3.61

8.72
17.60

Focused
Full

Fig. 15. Build Times for Various Image Resolutions

high as a 26x speed increase over the focused graph building, and even greater over traditional
graph building methods.

QVGA VGA 720p 1080p

Full 57.96 208.91 638.07 1090.52
Focus 15.59 45.82 82.99 477.55
GPU 0.86 3.61 8.72 17.60
Speedup 17.5x 12.7x 9.5x 26.1x

Table 4. Speed Results for GPU Graph Building.

4.3 GPU push relabel
This section compares the cut speeds of the GPU implementation of the system. Fig. 16 shows
that at smaller resolutions, the GPU implementation does not see significant improvement in
speed. As the raw clock speed of the CPU is higher than that of the GPU (4x greater), this is
to be expected. However, at the higher resolutions (720p and 1080p), the GPUs parallelization
capabilities start to have an impact on the performance.

 0

 50

 100

 150

 200

 250

 300

 350

 400

 450

 500

 550

QVGA VGA 720p 1080p

E
la

ps
ed

 T
im

e
(m

s)

Resolution

CPU
GPU

Fig. 16. Cut Times for Various Image Resolutions.

Table 5 gives exact performance numbers for the results shown in Fig. 16.

194 Object Tracking

QVGA VGA 720p 1080p

CPU
Avg 20 88 170 503
Min 15 78 156 453
Max 32 94 170 503

GPU
Avg 14 43 107 197
Min 11 39 91 180
Max 18 47 117 207

Table 5. Speed Results for GPU Graph Building.

4.4 GPU Summary
Experimental data show that the GPU implementation is able to perform on average 9 times
faster than the CPU implementation for large resolutions (see Table 6). Standard video
broadcasts (up to VGA) could be segmented with very little delay as the frame rates approach
15 fps. However, HD video is still beyond the reach of real-time systems, averaging only 3
fps.

QVGA VGA 720p 1080p

CPU 150 739 1739 3094
GPU 23 69 186 336

Speedup 6.5x 10.7x 9.3x 9.2x

Table 6. Summary Results for Full System Performance Tests.

Fig. 17 contains sample frames from output video, scaled to fit the page, and scaled relative
to each other in order to realize the size difference in resolutions. The segmentation boundary
is designated by the red border around the yellow airplane. The ocean and islands are
segmented as background, and the airplane is segmented as the object of interest. The videos
are samples obtained from the Microsoft WMV HD Content Showcase website Microsoft (2009).

5. Conclusions

This chapter has presented research on a novel system for object silhouette extraction. The
originality of the system comes from three distinct method improvements. First, the research
developed a method for tracking and segmenting objects across a sequence of images by
using temporal information and distance transforms. Second, the method performance was
increased by focusing the graph cut on likely image pixels, reducing the graph size to only
those pixels that are considered useful. Finally, creating an implementation on the GPU using
vertex and edge lists, as opposed to 2D memory arrays, and making the graph regular by
adding null edges further improved performance.
Through testing on various image sequences and the standardized Berkeley segmentation
data set, the research showed the new system provides fast and accurate results. Future
research extensions include alternative color models for objects and new boundary energy
equations. Both hold promise for better segmentation in the occlusion case, but must be
balanced with computational complexity, otherwise the improvement in speed realized by
the system will be negated.

6. Acknowledgments

This work is supported by the National Institute of Information and Communications
Technology (NICT), Japan.

195Accelerating Live Graph-Cut-Based Object Tracking Using CUDA

(a) QVGA (b) VGA

(c) 720p

(d) 1080p

Fig. 17. Sample Output of GPU Video Sequence Performance Experiment.

196 Object Tracking

7. References

Boykov, Y. & Funka-Lea, G. (2006). Graph cuts and efficient n-d image segmentation,
International Journal of Computer Vision 70(2): 109–131.

Boykov, Y. & Kolmogorov, V. (2004). An experimental comparison of min-cut/max-flow
algorithms for energy minimization in vision, IEEE Trans. Pattern Anal. Mach. Intell.
26(9): 1124–1137.

Boykov, Y., Veksler, O. & Zabih, R. (2001). Fast approximate energy fast approximate
energy minimization via graph cuts, IEEE Transactions on Pattern Analysis and Machine
Intelligence 23(11): 1222–1239.

Edmonds, J. & Karp, R. (1972). Theoretical improvements in algorithmic efficiency for network
flow problems, Journal of the ACM 19(2): 248–264.

Elias, P., Feinstein, A. & Shannon, C. (1956). A note on the maximum flow through a network,
IRE Transactions on Information Theory 2(2): 117–119.

Ford, L. & Faulkerson, D. (1956). Maximal flow through a network, Canadian Journal of
Mathematics 8: 399–404.

Garrett, Z. & Saito, H. (2008). Live video object tracking and segmentation using graph cuts,
International Conference on Image Processing, IEEE, pp. 1576–1579.

Goldberg, A. & Tarjan, R. (1988). A new approach to the maximum-flowproblem, Journal of
the ACM 35(4): 921–940.

Greig, D., Porteous, B. & Seheult, A. (1989). Exact maximum a posteriori estimation for binary
images, Journal of the Royal Statistical Society 51(2): 271–279.

Harish, P. & Narayanan, P. J. (2007). Accelerating large graph algorithms on the gpu using
cuda, IEEE High Performance Computing, pp. 197–208.

Hong, B. (2008). A lock-free multi-threaded algorithm for the maximum flow problem,
Workshop on Multithreaded Architectures and Applications, in Conjunction With
International Parallel and Distributed Processing Symposium, IEEE Computer Society.

Juan, O. & Boykov, Y. (2006). Active graph cuts, CVPR ’06: Proceedings of the 2006
IEEE Computer Society Conference on Computer Vision and Pattern Recognition, IEEE
Computer Society, Washington, DC, USA, pp. 1023–1029.

Kolmogorov, V. & Zabin, R. (2004). What energy functions can be minimized via graph cuts?,
IEEE Transactions on Pattern Analysis and Machine Intelligence 26(2): 147–159.

Lambaert, H., Sun, Y., Grady, L. & Xu, C. (2005). A multilevel banded graph cuts method for
fast image segmentation, IEEE Conference on Computer Vision, Vol. 1, IEEE Computer
Society, Los Alamitos, CA, USA, pp. 259–265.

Laurentini, A. (1994). The visual hull concept for silhouette-based image understanding, IEEE
Transactions on Pattern Analysis and Machine Intelligence 16(2): 150–162.

Microsoft (2009). Wmv hd content showcase, Microsoft Corporation .
URL: http://www.microsoft.com/windows/windowsmedia/musicandvideo/hdvideo/
contentshowcase.aspx

Mooser, J., You, S. & Neumann, U. (2007). Real-time object tracking for augmented
reality combining graph cuts and optical flow, International Symposium on Mixed and
Augmented Reality, Vol. 00, IEEE, IEEE Computer Society, pp. 1–8.

Mortensen, E. & Barrett, W. (1995). Intelligent scissors for image composition, 22nd Annual
Conference on Computer Graphics and Interactive Techniques, pp. 191–198.

nVidia (2009). Cuda zone, nVidia .
URL: http://www.nvidia.com/object/cuda_home.html

197Accelerating Live Graph-Cut-Based Object Tracking Using CUDA

(a) QVGA (b) VGA

(c) 720p

(d) 1080p

Fig. 17. Sample Output of GPU Video Sequence Performance Experiment.

196 Object Tracking

7. References

Boykov, Y. & Funka-Lea, G. (2006). Graph cuts and efficient n-d image segmentation,
International Journal of Computer Vision 70(2): 109–131.

Boykov, Y. & Kolmogorov, V. (2004). An experimental comparison of min-cut/max-flow
algorithms for energy minimization in vision, IEEE Trans. Pattern Anal. Mach. Intell.
26(9): 1124–1137.

Boykov, Y., Veksler, O. & Zabih, R. (2001). Fast approximate energy fast approximate
energy minimization via graph cuts, IEEE Transactions on Pattern Analysis and Machine
Intelligence 23(11): 1222–1239.

Edmonds, J. & Karp, R. (1972). Theoretical improvements in algorithmic efficiency for network
flow problems, Journal of the ACM 19(2): 248–264.

Elias, P., Feinstein, A. & Shannon, C. (1956). A note on the maximum flow through a network,
IRE Transactions on Information Theory 2(2): 117–119.

Ford, L. & Faulkerson, D. (1956). Maximal flow through a network, Canadian Journal of
Mathematics 8: 399–404.

Garrett, Z. & Saito, H. (2008). Live video object tracking and segmentation using graph cuts,
International Conference on Image Processing, IEEE, pp. 1576–1579.

Goldberg, A. & Tarjan, R. (1988). A new approach to the maximum-flowproblem, Journal of
the ACM 35(4): 921–940.

Greig, D., Porteous, B. & Seheult, A. (1989). Exact maximum a posteriori estimation for binary
images, Journal of the Royal Statistical Society 51(2): 271–279.

Harish, P. & Narayanan, P. J. (2007). Accelerating large graph algorithms on the gpu using
cuda, IEEE High Performance Computing, pp. 197–208.

Hong, B. (2008). A lock-free multi-threaded algorithm for the maximum flow problem,
Workshop on Multithreaded Architectures and Applications, in Conjunction With
International Parallel and Distributed Processing Symposium, IEEE Computer Society.

Juan, O. & Boykov, Y. (2006). Active graph cuts, CVPR ’06: Proceedings of the 2006
IEEE Computer Society Conference on Computer Vision and Pattern Recognition, IEEE
Computer Society, Washington, DC, USA, pp. 1023–1029.

Kolmogorov, V. & Zabin, R. (2004). What energy functions can be minimized via graph cuts?,
IEEE Transactions on Pattern Analysis and Machine Intelligence 26(2): 147–159.

Lambaert, H., Sun, Y., Grady, L. & Xu, C. (2005). A multilevel banded graph cuts method for
fast image segmentation, IEEE Conference on Computer Vision, Vol. 1, IEEE Computer
Society, Los Alamitos, CA, USA, pp. 259–265.

Laurentini, A. (1994). The visual hull concept for silhouette-based image understanding, IEEE
Transactions on Pattern Analysis and Machine Intelligence 16(2): 150–162.

Microsoft (2009). Wmv hd content showcase, Microsoft Corporation .
URL: http://www.microsoft.com/windows/windowsmedia/musicandvideo/hdvideo/
contentshowcase.aspx

Mooser, J., You, S. & Neumann, U. (2007). Real-time object tracking for augmented
reality combining graph cuts and optical flow, International Symposium on Mixed and
Augmented Reality, Vol. 00, IEEE, IEEE Computer Society, pp. 1–8.

Mortensen, E. & Barrett, W. (1995). Intelligent scissors for image composition, 22nd Annual
Conference on Computer Graphics and Interactive Techniques, pp. 191–198.

nVidia (2009). Cuda zone, nVidia .
URL: http://www.nvidia.com/object/cuda_home.html

197Accelerating Live Graph-Cut-Based Object Tracking Using CUDA

Papadimitriou, C. & Steiglitz, K. (1998). Combinatorial Optimization: Algorithms and Complexity,
Courier Dover Publications.

Rother, C., Kolmogorov, V. & Blake, A. (2004). Grabcut: Interactive foreground extraction
using iterated graph cuts, ACM Transactions on Graphics 23: 309–314.

Shi, J. & Malik, J. (1997). Normalized cuts and image segmentation, IEEE Conference on
Computer Vision and Pattern Recognition, pp. 731–737.

Sinop, A. & Grady, L. (2006). Accurate banded graph cut segmentation of thin structures
using laplacian pyramids, International Conference on Medical Image Computing and
Computer-Assisted Intervention, Vol. 9, pp. 896–903.

Takaya, Y., Garrett, Z. & Saito, H. (2009). Player segmentation in sports scenes using graph
cuts with a playing field constraint, Meeting on Image Recognition and Understanding.

Ueda, E., Matsumoto, Y., Imai, M. & Ogasawara, T. (2003). A hand-pose estimation for
vision-based human interfaces, IEEE Transactions on Industrial Electronics 50(4): 676–
684.

Vineet, V. & Narayanan, P. J. (2008). Cuda cuts: Fast graph cuts on the gpu, IEEE Conference on
Computer Vision and Pattern Recognition, IEEE Computer Society, pp. 1–8.

198 Object Tracking

Part 2

Applications

Papadimitriou, C. & Steiglitz, K. (1998). Combinatorial Optimization: Algorithms and Complexity,
Courier Dover Publications.

Rother, C., Kolmogorov, V. & Blake, A. (2004). Grabcut: Interactive foreground extraction
using iterated graph cuts, ACM Transactions on Graphics 23: 309–314.

Shi, J. & Malik, J. (1997). Normalized cuts and image segmentation, IEEE Conference on
Computer Vision and Pattern Recognition, pp. 731–737.

Sinop, A. & Grady, L. (2006). Accurate banded graph cut segmentation of thin structures
using laplacian pyramids, International Conference on Medical Image Computing and
Computer-Assisted Intervention, Vol. 9, pp. 896–903.

Takaya, Y., Garrett, Z. & Saito, H. (2009). Player segmentation in sports scenes using graph
cuts with a playing field constraint, Meeting on Image Recognition and Understanding.

Ueda, E., Matsumoto, Y., Imai, M. & Ogasawara, T. (2003). A hand-pose estimation for
vision-based human interfaces, IEEE Transactions on Industrial Electronics 50(4): 676–
684.

Vineet, V. & Narayanan, P. J. (2008). Cuda cuts: Fast graph cuts on the gpu, IEEE Conference on
Computer Vision and Pattern Recognition, IEEE Computer Society, pp. 1–8.

198 Object Tracking

Part 2

Applications

Yun Zhai, Rogerio Feris, Arun Hampapur, Stephen Russo, Sharath Pankanti
Physical Security, IBM Corp.

United States

1. Introduction
Due to rapid development of video capturing and management technologies and decreasing
cost of the hardware infrastructure, digital cameras are nowadays widely deployed in cities,
industry campuses, public facilities, etc. In particular, a vast amount of cameras are installed
in urban environments to monitor traffic flows. One important video analytics task in
traffic monitoring is to capture and track moving objects, and archive their trajectories in the
database for future forensic activities, such as event search. Different from conventional event
capture technologies, which are mostly based on explicit object tracking, we propose a new
technique for capturing moving object using a specialized virtual tripwire.
Virtual boundaries (many times referred as tripwires) are defined as continuous lines or
curves drawn in the image space to capture directional crossings of target objects. Due to
their intuitive concept and reliable performance under controlled conditions, they are widely
used in many digital surveillance applications. In border security, tripwires are set-up along
the border line to detect illegal entries from outer perimeter. In urban surveillance, tripwires
are often used to achieve many goals, including vehicle/pedestrain counting, wrong-way
traffic detection, alerting with pre-defined object attributes, etc. In retail environments, store
managements usually obtain the display-effectiveness of a certain merchandize by analyzing
the triggering frequencies of the tripwire placed around that item. Conventional tripwire
techniques consist of three main steps:

• Object detection: during this process, the target object is spatially segmented in each input
image.

• Object tracking: once objects are localized in the frames, they are further correlated to each
other within the temporal domain to achieve the trajectories representing the spatial paths
of the objects.

• Tripwire crossing detecting: this is the process of determining if the object trajectory
intersects with the tripwire in the defined crossing direction(s).

Since reliable object detection and tracking are the corner stones of conventional tripwires,
its performance is extremely dependent upon the success of the first two steps. When
there is a dense traffic pattern in the scene, object detection and tracking generally fail, and
consequently, the tripwire crossing detection no longer provides accurate and meaningful
results.

Parsing Object Events in Heavy Urban Traffic

10

Yun Zhai, Rogerio Feris, Arun Hampapur, Stephen Russo, Sharath Pankanti
Physical Security, IBM Corp.

United States

1. Introduction
Due to rapid development of video capturing and management technologies and decreasing
cost of the hardware infrastructure, digital cameras are nowadays widely deployed in cities,
industry campuses, public facilities, etc. In particular, a vast amount of cameras are installed
in urban environments to monitor traffic flows. One important video analytics task in
traffic monitoring is to capture and track moving objects, and archive their trajectories in the
database for future forensic activities, such as event search. Different from conventional event
capture technologies, which are mostly based on explicit object tracking, we propose a new
technique for capturing moving object using a specialized virtual tripwire.
Virtual boundaries (many times referred as tripwires) are defined as continuous lines or
curves drawn in the image space to capture directional crossings of target objects. Due to
their intuitive concept and reliable performance under controlled conditions, they are widely
used in many digital surveillance applications. In border security, tripwires are set-up along
the border line to detect illegal entries from outer perimeter. In urban surveillance, tripwires
are often used to achieve many goals, including vehicle/pedestrain counting, wrong-way
traffic detection, alerting with pre-defined object attributes, etc. In retail environments, store
managements usually obtain the display-effectiveness of a certain merchandize by analyzing
the triggering frequencies of the tripwire placed around that item. Conventional tripwire
techniques consist of three main steps:

• Object detection: during this process, the target object is spatially segmented in each input
image.

• Object tracking: once objects are localized in the frames, they are further correlated to each
other within the temporal domain to achieve the trajectories representing the spatial paths
of the objects.

• Tripwire crossing detecting: this is the process of determining if the object trajectory
intersects with the tripwire in the defined crossing direction(s).

Since reliable object detection and tracking are the corner stones of conventional tripwires,
its performance is extremely dependent upon the success of the first two steps. When
there is a dense traffic pattern in the scene, object detection and tracking generally fail, and
consequently, the tripwire crossing detection no longer provides accurate and meaningful
results.

Parsing Object Events in Heavy Urban Traffic

10

1.1 Related work
Object detection and tracking are long studied problems in the field of computer vision.
In this section, we briefly review some of the well known techniques in these areas. One
popular type of object detection techniques is the background subtraction (BGS), where active
objects (foreground) are detected as the difference regions between the current image and
the background reference. Color and gradient distributions are often applied to model the
pixels. Some representative work in this area are Stauffer and Grimson (8), Tian et.al. (9) and
Cucchiara et.al. (2). Another common trend in object detection is to localize the target objects
in single images by applying pre-learned templates. The object templates are convolved with
the input image with scale and orientation variations. One of the most cited work in this
category is by Viola and Jones (12) in real-time face detection.
Once objects are localized in images, their correspondences in the temporal domain are
established by object tracking techniques. Tomasi and Kanada (10) proposed the KLT tracker
for point object tracking. Another popular interest-point tracking method, Scale-Invariant
Feature Transform (SIFT), is proposed by Lowe (6). Comaniciu et.al. (1) have proposed the
Mean-Shift tracking by utilizing the mode-seeking and kernel density estimation techniques.
A geometric shape based matching method is developed by Fieguth and Terzopoulos (3). A
survey on object tracking methods can be found at Yilmaz et.al. (13). Utilizing different object
tracking techniques, tripwire is widely applied in many commercial digital video surveillance
systems (5; 7; 11).

1.2 Proposed approach
As aforementioned, object detection and tracking usually fail in the dense traffic scenarios.
To address the problem of degraded tripwire performance in these situations, we propose
a new mechanism to approach the tripwire crossing detection. The proposed new type
of tripwire is referred as the “trackerless tripwire”, i.e., it does not rely on explicit object
tracking results. Different from conventional tripwires which have zero width, our proposed
tripwire contains an “envelope” that covers a spatial extend on both sides of the tripwire, and
crossing detection is carried out by analyzing the spatiotemporal and appearance properties
of the tripwire envelope. Two sets of ground patches, called inner patches and outer patches,
are automatically calibrated and generated along the envelope on both sides of the defined
tripwire. Each of the patches maintains a history of appearance and motion models. Patch
models are cross-checked to find matching candidates. The incorrect candidates are further
filtered out by applying a motion consistency test. A set of spatiotemporal rules are also
applied to eliminate potential false positive detections. The new proposed trakerless tripwire
has been deployed in scenarios with different traffic loads, and promising results have been
obtained for both low and high activity scenes.
The remainder of this paper is organized as follows: Section 2 presents the proposed
new tripwire, including tripwire construction, feature extraction and crossing detection;
Section 3 demonstrates the performance of the proposed method and its comparison against
conventional tracking-based tripwire method; finally, Section 4 concludes our work.

2. Trackerless tripwire crossing detection
Numerous object tracking techniques have been developed over the past decades. The
common goal of these techniques is to achieve accurate spatiotemporal segmentation of the
foreground at the object-level. In crowded videos, such segmentation is extremely challenging
and very difficult to accomplish. In the context of tripwire crossing detection, full-scale object
tracking across the entire image field-of-view (FOV) many times is an overkill for the problem.

202 Object Tracking

Inner Patches

Outer Patches

n

OO
PP ,,

1

m

II
PP ,,

1

r
. . .

. . .

Radius

Fig. 1. The proposed trakerless tripwire with inner and outer patches. An envelope is
generated along the defined tripwire, and the ground patches are equally sampled on the
envelope. The thick arrows represent the defined tripwire crossing direction.

Rather, localized analysis on the video content around the tripwire area is often more reliable
and efficient. In our method, we take this as our guiding direction and propose a new type of
tripwire detection method that does not reply on explicit object tracking output.

2.1 Ground patches
The proposed tripwire is defined as a set of connected line segments. To model the regions
around the tripwire, an envelope is created with a width of 2r, where r is a scale factor
representing the spatial extend of the tripwire region. To capture the local contents of the
tripwire envelope, two sets of circular ground patches are equally sampled on both sides

of the tripwire. They are denoted as the Inner Patches PI and Outer Patches PO, where

PI = {PI
1 , · · · , PI

m} and PO = {PO
1 , · · · , PO

n }. The directions “inner” and “outer” are defined
with respect to the order of the tripwire vertices. A graphical illustration is shown in Figure
1. Each ground patch Pi has a center ci = (xi , yi) and a unified radius r.
The centers of the ground patches lie on the edges of the tripwire envelope such that they
have the same distance to the tripwire line. In addition to the center and radius, each patch
Pi also has a directional vector wi pointing to the tripwire from the patch center. The purpose
of this vector is to assist in the crossing direction determination. Overall, a ground patch Pi is
represented as a triplet,

Pi = (ci, r, wi). (1)

An object crosses the tripwire in the positive direction if it moves from one of the inner patches
to one of the outer patches. Same concept applies to the negative crossing. In this paper,
the proposed tripwire crossing detection method is demonstrated in the context of positive
crossings.

203Parsing Object Events in Heavy Urban Traffic

1.1 Related work
Object detection and tracking are long studied problems in the field of computer vision.
In this section, we briefly review some of the well known techniques in these areas. One
popular type of object detection techniques is the background subtraction (BGS), where active
objects (foreground) are detected as the difference regions between the current image and
the background reference. Color and gradient distributions are often applied to model the
pixels. Some representative work in this area are Stauffer and Grimson (8), Tian et.al. (9) and
Cucchiara et.al. (2). Another common trend in object detection is to localize the target objects
in single images by applying pre-learned templates. The object templates are convolved with
the input image with scale and orientation variations. One of the most cited work in this
category is by Viola and Jones (12) in real-time face detection.
Once objects are localized in images, their correspondences in the temporal domain are
established by object tracking techniques. Tomasi and Kanada (10) proposed the KLT tracker
for point object tracking. Another popular interest-point tracking method, Scale-Invariant
Feature Transform (SIFT), is proposed by Lowe (6). Comaniciu et.al. (1) have proposed the
Mean-Shift tracking by utilizing the mode-seeking and kernel density estimation techniques.
A geometric shape based matching method is developed by Fieguth and Terzopoulos (3). A
survey on object tracking methods can be found at Yilmaz et.al. (13). Utilizing different object
tracking techniques, tripwire is widely applied in many commercial digital video surveillance
systems (5; 7; 11).

1.2 Proposed approach
As aforementioned, object detection and tracking usually fail in the dense traffic scenarios.
To address the problem of degraded tripwire performance in these situations, we propose
a new mechanism to approach the tripwire crossing detection. The proposed new type
of tripwire is referred as the “trackerless tripwire”, i.e., it does not rely on explicit object
tracking results. Different from conventional tripwires which have zero width, our proposed
tripwire contains an “envelope” that covers a spatial extend on both sides of the tripwire, and
crossing detection is carried out by analyzing the spatiotemporal and appearance properties
of the tripwire envelope. Two sets of ground patches, called inner patches and outer patches,
are automatically calibrated and generated along the envelope on both sides of the defined
tripwire. Each of the patches maintains a history of appearance and motion models. Patch
models are cross-checked to find matching candidates. The incorrect candidates are further
filtered out by applying a motion consistency test. A set of spatiotemporal rules are also
applied to eliminate potential false positive detections. The new proposed trakerless tripwire
has been deployed in scenarios with different traffic loads, and promising results have been
obtained for both low and high activity scenes.
The remainder of this paper is organized as follows: Section 2 presents the proposed
new tripwire, including tripwire construction, feature extraction and crossing detection;
Section 3 demonstrates the performance of the proposed method and its comparison against
conventional tracking-based tripwire method; finally, Section 4 concludes our work.

2. Trackerless tripwire crossing detection
Numerous object tracking techniques have been developed over the past decades. The
common goal of these techniques is to achieve accurate spatiotemporal segmentation of the
foreground at the object-level. In crowded videos, such segmentation is extremely challenging
and very difficult to accomplish. In the context of tripwire crossing detection, full-scale object
tracking across the entire image field-of-view (FOV) many times is an overkill for the problem.

202 Object Tracking

Inner Patches

Outer Patches

n

OO
PP ,,

1

m

II
PP ,,

1

r
. . .

. . .

Radius

Fig. 1. The proposed trakerless tripwire with inner and outer patches. An envelope is
generated along the defined tripwire, and the ground patches are equally sampled on the
envelope. The thick arrows represent the defined tripwire crossing direction.

Rather, localized analysis on the video content around the tripwire area is often more reliable
and efficient. In our method, we take this as our guiding direction and propose a new type of
tripwire detection method that does not reply on explicit object tracking output.

2.1 Ground patches
The proposed tripwire is defined as a set of connected line segments. To model the regions
around the tripwire, an envelope is created with a width of 2r, where r is a scale factor
representing the spatial extend of the tripwire region. To capture the local contents of the
tripwire envelope, two sets of circular ground patches are equally sampled on both sides

of the tripwire. They are denoted as the Inner Patches PI and Outer Patches PO, where

PI = {PI
1 , · · · , PI

m} and PO = {PO
1 , · · · , PO

n }. The directions “inner” and “outer” are defined
with respect to the order of the tripwire vertices. A graphical illustration is shown in Figure
1. Each ground patch Pi has a center ci = (xi , yi) and a unified radius r.
The centers of the ground patches lie on the edges of the tripwire envelope such that they
have the same distance to the tripwire line. In addition to the center and radius, each patch
Pi also has a directional vector wi pointing to the tripwire from the patch center. The purpose
of this vector is to assist in the crossing direction determination. Overall, a ground patch Pi is
represented as a triplet,

Pi = (ci, r, wi). (1)

An object crosses the tripwire in the positive direction if it moves from one of the inner patches
to one of the outer patches. Same concept applies to the negative crossing. In this paper,
the proposed tripwire crossing detection method is demonstrated in the context of positive
crossings.

203Parsing Object Events in Heavy Urban Traffic

2.2 Feature extraction
Both appearance and motion features are extracted for each ground patch. We use the
color histogram in the RGB space for the patch appearance model and the motion vector to
represent the moving direction of the object inside the patch. A ground patch Pi maintains a
history Hi of its appearances,

Hi = {hT0

i , · · · , hTt
i }, (2)

where hT is the color histogram of the target patch at time T and these histograms are recorded
in the chronological order, i.e., Tx < Ty if x < y. To avoid including the background
information (such as the road surface in a street scene) in the patch model, the model history
is updated only if when the patch is occupied by one or more foreground objects. This
is determined by analyzing the percentage of the foreground area inside the target patch
based on common motion detection techniques such as frame differencing or Multi-Gaussian
background subtraction (MG-BGS). If the foreground occupies a sufficient proportion of the
patch, the patch is declared to have a “foreground” status, and its current color histogram is
extracted for potential model update. In our implementation, we utilize the MG-BGS output
of (9) for the motion detection.
The patch history model is an on-line process. When a new color histogram hT+ is extracted at
time T+, it is compared to the latest model hTt in the history, if there is any. The distance
measure used in the model comparison is defined as the Bhattacharyya distance, where

D(h1, h2) = ∑all bins i

√
hi

1 × hi
2. If the distance between the new model and the last model in

the history is significant, then the new model is included in the model history. One exception
to this rule is when there is a period that the patch is classified as “background” between the
current time and the last time the model history was updated. In this situation, even if the new
model has small distance to the last model in the history, they may be caused by two different
objects due to the discontinuity in the patch status. Thus, the new patch model should also be
included in the history.
Once the color histogram feature is extracted at time T+ and successfully added to the model
history, the motion vector of the target patch is also estimated to determine the moving
direction of the object inside the patch. Simple approaches like the Sum of Squared Differences
(SSD) could be used to estimate the motion vectors. Let this vector be vT+ and coupled with
the color histogram hT+ . The overall feature representation of a patch Pi is,

Γi = {ΓT0

i , · · · , ΓTt
i }, (3)

where Γτ
i = (hτ

i , vτ
i) is the feature vector at time τ.

2.3 Tripwire crossing detection
To determine if the tripwire crossing occurs in the positive direction, patch feature matching is
performed by computing the similarity between the target outer patch Po at the current time
T+ and the inner patches Pi on the other side of the tripwire. In order to comply with the
crossing direction, the object in patch Po should possess a motion opposite to the direction
pointing to the tripwire from the patch center,

Condition Cd := vT+
o · wo < 0. (4)

If condition Cd is not satisfied, that means the object is moving in the opposite direction as the
tripwire crossing direction definition, and no match is performed for this patch.

204 Object Tracking

Fig. 2. Keyframes of example videos. (a) Sparse traffic scene; (b) Crowded activity scene. Red
overlaid regions in the image represent the areas occupied by foreground moving objects.

If condition Cd is satisfied, the current feature ΓT+
o is compared against with the history

features Γi. The feature matching is composed of two parts: (1) color similarity Sc and (2)
motion direction consistency Sm, where

Sm(τ) =
vT+

o · vτ
i

� vT+
o � × � vτ

i �
, (5)

and,

Sc(τ) =

{
0, if Sm(τ) ≤ 0,

1 − D(hT+
o , hτ

i), otherwise.
(6)

The overall patch-to-patch similarity S(Po, Pi) is then computed as a weighted sum of both
the similarity measures,

S(Po, Pi) = max
(

αcSc(τ) + αmSm(τ)
)

,∀τ < T+ − Tth. (7)

where αc and αm are the fusion weights of the appearance similarity and motion consistency,
respectively. Threshold Tth indicates the minimum possible temporal interval for an object to
travel from a patch on one side of the tripwire to another patch on the other side. Based on
the empirical analysis, we have found that the patch appearance is more distinctive than the
motion consistency cue. Thus, a higher weight is specified for the color similarity Sc. If the
patch similarity S is above the desired threshold, a tripwire crossing in the positive direction
is detected with τ contributing the maximum matching score.

3. Performance evaluation
To demonstrate the effectiveness of the proposed tracker-less tripwire, we have compared
the performances of the proposed method and a conventional tracker-based tripwire in two
cases: (1) sparse traffic scenes and (2) dense traffic scenes. For the conventional tripwire,
we utilize the tripwire feature provided by the IBM Smart Surveillance System (4). The core
components in this feature are (1) a background subtraction based object detection process,
(2) an appearance based object tracking method and (3) a conventional tripwire based on the
object tracking outputs. For the proposed trakerless tripwire, the same foreground modelling
technique is used to classify the status of the patches. In this section, the tripwire of the IBM
SSS solution is referred as “CFT”, and the proposed tripwire is called “NTT”.
The activity level of the scene is qualitatively defined. In sparse traffic scenes, the moving
objects are apart from each other, i.e., there is a minimal amount of occlusions in the scene. In
this case, object detection process is able to achieve clean object-level segments in the video,
and consequently, the object tracking result is clean and reliable. A keyframe of a sparse traffic

205Parsing Object Events in Heavy Urban Traffic

2.2 Feature extraction
Both appearance and motion features are extracted for each ground patch. We use the
color histogram in the RGB space for the patch appearance model and the motion vector to
represent the moving direction of the object inside the patch. A ground patch Pi maintains a
history Hi of its appearances,

Hi = {hT0

i , · · · , hTt
i }, (2)

where hT is the color histogram of the target patch at time T and these histograms are recorded
in the chronological order, i.e., Tx < Ty if x < y. To avoid including the background
information (such as the road surface in a street scene) in the patch model, the model history
is updated only if when the patch is occupied by one or more foreground objects. This
is determined by analyzing the percentage of the foreground area inside the target patch
based on common motion detection techniques such as frame differencing or Multi-Gaussian
background subtraction (MG-BGS). If the foreground occupies a sufficient proportion of the
patch, the patch is declared to have a “foreground” status, and its current color histogram is
extracted for potential model update. In our implementation, we utilize the MG-BGS output
of (9) for the motion detection.
The patch history model is an on-line process. When a new color histogram hT+ is extracted at
time T+, it is compared to the latest model hTt in the history, if there is any. The distance
measure used in the model comparison is defined as the Bhattacharyya distance, where

D(h1, h2) = ∑all bins i

√
hi

1 × hi
2. If the distance between the new model and the last model in

the history is significant, then the new model is included in the model history. One exception
to this rule is when there is a period that the patch is classified as “background” between the
current time and the last time the model history was updated. In this situation, even if the new
model has small distance to the last model in the history, they may be caused by two different
objects due to the discontinuity in the patch status. Thus, the new patch model should also be
included in the history.
Once the color histogram feature is extracted at time T+ and successfully added to the model
history, the motion vector of the target patch is also estimated to determine the moving
direction of the object inside the patch. Simple approaches like the Sum of Squared Differences
(SSD) could be used to estimate the motion vectors. Let this vector be vT+ and coupled with
the color histogram hT+ . The overall feature representation of a patch Pi is,

Γi = {ΓT0

i , · · · , ΓTt
i }, (3)

where Γτ
i = (hτ

i , vτ
i) is the feature vector at time τ.

2.3 Tripwire crossing detection
To determine if the tripwire crossing occurs in the positive direction, patch feature matching is
performed by computing the similarity between the target outer patch Po at the current time
T+ and the inner patches Pi on the other side of the tripwire. In order to comply with the
crossing direction, the object in patch Po should possess a motion opposite to the direction
pointing to the tripwire from the patch center,

Condition Cd := vT+
o · wo < 0. (4)

If condition Cd is not satisfied, that means the object is moving in the opposite direction as the
tripwire crossing direction definition, and no match is performed for this patch.

204 Object Tracking

Fig. 2. Keyframes of example videos. (a) Sparse traffic scene; (b) Crowded activity scene. Red
overlaid regions in the image represent the areas occupied by foreground moving objects.

If condition Cd is satisfied, the current feature ΓT+
o is compared against with the history

features Γi. The feature matching is composed of two parts: (1) color similarity Sc and (2)
motion direction consistency Sm, where

Sm(τ) =
vT+

o · vτ
i

� vT+
o � × � vτ

i �
, (5)

and,

Sc(τ) =

{
0, if Sm(τ) ≤ 0,

1 − D(hT+
o , hτ

i), otherwise.
(6)

The overall patch-to-patch similarity S(Po, Pi) is then computed as a weighted sum of both
the similarity measures,

S(Po, Pi) = max
(

αcSc(τ) + αmSm(τ)
)

,∀τ < T+ − Tth. (7)

where αc and αm are the fusion weights of the appearance similarity and motion consistency,
respectively. Threshold Tth indicates the minimum possible temporal interval for an object to
travel from a patch on one side of the tripwire to another patch on the other side. Based on
the empirical analysis, we have found that the patch appearance is more distinctive than the
motion consistency cue. Thus, a higher weight is specified for the color similarity Sc. If the
patch similarity S is above the desired threshold, a tripwire crossing in the positive direction
is detected with τ contributing the maximum matching score.

3. Performance evaluation
To demonstrate the effectiveness of the proposed tracker-less tripwire, we have compared
the performances of the proposed method and a conventional tracker-based tripwire in two
cases: (1) sparse traffic scenes and (2) dense traffic scenes. For the conventional tripwire,
we utilize the tripwire feature provided by the IBM Smart Surveillance System (4). The core
components in this feature are (1) a background subtraction based object detection process,
(2) an appearance based object tracking method and (3) a conventional tripwire based on the
object tracking outputs. For the proposed trakerless tripwire, the same foreground modelling
technique is used to classify the status of the patches. In this section, the tripwire of the IBM
SSS solution is referred as “CFT”, and the proposed tripwire is called “NTT”.
The activity level of the scene is qualitatively defined. In sparse traffic scenes, the moving
objects are apart from each other, i.e., there is a minimal amount of occlusions in the scene. In
this case, object detection process is able to achieve clean object-level segments in the video,
and consequently, the object tracking result is clean and reliable. A keyframe of a sparse traffic

205Parsing Object Events in Heavy Urban Traffic

Frame Rate

(FPS) Detections True Positives Detections True Positives

30 28 28 31 26

15 21 21 31 26

10 29 29 30 25

5 23 23 30 25

3 21 21 29 25

CFT NTT

Fig. 3. Sparse Traffic: Accuracy summary of the trackerless tripwire (NTT) and the
conventional tripwire (CFT).

Accuracy Comparison - Sparse Traffic

0.4

0.6

0.8

1.0

30 15 10 5 3
Frame Rate (FPS)

A
c
c
u

ra
c
y
 (

R
e
c
a
ll
)

CFT

NTT

Fig. 4. Sparse Traffic: Accuracy comparison between the trackerless tripwire (NTT) and the
conventional tripwire (CFT).

video is shown in Figure 2.a. On the other hand, high activity scenes are those that contain
a significant amount of occlusions and/or the objects are close to each other, such that object
detection can only produce a group-level segmentation. Therefore, it is very challenging to the
object tracking module to generate meaningful trajectories that could be used by the tripwire
detection module. A keyframe of one crowded scene is shown in Figure 2.b.

3.1 Performance in sparse trafc situations
The purpose of this test is to determine whether the proposed trackerless tripwire detection
method could maintain the same performance as the conventional methods, as the object
tracking in low activity scenes are reliable. The goal of the test is to accurately count the objects
that cross the tripwire in the defined direction. Our testing video is obtained from a street
scene in an urban environment. In this video1, there are totally 28 vehicles in the ground truth,
including sedans, SUVs, buses, etc. They are all moving in the same direction. Furthermore,
since there is no traffic light, the vehicles are continuously moving forward without any stop.
Two tripwires are deployed at the same location to capture the number of passing vehicles.
One is the CFT and the other one is NTT. We used the standard recall measure for the accuracy
analysis.

Accuracy =
Num. of True Positives

Num. of Ground Truth
. (8)

We have also generated a set of videos with different frame rates using the same testing video.
The purpose of this is to understand the robustness of the approaches against frame-dropping
defects in real situations. The testing frame-rates are 30 frames-per-second (FPS), 15, 10, 5 and
3 FPS.
Detailed tripwire detection results are presented in Figure 3. This table lists the total detections
and the true positive samples produced by CFT and NTT. Accuracy comparison between these

1 Due to privacy issue, the images of the testing data used in this paper cannot be disclosed for public
use.

206 Object Tracking

Frame Rate

(FPS) Detections True Positives Detections True Positives

30 35 26 80 53

15 27 24 80 54

10 24 20 73 51

5 11 10 71 49

3 2 2 46 33

CFT NTT

Fig. 5. High Activity: Accuracy summary of the trackerless tripwire (NTT) and the
conventional tripwire (CFT).

Accuracy Comparison - Crowded Scene

0

0.2

0.4

0.6

0.8

30 15 10 5 3

Frame Rate (FPS)

A
c

c
u

ra
c

y
 (

R
e

c
a

ll
)

CFT

NTT

Fig. 6. High Activity: Accuracy comparison between the trackerless tripwire (NTT) and the
conventional tripwire (CFT).

two methods is illustrated in Figure 4. Based on the results, the mean accuracies of the CFT
and NTT methods are 0.85 and 0.91, respectively. From the frame-rate comparison graph,
NTT performs in a more stable manner. This is because that as the frame-rate drops, object
tracking quality drops as well.

3.2 Performance in crowded scenes
The second test is to compare the performances of CFT and NTT in a high activity
environment. In high activity scenarios, object detection and tracking often do not provide
meaningful object-level spatiotemporal segmentation. Therefore, conventional tracker-based
tripwire crossings cannot be detected in this case. In this test, we apply both CFT and NTT
on a video recorded at a heavy traffic street. There are totally 107 vehicles in the video,
and all traffic are going in the same direction. In addition to the high density of the traffic,
there is a traffic light in the scene so that cars are periodically stopped and piled up. That
is extremely challenging for the object tracking module. On the other hand, our proposed
tripwire does not rely on the tracking results. It analyzes the appearance and motion patterns
just around the target tripwire region. That way, many of the irrelevant information is filtered
out automatically, and cleaner detection results can be obtained. Figure 5 shows the detailed
tripwire detection results of CFT and NTT, and their accuracy measure comparison is shown
in Figure 6.
The performance of the conventional tripwire CFT is merely acceptable to the end users (0.15
in average). The superior performance of the proposed trackerless tripwire is apparent from
the performance summary (average 0.45 for NTT). For all frame-rates, NTT over-performed
CFT by detecting 25% more tripwire crossing events.

3.3 Failing case analysis
From the performance results presented in Figure 5, a high percentage of false positives is
observed for the trackerless tripwire detection method. There are several reasons associate
with this. The main reason is the unified patch size. This parameter is fixed in the detection

207Parsing Object Events in Heavy Urban Traffic

Frame Rate

(FPS) Detections True Positives Detections True Positives

30 28 28 31 26

15 21 21 31 26

10 29 29 30 25

5 23 23 30 25

3 21 21 29 25

CFT NTT

Fig. 3. Sparse Traffic: Accuracy summary of the trackerless tripwire (NTT) and the
conventional tripwire (CFT).

Accuracy Comparison - Sparse Traffic

0.4

0.6

0.8

1.0

30 15 10 5 3
Frame Rate (FPS)

A
c
c
u

ra
c
y
 (

R
e
c
a
ll
)

CFT

NTT

Fig. 4. Sparse Traffic: Accuracy comparison between the trackerless tripwire (NTT) and the
conventional tripwire (CFT).

video is shown in Figure 2.a. On the other hand, high activity scenes are those that contain
a significant amount of occlusions and/or the objects are close to each other, such that object
detection can only produce a group-level segmentation. Therefore, it is very challenging to the
object tracking module to generate meaningful trajectories that could be used by the tripwire
detection module. A keyframe of one crowded scene is shown in Figure 2.b.

3.1 Performance in sparse trafc situations
The purpose of this test is to determine whether the proposed trackerless tripwire detection
method could maintain the same performance as the conventional methods, as the object
tracking in low activity scenes are reliable. The goal of the test is to accurately count the objects
that cross the tripwire in the defined direction. Our testing video is obtained from a street
scene in an urban environment. In this video1, there are totally 28 vehicles in the ground truth,
including sedans, SUVs, buses, etc. They are all moving in the same direction. Furthermore,
since there is no traffic light, the vehicles are continuously moving forward without any stop.
Two tripwires are deployed at the same location to capture the number of passing vehicles.
One is the CFT and the other one is NTT. We used the standard recall measure for the accuracy
analysis.

Accuracy =
Num. of True Positives

Num. of Ground Truth
. (8)

We have also generated a set of videos with different frame rates using the same testing video.
The purpose of this is to understand the robustness of the approaches against frame-dropping
defects in real situations. The testing frame-rates are 30 frames-per-second (FPS), 15, 10, 5 and
3 FPS.
Detailed tripwire detection results are presented in Figure 3. This table lists the total detections
and the true positive samples produced by CFT and NTT. Accuracy comparison between these

1 Due to privacy issue, the images of the testing data used in this paper cannot be disclosed for public
use.

206 Object Tracking

Frame Rate

(FPS) Detections True Positives Detections True Positives

30 35 26 80 53

15 27 24 80 54

10 24 20 73 51

5 11 10 71 49

3 2 2 46 33

CFT NTT

Fig. 5. High Activity: Accuracy summary of the trackerless tripwire (NTT) and the
conventional tripwire (CFT).

Accuracy Comparison - Crowded Scene

0

0.2

0.4

0.6

0.8

30 15 10 5 3

Frame Rate (FPS)

A
c

c
u

ra
c

y
 (

R
e

c
a

ll
)

CFT

NTT

Fig. 6. High Activity: Accuracy comparison between the trackerless tripwire (NTT) and the
conventional tripwire (CFT).

two methods is illustrated in Figure 4. Based on the results, the mean accuracies of the CFT
and NTT methods are 0.85 and 0.91, respectively. From the frame-rate comparison graph,
NTT performs in a more stable manner. This is because that as the frame-rate drops, object
tracking quality drops as well.

3.2 Performance in crowded scenes
The second test is to compare the performances of CFT and NTT in a high activity
environment. In high activity scenarios, object detection and tracking often do not provide
meaningful object-level spatiotemporal segmentation. Therefore, conventional tracker-based
tripwire crossings cannot be detected in this case. In this test, we apply both CFT and NTT
on a video recorded at a heavy traffic street. There are totally 107 vehicles in the video,
and all traffic are going in the same direction. In addition to the high density of the traffic,
there is a traffic light in the scene so that cars are periodically stopped and piled up. That
is extremely challenging for the object tracking module. On the other hand, our proposed
tripwire does not rely on the tracking results. It analyzes the appearance and motion patterns
just around the target tripwire region. That way, many of the irrelevant information is filtered
out automatically, and cleaner detection results can be obtained. Figure 5 shows the detailed
tripwire detection results of CFT and NTT, and their accuracy measure comparison is shown
in Figure 6.
The performance of the conventional tripwire CFT is merely acceptable to the end users (0.15
in average). The superior performance of the proposed trackerless tripwire is apparent from
the performance summary (average 0.45 for NTT). For all frame-rates, NTT over-performed
CFT by detecting 25% more tripwire crossing events.

3.3 Failing case analysis
From the performance results presented in Figure 5, a high percentage of false positives is
observed for the trackerless tripwire detection method. There are several reasons associate
with this. The main reason is the unified patch size. This parameter is fixed in the detection

207Parsing Object Events in Heavy Urban Traffic

process. If a single object has a size that is much greater than this parameter (e.g., a big
bus), what the patch captures is only a small portion of the object. Thus, multiple events
are detected for different parts of the same object based on the current feature extraction and
matching formulation. One way to improve this is to have a grouping method to intelligently
cluster the events that correspond to the same object into a single trigger. Patch motions can be
applied to discover the relative movement of the detected objects. Events could be clustered
if they possess steady spatial layout.
Another cause for the false positives is the background modelling error. In our testing video,
there is a traffic light, and cars are often stopped and be static for awhile. Due to background
updates, the object pixels actually became the background model. Therefore, after the vehicles
leave the scene, the true background, road surface, is now classified as foreground by the
BGS process. Since road surface has strong similarity in color, they are often mis-classified as
objects that cross the tripwire. This could be improved by incorporating a more sophisticated
BGS process.

4. Conclusions
In this paper, we have proposed a new tripwire detection method. The proposed framework
is targeting the challenging problem of reliably detecting tripwire crossings in situations
where explicit object tracking fails (e.g., in crowded scenes). Two sets of ground patches
are generated along the tripwire to represent the content of the tripwire’s proximity. Both
appearance and motion information are incorporated in the feature models of the patches. By
analyzing the similarities between the patches on the opposite sides of the tripwire, a strong
matching candidate can be found to indicate the crossing event. The proposed new tripwire
has been deployed in both low and high activity scenes, and very promising results have been
obtained to demonstrate its effectiveness.

5. References
[1] D. Comaniciu, V. Ramesh and P. Meer, “Real-Time Tracking of Non-Rigid Objects Using

Mean-Shift”, IEEE Conf. on Computer Vision and Pattern Recognition, 2000.
[2] R. Cucchiara, C. Grana, M. Piccardi, and A. Prati, “Detecting Moving Objects, Ghosts,

and Shadows in Video Streams”, IEEE T-PAMI, 25:(10), 2003.
[3] P. Fieguth and D. Terzopoulos, “Color-Based Tracking of Heads and Other Mobile

Objects at Video Frame Rates”. IEEE Int’l Conf. on CVPR, 1997.
[4] A. Hampapur et.al.,, “Multi-Scale Tracking for Smart Video Surveillance”, IEEE T-SP,

Vol.22, No.2, 2005.
[5] IntelliVision, http://www.intelli-vision.com/.
[6] D. Lowe, “Distinctive Image Features from Scale-Invariant Keypoints”, IJCV, 2004.
[7] ObjectVideo VEW, http://www.objectvideo.com/products/ vew/capabilities/.
[8] C. Stauffer and W. Grimson, “Learning Patterns of Activity Using Real-Time Tracking”,

IEEE T-PAMI, 1999.
[9] Y-L. Tian, M. Lu and A. Hampapur, “Robust and Efficient Foreground Analysis for

Real-time Video Surveillance”, IEEE Int’l Conf. on CVPR, 2005.
[10] C. Tomasi and T. Kanade, “Detection and Tracking of Point Features”. CMU Tech Report

CMU-CS-91-132, 1991.
[11] Verint, http://www.verint.com/video_solutions/.
[12] P. Viola and M. Jones, “Robust Real-time Object Detection”, IJCV, 2001.
[13] A. Yilmaz, O. Javed and M. Shah, “Object Tracking: A Survey”, Computing Surveys of

ACM, Vol.38, No.4, 2006.

208 Object Tracking

Pier Luigi Mazzeo and Paolo Spagnolo
Istituto sui Sistemi Intelligenti per l’automazione (CNR)

Italy

1. Introduction

The specific problem we address in this chapter is object tracking over wide-areas such as

an airport, the downtown of a large city or any large public area. Surveillance over these
areas consists of the search for suspicious behavior such as persons loitering, unauthorized
access, or persons attempting to enter a restricted zone. Until now, these surveillance tasks
have been executed by human being who continually observe computer monitors to detect
unauthorized activity over many cameras.It is known that the attention level drastically
sinks after few hours. It is highly probable that suspicious activity would be unregistered
by a human operator. A computer vision system, can take the place of the operator and
monitor both immediate unauthorized behavior and long-term suspicious behavior. The
"intelligent" system would, then, alert a responsible person for a deeper investigation. In
most cases, it is not possible for a single camera to observe the complete area of interest
because sensor resolution is finite and structures in the scene limit the visible areas. In the
realistic application, surveillance systems which cover large areas are composed by multiple
cameras with non overlapping Field of Views (FOVs). Multiple camera tracking is important
to establish correspondence among detected objects across different cameras. Given a set of
tracks in each camera we want to find which of these tracks belong to the same object in
the real world. Note that tracking across multiple cameras is a challenging task because the

observations are often widely separated in time and space, especially when viewed from non
overlapped FOVs. Simple prediction schemes cannot be used to estimate the object position.
It could be observed that object’s appearance in one camera view might be very different from
its appearance in another camera view due to the difference in illumination, pose and camera
properties. It is preferable that any multi-view tracking approach does not require camera
calibration or complete site modelling. In fact, the benefit of calibrated cameras or site models
is unavailable in most situations. Maintaining calibration between a large sensors network is
a discouraging task, it is very onerous recalibrate any sensor when it (sensor) slight changes
its position.
This chapter presents an algorithm that deals with all described constraints and tracks objects
across multiple un-calibrated cameras with non-overlapping FOVs. We investigate different
techniques to evaluate intra-camera and inter-camera tracking algorithm based on object
appearances. Object appearance can be modelled by its color or brightness, and it is a function
of the scene illumination, object geometry, object surface material properties and camera

Object Tracking in Multiple Cameras
with Disjoint Views

11

process. If a single object has a size that is much greater than this parameter (e.g., a big
bus), what the patch captures is only a small portion of the object. Thus, multiple events
are detected for different parts of the same object based on the current feature extraction and
matching formulation. One way to improve this is to have a grouping method to intelligently
cluster the events that correspond to the same object into a single trigger. Patch motions can be
applied to discover the relative movement of the detected objects. Events could be clustered
if they possess steady spatial layout.
Another cause for the false positives is the background modelling error. In our testing video,
there is a traffic light, and cars are often stopped and be static for awhile. Due to background
updates, the object pixels actually became the background model. Therefore, after the vehicles
leave the scene, the true background, road surface, is now classified as foreground by the
BGS process. Since road surface has strong similarity in color, they are often mis-classified as
objects that cross the tripwire. This could be improved by incorporating a more sophisticated
BGS process.

4. Conclusions
In this paper, we have proposed a new tripwire detection method. The proposed framework
is targeting the challenging problem of reliably detecting tripwire crossings in situations
where explicit object tracking fails (e.g., in crowded scenes). Two sets of ground patches
are generated along the tripwire to represent the content of the tripwire’s proximity. Both
appearance and motion information are incorporated in the feature models of the patches. By
analyzing the similarities between the patches on the opposite sides of the tripwire, a strong
matching candidate can be found to indicate the crossing event. The proposed new tripwire
has been deployed in both low and high activity scenes, and very promising results have been
obtained to demonstrate its effectiveness.

5. References
[1] D. Comaniciu, V. Ramesh and P. Meer, “Real-Time Tracking of Non-Rigid Objects Using

Mean-Shift”, IEEE Conf. on Computer Vision and Pattern Recognition, 2000.
[2] R. Cucchiara, C. Grana, M. Piccardi, and A. Prati, “Detecting Moving Objects, Ghosts,

and Shadows in Video Streams”, IEEE T-PAMI, 25:(10), 2003.
[3] P. Fieguth and D. Terzopoulos, “Color-Based Tracking of Heads and Other Mobile

Objects at Video Frame Rates”. IEEE Int’l Conf. on CVPR, 1997.
[4] A. Hampapur et.al.,, “Multi-Scale Tracking for Smart Video Surveillance”, IEEE T-SP,

Vol.22, No.2, 2005.
[5] IntelliVision, http://www.intelli-vision.com/.
[6] D. Lowe, “Distinctive Image Features from Scale-Invariant Keypoints”, IJCV, 2004.
[7] ObjectVideo VEW, http://www.objectvideo.com/products/ vew/capabilities/.
[8] C. Stauffer and W. Grimson, “Learning Patterns of Activity Using Real-Time Tracking”,

IEEE T-PAMI, 1999.
[9] Y-L. Tian, M. Lu and A. Hampapur, “Robust and Efficient Foreground Analysis for

Real-time Video Surveillance”, IEEE Int’l Conf. on CVPR, 2005.
[10] C. Tomasi and T. Kanade, “Detection and Tracking of Point Features”. CMU Tech Report

CMU-CS-91-132, 1991.
[11] Verint, http://www.verint.com/video_solutions/.
[12] P. Viola and M. Jones, “Robust Real-time Object Detection”, IJCV, 2001.
[13] A. Yilmaz, O. Javed and M. Shah, “Object Tracking: A Survey”, Computing Surveys of

ACM, Vol.38, No.4, 2006.

208 Object Tracking

Pier Luigi Mazzeo and Paolo Spagnolo
Istituto sui Sistemi Intelligenti per l’automazione (CNR)

Italy

1. Introduction

The specific problem we address in this chapter is object tracking over wide-areas such as

an airport, the downtown of a large city or any large public area. Surveillance over these
areas consists of the search for suspicious behavior such as persons loitering, unauthorized
access, or persons attempting to enter a restricted zone. Until now, these surveillance tasks
have been executed by human being who continually observe computer monitors to detect
unauthorized activity over many cameras.It is known that the attention level drastically
sinks after few hours. It is highly probable that suspicious activity would be unregistered
by a human operator. A computer vision system, can take the place of the operator and
monitor both immediate unauthorized behavior and long-term suspicious behavior. The
"intelligent" system would, then, alert a responsible person for a deeper investigation. In
most cases, it is not possible for a single camera to observe the complete area of interest
because sensor resolution is finite and structures in the scene limit the visible areas. In the
realistic application, surveillance systems which cover large areas are composed by multiple
cameras with non overlapping Field of Views (FOVs). Multiple camera tracking is important
to establish correspondence among detected objects across different cameras. Given a set of
tracks in each camera we want to find which of these tracks belong to the same object in
the real world. Note that tracking across multiple cameras is a challenging task because the

observations are often widely separated in time and space, especially when viewed from non
overlapped FOVs. Simple prediction schemes cannot be used to estimate the object position.
It could be observed that object’s appearance in one camera view might be very different from
its appearance in another camera view due to the difference in illumination, pose and camera
properties. It is preferable that any multi-view tracking approach does not require camera
calibration or complete site modelling. In fact, the benefit of calibrated cameras or site models
is unavailable in most situations. Maintaining calibration between a large sensors network is
a discouraging task, it is very onerous recalibrate any sensor when it (sensor) slight changes
its position.
This chapter presents an algorithm that deals with all described constraints and tracks objects
across multiple un-calibrated cameras with non-overlapping FOVs. We investigate different
techniques to evaluate intra-camera and inter-camera tracking algorithm based on object
appearances. Object appearance can be modelled by its color or brightness, and it is a function
of the scene illumination, object geometry, object surface material properties and camera

Object Tracking in Multiple Cameras
with Disjoint Views

11

parameters. Only the object surface, among these variables, remains constant whereas an
object moves across cameras.
We compare different methods to evaluate the color Brightness Transfer Function (BTF)
between non overlapping cameras. These approaches are based on the color histogram
mapped among pairs of images of the same person in different FOVs. It is important to point
up that our proposed inter-camera appearance models for tracking do not assume:

• Explicit camera calibration,

• A site model,

• Presence of a single ground plane across cameras,

• A particular non-overlapping camera topology,

• Constant illumination,

• Constant camera parameters, for example, focal length or exposure.

It is, definitively, a flexible calibration-free model.

1.1 Related work
Most of the approaches presented in literature suppose the use of calibrated cameras and the
availability of the site model. In (Javed et al., 2008) the conformity in the traversed paths of
people and car is used to establish correspondence among cameras. The algorithm learns this
conformity and hence the inter-camera relationships in the form of multivariate probability
density of spacetime variables (entry and exit locations, velocities, and transition times)
using kernel density estimation. To handle the appearance change of an object as it moves
from one camera to another, the authors demonstrate that all brightness transfer functions,
which map one camera in an another, lie in a low dimensional subspace. This subspace
is learned by using probabilistic principal component analysis and used for appearance

mapping. In (Du & Piater, 2006) particle filters and belief propagation are combined in a
unified framework. In each view, a target is tracked by a dedicated particle-filter-based
local tracker. The trackers in different views collaborate via belief propagation so that a
local tracker operating in one view is able to take advantage of additional information from
other views. In (Du & Piater, 2007) a target is tracked not only in each camera but also
in the ground plane by individual particle filters. These particle filters collaborate in two
different ways. First, the particle filters in each camera pass messages to those in the ground
plane where the multi-camera information is integrated by intersecting the target principal
axes. This largely relaxes the dependence on precise foot positions when mapping targets
from images to the ground plane using homographies. Secondly, the fusion results in the
ground plane are then incorporated by each camera as boosted proposal functions. A mixture
proposal function is composed for each tracker in a camera by combining an independent
transition kernel and the boosted proposal function. Kalman filters are used in (Chilgunde et
al., 2004) to robustly track each target shape and motion in each camera view and predict
the target track in the blind region between cameras. For multi-camera correspondence
matching, the Gaussian distributions of the tracking parameters across cameras for the target

motion and position in the ground plane view are computed. Targets matching across camera
views uses a graph based track initialization scheme, which accumulates information from
occurrences of target in several consecutive video frames. Geometric and intensity features
are used in (Cai & Aggarwal, 1999) to match objects for tracking in a multiple calibrated

210 Object Tracking

camera system for surveillance. These features are modelled as multivariate Gaussian, and
Mahalanobis distance measure is used for matching. A method to match object appearances
over non-overlapping cameras is presented in (Porikli, 2003).In his approach, a brightness
transfer function (BTF) is computed for every pair of cameras. Once such mapping function is
known, the correspondence problem is reduced to the matching of transformed histograms
or appearance models. However, this mapping, i.e., the BTF varies from frame to frame
depending on a large number of parameters which include illumination, scene geometry,
exposure time, focal length and aperture size of each camera. Thus, a single pre-computed
BTF cannot usually be used to match objects for moderately long sequences. An unsupervised
approach to learn edge measures for appearance matching between non-overlapping views is
presented by (Shan et al., 2005). The probability of two observations from two cameras being
generated by the same or different object is computed to perform the matching. The main
constraint of this approach is that the edge images of vehicles have to be registered together.
Note that this requirement for registering object images could not be applicable for non rigid
objects like pedestrians. A Cumulative Brightness Transfer Function (CBTF) is proposed by

(Prosser et al., 2008) for mapping color between cameras located at different physical sites,
which makes use available color information from a very sparse training set. A bi-directional
mapping approach is used to obtain an accurate similarity measure between pairs of candidate
objects. An illumination-tolerant appearance representation, based on online k-means color
clustering algorithm is introduced in (Madden et al., 2007), which is capable of coping with the
typical illumination changes occurring in surveillance scenarios. A similarity measurement is
also introduced to compare the appearance representation of any two arbitrary individuals. In
(Jeong & Jaynes, 2008) the distortion function is approximated as general affine transformation
and the object appearance is represented as mixture of Gaussians. Appearance models are
put in correspondence by searching a bijection function that maximizes a metric for model
dissimilarity.
A common characteristic of the above related works is that the knowledge of model sites
and particular camera positions in various scenarios allow the usage of geometrical and
temporal constraints on the entry/exit image areas. In this way the appearance matching
among different cameras is carried out on a sets of individuals that are candidate by their
positions to be observed by distributed cameras.

2.Wording of disjoint views multi-camera tracking

Let us suppose that we have a system composed by n cameras C1, C2, ..., Cn with
non-overlapping views. Let us assume that q objects P1, P2, ..., Pq are presented in the scene
(the number of the objects in the scene is unknown). Each object is viewed from different
cameras at different time instants. Let us call Oj = {Oj,1, Oj,2, ..., Oj,mj

} the set of mj
observations that were viewed by the camera Cj. Each observation Oj,k with k = 1..mj is
generated by a moving object in the FOV of camera Cj. These observations consist of two part:
object appearance Oj,k(a) and space-time constraints of the object Oj,k(st) (position, velocity,
time, and so on). Let us assume, furthermore, that both Oj,k(a) and Oj,k(st) are independent of
each other. Multi-camera tracking problem is centered on finding which of the observations
in the system of cameras belong to the same object.

211Object Tracking in Multiple Cameras with Disjoint Views

parameters. Only the object surface, among these variables, remains constant whereas an
object moves across cameras.
We compare different methods to evaluate the color Brightness Transfer Function (BTF)
between non overlapping cameras. These approaches are based on the color histogram
mapped among pairs of images of the same person in different FOVs. It is important to point
up that our proposed inter-camera appearance models for tracking do not assume:

• Explicit camera calibration,

• A site model,

• Presence of a single ground plane across cameras,

• A particular non-overlapping camera topology,

• Constant illumination,

• Constant camera parameters, for example, focal length or exposure.

It is, definitively, a flexible calibration-free model.

1.1 Related work
Most of the approaches presented in literature suppose the use of calibrated cameras and the
availability of the site model. In (Javed et al., 2008) the conformity in the traversed paths of
people and car is used to establish correspondence among cameras. The algorithm learns this
conformity and hence the inter-camera relationships in the form of multivariate probability
density of spacetime variables (entry and exit locations, velocities, and transition times)
using kernel density estimation. To handle the appearance change of an object as it moves
from one camera to another, the authors demonstrate that all brightness transfer functions,
which map one camera in an another, lie in a low dimensional subspace. This subspace
is learned by using probabilistic principal component analysis and used for appearance

mapping. In (Du & Piater, 2006) particle filters and belief propagation are combined in a
unified framework. In each view, a target is tracked by a dedicated particle-filter-based
local tracker. The trackers in different views collaborate via belief propagation so that a
local tracker operating in one view is able to take advantage of additional information from
other views. In (Du & Piater, 2007) a target is tracked not only in each camera but also
in the ground plane by individual particle filters. These particle filters collaborate in two
different ways. First, the particle filters in each camera pass messages to those in the ground
plane where the multi-camera information is integrated by intersecting the target principal
axes. This largely relaxes the dependence on precise foot positions when mapping targets
from images to the ground plane using homographies. Secondly, the fusion results in the
ground plane are then incorporated by each camera as boosted proposal functions. A mixture
proposal function is composed for each tracker in a camera by combining an independent
transition kernel and the boosted proposal function. Kalman filters are used in (Chilgunde et
al., 2004) to robustly track each target shape and motion in each camera view and predict
the target track in the blind region between cameras. For multi-camera correspondence
matching, the Gaussian distributions of the tracking parameters across cameras for the target

motion and position in the ground plane view are computed. Targets matching across camera
views uses a graph based track initialization scheme, which accumulates information from
occurrences of target in several consecutive video frames. Geometric and intensity features
are used in (Cai & Aggarwal, 1999) to match objects for tracking in a multiple calibrated

210 Object Tracking

camera system for surveillance. These features are modelled as multivariate Gaussian, and
Mahalanobis distance measure is used for matching. A method to match object appearances
over non-overlapping cameras is presented in (Porikli, 2003).In his approach, a brightness
transfer function (BTF) is computed for every pair of cameras. Once such mapping function is
known, the correspondence problem is reduced to the matching of transformed histograms
or appearance models. However, this mapping, i.e., the BTF varies from frame to frame
depending on a large number of parameters which include illumination, scene geometry,
exposure time, focal length and aperture size of each camera. Thus, a single pre-computed
BTF cannot usually be used to match objects for moderately long sequences. An unsupervised
approach to learn edge measures for appearance matching between non-overlapping views is
presented by (Shan et al., 2005). The probability of two observations from two cameras being
generated by the same or different object is computed to perform the matching. The main
constraint of this approach is that the edge images of vehicles have to be registered together.
Note that this requirement for registering object images could not be applicable for non rigid
objects like pedestrians. A Cumulative Brightness Transfer Function (CBTF) is proposed by

(Prosser et al., 2008) for mapping color between cameras located at different physical sites,
which makes use available color information from a very sparse training set. A bi-directional
mapping approach is used to obtain an accurate similarity measure between pairs of candidate
objects. An illumination-tolerant appearance representation, based on online k-means color
clustering algorithm is introduced in (Madden et al., 2007), which is capable of coping with the
typical illumination changes occurring in surveillance scenarios. A similarity measurement is
also introduced to compare the appearance representation of any two arbitrary individuals. In
(Jeong & Jaynes, 2008) the distortion function is approximated as general affine transformation
and the object appearance is represented as mixture of Gaussians. Appearance models are
put in correspondence by searching a bijection function that maximizes a metric for model
dissimilarity.
A common characteristic of the above related works is that the knowledge of model sites
and particular camera positions in various scenarios allow the usage of geometrical and
temporal constraints on the entry/exit image areas. In this way the appearance matching
among different cameras is carried out on a sets of individuals that are candidate by their
positions to be observed by distributed cameras.

2.Wording of disjoint views multi-camera tracking

Let us suppose that we have a system composed by n cameras C1, C2, ..., Cn with
non-overlapping views. Let us assume that q objects P1, P2, ..., Pq are presented in the scene
(the number of the objects in the scene is unknown). Each object is viewed from different
cameras at different time instants. Let us call Oj = {Oj,1, Oj,2, ..., Oj,mj

} the set of mj
observations that were viewed by the camera Cj. Each observation Oj,k with k = 1..mj is
generated by a moving object in the FOV of camera Cj. These observations consist of two part:
object appearance Oj,k(a) and space-time constraints of the object Oj,k(st) (position, velocity,
time, and so on). Let us assume, furthermore, that both Oj,k(a) and Oj,k(st) are independent of
each other. Multi-camera tracking problem is centered on finding which of the observations
in the system of cameras belong to the same object.

211Object Tracking in Multiple Cameras with Disjoint Views

Fig. 1. The cameras configuration inside our office building

Seeing that we have assumed that the single camera tracking problem is solved, the
multi-camera tracking task is to link the observations of an object exiting one camera to its
observations entering another camera, as the object moves among different camera FOVs.
For a formal problem definition let consider a correspondence among two consecutive
observations, i.e., exiting from one camera and entering into another,Oi,k and Oj,l will be

denoted as λi,k
j,l . Let us consider ψ(λi,k

j,l) a random variable which is true if and only if λi,k
j,l

is a valid hypothesis, i.e. Oi,k and Oj,l are two observations of the same object. We want to

find a set of correspondences Λ = {λi,k
j,l , ...} where

λi,k
j,l ∈ Λ ⇐⇒ β(λi,k

j,l) = true

Let Σ be the solution space of the multi-camera tracking problem. If Λ is a candidate solution

in Σ, then for all {λi,k
j,l , λ

p,r
q,s} ⊆ Λ where (j, l) �= (i, k) ∧ (q, s) �= (p, r). This is because we

established that each observation of an object is preceded or succeeded by a maximum of one
observation of the same object. Now, let consider ΨΛ that is a random variable which is true

if and only if Λ represents a valid set of correspondences (all correspondences are correctly
established). Ultimately, we want to find a solution in the space Σ of all possible solutions that
maximizes the likelihood:

Λ� = arg max
Λ∈Σ

P(O|ΨΛ = true) (1)

In other words we can exploit previous equation (eq. 1) obtaining:

Λ� = arg max
Λ∈Σ

∏
λi,k

j,l∈Λ

Similarity(Oi,k, Oj,l) (2)

212 Object Tracking

In this way by eq.2 the solution of the multi-camera re-identification problem is defined as
the Λ� ∈ Σ which maximizes an observation similarity measure. Similarity() is a similarity
measure between Oi,k and Oj,l in the testing data.

3. Appearances changing evaluation across cameras

Here, we want to model the changes in the appearances of an object from one camera to
another. Basically, the idea is to learn the changes in the color objects when they move
between the cameras, using a set of training data. Based on this set we can extract a
function which is able to establish correspondence among object appearance coming from
different FOVs. A possible way is proposed in (Porikli, 2003).In his approach, a brightness
transfer function (BTF) fij is estimated for every pair of cameras Ci and Cj such that fij
maps an observed brightness value in camera Ci to the corresponding value in camera Cj.
Once that mapping function is known, the correspondence problem is reduced to match
the transformed color histogram or the transformed appearance models. It should be noted
that, a necessary condition for the existence of the one to one brightness mapping function
among two different cameras, is that the object is planar and only has diffuse reflectance. This
function, is not unique and it varies from frame to frame depending on different parameters
including illumination, scene geometry, exposure time. focal length, aperture size and so
on, of each camera. Therefore a single pre-computed mapping cannot normally be used to

match objects for any frame sequences. It is possible to show how despite a large number of
unknown parameters, all BTFs from a given camera to another one lie in a low dimensional
subspace. Moreover, we describe a method to learn this subspace from training data and
use this information to determine how, different observations in different cameras belong
to the same object. Namely, given observations Oi,k(a) and Oj,l(a) from cameras Ci and Cj
respectively, and given all possible brightness transfer functions (BTFs) from camera Ci to
camera Cj we want to compute the probability that the observations Oi,k(a) and Oj,l(a) belong
to the same object.

3.1 The Brightness transfer function space
Let Ri(p, t) be the scene reflectance at a world point p(x, y, z) of an object that is lighted by
white light, when it is viewed from camera Ci at time instant t. Assuming that the objects do
not have any specular reflectance, we can write Ri(p, t) as a product of a term related to the
material Mi(p, t) = M(p) (i.e. albedo) and illumination/camera interaction, geometry and
object shape related terms, Si(p, t), so we have:

Ri(p, t) = M(p)Si(p, t) (3)

The above model is used for the description of the Bidirectional Reflectance Distribution
Function (BRDF), such as, the Lambertian model and the generalized Lambertian model (Oren
& Nayar, 1995) (See Table 1). With the assumption of planarity we have, Si(p, t) = Si(q, t) =
Gi(t), for all points p and q of a given object. So, we can write eq(3) as

Ri(p, t) = M(p)Si(p) (4)

The image irradiance Ii(p, t) is, of course, proportional to the scene radiance Ri(p, t) (Horn,
1986) and we can obtain this:

213Object Tracking in Multiple Cameras with Disjoint Views

Fig. 1. The cameras configuration inside our office building

Seeing that we have assumed that the single camera tracking problem is solved, the
multi-camera tracking task is to link the observations of an object exiting one camera to its
observations entering another camera, as the object moves among different camera FOVs.
For a formal problem definition let consider a correspondence among two consecutive
observations, i.e., exiting from one camera and entering into another,Oi,k and Oj,l will be

denoted as λi,k
j,l . Let us consider ψ(λi,k

j,l) a random variable which is true if and only if λi,k
j,l

is a valid hypothesis, i.e. Oi,k and Oj,l are two observations of the same object. We want to

find a set of correspondences Λ = {λi,k
j,l , ...} where

λi,k
j,l ∈ Λ ⇐⇒ β(λi,k

j,l) = true

Let Σ be the solution space of the multi-camera tracking problem. If Λ is a candidate solution

in Σ, then for all {λi,k
j,l , λ

p,r
q,s} ⊆ Λ where (j, l) �= (i, k) ∧ (q, s) �= (p, r). This is because we

established that each observation of an object is preceded or succeeded by a maximum of one
observation of the same object. Now, let consider ΨΛ that is a random variable which is true

if and only if Λ represents a valid set of correspondences (all correspondences are correctly
established). Ultimately, we want to find a solution in the space Σ of all possible solutions that
maximizes the likelihood:

Λ� = arg max
Λ∈Σ

P(O|ΨΛ = true) (1)

In other words we can exploit previous equation (eq. 1) obtaining:

Λ� = arg max
Λ∈Σ

∏
λi,k

j,l∈Λ

Similarity(Oi,k, Oj,l) (2)

212 Object Tracking

In this way by eq.2 the solution of the multi-camera re-identification problem is defined as
the Λ� ∈ Σ which maximizes an observation similarity measure. Similarity() is a similarity
measure between Oi,k and Oj,l in the testing data.

3. Appearances changing evaluation across cameras

Here, we want to model the changes in the appearances of an object from one camera to
another. Basically, the idea is to learn the changes in the color objects when they move
between the cameras, using a set of training data. Based on this set we can extract a
function which is able to establish correspondence among object appearance coming from
different FOVs. A possible way is proposed in (Porikli, 2003).In his approach, a brightness
transfer function (BTF) fij is estimated for every pair of cameras Ci and Cj such that fij
maps an observed brightness value in camera Ci to the corresponding value in camera Cj.
Once that mapping function is known, the correspondence problem is reduced to match
the transformed color histogram or the transformed appearance models. It should be noted
that, a necessary condition for the existence of the one to one brightness mapping function
among two different cameras, is that the object is planar and only has diffuse reflectance. This
function, is not unique and it varies from frame to frame depending on different parameters
including illumination, scene geometry, exposure time. focal length, aperture size and so
on, of each camera. Therefore a single pre-computed mapping cannot normally be used to

match objects for any frame sequences. It is possible to show how despite a large number of
unknown parameters, all BTFs from a given camera to another one lie in a low dimensional
subspace. Moreover, we describe a method to learn this subspace from training data and
use this information to determine how, different observations in different cameras belong
to the same object. Namely, given observations Oi,k(a) and Oj,l(a) from cameras Ci and Cj
respectively, and given all possible brightness transfer functions (BTFs) from camera Ci to
camera Cj we want to compute the probability that the observations Oi,k(a) and Oj,l(a) belong
to the same object.

3.1 The Brightness transfer function space
Let Ri(p, t) be the scene reflectance at a world point p(x, y, z) of an object that is lighted by
white light, when it is viewed from camera Ci at time instant t. Assuming that the objects do
not have any specular reflectance, we can write Ri(p, t) as a product of a term related to the
material Mi(p, t) = M(p) (i.e. albedo) and illumination/camera interaction, geometry and
object shape related terms, Si(p, t), so we have:

Ri(p, t) = M(p)Si(p, t) (3)

The above model is used for the description of the Bidirectional Reflectance Distribution
Function (BRDF), such as, the Lambertian model and the generalized Lambertian model (Oren
& Nayar, 1995) (See Table 1). With the assumption of planarity we have, Si(p, t) = Si(q, t) =
Gi(t), for all points p and q of a given object. So, we can write eq(3) as

Ri(p, t) = M(p)Si(p) (4)

The image irradiance Ii(p, t) is, of course, proportional to the scene radiance Ri(p, t) (Horn,
1986) and we can obtain this:

213Object Tracking in Multiple Cameras with Disjoint Views

Ii(p, t) = Ri(p, t)Yi(t) = M(p)Si(p)Yi(t) (5)

where

Yi(t) =
π

4

(
di(t)
hi(t)

)2

cos4 αi(p, t) (6)

is function of some camera parameters at time t. Here we list these intrinsic parameters: hi(t)
is the focal length of the lens; di(t) is a lens diameter (aperture); αi(p, t) is the angle that the
light ray from point p makes with the optical axis. However, the sensitivity reduction due to
the term cos4 αi(p, t) over an object is consider negligible (Horn, 1986) and can be replaced
with a constant c.
Let us now consider Xi(t) which is the time of exposure, and ri which is the radiometric
response function of the camera Ci, then the brightness point measure Bi(p, t), is related to the
image irradiance as follow:

Bi(p, t) = ri(Ii(p, t)Xi(t)) = ri(M(p)Si(t)Yi(t)Xi(t)) (7)

In other words the image brightness Bi(p, t) of a world point p at time instant t, is a nonlinear
function of the product of its materials M(p), its geometric properties Si(t) and camera
parameters, Yi(t) and Xi(t). Now let consider two cameras, Ci and Cj and let assume that
a world point p is observed by both camera Ci and Cj at time instants ti and tj, respectively. A
material properties M of world point does not change over the time so we have:

M(p) =
r−1

i (Bi(p, ti))

Si(ti)Yi(ti)Xi(ti)
=

r−1
j (Bj(p, tj))

Sj(tj)Yj(tj)Xj(tj)
(8)

Therefore the brightness transfer function from the image of Ci camera at time ti to the camera
Cj at time tj, using equations 7 and 8, become:

Bj(p, tj) = rj

(
Sj(tj)Yj(tj)Xj(tj)

Si(ti)Yi(ti)Xi(ti)
r−1

i (Bi(p, ti))

)
= rj(ω(ti, tj)r

−1
i (Bi(p, ti))) (9)

where ω(ti, tj) is function of camera parameters and the illumination and scene geometry of
cameras Ci and Cj at two different time instant ti and tj. So because eq. 9 is valid for all object
point p visible by the two cameras, we can eliminate the p argument from the notation. Alike,
since it is implicit that the BTF is different for any different pair of frames, we can remove the
arguments ti and tj for make simpler the equations readability. Let denote with fij a BTF from
camera Ci to camera Cj then starting from eq. 9 we have:

Bj = rj(ωr−1
i (Bi)) = fij(Bi) (10)

3.2 Inter-camera BTFs estimation
Now let us consider a pair of cameras Ci and Cj. The observations corresponding to the same
object across this camera pair can be used to estimate an inter-camera BTF. A way to compute
this BTF is to estimate the pixel to pixel correspondence among the object appearance in the
two cameras (see eq. 10). However, self occlusion, change of scale and shape, and object

214 Object Tracking

Model M S

Lambertian ρ I
π cos θi

Generalized Lambertian ρ I
π cos θi

[
1 − 0.5σ2

σ2+0.33
+ 0.15σ2

σ2+0.09
cos (φi − φr) sin α tan β

]

Table 1. Commonly used BRDF models that satisfy eq. 3. The subscripts i and r denote the
incident and the reflected directions measured with respect to normal surface. I is the source
intensity, ρ is the albedo, σ is the surface roughness, α = max(θi, θr) and β = min(θi, θr). Note
that for generalized Lambertian model to satisfy eq.3, we must assume that surface
roughness σ is constant over the plane.

deformation, make finding correspondences among different camera pixels very hard. In
order to mitigate these problems, we use normalized histograms of object brightness values
for the BTF estimation. The histograms are relatively robust to the changes of the object pose
(Swain & Ballard, 1990). Assuming that the percentage of image points on the observed object
Oi,k(a) with brightness less than or equivalent to Bi is equal to the percentage of image points
in the observation Oj,l(a) with brightness less than or equivalent to Bj. It should be noted
that a similar strategy was adopted in another work to obtain a BTF between images acquired
by the same camera in the same FOV but in different illumination conditions (Grossberg &
Nayar, 2003). Let be Hi and Hj the normalized cumulative histograms of object oservations Ii
and Ij respectively, then

Hi(Bi) = Hj(Bj) = Hj(fij(Bi)) (11)

Consequently we obtain,
fij(Bi) = H−1

j (Hi(Bi)) (12)

where with H−1 we indicate the inverted cumulative histogram. As discussed in the previous
subsection, the BTF between two cameras changes instant by instant due to illumination
conditions, camera parameters and so on. We apply eq. 12 to estimate the brightness
transfer function fij for every pair of the observations contained in the training set. Also
we denote with Fij the collection of all the brightness functions obtained in the described
way: Fij = { f n

ij}, n ∈ {1, . . . , N}. Note that the discussion has been done dealing with only

the brightness values of the images and estimating the brightness transfer functions. To deal
with color images we have to compute each channel separately. It should be noted also that
the knowledge of any camera parameters and response function for the calculation of these
transfer function is not assumed.

3.3 Object color similarity estimation across camera using BTF
It is natural that the observed color of an object can vary widely across multiple
non-overlapping camera due to change in scene illumination or of some of the different
camera parameters like focal length, CCD gain, and so on. The training phase provides us

the set of color transfer functions among the cameras, which models how colors of an object
change across cameras. If the mapping function between the colors of two observations is
correctly learned, in the test phase it is likely to find the observations generated by the same
object. In particular for two observations Oi,k(a) and Oj,l(a) with color transfer functions f R

ij ,

f G
ij and f B

ij , we define the probability of the observations belonging to the same object as:

215Object Tracking in Multiple Cameras with Disjoint Views

Ii(p, t) = Ri(p, t)Yi(t) = M(p)Si(p)Yi(t) (5)

where

Yi(t) =
π

4

(
di(t)
hi(t)

)2

cos4 αi(p, t) (6)

is function of some camera parameters at time t. Here we list these intrinsic parameters: hi(t)
is the focal length of the lens; di(t) is a lens diameter (aperture); αi(p, t) is the angle that the
light ray from point p makes with the optical axis. However, the sensitivity reduction due to
the term cos4 αi(p, t) over an object is consider negligible (Horn, 1986) and can be replaced
with a constant c.
Let us now consider Xi(t) which is the time of exposure, and ri which is the radiometric
response function of the camera Ci, then the brightness point measure Bi(p, t), is related to the
image irradiance as follow:

Bi(p, t) = ri(Ii(p, t)Xi(t)) = ri(M(p)Si(t)Yi(t)Xi(t)) (7)

In other words the image brightness Bi(p, t) of a world point p at time instant t, is a nonlinear
function of the product of its materials M(p), its geometric properties Si(t) and camera
parameters, Yi(t) and Xi(t). Now let consider two cameras, Ci and Cj and let assume that
a world point p is observed by both camera Ci and Cj at time instants ti and tj, respectively. A
material properties M of world point does not change over the time so we have:

M(p) =
r−1

i (Bi(p, ti))

Si(ti)Yi(ti)Xi(ti)
=

r−1
j (Bj(p, tj))

Sj(tj)Yj(tj)Xj(tj)
(8)

Therefore the brightness transfer function from the image of Ci camera at time ti to the camera
Cj at time tj, using equations 7 and 8, become:

Bj(p, tj) = rj

(
Sj(tj)Yj(tj)Xj(tj)

Si(ti)Yi(ti)Xi(ti)
r−1

i (Bi(p, ti))

)
= rj(ω(ti, tj)r

−1
i (Bi(p, ti))) (9)

where ω(ti, tj) is function of camera parameters and the illumination and scene geometry of
cameras Ci and Cj at two different time instant ti and tj. So because eq. 9 is valid for all object
point p visible by the two cameras, we can eliminate the p argument from the notation. Alike,
since it is implicit that the BTF is different for any different pair of frames, we can remove the
arguments ti and tj for make simpler the equations readability. Let denote with fij a BTF from
camera Ci to camera Cj then starting from eq. 9 we have:

Bj = rj(ωr−1
i (Bi)) = fij(Bi) (10)

3.2 Inter-camera BTFs estimation
Now let us consider a pair of cameras Ci and Cj. The observations corresponding to the same
object across this camera pair can be used to estimate an inter-camera BTF. A way to compute
this BTF is to estimate the pixel to pixel correspondence among the object appearance in the
two cameras (see eq. 10). However, self occlusion, change of scale and shape, and object

214 Object Tracking

Model M S

Lambertian ρ I
π cos θi

Generalized Lambertian ρ I
π cos θi

[
1 − 0.5σ2

σ2+0.33
+ 0.15σ2

σ2+0.09
cos (φi − φr) sin α tan β

]

Table 1. Commonly used BRDF models that satisfy eq. 3. The subscripts i and r denote the
incident and the reflected directions measured with respect to normal surface. I is the source
intensity, ρ is the albedo, σ is the surface roughness, α = max(θi, θr) and β = min(θi, θr). Note
that for generalized Lambertian model to satisfy eq.3, we must assume that surface
roughness σ is constant over the plane.

deformation, make finding correspondences among different camera pixels very hard. In
order to mitigate these problems, we use normalized histograms of object brightness values
for the BTF estimation. The histograms are relatively robust to the changes of the object pose
(Swain & Ballard, 1990). Assuming that the percentage of image points on the observed object
Oi,k(a) with brightness less than or equivalent to Bi is equal to the percentage of image points
in the observation Oj,l(a) with brightness less than or equivalent to Bj. It should be noted
that a similar strategy was adopted in another work to obtain a BTF between images acquired
by the same camera in the same FOV but in different illumination conditions (Grossberg &
Nayar, 2003). Let be Hi and Hj the normalized cumulative histograms of object oservations Ii
and Ij respectively, then

Hi(Bi) = Hj(Bj) = Hj(fij(Bi)) (11)

Consequently we obtain,
fij(Bi) = H−1

j (Hi(Bi)) (12)

where with H−1 we indicate the inverted cumulative histogram. As discussed in the previous
subsection, the BTF between two cameras changes instant by instant due to illumination
conditions, camera parameters and so on. We apply eq. 12 to estimate the brightness
transfer function fij for every pair of the observations contained in the training set. Also
we denote with Fij the collection of all the brightness functions obtained in the described
way: Fij = { f n

ij}, n ∈ {1, . . . , N}. Note that the discussion has been done dealing with only

the brightness values of the images and estimating the brightness transfer functions. To deal
with color images we have to compute each channel separately. It should be noted also that
the knowledge of any camera parameters and response function for the calculation of these
transfer function is not assumed.

3.3 Object color similarity estimation across camera using BTF
It is natural that the observed color of an object can vary widely across multiple
non-overlapping camera due to change in scene illumination or of some of the different
camera parameters like focal length, CCD gain, and so on. The training phase provides us

the set of color transfer functions among the cameras, which models how colors of an object
change across cameras. If the mapping function between the colors of two observations is
correctly learned, in the test phase it is likely to find the observations generated by the same
object. In particular for two observations Oi,k(a) and Oj,l(a) with color transfer functions f R

ij ,

f G
ij and f B

ij , we define the probability of the observations belonging to the same object as:

215Object Tracking in Multiple Cameras with Disjoint Views

Pij(Oi,k(a), Oj,l(a)|λ
i,k
j,l) = ∏

ch∈{R,G,B}

γe−γd(f ch
ij (O

ch
i,k),O

ch
j,l) (13)

where γ is an arbitrary constant and d is a distance between an object appearance in Cj and
the transformed one in Ci. The ch superscript denote the color channel for which appearance
model and brightness transform were calculated.

4. Object appearance modelling

The proposed tracking algorithm models the object appearance using color histogram
statistics. The task of finding the same object from the foreground region in current frame can
be formulated as follows: the color histogram feature is assumed to have a density function
and a candidate region also had a color histogram feature distributed by a certain density.
The problem is to find a candidate region which is associated to a density most similar to
the target one. A Bhattacharya coefficient measure is used as a similarity metric among the
distributions.

4.1 Color histogram extraction
We have implemented and tested different methods to extract the color histogram from the
foreground patches in order to remove noise and possible shadow from each object patch.
We used various elliptic masks to reach this aim. The ellipse parameters (major and minor
axis) are inferred using the patch dimensions and the distance of the object from the camera.
Basing on the person position in each FOV, we have assessed, by a mapping function, his
body measure in the foreground patches. Our intention is to build the elliptic masks in order
to capture more useful information. We want to discard any possible part of the patch that
could confuse the histogram distribution. The ellipses are drawn to cover most of the body
cutting the head of the person and his eventual shadow (see 2(b), 3(b)). We have compared
different combinations of these masks (see pictures 2(b), 2(c), 2(e), 2(f), 3(b), 3(c), 3(e), 3(f)) in
order to estimate the potentialities of their performances.

(a) (b) (c) (d) (e) (f)

Fig. 2. Six images of two persons in the camera C1. a) Foreground patch extracted of the first
person; b) Elliptic mask of the first person; c) Double Elliptic masks of the first person; d)
Foreground patch extracted of the second person; e) Elliptic mask of the second person; f)
Double Elliptic masks of the second person.

216 Object Tracking

(a) (b) (c) (d) (e) (f)

Fig. 3. Six images of two persons in the camera C2. a) Foreground patch extracted of the first
person; b) Elliptic mask of the first person; c) Double Elliptic masks of the first person; d)
Foreground patch extracted of the second person; e) Elliptic mask of the second person; f)
Double Elliptic masks of the second person.

4.2 Positional histograms
As it should be noted, conventional color descriptors fail in the presence of clothes with
the same main colors, but distributed in different way on the whole clothes. So we need
to detect a features set able to maintain a level of relationship between global distribution
and the displacement of colors on the silhouette. In the presence of well differentiated

clothes, conventional histograms perform well, as well as other more refined features, like
correlograms, even if this last one is onerous in terms of computational load. Our goal is
to detect a feature set able to: perform in a acceptable way (compared with histograms)
in presence of easily distinguishable uniforms; outperform histograms in the presence of
hardly distinguishable uniforms; maintain a low level of computational load, that allows us
to integrate this module in a higher level real team events detection system.
For these reasons we have chosen to work with a modified version of classic histograms, called
Positional Histograms. These feature descriptors maintain basic characteristics of histograms
(fast evaluation, scale invariance, rotation invariance, and so on); in addition, they introduce
a dependance from the position of each point in the image: the global image is partitioned
according to a geometrical relationship; the histograms are then evaluated for each region,
and concatenated to obtain the final region descriptor.
Formally, the image I is partitioned in n subregions Ri, that satisfy the rules:

n⋃

i=1

Ri = I (14)

Ri ∩ Rj = ∅ ∀i �= j (15)

The first equation guarantees that each point of the image contributes to the final feature set
construction, while the second one guarantees that each point gives its contribution just to
one partition of histogram. In this way the final feature set contains exactly the same main
information, as conventional histograms, but arranged in a different way, maintaining a level
of information about the spatial distribution of points in the image.

217Object Tracking in Multiple Cameras with Disjoint Views

Pij(Oi,k(a), Oj,l(a)|λ
i,k
j,l) = ∏

ch∈{R,G,B}

γe−γd(f ch
ij (O

ch
i,k),O

ch
j,l) (13)

where γ is an arbitrary constant and d is a distance between an object appearance in Cj and
the transformed one in Ci. The ch superscript denote the color channel for which appearance
model and brightness transform were calculated.

4. Object appearance modelling

The proposed tracking algorithm models the object appearance using color histogram
statistics. The task of finding the same object from the foreground region in current frame can
be formulated as follows: the color histogram feature is assumed to have a density function
and a candidate region also had a color histogram feature distributed by a certain density.
The problem is to find a candidate region which is associated to a density most similar to
the target one. A Bhattacharya coefficient measure is used as a similarity metric among the
distributions.

4.1 Color histogram extraction
We have implemented and tested different methods to extract the color histogram from the
foreground patches in order to remove noise and possible shadow from each object patch.
We used various elliptic masks to reach this aim. The ellipse parameters (major and minor
axis) are inferred using the patch dimensions and the distance of the object from the camera.
Basing on the person position in each FOV, we have assessed, by a mapping function, his
body measure in the foreground patches. Our intention is to build the elliptic masks in order
to capture more useful information. We want to discard any possible part of the patch that
could confuse the histogram distribution. The ellipses are drawn to cover most of the body
cutting the head of the person and his eventual shadow (see 2(b), 3(b)). We have compared
different combinations of these masks (see pictures 2(b), 2(c), 2(e), 2(f), 3(b), 3(c), 3(e), 3(f)) in
order to estimate the potentialities of their performances.

(a) (b) (c) (d) (e) (f)

Fig. 2. Six images of two persons in the camera C1. a) Foreground patch extracted of the first
person; b) Elliptic mask of the first person; c) Double Elliptic masks of the first person; d)
Foreground patch extracted of the second person; e) Elliptic mask of the second person; f)
Double Elliptic masks of the second person.

216 Object Tracking

(a) (b) (c) (d) (e) (f)

Fig. 3. Six images of two persons in the camera C2. a) Foreground patch extracted of the first
person; b) Elliptic mask of the first person; c) Double Elliptic masks of the first person; d)
Foreground patch extracted of the second person; e) Elliptic mask of the second person; f)
Double Elliptic masks of the second person.

4.2 Positional histograms
As it should be noted, conventional color descriptors fail in the presence of clothes with
the same main colors, but distributed in different way on the whole clothes. So we need
to detect a features set able to maintain a level of relationship between global distribution
and the displacement of colors on the silhouette. In the presence of well differentiated

clothes, conventional histograms perform well, as well as other more refined features, like
correlograms, even if this last one is onerous in terms of computational load. Our goal is
to detect a feature set able to: perform in a acceptable way (compared with histograms)
in presence of easily distinguishable uniforms; outperform histograms in the presence of
hardly distinguishable uniforms; maintain a low level of computational load, that allows us
to integrate this module in a higher level real team events detection system.
For these reasons we have chosen to work with a modified version of classic histograms, called
Positional Histograms. These feature descriptors maintain basic characteristics of histograms
(fast evaluation, scale invariance, rotation invariance, and so on); in addition, they introduce
a dependance from the position of each point in the image: the global image is partitioned
according to a geometrical relationship; the histograms are then evaluated for each region,
and concatenated to obtain the final region descriptor.
Formally, the image I is partitioned in n subregions Ri, that satisfy the rules:

n⋃

i=1

Ri = I (14)

Ri ∩ Rj = ∅ ∀i �= j (15)

The first equation guarantees that each point of the image contributes to the final feature set
construction, while the second one guarantees that each point gives its contribution just to
one partition of histogram. In this way the final feature set contains exactly the same main
information, as conventional histograms, but arranged in a different way, maintaining a level
of information about the spatial distribution of points in the image.

217Object Tracking in Multiple Cameras with Disjoint Views

The geometric rule for the partition should be fixed according to the nature of the problem
to be solved. Our experience, and also experimental results we obtained, suggests us to use
two main geometrical partitions: the angular sectors and the circular rings, and their fusion
version (circular sectors). Polar coordinates allow to easily define the partitions. Each region
Ri is composed by points (x,y) that satisfy:

Ri = {(x, y)�x = r cos θ, y = r sin θ

ri
MIN < r < ri

MAX, θi
MIN < θ < θi

MAX} (16)

With this notations, we can now explore details of each partition used in this paper. The
starting point of each partition is the center of the image, where reasonably is concentrated
the main informative content (a good object detector/tracker is able to maintain the subject in
the center of the image).

4.2.1 Angular sectors
In this case each partition is obtained by varying the angle in a given range, according to the
desired details level, while the radius ranges in all available values. So, considering D as the
main diagonal of the image, and n the number of desired sectors, we have:

ri
MIN = rMIN = 0 (17a)

ri
MAX = rMAX = D/2 (17b)

θi
MIN = θ0 +

2π

n
(i − 1) (17c)

θi
MAX = θ0 +

2π

n
∗ i (17d)

i = 1..n (17e)

(a) n = 2, θ0 = 0 (b) n = 2, θ0 = π/2

(c) n = 4, θ0 = 0

(d) n = 8, θ0 = 0

Fig. 4. Plot of some Angular Sectors.

218 Object Tracking

In figure 4 we have plotted some examples of masks for the regions creation in presence of
Angular Sectors partitions. In the first rows we have plotted masks for n = 2, θ0 = 0, and
n = 2, θ0 = π/2. Similarly, in the following rows we propose partitions for n = 4 and θ0 = 0,
and n = 8 and θ0 = 0.

4.2.2 Circular rings
Each partition is obtained by varying the radius in a given range, according to the desired
details level, while the angle varies in order to cover all possible values between 0 and 2π.
So, considering D as the main diagonal of the image, and n the number of desired sectors, we
have:

ri
MIN =

D ∗ (i − 1)

2n
(18a)

ri
MAX =

D ∗ i
2n

(18b)

θi
MIN = θMIN = 0 (18c)

θi
MAX = θMAX = 2π (18d)

i = 1..n (18e)

In figure 5 the masks in presence of Circular Rings partitions with n = 2 are plotted.

(a) n = 2

Fig. 5. Plot of some Circular Rings.

4.2.3 Circular sectors
The previously exposed partition rules can be combined (overlapped) in order to obtain
another set of features that satisfies the conditions of equations 14 and 15. Now radius and
angle various simultaneously tracing circular sectors across the image. So it is necessary to
define two levels of partitions: the number nS of desired angular sectors (that influences the
range of the angle θ) and the number nR of desired circular rings (that influences the range of

the radius).

ri
MIN =

D ∗ (i − 1)

2n
(19a)

ri
MAX =

D ∗ i
2n

(19b)

θ
j
MIN = θ0 +

2π

n
(j − 1) (19c)

219Object Tracking in Multiple Cameras with Disjoint Views

The geometric rule for the partition should be fixed according to the nature of the problem
to be solved. Our experience, and also experimental results we obtained, suggests us to use
two main geometrical partitions: the angular sectors and the circular rings, and their fusion
version (circular sectors). Polar coordinates allow to easily define the partitions. Each region
Ri is composed by points (x,y) that satisfy:

Ri = {(x, y)�x = r cos θ, y = r sin θ

ri
MIN < r < ri

MAX, θi
MIN < θ < θi

MAX} (16)

With this notations, we can now explore details of each partition used in this paper. The
starting point of each partition is the center of the image, where reasonably is concentrated
the main informative content (a good object detector/tracker is able to maintain the subject in
the center of the image).

4.2.1 Angular sectors
In this case each partition is obtained by varying the angle in a given range, according to the
desired details level, while the radius ranges in all available values. So, considering D as the
main diagonal of the image, and n the number of desired sectors, we have:

ri
MIN = rMIN = 0 (17a)

ri
MAX = rMAX = D/2 (17b)

θi
MIN = θ0 +

2π

n
(i − 1) (17c)

θi
MAX = θ0 +

2π

n
∗ i (17d)

i = 1..n (17e)

(a) n = 2, θ0 = 0 (b) n = 2, θ0 = π/2

(c) n = 4, θ0 = 0

(d) n = 8, θ0 = 0

Fig. 4. Plot of some Angular Sectors.

218 Object Tracking

In figure 4 we have plotted some examples of masks for the regions creation in presence of
Angular Sectors partitions. In the first rows we have plotted masks for n = 2, θ0 = 0, and
n = 2, θ0 = π/2. Similarly, in the following rows we propose partitions for n = 4 and θ0 = 0,
and n = 8 and θ0 = 0.

4.2.2 Circular rings
Each partition is obtained by varying the radius in a given range, according to the desired
details level, while the angle varies in order to cover all possible values between 0 and 2π.
So, considering D as the main diagonal of the image, and n the number of desired sectors, we
have:

ri
MIN =

D ∗ (i − 1)

2n
(18a)

ri
MAX =

D ∗ i
2n

(18b)

θi
MIN = θMIN = 0 (18c)

θi
MAX = θMAX = 2π (18d)

i = 1..n (18e)

In figure 5 the masks in presence of Circular Rings partitions with n = 2 are plotted.

(a) n = 2

Fig. 5. Plot of some Circular Rings.

4.2.3 Circular sectors
The previously exposed partition rules can be combined (overlapped) in order to obtain
another set of features that satisfies the conditions of equations 14 and 15. Now radius and
angle various simultaneously tracing circular sectors across the image. So it is necessary to
define two levels of partitions: the number nS of desired angular sectors (that influences the
range of the angle θ) and the number nR of desired circular rings (that influences the range of

the radius).

ri
MIN =

D ∗ (i − 1)

2n
(19a)

ri
MAX =

D ∗ i
2n

(19b)

θ
j
MIN = θ0 +

2π

n
(j − 1) (19c)

219Object Tracking in Multiple Cameras with Disjoint Views

θ
j
MAX = θ0 +

2π

n
∗ j (19d)

i = 1..nR j = 1..nS (19e)

In figure 6 some examples of masks in presence of Circular Sectors partitions are plotted: first
row refers to rings obtained for nR = 2, nS = 2 while the second one refers to rings for nS = 4,
nR = 2.

(a) nR = 2, nS = 2

(b) nS = 4, nR = 2

Fig. 6. Plot of some Circular Sectors.

5. Discussion on tracking in multiple cameras with disjoint views

Starting from two cameras C1 and C2 that are localized in different places in our building, we
explore some methodology to establish correspondence among these FOVs. As you can see in
Figure 1, the cameras’ field of views cover different non-overlapping areas. People observed
in camera C2 can take a path across camera C1 turning right or also turning left into Lab1
without entering the C1 field of view. Likewise, people coming from the Lab1 are observed
in camera C1 without passing through camera C2. As we described in the previous section
the task of the multi-camera tracking algorithm is to establish correspondence across cameras

finding which observations, coming from different FOVs, belong to the same object.Because
of the cameras’ positions, it is not always possible to use space-time constraints among the
exits and entrances areas of the different cameras. Obviously people can take many paths
across C1 and C2 producing different observations of the same objects in the two cameras.
The multi-view tracking algorithm we want to investigate relies just on the object appearances
in the two cameras FOV. It can be noted that the lack of entry/exit constraints make the
association task more difficult. We should consider that color distribution of an object can be
fairly different when it moves in a single camera FOV. For this reason, matching appearances
between different cameras is still more difficult. It is necessary to find the transformation
that maps the object’s appearance in one camera with its appearance in the other one. In
this chapter we consider a training phase in which know objects pass trough both cameras
and their appearances are used to estimate a Brightness Transfer Function (BTF). During
this phase we tested two different BTFs, ie. the mean BTF (MBTF) and the cumulative BTF
(CBTF).In the succeeding phase we test implemented transformation in order to evaluate the
object matches that produced the lowest value of the Bhattacharya distance for the appearance

of the considered person in one camera compared with the appearances of all the possible
persons who had walked through the second camera.

220 Object Tracking

Fig. 7. The transfer functions for the R,G and B color channels from Camera 1 to Camera 2
obtained using Cumulative Brightness Transfer Transform on the objects appearances
training set. Note that mostly lower color values from Camera 2 are being mapped to higher
color values in Camera 1, indicating that the same object is appearing much brighter in
Camera 1 as compared to Camera 2.

5.1 Establish correspondence across multiple cameras
The correspondence problem occurs when an object enters the camera FOV. We need to
determine if the object is already being tracked by another camera or it is a new object in the
scene. As described in previous sections there are many approaches which are able to estimate
the BTFs among different cameras. We compare a mean BTF (see section 21) approach with
the cumulative BTF proposed in (Prosser et al., 2008). In figure 2(a) some images of the the
tracks of two people in the camera C1 FOV are showed, while in figure 3(a) the same people
are observed in in the camera C2 FOV. We computed the three channels RGB histograms

for each image in the C1 tracks. We did the same, also, for the C2 tracks. The histogram
were generated using all the 256 bins for each color channel. We want to estimate a BTF
f12 between the cameras C1 and C2 such that, for each couple of objects observations O1,k(a)
and O2,l(a) given the brightness value BO1,k

(v) and BO2,l
(v) we have BO2,l

(v) = f12(BO1,k
(v))

where v = 0, . . . , 255 represents the number of bins, k = 1, . . . , M represents the number of
object appearance in the camera C1, l = 1, . . . , N, the number of object appearance in the C2.
In order to evaluate the BTF f12 we collected a total of N + M histograms obtained on the
N object appearances tracked in the camera C1 and on the same object appearances tracked
in the camera C2. Let be HO1,k

and HO2,l
the object appearance histograms obtained in the

cameras C1 and C2 respectively. Now, for each possible different cameras object appearance
couple (O1,k, O2,l) we want to compute the brightness transfer function using the inverted
cumulative histogram (see equation 12) we obtain:

221Object Tracking in Multiple Cameras with Disjoint Views

θ
j
MAX = θ0 +

2π

n
∗ j (19d)

i = 1..nR j = 1..nS (19e)

In figure 6 some examples of masks in presence of Circular Sectors partitions are plotted: first
row refers to rings obtained for nR = 2, nS = 2 while the second one refers to rings for nS = 4,
nR = 2.

(a) nR = 2, nS = 2

(b) nS = 4, nR = 2

Fig. 6. Plot of some Circular Sectors.

5. Discussion on tracking in multiple cameras with disjoint views

Starting from two cameras C1 and C2 that are localized in different places in our building, we
explore some methodology to establish correspondence among these FOVs. As you can see in
Figure 1, the cameras’ field of views cover different non-overlapping areas. People observed
in camera C2 can take a path across camera C1 turning right or also turning left into Lab1
without entering the C1 field of view. Likewise, people coming from the Lab1 are observed
in camera C1 without passing through camera C2. As we described in the previous section
the task of the multi-camera tracking algorithm is to establish correspondence across cameras

finding which observations, coming from different FOVs, belong to the same object.Because
of the cameras’ positions, it is not always possible to use space-time constraints among the
exits and entrances areas of the different cameras. Obviously people can take many paths
across C1 and C2 producing different observations of the same objects in the two cameras.
The multi-view tracking algorithm we want to investigate relies just on the object appearances
in the two cameras FOV. It can be noted that the lack of entry/exit constraints make the
association task more difficult. We should consider that color distribution of an object can be
fairly different when it moves in a single camera FOV. For this reason, matching appearances
between different cameras is still more difficult. It is necessary to find the transformation
that maps the object’s appearance in one camera with its appearance in the other one. In
this chapter we consider a training phase in which know objects pass trough both cameras
and their appearances are used to estimate a Brightness Transfer Function (BTF). During
this phase we tested two different BTFs, ie. the mean BTF (MBTF) and the cumulative BTF
(CBTF).In the succeeding phase we test implemented transformation in order to evaluate the
object matches that produced the lowest value of the Bhattacharya distance for the appearance

of the considered person in one camera compared with the appearances of all the possible
persons who had walked through the second camera.

220 Object Tracking

Fig. 7. The transfer functions for the R,G and B color channels from Camera 1 to Camera 2
obtained using Cumulative Brightness Transfer Transform on the objects appearances
training set. Note that mostly lower color values from Camera 2 are being mapped to higher
color values in Camera 1, indicating that the same object is appearing much brighter in
Camera 1 as compared to Camera 2.

5.1 Establish correspondence across multiple cameras
The correspondence problem occurs when an object enters the camera FOV. We need to
determine if the object is already being tracked by another camera or it is a new object in the
scene. As described in previous sections there are many approaches which are able to estimate
the BTFs among different cameras. We compare a mean BTF (see section 21) approach with
the cumulative BTF proposed in (Prosser et al., 2008). In figure 2(a) some images of the the
tracks of two people in the camera C1 FOV are showed, while in figure 3(a) the same people
are observed in in the camera C2 FOV. We computed the three channels RGB histograms

for each image in the C1 tracks. We did the same, also, for the C2 tracks. The histogram
were generated using all the 256 bins for each color channel. We want to estimate a BTF
f12 between the cameras C1 and C2 such that, for each couple of objects observations O1,k(a)
and O2,l(a) given the brightness value BO1,k

(v) and BO2,l
(v) we have BO2,l

(v) = f12(BO1,k
(v))

where v = 0, . . . , 255 represents the number of bins, k = 1, . . . , M represents the number of
object appearance in the camera C1, l = 1, . . . , N, the number of object appearance in the C2.
In order to evaluate the BTF f12 we collected a total of N + M histograms obtained on the
N object appearances tracked in the camera C1 and on the same object appearances tracked
in the camera C2. Let be HO1,k

and HO2,l
the object appearance histograms obtained in the

cameras C1 and C2 respectively. Now, for each possible different cameras object appearance
couple (O1,k, O2,l) we want to compute the brightness transfer function using the inverted
cumulative histogram (see equation 12) we obtain:

221Object Tracking in Multiple Cameras with Disjoint Views

fO1,kO2,l
(BO1,k

) = H−1
O2,l

(HO1,k
(BO1,k

)) (20)

and finally the mean BTF (referred in the following sections as MBTF) f 12

f 12 =
M

∑
k=1

N

∑
l=1

fO1,kO2,l
(21)

We estimated also a cumulative BTF (CBTF) as described in (Prosser et al., 2008). As it is
known, the CBTF generation involves an amalgamation of the training set before computing
any BTFs. An accumulation of the brightness values is computed an all the training images
of the camera C1 obtaining a cumulative histogram Ĥ1. The same is done for all the
corresponding training images of the camera C2 obtaining Ĥ2. The CBTF f̂12 using eq. 12
is

f̂12(O1,k) = Ĥ−1
2 (Ĥ1(O1,k)) (22)

also in this case evaluated by using the inverted cumulative histogram. In figure 7 the CBTF
obtained on the training set is plotted. It should be noted that mostly lower color values from
Camera C2 are being mapped to higher color values in Camera C1, indicating that the same
object is appearing much brighter in Camera C1 as compared to Camera C2.

6. Multi-camera tracking using different BTFs

In order to solve the multi-camera people re-identification problem we have to choose among
a set of possible correspondence hypotheses the one that produces the best match. Since, our
cameras’ configuration allows people to enter into one camera field of view without passing
across the other camera’s FOV, we consider also the problem of finding a proper method to

discard false matches. The common method is to match people appearances by estimating
the similarity among color histograms. Once both Oi,k and Oj,l are converted into the same
FOV by eq. 21 and eq. 22 we can compare them directly using the well known Bhattacharya
distance measure DB() and thus the similarity measure from eq. 2 can be defined as follows:

Similarity(Oi,k, Oj,l) = 1 − DB(Oi,k, Oj,l) (23)

If we denote with Hi and Hj the normalized histograms of the observations Oi,k and Oj,l the
Bhattacharya distance DB() (Comaniciu et. al, 2003) between two histograms is given as

DB(Hi, Hj) =

√
1 −

m

∑
v=1

√
Hi(v)Hj(v) (24)

where m is the total number of histogram bins. The Bhattacharya coefficient ranges between
zero and one and is a metric.

Note that in order to compare two color objects, we must apply this process to each of the
three RGB channels. Thus the overall similarity measure becomes the mean of the similarity
values obtained in all three channels.

Let us, now, consider

{
HO1,k1

, HO1,k2
, . . . , HO1,kNk

}
the Nk object appearances histograms of the

k − th person in the camera C1. Suppose that we have P, i.e. k ∈ {1, . . . , P}, people moving

222 Object Tracking

in the camera C1. When a new observation is taken in the camera C2 we have to decide either
if it could be associated with one among the P individuals moving in the camera C1 or if it is
a new person entering the scene. For each person k, in the camera C1 with k ∈ {1, . . . , P}, we
evaluated the mean color histograms among the Nk appearance observations of the kth person
obtaining H1,k. Anyway the mean histograms cannot be compared with those obtained by the
camera C2 unless the transformation with the BTFs are applied. By using the BTFs described
in section 5 we projected the P mean histograms in the new space as follows:

H̆k = f 12(H1,k) (25)

where H̆k represents the new histogram obtained by using the mean BTF described in eq.21.

We, also, have using eq. 22:
H̃k = f̂12(H1,k) (26)

which is the histogram transformation using CBTF. Let be HO2,l1
the first observation

histogram in the camera C2. We evaluated the similarity between couple of histogram by
using eq. 27. The association is done with the kth person who produces the maximum
similarity measure, i.e.

arg max
k

Similarity(HO2,l1
, H̃k) (27)

(a) Camera 2 Field of view (b) Camera 1 Field of view

Fig. 8. Frames from both camera views. The same person walks from camera 1 to camera 2

7. Obtained results

Different experiments were carried out to test the multi-camera tracking algorithm. The
scenario was composed of two cameras located in two different points of our office (see map
on figure 1). We used two wireless Axis IP camera with 640x480 VGA color jpg resolution
with an acquisition frame rate of 10 f ps. The camera network topology is shown in figure 1,
while two images acquired by the two cameras are shown in figures 8(a) and 8(b). Note that
the illumination conditions and color quality vary greatly between these views. We divided

the experiments into two different parts: in the first part we investigate different kind of
method to extract the color histogram from each foreground patch. In the second part we
evaluated different approaches to establish correspondence across disjointed views. In both

223Object Tracking in Multiple Cameras with Disjoint Views

fO1,kO2,l
(BO1,k

) = H−1
O2,l

(HO1,k
(BO1,k

)) (20)

and finally the mean BTF (referred in the following sections as MBTF) f 12

f 12 =
M

∑
k=1

N

∑
l=1

fO1,kO2,l
(21)

We estimated also a cumulative BTF (CBTF) as described in (Prosser et al., 2008). As it is
known, the CBTF generation involves an amalgamation of the training set before computing
any BTFs. An accumulation of the brightness values is computed an all the training images
of the camera C1 obtaining a cumulative histogram Ĥ1. The same is done for all the
corresponding training images of the camera C2 obtaining Ĥ2. The CBTF f̂12 using eq. 12
is

f̂12(O1,k) = Ĥ−1
2 (Ĥ1(O1,k)) (22)

also in this case evaluated by using the inverted cumulative histogram. In figure 7 the CBTF
obtained on the training set is plotted. It should be noted that mostly lower color values from
Camera C2 are being mapped to higher color values in Camera C1, indicating that the same
object is appearing much brighter in Camera C1 as compared to Camera C2.

6. Multi-camera tracking using different BTFs

In order to solve the multi-camera people re-identification problem we have to choose among
a set of possible correspondence hypotheses the one that produces the best match. Since, our
cameras’ configuration allows people to enter into one camera field of view without passing
across the other camera’s FOV, we consider also the problem of finding a proper method to

discard false matches. The common method is to match people appearances by estimating
the similarity among color histograms. Once both Oi,k and Oj,l are converted into the same
FOV by eq. 21 and eq. 22 we can compare them directly using the well known Bhattacharya
distance measure DB() and thus the similarity measure from eq. 2 can be defined as follows:

Similarity(Oi,k, Oj,l) = 1 − DB(Oi,k, Oj,l) (23)

If we denote with Hi and Hj the normalized histograms of the observations Oi,k and Oj,l the
Bhattacharya distance DB() (Comaniciu et. al, 2003) between two histograms is given as

DB(Hi, Hj) =

√
1 −

m

∑
v=1

√
Hi(v)Hj(v) (24)

where m is the total number of histogram bins. The Bhattacharya coefficient ranges between
zero and one and is a metric.

Note that in order to compare two color objects, we must apply this process to each of the
three RGB channels. Thus the overall similarity measure becomes the mean of the similarity
values obtained in all three channels.

Let us, now, consider

{
HO1,k1

, HO1,k2
, . . . , HO1,kNk

}
the Nk object appearances histograms of the

k − th person in the camera C1. Suppose that we have P, i.e. k ∈ {1, . . . , P}, people moving

222 Object Tracking

in the camera C1. When a new observation is taken in the camera C2 we have to decide either
if it could be associated with one among the P individuals moving in the camera C1 or if it is
a new person entering the scene. For each person k, in the camera C1 with k ∈ {1, . . . , P}, we
evaluated the mean color histograms among the Nk appearance observations of the kth person
obtaining H1,k. Anyway the mean histograms cannot be compared with those obtained by the
camera C2 unless the transformation with the BTFs are applied. By using the BTFs described
in section 5 we projected the P mean histograms in the new space as follows:

H̆k = f 12(H1,k) (25)

where H̆k represents the new histogram obtained by using the mean BTF described in eq.21.

We, also, have using eq. 22:
H̃k = f̂12(H1,k) (26)

which is the histogram transformation using CBTF. Let be HO2,l1
the first observation

histogram in the camera C2. We evaluated the similarity between couple of histogram by
using eq. 27. The association is done with the kth person who produces the maximum
similarity measure, i.e.

arg max
k

Similarity(HO2,l1
, H̃k) (27)

(a) Camera 2 Field of view (b) Camera 1 Field of view

Fig. 8. Frames from both camera views. The same person walks from camera 1 to camera 2

7. Obtained results

Different experiments were carried out to test the multi-camera tracking algorithm. The
scenario was composed of two cameras located in two different points of our office (see map
on figure 1). We used two wireless Axis IP camera with 640x480 VGA color jpg resolution
with an acquisition frame rate of 10 f ps. The camera network topology is shown in figure 1,
while two images acquired by the two cameras are shown in figures 8(a) and 8(b). Note that
the illumination conditions and color quality vary greatly between these views. We divided

the experiments into two different parts: in the first part we investigate different kind of
method to extract the color histogram from each foreground patch. In the second part we
evaluated different approaches to establish correspondence across disjointed views. In both

223Object Tracking in Multiple Cameras with Disjoint Views

parts we used the same data set. The data-set consisted of synchronized mjpeg videos acquired
simultaneously by two different cameras containing eight persons. The patches come from a
single camera object detection method described in (Mazzeo et. al, 2008).The data set was
obtained by extracting people from whole Field of View of each camera. Note that we did
not consider any geometrical constraint on the exiting and entering areas of people moving in
the observed scenario. We carried out different experiments using different sets of samples as
follows:

• First experiment ten people giving 1456 appearance sample (coming from the same FOV)
are used as testing data in order to evaluate the performance of different color histogram
extraction methods (See section 4).

• In second experiment we have a training and a testing data set: seven individuals giving
1023 appearance samples in both views were used in the training step, while eight
individuals with 1247 appearance samples in both views were used in the testing step
(Note that in this case we added one person in the testing phase).

Fig. 9. A matching success comparison in the same FOV (Intra-camera) using different color
histogram extraction method.

In the figure 9 are presented the results relative to the intra-camera histogram color tracking.

As described in section 4 we evaluated four different approaches to estimate the color
histogram from extracted people patches. The similarity between color histogram features
belonging to different foreground patches, was measured by means of eq. 27 based on the
Bhattacharyya distance (eq. 24). The highest value of eq. 27, among the designated patch and
all the possible candidates (seven different people in the same FOV), determines the tracking
association. As it is shown in figure 9 it is possible to notice how the positional histogram
approach gives better result in term of match rate. By using positional histogram, in fact, it is
possible to preserve the color histogram spatial information. In particular we used partition
masks based on circular sector with nr = 2 and ns = 4 (see figure 6a). In this context this kind

224 Object Tracking

of masks gave best performance in terms of correct matching rate. In this way, in fact, color
histograms of different body parts of each patch are compared with the correspondent parts of
the another persons (see subsection 4.2). Results confirm that this color histogram extraction
approach discriminates better among the different possible candidates.

Fig. 10. A matching success comparison in establishing correspondence across cameras using
varying color histogram extraction method and different Brightness Transfer Function
Estimation.

In figure 10, the results relative to the tracking across different non overlapping cameras,
are shown. The experiments consist of a training phase and a testing phase. During the
training phase we supposed that the correspondence between the same object in the different

cameras’FOV was known and this information was used to estimate the Mean Brightness
Transfer Function (MBTF) and the Cumulative Brightness Transfer Function (CBTF). In the
testing phase the correspondences between cameras were computed using eq. 27 based on
Bhattacharyya distance, and the correct match was associated with the highest value of eq.
27 among all the possible couple of candidates. As it can be noticed, in the testing phase we
consider seven people that were present in both views. As described in section 5 we tested
two approaches to estimate BTFs among the two cameras: the MBTF and the CBTF. For each
people patch we converted his RGB histogram (extracted in the different way described in
section 4) into the target region color space (i.e. from camera C1 to camera C2). They were
compared against all individuals observed in this region. In particular we estimated the mean
color histogram for the same person in each view and we compared each converted histogram
against it. In figure 10 we report both the rank1 and rank2 results indicating the correct match
presence as the highest and the second highest similarity score respectively. As figure shows
both transfer functions (MBTF and CBTF) gave quite similar behaviors in term of match rates
but it should be noted that the CBTF outperform MBTF in the rank1 and rank2 results (we

matched the histogram also against the mean histogram of the people contained in the training
set). Note that, only in the case of the one elliptic mask approach MBTF gives better results
than CBTF (the difference is very narrow). However the overall performances confirmed that

225Object Tracking in Multiple Cameras with Disjoint Views

parts we used the same data set. The data-set consisted of synchronized mjpeg videos acquired
simultaneously by two different cameras containing eight persons. The patches come from a
single camera object detection method described in (Mazzeo et. al, 2008).The data set was
obtained by extracting people from whole Field of View of each camera. Note that we did
not consider any geometrical constraint on the exiting and entering areas of people moving in
the observed scenario. We carried out different experiments using different sets of samples as
follows:

• First experiment ten people giving 1456 appearance sample (coming from the same FOV)
are used as testing data in order to evaluate the performance of different color histogram
extraction methods (See section 4).

• In second experiment we have a training and a testing data set: seven individuals giving
1023 appearance samples in both views were used in the training step, while eight
individuals with 1247 appearance samples in both views were used in the testing step
(Note that in this case we added one person in the testing phase).

Fig. 9. A matching success comparison in the same FOV (Intra-camera) using different color
histogram extraction method.

In the figure 9 are presented the results relative to the intra-camera histogram color tracking.

As described in section 4 we evaluated four different approaches to estimate the color
histogram from extracted people patches. The similarity between color histogram features
belonging to different foreground patches, was measured by means of eq. 27 based on the
Bhattacharyya distance (eq. 24). The highest value of eq. 27, among the designated patch and
all the possible candidates (seven different people in the same FOV), determines the tracking
association. As it is shown in figure 9 it is possible to notice how the positional histogram
approach gives better result in term of match rate. By using positional histogram, in fact, it is
possible to preserve the color histogram spatial information. In particular we used partition
masks based on circular sector with nr = 2 and ns = 4 (see figure 6a). In this context this kind

224 Object Tracking

of masks gave best performance in terms of correct matching rate. In this way, in fact, color
histograms of different body parts of each patch are compared with the correspondent parts of
the another persons (see subsection 4.2). Results confirm that this color histogram extraction
approach discriminates better among the different possible candidates.

Fig. 10. A matching success comparison in establishing correspondence across cameras using
varying color histogram extraction method and different Brightness Transfer Function
Estimation.

In figure 10, the results relative to the tracking across different non overlapping cameras,
are shown. The experiments consist of a training phase and a testing phase. During the
training phase we supposed that the correspondence between the same object in the different

cameras’FOV was known and this information was used to estimate the Mean Brightness
Transfer Function (MBTF) and the Cumulative Brightness Transfer Function (CBTF). In the
testing phase the correspondences between cameras were computed using eq. 27 based on
Bhattacharyya distance, and the correct match was associated with the highest value of eq.
27 among all the possible couple of candidates. As it can be noticed, in the testing phase we
consider seven people that were present in both views. As described in section 5 we tested
two approaches to estimate BTFs among the two cameras: the MBTF and the CBTF. For each
people patch we converted his RGB histogram (extracted in the different way described in
section 4) into the target region color space (i.e. from camera C1 to camera C2). They were
compared against all individuals observed in this region. In particular we estimated the mean
color histogram for the same person in each view and we compared each converted histogram
against it. In figure 10 we report both the rank1 and rank2 results indicating the correct match
presence as the highest and the second highest similarity score respectively. As figure shows
both transfer functions (MBTF and CBTF) gave quite similar behaviors in term of match rates
but it should be noted that the CBTF outperform MBTF in the rank1 and rank2 results (we

matched the histogram also against the mean histogram of the people contained in the training
set). Note that, only in the case of the one elliptic mask approach MBTF gives better results
than CBTF (the difference is very narrow). However the overall performances confirmed that

225Object Tracking in Multiple Cameras with Disjoint Views

CBTF retained more color information than MBTF and produced a more accurate mapping
function. The same figure 10 shows a comparison among different color histogram extraction
approaches, the match rates confirmed that positional histogram gave the best results. And
this is what we expect for the reason explained in the first part of this section. Finally, figure
11 shows the mean and standard deviation of the different color histogram extraction method
applied on the patch set used in both part of the experiment. Even these values demonstrate
that positional histogram gives the greatest mean score with the lowest standard deviation.
It means that the positional histogram has the capability to catch more useful information
from the people patches in order to establish correspondences among different same people
appearances. Definitely positional histogram method maps the data among the people classes
better than the others.

8. Final considerations and future work

This book chapter presented a dissertation on the feasibility of multi-camera tracking
algorithms based on the appearance similarity. We considered only two non overlapping
cameras located inside an office building. We investigated the reliability of appearance
similarity methods to track people in the same FOV and among different FOVs. Then we
evaluated different color histogram extraction methods, with different elliptic masks and
positional histogram. The obtained results demonstrated that using positional histograms
improved overall results in terms of matching rate. Also, we compared two different kinds
of Brightness Transfer Function, i.e. the MBTF and the CBTF. The experiments demonstrated
quite similar behaviors of the two transferring functions when the simple association problem

has to be solved.

Fig. 11. Mean and standard deviation of the matching rate using different color extraction
method to establish the correspondence between the two cameras.

226 Object Tracking

Future work will be addressed on the study of new methodologies for more reliable
appearance modelling. As we described in this chapter it is known that people’s appearances
can be similar in some parts of the body and differ in other parts. So we are thinking to apply
some methodologies based on the extraction patch histogram graph. Then, we use different
weights in the correspondence matches in order to consider different body parts reliability
and highlight only the significant differences among the people appearances.

9. References

O. Javed, K.Safique,Z,Rasheed,M. Shah Modeling inter camera space-time and apperacnce
relationships for tracking across non-overlapping views, Computer Vision and Image
Understanding, Vol.109, 146-162, 2008

W. Du, J. Piater, Data Fusion by Belief Propagation for Multi-Camera Tracking, The 9th
International Conference on Information Fusion, 2006.

W. Du, J. Piater, Multi-Camera People Tracking by Collaborative Particle Filters and Principal
Axis-Based Integration Asian Conference on Computer Vision, Springer LNCS 4843 pp.
365-374, 2007.

A. Chilgunde, P. Kumar, S. Ranganath, H. WeiMin, Multi-Camera Target Tracking in Blind
Regions of Cameras with Non-overlapping Fields of View, British Machine Vision
Conference BMVC, Kingston, 7th-9th Sept, 2004.

Q. Cai, J.K. Aggarwal, Tracking human motion in structured environments using a distributed
camera system, IEEE Trans. Pattern Anal. Mach. Intell. 2 (11)1241-1247, 1999.

F. Porikli, Inter-camera color calibration using cross-correlation model function, IEEE Int. Conf.
on Image Processing, 2003.

Y. Shan, H.S. Sahwney, R. Kumar, Unsupervised learning of discriminative edge measures for
vehicle matching between nonoverlapping cameras, IEEE Conf. on Computer Vision
and Pattern Recognition, 2005.

B. Prosser, S. Gong, T. Xiang, Multi-camera Matching using Bi-Directional Cumulative
Brightness Transfer Functions, British Machine Vision Conference, 2008.

C. Madden, E.D. Cheng, M. Piccardi Tracking people across disjoint camera views by an
illumination-tolerant appearance representation, Machine Vision and Application, 18,
pp 233-247, 2007.

K. Jeong, C. Jaynes Object matching in disjoint cameras using a color transfer approach,
Machine Vision and Application, 19 , pp 443-455, 2008.

M. Oren, S.K. Nayar Generalization of the Lambertian model and implications for machine
vision, International Journal of Computer Vision, 14(3) , pp 227-251, 1995.

Horn, B.K.P. (1986). Robot Vision,MIT Press Cambridge.
Swain, M.J.; Ballard, D.H. (1990). Indexing via color histograms, in IEEE International

Conference on Computer Vision.
Grossberg, M.D.; Nayar, S.K. (2003). Determing the camera response from images: what is

knowable?, in IEEE Transaction in Pattern Analysis and Machine Intelligence, 25(11), pp.
1455-1467.

Comaniciu, D.; Ramesh, V.; Meer P. (2003). Kernel-based object tracking, in IEEE Transaction
in Pattern Analysis and Machine Intelligence, 25, pp. 564-575.

227Object Tracking in Multiple Cameras with Disjoint Views

CBTF retained more color information than MBTF and produced a more accurate mapping
function. The same figure 10 shows a comparison among different color histogram extraction
approaches, the match rates confirmed that positional histogram gave the best results. And
this is what we expect for the reason explained in the first part of this section. Finally, figure
11 shows the mean and standard deviation of the different color histogram extraction method
applied on the patch set used in both part of the experiment. Even these values demonstrate
that positional histogram gives the greatest mean score with the lowest standard deviation.
It means that the positional histogram has the capability to catch more useful information
from the people patches in order to establish correspondences among different same people
appearances. Definitely positional histogram method maps the data among the people classes
better than the others.

8. Final considerations and future work

This book chapter presented a dissertation on the feasibility of multi-camera tracking
algorithms based on the appearance similarity. We considered only two non overlapping
cameras located inside an office building. We investigated the reliability of appearance
similarity methods to track people in the same FOV and among different FOVs. Then we
evaluated different color histogram extraction methods, with different elliptic masks and
positional histogram. The obtained results demonstrated that using positional histograms
improved overall results in terms of matching rate. Also, we compared two different kinds
of Brightness Transfer Function, i.e. the MBTF and the CBTF. The experiments demonstrated
quite similar behaviors of the two transferring functions when the simple association problem

has to be solved.

Fig. 11. Mean and standard deviation of the matching rate using different color extraction
method to establish the correspondence between the two cameras.

226 Object Tracking

Future work will be addressed on the study of new methodologies for more reliable
appearance modelling. As we described in this chapter it is known that people’s appearances
can be similar in some parts of the body and differ in other parts. So we are thinking to apply
some methodologies based on the extraction patch histogram graph. Then, we use different
weights in the correspondence matches in order to consider different body parts reliability
and highlight only the significant differences among the people appearances.

9. References

O. Javed, K.Safique,Z,Rasheed,M. Shah Modeling inter camera space-time and apperacnce
relationships for tracking across non-overlapping views, Computer Vision and Image
Understanding, Vol.109, 146-162, 2008

W. Du, J. Piater, Data Fusion by Belief Propagation for Multi-Camera Tracking, The 9th
International Conference on Information Fusion, 2006.

W. Du, J. Piater, Multi-Camera People Tracking by Collaborative Particle Filters and Principal
Axis-Based Integration Asian Conference on Computer Vision, Springer LNCS 4843 pp.
365-374, 2007.

A. Chilgunde, P. Kumar, S. Ranganath, H. WeiMin, Multi-Camera Target Tracking in Blind
Regions of Cameras with Non-overlapping Fields of View, British Machine Vision
Conference BMVC, Kingston, 7th-9th Sept, 2004.

Q. Cai, J.K. Aggarwal, Tracking human motion in structured environments using a distributed
camera system, IEEE Trans. Pattern Anal. Mach. Intell. 2 (11)1241-1247, 1999.

F. Porikli, Inter-camera color calibration using cross-correlation model function, IEEE Int. Conf.
on Image Processing, 2003.

Y. Shan, H.S. Sahwney, R. Kumar, Unsupervised learning of discriminative edge measures for
vehicle matching between nonoverlapping cameras, IEEE Conf. on Computer Vision
and Pattern Recognition, 2005.

B. Prosser, S. Gong, T. Xiang, Multi-camera Matching using Bi-Directional Cumulative
Brightness Transfer Functions, British Machine Vision Conference, 2008.

C. Madden, E.D. Cheng, M. Piccardi Tracking people across disjoint camera views by an
illumination-tolerant appearance representation, Machine Vision and Application, 18,
pp 233-247, 2007.

K. Jeong, C. Jaynes Object matching in disjoint cameras using a color transfer approach,
Machine Vision and Application, 19 , pp 443-455, 2008.

M. Oren, S.K. Nayar Generalization of the Lambertian model and implications for machine
vision, International Journal of Computer Vision, 14(3) , pp 227-251, 1995.

Horn, B.K.P. (1986). Robot Vision,MIT Press Cambridge.
Swain, M.J.; Ballard, D.H. (1990). Indexing via color histograms, in IEEE International

Conference on Computer Vision.
Grossberg, M.D.; Nayar, S.K. (2003). Determing the camera response from images: what is

knowable?, in IEEE Transaction in Pattern Analysis and Machine Intelligence, 25(11), pp.
1455-1467.

Comaniciu, D.; Ramesh, V.; Meer P. (2003). Kernel-based object tracking, in IEEE Transaction
in Pattern Analysis and Machine Intelligence, 25, pp. 564-575.

227Object Tracking in Multiple Cameras with Disjoint Views

Mazzeo, P.L.; Spagnolo, P.; Leo, M.; D’Orazio T (2008). Visual Player Detection and Tracking
in Soccer Matches, in IEEE Fifth International Conference on Advanced Video and Signal
Based Surveillance AVSS, pp. 326-333.

228 Object Tracking

12

Object Tracking for Calibration of Distributed
Sensors in Intelligent Space

Takeshi Sasaki and Hideki Hashimoto
The University of Tokyo

Japan

1. Introduction
In recent years, the research field on smart environments, which are spaces with multiple
embedded and networked sensors and actuators, has been expanding (Cook & Das, 2004).
The main purpose for the introduction of smart environments is to support humans in both
physical and informative ways (Johanson et al., 2002), (Mynatt et al., 2004), (Mizoguchi et al.,
1999). In smart environments, the distributed sensor nodes observe the spaces, extract useful
information from the obtained data and the actuators including mobile robots provide
various services to users. Moreover, robots in the space can get necessary information from
the smart environment and operate without restrictions due to the capability of on-board
sensors and computers. In fact, mobile robot control is easier in smart environments since
the global positions can be directly measured by using distributed sensors and
Simultaneous Localization And Mapping (SLAM) problem (Durrant-Whyte & Bailey, 2006),
where the robot tries to simultaneously estimate its own location and build a map of the
environment, can be completely avoided (Lee & Hashimoto, 2003).
However, one of the major problems in developing smart environments is calibration of the
sensors. Calibration is needed for proper calculation from the local (sensor's) coordinate
system to the world (smart environment's) coordinate system and it is usually done by using
calibration objects that are objects with known positions, shapes and so on. For example,
researches on camera calibration based on geometrical features including 3D points (Tsai, R.
Y., 1987), 2D points (Sturm & Maybank, 1999), (Zhang, 2000), lines (Zhang, 2004), circles (Wu
et al., 2004), and spheres (Agrawal & Davis, 2003) are being pursued actively. Several
researchers extended such a single camera calibration algorithm to a multiple-camera
calibration algorithm. An extension of a planar point pattern based calibration algorithm to the
multi-camera systems with an arbitrary number of cameras is presented in (Ueshiba & Tomita,
2003). The algorithm is based on factorization of homography matrices between the model and
image planes, which is expressed as a composition of a camera projection matrix and a plane
parameter matrix. If a calibration object is put in three or more places, the relative positions
and orientations between cameras as well as the intrinsic camera parameters are determined.
Another work also utilized a known 2D calibration object for stereo camera calibration (Malm
& Heyden, 2001). The technique uses both stereo camera constraints and single camera
constraints, and therefore noise-robust calibration is realized.
In the case of smart environments, it takes a great deal of time and efforts to calibrate the
sensors since multiple sensors are distributed in the space. Although the researches

Mazzeo, P.L.; Spagnolo, P.; Leo, M.; D’Orazio T (2008). Visual Player Detection and Tracking
in Soccer Matches, in IEEE Fifth International Conference on Advanced Video and Signal
Based Surveillance AVSS, pp. 326-333.

228 Object Tracking

12

Object Tracking for Calibration of Distributed
Sensors in Intelligent Space

Takeshi Sasaki and Hideki Hashimoto
The University of Tokyo

Japan

1. Introduction
In recent years, the research field on smart environments, which are spaces with multiple
embedded and networked sensors and actuators, has been expanding (Cook & Das, 2004).
The main purpose for the introduction of smart environments is to support humans in both
physical and informative ways (Johanson et al., 2002), (Mynatt et al., 2004), (Mizoguchi et al.,
1999). In smart environments, the distributed sensor nodes observe the spaces, extract useful
information from the obtained data and the actuators including mobile robots provide
various services to users. Moreover, robots in the space can get necessary information from
the smart environment and operate without restrictions due to the capability of on-board
sensors and computers. In fact, mobile robot control is easier in smart environments since
the global positions can be directly measured by using distributed sensors and
Simultaneous Localization And Mapping (SLAM) problem (Durrant-Whyte & Bailey, 2006),
where the robot tries to simultaneously estimate its own location and build a map of the
environment, can be completely avoided (Lee & Hashimoto, 2003).
However, one of the major problems in developing smart environments is calibration of the
sensors. Calibration is needed for proper calculation from the local (sensor's) coordinate
system to the world (smart environment's) coordinate system and it is usually done by using
calibration objects that are objects with known positions, shapes and so on. For example,
researches on camera calibration based on geometrical features including 3D points (Tsai, R.
Y., 1987), 2D points (Sturm & Maybank, 1999), (Zhang, 2000), lines (Zhang, 2004), circles (Wu
et al., 2004), and spheres (Agrawal & Davis, 2003) are being pursued actively. Several
researchers extended such a single camera calibration algorithm to a multiple-camera
calibration algorithm. An extension of a planar point pattern based calibration algorithm to the
multi-camera systems with an arbitrary number of cameras is presented in (Ueshiba & Tomita,
2003). The algorithm is based on factorization of homography matrices between the model and
image planes, which is expressed as a composition of a camera projection matrix and a plane
parameter matrix. If a calibration object is put in three or more places, the relative positions
and orientations between cameras as well as the intrinsic camera parameters are determined.
Another work also utilized a known 2D calibration object for stereo camera calibration (Malm
& Heyden, 2001). The technique uses both stereo camera constraints and single camera
constraints, and therefore noise-robust calibration is realized.
In the case of smart environments, it takes a great deal of time and efforts to calibrate the
sensors since multiple sensors are distributed in the space. Although the researches

Object Tracking

230

mentioned above aim to lighten this enormous work, our research purpose is to automate
the calibration process with satisfactory accuracy. In order to solve this problem, mobile
robots have been used for realizing automated calibration. Mobile robots can cover wide
areas of the environment by moving from place to place so there is no need to place many
landmarks in exactly known positions beforehand. Some researchers focus on node
localization in wireless sensor networks using mobile robots (Shenoy & Tan, 2005),
(Sreenath et al., 2006). In the methods, each mobile robot broadcasts its position information
and if a wireless sensor node can get the information, the node is considered to be located
adjacent to the robot. An effective path planning of mobile robots for wireless node
localization is also addressed in (Koutsonikolas et al., 2006). Although the sensor nodes just
receive the position information from the robots in these researches, the measurement of the
sensors can also be used for calibration. In (Rekleitis & Dudek, 2005), which is closely
related to our work shown in this chapter, camera sensor network is calibrated based on
grid patterns attached to a mobile robot. We also introduce a mobile robot assisted
calibration method and use the position information of the robot to calibrate distributed
sensors including laser range finders and cameras. Hereby we can add a calibration function
without major changes in the system because we can use existing moving object tracking
and mobile robot localization functions of smart environments.
Next section gives a brief introduction of our smart environment which is called “Intelligent
Space (iSpace).” Section 3 and 4 describe the automated calibration method based on the
mobile robot tracking for distributed laser range finders and cameras, respectively. Mobile
robot localization used in the calibration method is explained in section 5. Experimental
results of the proposed method and comparison with the manual calibration are shown in
section 6. Finally, a conclusion is given in section 7.

2. Intelligent space
“Intelligent Space (iSpace)” has been proposed by Hashimoto laboratory at The University
of Tokyo (Lee & Hashimoto, 2002). Figure 1 shows the concept of iSpace. We call the sensor
node devices distributed in the space DINDs (Distributed Intelligent Network Device). A
DIND consists of three basic components: sensors, processors and communication devices.
The processors deal with the sensed data and extract information about objects (type of
object, three dimensional position, etc.), users (identification, posture, activity, etc.), and the
environment (geometrical shape, temperature, emergency, etc.). The network of DINDs can
realize the observation and recognition/understanding of the events in the whole space.
Based on the extracted and fused information, actuators such as displays or projectors
embedded in the space provide informative services to users. In iSpace, mobile robots are
also used as actuators to provide physical services to the users and for them we use the
name mobile agents.
Figure 2 shows a configuration of the iSpace implementation in our laboratory. CCD
cameras, laser range finders, and a 3D ultrasound positioning system are used as sensors of
DINDs. The laser range finders are placed close to the ground horizontally (about 20 cm
above the floor). The advantage of the low position is that it is possible to scan also
relatively short objects, assuring that all objects on the floor will enter the scan. The 3D
ultrasound positioning system involves 112 ultrasonic receivers installed on the ceiling. This
system can measure the three dimensional position of an ultrasonic transmitter (tag) to an

Object Tracking for Calibration of Distributed Sensors in Intelligent Space

231

accuracy of 20-80 millimeters using triangulation. Moreover, differential wheeled robots are
used as mobile agents. For estimating the position and orientation of the robot, an ultrasonic
transmitter is installed on the top of the mobile robot. The mobile robot is also equipped
with a wireless network device to communicate with iSpace.

 Sensor Network

Space

Human

DIND 1

Non physical
service Physical

Service

DIND n

DIND 3

DIND 2

Information,
ControlMonitoring,

Comprehension

 Agent
(Robot)

DIND 4

Camera 3D-UPS

Position,
Direction

Fig. 1. Concept of Intelligent Space (iSpace)

Fig. 2. Configuration of Intelligent Space – sensors and mobile robots

Object Tracking

230

mentioned above aim to lighten this enormous work, our research purpose is to automate
the calibration process with satisfactory accuracy. In order to solve this problem, mobile
robots have been used for realizing automated calibration. Mobile robots can cover wide
areas of the environment by moving from place to place so there is no need to place many
landmarks in exactly known positions beforehand. Some researchers focus on node
localization in wireless sensor networks using mobile robots (Shenoy & Tan, 2005),
(Sreenath et al., 2006). In the methods, each mobile robot broadcasts its position information
and if a wireless sensor node can get the information, the node is considered to be located
adjacent to the robot. An effective path planning of mobile robots for wireless node
localization is also addressed in (Koutsonikolas et al., 2006). Although the sensor nodes just
receive the position information from the robots in these researches, the measurement of the
sensors can also be used for calibration. In (Rekleitis & Dudek, 2005), which is closely
related to our work shown in this chapter, camera sensor network is calibrated based on
grid patterns attached to a mobile robot. We also introduce a mobile robot assisted
calibration method and use the position information of the robot to calibrate distributed
sensors including laser range finders and cameras. Hereby we can add a calibration function
without major changes in the system because we can use existing moving object tracking
and mobile robot localization functions of smart environments.
Next section gives a brief introduction of our smart environment which is called “Intelligent
Space (iSpace).” Section 3 and 4 describe the automated calibration method based on the
mobile robot tracking for distributed laser range finders and cameras, respectively. Mobile
robot localization used in the calibration method is explained in section 5. Experimental
results of the proposed method and comparison with the manual calibration are shown in
section 6. Finally, a conclusion is given in section 7.

2. Intelligent space
“Intelligent Space (iSpace)” has been proposed by Hashimoto laboratory at The University
of Tokyo (Lee & Hashimoto, 2002). Figure 1 shows the concept of iSpace. We call the sensor
node devices distributed in the space DINDs (Distributed Intelligent Network Device). A
DIND consists of three basic components: sensors, processors and communication devices.
The processors deal with the sensed data and extract information about objects (type of
object, three dimensional position, etc.), users (identification, posture, activity, etc.), and the
environment (geometrical shape, temperature, emergency, etc.). The network of DINDs can
realize the observation and recognition/understanding of the events in the whole space.
Based on the extracted and fused information, actuators such as displays or projectors
embedded in the space provide informative services to users. In iSpace, mobile robots are
also used as actuators to provide physical services to the users and for them we use the
name mobile agents.
Figure 2 shows a configuration of the iSpace implementation in our laboratory. CCD
cameras, laser range finders, and a 3D ultrasound positioning system are used as sensors of
DINDs. The laser range finders are placed close to the ground horizontally (about 20 cm
above the floor). The advantage of the low position is that it is possible to scan also
relatively short objects, assuring that all objects on the floor will enter the scan. The 3D
ultrasound positioning system involves 112 ultrasonic receivers installed on the ceiling. This
system can measure the three dimensional position of an ultrasonic transmitter (tag) to an

Object Tracking for Calibration of Distributed Sensors in Intelligent Space

231

accuracy of 20-80 millimeters using triangulation. Moreover, differential wheeled robots are
used as mobile agents. For estimating the position and orientation of the robot, an ultrasonic
transmitter is installed on the top of the mobile robot. The mobile robot is also equipped
with a wireless network device to communicate with iSpace.

 Sensor Network

Space

Human

DIND 1

Non physical
service Physical

Service

DIND n

DIND 3

DIND 2

Information,
ControlMonitoring,

Comprehension

 Agent
(Robot)

DIND 4

Camera 3D-UPS

Position,
Direction

Fig. 1. Concept of Intelligent Space (iSpace)

Fig. 2. Configuration of Intelligent Space – sensors and mobile robots

Object Tracking

232

3. Automated calibration of distributed laser range finders
3.1 Overview of the method
Our goal is to find transformation parameters (translation vector T and rotation matrix R)
from the laser range finder coordinates to the world coordinates. Since the laser range
finders are placed horizontally as noted in section 2, the calibration parameters are position
and orientation of the laser range finder in 2D plane (Tixg, Tiyg, θig) (i=1, 2, ..., N), where N and
i denote the number of laser range finders in the environment and index of each laser range
finder, respectively. As mentioned in section 1, we utilize mobile robots in iSpace to realize
the automated calibration. Figure 3 shows the overview of the calibration method.
Let WO−WxWy be the coordinate system fixed to iSpace (world coordinate system) and
LiO−LixLiy be the coordinate system fixed to the ith laser range finder (laser range finder i
coordinate system). First, each DIND tracks the mobile agents and gets the position of the
mobile robots in the local coordinate system (xik, yik). The DINDs also request the position
server in iSpace where the postion information of objects is collected and stored to send the
position of the robot in the world coordinate system (xgk, ygk). The calibration process is then
performed based on the set of corresponding points {(xgk, ygk), (xik, yik)} (k = 1, 2, ..., n).

Fig. 3. Calibration of a laser range finder using a mobile robot

In the following subsections, the functions needed for the proposed calibration method are
described. Tracking of moving objects and pose estimation from a set of corresponding
points are explained in section 3.2 and 3.3, respectively.

3.2 Object tracking using a laser range finder
The tracking process consists of extraction of objects, estimation of the object centers and
tracking using Kalman Filter.
Figure 4 shows the the object extraction. In the extraction process, background subtraction is
first applied. The static parts of scan (background) are subtracted from the scan data in
order for determining which parts of the scan are due to moving objects (foreground). The
scan points in the foreground are then clustered based on the Euclidean distance between
them using a nearest neighbor classifier. This divides the foreground to a number of

Object Tracking for Calibration of Distributed Sensors in Intelligent Space

233

clusters, each belonging to one of the tracked objects. Clusters with a small number of scan
points are discarded as measurement noise. Data association is based on the Euclidean
distance. The position of cluster centers are compared with the positions of currently
tracked objects and each cluster is assigned to the closest object. The clusters that are far
from all currently tracked objects are considered as new objects, and a new tracking process
is started for them.
From the previous step the positions of cluster centers were obtained. But since the objects
are scanned from one side, the center of the obtained cluster of points (xcl, ycl) in general
does not coincide with the center of the tracked object (xobj, yobj). So, as shown in Fig. 5, the
object center is assumed to be at a fixed distance d from the center of the cluster of scan
points belonging to it, that is,

cos()
sin()

obj cl

obj cl

x x d
y y d

α

α

= +

= +
 (1)

where α is the angle of the line between the laser range finder and the center of the cluster,
and d is a parameter depending on the radius of the object. In our experiments d was set to 6
centimeters for human (i.e. human’s leg) and 15 centimeters for the mobile robot.

(a) (b)

(b) (d)

Fig. 4. Process of object extraction using laser range finder (a) raw scan data, (b) static part of
the scan (background), (c) result of background subtraction (foreground), (d) result of
clustering and centers of the clusters. The units of x and y are in meters.

Object Tracking

232

3. Automated calibration of distributed laser range finders
3.1 Overview of the method
Our goal is to find transformation parameters (translation vector T and rotation matrix R)
from the laser range finder coordinates to the world coordinates. Since the laser range
finders are placed horizontally as noted in section 2, the calibration parameters are position
and orientation of the laser range finder in 2D plane (Tixg, Tiyg, θig) (i=1, 2, ..., N), where N and
i denote the number of laser range finders in the environment and index of each laser range
finder, respectively. As mentioned in section 1, we utilize mobile robots in iSpace to realize
the automated calibration. Figure 3 shows the overview of the calibration method.
Let WO−WxWy be the coordinate system fixed to iSpace (world coordinate system) and
LiO−LixLiy be the coordinate system fixed to the ith laser range finder (laser range finder i
coordinate system). First, each DIND tracks the mobile agents and gets the position of the
mobile robots in the local coordinate system (xik, yik). The DINDs also request the position
server in iSpace where the postion information of objects is collected and stored to send the
position of the robot in the world coordinate system (xgk, ygk). The calibration process is then
performed based on the set of corresponding points {(xgk, ygk), (xik, yik)} (k = 1, 2, ..., n).

Fig. 3. Calibration of a laser range finder using a mobile robot

In the following subsections, the functions needed for the proposed calibration method are
described. Tracking of moving objects and pose estimation from a set of corresponding
points are explained in section 3.2 and 3.3, respectively.

3.2 Object tracking using a laser range finder
The tracking process consists of extraction of objects, estimation of the object centers and
tracking using Kalman Filter.
Figure 4 shows the the object extraction. In the extraction process, background subtraction is
first applied. The static parts of scan (background) are subtracted from the scan data in
order for determining which parts of the scan are due to moving objects (foreground). The
scan points in the foreground are then clustered based on the Euclidean distance between
them using a nearest neighbor classifier. This divides the foreground to a number of

Object Tracking for Calibration of Distributed Sensors in Intelligent Space

233

clusters, each belonging to one of the tracked objects. Clusters with a small number of scan
points are discarded as measurement noise. Data association is based on the Euclidean
distance. The position of cluster centers are compared with the positions of currently
tracked objects and each cluster is assigned to the closest object. The clusters that are far
from all currently tracked objects are considered as new objects, and a new tracking process
is started for them.
From the previous step the positions of cluster centers were obtained. But since the objects
are scanned from one side, the center of the obtained cluster of points (xcl, ycl) in general
does not coincide with the center of the tracked object (xobj, yobj). So, as shown in Fig. 5, the
object center is assumed to be at a fixed distance d from the center of the cluster of scan
points belonging to it, that is,

cos()
sin()

obj cl

obj cl

x x d
y y d

α

α

= +

= +
 (1)

where α is the angle of the line between the laser range finder and the center of the cluster,
and d is a parameter depending on the radius of the object. In our experiments d was set to 6
centimeters for human (i.e. human’s leg) and 15 centimeters for the mobile robot.

(a) (b)

(b) (d)

Fig. 4. Process of object extraction using laser range finder (a) raw scan data, (b) static part of
the scan (background), (c) result of background subtraction (foreground), (d) result of
clustering and centers of the clusters. The units of x and y are in meters.

Object Tracking

234

Fig. 5. Estimation of object center
Moreover, in order to distinguish between humans and mobile robots, the number of
clusters belonging to an object is used since two clusters belonging to his/her legs are
detected in the case of tracking a human. In our implementation we gradually determine the
type of object by filtering the number of clusters. Only the positions of mobile robots are
used for calibration purpose.
Finally, the Kalman filter is applied to track the objects.
The details of our laser range finder based tracking method and evaluation of the method
are described in (Brscic & Hashimoto, 2006).

3.3 Calibration of laser range finders based on the corresponding points
In the calibration process, the position and orientation of the laser range finders in the world
coordinate system (Tixg, Tiyg, θig) is calculated. We solve the least square error problem
denoted by the following equation:

 ()2 2 2

1
(cos sin) (sin cos)

n
g gi i i i i i i i i i

g k g k xg g k g k ygk k
k

x x y T y x y Tε θ θ θ θ
=

= − + − + − − −∑ (2)

where the indices g and i represent the obtained global and local coordinates respectively. If
more than one set of corresponding points are obtained, we can derive the following

estimates from
2

0i
xgT
ε∂

=
∂

,
2

0i
ygT
ε∂

=
∂

, and
2

0i
g

ε
θ
∂

=
∂

:

 i
y

i
g

i
x

i
g

g
x

i
xgT μθμθμ sincos +−= (3)

 i
y

i
g

i
x

i
g

g
y

i
ygT μθμθμ cossin −−= (4)

()

()
⎟
⎟

⎠

⎞
−−

+

⎜
⎜

⎝

⎛
−+

−−
=

∑

∑

=

=

i
y

g
y

i
x

g
x

n

k

i
k

g
k

i
k

g
k

i
x

g
y

i
y

g
x

n

k

i
k

g
k

i
k

g
ki

g

n
yyxx

n
xyyx

μμμμ

μμμμθ

1

1
,2atan

 (5)

Object Tracking for Calibration of Distributed Sensors in Intelligent Space

235

where atan2(·) denotes the four-quadrant inverse tangent function and μ’s stand for mean
values, for example:

1

1 n
gg

x k
k

x
n

μ
=

= ∑ (6)

The problem with least-squares estimation as given by equations (3)-(5) is sensitivity to
outliers. Since robot tracking is done online it is possible that outliers, such as
miscorrespondence between data can easily appear. In order to eliminate the effect of
outliers instead of simple least squares we use the least median of squares (LMedS) based
estimation. In the LMedS method, the estimation error is evaluated by not the sum of the
square error but its median value.
The automated calibration process is summarized as follows:
1. Store corresponding points (xgk, ygk), (xik, yik) acquired by the robot tracking process
2. Sample 2 data randomly from the set of corresponding points
3. Calculate (Tixg, Tiyg, θig) from the sampled data using equations (3)-(5)
4. Evaluate the estimation error by the median of the square error for all corresponding

points
5. Repeat steps 2) – 4) enough times
6. Select (Tixg, Tiyg, θig) which has minimum estimation error as the estimate

4. Automated calibration of distributed cameras
4.1 Overview of the method
The idea of the automated camera calibration is similar to the one explained in the previous
section. Two measurements, the result of robot localization and the tracking result of the
robot, are stored as corresponding points and the calibration is performed based on them.
But, in this case, the position information obtained by a camera is the positions of the robots
on the image plane. In addition, we need to calibrate both the intrinsic and the extrinsic
camera parameters.
In the following subsections, tracking of mobile robots using a camera is explained in
section 4.2 and the calibration method is mentioned in section 4.3.

4.2 Visual tracking of mobile robots
To detect moving objects in iSpace using CCD cameras, a similar algorithm to the one using
laser range finders is implemented. In addition, we utilize color markers installed on a
mobile robot to identify the mobile robot. Since color histogram is stable to deformation and
occlusion of the objects relatively (Swain & Ballard, 1991), it is qualified as unique feature
value to represent each object. Compared with the contour and so on, color histogram of the
object stays largely unchanged against the various images that are captured by the
distributed cameras.
Following three processes are performed to detect color markers.
1. Background subtraction: The background subtraction process compares the current

image frame and an adaptive background image frame to find parts of the image that
have changed due to the moving object.

Object Tracking

234

Fig. 5. Estimation of object center
Moreover, in order to distinguish between humans and mobile robots, the number of
clusters belonging to an object is used since two clusters belonging to his/her legs are
detected in the case of tracking a human. In our implementation we gradually determine the
type of object by filtering the number of clusters. Only the positions of mobile robots are
used for calibration purpose.
Finally, the Kalman filter is applied to track the objects.
The details of our laser range finder based tracking method and evaluation of the method
are described in (Brscic & Hashimoto, 2006).

3.3 Calibration of laser range finders based on the corresponding points
In the calibration process, the position and orientation of the laser range finders in the world
coordinate system (Tixg, Tiyg, θig) is calculated. We solve the least square error problem
denoted by the following equation:

 ()2 2 2

1
(cos sin) (sin cos)

n
g gi i i i i i i i i i

g k g k xg g k g k ygk k
k

x x y T y x y Tε θ θ θ θ
=

= − + − + − − −∑ (2)

where the indices g and i represent the obtained global and local coordinates respectively. If
more than one set of corresponding points are obtained, we can derive the following

estimates from
2

0i
xgT
ε∂

=
∂

,
2

0i
ygT
ε∂

=
∂

, and
2

0i
g

ε
θ
∂

=
∂

:

 i
y

i
g

i
x

i
g

g
x

i
xgT μθμθμ sincos +−= (3)

 i
y

i
g

i
x

i
g

g
y

i
ygT μθμθμ cossin −−= (4)

()

()
⎟
⎟

⎠

⎞
−−

+

⎜
⎜

⎝

⎛
−+

−−
=

∑

∑

=

=

i
y

g
y

i
x

g
x

n

k

i
k

g
k

i
k

g
k

i
x

g
y

i
y

g
x

n

k

i
k

g
k

i
k

g
ki

g

n
yyxx

n
xyyx

μμμμ

μμμμθ

1

1
,2atan

 (5)

Object Tracking for Calibration of Distributed Sensors in Intelligent Space

235

where atan2(·) denotes the four-quadrant inverse tangent function and μ’s stand for mean
values, for example:

1

1 n
gg

x k
k

x
n

μ
=

= ∑ (6)

The problem with least-squares estimation as given by equations (3)-(5) is sensitivity to
outliers. Since robot tracking is done online it is possible that outliers, such as
miscorrespondence between data can easily appear. In order to eliminate the effect of
outliers instead of simple least squares we use the least median of squares (LMedS) based
estimation. In the LMedS method, the estimation error is evaluated by not the sum of the
square error but its median value.
The automated calibration process is summarized as follows:
1. Store corresponding points (xgk, ygk), (xik, yik) acquired by the robot tracking process
2. Sample 2 data randomly from the set of corresponding points
3. Calculate (Tixg, Tiyg, θig) from the sampled data using equations (3)-(5)
4. Evaluate the estimation error by the median of the square error for all corresponding

points
5. Repeat steps 2) – 4) enough times
6. Select (Tixg, Tiyg, θig) which has minimum estimation error as the estimate

4. Automated calibration of distributed cameras
4.1 Overview of the method
The idea of the automated camera calibration is similar to the one explained in the previous
section. Two measurements, the result of robot localization and the tracking result of the
robot, are stored as corresponding points and the calibration is performed based on them.
But, in this case, the position information obtained by a camera is the positions of the robots
on the image plane. In addition, we need to calibrate both the intrinsic and the extrinsic
camera parameters.
In the following subsections, tracking of mobile robots using a camera is explained in
section 4.2 and the calibration method is mentioned in section 4.3.

4.2 Visual tracking of mobile robots
To detect moving objects in iSpace using CCD cameras, a similar algorithm to the one using
laser range finders is implemented. In addition, we utilize color markers installed on a
mobile robot to identify the mobile robot. Since color histogram is stable to deformation and
occlusion of the objects relatively (Swain & Ballard, 1991), it is qualified as unique feature
value to represent each object. Compared with the contour and so on, color histogram of the
object stays largely unchanged against the various images that are captured by the
distributed cameras.
Following three processes are performed to detect color markers.
1. Background subtraction: The background subtraction process compares the current

image frame and an adaptive background image frame to find parts of the image that
have changed due to the moving object.

Object Tracking

236

2. Color histogram matching: The color histogram matching process searches over the
current image and finds target colors which are registered in advance.
In the previous processes, the system does not discriminate if each feature point belongs
to the color marker or is just noise. So we need the following segmentation process to
detect target objects and remove noise.

3. Segmentation: The overlapped areas of results from both background subtraction and
color histogram matching are clustered. Clustering algorithm is based on nearest
neighbor method. If the distance in both the x and y direction between two pixels is
lower than a given threshold, these pixels are considered as part of the same object. In
case that the number of pixels, height or width of the cluster does not get to a certain
value, the cluster is removed as noise.

Figure 6 (left) and (right) show a captured image and the result of the color marker
detection, respectively. We can find that three color markers on the top of the mobile robot
are detected successfully.

Fig. 6. Detection of color markers on a mobile robot using a camera DIND

4.3 Calibration of cameras based on the corresponding points
The automated camera calibration is performed based on the positions of the robots in the
world coordinate system (xgk, ygk) and their corresponding points in the image coordinate
system (uik, vik) (k = 1, 2, ..., n). Here we apply Tsai’s method (Tsai, 1987) for the calibration.
Although the method requires a 3D calibration object, we can use mobile robots with
different heights or multiple markers attached to different heights.
In the Tsai’s method, following 11 parameters are calibrated.
Five intrinsic parameters are:
• f: effective focal length
• κ1: 1st order lens distortion coefficient
• sx: uncertainty scale factor for x
• (Cx, Cy): computer image coordinate for the origin in the image plane
Six extrinsic parameters are:
• Rx, Ry, Rz: rotation angles for the transform between the world and camera coordinate

frames
• Tx, Ty, Tz: translational components for the transform between the world and camera

coordinate frames

Object Tracking for Calibration of Distributed Sensors in Intelligent Space

237

5. Mobile robot localization
In calibration methods based on corresponding points shown in section 3 and 4, the position
information of robots in the world coordinate system is required. In our mobile robot
localization method, the position of the mobile robot measured by the 3D ultrasonic
positioning system installed in the space and the mobile robot on-board sensor data (wheel
encoder) are fused to minimize the position error. In the following subsections, the detail of
the localization method is given.

5.1 Model of the mobile robot
We consider a two-wheeled mobile robot model shown in Fig. 7. Let wO-wxwy be the
coordinate system fixed to iSpace (world coordinate system) and RO-RxRy be the coordinate
system fixed to the mobile robot (robot coordinate system). The position and orientation of
the mobile robot are denoted by (x, y, θ) in the world coordinate system. The control inputs
for the mobile robot are the translational velocity v and rotational velocity ω. Here, the
kinematic model for the mobile robot is expressed as follows:

cos 0
sin 0

0 1

x θ
v

y θ
ω

θ

⎡ ⎤ ⎡ ⎤
⎡ ⎤⎢ ⎥ ⎢ ⎥= ⎢ ⎥⎢ ⎥ ⎢ ⎥ ⎣ ⎦⎢ ⎥ ⎢ ⎥⎣ ⎦⎣ ⎦

 (7)

Fig. 7. Model of a mobile robot

In addition, an ultrasonic transmitter used with the ultrasonic positioning system is installed
on the mobile robot. Its coordinate in the robot coordinate system is (L, 0).

5.2 Localization using extended Kalman filter
The position and orientation of the mobile robot are estimated based on data from iSpace
(the 3D ultrasonic positioning system) and the mobile robot (wheel encoder). These two
measurement data are fused using extended Kalman filter. Extended Kalman filter has been
widely applied to sensor fusion problems and it is computationally-efficient compared to
other probabilistic methods, e.g. particle filter (Thrun et al., 2005).

Object Tracking

236

2. Color histogram matching: The color histogram matching process searches over the
current image and finds target colors which are registered in advance.
In the previous processes, the system does not discriminate if each feature point belongs
to the color marker or is just noise. So we need the following segmentation process to
detect target objects and remove noise.

3. Segmentation: The overlapped areas of results from both background subtraction and
color histogram matching are clustered. Clustering algorithm is based on nearest
neighbor method. If the distance in both the x and y direction between two pixels is
lower than a given threshold, these pixels are considered as part of the same object. In
case that the number of pixels, height or width of the cluster does not get to a certain
value, the cluster is removed as noise.

Figure 6 (left) and (right) show a captured image and the result of the color marker
detection, respectively. We can find that three color markers on the top of the mobile robot
are detected successfully.

Fig. 6. Detection of color markers on a mobile robot using a camera DIND

4.3 Calibration of cameras based on the corresponding points
The automated camera calibration is performed based on the positions of the robots in the
world coordinate system (xgk, ygk) and their corresponding points in the image coordinate
system (uik, vik) (k = 1, 2, ..., n). Here we apply Tsai’s method (Tsai, 1987) for the calibration.
Although the method requires a 3D calibration object, we can use mobile robots with
different heights or multiple markers attached to different heights.
In the Tsai’s method, following 11 parameters are calibrated.
Five intrinsic parameters are:
• f: effective focal length
• κ1: 1st order lens distortion coefficient
• sx: uncertainty scale factor for x
• (Cx, Cy): computer image coordinate for the origin in the image plane
Six extrinsic parameters are:
• Rx, Ry, Rz: rotation angles for the transform between the world and camera coordinate

frames
• Tx, Ty, Tz: translational components for the transform between the world and camera

coordinate frames

Object Tracking for Calibration of Distributed Sensors in Intelligent Space

237

5. Mobile robot localization
In calibration methods based on corresponding points shown in section 3 and 4, the position
information of robots in the world coordinate system is required. In our mobile robot
localization method, the position of the mobile robot measured by the 3D ultrasonic
positioning system installed in the space and the mobile robot on-board sensor data (wheel
encoder) are fused to minimize the position error. In the following subsections, the detail of
the localization method is given.

5.1 Model of the mobile robot
We consider a two-wheeled mobile robot model shown in Fig. 7. Let wO-wxwy be the
coordinate system fixed to iSpace (world coordinate system) and RO-RxRy be the coordinate
system fixed to the mobile robot (robot coordinate system). The position and orientation of
the mobile robot are denoted by (x, y, θ) in the world coordinate system. The control inputs
for the mobile robot are the translational velocity v and rotational velocity ω. Here, the
kinematic model for the mobile robot is expressed as follows:

cos 0
sin 0

0 1

x θ
v

y θ
ω

θ

⎡ ⎤ ⎡ ⎤
⎡ ⎤⎢ ⎥ ⎢ ⎥= ⎢ ⎥⎢ ⎥ ⎢ ⎥ ⎣ ⎦⎢ ⎥ ⎢ ⎥⎣ ⎦⎣ ⎦

 (7)

Fig. 7. Model of a mobile robot

In addition, an ultrasonic transmitter used with the ultrasonic positioning system is installed
on the mobile robot. Its coordinate in the robot coordinate system is (L, 0).

5.2 Localization using extended Kalman filter
The position and orientation of the mobile robot are estimated based on data from iSpace
(the 3D ultrasonic positioning system) and the mobile robot (wheel encoder). These two
measurement data are fused using extended Kalman filter. Extended Kalman filter has been
widely applied to sensor fusion problems and it is computationally-efficient compared to
other probabilistic methods, e.g. particle filter (Thrun et al., 2005).

Object Tracking

238

In order to implement the extended Kalman filter, the model of the system has to be
developed. Discretizing (7), we obtain the following state equation:

k k 1 k 1

k k 1 k 1 k k

k k 1

Δ cos
Δ sin

Δ

x x v t θ
y y v t θ w
θ θ ω t

− −

− −

−

+⎡ ⎤ ⎡ ⎤
⎢ ⎥ ⎢ ⎥= + +⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥+⎣ ⎦ ⎣ ⎦

W (8)

where xk, yk and θk denote position and orientation of the mobile robot at time k, Δt is the
sampling rate, v and ω are the translational velocity and the rotational velocity obtained
from encoders, wk represents the process noise.
The observation equation is expressed as follows:

 zps k k
k k

zps k k

cos
sin

x x L θ
v

y y L θ
⎡ ⎤ +⎡ ⎤

= +⎢ ⎥ ⎢ ⎥+⎢ ⎥ ⎣ ⎦⎣ ⎦
V (9)

where (xzps, yzps) is the position of the ultrasonic transmitter in the world coordinate system
observed by iSpace and vk represents the measurement noise. L is the distance on the central
axis between the tag and robot center, as noted in Fig. 7.
Linearizing the state equation, Jacobian matrix Ak is obtained:

k 1

k k 1

1 0 Δ sinθ
0 1 Δ cosθ
0 0 1

v t
v t

−

−

−⎡ ⎤
⎢ ⎥= ⎢ ⎥
⎢ ⎥⎣ ⎦

A (10)

We consider that the noise on the encoder is white noise with a normal distribution. Here,
the matrix Wk is expressed as follows:

k 1

k k 1

Δ cos 0
Δ sin 0

0 Δ

t θ
t θ

t

−

−

−⎡ ⎤
⎢ ⎥= −⎢ ⎥
⎢ ⎥−⎣ ⎦

W (11)

From the observation equation, the matrix Hk is

 k
k

k

1 0 sin
0 1 cos

L θ
L θ
−⎡ ⎤

= ⎢ ⎥
⎣ ⎦

H (12)

The matrix Vk is determined as follows:

 k
1 0
0 1
⎡ ⎤

= ⎢ ⎥
⎣ ⎦

V (13)

In this research, we assume the process noise covariance Q and measurement noise
covariance R are constant and use diagonal matrices. The values are tuned experimentally.

6. Experiment
6.1 Calibration of distributed laser range finders
In the environment shown in Fig. 8, three laser range finders are calibrated using a mobile
robot. The arrangement of the laser range finders and the actual path of the mobile robot,

Object Tracking for Calibration of Distributed Sensors in Intelligent Space

239

which is estimated by the mobile robot localization method described in the previous
section, are also shown in the figure. The mobile robot entered the room from the right part
of Fig. 8 and circled around the room in clockwise direction. In the mobile robot navigation
system installed in iSpace, to find the best way for the robot to move through the space
towards goals (path planning), the Field D* method (Ferguson & Stentz, 2005) is used.
Moreover, in order for the robot to follow the calculated path and at the same time avoid
bumping into obstacles, the Dynamic Window Approach (DWA) (Fox et al., 1997) is applied
as a local control algorithm.

-2.5

-2

-1.5

-1

-0.5

0

0.5

1

1.5

2

2.5

-2.5 -2 -1.5 -1 -0.5 0 0.5 1 1.5 2 2.5

x [m]

y
[m

]

Laser1Laser2

Laser3

Fig. 8. Experimental environment for calibration of laser range finders – arrangement of the
sensors and path of the mobile robot estimated by the extended Kalman filter

In order to evaluate the accuracy of the proposed method, we make a comparison between
the automated calibration and manual calibration. In the case of manual calibration, a
calibration object (an object which can be well detected by a laser range finder) is placed in
turn on several points with known global coordinates and the calibration parameters are
calculated by (3)–(5).
Table I shows the result of the automated calibration compared to that of manual one. The
maximum difference between manual calibration and automated calibration is 0.11 meters
for translation and 0.06 radians for rotation. The laser range fingers can only measure the
edge of the mobile robot, but the tracking process works well and almost the same result as
manual calibration case is achieved. The tracked positions of the mobile robot in each sensor
node, which are transformed into the global coordinates using the estimated parameters are
shown in Fig. 9. It is obvious that there is a good correspondence between the tracks, which
shows that the calibrated parameters are correct.

Object Tracking

238

In order to implement the extended Kalman filter, the model of the system has to be
developed. Discretizing (7), we obtain the following state equation:

k k 1 k 1

k k 1 k 1 k k

k k 1

Δ cos
Δ sin

Δ

x x v t θ
y y v t θ w
θ θ ω t

− −

− −

−

+⎡ ⎤ ⎡ ⎤
⎢ ⎥ ⎢ ⎥= + +⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥+⎣ ⎦ ⎣ ⎦

W (8)

where xk, yk and θk denote position and orientation of the mobile robot at time k, Δt is the
sampling rate, v and ω are the translational velocity and the rotational velocity obtained
from encoders, wk represents the process noise.
The observation equation is expressed as follows:

 zps k k
k k

zps k k

cos
sin

x x L θ
v

y y L θ
⎡ ⎤ +⎡ ⎤

= +⎢ ⎥ ⎢ ⎥+⎢ ⎥ ⎣ ⎦⎣ ⎦
V (9)

where (xzps, yzps) is the position of the ultrasonic transmitter in the world coordinate system
observed by iSpace and vk represents the measurement noise. L is the distance on the central
axis between the tag and robot center, as noted in Fig. 7.
Linearizing the state equation, Jacobian matrix Ak is obtained:

k 1

k k 1

1 0 Δ sinθ
0 1 Δ cosθ
0 0 1

v t
v t

−

−

−⎡ ⎤
⎢ ⎥= ⎢ ⎥
⎢ ⎥⎣ ⎦

A (10)

We consider that the noise on the encoder is white noise with a normal distribution. Here,
the matrix Wk is expressed as follows:

k 1

k k 1

Δ cos 0
Δ sin 0

0 Δ

t θ
t θ

t

−

−

−⎡ ⎤
⎢ ⎥= −⎢ ⎥
⎢ ⎥−⎣ ⎦

W (11)

From the observation equation, the matrix Hk is

 k
k

k

1 0 sin
0 1 cos

L θ
L θ
−⎡ ⎤

= ⎢ ⎥
⎣ ⎦

H (12)

The matrix Vk is determined as follows:

 k
1 0
0 1
⎡ ⎤

= ⎢ ⎥
⎣ ⎦

V (13)

In this research, we assume the process noise covariance Q and measurement noise
covariance R are constant and use diagonal matrices. The values are tuned experimentally.

6. Experiment
6.1 Calibration of distributed laser range finders
In the environment shown in Fig. 8, three laser range finders are calibrated using a mobile
robot. The arrangement of the laser range finders and the actual path of the mobile robot,

Object Tracking for Calibration of Distributed Sensors in Intelligent Space

239

which is estimated by the mobile robot localization method described in the previous
section, are also shown in the figure. The mobile robot entered the room from the right part
of Fig. 8 and circled around the room in clockwise direction. In the mobile robot navigation
system installed in iSpace, to find the best way for the robot to move through the space
towards goals (path planning), the Field D* method (Ferguson & Stentz, 2005) is used.
Moreover, in order for the robot to follow the calculated path and at the same time avoid
bumping into obstacles, the Dynamic Window Approach (DWA) (Fox et al., 1997) is applied
as a local control algorithm.

-2.5

-2

-1.5

-1

-0.5

0

0.5

1

1.5

2

2.5

-2.5 -2 -1.5 -1 -0.5 0 0.5 1 1.5 2 2.5

x [m]

y
[m

]

Laser1Laser2

Laser3

Fig. 8. Experimental environment for calibration of laser range finders – arrangement of the
sensors and path of the mobile robot estimated by the extended Kalman filter

In order to evaluate the accuracy of the proposed method, we make a comparison between
the automated calibration and manual calibration. In the case of manual calibration, a
calibration object (an object which can be well detected by a laser range finder) is placed in
turn on several points with known global coordinates and the calibration parameters are
calculated by (3)–(5).
Table I shows the result of the automated calibration compared to that of manual one. The
maximum difference between manual calibration and automated calibration is 0.11 meters
for translation and 0.06 radians for rotation. The laser range fingers can only measure the
edge of the mobile robot, but the tracking process works well and almost the same result as
manual calibration case is achieved. The tracked positions of the mobile robot in each sensor
node, which are transformed into the global coordinates using the estimated parameters are
shown in Fig. 9. It is obvious that there is a good correspondence between the tracks, which
shows that the calibrated parameters are correct.

Object Tracking

240

Automated / Manual LRF ID
i Tixg [m] Tiyg [m] θig [rad]
1 −1.91 / −1.95 1.10 / 1.00 −0.19 / −0.15
2 0.99 / 0.95 0.95 / 1.02 −2.60 / −2.54
3 0.09 / 0.20 −2.01 / −1.97 1.56 / 1.60

Table 1. Estimated pose of the distributed laser range finders - comparison of automated
and manual calibration results

-2.5

-2

-1.5

-1

-0.5

0

0.5

1

1.5

2

2.5

-2.5 -2 -1.5 -1 -0.5 0 0.5 1 1.5 2 2.5

x [m]

y
[m

]

Path of
the robot
Laser 1
Laser 2
Laser 3

Laser1Laser2

Laser3

Fig. 9. The actual path of the mobile robot (presented again) and the tracked positions of the
robot in each sensor node, obtained by transformation into the global coordinates using the
estimated parameters

6.2 Calibration of distributed cameras
Figure 10 shows reference path followed by mobile robots and camera arrangement. In this
experiment, four CCD cameras are calibrated and two mobile robots with different height
followed the same “∞” shaped path defined as

sin(/ 2)
sin()

x

y

x t
y t

α β
α β

=
=

 (14)

where αx, αy, and β are constants, and t is a time step. Note that we can use an arbitrary path
for calibration because we utilize only position information of the color markers. The
observable area of each camera on the ground plane is about 4 meters × 4 meters. The
captured image size is 320 pixels × 240 pixels.
In order to evaluate the accuracy of the proposed method, we made a comparison between
the automated calibration and manual calibration. If the height of a place is known, the three

Object Tracking for Calibration of Distributed Sensors in Intelligent Space

241

-3

-2

-1

0

1

2

3

-3.5 -2.5 -1.5 -0.5 0.5 1.5 2.5 3.5y
[m

]

x [m]

Camera 1Camera 2

Camera 3 Camera 4

Fig. 10. Reference path followed by mobile robots and camera arrangement
dimensional position is reconstructed from one camera image. Therefore, we selected
sample points shown in Fig. 11 from the image, and the corresponding positions on the
ground plane (z=0) are reconstructed. The reference positions of sampled points are
obtained from the ultrasonic 3D positioning system.
Table 2 shows the comparison of mean and maximum errors, which are the average and
maximum Euclidean distance between the reference positions and the reconstructed
positions of the nine sampled points, respectively. Although the difference of the average
error is less than 8 millimeters, the manual calibration is more precise than the automated
calibration in most cases. Especially, the maximum error is relatively large in the case of the
automated calibration. This is mainly due to the fact that the obtained positions of the
markers are not widely distributed on the image plane. This means that the path of the
mobile robot is important for the calibration. In iSpace, this problem would be solved by
mutual cooperation of DINDs and mobile agents - DINDs should ask mobile agents to move
to the area where the corresponding points are not acquired enough.

Fig. 11. Sampled points for evaluation of the camera calibration. The unit is in pixels.

Object Tracking

240

Automated / Manual LRF ID
i Tixg [m] Tiyg [m] θig [rad]
1 −1.91 / −1.95 1.10 / 1.00 −0.19 / −0.15
2 0.99 / 0.95 0.95 / 1.02 −2.60 / −2.54
3 0.09 / 0.20 −2.01 / −1.97 1.56 / 1.60

Table 1. Estimated pose of the distributed laser range finders - comparison of automated
and manual calibration results

-2.5

-2

-1.5

-1

-0.5

0

0.5

1

1.5

2

2.5

-2.5 -2 -1.5 -1 -0.5 0 0.5 1 1.5 2 2.5

x [m]

y
[m

]

Path of
the robot
Laser 1
Laser 2
Laser 3

Laser1Laser2

Laser3

Fig. 9. The actual path of the mobile robot (presented again) and the tracked positions of the
robot in each sensor node, obtained by transformation into the global coordinates using the
estimated parameters

6.2 Calibration of distributed cameras
Figure 10 shows reference path followed by mobile robots and camera arrangement. In this
experiment, four CCD cameras are calibrated and two mobile robots with different height
followed the same “∞” shaped path defined as

sin(/ 2)
sin()

x

y

x t
y t

α β
α β

=
=

 (14)

where αx, αy, and β are constants, and t is a time step. Note that we can use an arbitrary path
for calibration because we utilize only position information of the color markers. The
observable area of each camera on the ground plane is about 4 meters × 4 meters. The
captured image size is 320 pixels × 240 pixels.
In order to evaluate the accuracy of the proposed method, we made a comparison between
the automated calibration and manual calibration. If the height of a place is known, the three

Object Tracking for Calibration of Distributed Sensors in Intelligent Space

241

-3

-2

-1

0

1

2

3

-3.5 -2.5 -1.5 -0.5 0.5 1.5 2.5 3.5y
[m

]

x [m]

Camera 1Camera 2

Camera 3 Camera 4

Fig. 10. Reference path followed by mobile robots and camera arrangement
dimensional position is reconstructed from one camera image. Therefore, we selected
sample points shown in Fig. 11 from the image, and the corresponding positions on the
ground plane (z=0) are reconstructed. The reference positions of sampled points are
obtained from the ultrasonic 3D positioning system.
Table 2 shows the comparison of mean and maximum errors, which are the average and
maximum Euclidean distance between the reference positions and the reconstructed
positions of the nine sampled points, respectively. Although the difference of the average
error is less than 8 millimeters, the manual calibration is more precise than the automated
calibration in most cases. Especially, the maximum error is relatively large in the case of the
automated calibration. This is mainly due to the fact that the obtained positions of the
markers are not widely distributed on the image plane. This means that the path of the
mobile robot is important for the calibration. In iSpace, this problem would be solved by
mutual cooperation of DINDs and mobile agents - DINDs should ask mobile agents to move
to the area where the corresponding points are not acquired enough.

Fig. 11. Sampled points for evaluation of the camera calibration. The unit is in pixels.

Object Tracking

242

Automated / Manual Camera
ID Mean error [mm] Maximum error [mm]
1 67.5 / 40.2 128.4 / 72.8
2 81.4 / 29.0 140.8 /54.7
3 54.6 / 64.6 116.4/ 91.3
4 32.6 /72.5 73.2 / 116.5

Average 59.0 / 51.6 114.7 / 83.8

Table 2. Comparison of mean and maximum error between automated and manual
calibration of distributed cameras

7. Conclusion
We described an automated calibration method for distributed sensors in Intelligent Space
(iSpace) by using mobile robots. The proposed method utilizes the positions of the robots in
the world coordinate system and their corresponding points in the local coordinate system.
The mobile robot localization and moving object tracking functions of iSpace are extended
and calibration of distributed laser range finders and vision sensors is realized. In our work
we used the ultrasound positioning system to localize the mobile robot. In a real
environment this type of global positioning system is not always available, but it can still be
possible to estimate the robot’s position by using other already calibrated sensors or
implementing a self localization method based on a preexisting map.
Performance of the proposed method was demonstrated experimentally. The experimental
result shows that the method can provide enough accuracy for the various applications in
iSpace such as mobile robot localization, human tracking, iSpace-human interface (Niituma
et al., 2007) and so on.
For future work, since the proposed calibration method is affected by the error of the object
tracking, we will develop a more accurate tracking algorithm. In addition, as mentioned in
section 5.2, optimization of paths of mobile robots for calibration is another research
direction. We will also consider utilization of the inter-sensor information for accuracy
improvement and computational stability.

8. References
Agrawal, M. & Davis, L. (2003). Camera calibration using spheres: A semidefinite

programming approach, Proceedings of 9th IEEE International Conference on Computer
Vision, Vol.2, pp.782-789, ISBN 0-7695-1950-4, Nice, France, Oct. 2003.

Brscic, D. & Hashimoto, H. (2006). Tracking of Objects in Intelligent Space Using Laser
Range Finders, Proceedings of IEEE International Conference on Industrial Technology,
pp.1723-1728, ISBN 1-4244-0726-5, Mumbai, India, Dec. 2006.

Cook, D. J. & Das, S. K. (2004). Smart Environments: Technologies, Protocols, and
Applications (Wiley Series on Parallel and Distributed Computing), Wiley-
Interscience, ISBN 0-471-54448-7, USA.

Durrant-Whyte, H. & Bailey, T. (2006). Simultaneous localization and mapping: part I, IEEE
Robotics and Automation Magazine, Vol.13, No.2, (Jun. 2006) pp.99-110, ISSN 1070-
9932.

Object Tracking for Calibration of Distributed Sensors in Intelligent Space

243

Ferguson, D. & Stentz, A. (2005). The Field D* algorithm for improved path planning and
replanning in uniform and non-uniform cost environments, Technical Report
CMURI-TR-05-19, Robotics Institute, Jun. 2005.

Fox, D.; Burgard, W. & Thrun, S. (1997). The dynamic window approach to collision
avoidance, IEEE Robotics and Automation Magazine, Vol.4, No.1, (Mar. 1997) pp.23-
33, ISSN 1070-9932.

Johanson, B.; Fox, A. & Winograd, T. (2002). The Interactive Workspaces project: experiences
with ubiquitous computing rooms, IEEE Pervasive Computing, Vol.1, No.2, (Apr.-
Jun. 2002) pp.67-74, ISSN 1536-1268.

Koutsonikolas, D.; Das, S. M. & Hu, Y. C. (2006). Path planning of mobile landmarks for
localization in wireless sensor networks, Proceedings of the 26th IEEE International
Conference on Distributed Computing Systems Workshops, pp.86(1)-86(7), ISBN 0-7695-
2541-5, Lisboa, Portugal, 2006.

Lee, J.-H. & Hashimoto, H. (2002). Intelligent Space - concept and contents, Advanced
Robotics, Vol.16, No.3, (Apr. 2002) pp.265-280, ISSN 0169-1864.

Lee, J.-H. & Hashimoto, H. (2003). Controlling mobile robots in distributed intelligent sensor
network, IEEE Transaction on Industrial Electronics, Vol.50, No.5, (Oct. 2003) pp.890-
902, ISSN 0278-0046.

Malm, H. & Heyden, A. (2001). Stereo head calibration from a planar object, Proceedings of
IEEE Computer Society Conference on Computer Vision and Pattern Recognition, Vol.2,
pp.657-662, ISBN 0-7695-1272-0, Kauai, Hawaii, USA, Dec. 2001.

Mizoguchi, F.; Ohwada, H.; Nishiyama, H. & Hiraishi, H. (1999). Smart office robot
collaboration based on multi-agent programming, Artificial Intelligence, Vol.114,
No.1-2, (Oct. 1999) pp.57-94, ISSN 0004-3702.

Mynatt, E. D.; Melenhorst, A.-S.; Fisk, A.-D. & Rogers, W. A. (2004). Aware technologies for
aging in place: understanding user needs and attitudes, IEEE Pervasive Computing,
Vol.3, No.2, (Apr.-Jun. 2004) pp.36-41, ISSN 1536-1268.

Niitsuma, M.; Hashimoto, H. & Hashimoto, H. (2007). Spatial Memory as an aid system for
human activity in Intelligent Space, IEEE Transactions on Industrial Electronics,
Vol.54, No.2, (Apr. 2007) pp.1122-1131, ISSN 0278-0046.

Rekleitis, I. & Dudek, G. (2005). Automated calibration of a camera sensor network,
Proceedings of the 2005 IEEE/RSJ International Conference on Intelligent Robots and
Systems, pp.3384-3389, ISBN 0-7803-8912-3, Edmonton, Alberta, Canada, Aug. 2005.

Shenoy, S. & Tan, J. (2005). Simultaneous localization and mobile robot navigation in a
hybrid sensor network, Proceedings of the 2005 IEEE/RSJ International Conference on
Intelligent Robots and Systems, pp.1636-1641, ISBN 0-7803-8912-3, Edmonton,
Alberta, Canada, Aug. 2005.

Sreenath, K.; Lewis, F. L. & Popa, D. O. (2006). Localization of a wireless sensor network
with unattended ground sensors and some mobile robots, Proceedings of the 2006
IEEE Conference on Robotics, Automation and Mechatronics, pp.1-8, ISBN 1-4244-0025-
2, Bangkok, Thailand, Dec. 2006.

Sturm, P. F. & Maybank, S. J. (1999). On plane-based camera calibration: A general
algorithm, singularities, applications, Proceedings of IEEE Computer Society
Conference on Computer Vision and Pattern Recognition, Vol.1, pp.432-437, ISBN 0-
7695-0149-4, Fort Collins, Colorado, USA, Jun. 1999.

Swain, M. J. & Ballard, D.H. (1991). Color indexing, International Journal of Computer Vision,
Vol.7, No.1, (Nov. 1991) pp.11-32, ISSN 0920-5691.

Object Tracking

242

Automated / Manual Camera
ID Mean error [mm] Maximum error [mm]
1 67.5 / 40.2 128.4 / 72.8
2 81.4 / 29.0 140.8 /54.7
3 54.6 / 64.6 116.4/ 91.3
4 32.6 /72.5 73.2 / 116.5

Average 59.0 / 51.6 114.7 / 83.8

Table 2. Comparison of mean and maximum error between automated and manual
calibration of distributed cameras

7. Conclusion
We described an automated calibration method for distributed sensors in Intelligent Space
(iSpace) by using mobile robots. The proposed method utilizes the positions of the robots in
the world coordinate system and their corresponding points in the local coordinate system.
The mobile robot localization and moving object tracking functions of iSpace are extended
and calibration of distributed laser range finders and vision sensors is realized. In our work
we used the ultrasound positioning system to localize the mobile robot. In a real
environment this type of global positioning system is not always available, but it can still be
possible to estimate the robot’s position by using other already calibrated sensors or
implementing a self localization method based on a preexisting map.
Performance of the proposed method was demonstrated experimentally. The experimental
result shows that the method can provide enough accuracy for the various applications in
iSpace such as mobile robot localization, human tracking, iSpace-human interface (Niituma
et al., 2007) and so on.
For future work, since the proposed calibration method is affected by the error of the object
tracking, we will develop a more accurate tracking algorithm. In addition, as mentioned in
section 5.2, optimization of paths of mobile robots for calibration is another research
direction. We will also consider utilization of the inter-sensor information for accuracy
improvement and computational stability.

8. References
Agrawal, M. & Davis, L. (2003). Camera calibration using spheres: A semidefinite

programming approach, Proceedings of 9th IEEE International Conference on Computer
Vision, Vol.2, pp.782-789, ISBN 0-7695-1950-4, Nice, France, Oct. 2003.

Brscic, D. & Hashimoto, H. (2006). Tracking of Objects in Intelligent Space Using Laser
Range Finders, Proceedings of IEEE International Conference on Industrial Technology,
pp.1723-1728, ISBN 1-4244-0726-5, Mumbai, India, Dec. 2006.

Cook, D. J. & Das, S. K. (2004). Smart Environments: Technologies, Protocols, and
Applications (Wiley Series on Parallel and Distributed Computing), Wiley-
Interscience, ISBN 0-471-54448-7, USA.

Durrant-Whyte, H. & Bailey, T. (2006). Simultaneous localization and mapping: part I, IEEE
Robotics and Automation Magazine, Vol.13, No.2, (Jun. 2006) pp.99-110, ISSN 1070-
9932.

Object Tracking for Calibration of Distributed Sensors in Intelligent Space

243

Ferguson, D. & Stentz, A. (2005). The Field D* algorithm for improved path planning and
replanning in uniform and non-uniform cost environments, Technical Report
CMURI-TR-05-19, Robotics Institute, Jun. 2005.

Fox, D.; Burgard, W. & Thrun, S. (1997). The dynamic window approach to collision
avoidance, IEEE Robotics and Automation Magazine, Vol.4, No.1, (Mar. 1997) pp.23-
33, ISSN 1070-9932.

Johanson, B.; Fox, A. & Winograd, T. (2002). The Interactive Workspaces project: experiences
with ubiquitous computing rooms, IEEE Pervasive Computing, Vol.1, No.2, (Apr.-
Jun. 2002) pp.67-74, ISSN 1536-1268.

Koutsonikolas, D.; Das, S. M. & Hu, Y. C. (2006). Path planning of mobile landmarks for
localization in wireless sensor networks, Proceedings of the 26th IEEE International
Conference on Distributed Computing Systems Workshops, pp.86(1)-86(7), ISBN 0-7695-
2541-5, Lisboa, Portugal, 2006.

Lee, J.-H. & Hashimoto, H. (2002). Intelligent Space - concept and contents, Advanced
Robotics, Vol.16, No.3, (Apr. 2002) pp.265-280, ISSN 0169-1864.

Lee, J.-H. & Hashimoto, H. (2003). Controlling mobile robots in distributed intelligent sensor
network, IEEE Transaction on Industrial Electronics, Vol.50, No.5, (Oct. 2003) pp.890-
902, ISSN 0278-0046.

Malm, H. & Heyden, A. (2001). Stereo head calibration from a planar object, Proceedings of
IEEE Computer Society Conference on Computer Vision and Pattern Recognition, Vol.2,
pp.657-662, ISBN 0-7695-1272-0, Kauai, Hawaii, USA, Dec. 2001.

Mizoguchi, F.; Ohwada, H.; Nishiyama, H. & Hiraishi, H. (1999). Smart office robot
collaboration based on multi-agent programming, Artificial Intelligence, Vol.114,
No.1-2, (Oct. 1999) pp.57-94, ISSN 0004-3702.

Mynatt, E. D.; Melenhorst, A.-S.; Fisk, A.-D. & Rogers, W. A. (2004). Aware technologies for
aging in place: understanding user needs and attitudes, IEEE Pervasive Computing,
Vol.3, No.2, (Apr.-Jun. 2004) pp.36-41, ISSN 1536-1268.

Niitsuma, M.; Hashimoto, H. & Hashimoto, H. (2007). Spatial Memory as an aid system for
human activity in Intelligent Space, IEEE Transactions on Industrial Electronics,
Vol.54, No.2, (Apr. 2007) pp.1122-1131, ISSN 0278-0046.

Rekleitis, I. & Dudek, G. (2005). Automated calibration of a camera sensor network,
Proceedings of the 2005 IEEE/RSJ International Conference on Intelligent Robots and
Systems, pp.3384-3389, ISBN 0-7803-8912-3, Edmonton, Alberta, Canada, Aug. 2005.

Shenoy, S. & Tan, J. (2005). Simultaneous localization and mobile robot navigation in a
hybrid sensor network, Proceedings of the 2005 IEEE/RSJ International Conference on
Intelligent Robots and Systems, pp.1636-1641, ISBN 0-7803-8912-3, Edmonton,
Alberta, Canada, Aug. 2005.

Sreenath, K.; Lewis, F. L. & Popa, D. O. (2006). Localization of a wireless sensor network
with unattended ground sensors and some mobile robots, Proceedings of the 2006
IEEE Conference on Robotics, Automation and Mechatronics, pp.1-8, ISBN 1-4244-0025-
2, Bangkok, Thailand, Dec. 2006.

Sturm, P. F. & Maybank, S. J. (1999). On plane-based camera calibration: A general
algorithm, singularities, applications, Proceedings of IEEE Computer Society
Conference on Computer Vision and Pattern Recognition, Vol.1, pp.432-437, ISBN 0-
7695-0149-4, Fort Collins, Colorado, USA, Jun. 1999.

Swain, M. J. & Ballard, D.H. (1991). Color indexing, International Journal of Computer Vision,
Vol.7, No.1, (Nov. 1991) pp.11-32, ISSN 0920-5691.

Object Tracking

244

Thrun, S; Burgard, W. & Fox, D. (2005). Probabilistic Robotics, MIT Press, ISBN 0-262-20162-3,
USA.

Tsai, R. Y. (1987). A versatile camera calibration technique for high-accuracy 3D machine
vision metrology using off-the-shelf TV cameras and lenses, IEEE Journal of Robotics
and Automation, Vol.RA-3, No.4, (Aug. 1987) pp.323-344, ISSN 0882-4967.

Ueshiba, T. & Tomita, F. (2003). Plane-based calibration algorithm for multi-camera systems
via factorization of homology matrices, Proceedings of 9h IEEE International
Conference on Computer Vision, Vol.2, pp.966-973, ISBN 0-7695-1950-4, Nice, France,
Oct. 2003.

Wu, Y.; Zhu, H.; Hu, Z. & Wu, F. (2004). Camera calibration from the quasi-affine invariance
of two parallel circles, Proceedings of the 8th European Conference on Computer Vision,
Vol.1, pp.190-202, ISBN 3-540-21984-6, Prague, Czech Republic, May 2004.

Zhang, Z. (2000). A flexible new technique for camera calibration, IEEE Transactions on
Pattern Analysis and Machine Intelligence, Vol.22, No.11, (Nov. 2000) pp.1330-1334,
ISSN 0162-8828.

Zhang, Z. (2004). Camera calibration with one-dimensional objects, IEEE Transactions on
Pattern Analysis and Machine Intelligence, Vol.26, No.7, (Jul. 2004) pp.892-899, ISSN
0162-8828.

Anna Hilsmann, David C. Schneider and Peter Eisert
Fraunhofer Institute for Telecommunications Heinrich-Hertz-Institute

Humboldt Universität zu Berlin
Germany

1. Introduction

Deformable objects and surfaces are ubiquitous in modern computer vision applications,
including medical imaging [Metaxas (1996)], object-based video compression [Ostermann
(1994)] and augmented reality [Hilsmann et al. (2010); Pilet et al. (2008)]. In this chapter, we
are particularly interested in tracking surfaces whose deformations are difficult to describe,
such as drapery of textiles, facial expressions or complex organ motion in medical image
sequences. Capturing non-rigid motion of such objects in 2D images is a challenging task
because the deformation field complexity is unknown a priori. Therefore, the assumed model
has to cope with various types of deformations.
Our framework makes use of image-based deformation models and formulates a robust cost
function that can be minimized with common optimization methods, like Gauss-Newton or
Levenberg-Marquardt. It is highly modular and can therefore be applied to a broad variety of
motion estimation problems, as the motion model can individually be formulated according
to the given problem. To avoid error accumulation over the image sequence, we use an
analysis-by-synthesis approach, where the error minimization is always carried out between
a synthesized reference image built from previous parameter estimates and the actual camera
frame. However, in real scenes, tracking is often influenced by varying lighting. If intensity
changes due to changes in the lighting conditions in the scene are not considered, the intensity
difference between the synthesized reference image and the current frame increases and
causes errors in the motion estimation. To avoid these errors, it is essential to also model
intensity changes between the images and warp the reference image not only spatially but also
photometrically. We will present results from different fields of applications, such as real-time
augmented reality (Figure 1), facial expression analysis (Figure 11), and medical applications
(Figure 10).
This chapter is structured as follows. Section 2 will briefly review existing literature in
the field of deformable tracking and discuss the contribution of our work. Section 3 will
give an overview of the mathematical notation used in this chapter. Following, we present
different types of deformable motion models in section 4 before we explain our approach to
image-based optimization of the model parameters in section 5. Section 6 will present results
achieved with our approach for different types of surfaces, such as cloth, faces, and medical
images.

Image-based Tracking of Deformable Surfaces

13

Object Tracking

244

Thrun, S; Burgard, W. & Fox, D. (2005). Probabilistic Robotics, MIT Press, ISBN 0-262-20162-3,
USA.

Tsai, R. Y. (1987). A versatile camera calibration technique for high-accuracy 3D machine
vision metrology using off-the-shelf TV cameras and lenses, IEEE Journal of Robotics
and Automation, Vol.RA-3, No.4, (Aug. 1987) pp.323-344, ISSN 0882-4967.

Ueshiba, T. & Tomita, F. (2003). Plane-based calibration algorithm for multi-camera systems
via factorization of homology matrices, Proceedings of 9h IEEE International
Conference on Computer Vision, Vol.2, pp.966-973, ISBN 0-7695-1950-4, Nice, France,
Oct. 2003.

Wu, Y.; Zhu, H.; Hu, Z. & Wu, F. (2004). Camera calibration from the quasi-affine invariance
of two parallel circles, Proceedings of the 8th European Conference on Computer Vision,
Vol.1, pp.190-202, ISBN 3-540-21984-6, Prague, Czech Republic, May 2004.

Zhang, Z. (2000). A flexible new technique for camera calibration, IEEE Transactions on
Pattern Analysis and Machine Intelligence, Vol.22, No.11, (Nov. 2000) pp.1330-1334,
ISSN 0162-8828.

Zhang, Z. (2004). Camera calibration with one-dimensional objects, IEEE Transactions on
Pattern Analysis and Machine Intelligence, Vol.26, No.7, (Jul. 2004) pp.892-899, ISSN
0162-8828.

Anna Hilsmann, David C. Schneider and Peter Eisert
Fraunhofer Institute for Telecommunications Heinrich-Hertz-Institute

Humboldt Universität zu Berlin
Germany

1. Introduction

Deformable objects and surfaces are ubiquitous in modern computer vision applications,
including medical imaging [Metaxas (1996)], object-based video compression [Ostermann
(1994)] and augmented reality [Hilsmann et al. (2010); Pilet et al. (2008)]. In this chapter, we
are particularly interested in tracking surfaces whose deformations are difficult to describe,
such as drapery of textiles, facial expressions or complex organ motion in medical image
sequences. Capturing non-rigid motion of such objects in 2D images is a challenging task
because the deformation field complexity is unknown a priori. Therefore, the assumed model
has to cope with various types of deformations.
Our framework makes use of image-based deformation models and formulates a robust cost
function that can be minimized with common optimization methods, like Gauss-Newton or
Levenberg-Marquardt. It is highly modular and can therefore be applied to a broad variety of
motion estimation problems, as the motion model can individually be formulated according
to the given problem. To avoid error accumulation over the image sequence, we use an
analysis-by-synthesis approach, where the error minimization is always carried out between
a synthesized reference image built from previous parameter estimates and the actual camera
frame. However, in real scenes, tracking is often influenced by varying lighting. If intensity
changes due to changes in the lighting conditions in the scene are not considered, the intensity
difference between the synthesized reference image and the current frame increases and
causes errors in the motion estimation. To avoid these errors, it is essential to also model
intensity changes between the images and warp the reference image not only spatially but also
photometrically. We will present results from different fields of applications, such as real-time
augmented reality (Figure 1), facial expression analysis (Figure 11), and medical applications
(Figure 10).
This chapter is structured as follows. Section 2 will briefly review existing literature in
the field of deformable tracking and discuss the contribution of our work. Section 3 will
give an overview of the mathematical notation used in this chapter. Following, we present
different types of deformable motion models in section 4 before we explain our approach to
image-based optimization of the model parameters in section 5. Section 6 will present results
achieved with our approach for different types of surfaces, such as cloth, faces, and medical
images.

Image-based Tracking of Deformable Surfaces

13

Fig. 1. One application we are targeting: Tracking and retexturing a piece of paper in a video
sequence (original frame with overlaid deformation mesh and retextured frames).

2. Related work

Motion between two frames is commonly described by a dense displacement vector field
which links the location of each pixel in a given frame to its location in the next frame.
Registering a model to an image and tracking of deformable objects is a large field of research
and there exists a multitude of methods. Basically, the literature on deformable surface
tracking from monocular image sequences distinguishes between marker-based [Scholz &
Magnor (2006); White & Forsyth (2006)], feature-based [Pilet et al. (2008)], and image-based
[Bartoli & Zisserman (2004); Lim & Yang (2005); Torresani et al. (2001)] methods. As markers
are not always available in real scenes, the assumption of such a-priori knowledge limits
the applicability of these methods to very special cases. Feature-based methods minimize
a distance between a few corresponding feature points, whereas direct methods minimize an
error measure that is based on image information of all pixels in the image.
Feature-based methods determine correspondences between distinct feature points and use
them to estimate the best transformation between these correspondences. Various features
have been described in the literature. Image-based feature points are e.g. local curvature
extrema or saddle points, edges or corners [Harris & Stephens (1988); Thirion (1996)] or SIFT
[Lowe (2003)] and SURF [Bay et al. (2006)]features. Popular choices of shape-features are
the shape context [Belongie et al. (2002)] or statistical moments of the shape [Chen (1993)].
Feature- based methods are mostly used to find rigid or affine transformation. If the set of
points is large enough, also more complex transformations can be determined using e.g. radial
basis functions [Bookstein (1989)]. The type of the RBF determines overall characteristics of
the transformation such as the smoothness or the locality. [Pilet et al. (2008)] proposed a
feature-based real-time method for deformable object detection and tracking that uses a wide

246 Object Tracking

baseline matching algorithm and deformable meshes. They estimate the irradiance of the
surface separately by warping the reference image to the current frame and estimating the
luminance ratio between both images.
Generally, image-based methods yield more accurate results in non-rigid deformation
estimation than feature-based methods because they exploit the entire image instead of
distinct points. [Bartoli & Zisserman (2004)] presented an optical flow based approach
that uses radial basis functions to regularize the flow field. They iteratively insert new
center-points for the radial basis functions based on examination of the error image after each
iteration. The number of centers grows until the algorithm converges. Recently, [Gay Bellile
et al. (2007)] proposed a direct method to estimate deformable motion under self-occlusions
by establishing occlusion maps and penalizing a variation in the spatial warp derivative along
some direction to prevent mesh-foldings and cope with self-occlusions. [Hilsmann & Eisert
(2008)] utilized the idea of mesh-shrinking in an optical flow-based approach by exploiting
topological relationships of a mesh-based warp to force the mesh to shrink instead of fold at
the occlusion boundary.
While, in general, marker- or feature-based methods are more robust against illumination
changes – assuming markers or features are illumination invariant – direct methods usually
minimize an error function based on the intensity differences between the aligned images.
Therefore, these methods are sensitive to illumination variations. [Gennert & Negahdaripour
(1987)] were among the first to propose a direct method robust to illumination variations.
They assume that the brightness at time t + δt is related to the brightness at time t through a
set of parameters that can be estimated from the image sequence. Several other researchers
[Bartoli (2008); Haussecker & Fleet (2001); Nastar et al. (1996); Silveira & Malis (2007)]
have exploited their ideas to make tracking more robust against lighting changes. [Bartoli
(2008)] proposed a dual inverse compositional algorithm to estimate a homography and an
affine photometric registration. The registration results are improved by the photometric
registration but only global changes are modeled and thus specular reflections or local
shadows are not taken into consideration. [Silveira & Malis (2007)] model local illumination
changes to make a homography estimation more robust against generic illumination changes.
[Pizarro & Bartoli (2007)] proposed to transform images into a 1D shadow invariant space
to achieve direct image registration in the presence of even sharp shadows. [Hilsmann &
Eisert (2009)] used an extended optical flow constraint and mesh-based models not only
as a correction factor for spatial registration but also to actually retrieve local photometric
parameters for convincing retexturing purposes in augmented reality applications.
Besides the optimization scheme, state-of-the-art methods differ in the type of the assumed
motion model. Tracking arbitrary deformable surfaces without any knowledge about the
type of deformation in monocular video sequences is an ill-posed problem as the deformation
yields too many ambiguities. Therefore, if no 3D information is required, one approach is
to track deformations in the image plane. Some researchers use 2-dimensional mesh-based
models [Pilet et al. (2008), Gay Bellile et al. (2007), Hilsmann & Eisert (2009)], others radial
basis functions [Bartoli & Zisserman (2004), Bookstein (1989)] to model deformations in
2D. If the type of deformation or a 3D shape model is known a priori, also more specific
deformation models can be used in the 3D space. Often, deformation is modeled by
weighted superposition of basis functions like superquadrics [Terzopoulos & Metaxas (1991)]
or PCA-based models [Salzmann et al. (2007)]. An important application for deformable
surface analysis is face tracking [Metaxas (1996), Eisert & Girod (1998)], where specific face
models are used to constrain the parameters to model facial deformations.

247Image-based Tracking of Deformable Surfaces

Fig. 1. One application we are targeting: Tracking and retexturing a piece of paper in a video
sequence (original frame with overlaid deformation mesh and retextured frames).

2. Related work

Motion between two frames is commonly described by a dense displacement vector field
which links the location of each pixel in a given frame to its location in the next frame.
Registering a model to an image and tracking of deformable objects is a large field of research
and there exists a multitude of methods. Basically, the literature on deformable surface
tracking from monocular image sequences distinguishes between marker-based [Scholz &
Magnor (2006); White & Forsyth (2006)], feature-based [Pilet et al. (2008)], and image-based
[Bartoli & Zisserman (2004); Lim & Yang (2005); Torresani et al. (2001)] methods. As markers
are not always available in real scenes, the assumption of such a-priori knowledge limits
the applicability of these methods to very special cases. Feature-based methods minimize
a distance between a few corresponding feature points, whereas direct methods minimize an
error measure that is based on image information of all pixels in the image.
Feature-based methods determine correspondences between distinct feature points and use
them to estimate the best transformation between these correspondences. Various features
have been described in the literature. Image-based feature points are e.g. local curvature
extrema or saddle points, edges or corners [Harris & Stephens (1988); Thirion (1996)] or SIFT
[Lowe (2003)] and SURF [Bay et al. (2006)]features. Popular choices of shape-features are
the shape context [Belongie et al. (2002)] or statistical moments of the shape [Chen (1993)].
Feature- based methods are mostly used to find rigid or affine transformation. If the set of
points is large enough, also more complex transformations can be determined using e.g. radial
basis functions [Bookstein (1989)]. The type of the RBF determines overall characteristics of
the transformation such as the smoothness or the locality. [Pilet et al. (2008)] proposed a
feature-based real-time method for deformable object detection and tracking that uses a wide

246 Object Tracking

baseline matching algorithm and deformable meshes. They estimate the irradiance of the
surface separately by warping the reference image to the current frame and estimating the
luminance ratio between both images.
Generally, image-based methods yield more accurate results in non-rigid deformation
estimation than feature-based methods because they exploit the entire image instead of
distinct points. [Bartoli & Zisserman (2004)] presented an optical flow based approach
that uses radial basis functions to regularize the flow field. They iteratively insert new
center-points for the radial basis functions based on examination of the error image after each
iteration. The number of centers grows until the algorithm converges. Recently, [Gay Bellile
et al. (2007)] proposed a direct method to estimate deformable motion under self-occlusions
by establishing occlusion maps and penalizing a variation in the spatial warp derivative along
some direction to prevent mesh-foldings and cope with self-occlusions. [Hilsmann & Eisert
(2008)] utilized the idea of mesh-shrinking in an optical flow-based approach by exploiting
topological relationships of a mesh-based warp to force the mesh to shrink instead of fold at
the occlusion boundary.
While, in general, marker- or feature-based methods are more robust against illumination
changes – assuming markers or features are illumination invariant – direct methods usually
minimize an error function based on the intensity differences between the aligned images.
Therefore, these methods are sensitive to illumination variations. [Gennert & Negahdaripour
(1987)] were among the first to propose a direct method robust to illumination variations.
They assume that the brightness at time t + δt is related to the brightness at time t through a
set of parameters that can be estimated from the image sequence. Several other researchers
[Bartoli (2008); Haussecker & Fleet (2001); Nastar et al. (1996); Silveira & Malis (2007)]
have exploited their ideas to make tracking more robust against lighting changes. [Bartoli
(2008)] proposed a dual inverse compositional algorithm to estimate a homography and an
affine photometric registration. The registration results are improved by the photometric
registration but only global changes are modeled and thus specular reflections or local
shadows are not taken into consideration. [Silveira & Malis (2007)] model local illumination
changes to make a homography estimation more robust against generic illumination changes.
[Pizarro & Bartoli (2007)] proposed to transform images into a 1D shadow invariant space
to achieve direct image registration in the presence of even sharp shadows. [Hilsmann &
Eisert (2009)] used an extended optical flow constraint and mesh-based models not only
as a correction factor for spatial registration but also to actually retrieve local photometric
parameters for convincing retexturing purposes in augmented reality applications.
Besides the optimization scheme, state-of-the-art methods differ in the type of the assumed
motion model. Tracking arbitrary deformable surfaces without any knowledge about the
type of deformation in monocular video sequences is an ill-posed problem as the deformation
yields too many ambiguities. Therefore, if no 3D information is required, one approach is
to track deformations in the image plane. Some researchers use 2-dimensional mesh-based
models [Pilet et al. (2008), Gay Bellile et al. (2007), Hilsmann & Eisert (2009)], others radial
basis functions [Bartoli & Zisserman (2004), Bookstein (1989)] to model deformations in
2D. If the type of deformation or a 3D shape model is known a priori, also more specific
deformation models can be used in the 3D space. Often, deformation is modeled by
weighted superposition of basis functions like superquadrics [Terzopoulos & Metaxas (1991)]
or PCA-based models [Salzmann et al. (2007)]. An important application for deformable
surface analysis is face tracking [Metaxas (1996), Eisert & Girod (1998)], where specific face
models are used to constrain the parameters to model facial deformations.

247Image-based Tracking of Deformable Surfaces

In this chapter we will present a general framework to deformable surface tracking. In
our formulation we separate the motion model from the optimization framework and the
regularization term. This makes the framework highly modular and thus adaptive to the
given problem.

3. Notation

In general, we denote scalar valued variables with lower case roman letters, e.g. x, vector
valued variables with bold lower case letters, e.g. x, and matrices with bold upper case letters,
e.g. X. We denote a function f of a pixel position x parameterized by the parameter vector θ
by f (x;θ). The following list briefly introduces the mathematical notation used in this chapter.

A Adjacency matrix of a mesh β Barycentric coordinates
D Displacement field δθ Parameter update
η Bilinear coordinates E Cost function
ED Data term of the cost function ES Smoothness term of the cost function
fx, fy scaled focal length g f 1 × n gradient vector
H f n × n Hessian matrix I(x) Image intensity at location x
Jf m × n Jacobian matrix K Number of vertices
L Laplacian matrix l Direction of light source
n Surface normal N Number of parameters
Nk Neighborhood of a vertex vk ψg Geometric warp function
ψp Photometric warp function ψ3

d Warp function for 3D deformation
p 3D object point θ Parameter vector
θ̂ Estimated parameter vector θg Geometric parameter vector
θp Photometric parameter vector θd Parameters for 3D deformation
R Region R rotation matrix
t 3d translation vector V Diagonal matrix of vertex valences
v vertex x Pixel coordinate

4. Deformable models

In our framework, the spatial deformation and motion of a deformable surface in an image
are described by a geometric warp function

ψg(x;θ) = x +D(x;θ) (1)

of the pixel coordinates. D(x;θ) is a dense 2-dimensional pixel displacement field defined
at each image pixel x and parameterized by a parameter vector θ. Usually, two successive
frames in a natural video sequence do not only differ geometrically, but also the intensity
of a scene point can vary due to changes in the scene lighting, shading properties etc. For
deformable surfaces, the intensity of a scene point varies when the surface normals change. If
not handled correctly, varying lighting influences the geometric tracking result, especially for
tracking approaches that are based on a brightness constancy assumptions (see section 5.2).
Hence, we model intensity changes in an additional photometric warp function

ψp(I(x);θ) = ψp(x;θ) · I(x) (2)

248 Object Tracking

which is applied multiplicatively to the image intensities. Hence, the parameter vector θ
consists of a geometric part θg and a photometric part θp such that the resulting parameter
vector in our framework is given by

θ =
[
θT

g θT
p

]T
.

Based on the given tracking problem (type of motion, required accuracy of the deformation
field, real-time constraints etc.), different types of parameterization can be chosen. In the
following, we will present different motion models used for different types of application.

4.1 2D models
The simplest 2-dimensional model is a dense displacement field, i.e. one displacement vector
for each pixel. This dense model holds two parameters per pixel. To reduce the number of
parameters for e.g. real-time applications or to introduce prior knowledge on the deformation
field, we can also model the warp using a 2-dimensional mesh-based model with K vertices
vk. Each vertex is associated with two parameters, i.e. its displacements in x- and y-direction
dk = [dkx dky]

T . The warps ψg(x;θ) and ψp(x;θ) can then be parameterized by arbitrary basis
functions defining the deformation field. Different parameterizations will be presented below.
In each case, the geometric parameter vector is given in the following form by concatenating
the x- and y-coordinates of the displacements:

θg =
[
d1x ... dKx d1y ... dKy

]T . (3)

The photometric warp is parameterized similarly to the geometric warp by K photometric
parameters

θp =
[
ρ1 ... ρK

]T . (4)

Having defined the parameter vector, we introduce a matrix notation of the warps:

ψg(xi;θ) = xi + Mxi
g · θ

ψp (xi;θ) = mxi
p · θ (5)

where Mxi
g and mxi

p are 2 × N and 1 × N matrices defining the parameterization. The
superscript xi denotes that these matrices differ for each pixel. They depend on the type of
parameterization as well as pixel position and will be defined below. We can now easily
determine the warp Jacobians, which are required for optimization:

Jψg (xi;θ) = Mxi
g

Jψp (xi;θ) = mxi
p

(6)

4.1.1 Dense model
The dense model holds one displacement vector per pixel, such that the number of parameters
is N = 2p for a region of interest with p pixels. The matrices Mxi

g and mxi
p are zero matrices

249Image-based Tracking of Deformable Surfaces

In this chapter we will present a general framework to deformable surface tracking. In
our formulation we separate the motion model from the optimization framework and the
regularization term. This makes the framework highly modular and thus adaptive to the
given problem.

3. Notation

In general, we denote scalar valued variables with lower case roman letters, e.g. x, vector
valued variables with bold lower case letters, e.g. x, and matrices with bold upper case letters,
e.g. X. We denote a function f of a pixel position x parameterized by the parameter vector θ
by f (x;θ). The following list briefly introduces the mathematical notation used in this chapter.

A Adjacency matrix of a mesh β Barycentric coordinates
D Displacement field δθ Parameter update
η Bilinear coordinates E Cost function
ED Data term of the cost function ES Smoothness term of the cost function
fx, fy scaled focal length g f 1 × n gradient vector
H f n × n Hessian matrix I(x) Image intensity at location x
Jf m × n Jacobian matrix K Number of vertices
L Laplacian matrix l Direction of light source
n Surface normal N Number of parameters
Nk Neighborhood of a vertex vk ψg Geometric warp function
ψp Photometric warp function ψ3

d Warp function for 3D deformation
p 3D object point θ Parameter vector
θ̂ Estimated parameter vector θg Geometric parameter vector
θp Photometric parameter vector θd Parameters for 3D deformation
R Region R rotation matrix
t 3d translation vector V Diagonal matrix of vertex valences
v vertex x Pixel coordinate

4. Deformable models

In our framework, the spatial deformation and motion of a deformable surface in an image
are described by a geometric warp function

ψg(x;θ) = x +D(x;θ) (1)

of the pixel coordinates. D(x;θ) is a dense 2-dimensional pixel displacement field defined
at each image pixel x and parameterized by a parameter vector θ. Usually, two successive
frames in a natural video sequence do not only differ geometrically, but also the intensity
of a scene point can vary due to changes in the scene lighting, shading properties etc. For
deformable surfaces, the intensity of a scene point varies when the surface normals change. If
not handled correctly, varying lighting influences the geometric tracking result, especially for
tracking approaches that are based on a brightness constancy assumptions (see section 5.2).
Hence, we model intensity changes in an additional photometric warp function

ψp(I(x);θ) = ψp(x;θ) · I(x) (2)

248 Object Tracking

which is applied multiplicatively to the image intensities. Hence, the parameter vector θ
consists of a geometric part θg and a photometric part θp such that the resulting parameter
vector in our framework is given by

θ =
[
θT

g θT
p

]T
.

Based on the given tracking problem (type of motion, required accuracy of the deformation
field, real-time constraints etc.), different types of parameterization can be chosen. In the
following, we will present different motion models used for different types of application.

4.1 2D models
The simplest 2-dimensional model is a dense displacement field, i.e. one displacement vector
for each pixel. This dense model holds two parameters per pixel. To reduce the number of
parameters for e.g. real-time applications or to introduce prior knowledge on the deformation
field, we can also model the warp using a 2-dimensional mesh-based model with K vertices
vk. Each vertex is associated with two parameters, i.e. its displacements in x- and y-direction
dk = [dkx dky]

T . The warps ψg(x;θ) and ψp(x;θ) can then be parameterized by arbitrary basis
functions defining the deformation field. Different parameterizations will be presented below.
In each case, the geometric parameter vector is given in the following form by concatenating
the x- and y-coordinates of the displacements:

θg =
[
d1x ... dKx d1y ... dKy

]T . (3)

The photometric warp is parameterized similarly to the geometric warp by K photometric
parameters

θp =
[
ρ1 ... ρK

]T . (4)

Having defined the parameter vector, we introduce a matrix notation of the warps:

ψg(xi;θ) = xi + Mxi
g · θ

ψp (xi;θ) = mxi
p · θ (5)

where Mxi
g and mxi

p are 2 × N and 1 × N matrices defining the parameterization. The
superscript xi denotes that these matrices differ for each pixel. They depend on the type of
parameterization as well as pixel position and will be defined below. We can now easily
determine the warp Jacobians, which are required for optimization:

Jψg (xi;θ) = Mxi
g

Jψp (xi;θ) = mxi
p

(6)

4.1.1 Dense model
The dense model holds one displacement vector per pixel, such that the number of parameters
is N = 2p for a region of interest with p pixels. The matrices Mxi

g and mxi
p are zero matrices

249Image-based Tracking of Deformable Surfaces

with only one entry in the ith, the(i + p)th and the (i + 2p)th column:

Mxi
g =

[
0... 1... 0...
0... 0... 0...︸ ︷︷ ︸

(2×K)

0... 0... 0...
0... 1... 0...︸ ︷︷ ︸

(2×K)

0... 0... 0...
0... 0... 0...

]

︸ ︷︷ ︸
(2×K)

mxi
p =

[
0... 0... 0...︸ ︷︷ ︸

(1×K)

0... 0... 0...︸ ︷︷ ︸
(1×K)

0... 1... 0...
]

︸ ︷︷ ︸
(1×K)

(7)

This model is equivalent to the classic optical flow. Due to the aperture problem, the
normal equations that arise from the matrices Mxi

g during optimization are rank deficient and
regularization is a necessity. The Laplacian smoothness term addressed in section 4.3 is one
possible choice for regularization.

4.1.2 Affine mesh-based model
In case of a mesh-based model, the number of parameters is determined by the number of
vertices in the mesh, such that N = 2K where K is the number of vertices. If a pixel xi is
surrounded by a triangle consisting of the three mesh vertices va, vb, vc with indices a, b, c and
βa, βb, βc are the three corresponding Barycentric coordinates, it can be represented by the
weighted sum of its enclosing vertices:

xi = ∑
j∈{a,b,c}

β jvj βa + βb + βc = 1, 0 ≤ βa,b,c ≤ 1 (8)

A warp with piecewise affine interpolation between the respective three surrounding vertex
positions keeps the Barycentric coordinates constant, such that the warps ψg(x;θ) and
ψp(x;θ) can then be parameterized similarly by

ψg (xi;θ) = xi +D (xi;θ) = xi + ∑
j∈{a,b,c}

β jdj

ψp (xi;θ) = ∑
j∈{a,b,c}

β jρj
(9)

This can be formulated in matrix notation as in equation (5) with the following matrices

Mxi
g =

[
βa... βb... βc...
0... 0... 0...︸ ︷︷ ︸

(2×K)

0... 0... 0...
βa... βb... βc...︸ ︷︷ ︸

(2×K)

0... 0... 0...
0... 0... 0...

]

︸ ︷︷ ︸
(2×K)

mxi
p =

[
0... 0... 0...︸ ︷︷ ︸

(1×K)

0... 0... 0...︸ ︷︷ ︸
(1×K)

βa... βb... βc...
]

︸ ︷︷ ︸
(1×K)

(10)

250 Object Tracking

4.1.3 Bilinear mesh-based model
Similar to the affine parameterization, we can use a bilinear parameterization between the
respective four surrounding vertex positions

ψg (xi;θ) = xi +D (xi;θ) = xi + ∑
j∈{a,b,c,d}

ηjdj

ψp (xi;θ) = ∑
j∈{a,b,c,d}

ηjρj

ηa = (1 − s)(1 − t), ηb = s(1 − t), ηc = t(1 − s), ηd = st

(11)

Mxi
g and mxi

p are matrices composed similarly as for the affine parameterization above except
that each row now has four entries (ηa, ηb, ηc, ηd) in the corresponding columns.

4.2 3D models
Rather than modelling the motion directly in the 2D image plane, the displacement field
(1) can be regarded as the projection of an object’s 3D motion and deformation into the 2D
domain. Similar to the 2D case, we can specify the deformation of a 3D object, given by its 3D
surface points pi, as a function of deformation parameters θd

ψ3
d(p;θd) = p +D3(p;θd). (12)

For linear deformation fields, the geometrical warp can then be expressed by a deformation
matrix Dpi

d
ψ3

d(pi;θd) = pi + Dpi
d · θd. (13)

This deformation matrix can contain any basis functions that define the deviations of object
points from a neutral shape pi. The amount of deformation performed in the local object
coordinate system is controlled by the deformation parameter vector θd. Similarly, 3D
deformation can be modelled by PCA analysis, with pi being a mean shape and Dpi

d holding
the Eigenvectors of the covariance matrix formed by several sample shapes.
A rigid body transform, specified by rotation matrix R0 and translation vector t0, can be used
to position and orient the 3D object in a world coordinate system. In addition to deformation,
the object is allowed to move which can be described by an update of rotation R with Euler
angles Rx, Ry, Rz and translation t = [tx, ty, tz]T . The entire geometrical warp in the world
coordinate system is then given as

ψ3
g(pi;θd) = R · R0(pi + Dpi

d · θd) + t + t0. (14)

For small changes of the parameter vector θd this can be approximated linearly by
approximating small rotations by a deformation along the object points’ tangents, resulting
in

ψ3
g(pi;θg) ≈ pi + Dpi

g · θg (15)

with the extended parameter vector θg.

θg = [θT
d , Rx, Ry, Rz, tx, ty, tz]

T (16)

251Image-based Tracking of Deformable Surfaces

with only one entry in the ith, the(i + p)th and the (i + 2p)th column:

Mxi
g =

[
0... 1... 0...
0... 0... 0...︸ ︷︷ ︸

(2×K)

0... 0... 0...
0... 1... 0...︸ ︷︷ ︸

(2×K)

0... 0... 0...
0... 0... 0...

]

︸ ︷︷ ︸
(2×K)

mxi
p =

[
0... 0... 0...︸ ︷︷ ︸

(1×K)

0... 0... 0...︸ ︷︷ ︸
(1×K)

0... 1... 0...
]

︸ ︷︷ ︸
(1×K)

(7)

This model is equivalent to the classic optical flow. Due to the aperture problem, the
normal equations that arise from the matrices Mxi

g during optimization are rank deficient and
regularization is a necessity. The Laplacian smoothness term addressed in section 4.3 is one
possible choice for regularization.

4.1.2 Affine mesh-based model
In case of a mesh-based model, the number of parameters is determined by the number of
vertices in the mesh, such that N = 2K where K is the number of vertices. If a pixel xi is
surrounded by a triangle consisting of the three mesh vertices va, vb, vc with indices a, b, c and
βa, βb, βc are the three corresponding Barycentric coordinates, it can be represented by the
weighted sum of its enclosing vertices:

xi = ∑
j∈{a,b,c}

β jvj βa + βb + βc = 1, 0 ≤ βa,b,c ≤ 1 (8)

A warp with piecewise affine interpolation between the respective three surrounding vertex
positions keeps the Barycentric coordinates constant, such that the warps ψg(x;θ) and
ψp(x;θ) can then be parameterized similarly by

ψg (xi;θ) = xi +D (xi;θ) = xi + ∑
j∈{a,b,c}

β jdj

ψp (xi;θ) = ∑
j∈{a,b,c}

β jρj
(9)

This can be formulated in matrix notation as in equation (5) with the following matrices

Mxi
g =

[
βa... βb... βc...
0... 0... 0...︸ ︷︷ ︸

(2×K)

0... 0... 0...
βa... βb... βc...︸ ︷︷ ︸

(2×K)

0... 0... 0...
0... 0... 0...

]

︸ ︷︷ ︸
(2×K)

mxi
p =

[
0... 0... 0...︸ ︷︷ ︸

(1×K)

0... 0... 0...︸ ︷︷ ︸
(1×K)

βa... βb... βc...
]

︸ ︷︷ ︸
(1×K)

(10)

250 Object Tracking

4.1.3 Bilinear mesh-based model
Similar to the affine parameterization, we can use a bilinear parameterization between the
respective four surrounding vertex positions

ψg (xi;θ) = xi +D (xi;θ) = xi + ∑
j∈{a,b,c,d}

ηjdj

ψp (xi;θ) = ∑
j∈{a,b,c,d}

ηjρj

ηa = (1 − s)(1 − t), ηb = s(1 − t), ηc = t(1 − s), ηd = st

(11)

Mxi
g and mxi

p are matrices composed similarly as for the affine parameterization above except
that each row now has four entries (ηa, ηb, ηc, ηd) in the corresponding columns.

4.2 3D models
Rather than modelling the motion directly in the 2D image plane, the displacement field
(1) can be regarded as the projection of an object’s 3D motion and deformation into the 2D
domain. Similar to the 2D case, we can specify the deformation of a 3D object, given by its 3D
surface points pi, as a function of deformation parameters θd

ψ3
d(p;θd) = p +D3(p;θd). (12)

For linear deformation fields, the geometrical warp can then be expressed by a deformation
matrix Dpi

d
ψ3

d(pi;θd) = pi + Dpi
d · θd. (13)

This deformation matrix can contain any basis functions that define the deviations of object
points from a neutral shape pi. The amount of deformation performed in the local object
coordinate system is controlled by the deformation parameter vector θd. Similarly, 3D
deformation can be modelled by PCA analysis, with pi being a mean shape and Dpi

d holding
the Eigenvectors of the covariance matrix formed by several sample shapes.
A rigid body transform, specified by rotation matrix R0 and translation vector t0, can be used
to position and orient the 3D object in a world coordinate system. In addition to deformation,
the object is allowed to move which can be described by an update of rotation R with Euler
angles Rx, Ry, Rz and translation t = [tx, ty, tz]T . The entire geometrical warp in the world
coordinate system is then given as

ψ3
g(pi;θd) = R · R0(pi + Dpi

d · θd) + t + t0. (14)

For small changes of the parameter vector θd this can be approximated linearly by
approximating small rotations by a deformation along the object points’ tangents, resulting
in

ψ3
g(pi;θg) ≈ pi + Dpi

g · θg (15)

with the extended parameter vector θg.

θg = [θT
d , Rx, Ry, Rz, tx, ty, tz]

T (16)

251Image-based Tracking of Deformable Surfaces

holding both deformation and pose parameters. The new matrix Dpi
g now covers information

from both deformation and rigid body transform

Dpi
g =

⎡
⎣R0 · Dpi

d ,

⎡
⎣

1
0
0

⎤
⎦× (R0pi),

⎡
⎣

0
1
0

⎤
⎦× (R0pi),

⎡
⎣

0
0
1

⎤
⎦× (R0pi), I3

⎤
⎦ . (17)

The geometrical warp in 3D space given by (14) or (15) can be related with the 2D geometric
warp ψg via the camera projection. For perspective projection

xi = − fx · px,i
pz,i

yi = − fy ·
py,i

pz,i

(18)

with scaled focal lengths fx and fy as camera parameters, the linearized displacement field is
given by [Eisert & Girod (1998)]

ψg(xi,θ) ≈ xi +

�− 1
z(xi)

(fxDpi
g,x + xiD

pi
g,z)

− 1
z(xi)

(fyDpi
g,y + yiD

pi
g,z)

�

� �� �
Jψg

·θg (19)

with Dpi
g,x,y,z being the x−, y−, and z− component of the deformation matrix Dpi

g and z(xi)
the distance of the object point to the camera at pixel xi.
The geometric warp in the 3D case is attached in the local object coordinate system allowing a
semantically meaningful modelling of surface deformation. Similarly, the photometric scaling
can be described by compact illumination and reflection models, since geometry and surface
normal information can be derived. For a simple shading model consisting of ambient and
diffuse light with Lambertian reflection, the photometric warp ψp in (2) is given as

ψp(xi;θ) = camb + cdi f f max{n(xi) · l(xi), 0}. (20)

Here, n is the normalized surface normal of the object at a certain pixel position, while l is a
normalized direction vector pointing from the surface point to the light source. The maximum
function ensures that surface points facing away from the light source are not illuminated.
For analysis of shading parameters, the setup of equations can be limited to surface points
being known as illuminated or in shadow, thus making the non-linear maximum function
unnecessary. The resulting photometric parameters are then given as

θp = [camb, cdi f f nxlx, cdi f f nyly, cdi f f nzlz]T (21)

and the individual components of cdi f f nxlx can be derived exploiting that both n and l have
unit length. In the same way, higher order reflection models can be considered or even PCA
spaces modelling pre-computed variations of a lightmap attached to the object surface as
described in [Eisert (2003)].

252 Object Tracking

4.3 Model smoothness
It is a reasonable a priori assumption for tracking deformable objects like cloth or tissue
that the shape and its motion and deformation is smooth and continuous rather than rough
and erratic. This assumption can be expressed by a smoothness term, i.e. a function that
will associate a cost with undesired, non-smooth model states. Including this function
in the optimization later on will lead to a preference of smooth results over rough ones.
Algebraically, a smoothness term can also be interpreted as a regularization, especially in the
case of the dense model where the data term leads to rank deficiency in the normal equations
due to the aperture problem.
Often, smoothness is associated with a vanishing second derivative of a function. Hence, to
force a model to be smooth, one can penalize the discrete second derivative of the motion
parameters by applying a discrete Laplace operator [Wardetzky et al. (2007)]. The Laplace
Matrix of a 2-dimensional grid is often defined as

L = V − A, (22)

where V is a diagonal matrix of the vertex valences and A is the adjacency matrix of the grid.
Hence, the Laplace Matrix is based on the neighborhood definition in a grid and for a mesh
with K vertices it is a K × K matrix with one row and one column per vertex. Lij = −1
if vertices vi and vj are connected and Lii = |Ni|, where the first subscript denotes the
row and the second the column, respectively. |Ni| denotes the number of vertices in the
neighborhood Ni of vertex vi. There exist several versions of a scaled Laplace matrix with
entries Lij = wij if vertices vk and vl are connected and Lii = −1 with different weighting
schemes and different definitions of the neighborhood which influence the smoothing behavior
of the Laplacian [Taubin (1995)]. The simplest one is a uniform scaling with

wij =
1

|Ni| (23)

where |Ni| denotes the number of vertices in the neighborhood Ni. In order to give closer
neighbors a higher influence on vertex vi than neighbors with a larger distance, we can also
weight each neighbor according to its distance to vertex vi. In this case the weight is

wij =
1/DEuc

ij

∑n∈Ni
1/DEuc

in
(24)

where DEuc
ij denotes the Euclidian distance between the two vertex positions vi and vj.

The Laplacian can be applied to any parameter θ associated with the mesh vertices. The
distribution of these parameters over the mesh is perfectly smooth in the aforementioned
sense if

∇θ = L · θ = 0

where θ denotes the set of parameters θ1...θK .

4.3.1 Laplacians and mesh boundaries
The Laplacian matrix explained above does not treat the mesh borders differently from
the vertices inside the mesh. For example, the product of the Laplacian and the mesh

253Image-based Tracking of Deformable Surfaces

holding both deformation and pose parameters. The new matrix Dpi
g now covers information

from both deformation and rigid body transform

Dpi
g =

⎡
⎣R0 · Dpi

d ,

⎡
⎣

1
0
0

⎤
⎦× (R0pi),

⎡
⎣

0
1
0

⎤
⎦× (R0pi),

⎡
⎣

0
0
1

⎤
⎦× (R0pi), I3

⎤
⎦ . (17)

The geometrical warp in 3D space given by (14) or (15) can be related with the 2D geometric
warp ψg via the camera projection. For perspective projection

xi = − fx · px,i
pz,i

yi = − fy ·
py,i

pz,i

(18)

with scaled focal lengths fx and fy as camera parameters, the linearized displacement field is
given by [Eisert & Girod (1998)]

ψg(xi,θ) ≈ xi +

�− 1
z(xi)

(fxDpi
g,x + xiD

pi
g,z)

− 1
z(xi)

(fyDpi
g,y + yiD

pi
g,z)

�

� �� �
Jψg

·θg (19)

with Dpi
g,x,y,z being the x−, y−, and z− component of the deformation matrix Dpi

g and z(xi)
the distance of the object point to the camera at pixel xi.
The geometric warp in the 3D case is attached in the local object coordinate system allowing a
semantically meaningful modelling of surface deformation. Similarly, the photometric scaling
can be described by compact illumination and reflection models, since geometry and surface
normal information can be derived. For a simple shading model consisting of ambient and
diffuse light with Lambertian reflection, the photometric warp ψp in (2) is given as

ψp(xi;θ) = camb + cdi f f max{n(xi) · l(xi), 0}. (20)

Here, n is the normalized surface normal of the object at a certain pixel position, while l is a
normalized direction vector pointing from the surface point to the light source. The maximum
function ensures that surface points facing away from the light source are not illuminated.
For analysis of shading parameters, the setup of equations can be limited to surface points
being known as illuminated or in shadow, thus making the non-linear maximum function
unnecessary. The resulting photometric parameters are then given as

θp = [camb, cdi f f nxlx, cdi f f nyly, cdi f f nzlz]T (21)

and the individual components of cdi f f nxlx can be derived exploiting that both n and l have
unit length. In the same way, higher order reflection models can be considered or even PCA
spaces modelling pre-computed variations of a lightmap attached to the object surface as
described in [Eisert (2003)].

252 Object Tracking

4.3 Model smoothness
It is a reasonable a priori assumption for tracking deformable objects like cloth or tissue
that the shape and its motion and deformation is smooth and continuous rather than rough
and erratic. This assumption can be expressed by a smoothness term, i.e. a function that
will associate a cost with undesired, non-smooth model states. Including this function
in the optimization later on will lead to a preference of smooth results over rough ones.
Algebraically, a smoothness term can also be interpreted as a regularization, especially in the
case of the dense model where the data term leads to rank deficiency in the normal equations
due to the aperture problem.
Often, smoothness is associated with a vanishing second derivative of a function. Hence, to
force a model to be smooth, one can penalize the discrete second derivative of the motion
parameters by applying a discrete Laplace operator [Wardetzky et al. (2007)]. The Laplace
Matrix of a 2-dimensional grid is often defined as

L = V − A, (22)

where V is a diagonal matrix of the vertex valences and A is the adjacency matrix of the grid.
Hence, the Laplace Matrix is based on the neighborhood definition in a grid and for a mesh
with K vertices it is a K × K matrix with one row and one column per vertex. Lij = −1
if vertices vi and vj are connected and Lii = |Ni|, where the first subscript denotes the
row and the second the column, respectively. |Ni| denotes the number of vertices in the
neighborhood Ni of vertex vi. There exist several versions of a scaled Laplace matrix with
entries Lij = wij if vertices vk and vl are connected and Lii = −1 with different weighting
schemes and different definitions of the neighborhood which influence the smoothing behavior
of the Laplacian [Taubin (1995)]. The simplest one is a uniform scaling with

wij =
1

|Ni| (23)

where |Ni| denotes the number of vertices in the neighborhood Ni. In order to give closer
neighbors a higher influence on vertex vi than neighbors with a larger distance, we can also
weight each neighbor according to its distance to vertex vi. In this case the weight is

wij =
1/DEuc

ij

∑n∈Ni
1/DEuc

in
(24)

where DEuc
ij denotes the Euclidian distance between the two vertex positions vi and vj.

The Laplacian can be applied to any parameter θ associated with the mesh vertices. The
distribution of these parameters over the mesh is perfectly smooth in the aforementioned
sense if

∇θ = L · θ = 0

where θ denotes the set of parameters θ1...θK .

4.3.1 Laplacians and mesh boundaries
The Laplacian matrix explained above does not treat the mesh borders differently from
the vertices inside the mesh. For example, the product of the Laplacian and the mesh

253Image-based Tracking of Deformable Surfaces

vertex coordinates of an undeformed 2-dimensional mesh is not zero at the borders,
�L · vx� > 0,

∥∥L · vy
∥∥ > 0. This is due to the asymmetric vertex neighborhood at the mesh

boundaries.

One solution is to build Directional Laplacian matrices Ld of the mesh which penalize the second
derivatives in different directions, i.e. vertical and horizontal, separately. For each direction of
vertex connections one Laplacian is built, with one row for each vertex that has two neighbors
in the same direction. For example Ld

ii = 2 and Ld
ij = −1 if vertices vk and vl are connected

in the direction d. Each row in Ld corresponds to one vertical vertex triple. The complete
Laplacian is build by concatenating the Directional Laplacian matrices L =

[
Ld1 ... Ldn]T . This

type of Laplacians has several advantages. First, the product of this Laplacian with the mesh
vertices of an undeformed mesh is zero as only symmetric neighborhoods, i.e. neighbors
which have a directional counterpart, are taken into account. Second, by building separate
Laplacians for each direction, we provide more constraints at the border vertices than one
Laplacian for the full neighborhood.

5. Image-based optimization of the model parameters

Independent of the individual parameterization, the parameters θ of the underlying model
are estimated by minimizing a cost function:

θ̂ = arg min
θ

(ED(θ) + λ2ES(θ)) (25)

where ED(θ) is the data term and ES(θ) represents prior assumptions and is often called
the smoothness term. We formulate both terms in a robust non-linear least-squares sense.
This allows to minimize the cost function with common optimization algorithms such as
Gauss-Newton (GN) or Levenberg-Marquardt (LM), i.e. by iteratively solving for a parameter
update δθ̂ and updating the parameter vector θ̂ ← θ̂ + δθ̂. The optimization is performed
hierarchically on an image pyramid where each level yields a more accurate parameter
estimate. This hierarchical framework has several advantages. It speeds up the iteration time
on lower and coarser levels and also allows us to cope with large displacements.
This section will concentrate on the formulation of the data and smoothness terms for
different scenarios. For the data term, we exploit a relaxed version of a brightness constancy
assumption accounting not only for geometric but also intensity differences between two
images. The smoothness term in our framework makes use of a discrete formulation of the
Laplacian defined on a 2-dimensional grid as formulated in section 4.3. We will describe
the characteristics of different formulations of the Laplacian. Furthermore, we will cover
numerical aspects for the estimation of the dense model.

5.1 Optimization framework
Both data term and smoothness term of equation (25) can be expressed in the following form:

E(θ) =
m

∑
i=1

ρ(ri(θ)) (26)

ρ(ri(θ)) is a norm-like function [McCullagh & Nelder (1998); Wedderburn (1974)], i.e. a
symmetric, positive-definite function with a unique minimum at zero, which is chosen to be

254 Object Tracking

less increasing than square. The ri are the residuals of the particular term. The minimization
is computed by an iteratively reweighted least-squares (IRLS) method which is known to be
a Gauss-Newton type method for minimizing a sum of norm-like functions of the residuals
[Huber (1981)]. In this scheme, the gradient and the (approximated) Hessian of the error
function are given by

gE = rTWJr

HE ≈ Jr
TWJr

(27)

where r = r(θ), Jr = Jr(θ) and W = diag(w(ri(θ))) is a weight matrix computed in each
iteration with

w(ri) =
1
ri

∂ρ(ri)

∂ri
(28)

An efficient and well known norm-like function is the Huber estimator [Huber (1981)]

ρ(ri) =

{ 1
2 r2

i i f |ri| ≤ υ

υH |ri| − 1
2 υ otherwise

(29)

which is a parabola in the vicinity of zero, and increases linearly at a given level |ri| > υ. The
weight function for the Huber kernel is given by

w(ri) =

{
1 i f |ri| ≤ υH
υH
|ri | otherwise (30)

For ρ(ri) = 1
2 r2

i , the weight matrix is the identity and the method is equivalent to the
(non-robust) Gauss Newton algorithm for non-linear least squares problems. In each iteration
a parameter update is estimated by solving the normal equations

δθ̂ = −
(

Jr
TWJr

)−1
rTWJr (31)

The parameter is then updated by θ̂ ← θ̂+ δθ̂.
For deformable surface tracking, we use the Huber kernel as a robust estimator for the data
term and the two norm for the smoothness term. The matrices and vectors of our normal
equations therefore are

J =
[

Jr(θ̂)
λJs(θ̂)

]T

b =

[
r(θ̂)
s(θ̂)

]T

W̃ =

[
W 0
0 1

]
. (32)

where r and s are the vectors of the residuals of the data and the smoothness term, respectively,
which will be explained in detail in the following sections.

5.2 Data Term
The data term is based on a relaxed brightness constancy assumption. Methods exploiting
the brightness constancy constraint assume that an image pixel x representing an object point
does not change its brightness value between two successive frames In−1 and In:

In−1
(
ψg(x;θn)

)
= In (x) (33)

255Image-based Tracking of Deformable Surfaces

vertex coordinates of an undeformed 2-dimensional mesh is not zero at the borders,
�L · vx� > 0,

∥∥L · vy
∥∥ > 0. This is due to the asymmetric vertex neighborhood at the mesh

boundaries.

One solution is to build Directional Laplacian matrices Ld of the mesh which penalize the second
derivatives in different directions, i.e. vertical and horizontal, separately. For each direction of
vertex connections one Laplacian is built, with one row for each vertex that has two neighbors
in the same direction. For example Ld

ii = 2 and Ld
ij = −1 if vertices vk and vl are connected

in the direction d. Each row in Ld corresponds to one vertical vertex triple. The complete
Laplacian is build by concatenating the Directional Laplacian matrices L =

[
Ld1 ... Ldn]T . This

type of Laplacians has several advantages. First, the product of this Laplacian with the mesh
vertices of an undeformed mesh is zero as only symmetric neighborhoods, i.e. neighbors
which have a directional counterpart, are taken into account. Second, by building separate
Laplacians for each direction, we provide more constraints at the border vertices than one
Laplacian for the full neighborhood.

5. Image-based optimization of the model parameters

Independent of the individual parameterization, the parameters θ of the underlying model
are estimated by minimizing a cost function:

θ̂ = arg min
θ

(ED(θ) + λ2ES(θ)) (25)

where ED(θ) is the data term and ES(θ) represents prior assumptions and is often called
the smoothness term. We formulate both terms in a robust non-linear least-squares sense.
This allows to minimize the cost function with common optimization algorithms such as
Gauss-Newton (GN) or Levenberg-Marquardt (LM), i.e. by iteratively solving for a parameter
update δθ̂ and updating the parameter vector θ̂ ← θ̂ + δθ̂. The optimization is performed
hierarchically on an image pyramid where each level yields a more accurate parameter
estimate. This hierarchical framework has several advantages. It speeds up the iteration time
on lower and coarser levels and also allows us to cope with large displacements.
This section will concentrate on the formulation of the data and smoothness terms for
different scenarios. For the data term, we exploit a relaxed version of a brightness constancy
assumption accounting not only for geometric but also intensity differences between two
images. The smoothness term in our framework makes use of a discrete formulation of the
Laplacian defined on a 2-dimensional grid as formulated in section 4.3. We will describe
the characteristics of different formulations of the Laplacian. Furthermore, we will cover
numerical aspects for the estimation of the dense model.

5.1 Optimization framework
Both data term and smoothness term of equation (25) can be expressed in the following form:

E(θ) =
m

∑
i=1

ρ(ri(θ)) (26)

ρ(ri(θ)) is a norm-like function [McCullagh & Nelder (1998); Wedderburn (1974)], i.e. a
symmetric, positive-definite function with a unique minimum at zero, which is chosen to be

254 Object Tracking

less increasing than square. The ri are the residuals of the particular term. The minimization
is computed by an iteratively reweighted least-squares (IRLS) method which is known to be
a Gauss-Newton type method for minimizing a sum of norm-like functions of the residuals
[Huber (1981)]. In this scheme, the gradient and the (approximated) Hessian of the error
function are given by

gE = rTWJr

HE ≈ Jr
TWJr

(27)

where r = r(θ), Jr = Jr(θ) and W = diag(w(ri(θ))) is a weight matrix computed in each
iteration with

w(ri) =
1
ri

∂ρ(ri)

∂ri
(28)

An efficient and well known norm-like function is the Huber estimator [Huber (1981)]

ρ(ri) =

{ 1
2 r2

i i f |ri| ≤ υ

υH |ri| − 1
2 υ otherwise

(29)

which is a parabola in the vicinity of zero, and increases linearly at a given level |ri| > υ. The
weight function for the Huber kernel is given by

w(ri) =

{
1 i f |ri| ≤ υH
υH
|ri | otherwise (30)

For ρ(ri) = 1
2 r2

i , the weight matrix is the identity and the method is equivalent to the
(non-robust) Gauss Newton algorithm for non-linear least squares problems. In each iteration
a parameter update is estimated by solving the normal equations

δθ̂ = −
(

Jr
TWJr

)−1
rTWJr (31)

The parameter is then updated by θ̂ ← θ̂+ δθ̂.
For deformable surface tracking, we use the Huber kernel as a robust estimator for the data
term and the two norm for the smoothness term. The matrices and vectors of our normal
equations therefore are

J =
[

Jr(θ̂)
λJs(θ̂)

]T

b =

[
r(θ̂)
s(θ̂)

]T

W̃ =

[
W 0
0 1

]
. (32)

where r and s are the vectors of the residuals of the data and the smoothness term, respectively,
which will be explained in detail in the following sections.

5.2 Data Term
The data term is based on a relaxed brightness constancy assumption. Methods exploiting
the brightness constancy constraint assume that an image pixel x representing an object point
does not change its brightness value between two successive frames In−1 and In:

In−1
(
ψg(x;θn)

)
= In (x) (33)

255Image-based Tracking of Deformable Surfaces

However, this assumption is almost never valid for natural scenes. For this reason, we relax
the optical flow constraint equation allowing for multiplicative deviations from brightness
constancy:

ψp(x;θn) · In−1
�
ψg(x;θn)

�
= In (x) (34)

with a photometric warp ψp(x;θn) and a geometric warp ψg(x;θn) as given in equation (5).
Hence, the data term is formulated via the differences between the original frame In and the
spatially and photometrically warped previous frame In−1:

ED(θ) = ∑
xi∈R

ρ(ψp(xi;θn−1) · In−1
�
ψg(xi;θn−1)

�− In(xi)� �� �
ri

) (35)

where ρ(ri) is a norm-like function. Both warp functions are parameterized by the parameter
vector θ which comprises a geometric part θg and a photometric part θp as in equation (4).
The Jacobian Jr of the residuals ri is a p × N matrix (with p being the number of pixels in the
region of interest) with the following ith row:

∂ri(θ)

∂θ
= ψp(xi;θ) · ∇In−1(ψg(xi;θ)) · Jψg (xi;θ) + In−1(ψg(xi; θ̂)) · Jψp (xi;θ) (36)

with ∇I =
�

∂I
∂x

∂I
∂y

�
. The Jacobians of the warps Jψg (xi;θ) and Jψg (xi;θ) depend on the warp

parameterization. In general, it is a 2 × N matrix where N is the number of parameters in the
parameters vector θ as given in equation (6) or (19).

5.3 Smoothness term
The smoothness term is defined to regularize all parameters, geometric and photometric ones,
using some suitably chosen Tikhonov regularizer

ES(θ) = �Γ · θ�2 . (37)

In the simplest case (zeroth-order Tikhonov regularization) Γ is the identity matrix Γ =
I, giving preference to solutions with smaller norms. Other possible regularizations
include first-order or second-order Tikhonov regularizations, where Γ approximates first- or
second-order derivatives of the parameter, favoring flat or smooth results.
For the 2-dimensional models, the Laplacian matrix for 2-dimensional grids explained in
section 4.3 define such an approximation of the second derivative of the mesh. As the
parameter vector consists of three parts which should be regularized independently, the
Tikhonov matrix is given by

Γ =

⎡
⎣

L 0 0
0 L 0
0 0 λpL

⎤
⎦ (38)

A similar regularization matrix can be formulated for the 3-dimensional models. λp weights
the smoothing of the geometric parameters (vertex displacements in x− and y-direction)
against the smoothing of the photometric scale. This is necessary due to the different scaling
of the pixel displacement and the photometric parameter, the former being additive and the
latter multiplicative. The Jacobian of the smoothness term is Js(θ) = Γ.

256 Object Tracking

Fig. 2. Example structure of Hr ≈ Jr
TJr

and H ≈ JTJ for an affine mesh-based
model.

0 50 100 150 200 250 300
0

0.5

1

1.5

2

2.5

3

0 50 100 150 200 250 300
0

1

2

3

4

5

6 x 10−3

Fig. 3. Eigenvalues of the matrix with and without
the smoothness term. Without the smoothness term
the matrix is ill-conditioned.

By using a regularizer as given in equation (38), ES(θ) penalizes the discrete second derivative
of the mesh and regularizes the flow field in addition to the motion model itself, especially in
case of insufficient information in the data due to e.g. homogeneous regions with low image
gradient. One important advantage of using direct image information instead of features is,
that a lack of image information, i.e. image gradients of small magnitude in regions of little
texture, automatically lead to a higher local weighting of the smoothness constraint in these
regions. Also, the function dominates for vertices detected as outliers when using e.g. the
Huber function for robust estimation.

5.4 Numerical issues
For all models presented in section 4 the approximation of the Hessian H = JTJ is a sparse
banded matrix (see Figure 2). The sparsity can be exploited to solve the resulting normal
equations in each iteration, especially for the dense model where the matrix becomes very
large but also very sparse: There are two unknowns per pixel, but there is no coupling of
unknowns in the data term. This is in contrast to the affine warp, where all pixels under
a certain mesh triangle simultaneously contribute to the six unknowns associated with the
triangle’s three vertices.
To solve the normal equations for the dense warp in an efficient way, multigrid algorithms
can be used. The multigrid scheme exploits the fact that certain iterative solvers, e.g. the
computationally inexpensive Gauss-Seidel method, reduce high frequency errors quickly
despite of overall slow convergence. Therefore, these algorithms can be used as smoothers.
After a few smoothing iterations the problem is subsampled to a lower resolution pixel grid
and the process is restarted. Only at the bottom stage, the problem, which is now significantly
reduced in size, is solved exactly. The exact solution is then propagated upwards to the higher
resolution levels. The whole process is called a V-cycle in the multigrid literature.

5.5 Analysis by synthesis
Generally, intensity-based differential techniques, which estimate the motion only between
two successive frames, often suffer from drift because they accumulate errors indefinitely.
This limits their effectiveness when dealing with long video sequences. To avoid
error accumulation we make use of an analysis-by-synthesis approach, where the error
minimization is always carried out between a synthesized reference image and the actual
camera frame. We use the previous parameter sets {θ̂1, ...θ̂n−1} to generate a synthetic version
of the previous frame In−1 from a model image I0. The new parameters θ̂n are then estimated
from this synthetic previous frame În−1 to the current camera frame In (see Figure 4). This

257Image-based Tracking of Deformable Surfaces

However, this assumption is almost never valid for natural scenes. For this reason, we relax
the optical flow constraint equation allowing for multiplicative deviations from brightness
constancy:

ψp(x;θn) · In−1
�
ψg(x;θn)

�
= In (x) (34)

with a photometric warp ψp(x;θn) and a geometric warp ψg(x;θn) as given in equation (5).
Hence, the data term is formulated via the differences between the original frame In and the
spatially and photometrically warped previous frame In−1:

ED(θ) = ∑
xi∈R

ρ(ψp(xi;θn−1) · In−1
�
ψg(xi;θn−1)

�− In(xi)� �� �
ri

) (35)

where ρ(ri) is a norm-like function. Both warp functions are parameterized by the parameter
vector θ which comprises a geometric part θg and a photometric part θp as in equation (4).
The Jacobian Jr of the residuals ri is a p × N matrix (with p being the number of pixels in the
region of interest) with the following ith row:

∂ri(θ)

∂θ
= ψp(xi;θ) · ∇In−1(ψg(xi;θ)) · Jψg (xi;θ) + In−1(ψg(xi; θ̂)) · Jψp (xi;θ) (36)

with ∇I =
�

∂I
∂x

∂I
∂y

�
. The Jacobians of the warps Jψg (xi;θ) and Jψg (xi;θ) depend on the warp

parameterization. In general, it is a 2 × N matrix where N is the number of parameters in the
parameters vector θ as given in equation (6) or (19).

5.3 Smoothness term
The smoothness term is defined to regularize all parameters, geometric and photometric ones,
using some suitably chosen Tikhonov regularizer

ES(θ) = �Γ · θ�2 . (37)

In the simplest case (zeroth-order Tikhonov regularization) Γ is the identity matrix Γ =
I, giving preference to solutions with smaller norms. Other possible regularizations
include first-order or second-order Tikhonov regularizations, where Γ approximates first- or
second-order derivatives of the parameter, favoring flat or smooth results.
For the 2-dimensional models, the Laplacian matrix for 2-dimensional grids explained in
section 4.3 define such an approximation of the second derivative of the mesh. As the
parameter vector consists of three parts which should be regularized independently, the
Tikhonov matrix is given by

Γ =

⎡
⎣

L 0 0
0 L 0
0 0 λpL

⎤
⎦ (38)

A similar regularization matrix can be formulated for the 3-dimensional models. λp weights
the smoothing of the geometric parameters (vertex displacements in x− and y-direction)
against the smoothing of the photometric scale. This is necessary due to the different scaling
of the pixel displacement and the photometric parameter, the former being additive and the
latter multiplicative. The Jacobian of the smoothness term is Js(θ) = Γ.

256 Object Tracking

Fig. 2. Example structure of Hr ≈ Jr
TJr

and H ≈ JTJ for an affine mesh-based
model.

0 50 100 150 200 250 300
0

0.5

1

1.5

2

2.5

3

0 50 100 150 200 250 300
0

1

2

3

4

5

6 x 10−3

Fig. 3. Eigenvalues of the matrix with and without
the smoothness term. Without the smoothness term
the matrix is ill-conditioned.

By using a regularizer as given in equation (38), ES(θ) penalizes the discrete second derivative
of the mesh and regularizes the flow field in addition to the motion model itself, especially in
case of insufficient information in the data due to e.g. homogeneous regions with low image
gradient. One important advantage of using direct image information instead of features is,
that a lack of image information, i.e. image gradients of small magnitude in regions of little
texture, automatically lead to a higher local weighting of the smoothness constraint in these
regions. Also, the function dominates for vertices detected as outliers when using e.g. the
Huber function for robust estimation.

5.4 Numerical issues
For all models presented in section 4 the approximation of the Hessian H = JTJ is a sparse
banded matrix (see Figure 2). The sparsity can be exploited to solve the resulting normal
equations in each iteration, especially for the dense model where the matrix becomes very
large but also very sparse: There are two unknowns per pixel, but there is no coupling of
unknowns in the data term. This is in contrast to the affine warp, where all pixels under
a certain mesh triangle simultaneously contribute to the six unknowns associated with the
triangle’s three vertices.
To solve the normal equations for the dense warp in an efficient way, multigrid algorithms
can be used. The multigrid scheme exploits the fact that certain iterative solvers, e.g. the
computationally inexpensive Gauss-Seidel method, reduce high frequency errors quickly
despite of overall slow convergence. Therefore, these algorithms can be used as smoothers.
After a few smoothing iterations the problem is subsampled to a lower resolution pixel grid
and the process is restarted. Only at the bottom stage, the problem, which is now significantly
reduced in size, is solved exactly. The exact solution is then propagated upwards to the higher
resolution levels. The whole process is called a V-cycle in the multigrid literature.

5.5 Analysis by synthesis
Generally, intensity-based differential techniques, which estimate the motion only between
two successive frames, often suffer from drift because they accumulate errors indefinitely.
This limits their effectiveness when dealing with long video sequences. To avoid
error accumulation we make use of an analysis-by-synthesis approach, where the error
minimization is always carried out between a synthesized reference image and the actual
camera frame. We use the previous parameter sets {θ̂1, ...θ̂n−1} to generate a synthetic version
of the previous frame In−1 from a model image I0. The new parameters θ̂n are then estimated
from this synthetic previous frame În−1 to the current camera frame In (see Figure 4). This

257Image-based Tracking of Deformable Surfaces

Fig. 4. Analysis by Synthesis framework

way, the model frame serves as reference frame and we assure that no misalignment of the
model and the previous frame occurs. Thereby, we allow for recovery from small inaccuracies
during parameter estimation.

6. Experimental results

Our approach has been applied to several tracking problems, such as tracking cloth in
augmented reality applications, medical image analysis, and facial expression analysis. The
different applications will be explained in detail in section 6.3. Section 6.1 and 6.2 focus on
experiments on the registration accuracy achieved with our framework and a mesh-based
2-dimensional model as well as on choosing the regularization parameter in the optimization
framework.

6.1 Registration accuracy
We evaluated the registration results of real image sequences based on the Root Mean Squared
Error (RMSE) between the synthetic image În generated from the parameter estimates θ̂n and
the original current frame In computed over all image pixels in the mesh region R for several
video sequences and compared our approach with the classical optical flow approach. With
classical optical flow approach we refer to the original optical flow constraint that does not
account for illumination changes, the geometric deformation model and optimization method
are equal. Experiments with nine sequences showed that taking illumination parameters into
account significantly improves the spatial tracking results. The table in Figure 5 sums up the
mean RSME values over the entire sequence for these nine sequences. It shows that taking
illumination parameters into account significantly reduces the mean RMSE over the entire
sequence by up to 74%. The right image shows the RSME plot of one of the sequences and
compares the results achieved with our approach (black solid line) to the classical optical flow
method (dashed red line). Additionally, we manually labeled prominent feature points in
every 50th frame of two test sequences which serve as ground truth points. We then warped
the ground truth points of the reference frame with the geometric deformation parameters of
these frames. The mean difference between the estimated positions and the manually labeled
ground truth position describes the geometric registration error. This additional evaluation
approach is chosen to evaluate geometric registration accuracy separately from photometric
registration. We can reduce the mean distance between the estimated and the ground
truth position by approximately 40% when taking illumination into account. In all these
experiments we used a 2-dimensional mesh-based affine motion model and a regularization
parameter λ = 0.5.

258 Object Tracking

Sequence classical our %
OF approach

Picasso 0.0306 0.0204 33.33%
Flower1 0.1364 0.0415 69.57%
Flower2 0.1245 0.0376 69.80%
Art 0.1016 0.0258 74.61%
Flower3 0.1286 0.0385 70.06%
Shirt 0.0630 0.0405 35.71%
Pattern 0.0632 0.0213 66.30%
Cloth1 0.0877 0.0443 49.49%
Cloth2 0.0976 0.0513 47.44%

0 50 100 150 200 250 300
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

frames

R
SM

E

Fig. 5. Left: Comparison of the average RMSE over the entire video sequence with our
approach and classical optical flow. Right: Plots of the RMSE between the synthetic frame În
and the original current frame In with classical optical flow (dashed red) and our method
(solid black) for an example sequence.

6.2 Choosing the regularization parameter
Choosing the regularization parameter λ in the optimization framework is not an easy task.
The choice of λ describes a trade-off between fitting to the data term –which may be corrupted
by noise– and the smoothness of the result. Hence, there is no correct λ as the trade-off depends
on the considered problem. We can only define a reasonable λ, i.e. a λ which represents the best
balance between both sides. The influence of the regularization parameter λ can be analyzed
using the L-curve [Hansen (1992)], which plots ED(θ̂) against ES(θ̂) for different values of λ.
The L-curve (see Figure 7) is basically made up of two parts which correspond to oversmoothed
and undersmoothed solutions. The more horizontal part corresponds to the solution where the
regularization parameter is very large and the solution is dominated by the regularization
errors. The more vertical part corresponds to solutions where the regularization parameter
is very small and the solution is dominated by the data error. Often, a reasonable λ, i.e. a
good trade-off between fitting to the data and smoothness term, is considered to be the point
of maximal curvature of the L-shaped curve or the point nearest to the origin. Figure 6
shows the influence of different choices for λ. It shows examples of difference images before
optimization (left) and for different values of λ. If λ is chosen too small, the result is dominated
by the (noise corrupted) data term and if λ is chosen too small, the result is too smooth to be
fitted to the data term. Figure 7 shows a typical L-Curve and associated values for the data
and smoothness terms for different values for λ.

6.3 Applications
We applied the proposed framework to different fields of applications, presented in the
following.
Augmented reality
The proposed method was used for augmented reality applications where a deformable
surface, like a piece of paper or cloth, is retextured in a monocular image sequence. The

259Image-based Tracking of Deformable Surfaces

Fig. 4. Analysis by Synthesis framework

way, the model frame serves as reference frame and we assure that no misalignment of the
model and the previous frame occurs. Thereby, we allow for recovery from small inaccuracies
during parameter estimation.

6. Experimental results

Our approach has been applied to several tracking problems, such as tracking cloth in
augmented reality applications, medical image analysis, and facial expression analysis. The
different applications will be explained in detail in section 6.3. Section 6.1 and 6.2 focus on
experiments on the registration accuracy achieved with our framework and a mesh-based
2-dimensional model as well as on choosing the regularization parameter in the optimization
framework.

6.1 Registration accuracy
We evaluated the registration results of real image sequences based on the Root Mean Squared
Error (RMSE) between the synthetic image În generated from the parameter estimates θ̂n and
the original current frame In computed over all image pixels in the mesh region R for several
video sequences and compared our approach with the classical optical flow approach. With
classical optical flow approach we refer to the original optical flow constraint that does not
account for illumination changes, the geometric deformation model and optimization method
are equal. Experiments with nine sequences showed that taking illumination parameters into
account significantly improves the spatial tracking results. The table in Figure 5 sums up the
mean RSME values over the entire sequence for these nine sequences. It shows that taking
illumination parameters into account significantly reduces the mean RMSE over the entire
sequence by up to 74%. The right image shows the RSME plot of one of the sequences and
compares the results achieved with our approach (black solid line) to the classical optical flow
method (dashed red line). Additionally, we manually labeled prominent feature points in
every 50th frame of two test sequences which serve as ground truth points. We then warped
the ground truth points of the reference frame with the geometric deformation parameters of
these frames. The mean difference between the estimated positions and the manually labeled
ground truth position describes the geometric registration error. This additional evaluation
approach is chosen to evaluate geometric registration accuracy separately from photometric
registration. We can reduce the mean distance between the estimated and the ground
truth position by approximately 40% when taking illumination into account. In all these
experiments we used a 2-dimensional mesh-based affine motion model and a regularization
parameter λ = 0.5.

258 Object Tracking

Sequence classical our %
OF approach

Picasso 0.0306 0.0204 33.33%
Flower1 0.1364 0.0415 69.57%
Flower2 0.1245 0.0376 69.80%
Art 0.1016 0.0258 74.61%
Flower3 0.1286 0.0385 70.06%
Shirt 0.0630 0.0405 35.71%
Pattern 0.0632 0.0213 66.30%
Cloth1 0.0877 0.0443 49.49%
Cloth2 0.0976 0.0513 47.44%

0 50 100 150 200 250 300
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

frames

R
SM

E

Fig. 5. Left: Comparison of the average RMSE over the entire video sequence with our
approach and classical optical flow. Right: Plots of the RMSE between the synthetic frame În
and the original current frame In with classical optical flow (dashed red) and our method
(solid black) for an example sequence.

6.2 Choosing the regularization parameter
Choosing the regularization parameter λ in the optimization framework is not an easy task.
The choice of λ describes a trade-off between fitting to the data term –which may be corrupted
by noise– and the smoothness of the result. Hence, there is no correct λ as the trade-off depends
on the considered problem. We can only define a reasonable λ, i.e. a λ which represents the best
balance between both sides. The influence of the regularization parameter λ can be analyzed
using the L-curve [Hansen (1992)], which plots ED(θ̂) against ES(θ̂) for different values of λ.
The L-curve (see Figure 7) is basically made up of two parts which correspond to oversmoothed
and undersmoothed solutions. The more horizontal part corresponds to the solution where the
regularization parameter is very large and the solution is dominated by the regularization
errors. The more vertical part corresponds to solutions where the regularization parameter
is very small and the solution is dominated by the data error. Often, a reasonable λ, i.e. a
good trade-off between fitting to the data and smoothness term, is considered to be the point
of maximal curvature of the L-shaped curve or the point nearest to the origin. Figure 6
shows the influence of different choices for λ. It shows examples of difference images before
optimization (left) and for different values of λ. If λ is chosen too small, the result is dominated
by the (noise corrupted) data term and if λ is chosen too small, the result is too smooth to be
fitted to the data term. Figure 7 shows a typical L-Curve and associated values for the data
and smoothness terms for different values for λ.

6.3 Applications
We applied the proposed framework to different fields of applications, presented in the
following.
Augmented reality
The proposed method was used for augmented reality applications where a deformable
surface, like a piece of paper or cloth, is retextured in a monocular image sequence. The

259Image-based Tracking of Deformable Surfaces

Fig. 6. Difference image between the model frame and an example current frame before
motion estimation (left). Difference images after optimization with very small λ
(undersmoothed), reasonable λ and very large λ (oversmoothed).

0 1 2
x 10−4

6

8 x 10−5

Es

E d

λ ED/10−5 ES/10−5

0.01 4.7357 20.535
0.1 4.7449 1.1588
0.2 4.7494 0.5137
1 4.7957 0.0285
5 5.0331 0.0106
10 5.7310 0.0043
100 7.5944 0.0000
1000 7.6385 0.0000

Fig. 7. A typical L-curve and associated values for ED and ES for different values for λ

intention is to blend a virtual texture into a real video sequence such that its deformation as
well as lighting conditions and shading in the final image remain the same (see e.g. Figure
1). We recover geometric and photometric parameters that describe the 2-dimensional

260 Object Tracking

Fig. 8. Tracking and synthesizing different kinds of cloth. The left example shows thick cloth
with very smooth deformations while the right example shows cloth that produces small
crinkles and creases.

Fig. 9. Tracking and retexturing clothes in an augmented reality application (left: original
frame with mesh)

deformation and shading properties of the projected surface in the image plane with the
proposed method. The virtual texture is then deformed with the estimated deformation
parameters and blended into the original video sequence. A shading map estimated from
the photometric parameters is applied to the virtual texture increasing the realistic impression
of the augmented video sequence.

Figure 1, 8, and 9 show augmentation results under different lighting conditions using the
estimated illumination parameters to establish a shading map. These examples demonstrate
how crucial illumination recovery is for convincing texture augmentation of deforming
surfaces. The addition of realistic lighting increases the perception of spatial relations between
the real and virtual objects. Note, that spatial deformation is purely 2D and the 3-dimensional
impression comes from shading. The results from Figure 9 are images from a real-time
augmented reality application which we built. In this Virtual Mirror a user is captured with
a camera and a rectangular pattern on his shirt is retextured with a user-defined logo or
image with correct deformation and illumination. The new logo follows the users movements
as if attached to his shirt. The system runs at 25 fps and the images have a resolution of
768 × 1024 pixels. To this end we use 4 levels of resolution and experiments with synthetic

261Image-based Tracking of Deformable Surfaces

Fig. 6. Difference image between the model frame and an example current frame before
motion estimation (left). Difference images after optimization with very small λ
(undersmoothed), reasonable λ and very large λ (oversmoothed).

0 1 2
x 10−4

6

8 x 10−5

Es

E d

λ ED/10−5 ES/10−5

0.01 4.7357 20.535
0.1 4.7449 1.1588
0.2 4.7494 0.5137
1 4.7957 0.0285
5 5.0331 0.0106
10 5.7310 0.0043
100 7.5944 0.0000
1000 7.6385 0.0000

Fig. 7. A typical L-curve and associated values for ED and ES for different values for λ

intention is to blend a virtual texture into a real video sequence such that its deformation as
well as lighting conditions and shading in the final image remain the same (see e.g. Figure
1). We recover geometric and photometric parameters that describe the 2-dimensional

260 Object Tracking

Fig. 8. Tracking and synthesizing different kinds of cloth. The left example shows thick cloth
with very smooth deformations while the right example shows cloth that produces small
crinkles and creases.

Fig. 9. Tracking and retexturing clothes in an augmented reality application (left: original
frame with mesh)

deformation and shading properties of the projected surface in the image plane with the
proposed method. The virtual texture is then deformed with the estimated deformation
parameters and blended into the original video sequence. A shading map estimated from
the photometric parameters is applied to the virtual texture increasing the realistic impression
of the augmented video sequence.

Figure 1, 8, and 9 show augmentation results under different lighting conditions using the
estimated illumination parameters to establish a shading map. These examples demonstrate
how crucial illumination recovery is for convincing texture augmentation of deforming
surfaces. The addition of realistic lighting increases the perception of spatial relations between
the real and virtual objects. Note, that spatial deformation is purely 2D and the 3-dimensional
impression comes from shading. The results from Figure 9 are images from a real-time
augmented reality application which we built. In this Virtual Mirror a user is captured with
a camera and a rectangular pattern on his shirt is retextured with a user-defined logo or
image with correct deformation and illumination. The new logo follows the users movements
as if attached to his shirt. The system runs at 25 fps and the images have a resolution of
768 × 1024 pixels. To this end we use 4 levels of resolution and experiments with synthetic

261Image-based Tracking of Deformable Surfaces

image sequences with this hierarchical scheme showed that it is able to estimate displacements
of up to 25 pixels between two frames with a mean error of 0.2 pixels. On a 2.4 GHz Pentium
4 based system the parameter estimation takes about 40 ms, leading to a frame rate of about
25 fps.
Medical imaging
Our framework is used to stabilize kymographic images. Kymographic imaging is a method
for visualizing and analyzing motion. In our use case, it is the vibration of the human vocal
folds that is to be visualized. The source material are endoscopic video recordings showing
the vocal folds while the patient tries to produce a sound at a certain frequency. Instead of
analyzing video images of the whole moving vocal folds, a single line of each frame in the
recorded image sequence is extracted. The lines are combined to create a kymogram which
is then analysed by the physician. A kymogram is a time slice of the vibratory behaviour of
the vocal folds, i.e. an X-t-image rather than an X-Y image. Camera movement and motion
of the patient as a whole disturb the creation of the kymographic images which relies on the
assumption that a certain scanline of the frames displays roughly the same part of the vocal
fold throughout the entire endoscopic video sequence. Therefore, kymographic imaging can
be greatly improved by compensating camera motion.
We use the methods described in the chapter to compute a deformation field between
successive frames in the endoscopic video sequence. The field is computed with the
mesh-based affine model. The stiffness, i.e. the weighting of the Laplacian smoothness term,
is chosen such that the deformation field adapts to global image motion due to camera
movement as well as to the parallax motion induced by different depth layers in the scene.
It is set too stiff, however, to compensate for the motion of the vocal folds, which must not be
altered by the image stabilization. From the deformation fields, the global motion of a region
of interest, which is annotated manually in the first frame, is tracked throughout the sequence.
A stabilizing transformation for each frame is found by estimating a rigid transformation that
maps the region of interest to its correspondence in the first frame. Figure 10 illustrates the
vast increase in kymogram quality achieved by the motion compensation.
Our dense, warp-based approach to image stabilization has several advantages over the
classic approach based on feature tracking. Our approach allows us to optimize for a dense
motion field using all available image information. This is particularly effective for images
of low quality. The endoscopic video we stabilize, for example, suffers from artifacts due
to interlacing, image noise, occasional color artifacts and motion blur. We found simple
feature detectors such as Harris corners virtually unusable on this material. Furthermore,
the optimization approach gives a complete and accurate estimate of nonrigid image motion
at a certain scale as the result of a single optimization process. Outliers in the data term are
handled during the optimization by the robust error metric (in this case, the Huber function)
and there is no need to perform RANSAC or other data selection schemes. Finally, the density
of the mesh and the weight of the stiffness term allows us to regulate precisely to which scale
of nonrigid motion the algorithm adapts.
Facial Expression Analysis
The human face is a well known example for a deformable object. Head pose can be described
by rigid body transforms whereas facial expressions lead to local surface deformations. These
deformations, however, are constrained and depend on face muscle and soft tissue properties.
Analyses have shown [Ekman & Friesen (1978)], that there are only about 50 groups of
muscles in the face, that can be controlled independently when performing facial expressions.

262 Object Tracking

Fig. 10. Kymography: uncompensated and compensated kymographic images.

Therefore, surface deformations as specified in (12) can compactly be described by a limited
number of facial expression parameters.
We have applied the framework described in this chapter to the estimation of facial expression
parameters [Eisert (2003); Eisert & Girod (1998)]. The geometry of a head is represented by
a parameterized generic triangle mesh model, which is individualized by applying surface
deformations represented by shape parameters to a standard face geometry. The model is fit
to the first frame of a video sequence, which is also projected onto the 3D model as texture.
For the description of facial expressions, we have adopted a subset of the MPEG-4 Facial
Animation Parameters (FAPs according to [MPG (1999)]), which describe facial expressions
by a superposition of simple local surface deformations related to movements of lips, chin,
cheeks, etc. In our experiments, we use 21 facial expression parameters θd together with 6 pose
parameters to specify surface deformation and orientation according to (14). The mapping
from FAPs to arbitrary surface points deformation given by Dd is modelled using triangular
B-splines.
Given the three-dimensional model description, the facial expression parameters are jointly
estimated with the global pose parameters in an analysis by synthesis frame work as described
in section 5.5. The per-pixel depth information required in (19) as well as the surface normal
data are rendered and read back from the graphics card. Smoothness terms penalize FAP
differences between the left and right side of the face, favoring symmetric facial expressions.
In addition to the geometric deformations, parameters related to illumination are estimated
to compensate for lighting changes between the model created for the first frame and the
current scene. A simple model with ambient and diffuse colored light is used to describe
the photometric changes. Figure 11 gives examples for the facial expression analysis of the
proposed framework. From the original frames in the leftmost column, surface deformations
are estimated. The deformed model is shown by means of a wireframe and textured
representation in the middle columns. The facial animation parameters can also be applied to
other face models, implementing expression cloning as illustrated in the rightmost columns
of figure 11.

7. Conclusion

We presented a complete framework for tracking of deformable surfaces using image-based
optimization methods. We use a relaxed brightness constancy assumption and model both
geometrical as well as photometrical changes in an image sequence. In our framework
formulation we separated the motion model from the optimization method which makes

263Image-based Tracking of Deformable Surfaces

image sequences with this hierarchical scheme showed that it is able to estimate displacements
of up to 25 pixels between two frames with a mean error of 0.2 pixels. On a 2.4 GHz Pentium
4 based system the parameter estimation takes about 40 ms, leading to a frame rate of about
25 fps.
Medical imaging
Our framework is used to stabilize kymographic images. Kymographic imaging is a method
for visualizing and analyzing motion. In our use case, it is the vibration of the human vocal
folds that is to be visualized. The source material are endoscopic video recordings showing
the vocal folds while the patient tries to produce a sound at a certain frequency. Instead of
analyzing video images of the whole moving vocal folds, a single line of each frame in the
recorded image sequence is extracted. The lines are combined to create a kymogram which
is then analysed by the physician. A kymogram is a time slice of the vibratory behaviour of
the vocal folds, i.e. an X-t-image rather than an X-Y image. Camera movement and motion
of the patient as a whole disturb the creation of the kymographic images which relies on the
assumption that a certain scanline of the frames displays roughly the same part of the vocal
fold throughout the entire endoscopic video sequence. Therefore, kymographic imaging can
be greatly improved by compensating camera motion.
We use the methods described in the chapter to compute a deformation field between
successive frames in the endoscopic video sequence. The field is computed with the
mesh-based affine model. The stiffness, i.e. the weighting of the Laplacian smoothness term,
is chosen such that the deformation field adapts to global image motion due to camera
movement as well as to the parallax motion induced by different depth layers in the scene.
It is set too stiff, however, to compensate for the motion of the vocal folds, which must not be
altered by the image stabilization. From the deformation fields, the global motion of a region
of interest, which is annotated manually in the first frame, is tracked throughout the sequence.
A stabilizing transformation for each frame is found by estimating a rigid transformation that
maps the region of interest to its correspondence in the first frame. Figure 10 illustrates the
vast increase in kymogram quality achieved by the motion compensation.
Our dense, warp-based approach to image stabilization has several advantages over the
classic approach based on feature tracking. Our approach allows us to optimize for a dense
motion field using all available image information. This is particularly effective for images
of low quality. The endoscopic video we stabilize, for example, suffers from artifacts due
to interlacing, image noise, occasional color artifacts and motion blur. We found simple
feature detectors such as Harris corners virtually unusable on this material. Furthermore,
the optimization approach gives a complete and accurate estimate of nonrigid image motion
at a certain scale as the result of a single optimization process. Outliers in the data term are
handled during the optimization by the robust error metric (in this case, the Huber function)
and there is no need to perform RANSAC or other data selection schemes. Finally, the density
of the mesh and the weight of the stiffness term allows us to regulate precisely to which scale
of nonrigid motion the algorithm adapts.
Facial Expression Analysis
The human face is a well known example for a deformable object. Head pose can be described
by rigid body transforms whereas facial expressions lead to local surface deformations. These
deformations, however, are constrained and depend on face muscle and soft tissue properties.
Analyses have shown [Ekman & Friesen (1978)], that there are only about 50 groups of
muscles in the face, that can be controlled independently when performing facial expressions.

262 Object Tracking

Fig. 10. Kymography: uncompensated and compensated kymographic images.

Therefore, surface deformations as specified in (12) can compactly be described by a limited
number of facial expression parameters.
We have applied the framework described in this chapter to the estimation of facial expression
parameters [Eisert (2003); Eisert & Girod (1998)]. The geometry of a head is represented by
a parameterized generic triangle mesh model, which is individualized by applying surface
deformations represented by shape parameters to a standard face geometry. The model is fit
to the first frame of a video sequence, which is also projected onto the 3D model as texture.
For the description of facial expressions, we have adopted a subset of the MPEG-4 Facial
Animation Parameters (FAPs according to [MPG (1999)]), which describe facial expressions
by a superposition of simple local surface deformations related to movements of lips, chin,
cheeks, etc. In our experiments, we use 21 facial expression parameters θd together with 6 pose
parameters to specify surface deformation and orientation according to (14). The mapping
from FAPs to arbitrary surface points deformation given by Dd is modelled using triangular
B-splines.
Given the three-dimensional model description, the facial expression parameters are jointly
estimated with the global pose parameters in an analysis by synthesis frame work as described
in section 5.5. The per-pixel depth information required in (19) as well as the surface normal
data are rendered and read back from the graphics card. Smoothness terms penalize FAP
differences between the left and right side of the face, favoring symmetric facial expressions.
In addition to the geometric deformations, parameters related to illumination are estimated
to compensate for lighting changes between the model created for the first frame and the
current scene. A simple model with ambient and diffuse colored light is used to describe
the photometric changes. Figure 11 gives examples for the facial expression analysis of the
proposed framework. From the original frames in the leftmost column, surface deformations
are estimated. The deformed model is shown by means of a wireframe and textured
representation in the middle columns. The facial animation parameters can also be applied to
other face models, implementing expression cloning as illustrated in the rightmost columns
of figure 11.

7. Conclusion

We presented a complete framework for tracking of deformable surfaces using image-based
optimization methods. We use a relaxed brightness constancy assumption and model both
geometrical as well as photometrical changes in an image sequence. In our framework
formulation we separated the motion model from the optimization method which makes

263Image-based Tracking of Deformable Surfaces

Fig. 11. 3D facial expression analysis. The left colum shows example frames of the original
sequence. Facial expression parameters of a deformable face model are estimated. The
second column shows the animated mesh, while the third column depicts the textured
model. The rightmost column refers to expression cloning where the deformation parameters
are mapped onto a different person’s model.

it highly adaptive to a broad variety of motion estimation problems, as the motion model
can be formulated individuallyfor the given problem. This is shown by a broad variety of
applications where we applied the proposed framework.

8. References

Bartoli, A. (2008). Groupwise geometric and photometric direct image registration, IEEE Trans.
on Pattern Analysis and Machine Intelligence 30(12): 1098–2108.

Bartoli, A. & Zisserman, A. (2004). Direct estimation of non-rigid registrations, Proc. British
Machine Vision Conf. (BMVC 2004), London, UK.

Bay, H., Tuytelaars, T. & Gool, L. V. (2006). Surf: Speeded up robust features, In ECCV,
pp. 404–417.

Belongie, S., Malik, J. & Puzicha, J. (2002). Shape matching and object recognition using shape
contexts, IEEE Trans. Pattern Analysis and Machine Intelligence 24(4): 509–522.

Bookstein, F. L. (1989). Principal warps: Thin-plate splines and the decomposition of
deformations, IEEE Trans. Pattern Analysis and Machine Intelligence 11(6): 567–585.

Chen, C. (1993). Improved Moments Invariants for Shape Discrimination, Pattern Recognition
26(5): 683–686.

Eisert, P. (2003). MPEG-4 facial animation in video analysis and synthesis, International Journal
of Imaging Systems and Technology 13(5): 245–256.

264 Object Tracking

Eisert, P. & Girod, B. (1998). Analyzing facial expressions for virtual conferencing, IEEE
Computer Graphics and Applications 18(5): 70–78.

Ekman, P. & Friesen, W. V. (1978). Facial Action Coding System, Consulting Psychologists Press,
Inc., Palo Alto.

Gay Bellile, V., Bartoli, A. & Sayd, P. (2007). Direct estimation of non-rigid registrations with
image-based self-occlusion reasoning, Proc. Int. Conf on Computer Vision (ICCV 2007),
pp. 1–6.

Gennert, M. A. & Negahdaripour, S. (1987). Relaxing the brightness constancy assumption in
computing optical flow, Technical report, Cambridge, MA, USA.

Hansen, P. (1992). The use of the l-curve in the regularization of discrete ill-posed problems,
SIAM Journ. Sci. Comp. 34: 561–580.

Harris, C. & Stephens, M. (1988). A combined corner and edge detection, Proc. 4th Alvey Vision
Conference, pp. 147–151.

Haussecker, H. & Fleet, D. (2001). Computing optical flow with physical models of brightness
variation, Vol. 23, Washington, DC, USA, pp. 661–673.

Hilsmann, A. & Eisert, P. (2008). Tracking deformable surfaces with optical flow in the
presence of self occlusions in monocular image sequences, CVPR Workshop on
Non-Rigid Shape Analysis and Deformable Image Alignment, Anchorage, USA.

Hilsmann, A. & Eisert, P. (2009). Joint estimation of deformable motion and photometric
parameters in single view video, ICCV 2009 Workshop on Non-Rigid Shape Analysis
and Deformable Image Alignment, Kyoto, Japan, pp. 1–6.

Hilsmann, A., Schneider, D. & Eisert, P. (2010). Realistic cloth augmentation in single view
video under occlusions, Computers & Graphics .

Huber, P. (1981). Robust Statistics, John Wiley & Sons,.
Lim, J. & Yang, M.-H. (2005). A direct method for modeling non-rigid motion with thin

plate spline, Proc. Int. Conf. on Computer Vision and Pattern Recognition (CVPR 2005),
pp. 1196–1202.

Lowe, D. (2003). Distinctive Image Features from Scale-Invariant Keypoints, Int. Journal of
Computer Vision 60(2): 91–110.

McCullagh, P. & Nelder, J. A. (1998). Generalized linear models, Chapman & Hall, London.
Metaxas, D. N. (1996). Physics-Based Deformable Models: Applications to Computer Vision,

Graphics, and Medical Imaging, Kluwer Academic Publishers, Norwell, MA, USA.
MPG (1999). ISO/IEC 14496-2: Coding of audio-visual objects - Part 2: Visual, (MPEG-4 visual).
Nastar, C., Moghaddam, B. & Pentland, A. (1996). Generalized image matching: Statistical

learning of physically based deformations, pp. 589–598.
Ostermann, J. (1994). Object-oriented analysis-synthesis Coding (OOASC) based on the source

model of moving flexible 3D-objects, IEEE Trans. on Image Processing 3(5).
Pilet, J., Lepetit, V. & Fua, P. (2008). Fast non-rigid surface detection, registration and realistic

augmentation, Int. Journal of Computer Vision 76(2): 109–122.
Pizarro, D. & Bartoli, A. (2007). Shadow resistant direct image registration, Proc. of the 15th

Scandinavian Conference on Image Analysis (SCIA 2007), pp. 928–937.
Salzmann, M., Pilet, J., Ilic, S. & Fua, P. (2007). Surface deformation models for nonrigid

3d shape recovery, IEEE Trans. on Pattern Analysis and Machine Intelligence (PAMI)
29(8): 1481–1487.

Scholz, V. & Magnor, M. (2006). Texture replacement of garments in monocular
video sequences, Rendering Techniques 2006: Eurographics Symposium on Rendering,
pp. 305–312.

265Image-based Tracking of Deformable Surfaces

Fig. 11. 3D facial expression analysis. The left colum shows example frames of the original
sequence. Facial expression parameters of a deformable face model are estimated. The
second column shows the animated mesh, while the third column depicts the textured
model. The rightmost column refers to expression cloning where the deformation parameters
are mapped onto a different person’s model.

it highly adaptive to a broad variety of motion estimation problems, as the motion model
can be formulated individuallyfor the given problem. This is shown by a broad variety of
applications where we applied the proposed framework.

8. References

Bartoli, A. (2008). Groupwise geometric and photometric direct image registration, IEEE Trans.
on Pattern Analysis and Machine Intelligence 30(12): 1098–2108.

Bartoli, A. & Zisserman, A. (2004). Direct estimation of non-rigid registrations, Proc. British
Machine Vision Conf. (BMVC 2004), London, UK.

Bay, H., Tuytelaars, T. & Gool, L. V. (2006). Surf: Speeded up robust features, In ECCV,
pp. 404–417.

Belongie, S., Malik, J. & Puzicha, J. (2002). Shape matching and object recognition using shape
contexts, IEEE Trans. Pattern Analysis and Machine Intelligence 24(4): 509–522.

Bookstein, F. L. (1989). Principal warps: Thin-plate splines and the decomposition of
deformations, IEEE Trans. Pattern Analysis and Machine Intelligence 11(6): 567–585.

Chen, C. (1993). Improved Moments Invariants for Shape Discrimination, Pattern Recognition
26(5): 683–686.

Eisert, P. (2003). MPEG-4 facial animation in video analysis and synthesis, International Journal
of Imaging Systems and Technology 13(5): 245–256.

264 Object Tracking

Eisert, P. & Girod, B. (1998). Analyzing facial expressions for virtual conferencing, IEEE
Computer Graphics and Applications 18(5): 70–78.

Ekman, P. & Friesen, W. V. (1978). Facial Action Coding System, Consulting Psychologists Press,
Inc., Palo Alto.

Gay Bellile, V., Bartoli, A. & Sayd, P. (2007). Direct estimation of non-rigid registrations with
image-based self-occlusion reasoning, Proc. Int. Conf on Computer Vision (ICCV 2007),
pp. 1–6.

Gennert, M. A. & Negahdaripour, S. (1987). Relaxing the brightness constancy assumption in
computing optical flow, Technical report, Cambridge, MA, USA.

Hansen, P. (1992). The use of the l-curve in the regularization of discrete ill-posed problems,
SIAM Journ. Sci. Comp. 34: 561–580.

Harris, C. & Stephens, M. (1988). A combined corner and edge detection, Proc. 4th Alvey Vision
Conference, pp. 147–151.

Haussecker, H. & Fleet, D. (2001). Computing optical flow with physical models of brightness
variation, Vol. 23, Washington, DC, USA, pp. 661–673.

Hilsmann, A. & Eisert, P. (2008). Tracking deformable surfaces with optical flow in the
presence of self occlusions in monocular image sequences, CVPR Workshop on
Non-Rigid Shape Analysis and Deformable Image Alignment, Anchorage, USA.

Hilsmann, A. & Eisert, P. (2009). Joint estimation of deformable motion and photometric
parameters in single view video, ICCV 2009 Workshop on Non-Rigid Shape Analysis
and Deformable Image Alignment, Kyoto, Japan, pp. 1–6.

Hilsmann, A., Schneider, D. & Eisert, P. (2010). Realistic cloth augmentation in single view
video under occlusions, Computers & Graphics .

Huber, P. (1981). Robust Statistics, John Wiley & Sons,.
Lim, J. & Yang, M.-H. (2005). A direct method for modeling non-rigid motion with thin

plate spline, Proc. Int. Conf. on Computer Vision and Pattern Recognition (CVPR 2005),
pp. 1196–1202.

Lowe, D. (2003). Distinctive Image Features from Scale-Invariant Keypoints, Int. Journal of
Computer Vision 60(2): 91–110.

McCullagh, P. & Nelder, J. A. (1998). Generalized linear models, Chapman & Hall, London.
Metaxas, D. N. (1996). Physics-Based Deformable Models: Applications to Computer Vision,

Graphics, and Medical Imaging, Kluwer Academic Publishers, Norwell, MA, USA.
MPG (1999). ISO/IEC 14496-2: Coding of audio-visual objects - Part 2: Visual, (MPEG-4 visual).
Nastar, C., Moghaddam, B. & Pentland, A. (1996). Generalized image matching: Statistical

learning of physically based deformations, pp. 589–598.
Ostermann, J. (1994). Object-oriented analysis-synthesis Coding (OOASC) based on the source

model of moving flexible 3D-objects, IEEE Trans. on Image Processing 3(5).
Pilet, J., Lepetit, V. & Fua, P. (2008). Fast non-rigid surface detection, registration and realistic

augmentation, Int. Journal of Computer Vision 76(2): 109–122.
Pizarro, D. & Bartoli, A. (2007). Shadow resistant direct image registration, Proc. of the 15th

Scandinavian Conference on Image Analysis (SCIA 2007), pp. 928–937.
Salzmann, M., Pilet, J., Ilic, S. & Fua, P. (2007). Surface deformation models for nonrigid

3d shape recovery, IEEE Trans. on Pattern Analysis and Machine Intelligence (PAMI)
29(8): 1481–1487.

Scholz, V. & Magnor, M. (2006). Texture replacement of garments in monocular
video sequences, Rendering Techniques 2006: Eurographics Symposium on Rendering,
pp. 305–312.

265Image-based Tracking of Deformable Surfaces

Silveira, G. & Malis, E. (2007). Real-time visual tracking under arbitrary illumination changes,
Proc. Int. Conf. on Computer Vision and Pattern Recognition (CVPR 2007), pp. 1–6.

Taubin, G. (1995). A signal processing approach to fair surface design, Proc. of ACM
SIGGRAPH 1995, pp. 351–358.

Terzopoulos, D. & Metaxas, D. (1991). Dynamic 3d models with local and global deformations:
deformable superquadrics, IEEE Trans. on Pattern Analysis and Machine Intelligence
(PAMI) 13(7): 703–714.

Thirion, J. (1996). New Feature Points Based on Geometric Invariants for 3D Image
Registration, Int. Journal of Computer Vision 18(2): 121–137.

Torresani, L., Yang, D., Alexander, E. & Bregler, C. (2001). Tracking and modeling non-rigid
objects with rank constraints, Proc. of Int. Conf on Computer Vision and Pattern
Recognition, CVPR.

Wardetzky, M., Mathur, S., Kälberer, F. & Grinspun, E. (2007). Discrete laplace operators: No
free lunch, Proc. of 5th Eurographics Symposium on Geometry Processing, Aire-la-Ville,
Switzerland, pp. 33–37.

Wedderburn, R. W. M. (1974). Quasi-likelihood functions, generalized linear models, and the
gauss-newton method, Biometrika 61(3): 439–447.

White, R. & Forsyth, D. A. (2006). Retexturing single views using texture and shading., Proc.
European Conf. on Computer Vision (ECCV 2006), pp. 70–81.

266 Object Tracking

14

Tracking of Moving Coronary Artery
Segment in Sequence of X-Ray Images

Goszczynska Hanna and Kowalczyk Leszek
Nałęcz Institute of Biocybernetics and Biomedical Engineering PAS

Poland

1. Introduction
The variety of motion artefacts like situations when the patient is not able to hold his or her
breath, natural organ movements and others cause great problems in current medical imaging
techniques, such as image subtraction technique (eg. Digital Subtraction Angiography),
registration technique, morphological and functional analysis, e.g. flow or perfusion
estimation, and support of therapeutic intervention, eg. surgical tools and organ movement
tracking. There are numerous reports in the literature mentioning possible types of motion
artefacts. Many techniques are described to avoid and to correct such artefacts by means of
digital image processing. The most important tasks utilized in all these techniques are the
construction of a 2D geometrical transformation, which refers to original 3D deformation,
finding correspondence between two images using only grey-level information, and efficient
computer application of this correspondence [Meijering, 2000; Wang et al., 1999].
The procedure of finding the correspondence or estimation of the level of similarity between
two images is the most important part of the above mentioned techniques, which has been
applied either in static or dynamic approaches. This work presents an application of a
correspondence finding technique to the densitometric analysis performed for coronary
flow estimation on the image of a moving artery segment in X-ray image sequences of
coronary arteries (Fig. 1).

Fig. 1. Sequence of coronarographic images (every 6th image) from negative coronarographic
film with visible contrast medium passing

Silveira, G. & Malis, E. (2007). Real-time visual tracking under arbitrary illumination changes,
Proc. Int. Conf. on Computer Vision and Pattern Recognition (CVPR 2007), pp. 1–6.

Taubin, G. (1995). A signal processing approach to fair surface design, Proc. of ACM
SIGGRAPH 1995, pp. 351–358.

Terzopoulos, D. & Metaxas, D. (1991). Dynamic 3d models with local and global deformations:
deformable superquadrics, IEEE Trans. on Pattern Analysis and Machine Intelligence
(PAMI) 13(7): 703–714.

Thirion, J. (1996). New Feature Points Based on Geometric Invariants for 3D Image
Registration, Int. Journal of Computer Vision 18(2): 121–137.

Torresani, L., Yang, D., Alexander, E. & Bregler, C. (2001). Tracking and modeling non-rigid
objects with rank constraints, Proc. of Int. Conf on Computer Vision and Pattern
Recognition, CVPR.

Wardetzky, M., Mathur, S., Kälberer, F. & Grinspun, E. (2007). Discrete laplace operators: No
free lunch, Proc. of 5th Eurographics Symposium on Geometry Processing, Aire-la-Ville,
Switzerland, pp. 33–37.

Wedderburn, R. W. M. (1974). Quasi-likelihood functions, generalized linear models, and the
gauss-newton method, Biometrika 61(3): 439–447.

White, R. & Forsyth, D. A. (2006). Retexturing single views using texture and shading., Proc.
European Conf. on Computer Vision (ECCV 2006), pp. 70–81.

266 Object Tracking

14

Tracking of Moving Coronary Artery
Segment in Sequence of X-Ray Images

Goszczynska Hanna and Kowalczyk Leszek
Nałęcz Institute of Biocybernetics and Biomedical Engineering PAS

Poland

1. Introduction
The variety of motion artefacts like situations when the patient is not able to hold his or her
breath, natural organ movements and others cause great problems in current medical imaging
techniques, such as image subtraction technique (eg. Digital Subtraction Angiography),
registration technique, morphological and functional analysis, e.g. flow or perfusion
estimation, and support of therapeutic intervention, eg. surgical tools and organ movement
tracking. There are numerous reports in the literature mentioning possible types of motion
artefacts. Many techniques are described to avoid and to correct such artefacts by means of
digital image processing. The most important tasks utilized in all these techniques are the
construction of a 2D geometrical transformation, which refers to original 3D deformation,
finding correspondence between two images using only grey-level information, and efficient
computer application of this correspondence [Meijering, 2000; Wang et al., 1999].
The procedure of finding the correspondence or estimation of the level of similarity between
two images is the most important part of the above mentioned techniques, which has been
applied either in static or dynamic approaches. This work presents an application of a
correspondence finding technique to the densitometric analysis performed for coronary
flow estimation on the image of a moving artery segment in X-ray image sequences of
coronary arteries (Fig. 1).

Fig. 1. Sequence of coronarographic images (every 6th image) from negative coronarographic
film with visible contrast medium passing

Object Tracking

268

Coronary image sequences are collected during coronarographic examination with X-ray
contrast medium injection into coronary arteries for visualization purposes. Based on
coronarographic sequences, both the morphometry of the arteries and the velocity of
washing out of the indicator can be assessed [Nissen & Gurley, 1991; Goszczyńska &
Rewicki, 2008].
For densitometric analysis the measurements of the image gray levels of the pixels forming
a measuring window (called the cross-sectional line) are performed for each image of a
coronarographic sequence. The measurements are performed along the same cross-sectional
line with its adjacent background. Fig. 2 shows the cross-sectional line positioned on the left
coronary artery (LCA).

Fig. 2. Fragments of images of the left coronary artery (LCA) from a coronarographic
sequence during injection, filling and washing out of a contrast medium

 a) b)

Fig. 3. Densitometric measurements performed on the segment of LCA: a) brightness profile
Da (x) along the artery cross-sectional line and the background estimation line Db(x), d = d2-
d1, which is the inner artery diameter, b) densitometric curve A(t) and its low pass version

Figure 3a shows the brightness curve Da(x) along the cross-sectional line (the measuring
window) and the approximated background image intensity line Db(x), which is a straight
line passing through two interpolation nodes [Goszczynska, 2005].
The Da(x) and Db(x) curves make it possible to calculate the A(t) curve (with a temporal
resolution equal to the image acquisition rate) proportional to the amount of the indicator
present under the measuring window (i.e. segment d1-d2, which is the inner diameter of the
artery) at time t:

Tracking of Moving Coronary Artery Segment in Sequence of X-Ray Images

269

 ()
2

1

(,)ln
(,)

d
a

bx d

D x tA t dx
D x t=

⎛ ⎞
= ⎜ ⎟

⎝ ⎠
∫ (1)

where x is the coordinate within the cross-sectional line. Fig. 3b presents an example of the
densitometric curve A(t) for a sequence of coronarographic images.
Densitometric curve A(t) is a basis for coronary flow estimation in indicator dilution method
(Appendix A). In coronary flow estimation method based on indicator dilution presented
in [Goszczynska & Rewicki, 2008] the number of frames needed for the calculation of the
densitometric curve A(t) depends on contrast medium injection parameters and the
coronary flow rate, being usually larger than 100. Sections 1.1 covers problems concerning
data collection from coronarographic image sequences. In Section 1.2 the techniques of
object movement estimation in image sequences are briefly described. Section 2 presents a
proposed method of automatic tracking of an artery segment and Section 3 brings the results
obtained with this method. The error of the method is estimated in Section 4, and other
solutions for the problem of artery movement tracing are mentioned in Section 5.

1.1 Issues related to automatic drawing of the cross-sectional line
The estimation of coronary blood flow, besides the difficulties concerning densitometric
measurements, is affected by an additional problem of the cyclic movement of an artery
segment or part of the myocardium. In the following sections we describe some issues
related to the automatic and manual drawing of the artery cross-sectional line. In the
manual case, the operator marks a cross-sectional line at the same point of the artery on each
frame of the sequence. Unfortunately the phrase “the same point” is not precise due to at
least two reasons:
• the myocardium movement results in the changes of the location and shape of the

particular part of the artery which makes ensuring that the cross-sectional line on the
frame is in the same place as in the previous frame difficult,

• the subjective nature of manual positioning of the same point, in the absence of some
characteristic points, is very error-prone, even when the location and the shape of the
object remain unchanged.

The above issues suggest that the process of drawing the cross-sectional line should be
automated. The manual solution, besides being inaccurate, is also very exhaustive and
boring for the operator - the cross-sectional line has to drawn on at least hundred of
consecutive frames for a single measurement.
For a clinical study of the flow measurement method presented in [Goszczynska & Rewicki,
2008; Goszczynska, 2008] the analysis of more than ten thousand images was required, and
that is why certain type of automatic aid for cross-sectional line positioning has been
strongly suggested.
The algorithms performing the task mentioned above are described as movement correction
(the 3D transformation of each frame in sequence resulting in apparent lack of heart
movement) or tracing the object (relocation of the ROI, so that the particular detail of the
heart image – the artery fragment – is traced). The movement correction algorithms may be
applied to local areas of the whole frame. For heart images processing movement correction
for the whole frame is used to reduce the distortions made by patient movement. This
makes it impossible to precisely determine a mask frame within the DSA technique
[Meijering, 1999; Meijering, 2000].

Object Tracking

268

Coronary image sequences are collected during coronarographic examination with X-ray
contrast medium injection into coronary arteries for visualization purposes. Based on
coronarographic sequences, both the morphometry of the arteries and the velocity of
washing out of the indicator can be assessed [Nissen & Gurley, 1991; Goszczyńska &
Rewicki, 2008].
For densitometric analysis the measurements of the image gray levels of the pixels forming
a measuring window (called the cross-sectional line) are performed for each image of a
coronarographic sequence. The measurements are performed along the same cross-sectional
line with its adjacent background. Fig. 2 shows the cross-sectional line positioned on the left
coronary artery (LCA).

Fig. 2. Fragments of images of the left coronary artery (LCA) from a coronarographic
sequence during injection, filling and washing out of a contrast medium

 a) b)

Fig. 3. Densitometric measurements performed on the segment of LCA: a) brightness profile
Da (x) along the artery cross-sectional line and the background estimation line Db(x), d = d2-
d1, which is the inner artery diameter, b) densitometric curve A(t) and its low pass version

Figure 3a shows the brightness curve Da(x) along the cross-sectional line (the measuring
window) and the approximated background image intensity line Db(x), which is a straight
line passing through two interpolation nodes [Goszczynska, 2005].
The Da(x) and Db(x) curves make it possible to calculate the A(t) curve (with a temporal
resolution equal to the image acquisition rate) proportional to the amount of the indicator
present under the measuring window (i.e. segment d1-d2, which is the inner diameter of the
artery) at time t:

Tracking of Moving Coronary Artery Segment in Sequence of X-Ray Images

269

 ()
2

1

(,)ln
(,)

d
a

bx d

D x tA t dx
D x t=

⎛ ⎞
= ⎜ ⎟

⎝ ⎠
∫ (1)

where x is the coordinate within the cross-sectional line. Fig. 3b presents an example of the
densitometric curve A(t) for a sequence of coronarographic images.
Densitometric curve A(t) is a basis for coronary flow estimation in indicator dilution method
(Appendix A). In coronary flow estimation method based on indicator dilution presented
in [Goszczynska & Rewicki, 2008] the number of frames needed for the calculation of the
densitometric curve A(t) depends on contrast medium injection parameters and the
coronary flow rate, being usually larger than 100. Sections 1.1 covers problems concerning
data collection from coronarographic image sequences. In Section 1.2 the techniques of
object movement estimation in image sequences are briefly described. Section 2 presents a
proposed method of automatic tracking of an artery segment and Section 3 brings the results
obtained with this method. The error of the method is estimated in Section 4, and other
solutions for the problem of artery movement tracing are mentioned in Section 5.

1.1 Issues related to automatic drawing of the cross-sectional line
The estimation of coronary blood flow, besides the difficulties concerning densitometric
measurements, is affected by an additional problem of the cyclic movement of an artery
segment or part of the myocardium. In the following sections we describe some issues
related to the automatic and manual drawing of the artery cross-sectional line. In the
manual case, the operator marks a cross-sectional line at the same point of the artery on each
frame of the sequence. Unfortunately the phrase “the same point” is not precise due to at
least two reasons:
• the myocardium movement results in the changes of the location and shape of the

particular part of the artery which makes ensuring that the cross-sectional line on the
frame is in the same place as in the previous frame difficult,

• the subjective nature of manual positioning of the same point, in the absence of some
characteristic points, is very error-prone, even when the location and the shape of the
object remain unchanged.

The above issues suggest that the process of drawing the cross-sectional line should be
automated. The manual solution, besides being inaccurate, is also very exhaustive and
boring for the operator - the cross-sectional line has to drawn on at least hundred of
consecutive frames for a single measurement.
For a clinical study of the flow measurement method presented in [Goszczynska & Rewicki,
2008; Goszczynska, 2008] the analysis of more than ten thousand images was required, and
that is why certain type of automatic aid for cross-sectional line positioning has been
strongly suggested.
The algorithms performing the task mentioned above are described as movement correction
(the 3D transformation of each frame in sequence resulting in apparent lack of heart
movement) or tracing the object (relocation of the ROI, so that the particular detail of the
heart image – the artery fragment – is traced). The movement correction algorithms may be
applied to local areas of the whole frame. For heart images processing movement correction
for the whole frame is used to reduce the distortions made by patient movement. This
makes it impossible to precisely determine a mask frame within the DSA technique
[Meijering, 1999; Meijering, 2000].

Object Tracking

270

The crucial difficulty preventing an effective incorporation of those algorithms to
coronarographic frames analysis is a low densitometric contrast of the heart areas of interest.
As an example an artery fragment image can be considered, across the whole sequence of
the frames, also covering frames before contrast medium injection, and during contrast
medium washing. In the instances when the area of interest covers only a part of the
myocardium with tiny arteries, the frame analysis results in the analysis of the areas with
nearly homogenous brightness, similar to the surrounding area. In such situation the
movement detection can be performed indirectly, by tracing the movement of the nearest
artery segment and applying a 2D interpolation.
In the analysis of movement in frames containing the image of clearly distinguishable
arteries another difficulty appears. Local examination of continuous movement for contour
in the plane perpendicular to the image detection plane may be hardly possible. The local
movement analysis of a continuous contour had first been described by Stumpf in 1911
[Hildreth, 1987]. Obviously the observed movement of an artery using 2D systems lacks
component of the real movement perpendicular to the image plane (the observed movement
is barely visible). Computing any corrections of the event on the basis of only single plane
images is a difficult task.

1.2 Movement estimation techniques
Artery segmentation and/or contour and central line detection methods are frequently
implemented as a preliminary, but not mandatory step, in the movement detection
algorithms described in literature [Coatrieux, 1995; Rus, 1995; Benayoun & Ayache, 1998;
Konrad, 2000]. These methods can be divided into two categories:
• those limited to the area being a subject of segmentation only, tracing the artery

assuming the continuity of the arteries tree structure, and
• those analyzing the complete image and sharpening the structures investigated, so that

the background can be removed.
The first step of the analysis utilizing the methods of the first category is manual positioning of
the point of the center line or on the contour of the element investigated. Then the operator
proceeds in certain direction according to some criteria, and positions the next points of the
line or contour. An example of such a criterion may be the maximum gradient of the grayscale.
The methods of the second category are generally two types of filtration - linear and nonlinear.
The linear filters utilized for contour detection are based on testing two-dimensional
derivatives of the first degree (Sobel or Roberts operators) or the second degree (Marr-Hildreth
and Laplace operators) for the brightness change function within the selected neighborhood of
an indicated point or, in a more general way, on the operation analysis between the defined
operator mask and the neighborhood of a certain point. The adaptive linear filters, meaning
those in which a mask is adapted to the shape of the object tested, maximize the output value
for the central line of the object. The morphological filters belonging to the nonlinear filter class
are based on the comparison of the object tested with a structuring element. For segmentation
purposes, opening operation i.e. erosion and dilation is usually used. Some other methods
may be mentioned here like image decomposition by eigenvalues, a curvature analysis, vector
detection of the central line and the method of geometric moments.
The non-subtractive images, in opposite to subtractive ones are distinguished by high non-
homogeneity of the background, which causes the artery segmentation to be a very difficult
task. Due to this difficulty the main criterion for estimation of the results provided by filters

Tracking of Moving Coronary Artery Segment in Sequence of X-Ray Images

271

is their ability to equalize the background level. The artery segmentation phase, setting their
contours and central lines increases the effectiveness of movement detection methods
implemented in the solutions, which are more sensitive to the structure and less sensitive to
the brightness. Unfortunately it also increases the time of the movement analysis process.
The local movement detection methods or movement measurement methods in images may
be generally divided into two categories: an optical flow procedure, based on the brightness
gradient analysis, and a template matching procedure, based on image similarity measures.
The first procedure, suggested by Horn and Schnuck [Horn, 1981], is based on the
continuity principle, also known in physics, in the movement analysis of the frame sequence
is described by the formula:

 0x y
I I Iv v
t x y
∂ ∂ ∂

+ + =
∂ ∂ ∂

 (2)

where I is the brightness of the pixel tested, vx is the x component of the tested pixel velocity,
and vy is the y component of the pixel tested velocity. The pixel velocity is determined
according to the spatial and time resolution of the image tested sequence. By such
processing we obtain the estimation of the apparent movement at every point of the frame.
Application of differential techniques based on this method results in a relatively fast
algorithm. There are two important conditions (considered disadvantages) that have to be
met: the brightness of the moving object should be constant in time and the movement of
the object between two consecutive frames should be relatively small. In the case of arteries,
both of the mentioned conditions are not fulfilled for the entire frame sequence. Based on
some presumptions, this technique may provide acceptable results for the estimation of the
general myocardium shape change during its working cycle [Meunier et al, 1989].
In the next chapter we will describe a method of automatic movement trajectory estimation
for an artery segment based on template matching.

2. Method
In the frame sequence studied for marked artery segment three stages can be indicated:
• before contrast medium appearance - Ta,
• with contrast medium filling - Tc and
• the contrast medium wash-out period - Tp.
The movement analysis of a fragment of the artery under investigation was divided into
three steps:
• movement estimation for the marked fragment of the artery during contrast medium

filling period Tc,
• correction of faulty detections,
• movement estimation in stages Ta and Tp.

2.1 Estimation of movement of an artery segment in the indicator filling period Tc
Below a method of automatic data collection based on a popular block-matching technique
is described [Gonzalez & Wintz, 1987; Rong, 1989; Maragos & Pessoa, 2000; Buzug, 1998].
This method was used in the similarity analysis of a few selected fragments of original frames
sequence (without performing any pre-processing) with a chosen template, i.e. the fragment of
an artery as it was shown on the frame where the arteries are clearly visible (which means the

Object Tracking

270

The crucial difficulty preventing an effective incorporation of those algorithms to
coronarographic frames analysis is a low densitometric contrast of the heart areas of interest.
As an example an artery fragment image can be considered, across the whole sequence of
the frames, also covering frames before contrast medium injection, and during contrast
medium washing. In the instances when the area of interest covers only a part of the
myocardium with tiny arteries, the frame analysis results in the analysis of the areas with
nearly homogenous brightness, similar to the surrounding area. In such situation the
movement detection can be performed indirectly, by tracing the movement of the nearest
artery segment and applying a 2D interpolation.
In the analysis of movement in frames containing the image of clearly distinguishable
arteries another difficulty appears. Local examination of continuous movement for contour
in the plane perpendicular to the image detection plane may be hardly possible. The local
movement analysis of a continuous contour had first been described by Stumpf in 1911
[Hildreth, 1987]. Obviously the observed movement of an artery using 2D systems lacks
component of the real movement perpendicular to the image plane (the observed movement
is barely visible). Computing any corrections of the event on the basis of only single plane
images is a difficult task.

1.2 Movement estimation techniques
Artery segmentation and/or contour and central line detection methods are frequently
implemented as a preliminary, but not mandatory step, in the movement detection
algorithms described in literature [Coatrieux, 1995; Rus, 1995; Benayoun & Ayache, 1998;
Konrad, 2000]. These methods can be divided into two categories:
• those limited to the area being a subject of segmentation only, tracing the artery

assuming the continuity of the arteries tree structure, and
• those analyzing the complete image and sharpening the structures investigated, so that

the background can be removed.
The first step of the analysis utilizing the methods of the first category is manual positioning of
the point of the center line or on the contour of the element investigated. Then the operator
proceeds in certain direction according to some criteria, and positions the next points of the
line or contour. An example of such a criterion may be the maximum gradient of the grayscale.
The methods of the second category are generally two types of filtration - linear and nonlinear.
The linear filters utilized for contour detection are based on testing two-dimensional
derivatives of the first degree (Sobel or Roberts operators) or the second degree (Marr-Hildreth
and Laplace operators) for the brightness change function within the selected neighborhood of
an indicated point or, in a more general way, on the operation analysis between the defined
operator mask and the neighborhood of a certain point. The adaptive linear filters, meaning
those in which a mask is adapted to the shape of the object tested, maximize the output value
for the central line of the object. The morphological filters belonging to the nonlinear filter class
are based on the comparison of the object tested with a structuring element. For segmentation
purposes, opening operation i.e. erosion and dilation is usually used. Some other methods
may be mentioned here like image decomposition by eigenvalues, a curvature analysis, vector
detection of the central line and the method of geometric moments.
The non-subtractive images, in opposite to subtractive ones are distinguished by high non-
homogeneity of the background, which causes the artery segmentation to be a very difficult
task. Due to this difficulty the main criterion for estimation of the results provided by filters

Tracking of Moving Coronary Artery Segment in Sequence of X-Ray Images

271

is their ability to equalize the background level. The artery segmentation phase, setting their
contours and central lines increases the effectiveness of movement detection methods
implemented in the solutions, which are more sensitive to the structure and less sensitive to
the brightness. Unfortunately it also increases the time of the movement analysis process.
The local movement detection methods or movement measurement methods in images may
be generally divided into two categories: an optical flow procedure, based on the brightness
gradient analysis, and a template matching procedure, based on image similarity measures.
The first procedure, suggested by Horn and Schnuck [Horn, 1981], is based on the
continuity principle, also known in physics, in the movement analysis of the frame sequence
is described by the formula:

 0x y
I I Iv v
t x y
∂ ∂ ∂

+ + =
∂ ∂ ∂

 (2)

where I is the brightness of the pixel tested, vx is the x component of the tested pixel velocity,
and vy is the y component of the pixel tested velocity. The pixel velocity is determined
according to the spatial and time resolution of the image tested sequence. By such
processing we obtain the estimation of the apparent movement at every point of the frame.
Application of differential techniques based on this method results in a relatively fast
algorithm. There are two important conditions (considered disadvantages) that have to be
met: the brightness of the moving object should be constant in time and the movement of
the object between two consecutive frames should be relatively small. In the case of arteries,
both of the mentioned conditions are not fulfilled for the entire frame sequence. Based on
some presumptions, this technique may provide acceptable results for the estimation of the
general myocardium shape change during its working cycle [Meunier et al, 1989].
In the next chapter we will describe a method of automatic movement trajectory estimation
for an artery segment based on template matching.

2. Method
In the frame sequence studied for marked artery segment three stages can be indicated:
• before contrast medium appearance - Ta,
• with contrast medium filling - Tc and
• the contrast medium wash-out period - Tp.
The movement analysis of a fragment of the artery under investigation was divided into
three steps:
• movement estimation for the marked fragment of the artery during contrast medium

filling period Tc,
• correction of faulty detections,
• movement estimation in stages Ta and Tp.

2.1 Estimation of movement of an artery segment in the indicator filling period Tc
Below a method of automatic data collection based on a popular block-matching technique
is described [Gonzalez & Wintz, 1987; Rong, 1989; Maragos & Pessoa, 2000; Buzug, 1998].
This method was used in the similarity analysis of a few selected fragments of original frames
sequence (without performing any pre-processing) with a chosen template, i.e. the fragment of
an artery as it was shown on the frame where the arteries are clearly visible (which means the

Object Tracking

272

end of the contrast medium injection phase). The sum of difference squares CSSD was used (R,
S denotes the compared fragments of the images in the area of m, n dimensions):

1 1

2

0 0
((,) (,))

m n

S S D
i j

C R i j S i j
− −

= =
= −∑ ∑ (3)

In order to find the area in frame I(t+1) which is similar to the given area R in frame I(t), the
area S is defined in frame I(t+1) with the same coordinates and size as the area R in frame
I(t). The next step is the area enlargement by values kmax and lmax which are greater or equal
to the maximum movement of the selected fragment between the two frames (Fig. 4).

Fig. 4. Determining the template and investigation windows

The search for the area in frame I(t+1) which is most similar to the chosen area R in frame
I(t) involves moving the reference area R on the magnified area S and computing the
coefficient of mutual correlation (0 ≤ k ≤ kmax, 0 ≤ l ≤ lmax):

1 1

0 0

1 1 1 1
2 2

0 0 0 0

(,) (,)
(,)

(,) (,)

m n

i j

m n m n

i j i j

R i j S i k j l
C k l

R i j S i k j l

− −

= =

− − − −

= = = =

∗ + +

=

∗ + +

∑ ∑

∑ ∑ ∑ ∑
 (4)

The maximum value Cmax of this coefficient tells the location of the area most similar to the
reference area. The indexes k and l corresponding to the maximum value of the coefficient
determine the coordinates of the area investigated (Fig. 4).
Other measures of similarity have been also proposed:
• variance normalized correlation:

1 1

0 0

1 1 1 1
2 2

0 0 0 0

((,)) ((,))

((,)) ((,))

m n

R S
i j

m n m n

R S
i j i j

R i j I S i j I
C

R i j I S i j I

− −

= =

− − − −

= = = =

− ∗ −

=

− ∗ −

∑ ∑

∑ ∑ ∑ ∑
 (5)

Tracking of Moving Coronary Artery Segment in Sequence of X-Ray Images

273

• the sum of absolute differences CSDA :

1 1

0 0
| (,) (,)|

m n

SDA
i j

C R i j S i j
− −

= =
= −∑ ∑ (6)

This measure refers to a nonlinear signal correlation. As the following equations is true
|a-b|=a+b-2min(a,b), then under some conditions (i.e. when the correlation value is
normalized by dividing it by the average brightness value for windows R and S), the
minimum value of CSDA is equal to the maximum value of the morphological mutual
correlation CM defined by equation (7):

1 1

0 0
min((,), (,))

m n

i j
CM R i j S i j

− −

= =
= ∑ ∑ (7)

• mutual information method , incorporating entropy E:

0

()log ()
I

i i
i

E P g P g
=

= −∑ (8)

where P(gi) is the probability of occurrence for the ith grade on the grayscale in the range of
0-I. The mutual information coefficient denoted by Cv is defined by equation (9):

0 0

(,)
(,)log

() ()

JI i j
i j

i j i j

P g g
Cv P g g

P g P g= =
= −

•
∑ ∑ (9)

where P(gi,gj) is the probability of occurrence of the pixel with the i-level gray in one frame
and the pixel with the same coordinates and j-level gray in the range of 0-J in the second
frame.

2.2 Correction of faulty detections and movement estimation in periods Ta and Tp
In the measurements of coronary flow with automatic data collection method [Goszczyńska,
2004] manual correction was applied for faulty artery movement detections during the
contrast period Tc (medium presence) using time-related interpolation. To draw the artery
movement trajectory in the period Ta (before contrast medium injection) and during the
period Tp (contrast medium washing-out) a manual method of time extrapolation was
applied.

2.3 Algorithm and technical solution
Fig. 5 describes the semiautomatic procedure of establishing a cross-sectional line for an
artery in the N-frame sequence. It starts with the operator establishing frame nr where he
positions window R containing the template and determines the size S of the area to be
investigated in the process (see Fig. 4). Next the procedure is initiated to find the values for
indexes k, l (for each frame in sequence), for which the similarity measure C of the window
R and subarea of window S reaches the maximum value.

Object Tracking

272

end of the contrast medium injection phase). The sum of difference squares CSSD was used (R,
S denotes the compared fragments of the images in the area of m, n dimensions):

1 1

2

0 0
((,) (,))

m n

S S D
i j

C R i j S i j
− −

= =
= −∑ ∑ (3)

In order to find the area in frame I(t+1) which is similar to the given area R in frame I(t), the
area S is defined in frame I(t+1) with the same coordinates and size as the area R in frame
I(t). The next step is the area enlargement by values kmax and lmax which are greater or equal
to the maximum movement of the selected fragment between the two frames (Fig. 4).

Fig. 4. Determining the template and investigation windows

The search for the area in frame I(t+1) which is most similar to the chosen area R in frame
I(t) involves moving the reference area R on the magnified area S and computing the
coefficient of mutual correlation (0 ≤ k ≤ kmax, 0 ≤ l ≤ lmax):

1 1

0 0

1 1 1 1
2 2

0 0 0 0

(,) (,)
(,)

(,) (,)

m n

i j

m n m n

i j i j

R i j S i k j l
C k l

R i j S i k j l

− −

= =

− − − −

= = = =

∗ + +

=

∗ + +

∑ ∑

∑ ∑ ∑ ∑
 (4)

The maximum value Cmax of this coefficient tells the location of the area most similar to the
reference area. The indexes k and l corresponding to the maximum value of the coefficient
determine the coordinates of the area investigated (Fig. 4).
Other measures of similarity have been also proposed:
• variance normalized correlation:

1 1

0 0

1 1 1 1
2 2

0 0 0 0

((,)) ((,))

((,)) ((,))

m n

R S
i j

m n m n

R S
i j i j

R i j I S i j I
C

R i j I S i j I

− −

= =

− − − −

= = = =

− ∗ −

=

− ∗ −

∑ ∑

∑ ∑ ∑ ∑
 (5)

Tracking of Moving Coronary Artery Segment in Sequence of X-Ray Images

273

• the sum of absolute differences CSDA :

1 1

0 0
| (,) (,)|

m n

SDA
i j

C R i j S i j
− −

= =
= −∑ ∑ (6)

This measure refers to a nonlinear signal correlation. As the following equations is true
|a-b|=a+b-2min(a,b), then under some conditions (i.e. when the correlation value is
normalized by dividing it by the average brightness value for windows R and S), the
minimum value of CSDA is equal to the maximum value of the morphological mutual
correlation CM defined by equation (7):

1 1

0 0
min((,), (,))

m n

i j
CM R i j S i j

− −

= =
= ∑ ∑ (7)

• mutual information method , incorporating entropy E:

0

()log ()
I

i i
i

E P g P g
=

= −∑ (8)

where P(gi) is the probability of occurrence for the ith grade on the grayscale in the range of
0-I. The mutual information coefficient denoted by Cv is defined by equation (9):

0 0

(,)
(,)log

() ()

JI i j
i j

i j i j

P g g
Cv P g g

P g P g= =
= −

•
∑ ∑ (9)

where P(gi,gj) is the probability of occurrence of the pixel with the i-level gray in one frame
and the pixel with the same coordinates and j-level gray in the range of 0-J in the second
frame.

2.2 Correction of faulty detections and movement estimation in periods Ta and Tp
In the measurements of coronary flow with automatic data collection method [Goszczyńska,
2004] manual correction was applied for faulty artery movement detections during the
contrast period Tc (medium presence) using time-related interpolation. To draw the artery
movement trajectory in the period Ta (before contrast medium injection) and during the
period Tp (contrast medium washing-out) a manual method of time extrapolation was
applied.

2.3 Algorithm and technical solution
Fig. 5 describes the semiautomatic procedure of establishing a cross-sectional line for an
artery in the N-frame sequence. It starts with the operator establishing frame nr where he
positions window R containing the template and determines the size S of the area to be
investigated in the process (see Fig. 4). Next the procedure is initiated to find the values for
indexes k, l (for each frame in sequence), for which the similarity measure C of the window
R and subarea of window S reaches the maximum value.

Object Tracking

274

• image sequence reading n: 1 - N
• pattern window R marking in image nr
• searching window S marking in image nr
• n=1
• for N images in sequence:

o finding of index kmax , lmax
o determining the tables of index value: k[n]=kmax, l[n]=l max

• manual determining of the cross-sectional line l with p pixels of lenght in image nr: l[x1,y1...xp,yp]
• calculation the coordinates of cross-sectional lines in N images in sequence:

o line_1[...]
o line_n[x1-k[nr]+k[n], y1-l[nr]+l[n]... xp-k[nr]+k[n], yp-l[nr]+l[n]
o line_N[...]

Fig. 5. Procedure for determining semiautomatic cross-sectional lines.

Fig. 6. User interface of YFlow software package
After the operator positioned the cross-section line l with k pixels in the frame nr, the
procedure determining the coordinates of cross-sectional lines on N frames of the sequence
is initiated according to the index table computed in the previous stage. The next stage is the
automatic brightness data collection along the preset lines (Fig. 3a – line Da(x)).
The MS Windows application YFlow (Fig. 6) implementing the automatic movement tracking
of a chosen artery fragment using the method of template matching has been developed (the
C++ language, authors: H. Goszczyńska and L. Kowalczyk) [Goszczynska et al., 2006].

Tracking of Moving Coronary Artery Segment in Sequence of X-Ray Images

275

3. Results
Fig. 7 shows an example of a proper matching performed with mutual correlation method
for all frames in the interesting range of frames, that is from the moment of contrast
appearance until it is washed-out from the chosen artery segment.

 1-25 26-50

51-75 76-100
Fig. 7. Parts of 100 images from a negative coronarographic film with an automatically
marked cross-sectional line
There were seventy coronarographic sequences analyzed in [Goszczynska, 2004] (for 16
patients, 4-5 sequences per patient). A single case of faulty matching in the analyzed material
was observed. In [Goszczynska, 2008], examples of mismatch of template R with window S in
a coronarographic sequence (Fig. 8) and the comparison of the matching results calculated for
the matching concordance measurements listed in Section 2.1 are presented (Fig. 9).

Fig. 8. Example of mismatch of template R with window S in image 59

Object Tracking

274

• image sequence reading n: 1 - N
• pattern window R marking in image nr
• searching window S marking in image nr
• n=1
• for N images in sequence:

o finding of index kmax , lmax
o determining the tables of index value: k[n]=kmax, l[n]=l max

• manual determining of the cross-sectional line l with p pixels of lenght in image nr: l[x1,y1...xp,yp]
• calculation the coordinates of cross-sectional lines in N images in sequence:

o line_1[...]
o line_n[x1-k[nr]+k[n], y1-l[nr]+l[n]... xp-k[nr]+k[n], yp-l[nr]+l[n]
o line_N[...]

Fig. 5. Procedure for determining semiautomatic cross-sectional lines.

Fig. 6. User interface of YFlow software package
After the operator positioned the cross-section line l with k pixels in the frame nr, the
procedure determining the coordinates of cross-sectional lines on N frames of the sequence
is initiated according to the index table computed in the previous stage. The next stage is the
automatic brightness data collection along the preset lines (Fig. 3a – line Da(x)).
The MS Windows application YFlow (Fig. 6) implementing the automatic movement tracking
of a chosen artery fragment using the method of template matching has been developed (the
C++ language, authors: H. Goszczyńska and L. Kowalczyk) [Goszczynska et al., 2006].

Tracking of Moving Coronary Artery Segment in Sequence of X-Ray Images

275

3. Results
Fig. 7 shows an example of a proper matching performed with mutual correlation method
for all frames in the interesting range of frames, that is from the moment of contrast
appearance until it is washed-out from the chosen artery segment.

 1-25 26-50

51-75 76-100
Fig. 7. Parts of 100 images from a negative coronarographic film with an automatically
marked cross-sectional line
There were seventy coronarographic sequences analyzed in [Goszczynska, 2004] (for 16
patients, 4-5 sequences per patient). A single case of faulty matching in the analyzed material
was observed. In [Goszczynska, 2008], examples of mismatch of template R with window S in
a coronarographic sequence (Fig. 8) and the comparison of the matching results calculated for
the matching concordance measurements listed in Section 2.1 are presented (Fig. 9).

Fig. 8. Example of mismatch of template R with window S in image 59

Object Tracking

276

100

120

140

160

1 15 29 43 57 71

mutual

nor mutual

morphologic
al

manual

30

50

70

90

1 15 29 43 57 71

mutual

nor mutual

morphological

manual

0

0,3

0,6

0,9

1 2 3

x

y

 a) b) c)
Fig. 9. Curves x(t) (a) and y(t) (b) for the point P (Fig. 8) for automatic positioning (according
to matching measurements) and for manual drawing and correlation coefficients for x(t) and
y(t) curves between automatic and manual positioning (c): mutual correlation (1),
normalized mutual correlation (2), morphological correlation (3)
Faulty matchings were detected on the basis of visual perception. During the tests described
in [Goszczynska, 2005], in the case of faulty matching during the Tc period (concerning
single frames only) the correction was introduced by replacing the densitometric data, i.e.
A(t) values, obtained from the nearest frames with the proper matching.
For all the frames before and after the Tc period the time extrapolation was used by taking
the repetition of the data of the last heart cycle of the Tc period within the Tp period and the
first heart cycle of Tc period in the Ta period.
The trajectories of some selected artery segments were calculated. The examples of
trajectories for one heart cycle for the left and right coronary arteries (RCA) are shown in
Fig. 10. The degree of perfusion of the part of the myocardium can be estimated using these
trajectories, and the analysis of the changes in duration of particular heart cycle phases can
be performed.

a) b)
Fig. 10. Examples of trajectories for one heart cycle for a selected part of image of the
LCA (a) and RCA (b)

4. Discussion
The occurrence of faulty matching and computational complexity are the main problems of
the method of automatic tracing of the artery segment movement.
The most frequent reason for mismatching is too small size of searching area S. The proper
positioning of this area must be done according to the results of the analysis of the
maximum movements of the R mask with a chosen artery segment. Such faults can easily be
avoided during the analysis by choosing a bigger searching area (taking care not to include
more objects similar to the one which is necessary for the detection). However this operation
requires more time for the analysis, so for calculation of Cmax S could be kept small but

Tracking of Moving Coronary Artery Segment in Sequence of X-Ray Images

277

displaced slightly for each consecutive frame, based on the previously estimated movement.
This solution, unfortunately falls into the same trap as that described below.
The changing template algorithm has also been tested. As a primary template a fragment of
an artery from the frame at the end of injection was selected. In such case, it works as a
template only for comparison with the previous and the next frame. For the remaining
frames the template is a result of the previous searching. Such an algorithm, intuitively
better, still has a trap: due to an accidental mismatching the template may change entirely.
Various solutions of this problem are proposed in the literature, mainly based on the
reliability of the match [Guest, 1999].
Besides the problem of finding the best template or templates when choosing an optimal
window size (m, n) containing the template and an optimal size of the searching area kmax and
lmax, the detection faults may also be reduced by adopting a stronger criterion of similarity. The
tests we have conducted showed that the best correlation coefficient is a normalized one. A
morphological mutual correlation (a sharper matching peak) works better than a linear mutual
correlation in detection of the area R within area S. Moreover, the morphological correlation
algorithm (the sum of minima) is faster than the linear correlation algorithm (sum of
products). Yet it is not determined by our tests what are the advantages of one algorithm over
the other in regards to the precision of the matching.
The results obtained with our method should be compared with those based on other
criteria, when for example two templates are used or other similarity measures, i.e. those
based on histogram analysis applied for the difference (subtraction) of two adjacent frames
[Buzug et al., 1998].
Our algorithm inability to analyze fragments of the object with no characteristic
morphological details such as bifurcations or curvatures is a known issue. The solution here
would be the incorporation of 3D interpolation methods [Schrijver, 2002].
Regarding the problem of faulty matching correction a 2D interpolation for the template
positioning based on the neighbor proper matching seems to be a better solution than the
one suggested in the present study. Yet specifying the point for which the automatic
template matching was performed, the process of replacing densitometric data was easier
and led to a smaller error (this is due to the continuity of the process of changing the
indicator concentration in the artery cross-section investigated).
Controlling of the faulty matching can be computer-assisted, e.g. by comparing the values of
indexes (ln,kn) obtained with the range limit, and finding the maximum movement of the
artery fragment during the heart cycle, or by the analysis of movement direction, i.e. the
direction of the vector defined by indexes (ln-1,kn-1) and (ln,kn).
A proper matching for the Tp period is essential in the case when a part of the myocardium
perfusion is estimated, which movement, on the basis of the closest artery displacement, is
calculated. The degree of perfusion can be estimated from the image brightness changes of
the part of the myocardium. The analysis of an artery movement trajectory may also allow
to estimate changes in duration of the heart cycle phases and may serve as a basis for
modeling epicardial strains [Young & Hunter, 1992].
In the next section described is the estimation of the error in the densitometric curve
calculation caused by the use of the automatic procedure for data collection.

4.1 Method of error estimation
The presented here application of the correspondence finding technique was used in
coronary flow estimation by computer analysis of angiographic image sequences. For the

Object Tracking

276

100

120

140

160

1 15 29 43 57 71

mutual

nor mutual

morphologic
al

manual

30

50

70

90

1 15 29 43 57 71

mutual

nor mutual

morphological

manual

0

0,3

0,6

0,9

1 2 3

x

y

 a) b) c)
Fig. 9. Curves x(t) (a) and y(t) (b) for the point P (Fig. 8) for automatic positioning (according
to matching measurements) and for manual drawing and correlation coefficients for x(t) and
y(t) curves between automatic and manual positioning (c): mutual correlation (1),
normalized mutual correlation (2), morphological correlation (3)
Faulty matchings were detected on the basis of visual perception. During the tests described
in [Goszczynska, 2005], in the case of faulty matching during the Tc period (concerning
single frames only) the correction was introduced by replacing the densitometric data, i.e.
A(t) values, obtained from the nearest frames with the proper matching.
For all the frames before and after the Tc period the time extrapolation was used by taking
the repetition of the data of the last heart cycle of the Tc period within the Tp period and the
first heart cycle of Tc period in the Ta period.
The trajectories of some selected artery segments were calculated. The examples of
trajectories for one heart cycle for the left and right coronary arteries (RCA) are shown in
Fig. 10. The degree of perfusion of the part of the myocardium can be estimated using these
trajectories, and the analysis of the changes in duration of particular heart cycle phases can
be performed.

a) b)
Fig. 10. Examples of trajectories for one heart cycle for a selected part of image of the
LCA (a) and RCA (b)

4. Discussion
The occurrence of faulty matching and computational complexity are the main problems of
the method of automatic tracing of the artery segment movement.
The most frequent reason for mismatching is too small size of searching area S. The proper
positioning of this area must be done according to the results of the analysis of the
maximum movements of the R mask with a chosen artery segment. Such faults can easily be
avoided during the analysis by choosing a bigger searching area (taking care not to include
more objects similar to the one which is necessary for the detection). However this operation
requires more time for the analysis, so for calculation of Cmax S could be kept small but

Tracking of Moving Coronary Artery Segment in Sequence of X-Ray Images

277

displaced slightly for each consecutive frame, based on the previously estimated movement.
This solution, unfortunately falls into the same trap as that described below.
The changing template algorithm has also been tested. As a primary template a fragment of
an artery from the frame at the end of injection was selected. In such case, it works as a
template only for comparison with the previous and the next frame. For the remaining
frames the template is a result of the previous searching. Such an algorithm, intuitively
better, still has a trap: due to an accidental mismatching the template may change entirely.
Various solutions of this problem are proposed in the literature, mainly based on the
reliability of the match [Guest, 1999].
Besides the problem of finding the best template or templates when choosing an optimal
window size (m, n) containing the template and an optimal size of the searching area kmax and
lmax, the detection faults may also be reduced by adopting a stronger criterion of similarity. The
tests we have conducted showed that the best correlation coefficient is a normalized one. A
morphological mutual correlation (a sharper matching peak) works better than a linear mutual
correlation in detection of the area R within area S. Moreover, the morphological correlation
algorithm (the sum of minima) is faster than the linear correlation algorithm (sum of
products). Yet it is not determined by our tests what are the advantages of one algorithm over
the other in regards to the precision of the matching.
The results obtained with our method should be compared with those based on other
criteria, when for example two templates are used or other similarity measures, i.e. those
based on histogram analysis applied for the difference (subtraction) of two adjacent frames
[Buzug et al., 1998].
Our algorithm inability to analyze fragments of the object with no characteristic
morphological details such as bifurcations or curvatures is a known issue. The solution here
would be the incorporation of 3D interpolation methods [Schrijver, 2002].
Regarding the problem of faulty matching correction a 2D interpolation for the template
positioning based on the neighbor proper matching seems to be a better solution than the
one suggested in the present study. Yet specifying the point for which the automatic
template matching was performed, the process of replacing densitometric data was easier
and led to a smaller error (this is due to the continuity of the process of changing the
indicator concentration in the artery cross-section investigated).
Controlling of the faulty matching can be computer-assisted, e.g. by comparing the values of
indexes (ln,kn) obtained with the range limit, and finding the maximum movement of the
artery fragment during the heart cycle, or by the analysis of movement direction, i.e. the
direction of the vector defined by indexes (ln-1,kn-1) and (ln,kn).
A proper matching for the Tp period is essential in the case when a part of the myocardium
perfusion is estimated, which movement, on the basis of the closest artery displacement, is
calculated. The degree of perfusion can be estimated from the image brightness changes of
the part of the myocardium. The analysis of an artery movement trajectory may also allow
to estimate changes in duration of the heart cycle phases and may serve as a basis for
modeling epicardial strains [Young & Hunter, 1992].
In the next section described is the estimation of the error in the densitometric curve
calculation caused by the use of the automatic procedure for data collection.

4.1 Method of error estimation
The presented here application of the correspondence finding technique was used in
coronary flow estimation by computer analysis of angiographic image sequences. For the

Object Tracking

278

estimation of the error caused by the automatic artery tracking method one may define as
the reference either the values of the coordinates obtained during manual cross-sectional
line drawing or other values calculated during the estimation of the flow rate. The following
options for the reference value were analyzed:
• the coordinates of the P1 and P2 ends of the cross-sectional line (Fig. 11a)
• the value of the A field defined by equation (1) (Fig. 11b)
• the value of the field under the curve A(t) as defined by equation (A11) (Fig. 11c)
The Fig.11 below depicts the three above-mentioned values.

 a) b) c)

Fig. 11. Examples of the reference values for estimation of the error caused by automatic
cross-sectional line positioning (description in the text)
The following section discusses the analysis of the error caused by the automatic drawing of
the cross-sectional line for the three above listed reference values.

4.1.1 The coordinates of cross-sectional line ends
The coordinates of the cross-sectional line end values were used for the estimation of the
slope angle of the positioned cross-sectional line and for the construction of the movement
trajectory. For image sequence of RCA (Fig. 10b), the changes in the slope angle of a
manually positioned cross-sectional line with the axis of the artery segment were measured.
It allowed to determine the error level of the automatic analysis caused by the fact that for
the implemented algorithm the cross-sectional line has the same slope. For the example
tested the difference between the two methods was not greater than 14° (Fig. 12a).
There was also the influence of those changes on the length of the cross-sectional line for one
pixel (Fig. 12b) calculated (with a unit being the pixel size).

 a) b) c)

Fig. 12. The changes in the slope angle for the manually positioned cross-sectional line in the
Tc period: a) the slope angle, b) the line length / (number of pixels – 1), c) a diagram of the
influence of the cross-sectional line slope with the axis of an artery fragment on the line
length in pixels.

Tracking of Moving Coronary Artery Segment in Sequence of X-Ray Images

279

As presented in Fig. 12c for the three positions of the line its length expressed in pixels is
constant. This is due to the line generation algorithm in the discrete space (for the simplest
position of the artery axis on the digitized plane). Thus in our case the fact that a constant
slope of the cross-sectional line is assumed has no influence on the calculation results, that is
on the range of the integration in equation (1). Despite the number of pixels in the segment
remaining constant, the pixels that create the segment are not identical, which is also a
source of error.
The only exception to the above results would be such a positioning of the cross-sectional
line that the range of change of 14° covers the line drawn at 45° with the artery axis, which
in practice means a wrong positioning of the cross-sectional line.

4.1.2 The value of field A
The changes in the background of the artery fragment investigated make the value of the A
field sensitive to the slope angle of the cross-sectional line and the artery axis and to the
interpolation method of the background lines [Goszczynska, 2004]. Fig. 13 shows two
densitometric curves for the same cross-section of a catheter filled with a contrast medium,
computed with two background line interpolation algorithms. Although method I (Fig. 13a)
gives larger errors compared with method II (Fig. 13b), the final result, that is for the field
under the A(t) curve, is computed with significantly smaller error. The conclusion based on
the above results was to use the calculation of the field under the A(t) curve as the reference
values for the estimation of accuracy of automatic cross-sectional line positioning.

 a) b)
Fig. 13. Densitometric curves A(t) and their low pass version for the same cross-sectional
line of the catheter calculated for two background line interpolation algorithms: a) method I,
b) method II

4.1.3 The area under the densitometric curve A(t)
To estimate the error resulting from automatic data collection, densitometric analyses of the
same artery segment were performed for automatic and manual positioning of the cross-
sectional lines. The lines were positioned in three ways: automatically correctly (i.e.
perpendicularly to the artery axis) on the pattern image, automatically purposely incorrectly
(i.e. not perpendicularly to the artery axis) and manually correctly (Fig. 14).

 a) b)
Fig. 14. The position of the artery cross-sectional line on the reference image: a) correct
position (visual estimation), b) incorrect position (intentional)

Object Tracking

278

estimation of the error caused by the automatic artery tracking method one may define as
the reference either the values of the coordinates obtained during manual cross-sectional
line drawing or other values calculated during the estimation of the flow rate. The following
options for the reference value were analyzed:
• the coordinates of the P1 and P2 ends of the cross-sectional line (Fig. 11a)
• the value of the A field defined by equation (1) (Fig. 11b)
• the value of the field under the curve A(t) as defined by equation (A11) (Fig. 11c)
The Fig.11 below depicts the three above-mentioned values.

 a) b) c)

Fig. 11. Examples of the reference values for estimation of the error caused by automatic
cross-sectional line positioning (description in the text)
The following section discusses the analysis of the error caused by the automatic drawing of
the cross-sectional line for the three above listed reference values.

4.1.1 The coordinates of cross-sectional line ends
The coordinates of the cross-sectional line end values were used for the estimation of the
slope angle of the positioned cross-sectional line and for the construction of the movement
trajectory. For image sequence of RCA (Fig. 10b), the changes in the slope angle of a
manually positioned cross-sectional line with the axis of the artery segment were measured.
It allowed to determine the error level of the automatic analysis caused by the fact that for
the implemented algorithm the cross-sectional line has the same slope. For the example
tested the difference between the two methods was not greater than 14° (Fig. 12a).
There was also the influence of those changes on the length of the cross-sectional line for one
pixel (Fig. 12b) calculated (with a unit being the pixel size).

 a) b) c)

Fig. 12. The changes in the slope angle for the manually positioned cross-sectional line in the
Tc period: a) the slope angle, b) the line length / (number of pixels – 1), c) a diagram of the
influence of the cross-sectional line slope with the axis of an artery fragment on the line
length in pixels.

Tracking of Moving Coronary Artery Segment in Sequence of X-Ray Images

279

As presented in Fig. 12c for the three positions of the line its length expressed in pixels is
constant. This is due to the line generation algorithm in the discrete space (for the simplest
position of the artery axis on the digitized plane). Thus in our case the fact that a constant
slope of the cross-sectional line is assumed has no influence on the calculation results, that is
on the range of the integration in equation (1). Despite the number of pixels in the segment
remaining constant, the pixels that create the segment are not identical, which is also a
source of error.
The only exception to the above results would be such a positioning of the cross-sectional
line that the range of change of 14° covers the line drawn at 45° with the artery axis, which
in practice means a wrong positioning of the cross-sectional line.

4.1.2 The value of field A
The changes in the background of the artery fragment investigated make the value of the A
field sensitive to the slope angle of the cross-sectional line and the artery axis and to the
interpolation method of the background lines [Goszczynska, 2004]. Fig. 13 shows two
densitometric curves for the same cross-section of a catheter filled with a contrast medium,
computed with two background line interpolation algorithms. Although method I (Fig. 13a)
gives larger errors compared with method II (Fig. 13b), the final result, that is for the field
under the A(t) curve, is computed with significantly smaller error. The conclusion based on
the above results was to use the calculation of the field under the A(t) curve as the reference
values for the estimation of accuracy of automatic cross-sectional line positioning.

 a) b)
Fig. 13. Densitometric curves A(t) and their low pass version for the same cross-sectional
line of the catheter calculated for two background line interpolation algorithms: a) method I,
b) method II

4.1.3 The area under the densitometric curve A(t)
To estimate the error resulting from automatic data collection, densitometric analyses of the
same artery segment were performed for automatic and manual positioning of the cross-
sectional lines. The lines were positioned in three ways: automatically correctly (i.e.
perpendicularly to the artery axis) on the pattern image, automatically purposely incorrectly
(i.e. not perpendicularly to the artery axis) and manually correctly (Fig. 14).

 a) b)
Fig. 14. The position of the artery cross-sectional line on the reference image: a) correct
position (visual estimation), b) incorrect position (intentional)

Object Tracking

280

There were analysed three widths of the cross-sectional line and three algorithms of the
value A calculation [Goszczynska, 2004]. Fig. 15 presents the ranges of the calculated area
values with marked maximum and minimum values. Two types of errors were assessed.
Error of type 1 caused by the automatic data collection was defined as:

 -max min1
min

c c

m
er = (10)

where maxc, minc are the maximum and minimum values of the area for “correct” lines, minm
is the minimum area value for “manual” lines. Error of type 1 was estimated as less than
11%. This type of error is associated with the imperfection of the matching algorithm, e.g.
when rotation is disregarded in equation (4). Error of type 2 (also called the total error of the
flow estimation method) calculated for all the measurements performed was defined as:

 -max min2
min

T T

T
er = (11)

where maxT , minT are the maximum and minimum values of the area for all lines. The
estimation of this error, including both the previous error and the error caused by the
operator, was assessed to less than 24%. The results of the error calculation of the maximum
possible error for the results of the measurements are presented in Fig. 15.

Fig. 15. Ranges of values of the area ∑)t(A for automatic correct, automatic incorrect and
manual positioning of the cross-sectional line

5. Conclusion
The algorithm described makes it possible to automatically collect the data used for the
coronary blood flow measurement based on the analysis of a diluted indicator; though some
occurrences of mismatch happen. The assessed error of the method did not exceed 11%. The
algorithm of automatic data collection for the coronary flow estimation significantly
accelerates the collection of the data without deteriorating the accuracy of the results obtained.
Our method of automatic tracing of the measurement area not only reduces the manual
effort of the operator involved in positioning the cross-sectional line in the frame sequence,
but also provides a simple method of obtaining a densitometric curve with the time
resolution equal to that of the timeline of the sequence investigated. Most of the other
approaches to the measurements of coronary flow are based on the analysis of densitometric
curves calculated from the frames referring to a particular phase of heart cycle and are later
interpolated with a preset fitting curve. The presented algorithm makes it also possible to

Tracking of Moving Coronary Artery Segment in Sequence of X-Ray Images

281

correct mismatching and incorporation of movement trajectories obtained to analyze the
sequence range in which there is no contrast medium in the artery segment investigated
(invisible in the frame). This permits perfusion estimation of the part of the myocardium
which surrounds the artery segment. For the artery (LCA and RCA) analyzed segments not
taking the rotations into consideration has no influence on the accuracy of the collected data
due to the relatively small (<45°) rotation movement of the cross-section investigated during
the heart cycle and the features of algorithms generating straight lines in the digitized space.
It seems that this relatively simple algorithm can be accepted even in routine clinical tests
due to a short time (few minutes) of the sequence analysis.
Some other ideas related to the solutions of the problem of effective artery segment tracing
can be mentioned here:
• Inclusion of some searching strategy into the matching algorithm to reduce the number

of positions of the template for comparison with a selected fragment [Orkisz, 1999].
• Investigation of the efficiency of the Fourier transform [Fei, 1999],
• Use of specialized signal processors [Bogorodzki, 2000],

6. Appendix A
Coronary flow estimation using densitometric measurements
The calculation of the indicator concentration from a radiographic image is based on image
brightness measurements. The differences in brightness in X-ray images are caused by
spatially different attenuations of the X-ray beam by the tissue, as described by the Lambert-
Beer law:

 1 0
slI I e−= (A1)

where Io is the intensity of the monochromatic input beam, I1 is the intensity of the
attenuated beam at a distance l [cm], and s is the linear X-ray attenuation coefficient [cm-1]. In
angiographic images, morphometric and haemodynamic measurements are performed
mainly on some parts of the image in the region of uptake of the contrast medium, i.e. in
arteries or the myocardium filled with an X-ray indicator, whose attenuation coefficient s is
significantly higher than that of the blood (the blood attenuation coefficient is neglected).
The value of the distance l can be expressed as:

0

1 Il ln
Is

= − (A2)

Assuming a linear relationship between the X-ray intensities I and I0 and the corresponding
image brightness D and D0 (image value without the indicator on the same site for the same
exposure parameters , i.e. a background value) respectively, the value Vpi of the indicator in
the volume along the distance l, viewed as an area of one pixel a [cm2], can be expressed as:

 pi
0

DV ln
D

a
s

= − (A3)

For the region of interest (ROI) consisting of PROI pixels, VROIi, equation (A4) becomes a
summation calculated for each pixel with coordinates m,n ⊂ ROI:

Object Tracking

280

There were analysed three widths of the cross-sectional line and three algorithms of the
value A calculation [Goszczynska, 2004]. Fig. 15 presents the ranges of the calculated area
values with marked maximum and minimum values. Two types of errors were assessed.
Error of type 1 caused by the automatic data collection was defined as:

 -max min1
min

c c

m
er = (10)

where maxc, minc are the maximum and minimum values of the area for “correct” lines, minm
is the minimum area value for “manual” lines. Error of type 1 was estimated as less than
11%. This type of error is associated with the imperfection of the matching algorithm, e.g.
when rotation is disregarded in equation (4). Error of type 2 (also called the total error of the
flow estimation method) calculated for all the measurements performed was defined as:

 -max min2
min

T T

T
er = (11)

where maxT , minT are the maximum and minimum values of the area for all lines. The
estimation of this error, including both the previous error and the error caused by the
operator, was assessed to less than 24%. The results of the error calculation of the maximum
possible error for the results of the measurements are presented in Fig. 15.

Fig. 15. Ranges of values of the area ∑)t(A for automatic correct, automatic incorrect and
manual positioning of the cross-sectional line

5. Conclusion
The algorithm described makes it possible to automatically collect the data used for the
coronary blood flow measurement based on the analysis of a diluted indicator; though some
occurrences of mismatch happen. The assessed error of the method did not exceed 11%. The
algorithm of automatic data collection for the coronary flow estimation significantly
accelerates the collection of the data without deteriorating the accuracy of the results obtained.
Our method of automatic tracing of the measurement area not only reduces the manual
effort of the operator involved in positioning the cross-sectional line in the frame sequence,
but also provides a simple method of obtaining a densitometric curve with the time
resolution equal to that of the timeline of the sequence investigated. Most of the other
approaches to the measurements of coronary flow are based on the analysis of densitometric
curves calculated from the frames referring to a particular phase of heart cycle and are later
interpolated with a preset fitting curve. The presented algorithm makes it also possible to

Tracking of Moving Coronary Artery Segment in Sequence of X-Ray Images

281

correct mismatching and incorporation of movement trajectories obtained to analyze the
sequence range in which there is no contrast medium in the artery segment investigated
(invisible in the frame). This permits perfusion estimation of the part of the myocardium
which surrounds the artery segment. For the artery (LCA and RCA) analyzed segments not
taking the rotations into consideration has no influence on the accuracy of the collected data
due to the relatively small (<45°) rotation movement of the cross-section investigated during
the heart cycle and the features of algorithms generating straight lines in the digitized space.
It seems that this relatively simple algorithm can be accepted even in routine clinical tests
due to a short time (few minutes) of the sequence analysis.
Some other ideas related to the solutions of the problem of effective artery segment tracing
can be mentioned here:
• Inclusion of some searching strategy into the matching algorithm to reduce the number

of positions of the template for comparison with a selected fragment [Orkisz, 1999].
• Investigation of the efficiency of the Fourier transform [Fei, 1999],
• Use of specialized signal processors [Bogorodzki, 2000],

6. Appendix A
Coronary flow estimation using densitometric measurements
The calculation of the indicator concentration from a radiographic image is based on image
brightness measurements. The differences in brightness in X-ray images are caused by
spatially different attenuations of the X-ray beam by the tissue, as described by the Lambert-
Beer law:

 1 0
slI I e−= (A1)

where Io is the intensity of the monochromatic input beam, I1 is the intensity of the
attenuated beam at a distance l [cm], and s is the linear X-ray attenuation coefficient [cm-1]. In
angiographic images, morphometric and haemodynamic measurements are performed
mainly on some parts of the image in the region of uptake of the contrast medium, i.e. in
arteries or the myocardium filled with an X-ray indicator, whose attenuation coefficient s is
significantly higher than that of the blood (the blood attenuation coefficient is neglected).
The value of the distance l can be expressed as:

0

1 Il ln
Is

= − (A2)

Assuming a linear relationship between the X-ray intensities I and I0 and the corresponding
image brightness D and D0 (image value without the indicator on the same site for the same
exposure parameters , i.e. a background value) respectively, the value Vpi of the indicator in
the volume along the distance l, viewed as an area of one pixel a [cm2], can be expressed as:

 pi
0

DV ln
D

a
s

= − (A3)

For the region of interest (ROI) consisting of PROI pixels, VROIi, equation (A4) becomes a
summation calculated for each pixel with coordinates m,n ⊂ ROI:

Object Tracking

282

 ROIi
m,n ROI 0

a D(m,n)V =- ln
s D (,)m n∈

∑ (A4)

Introducing

 ROI
m,n ROI 0

D(m,n,t)A (t)=- ln
D (, ,)m n t∈

∑ (A5)

an equation for the densitometric curve in the time domain is obtained. Equations (A4) and
(A5) provide a basis for densitometric measurements performed on angiographic images.
Using the Stewart-Hamilton equation from the indicator-dilution theory, the coronary blood
flow Q can be expressed as a ratio of the mass M [g] of the injected indicator to the area
under the curve of the indicator concentration c [g/cm3] versus time:

0
()

MQ
c t dt

∞=

∫
 (A6)

This equation was a basis for different measurement techniques, e.g. thermodilution, used
since the early eighties for densitometric purposes. The indicator concentration in the
volume VROI represented in the image by the region of interest ROI can be calculated as
follows:

 ROIii

ROI ROI

V (t)m (t) c(t)
V V

g= = (A7)

where mi is the mass of the undiluted indicator of volume VROIi, g is the density of the
undiluted indicator [g/cm3]. Using equation (A4) for densitometric measurements, equation
(A7) can be rewritten as:

 , 0

ROI

a I(m,n,t)ln
s I (m,n,t)

 c(t) g
V

m n ROI∈
−

= ⋅
∑

 (A8)

and using equation (A5) we obtain

ROI

a ()
s c(t) g

V

ROIA t−
= ⋅ (A9)

Denoting

 k R O IsV
ga

= − (A10)

 ROI
0

A (t)Area dt
∞

= ∫ (A11)

Tracking of Moving Coronary Artery Segment in Sequence of X-Ray Images

283

and using equation (A9), equation (A6) can be rearranged as:

0
0

ROI

ROI ROI

ROI

sVM M MQ ka ga AreaA (t) A (t))dtsg
V

∞
∞

= = − ⋅ =
−
⋅

∫
∫

 (A12)

Published in part in Machine Graphics & Vision (2008) 17: 69-90 (with permission).

7. References
Benayoun, S.; Ayache N. (1998). Dense Non-Rigid Motion Estimation In Sequence of Medical

Images Using Differential Constraints. International Journal of Computer Vision 26(1),
Kluwer Academic Publishers, 25-40.

Bogorodzki, P.; Wolak, T.; Piątkowski, A. (2000). Real Time Implementation of the Parametric
Imaging Correlation Algorithms, 59th ICB Seminar on Recent Development in MR
Imaging, Warsaw

Buzug, T. M.; Weese J.; Strasters K.C. (1998). Motion detection and motion compensation for
digital subtraction angiography image enhancement, Philips J. Res. 51, 203-229

Buzug, T.M.; Weese J. (1998). Voxel-Based Similarity Measures for Medical Image Registration in
Radiological Diagnosis and Image Guided Surgery, Journal of Computing and
Information Technology – CIT 6, 2, 165-179.

Coatrieux, J.-L. et al. (1995). 2D et 3D Motion Analysis in Digital Subtraction Angiography.
Computer Vision, Virtual Reality and Robotics in Medicine, (Ayache N. ed.),
Springer, CVRMed

Fei, R.; Gui, L.; Merzkirch, W. (1999). Comparative study of correlation-based PIV evaluation
methods, Machine Graphics & Vision, 8(4), 572-578.

Gonzalez, R.C.; Wintz P. (1987). Digital Image Processing, Addison-Wesley Publishing
Company.

Goszczyńska, H. (2004). Computer analysis of coronarographic images for coronary flow
calculation (in Polish) PhD Thesis, Institute of Biocybernetics and Biomedical
Engineering Polish Academy of Sciences, Warsaw

Goszczyńska H. (2008). Method for Densitometric Analysis of Moving Object Tracking in
Medical Images Machine Graphics & Vision 17:69-90,

Goszczyńska, H.; Rewicki M. (2008). Coronary Flow Evaluation by Densitometric Analysis of
Sequences of Coronarographic Images, Med Bio Eng Comput, 46:199-204, DOI
10.1007/s11517-007-0288-5

Goszczyńska, H; Kowalczyk L, Rewicki M.: Clinical study of the coronary flow measurements
method based on coronagrographic image sequences. Biocybernetics and Biomedical
Engineering (Polish Academy of Sciences) 26:63-73

Guest, E.; Fidrich, M.; Kelly, S.; Berr, E. (1999). Robust surface matching for registration, 3-D
Digital Imaging and Modeling, 1999. Proceedings. Second International Conference
on, 169 – 177

Hildreth, E. C. (1987). The analysis of visual motion: from computational theory to neural
mechanism, Annual Review of Neuroscience, 10, 477-533.

Horn, B. K. P.; Schunck B. G. (1981). Determining Optical Flow, Artificial Intelligence 17, 185-
203.

Object Tracking

282

 ROIi
m,n ROI 0

a D(m,n)V =- ln
s D (,)m n∈

∑ (A4)

Introducing

 ROI
m,n ROI 0

D(m,n,t)A (t)=- ln
D (, ,)m n t∈

∑ (A5)

an equation for the densitometric curve in the time domain is obtained. Equations (A4) and
(A5) provide a basis for densitometric measurements performed on angiographic images.
Using the Stewart-Hamilton equation from the indicator-dilution theory, the coronary blood
flow Q can be expressed as a ratio of the mass M [g] of the injected indicator to the area
under the curve of the indicator concentration c [g/cm3] versus time:

0
()

MQ
c t dt

∞=

∫
 (A6)

This equation was a basis for different measurement techniques, e.g. thermodilution, used
since the early eighties for densitometric purposes. The indicator concentration in the
volume VROI represented in the image by the region of interest ROI can be calculated as
follows:

 ROIii

ROI ROI

V (t)m (t) c(t)
V V

g= = (A7)

where mi is the mass of the undiluted indicator of volume VROIi, g is the density of the
undiluted indicator [g/cm3]. Using equation (A4) for densitometric measurements, equation
(A7) can be rewritten as:

 , 0

ROI

a I(m,n,t)ln
s I (m,n,t)

 c(t) g
V

m n ROI∈
−

= ⋅
∑

 (A8)

and using equation (A5) we obtain

ROI

a ()
s c(t) g

V

ROIA t−
= ⋅ (A9)

Denoting

 k R O IsV
ga

= − (A10)

 ROI
0

A (t)Area dt
∞

= ∫ (A11)

Tracking of Moving Coronary Artery Segment in Sequence of X-Ray Images

283

and using equation (A9), equation (A6) can be rearranged as:

0
0

ROI

ROI ROI

ROI

sVM M MQ ka ga AreaA (t) A (t))dtsg
V

∞
∞

= = − ⋅ =
−
⋅

∫
∫

 (A12)

Published in part in Machine Graphics & Vision (2008) 17: 69-90 (with permission).

7. References
Benayoun, S.; Ayache N. (1998). Dense Non-Rigid Motion Estimation In Sequence of Medical

Images Using Differential Constraints. International Journal of Computer Vision 26(1),
Kluwer Academic Publishers, 25-40.

Bogorodzki, P.; Wolak, T.; Piątkowski, A. (2000). Real Time Implementation of the Parametric
Imaging Correlation Algorithms, 59th ICB Seminar on Recent Development in MR
Imaging, Warsaw

Buzug, T. M.; Weese J.; Strasters K.C. (1998). Motion detection and motion compensation for
digital subtraction angiography image enhancement, Philips J. Res. 51, 203-229

Buzug, T.M.; Weese J. (1998). Voxel-Based Similarity Measures for Medical Image Registration in
Radiological Diagnosis and Image Guided Surgery, Journal of Computing and
Information Technology – CIT 6, 2, 165-179.

Coatrieux, J.-L. et al. (1995). 2D et 3D Motion Analysis in Digital Subtraction Angiography.
Computer Vision, Virtual Reality and Robotics in Medicine, (Ayache N. ed.),
Springer, CVRMed

Fei, R.; Gui, L.; Merzkirch, W. (1999). Comparative study of correlation-based PIV evaluation
methods, Machine Graphics & Vision, 8(4), 572-578.

Gonzalez, R.C.; Wintz P. (1987). Digital Image Processing, Addison-Wesley Publishing
Company.

Goszczyńska, H. (2004). Computer analysis of coronarographic images for coronary flow
calculation (in Polish) PhD Thesis, Institute of Biocybernetics and Biomedical
Engineering Polish Academy of Sciences, Warsaw

Goszczyńska H. (2008). Method for Densitometric Analysis of Moving Object Tracking in
Medical Images Machine Graphics & Vision 17:69-90,

Goszczyńska, H.; Rewicki M. (2008). Coronary Flow Evaluation by Densitometric Analysis of
Sequences of Coronarographic Images, Med Bio Eng Comput, 46:199-204, DOI
10.1007/s11517-007-0288-5

Goszczyńska, H; Kowalczyk L, Rewicki M.: Clinical study of the coronary flow measurements
method based on coronagrographic image sequences. Biocybernetics and Biomedical
Engineering (Polish Academy of Sciences) 26:63-73

Guest, E.; Fidrich, M.; Kelly, S.; Berr, E. (1999). Robust surface matching for registration, 3-D
Digital Imaging and Modeling, 1999. Proceedings. Second International Conference
on, 169 – 177

Hildreth, E. C. (1987). The analysis of visual motion: from computational theory to neural
mechanism, Annual Review of Neuroscience, 10, 477-533.

Horn, B. K. P.; Schunck B. G. (1981). Determining Optical Flow, Artificial Intelligence 17, 185-
203.

Object Tracking

284

Konrad, J. (2000). Motion Detection and Estimation, Handbook of Image&Video Processing,
ed. Al Bovik, Academic Press, San Diego, 207-225.

Maragos, P.; Pessoa, L.F.C. (2000). Morphological Filtering for Image Enhancement and Detection,
in. Handbook of Image&Video Processing, ed. Al Bovik, Academic Press, San
Diego, 108-110

Meijering, E. (2000). Image Enhacement in digital X-ray angiography, PhD thesis, University
Medical Center, Utrecht.

Meijering, E.H.W.; Nissen, W.J. & Viergever, M.A. (1999). Retrospective motion correction in
digital subtraction angiography: a review, IEEE Trans. Med. Imaging, 18(1), 2-21.

Meijering, E.H.W.; Zuiderveld, K.J. & Viergever, M.A. (1999). Image registration for digital
subtraction angiography, Int. J. Comput. Vision, 31(2), 227-246

Meunier J. et al. (1989). Analysis of cardiac motion from coronary cineangiograms: Velocity field
computation and decomposition, SPIE Vol.1090, Medical Imaging III, Image Formation

Nissen S.E. & Gurley J.C. (1991). Application of indicator dilution principles to regional
assessment of coronary flow reserve from digital angiography. In: Reiber JHC and
Serruys PW (eds) Quantitative Coronary Angiography. Kluver Academic
Publishers 117:245-263

Orkisz, M.; Bourlion, M.; Gimenez, G.; Flam, T. A. (1999). Real-time target tracking applied to
improve fragmentation of renal stones in extra-corporeal lithotripsy, Machine Vision and
Applications, vol.11, 138-144

Rong J.H. (1989). Estimation et caracterisation du mouvement en coronarographie. These de
doctorat, l’Universite de Rennes I

Rus J.C. (1995). The image processing handbook, CRC Press, Florida.
Schrijver, M. (2000). Angiographic Image Analysis to Assess the Severity of Coronary Stenoses,

Twente University Press, Enschede, Netherlande.
Wang, Y.; Erez Vidan, E.; Bergman, W. (1999). Cardiac Motion of Coronary Arteries: Variability

in the Rest Period and Implications for Coronary MR Angiography, Radiology, 213:751-
758.

Young, A.A.; Hunter, P.J.; Smaill B.H. (1992). Estimation of epicardial strain using the motions of
coronary bifurcations in biplane cineangiography, IEEE Trans. Biomed. Eng., 39 (5), 526-
531

Object Tracking

284

Konrad, J. (2000). Motion Detection and Estimation, Handbook of Image&Video Processing,
ed. Al Bovik, Academic Press, San Diego, 207-225.

Maragos, P.; Pessoa, L.F.C. (2000). Morphological Filtering for Image Enhancement and Detection,
in. Handbook of Image&Video Processing, ed. Al Bovik, Academic Press, San
Diego, 108-110

Meijering, E. (2000). Image Enhacement in digital X-ray angiography, PhD thesis, University
Medical Center, Utrecht.

Meijering, E.H.W.; Nissen, W.J. & Viergever, M.A. (1999). Retrospective motion correction in
digital subtraction angiography: a review, IEEE Trans. Med. Imaging, 18(1), 2-21.

Meijering, E.H.W.; Zuiderveld, K.J. & Viergever, M.A. (1999). Image registration for digital
subtraction angiography, Int. J. Comput. Vision, 31(2), 227-246

Meunier J. et al. (1989). Analysis of cardiac motion from coronary cineangiograms: Velocity field
computation and decomposition, SPIE Vol.1090, Medical Imaging III, Image Formation

Nissen S.E. & Gurley J.C. (1991). Application of indicator dilution principles to regional
assessment of coronary flow reserve from digital angiography. In: Reiber JHC and
Serruys PW (eds) Quantitative Coronary Angiography. Kluver Academic
Publishers 117:245-263

Orkisz, M.; Bourlion, M.; Gimenez, G.; Flam, T. A. (1999). Real-time target tracking applied to
improve fragmentation of renal stones in extra-corporeal lithotripsy, Machine Vision and
Applications, vol.11, 138-144

Rong J.H. (1989). Estimation et caracterisation du mouvement en coronarographie. These de
doctorat, l’Universite de Rennes I

Rus J.C. (1995). The image processing handbook, CRC Press, Florida.
Schrijver, M. (2000). Angiographic Image Analysis to Assess the Severity of Coronary Stenoses,

Twente University Press, Enschede, Netherlande.
Wang, Y.; Erez Vidan, E.; Bergman, W. (1999). Cardiac Motion of Coronary Arteries: Variability

in the Rest Period and Implications for Coronary MR Angiography, Radiology, 213:751-
758.

Young, A.A.; Hunter, P.J.; Smaill B.H. (1992). Estimation of epicardial strain using the motions of
coronary bifurcations in biplane cineangiography, IEEE Trans. Biomed. Eng., 39 (5), 526-
531

Object Tracking
Edited by Hanna Goszczynska

Edited by Hanna Goszczynska

Photo by Murat Göçmen / iStock

Object tracking consists in estimation of trajectory of moving objects in the sequence
of images. Automation of the computer object tracking is a difficult task. Dynamics

of multiple parameters changes representing features and motion of the objects,
and temporary partial or full occlusion of the tracked objects have to be considered.
This monograph presents the development of object tracking algorithms, methods

and systems. Both, state of the art of object tracking methods and also the new
trends in research are described in this book. Fourteen chapters are split into two

sections. Section 1 presents new theoretical ideas whereas Section 2 presents real-life
applications. Despite the variety of topics contained in this monograph it constitutes
a consisted knowledge in the field of computer object tracking. The intention of editor

was to follow up the very quick progress in the developing of methods as well as
extension of the application.

ISBN 978-953-307-360-6

O
bject Tracking

ISBN 978-953-51-5516-4

	Object Tracking
	Contents
	Preface
	Part 1
Methods
	Chapter 1
A Block Matching Technique for Object Tracking Based on Peripheral Increment Sign Correlation Image
	Chapter 2
Structural Information Approaches to Object Tracking in Video Sequences
	Chapter 3
Bayesian Tracking by Online Co-Training and Sequential Evolutionary Importance Resampling
	Chapter 4
Object Tracking Based on Color Information Employing Particle Filter Algorithm
	Chapter 5
Online Learning and Robust Visual Tracking using Local Features and Global Appearances of Video Objects
	Chapter 6
Switching Local and Covariance Matching for Efficient Object Tracking
	Chapter 7
Fuzzy Control System to Solve Coupling Between Tracking and Predictive Algorithms
	Chapter 8
Object Tracking and Indexing in H.264/AVC Bitstream Domains
	Chapter 9
Accelerating Live Graph-Cut-Based Object Tracking Using CUDA

	Part 2
Applications
	Chapter 10
Parsing Object Events in Heavy Urban Traffic
	Chapter 11
Object Tracking in Multiple Cameras with Disjoint Views
	Chapter 12
Object Tracking for Calibration of Distributed Sensors in Intelligent Space
	Chapter 13
Image-based Tracking of Deformable Surfaces
	Chapter 14
Tracking of Moving Coronary Artery Segment in Sequence of X-Ray Images

